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Preface

The threat of climate change makes it crucial to improve our understanding of the
climate system. However, the volume and diversity of climate data from satellites,
environmental sensors, and climate models can make the use of traditional analysis
tools impractical and necessitate the need to carry out knowledge discovery from
data. Machine learning has made significant impacts in fields ranging from web
search to bioinformatics, and the impact of machine learning on climate science
could be as profound (Monteleoni et al. 2013). However, because the goal of
machine learning in climate science is to improve our understanding of the climate
system, it is necessary to employ techniques that go beyond simply taking advantage
of co-occurrence and, instead, enable increased understanding.

The Climate Informatics workshop series seeks to build collaborative relation-
ships between researchers from statistics, machine learning, and data mining and
researchers in climate science. Because climate models and observed datasets are
increasing in complexity and volume, and because the nature of our changing
climate is an urgent area of discovery, there are many opportunities for such
partnerships. The series was cofounded by Claire Monteleoni and Gavin Schmidt
and the first workshop held in August 2011 at the New York Academy of Sciences,
New York, NY. Since then, the workshop has been held yearly at the National Center
for Atmospheric Research (NCAR) in Boulder, Colorado, with logistical support
from NCAR’s Mathematics Applied to Geosciences (IMAGe) led by Doug Nychka.

The 4th International Workshop on Climate Informatics was sponsored by the
National Science Foundation, The Climate Corporation, Oak Ridge Associated
Universities, and NCAR and held over 2 days, on September 25 and 26, 2014, in
Boulder, CO. The workshop drew 74 participants from universities, government
laboratories, and industry. There were 43 posters presented at the workshop, as
well as four invited talks. The editors selected and reviewed the 22 chapters in this
volume to represent the state of the field and provide indications of where new
advances will come from.
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It has been heartening to see collaborations fostered in previous years bear fruit
in the form of presentations in later years. For researchers in either field (machine
learning or climate science) looking for a new subspecialty in which to make an
impact, Climate Informatics presents a great opportunity. We hope that this book
will spark new ideas and foster new collaborations and encourage interested readers
to join us in Boulder for the 5th International Workshop on Climate Informatics.

Seattle, WA, USA Valliappa Lakshmanan
Boulder, CO, USA Eric Gilleland
Norman, OK, USA Amy McGovern
State College, PA, USA Martin Tingley
February 2015
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Chapter 1

Combining Analog Method and Ensemble Data
Assimilation: Application to the Lorenz-63
Chaotic System

Pierre Tandeo, Pierre Ailliot, Juan Ruiz, Alexis Hannart, Bertrand Chapron,
Anne Cuzol, Valérie Monbet, Robert Easton, and Ronan Fablet

Abstract Nowadays, ocean and atmosphere sciences face a deluge of data from
space, in situ monitoring as well as numerical simulations. The availability of
these different data sources offers new opportunities, still largely underexploited, to
improve the understanding, modeling, and reconstruction of geophysical dynamics.
The classical way to reconstruct the space-time variations of a geophysical system
from observations relies on data assimilation methods using multiple runs of the
known dynamical model. This classical framework may have severe limitations
including its computational cost, the lack of adequacy of the model with observed
data, and modeling uncertainties. In this paper, we explore an alternative approach
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4 P. Tandeo et al.

and develop a fully data-driven framework, which combines machine learning
and statistical sampling to simulate the dynamics of complex system. As a proof
concept, we address the assimilation of the chaotic Lorenz-63 model. We demon-
strate that a nonparametric sampler from a catalog of historical datasets, namely,
a nearest neighbor or analog sampler, combined with a classical stochastic data
assimilation scheme, the ensemble Kalman filter and smoother, reaches state-of-
the-art performances, without online evaluations of the physical model.

Keywords Data-driven modeling ¢ Data assimilation ¢ Stochastic filtering
Nonparametric sampling * Analog method ¢ Lorenz-63 model

1.1 Introduction

Understanding and estimating the space-time evolution of geophysical systems
constitute a challenge in geosciences. For an efficient restitution of geophysical
fields, classical approaches typically combine a physical model based on fluid
dynamics equations and remote sensing data or in situ observations. These
approaches are generally referred to as data assimilation methods and stated as
inverse problems for dynamical processes (see, e.g., Evensen 2009 and reference
therein). Two main categories of data assimilation approaches may be distinguished:
variational assimilation methods, which resort to the gradient-based minimization
of a variational cost function and rely on the computation of the adjoint of the
dynamical model (Lorenc et al. 2000), and stochastic data assimilation schemes,
which involve Monte Carlo strategies and are particularly appealing for their
modeling flexibility (Bertino et al. 2003). These stochastic methods iterate the
generation of a representative set of scenarios (hereinafter referred to members),
whose consistency is evaluated with respect to the available observations. To reach
good estimation performance, this number of members must be high enough to
explore the state space of the physical model.

Different limitations can occur in the stochastic data assimilation approaches
presented above. Firstly, it generally involves intensive computations for practical
applications since the physical model needs to be run with different initial conditions
at each time step in order to generate the members. Moreover, intensive modeling
efforts are needed to take into account fine-scale effects. Regional geophysical
models are typical examples (Ruiz et al. 2010). Secondly, dissimilarities often
occur between model outputs and observations. For instance, it can be the case
when combining high-resolution model forecasts with high-resolution satellite or
radar images. Thirdly, the dynamical model is not necessarily well known, and
parameterizations may be highly uncertain. This is particularly the case in subgrid-
scale processes, taking into account local and highly nonlinear effects (Lott and
Miller 1997). These different examples tend to show that multiple evaluations of
an explicit physical model are computationally demanding, and model uncertainties
can produce dissimilarities between forecasts and observations.
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As an alternative, the amount of observation and simulation data has grown very
quickly in the last decades. The availability of such historical datasets strongly
advocates for exploring implicit data-driven schemes to build realistic statistical
simulations of the dynamics for data assimilation issues. Satellite sequence images
are typical examples. When the spatiotemporal sampling and the amount of histori-
cal remote sensing data are sufficient, we may able to learn dynamical operators to
construct relevant statistical forecasts with a good consistency with satellite obser-
vations. Such implicit data-driven schemes may also provide fast implementation
alternatives as well as flexible strategies to deal with the abovementioned modeling
uncertainties. In this case, historical simulated data with different parameterizations,
initial conditions, and forcing terms may provide various scenarios to explore larger
state spaces.

In this paper, we aim at demonstrating a proof of concept of such data-driven
strategies to reconstruct complex dynamics from partial noisy observations. The
feasibility of our data assimilation method is illustrated on the classical chaotic
Lorenz-63 model (Lorenz 1963). The paper is organized as follows. In Sect. 1.2, we
propose to use a nonparametric sampler, based on the analog (or nearest neighbors)
method, to generate the forecast members (Delle Monache et al. 2013). Then, we use
the ensemble Kalman recursions to combine these members with the observations
(Evensen 2009). In Sect. 1.3, we numerically evaluate the methodology on the
Lorenz-63 model such as various previous works (see, e.g., Pham 2001, Hoteit et al.
2008). We further discuss and summarize the key results of our investigations in
Sect. 1.4.

1.2 Combining Machine Learning and Stochastic Filtering
Methods

Data assimilation for dynamical systems is generally stated according to the
following state space model (see, e.g., Bertino et al. 2003):

O~ x(@).00) (LD)
¥() = A(x(0).€() . (1.2)

The dynamical model given in Eq.(1.1) describes the evolution of the true
physical process x(7). It includes a random perturbation 7 (f) which accounts for
the various sources of uncertainties (e.g., boundary conditions, forcing terms,
physical parameterization, etc.). As an illustration, .# refers in the next sections
to the Lorenz-63 dynamical model, in which the state of the system x is a three-
dimensional vector (x,y,z). The observation model given in Eq.(1.2) links the
observation y(¢) to the true state at the same time 7. It also includes a random
noise €(#) which models observation error and uncertainties, change of support (i.e.,
downscaling/upscaling effects), and so on.
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P
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Fig. 1.1 Sketch of the forecast step in stochastic data assimilation schemes using pure (fop) and
analog (bottom) dynamical models. As an example, we consider the three-dimensional Lorenz-
63 chaotic model. For visualization convenience, we only represent the x-y plane, centered at the
origin. We track five statistical members with the variability depicted by ellipsoids accounting for
the covariance structure

The key originality of the methodology proposed in this paper consists in using a
nonparametric statistical sampling within a classical ensemble Kalman framework.
As described in Fig. 1.1 (top), the classical approach exploits an explicit knowledge
of the pure dynamical model (PDM) to propagate the ensemble members from a
given time step to the next one. By contrast, we assume here that a representative
catalog of examples of the time evolution of the state is available. This catalog is
used to build an analog dynamical model (ADM) to simulate .# and the associated
error  given in Eq.(1.1). We proceed as follows. Let us denote by x(¢) the state
at time . Its analogs or nearest neighbors are the samples in the catalog which are
the closest to x(7). Such nearest neighbor schemes are among the state-of-the-art
machine learning strategies (Friedman et al. 1977). In the geoscience literature, we
talk about analog methods (see, e.g., Lorenz 1963 or Van den Dool 2006). They
were initially devised for weather prediction, but applications to downscaling issues
(Timbal et al. 2003) or climate reconstructions (Schenk and Zorita 2012; Yiou et al.
2013) were also proposed. As described in Fig. 1.1 (bottom), for each member at a
given time, we use the successors of its analogs to generate possible forecast states at
time #4-dr. The variability of the selected successors also provides a characterization
of the forecast error, namely, here, its covariance. From a methodological point of
view, analog techniques provide nonparametric representations. They are associated
with computationally efficient implementations and prove highly flexible to account
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for nonlinear and chaotic patterns as soon as the catalog of observed situations is rich
enough to describe all possible state dynamics (Lorenz 1969).

Then, this nonparametric data-driven sampling of the state dynamics is plugged
into a classical ensemble data assimilation method. It leads to the estimation
of the filtering or smoothing probabilities of the state-space model given in
Egs. (1.1)—(1.2). It might be noted that previous works have analyzed the conver-
gence of these estimated probabilities to the true ones, when the size of the catalog
tends to infinity (Monbet et al. 2008). Here, we exploit the low-computational
ensemble Kalman recursions (see Evensen 2009 for more details), but other
stochastic methods could be used such as particle filters.

1.3 Application to the Lorenz-63 Chaotic System

In this section, we perform a simulation study to assess the assimilation performance
of the proposed method on the classical Lorenz-63 model. This model has been
extensively used in the literature on data assimilation (see, e.g., Miller et al. 1994,
Anderson and Anderson 1999 or Van Leeuwen 1999). From a methodological
point of view, it is particularly interesting due to its simplicity (in terms of
dimensionality and computational cost) and its chaotic behavior. We first describe
how we generate the catalog (Sect. 1.3.1) and detail how we implement the analog
dynamical model in a classical stochastic filtering (Sect. 1.3.2). We then evaluate
assimilation performance with respect to classical state-of-the-art data assimilation
techniques (Sect. 1.3.3).

1.3.1 Synthetic Data

We generate three different datasets (true state, noisy observations, and catalog)
using the exact Lorenz-63 differential equations given in Fig. 1.1 (top) with the
classical parameters p = 28, 0 = 10, B = 8/3 and the time step df = 0.01.
From a random initial condition and after 500 time steps, the trajectory converges to
the attractor, and we append the associated data to our datasets as follows. At each
time ¢, the corresponding Lorenz trajectory is given by the variables x, y, and z. We
store the three variables in the true state vector x(¢). Then, we randomly generate
the observations y(#) as the sum of the state vector and of independent Gaussian
white noises with variance 2. To generate the catalog, we use another random initial
condition, and after 500 time steps, we start to append the consecutive state vectors
z(t) (the analogs) and z(r + dr) (the successors) in the catalog. Examples of the
samples stored in this catalog are given in Table 1.1.
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Table 1.1 Samples of the catalog used in the ADM presented in Fig. 1.1 (bottom) to simulate
realistic Lorenz-63 trajectories with a time step d¢ = 0.01

z(1) — Analogs z(r + dt) — Successors

(—0.3268, +3.2644, +25.5134) (40.0131, +3.2278, 4-24.8371)
(+40.0131, +3.2278, +24.8371) (40.3177, 43.2017, 4-24.1889)
(—2.7587,—4.5007, +19.1790) (—2.9344,—4.7112, 418.8037)
(—2.9344,—-4.7112, 418.8037) (—3.1147, —4.9464, 4-18.4530)

1.3.2 The Analog Ensemble Kalman Filter and Smoother

As stressed in Sect. 1.2, the key feature of the proposed approach is to build a
nonparametric sampler of the dynamics (ADM). For the considered application to
Lorenz-63 dynamics, we resort to a first-order autoregressive process between z(t)
and z(z 4 dr) with dr = 0.01 (see Sprott 2003, chapter 10, for similar applications
in other chaotic models). We consider the first ten analogs (or the first ten
nearest neighbors) of a given state within the built catalog of simulated Lorenz-63
trajectories presented in Table 1.1. Note that we here consider an exhaustive search
within the entire catalog. This ADM is plugged into classical ensemble Kalman
recursions. We implement both the ensemble Kalman filter (EnKF) and smoother
(EnKS). Whereas EnKF only exploits the available observation up to the current
state (i.e., past and current observations), EnKS exploits the entire observation series
(i.e., both past, present, and future observations with respect to the current state). We
implement the EnKF and EnKS with 100 members, value sufficiently important
to correctly estimate the covariances. In the next results, we perform numerical
experiments to assess the performance of the proposed approach. We vary both the
time steps of the observations and the size of the catalog and analyze the impact
on assimilation performance. We carry out a comparative evaluation with respect
to reference assimilation models using a parametric autoregressive process and the
pure dynamical Lorenz-63 equations (PDM). For each experiment, we display the
ensemble mean and the 95 % confidence interval (transparent error area) of the
assimilated states issued from the Gaussian smoothing probabilities estimated by
the EnKS.

1.3.3 Evaluation of Assimilation Performance

We first analyze assimilation performance for noisy observations sampled at
different time rates (noted as dfops), from 0.01 to 0.40. Considering the analogy
between the Lorenz-63 and atmospheric time scales, note that dfps = 0.08 is
equivalent to a 6 h variability in the atmosphere. As an illustration of the complexity
of Lorenz-63 dynamics, we report in Fig. 1.2 (left column) the scatter cloud of two
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Fig. 1.2 The left column displays the scatter plot between two consecutive values of the Lorenz-
63 second variable y. In the right column, the noisy observations and true states of the Lorenz-63
are respectively represented with black dots and black curves. We also display the smoothed mean
estimate and the 95 % confidence interval of the assimilation of the noisy observations using a
simple linear and parametric AR(1) model (red) and the proposed nonparametric ADM (blue).
Experiments are carried out for different sampling rates between consecutive observations, from
0.01 to 0.40 (top to bottom)
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consecutive values of the second Lorenz-63 variable y in the catalog. Whereas we
observe a linear-like pattern for the fine sampling rate of 0.01 (first row), all other
sampling rates clearly exhibit nonlinear patterns, which can hardly be captured by
a linear dynamical model. For each time step setting, we also compare in Fig. 1.2
(right column) the observations (black dots), the true state (black curves), and the
assimilation results using different dynamical models. Two results are reported:
the nonparametric ADM presented in Sect. 1.3.2 (blue curves) and the parametric
first-order linear autoregressive AR(1) model (red curves). For very small sampling
rates between consecutive observations, a simple linear AR(1) dynamical model
proves sufficient to assimilate the state of the system. But, as soon as the sampling
rate becomes greater (from 0.08), such an AR(1) model can no longer drive the
assimilation to relevant states. By contrast, the proposed ADM does not suffer from
these limitations and show weak effects of the sampling rates on the quality of the
assimilated states.

We also compare the performance of the proposed nonparametric ADM to the
classical EnKS assimilation using the PDM, i.e., allowing online evaluations of the
Lorenz-63 equations. We perform different simulations varying the time sampling
rate between two consecutive observations dfops = {0.01,0.08,0.24,0.40} and the
size of the catalog n = {103, 10%,10°, 10%}. For each experiment, we compute the
root mean square error (RMSE) between the true and estimated smoothed states of
the Lorenz-63 trajectories. These RMSE are computed over 10° time steps. To solve
the differential equations of the Lorenz-63 model in the PDM, we use the explicit
(4,5) Runge-Kutta integrating method (cf. Dormand and Prince 1980). Figure 1.3
summarizes the results. As benchmark curves, in dashed lines, we plot the results
of the classical EnKS using the PDM. In solid lines, we report the results of the
proposed EnKS using ADM. We observe a decrease of the error when the size n of

PDM with EnKS (dashed lines) — ADM with EnKS (solid lines)
2 T T N T T T T T T T T il

——dtops =0.01
—+—dtops = 0.08
——dtgps = 0.24 |

«—dtgns = 0.40

RMSE

0 0
Size of the analog database (n)

Fig. 1.3 root mean square error (RMSE) for the three variables of the Lorenz-63 model as a
function of the size of the catalog (n) and the time sampling rate between consecutive observations
(dtops). Dashed and solid lines refer respectively to the reanalysis (smoothed estimates) for the
classical EnKS using PDM and the proposed EnKS using ADM (see Fig. 1.1 for the difference
between the two approaches)
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the catalog increases (x-axis in log scale). It also shows that the difference in RMSE
between the two kinds of reanalysis (with and without an explicit knowledge of the
Lorenz-63 equations) decreases when the time sampling rate (and thus the forecast
error) between two consecutive observations dfqps increases (colors in legend).
Overall, for a catalog of 10° samples, we report RMSE difference below 0.05 for
sampling rates equal or greater than 0.08.

1.4 Conclusion and Perspectives

In this paper, we show that the statistical combination of Monte Carlo filters
and analog procedures is able to retrieve the chaotic behavior of the Lorenz-
63 model when the size of the catalog is sufficiently important. The proposed
methodology may be a relevant alternative to the classical data assimilation schemes
when (i) large observational or model-simulated databases of the process are
available and (ii) physical models are computationally demanding and/or modeling
uncertainties are important. The data-driven methodology proposed in this paper
is a relatively low-cost procedure, which directly samples new ensembles from
previously observed or simulated data, and potentially allows for an exploration
of more scenarios.

Our future work will particularly investigate the application of the proposed
methodology to archives of in situ measurements, remote sensing observations, and
model-simulated data for the multi-source reconstruction of geophysical parameters
at the surface of the ocean. The methodology seems particularly appealing for
such surface oceanographic studies for three reasons: (i) the low dimensionality
of the state in comparison with atmosphere and a 3D spatial grid, (ii) the less
chaotic behavior of the dynamics due to the water viscosity and (iii) the amount
oceanographic data at the surface of the ocean. Indeed, in the last two decades,
satellite and in situ measurements have provided a wealth of information with high
spatial and temporal resolutions.

Future work will also address methodological aspects, especially regarding the
search procedures for the analogs and the construction of the catalog. In this Lorenz-
63 example, a small part of the trajectory is really chaotic (zone close to the origin,
between the two attractors), and most of the time, a simple autoregressive process
is able to produce relevant forecasts in non-chaotic regions. An effort is therefore
needed to evaluate the complexity of the trajectory, what may, for instance, rely on
Lyapunov exponent (see Sprott 2003, chapter 10), and carefully select the samples
indexed in the catalog upon their representativeness of the underlying chaotic
dynamics. Another important aspect is the size of the sampled trajectories between
analogs and successors in the catalog. In this paper, we use a very small time lag
(dt = 0.01), but other strategies can be used, e.g., sampling successors with the
same time lag than consecutive observations (dz,s). A last methodological aspect
concerns the filtering methods. In such low-cost emulation of the dynamical model,
particle filters and smoothers may allow more flexibility to take into account non-
Gaussian assumptions.
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Chapter 2
Machine Learning Methods for ENSO Analysis

and Prediction
Carlos H.R. Lima, Upmanu Lall, Tony Jebara, and Anthony G. Barnston

Abstract The El Nifio-Southern Oscillation (ENSO) plays a vital role in the
interannual variability of the global climate. In order to reduce its adverse impacts on
society, many statistical and dynamical models have been used to predict its future
states. However, most of these models present a limited forecast skill for lead times
beyond 6 months. In this paper, we present and discuss results from previous work
and describe the University of Brasilia/Columbia Water Center (UNB/CWC) ENSO
forecast model, which has been recently developed and incorporated into the ENSO
Prediction Plume provided by the International Research Institute for Climate and
Society. The model is based on a nonlinear method of dimensionality reduction and
on a regularized least squares regression. This model is shown to have a skill similar
to or better than other ENSO forecast models, particularly for longer lead times.
Many dynamical and statistical models predicted a strong El Nifio event in 2014.
The UNB/CWC model did not, consistent with the subsequent observations. The
model’s ENSO predictions for 2014 are presented and discussed.
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2.1 Introduction

The term El Nifio-Southern Oscillation (ENSO) refers to a coupled ocean-atmosphere
phenomenon that takes place along the Tropical Pacific Ocean and consists of
anomalies in the sea surface temperature (SST) and sea level pressure (SLP) across
the entire Pacific basin. Positive anomalies (warm events) in the eastern Tropical
Pacific SST are associated with a reduction in the SLP gradient across the basin,
and this event is called El Nifio. It has a periodicity of about 4-6 years (Diaz and
Markgraf 2000) and is accompanied by changes in the atmospheric circulation in the
equatorial region, most notably in the Walker circulation cells, which in turn affect
rainfall and temperature patterns across the globe. The opposite phase of El Nifio is
called La Nifia (ENSO cold events) and consists of negative anomalies in the SST
in the central and eastern part of the equatorial Pacific basin and an enhancement
of the cross-basin SLP gradient and consequently in the trade winds. We refer the
reader to Diaz and Markgraf (2000) for further details on ENSO variability and its
impacts on climate and society.

A recent review (Barnston et al. 2012) of the skill of 12 dynamical and 8
statistical ENSO models for real-time forecasts during 2002-2011 shows an average
correlation skill of 0.42 at a 6-month lead time, which is lower than the average
correlation skill (0.65) for the 1981-2010 period obtained from the same models and
lead time but in a hindcast design. Barnston et al. (2012) suggest that the difference
in the skills is explained by the design of the forecasts (real time vs. hindcast) as
well as by the lower ENSO variability during 2002-2011, which makes forecasts
more challenging. Barnston et al. (2012) emphasize that predictions at lead times
greater than 6 months continue to lack skill.

For predicting ENSO indices, statistical models have used gridded SST, wind
and SLP fields, and, more recently, ocean subsurface temperature data (Drosdowsky
20006). Principal component analysis (PCA) has been widely applied to identify
the key modes of variability in such data and for reducing the dimensionality of
the predictors in forecasting models. A regression model that uses the leading
modes is then used to predict an ENSO index. However, since PCA is based on the
eigenvalue decomposition of the covariance (or correlation) matrix of the input data,
it considers only the linear dependence structure. In high-dimensional spaces, where
variables are nonlinearly correlated, PCA may need a large number of principal
components to approximate the main modes of spatiotemporal variability of such
systems.

In this paper, we extend previous work (Lima et al. 2009) and describe the
University of Brasilia/Columbia Water Center (UNB/CWC) ENSO forecast model,
which has been recently developed and incorporated into the ENSO Prediction
Plume provided by the International Research Institute for Climate and Society
(IRI). We apply a nonlinear method of dimensionality reduction developed by
the machine learning community (Weinberger and Saul 2006) to identify the
spatiotemporal variability of the depth of the 20°C isotherm (D) along the Tropical
Pacific Ocean, which is a proxy for the thermocline and a carrier of the long-lead
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ENSO signal (Drosdowsky 2006). The leading modes of variability of the Tropical
Pacific thermocline data are obtained by this method and used as predictors in a
regression model for operational ENSO forecasts at different lead times. We use
the top three modes at different lags to predict ENSO through a regularized least
squares regression model. The rest of this paper is organized as follows. In Sect. 2.2,
we present the climate dataset. The mathematical details of the forecast model are
presented in Sect. 2.3. Some features of the spatial modes of the Dy field and the
model skills for cross-validated ENSO forecasts are offered in Sect. 2.4, which is
followed by a summary of the paper.

2.2 Climate Dataset

As a proxy for the Tropical Pacific thermocline and heat content, we use the
National Oceanic and Atmospheric Administration (NOAA)/National Centers for
Environmental Prediction (NCEP) thermocline depth at 20°C (D), which is
derived from a global ocean data assimilation system (GODAS) (Behringer and
Xue 2004). Our focus here is on the Pacific Dy bounded by the region 26°N-28°S
and 122°E-77°W. The dataset starts in January 1980 and is updated regularly. It
consists of 26,243 data points located in an equally spaced grid cell with resolution
1/3 degree by 1/3 degree. As a representative of ENSO events (Barnston et al. 1997),
we use the NCEP NINO3.4 index defined as the monthly mean SST anomalies
averaged over the area 5°N-5°S and 170°W-120°W. Both datasets are provided by
IRI at http://iridl.1deo.columbia.edu/SOURCES/.

2.3 Technical Approach

2.3.1 Nonlinear Dimensionality Reduction

Nonlinear methods of dimensionality reduction are usually derived by first mapping
the original dataset that lies on a nonlinear space (or manifold) onto a linear space
(the feature space) and second by applying PCA on the projected input data. A
common method is kernel principal component analysis, which was first introduced
by Scholkopf et al. (1998) and uses the concept of kernels to map the original
dataset onto a linear feature space. Mathematically, let XT be a N x M centered
matrix of inputs. Here, X" refers to the transpose matrix of X, and N and M are the
number of months and grid points of the D,y data used in the analysis, respectively.
Using the concept of singular value decomposition factorization XT = UZVT, the
L x N matrix Y of the projection of the data matrix X onto the first L eigenvectors
is given by:

Y =3xV! (2.1)
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where V is the N x L matrix of eigenvectors of the Gram matrix G = XXT
corresponding to the top L eigenvalues and ¥ is the diagonal matrix of square roots
of the top L eigenvalues of G.

Consider now a nonlinear function ® defined by any nonlinear basis function
(e.g., (x;) = x?) that maps each point of the input data to the feature space 7.
The idea here is to apply PCA in the space defined by ®(X) rather than X, in order
to obtain a set of low-dimensional vectors that accounts for the maximum variance
in the new space .77. The leading modes can be obtained in a manner similar to
PCA:

oX)T =uzvT (2.2)

where U has the eigenvectors of ®(X)T®(X), V the eigenvectors of K =
®(X)®(X)T and X is the diagonal matrix of square roots of the eigenvalues of K.

Using the so-called kernel trick, the elements of the N by N Gram matrix K
are obtained without the need to compute ®(x) explicitly. The principal modes of
X are obtained as in Eq.(2.1), but substituting the Gram matrix G by the kernel
function K.

Instead of defining a function ®, Weinberger and Saul (2006) proposed to maxi-
mize the trace (sum of the eigenvalues) of the kernel matrix K by exploring choices
of kernel values between pairs of inputs that still preserve the distances between
nearby points in the original space. This method, known as maximum variance
unfolding (MVU), can be defined through the following optimization problem:

Maximize trace(K) s.t.:

K> 0; 2.3)
> K =0 (2.4)
7
K + Kii — Kij — K,’i =G; + G]j — G,:,' — Gj,’, Vi,j where nij = 1, 2.5)

where n;; is 1 if i and j are k-nearest neighbors of each other and 0 otherwise. More
details about the optimization problem can be seen in Weinberger and Saul (2006).
The leading modes Y of X in the new space 7 are obtained as in Eq.(2.1) but
substituting G by K.

2.3.2 Forecast Model
The forecast model for the NINO3.4 index for a lead time t can be written as:

F@t+71) = o+ B O0) + Z Brei Yi(D+B3ci- Vo)) 4 Bars-Ya(D) + € (1),
1=1-24
(2.6)
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where F(-) and O(-) refer to the forecast and observed values of the NINO3.4 index,
respectively, Y; is the i-th leading mode of the MV U embedding, and €. (¢) is an error
term as a function of t. The main goal here is to capture past states of the D, field
up to some lag time (here 24 months before the actual time ¢ of the forecast) that
may carry useful information to predict NINO3.4 at time ¢ + 7. For this and for the
sake of parsimony, we keep only the top three MVU modes, which explain a large
portion of the data variability (see next section). Note also that for each lead time 7,
a different set of parameters 8 are estimated.

For a given t, the regularized regression (LASSO) shrinks the model coefficients
by minimizing the sum of the mean squared error with a constraint on the sum of
absolute values of the coefficients (Hastie et al. 2001):

N 4
plasso = argminz (e:(1))*, subject to Z Z |Bicil < 2.7
B=1

i=0 [=1—-24

where the parameter s controls the degree of shrinkage. For larger values of s, the
LASSO coefficients become the least squares estimates. For small values of s, some
of the coefficients will be exactly zero. Here, the optimal value of s is estimated
using a tenfold cross-validation procedure. We refer the reader to Hastie et al. (2001)
for more details. As a benchmark model, we use the first three PCs as predictors in
Eq. (2.6).

2.3.3 NINO3.4 Real-Time Forecasts

As most nonlinear methods, MVU cannot project out-of-sample data onto the
feature space or reconstruct test data directly as PCA. Both drawbacks have been
addressed in the literature Bengio et al. (2004) but still remain an open problem. For
real-time forecasts, the Dy data is updated monthly, and a new set of MVU modes is
obtained using the k-nearest neighbors (k-NN) method to project the out-of-sample
data onto the feature space considering the kernel matrix K and corresponding MVU
modes obtained for the period January 1980 through May 2014. Therefore, there is
no need to rerun the entire optimization scheme every time the Dy data is updated.
We expect that k-NN will perform as well as more complex methods of out-of-
sample estimation (Chin and Suter 2008).

2.4 Results

2.4.1 Spatial Patterns of the Thermocline Depth

The MVU is able to reduce the dimension of the D,y system to three modes that
collectively explain over 70 % of the system variance, whereas the same number of
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Fig. 2.1 Spatial patterns of MVU (left) and PC loadings (right). From top to bottom: first, second
and third modes

PCs tend to respond to less than 50 % of it. Since MVU is a data-driven nonlinear
transformation of the input data with no knowledge of the function ®(x;), there is
no explicit way to obtain its spatial patterns. Here, we offer an approach to roughly
represent the patterns of MVU by taking the D, field associated with the largest and
smallest values in each MVU dimension and then looking at the difference of those
two images (Fig. 2.1). The first MVU mode has a quasi-zonal seesaw structure (top
left panel of Fig.2.1), which is similar to the first PC loadings (top right panel of
Fig.2.1), but with more emphasis on the contribution of the southwestern region of
the Pacific. This spatial pattern is usually called the #ilr mode (Bunge and Clarke
2014) and involves the zonal tilt of the thermocline depth along the equatorial
Pacific, being in phase with the NINO3.4 index. The spatial signature of the second
modes (middle panels of Fig.2.1) displays a more meridional dipole structure in
both MVU and PC modes, but with significant differences that reflect in the temporal
series (not shown), with MVU emphasizing less cycles and more peak values, and
in the magnitude and time of the peak cross-correlation with NINO3.4 (not shown).
This second mode is associated with the discharge and recharge of warm water in
the near-equatorial Pacific (Bunge and Clarke 2014; Meinen and McPhaden 2000)
and is in phase with the warm water volume as defined by Meinen and McPhaden
(2000). The third MVU mode is driven by more pronounced contributions from
the Central Pacific (bottom left panel), with distinct correlations with the NINO3.4
index (not shown).
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Fig. 2.2 Averaged cross-validated correlation (left) and MSE (right) skills for MVU- (black) and
PCA (red)-based NINO3.4 forecast models. The vertical bars show =1 standard error for MSE
based on the standard error in the tenfold cross-validation procedure

2.4.2 ENSO Cross-Validated forecasts

The averaged tenfold cross-validated (January 1982-May 2014) correlation and
MSE skills for the MVU- and PCA-based NINO3.4 forecast models are shown in
Fig.2.2. For lead times between 1 and 24 months, the skills for the MVU model
are approximately constant. The PCA-based model shows similar correlation and
MSE skills up to 12 months lead, and, although the MVU shows better MSE skills
beyond this lead, there is still overlap within one standard error. Both skill measures
are consistent with those of the dynamical and statistical ENSO models as presented
in Barnston et al. (2012).

2.4.3 2014 ENSO Predictions

In March 2014, a warming in the subsurface of the Tropical Pacific and increase in
D> led several ENSO models to predict an El Nifio for 2014, some of them with
magnitude comparable to those that happened in 1982 and 1997. A sequence of
real-time forecasts of all the ENSO forecast models from March 2014, updated
monthly, is available from http://iri.columbia.edu/our-expertise/climate/forecasts/
enso/current/. One can see that the dynamical models typically predicted a strong
El Nifio event, while the statistical models indicated a more modest event, and the
UNB/CWC model typically tracked the subsequent observations and did not predict
any development of a strong El Nifio during 2014 (Fig. 2.3).
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Fig. 2.3 Real-time NINO3.4 predictions from the UNB/CWC model for lead times 1, 3, and
6 months. Along the x-axis is the 3-month running mean, starting in March—April-May (MAM)
2014, obtained from the monthly forecasts. The orange line shows the observed values. Details on
the methodology for real-time forecasts can be seen in Barnston et al. (2012)

2.5 Summary

MVU is able to reduce the D,y dimension to three modes that collectively explain
over 70 % of the system variance, whereas the same number of PC tends to respond
to less than 50 %. The spatial and temporal features have also different patterns, with
MVU likely to emphasize subtle attributes of the system, such as peak values and
trends. The use of the first three MVU modes in a LASSO regression framework for
NINO3.4 forecasts, namely, UNB/CWC model, led to cross-validated skills similar
to or better than other ENSO forecast models, particularly for longer lead times.
In 2014, many dynamical and statistical models predicted a strong El Nifio event,
whereas the UNB/CWC model did not, consistent with the subsequent observations.
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Chapter 3

Teleconnections in Climate Networks:

A Network-of-Networks Approach to Investigate
the Influence of Sea Surface Temperature
Variability on Monsoon Systems

Aljoscha Rheinwalt, Bedartha Goswami, Niklas Boers, Jobst Heitzig, Norbert
Marwan, R. Krishnan, and Jiirgen Kurths

Abstract We analyze large-scale interdependencies between sea surface
temperature (SST) and rainfall variability. We propose a novel climate network
construction scheme which we call teleconnection climate networks (TCN). On
account of this analysis, gridded SST and rainfall data sets are coarse grained
by merging grid points that are dynamically similar to each other. The resulting
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clusters of time series are taken as the nodes of the TCN. The SST and rainfall
systems are investigated as two separate climate networks, and teleconnections
within the individual climate networks are studied with special focus on dipolar
patterns. Our analysis reveals a pronounced rainfall dipole between Southeast Asia
and the Afghanistan-Pakistan region, and we discuss the influences of Pacific SST
anomalies on this dipole.

Keywords Clustering ¢ Precipitation dipole ¢ Teleconnections * Complex
networks ¢ Time series analysis

3.1 Introduction

Precipitation on the Asian continent is known to be influenced by large-scale
atmospheric processes like the Hadley and Walker circulation. However, the
intricate interplay of different atmospheric processes and how they influence
precipitation variability are still not completely understood. Here, we study long-
range interrelations within the precipitation system as well as between precipitation
and sea surface temperature (SST) dynamics. Our aim is to shed light on the spatial
structure of such teleconnections, with a special focus on precipitation dipoles and
how they are influenced by SST variability.

For this purpose, we employ the climate network approach by representing the
interrelations between climatic time series as complex networks (Boers et al. 2013,
2014; Donges et al. 2009a,b; Ebert-Uphoff and Deng 2012; Malik et al. 2012;
Tsonis and Roebber 2004; Tsonis et al. 2006; Yamasaki et al. 2008). The SST and
the precipitation system are studied as two separate networks and the interrelations
between them by their cross topology.

So far, empirical orthogonal functions (EOFs), which are derived from principal
component analysis of covariance matrices, are commonly used for a spatial
analysis of teleconnections in climatological data (Ghil et al. 2002). While certainly
very useful in many situations, they carry certain caveats in such analyses: First,
if the data are not normally distributed, the corresponding EOFs will in general,
while uncorrelated, not be statistically independent (Monahan et al. 2009). Second,
even if they are independent, EOFs do not necessarily uniquely correspond to
climatological mechanisms (Dommenget and Latif 2002). Third, and maybe most
importantly, analyses based on the covariance matrix will only be able to capture
linear dependencies. This might be considered insufficient in view of the strong
nonlinearities involved in climatic interactions. Climate network can be considered
as a complementary approach to study spatial patterns of climatic interrelations,
which do not suffer from these statistical problems if derived from a nonlinear
similarity measure. Furthermore, since teleconnections are not directly represented
as links in EOFs, they have to be deduced from the spatial patterns. Although this
might be possible for simple teleconnection structures, it becomes challenging for
more complicated ones.

Nonetheless, the common way of climate network construction is not suitable for
the investigation of teleconnections as well. There, traditionally a pairwise similarity
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analysis between all pairs of time series is performed, for instance, by the use of
Pearson’s correlation coefficient (Donges et al. 2009b; Tsonis et al. 2006). However,
climate networks are spatially embedded networks, and the similarity between time
series is strongly dependent on their spatial distance (Rheinwalt et al. 2012): Two
time series that are spatially close to each other are likely to be more similar than
two time series which are far away from each other in space. By focusing only
on strong similarities as in most climate network studies, networks have essentially
only short links, which led to the investigation of paths in climate networks (Donges
et al. 2009a).

Here we propose an approach that groups all time series by similarity into
clusters. A related idea was also pursued in Hlinka et al. (2014). We use a specific
clustering scheme that typically provides spatially connected clusters due to the
distance dependence of the similarities in climate systems. In other words, these
clusters are localized regions of high resemblance according to the dynamics of the
corresponding time series. Each cluster will in our approach be represented by a
single time series, and only the similarity structure between these representatives
will be explored. By doing so we do not only reduce the dimensionality of the
network, but we more importantly constructed a climate network that is reduced
to its teleconnections. We will refer to these networks as teleconnection climate
networks (TCN).

3.2 Method

In order to group time series by similarity, we use the standard fast greedy hierarchi-
cal agglomerative complete linkage clustering (Defays 1977). This clustering is per-
formed in a metric space with dissimilarities between time series as distances. In this
study we focus on the Spearman’s rho correlation coefficient as the similarity mea-
sure in order to capture not only linear but also other monotonic relationships and
in order to avoid problems of skewed distributions in precipitation data. In our case
of standardized anomalies that have zero mean and unit variance, this coefficient is
proportional to the dot product between the ranked variables and can be interpreted
as the cosine of the angle 6 between these two ranked variables. More precisely, the
Spearman’s rho oy y between two ranked time series X and Y is given by

_ Cov(X,Y)  X-Y

= = cos(f . 3.1
oxoy Iy o) )

[9'8%

This angle 0 in radians between two time series is a distance that we use as the
dissimilarity measure for the clustering.

Statistical significance of Spearman’s rho values is estimated using twin surro-
gates.! These carry the advantage of preserving dynamical features of the original

"Due to the short length of time series we obtain the twin surrogates without embedding.
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time series in contrast to bootstrapping methods (Marwan et al. 2007; Romano et al.
2009; Thiel et al. 2006, 2008). For each pair of time series, we test against the null
hypothesis that they are independent realizations of the same dynamical system.
Upon repeating this for all pairs of time series, we pick the maximum threshold
corresponding to the 98 % confidence level as a global significance threshold
T°%(o).

We intend to group time series into clusters in such a way that all correlation
values between time series within a given cluster are statistically significant. This is
achieved by the use of the complete linkage clustering scheme that is also known as
farthest neighbor clustering. The distance measure between two clusters U and V is
in this scheme defined as

D(U,V) = max d(X,Y)= max 6byy. (3.2)

XeU,yev XeU,yev

We cut the resulting dendrogram at the distance d. that corresponds to the sig-
nificance threshold of all pairwise correlation values, i.e., deie = arccos(T%%(p)).
This yields the maximum number of partitions of the set of time series such that
for any two clusters U and V holds, D(U,V) > dg, which is the same as the
minimum number of partitions such that for any two time series X,Y € U in any
given cluster U, we have 6y y < dc. This clustering method does not only assure
that all time series within a cluster are significantly correlated when cutting the
dendrogram at d.; but also avoids the chaining phenomenon of the single linkage
clustering where a set of time series might form a cluster although only a few time
series are actually close to each other (Everitt et al. 2001). The clustering reduces
the dimensionality of the problem by merging dynamically similar time series into
clusters, which will serve as nodes for the teleconnection climate networks (TCN)
that will be constructed in the following.

More specifically, a TCN node is represented by a single time series from the
corresponding cluster. Although there are clustering schemes, such as the k-means
clustering (MacQueen et al. 1967), that suggest a certain member of a cluster
as a representative, the in this study anticipated complete linkage clustering does
not. Also, since cluster sizes vary, special care has to be taken when choosing a
representative time series for a cluster. For instance, the point-wise mean of all time
series within a cluster would be influenced by the size of the cluster. Instead we pick
the time series with the highest average correlation to all other time series within
that cluster as a representative for that cluster. This also has the advantage that the
representative time series retain the original variabilities.

The TCN is now constructed by computing o for all pairs of representative time
series and assigning the corresponding values as link weights. We remove all links
from the TCN that have a weight equal or below 7% ().

We note that TCN could as well be studied using node-weighted network
measures (Heitzig et al. 2012; Wiedermann et al. 2013). Although not a focus of
this study, this is an interesting topic of future research.
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3.3 Application

We apply the proposed methodology to precipitation data for the Asian continent
together with a global SST data set. We will in the following investigate dipole
structures in the precipitation system and how these dipoles are influenced by SST
variability.

