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Supervisor’s Foreword

There is nothing more gratifying for a Professor than being asked to prepare a pref-
ace for the dissertation research of his student whose work is of the caliber worthy 
of being published in the Springer Theses Series. The dissertation research of Ms. 
Nasrin Nasrollahi at the University of California, Irvine exemplifies the best one 
can hope for from a doctoral student.

In a nutshell, her research dealt with the issue of how best one can use techno-
logical advances in observation systems and measure one of the key components 
of the global hydrologic cycle, namely precipitation, with the accuracy useful for 
various applications. The technology in this case is the availability of a variety 
of advanced instruments (infrared based channels, passive and active microwave 
radars, etc.) aboard a number of classes of environmental satellite systems (Geo 
Stationary, Polar Orbiting). Dr. Nasrollahi’s contribution, which is the subject of 
this publication, is the integration of information from these multiple satellite sen-
sors and multiple channels into the current precipitation estimation algorithms. In 
her work, she takes advantage of the recent NASA satellite CLOUDSAT which 
observes clouds and precipitation in high resolution and infuses that information 
into the current algorithms in order to eliminate some of the errors in existing data. 
In addition, she employs some of the recent machine-learning techniques to extract 
relevant information from large quantities of satellite data. Nasrin’s final algorithm 
leads to a significant reduction in false rain signals, hence improving the quality of 
satellite-based estimates of precipitation.

One may ask “why is this important?” The answer lies in the fact that informa-
tion about rainfall has become most important for two primary reasons. The first 
one is that changes in precipitation at the global scale hold clues about climate 
change with respect to its impact on the elements of the hydrologic cycle. Therefore 
having comprehensive estimates of precipitation in time and space covering the 
entire globe can give evidence about the shifting patterns of rainfall and how ex-
treme events are changing. The second of course is how we as humans experience 
precipitation (rain and/or snow) in our daily lives. This could be simply knowing 
tomorrow’s weather report i.e. if your area is getting rain or not or if you are going 
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to expect flooding in your region. Such information about precipitation is therefore 
crucial for a range of applications such as dealing with hazards or improving the 
science and understanding the changes in the hydrologic cycle. Nasrin’s dissertation 
is a research work contributing to this body of knowledge.

Department of Civil & Environmental � Soroosh Sorooshian
Engineering, University of California, �
Irvine, CA, USA                                 
7/31/2014
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Preface

The Moderate Resolution Imaging Spectro-radiometer (MODIS) instrument aboard 
the NASA Earth Observing System (EOS) Aqua and Terra platform with 36 spectral 
bands provides valuable information about cloud microphysical characteristics and 
therefore precipitation retrievals. Additionally, CloudSat, selected as a NASA Earth 
Sciences Systems Pathfinder (ESSP) satellite mission, is equipped with a 94 GHz 
radar that can detect the occurrence of surface rainfall. The CloudSat radar flies in 
formation with Aqua with only an average of 60 s delay. The availability of surface 
rain occurrence based on CloudSat observation together with the multi-spectral ca-
pabilities of MODIS makes it possible to create a training data set to distinguish 
false rain areas based on their radiances in satellite precipitation products (e.g. Pre-
cipitation Estimation from Remotely Sensed Information using Artificial Neural 
Networks (PERSIANN). The brightness temperature of 6 MODIS water vapor and 
infrared channels are used in this study along with surface rain information from 
CloudSat to train an Artificial Neural Network model for no-rain recognition. The 
results suggest a significant improvement in detecting non-precipitating areas and 
reducing false identification of precipitation.

The second approach to identifying no-rain regions, developed in this study, is to 
find the areas covered with non-precipitating clouds. The cloud type data available 
from CloudSat is used as a target value to train an artificial neural network model 
to identify non-precipitating clouds such as cirrus and altostratus. Application of 
the trained model on two case studies investigated in this research, show significant 
improvements in near real-time PERSIANN rain estimations.

In addition, a cloud type classification algorithm was developed to classify clouds 
into seven different classes (cumulus (Cu), stratocumulus (Sc), altocumulus (Ac), 
altostratus (As), nimbostratus (Ns), high cloud and deep convective cloud). The 
classification model uses a self organizing features map to classify clouds based on 
multi-spectral MODIS data and CloudSat cloud types. The result of the classifica-
tion model shows acceptable results for summertime. The winter season cloud clas-
sification is challenging due to dominance of low and middle level clouds. A better 
cloud classification algorithm for wintertime is achievable using active radar data 
and is beyond the capabilities of currently available remotely sensed multi-spectral 
information.
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Chapter 1
Introduction to the Current State of Satellite 
Precipitation Products

© Springer International Publishing Switzerland 2015
N. Nasrollahi, Improving Infrared-Based Precipitation Retrieval Algorithms Using 
Multi-Spectral Satellite Imagery, Springer Theses, DOI 10.1007/978-3-319-12081-2_1

1.1 � The Importance of Precipitation in Water Resources

Floods cause more deaths than any other natural disaster around the world, with a 
death toll of more than 5000 individuals per year. The United States also has a long 
history of catastrophic flooding. Most flood deaths are due to flash floods that occur 
within a few minutes or hours of excessive rainfall over a region. Flash floods cause 
more deaths annually than any other weather phenomenon in the United States, with 
a death toll of more than 1000 individuals over a 10-year period between 1983–1992, 
and an average of greater than $ 2 billion in annual losses over the same 10-year pe-
riod (U.S. Army Corps of Engineers 1993). In the period between 1950 and 1997, the 
National Weather Service reported an average of 110 deaths per year in flood-related 
accidents. In addition, recent major flood events around the world (e.g. Aug 2010 se-
vere flood in Pakistan, Dec 2010 flood in Brazil) emphasize the need for hydro-mete-
orological information to address natural hazards with major socio-economic impacts.

The two key elements that contribute to flash floods are rainfall intensity and 
duration. Other factors such as soil moisture, topography and land cover also play 
an important role (Song et al. 2014). Land use change due to urbanization is also a 
factor that increases the risk of flooding. In the US, urbanization has increased the 
magnitude of floods during the twentieth century and many urban watersheds suf-
fered from greater floods (Hollis 1975). In addition, human-induced climate change 
has a direct impact on precipitation. Increase in the water holding capacity of the 
atmosphere due to a change in atmospheric temperature leads to increased water 
vapor in the atmosphere. Hence, in the future more intense precipitation events will 
be observed which will increase the risk of flooding (Trenberth 2011).

Because of the nature of flash floods, reliable estimation of precipitation is im-
portant to predict and manage water resources, hazard preparedness and climate 
studies (Ajami et al. 2008; AghaKouchak and Nakhjiri 2012; Anderson et al. 2008; 
Hao et al. 2014; Damberg and AghaKouchak et al. 2014; Tabari et al. 2014). Avail-
ability of real-time rainfall data plays a major role in prediction of floods and affects 
decision making.
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1.2 � Precipitation Observation

Rain gauge estimation is the traditional method of precipitation measurement. 
However, spatial and temporal variability of precipitation makes it difficult to rely 
on gauge point measurements. Gauge distribution is uneven around the world and 
usually depends on the population of the area. Needless to mention, there are no 
gauges over the oceans, insufficient to capture regional precipitation variability. Ra-
dars, on the other hand, provide high resolution estimates of precipitation. However, 
radar networks are not available everywhere in the world. In addition, radar cover-
age area becomes smaller at lower altitudes (e.g., 1000 m above the ground level) 
in comparison to higher elevations (e.g., 3000 m above ground level), mainly due 
to blockage problem in the mountainous regions (e.g. western United States, Mad-
dox et al. 2002). Therefore, an alternate method to estimate precipitation globally 
with high spatial and temporal resolution and reliable accuracy is needed. Using 
satellite remote sensing technology helps to derive a better global coverage of pre-
cipitation. Satellites observe the Earth from the space and are able to gather some 
information that cannot be made available from ground based instruments. The Na-
tional Aeronautics and Space Administration (NASA), National Oceanic and Atmo-
spheric Administration (NOAA), the European Organization for the Exploitation of 
Meteorological Satellites (EUMETSAT) and many other internationally sponsored 
satellite missions have provided valuable information that can be used to estimate 
precipitation. Global precipitation data can be utilized in disaster management and 
decision making operations.

1.3 � Satellite-based Precipitation Estimation

The main sensors to estimate precipitation from space are visible (VIS), Infrared 
(IR) and Passive Microwave (PMW). VIS and IR data are available from Geosta-
tionary Earth Orbiting (GEO) and Low-Earth orbiting (LEO) satellites. However, 
VIS and IR channels do not measure precipitation directly. Instead, they measure 
cloud albedo and cloud top temperature that can be associated with the precipita-
tion rate using an indirect relationship. One limitation of IR-based algorithms is 
that non-precipitating cold clouds at high altitudes are often falsely identified as 
precipitating clouds, resulting in false precipitation estimates. Intense precipitation 
is correlated with cold clouds. However, the converse relationship may not be true 
(Fig.  1.1). In addition to this issue, orographically induced precipitation or pre-
cipitating warm clouds (e.g. stratiform) may cause precipitation, which is not easily 
identified with current algorithms (Joyce et al. 2004). The misclassification of rain/
no-rain clouds is one of the major issues facing IR-based algorithms (Arkin and Xie 
1994; Turk and Miller 2005; Behrangi et al. 2009). Adding information about vis-
ible channels helps to improve rain estimation however, VIS data are not available 
during the night time.
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In addition to IR, VIS and water vapor channels, LEO satellites are equipped 
with passive microwave (PMW) sensors that measure the thermal emission and 
scattering of raindrops. PMW remote sensing of precipitation is recognized as a 
more reliable source of precipitation estimation from space (Adler et al. 2001; Ebert 
et al. 1996). However, LEO satellites have low temporal resolution of only one or 
two times a day for a specific location on earth (Marzano et al. 2004). Many LEOs 
are orbiting the Earth, therefore PMW data from LEOs are operationally available 
every few hours. To date, PMW sensors are not carried on GEO satellites because of 
technical challenges (Joyce et al. 2004). In addition to their low temporal and spatial 
resolution, PMW sensors are more reliable over oceans because of the complexity 
of land surface emissivity.

1.4 � Research Motivation

Reliable estimation of precipitation is important to predict and manage water re-
sources. However, spatial and temporal variability of precipitation makes it difficult 
to rely on sparse gauge point measurements for remote regions. Higher spatial and 
temporal resolutions of satellite observations are the main advantages of remotely 
sensed precipitation estimates over in-situ measurements. Since they are an indi-
rect method to estimate precipitation, they are also associated with uncertainties. 
Reducing false rain in IR-based precipitation algorithm will improve the quality of 
satellite estimations significantly.

CloudSat radar has the ability to provide a 3D structure of clouds from space. 
CloudSat data can be used to add additional information to the precipitation algo-
rithm and to cloud detection. This additional source of information will improve the 
quality of rain estimation algorithms.

