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Preface

This book is volume I in a two-piece study of dispersion forces as described within
the context of macroscopic quantum electrodynamics (QED) in dispersing and
absorbing media. Its purpose is threefold: To provide insights and intuitions into
macroscopic QED and dispersion forces; to enable the reader to perform his/her
own calculations of such forces; and to serve as a reference for dispersion forces in
concrete geometries and scenarios. For these purposes, calculations and deriva-
tions are laid out in detail and broken down into small steps. Common tricks and
approximations are explicitly shown. The results are linked to the pioneering
historic works as well as recent research in the field and made plausible by simple
physical models.

The book is mainly aimed at three groups of readers. First, it shall provide
graduate and postgraduate students with a practical introduction to the field of
dispersion forces. While mainly intended for self-study, it can also serve as the
basis for a graduate lecture course where many of the worked examples can be
used as exercises. Second, this book shall provide researchers from various fields
with an overview on macroscopic QED and dispersion forces, providing them with
both qualitative results and the theoretical tools for quantitative calculations.
Finally, it should serve experimentalists as a means to numerically evaluate
dispersion forces and potentials for relevant practical scenarios.

While the basics of macroscopic QED as well as dispersion forces between
ground-state objects have been covered in detail in Vol. I, this Vol. II addresses
more advanced topics most of which are subject to the current research. These
include relations between dispersion forces, Casimir–Polder (CP) potentials of
excited or moving atoms, and the impact of finite temperature. To ensure that Vol.
II can be read independently, the material of Vol. I is briefly reviewed in the
beginning. Occasionally, references to the more detailed material in Vol. I are
given.

The content of this volume is laid out as follows. Chapter 1 contains a review of
the main results of Vol. I. It summarizes the formalism of macroscopic QED as
well as the calculations of ground-state dispersion potentials. For CP potentials,
these calculations will be generalized and presented in more detail in Chap. 4.
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Readers of Vol. I can skip this Chap. 1, although it might give a new, more
condensed, and unified view on macroscopic QED and ground-state dispersion
forces.

In Vol. I, ground-state dispersion forces have been calculated explicitly for
highly symmetric geometries. In Chap. 2 of this volume, we develop methods for
approximating CP potentials for bodies of arbitrary shapes. Based on a Born
expansion, it is shown that the potential can be alternatively obtained from a series
of volume integrals over the bodies or by summing over appropriately chosen body
parts. These approximations are illustrated for the examples of a ring and an
inhomogeneous half space.

In Chap. 3, we compare Casimir forces between bodies, CP forces between
atoms and bodies, and van der Waals (vdW) forces between atoms and draw
connections between them. Reviewing asymptotic power laws for various geom-
etries in the long and short-distance limits, we show that they are special cases of
the general scaling behavior of dispersion forces. Using the methods of Chap. 2,
we show that forces on bodies are simple sums over the forces on the atoms
contained therein in the dilute-gas limit. For more dense bodies, many-atom
contributions need to be taken into account. This is explicitly demonstrated for the
CP potential, leading to general expressions for many-atom vdW potentials.

The CP potential of a ground-state atom is studied in detail in Chap. 4 of Vol. I,
as reviewed in Chap. 1 of this volume. These results are extended to excited atoms
in Chap. 4, where we derive the CP potential of an excited atom by means of
perturbation theory. The alternative minimal and multipolar coupling schemes are
seen to lead to equivalent results. Invoking the Green’s tensor given in App. A, we
discuss the examples of an excited atom in front of a perfectly conducting plate or a
magnetodielectric half space. The more advanced scenario of an atom in front of a
meta-material superlens is also considered.

The results are further generalized in Chap. 5 where the dynamics of the
excited-state force is considered. As shown, the time-dependent force can be found
from the quantum averaged Lorentz force. It is governed by the spontaneous decay
of the initially excited atom. As illustrated by the example of an atom near a plate,
the strength of the excited state force sensitively depends on the environment-
induced shifts and broadenings of the atomic transition frequencies.

Chapter 6 focusses of the resonant force on an excited atom under strong-
coupling conditions in cavity QED. Using the Jaynes–Cummings model together
with a dressed-state approach, we generalize the approach of Chap. 4 beyond
perturbation theory. The CP potential follows from the eigenenergies of the
strongly coupled atom–field system. In close similarity to Chap. 5, we also address
the dynamics of the strong-coupling force.

The impact of finite temperature on the CP force is addressed in Chap. 7.
We first use a perturbative approach to calculate the CP potential of a ground-state
or excited atom in a finite-temperature environment. Using the examples of an
atom in front of a perfectly conducting plate or a metal half space, we illustrate the
intertwined dependence of the thermal CP potential on distance, temperature, and
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atomic transition frequencies. Following the Lorentz-force approach of Chap. 5,
we then consider the dynamics of the force for non-equilibrium scenarios.

The final Chap. 8 is devoted to the effect of motion on the CP force. Using the
Lorentz-force approach, the leading non-relativistic velocity dependence of the
force is derived. The results are applied to the quantum friction on an atom moving
parallel to a plate. The differences of quantum friction for excited versus ground-
state atoms near metal or dielectric plates are discussed.

Two appendices provide technical background and reference material.
Appendix A collects information about the classical Green’s tensor for the elec-
tromagnetic field. In addition to reviewing the general properties and specific
examples contained in App. B of volume I, the scaling behavior and Born
expansion of the Green’s tensor are given. Appendix B is a brief review of atomic
physics as needed for the examples studied in Chaps. 7 and 8.

The content of this book has originated in my research at Friedrich-Schiller-
University of Jena during my Ph.D. and subsequently at Imperial College London.
It was supported by Thuringian Ministry of Science, the E.–W. Kuhlmann-
Foundation, the German Research Foundation, the Alexander von Humboldt
Foundation, and the Engineering and Physical Sciences Research Council, UK. I
am deeply indebted to my Ph.D. supervisor D.-G. Welsch who has introduced to
research in general and macroscopic QED in particular. This work would not have
been possible without the support of my hosts at Imperial College, S. Scheel and E.
A. Hinds. Some of the results contained in this book were obtained in collaboration
with Ho Trung Dung and A. Sambale at Friedrich-Schiller-University of Jena; J.
A. Crosse and M. R. Tarbutt at Imperial College; and S. Å. Ellingsen from the
Norwegian University of Science and Technology in Trondheim. I am grateful to
G. Barton, D. Bloch, M. Ducloy, H. Haakh and M. S. Kim for discussions.
In addition, I would like to thank L. Arntzen, A. V. Chizhov, D. A. R. Dalvit, C.
Farina, M. DeKieviet, F. Haake, D. Meschede, P. Milonni, F. S. S. da Rosa, and H.
Ulbricht for their kind hospitality and I. V. Bondarev, D. A. R. Dalvit, S. Å.
Ellingsen, F. Intraviaia, A. Jacob, V. N. Marachevsky, F. S. S. da Rosa, A.
Sambale, Y. Sherkunov, and M. S. Tomaš for their visits. Some of these visits
were made possible by the network ‘New Trends and Applications of the Casimir
Effect’ for which I am grateful to both the organisers of the network and the
European Science Foundation. I would like to thank D. Baumgärtel, S. Å. El-
lingsen, A. Sambale and M. R. Tarbutt for valuable feedback on various parts of
the manuscript and P. Hertel for encouragement and advice. I am grateful to C.
Ascheron of Springer for his enthusiasm for this project and to P. Wölfle for his
useful comments. Finally, I thank my wife, children, parents, and sister for their
encouragement, support and distractions.

London, June 2012 Stefan Yoshi Buhmann

Preface ix

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_8
http://dx.doi.org/10.1007/978-3-642-32466-6_8
http://dx.doi.org/10.1007/978-3-642-32466-6_7
http://dx.doi.org/10.1007/978-3-642-32466-6_7
http://dx.doi.org/10.1007/978-3-642-32466-6_8


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Macroscopic Quantum Electrodynamics . . . . . . . . . . . . . . . . . . 1

1.1.1 Medium-Assisted Electromagnetic Field . . . . . . . . . . . . 1
1.1.2 Atom–Field Interactions. . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Dispersion Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Casimir Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Casimir–Polder Forces . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Van der Waals Forces . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Approximating Casimir–Polder Potentials. . . . . . . . . . . . . . . . . . . 35
2.1 Born Expansions of the Green’s Tensor . . . . . . . . . . . . . . . . . . 35

2.1.1 Electric Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Magnetic Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.3 Electromagnetic Bodies . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Casimir–Polder Potential via Volume Integrals . . . . . . . . . . . . . 44
2.2.1 Arbitrary Background . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Weakly Magnetodielectric Bodies in Free Space. . . . . . . 47
2.2.3 Atom Next to a Ring. . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4 Atom Next to a Metal Plate or Sphere. . . . . . . . . . . . . . 59

2.3 Casimir–Polder Potential via Body Decomposition . . . . . . . . . . 61
2.3.1 Summation Formulae. . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.2 Atom in Front of an Inhomogeneous Half Space . . . . . . 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec8
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec8
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec9
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec9
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec10
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Sec10
http://dx.doi.org/10.1007/978-3-642-32466-6_1#Bib1
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec8
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec8
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec9
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec9
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec10
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec10
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec11
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec11
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec12
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Sec12
http://dx.doi.org/10.1007/978-3-642-32466-6_2#Bib1


3 Common Properties of Dispersion Forces . . . . . . . . . . . . . . . . . . . 75
3.1 Asymptotic Power Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Universal Scaling Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Retarded Dispersion Forces . . . . . . . . . . . . . . . . . . . . . 80
3.2.2 Nonretarded Dispersion Forces . . . . . . . . . . . . . . . . . . . 83
3.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 Microscopic Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.1 Dilute-Gas Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.2 Many-Atom Contributions . . . . . . . . . . . . . . . . . . . . . . 101

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Casimir–Polder Forces on Excited Atoms: Static Theory . . . . . . . . 113
4.1 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.2 Multipolar Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Excited Atom in Front of a Plate. . . . . . . . . . . . . . . . . . . . . . . 125
4.2.1 Perfectly Conducting Plate . . . . . . . . . . . . . . . . . . . . . . 129
4.2.2 Half Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.3 Meta-Material Superlens . . . . . . . . . . . . . . . . . . . . . . . 140

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Casimir–Polder Forces on Excited Atoms: Dynamical Approach . . . 149
5.1 Lorentz Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1.1 Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.1.2 Multipolar Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2 Internal Atomic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3 Atomic Polarisability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.4 Casimir–Polder Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.5 Excited Atom in Front of a Plate. . . . . . . . . . . . . . . . . . . . . . . 176
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6 Casimir–Polder Forces in Cavity Quantum Electrodynamics . . . . . 183
6.1 Static Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.1.1 Jaynes–Cummings Model. . . . . . . . . . . . . . . . . . . . . . . 184
6.1.2 Casimir–Polder Potential . . . . . . . . . . . . . . . . . . . . . . . 189

6.2 Dynamical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.2.1 Internal Atomic Dynamics . . . . . . . . . . . . . . . . . . . . . . 195
6.2.2 Casimir–Polder Force . . . . . . . . . . . . . . . . . . . . . . . . . 204

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7 Thermal Casimir–Polder Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.1 Static Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.2 Atom or Molecule in Front of a Plate . . . . . . . . . . . . . . . . . . . 223

xii Contents

http://dx.doi.org/10.1007/978-3-642-32466-6_3
http://dx.doi.org/10.1007/978-3-642-32466-6_3
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec8
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Sec8
http://dx.doi.org/10.1007/978-3-642-32466-6_3#Bib1
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_4#Bib1
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_5#Bib1
http://dx.doi.org/10.1007/978-3-642-32466-6_6
http://dx.doi.org/10.1007/978-3-642-32466-6_6
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec5
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Sec6
http://dx.doi.org/10.1007/978-3-642-32466-6_6#Bib1
http://dx.doi.org/10.1007/978-3-642-32466-6_7
http://dx.doi.org/10.1007/978-3-642-32466-6_7
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec2


7.2.1 Perfectly Conducting Plate . . . . . . . . . . . . . . . . . . . . . . 225
7.2.2 Half Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.3 Dynamical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.3.1 Internal Atomic Dynamics . . . . . . . . . . . . . . . . . . . . . . 247
7.3.2 Casimir–Polder Force . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.3.3 Molecule in Front of a Plate. . . . . . . . . . . . . . . . . . . . . 258

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8 Casimir–Polder Forces on Moving Atoms . . . . . . . . . . . . . . . . . . . 263
8.1 Internal Atomic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.2 Casimir–Polder Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.3 Quantum Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Appendix A: The Green’s Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Appendix B: Atomic Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Contents xiii

http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec7
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec11
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec11
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec12
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec12
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec13
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec13
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec14
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Sec14
http://dx.doi.org/10.1007/978-3-642-32466-6_7#Bib1
http://dx.doi.org/10.1007/978-3-642-32466-6_8
http://dx.doi.org/10.1007/978-3-642-32466-6_8
http://dx.doi.org/10.1007/978-3-642-32466-6_8#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_8#Sec1
http://dx.doi.org/10.1007/978-3-642-32466-6_8#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_8#Sec2
http://dx.doi.org/10.1007/978-3-642-32466-6_8#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_8#Sec3
http://dx.doi.org/10.1007/978-3-642-32466-6_8#Bib1


Symbols

n! ¼
Qn

k¼1 k Factorial
ð2nþ 1Þ!! ¼

Qn
k¼1ð2k þ 1Þ Double factorial

� Scalar product
� Vector product
o=ox Partial derivative with respect to a

variable x
r Gradient

r Gradient acting to the left

_¼ o=ot Time derivative
Fourier transform

� or C.c. Complex conjugate
y or H.c. Hermitian conjugate
Re Real part
Im Imaginary part
k Longitudinal part
? Transverse part
T Transpose
�� Duality transform
^ Operator
0 Power–Zienau–Woolley transform
½ ; � Commutator
jwi Quantum state
�
f̂
�
¼ hwjf̂ jwi Quantum average of an observable f̂

�
f̂
�

T
¼ tr

�
f̂ q̂T

�
Thermal average of an observable f̂

Df̂ ¼ f̂ � hf̂ i Quantum fluctuation of an observable f̂
jf0gi Ground state of the medium-assisted

electromagnetic field

xv



j1kðr;xÞi, j1kðr;xÞ1k0 ðr0;x0Þi
j1k1ðr1;x1Þ � � � 1knðrn;xnÞi

Single-, two- and n-quantum Fock states
state of the medium-assisted electromag-
netic field

1VðrÞ Characteristic function of volume V
â, ây Photon annihilation and creation operators
A Vector potential for the electromagnetic

field
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Chapter 1
Introduction

As a foundation for the remainder of this book, we first need to review the basic
principles of macroscopic quantum electrodynamics (QED) and its application to
the calculation of dispersion forces between ground-state atoms and/or bodies. We
focus on the main results while also giving a brief idea of how they can be obtained.

1.1 Macroscopic Quantum Electrodynamics

Macroscopic QED is the theory of the quantised electromagnetic field in the presence
of macroscopic media. We begin by discussing the properties of the free field and
then proceed by introducing the coupling of this field to atoms.

1.1.1 Medium-Assisted Electromagnetic Field

The quantum electromagnetic fields are operator-valued functions of position r and,
in the Heisenberg picture, time t . In the presence of magnetoelectric media, we have
to distinguish between the electric and magnetic fields Ê and B̂ which act on free
charges and currents via the Lorentz force, and the electric and magnetic excitations
D̂ and Ĥ which are generated by such free charges and currents.1 An exact quantum
theory of the macroscopic electromagnetic field can be constructed by expressing
the fields in terms of fundamental degrees of freedom with specified commutation
relations and giving the Hamiltonian of the system. This can be uniquely done on the
basis of the fluctuation–dissipation theorem for the medium response functions while
requiring the macroscopic Maxwell equations and constitutive relations to hold.

1 Note that alternatively, B̂ is commonly referred to as the induction field while Ĥ is called the
magnetic field; and D̂ is known as the displacement field.

S. Y. Buhmann, Dispersion Forces II, Springer Tracts in Modern Physics 248, 1
DOI: 10.1007/978-3-642-32466-6_1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

The constitutive relations describing the dependence of D̂ and Ĥ on Ê and B̂ are
best formulated in frequency space. Introducing frequency components of the fields
according to

f̂ =
∞∫

0

dω f̂ (ω)+ H. c. , (1.1)

the constitutive relations may be written as

D = ε0εÊ + P̂N , (1.2)

Ĥ = 1

μ0μ
B̂ − M̂N , (1.3)

The present dispersing and absorbing media are hence represented by linear, causal
response functions ε and μ as well as random noise fields P̂N and M̂N. We assume
the medium response to be local and isotropic, so that the electric permittivity ε and
the magnetic permeability μ are complex-valued scalar functions of position and fre-
quency. Their imaginary parts must be positive for absorbing media, Im ε(r,ω) > 0
and Im μ(r,ω) > 0 for real frequencies. The reactive and random contributions of
the medium are closely related via the fluctuation–dissipation theorem [1]. When
applied to our case, it states that the quantum ground-state fluctuations of the noise
polarisation and magnetisation are related to the imaginary parts of the permittivity
and permeability, respectively:

〈S[
Δ P̂N(r,ω)Δ P̂†

N(r ′,ω′)
]〉 = �ε0

2π
Im ε(r,ω)δ(r − r ′)δ(ω − ω′) , (1.4)

〈S[
ΔM̂N(r,ω)ΔM̂†

N(r ′,ω′)
]〉 = �

2πμ0

Imμ(r,ω)

|μ(r,ω)|2 δ(r − r ′)δ(ω − ω′) . (1.5)

Here, S(âb̂) = 1
2 (âb̂ + b̂â) denotes a symmetrised operator product.

As mentioned, we require the electromagnetic fields to obey the macroscopic
Maxwell equations. In the absence of free charges or currents, they read

∇ · D̂ = 0 , (1.6)

∇ · B̂ = 0 , (1.7)

∇ × Ê − iω B̂ = 0 , (1.8)

∇ × Ĥ + iω D̂ = 0 . (1.9)
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Substituting the constitutive relations into (1.9) and making use of (1.8), one finds
that the electric field obeys an inhomogeneous Helmholtz equation

[
∇ × 1

μ
∇ × − ω

2

c2 ε

]
Ê = iμ0ω ĵ

N
(1.10)

with the source being given by the noise current density

ĵ
N
= −iω P̂N +∇ × M̂N . (1.11)

Together with the noise charge density

ρ̂
N
= −∇ · P̂N , (1.12)

it fulfils the equation of continuity

− iωρ̂
N
+∇ · ĵ

N
= 0 . (1.13)

By introducing the classical Green’s tensor G as the unique solution to the dif-
ferential equation

[
∇ × 1

μ(r,ω)
∇ × − ω

2

c2 ε(r,ω)

]
G(r, r ′,ω) = δ(r − r ′) (1.14)

with the boundary condition G(r, r ′,ω)→ 0 for |r− r ′| → ∞ for absorbing media,
the electric field can be given as

Ê(r,ω) = iμ0ω

∫
d3r ′G(r, r ′,ω) · ĵ

N
(r ′,ω) . (1.15)

Recall that

δ(r) = δ(r)I = −�
1

4πr
I (1.16)

(I : unit tensor) is the delta tensor. The Green’s tensor is an analytic function of
frequency in the upper half of the complex plane. Further useful properties such as
the Schwarz reflection principle, Onsager reciprocity and an integral relation are laid
out in App. A.1.

Having solved the Maxwell equations in frequency space, an explicit field quan-
tisation can be constructed by expressing noise polarisation and magnetisation in
terms of fundamental variables with well-defined commutation relations. We require
that the ground-state averages of noise polarisation and magnetisation vanish and that
their fluctuations satisfy the fluctuation–dissipation theorem. This can be achieved
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by introducing bosonic creation and annihilation operators f̂ †
λ(r,ω) and f̂ λ(r,ω)

(λ = e, m) for the elementary electric and magnetic excitations of the system with
commutation relations

[
f̂λ(r,ω), f̂ λ′(r ′,ω′)

]
=

[
f̂ †
λ(r,ω), f̂ †

λ′(r ′,ω′)
]
= 0 , (1.17)

[
f̂ λ(r,ω), f̂ †

λ′(r ′,ω′)
]
= δλλ′δ(r − r ′)δ(ω − ω′) (1.18)

and a ground-state |{0}〉 defined by

f̂ λ(r,ω)|{0}〉 = 0 ∀λ, r,ω . (1.19)

Relating them to noise polarisation and magnetisation via [2–5],

P̂N(r,ω) = i

√
�ε0

π
Im ε(r,ω) f̂ e(r,ω) , (1.20)

M̂N(r,ω) =
√

�

πμ0

Im μ(r,ω)

|μ(r,ω)|2 f̂ m(r,ω) , (1.21)

one can easily verify that the fluctuation–dissipation theorem holds in the form of
(1.4) and (1.5).

The electric field can now be expressed in terms of the fundamental variables f̂ λ
and f̂ †

λ by substituting (1.11), (1.20) and (1.21) into (1.15) and recalling (1.1). One
finds

Ê(r) =
∞∫

0

dω Ê(r,ω)+ H. c. (1.22)

=
∞∫

0

dω
∑
λ=e,m

∫
d3r ′Gλ(r, r ′,ω) · f̂ λ(r ′,ω)+ H. c.

with coefficients

Ge(r, r ′,ω) = i
ω2

c2

√
�

πε0
Im ε(r ′,ω) G(r, r ′,ω) , (1.23)

Gm(r, r ′,ω) = i
ω

c

√
�

πε0

Im μ(r ′,ω)

|μ(r ′,ω)|2
[∇′ ×G(r ′, r,ω)

]T
. (1.24)
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They obey the useful integral relation

∑
λ=e,m

∫
d3s Gλ(r, s,ω) ·G∗Tλ (r ′, s,ω) = �μ0

π
ω2 Im G(r, r ′,ω) (1.25)

which follows directly from the respective integral relation (A.5) of the Green’s
tensor as given in App. A.1. Using Maxwell equation (1.8), the magnetic field can
be expanded in a similar way:

B̂(r) =
∞∫

0

dω B̂(r,ω)+ H. c. (1.26)

=
∞∫

0

dω

iω

∑
λ=e,m

∫
d3r ′∇ ×Gλ(r, r ′,ω) · f̂ λ(r ′,ω)+ H. c.

It can then be shown that the electric and magnetic fields obey the equal-time com-
mutation relations [2–5]

[
Ê(r), B̂(r ′)

] = i�

ε0
∇ × δ(r − r ′) (1.27)

as known from free-space QED, cf. App. A of Vol. I. Furthermore, the ground-state
fluctuations of the electric field are given by [2, 5]

〈S[
ΔÊ(r,ω)ΔÊ†(r ′,ω′)

]〉 = �

2π
μ0ω

2 Im G(r, r ′,ω)δ(ω − ω′) , (1.28)

as required by the fluctuation–dissipation theorem.
Having explicitly quantised the electromagnetic field, we next need to specify the

Hamiltonian which governs its dynamics. We require the time-dependent fields in
the Heisenberg picture to obey the Maxwell equations

∇ · D̂ = 0 , (1.29)

∇ · B̂ = 0 , (1.30)

∇ × Ê + ˙̂B = 0 , (1.31)

∇ × Ĥ − ˙̂D = 0 . (1.32)

Recall that the first of these equations is the Gauss law, the second one states the non-
existence of magnetic monopoles, the third one is the Faraday law of induction and
the last one is the Ampère law. With the Maxwell equations in the frequency domain
being valid by construction, this requires the time-dependent frequency components
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of the fields to be Fourier components, in particular, f̂ λ(r,ω, t) = f̂ λ(r,ω)e−iωt .
The Hamiltonian of the medium-assisted electromagnetic field must hence be given
by [2–5]

ĤF =
∑
λ=e,m

∫
d3r

∞∫

0

dω �ω f̂ †
λ(r,ω) · f̂ λ(r,ω) ; (1.33)

it generates the correct Heisenberg equations

˙̂f λ(r,ω) = 1

i�

[
f̂ λ(r,ω), ĤF

] = −iω f̂ λ(r,ω) , (1.34)

recall the commutation relations (1.17) and (1.18).
Eigenstates of the Hamiltonian ĤF are the Fock states which can be generated

by repeated action of the creation operators on the ground state |{0}〉. Single- and
two-quantum Fock states are given by

|1λ(r,ω)〉 = f̂ †
λ(r,ω)|{0}〉 , (1.35)

|1λ(r,ω)1λ′(r ′,ω′)〉 = 1√
2

f̂ †
λ′(r ′,ω′) f̂ †

λ(r,ω)|{0}〉 . (1.36)

More generally, an n-quantum Fock state reads

|1λ1(r1,ω1) . . . 1λn (rn,ωn)〉 = 1√
n! f̂ †

λn
(rn,ωn) · · · f̂ †

λ1
(r1,ω1)|{0}〉 . (1.37)

Another important quantum state of the electromagnetic field is the thermal state of
uniform temperature T , described by the density matrix

ρ̂T = e−ĤF/(kBT )

tr
[
e−ĤF/(kBT )

] (1.38)

(kB: Boltzmann constant). Non-vanishing thermal averages 〈. . .〉T = tr(. . . ρ̂T ) of
the fundamental fields are given by [6]

〈
f̂ †
λ(r,ω) f̂ λ′(r ′,ω′)

〉
T = n(ω)δλλ′δ(r − r ′)δ(ω − ω′) , (1.39)

〈
f̂ λ(r,ω) f̂ †

λ′(r ′,ω′)
〉
T = [n(ω)+ 1]δλλ′δ(r − r ′)δ(ω − ω′) , (1.40)

with

n(ω) = 1

e�ω/(kBT ) − 1
(1.41)
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being the average thermal photon number as governed by Bose–Einstein statistics.
Using the field expansion (1.22), the fluctuation–dissipation theorem takes the form

〈S[
ΔÊ(r,ω)ΔÊ†(r ′,ω′)

]〉
T =

�

π

[
n(ω)+ 1

2

]
μ0ω

2 Im G(r, r ′,ω)δ(ω − ω′)
(1.42)

for finite temperature T . It reduces to the ground-state result (1.28) in the zero-
temperature limit. For large temperatures, one finds

〈
S[

ΔÊ(r,ω)ΔÊ†(r ′,ω′)
]〉

T =
kBT

πω
μ0ω

2 Im G(r, r ′,ω)δ(ω − ω′) , (1.43)

in agreement with classical physics, cf. (2.174) in Vol. I.
Finally, we introduce scalar and vector potentials for the electromagnetic field

Ê = −∇φ̂− ˙̂A , (1.44)

B̂ = ∇ × Â , (1.45)

which are useful for the introduction of atom–field interactions in the next section.
We will work in Coulomb gauge ∇· Â = 0 throughout this book, so that the potentials
are uniquely related to the longitudinal and transverse parts of the electric field:

Ê‖ = −∇φ̂ , Ê⊥ = − ˙̂A . (1.46)

The longitudinal (‖) and transverse (⊥) parts of a vector field f are given by

f ‖(⊥)(r) =
∫

d3r ′ δ‖(⊥)(r − r ′) · f (r ′) , (1.47)

with

δ‖(r) = −∇∇ 1

4πr
, δ⊥(r) = ∇ × (∇ × I )

1

4πr
(1.48)

being the longitudinal and transverse delta functions. Recalling (1.22) for the electric
field, we can easily express the potentials in terms of the fundamental fields:

∇φ̂(r) =
∞∫

0

dω∇φ̂(r,ω)+ H. c.

= −
∑
λ=e,m

∫
d3r ′

∞∫

0

dω ‖Gλ(r, r ′,ω) · f̂ λ(r ′,ω)+ H. c. , (1.49)
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Â(r) =
∞∫

0

dω Â(r,ω)+ H. c.

=
∑
λ=e,m

∫
d3r ′

∞∫

0

dω

iω
⊥Gλ(r, r ′,ω) · f̂ λ(r ′,ω)+ H. c. (1.50)

where left/right longitudinal or transverse components of a tensor field T (r, r ′) have
been denoted as

‖/⊥T ‖/⊥(r, r ′) =
∫

d3s
∫

d3s′ δ‖/⊥(r − s) · T (s, s′) · δ‖/⊥(s′ − r ′) . (1.51)

The vector potential and its canonically conjugate momentum

Π̂ = −ε0 Ê⊥ (1.52)

obey the canonical equal-time commutation relations

[
Â(r), Π̂(r ′)

] = i�δ⊥(r − r ′) . (1.53)

1.1.2 Atom–Field Interactions

A neutral atom or molecule A (briefly referred to as atom in the following) is a bound
system of particles α ∈ A with charges qα (

∑
α∈A qα = 0), masses mα, positions

r̂α, canonically conjugate momenta p̂α, spins ŝα and associated magnetic moments
m̂α = γα ŝα (γα: gyromagnetic ratio). The position and spin variables satisfy the
canonical equal-time commutation relations

[
r̂α, p̂β

] = i�δαβ I , (1.54)

[
ŝα, ŝβ

] = −i�δαβ I × ŝα . (1.55)

The particles contained in the atom give rise to charge and and current densities

ρ̂A(r) =
∑
α∈A

qαδ(r − r̂α) , (1.56)

ĵ A(r) =
∑
α∈A

qαS
[ ˙̂rαδ(r − r̂α)

]
−

∑
α∈A

m̂α ×∇δ(r − r̂α) (1.57)
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and a Coulomb potential

φ̂A(r) =
∫

d3r ′ ρ̂A(r ′)
4πε0|r − r ′| =

∑
α∈A

qα
4πε0|r − r̂α| . (1.58)

The symmetrisation operator S indicates full symmetrisation of any function of r̂α
and p̂α after integrating out delta functions, see Sect. 2.4 in Vol. I for details. Note
that the charge and current densities obey the continuity equation

˙̂ρA(r)+∇ · ĵ A(r) = 0 . (1.59)

Introducing centre-of-mass and relative coordinates

r̂ A =
∑
α∈A

mα

m A
r̂α , r̂α = r̂α − r̂ A (1.60)

(m A =∑
α∈A mα) with associated momenta [7]

p̂A =
∑
α∈A

p̂α , p̂α = p̂α −
mα

m A
p̂A (1.61)

and commutation relations [
r̂ A, p̂A

] = i�I , (1.62)

we can define the atomic polarisation and magnetisation as

P̂ A(r) =
∑
α∈A

qα r̂α

1∫

0

dσ δ
(
r − r̂ A − σ r̂α

)
, (1.63)

M̂ A(r) =
∑
α∈A

qα

1∫

0

dσ σS
[

r̂α × ˙̂rαδ
(
r − r̂ A − σ r̂α

)]

+
∑
α∈A

m̂αδ(r − r̂α) . (1.64)

They are related to the atomic charge and current densities via

ρ̂A = −∇ · P̂ A , (1.65)

ĵ A = ˙̂P A +∇ × M̂ A + ĵR (1.66)

where
ĵR(r) = ∇ × S

[
P̂ A(r)× ˙̂r A

]
(1.67)
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is the Röntgen current density [7, 8] associated with the centre-of-mass motion of
the atom. In addition, the polarisation is related to the Coulomb potential via

∇φ̂A = 1

ε0
P̂
‖
A . (1.68)

Closely related to polarisation and magnetisation are the atomic electric and magnetic
dipole moments,

d̂ A =
∑
α∈A

qα r̂α =
∑
α∈A

qα r̂α , (1.69)

m̂A =
∑
α∈A

(
qα
2

r̂α × ˙̂rα + m̂α

)
. (1.70)

The dynamics of a non-relativistic free atom is governed by the Hamiltonian

ĤA =
∑
α∈A

p̂2
α

2mα
+

∑
α,β∈A
α 
=β

qαqβ
8πε0|r̂α − r̂β | . (1.71)

With the aid of the centre-of-mass and relative coordinates (1.60) and (1.61), it can
be cast into the alternative form

ĤA = p̂2
A

2m A
+

∑
α∈A

p̂2
α

2mα
+

∑
α,β∈A
α 
=β

qαqβ
8πε0|r̂α − r̂β |

= p̂2
A

2m A
+

∑
n

E A
n |n A〉〈n A| (1.72)

where E A
n and |n A〉 denote the eigenenergies and eigenstates of the atom’s internal

Hamiltonian. By virtue of the canonical commutation relations (1.54) and definition
(1.61) of the relative momenta, the atomic Hamiltonian implies the relation

∑
α∈A

qα
mα
〈m A| p̂α|n A〉 = iωA

mn d A
mn (1.73)

[ωA
mn = (E A

m − E A
n )/�; d A

mn = 〈m A|d̂ A|n A〉]. It leads to the Thomas–Reiche–Kuhn
sum rule [9–11]

1

2�

∑
k

ωA
kn(d A

nk d A
kn + d A

kn d A
nk) =

∑
α∈A

q2
α

2mα
I . (1.74)
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1.1.2.1 Minimal Coupling

The coupling of the charged particles contained in one or several atom A to the electro-
magnetic field may be implemented by means of the minimal coupling scheme (cf.,
e.g., Ref. [8]). We combine the Hamiltonians of the free field (1.33) and atoms (1.71),
make the replacement p̂α �→ p̂α − qα Â(r̂α) in the atomic Hamiltonians and add
the Coulomb interactions of the atoms with each other and with the body-assisted
field. For a complete description of magnetic effects, we furthermore include a Pauli
interaction terms coupling the particle spins to the magnetic field. The resulting total
Hamiltonian of the system [2–5, 12–14]

Ĥ =
∑

A

∑
α∈A

[
p̂α − qα Â(r̂α)

]2

2mα
+

∑
A,B

∑
α∈A,β∈B
α 
=β

qαqβ
8πε0|r̂α − r̂β |

+
∑
λ=e,m

∫
d3r

∞∫

0

dω �ω f̂ †
λ(r,ω) · f̂ λ(r,ω)+

∑
A

∑
α∈A

qαφ̂(r̂α)

−
∑

A

∑
α∈A

γα ŝα · B̂(r̂α)

=
∑

A

ĤA +
∑
A 
=B

ĤAB + ĤF +
∑

A

ĤAF (1.75)

can be separated into field (1.33) and atomic Hamiltonians (1.72), interatomic
Coulombs interactions

ĤAB =
∑

α∈A,β∈B

qαqβ
4πε0|r̂α − r̂β | (1.76)

and atom–field couplings

ĤAF =
∑
α∈A

qαφ̂(r̂α)−
∑
α∈A

qα
mα

p̂α · Â(r̂α)

+
∑
α∈A

q2
α

2mα
Â2(r̂α)−

∑
α∈A

γα ŝα · B̂(r̂α) . (1.77)

The total electric/magnetic fields and excitations in the presence of the atoms are
given by

Ê = Ê −∇φ̂A , B̂ = B̂ , (1.78)

D̂ = D̂ − ε0∇φ̂A , Ĥ = Ĥ . (1.79)
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Using the above Hamiltonian, it can be shown that they obey the Maxwell equations
[2–5, 12, 14]

∇ · B̂ = 0 , (1.80)

∇ · D̂ =
∑

A

ρ̂A , (1.81)

∇ × Ê + ˙̂B = 0 , (1.82)

∇ × Ĥ− ˙̂D =
∑

A

ĵ A , (1.83)

with the atomic charge and current densities acting as sources in the Gauss, and
Ampère laws (cf. Sect. 2.4.1 in Vol. I). Conversely, the motion of the charged par-
ticles under the influence of the electromagnetic field is governed by the Newton
equations

mα
¨̂rα = qαÊ(r̂α)+ qαS

[ ˙̂rα × B̂(r̂α)
]
+∇α

[
m̂α · B̂(r̂α)

]
(1.84)

with particle velocities
˙̂rα = 1

mα

[
p̂α − qα Â(r̂α)

]
. (1.85)

Here, the first two terms describe the Lorentz force while the last term is the Zeeman
force.

When the atom is small compared to the wavelength of the relevant electromag-
netic field, we may employ the long-wavelength approximation, where the atoms
interact with each other via a dipole–dipole term

ĤAB = d̂ A · d̂ B − 3(d̂ A · êAB)(êAB · d̂ B)

4πε0r̂3
AB

(1.86)

[r̂AB = |r̂ A− r̂ B |, êAB = (r̂ A− r̂ B)/r̂AB] and the atom–field interaction simplifies
to

ĤAF = − d̂ A · Ê‖(r̂ A)−
∑
α∈A

qα
mα

p̂α · Â(r̂ A)

+
∑
α∈A

q2
α

2mα
Â2(r̂ A)−

∑
α∈A

γα ŝα · B̂(r̂ A) . (1.87)

For non-magnetic atoms, the Pauli term can be neglected and we may employ the
electric-dipole approximation
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ĤAF = −d̂ A · Ê‖(r̂ A)−
∑
α∈A

qα
mα

p̂α · Â(r̂ A)+
∑
α∈A

q2
α

2mα
Â2(r̂ A) . (1.88)

1.1.2.2 Multipolar Coupling

The multipolar coupling scheme is an alternative, equivalent description of the inter-
acting atom–field system. It can be obtained by subjecting all variables to a Power–
Zienau–Woolley transformation [15–17]

f̂ ′ = Û f̂ Û † with Û = exp

[
i

�

∫
d3r

∑
A

P̂ A · Â
]

. (1.89)

Expressing the Hamiltonian (1.75) in terms of these new, primed variables, we obtain
the multipolar Hamiltonian [2–5, 12–14, 18]

Ĥ =
∑
λ=e,m

∫
d3r

∞∫

0

dω �ω f̂ ′†λ (r,ω) · f̂ ′λ(r,ω)

+
∑

A

∑
α∈A

1

2mα
S

[
p̂′α +

∫
d3r Ξ̂ ′α × B̂′

]2

+ 1

2ε0

∫
d3r

∑
A

P̂ ′2A

−
∫

d3r
∑

A

P̂ ′A · Ê′ −
∑

A

∑
α∈A

γα ŝ′α · B̂′(r̂ ′α)

=
∑

A

Ĥ ′A + Ĥ ′F +
∑

A

Ĥ ′AF (1.90)

with

Ξ̂ ′α(r) = qα r̂ ′α

1∫

0

dσ σδ
(
r − r̂ ′A − σ r̂ ′α

)

− mα

m A

∑
β∈A

qβ r̂ ′β

1∫

0

dσ σδ
(
r − r̂ ′A − σ r̂ ′β

)+mα

m A
P̂ ′A(r) . (1.91)

While the total Hamiltonian is the same as the minimal coupling one, its separation
into atom, field and interaction Hamiltonians is different. They now read
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Ĥ ′A =
∑
α∈A

p̂′2α
2mα
+ 1

2ε0

∫
d3r P̂ ′2A

= p̂′2A
2m A

+
∑
α∈A

p̂′2α
2mα
+ 1

2ε0

∫
d3r P̂ ′2A

= p̂′2A
2m A

+
∑

n

E ′n|n′〉〈n′| , (1.92)

Ĥ ′F =
∑
λ=e,m

∫
d3r

∞∫

0

dω �ω f̂ ′†λ (r,ω) · f̂ ′λ(r,ω) , (1.93)

Ĥ ′AF = −
∫

d3r P̂ ′A · Ê′ −
∫

d3r M̂ ′A · B̂′ +
∑
α∈A

1

2mα

[∫
d3r Ξ̂ ′α × B̂′

]2

− 1

m A

∫
d3r P̂ ′A × p̂′A · B̂′ . (1.94)

where the canonical magnetisation

M̂ ′A(r) =
∑
α∈A

qα
2mα

1∫

0

dσ σS[
r̂ ′α × p̂′αδ

(
r − r̂ ′A − σ r̂ ′α

)]+∑
α∈A

γα ŝ′αδ(r − r̂ ′α)

(1.95)
differs from the physical one (1.64) given above. In long-wavelength approximation,
the multipolar coupling Hamiltonian reduces to

Ĥ ′AF = −d̂ ′A · Ê′(r̂ ′A)− m̂′A · B̂′(r̂ ′A)+
∑
α∈A

q2
α

8mα

[ ˆ̄r ′α × B̂′(r̂ ′A)
]2

+ 3

8m A

[
d̂ ′A × B̂′(r̂ ′A)

]2 − 1

m A
d̂ ′A × p̂′A · B̂′(r̂ ′A) (1.96)

with canonical magnetic dipole moment

m̂′A =
∑
α∈A

(
qα

2mα
r̂ ′α × p̂′α + γα ŝ′α

)
. (1.97)

Here, the first two terms represent electric and magnetic dipole interactions; the next
two terms are diamagnetic interactions; and the last term is the Röntgen interaction
associated with the centre-of-mass motion. For non-magnetic atoms, we may employ
the electric-dipole approximation
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Ĥ ′AF = −d̂ ′A · Ê′(r̂ ′A)− 1

m A
d̂ ′A × p̂′A · B̂′(r̂ ′A) . (1.98)

The main advantages of the multipolar Hamiltonian are the fact that it allows for
a systematic multipole expansion and its great simplicity. For well-separated atoms
with P̂ ′A · P̂ ′B = 0 for A 
= B, there is no direct interaction between the atoms.
Furthermore, when neglecting the effect of atomic centre-of-mass motion, the atom–
field interaction in electric-dipole approximation consists of a single term only.

Due to the unitarity of the Power–Zienau–Woolley transformation (1.89), the
variables of the multipolar coupling scheme obey the same commutation relations
as the original ones. The expansions (1.22), (1.26), (1.49), and (1.50) remain valid
with primed fundamental fields

f̂ ′λ(r,ω) = f̂ λ(r,ω)+ 1

�ω

∫
d3r ′ P̂⊥A(r ′) ·G∗λ(r ′, r,ω) (1.99)

instead of the original ones. The transformation leads to a change in canonical particle
and field momenta,

p̂′α = p̂α − qα Â(r̂α)−
∫

d3r Ξ̂α × B̂ , (1.100)

Π̂ ′ = Π̂ − P̂⊥A (1.101)

while leaving the particle positions and the vector potential of the electromagnetic
field invariant. As a consequence, the canonical momenta in the multipolar coupling
scheme

mα
˙̂rα = p̂′α +

∫
d3r Ξ̂α × B̂ (1.102)

agree with the physical ones in the long-wavelength approximation, p̂′α = mα
˙̂rα.

Recall that this is not the case in the minimal coupling scheme (1.85). On the other
hand, the canonical field momentum (1.52) is identical with the transverse part of
the physical electric field in the minimal coupling scheme, whereas these quantities
differ in the multipolar scheme,

Π̂ ′ = −ε0 Ê⊥ − P̂⊥A . (1.103)

The total Hamiltonians for minimal or multipolar coupling being identical,
the eigenenergies of the total system and the equations of motion for the phys-
ical variables are the same in both schemes. This is not true in general for the
eigenenergies and states of the separate atom and field Hamiltonians: The ground
state |{0′}〉 of Ĥ ′F,

f̂ ′λ(r,ω)|{0′}〉 = 0 ∀λ, r,ω , (1.104)
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is different from that of ĤF; and similarly the eigenstates |n′A〉 of Ĥ ′A have to be
distinguished from the eigenstates |n A〉 of ĤA. Perturbative treatments in the two
schemes will lead to two alternative approximations to the exact eigenenergies of the
total Hamiltonian.

1.2 Dispersion Forces

Dispersion forces are effective electromagnetic forces between electrically neutral
and unpolarised objects in the absence of external electromagnetic fields. Their
existence is one of the surprising consequences of correlated quantum fluctua-
tions: In a classical theory, objects with vanishing charge and current densities
are not subject to any electromagnetic force; in particular, when the electromag-
netic field also vanishes. In quantum electrodynamics, the closest analogue to the
above situation is the ground state where charge and current densities as well
as the electromagnetic field vanish on average, but still exhibit non-zero fluctua-
tions. The fluctuations are mutually correlated; fluctuating charge and current den-
sities induce a fluctuating electromagnetic field and vice versa. As a consequence,
the Lorentz force

F̂ =
∫

V

d3r
(
ρ̂Ê + ĵ × B̂

)
(1.105)

on an object containing charged matter acquires a non-zero ground-state average
F = 〈F̂〉 which is commonly known as the dispersion force. Throughout this book,
we will distinguish three types of dispersion forces: Casimir forces between bodies
[19, 20]; Casimir–Polder (CP) forces between atoms and bodies [21, 22]; and van
der Waals (vdW) forces between atoms [22, 23].

1.2.1 Casimir Forces

The Casimir force acting on a magnetoelectric body of volume V in the presence of
other bodies is the average Lorentz force

F =
∫

V

d3r
〈
ρ̂ in(r)Ê(r ′)+ ĵ in(r)× B̂(r ′)

〉
r ′→r (1.106)

acting on its internal charge and current densities when bodies and electromag-
netic field are in their ground state |{0}〉. The charge and current densities consist
of a random, fluctuating part, and a part that is induced by the electromagnetic
field:
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ρ̂
in
(r,ω) = ρ̂

N
(r,ω)− ε0∇ ·

[
χ(r,ω)Ê(r,ω)

]
, (1.107)

ĵ
in
(r,ω) = ĵ

N
(r,ω)− iε0ωχ(r,ω)Ê(r,ω)

+ 1

μ0
∇ × [

ζ(r,ω)B(r,ω)
]

(1.108)

where

χ(r,ω) = ε(r,ω)− 1 , ζ(r,ω) = 1− 1

μ(r,ω)
(1.109)

are the electric and magnetic susceptibilities.
As shown in detail in Chap. 3 of Vol. I, the ground-state average in (1.106)

can be easily evaluated by expressing all quantities in terms of the fundamental
fields via (1.11), (1.12), (1.20), (1.21), (1.22) and (1.26) and making use of the
commutation relations (1.17) and (1.18). The emerging spatial integrals over prod-
ucts of Green’s tensors can be performed by means of the integral relation (1.25)
and one finds

F = −�

π

∫

V

d3r

∞∫

0

dω Im

(
ω2

c2 ∇ · [χ(r,ω)G(r, r ′,ω)
]

− tr

{
I ×

[
∇ × ζ(r,ω)∇ × + ω

2

c2 χ(r,ω)

]
G(r, r ′,ω)×←−∇ ′

})
r ′→r

,

(1.110)

note that [G ×←−∇ ′]i j = Gikε jkl
←−
∂ /∂x ′l . The coincidence limit r ′ → r has to be

performed such that divergent self-forces due to current and charge densities being
acted on by their own fields are discarded. To this end, we decompose the body into
regions of approximately constant magnetoelectric properties and note that in each
of these regions the Green’s tensor can then be separated into bulk and scattering
parts according to

G(r, r ′,ω) = G(0)(r, r ′,ω)+G(1)(r, r ′,ω) . (1.111)

The bulk part is the Green’s tensor of an infinite homogeneous medium and gives
rise to self-forces. We discard them by retaining only the scattering Green’s tensor
which describes the effect of the inhomogeneous environment. After rotating the
ω-integral to the purely imaginary axis by means of contour-integral techniques,
the Casimir force on a magnetoelectric body of arbitrary shape and material in an
arbitrary environment can be given as [5, 14, 24]
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F = −�

π

∫

V

d3r

∞∫

0

dω Im

(
ω2

c2 ∇ · [χ(r,ω)G(1)(r, r ′,ω)
]

− tr

{
I ×

[
∇ × ζ(r,ω)∇ ×+ω

2

c2 χ(r,ω)

]
G(1)(r, r ′,ω)×←−∇ ′

})
r ′=r

= �

π

∫

V

d3r

∞∫

0

dξ

(
ξ2

c2 ∇ · [χ(r, iξ)G(1)(r, r ′, iξ)
]

+ tr

{
I ×

[
∇ × ζ(r, iξ)∇ ×− ξ

2

c2 χ(r, iξ)

]
G(1)(r, r ′, iξ)×←−∇ ′

})
r ′=r

.

(1.112)

For a body that is not immersed in any medium, such that χ(r, iξ) ≡ ζ(r, iξ) ≡ 0
on its surface, the Casimir force can be given in the alternative form

F = − �

2π

∫

V

d3r

∞∫

0

dξ

(
ξ2

c2 χ(r, iξ)∇tr G(1)(r, r, iξ)

−∇
{
ζ(r, iξ)tr

[∇ ×G(1)(r, r ′, iξ)×←−∇ ′]r ′=r

})
. (1.113)

We will employ it in Sect. 3 to illuminate the microscopic origin of Casimir forces.
When evaluating the Casimir force in concrete examples, it is often useful to give

it in terms of a surface rather than a volume integral. To this end, we employ the
inhomogeneous Maxwell equations (1.29) and (1.32) in the form

ε0∇ · Ê = ρ̂ in ,
1

μ0
∇ × B̂ − ε0

˙̂E = ĵ in (1.114)

together with the homogeneous ones (1.30) and (1.31) to rewrite the Lorentz force
as

F̂ =
∫

V

d3r ρ̂ in Ê + ĵ in × B̂ =
∫

∂V

d A · T̂ − ε0

∫

V

d3r
∂

∂t

(
Ê × B̂

)
. (1.115)

The Lorentz force on the internal charges and currents in a body of volume V is thus
seen to be given by a surface integral over the Maxwell stress tensor

T̂ = ε0 Ê Ê + 1

μ0
B̂ B̂ − 1

2

(
ε0 Ê2 − 1

μ0
B̂2

)
I (1.116)

http://dx.doi.org/10.1007/978-3-642-32466-6_3
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plus a volume integral over a term containing a total time derivative. When the body-
assisted field is prepared in its stationary ground-state, the quantum average of the
latter term vanishes. The Casimir force is hence determined by the average stress
tensor which can readily be evaluated by again using the field expansions (1.22) and
(1.26). After removing unphysical self-forces by dropping the contributions from the
bulk Green’s tensor, one finds

F = �

π

∞∫

0

dω
∫

∂V

d A ·
{
ω2

c2 Im G(1)(r, r,ω)

− ∇ × Im G(1)(r, r ′,ω)×←−∇ ′|r ′=r

− 1
2 tr

[
ω2

c2 Im G(1)(r, r,ω)−∇ × Im G(1)(r, r ′,ω)×←−∇ ′|r ′=r

]
I
}

= −�

π

∞∫

0

dξ
∫

∂V

d A ·
{
ξ2

c2 G(1)(r, r, iξ)+∇ ×G(1)(r, r ′, iξ)×←−∇ ′|r ′=r

− 1
2 tr

[
ξ2

c2 G(1)(r, r, iξ)+∇ ×G(1)(r, r ′, iξ)×←−∇ ′|r ′=r

]
I
}

.

(1.117)

Using the Maxwell stress tensor, the Casimir force on an arbitrary body can thus be
given as an integral over its surface.

1.2.2 Casimir–Polder Forces

The CP force on an atom in the presence of magnetoelectric bodies is the quantum
average of the Lorentz force (1.105) on the atomic charge and current densities ρ̂A

and ĵ A, with the body-assisted field being in its ground state. As discussed in detail
in Chap. 5, the average Lorentz force is time-dependent in general, and its evaluation
requires solving the coupled atom–field dynamics. For ground-state atoms, the CP
force may be alternatively obtained from a time-independent calculation of the CP
potential, as shown by Casimir and Polder [22]: Assuming both atom and field to be
prepared in their ground-state, they considered the shift of the ground-state energy
due to the atom–field coupling. The position-dependent part of this energy shift is
the CP potential

U (r A) = ΔE(r A) (1.118)

from which the CP force can be obtained,

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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F(r A) = −∇U (rA) . (1.119)

The approach relies on the Born–Oppenheimer approximation, assuming that the
fast internal, electronic motion effectively decouples from the slow centre-of-mass
motion. It neglects the effect of this latter motion on the CP force, which is treated
in Chap. 8.

Following Casimir and Polder’s method, we start from the uncoupled ground
state |0〉 = |0A〉|{0}〉 of ĤA + ĤF and calculate the energy shift using perturbation
theory:

ΔE = Δ1 E +Δ2 E + · · · (1.120)

with first and second-order shifts

Δ1 E = 〈0|ĤAF|0〉 , (1.121)

Δ2 E =
∑
I 
=0

〈0|ĤAF|I 〉〈I |ĤAF|0〉
E0 − EI

. (1.122)

The second-order shift has intermediate states |I 〉 = |kA〉|1λ(r,ω)〉 and denom-
inators E0 − EI = E A

0 − (E A
k + �ω) = −�(ωk + ω) where ωk = (E A

k −
E A

0 )/� (labels A for atomic operators, transition frequencies and dipole matrix
elements will be omitted whenever a single atom is present only). Reading from
right to left, it may be envisaged to consist of two processes: Interacting with
the electromagnetic field, the atom makes a transition to a higher-energy state
while emitting a photon, 〈I |ĤAF|0〉, followed by a transition back to the ground
state accompanied by the reabsorption of the photon, 〈0|ĤAF|I 〉. As the emis-
sion process violates energy conservation, the transition and the emitted photon are
purely virtual.

According to the Born–Oppenheimer approximation, we need to consider an
atom at given position r A. In the minimal coupling scheme, the required interaction
Hamiltonian (1.88) is given by

ĤAF = −d̂ · Ê‖(r A)−
∑
α∈A

qα
mα

p̂α · Â(r A)+
∑
α∈A

q2
α

2mα
Â2(r A) , (1.123)

in long-wavelength approximation for a non-magnetic atom. To leading order in
the particle charges, the energy-shift hence consists of the first-order contribution
due to the Â2 coupling plus the second-order corrections due to the d̂ · Ê‖ and
p̂ · Â terms. As shown in detail in Chap. 4 of Vol. I (cf. also Chap. 4 of this
volume where we will perform a similar calculation for an excited atom), these contri-
butions can be calculated by using the field expansions (1.22) and (1.50) together with
the commutation relations (1.17) and (1.18). Using the integral relation (1.25) and
the Thomas–Reiche–Kuhn sum rule (1.74), the first-order energy shift is found to be

http://dx.doi.org/10.1007/978-3-642-32466-6_8
http://dx.doi.org/10.1007/978-3-642-32466-6_4


1.2 Dispersion Forces 21

Δ1 E = μ0

π

∑
k

ωk

∞∫

0

dω d0k · Im ⊥G⊥(r A, r A,ω) · dk0 . (1.124)

The second-order shift reads

Δ2 E = −μ0

π

∑
k

∞∫

0

dω

ωk + ω d0k · Im
{
ω2‖G‖(r A, r A,ω)+ ω2

k
⊥G⊥(r A, r A,ω)

− ωkω
[‖G⊥(r A, r A,ω)+ ⊥G‖(r A, r A,ω)

]}
· dk0 (1.125)

where the identity G = ⊥G⊥+⊥G‖ +‖G⊥+‖G‖ has been used. In order to obtain
the CP potential, we add the two results and discard the position-independent infinite
self-energy associated with the bulk Green’s tensor, which is a part of the free-space
Lamb-shift (as discussed in Sect. 4.1 of Vol. I).

After rotating the frequency integral to the positive imaginary axis via contour-
integral techniques, the CP potential of an electric ground-state atom in an arbitrary
environment of magnetoelectric bodies reads U (r A) = Ue(r A) with [5, 12, 25]

Ue(r A) = �μ0

2π

∞∫

0

dξ ξ2tr
[
α(iξ) ·G(1)(r A, r A, iξ)

]
(1.126)

where α(ω) is the atomic ground-state polarisability as given by the dispersion
formula [26]

α(ω) = lim
ε→0+

1

�

∑
k

(
dk0d0k

ω + ωk + iε
− d0k dk0

ω − ωk + iε

)
. (1.127)

For an isotropic atom, the potential simplifies to

U (r A) = Ue(r A) = �μ0

2π

∞∫

0

dξ ξ2α(iξ) tr G(1)(r A, r A, iξ) . (1.128)

with

α(ω) = lim
ε→0+

2

3�

∑
k

ωk |d0k |2
ω2

k − ω2 − iωε
. (1.129)
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The calculation of the CP potential is much simpler in the multipolar coupling
scheme, because the interaction Hamiltonian (1.98) for a non-magnetic atom consists
of a single term when neglecting the effect of atomic centre-of-mass motion:

Ĥ ′AF = −d̂ ′ · Ê′(r A) . (1.130)

Within this scheme, we start from the uncoupled ground state |0〉 = |0′A〉|{0′}〉 of
Ĥ ′A + Ĥ ′F and calculate the leading, second-order energy shift with intermediate
states |I 〉 = |n′A〉|1′λ(r,ω)〉. Using the field expansion (1.22) and the commutation
relations (1.17) and (1.18) for the transformed fields, we obtain

ΔE ′ = Δ2 E ′ = −μ0

π

∑
k

∞∫

0

dω

ω′k + ω
ω2d ′0k · Im G(r A, r A,ω)d ′k0 (1.131)

where ω′k = (E A′
k − E A′

0 )/�, d ′mn = 〈m′|d̂ ′|n′〉. The CP potential can again be
obtained by discarding the Lamb shift contribution associated with the bulk Green’s
tensor (see Sect. 4.2 of Vol. I) and rotating the frequency integral to the imaginary
axis. One finds U ′(r A) = U ′e(r A) with

U ′e(r A) = �μ0

2π

∞∫

0

dξ ξ2tr
[
α′(iξ) ·G(1)(r A, r A, iξ)

]

= �μ0

2π

∞∫

0

dξ ξ2α′(iξ)tr G(1)(r A, r A, iξ) (1.132)

with

α′(ω) = lim
ε→0+

1

�

∑
k

(
d ′k0d ′0k

ω + ω′k + iε
− d ′0k d ′k0

ω − ω′k + iε

)
, (1.133)

α′(ω) = lim
ε→0+

2

3�

∑
k

ω′k |d ′0k |2
ω′2k − ω2 − iωε

(1.134)

where the second lines are valid for isotropic atoms.
The leading-order results in the minimal and multipolar coupling schemes have

exactly the same form, but the unperturbed energy levels and wave functions are
different in general, and so are the transitions frequencies, dipole matrix elements
and polarisabilities. As we will see in Chap. 4, the same is true for an atom in
an excited energy eigenstate. The calculation in the multipolar coupling scheme is
considerably simpler, so we will almost exclusively use it throughout this book,

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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in particular for more complex calculations. We will omit the primes distinguish-
ing the two coupling schemes when either our discussion applies to both schemes
or when we are exclusively working in one of the schemes, as will be the case
in the following.

The multipolar coupling scheme allows for studying the CP potential of an atom
with magnetic properties in a systematic way. For such an atom, we employ the full
multipolar interaction Hamiltonian (1.96) in its long-wavelength form, once more
neglecting velocity-dependent effects (m A →∞)

ĤAF = −d̂ · Ê(r̂ A)− m̂ · B̂(r̂ A)+
∑
α∈A

q2
α

8mα

[ ˆ̄rα × B̂(r̂ A)
]2

. (1.135)

The magnetic properties of the atom manifest themselves in a second-order energy
shift due to the magnetic-dipole or paramagnetic interaction m̂ · B̂ plus a first-order
shift due to the diamagnetic (r̂ × B̂)2 term. Note that throughout this book we restrict
our attention to non-chiral atoms whose ground state is an eigenstate of the parity
operator. Mixed contributions to the second-order energy shift from the electric-
dipole interaction d̂ · Ê and the paramagnetic m̂ · B̂ coupling can then be excluded
by a symmetry argument. For a discussion of the CP potential of chiral molecules,
see Sect. 4.5 of Vol. I.

The second-order energy shift due to the paramagnetic interaction can be found
by using the magnetic-field expansion (1.26),

Δ2 E = μ0

π

∑
k

∞∫

0

dω

ωk + ω m0k ·∇ × Im G(r A, r A,ω)×←−∇ ′ · mk0 (1.136)

(mmn = 〈m|m̂|n〉) where ∇ and
←−∇ ′ are thought to act on the first and second position

arguments of the Green’s tensor only. Following our usual steps, one can then derive
the CP potential of a paramagnetic ground-state atom [13, 14, 27]

Up(r A) = �μ0

2π

∞∫

0

dξ tr
[
β p(iξ) ·∇ ×G(1)(r A, r A, iξ)×←−∇ ′]

= �μ0

2π

∞∫

0

dξ βp(iξ)tr
[∇ ×G(1)(r A, r A, iξ)×←−∇ ′] (1.137)

where the paramagnetic magnetisability
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β p(ω) = lim
ε→0+

1

�

∑
k

(
mk0m0k

ω + ωk + iε
− m0k mk0

ω − ωk + iε

)
, (1.138)

βp(ω) = lim
ε→0+

2

3�

∑
k

ωk |m0k |2
ω2

k − ω2 − iωε
(1.139)

has been introduced.
Following similar steps, the first-order energy shift

Δ1 E = �μ0

2π

∑
α∈A

q2
α

4mα

∞∫

0

dω tr〈0|r̂α ×
[∇ × Im G(r A, r A,ω)×←−∇ ′]× r̂α|0〉

(1.140)
is found to lead to the CP potential [28]

Ud(r A) = �μ0

2π

∞∫

0

dξ tr
[
βd ·∇ ×G(1)(r A, r A, iξ)×←−∇ ′]

= �μ0

2π

∞∫

0

dξ βd tr
[∇ ×G(1)(r A, r A, iξ)×←−∇ ′] (1.141)

of a diamagnetic atom, with the respective diamagnetic magnetisability being given
by

βd = −
∑
α∈A

q2
α

4mα
〈r̂2
αI − r̂α r̂α〉 , (1.142)

βd = −
∑
α∈A

q2
α〈r̂2

α〉
6mα

. (1.143)

Adding the results (1.137) and (1.141) and introducing the total magnetisability

β(ω) = β p(ω)+ βd , β(ω) = βp(ω)+ βd , (1.144)

the total potential of a magnetic atom can be given as



1.2 Dispersion Forces 25

Um(r A) = Up(r A)+Ud(r A)

= �μ0

2π

∞∫

0

dξ tr
[
β(iξ) ·∇ ×G(1)(r A, r A, iξ)×←−∇ ′]

= �μ0

2π

∞∫

0

dξ β(iξ)tr
[∇ ×G(1)(r A, r A, iξ)×←−∇ ′] . (1.145)

By combining it with our result (1.132) for an electric atom, the full CP potential of
an electromagnetic ground-state atom reads

U (r A) = Ue(r A)+Um(r A) . (1.146)

1.2.3 Van der Waals Forces

The vdW force between two atoms in the presence of magnetoelectric bodies can be
derived in close analogy to the CP force: For two atoms A and B, the energy shift
induced by the atom–field interactions will have a component that depends on the
position of both atoms. According to Casimir and Polder [22], it can be identified as
the vdW potential,

U (r A, r B) = ΔE(r A, r B) (1.147)

The body-assisted vdW force on atom A due to atom B is then given by

F(r A, r B) = −∇AU (r A, r B) . (1.148)

Note that the total force on atom A in the presence of atom B and a body is the sum
of the CP force (1.119) between the atom and the body and the body-assisted vdW
force between the two atoms,

F A = F(r A)+ F(r A, r B) . (1.149)

To calculate the vdW potential, we work within the multipolar coupling scheme
for convenience. Starting from the uncoupled ground state |0〉 = |0A〉|0B〉|{0}〉 of
ĤA+ ĤB+ ĤF, let us first consider the energy shift due to the interaction Hamiltonian

ĤAF + ĤBF = −d̂ A · Ê(r A)− d̂ B · Ê(r B) (1.150)
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of two non-magnetic atoms in long-wavelength approximation. Each atom must
undergo at least two transitions in order to return to its ground state, so the leading
two-atom contributions are contained in the fourth-order shift

Δ4 E =
∑

I,I I,I I I 
=0

〈0|ĤAF + ĤBF|I I I 〉〈I I I |ĤAF + ĤBF|I I 〉
(E0 − EI I I )(E0 − EI I )

× 〈I I |ĤAF + ĤBF|I 〉〈I |ĤAF + ĤBF|0〉
(E0 − EI )

. (1.151)

Expanding the fourfold product of ĤAF + ĤBF, we retain those terms where both
ĤAF and ĤBF appear exactly twice, i.e., each atom emits/absorbs two photons. There
is a total of

(4
2

) = 6 possibilities as to which two of the four subsequent interactions
atom A is involved in. For each of these, there are two choices for the intermediate
photon states, i.e., for the order in which the photons emitted/absorbed by atom A
are emitted/absorbed by atom B. There is hence a total of

(4
2

) × 2 = 12 distinct
contributions to the vdW potential.

Let us give an example: Atom A undergoes a transition to a higher energy eigen-
state while emitting a virtual photon [|I 〉 = |kA〉|0B〉|1λ(r,ω)〉], immediately fol-
lowed by a downward transition of the same atom accompanied by the emission of a
second virtual photon [|I I 〉 = |0A〉|0B〉|1λ(r,ω)1λ′(r ′,ω′)〉]. Atom B subsequently
absorbs the two emitted photons in the order of their emission while making a tran-
sition to a higher energy eigenstate and back [|I I I 〉 = |0A〉|lB〉|1λ′(r ′,ω′)〉]. The
corresponding contribution to the energy shift can be evaluated by using the field
expansion (1.22), the commutation relations (1.17), (1.18) and the integral relation
(1.25):

ΔE(1) = − μ2
0

�π2

∑
k,l

∞∫

0

dω ω2

∞∫

0

dω′ ω′2

× d B
0l · Im G(r B, r A,ω′) · d A

0k d B
l0 · Im G(r B, r A,ω) · d A

k0

(ωB
l + ω′)(ω + ω′)(ωA

k + ω)
. (1.152)

The other eleven contributions lead to similar results with different intermediate-
state frequency denominators (see Table 1.1). In addition, depending on which of
the atoms emits or absorbs the photons, d A

k0 and d B
l0 (emission) have to be exchanged

for d A
0k and d B

0l (absorption) and vice versa. We restrict our attention to atoms with
a time-reversal invariant internal Hamiltonian, where the dipole-matrix elements are
always real, d A

k0 = d A
0k , d B

l0 = d B
0l . The sum over the different contributions to the

energy shift is then simply a sum over the frequency denominators. After rearranging
this sum, one may employ contour-integral techniques to perform the ω′-integral and
rotate the remaining ω-integral to the positive imaginary axis.
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Table 1.1 Frequency denominators for the different contributions to the vdW potential

Denominator

D(1) = (ωB
l + ω′)(ω + ω′)(ωA

k + ω)

D(2) = (ωB
l + ω)(ω + ω′)(ωA

k + ω)

D(3) = (ωA
k + ω′)(ωA

k + ωB
l )(ωA

k + ω)

D(4) = (ωB
l + ω′)(ωA

k + ωB
l )(ωA

k + ω)

D(5) = (ωA
k + ω′)(ωA

k + ωB
l + ω + ω′)(ωA

k + ω)

D(6) = (ωB
l + ω)(ωA

k + ωB
l + ω + ω′)(ωA

k + ω)

D(7) = (ωA
k + ω′)(ω + ω′)(ωB

l + ω)

D(8) = (ωA
k + ω)(ω + ω′)(ωB

l + ω)

D(9) = (ωA
k + ω′)(ωA

k + ωB
l )(ωB

l + ω)

D(10) = (ωB
l + ω′)(ωA

k + ωB
l )(ωB

l + ω)

D(11) = (ωA
k + ω)(ωA

k + ωB
l + ω + ω′)(ωB

l + ω)

D(12) = (ωB
l + ω′)(ωA

k + ωB
l + ω + ω′)(ωB

l + ω)

The resulting vdW potential of two electric isotropic ground-state atoms in the
possible presence of magnetoelectric bodies is given by U (r A, r B) = Uee(r A, r B)

with [14, 18, 29, 30]

Uee(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ4αA(iξ)αB(iξ)

× tr
[
G(r A, r B, iξ) ·G(r B, r A, iξ)

]
(1.153)

for isotropic atoms. Note that the atomic polarisabilities (1.134) may be different for
the two atoms as they depend on the atomic species via the transition frequencies and
dipole-matrix elements. The general result for the vdW potential looks very similar
to that for the CP potential (1.132) where the polarisabilities of two atoms appear
instead of one and two full Green’s tensors connecting the positions of the atoms
occur rather than a single, equal-position scattering Green’s tensor.

By using the decomposition (1.111) of the Green’s tensor into its bulk and scat-
tering parts, the vdW potential can be separated according to

U (r A, r B) = U (0)(rAB)+U (1)(r A, r B) (1.154)

into a free-space potential

U (0)(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ4αA(iξ)αB(iξ)

× tr
[
G(0)(r A, r B, iξ) ·G(0)(r B, r A, iξ)

]
(1.155)
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and a body-induced modification

U (1)(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ4αA(iξ)αB(iξ)

× tr
[
2G(1)(r A, r B, iξ) ·G(0)(r B, r A, iξ)

+G(1)(r A, r B, iξ) ·G(1)(r B, r A, iξ)
]

(1.156)

of this potential. An analogous decomposition holds for the associated vdW force:

F(r A, r B) = F(0)(r A, r B)+ F(1)(r A, r B) . (1.157)

The free-space vdW force is a pure atom–atom force that obeys Newton’s third law
of mechanics,

F(0)(r B, r A) = −F(0)(r A, r B) . (1.158)

The body-assisted correction F(1) is an atom–atom–body force. Here, a relation of
the kind (1.158) does not hold, because the bodies also contribute to the momentum
balance of the system.

For atoms with magnetic properties, the total interaction Hamiltonian reads

ĤAF + ĤBF = −d̂ A · Ê(r A)− m̂A · B̂(r̂ A)+
∑
α∈A

q2
α

8mα

[ ˆ̄rα × B̂(r̂ A)
]2

− d̂ B · Ê(r B)− m̂B · B̂(r̂ B)+
∑
β∈B

q2
β

8mβ

[ ˆ̄rβ × B̂(r̂ B)
]2

.

(1.159)

The contributions of the paramagnetic m̂ · B̂ interactions to the vdW potential can
be treated in complete analogy with the case of purely electric atoms. Again con-
sidering the fourth-order energy shift, but exchanging d̂ · Ê �→ m̂ · B̂, we have to
use the magnetic-field expansion (1.26). Following the same steps as above, the
vdW potential of two isotropic paramagnetic ground-state atoms is found to be
[14, 27, 13]

Upp(r A, r B) = −�μ2
0

2π

∞∫

0

dξ βp,A(iξ)βp,B(iξ)tr
{[∇ ×G(r A, r B, iξ)×←−∇ ′]

· [∇ ×G(r B, r A, iξ)×←−∇ ′]} , (1.160)

recall (1.139). Similarly, contributions with combinations of d̂ · Ê and m̂ · B̂ inter-
actions lead to the mixed electric–paramagnetic vdW potentials [14, 13, 27, 30]
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Uep(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ2αA(iξ)βp,B(iξ)

× tr
[
G(r A, r B, iξ)×←−∇ ′ ·∇ ×G(r B, r A, iξ)

]
, (1.161)

Upe(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ2βp,A(iξ)αB(iξ)

× tr
{[∇ ×G(r A, r B, iξ)

] · [G(r B, r A, iξ)×←−∇ ′]} . (1.162)

We again assume the atoms to be non-chiral, so that cases where one atom undergoes
electric and magnetic-dipole interactions do not contribute.

Contributions involving diamagnetic interactions have to be treated separately.
Electric and paramagnetic interactions always occur in pairs in order to return
each atom to its ground state. On the contrary, diamagnetic interactions do not
necessarily change an atom’s internal state so that a single interaction per atom
is sufficient. The leading two-atom contributions to the vdW interaction of two
diamagnetic atoms are hence of second order in the (r̂ × B̂)2 term, cf. (1.122).
They correspond to processes where one of the atoms simultaneously emits two
photons without changing its internal state while the other atom simultaneously
absorbs them. Summing the purely diamagnetic contributions with the aid of the
field expansion (1.26) and applying contour-integral techniques, one finds the
vdW potential [28]

Udd(r A, r B) = −�μ2
0

2π

∞∫

0

dξ βd,Aβd,B tr
{[∇ ×G(r A, r B, iξ)×←−∇ ′]

· [∇ ×G(r B, r A, iξ)×←−∇ ′]} (1.163)

of two isotropic diamagnetic ground-state atoms, recall (1.143).
Finally, we need to consider mixed contributions where one atom undergoes a dia-

magnetic transition and the other one makes either two electric or two paramagnetic
transitions. These third-order contributions lead to the mixed electric–diamagnetic
vdW potentials [28]

Ude(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ2βd,AαB(iξ)

× tr
{[∇ ×G(r A, r B, iξ)

] · [G(r B, r A, iξ)×←−∇ ′]} , (1.164)

Ued(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ2αA(iξ)βd,B
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× tr
[
G(r A, r B, iξ)×←−∇ ′ ·∇ ×G(r B, r A, iξ)

]
(1.165)

and the mixed paramagnetic–diamagnetic ones

Udp(r A, r B) = −�μ2
0

2π

∞∫

0

dξ βd,Aβp,B(iξ)tr
{[∇ ×G(r A, r B, iξ)×←−∇ ′]

· [∇ ×G(r B, r A, iξ)×←−∇ ′]} , (1.166)

Upd(r A, r B) = −�μ2
0

2π

∞∫

0

dξ βp,A(iξ)βd,B tr
{[∇ ×G(r A, r B, iξ)×←−∇ ′]

· [∇ ×G(r B, r A, iξ)×←−∇ ′]} . (1.167)

Summing the individual magnetic potentials (1.160), (1.163), (1.166) and (1.167),
the resulting total vdW of two magnetic atoms can be represented in a compact form
by introducing the total magnetisability (1.144):

Umm(r A, r B) = −�μ2
0

2π

∞∫

0

dξ βA(iξ)βB(iξ)tr
{[∇ ×G(r A, r B, iξ)×←−∇ ′]

· [∇ ×G(r B, r A, iξ)×←−∇ ′]} . (1.168)

Similarly, we may combine (1.161) with (1.165) and (1.162) with (1.164) to obtain
the total mixed electric–magnetic potentials

Uem(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ2αA(iξ)βB(iξ)

× tr
[
G(r A, r B, iξ)×←−∇ ′ ·∇ ×G(r B, r A, iξ)

]
, (1.169)

Ume(r A, r B) = −�μ2
0

2π

∞∫

0

dξ ξ2βA(iξ)αB(iξ)

× tr
{[∇ ×G(r A, r B, iξ)

] · [G(r B, r A, iξ)×←−∇ ′]} .

(1.170)

Summarising the main results (1.153), (1.168), (1.169) and (1.170) of this section,
the general vdW potential of an electromagnetic ground-state atom is given by
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Table 1.2 Duality transformation of electromagnetic fields, response functions, dispersion forces
and potentials

Dual partners Duality transformation

Ê, Ĥ : Ê� = √μ0/ε0 Ĥ , Ĥ
� = −√ε0/μ0 Ê

D̂, B̂: D̂� = √ε0/μ0 B̂, B̂
� = −√μ0/ε0 D̂

P̂N, M̂N: P̂�
N = μM̂N/c, M̂�

N = −c P̂N/ε

f̂ e, f̂ m : f̂ �
e = −i(μ/|μ|) f̂ m , f̂

�
m = −i(|ε|/ε) f̂ e

ε, μ: ε� = μ, μ� = ε
α, β: α� = c2β, β� = α/c2

Gee, Gmm : G�
ee = (1/μ)Gmm(1/μ)+ (1/μ)δ, G�

mm = εGeeε− εδ
Gem , Gme: G�

em = −(1/μ)Gmeε, G�
me = −εGem(1/μ)

F: F� = F
Ue, Um : U�

e = Um , U�
m = Ue

Uee, Umm : U�
ee = Umm , U�

mm = Uee

Uem , Ume: U�
em = Ume, U�

me = Uem

U (r A, r B) = Uee(r A, r B)+Uem(r A, r B)+Ume(r A, r B)+Umm(r A, r B) .