3.3.1 Data

We use monthly time series for the years 1982—-2008: SST data is obtained from
the NOAA Optimum Interpolation SST V2 on a one-by-one-degree grid (Reynolds
et al. 2002), and precipitation data over land is taken from the APHRODITE V1101
daily precipitation data product on a 0.25 x 0.25 degree grid (Yatagai et al. 2012).
In the latter data set, monthly mean values were calculated from daily values in a
preprocessing step. We study monthly anomalies, in contrast to the monthly mean
values itself, where the seasonal cycle would dominate correlation coefficients.
Anomalies are calculated by subtracting from each value the long-term mean for
that month and dividing by the corresponding long-term standard deviation.

3.3.2 Coarse Graining

Based on the significance tests explained above, we obtain significance thresholds
T%%(0) = 0.199 for the precipitation data set and T%%(0) = 0.494 for the SST
data set. Hence, we cut the Asian precipitation dendrogram at 0 = 0.2. This leads to
111 precipitation clusters which are shown in Fig. 3.1. The geographical location of
representative time series is depicted as black dots. With an initial number of 31624
time series, the coarse graining reduces the number of time series by a factor of ~
285. While the minimum correlation within clusters is 0.2, the average correlation
within a cluster has a much higher value of 0.7.

We cut the global SST dendrogram at a threshold of o = 0.5. This leads to 1419
SST clusters as shown in Fig. 3.2. With an initial number of 40780 SST time series,
the coarse graining reduces the number of time series only by a factor of ~29. This
lower reduction is due to the relatively coarser spatial resolution of the SST data
set. The correlation coefficient between SST time series within a cluster is, with an
average value of 0.8, even higher than for the precipitation clustering.

3.3.3 Dipoles

In order to focus on precipitation dipoles, we reduce the precipitation TCN by
removing all nodes that do not even have a single significant link with a negative link
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Monthly mean precipitation clusters
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Fig. 3.1 Clustering of the precipitation data using the arccosine of the Spearman’s rank correlation
as a distance metric. All time series within a cluster are significantly correlated to each other. This
corresponds to a minimum correlation of 0.2 between time series within a cluster. However, the
average correlation within a cluster is on average 0.7. Geographical locations of representative time
series for clusters are depicted as black dots

weight. Note that we understand dipoles as anticorrelations between representative
time series. The resulting network reflects the dipole structure that is captured from
the APHRODITE data set for the considered time period. It consists of only 36
anticorrelation links (red) and 83 correlation links (blue) (see Fig. 3.3).

3.3.4 Networks of Climate Networks

Given the two sets of representative time series for the precipitation data set as
well as for the SST data set, we estimate all pairwise lagged correlation coefficients
between these two sets. We consider possibly lagged correlation, because telecon-
nections between Asian precipitation and the global SST field can in general occur
with a delay even on monthly scales. We employ a simple maximum correlation
approach as follows. We focus on the influence of SST variability on precipitation
and thus only consider lags that correspond to SST dynamics preceding precipitation
dynamics, where we consider only lags up to 12 month. As link weights we take the
first local maximum of Spearman’s rho over this range of lags. A similar approach
was taken, for example, in Yamasaki et al. (2008).



3 Teleconnections in Climate Networks 29

i PIBARY . s ssdiey, 40°N
o

40°s - 4 - oA 40°5

60°E 120°E 180° 120°W 60°W

Fig. 3.2 Clustering of the SST data using the arccosine of the Spearman’s rank correlation as a
distance metric. All time series within a cluster are significantly correlated to each other, which
corresponds to a minimum correlation of 0.5 between time series within a cluster. The average
correlation within a cluster is on average 0.8. Geographical locations of representative time series
for clusters are depicted as black dots

In order to understand the influence of SST variability on the obtained Asian
precipitation dipole, we examine cross-links of nodes from the Southeast Asian
pole (see Fig.3.3). All the nodes in this region, marked as yellow dots in Fig. 3.4,
experience a spatially very similar influence from the SST network (not shown).
Thus, we show the mean correlation from the SST network to these precipitation
nodes (see Fig.3.4).

3.4 Results and Discussion

Using the proposed method of TCN construction, we find a strikingly pronounced
precipitation dipole between the Southeast Asian region and the Afghanistan-
Pakistan region. This dipole has, for example, been described in Barlow et al.
(2005). In that study, the authors partly explain its occurrence by an interplay of
the Madden-Julian oscillation and the African-Arabian jet stream. Furthermore, this
dipolar pattern is most likely related to the lateral component of the Asian monsoon
system (Trenberth et al. 2000; Webster et al. 1998, 1999).

The Southeast Asian region, in the precipitation network represented by nodes
marked as yellow dots in Fig. 3.4, is a major deep convection area of the considered
precipitation network. Convection is forced by solar heating and forms a rising
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Monthly mean precipitation dipole
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Fig. 3.3 The precipitation TCN reduced to nodes that have significant anticorrelations (red links)
and correlations (blue links) to other representative precipitation time series. Link thickness
is proportional to absolute link weight. Links are drawn between geographical positions of
representative time series, and the corresponding clusters are colored. Observe the pronounced
precipitation dipole between Southeast Asia and the Afghanistan-Pakistan region

branch of the Hadley cell in this area but is also modulated by the Walker circulation
(Gill 1980). This modulating effect explains the negative correlation values between
precipitation in the Southeast Asian region and SST anomalies in the eastern
central tropical Pacific observed in Fig. 3.4: The Walker circulation causes upward
atmospheric motion at the western boundary of the tropical Pacific and downward
motion at the eastern boundary. If the Walker circulation weakens as under El Nifio
conditions, convection is suppressed in the Southeast Asian region, resulting in
reduced precipitation. At the same time, upwelling of cold water in the eastern
Pacific ocean is reduced, which causes positive SST anomalies in the eastern and
central tropical Pacific. Correspondingly, a strengthened Walker circulation causes
stronger convection in the Southeast Asian region and negative SST anomalies in
the eastern and central tropical Pacific.

On the other hand, we also observe a V-shaped pattern of positive correlation
values in Fig.3.4, with two branches extending to the subtropics. These two
branches follow the climatological orientation of the trade winds in this region, and
we suggest the following explanation for this pattern: Since the specific humidity
of the low-level atmosphere rises with temperature, and the air temperature is
in turn coupled to the SSTs, air parcels arriving at the Southeast Asian region
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Fig. 3.4 Mean correlation between monthly precipitation anomalies in the Southeast Asian pole
of the dipole (yellow dots) to the global SST field. Observe the negative (red) mean correlation
values between this pole and the SSTs in the tropical central and eastern Pacific, as well as the
positive (blue) mean correlation pattern extending from the pole to the subtropics

will carry the more (less) moisture the warmer (cooler) the SSTs are along the
trajectory of the trade winds from the subtropics. This modulates the water vapor
content of the air that rises in the Southeast Asian region due to the convection
discussed in the last paragraph and hence the amount of precipitation. We note that
this mechanism should also apply to the tropical Pacific, but there, its influence is
strongly overprinted by the Walker circulation.

3.5 Conclusion

We proposed a new framework to construct multivariate climate networks from
observational data. This framework is designed to study long-range interrelations,
i.e., teleconnections, by first merging dynamically similar time series into clusters
and then investigating connections between these clusters. We applied our approach
to SST data as well as precipitation data over the Asian continent and coupled the
two separate networks obtained for each variable to a network of climate networks in
order to study the impacts of SST variability on teleconnections in the precipitation
network. Our analysis reveals a pronounced precipitation dipole between Southeast
Asia and the Afghanistan-Pakistan region, which may be controlled by an interplay
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of the Madden-Julian oscillation, and the African-Arabian jet stream. Results
obtained from the coupled network-of-networks analysis further suggest that trade
winds from the subtropics as well as the Walker circulation over the tropical Pacific
in turn modulate this dipole.
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Chapter 4
Comparison of Linear and Tobit Modeling

of Downscaled Daily Precipitation over the
Missouri River Basin Using MIROCS

Sai K. Popuri, Nagaraj K. Neerchal, and Amita Mehta

Abstract We consider the problem of improving the quality of downscaled daily
precipitation data over the Missouri River Basin (MRB) at the resolution of
the observed data provided based on surface observations. We use the observed
precipitation as the response variable and simulated historical data provided by
MIROCS (Model of Interdisciplinary Research on Climate) as the independent
variable to evaluate the use of a standard Tobit model in relation to simple linear
regression. Although the Tobit approach is able to incorporate the zeros into the
downscaling process and produce zero predictions with more accuracy, it is not
as successful in predicting the magnitude of the positive precipitation due to its
heavy model dependency. The paper also lays the groundwork for a more extensive
spatiotemporal modeling approach to be pursued in the future.

Keywords Censored data * Regression ¢ Rainfall modeling ¢ Climate models

4.1 Introduction

Global circulation models (GCMs) are models based on physical laws representing
large-scale climate patterns. They typically have spatial resolution of around
100km?. It is recognized in the climate change literature that hydrometeorological
data, precipitation in particular, provided by GCMs often do not accurately capture
regional-level (around 10km?) climate patterns that are relevant to applications
that operate at finer resolutions (Wood et al. 2004). An attempt to develop high-
resolution local data parameters from low-resolution GCM output is referred to
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Fig. 4.1 Proportion of dry days between 1949 and 2000

as downscaling (Maurer and Hidalgo 2008; Wood et al. 2004). Instead of running
a dynamic climate model at a higher resolution, we apply the information from
GCM to the MRB region using statistical techniques. In particular, we use linear
regression methods with observed data as the response and the data provided by
MIROCS averaged over ensembles as the predictor. We choose the upper Missouri
River Basin (MRB) (Fig.4.1) between —102 and —110°W and between 41.5 and
48.5°N for our study. MRB, which spreads across several states in the Midwest,
USA, is crucial for the food security of the USA and depends primarily on rain
water for its agricultural needs (Mehta et al. 2013).

The observed precipitation data are provided by Maurer et al. (2002) and
are at 0.125°longitude by 0.125°1atitude resolution. This is approximately 12km
by 12km grid size. It has a daily temporal coverage of 1949-2005. MIROCS
provides daily historical simulated precipitation at the resolution of approximately
1.4°longitude by 1.4°latitude (150km by 150km) and has a temporal coverage
of 1859-2010. For our study, we use the data between 1949 and 2000 for model
fitting and between 2001 and 2005 for evaluation. Figure 4.2 shows the monthly
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Monthly mean Observed and MIROC5 Precip. over upper
MRB from 1949-2000
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Fig. 4.2 Mean monthly precipitation over the upper MRB

mean observed and MIROCS precipitation between 1949 and 2000 averaged over
the region. The data provided by MIROCS are strictly positive values, whereas
for more than 50 % of the number of days on average, observed precipitation is
zero. Figure 4.1 shows the proportion of dry days over the region. Prior to the
analysis, MIROCS data is bilinearly interpolated to the resolution of the observed
data (0.125° x 0.125°). At this resolution, there are 62 x 58 (3,596) locations in
the region. In addition, MIROCS follows a 365-day calendar, whereas the observed
data follows the regular calendar with leap years. Prior to the analysis, data from
MIROCS is suitably adjusted to bring it to the regular calendar.

Statistical modeling of daily rainfall has been widely studied with most variations
of the models using a two-stage mixed regression model where the occurrence of
rain on a given day is modeled as a Markov process and the amount of precipitation
given its presence assumes a parametric distribution (Coe and Stern 1982). In this
paper, we use a Tobit model, which can be viewed as a special case of the general
two-stage mixed regression model. There are a number of extensions to the two-
stage model to incorporate spatial variability (Kleiber et al. 2012). In our analysis,
we assume that the MIROCS data incorporates the spatial patterns in precipitation
over MRB, and by using it as a regressor, we do not model the spatial variation.
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Therefore, we analyze precipitation at each location separately. In Sect.4.2, we
discuss linear regression models with MIROCS as the only regressor for each day
of each month. Section 4.3 discusses analyzing the daily time series data at each
location. Conclusions and some discussion are presented in Sect. 4.4.

4.2 Analysis at the Day Level

In this section, we consider the analysis of the data chunked by each day of the year.
In other words, at each location, for each day of the month, we consider a regression
involving 52 pairs of data (observed and MIROCS values) for years 1949 to 2000.
We fit two models at each of the 3,596 locations: a simple linear regression model
and a standard Tobit model.

Let y;mu be the observed precipitation at the (i,j)th longitude-latitude point
of the observed grid, for the mth month (1,2,...,12), tth day of the month
(1,2,...,28|30|31), and kth year (1949-2000). Let x;, be the corresponding
precipitation provided by MIROCS. A simple linear regression (SLR) is the linear
model:

0 1
Yijmk = Bijm T BijumXijmk + Wijomk 4.1

Here, errors u;,; are assumed to have zero mean, have constant variance, and
be uncorrelated with each other. Additionally, normality is assumed for inference.
Parameters f can be estimated using the ordinary least squares (OLS) method.
These estimates are consistent and unbiased. They are also robust to deviations from
the assumptions of homoskedasticity and normality of errors. Predictions can be
made using the expected value E(Yjjmi) = Ag.rm + :éiljrmxijtmk~

Observed precipitations are always nonnegative with a large number of dry days
at the locations considered. Hence, the SLR approach is likely to produce a large
number of negative predictions. On the other hand, MIROCS values (the predictor
variable) are always strictly positive. One could argue that the MIROCS values are
predicting a process (such as cloud formation) that underlies the precipitation. It will
then make sense to predict the cloud formation from a regression on the MIROCS
data and obtain the precipitation by applying a threshold. It turns out that this is the
basic idea in the Tobit model, which is widely used in econometrics (Long 1997).
We consider the standard Tobit model (or type 1 Tobit) as follows:

* _— no 1
Yijmk = Pijtm + ,Bijrmxijrmk + Uijimk 4.2)

* sek
Y ijtmk lfy ijtmk >0

(4.3)
O’ ify;’;rmk = 0

Yijmk =
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where {1} are assumed to be i.i.d. N(0, 0?). Here, {Vijmmic} and x;jmy are observed,
but {7, are unobserved if y, , < 0.y% , can be thought of as a latent process
that causes the observed precipitation. Belasco and Ghosh (2012) have compared
a general mixed regression model with a Tobit model and noted that if the data is
from a single generation process, Tobit has better predictive properties compared
to the general mixed model. Interpreting the cloud process as latent that manifests
as rain above a threshold, we consider only the Tobit model here. The maximum
likelihood estimator (MLE) of B is known to be efficient and consistent (Greene
2003). However, it is inconsistent in the presence of heteroskedasticity and non-
normality of errors, particularly when the proportion of zero responses is very high
(Arabmazar and Schmidt 1981, 1982).
Under the Tobit model,

E(Ytjrmk|-xijrmk) = ¢(¥)ﬁl‘l]l‘m (4.4)

where ®(.) is the cdf of N(0, 1). And the unconditional expectation is given by,

E0m) = 9 )xg + 09 (L) “.5)

where ¢ (.) is the probability density of standard normal distribution N(0, 1). Note
that the expected value of the observed data under Tobit is always positive and
will not produce any zero values. However, note that the Tobit predictions of the
underlying process (cloud formation in our example) are given by ,B?itm + ,Biljrmx,-j,mk.
Thus, we can estimate the above, which can take both positive and negative values,
and apply the threshold as needed to obtain the predictions of the observed data. It
is important to note that similar truncation (or censoring, if you will) can be applied
to the SLR predictions as well, but SLR coefficients are obtained by assuming that
the values are actually zero, whereas Tobit is accounting for censoring. Thus, the
Tobit coefficients are consistent and SLR coefficients are not. However, the Tobit
consistency does not carry over to non-normal data, but SLR has an established
record of robustness under mild assumptions.

At each location in the upper MRB region, a number of matches are calculated
by comparing the predicted value for each day between year 2001 and 2005 with the
observed value. To be considered a match, the predicted value must be equal to zero
(dry) or positive (wet) when the observed value is also zero or positive, respectively.
The proportion of matches at a location is the ratio of the number of matches and
the number of days in the period 2001-2005. Figure 4.3 shows the proportion of
matches at all the locations in upper MRB using SLR. Figure 4.4 shows the same
for the Tobit model. The dotted line in both the figures represents the mean value.
Note that both histograms have a large spike at zero of height about 35 %. That is,
both approaches show 0 % matches for about 35 % of all locations. It is important
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Monthly mean Observed, and MIROCS5, predicted SLR (day), Tobit (day)
over upper MRB from 2001-2005
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Fig. 4.5 Mean monthly predicted precipitation

to note that counting the matches is a very harsh criterion. Since to be considered a
match the predicted value must be equal to zero when the observed values are zero,
even a small positive value will be considered as a non-match. Other than the spike
at zero, the histogram for the Tobit model is shifted to the right significantly. This
shift shows that Tobit outperforms SLR in predicting the dry days.

Figure 4.5 shows the monthly mean predicted precipitation using the SLR and
Tobit models in Eqgs. (4.1) and (4.3), respectively. Figure 4.6 is a similar monthly
plot at —109.8125°W, 41.4375°N. While the monthly mean predictions from both
SLR and Tobit averaged over the region seem to have captured the temporal pattern
with varying biases, there is much variation at individual locations. Also, predictions
from the Tobit model are consistently larger than those from SLR. Using the daily
time series data at each location for analysis will enable us to study this variation by
analyzing residuals for autocorrelation, which is not straightforward in the current
setup. Another advantage of considering the daily time series data is the parsimony
it brings in.
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Monthly mean Observed, MIROCS5, Predicted SLR (day), Tobit (day) at
-109.8125 long, 41.4375 lat over upper MRB from 2001-2005
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Fig. 4.6 Mean monthly predicted precipitation at —109.8125° longitude, 41.4375° latitude

4.3 Analysis of the Daily Time Series

In this section, we model the data for each location as a daily time series. That is, for
each location, we have a pair of the observed and MIROCS values available for each
day of the years between 1949 and 2000. This approach sets the stage for extensive
spatiotemporal models we would be considering in the future. For now, we begin
with simple approaches that are analogous to the regression approaches of Sect. 4.2,
primarily as a transitional step.

Using the daily data, we fit SLR and Tobit models at each location. This approach
is attractive compared to the earlier per day method, as the residuals can be studied
for possible autocorrelations. Also, this approach results in significant parsimony.
Let y;; be the observed precipitation at the (i,)th longitude-latitude point of the
observed grid, for tth day starting from 1 January 1949 to 31 December 2000.
Let x;, be the corresponding precipitation provided by MIROCS. The simple linear
regression (SLR) model in this context is
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12

Yije = '38 + 'Bz'lixif’ + Za?i My + Z y,,m,],x,ﬁ + wiji (4.6)
k=2 k=2
where the dummy variables mw, k =1,2,...,11 represent the month effects and

the usual assumptions on errors {u;;} apply. Slmilarly, the Tobit model for the new
data structure is given by

12 12
y;t = ?j + ﬂz'lixif’ + Za;‘j My + Z J/”m,],x,], + wije 4.7)
k= k=2
*, ify: >0
Viit = Vi ) Vi 4.8)
0, 1fy;"jt <0

Again, errors {u;;} are assumed to be independent draws from N (0, 1). Figure 4.7
shows the monthly means of predictions using the SLR and Tobit reduced models

Monthly mean Observed, MIROCS5, Predicted SLR, Tobit
over upper MRB from 2001-2005
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Fig. 4.7 Mean predicted precipitation from 2001 to 2005
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Monthly mean Observed, MIROCS5, Predicted SLR (timeseries), Tobit
(timeseries) over upper MRB from 2001-2005
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Fig. 4.8 Mean predicted precipitation from 2001 to 2005

without month effects in Eqs. (4.6)—(4.8). As the plot shows, both the SLR and Tobit
models fail to model the temporal structure of the observed.

Figures 4.8 and 4.9 show the monthly means of predictions using the full models
in Eqgs. (4.6)—(4.8) averaged over the region and at —109.8125°W, 41.4375°N,
respectively. These plots look very similar to Figs.4.5 and 4.6. However, unlike
the analysis in Sect.4.2, SLR and Tobit modeled from Eq. (4.6) allow us to study
the residuals. Figure 4.10 is the histogram of residuals from the Tobit model
at —109.8125°W, 41.4375°N. Clearly, these residuals are not normal. Residuals
from other locations and those from SLR also show similar shape. Breusch-
Pagan test (Greene 2003) on the residuals from all the locations indicates severe
heteroskedasticity. These violations of the assumptions in the Tobit model, along
with the fact that the response is severely censored, cause a deterioration of the
prediction performance of Tobit. SLR, on the other hand, is more robust. However,
SLR predictions are biased too because of censoring in the response. This behavior
can be seen in Figs.4.11 and 4.12, which show the observed vs. predictions from
SLR and Tobit at each location averaged over the month of July from 2001 to 2005,
respectively. Figures 4.13 and 4.14 are similar plots for wet days only. Figures 4.11—
4.14 also provide a graphical depiction of the heteroskedasticity in the data. Note
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Monthly mean Observed, MIROCS5, Predicted SLR (timeseries), Tobit
(timeseries) at-109.8125 long, 41.4375 lat over upper MRB from 2001-2005
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Mean Observed vs. Predicted (SLR) Precip. in July from
2001-2005 over upper MRB
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Mean positive Observed vs. Predicted (SLR) Precip. in July from
2000-2005 over upper MRB for wet days
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Fig. 4.13 Observed mean vs. predicted mean values by SLR for wet days for Jul

that the variability in the vertical direction is nonconstant indicating that the
variability of the data depends on the magnitude. Residuals collected from all the
locations for a given time have been used to calculate Moran’s I statistic to assess
spatial correlation. For every day in the prediction period, residuals were found to be
spatially correlated. Also, residuals at each location are found to be autocorrelated.
However, because of their non-normality, further analysis of these time series needs
to be pursued with more care.

4.4 Discussion

In this paper, we have compared the linear regression model with the standard
Tobit model in the analysis of the daily observed precipitation over the upper MRB
region using the downscaled historical simulated MIROCS data as the regressor.
We have illustrated the significant improvement in the proportion of dry/wet day
matches using the Tobit model compared to the SLR model. To make the models
amenable to time series analysis, we have fitted the SLR and Tobit models to the
daily time series data at each location. Because of heteroskedastic and non-normal
residuals, predictions from the Tobit model for rainy days are biased. We conclude
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Mean positive Observed vs. Predicted (Tobit) Precip. from
2000-2005 in july over upper MRB for wet days
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Fig. 4.14 Observed mean vs. mean of predicted values by Tobit for wet days for Jul

by noting that if bilinearly interpolated MIROCS is used as the sole predictor,
alternate estimators for the Tobit model might be more suitable. However, these
findings might change if data from another GCM or a combination of MIROCS
and other GCMs is used instead. Also, we note that bilinear interpolation might
not be preserving the spatiotemporal variation, which might be another reason for
overestimated predictions by the Tobit model.
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Chapter 5
Unsupervised Method for Water Surface Extent
Monitoring Using Remote Sensing Data

Xi C. Chen, Ankush Khandelwal, Sichao Shi, James H. Faghmous, Shyam
Boriah, and Vipin Kumar

Abstract Inland surface water availability is a serious global sustainability
challenge. Hence, there is a need to monitor surface water availability, in order
to better manage it under an increasingly changing planet. So far, a comprehensive
effort to understand changes in inland surface water availability and dynamics
is lacking. Remote sensing instruments provide an opportunity to monitor surface
water availability on a global scale, but they also introduce significant computational
challenges. In this chapter, we present an unsupervised method that overcomes
several challenges inherent in remote sensing data to effectively monitor changes
in surface water bodies. Using an independent validation dataset, we compare the
proposed method with two cluster algorithms (K-MEANS and EM) as well as an
image segmentation algorithm (normal-cut). We show that our method is more
efficient and reliable.

Keywords Spatiotemporal data mining ¢ Spatiotemporal clustering * Changes of
water extent

5.1 Introduction

Inland surface water is a critical source of water for virtually every aspect of our
daily lives (e.g., energy products, sanitation, etc). Although global water security is
one of the most feared impacts of global change, currently there are no systematic
efforts to objectively monitor surface water availability on a global scale. This limits
our understanding of the hydrologic cycle, hinders water resource management, and
also compounds risks. One of the biggest challenges in water resource monitoring is
that the sheer number of water bodies is so large that a comprehensive on-the-ground
survey is unfeasible. Furthermore, even in regions where surveys may be available,
governments do not share such information.
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Remote sensing instruments image the entire Earth at regular spatial and tempo-
ral internals. They provide an opportunity to monitor the earth surface automatically
and affordably. In this chapter, we focus on a computational method to monitor
global water surface extent autonomously through a publicly available satellite
dataset: The MODerate resolution Imaging Spectroradiometer (MODIS) data. The
goal of this work is to autonomously discriminate between water and land locations
using multispectral data.

The intuition behind using multispectral data is that water and land locations
should have distinct signals. Numerous studies, including this work, use a soil wet-
ness index known as TCWetness, which is a linear combination of all seven MODIS
bands. Many previous works attempt to identify a single TCWetness value as the
threshold that can separate land and water pixels. However, there is tremendous
variability in earth science data due to both natural variability and measurement
error and bias. TCWetness is no exception (Martinez and Toan 2007; Sivanpillai
and Miller 2010). Thus, a single threshold cannot be applied to entire globe.

Previous studies on mapping water extent from remote sensing datasets using
machine learning and data mining technologies were quite promising for specific
geographic regions or short durations of time (Carroll et al. 2011; Gao et al. 2012;
Subramaniam et al. 2011). Due to the complexity of remote sensing datasets, water
and land locations on the global scale are not linearly separable. Learning a classifier
that can track changes of water bodies continuously on the global scale requires not
only comprehensive training labels of both water and land locations, but also a new
supervised learning technology that can handle variability in the data. Unsupervised
methods do not rely on training samples and hence may be better suited for global
scale analysis. Gao et al. (2012) use a hard thresholding method to locate potential
water bodies. Then, they discover the water map for each local region by clustering
the remote sensing data into two clusters using the K-MEANS method. They label
the two clusters as water and land based on a domain heuristic. This method works
well in many cases but still faces problems. We list two situations below when such
traditional clustering methods fail.

1. The multispectral signals are influenced not only by the land cover type but also
by other factors such as the climate condition and soil type. Hence, some water
locations may have similar multispectral values as some land locations. In other
words, water and land might not be always seperable.

2. Remote sensing data frequently suffers from significant quality issues (e.g.,
noise, outliers, and even incompleteness of signals) for a variety of reasons
including atmospheric interference (aerosols, clouds, etc.) and instrument mal-
functions. Such quality issues can cause a large deviation between real Obser-
vations and their expected values. Traditional methods that do not incorporate
spatiotemporal information into clustering are not robust enough to handle such
data quality issues.

In this paper, we propose to solve the above challenges by an unsupervised
spatiotemporal clustering method. We propose to first detect locations that are
always water and always land using a unique spatiotemporal property of these
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permanent pixels and then classify the rest of the locations by local classifiers trained
from the detected permanent locations.

5.2 Dataset

We propose to use our unsupervised method to generate a binary map (water/land)
for every eight-day composite using TCWetness, which has been used extensively
in remote sensing literatures (Collins et al. 1996; Coppin and Bauer 1996; Dymond
et al. 2002). TCWetness is obtained from the Tasseled Cap transformation (Lobser
and Cohen 2007). It is an index that estimates the soil wetness. In this study, we
follow the same procedure as (Lobser and Cohen 2007) and construct TCWetness
using multispectral data products from MODIS, which is available for public
download (US Geological Survey and NASA). Specifically we use Bands 1 and
2 from the MODIS spectral reflectance data product (MYD09Q1) which has 250 m
spatial resolution (i.e., each pixel is a 250m by 250 m area), and Bands 3 through
7 from (MCD432A4) which has 500 m spatial resolution (i.e., each pixel is a 500 m
by 500 m area); all bands have a temporal frequency of 8 days. Resampling Bands
3 through 7 to 250 spatial resolution, our TCWetness dataset is an §8-day 250 m
spatiotemporal dataset, which is available from July 2002 till present.

5.3 Proposed Methods

Starting from a set of TCWetness satellite images, we want to label pixels in
each image as either water or land. To achieve this, we first utilize a unique
spatiotemporal pattern to discover permanent water/land regions that never change
their classes (e.g., a permanent water location never dries up and vice versa). Then,
we classify the rest of the pixels (i.e., data that are not within any permanent region)
using classifiers learned from permanent water/land pixels. Overall, the proposed
method contains two parts: (i) permanent member detection and (ii) other data
classification.

Permanent members detection: To simplify the problem, we assume that water
bodies never totally dried up, and similarly, land patches are never covered by water
entirely. In other words, water bodies, under our consideration, can only extend or
shrink over time.

When water bodies are shrinking or expanding, they strictly follow some physical
rules. For example, when water bodies are drying up, locations change from water
to land with a certain order (e.g., the deepest locations in the water body change to
land in the very end). Hence, as long as water bodies do not dry up totally and also
not all land pixels are covered by water, there are some regions that never change
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their land cover type (i.e., water or land). We call these locations as permanent pixels
including permanent water pixels % and permanent land pixels .Z.

Generally speaking, water locations and land locations have different TCWetness
values. Due to the high spatial correlation, locations from the same class (i.e., water
or land) have similar TCWetness values. But two locations from different classes,
even though they are spatially adjacent pixels, have different TCWetness values in
most of the time. In other words, for any permanent water pixel, its TCWetness time
series is similar to its neighboring pixels only and only if the neighboring pixel is
also a permanent water location. Permanent land pixels have the same property as
well. Here, we use this property to detect and cluster permanent pixels.

We consider the dataset as consisting of several spatially contiguous patches,
and each patch is either a water cluster or a land cluster. By assuming that water
bodies may shrink or expand gradually over time but never shift or disappear,
permanent pixels exist, and nearby permanent pixels under the same land cover
type have similar TCWetness values during the whole period. Hence, with a proper
similarity metric, we are able to detect permanent pixels. Here, we propose a
new similarity measure named ‘“statistical equality”. This new similarity measure
examines whether or not two time series are ALWAYS similar to each other. It can
be used when the time series is not stationary and/or noise level (i.e., variance of
noise) of different locations is different.

Definition 1 (Statistical equality). Two time series are statistically equal to each
other if they have the same expectation at every time point.

Ideally, the statistical equality of two time series a and b can be tested by

H, : mean of a —b is zero.

H, : mean of a—b is not zero.

This null hypothesis test is sensitive to outliers because outliers have negative
impacts on the mean value. Instead of testing for mean values, we use a test for
median values as below.

Hj : median of a— b is zero.

H, : median of a — b is not zero.

The key steps in permanent member detection are shown in Fig.5.1. We first
create a spatial graph of all the locations, in which every node is connected with
its eight adjacent neighbors as shown in Fig.5.1a. Then, we check each edge in
the graph using statistical equality. If the data linked by an edge is not statistically
equal, we delete the edge. Otherwise, we preserve it. Then, we label any node that
has more than five edges as permanent members and the rest as 2 . These nodes
will be classified by the second step “classify other data.” This step is shown as
Fig.5.1b where remaining edges are shown as black lines and .2~ pixels are marked
in purple. Then, we group all pixels that are still connected to each other into a
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Fig. 5.1 Steps for permanent member detection

cluster as shown in Fig.5.1c. Clusters discovered till now are spatially connected
regions within which all locations have similar TCWetness data during the whole
period. In other words, they are the permanent water/land regions. Because of the
heterogeneity of TCWetness data, there may be multiple land clusters and water
clusters discovered. Next, we use a hard threshold to classify each cluster based on
their statistics. The threshold is selected empirically. In detail, we label a cluster
as water if its median is larger than —500 and as land if its median is smaller than
—800. Otherwise, we label the whole cluster as unknown and classify them again in
the next step. The final outputs of the first step are several permanent water clusters
W1, W - W and several permanent land clusters ., % - - - %,

Other data classification: In this step, we classify all pixels by training classifiers
using the detected permanent water/land clusters. Multiple permanent water/land
clusters are detected because either they are not spatially connected or they do not
have similar TCWetness values due to data heterogeneity. Due to the existence of
the second case, it is not suitable to learn one model for all permanent water or
land clusters. We propose to learn independent models for all permanent clusters
separately. When classifying a data, we first find its best cluster and then label the
pixel as the corresponding cluster.

We assume that data in any cluster € follows its own normal distribution
N(ite, 0c). Then, the square of Mahalanobis distance of data y to cluster % is

Dc =V (y - Mc')z/oc

Since D? is equal to the negative log likelihood of y that belongs to %, assigning
a label to y using maximum likelihood estimation is identical to querying for the
cluster that is most close to y based on Mahalanobis distance. Hence, we use the
following steps to label data y:

1. Search in the spatial neighbors of y for all nearby % and .Z clusters and calculate
its Mahalanobis distance to all of them.

2. Label y as L if its Mahalanobis distance to any .# cluster is the minimum.
Otherwise, label y as W.
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5.4 Experiments

We compare the proposed method with three baseline methods, K-MEANS, EM,
and NCUT, in two lakes in the Amazon in Brazil since the year 2002. The two
regions are Coari (Lago de Coari) and Aiapua (Lago de Aiapua).

Validation set and evaluation metric: We use the LSFRACTION dataset as the
validation set. It is a dataset that contains several fraction maps manually extracted
from Landsat-5 signals. For each lake, we have three LSFRACTION data: one on
the date when the lake is at its peak height, one on the date when lake height
is at its minimum, and another one on the date when lake height is around its
mean. By considering water as the positive set and land as the negative set, we
can evaluate algorithms using the F|-measure (Pang-Ning et al. 2006) on the dates
when LSFRACTION is available.

Baseline methods: Below, we introduce the three baseline methods used in our
evaluation: K-MEANS, EM, and NCUT. EM (McLachlan and Krishnan 2007) and
K-MEANS (MacQueen 1967) group data into multiple clusters such that data within
the same cluster have similar feature values, while feature values between different
clusters are different. Gao et al. (2012) propose to partition data into two groups
using K-MEANSs and assign the cluster with higher TCWetness values as water and
the other as land. Here, we not only compare the proposed method with Gao et
al.’s method but also replace K-MEANs with EM since EM do not have strong
assumptions as K-MEANSs. Considering that results of K-MEANS and EM are
dependent on the initial value, we run the two algorithms ten times independently
and choose the result of which the sum of square error is minimized. NCUT (Shi and
Malik 2000) partitions data into k spatially coherent regions, where k is a user input
parameter. Since the water body may not be contiguous in some datasets, we choose
k = 10. To label the ten clusters as water or land, we use a similar heuristic method
as we used in our proposed method, i.e., any cluster with a median TCWetness value
smaller than —800 is a land cluster, otherwise it is a water cluster.

Experimental result: Figure 5.2 shows the performance of K-MEANS, NCUT,
our proposed method, and EM for two lakes. In the figure, the proposed method
is shown as the red bar, and others are shown as yellow bars as the order of K-
MEANS, NCUT, and EM. From the figure, we notice that the proposed method
performs better and is more stable than baseline methods.

In some results (e.g., low day in Lake Coari), all four methods are equally
good. This is because on the dates we analyzed (as shown in the top panel of
Fig.5.3), water and land locations are highly distinguishable by TCWetness. Hence,
all methods can isolate water from land relatively easily. In some results (e.g., low
day in Lake Coari), the performance of our proposed method is significantly better
than the baseline methods. The major reason is that the corresponding TCWetness
values alone are not enough to distinguish water land pixels. As shown in the bottom
panel of Fig.5.3, in the high day, TCWetness data around lake Coari are largely
contaminated by noise and outliers, and hence some water and land locations have
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Fig. 5.3 The performance of the baseline method is highly dependent on the current image. The
proposed method utilizes both temporal and spatial information and hence is more reliable

similar TCWetness values. K-MEANs and EM algorithms use TCWetness alone
and cannot distinguish those water and land locations. The NCUT method utilizes
spatial information by searching for spatial continuity patches that have coherent
TCWetness values. Its classification result contains the major portion of the water
body. Its result does not have stripes and salt and pepper noise as the results of K-
MEANSs and EM. However, it misses several pieces of water body in the middle of
the lake and cuts the whole lake into many water bodies. Besides spatial information,
the proposed method also uses temporal information and hence recovers the missing
pieces of the water body.

5.5 Conclusion and Future Work

In this paper, we proposed an unsupervised clustering method for monitoring water
surface areas using TCWetness. We first detect permanent water/land pixels using
a novel spatiotemporal method. Then, we classify the rest of the pixels using
classifiers trained by the detected permanent pixels. We compared the performance



58 X.C. Chen et al.

of the proposed method with two clustering methods (i.e., K-MEANS and EM) and
one image segmentation method (NCUT) on two lakes when the validation sets are
available. Using the independent validation data, we demonstrate that the proposed
method is better and more reliable.

In our approach, we use both spatial and temporal information to identify
permanent pixels. As a result, the accuracy of detected permanent pixels is very
high. However, we do not utilize any spatial or temporal information in the
second step: classify other pixels. This hinders our approach if significant noise
is present. Future work should attempt to incorporate spatiotemporal information
in the classification step and solve the problem as a classification algorithm with
spatial and temporal constraints.
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Chapter 6
A Bayesian Multivariate Nonhomogeneous

Markov Model

Arthur M. Greene, Tracy Holsclaw, Andrew W. Robertson, and Padhraic
Smyth

Abstract We present a Bayesian scheme for the downscaling of daily rainfall over
a network of stations. Rainfall is modeled locally as a state-dependent mixture,
with the states progressing in time as a first-order Markov process. The Markovian
transition matrix, as well as the local state distributions, are dependent on exogenous
covariates via generalized linear models (GLMs). The methodology is applied to
a large network of stations spanning the Indian subcontinent and extending into
the proximal Himalaya. The combined GLM-NHMM approach offers considerable
flexibility and can also be applied to maximum and minimum temperatures. The
modeling framework has been made available in the NHMM package for the R
programming language.

Keywords Multisite rainfall modeling ¢ Hidden Markov model ¢ Bayesian
estimation ¢ Climate downscaling ¢ Indian rainfall

6.1 Introduction

The modeling and simulation of daily precipitation over a network of stations
serves a variety of purposes: Besides elucidating the statistical properties of the
precipitation field, modeling can link station-level observations with large-scale
weather states, providing both a means of downscaling and a diagnostic tool for
the latter. Simulating from a fitted model, or “weather generation,” allows for
the impacts of plausible, yet unobserved, sequences to be assessed, while linking
station-level behavior with exogenous covariates affords a way of assessing likely
future climate trajectories.
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The hidden Markov model (HMM) presents an intuitively attractive construct for
accomplishing these ends. Depending on model structure, the HMM can be applied
to rainfall occurrence only (Hughes et al. 1999) or to both occurrence and amount
(Charles et al. 1999). The HMM is a state-based model and generalizes readily
to the representation of rainfall over a network of stations, using state-dependent
multivariate distributions over the network. It is to the hidden state space that the
Markov property applies, meaning that changes among states are governed by a
transition matrix. This arrangement lends a stochastic ordering to the progression of
states and in the case of self-transitions permits differing degrees of state-specific
persistence. The persistence property, in turn, is congruent with the behavior of the
large-scale atmospheric flow structures that produce what we think of as “weather”
and that ultimately give rise to the precipitation that constitutes our modeling target.
The precipitation field associated with the Indian monsoon was modeled using an
HMM in Greene et al. (2008).

The linkage described above, between large-scale weather states and detailed
daily rainfall sequences occurring at the station level, is what gives the HMM
its utility as a downscaling tool (Bellone et al. 2000; Robertson et al. 2009).
Further, if HMM parameters are modeled as dependent on well-chosen exogenous
variables taken from global climate model (GCM) simulations, the resulting NHMM
(nonhomogeneous HMM) can then be driven by future GCM simulations in order
to generate daily rainfall sequences consistent with climate change expectations
(Greene et al. 2011). Thus, the NHMM can serve as a tool for the downscaling
of future as well as present climate.

The model we present herein is a classical NHMM, in that the transition
probabilities are made dependent on exogenous covariates. However, two novel
elements have been incorporated: An additional set of dependencies, between
station-level covariates and model parameters, is introduced, and estimation is
performed in a Bayesian framework. Details are presented in what follows.

6.2 Model Description

A graphical representation is first presented, to provide a model overview and a
summary of dependence relations; the model is then discussed in greater detail.

6.2.1 Representation as a Bayesian Network

Figure 6.1 summarizes the structure of the model in the form of a Bayesian network,
or directed acyclic graph. In such a network, dependencies are unidirectional
and denoted by arrows; there are no directed loops. Time, in daily increments,
flows from left to right, as indicated by subscripts on the hidden states z, global
exogenous predictors X on which transition matrix Q is conditioned, and station-
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Fig. 6.1 The model as a Bayesian network. Dependencies are denoted by arrows, with time ¢,
here in days, marching from left to right. Arrows in the positive time direction joining nodes
Zi—1+ 2, Z+1 - - - correspond to the first-order Markov dependence governing the progression of
states. Transition matrix Q, conditioned on exogenous covariate X, inherits its time dependence

level exogenous predictors W on which local emission distributions are conditioned.
The s subscript refers to stations, s = 1...S, and Y, ; represents the observed daily
station-level rainfall sequences over the network, to which the model is fit. Similarly,
parameters 6, which specify the emission distributions, are specific to both hidden
state z and station s. Parameter ¢ is a vector scaling coefficient applied to (vector)
exogenous variable X; likewise, 6 includes scaling coefficients for W, as well as
shape parameters for the mixture components of the emission distributions. The
nodes X, W and Y are shown as grayed rectangles to indicate that they represent
observed or exogenous data; the node Q is doubly circled to indicate that it is
directly computed from other parameters, rather than sampled. All other nodes are
stochastic, i.e., they represent random variables whose values are estimated in fitting
the model. In climate applications HMMs are typically defined on a small, finite
number of states; here a nine-state model is discussed.