Fig. 1.1   Vertical structure of clouds and corresponding IR brightness temperature
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1.5 � Objectives of this Dissertation

In this dissertation, the application of multi-spectral data and statistical classifica-
tion techniques in improving single channel IR precipitation algorithms is explored. 
Multi-spectral data available from Moderate resolution Imaging Spectroradiometer 
(MODIS) images and CloudSat are two sources of information that are used to 
improve the quality of rain estimations and reduce false rain detection. CloudSat 
data is used to train a Neural Network model using MODIS data as input to identify 
false rain locations.

Application of CloudSat data in cloud classification model is also investigated. 
The cloud classification model can be used to find precipitating clouds and run the 
precipitation algorithm only on those clouds.

The objectives of this dissertation are:

1.	Using multi-spectral data in satellite precipitation algorithms will help improve 
precipitation algorithms. There is a need to move from single IR channel esti-
mations to multi-channel precipitation algorithms. The first objective of this 
dissertation is to show the effectiveness of using multi-spectral data in satellite 
precipitation estimation.

2.	 The second objective of this dissertation is to show that satellite precipitation 
algorithms will benefit from information on cloud structure and characteris-
tics. Clouds create precipitation, and adding information about different types 
of clouds will improve precipitation algorithms.

3.	 The main reason for false rain observations in satellite-based products is the 
presence of high cirrus clouds. These highly elevated clouds have cold cloud 
tops in IR imagery. Therefore, they show false rain signals in satellite-based 
estimations. The third objective is to show that by identifying and filtering cold 
cirrus clouds false rain reduces.

The answer to the above mentioned questions will be addressed in this dissertation.

1.6 � Dissertation Outline

This dissertation is organized into six sections: Chapter 2 explains false alarm in 
satellite precipitation and how we can identify false rain. Chapter  3 is devoted 
to explaining satellite observations. Chapter 4 is about reducing false rain using 
CloudSat cloud classification data and Chap. 5 examines false rain reduction using 
CloudSat surface precipitation presence dataset. A cloud classification algorithm is 
presented in Chap. 6 and the summary and future works are described in Chap. 7.
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Evaluation of satellite precipitation algorithms is essential for future algorithm de-
velopment. This is why many previous studies are devoted to the validation of sat-
ellite-based observations (e.g., Tian et al. 2009; Amitai et al. 2009; AghaKouchak 
et al. 2010b; Zhou 2008; Gochis et al. 2009; Yilmaz et al. 2005; Shen et al. 2010; 
Dinku et al. 2008; AghaKouchak et al. 2009; Liu et al. 2009; Sapiano and Arkin 
2009; AghaKouchak et al. 2012). For instance, Tian et al. (2009) analyzed the error 
of six high-resolution satellite products versus a gauge-based estimate, and reported 
regional and seasonal variations of error patterns in the contiguous US. They con-
clude that satellite products tend to overestimate rainfall in the summer and under-
estimate it in the winter. Sapiano and Arkin (2009) also confirmed that satellites 
overestimate summertime convective storms over the US. Using Volumetric False 
Alarm Ratio, AghaKouchak et al. (2011) showed that several satellite products ex-
hibit high false alarm rate for rainfall, especially at high quantiles of observation.

To investigate false alarms in satellite-based precipitation products, we con-
ducted a validation study to compare PERSIANN and TRMM TB42 precipitation 
data with ground based measurements. False Alarm Ratio (FAR) and Probability 
of Detection (POD) are calculated for the time period between 2005 and 2008 over 
the US. The FAR is the ratio of falsely identified rainy pixels to the total number of 
rainy pixels in satellite data, whereas the POD measures the fraction of observed 
precipitation that was correctly forecasted (the ratio of the total number of times that 
rainfall was correctly forecasted to the total number of observed rainy pixels (Wilks 
2006)). Figure 2.1 explains the definition of POD and FAR.

In the current study, the Stage IV radar-based multi-sensor precipitation esti-
mates (MPE), available from the National Center for Environmental Prediction 
(NCEP), are used as the reference data. The Stage IV precipitation data are adjusted 
for various biases using rain gauge measurements (Lin and Mitchell 2005) and are 
considered the best area approximation among the currently available area-average 
rainfall datasets (AghaKouchak et al. 2010a; AghaKouchak et al. 2010c, d). Stage 
IV data is aggregated into 0.25 degree spatial and 3 hourly temporal resolutions, 
which is the same as the PERSIANN precipitation data. Figure 2.2 shows the FAR 
and POD for: (a) the entire period of 4 years, (b) the summer and (c) the winter 
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seasons for the PERSIANN precipitation product (precipitation threshold is consid-
ered as 0.05 mm/h). Figure 2.2 reveals very high FARs over the central and western 
US and a lower FAR over the eastern US on average. Higher FAR is associated 
with presence of high cirrus clouds, especially in the winter. As discussed by Tian 
et al. (2009), PERSIANN data demonstrates higher FAR over the western US in the 
winter. The average POD is about 60 % over the central US and very low over the 
southwestern region. Low POD on the eastern and western side of the continent is 
associated with missed precipitation over these regions.

The missed precipitation may be caused by snow cover on the ground at higher 
latitudes or over the Rockies, and by the inability to catch warm rain processes or 
short-lived convective storms at lower latitudes, or maritime precipitation along the 
west coast (Tian et al. 2009).

Generally, probability of detection of satellite precipitation seems to be better 
during the summer seasons, perhaps due to a dominance of convective storms. On 
the other hand, the FAR is very high during the wintertime because of the presence 
of non-precipitating, high, cold clouds. Additionally, the presence of snow and ice 
on the ground and the inability of Passive Microwave (PMW) sensors to measure 
snowfall over snow or ice covered surfaces increase the error in satellite precipita-
tion estimations and result in higher FARs during the wintertime. Figure 2.3 shows 
the same results for Tropical Rainfall Measuring Mission (TRMM) Multi-satellite 
Precipitation Analysis (TMPA) 3B42 precipitation data. Overall, both datasets show 
higher false rain during the winter and better estimations during summertime. Fi-
nally, it is worth mentioning that radar coverage is limited over the western region 
of the US (with the very high false alarm shown in Fig. 2.2 because of beam block-
age in mountainous terrain). The Stage IV data has a large number of missing data 
over the Pacific Northwest region therefore, the precipitation data for this region is 
not included in the analysis.

In addition to calculation pixel-based false alarm, object-based approaches also 
show differences in precipitation estimations. For example, comparing different 
satellite-based precipitation patterns with the stage II radar-based precipitation pat-
tern shows how the satellite estimations differ from radar observations. Figure 2.4 
shows two satellite images that occurred at 0900 UTC 24 September 2005 during 
Hurricane Rita, with the spatial and temporal resolutions of 0.25 × 0.25 and 3 h [a: 
Tropical Rainfall Measuring Mission (TRMM) 3B42, Huffman et  al. (2007); b: 
PERSIANN, Sorooshian et al. (2000)]. Hurricane Rita was one of the most intense 
tropical cyclones that made landfall on the U.S. Gulf Coast. Notice that in panels 
a to c, only precipitation values above the 50th percentile threshold are considered 

Fig. 2.1   The definition of 
Probability Of Detection 
(POD) and False Alarm Ratio 
(FAR)
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Fig. 2.4   The TRMM, PERSI-
ANN and stage II precipitation 
pattern for rainfall rates above 
the 50th (a–c), 75th (d–f), 90th 
(g–i) percentiles

 

to avoid small rainfall rates. Panel c displays the corresponding stage II image. 
The stage II data provide estimates of precipitation using a combination of radar 
and rain gauge measurements. The data is available on the Hydrologic Rainfall 
Analysis Project (HRAP) grid, with a spatial resolution of approximately 4 km. The 
stage II data are aggregated in space to match the spatial resolution of TRMM and 
PERSIANN data. Panels d–f and g–i present similar figures for precipitation values 
exceeding the 75th and 90th percentiles, respectively. The domain of all figures 
includes 94 × 47 pixels, each being 0.25 × 0.25. With respect to the shape of patterns, 
the TRMM seem to be closer to the stage II data. However, for a higher threshold of 
75th and 90th percentiles, the pattern of PERSIANN precipitation is more similar 
to those of stage II. It should be noted that the above example is provided to show 
differences in the pattern of precipitation and should not be considered as validation 
of satellite precipitation data.
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Chapter 3
Satellite Observations

© Springer International Publishing Switzerland 2015
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3.1 � MODIS

The Moderate resolution Imaging Spectroradiometer (MODIS) instrument onboard 
NASA’s Earth Observing System (EOS) Aqua and Terra platforms with 36 spectral 
bands provides valuable information about atmosphere, land and oceans (Ackerman 
et al 1998). The low earth orbiting satellite at the altitude of 705 Km also gives us 
important insight into cloud micro-physical characteristics ranging in wavelength 
from 0.4 to 14.4 µm.

The Terra satellite orbits the Earth in a descending orbit passing the equator in 
the morning (at 10:30 am local time), while the Aqua follows an ascending orbit, 
passing the equator at 1:30 pm local time. The spatial resolution of the MODIS 
data is 250 m for visible channels (channels 1 and 2, 0.6–0.9 µm), 500 m for chan-
nels 3–7 (0.4–2.1 µm), and 1000 m for channels 8–36 (0.4–14.4 µm). MODIS has 
a swath width of 2330 Km and can span the entire surface of the Earth every 1 to 
2 days. Terra launched in December 1999 and Aqua joined the EOS PM-1 in May 
2002.

Figure 3.1 presents the bandwidth and primary usage of MODIS multi-spectral 
channel data (source: http://modis.gsfc.nasa.gov). Visible data are in the range of 
400–700 nm and MODIS channels 1 and 2 are in this range. Visible channel images 
show the reflected solar radiation from the earth and atmosphere during daylight. 
Thick clouds, such as deep convective clouds, as well as ice and fresh snow on the 
earth’s surface appear brightly on visible images. Water bodies such as lakes and 
oceans appear dark due to their low albedo. Surface features over land will be dark-
er than clouds and brighter than water, but it might be very difficult to distinguish 
between low warm clouds and surface. Visible images are not strong detectors of 
thin clouds, such as cirrus formations.

The reflective infrared region of the electromagnetic spectrum has the bandwidth 
of 0.7–3 µm. Figure 3.1 presents the visible, reflective IR and thermal IR regions 
of the electromagnetic spectrum. The black shades on the Figure show regions that 
most of the energy is absorbed by the atmosphere. The white regions on the spec-



14 3  Satellite Observations

trum are called the atmospheric window and the atmosphere passes part of the IR 
from the terrain to the satellite sensor (Jensen 2007).

A water vapor channel is an infrared channel in the range of 6.5–7.5 µm. Water 
vapor absorbs most of the radiation in this part of the spectrum. Most of the radi-
ance received by the satellite in the water vapor channels comes from humidity that 
exists in the mid-upper troposphere. In these channels, surface features cannot be 
detected and only high clouds are recognizable. Water vapor channels are relatively 
noise-free that can show the movement of moisture in the atmosphere. The water 
vapor absorption regions are marked with H2O in Fig. 3.1. The MODIS channels 27 
and 28 are water vapor channels.