(1.171)

1.3 Duality

Electric–magnetic duality is a useful symmetry of the electromagnetic field. A duality
transformation � consists of a simultaneous global exchange of electric and magnetic
field quantities as laid out in Table 1.2, accompanied by a global exchange of electric
permittivity and magnetic permeability.

As shown in Sec. 2.1.4 of Vol. I, the Maxwell equations in the absence of free
charges and currents (1.28)–(1.32) together with the constitutive relations (1.2) and
(1.3) are invariant under such a duality transformation [14, 27, 31]. The Hamiltonian
(1.33) of the free electromagnetic field is also duality invariant.

The presence of free charges and currents may lead to a breakdown of duality
invariance. Furthermore, a duality symmetry does not hold for the Lorentz force on
individual charged particles. The situation is different when only electrically neutral
objects are present, as is the case for dispersion forces.

To see how dispersion interactions behave when subject to a duality transforma-
tion, we note that they uniquely depend on the atomic response functions α and β
as well as the body response functions ε and μ, cf. Table 1.2. The application of a
duality transformation hence amounts to simultaneous global exchanges α↔ β and
ε↔ μ. As dispersion interactions depend on the latter quantities only indirectly via
the Green’s tensor, we first need to determine the transformation behaviour of the
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Green’s tensor. To that end, it is useful to introduce the tensors

Gee(r, r ′,ω) = iω

c
G(r, r ′,ω)

iω

c
, (1.172)

Gmm(r, r ′,ω) = ∇ ×G(r, r ′,ω)×←−∇ ′ , (1.173)

Gem(r, r ′,ω) = iω

c
G(r, r ′,ω)×←−∇ ′ , (1.174)

Gme(r, r ′,ω) = ∇ ×G(r, r ′,ω)
iω

c
. (1.175)

In terms of these quantities, the Casimir force (1.118) can be given in the compact
form

F = �

π

∞∫

0

dξ
∫

∂V

d A ·
∑
λ=e,m

[
G(1)
λλ(r, r, iξ)− 1

2 tr G(1)
λλ(r, r, iξ)I

]
. (1.176)

Defining αe = α, αm = β/c2, the CP potentials (1.132) and (1.145) can be
written as

Uλ(r A) = �

2πε0

∞∫

0

dξ αλ(iξ)tr G(1)
λλ(r A, r A, iξ) (λ = e, m) , (1.177)

while the vdW potentials (1.153), (1.168), (1.169) and (1.170) read

Uλλ′(r A, r B) = − �

2πε2
0

∞∫

0

dξ αA
λ (iξ)αB

λ′(iξ)

× tr
[
Gλλ′(r A, r B, iξ) ·Gλ′λ(r B, r A, iξ)

]
(λ,λ′ = e, m) .

(1.178)

Under a global exchange ε↔ μ, the tensors (1.172)–(1.175) transform into one
another as laid out in Table 1.2 (cf. Appendix A.1). The transformation behaviour
of the dispersion interactions follows immediately: The Casimir force an arbitrary
magnetoelectric body (1.3) is duality invariant [14, 27, 31],

F� = F , (1.179)

when the body is not immersed in any medium, such that ε(r, iξ) = μ(r, iξ) ≡ 1 on
its surface. The electric and magnetic components (1.177) of the CP potential of an
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atom in a free-space region transform into one another under a duality transformation
[14, 27, 31],

U�
e (r A) = Um(r A) , (1.180)

U�
m (r A) = Ue(r A) , (1.181)

such that the total potential remains invariant. The same holds for the total vdW
potential, where [14, 27, 31]

U�
ee (r A, r B) = Umm(r A, r B) , (1.182)

U�
mm(r A, r B) = Uee(r A, r B) , (1.183)

U�
em(r A, r B) = Ume(r A, r B) , (1.184)

U�
me(r A, r B) = Uem(r A, r B) . (1.185)

The duality invariance of dispersion interactions is extremely useful when study-
ing concrete examples. For instance, once we know the explicit formula for the CP
potential of an electric atom in a specific magnetoelectric environment, the corre-
sponding result for a magnetic atom can be obtained immediately by applying a
duality transformation, i.e., by making the replacements α �→ β and ε↔ μ. In this
way, dispersion interactions need to be calculated explicitly only for half the con-
ceivable combinations of electric and magnetic objects, while the dual combinations
can be treated via simple replacement rules.

It should be stressed that duality invariance and the associated replacement rules
are only valid for dispersion forces on objects that are situated in a free-space region,
they do not apply to objects immersed in a medium. However, for dispersion forces on
atoms, duality invariance can be restored by including local-field corrections [13, 32].
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Chapter 2
Approximating Casimir–Polder Potentials

As seen in the previous chapter, dispersion forces can be expressed in terms of
the classical Green’s tensor for the electromagnetic field and the polarisabilities
and magnetisabilities of the atoms. In order to study the position-dependence of a
dispersion force for a particular arrangement of bodies, one needs to calculate the
respective Green’s tensor by solving the inhomogeneous Helmholtz equation (2.149).
For many arrangements displaying a high degree of symmetry, e.g., free space, planar,
spherical, or cylindrical multilayer systems, the Green’s tensor is available in closed
form [1]. Exploiting this fact, one can find exact and explicit expressions for, e.g., the
Casimir force between two plates (Sect. 3.3 of Vol. I); the CP potential of an atom in
various planar multilayer systems (Sect. 4.6 of Vol. I) or next to a sphere (Sect. 4.7
of Vol. I); and the vdW potential of two atoms in free space (Sect. 5.4 of Vol. I),
in front of a plate (Sect. 5.5.1 of Vol. I) or next to a sphere (Sect. 5.5.2 of Vol. I).
A brief summary of most of these results can be found in Table 3.1 of Sect. 3.1 in
this volume.

For configurations displaying less symmetry, approximative methods are required.
In this chapter, we consider arrangements which deviate only slightly from a highly
symmetrical one. We begin by showing how the Green’s tensor can be approximated
in this case. We use the approximate Green’s tensor to express the CP potential in
terms of multiple volume integrals or as a sum over bodies. These two alternative
forms are illustrated by considering the CP potential of an atom interacting with a
weakly dielectric ring and an inhomogeneous half space. In addition, we discuss the
convergence of the Born expansion by studying an atom next to a metal plate or
sphere.

2.1 Born Expansions of the Green’s Tensor

A powerful tool for obtaining approximate solutions to the Helmholtz equation is
the Dyson equation. As shown in the following, it can be used to obtain the Born
expansion of the Green’s tensor as a systematic power-series expansion. We begin

S. Y. Buhmann, Dispersion Forces II, Springer Tracts in Modern Physics 248, 35
DOI: 10.1007/978-3-642-32466-6_2, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-32466-6_3
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(i)

(ii) (iii)

ε(ω)ε(ω)

ε(ω)

ε(ω) = 1

ε(ω) = 1ε(ω) = 1 χ(ω)

χ(ω)

χ(ω)

Fig. 2.1 Examples for permittivity decompositions: (i) weakly dielectric body next to a sphere;
(ii) surface roughness of a plate; (iii) inhomogeneous half space

with the case of purely electric bodies and then proceed to the purely magnetic and
fully magnetoelectric cases.

2.1.1 Electric Bodies

Let us consider an arrangement of purely electric bodies for which the permittivity
can be decomposed as

ε(r,ω) = ε(r,ω)+ χ(r,ω) . (2.1)

Here, ε(r,ω) describes some background bodies with the corresponding Green’s
tensor being the known solution to

[
∇×∇× − ω2

c2 ε(r,ω)

]
G(r, r ′,ω) = δ(r − r ′) (2.2)

and χ(r,ω) describes small corrections to this background. The decomposition (2.1)
applies to a large variety of cases. As illustrated in Fig. 2.1, it can be used to study
a weakly dielectric body of unusual shape in the possible presence of highly sym-
metric background bodies (i), surface roughness (ii) or inhomogeneities of a body’s
permittivity (iii).

Using the decomposition of the permittivity, the differential equation (1.14) for
the full Green’s tensor can be written as

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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[
∇×∇× − ω2

c2 ε(r,ω)

]
G(r, r ′,ω)

= δ(r − r ′)+ ω2

c2 χ(r,ω)G(r, r ′,ω) . (2.3)

Its solution can be written in the form of a Dyson equation [2]

G(r, r ′,ω) = G(r, r ′,ω)+ ω2

c2

∫
d3s χ(s,ω)G(r, s,ω)·G(s, r ′,ω) , (2.4)

as can easily be verified by direct substitution upon exploiting the fact that G is a
solution to (2.3).

By repeated use of the Dyson equation, one can obtain an expansion of G in
powers of χ, which is known as the Born expansion. We start the series by using the
zero-order approximation G = G in the Dyson equation to obtain the solution to
linear order in χ

G(r, r ′,ω) = G(r, r ′,ω)+ ω2

c2

∫
d3s χ(s,ω)G(r, s,ω)·G(s, r ′,ω) . (2.5)

Substituting this solution back into the Dyson equation, we obtain a better approxi-
mation which is correct to quadratic order χ,

G(r, r ′,ω) =G(r, r ′,ω)+ ω2

c2

∫
d3s χ(s,ω)G(r, s,ω)·G(s, r ′,ω)

+ ω4

c4

∫
d3s χ(s,ω)

∫
d3s′ χ(s′,ω)

×G(r, s,ω)·G(s, s′,ω)·G(s′, r ′,ω) . (2.6)

Iterating in this way, the full Born expansion of the Green’s tensor is found to be [3]

G(r, r ′,ω) = G(r, r ′,ω)+
∞∑

K=1

ΔK G(r, r ′,ω) (2.7)

with

ΔK G(r, r ′,ω) = ω2K

c2K

∫
d3s1 χ(s1,ω) · · ·

∫
d3sK χ(sK ,ω)

×G(r, s1,ω)·G(s1, s2,ω) · · ·G(sK , r ′,ω) (2.8)

denoting corrections of order K in χ.
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An alternative expansion can be obtained by isolating the singular part of the
Green’s tensor [4]: According to (A.18), the Green’s tensor in an infinite bulk medium
can be written as

G(r, r ′,ω) = − c2

3ω2ε(r,ω)
δ(r − r ′)+ H(r, r ′,ω) (2.9)

where H is free of delta-function singularities. This decomposition remains true
in the general case of an arbitrary arrangement of bodies. Applying it to G and
substituting it into the Dyson equation, we find

ε(r,ω)+ 1
3 χ(r,ω)

ε(r,ω)
G(r, r ′,ω)

= G(r, r ′,ω)+ ω2

c2

∫
d3s χ(s,ω)H(r, s,ω)·G(s, r ′,ω) .

(2.10)

Introducing the auxiliary tensor

F(r, r ′,ω) = ε(r,ω)+ 1
3 χ(r,ω)

ε(r,ω)
G(r, r ′,ω) , (2.11)

the new Dyson equation takes the more explicit form

F(r, r ′,ω) = G(r, r ′,ω)

+ ω2

c2

∫
d3s

χ(s,ω)ε(s,ω)

ε(s,ω)+ 1
3 χ(s,ω)

H(r, s,ω)·F(s, r ′,ω) . (2.12)

It can easily be solved by repeated iteration, leading to a Born series

F(r, r ′,ω) = G(r, r ′,ω)+
∞∑

K=1

ΔK F(r, r ′,ω) (2.13)

with

ΔK F(r, r ′,ω)

= ω2K

c2K

∫
d3s1

χ(s1,ω)ε(s1,ω)

ε(s1,ω)+ 1
3 χ(s1,ω)

· · ·
∫

d3sK
χ(sK ,ω)ε(sK ,ω)

ε(sK ,ω)+ 1
3 χ(sK ,ω)

× H(r, s1,ω)·H(s1, s2,ω) · · ·G(sK , r ′,ω) . (2.14)

When both field point r and source point r ′ are situated in free space, we have
χ(r,ω) = 0 and ε(r,ω) = 1. The Green’s tensor then coincides with the auxiliary
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tensor, F(r, r ′,ω) = G(r, r ′,ω), and its alternative Born series is given by (2.7)
with

ΔK G(r, r ′,ω)

= ω2K

c2K

∫
d3s1

χ(s1,ω)ε(s1,ω)

ε(s1,ω)+ 1
3 χ(s1,ω)

· · ·
∫

d3sK
χ(sK ,ω)ε(sK ,ω)

ε(sK ,ω)+ 1
3 χ(sK ,ω)

× H(r, s1,ω)·H(s1, s2,ω) · · ·H(sK , r ′,ω) (2.15)

denoting corrections of order K in χε/(ε+ 1
3χ).

The two Born series differ in their expansion parameters. The expansion (2.7)
with (2.8) is more intuitive, because the perturbative parameter χ = ε − 1 on a
free-space background is simply the electric susceptibility (1.109). The alternative
Born expansion with (2.15) is based on the perturbative parameter χε/(ε + 1

3χ). It
is favourable for metals with large χ, ensuring better convergence in this case. In
particular, in the perfect conductor limit χ→∞, each of the terms in the series (2.8)
obviously diverges, whereas the terms (2.15) remain finite with a perturbative
parameter χε/

(
ε+ 1

3χ
)→ 3.

2.1.2 Magnetic Bodies

In the case of purely magnetic bodies, we decompose the inverse permeability
according to

1

μ(r,ω)
= 1

μ(r,ω)
− ζ(r,ω) . (2.16)

Note that the correction ζ coincides with the magnetic susceptibility (1.09) in the
case of a free-space background, ζ = 1 − 1/μ. The unperturbed Green’s tensor is
now given by

[
∇× 1

μ(r,ω)
∇× −ω2

c2

]
G(r, r ′,ω) = δ(r − r ′) (2.17)

and the Helmholtz equation (1.14) for the full Green’s tensor reads

[
∇× 1

μ(r,ω)
∇× − ω2

c2

]
G(r, r ′,ω)

= δ(r − r ′)+∇×ζ(r,ω)∇×G(r, r ′,ω) . (2.18)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Using the background solution (2.17) and employing partial integration, we can
easily verify that the Helmholtz equation is solved by the Dyson equation

G(r, r ′,ω) = G(r, r ′,ω)

−
∫

d3s ζ(s,ω)
[
G(r, s,ω)×←−∇s

]
·
[
∇s×G(s, r ′,ω)

]
.

(2.19)

Starting from the unperturbed solution G = G, the Dyson equation yields the
linear Born expansion

G(r, r ′,ω) = G(r, r ′,ω)

−
∫

d3s ζ(s,ω)
[
G(r, s,ω)×←−∇s

]
·
[
∇s×G(s, r ′,ω)

]
. (2.20)

Iterative use of the Dyson equation leads to a full Born series (2.7) with terms

ΔK G(r, r ′,ω) = (−1)K
∫

d3s1 ζ(s1,ω) · · ·
∫

d3sK ζ(sK ,ω)

×
[
G(r, s1,ω)×←−∇s1

]
·
[
∇s1×G(s1, s2,ω)×←−∇s2

]

· · ·
[
∇sK ×G(sK , r ′,ω)

]
. (2.21)

An alternative expansion can again be obtained by isolating the singular part of the
Green’s tensor. Applying the duality transformation (A.14) to the separation (2.9),
we find

∇×G(r, r ′,ω)×←−∇ ′ = −ω2

c2 μ(r,ω)G�(r, r ′,ω)μ(r ′,ω)− μ(r,ω)δ(r − r ′)

= − 2
3 μ(r,ω)δ(r − r ′)+∇×H(r, r ′,ω)×←−∇ ′ . (2.22)

By contrast, the tensors ∇×G = ∇×H and G×←−∇ ′ = H×←−∇ ′ do not exhibit
any delta-function part for the assumed independent electric and magnetic medium
properties. As an intermediate step, we take the curl of the Dyson equation (2.19).
Substituting the above separation into the result, we arrive at

[
1− 2

3ζ(r,ω)μ(r,ω)
]∇×G(r, r ′,ω)

= ∇×G(r, r ′,ω)−
∫

d3s ζ(s,ω)
[
∇×H(r, s,ω)×←−∇s

]
·
[
∇s×G(s, r ′,ω)

]
.

(2.23)
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Introducing an auxiliary tensor

F(r, r ′,ω) = [
1− 2

3ζ(r,ω)μ(r,ω)
]∇×G(r, r ′,ω) , (2.24)

this equation takes the form

F(r, r ′,ω) =∇×G(r, r ′,ω)−
∫

d3s
ζ(s,ω)

1− 2
3ζ(s,ω)μ(s,ω)

×
[
∇×H(r, s,ω)×←−∇s

]
·
[
∇s×G(s, r ′,ω)

]
. (2.25)

It can easily be solved by successive iterations, leading to

F(r, r ′,ω) = ∇×G(r, r ′,ω)+
∞∑

K=1

ΔK F(r, r ′,ω) (2.26)

with

ΔK F(r, r ′,ω) = (−1)K
∫

d3s1
ζ(s1,ω)

1− 2
3 ζ(s1,ω)μ(s1,ω)

· · ·
∫

d3sK
ζ(sK ,ω)

1− 2
3 ζ(sK ,ω)μ(sK ,ω)

[
H(r, s1,ω)×←−∇s1

]

·
[
∇s1×H(s1, s2,ω)×←−∇s2

]
· · ·

[
∇sK ×H(sK , r ′,ω)

]
. (2.27)

Substituting this result together with (2.24) into the original Dyson equation (2.19),
we obtain the alternative Born expansion for G. For r and r ′ in free space, it has the
form (2.7) with

ΔK G(r, r ′,ω) = (−1)K
∫

d3s1
ζ(s1,ω)

1− 2
3 ζ(s1,ω)μ(s1,ω)

· · ·
∫

d3sK
ζ(sK ,ω)

1− 2
3 ζ(sK ,ω)μ(sK ,ω)

[
H(r, s1,ω)×←−∇s1

]

·
[
∇s1×H(s1, s2,ω)×←−∇s2

]
· · ·

[
∇sK ×H(sK , r ′,ω)

]
.

(2.28)
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2.1.3 Electromagnetic Bodies

Finally, let us consider the most general case of a magnetoelectric correction

ε(r,ω) = ε(r,ω)+ χ(r,ω) ,
1

μ(r,ω)
= 1

μ(r,ω)
− ζ(r,ω) . (2.29)

The unperturbed Green’s tensor is then given by

[
∇× 1

μ(r,ω)
∇× −ω2

c2 ε(r,ω)

]
G(r, r ′,ω) = δ(r − r ′) (2.30)

and the differential equation (1.14) reads

[
∇× 1

μ(r,ω)
∇× − ω2

c2 ε(r,ω)

]
G(r, r ′,ω)

= δ(r − r ′)+ ω2

c2 χ(r,ω)G(r, r ′,ω)+∇×ζ(r,ω)∇×G(r, r ′,ω) . (2.31)

The corresponding Dyson equation is simply a combination of those for purely
electric (2.4) or purely magnetic bodies (2.19):

G(r, r ′,ω) = G(r, r ′,ω)+ ω2

c2

∫
d3s χ(s,ω)G(r, s,ω)·G(s, r ′,ω)

−
∫

d3s ζ(s,ω)
[
G(r, s,ω)×←−∇s

]
·
[
∇s×G(s, r ′,ω)

]
. (2.32)

Within linear order in χ and ζ, the Green’s tensor can hence be approximated as

G(r, r ′,ω) = G(r, r ′,ω)+ ω2

c2

∫
d3s χ(s,ω)G(r, s,ω)·G(s, r ′,ω)

−
∫

d3s ζ(s,ω)
[
G(r, s,ω)×←−∇s

]
·
[
∇s×G(s, r ′,ω)

]
. (2.33)

Obtaining the full Born series is greatly facilitated by introducing the electric–
magnetic tensors Gλλ′ (λ,λ′ = e, m) according to (1.172)–(1.175). In terms of these
quantities, the Dyson equation takes the simple form

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Gλλ′(r, r ′,ω) = Gλλ′(r, r ′,ω)

−
∑

λ′′=e,m

∫
d3s χλ′′(s,ω)Gλλ′′(r, s,ω)·Gλ′′λ′(s, r ′,ω)

(2.34)

where we have defined χe = χ, χm = ζ. By iterating the Dyson equation, we obtain
the Born expansion

Gλλ′(r, r ′,ω) = Gλλ′(r, r ′,ω)+
∞∑

K=1

ΔK Gλλ′(r, r ′,ω) (2.35)

with

ΔK Gλλ′(r, r ′,ω)

= (−1)K
∑

λ1=e,m

∫
d3s1 χλ1(s1,ω) · · ·

∑
λK=e,m

∫
d3sK χλK (sK ,ω)

×Gλλ1(r, s1,ω)·Gλ1λ2(s1, s2,ω) · · ·GλK λ′(sK , r ′,ω) (2.36)

denoting contributions of order K in χ and ζ.
To obtain the alternative Born series, we substitute the decompositions (2.9) and

(2.22) into the Dyson equation (2.34) to find

fλ(r,ω)Gλλ′(r, r ′,ω) = Gλλ′(r, r ′,ω)

−
∑

λ′′=e,m

∫
d3s χλ′′(s,ω)Hλλ′′(r, s,ω)·Gλ′′λ′(s, r ′,ω)

(2.37)

with

fe(r,ω) = ε(r,ω)+ 1
3 χ(r,ω)

ε(r,ω)
, (2.38)

fm(r,ω) = 1− 2
3ζ(r,ω)μ(r,ω) . (2.39)

Introducing the auxiliary tensors

Fλλ′(r, r ′,ω) = fλ(r,ω)Gλλ′(r, r ′,ω) , (2.40)

these equations take the form
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Fλλ′(r, r ′,ω) = Gλλ′(r, r ′,ω)

−
∑

λ′′=e,m

∫
d3s gλ′′(s,ω)Hλλ′′(r, s,ω)·Fλ′′λ′(s, r ′,ω) (2.41)

with

ge(r,ω) = ε(r,ω)χ(r,ω)

ε(r,ω)+ 1
3 χ(r,ω)

, (2.42)

gm(r,ω) = ζ(r,ω)

1+ 2
3 ζ(r,ω)μ(r,ω)

. (2.43)

We solve these equations for the auxiliary tensors iteratively. When source and
field points are situated in free space, this solution coincides with the required solu-
tion for the Green’s tensor, Fλλ′(r, r ′,ω) = Gλλ′(r, r ′,ω). The alternative Born
expansion is then given by (2.35) with

ΔK Gλλ′(r, r ′,ω)

= (−1)K
∑

λ1=e,m

∫
d3s1 gλ1(s1,ω) · · ·

∑
λK=e,m

∫
d3sK gλK (sK ,ω)

× Hλλ1(r, s1,ω)·Hλ1λ2(s1, s2,ω) · · ·HλK λ′(sK , r ′,ω) . (2.44)

2.2 Casimir–Polder Potential via Volume Integrals

The Born expansions for the Green’s tensor in their various forms can be used to
approximate dispersion forces involving weakly magnetoelectric, rough or inhomo-
geneous bodies to arbitrary order. We will restrict our attention to the CP potential of
a single atom, bearing in mind that approximations of the Casimir force between bod-
ies or body-assisted vdW potentials of two atoms can be developed in a completely
analogous way.

2.2.1 Arbitrary Background

We start with an electric ground-state atom in an environment of purely electric
bodies. Substituting the linear Born expansion (2.5), we find that to linear order in χ,
the CP potential (1.126) or (1.132) can be approximated as [2, 3]

U (rA) = U (rA)+ΔU (rA) . (2.45)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Here,

U (rA) = �μ0

2π

∞∫

0

dξ ξ2α(iξ)tr G(1)(rA, rA, iξ) (2.46)

is the potential associated with the background bodies and

ΔU (rA) = − �μ0

2πc2

∞∫

0

dξ ξ4α(iξ)
∫

d3s χ(s, iξ)tr
[
G(rA, s, iξ)·G(s, rA, iξ)

]

(2.47)
is the first-order correction due to χ(r,ω). Using (2.8), the full Born expansion of
the CP potential for purely electric bodies reads

U (rA) = U (rA)+
∞∑

K=1

ΔK U (rA) (2.48)

with

ΔK U (rA) = (−1)K
�μ0

2πc2K

∞∫

0

dξ ξ2K+2α(iξ)

×
∫

d3s1 χ(s1, iξ) · · ·
∫

d3sK χ(sK , iξ)

× tr
[
G(rA, s1, iξ)·G(s1, s2, iξ) · · ·G(sK , rA, iξ)

]
. (2.49)

Isolating the singular part of the Green’s tensor via (2.9) and noting that the atom
is always assumed to be situated in a small free-space region, we can employ the
alternative expansion (2.15). It leads to an alternative Born series for the CP potential
with terms

ΔK U (rA) = (−1)K
�μ0

2πc2K

∞∫

0

dξ ξ2K+2α(iξ)

×
∫

d3s1
χ(s1, iξ)ε(s1, iξ)

ε(s1, iξ)+ 1
3 χ(s1, iξ)

· · ·
∫

d3sK
χ(sK ,ω)ε(sK , iξ)

ε(sK , iξ)+ 1
3 χ(sK , iξ)

× tr
[
H(rA, s1, iξ)·H(s1, s2, iξ) · · ·H(sK , rA, iξ)

]
(2.50)

which is favourable for metals.
The linear correction for magnetic bodies can be found by substituting (2.20) for

the Green’s tensor into the CP potential (1.126):

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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ΔU (rA) = −�μ0

2π

∞∫

0

dξ ξ2α(iξ)
∫

d3s ζ(s, iξ)

× tr
[
G(rA, s, iξ)×←−∇s ·∇s×G(s, rA, iξ)

]
. (2.51)

Note that within linear order, electric and magnetic corrections to the CP potential
decouple, so the correction due to weakly magnetoelectric bodies is simply the sum
of (2.47) and (2.51).

Finally, the CP potential (1.146) with (1.177) of an electromagnetic atom in the
presence of magnetoelectric bodies can be approximated by making use of the Born
expansion (2.36). We find

Uλ(rA) = Uλ(rA)+
∞∑

K=1

ΔK Uλ(rA) (2.52)

with

Uλ(rA) = �

2πε0

∞∫

0

dξ αλ(iξ)tr G(1)
λλ(rA, rA, iξ) (2.53)

and

ΔK Uλ(rA) = (−1)K
�

2πε0

∞∫

0

dξ αλ(iξ)

×
∑

λ1=e,m

∫
d3s1 χλ1(s1, iξ) · · ·

∑
λK=e,m

∫
d3sK χλK (sK , iξ)

× tr
[
Gλλ1(rA, s1, iξ)·Gλ1λ2(s1, s2, iξ) · · ·GλK λ(sK , rA, iξ)

]
.

(2.54)

With the atom being situated in a free-space region, we can make use of (2.44) to
find the alternative series

ΔK Uλ(rA) = (−1)K
�

2πε0

∞∫

0

dξ αλ(iξ)

×
∑

λ1=e,m

∫
d3s1 gλ1(s1, iξ) · · ·

∑
λK=e,m

∫
d3sK gλK (sK , iξ)

× tr
[
Hλλ1(rA, s1, iξ)·Hλ1λ2(s1, s2, iξ) · · ·HλK λ(sK , rA, iξ)

]
,

(2.55)

recall (2.42) and (2.43).

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1


2.2 Casimir–Polder Potential via Volume Integrals 47

Fig. 2.2 Born expansion:
(i) First, (ii) second and (iii)
third-order contributions to
CP potential of a ground-
state atom near a weakly
magnetoelectric body

(i)

(ii)

(iii)

2.2.2 Weakly Magnetodielectric Bodies in Free Space

With the aid of the various Born expansions presented above, the CP potential can be
approximated as a series of multiple volume integrals over products of the respective
background Green’s tensors. Let us now consider the simplest and most important
special case in a little more detail: When only weakly magnetodielectric bodies are
present, we can choose the background to be free space, ε(r,ω) ≡ 1, μ(r,ω) ≡ 1,
so that all present bodies are characterised by χ(r,ω) = ε(r,ω)− 1 and ζ(r,ω) =
1−1/μ(r,ω). The background Green’s tensor is then identical to the free-space one
and the background potential U vanishes. The first few terms of the Born expansion
are schematically represented in Fig. 2.2.

Using the explicit form (A.21) of the free-space Green’s tensor and noting that the
atom is well-separated from the bodies so that the delta function does not contribute,
the leading-order potential (2.47) for weakly dielectric bodies reads [3]

U (rA) = − �

16π3ε0

∞∫

0

dξ α(iξ)
∫

d3s
χ(s, iξ)

|rA − s|6 g(ξ|rA − s|/c) , (2.56)

where g(x) = e−2x (3+ 6x + 5x2 + 2x3 + x4). Within this approximation, the CP
force between an electric ground-state atom and purely dielectric bodies of arbitrary
shapes is thus given by a single volume integral over attractive central forces, since

∇
[
g(ξr/c)

r6

]
= −2r

r8

[
e−2x (9+ 18x + 16x2 + 8x3 + 3x4 + x5)

]
x=ξr/c

. (2.57)

These forces closely resemble the vdW force between two electric atoms as given
by (5.97) in Vol. I. In Chap. 3 of this volume, we will discuss in more detail in how
CP forces and vdW forces are related in general.

The CP potential can be further simplified by considering the retarded and non-
retarded limits of large and small atom–body separations. In the retarded limit
r− � c/ω− (r−: minimum atom–body distance, ω−: minimum of all relevant atomic
and medium resonance frequencies), the exponential contained in g effectively limits

http://dx.doi.org/10.1007/978-3-642-32466-6_3
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the ξ-integral to a range 0 ≤ ξ � c/(2r−)	 ω−, cf. Fig. 3.7(ii) of Vol. I for details.
We may hence replace the atom and body response functions by their static values
α(iξ) 
 α(0) ≡ α and χ(r, iξ) 
 χ(r, 0) ≡ χ(r) and perform the ξ-integral by
means of

∞∫

0

dx g(x) =
∞∫

0

dx (3+ 6x + 5x2 + 2x3 + x4)e−2x = 23

4
(2.58)

to find

U (rA) = − 23�cα

64π3ε0

∫
d3s

χ(s)
|rA − s|7 . (2.59)

In the opposite nonretarded limit r+ 	 c/ω+ (r+: maximum atom–body
distance, ω+: maximum of all relevant atomic and medium resonance frequen-
cies), the atom and body response functions restrict the ξ-integral to a range where
ξ|rA− s|/c ≤ ξr+/c ≤ ω+r+/c 	 1, cf. Fig. 3.7(iii) of Vol. I. We may hence make
the approximation g(ξ|rA − s|/c) 
 g(0) = 3, leading to

U (rA) = − 3�

16π3ε0

∞∫

0

dξ α(iξ)
∫

d3s
χ(s, iξ)

|rA − s|6 . (2.60)

In order to be able to judge the reliability of the approximation, it is useful to
also consider the the second-order correction Δ2U (rA), which according to (2.49)
consists of a double volume integral over a product of three Green’s tensors. Using the
decomposition of the free-space Green’s tensor (2.9) and noting that the atom is well
separated from all present bodies, only the middle Green’s tensor contains a delta-
function contribution in addition to its regular part. The second-order contribution
can thus be separated into a single-point term, which results from the delta function
and a two-point correlation term containing three regular Green’s tensors:

Δ2U (rA) = Δ1
2U (rA)+Δ2

2U (rA) . (2.61)

With the free-space Green’s tensor (A.21), the single-point term reads [3]

Δ1
2U (rA) = �

48π3ε0

∞∫

0

dξ α(iξ)
∫

d3s
χ2(s, iξ)

|rA − s|6 g(ξ|rA − s|/c) . (2.62)
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It differs from the linear contribution only via the replacement χ �→ − 1
3χ2. The

single-point part of the second-order correction thus leads to a reduction of the
leading-order linear result. Its retarded and nonretarded limits obviously read

Δ1
2U (rA) = 23�cα

192π3ε0

∫
d3s

χ2(s)
|rA − s|7 (2.63)

and

Δ1
2U (rA) = �

16π3ε0

∞∫

0

dξ α(iξ)
∫

d3s
χ2(s, iξ)

|rA − s|6 , (2.64)

respectively.
The two-point contribution is much more complex. Performing the trace over the

product of three regular free-space Green’s tensors (A.21), we find [3]

Δ2
2U (rA) = �

128π4ε0

∞∫

0

dξ α(iξ)

×
∫

d3s1

∫
d3s2

χ(s1, iξ)χ(s2, iξ)

r3
1r3

2r3
3

g(r1, r2, r3, ξ) . (2.65)

Here, we have defined the function

g(r1, r2, r3, ξ) = e−ξ(r1+r2+r3)/c[3a(ξr1/c)a(ξr2/c)a(ξr3/c)

− b(ξr1/c)a(ξr2/c)a(ξr3/c)− a(ξr1/c)b(ξr2/c)a(ξr3/c)

− a(ξr1/c)a(ξr2/c)b(ξr3/c)+ b(ξr1/c)b(ξr2/c)a(ξr3/c)(e1 ·e2)
2

+ a(ξr1/c)b(ξr2/c)b(ξr3/c)(e2 ·e3)
2

+ b(ξr1/c)a(ξr2/c)b(ξr3/c)(e3 ·e1)
2

− b(ξr1/c)b(ξr2/c)b(ξr3/c)(e1 ·e2)(e2 ·e3)(e3 ·e1)
]

(2.66)

with a(x) = 1 + x + x2 and b(x) = 3 + 3x + x2 and introduced the abbreviating
notation

r1 = rA − s1 , r2 = s1 − s2 , r3 = s2 − rA , (2.67)

with e1, e2 and e3 being the associated unit vectors.
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In the retarded limit, we may replace α and χ by their static values, so that

Δ2
2U (rA) = �α

128π4ε0

∫
d3s1

∫
d3s2

χ(s1)χ(s2)

r3
1r3

2r3
3

∞∫

0

dξ g(r1, r2, r3, ξ) . (2.68)

The integral over ξ can then be performed by expanding the products of polyno-
mials in (2.66) and using

∞∫

0

dξ

(
ξr1

c

)i(ξr2

c

) j(ξr3

c

)k

e−ξ(r1+r2+r3)/c = (i + j + k)!r i
1r j

2 rk
3 c

(r1 + r2 + r3)i+ j+k+1 . (2.69)

The result of this rather tedious calculation can be written in a relatively compact
form with the aid of the triangle formula

A� ≡ 1− (e1 ·e2)
2 − (e2 ·e3)

2 − (e3 ·e1)
2 + 2(e1 ·e2)(e2 ·e3)(e3 ·e1) = 0 (2.70)

which is an immediate consequence of (2.67). Adding the expression

0 = 6A� + 6A�
(r1 + r2 + r3)6

{[
r5

1

(
r2 + r3

)+ r5
2

(
r3 + r1

)+ r5
3

(
r1 + r2

)]

+ 7
[
r4

1

(
r2

2 + r2
3

)+ r4
2

(
r2

3 + r2
1

)+ r4
3

(
r2

1 + r2
2

)]+ 12
(
r3

1r3
2 + r3

2r3
3 + r3

3r3
1

)
+ 12r1r2r3

(
r3

1 + r3
2 + r3

3

)+ 138r2
1 r2

2 r2
3

+ 52r1r2r3
[
r1r2

(
r1 + r2

)+ r2r3
(
r2 + r3

)+ r3r1
(
r3 + r1

)]}
(2.71)

to our intermediate result for (2.68), we obtain

Δ2
2U (rA) = �cα

32π4ε0

∫
d3s1

∫
d3s2

χ(s1)χ(s2)

r3
1r3

2r3
3 (r1 + r2 + r3)

× [
f1(r1, r2, r3)+ f2(r3, r1, r2)(e1 ·e2)2 + f2(r1, r2, r3)(e2 ·e3)2

+ f2(r2, r3, r1)(e3 ·e1)2 + f3(r1, r2, r3)(e1 ·e2)(e2 ·e3)(e3 ·e1)
]
(2.72)

with

f1(r1, r2, r3) = 9− 39
σ2

σ2
1

+ 22
σ3

σ3
1

+ 54
σ2

2

σ4
1

− 65
σ2σ3

σ5
1

+ 20
σ2

3

σ6
1

, (2.73)
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f2(r1, r2, r3) = 3

[
r2

1

σ2
1

+ 3r2
1 (r2 + r3)

σ3
1

+ 4r2r3(3r2
1 − r2r3)

σ4
1

− 20r1r2
2 r2

3

σ5
1

]
,

(2.74)

f3(r1, r2, r3) = −1− 39
σ2

σ2
1

+ 17
σ3

σ3
1

+ 72
σ2

2

σ4
1

− 75
σ2σ3

σ5
1

+ 20
σ2

3

σ6
1

(2.75)

and σi = r i
1 + r i

2 + r i
3.

In the opposite, nonretarded limit, we approximate

g(r1, r2, r3, ξ) 
 g(r1, r2, r3, 0)

= 3
{−2+ 3

[
(e1 ·e2)

2 + (e2 ·e3)
2 + (e3 ·e1)

2]− 9(e1 ·e2)(e2 ·e3)(e3 ·e1)
}

= 3
[
1− 3(e1 ·e2)(e2 ·e3)(e3 ·e1)

]
, (2.76)

where the triangle formula (2.70) has again been used. This leads to

Δ2
2U (rA) = 3�

128π4ε0

∞∫

0

dξ α(iξ)
∫

d3s1

∫
d3s2 χ(s1, iξ)χ(s2, iξ)

× 1− 3(e1 ·e2)(e2 ·e3)(e3 ·e1)

r3
1r3

2r3
3

. (2.77)

The integrand of the two-point contribution Δ2
2U can be positive or negative, depend-

ing on the relative positions of the atom and the two integration points inside the body.
The magnitude of the second-order correction resulting from the double integral
therefore sensitively depends on the shape of the body.

Let us next consider the leading, linear CP potential (2.51) due to weakly magnetic
bodies. Calculating the left and right curls of the free-space Green’s tensor (A.21),

∇×G(r, r ′,ω) = −eiωρ/c

4πρ2

(
1− iωρ

c

)
eρ×I , (2.78)

G(r, r ′,ω)×←−∇ ′ = eiωρ/c

4πρ2

(
1− iωρ

c

)
I×eρ , (2.79)

and evaluating the trace via tr[e×I×e] = −2, we find [3]

U (rA) = ΔU (rA)

= �μ0

16π3

∞∫

0

dξ ξ2α(iξ)
∫

d3s
ζ(s, iξ)

|rA − s|4 h(ξ|rA − s|/c) (2.80)
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with h(x) = e−2x (1+ 2x + x2). Forming the gradient

∇
[

h(ξr/c)

r4

]
= −2r

r6

[
e−2x (2+ 4x + 3x2 + x3)

]
x=ξr/c

, (2.81)

we note that the CP force on an electric ground-state atom near weakly magnetic
bodies is a volume integral over repulsive central forces. The integrand in (2.80)
is very similar to the respective vdW force between an electric and a paramagnetic
atom, cf. (5.124) in Vol I. In the retarded limit, we replace α and ζ by their static
values and carry out the ξ-integral by means of

∞∫

0

dx x2h(x) =
∞∫

0

dx x2(1+ 2x + x2)e−2x = 7

4
(2.82)

to find

U (rA) = 7�cα

64π3ε0

∫
d3s

ζ(s)
|rA − s|7 . (2.83)

In the nonretarded limit, the approximation h(x) 
 h(0) = 1 leads to

U (rA) = �μ0

16π3

∞∫

0

dξ ξ2α(iξ)
∫

d3s
ζ(s, iξ)

|rA − s|4 . (2.84)

2.2.3 Atom Next to a Ring

Let us apply the general results of the previous section to a specific body. We consider
the CP potential of an atom placed on the symmetry axis of a thin homogeneous ring
of radius R, circular cross section πa2 (a 	 R) and volume V = 2π2 Ra2, the atom
being separated from the centre of the ring by a distance z A (Fig. 2.3). For a thin

ring, we have |rA− s| 

√

z2
A + R2 = ρA, so the volume integral in (2.56) becomes

trivial, resulting in the attractive first-order CP potential

Δ1U (ρA) = − �V

16π3ε0ρ
6
A

∞∫

0

dξ α(iξ)χ(iξ)g(ξρA/c) (2.85)

of a weakly dielectric ring of permittivity χ(iξ). Its retarded and nonretarded limits
(2.59) and (2.60) are given by
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Fig. 2.3 Atom next to a ring

R
πa 2

zA

ρA

Δ1U (ρA) = −23�cV αχ

64π3ε0ρ
7
A

(2.86)

and

Δ1UA(ρA) = − 3�V

16π3ε0ρ
6
A

∞∫

0

dξ α(iξ)χ(iξ) , (2.87)

respectively.
To assess the reliability of these first-order results, we also consider the second-

order correction (2.61). The value of the single-point term Δ1
2U can be obtained by

applying the replacement χ �→ − 1
3χ2 to the linear results, cf. the remark below

(2.62). We hence have

Δ1
2U (ρA) = �V

48π3ε0ρ
6
A

∞∫

0

dξ α(iξ)χ2(iξ)g(ξρA/c) (2.88)

with retarded and nonretarded limits

Δ1
2U (ρA) = 23�cV αχ

192π3ε0ρ
7
A

, (2.89)

Δ1
2UA(ρA) = �V

16π3ε0ρ
6
A

∞∫

0

dξ α(iξ)χ(iξ) . (2.90)
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Fig. 2.4 Calculation of the
two-point contributions (i)
and (ii) to the CP potential of
a ring

(i)

(ii)

s1

s2

s2

r1

r2

r2

r3

r3

θ

The two-point correlation termΔ2
2U is a lot more difficult to evaluate. In particular,

it contains an apparent singularity at s1 = s2 that has to be treated with care. Starting
with the retarded limit (2.72), we replace the variable s1 by its average across the
cross section of the ring (|rA − s1| 
 ρA) and carry out the s1-integral. In order
to perform the s2-integral, we split the integration volume into two regions (i) and
(ii) as illustrated in Fig. 2.4: Region (i) is an approximately cylindrical volume of
cross section πa2 and length 2l centred around s1; it contains the apparent singularity.
In this region, the separation vector r2 = s1 − s2 may be parametrised by local
cylindrical coordinates (ρ,φ, z). Region (ii) is the remaining open ring where r2 is
adequately described by a separation angle θ. In the limit of a thin ring (a 	 R),
we can choose the length of the cylindrical region such that a 	 l 	 R. With this
separation of the s2-integral, the two-point term takes the form

Δ2
2U (rA) ≡ Δ

2(i)
2 U (rA)+Δ

2(ii)
2 U (rA)

= �cV αχ2

32π4ε0

⎧⎪⎨
⎪⎩

l∫

−l

dz

a∫

0

dρ ρ

2π∫

0

dφ+ πa2

2π−l/R∫

l/R

Rdθ

⎫⎪⎬
⎪⎭

× 1

r3
1r3

2r3
3 (r1 + r2 + r3)

[
f1(r1, r2, r3)+ f2(r3, r1, r2)(e1 ·e2)

2

+ f2(r1, r2, r3)(e2 ·e3)
2 + f2(r2, r3, r1)(e3 ·e1)

2

+ f3(r1, r2, r3)(e1 ·e2)(e2 ·e3)(e3 ·e1)
]
, (2.91)

For the integral over the cylindrical region (i), we may use the approximations
r3 
 r1 = ρA, r2 =

√
z2 + ρ2 	 ρA, −e2 · e3 
 e1 · e2 = ρ cos(φ)/

√
z2 + ρ2,

e3 · e1 
 −1 for a 	 R (Fig. 2.4); and the functions (2.73)–(2.75) simplify to
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f1(r1, r2, r3) 
 13
8 , f2(r3, r1, r2) 
 f2(r1, r2, r3) 
 15

8 , f2(r2, r3, r1) 
 − 3
4 and

f3(r1, r2, r3) 
 − 51
8 . With these estimates, we have

Δ
2(i)
2 U (rA) = 7�cV αχ2

512π4ε0ρ
7
A

l∫

−l

dz

a∫

0

dρ ρ

2π∫

0

dφ
ρ2 + z2 − 3ρ2 cos2 φ√

z2 + ρ2 5

= 7�cV αχ2

512π3ε0ρ
7
A

l∫

−l

dz

a∫

0

dρ ρ
2z2 − ρ2

√
z2 + ρ2 5

= 7�cV αχ2

512π3ε0ρ
7
A

l∫

−l

dz
a2

√
z2 + a2 3

= 7�cV αχ2

256π3ε0ρ
7
A

(l/a)√
1+ (l/a)2


 7�cV αχ2

256π3ε0ρ
7
A

(2.92)

for a 	 l. The integral thus remains finite although the integration region (i) contains
the point s2 
 s1 where the denominator of the integrand vanishes.

In the open-ring region (ii), the estimates r3 
 r1 = ρA, r2 
 2R| sin(θ/2)|,
e1 · e2 
 e2 · e3 
 −(R/ρA)| sin(θ/2)|, e3 · e1 
 2(R2/ρ2

A)| sin(θ/2)| − 1 hold for
a 	 R. Due to the denominator r3

2 ∝ sin3(θ/2), the main contribution to the θ-
integral in (2.91) comes from regions where sin(θ/2) 	 1. We may hence apply
a Taylor expansion in powers of sin(θ/2) and retain only the terms proportional
to f1(r1, r2, r3) 
 13

8 and f2(r2, r3, r1) 
 − 3
4 . With these approximations, (2.91)

leads to

Δ
2(ii)
2 U (r A) = 7�cV αχ2a2

4096π3ε0ρ
7
A R2

2π−l/R∫

l/R

dθ

| sin3(θ/2)|


 7�cV αχ2a2

4096π3ε0ρ
7
A R2
× 2

∞∫

l/R

dθ

(θ/2)3 =
7�cV αχ2

512π3ε0ρ
7
A

a2

l2 
 0 (2.93)

when l 	 R and a 	 l. The contribution from the open-ring region hence becomes
negligible for a thin ring. In this limit, the two-point term is dominated by the con-
tribution from the cylindrical region and we have

Δ2
2U (ρA) = 7�cV αχ2

256π3ε0ρ
7
A

. (2.94)

The nonretarded limit (2.77) of the two-point term can be calculated in a com-
pletely analogous way by again using the above splitting into two regions:

Δ2
2U (rA) ≡ Δ

2(i)
2 U (rA)+Δ

2(ii)
2 U (rA)
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= 3�V

128π4ε0

∞∫

0

dξ α(iξ)χ2(iξ)

×

⎧⎪⎨
⎪⎩

l∫

−l

dz

a∫

0

dρ ρ

2π∫

0

dφ+ πa2

2π−l/R∫

l/R

Rdθ

⎫⎪⎬
⎪⎭

× 1− 3(e1 ·e2)(e2 ·e3)(e3 ·e1)

r3
1r3

2r3
3

. (2.95)

Using the approximations above (2.92), the integral over the cylindrical region is
found to be

Δ
2(i)
2 U (rA) = 3�V

128π4ε0ρ
6
A

∞∫

0

dξ α(iξ)χ2(iξ)

l∫

−l

dz

a∫

0

dρ ρ

2π∫

0

dφ

× ρ2 + z2 − 3ρ2 cos2 φ√
z2 + ρ2 5

= 3�V

64π3ε0ρ
6
A

∞∫

0

dξ α(iξ)χ2(iξ)
(l/a)√

1+ (l/a)2


 3�V

64π3ε0ρ
6
A

∞∫

0

dξ α(iξ)χ2(iξ) (2.96)

for a 	 l. With estimates above (2.93), the open-ring integral becomes

Δ
2(ii)
2 U (rA) = 3�V a2

1024π3ε0ρ
6
A R2

∞∫

0

dξ α(iξ)χ2(iξ)

2π−l/R∫

l/R

dθ

| sin3(θ/2)|

= 3�V

128π3ε0ρ
6
A

a2

l2 
 0 (2.97)

when a 	 l 	 R, so that the total two-point term reads

Δ2
2U (ρA) = 3�V

64π3ε0ρ
6
A

∞∫

0

dξ α(iξ)χ2(iξ) (2.98)

for a thin ring in the nonretarded limit.
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Combining our retarded results (2.86), (2.89) and (2.94), the quadratic Born
expansion of the retarded CP potential of an atom near a thin ring is given by [3]

U (ρA) = Δ1U (ρA)+Δ1
2U (ρA)+Δ2

2U (ρA)

= − 23�cV α

64π3ε0ρ
7
A

(
χ− 1

3 χ2 − 7
92 χ2

)

= − 23�cV α

64π3ε0ρ
7
A

(
χ− 0.333χ2 − 0.076χ2) . (2.99)

The respective Born expansion in the nonretarded limit follows from (2.87), (2.90)
and (2.98):

U (ρA) = Δ1U (ρA)+Δ1
2U (ρA)+Δ2

2U (ρA)

= − 3�V

16π3ε0ρ
6
A

∞∫

0

dξ α(iξ)
[
χ(iξ)− 1

3 χ2(iξ)− 1
4 χ2(iξ)

]

= − 3�V

16π3ε0ρ
6
A

∞∫

0

dξ α(iξ)
[
χ(iξ)− 0.333χ2(iξ)− 0.250χ2(iξ)

]
.

(2.100)

The CP potential is seen to be attractive and proportional to 1/ρ7
A and 1/ρ6

A in
the retarded and nonretarded limits, respectively. In both cases, the two quadratic
contributions each reduce the potential in comparison to its linear approximation, but
they do not change its sign. We further note that the two-point term has its strongest
influence in the nonretarded limit where it leads to a very slow convergence of the
Born series.

Let us next consider a weakly magnetic ring, restricting our attention to the

leading-order contribution (2.80). Using |rA − s| 

√

z2
A + R2 = ρA and carry-

ing out the trivial volume integral, we find

U (ρA) = �μ0V

16π3ρ4
A

∞∫

0

dξ ξ2α(iξ)ζ(iξ)h(ξρA/c) (2.101)

with retarded and nonretarded limits

U (ρA) = 7�cαζV

64π3ε0ρ
7
A

(2.102)
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and

U (ρA) = �μ0V

16π3ρ4
A

∞∫

0

dξ ξ2α(iξ)ζ(iξ) , (2.103)

recall (2.83) and (2.84). In contrast to the potential of a weakly dielectric ring, that
of a weakly magnetic ring is repulsive. It is governed by 1/ρ7

A and 1/ρ4
A power laws

in the retarded and nonretarded limits, respectively.
So far, we have concentrated on the CP potential of a purely electric atom. A mag-

netic atom could be treated by starting from the respective general Born series (2.52)–
(2.54). A much simpler route is based on duality as discussed in Sect. 1.3. We have
seen that CP potentials in free space are invariant under a simultaneous replacement
α �→ β/c2, ε↔ μ. With ε = 1+χ and 1/μ = 1−ζ, the latter replacement amounts
to

χ �→ 1

1− ζ
− 1 = ζ + ζ2 + · · · , ζ �→ 1− 1

1+ χ
= χ− χ2 + · · · (2.104)

Applying this duality transformation to (2.99) and (2.100), we find that within
quadratic order in ζ, the retarded and nonretarded CP interaction of a magnetic
atom with a weakly magnetic ring is given by

Um(ρA) = −23�cμ0V β

64π3ε0ρ
7
A

(
ζ + 163

276 ζ2
)

(2.105)

and

Um(ρA) = − 3�μ0V

16π3ρ6
A

∞∫

0

dξ β(iξ)
[
ζ(iξ)+ 5

12 ζ2(iξ)
]

, (2.106)

respectively. Similarly, (2.102) and (2.103) imply that the linear CP potential of a
magnetic atom interacting with a weakly dielectric ring reads

Um(ρA) = 7�cμ0βχV

64π3ρ7
A

(2.107)

and

Um(ρA) = �μ0V

16π3c2ρ4
A

∞∫

0

dξ ξ2β(iξ)χ(iξ) (2.108)

in the retarded and nonretarded limits.

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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2.2.4 Atom Next to a Metal Plate or Sphere

The Born expansion of the CP potential is a rapidly converging series for weakly
magnetodielectric bodies, provided that χ, ζ 	 1. In this case, the total potential
can be well approximated by calculating just the first few terms of the series, as we
have done for the ring. For metals, on the contrary, we typically have χ � 1. Even
the perturbative parameter χ/(1 + 1

3χ) of the alternative Born series (2.50) can be
very close to its limiting value 3 which is realised for perfect conductors.

In order to assess the reliability of the Born expansion for metals, let us consider
two geometries where the exact results are known, namely the nonretarded CP poten-
tials of an atom next to a perfectly metal plate and sphere. Recall from (4.137) and
(4.138) of Vol. I that the nonretarded potential of an atom at distance z A from an
semi-infinite metal half space of permittivity ε(ω) is given by

U (z A) = − �

16π2ε0z3
A

∞∫

0

dξ α(iξ)
ε(iξ)− 1

ε(iξ)+ 1
. (2.109)

We invert (χ = ε− 1)
χ

1+ 1
3χ
= 3(ε− 1)

ε+ 2
(2.110)

to find

ε = 3+ 2χ/
(
1+ 1

3χ
)

3− χ/
(
1+ 1

3χ
) . (2.111)

With this relation, we can express the exact nonretarded potential in terms of the
perturbative parameter χ/(1+ 1

3χ):

U (z A) = − �

16π2ε0z3
A

∞∫

0

dξ α(iξ)
3χ(iξ)/

[
1+ 1

3χ(iξ)
]

6+ χ(iξ)/
[
1+ 1

3χ(iξ)
] . (2.112)

The terms (2.50) of the Born series are the unique terms of a Taylor expansion in
powers of χ/(1+ 1

3χ). With the exact solution for the total potential being known,
we can thus deduce these terms without explicitly performing the spatial integrations
that occur in (2.50). Instead, we simply expand (2.112) in powers of χ/(1+ 1

3χ):
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U (z A) = Δ1U (z A)+Δ2U (z A)+Δ3U (z A)+Δ4U (z A)+ · · ·

= − �

16π2ε0z3
A

∞∫

0

dξ α(iξ)

{
3

6

χ(iξ)

1+ 1
3χ(iξ)

− 3

62

[
χ(iξ)

1+ 1
3χ(iξ)

]2

+ 3

63

[
χ(iξ)

1+ 1
3χ(iξ)

]3

− 3

64

[
χ(iξ)

1+ 1
3χ(iξ)

]4

+ · · ·
}

. (2.113)

The convergence of this series becomes slowest in the limit of a perfect conductor
χ/(1+ 1

3χ)→ 3 where

U (z A) = Δ1U (z A)+Δ2U (z A)+Δ3U (z A)+Δ4U (z A)+ · · ·
= ( 3

2 − 3
4 + 3

8 − 3
16 + 3

32 − 3
64 + 3

128 − 3
512 + · · · )U (z A)

= (1.5− 0.75+ 0.38− 0.19+ 0.09

− 0.05+ 0.02− 0.01+ · · · )U (z A) . (2.114)

We see that for a perfectly conducting plate in the nonretarded limit, the Born series
converges very slowly. As many as eight terms have to be included in order to reduce
the error to about 1 %. Recall that for a weakly dielectric ring we had found that the
series converges faster in the retarded limit, so we may expect a better convergence
for larger distances for the metal plate as well. Nevertheless, this study shows that
the Born expansion leads to a very poor approximation for metals. Retaining only
the first one or two terms of the series, we can expect qualitatively correct results at
best.

The convergence of the Born series strongly depends on the shape of the bodies
under consideration. To show this, let us next consider the nonretarded potential of
an atom at distance rA from the centre of a small metal sphere of radius R, as given
by (4.237) together with (4.231) in Vol. I:

U (rA) = − 3�R3

4π2ε0r6
A

∞∫

0

dξ α(iξ)
ε(iξ)− 1

ε(iξ)+ 2
. (2.115)

Using (2.110), we can write it as

U (rA) = − �R3

4π2ε0r6
A

∞∫

0

dξ α(iξ)
χ(iξ)

1+ 1
3χ(iξ)

. (2.116)

When using χ/(1+ 1
3χ) as perturbative parameter, the sphere potential hence agrees

exactly with its first-order expansion:

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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U (z A) = Δ1U (z A) . (2.117)

This perfect convergence is a result of the small-sphere geometry, where many-atom
effects cancel due to the symmetry of the problem [5].

Our two examples mark the two extremes of an unbounded geometry on the one
hand and a compact one on the other. For other body shapes, we may therefore expect
the convergence speed to lie in between the slow convergence of the plate and the
extremely rapid one found for the sphere. The nonretarded CP potential of an atom
in front of a perfectly conducting plate with its slow convergence (2.114) may be
viewed as a worst-case scenario with respect to distance as well as body material and
shape.

2.3 Casimir–Polder Potential via Body Decomposition

As we have seen when studying the ring in the previous section, the evaluation of
higher-order terms in the Born expansion can be very difficult for concrete examples.
As an alternative, the Born series can be used to establish an expansion of the CP
potential based on body decomposition.

2.3.1 Summation Formulae

Beginning with purely dielectric bodies, we assume that the arrangement described
by χ(r,ω) can be decomposed into a set of smaller, homogeneous bodies n with
constant permittivities χn(ω) and volumes Vn , so that

χ(r,ω) =
∑

n

χn(ω)1Vn (r) (2.118)

with

1V (r) =
{

1 if r ∈ V,

0 else
(2.119)

being the characteristic function of a volume V . This body decomposition applies
to a number of cases as illustrated in Fig. 2.5: For instance, it can used to separate
cavities into its mirror components (i) or to decompose planar (ii) or spherical (iii)
stratified bodies with inhomogeneous permittivities into homogeneous layers.

Using the body decomposition, the terms (2.49) of the Born expansion take the
form
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Fig. 2.5 Examples for
body decompositions:
(i) cavity, (ii) stratified half
space, (iii) stratified sphere

(i)

(ii) (iii)

11

1

2

2

2

3

3 4 5

ΔK U (rA) = (−1)K
�μ0

2πc2K

∞∫

0

dξ ξ2K+2α(iξ)

×
∑
n1

χn1(iξ)
∫

Vn1

d3s1 · · ·
∑
nK

χnK (iξ)
∫

VnK

d3sK

× tr
[
G(rA, s1, iξ)·G(s1, s2, iξ) · · ·G(sK , rA, iξ)

]
. (2.120)

We rearrange the multiple sums over the bodies: First, we identify how many bodies
contribute by writing

ΔK U (rA) =
K∑

L=1

ΔL
K U (rA) , (2.121)

with ΔL
K U being the sum of all L-body contributions to the CP potential. Next, we

distinguish which body contributes to which order by specifying

ΔL
K U (rA) =

∑
n1<···<nL

k1+···+kL=K

ΔU k1...kL
n1···nL

(rA) , (2.122)

where the terms ΔU k1...kL
n1...nL contain contributions from the susceptibilities χn j of each

of the bodies n j to a specific order k j . Explicitly, they are given by
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ΔU k1...kL
n1...nL

(rA) = (−1)K
�μ0

2πc2K

∞∫

0

dξ ξ2K+2α(iξ)

×
∑

m1,...,mL∈{n1,...,nL }
χm1(iξ)

∫

Vm1

d3s1 · · ·χmK (iξ)
∫

VmK

d3sK

× tr
[
G(rA, s1, iξ)·G(s1, s2, iξ) · · ·G(sK , rA, iξ)

]
(2.123)

where the sum runs only over those terms fulfilling the additional constraint that each
n j occurs exactly k j times.

As an example, note that the total linear contribution in χ reads

Δ1U (rA) = Δ1
1U (rA) =

∑
n

ΔU 1
n (rA) . (2.124)

Within this leading order, the CP potential is additive: The total potential for a set of
bodies n is simply the sum over the individual potentials ΔU 1

n associated with these
bodies.

Additivity breaks down already in the second order

Δ2U (rA) = Δ1
2U (rA)+Δ2

2U (rA) =
∑

n

ΔU 2
n (rA)+

∑
m<n

ΔU 11
mn(rA)

(2.125)

due to the presence of the two-body potentials ΔU 11
mn . In general, L-body potentials

start to appear when considering the term ΔLU of the Born expansion, provided that
enough bodies are present in a given arrangement.

Our decomposition (2.121) together with (2.122) is useful in cases where the exact
potentials associated with the individual bodies of the decomposition are known. In
this case, the terms ΔU k1...kL

n1...nL can be uniquely identified by performing a Taylor
expansion in the bodies’ susceptibilities. The explicit knowledge of (2.123) let alone
the tedious evaluation of the integrals appearing therein is then not required. Recall
our study of the metal half space in the previous section where we were also able
to deduce the terms of the Born expansion without explicitly calculating them, by
expanding the known exact solution instead.

The developed body decomposition can also be used for metal bodies. To that end,
we apply exactly the same steps as before to the respective Born expansion (2.50).
The result is again of the form (2.121) with (2.122), ΔU k1...kL

n1...nL now denotes contri-
butions from the alternative expansion parameters χn j /(1+ 1

3χn j ) of bodies n j with
powers k j . Finally, the body decomposition can be generalised to electromagnetic
atoms in magnetoelectric environments. Starting from (2.118) together with
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ε( ,ω z )

Un

Umn

z

z A0

Fig. 2.6 Atom in front of an inhomogeneous half space

ζ(r,ω) =
∑

n

ζn(ω)1Vn (r) (2.126)

the respective Born expansion (2.54), we again arrive at (2.121) and (2.122) where
ΔU k1...kL

n1...nL represents contributions containing χn j , ζn j with total powers k j .

2.3.2 Atom in Front of an Inhomogeneous Half Space

As an example for the use of body decomposition, let us consider an atom at a distance
z A from an inhomogeneous half space as sketched in Fig. 2.6 whose susceptibility
only depends on z,

ε(r,ω) = 1+ χ(ω)p(−z) . (2.127)

Note that such a body whose material properties only change in one direction is
commonly known as a stratified body. The profile function is normalised such that
0 ≤ p(−z) ≤ 1 and we have p(−z) = 0 for z < 0.

We decompose the half space into a number of plates of asymptotically small
thickness d such that the susceptibility is approximately constant for each plate. The
CP potential associated with such plate is known: As seen from (4.101) in Vol. I,
the potential for a plate of permittivity ε(ω) and thickness d at separation s from an
atom reads

U (s) = �μ0

8π2

∞∫

0

dξ ξ2α(iξ)

∞∫

ξ/c

dκ⊥ e−2κ⊥s
[

rs +
(

1− 2
κ⊥2c2

ξ2

)
rp

]
(2.128)
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where

rs =
[
κ⊥2 − κ⊥2

1

]
tanh

(
κ⊥1 d

)
2κ⊥κ⊥1 +

[
κ⊥2 + κ⊥2

1

]
tanh

(
κ⊥1 d

) , (2.129)

rp =
[
ε2(iξ)κ⊥2 − κ⊥2

1

]
tanh

(
κ⊥1 d

)
2ε(iξ)κ⊥κ⊥1 +

[
ε2(iξ)κ⊥2 + κ⊥2

1

]
tanh

(
κ⊥1 d

) (2.130)

with κ⊥1 =
√[ε(iξ)− 1]ξ2/c2 + κ⊥2 being the reflection coefficients of the plate

for s- and p-polarised waves. In the limit of an asymptotically thin plate,
√

εd 	 s,
we may replace the reflection coefficients by their leading-order Taylor expansion
in κ⊥1 d,

rs 
 [κ
⊥2 − κ⊥2

1 ]d
2κ⊥

= −[ε(iξ)− 1]κ⊥d

2

ξ2

κ⊥2c2 , (2.131)

rp 
 [ε
2(iξ)κ⊥2 − κ⊥2

1 ]d
2ε(iξ)κ⊥

= [ε
2(iξ)− 1]κ⊥d

2ε(iξ)
− [ε(iξ)− 1]κ⊥d

2ε(iξ)

ξ2

κ⊥2c2 ,

(2.132)

so that

U (s) = − �d

16π2ε0

∞∫

0

dξ α(iξ)[ε(iξ)− 1]
∞∫

ξ/c

dκ⊥ κ⊥3e−2κ⊥s

×
[

2ε(iξ)+ 2

ε(iξ)
− ε(iξ)+ 3

ε(iξ)

ξ2

κ⊥2c2 +
ε(iξ)+ 1

ε(iξ)

ξ4

κ⊥4c4

]
. (2.133)

Labelling the plates by n such that each plate is at position z=−nd and hence at a
distance s = z A + nd from the atom, the potential of plate n reads

Un(z A) =− �d

16π2ε0

∞∫

0

dξ α(iξ)[εn(iξ)− 1]
∞∫

ξ/c

dκκ⊥3e−2κ(z A+nd)

×
[

2εn(iξ)+ 2

εn(iξ)
− εn(iξ)+ 3

εn(iξ)

ξ2

κ⊥2c2 +
εn(iξ)+ 1

εn(iξ)

ξ4

κ⊥4c4

]
(2.134)

where εn(ω) = 1 + χn(ω) and χn(ω) = χ(ω)p(nd). Applying a leading-order
Taylor expansion in χn , we find
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ΔU 1
n (z A) = − �d

8π2ε0

∞∫

0

dξ α(iξ)χn(iξ)

∞∫

ξ/c

dκ⊥ κ⊥3e−2κ⊥(z A+nd)

×
(

2− 2
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

)
. (2.135)

According to (2.124), the leading-order potential Δ1U (z A) of the inhomogeneous
half space can be obtained by summing over these thin-plate potentials. In the limit
of asymptotically thin plates, the sum becomes an integral (d

∑
n =

∫ 0
−∞ dz with

z = −nd), so we have

Δ1U (z A) = − �

8π2ε0

0∫

−∞
dz

∞∫

0

dξ α(iξ)χ(iξ)p(−z)

∞∫

ξ/c

dκ⊥ κ⊥3

× e−2κ⊥(z A−z)
(

2− 2
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

)
. (2.136)

After making the substitution z �→ −z, we have

Δ1U (z A) = − �

8π2ε0

∞∫

0

dξ α(iξ)χ(iξ)

∞∫

ξ/c

dκ⊥ κ⊥3e−2κ⊥z A

×
(

2− 2
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

) ∞∫

0

dz e−2κ⊥z p(z) . (2.137)

The quadratic correction Δ2U to this potential consists of a single-plate term
Δ1

2U and a two-plate contribution Δ2
2U , recall (2.124). The single-plate term can be

easily found by performing a second-order Taylor expansion in χn of the single-plate
potential Un given above,

ΔU 2
n (z A) = �d

16π2ε0

∞∫

0

dξ α(iξ)χn(iξ)

∞∫

ξ/c

dκ⊥ κ⊥3e−2κ⊥(z A+nd)

×
(

2− 3
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

)
, (2.138)

followed by an integration over all plates:
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Δ1
2U (z A) = �

16π2ε0

∞∫

0

dξ α(iξ)χ2(iξ)

∞∫

ξ/c

dκ⊥ κ⊥3e−2κ⊥z A

×
(

2− 3
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

) ∞∫

0

dz e−2κ⊥z p(z) . (2.139)

For the two-plate contribution, we require the CP potential of an atom at a dis-
tance s from two plates of permittivities ε(ω), ε′(ω), thicknesses d, d ′ and separa-
tion l. This potential is again of the form (2.128) where the reflection coefficients
have to be replaced by those of the two-plate system, rσ �→ rσ . These coefficients
can be obtained by repeated use of the recursion relations (A.39) and (A.40) in
App. A.3.2. To leading order in κ⊥1 d,κ⊥1 d ′, one finds

rs 
 rs +
(

1− κ⊥2+κ⊥2
1

κ⊥2 κ⊥d

)
e−2κlr ′s

= rs +
{

1− 2κ⊥d − [ε(iξ)−1]κ⊥d
ξ2

κ⊥2c2

}
e−2κ⊥lr ′s , (2.140)

r p 
 rp +
[

1− ε2(iξ)κ⊥2+κ⊥2
1

ε(iξ)κ⊥2 κ⊥d

]
e−2κ⊥lr ′p

= rp +
{

1− 2κ⊥d − [ε(iξ)−1]2κ⊥d

ε(iξ)

− [ε(iξ)−1]κ⊥d

ε(iξ)

ξ2

κ⊥2c2

}
e−2κ⊥lr ′p , (2.141)

with rσ, r ′σ being the single-plate reflection coefficients as given by (2.131) and
(2.132). The first term in (2.140), (2.141) describes reflection at the front plate, while
the second term is associated with transmission through the front plate, propagation
to the rear plate, reflection at the rear plate, propagation back to and transmission
through the front plate. Substituting the reflection coefficients into (2.128), we obtain
single-plate terms which depend on ε or ε′ only and a two-plate term that depends
on both ε and ε′. The single-plate potential has already been treated. Noting that the
plates are at positions z = −md and z′ = −nd so that s = z A+md and l = nd−md,
the two-plate potential reads
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Umn(z A) = �dd ′

16π2ε0

∞∫

0

dξ α(iξ)[εm(iξ)−1][εn(iξ)−1]
∞∫

ξ/c

dκ⊥ κ⊥4e−2κ⊥(z A+nd)

×
{

2
[εm(iξ)−1][εm(iξ)+1]

εm(iξ)εn(iξ)
− εm(iξ)εn(iξ)+3εm(iξ)−3εn(iξ)−1

εm(iξ)εn(iξ)

ξ2

κ⊥2c2

− εm(iξ)+εn(iξ)+2

εm(iξ)εn(iξ)

ξ4

κ⊥4c4 +
εm(iξ)εn(iξ)+1

εm(iξ)εn(iξ)

ξ6

κ⊥6c6

}
. (2.142)

The required leading-order, linear term in χm , χn reads

ΔU 11
mn(z A) = �μ0dd ′

8π2

∞∫

0

dξ ξ2α(iξ)χm(iξ)χn(iξ)

∞∫

ξ/c

dκ⊥ κ⊥2

× e−2κ⊥(z A+nd)

(
2− 2

ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

)
. (2.143)

Summing over all plates in accordance with (2.125), the total two-plate contribution
is given by (dd ′

∑
m<n =

∫ 0
−∞ dz

∫ z
−∞ dz′ with z = −md, z′ = −nd)

Δ2
2U (z A) = �μ0

8π2

∞∫

0

dξ ξ2α(iξ)χ2(iξ)

∞∫

ξ/c

dκ⊥ κ⊥2e−2κ⊥z A

×
(

2− 2
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

) ∞∫

0

dz p(z)

∞∫

0

dz′ e−2κ⊥z′ p(z′)

(2.144)

where we have made the substitutions z �→ −z, z′ �→ −z′.
As an example, let us consider a dielectric medium whose permittivity oscillates

as a function of z, with the profile function being given by

p(z) = cos2(kz)Θ(−z) (2.145)

The parameter k determines the period λ of the permittivity oscillations according
to λ = π/k.

With this choice of profile function, the z- and z′-integrals in (2.137), (2.139) and
(2.144) can be evaluated explicitly,
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∞∫

0

dz e−2κ⊥z cos2(kz) = 2κ⊥2+k2

4κ⊥(κ⊥2+k2)
, (2.146)

∞∫

0

dz cos2(kz)

∞∫

z

dz′ e−2κ⊥z′ cos2(kz′) = 2κ⊥6+8κ⊥4k2+5κ⊥2k4+2k6

8κ⊥2(κ⊥2+k2)2(κ⊥2+4k2)
,

(2.147)

and we find

Δ1U (z A) = − �

32π2ε0

∞∫

0

dξ α(iξ)χ(iξ)

∞∫

ξ/c

dκ⊥ κ⊥2e−2κ⊥z A
2κ⊥2+k2

κ⊥2+k2

×
(

2− 2
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

)
, (2.148)

Δ1
2U (z A) = �

64π2ε0

∞∫

0

dξ α(iξ)χ2(iξ)

∞∫

ξ/c

dκ⊥ κ⊥2e−2κ⊥z A
2κ⊥2+k2

κ⊥2+k2

×
(

2− 3
ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

)
, (2.149)

Δ2
2U (z A) = �μ0

64π2

∞∫

0

dξ ξ2α(iξ)χ2(iξ)

∞∫

ξ/c

dκ⊥ e−2κ⊥z A

× 2κ⊥6+8κ⊥4k2+5κ⊥2k4+2k6

(κ⊥2+k2)2(κ⊥2+4k2)

(
2− 2

ξ2

κ⊥2c2 +
ξ4

κ⊥4c4

)
.

(2.150)

The potential simplifies considerably in the retarded and nonretarded limits. In
the retarded limit z A � c/ω−, the exponential exp−2κ⊥z A restricts the ξ-integral to
a range where 0 ≤ ξ � c/(2z A) 	 ω−, so that we may make the approximations
α(iξ) 
 α and χ(iξ) 
 χ. Introducing the new integration variables v = κ⊥c/ξ
and s = κ⊥z A = ξz Av/c, we subsequently transform the integrals according to
∞∫
0

dξ
∫∞
ξ/c dκ⊥ =

∞∫
0

dξ ξ
∫∞

1 dv/c = (c/z2
A)
∞∫
0

ds s
∫∞

1 dv/v2. The integrals can then

be carried out to give
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Δ1U (z A) = − 23�cαχ

480π2ε0z4
A

∞∫

0

ds s3e−2s 2s2+(kz A)2

s2+(kz A)2 , (2.151)

Δ1
2U (z A) = 3�cαχ2

160π2ε0z4
A

∞∫

0

ds s3e−2s 2s2+(kz A)2

s2+(kz A)2 , (2.152)

Δ2
2U (z A) = 43�cαχ2

6720π2ε0z4
A

∞∫

0

ds s3e−2s

× 2s6+8s4(kz A)2+5s2(kz A)4+2(kz A)6

[s2+(kz A)2]2[s2+4(kz A)2] . (2.153)

In the nonretarded limit z A 	 c/ω+, the atom and medium response functions
restrict the ξ-integral to values such that ξ/κ⊥c � ξz A/c ≤ ω+z A/c 	 1. We may
hence set the lower limit of the κ⊥-integral to zero and discard higher-order terms
in ξ/κ⊥c in its integrand. After again using s = κ⊥z A, we find

Δ1U (z A) = − �

16π2ε0z3
A

∞∫

0

dξ α(iξ)χ(iξ)

×
∞∫

0

ds s2e−sx 2s2+(kz A)2

s2+(kz A)2 , (2.154)

Δ1
2U (z A) = �

32π2ε0z3
A

∞∫

0

dξ α(iξ)χ2(iξ)

×
∞∫

0

ds s2e−2s 2s2+(kz A)2

s2+(kz A)2 , (2.155)

Δ2
2U (z A) = �μ0

32π2z A

∞∫

0

dξ ξ2α(iξ)χ2(iξ)

∞∫

0

ds e−2s

× 2s6+8s4(kz A)2+5s2(kz A)4+2(kz A)6

[s2+(kz A)2]2[s2+4(kz A)2] . (2.156)

It is instructive to consider limits of small- and large-scale oscillations of the
half-space susceptibility. When the period of the oscillations is much larger than
the atom–surface distance, λ � z A, i.e., kz A 	 1, then the s-integrals in (2.151)–
(2.153) can be performed easily. Adding the results, we obtain the total retarded CP
potential

U (z A) = C4

z4
A

. (2.157)
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It agrees with that of a homogeneous semi-infinite half space of susceptibility χ,
where

C4 = − �cα

π2ε0

( 23
640 χ− 9

640 χ2 − 43
8960 χ2) (2.158)

is simply the second-order approximation in χ to the exact half-space coefficient

C4 = − 3�cα

64π2ε0

∞∫

1

dv

[(
2

v2 −
1

v4

)
εv −√

εμ− 1+ v2

εv +√
εμ− 1+ v2

− 1

v4

μv −√
εμ− 1+ v2

μv +√
εμ− 1+ v2

]
, (2.159)

cf. (4.133), (4.134) and (4.143) in Vol. I. In the opposite limit of the oscillation period
being much smaller than the atom-surface distance λ	 z A, i.e., kz A � 1, the inte-
grals in (2.151)–(2.153) can again be performed and we find a total potential (2.157)
with coefficient

C4 = − �cα

π2ε0

( 23
1280 χ− 9

1280 χ2 − 43
35840 χ2) . (2.160)

We see that the linear contribution in χ is simply given by one half its value for the
homogeneous half space. This is in accordance with the simple intuition that the
potential for a half space with rapid permittivity oscillations should be determined
by the average permittivity. However, the two-plate contribution is reduced to one
quarter of its homogeneous-case value for the rapidly oscillating half space, leading
to a failure of this simple intuition. Due to many-body correlations, the potential of
a half space with rapidly oscillating permittivity is hence slightly more than one half
the value for a corresponding homogeneous half space. The value of the potential
for intermediate values of z A/λ can be given as (k = π/λ)

U (z A) = C4 f (z A/λ)

z4
A

(2.161)

where C4 is the homogeneous-case coefficient (2.158) and the normalised potential
f (z A/λ) = U (z A)/U (z A)|λ→∞ with

f (x) = 6720

322− 169χ

⎧⎨
⎩

23− 9χ

360

∞∫

0

ds s2e−2s 2s2+π2x2

s2+π2x2

− 43χ

5040

∞∫

0

ds e−2s 2s6+8s4π2x2+5s2π4x4+2π6x6

[s2+π2x2]2[s2+4π2x2]

⎫⎬
⎭ (2.162)
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Fig. 2.7 Normalised retarded (solid line) and nonretarded (dashed line) CP potentials of an atom in
front of a half space with spatially oscillating permittivity (where χ = 0.5 for the retarded potential)

depends on the dimensionless parameter z A/λ. As we will see in Sect. 3.2 below,
f (x) is an example of a scaling function. It is depicted in Fig. 2.7 and describes
the effect of the permittivity-oscillations. As seen, the CP potential is gradually
reduced from its homogeneous-case value as the atom-surface distance increases. As
a consequence, it decreases more strongly with distance than 1/z4

A in the transition
region z A 
 λ.