6.2.2 Structural Details

Exogenous vector covariates X and W are real-valued, whereas Q is a matrix of
probabilities, having entries > 0 and rows that sum to unity. Similarly, the station-
level vectors of mixing weights p, conditioned on W are also constrained to be > 0
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and sum to unity. The dependencies of Q on X and p on W are therefore encoded
by general linear models (GLMs), of the form

Qi1 = P(zi|z-1, X)) = g 1 (¢™X)) (6.1)

and

Pis = & (Boks + BT, W), (6.2)

where Eqgs. (6.1) and (6.2) refer to the domain- and local-level GLMs, respectively.
Equation (6.1) says simply that the matrix of state transition probabilities, going
from day ¢ — 1 to day 7, depends on exogenous predictor X at time ¢ as scaled by
coefficients ¢, through the inverse link function g~'. Equation (6.2) is similar, except
that p constitutes a single vector of mixing weights, and the argument of the inverse
link includes both constant and product terms, the latter incorporating coefficient
vector B. (The transpose operators on ¢ and § indicate expression as row vectors.)
Subscripts &k and s in (6.2) refer to hidden state and station, respectively. The form of
g utilized for both of these model components is the multinomial probit (Neal 1997;
Riihimaki et al. 2013). A feasible alternative in principle would be the multinomial
logistic (Ledolter 2013). However the latter proves more difficult to estimate in the
Bayesian framework employed (Polson et al. 2013).

As implemented here both X and W are trivariate, consisting of (a) a smoothed
climatology of the probability of rain; (b) “NINO3.4,” an index of the El Nifio-
Southern Oscillation (ENSO) phenomenon (Trenberth 1997); and (c) “WSIL1,” a
large-scale index of monsoon circulation strength (Wang and Fan 1999). In each
case the time series are linearly interpolated from monthly data to obtain daily
values. For X the climatology utilized is a regional average; for W it is a station-
level variable. The other two predictors are identical. The model is fit to daily station
rainfall for 1980-2007 from the NOAA Climate Prediction Center Global Summary
of the Day dataset (NCDC 2002), using the entire calendar year but omitting leap
days. Three years (2008-2010, inclusive) are held out for model selection, which is
performed using the predictive log score (see Sect. 6.4.)

Station-level rainfall is modeled as a mixture, with weights conditioned on
W according to Eq. 6.2. Model design does not constrain the number of mixture
components; here three are utilized: a delta function at value zero and two gamma
distributions, having shape parameters equal to unity and two, respectively. (The
first of these corresponds to a pure exponential.) Inclusion of the delta function,
resulting in zero-inflated gamma mixtures, is required in order to fit dry days, which
would otherwise have only an infinitesimal probably of occurrence. The second
gamma function provides a means of better fitting the tails, quasi-independently of
the more central region of the daily rainfall distributions.



6 A Bayesian Multivariate Nonhomogeneous Markov Model 65
6.2.3 Estimation

Estimation begins with Bayes’s rule, a basic result in conditional probability theory:

P(0)P(y[0)

PO = =505

(6.3)

where y and 6 are probability density functions. P(0) is an unconditional distribu-
tion, representing our knowledge of 6 prior to the introduction of observations y.
P(y|0) is the likelihood function, and P(6|y) represents our knowledge of 6 in light
of observations. P(6]y) is often referred to as the posterior density. In the context of
the complex model described here, Eq. 6.3 becomes more general, with 6 referring
to all model parameters and y the multivariate rainfall sequence over the network.
The prior, P(60), is specified as a product over prior distributions for specific subsets
of parameters in a standard manner (Gelman et al. 2004). These distributions are for
the most part noninformative; the data carry greater weight in determining P(0|y).

For simple problems Eq. 6.3 may have analytical solutions, but often, particularly
with complex models using a variety of distributional components (which would
include the present model), closed-form solutions for P(6]y) do not exist. Posterior
distributions are therefore obtained through the use of Markov Chain Monte Carlo
(MCMC) methods (Gilks et al. 1996). Using MCMC it becomes possible to sample
from the posterior densities of interest in the absence of an analytical solution
to (6.3).

A frequently employed MCMC method is the Gibbs sampler, in which all model
parameters but one are held constant while the parameter of interest is drawn. One
iteration of the chain then involves cycling through all the model parameters in this
way. Owing to the large observational dataset employed, a method augmenting the
observations with latent variables (Albert and Chib 1993) is utilized here, allowing
for considerably more efficient sampling. After a burn-in of 200 cycles, the sampler
is run for 1,000 additional iterations. Distributional estimates for all the model
parameters illustrated in Fig. 6.1 are then derived from the post-burn-in samples.

Once fit, the model can be used to generate synthetic rainfall data, in either
simulation or predictive (i.e., cross-validation) mode. Comparison with observations
then yields information about model fit and suitability.

6.2.4 Model Selection

In fitting the model, the number of states must be specified a priori, so the question
of model selection arises. This is accomplished using the predictive log score (PLS)
(Gneiting and Raftery 2007), which is applied to the held-out data. This leads to the
choice of a nine-state model, discussed below.
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6.3 Inferred Parameters

Figure 6.2 shows maps of mean daily intensity (rainfall amount on wet days) over
the study network, for each of the nine states. Numbers in parentheses above each of
these maps show the total number of days during the 28-year data period assigned
to each of the states, as inferred during the fitting process.

The figure evinces several patterns of interest: In states 6, 7, 8, and 9, to differing
degrees, we see an elongated zone of enhanced intensities along the southwestern
coast, accompanied, particularly in states 7, 8 and, 9, by increased values in the main
monsoon zone (approximately the region of the Indo-Gangetic plain). In physical
terms the sharp coastal maximum is known to result from westerly, moisture-laden
monsoon winds impinging on the elevated topography of the Western Ghats, a
linear mountain range that approximately parallels the coastline, while rainfall in
the interior is an expression of convective storms that propagate northwestward from
the Bay of Bengal. These are well-known features of the Indian summer monsoon,
and the states in question are principally active during the corresponding June to
September season. During these months, low-level flow across the Arabian sea
arrives nearly zonally from the west, and warm sea-surface temperatures in the Bay
of Bengal give rise to frequent cyclogenesis, or storm formation.

State 2 shows a subregional maximum in the extreme southeast, in the area of
Tamil Nadu state. This region is known to experience rainfall during the northeast
monsoon, the large-scale reversal of winds that occurs during Northern Hemisphere
winter. Corresponding to this seasonal signature, state 2 is inactive during the
summer monsoon season (plots showing seasonal state activity patterns not shown).
A detailed analysis via compositing (Greene et al. 2008) has the potential to reveal
further dynamical connections between the state definitions and features of the
large-scale flow field.
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Fig. 6.2 Mean daily intensity over the station network, for the nine modeled states
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6.4 Validation

The model proves capable of capturing station-level (and thus, network-averaged)
seasonality quite well. It also represents daily station-level rainfall distributions
reasonably well at both relatively wet and dry locations, although detailed analysis
of extreme precipitation values suggests that a model using one of the extreme-
value distributions may provide a somewhat better representation, if extremes are of
primary interest. Such a model, but without the innovations introduced in the present
work, has been described in Kallache et al. (2011).

As expected, the monsoon tends to be wetter when covariate WSI1, which
represents the strength of the monsoon circulation, is at higher levels. This response
is observed both globally over the network and consistently, although with varying
sensitivities, across individual stations. Response to the ENSO predictor is of the
same sign but less pronounced and at the station level is observed to be quite
noisy and more difficult to detect. Historically, warm ENSO events have been
associated with weaker monsoons, but the relationship has varied over time and may
be weakening as the planet warms (Ashrit et al. 2001), so this result is deserving
of further investigation. Coefficient values suggest that WSII1 is equally effective
at both the global and station levels, ENSO more so at the global (i.e., transition-
matrix) level.

Figure 6.3 shows two-point correlation scatter plots for daily rainfall amounts
and occurrence, with observations on the abscissa and the results of 1,000 28-
year (10,220-day) simulations on the ordinate. Simulation means are indicated
by black markers, with 95 % prediction intervals shown as gray bars. Amounts
exhibit some falloff in correlation, particularly at higher values, suggesting that
not all of the spatial dependence in daily precipitation has been captured. In fact
this is not a surprising result, owing to the conditional independence structure of
the model: Conditional on the state (which defines emission distributions over the
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Fig. 6.3 Two-point correlation coefficients for daily rainfall amounts (a) and occurrence (b)
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entire network), rainfall at individual stations is independent. Thus, although mean
amounts may be well correlated, covariation of daily fluctuations within a particular
state is not constrained. This is a well-known attribute of HMMs, and model variants
have been designed that treat interstation covariance in more detail (Kirshner et al.
2012).

Two-point correlations for occurrence (Fig.6.3b) are captured with greater
fidelity. This may be in part because there is generally greater spatial coherence
in occurrence than in amounts (Moron et al. 2007) but also likely reflects use of
precipitation occurrence as a covariate in both X and W and the large amplitude of
the seasonal cycle.

6.5 Summary

The NHMM presented herein comprises a number of novel features, most notably
the introduction of covariates at both the domain and local scales and parameter
estimation in a Bayesian framework. Covariates condition both the Markovian
matrix of transition probabilities and the mixing coefficients of individual station
emission distributions, not only adding a considerable degree of flexibility in
modeling observed rainfall but also potentially improving simulations of projected
future precipitation. Bayesian estimation provides a natural means of assessing
uncertainty in model parameters, providing a more comprehensive perspective on
both model performance and the confidence we may place in its simulations.

The model described herein has been disseminated as a package for the R
programming language. In its published form, the model is quite flexible, permitting
a range of distributional forms, link functions, and number of mixture components.
It is available on the Comprehensive R Archive Network (CRAN) at http://cran.r-
project.org/web/packages/NHMM/index.html.
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Chapter 7
Extracting the Climatology of Thunderstorms

Valliappa Lakshmanan and Darrel Kingfield

Abstract The climatology of thunderstorms is an important weather forecasting
tool and aids in improved predictability of thunderstorms (Schneider and Dean, A
comprehensive 5-year severe storm environment climatology for the continental
united states. In: 24th conference on severe local storms, Savannah. American
Meteorological Society, p 16A.4,2008). However, deriving such a climatology from
observations of severe weather events is subject to demographic bias (Paruk and
Blackwell, Natl Weather Dig 19(1):27-33, 1994), and this bias can be ameliorated
by the use of remotely sensed observations to create climatologies (Cintineo
et al., Weather Forecast 27:1235-1248, 2012). In this paper, we describe a fully
automated method of identifying, tracking, and clustering thunderstorms to extract
such a climatology and demonstrate it by deriving the climatology of thunderstorm
initiations over the continental United States. The identification is based on the
extended watershed algorithm of Lakshmanan et al. (J Atmos Ocean Technol
26(3):523-537, 2009), the tracking based on the greedy optimization method
suggested in Lakshmanan and Smith (Weather Forecast 25(2):721-729, 2010), and
the clustering is the Theil-Sen clustering method introduced in Lakshmanan et al. (J
Appl Meteorol Clim 54:451-462,2014). This method was employed on radar data
collected across the conterminous United States for the year 2010 in order to
determine the location of all thunderstorm initiations that year. Eighty-one percent
of all thunderstorm initiation points occurred in the spring and summer months and
were widely dispersed across all states. The remaining 19 % occurred in the fall and
winter months, and a majority of these points were spatially dispersed across the
southern half of the United States.
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7.1 Motivation

Because it is possible to gain key insights into the character and predictability of
severe storms by analyzing the mesoscale environments associated with observed
severe convective storms (Schneider and Dean 2008), creating thunderstorm clima-
tologies in different parts of the world has been an active endeavor in meteorology.

Smith et al. (2013) observed distinct spatial patterns in the different modes
of thunderstorms that led to severe wind gust observations. Schneider and Dean
(2008) calculated the conditional probability (given lightning) of tornadoes for large
mixed-layer convective available potential energy and strong shear in the continental
United States.

Allen et al. (2011) describe the construction of a database to derive such a clima-
tology based on hail and wind observations in Australia. Deriving thunderstorm
climatologies on direct observations of hail stones, for example, is problematic
because of the potential for bias toward heavily populated areas. Paruk and
Blackwell (1994) describe the correction of observed thunderstorm characteristics
according to population demographics in Alberta. The problems with such an
approach led Brimelow et al. (2004) to create a thunderstorm climatology in Alberta
using radar data. Creating thunderstorm climatologies from radar data provides
better spatial coverage and is less biased toward population centers (Cintineo
et al. 2012) but can be subject to quality control issues that have to be carefully
addressed (McGrath et al. 2002).

Carrying out thunderstorm identification from remotely sensed data for the
purposes of creating thunderstorm climatologies is hugely time consuming and
involves compromises on scale (Trapp et al. 2005) or on representativeness (Smith
et al. 2012). Therefore, it can be very advantageous to automate thunderstorm
identification and tracking these identifications over time in order to extract storm
attributes (Lakshmanan and Smith 2009).

Lock and Houston (2013) point out that the tracks that result from commonly
used thunderstorm tracking algorithms cannot be used directly for the purpose of
creating thunderstorm climatologies because of their poor temporal continuity.

In this paper, we describe a fully automated set of operations to identify
thunderstorm trajectories from a spatiotemporal dataset of remotely sensed images
and demonstrate the algorithm to derive the climatology of thunderstorm initiations
in the continental United States over the year 2010.

7.2 Identifying Thunderstorms

A storm in weather imagery may be defined as a region of high intensity separated
from other areas of high intensity. The simple approach to storm identification is to
threshold the images based on a physically reasonable value (Augustine and Howard
1988), but such an approach tends to identify only ongoing thunderstorms and will
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miss weak thunderstorms that are initiating and increasing in intensity because their
intensities will be below that of the chosen threshold. Choosing a lower threshold
to capture such initiating thunderstorms will lead to excessively large storms in the
case of ongoing convection.

We employed the method of Lakshmanan et al. (2009) which is based on the
watershed transform (Beucher 1982; Beucher and Lantuejoul 1979; Roerdink and
Meijster 2001) where the image is “flooded” starting from the global maximum.
The flooding level is slowly decreased so that flooding can proceed at lower and
lower levels, and the entire area covered by water flowing from a single maximum
forms a thunderstorm. The key advantage of the watershed approach is the lack of a
prespecified threshold — in effect, all possible thresholds are attempted.

The steps of the extended watershed algorithm of Lakshmanan et al. (2009) are
as follows:

1. Smooth the image to remove spurious peaks below the scale of a thunderstorm.

2. Quantize the image so that image values are integers as the watershed transform
relies on a data structure that consists of an integer map (i.e., requires strict
equality to work). This quantization can be carried by K-Means clustering
(see Lakshmanan and Smith 2009; Lakshmanan et al. 2003).

3. Find all candidate local maxima by iterating through the pixels in reverse order
of intensity and removing from the list all neighbors of those pixels.

4. From each candidate maximum, capture the thunderstorm by performing region
growing one intensity level at a time until the saliency is reached (see Laksh-
manan et al. (2009) for a detailed algorithm).

5. Reserve foothills by continuing the region-growing process until pixels flooded
from a new maximum are reached.

7.3 Tracking Storms

In the previous section, we discussed the method of identifying thunderstorms from
remotely sensed imagery. Thunderstorms persist over time, and for the purposes of
a thunderstorm climatology, it is important to correlate the identified thunderstorms
over time. Conditional probabilities created by Schneider and Dean (2008), for
example, require that thunderstorms be correlated with severe weather such as
tornadoes or hail produced over the lifetime of those storms.

However, associating across time the storm cells identified from remotely sensed
images is a difficult problem because storms evolve, split, and merge (Dixon and
Wiener 1993; Johnson et al. 1998; Wilson et al. 1998). It is possible to associate
storms across time using extent of overlap (Morel et al. 1997), using projected
centroid location (Johnson et al. 1998), minimizing a global cost function (Dixon
and Wiener 1993), greedy optimization of position error and longevity (Lakshmanan
et al. 2009), and checking overlap followed by a global cost function (Han et al.
2009). Preprocessing operations such as median filters (Stumpf et al. 2005), quality
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control (Lakshmanan et al. 2007a), and morphological operations (Han et al. 2009)
can help improve the trackability of storm cells.

Lakshmanan and Smith (2010) compared the different methods of tracking
storms by evaluating the resulting tracks on three statistical criteria:

1. The duration of the track. The duration is longer if there are fewer dropped
associations.

2. The standard deviation of the vertical integration liquid (Greene and Clark 1972)
of the cell in time (i.e., along a track). The standard deviation is lower if there are
fewer mismatches.

3. The root mean square error (RMSE) of centroid positions from their optimal line
fit. The RMSE is lower for more linear tracks.

Then, Lakshmanan and Smith (2010) computed central tendencies of the above
statistics on a large dataset of tracks: the median duration of tracks and the mean
standard deviation of VIL and the mean RMSE of tracks. Based on these criteria on
a large dataset of radar-derived storm positions, they suggest the following greedy
algorithm to track storms:

1. Project storm cells identified at #,—; to their expected location at t,,.

2. Sort the storm cells at #,_; by track length, so that longer-lived tracks are
considered first in Step 3.

3. For each (unassociated) projected centroid, identify all centroids at ¢, that are
within d,,—; km of the projected centroid. d,,—; is given by \/A/m where A is the
area of the projected storm cell at #,_;.

4. If there is only one centroid within the search radius in Step 3, and if the distance
between it and the projected centroid is within 5km, then associate the two
storms.

5. Repeat Steps 3 and 4 until no changes happen. At this point, all unique centroid
matches have been performed.

6. Define a cost function c;; for the association of candidate cell i at #, and cell j
projected forward from #,,_; as:

A (A=A |di—d;
(WAl o)) g

i J ! 7

where x;, y; is the location, A; the area, and d; the peak pixel value of cell i (in the
spatial field in which cells are being detected). |a| refers to the magnitude of a,
and a /\ b refers to the maximum of a and b.

7. For each unassociated centroid at #,, identify all projected centroids within d,, km
where d, is expressed in terms of the area of the cell at 7, as /A/ 7.

8. Associate each unassociated centroid at #, with the unassociated, projected
centroid within d, for which the cost function ¢ is minimum. If there are no
centroids within the search radius, mark it as a new cell.

Having identified the storms and created a first guess of the tracks, we used the
method of Lakshmanan et al. (2015) to cluster the tracks as follows:
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1. Treating each track (set of storm cells with the same id) as a cluster, compute
the Theil-Sen slope and constants (u, v, xg, o, fo) for each cluster. The Theil-
Sen slope (u, v) is computed for the x and y directions separately by finding the
median value of (x; —x1)/(f, — 1) and (v, —y1)/(t» — t;) for every pair of storm
centroids within the cluster.

2. For every storm cell in the dataset, find the nearest cluster using

dy = V(x—ux(t—10) —x0)> + (y—v*(t—10) —y)>  (7.2)

taking care to compute the distance only for points within a reasonably sized
buffered bounding box of the cluster in x, y, ¢. If the nearest cluster is different
from the cluster the cell is currently part of, and if the distance is less than some
reasonable threshold D, move the storm cell to the nearest cluster.

3. Compute the Theil-Sen fit for each cluster, and prune the set of clusters to remove
clusters with less than three centroids. Repeat Steps 2 and 3 until convergence is
reached.

7.4 Climatology of Thunderstorm Initiation

In order to determine where thunderstorms initiate in the United States, we need
to identify a distinguishing feature that separates thunderstorms from less intense
forms of precipitation (e.g., rain showers). One unique attribute of thunderstorms
is their electrical activity. MacGorman and Rust (1998) summarize that electrical
charge production (i.e., a precursor to lightning) in a thunderstorm occurs when
a strong updraft is collocated with the mixed-phase region (i.e., a region where
water droplets can be either liquid or ice). In order to measure the activity in this
region, we will leverage data from the Weather Service Radar 1988 Doppler (WSR-
88D) network that can estimate precipitation intensity by scanning the atmosphere
and using the returned power to calculate a quantity called radar reflectivity. Prior
observational work on determining a radar reflectivity threshold to estimate the
onset of lightning (Dye et al. 1989; Gremillion and Orville 1999; Lang and Rutledge
2011; Vincent et al. 2003) has found reflectivity values around 40 dBZ measured in
this mixed-phase region (around the —10 °C isothermal level) to be optimal.

As part of the Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS)
initiative (Ortega et al. 2012), all single site WSR-88D data since the inception of
the network are being reprocessed and merged with model analyses (e.g., Rapid
Update Cycle Benjamin et al. 2004) into a single three-dimensional (3D) Cartesian
grid covering the United States. By merging radar with environmental analysis data,
a two-dimensional (2D) plane of radar reflectivity at specific isothermal levels can
be extracted out of the 3D grid, greatly simplifying the amount of information to
be tracked. From this larger dataset, a merged 2D field of reflectivity at the —10 °C
isothermal level from all 122 WSR-88D sites was generated at 5 min intervals, the
average time taken to complete one volumetric scan from any radar, for the year
2010.
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Before passing into the enhanced watershed classification system (Sect.7.2),
each pixel in the image was replaced by the 90th percentile of the grid point
values in a 0.11° x 0.11° neighborhood in order to expand the updraft regions
of storms (normally regions of higher reflectivity) for easier identification. Storms
were identified and tracked using hierarchical saliency thresholds of 200, 600, and
1,000km?. These thresholds were determined through expert analyses on a subset
of lightning-producing events and are currently utilized in a series of developmental
lightning tracking and intensity products (Calhoun et al. 2013; Chronis et al. 2014).
While we are looking for storms that exceed 40dBZ at the —10°C isothermal
level, we need to begin tracking objects at a lower reflectivity threshold to get a
better estimate of the storm initiation location. We chose 15dBZ as the minimum
threshold as this is the upper end of the values normally observed and associated
with meteorological clutter versus precipitation echoes.

After the tracking step, all objects were post-processed using the technique
described in Sect.7.3. In order to identify optimal temporal, spatial, and continuity
thresholds to accommodate the spectrum of thunderstorm convective modes, we uti-
lized the automated storm classification system of Hobson et al. (2012) on a subset
of active convective weather days to classify each storm in the conterminous United
States into one of five categories: supercell, multicell, ordinary cell, convective line,
and unorganized. We post-processed these data through 50 different spatiotemporal
threshold groups to determine the one that minimizes both positional and size error
across all storm categories. This threshold chosen for our analysis included the
following spatiotemporal criteria:

1. Objects within a track must have at least one neighbor within a 20 min temporal
and 0.05° spatial window.

2. A valid track consists of at least three objects contained within the Theil-Sen
slope.

Applying these constraints, the 2,605,317 original objects were cleaned up into
1,370,381 tracks. Next, we can walk through each new track and determine if
the storm exceeded our initial 40dBZ threshold. After applying this threshold,
446,032 tracks met our thunderstorm criteria. As a final quality control step, we
discarded all tracks that were not sampled by at least two radars within their 460 km
reflectivity range window. Most tracks far outside the conterminous United States
were discarded during this step, bringing our track count down to 441,278. With this
final information, we can plot up these initiation points and group them by season,
as shown in Fig. 7.1.

The resulting climatology for 2010 indicates that summer months had the highest
frequency of thunderstorms, capturing 53 % of the initiation points. Spring was the
second highest with 28 % of the initiation points. Both spring and summer were
spatially diverse with points scattered across the conterminous United States. Fall
and winter, with 12 % and 7 % of initiation points, respectively, were less active with
a majority of points occurring in the southern half of the United States.

The output from the above techniques could be further mined to determine the
influence of specific days or storm systems. For example, July 26th had the highest
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Fig. 7.1 Initiation points for storm objects exceeding the 200 km? saliency threshold and 40 dBZ
at the —10 °C isothermal level by season for the year 2010

overall number of individual detections at 3,916 due to two regions of widespread
convection from the upper Great Plains down into the Tennessee Valley and the
Carolinas. As another example, 11 % (n = 368) of all initiation points (n = 3,266)
on June 30th can be associated with Hurricane Alex by counting the number of
points within a 5° x 5° latitude/longitude bounding box over the affected regions of
southern Texas, Mexico, and offshore zones.
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Chapter 8
Predicting Crop Yield via Partial Linear Model
with Bootstrap

Megan Heyman and Snigdhansu Chatterjee

Abstract We construct partial linear models to predict Minnesota corn and soybean
yields by county. Climate variables, such as monthly precipitation and temperature
measures, are included as covariates. However, fitting a standard linear regression is
inadequate, and hence, an arbitrary nonparametric function over time is included for
superior prediction performance. In a novel approach, the nonparametric component
is approximated using an increasing sequence of orthonormal basis functions of
the appropriate function space. We use different bootstrap schemes to produce
prediction bounds and error estimates for the model, since the noise terms appear
to be heteroscedastic and non-normal in the data. Results are presented and caveats
and extensions to the model are also discussed.

Keywords Wild bootstrap * Residual bootstrap e« Agricultural impact e
Non-Gaussian ¢ Heteroscedasticity

8.1 Motivation

Crop yield is specific to location, due to environmental factors which include
available natural resources and climate. The problem of predicting crop production
is important for studying possible mitigation and adaptation strategies for climate
change and for understanding the downstream effect of climate change on human
living conditions. Several models exist in the literature which predict crop yield.
For example, Westcott and Jewison (2013) utilize summer climate information,
include a linear term in time, and predict at the national level in a linear regression
model. In Adrian (2012), a Bayesian model is implemented. Schlenker and Roberts
(2006) include temperature as a polynomial while utilizing daily weather data and
predicting at the county level with a linear regression.

It becomes apparent that there are several technical challenges in predicting crop
yields. In particular, the quality of fit for the linear model is not high, and the
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errors do not seem to satisfy either normality or homoscedasticity (equal variance)
assumptions. With or without penalties and adjustments for spatiotemporal depen-
dencies, these challenges render traditional Gauss-Markov model-based regression
(i.e., linear regression with independent Gaussian, mean zero, and homoscedastic
errors) and prediction strategies unviable. On the other hand, it is evident that there
are linear relationships between some of the predictors and crop yield. Ignoring such
linear effects would exacerbate curse of dimensionality and other efficiency issues
in model fitting.

An attractive middle ground, which we present here, is to use a partial linear
model that includes linear terms in some variables and nonparametric functions
of others to predict crop yield. We also eliminate the assumption that noise terms
must be homoscedastic and have the Gaussian distribution. Broadening the scope of
such a model implies that traditional statistical estimation and inferential techniques
must be considerably modified for our purposes. We introduce a new technique
of using an increasing sequence of orthonormal basis functions of an appropriate
Hilbert space for a biased, but nevertheless consistent, estimation of our model. The
specific details and assumptions associated with this new technique are outlined in
Sect. 8.2. We then use resampling schemes, namely, the wild, paired, and residual
bootstrap techniques, for statistical inference, prediction accuracy, and precision
quantification.

The goal when constructing these models was to advocate informed decision-
making and allow better financial planning. Potential covariates are limited to
climate variables, since weather data is more noisy and cannot be used for long-term
prediction purposes. Keeping interpretability and usability in mind, only climate
information available prior to the planting season, but within the same calendar year,
is considered. Although including contemporaneous summer climate information
would produce estimates with lower error, such models do not serve any decision-
making purpose. The models we created produce predictions in yield before planting
occurs for the year, which seems to follow the corn producer decision-making cycle
(Takle et al. 2014). Of important note, however, is that our general approach and
theoretical results do not depend on the particular choice of covariates.

8.2 Partial Linear Models

The partial linear model has many useful applications. Green and Silverman (1994)
contains an application in predicting gasoline sales, which is similar in structure to
the one we propose for crop yield. A detailed description of partial linear models,
their assumptions, applications, and estimation techniques, is found in Hérdle et al.
(2000). We present a brief outline of the partial linear model as used in our analysis.

Consider the dataset {(¥;,X;,z;)) € R x R? x [a,b]; i = 1,2,...,n}, where
Y; is the ith response, (X, z;) are the corresponding predictors, R denotes the real
numbers, and a < b € R. Suppose it is known that the response, Y;, depends
linearly on X;, but the dependence on z; is uncertain. An appropriate model to
describe the response consists of both parametric and nonparametric components
in the predictors (Eq. 8.1).
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Y=XB+f(2)+e. 8.1)

We assume that X is an n X p matrix of full column rank and does not include
an intercept. The exclusion of an intercept from X is an identifiability condition
which we address after introducing Eq. 8.2. The data vector, z = (z21,22,.--,2n)
is also defined. Slope, B, is an unknown p-dimensional vector, where p is fixed
and finite. The function, f : [a, b] — R, satisfies | lb F2(x)dx < oo, but is otherwise
unknown. We may further assume that f(-) is continuous, but this assumption is only
for technical simplicity and may be eliminated. Model errors {e;} are independent,
have mean zero, and variance O'iz fori = 1,2,...,n. The distribution of errors is
arbitrary.

There are several methods to estimate the parametric component, 8, and the
nonparametric function, f(-) (see Wasserman 2006). For example, f(-) may be
estimated using a kernel regression. In this paper, we use a different approach —
an orthonormal basis of the Hilbert space of square integrable functions on [a, b],
called % ([a, b]). Suppose the n x J-dimensional matrix, Z, has columns consisting
of the evaluation of the first J functions of the orthonormal basis of % ([a, b))
at zj,...,z,. Instead of estimating the full nonparametric component, f, which is
typically a nuisance parameter anyway, we approximate utilizing Z to obtain Eq. 8.2:

Y=XB+Zy+e, =X+ ey (8.2)

This approximation method creates a model (Eq. 8.2) which is attractive in terms
of interpretability and estimation. Essentially, we have transformed a semiparamet-
ric model (i.e., a model consisting of parametric and nonparametric components)
into a high-dimensional parametric model. Parameter estimation becomes straight-
forward, and we choose the least squares methodology. The number of orthonormal
basis vectors — J — is allowed to increase with the sample size, n. Thus, the full
nonparametric function, f(-), is estimated asymptotically.

We require X; to have full column rank, which ensures that the XJTX ;7 matrix
is invertible for least squares estimation. Thus, we must exclude an intercept from
X, because approximation using an orthonormal basis implies an inherent intercept
in Z. The inversion requirement also implies that J may not grow too fast with n.
Finally, let us define ¢; = f(z) — Zy + e, which captures the noise as well as
the bias in the effective model (Eq.8.2) and arises from using only J orthonormal
basis terms. In general, Ee; # O for any fixed J. Therefore, we always work with
biased models in this framework. In theoretical results not presented here, we have
established that under standard assumptions, a contrast in the least squares estimator
of @ and various bootstrap estimators are consistent when (p + J)/n — 0.



84 M. Heyman and S. Chatterjee
8.3 Why Use the Bootstrap Resampling Schemes?

Recall that the partial linear model (Eq. 8.1) requires estimation of the nonparamet-
ric component, f(-). Here, we have adopted a method which uses an increasing (in J)
sequence of functions of the orthonormal basis of %, ([a, b]), called a sieve method
in the statistical literature. This estimation procedure necessarily introduces a bias in
the estimates, and noise terms are independent, but potentially heteroscedastic. Our
broad framework renders classical statistical inferential techniques, like the Gauss-
Markov model, as untenable. Resampling-based inferential methods may be used,
provided they are first proved to be consistent (essentially, as n — oo, the estimate
converges to the truth). Three common resampling methods are the residual, wild,
and paired bootstrap techniques. The first of these methods — residual bootstrapping
— is consistent only under homoscedasticity of errors. However, the latter two are
consistent under heteroscedastic error structures, but likely to be less efficient under
homoscedasticity (Liu and Singh 1992). Efron and Tibshirani (1993) contains a
detailed discussion of these bootstrap techniques.

In the adopted framework, eliminating the classical assumptions of normality of
errors and constant error variance is necessary for the data analysis problem at hand.
Our results show that, in the case of modeling both corn and soybean yields, the
errors do not follow classical assumptions. Figure 8.1 contains residual diagnostics
from the corn model where, indeed, it is apparent that the errors are non-normal and
heteroscedastic. Our findings are not unique in this regard. Other existing crop yield
models have considered heteroscedasticity as well (e.g., Yang et al. 1992).

Finally, these bootstrap techniques are very quick to implement. On a single
core, SSD with 8 GB ram, 10,000 bootstrap samples were taken over our 1,898
observations. The computation times needed for the residual, wild, and paired
bootstrap methods were 2.08, 2.67, and 62.86s, respectively. The paired bootstrap
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Fig. 8.1 Corn yield model diagnostic plots: under the assumption of homoscedastic and normal
errors, the “Residuals vs. Fitted” plot should appear as a constant band of points, and the “Normal
Q-Q” points should follow the dashed line. Fits are defined as Y = X;¢ and residuals are r = Y—Y
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scheme is slower than the others because a matrix inversion is required upon
each iteration. Computation times may be decreased even further by executing the
bootstrap methods in parallel.

8.4 Crop and Climate Data

The data in our analysis came from the Useful to Usable (U2U) website (mygeohub
2013). Yearly corn and soybean yields were collected, by county, for Minnesota.
Monthly climate information, namely, minimum average temperature, maximum
average temperature, and total precipitation, was available by climate station.

We performed the following steps as part of the data analysis process:

1. Averaging: Climate information available from multiple stations in a county was
averaged.

2. Missing Data Handling: Some counties did not have climate or crop yield data
across all years. Any data available were used.

3. Predictor Transformations: Pairwise scatter plots and interpretability were con-
sidered when transforming any predictor variables.

4. Response Anomaly: Mean yield (by county) was subtracted to create the response
variable.

5. Prediction: Only climate information between January and April was used,
in accordance with the planting season. Crop insurance is not available in
Minnesota for fields planted before April 11 (corn) or April 21 (soybeans)
(Hachfeld 2012).

8.5 Corn Yield Model and Predictions

The model fitting was done based upon data from 1980 to 2010. We generated
predictions for corn yield in 2011 and 2012 and compared these to the known truths.
The results are in Figs. 8.2 and 8.3. The predicted yields are the median of those
generated by the wild bootstrap scheme. Notice, the model seems to be predicting
slightly higher yields than the truth, but the pattern is still captured. Counties with
relatively higher yields in truth are predicted to have higher yields as well.

In addition to the point predictions for corn yield, we also show the distribution
of these predictions from the residual bootstrap method. The residual bootstrap
technique is chosen because this methodology is well known and popular in the
literature (see the seminal work by Efron 1979). Note, this method needs the
assumption that errors are identically distributed, which is actually not true in
this case. Although assumptions are broken, the true yields (gray diamonds) are
contained in approximately 95 % (124 out of 128) of the residual bootstrap 95 %
prediction intervals (see Fig. 8.4a—c). We only include the results from 2012 here;
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Median Predicted Corn Yield (bushels/acre), Wild Corn Yield (bushels/acre), Truth 2011
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Fig. 8.2 Corn yield (bushels/acre) predictions and truth, by county in 2011
Median Predicted Corn Yield (bushels/acre), Wild Corn Yield (bushels/acre), Truth 2012
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Fig. 8.3 Corn yield (bushels/acre) predictions and truth, by county in 2012

however, 2011 has similar findings. This result suggests that residual bootstrapping
may be a competitive framework if the level of heteroscedasticity is not too high.
Although the goal of this application was prediction, interpretation of model
coefficients may be of interest also. First, we note that year was allowed a general
functional form in this model, because it appeared to have a possible nonlinear
relationship with yield (Fig. 8.4d). An orthonormal polynomial basis in year was
created, and a three-degree polynomial was chosen in the final model by ANOVA
F-tests. Table 8.1 contains a summary of coefficients from the corn and soybean
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Fig. 8.4 (a), (b), (c): Corn yield anomaly prediction distributions from 2012 resulting from the
residual bootstrap method. The true yield is denoted by the gray diamond. (d): Corn yield anomaly
versus year, showing an upward trend and a cyclical component

models. For example, we see that April minimum average temperature was included
to the corn model as a squared term and possibly has a positive relationship with
corn yield. Other coefficients are interpreted similarly. The log transformation was
used on all monthly total precipitation variables. Since total precipitation may be
0, we added 1 to this variable before the log transformation. The final model had
an adjusted R? value of 0.60, which is decent considering the application and
information used.
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Table 8.1 Coefficient summary for the final models: the possible signs for predictor variable
coefficients are indicated as negative, positive, and zero. Climate variables — temperature and
precipitation measures — were included for each of January to April (Jan, Feb, Mar, Apr), and
any selected transformations are also shown. The coefficients of the polynomial terms in year are
indicated in the final row of the table. Notice, Year’ is equivalent to the model intercept

Corn Soybean

Maximum average temperature | Jan Feb Mar | Apr |Jan Feb Mar | Apr

Minimum average temperature | Jan | Feb Mar | Apr? |Jan | Feb Mar | Apr’

log(total precipitation + 1) Jan Feb Mar |Apr |Jan Feb Mar | Apr
Year Year® | Year' | Year? | Year® | Year’ | Year' | Year?
Median Predicted Corn Yield (bushels/acre), Wild Soybean Yield (bushels/acre), Truth 2011

missing
0-11
11-22
22-33
33-44
44-55
55-66

BEOOOOO

Fig. 8.5 Soybean yield (bushels/acre) predictions and truth, by county in 2011

8.6 Soybean Yield Model and Predictions

The model for soybean yield is very similar to the corn yield model. All of the same
variable transformations are appropriate, and the residuals do not appear to meet
typical assumptions. Only a two-degree polynomial in year was selected, and the
adjusted proportion of variance explained in yield by the predictors is R?> = 0.37.

Again, Table 8.1 contains a summary of model coefficients. Figures 8.5 and 8.6
show the model predicting soybean yield in a similar pattern to the truth, but
once again, estimates are slightly high. Finally, Fig.8.7a—c show the prediction
distributions for soybean yield anomaly in 2012 from the residual bootstrap
technique. Approximately 95 % of the true yields (114 out of 116) fell within the
95 % prediction intervals.
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Median Predicted Corn Yield (bushels/acre), Wild Soybean Yield (bushels/acre), Truth 2012
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Fig. 8.6 Soybean yield (bushels/acre) predictions and truth, by county in 2012

a b c

2012 Residual Bootstrap Predictions, Soybean Yield Anomaly 2012 Residual Bootstrap Predictions, Soybean Yield Anomaly 2012 Residual Bootstrap Predictions, Soybean Yield Anomaly

Fig. 8.7 (a), (b), (c): Soybean yield anomaly prediction distribution from 2012 resulting from the
residual bootstrap method. The true yield is denoted by the gray diamond

8.7 Extensions and Caveats

We note that the general methodology presented here may be applicable in several
other problems of analogous nature. Related information for ten other states is
available from the U2U website (mygeohub 2013) and may be similarly analyzed.
Such analyses allow us to relate climate variables to agricultural production in a
predictive model and are useful for insurance, planning, and other purposes.

The models presented do not account for the spatial correlation between counties.
It is possible the variables we have included adequately address spatial dependence,
and there are no additional dependencies between the noise terms, since our model
performs quite adequately. However, a lack of spatial dependence also needs to be
established, perhaps using a hypothesis test, and this will be addressed in future.
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The climate information from summer months may provide more accurate
predictions in these models. However, summer information has been omitted
purposely, for decision-making purposes. Future models could account for more of
the decision cycle outlined in Takle et al. (2014). Information prior to seed purchase
or summer information from previous years may be incorporated as well, depending
upon the purpose of the model.
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Chapter 9
A New Distribution Mapping Technique for
Climate Model Bias Correction

Seth McGinnis, Doug Nychka, and Linda O. Mearns

Abstract We evaluate the performance of different distribution mapping tech-
niques for bias correction of climate model output by operating on synthetic data
and comparing the results to an “oracle” correction based on perfect knowledge of
the generating distributions. We find results consistent across six different metrics of
performance. Techniques based on fitting a distribution perform best on data from
normal and gamma distributions, but are at a significant disadvantage when the data
does not come from a known parametric distribution. The technique with the best
overall performance is a novel nonparametric technique, kernel density distribution
mapping (KDDM).

Keywords KDDM ¢ Nonparametric distribution ¢ Oracle evaluation ¢ Quantile
mapping ¢ Transfer function

9.1 Introduction

Climate modeling is a valuable tool for exploring the potential future impacts
of climate change whose use is often hindered by bias in the model output.
Correcting this bias dramatically increases its usability, especially for impacts users.
Teutschbein and Seibert (2012) tested a variety of bias-correction methods and
found that the best overall performer was distribution mapping.

Distribution mapping adjusts the individual values of the model output such that
their statistical distribution matches that of the observed data. This is accomplished
by the method of Panofsky and Brier (1968), which constructs a transfer function
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Fig. 9.1 Bias correction via distribution mapping. (a) Q-Q plot of observed versus modeled data
for minimum daily temperatures with transfer function overlaid. (b) Plot of the transfer function
showing its use in bias correction of modeled future data. Dashed lines illustrate how example
values are bias-corrected by mapping via the transfer function. Probability density curves and rug
plots of individual data values for each dataset are plotted along the edges of each figure

that transforms modeled values into probabilities via the CDF (cumulative distri-
bution function) of the model distribution and then transforms them back into data
values using the inverse CDF (or quantile function) of the observational distribution:

Xcorrected = transfer (xraw) = CDF;blserved (CDFmodel (xraw)) . (91)

The transfer function is constructed using observed data and model output from
the same current period and then applied to model output from a future period. This
approach assumes that model bias is stationary and does not change significantly
over time. This process is illustrated in Fig. 9.1: the first panel shows a transfer
function overlaid on a quantile-quantile (Q-Q) plot of the data from which it is
constructed, and the second panel shows how the future-period data is bias-corrected
by mapping through the transfer function. This figure is discussed in further detail
at the end of Sect. 9.2.

There are a number of different bias-correction techniques that use this distri-
bution mapping approach; they differ primarily in how they construct the transfer
function. They are referred to in the literature, often inconsistently, by a variety
of different names, including among others “quantile mapping,” “probability map-
ping,” and “CDF matching.” In this paper, we test six such techniques, which are
described in the section following, and include a novel technique based on kernel
density estimates of the underlying probability distribution function (PDF). We
evaluate the techniques using an “oracle” methodology of bias-correcting synthetic
data for which a known correct answer exists for comparison.
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9.2 Distribution Mapping Techniques

The following techniques encompass the different approaches to distribution map-
ping that we found in our survey of the literature. In an effort to clear up the problem
of inconsistent nomenclature, we name them here according to their distinctive
methodology, rather than by the names used in the referenced papers.