The wavelengths from 10.5 to 12.5 μm are thermal infrared regions that most 
part of the emitted energy from the terrain will be passed to the sensor with very 
limited absorption. Channels 31 and 32 of MODIS are sensitive to this range of the 
spectrum. Channel 31 centers at 11.03 μm and channel 32 centers at 12.02 μm.

In this study a set of 7 MODIS channels are used, one in the range of visible 
(channel 1), 2 water vapor channels (channels 27 and 28) and the rest are thermal 
infrared channels (channels 29, 30, 31 and 32). The details of microphysical proper-
ties of cloud and electromagnetic sensitivities are explained in Sect. 4.1 (Table 3.1).

For this study, the MODIS level 1B calibrated radiance data were used. The 
original radiance data from MODIS have the units watts per square meter per stera-
dian per micrometer (Watts/m2/micrometer/steradian). Radiance data are converted 
to Brightness Temperature (BT) in Kelvin using the following equation (Cohen and 
Taylor 1993):
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Fig. 3.1   Atmospheric windows in the electromagnetic spectrum. (Source: Jensen 2007)
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Table 3.1   Information about 36 spectral channels of MODIS instrument
Primary use Band number Central wavelength 

[nm]
Bandwidth[nm] Spatial resolution 

[m]
Land/cloud/
aerosols/
boundaries

1 645 620–670 250
2 858.5 841–876 250

Land/cloud/
aerosols properties

3 469 459–479 500
4 555 545–565 500
5 1240 1230–1250 500
6 1640 1628–1652 500
7 2130 2105–2155 500

Ocean color/
phytoplankton/
biogeochemistry

8 421.5 405–420 1000
9 443 438–448 1000
10 488 483–493 1000
11 531 526–536 1000
12 551 546–556 1000
13 667 662–672 1000
14 678 673–683 1000
15 748 743–753 1000
16 869.5 862–877 1000

Atmospheric water 
vapor

17 905 890–920 1000
18 936 931–941 1000
19 940 915–965 1000

Surface/cloud 
temperature

20 3750 3660–3840 1000
21 3959 3929–3989 1000
22 3959 3929–3989 1000
23 4050 4020–4080 1000

Atmospheric 
temperature

24 4465.5 4433–4498 1000
25 4515.5 4482–4549 1000

Cirrus clouds/
water vapor

26 1375 1360–1390 1000
27 6715 6535–6895 1000
28 7325 7175–7475 1000

Cloud properties 29 8550 8400–8700 1000
Ozone 30 9730 9580–9880 1000
Surface cloud 
temperature

31 11030 10780–11280 1000
32 12020 11770–12270 1000

Cloud top altitude 33 13335 13185–13485 1000
34 13635 13485–13785 1000
35 13935 13785–14085 1000
36 14235 14085–14385 1000
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Where:

h = 6.6260755d − 34; Planck constant (Joule second)
c = 2.9979246d  +  8; Speed of light in vacuum (meters/second)
k = 1.380658d − 23; Boltzmann constant (Joules/Kelvin)

3.2 � CloudSat

CloudSat (a NASA Earth Sciences Systems Pathfinder (ESSP) mission) is designed 
to measure the vertical structure of clouds from space and provides the first di-
rect observation of cloud vertical structure (Weisz et al. 2007). CloudSat is incor-
porated into the EOS satellites, which fly in a sun-synchronous orbit at a 705 Km 
altitude. The CloudSat satellite consists of a 94 GHz Cloud Profiling Radar (CPR) 
and provides a rich source of information about cloud properties. CloudSat data are 
available at resolution of 1.1 Km along track by 1.3 Km across track. All CloudSat 
data products are available to download from the CloudSat Data Processing Center 
(http://cloudsat.cira.colostate.edu). MODIS and CloudSat onboard Aqua are both 
part of the afternoon constellation of satellites, called the A-Train (Stephens et al. 
2002). The A-Train formation (Fig. 3.2) currently consists of a set of 4 satellites, 
starting with Aqua and followed by CloudSat and CALIPSO, with Aura as the last 
satellite. The carbon-tracking Orbiting Carbon Observatory 2 (OCO-2) satellite will 
be launched in 2014 to provide space-based global measurements of atmospheric 
carbon dioxide (CO2). The PARASOL (Polarization & Anisotropy of Reflectances 
for Atmospheric Sciences coupled with Observations from a Lidar) moved out of the 
A-Train in December 2009. The CloudSat radar flies in-formation with Aqua, with 
an average of 60 s delay between them, providing almost simultaneous observations.

There are several CloudSat products available from the CloudSat science team. 
Among them, the cloud scenario classification (2B-CLDCLASS) and Precipitation 
Column Algorithm Product (2C-PRECIP-COLUMN) are of interest to this research.

Different cloud types have different microphysical properties, frequency and 
dynamic forcing. Climate change can alter the frequency and properties of clouds, 
resulting in changes in precipitation occurrence and intensity.

Using space based observation of radar reflectivity from CPR and lidar obser-
vations available from CALIPSO, as well as MODIS radiances, Sassen and Wang 
(2008) developed the cloud classification algorithm. The CPR and lidar data are 
useful in identifying the vertical and horizontal extend of clouds, cloud temperature 
and the presence of precipitation (Wang and Sassen 2007).

CloudSat cloud-type classification product is able to identify clear sky, as well as 
7 different classes of clouds: cumulus (Cu), stratocumulus (Sc), altocumulus (Ac), 
altostratus (As), nimbostratus (Ns), high cloud (cirrus or cirrostratus) and deep con-
vective cloud. In the latest version of the CloudSat CLD_CLASS dataset, St and 
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Sc clouds are combined in one group. The class of high cloud in the cloud scenario 
classification includes cirrus, cirrocumulus, and cirrostratus. Cirrus is high-level 
cloud that mainly consists of single ice particles. These white or light gray color 
clouds appear in elevations higher than 5 Km and their thickness changes between 
100 to 8000 m. Cirrocumulus clouds are high level convective clouds and cirrostra-
tus is extensive cirrus in high altitudes. High-level clouds have very cold cloud tops 
and clearly appear in the IR images. Cirrus clouds are very thin or semi-transparent 
and might not be distinguishable in the visible imagery. Cirrosratus clouds are very 
large in horizontal direction and have homogeneous texture. High clouds are one of 
the non-precipitating cloud groups.

Middle-level clouds, such as altostratus and altocumulus, can be distinguished 
in IR images because of their cold tops. They can be homogeneous (e.g. As) and 
inhomogeneous (e.g. Ac). Winter time detection of middle-level clouds might be 
challenging in high or mid-latitude regions and also in high mountainous regions.

Low-clouds are typically present in the elevations lower than 3 Km, such as cu-
mulus, stratus and stratocumulus. Cumulus clouds are puffy shaped clouds that are 
vertically expanded. They appear lower in the atmosphere (lower that 2 Km) and 
have flat bases. Cumulus clouds usually produce very light or zero precipitation, but 
they can grow into cumulonimbus clouds that are precipitating cloud types. Stratus 
clouds in contrast have homogeneous texture and their horizontal extension is larger 
compared to cumulus clouds. Stratocumulus is another class of low clouds that are 
shallow, inhomogeneous and large horizontal dimension. In general, remote sens-
ing detection of low clouds is challenging due to their warm cloud tops that appear 
close to surface radiation temperature in the IR channels.

Fig. 3.2   The A-Train constellation. (Source: http://cloudsat.atmos.colostate.edu/education/
satellites)

 

http://cloudsat.atmos.colostate.edu/education/satellites
http://cloudsat.atmos.colostate.edu/education/satellites
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The other group of clouds is deep clouds, such as nimbostratus and deep convec-
tive clouds (e.g. cumulonimbus). These two cloud types can extend from near the 
surface to the higher troposphere; however, their main difference is in their precipi-
tation intensity. DC clouds produce heavier precipitation compared to NS clouds 
and are formed after strong updrafts. Figure 3.3 represents common types of clouds 
and Table 3.2 provides characteristics of different cloud scenarios provided by the 
CloudSat science team.

Fig. 3.3   Common types of clouds. (Source: http://airlineworld.files.wordpress.com/2008/07/
cloud_types.gif)

 

http://airlineworld.files.wordpress.com/2008/07/cloud_types.gif
http://airlineworld.files.wordpress.com/2008/07/cloud_types.gif
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Table 3.2   Different cloud types characteristics. (Source: Wang and Sassen (2007))

�3.2  CloudSat
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Chapter 4
Reducing False Rain in Satellite Precipitation 
Products Using Cloudsat Cloud Classification 
Maps and Modis Multi-spectral Images
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Because clouds play important roles in producing precipitation and in Earth’s 
radiative balance, they are a key element in studies of weather and climate, water 
and energy cycles, and hydrologic analysis. Low clouds have an important effect 
on cooling the Earth, as they reflect sunlight back to space. High, thin clouds have 
the opposite effect, allowing incoming sunshine to pass through but trapping heat 
that is trying to escape from earth. Improving our understanding of cloud structures 
is the main step in global climate studies and precipitation algorithm development.

One of the unique observations available from CloudSat is its vertical cloud 
structure. CloudSat cloud classification data set is used in this study to classify 
non-precipitating clouds and therefore delineate the no-rain regions. By delineating 
no-rain areas, the false rain estimations from satellite precipitation algorithm will 
be removed. After explaining the role of multi-spectral data in precipitation algo-
rithms, the classification methodology is discussed in detail.

4.1 � The Role of Multi-spectral Data in Satellite 
Precipitation Algorithms

Many satellite-derived precipitation products take advantage of multiple remote 
sensing devices. For example, to overcome the temporal limitations of PMW es-
timates, NOAA CPC Morphing Technique (CMORPH) uses atmospheric motion 
vectors derived from GEO’s IR data to propagate high quality PMW precipitation 
estimates when updated PMW data are unavailable (Joyce et  al. 2004). TRMM 
Multi-satellite Precipitation Analysis (TMPA) products are combined precipitation 
products that use GEO’s IR information to fill the gaps between PMW estimates 
(Huffman et  al. 2007). Other precipitation products use PMW adjusted IR data, 
such as the PMW calibrated IR algorithm (PMIR; Kidd et al. 2003), the Precipita-
tion Estimation from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN) algorithm (Hsu et al. 1997; Sorooshian et al. 2000), and the 
Self-Calibrating Multivariate Precipitation Retrieval algorithm (SCaMPR; Kuli-
gowski 2002). In addition, the Naval Research Laboratory (NRL) blended-satellite 
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precipitation technique uses a combination of MODIS/AMSR-E sensors to detect 
cirrus clouds and reduce false rain estimations in the algorithm (Turk and Miller 
2005). More recently, Rain Estimation using the Forward-Adjusted advection of 
Microwave Estimates (REFAME) algorithm (Behrangi et al. 2010) uses IR images 
to advect microwave-derived rain rates along the cloud motion tracks. This algo-
rithm takes advantage of a local cloud classification method to adjust the rain rates. 
More sophisticated approaches such as The Lagrangian Model (LMODEL) algo-
rithm, combine information from microwave calibrated data and morphing tech-
niques using a conceptual modeling framework (Bellerby et  al. 2009; Hsu et  al. 
2009).