Asymptotes for the nonretarded potential can be found in a similar way. Note that
the two-plate contribution (2.156) becomes negligible in comparison to (2.154) and
(2.155) in the nonretarded limit, because it increases less strongly with decreasing z A.
For large-scale oscillations λ� z A, we may perform the s-integrals to find

U (z A) = C3

z3
A

(2.163)

where

C3 = − �

16π2ε0

∞∫

0

dξ α(iξ)
[
χ(iξ)− 1

2 χ2(iξ)
]

(2.164)

is simply the second-order approximation to the coefficient

C3 = − �

16π2ε0

∞∫

0

dξ α(iξ)
ε(iξ)− 1

ε(iξ)+ 1
(2.165)

http://dx.doi.org/10.1007/978-3-642-32466-6_3
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for a homogeneous half space. In the opposite limit of small-scale oscillations
λ	 z A, the potential is governed by

C3 = − �

32π2ε0

∞∫

0

dξ α(iξ)
[
χ(iξ)− 1

2 χ2(iξ)
]

(2.166)

and hence equal to one half the homogeneous-case result. This is a consequence
of the fact that the two-plate term does not contribute in the nonretarded limit. The
behaviour of the potential for between the two extremes reads

U (z A) = C3 f (z A/λ)

z3
A

. (2.167)

The nonretarded coefficient C3 is given according to (2.164) and we find a normalised
potential f (z A/λ) = U (z A)/U (z A)|λ→∞ as given by the function

f (x) = 4

3

∞∫

0

ds s2e−2s 2s2+π2x2

s2+π2x2 . (2.168)

It is displayed in Fig. 2.7. Again, we see that the CP potential is reduced from its
homogeneous-case value as the distance increases in comparison to the oscillation
period. In contrast to the retarded case, the normalised potential is reduced to exactly
one half in the limit of small-scale oscillations; this is due to the absence of a two-plate
contribution in the nonretarded limit.

References

1. W.C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, New York, 1995)
2. S.Y. Buhmann, D.G. Welsch, Prog. Quantum Electron. 31(2), 51 (2007)
3. S.Y. Buhmann, D.G. Welsch, Appl. Phys. B 82(2), 189 (2006)
4. R. Golestantian, Phys. Rev. A 80(1), 012519 (2009)
5. H.Y. Kim, J. Sofo, D. Velegol, M.W. Cole, A.A. Lucas, Langmuir 23(4), 1735 (2007)



Chapter 3
Common Properties of Dispersion Forces

Having established the general theory of dispersion forces, applied them to simple
examples (see Vol. I) and developed strategies for treating more complex geometries,
we will now discuss common properties of all ground-state dispersion forces. We
begin by summarising the asymptotic retarded and nonretarded power laws found for
dispersion forces between objects of simple shapes. These power laws are revealed
to be special cases of universal scaling laws. Finally, we show that the three types
of dispersion forces are closely related where forces involving bodies have their
microscopic origin in many-atom forces on the atoms contained therein.

3.1 Asymptotic Power Laws

Casimir forces, CP forces and vdW forces in specific scenarios can be calculated by
using the appropriate Green’s tensors. Green’s tensors are known for highly sym-
metric geometries, so that the respective dispersion forces can be found immedi-
ately, as demonstrated in Vol. I. For more involved scenarios, approximative methods
based on the Born series can be used. In this way, forces involving objects of var-
ious shapes have been studied. In all of these examples, it has been found that the
distance-dependence of the forces reduces to simple power laws in the retarded and
nonretarded limits, i.e., when the object separation is much larger or smaller than the
relevant atomic and medium wavelengths.

The asymptotic power laws are summarised in Table 3.1 [1–3], where we list the
retarded and nonretarded forces between two atoms [cf. (5.101), (5.104), (5.109),
(5.110) and (5.128)–(5.130) in Sect. 5.4 of Vol. I]; an atom and a small sphere
[(4.236), (4.237), (4.239) and (4.240) in Sect. 4.7.2 of Vol. I]; an atom and a thin
ring [(2.99), (2.100), (2.102), (2.103) and (2.105)–(2.108) in Sect. 2.2.3 of this vol-
ume]; an atom an a thin plate [(4.166), (4.168), (4.182) and (4.184) in Sect. 4.6.3 of
Vol. I]; an atom and a half space [(4.133), (4.137), (4.156) and (4.158) in Sect. 4.6.2
of Vol. I]; and two half spaces [(3.86), (3.94), (3.99), (3.100), (3.105) and (3.112)
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Table 3.1 Asymptotic power laws for the forces between (i) two atoms, (ii) an atom and a small
sphere, (iii) an atom and a thin ring, (iv) an atom an a thin plate, (v) an atom and a half space and
(vi) the force per unit area between two half spaces

Distance→ Retarded Nonretarded
Object combination→ e↔ e e↔ m e↔ e e↔ m
Dual object combination→ m ↔ m m ↔ e m ↔ m m ↔ e

rAB
(i)

− 1

r8
AB

+ 1

r8
AB

− 1

r7
AB

+ 1

r5
AB

rA
(ii)

− 1

r8
A

+ 1

r8
A

− 1

r7
A

+ 1

r5
A

A(iii)
− 1

ρ8
A

+ 1

ρ8
A

− 1

ρ7
A

+ 1

ρ5
A

zA
(iv)

− 1

z6
A

+ 1

z6
A

− 1

z5
A

+ 1

z3
A

zA
(v)

− 1

z5
A

+ 1

z5
A

− 1

z4
A

+ 1

z2
A

z
(vi)

− 1

z4 + 1

z4 − 1

z3 +1

z

In the table heading, e stands for an electric object and m for a magnetic one. The signs − and +
denote attractive and repulsive forces, respectively

in Sect. 3.3.2 of Vol. I]. In order to be able to compare with the Casimir force, the
CP and vdW interactions have also been represented via the forces rather than the
potentials.

In the table, we have distinguished between purely electric objects and purely
(para)magnetic ones, such that for each pair of interacting objects, four possible
combinations e ↔ e, e ↔ m, m ↔ e, and m ↔ m need to be considered. As
discussed in Sect. 1.3, dispersion forces on objects in free space are invariant under a
duality transformation α↔ β/c2, ε↔ μ [4, 5]. As a consequence, the combination
m ↔ m gives rise to the same signs and asymptotic power laws as the combination
e ↔ e; a similar statement holds for the combinations e ↔ m and m ↔ e. In fact,
we have extensively made use of duality invariance throughout Vol. I. In this way,
we have derived dispersion forces for the combinations m ↔ e and m ↔ m from
the results for e↔ e and e↔ m, without the need to calculate them explicitly.

For all of the examples studied in the table, dispersion forces between two purely
electric or magnetic objects are attractive while those between mixed combinations
of electric and magnetic objects are repulsive. For some of the examples, we have
made this difference plausible by physical arguments. For two half-spaces (vi), we
recall the discussion from Sect. 3.3.1 of Vol. I [6]: According to (3.68) in Vol. I,

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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the Casimir force is attractive if the signs of the reflection coefficients rσ , r ′σ of the
two half spaces agree; it is repulsive if the signs are opposite. For two perfectly
conducting plates (e ↔ e), the reflection coefficients follow from the requirement
that the tangential component of the electric field must vanish on the plate surfaces. A
geometric construction (Fig. 3.6 in Vol. I) reveals that rs = r ′s = −1 for s-polarised
waves and rp = r ′p = +1 for p-polarisation. For both polarisations, the reflection
coefficients of the two plates have the same sign, leading to an attractive force. For
the mixed case (e ↔ m) of a perfectly conducting plate (rs = −1, rp = +1)
interacting with an infinitely permeable one, we note that the tangential components
of the magnetic field vanish on the surface of the latter (hence r ′s = +1, r ′p = −1).
The reflection coefficients of the two plates have opposite signs and hence the force
is repulsive.

The signs of the CP force on an atom in front of a half space (v) becomes plausible
from the results of Sect. 4.6.1 of Vol. I: As shown, the CP potential of an electric
(e) or paramagnetic (m) atom in front of a perfectly conducting plate (e) can be
derived from the interaction of the atomic electric or magnetic dipole moments with
their images in the plane [7]. For an electric atom, the dipole behaves like a vector
under reflection and the dipole–image interaction (e ↔ e) turns out to be attractive
when averaging over all dipole orientations. For a magnetic atom, the dipole is a
pseudo-vector, so the respective interaction (e ↔ m) has the opposite, repulsive
sign.

As explained in Sect. 5.4 of Vol. I, the signs of the nonretarded vdW force between
two atoms (i) can also be understood from the interaction of two dipoles [8]: For the
pure e ↔ e case, the electric dipole of an atom gives rise to an electric field which
induces an electric dipole moment of a second atom, giving rise to a force. Averaging
over all orientations of original and induced dipoles, attractive configurations domi-
nate, leading to an attractive total force. The mixed e↔ m interaction follows from
the magnetic field created by the electric dipole of the first atom, which then gives
rise to a magnetic dipole of the second atom. Magnetic field and induced magnetic
moment are proportional to the time derivative of the electric dipole moment, and
this additional phase leads to a repulsive total force after rotational averaging. Recall
from the examples studied in Sect. 5.5 of Vol. I that the presence of magnetoelectric
bodies may modify the strength of the vdW interaction, but it does not change its
sign.

Let us next discuss the power laws as listed in Table 3.1. We observe that in
the retarded limit, the attractive dispersion forces between two purely electric or
magnetic objects (e↔ e, m ↔ m) follow the same power law as the repulsive ones
between mixed combinations (e↔ m, m ↔ e). In the nonretarded limit, the forces
between mixed object combinations are weaker than those in the purely electric or
magnetic cases by two powers in the object separation. For the vdW force between
two atoms (i), this can again be understood from the dipole–dipole interaction: While
the electric and magnetic far fields created by an oscillating electric dipole (e) display
the same distance dependence, the electric near field (which interacts with a second
electric atom e) is stronger than the magnetic near field (which interacts with a
magnetic atom m) by one power in the object separation. The vdW force being
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quadratic in the dipole–dipole interaction, this implies the observed difference of
two powers between the different nonretarded forces. The differences between the
retarded and nonretarded power laws governing the vdW interaction of two electric
atoms may be understood by requiring the retarded interaction to be proportional to
the speed of light c: Multiplying the nonretarded 1/r7

AB force by the dimensionless
factor c/(rABωk), we obtain the more rapidly decreasing 1/r8

AB dependence of the
retarded limit.

As a note of caution, recall from the examples studied in Sects. 3.3 and 4.6 of
Vol. I that the perfect reflector limits lead to the correct signs, but may fail to reproduce
the corresponding power laws for dispersion forces of objects with realistic magne-
toelectric properties: The Casimir force between two perfectly reflecting plates is
predicted to be proportional 1/z4 in all cases, in contrast to the different power laws
for magnetoelectric half spaces as listed in row (vi) of Table 3.1. Similarly, the non-
retarded CP force between a perfectly reflecting plate and an atom is found to be
always proportional to 1/z4

A, in contrast to the two different nonretarded asymptotes
given in row (v) of the table. These differences are due to the unrealistic assumption
of frequency-independent reflectivities inherent in the perfect-reflector limit.

When comparing the different rows of Table 3.1, we note that each of them dis-
plays exactly the same sequence of signs and power laws. In the retarded limit,
pure and mixed object combinations lead to attractive and repulsive forces with
the same power law (first and second columns). The asymptotic behaviour changes
by one inverse power when going to the attractive nonretarded force between
two purely electric or magnetic objects (third column). It is reduced by two fur-
ther inverse powers when considering the repulsive nonretarded interaction for the
mixed case (fourth column).

These similarities between the different rows can be easily understood from the
common microscopic origin of all three types of dispersion forces. As shown in detail
in Sect. 3.3.1 below, dispersion forces involving bodies that consist of a dilute gas of
atoms are entirely due to the vdW forces on the gas atoms. In other words, CP forces
between an atom and a gas body are pairwise sums over the vdW forces between the
atom and the gas atoms [9, 10]. A summation of the vdW forces (i) between a single
atom and the atoms inside the compact volumes of a small sphere (ii) or a thin ring
(iii) does not change the respective power law, which is why the asymptotes given
in rows (i)–(iii) agree. Summation over a non-compact volume lowers the leading
inverse power according to the number of non-compact dimensions. So, the leading
inverse powers are lowered by two and three for the interaction of an atom with a thin
plate of infinite lateral extension (iv) and a half space (v), respectively. Similarly, the
Casimir force between two bodies in the dilute-gas limit is simply the sum over the CP
forces on the atoms of one body due to the second one. The power laws for the force
between two half spaces (vi) can thus be obtained from the force between an atom
and an half space (v) by summing over three non-compact dimensions. Summation
in the direction perpendicular to the plate surface lowers the leading inverse powers
by one, while the trivial sums along the plate surface yield an infinite force, i.e., a
finite force per unit area.
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Fig. 3.1 (i) Original and (ii) scaled configurations of bodies and atoms (a= 1.4)

As discussed in Sect. 3.3.2, the simple additive approach breaks down for bodies
containing a denser arrangement of atoms. In this case, many-atom vdW forces need
to be taken into account, making the relation to the macroscopic CP and Casimir
forces more complex [9, 10]. However, the table shows that many-atom interactions
do not change the leading power laws compared to those found from the pairwise
summation approach. They only modify the proportionality factors (which are not
listed in the table).

Before we study the microscopic origin of dispersion forces in more detail, let
us address the following question: Are the observed simple asymptotic power laws
just a consequence of the very simple object shapes considered, or can we expect
them to hold even for more complex geometries? The answer to this question can be
given by studying the behaviour of dispersion interactions under a general scaling
transformation.

3.2 Universal Scaling Laws

A general scaling transformation can be introduced as follows: We start from an
arbitrary arrangement of bodies characterised by their permittivity ε(r,ω) and per-
meability μ(r,ω) in the possible presence of one or two atoms at positions rA and
r B ; an example is shown in Fig. 3.1(i). The corresponding scaled arrangement with
a scaling factor a > 0 is described by the new permittivity and permeability

ε̃(r̃,ω) = ε(r,ω) , μ̃(r̃,ω) = μ(r,ω) (3.1)

with r̃ = ar , i.e.,
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ε̃(r,ω) = ε(r/a,ω) , μ̃(r,ω) = μ(r/a,ω) . (3.2)

The atomic positions are scaled accordingly: r̃A= arA, r̃ B = ar B , see Fig. 3.1(ii).
In other words, in the scaled arrangement, all sizes and distances are globally
increased (a > 1) or reduced (a < 1) by the scaling factor a.

We now want to investigate how this global scaling transformation affects disper-
sion interactions, e.g., we want to see whether the respective potentials and forces
in the scaled arrangement can be related to the original one via some power of a.
As discussed in the previous section, dispersion forces are governed by different
asymptotic power laws in the retarded versus nonretarded limits. To find generally
valid scaling laws, we thus need to distinguish these two asymptotic regimes.

3.2.1 Retarded Dispersion Forces

As seen for the various examples studied, retarded dispersion interactions depend
on the static properties of atoms and bodies (cf. Chap. 2 or the detailed discussion
in Sect. 3.3.2 of Vol. I). With these simplifications α(iξ) � α(0) ≡ α, ε(r, iξ) �
ε(r, 0) ≡ ε(r) and μ(r, iξ) � μ(r, 0) ≡ μ(r), the CP and vdW potentials (1.128)
and (1.153) of purely electric atoms are given by

Ue(rA) = �μ0α

2π

∞∫

0

dξ ξ2 tr G(1)(rA, rA, iξ) (3.3)

Uee(rA, r B) = −�μ2
0αAαB

2π

∞∫

0

dξ ξ4tr
[
G(rA, r B, iξ)·G(r B, rA, iξ)

]
(3.4)

with the Green’s tensor (1.14) for the retarded limit being determined by the simplified
differential equation

[
∇× 1

μ(r)
∇× − ω

2

c2 ε(r)
]
G(r, r ′,ω) = δ(r − r ′) . (3.5)

Similarly, the Casimir force (1.117) can be given in terms of this retarded-limit
Green’s tensor as

F =
∫

∂V

dA·T (3.6)

with a Casimir stress (i.e., directed force per unit area)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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T (r) = −�

π

∞∫

0

dξ

{
ξ2

c2 G(1)(r, r, iξ)+∇×G(1)(r, r ′, iξ)×←−∇ ′|r ′=r

− 1
2 tr

[
ξ2

c2 G(1)(r, r, iξ)+∇×G(1)(r, r ′, iξ)×←−∇ ′|r ′=r

]
I
}

. (3.7)

To investigate the scaling behaviour of these retarded interactions, we hence need
to determine how the scaling transformation affects the Green’s tensor. The retarded-
limit Green’s tensor for the scaled arrangement of bodies is the solution to the dif-
ferential equation

[
∇̃× 1

μ̃(r̃)
∇̃× − ω

2

c2 ε̃(r̃)
]
G̃(r̃, r̃ ′,ω) = δ(r̃ − r̃ ′) . (3.8)

Using r̃ = ar , r̃ ′ = ar ′, ∇̃=∇/a and δ(ar)= δ(r)/a3, replacing ω 	→ ω̃=ω/a and
invoking the scaling relation (3.1), we can rewrite this equation as

[
∇× 1

μ(r)
∇×− ω

2

c2 ε(r)
]

aG̃(ar, ar ′,ω/a) = δ(r − r ′) . (3.9)

Comparison with (3.5) reveals the scaling

G̃(r̃, r̃ ′, ω̃) = 1

a
G(r, r ′,ω) (3.10)

of the Green’s tensor appropriate for the retarded limit. Note that a frequency argu-
ment scaling ω̃=ω/a also occurs which is opposite to the scaling of the posi-
tion arguments, r̃ = ar , r̃ ′ = ar ′. This can be intuitively understood from the fact
that the retarded-limit Green’s tensor involves the propagation of waves. Here,
|r − r ′|ω= |r̃ − r̃ ′|ω̃= 2πc describes the propagation of a wave front and its scaled
version in vacuum.

The scaling properties of the dispersion interactions follow immediately by using
this relation. Substitution into the CP potential (3.3) yields (ξ̃= ξ/a)

Ũe(r̃A) = �μ0α

2π

∞∫

0

dξ̃ ξ̃2 tr G̃(1)(r̃A, r̃A, iξ̃)

= �μ0α

2π

∞∫

0

dξ̃ ξ̃2 1

a
tr G(1)(rA, rA, iξ)

= 1

a4

�μ0α

2π

∞∫

0

dξ ξ2tr G(1)(rA, rA, iξ) . (3.11)
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Comparing with the unscaled potential (3.3), we find the scaling law [11]

Ũe(r̃A) = 1

a4 Ue(rA) (3.12)

for the CP potential. The CP force (1.119) thus scales as (∇̃A=∇A/a)

F̃(r̃A) = −∇̃AŨ (r̃A) = − 1

a4 ∇̃AU (rA) = 1

a5
F(rA) . (3.13)

Similarly, using the Green’s tensor scaling (3.10) in (3.4), we find

Ũee(r̃A, r̃ B) = −�μ2
0αAαB

2π

∞∫

0

dξ̃ ξ̃4 1

a2 tr
[
G(rA, r B, iξ)·G(r B, rA, iξ)

]

= − 1

a7

�μ2
0αAαB

2π

∞∫

0

dξ ξ4tr
[
G(rA, r B, iξ)·G(r B, rA, iξ)

]
(3.14)

so that the vdW potential obeys the scaling law [11]

Ũee(r̃A, r̃ B) = 1

a7 Uee(rA, r B) . (3.15)

This implies a scaling

F̃(r̃A, r̃ B) = − 1

a7 ∇̃AU (rA, r B) = 1

a8 F(rA, r B) . (3.16)

of the vdW force. Finally, for the Casimir stress we find (∇̃=∇/a)

T̃ (r̃) = −�

π

∞∫

0

dξ̃

{
ξ̃2

c2

1

a
G(1)(r, r, iξ)+ 1

a
∇̃×G(1)(r, r ′, iξ)×

←−̃
∇ ′|r ′=r

− 1
2 tr

[
ξ̃2

c2

1

a
G(1)(r, r, iξ)+ 1

a
∇̃×G(1)(r, r ′, iξ)×

←−̃
∇ ′|r ′=r

]
I
}

= − 1

a4

�

π

∞∫

0

dξ

{
ξ2

c2 G(1)(r̃, r, iξ)+∇×G(1)(r, r ′, iξ)×←−∇ ′|r ′=r

− 1
2 tr

[
ξ2

c2 G(1)(r, r, iξ)+∇×G(1)(r, r ′, iξ)×←−∇ ′|r ′=r

]
I
}

, (3.17)

so that [11]

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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T̃ (r̃) = 1

a4 T (r) . (3.18)

The Casimir force (3.6) hence scales as (d Ã= a2dA)

F̃ =
∫

∂Ṽ

d Ã·T̃ (r̃) = 1

a2

∫

∂V

dA·T (r) = 1

a2 F . (3.19)

These results can be generalised to electromagnetic atoms. In the retarded limit,
the respective atomic potentials (1.177) and (1.178) take the forms

Uλ(rA) = �αλ

2πε0

∞∫

0

dξ tr G(1)
λλ(rA, rA, iξ) , (3.20)

Uλλ′(rA, r B) = −�αA
λ α

B
λ′

2πε2
0

∞∫

0

dξ tr
[
Gλλ′(rA, r B, iξ)·Gλ′λ(r B, rA, iξ)

]
(3.21)

(λ,λ′ = e, m). With the tensors Gλλ′ being defined by (1.172)–(1.175), their scaling
behaviour follows from (3.10) together with ∇̃=∇/a and ω̃=ω/a:

G̃λλ′(r̃, r̃ ′, ω̃) = 1

a3 Gλλ′(r, r ′,ω) . (3.22)

Following similar steps as above, substitution into (3.20) and (3.21) above immedi-
ately implies the required scaling laws for CP and vdW potentials of electric as well
as magnetic atoms,

Ũλ(r̃A) = 1

a4 Uλ(rA) , (3.23)

Ũλλ′(r̃A, r̃ B) = 1

a7 Uλλ′(rA, r B) . (3.24)

the scaling laws (3.13) and (3.16) above for the associated dispersion forces hence
remain valid for electromagnetic atoms as well.

3.2.2 Nonretarded Dispersion Forces

As we have just seen, retarded-limit dispersion interactions are given by scaling
laws which do not depend on whether the bodies or atoms involved are electric or
magnetic. This in agreement with the examples listed in the first two columns of

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Table 3.1. As seen from the last two columns of the table, nonretarded interactions
follow different power laws, depending on whether the atoms or bodies are electric
or magnetic. A unique scaling law valid for all cases can hence not be expected and
we have to distinguish between electric and magnetic objects.

For nonretarded distances, the CP and vdW potentials (1.128) and (1.153) for
purely electric atoms as well as the Casimir stress (3.7) depend on the simplified
nonretarded Green’s tensor. To determine the scaling behaviour of the latter, we
represent it as the unique solution to the Dyson equation (2.4). For purely electric
bodies, it can be given as

G(r, r ′,ω)

= G(0)(r, r ′,ω)+ ω2

c2

∫
d3s [ε(s,ω)− 1]G(0)(r, s,ω)·G(s, r ′,ω) (3.25)

where

G(0)(r, r ′,ω) = − c2

3ω2 δ(ρ)− c2

4πω2ρ3 [I − 3eρeρ] (3.26)

is the nonretarded free-space Green’s tensor (A.25) from App. A.2. Recalling that
δ(ar)= δ(r)/a3, we immediately find that the latter scales as

G̃(0)(r̃, r̃ ′,ω) = − c2

3ω2 δ(aρ)− c2

4πω2(aρ)3 [I − 3eρeρ] = 1

a3 G(0)(r, r ′,ω) .

(3.27)
Using this property and invoking the scaling transformation (3.1), the Dyson equation
for the total scaled Green’s tensor can be written as (s̃= as)

G̃(r̃, r̃ ′,ω)

= G̃(0)(r̃, r̃ ′,ω)+ ω2

c2

∫
d3s̃ [ε̃(s̃,ω)− 1]G̃(0)(r̃, s̃,ω)·G(s̃, r̃ ′,ω)

= 1

a3 G(0)(r, r ′,ω)+ ω2

c2

∫
d3s [ε(s,ω)− 1]G(0)(r, s,ω)·G(s̃, r̃ ′,ω) . (3.28)

Multiplying this equation with a3 and comparing with the original Dyson equation
(3.25), we deduce the scaling law

G̃(r̃, r̃ ′,ω) = 1

a3 G(r, r ′,ω) (3.29)

for the nonretarded Green’s tensor in the presence of electric bodies. Note that in
contrast to the retarded case, the frequency dependence of the Green’s tensor remains
unscaled.

With this scaling of the Green’s tensor, (1.128) leads to

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Ũ (r̃A) = �μ0

2π

∞∫

0

dξ ξ2α(iξ) tr G̃(1)(r̃A, r̃A, iξ)

= �μ0

2π

∞∫

0

dξ ξ2α(iξ)
1

a3 tr G(1)(rA, rA, iξ) . (3.30)

The nonretarded CP potential of an electric atom in the presence of electric bodies
hence obeys the scaling law [11]

Ũ (r̃A) = 1

a3 U (rA) (3.31)

and the respective CP force scales as

F̃(r̃A) = 1

a4 F(rA) . (3.32)

Similarly, combining the Green’s-tensor scaling with (1.153), the vdW potential and
force are found to behave as [11]

Ũ (r̃A, r̃ B) = 1

a6 U (rA, r B) (3.33)

and

F̃(r̃A, r̃ B) = 1

a7 F(rA, r B) (3.34)

under a scaling transformation.
To treat the Casimir stress, we also require the scaling of ∇×G(1)×←−∇ ′. Taking

the left and right curls of (3.25) and decomposing the Green’s tensor into its bulk and
scattering parts according to (1.111), we can represent ∇×G(1)×←−∇ ′ as the solution
to the Dyson equation

∇×G(1)(r, r ′,ω)×←−∇ ′ = ω
2

c2

∫
d3s [ε(s,ω)− 1]∇×G(0)(r, s,ω)

·
[
G(0)(s, r ′,ω)×←−∇ ′ +G(1)(s, r ′,ω)×←−∇ ′

]
(3.35)

where G(1)×←−∇ ′ in turn is the solution to

G(1)(r, r ′,ω)×←−∇ ′ = ω2

c2

∫
d3s [ε(s,ω)− 1]G(0)(r, s,ω)

·
[
G(0)(s, r ′,ω)×←−∇ ′ +G(1)(s, r ′,ω)×←−∇ ′

]
. (3.36)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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In the nonretarded limit, the left and right curls (2.78) and (2.79) of the free-space
Green’s tensor reduce to

∇×G(0)(r, r ′,ω) = − eρ×I
4πρ2 , G(0)(r, r ′,ω)×←−∇ ′ = I×eρ

4πρ2 ; (3.37)

they obviously scale as

∇̃×G̃(0)(r̃, r̃ ′,ω) = 1

a2 ∇×G(0)(r, r ′,ω) , (3.38)

G̃(0)(r̃, r̃ ′,ω)×
←−̃
∇ ′ = 1

a2 G(0)(r, r ′,ω)×←−∇ ′ . (3.39)

Using these results together with (3.27) and the transformation (3.1), the scaled
version of (3.36) reads

G̃(1)(r̃, r̃ ′,ω)×
←−̃
∇ ′ = ω2

c2

∫
d3s̃ [ε̃(s̃,ω)− 1]G̃(0)(r̃, s̃,ω)

·
[
G̃(0)(s̃, r̃ ′,ω)×

←−̃
∇ ′ + G̃(1)(s̃, r̃ ′,ω)×

←−̃
∇ ′

]

= ω2

c2

∫
d3s [ε(s,ω)− 1]G(0)(r, s,ω)

·
[

1

a2 G(0)(s, r ′,ω)×←−∇ ′ + G̃
(1)

(s̃, r̃ ′,ω)×
←−̃
∇ ′

]
, (3.40)

implying

G̃(1)(r̃, r̃ ′,ω)×
←−̃
∇ ′ = 1

a2 G(1)(r, r ′,ω)×←−∇ ′ . (3.41)

Substituting this together with (3.38) and (3.39) back into the Dyson equation (3.35),

∇̃×G̃(1)(r̃, r̃ ′,ω)×
←−̃
∇ ′

= ω2

c2

∫
d3s̃ [ε̃(s̃,ω)− 1]∇̃×G̃(0)(r̃, s̃,ω)·G̃(s̃, r̃ ′,ω)×

←−̃
∇ ′

= 1

a

ω2

c2

∫
d3s [ε(s,ω)− 1]∇×G(0)(r, s,ω)·G(s, r ′,ω)×←−∇ ′ , (3.42)

we find the required scaling

∇̃×G̃(1)(r̃, r̃ ′,ω)×
←−̃
∇ ′ = 1

a
∇×G(1)(r, r ′,ω)×←−∇ ′ . (3.43)

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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The Casimir stress (3.7) contains both G(1) and ∇×G(1)×←−∇ ′. The former with its
1/a3 scaling (3.29) is seen to dominate over the latter with its 1/a behaviour and we
find [11]

T̃ (r̃) = 1

a3 T (r) (3.44)

for the Casimir stress. Consequently, the Casimir force (3.6) hence scales as

F̃ = 1

a
F . (3.45)

The case of purely magnetic bodies can be treated by means of a duality transfor-
mation ε→ μ. Combining the transformation (A.31) with the known scaling (3.43),
we find

G̃(1)(r̃, r̃ ′,ω) = 1

a
G(1)(r, r ′,ω) (3.46)

Similarly, the transformation (A.32) together with (3.29) implies

∇̃×G̃(r̃, r̃ ′,ω)×
←−̃
∇ ′ = 1

a3 ∇×G(r, r ′,ω)×←−∇ ′ . (3.47)

With these laws, the CP potential (1.128) of electric atoms scales as [11]

Ũ (r̃A) = 1

a
U (rA) (3.48)

for purely magnetic bodies in the nonretarded limit; and the respective force behaves
as

F̃(r̃A) = 1

a2 F(rA) . (3.49)

The vdW potential (1.153) contains contributions from the bulk and scattering
Green’s tensors with different scalings (3.27) and (3.46). Recalling (1.154), we sep-
arate the potential into a free-space part U (0) and a body-induced part U (1). The
free-space interaction contains only G(0) and hence scales as (3.33) and (3.34). The
body-induced potential and force are dominated by mixed terms G(0)G(1) which
scale as [11]

Ũ (1)(r̃A, r̃ B) = 1

a4 U (1)(rA, r B) (3.50)

and

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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F̃(1)(r̃A, r̃ B) = 1

a5
F(1)(rA, r B) , (3.51)

respectively. Finally, the Casimir stress (3.7) and force are dominated by the 1/a3

scaling of ∇×G(0)×←−∇ ′ in the nonretarded limit. Their scaling behaviour is hence
given by (3.44) and (3.45) also for magnetic bodies [11].

Again, our investigations can be extended to the case of magnetoelectric atoms
whose potentials (1.177) and (1.178) are given in terms of the tensors Gλλ′ as given
by (1.172)–(1.175). Recalling (3.27) and its duality transform (A.14) as well as (3.38)
and (3.39), the free-space parts of these tensors scale as

G̃(0)

λλ′(r̃, r̃ ′, ω̃) =

⎧⎪⎪⎨
⎪⎪⎩

1

a3 G(0)

λλ′(r, r ′,ω) for λ = λ′ ,
1

a2 G(0)

λλ′(r, r ′,ω) for λ 
= λ′
(3.52)

in the nonretarded limit. Recalling the Dyson equation (2.34), the scattering parts
are defined by

G(1)

λλ′(r, r ′,ω) = −
∑

λ′′=e,m

∫
d3s χλ′′(s,ω)G(0)

λλ′′(r, s,ω)

·[G(0)

λ′′λ′(s, r ′,ω)+G(1)

λ′′λ′(s, r ′,ω)
]

(3.53)

withχe = ε−1,χm = 1−1/μ. We again distinguish between purely electric (λ′′ = e)
and purely magnetic bodies (λ′′ =m) and follow the same steps as described below
(3.35). For purely electric bodies, (3.52) and (3.53) lead to

G̃(1)
λλ(r̃, r̃ ′, ω̃) =

⎧⎪⎪⎨
⎪⎪⎩

1

a3 G(1)
λλ(r, r ′,ω) for λ = e ,

1

a
G(1)
λλ(r, r ′,ω) for λ = m ,

(3.54)

while for purely magnetic ones we obtain

G̃(1)
λλ(r̃, r̃ ′, ω̃) =

⎧⎪⎪⎨
⎪⎪⎩

1

a
G(1)
λλ(r, r ′,ω) for λ = e ,

1

a3 G(1)
λλ(r, r ′,ω) for λ = m .

(3.55)

The mixed tensors are found to scale as

G̃(1)

λλ′(r̃, r̃ ′, ω̃) = 1

a2 G(1)

λλ′(r, r ′,ω) (λ 
= λ′) (3.56)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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regardless of whether the bodies are electric or magnetic.
The scaling laws for nonretarded dispersion potentials (1.177) and (1.178) of

electromagnetic atoms follow immediately. We have

Ũe(r̃A) = 1

a3 Ue(rA) , Ũm(r̃A) = 1

a
Um(rA) , (3.57)

Ũee(r̃A, r̃ B) = 1

a6 Uee(rA, r B) , (3.58)

Ũ (0)
mm(r̃A, r̃ B) = 1

a6 U (0)
mm(rA, r B) , (3.59)

Ũ (1)
mm(r̃A, r̃ B) = 1

a4 U (1)
mm(rA, r B) , (3.60)

Ũλλ′(r̃A, r̃ B) = 1

a4 Uλλ′(rA, r B) (λ 
= λ′) (3.61)

for electric bodies and

Ũe(r̃A) = 1

a
Ue(rA) , Ũm(r̃A) = 1

a3 Um(rA) , (3.62)

Ũ (0)
ee (r̃A, r̃ B) = 1

a6 U (0)
ee (rA, r B) , (3.63)

Ũ (1)
ee (r̃A, r̃ B) = 1

a4 U (1)
ee (rA, r B) , (3.64)

Ũmm(r̃A, r̃ B) = 1

a6 Umm(rA, r B) , (3.65)

Ũλλ′(r̃A, r̃ B) = 1

a4 Uλλ′(rA, r B) (λ 
= λ′) (3.66)

for magnetic bodies.

3.2.3 Applications

In the previous two sections, we have derived general scaling laws for dispersion
forces and potentials. They are summarised in Table 3.2. It is worth recalling that
these laws owe their existence to entirely different reasons in the retarded versus
nonretarded regimes.

In the retarded regime, the Green’s tensor describes electromagnetic waves, so a
scaling of distances is always accompanied by a frequency scaling. This frequency
scaling will prohibit simple scaling laws for quantities depending on the Green’s
tensor at specific frequencies, such as CP potentials of excited atoms (Chap. 4) or
rates of spontaneous decay (Chap. 5). Dispersion interactions, on the contrary, are

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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Table 3.2 Scaling laws for the CP potentials (i, ii), free-space (iii, iv) and body-induced vdW
potentials (iv–vi) of electric and magnetic atoms, Casimir pressure (vii) and Casimir force (viii)

Distance→ Retarded Nonretarded
Bodies→ Magnetoelectric Electric Magnetic

(i) Ue(rA)
1

a4

1

a3

1

a

(ii) Um(rA)
1

a4

1

a

1

a3

(iii) U (0)
ee (rA, r B) , U (0)

mm(rA, r B)
1

a7

1

a6

1

a6

(iv) Uem(rA, r B) , Ume(rA, r B)
1

a7

1

a4

1

a4

(v) U (1)
ee (rA, r B)

1

a7

1

a6

1

a4

(vi) U (1)
mm(rA, r B)

1

a7

1

a4

1

a6

(vii) T (r)
1

a4

1

a3

1

a3

(viii) F
1

a2

1

a

1

a

an integral effect and depend on the Green’s tensor at all frequencies. In the retarded
regime, only the static, zero-frequency properties of the atomic polarisabilities and
magnetisabilities, body permittivities and permeabilities are relevant. The frequency
scaling in the Green’s tensor can then be accounted for by a simple redefinition of
the integration frequency. A consequence of the intertwined position and frequency
scalings is the fact that dispersion interactions are subject to the same scaling for
electric or magnetic atoms or bodies.

The nonretarded Green’s tensor, on the contrary, describes the near-field behav-
iour of the electromagnetic field. In this limit, positions and frequencies decouple
and a scaling law can be formulated for the position-dependence of the Green’s ten-
sor alone. Scaling laws for dispersion interactions follow without recourse to their
integral nature. However, since electric and magnetic fields exhibit different power
laws in the near-field limit, we have to distinguish electric versus magnetic atoms
and bodies, which lead to different scaling laws.

Scaling laws indicate the absence of a characteristic length scale of the system
under investigation. For dispersion interactions, there are in fact two such length
scales: the typical interatomic distances or lattice constants of the atoms contained
in the bodies and the wavelengths of atomic and body response functions. As a
consequence, the derived scaling laws are not universally valid, but only within
certain ranges. The retarded scaling laws are only valid as long as all distances are
well above the atomic and medium wave lengths, while the nonretarded laws are
restricted to distances well between the lattice constants and the atomic and medium
wave lengths.

Let us give some examples on how to apply the general scaling laws to con-
crete geometries, making contact to the examples listed in Table 3.1 at the beginning
of this chapter. The simplest geometries are those where the dispersion interaction
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z

Fig. 3.2 Casimir force between a conical tip at distance z from a plane surface

in question depends on a single length parameter. In such cases, the scaling laws
directly determine the full dependence of the interaction on that parameter. In this
way, the power laws for the force between two atoms listed in row (i) of Table 3.1
are equivalent to the scaling laws of free-space vdW potentials (iii, iv) given in
Table 3.2. The CP force (v) between an atom and a half space given in Table 3.1
is another example of such a simple geometry; the listed power laws follow
immediately from the general scaling laws (i, ii) for CP potentials (Table 3.2).
Finally, the Casimir forces (vi) between two electric or two magnetic half spaces
(Table 3.1) are a consequence of the general scaling laws (vii) for the Casimir pressure
(Table 3.2). Note that the power laws for Casimir forces between electric and mag-
netic half spaces do not follow in such a simple way, because we have not formulated
a scaling law in the simultaneous presence of electric and magnetic bodies.

An example of a single-parameter geometry that is particularly relevant to atomic
force microscopy [12] is the Casimir force between a sharp conical tip and a flat
surface. As seen from Fig. 3.2, such an arrangement is completely characterised by
the distance z between the surface and the tip. This is true when neglecting the finite
extent of the tip, i.e., as long as the tip length is much larger than the tip-surface
separation. Applying the scaling law (vii) for the Casimir force as given in Table 3.2,
we can conclude that the total force between the tip and the surface is proportional
to 1/z2 in the retarded limit and to 1/z in the physically more relevant nonretarded
distance regime. The respective proportionality constants do not follow from the
scaling laws. They depend on the surface and tip materials as well as the opening
angle of the tip and have been calculated numerically for a perfectly conducting tip
[13]. Note that the derived distance laws do not apply to spherical tips or conical tips
with a rounded edge. In such cases, the respective curvature radius defines a second
characteristic length parameter of the system, so that the scaling laws are insufficient
to determine the full distance-dependence of the force. Further examples of simple
single-parameter problems are, for instance, the CP potentials of single atoms at the
centres of planar, spherical or cylindrical cavities.
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For more complex geometries, the scaling laws do not determine the respective
forces completely, but they provide an important constraint. An important class of
geometries consists of arrangements which are completely characterised by two
length parameters, e.g., a distance and a size. In this case, the scaling laws imply that
dispersion potentials and forces can given by a power law in the distance multiplied
by a scaling function f (x) that only depends on the dimensionless ratio x between
distance and size. As an example, consider the retarded CP potential of an atom at
distance z A from dielectric plate of static permittivity ε ≡ ε(0) and thickness d. As
seen from (4.164) of Vol. I, it is given by [1, 2, 14]

U (z A) = �cα

8π2ε0z4
A

∞∫

1

dv

∞∫

0

dy y3e−2vy

×
{
(1− 2v2)

(ε2v2 − v2
1) tanh(v1 yd/z A)

2εvv1 + (ε2v2 + v2
1) tanh(v1 yd/z A)

+ (v2 − v2
1) tanh(v1 yd/z A)

2vv1 + (v2 + v2
1) tanh(v1 yd/z A)

}
, (3.67)

with v1 =
√
ε− 1+ v2 , cf. the steps leading to (4.132) in Vol. I. In the limit d � z A

of a thick plate, we have tanh(v1 yd/z A) � 1. The y-integral can then be performed
to give

U (z A) = −C4

z4
A

, (3.68)

C4 = 3�cα

64π2ε0

∞∫

1

dv

[(
2

v2 −
1

v4

)
εv − v1

εv + v1
− 1

v4

v − v1

v + v1

]
, (3.69)

in agreement with the result for a semi-infinite half space as given by (4.134) and
(4.134) in Vol. I. For an asymptotically thin plate d 
 z A, the approximation
tanh(v1 yd/z A) � v1 yd/z A leads to

U (z A) = −C5

z5
A

(3.70)

with

C5 = �cαd

160π2ε0

14ε2 − 5ε− 9

ε
, (3.71)

as already found in Vol. I, see (4.166) together with (4.167) therein.
In order to identify the scaling function, we introduce the dimensionless parameter

as x = d/z A. Combining (3.67)–(3.69), the CP potential for arbitrary values of z A

and d can given in the form [11]
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Fig. 3.3 Scaling functions for the retarded CP potential of a Si plate (solid line) and for the
nonretarded CP potential of a perfectly conducting sphere (dashed line)

U (z A) = −C4 f (d/z A)

z4
A

, (3.72)

in accordance wi th the scaling law (3.12). We haveintroduced the scaling function
as f (d/z A) = U (z A)/U (z A)|d→∞. Explicitly, it reads

f (x) =8

3

∞∫

1

dv

∞∫

0

dy y3e−2vy
[
(2v2 − 1)

(ε2v2 − v2
1) tanh(v1 yx)

2εvv1 + (ε2v2 + v2
1) tanh(v1 yx)

− (v2 − v2
1) tanh(v1 yx)

2vv1 + (v2 + v2
1) tanh(v1 yx)

]

×
{ ∞∫

1

dv

[(
2

v2 −
1

v4

)
εv − v1

εv + v1
− 1

v4

v − v1

v + v1

]}−1

. (3.73)

The scaling function contains all the relevant geometric information on the poten-
tial; it governs the transition between the thin and thick-plate limits given above.
Being determined by the plate permittivity alone, it is universally valid for any atom
interacting with plates of a given material.

As an example, we display the scaling function for Si plates (ε = 11.68) in
Fig. 3.3. For large arguments x = d/z A � 1 the scaling function tends to unity,
indicating that the power law (3.72) for the CP potential coincides with that of a semi-
infinite half space in the thick-plate limit. In the opposite extreme x = d/z A 
 1,
the scaling function becomes linear in x , so (3.72) implies a x/z4

A ∝ 1/z5
A potential,
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in agreement with the thin-plate asymptote (3.70). Between these two extremes,
the scaling function changes rather abruptly from the linear behaviour to a plateau.
Saturation sets in around x ≈ 0.5, showing that even moderately thick plates can be
modelled as a semi-infinity half space. Note that the specific profile of the scaling
function depends on the plate material. For plates with a larger permittivity, the
saturation sets in more rapidly, with the profile becoming rectangular in the limit of
metals with ε = ∞.

As a second example of a geometry characterisable by two length parameters,
consider the nonretarded CP potential of a ground-state atom at distance rA from the
centre of a perfectly conducting sphere of radius R. As shown by (4.215) in Vol. I,
it can be given as [15]

U (rA) = − 〈d̂
2〉

24πε0

[
4R3

(r2
A − R2)3

+ R

(r2
A − R2)2

− R

r4
A

]
. (3.74)

Introducing the dimensionless parameter x = R/z A with z A = rA − R, we can
rewrite this potential in the form [11]

U (z A) = −C3 f (R/z A)

z3
A

(3.75)

with

C3 = 〈d̂
2〉

48πε0
. (3.76)

The scaling function f (R/z A) = U (z A)/U (z A)|R→∞ for this geometry is given by

f (x) = 8x3

(2x2 + 1)3 +
2x

(2x2 + 1)2 −
x

(x + 1)4 . (3.77)

The scaling function for the nonretarded CP potential of an arbitrary atom next to a
perfectly conducting sphere is also shown in Fig. 3.3. For large arguments x � 1, it
approaches unity, indicating that the potential (3.76) reaches its half-space asymptote
as governed by a 1/z3

A power law. The scale function of the sphere potential is cubic
for small x , corresponding to a x3/z3

A ∝ 1/z6
A dependence. The transition between

the two asymptotes is much more gradual than for the case of the plate. This indicates
that proximity force approximations [16, 17], which model a curved surface by a
collection of flat sections, should be used with care.

A third example of a two-parameter geometry has already been studied in
Sect. 2.3.2, where we had calculated the CP potential of an atom in front of a weakly
dielectric half space whose permittivity exhibits periodic spatial oscillations. In the
retarded and nonretarded limits, the potential depends on two geometric parame-
ters only, namely the atom–surface distance z A and the period of the permittivity-
oscillations λ. As required by the scaling laws, the potential can then be given in

http://dx.doi.org/10.1007/978-3-642-32466-6_2
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the forms (2.161) and (2.167). The associated scaling functions are given by (2.162)
and (2.168) and are displayed in Fig. 2.7. Note that in contrast to the previous two
examples, we have here introduced the dimensionless quantity x = z A/λ as the ratio
of distance to size (of the oscillations). As a consequence, the scale functions tend
to unity for small rather than large x .

Scale functions are thus a universal tool to describe CP potentials in the retarded
and nonretarded limits for geometries which depend on two length parameters.
Returning to Table 3.1 with its asymptotic power laws, we note that they bridge
the gap between different rows of the table: They continuously describe the potential
of a plate of finite thickness, interpolating between the two extremes of an asymp-
totically thin plate as given in row (iv) of the table and the semi-infinite half space
shown in row (v). Similarly, the describe the transition between an asymptotically
small sphere (ii) on the one hand and a half space (v) on the other.

Even more complicated geometries can be described by scaling functions, which
for k characteristic length parameters will depend on k−1 dimensionless quantities.
As an example, consider the nonretarded vdW potential of two atoms A and B in
front of a perfectly conducting plate. The potential can be given in terms of three
distance parameters, e.g., the distances z A and zB of each atom from the plate surface
and the distance r between the atoms. As given by (5.184) of Vol. I, it reads [18, 19]

U (rA, r B) =
[

1∓ 64

23

3r6r2+ + r4(r2 + 5rr+ + r2+)x2

r3+(r + r+)5
+ r7

r7+

]
U (0)(rA, r B)

(3.78)

(x = √
r2 − (z A − zB)2 , interatomic distance in the direction parallel to the plate;

r+ =
√

x2 + (z A + zB)2 , distance between one atom and the image of the other one
behind the plate) where

U (0)(rA, r B) = −23�αAαB

64π3ε2
0r7

(3.79)

is the vdW potential of the two atoms in free space. One could find a scaling function
by introducing the dimensionless parameters z A/r and zB/r .

Instead, let us illustrate another important consequence of the scaling laws. They
imply that lines of constant potential are transformed into new equipotential lines
under the scaling transformation. In other words, equipotential lines will be stretched
or shrunk while retaining their shape. The actual value of the potential on such a line
will of course change according to the scaling law (3.15). This complication does
not occur when we consider the normalised potential U/U (0), i.e., the plate-induced
enhancement of the potential with respect to its free-space value. The usefulness of
the equipotential-line preserving property of scaling transformations is demonstrated
in Fig. 3.4. In Fig. 3.4(i), we display equipotential lines of atom A corresponding to
different plate-induced enhancements of the interatomic potential for a fixed position
of atom B. The plate is seen to enhance the interatomic interaction in two lobe-shaped

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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Fig. 3.4 Retarded vdW potential next to a perfectly conducting plate. Atom B is held at different
fixed positions (i, ii) (large dot). The contours denote positions of atom A with constant enhance-
ments of the potential U with respect to its free-space value U (0). The thick contour corresponds
to U/U (0) = 1, values are increasing towards the exterior of this contour in steps of 0.02

regions to the left and right of atom B. Equipotential lines for a different position of
atom B can be easily obtained by making use of the scaling law for the retarded vdW
potential: As shown in Fig. 3.4(ii), one may simply stretch or shrink all distances to
obtain the desired atom–surface separation for atom B. Our observations regarding
the plate-induced enhancement hence remain valid for all distances compatible with
the retarded limit.

3.3 Microscopic Origin

As seen in the previous section, simple asymptotic power laws for Casimir, CP and
vdW forces are a consequence of the individual scaling laws for these forces that
hold in the retarded and nonretarded limits. What we have not yet discussed in detail
is the relation between the three types of dispersion forces and the associated power
laws. As we will show in the following, both Casimir and CP forces have their
common origin in the microscopic vdW forces between individual atoms. We will
first establish this relation for bodies consisting of a dilute gas of atoms and then
show how many-atom interactions start to contribute for denser media.

3.3.1 Dilute-Gas Limit

Let us begin with the Casimir force acting on a dielectric body of volume V in the
presence of an arbitrary arrangement of other bodies. Assuming the body to consist
of a dilute gas of atoms, we will relate the Casimir force on the body as whole to
the CP forces on the individual gas atoms. With the gaseous body being situated in
a free-space region, the Casimir force can be given in the form
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F = − �

2π

∫

V

d3r

∞∫

0

dξ

(
ξ2

c2 χ(r, iξ)∇tr G(1)(r, r, iξ)

− ∇
{
ζ(r, iξ)tr

[∇×G(1)(r, r ′, iξ)×←−∇ ′]r ′=r

})
, (3.80)

recall (1.113). We separate the electric susceptibility χ(r,ω) of the gaseous body
from the permittivity ε(r,ω) of all other bodies, so that the total permittivity of the
system can be written in the form

ε(r,ω) = ε(r,ω)+ χ(r,ω) . (3.81)

As shown in Sect. 2.1.1, the Green’s tensor G in the presence of the gaseous body
can be related to the Green’s tensor G in its absence via a Born expansion in powers
of χ. With the susceptibility of the gaseous body being small for a sufficiently dilute
gas (χ
 1), we are interested in the leading, linear expansion of the Casimir force.
With the above expression already containing an explicit factor of χ, we employ the
zero-order expansion G = G of the Green’s tensor to obtain

F = − �

2π

∫

V

d3r

∞∫

0

dξ
ξ2

c2 χ(r, iξ)∇tr G(1)(r, r, iξ) . (3.82)

Note that the second term in (3.80) above does not contribute for a non-magnetic
body with ζ(r, iξ) = 0.

The gap between the macroscopic susceptibility χ(r,ω) of the gaseous body and
the microscopic polarisabilities α(ω) of the atoms contained therein may be bridged
by means of the Clausius–Mosotti law. In the dilute-gas limit, it reads [20]

χ(r,ω) = η(r)α(ω)

ε0
(3.83)

where η(r) denotes the number density of the atoms. Using this relation, we find [2,
3, 21]

F =
∫

V

d3rA η(rA)F(rA) (3.84)

with F(rA) = −∇AU (rA) and U (rA) = Ue(rA) with

Ue(rA) = �μ0

2π

∞∫

0

dξ ξ2 α(iξ)tr G(1)(rA, rA, iξ) . (3.85)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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(i) (ii)

Fig. 3.5 Microscopic origins of the (i) Casimir and (ii) CP forces in the dilute-gas limit

The total Casimir force on the gaseous body is hence simply the sum of the CP forces
acting on the gas atoms. The respective CP potential agrees exactly with the result
(1.128) of a microscopic calculation as given in Sect. 1.2.2. The considerations of
this section may in fact be regarded as an alternative, macroscopic derivation of the
CP potential. Lifshitz made use of such an approach to obtain CP and vdW potentials
from his famous expression for the Casimir force between two plates in the dilute-gas
limit [22, 23]. The microscopic origin of the Casimir force is schematically illustrated
in Fig. 3.5(i).

Having reduced the macroscopic Casimir force on a dilute-gas body to the sum of
the microscopic CP forces on the gas atoms, let us proceed to show that the CP force
in turn is a consequence of the even more microscopic vdW forces. To this end, we
start from the CP potential U (rA) = Ue(rA) with

Ue(rA) = �μ0

2π

∞∫

0

dξ ξ2 αA(iξ)tr G(1)(rA, rA, iξ) (3.86)

of a single atom A where G represents all present bodies. Again, we assume that one
of these bodies of volume V is weakly dielectric so that its susceptibilityχ(r,ω) may
be separated from the permittivity ε(r,ω) of all other bodies according to (3.81).
Employing the linear Born expansion (2.5) of the Green’s tensor G in terms of χ, the
leading-order CP potential of the atom due to its interaction with the gaseous body
takes the form

Ue(rA) = −�μ0

2π

∫

V

d3r

∞∫

0

dξ
ξ4

c2 αA(iξ)χ(r, iξ)tr
[
G(rA, r, iξ)·G(r, rA, iξ)

]
.

(3.87)
Note that we have discarded the zero-order potential (2.46) which is due to the
interaction of atom A with the background bodies alone. We now assume the weakly
body to consist of a dilute gas of atoms B such that the Clausius–Mosotti law (3.83)
holds. As a consequence, the CP potential reads [2, 3, 9, 10]

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2


3.3 Microscopic Origin 99

U (rA) =
∫

V

d3rB η(r B)U (rA, r B) (3.88)

where U (rA, r B) = Uee(rA, r B) with

Uee(rA, r B) = −�μ2
0

2π

∞∫

0

dξ ξ4αA(iξ)αB(iξ)tr
[
G(rA, r B, iξ)·G(r B, rA, iξ)

]

(3.89)
coincides with the microscopic vdW potential (1.153) as given in Sect. 1.2.3. The
CP interaction of an atom with a gaseous body is hence the sum of its vdW inter-
actions with the gas atoms. The microscopic origin of the CP force is represented
in Fig. 3.5(ii). Again, the explicit form for the vdW potential has been found as a
by-product our considerations [24].

Combining the two results (3.84) and (3.88) and recalling the relations (1.119) and
(1.148) between dispersion potentials and the associated forces, we find
[2, 3, 21]

F =
∫

V1

d3rA η(rA)

∫

V2

d3rB η(r B)F(rA, r B) . (3.90)

In other words, the Casimir force between two dilute gaseous bodies of volumes V1
and V2 is the sum of the pairwise vdW forces between the gas atoms contained in
the bodies.

Our considerations can be easily generalised to the magnetodielectric case. Start-
ing from the Casimir force (3.80) on a gaseous, magnetodielectric body, we apply a
decomposition

1

μ(r,ω)
= 1

μ(r,ω)
− ζ(r,ω) . (3.91)

of the permeability into the magnetic susceptibility ζ(r,ω) of the gaseous body and
the permeability μ(r,ω) of all other bodies. Substituting the Clausius–Mosotti law
(3.83) together with its magnetic counterpart [24]

ζ(r,ω) = μ0η(r)β(ω) , (3.92)

into the Casimir force (3.80), we find that the relation (3.84) stating the microscopic
origin of the Casimir force remains valid for a dilute magnetodielectric body, where
U (rA) = Ue(rA)+Um(rA) with (3.85) and

Um(rA) = �μ0

2π

∞∫

0

dξ β(iξ)tr
[∇×G(1)(rA, rA, iξ)×←−∇ ′] (3.93)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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is now the full CP potential of the electromagnetic gas atoms. The magnetic CP
potential (3.93) obtained as a by-product of our derivation again agrees with the
known microscopic result (1.145) [25]. Note that the Casimir force on a dilute
gas of magnetoelectric atoms can only be written in the form (3.84) if the gas is
homogeneous, η(r) ≡ η. This is due to the fact that the gradient on the second line
of (3.80) acts on ζ(r, iξ).

To formulate the microscopic origin of the CP potential in the magnetodielectric
case, we start from the potential of a single electromagnetic atom in the form U (rA) =
Ue(rA)+Um(rA) with

Uλ(rA) = �

2πε0

∞∫

0

dξ αA
λ (iξ)tr G(1)

λλ(rA, rA, iξ) (λ = e, m) (3.94)

with αe = α, αm = β/c2. Separating the atom’s electromagnetic environment
into contributions from a weakly magnetodielectric gaseous body plus those from
additional magnetoelectric bodies according to (3.81) and (3.91), we may use the
Born expansion (2.35) with (2.36) to find the linear potential due to the gaseous body

Uλ(rA) = − �

2πε0

∑
λ′=e,m

∫

V

d3r

∞∫

0

dξ αA
λ (iξ)χλ′(r,ω)

× tr
[
Gλλ′(rA, r, iξ)·Gλ′λ(r, rA, iξ)

]
(λ = e, m) (3.95)

with χe = χ, χm = ζ. Using the two Clausius–Mosotti relations (3.83) and (3.92)
in the comprehensive form

χλ(r,ω) = η(r)αλ(ω)

ε0
(λ = e, m) ; (3.96)

we find that the relation (3.88) between CP and vdW potentials remains valid where
U (rA, r B) = Uee(rA, r B)+Uem(rA, r B)+Ume(rA, r B)+Umm(rA, r B) is the full
electromagnetic vdW potential. Its components [24]

Uλλ′(rA, r B) = − �

2πε2
0

∞∫

0

dξ αA
λ (iξ)αB

λ′(iξ)

× tr
[
Gλλ′(rA, r B, iξ)·Gλ′λ(r B, rA, iξ)

]
(λ,λ′ = e, m) (3.97)

agree with the microscopic result (1.178).
In the dilute-gas limit, dispersion forces are thus additive. The Casimir force on a

body is simply a volume integral over the CP forces of the atoms contained therein;
which in turn is a simple volume integral over vdW interactions with atoms contained

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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in a second body. This additivity immediately explains the relations between the
asymptotic power laws for dispersion forces between objects of simple shapes given
in the different rows of Table 3.1. Performing the respective volume integrals, one
finds that the results for Casimir and CP forces can all be traced back to the funda-
mental vdW force between two atoms.

3.3.2 Many-Atom Contributions

For bodies which are not sufficiently dilute, linear expansions in terms of the body sus-
ceptibilities become an inappropriate description of Casimir and CP forces. Higher-
order terms in χ and ζ need to be taken into account. They correspond to many-atom
contributions and lead to a breakdown of additivity. We will illustrate their signifi-
cance by considering the microscopic origin of the CP potential in more detail.

As before, we start from the CP potential (3.86) of a single electric atom in
the presence of an arbitrary arrangement of bodies. We concentrate on a weakly
dielectric body of volume V whose susceptibility χ(r,ω) may be separated from the
permittivity ε(r,ω) of all other bodies in accordance with (3.81). As a consequence
of this separation, the Green’s tensor of the total system of bodies can be expanded in
terms χ using a Born series. In contrast to our treatment for the dilute-gas limit, we
now make use of the full Born expansion. For for reasons that will become clear in an
instant, we make use of the alternative Born series (2.50) in terms of the parameter
χε/(ε + 1

3χ) rather than χ alone. Requiring the weakly dielectric body to be well
separated from all other bodies, so that ε(r,ω) ≡ 1 for r ∈ V , and the CP potential
due to the weakly dielectric body takes the form

U (rA) =
∞∑

K=1

(−1)K
�μ0

2πc2K

∞∫

0

dξ ξ2K+2α(iξ)

×
∫

V

d3r1
χ(r1, iξ)

1+ 1
3 χ(r1, iξ)

· · ·
∫

V

d3rK
χ(r K , iξ)

1+ 1
3 χ(r K , iξ)

× tr
[
H(rA, r1, iξ)·H (r1, r2, iξ) · · ·H(r K , rA, iξ)

]
. (3.98)

Once more, we have discarded the zero-order potential (2.46) due to the background
bodies alone.

For simplicity, we assume that the weakly dielectric body consists of atoms which
are of the same species of the single atom. Its susceptibility can be related to the
atoms’ polarisability via the full Clausius–Mosotti law [20]

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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χ(r,ω)

1+ 1
3χ(r,ω)

= 3
ε(r,ω)− 1

ε(r,ω)+ 2
= η(r)α(ω)

ε0
(3.99)

which generalises (3.83) beyond the dilute-gas limit. The reason for employing
χ/(1 + 1

3χ) as our expansion parameter is now clear, as it directly proportional
to the atomic polarisability. The Clausius–Mosotti law leads to

U (rA) =
∞∑

K=1

(−1)K
�μK+1

0

2π

∫

V

d3r1 η(r1) · · ·
∫

V

d3rK η(r K )

∞∫

0

dξ ξ2K+2

× αK+1(iξ)tr
[
H(rA, r1, iξ)·H (r1, r2, iξ) · · ·H(r K , rA, iξ)

]
. (3.100)

The integrands of the multiple integrals over the volume of the weakly dielectric
body cannot immediately be identified as vdW potentials, which must be symmetric
with respect to an exchange of atomic positions for N = K + 1 identical atoms.
A function f (r1, . . . , r N ) with N position arguments can be symmetrised by sum-
ming over all N ! permutations Π ∈ P(N ), i.e., over all possible orders of these
arguments to occur. These permutations may be graphically represented by different
paths connecting the positions of the interacting atoms, as shown in Fig. 3.6(i), (ii)
for the cases of N = 2 and N = 3 atoms.

In our case, the relevant function

f (r1, . . . , r N ) = tr
[
H(r1, r2,ω)·H (r2, r3,ω)· · ·H(rN , r1,ω)

]
(3.101)

is a trace of a product of Green’s tensors. Due to the cyclic property of the trace, this
function is already symmetric under a cyclic permutation of the position arguments,
i.e.,

f (r1, . . . , r N ) = f (rΠ(1), rΠ(2), . . . , rΠ(N )) (3.102)

if Π a cyclic permutation. In addition, the Onsager reciprocity (A.4) of the Green’s
tensor implies that f (r1, . . . , r N ) remains unchanged if the order of the arguments
is reversed, or more generally, (3.102) holds for any permutation Π that is the reverse
of a cyclic permutation. In the representations of Fig. 3.6(i), (ii), this means that two
paths give the same result if they only differ by their starting point or orientation.
We group the N ! possible permutations of position arguments into classes giving
the same result; they are graphically represented in Fig. 3.6 by paths without starting
point and orientation. For N ≥ 3, each class has 2N members, so there are (N−1)!/2
classes in total. As seen in the figure, the 3! = 2×3 permutations for N = 3 atoms all
belong to a single class, whereas three classes need to be distinguished for N = 4.
The case N = 2 is special because cyclic permutation and reverse coincide; the
single existing class thus has only 2 rather than 2× 2 = 4 members.
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(i) N = 2

(ii) N = 3

(iii) N = 4
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Fig. 3.6 Contributions to the vdW interactions of (i) N = 2, (ii) N = 3 and (iii) N = 4 atoms. For
N = 2, 3, we represent the individual permutations on the left (the starting point and orientation
being indicated by the thick dot and the arrow) and the permutation class on the right. For N = 4,
only the classes are shown

With f (r1, . . . , r N ) thus already being partially symmetric, a full symmetrisation
can be achieved by summing over those permutations giving distinct results. We form
a set P(N ) � P(N ) containing exactly one representative of each class and introduce
the symmetrisation operator as

S f (r1, . . . , r N ) =
∑

Π∈P(N )

f (rΠ(1), rΠ(2), . . . , rΠ(N )) . (3.103)

Note that this definition involves a sum rather than an average over the classes.
The sum has more than one term for N ≥ 4. Alternatively, it is of course possible to
perform symmetrisation by summing over all N ! possible permutations and removing
the redundancy via division by the number of members of each class:
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Fig. 3.7 Microscopic origin
of the CP force for a non-dilute
body

S f (r1, . . . , r N ) = 1

(2− δ2N )N

∑
Π∈P(N )

f (rΠ(1), rΠ(2), . . . , rΠ(N )) . (3.104)

The integral in (3.100) can be cast in the required symmetrised form by introducing
the factor 1/K ! and summing over all K ! possible ways of renaming the variables
rA1 . . . rAK . With N = K +1, this procedure generates exactly K !/[(N−1)!/2] = 2
representatives from each class [only for K !/(N − 1)! = 1 for N = 2], so we find
[2, 3, 9, 10]

U (rA) =
∞∑

K=1

1

K !
∫

V

d3r1 η(r1) · · ·
∫

V

d3rK η(r K )U (rA, r1, . . . , r K )

(3.105)

with

U (r1, . . . , r N ) = (−1)N−1
�μN

0

(1+ δ2N )π

∞∫

0

dξ ξ2NαN (iξ)

× S tr
[
H(r1, r2, iξ)·H (r2, r3, iξ) · · ·H(r N , r1, iξ)

]
. (3.106)

Our result generalises the microscopic origin (3.88) of the CP potential beyond the
dilute-gas limit. It shows that the CP interaction of a single atom with a macroscopic
dielectric body is the result of its microscopic N -atom vdW interactions with the
atoms contained in the body, as illustrated in Fig. 3.7. A relation of this type was
first derived for the special case of a homogeneous dielectric half space filled with
harmonic-oscillator atoms [26] and later extended to homogeneous dielectric bodies
of arbitrary shapes [27] and beyond the harmonic-oscillator model [28].

We had already seen in Chap. 2 that the CP potential between an atom and a
weakly dielectric body is no longer additive when taking into account higher-order
contributions in the electric susceptibility, recall Fig. 2.2. This breakdown of additiv-
ity is now seen to be due to microscopic N -atom vdW interactions. As a by-product
of our derivation, we conclude that the vdW potential of N identical atoms of polar-
isability α(ω) at mutually distinct positions r1, . . . , r N (H = G) in the presence

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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of arbitrary magnetoelectric bodies or permittivity ε(r,ω) and permeability μ(r,ω)

reads (G → G)

U (r1, . . . , r N ) = (−1)N−1
�μN

0

(1+ δ2N )π

∞∫

0

dξ ξ2NαN (iξ)

× S tr
[
G(r1, r2, iξ)·G(r2, r3, iξ) · · ·G(r N , r1, iξ)

]
.

(3.107)

For N = 2, we find the expected agreement with the microscopic result (1.153) from
Sect. 1.2.3. For higher N , microscopic calculations only exist for atoms in free space
[29, 30], where the findings are again consistent with (3.107).

Our results can be generalised with several respects. First, we have only considered
the interaction of a single atom with a dielectric body consisting of the same species
of atoms. As a result, we have only obtained N -atom potentials for identical atoms.
In order to derive vdW potentials for N different atoms, we assume that the body
characterised by the susceptibility χ contains different atoms with polarisabilities
αi (ω) and number densities ηi (r). The Clausius–Mosotti law then generalises to

χ(r,ω)

1+ 1
3χ(r,ω)

= 3
ε(r,ω)− 1

ε(r,ω)+ 2
=

∑
i

ηi (r)αi (ω)

ε0
. (3.108)

We again start from the Born series (3.98) for the CP potential, but now using the more
general Clausius–Mosotti law. After symmetrisation, we find that the CP interaction
of an atom with a dielectric body containing different atoms can be given as [2, 9]

U (rA) =
∞∑

K=1

1

K !
∑

i1

∫

V

d3ri1 ηi1(r i1) · · ·
∑
iK

∫

V

d3riK ηiK (r iK )

×U (rA, r i1, . . . , r iK ) (3.109)

with

U (r1, . . . , r N ) = (−1)N−1
�μN

0

(1+ δ2N )π

∞∫

0

dξ ξ2Nα1(iξ) · · ·αN (iξ)

× S tr
[
H(r1, r2, iξ)·H (r2, r3, iξ) · · ·H(r N , r1, iξ)

]
. (3.110)

We conclude that the vdW potential of N different atoms at mutually distinct positions
in the possible presence of magnetoelectric bodies is given by

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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U (r1, . . . ,r N ) = (−1)N−1
�μN

0

(1+ δ2N )π

∞∫

0

dξ ξ2Nα1(iξ) · · ·αN (iξ)

× S tr
[
G(r1, r2, iξ)·G(r2, r3, iξ) · · ·G(r N , r1, iξ)

]
.

(3.111)

Next, let us generalise our investigations of the microscopic origin of the CP
potential to the electromagnetic case. To that end, consider the interaction of an
electromagnetic atom with a weakly magnetodielectric body of volume V and
electric and magnetic susceptibilities χ(r,ω) and ζ(r,ω) in the possible pres-
ence of other bodies with permittivity ε(r,ω) and permeability μ(r,ω). Using the
decomposition (2.29) for the total permittivity and permeability, the CP potential
U (rA) = Ue(rA) + Um(rA) can be given by the Born series (2.55). Assuming the
weakly magnetodielectric body to be well separated from all other bodies, it reads

Uλ(rA) =
∑

K

(−1)K
�

2πε0

∞∫

0

dξ αλ(iξ)
∑

λ1=e,m

∫
d3s1 gλ1(s1, iξ)

· · ·
∑

λK=e,m

∫
d3sK gλK (sK , iξ)

× tr
[
Hλλ1(rA, s1, iξ)·Hλ1λ2(s1, s2, iξ) · · ·HλKλ(sK , rA, iξ)

]
,

(3.112)

with

ge(r,ω) = χ(r,ω)

1+ 1
3 χ(r,ω)

, gm(r,ω) = ζ(r,ω)

1− 2
3 ζ(r,ω)

, (3.113)

recall (2.42) and (2.43).
Assuming the single atom and those contained in the weakly magnetodielectric

body to be of the same species, we can summarise the Clausius–Mosotti law (4.140)
and its magnetic counterpart

ζ(r,ω)

1+ 2
3ζ(r,ω)

= 3
μ(r,ω)− 1

μ(r,ω)+ 2
= μ0η(r)β(ω) (3.114)

in the compact form

gλ(r,ω) = η(r)αλ(ω)

ε0
(λ = e, m) (3.115)

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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with αe = α, αm = β/c2. After substitution and symmetrisation, the microscopic
origin of the CP potential can still be given in the form (3.105) where

U (r1, . . . , r N ) =
∑

λ1...λN=e,m

Uλ1...λN (r1, . . . , r N ) (3.116)

with

Uλ1...λN (r1, . . . , r N )

= (−1)N−1
�

(1+ δ2N )πεN
0

∞∫

0

dξ αλ1(iξ) · · ·αλN (iξ)

× S tr
[
Hλ1λ2(r1, r2, iξ)·Hλ2λ3(r2, r3, iξ) · · ·HλNλ1(r N , r1, iξ)

]
(3.117)

are now the total vdW potentials for electromagnetic atoms. We conclude that the
vdW potential of N identical atoms at mutually distinct positions in the possible
presence of magnetoelectric bodies characterised by ε(r,ω) and μ(r,ω) is given by
(3.116) with

Uλ1...λN (r1, . . . , r N ) = (−1)N−1
�

(1+ δ2N )πεN
0

∞∫

0

dξ αλ1(iξ) · · ·αλN (iξ)

× Str
[
Gλ1λ2(r1, r2, iξ)·Gλ2λ3(r2, r3, iξ)

· · ·GλNλ1(r N , r1, iξ)
]

. (3.118)

In order to obtain the vdW interaction of N distinct electromagnetic atoms, one
uses the Clausius–Mosotti law

gλ(r,ω) =
∑

i

ηi (r)αλ,i (ω)

ε0
(3.119)

(λ = e, m) for a body consisting of different atomic species. The microscopic expan-
sion of the CP potential then takes the form (3.109). The sought-after vdW potential
of N atoms with electric/magnetic polarisabilities α1,λ(ω), . . ., αN ,λ(ω) is given by
(3.116) with
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Uλ1...λN (r1, . . . , r N ) = (−1)N−1
�

(1+ δ2N )πεN
0

∞∫

0

dξ αλ1,1(iξ) · · ·αλN ,N (iξ)

× S tr
[
Gλ1λ2(r1, r2, iξ)·Gλ2λ3(r2, r3, iξ)

· · ·GλNλ1(r N , r1, iξ)
]

. (3.120)

As examples, let us consider N -atom vdW potentials in free space. The vdW
potential of N = 2 atoms has been calculated and discussed in Sect. 5.4 of Vol. I,
recall the asymptotic distance laws given in row (i) of Table 3.1. It is attractive for two
electric or two magnetic atoms and repulsive for mixed combinations of electric and
magnetic atoms. It depends on the distance r between the atoms as the only geometric
parameter, being proportional to 1/r7 in the retarded limit. In the nonretarded limit,
the two-atom vdW potential follows a 1/r6 law for attractive combinations while
exhibiting a 1/r4 asymptote for repulsive ones.