Probability Mapping (PMAP) Probability mapping fits parametric distributions
to the current and observed datasets and forms a transfer function by composing the
corresponding fitted analytic CDF and quantile functions (Ines and Hansen 2006;
Piani et al. 2010; Haerter et al. 2011). For example, using the normal distribution:

Xpe = Qnorm (Pnorm (xfuh Mcur, chr) , Mobs» C’—obs) 5 (92)

where Onorm and Ppom, are the quantile and CDF functions of the normal distribution,
1 and o are its parameters, and x is a data value, each belonging to the current,
future, observed, or bias-corrected dataset, as indicated by the subscript.

The family of the distribution must be specified a priori. In this paper, we
use a gamma distribution to fit data bounded at zero and a normal distribution
to fit unbounded data, as would be typical practice in bias-correcting climate
model output en masse. We tested several methods of fitting distributions and
found no noteworthy differences in performance, so in this analysis we use the
computationally simple method of moments for fitting.

Empirical CDF Mapping (ECDF) ECDF mapping creates a Q-Q map by sorting
the observed and current datasets and mapping them against one another. It then
forms a transfer function by linearly interpolating between the points of the mapping
(Wood et al. 2004; Boé et al. 2007). Note that because it relies upon the Q-Q map,
this technique requires the current and observed datasets to have equal numbers of
points.

Order Statistic Difference Correction (OSDC) This method is uncommon, but
is used in a few studies, and may be confused with ECDF mapping. OSDC sorts the
observed and current datasets and differences them to produce a set of corrections
to be applied to the future dataset (lizumi et al. 2011). Mathematically, the bias
correction is described thus:

@ _ @) i (i)
Xpo = Xy — (xﬁiir = xobs) : 9.3)
where xgc) denotes the ith largest value of the bias-corrected dataset. Note that this

technique requires all datasets to have equal numbers of points.

Quantile Mapping (QMAP) Quantile mapping estimates a set of quantiles for the
observed and current datasets and then forms a transfer function by interpolation
between corresponding quantile values (Ashfaq et al. 2010; Johnson and Sharma
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2011; Gudmundsson et al. 2012). In this study, we employ the gmap package (Gud-
mundsson 2014) for the statistical programming language R (R Core Team 2014)
to perform quantile mapping, using empirical quantiles and spline interpolation,
which a separate analysis showed to be the most effective options. The number of
quantiles is a free parameter that must be specified; we test three cases, using “few”
(5), “some” (N> = 30), and “many” (N/5 = 180) quantiles.

Asynchronous Regional Regression Modeling (ARRM) ARRM constructs a
transfer function based on a segmented linear regression of the Q-Q map (Stoner et
al. 2012). As in ECDF mapping, it begins by sorting both datasets and mapping them
against one another (which requires that they have equal number of points). It then
finds six breakpoints between segments by applying linear regression over a moving
window of fixed width to find points where the slope of the Q-Q map changes
abruptly. Finally, it constructs the transfer function as a piecewise linear statistical
model using these breakpoints as knots. The implementation of ARRM used here
is based on the description in Stoner et al. (2012) and has some simplifications of
various checks and corner cases that are needed for dealing with real-world data but
do not apply to synthetic data. We use the R function 1m () for the linear regressions
and 1m () with ns () to construct the transfer function.

Kernel Density Distribution Mapping (KDDM) is a novel technique described
here for the first time. Conceptually, it is very similar to probability mapping, but
instead of using fitted parametric distributions, it uses nonparametric estimates of
the underlying probability density function (PDF). These estimates are created using
kernel density estimation, a well-developed statistical technique that can be thought
of as the smooth, non-discrete analog of a histogram. A kernel density estimate
is constructed by summing copies of the kernel function (any symmetric, usually
unimodal function that integrates to one) centered on each point in the dataset.
Mathematically, the kernel density estimatorf(x) is

o) = ZKh (x—x7), (9.4)

where K}, is the kernel function scaled to bandwidth 4. In this analysis, we use the
default kernel (Gaussian) and bandwidth selection rule (Silverman’s rule of thumb)
for R’s density () function (R Core Team 2014).

KDDM begins by estimating the PDFs for the current and observed datasets
using kernel density estimation. The resulting nonparametric PDF estimates are then
numerically integrated to approximate CDFs by evaluating them on a suitably fine
grid, applying the trapezoidal rule, and linearly interpolating the results to produce a
function. KDDM then forms a transfer function by composing the forward CDF for
the current dataset and the inverse CDF for the observed dataset. Mathematically,
defining P(x) as the approximate CDF,

P(x) = / f(x)dx, 9.5)
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and the KDDM bias correction is

Xbe = P(?bls (Pcur (-xfut)) . (9.6)

This algorithm can be implemented very compactly in R, requiring only a dozen
lines of code. It is also quite fast, requiring only twice as much computation time as
the fastest methods and running 100 times faster than the slowest method.

Figure 9.1 demonstrates the application of the KDDM technique to bias-correct
output from the North American Regional Climate Change Assessment Program
(Mearns et al. 2007, 2009) using observations from the Maurer et al. (2002) dataset
for a 2-week window in mid-October near Pineville, Missouri. The first panel shows
a Q-Q plot, where the observations and current-period model output have been
sorted and plotted against one another (small circles). The KDDM transfer function
is overlaid, as are rug plots and PDF curves for each dataset. The second panel shows
the bias correction of future-period model data by mapping through the transfer
function. In both panels, the model PDF curve is mirrored in light gray on the y-
axis to show the resulting change in the distribution. Before bias correction, we
aggregated all three datasets across three decades (1970-2000 for the current and
observed, 2040-2070 for the future) and removed the means.

9.3 Oracle Evaluation Methodology

To evaluate the techniques, we compare them to an ideal correction called the
“oracle.” To create the oracle, we generate three sets of synthetic data to represent
observed, modeled current, and modeled future data, using different parameters
for each case. The differences between the synthetic current and future datasets
correspond to climate change, and the differences between the synthetic observed
and current datasets to model bias. Because we know the generating distribution and
the exact parameter values used to generate these datasets, we can then construct a
perfect transfer function using probability mapping. Applying this transfer function
to the current dataset makes it statistically indistinguishable from the observed
dataset; applying it to the future dataset generates the “oracle” dataset.

We then evaluate each technique by applying it to the future dataset and
measuring the technique’s performance in terms of how far the bias-corrected result
deviates from the perfect correction of the oracle. We perform this procedure using
three different distributions, iterating over 1,000 realizations of the datasets each
time. Each dataset contains 900 data points, which is the size of the dataset we
would use when bias-correcting daily data month-by-month across a 30-year period,
a common use case for working with regional climate model output.

The three distributions we use are the normal distribution, the gamma distri-
bution, and a bimodal mixture of two normal distributions. We use the normal
distribution to establish a baseline; its ideal transfer function is a straight line. We
use the gamma distribution because precipitation has a gamma-like distribution. We
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use a mixture distribution because similar distributions can be observed in real-
world datasets that are often corrected under an assumption of normality, even
though the actual distribution is more complex and may be impossible to fit. The
observed data in Fig. 9.1 exhibits this kind of non-normal distribution.

For variables with an unbounded distribution, like temperature, it is necessary to
remove the mean before bias correction, adjust it independently for climate change,
and add it back in afterward, or else the transfer function will mix the climate
change signal into the bias, producing an error component. For variables that are
bounded at zero, like precipitation, the mean should not be removed, but it may be
necessary to stabilize the variance by applying a power transform. We use a fourth-
root transformation for the gamma dataset, following Wilby et al. (2014).

9.4 Evaluation Results

We evaluate each technique using six metrics. Mean absolute error (MAE) and
root-mean-square error (RMSE) measure the average difference from the oracle,
weighted toward larger errors in the case of RMSE. Maximum error measures the
absolute value of the single largest difference from the oracle. Left and right tail
errors are the difference from the oracle of the upper and lower 1 % of values in each
dataset. Finally, the Kolmogorov-Smirnov (K-S) statistic measures the maximum
distance between the CDFs of the two datasets.

Boxplots of the six metrics show similar patterns for both the normal (Fig. 9.2)
and gamma distributions (not shown): OSDC generally performs worst, followed
in order of improving performance by QMAP, ECDF, ARRM, KDDM, and PMAP.
For the mixture distribution (Fig. 9.3), the same overall pattern holds among the
nonparametric techniques, but PMAP’s performance is now worse than most of the
other techniques on the MAE, RMSE, and K-S metrics. This illustrates a particular
hazard of distribution-fitting techniques: when real-world data doesn’t follow a
fittable distribution, performance may be much worse than expected.

We conclude that although probability mapping is the best performer if the data
comes from a known parametric distribution, because that assumption does not hold
generally (even though it is common practice to pretend otherwise), the technique
is not the best choice for general purpose or automated bias correction of large
datasets.

For general use, KDDM emerges at the best overall performer. In addition to
scoring best out of all the nonparametric methods, it does not require that the
data be easily fittable, performs nearly as well as PMAP when the data is fittable,
can accommodate differently sized input and output datasets, and is nearly as fast
as the fastest methods. KDDM is also very simple to implement and therefore
less vulnerable to coding errors than more complicated methods. Finally, because
kernel density estimation is a well-developed topic in statistical analysis, there is an
established body of knowledge that can be leveraged to generalize KDDM to new
applications and optimize its performance in special cases.
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To further expand the usefulness of this technique, we plan to write a paper eval-
uating distribution mapping techniques applied to reanalysis-driven RCM output.
We also plan to develop an R package for bias correction and a multivariate bias-
correction technique based on KDDM.
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Chapter 10
Evaluation of Global Climate Models Based on
Global Impacts of ENSO

Saurabh Agrawal, Trent Rehberger, Stefan Liess, Gowtham Atluri,
and Vipin Kumar

Abstract Global climate models (GCMs) play a vital role in understanding climate
variability and estimating climate change at global and regional scales. Therefore,
it becomes crucial to have an appropriate evaluation strategy for evaluating these
models. A lot of work has been done to evaluate the ENSO simulations of different
GCMs. However, they do not consider how well a GCM simulates the impact of
ENSO all over the globe. Therefore, in this work, we used this criteria to evaluate
the Coupled Model Intercomparison Project (CMIP5) GCMs. We found that the
global impact of ENSO in CNRM-CMS5, GFDL-CM3, and CESM-FASTCHEM is
highly similar to that of observations.

Keywords Earth Mover’s distance * Metric for comparing spatial maps ¢« EMD
bank ¢ Teleconnections

10.1 Introduction

Over the past few decades, various attempts have been made to develop global
climate models (GCMs) which provide climate simulations and future climate pro-
jections (Flato et al. 2013). These models play a vital role in understanding climate
variability and estimating climate change at global and regional scales. Therefore,
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it becomes crucial to have an appropriate evaluation strategy for evaluating the
spatiotemporal outputs of these models on their ability to capture the true physical
processes (Tsonis and Steinhaeuser 2013).

The evaluation of GCMs is typically focused on patterns that represent large-
scale variability of global climate. For example, a huge literature is available on
evaluating models based on El Nino Southern Oscillation (ENSO) simulations
(Kim et al. 2014; Risbey et al. 2014; Taschetto et al. 2014; Zhang and Sun 2014).
Such evaluation schemes indicate how well ENSO is captured by different models.
However, they do not consider the impact relationships of ENSO all over the globe
which are well-known and widely studied in the community (Lau and Nath 2000;
Wang et al. 2000). Although some work has been done on evaluating climate models
based on the impact of ENSO on selected regions (Annamalai et al. 2007), they do
not take its global impact into account.

In this work, we evaluated Coupled Model Intercomparison Project (CMIP5)
GCMs (Taylor et al. 2012) based on global impact of ENSO. To the best of our
knowledge, we are the first to use these criteria for evaluating GCMs. For each
GCM, we generated global impact maps of ENSO by correlating the ENSO index
computed from the GCM with the time series of a climate variable at different
locations.

A typical impact map (as shown in Fig. 10.1a) consists of few distinctive highly
impacted regions with large absolute correlations (shown in red and blue color).
Figure 10.1b, ¢ show the impact maps of two GCMs which are examples of good
and bad matches respectively with respect to map in Fig. 10.1a of observations. The
similarity between two impact maps can be determined by the similarity in their
highly impacted regions in terms of their (i) size, (ii) spatial position, (iii) intensity,
and (iv) spatial structure. Commonly used techniques for comparing spatial maps in
the realm of GCM evaluation include visual inspection and the use of similarity
measures such as root mean square error and correlation (Gleckler et al. 2008;
Pincus et al. 2008). However, they do not simultaneously address all the above
necessary factors of spatial similarity. Recently, object-oriented pattern matching
techniques that can handle these challenges are also used for GCM evaluation
(Moise and Delage 2011). In this work, we compare impact maps using a similarity
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Fig. 10.1 Maps showing global impact of ENSO on precipitation for a GCM with a good match
and a GCM with a bad match with respect to the one for reference data. See text for detailed
explanation. (a) NCEP2: reference. (b) CNRM-CMS5: good match. (¢) GISS-E2-H: bad match
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measure based on Earth mover’s distance (EMD) (Hitchcock 1941; Rubner et al.
1998) that is also able to address all of the abovementioned factors of spatial
similarity.

We found that the global impact of ENSO in CNRM-CM5, GFDL-CM3, and
CESM-FASTCHEM is highly similar to that of observations. These and other
findings are discussed in Sect. 10.4.

10.2 Data

In this work, we used monthly surface air temperature (tas) and precipitation (pr)
generated from 27 CMIP5 models (listed in Table 10.1) during three time windows:

Table 10.1 Ranks of 27 CMIP5 models for impact variables precipitation (pr) and temperature at
surface (tas). The top group and the bottom group are shown in myblue and myred respectively

1973-2005 1961-1993 1933-1965
Models pr tas pr tas pr tas
ACCESS1-3’ 25 14 26 6 26 7
ACCESS1-0 19 2 20 9 21 14
bce-csm1-1° 21 15 18 18 18 13
BNU-ESM’ 7 20 2 16 5 23
CanCM4’ 11 27 12 25 — —
CanESM2’ 3 25 6 26 12 24
CCSM4’ 14 21 14 13 13 8
CESM1-BGC’ 10 9 13 12 17 2
CESM1-CAMS’ 4 18 7 15 6 17
CESM1-FASTCHEM’ 9 1 9 1 4 15
CESM1-WACCM’ 5 24 5 21 7 26
CNRM-CM5’ 1 7 1 4 3 5
CSIRO-Mk3-6-0 22 11 15 8 24 1
FGOALS-s2’ 15 12 25 20 10 19
FIO-ESM’ 12 26 10 27 11 25
GFDL-CM3’ 2 3 3 7 1 11
GFDL-ESM2G’ 13 5 11 2 20 4
GISS-E2-H’ 26 19 24 19 22 16
HadCM3’ 23 8 21 10 9 21
HadGEM2-AO’ 24 10 23 11 23 9
HadGEM2-ES’ 27 13 27 5 25 10
MIROC5’ 18 22 17 24 16 22
MPI-ESM-LR’ 17 17 19 23 19 18
MPI-ESM-MR’ 20 4 22 17 15
MPI-ESM-P’ 16 6 16 3 14 3
NorESM1-M’ 8 16 4 22 2 20
NorESM1-ME’ 6 23 8 14 8 13
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1933-1965, 1961-1993, and 1973-2005. We used NCEP-DOE Reanalysis (Kistler
et al. 2001) and GPCP data, which are provided at 2.5° x 2.5° horizontal resolution,
for the time period 1973-2011 as the surrogate for the observations of (tas) and (pr),
respectively. For every time series in the data, the mean was computed and deducted
from every month to remove annual seasonality. The residual time series were then
de-trended (Kawale et al. 2013) to exclude any linear trends present in the data. For
obtaining time series of ENSO index (also referred to as Southern Oscillation Index
(SOID)), monthly sea-level pressure data were used. We interpolated all datasets to
the horizontal resolution of reference datasets.

10.3 Methodology

A graph-based approach developed by Kawale et al. (2013) was used to obtain SOL
The impact map of ENSO was generated in two steps: (i) a raw impact map was
first generated by computing the correlation between SOI and the time series of
the given impacted variable for each grid point, and (ii) the raw impact map so
obtained was then converted into a significant impact map (SIM) in which only the
grid points that are significantly correlated with ENSO were retained. Finally, the
SIMs obtained from different models were compared with that of NCEP2 using a
similarity measure that is an extended version of Earth mover’s distance. The exact
procedure for obtaining the significance score for every grid point and the details of
the similarity measure are described in the following subsections.

10.3.1 Significance Testing

Even after removal of seasonality during preprocessing, one can still find a
significant amount of temporal autocorrelation present in the SOI mainly because
of dominant low-frequency patterns. We calculated the effective degrees of freedom
(nefr) for a time series of n observations with an autocorrelation of p; at a k-time
lag using the following formula which has been commonly used in climate science
(Bretherton et al. 1999) and metrology (Zieba 2010):

(10.1)

n
Neff = ————7 . Pk
RN VS

The same was also applied to the time series at every grid point and the minimum
of the latter, and SOI was used to calculate the p-value (Cohen et al. 2013) for the
impact correlation. The grid points with the level of significance of impact being
lesser than 5 % were pruned off from the impact map to get a significant impact
map (SIM).
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10.3.2 EMD-Based Similarity Measure

The SIMs of all the 27 models were compared with that of NCEP Reanalysis
using a similarity measure based on Earth mover’s distance (EMD), also known as
Mallows’ distance. EMD was originally designed to capture the distance between
two probability distributions (Hitchcock 1941). It has been commonly used as a
similarity measure between two images in the domain of computer vision, ever
since introduced by Rubner et al. (1998) and Peleg et al. (1989). Intuitively, it can
be inferred as the minimum amount of work done to convert one spatial distribution
of sand into another. The work done for every sand particle is calculated as the
product of the weight of the sand particle and the distance moved. The overall work
done is the sum of the work done for each particle. This is formulated as a linear
programming problem subjected to the linear mass conservation constraints.

The basic formulation of EMD assumes equal number of sand particles in the two
spatial distributions. For the current problem, we compute EMD between two SIMs
(obtained from a GCM and observations), where each SIM is a spatial distribution
of grid points that are significantly impacted by ENSO. Thus, every grid point is
analogous to a sand particle. As the two SIMs being compared can have different
numbers of grid points, the above assumption does not hold. Ljosa et al. (2006)
addressed this issue by extending the above formulation using the notion of a bank.
An additional region, called bank, is added to each SIM so that the sand particles that
have to be moved beyond a certain distance are sent to the bank. Thus, all the missing
particles/grid points for which a match cannot be found within a given distance can
be transported to the bank and consequently penalized with a cost proportional to
bank distance. This formulation is much more suitable to our problem of comparing
two SIMs and capable of handling differences in size of highly impacted regions.
We used this extended formulation in our work, and we refer to it as EMD bank.

For the current problem, the entire SIM is projected into a three-dimensional
space so that every grid point is represented by coordinates (x, y, z). While the first
two coordinates represent the latitude and longitude of the grid point, the intensity
of ENSO’s impact is represented by z. Thus, each SIM can be interpreted as a three-
dimensional spatial distribution of such grid points in which the distance between
two grid points is governed by their geographical distance as well as the difference
in the impact of ENSO at each grid point. The exact distance formula that was incor-
porated to calculate the distance between two grid points A and B in this work is

d(A, B) = \[dueos (A, B)? + | A2] 5 2y (10.2)

where dyeoq (A, B) is the distance along the great circle between two grid points and
dpenalty 18 @ constant that determines the additional distance between the two grid
points due to difference in ENSO impact.

As the optimal solution corresponds to minimum work done, all grid points in a
SIM of a given model are moved in a way to find their nearest match in the reference
SIM, which here corresponds to NCEP2.
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10.4 Results

Table 10.1 shows the ranks of SIMs of 27 GCMs from that of NCEP2 for impact
variables (pr) and surface air temperature (tas) respectively. As GCMs are often
not in phase with the reality, the evaluation was done for different time windows.
For all of these experiments, the bankgisy was set to be equal to around 5,600 km.
The parameter dpenarry in Eq. 10.2 was set to bankgis,. Each location represents a
2.5° x 2.5° grid point and was treated as an individual region, and the weight is
proportional to the area of the grid point. Based on the above EMD bank method,
the 27 GCMs can be ranked in three categories: top (1-9), middle (10-18), and
bottom (19-27). The top group and the bottom group in Table 10.1 are colored with
blue and red respectively.

We found a few models to be consistently ranked in the top group and a few
models to be consistently ranked in the bottom group across the time windows.
CNRM-CMS5 and GFDL-CM3 (Fig.10.2c) were consistently ranked in the top
group for both variables across different time windows. In addition, CESM-
FASTCHEM was in general ranked in the top group (Fig. 10.2b) with an exception
of tas in time window 1933-1965. Similarly, models like MPI-ESM-LR, MIROCS,
bce-csml-1, and GISS-E2-H were ranked in the bottom group for all time windows
for each variable.

We found that some models were in top group in tas, while they were in the
bottom group in pr and vice versa. CanCM4, CanESM2, FIO-ESM, BNU-ESM,
Norwegian models, and some of the NCAR models (WACCM and CAMS) had
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Fig. 10.2 Global SIMs of ENSO computed using tas for NCEP2 (a), good matches (b) and (c),
and bad matches (d), (e), and (f). For each map, the longitudes vary from 180°W in the left to
180°E in the right, and the latitudes vary from 90°N at the top to 90°S at the bottom
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much better ranks for pr as compared to tas. The SIMs computed using tas for some
of these models are shown in Fig. 10.2. On the other hand, MPI models (excluding
MPI-ESM-LR), ACCESS-1-3, GFDL-ESM 2G, and CSIRO-Mk3-6-0 had much
better ranks for tas than pr.

We also found that some of the models had better ranks but were not consistent
across different time windows. FGOALS-s2 is one such model, which is in the
middle group for the 1973-2005 time period for both variables and for pr also in
1933—1965 but in the bottom group for other time periods. Another such model is
HadCM3. For tas, it lies in the upper middle group for 1933—1965 but in the lower
group for the other two windows. Its ranking follows an exactly opposite pattern for
pr, where it lies in the lower group for 1933—1965, but in the upper group for the
other two windows.

The above results are also in agreement with the existing work in the literature.
For example, our finding that CNRM-CMS5 is a consistently good match with
NCEP2 is supported by an earlier study (Zhang and Sun 2014) where they found
out that the internal standard deviation for model CNRM-CMS5 matches closely
with observations. Similar results have also been found for GFDL-ESM2G, another
consistently top-ranked model, by Kim et al. (2014), who showed high similarity in
the air-sea feedbacks of this model and the observations. Likewise, one can also
relate the high ranks of NCAR models for pr to the results of Zhang and Sun
(2014) who found out the air-sea feedbacks for these models being very close to
the observed. Similar agreements are also found for the consistently poorly ranked
models in our results. For instance, the ENSO-related SST anomalies for MIROCS
were found to be much stronger than observed by Taschetto et al. (2014). The
absence of bcc-csm1-1 model in top ranks is also in agreement with the findings
of Taschetto et al. (2014).

10.5 Conclusion and Future Work

This work introduces a novel approach to evaluate GCMs based on impact of
ENSO all over the globe. For every GCM, an impact map of ENSO was generated
and compared with the one obtained from the observations using an EMD-based
similarity measure. We analyzed the performance of every GCM across three time
windows of 33 years for two variables — surface air temperature and precipitation.
We found that the global impact of ENSO in CNRM-CMS5, GFDL-CM3, and
CESM-FASTCHEM were highly similar to the observations. We also found that
MPI-ESM-LR, MIROCS, GISS-E2-H, and bce-csm1-1 poorly captured the global
impact of ENSO.

The current work focused on the global impacts of ENSO for evaluating
GCMs. However, the proposed framework of evaluation can be further extended to
compare impact maps of other teleconnections for GCM evaluation. Furthermore,
as discussed already, EMD bank is a useful similarity measure to compare two
spatial maps. Therefore, it can be used to evaluate GCMs based on comparison
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of any spatial output. For instance, Kawale et al. (2013) devised an algorithm that
can produce a global density map depicting different regions that are involved in
different climate teleconnections. Comparison of such density maps obtained from
different models can give an evaluation score based on overall simulation of all
teleconnections throughout the globe.
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Chapter 11
Using Causal Discovery Algorithms to Learn
About Our Planet’s Climate

Imme Ebert-Uphoff and Yi Deng

Abstract Causal discovery is the process of identifying potential cause-and-effect
relationships from observed data. We use causal discovery to construct networks
that track interactions around the globe based on time series data of atmospheric
fields, such as daily geopotential height data. The key idea is to interpret large-
scale atmospheric dynamical processes as information flow around the globe and to
identify the pathways of this information flow using causal discovery and graphical
models. We first review the basic concepts of using causal discovery, specifically
constraint-based structure learning of probabilistic graphical models. Then we
report on our recent progress, including some results on anticipated changes in the
climate’s network structure for a warming climate and computational advances that
allow us to move to three-dimensional networks.

Keywords Climate network ¢ Information flow ¢ Graphical model ¢ Structure
learning * Storm track

11.1 Introduction

Causal discovery theory is based on probabilistic graphical models and provides
algorithms to identify potential cause-effect relationships from observational data
(Koller and Friedman 2009; Neapolitan 2004; Pearl 1988; Spirtes et al. 1993). The
output of such algorithms is a graph structure showing potential causal connections
between all variables included in the model. Causal discovery has been used
extensively in the social sciences and economics for decades (Neapolitan 2004;
Spirtes et al. 1993), in biology (Shipley 2002), and more recently with great
success in bioinformatics (Chen et al. 2010; El-dawlatly 2011; Friedman et al. 2000;
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Margolin et al. 2006; Needham et al. 2007; Sachs et al. 2005). In recent years, causal
discovery has been applied in some physics-related applications, such as studying
teleconnections in the atmosphere (Chu et al. 2005), pollution models (Cossentino
et al. 2001), precipitation models (Cano et al. 2004), sea breeze models (Kennett
et al. 2001), and applications to climate networks (Deng and Ebert-Uphoff 2014;
Ebert-Uphoff and Deng 2012b), which is the focus of this chapter. Related work
includes the use of Gaussian graphical models for climate networks (Zerenner et al.
2014), the use of conditional mutual information in the context of climate networks
(Hlinka et al. 2013), and recent work on using a variety of causality concepts within
climate science (Runge 2014).

The method used here for causal discovery is constraint-based structure learning
of graphical models (Koller and Friedman 2009; Neapolitan 2004; Pearl 1988;
Spirtes et al. 1993), which has worked well for us for this type of application.
Other methods exist and may be considered in the future. Potential alternatives
include Granger graphical models (aka Lasso-Granger models) (Arnold et al. 2007),
Gaussian graphical models (aka inverse covariance models) (Zerenner et al. 2014),
and score-based structure learning of graphical models (Koller and Friedman 2009;
Neapolitan 2004; Pearl 1988; Spirtes et al. 1993).

The remainder of this chapter is organized as follows. This section provides a
quick introduction to the basic concepts of causal discovery and constraint-based
structure learning. Section 11.2 discusses how the method can be used to derive
graphs of information flow around the globe from atmospheric data, including
some results obtained for a warming climate and a high-efficiency implementation
that allows us to extend our models to three dimensions. Section 11.3 presents
conclusions and future work.

11.1.1 Basic Concepts for Causal Discovery

We first introduce several core concepts for causal discovery. Figure 11.1 shows
a graph indicating causal relationships for a sample system with three variables,
X, Y,Z. Each variable is represented by a node in the graph and an arrow from one
variable to another indicates a direct causal connection (from cause to effect). For
this system, X is thus a direct cause of Y and Y is a direct cause of Z, but X is only
an indirect cause of Z.

Note that directness of connections is a concept that is defined only relative to
the variables included in the model. The toy model in Fig. 11.2 illustrates this. If we
only include two variables, whether we are currently in the monsoon season or not

-3

Fig. 11.1 Sample graph illustrating direct and indirect connections
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Fig. 11.2 Two toy models of relationship between monsoon season and flooding risk

and whether there is flooding or not, then we get the model on the left of Fig. 11.2,
where monsoon season is a direct cause of flooding. However, if we include an
additional variable indicating whether there is heavy rain, as shown on the right in
Fig. 11.2, then monsoon season is only an indirect cause of flooding. Both models
are correct (although very simplistic); one just has higher causal resolution than the
other, since it contains an intermediate cause.

Furthermore, within this framework, causal connections in these models are
always assumed to be probabilistic. For example, the models in Fig. 11.2 indicate
that the monsoon season provides a higher probability of flooding to occur, but it is
not a certain relationship and flooding can also occur outside the monsoon season
but with a lower probability. This type of probabilistic relationship is described in
probabilistic graphical models (Koller and Friedman 2009; Neapolitan 2004; Pearl
1988; Spirtes et al. 1993), which consist of graphs coupled with probabilities that
describe the probabilistic relationships between the nodes. In our approach, we
do not care about the actual probabilities. We just seek to identify the strongest
relationships and display them in graph form. (While it would be a relatively easy
task — from a computational standpoint — to learn the corresponding probabilities
once the structure of the graph is obtained, we do not believe that the resulting
model would have strong predictive power, due to the huge number of variables and
the significant uncertainty in these applications. Thus we are for now content with
establishing only the very strongest connections and do not seek to refine the models
further by adding probabilities to them.)

A primary challenge to any type of causal discovery method is the potential
existence of hidden common causes, also known as latent variables. If we neglect
to include a common cause of two other variables in the model, then the results
tend to be misleading. Namely, one may think that two variables may have a direct
connection between them, while in reality they both have a common cause that
was not included in the model. As a consequence, one can never prove a causal
connection based on only observational data. However, there are well-established
statistical tests that allow to disprove causal connections from observations. One
such test is discussed in the following section. We use the capability of disproving
connections in an elimination procedure that eliminates most connections and only
leaves a small number of potential causal relationships as hypotheses to be studied
further by domain experts.
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Fig. 11.3 Simple example of a b
causal discovery showing use

of correlation (a) and

conditional independence

tests (b)

11.1.2 Conditional Independence Tests and Basic Algorithm

The key idea behind causal discovery is that we can determine for any pair of
variables whether there is a direct relationship between them from observational
data using conditional independence tests. We demonstrate the basic idea for the
system in Fig. 11.1. Let us say that we do not know anything about the system and
try to learn the relationships from data. Since X is an indirect cause of Z (through
Y), using just a correlation analysis of the observed data would yield a graph where
all nodes are connected, as shown in Fig. 11.3a.

Next we apply conditional independence tests, to determine whether any of the
direct connections between X, Y and Z can be eliminated. For example, to test
whether the connection X — Z can be eliminated, we apply the following statistical
test, where P(X|Y) is the probability of X given Y, and P(X|Y, Z) is the probability
of X given Y and Z:

Is P(X|Y,Z) ~ P(X|Y)?

If P(X|Y,Z) is indeed approximately P(X|Y), that means that if we already know
the state of Y, then the state of Z does not tell us anything new about the state of X.
In other words, X and Z are conditionally independent given Y, and the connection
between X and Z can be eliminated, leading to the model in Fig. 11.3b.

The conditional independence test is typically implemented as a Fisher Z-test.
The important fact is that in order to judge whether there is a direct connection
between X and Z, we had to consider other variables as well, in this case Z. Without
the context of the other variables, i.e., by looking only at the two variables, X and Z,
it is impossible to make such a decision. This example motivates a basic algorithm
for causal discovery that can be summarized as follows:

1. First we assume that every variable is a cause of every other variable (fully
connected graph).

2. Then we perform conditional independence (CI) tests to eliminate as many

connections as possible (pruning).

. Whatever is left at the end are the potential causal connections.

4. Arrow directions are determined (as far as possible) from additional condi-
tional independence tests and/or from background knowledge, e.g., temporal
constraints. (For our applications, we actually use only temporal constraints.)

W

Steps 1-4 above describe the basic idea behind the classic PC algorithm (named
after its authors Peter Spirtes and Clark Glymour) (Spirtes and Glymour 1991;
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Spirtes et al. 1993), which implements these steps in a computationally efficient
manner. However, as we discussed earlier, any such algorithm only yields a set of
potential causal connections, since some of those may be due to hidden common
causes. We thus need an additional evaluation step.

Evaluation step — to deal with potential hidden common causes: In the final
graph, every link (or group of links) must be checked by a domain expert. If we
can find a physical mechanism that explains it (e.g., from literature), the causal
connection is confirmed. Otherwise, the link presents a new hypothesis to be
investigated.

The evaluation step highlights the great importance of climate experts and
machine learning experts to work closely together on such an analysis. In fact,
very close collaboration is required at every step of the process, from selection of a
suitable problem to investigate to selecting and preprocessing data sets, setting up
the analysis such that optimal signal strength is achieved, and interpretation of the
results. Furthermore, several iterations of the entire process are generally required
to achieve new insights in a selected dynamic mechanism. Thus these tools are most
powerful when used by an interdisciplinary research team.

11.1.3 Specific Algorithm and Extension to Temporal Models

The specific method used here is based on the classic PC (Peter and Clark) algorithm
discussed in the previous section. We use a new variation thereof, the PC stable
algorithm developed by Colombo and Maathuis (2013). As the name indicates,
PC stable provides more robust results and in addition it lends itself better to
parallelization.

The standard forms of the PC and PC stable algorithms develop only static
models. However, for those climate applications we have considered so far —
primarily modeling of atmospheric processes — it is essential to include temporal
information in the model. The reason is that the atmosphere is very dynamic, with
interactions between different locations happening over the course of days (not
instantaneous) but signals also often decaying within days. Furthermore, to perform
causal discovery using constraint-based structure learning, we need a large sample
size and there is usually not enough monthly data to fill that need. Therefore we
have so far achieved best results by using daily data and deriving temporal models
that explicitly model the travel time of signals between different locations.

Both the PC and PC stable algorithms can be extended to yield such temporal
models by adding lagged variables to the model. This approach, first introduced
by Chu et al. (2005), is not yet very well known but performs very well and is a
very good fit for our applications. Essentially, if we want to include S different lag
times (time slices) in the model, we create for each variable included in the model
S copies, each with a different lag. If N denotes the number of original variables in
the model, this results in a graphical model with N x § variables, coupled with a
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set of temporal constraints (causes cannot occur after their effects). We can then use
the PC and PC stable algorithms, but the price to pay for this temporal model is a
much higher computational complexity, since the number of variables is increased
by S. For details on this approach, see the original paper by Chu et al. (2005) for
the basic idea or see Ebert-Uphoff and Deng (2012a,b) and Ebert-Uphoff and Deng
(2014) for detailed descriptions of how this can be used in climate science.

11.2 Using Causal Discovery to Derive Graphs of
Information Flow

To apply this method to analyze climate, we define a grid around the globe and
evaluate an atmospheric field at all grid points, which provides time series data at the
grid points. This step is identical to the first step taken by Tsonis and Roebber in their
seminal paper (Tsonis and Roebber 2004) that first introduced the idea of climate
networks. However, while Tsonis and Roebber then apply a correlation analysis to
the data which looks for similarities between different grid points, we use causal
discovery to identify the strongest pathways of interactions around the globe. The
key idea is to interpret large-scale atmospheric dynamical processes as information
flow around the globe and to identify the pathways of this information flow using a
climate network based on causal discovery and graphical models.

Figure 11.4 shows sample network plots obtained from 500 mb daily geopotential
height data for boreal winter (DJF months) from 1950 to 2000 from National
Centers for Environmental Prediction (NCEP)/National Center for Atmospheric
Research (NCAR) Reanalysis data (Kalnay et al. 1996; Kistler et al. 2001). Results
for the Northern Hemisphere are shown on the left and for the Southern Hemisphere
on the right. The top row shows connections obtained for a signal travel time of
significantly less than 1 day, and the center row shows connections for signal travel
of about 1 day and the bottom row for about 2 days. (There are only very few
connections exceeding 2 days.)

These plots show the results obtained through Steps 1-4 of the algorithm
described in Sect. 11.1.2, and as such they represent only potential causal con-
nections. In the evaluation step, we found that the connections with travel time
of 1 day or more, i.e., the connections shown in the center and bottom plots,
indeed represent physical processes, namely, storm tracks. On the other hand, which
processes exactly are represented by the connections with less than 1 day travel time,
i.e., the connections shown in the top row plots, is still a topic of current research.
As of now, the top row connections are thus only potential causal connections — they
could be due to hidden common causes — while the connections in the center and
bottom row are confirmed as true causal connections, namely, storm tracks.

Note that which physical processes are tracked in the graphs of information flow
depends on the atmospheric field used (e.g., geopotential height) and the time scale
(e.g., hourly, daily, or monthly data). For more details on the general process, see
Ebert-Uphoff and Deng (2012b). For a detailed discussion of how to choose an
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Northern Hemisphere b Southern Hemisphere

Fig. 11.4 Sample results showing the strongest direct interactions that take less than 1 day (top),
approximately 1 day (center) or 2 days (bottom) to travel from cause to effect. Based on 500 mb
daily geopotential height data for boreal winter from NCEP/NCAR Reanalysis data (1950-2000)
and using 400 point Fekete grid and 15 time slices that are 1 day apart. (a) North, travel <1 day. (b)
South, travel <1 day. (¢) North, travel ~1 day. (d) South, travel ~1 day. (e) North, travel ~2 days.
(f) South, travel ~2 days
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appropriate grid and deal with spatial boundaries and initialization issues, see Ebert-
Uphoff and Deng (2014). In particular, it turns out that the grid must be isotropic, so
we are using a Fekete grid (Bendito et al. 2007) which is a very good approximation
of an isotropic grid on a sphere.

11.2.1 What Can We Learn from Such Graphs of Information
Flow?

Once we have obtained the graphs of information flow, we can analyze and learn
from their properties. Some of the most important properties are as follows:

* Local memory (persistence): How long does a signal remain strong in each
location? This is obtained by counting for each location the number of connec-
tions from the location to itself.

* Remote impact — the two most relevant properties are as follows:

— Information hubs: To how many other locations is a signal transferred? This
is obtained by counting at each location the number of outgoing connections
(i.e., connections to other locations).

— Speed of signal travel: This is obtained by taking at each location the average
of the ratio of distance over travel time over all outgoing connections.

Note that the graphs, and thus also their properties, depend on the resolution of the
grid used to calculate the graphs. Thus, when comparing the results from different
data sets, one needs to ensure that the same grid is used when deriving the graphs.

It is often useful to derive graphs of information flow for different data sets for
comparison. For example, one can derive the graphs from data samples containing
observations exclusively from boreal winter or from boreal summer and then com-
pare how the graphs — and their properties — differ (Ebert-Uphoff and Deng 2012b).
This type of analysis can be very helpful to analyze trends of the climate system
and better understand how the connectivities change under different conditions. To
illustrate this idea, we show in the following section how this approach can be used
to seek to understand the subtle changes occurring in a warming climate.

11.2.2 Case Study: Comparison for a Warming Climate Based
on CCSM4.0 Model

To study the effect of a warming climate, we applied our analysis to daily
geopotential height data at 500mb for boreal winter (DJF) from three different
data sets: (1) NCEP/NCAR reanalysis (observation) for 1950-2000; (2) NCAR
CCSM4.0 model for 1950-2000; (3) NCAR CCSM4.0 model’s future climate
projection under RCP8.5 scenario for 2050-2100.
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Fig. 11.5 Contour plots showing the number of outgoing edges for boreal winter for three different
data sets (based on 200 point Fekete grid). (a) NCEP/NCAR (observations) 1950-2000. (b)
CCSM4 (model) 1950-2000. (¢c) CCSM4 (model) 2050-2100

Figure 11.5 shows one set of properties obtained using the three different
data sets, namely, the number of outgoing edges at each location, which tells us
about general connectivity and information hubs. Light colors indicate locations
that have a strong impact on other locations (high remote impact), while dark
colors indicate areas with low connectivity (low remote impact). Figure 11.5a,
which is obtained using observations for 1950-2000, shows a fairly good match
with Fig. 11.5b, which is obtained using the output data of the CCSM4.0 model
for 1950-2000. The anticipated changes from the current climate (1950-2000) to
projected future climate (2050-2100) can be seen by comparing Fig. 11.5b, c. The
most obvious changes include a significant poleward drift of midlatitude storm
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tracks and the diminishing of major tropical interaction pathways. This spatial
shift and weakening of information pathways leads to reduced interconnectivity
among different geographical locations when the entire Northern Hemisphere is
being considered and thus a more chaotic atmosphere in the future. These findings
are consistent with the literature, since midlatitude storm tracks, measured in terms
of kinetic energy of synoptic-scale disturbances (cyclones and anticyclones, etc.),
are known to move poleward in a warming climate (Yin 2005), and the changes
of kinetic energy distribution are also directly reflected in changes in surface
cyclogenesis patterns and changes of the actual surface wind speed associated with
these cyclones. Using our methods, we can now localize the most prominent signals
of a warming climate and formulate hypotheses regarding the potential changes in
the temporal and spatial scales of these synoptic-scale disturbances based on the
output of climate models (Deng and Ebert-Uphoff 2014).

11.2.3 Developing Models in Three Dimensions

The atmosphere is truly three dimensional, so it would be more appropriate to
develop spatial models that can be used to identify interactions also between several
different height layers. We started out using publicly available implementations of
the PC and PC stable algorithms, namely, TETRAD (implemented in Java, http://
www.phil.cmu.edu/tetrad/), Bayes Net Toolbox (implemented in Matlab, https://
code.google.com/p/bnt/), and pcalg (implemented in R, http://cran.r-project.org/
web/packages/pcalg/index.html). However, those severely limited how many grid
points we were able to use in our models and made it impossible to move on to
three-dimensional grids. We first considered other methods, such as score-based
structure learning and Granger graphical models. However, we like the overall
properties of constraint-based structure learning — of which the PC algorithm is
the best known example — namely, we find it to be reliable and transparent, i.e., each
step of the process is easy to understand. Thus we set out to create a high-efficiency
implementation of the constraint-based structure learning, rather than switching to
a different method. We still plan to try out different methods, such as graphical
Granger models (Arnold et al. 2007) or Gaussian graphical models (Zerenner et al.
2014), at a later time.