Several studies emphasize that more advanced methods are needed to improve the 
quality of satellite precipitation products, including reducing their FAR (Sorooshian 
et al. 2011; AghaKouchak et al. 2009). The utility of multi-spectral satellite data in 
capturing microphysical properties of clouds and improving precipitation estima-
tion has been the subject of many investigations in recent years. For instance, Li 
et al. (2007) showed the effectiveness of MODIS channel 31 (11.03 µm) in identify-
ing high clouds with very cold brightness temperatures. Strabala et al. (1994) show 
that for high ice clouds, a difference between 8.5 and 11 µm brightness temperatures 
(BTD[8.5-11]) is greater than BTD[11-12]. Furthermore, Wang et al. (2009) used 
the near-infrared (NIR) 2.19 µm band to retrieve cloud particle size and used the 
water vapor absorption channel 1.38 µm band to screen out upper-level ice clouds. 
Turk and Miller (2005) show that significantly positive BTD[3.7-11] provides in-
formation for identifying cirrus clouds at night.

BTD[11-12] is also useful in identifying ice clouds. Inoue (1987) showed that 
optically thin (τ in the range of 0.1 and 4) cirrus clouds have BTD[11-12] values 
greater than 2.5K. Furthermore, BTD[11-12] values less than or equal to 0K cor-
respond to deep convective clouds with heavy precipitation (Kurino 1997). More 
recently, Setvak et al. (2003) showed that convective storms exhibit a significant 
increase in 3.7 µm cloud top reflectivity.

BTD[8.5-11] also has been shown to be effective in identifying high ice clouds. 
Since ice particles absorb much less radiation at 8.5 µm than 11 µm, high cirrus 
clouds are expected to have a BTD[8.5-11] greater than one (Roskovensky and 
Liou 2003). Thies et al. (2008) considered BTD[8.7-10.8] and BTD[10.8-12.1] to 
identify cloud phase.

Using multi-spectral data for rain/no-rain (R/NR) detection was also a focus of 
many studies. A combination of VIS and IR channels was initially used by Lovejoy 
and Mandelbrot (1985) and Austin (1987) to identify R/NR occurrences. Capacci 
and Conway (2005), Behrangi et al. (2010), and others have also found remarkable 
improvements in detecting rainy areas when using multi-spectral data. Lensky and 
Rosenfeld (2003) implemented the difference between a thermal IR channel and a 
mid-IR channel, BTD[3.7-11], into a night-rain delineation algorithm. Kwon et al. 
2009 shows improvements in detecting deep convective cloud heights by using 
Ozone channel 9.7μm (MODIS channel 30).
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4.2 � Satellite Data

The proposed method will benefit from more reliable and detailed information on 
cloud classes, obtained from CloudSat satellite, to differentiate precipitating and 
non-precipitating cloud types. Identifying high cold clouds helps to screen out non-
precipitating clouds, and therefore reduce FAR in current precipitation algorithms. 
Among various types of clouds, cirrus (high) and altostratus clouds are non-precip-
itating clouds that are the interest of this study.

Not all 36 channels of MODIS are beneficial in cloud and precipitation studies. 
As explained in Sect. 4.1 among different multi-spectral channels there are a few of 
them that are useful in precipitation and cloud detection algorithms. Those channels 
are in the range of water vapor and infrared. In this study, a set of six WV and IR 
channels of MODIS (6.75, 7.325, 8.55, 9.7, 11.03 and 12.02 µm) were selected as 
input to the ANN model. The availability of these channels during the day and night 
makes it possible to have a consistent rain/no-rain (R/NR) detection algorithm for 
day and night retrieval.

4.3 � Methodology

To give an example of how different datasets are used in this study, Fig. 4.1 is presented.
Figure 4.1a demonstrates the CloudSat overpass through a precipitation event 

(Stage IV data) over South Carolina and neighboring states on August 13th, 2008 
(05:45 UTC). The black line in Fig. 4.1a represents the track of the CloudSat radar, 
while the second panel in the figure shows the vertical profile of the clouds with dif-
ferent cloud types obtained from the 2B-CLDCLASS product. The X axis shows the 
pixel number along the track of CloudSat (each pixel is approximately 1.1 Km). The 
Y axis shows the cloud height in Km. As demonstrated in this figure, high clouds 
(blue color) have cloud tops higher than 12 Km and deep convective clouds (shown 
in brown) are very thick and have high cloud tops. Furthermore, the figure displays 
PERSIANN (panel c) precipitation estimates and radar observations (panel d) cor-
responding to the CloudSat track. The PERSIANN and Stage IV data are 3 hourly 
data and CloudSat has instantaneous observation. In this example the data are cho-
sen in a way to have the minimum time difference between CloudSat observation 
at 5:45 and PERSIANN and Stage IV most probably at 5:45 and 6:00 respectively. 
Considering panels c and d, one can see that the maximum amount of precipitation 
estimated by PERSIANN coincides with the high cirrus anvil, which has the lowest 
brightness temperature. However, ground-based data indicates that the peak of the 
storm is in the center of the deep convective tower (about 15 mm/hr), which makes 
more physical sense. Radar data estimates zero precipitation in the presence of high 
clouds. Panels (e) and (f) in Fig. 4.1 display cloud brightness temperature converted 
from MODIS radiance data, which are informative in terms of different cloud types. 
Panel (e) shows that the lowest value of brightness temperature at 11 µm appears 
at the location of high clouds, and coincides with high precipitation estimates from 
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the PERSIANN product. As discussed earlier, the brightness temperature difference 
between channels 31 and 29 of MODIS (BTD[8.5-11]) is a strong positive value 
(greater than 2 K) for high ice clouds. Panel (g) in the figure presents the radar re-
flectivity observations by CloudSat showing the vertical structure of the convective 
zone. MODIS BTD[8.5–11] is almost zero in the presence of deep convective cloud 

Fig. 4.1   Part a. An example of the CloudSat cloud classification map and MODIS brightness 
temperature data on August 13th, 2008 (05:45 UTC). a Track of CloudSat passing through a storm 
measured by Stage IV precipitation data. b CloudSat vertical cloud profile. c PERSIANN precipi-
tation data (mm/hr). d Stage IV precipitation data (mm/hr). e MODIS brightness temperature at 
11 µm ( Kelvin). Part b. f MODIS BTD[8.5–11] ( Kelvin). g Radar reflectivity ( dBZ)
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as shown in panels (f) and (g). The distinction between optically thin clouds (i.e. cir-
rus) and optically deep clouds (i.e. convective clouds) from multi-spectral channels 
helps to improve the IR only algorithms. Underestimation of PERSIANN algorithm 
in the presence of deep-convective clouds is one of the limitations of IR-based 
algorithms.

Figure 4.2 presents how the false rain identification algorithm works. In this 
method, the cloud classes obtained from CloudSat are assigned to textural and 
spectral features of clouds observed by MODIS, whenever CloudSat retrieval is 

Fig. 4.1   (continued)

Fig. 4.2   False rain identification algorithm using cloud classification data)
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available. A training data set is created from CloudSat and MODIS data over the 
continental United States. At each CloudSat track, pixels with single layer cloud are 
identified and the cloud class with cloud multi-spectral information from MODIS 
is stored in the training data matrix. The target value in the target vector is in the 
binary format. If the cloud class is a non-precipitating cloud type (i.e. high and 
altostratus), the target value is 1, and if the pixel is associated with other types of 
precipitating clouds, the target value is 0. The training database is then used as a 
reference to find the best cloud class for the times that CloudSat data is not avail-
able. In the following section, the details of the classification method are explained.

4.4 � Classification

Multi-spectral image classification is an important technique in the application of 
remote sensing and geo-sciences. Statistical classification is a multivariate analysis 
that takes advantage of simultaneous observations coming from images on different 
spectral bands. Analyzing a set of input variables for a set of known classes (i.e. 
labels), a statistical connection is created between the input features and the target 
response (i.e. training data set). Among different classification techniques, Artificial 
Neural Networks (ANNs) have been shown to be an effective tool in classifying 
complicated systems (e.g. Hsu et al. 1997; Capacci and Conway 2005; Behrangi 
et al. 2009; Hong et al. 2004; Farahmand and AghaKouchak 2013; Bellerby et al. 
2000; Tapiador et al. 2004).

ANNs are pattern recognition tools usually used to model complex relationships 
between a set of inputs and corresponding outputs (Bishop 1996). These models are 
composed of interconnecting artificial neurons, and are employed to find statisti-
cal correlations between multi-spectral information on cloud tops and binary target 
value (see Fig. 4.3 for ANNs’ model structure). In other words, ANN is simply a 
nonlinear function from a set of input variables ( )x  to a set of output variables 

Fig. 4.3   Schematic of the feed-forward three-layer perceptron with 6 input variables. The final 
output layer provides the rain/no rain detection)
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(target values, y ) with a vector of adjusted parameters. ( )ω  ANNs are capable 
of mapping multivariate functions and of extracting underlying rules from noisy 
data. In addition, they are well suited to problems of estimation and prediction in 
hydrometeorology and remote sensing. They are popular for estimating and fore-
casting precipitation (Hsu et  al. 1997, 1999; Sorooshian et  al. 2000; Hong et  al. 
2004; Behrangi et al. 2010), and for some other remote sensing image classification 
and applications (Benediktsson et al. 1990; Hara et al. 1995; Ji 2000; Aitkenhead 
and Dyer 2007). ANNs can approximate any continuous input-output function, and 
its derivatives, to arbitrary accuracy (Hornik et al. 1990; Gallant and White 1992).

In this study, a feed-forward back-propagation model with a single hidden layer 
and a sigmoidal activation function was created. The ANN model calculates the 
errors between the calculated output and given output data, and by adjusting the 
weights, minimizes the error. The general equation for ANNs is in the form of a 
linear combination of fixed nonlinear basis functions, φj (x), with the weights ωj 
and is in the form of:

Each basis function, φj (x), itself is a nonlinear function of a linear combination of 
the inputs (i.e. MODIS data), where the coefficients in the linear combination are 
parameters to be adjusted during model training.

In the general ANN equation, f is the activation function. In this study a sigmoi-
dal activation function was associated with all the neurons in the model, and is in 
the form of:

The target values in the ANN model are a binary vector of no-rain clouds (1) or 
possible raining clouds (0). The ANN computes the value of the output based on the 
series of inputs entered into the model. If the output is equal or greater than 0.5, it 
assumed to be a no-rain scenario, while values less than 0.5 are possible rain pixels.