The vdW potential of three atoms A, B and C is a lot more complex even for
purely electric atoms in free space. It can be calculated explicitly by substituting the
free-space Green’s tensor (A.21) into (3.111) for N = 3,

U (rA, r B, rC ) = �μ3
0

π

∞∫

0

dξ ξ6αA(iξ)αB(iξ)αC (iξ)

× tr
[
G(rA, r B, iξ)·G(r B, rC , iξ)·G(rC , rA, iξ)

]
(3.121)

recall that the sum in the symmetrisation operator (3.103) consists of only one term
in this case. Instead, we can simply deduce it by comparing the second-order Born
expansion (2.65) of the CP potential with the K = 2 term in the microscopic expan-
sion (3.109) by means of the linearised version

χ(r,ω) =
∑

i

ηi (r)αi (ω)

ε0
. (3.122)

of the Clausius–Mosotti law (3.108). We find

U (rA, r B, rC ) = �

64π4ε3
0

∞∫

0

dξ αA(iξ)αB(iξ)αC (iξ)

× g(rAB, r BC , rC A, ξ)

r3
ABr3

BCr3
C A

, (3.123)

http://dx.doi.org/10.1007/978-3-642-32466-6_2
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with r i j = r i − r j and ri j = |r i j | recall definition (2.66) of the function g. This is
in agreement with results [29, 30] obtained from free-space QED. In a similar way,
we can deduce from (2.72) and (2.77) that the three-atom potential simplifies to

U (rA, r B, rC ) = �cαAαBαC

16π4ε3
0r3

ABr3
BCr3

C A(rAB+rBC+rC A)

× [
f1(rAB, rBC , rC A)+ f2(rC A, rAB, rBC )(eAB ·eBC )2

+ f2(rAB, rBC , rC A)(eBC ·eC A)2

+ f2(rBC , rC A, rAB)(eC A ·eAB)2

+ f3(rAB, rBC , rC A)(eAB ·eBC )(eBC ·eC A)(eC A ·eAB)
]

(3.124)

with ei j = r i j/ri j [recall definitions (2.73)–(2.75)] and

U (rA, r B, rC ) = 3�

64π4ε3
0

∞∫

0

dξ αA(iξ)αB(iξ)αC (iξ)

× 1− 3(eAB ·eBC )(eBC ·eC A)(eC A ·eAB)

r3
ABr3

BCr3
C A

(3.125)

in the retarded and nonretarded limits, respectively. The nonretarded potential of
three atoms is commonly known as the Axilrod–Teller potential [31–33]. Comparison
with Sect. 5.5.2 of Vol. I reveals that the nonretarded potential (5.300) of two atoms
interacting with a small electric sphere is also of the Axilrod–Teller form where the
polarisability of the sphere occurs in place of that of atom C .

The three-atom potential depends on the three distances between the atoms. In
contrast to the two-atom potential with its 1/r7 and 1/r6 retarded and nonretarded
asymptotes, it depends on distance to the inverse 10th and 9th powers in these lim-
its. Even for purely electric atoms, the three-atom potential may be attractive or
repulsive, depending on the shape of the triangle formed by the three atoms. This is
illustrated in Fig. 3.8 where we show the sign of the Axilrod–Teller potential (3.125)
depending on the position of atom A for fixed positions of atoms B and C . As
seen, the potential is attractive when the atoms lie on a straight line and repulsive
when they form an equilateral triangle. In between these extremes, it is attractive
whenever the triangle formed by the atoms has two sufficiently sharp angles and
repulsive otherwise. The angle-dependence of the three-atom potential is responsible
for the shape-dependence of the second-order contribution �2

2U (rA) to the Born
expansion of the CP interaction of an atom with a weakly dielectric body, as noted
in Sect. 2.2.2.

Potentials of four or more atoms exhibit an even more complex geometry-
dependence. As an additional complication, symmetrisation must be performed in

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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Fig. 3.8 Sign of the Axilrod–
Teller potential. The shaded
area indicates the positions
of atom A corresponding to
attractive potentials for fixed
positions of atoms B and
C at r B = (xB , 0, 0) and
rC = (−xB , 0, 0)

xA / xB

zA / xB

U (1) < 0

2

1

0

−1

−2
−2 −1 0 1 2

accordance with (3.103). The four-atom potential is calculated explicitly in [29, 30]
for the special case of the atoms being arranged as a regular tetrahedron.
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Chapter 4
Casimir–Polder Forces on Excited Atoms:
Static Theory

So far, we have been exclusively concerned with dispersion forces involving
ground-state objects. Being due to the entire fluctuation spectrum of the electro-
magnetic field and the objects’ polarisation and magnetisation, such forces depend
on electromagnetic response functions over a wide range of frequencies. In particu-
lar, the CP potential of a ground-state atom is due to atomic transitions to an excited
energy eigenstate, accompanied by the emission of a photon. Violating energy con-
servation, such a process is purely virtual; the atom must immediately reabsorb the
photon while returning to its ground state. Virtual photons from a continuous range
of energies and frequencies contribute.

The situation is fundamentally different for an excited atom: It can undergo a
transition to a lower-lying state while releasing its energy in the form of a real
photon. This energy-conserving process involves photons of certain discrete and
well-defined frequencies, the atomic transition frequencies. Real photons give rise
to resonant contributions to the CP potential. They often dominate over the non-
resonant contributions from virtual photons, leading to a new and radically altered
behaviour. Interference phenomena accompanied by strongly enhanced and spatially
oscillating potentials may be observed.

Furthermore, real transitions to lower lying states imply that the internal state of the
atom will not be constant over time. Due to such spontaneous decay, the atom will con-
tinuously evolve from its initial excited state until it finally reaches its ground state.
We may expect this internal dynamics to manifest itself in a time-dependent CP force.

In this chapter, we will study the CP force by generalising the ideas of Casimir
and Polder [1]. Their approach is able to capture the phenomenon of resonant poten-
tials. Being based on a time-independent calculation, it neglects the internal atomic
dynamics and the resulting dynamics of the force, to be addressed in the next Chap. 5.
Instead, Casimir and Polder’s concept provides a snapshot of the potential at a given
instant of time with the atom being in a well-defined energy eigenstate.

We will begin by calculating the CP potential using perturbation theory, work-
ing within the alternative minimal and multipolar coupling schemes. Applying our
results, we will calculate resonant CP potentials of an excited atom in front of a per-
fectly conducting plate, a magnetoelectric half space and a meta-material perfect lens.

S. Y. Buhmann, Dispersion Forces II, Springer Tracts in Modern Physics 248, 113
DOI: 10.1007/978-3-642-32466-6_4, © Springer-Verlag Berlin Heidelberg 2012
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4.1 Perturbation Theory

Recall from Sect. 1.2.2 that the CP force (1.119) can be derived from the CP potential.
Following Casimir and Polder, the potential may be identified as position-dependent
energy shift arising from the atom-field coupling. We calculate this shift using per-
turbation theory, starting with the minimal coupling scheme.

4.1.1 Minimal Coupling

We assume the atom to be prepared in an arbitrary internal energy-eigenstate |n〉
and the body-assisted field in its ground state |{0}〉. Starting from the uncoupled
state |ψ〉 = |n〉|{0}〉 of the atom–field system within the minimal coupling scheme,
we calculate the leading-order energy shift (1.120). For a non-magnetic atom, the
atom–field interaction Hamiltonian in long-wavelength approximation (1.88)

ĤAF = −d̂ · Ê‖(rA)−
∑
α∈A

qα
mα

p̂α · Â(rA)+
∑
α∈A

q2
α

2mα
Â2(rA) (4.1)

contains two terms linear and one term quadratic in the field operators. The latter
contributes to the first-order energy shift as given by (1.121) with |0〉 �→ |ψ〉,

Δ1 E = 〈{0}|〈n|
∑
α∈A

q2
α

2mα
Â2(rA)|n〉|{0}〉 . (4.2)

This contribution may be evaluated explicitly by using the expansion (1.50) of the
vector potential, the commutation relations (1.17) and (1.18) and the integral rela-
tion (1.25),

Δ1 E =
∑
α∈A

q2
α

2mα

∞∫

0

dω

ω2

∑
λ=e,m

∫
d3s tr

[⊥Gλ(rA, s,ω)·G∗T⊥λ (rA, s,ω)
]

= �μ0

π

∑
α∈A

q2
α

2mα

∞∫

0

dω tr
[
Im⊥G⊥(rA, rA,ω)

]
. (4.3)

Note that the first-order contributions is independent of the internal state |n〉 in which
the atom is prepared.

The first-order contribution is quadratic in the particle charges qα which are a
measure of the electromagnetic coupling strength. To be consistent, the leading-
order energy shift must contain all contributions quadratic in qα. We hence need to
include the second-order energy shift (1.122) (|0〉 �→ |ψ〉) due to the first two terms

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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of the interaction Hamiltonian. The relevant intermediate states |I 〉 = |k〉|1λ(r,ω)〉
consist of the atom in state k and the field in its single-photon Fock state (1.35), so
that the energy denominators read E0− EI = En− (Ek+�ω) = −�(ω−ωnk) with
ωmn = (Em − En)/� and the energy shift takes the form

Δ2 E = −
∑

k

∑
λ=e,m

∫
d3r P

∞∫

0

dω

�(ω − ωnk)

× 〈{0}|〈n|
[
−d̂ · Ê‖(rA)−

∑
α∈A

qα
mα

p̂α · Â(rA)

]
|k〉|1λ(r,ω)〉

· 〈1λ(r,ω)|〈k|
[
−d̂ · Ê‖(rA)−

∑
α∈A

qα
mα

p̂α · Â(rA)

]
|n〉|{0}〉 (4.4)

(P: principal value). The required matrix elements can be calculated using the field
expansions (1.22) and (1.50) and the commutation relations (1.17) and (1.18). One
finds

〈1λ(r,ω)|〈k| − d̂ · Ê‖(rA)|n〉|{0}〉 = −dkn ·‖G∗λ(rA, r,ω) , (4.5)

〈1λ(r,ω)|〈k| −
∑
α∈A

qα
mα

p̂α · Â(rA)|n〉|{0}〉 = ωkn

ω
dkn ·⊥G∗λ(rA, r ,ω) (4.6)

with dmn = 〈m|d̂|n〉, where definition (1.51) has been recalled and the atomic
identity (1.73) has been employed for the second matrix element. Using these results
and invoking the integral relation (1.25), the second-order energy shift reads

Δ2 E

= −1

�

∑
k

P
∞∫

0

dω

ω − ωnk

∑
λ=e,m

∫
d3s dnk ·

{‖Gλ(rA, s,ω)·G∗T‖λ (rA, s,ω)

− ωkn

ω

[‖Gλ(rA, s,ω)·G∗T⊥λ (rA, s,ω)+ ⊥Gλ(rA, s,ω)·G∗T‖λ (rA, s,ω)
]

+ ω2
kn

ω2
⊥Gλ(rA, s,ω)·G∗T⊥λ (rA, s,ω)

}
·dkn

= −μ0

π

∑
k

P
∞∫

0

dω

ω − ωnk
dnk ·Im

{
ω2‖G‖(rA, rA,ω)+ ω2

kn
⊥G⊥(rA, rA,ω)

− ωkω
[‖G⊥(rA, rA,ω)+ ⊥G‖(rA, rA,ω)

]}
·dkn . (4.7)

In order to combine Δ1 E and Δ2 E in accordance with (1.120), we make
use of the Thomas–Reiche–Kuhn sum rule (1.74) to cast the former into the
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alternative form

Δ1 E = μ0

π

∑
k

ωkn

∞∫

0

dω dnk ·Im⊥G⊥(rA, rA,ω)·dkn . (4.8)

Use of the identity G = ⊥G⊥ + ⊥G‖ + ‖G⊥ + ‖G‖ then leads to

ΔE = μ0

π

∑
k

P
∞∫

0

dω

ω − ωnk

× dnk ·
{
ωknω

[
ImG(rA, rA,ω)− Im‖G‖(rA, rA,ω)

]
− ω2Im‖G‖(rA, rA,ω)

}·dkn . (4.9)

In order to extract the position-dependent CP potential (1.118) from the leading-
order energy shift, we decompose the Green’s tensor into its bulk and scattering
parts G(0) and G(1) according to (1.111). The energy shift associated with the bulk
part is a position-independent infinite self-energy, which is part of the free-space
Lamb shift. It is discussed in some detail in Sect. 4.1 of Vol. I. We discard it by
making the replacement G �→ G(1), hence obtaining the CP potential as the position-
dependent part of the energy shift. Noting that the scattering Green’s tensor is purely
transverse (A.28), writing Im G = (G −G∗)/(2i) and using the Schwarz reflection
principle (A.3), we find

U (rA) = μ0

2iπ

∑
k

⎡
⎣P

∞∫

0

dω

ω − ωnk
+ P

−∞∫

0

dω

ω + ωnk

⎤
⎦ωknω

× dnk ·G(1)(rA, rA,ω)·dkn . (4.10)

So far, the calculation has been completely analogous to that for the ground-state
CP potential as detailed in Sect. 4.1 of Vol. I and summarised in Sect. 1.2.2 of this
volume. A change of the initial state from the ground state 0 to an arbitrary state
n leads to the replacements d0k �→ dnk and ωk ≡ ωk0 �→ ωkn . However, this
simple modification results in an important qualitative change of the potential. For
an atom in an excited state n, transitions to states of lower energy Ek < En exist
such that the transition energy ωnk is positive. The integrands of the positive- and
negative-frequency integrals above then exhibit poles at ω = ωnk and ω = −ωnk ,
respectively; which is why we have introduced the principal value integral. The
consequences of these poles can be made more explicit by applying contour-integral
techniques. To that end, we note that the integrand is analytic in the upper half
of the complex frequency plane including the real axis and according to (A.30)
is also finite at the origin. Applying the integration contour shown in Fig. 4.1 to
transform the integrals along the positive/negative real frequency axis into integrals
along the positive imaginary axis plus integrals along infinite quarter-circles plus, in

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Fig. 4.1 Integration contours
used for transforming real-
frequency integrals into ones
along the positive imaginary
axis plus contributions from
the poles

Im ω

Re ω

ωnk−ωnk

the case ωnk > 0, integrals along infinitesimally small semi-circles around the poles
at ω = ωnk and ω = −ωnk . The integrals along the infinite quarter-circles vanish as
a consequence of the high-frequency asymptote (A.29), so we obtain [2–4]

Un(rA) = U nres
n (rA)+U res

n (rA) (4.11)

where

U nres
n (rA) = μ0

π

∑
k

∞∫

0

dξ
ωknξ

2

ω2
kn + ξ2

dnk ·G(1)(rA, rA, iξ)·dkn (4.12)

is the non-resonant part of the CP potential and

U res
n (rA) = −μ0

∑
k<n

ω2
nk dnk ·Re G(1)(rA, rA,ωnk)·dkn (4.13)

is the resonant part arising from the residua at the poles. The former can be cast into
the more compact form

U nres
n (rA) = �μ0

2π

∞∫

0

dξ ξ2tr

[
αn(iξ)·G(1)(rA, rA, iξ)

]
(4.14)

by introducing the polarisability tensor

αn(ω) = lim
ε→0+

1

�

∑
k

(
dnk dkn

ωkn − ω − iε
+ dkn dnk

ωkn + ω + iε

)
(4.15)

of the atom in state |n〉.
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For an atom in an isotropic state, we group the sum over k into sums over manifolds
of states k′ ∈ {k} with degenerate energies. For instance, such a manifold could
consist of states with identical principal and total angular momenta which only differ
by the z-components of their angular momentum. On each manifold, we have

∑
k′∈{k}

dnk′dk′n = 1
3

∑
k′∈{k}
|dnk′ |2I , (4.16)

so the two parts of the potential simplify to

U nres
n (rA) = �μ0

2π

∞∫

0

dξ ξ2αn(iξ) tr G(1)(rA, rA, iξ) , (4.17)

U res
n (rA) = −μ0

3

∑
k<n

ω2
nk |dnk |2 tr

[
Re G(1)(rA, rA,ωnk)

]
(4.18)

with

αn(ω) = lim
ε→0+

2

3�

∑
k

ωkn|dnk |2
ω2

kn − ω2 − iωε
. (4.19)

We have thus obtained the CP potential (4.11) together with (4.13) and (4.14) of an
electric atom in an arbitrary internal energy eigenstate |n〉, generalising the ground-
state potential (1.126) given in Sect. 1.2.2. An alternative derivation of this result
may be given on the basis of linear-response theory by employing the fluctuation–
dissipation theorem (1.28) for the electromagnetic field [5].

In contrast to the ground-state case, the CP potential of an excited atom contains
two distinct contributions. The non-resonant part is similar in form to the ground-state
potential, with the only difference being a replacement of the ground-state polaris-
ability with its excited-state counterpart. It depends on the atomic polarisability as
well as the Green’s tensor for the electromagnetic field in an integral form, where
all positive imaginary frequencies contribute. As shown in Sect. 4.1 of Vol. I, the
ground-state potential is a pure quantum effect. Its physical origin lies in the corre-
lated fluctuations of the atomic dipole moment and the electromagnetic field, where
the latter may be simply referred to as virtual photons. This interpretation remains
valid for the non-resonant part of the potential for an atom in an arbitrary state.

The resonant potential, on the contrary, depends on the Green’s tensor at discrete
frequencies corresponding to possible real transitions of the atom to a lower-energy
eigenstate. It is only present for excited atoms and may be attributed to real photons.
The resonant potential often dominates over the non-resonant potential. In contrast to
the non-resonant potential, it reacts very sensitive to the magnetoelectric properties
of the atomic environment at specific frequencies. The resonant potential can partly

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Table 4.1 Dominant contributions to the non-resonant and resonant parts of the CP potential

Distance→ Retarded Intermediate Nonretarded

Non-resonant Â2, p̂· Â Â2 d̂ · Ê‖
Resonant p̂· Â p̂· Â d̂ · Ê‖

be understood in classical terms. To see this, consider a classical oscillating dipole

d(t) = de−iωt

√
2
+ C.c. (4.20)

placed at rA within an arbitrary arrangement of magnetoelectric bodies (where the
normalisation has been chosen such that the long-time average of the dipole moment

is d2(t) = |d|2). The dipole emits an electric field which is reflected at the surface
of present bodies. Writing the current density associated with the dipole in the form

j(r, t) = ḋ(t)δ(r − rA) = −iωde−iωt

√
2

δ(r − rA)+ C.c. , (4.21)

the reflected field (1.15) reads

E(1)(r, t) = μ0ω
2e−iωt

√
2

G(1)(r, rA,ω)·d + C.c. (4.22)

The interaction energy of the classical dipole in its own reflected field is hence on
the long-time average given by

W (rA, t) = − 1
2 d(t)·E(1)(rA, t) = − 1

2μ0ω
2d∗ ·Re G(1)(rA, rA,ω)·d . (4.23)

Comparison with (4.13) reveals that our classical model renders one half of the
corresponding quantum contributions to the resonant CP potential. The discrepancy
can be understood from the fact that the other half of the resonant CP interaction is
due to fluctuations of the electromagnetic field, which are absent from the classical
description [6].

It is worth discussing which terms in the interaction Hamiltonian (4.1) give
the dominant contributions to the non-resonant and resonant CP potentials. For a
ground-state atom, the relative importance of the terms was analysed in Sect. 4.1 of
Vol. I, with the results being summarised in the first row of Table 4.1. In the retarded
limit, the contributions due to the Â2- and the p̂·Â-interactions dominate and strongly
cancel each other. For intermediate, moderately retarded distances, the Â2-interaction
begins to dominate over the p̂·Â-term. In the nonretarded limit, the potential is dom-
inated by the electrostatic Coulomb interaction d̂ · Ê‖. These findings remain valid
for the non-resonant part of the CP potential of an excited atom.

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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For the resonant part, the situation is different: The Â2-interaction does not con-
tribute at all, because it does not exhibit any poles. To see this explicitly, we start
from the energy shift (4.7) without the Â2-contribution. Discarding the self-energy
by making the replacement G �→ G(1), exploiting the fact that the scattering Green’s
tensor is purely transverse and following similar steps as above, we then obtain a CP
potential

U (rA) = μ0

2iπ

∑
k

⎡
⎣P

∞∫

0

dω

ω − ωnk
− P

−∞∫

0

dω

ω + ωnk

⎤
⎦ω2

kn

× dnk ·G(1)(rA, rA,ω)·dkn . (4.24)

After using the integration contour displayed in Fig. 4.1, we find a total CP poten-
tial (4.11) whose non-resonant part

U nres
n (rA) = μ0

π

∑
k

∞∫

0

dξ
ω3

kn

ω2
kn + ξ2

dnk ·G(1)(rA, rA, iξ)·dkn (4.25)

differs from (4.12) due to the neglect of the Â2-contribution, but whose resonant
part (4.13) remains unchanged. Having hence established that the Â2-term does not
contribute to the resonant potential, we proceed to identify which of the other two
dominates. To that end we return to the first lines of (4.7), where the second-order
energy shift is represented by a spatial integral over Green’s tensors G(rA, s,ω)

connecting the atomic position with points inside the present bodies. The first term
‖Gλ ·G∗T‖λ is due to the d̂ · Ê‖-interaction, the next two terms represent mixed

contributions involving both the d̂ · Ê‖- and p̂ · Â-couplings, while the last term
⊥Gλ ·G∗T⊥λ is entirely due to the p̂· Â-interaction. In the retarded limit, the Green’s
tensor G(rA, s,ω) becomes purely transverse (cf. Appendix A.2) and hence only the
term ⊥Gλ ·G∗T⊥λ due to the p̂· Â-interaction is relevant. For nonretarded distances,

the Green’s tensor is purely longitudinal, so the d̂ · Ê‖-interaction dominates. The
two cases are displayed in the second row of Table 4.1.

To summarise, the d̂ · Ê‖-interaction dominates the entire potential in the nonre-
tarded limit; the p̂· Â-term contributes predominantly in the retarded limit; and the
Â2-interaction only contributes to the non-resonant potential, being relevant for
retarded and particularly for intermediate distances. These results agree with earlier
observations made for the example of an atom in front of a perfectly reflecting plate
[6–9].

The total CP potential of an atom in an energy eigenstate takes a particularly
simple form for perfectly conducting bodies in the nonretarded limit. To see this,
we make use of the Born expansion (2.7) with (2.15). On a free-space background

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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ε(r,ω) ≡ 1, we have

G(1)(r, r ′,ω) =
∞∑

K=1

ω2K

c2K

∫

V

d3s1
χ(s1,ω)

1+ 1
3 χ(s1,ω)

· · ·
∫

V

d3sK
χ(sK ,ω)

1+ 1
3 χ(sK ,ω)

× H free(r, s1,ω)·H free(s1, s2,ω) · · ·H free(sK , r ′,ω) (4.26)

where V is the volume occupied by the present bodies, χ(r,ω) = ε(r,ω) − 1 is
their electric susceptibility and

H free(r, r ′,ω) =− c2eiωρ/c

4πω2ρ3

{[
1− i

ωρ

c
−

(ωρ
c

)2
]
I

−
[

3− 3i
ωρ

c
−

(ωρ
c

)2
]

eρeρ

}
(4.27)

is the non-singular part of the free-space Green’s tensor, see (A.21) in App. A. In
the nonretarded limit |(r − s1)ω|/c, |(s1 − s2)ω|/c . . . |(sK − r ′)ω|/c � 1 and for
perfectly conducting bodies χ(r,ω)→∞, we then have

ω2

c2 G(1)(r, r ′,ω) � G(1)(r, r ′) (4.28)

where the electrostatic Green’s tensor

G(1)(r, r ′) = lim
ω→0

[
ω2

c2 G(1)(r, r ′,ω)

]

= 1

4π

∞∑
K=1

(
3

4π

)K ∫

V

d3s1 · · ·
∫

V

d3sK

× er1er1 − I
|r − s1|3 ·

e12e12 − I
|s1 − s2|3 · · ·

eKr ′eKr ′ − I
|sK − r ′|3 (4.29)

with direction unit vectors er1 = (r − s1)/|r − s1|, eI J = (s I − sJ )/|s I − sJ | and
eKr ′ = (sK − r ′)/|sK − r ′| is frequency-independent.

We apply this result to the CP potential whose nonretarded limit can be defined
as r+ � c/ω+ (r+: maximum of all atom-body distances, ω+: maximum of all
relevant atomic resonance frequencies). The non-resonant potential (4.14) consists
of an integral over the Green’s tensor at imaginary frequencies. The factor α(iξ)
effectively limits the ξ-integral to a range where |rA − s1|ξ/c, |sK − rA|ξ/c � 1.
Furthermore, the dominant contribution to the s-integrals comes from regions where
|s I − sJ |ξ/c � 1. Using the electrostatic Green’s tensor, we find

U nres
n (rA) = − �

2πε0

∞∫

0

dξ tr
[
αn(iξ)·G(1)(rA, rA)

]
. (4.30)
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With the definition (4.15) of the atomic polarisability as given above, the ξ-integral
can then be performed according to

∞∫

0

dξαn(iξ) = π

�

∑
k

sgn(ωkn)dnk dkn (4.31)

[sgn(x): sign function], resulting in

U nres
n (rA) = − 1

2ε0

∑
k

sgn(ωkn)dnk ·G(1)(rA, rA)·dkn . (4.32)

For the resonant potential (4.13), we have |r − s1|ωnk/c, |sK − r ′|ωnk/c � 1 in the
nonretarded limit. In addition, we assume that no atomic transition ωnk is close to a
geometric body resonance (such as the cavity resonances discussed in Chap. 6). The
s-integrals are then dominated by region where |s I − sJ |ωnk/c � 1. The purely real
electrostatic Green’s tensor (4.29) hence applies once more and we find

U res
n (rA) = − 1

ε0

∑
k<n

dnk ·G(1)(rA, rA)·dkn . (4.33)

Combining the non-resonant and resonant potentials and invoking the complete-
ness relation

∑
k dnk dkn = 〈d̂ d̂〉n , the total CP potential of an atom at nonretarded

distance from perfectly conducting bodies takes the simple form

Un(rA) = −〈d̂ ·G
(1)(rA, rA)· d̂〉n

2ε0
. (4.34)

It reduces to

Un(rA) = −〈d̂
2〉n tr G(1)(rA, rA)

2ε0
(4.35)

for an isotropic atom. A potential of this form was first derived from the Coulomb
interaction of the atom with the bodies [10]. Note that 〈d̂2〉n is always positive,
irrespective of n. In the isotropic case, we may hence conclude that the nonretarded
potential of an excited atom near perfectly conducting bodies has the same sign as
the corresponding potential of a ground-state atom.

An important difference between the CP potentials of ground-state vs excited
atoms concerns isotropy. The ground states of atoms and molecules are generically
isotropic in the absence of applied electric and magnetic fields. On the contrary, an
excited atom is often in an anisotropic state. For instance, such a breaking of the

http://dx.doi.org/10.1007/978-3-642-32466-6_6
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orientational symmetry may be due to a state preparation via polarised electromag-
netic waves or internal dynamics in an anisotropic environment (see Sect. 7.3.3).

4.1.2 Multipolar Coupling

It is instructive to also calculate the CP potential of an excited atom using the alterna-
tive, multipolar coupling scheme. To that end, we assume the atom to be in an energy
eigenstate |n′〉 and the body-assisted field in its ground state |{0′}〉 so that the uncou-
pled state of the system in the multipolar coupling scheme reads |ψ〉 = |n′〉|{0′}〉.
Neglecting the velocity-dependent Röntgen interaction, the respective interaction
Hamiltonian for a non-magnetic atom in electric-dipole approximation (1.98) con-
sists of a single term only,

Ĥ ′AF = −d̂ ′ · Ê′(rA) . (4.36)

This term being linear in the field operators, the leading energy shift is the second-
order shift (1.22) with |0〉 �→ |ψ〉. With intermediate states |I 〉 = |k′〉|1′λ(r,ω)〉 and
transition frequencies ω′nk = (E ′n − E ′k)/�, it takes the form

ΔE ′ = Δ2 E ′ = −1

�

∑
k

∑
λ=e,m

∫
d3r

∞∫

0

dω

ω − ω′nk

× 〈n′|〈{0′}|− d̂ ′ · Ê′(rA)|1′λ(r,ω)〉|k′〉
·〈k′|〈{1′λ(r,ω)}|− d̂ ′ · Ê′(rA)|{0′}〉|n′〉 . (4.37)

The transition matrix elements can be found by noting that the field expan-
sion (1.22) and the commutation relations (1.17) and (1.18) remain valid for the
primed variables of the multipolar scheme, so that

〈k′|〈1′λ(r,ω)| − d̂ ′ · Ê′(rA)|{0′}〉|n′〉 = −d ′kn ·G∗λ(rA, r,ω) (4.38)

with d ′mn = 〈m′|d̂ ′|n′〉. With these explicit matrix elements and the integral rela-
tion (1.25), the energy shift becomes

ΔE ′ = −μ0

π

∑
k

P
∞∫

0

dω

ω − ω′nk
ω2d ′nk ·ImG(rA, rA,ω)·d ′kn . (4.39)

Again, this result differs from the ground-state one only via the replacements d ′0k �→
d ′nk and ω′k0 �→ ω′kn . The latter of these modifications leads to poles in the frequency
integrand for transitions to lower-lying states.
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We now follow exactly the same steps as for the minimal-coupling calculation.
Extracting the CP potential by discarding the bulk Green’s tensor and using the
integration contour as depicted in Fig. 4.1, we arrive at [2–4]

U ′n(rA) = U ′nres
n (rA)+U ′res

n (rA) (4.40)

with

U ′nres
n (rA) = �μ0

2π

∞∫

0

dξ ξ2tr
[
α′n(iξ)·G(1)(rA, rA, iξ)

]
, (4.41)

U ′res
n (rA) = −μ0

∑
k<n

ω′2nk d ′nk ·Re G(1)(rA, rA,ω′nk)·d ′kn (4.42)

and

α′n(ω) = lim
ε→0+

1

�

∑
k

(
d ′nk d ′kn

ω′kn − ω − iε
+ d ′kn d ′nk

ω′kn + ω + iε

)
. (4.43)

For an isotropic atom, the two components of the CP potential reduce to

U ′nres
n (rA) = �μ0

2π

∞∫

0

dξ ξ2α′n(iξ) tr G(1)(rA, rA, iξ) , (4.44)

U ′res
n (rA) = −μ0

3

∑
k<n

ω′2nk |d ′nk |2 tr
[
Re G(1)(rA, rA,ω′nk)

]
(4.45)

with

α′n(ω) = lim
ε→0+

2

3�

∑
k

ω′kn|d ′nk |2
ω′2kn − ω2 − iωε

. (4.46)

As in the case of the minimal coupling calculation, we find that the CP potential
of an atom in an excited energy eigenstate has two components: a non-resonant part
due to virtual photons which depends on the atomic polarisability and the Green’s
tensor in an integral form and a resonant part due to real photons that depends on
the Green’s tensor at downward atomic transition frequencies. In fact, the multipolar
result has exactly the same form as the minimal-coupling one. The only difference
lies in the different atomic transition frequencies and dipole matrix elements, which
are determined by the atomic Hamiltonians (1.72) and (1.92) in the two cases. The
two results represent two perturbative approximations to the same exact CP poten-
tial. Note that the multipolar coupling scheme is a lot simpler to work with, as the

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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interaction Hamiltonian consists of a single term only, which is able to produce the
full non-resonant and resonant potentials for all distance regimes. Needless to say
that a result of the form (4.34) for an atom at nonretarded distance from perfectly
conducting bodies also holds in the multipolar coupling scheme,

U ′n(rA) = −〈d̂
′ ·G(1)(rA, rA)· d̂ ′〉n′

2ε0
= −〈d̂

′2〉n′ tr G(1)(rA, rA)

2ε0
, (4.47)

where the second equality is valid for an isotropic atom.
In the following Sect. 4.2, we will discard the primes distinguishing the minimal

and multipolar coupling schemes, bearing in mind that our results apply equally for
both schemes.

4.2 Excited Atom in Front of a Plate

In order to illustrate the differences between the non-resonant vs resonant CP poten-
tials, we consider the example of an atom at distance z A from the surface of different
plates. We will begin with the simplest case of a perfectly conducting plate, followed
by the more complicated examples of a semi-infinite magnetoelectric half space and
a meta-material superlens in front of a perfectly conducting plate.

According to App. A.3.2, the scattering Green’s tensor of the plate (A.35) is for
each of these examples given by

G(1)(r, r,ω) = i

8π2

∫
d2k‖

k⊥
∑
σ=s,p

eσ+eσ−rσe2ik⊥z (4.48)

(k‖ ⊥ ez). The components k‖ and k⊥ of the wave vector parallel and perpendicular
to the plate satisfy the dispersion relation

k⊥ =
√
ω2

c2 − k‖2 , Im k⊥ > 0 . (4.49)

The polarisation unit vectors for s- and p-polarised waves are given by

es± = ek‖×ez , ep± = c

ω

(
k‖ez ∓ k⊥ek‖

)
(4.50)

with rσ denoting the respective reflection coefficients of the plate.
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Introducing polar coordinates in the k‖-plane according to ek‖ = (cosφ, sin φ, 0)

and noting that ez = (0, 0, 1), the unit vectors take the forms

es± = (sin φ,− cosφ, 0) , ep± = c

ω
=

(
∓k⊥ cosφ,∓k⊥ sin φ, k‖

)
,

(4.51)

and hence their products read

es+es− =
⎛
⎝ sin2 φ − sin φ cosφ 0
− sin φ cosφ cos2 φ 0

0 0 0

⎞
⎠ , (4.52)

ep+ep− = c2

ω2

⎛
⎝ −k⊥2 cos2 φ −k⊥2 sin φ cosφ −k‖k⊥ cosφ
−k⊥2 sin φ cosφ −k⊥2 sin2 φ −k‖k⊥ sin φ

k‖k⊥ cosφ k‖k⊥ sin φ k‖2

⎞
⎠ . (4.53)

The angular integration over these products can be easily performed to give

2π∫

0

dφ es+es− = π
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ , (4.54)

2π∫

0

dφ ep+ep− = πc2

ω2

⎛
⎝−k⊥2 0 0

0 −k⊥2 0
0 0 2k‖2

⎞
⎠ . (4.55)

With these results and
∫

d2k‖ = ∫∞
0 k‖dk‖

∫ 2π
0 dφ, the scattering Green’s tensor

becomes

G(1)(r, r,ω) = i

8π

∞∫

0

dk‖ k‖

k⊥
e2ik⊥z

×
⎡
⎣
⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ rs + c2

ω2

⎛
⎝−k⊥2 0 0

0 −k⊥2 0
0 0 2k‖2

⎞
⎠ rp

⎤
⎦ . (4.56)

For real frequencies ω, the wave vector (4.49) in the direction parallel to the
plate is real and positive for 0 ≤ k‖ < ω/c, corresponding to propagating waves.
For k‖ > ω/c, it becomes purely imaginary and is given by k⊥ = iκ⊥ with

κ⊥ =
√

k‖2 − ω2

c2 , (4.57)
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so that the associated waves are evanescent or exponentially damped. To separate the
contributions from propagating vs evanescent waves, we use the integration variables
k⊥ (

∫ ω/c
0 dk‖ k‖/k⊥ = ∫ ω/c

0 dk‖) andκ⊥ (
∫∞
ω/c dk‖ k‖/k⊥ = −i

∫∞
0 dκ⊥) for the two

intervals. The Green’s tensor then reads

G(1)(r, r,ω)

= i

8π

ω/c∫

0

dk⊥ e2ik⊥z

⎡
⎣
⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ rs + c2

ω2

⎛
⎝−k⊥2 0 0

0 −k⊥2 0
0 0 2k‖2

⎞
⎠ rp

⎤
⎦

+ 1

8π

∞∫

0

dκ⊥ e−2κ⊥z

⎡
⎣
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ rs + c2

ω2

⎛
⎝κ⊥2 0 0

0 κ⊥2 0
0 0 2k‖2

⎞
⎠ rp

⎤
⎦ . (4.58)

For purely imaginary frequencies ω = iξ, the wave vector in the direction perpen-
dicular to the plate is always purely imaginary, k⊥ = iκ⊥ with

κ⊥ =
√
ξ2

c2 + k‖2 . (4.59)

Using the integration variable κ⊥ (
∫∞

0 dk‖ k‖/κ⊥ = ∫∞
ξ/c dκ⊥), the Green’s tensor

assumes the form

G(1)(r, r, iξ)

= 1

8π

∞∫

ξ/c

dκ⊥ e−2κ⊥z

⎡
⎣
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ rs − c2

ξ2

⎛
⎝κ⊥2 0 0

0 κ⊥2 0
0 0 2k‖2

⎞
⎠ rp

⎤
⎦ . (4.60)

Using these results, the CP potential (4.11) with (4.13) and (4.14) of an excited
atom in front of a plate can be given as

Un(z A) = U nres
n (z A)+U prop

n (z A)+U evan
n (z A) . (4.61)

Here,

U nres
n (z A) = �μ0

8π2

∞∫

0

dξ ξ2

∞∫

ξ/c

dκ⊥ e−2κ⊥z A

{
α‖n(iξ)rs

−
[
κ⊥2c2

ξ2 α‖n(iξ)+
(
κ⊥2c2

ξ2 − 1

)
α⊥n (iξ)

]
rp

}
(4.62)
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with α‖ = 1
2 (αxx + αyy) and α⊥ = αzz is the non-resonant potential due to virtual

photons;

U prop
n (z A) = μ0

8π

∑
k<n

ω2
nk

ωnk/c∫

0

dk⊥
{
|d‖nk |2Im

(
e2ik⊥z Ars

)

−
[

k⊥2c2

ω2
nk

|d‖nk |2 + 2

(
k⊥2c2

ω2
nk

− 1

)
|d⊥nk |2

]
Im

(
e2ik⊥z Arp

)}

(4.63)

with d‖ = dx ex + dy ey and d⊥ = dz ez is the resonant potential due to real propa-
gating photons; and

U evan
n (z A) = −μ0

8π

∑
k<n

ω2
nk

∞∫

0

dκ⊥ e−2κ⊥z A

{
|d‖nk |2Re(rs)

+
[
κ⊥2c2

ω2
nk

|d‖nk |2 + 2

(
κ⊥2c2

ω2
nk

+ 1

)
|d⊥nk |2

]
Re(rp)

}
(4.64)

is the resonant potential due to real evanescent photons. For an atom in an isotropic
state, the potentials simplify to (α‖ = α⊥=α, |d‖|2 = 2

3 |d|2, |d⊥|2 = 1
3 |d|2)

U nres
n (z A) = �μ0

8π2

∞∫

0

dξ ξ2αn(iξ)

∞∫

ξ/c

dκ⊥ e−2κ⊥z A

×
[

rs −
(

2
κ⊥2c2

ξ2 − 1

)
rp

]
, (4.65)

U prop
n (z A) = μ0

12π

∑
k<n

ω2
nk |dnk |2

ωnk/c∫

0

dk⊥

×
[

Im
(
e2ik⊥z Ars

)−
(

2
k⊥2c2

ω2
nk

− 1

)
Im

(
e2ik⊥z Arp

)]
, (4.66)

U evan
n (z A) = − μ0

12π

∑
k<n

ω2
nk |dnk |2

∞∫

0

dκ⊥ e−2κ⊥z A

×
[

Re(rs)+
(

2
κ⊥2c2

ω2
nk

+ 1

)
Re(rp)

]
. (4.67)

Note that while the separation (4.61) provides a physical interpretation in terms
of contributions due to virtual vs real propagating and evanescent photons, these
components cannot be observed individually.
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4.2.1 Perfectly Conducting Plate

Let us begin with the simplest case of a perfectly conducting plate. Requiring the
parallel component of the electric field to vanish on the plate surface, one can show
that the reflection coefficients of such a plate are rs = −1 and rp = +1, cf. Sect. 3.3.1
in Vol. I. The non-resonant potential for a perfectly conducting plate thus reads

U nres
n (z A) =− �μ0

8π2ε0

∞∫

0

dξ

∞∫

ξ/c

dκ⊥ e−2κ⊥z A

[(
κ⊥2 + ξ2

c2

)
α‖n(iξ)

+
(
κ⊥2 − ξ2

c2

)
α⊥n (iξ)

]
(4.68)

and after performing the κ⊥-integral, we find

U nres
n (z A) =− �

32π2ε0z3
A

∞∫

0

dξ e−2ξz A/c
[
α‖n(iξ)

(
1+ 2

ξz A

c
+ 4

ξ2z2
A

c2

)

+ α⊥n (iξ)

(
1+ 2

ξz A

c

)]
. (4.69)

This result may be further simplified in the retarded and nonretarded limits. In the
retarded limit z A � c/ω− (ω−: minimum of the relevant atomic transition frequen-
cies) of large atom–plate distances, the main contribution to the ξ-integral comes
from a range where the approximation αn(iξ) � αn(0) ≡ αn is valid, and an
evaluation of the ξ-integral results in

U nres
n (z A) = −�c(2α‖n + α⊥n )

32π2ε0z4
A

. (4.70)

In the opposite nonretarded limit z A � c/ω+ (ω+: maximum of the relevant atomic
transition frequencies), the factors αn(iξ) limit the ξ-integral to an interval where we
may approximately set e−2ξz A/c � 1 and neglect the second and third terms in the
large round brackets. Recalling the definition (4.15) of the atomic polarisability, the
ξ-integral can then be performed by means of

∞∫

0

dξ α‖n(iξ) = π

2�

∑
k

sgn(ωkn)|d‖nk |2 , (4.71)

∞∫

0

dξ α⊥n (iξ) = π

�

∑
k

sgn(ωkn)|d⊥nk |2 , (4.72)
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resulting in

U nres
n (z A) = − 1

64πε0z3
A

∑
k

sgn(ωkn)
(
|d‖nk |2 + 2|d⊥nk |2

)
. (4.73)

In general, the non-resonant potential contains attractive contributions due to
virtual transitions to higher-energy levels as well as repulsive ones due to downward
transitions. For an isotropic ground-state atom, the CP full potential is purely non-
resonant, U0(z A) = U nres

0 (z A), and all transitions are downward, sgn(ωk0) = +1
for all k. Invoking the completeness relation

∑
k |d0k |2 = 〈d̂2〉, we then recover our

earlier results (4.103)–(4.105) of Vol. I: The ground-state potential of an atom next
to a perfectly conducting plate is purely attractive and proportional to 1/z4

A and 1/z3
A

in the retarded and nonretarded limits.
For an excited atom, we need to consider the resonant potentials due to propagating

and evanescent waves as well. For a perfectly reflecting plate (rs = −1 and rp = +1)
the propagating-wave potential (4.63) reads

U prop
n (z A) =− 1

8πε0

∑
k<n

ωnk/c∫

0

dk⊥ sin(2k⊥z A)

[(
k⊥2 + ω2

nk

c2

)
|d‖nk |2

+ 2

(
k⊥2 − ω2

nk

c2

)
|d⊥nk |2

]
. (4.74)

The k⊥-integral can be performed, resulting in

U prop
n (z A) =− 1

32πε0z3
A

×
∑
k<n

{|d‖nk |2
[
cos(2x)+ 2x sin(2x)− 4x2 cos(2x)− 1+ 2x2]

+ 2|d⊥nk |2
[
cos(2x)+ 2x sin(2x)− 1− 2x2]}

x=ωnk z A/c .

(4.75)

The propagating-wave potential simplifies to

U prop
n (z A) = μ0

16πz A

∑
k<n

ω2
nk

{
|d‖nk |2

[
2 cos

(
2ωnk z A

c

)
− 1

]
+ 2|d⊥nk |2

}
(4.76)

in the retarded limit, while becoming negligible in the nonretarded limit,

U prop
n (z A) = 0 . (4.77)
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The evanescent-wave potential (4.64) for a perfectly conducting plate

U evan
n (z A) = − 1

8πε0

∑
k<n

∞∫

0

dκ⊥ e−2κ⊥z A

[(
κ⊥2 − ωnk

c2

)
|d‖nk |2

+ 2

(
κ⊥2 + ωnk

c2

)
|d⊥nk |2

]
(4.78)

can be found by carrying out the κ⊥-integral,

U evan
n (z A) =− 1

32πε0z3
A

∑
k<n

[
|d‖nk |2

(
1− 2

ω2
nk z2

A

c2

)

+ 2|d⊥nk |2
(

1+ 2
ω2

nk z2
A

c2

)]
. (4.79)

In the retarded and nonretarded limits, it simplifies to

U evan
n (z A) = μ0

16πz A

∑
k<n

ω2
nk

(
|d‖nk |2 − 2|d⊥nk |2

)
(4.80)

and

U evan
n (z A) = − 1

32πε0z3
A

∑
k<n

(
|d‖nk |2 + 2|d⊥nk |2

)
, (4.81)

respectively.
The total CP potential of an excited atom in front of a perfectly conducting plate is

given by the sum of the non-resonant (4.69), propagating-wave (4.75) and evanescent-
wave (4.79) potentials. Note that the result has originally been obtained and later
been re-examined on the basis of two alternative approaches: normal-mode QED in
free space [6, 7, 11, 12] and linear-response theory [5, 13]. The CP potential takes
particularly simple forms in the retarded and nonretarded limits. In the retarded limit,
the non-resonant potential (4.70) becomes negligible in comparison with the other
two components. The evanescent-wave potential (4.79) cancels the non-oscillating
component of the propagating-wave potential (4.76) to yield

Un(z A) = μ0

8πz A

∑
k<n

ω2
nk |d‖nk |2 cos

(
2ωnk z A

c

)

− 1

32πε0z3
A

∑
k<n

(
|d‖nk |2 + 2|d⊥nk |2

)
. (4.82)

The retarded CP potential is hence dominated by spatially oscillating contributions
for each downward transition with periods λnk/2, λnk = 2πc/ωnk denoting the
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wavelength of the emitted real photons. This can be easily understood from an inter-
ference effect. The main contribution to the interaction in the retarded limit is due
to normal-incident waves (k‖ = 0). Such waves are emitted by the atom and they
travel a distance 2z A to the plate and back. To understand the sign of the potential, we
note that normal-incident electric waves acquire a minus sign upon reflection from
the surface of a perfectly reflecting plate. The reflected field is hence anti-parallel to
the emitting dipole moment whenever the path length is equal to an integer multiple
to the wavelength, 2z A = mλnk with m ∈ N. According to our classical interpreta-
tion (4.23), the interaction energy is equal to minus the product of dipole moment and
reflected field, so that Un ∝ + cos(2ωnk z A/c), in agreement with the above result.
Note that dipole moments perpendicular to the plate surface do not contribute to the
oscillating potential, as they cannot emit transverse electric waves in the direction
normal to the plate. For an isotropic atom, we find the rotationally averaged result
(|d‖|2 = 2|d⊥nk |2 = 2

3 |d|2)

Un(z A) = μ0

12πz A

∑
k<n

ω2
nk |dnk |2 cos

(
2ωnk z A

c

)
− 1

24πε0z3
A

∑
k<n

|dnk |2 . (4.83)

For large atomic transition frequencies, the period of the spatial oscillations may
become very small; this is true in particular for atoms in low-lying excited states.
When the oscillations cannot be resolved experimentally, then the first term averages
to zero and only the attractive 1/z3

A potential due to evanescent waves remains.
In the nonretarded limit, the propagating-waves contribution (4.77) to the total

potential vanishes. The non-resonant potential (4.73) with its attractive and repulsive
components combines with the attractive evanescent-wave potential (4.73) to yield
the purely attractive total potential

Un(z A) = − 1

64πε0z3
A

∑
k

(
|d‖nk |2 + 2|d⊥nk |2

)
. (4.84)

Invoking the completeness relation
∑

k dnk dkn = 〈d̂ d̂〉n , we can represent it in the
compact form

Un(z A) = −〈d̂
‖2 + 2d̂⊥2〉n
64πε0z3

A

, (4.85)

which reduces to

Un(z A) = − 〈d̂
2〉n

48πε0z3
A

(4.86)

for an isotropic atom. These results are a special case of the general nonretarded
potential for perfectly conducting bodies as obtained in Sect. 4.1. They immediately
follow from (4.34) or (4.35) by using the electrostatic Green’s tensor of the plate,
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which according to (4.29) and (A.48) is given by

G(1)(r, r) = 1

32πz3

⎛
⎝ 1 0 0

0 1 0
0 0 2

⎞
⎠ . (4.87)

Just like the ground-state potential, the nonretarded potential of an excited atom in
front of a perfectly conducting plate is attractive and proportional to 1/z3

A . Its strength
is governed by the state-dependent average of atom’s electric dipole moment squared.
The nonretarded potential can be easily understood using the image-dipole model:
An electric dipole moment d̂ = (d̂x , d̂y, d̂z) situated at a distance z A from a perfectly

conducting plate produces an image d̂� = (−d̂x ,−d̂y, d̂z) at position −z A behind
the plate. The CP potential (4.85) is simply the average interaction energy of the
dipole and its image [14]

Un(z A) = 1
2

〈d̂ · d̂� − 3d̂z d̂�
z 〉n

4πε0(2z A)3 = −〈d̂
‖2 + 2d̂⊥2〉n
64πε0z3

A

. (4.88)

4.2.2 Half Space

We next consider a semi-infinite half space with finite magnetoelectric properties.
Using the reflection coefficients (A.41) and (A.42) from App. A.3.2, the non-resonant
CP potential (4.62) takes the explicit form

U nres
n (z A) = �μ0

8π2

∞∫

0

dξ ξ2

∞∫

ξ/c

dκ⊥ e−2κ⊥z A

{
α‖n(iξ)

μ(iξ)κ⊥ − κ⊥1
μ(iξ)κ⊥ + κ⊥1

−
[
κ⊥2c2

ξ2 α‖n(iξ)+
(
κ⊥2c2

ξ2 − 1

)
α⊥n (iξ)

]
ε(iξ)κ⊥ − κ⊥1
ε(iξ)κ⊥ + κ⊥1

}
(4.89)

with

κ⊥1 =
√
κ⊥2 + [ε(iξ)μ(iξ)− 1]ξ

2

c2 . (4.90)

The retarded limit z A � c/ω− (ω−: minimum of all relevant atomic and medium
resonance frequencies) can be treated by introducing the variable v = κ⊥c/ξ to
transform the integral according to

∫∞
0 dξ

∫∞
ξ/c dκ⊥ = ∫∞

1 dv
∫∞

0 dξ ξ/c where now

κ⊥1 = (ξ/c)
√
εμ− 1+ v2. The exponential effectively limits the ξ-integral to a

range where αn(iξ) � αn(0) ≡ αn , ε(iξ) � ε(0) ≡ ε, μ(iξ) � μ(0) ≡ μ, With
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these approximations, the ξ-integral can be performed to yield the retarded potential

U nres
n (z A) = − 3�c

64π2ε0z4
A

∞∫

1

dv

[(
α
‖
n + α⊥n

v2 − α⊥n
v4

)
εv −√

εμ− 1+ v2

εv +√
εμ− 1+ v2

−α
‖
n

v4

μv −√
εμ− 1+ v2

μv +√
εμ− 1+ v2

]
. (4.91)

In the opposite, nonretarded limit
√
εμ z A � c/ω+ (ω+: maximum of all relevant

atomic and medium resonance frequencies), the factors αn(iξ), ε(iξ)κ⊥ − κ⊥1 and
μ(iξ)κ⊥ − κ⊥1 limit the ξ-integral to a range where we can apply a Taylor expan-
sion in ξ

√
ε(iξ)μ(iξ)− 1/(cκ⊥). Carrying out the κ⊥-integral while retaining terms

quadratic in ξ, one finds

U nres
n (z A) =− �

32π2ε0z3
A

∞∫

0

dξ
[
α‖n(iξ)+ α⊥n (iξ)

] ε(iξ)− 1

ε(iξ)+ 1

+ �μ0

16π2z A

∞∫

0

dξ ξ2
{
α‖n(iξ)

μ(iξ)− 1

μ(iξ)+ 1
+ α⊥n (iξ)

ε(iξ)− 1

ε(iξ)+ 1

+ [
α‖n(iξ)+ α⊥n (iξ)

] ε(iξ)[ε(iξ)μ(iξ)− 1]
[ε(iξ)+ 1]2

}
. (4.92)

The permittivity of a metal can be described by the Drude model

ε(ω) = 1− ω2
P

ω(ω + iγ)
(4.93)

(ωP: plasma frequency, γ: damping constant). It becomes infinite in the limit of small
frequencies |ω| → 0. The perfect-conductor model is hence an excellent approx-
imation for the small-frequency response of a metal and hence the large-distance
behaviour of the non-resonant potential: For larger distances, the non-resonant CP
potential increasingly dominated by low-frequency contributions. In the retarded
limit, the v-integral can be carried out for a metal with ε(0) = ∞ and we recover the
perfect-conductor result (4.70). The dissipation-less currents inside a superconductor
at very small temperatures is more accurately described by a plasma model [15]

ε(ω) = 1− ω2
P

ω2 . (4.94)

Again, we have ε(0) = ∞ and the perfect-conductor result holds. Due to the strongly
reduced absorption, this agreement with the ideal case is valid over a even larger range
of distances [16].
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For an isotropic ground-state atom, the CP potential is purely non-resonant,
U0(z A) = U nres

0 (z A). Using α‖ = α⊥ = α, we recover our earlier results (4.133),
(4.134), (4.137)–(4.139) as given in Vol. I. With the ground-state polarisability being
strictly positive, the sign of the potential purely depends on the relative strengths of
the electric vs magnetic properties of the half space. The retarded potential is pro-
portional to 1/z4

A and attractive or repulsive for dominantly electric or magnetic half
spaces, respectively. The nonretarded potential is attractive with a 1/z3

A asymptote
for a dominantly electric half space and repulsive with an 1/z A power law for a
purely magnetic one. For details, see the discussion in Sect. 4.6.2 of Vol. I.

For an excited atom, the behaviour of the non-resonant CP potential is more
complex, because upward and downward transitions contribute to the polarisability
with different signs. In addition, we need to include the resonant contributions to the
potential. With the reflection coefficients (A.41) and (A.42) of the half space, the
resonant potential (4.63) due to propagating waves reads

U prop
n (z A) = μ0

8π

∑
k<n

ω2
nk

ωnk/c∫

0

dk⊥

×
{
|d‖nk |2Im

[
e2ik⊥z A

μ(ωnk)k⊥ − k⊥1
μ(ωnk)k⊥ + k⊥1

]
−

[
k⊥2c2

ω2
nk

|d‖nk |2

+ 2

(
k⊥2c2

ω2
nk

− 1

)
|d⊥nk |2

]
Im

[
e2ik⊥z A

ε(ωnk)k⊥ − k⊥1
ε(ωnk)k⊥ + k⊥1

]}

(4.95)

with

k⊥1 =
√
[ε(ωnk)μ(ωnk)− 1] ω

2
nk

c2 + k⊥2 , Im k⊥1 > 0 . (4.96)

In the retarded limit z A � c/ωnk , the main contribution to the integral with its oscil-
lating integrand comes from the stationary-phase point k‖ = 0 where dk⊥/dk‖ = 0,
cf. (4.49). We may hence set k⊥ � ωnk/c and k⊥1 �

√
ε(ωnk)μ(ωnk)ωnk/c in the

reflection coefficients. The k⊥-integral can then be solved. Retaining only the leading
order in c/(ωnk z A), we find

U prop
n (z A) = μ0

16πz A

∑
k<n

ω2
nk

{
2|d⊥nk |2Re

[√
ε(ωnk)−√μ(ωnk)√
ε(ωnk)+√μ(ωnk)

]

+|d‖nk |2Re

[(
2e2iωnk z A/c − 1

) √
ε(ωnk)−√μ(ωnk)√
ε(ωnk)+√μ(ωnk)

]}
(4.97)

where the roots have to be taken such that Im
√
ε , Im

√
μ > 0 for absorbing media.

In the nonretarded limit z A � c/ωnk , we approximate e2ik⊥z A � 1 and let k⊥1 � k⊥

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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in the reflection coefficients. Performing the k⊥-integral and noting that

Im

(
ε− 1

ε+ 1

)
= 2Im ε

|ε+ 1|2 , Im

(
μ− 1

μ+ 1

)
= 2Imμ

|μ+ 1|2 , (4.98)

we obtain

U prop
n (z A) = μ0

4πc

∑
k<n

ω3
nk

[
|d‖nk |2

Imμ(ωnk)

|μ(ωnk)+ 1|2

+
(

4
3 |d⊥nk |2 − 1

3 |d‖nk |2
) Im ε(ωnk)

|ε(ωnk)+ 1|2
]

. (4.99)

In contrast to the perfect-conductor result (4.77), the propagating-wave potential of
a magnetoelectric half space hence takes a non-vanishing value on the surface.

The evanescent-wave potential (4.64) takes the form

U evan
n (z A) = −μ0

8π

∑
k<n

ω2
nk

∞∫

0

dκ⊥ e−2κ⊥z A

{
|d‖nk |2Re

[
μ(ωnk)κ⊥ − κ⊥1
μ(ωnk)κ⊥ + κ⊥1

]

+
[
κ⊥2c2

ω2
nk

|d‖nk |2 + 2

(
κ⊥2c2

ω2
nk

+ 1

)
|d⊥nk |2

]
Re

[
ε(ωnk)κ⊥ − κ⊥1
ε(ωnk)κ⊥ + κ⊥1

]}

(4.100)

for the magnetoelectric half space with

κ⊥1 =
√
κ⊥2 − [ε(ωnk)μ(ωnk)− 1] ω

2
nk

c2 , Reκ⊥1 > 0 . (4.101)

In the retarded limit, we put κ⊥ � ωnk/c and κ⊥1 �
√
ε(ωnk)μ(ωnk)ωnk/c in the

reflection coefficients. Solving the integral and retaining only the leading orders in
c/(ωnk z A), we obtain

U evan
n (z A) = μ0

16πz A

∑
k<n

ω2
nk

(|d‖nk |2 − 2|d⊥nk |2
)
Re

[√
ε(ωnk)−√μ(ωnk)√
ε(ωnk)+√μ(ωnk)

]
.

(4.102)

In the nonretarded limit, we set κ⊥1 � κ⊥ in the reflection coefficients and integrate
to find
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U evan
n (z A) = − 1

32πε0z3
A

∑
k<n

(
|d‖nk |2 + 2|d⊥nk |2

) |ε(ωnk)|2 − 1

|ε(ωnk)+ 1|2

− μ0

16πz A

∑
k<n

ω2
nk

[
|d‖nk |2 ,

|μ(ωnk)|2 − 1

|μ(ωnk)+ 1|2 + 2|d⊥nk |2
|ε(ωnk)|2 − 1

|ε(ωnk)+ 1|2
]

,

(4.103)

note that

Re

(
ε− 1

ε+ 1

)
= |ε|

2 − 1

|ε+ 1|2 , Re

(
μ− 1

μ+ 1

)
= |μ|

2 − 1

|μ+ 1|2 . (4.104)

The total CP potential of an excited atom in front of a magnetoelectric half space
is the sum of the non-resonant, propagating-wave and evanescent-wave components
as found above. Alternative derivations of our result include normal-mode QED [11,
17, 18] linear-response theory [5] and a microscopic, dilute-gas model [19, 20]. In
the retarded limit, the non-resonant contribution (4.91) is negligible. To leading order
in 1/z A, the evanescent-wave potential (4.100) cancels the non-oscillating parts of
the propagating-wave potential (4.97) to yield a oscillating potential [21]

Un(z A) = μ0

8πz A

∑
k<n

ω2
nk |d‖nk |2Re

[
e2iωnk z A/c

√
ε(ωnk)−√μ(ωnk)√
ε(ωnk)+√μ(ωnk)

]
.

(4.105)

For a metal (4.93) or a superconductor (4.94), we have |ε(ωnk)| � 1, and the total
retarded potential is well approximated by the perfect-conductor result (4.82). For a
magnetodielectric half space, one finds a spatially oscillating potential whose ampli-
tude and phase are determined by the permittivity and permeability. Note that we
have discarded the non-oscillating 1/z3

A contribution to the retarded potential.
In the nonretarded limit, the finite contribution (4.99) from propagating waves can

be ignored in comparison to the non-resonant and evanescent-wave potentials (4.92)
and (4.103) which are governed by inverse power laws. It is instructive to distinguish
between electric and magnetic half spaces. For a dominantly electric half space, the
nonretarded CP potential reads [21–23]

Un(z A) = − �

32π2ε0z3
A

∞∫

0

dξ
[
α‖n(iξ)+ α⊥n (iξ)

] ε(iξ)− 1

ε(iξ)+ 1

− 1

32πε0z3
A

∑
k<n

(
|d‖nk |2 + 2|d⊥nk |2

) |ε(ωnk)|2 − 1

|ε(ωnk)+ 1|2 . (4.106)
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It consists of various contributions which all follow 1/z3
A power laws. For the case

of a superconductor, the plasma model (4.94) together with the atomic polarisability
(4.15) leads to

Un(z A) = − 1

64πε0z3
A

∑
k

sgn(ωkn)
(
|d‖nk |2 + 2|d⊥nk |2

) ωS

ωS + |ωkn|

− 1

32πε0z3
A

∑
k<n

(
|d‖nk |2 + 2|d⊥nk |2

) ω2
S

ω2
S + ω2

kn

. (4.107)

The non-resonant potential (first term) contains attractive contributions from upward
transitions as well as well as repulsive ones from downward transitions. On the con-
trary, the contributions to the evanescent-wave potential (second term) are purely
attractive. The total potential of the superconductor is attractive and well approx-
imated by the perfect-conductor result (4.85) provided that ωS � |ωkn|. Similar
results can be found for an ordinary metal (4.93), where the potential is slightly
reduced due to material absorption.

For a dielectric, the attractive and repulsive contributions to the non-resonant
potential are smaller than the respective perfect-conductor results (4.73). However,
the contributions to the evanescent-wave potential (second term) can exceed their
perfect-conductor counterparts (4.81) in magnitude. In particular, the evanescent-
wave contribution associated with an atomic transition is strongly enhanced near
the surface-plasmon resonance ε(ωnk) � −1 where the denominator |ε(ωnk) + 1|2
becomes very small. Furthermore, it may take different signs for a dielectric half
space. Being attractive for |ε(ωnk)| > 1, repulsive potentials can be realised when
|ε(ωnk)| < 1. Note that the resonant evanescent potential dominates over the non-
resonant one near the surface-plasmon resonance, hence determining the sign of the
total potential. For an example, see Fig. 7.4 in Sect. 7.2.2.

For a purely magnetic half space, the total CP potential reads [21]

Un(z A) = �μ0

16π2z A

∞∫

0

dξ ξ2
{
α‖n(iξ)

μ(iξ)− 1

μ(iξ)+ 1

+
[
α‖n(iξ)+ α⊥n (iξ)

] μ(iξ)− 1

4

}

− μ0

16πz A

∑
k<n

ω2
nk |d‖nk |2

|μ(ωnk)|2 − 1

|μ(ωnk)+ 1|2 . (4.108)

It is similar in structure to the result for an electric half space, but exhibits a weaker,
1/z A power law. In addition, the signs of the non-resonant contributions are reversed,
now being repulsive for upward transitions and attractive for downward ones. In
close analogy to the electric case, the evanescent-wave contributions are attractive if
|μ(ωnk)| > 1 and repulsive if |μ(ωnk)| < 1.

http://dx.doi.org/10.1007/978-3-642-32466-6_7
http://dx.doi.org/10.1007/978-3-642-32466-6_7
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Fig. 4.2 CP potential of an excited two-level atom with parallel dipole moment in front of
(i) electric or (ii) magnetic half spaces with different strengths of the electric/magnetic proper-
ties. The chosen parameters for ε or μ are 1.5 (solid lines), −1.5 (dashed lines), 0.2 (dotted lines)
and −0.2 (dash-dotted lines). All half spaces are weakly absorbing, Im ε, Imμ = 10−3

The transition between the oscillating retarded potential and the strictly monoto-
nous nonretarded regime is illustrated in Fig. 4.2(i) where we display the CP potential
of an excited two-level atom in front of semi-infinite half spaces consisting of four
different weakly absorbing dielectrics with permittivities ε(ω10) ≡ ε. Neglecting
the non-resonant contribution, the potential (4.61) has been obtained by numeri-
cally integrating the resonant potentials (4.95) and (4.100) due to propagating and
evanescent waves.

In agreement with our analytical result (4.105), the potential oscillates at large
distances with a period λ10/2 = πc/ω10. For Re ε = 1.5 or 0.2, the fraction
in (4.105) is almost purely real and consequently the potential is proportional to
± cos(2ω10z A/c)/z A. As the numerator is smaller than the denominator in both
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cases, the amplitudes of the oscillations are rather small. For Re ε = −1.5 or −0.2,
the fraction is genuinely complex, resulting in phase shifts of the oscillations. With
numerator and denominator being more balanced in magnitude, the oscillations are
more pronounced. The resonant potential at short distances is attractive for the cases
Re ε = ±1.5 with |ε| > 1 and repulsive for Re ε = ±0.2 due to |ε| < 1, as expected
from (4.106).

The corresponding potentials of an excited two-level atom above purely magnetic
half spaces with permeabilities μ(ω10) ≡ μ are shown in Fig. 4.2(ii). The oscillating
retarded potentials for the magnetic half spaces are the exact opposites of the respec-
tive electric half-space results, as may have been anticipated from our analytical
findings (4.105). On the contrary, the potentials at short distances exhibit the same
signs as their electric counterparts, being attractive for Reμ = ±1.5 and repulsive
for Reμ = ±0.2. They are smaller in magnitude as a result of the weaker, 1/z A

power law, recall (4.106).

4.2.3 Meta-Material Superlens

Meta-materials are recently proposed [24] and fabricated [25–30] micro- or
nanostructures whose effective permittivity and permeability can be efficiently tai-
lored over a wide parameter range. In particular, it is possible to realize left-handed
media whose permittivity and permeability simultaneously exhibit negative real
parts. As pointed out by Veselago as early as 1968 [31], Maxwell’s equations dictate
that the vectors E, B and k of an electromagnetic wave in such a medium form a
left-handed triad rather than the usual right-handed one. In addition, the refractive
index n = √εμ inside a left-handed medium has a negative real part, as can easily
be seen: In an absorbing medium, both permittivity and permeability must have a
positive imaginary part. For a left-handed medium, they furthermore have a negative
real part and are situated in the second quadrant of the complex plane. The two pos-
sible choices for the square root defining the refractive index hence lie in the second
and fourth quadrants. With the physical requirement that the refractive index must
have a positive imaginary part inside an absorbing medium, n must be situated in the
second quadrant, hence exhibiting a negative real part. This leads to the phenomenon
of negative refraction. According to Snell’s law [14]

sin θin = Re(n) sin θtrans , (4.109)

a light beam incident on the surface of an ordinary right-handed medium of refractive
index n is refracted towards the axis of incidence, as shown in Fig. 4.3(i). For a left-
handed material with Re(n) < 0, Snell’s law requires the angle of the transmitted
beam to be negative, so that the beam is refracted across the axis of incidence.

Pendry suggested to exploit the effect negative refraction for the construction of
a planar superlens [32]. A plate of thickness d consisting of an idealised left-handed
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dd/2 d/2

Fig. 4.3 (i) Positive versus (ii) negative refraction of light incident on right- and left-handed media.
(iii) Superlens consisting of a left-handed medium

meta-material with refractive index n = −1 will exhibit two focal planes at distance
d/2 on either side. As illustrated in Fig. 4.3(iii), light emitted from an arbitrary point
on one of the focal planes will be perfectly focussed into a corresponding point on
the opposite focal plane. Such an ideal superlens would not only focus propagating
waves, but also transmit evanescent waves without any loss of amplitude. The field at
the image point would hence be a complete and faithful reconstruction of the field at
the object point. This is possible due to negative refraction. In a manner of speaking,
optical path lengths inside a left-handed medium are negative, so that the lens is able
to undo the exponential damping which the evanescent field experiences in vacuum
and restore it at the image point.

Two atoms situated at corresponding focal points on either side of a superlens
will experience perfect coupling as if they were situated in the same place [33, 34].
To mimic this effect with a single atom, we replace the second atom by a perfect
mirror, considering the scenario depicted in Fig. 4.4: An excited two-level atom is
placed at a distance z A from a left-handed plate of thickness d with permittivity
ε(ω10) ≡ ε = −1 and permeability μ(ω10) ≡ μ = −1 with a perfectly conducting
mirror placed at the far end.

The effect of the superlens plus perfect mirror on the atom can be anticipated by
an image construction: As shown in Fig. 4.4, an atom at position z A = z A−d relative
to the focal plane gives rise to an image at z�

A = d − z A. The atom and its image are
situated at opposite sides of the focal plane and are separated by a distance 2|z A|. The
image created by the superlens plus perfectly conducting mirror is exactly the same
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Fig. 4.4 Excited atom in front of a superlens consisting of a left-handed plate and a perfectly
conducting mirror

as that which would be created by a perfectly conducting mirror placed at the focal
plane. We can hence expect a strong attraction of the atom towards the focal plane.

For a more quantitative analysis, let us calculate the two dominant, resonant
contributions to the CP potential of the excited atom. The propagating-wave potential
is given by (4.63) where according to (A.39) and (A.40) in App. A.3.2, the reflection
coefficients of a magnetoelectric plate plus perfect mirror read

rs =
(
μk⊥−k⊥1

)− (
μk⊥+k⊥1

)
e2ik⊥1 d

(
μk⊥+k⊥1

)− (
μk⊥−k⊥1

)
e2ik⊥1 d

, (4.110)

rp =
(
εk⊥−k⊥1

)+ (
εk⊥+k⊥1

)
e2ik⊥1 d

(
εk⊥+k⊥1

)+ (
εk⊥−k⊥1

)
e2ik⊥1 d

(4.111)

with k⊥1 defined as in (4.96). For an ideal superlens with ε = −1 and μ = −1, we
have k⊥1 = −k⊥ and the reflection coefficients simplify to

rs = −e−2ik⊥d , rp = e−2ik⊥d . (4.112)

Substituting them into the propagating-wave potential, we find
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U prop
1 (z A) =− 1

8πε0

ω10/c∫

0

dk⊥ sin(2k⊥z A)

[(
k⊥2 + ω2

10

c2

)
|d‖10|2

+ 2

(
k⊥2 − ω2

10

c2

)
|d⊥10|2

]
. (4.113)

This result exactly agrees with the propagating-wave potential (4.74) of an atom
at distance z A = z A − d from a perfectly conducting mirror. By comparison with
(4.75), the k⊥-integral leads to

U prop
1 (z A) =− 1

32πε0z3
A

× {|d‖10|2
[
cos(2x)+ 2x sin(2x)− 4x2 cos(2x)− 1+ 2x2]

+ 2|d⊥10|2
[
cos(2x)+ 2x sin(2x)− 1− 2x2]}

x=ω10z A/c .

(4.114)

The evanescent-wave potential of a magnetoelectric plate plus perfectly conduct-
ing mirror reads is given by (4.64) with reflection coefficients

rs =
(
μκ⊥−κ⊥1

)− (
μκ⊥+κ⊥1

)
e−2κ⊥1 d

(
μκ⊥+κ⊥1

)− (
μκ⊥−κ⊥1

)
e−2κ⊥1 d

, (4.115)

rp =
(
εκ⊥−κ⊥1

)+ (
εκ⊥+κ⊥1

)
e−2κ⊥1 d

(
εκ⊥+κ⊥1

)+ (
εκ⊥−κ⊥1

)
e−2κ⊥1 d

(4.116)

with κ⊥1 being given by (4.101). In particular, for a superlens, ε = −1, μ = −1 and
κ⊥1 = κ⊥ lead to

rs = −e2κ⊥d , rp = e2κ⊥d . (4.117)

Substitution into (4.64) yields

U evan
1 (z A) =− 1

8πε0

∞∫

0

dκ⊥ e−2κ⊥z A

[(
κ⊥2 − ω10

c2

)
|d‖10|2

+ 2

(
κ⊥2 + ω10

c2

)
|d⊥10|2

]
, (4.118)

again in agreement with respective potential (4.78) of an atom at distance z A from
perfectly conducting plate. Note, however, that the position z A of the atom relative
to the focal plane takes negative values when the atom is between the superlens and
the focal plane, z A < d. In this case, the κ⊥-integral diverges. The convergent result
for z A > d can be read off by comparison with (4.79), so that we have
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U evan
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(4.119)

The total resonant potential of the excited atom is the sum of the propagating-
and evanescent-wave contributions. By comparison with the corresponding perfect-
conductor results (4.97), (4.99), (4.102) and (4.103), it reduces to [35]

U1(z A) = μ0ω
2
10|d‖nk |2

8πz A
cos

(
2ω10z A

c

)
(4.120)

in the retarded limit z A � c/ω10, and to

U1(z A) = −|d
‖
10|2 + 2|d⊥10|2

32πε0z3
A

(4.121)

in the nonretarded limit 0 < z A � c/ω10.
The left-handed superlens hence effectively moves the perfectly conducting mirror

from its original position to the focal plane. In a manner of speaking, the negative
optical path inside the lens cancels the optical path in the free-space region between
the lens and its focal plane. As a result, the oscillatory potential in the retarded regime
is slightly enhanced due to the replacement 1/z A �→ 1/z A; and it acquires a phase
shift. Furthermore, the lens-induced enhancement of the evanescent field leads to a
strongly attracting, 1/z3

A potential when approaching the focal plane. Strikingly, this
diverging power-law potential occurs at a position in free space which is not in close
proximity to a physical surface.

The results of our idealised setup require two notes of caution. Firstly, while
the propagating-wave potential is in agreement with our expectations from the
image construction of Fig. 4.4 for all atomic positions, the evanescent-wave poten-
tial gives the expected result only for positions beyond the focal plane. In the region
between the focal plane and the superlens surface, the potential is infinite due to an
over-enhancement of evanescent waves by the lens. Secondly, recall the dispersive,
frequency-dependent nature of permittivity and permittivity. No material can act as
a superlens at all frequencies, so our configuration is unable to enhance the non-
resonant CP potential, which depends on the magnetoelectric response over a wide
range of frequencies. The non-resonant contribution (4.73) is therefore absent from
the 1/z3

A potential (4.121).
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Fig. 4.5 CP potential of an excited two-level atom with (i) parallel and (ii) perpendicular dipole
moment in front of a meta-material superlens (ε = μ = −1+ iδ) of thickness d = 5c/ω10, backed
by a perfectly conducting mirror. The chosen value for the absorption strength are δ = 10−1 (solid
lines), 10−3 (dashed lines), 10−4 (dotted lines), 10−5 (dash-dotted lines) and 0 (dash-double dotted
lines)

The divergence of the potential between the superlens and its focal plane is a
result of the unphysical assumptions of a perfectly conducting mirror and a strictly
non-absorbing superlens. In order to investigate the impact of absorption on the super-
lensing effect, we calculate the resonant CP potential of a two-level atom according
to (4.63) and (4.64) with reflection coefficients (4.110), (4.111), (4.115) and (4.116)
for lenses with various degrees of absorption, ε = μ = −1+ iδ. The results are dis-
played in Fig. 4.5 [35]. The figure reveals that the potential reacts very sensitively to
absorption. The ideal non-absorbing result with its strongly attractive potential near
the focal plane is approached only for very small values of the absorption coeffi-
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Fig. 4.6 CP potential of an excited two-level atom with perpendicular dipole moment in front
of a left- versus right-handed meta-material slabs of thickness d = 5c/ω10, backed by a perfectly
conducting mirror. The chosen parameters are Re ε = Reμ = 1 (solid lines), Re ε = 1, Reμ = −1
(dashed lines), Re ε = −1, Reμ = 1 (dotted lines) and Re ε = Reμ = −1 (dash-dotted lines). All
half spaces are weakly absorbing, Im ε, Imμ = 10−4

cient δ. The convergence is slightly better for perpendicular orientation of the atomic
dipole moment. For finite absorption, the potential always remains finite between
the lens and its focal plane.