We created our own implementation of the PC and PC stable algorithms in
C, since it is known to be very good at number crunching, using the GNU
scientific library. Careful implementation as well as memory localization yielded an
implementation 300 times faster than the 3 existing implementations we had used
before. Furthermore, PC stable is ideal for parallelization and introducing multi-
threading yielded another factor of 4 on a standard laptop or PC (e.g., MacBook
Pro). Thus calculation for a lower grid (e.g., 200 grid points and 15 time slices,
resulting in 3,000 variables for the graphical model) is reduced from 4 days to about
20 min. More importantly, we can now handle many more grid points and are able
to handle some 3D grids that include several different height layers.
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Fig. 11.6 Stereographic projection plot for four layers (850, 500, 250, 50 mb), strongest connec-
tions with travel time 1 day, Northern Hemisphere, based on NCEP-NCAR reanalysis data for
boreal winters of 1950-2000, using 400 point Fekete grid and 15 time slices that are 1 day apart

Figure 11.6 shows an example of such a 3D plot, based on the same data
as Fig. 11.4, but using four different geopotential height layers (850, 500, 250,
50 mb). Figure 11.6 only shows connections for the Northern Hemisphere and for
connections with a travel time of about 1 day; thus it is the spatial extension of
Fig. 11.4c, which was derived from the same data but only at one height layer
(500 mb).

Clearly Fig. 11.6 provides considerable additional insight for information flow in
the atmosphere not available from a planar analysis such as in Fig. 11.4. Figure 11.6
shows connections in the stereographic projections for the four different height
layers but also includes the connections between the different height layers. To
emphasize the connections between different layers, the following color code is
used for the edges:

» Black: connection that starts and ends in the same layer;
* Red: connection that goes from a lower height layer to a higher layer;
* Blue: connection that goes from a higher layer to a lower layer.

The physical interpretation of the arrows in Fig. 11.6 is as follows. Each arrow in
the plot represents the pathway of “information” carried by large-scale atmospheric
waves (mostly Rossby and gravity waves).
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It is well known that the dynamical properties of the atmospheric flow in the
stratosphere (50 mb layer) differ greatly from those in the troposphere (250, 500,
850 mb layers) with most weather disturbances strictly confined in the troposphere.
Large-scale waves carrying information are mostly excited by topography and
heating processes in the troposphere, and only very large-scale waves under certain
conditions (e.g., a narrow range of westerly wind speed in the stratosphere) can
propagate from troposphere into stratosphere. Figure 11.6 confirms that the 50 mb
layer (stratosphere) is decoupled from the lower levels, which are all in the
troposphere.

More importantly, information we can obtain from plots such as Fig.11.6
include

1. Location of the maximum wave source (largest number of upward pointing
arrows).
2. Preferred pathways of wave propagation.

This type of information is not available from traditional methods and thus provides
new insights on the maintenance and excitation of variability in the atmospheric
circulation system. Being able to generate plots of this type will help us to better
understand the roles of atmospheric waves in forming the mean climate of the Earth
and thus the effect of subtle changes in these waves’ ability to carry information on
our climate.

11.3 Conclusions and Future Work

Causal discovery provides a new tool for climate science that may yield new insights
into the workings and long-term changes of certain dynamical processes. Successful
application of this tool requires very close collaboration of climate scientists and
machine learning experts at every step of the process; thus it is most powerful when
used by an interdisciplinary research team. Many kinks of the method still need to
be worked out, especially since very little research has been done to date on using
this method of causal discovery to generate temporal models. Furthermore, we have
only scratched the surface of what can be done with causal discovery in the context
of climate science. In particular, our new high-efficiency implementation opens the
door to investigating many processes on a level of detail (resolution) not possible
before and in three dimensions. So far we only looked at daily geopotential height
data — what can we learn from other atmospheric variables and combinations of such
variables or from using other timescales (e.g., hourly data)? Which other climate
processes may benefit from an analysis through causal discovery?
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Chapter 12
SCI-WMS: Python-Based Web Mapping Service

for Visualizing Geospatial Data
Brandon A. Mayer, Brian McKenna, Alexander Crosby, and Kelly Knee

Abstract SCI-WMS is an open-source web service for the visualization and
qualitative assessment of distributed geospatial data. The modular cross-platform
Python implementation of SCI-WMS allows the service to keep pace with the rapid
developments in the geospatial data science community to produce visualizations
for numerous types of model outputs with transparent support for both structured
and unstructured geo-referenced topologies. This article outlines the implemen-
tation and technology stack for visualizing geospatial data using SCI-WMS and
details the deployment of SCI-WMS for visualizing model data and simulations
within the scope of the US Integrated Ocean Observing System (I00S) Coastal and
Ocean Modeling Testbed (COMT) project (Luettich et al., J Geophys Res Oceans
118(12):6319-6328,2013).

Keywords COMT e« IOOS « WMS ¢ Visualization and CF compliance

12.1 Motivation

Due to the explosion in the amount of atmospheric, oceanographic, climate, and
weather data either recorded in situ or generated by modeling, inference, and
prediction algorithms, it is no longer feasible for a single institution to host and
maintain a centralized database of information. Modern data management has
been shifting hosting and maintenance responsibilities of large datasets to multiple
participating institutions unified by a catalog service which provides a single view of
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the distributed data to end users (Cherenak et al. 2000; Luettich et al. 2013; Williams
et al. 2009). The institution responsible for maintaining the catalog compiles
metadata regarding externally hosted data, exposed to the catalog by registered data
producers. Such federated datasets potentially span petabytes of information, may
be composed of millions of files in different formats, and are typically generated
and hosted by vastly different systems located across the globe. End users (such as
analysts or scientists) interface with the catalog to search through the aggregated
metadata and interact with particular data of interest, agnostic to distributed nature
of the database.

Although a decentralized approach to data management offers many advantages,
data reduction and analysis tools have been slow to adapt to the distributed
framework. There exists an abundance of applications for visualizing cartographic
data on local computing resources, requiring analysts to download local copies of
datasets and potentially reformat the data into the appropriate file format before
processing and analysis can begin. Even if an end user has access to sufficient
resources to download and process a dataset of interest, tools designed for cen-
tralized local systems increase project costs in terms of bandwidth usage, time, and
storage. Additionally, coupling centralized processing with decentralized storage
introduces the risk that different analysts working with identical local copies of data
obtained from the same federation may use different local programs to generate
incompatible visualizations and reach conflicting conclusions. Normalizing these
results introduces a potential point of error and likewise increases project costs in
terms of time and accuracy.

The Open Geospatial Consortium (OGC) defines the Web Mapping Service
(WMS) (Open Geospatial Consortium Inc. 2006) standard that specifies how a com-
pliant visualization server responds to HTTP requests from an OGC-WMS- com-
pliant client application. SCI-WMS is an implementation of an OGC-WMS server
which responds to requests from clients returning metadata, data, or geo-registered
visualizations. While there exists other OGC-WMS-compliant solutions including
ncWMS (Blower et al. 2013), MapServer (Lime 2014), and GeoServer (OpenGeo
2014), SCI-WMS and ncWMS are the only platforms which support NetCDF (Rew
and Davis 1990), a community standard file format. Additionally, SCI-WMS is the
only OGC-WMS service to support modern model outputs which associate data
with unstructured geo-registered topologies as outlined in Sect. 12.2.3.

SCI-WMS is designed in such a way as to fill significant gaps in cooperative
and distributed geoscientific computing. Data redundancy is minimized by avoiding
dataset replication by fetching only the minimal amount of information from a
distributed datastore to fulfill each OGC-WMS request. SCI-WMS enables end
users to generate scientific visualizations using OGC-WMS-compatible clients,
which may be simple web browser applications, facilitating rapid and consistent
algorithmic and parametric comparisons. Furthermore, because SCI-WMS may
be deployed on a server with dedicated hardware for storage, processing, and
visualization, SCI-WMS lowers costs and barriers to entry for analysts who would
otherwise have to invest in the necessary local cyberinfrastructure to download and
visualize local copies of distributed data.
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12.2 SCI-WMS

SCI-WMS! is an open-source Python implementation of the Open Geospatial
Consortium (OGC) Web Mapping Service (WMS) protocol (Open Geospatial Con-
sortium Inc. 2006) using standard cross-platform numerical software, NumPy (Walt
et al. 2011), Matplotlib (Hunter 2007), and the Django (2014) web framework,
for generating and serving visual content. The OGC-WMS specification defines
a Representational State Transfer (REST) API (Fielding and Taylor 2002) which
responds to standardized HTTP GET requests from a WMS client for serving raster-
ized visualizations of geospatial data. A typical WMS request specifies a data layer
and region of interest with optional metadata such as rendering style parameters. A
WMS response may include additional information regarding the selected data or a
visualization in the form of a PNG or other standard image format. A base WMS
client has been developed in JavaScript which gives analysts the ability to generate
and interact with visualizations using only a web browser (RPS-ASA 2014).

While SCI-WMS is OGC-WMS compliant, it is augmented with services for
automatically interacting with standard metadata catalogs such as the OGC Catalog
Service for the Web (CSW) (Open Geospatial Consortium Inc. 2007), allowing SCI-
WMS to autonomously track dynamic distributed datasets. Data to be visualized by
SCI-WMS should be exposed by data producers in one of the many community
standard formats for geoscientific gridded data such as NetCDF, HDF/HDF5 (The
HDF Group 1997-NNNN), or GRIB/GRIB2 (World Meteorological Organization
(WMO) Commission for Basic Systems 2003) with accompanying metadata adher-
ing to the CF (Climate and Forecast) metadata conventions (Eaton et al. 2014).

Though the OGC-WMS specification standardizes client-server communication,
implementations vary dramatically in how a particular system fulfills the WMS
request. Vital to the efficiency of SCI-WMS is the decomposition of a registered
dataset into structure (also known as topology) and attributes as shown in
Fig. 12.1a and detailed in subsequent sections. SCI-WMS maintains a local topology
cache for efficient storage and processing of spatial neighborhoods and subsets
with respect to data structure. To minimize redundancy, attributes are not replicated
locally but referenced via standard web services and a database of structure-endpoint
pairs is maintained as visualized in Fig. 12.1b. As geospatial WMS requests are
commonly restricted to a subset of the Earth’s surface, SCI-WMS uses the topology
cache to compute the subset of numerical attributes needed to fulfill each request
prior to retrieving the appropriate data, typically via HTTP request. Furthermore, by
classifying a topology as regular or irregular, efficient algorithms and data structures
are exploited to optimize the computation of attribute subsets.

"https:/github.com/brandonmayer/sci-wms
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Fig. 12.1 (a) Decomposition hierarchy of the data model. (b) SCI-WMS topology and endpoint
data store

12.2.1 Data Model

To represent a continuous function devoid of a closed-form representation, a digital
computer must store measurements of the function at discrete samples taken in a
given domain. Yet rendering numerical data typically requires knowledge of the
values between samples to produce perceptually continuous images from arbitrary
viewpoints. To develop efficient algorithms, visualization tools often decompose
data into structure and attributes (Schroeder et al. 2006). Structure encapsulates
both the locations and connectivity relations onto which attributes are mapped
and connectivity information serves to constrain the interpolation problem. Note
that some authors continue the abstraction of structure into topology and geome-
try (Weiler 1986); however, in the context of this research, topology is synonymous
with structure. Figure 12.1a outlines the data model adopted by SCI-WMS. A
dataset is composed of attributes with associated structure which is further classified
as a regular or irregular, known as c-grid and u-grid topologies in SCI-WMS
documentation.

12.2.2 c-Grid Topology

A c-grid (also known as regular or structured) topology refers to structures that
can be defined analytically, e.g., rectilinear or curvilinear grids. Storing a c-grid
topology amounts to storing the closed-form expression. Algorithms for processing
c-grids such as finding nearest neighbors or computing points that fall within a
polygonal subset are computed directly using the implicit c-grid representation,
incurring minimal computational overhead.



12 SCI-WMS: Python-Based Web Mapping Service for Visualizing Geospatial Data 131
12.2.3 u-Grid Topology

A u-grid (also called irregular or unstructured) topology is defined as a set
of sample locations with connectivity relations that do not admit a closed-form
representation. Unstructured topologies offer the highest level of flexibility from
a visualization and modeling standpoint as higher sampling frequencies may be
used in regions of interest while sparsely sampling low-impact areas to conserve
computational resources but have larger storage and processing requirements com-
pared to regular topologies. As storage and processing hardware has become more
accessible, unstructured data has become more prevalent due to the flexibility of the
representation; however, most existing visualization technologies in the geospatial
community can only render regularly structured datasets. SCI-WMS is the first
visualization service to support rendering irregularly structured data.

Any NcML (Jerard and Ryou 20006) file exposing the topology of an externally
hosted dataset according to the CF-UGRID specification can be processed by SCI-
WMS. According the CF-UGRID standard, a topology is always embedded on
the real line, in the plane or space with sample locations, the vertices of the
topology, exposed as an array of coordinates in the appropriate ambient space.
Vertex connectivity is expressed as an array where each element is an index into the
vertex list. The dimension of a topology defines the atomic spatial element created
by the connectivity list. The CF-UGRID specification defines topology dimension
recursively: a topology with dimension O defines a set of disconnected points (no
connectivity) called nodes, a 1D topology consists of lines or curved boundaries
known as edges, a 2D topology is a set of planes or surfaces enclosed by a set
of edges (e.g., triangulation) called faces, and a 3D topology specifies the volume
enclosed by a set of faces called volumes.

In contrast with c-grid topologies, u-grid topologies require explicit enumeration
of sample locations and connectivity, requiring spatially aware data structures for
optimal storage and processing for performant visualization algorithms. To this end,
SCI-WMS maintains a local topology cache, storing u-grid topologies as binary R-
tree (Guttman 1984) data structures on disk locally on the deployment server for fast
access. The R-tree is created when the dataset is first registered with the SCI-WMS
service, and if a change in the underlying data is detected at an endpoint associated
with a topology cache, the R-tree is rebuilt.

12.2.4 Distributed Memory Model

Attributes are numerical quantities associated with a topology. For example, com-
mon attributes may be vector-valued wind directions computed by an atmospheric
modeling algorithm at the vertices of a triangulated 2D topology. Another algorithm
may have simulated air temperature, a scalar attribute, at the centroid of cell volumes
specified by a 3D topology. Attributes have their own dimensionality which is not
necessarily equal to the dimension of the topology.
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The local topology cache and external attribute mechanism define a distributed
memory model for datasets registered with SCI-WMS. Given a request for the
visualization of attributes pertaining to a region of interest, the visualization pipeline
consists of first computing the sample locations within the region of interest, using
the implicit representation for c-grid and R-trees for u-grid topologies, then fetching
the corresponding external attributes. For rendering, the sample connectivity within
the area of interest is reconstructed from the connectivity array which is utilized for
interpolation.

12.3 SCI-WMS Deployment: US IOOS COMT Testbed
Project

The US Integrated Ocean Observing System (I0OOS) Coastal and Ocean Modeling
Testbed (COMT) was formed to unify otherwise disparate entities in government,
academia, and industry to leverage the proliferation of oceanographic data and
modeling techniques to combat natural and man-made coastal stressors by accel-
erating the turnaround from research and development to operational application
of society-critical applications including: forecasting, model comparison, model
skill assessment, and algorithmic/parameterization improvements (Luettich et al.
2013). A crucial component for the success of the US IOOS COMT mission is a
web-accessible tool for quickly visualizing and assessing a diverse set of coastal
modeling and observational data. While SCI-WMS is a general software solution
for geospatial visualization, it is a key component in realizing the US IOOS COMT
mission, facilitating qualitative model comparisons and aggregation of distributed
data with a unified visualization framework.

Figure 12.2a outlines the cyberinfrastructure behind the deployment of SCI-
WMS for the COMT project.” The National Oceanic and Atmospheric Administra-
tion (NOAA) — National Geophysical Data Center (NGDC) geoportal indexes public
geophysical datasets and provides an OGC CSW service to query datasets by their
metadata attributes. SCI-WMS queries the NGDC Geoportal at regular intervals
updating the local topology cache and structure-endpoint database (Fig.12.1b)
with new or modified datasets. Raw coastal data is hosted by the Southeastern
Universities Research Association (SURA) on a dedicated server for the COMT
project (Luettich et al. 2012). Each dataset may consist of multiple files in different
formats and may be the result of very different models run by various institutions
with disparate computing resources. However, accompanying the raw data is an
NcML virtual layer which exposes each dataset as a single NetCDF (Rew and
Davis 1990), OPeNDAP (Cornillon et al. 2003)-accessible object. Furthermore, the

Zhttp://testbedwww.sura.org/explorer/
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Fig. 12.2 (a) Overview of the SCI-WMS deployment for the US IOOS COMT project. SCI-WMS
updates its topology and endpoint database via a nightly service which queries CF-compliant
datasets cataloged by NGDC. Model data is hosted on an external web server exposed by an
NcML facade as a single NetCDF data structure accessible to SCI-WMS via OPeNDAP. SCI-WMS
responds to requests by end users interfacing through a custom-built web portal. (b) Comparison of
ADCIRC (unstructured topology) model results with observed water levels in the Northern Gulf of
Mexico for Hurricane Ike. Verified observed water levels are from NOAA'’s Station 8760922 (red
dot on map). The map shows modeled water levels (in meters above the geoid) at the peak of the
storm in southern Louisiana. The time series plot shows both the modeled (green) and observed
(orange) water levels. The vertical blue line in the time series plot corresponds to the current time
of the map

NcML facade presents a consistent set of meta-information in accordance to CF
conventions (Eaton et al. 2014) providing services like SCI-WMS access to the raw
data through a uniform interface.

Currently, SCI-WMS is used to visualize data from the first phase groups
of IOOS COMT program: estuarine hypoxia, shelf hypoxia, and coastal inun-
dation (Luettich et al. 2013). For each modeling group, SCI-WMS successfully
generates consistent visualizations of data generated by ADvanced CIRCulation
Model (ADCIRC) (Luettich and Westernick 2004), The Unstructured Grid Finite
Volume Community Ocean Model (FVCOM) (Chen et al. 2006), Semi-implicit
Eulerian-Lagrangian Finite-Element Model (SELFE) (Zhang and Baptista 2008),
and Sea, Lake, and Overland Surges from Hurricanes (SLOSH) (Chen et al. 1984)
coastal modeling algorithms and serves as a use case for how SCI-WMS can be
leveraged as a scalable solution for delivering visualizations of scientific data to a
diverse community.

SCI-WMS currently supports contour and filled-contour visualization styles for
scalar attributes, while 2D flow fields can be shown as arrows or barbs for vector-
valued attributes. Figure 12.2b shows a web portal utilizing the SCI-WMS back end
to compare ADCIRC model output for Hurricane Ike with water levels observed
by NOAA stations, and Fig. 12.3a visualizes current direction and speed in the
Chesapeake Bay area. Figure 12.3b renders the sea surface wave height computed
along the Atlantic coast of South America, the Gulf of Mexico, up to Canada.
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Fig. 12.3 (a) Visualizing current direction and speed in the Chesapeake Bay area. (b) Visualizing
significant sea surface wave height along the eastern coast of the United States

The topology in this example is unstructured (u-grid), a triangulation containing
over five million vertices (sample locations). Attributes are fetched from the appro-
priate external server as needed, rendered, cached for performance, but ultimately
discarded after processing to minimize storage redundancy. Ongoing development
is in progress for SCI-WMS to support emerging geophysical datasets such as
ensemble model output and to provide clear visual support for the assessment and
quantification of model skill and performance metrics.
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Chapter 13

Multilevel Random Slope Approach and
Nonparametric Inference for River
Temperature, Under Haphazard Sampling

Vyacheslav Lyubchich, Brian R. Gray, and Yulia R. Gel

Abstract Environmental scientists face multiple challenges when analyzing
unevenly recorded time series with small sample sizes. For example, trends in
water temperature may be confounded with time and date of sampling when
the latter represent convenience samples and thus introduce bias into regression
estimates. We address these concerns using multilevel random slope models and
nonparametric bootstrap inference for assessing the statistical significance of the
annual trend in river temperature when measurement times and dates are haphazard.

Keywords Time series * Multilevel model ¢ Nonparametric bootstrap ¢ Con-
founding ¢ Linear regression

13.1 Motivation

Ecologists and environmental scientists who are interested in assessing the dynam-
ics of river water temperature in the absence of systematic observations may use
data that are collected at haphazard times or dates (Preud’homme and Stefan 1992).
However, most of the commonly used regression models for water temperature
typically assume data collection at equal time intervals. In the case of unevenly
spaced observations, such estimated temperature trends not adjusted for time or date
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of sampling may reflect temperature-time or temperature-date associations and so
be biased, which in turn can lead to unreliable or even false conclusions.

We propose to employ a multilevel (hierarchical) mixed effects model that
addresses issues associated with haphazard sampling, i.e., temperature trends poten-
tially confounded with time and date of sampling. Although multilevel models are
widely used in a variety of fields and, in particular, in biostatistics and epidemiology,
such techniques yet remain unexplored in lotic temperature studies and other
hydrological subdisciplines (Araujo et al. 2012; Kasurak et al. 2009; Lewis 2006;
Qian et al. 2010). Moreover, many water-monitoring datasets with haphazard time or
date are often ruled out for publication. Hence, a strength of our paper is to provide
a potential way to use temperature observations obtained at haphazard time or date.

To eliminate the distributional assumptions on the data while testing for trend
significance, we elaborate a fully nonparametric nested bootstrap approach to obtain
data-driven confidence intervals for all model parameters, even under heterogeneous
group variance and small sample size assumptions common to environmental
datasets.

13.2 Model

We propose a general multilevel linear mixed effects model of water temperature
(Temp) at the ith measurement unit, jth river location (longitude), kth date, and
Ith year, which thereby putatively addresses confounding of interannual trend in
temperature with interannual trend in time, longitude, or date:

Temp ;i = Po + Pryear, + oy
+B,datey; + vidatey; + wy
+Bstime i + vigtime i

+Balong;, + viulong;, + €G- (13.1)

Here, B denotes fixed effects coefficients, v random slopes, w random effects on
the intercept, and €y residual variation at the measurement scale. In particular,
sampling designs, the i and j indices, can be confounded, e.g., when sampling
locations are visited not at random, but along a downstream or upstream route. To
address this effect, we put both indices in parentheses. Model (13.1) can be easily
adjusted to the needs of a particular study by reducing the number of regressors.

13.3 Bootstrap

To test the statistical significance of estimated coefficients without imposing
restrictive distributional assumptions on the model residuals, we elaborate a data-
driven nonparametric nested bootstrap procedure (Algorithm 1).
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The idea is based on a paired bootstrap for mixed effects models discussed
by Roberts and Fan (2004), Shang and Cavanaugh (2008), and van der Leeden
et al. (2008). Particularly, we first resample blocks (years of observations) and
then resample tuples of observations and covariates within the blocks. This allows
us to take into account possible heterogeneous variance of observations across
years. While similar to the paired bootstrap in a classical regression scheme the
proposed nested bootstrap for mixed effects models is more flexible in treating
unequal error variances in the model (Freedman 1981; Liu and Singh 1992)
(i.e., the property that the semiparametric residual bootstrap lacks), the nested
resampling scheme still requires independence among tuples (see the detailed
practical guidelines by Gilleland 2010a,b). Given the nature of our sampling design,
we might expect some serial correlation structure in observations among dates/years
and/or space. However, our analysis of autocorrelation functions, for each block
(year) and over all years, and a study of spatial variograms indicate no correlation
in the data (the plots are omitted for brevity but are available from the authors).
Following Gilleland (2010a), it is important to reemphasize that any conclusions
from bootstrap procedures are to be drawn only after a proper analysis of the
underlying assumptions for the employed bootstrap scheme, including both time and
space independence verification, and a choice of the respective bootstrap scheme is
to be made on a case-by-case basis.

Algorithm 1: Nonparametric nested bootstrap procedure

input : design matrix X,, response vector Temp,, where ¢ is a vector of observations’
indices, number of bootstrap resamples B to perform.
output: bootstrap confidence intervals for random effects model parameters.
Estimate parameters of the model based on X, and Temp,;
fori=1,...,Bdo
sample with replacement years — the blocks;
within each block, sample with replacement corresponding indices ¢;
combine samples from the previous step into one vector 1*;
estimate parameters of the model based on X+ and response vector Temp,;
end
use bootstrap distributions of parameters to construct confidence intervals.

O ANULEA W -

For computational efficiency, we operate on the vector ¢ of observation indices
to construct a new (bootstrapped) sequence of observations t* (see steps 3-5 of
the Algorithm 1). This process requires noticeably less computational resources
than bootstrapping the whole matrix X,. Then, it is straightforward to use * to
reorder Temp, and X, into Temp,« and X, respectively, and to reestimate model
parameters.

Even under small sample sizes at all potential levels, this bootstrap procedure
can be used to construct confidence intervals for fixed effects coefficients and for
the variance of random effects (Shang and Cavanaugh 2008).
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13.4 Data

We analyze water temperature data from the main channel of the La Grange Pool,
a reach of the Illinois River (Fig.13.1). Annual sampling events occurred from
1994 through 2010, except for 2003 when no data were collected. For each event,
spatial sampling units were selected at random without replacement from a grid of
points laid over a projection of the main channel. Sampling units were reselected
annually. The sampling protocol required sampling units to be allocated to clusters
that approximated a day’s sampling effort, clusters to be ordered at random without
replacement, and sampling to proceed in cluster order (weather-related events may
have occasionally led to deviations from cluster order).

The sampling protocol further required time of sampling to occur from 08:00
to 16:00h and to be centered daily on noon. Sampling was to be conducted daily
beginning the Monday of the last full work week of July. Sampling did not occur on
weekends or on agency-defined holidays.

Sampling occurred on 4—7 days within a 5-12-day sampling window (77 days in
total, Fig. 13.2). Within days, the direction of visiting sites (up or downstream) was
determined at random. Water temperature was recorded at 20 cm depth. Median time
of sampling declined by approximately 2 h over the 17-year study period (Fig. 13.3).

Note that time was largely determined by the time of sampling at (and distance
from) a previously sampled location. The resulting convenience sample is haphazard
with respect to time and date and represents neither a systematic nor a random
sample of either.
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Fig. 13.1 The reach of the Illinois River under study
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To assess the significance of a spatial component in these data, we estimated a
modified version of the model (13.1), i.e., without longitude terms:
Temp,; = Bo + Biyear, + w;
+Brdatey; + vidatey + wy
+,83time,~k; + vtime;y + €. (13.2)
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are omitted for brevity and are available from the authors upon request). (a) Year 1994. (b) Year
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The empirical semivariogram plots of estimated residuals from model (13.2) €y
(Fig. 13.4) show no evidence of spatial correlation, thus supporting the decision to
remove longitude terms from model (13.1).

Further, we fitted four other reduced models assuming an interannual linear trend
(fixed effect of the years) without adjustments (RM1), adjusted for time within date
within year (RM2), adjusted for mean daily time within year (RM3), and adjusted
for mean annual time (RM4) (Table 13.1). The 95 % confidence intervals obtained
from the asymptotic distribution and using the nonparametric nested bootstrap
approach show that the interannual trend coefficient is not statistically different from
zero, even in the model RM4, which estimates water warming as 2.6 °C per 10 years.

In this study, the confidence bounds obtained from bootstrap and asymptotic
distribution are close to each other and lead to the same conclusions. However,
we argue that bootstrap technique is a more preferred way of obtaining confidence
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Table 13.1 Estimates of the linear trend over the years, under different model specifications

95 % confidence
interval for §,
Reduced ﬂA I, (bootstrapped),
model Model specification °C per year | [asymptotical]
RM1 Temp,, = Po + Piyear, + w; + wy + € | 0.067 (—0.104, 0.224)
[—0.144, 0.277]
RM2 Temp,,;, = Bo + Biyear, + w; + wy 0.088 (—0.085, 0.257)
+ Bstime;y + vytimeyy + €5 [—0.127, 0.302]
RM3 Temp,,;, = Bo + Biyear, + w; + wy 0.058 (—0.106, 0.225)
4+ Bstimey; + vytimey + €5 [—0.162, 0.278]
RM4 Temp,,;, = Bo + Biyear, + w; + wy 0.260 (—0.075, 0.659)
+Bstime; + € [—0.092, 0.613]
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Fig. 13.5 Bootstrap distributions of the coefficients B | for the interannual linear trend in river
water temperature (see Table 13.1 for model specifications). Number of bootstrap resamples B is
1,000. (a) Reduced model RM1. (b) Reduced model RM2. (¢) Reduced model RM3. (d) Reduced
model RM4

intervals in a real data analysis, because it is robust against deviations of the dis-
tribution of the parameter from the hypothesized model distribution. Additionally,
different model specifications may change the distribution shape (e.g., consider the
plots in Fig. 13.5 with evolving asymmetry of the distribution in Fig. 13.5d).
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13.5 Conclusion

In this paper we discuss applications of multilevel hierarchical mixed effects
methodology to model dynamics of river water temperature under haphazard
sampling designs. While random effects models became a widely accepted tool
for data analysis in biostatistics and social science, such procedures are yet almost
unexplored in ecology and environmental sciences. However, many ecological
studies produce samples in uneven space and time intervals; thus, the classical
regression procedures (that are developed for systematic sampling protocols) are
inappropriate for these data. In contrast, the mixed effects methodology provides
a simple and promising tool to evaluate (non)linear associations that vary within
space-time units, e.g., within days, across days within sampling episodes, and
across years and spatial locations. It is well known that parametric inference for
random effects models might be unreliable for small and moderate sample sizes
and varying number of observations across levels. To address this issue, we propose
a nested bootstrap procedure that allows one to draw nonparametric inference on
the developed random effects models even under heterogeneous group variance. In
the current study, we find that the results of parametric (asymptotic) and bootstrap
inference coincide, thus implying reliability of the drawn conclusions. In the
future, we plan to extend the developed methodology to account for multivariate
hierarchical space-time structures and assess consistency properties of the nested
bootstrap procedure.
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Chapter 14

Kernel and Information-Theoretic Methods for
the Extraction and Predictability of Organized
Tropical Convection

Eniko Székely, Dimitrios Giannakis, and Andrew J. Majda

Abstract In this paper, we investigate both the dominant modes of variability and
the large-scale regimes associated with tropical convection that can be recovered
from infrared brightness temperature data using data mining and machine learning
approaches. A hierarchy of spatiotemporal patterns at different timescales (annual,
interannual, intraseasonal, and diurnal) is extracted using a nonlinear dimension
reduction method, namely, nonlinear Laplacian spectral analysis (NLSA). The
method separates very clearly the boreal winter and boreal summer intraseasonal
oscillations as distinct families of modes. The predictability of the Madden-Julian
oscillation (MJO) is then quantified using a cluster-based information-theoretic
framework adapted for cyclostationary variables. Data clustering is performed in
the space of the NLSA temporal patterns and the results show a strong influence of
ENSO in the early MJO season.

Keywords Dimension reduction ¢ Clustering * Regime predictability e
Intraseasonal oscillations « MJO

14.1 Introduction

Intraseasonal oscillations (ISOs) play a key role in explaining large-scale convective
organization, and the distinct propagating patterns that emerge during boreal
winter and boreal summer are largely influenced by the annual cycle (Zhang and
Dong 2004). While the dominant boreal winter ISO is the Madden-Julian oscilla-
tion (MJO, Madden and Julian 1972), a 30-90-day eastward-propagating pattern,
the dominant boreal summer ISO (BSISO) has a more emphasized poleward-
propagating pattern with a weakened eastward propagation (Kikuchi et al. 2012).
Conventional approaches for extracting MJO signals are linear methods, e.g.,
empirical orthogonal functions (EOFs) and singular spectrum analysis (SSA).
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However, atmosphere-ocean coupled dynamical systems such as organized tropical
convection are governed by highly nonlinear structures. In an effort to capture
these nonlinear temporal and spatiotemporal patterns, we apply nonlinear Laplacian
spectral analysis (NLSA, Giannakis and Majda 2013) to full 2D CLAUS (Cloud
Archive User Service) infrared brightness temperature (7}) data over the equatorial
band 15°S—15°N without any prior preprocessing, seasonal detrending, or latitudi-
nal averaging (Tung et al. 2014). NLSA generates a set of Laplacian eigenfunctions
that describe a hierarchy of patterns of interest at different timescales. These patterns
include the boreal winter and summer ISOs (MJO vs. BSISO) through distinct
families of eigenfunctions. Because the ISOs project to non-orthogonal patterns in
the spatial domain, they tend to be mixed into one signal by SVD-based methods
like EOFs. In the second part of this work, we quantify the predictability of an
associated MJO index using the information-theoretic framework of Giannakis et al.
(2012), adapted to variables with cyclostationary statistics.

The paper is organized as follows. In Sect. 14.2, we provide a short overview of
the general framework of kernel-based nonlinear dimension reduction. The NLSA
algorithm is presented in detail in Sect. 14.3 together with the analysis for the T7j
CLAUS data. Using the eigenfunctions from NLSA, we define a space of predictors
to further assess MJO predictability through an information-theoretic framework in
Sect. 14.4. The paper ends with Sect. 14.5, which provides an overview of the main
contributions of this work and presents some future perspectives.

14.2 Kernel-Based Nonlinear Dimension Reduction

Recently, the field of data mining and machine learning has witnessed an increased
interest in the development of nonlinear dimension reduction methods to extract
reduced sets of meaningful features from high-dimensional data using local kernels.
These methods have proven to be superior in the analysis of a wide range of
systems (here, the coupled atmosphere-ocean dynamical system) which are highly
nonlinear in nature and are described by observations lying on (or near) a manifold
A . The underlying geometries are characterized by local measures (Riemannian
metrics) that vary smoothly on the manifold rather than by global measures,
such as covariances, e.g., principal component analysis (PCA, Hotelling 1933).
While covariance-based methods project the data onto the EOFs to obtain principal
components (PCs) that capture the highest variance to recover the global variance
of the data, in nonlinear methods, the global structure is recovered rather implicitly
from the continuity of the local fits, similar to a manifold unfolding. Observations
arising from nonlinear systems, even if embedded in very high-dimensional data
spaces, often have an intrinsic low dimensionality that captures the number of
degrees of freedom of the system.

In this setting, locality is defined commonly through the notion of kernel as
a pairwise measure of similarity that decays smoothly in the data space. In the
presence of finite data samples, neighborhood graphs provide good approximations
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to the underlying manifolds .#. Given a set Y of observations, the kernel function
k(yi,y;) is then computed between points y;, y; € X that are neighbors in the original
high-dimensional space, i.e., they are connected in the graph denoted by G. In Ham
et al. (2004), it is shown that several local kernel-based methods (Belkin and Niyogi
2003; Coifman and Lafon 2006) are special cases of kernel PCA (Scholkopf et al.
1998).

The locality preservation problem is often written as an optimization of an
objective function E(f) over functions f on the manifold subject to a normalization
constraint C(f) = 1. A common approach (Belkin and Niyogi 2003; Coifman and
Lafon 2006) to preserve local information is to put a penalty for mapping nearby
points in the original space to far away points in the low-dimensional space:

min E(f), where E(f) = ) kGiy)(fO) —f())> (141

c(H=1
¢ Viyi€Y

where the functions f defined on Y are the coordinates in the new Euclidean
embedding space. Being a decreasing function of the distances between samples y;
and yj, the kernel function k(y;, ;) acts as the penalization term in the preservation
of local information. In the limit of large data, i.e., as the sampling size increases,
the problem in (14.1) is shown to approximate the action of a differential Laplace-
Beltrami operator on the manifold .# (Belkin and Niyogi 2003).

The stationary points of the optimization problem in (14.1) are given by the
general eigendecomposition problem:

Ef = ACf (14.2)

where the eigenfunctions/eigenvectors f are used to embed the data points into a
lower-dimensional space.

14.3 NLSA Algorithms

Blending ideas from nonlinear dimension reduction (Belkin and Niyogi 2003;
Coifman and Lafon 2006) and delay-coordinate maps of dynamical systems (Sauer
et al. 1991; Takens 1981), NLSA (Giannakis and Majda 2012a, 2013, 2014)
aims at extracting spatiotemporal patterns from high-dimensional data generated
by dynamical systems. The core of NLSA analysis consists of two main steps:
(1) construction of a delay-coordinate space using the Takens method of delays
(Sauer et al. 1991) for dynamical systems, followed by (2) construction of a low-
dimensional embedding using a reduced set of Laplace-Beltrami eigenfunctions
applied in the delay-coordinate space. NLSA replaces the covariance operator used
in singular spectrum analysis (SSA, Ghil et al. 2002) by the discrete Laplace-
Beltrami operator. The eigenfunctions of this operator form a natural orthonormal
basis set of functions on the nonlinear manifold .# sampled by the data, providing
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superior timescale separation (Berry et al. 2013). Such patterns carry low variance
and may fail to be captured by variance-based algorithms such as SSA, yet may play
an important dynamical role (Aubry et al. 1993).

14.3.1 Delay-Coordinate Space

Consider a time series of s data observations x(¢;) = (x'(t),...,x"(t;)) sampled at
times #; = i6t with a time interval 6¢ and lying in a subspace of the n-dimensional
space R". A standard approach in the qualitative theory of dynamical systems
(Broomhead and King 1986) is to use the method of delays (Sauer et al. 1991)
to help recover some of the phase-space information lost by partial observations.
Given an embedding window At, x(¢) can be represented in the embedded space as
the sequence of observations over the time spanned by the embedding window Art.
Formally,

x(t) > X(6) = (x(t), x(t — 81), ..., x(t — (g — 1)81)) (14.3)

with At = ¢ét. The dimension of the new ambient data space is N = nq. The
constructed time series X (¢) corresponds to trajectories of length At in the physical
space. Given a sufficiently long embedding window At, X(#) provides a high-
dimensional representation of the manifold .# underlying the initially incomplete
observations (Sauer et al. 1991).

14.3.2 Laplace-Beltrami Eigenfunctions

The intrinsic geometry associated with the manifold .# relies on the notion of
local similarity and is approximated in the discrete case by the edge weights
kij = k(X(#;),X(t)) of the neighborhood graph G. Different kernels will induce
different geometries on the data, and NLSA is based on a modified heat kernel
applied in Takens delay-coordinate space. The weights k; take into account the
local phase space velocity (time tendency) of the dynamical system through the
terms §(t;) = X(;) — X(ti-1):

IX (1) —X(r,->||2)
ki = — ) 14.4
d exp( ERCIIRO S

The quantities ¢; can be interpreted as finite-difference approximations of the vector
field in phase space driving the dynamics (Giannakis 2015). Thus, the edge weights
in (14.4) depend on the dynamical system generating the data both implicitly
(through Takens delay-coordinate space) and explicitly (through ¢;). Using the
weighted edges in Eq. (14.4), a new normalized kernel can be defined as in diffusion
maps (Coifman and Lafon 2006),
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. ki
ki' = s K s
L e k) (X ki)

for some real parameter « € [0, 1]. Different behaviors of the kernel for various
o values are discussed by Coifman and Lafon (2006). When o« = 1, the kernel
decouples the geometry of the manifold from the density of the data, thus reducing
the influence of the data distribution on the final output of the method.

At a coarse level, the manifold .# exhibits a reduced set of salient features that
describe the dynamical system, similar to the leading PCs in SSA. Let ® : . — R/,
| < N, define the low-dimensional representation map for X () that preserves the
main features of the intrinsic geometry of the manifold. The local preservation
problem in graph-based methods can be formulated in terms of the leading !/
eigenfunctions of the Laplace-Beltrami operator A on the manifold .# (Belkin and
Niyogi 2003; Coifman and Lafon 2006). In the discrete case, .# is approximated by
the neighborhood graph G as discussed previously in this section and the operator
A by a graph Laplacian L.

Here we use the normalized graph Laplacian L as in the diffusion map family of
algorithms, defined with respect to the modified edge weights K= {7@/} witho = 1.
The normalization of the Laplacian is performed using the degree matrix D = {d,},
with d; = Y, ky:

(14.5)

P=D"'K (14.6)

L=I-P (14.7)

where the elements p;; of matrix P are transition probabilities associated with a
Markov chain on the graph G (Zj pij = 1). The degree d; of a node in the graph is
the analog of the Riemannian measure on the manifold, i.e., the volume occupied
by each sample on ..

The Laplacian eigenfunctions ¢; and the low-dimensional representation map are
obtained by solving the eigendecomposition problem!:

Lo = hihi (14.8)

where the columns ¢; = (¢1;, ¢ais .. - ,qbsi)T are associated with the temporal
patterns describing the dynamical system. The eigenvectors ¢; are associated with
functions on the manifold (f(y;) from (14.1)) and form a set of orthonormal basis
functions with respect to the weighted inner product and the Riemannian measure
on the manifold ./

'The optimization function in (14.1) written in a matrix form as a trace optimization problem, for
details see Belkin and Niyogi (2003).
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> diputi = 8 (14.9)
k=1

The optimization function associated with the normalized graph Laplacian can
be written as:

mankU(f ¢’) (14.10)

14.3.3 Infrared Brightness Temperature Data

Temporal patterns, intrinsic to the dynamical system described by the observa-
tions X(7), correspond to columns ¢;, i < I, from Eq.(14.8). Each row ¢j =
¢ (X(4)) = (¢j1,¢p,....¢p) is a representation of the jth observation in the
new low-dimensional representation space. The dimension / can be considered
as the parameter controlling the scale on the data manifold resolved by the
leading eigenfunctions or the number of degrees of freedom of the system.
The truncation helps to eliminate highly oscillatory modes and noise and avoid
overfitting.