4.5 � Training Data Set

Six MODIS infrared and water vapor channels (6.75, 7.325, 8.55, 9.7, 11.03, 
12.02 μm wavelength) are set as input variables to the ANN model to recognize 
different pattern of rain and no-rain clouds. The training data set was created by 
obtaining information about MODIS multi-spectral data and CloudSat cloud class 
data, whenever CloudSat retrieval was available. Training data consists of 150,000 
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cloudy pixels in summer 2008. A one layer feed forward, back propagation neural 
network model was employed to identify no-rain clouds. The target to the ANN 
model is a binary matrix, having one when there is a non-precipitating cloud and 
zero otherwise. For the times that CloudSat is not available, the trained model is 
used to find the non-precipitating cloud coverage in each MODIS image.

4.6 � Application of the Model on Precipitation Events

Figure 4.4a shows precipitation estimation by Stage IV precipitation for Aug. 13, 
2008 (0545 UTC). Panel (b) on the figure represents corresponding PERSIANN 
estimation (mm/hr). Figure 4.4c demonstrates the false alarm precipitation that can 
be removed using the proposed method. Data in panel (c) are from 2 consequent 
MODIS granules with about 5 min delays from each other (region between solid 
black lines). Pixels with false precipitation are shown with red and blue. The blue 
color highlights the no-rain pixels that are falsely identified as rain pixels in the 
PERSIANN dataset; however, the algorithm identifies them as associated with non-
precipitating cloud (cirrus). The red color shows the false rain pixels not identified 
with this algorithm. From the total number of pixels with false precipitation, more 
than 55 % of pixels are identified with the current method. Figure 4.5 shows the re-
sults for the event on Jul. 22, 2008 (0805 UTC). The false rain pixels identification 
rate is 43 % in this event.

4.7 � Results and Discussions

High false rain in IR-based satellite precipitation algorithms is one of their well-
known shortcomings. Using the multi-spectral images of MODIS satellite and 
unique capability of CloudSat in observing vertical structure of clouds, a new level 
of information can be added to the current precipitation algorithms. By identifying 
non-precipitating clouds, the regions of no-rain can be identified and therefore the 
false rain area in satellite precipitation algorithms will be determined.

A training algorithm using ANN method and unique observations of CloudSat 
and MODIS is created to identifying regions associated with non-precipitating 
clouds. The two examples presented in this research clearly show the improvements 
gained by adding new sources of information to the current rain algorithm.
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Fig. 4.4   False alarm detection using MODIS 6 spectral bands and CloudSat CLD-CLASS August 
13, 2008 (0545 UTC))
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This study develops a no-rain detection algorithm that takes advantage of CloudSat 
and MODIS observations to detect no-rain areas. The CloudSat surface precipita-
tion occurrence data set is a reliable source to detect rain or no-rain based on Cloud-
Sat radar data. The backscatter of radar data due to presence of hydrometeors near 
the surface confirms the occurrence of rain. In this chapter, the CloudSat precipita-
tion occurrence is used as a reliable source for rain detection. After explaining the 
methodology and data sources, the model training and results are presented.

5.1 � Classification

The ANN classification method is used to train the algorithm. Details of the ANN 
method for classification are explained in Sect. 4.4. The same model structure is 
used for this chapter. The main difference is the target value in the training algo-
rithm. An ANN model with 20 nodes is created and their weights for each of the 
six MODIS window and infrared channels are presented in Fig. 5.1. Higher weight 
values show stronger input on that specific node. Figure 5.1 shows that different 
channels have different weights for summer and winter seasons.

5.2 � Satellite Observations

A set of 6 MODIS infrared and water vapor channels (6.75, 7.325, 8.55, 9.7, 11.03, 
12.02 μm wavelength) are considered as the input variables to the ANN model. The 
CloudSat Level 2-C Precipitation Column algorithm (Haynes et al. 2011) provides 
information about the presence of surface precipitation. The determination of sur-
face precipitation occurrence is based on the radar reflectivity data near the surface 
and the surface reflection characteristics. Higher radar reflectivity near the surface 
increases the probability of rain near the surface. The CloudSat Precip. flag data set, 
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determines the surface rain occurrence based on the reflectivity values below 2 km 
altitude (Haynes et al. 2011).

The flag categorizes precipitation into 9 different groups: no precipitation, 
uncertain, rain possible, rain probable, rain certain, snow possible, snow certain, 
surface mixed precipitation, mixed precipitation possible and mixed precipitation 
certain. In this study, only instances of certain no-precipitation were considered as 
NR pixels.

5.3 � Training Data Set

To have a better estimation of performance of the proposed technique, the analysis 
was done for summer and winter precipitation events. Separate training for sum-
mer and wintertime were considered to account for different climate conditions in 
different seasons and improve the accuracy of the model. As explained earlier, the 
spectral information from MODIS onboard Aqua and the corresponding CloudSat 
estimation of R/NR were considered in the training data sets. Data were randomly 
divided into two groups: training and testing. The summer training data included 
about 118,000 pixels observed on the summer of 2008, with 16,000 rainy pixels 

Fig. 5.1   The ANN model weights for summer ( left) and winter ( right) seasons
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(dry to wet ratio of 7.3:1). Similarly, winter training data set with a dry to wet ratio 
of 2.8:1 embraced around 130,000 pixels in total from the winter of 2010.

5.4 � Application of the Model on Precipitation Events

After training the algorithm using collocated MODIS and CloudSat pixels, the 
ANN model was used on MODIS multi-spectral images to identify the NR regions. 
At each MODIS pixel, the ANN model estimated if that pixel is a NR pixel, and 
the results were compared with CloudSat detections. The model performance was 
investigated over the continental United States for the summer and winter of 2007.

5.5 � Results and Discussions

After training the model using the summer of 2008 and the winter of 2010 datasets, 
the model validation was performed on 2007 data. CloudSat radar data is consid-
ered as the truth to validate the R/NR classification model presented in this study. 
The 2007 summer results were evaluated over 70,000 CloudSat pixels and showed 
a 78 % accuracy in the detection rate of NR pixels. The 2007 winter data validation 
on 50,000 pixels showed a very high accuracy of 93 %. Figures 5.2 and 5.3 display 
the distribution of different cloud types for correct NR pixel classification, as well 
as the misclassified pixels for summer and the winter seasons, respectively.

Figure 5.2 shows high clouds and altostratus are two non-precipitation cloud 
types based on the CloudSat cloud classification algorithm. Most of the misclassi-
fied NR pixels are from the cloud types of altostratus (As) and altocumulus (Ac). 
Thirty nine percent of the pixels covered by altostratus clouds were misclassified in 
NR detection and the misclassification was around 34 % in the case of altocumulus 
clouds (5.1). The model’s low performance in the case of middle level clouds, con-
firms the limitation of IR based algorithms in detecting warm clouds.

The distribution of different cloud classes in winter are demonstrated in Fig. 5.3. 
The first panel in the figure shows that most NR pixels are associated with high 
clouds and stratocumulus. The algorithm has the poorest performance in the case of 
middle level clouds, such as altostratus and altocumulus (see Table 5.1). The same 
result was observed in summer season classification. The misclassification rate is 
14 % in the case of altostratus clouds and the error is less than 6 % in the remaining 
types of clouds. Model performance also depends on the number of pixels in the 
training dataset. The very poor model performance in the presence of deep convec-
tive clouds, with 43 % detection error in the winter season, is most likely due to in-
sufficient number of pixels in the training dataset. In summer season, nimbostratus 
and deep convective clouds have the least occurrence. Most no-rain pixels that are 
associated with deep convective clouds and nimbostratus in summer are misclassi-
fied as rainy pixel in both summer and the winter seasons.
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As discussed in the first section, the PERSIANN dataset shows higher false 
alarms in the winter season (Sorooshian et al. 2011). Applying the current algo-
rithm, one can see an improvement of precipitation estimation in the winter season.

During summertime NR pixels associated with high clouds are identified with 
high accuracy. As discussed earlier, high clouds account for the majority of false 
rain estimations in satellite rainfall algorithms. Therefore, using the proposed meth-
odology has a significant role in reducing false rain. We also acknowledge that the 
temporal differences between different datasets (i.e. MODIS and GOES observa-
tions) could affect the results.

Fig. 5.2   Distribution of different cloud types in the case of correct NR detection ( top) and mis-
classifications ( bottom), for the summer of 2007
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5.6 � Case Study

Two case studies on summer and winter precipitation events are presented here to 
show the application of this technique to improving the quality of satellite rain es-
timation. The MODIS level 1B data set has a spatial resolution of 1 km in contrast 
to the 0.25° (~25 km) PERSIANN precipitation product. Therefore, the MODIS 
images were re-gridded to the 0.25° PERSIANN grids and then used as input to the 
ANN model.

Fig. 5.3   Distribution of different cloud types in the case of correct NR detection ( top) and mis-
classifications ( bottom), for the winter of 2007
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The temporal resolutions of the data sets are also different. PERSIANN data are 
aggregated from 30 min rain estimations into hourly accumulated precipitations. 
In contrast, MODIS provides instantaneous observations twice a day. In this study, 
MODIS images within 20 min of PERSIANN estimations are mosaicked together 
into one raster image and then compared with corresponding PERSIANN data. 
Corresponding Stage IV data is presented for comparison of model performance. 
Figure 5.4 Panel (a) shows the Stage IV precipitation data (mm/h) on August 5th, 
2007 (05:00 UTC). Panel (b) represents the corresponding PERSIANN data for the 
same time step (mm/h). By finding the ANN model’s results on the correspond-
ing MODIS images (two images for August 5th, 2007 (04:40 and 04:45 UTC)), 
the false alarms were identified. A false rain pixel is defined as a NR pixel in the 
ground-based observation data (Stage IV data) that contains precipitation from the 
satellite estimations (AghaKouchak and Mehran 2013). Figure 5.4c demonstrates 
the current algorithm’s results in identifying false alarms on PERSIANN-derived 
precipitation. Grey pixels on the image show the location of correct rain detection 
from the satellite, and red and blue pixels are false rainy pixels from PERSIANN 
estimations. The blue color identifies the accuracy of the model in identifying NR 
pixels, while the red color demonstrates a false rain pixel that the model could not 
detect (here to define a false rain, the Stage IV data is considered the reference). 
Table 5.2 presents the number of rainy pixels in each dataset as well as number of 
FAR pixels detected. The algorithm was able to identify 155 false rain pixels (i.e. 
62 % reduction in FAR for this event). Note that the region between the solid blue 
lines shows the MODIS coverage.

Figure 5.5 is another example of false rain detection for November 6th, 2007 
(03:00 UTC). Panel (c) in the figure shows that the accuracy of the model is about 
61 % in this event. PERSIANN estimation shows a large area of false rain on the 
southeast side of the event and the majority of FAR pixels could be removed using 
the current algorithm. Table 5.2 presents the number of rainy pixels in each dataset 
as well as number of FAR pixels detected.