These observations from Fig. 4.5 raise the question whether the enhanced attrac-
tive potential near the focal plane for finite absorption can still be regarded as a
superlensing effect due to negative refraction. To address this issue, we consider
an atom with perpendicular dipole moment in front of a weakly absorbing lens
in Fig. 4.6, comparing the outcomes for the four different possible choices for the
signs of Re ε, Reμ [21]. The plate with ε = μ = 1 + 10−4i is almost transpar-
ent. As a result, we observe the weak potential of the distant mirror alone. The two
plates where either the permittivity or the permeability exhibit a negative real part
exhibit the typical behaviour of dominantly electric (ε = −1 + 10−4i) or magnetic
(μ = −1 + 10−4i) plates as known from Fig. 4.2. In both cases, an oscillating
potential in the retarded regime turns into a repulsive short-range potential. Only the
left-handed plate (ε = μ = −1+ 10−4i) shows a strongly attractive potential in the
focal region, which can hence be identified as a genuine superlensing effect.
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Chapter 5
Casimir–Polder Forces on Excited Atoms:
Dynamical Approach

As seen in the previous chapter, excited atoms are subject to resonant CP potentials
due to the emission of real photons. However, these enhanced potentials intrinsically
have a limited lifetime. As the excited atom emits a real photon, it decays to a lower-
lying internal state. Spontaneous decay will eventually return the atom to its ground
state where it is subject to the purely non-resonant ground-state potential. The static
approach employed in the previous chapter fails to describe this dynamics of the CP
force. Instead, it only provides us with snapshots of the force at given instants of
time, with the atom being prepared in a given state.

In this chapter, we will develop a dynamical description of the CP force on an
excited atom. Rather than calculating energy shifts, we will identify the CP force as
the quantum average of the time-dependent total Lorentz force acting on the atom.
We will begin by deriving equivalent expressions for this force using the alternative
minimal and multipolar coupling schemes. Solving the coupled atom–field dynamics,
we will then evaluate the CP force as the average quantum Lorentz force. In addition
to being time-dependent, our result will reveal another aspect not grasped by leading-
order perturbation theory: the atomic transitions determining the force are themselves
shifted and broadened in the presence of magnetoelectric bodies. We will illustrate
the impact of this effect by studying an atom above a dielectric half space.

5.1 Lorentz Force

As a foundation for our dynamical approach, we require the total quantum Lorentz
force acting on an atom. We derive suitable equivalent forms for this force using the
minimal and multipolar coupling schemes.

5.1.1 Minimal Coupling

Recall that an atom is simply a collection of point particles α with charges qα and
magnetic moments m̂α. Writing the Newton equation (1.84), in the form

S. Y. Buhmann, Dispersion Forces II, Springer Tracts in Modern Physics 248, 149
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mα
¨̂rα = f̂ α , (5.1)

we see that each particle experiences a force

f̂ α = qαÊ(r̂α)+ qαS
[ ˙̂rα×B̂(r̂α)

]
+∇α

[
m̂α ·B̂(r̂α)

]
(5.2)

when subject to the quantum electromagnetic field. In the following, we will use the
notion Lorentz force for this force as a whole rather than distinguishing the standard
Lorentz force (first two terms) from the Zeeman force (third term). Summing over
all particles contained in the atom and recalling the definition (1.60) of the centre-
of-mass coordinate, we have

m A
¨̂rA = F̂ (5.3)

where the total Lorentz force acting on the atom is given by

F̂ =
∑
α∈A

f̂ α =
∑
α∈A

{
qαÊ(r̂α)+ qαS

[ ˙̂rα×B̂(r̂α)
]
+∇α

[
m̂α ·B̂(r̂α)

]}
. (5.4)

This force may be cast into a more compact form by expressing it in terms of the
atomic charge and current densities. To this end, we rewrite last term by using the
vector identity a×(b×c) = b(a·c)− c(a·b) and exploiting the transversality (1.80)
of the magnetic field,

F̂ =
∑
α∈A

f̂ α =
∑
α∈A

{
qαÊ(r̂α)+ qαS

[ ˙̂rα×B̂(r̂α)
]
+ (m̂α×∇α)×B̂(r̂α)

}
.

(5.5)

Recalling the definitions (1.56) and (1.57) for the atomic charge and current densities,
we then find

F̂ =
∫

d3r
(
ρ̂AÊ + ĵ A×B̂)

. (5.6)

This expression is completely analogous to the Lorentz force (1.105) used in
Sect. 1.2.1 for deriving the Casimir force on a body. The only difference lies in
the charge and current densities. While the Casimir force stems from the Lorentz
force on the macroscopic internal charges and currents inside the body, the CP force
has its origin in the Lorentz force on microscopic atomic charges and currents.

An alternative representation of the Lorentz force can be obtained by express-
ing the atomic charge and current densities in terms of the atomic polarisation and
magnetisation according to (1.65) and (1.66):

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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F̂ = −
∫

d3r
(∇ · P̂A

)Ê +
∫

d3r ˙̂PA×B̂

+
∫

d3r
{
∇×

[
M̂ A + S

(
P̂A×˙̂rA

)]}
×B̂ . (5.7)

Using the rule a×(b×c) = b(a·c)− c(a·b), the first term can be rewritten as

−
∫

d3r
(∇ · P̂A

)Ê = −
∫

d3r
(∇ P̂A

)·Ê +
∫

d3r
(Ê×∇)× P̂A

= ∇A

[∫
d3r P̂A ·Ê

]
+

∫
d3r P̂A× ˙̂B . (5.8)

To obtain the last equality, we have used the identity ∇ P̂A = −∇A P̂A, cf. (1.63),
partially integrated the second term and used the Faraday law (1.31). In a similar way,
using ∇M̂ A = −∇A M̂ A in accordance with (1.64) and exploiting the transversality
(1.80) of the magnetic field, one finds

∫
d3r

{
∇×

[
M̂ A + S

(
P̂A×˙̂rA

)]}
×B̂

= −
∫

d3r
{
∇

[
M̂ A + S

(
P̂A×˙̂rA

)]}
·B̂

+
∫

d3r
(B̂·∇)[

M̂ A + S
(

P̂A×˙̂rA

)]

= ∇A

[∫
d3r

(
M̂ A + P̂A×˙̂rA

)
·B̂

]
. (5.9)

with these identities, the Lorentz force reads [1]

F̂ = ∇A

[∫
d3r P̂A ·Ê +

∫
d3r

(
M̂ A + P̂A×˙̂rA

)
·B̂

]

+ d

dt

∫
d3r P̂A×B̂ . (5.10)

Finally, we need to relate the physical electromagnetic fields Ê and B̂ to the fields
Ê and B̂ of the minimal coupling scheme. According to (1.78), the magnetic fields
coincide, while the physical electric field differs from the minimal-coupling one by
the longitudinal fields created by the charged particles. However, the latter only give
rise to internal forces which do not contribute to the total atomic force due to pairwise
cancellations,

∑
α∈A

qα∇φ̂A(rα) = 0 . (5.11)
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Our result (5.4) and the subsequent manipulations hence remain valid with the
replacements Ê �→ Ê and B̂ �→ B̂, and we have

F̂ = ∇A

[∫
d3r P̂A · Ê +

∫
d3r

(
M̂ A + P̂A×˙̂rA

)
· B̂

]

+ d

dt

∫
d3r P̂A× B̂ . (5.12)

Expanding the atomic polarisation (1.63) and magnetisation (1.64) to leading
order in the relative particle coordinates r̂α, the Lorentz force in long-wavelength
approximation is given by

F̂ = ∇
[

d̂ · Ê(r)+ m̂· B̂(r)+ d̂×˙̂rA · B̂(r)
]∣∣∣

r=r̂A

+ d

dt

[
d̂× B̂(r̂A)

]
, (5.13)

where the electric and magnetic dipole moments of the atom are given by (1.69) and
(1.70). For non-magnetic atoms, the magnetic interaction can be discarded and the
electric-dipole approximation

F̂ = ∇
[

d̂ · Ê(r)+ d̂×˙̂rA · B̂(r)
]∣∣∣

r=r̂A
+ d

dt

[
d̂× B̂(r̂A)

]
(5.14)

applies.
Throughout this chapter, we will assume that the atom is sufficiently slow such

that the influence of its centre-of-mass motion on the CP force can be neglected.
Dispersion forces on moving atoms will be discussed in detail in Chap. 8. Discarding
the velocity-dependent term, the Lorentz force simplifies to

F̂ =
{
∇

[
d̂ · Ê(r)

]
+ d

dt

[
d̂× B̂(r)

]}
r=r̂A

. (5.15)

5.1.2 Multipolar Coupling

The electromagnetic fields Ê′ and B̂′ of the multipolar coupling scheme differ from
those of the minimal coupling scheme. To obtain an expression for the Lorentz
force in terms of the multipolar fields, we employ an alternative route via the
Heisenberg equation. We recall from Sect. 1.2.2 that the particle positions agree in
the two schemes, r̂α = r̂ ′α. As the total Hamiltonians also coincide, the same holds

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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for time derivative of the particle positions. We can hence conclude from (1.102) that
the particle velocities in the multipolar coupling scheme read

mα
˙̂rα = mα

˙̂r ′α = p̂′α +
∫

d3r Ξ̂ ′α× B̂′ . (5.16)

Summing this result over all particles contained in an atom and recalling the defi-
nitions (1.60) and (1.61) for the atomic centre-of-mass position and momentum as
well as that (1.91) for Ξ̂α, we obtain

m A
˙̂rA = m A

˙̂r ′A =
∑
α∈A

mα
˙̂r ′α = p̂′A +

∫
d3r P̂ ′A× B̂′ . (5.17)

The Heisenberg equation of motion now implies

m A
¨̂rA = m A

¨̂r ′A =
1

i�

[
m A
˙̂r ′A, Ĥ

] = F̂′ (5.18)

where the Lorentz force assumes the form

F̂′ = 1

i�

[
p̂′A, Ĥ

]+ d

dt

∫
d3r P̂ ′A× B̂′ . (5.19)

The different contributions to the commutator can be evaluated by recalling the
multipolar Hamiltonian (1.90) as well as the commutation relations (1.62). Using
the identity ∇′A P̂ ′A = −∇ P̂ ′A, one can show that

1

i�

[
p̂′A,

1

2ε0

∫
d3r P̂ ′ 2A

]
= − 1

2ε0

∫
d3r ∇′A P̂ ′ 2A =

1

2ε0

∫
d3r ∇ P̂ ′ 2A = 0 .

(5.20)
Similarly, we have (∇′A = ∇A)

1

i�

[
p̂′A,−

∫
d3r P̂ ′A · Ê′

]
= ∇A

∫
d3r P̂ ′A · Ê′ ; (5.21)

and by recalling the definitions (1.63), (1.64) and (1.91) and invoking the relation
(5.17) above, we derive

1

i�

[
p̂′A,

∑
α∈A

1

2mα

(
p̂′α +

∫
d3r Ξ̂ ′α× B̂′

)2

−
∑
α∈A

γα ŝ′α · B̂′(r̂ ′α)
]

= ∇A

∫
d3r

(
M̂ ′A + P̂ ′A×˙̂rA

)
· B̂′ . (5.22)

Combining these results, the Lorentz force in the multipolar coupling scheme is
given by [1–3]
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F̂′ = ∇A

[∫
d3r P̂ ′A · Ê′ +

∫
d3r

(
M̂ ′A + P̂ ′A×˙̂rA

)
· B̂′

]

+ d

dt

∫
d3r P̂ ′A× B̂′. (5.23)

This is a generalisation of the free-space result for the QED Lorentz force [4, 5] to
the case of magnetoelectric bodies being present.

As is obvious from comparing (5.3) and (5.18), the multipolar-coupling expression
for the Lorentz force must coincide with the earlier minimal-coupling result (5.12).
To verify this explicitly, we recall from Sect. 1.1.2.2 that the following quantities are
invariant under a Power–Zienau–Woolley transformation: B̂′ = B̂, P̂ ′A = P̂A and
M̂ ′A = M̂ A. According to (1.52) and (1.101), the electric fields in the two schemes
differ,

Ê′ = Ê + 1

ε0
P̂⊥A . (5.24)

However, the relations

∇A

∫
d3r P̂⊥2

A = −∇
∫

d3r P̂⊥2
A = 0 , (5.25)

and
∫

d3r P̂⊥A · P̂‖A = 0 (5.26)

reveal that this difference does not contribute to the Lorentz force, so indeed we have

F̂′ = F̂ . (5.27)

In close analogy to the minimal-coupling case, the Lorentz force (5.23) reduces to

F̂′ = ∇
[

d̂ ′ · Ê′(r)+ m̂′ · B̂′(r)+ d̂ ′× ˙̂rA · B̂′(r)
]∣∣∣

r=r̂A

+ d

dt

[
d̂ ′× B̂′(r̂A)

]
(5.28)

when employing the long-wavelength approximation. For a non-magnetic atom, the
force assumes its electric-dipole form

F̂′ = ∇
[

d̂ ′ · Ê′(r)+ d̂ ′× ˙̂rA · B̂′(r)
]∣∣∣

r=r̂A
+ d

dt

[
d̂ ′× B̂′(r̂A)

]
. (5.29)

Neglecting the effect of centre-of-mass motion on the force, we will in the
following work with the simplified expression

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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F̂′ =
{
∇

[
d̂ ′ · Ê′(r)

]
+ d

dt

[
d̂ ′× B̂′(r)

]}
r=r̂A

. (5.30)

5.2 Internal Atomic Dynamics

In close analogy to the Casimir force, we identify the CP force on an atom as the
average Lorentz force

F =
[
∇〈

d̂ · Ê(r)
〉+ d

dt

〈
d̂× B̂(r)

〉]
r=rA

(5.31)

on its charge and current densities. While the body-assisted electromagnetic field will
be assumed to be in its ground state |{0}〉, we will allow for the atom to be prepared in
an arbitrary internal state. For an excited atom, the state of the atom–field system will
then evolve in time. This is in contrast to the Casimir case where the whole system
is in its stationary ground state. In order to evaluate the average force, we must first
solve the coupled atom–field dynamics to obtain the time-dependent dipole and field
operators in the Heisenberg picture. Employing the Born–Oppenheimer approxima-
tion, we will assume that the fast internal motion of the particles inside the atom
effectively decouples from its slow centre-of-mass motion, so that we can solve
the internal dynamics for given centre-or-mass position rA. For simplicity, we will
exclusively work within the multipolar coupling scheme and discard the primes dis-
tinguishing the multipolar variables from the ones of the minimal-coupling scheme.

The internal atomic dynamics in the Schrödinger picture is described by the time-
dependent atomic density matrix σ̂ = σ̂(t). With the aid of the completeness relation∑

n |n〉〈n| = Î ( Î , unit operator), it can be expanded in terms of internal-energy
eigenstates,

σ̂ =
∑
m,n

σmn|m〉〈n| (5.32)

with time-dependent density matrix elements 〈m|σ̂|n〉 = σmn = σmn(t). Note that
the diagonal density-matrix elements

pn(t) = σnn(t) (5.33)

represent the probabilities of the atom in the respective internal state |n〉, while
the off-diagonal matrix elements characterise the coherence of the internal atomic
quantum state.
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For easier compatibility with the above Lorentz force, we will study the internal
atomic dynamics within the alternative Heisenberg frame. To that end, we introduce
the time-dependent atomic flip operators |m〉〈n| = Âmn = Âmn(t). They are closely
related to the density matrix, since the expansion above implies

〈
Âmn(t)

〉 = tr
[
σ̂ Âmn(t)

] = tr
[
σ̂(t) Âmn

] =∑
k,l

σkl(t)〈l| Âmn|k〉 = σnm(t) , (5.34)

where the second equality marks the transition from the Heisenberg to the
Schrödinger picture. In particular, the expectation values of the diagonal flip opera-
tors coincide with the internal-state populations

〈
Ânn(t)

〉 = pn(t) . (5.35)

The equal-time commutation relations of the flip operators are easily found to be

[
Âmn, Âkl

] = |m〉〈n|k〉〈l| − |k〉〈l|m〉〈n| = δnk Âml − δlm Âkn . (5.36)

Introducing the flip operators, the internal atomic Hamiltonian (1.92) assumes the
form

ĤA =
∑

n

En Ânn . (5.37)

To express the atom–field coupling Hamiltonian in a similar way, we expand the
electric-dipole operator by means of the completeness relation

∑
n |n〉〈n| = Î ,

d̂ =
∑
m,n

dmn|m〉〈n| =
∑
m,n

dmn Âmn . (5.38)

Substituting this expansion into (1.98) and discarding the velocity-dependent
Röntgen interaction, we have

ĤAF = −
∑
m,n

Âmn dmn · Ê(rA) . (5.39)

With these Hamiltonians, the Heisenberg equation of motion for the atomic flip
operators can be easily evaluated. Using the commutators as given above, one finds

˙̂Amn = 1

i�

[
Âmn, Ĥ

] = 1

i�

[
Âmn, ĤF

]+ 1

i�

[
Âmn, ĤAF

]

= iωmn Âmn + i

�

∑
k

(
Âmk dnk − Âkn dkm

)· Ê(rA) (5.40)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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where all operators are understood to carry a time argument t .
In order to solve this equation, we need to also consider the equation of motion for

the electromagnetic field. With the expansion (1.22) for the electric-field operator,
the coupling Hamiltonian (5.39) takes the form

ĤAF = −
∑
m,n

∑
λ=e,m

∫
d3r

∞∫

0

dω dmn ·Gλ(rA, r,ω)· f̂ λ(r,ω) Âmn + H.c. (5.41)

Recalling the field Hamiltonian (1.93) and using the commutation relations (1.17)
and (1.18), the Heisenberg equations for the fundamental fields hence read

˙̂f λ(r,ω) = 1

i�

[
f̂ λ(r,ω), Ĥ

] = 1

i�

[
f̂ λ(r,ω), ĤF

]+ 1

i�

[
f̂ λ(r,ω), ĤAF

]

= −iω f̂ λ(r,ω)+ i

�

∑
m,n

G∗Tλ (rA, r,ω)·dmn Âmn (5.42)

where time arguments t are again not shown explicitly. The solution to this inhomo-
geneous linear differential equation reads

f̂ λ(r,ω, t) = e−iω(t−t0) f̂ λ(r,ω)

+ i

�

∑
m,n

t∫

t0

dt ′ e−iω(t−t ′)G∗Tλ [rA(t ′), r,ω]·dmn Âmn(t ′) (5.43)

where we have required the Heisenberg-picture operator f̂ λ(r,ω, t) to agree with
its time-independent Schrödinger-picture counterpart f̂ λ(r,ω) at initial time t0:
f̂ λ(r,ω, t0) = f̂ λ(r,ω). Substituting this solution into the expansion (1.22) and
invoking the integral relation (1.25) for the Green’s tensor, the time-dependent
electric-field operator reads

Ê(r,ω, t) = e−iω(t−t0) Ê(r,ω)

+ iμ0

π

∑
m,n

ω2

t∫

t0

dt ′ e−iω(t−t ′)Im G[r, rA(t ′),ω]·dmn Âmn(t ′) .

(5.44)

Here, the first term is the free field, i.e., the field as it would be in the absence of the
atom. The second term is the source field created by the atom.

The source field depends on the position and state of the atom at all previous
times after the initial state preparation. To evaluate it more explicitly, we once more
neglect the effect of atomic motion on the CP force, so that rA(t) = rA(t ′) ≡ rA.
Next, we assume weak–atom field coupling. As shown in Sect. 6.1, this requires

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_6
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the field spectrum ω2Im G(rA, rA,ω) to be sufficiently flat. In particular, it may not
exhibit narrow peaks in the vicinity of any atomic transition frequency. For weak
coupling, we may evaluate the time integral by means of the Markov approximation.
By comparison with (5.40), we assume that the dynamics of the atomic flip operators
Âmn is dominated by oscillations with frequencies ω̃mn which are yet to be deter-
mined. We expect these frequencies to deviate from the bare transition frequencies
ωmn due to influence of the second term on the right hand side of (5.40). Neglect-
ing the slow non-oscillatory dynamics of the flip operators during the time interval
t0 ≤ t ′ ≤ t , we may put Âmn(t ′) � eiω̃mn(t ′−t) Âmn(t), so that

t∫

t0

dt ′ e−iω(t−t ′) Âmn(t ′) � Âmn(t)

t∫

t0

dt ′ e−i(ω−ω̃nm)(t−t ′) . (5.45)

Note that we have assumed ω̃mn = −ω̃nm , which will be confirmed by (5.65) below.
In addition, we extend the lower limit of the time integral to minus infinity, so that

t∫

t0

dt ′ e−i(ω−ω̃nm )(t−t ′) �
t∫

−∞
dt ′ e−i(ω−ω̃nm )(t−t ′)

= πδ(ω − ω̃nm)− i
P

ω − ω̃nm
(5.46)

and hence

t∫

t0

dt ′ e−iω(t−t ′) Âmn(t ′) �
[
πδ(ω − ω̃nm)− i

P
ω − ω̃nm

]
Âmn(t) . (5.47)

This result immediately shows why the Markov approximation only applies for a
sufficiently narrow field spectrum: We have effectively replaced the exact frequency-
dependence of the time integral by an idealised delta function plus principal-value
profile. Obviously, this is only possible for a flat field spectrum that does not resolve
the deviations of the exact time integral from this profile.

Substituting our solution for the time integral, the electric field takes the form

Ê(r,ω, t) = e−iω(t−t0) Ê(r,ω)+ iμ0

∑
m,n

[
δ(ω − ω̃nm)− i

π

P
ω − ω̃nm

]

× ω2Im G(r, rA,ω)·dmn Âmn(t) . (5.48)

The field at time t now only depends of the value of the atomic flip operators at the
same time t . Physically, the Markov approximation thus means that the field has no
memory of the internal atomic state at earlier times.
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Having solved the atom-dependent field dynamics, we return our attention to the
internal equation of motion for the atom. As a preparation, we note that the total
field operator commutes with the atomic flip operators at equal times. We may hence
rearrange the product in (5.40) without changing the result:

˙̂Amn = iωmn Âmn + i

�

∑
k

∞∫

0

dω
[(

Âmk dnk − Âkn dkm
)· Ê(rA,ω)

+ Ê†(rA,ω)·(dnk Âmk − dkm Âkn
)]

. (5.49)

Substituting our solution (5.48) for the electric field and evaluating operator products
according to

Âmn(t) Âkl(t) = δnk Âml(t) , (5.50)

we find a closed equation of motion for the atomic flip operators:

˙̂Amn(t) = iωmn Âmn(t)

+ i

�

∑
k

∞∫

0

dω
{
e−iω(t−t0)

[
Âmk(t)dnk − Âkn(t)dkm

]· Ê(rA,ω)

+ eiω(t−t0) Ê†(rA,ω)·[dnk Âmk(t)− dkm Âkn(t)
]}

−
∑
k,l

[
dnk ·Ckl Âml(t)− dkm ·Cnl Âkl(t)

]

+
∑
k,l

[
dnk ·C∗ml Âlk(t)− dkm ·C∗kl Âln(t)

]
(5.51)

with coefficients

Cmn = Cmn(rA) = μ0

�
Θ(ω̃nm)ω̃2

nmIm G(rA, rA, ω̃nm)·dmn

− iμ0

π�
P
∞∫

0

dω

ω − ω̃nm
ω2Im G(rA, rA,ω)·dmn . (5.52)

As a result of our rearrangement (5.49), this equation appears in normal ordering
with field annihilation operators Ê to the right and creation operators Ê† to the left.
This ordering will simplify our calculation considerably.

Next, we take expectation values of (5.51). We assume that the electromagnetic
field is prepared in its ground state at initial time t0, so that its density matrix reads
ρ̂ = ρ̂(t0) = |{0}〉〈{0}|. The definition (1.19) of the ground state together with the
field expansion (1.22) implies that

Ê(r,ω)|{0}〉 = 0 ∀ r,ω . (5.53)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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As a benefit of the normal ordering used, the free electric field does hence not
contribute to the dynamics of the quantum-averaged flip operators,

〈 ˙̂Amn(t)
〉 = iωmn

〈
Âmn(t)

〉+∑
k,l

[
dkm ·Cnl

〈
Âkl(t)

〉+ dnk ·C∗ml

〈
Âlk(t)

〉

− dnk ·Ckl
〈
Âml(t)

〉− dkm ·C∗kl

〈
Âln(t)

〉]
. (5.54)

In order to decouple this set of linear differential equations, we assume that the
atom is free of quasi-degenerate transitions. Exact degeneracies ωmn = ωm′n′ natu-
rally occur in most atoms when the states in each pair |n〉, |n′〉 and |m〉, |m′〉 belong
to common manifolds of degenerate energy eigenstates, e.g., states that only differ
in the z-component of the electronic orbital angular momentum. Quasi-degeneracies
are transitions ωmn � ωkl where no two states belong to the same manifold. In addi-
tion, we assume that the free atom is unpolarised in each of its energy eigenstates,
dnn = 0, and that states of a degenerate manifold are not connected by electric-dipole
transitions, dnn′ = 0. Both of these conditions are guaranteed by atomic selection
rules.

Under the conditions above, the fast-oscillating off-diagonal flip operators effec-
tively decouple from the non-oscillating diagonal ones as well as from each other.
For m �= n, we hence retain only those terms on the right hand side of the equation
which are also proportional to 〈 Âmn〉. Using the fact that dnn = 0, we find

〈 ˙̂Amn(t)
〉 =

[
iωmn −

∑
k

(dnk ·Ckn + dkm ·C∗km)

]〈
Âmn(t)

〉
. (5.55)

Note that contributions of the type dm′m·Cnn′ 〈 Âm′n′ 〉 from exact degeneracies vanish
due to dnn′ = 0, whereas terms of the type dnk ·Ckn′ 〈 Âmn′ 〉 are excluded by atomic
selection rules.

The diagonal flip operators are non-oscillating and mutually coupled. Retaining
only diagonal terms on the right hand side of (5.54), we find

〈 ˙̂Ann(t)
〉 =−∑

k

(dnk ·Ckn + dkn ·C∗kn)
〈
Ânn(t)

〉

+
∑

k

(dkn ·Cnk + dnk ·C∗nk)
〈
Âkk(t)

〉
. (5.56)

Once more, terms of the type dnk ·Ckn′ 〈 Ânn′ 〉 or dkn ·Cnk′ 〈 Âkk′ 〉 are excluded by
atomic selection rules.

Real and imaginary parts of the coefficients in the above equations can be taken
according to
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∑
k

dnk ·Ckn = 1
2

∑
k<n

Γnk + i
∑

k

δωnk = 1
2Γn + iδωn , (5.57)

∑
k

dkn ·C∗kn =
∑
k<n

1
2Γnk − i

∑
k

δωnk = 1
2Γn − iδωn (5.58)

where we have introduced

δωn =
∑

k

δωnk , (5.59)

Γn =
∑
k<n

Γnk (5.60)

with

δωnk = δωnk(rA)

= −μ0

π�
P
∞∫

0

dω

ω − ω̃nk
ω2dnk ·Im G(1)(rA, rA,ω)·dkn , (5.61)

Γnk = Γnk(rA) = 2μ0

�
ω̃2

nk dnk ·Im G(rA, rA, ω̃nk)·dkn (5.62)

and noted that the Green’s tensor is symmetric, cf. (A.4). With these definitions, the
equations of motion for the expectation values of the atomic flip operators take the
final form 〈 ˙̂Ann(t)

〉 = −Γn
〈
Ânn(t)

〉+∑
k>n

Γkn
〈
Âkk(t)

〉
, (5.63)

〈 ˙̂Amn(t)
〉 = [

iω̃mn − 1
2 (Γm + Γn)

]〈
Âmn(t)

〉
for m �= n (5.64)

where we have identified the frequencies ω̃mn as

ω̃mn = ωmn + δωm − δωn . (5.65)

For the evaluation of the CP force, we will also require two-time correlation
functions of the atomic flip operators. They can be obtained by means of the quan-
tum regression theorem. To that end, we integrate the equation of motion for the
expectation values of the off-diagonal flip operators,

〈
Âmn(t)

〉 = e[iω̃mn−(Γm+Γn)/2](t−t0)
〈
Âmn

〉
for m �= n . (5.66)

It follows that expectation values at different times are related according to

〈
Âmn(t)

〉 = f (t − t ′)
〈
Âmn(t ′)

〉
for t ≥ t ′ (5.67)
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where the function

fmn(t − t ′) = e[iω̃mn−(Γm+Γn)/2](t−t ′) (5.68)

only depends on the time difference. The quantum regression theorem or Onsager–
Lax regression theorem states that whenever this is the case, two-time correlation
functions are given by [6–8]

〈
Âmn(t) Âkl(t

′)
〉 = fmn(t − t ′)

〈
Âmn(t ′) Âkl(t

′)
〉

for t ≥ t ′ . (5.69)

Recalling (5.50), we hence have

〈
Âmn(t) Âkl(t

′)
〉 = e[iω̃mn−(Γm+Γn)/2](t−t ′)δnk

〈
Âml(t

′)
〉

for t ≥ t ′ . (5.70)

The applicability of the quantum regression theorem is a consequence of the Markov
approximation, according to which the electric field is insensitive to the influence of
the atom at earlier times.

After this little digression, we return to the dynamics (5.63) and (5.66) of single
atomic flip operators. The time-dependence of the atomic density matrix elements
follows immediately by virtue of the relations (5.34) and (5.35),

ṗn(t) = −Γn pn(t)+
∑
k>n

Γkn pk(t) , (5.71)

σmn(t) = e[−iω̃mn−(Γm+Γn)/2](t−t0)σmn for m �= n . (5.72)

This internal dynamics of an atom, governed by the spontaneous and irreversible
emission of real photons, is known as spontaneous decay. Due to spontaneous decay,
the population pn of a given state |n〉 is reduced via to downward transitions to lower
lying states, while gaining via to population transfer from the states above. Note that
the decay-induced dynamics is probability-conserving, (5.60) implies that

d

dt

∑
n

pn(t) = 0 . (5.73)

An atom initially excited an energy eigenstate, σ̂(t0) = |n〉〈n|, will decay to an
incoherent superposition of energy eigenstates,

σ̂(t) =
∑
k≤n

pk(t)|k〉〈k| for t ≥ t0 . (5.74)

In the long-time limit, the atom will reach its ground state σ̂(t→∞) = |0〉〈0|
from which no further decay is possible since Γ0 = 0.
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The transition rates (5.62) depend on the respective dipole matrix elements and
the imaginary part of Green’s tensor taken at the atomic transitions frequencies. The
total decay rate (5.60) of an excited state is obtained by summing the transition rates
to all lower lying states. The lifetime of an excited state T1 = 1/Γn is commonly
known as the longitudinal time or T1-time. It sets the time scale for the incoherent
population transfer or energy relaxation.

In free space, (A.26) shows that

Im G(0)(r, r,ω) = ω

6πc
I , (5.75)

so the transition rates take the forms

Γnk = ω3
nk |dnk |2

3πε0�c3 . (5.76)

They depend on the internal structure of the atom and are commonly known as the
Einstein A-coefficients, cf. Sect. 7.3.1 below. The total decay rate reads

Γn = 1

3πε0�c3

∑
k<n

ω3
nk |dnk |2 . (5.77)

The off-diagonal density matrix elements are only non-vanishing if the atom
is initially prepared in a coherent superposition of energy eigenstates. For instance,
consider an atom prepared in a qubit state (|0〉+|1〉)/√2 whose initial density matrix
reads σ̂(t0) = 1

2 (|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|). According to (5.72), they undergo
damped oscillations. The associated damping time T2 = 2/(Γn + Γk) is known as
the transverse time or T2-time. It sets the timescale for the loss of decoherence or
phase relaxation of an internal atomic state due to spontaneous decay. For a coherent
superposition of an excited atomic state with the ground state, we have T2 = 2T1.
This relation between the longitudinal and transverse time is characteristic for the
energy and phase relaxation induced by spontaneous decay. Other loss mechanisms
may induce pure phase relaxation, leading to T2 < 2T1 [9].

The oscillations of the off-diagonal atomic density matrix elements are governed
by the atomic transition frequencies. According to (5.65), these frequencies acquire
shifts (5.59) due to the emission and absorption of photons. The shift (5.61) of
an energy level En due to transitions to a state |k〉 depends on the respective atomic
transition frequency and dipole matrix element as well as the electromagnetic Green’s
tensor. Note that we have separated the Green’s tensor into its bulk and scattering
parts according to (1.111). We have assumed the Lamb shift associated with the
free-space Green’s tensor to be already included in the bare transition frequencies
ωmn by making the replacement G �→ G(1) (see the discussion in Sect. 4.1 of
Vol. I). The remaining frequency shifts are hence entirely due to the present bodies
surrounding the atom. Using the integration contour of Fig. 4.1, they can be cast into
the form

http://dx.doi.org/10.1007/978-3-642-32466-6_7
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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δωnk =− μ0

�

∑
k<n

ω̃2
nk dnk ·Re G(1)(rA, rA, ω̃nk)·dkn

+ μ0

π�

∑
k

∞∫

0

dξ
ω̃knξ

2

ω̃2
kn + ξ2

dnk ·G(1)(rA, rA, iξ)·dkn , (5.78)

with the two terms being due to virtual and real photons, respectively. Note that this
equation for the frequency shifts depends in turn on the shifted transition frequencies.
It is hence an implicit equation from which the shifts have to be determined as a self-
consistent solution, cf. Sect. 5.5 below.

In the perturbative limit δωm, δωn � ωmn , the frequency shifts are given by the
explicit equation

δωnk =− μ0

�

∑
k<n

ω2
nk dnk ·Re G(1)(rA, rA,ωnk)·dkn

+ μ0

π�

∑
k

∞∫

0

dξ
ωknξ

2

ω2
kn + ξ2

dnk ·G(1)(rA, rA, iξ)·dkn . (5.79)

The associated shift ΔEn = �δωn = ∑
k �δωnk of an atomic energy level agrees

with the CP potential (4.40)–(4.42) found in Sect. 4.1.2.
Apart from being relevant for atoms prepared in coherent superposition states, the

off-diagonal atomic density matrix elements also govern the average dipole moment
of the atom. Using the expansion (5.38) and the property dnn = 0, it is given by

〈
d̂(t)

〉 = ∑
m �=n

dmn
〈
Âmn(t)

〉 = ∑
m �=n

dmnσnm(t) . (5.80)

The average dipole moment obviously vanishes when the atom is initially prepared
in an incoherent superposition of energy eigenstates. An atom in an energy eigenstate
|n〉 can acquire a non-vanishing dipole moment when it is driven by to an applied
electric field. The relation between the induced dipole moment and the electric field
takes a particularly simple form in Fourier space,

〈
d̂(ω)

〉
n = αn(ω)·E(rA,ω) . (5.81)

The relevant proportionality constant αn(ω) is the polarisability of the atom in state
|n〉.

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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5.3 Atomic Polarisability

As we have seen in Chap. 4, the non-resonant CP potential is governed by the atomic
polarisability which depends on the atomic transitions. To analyse it in more detail,
we need to solve the internal dynamics of a driven atom and find the time-dependent
average dipole moment (5.80). We model the applied electric field by assuming the
quantum electric field to be prepared in a coherent state |{E(r,ω)}〉,

Ê(r,ω)|{E(r,ω)}〉 = E(r,ω)|{E(r,ω)}〉 ∀ r,ω . (5.82)

The equations of motion (5.51) for the atomic flip operators then take the form

˙̂Amn(t) = iωmn Âmn(t)

+ i

�

∑
k

∞∫

0

dω
{
e−iω(t−t0)

[
Âmk(t)dnk − Âkn(t)dkm

]·E(rA,ω)

+ eiω(t−t0) E∗(rA,ω)·[dnk Âmk(t)− dkm Âkn(t)
]}

−
∑
k,l

[
dnk ·Ckl Âml(t)− dkm ·Cnl Âkl(t)

]

+
∑
k,l

[
dnk ·C∗ml Âlk(t)− dkm ·C∗kl Âln(t)

]
(5.83)

After taking expectation values and decomposing the coefficients into real and imag-
inary parts according to (5.57) and (5.58), the off-diagonal flip operators are found
to be governed by

〈 ˙̂Amn(t)
〉 = [

iω̃mn − 1
2 (Γm + Γn)

]〈
Âmn(t)

〉

+ i

�

∑
k

∞∫

0

dω
{
e−iω(t−t0) E(rA,ω)·[dnk

〈
Âmk(t)

〉− dkm
〈
Âkn(t)

〉]

+ eiω(t−t0) E∗(rA,ω)·[dnk
〈
Âmk(t)

〉− dkm
〈
Âkn(t)

〉]}
. (5.84)

This inhomogeneous linear differential equation can be easily integrated. Using the
Fourier relation

E(r, t) =
∞∫

0

dω
[
e−iωt E(r,ω)+ eiωt E∗(r,ω)

]
, (5.85)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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the result can be given in the form

〈
Âmn(t)

〉 = e[iω̃mn−(Γm+Γn)/2](t−t0)
〈
Âmn

〉

+ i

�

∑
k

t∫

t0

dt ′e[iω̃mn−(Γm+Γn)/2](t−t ′)

× [〈
Âmk(t

′)
〉
dnk −

〈
Âkn(t ′)

〉
dkm

]·E(rA, t ′) . (5.86)

Note that the dynamics of a the flip operators for a driven atom does not meet the
requirements of the quantum regression theorem.

We can now evaluate the average dipole moment (5.80) for an atom in an energy
eigenstate |n〉 using our result (5.86). We restrict our attention to a time scale t �
1/Γn where the atom effectively remains in its initial state |n〉, so that 〈 Âkl(t ′)〉 �
〈 Âkl(t)〉 � δknδln . Using the property dnn = 0, we then find

〈
d̂(t)

〉
n =

∑
k �=n

[
dnk

〈
Ânk(t)

〉
n + dkn

〈
Âkn(t)

〉
n

]

= i

�

∑
k

t∫

−∞
dt ′

{
e[iω̃nk−(Γm+Γn)/2](t−t ′)dnk dkn

− e[iω̃kn−(Γm+Γn)/2](t−t ′)dkn dnk
}·E(rA, t ′) . (5.87)

Note that we have applied the Markov approximation by letting t0 →−∞.
To identify the atomic polarisability, we need to take Fourier components

〈
d̂(ω)

〉
n =

1

2π

∞∫

−∞
dt eiωt 〈d̂(t)

〉
n

= i

�

∑
k

1

2π

∞∫

−∞
dt eiωt

t∫

−∞
dt ′

{
e[iω̃nk−(Γm+Γn)/2](t−t ′)dnk dkn

− e[iω̃kn−(Γm+Γn)/2](t−t ′)dkn dnk
}·E(rA, t ′) . (5.88)

Substituting the Fourier decomposition (5.85) of the electric field, the t ′-integral
can be easily performed. Evaluating the t-integral according to

1

2π

∞∫

−∞
dt ei(ω−ω′)t = δ(ω − ω′) , (5.89)
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we find

〈
d̂(ω)

〉
n =

1

�

∑
k

[
dnk dkn

ω̃kn − ω − i
2 (Γn + Γk)

+ dkn dnk

ω̃kn + ω + i
2 (Γn + Γk)

]
·E(rA,ω) .

(5.90)

By comparison with (5.81), the polarisability of an atom in an energy eigenstate |n〉
is given by the dispersion formula

αn(ω) = αn(rA,ω)

= 1

�

∑
k

[
dnk dkn

ω̃kn−ω− i
2 (Γn+Γk)

+ dkn dnk

ω̃kn+ω+ i
2 (Γn+Γk)

]
. (5.91)

The atomic polarisability exhibits resonance lines centred around the shifted
atomic transition frequencies ω̃mn with widths Γm + Γn . The rates of spontaneous
decay Γn may hence be interpreted as a finite widths of the associated energy levels
|n〉. Note that conventions of quantum field theory suggest the level width to enter
the non-resonant, second term of the polarisability with an opposite sign [10], which
has led to some controversies in the past [11–14]. The issue was resolved by Milonni
and Boyd [15]. Using a dynamical derivation similar to ours, they showed that the
definition (5.81) of the atomic polarisability leads to the above correct signs for the
level widths. These signs are necessary to ensure the convergence of the t ′-integral
in (5.88) and guarantee the Schwarz reflection principle

α∗n(ω) = αn(−ω∗) . (5.92)

Recalling that the line shifts and widths depend on the position of the atom, we note
that the atomic polarisability is also position-dependent, in general. Furthermore, the
shifts and widths may induce an anisotropy of the atomic polarisability. To see this,
consider an atom in an isotropic state |n〉 such that the relation (4.16) holds. Even so,
we cannot in general use this relation to simplify the polarisability (5.91) since the
shifts and widths may vary within manifolds of energy-degenerate states, Γk′ �= Γk′′ ,
δωk′ �= δωk′′ in spite of k′, k′′ ∈ {k}. In other words, the atomic polarisability may be
anisotropic even when the state of the atom is isotropic; the isotropy of the atom is
broken by the influence of its anisotropic environment. This complication does not
arise in free space where δωk = 0 and Γk′ = Γk′′ whenever k′, k′′ ∈ {k}, cf. (5.77).
Exploiting the relation (4.16), we then find that the polarisability of an atom in an
isotropic state is indeed isotropic, αn(ω) = αn(ω)I with

αn(ω) = 2

3�

∑
k

ωkn|dnk |2
ω2

kn−[ω+ i
2 (Γn+Γk)]2

. (5.93)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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In the perturbative limit |δωm |, |δωn|, Γm, Γn � ωmn , the polarisability reduces
to (4.46) as introduced in Sect. 4.1.2. The perturbative polarisability is unaffected
by the atomic environment. It is hence always isotropic for an atom in an isotropic
state, just like the free-space polarisability.

5.4 Casimir–Polder Force

Having solved the coupled atom–field dynamics, we can now evaluate the average
Lorentz force (5.31). Using the expansion (5.38) of the dipole operator and the field
expansions (1.22) and (1.26), it takes the form

F(t) =
∑
m,n

∞∫

0

dω
[∇〈

Âmn(t)dmn · Ê(r,ω, t)
〉

+∇〈
Ê†(r,ω, t)·dmn Âmn(t)

〉]
r=rA

+ d

dt

∑
m,n

∞∫

0

dω
[〈

Âmn(t)dmn× B̂(rA,ω, t)
〉

− 〈
B̂†(rA,ω, t)×dmn Âmn(t)

〉]
. (5.94)

For convenience, we have again arranged the operator products in normal ordering.
Assuming the atom–field coupling to be weak, we may use our solution (5.44) for
the time-dependent electric field. The corresponding solution for the magnetic field

B̂(r,ω, t) = e−iω(t−t0) B̂(r,ω)

+ μ0

π

∑
m,n

ω

t∫

t0

dt ′ e−iω(t−t ′)∇×Im G(r, rA,ω)·dmn Âmn(t ′) (5.95)

follows immediately by means of (1.8). We assume the electromagnetic field to be
prepared in its ground state at initial time, ρ̂ = ρ̂(t0) = |{0}〉〈{0}|. We then have
(5.53) for the electric field; the corresponding relation

B̂(r,ω)|{0}〉 = 0 ∀ r,ω (5.96)

for the magnetic field follows from the definition (1.19) of the ground state together
with the field expansion (1.26). By virtue of the normal ordering used, the free electric
and magnetic fields do hence not contribute to the average Lorentz force and we find

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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F(t) = iμ0

π

∑
m,n,k,l

∞∫

0

dω ω2∇dmn ·Im G(rA, rA,ω)·dkl

×
t∫

t0

dt ′
[
e−iω(t−t ′)〈 Âmn(t) Âkl(t

′)
〉− eiω(t−t ′)〈 Âkl(t

′) Âmn(t)
〉]

+ μ0

π

∑
m,n,k,l

∞∫

0

dω ωdmn×[∇×Im G(rA, rA,ω)]·dkl

× d

dt

t∫

t0

dt ′
[
e−iω(t−t ′)〈 Âmn(t) Âkl(t

′)
〉+ eiω(t−t ′)〈 Âkl(t

′) Âmn(t)
〉]

= iμ0

π

∑
m,n,k,l

∞∫

0

dω ω2∇dmn ·Im G(rA, rA,ω)·dkl

×
t∫

t0

dt ′e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉

+ μ0

π

∑
m,n,k,l

∞∫

0

dω ωdmn×[∇×Im G(rA, rA,ω)]·dkl

× d

dt

t∫

t0

dt ′e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉+ C.c. (5.97)

where we use the notation ∇G(rA, rA,ω) ≡ ∇G(r, rA,ω)|r=rA .
Due to the property dnn = 0, atomic two-time correlation functions are only

needed for the off-diagonal flip operators. They have been derived in the previous
section by means of the quantum regression theorem. Substituting the result (5.70)
into the expression above, the average Lorentz force reads

F(t) = iμ0

π

∑
m,n,k

∞∫

0

dω ω2∇dmk ·Im G(rA, rA,ω)·dkn

×
t∫

t0

dt ′ e[−i(ω−ω̃mk)−(Γm+Γk )/2](t−t ′)〈 Âmn(t ′)
〉+ C.c.
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+ μ0

π

∑
m,n,k

∞∫

0

dω ωdmk×[∇×Im G(rA, rA,ω)]·dkn

× d

dt

t∫

t0

dt ′ e[−i(ω−ω̃mk)−(Γm+Γk )/2](t−t ′)〈 Âmn(t ′)
〉+ C.c. (5.98)

The time integrals can be evaluated with the aid of the Markov approximation. With
Âmn(t ′) � e−iω̃mn(t−t ′) Âmn(t) and t0 →−∞, we find

t∫

t0

dt ′ e[−i(ω−ω̃mk)−(Γm+Γk )/2](t−t ′)〈 Âmn(t ′)
〉

� 〈
Âmn(t)

〉 t∫

−∞
dt ′ e[−i(ω−ω̃nk )−(Γm+Γk )/2](t−t ′)

= − i
〈
Âmn(t)

〉
ω−ω̃nk− i

2 (Γm+Γk)
(5.99)

and similarly

d

dt

t∫

t0

dt ′ e[−i(ω−ω̃mk)−(Γm+Γk )/2](t−t ′)〈 Âmn(t ′)
〉

= 〈
Âmn(t)

〉+ [−i(ω − ω̃mk)− i
2 (Γm + Γk)

]

×
t∫

t0

dt ′ e[−i(ω−ω̃mk)−(Γm+Γk )/2](t−t ′)〈 Âmn(t ′)
〉

� 〈
Âmn(t)

〉+ 〈
Âmn(t)

〉[
i(ω̃mk − ω)− i

2 (Γm + Γk)
]

×
t∫

−∞
dt ′ e[−i(ω−ω̃nk)−(Γm+Γk )/2](t−t ′)

= ω̃mn
〈
Âmn(t)

〉
ω − ω̃nk − i

2 (Γm + Γk)
. (5.100)

Note that the time derivative has been evaluated prior to applying the Markov
approximation.

The final result for the CP force can be obtained by combining (5.98)–(5.100). Let
us first consider the case where the atom is prepared in an incoherent superposition
of energy eigenstates. As seen from (5.63) and (5.64), it will remain in an incoherent
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Im ω

Re ω

ω̃nk + i
2

(Γ k + Γ n )

−ω̃nk− i
2 (Γ k + Γ n )

Fig. 5.1 Integration contours used for transforming real-frequency integrals into ones along the
positive imaginary axis plus contributions from the poles

state for all times, so that 〈 Âmn(t)〉 = 0 for m �= n. Due to ω̃mm = 0, the contribution
from (5.100) then vanishes. With 〈 Ânn(t)〉 = pn(t), the CP force can be given as
[1–3, 16]

F(rA, t) =
∑

n

pn(t)Fn(rA) (5.101)

with

Fn(rA) = μ0

π

∑
k

∞∫

0

dω ω2 ∇dnk ·Im G(1)(rA, rA,ω)·dkn

ω − ω̃nk − i
2 (Γn + Γk)

+ C.c. (5.102)

The total force on an atom in an incoherent superposition state is hence a weighted
sum over force components associated with the populated states. The dynamics of
the force is governed by that of the probabilities pn(t) while the position-dependence
is contained in the force components Fn(rA).

Let us first discuss the force components in more detail. Note that we have dis-
carded the self-force associated with the free-space Green’s tensor G(0) by making
the replacement G �→ G(1). In order to decompose the force into its non-resonant
components from virtual photons and off-resonant components due to real photons,
we write Im G = (G − G∗)/(2i) and make use of the Schwarz reflection principle
(A.3). We then apply the integration contour depicted in Fig. 5.1 to rotate the inte-
grals over the positive and negative real frequency axes to the positive imaginary
axis. Note that in contrast to the contour of Fig. 4.1 used in the time-independent
perturbative calculation of Chap. 4, the poles are now situated away from the real
axis. As a consequence, we pick up the full residuum from one of them rather than
half-contributions from both poles. We obtain

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Fn(rA) = Fnres
n (rA)+ Fres

n (rA) (5.103)

with

Fnres
n (rA) = −�μ0

2π

∞∫

0

dξ ξ2∇tr
{[

αT
n (iξ)+αT

n (−iξ)
]·G(1)(rA, rA, iξ)

}
, (5.104)

Fres
n (rA) = μ0

∑
k<n

Ω2
nk∇dnk ·G(1)(rA, rA,Ωnk)·dkn + C.c. (5.105)

where we have defined the complex transition frequencies

Ωnk = Ωnk(rA) = ω̃nk + i
2 (Γn + Γk) (5.106)

and recalled the definition (5.91) of the atomic polarisability. We finally assume the
atomic Hamiltonian to be time-reversal invariant, so that the dipole-matrix elements
are real, dkn = dnk . The Green’s tensor then only enters in conjunction with the
symmetric tensor (dkn dnk)

T = dnk dkn = dkn dnk . Exploiting Onsager reciprocity
(A.4), the relation

∇G(1)(r, r,ω) = ∇G(1)(r, r ′,ω)
∣∣
r ′=r +∇G(1)(r ′, r,ω)

∣∣
r ′=r

= ∇G(1)(r, r ′,ω)
∣∣
r ′=r +∇G(1)T(r, r ′,ω)

∣∣
r ′=r (5.107)

then shows that the replacement ∇G(1)(rA, rA,ω) �→ 1
2 ∇G(1)(r, r,ω)|r=rA

applies, resulting in

Fnres
n (rA) = −�μ0

4π

∞∫

0

dξ ξ2

×∇tr
{[αn(iξ)+αn(−iξ)]·G(1)(r, r, iξ)

}∣∣
r=rA

, (5.108)

Fres
n (rA) = μ0

2

∑
k<n

Ω2
nk∇dnk ·G(1)(r, r,Ωnk)·dkn

∣∣
r=rA
+ C.c. (5.109)

The non-resonant and resonant force components depend on the shifted and broad-
ened transition frequencies. As discussed in the previous section, the shifts and widths
are position-dependent and they may induce an anisotropy of the atomic polarisabil-
ity. In addition, the finite level widths have the effect that the polarisability is complex
valued even at purely imaginary frequencies. The force components hence depend
on the real combination 1

2 [αn(iξ) + αn(−iξ)] rather than αn(iξ) alone. This is in
contrast to our findings (4.41) on the basis of leading-order perturbation theory. Note
that the gradients in (5.108) and (5.109) above only act on the position arguments of

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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the Green’s tensor and not on the position-dependent shifts, widths and polarisability,
so the CP force is not a conservative force in general.

As discussed in the previous Sect. 5.2, the frequency shifts and broadenings typ-
ically induce an anisotropy of the atomic polarisability even if the atom is in an
isotropic state. This complication does not arise if the atom is either placed in an
isotropic environment (δωk′ = δωk′′ and Γk′ = Γk′′ whenever k′, k′′ ∈ {k}) or suffi-
ciently far from any body (δωk = 0 and Γk′ = Γk′′ whenever k′, k′′ ∈ {k}). In these
cases, the polarisability of an atom in an isotropic state takes the form (5.93) and the
force components above simplify to

Fnres
n (rA) = −�μ0

4π

∞∫

0

dξ ξ2[αn(iξ)+ αn(−iξ)]∇Atr G(1)(rA, rA, iξ) ,

(5.110)

Fres
n (rA) = μ0

6

∑
k<n

Ω2
nk |dnk |2∇tr G(1)(r, r,Ωnk)

∣∣
r=rA
+ C.c. (5.111)

In the perturbative limit |δωn|, |δωk |, Γn, Γk � ωnk , we have αn(−iξ) = αn(iξ)
and the force components reduce to our result (4.40)–(4.42) together with (1.119). In
this limit, the CP force is always conservative and it simplifies as above for an atom in
an isotropic state. Casimir and Polder’s concept of identifying the CP force with the
gradient of the atom–field coupling energy is hence only valid within leading-order
perturbation theory. The influence of body-induced frequency shifts and broadenings
is a higher-order correction. Their impact on the magnitude of the non-resonant and
resonant forces will be studied via an example in the next section.

Even in the case of negligible shifts and widths, time-independent perturbation
theory can only provide snapshots of the CP force at given times. Let us follow
the dynamics of the CP force on an atom initially prepared in an excited energy
eigenstate |n〉, pn(t0) = 1. The dynamics of the state populations pn(t) is governed
by (5.71). For times that are short with respect to the relevant decay rate Γn , the CP
force (5.101) is given by

F(rA, t) � F(rA, t0) = Fn(rA) for (t − t0)Γn � 1 . (5.112)

On this time-scale, time-independent descriptions may be used. As time pro-
gresses, the lower lying levels will become populated, resulting in a superposition
force

F(rA, t) =
∑
k≤n

pk(t)Fk(rA) (5.113)

for intermediate times. In the long-time limit, the atom will decay to its ground state
pk(t →∞) = δk0 and the atom will be subject to the ground-state force

F(rA, t→∞) = F0(rA) . (5.114)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Table 5.1 Different interpretations of the ground-state CP potential in multipolar coupling, depend-
ing on the chosen operator ordering

Ordering Normal Symmetric Anti-normal

Relevant fluctuations Atomic Field Atomic+field

Our dynamical calculation of the CP force implies a simple physical interpretation
of the force: the quantum fluctuations of the electric dipole moment lead to the
emission of an electric source field (5.44) which then acts on the atom itself, leading to
a force (5.94). This process is known as radiation reaction. In our picture, the quantum
fluctuations of the electric field, known as vacuum fluctuations do not contribute to
the force, recall (5.53). This is a consequence of the chosen normal ordering [17].
Analysing the physical origin of the CP potential for different operator orderings,
Milonni and Shih showed that the ground-state potential must be entirely attributed
to atomic fluctuations for normal ordering; is entirely due to field fluctuations for
symmetric ordering; and is partly due to both for anti-normal ordering [18, 19], cf.
Table 5.1.

The problem was later analysed in more detail for ground-state vs excited atoms
in front of a perfectly conducting plate using symmetric ordering [20], cf. Table 5.2.

Working within the minimal coupling scheme (as opposed to the multipolar
scheme employed by us), it was concluded that the nonretarded potential is entirely
due to atomic fluctuations. In the retarded regime, the non-resonant potential was
entirely attributed to field fluctuations, while the resonant potential was found to be
equally due to atomic and field fluctuations. The preference for symmetric ordering
was motivated by the fact that for this ordering the contributions from atomic and
field fluctuations are averages of hermitian operators, i.e., physical observables [21].
However, since these two components can never be observed separately, the cho-
sen ordering and hence interpretation remains a matter of taste. We have chosen the
normal ordering simply for calculational convenience.

After this little digression, let us turn our attention an atom which is initially
prepared in a coherent superposition of energy eigenstates. In this case, the off-
diagonal atomic density matrix elements become relevant and both (5.99) and (5.100)
contribute to the force (5.98). Recalling (5.34), we find

F(rA, t) =
∑
m,n

σmn(t)Fmn(rA) (5.115)

with coherent force components

Fmn(rA) = μ0

π

∑
k

∞∫

0

dω ω2
[∇dnk ·Im G(1)(rA, rA,ω)·dkm

ω − ω̃mk − i
2 (Γn + Γk)

+ ∇dkm ·Im G(1)(rA, rA,ω)·dnk

ω − ω̃nk + i
2 (Γm + Γk)

]
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Table 5.2 Fluctuations dominating the CP potential of ground-state versus excited atoms in mini-
mal coupling for symmetric ordering, depending on the distance regime

Distance Retarded Nonretarded

Ground-state atom Field Atomic
Excited atom Atomic+field Atomic

− μ0

π

∑
k

∞∫

0

dω ωω̃mn

{
dnk×

[∇×Im G(1)(rA, rA,ω)
]·dkm

ω − ω̃mk − i
2 (Γn + Γk)

− dkm×
[∇×Im G(1)(rA, rA,ω)

]·dnk

ω − ω̃nk + i
2 (Γm + Γk)

}
. (5.116)

They can be decomposed into contributions from virtual and real photon by means
of the integration contour from Fig. 5.1. We find

Fmn(rA) = Fnres
mn (rA)+ Fres

mn(rA) (5.117)

with non-resonant forces

Fnres
mn (rA) = −�μ0

2π

∞∫

0

dξ ξ2∇tr
{[

αT
mn(iξ)+αT

n (−iξ)
]·G(1)(rA, rA, iξ)

}

− �μ0ω̃mn

2πi

∞∫

0

dξ ξtr
{[

αT
mn(iξ)−αT

mn(−iξ)
]×[∇×G(1)(rA, rA, iξ)

]}

(5.118)

and resonant forces

Fres
mn(rA) = μ0

∑
k<m

Ω2
mnk∇dnk ·G(1)(rA, rA,Ωmnk)·dkm

+ μ0

∑
k<n

Ω∗2nmk∇dkm ·G(1)(rA, rA,−Ω∗nmk)·dnk

− μ0ω̃mn

∑
k<m

Ωmnk dnk×
[∇×G(1)(rA, rA,Ωmnk)·dkm

]

+ μ0ω̃mn

∑
k<n

Ω∗nmk dkm×
[∇×G(1)(rA, rA,−Ω∗nmk)·dnk

]
. (5.119)

Here, we have defined the off-diagonal polarisability
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αmn(ω) = αmn(rA,ω)

= 1

�

∑
k

[
dnk dkm

ω̃km−ω− i
2 (Γn+Γk)

+ dkm dnk

ω̃kn+ω+ i
2 (Γm+Γk)

]
(5.120)

as well as

Ωmnk = Ωmnk(rA) = ω̃mk + i
2 (Γn + Γk) , (5.121)

which generalise (5.91) and (5.106). In contrast to the diagonal forces Fnn , the off-
diagonal force components contain contributions from both electric and magnetic
fields. The contribution from the magnetic field exhibits an entirely different vec-
tor structure. Coherent forces associated with off-diagonal density matrix elements
(5.72) oscillate extremely rapidly around a zero mean. The oscillation frequency
being given by the respective atomic transition frequency ω̃mn , it is very difficult to
resolve them experimentally.

5.5 Excited Atom in Front of a Plate

To illustrate the impact of level shifts and widths on the CP force, let us study the
simple example of two-level atom at nonretarded distance z A � c/(ω10

√
ε ) from a

semi-infinite dielectric half space. We describe the permittivity of the half space by
a single-resonance Drude–Lorentz model

ε(ω) = 1+ ω2
P

ω2
T − ω2 − iωγ

(5.122)

with plasma frequency ωP, transverse resonance frequency ωT and damping constant
γ. As seen from (A.48) in App. A.3.2, the nonretarded Green’s tensor of such a half
space reads

G(1)(r, r,ω) = c2

32πω2z3

ε(ω)− 1

ε(ω)+ 1

⎛
⎝ 1 0 0

0 1 0
0 0 2

⎞
⎠ . (5.123)

It exhibits a surface-plasmon resonance at ωS =
√
ω2

T + ω2
P/2, where the denomi-

nator ε(ω)+ 1 becomes very small.
We begin by determining the shifted transition frequency ω̃10 = ω10 + δω of

the two-level atom. According to (5.65), the frequency shift δω = δω1 − δω0 has
contributions from the ground- and excited-state level shifts. While the ground-
state shift is purely non-resonant, the excited-state shift exhibits both resonant and
non-resonant contribution, as given by the two terms in (5.78). In the vicinity of
the surface-plasmon frequency, the resonant contribution contained in the excited-
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state level shift dominates over the non-resonant ones. Substituting the nonretarded
Green’s tensor into the resonant term in (5.78) and recalling (4.104), we find [1]

δω(z A) = δω1(z A) = − d2
01 + (d01 ·ez)

2

32πε0�z3
A

|ε[ω10 + δω(z A)]|2 − 1

|ε[ω10 + δω(z A)] + 1|2 (5.124)

where the transition-dipole matrix element has been assumed to be real. With the
permittivity being given as above, this is a fifth-order polynomial equation for δω.

In a perturbative approximation, we neglect δω on the right hand side of the
equation. The resulting frequency shift is displayed in Fig. 5.2(i) for two different
distances z A. The frequency shift shows a typical dispersion profile centred around
the surface-plasmon frequency ωS � 1.13ωT, with the shift being positive for atomic
frequencies above the surface-plasmon resonance and negative below the resonance.
Due to its 1/z3

A-dependence, the profile becomes more pronounced as the atom
approaches the surface. We also display the exact results for the frequency shift,
obtained by solving (5.124) numerically. We note that the profile of the exact shift is
considerably steeper in the vicinity of the resonance. This is due to a positive feedback
effect: for instance, bare frequencies slightly above the resonance lead to a positive
perturbative shift, driving the true frequency further away from the resonance.

The decay rate Γ = Γ1 of the excited state can be found by substituting the
nonretarded Green’s tensor (5.123) into (5.62) and recalling (4.98) [1]:

Γ (z A) = d2
01 + (d01 ·ez)

2

8πε0�z3
A

Im ε(ω̃10)

|ε(ω̃10)+ 1|2 . (5.125)

In a perturbative approximation, we replace ω̃10 with the bare frequency. As shown in
Fig. 5.2(ii), the perturbative decay rate exhibits a typical absorption line profile. We
also display the exact decay rate obtained by taking the frequency shift into account.
The exact absorption line is considerably more narrow than the perturbative line.
This is the case because the exact atomic transition frequency is always further away
from the resonance than the bare one.

Note that the decay rate is proportional to the imaginary part of the permittivity. It
can hence be strongly reduced by using a superconducting surface with Im ε� Re ε.
This effect has been studied in detail for the closely related case of magnetic transi-
tions, i.e., spin flips [22]. The strong sensitivity of the decay rate to superconducting
surfaces is in stark contract with the behaviour of CP potential, which does not change
very much when replacing an ordinary metal with a superconductor.

With these preparations at hand, we can determine the CP force acting on the
excited atom. We begin with the dominant resonant contribution. Substituting the
Green’s tensor (5.123) into the force expression (5.109), one obtains [1–3, 16]

Fres
1 (z A) = F res

1 (z A)ez = −3
[
d2

01 + (d01 ·ez)
2
]

32πε0z4
A

|ε(Ω10)|2 − 1

|ε(Ω10)+ 1|2 ez (5.126)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Fig. 5.2 Exact (solid and
dotted lines) and perturbative
(dashed and dot-dashed lines)
(i) frequency shift and (ii)
decay rate for a two-level atom
at distances z A = 0.0075λT
(solid and dashed lines) or
z A = 0.009λT (dotted and
dot-dashed lines) from a
dielectric half space as a
function of the bare atomic
transition frequency with
parameters λT = 2πc/ωT,
ωP/ωT = 0.75, γ/ωT = 0.01,
ω2

Td2
10/(3π�ε0c3) = 10−7.

The atomic dipole moment is
perpendicular to the surface

(i)

(ii)
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where the complex transition frequency (5.106) reads

Ω10 = ω̃10 + i
2Γ = ω10 + δω + i

2Γ . (5.127)

To illustrate the impact of the surface-induced level shift and width on the force, we
again begin with the perturbative approximation Ω10 � ω10. As shown in Fig. 5.3,
the resonant force exhibits a dispersion profile centred around the surface-plasmon
frequency. The force is attractive for atomic frequencies below ωS and repulsive for
frequencies greater than ωS. Note that this corresponds to the two cases |ε(ω10)| > 1
and |ε(ω10)| < 1 as discussed in Sect. 4.2.2. For comparison, we show the separate
and combined effects of frequency shift and width on the force. The frequency shift
leads to a narrowing of the dispersion profile due to the above mentioned positive
feedback effect. The level width induces a broadening of the profile, accompanied
by a reduction. This can be easily understood by noting that the Drude–Lorentz
permittivity (5.122) at complex transition frequency reads

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Fig. 5.3 Resonant CP force on an excited two-level atom at distance z A = 0.0075λT from a
dielectric half space as a function of the bare atomic transition frequency (solid line), with parameters
as in Fig. 5.2. For comparison, we also show the perturbative result without level shift and width
(dashed lines) and the separate effects of shift (dotted lines) and width (dash-dotted lines)

ε(Ω10) = 1+ ω2
P

ω2
T − ω̃2

10 − i(γ + Γ )ω̃10
for γ, Γ � ωT . (5.128)

The width of the exact profile is hence given by the sum γ + Γ of the atomic and
medium line widths rather than the medium line width alone. The figure shows that
the width-induced broadening of the dispersion force profile almost cancels with the
shift-induced narrowing. As a result, the exact CP force including the full shifted and
broadened atomic transition frequency has almost the same profile as the perturbative
one, but with a considerably reduced force.

The non-resonant force component (5.108) can also be calculated with the aid of
the Green’s tensor (5.123). Using the explicit form (5.91) for the polarisability, we
find [1–3, 16]

Fnres
1 (z A) = Fnres

1 (z A)ez = 3
[
d2

01 + (d01 ·ez)
2
]

32π2ε0z4
A

∞∫

0

dξ
ε(iξ)− 1

ε(iξ)+ 1

× ω̃10

ω̃2
10 +

(
ξ + 1

2Γ
)2

ω̃2
10 + ξ2 + 1

4Γ 2

ω̃2
10 +

(
ξ − 1

2Γ
)2 ez . (5.129)

We note that the influence of the level width on the non-resonant force is very weak,
the leading-order dependence being O(Γ 2). This can be understood from the fact
that the non-resonant force is due to virtual emission and reabsorption processes,
which are only weakly affected by decay-induced broadening. Formally, the linear
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Fig. 5.4 Non-resonant CP force on an excited two-level atom at distance z A = 0.0075λT from
dielectric half space as a function of the bare atomic transition frequency (solid line). The assump-
tions of Fig. 5.2 apply. For comparison, we also show the perturbative result without level shift
and width (dashed lines). The inset displays the difference between the force with and without
consideration of broadening (solid lines) and the same difference is displayed when ignoring the
shifting (dashed lines)

term in Γ is absent, because the atomic polarisability enters the non-resonant force
components (5.108) only as a combination 1

2 [αn(iξ)+αn(−iξ)].
The effects of level shift and width on the non-resonant force are illustrated in

Fig. 5.4. The non-resonant force in the perturbative approximation is purely repulsive
for downward transitions, in agreement with our findings from Sect. 4.2.2. In contrast
to the resonant force, it shows a very weak dependence on the atomic transition
frequency. The frequency shifting has the effect of slightly increasing the force for
ω10 < ωS or slightly decreasing it for ω10 > ωS. The effect of the level width is so
weak that it is not visible in the displayed curves. Only by plotting the difference
between the results with and without broadening, a slight reduction of the force
becomes visible in the vicinity of ωS where Γ is largest. Note that for a two-level
atom, we have F0(z A) = Fnres

0 (z A) = −Fnres
1 (z A). In this case, our discussion for

the non-resonant excited-state force hence also applies to the ground-state force.
The results of these Sects. 5.4 and 5.5 have well illustrated the validity limits of the

time-independent leading-order perturbative description to the CP force as presented
in the previous Chap. 4. We have seen that due to the decay-induced dynamics of the
CP force, the static results are valid only for atoms in their stationary ground-state or
on time scales which are short compared to the life times associated with spontaneous
decay. In addition, the perturbative approach neglects the effect of level shifts and
widths on the force. They may strongly affect the dominate resonant force on an
excited atom. In particular, line broadening limits a possible resonant enhancement
of the CP force.

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Chapter 6
Casimir–Polder Forces in Cavity Quantum
Electrodynamics

The interaction of an excited atom with the quantised electromagnetic field can be
strongly enhanced in confined, resonator-like geometries such as planar, spherical
or cylindrical cavities formed of highly reflecting mirrors. The structure of the field
inside such a cavity and its interaction with atoms is the subject of cavity QED. In
this chapter, we use basic concepts of cavity QED to investigate the phenomenon of
strong atom–field coupling and its impact on the CP force. For simplicity, we will
exclusively work within the multipolar coupling scheme, without using primes to
indicate multipolar variables.

We begin with a time-independent analysis that generalises Casimir and Polder’s
method as employed in Chap. 4 beyond the perturbative regime. Introducing the
Jaynes–Cummings model, we will show that the strongly coupled atom–field system
may be characterised by dressed atomic states. The CP potential on an atom in such
a state is governed by the vacuum Rabi frequency.

Next, we study the dynamics of CP force for strong atom–field coupling, general-
ising the approach of Chap. 5. We will demonstrate that strong coupling facilitates a
continuous and reversible emission and reabsorption of a single photon by an excited
atom, leading to periodic Rabi oscillations of the atomic internal state. The CP force
on a strongly coupled atom exhibits similar periodic oscillations.

6.1 Static Theory

The field inside a cavity typically forms standing-wave modes of certain discrete
frequencies ων . The near-resonant coupling of such a mode to the downward transi-
tion ωmn of an excited atom can lead to a strongly enhanced atom–field interaction.
In particular, the energy shift can become comparable to the atomic-transition and
mode-excitation energies. In this strong coupling regime, perturbation theory no
longer applies. Instead, the relevant strong atom–field interaction has to be treated
exactly.

S. Y. Buhmann, Dispersion Forces II, Springer Tracts in Modern Physics 248, 183
DOI: 10.1007/978-3-642-32466-6_6, © Springer-Verlag Berlin Heidelberg 2012
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6.1.1 Jaynes–Cummings Model

To develop an exact approach to strong atom–field coupling, we need to focus on the
strongly interacting part of the atom–field system. In doing so, we will arrive at the
Jaynes–Cummings model which describes the coupling of a single atomic transition
to a single cavity mode.

To model the atom, we consider only those two levels |1〉 and |0〉whose transition
is strongly coupled to a resonator mode ν. For such a two-level atom, the Hamiltonian
(1.92) simplifies to

ĤA = E0|0〉〈0| + E1|1〉〈1| (6.1)

for a given centre-of-mass position rA. By means of the reduced completeness relation
|0〉〈0| + |1〉〈1| = Î , the atomic Hamiltonian may be written in the alternative form

ĤA = 1
2 �ω10σ̂z + 1

2 (E0 + E1) Î (6.2)

with σ̂z = |1〉〈1| − |0〉〈0| being one of the three Pauli operators. One commonly
discards the last term, which is a state-independent constant, so that

ĤA = 1
2 �ω10σ̂z . (6.3)

The expansion (5.38) of the electric-dipole operator simplifies to

d̂ = d01σ̂ + d10σ̂
† (6.4)

for a two-level atom, with σ̂ = |0〉〈1| being the Pauli lowering operator. The atom–
field interaction (4.36) hence reads

ĤAF = −
(
d01σ̂ + d10σ̂

†)· Ê(rA) . (6.5)

Next, we need to adapt our description of the electromagnetic field to the strong-
coupling problem. With the field expansion (1.22), the interaction Hamiltonian takes
the form

ĤAF = −
∞∫

0

dω
∑
λ=e,m

∫
d3r

(
d01σ̂+ d10σ̂

†)·Gλ(rA, r,ω)· f̂ λ(r,ω)+H.c. (6.6)

This suggests the introduction of photon annihilation and creation operators â(r,ω)

and â†(r,ω) according to

â(r,ω) = − 1

�g(r,ω)

∑
λ=e,m

∫
d3r ′ d10 ·Gλ(r, r ′,ω)· f̂ λ(r ′,ω) (6.7)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_1


6.1 Static Theory 185

where the normalisation

g(r,ω) =
√
μ0

π�
ω2d10 ·Im G(r, r,ω)·d01 (6.8)

is needed to ensure the canonical commutation relations (6.11) and (6.18) as given
below. With this definition, the interaction Hamiltonian takes the much simpler form

ĤAF =
∞∫

0

dω �g(rA,ω)
[
â(rA,ω)+ â†(rA,ω)

](
σ̂ + σ̂†) , (6.9)

showing that g(r,ω) can be interpreted as an atom–field coupling strength. We have
assumed the dipole matrix elements to be real, d01 = d10.

According to the definitions above, the commutation relations of â and â† follow

from those of f̂ λ and f̂
†
λ, recall (1.17) and (1.18). Using the integral relation (1.25),

one finds

[
â(r,ω), â(r,ω′)

] = [
â†(r,ω) , â†(r,ω′)

] = 0 , (6.10)

[
â(r,ω), â†(r ′,ω′)

] = g(r, r ′,ω)

g(r,ω)g(r ′,ω)
δ(ω − ω′) (6.11)

with

g(r, r ′,ω) = μ0

�π
ω2d10 ·ImG(r, r ′,ω)·d01 . (6.12)

Just like f̂ λ, the operator â has the meaning of an annihilation operator: Recalling
the definition (1.19) of the ground-state of the body-assisted electromagnetic field,
our construction immediately implies

â(r,ω)|{0}〉 = 0 ∀r,ω . (6.13)

The creation operators â†(r,ω) can be used to define single-quantum Fock states

|1(r,ω)〉 = â†(r,ω)|{0}〉 . (6.14)

The above commutation relations show that these states are orthogonal with respect
to frequency, but not with respect to position,

〈1(r,ω)|1(r ′,ω′)〉 = g(r, r ′,ω)

g(r,ω)g(r ′,ω)
δ(ω − ω′) . (6.15)

http://dx.doi.org/10.1007/978-3-642-32466-6_6
http://dx.doi.org/10.1007/978-3-642-32466-6_6
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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They are eigenstates of the field Hamiltonian (1.93) carrying one quantum of
energy �ω,

ĤF|1(r,ω)〉 = �ω|1(r,ω)〉 . (6.16)

This can be seen from the commutation relation

[
ĤF, â†(r,ω)

] = �ωâ†(r,ω) , (6.17)

which is a consequence our definition of â and â† and the fundamental commu-
tation relations (1.17) and (1.18). Physically, the states |1(r,ω)〉 represent the sin-
gle photon resonantly emitted by our excited two-level atom at position r . Their
non-orthogonality reflects the fact that photons emitted at one position r have a
non-vanishing probability of being reabsorbed by an atom at a different position r ′.

For an atom at fixed centre-of-mass position rA, we have photon creation and
annihilation operators â(rA,ω) ≡ â(ω) and â†(rA,ω) ≡ â†(ω) with commutation
relations

[
â(ω), â(ω′)

] = [
â†(ω), â†(ω′)

] = 0 ,
[
â(ω), â†(ω′)

] = δ(ω − ω′) , (6.18)

so that the associated single photon states |1(rA,ω)〉 ≡ |1(ω)〉 are orthogonal,

〈1(ω)|1(ω′)〉 = δ(ω − ω′) . (6.19)

Finally, we restrict our attention to a single cavity mode ν which has a Lorentzian
profile with mid-frequency ων and width γν ,

g2
ν(r,ω) = g2

ν(r)
1
4γ

2
ν

(ω − ων)2 + 1
4γ

2
ν

. (6.20)

We apply the single-mode approximation by assuming that the mode dominates the
field spectrum in its vicinity,

g2(r,ω) � g2
ν(r,ω) for |ω − ων | ≤ Δω/2 (6.21)

(Δω: distance between two neighbouring modes; γν 
 Δω). The field spectrum is
sketched in Fig. 6.1. In order to realise strong coupling, we require the mode to be
very narrow, γν 
 ων . Introducing the Q-factor of the cavity Q = ων/γν , this is
equivalent to assuming a high-Q cavity.