We apply the analysis to the 2D CLAUS satellite infrared brightness temperature
data from July 1, 1983, to June 30, 2006. The data is sampled over the tropical
belt 15°S—15°N and no preprocessing such as seasonal detrending or band-pass
filtering is applied prior to NLSA. The results shown here (Fig. 14.1) from January
1,1992, to December 31, 1993, contain the TOGA-COARE observation period from
November 1, 1992, to February 29, 1993, when two significant MJO events were
observed (Yanai et al. 2000). In Fig. 14.2, we show the representative NLSA and
SSA modes for the same time interval corresponding to the boreal winter (MJO) vs.
boreal summer (BSISO) intraseasonal oscillations. The distinction between the two
patterns is significantly more clear in the case of NLSA.

The spatiotemporal patterns associated with the temporal patterns ¢; can be
recovered in the original n-dimensional space by using the temporal patterns as
convolution filters. First, the data in the delay-coordinate space is recovered using
the linear map:

X; = X¢ipT (14.11)

and then the columns of X; are decomposed into g blocks of dimension n similarly
to SSA techniques (Ghil et al. 2002). The average value over the blocks in the delay-
coordinate space reconstruction X; provides the reconstructed values in the original
2D space. Figure 14.3 shows the MJO reconstruction and propagation in time during
the boreal winter of 1992-1993 (see Székely et al. 2014, for more details on the
analysis of the data).
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Fig. 14.1 Representative Laplacian eigenfunctions from NLSA: (a) ¢; annual, (b) ¢5 ENSO, (c)
¢12 MJO, (d) ¢po; BSISO for the interval January 1, 1992-December 31, 1993, which encompass
the TOGA-COARE period (November 1, 1992—February 28, 1993)

14.4 Cluster Methods for Regime Predictability

Large-scale dynamical regimes dominate long-range forecasting and can be associ-
ated with coarse-grained partitions (Giannakis et al. 2012) of the input feature space
obtained through clustering. Each regime carries additional information beyond
climatology and information-theoretic measures (relative entropy and mutual infor-
mation) can be used to quantify the expected information content in a partition for
forecast lead time t > 0 measured relative to the cluster affiliation at present day.

In a cyclostationary, setting the predictability can be expressed in terms of a given
time stamp 7 in the periodic cycle, e.g., a given day in a year. Let rr4+, = (T + 1)
be the response variable of interest at forecast lead time . Both the response 77,
and the coarse-grained partitions are defined relative to the time stamp 7', such that a
partition will generate clusters associated with the specific regimes observed at time
T over the course of multiple cycles, e.g., years.
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Fig. 14.2 Comparison between the NLSA (first column) and SSA (second column) modes of the
2D CLAUS T, temperature data for the boreal winter (MJO) and summer (BSISO) intraseasonal
oscillations. The NLSA modes displayed are MJO mode ¢, and the BSISO mode ¢,,. The SSA
modes are the MJO mode vg and the BSISO mode v;s. We observe a significant intermittency
pattern for the NLSA modes (boreal winter vs. boreal summer), while in SSA the two signals get
mixed together. There is also a higher modulation of the diurnal signals for NLSA modes (¢13,
¢$»3) when compared to SSA diurnal modes (v4, v21)

The relative entropy Z(rr+-|kr) quantifies the information gain of the regime
associated to cluster kr relative to the prior distribution p(rr4.), that is, the
additional information content beyond climatology associated with each regime.
Additionally, the expected gain of information associated with the entire partition
is given by the expected value of the relative entropy over the individual partitions.
Formally,

rr+|k
Drraclhr) = 3 plrrlkr) log 2t ). (14.12)
i p(rr4e)
p(rryo. kr)
I (rr4c, kr) = 47, kr) log —————, 14.13
(rrie.kr) = Y p(rrse. kr) S ( )

kr

where p(kr) is the prior probability associated with cluster k7 and ) i Plkr) = 1.
The posterior probability p(rr+.|kr) is the cluster-conditional probability distribu-
tion. Using this information-theoretic framework allows us to formulate two distinct
predictability problems:

1. Maximize cluster predictability:

9(7T+r|k>]k“) = n;ax _@(FT_H-I/CT) (1414)
-
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Fig. 14.3 Spatial reconstruction of MJO propagation for the winter of 1992-1993. Blue (red)
colors are anomalies in the temperature 7}, and correspond to increased (decreased) cloudiness. An
MIJO initiates over the Indian Ocean and propagates eastward over the Maritime Continent until it
decays in the southwestern Pacific Ocean. A second MJO initiates over the Indian Ocean in January
and will eventually decay in the Pacific Ocean

2. Maximize expected predictability:

f(VT_H,k;) = n}(axf(rﬂ_r,kr). (1415)
T

The first problem (14.14) finds, in a given partition, the regime k7 that maximizes
the predictability, while the second problem (14.15) finds, among multiple distinct
partitions, the partition that maximizes the expected information gain.

The partitions can be obtained using any clustering algorithm developed in
the data mining literature (Bishop 2006; Duda et al. 2000). To account for the
nonlinearity inherent to dynamical systems, we use kernel K-means (Dhillon
et al. 2004; Scholkopf et al. 1998), a kernel version of the well-known K-means
(MacQueen 1967) clustering algorithm.
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Here, the observation space of the explanatory variables is the low-dimensional
representation from NLSA, i.e., the set of temporal patterns ¢; (predictors). Since
MJO is described by two nearly degenerate solutions, in the eigendecomposition
problem of NLSA, we build a response index 7, (Fig. 14.4) by taking the norm of
the two MJO predictors {¢12, P15}-

In a cyclostationary setting, the response index r, for t = T + t varies
significantly relative to the time stamp 7 in a cycle, e.g., a given day in a year.
Clustering is performed here using the kernel k-means algorithm with a number
of K = 3 clusters. Results (Fig. 14.5) show that interannual modes such as

|77‘f = \/fﬁlz(t)z + ¢15(1)?

1 d 1 | I I d |
"1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 ;996 )1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Date (year

Fig. 14.4 MJO index response for the entire time series (23 years). r; is the norm of the two MJO
modes {¢12, P15}
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Fig. 14.5 Cluster-based relative entropy and mutual information. The clusters are as follows: La
Nifa (kz = 1), ENSO-neutral (k; = 2), and El Nifio (k; = 3). The El Nifo cluster is the most
predictable at all times. There is a reemergence of predictability in this cluster as captured by
the relative entropy at T = {65, 95} days. The reemergence is also noticed in the cluster-based
conditional probabilities at these times, i.e., the El Nifio cluster departs the most from the prior
probability p(T + 1)
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ENSO have a strong influence on coarse graining, i.e., clustering, and therefore
predictability early in the MJO active season (November—December). ENSO years
are associated with weaker MJO response indices and display a reemergence pattern
of predictability captured by the two peaks in the relative entropy and mutual
information at 7 = {65,95} days as shown in Fig. 14.5. There are two ENSO
clusters corresponding to El Nifio and La Nifia events and one ENSO-neutral cluster.
In the active phase (January—February), predictability is dominated by the current
MIJO state.

14.5 Conclusions

In this paper, we investigated the dominant modes of variability and the predictabil-
ity of large-scale regimes associated to tropical convection that can be recovered
through data mining approaches from infrared brightness temperature data. The
observations were recorded over the tropical belt 15°S—15°N and are used in their
original two-dimensional form without including additional information, e.g., zonal
winds. No preprocessing, band-pass filtering, or seasonal detrending was applied
prior to the analysis. A wide variety of analysis techniques have been proposed in
the literature, most of which rely on the use of variance-based and linear methods,
such as EOFs and SSA. In this paper, the problem is approached from the point of
view of the nonlinear underlying dynamics governing the system of interest, i.e.,
tropical variability. We therefore use a nonlinear data analysis technique, namely,
NLSA (Giannakis and Majda 2012a), and show through results its ability to extract
in a one-step process temporal and spatiotemporal signals that capture the physical
properties of the dynamical system at different timescales. The main contribution of
the analysis in this study is the ability of NLSA to separate the tropical intraseasonal
oscillations: the boreal winter MJO and boreal summer BSISO.

NLSA allows to extract from high-dimensional observations a multiscale hierar-
chy of modes that represent faithfully the dynamical system through only a reduced
set of meaningful characteristics. The leading eigenfunctions of NLSA are used to
further study MJO predictability using a framework initially proposed in Giannakis
and Majda (2012b) and adapted here to cyclostationary variables. Regimes inherent
to tropical convection can be associated with coarse-grained partitions in the space
of the temporal eigenmodes extracted through NLSA. The predictive skill of MJO
is then quantified through information-theoretic measures, namely, relative entropy
and mutual information, to estimate the information gain beyond climatology of the
coarse-grained partitions. The partitions are constructed using a nonlinear clustering
method, namely, kernel K-means. Results show that early-season predictability is
manly influenced by the interannual ENSO. The regimes identified through the
partitions correspond to El Nifio, La Nifia, and ENSO-neutral clusters. During
ENSO years, the activity of MJO is inhibited by the strength of the preceding ENSO
and displays a reemergence of predictability.
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The analysis presented here was performed using only infrared brightness
temperature data. However, additional information, such as lower- and upper-level
zonal winds (Wheeler and Hendon 2004), can carry important information beyond
the pure 7} data and will be incorporated in future work.
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Chapter 15
A Complex Network Approach to Investigate

the Spatiotemporal Co-variability of Extreme
Rainfall

Niklas Boers, Aljoscha Rheinwalt, Bodo Bookhagen, Norbert Marwan, and
Jiirgen Kurths

Abstract The analysis of spatial patterns of co-variability of extreme rainfall is
challenging because traditional techniques based on principal component analysis
of the covariance matrix only capture the first two statistical moments of the data
distribution and are thus not suitable to analyze the behavior in the tails of the
respective distributions. Here, we describe an alternative to these techniques which
is based on the combination of a nonlinear synchronization measure and complex
network theory. This approach allows to derive spatial patterns encoding the co-
variability of extreme rainfall at different locations. By introducing suitable network
measures, the methodology can be used to perform climatological analysis but also
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for statistical prediction of extreme rainfall events. We introduce the methodological
framework and present applications to high-spatiotemporal resolution rainfall data
(TRMM 3B42) over South America.

Keywords Complex networks ¢ Predictability of extreme events ¢ South
american monsoon system ¢ Synchronization

15.1 Introduction

The analysis of the spatial structure of co-variability of climatic time series at
different locations forms an integral part of meteorological and climatological
research. Traditional techniques in this context are based on principal component
analysis (PCA) of the covariance matrix of the dataset under consideration. By
construction, such approaches only capture the first two statistical moments of the
distributions of the individual time series, and the resulting empirical orthogonal
functions (EOFs) thus do not describe the behavior of extreme events. By combining
a nonlinear synchronization measure with complex network theory, we introduce a
methodology that can fill this gap and show how it can be applied for climatological
analysis but also for statistical prediction of extreme rainfall events.

In the recent past, so-called climate networks have attracted great attention
as tools to analyze spatial patterns of climatic co-variability, complementarily to
traditional PCA-based techniques (e.g., Donges et al. 2009a,b, 2011; Gozolchiani
et al. 2011; Ludescher et al. 2013; Steinhaeuser et al. 2012; Tsonis and Roebber
2004; Tsonis and Swanson 2008; Van Der Mheen et al. 2013). Here, we show
how these approaches can be extended to capture the dynamical characteristics
of extreme events. The key idea of the methodology that shall be presented in
the following sections is to identify rainfall time series measured at different
locations with network nodes and represent strong synchronizations of extreme
events in these time series by network links connecting the respective nodes.
The climatological mechanisms driving the synchronization and propagation of
extreme rainfall events are assumed to be encoded in the topology of the resulting
climate network. Different aspects of this topology can be quantified by means
of suitable network measures, and upon providing climatological interpretations
of these network measures, we will show that the spatial patterns they exhibit
reveal the underlying climatological mechanisms (Boers et al. 2013). Furthermore,
using directed and weighted networks, we will show how this approach can be
used for statistical prediction of extreme events (Boers et al. 2014a), given that the
synchronization patterns are sufficiently pronounced.

While we restrict ourselves to present its application to satellite-derived rainfall
data, the methodological framework is more general and can in principle be applied
to analyze collective synchronization patterns of extreme events in many types
of complex systems. The methodology should be considered as a general data
exploration tool that can provide the basis for building scientific hypotheses on the
mechanisms underlying the synchronization of extreme events in large, interactive
systems.
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Fig. 15.1 Topography of South America and key features of the South American monsoon system,
including the main low-level wind directions, the Intertropical Convergence Zone (ITCZ), the
South Atlantic Convergence Zone (SACZ), and the South American Low-Level Jet (SALLJ).
The geographical regions southeastern South America (SESA), southeastern Brazil (SEBRA), and
Amazon Basin are referred to in the main text

15.2 Climatic Setting

The monsoon season in South America from December to February (DJF) is
characterized by a southward shift of the Intertropical Convergence Zone (ITCZ)
and by an amplification of the trade winds due to the differential heating between
ocean and land (Zhou and Lau 1998) (Fig. 15.1). These low-level winds transport
moist air from the tropical Atlantic ocean toward the tropical parts of the continent,
where they cause abundant rainfall. Substantial fractions of this precipitation are
recycled back to the atmosphere by evapotranspiration, and the winds carry the
water vapor farther west across the Amazon Basin toward the Andes. There, the
shape of the mountain range forces the winds southward toward the subtropics
(Marengo et al. 2012; Vera et al. 2006). The specific exit regions of this moisture
flow vary considerably from the central Argentinean plains to southeastern Brazil.
These variations are associated with frontal systems approaching from the South,
which are triggered by Rossby waves of the polar jet streams (Carvalho et al. 2010;
Siqueira and Machado 2004). A dominant southward component of the flow leads
to the South American Low-Level Jet (SALLJ) east of the Andes (Marengo et al.
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2004), which conveys large amounts of moisture from the tropics to southeastern
South America (SESA). The occurrence of this wind system is associated with huge
thunderstorms (so-called Mesoscale Convective Systems Durkee et al. 2009) in this
region (Salio et al. 2007). On the other hand, if the flow to the subtropics is directed
mainly eastward, it leads to the establishment of the South Atlantic Convergence
Zone (SACZ), a convective band that extends from the central Amazon Basin to
southeastern Brazil (SEBRA) (Carvalho et al. 2004). The oscillation between these
two circulation regimes leads to the so-called South American rainfall dipole and
constitutes the dominant mode of intraseasonal variability of the monsoon (Nogués-
Paegle and Mo 1997).

15.3 Data and Methods

Data We employ satellite-derived rainfall data from the Tropical Rainfall Measure-
ment Mission (TRMM 3B42 V7, Huffman et al. 2007) with 3 hourly temporal and
0.25° x 0.25° spatial resolutions, resulting in N = 48,400 time series with values
measures in mmh ™. Daily (3 hourly) extreme events are defined locally as points in
time for which the corresponding rainfall rate is above the 90th (99th) percentile for
the corresponding time series, confined to the monsoon seasons (DJF) from 1998 to
2012.

Event Synchronization The nonlinear synchronization measure we employ is
called Event Synchronization and was first introduced in Quian Quiroga et al.
(2002). It quantifies the synchronicity between events in two given time series x;
and x; by counting the number of events that can be uniquely associated with each
other within a prescribed maximum delay, while taking into account their temporal
ordering: Consider two event series {ef‘ bi<p<i and {ej”} 1<v<! containing / events,
where eﬁL denotes the time index of the p-th event observed at grid point i. In order to
decide if two events eﬁ‘ and e; with eﬁL > e can be assigned to each other uniquely,

we first compute the waiting time dj;" := ¢}’ — ¢} and then define the dynamical
delay:
wu=1 Sup+1l quv—1 uv+1
(a0 Al A AT
_L_i;w — min 4 i 5 J JI (151)

We further introduce a maximum delay t,,x which shall serve as an upper bound
for the dynamical delay. If then 0 < dl’.; V< tl.’; " and df; " < Tmax, We count this as a
directed synchronization fromj to i:

g JU it 0< AV <t and df < T, (152)

0 else.

Directed Event Synchronization from j to i is given as the sum of all Sl’.; " (for fixed i
and j) (Boers et al. 2014a, 2015b): ‘
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ESJr := Zsfj“. (15.3)

J73Y
A symmetric version of this measure can be obtained by also counting events at

the very same time as synchronous and taking the absolute value of the dynamical
delay in Eq. (15.2),

Y _ 1 if |df;’v| < rijw and dg’u < Tmax, (15.4)
v 0 else,
and computing the corresponding sum:
sym radd
ES;™:=>"5;". (15.5)
iy

A major advantage of this measure is that it allows for a dynamical delay between
events in the original time series x; and x;. In classical lead-lag analysis (using, e.g.,
Pearson’s correlation coefficient), this is not the case, since it only provides one
single delay between the two time series, namely, the time window by which the
time series x; and x; are shifted against each other. Since the various climatological
mechanisms underlying the interrelations between time series measured at different
locations cannot be assumed to operate on one single time scale, the temporal
homogeneity assumed by a classical lead-lag analysis is not justified. Furthermore,
the identification of the correct lead (or lag) is not a well-defined problem, as there
may be several maxima of the correlation value over the range of leads or lags.

Network Construction In the following, the notations ES for the measure or ES
for the corresponding similarity matrix will be used if a statement applies to both
versions of Event Synchronization. From the matrix ES, we derive networks by
representing its strongest entries by network links. It has to be assured that these
values are statistically significant. For this purpose, we construct 10,000 surrogates
of event time series preserving the block structure of subsequent events by uniformly
randomly distributing the original blocks of subsequent events and compute ES for
all possible pairs. From the resulting histogram of values, we obtain the threshold
T%% corresponding to the 5 % confidence level. The link density of the network is
then chosen such that the smallest entry of ES that is represented by a network link
is above T%%. In terms of the adjacency matrix A, this is captured by

L y .95
Ay = ES; if ES; > 709, (15.6)
k 0 else.

Note that the values of ES have been assigned to the links as weights. Of course,
one can also set the corresponding entries of A to 1 in order to obtain an unweighted
network. In case of ES*™, the corresponding network will be undirected, while for
ES®", it will be directed.
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Network Measures On undirected and unweighted networks, we will consider
four different network measures: First, we consider betweenness centrality (BC),
which is defined on the basis of shortest network paths, i.e., the shortest sequences
of links connecting two nodes:

2o (i
BC, = st W0 (15.7)

Zl<k7éi Okl

where oy; denotes the total number of shortest network paths between nodes k and /
and oy, (i) the number of shortest network paths between k and / which pass through
node i. Since BC is a nonlocal centrality measure, we expect BC to exhibit high
values in regions which are important for the long-ranged, directed propagation of
extreme events.

Second, we are interested in the mean geographical distance (MD, Boers et al.
2013) of links at each node:

N
1 NP
MD, := oG, Z;A,jdmt(l, 7 (15.8)
J=

where dist(i,j) denotes the great-circle distance between the grid points corre-
sponding to the nodes i and j. MD should show high values in regions where
extreme events occur synchronously with extreme events at remote locations and
thus quantifies similar aspects of the topology as BC, although not based on network
paths. Therefore, to confirm our interpretation of BC, we would expect this measure
to have a similar spatial distribution as BC.

Third, we employ the clustering coefficient, defined as the fraction of neighbors
of a given node that are themselves connected:

2 ik AiAkAix

CC,’ =
D jerAifAix

(15.9)

CC measures complementary aspects of the topology as compared to the previous
two measures and should be high in regions where extreme events exhibit large
spatial coherence as, for example, due to large thunderstorms.

Furthermore, we introduce a combination of these measures, called long-ranged
directedness (LD, Boers et al. 2013). For this purpose, we calculate the normalized
ranks of BC, CC, and MD, denoted by NRBC, NRCC, and NRMD, respectively,
and put

1 1
LD; := ENRBCi + ENRMDL» — NRCC,;. (15.10)

The prefactors in this definition are motivated by the fact that BC and MD are
expected to quantify similar aspects of the network topology, while CC was
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introduced to estimate complementary properties of the network. We thus take
the mean of the normalized ranks of BC and MD and subtract the normalized
rank of CC. High values of LD should indicate regions which are important for
the long-ranged propagation of extreme events, while low values should indicate
regions where extreme events strongly cluster, but do not propagate over long spatial
distances.

On directed and weighted networks, we will consider the well-known in- and
out-strength, defined as

N N
I =3 Ay and A= Y4 (15.11)
j=1

Jj=1

On the basis of these measures, we define the measure network divergence (A%,
Boers et al. 2014a) as the difference of in-strength and out-strength at each grid cell:

AT =S — (15.12)

This measure can be used to identify source and sink regions of extreme events on
a continental scale. In order to investigate where extreme events originating from a
given source region go to, we define the strength out of a geographical region R into
anode i as

4 1
SM(R) = T > Ay, (15.13)

jE€R

where |R| denotes the number of grid cells contained in R.

15.4 Results and Discussion

We will first use undirected and unweighted networks to show that the methodology
introduced above reveals climatic features which are consistent with the scientific
understanding of the South American monsoon system. This is mainly intended
as a proof of concept. Thereafter we will show that, using directed and weighted
networks, the approach can in certain situations be used to predict extreme events.

Climatic Analysis of Extreme Rainfall We compute the measures BC, MD, CC,
and LD for undirected and unweighted networks with a prescribed link density of
2 %. These networks are derived from ES*™ computed for daily events above the
90th percentile.

BC and MD show a very similar spatial distribution, with high values over the
ITCZ, the Amazon Basin, as well as at the eastern slopes of the Andes along
the entire mountain range (Fig. 15.2a, b). These regions are in fact crucial for the
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large-scale distribution of extreme events over the South American continent: The
low-level trade winds drive them from the tropical Atlantic toward the continent
(Zhou and Lau 1998), and upon a cascade of rainfall and evapotranspiration over
the Amazon Basin (Eltahir and Bras 1993), the winds force the moist air against the
Andean slopes, leading to so-called orographic rainfall (Bookhagen and Strecker
2008). The positioning of the branch of high BC and MD values from the western
Amazon Basin along the Andean slopes toward the subtropics corresponds to the
climatological location of the SALLJ, which provides the moisture necessary for
extreme rainfall events (Marengo et al. 2004).

In contrast, the only regions over the mainland that exhibit high values of CC
(Fig. 15.2c) are SESA, where some of the largest thunderstorms on Earth occur
(Zipser et al. 2006), and the eastern coastal regions of the continent, which are
exposed to the landfall of the so-called squall lines (Cohen et al. 1995).

09

0.3

10°N

10°S

Fig. 15.2 Network measures for undirected and unweighted networks encoding the synchroniza-
tion structure of daily rainfall events above the 90th percentile of the monsoon season (DJF). (a)
Betweenness centrality (BC). (b) Mean geographical distance (MD). (¢) Clustering coefficient
(CC). (d) Long-ranged directedness
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Fig. 15.3 Network measures for directed and weighted networks encoding the temporally
resolved synchronization structure of 3 hourly rainfall events above the 99th percentile of the
monsoon season (DJF). (a) Network divergence (A.). (b) Strength out of SESA ("(SESA)),
where SESA is defined as the spatial box extending from 35°S to 30°S and from 60°W to 53°W

By construction, LD shows high values where BC and MD both show high values
and particularly low values in most parts of SESA, where CC is high. However,
LD is also relatively high in SEBRA, concisely corresponding to the climatological
position of the SACZ (Carvalho et al. 2002, 2004). These high LD values indicate
the highly dynamical character of extreme events associated with this convergence
zone.

The spatial distributions of the four measures BC, MD, CC, and LD hence reveal
these important climatological features, and our interpretation of these network
measures is thus consistent with the understanding of the South American monsoon
system (Boers et al. 2013).

Prediction of Extreme Rainfall We construct directed and weighted networks
on the basis of ESY' (cf. Eq. 15.6), computed for 3 hourly events above the 99th
percentile. Network divergence A.” of the resulting network exhibits negative
values (i.e., source regions for extreme events) over the ITCZ and the Amazon
Basin, followed by pronounced positive values (i.e., sinks of extreme events) at the
eastern slopes of the Andes (Fig. 15.3a). Surprisingly, SESA, which was described
as one of the exit regions of the low-level flow from the tropics, is a pronounced
source region of extreme rainfall. In order to reveal where these events subsequently
propagate, we compute the strength out of the spatial box denoted by SESA in
Fig. 15.3 and infer that while some extreme events propagate northeastward, there
also exits a concise signature of targets extending from SESA to the eastern slopes
of the Central Andes in Bolivia. Thus, extreme rainfall in the Bolivian Andes should
be predictable from preceding events in SESA. In Boers et al. (2014a), the authors
revealed the interplay of frontal systems approaching from the South, the Andean
orography, and the low-level moisture flow from the tropics as responsible climatic
mechanism. This interplay leads to the opening of a wind channel conveying warm
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and moist air from the western Amazon Basin to SESA. These air masses collide
with cold air in the aftermath of the frontal system, leading to abundant precipitation.
The typical propagation trajectory of the associated rainfall clusters is dictated by
the northward movement of the frontal system and its alignment with respect to
the Andean mountain range. Based on these insights, a simple forecast rule is
formulated in Boers et al. (2014a), which predicts 60 % (90 % during positive phases
of the El Nifio Southern Oscillation) of extreme rainfall events at the eastern slopes
of the Central Andes.

15.5 Conclusion

In this chapter, we showed how complex networks can be employed to reveal spatial
patterns encoding the dynamical synchronization of extreme rainfall events and
how this can be used for climatic analysis as well as to estimate the predictability
of extreme rainfall. We constructed networks on the basis of synchronization of
extreme rainfall events in South America and showed that combining the net-
work measures betweenness centrality, mean geographical distance, and clustering
allowed to identify the main features of the South American monsoon system.
Furthermore, we showed that a directed network approach can be applied to reveal
typical propagation patterns of extreme rainfall events. Specifically, a pathway from
southeastern South America to the Central Andes was revealed, which provides the
basis for predicting extreme events in the Central Andes.

Further Reading Similar approaches to the techniques described in this chapter
have been taken to study spatial patterns of extreme rainfall in the Indian monsoon
system (Malik et al. 2012; Stolbova et al. 2014). The methodology introduced here
has also been applied to reveal the specific synchronization pathways associated
with the two main circulation regimes of the South American monsoon described in
Sect. 15.2, indicating that the Rossby waves responsible for frontal systems in fact
control extreme event synchronization over the entire South American continent
(Boers et al. 2014c¢). Directed networks have in addition been used to identify the
geographical origins of extreme rainfall events in the main hydrological catchments
along the Andean mountain range in view of their potential predictability (Boers
et al. 2015b). Furthermore, the techniques presented here can be employed to com-
pare different datasets and in particular to evaluate the dynamical implementation of
extreme events in global and regional climate models (Boers et al. 2015a). While all
these approaches are static in the sense that networks are constructed for the entire
time frame available, in Boers et al. (2014b) it is shown how this can be generalized
to a dynamical analysis using sliding windows. In that study, it was revealed that
the network clustering of strong evapotranspiration events strongly depends on the
phase of the El Nifio Southern Oscillation.
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Chapter 16
Evaluating the Impact of Climate Change on
Dynamics of House Insurance Claims

Marwah Soliman, Vyacheslav Lyubchich, Yulia R. Gel, Danna Naser, and
Sylvia Esterby

Abstract The adverse effects of climate change bring increasingly more alterations
to all aspects of human life and welfare, and one of the sectors that is particularly
affected by changing climate is the insurance sector. Indeed, the year 2013 brought
a record number of claims and substantial losses due to weather-related damages,
and in the USA and Canada alone, the extreme weather events cost the insurance
industry more than 3 billion dollars. The objective of this paper is to provide
statistical data-driven insight on the (non)linear relationship between weather-
related house insurance claims and atmospheric variables and to predict future claim
dynamics accounting for changes in extreme precipitation. In this paper we propose
to employ a flexible Generalized Autoregressive Moving Average (GARMA) model
for count time series of claims, develop a new method to compare tails of the
observed and projected extreme precipitation, and evaluate the impact of climate
change on a number of house insurance claims in the GARMA framework. We
illustrate our approach by studying insurance dynamics in four Canadian cities.
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16.1 Motivation

Despite a tremendous and ever-increasing effect of climate change on the insurance
industry (Curry et al. (2012)), there exist a very limited number of studies in
statistical, climate, and actuarial literature on modeling and predicting climate-
related insurance risks (see the recent overview by Smith and Katz (2013)). Among
such recent studies is the analysis of Norwegian house insurance dynamics by Haug
et al. (2011) and Scheel et al. (2013) who develop a Bayesian hierarchical approach
to explain insurance losses due to extreme weather events at a local geographic
scale. Scheel et al. (2013) consider only a leave-one-out type of prediction, e.g.,
using the data of 1996-2006, except those for 2001, and predicting the number
of claims in 2001. Cheng et al. (2012) propose a rainfall index and study the
relationship between this index and insurance data. Future out-of-sample projections
for the number and severity of claims in Cheng et al. (2012) are then obtained from
simulating future rainfall and the associated rainfall index values.

In this project, we aim to assess the (non)linear relationship between dynamics of
weather-related house insurance claims and precipitation and wind speed, with an
overall goal to develop future projections of weather-related risks and to reduce
the financial repercussions of volatility linked to extreme climatic events. We
employ a nonparametric generalized additive approach to assess a functional form
between insurance and atmospheric data and account for both varying exogenous
atmospheric variables and serial correlation in the number of claims through the
use of a GARMA model. We also develop a new data-driven algorithm to evaluate
changes in observed vs. projected extreme precipitation and its impact on insurance
claim dynamics. We illustrate our new approach in application to house insurance
dynamics in four middle-sized Canadian cities using the observed period of 2002—
2011 and the period for climate projections as 2021-2080.

16.2 Data and Method

Our data set consists of weather-related house insurance claims in four Canadian
cities: with humid continental climate in the prairies behind Rocky Mountains
(city A), two cities in Eastern Canada under the influence of Saint Lawrence River
(cities B and C, where city C is closer to the estuary) and city D directly on Lake
Ontario. (We suppress the company’s and cities’ names due to data confidentiality.)
In considered house insurance claims, damage is caused by water entering the house
under- and above the ground, i.e., claims can occur both due to melting snow
water percolating into a basement, as well as heavy rain pouring onto a damaged
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Fig. 16.1 Observed and projected daily precipitation (mm/day) in the cities A, B, C and D

roof. We use observed daily precipitation and maximum wind speed provided
by Environment Canada and projected data for 2021-2080 from the Canadian
Regional Climate Model (CanRCM4) (Fig. 16.1). While CanRCM4 is the latest
regional downscaling model over Canada of the most recent Intergovernmental
Panel on Climate Change (IPCC) projection runs, the results in Fig.16.1 are
certainly model sensitive. Since currently we do not have data for other model
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runs for the same spatial and temporal resolution, we base our further analysis on
CanRCM4. However, in the future we plan to investigate sensitivity of the obtained
results in respect to alternative regional climate projections.

We start by evaluating the appropriate parametric form of the possibly nonlinear
relationship between the number of claims (Y) and precipitation and wind speed
(X). We employ the nonparametric method of Alternating Conditional Expectations
(ACE) (Breiman and Friedman 1985), which is based on finding the optimal smooth
transformations of regressors X such that the proportion of variation in Y explained
by X is maximized. Figure 16.2 shows the result of ACE for the four Canadian cities
where the x-axis depicts the original atmospheric variable and the y-axis depicts
its optimal ACE transformation. We find that after certain critical thresholds, the
relationship between atmospheric variables and the number of claims for all four
cities is almost linear. For example, based on the upper panel of Fig.16.2, we
select 5 mm and 45 km/h as threshold points for daily precipitation and wind speed
vs. number of claims relationship for city A and consider only days with house
insurance claims that correspond to precipitation and wind speed above the critical
thresholds. The precipitation thresholds for cities B, C and D are 1, 2 and 1 mm/day,
respectively, and the corresponding critical thresholds for wind speed are 44, 55 and
45 km/h.

Now we proceed to modeling temporal dependence in claim dynamics. Let
Yy,..., Y, be the observed daily claim counts and X; be exogenous regressors (e.g.,
precipitation, wind speed, etc.). Then, we can model the conditional distribution of
Y, givenYy,..., Y1, Xy,...,X; as

P q
g() =XB+ ) dite(Yiy) =X Bt + ) 0{e(Yiy) —g(mi—p)},  (16.1)

J=1 J=1

where g(-) is an appropriate link function; u, is a conditional mean of the dependent
variable; B is a vector of regression coefficients; ¢;, j = 1,...,p, are the
autoregressive coefficients; 6, j = 1,...,q, are the moving average coefficients;
and p and g are the autoregressive and moving average orders, respectively. In
certain cases, the function g(-) requires some transformation of the original series
Y;—; to avoid the nonexistence of g(¥;—;) (Benjamin et al. 2003). The Generalized
Autoregressive Moving Average model (16.1), GARMA(p, g), represents a flexible
observation-driven modification of the classical Box—Jenkins methodology and
Generalized Linear Models (GLM) for integer-valued time series. GARMA further
advances the classical Gaussian ARMA model to a case where the distribution of
the dependent variable is not only non-Gaussian but can be discrete. The dependent
variable is assumed to belong to a conditional exponential family distribution given
the past information of the process, and thus the GARMA can be used to model
a variety of discrete distributions (Benjamin et al. 2003). The GARMA model is
also an extension to the work of Zeger and Qagqish (1988) and Li (1994), where
Zeger and Qaqish (1988) proposed an autoregressive exponential family model
and Li (1994) introduced its moving average counterpart. Since our insurance data
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Fig. 16.2 Alternating Conditional Expectations (ACE) transformations for observed insurance
claims vs. daily precipitation and daily maximum wind speed in the cities A, B, C and D, reading
from top to bottom
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Table 16.1 Estimated : 2 2 5 D D

Cit; C] wind spee 9 9 9

GARMAO, g) model C ) gpopm gmds = 01128 02050 :

parameters. The model order : : : : —
0.024 |0.019 0.177 10.224 |0.078

g was selected by Akaike
information criterion 0.032 |0.044 0.427 |0.080 |—
0.043 |0.043 0.341 |— —

o\ »>|w

contain a substantial number of zeros and given that we deal with counts of claims,
we use the zero-adjusted Poisson distribution to model daily number of claims
(Stasinopoulos and Rigby (2007) and Gupta et al. (1996)). Table 16.1 shows the
estimated GARMA coefficients for the four cities.

To use the developed model in predicting the change in number of claims, we
evaluate how the exogenous atmospheric regressors change over time. Particularly,
we are interested in the change of extremes and how many more days with
such extremes we expect to see in the future. Given that we find no substantial
change in the extremes of the CanRCM4 projected wind speed, we focus on the
estimated annual change in the number of claims due to the changes in extreme
precipitation over the forecasting horizon. To assess the impact of changes in
extreme precipitation, we propose the following quantile-based algorithm:

1. Select a threshold p,, such that we compare only the upper 100¢ % portion of the
observed and projected tails, e.g., we set o of 0.01.

2. Set a step d such that 0 < d < « and « is a multiple of d, e.g.,d = 0.001.

3. Leti = 1,...,a/d. Then define the average change in observed vs. projected
precipitation corresponding to the 1 — « + id- and 1 — & + (i — 1)d-th quantiles
as

fest fest obs obs
O tia T i) O i + X 0 —na)
i = 3 — 5 )

4. Based on model (16.1):

a/d
Aclaims = Z exp {,BPCpPi} x d x length of period in days,
i=1

where B is the estimated coefficient for precipitation in Generalized ARMA
model 16.1 (see Table 16.1 for estimates for the specific cities).

According to the results in Fig. 16.3 and Fig. 16.4, the number of house insurance
claims will rise in all four cities. The highest in city A is 15.7 % during 2061-2070,
15.0 % in city B during 2071-2080 and 47.6 % increase in city C during 2051-2060
(Fig. 16.3).
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Fig. 16.3 Projected increase in the number of house insurance claims, conditionally on the
CanRCM4 future projections of precipitation, with the baseline of 2002-2011
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Fig. 16.4 Forecasted percentage of annual increase of the number of house insurance claims,
relative to the baseline of 2002-2011 and conditional on the CanRCM4 projections of precipitation
in city D

The projected increase of the number of insurance claims in city D (Fig. 16.4)
is the highest among the four cities and is up to 61.7 % increase in 2031-2040,
compared to the baseline of 2002-2011. There might be a number of factors leading
to such substantial differences in projected dynamics of future insurance claims
such as varying city infrastructure, building codes, age of houses and even city
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population socio-demographics. We believe that the two most likely reasons for
surge of claims are low elevation and proximity to water bodies. Indeed, city D has
one of the lowest elevations among the four considered cities and is located directly
on the Lake Ontario.

16.3 Conclusions

In this paper we propose a new methodology to account for the impact of exogenous
atmospheric variables on a number of house insurance claims. Our results indicate
that the number of claims in all four considered cities will increase, with a range
of annual increase from 3.8 % for city B in the period of 2071-2080 to 61.7 %
for city D in the period of 2031-2040, which supports findings of Cheng et al.
(2012). The highest overall increase in the number of claims is projected for city
D which has the lowest elevation among the four cities. In the future, we plan to
map the projected house insurance dynamics over North America through spatial
interpolation. In addition, we plan to look at different climate models to see if we get
different results using the same analysis. We also plan to quantify different sources
of uncertainty in forecasting insurance dynamics, e.g., by considering ensembles
of future climate scenarios, evaluating the effects of GARMA approximation, and
downscaling insurance and climate data.
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Chapter 17
Change Detection in Climate Time Series Based
on Bounded-Variation Clustering

Mohammad Gorji Sefidmazgi, Mina Moradi Kordmahalleh,
Abdollah Homaifar, and Stefan Liess

Abstract Climate time series are generally nonstationary which means that their
statistical properties change with time. Analysis of nonstationary time series
requires detecting of change points between a set of clusters, where model of
time series in each cluster has different statistical parameters. Common change
detection methods are based on assumptions that may not be valid generally.
Bounded-variation clustering can solve the change detection problem with mini-
mum restrictive assumptions. In this paper, this method is employed to detect the
pattern of changes in the Pacific Decadal Oscillation and the piecewise linear trend
of US temperature. An optimal number of the change points are found with the
Bayesian information criterion.

Keywords Time series ¢ Non-stationary ¢ Change detection ¢ Abrupt climate
change * Autocorrelation

17.1 Introduction

Studying climate time series such as temperature and precipitation requires model-
ing with statistical techniques. Although the earth’s climate has changed gradually
in response to both natural and human-induced processes, it is known that climate
may have abrupt change, i.e., a large shift may happen in climate that persists for
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years or longer. Example of these changes includes the changes in average tem-
perature, patterns of storms, floods, or droughts over a widespread area (Lohmann
2009). Climatic records show that large and widespread abrupt changes have
occurred repeatedly throughout the geological records (Alley et al. 2003). Many
studies have analyzed climate time series in the stationary framework; i.e., the
statistical parameters are assumed to be constant over time. However, stationary
assumption of climate time series is invalid considering various internal dynamics
and external forcings (Milly et al. 2008). Thus, statistical techniques based on
stationary assumption should be modified to reveal the characteristics of the abrupt
climate change. Nonstationary time series have a set of clusters (regime, phase, or
segment), while the model of each cluster is stationary. These clusters are separated
in time by some change points (breaks). The analysis of nonstationary time series,
including finding the change points between the clusters, is an ongoing research area
in the climate data analysis.

Several approaches were proposed in the literature for the change detection in
climate time series. Brute-force search was performed over all candidate points to
find the best change points (Liu et al. 2010). However, this method is not applicable
for longer time series with high number of change points due to huge volume of
computations. The change points were estimated by Bayesian inference, where
the change points and other model parameters were assumed as random variables
(Ruggieri 2013). Kehagias and Fortin (2006) used a method based on hidden
Markov models, assuming that the time series was generated by a Markov process.
Then, the unknown parameters were determined by the maximum likelihood.
However, statistical assumptions on the data and the change points in Bayesian
and Markov methods may not be true in general. Several statistical tests were used
in atmospheric studies such as sequential Mann—Kendall, Bai—Perron, and Pettitt—
Mann—Whitney to find the change points. However, the results of these tests are
valid only if the data are not serially correlated (Lyubchich et al. 2013). For the
correlated time series with only one change point, proper hypothesis tests were
introduced (Robbins et al. 2011).

The bounded-variation (BV) clustering (Metzner et al. 2012) is another technique
which finds the change points in nonstationary time series. In this method, instead
of statistical assumptions on the data or the change points, a reasonable assumption
is made such that the total number of the change points between the clusters is
bounded. The BV clustering is computationally efficient and is also applicable
for the serially correlated time series. Assuming a different linear trend (Horenko
2010a) and a vector autoregressive (Horenko 2010b) in each cluster, the BV
clustering was used to analyze the climate dynamics in the ERA-40 reanalysis data.
The BV clustering was used in Gorji Sefidmazgi et al. (2014c) for analyzing the
climate variability of North Carolina. The effect of covariates on nonstationary time
series was analyzed by the BV clustering (Gorji Sefidmazgi et al. 2014a; Horenko
2010b; Kaiser and Horenko 2014).

In this paper, we have shown the applicability of the BV clustering by two
numerical examples: the pattern of changes in the Pacific Decadal Oscillation (PDO)
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and the US land surface temperature. Moreover, the Bayesian information criterion
(BIC) is applied to find the optimal number of the change points and the number of
clusters.

17.2 Dataset

The bias-adjusted monthly average temperature of the US continental stations is
derived from the US Historical Climatology Network database (http://cdiac.ornl.
gov/epubs/ndp/ushcn/ushen.html). The period 1900 until 2013 is selected, and the
stations with continuous missing data for more than 4 months are eliminated. Then,
the missing data in the remaining 1,189 stations are filled by interpolation, and also
the mean cycle of time series is removed to eliminate the effect of seasonality.
Annual time series of the PDO for 1900-2013 is from NOAA database (http://
www.esrl.noaa.gov/psd/data/climateindices/list).

17.3 Method

The BV clustering might be applied in two cases, where the model of the time
series in each cluster is in the form of a mathematical function (such as polynomial
or differential equation) or a statistical distribution (such as Gaussian, Gamma, etc.).
The change points and the parameters of each cluster are determined by solving a
least square/maximum likelihood (LS/ML) and a constrained optimization.