Misclassification error percentage (%)
Cloud type Summer Winter (%)
High cloud 9 6
Altostratus 39 14
Altocumulus 34 4
Stratocumulus 15 3
Cumulus 24 4
Nimbostratus 72 5
Deep convective 68 43

Table 5.1   NR misclassifica-
tion error percentage for sum-
mer and winter seasons
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5.7 � Conclusion

Previous studies have highlighted the need to improve the quality of satellite pre-
cipitation data. High false alarm ratio is one of the problems that current satellite 
products are facing specially during cold seasons. In this study, the ability of a 
NR classification model using the CloudSat data as well as corresponding multi-
spectral data from MODIS was investigated.

Fig. 5.4   Performance of the ANN model in identifying false rain locations on August 5th, 2007 
(05:00 UTC). a Stage IV precipitation data (mm/h). b PERSIANN data (mm/h). c Model perfor-
mance in FAR detection

 

5.7 �� Conclusion�
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An artificial neural network model was developed to take advantage of accurate 
surface rain detections from the CloudSat satellite. The CPR radar data onboard 
CloudSat can detect the presence of hydrometeors near the surface. A separate train-
ing and validation dataset was considered to estimate the accuracy of the trained 
model. Model training was performed on CloudSat and MODIS data in the summer 

5  Integration of CloudSat Precipitation Profile in Reduction of False Rain

Fig. 5.5   Performance of the ANN model on November 6th, 2007 (03:00 UTC). a Stage IV pre-
cipitation data (mm/h). b PERSIANN data (mm/h). c Model performance in FAR detection

 

Table 5.2   Model performance presented in Figs. 5.4 and 5.5
Summer Winter

No. of precipitation pixels in the StageIV estimate 449 1151
No. of precipitation pixels in the PERSIANN estimate 562 717
No. of the false rain pixels corrected 155 300
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of 2008 and the winter of 2010. The summer and winter 2007 data sets were select-
ed to assess the performance of the model. Model validation showed an accuracy 
of 93 % for winter and 77 % for summer in identifying false rain pixels. Differ-
ent cloud classes were available from the CloudSat CLD-CLASS product, and the 
model performance was evaluated in presence of these different cloud classes. The 
model performance was the least accurate in case of deep convective and middle 
level (e.g. altostratus and altocumulus) cloud types.

By reducing false rain, the quality of satellite precipitation products for practi-
cal applications (e.g. flood forecasting) will significantly improve. In the future, it 
would be possible to include multi-spectral data from Advanced Baseline Imager 
(ABI) sensor aboard the future GOES-R satellite in order to overcome the limited 
retrievals of MODIS.

The proposed technique has the potential to be integrated into near real-time 
satellite precipitation data sets to reduce false alarms from the algorithms. Two case 
studies presented in the winter and summer 2007, using hourly PERSIANN data, 
showed a reduction of false rain in comparison with Stage IV radar data.
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6.1 � Introduction

Clouds are a key component in the weather and climate studies. However, their rep-
resentations in climate models are associated with high uncertainty. For example, 
some studies show that compared to observations of real clouds, models signifi-
cantly enhance solar radiation reflected by low clouds. This finding has major im-
plications for the cloud-climate feedback problem in models (Stephens et al. 2008; 
Stephens 2010). A cloud classification scheme would be a valuable tool for illumi-
nating the uncertainty of our models and algorithms and improving the accuracy of 
weather, climate, and precipitation studies. After classifying clouds into different 
classes, the precipitation estimation can be improved by integrating the classifica-
tion scheme into the precipitation algorithm.

Different cloud classification techniques can be either statistically or physical-
ly based, using different cloud textural, spectral, and physical features obtained 
from satellite observations (Rossow and Schiffer 1999; Tian et  al. 2000, Welch 
et al. 1992; Luo et al. 1995; Tovinkere et al. 1993; Bankert 1994; Wang and 2001; 
Bankert and Wade 2007). Physically based cloud type identification using weather 
satellites evolved during the 1980s and early 1990s mainly by using multi-spectral 
channel differences. The brightness temperature differences (BTD) between two 
or three channels were considered to identify a certain type of clouds. In addition 
to BTD, VIS and IR Channel combinations help to identify different cloud phases 
such as liquid, ice or mixed phase clouds (see Sect. 4.1 for details).

More sophisticated techniques include cloud microphysical and physical char-
acteristics. For example, the International Satellite Cloud Climatology Project (IS-
CCP) (Rossow and Schiffer 1999) uses the information on cloud top pressure and 
cloud optical depth to classify clouds into seven groups: cumulus (Cu), stratocumu-
lus (Sc), altocumulus (Ac), altostratus (As), nimbostratus (Ns), cirrus, cirrostratus 
or deep convective clouds.

In contrast, statistical classification methods can be a more effective means of 
including multichannel data and information to identify different cloud types under 
various surfaces and latitudes. Supervised and unsupervised statistical classification 
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techniques such as the K-mean, Maximum Likelihood and Artificial Neural Net-
work (ANN) have been used in multi-spectral image classification (Falcone and 
Azimi-Sadjadi 2005). In a supervised training of a model, a set of observations with 
their “true” cloud classifications is assigned and after a training period, this model 
predicts the cloud class for unknown cloud scenarios.

Hong et al. (2004) showed application of a feature-based cloud classification 
technique in satellite precipitation estimation. They classified clouds into a matrix 
of 20 × 20 based on cloud’s coldness, texture and geometry. Then, they assigned a 
rain rate to each pixel based on the brightness temperature-rain rate relationship for 
each group. The results of their technique show promising results in incorporating 
cloud data into precipitation algorithms.

In this study a cloud type classification algorithm is developed to distinguish 
different clouds based on their multi-spectral features and CloudSat observations. 
After explaining the methodology and data, validation and application of the model 
is presented.

6.2 � MODIS Cloud Mask

MODIS, a key instrument on NASA’s EOS Terra and Aqua satellites, provides a 
cloud classification scheme (Cloud Mask; Platnick et al. 2003). The MODIS cloud 
classification takes advantage of three datasets including radiances in VIS, near 
infrared and IR images and BTD and texture (local standard deviation) of images. 
First, the mask identifies the likelihood of cloud cover for any given pixel by con-
sidering the reflectance in multi-spectral bands. The next step is identifying cloud 
top pressure by either a CO2 slicing technique or emission from 11 µm channel. 
The third step is to determine the cloud’s thermodynamic phase, and the last step 
retrieves optical thickness and particle size.

There are a total of 15 cloud classes in the MODIS cloud mask (presented in 
Table 6.1).

However, MODIS’s physical cloud classification methods suffer from clouds’ 
high variability and the dependence of cloud radiance on the emissivity of the sur-
face over land. In addition, MODIS classification does not identify all cloud types, 
only cirrus and high clouds.

The cloud profiling radar onboard CloudSat can penetrate deeply into nearly all 
cases of non-precipitating clouds. Using a CloudSat profile radar cloud map, a cloud 
classification model can be trained and then used for better rainfall estimation.

6.3 � Image Classification Using Self Organizing Maps

A nonlinear mapping Artificial Neural Network (ANN) system is developed to clas-
sify cloud images into seven cloud categories using CloudSat and MODIS data sets. 
The ANN architecture to be employed in this study is known as a Self-Organizing 
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Feature Map (SOFM) network (Kohonen 2006). The CloudSat radar images show 
distinguishable features of different cloud types. The classification layer categoriz-
es MODIS images into a number of characteristic groups, each of which represents 
a specific cloud pattern in part of the input domain.

SOFM is an unsupervised classification technique that represents multidimen-
sional input data in a lower dimensional space. In this study the input data are 
mapped into a 2D dimensional space. SOFMs are also considered a dimension re-
duction algorithm called vector quantization. Figure 6.1 shows the structure of a 
SOFM model. Inputs are fully connected to a two dimensional discrete map consist-
ing of hexagonal nodes. Each vector of data from the input is placed onto one of the 

Fig. 6.1   Structure of a SOFM model

 

Class index Content
  1 Confident clear water
  2 Confident clear coastal
  3 Confident clear desert or semiarid ecosystems
  4 Confident clear land
  5 Confident clear snow or ice
  6 Shadow of cloud or other clear
  7 Other confident clear
  8 Cirrus detected by solar bands
  9 Cirrus detected by infrared bands
10 High clouds detected by CO2 bands
11 High clouds detected by 6.7 mm band
12 High clouds detected by 1.38 mm band
13 High clouds detected by 3.7-and 12 mm bands
14 Other clouds or possible clouds
15 Others

Table 6.1   Initial classes from 
MODIS cloud mask
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grids of the map with the minimum distance between this vector and the map grid 
(closest weight vector).

Figure 6.2 schematically shows how the model structure is trained. The blue area 
shows the input space (training dataset). The SOFM nodes (black grids) are ran-
domly distributed in the space. The white dot shows the current training vector from 
the training dataset. The nodes closest to the input vector (highlighted in yellow) 
will be moved to have a minimum distance to the training vector. After introducing 
all the vectors in the training dataset to the model, the final map will be a represen-
tative of input data distribution. During the training, the distance between the input 
vector (xi) and the node centers will be calculated (Equation 6.1)

�

(6.1)

the best-matching SOFM cluster c (winning node) is the one corresponding with 
the minimum distance (dc) between the input feature vector and the SOFM connec-
tion weights ωij (Equation 6.2). ωij is the weight matrix that represents the center of 
clusters.

� (6.2)

A SOFM with 15 × 15 hexagonal nodes are applied in this study.

6.4 � Data Pre-processing

Data Normalization  Brightness temperature values and reflectance data have dif-
ferent units and ranges of variability. By normalizing there data, we reduce the 
effects of data range variations. Scaling all the values so that they fall in the range 
of [0—1] will improve the model’s training accuracy and reduce the training time.

Visible Data Correction  Visible data should be normalized based on the sun’s 
direction and the time of day. Behrangi (2009) showed the effectiveness of normal-
izing visible data by the sun zenith angle (SZA). He concluded that multiplying 
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Fig. 6.2   A schematic diagram of the SOFM training (Source: http://en.wikipedia.org/wiki/
Self-organizing_map)
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by cos(SZA)−1 resulted in a larger portion of visible data that can be used in the 
analyses. This study uses the same approach to normalize the visible channels. Only 
pixels with SZA < 60o are considered to minimize the uncertainty associated with a 
large SZA.

�
(6.3)

Uniform Distribution of Data  One of the other methods to increase the accuracy 
of model’s training is to use a uniform distribution of data. Different cloud types 
have different distributions and that affects the results of the model outcome. The 
higher the number of samples in the training dataset, the more likely it is that model 
will be tuned toward a given specific cloud type (Hsu et al. 2002).