Creation and annihilation operators for photons of the single mode ν can be
introduced according to

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_6
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Δω

g2
ν (ω)
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Fig. 6.1 Single-mode approximation for the field spectrum inside a cavity

â =
√
γν

2π

ων+Δω/2∫

ων−Δω/2

dω
â(ω)√

(ω − ων)2 + 1
4γ

2
ν

. (6.22)

Their commutation relations follow from those of â(ω) and â†(ω) as given by (6.18)
above. For a sufficiently narrow mode with γν 
 Δω < ων , we have

ων+Δω/2∫

ων−Δω/2

dω

(ω − ων)2 + 1
4γ

2
ν

�
∞∫

−∞

dω

(ω − ων)2 + 1
4γ

2
ν

= 2π

γν
, (6.23)

so that [
â, â

] = [
â†, â†] = 0 ,

[
â, â†] = 1 . (6.24)

As an immediate consequence, the associated single-photon state

|1ν〉 = â†|{0}〉 (6.25)

is normalised to unity,
〈1ν |1ν〉 = 1 . (6.26)

Substituting (6.20) and (6.22) into (6.9), the interaction Hamiltonian in single-mode
approximation (

∫∞
0 dω �→ ∫ ων+Δω/2

ων−Δω/2 dω) takes the simple form

ĤAF = 1
2 �ΩR

(
â + â†)(σ̂ + σ̂†) (6.27)
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where

ΩR = ΩR(rA) =
√

2πγνg2(rA,ων)

=
√

2μ0γνω2
ν

�
d10 ·ImG(rA, rA,ων)·d01 (6.28)

is the vacuum Rabi frequency.
For a sufficiently narrow modeγν 
 Δω, the commutator of the field Hamiltonian

(1.93) with the single-mode operator (6.22) may approximately be given as

[
ĤF, â

] = −�ων â . (6.29)

This commutator is faithfully reproduced by the simpler single-mode Hamiltonian

ĤF = �ων â†â . (6.30)

Combining our results (6.3), (6.27) and (6.30), we obtain the Hamiltonian of the
Jaynes–Cummings model [1]

Ĥ = �ων â†â + 1
2 �ω10σ̂z + 1

2 �ΩR
(
â + â†)(σ̂ + σ̂†) . (6.31)

It describes the idealised interaction of a single cavity mode with a single atomic
transition. The level scheme of the James–Cummings model is depicted in Fig. 6.2.
In the figure, we have introduced the atom–field detuning

Δ = ων − ω10 . (6.32)

Fig. 6.2 James–Cummings
model

E1

E0

ων

Δ

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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We are only interested in the resonant, energy-conserving interaction processes
where the atom either makes a downward transition while emitting a photon (â†σ̂)
or it reabsorbs the photon while making an upward transition (âσ̂†). Discarding the
other two, purely non-resonant interaction terms, (5.133) approximates to

ĤAF = 1
2 �ΩR

(
âσ̂† + â†σ̂

)
(6.33)

and the Jaynes–Cummings Hamiltonian reads

Ĥ = �ων â†â + 1
2 �ω10σ̂z + 1

2 �ΩR
(
âσ̂† + â†σ̂

)
. (6.34)

The neglect of the non-resonant interactions is known as the rotating-wave approx-
imation. The name stems from the fact that the uncoupled systems carry a peri-
odic time dependence in the Heisenberg picture, â(t) = âe−iων (t−t0) and σ̂(t) =
σ̂e−iω10(t−t0). We have retained the terms σ̂(t)â†(t) = σ̂â†e−i(ω10−ων )(t−t0) and
σ̂†(t)â(t) = σ̂†âei(ω10−ων )(t−t0) whose phase is slowly rotating. In the interaction
picture, this means that the electromagnetic wave is co-rotating with the atom; the
two counter-rotating terms have been discarded.

6.1.2 Casimir–Polder Potential

Generalising Casimir and Polder’s approach, the CP potential of a strongly coupled
excited atom inside a cavity can be obtained as follows: We start from the uncoupled
state |1〉|{0}〉 of an excited atom with the field being in its ground state and calculate
the position-dependent energy shift due to the atom–field interaction (6.33).

The coupling Hamiltonian in rotating-wave approximation induces transitions to
the state |0〉|1ν〉 where the atom is in its ground state and one single-mode photon is
present. On the subspace spanned by the two states |1〉|{0}〉 and |0〉|1ν〉, the Jaynes–
Cummings Hamiltonian can be given in the matrix form

Ĥ =
(

1
2 �ω10

1
2 �ΩR

1
2 �ΩR �ων − 1

2 �ω10

)
. (6.35)

This simple two-dimensional matrix can be diagonalised in a straightforward
manner, yielding the two eigenenergies

E± = 1
2 �ων ± 1

2 �Ω (6.36)

with

Ω = Ω(rA) =
√

Ω2
R(rA)+Δ2 (6.37)

being the generalised Rabi frequency. Using the relation [2]

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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1√
1+ cot2(α)

= sin(α) , α ∈ [0,π] (6.38)

the associated eigenstates can be given as

|+〉 = cos θc|1〉|{0}〉 + sin θc|0〉|1ν〉 , (6.39)

|−〉 = − sin θc|1〉|{0}〉 + cos θc|0〉|1ν〉 , (6.40)

where the coupling angle θc = θc(rA) is defined according to

tan(2θc) = −ΩR

Δ
, θc ∈ [0,π/2] . (6.41)

The states |±〉 are known as dressed atomic states [3]. When the system is in a
strongly coupled dressed state, the excitation is shared between the atom and the
cavity mode.

According to Casimir and Polder, the CP potential is the position-dependent part
of the energy shift. For an atom–field system prepared in one of the dressed states
|+〉 or |−〉, the CP potential is given by [4]

U±(rA) = ± 1
2 �Ω(rA)

= ± 1
2

√
2�μ0γνω2

νd10 ·Im G(rA, rA,ων)·d10 + �2Δ2 , (6.42)

from which the associated CP force

F±(rA) = −∇AU±(rA) (6.43)

can be obtained. A result of this kind was first obtained in [5, 6] for an atom in a one-
dimensional, perfectly conducting cavity. To interpret this result, we recall (1.28) to
see that the ground-state fluctuations of the electric field due to the mode ν can be
given as

〈[ΔÊ(r)]2〉
ν
= �μ0

π

ων+Δω/2∫

ων−Δω/2

dω ω2tr[ImG(r, r,ω)] . (6.44)

Using the mode profile (6.20) and carrying out the integral according to (6.23), we
find 〈[ΔÊ(r)]2〉

ν
= 1

2 �μ0γνω
2
ν tr[ImG(r, r,ων)] . (6.45)

A comparison shows that the resonant strong-coupling CP potential is essentially
determined by the ground-state fluctuations of the electric field at the position of the
atom. For a system prepared in the state |+〉 the atom is repelled from regions of
high field fluctuations, while for the state |−〉, it is attracted towards these regions.

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Fig. 6.3 An atom strongly
interacting with a cavity
mode, with the system being
prepared in state (i) |+〉 or
(ii) |−〉

(i)

(ii)

A simple example is shown in Fig. 6.3 where we have sketched the behaviour of an
atom interacting with a standing wave of an ideal planar cavity. For state |+〉, the
atom is drawn towards the nodes of the wave while for the state |+〉, it is attracted
towards the antinodes of the wave.

The results of perturbation theory can be recovered in the weak-coupling limit
where the vacuum Rabi frequency is much smaller than the atom–field detuning
ΩR 
 |Δ|. In this case, the coupling angle (6.41) approaches θc = π/2 for positive
detuning (Δ > 0) and θc = 0 for negative detuning (Δ > 0). Consequently, the
dressed states (6.39) and (6.40) approximate to

|+〉 =
{ |0〉|1ν〉 for Δ > 0 ,

−|1〉|{0}〉 for Δ < 0 ,
(6.46)

|−〉 =
{ |1〉|{0}〉 for Δ > 0 ,

|0〉|1ν〉 for Δ < 0 .
(6.47)

The CP potentials (6.42) can be approximated by expanding the square root. With
the state identifications above, we find

U1(rA) = U±(rA) = −�Ω2
R(rA)

4Δ
= − �Ω2

R(rA)

4(ων − ω10)
. (6.48)

This result can be cast into a more familiar form by employing the Kramers–Kronig
relation for the response function ω2G(1)(rA, rA,ω),



192 6 Casimir–Polder Forces in Cavity Quantum Electrodynamics

ω2ReG(1)(rA, rA,ω) = 1

π
P
∞∫

−∞

dω′

ω′ − ωω
′2ImG(1)(rA, rA,ω′) . (6.49)

For a sufficiently narrow mode with shape (6.20), it leads to

μ0ω
2d10 ·ReG(1)(rA, rA,ω)·d01

= μ0

π
ω2
νd10 ·ImG(1)(rA, rA,ων)·d01P

∞∫

−∞

dω′

ω′ − ω
γ2
ν/4

(ω′ − ων)2 + 1
4γ

2
ν

= �Ω2
R(rA)

4(ων − ω)
, (6.50)

where we have noted that ImG(1) = ImG in the single-mode approximation and the
frequency integral has been carried out by means of (6.23). Combining (6.48) with
(6.50), we find that the CP potential reads

U1(rA) = −μ0ω
2
10d10 ·Re G(1)(rA, rA,ω10)·d01 . (6.51)

This agrees with our perturbative result (4.42) for the resonant CP potential of an
excited two-level atom. The absence of the non-resonant potential is due to the
rotating-wave approximation made. The Jaynes–Cummings model is hence able to
give an exact account of the resonant interaction of a two-level atom with a single
cavity mode, which reduces to the perturbative result in the weak-coupling limit.

The opposite limit of strong atom–field coupling ΩR � |Δ| is realised in partic-
ular for exact resonance, ω10 = ων . In this case, the coupling angle reads θc = π/4,
so the states (6.39) and (6.40) are given by

|±〉 = 1√
2

(±|1〉|{0}〉 + |0〉|1ν〉) . (6.52)

The excitation is hence evenly distributed between the atom and the cavity mode.
The associated CP potentials read

U±(rA) = ± 1
2

√
2�μ0γνω2

νd10 ·ImG(rA, rA,ων)·d10 . (6.53)

Let us next consider a situation where the system is not prepared in one of the
eigenstates |±〉, but in a more general state

|θ〉 = cos θ|1〉|{0}〉 + sin θ|0〉|1ν〉 , θ ∈ [0,π] , (6.54)

which includes the special cases

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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|θ=0〉 = |1〉|{0}〉 , |θ=θc〉 = |+〉 , |θ=θc+π/2〉 = |−〉 . (6.55)

The CP potential for this state is the weighted average of the two eigenstate potentials.
Combining (6.39), (6.40) and (6.42), we find

Uθ(rA) = |〈θ|+〉|2U+(rA)+ |〈θ|−〉|2U−(rA)

= cos2(θ − θc)U+(rA)+ sin2(θ − θc)U−(rA)

= 1
2 cos[2(θ − θc)]�Ω(rA) . (6.56)

Care has to be taken when evaluating the CP force (1.119), since the overlap functions
|〈θ|+〉|2 and |〈θ|−〉|2 carry a position-dependence via the coupling angle,

Fθ(rA) = −1

2
cos[2(θ − θc)]�∇AΩ(rA)− sin[2(θ − θc)]�Ω(rA)∇Aθc(r A) . (6.57)

To evaluate the second gradient, we take the derivative of the definition (6.41) and
make use of the identities

1√
1+ tan2(α)

=
{

cos(α) for α ∈ [0,π/2] ,
− cos(α) for α ∈ [π/2,π] , (6.58)

to find

∇Aθc(rA) = −cos2(2θc)∇AΩR(rA)

2Δ
. (6.59)

The CP force thus reads

Fθ(rA) = − 1
2 cos[2(θ − θc)]�∇AΩ(rA)

+ 1
2 sin[2(θ − θc)] cos2(2θc)

Ω(rA)

Δ
�∇AΩR(rA) . (6.60)

To bring this result into a more compact form, we make use of the relations

Ω(rA) = ΩR(rA)

sin(2θc)
, (6.61)

∇AΩ(rA) = sin(2θc)∇AΩR(rA) (6.62)

which follow directly from the definitions (6.37) and (6.41) together with the identity
(6.38). Substituting these results and using the definition (6.41) once more, the CP
force on an atom in a superposition state (6.54) can be given as [4]

Fθ(rA) = − 1
2

{
cos[2(θ − θc)] + cot(2θc) sin[2(θ − θc)]

}
�∇AΩ(rA) .

(6.63)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
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Let us consider some special cases. When the system is prepared in one of its
eigenstates |±〉, (6.55) shows that θ − θc = 0,π/2 and we recover the previous
result (6.43) with (6.42). For the strictly uncoupled state |1〉|{0}〉, we have θ =
0 and the CP force vanishes. This is due to cancellations of contributions from
U+ and U−. This result is not in contradiction with our non-vanishing perturbative
result (6.51) where the system is in fact in its a weakly coupled eigenstate rather
than |1〉|{0}〉.

The strong-coupling CP potential hence sensitively depends on the system’s state.
Two kinds of states can be prepared in a particularly simple way. Firstly, the atom
may enter the cavity in its ground state and is then excited by an external laser, such
that the system ends up in the uncoupled state |1〉|{0}〉. Alternatively, the atom may
be excited outside the cavity where ΩR 
 |Δ|. According to (6.46) and (6.47), the
systems state |1〉|{0}〉 hence coincides with one of the two eigenstates |±〉, depending
on the sign of the detuning. If the atom then enters the cavity sufficiently slowly so
that the adiabatic approximation holds, the system will remain in this eigenstate.
As a result, the atom is in the cavity, with the system being prepared in one of the
states |±〉.

6.2 Dynamical Approach

As shown in Chap. 5, a time-independent analysis of the CP force is incomplete
with two respects: It fails to reproduce the dynamics of the force; and it does not
account for the body-induced frequency shifts and broadenings. To overcome these
deficiencies in the case of strong coupling, we generalise the dynamical approach
presented in Chap. 5. We first solve the strongly coupled atom–field dynamics and
then evaluate the average Lorentz force to find the CP force.

6.2.1 Internal Atomic Dynamics

To account for the body-induced shift and broadening of the atomic transition fre-
quency, we need to include the interaction of the atom with the full spectrum of the
electromagnetic field. Improving the single-mode approximation (6.21), we separate
the field spectrum (6.8) into two components

g2(r,ω) = g2
ν(r,ω)+ δg2(r,ω) . (6.64)

We assume that the single-mode contribution g2
ν(r,ω) has a narrow Lorentzian profile

(6.20) and that the underlying field continuum δg2(r,ω) is flat in the vicinity of the
atomic transition frequency and hence only weakly coupled to the atom. The two
contributions are illustrated in Fig. 6.1. The dynamics of this improved single-mode
approximation is not adequately described by the Jaynes–Cummings Hamiltonian

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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(6.34). Instead, by combining (6.1), (6.9) and (6.17) and employing the rotating-wave
approximation, we have

Ĥ =
∞∫

0

dω �ωâ†(ω)â(ω)+ E0|0〉〈0| + E1|1〉〈1|

+
∞∫

0

dω �g(rA,ω)
[
â(ω)|1〉〈0| + â†(ω)|0〉〈1|] . (6.65)

The atom–field dynamics for strong coupling can most conveniently be solved in
the Schrödinger picture. We assume that the atom is initially excited, with the field
being in its vacuum state |ψ(t0)〉 = |1〉|{0}〉. The state of the system at later times
can thus be given in the form

|ψ(t)〉 = ψ1(t)|1〉|{0}〉 +
∞∫

0

dω ψ0(ω, t)|0〉|1(ω)〉 (6.66)

where the coefficients obey the normalisation

|ψ1(t)|2 +
∞∫

0

dω |ψ0(ω, t)|2 = 1 (6.67)

and fulfil the initial conditions

ψ1(t0) = 1 , ψ0(ω, t0) = 0 . (6.68)

The Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (6.69)

is hence equivalent to the set of equations

ψ̇1(t) = −i
E1

�
ψ1(t)− i

∞∫

0

dω g(rA,ω)ψ0(ω, t) , (6.70)

ψ̇0(ω, t) = −i

(
E0

�
+ ω

)
ψ0(ω, t)− ig(rA,ω)ψ1(t) . (6.71)

The formal solution to the second equation together with the initial condition above
is given by
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ψ0(ω, t) = −ig(rA,ω)

t∫

t0

dt ′ e−i(E0/�+ω)(t−t ′)ψ1(t
′) . (6.72)

Substituting it into the first equation, we obtain

ψ̇1(t) = −i
E1

�
ψ1(t)−

∞∫

0

dω g2(rA,ω)

t∫

t0

dt ′ e−i(E0/�+ω)(t−t ′)ψ1(t
′) . (6.73)

To solve this equation, we first need to evaluate the frequency integrals. To that
end, we apply the decomposition (6.64) of the field spectrum:

ψ̇1(t) = −i
E1

�
ψ1(t)−

∞∫

0

dω δg2(rA,ω)

t∫

t0

dt ′ e−i(E0/�+ω)(t−t ′)ψ1(t
′)

−
∞∫

0

dω g2
ν(rA,ω)

t∫

t0

dτ e−i(E0/�+ω)(t−t ′)ψ1(t
′) . (6.74)

We assume that the field continuum is assumed to be sufficiently flat, so that its
contribution can be evaluated by means of the Markov approximation. Writing
ψ1(t ′) = e−i(Ẽ1/�)(t ′−t)ψ1(t) and extending the lower limit of the time integral
to minus infinity, we find

∞∫

0

dω δg2(rA,ω)

t∫

t0

dt ′ e−i(E0/�+ω)(t−t ′)ψ1(t
′)

� ψ1(t)

∞∫

0

dω δg2(rA,ω)

t∫

−∞
dt ′ e−i(ω−ω̃10)(t−t ′)/�

=
[
πδg2(rA, ω̃10)− iP

∞∫

0

dω

ω − ω̃10
δg2(rA,ω)

]
ψ1(t)

= (
iδω′1 +

1

2
Γ ′1

)
ψ1(t) (6.75)

where we have defined ω̃10 = (Ẽ1−E0)/� and used (5.46). To obtain the last line, we
have combined the definitions (6.8), (6.20), (6.28) and (6.64) for the field spectrum;
used the integral

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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P
∞∫

0

dω

ω − ω̃10

1

(ω − ων)2 + 1
4γ

2
ν

= 2π

γν

ων − ω̃10

(ω̃10 − ων)2 + 1
4γ

2
ν

for γν 
ων ;

(6.76)

and introduced

δω′1 = δω′1(rA) = −μ0

π�
P
∞∫

0

dω

ω − ω̃10
ω2d10 ·ImG(1)(rA, rA,ω)·d01

+Ω2
R

1
4Δ

Δ2 + 1
4γ

2
ν

, (6.77)

Γ ′1 = Γ ′1(rA) = 2μ0

�
ω̃2

10d01 ·ImG(rA, rA, ω̃10)·d10

−Ω2
R

1
4γν

Δ2 + 1
4γ

2
ν

. (6.78)

Note that the atom–field detuning

Δ = Δ(rA) = ων − ω̃10 (6.79)

is now defined with respect to the shifted atomic transition frequency.
The last term in (6.74) is the contribution from the mode ν which is assumed to be

very narrow, γν 
 ων . The Markov approximation is hence not applicable. Instead,
exploit the Lorentzian profile (6.20) of the mode and perform the frequency integral
by means of the relation

∞∫

0

dω
e−iωx

(ω − ων)2 + γ2
ν/4
= 2π

γν
e−iων x−γν |x |/2 for γν/2
 ων . (6.80)

Recalling the definition (6.28) of the Rabi frequency, we find

∞∫

0

dωg2
ν(rA,ω)

t∫

t0

dt ′e−i(E0/�+ω)(t−t ′)ψ1(t
′)

= Ω2
R

4

t∫

t0

dt ′ e[−i(E0/�+ων )−γν/2](t−t ′)ψ1(t
′) . (6.81)

Having evaluated the contributions from both the field continuum and the single
mode, the equation of motion for ψ1(t) reads
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ψ̇1(t) =
(
−i

Ẽ1

�
− Γ ′1

2

)
ψ1(t)− Ω2

R

4

t∫

t0

dt ′e[−i(E0/�+ων )−γν/2](t−t ′)ψ1(t
′) (6.82)

where we have identified Ẽ1 = E1 + �δω′1, i.e.,

ω̃10 = ω10 + δω′1 . (6.83)

In other words, δω′1 as given by (6.77) is the continuum-induced frequency shift of
the excited atomic level. To simplify the equation for ψ1(t), we write the solution in
the form

ψ1(t) = e(−iẼ1/�−�′1/2)(t−t0)φ1(t) (6.84)

where according to (6.82), φ1(t) obeys the integro-differential equation

φ̇1(t) = −Ω2
R

4

t∫

t0

dt ′e[−iΔ−(γν−Γ ′1)/2](t−t ′)φ1(t
′) . (6.85)

Differentiating with respect to t , it is found to be equivalent to the second-order
differential equation

φ̈1(t)+
[
iΔ+ 1

2
(γν − Γ ′1)

]
φ̇1(t)+ 1

4
Ω2

Rφ1(t) = 0 (6.86)

The associated initial conditions

φ1(t0) = 1 , φ̇1(t0) = 0 (6.87)

follow from (6.68), (6.84) and (6.85). The solution reads

φ1(t) = eΩ+(t−t0)c+ + eΩ−(t−t0)c− , (6.88)

with complex frequencies

Ω± = Ω±(rA) = −1

2

[
iΔ+ 1

2

(
γν − Γ ′1

)]∓ 1

2

√[
iΔ+ 1

2

(
γν − Γ ′1

)]2 −Ω2
R (6.89)

and coefficients

c± = c±(rA) = Ω∓
Ω∓ −�±

. (6.90)

Combining (6.88) with (6.84) we finally obtain [4, 7]
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ψ1(t) = e(−iẼ1/�−Γ ′1/2+Ω+)(t−t0)c+ + e(−iẼ1/�−Γ ′1/2+Ω−)(t−t0)c− . (6.91)

Having completely solved the atom–field dynamics, let us first make contact
with the weak-coupling results obtained in the previous Chap. 5. Weak atom–field
coupling is realised if the mode ν is very broad, γν � 2ΩR, or far detuned from
the atomic transition frequency, |Δ| � 2Ω2

R/γν . In both cases, the first term under
the square root in (6.89) is much larger than the second one and a Taylor expansion
yields

Ω+ = −iΔ− 1

2

(
γν − Γ ′1

)
, (6.92)

Ω− = iΩ2
R

4

Δ

Δ2 + 1
4γ

2
ν

− Ω2
R

8

γν

Δ2 + 1
4γ

2
ν

= −i(δω1 − δω′1)−
1

2
(Γ1 − Γ ′1) . (6.93)

The coefficients (6.90) approximate to c+ = 0, c− = 1. Combining the shift (6.77)
and rate (6.78) due to the field continuum with the contributions from Ω−, (6.91)
reduces to

ψ1(t) = e[−iẼ1/�−Γ1/2)(t−t0) (6.94)

with Ẽ1 = E1 + �δω1. Here,

δω1 = δω1(rA)

= −μ0

π�
P
∞∫

0

dω

ω − ω̃10
ω2d10 ·ImG(1)(rA, rA,ω)·d01 (6.95)

Γ1 = Γ1(rA) = 2μ0

�
ω̃2

10d01 ·ImG(rA, rA, ω̃10)·d10 (6.96)

with
ω̃10 = ω10 + δω1 (6.97)

are the shift and width of the excited level associated with full field spectrum (6.64),
including both the mode ν and the continuum. We have thus reproduced (5.59)–(5.62)
as obtained in Chap. 5. Note however that the lower-level shift is absent from ω̃10
as a result of the rotating-wave approximation made. Our calculation has revealed
the conditions under which the Markov approximation applies. It can be used if the
field spectrum has either no resonance at the atomic transition frequency or only a
sufficiently broad one.

Let us turn our attention to the opposite strong-coupling regime which is realised
if the mode ν is both sufficiently narrow, γν 
 2ΩR, and near-resonant with the
atomic transition, |Δ| 
 2Ω2

R/γν . In this case, we can neglect the terms iΔ(γν−Γ ′1)

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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and (γν − Γ ′1)/4 to find

Ω± = −1

2

[
iΔ+ 1

2

(
γν − Γ ′1

)]∓ 1

2
Ω . (6.98)

with the generalised Rabi frequency Ω being given as in (6.37). Recall however, that
the detuning (6.79) is defined with respect to the shifted atomic transition frequency.
The coefficients (6.90) reduce to

c± = Ω ∓Δ

2Ω
=

{
cos2 θc ,

sin2 θc
(6.99)

where we have introduced the coupling angle in the form (6.41) and made use of
(6.58). Substituting these results into (6.91) and recalling the definition (6.78) of Γ ′1,
we find

ψ1(t) = e−γ(t−t0)/2 [
e−iE+(t−t0)/� cos2 θc + e−iE−(t−t0)/� sin2 θc

]
. (6.100)

Here,

γ = γ(rA) = 1

2
(γν + Γ ′1) (6.101)

is the total damping rate and

E± = E±(rA) = 1
2

(
E0 + Ẽ1 + �ων

)± 1
2 �Ω (6.102)

with Ẽ1 = E1 + �δω′1 are the eigenenergies of the system.
In the case of exact resonance, ω̃10 = ων , the coupling angle assumes the value

θc = π/4 and ψ1(t) simplifies to

ψ1(t) = e−γ(t−t0)/2

2

[
e−iE+(t−t0)/�+ e−iE−(t−t0)/�

]
. (6.103)

Using the explicit form of the eigenenergies, it can be given in the alternative form

ψ1(t) = e[−i(E0+Ẽ1+�ων )/�−γ](t−t0)/2 cos[Ω(t − t0)/2] . (6.104)

With the state |ψ(t)〉 of the system being given by (6.66), the excited-state probability
p1(t) = |〈1|ψ(t)〉|2 = |ψ1(t)|2 of the atom is given by

p1(t) = e−γ(t−t0) cos2[�(t − t0)/2] . (6.105)

The population of the excited atomic state hence undergoes damped Rabi oscil-
lations [8] during which it is continuously excited and de-excited. The associated
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Rabi frequency is affected by the shift δω′1 of the excited level induced by the field
continuum.

To follow the whereabouts of the atomic excitation energy during the Rabi oscil-
lations, let us turn our attention to the field amplitude ψ0(ω, t). Substituting our
solution (6.104) for ψ1(t), it is given by

ψ0(ω, t) = −ig(rA,ω)

∫ t

t0
dt ′ e−i(E0/�+ω)(t−t ′)

× e[−i(E0+Ẽ1+�ων )/�−γ](t ′−t0)/2 cos[�(t ′ − t0)/2] . (6.106)

To find the amplitude of the single-mode excited state (6.25), we calculate the pro-
jection ψ1ν (t) = 〈1ν |ψ(t)〉,

ψ1ν (t) =
√
γν

2π

ων+Δω/2∫

ων−Δω/2

dω
ψ0(ω, t)√

(ω − ων)2 + 1
4γ

2
ν

. (6.107)

Combining (6.106) and (6.107), we neglect the contribution from the field continuum
and evaluate the frequency integral by means of (6.20), (6.28) and (6.80),

ψ1ν (t) = −i
ΩR

2

t∫

t0

dt ′ e[−i(E0/�+ων )−γν/2](t−t ′)

× e[−i(E0+Ẽ1+�ων )/�−γ](t ′−t0)/2 cos[Ω(t ′ − t0)/2] . (6.108)

In the strong-coupling limit, the time integral leads to

ψ1ν (t) = −ie[−i(E0+Ẽ1+�ων )/�−γ](t−t0)/2 sin[Ω(t − t0)/2] . (6.109)

The probability p1ν (t) = |〈1ν |ψ(t)〉|2 = |ψ1ν (t)|2 of a single-mode photon being
present in the cavity is hence given by

p1ν (t) = e−γ(t−t0) sin2[Ω(t − t0)/2] . (6.110)

Comparing this with p1(t) as given above, we conclude that the excitation initially
present in the atom is continuously exchanged between the atom and the cavity mode.
In other words, the atom reversibly emits and reabsorbs a single photon ν. Adding
(6.105) and (6.110), we find

p1(t)+ p1ν (t) = e−γ(t−t0) . (6.111)

This shows that the excitation is slowly lost during the Rabi oscillations. According
to (6.101), two processes contribute to this energy dissipation: the atom may emit
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a photon into the field continuum which is not confined to the cavity and hence is
not reabsorbed. Alternatively, a single-mode photon may leak out of the cavity due
to imperfect reflection of the cavity walls. The two loss processes are effective at
alternating times during the Rabi oscillations. The total damping rate is hence the
average of the atomic decay rate Γ ′1 and the photonic decay rate γν .

The dynamical analysis including atomic and cavity losses has led to a more
refined definition of the strong-coupling regime. Strong coupling is realised whenever
Rabi oscillations may be observed. As seen, this requires the mode to be narrow,
γν 
 2ΩR, and near-resonant with the atomic transition, |Δ| 
 2Ω2

R/γν . These
conditions allow for a whole range of possible coupling angles. Recall that the simple
static analysis of the previous section as based on the Jaynes–Cummings model had
suggested a much more reduced notion of strong coupling: With the width of the
resonance being neglected, we had placed a much more severe limit |Δ| 
 ΩR on
the detuning, corresponding to θc � π/4.

Finally, let us consider the case where the system is initially prepared in a super-
position (6.54) of atomic and field excitations, |ψ(t0)〉 = |θ〉. The state of the system
can still be given in the form (6.66), but with modified initial conditions (6.68).
Recalling the definitions (6.22) and (6.25) of |1ν〉, we now have

ψ1(t0) = cos θ , ψ0(ω, t0) =
√
γν

2π

sin θ√
(ω − ων)2 + 1

4γ
2
ν

. (6.112)

With these initial conditions, the solution to the field equation (6.71) is given by

ψ0(ω, t) =
√
γν

2π

sin θe−i(E0/�+ω)(t−t0)√
(ω − ων)2 + 1

4γ
2
ν

− ig(rA,ω)

t∫

t0

dt ′ e−i(E0/�+ω)(t−t ′)ψ1(t
′) . (6.113)

We substitute this result back into the atomic equation (6.70). Evaluating the contri-
bution from the first term in (6.112) via the single-mode approximation g2(rA,ω) �
g2
ν(rA,ω) by combining (6.20), (6.28) and (6.80), we obtain

ψ̇1(t) = −i
E1

�
ψ1(t)− i

ΩR

2
sin θe[−i(E0/�+ων )−γν/2](t−t0)

−
∞∫

0

dω g2(rA,ω)

t∫

t0

dt ′ e−i(E0/�+ω)(t−t ′)ψ1(t
′) . (6.114)

We now follow exactly the same steps as before. Decomposing the field spectrum
into its single-mode and continuum contributions, we find
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ψ̇1(t) =
(
−i

Ẽ1

�
− Γ ′1

2

)
ψ1(t)− i

ΩR

2
sin θe[−i(E0/�+ων )−γν/2](t−t0)

− Ω2
R

4

t∫

t0

dt ′ e[−i(E0/�+ων )−γν/2](t−t ′)ψ1(t
′) . (6.115)

Writing ψ1(t) in the form (6.84), we obtain the integro-differential equation

φ̇1(t) = −i
ΩR

2
sin θe[−iΔ−(γν−Γ ′1)/2](t−t0)

− Ω2
R

4

t∫

t0

dt ′ e{−iΔ−(γν−Γ ′1)/2](t−t ′)φ1(t
′) . (6.116)

By taking the time derivative, we recover the same second-order differential equation
(6.86) as before, but with generalised initial conditions

φ1(t0) = cos θ , φ̇1(t0) = − i

2
ΩR sin θ . (6.117)

It is solved by (6.88) with (6.89) as before, but with modified coefficients

c± = c±(rA) = Ω∓ cos θ + i
2ΩR sin θ

Ω∓ −�±
. (6.118)

Consequently, ψ1(t) is again given by (6.91), but with the modified coefficients.
In the strong-coupling limit, the approximation (6.98) applies and the coefficients

reduce to

c± = (Ω ∓Δ
)

cos θ ±ΩR sin θ

2Ω
. (6.119)

Introducing the coupling angle in the form (6.41) and using the relations (6.38) and
(6.58), they can alternatively be given as

c+ = cos2 θc cos θ + sin θc cos θc sin θ = cos θc cos(θ − θc) , (6.120)

c− = sin2 θc cos θ − sin θc cos θc sin θ = − sin θc sin(θ − θc) . (6.121)

With these approximations, the excited-state amplitude simplifies to

ψ1(t) = e[−i(E0+Ẽ1+�ων )/�−γ](t−t0)/2
[
cos θc cos(θ − θc)e

−iΩ(t−t0)

− sin θc sin(θ − θc)e
iΩ(t−t0)

]
. (6.122)

In the case of exact resonance, ω̃10 = ων , the coupling angle reads θc = π/4, so that



204 6 Casimir–Polder Forces in Cavity Quantum Electrodynamics

ψ1(t) = e[−i(E0+Ẽ1+�ων )/�−γ](t−t0)/2 cos[θ +�(t − t0)/2] . (6.123)

The probability of the atom to be excited is hence given by

p1(t) = e−γ(t−t0) cos2[θ +Ω(t − t0)/2] . (6.124)

Comparing this with the result (6.105) for the initial state |1〉|{0}〉with purely atomic
excitation, we see that the superposition |θ〉 has led to a phase shift in the oscillations
of the excited-state population.

6.2.2 Casimir–Polder Force

Having solved and analysed the coupled atom–field dynamics in detail, we can calcu-
late the CP force on a strongly coupled atom. We start from the Lorentz force (5.30)
in the Heisenberg picture. Using the field expansions (1.22) and (1.26) for the field
and (6.4) for the dipole operator and employing the rotating-wave approximation,
the resonant force on a two-level atom can be given as

F̂ =
∑
λ=e,m

∫
d3r ′

∞∫

0

dω
[|1〉〈0|∇d10 ·Gλ(rA, r ′,ω)· f̂ λ(r ′,ω)

+∇d01 ·G∗λ(rA, r ′,ω)· f̂ †
λ(r ′,ω)|0〉〈1|]

+ d

dt

∑
λ=e,m

∫
d3r ′

∞∫

0

dω

iω

{|1〉〈0|d10×
[∇×Gλ(rA, r ′,ω)· f̂ λ(r ′,ω)

]

− d01×
[∇×G∗λ(rA, r ′,ω)· f̂ †

λ(r ′,ω)
]|0〉〈1|} . (6.125)

Note that we have arranged operator product in normal ordering. We evaluate the
average of this force by making the transition to the Schrödinger picture, with state of
the system being given in the form (6.66). Recalling the definition (6.7) and making
use of the commutation relations (1.17) and (1.18), we find (d01 = d10)

F(t) = −μ0

π

∞∫

0

dω ω2 ∇d10 ·Im G(rA, rA,ω)·d01

g(rA,ω)

× [
ψ∗1(t)ψ0(ω, t)+ ψ1(t)ψ

∗
0(ω, t)

]

+ iμ0

π

∞∫

0

dω ω
d10×

[∇×ImG(rA, rA,ω)·d01
]

g(rA,ω)

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
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× d

dt

[
ψ∗1(t)ψ0(ω, t)− ψ1(t)ψ

∗
0(ω, t)

]
. (6.126)

Using to our solution (6.72) for the coupled atom–field dynamics, we may elim-
inate ψ∗0(ω, t):

F(t) = − iμ0

π

∞∫

0

dω ω2∇d10 ·ImG(rA, rA,ω)·d01

×
t∫

t0

dt ′
[
ei(E0/�+ω)(t−t ′)ψ1(t)ψ

∗
1(t ′)− e−i(E0/�+ω)(t−t ′)ψ∗1(t)ψ1(t

′)
]

+ μ0

π

∞∫

0

dω ωd10×
[∇×ImG(rA, rA,ω)·d01

]

× d

dt

t∫

t0

dt ′
[
ei(E0/�+ω)(t−t ′)ψ1(t)ψ

∗
1(t ′)+ e−i(E0/�+ω)(t−t ′)ψ∗1(t)ψ1(t

′)
]

.

(6.127)

Finally, by substituting (6.91) for ψ1(t) and carrying out the time integral, the CP
force on an initially excited atom reads

F1(rA, t) = 2μ0

π

∞∫

0

dω ω2∇d10 ·Im G(1)(rA, rA,ω)·d01Re s(ω, t − t0)

− 2μ0

π

∞∫

0

dω ωd10×
[∇×ImG(1)(rA, rA,ω)·d01

] d

dt
Im s(ω, t − t0)

(6.128)

with

s(ω, t) = s(rA,ω, t)

=
∑

p,q=±

e(−Γ ′1+Ωp+Ω∗q )t − e[i(ω−ω̃10)−Γ ′1/2+Ωp]t

ω − ω̃10 − i
2Γ ′1 + iΩ∗q

cpc∗q . (6.129)

This is the exact force on a two-level atom valid for both weak and strong atom–field
coupling. Note that we have discarded the self-force associated with the free-space
Green’s tensor G(0) by making the replacement G �→ G(1).

To make contact with the results of the previous Chap. 5, let us first consider the
weak-coupling limit where the approximations (6.92), (6.93) and c+ = 0, c− = 1

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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hold. Neglecting the rapidly oscillating second terms of the numerators in (6.129),
we recover the result of the Markov approximation

s(ω, t) = e−Γ1t

ω − ω̃10 − i
2Γ1

,
d

dt
s(ω, t) = 0 . (6.130)

with ω̃10 containing the full shift according to (6.97). The second result has been
obtained by recalling that the time derivative has to be performed before carrying
out the integral. The CP force hence reduces to

F1(rA, t) = e−Γ1(t−t0) F1(rA) , (6.131)

F1(rA) = μ0

π

∞∫

0

dω ω2
∇d10 ·ImG(r, rA,ω)·d01

∣∣
r=rA

ω − ω̃10 − i
2Γ1

+ C.c. (6.132)

This is in agreement with (5.101) and (5.102) as found in Chap. 5 on the basis of the
Markov approximation.

In the strong-coupling regime of a sufficiently narrow cavity mode (γν ≤ 2ΩR)
that is near-resonant with the atomic transition (|Δ| 
 2Ω2

R/γν), the CP force is
dominated by the single-mode contribution. In close analogy with (6.20) and (6.21),
we may hence approximate

ω2ImG(1)(r, r ′,ω) � ω2
νImG(1)(r, r ′,ων)

1
4γ

2
ν

(ω − ων)2 + 1
4γ

2
ν

. (6.133)

The frequency integral can then be carried out by means of (6.80), resulting in

F1(rA, t) = μ0γνω
2
ν∇d10 ·Im G(1)(rA, rA,ων)·d01Re s(t − t0)

− μ0γνωνd10×
[∇×Im G(1)(rA, rA,ων)·d01

] d

dt
Im s(t − t0) .

(6.134)

with

s(t) = s(rA, t) =
∑

p,q=±

e(−Γ ′1+Ωp+Ω∗q )t − e(iΔ−γ+Ωp)t

Δ+ i
2 (γν − Γ ′1)+ iΩ∗q

cpc∗q . (6.135)

With the strong-coupling approximations (6.98) and (6.99), s(t) further simplifies to

s(t) = e−γt

Ω

[
sin2 θc − cos2 θc + e−iΩt cos2 θc − eiΩt sin2 θc

]
, (6.136)

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5


6.2 Dynamical Approach 207

so that

Re s(t) = −e−γt

Ω
cos(2θc)[1− cos(Ωt)] , (6.137)

d

dt
Im s(t) = −e−γt cos(Ωt) . (6.138)

The CP force for strong atom–field coupling is hence given by [4]

F1(rA, t) = −μ0γν

Ω
ω2
ν∇d10 ·ImG(1)(rA, rA,ων)·d01

× cos(2θc)e
−γ(t−t0){1− cos[Ω(t − t0)]}

+ μ0γνωνd10×
[∇×ImG(1)(rA, rA,ων)·d01

]
× e−γ(t−t0) cos[Ω(t − t0)] . (6.139)

It has two components which arise due to the action of the electric and magnetic field
on the atom. The electric force has a constant sign while its amplitude undergoes
damped Rabi oscillations. The magnetic force exhibits Rabi oscillations during which
its sign changes periodically. Its magnitude is roughly Ω/ων times that of the electric
force. It is hence only relevant in the recently considered superstrong-coupling regime
[9] where Ω/ων might be comparable to or even greater than unity.

In the ordinary strong-coupling regime, the magnetic force is negligible. To sim-
plify the electric force, we exploit the symmetry (A.4) of the Green’s tensor to
make the replacement ∇G(1)(rA, rA,ω) �→ 1

2∇G(1)(r, r,ω)|r=rA and recall the
definitions (6.28) and (6.37) of the vacuum Rabi frequency ΩR and its generalised
counterpart�. Making use of the relations (6.61) and (6.62), we may write

μ0γν

Ω
ω2
ν∇d10 ·ImG(1)(rA, rA,ων)·d01 = μ0�∇AΩ2

R

4Ω

= 1

2
�∇

√
Ω2

R(r)+Δ2
∣∣
r=rA

. (6.140)

The CP force can hence be given as [4, 7]

F1(rA, t) = e−γ(t−t0) cos(2θc){1− cos[Ω(t − t0)]}F+(rA) (6.141)

with

F+(rA) = − 1
2 �∇

√
Ω2

R(r)+Δ2
∣∣
r=rA

. (6.142)

Like the weak-coupling result, the force factorises into a function of time and a
force component that carries all the main spatial dependence. The force component
resembles the static result (6.43) with (6.42), but the detuning now contains the
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body-induced frequency shift δω′1. Since the gradient in (6.142) only acts on the
position argument of the vacuum Rabi-frequency, the CP force is not a conservative
force in general. Recall from Sect. 5.4 that the body-induced frequency shift has
similar consequences for weak atom–field coupling. In the case of exact resonance
ω̃10 = ων , we have θc = π/4 and the CP force on an initially excited atom vanishes
at all times. This is in agreement with the result of static treatment as discussed below
(6.63) in Sect. 6.1.2. For finite detuning, a vanishing force at initial time eventually
evolves into a finite force whose amplitude exhibits Rabi oscillations.

To conclude the section, let us consider the CP force for the more general initial
state |ψ(t0)〉 = |θ〉 as given by (6.54). In this case, ψ0(ω, t) is given by (6.113)
which we substitute into (6.126). Focussing our attention to the force associated
with the mode ν, we make use of the single-mode approximation (6.20) with (6.21)
and evaluate the frequency integrals according to (6.80). Recalling (6.28), we find

Fθ(rA, t) = μ0γνω
2
ν∇d10 ·Im G(1)(rA, rA,ων)·d01

× Re

[
s(t − t0)− 2

ΩR
sin θ q(t − t0)

]

− μ0γνωνd10×
[∇×Im G(1)(rA, rA,ων)·d01

]

× d

dt
Im

[
s(t − t0)− 2

ΩR
sin θ q(t − t0)

]
. (6.143)

with
q(t) = q(rA, t) = e[iΔ−(γν+Γ ′1)/2]t(c+eΩ+t + c−eΩ−t) . (6.144)

Note that s(ω, t) is still given by (6.135), but with coefficients c± according to
(6.118). Using the strong-coupling approximations (6.98), (6.120) and (6.121) and
recalling (6.61), one finds

s(t)− 2

ΩR
sin θ q(t) = e−γt

Ω

[
sin2(θ − θc)− cos2(θ − θc)

+ (
e−iΩt cot θc − eiΩt tan θc

)
sin(θ − θc) cos(θ − θc)

]
(6.145)

and hence

Re

[
s(t − t0)− 2

ΩR
sin θq(t − t0)

]

= −e−γt

Ω
{cos[2(θ − θc)] + cot(2θc) sin[2(θ − θc)] cos(Ωt)} , (6.146)

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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d

dt
Im

[
s(t − t0)− 2

ΩR
sin θq(t − t0)

]
= −e−γt sin[2(θ − θc)]

sin(2θc)
cos(Ωt)} .

(6.147)

The strong-coupling force for an initial state |θ〉 follows immediately [4],

Fθ(rA, t) = −μ0γν

Ω
ω2
ν∇d10 ·ImG(1)(rA, rA,ων)·d01e−γ(t−t0)

× {cos[2(θ − θc)] + cot(2θc) sin[2(θ − θc)] cos[Ω(t − t0)]}
+ μ0γνωνd10×

[∇×Im G(1)(rA, rA,ων)·d01
]

× e−γ(t−t0) sin[2(θ − θc)]
sin(2θc)

cos[Ω(t − t0)] . (6.148)

Just like the force on an initially excited atom, it contains of electric and magnetic
contributions. The magnetic contribution is again oscillating around a zero mean. It
is smaller than the electric-field contribution by a factor Ω/ων and only observable
in the superstrong-coupling regime. For ordinary strong coupling, the force is dom-
inated by the electric-field contribution. Using the relation (6.140) as found above,
it can be given in the form [4]

Fθ(rA, t) = e−γ(t−t0){cos[2(θ − θc)]
+ cot(2θc) sin[2(θ − θc)] cos[Ω(t − t0)]}F+(rA) . (6.149)

The force at initial time

Fθ(rA, t) = {cos[2(θ − θc)] + cot(2θc) sin[2(θ − θc)]}F+(rA) (6.150)

reduces to our static result (6.63) when neglecting the frequency shift δω′1.
The dynamics of the strong-coupling force for different initial states |θ〉 is shown

in Fig. 6.4. We observe that the curves may be grouped into pairs of curves with
opposite signs. The members of each pair lie at opposite points in the polar diagram
for 2θ. Recalling the definition (6.54) of |θ〉, we see that the relative distribution
of the excitation between the atom and the field mode is also exactly opposite for
the two members of a pair. The roles of atom and field are hence exchanged, photon
emissions processes are replaced with absorptions and vice versa. The opposite signs
of the resulting force is then plausible since the resonant CP force can be interpreted
as a consequence of photon recoil.

The figure further reveals that there are two extremes of behaviour: For the initial
states with 2θ = 2θc (a1), 2θc+ π (a3), the force shows no oscillations and is purely
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Fig. 6.4 Dynamics of the strong-coupling CP force for different initial states |θ〉: 2θ = 2θc (a1),
2θc+π/2 (a2), 2θc+π (a3), 2θc+3π/2 (a4), 0 (b1), π/2 (b2), π (b3), 3π/2 (b4). The coupling angle
and damping rate are held constant at 2θc = 3π/8 and γ = 0.05Ω . The polar diagram indicates
the angles 2θ for the various curves

exponentially damped as a function of time. These initial states are the dressed
states |±〉, i.e., the quasi-stationary approximate eigenstates of the system. On the
other extreme, the initial states 2θ = 2θc + π/2 (a2), 2θc + 3π/2 (a4) correspond
to equal-weight superpositions of the eigenstates. They lead to Rabi oscillations of
maximal amplitude around a zero mean value. For other values of θ (b1)–(b4), the
temporal behaviour of the force is a combination of oscillating and non-oscillating
components. Note that 2θ = 0 (b1) corresponds to the initial state |1〉|{0}〉 of a purely
excited atom. As discussed below (6.142), only the magnitude of the force oscillates
in time in this case, leaving the sign invariant.



References 211

References

1. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51(1), 89 (1963)
2. I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Harry

Deutsch, Frankfurt am Main, 1995)
3. C. Cohen-Tannoudji, S. Reynaud, J. Phys. B: At. Mol. Opt. Phys. 10(3), 345 (1977)
4. S.Y. Buhmann, D.G. Welsch, Phys. Rev. A 77(1), 012110 (2008)
5. S. Haroche, M. Brune, J.M. Raimond, Europhys. Lett. 14(1), 19 (1991)
6. B.G. Englert, J. Schwinger, A.O. Barut, M.O. Scully, Europhys. Lett. 14(1), 25 (1991)
7. S.Y. Buhmann, D.G. Welsch, Prog. Quantum Electron. 31(2), 51 (2007)
8. I.I. Rabi, Phys. Rev. 51(8), 652 (1937)
9. D. Meiser, P. Meystre, Phys. Rev. A 74(6), 065801 (2006)



Chapter 7
Thermal Casimir–Polder Forces

When calculating dispersion forces, we have mostly assumed the body-assisted field
to be in its ground state. Dispersion interactions of ground-state atoms and bodies
are then pure quantum effects. They are due to the ground-state fluctuations of the
electromagnetic field, in other words: virtual photons. As seen in the previous three
Chaps. 4–6, the situation may drastically change when considering excited atoms.
They can emit real photons, leading to resonant forces which exhibit an oscillatory
spatial behaviour and a non-trivial dynamics.

In this chapter, we are going to complement the analysis by considering excited
fields. In particular, we will allow for a uniform finite temperature of the bodies
and the electromagnetic field. The fluctuations of the electromagnetic field will then
exhibit a thermal, classical component in addition to the ground-state, quantum con-
tribution. In other words, real thermal photons will be present in addition to the
virtual ones. To study their influence on the CP interaction, we will follow the two
approaches developed in Chaps. 4 and 5. We first calculate the CP potential for a given
atomic state and environment temperature using perturbation theory. To account for
the temporal evolution of the force, we use our alternative approach by solving the
coupled atom–field dynamics and evaluating the average Lorentz force. To illustrate
the closely interrelated dependences of the CP interaction on position, time, tem-
perature, atomic and material properties, we study the example of a single atom or
molecule interacting with a plate.

For simplicity, we will work within the multipolar coupling scheme throughout
this chapter, dropping the primes that indicate multipolar variables.

7.1 Static Theory

Following Casimir and Polder’s famous concept as laid out in Chap. 4, the potential
can be derived from the energy shift induced by the atom–field interaction. In order
to define such an energy shift, the uncoupled system has to be prepared in an energy

S. Y. Buhmann, Dispersion Forces II, Springer Tracts in Modern Physics 248, 213
DOI: 10.1007/978-3-642-32466-6_7, © Springer-Verlag Berlin Heidelberg 2012
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eigenstate. A thermal state of the electromagnetic field of uniform temperature T as
given by (1.38) is not an eigenstate of the Hamiltonian ĤF. Instead, it is an incoherent
superposition of energy eigenstates |ψ〉 with probabilities pψ , as described by a
density matrix

ρ̂ =
∑
ψ

pψ|ψ〉〈ψ| . (7.1)

To extend the notion of an energy shift to such a mixed initial state, we introduce the
average energy shift

〈ΔE〉 =
∑
ψ

pψ〈ψ|ĤAF|ψ〉 +
∑
ψ

pψ
∑
I �=ψ

〈ψ|ĤAF|I 〉〈I |ĤAF|ψ〉
Eψ − EI

+ . . . , (7.2)

which as an generalisation of (1.120)–(1.122). Inserting the completeness relation∑
φ |φ〉〈φ| = Î and using the above definition of the density matrix, the average

energy shift can be given in the more compact form

〈ΔE〉 = 〈ĤAF
〉+
〈∑

I

ĤAF|I 〉〈I |ĤAF

ĤA + ĤF − EI

〉
+ . . . (7.3)

where 〈. . .〉 = tr(. . . ρ̂) and we have assumed that 〈ψ|ĤAF|ψ〉 = 0.
We will calculate this energy shift for an atom in an incoherent superposition of

internal-energy eigenstates,
σ̂ =

∑
n

pn|n〉〈n| (7.4)

with the field being in a thermal state ρ̂T of uniform temperature T . The uncoupled
atom–field system hence reads ρ̂ = σ̂ ⊗ ρ̂T . The thermal field state (1.38) can be
expanded in a basis of Fock states (1.37),

ρ̂T = 1

Z

[
|{0}〉〈{0}| +

∞∑
j=1

∑
λ1...λ j=e,m

∫
d3r1 · · ·

∫
d3r j

∞∫

0

dω1 · · ·
∞∫

0

dω j

× e−�(ω1+ ··· + ω j )/(kBT )

× |1λ1(r1,ω1) . . . 1λ j (r j ,ω j )〉〈1λ1(r1,ω1) . . . 1λ j (r j ,ω j )|
]

(7.5)

where

Z = tr

[
|{0}〉〈{0}| +

∞∑
j=1

∑
λ1...λ j=e,m

∫
d3r1 · · ·

∫
d3r j

∞∫

0

dω1 · · ·
∞∫

0

dω j
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× e−�(ω1+ ···+ ω j )/(kBT )

× |1λ1(r1,ω1) . . . 1λ j (r j ,ω j )〉〈1λ1(r1,ω1) . . . 1λ j (r j ,ω j )|
]

(7.6)

is the partition function.
The multipolar coupling Hamiltonian (4.36) for a non-magnetic atom in electric-

dipole approximation is linear in the field variables. With the thermal density
matrix being diagonal, the first-order contribution 〈ĤAF〉 to the energy shift van-
ishes and we need to calculate the second-order contribution. The total density
matrix is a superposition of states |n〉|1λ1(r1,ω1) . . . 1λ j (r j ,ω j )〉 with j photons.
Non vanishing contributions to the energy shift are hence due to intermediate states
which contain either j + 1 photons, |I 〉 = |k〉|1λ′1(r ′1,ω′1) . . . 1λ′j+1

(r ′j+1,ω
′
j+1)〉,

or j − 1 photons, |I 〉 = |k〉|1λ′1(r ′1,ω′1) . . . 1λ′j−1
(r ′j−1,ω

′
j−1)〉. In the former

case, the energy denominator reads Eψ − EI = En − (Ek + �ω) = −�(ω −
ωnk), in the latter case, we have Eψ − EI = En + �ω − Ek = �(ω + ωnk).
Here, ω is the frequency of the photon that has been added or subtracted with
respect to the initial state. The required matrix elements of the interaction Hamil-
tonian can be calculated by recalling the field expansion (1.22) and the Fock-state
definition (1.37). One finds

〈k|〈1λ′1(r ′1,ω′1) . . . 1λ′j+1
(r ′j+1,ω

′
j+1)| − d̂ · Ê(rA)|1λ1(r1,ω1) . . . 1λ j (r j ,ω j )〉|n〉

= −√ j + 1
∑
λ=e,m

∫
d3r

∞∫

0

dω
[
dkn ·G∗λ(rA, r,ω)

]
i

× 〈1λ′1(r ′1,ω′1) . . . 1λ′j+1
(r ′j+1,ω

′
j+1)|1λ,i (r,ω)1λ1(r1,ω1) . . . 1λ j (r j ,ω j )〉

(7.7)

and

〈k|〈1λ′1(r ′1,ω′1) . . . 1λ′j−1
(r ′j−1,ω

′
j−1)| − d̂ · Ê(rA)|1λ1(r1,ω1) . . . 1λ j (r j ,ω j )〉|n〉

= −√ j
∑
λ=e,m

∫
d3r

∞∫

0

dω
[
dkn ·Gλ(rA, r,ω)

]
i

× 〈1λ′1(r ′1,ω′1) . . . 1λ′j−1
(r ′j−1,ω

′
j−1)1λ,i (r,ω)|1λ1(r1,ω1) . . . 1λ j (r j ,ω j )〉 .

(7.8)

We substitute these results into the second-order energy shift. Using the commuta-
tion relations (1.17) and (1.18), scalar products of Fock states reduce to sums over
products of delta functions. We carry out all sums over λ and integrals over r and ω.
Using the integral relation (1.25) and noting that all trivial integrals are compensated
for by respective contributions from the partition function, we find
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〈ΔE〉 = 〈Δ2 E〉 = μ0

π

∑
n

pn

∑
k

P
∞∫

0

dω ω2dnk ·ImG(rA, rA,ω)dkn

×
[∑∞

j=0 je− j�ω/(kBT )

∑∞
l=0 e−l�ω/(kBT )

1

ω + ωnk

−
∑∞

j=0( j + 1)e− j�ω/(kBT )

∑∞
l=0 e−l�ω/(kBT )

1

ω − ωnk

]
. (7.9)

The geometric sums over j can easily be carried out, resulting in

〈ΔE〉 = μ0

π

∑
n

pn

∑
k

P
∞∫

0

dω ω2
[

n(ω)

ω + ωnk
− n(ω)+ 1

ω − ωnk

]

× dnk ·ImG(rA, rA,ω)·dkn (7.10)

where

n(ω) = 1

e�ω/(kBT ) − 1
(7.11)

is the average thermal photon number in accordance with Bose–Einstein statistics.
To extract the CP potential, we decompose the Green’s tensor into its bulk and

scattering parts. We discard the position-independent infinite self-energy associated
with the bulk part by making the replacement G 	→ G(1). We proceed by writing
Im G = (G −G∗)/(2i) and using the Schwarz reflection principle (A.3), as well as
the identity

n(−ω) = −[n(ω)+ 1] (7.12)

to obtain

U (rA) = μ0

2πi

∑
n

pn

∑
k

P
∞∫

−∞
dω ω2

[
n(ω)

ω + ωnk
− n(ω)+ 1

ω − ωnk

]

× dnk ·G(rA, rA,ω)·dkn . (7.13)

The result can be cast into a more explicit form by means of contour-integral tech-
niques. As a preparation, we note that the integrand in (7.13) has poles at ω = ±ωnk .
In addition, the thermal photon number n(ω) exhibits poles in the upper half plane
for purely imaginary frequencies ω = iξ j ,

ξ j = 2πkBT

�
j , j = 0, 1, 2, . . . (7.14)
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Fig. 7.1 Integration contour
used for transforming the
real-frequency CP integral
into a Matsubara sum plus
contributions from the atomic
poles

Imω

Re ω

ωnk−ωnk
ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

···

which are commonly known as the Matsubara frequencies [1]. In the vicinity of the
Matsubara frequencies, we have

n(ω) � kBT

�

1

ω − iξ j
. (7.15)

Having determined the poles of the integrand in the upper half of the complex fre-
quency plane, we apply the integration contour depicted in Fig. 7.1. It transforms the
principal-value integral along the real frequency axis into integrals along an infinite
semi-circle plus integrals along infinitesimally small semi-circles around the poles at
ω = ±ωnk and ω = iξ0 = 0 plus residues from all other Matsubara poles ξ j ( j > 0),
which are enclosed by the contour. The integral along the infinite semi-circle vanishes
and the thermal CP potential can be given as [2–4]

U (rA) =
∑

n

pnUn(rA) , (7.16)

Un(rA) =U nres
n (rA)+U res

n (rA) (7.17)

with non-resonant potentials

Un
nres(rA) = μ0kBT

∞∑
j=0

′
ξ2

j tr
[
αn(iξ j )·G(1)(rA, rA, iξ j )

]
(7.18)

and resonant potentials

U res
n (rA) = −μ0

∑
k<n

[n(ωnk)+ 1]ω2
nk dnk ·Re G(1)(rA, rA,ωnk)·dkn

+ μ0

∑
k>n

n(ωkn)ω2
kn dnk ·Re G(1)(rA, rA,ωkn)·dkn . (7.19)
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To obtain the non-resonant potential, we have recalled the definition (4.43) of the
atomic polarisability. The prime at the Matsubara sum indicates that the j = 0 term
carries half-weight,

∞∑
j=0

′
f j = 1

2
f0 +

∞∑
j=1

f j . (7.20)

For an atom in an isotropic state σ̂, we have

∑
n′∈{n}

∑
k′∈{k}

dn′k′dk′n′ = 1

3

∑
n′∈{n}

∑
k′∈{k}
|dn′k′ |2I (7.21)

in close analogy with (4.16), so the potentials reduce to

U nres
n (rA) = μ0kBT

∞∑
j=0

′
ξ2

jαn(iξ j )tr G(1)(rA, rA, iξ j ) (7.22)

and

U res
n (rA) = −μ0

3

∑
k<n

[n(ωnk)+ 1]ω2
nk |dnk |2tr

[
Re G(1)(rA, rA,ωnk)

]

+ μ0

3

∑
k>n

n(ωkn)ω2
kn|dnk |2tr

[
Re G(1)(rA, rA,ωkn)

]
, (7.23)

with the isotropic polarisability being given by (4.46). The results (7.16)–(7.19) were
originally found on the basis of linear-response theory [5].

Comparing the thermal CP potential with the result (4.40)–(4.42) for zero temper-
ature, we note that in both cases the potential contains a non-resonant component due
to virtual photons that depends on the Green’s tensor at purely imaginary frequencies
as well as a resonant part due to real photons that depends on the Green’s tensor at
the real atomic transition frequencies. However, the details of these components have
changed drastically when going from zero to finite temperature. For the non-resonant
potential, a continuous integral at zero temperature has been replaced by a discrete
Matsubara sum at finite temperature:

�

2π

∞∫

0

dξ f (iξ) 	→ kBT
∞∑
j=0

′ f (iξ j ) . (7.24)

This replacement rule can be used to obtain non-resonant CP potentials from
known zero-temperature results.

The resonant part of the potential at zero temperature was entirely due to sponta-
neous emission and hence associated with downward transitions only. At finite tem-
perature, these potential components are enhanced by stimulated emission caused by

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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the thermal photons, leading to a factor n(ωnk)+1. In addition, new potential compo-
nents due to the absorption of thermal photons have appeared. They are proportional
to n(ωkn) and carry a different sign. The generalisation from zero-temperature to
thermal resonant potentials can thus be implemented via the replacement rule

∑
k<n

f (ωnk) 	→
∑
k<n

[n(ωnk)+ 1] f (ωnk)−
∑
k>n

n(ωkn) f (ωkn) . (7.25)

At zero temperature, resonant potential components only appear for excited atoms.
At finite temperature, they are more generally present whenever the atom is out of
equilibrium with its environment. This is true, in particular, for a ground-state atom.
To be at equilibrium with its environment, the atom must itself be in a thermal state
at temperature T ,

σ̂ = σ̂T = e−ĤA/(kBT )

tr
[
e−ĤA/(kBT )

] , (7.26)

so that

pn = e−En/(kBT )∑
k e−Ek/(kBT )

. (7.27)

Using the relations

pn = e−�ωnk/(kBT ) pk , (7.28)

n(ω)+ 1 = e�ω/(kBT )n(ω) , (7.29)

we find that the resonant potentials associated with upward and downward transitions
mutually cancel,

U res(rA) =
∑

n

pnU res
n (rA)

= −μ0

∑
n

pn

∑
k<n

[n(ωnk)+ 1]ω2
nk dnk ·Re G(1)(rA, rA,ωnk)·dkn

+ μ0

∑
n

pn

∑
k>n

n(ωkn)ω2
kn dnk ·Re G(1)(rA, rA,ωkn)·dkn

= −μ0

∑
n

∑
k<n

{
pn[n(ωnk)+ 1] − pkn(ωnk)

}
ω2

nk

× dnk ·Re G(1)(rA, rA,ωnk)·dkn = 0 . (7.30)

At thermal equilibrium, the CP potential is hence entirely non-resonant. Introducing
the polarisability of an atom at temperature T as
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αT (ω) =
∑

n

pnαn(ω) , (7.31)

the equilibrium potential reads

U (rA) = μ0kBT
∞∑
j=0

′ξ2
jαT (iξ j )tr G(1)(rA, rA, iξ j ) . (7.32)

This result was first obtained using linear-response theory [6, 7].
Let us discuss the behaviour of the thermal CP potential for low and high tem-

peratures. We begin with the non-resonant potential (7.18) which is given in terms
of a Matsubara sum over positive imaginary frequencies. According to (7.14), the
temperature determines how densely spaced the terms of this sum are. The frequency-
dependence of the terms is governed by the atom-body separations and the charac-
teristic atomic and medium resonance frequencies. As a result, the temperature and
spatial dependences of the non-resonant potential are strongly intertwined. To quan-
tify this, we make use of the Abel–Plana formula [8, 9]

∞∑
j=0

′ f ( j) =
∞∫

0

dx f (x)+ i

∞∫

0

dy
f (iy)− f (−iy)

e2πy − 1
. (7.33)

Applying it to (7.18) and using the Schwarz reflection principle (A.4) for the Green’s
tensor together with the corresponding property

α∗n(ω) = αn(−ω∗) (7.34)

of the atomic polarisability, we find

U nres
n (rA) = �μ0

2π

∞∫

0

dξ ξ2tr
[
αn(iξ)·G(1)(rA, rA, iξ)

]

− μ0�

π

∞∫

0

dω ω2 Imtr
[
αn(ω)·G(1)(rA, rA,ω)

]
e�ω/kBT − 1

. (7.35)

To estimate the magnitude of the second term on the right hand side, we recall
the Born expansion (4.26) with (4.27). It shows that G(1)(rA, rA,ω) is proportional
to e(|rA−s1|+|sK−rA|)ω/c and becomes rapidly oscillating for frequencies ω > c/r
(r : atom–body distances), effectively limiting the range of the integral. For low
temperatures kBT 
 �c/r+ (r+: maximum of all atom–body distances), the argu-
ment of e�ω/kBT becomes very large for the major part of the integral, �ω/kBT �
�c/(kBT r+)� 1. The second term in (7.35) is hence small, so we recover the zero-
temperature result (4.41) as found in Chap. 4. Roughly speaking, one may say that

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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http://dx.doi.org/10.1007/978-3-642-32466-6_4
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in the low-temperature limit, the Matsubara sum governing the thermal CP potential
becomes so densely spaced that it approaches the integral of the zero-temperature
result.

Note that the threshold temperature �c/(kBr+) for the onset of the low-tempera-
ture limit depends on the atom–body separation. Physically, it is the temperature
of thermal radiation whose wavelength is equal to the atom–body distance. As a
result of the intertwined position- and temperature-dependences, it is not possible to
globally define a threshold temperature for the non-resonant CP potential; the low-
temperature limit is a non-uniform limit [10, 11]. To stress its position-dependence,
we will refer to this limit as the geometric low-temperature limit.

Conversely, the non-uniformity implies that for a given temperature, the low-
temperature limit is a good approximation only for distances that are smaller than
the thermal wavelength λT = hc/(kBT ). At room temperature (T = 300 K), the
thermal wavelength is λT = 48.0 µm. The zero-temperature results presented in the
previous chapters of this book as well as in Vol. I have to be considered with this
condition in mind; this is particularly true for all retarded, large-distance limits. We
will elaborate this point further in Sect. 7.2 below when studying the example of an
atom in front of a plate.

In the opposite geometric high-temperature limit kBT � �c/r− (r−: minimum
of all atom–body distances), the Matsubara sum becomes very coarse-grained. The
Born expansion (4.26) with (4.27) shows that the terms j > 0 are proportional to
e−(|rA−s1|+|sK−rA|)ξ j /c. The argument of this exponential takes large negative values,
(|rA−s1| + |sK−rA|)ξ j/c > r−ξ j/c > jkBT r−/(�c)� 1, so all terms j > 0 are
exponentially small. Only the j = 0 term contributes, and the non-resonant potential
simplifies to

U nres
n (rA) = −kBT

2ε0
tr

{
αn ·

[
ω2

c2 G(1)(rA, rA,ω)

]
ω=0

}
. (7.36)

Here, αn ≡ αn(0) is the static polarisability. Note that the non-resonant potential
for high temperatures is proportional to kBT rather than � and may hence be identified
as a classical effect. The geometric high-temperature limit is again non-uniform,
because the threshold temperature depends on the atom–body separation.

The situation is a lot simpler for the resonant CP potential, whose temperature-
dependence is separate from its position-dependence. We can hence define a spec-
troscopic low-temperature limit kBT 
 �ω− (ω−: minimum of the relevant atomic
transition frequencies). In this limit, the thermal photon number (7.11) becomes
much smaller than unity, n(ωnk), n(ωkn) 
 1, so the resonant thermal potential
(7.19) reduces to the corresponding zero-temperature result (4.42). The opposite,
spectroscopic high-temperature limit is given by kBT � �ω+ (ω+: maximum of the
relevant atomic transition frequencies). The photon number (7.11) then approaches

− [n(ωnk)+ 1] = n(ωkn) = kBT

�ωkn
(7.37)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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and the resonant potential (7.19) simplifies to

U res
n (rA) = −μ0kBT

�

∑
k

ωnk dnk ·Re G(1)(rA, rA, |ωnk |)·dkn . (7.38)

The geometric and spectroscopic low- and high-temperature limits are relatively
independent of each other. The former constrains the temperature via the distances,
whereas the latter compares it to transition frequencies. As the one exception to this
rule, we note that the spectroscopic high-temperature limit prevents the non-resonant
potential from ever exhibiting the geometric low-temperature behaviour presented
above. To understand this constraint, we note that the conditions �ω+ 
 kBT and
kBT 
 �c/r+ of a spectroscopically high but geometrically low temperature imply
that the potential is nonretarded, r+ 
 c/ω+. The nonretarded limit requires a
separate limiting procedure which we will demonstrate in the following for perfectly
conducting bodies.

We begin by considering the non-resonant potential (7.18) and recall the Born
expansion (4.26) with (4.27) of the Green’s tensor. In the nonretarded limit, the polar-
isability limits the Matsubara sum to terms with |rA − s1|ξ j/c, |sK − rA|ξ j/c 
 1.
The Green’s tensor is hence well approximated by its electrostatic equivalent (4.29)
and the nonretarded potential reads

U nres
n (rA) = kBT

ε0

∞∑
j=0

′tr
[
αn(iξ j )·G(1)(rA, rA)

]
. (7.39)

Recalling the definition (4.43) of the atomic polarisability, the Matsubara sum can
be performed according to

∞∑
j=0

′ 1

a2 + j2 =
π

2a
coth(πa) . (7.40)

Using the identity
coth[�ω/(2kBT )]=2n(ω)+ 1 , (7.41)

which follows immediately from the definition of the thermal photon number, the
result can be given in the form

U nres
n (rA) = − 1

ε0

∑
k

[
n(ωkn)+ 1

2

]
dnk ·G(1)(rA, rA)·dkn . (7.42)

Similarly, we may replace the Green’s tensor featuring in the resonant CP potential
(7.19) with its purely real electrostatic counterpart. Recalling the relation (7.12),
we find

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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U res
n (rA) = 1

ε0

∑
k

n(ωkn)dnk ·G(1)(rA, rA)·dkn . (7.43)

Combining the non-resonant and resonant results, the terms proportional to the pho-
ton number cancel. Invoking the completeness relation

∑
k dnk dkn = 〈d̂ d̂〉n , we

obtain a total potential [12]

Un(rA) = −〈d̂ ·G
(1)(rA, rA)· d̂〉n

2ε0
. (7.44)

The thermal CP is hence independent of T for an atom in an energy eigenstate at
nonretarded distance from perfectly conducting bodies. As it must, this temperature-
invariant result agrees with our zero-temperature potential (4.34) found in Sect. 4.1.
Under the stated conditions, the zero-temperature potential is hence universally valid
for all temperatures, despite the fact that the non-resonant and resonant parts of the
thermal CP potential may strongly vary with temperature. This result is particularly
relevant for particles whose dominant transition frequencies are small, such that
the nonretarded limit extends over a large distance range. Examples include polar
molecules with their low-frequency rotational and vibrational transitions or highly
excited Rydberg atoms with their densely spaced spectrum of neighbouring states.
At such small frequencies, the behaviour of real metals is very well approximated by
the perfect conductor, so that our idealised assumptions are well justified. We will
demonstrate this in more detail when studying examples in the following Sect. 7.2.

The demonstrated temperature-invariance refers to temperature-dependences
induced by the photons only. The nonretarded CP potential near perfectly conducting
bodies will depend on temperature if the atom is not in an energy eigenstate, but in
a thermal state (7.26). Using the eigenstate result above, the total potential (7.16) in
this case reads

U (rA) = −〈d̂ ·G
(1)(rA, rA)· d̂〉T

2ε0
. (7.45)

The thermal average of the atomic dipole fluctuations depends on temperature and
thus results in a T -dependent potential. As a rule of thumb, the fluctuating atomic
dipole moment becomes larger for larger temperatures, leading to a stronger potential.

7.2 Atom or Molecule in Front of a Plate

Thermal CP forces have been studied for a variety of geometries, including spheres
[13], cylinders [13–16] and planar [17, 18], cylindrical [13, 19, 20] or spherical
cavities [13]. To illuminate the intertwined position- and temperature dependences
of the thermal CP potential, we concentrate on the simplest example of an atom in

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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front of a plate. We begin with the case of a perfectly conducting plate, identifying
different asymptotic regimes for the distance dependence and confirming the general
temperature-invariance of the nonretarded interaction as formulated above. We will
then study the more realistic case of a metal plate in order to evaluate the reliability
or shortcomings of the idealised perfect-conductor results.

As a starting point, we recall the scattering Green’s tensor of a plate of arbi-
trary reflectivity as given in Sect. 4.2. Using the expression (4.60) for the Green’s
tensor at imaginary frequencies, the non-resonant CP potential at finite temperature
T reads [21]

U nres
n (z A) = μ0kBT

4π

∞∑
j=0

′ξ2
j

∞∫

ξ j /c

dκ⊥ e−2κ⊥z A

{
α‖n(iξ j )rs

−
[
κ⊥2c2

ξ2
j

α‖n(iξ j )+
(
κ⊥2c2

ξ2
j

− 1

)
α⊥n (iξ j )

]
rp

}
(7.46)

withα‖ = 1
2 (αxx+αyy) andα⊥ = αzz . The Green’s tensor (4.58) at real frequencies

naturally separates into two components associated with propagating vs evanescent
waves. The resonant CP potential (7.19) at finite temperature separates accordingly,
where

U prop
n (z A) = μ0

8π

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}
ω2

nk

×
ωnk/c∫

0

dk⊥
{
|d‖nk |2Im

(
e2ik⊥z Ars

)

−
[

k⊥2c2

ω2
nk

|d‖nk |2 + 2

(
k⊥2c2

ω2
nk

− 1

)
|d⊥nk |2

]
Im
(
e2ik⊥z Arp

)}

(7.47)

is the contribution due to real, propagating photons and [21]

U evan
n (z A) = −μ0

8π

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}
ω2

nk

×
∞∫

0

dκ⊥ e−2κ⊥z A

{
|d‖nk |2Re(rs)

+
[
κ⊥2c2

ω2
nk

|d‖nk |2 + 2

(
κ⊥2c2

ω2
nk

+ 1

)
|d⊥nk |2

]
Re(rp)

}
(7.48)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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is due to real, evanescent photons. The total potential is the sum (4.61) of these three
components. Note that rather than computing the three potentials explicitly, we could
have inferred them from the zero-temperature results (4.62)–(4.64) by virtue of the
replacement rules (7.24) and (7.25).

7.2.1 Perfectly Conducting Plate

For a perfectly conducting plate, the reflection coefficients are independent of fre-
quency and given by rs = −1 and rp = −1, cf. Sect. 3.3.1 in Vol. I.

Thermal Equilibrium

With these reflection coefficients, the non-resonant potential (7.46) can be evaluated
explicitly by carrying out the κ⊥-integral [21],

U nres
n (z A) = − kBT

16πε0z3
A

∞∑
j=0

′e−2ξ j z A/c
[
α‖n(iξ j )

(
1+ 2

ξ j z A

c
+ 4

ξ2
j z2

A

c2

)

+ α⊥n (iξ j )

(
1+ 2

ξ j z A

c

)]
. (7.49)

The non-resonant thermal CP potential in front of a perfectly conducting plate has
been derived by a variety of methods, including linear-response theory [6] and
normal-mode QED in free space [22].