Let x(#) be a nonstationary time series with M clusters. The first case is when
the model in each cluster is a function of time (and other covariates u(¢) if exist),
ie,x() =fx@—1),....x¢t—p),u(t—1),...,u(t—n),t,a,). Here, f is the
model of the time series, «,, is the set of parameters in the mth cluster where
m € {l,...,M}. Also, p and n are the order of the lagged outputs and the
covariates, respectively. In the second case, f is a probability density function,

e, PX =x(t)) = f (x(t)
dn(x(1)) is the distance between the time series at time ¢ € {1, ..., T} and the model

of the mth cluster, which can be defined by the Euclidean distance or the likelihood
function:

u(r),t, C\{m). For these cases, model distance function

dy (x(1) = ||x()) —f (x(t = 1) ... x(t=p)u(t—1).....u(t—n).t,0)|

(17.1)
dyy (x(1)) = £ (f (x0)|u(. 1.0, )) (17.2)
where ||.| and £(.) are the L,-norm and the negative log-likelihood operators,

respectively. Now, the change detection problem can be defined as a minimization:


http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http://www.esrl.noaa.gov/psd/data/climateindices/list
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T M
mind > n(0)-dn (:(0) (17.3)

t=1 m=1

In (17.3), () € {0, 1} is the cluster membership function indicating whether the
datum at time ¢ belongs to the mth cluster or not. The change points are the times
when the values of p,,(#) are changed. For example, if £,(50) = 0 and p,(51) =1,
then the cluster 2 is started at the change point = 51. Clearly, the datum at each
time belongs to only one of the clusters, and hence,

M
Y um® =1 t={1,....T} (17.4)
m=1

Now, we augmented the model distance functions in D,, = [d,, (x(1)) , d,, (x(2)),
.+ ydy (x(T))], and also the cluster membership functions in U,, = [ (1), 1w (2),
s U(T)] for m = {1, ..., M}. The optimization in (17.3) is rewritten as below
(Metzner et al. 2012):

M
min Y Dy.Up" (17.5)
"m=1

ms

The BV clustering solves the optimization (17.5) in two iterative steps using the
coordinate-descent algorithm. In the first step, it assumes that cluster membership
function w,,(¢) is known and the cluster parameters «,, are found. In the second step,
o, are fixed and w,(¢) is determined.

In the first step, assume that w,,(f) and the change points are known. The data
belong to each cluster are separated, and the parameters «,, are found by LS/ML.
Using the estimated parameters «,,, the model distance function d,,(x(¢)) is deter-
mined using (17.1) or (17.2). In the next step, the cluster membership function p,,(#)
should be found. The assumption that the number of the change points is bounded
should be added to the problem formulation with imposing constraints on [, (?).
First, a counter ¢,,(¢) € {0, 1} is defined which is increased by one unit when i, (¢)
changes from O to 1 or vice versa (i.e., on the change points) (Metzner et al. 2012):

U G+ D)= (1) — (@) <0 m=1,....M
—h + D)+ () —gm(®) <0 t=1,...,T—1
(17.6)

|:u*m (t+ 1)_Mm(t)| = qm(t) - {

In order to limit the total number of the change points to a constant O, a constraint
on ¢,(t) is added in the following form:

-1 M

D gul =20 17.7)

t=1 m=1
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Now, q,, = [gm(1),gm(2),...,gm (T — 1)] is defined to record g,,(r) over time
and is added to the set of unknown parameters. By defining (17.8) and (17.9), (17.5)
is rewritten in (17.10) to find w,,(f) (Metzner et al. 2012):

D=|D/D,...Dy 0...0 (17.8)
—— —
TXM (T—1)xXM
U=|UU ..U/ Q@ ... Gy (17.9)
TXM (T—1)xM
minU.D” (17.10)
U

All the elements of unknown vector U in (17.10) are either 0 or 1. Thus,
this optimization is a constrained optimization in the form of a binary integer
programming. The set of linear constraints are (17.4), (17.6), and (17.7) which
include 2M x (T — 1) inequality and 7 + 1 equality constraints. There are standard
methods for solving constrained optimization using some toolboxes in Matlab or R
(Gurobi 2014). Once U is found, Wm(?) for all of the clusters and the change points
can be determined.

In conclusion, the BV-clustering algorithm includes the following steps: first, a
random initial p,,(?) is selected such that it satisfies (17.4). Then, the parameters of
each cluster are calculated by the LS/ML, and the model distance function d,,(x(t))
is determined by (17.1) or (17.2). Then, the optimization problem in (17.10) is
constructed and solved with the constraints of (17.4), (17.6), and (17.7). The LS/ML
and the constrained optimization steps are repeated for some predefined number of
iterations (usually five). This procedure converges to at least a local solution of
the optimization in (17.3). For finding the global solution, the algorithm should be
started with different initial random ,,(?).

17.4 Model Selection

The number of clusters M and the change points Q should be set in the BV
clustering. In the time series literature, the number of change points is usually found
by information theory methods such as the BIC (Jandhyala et al. 2013). The BIC is
a well-known approach to perform a trade-off between the goodness of fit and the
complexity of models and to prevent over-fitting/under-fitting.

The index for the detected cluster at time ¢ is determined by m*(f) =
argmax (u,(¢)) for t = {1,...,T}. By obtaining the cluster parameters using

the maximum likelihood, the minimized value of the negative log-likelihood V and
the BIC are determined by
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V= XT:E (x0

=1

M([),t, am*(t)) (17.11)

BIC (M, Q) = 2V 4 In(T) x (number of estimated parameters ) (17.12)

Otherwise, by obtaining the clusters parameters by the least square method, the
residual w(?) is determined by

w(t) = x(t) —f(x(t—1),...,x(t—p),u(t—1),...,u(t—n),t,otm*(,))
(17.13)

Adding the assumption that the residual follows a normal distribution with a
constant variance, the loss function V and the BIC are found (Hastie et al. 2009):

(2w0)
V=ln| —(— ~ - (17.14)

BIC(M,Q) =T x V + In(T) x (number of estimated parameters ) (17.15)

Assume that the number of parameters for each cluster is w. For example, the set
of parameters for a time series with Gaussian distribution in each cluster includes
the mean and the variance, and thus w = 2. Hence, in addition to Q change points,
we need to estimate w parameters for each of the M clusters:

number of estimated parameters = M x o + Q (17.16)

The BV clustering should be applied to the data with various possible values of M
and Q. Finally, the model with the smallest BIC is chosen.

17.5 Results and Conclusion

In this section, we applied the BV-clustering method on two time series, the PDO
and the US surface temperature. It is well known that the PDO has some regimes
with different mean values (Rodionov 2006). Assume that the model of each cluster
is a normal distribution N(p,,, 0,,%). The distance function is defined as d,, (x(f)) =
—1/2[in 27) 4 In (0,s%) + (x(t) — pm) /0m?] Which is equivalent to the negative
log-likelihood of the normal distribution. Using the maximum likelihood, the mean
and the variance of each cluster are found similar to the parameters of the mixture
models (Hastie et al. 2009):
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The result of the change detection is shown in Fig. 17.1, where three change points
in 1948, 1976, and 2007 are found among the three clusters. The models of the time
series in [1948-1976] and [2007-2013] are the same. These results are similar to
the change points found in (Rodionov 2006), while no prior knowledge about the
minimum length of the clusters is necessary in the proposed approach.

The second example is the analysis of the US average temperature where the
data are serially correlated. It is known that piecewise linear trend with the first
order autoregressive (AR(1)) residuals is better than the single linear trend for the
surface temperature in the sense of the BIC. Moreover, the trend is not necessarily
continuous at the break points (Seidel and Lanzante 2004). Assume that the model
of each cluster is a linear trend plus AR(1) noise. Thus, x(¢) = Bo,, + Bim-t + €(t)
and £(f) = pm.€ (t — 1) + w(r), where w(t) is the white noise. The model distance
function is defined as

d (x(1)) = [[[x(®) = (Bowm + Bimt)] — o [x (t = 1) = (Bow + B (t — D17
(17.18)

If p,, = 0, then the linear model parameters B¢ and B, can be found in a closed
form using ordinary linear square (Gorji Sefidmazgi et al. 2014b). However, in the
case of p,, # 0, no closed form solution exists and these parameters should be
determined by the feasible generalized least square. Results of the BV clustering
for average temperature show that there are M = 2 clusters with one change point in
1958. Figure 17.2 shows the spatiotemporal pattern of the linear trends in each of the
clusters. Figure 17.3 shows the piecewise linear trend in one of the stations. It can
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Fig. 17.2 (a) Linear trend of temperature in 1,189 stations in cluster 1 during 1900-1958. (b)
Linear trend of temperature in cluster 2 during 1958-2013
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Fig. 17.3 Anomaly of average temperature in Boulder, CO, and its piecewise linear trend. The
linear trend increased after the change point of 1958
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be seen that the linear trends increased after 1958 in most of the areas, especially
over the eastern and central sections of the USA. Finding relations between this
change point and existing physical phenomena is difficult, since there are many
anthropogenic and natural factors contributing to the climate variability. However,
common breaks in the trend of the global temperature and the anthropogenic
forcings are reported in the early 1960s (Estrada et al. 2013). This fact can establish
a direct relationship between the human effects on altering the long-term trend of
the temperature.
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Chapter 18
Developing an Event Database for Cutoff Low
Climatology over Southwestern North America

Jeremy Weiss, Michael Crimmins, and Jonathan Overpeck

Abstract Cutoff lows (COLs) can impact southwestern North America with heavy
rainfall that leads to flooding. Despite the societal challenges presented by this
weather phenomenon, there has been no recent study of COLs focused on this
region. This information need, in combination with the current availability of large,
multivariate atmospheric datasets, offers a clear data mining and applied research
opportunity. Here, we describe our method to produce an objective, physically
based algorithm that identifies COLs in reanalysis data and apply this method to
a known COL event. Results suggest that the initial algorithm is too selective for
adequately identifying COLs and needs additional adjustments in order to resolve
the different spatial scales of COLs and reanalysis data. We further discuss the
attributes of information extracted through this data mining approach that will be
used to populate an event database for COL climatology over southwestern North
America, as well as the verification of individual COL events. Integration of our
COL event database with other data mining approaches has great potential to expand
our currently limited knowledge on this important weather phenomenon.
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18.1 Motivation

18.1.1 The Importance of Cutoff Low-Pressure Systems over
Southwestern North America

A cutoff low (COL) is “[a] closed upper-level low which has become completely
displaced (cut off) from basic westerly current, and moves independently of
that current. COLs may remain nearly stationary for days, or on occasion may
move westward opposite to the prevailing flow aloft” (wl.weather.gov/glossary;
Fig. 18.1). Broad-scale studies have identified southwestern North America and
adjacent areas of the eastern Pacific Ocean (henceforth Southwest) as one of the few
regions in the northern hemisphere where COLs occur more frequently, particularly
during the warmer months of the year (Bell and Bosart 1989; Kentarchos and Davies
1998; Nieto et al. 2005).

Fig. 18.1 Example of a COL at 500 mb off of the Californian coast on September 30, 1976. Over
the coming days, this COL would help steer Hurricane Liza from the eastern tropical Pacific Ocean
into the Gulf of California where the hurricane caused numerous deaths and substantial damage in
Baja California Sur (Smith 1986). This daily weather map is from http://docs.lib.noaa.gov/rescue/
dwm/data_rescue_daily_weather_maps.html


http://docs.lib.noaa.gov/rescue/dwm/data_rescue_daily_weather_maps.html
http://docs.lib.noaa.gov/rescue/dwm/data_rescue_daily_weather_maps.html
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COLs can produce heavy rainfall that leads to flooding in isolation or in
combination with other synoptic features such as shortwave troughs, deep troughs,
or tropical cyclones (Douglas 1974; Maddox et al. 1980; Smith 1986; Hirschboeck
1987; Webb and Betancourt 1992). Examples of COL-related flooding in the
Southwest include Jimmy Camp Creek near Fountain, Colorado, and East Bijou
Creek at Deer Trail, Colorado, in June 1965 and across central and southern Arizona
in September 1970 (Hirschboeck 1987; Schwarz and Hansen 1981). At least in
central and southern Arizona, parts of the state that include the metropolitan areas of
Phoenix and Tucson, COLs historically have played a role in generating the larger
annual floods as well (Hirschboeck 1988). Furthermore, the ability of COLs to steer
tropical cyclones and associated moisture from the eastern tropical Pacific Ocean
into the Southwest has led to some of the most deadly and devastating floods on
record, such as that which occurred across southeastern Arizona in October 1983
(Smith 1986; Webb and Betancourt 1992).

There has been no recent, regional-scale analysis of COLs focused on the
Southwest. In order to know how this important weather phenomenon associated
with precipitation extremes has varied in space and over time across this region,
development of an event database for COL climatology is needed.

18.2 Method

18.2.1 Weather, Climate, and Data Mining

A rapid increase in both the amount and types of weather and climate data over
recent decades (Overpeck et al. 2011) provides numerous and diverse data mining
opportunities (Ganguly and Steinhaeuser 2008). For example, new methods in
spatiotemporal data mining show promise in discovering useful insights for a wide
range of weather and climate topics, including global teleconnections between sea
surface temperatures and precipitation (Lin et al. 2007), drought variability (Collier
and McGovern 2008), and the prediction of regional temperature and precipitation
(Steinhaeuser et al. 2011). Other data mining studies on tornado formation (Gagne
et al. 2012; McGovern et al. 2014) and convective turbulence (McGovern et al.
2014) are directed at improving severe weather forecasting. Such efforts not only
can lead to better understanding of weather and climate phenomena but also
generate information valuable to society.

Some data mining approaches identify salient geophysical patterns related to
weather and climate phenomena and the relationships between these patterns
(Gagne et al. 2012; McGovern et al. 2014). Such techniques apply rule-finding
algorithms to large, multivariate datasets in order to generate a subset of variables
that are best in predicting a given phenomenon. In the case of our Southwest
COL event database, and as described in the following section, we specify in
advance a subset of atmospheric variables and the relationships among them to
be used in predicting the presence or absence of individual COLs. Although our
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data mining approach is relatively simple, it nonetheless initiates the effort to
discover new insights about a weather phenomenon of societal importance from
large, multivariate atmospheric datasets.

18.2.2 Algorithm to Identify COLs in Reanalysis Data

In constructing our algorithm, we draw on previous studies that have published
slightly varying methodologies for identifying and tracking COLs in reanalysis
data using geopotential height, temperature, and wind from different middle- and
upper-level isobaric surfaces or atmospheric levels (e.g., Nieto et al. 2005; Reboita
et al. 2010). Reanalysis is an approach to generate atmospheric data through models
that assimilate observations. Common to these published methods is a multiple-step
process based on the conceptual model of a COL. These methods have compared
favorably with subjective visual analysis and appear to be reliable (Nieto et al. 2005;
Reboita et al. 2010).
Our algorithm initially includes the following steps:

1. Identify local geopotential height minima in order to start determining a closed
cyclonic circulation. With reanalysis data, this entails selecting grid points that
have geopotential height lower than at least three-quarters of the immediately
surrounding grid points (Fig. 18.2). The algorithm will retain these selected grid
points if they are at least 10 geopotential meters lower than the heights of the
surrounding grid points.

2. Ensure directional changes in zonal winds to the north to confirm that the
circulation is cut off from the westerlies. Zonal wind needs to be easterly at any
of the immediately adjacent grid points to the north in order for the algorithm to
continue retaining the previously selected grid points that are local geopotential
height minima (Fig. 18.3).

3. Establish that geopotential height minima cut off from the westerlies are colder
than the surrounding grid points. Equivalent thickness — the difference in
temperature between two isobaric surfaces — at grid points immediately east
of these minima needs to be higher than that of the minima (Fig. 18.4). This
confirms a thickness ridge downstream from the center of the COL.

4. Verify the presence of a downstream baroclinic zone. The grid points immediately
east of the retained geopotential height minima must have a thermal front
parameter value higher than that of the minima (Fig. 18.5). The thermal front
parameter is defined as the change of the temperature gradient in the direction of
the temperature gradient.

18.2.3 Southwest COL Event Database

Output from the application of our algorithm to reanalysis data will populate a
Southwest COL event database. For each COL identified, we will store its attributes
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Fig. 18.2 Illustration of step 1 of the initial algorithm to identify COLs in reanalysis data. The
red outline of a grid cell marks a potential COL center. Map values are based on NCEP/NCAR R1
daily reanalysis data (Kalnay et al. 1996) at 500 mb for September 30, 1976, and correspond to the
example COL in Fig. 18.1

of day, month, and year, latitude and longitude, and isobaric surfaces of occurrence.
Although not presented here, it is also possible to generate derivative information
such as size (i.e., horizontal distance across the cutoff circulation at individual
isobaric surfaces), depth (i.e., vertical distance between the uppermost and lowest
isobaric surfaces of occurrence), lifetime, and location (i.e., latitude and longitude)
of onset and dissipation (e.g., Oakley and Redmond 2014).

18.3 Evaluation

18.3.1 Example COL Event on September 30, 1976

Based on the single case of the previously identified COL event on September
30, 1976 (Smith 1986; Fig. 18.1), our initial algorithm identifies a COL only at
the 300-mb isobaric surface (Table 18.1). However, adjustments to the algorithm
may allow for valid COL identification at additional atmospheric levels. For
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T T
1397 1404 1410 1416 ) 9
] ] [ ] [ ] L] 1410
1407 1411 1416 1418 1 b8 |
. ® . . 0 -
equivalent
1413 1416 1418 1417 thickness  p4|
) SIa. s ~ 500-600mb
Pacific Ocean m)
1422 1423 1421 1416 14 1411 1418 1424 1428 ba
[ ] L ] [ ] L ] [ ] [ ] [ ] L ] L —
1429 1427 1421 1411 140258 27 1432 ba
. . a . YR 0 o W se
— B
1432 1426 1414 1400 1389 428 1434 | COL center b5
. L ] L ] . L] [ ] L ] L L L E
1435 1427 1412 1356 1385 1441
. . ° . . °
1443 1436 1422 1405 1396 1400 1415 143 1446
. . . . . ° . . 30°
]
1451 1447 1437 1424 1417 1419 1430 1441
. . . . ® ® . @
|| 1451 1451 1447 1439 1434 1435 1440 1444 1446
L UM . ° . . . . . °
0 1450 SV450" 1449 o447 Jlada
[0} 130900 mi 120" W
- 1 n 1 n 1

Fig. 18.4 As in Fig. 18.2, but for step 3 of the initial COL-identifying algorithm and utilizing
NCEP/NCAR R1 daily reanalysis data at 500 and 600 mb
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Fig. 18.5 As in Fig. 18.2, but for step 4 of the initial COL-identifying algorithm

instance, the algorithm identifies a COL at additional middle-level isobaric surfaces
if geopotential height minima instead are simply less than the heights of the
surrounding grid points (e.g., Fig. 18.2). Requiring these minima to be at least 10
geopotential meters lower than the heights of the surrounding grid points may be too
selective for the identification and tracking of COLs (Oakley and Redmond 2014).
Other adjustments to the algorithm steps that concern downstream thickness ridges
and baroclinic zones also may be warranted in order to better match the spatial scale
of a COL with that of reanalysis data (Table 18.1). Horizontal grid-point spacing
of the NCEP/NCAR R1 daily reanalysis data used in this example is approximately
210 km (Kalnay et al. 1996).

18.3.2 Beyond the Identification of Known COL Events

In addition to the example COL event on September 30, 1976, that we examine
above, there are several other known COL events over the Southwest (e.g., Smith
1986). Output from the application of our initial algorithm to these additional events
will allow us to improve our understanding of COL characteristics further, to relate
COL characteristics to reanalysis data better, and to modify the algorithm more
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Table 18.1 Algorithm results based on NCEP/NCAR R1 daily reanalysis data (Kalnay et al. 1996)
at several isobaric surfaces for September 30, 1976

Step 1 Step 2 Step 3 Step 4
Geopotential Easterly Downstream | Downstream
Isobaric height (gph) winds to thickness baroclinic
surface (mb) | minimum? | Lat (°N) |Lon (°E) | the north? | ridge? zone?
200 Yes 32.5 235.0 Yes No* Yes
250 Yes 32.5 235.0 Yes No* Yes
300 Yes 32.5 235.0 Yes Yes Yes
400 No® 32.5 235.0 Yes Yes No*®
500 No® 325 235.0 Yes Yes No*®
600 No® 325 237.5 Yes Yes Yes
700 No® 325 237.5 Yes Yes Yes
850 No® 30.0 237.5 Yes Yes No*®
925 No® 32.5 235.0 Yes No¢ No®
1,000? No® 32.5 235.0 Yes n/a No®
No® 30.0 235.0 Yes n/a Yes

Results at the 500-mb isobaric surface correspond to the maps in Figs. 18.1, 18.2, 18.3, 18.4,
and 18.5

2gph minimum value at two adjacent grid points

boph minima occur at these isobaric surfaces when condition of >10 gpm from surrounding gphs
is removed

“equivalent thickness is not higher immediately to the east but equal

das in ©, but with equivalent thickness higher further to the east

¢downstream baroclinic zone is not immediately to the east, but further to the east

effectively. We plan to apply the refined algorithm to reanalysis data on days for
which it is unknown whether or not a COL occurred. This model development
process is not unlike that in data mining of dividing data into training and test sets
(e.g., Steinhaeuser et al. 2011).

We plan to verify how well our refined algorithm identifies unknown COLs in
three different ways. We will check algorithm output against NOAA daily weather
maps (e.g., Fig. 18.1). We visually will compare identified COLs to geopotential
height, temperature, and wind fields from corresponding reanalysis data in the
context of the conceptual model of a COL, as in Figs. 18.2, 18.3, 18.4, and 18.5.
In addition, we will validate events in our COL database against a database of
Southwest flood events currently being developed at the University of Arizona
that includes synoptic conditions such as COLs that are associated with individual
floods (K. Hirschboeck, personal communication). For example, the COL event
on September 30, 1976, is coincident with flooding in the region that spanned
September 25 through October 2.

Additional data mining approaches could help discover new and relevant insights
into COLs over the Southwest. For example, neural network-based self-organizing
maps are an unsupervised algorithm that can classify geopotential height fields
and identify key circulation patterns and dominant modes of variability related
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to discrete weather events such as COLs (Cavazos 2000; Crimmins 2006). Also,
our Southwest COL event database could be used as input for machine learning
techniques that further understand and improve forecasting of COLSs, as has been
done with tornado formation (Gagne et al. 2012; McGovern et al. 2014). Integration
of data mining approaches such as these with our Southwest COL event database has
great potential to expand our currently limited knowledge on this important weather
phenomenon.
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Chapter 19
Detecting Extreme Events from Climate Time
Series via Topic Modeling

Cheng Tang and Claire Monteleoni

Abstract We propose a topic-model-based approach to define and detect patterns
corresponding to extreme climate-related events over different regions around the
globe from the time series data of various climate variables. While topic models are
popular for tasks such as natural language processing, bioinformatics, and computer
vision, we are unaware of their applications to modeling climate extremes. Inference
from our model can be used to construct climate extreme indices, predict disastrous
extreme events such as drought and floods, and understand the influence of climate
change on climate extremes.

Keywords Climate extremes * Extreme events ¢ Topic modeling ¢ Latent Dirich-
let allocation * Unsupervised learning

19.1 Complex Climate Extreme Events

Extreme climate-related events and resulting disasters, such as droughts, floods,
and wildfires, can have huge impacts on society (Monteleoni et al. 2013). Under-
standing how climate change affects extreme events is a grand challenge in climate
science (World Climate Research Programme 2013). To rigorously study extreme
events, such as finding covariation among different climate extremes and their
relation to other climate phenomena and making predictions of their occurrences,
one needs to first quantitatively define them. We propose a topic-model-based
approach to define extreme climate events of various kinds.

The 2012 special report of the IPCC on extreme events (Special Report of the
IPCC 2012) stresses the importance of understanding, tracking, and preventing
disastrous climate extremes. Much past work has focused on studying climate
extremes using the statistical definition of an extreme event: a subset of sample
space with outcomes exceeding or falling below a threshold, i.e., tail events (Beirlant
et al. 2004). Indeed, statistical approaches built on tail events, namely, the extremal
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models, have a long tradition and a rich theory. They are canonically used to fit the
distributions of univariate extreme variables and to understand the relation between
multivariate extreme variables (see Sect. 19.2 for further discussion). However, there
is a gap between the commonly used definition of an extreme event and one that is
impactful to our society. For example, while precipitation falling below a certain
threshold is an extreme event canonically studied, a drought is an extreme event
impactful to humans (e.g., through its influence on agriculture). Moreover, a climate
extreme in the latter sense can grow out of non-extreme climate attributes (Special
Report of the IPCC 2012), which are excluded by extremal models.

We focus on studying extreme climate events that have an impact on society
and we develop a method to simultaneously define extreme events of different types
from historical climate data. To achieve this goal, we need to overcome the following
difficulties:

1. We need to quantify an extreme climate event without knowing the underlying
physical mechanism that generates it.

2. Our historical data is not labeled with extreme events.

3. Each type of extreme event needs to be defined differently.

The following assumptions based on our intuitive understanding of extreme events
are key to our approach: First, each extreme event is associated with an aggregated
impact from its relevant climate variables. Second, the association between climate
variables and a type of extreme event do not differ spatially (e.g., the set of climate
variables related to “drought” should be the same across different regions), given
that the climate variables for each region are measured locally. Finally, we observe
that each type of extreme event can manifest different degrees of severity (e.g., “light
drought” vs. “heavy drought”).

19.2 Our Approach

Given our assumption that a disastrous extreme event is a complex phenomenon
involving multiple climate variables, we propose to define it as a mixture of (a
discrete probability distribution over) climate descriptors, /;, where a climate
descriptor is defined to be the discretized evaluation (according to mean deviation)
of a climate variable in a short time span, 5.1 Moreover, besides extreme events, we
define any mixture of climate descriptors as a climate topic, 3,, arow of a stochastic
matrix . A climate topic is thus capable of representing both extreme and non-

TAs an example, each variable of a time span s can be discretized into too low, normal, and too
high according to its deviation from typical value (mean) calculated from a longer time epoch E
over a geographical region . A description of how we obtain /, for each month of E over each
geo-location from climate data is given in Sect. 19.3.
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extreme climate events (e.g., a climate topic can be “light drought,” “no drought,”
or “severe flood” ). The relation between climate topics and climate descriptors can
be formally described based on our assumptions:

» Each realized climate topic #, € {B,}, in a particular time span s is defined
as a random mixture of realized climate descriptors, /,,.

* The collection of climate topics taking place in a region / during a time
epoch E (longer than s) captures the climate patterns of /.

» The likelihood of having each type of climate topic differs by regions but
does not vary in a time epoch E within a fixed region /.

Our intuitive assumptions above can be formalized as a topic model. Topic
models arise from the practical need to automatically summarize text data and
categorize documents. Such problems have a long history in data mining, natu-
ral language processing, and social sciences. An earlier method latent semantic
indexing (LSI) (Deerwester et al. 1990) uses singular value decomposition to
project the documents, originally represented by a word-document matrix, into a
low-dimensional subspace (i.e., the latent semantic-document matrix), so that the
least-squared error between the original and the projected matrix is minimized.
Later, theoretical justification of the empirical success of LSI was derived based on
a probabilistic model of the data-generating scheme, which is called probabilistic
LSI (Papadimitriou et al. 2000). Improving on previous results, Blei et al. (2003)
developed the latent Dirichlet allocation (LDA), the first and simplest topic model,
which we adopt to completely specify our model. An analogy between our model
and the topic model for text data can be found in Fig. 19.1.

19.2.1 Modeling Climate Topics Using LDA

Before giving the formal definition, we need to define a few more terms: The set of
all climate descriptors I,,’s is denoted by 1, with |I| = V. The subset of I observed
over a geographical region / in time epoch E (with E = Us) is denoted by /(/), with
[I(l)] = N. Let B denote a K x V matrix. Each row of 8 specifies a distribution
over elements of /. Each 7, corresponds to a realization of a topic, corresponding to
arow of 8. We use #(I) to denote the subset of topics presented in region /, and let
6(l) = p(t,|]), the prior over the topic distribution for each location. LDA specifies

ZRicher model structures are added later in order encode bias from our knowledge of the data and
problem. See Zhu and Xing (2010), Agovic and Banerjee (2012), Hennig et al. (2012), and Blei
and McAuliffe (2007).
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Document
(bag of words)
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Words

Geo-locations

prors 018384
sh§ L1576

Year 1971

* | Humidity extremely low

Climate
Attributes

Soil moisture content extremely low

Fig. 19.1 The upper figure (Blei 2012) describes a topic model for a text document, with inferred
latent topics. The lower figure describes our modeling of climate events observed at some location
over a fixed epoch, with inferred latent climate topics

Fig. 19.2 A graphical
representation of our model:

0 is the Dirichlet prior for
multinomial distribution. L is g \Multi(6) | | mP(In B) (1,
the number of locations U

N

a generative process of I(/) for each region / over a fixed epoch E (Blei et al. 2003)
(see Fig. 19.2 for a graphical representation of LDA):

1. Choose 6(I) ~ Dir(x).
2. To generate each climate topic #, € t(I) and climate variable value I, € I(/):

(a) Choose t, ~ Multinomial(6(])).
(b) Choose I,, ~ P(I,,|t,, B).
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19.2.2 Related Work on Modeling Climate Extremes

Extremal models focus on modeling tail events by studying the extreme statistics
from a random sample (Beirlant et al. 2004). In the univariate case, analogous to the
central limit theorem for the sample average statistic, the Fisher-Tippet-Gnedenko
and the Pickands-Balkema-de Haan theorems state the limiting distributions of
the two commonly used univariate extreme statistics are the generalized extreme
value (GEV) distribution and the generalized Pareto distribution (GPD), respec-
tively (Beirlant et al. 2004).3 Hence, the distribution of a univariate extreme statistic
is traditionally modeled with either the GEV or the GPD. In climate study, an
extreme statistic could be maximal or minimal temperature, precipitation, wind
speed, etc. (Gumbel 1954). Under this model, inference of the distribution of a
univariate extreme statistic can be made and correlations between different extreme
variables can be analyzed. These methods can also be extended to multivariate
extremal models, yet with great difficulty. Heffernan and Tawn (Heffernan and Tawn
2004) developed a “conditional extremal” model, capable of modeling multivariate
distributions where at least one of the variable has large values. In our method, we
do not prespecify the number of variables that take extreme values in our extracted
topics. Another work similar to this goal using extremal models is that of Liu et al.
(2012), where a latent space model is used to avoid a predefined covariance between
extreme (time series) variables. However, in Liu et al. (2012), only a single complex
extreme event can be inferred via regression.

Non-extremal statistical models were also used to study extreme climate. Similar
to our method, Rekatsinas et al. (2013) used topic modeling to summarize health-
related newspaper articles into different topics, followed by a large-margin-based
anomaly detection technique to single out rare topics as outliers. Our work differs
from Rekatsinas et al. (2013) in that we use numerical data to model extreme
climate events, instead of text data. Since climate extreme topics from our model
are distributions over numerical evaluations of various climate variables, they
can directly serve as climate indices and be used to predict the occurrence of
climate extremes when combined with the simulation output of general circulation
models (GCMs) (Monteleoni et al. 2013). Thus, our model can also be used in
tasks beyond event detection. Another related work is an MRF (Markov random
field)-based drought detection method (Fu et al. 2012), where spatial-temporal
proximity was encoded in a graph structure and consensus of drought vs. no drought
over a neighborhood of the graph is encouraged via the MRF model. However,
precipitation is chosen as the single climate variable relating to drought in their
work. Our model is able to include multiple climate variables instead.

Climate scientists have mainly used physical models to study extreme climate
events. These models can be categorized based on whether they are regional or
global. Take drought as an example; Dirmeyer and Shukla. (1996); Scheffer et al.

3Both GEV and GPD have three specific realizations (Gumbel, Frechet, and Weibull) according to
their shape parameter.
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(2005) studied drought as a general phenomenon, while Cook (2008); Schubert
et al. (2004) focus on regional drought formation. A notable method that combines a
general definition of (meteorological) drought with a regional climate characteristic
is the construction of Palmer drought severity index (PDSI): Dai et al. (2004) uses
soil moisture content to determine the severity of drought, where the PDSI score is
assigned by comparing the calculated soil moisture to soil moisture content normal
to the local region. Physical-mechanism-based approaches usually focus on one
type of climate extremes per model. Moreover, the development of such models
requires a substantial amount of manual effort. Our model, on the other hand, aims
at capturing multiple extremes automatically from data.

19.3 Experiments

We used NCAR reanalysis I data (NCEP Reanalysis data provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd/), constructed by assimilating worldwide remote and
in situ sensor measurements (Steinhaeuser et al. 2011). It contains daily, monthly,
and annual averages of multiple climate variables over a 2.5° x 2.5° grid* from the
year 1948 to 2013. The variables we included in our experiments are “precipitable
water (pr_wtr),” “pressure (pres),” “sea level pressure (slp),” “specific humidity
(shum),” “relative humidity (thum),” “u-wind (uwind),” and “v-wind (vwind)”. We
set E to be a fixed year and s a month in E. To obtain the climate descriptors I, for
each region /, we apply a conventional whitening step (section 2, Steinhaeuser et al.
2011) using observations of all years to transform each variable locally. Then we
obtained the climate descriptors using 5 quantiles. Hence, the entire set of climate
descriptors we obtain has size 35 (5§ for each of the 7 variables). For each year,
we obtain these climate descriptors over 3483 grid points (covering land regions)
for 12 months as our input to the LDA model. The inference algorithm we chose
to approximate the posterior was Gibbs sampling, implemented in Griffiths and
Steyvers (2004).

The number of topics K is chosen by varying K and using the one that gives
the highest likelihood (on average) on held-out years. The held-out likelihood is
not tractable but can be approximated. We used annealed importance sampling,
implemented in Wallach et al. (2009). Figure 19.3 gives the log-likelihood for topics
from 2 to 12, which seems to reach a peak at K = 9.

Using K = 9, we can extract global climate patterns (topics) from different
years. For the years we run our model on with K = 9, if we examine the topics, i.e.,
probability mass over the entire set of climate descriptors, it seems we can always
find some topics that assign more mass to low-precipitation, low-humidity, high-
pressure climate descriptors (which we interpret to correspond to a low-precipitation

9 9 <«

4The data grid has size 144 (longitude) by 73 (latitude).
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Fig. 19.3 x-axis: number of topics; y-axis: averaged likelihood on held-out data, constructed from
6 randomly selected years from 1948-2013

1970 TOPIC_3 9.11299
uwndl 9.21946
vwndl @.18948
shum4 2.1e672
shum2 2.88712
rhuml @.e7517
pres4d 2.06622

pr_wtr2 9.85297
pres3 2.04640
slp4 2.03748
uwnd2 2.03436

1971 TOPIC_6 9.11236
shuml 8.29531
uwndl 9.16000

pr_wtril 9.18355
vwndl 9.09631
rhumil 8.087629

pr_wtr2 0.085688
pres3 9.85418

s1lp3 0.04164
uwnd2 9.83991
rhum2 9.03571

Fig. 19.4 Intensity plot of two selected topics extracted from year 1970 and 1971. The left columns
plot the topic intensity around the world, suggesting a strong intensity around the African Sahel
region; the right columns list the 10 most likely climate descriptors weighted by each topic

event); other topics to assign more mass to high-precipitation, high-humidity climate
descriptors (which we interpret to correspond to a high-precipitation event); and
other topics we currently do not know how to interpret. For example, Fig. 19.4
demonstrates two topics we found from the year 1970 and 1971, respectively,
which seems to be highly intensive around the Sahel regions. If we examine the
corresponding topics, we can see that for the year 1971, the pattern corresponding to
topic 6 assigns most probability mass to “shuml” (extremely low shum), “uwnd1”
(extremely low uwnd), “pr_wtrl” (extremely low pr_wtr), etc. We relate this to a
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drought-like pattern, suggesting the occurrence of drought in 1971 around the Sahel
region. Topic 3 of 1970 is less interpretable by our knowledge but also has high
intensity in the Sahel region. We conjecture that the discovered topics are correlated
with some known climate phenomena or suggest new patterns related to droughts
or at least an indicator of drought for certain regions (in this case, the Sahel region).
Discovering these connections, as discussed in the next section, is future work.

19.4 Future Directions

Our ultimate goal is to design a model-based system that is able to identify climate
patterns of interest to users. This can be done by selecting a topic with a “topic
interestingness” measure. The automatic construction of such a measure using
additional data types, such as text data, as opposed to using the climate data we
already have, will be our future work. We acknowledge that our current approach
in whitening and discretizing the climate variables is not rigorously incorporated
into our topic model. We are seeking variants of topic models that are capable of
incorporating the assumptions we made in the preprocessing steps.

A direct task for our future work is to construct climate indices for a set of
climate topics that are likely to be related to extreme patterns: by averaging the
climate time series over the regions with high intensity for the selected topic, we can
construct climate indices similar to those in Steinbach et al. (2003) and Steinhaeuser
et al. (2011). Then we can validate these indices by finding their correlation with
known indices such as the SOI and Nifo 3, 3.4, and 4 indices or by evaluating their
prediction power over known extreme events.

We also plan to include local climate information in interpreting and evaluating
the extracted climate topics. This can be done by extending the simple LDA model
to include local information. The localization of topics on a document level has been
done with the line of work from Dirichlet multinomial regression to a generalized
kernel topic model (Agovic and Banerjee 2012; Hennig et al. 2012; Mimno and
McCallum 2012); however, here we are interested in encoding local information on
documents (geographical regions in our case) for each topic of interest. That is, the
localization will be different per topic. So there is a need to generalize the existing
kernel topic model to a multi-array (tensor) case, where each dimension of the array
will represent a kernel over all documents.
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Chapter 20
Identifying Developing Cloud Clusters Using
Predictive Features

Chaunté W. Lacewell and Abdollah Homaifar

Abstract Forecasters need better data-driven techniques using feature extraction to
determine whether a cyclone will develop from a loosely organized cluster of clouds.
Prior studies have attempted to predict the formation of tropical cyclones using
numerical weather prediction models and satellite and radar data. However, refined
observational data and forecasting techniques are not always available or accurate
in areas such as the North Atlantic Ocean where data are sparse. In response,
this research investigates the predictive features that contribute to a cloud cluster
developing into a tropical cyclone without using dynamic models. Instead, it will
only use global gridded satellite data which are readily available. Generally, an
imbalance occurs in the classification process of cloud clusters since the number
of non-developing cloud clusters is greater than the number of developing cloud
clusters. Imbalanced data are an essential source of low performance in learning
about rare events. To address this issue, the produced cloud cluster feature dataset
is balanced by applying the Selective Clustering based Oversampling Technique
(SCOT), which addresses data imbalance in a selective manner and can be used in
many applications. In this research, the predictive features are identified based on
the performance of separating developing and non-developing cloud clusters from
the balanced feature dataset when using a standard classifier. The predictive features
are identified only if the classification yields a geometric mean of at least 80 % and
a Heidke Skill Score of at least 0.8.

Keywords Feature extraction ¢ Imbalanced data ¢ Oversampling ¢ Tropical
cyclone
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20.1 Introduction

We are facing great challenges in climate variability which include rising tempera-
tures, increasing intensity of tropical cyclones (TCs), extreme droughts, rising sea
levels, and floods. Associated societal, economic, and environmental impacts are
enormous, especially considering the fact that our planet will reach nine billion
inhabitants by mid-century. A better understanding of how TCs develop from cloud
clusters (CCs) is necessary. This is demonstrated by the impact of the record-setting
2005 Atlantic Ocean hurricane season (Beven et al. 2008). Providing advance notice
of rare events, such as a CC developing into a TC, is of great importance. Having
advance warning of such rare events possibly can help avoid or reduce the risk of
damages and allow emergency responders and the affected community enough time
to respond appropriately. Considering this, forecasters need better data mining and
data-driven techniques to identify developing CCs. Prior studies have attempted to
predict the formation of TCs using dynamic models. Due to the complexity of cloud
patterns, satellite data are used to initialize dynamic models since TCs form in areas
where little or no in situ data are available. Dynamic models still show discrepancies
(Hennon et al. 2011); hence, it is beneficial to use solely satellite data which is fully
based on remote sensing of events that have actually occurred.

Consequently, this research investigates the predictive features that contribute to
a CC developing into a TC, and it uses only global gridded satellite data that are
readily available. Identifying predictive features of developing CCs is a complex
problem, because CCs have a variety of forms that can change rapidly and because
there is no ground truth data of identified and tracked CCs. Hence, this research
identifies and tracks CCs objectively, which means no expert forecaster knowledge
is required to investigate the predictive features of developing CCs. The goal of
this research is to objectively obtain actual locations of CCs, extract features to
provide more information regarding each CC, and distinguish between developing
and non-developing CCs based on the extracted features. This research can provide
imperative information on observed features that can identify developing CCs.

20.2 Methodology

The two datasets used for this research are easily accessible and provided by the
National Oceanic and Atmospheric Administration’s National Climatic Data Center.
The Hurricane Satellite (HURSAT) data comprises of global TC observations from
1978 through 2009. The HURSAT observations have a spatial span of 10.5° from
the center of the observed storm, a temporal resolution of 3 h, and a gridding
resolution of 8 km. The infrared channel of the HURSAT data is used to identify
and obtain the location of developed TCs. This dataset is the only ground truth data
available for this research. The infrared channel of the Gridded Satellite (GridSat)
data are used to identify and track all CCs, extract features from each CC, and obtain
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Fig. 20.1 Procedure for identifying predictive features comprises of obtaining the readily acces-
sible satellite data, identification and tracking of each cloud cluster, and identification of predictive
features using oversampling and classification techniques

images of each CC. The temporal and gridding resolutions of the GridSat data are
similar to the HURSAT data but it includes global observations from 1979 through
2009. Both the HURSAT and the GridSat data are derived from the International
Satellite Cloud Climatology Project (ISCCP) B1 data (Knapp et al. 2011; Knapp
and Kossin 2007).