6.5 � Training and Validation Datasets, Summer Season

The training does not include clear sky conditions because they happen more often 
than cloudy scenes and influence the ANN model weights (Capacci and Conway 
2005). To filter out clear sky pixels, a cloud mask is applied first. To identify cloudy 
scenes, pixels with the highest probability of cloud presence from the MODIS cloud 
mask dataset are considered as cloudy pixels.

Figure 6.3 represents the variability in the input data. The red line in the middle 
of the box represents the median and two boundaries of the box are the twenty-fifth 
and seventy-fifth percentile of the data. The outliers are plotted separately by a red 
cross. By definition, the outlier is a value that is more than 1.5 times the interquar-
tile range (length of the box) away from the top or bottom of the box. The outlier 
data plotted in the figure are included in the training of the model since they are rep-
resentative of upper and lower tails of distribution corresponding to extreme obser-
vation data. There is a large difference between the range of values in water vapor 
and IR channels compared with visible data as shown in the figure. Normalizing the 
values of the IR and VIS channels, confining them to a range of 0—1 removes the 
effects of different units in the dataset. Visible data are also normalized to account 
for the effects of sun zenith angel using Equation 6.3.

Figures 6.4 and 6.5 present the distribution of data used for training and valida-
tion for summer 2008 and 2007, respectively. Summer 2008 training data consist of 
more than 121,000 cloudy pixels and summer 2007 covers 70,000 cloudy samples. 
Cloud classes of cumulus and nimbostratus in summer datasets have very limited 
samples (occurrence) and were removed from the analysis.

The figures also show that high clouds are the dominant type of clouds during sum-
mertime. Alto-stratus and altocumulus clouds have almost the same distribution. Cloud 
type distribution for 2007 and 2008 are quite similar. Note that distribution of different 
cloud types is not uniform. High clouds happen more often than any other cloud type. 
Using the original data distribution in the training algorithm will tune model parameters 
toward high clouds (dominant cloud type). As explained in Sect. 6.4, a uniform distribu-
tion of data is introduced to the model in the training phase.

Ref norm Ref SZA_ *cos( )= −1
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6.6 � Training and Validation Datasets, the Winter Season

Winter 2010 and 2007 data, each with more than 50,000 cloudy pixels, are consid-
ered in the training and validation process. Figures 6.6 and 6.7 show the histogram 
of 2010 and 2007 datasets, respectively. Comparing figures, large differences can 
be seen in cloud type distributions. Nimbostratus, a thick cloud that causes precipi-
tation with prolonged rain events, was the dominant cloud type in winter 2010. On 
the other hand, winter 2007 was relatively drier and had mainly inhomogeneous 

Fig. 6.3   A box-plot of 6 MODIS channel input data, summer 2008
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Fig. 6.4   Distribution of different cloud types in the input data, summer 2008

Fig. 6.5   Distribution of different cloud types in the validation dataset, summer 2007
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shallow stratocumulus clouds. Many pixels were associated with no-rain clouds, 
such as high and altostratus clouds.

Because of large differences in the distribution of data in 2010 and 2007, and 
also to increase the sample size, both years’ data are combined and a subset with 
uniform distribution is considered for training.

Fig. 6.6   Distribution of different cloud types in the training dataset, winter 2010

Fig. 6.7   Distribution of different cloud types in the validation dataset, winter 2007
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Figure 6.8 shows the distribution of multi-spectral data for 7 MODIS spectral 
channels that are used in the training phase. As shown in the figure, channels 29, 
31 and 32 have a similar range of data, and channel 27 (6.535–6.895 μm), a water 
vapor channel, has a slightly different range of brightness temperature values com-
pared to other channels.

Fig. 6.8   A box-plot of 7 MODIS channel input data, winter 2010
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6.7 � SOFM Model for Summer Season

Using a uniform distribution of input data, the SOFM model is trained to classify 
clouds into different groups. To select a uniform distribution, the cloud type with 
minimum occurrence was selected and the same number of pixels was randomly 
picked from other cloud types in the training dataset. In the summer dataset, deep 
clouds occur less often and the same number of cloudy pixels was chosen from 
other cloud groups. After about 5000 iterations, the data samples are distributed 
onto a 15 × 15 map. Figure 6.9 shows the sample distribution on a 2-D map. The 
figure also shows the structure of the SOFM nodes. Each node has a hexagonal 
shape connected to six neighboring nodes. The number in the middle of each node 
shows the number of samples located on each node. For example, a node labeled 
178 represents 178 cloudy pixels from the training dataset. Pixels are arranged in 
correspondence to other pixels with similar properties. There are two areas on the 
map with larger distributions of samples, one on the right and the second one on 
the left. The size of the hexagons on the map is related to the number of samples on 
that particular node.

Figure 6.10 shows the weight (cluster center) of each input feature on the SOFM 
map. The normalized values (ranging from 0 to 1) are shown with corresponding 
colors changing from blue to red. Blue represents smaller values (colder brightness 
temperature or lower reflectance on VIS data) and red represents warmer pixels or 
pixels with higher reflectance. Comparing subplots of Fig.  6.10 shows the clus-
ters located on the lower right corner of the map correspond to colder pixels with 
lower brightness temperature (higher elevated clouds) and pixels on the bottom and 
left corners have higher reflectance values (most likely thicker clouds). Comparing 

Fig. 6.9   Distribution of different samples on a SOFM map
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Figs. 6.9 and 6.10 reveals that most of the samples are located on the clusters with 
low reflectance and medium temperature on IR (clusters on the right hand side) or 
warmer tops with higher reflectance (left hand side).

After training the algorithm, we can check the distribution of cloud pixels on the 
SOFM map. Fig. 6.11 shows the number of cloudy pixels on each cluster. Compar-
ing Figs. 6.11 and 6.10 shows some general characteristics of clouds. For example, 
deep convective clouds are positioned on the lower part of the map. This area cor-
responds to low brightness temperature and high reflectance in the visible channel. 
Deep convective clouds have the coldest top temperatures. As explained earlier, the 
total number of samples selected from each cloud group in the training dataset is 
the same.

Figure 6.12 shows the probability of each cloud type on the SOFM clusters. 
Equation 6.4 explains how to calculate the probability of each cloud type on each 
node.

�
(6.4)

Where, ( )ijP x  is the probability of cloud type i on cluster j.
Sij is the number of cloud samples of type i on cluster j.i changes from 1 to 7 (7 

cloud types) and j changes from 1 to 225 (total number of clusters on a 15 × 15 map). 
Skj represents the total number of cloud samples on node j.
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Fig. 6.10   Weight of different input features on the SOFM map
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Fig. 6.11   Number of cloud samples on each SOFM cluster

 

Fig. 6.12   Probability of various cloud types on SOFM clusters
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After finding the probability of each class on every cluster, the dominant cloud 
class on each cluster can be determined. The dominant cloud type is the cloud type 
with the highest probability. After finding the most probable cloud type at each 
cluster, the decision matrix can be generated. If there is no cloud sample located on 
any particular cluster, there is no decision on that cluster. Figure 6.13 represents the 
decision matrix for the summer season. There are two no-decision clusters in the 
summer season decision map.

The confidence of each decision cluster can also be determined. The confidence 
is defined as the probability of the dominant cloud type on each cluster. The higher 
the probability, the better the confidence level of the classification.

Figure 6.14 shows the confidence level of the classification map. Comparing 
Figs. 6.14 and 6.13 shows higher confidence in occurrence of high cloud and stra-
tocumulus. The decision confidence on the upper right corner clusters is low. The 
upper right corner corresponds to low reflectance on the visible channel and warm 
tops (mainly middle level clouds).

6.8 � Validation of Cloud Classification Model, 
Summertime

To demonstrate the accuracy of the classification model, the model is calibrated 
against the summer 2007 dataset. Knowing the original cloud types from CloudSat, 
the 2007 pixels were classified using the created model and then compared with the 

Fig. 6.13   Decision matrix, summer season
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CloudSat cloud types. The results are presented in Fig. 6.15. High clouds and deep 
convective clouds have the highest accuracy and the classification accuracy is low-
est in the case of middle level clouds. As discussed earlier the miss-classification 
between high cirrus and deep convective is one of the shortcomings of IR-based 
algorithms that leads to false rain detection. Integrating the current cloud classifi-
cation model into the precipitation algorithm, reduces the false rain in presence of 
high clouds.

6.9 � SOFM Model for the Winter Season

A uniform distribution of data drawn from winter 2010 and 2007 data is considered 
to train the SOFM model. After 5000 iterations, the distribution of samples on the 
SOFM map is presented in Fig. 6.16.

Figure 6.17 shows the weight (cluster center) of each input feature on the SOFM 
map in winter classification data. The X and Y axes are the 15 × 15 cluster map 
and the normalized brightness temperature or visible reflectance data (ranging from 
zero to one) are shown on the map. The left hand side and bottom clusters, corre-
spond to high visibility and the upper right corner corresponds to pixels with lower 

Fig. 6.14   Decision confidence of summer classification
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visibility. Higher brightness temperature samples are placed on the top part of the 
SOFM map (shown in red on Fig. 6.17).

Figure 6.18 shows the distribution of cloudy samples from each cloud type on 
the 2D map. Because we have used a uniform distribution of clouds in the training 
(Hsu et al. 2002), one can see that there are equal numbers of samples from each 
cloud type distributed on the SOFM clusters.

Fig. 6.15   The accuracy of summertime cloud classification

 

Fig. 6.16   Distribution of training samples on the SOFM map
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Fig. 6.17   Weight of different input features on the SOFM map

 

Fig. 6.18   Number of cloud samples on each SOFM cluster
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Deep clouds, such as deep convective clouds, appear on the lower part of the 
map that corresponds to low brightness temperature and high visible reflectance. In 
general, clouds with high albedo have a large optical depth and are thicker. On the 
other hand, high clouds correspond to low reflectance due to their shallow depth. 
Middle level clouds fall in the middle of the 2D map. NS clouds are another distinct 
type of cloud that are located near deep convective clouds on the SOFM map but 
appear lower in the atmosphere (warmer in IR channels) and have lower albedo.

Equation 6.4 is used to find the probability of each cloud type on each cluster. 
Fig. 6.19 shows the probability of each cloud type on every cluster. The figure 
shows low probability of cloud types and spread distribution of samples.

The decision matrix depicts the dominant cloud type on each cluster. After run-
ning the model three times, the decision matrix is created based on the results and 
is presented in Fig. 6.20.

Figure 6.21 shows the decision confidence for the winter season classification. 
The low confidence values represent poor performance of the model in the win-
ter season. In general, satellite observations have better results in summer com-
pared to the winter due to dominance of convective storms. (see also, Mehran and 
AghaKouchak 2014;  Sorooshian et al. 2011; AghaKouchak and Mehran 2013)

Fig. 6.19   Probability of various cloud types on SOFM clusters
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Fig. 6.21   Decision confidence of winter classification

Fig. 6.20   Decision matrix, the winter season
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6.10 � Validation of Cloud Classification Model, the Winter 
Season

Validation of the winter season dataset is performed on a subset of the 2007 and 
2010 dataset that was not used in the model training. The validation results show 
low accuracy in the classification of cloud groups. Nimbostratus clouds have the 
highest accuracy that is 37.2 % (Fig. 6.22).