The intertwined dependences of the thermal CP potential on the three parame-
ters temperature, distance and atomic transition frequencies can now be seen very
explicitly. The temperature governs the spacing of the Matsubara sum while distance
and transition frequencies compete in determining the effective summation range.
Asymptotic results can be obtained whenever pairs of parameters take extreme val-
ues in comparison to each other. As listed in Table 7.1, three types of limits can be
distinguished, depending on which two parameters are compared to one another. By
comparing the distance with the atomic transition frequencies, we define the retarded
limit z Aω−/c � 1 (ω−: minimum of the relevant atomic transition frequencies) and
the nonretarded limit z Aω+/c 
 1 (ω+: maximum of the relevant atomic transi-
tion frequencies). Relating temperature and transition frequencies, we identify the
spectroscopic low-temperature regime kBT 
 �ω− and the opposite spectroscopic
high-temperature regime kBT � �ω+. And finally, a comparison of distance and
temperature leads to the notions of a geometric low-temperature limit kBT 
 �c/z A

and its high-temperature counterpart kBT � �c/z A. Two out of the eight possible
combinations of limiting conditions are logically inconsistent: It is impossible to
simultaneously realise the retarded, spectroscopic high-temperature and geometric

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Table 7.1 Limiting cases for the thermal CP potential

Limit Condition z T

Retarded z Aω−/c � 1 zω 
 z A Tz 
 Tω
Nonretarded z Aω+/c 
 1 z A 
 zω Tω 
 Tz

Spectroscopic low-temperature kBT 
 �ω− zω 
 zT T 
 Tω
Spectroscopic high-temperature kBT � �ω+ zT 
 zω Tω 
 T
Geometric low-temperature kBT 
 �c/z A z A 
 zT T 
 Tz

Geometric high-temperature kBT � �c/z A zT 
 z A Tz 
 T

We have introduced characteristic spectroscopic and thermal lengths zω = c/ω± and zT =
�c/(kBT ) as well as characteristic geometric and spectroscopic temperatures Tz = �c/(z AkB)

and Tω = �ω±/kB.

low-temperature limits; the same is true for a combination of the nonretarded, spec-
troscopic low-temperature and geometric high-temperature limits.

When discussing the distance-dependence of the CP potential for a given tem-
perature, it is useful to introduce characteristic spectroscopic and thermal lengths
zω = c/ω± and zT = �c/(kBT ). They are measures of the wavelengths of the rele-
vant atomic transitions and the thermal radiation, respectively. As shown in Table 7.1,
the spectroscopic low- and high-temperature limits define the relation between the
two characteristic length scales. For a given temperature, the retarded vs nonretarded
limits compare the distance z A with the spectroscopic length zω while the geometric
low- vs high-temperature limits relate z A and zT .

In a similar way, one may introduce spectroscopic temperatures Tω = �ω±/kB,
which denote the temperature required to noticeably populate all or at least one of
the excited atomic levels; and a geometric temperature Tz = �c/(z AkB), i.e., the
temperature of radiation whose wavelength is of the order z A. They are useful when
analysing the temperature-dependence of the CP potential for fixed atomic position.
From this point of view, the retarded and nonretarded limits set the two characteristic
temperatures in proportion to one another, cf. Table 7.1. The spectroscopic and geo-
metric low- or high-temperature limits then relate the given environment temperature
to the spectroscopic and geometric temperatures, respectively.

We first discuss the distance-dependence of the potential for a given temperature,
distinguishing two cases. We begin with the spectroscopic low-temperature limit
kBT 
 �ω− where zω 
 zT . It is realised for most ground-state atoms in a room-
temperature environment, because typical transition frequencies are of the order
of several 1015 rad/s, much larger than ωT = kBT/� = 3.93 × 1013 rad/s (T =
300 K). One may identify three asymptotic distance regimes for the non-resonant
potential. For very large distances z A � zT with zT = �c/(kBT ), the geometric
high-temperature limit applies, the argument of the exponential e−2ξ j z A/c in (7.49)
taking large negative values, 2z Aξ j/c > jkBT z A/(�c) = j z A/zT � 1 ( j > 0).
Only the j = 0 term contributes, and the non-resonant potential simplifies to

U nres
n (z A) = −kBT

(
α
‖
n + α⊥n

)
32πε0z3

A

. (7.50)
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with α‖n ≡ α
‖
n(0), α⊥n ≡ α⊥n (0). This result is a special case of (7.36) and may be

obtained more directly by using the electrostatic Green’s tensor (4.87) of the plate.
For smaller distances z A 
 zT , the geometric low-temperature limit is is realised.

The Abel-Plana formula (7.33) then shows that the Matsubara sum then becomes
so densely spaced that it is well approximated by an integral. We recover the zero-
temperature result (4.69). Due to our assumption zω 
 zT , the geometric low-
temperature regime is compatible with both the retarded and nonretarded limits. For
intermediate distances zω 
 z A 
 zT , the retarded zero-temperature result (4.70)
is valid,

U nres
n (z A) = −�c

(
2α‖n + α⊥n

)
32π2ε0z4

A

. (7.51)

For even smaller distances z A 
 zω , the nonretarded zero-temperature potential
(4.73) applies,

U nres
n (z A) = − 1

64πε0z3
A

∑
k

sgn(ωkn)
(|d‖nk |2 + 2|d⊥nk |2

)
. (7.52)

On the contrary, the spectroscopic high-temperature limit kBT � �ω+means that
zT 
 zω . This limit applies to particles dominated by low-frequency transitions, such
as polar molecules or Rydberg atoms. For large distances z A � zT , the geometric
high-temperature limit leads to (7.50), as before. For smaller distances z A 
 zT , the
condition zT 
 zω automatically implies a nonretarded limit z A 
 zω . The atomic
polarisability then limits the Matsubara sum to terms with ξ j z A/c ≤ ω+z A/c 
 1,
so (7.49) simplifies to

U nres
n (z A) = − kBT

16πε0z3
A

∞∑
j=0

′[α‖n(iξ j )+ α⊥n (iξ j )
]
. (7.53)

Recalling the definition of the polarisability (4.15), the Matsubara sum can be carried
out according to (7.40),

∞∑
j=0

′α‖n(iξ j ) = 1

2kBT

∑
k

[
n(ωkn)+ 1

2

]|d‖nk |2 � 1
2α
‖
n , (7.54)

∞∑
j=0

′α⊥n (iξ j ) = 1

kBT

∑
k

[
n(ωkn)+ 1

2

]|d⊥nk |2 � 1
2α
⊥
n , (7.55)

where the second equalities are valid for kBT � �ω+. With these results, the ther-
mal CP potential (7.53) again assumes the form (7.50). In the spectroscopic high-
temperature regime, this distance law hence holds globally for all distances.

The CP potential of a particle at thermal equilibrium with its environment is
entirely non-resonant. It can hence immediately obtained from our previous results

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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by evaluating the thermal average (7.16) with (7.27). Using (7.49), the equilibrium
potential reads [21]

U (z A) = − kBT

16πε0z3
A

∞∑
j=0

′e−2ξ j z A/c
[
α
‖
T (iξ j )

(
1+ 2

ξ j z A

c
+ 4

ξ2
j z2

A

c2

)

+ α⊥T (iξ j )

(
1+ 2

ξ j z A

c

)]
, (7.56)

with the polarisability at temperature T being given by (7.31). In the spectroscopic
low-temperature regime, which typically applies to atoms at room temperature, the
particle is essentially in its ground state, pn � δn0. The results (7.50)–(7.52) then
imply that

U (z A) = −kBT
(
α
‖
0 + α⊥0

)
32πε0z3

A

(7.57)

for large distances z A � zT ,

U (z A) = −�c
(
2α‖0 + α⊥0

)
32π2ε0z4

A

(7.58)

for intermediate distances zω 
 z A 
 zT and

U (z A) = −〈d̂
‖2 + 2d̂⊥2〉0
64πε0z3

A

(7.59)

for small distances z A 
 zω . The potential is always attractive. When moving away
from the plate, it first decreases as 1/z3

A, then falls off more rapidly as 1/z4
A before

returning to a 1/z3
A asymptote at very large distances. This behaviour with its three

asymptotic regimes is illustrated in Fig. 7.2(i). Note that the coefficient of the large-
distance power law is smaller than that of the small-distance asymptote by a factor
of the order of kBT/(�ω−). This is a result of the more rapid decay of the potential
for intermediate distances.

In the spectroscopic high-temperature regime, the equilibrium potential is gov-
erned by (7.50) for all distances, so that

U (z A) = −kBT
(
α
‖
T + α⊥T

)
32πε0z3

A

. (7.60)

Using the relation (7.28) for the probabilities, the spectroscopic high-temperature
limit can be performed according to
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z

z

(i) kB T � ω−

(ii) kB T � ω+

z3
A U (z A)

z3
A U (z A)

zω

zω

zT

zT

U (z A) ∝ 1/z3
A

U (z A) ∝ 1/z 3
A

U ( zA) ∝ 1/z3
A

U (z A) ∝ 1/z 4
A

zA � zω

z A � zω

zT � zA

zT � z A

Fig. 7.2 Schematic illustration of the distance-dependence of the CP potential of an atom at thermal
equilibrium with a perfectly conducting plate in the spectroscopic (i) high-temperature and (ii) low-
temperature limits

kBTα‖T = kBT
∑
n,k

pn
|d‖nk |2
�ωkn

= kBT

2

∑
n,k

(pn− pk)
|d‖nk |2
�ωkn

� 1
2

∑
n,k

pn|d‖nk |2 ,

(7.61)

kBTα⊥T = 2kBT
∑
n,k

pn
|d⊥nk |2
�ωkn

= kBT
∑
n,k

(pn− pk)
|d⊥nk |2
�ωkn

�
∑
n,k

pn|d⊥nk |2 ,

(7.62)
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so the potential reads

U (z A) = −〈d̂
‖2 + 2d̂⊥2〉T
64πε0z3

A

. (7.63)

This result is a special case of (7.45), as can be seen using the Green’s tensor (4.87) of
the perfectly conducting plate. As illustrated in Fig. 7.2(ii), the nonretarded regime
overlaps with the geometric high-temperature regime, resulting in the global asymp-
totic distance law (7.63).

Thermal Non-Equilibrium

We next turn our attention to the two resonant potentials, which are relevant for an
atom which is not at thermal equilibrium with its environment. With the reflection
coefficients rs = −1 and rp = +1 of the perfectly conducting plate, the propagating-
wave potential (7.47) can be easily integrated to give [21]

U prop
n (z A) = − 1

32πε0z3
A

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}

× {|d‖nk |2
[
cos(2x)+ 2x sin(2x)− 4x2 cos(2x)− 1+ 2x2]

+ 2|d⊥nk |2
[
cos(2x)+ 2x sin(2x)− 1− 2x2]}

x=ωnk z A/c .

(7.64)

We see that the spatial dependence of the potential decouples completely from its
temperature-dependence. Temperature enters only via the thermal photon number
to determine the amplitudes of the potentials associated with the various atomic
transitions. The potential reduces to

U prop
n (z A) = μ0

16πz A

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}
ω2

nk

×
{
|d‖nk |2

[
2 cos

(
2ωnk z A

c

)
− 1

]
+ 2|d⊥nk |2

}
(7.65)

in the retarded limit and vanishes in the nonretarded limit,

U prop
n (z A) = 0 . (7.66)

The resonant potential due to evanescent photons can be treated in a very similar
way. Using the reflection coefficients for the perfectly conducting plate, the potential
(7.48) is found to be [21]

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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U evan
n (z A) = − 1

32πε0z3
A

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}

×
[
|d‖nk |2

(
1− 2

ω2
nk z2

A

c2

)
+ 2|d⊥nk |2

(
1+ 2

ω2
nk z2

A

c2

)]
.

(7.67)

Its asymptotes in the retarded and nonretarded limits read

U evan
n (z A) = μ0

16πz A

{∑
k<n

[n(ωnk)+1]−
∑
k>n

n(ωkn)

}
ω2

nk

(|d‖nk |2−2|d⊥nk |2
)

(7.68)

and

U evan
n (z A) = − 1

32πε0z3
A

{∑
k<n

[n(ωnk)+ 1]−
∑
k>n

n(ωkn)

} (|d‖nk |2 + 2|d⊥nk |2
)
,

(7.69)
respectively.

Combining the obtained results, we can now find the total thermal CP potential of
an atom in an eigenstate. For instance, in the retarded limit, the non-resonant potential
with its 1/z3

A or 1/z4
A asymptote becomes negligible to leading order in 1/z A. The

propagating-wave potential (7.65) combines with the evanescent-wave contribution
(4.80) to give a spatially oscillating potential

Un(z A)

= μ0

8πz A

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}
ω2

nk |d‖nk |2 cos

(
2ωnk z A

c

)
.

(7.70)

In contrast to the zero-temperature case, upward and downward atomic transitions
contribute to this potential. An oscillating potential is present even for an atom or
molecule in its ground state. The amplitudes of the contributions are governed by
the thermal photon number; they increase for increasing temperature.

Temperature-Dependence

For large atomic transition frequencies, the oscillating potential may become difficult
to resolve and observe. For this reason, let us also discuss the non-oscillating, next-to-
leading order retarded potential. It only contains non-resonant contributions and those
from evanescent waves; and it exhibits an interesting dependence on temperature. To
see this, we make use of the spectroscopic and geometric temperatures Tω and Tz as

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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introduced in Table 7.1 where Tz 
 Tω in the retarded limit. We begin with very low
temperatures such that the geometric low-temperature limit holds, T 
 Tz . These
conditions are equivalent to zω 
 z A 
 zT , so the non-resonant potential is given by
(7.51). The next-to-leading contribution from the evanescent-wave potential (7.67)
in the retarded limit reads

U evan
n (z A) = − 1

32πε0z3
A

∑
k<n

(|d‖nk |2 + 2|d⊥nk |2
)
. (7.71)

Here, we have exploited the inequality T 
 Tz 
 Tω which is automatically
implied in the retarded limit, so that n(|ωnk |) 
 1. In other words, a geometric
low-temperature limit implies a spectroscopic one in the retarded limit. Adding the
non-resonant and evanescent-wave contributions, we find a temperature-independent
potential [21]

Un(z A) = − 1

32πε0z3
A

∑
k<n

(|d‖nk |2 + 2|d⊥nk |2
)− �c

(
2α‖n + α⊥n

)
32π2ε0z4

A

. (7.72)

in the spectroscopic low-temperature limit T 
 Tz .
For intermediate temperatures Tz 
 T 
 Tω which are geometrically large but

spectroscopically small, the next-to-leading evanescent-wave potential is still given
by (7.71). The condition T � Tz being equivalent to z A � zT , the non-resonant
potential is now given by (7.50). The total potential [21]

Un(z A) = − 1

32πε0z3
A

∑
k<n

(|d‖nk |2 + 2|d⊥nk |2
)− kBT

(
α
‖
n + α⊥n

)
32πε0z3

A

(7.73)

thus varies linearly with temperature in an intermediate range Tz 
 T 
 Tω .
For spectroscopically large temperatures T � Tω , the next-to-leading contribu-

tion from the evanescent-wave potential approximates to

U evan
n (z A) = 1

32πε0z3
A

∑
k

(
kBT

�ωkn
− 1

2

)(|d‖nk |2 + 2|d⊥nk |2
)

(7.74)

where we have used (7.12) to write

n(ωnk)+ 1 = −n(ωkn) � −
(

kBT

�ωkn
− 1

2

)
. (7.75)

It partially cancels with the non-resonant potential (7.50). Invoking the completeness
relation, the total potential reads [21]
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Un(z A) = −〈d̂
‖2 + 2d̂⊥2〉n
64πε0z3

A

(7.76)

in the spectroscopic high-temperature limit T � Tω . Rather remarkably, the potential
saturates for large T due to cancellations between resonant and evanescent-wave
contributions. Furthermore, this retarded high-temperature potential agrees with the
nonretarded zero-temperature result (4.85) when ignoring the spatially oscillating
contribution.

The temperature-dependence of the non-oscillating CP potential in the retarded
limit is illustrated in Fig. 7.3(i) [21]. We see that the potential is temperature-
independent in the geometric low-temperature regime; varies linearly with temper-
ature for intermediate temperatures; and saturates to another constant value in the
spectroscopic high-temperature regime. This behaviour can best be observed for
atoms in their ground states or low-lying excited states where the retarded regime
sets in for very small distances.

At nonretarded distances Tω 
 Tz , the geometric low-temperature limit overlaps
with the spectroscopic high-temperature limit. As we will see, this leads to a potential
which is independent of T over the entire range of possible temperatures. For the
geometric low-temperature regime T 
 Tz , we have either z A 
 zω 
 zT or
z A 
 zT 
 zω , so the non-resonant CP potential is given by (7.52) or (7.53).
We note that the former result is just a limiting case of the latter more general one.
Performing the Matsubara sum by means of (7.54) and (7.55), we find

U nres
n (z A) = − 1

32πε0z3
A

∑
k

[
n(ωkn)+ 1

2

](|d‖nk |2 + 2|d⊥nk |2
)
. (7.77)

Using the property (7.12) of the thermal photon number, the evanescent-wave poten-
tial (7.69) can be written in a similar form

U evan
n (z A) = 1

32πε0z3
A

∑
k

n(ωkn)
(|d‖nk |2 + 2|d⊥nk |2

)
. (7.78)

The terms depending on the thermal photon number cancel, leaving a temperature-
independent total potential (7.76) in the geometric low-temperature regime T 
 Tz .

For spectroscopically high temperatures T � Tω , we have either z A 
 zT 
 zω
or zT 
 z A 
 zω . In both cases, the non-resonant potential is given by (7.50), recall
the discussions above and below (7.53). Invoking the atomic polarisability (4.15), it
can be cast into the form

U nres
n (z A) = − 1

32πε0z3
A

∑
k

kBT

�ωkn

(|d‖nk |2 + 2|d⊥nk |2
)
. (7.79)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Fig. 7.3 Schematic illustration of the temperature-dependence of the non-oscillating CP potential
of an atom in front of perfectly conducting plate in the (i) retarded and (ii) nonretarded limits

By using the relation (7.12) for the photon number once more, the evanescent-wave
potential (7.69) reads

U evan
n (z A) = 1

32πε0z3
A

∑
k

(
kBT

�ωkn
− 1

2

)(|d‖nk |2 + 2|d⊥nk |2
)

(7.80)

in the spectroscopic high-temperature limit. Combining the two, the contributions
linear in T cancel and the total CP potential is again given by (7.76).

In the nonretarded limit, the temperature-independent result (7.76) is thus valid
both in the geometric low-temperature and the spectroscopic high-temperature
regimes. As shown in Fig. 7.3(ii), these two regimes overlap, so that the potential is
independent of temperature across the entire temperature scale [21]. Rather remark-
ably, the zero-temperature result hence holds globally for arbitrary temperatures. The
temperature invariance may best be observed for atoms in highly excited Rydberg
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states or polar molecules. Their potentials are dominated by long-wavelength tran-
sitions, so that the nonretarded regime extends over a large distance range. Note that
the temperature invariance of the nonretarded CP potential for a perfectly conduct-
ing plate is a special case of the invariance (7.44) for perfect conductors of arbitrary
shapes as demonstrated in the previous section.

We have just discussed the temperature-dependence vs invariance for a fixed
atomic position, while in the beginning of the section, we have analysed the position-
dependence for a given temperature. These are complementary aspects of the thermal
CP potential, which is a non-factorisable function of the two parameters position and
temperature. In this sense, the temperature-invariance shown in Fig. 7.3(ii) and the
global power law for the low-temperature position-dependence found in Fig. 7.2(ii)
are two sides of the same coin.

7.2.2 Half Space

Considering the thermal CP potential of an atom or molecule near a perfectly con-
ducting plate, we have found surprising results. The equilibrium potential of a particle
with dominant long-wavelength transitions can be governed by a single global power
law. Furthermore, the CP potential of a particle in an energy eigenstate may become
entirely independent of temperature due to mutual cancellations of non-resonant and
evanescent-wave contributions.

In order to judge to what extend these effects can be observed under realistic
conditions, let us next consider a semi-infinite electric half space of permittivity
ε(ω). Note that plates of finite thickness have also been studied [14, 23, 24].

Thermal Equilibrium

Using the reflection coefficients (A.41) and (A.42) of an electric half space as given
in Appendix A.3.2 with μ(ω) ≡ 1, the non-resonant CP potential (7.46) reads [21]

U nres
n (z A) = μ0kBT

4π

∞∑
j=0

′ξ2
j

∞∫

ξ j /c

dκ⊥ e−2κ⊥z A

{
α‖n(iξ j )

κ⊥ − κ⊥1
κ⊥ + κ⊥1

+
[(

1− κ⊥2c2

ξ2
j

)
α⊥n (iξ j )− κ⊥2c2

ξ2
j

α‖n(iξ j )

]
ε(iξ j )κ

⊥ − κ⊥1
ε(iξ j )κ⊥ + κ⊥1

}

(7.81)

with

κ⊥1 =
√
κ⊥2 + [ε(iξ j )− 1]ξ

2
j

c2 . (7.82)
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Asymptotic results can be derived in close analogy with the perfect-conductor
case. In the spectroscopic low-temperature limit kBT 
 �ω−, we have zω 
 zT

and three distance regimes may be distinguished. For large distances z A � zT , the
geometric high-temperature limit applies and the Matsubara is dominated by the
j = 0 term,

U nres
n (z A) = −kBT

(
α
‖
n + α⊥n

)
32πε0z3

A

ε− 1

ε+ 1
(7.83)

where ε ≡ ε(0). In the opposite geometric low-temperature regime z 
 zT , the
Matsubara sum is well approximated by an integral and recover the zero-temperature
results (4.91) and (4.92). We hence have

U nres
n (z A) = − 3�c

64π2ε0z4
A

∞∫

1

dv

[(
α
‖
n + α⊥n

v2 − α⊥n
v4

)
εv −√ε− 1+ v2

εv +√ε− 1+ v2

− α
‖
n

v4

v −√ε− 1+ v2

v +√ε− 1+ v2

]
(7.84)

for intermediate distances zω 
 z A 
 zT and

U nres
n (z A) = − �

32π2ε0z3
A

∞∫

0

dξ
[
α‖n(iξ)+ α⊥n (iξ)

] ε(iξ)− 1

ε(iξ)+ 1
(7.85)

for small, nonretarded distances z A 
 zω .
In the spectroscopic high-temperature limit kBT � �ω+ with zT 
 zω , one

can show that a single global power law applies for all distances. As before, the
geometric high-temperature limit (7.83) applies for large distances z A � zT . In the
opposite, geometric low-temperature limit z A 
 zT , the nonretarded limit automat-
ically applies, z A 
 zT 
 zω . With the approximation ξ j z A/c ≤ ω+z A/c 
 1,
(7.81) then simplifies to

U nres
n (z A) = − kBT

16πε0z3
A

∞∑
j=0

′[α‖n(iξ j )+ α⊥n (iξ j )
] ε(iξ j )− 1

ε(iξ j )+ 1
. (7.86)

The factor [αn(iξ j )+ α⊥n (iξ j )] is proportional to 1/[1+ (ξ1/ωkn)2 j2] with a large
coefficient ξ1/|ωkn| ≥ 2πkBT/(�ω+) � 1. Again, the Matsubara sum is hence
effectively limited to its j = 0 term and the potential given by (7.83).

In close similarity to the zero-temperature case as discussed in Sect. 4.2.2, the non-
resonant potential for a metal plate is well approximated by the perfect-conductor
model for large distances: The potentials (7.83) and (7.84) agree with their perfect-
conductor counterparts (7.50) and (7.51) for a metal with ε(0) = ∞. One excep-
tion to this general rule of thumb was noted by Boström and Sernelius [25]: The

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Casimir force between two metal plates is not well approximated by the respective
perfect-conductor result for very large distances. The origin of this discrepancy is
the contribution from the reflection coefficient for s-polarised waves

rs = κ⊥ − κ⊥1
κ⊥ + κ⊥1

= κ⊥ −√κ⊥2 + [ε(iξ)− 1]ξ2/c2

κ⊥ +√κ⊥2 + [ε(iξ)− 1]ξ2/c2
. (7.87)

In the geometric high-temperature limit, the Casimir force is dominated by the con-
tribution from ξ = 0. However, the limit |ω| → 0 does not commute with the
perfect-conductor limit. If we perform the perfect-conductor limit ε(iξ)→∞ first,
we find the frequency-independent result rs = −1. On the other hand, for a real
metal, we have ε(ω) ∝ 1/ω in the limit |ω| → 0, so that rs → 0. The perfect-
conductor model with rs = −1 will thus predict Casimir force which is larger than
the actual result for a metal, where s-polarised waves do not contribute in the geo-
metric high-temperature limit. This complication does not arise for the CP potential,
because it is dominated by contributions from p-polarised waves.

Summing (7.81) in accordance with (7.16), the entirely non-resonant potential of
an atom or molecule at thermal equilibrium with its environment reads

U (z A) = μ0kBT

4π

∞∑
j=0

′ξ2
j

∞∫

ξ j /c

dκ⊥ e−2κ⊥z A

{
α
‖
T (iξ j )

κ⊥ − κ⊥1
κ⊥ + κ⊥1

+
[(

1− κ⊥2c2

ξ2
j

)
α⊥T (iξ j )− κ⊥2c2

ξ2
j

α
‖
T (iξ j )

]
ε(iξ j )κ

⊥ − κ⊥1
ε(iξ j )κ⊥ + κ⊥1

}
.

(7.88)

This is the famous Lifshitz result [26, 27]. He inferred it from the thermal Casimir
energy of two plates by assuming one of the plates to consists of a dilute gas of
atoms. The Lifshitz derivation was later extended to a magnetoelectric plate [28].
Linear-response theory has been used as an alternative method [6].

Limiting cases can easily be obtained from the above. In the spectroscopic low-
temperature regime, we have

U (z A) = −kBT
(
α
‖
0 + α⊥0

)
32πε0z3

A

ε− 1

ε+ 1
(7.89)

for large distances z A � zT ,
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U (z A) = − 3�c

64π2ε0z4
A

∞∫

1

dv

[(
α
‖
0 + α⊥0

v2 − α⊥0
v4

)
εv −√ε− 1+ v2

εv +√ε− 1+ v2

− α
‖
0

v4

v −√ε− 1+ v2

v +√ε− 1+ v2

]
(7.90)

for intermediate distances zω 
 z A 
 zT and

U (z A) = − �

32π2ε0z3
A

∞∫

0

dξ
[
α
‖
0(iξ)+ α⊥0 (iξ)

] ε(iξ)− 1

ε(iξ)+ 1
(7.91)

for small distances z A 
 zω . For spectroscopically high temperatures, (7.83) with
(7.61) and (7.62) leads to

U (z A) = −〈d̂
‖2 + 2d̂⊥2〉T
64πε0z3

A

ε− 1

ε+ 1
(7.92)

for all distances. The equilibrium potential near a purely electric half space is thus
always attractive, where three asymptotic regimes may be distinguished for low
temperatures and a single power law governs the interaction for high temperatures.

As in the zero-temperature case, we note that the perfect-conductor results are a
good approximation for metallic half spaces at large distances, where low-frequency
contributions are dominant. At smaller distances, the CP potential for a real metal is
generally smaller than the perfect-conductor prediction. This difference is relevant for
the nonretarded low-temperature potential (7.91). On the contrary, the spectroscopic
high-temperature result (7.92) for a metal plate agrees with the perfect-conductor
prediction at all distances. Here, high temperatures, rather than large distances, cause
the potential to be dominated by low-frequency contributions.

Thermal Non-Equilibrium

When the atom is not at thermal equilibrium with its environment, we need to include
the propagating- and evanescent-wave contributions. With the reflection coefficients
(A.41) and (A.42) from App. A.3.2, the propagating-wave potential (7.47) reads
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U prop
n (z A) = μ0
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(7.93)

with

k⊥1 =
√
[ε(|ωnk |)− 1] ω

2
nk

c2 + k⊥2 , Im k⊥1 > 0 . (7.94)

In the retarded limit z A � c/|ωnk |, we may apply the estimates k⊥ � |ωnk |/c and
k⊥1 �

√
ε(|ωnk |)|ωnk |/c to find

U prop
n (z A) = μ0

16πz A

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}
ω2

nk

×
{

2|d⊥nk |2Re

[√
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]

+ |d‖nk |2Re

[(
2e2i|ωnk |z A/c − 1
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ε(|ωnk |)− 1√
ε(|ωnk |)+ 1

]}
, (7.95)

cf. the derivation of (4.97). In the nonretarded limit z A 
 c/|ωnk |, the approximations
e2ik⊥z A � 1 and k⊥1 � k⊥ lead to

U prop
n (z A) = μ0

12πc

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}
|ωnk |3

× (4|d⊥nk |2 − |d‖nk |2
) Imε(|ωnk |)
|ε(|ωnk |)+ 1|2

]
. (7.96)

The evanescent-wave potential (7.48) reads [21]

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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U evan
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for an electric half space with

κ⊥1 =
√
κ⊥2 − [ε(|ωnk |)− 1] ω

2
nk

c2 , Reκ⊥1 > 0 . (7.98)

In the retarded limit, the estimates κ⊥ � |ωnk |/c and κ⊥1 �
√
ε(|ωnk |)|ωnk |/c result

in the asymptote

U evan
n (z A) = μ0

16πz A

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}
ω2

nk

× (|d‖nk |2 − 2|d⊥nk |2
)
Re

[√
ε(|ωnk |)− 1√
ε(|ωnk |)+ 1

]
. (7.99)

In the nonretarded limit, the evanescent-wave potential reduces to (κ⊥1 � κ⊥)

U evan
n (z A) = − 1

32πε0z3
A

{∑
k<n

[n(ωnk)+ 1] −
∑
k>n

n(ωkn)

}

× (|d‖nk |2 + 2|d⊥nk |2
) |ε(|ωnk |)|2 − 1

|ε(|ωnk |)+ 1|2 . (7.100)

Note that for both propagating- and evanescent-wave potentials, the temperature-
dependence is separate from the position dependence. In the spectroscopic low-
temperature limit, the estimate n(|ωnk |)
 1 leads to the zero-temperature results as
given in Sect. 4.2.2. For spectroscopically high temperatures, the resonant potentials
above become proportional to kBT/(�|ωnk |).

The total thermal CP potential for an atom or a molecule in an energy eigenstate
is the sum of the non-resonant, propagating- and evanescent-wave contributions. In
the retarded limit, the result is dominated by the resonant terms (7.95) and (7.99)
which combine to a spatially oscillating result [5, 29]

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Un(z A) = μ0
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In the nonretarded regime, the non-resonant contribution dominates the potential
together with that from evanescent waves (7.100). The former can be obtained from
(7.81) by making the approximation κ⊥1 � κ⊥, performing the κ⊥-integral and
retaining only leading orders in z Aξ j/c. The result is given by (7.86), it contains
(7.83) and (7.85) as special cases of spectroscopically high or low temperatures. The
total nonretarded potential [5, 29]

Un(z A) = − kBT

16πε0z3
A

∞∑
j=0

′[α‖n(iξ j )+ α⊥n (iξ j )
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}

× (|d‖nk |2 + 2|d⊥nk |2
) |ε(|ωnk |)|2 − 1

|ε(|ωnk |)+ 1|2 (7.102)

is hence governed by a 1/z3
A power law. For a non-dispersive dielectric, these results

have first been found on the basis of normal-mode QED [30].
As an example, we consider a ground-state LiH molecule near an Au surface at

room temperature (T = 300 K). The potential of such a polar molecule is dominated
by rotational transitions of very low frequency (ω10 = 2.79× 1012 rad/s [31]). As a
consequence, spatial oscillations of the thermal CP potential can be easily resolved
and the thermal energy is relatively large with respect to the molecular excitation
energy, kBT/(�ω10) = 14. The first manifold of excited rotational states is triply
degenerate. Labelling these states as |11〉, |12〉, |13〉, we have

d110 = d01√
6

⎛
⎝1

i
0

⎞
⎠ , d120 = d01√

3

⎛
⎝0

0
1

⎞
⎠ , d130 = d01√

6

⎛
⎝−1

i
0

⎞
⎠ (7.103)

with d10 = 1.96× 10−29 Cm [31], cf. (B.16)–(B.18) in App. B. The permittivity of
Au can be given by a Drude model (4.93) with parameters ωP = 1.37× 1016 rad/s
and γ = 5.32× 1013 rad/s [32]. Figure 7.4 displays the thermal CP potential of the
ground-state LiH molecule in front of an Au surface as obtained from a numerical
integration of (7.81), (7.93) and (7.97) [29]. We also show the separate non-resonant,
evanescent-wave and propagating-wave contributions. Their behaviour is in agree-
ment with our analytical analysis. The non-resonant potential is monotonous and

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Fig. 7.4 Thermal CP potential of a ground-state LiH molecule in front of an Au half space at
T = 300 K (thick line). The non-resonant (thin solid line), evanescent-wave (dotted line) and
propagating-wave contributions (dashed line) are shown separately

attractive as expected from (7.83). The evanescent-wave potential is monotonous
and repulsive as anticipated from (7.100), note that |ε(ω10)| � 1 for a metal. The
propagating-wave potential is spatially oscillating for large distances, cf. (7.95), and
takes a finite value (7.96) on the surface. When combining the three components, we
see that the spatial oscillations due to propagating waves dominate at large distances,
with the oscillation period being λ10/2 = πc/ω10 = 340 µm. Note that spatially
oscillating resonant potentials are enhanced inside planar [17, 18] or cylindrical cav-
ities [19, 20] whose dimensions match λ10/2. At short distances, the non-resonant
and evanescent-wave contributions strongly cancel each other, leaving an attractive
potential due to the slightly stronger non-resonant contribution.

The observed behaviour of the thermal CP potential is very generic. By changing
the half-space material to a dielectric, one can reduce the amplitude or modify the
phase of the spatial oscillations. One may further change the sign of the evanescent-
wave contribution by choosing a material with |ε(ω10)| < 1, thus greatly enhancing
the attractive short-range potential. The polar molecules NH, OH, OD, NaCs and
KCs similarly exhibit a dominant rotational transition. We may expect their thermal
CP potentials near a metal half space to mainly differ by the period of the spatial
oscillations. Finally, we note that the potential as displayed in Fig. 7.4 is due to an
upward transition. For downward transitions as relevant for excited molecules, the
signs of all three contributions to the thermal CP potential are reversed. However, in
this case the evanescent-wave potential is slightly larger than the non-resonant one,
to that the total potential remains attractive at short distances.

Let us next compare the ground-state potential with the potential at thermal equi-
librium (7.88). This time, we place a YbF molecule in front of the Au half space. Like
LiH, this polar molecule exhibits rotational transitions to a triply degenerate excited
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Fig. 7.5 CP potential of a YbF molecule at equilibrium with an Au half space at T = 300 K (solid
line). For comparison, we also show the potential for the molecule in its ground state (dashed line)

manifold (ω10 = 9.05 × 1010 rad/s, d10 = 1.31 × 10−29 Cm). In addition, vibra-
tional excitations also contribute. The triply degenerate manifold of vibrationally
excited states |21〉, |22〉, |23〉 is similar in structure to the manifold of rotational exci-
tations, but with a considerably larger excitation energy (ω20 = 9.54 × 1013 rad/s,
d20 = 8.60 × 10−31 Cm) [31]. Note that the molecules CaF, BaF, LiRb, NaRb and
LiCs have a similar level structure.

In Fig. 7.5, we display the CP potential of a YbF molecule for both the ground-
state and thermal equilibrium cases [29]. The ground-state potential exhibits short-
wavelength oscillations at large distances. They are due to vibrational transitions and
have a period λ20/2 = πc/ω20 = 10 µm. The period λ10/2 = πc/ω10 = 10 mm
of oscillations due to rotational transitions is so large that they are not visible on the
displayed distance range. Instead, rotational transitions with their longer wavelength
and hence longer range dominate the ground-state potential at short distances.

The potential at thermal equilibrium is monotonous and purely attractive. Strik-
ingly, the spatial oscillations of the non-equilibrium, ground-state potential are cen-
tred around the non-oscillating equilibrium potential. The attractive short-distance
potentials agree closely in the two cases. The effect of thermal equilibrium therefore
is to simply remove the spatial oscillations of the thermal CP potential in favour of
a monotonous result of the same overall magnitude.

Temperature-Dependence

Let us finally investigate the temperature-dependence of the potential. In particular,
we want to analyse which of our results for the perfectly conducting plate remain
qualitatively valid for a plate consisting of a metal. We had found that when ignor-
ing the spatial oscillations, the perfect-conductor potential in the retarded limit is
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temperature-independent for small temperatures, then rises linearly and saturates to
a flat asymptote as the temperature is further increased. On the contrary, the potential
in the nonretarded limit was seen to be completely independent of temperature.

Analytic results for a metal half space can be obtained in close analogy with the
perfect-conductor case. We begin with the retarded limit where Tz 
 Tω in the
retarded limit. For very low temperatures T 
 Tz , the conditions zω 
 z A 
 zT

imply a non-resonant potential (7.84). The relevant next-to-leading retarded contri-
bution from the evanescent-wave potential (7.97) reads
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Adding the two results and exploiting T 
 Tz 
 Tω to discard terms proportional
to the photon number, we find
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v +√ε− 1+ v2

]
. (7.105)

For intermediate temperatures Tz 
 T 
 Tω , we have z A � zT , so the non-
resonant potential is given by (7.83). Combining it with the low-temperature form
of the evanescent-wave potential, the non-oscillating potential assumes the form

Un(z A) = − 1

32πε0z3
A

∑
k<n

(|d‖nk |2 + 2|d⊥nk |2
)
Re

[√
ε(ωnk)− 1√
ε(ωnk)+ 1

]

− kBT
(
α
‖
n + α⊥n

)
32πε0z3

A

ε− 1

ε+ 1
. (7.106)

For very large temperatures T � Tω , the evanescent-wave potential above can be
simplified using (7.75). Adding the non-resonant contribution (7.83), we have
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Un(z A) = − 1

64πε0z3
A

∑
k

(|d‖nk |2 + 2|d⊥nk |2
)
Re

[√
ε(|ωkn|)− 1√
ε(|ωkn|)+ 1

]

− kBT

32πε0z3
A

∑
k

|d‖nk |2+2|d⊥nk |2
�ωkn

{
1−Re

[√
ε(|ωkn|)−1√
ε(|ωkn|)+1

]}
.

(7.107)

At nonretarded distances Tω 
 Tz , we only need to distinguish two regimes. For
spectroscopically small temperatures T 
 Tω , we have z A 
 zω 
 zT , so the
non-resonant potential is given by (7.85). Adding the nonretarded evanescent-wave
potential (7.100), one has [5, 29]

Un(z A) = − �

32π2ε0z3
A

∞∫

0

dξ
[
α‖n(iξ)+ α⊥n (iξ)

] ε(iξ)− 1

ε(iξ)+ 1

− 1

32πε0z3
A

∑
k<n

(|d‖nk |2 + 2|d⊥nk |2
) |ε(|ωnk |)|2 − 1

|ε(|ωnk |)+ 1|2 . (7.108)

For spectroscopically large temperatures Tω 
 T , we have either z A 
 zT 
 zω
or zT 
 z A. In both cases, the non-resonant potential is given by (7.83), see the
discussion around (7.86). Performing the high-temperature limit of the nonretarded
evanescent-wave potential (7.100) according to (7.75), we find

Un(z A) = − 1

64πε0z3
A

∑
k

(|d‖nk |2 + 2|d⊥nk |2
) |ε(|ωnk |)|2 − 1

|ε(|ωnk |)+ 1|2

− kBT

32πε0z3
A

∑
k

|d‖nk |2+2|d⊥nk |2
�ωkn

[
1− |ε(|ωnk |)|2 − 1

|ε(|ωnk |)+ 1|2
]

. (7.109)

Let us apply these results to a metallic half space and compare with the pre-
dictions from the perfect-conductor case. In the retarded limit, the non-resonant
contribution to the potential exactly coincides with its perfect-conductor counter-
part, whereas the evanescent-wave contribution is only very poorly represented by
a perfect conductor, because the latter requires |√ε(|ωkn|)| � 1. As a consequence,
the potential for a real metal is constant for low temperatures and rises linearly for
intermediate temperatures, but never saturates in the high-temperature limit. This
is due to an imperfect cancellation of the temperature-dependent terms in (7.107).
On the contrary, the potential in the retarded limit is quite well represented by the
perfect-conductor result provided that ε(i|ωnk |), |ε(|ωnk |)| � 1. In this case, the two
asymptotes above coincide, making the nonretarded potential for a metal half space
temperature-independent across the entire range.



246 7 Thermal Casimir–Polder Forces

T/K

U0 (zA)/U0 (z A)|T = 0

0
0 100 200 300 400 500

0.5

1

1.5

2

2.5

3

LiH

OH

YbF

Rb

Fig. 7.6 Temperature-dependence of the CP potential of various ground-state atoms and molecules
at distance z A = 5µm from an Au half space

To demonstrate the temperature-dependence, we display the non-oscillating part
of the CP potential of different ground-state atoms and molecules for a fixed distance
z A = 5μm from an Au half space. As seen in Fig. 7.6, the potentials for all species
are virtually constant for temperatures below 100K ≈ 0.2Tz [21]. The potential
of LiH is dominated by long-wavelength rotational transitions and hence strongly
nonretarded, z Aω10/c = 0.046. It is therefore temperature-independent across the
entire displayed range. The rotational transition frequency of OH is slightly larger
(ω10 = 1.58 × 1013 rad/s [31]), so that the potential is only weakly nonretarded
with z Aω10/c = 0.26. As a consequence, we notice a slight increase of the potential
as the temperature is increased beyond 150 K. The potential for YbF is dominated
by a vibrational transition of even larger frequency (ω10 = 9.54× 1013 rad/s [31]),
making it weakly retarded with z Aω10/c = 1.6. The interaction increases by 30 %
as the temperature is raised from zero to 500 K. Finally, the CP potential of 87Rb
is dominated by an 52S1/2 → 52P3/2 transition (ω10 = 2.41 × 1015 rad/s [33])
with z Aω10/c = 40 and hence strongly retarded. As a result, the potential increases
linearly with temperature for T � 200 K. With Tω ≈ 18.000 K, the potential does
not saturate within the displayed range.

The temperature-invariance of the CP potential at nonretarded distances is a result
of strong cancellations between non-resonant and evanescent-wave contributions. To
demonstrate this, Fig. 7.7 displays these two components separately for a ground-
state LiH molecule in front of an Au half space at different temperatures [21]. We
see that both the attractive non-resonant potential and the repulsive evanescent-wave
contribution strongly increase as the temperature is increased. However, the resulting
total potential remains constant within the displayed nonretarded distance range
(zω = 100 µm).
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Fig. 7.7 Thermal CP potential of a ground-state LiH molecule in front of a Au surface. We show the
total potential (solid line) as well as its evanescent (dashed) and non-resonant (dotted) contributions
for temperatures T = 10 K, 50 K, 100 K, 200 K, 300 K (left to right)

7.3 Dynamical Approach

As seen in Chap. 5, resonant forces acting on excited atoms have a limited lifetime.
They disappear as the atom settles back into its ground state while spontaneously
emitting a real photon. The situation is very similar at finite temperature. We have
already seen that resonant force components are not present when the atom is at
thermal equilibrium with its environment. An atom initially prepared in an arbitrary
state will absorb thermal photons and undergo spontaneous or stimulated emission.
These dynamical processes will eventually lead the atom to its equilibrium state. As
in the zero-temperature case, there will be no resonant forces in the long-time limit.

To see this explicitly, we will once more employ our dynamical approach to the CP
force. To that end, we first solve the atom–field dynamics in the presence of thermal
photons and then evaluate the average Lorentz force to obtain the time-dependent
CP force.

7.3.1 Internal Atomic Dynamics

For weak atom–field coupling, the internal atomic dynamics is governed by (5.51) as
derived in Sect. 5.2. Thermal photons enter these equations via the free-field operators
Ê, Ê†. Since the thermal density matrix of the electromagnetic field (7.1) is diagonal,
they start to contribute at second order in these operators. Their influence can be made
explicit by iterating. To that end, we formally solve the truncated equation (5.51),

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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˙̂Amn(t) = iω̃mn Âmn(t)

+ i

�

∑
k

∞∫

0

dω
{
e−iω(t−t0)

[
Âmk(t)dnk − Âkn(t)dkm

]· Ê(rA,ω)

+ eiω(t−t0) Ê†(rA,ω)·[dnk Âmk(t)− dkm Âkn(t)
]}

, (7.110)

which expresses the coupling of the atom to the free fields. To obtain a self-consistent
result, we have replaced the bare atomic transition frequencies ωmn by the shifted
ones ω̃mn , which are yet to be determined. The solution to the truncated equation
reads

Âmn(t) = eiω̃mn(t−t0) Âmn + i

�

∑
k

∞∫

0

dω

t∫

t0

dt ′ eiω̃mn(t−t ′)

× {e−iω(t ′−t0)
[
Âmk(t

′)dnk − Âkn(t ′)dkm
]· Ê(rA,ω)

+ eiω(t ′−t0) Ê†(rA,ω)·[dnk Âmk(t
′)− dkm Âkn(t ′)

]}
. (7.111)

Returning to (5.51) and replacing the atomic operators in the second and third rows
by their iterative solution (7.111), we find the required self-consistent equation for
the internal atomic dynamics

˙̂Amn(t) = iωmn Âmn(t)− 1

�2

∑
k,l

∫ ∞
0

dω
∫ ∞

0
dω′

∫ t

t0
dt ′

×
(

eiω(t ′−t0)−iω′(t−t0)

× {eiω̃mk (t−t ′)[ Âml(t
′)dkl − Âlk(t

′)dlm
]· Ê†(rA,ω)Ê(rA,ω′)·dnk

+ eiω̃kn(t−t ′)[ Âkl(t
′)dnl − Âln(t ′)dlk

]· Ê†(rA,ω)Ê(rA,ω′)·dkm
}

+ eiω(t−t0)−iω′(t ′−t0)

× {eiω̃mk (t−t ′)dnk · Ê†(rA,ω)Ê(rA,ω′)·[ Âml(t
′)dkl − Âlk(t

′)dlm
]

+ eiω̃kn(t−t ′)dkm · Ê†(rA,ω)Ê(rA,ω′)·[ Âkl(t
′)dnl − Âln(t ′)dlk

]})

−
∑
k,l

[
dnk ·Ckl Âml(t)− dkm ·Cnl Âkl(t)

]

+
∑
k,l

[
dnk ·C∗ml Âlk(t)− dkm ·C∗kl Âln(t)

]
(7.112)

which is quadratic in the free-field operators and linear in the coefficients Cmn . We
have used the fact that the operators in (7.111) commute at this level of approximation.
In addition, we have discarded terms proportional to Ê, Ê†, Ê Ê and Ê† Ê†, which
do not contribute for a thermal state.

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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We next take expectation values, assuming the electromagnetic field to be prepared
in a thermal state at initial time, ρ̂ = ρ̂(t0) = ρ̂T . Averages of the free fields can then
be evaluated by using the field expansion (1.22) and the thermal averages (1.39) of
the fundamental fields,

〈
Ê†(r,ω)Ê(r ′,ω′)

〉
T =

�μ0

π
n(ω)ω2ImG(r, r ′,ω)δ(ω − ω′) . (7.113)

With this result, the above equation leads to

〈 ˙̂Amn(t)
〉 = iωmn

〈
Âmn(t)

〉

− μ0

π�

∑
k,l

∞∫

0

dω ω2n(ω)

t∫

t0

dt ′
[
e−iω(t−t ′) + eiω(t−t ′)]

× {eiω̃mk (t−t ′)dnk ·ImG(rA, rA,ω)·[dkl
〈
Âml(t

′)
〉− dlm

〈
Âlk(t

′)
〉]

+ eiω̃kn(t−t ′)dkm ·ImG(rA, rA,ω)·[dnl
〈
Âkl(t

′)
〉− dlk

〈
Âln(t ′)

〉]}
−
∑
k,l

[
dnk ·Ckl

〈
Âml(t)

〉− dkm ·Cnl
〈
Âkl(t)

〉]

+
∑
k,l

[
dnk ·C∗ml

〈
Âlk(t)

〉− dkm ·C∗kl

〈
Âln(t)

〉]
(7.114)

where we have used the fact that the Green’s tensor is symmetric. The time integrals
can be evaluated via the Markov equation as described by (5.45)–(5.47) in Sect. 5.2.
Combining the results with the terms on the last two rows of (7.114) and recalling
the definitions (5.52), the equations for the internal atomic dynamics can be written
in exactly the same form as (5.54) as in the zero-temperature case. However, the
coefficients Cmn in these equations now take the values

Cmn = Cmn(rA)

= μ0

�
Θ(ω̃nm)[n(ω̃nm)+ 1]ω̃2

nmIm G(rA, rA, ω̃nm)·dmn

+ μ0

�
Θ(ω̃mn)n(ω̃mn)ω̃2

mnIm G(rA, rA, ω̃mn)·dmn

− iμ0

π�
P
∞∫

0

dω

ω − ω̃nm
[n(ω)+ 1]ω2Im G(rA, rA,ω)·dmn

+ iμ0

π�
P
∞∫

0

dω

ω − ω̃mn
n(ω)ω2Im G(rA, rA,ω)·dmn (7.115)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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where the new contributions proportional to n(ω) are due to the thermal photons.
We next follow the similar steps as in the zero-temperature case, cf. (5.55)–(5.64).

Assuming the atom to be free of quasi-degenerate transitions, the off-diagonal atomic
flip operators decouple from each other as well as from the diagonal ones. Taking
real and imaginary parts of the coefficients, we find

〈 ˙̂Ann(t)
〉 = −Γn

〈
Ânn(t)

〉+∑
k

Γkn
〈
Âkk(t)

〉
, (7.116)

〈 ˙̂Amn(t)
〉 = [iω̃mn − 1

2 (Γm + Γn)
]〈

Âmn(t)
〉

(m �= n) (7.117)

where the identification (5.65) has been made. The atomic frequency shifts and
transition rates are now given by

δωn =
∑

k

δωnk , (7.118)

Γn =
∑

k

Γnk (7.119)

with

δωnk = δωnk(rA)

= −μ0

π�
P
∞∫

0

dω

ω − ω̃nk
ω2dnk ·Im G(1)(rA, rA,ω)·dkn

+ μ0

π�
P
∞∫

0

dω ω2
[

n(ω)

ω + ω̃nk
− n(ω)

ω − ω̃nk

]

× dnk ·Im G(rA, rA,ω)·dkn , (7.120)
Γnk = Γnk(rA)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2μ0

�
ω̃2

nk[n(ω̃nk)+ 1]dnk ·Im G(rA, rA, ω̃nk)·dkn for k < n ,

2μ0

�
ω̃2

knn(ω̃kn)dnk ·Im G(rA, rA, ω̃kn)·dkn for k > n .

(7.121)

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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Using the relation (5.35), the dynamics of the atomic density matrix elements
immediately follows from (7.116):

ṗn(t) = −Γn pn(t)+
∑

k

Γkn pk(t) . (7.122)

In contrast to the zero-temperature case, it is governed by three processes. As before,
an atom in a given state |n〉 can spontaneously emit a real photon while making a
downward transition to a state |k〉 (k < n). In addition, thermal photons can trigger
stimulated decay of the atom, again accompanied by the emission of a real photon.
The corresponding downward transition rate (7.121) is proportional to n(ω̃nk) + 1,
where stimulated and spontaneous emission are represented by the first and second
terms in the square brackets. Thirdly, the atom can absorb a thermal photon while
making an upward transition (k > n). The respective transition rate is proportional
to the thermal photon number n(ω̃kn).

As a result of spontaneous and induced upward and downward transitions, the
internal-state population of the atom is redistributed as time progresses. By summing
(7.122) over all states and using (7.119), we can verify that this process is probability-
conserving, so that (5.73) holds. An atom or molecule initially prepared in an energy
eigenstate, σ̂(t0) = |n〉〈n|, will eventually evolve into a mixed state

σ̂(t) =
∑

k

pk(t)|k〉〈k| for t ≥ t0 . (7.123)

In the long-time limit, the atom will reach a steady state, which can be found by
setting ṗn(t →∞) = 0 in (7.122) above. The combining the relation (7.29) for the
thermal photon number with the definition (7.121) of the transition rates, we find

Γnk = e�ω̃nk/(kBT )Γkn , (7.124)

so that

0 = −Γn pn +
∑

k

Γkn pk = −
∑

k

Γnk pn +
∑

k

Γnke−�ω̃nk/(kBT ) pk . (7.125)

It follows that

pn = e−�ω̃nk/(kBT ) pk . (7.126)

After normalisation, the steady-state probabilities hence read

pn(t→∞) = e−Ẽn/(kBT )

∑
k e−Ẽk/(kBT )

, (7.127)

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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with
Ẽn = Ẽn(rA) = En + �δωn (7.128)

denoting the shifted atomic eigenenergies. In the long-time limit, the atom hence
reaches thermal equilibrium with its environment, and its internal state is a thermal
state

σ̂(t→∞) = σ̂T = e−
ˆ̃HA/(kBT )

tr
[
e− ˆ̃HA/(kBT )

] , (7.129)

where ˆ̃HA =
∑

n

Ẽn|n〉〈n| . (7.130)

Note that the steady state is independent of the initial state preparation. It only
depends on the environment temperature T and the internal level structure of the
atom.

The transition rates determine how fast an atom reaches thermal equilibrium with
its environment. In free space, we use (A.26) to find the transition rates

Γnk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω̃3
nk |dnk |2

3πε0�c3 [n(ω̃nk)+ 1] for k < n ,

ω̃3
kn|dnk |2

3πε0�c3 n(ω̃kn) for k > n .

(7.131)

By splitting off the energy density of the thermal radiation

ρT (ω) = 2�

πc2 n(ω)ω2tr Im G(0)(r, r,ω) = �ω3

π2c3 n(ω) , (7.132)

the rates can be expressed in terms of the Einstein A- and B-coefficients [34],

Γnk =
{

Ank + BnkρT (ω̃nk) for k < n ,

BnkρT (ω̃kn) for k > n .
(7.133)

By comparing (7.131) and (7.133), we find [35]

Ank = ω̃3
nk |dnk |2

3πε0�c3 (k < n) , (7.134)

Bnk = π|dnk |2
3ε0�2 . (7.135)



7.3 Dynamical Approach 253

The Einstein coefficients are important atomic parameters. The A-coefficients
describe the ability of an atom to undergo spontaneous emission, while the
B-coefficients represent its susceptibility to stimulated photon emission (k < n)
or absorption (k > n).

The life time T1 = 1/Γn of a pure state |n〉 against equilibration is governed by
the total transition rate (7.119). In particular, the heating rate of a ground-state atom
(initial temperature T = 0 K) in free space reads

Γ0 =
∑

k

B0kρT (ω̃k0) = 1

3πε0�c3

∑
k

ω̃3
k0|d0k |2 n(ω̃k0) . (7.136)

Finally, our dynamical analysis has also revealed that the atomic energy levels
(7.128) and transition frequencies (5.65) acquire shifts due to the interaction of the
atom with the electromagnetic field. These shifts are given by (7.118) together with
(7.120). As in the zero-temperature case, we have assumed that the infinite zero-
temperature shift associated with the free-space Green’s tensor is already included
in the bare transition frequencies ωmn . Its contribution has thus been removed from
(7.120) by making the replacement G 	→ G(1). On the contrary, the thermal free-
space shift is finite and has been retained. By using (A.26) for the free-space Green’s
tensor and employing the integration contour from Fig. 7.1, equation (7.120) for the
frequency shifts can be brought into the more explicit form

δωnk = −μ0

�
{Θ(ω̃nk)[n(ω̃nk)+ 1] −Θ(ω̃kn)n(ω̃kn)}ω̃2

nk

× dnk ·ReG(1)(rA, rA, ω̃nk)·dkn

+ 2μ0kBT

�2

∞∑
j=0

′ω̃knξ
2
j

dnk ·G(1)(rA, rA, ξ j )·dkn

ω̃2
kn + ξ2

j

+ μ0|dnk |2
6π2c�

P
∞∫

0

dω ω3
[

n(ω)

ω̃nk − ω +
n(ω)

ω̃nk + ω
]

. (7.137)

The first term represents the absorption, spontaneous or stimulated emission of
real photons which are reflected off the surfaces of present bodies. The second term
is due to reflected virtual photons. The third, position-independent contribution is
due to real, thermal photons which propagate without reflection.

As in the zero-temperature case (5.78), the shifts have to be obtained from a
self-consistent solution of the equations (7.137), since the shifted frequencies appear
on the right hand side. his complication does not arise in the perturbative limit
δωm, δωn 
 ωmn where we have

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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δωnk = −μ0

�
{Θ(ωnk)[n(ωnk)+ 1] −Θ(ωkn)n(ωkn)}ω2

nk

× dnk ·ReG(1)(rA, rA,ωnk)·dkn

+ 2μ0kBT

�2

∞∑
j=0

′ωknξ
2
j

dnk ·G(1)(rA, rA, ξ j )·dkn

ω2
kn + ξ2

j

+ μ0|dnk |2
6π2c�

P
∞∫

0

dω ω3
[

n(ω)

ωnk − ω +
n(ω)

ωnk + ω
]

. (7.138)

when neglecting the position-independent last term, the perturbative energy shift
ΔEn = �δωn = ∑k �δωnk coincides with the thermal CP potential (7.17)–(7.19)
as derived in Sect. 7.1.

7.3.2 Casimir–Polder Force

Following the method outlined in Chap. 5, the thermal CP force can be found by
evaluating the average Lorentz force acting on the atom. Note that we again neglect
the effect of atomic motion [rA(t) ≡ rA]. Our result (5.94) for the average force
on a non-magnetic atom is valid for arbitrary initial preparations of the atom and
the electromagnetic field. It contains a contribution from the electric field and one
from the magnetic field, where the latter involves a total time derivative. For zero
temperature, we have seen that this latter term is only relevant for atoms in coherent
superpositions of energy eigenstates, cf. (5.119) and (5.120). For simplicity, we
assume the atom to be initially prepared in an incoherent superposition of energy
eigenstates. Our results (7.116) and (7.117) from the previous section show that it
will then remain in an incoherent superposition at all times. The second term in (5.94)
can then be ignored and the average Lorentz force is given by

F(t) =
∑
m,n

∞∫

0

dω
[∇〈 Âmn(t)dmn · Ê(r,ω, t)

〉

+∇〈Ê†(r,ω, t)·dmn Âmn(t)
〉]

r=rA
. (7.139)

Substituting the formal solution (5.44) for the time-dependent electric field, we find

F(t) =
∑
m,n

∞∫

0

dω e−iω(t−t0)
[∇〈 Âmn(t)dmn · Ê(r,ω)

〉]
r=rA

+ iμ0

π

∑
m,n,k,l

∞∫

0

dω ω2∇dmn ·Im G(rA, rA,ω)·dkl
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×
t∫

t0

dt ′e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉+ C.c. (7.140)

To account for the influence of the thermal electromagnetic fields, we require an
expression that is quadratic in the free fields. To that and, we use (7.117) and improve
our approximate solution (7.111) for the atomic flip operators,

Âmn(t) = e[iω̃mn−(Γm+Γn)/2](t−t0) Âmn

+ i

�

∑
k

∞∫

0

dω

t∫

t0

dt ′ e[iω̃mn−(Γm+Γn)/2](t−t ′)

× {e−iω(t ′−t0)
[
Âmk(t

′)dnk − Âkn(t ′)dkm
]· Ê(rA,ω)

+ eiω(t ′−t0) Ê†(rA,ω)·[dnk Âmk(t
′)− dkm Âkn(t ′)

]}
(m �= n) .

(7.141)

We substitute it into the first term (7.140) in above. Terms linear in Ê, Ê
†

do not
contribute for a thermal electromagnetic field, so we find

F(t) = i

�

∑
m,n,k

∞∫

0

dω

∞∫

0

dω′
t∫

t0

dt ′ e−iω(t−t0)+iω′(t ′−t0)e[iω̃mn−(Γm+Γn)/2](t−t ′)

× [∇〈[dnk Âmk(t
′)− dkm Âkn(t ′)

]· Ê†(rA,ω)dmn · Ê(r,ω)
〉]

r=rA

+ iμ0

π

∑
m,n,k,l

∞∫

0

dω ω2∇dmn ·Im G(rA, rA,ω)·dkl

×
t∫

t0

dt ′e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉+ C.c. (7.142)

Next, we need to evaluate the expectation values. The thermal averages of the
electric field featuring in the first term above are given in (7.113). To find the
atomic two-time correlation functions governing in the second term, we note that
the equations of motion (7.117) for the off-diagonal flip operators have exactly the
same form (5.64) as in the zero-temperature case. Using the quantum regression
theorem (5.69) it follows that their correlation functions are given by (5.70). With
these results, the average Lorentz force reads

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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F(rA, t) = iμ0

π

∑
n,k

∞∫

0

dω ω2∇dnk ·Im G(1)(rA, rA,ω)·dkn

×
t∫

t0

dt ′
{[n(ω)+ 1]e[−i(ω−ω̃nk )−(Γn+Γk )/2](t−t ′)

+ n(ω)e[i(ω+ω̃nk )−(Γn+Γk )/2](t−t ′)}〈 Ânn(t
′)
〉+C.c. (7.143)

The time integral can be evaluated via the Markov approximation (5.99). Using
〈 Ânn(t)〉 = pn(t), the thermal CP force reads [2, 4, 36]

F(rA, t) =
∑

n

pn(t)Fn(rA) (7.144)

with

Fn(rA) = μ0

π

∑
k

∞∫

0

dω ω2 ∇dnk ·Im G(1)(rA, rA,ω)·dkn

×
[

n(ω)+ 1

ω − ω̃nk − i
2 (Γn + Γk)

− n(ω)

ω − ω̃kn + i
2 (Γn + Γk)

]
+ C.c. (7.145)

As in the zero-temperature case, the force on an atom in an incoherent superposition
state is a sum over force components, weighted by the populations of the respective
energy eigenstates. Note that we have discarded self-forces by making the replace-
ment G 	→ G(1).

The force components can be cast into a more explicit form by using contour-
integral techniques. Writing Im G = (G − G∗)/(2i) and employing the Schwarz
reflection principle (A.3), we apply the integration contour depicted in Fig. 7.8. It
transforms integrals along the real frequency axis into Matsubara sums plus contri-
butions from the atomic resonances. The force components can then be written as a
sum (5.103) of non-resonant contributions

Fnres
n (rA) = −μ0kBT

2π

∞∑
j=0

′ξ2
j

×∇tr
{[αn(iξ j )+αn(−iξ j )]·G(1)(r, r, iξ j )

}∣∣
r=rA

(7.146)

due to virtual photons and resonant contributions

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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Im ω

Re ω

ω̃nk + i
2 (Γk +Γn )

−ω̃nk − i
2

(Γk + Γn ) ω̃kn − i
2

(Γk + Γn )

−ω̃kn

+ i
2

(Γk + Γn )

ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

···

Fig. 7.8 Integration contour used for transforming the real-frequency CP integral into a Matsubara
sum plus contributions from the atomic poles

Fres
n (rA) = μ0

2

∑
k<n

[n(Ωnk)+ 1]Ω2
nk∇dnk ·G(1)(r, r,Ωnk)·dkn

∣∣
r=rA

− μ0

2

∑
k>n

n(Ωkn)Ω2
kn∇dnk ·G(1)(r, r,Ωkn)·dkn

∣∣
r=rA
+ C.c.

(7.147)

from real photons. Here, we have used (5.107) to introduce a total derivative,
assuming the atom to be time-reversal invariant with real dipole-matrix elements,
dkn = dnk . The definitions (5.91) and (5.106) of atomic polarisability and complex
transition frequencies are now given in terms of the thermal frequency shifts (7.137)
and widths (7.121).

Comparing the thermal CP force with the respective zero-temperature results, we
see that the integral in the non-resonant force (5.108) has simply been replaced by
a Matsubara sum (7.20) at finite temperature in accordance with the replacement
rule (7.24). For the resonant forces, contributions (5.109) due to the spontaneous
emission of real photons have been augmented by stimulated emission. In addition,
a contribution due to the absorption of thermal photons has appeared which carries
an opposite sign. These changes due to the presence of thermal photons may be
summarised in a replacement rule

∑
k<n

f (Ωnk) 	→
∑
k<n

[n(Ωnk)+ 1] f (Ωnk)−
∑
k>n

n(Ωkn) f (Ωkn) . (7.148)

As in the zero-temperature case, the thermal CP force is seen to depend on the
shifted and broadened atomic transition frequencies. These effects have an impact
as outlined in Sect. 5.5 for zero temperature. The shifts affect both non-resonant and
resonant force components whereas the widths only have an influence on the resonant

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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forces. At finite temperature, the shifts and widths may be enhanced. In particular,
even the atomic ground state acquires a finite width at T �= 0. In the perturbative
limit |δωn|, |δωk |, Γn, Γk 
 ωnk , the force components reduce to the gradients of the
thermal CP potential (7.17)–(7.19) as found in Sect. 7.1. In accordance with (1.119),
the force is then conservative.

Most importantly, our dynamical calculation has revealed that the thermal CP
force is time-dependent, in general. It dynamics is governed by the populations of
the internal atomic eigenstates, which evolve according to the rate equations (7.122).
An atom initially prepared in an energy eigenstate |n〉will be subject to the respective,
state-dependent force at sufficiently short times,

F(rA, t) � F(rA, t0) = Fn(rA) for (t − t0)Γn 
 1 . (7.149)

Due to photon emission and absorption, both higher and lower energy levels become
populated, leading to a superposition force

F(rA, t) =
∑

k

pk(t)Fk(rA) (7.150)

at intermediate times. In the long-time limit, the atom will reach thermal equilibrium
with its environment such that its populations are given by (7.59). The thermal CP
force is then purely non-resonant

F(rA, t→∞) = −μ0kBT

π

∞∑
j=0

′ξ2
j ∇Atr

[
αT (iξ j )·G(1)(rA, rA, iξ j )

]
. (7.151)

7.3.3 Molecule in Front of a Plate

To illustrate the dynamics of the thermal CP force, let us once more consider an
molecule in front of a semi-infinite electric half space. We are going to neglect the
influence of the frequency shifts and broadenings on the force, so that our perturbative
results (7.81), (7.93) and (7.97) from Sect. 7.2.2 remain valid.

The transition rates (7.121) governing the internal dynamics can be found by using
the free-space Green’s tensor (A.26) and the scattering Green’s tensor (4.58). They
read

Γnk(z A) = Γ
(0)

nk + Γ
(1)

nk (z A) , (7.152)

where the free-space rates Γ
(0)

nk are given by (7.131) and the plate-induced rates read

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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Γ
(1)

nk (z A) = μ0

4π�
[n(ωnk)+ 1]ω2

nk

( ωnk/c∫

0

dk⊥
{
|d‖nk |2Re

[
e2ik⊥z A

k⊥ − k⊥1
k⊥ + k⊥1

]

−
[

k⊥2c2

ω2
nk

|d‖nk |2 +
(

2
k⊥2c2

ω2
nk

− 2

)
|d⊥nk |2

]

× Re

[
e2ik⊥z A

ε(ωnk)k⊥ − k⊥1
ε(ωnk)k⊥ + k⊥1

]}

+
∞∫

0

dκ⊥ e−2κ⊥z A

{
|d‖nk |2Im

[
κ⊥ − κ⊥1
κ⊥ + κ⊥1

]
+
[
κ⊥2c2

ω2
nk

|d‖nk |2

+
(

2
κ⊥2c2

ω2
nk

+ 2

)
|d⊥nk |2

]
Im

[
ε(ωnk)κ

⊥ − κ⊥1
ε(ωnk)κ⊥ + κ⊥1

]}
(7.153)

for k < n and

Γ
(1)

nk (z A) = μ0

4π�
n(ωkn)ω2

kn

( ωkn/c∫

0

dk⊥
{
|d‖nk |2Re

[
e2ik⊥z A

k⊥ − k⊥1
k⊥ + k⊥1

]

−
[

k⊥2c2

ω2
kn

|d‖nk |2 +
(

2
k⊥2c2

ω2
kn

− 2

)
|d⊥nk |2

]

× Re

[
e2ik⊥z A

ε(ωkn)k⊥ − k⊥1
ε(ωkn)k⊥ + k⊥1

]}

+
∞∫

0

dκ⊥ e−2κ⊥z A

{
|d‖nk |2Im

[
κ⊥ − κ⊥1
κ⊥ + κ⊥1

]
+
[
κ⊥2c2

ω2
kn

|d‖nk |2

+
(

2
κ⊥2c2

ω2
kn

+ 2

)
|d⊥nk |2

]
Im

[
ε(ωkn)κ⊥ − κ⊥1
ε(ωkn)κ⊥ + κ⊥1

]}
(7.154)

for k > n, recall (7.94) and (7.98). The two integrals represent contributions from
propagating and evanescent waves, respectively.

At retarded distances z A � c/|ωnk |, propagating waves dominate, and the approx-
imations k⊥ � |ωnk |/c and k⊥1 �

√
ε(|ωnk |)|ωnk |/c lead to

Γ
(1)

nk (z A) = − μ0

4π�z A
[n(ωnk)+ 1]ω2

nk |d‖nk |2Im

[
e2i|ωnk |z A/c

√
ε(ωnk)− 1√
ε(ωnk)+ 1

]

(7.155)
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Fig. 7.9 (i, ii) Time-dependent internal-state populations of a LiH molecule at fixed distances from
an Au half space at T = 300 K. (iii) Dynamics of the thermal CP force on a LiH molecule in front
of an Au half space

for k < n and

Γ
(1)

nk (z A) = μ0

4π�z A
n(ωkn)ω2

kn|d‖nk |2Im

[
e2i|ωkn |z A/c

√
ε(ωkn)− 1√
ε(ωkn)+ 1

]
. (7.156)

for k > n. In this limit, the plate-induced rate is a spatially oscillating correction to the
free-space rate. At nonretarded distances z A 
 c/|ωnk | , the estimates e2ik⊥z A � 1,
k⊥1 � k⊥ and κ⊥1 � κ⊥ result in

Γ
(1)

nk (z A) = 1

8π�ε0z3
A

[n(ωnk)+ 1](|d‖nk |2 + 2|d⊥nk |2
) Im ε(ωnk)

|ε(ωnk)+ 1|2 (7.157)
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for k < n and

Γ
(1)

nk (z A) = 1

8π�ε0z3
A

n(ωkn)
(|d‖nk |2 + 2|d⊥nk |2

) Im ε(ωkn)

|ε(ωkn)+ 1|2 (7.158)

for k > n. They hence dominate the internal dynamics of the molecule at short
distances.

As an example, let us once more consider the thermal CP force on a LiH molecule
in front of a room-temperature Au surface (T = 300 K). Using the parameters of Au
and LiH as listed below (7.103), we can evaluate the transition rates (7.152) together
with (7.131) and (7.153). Assuming the molecule to be prepared in its ground state |0〉
at initial time, we can then solve the rate equations (7.122) to find the time-dependent
state populations pn(t) for given atom–surface separations. The results are shown
in Fig. 7.9(i, ii). At z A = 200 µm, the dynamics is dominated by the free-space
transition rates. As seen from Fig. 7.9(ii), the molecule reaches thermal equilibrium
on a time-scale of about 10 s, where the three degenerate excited states have become
equally populated. The situation is different at z A = 11 µm. At this distance, the rates
Γ011(z A) = Γ013(z A) are strongly reduced due to a negative contribution from the
spatially oscillating plate-induced rate. On the contrary, the Γ012(z A) is not affected
by spatial oscillations and takes a larger value. As we can see from Fig. 7.9(i), the
population of the state |12〉 hence reaches thermal equilibrium with the ground-state
population on a time scale of 10 s, while the thermalisation of the other two excited
states |11〉, |11〉 sets in much later after about 500 s. As a result of the dynamics in an
anisotropic environment, the molecule is hence in an anisotropic state at intermediate
times.

The resulting dynamics of the thermal CP force is shown in Fig. 7.9(iii) as obtained
from (7.144) together with (7.81), (7.93) and (7.97). At initial time, the force exhibits
spatial oscillations due to the absorption of propagating thermal photons. These
oscillations die out as the molecule reaches thermal equilibrium with its environment,
leaving a purely attractive equilibrium force.
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Chapter 8
Casimir–Polder Forces on Moving Atoms

So far, we have completely ignored the impact of motion on dispersion forces. Our
description of the medium-assisted electromagnetic field is only valid for bodies
at rest; the velocity-dependent Röntgen interaction has been discarded from atom–
field couplings; and the distance travelled by an atom between photon emission and
reabsorption has been disregarded. Strictly speaking, all of our results for the Casimir,
CP and vdW forces are thus only valid for objects at rest.

In reality, the validity limits imposed by the disregard of atomic and body motion
are a lot less severe. In an order-of-magnitude estimate, velocity-dependent disper-
sion forces should be smaller than the corresponding velocity-independent ones by a
factor v/c, with v denoting the relative velocity of the interacting objects. Unless the
objects move with relativistic speed, we may expect the velocity-independent results
to be an excellent approximation.

A fully relativistic analysis is beyond the scope of this book. In particular, the
constitutive relations between the electromagnetic fields and excitations as presented
in Sect. 1.1.1 as well as the employed Coulomb gauge are not Lorentz-invariant. In
addition, our description of an atom and its coupling to the electromagnetic field as
given in Sect. 1.1.2 is valid only in a non-relativistic approximation. In a much more
modest approach, we will instead develop leading-order non-relativistic account of
velocity-dependent dispersion forces. This can be achieved most easily for the CP
force on a single moving atom which interacts with bodies at rest. Our investigation
of this model system help us identify scenarios where velocity-dependent forces
might play a role and show in which cases they can be safely neglected.

To study the impact of motion on the CP force, we extend the dynamical approach
developed in Chap. 5. We will begin by solving the atom–field dynamics for a slowly
moving atom and proceed by calculating the CP force as the average Lorentz force.
As an example, we study the quantum friction force on an atom moving parallel to
a plate.
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8.1 Internal Atomic Dynamics

The impact of atomic motion on the atom–field interaction is most explicit in the
multipolar coupling scheme where it is manifest in the Röntgen interaction. We
will employ this scheme throughout this chapter, discarding the primes identifying
multipolar variables. The multipolar interaction in long-wavelength approximation
is given by (1.96) where the centre-of-mass momentum appears in the Röntgen
interaction. It is related to the atomic velocity according via (5.17) which reduces to

p̂A = m A
˙̂rA − d̂× B̂(r̂A) (8.1)

in long-wavelength approximation. Substitution into (1.96) yields

ĤAF =− d̂ · Ê(r̂A)− m̂· B̂(r̂A)+
∑
α∈A

q2
α

8mα

[ ˆ̄rα× B̂(r̂A)
]2 − 5

8m A

[
d̂× B̂(r̂A)

]2

+ ˙̂rA · d̂× B̂(r̂A) . (8.2)

For a non-magnetic atom, we may discard the magnetic dipole and diamagnetic
interactions to obtain the electric-dipole Hamiltonian

ĤAF = −d̂ · Ê(r̂A)+ ˙̂rA · d̂× B̂(r̂A) . (8.3)

It now explicitly depends on the atomic velocity via the Röntgen term. We make
use of the Born–Oppenheimer approximation by solving the atom–field dynamics
for given centre-of-mass position rA and velocity v. Using the expansion (5.38) of
the electric-dipole operator and introducing the atomic flip operators, the multipolar
coupling Hamiltonian can be given in the form

ĤAF = −
∑
m,n

Âmn dmn · Ê(rA)+
∑
m,n

Âmnv ·dmn× B̂(rA) . (8.4)

In close analogy to the treatment in Sect. 5.2, we can now derive and solve the
equations governing the atom–field dynamics. Using the Hamiltonians (5.37) and
(8.4) and the commutation relation (5.36), the Heisenberg equations for the atomic
flip operators read

˙̂Amn = 1

i�

[
Âmn, Ĥ

]

= iωmn Âmn + i

�

∑
k

(
Âmk dnk − Âkn dkm

)·[Ê(rA)+ v× B̂(rA)
]
. (8.5)

http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_1
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5


8.1 Internal Atomic Dynamics 265

The equation of motion for the fundamental fields follow from the Hamiltonians
(1.93) and (8.4) by recalling the field expansions (1.22) and (1.26) and invoking the
bosonic commutation relations (1.17) and (1.18),

˙̂f λ(r, ω) = 1

i�

[
f̂ λ(r, ω), Ĥ

] = − iω f̂ λ(r, ω)+ i

�

∑
m,n

G∗Tλ (rA, r, ω)·dmn Âmn

− 1

�ω

∑
m,n

[
G∗Tλ (r, rA, ω)×←−∇ ′]×dmn ·v Âmn

(8.6)

where
←−∇ ′ is acting on the second position argument of the Green’s tensor. This

equation is solved by

f̂ λ(r, ω, t) = e−iω(t−t0) f̂ λ(r, ω)

+ i

�

∑
m,n

t∫

t0

dt ′ e−iω(t−t ′)G∗Tλ [rA(t ′), r, ω]· Âmn(t ′)dmn

+ 1

�ω

∑
m,n

t∫

t0

dt ′ e−iω(t−t ′){G∗Tλ [r, rA(t ′), ω]×←−∇ ′}×dmn ·v Âmn(t ′) .