The procedure for identifying predictive features that contribute to a CC devel-
oping into a TC is summarized in Fig. 20.1. It comprises of two main segments:
identification and tracking of CCs and identification of predictive features.

There are multiple definitions of a CC. Therefore, based on previous studies, a
definition was established to identify CCs objectively. Overall, a CC should have
the ability to develop into a TC. Hence, the CC must have sufficient brightness
temperature (BT) and sufficient size and must exist in an area where genesis is
possible which is typically not in high latitudes. For this study, the following criteria
were used to identify individual CCs using the GridSat dataset:

¢ A cluster must be located to the south of 40°N.

¢ A cluster must last for at least 24 h.

¢ A cluster must have a BT less than or equal to 250 K (—23.15 °C).
* A cluster must have an area of at least 5,000 km?.

During this process, developed TCs are identified and labeled using the HURSAT
dataset. For each of the CCs, 80 features are extracted which includes location,
shape, statistical, and image features. There are nine location features which provide
information on the location, 13 shape features which provide information about the
shape, 50 statistical-based features that use the BT to calculate characteristics about
the CC, and eight image-based features which are dependent on the relationship of
the pixels in an image with a spatial span of approximately 10.5° from the center
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of the observed CC. Out of the 50 features in the statistical category, there are 36
features that are based on the mean, standard deviation, and minimum BT for 12
rings in 50 km intervals from the center of the CC (50 km — 600 km), and there are
five features which indicate the percentage of pixels which are less than or equal to
195 K, 205 K, 215 K, 225 K, and 235 K.

Once each CC is identified and its corresponding features are extracted, they are
then tracked to trace their evolution. The approach used to track incorporates the
area overlap method. This technique assumes that a CC at time ¢ corresponds to a
CC at time ¢ + 1 if there are common pixels in consecutive satellite images and
the size and the BT criterion are met. This method is a relatively simple technique
that is commonly used since it tracks CCs based on consecutive observations. When
tracking CCs, it is important to account for the splitting and merging occurrences of
CCs; therefore, it is possible for an overlap to exist for multiple CCs. To determine
which interaction represents the best CC track, the overlap of sequential CCs is
calculated by the maximum scaled overlap SOy,.x Which is defined as

CC, N CC
SOy = ————1 (20.1)
max (A[7 Ar-l,-])

where A, and A,y denote the area of the CCs at time ¢ and ¢ + 1, respectively.
If multiple interactions have the same SOy, value, then the interaction with the
highest minimum scaled overlap SOy, is selected. Minimum scaled overlap is
defined as

CC[ ﬂ CCH—]

SOpin = — L
™ min (A, Arg1)

(20.2)

Obtaining the extracted features and other information on CC movement is
the most important contribution of this study because there is no ground truth
dataset. However, there are numerous CCs in the atmosphere, and the techniques
used must be accurate and completed in an objective manner so it can be used by
individuals other than forecasters. Therefore, we validated the proposed methods by
comparing our tracks of developed TCs to those recorded in the HURSAT dataset.
Figure 20.2 shows an example of the HURSAT centers and the calculated centers
(geometric, weighted, and minimum BT) for Hurricane Cindy (1999). As shown,
the calculated centers vary from the HURSAT centers, but this is due to the fact that
the calculated centers are always inside the CC. On the other hand, the HURSAT
centers are subjective and their centers are not always inside the CC. The differences
in the centers demonstrate the benefits of our research which is based solely on
observations and are not subjective.

In most real-world applications, the observed data are highly imbalanced which
causes a problem since standard classifiers are biased to the larger class. In this
research, the observations of non-developing CCs outnumber those of developing
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Fig. 20.2 Plot of geometric center (connected dots), weighted center (connected circles), mini-
mum BT centers (connected triangles), and HURSAT centers (connected squares) of Hurricane
Cindy (1999)

CCs. Therefore, we proposed a synthetic oversampling technique named Selective
Clustering based Oversampling Technique (SCOT) which does the following:

* Uses the local outlier factor to identify and eliminate outliers from a set of
informative minority samples

» Uses agglomerative hierarchical clustering to produce informative clusters in
which new synthetic minority samples are generated

* Reduces the risks of overfitting when generating synthetic samples by reducing
the risk of duplicating samples

Here, SCOT is used to balance the CC feature data so we can use standard
classifiers to determine the best predictive features to identify developing CCs.
Balancing the data verifies that the number of samples in each class is approximately
equal which reduces the bias of the non-developing CCs when using a standard
classifier. Please refer to Lacewell and Homaifar (2014) for additional details
regarding SCOT.

20.3 Performance Measures

A confusion matrix, as shown in Table 20.1, is typically used to assess the
performance of classification problems. The columns represent the actual classes
while the rows represent the predicted classes. This representation makes it easier to
visualize whether instances are being misclassified. The four important parameters
found in a two-class confusion matrix are true positive (TP), false positive (FP),
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Table 20.1 Format of the
confusion matrix which is

used to derive performance
measures Predicted | Developing TP FP

Non-developing | FN TN

Actual
Developing | Non-developing

false negative (FN), and true negative (TN). In this application, TP represents
the number of developing CCs correctly classified, FP represents the number of
non-developing CCs misclassified as developing CCs, FN represents the number
of developing CCs misclassified as non-developing CCs, and TN represents the
number of non-developing CCs correctly classified. These four parameters assist
in deriving performance measures.

Geometric mean (G-mean) is a performance measure used to evaluate the
balanced performance between the majority and minority classes (Bekkar et al.
2013; He and Garcia 2009). It is defined as

TP TN
G — Mean = \/ X . (20.3)
TP+ FN TN+ FP

This performance measure is independent of the distribution of the data, and it
takes into account the biases of the accuracy of the minority and majority classes
(Garcia et al. 2007). Therefore, it gives a better representation of the accuracy of an
imbalanced problem since it incorporates both the TP rate and the TN rate (Bekkar
et al. 2013; He and Garcia 2009). The overall performance is evaluated based on
this metric alone.

To determine the best predictive features in this simulation, we used the Heidke
Skill Score (HSS). The HSS evaluates the performance of a rare event problem. It is
an appropriate measure to determine the predictive skill relative to making random
guesses (Hennon et al. 2005; Kerns and Chen 2013). The HSS is defined as

2(IN-TP — FP - FN)
HSS = (20.4)
(TN + FN) (FN + TP) + (TN + FP) (FP + TP)

where HSS € [—1, 1]. The HSS yields perfect predictions when HSS = 1 and
random predictions when HSS = 0, and HSS < 0 indicates the predictions have no
skill. This performance measure is chosen based on its performance and capabilities
as described in Hennon (2003) and Doswell et al. (1990). Based on this score, we
identify predictive features with HSS > 0.9 as good, 0.8 < HSS < 0.9 as fair, and
HSS < 0.8 as unfavorable.
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20.4 Simulation Results

To test our methods, the 1999-2002 North Atlantic hurricane seasons are evaluated.
In this time period, we focused on validating four different TCs: Hurricane Bret,
Hurricane Cindy, Hurricane Dennis, and Hurricane Floyd. Since we are focusing
on the North Atlantic Ocean region, only observations south of 40°N latitude are
analyzed and considered qualified CCs. Based on the number of qualified CCs, our
method identified and tracked at 100 % accuracy.

We ran a simple neural network simulation on our CC feature data using
leave-one-out cross-validation. This simulation used ten hidden layers, Levenberg-
Marquardt backpropagation as the training function, and the mean squared error as
the performance function. When evaluating all features in the dataset, a G-mean of
47.03 % and a HSS of 0.39 were obtained for O h prior to development, while a G-
mean of 37.47 % and a HSS of 0.30 were obtained for 3 h prior to development.
Figures 20.3 and 20.4 display images of a non-developing and developing CC.
When all features considered, both of these CCs were misclassified. This indicates
that some of the features may be of low relevance or there may be a correlation
between multiple features. Therefore, we analyzed each feature independently
without considering any relationships or correlation between multiplefeatures.
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Table 20.2 Predictive features with fair and good G-mean and HSS values for zero and three
hours prior to a tropical cyclone developing. The predictive features that are consistent for both
simulations are in bold type
Hours prior Predictive features (good or fair)
0 Estimated radius
Ellipse variance
Maximum radius
Energy
% of CC pixels less than 215 and 225 K
Average BT within 200, 250, and 300 km from CC center
Min. BT within 100, 150, 200, 250, 450, 550, and 600 km
Standard dev. of BT within 450 and 500 km from CC center
3 Average BT
% of CC pixels less than 225 K
Average BT within 50, 250, and 500 km from CC center
Min. BT within 50, 200, 300, and 500 km from CC center

The simulation results for predictive features with good or fair G-mean and
HSS values are organized in Table 20.2. The simulations for zero and 3 h prior
to a TC developing demonstrate that shape and statistical features can possibly
identify developing CCs. The three predictive features that are consistent for both
simulations are in bold type in Table 20.2. These three predictive features are the
percentage of CC pixels less than 225 K (—48.15 °C), the average BT within 250 km
from CC center, and the minimum BT within 200 km from CC center. The CCs
displayed in Figs. 20.3 and 20.4 were classified correctly for each of the three
aforementioned predictive features. This suggests that all features are not needed
to identify developing CCs. Therefore, it is of importance to identify a subset of
features that can satisfactorily distinguish between the types of CCs for longer than
3 h prior to development.

20.5 Conclusion

Prior studies have attempted to predict the formation of TCs using dynamic models
but these models still show discrepancies. Therefore, it is beneficial to use solely
satellite data which are based on events that have occurred. Data-driven techniques
can provide imperative information regarding the development of CCs into TCs. Our
CC feature dataset and our proposed oversampling technique SCOT provide insight
on features that can identify developing CCs without expert forecaster knowledge.
After analyzing 80 features through a simple neural network simulation, results
show that certain shape and statistical features are possible predictive features. The
identification of these predictive features can contribute to the prediction of TCs by
giving researchers a better understanding on TC development which can improve
forecasts and preparedness for TCs.
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The succeeding stage of this research involves expanding our analysis for the
1999-2005 North Atlantic hurricane seasons, using SCOT with standard classifiers
to identify consistent predictive features and refine feature selection technique. The
feature selection techniques for the succeeding stage will examine the correlation of
features and eliminate redundant information to identify a combination of features
to precisely identify developing CCs.
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Chapter 21
Comparison of the Main Features of the Zonally

Averaged Surface Air Temperature as
Represented by Reanalysis and AR4 Models

Iiiigo Errasti, Agustin Ezcurra, Jon Saenz, Gabriel Ibarra-Berastegi, and
Eduardo Zorita

Abstract The ability exhibited by seven coupled global climate models of the
Climate Model Intercomparison Project 3 used in the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change to simulate the meridional
profiles of the current daily zonally averaged surface air temperature (ZASAT)
is analysed. The expansion in the second order of these profiles of the zonally
averaged surface air temperature by Legendre polynomials was compared to the
same expansion carried out over the profiles provided by European and American
reanalysis from 1961 to 1998. According to the theoretical support provided by the
one-dimensional energy balance models, the Legendre coefficients corresponding
to the ZASAT profile can be qualitatively interpreted as the independent modes that
represent the meridional energy flux from the equator to the poles. Three models
may be considered as the models that best reproduce the meridional structure of
current zonally averaged surface air temperature although the differences between
the models are not really large.
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21.1 Motivation

This work reports the accuracy that seven climate models participating in the
Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report
(AR4) (Solomon et al. 2007) have in reproducing the daily values of zonally
averaged surface air temperature (ZASAT). The meridional temperature gradient
can be analysed considering the Earth’s climate state in terms of its global energy
balance which can be studied under the theoretical approach of the one-dimensional
energy balance models (1D-EBMs) proposed by Budyko (1969), North (1975a,b),
North and Coakley (1979), and North et al. (1981).

In these models, the meridional profile of the zonally averaged surface air
temperature (ZASAT) of the Earth can be explained and derived when taking into
account the energy terms affecting the Earth’s climate system. These energy terms
are (i) the difference between the incoming energy from the Sun and the outgoing
energy out of the Earth, (ii) the meridional net heat transport and (iii) the storage
rate reflecting all the thermal inertia of the climate subsystems.

In the steady-state 1D-EBM approach, the first energy term — also known as the
radiative forcing — can be represented as a second-order Legendre expansion, and
a particular approximation to the solution ZASAT(x) is based on an expansion of
the two first even Legendre modes Py(x) and P;(x) (see Fig.21.1) when meridional
temperatures are assumed to be symmetric around the equator:

ZASAT(x) = coPo(x) + c2P2(x) (21.1)

The Legendre coefficient ¢y can be also related to the planetary mean tempera-
ture, and the Legendre coefficient ¢, represents the contribution of the equator-to-
pole temperature gradient to the meridional profile of the temperature.

When extending the 1D-EBM:s to include seasonality (North and Coakley 1979),
a time-dependent north-south perturbation represented by the odd mode P, (x) is
added to the steady-state solution to explain the seasonal profile of the temperature.
Consequently, the Legendre coefficient c¢; is related to the cross-hemispheric
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Fig. 21.1 Three first Legendre polynomials
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temperature gradient, or in other words, to the difference of temperature between
the poles. The time evolution of the Legendre coefficient ¢; should partially be
modulated by the thermal inertia of the climate system (Errasti et al. 2013). Under
these conditions, the energy balance in 1D-EBMs may be solved by means of a
mean meridional temperature (not considering symmetry around the equator):

2
ZASAT(x,1) = Y ca(t)Pa() (21.2)

n=0

The comparison of the coefficients cy(?), ¢ () and c,(¢) found in this expansion
of ZASAT simulated by the AR4 models (Meehl et al. 2007) and also provided by
European and American reanalysis will allow determining how well the different
climate models simulate the main features of the large-scale poleward meridional
heat fluxes. The reader should keep in mind that a reanalysis consists of a data
assimilation system throughout the whole set of available observations with the aim
of developing a homogeneous data set. The European data set of observations is
referred to as ERA40 reanalysis (Uppala et al. 2005) and the American data set as
NCEP reanalysis (Kistler et al. 2001).

According to the methodology explained in the next section, three of the seven
ARA4 climate models better reproduce the meridional structure of observed ZASAT
and the meridional heat fluxes towards the poles. However, the differences between
the climate models analysed in this study are not very large, as it should be expected.
Finally, the assumption of the 1D-EBM approach, which states that the seasonal
fluctuation of ZASAT is related to the gradient of temperature between the poles
expressed by the first odd Legendre mode P;(x), is partially matched in this work.

21.2 Method

Most of the seven AR4 models had only one realisation (run) for the surface air
temperature in the data repositories of the Program for Climate Model Diagnosis
and Intercomparison (PCMDI), so the study was only focused on the first run of
the models as Reichler and Kim (2008) or Errasti et al. (2011) propose. AR4 data
corresponding to daily mean surface air temperatures were regridded by bilinear
interpolation onto the same spatial grid (2.5° x 2.5°) as the one used in the ERA40
and NCEP data sets in order to carry out a coherent comparison. Then, temperature
values were zonally averaged to obtain the ERA40, NCEP and AR4 ZASAT profiles.

The common period of data accessible for the seven models (Table 21.1) and
reanalysis was 1961-1998. Some of the models and reanalysis considered leap years
but others did not. Consequently, all daily ZASAT profiles of the leap years were
interpolated by a spline algorithm to 365-day years, and a total amount of 13,870
daily ZASAT profiles was considered. The Legendre coefficients that expand every
ZASAT profile were calculated by a numerical routine that projects these profiles
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Table 21.1 The AR4 models selected for the study. The columns respectively indicate the IPCC
model name, their horizontal and vertical resolution, the number of model realisations (runs)
available in the PCMDI repository for daily mean surface air temperature and the source country

AR4 models Atmospheric resolution Realisations Country
BCCM2.0 T63 L31 1 Norway
GFDL-CM2.0 2.5° x2.0°L24 1 United States
GFDL-CM2.1 2.5° x2.0°L24 1 United States
MIROC3.2-HR T106 L56 1 Japan
MIROC3.2-MR T42 L20 3 Japan
MPI-ECHAMS T63 L31 1 Germany
MRI-CGCM2.3 T42 L30 5 Japan
ERA40 —— '
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Fig. 21.2 Meridional profile of ERA40 ZASAT and its second-order Legendre reconstruction in
a January day

over an orthonormal basis of a 73-dimension space. The basis was computed by the
Gram-Schmidt orthonormalisation procedure applied to the Legendre polynomials
at each of the 73 latitudes where the ZASAT was evaluated. All the results in terms
of expansion coefficients cy, ¢; and ¢, were expressed in Kelvin. Figure 21.2 shows
ameridional profile of ZASAT obtained from ERA40 and its second-order Legendre
reconstruction for a day in January.

A preliminary analysis on ERA40 data was performed in order to quantify the
quality of the second-order truncation used to fit the ZASAT profiles. The globally
averaged root mean square (rms) error in the ERA40 zero-order expansion (only
Py(x) retained) was computed (22 K). If the first-order expansion was used (Py(x)
and P (x) retained), the global rms was also large (20 K). However, the global rms
of the ERA40 second-order expansion (Py(x), P1(x) and P,(x)) falls to around
6 K which is respectively around 8 % and 13 % of the equator-to-pole averaged
temperature difference in the Southern and Northern Hemispheres.

Firstly, a statistical study on the observed and modelled seasonal cycles and the
probability density functions (PDFs) of the Legendre coefficients was performed. In
this sense, the root mean square error rms was used to characterise the difference
between the observed and the modelled mean seasonal cycles of the Legendre
coefficients derived during the analysed period.
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Observed and modelled PDFs were also compared by means of a one-
dimensional skill score s proposed by Maxino et al. (2007). This skill score provides
a simple but useful measure of similarity between two probability density functions
and calculates the common area under the two PDFs analysed:

N
s =Y minimum(Z,. Z,) (21.3)

i=1

where s is the numerical value of the skill score, n the number of intervals used
to discretise the PDF estimated by means of the Epanechnikov kernels (Silverman
1986), Z,, the value of the modelled PDF and Z, the value of the observed PDF. If
both PDFs are similar, the skill score s will equal one. On the contrary, if the PDFs
are quite different, s will be close to zero, with a low overlap between the PDFs.

Secondly, a global study of the Legendre coefficients obtained in the second-
order expansion was made by principal component analysis in order to reduce
the dimensionality of the variability of the ZASAT profiles. As the first principal
component (PC1) expressed most of the data variability, the analysis was focused
on the observed and modelled seasonal cycles and PDFs of this leading principal
component. In order to appreciate the differences between the observed and
modelled PC1, the root mean square error rms on the PC1 seasonal cycles and the
skill score s on the PC1 PDFs were also computed.

21.3 Evaluation

21.3.1 Seasonal Cycles and Probability Density Functions

Following the method explained in the previous section and more extensively in
Errasti et al. (2013), a statistical analysis of the Legendre coefficients obtained in
the Legendre expansion of modelled and observed ZASAT profiles was carried
out. Figures 21.3 and 21.4 show the mean seasonal cycles and probability density
functions (PDFs) of the Legendre coefficient ¢; which is related to the difference of
temperatures between the poles and obtained for ERA40, NCEP and AR4 ZASAT.

As shown in Fig.21.3, the amplitude of the seasonal cycle corresponding to
the coefficient ¢; is around 25K unlike the cycles of ¢y and ¢, with quite lower
amplitudes around 5K (not shown). This amplitude of the seasonal cycle of ¢,
indicates the maximum variation of the difference of temperatures between the poles
through the year.

As appreciated in the figure, the cycle of this coefficient ¢; oscillates between
negative and positive values. The passing of Earth through the equinoxes twice a
year is reflected when ¢ is zero and its contribution to the ZASAT profile is zero as
expected. The maximum values of the poleward heat flux are reached in boreal and
austral summers with positive and negative contributions. GDFL-CM2.0, GDFL-
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Fig. 21.3 Seasonal cycles of the Legendre coefficient ¢; obtained in the second-order expansion
of the daily meridional profiles of ERA40, NCEP and AR4 ZASAT. Only the first realisation of
MIROC3.2-MR and MRI models is displayed
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Fig. 21.4 Probability density functions (PDFs) of the Legendre coefficient ¢; obtained in the
second-order expansion of the daily meridional profiles of ERA40, NCEP and AR4 ZASAT. Only
showing the first realisation

CM2.1 and MRI-CGCM2.3 models present a phase lag. They simulate passing
through the second equinox around 50 days earlier than observed. This phase lag
should be related to the simulated thermal inertia parameterised by the heat capacity
in the 1D-EBM approach, and it should indicate how well the models reproduce
the thermal inertia of the observed climate. The rest of the models are not lagged
with respect to the reanalysis and thus better reproduce the c; cycle (BCM2.0,
MIROC3.2-HR, MIROC3.2-MR and MPI-ECHAMS).

In order to evaluate the differences between the seasonal cycles and PDFs of the
observed and modelled coefficients, the root mean square error rms (see Table 21.2)
for the seasonal cycles and the previously explained skill score s for the PDFs are
computed (results not shown). It should be remarked that the root mean square error
rms between the ERA40 and NCEP seasonal cycles of the Legendre coefficients cy,
c1 and ¢; are respectively 0.77, 0.52 and 0.45 K, which are low values as should be
expected when comparing two reanalysis data sets.
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Table 21.2 Root mean square error rms between ERA40 and AR4 seasonal cycles of the Legendre
coefficients ¢y, ¢; and ¢, obtained in the expansion of the daily meridional profile of ZASAT

GFDL- | GFDL- | MIROC3.2- | MIROC3.2- | MPI- MRI-
rms (K) | BCM2.0 |[CM.0 |CM2.1 |HR MR ECHAMS |CGM2.3
co 2.82 2.40 1.51 0.42 1.02 0.70 3.27
c 2.18 4.77 4.08 1.13 0.76 1.92 5.16
) 1.79 1.96 2.09 1.80 0.75 0.92 3.70
0.4

ZASAT anomalous
Regression fit
0.2
N4
0
//
-0.2
-1 -0.5 0 0.5 1
x = sin (lat)

Fig. 21.5 Meridional profile of the AZASAT associated to the spatial mode EOF1 (continuous
line) and regression fit (dotted line)

21.3.2 Principal Component Analysis

As most of the data variability were found in the spatial mode P;(x), an analysis
of the co-variability of the three time-varying Legendre coefficients c(f), c(f) and
c3(¢) has been done by using principal component analysis on centred data. This
technique allows obtaining a new basis formed by three vectors EOF1(x), EOF2(x)
and EOF3(x) which are eigenvectors of the covariance matrix of the centred
coefficients corresponding to Py(x), P;(x) and P,(x). The principal component
analysis applied to the meridional profiles of ZASAT reconstructed from their
truncated second-order Legendre expansion shows that the first three principal
components PC1(t), PC2(t) and PC3(t) explain 93 %, 6.66 % and 0.33 % of the total
variance of ZASAT, respectively. In this sense, the dimensionality of ZASAT is
basically reduced from three spatial modes P;(x), P>(x) and P;(x) to one ‘rotated’
mode EOF1(x).

Therefore, almost all the variability of ZASAT can be expressed by the first
spatial mode EOF1(x) (Fig.21.5) as expected by North and Coakley (1979) who
suggested that the seasonal variability in ZASAT could be expressed by a time-
dependent north-south asymmetric linear perturbation c;(f)P;(x) representing the
difference of temperatures between the poles.
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Fig. 21.6 Probability density functions (PDFs) of the first principal component (PC1) for ERA40,
NCEP and the seven AR4 models. Only the first model realisation is shown

In Fig.21.6, the ERA40, NCEP and modelled PDFs of the first principal
component (PC1) are displayed, and some differences can be observed between
them. These differences are again computed by the root mean square error rms on
PC1 seasonal cycles and by the skill score s on PC1 PDFs (results not shown).

21.3.3 Model Performance

Combining the skill scores obtained in the previous comparisons, a global metric
was computed to measure the model ability in reproducing the observed meridional
profiles of ZASAT and indirectly the poleward meridional heat fluxes, the global
thermal inertia and somehow the heat capacity of the simulated climate system
under the 1D-EBM approach.

This subjective global metric is designed by combining the two skill scores rms
and s computed in the analysis of the variability of the single coefficient ¢ and also
the rms and s obtained when analysing the global variability expressed by the first
principal component (PC1). In order to evaluate the performance skill of the models,
the skill scores computed against ERA40 are only retained, because the results when
comparing AR4 models against NCEP are not significantly different.

Nevertheless, the differences in the same set of metrics between ERA40 and
NCEP represent the uncertainty that can be expected from any AR4 model
performing as well as ERA40 or NCEP. For this reason, this uncertainty between
ERA40 and NCEP as described by their differences according to the four skill scores
selected has been used to rescale the results as shown in Table 21.3. Consequently,
NCEP shows values of 1 for the metrics, while the rest of the models exhibit values
above or below 1, describing the proportion of their departure from ERA40 in terms
of the difference between ERA40 and NCEP.

According to this global metric, a global rank of model performance is shown
in the last column of Table 21.3. MIROC3.2-HR (4.6), MIROC3.2-MR (4.7) and
MPI-ECHAMS (5.2) are the climate models obtaining the best results.
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Table 21.3 Model performance based on four metrics retained and scaled to the deviation
between ERA40 and NCEP. The global rank is obtained by adding the results of the four metrics.
The lower the number, the higher the model ranks. Reference: ERA40

rms on seasonal cycles s on PDFs

AR4 model c PC1 c PC1 Global rank
0 NCEP 1.0 1.0 1.0 1.0 4.0 1
1 BCM2.0 3.7 43 0.6 0.8 9.4 5
2 GFDL-CM2.0 3.1 8.0 0.7 0.8 12.6 7
3 GFDL-CM2.1 2.0 6.5 0.9 0.9 10.3 6
4 MIROC3.2-HR 0.5 2.1 1.1 0.9 4.6 2
5 MIROC3.2-MR 1.3 1.5 0.9 1.0 4.7 3
6 MPI-ECHAMS5 0.9 2.4 1.0 0.9 52 4
7 MRI-CGCM2.3 4.2 9.3 0.6 0.9 15.1 8

21.4 Conclusions

This study analyses the ability of seven coupled global climate models used in the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change to
simulate observed daily zonally averaged surface temperature (ZASAT) profiles
from 1961 to 1998.

Assuming the one-dimensional energy model (1D-EBM) approach, the Legendre
expansion of the meridional profile of ZASAT can be interpreted as the spatial
modes that span the solutions of the equation describing the one-dimensional
poleward meridional transfer of heat flux. This approach based on the Earth’s energy
balance has been used here as an analysis tool for checking the performance of seven
climate models.

The model validation is carried out by comparing the coefficients obtained in
a second-order Legendre expansion of modelled and observed ZASAT profiles.
Firstly, a comparison between the modelled and observed seasonal cycles and PDFs
of the Legendre coefficients was performed. Secondly, the modelled and observed
seasonal cycles and PDFs associated to the time-dependent evolution of the major
mode of variability of ZASAT were also compared.

Combining the skill scores obtained in the comparisons, a global metric is
computed in order to measure the model ability in reproducing the observed ZASAT
profiles and indirectly the poleward meridional heat fluxes and the global thermal
inertia of the simulated climate system under the 1D-EBM approach. MIROC3.2-
HR, MIROC3.2-MR and MPI-ECHAMS could be considered as the models that
best reproduce the meridional structure of observed ZASAT.

On the other hand, the small differences in the metrics could indicate that they
are not meaningful enough to clearly discriminate among models. Only slight
differences should be expected because the 1D-EBMs are a gross simplification
of the climate system where the climate variables are zonally averaged.
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The assumption in the seasonal 1D-EBM approach proposed by North and
Coakley (1979) that the variability of the profile of ZASAT is attributed to the
difference of temperature between the poles is partially confirmed.

However, it is known that climate models obtaining good results for a particular
skill score and a climate variable sometimes do not achieve the same performance
for other variables or other skill scores. Consequently, the results obtained here
cannot be extrapolated to other climate variables or smaller geographical areas.

The global metric used to evaluate the model performance is a critical issue.
Thus, it is unclear what the relative importance of the root mean square error
rms on seasonal cycles should be when compared with the skill score s on PDFs.
Nevertheless, the three models that yield the best performance in this study also
obtained good results in other intercomparison studies of AR4 climate models such
as Errasti et al. (2011), Maxino et al. (2007) or Lucarini et al. (2007) in which other
variables, methods and metrics have been used.
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Chapter 22
Investigation of Precipitation Thresholds in the

Indian Monsoon Using Logit-Normal Mixed
Models

Lindsey R. Dietz and Snigdhansu Chatterjee

Abstract Previous literature showed the relevance of using logit-normal mixed
models for understanding climate variable associations with Indian summer mon-
soon precipitation probabilities. We further this work by exploring fixed and
station-based threshold definitions used to study monsoon precipitation intensity.
Fixed thresholds are used to illuminate physical differences, such as the effect
of temperature or tropospheric winds, as precipitation levels increase. Also, non-
negligible station and year random effects indicate idiosyncrasies in probabilities
of threshold exceedances by station and year. Station-based percentile thresholds
are used to discuss predictions of threshold exceedances in particular stations where
cyclical trends appear. Both types of thresholds provide meaningful information and
expand the use of the logit-normal mixed model.

Keywords Precipitation extremes ¢ Generalized linear mixed models * Spatial
variability ¢ Temporal variability ¢ Hierarchical model

22.1 Logit-Normal Mixed Models in Indian Monsoon
Precipitation

Generalized linear mixed models (GLMMs) are commonly used in biostatistical and
epidemiological settings, but are relatively new to climate data modeling. A proof-
of-concept was done in Dietz and Chatterjee (2014) and indicated a logit-normal
model was useful in understanding Indian summer monsoon precipitation. We
extend this use of GLMM to examine other previously studied types of thresholds in
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precipitation data. Station-defined percentile thresholds were used in Krishnamurty
et al. (2009), and fixed level thresholds were used in Goswami et al. (2006) to
explore trends in monsoon rainfall intensity. Our study focuses on the inclusion
of relevant covariates and uses both threshold definitions with distinct purposes. We
use the fixed threshold model to elicit a physical interpretation across rainfall levels
and percentile-based thresholds for understanding local predicted probabilities of
threshold exceedances and possible cycles in their occurrence.

Theory exposition for all models used within this study can be found in McCul-
loch and Searle (2010); information on estimation techniques available for GLMM
can be found in Breslow and Clayton (1993), Jiang (1998), and Lele et al. (2010).

Annual logit-normal models with a station random effect were used in Dietz and
Chatterjee (2014). Rather than estimating different models for each year, we took
a more robust approach and fit a single model for the entire time period, added
additional relevant covariates, and kept the station random effect. We also tested a
model with separate station and year random effects. The larger model is depicted
in the following box:

Logit-Normal Mixed Model for Indian Monsoon Precipitation
Letstationi € {1,...,m},dayj € {1,...,n;},and yeark € {1,...,K}. Given
a threshold 7 and precipitation event Z, let Yiz = I(Zj > 7). Let x; be a
vector of covariates and U and W be vectors of random effects for station and
year, respectively. Then,

Level 1 :¥3|U = u, W = w " Bernoulli(6;3). (22.1)
logit(0y) = X B + u; + wi. (22.2)
Level 2 :U; ™ A (0, 02500)s Wi ™ A (0,02, (22.3)
U, independent of W;, for all (i, k). (22.4)

To provide benchmark models to the GLMMs, we fit a generalized linear model
(GLM) which does not take into account repeated measures by station or year and a
generalized estimating equation (GEE) model with an auto-regressive lag 1 structure
for repeated events within weather station. Model selection was not used within this
study; instead, we selected scientifically relevant covariates to investigate based on
earlier literature.

Within the rest of the chapter, we provide discussion on the fixed and percentile-
based threshold models. Section 22.2 provides an overview of the data and
software methodology. Section 22.3 focuses on the interpretation of fixed threshold
models in understanding covariates and variability at different threshold levels.
Section 22.4 discusses the use of percentile-based threshold models to provide
predicted probabilities on a local scale. Final commentary and future directions for
this work are highlighted in Sect. 22.5.
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22.2 Data Processing and Software

Daily data for station-level covariates of minimum temperature, maximum temper-
ature, elevation, latitude, and longitude were collected from the National Climatic
Data Center (NCDC)'! in the National Oceanic and Atmospheric Administration
(NOAA).

Data were collected from 1973 to 2013. Only observations considered to be
within the summer monsoon season (1 June to 30 September) were used. Station-
level data had a large amount of missing observations; therefore, only stations with
at least 40 % of days were included in the analysis. Two years in particular, 1975—
1976, were also excluded from the analysis due to the high level of missingness.
The processed data included a total of 36 weather stations.

Along with the NCDC data, reanalysis data (Kalnay et al. 1996) were collected.
These data include tropospheric temperatures from 200 and 600 mb levels, u-winds
from 200 and 850 mb levels, and v-winds from 200 and 850 mb levels.? Since these
data’ are gridded, they were aligned with the station closest in Euclidean distance
by latitude and longitude. The wind variables were kept in their original form, while
the two temperatures were averaged to create a tropospheric temperature difference
(ATT) as suggested by Xavier et al. (2007). All of these tropospheric variables affect
the monsoon circulation and are of physical importance for inclusion in the model.

A final covariate of interest was the Nifio 3.4 anomaly series collected from the
National Centers for Environmental Prediction (NCEP) Climate Prediction Center
(CPC).* This index is a measure of the sea surface temperature which is known to
be an important global climate driver. Again, since these data are gridded, they were
assigned to stations in the same method as the previous gridded covariates.

Analysis in this article was done using SAS/ STAT® 9.3 for the Windows®
operating system. Several approximate likelihood estimation methods were tested
and produced similar results; thus, we used output from PROC GLIMMIX estimated
by the residual subject-specific pseudo-likelihood (RSPL) method. GLM and GEE
models were estimated using PROC GENMOD. Uncertainty estimates within this
study correspond to the default methods in these procedures. GLMM approximate
standard errors for fixed effects are obtained by the use of the delta method on the
predicted population averaged probability estimates; variance component standard
errors are based on asymptotic theory. GLM estimates use asymptotic normal
standard errors, while GEE provides empirically based standard errors. Detailed
information on these procedures can be found in SAS Institute Inc. (2011).

Uhttp://www.ncdc.noaa.gov/

2Positive u-winds move west to east (westerlies); positive v-winds move south to north (souther-
lies).

3http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html

“http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
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22.3 Fixed Threshold Logit-Normal Models

We selected 50, 75, 100, and 125 mm/day as fixed thresholds. 50 and 75 mm/day are
light to moderate thresholds. 100 mm/day was the high setting used within Goswami
et al. (2006). 124.4 mm/day was the high setting in Dietz and Chatterjee (2014)
based on Attri and Tyagi (2010); thus, 125 mm/day is used to approximate this.

22.3.1 Fixed Threshold Fixed Effect Analysis

Coefficients for fixed thresholds are seen in Fig.22.1. Covariates are not scaled
within the models to facilitate comparisons across different model types (GLM,
GEE, GLMM). The Nifio 3.4 anomaly, latitude, and longitude generally display
nonsignificant estimates, although longitude is significant at higher thresholds.

Intercepts are higher in the GLMMs compared to GEE or GLM. Thus, we’d
expect higher probability of rainfall in the GLMM models based on the fixed effects
only. The intercept is constant over thresholds in the GLMMs, while GEE and GLM
coefficients increase with threshold.

Intercept June Adj. July Adj. August Adj. log(Elevation+1)
4,
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Fig. 22.1 Fixed threshold fixed coefficient estimates. Statistical significance at « = 0.05 level

is represented by marker shape. The reference level for month is September, i.e., statistical
significance indicates significant difference from September. Bars represent two standard errors
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Monthly adjustments for June and July indicate a significant positive effect
compared to September. August is not significantly different from September. June
and July show a slight increasing trend as the threshold increases inducing a higher
probability of more extensive rainfall in June and July in comparison to September.
This insight is consistent with earlier summer months typically containing larger
amounts of rainfall events than September.

Western low elevation coastal areas and northeastern low lands receiving a
large amount of rainfall may contribute to the significantly negative coefficient for
log(Elevation + 1). This estimate is relatively constant over threshold levels indicat-
ing a consistent effect. Both minimum and maximum temperature coefficients are
significantly negative. However, as the threshold increases, the magnitude of the
minimum temperature coefficient decreases, while the magnitude of the maximum
temperature coefficient increases.

All monsoon circulation variables are significant in the models. The u-wind
coefficients are positive at 200 mb and negative at 850 mb. Both are relatively
constant as the threshold increased. The v-wind coefficients are negative at both
pressure levels. The 850 mb coefficient decreased as threshold increased, while the
200 mb is essentially constant as the threshold increased. The coefficient for ATT is
significantly positive indicating higher probability of threshold exceedance as ATT
increases.

22.3.2 Fixed Threshold Random Effect Analysis

Testing for the variance components® indicates that both the intercept by station
and intercept by year are significant over all threshold levels. However, the annual
component makes up a much smaller proportion of the estimated variability. The
station component decreases slightly as threshold increases.

In Fig.22.2, estimated random effects of the 125 mm/day exceedance GLMM
with both random effects are shown for two different years. Positive (negative)
random effects correspond to a higher (lower) probability of rainfall than that
estimated by the fixed effects alone. Stations tend to consistently indicate either
positive or negative (of varying magnitudes by year) random effects.

In 1987, negative random effects were larger and mostly fell within the center
of India. In 2007, the positive random effects were more pronounced especially
along the west coast and northern areas of the subcontinent. The 2 years examined
were compared with Indian Meteorological Society rainfall data.® This annual
summer monsoon season data provides percentage deviations from average rainfall
amounts for four geographic demarcations in India — northwest, central, northeast,
and south peninsula. In 1987, all but northeast India indicated drought which

SNote that this is the standard deviation (o) of the random effects distribution.

Shttp://www.imd.gov.in/section/nhac/dynamic/data.htm


http://www.imd.gov.in/section/nhac/dynamic/data.htm

244 L.R. Dietz and S. Chatterjee

1987 2007
« Positive R.E. » Positive R.E.
4 Negative R.E. 4 Negative R.E.
[ ]
A
. [ J
° . A o .
A &
N SR A . ® .
A & i
A’ A .
AA . A Ta A
“w_A $ A
-® . o
(] N 4
[ . [
A N

Fig. 22.2 Estimated random effects for >125 mm/day. The magnitude is depicted by the relative
size of the marker. Triangles (circles) indicate negative (positive) estimated random effects

agrees with the stronger negative random effects produced by the model. 2007 had
higher than average rainfall in all but northwest India; again, this agrees with the
stronger positive random effects and higher chances of a large precipitation even.
The correspondence is not one-to-one because the model is fitting probabilities of
exceedances rather than actual rainfall amount, but provides some intuition for the
random effects.

22.4 Percentile Threshold Logit-Normal Models

In Krishnamurty et al. (2009), the median of the yearly 90th and 99th percentiles
was used as thresholds for examining station-level percentile exceedances. Because
of missing data, thresholds were defined using the direct 90th, 95th, and 99th
percentiles of the data. Models for the 99th percentile failed to converge and are
excluded.

22.4.1 Percentile Threshold Predictions for Selected Stations

Threshold exceedance predictions for four representative stations are displayed
in Fig.22.3. Box plots indicate the expected pattern of decreasing probability as
the threshold moves from the 90th to the 95th percentile. West coast stations,
represented by Bombay, have markedly higher probabilities of exceeding their
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Fig. 22.3 Percentile threshold predictions. Box plots show the distribution of daily predictions by
year. Outliers are not shown for clarity of the graphics and consisted of <5 % of yearly predictions

station thresholds. Bombay has station thresholds of 59.9 mm/day (90th) and
92.9 mm/day (95th). In comparison, more moderate exceedance probabilities were
seen by Calcutta and New Delhi. Calcutta has thresholds of 39.9 mm/day (90th)
and 56.9 mm/day (95th), and New Delhi thresholds are 34.0 mm/day (90th) and
52.1 mm/day (95th). Thiruvananthapuram, in the southmost region of India, indi-
cated low predicted probabilities of exceeding its extreme thresholds of 34 mm/day
(90th) and 49 mm/day (95th). Compared with the fixed thresholds analysis, the
percentile-based analysis suggests the use of much lower thresholds for understand-
ing local monsoon behavior.

We note the appearance of an irregular cycle in the probability predictions shown
for each of the stations in the 1998-2013 period. The cycle is not consistent among
all stations. This may be due to the random effects for each station in each year
which captures some of the idiosyncratic features of a location.

22.5 Summary and Future Work

The analysis in this study serves as a starting point for climate scientists in exploring
thresholds. These thresholds are useful in an explicit context of understanding risk
to civil structures or in an implicit context of further modeling. Specifically, fixed
threshold analysis statistically examines the relationships of climate covariates with
rainfall probabilities in the context of increasing thresholds. This may be useful in
a large-scale analysis of the Indian monsoon. Percentile-based thresholds are useful
at a local scale for understanding risks of certain levels of rainfall.

Possible limitations of our approach include model fit and data issues. One
measure of fit provided within SAS is a generalized chi-square (GCS) statistic. We’d
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expect this statistic to be around 1 if the model fits well. Fixed threshold models
GCS ranged from 1.06 to 2.06 and increased with the threshold, indicating a slight
issue in fit at the higher thresholds. There were also outliers indicated by residual
plots which indicate the need to employ a more robust fit in the future. Missing data
could be driving some of the results; several possibly important areas of India are
not included in the data set based on availability. Unfortunately, the wet northeast
and the central and northwest regions of India are poorly covered. Aggregating data
may provide a different perspective and a more stable fit.

However, in general, we believe the logit-normal mixed model in this context
provides valuable physical insights, such as the increasing importance of maximum
temperature as threshold increases, as well as understanding of local predictions and
their cycles. In future work, model residuals may be used in a spatial correlation
testing framework to establish high thresholds. We also plan to investigate model
selection techniques in the context of GLMM to identify a “best” model.
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