6.11 � Conclusion

The poor result of cloud classification in the winter season is not surprising because 
satellite observations tend to have weaker observation accuracies in winter. Acker-
man et al. (2009) confirm discrepancies among different PMW sensors in detect-
ing wintertime high latitude cloud properties because of similar spectral radiances 
between clouds and the background area. The same study highlights differences 
between MODIS sensors onboard Terra and Aqua due to their respective instrument 
performances.

The shortcomings of wintertime satellite observations are not unique to cloud 
detection. Aghakouchak et al. (2012) discusses high systematic errors in wintertime 
satellite observations in detecting precipitation. Consistently missed precipitation 
in satellite products was also the dominant cause of error in winter observations as 
reported by Tian et al. (2009). McCollum et al. (2002) studied PMW-based satellite 
rainfall data over the United States and showed underestimations in wintertime. In 

Fig. 6.22   The accuracy of winter season cloud classification
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addition, Rozumalski (2000) showed better IR-based satellite estimations in sum-
mertime compared to winter season.

The main reason in better summertime estimation is the dominance of convec-
tive clouds. Because of their high altitude and ice particles, convective clouds are 
easier to be detected in satellite rain estimations. The probability of detection of rain 
is very high in summer estimations as shown in Chap. 2.

Summertime distribution of clouds also shows significant presence of high cir-
rus clouds. The base of high clouds is located in elevations higher than 7 km. They 
consist of ice particles and appear very cold in IR images. In contrast to deep con-
vective clouds, high clouds are thin. Multi-spectral data are shown to be effective in 
identifying cirrus clouds.

The distribution of clouds in wintertime is different. A large portion of cloudy 
pixels are associated with nimbostratus (winter 2010) and stratocumulus (winter 
2007). Both of these cloud types are low to mid-level clouds. Ns clouds are located 
at elevations lower than 4 km and Sc clouds appear lower than 2 km altitude. Their 
low altitude makes them appear warm in the IR brightness temperature data and 
challenging to be identified. Ns clouds sometime look similar to other middle level 
clouds such as stratus and stratocumulus or even altostratus clouds. The difference 
between Ns and the three mentioned clouds is that Ns clouds produce precipitation.

In addition, as discussed in Sect. 3.2, wintertime detection of middle-level clouds 
in cold winters in high and mid-latitudes is challenging. The snow-covered cold 
surface might not be distinguishable from low and middle-level clouds. It is also 
difficult to identify low or middle-level clouds in high mountainous regions since 
the surface elevation may be at the same elevation as clouds.

These results show that with the current sensor capabilities it is difficult to iden-
tify middle level clouds and there is a need for radar data. Radar can penetrate 
through the clouds to see the vertical structure of clouds. Having a three dimen-
sional observation, one can provide a cloud classification algorithm with the ability 
to identify middle and low level clouds in addition to high level clouds.
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False alarm is one of the shortcomings of satellite precipitation estimates that needs 
to be improved. Many studies have quantified the FAR, bias and errors of satellite 
precipitation estimates. However, reducing the FAR is an essential step in improv-
ing the quality of satellite data. In this research, three techniques are proposed to 
reduce the FAR by integrating information from multi-spectral satellite imagery as 
well as satellite radar observations. MODIS, a multi-spectral satellite sensor, ob-
serves the atmosphere in 36 spectral channels, providing a special source of infor-
mation for cloud observation. On the other hand, CloudSat has two products, Cloud 
Type and Precipitation Occurrence, that can add a new dimension to the IR-based 
precipitation algorithms. In the first approach, the cloud type classification dataset 
from CloudSat was used as a reference to find the non-precipitating cloud types. 
One of the reasons for FAR in satellite precipitation data is the presence of high 
non-precipitating clouds such as cirrus or cirrus anvil. Generally, the areal coverage 
of satellite precipitation estimation is larger than that of ground observation, pri-
marily due to presence of cirrus anvil. Finding the pixels with anvil coverage, one 
can eliminate the false rain estimations from the satellite product. A trained neural 
network model using six MODIS water vapor, window and infrared channels (6.75, 
7.325, 8.55, 9.7, 11.03, 12.02 μm wavelength) as the input and CloudSat cloud type 
as the target showed a remarkable improvement in elimination of false rain in the 
precipitation algorithm.

The second approach to identify false rain is to use the satellite radar observa-
tion to find location of false rainy pixels. CloudSat is equipped with cloud profiling 
radar (CPR) that provides radar observations near the surface. The precipitation 
column algorithm uses the radar data in addition to surface reflection characteristics 
to identify the occurrence of rain over land. The main advantage of the CloudSat 
radar compared to ground-based radar is that CloudSat orbits the earth almost at the 
same time as MODIS. Because precipitation processes can happen in short period 
of time, having simultaneous observations is an important key to using multiple 
data sources. An ANN model was trained based on six MODIS channels to make a 
connection between MODIS observations and rain occurrence. The trained model 
has the ability to estimate rain or no-rain regions on MODIS imagery.
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In addition to using cloud type classification data from CloudSat, a trained cloud 
classification model was created in this research using a neural network model to 
find no-rain clouds on the MODIS image and filter non-precipitating regions. The 
results show promising outcomes for the summer season data to classify high no-
rain clouds with 70 % accuracy. The winter season cloud type classification has 
some limitation that needs to be further improved.

The following objectives mentioned in ‎Chap. 1 were tested and addressed in this 
dissertation:

1.	 Using multi-spectral data in satellite precipitation algorithms will help improve 
precipitation algorithms. There is a need to move from single IR channel esti-
mations to multi-channel precipitation algorithms. The first objective of this 
dissertation is to show the effectiveness of using multi-spectral data in satellite 
precipitation estimation.

To overcome the limitations of IR-based observations in satellite precipitation es-
timation, multi-spectral data can be used. Moving from single channel to multiple 
channels in satellite products has been a topic of current precipitation estimation 
research. Multi-spectral data help to observe some information beyond only top 
cloud brightness temperature. High vs. low clouds and thin vs. thick clouds are 
distinguishable when considering brightness temperature in various spectral wave-
lengths. The distinction between high non-precipitating and deep convective clouds 
is possible using multi-spectral data. In this research, a set of six MODIS WV and 
IR channels are used in combination with surface rain occurrence data to find the 
no-rain regions. Using an ANN model for summer and winter seasons, the perfor-
mance of more than 77 and 93 % accuracy was achieved for summer and winter sea-
sons, respectively. In addition, the same model was used on real-time PERSIANN 
precipitation data. Results show false alarm removal of 62 and 61 % for two case 
studies of summer and winter season PERSIANN data in comparison with ground 
radar, respectively.

2.	 The second objective of this dissertation is to show that satellite precipitation 
algorithms will benefit from information on cloud structure and characteristics. 
Clouds create precipitation, and adding information about different types of 
clouds will improve precipitation algorithms.

IR-based algorithms are indirect rainfall estimation techniques that measure the top 
cloud temperature. The precipitation estimation algorithms use empirical relation-
ships between cloud top temperature and measured rainfall to estimate precipita-
tion. In addition to multi-spectral data, CloudSat provides a unique set of observa-
tion of cloud vertical profile that was shown to be an effective tool in satellite-based 
precipitation estimation. CloudSat cloud type classifies clouds into seven different 
groups. Among different types of clouds, cirrus and altostratus are non-precipitat-
ing. A neural network model was trained to distinguish these cloud types. After 
identifying non-precipitating cloud coverage regions, the rain estimation from satel-
lite products can be eliminated.
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CloudSat only provides cloud type classification on a very narrow swath. In this 
research, a self organizing feature map (SOFM) model was used to classify clouds 
into seven types. In this approach, on each MODIS image the clouds are classified 
into one of seven different types. Finding the non-precipitating clouds are of interest 
to this study to remove falsely rain pixels. The classification results showed promis-
ing results on summertime data.

3.	 The main reason for false rain observations in satellite-based products is the 
presence of high cirrus clouds. These highly elevated clouds have cold cloud 
tops in IR imagery. Therefore, they show false rain signals in satellite-based 
estimations. The third objective is to show that by identifying and filtering cold 
cirrus clouds false rain reduces.

A considerable portion of false rain pixels are associated with high cirrus clouds 
and cirrus anvil. These cloud types with high altitudes are composed of ice crystals. 
Because of their very cold tops, they often appear as rain in IR-based algorithms. 
Larger spatial rain coverage on the ground in the case of deep convective storms, 
confirms the false rain estimation in case of cirrus anvil cloud. Integrating multi-
spectral MODIS data and CloudSat observations showed that most of no-rain pixels 
were associated with high clouds. The trained model was able to identify no-rain 
high clouds with the accuracy of 91 and 94 % in summer and winter season valida-
tion studies, respectively.

7.1 � Future Work

The following future research directions are suggested after completing this re-
search.

1.	Deriving various rainfall algorithms based on different cloud types.
	 In this study, a new cloud classification algorithm was developed that showed 

promising results for summertime cloud type classification. After finding dif-
ferent types of clouds, separate rain estimation algorithms can be developed for 
each cloud type to achieve a better accuracy in rainfall detection. For example, 
the type of rainfall events from nimbostratus clouds is prolonged and not very 
heavy. In contrast, deep convective clouds usually produce intense precipitation 
events. After finding the type of cloud system, a better estimation of rainfall is 
foreseeable.

2.	 Integrating shortwave infrared channels in the multi-spectral channel 
consideration.

	 In this study, the spectral data in the range of shortwave IR are not considered 
due to their solar contamination during daytime. The shortwave data can be used 
at night or during daytime after correction. In future studies, the shortwave IR 
data can be added to this study after reflectance correction.



68 7  Summary and Conclusions

3.	 Adding textural information for cloud classification.
	 In addition to multi-spectral data, textural information is also useful to distin-

guish different cloud types. The degree of smoothness of the texture is one of 
the valuable information that can be used to identify homogeneous clouds (e.g. 
stratiform) vs. non-homogeneous clouds (e.g. convective clouds).

4.	 A global cloud classification system is achievable using multi-spectral data 
available from future GOES-R satellite.

	 In the future, there is a possibility to include multi-spectral data from the 
Advanced Baseline Imager (ABI) sensor on board the future Geostationary 
Operational Environmental Satellite-R Series (GOES-R) to overcome the lim-
ited retrievals of MODIS. GOES-R is the next generation of geosynchronous 
environmental satellites was planned to launch in 2015. All the MODIS multi-
spectral data that are used in this study will be available from GOES-R and the 
same trained model is ready to be applied on GOES-R images. Since GOES-R is 
a geostationary satellite, it will provide higher temporal resolution data available 
every couple of minutes (Fig. 7.1).

Fig. 7.1   Availability of CloudSat, MODIS and future GOES-R satellites
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