(8.7)

Assuming that the atom moves with non-relativistic speed, v � c, we are seeking
a solution to the atom–field dynamics that is correct within linear order of v/c.
According to the Born–Oppenheimer approximation, we may assume the centre-of-
mass velocity to remain constant on the time-scale relevant for the internal atom–field
dynamics, so that

rA(t ′) = rA(t)+ (t ′ − t)v . (8.8)

Substituting this relation into the solution for the fundamental fields and discarding
quadratic terms in v/c, we find [rA(t) ≡ rA]

f̂ λ(r, ω, t) = e−iω(t−t0) f̂ λ(r, ω)

+ i

�

∑
m,n

t∫

t0

dt ′ e−iω(t−t ′)G∗Tλ (rA, r, ω)·dmn Âmn(t ′)

− i

�

∑
m,n

t∫

t0

dt ′ (t − t ′)e−iω(t−t ′)G∗Tλ (rA, r, ω)·dmn
(←−∇ ′ ·v)

Âmn(t ′)
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+ 1

�ω

∑
m,n

t∫

t0

dt ′ e−iω(t−t ′)[G∗Tλ (r, rA, ω)×←−∇ ′]×dmn ·v Âmn(t ′) .

(8.9)

Using the integral relation (1.25) for the Green’s tensor, the electric field (1.22)
is hence given by

Ê(r, ω, t) = e−iω(t−t0) Ê(r, ω)

+ iμ0

π

∑
m,n

ω2

t∫

t0

dt ′ e−iω(t−t ′)Im G(r, rA, ω)·dmn Âmn(t ′)

− iμ0

π

∑
m,n

ω2

t∫

t0

dt ′ (t − t ′)e−iω(t−t ′)Im G(r, rA, ω)·dmn
(←−∇ ′ ·v)

Âmn(t ′)

+ μ0

π

∑
m,n

ω

t∫

t0

dt ′ e−iω(t−t ′)[Im G(r, rA, ω)×←−∇ ′]×dmn ·v Âmn(t ′) .

(8.10)

In order to obtain a closed equation for the atomic flip operators, we also require an
expression for the time-dependent magnetic field. However, since the magnetic field
only appears in conjunction with a factor v, the zero-order approximation in v/c is
sufficient. Substituting the field operators (8.9) into the expansion (1.26), discarding
all terms linear in v/c and making use of the integral relation (1.25), we find

B̂(r, ω, t) = e−iω(t−t0) B̂(r, ω)

+ μ0

π

∑
m,n

ω

t∫

t0

dt ′ e−iω(t−t ′)∇×Im G(r, rA, ω)·dmn Âmn(t ′) .

(8.11)

For weak atom–field coupling, the time integrals may be evaluated by means of
the Markov approximation. We recall the result (5.47) from Sect. 5.2 and take its
derivative with respect to ω to find

t∫

t0

dt ′ (t− t ′)e−iω(t−t ′) Âmn(t ′) � d

dω

[ P
ω − ω̃nm

+ iπδ(ω−ω̃nm)

]
Âmn(t) . (8.12)

In Markov approximation, the electric and magnetic fields hence read
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Ê(r, ω, t) = e−iω(t−t0) Ê(r, ω)

+ iμ0

∑
m,n

[
δ(ω−ω̃nm)− i

π

P
ω−ω̃nm

]
ω2ImG(r, rA, ω)·dmn Âmn(t)

− iμ0

∑
m,n

ω2 d

dω

[
1

π

P
ω−ω̃nm

+ iδ(ω−ω̃nm)

]
ImG(r, rA, ω)·dmn

(←−∇ ′ ·v)
Âmn(t)

+ μ0

∑
m,n

ω

[
δ(ω−ω̃nm)− i

π

P
ω−ω̃nm

][
ImG(r, rA, ω)×←−∇ ′]×dmn ·v Âmn(t)

(8.13)

and

B̂(r, ω, t) = e−iω(t−t0) B̂(r, ω)

+ μ0
∑
m,n

ω

[
δ(ω − ω̃nm)− i

π

P
ω − ω̃nm

]
∇ × Im G(r, rA, ω)·dmn Âmn(t) .

(8.14)

We arrange the equation of motion (8.5) for the atomic flip operators in normal
ordering (note that the time-dependence is not shown for brevity)

˙̂Amn = iωmn Âmn

+ i

�

∑
k

∞∫

0

dω
[(

Âmk dnk − Âkn dkm
)·[Ê(rA, ω)+ v× B̂(rA, ω)

]

+ [
Ê†(rA, ω)+ v× B̂†(rA, ω)

]·(dnk Âmk − dkm Âkn
)]

, (8.15)

substitute our solutions for the time-dependent electromagnetic field and evaluate
operator products in accordance with (5.50). Taking expectation values and assuming
the field to be prepared in its ground state at initial time, ρ̂ = ρ̂(t0) = |{0}〉〈{0}|,
the free fields do not contribute according to (5.53) and (5.96). We are left with an
equation of the form (5.54), but the coefficients

Cmn = Cmn(rA)+ Cmn(rA, v) (8.16)

now contain a purely position-dependent component (5.52) as well as a position- and
velocity-dependent correction

Cmn(rA, v) = μ0

π�
P
∞∫

0

dω

ω − ω̃nm
[ω2Im G(rA, rA, ω)]′ ·dmn

(←−∇ ′ ·v)

+ iμ0

�
Θ(ω̃nm)[ω̃2

nmIm G(rA, rA, ω̃nm)]′ ·dmn
(←−∇ ′ ·v)
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− μ0

π�
P
∞∫

0

dω

ω − ω̃nm
ω

[
Im G(rA, rA, ω)×←−∇ ′]×dmn ·v

− iμ0

�
Θ(ω̃nm)ω̃nm

[
Im G(rA, rA, ω̃nm)×←−∇ ′]×dmn ·v

− μ0

π�
P
∞∫

0

dω

ω − ω̃nm
ωv×[∇×Im G(rA, rA, ω)

]·dmn

− iμ0

�
Θ(ω̃nm)ω̃nmv×[∇×Im G(rA, rA, ω̃nm)

]·dmn .

(8.17)

Note that the primes in the first and second terms denote derivatives with respect to
the respective frequency arguments.

We take real and imaginary parts of the coefficients according to (5.57) and (5.58).
For an atom with time-reversal invariant internal Hamiltonian and hence real dipole-
matrix elements, the last four terms in (8.17) due not contribute due to pairwise
cancellations. For an atom that is free of quasi-degenerate transitions, off-diagonal
atomic flip operators decouple from the diagonal ones as well as from each other and
the internal dynamics of the atom is governed by the same Eqs. (5.71) and (5.72) that
are valid for an atom at rest. However, the frequency shifts and transition rates [1]

δωn = δωn(rA)+ δωn(rA, v)

=
∑

k

δωnk =
∑

k

δωnk(rA)+
∑

k

δωnk(rA, v) , (8.18)

Γn = Γn(rA)+ Γn(rA, v)

=
∑

k

Γnk =
∑
k<n

Γnk(rA)+
∑
k<n

Γnk(rA, v) (8.19)

now contain motion-induced corrections

δωnk(rA, v) = μ0

2�
(v ·∇A)

[
ω̃2

nk dnk ·Im G(1)(rA, rA, ω̃nk)·dkn
]′

, (8.20)

Γnk(rA, v) = μ0

π�
(v ·∇A)P

∞∫

0

dω

ω − ω̃nk

[
ω2dnk ·Im G(1)(rA, rA, ω)·dkn

]′

(8.21)

in addition to the purely position-dependent contributions (5.61) and (5.62). The
above results have been obtained by exploiting the Onsager reciprocity (A.4) of the
Green’s tensor in the form ∇′G(1)(rA, rA, ω) �→ 1

2∇AG(1)(rA, rA, ω) and making
use of the fact that the free-space Green’s tensor does not contribute.
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The centre-of-mass motion hence affects the internal dynamics of an atom by
inducing velocity-dependent frequency shifts and decay rates. These shifts and rates
are due to the time delay between photon emission and reabsorption and they may be
identified as a vacuum Doppler effect. The vacuum Doppler shifts and rates depend
on the gradient of the Green’s tensor in the direction of motion. As a consequence, the
decay rates and frequency shifts are unaffected by atomic motion if the environment
is translationally invariant along the respective direction. This is the case, e.g., for an
atom moving parallel to a plate or a cylinder. In close analogy, the transverse Doppler
effect induced by an external electromagnetic field vanishes within linear order in
v/c. In particular, the shifts and rates are unaffected by motion in free space. This
is required by the fact that the electromagnetic vacuum in free space does not define
a specific reference frame; it is Lorentz invariant and hence also Galilean invariant.
Note that our results are only valid in a non-relativistic approximation within leading,
linear order in v/c.

8.2 Casimir–Polder Force

Using our solution for the atom–field dynamics, we can proceed by calculating the
CP force on the atom where we proceed in close analogy to Sect. 5.4. The Lorentz
force on a moving non-magnetic atom is given by (5.29). To find the CP force, we
have to calculate its quantum average

F = ∇〈
d̂ ·[Ê(r)+ v× B̂(r)

]〉∣∣
r=rA

. (8.22)

Note that we restrict our attention to an atom prepared in an incoherent superposition
of energy eigenstates, so that the term involving a total time-derivative does not
contribute. Expanding the dipole operator according to (5.38) and employing normal
ordering, we have

F(t) =
∞∫

0

dω
∑
m,n

{∇〈
Âmn(t)dmn ·

[
Ê(r, ω, t)+ v× B̂(r, ω, t)

]〉

+∇〈[
Ê†(r, ω, t)+ v× B̂†(r, ω, t)

]·dmn Âmn(t)
〉}

r=rA
. (8.23)

We make use of the solutions (8.10) and (8.11) for the time-dependent electro-
magnetic field as found in the previous section. Assuming the electromagnetic field
to be prepared in its ground state at initial time, ρ̂ = ρ̂(t0) = |{0}〉〈{0}|, the free
fields do not contribute and we are left with
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F(t) = iμ0

π

∑
m,n,k,l

∞∫

0

dω ω2∇dmn ·Im G(rA, rA, ω)·dkl

×
t∫

t0

dt ′e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉

− iμ0

π

∑
m,n,k,l

∞∫

0

dω ω2∇dmn ·Im G(rA, rA, ω)·dkl
(←−∇ ′ ·v)

×
t∫

t0

dt ′(t − t ′)e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉

+ μ0

π

∑
m,n,k,l

∞∫

0

dω ω∇dmn ·
[
Im G(rA, rA, ω)×←−∇ ′]×dkl ·v

×
t∫

t0

dt ′e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉

+ μ0

π

∑
m,n,k,l

∞∫

0

dω ω∇dmn ·v×
[∇×Im G(rA, rA, ω)

]·dkl

×
t∫

t0

dt ′e−iω(t−t ′)〈 Âmn(t) Âkl(t
′)
〉+ C.c . (8.24)

With the internal atomic dynamics being governed by (5.66), correlation functions of
the off-diagonal flip operators can be determined by means of the quantum regression
theorem (5.70). The time integrals can subsequently be carried out using the Markov
approximation where we have (5.99) and similarly

t∫

t0

dt ′ (t − t ′)e[i(ω̃mk−ω)−(Γm+Γk )/2](t−t ′)〈 Âmn(t ′)
〉

� 〈
Âmn(t)

〉 t∫

−∞
dt ′ e[i(ω̃nk−ω)−(Γm+Γk )/2](t−t ′) = −

〈
Âmn(t)

〉
[ω−ω̃nk+ i

2 (Γm+Γk)]2
.

(8.25)

After these steps, the CP force acting on a moving atom is found to be
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F(t) =
∑

n

pn(t)Fn (8.26)

with

Fn = μ0

π

∑
k

∞∫

0

dω ω2 ∇dnk ·Im G(1)(rA, rA, ω)·dkn

ω − ω̃nk − i
2 (Γn + Γk)

+ iμ0

π

∑
k

∞∫

0

dω ω2 (v ·∇′)∇dnk ·Im G(1)(rA, rA, ω)·dkn[
ω − ω̃nk − i

2 (Γn + Γk)
]2

− iμ0

π

∑
k

∞∫

0

dω ω
(∇′ −∇)dnk ·v×

[∇×Im G(1)(rA, rA, ω)
]·dkn

ω − ω̃nk − i
2 (Γn + Γk)

+ C.c . (8.27)

Note that the last two contributions in (8.24) have been collected in a single term by
making use of the Onsager reciprocity (A.4) of the Green’s tensor. In addition, the
vanishing contributions from the free-space Green’s tensor have been discarded.

To identify the velocity-dependent part of the CP force, we recall that the frequency
shifts (8.19) and widths (8.18) may be separated into purely position-dependent
quantities plus velocity-dependent corrections. Using this decomposition, retaining
only leading-order terms in v/c and introducing the abbreviating notation δωn(rA) ≡
δωn , δωn(rA, v) ≡ δωn(v), Γn(rA) ≡ Γn , Γn(rA, v) ≡ Γn(v), the CP force on a
moving atom reads

F(t) = F(rA, t)+ F(rA, v, t) (8.28)

where F(rA, t) is the velocity-independent part of the force as given by (5.101) with
(5.103), (5.108) and (5.109); and

F(rA, v, t) =
∑

n

pn(t)Fn(rA, v) (8.29)

with

Fn(rA, v) = μ0

π

∑
k

∞∫

0

dω ω2 {
δωn(v)− δωk(v)+ i

2 [Γn(v)+ Γk(v)]}

× ∇dnk ·Im G(1)(rA, rA, ω)·dkn[
ω − ω̃nk − i

2 (Γn + Γk)
]2
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+ iμ0

π

∑
k

∞∫

0

dω ω2 ∇(v ·∇′)dnk ·Im G(1)(rA, rA, ω)·dkn[
ω − ω̃nk − i

2 (Γn + Γk)
]2

+ iμ0

π

∑
k

∞∫

0

dω ω
(∇′ −∇)dnk ·v×

[∇×Im G(1)(rA, rA, ω)
]·dkn

ω − ω̃nk − i
2 (Γn + Γk)

+ C.c . (8.30)

is the motion-induced CP force.
The velocity-independent force has already been discussed in Sects. 5.4 and 5.5.

In the following, we concentrate on the motion-induced force alone. Just like the
force on an atom at rest, it is given by a weighted average over force components
associated with the internal atomic eigenstates. Let us separate the force components
into non-resonant contributions from virtual photons and off-resonant contributions
due to real photons. To that end we write Im G = (G − G∗)/(2i), make use of
the Schwarz reflection principle (A.3), and apply the integration contour depicted in
Fig. 5.1. Using Cauchy’s residue theorem, we find [1]

Fn(rA, v) = Fnres
n (rA, v)+ Fres

n (rA, v) (8.31)

with non-resonant forces

Fnres
n (rA, v) = −�μ0

2π

∞∫

0

dξ ξ2∇tr
{[αn(v, iξ)+ αn(v,−iξ)]·G(1)(rA, rA, iξ)

}

− i�μ0

2π

∞∫

0

dξ ξ2 (v ·∇′)∇tr
{[α′n(iξ)+ α′n(−iξ)]·G(1)(rA, rA, iξ)

}

+ �μ0

2π

∞∫

0

dξ ξ(∇′ −∇)tr
{[αn(iξ)− αn(−iξ)]·v

×[∇×G(1)(rA, rA, iξ)
]}

(8.32)

and resonant forces

Fres
n (rA, v) = μ0

∑
k<n

Ωnk(v)∇[
Ω2

nk dnk ·G(1)(rA, rA,Ωnk)·dkn
]′

+ iμ0

∑
k<n

(v ·∇′)∇[
Ω2

nk dnk ·G(1)(rA, rA,Ωnk)·dkn
]′

+ iμ0

∑
k<n

Ωnk(∇′ −∇)dnk ·v×
[∇×G(1)(rA, rA,Ωnk)

]·dkn

+ C.c . (8.33)
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Here,

αn(v, ω) = 1

�

∑
k

({
δωn(v)−δωk(v)− i

2 [Γn(v)+Γk(v)]}dnk dkn[
ω̃kn−ω− i

2 (Γn+Γk)
]2

+
{
δωn(v)−δωk(v)+ i

2 [Γn(v)+Γk(v)]}dkn dnk[
ω̃kn+ω+ i

2 (Γn+Γk)
]2

)
(8.34)

and
Ωnk(v) = δωn(v)− δωk(v)+ i

2 [Γn(v)+ Γk(v)] (8.35)

are the motion-induced corrections to the atomic polarisability (5.91) and the complex
transitions frequencies (5.106) within linear order in v/c. Both resonant and non-
resonant forces on the moving atom have three contributions. Firstly, the atomic
motion leads to a vacuum Doppler shifting and broadening of the atomic transitions.
This induces a correction to the CP force as given by the first terms in (8.32) and
(8.33) above. The second term is due to the time delay between photon emission
and reabsorption resulting from the atomic motion. Finally, the Röntgen interaction
between the magnetic field and the current associated with the moving atomic dipole
moment leads to a third term.

In the perturbative limit |δωn|, |δωk |, Γn, Γk � ωmn , the resonant force simplifies
to

Fres
n (rA, v) = 2μ0

∑
k<n

[δωn(v)− δωk(v)]∇[
ω2

nk dnk ·Re G(1)(rA, rA, ωnk)·dkn
]′

− μ0
∑
k<n

[Γn(v)+ Γk(v)]∇[
ω2

nk dnk ·Im G(1)(rA, rA, ωnk)·dkn
]′

− 2μ0
∑
k<n

(v ·∇′)∇[
ω2

nk dnk ·Im G(1)(rA, rA, ωnk)·dkn
]′

− 2μ0
∑
k<n

ωnk(∇′ −∇)dnk ·v×
[∇×Im G(1)(rA, rA, ωnk)

]·dkn

(8.36)

where we have set δωn, δωk, Γn, Γk � 0, but retained the velocity-dependent vacuum
Doppler shifts and broadenings. The non-resonant force has to be treated with more
care, because the delay and Röntgen terms vanish when setting the level widths to
zero. Retaining linear terms in Γn, Γk , we find

http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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Fnres
n (rA, v) = −2μ0

π

∑
k

[δωn(v)− δωk(v)]
∞∫

0

dξ ξ2 ω2
kn − ξ2

(ω2
kn + ξ2)2

×∇dnk ·G(1)(rA, rA, iξ)·dkn

+ 2μ0

π

∑
k

ωkn(Γn + Γk)

∞∫

0

dξ ξ2 ω2
kn − 3ξ2

(ω2
kn + ξ2)3

× (v ·∇′)∇dnk ·G(1)(rA, rA, iξ)·dkn

+ 2μ0

π

∑
k

ωkn(Γn + Γk)

∞∫

0

dξ
ξ2

(ω2
kn + ξ2)2

× (∇′ −∇)dnk ·v×
[∇×G(1)(rA, rA, iξ)

]·dkn . (8.37)

The CP force on a moving atom thus depends crucially on the atomic level shifts
and widths. Recall from Sect. 5.2 that they may induce an anisotropy of the atomic
polarisability. In particular, the explicit dependence of the force on the Doppler
shifts δωn(v), δωk(v) and widths Γn(v), Γk(v) as well as the level widths Γn, Γk

will in general prohibit a simplification of the result for an atom in an isotropic
state. Two conditions must be fulfilled for the force to be expressible in terms of
an isotropic polarisability. Firstly, the atom must be moving in a direction along
which the environment is translationally invariant, δωn(v), δωk(v), Γn(v), Γk(v) =
0. Secondly, the atom must be sufficiently far from any body, so that its level widths
are well approximated by their isotropic free-space values, Γk′ = Γk′′ whenever
k′, k′′ ∈ {k}. In this case, (4.16) can be used to simplify the force components to

Fres
n (rA, v) = −2μ0

3

∑
k<n

|dnk |2(v ·∇′)∇
{
ω2

nk tr
[
Im G(1)(rA, rA, ωnk)

]}′

− 2μ0

3

∑
k<n

ωnk |dnk |2(∇′ −∇)tr
{
v×[∇×Im G(1)(rA, rA, ωnk)

]}

(8.38)

and

Fnres
n (rA, v) = 2μ0

3π

∑
k

ωkn(Γn + Γk)|dnk |2
∞∫

0

dξ ξ2 ω2
kn − 3ξ2

(ω2
kn + ξ2)3

× (v ·∇′)∇tr G(1)(rA, rA, iξ)

+ 2μ0

3π

∑
k

ωkn(Γn + Γk)|dnk |2
∞∫

0

dξ
ξ2

(ω2
kn + ξ2)2

http://dx.doi.org/10.1007/978-3-642-32466-6_5
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ε(ω)

vF( zA , v)

z

zA

0

Fig. 8.1 Quantum friction experienced by an atom moving parallel to plate

× (∇′ −∇)tr
{
v×[∇×G(1)(rA, rA, iξ)

]}
(8.39)

for an atom in an isotropic state.

8.3 Quantum Friction

To illustrate the general results obtained in the previous section, let us apply them
to the standard quantum friction scenario as depicted in Fig. 8.1. We consider an
atom moving parallel (v·ez = 0) to an infinitely thick plate of permittivity ε(ω) and
determine the force induced by the atomic motion. Recall that the velocity-dependent
force is generally a small effect in the non-relativistic limit considered. In order to
achieve a measurable effect, we hence concentrate on the nonretarded regime of small
atom–plate separations z A � c/(ω+n) where the force is expected to be largest. For
simplicity, we further employ the perturbative limit.

With the half space being invariant along the direction of motion, the vacuum
Doppler shifts (8.20) and widths (8.21) vanish, δωn(rA, v) = Γn(rA, v) = 0. The
Doppler contribution is hence absent from the motion-induced forces (8.36) and
(8.37). To calculate the remaining delay and Röntgen contributions, we require
the Green’s tensor of the half space. According to (A.35) in App. A.3.2, it is
given by

G(1)(r, r ′, ω) = i

8π2

∫
d2k⊥

k⊥
eik‖·(r−r ′)+ik⊥(z+z′) ∑

σ=s,p

rσ eσ+eσ− (8.40)

with

k⊥ =
√

ω2

c2 − k⊥2 , Im k⊥ > 0 . (8.41)
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Recall from (4.51) in Sect. 4.2 in polar coordinates k‖ = (k‖ cos φ, k‖ sin φ, 0), the
polarisation unit vectors can be given as

es± = (sin φ,− cos φ, 0) , ep± = c

ω
= (∓k⊥ cos φ,∓k⊥ sin φ, k‖) . (8.42)

Derivatives can be carried out according to ∇ �→ ik‖ + ik⊥ez , v ·∇′ �→ −iv ·k‖.
Combining the above results and carrying out the angular integral, we calculate
(
∫

d2k‖ = ∫∞
0 k‖dk‖

∫ 2π

0 dφ)

(v ·∇′)∇d ·G(1)(rA, rA, ω)·d

= i

32π

∞∫

0

dk‖ k‖3

k⊥
e2ik⊥z A

([
3d‖2v − 2d‖

(
d‖ ·v)]

rs

+
{

4
k‖2c2

ω2 d⊥2v − k⊥2c2

ω2

[
d‖2v + 2d‖

(
d‖ ·v)]}

rp

)
(8.43)

with d‖ = dx ex + dy ey and d⊥ = dz ez denoting the components of d parallel and
perpendicular to the plate surface. Note that the dipole matrix elements have been
assumed to be real in accordance with our assumption from Sect. 8.1. In a similar
way, we find

(∇′ −∇)d ·v×[∇×G(1)(rA, rA, ω)
]·d

= i

8π

∞∫

0

dk‖ k‖3

k⊥
e2ik⊥z A

{[
2d‖2v − d‖

(
d‖ ·v)]

rs + 2d⊥2vrp
}

. (8.44)

In the nonretarded limit z A � c/(ω+n), the integral is dominated by evanes-
cent waves (k‖ > ω/c) with large imaginary wave vectors k⊥ � ik‖. With this
approximation, the reflection coefficients (A.41) and (A.42) of the plate read

rs � 0 , rp � ε(ω)− 1

ε(ω)+ 1
. (8.45)

The k‖-integrals can then be performed to give

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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(v ·∇′)∇d ·G(1)(rA, rA, ω)·d

= c2

32πω2

∞∫

0

dk‖ k‖4 e−2k‖z A
[(

4d⊥2 + d‖2
)
v + 2d‖

(
d‖ ·v)] ε(ω)− 1

ε(ω)+ 1

= 3c2
[(

4d⊥2 + d‖2
)
v + 2d‖

(
d‖ ·v)]

128πω2z5
A

ε(ω)− 1

ε(ω)+ 1
(8.46)

and similarly

(∇′ −∇)d ·v×[∇×G(1)(rA, rA, ω)
]·d = d⊥2v

16π z3
A

ε(ω)− 1

ε(ω)+ 1
. (8.47)

A comparison of these two results reveals that the delay contribution to the force
with its 1/z5

A asymptote dominates over the Röntgen term with its 1/z3
A power law

in the nonretarded limit. This can be understood from the fact that the Röntgen
interaction couples the atom to the magnetic field which is weaker than the electric
field responsible for the delay term. We have encountered an analogous difference
in power laws for the CP force on a stationary atom in Table 3.1 of Sect. 3.1: Here,
the force between a magnetic atom and an electric plate is proportional to 1/z2

A and
hence weaker then 1/z4

A the force between an electric atom and the plate.
For parallel motion and nonretarded distances, the velocity-dependent CP force is

hence entirely due to the time delay between photon emission and reabsorption. Note
that the Röntgen contribution becomes relevant for larger atom–surface separations
while the vacuum Doppler shifts and widths contribute for motion towards or away
from the plate. Using the Green’s tensor, the non-resonant force (8.37) reads

Fnres
n (z A, v) = − 3

64π2ε0z5
A

∑
k

ωkn(Γn + Γk)
[(

4d⊥2
nk + d‖2nk

)
v + 2d‖nk

(
d‖nk ·v

)]

×
∞∫

0

dξ
ω2

kn − 3ξ2

(ω2
kn + ξ2)3

ε(iξ)− 1

ε(iξ)+ 1
. (8.48)

The relevant decay rates (5.60) with (5.62) can be found by using the nonretarded
Green’s tensor (5.123) and recalling the relation (4.98),

Γn(z A) = 1

8πε0�z3
A

∑
k<n

(
2d⊥2

nk + d‖2nk

) Im ε(ωnk)

|ε(ωnk)+ 1|2 . (8.49)

For an atom in an isotropic state, the configuration exhibits an axial symmetry around
the z-axis, so that

∑
k

Γk d‖nk d‖nk = 1
2

∑
k

Γk d‖2nk I . (8.50)

http://dx.doi.org/10.1007/978-3-642-32466-6_3
http://dx.doi.org/10.1007/978-3-642-32466-6_3
http://dx.doi.org/10.1007/978-3-642-32466-6_5
http://dx.doi.org/10.1007/978-3-642-32466-6_5
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The non-resonant force then simplifies to

Fnres
n (z A, v) = − 3v

32π2ε0z5
A

∑
k

ωkn(�n + �k)
(
2d⊥2

nk + d‖2nk

)

×
∞∫

0

dξ
ω2

kn − 3ξ2

(ω2
kn + ξ2)3

ε(iξ)− 1

ε(iξ)+ 1
. (8.51)

The motion-induced force on a ground-state atom is purely non-resonant,

F0(z A, v) = − 3v

32π2ε0z5
A

∑
k

ωk0Γk
(
2d⊥2

0k + d‖20k

)

×
∞∫

0

dξ
ω2

k0 − 3ξ2

(ω2
k0 + ξ2)3

ε(iξ)− 1

ε(iξ)+ 1
. (8.52)

To determine its direction, we note that the factor (ω2
k0−3ξ2)/(ω2

k0+ξ2)3 is positive
for small ξ and negative for large ξ . The contributions from these regions exactly
balance each other,

∞∫

0

dξ
ω2

k0 − 3ξ2

(ω2
k0 + ξ2)3

= 0 . (8.53)

With ε(ω) being a causal response function, ε(iξ) and hence [ε(iξ)− 1]/[ε(iξ)+ 1]
are monotonously decreasing functions of ξ . As a result, the positive contributions
from small ξ dominate the above integral, so that

∞∫

0

dξ
ω2

k0 − 3ξ2

(ω2
k0 + ξ2)3

ε(iξ)− 1

ε(iξ)+ 1
> 0 . (8.54)

The motion-induced CP force on a ground-state atom is hence a genuine quantum
friction which points in the direction opposite to the velocity and decelerates the
atom.

As a simple example, consider an atom in an isotropic state moving parallel to a
metal plate whose permittivity can be described by the Drude model (4.93). Carrying
out the ξ -integral and exploiting the fact that γ � ωP for most metals, the quantum
friction force reads

F0(z A, v) = − 3ωSv

64πε0z5
A

∑
k

Γk
(
2d⊥2

0k + d‖20k

)
(ωk0 + ωS)3 , (8.55)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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with ωS = ωP/
√

2 being the surface-plasmon frequency. The decay rates are found
to be

Γn(z A) = γω2
S

16πε0�z3
A

∑
k<n

ωnk
(
2d⊥2

nk + d‖2nk

)
(ω2

nk − ω2
S)2

, (8.56)

We note that quantum friction is proportional to the atomic damping parameters Γk

which in turn are proportional to the metallic damping parameter γ . As expected
for a dissipative force, quantum friction vanishes in the absence of damping. The
dependence on the γ indicates that the kinetic energy lost by the moving atom leads
to an Ohmic heating of the plate.

The simplest example of an isotropic ground state |0〉 is an S state. The first excited
manifold is then triply degenerate and it consists of three P states which we shall
label as |11〉, |12〉, |13〉. As seen from (B.19) and (B.20) in App B, the relevant dipole
matrix elements are

d011 d110 = d2
10

6

⎛
⎝ 1 i 0
−i 1 0
0 0 0

⎞
⎠ , (8.57)

d012 d120 = d2
10

3

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ , (8.58)

d013 d130 = d2
10

6

⎛
⎝ 1 −i 0

i 1 0
0 0 0

⎞
⎠ (8.59)

with d10 denoting the reduced matrix element. The force thus reads

F0(z A, v) = −d2
01ωS(Γ11 + 2Γ12 + Γ13)

64πε0(ω10 + ωS)3

v

z5
A

(8.60)

Substituting the damping parameters

Γ1k (z A) = ω10d2
01

48πε0�z3
A

γω2
S

(ω2
10 − ω2

S)2
×

{
1 for k = 1, 3 ,

2 for k = 2 ,
(8.61)

we find

F0(z A, v) = − ω10d4
01

512π2ε2
0�

γω3
S

(ω10+ωS)3(ω2
10−ω2

S)2

v

z8
A

. (8.62)

The nonretarded quantum friction on an isotropic two-level atom moving parallel
to a metal plate has recently been calculated from an alternative point of view [2].
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Considering the energy deposited into metal by the moving atom in the long-time
limit, a power

P = ω10d4
01

512π2ε2
0�

γω3
S

(ω10+ωS)3(ω2
10−ω2

S)2

v2

z8
A

(8.63)

was found. This is in exact agreement with the result P = −F0(z A, v)·v implied by
(8.62).

To determine the order of magnitude of quantum friction, let us consider the
example of a 87Rb atom moving parallel to an Au plate. The ground state 52S1/2 of
87Rb is doubly degenerate, see App. B. To evaluate the quantum friction force, we
only consider the dominant transition 52S1/2 → 52P3/2 to the excited states of the
52P3/2 manifold, which is fourfold degenerate. The associated atomic spectral line is
known as the D2 line. We label the ground states as |01〉, |02〉 and the excited states
as |11〉 . . . |14〉. The frequency for transitions between the ground-state and excited
manifolds is ω10 = 2.41× 1015 rad/s [3].

Due to the degeneracy of the 52S1/2 state, the ground-state atom will be in an
incoherent, equal-weight superposition of the states |01〉, |02〉, so that its internal
density matrix reads σ̂0 = 1

2 |01〉〈01| + 1
2 |02〉〈02|. The friction force (8.29) is thus

given by

F0(z A, v) = 1
2 [F01(z A, v)+ F02(z A, v)] (8.64)

with

F0i (z A, v) = − 3ωSv

64πε0(ω10 + ωS)3z5
A

∑
1k

Γk
(
2d⊥2

0i 1k
+ d‖20i 1k

)
. (8.65)

As seen from (B.12) and (B.13), the dipole-matrix elements for the relevant tran-
sitions read

d0111 d1101 + d0211 d1102 =
d2

10

8

⎛
⎝ 1 i 0
−i 1 0
0 0 0

⎞
⎠ , (8.66)

d0112 d1201 + d0212 d1202 =
d2

10

24

⎛
⎝ 1 i 0
−i 1 0
0 0 4

⎞
⎠ , (8.67)

d0113 d1301 + d0213 d1302 =
d2

10

24

⎛
⎝ 1 −i 0

i 1 0
0 0 4

⎞
⎠ , (8.68)

d0114 d1401 + d0214 d1402 =
d2

10

8

⎛
⎝ 1 −i 0

i 1 0
0 0 0

⎞
⎠ (8.69)
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where d10 = 3.58 × 10−29 Cm is the reduced matrix element for the D2 transition
[4]. With these results, the force (8.64) with (8.55) reads

F0(z A, v) = −d2
10ωS(Γ11 + 5Γ12 + 5Γ13 + 3Γ14)

512πε0(ω10 + ωS)3

v

z5
A

(8.70)

with the decay rates (8.56) being given by

Γ1k (z A) = ω10d2
10

192πε0�z3
A

γω2
S

(ω2
10 − ω2

S)2
×

{
3 for k = 1, 4 ,

5 for k = 2, 3 .
(8.71)

Substituting the rates into the force, we have

F0(z A, v) = − 17ω10d4
10

24576π2ε2
0�

γω3
S

(ω10+ωS)3(ω2
10−ω2

S)2

v

z8
A

. (8.72)

Using the atomic parameters as given above together with ωP = 1.37 × 1016 rad/s
and γ = 4.12× 1013 rad/s for Au [5] and noting that m87Rb = 1.44× 10−25 kg, we
find that the deceleration due to quantum friction is

a = −v
(
0.64 s−1)[1 nm

z A

]8

. (8.73)

This shows that ground-state quantum friction extremely short-ranged, making it
very difficult to observe experimentally.

Let us next turn our attention to the velocity-dependent force acting on an excited
atom, which is dominated by the resonant component (8.36). As for the non-resonant
force, the vacuum Doppler shift does not contribute for parallel motion. A comparison
of the Green’s tensors (8.46) and (8.47) shows that the delay term dominates over
the Röntgen interaction in the nonretarded limit and we find

Fres
n (z A, v) = − 3

32πε0z5
A

∑
k<n

[(
4d⊥2

nk + d‖2nk

)
v + 2d‖nk

(
d‖nk ·v

)]

×
[

Im ε(ωnk)

|ε(ωnk)+ 1|2
]′

. (8.74)

For an atom in an isotropic state with (4.16), the force simplifies to

Fres
n (z A, v) = − v

4πε0z5
A

∑
k<n

d2
nk

[
Im ε(ωnk)

|ε(ωnk)+ 1|2
]′

. (8.75)

The resonant force is proportional to 1/z5
A and falls off much less rapidly than

the 1/z8
A non-resonant force (8.51) with (8.49). Neglecting the latter, the force on an

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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excited atom hence reads

Fn(z A, v) = − 3

32πε0z5
A

∑
k<n

[(
4d⊥2

nk + d‖2nk

)
v + 2d‖nk

(
d‖nk ·v

)]

×
[

Im ε(ωnk)

|ε(ωnk)+ 1|2
]′

. (8.76)

To determine the sign of the force, let us again consider an atom moving parallel to
a metal plate. Using the Drude model (4.93) with γ � ωP, we find

Fn(z A, v) = − 3γω2
S

64πε0z5
A

∑
k<n

ω2
S + 3ω2

nk

(ω2
S − ω2

nk)
3

[(
4d⊥2

nk + d‖2nk

)
v + 2d‖nk

(
d‖nk ·v

)]
.

(8.77)

The surface-plasmon frequencies are typically much larger than the atomic transition
frequencies. In this case, the motion-induced force on an excited atom is a genuine
quantum friction with

Fn(z A, v)·v < 0 . (8.78)

The force is again proportional to the metallic damping parameter γ , indicating that
the energy loss by the moving atom is balanced by Ohmic heating of the metal.

As an example, we again consider a 87Rb atom moving parallel to a gold plate.
Let us consider the case where the excited atom is prepared in the anisotropic excited
state σ̂1 = 1

2 |12〉〈12|+ 1
2 |13〉〈13|. Using the dipole matrix elements (8.67) and (8.68),

we then have

F1(z A, v) = − 5d2
01

128πε0

γω2
S(ω2

S + 3ω2
10)

(ω2
S − ω2

10)
3

v

z5
A

. (8.79)

With the numerical values for the Rb and gold parameters given above, quantum
friction leads to a deceleration

a = −v
(
7.9× 103 s−1)[1 nm

z A

]5

(8.80)

of the excited atom. In comparison to the ground-state force, excited-state quantum
friction is strongly enhanced and has a much longer range. For instance, for an atomic
velocity of v = 100 m/s, we find a deceleration a = 8 m/s2 at distance z A = 10 nm.

Recall that the excited-state force only acts for a short time due to the surface-
enhanced spontaneous decay. In order to maintain the enhanced quantum friction,
the atom must be continuously repumped to its excited state by a laser. The relative

http://dx.doi.org/10.1007/978-3-642-32466-6_4
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velocity reduction per photon can be estimated in a straightforward way if the excited
state is an S state. In this case, the quantum friction (8.77) simplifies to

F1(z A, v) = − d2
01

8πε0

γω2
S(ω2

S + 3ω2
10)

(ω2
S − ω2

10)
3

v

z5
A

. (8.81)

Without repumping, it acts during a time interval Δt � 1/Γ1, where the decay rate
(8.56) reads

Γ1(z A) = ω10d2
01

12πε0�

γω2
S

(ω2
S − ω2

10)
2

1

z3
A

. (8.82)

The relative change in velocity induced by a single excitation quantum is hence

Δv

v
� − F1(z A, v)

Γ1(z A)m Av
� − 3�

m Az2
A

1

2ω10
(8.83)

where we have exploited the fact that ω10 � ωS typically holds for metals. The
velocity reduction per photon for a metal hence only depends on the atomic mass
and transition frequency and neither on its dipole moment nor on the parameters of
the metal.
The quantum friction force on an atom moving parallel to a metal surface is far
off-resonant, ω10 � ωS. Our result (8.77) shows that the effect can be strongly
enhanced near resonance, ω10 � ωS. This can be achieved for dielectric plates
whose surface-plasmon frequencies are generally lower than those for metals. As
an example, consider a sapphire plate whose surface-plasmon resonance is ωS =
1.54 × 1014 rad/s [6]. In the vicinity of this resonance, the permittivity of sapphire
can be given as

ε(ω) = η + ω2
P

ω2
T − ω2 − iγω

(8.84)

with parameters η = 2.71, ωP = 2.12 × 1014 rad/s, ωT = 1.08 × 1014 rad/s and
γ = 2.31 × 1012 rad/s. With this model, the excited-state force (8.76) becomes
(γ � ωP)

Fn(z A, v) = − 3γω2
P

32πε0(η + 1)2z5
A

∑
k<n

(ω2
S − ω2

nk)(ω
2
S + 3ω2

nk)

[(ω2
S − ω2

nk)
2 + γ 2ω2

nk]2
× [(

4d⊥2
nk + d‖2nk

)
v + 2d‖nk

(
d‖nk ·v

)]
(8.85)

with ωS =
√

ω2
T + ωP/(η + 1).
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Fig. 8.2 (i) Quantum friction vs (ii) quantum acceleration experienced by an excited atom moving
parallel to plate

As expected, the force is strongly enhanced in the vicinity of the surface-plasmon
resonance ωnk � ωS where it can be written in the simpler form

Fn(z A, v) = − 3γω2
P

64πε0(η + 1)2ωSz5
A

∑
k<n

ωS − ωnk

[(ωS − ωnk)2 + 1
4γ 2]2

× [(
4d⊥2

nk + d‖2nk

)
v + 2d‖nk

(
d‖nk ·v

)]
. (8.86)

In addition, we note that the velocity-dependent CP force on the excited atom changes
sign when the atomic transition frequency becomes larger than the surface-plasmon
frequency: A dissipative quantum friction for ωnk < ωS changes to a quantum
acceleration force for ωnk > ωS. This behaviour can be easily understood from an
energy conservation argument. The excited atom emits a photon of energy �ωnk

whereas the dielectric surface can only absorb photons of the energy �ωS, which
excite surface plasmons. In the case ωnk < ωS, the atom does not have sufficient
internal energy and it must loose kinetic energy ΔEkin to excite the surface plasmon.
The situation is depicted in Fig. 8.2(i). For �ωnk > ωS, the atomic internal energy
is greater than the required surface-plasmon frequency. The excess is converted into
kinetic energy, accelerating the atom, cf. Fig. 8.2(ii).

As an example, let us consider 133Cs whose 62D3/2 → 72P1/2 transition has
a frequency ω10 = 1.55 × 1014 rad/s [6], very close to the sapphire resonance.
The lower manifold 72P1/2 is doubly degenerate, we label its states as |01〉, |02〉,
see App. B. Similarly, the states of the upper, fourfold degenerate 62D3/2 mani-
fold are denoted by |11〉 . . . |14〉. We assume the atom to be prepared in the exited
state σ̂1 = 1

2 |11〉〈11| + 1
2 |14〉〈14|. According to (B.14), the relevant dipole matrix

elements are
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d1101 d0111 + d1401 d0114 =
d2

01

8

⎛
⎝ 1 −i 0

i 1 0
0 0 0

⎞
⎠ , (8.87)

d1102 d0211 + d1402 d0214 =
d2

01

8

⎛
⎝ 1 i 0
−i 1 0
0 0 0

⎞
⎠ (8.88)

with a reduced matrix element d01 = 1.17× 10−28 Cm [7]. The v-dependent force
on the excited Cs atom hence reads

F1(z A, v) = − 3d2
01

128πε0(η + 1)2

γω2
P(ωS − ω10)

ωS[(ωS − ω10)2 + 1
4γ 2]2

v

z5
A

. (8.89)

Using the numerical values for the sapphire and Cs parameters, we find a quantum
acceleration (m133Cs = 2.21× 10−25 kg)

a = +v
(
5.3× 1011-1

)[1nm

z A

]5

. (8.90)

We note that the CP force is parallel to the velocity. This is due to the atomic transition
frequency being slightly larger than the surface-plasmon frequency, recall Fig. 8.2(ii).
We note that the force is much larger than the off-resonant quantum friction (8.80)
near a gold surface. Even at a distance of z A = 100 nm the acceleration of an atom
of velocity v = 100 m/s is as large as a = 5300 m/s2.

Again, the force on the excited atom only acts for a very short amount of time
unless it is continuously repumped. Let us estimate the relative velocity boost per
photon for an atom in an S state. In this case, the excited-state force (8.86) simplifies to

F1(z A, v) = − d2
01

8πε0(η + 1)2

γω2
P(ωS − ω10)

ωS[(ωS − ω10)2 + 1
4γ 2]2

v

z5
A

. (8.91)

With the sapphire permittivity (8.84), the decay rate (8.49) reads

Γ1(z A) = d2
01

24πε0�(η + 1)2

γω2
P

ωS[(ωS − ω10)2 + 1
4γ 2]

1

z3
A

. (8.92)

for an isotropic state. The relative velocity boost per photon is thus

Δv

v
� − F1(z A, v)

�1(z A)m Av
� − 3�

m Az2
A

ωS − ω10

(ωS − ω10)2 + 1
4γ 2

. (8.93)
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It is strongly enhanced in comparison with the far off-resonant result (8.83) for a
metal plate.
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Appendix A
The Green’s Tensor

In this appendix, we review some properties of the classical Green’s tensor for the
electromagnetic field as laid out in more detail in App. B of Vol. I. After defining it
and summarising some general properties, we explicitly present the Green’s tensors
for a bulk medium and a planar multilayer system. Born-series expansions and scaling
laws are also given.

A.1 Definition and General Properties

The classical Green’s tensor for the electromagnetic field is uniquely defined by the
inhomogeneous Helmholtz equation

[
∇× 1

μ(r,ω)
∇× − ω

2

c2 ε(r,ω)

]
G(r, r ′,ω) = δ(r − r ′) (A.1)

together with the boundary condition

G(r, r ′,ω)→ 0 for |r − r ′| → ∞ . (A.2)

Here, the local and isotropic relative electric permittivity ε(r,ω) and magnetic per-
meabilityμ(r,ω) characterise a given arrangement of absorbing and dispersing mag-
netoelectric bodies and/or media with Im ε(r,ω), Im μ(r,ω) > 0.

As shown in App. B.1 of Vol. I, the Green’s tensor has a number of useful general
properties. It is an analytic function of frequency on the upper half of the complex
plane. Furthermore, it satisfies the Schwarz reflection principle

S. Y. Buhmann, Dispersion Forces II, Springer Tracts in Modern Physics 248, 287
DOI: 10.1007/978-3-642-32466-6, © Springer-Verlag Berlin Heidelberg 2012
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G∗(r, r ′,ω) = G(r, r ′,−ω∗) (A.3)

as well as Onsager reciprocity

GT(r, r ′,ω) = G(r ′, r,ω) (A.4)

and the integral relation

∫
d3s

{
− Im μ(s,ω)

|μ(s,ω)|2
[
G(r, s,ω)×←−∇s

]
·[∇s×G∗(s, r ′,ω)

]

+ ω2

c2 Im ε(s,ω) G(r, s,ω)·G∗(s, r ′,ω)

}
= Im G(r, r ′,ω) (A.5)

holds [1, 2]. Large- and small-frequency limits of the Green’s tensor are

lim|ω|→∞
ω2

c2 G(r, r ′,ω) = −δ(r − r ′) (A.6)

and

lim|ω|→0

ω2

c2 G(r, r ′,ω) = −‖[(‖ε‖)−1]‖(r, r ′) , (A.7)

respectively. Here, ‖
[(‖ε‖)−1

]‖ denotes the inverse of the operator with components
ε(r, r ′) = ε(r,ω=0)δ(r − r ′) in the space of longitudinal functions, so that

lim|ω|→0

ω2

c2 G⊥(r, r ′,ω) = lim|ω|→0

ω2

c2
⊥G(r, r ′,ω) = 0 . (A.8)

The electric–magnetic dual Green’s tensor G� is the solution to the Helmholtz
equation with a global exchange of electric and magnetic properties,

[
∇× 1

ε(r,ω)
∇× − ω

2

c2 μ(r,ω)

]
G�(r, r ′,ω) = δ(r − r ′) . (A.9)

By introducing the tensors

Gee(r, r ′,ω) = iω

c
G(r, r ′,ω)

iω

c
, (A.10)

Gmm(r, r ′,ω) = ∇×G(r, r ′,ω)×←−∇ ′ , (A.11)
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Gem(r, r ′,ω) = iω

c
G(r, r ′,ω)×←−∇ ′ , (A.12)

Gme(r, r ′,ω) = ∇×G(r, r ′,ω)
iω

c
, (A.13)

one can show that the dual Green’s tensor is related to the original one according to
[3, 4]

G�
ee(r, r ′,ω) = 1

μ(r,ω)
Gmm(r, r ′,ω)

1

μ(r ′,ω)

+ 1

μ(r,ω)
δ(r − r ′) , (A.14)

G�
mm(r, r ′,ω) = ε(r,ω)Gee(r, r ′,ω)ε(r ′,ω)

−ε(r,ω)δ(r − r ′) , (A.15)

G�
em(r, r ′,ω) = − 1

μ(r,ω)
Gme(r, r ′,ω)ε(r ′,ω) , (A.16)

G�
me(r, r ′,ω) = −ε(r,ω)Gem(r, r ′,ω)

1

μ(r ′,ω)
. (A.17)

A.2 Bulk Green’s Tensor

For an infinitely extended homogeneous bulk medium of permittivity ε(ω) and per-
meability μ(ω), the Green’s tensor takes the form (cf. App. B.2 of Vol. I) [1, 2]

G(0)(r, r ′,ω) = −μ(ω)

3k2 δ(ρ)− μ(ω)eikρ

4πk2ρ3

{[
1− ikρ− (kρ)2]I

−[3− 3ikρ− (kρ)2]eρeρ
}

(A.18)

(ρ = r − r ′; ρ = |ρ|; eρ = ρ/ρ) with k = √ε(ω)μ(ω)ω/c denoting the wave
number. It has to satisfy Im k > 0 for an absorbing medium. The large- and small-
frequencies of this bulk Green’s tensor read

lim|ω|→∞
ω2

c2 G(0)(r, r ′,ω) = −δ(r − r ′) , (A.19)

lim|ω|→0

ω2

c2 G(0)(r, r ′,ω) = − 1

ε(0)
δ‖(r − r ′) , (A.20)
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respectively. One can explicitly verify that the dual of the bulk Green’s tensor is
given by (A.14)–(A.17).

An important special case is free-space Green’s tensor

G(0)(r, r ′,ω) = − c2

3ω2 δ(ρ)− c2eiωρ/c

4πω2ρ3

{[
1− i

ωρ

c
−
(ωρ

c

)2
]
I

−
[

3− 3i
ωρ

c
−
(ωρ

c

)2
]

eρeρ

}
. (A.21)

It can be decomposed into transverse and longitudinal components

G(0)‖(r, r ′,ω) = − c2

3ω2 δ(ρ)− c2

4πω2ρ3 [I − 3eρeρ] , (A.22)

G(0)⊥(r, r ′,ω) = c2

4πω2ρ3

(
[I − 3eρeρ] −

{[
1− i

ωρ

c
−
(ωρ

c

)2
]
I

−
[

3− 3i
ωρ

c
−
(ωρ

c

)2
]

eρeρ

}
eiωρ/c

)
(A.23)

where the displayed right-longitudinal and -transverse components are also left-
longitudinal and -transverse components. Note that the free-space Green’s tensor
becomes purely transverse in the retarded, long-distance limit ωρ/c 
 1,

G(0)(r, r ′,ω) = G(0)⊥(r, r ′,ω) = eiωρ/c

4πρ
(I − eρeρ) , (A.24)

while being purely longitudinal in the nonretarded, short-distance limit ωρ/c � 1,

G(0)(r, r ′,ω) = G(0)‖(r, r ′,ω) = − c2

3ω2 δ(ρ)− c2

4πω2ρ3 (I − 3eρeρ) . (A.25)

Using a Born series (see App. A.4), one can show that even in the presence of mag-
netoelectric bodies, the Green’s tensor has purely transverse/longitudinal asymptotes
in the retarded/nonretarded limits.

Taking imaginary parts of (A.21) above, one can further show that the imaginary
part of the free-space Green’s tensor takes the finite value

Im G(0)(r, r,ω) = ω

6πc
I (A.26)

in the coincidence limit.
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A.3 Scattering Green’s Tensor

Whenever the source and field points r ′ and r are situated in a common connected
region of uniform magnetoelectric properties, the Green’s tensor can be separated
into bulk and scattering parts according to

G(r, r ′,ω) = G(0)(r, r ′,ω)+G(1)(r, r ′,ω) . (A.27)

The bulk part of the Green’s tensor is simply given by (A.18) while the scattering
part depends on the particular environment. Note that for source and field points in
regions of different magnetoelectric properties, the notion of a bulk part becomes
meaningless and the Green’s tensor coincides with its scattering part.

A.3.1 General Properties

The scattering Green’s tensor is purely transverse,

G(1)(r, r ′,ω) = ⊥G(1)(r, r ′,ω) = G(1)⊥(r, r ′,ω) , (A.28)

and its large- and small-frequency limits are given by

lim|ω|→∞
ω2

c2 G(1)(r, r ′,ω) = 0 , (A.29)

lim|ω|→0

ω2

c2 G(1)(r, r ′,ω) = 0 . (A.30)

The dual of the scattering Green’s tensor is given by [3, 4]

G(1)�
ee (r, r ′,ω) = 1

μ(r,ω)
G(1)

mm(r, r ′,ω)
1

μ(r,ω)
, (A.31)

G(1)�
mm (r, r ′,ω) = ε(r,ω)G(1)

ee (r, r ′,ω)ε(r,ω) , (A.32)

G(1)�
em (r, r ′,ω) = − 1

μ(r,ω)
G(1)

me(r, r ′,ω)ε(r,ω) , (A.33)

G(1)�
me (r, r ′,ω) = −ε(r,ω)G(1)

em(r, r ′,ω)
1

μ(r,ω)
. (A.34)

As shown in Appendix B of Vol. I, scattering Green’s tensors for piecewise constant
media in highly symmetric configurations can be determined analytically by invoking
conditions of continuity.
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123n

ε1 (ω)ε2 (ω)ε3 (ω)εn (ω)

μ1 (ω)μ2 (ω)μ3 (ω)μn (ω)

d2d3
z

0

r
r ′

. . .

Fig. A.1 Planar n-layer system with source and field points in an outer layer

A.3.2 Planar Multilayer System

As illustrated in Fig. A.1, a planar multilayer system consists of n homogeneous
layers of permittivities ε j (ω) and permeabilities μ j (ω) ( j = 1 . . . n) where the inter-
mediate layers have thickness d j ( j = 2 . . . n − 1). When both source and field points
are situated in the outer layer 1, then the scattering Green’s tensor of the system can
be given as [5, 6]

G(1)(r, r ′,ω)

= iμ1(ω)

8π2

∫
d2k‖

k⊥1
eik‖·(r−r ′)+ik⊥1 (z+z′) ∑

σ=s,p

r1
σeσ+eσ− for r, r ′ ∈V1 .

(A.35)

cf. App. B.3.2 of Vol. I. Here, k‖ ⊥ ez and ±k⊥j with

k⊥j = k⊥j (k‖,ω) =
√
ε j (ω)μ j (ω)

ω2

c2 − k‖2 , Imk⊥j > 0 (A.36)

are the components of the wave vector parallel and perpendicular to the interfaces.
The polarisation unit vectors for s- and p-polarised waves in layer 1 read

es± = es±(k‖,ω) = ek‖×ez , (A.37)

ep± = ep±(k‖,ω) = 1

k1

(
k‖ez ∓ k⊥1 ek‖

)
(A.38)

with k1 = √ε1(ω)μ1(ω)ω/c, Im k1 > 0; they are perpendicular (German: “senk-
recht”) and parallel (German: “parallel”) to the plane of incidence, respectively.
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The generalised Fresnel reflection coefficients can be found from the recursive
relations

r j
s = r j

s (k‖,ω)

= (μ j+1k⊥j −μ j k⊥j+1)+ (μ j+1k⊥j +μ j k⊥j+1)e
2ik⊥j+1d j+1r j+1

s

(μ j+1k⊥j +μ j k⊥j+1)+ (μ j+1k⊥j −μ j k⊥j+1)e
2ik⊥j+1d j+1r j+1

s

, (A.39)

r j
p = r j

p(k
‖,ω)

= (ε j+1k⊥j −ε j k⊥j+1)+ (ε j+1k⊥j +ε j k⊥j+1)e
2ik⊥j+1d j+1r j+1

s

(ε j+1k⊥j +ε j k⊥j+1)+ (ε j+1k⊥j −ε j k⊥j+1)e
2ik⊥j+1d j+1r j+1

p

(A.40)

for j = 1 . . . n− 1 with ε j = ε j (ω), μ j = μ j (ω) and termination condition rn
σ = 0.

For a two-layer system (n = 2), they reduce to the ordinary Fresnel coefficients

r1
s = r1

s (k‖,ω) = μ2(ω)k⊥1 − μ1(ω)k⊥2
μ2(ω)k⊥1 + μ1(ω)k⊥2

, (A.41)

r1
p = r1

p(k
‖,ω) = ε2(ω)k⊥1 − ε1(ω)k⊥2

ε2(ω)k⊥1 + ε1(ω)k⊥2
. (A.42)

In the context of CP forces, the equal-position Green’s tensor is of particular inter-
est. For r = r ′ above a semi-infinite half space of permittivity ε(ω) and permeability
μ(ω), it is explicitly given by

G(1)(r, r,ω) = i

8π

∞∫

0

dk‖ k‖

k⊥
e2ik⊥z

×
⎡
⎣
⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ rs + c2

ω2

⎛
⎝−k⊥2 0 0

0 −k⊥2 0
0 0 2k‖2

⎞
⎠ rp

⎤
⎦ , (A.43)

see (4.56) in Sect. 4.2. Here, the reflection coefficients (A.41) and (A.42) take the
simple form

rs = μ(ω)k⊥ − k⊥1
μ(ω)k⊥1 + k⊥1

, rp = ε(ω)k⊥ − k⊥1
ε(ω)k⊥ + k⊥1

(A.44)

http://dx.doi.org/10.1007/978-3-642-32466-6_4
http://dx.doi.org/10.1007/978-3-642-32466-6_4
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with

k⊥ =
√
ω2

c2 − k‖2 , Im k⊥ > 0 , (A.45)

k⊥1 =
√
ε(ω)μ(ω)

ω2

c2 − k‖2 , Im k⊥1 > 0 . (A.46)

In the retarded limit z 
 c/ω, the stationary-phase point k‖ = 0 with dk⊥/

dk‖ = 0 gives the main contribution to the oscillatory k‖-integral. We may hence
approximate k⊥ � ω/c and k⊥1 �

√
ε(ω)μ(ω)ω/c in the reflection coefficients. The

integral can then be solved, and to leading order in c/(ωz), one finds the retarded
Green’s tensor

G(1)(r, r,ω) = e2izω/c

8πz

√
μ(ω)−√ε(ω)√
μ(ω)+√ε(ω)

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ . (A.47)

The roots have to be taken such that Im
√
ε , Im

√
μ > 0. In the opposite nonretarded

limit z � c/[√ε(ω)μ(ω)ω], the main contribution to the integral is due to regions
of large k‖ where k⊥ � k⊥1 � ik‖. With these approximations, the integral can again
be carried out. Retaining only the leading-order contribution in zω/c, one finds the
nonretarded Green’s tensor

G(1)(r, r,ω) = c2

32πω2z3

ε(ω)− 1

ε(ω)+ 1

⎛
⎝ 1 0 0

0 1 0
0 0 2

⎞
⎠ . (A.48)

A.4 Born Expansion

As shown in Sect. 2.1, the Green’s tensor can be approximated in a systematic way
whenever the system’s permittivity and permeability deviate only slightly from a
background permittivity ε(r,ω) and permeability μ(r,ω) whose Green’s tensor

[
∇× 1

μ(r,ω)
∇× −ω

2

c2 ε(r,ω)

]
G(r, r ′,ω) = δ(r − r ′) (A.49)

is known. For a purely electric correctionχ(r,ω), the total permittivity can be decom-
posed as

ε(r,ω) = ε(r,ω)+ χ(r,ω) . (A.50)

http://dx.doi.org/10.1007/978-3-642-32466-6_2
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The full Green’s tensor is then the solution to the Dyson equation

G(r, r ′,ω) = G(r, r ′,ω)+ ω2

c2

∫
d3s χ(s,ω)G(r, s,ω)·G(s, r ′,ω) . (A.51)

The Born expansion is obtained as an iterative solution to the Dyson equation in
powers of χ. One finds [7]

G(r, r ′,ω) = G(r, r ′,ω)+
∞∑

K=1

ΔK G(r, r ′,ω) (A.52)

with

ΔK G(r, r ′,ω) = ω2K

c2K

∫
d3s1 χ(s1,ω) · · ·

∫
d3sK χ(sK ,ω)

×G(r, s1,ω)·G(s1, s2,ω) · · ·G(sK , r ′,ω) . (A.53)

For a purely magnetic correction ζ(r,ω), the decomposition

1

μ(r,ω)
= 1

μ(r,ω)
− ζ(r,ω) . (A.54)

leads to the Dyson equation

G(r, r ′,ω) = G(r, r ′,ω)

−
∫

d3s ζ(s,ω)
[
G(r, s,ω)×←−∇s

]
·
[
∇s×G(s, r ′,ω)

]
. (A.55)

In this case, the terms of the Born expansion (A.52) are found to be

ΔK G(r, r ′,ω) = (−1)K
∫

d3s1 ζ(s1,ω) · · ·
∫

d3sK ζ(sK ,ω)

×
[
G(r, s1,ω)×←−∇s1

]
·
[
∇s1×G(s1, s2,ω)×←−∇s2

]

· · ·
[
∇sK ×G(sK , r ′,ω)

]
. (A.56)

When the correction is genuinely magnetodielectric, so that (A.50) and (A.54)
hold, then the Dyson equation can be given in compact notation as (λ,λ′ = e, m)

Gλλ′(r, r ′,ω) = Gλλ′(r, r ′,ω)

−
∑

λ′′=e,m

∫
d3s χλ′′(s,ω)Gλλ′′(r, s,ω)·Gλ′′λ′(s, r ′,ω)

(A.57)
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where χe = χ, χm = ζ. The Born expansion thus takes the form

Gλλ′(r, r ′,ω) = Gλλ′(r, r ′,ω)+
∞∑

K=1

ΔK Gλλ′(r, r ′,ω) (A.58)

with

ΔK Gλλ′(r, r ′,ω)

= (−1)K
∑

λ1=e,m

∫
d3s1 χλ1(s1,ω) · · ·

∑
λK=e,m

∫
d3sK χλK (sK ,ω)

×Gλλ1(r, s1,ω)·Gλ1λ2(s1, s2,ω) · · ·GλKλ′(sK , r ′,ω) . (A.59)

Note that by using different expansion parameters, one can obtain alternative Born
series. As shown in Sect. 2.1, the terms of the alternative series are given by (2.15),
(2.28) and (2.44) in place of (A.53), (A.56) and (A.59), respectively.

A.5 Scaling Behaviour

The Green’s tensor has unique scaling properties. A scaling transformation is a global
stretching or shrinking of an arrangement of bodies by a factor a > 0, so that the
new permittivity and permeability can be given as

ε̃(ar,ω) = ε(r,ω) , μ̃(ar,ω) = μ(r,ω) (A.60)

For frequency-independent ε(r,ω) ≡ ε(r) and μ(r,ω) ≡ μ(r), we have shown in
Sect. 3.2.1 that the Green’s tensor scales according to [8]

G̃(ar, ar ′,ω/a) = 1

a
G(r, r ′,ω) (A.61)

under such a transformation. The same scaling behaviour holds for the tensors Gλλ′
(λ,λ′ = e, m):

G̃λλ′(ar, ar ′,ω/a) = 1

a
Gλλ′(r, r ′,ω) . (A.62)

For frequency-dependent permittivities and permeabilities, general scaling laws
can only be formulated in the nonretarded limit and when distinguishing the cases of
purely electric vs purely magnetic bodies, cf. Sect. 3.2.2. For purely electric bodies,
one has [8]

http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
http://dx.doi.org/10.1007/978-3-642-32466-6_2
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G̃(ar, ar ′,ω) = 1

a3 G(r, r ′,ω) . (A.63)

For purely magnetic bodies, the bulk part of the nonretarded Green’s tensor still
scales as above, while the scattering Green’s tensor behaves as [8]

G̃(1)(ar, ar ′,ω) = 1

a
G(1)(r, r ′,ω) . (A.64)

More generally, we have

G̃(1)
λλ(ar, ar ′, ω̃) =

⎧⎪⎪⎨
⎪⎪⎩

1

a3 G(1)
λλ(r, r ′,ω) for λ = e ,

1

a
G(1)
λλ(r, r ′,ω) for λ = m ,

(A.65)

for purely electric bodies and

G̃(1)
λλ(ar, ar ′, ω̃) =

⎧⎪⎪⎨
⎪⎪⎩

1

a
G(1)
λλ(r, r ′,ω) for λ = e ,

1

a3 G(1)
λλ(r, r ′,ω) for λ = m .

(A.66)

for magnetic bodies. The mixed tensors scale as

G̃(1)

λλ′(ar, ar ′, ω̃) = 1

a2 G(1)

λλ′(r, r ′,ω) (λ �= λ′) (A.67)

in both cases.
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Appendix B
Atomic Physics

In the following, we review some basic concepts from atomic physics which are
needed for the examples studied in Chaps. 7 and 8.

The energy eigenstates |{ni li }L S J M〉 of a multi-electron atom can be parame-
trised by the principal quantum numbers ni and the quantum numbers for the orbital
angular momenta l̂ i (li = 0, 1, . . . , ni−1) of each electron together with the quantum
numbers for the total orbital angular momentum L̂ =∑i l̂ i (L), spin Ŝ (S), angular
momentum Ĵ = L̂ + Ŝ (J = |L − S| . . . L + S) and its z-component Ĵz (M =
−J . . . J ). By convention, they are denoted by giving electronic configuration as a
list of occupied orbitals ni l

ki
i (with l = 0, 1, 2, 3, 4, . . . being represented by the

letters s, p, d, f, g, . . . and ki denoting the number of electrons in the respective
orbital) and specifying the remaining quantum numbers via a term symbol 2S+1L J

(with L = 0, 1, 2, 3, 4, . . . being represented by the letters S, P, D, F, G, . . .). For
instance, the ground state of Li is 1s2 2s1 2S1/2, meaning that two electrons occupy
the orbitals n = 1, l = 0, one occupies the orbital n = 2, l = 0 and the remaining
quantum numbers are L = 0, S = 1

2 , J = 1
2 (and M = ± 1

2 ). For atoms with a
single valence electron, one commonly only displays its principal quantum number
together with the term symbol, e.g., 22S1/2 for the Li ground-state.

The associated eigenenergies depend on the quantum numbers ni , li , L , S, J . The
dependence on S is due to the electron–electron Coulomb interaction together with
the Pauli exclusion principle, while the dependences on L , J are due to the electronic
spin–orbit interaction. They are is commonly referred to as the fine structure. We
ignore the atomic hyperfine structure which is due to the interaction of the electrons
with the multipole moments of the nucleus.

To determine dipole-matrix elements between energy eigenstates, we represent
the dipole operator d̂ in terms of its spherical components q = 0,±1

d̂±1 = ∓ 1√
2

(
d̂x ± id̂y

)
, d̂0 = d̂z (B.1)
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by writing

d̂x = 1√
2

(
d̂−1 − d̂+1

)
, d̂x = i√

2

(
d̂+1 + d̂−1

)
, d̂z = d̂0 . (B.2)

According to the Wigner–Eckhart theorem [1–3], matrix elements of the spherical
vector components can be factorised as

〈α′ J ′M ′|d̂q |αJM〉 = (−1)J ′−M ′
(

J ′ 1 J
−M ′ q M

)
〈α′ J ′‖d̂‖αJ 〉 . (B.3)

The first factor is the Wigner 3- j symbol; it depends only on the spherical tensor
component q as well as the quantum numbers for the angular momenta J, J ′ and their
z-components M, M ′. The second factor is the reduced matrix element 〈αJ‖d̂‖α′ J ′〉
is independent of q , M and M ′. It depends on J , J ′ and all other quantum numbers
needed to characterise the respective states, represented in shorthand notation by α
and α′.

Let us demonstrate the general case for the D2 transitions of 87Rb from the
doubly degenerate ground state 52S1/2 (n = 5, L = 0, S = 1

2 , J = 1
2 , M = ± 1

2 )
to the excited states of the 52P3/2 manifold (n′ = 5, L ′ = 1, S′ = 1

2 , J ′ = 3
2 ,

M ′ = − 3
2 . . . 3

2 ) which is fourfold degenerate. Using the Wigner–Eckart theorem
(B.3) together with the spherical tensor components (B.2) and evaluating the 3- j
symbols, we find

〈
J ′ = 3

2 , M ′ = 3
2

∣∣∣d̂
∣∣∣J= 1

2 , M= 1
2

〉
=
〈
J ′ = 3

2

∥∥d̂
∥∥J= 1

2

〉
2
√

2

⎛
⎝−1

i
0

⎞
⎠ , (B.4)

〈
J ′ = 3

2 , M ′ = 1
2

∣∣∣d̂
∣∣∣J= 1

2 , M= 1
2

〉
=
〈
J ′ = 3

2

∥∥d̂
∥∥J= 1

2

〉
√

6

⎛
⎝0

0
1

⎞
⎠ , (B.5)

〈
J ′ = 3

2 , M ′ =− 1
2

∣∣∣d̂
∣∣∣J= 1

2 , M= 1
2

〉
=
〈
J ′ = 3

2

∥∥d̂
∥∥J= 1

2

〉
2
√

6

⎛
⎝ 1

i
0

⎞
⎠ , (B.6)

〈
J ′ = 3

2 , M ′ =− 3
2

∣∣∣d̂
∣∣∣J= 1

2 , M= 1
2

〉
= 0 , (B.7)〈

J ′ = 3
2 , M ′ = 3

2

∣∣∣d̂
∣∣∣J= 1

2 , M=− 1
2

〉
= 0 , (B.8)

〈
J ′ = 3

2 , M ′ = 1
2

∣∣∣d̂
∣∣∣J= 1

2 , M=− 1
2

〉
=
〈
J ′ = 3

2

∥∥d̂
∥∥J= 1

2

〉
2
√

6

⎛
⎝−1

i
0

⎞
⎠ , (B.9)

〈
J ′ = 3

2 , M ′ =− 1
2

∣∣∣d̂
∣∣∣J= 1

2 , M=− 1
2

〉
=
〈
J ′ = 3

2

∥∥d̂
∥∥J= 1

2

〉
√

6

⎛
⎝0

0
1

⎞
⎠ , (B.10)
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〈
J ′ = 3

2 , M ′ =− 3
2

∣∣∣d̂
∣∣∣J= 1

2 , M=− 3
2

〉
=
〈
J ′ = 3

2

∥∥d̂
∥∥J= 1

2

〉
2
√

2

⎛
⎝ 1

i
0

⎞
⎠ . (B.11)

where for convenience, we have suppressed the arguments n = n′ = 5, L = 0, L = 1
and S = S′ = 1/2. These results can be combined to give

∑
M=±1/2

〈
J= 1

2 , M
∣∣∣d̂
∣∣∣ J ′ = 3

2 , M ′ =± 3
2

〉 〈
J ′ = 3

2 , M ′ =± 3
2

∣∣∣d̂
∣∣∣ J= 1

2 , M
〉

=
∣∣∣
〈
J ′ = 3

2

∣∣∣
∣∣∣d̂
∣∣∣
∣∣∣ J= 1

2

〉∣∣∣2
8

⎛
⎝ 1 ∓i 0
±i 1 0
0 0 0

⎞
⎠ (B.12)

and

∑
M=±1/2

〈
J = 1

2 , M
∣∣∣d̂
∣∣∣ J ′ = 3

2 , M ′ =± 1
2

〉 〈
J ′ = 3

2 , M ′ =± 1
2

∣∣∣d̂
∣∣∣ J= 1

2 , M
〉

=
∣∣∣
〈
J ′ = 3

2

∣∣∣
∣∣∣d̂
∣∣∣
∣∣∣ J= 1

2

〉∣∣∣2
24

⎛
⎝ 1 ∓i 0
±i 1 0
0 0 4

⎞
⎠ . (B.13)

By introducing the abbreviating notations |J = 1
2 , M =− 1

2 , 1
2 〉 ≡ |01〉, |02〉 for the

52S1/2 manifold and |J ′ = 3
2 , M ′ = − 3

2 . . . 3
2 〉 ≡ |11〉 . . . |14〉 for the 52P3/2 manifold

as well as 〈J ′ = 3
2‖d̂‖J= 1

2 〉 ≡ d10, these results assume the form of (8.66)–(8.69).
As a second example, we study 133Cs, considering transitions from the doubly

degenerate 72P1/2 manifold (n = 7, L = 1, S = 1
2 , J = 1

2 , M = ± 1
2 ) to the four

higher-lying 62D3/2 states (n′ = 6, L ′ = 2, S′ = 1
2 , J ′ = 3

2 , M ′ = − 3
2 . . . 3

2 ).
The dipole matrix elements between these transitions are given by (B.4)–(B.11), as
before, but with different values of n, n′, L and L ′. They result in products

∑
M=±3/2

〈
J= 3

2 , M
∣∣∣d̂
∣∣∣ J ′ = 1

2 , M ′ =± 1
2

〉 〈
J ′ = 1

2 , M ′ =± 1
2

∣∣∣d̂
∣∣∣ J= 3

2 , M
〉

=
∣∣∣
〈
J ′ = 1

2

∣∣∣
∣∣∣d̂
∣∣∣
∣∣∣ J= 3

2

〉∣∣∣2
8

⎛
⎝ 1 ±i 0
∓i 1 0
0 0 0

⎞
⎠ (B.14)

Writing |J = 1
2 , M=− 1

2 , 1
2 〉 ≡ |01〉, |02〉 and |J = 3

2 , M=− 3
2 . . . 3

2 〉 ≡ |11〉 . . . |14〉
for the states and 〈J ′ = 1

2‖d̂‖J = 3
2 〉 ≡ d01 for the reduced matrix element, this is

equivalent to (8.87) and (8.88).
The analysis of electric-dipole transitions simplifies when neglecting the fine

structure. In this case, the atomic energy eigenstates can alternatively be characterised
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by means of the quantum numbers of total orbital angular momentum L̂ (L) and spin
Ŝ (S) together with the their z-components L̂ z (ML = −L . . . L) and Ŝz (MS =
−S . . . S): |{ni li }L S J M〉 �→ |{ni li }L ML SMS〉. The spin degrees of freedom can be
completely ignored, as the electric dipole operator only acts on the orbital angular
momentum. The matrix elements of the latter follow from the Wigner–Eckart theorem
for L , ML ,

〈α′L ′M ′L |d̂q |αL ML〉 = (−1)L ′−M ′L
(

L ′ 1 L
−M ′L q ML

)
〈α′L ′‖d̂‖αL〉 , (B.15)

together with the spherical tensor components (B.2). In particular, for transitions
from an S state (L = 0, M = 0) to a P manifold (L ′ = 1, M ′ = −1 . . . 1), one finds

〈
L ′ = 1, M ′L=1

∣∣d̂∣∣L=0, ML=0
〉 = 〈L ′ =1‖d̂‖L=0〉√

6

⎛
⎝−1

i
0

⎞
⎠ , (B.16)

〈
L ′ = 1, M ′L=0

∣∣d̂∣∣L=0, ML=0
〉 = 〈L ′ =1‖d̂‖L=0〉√

3

⎛
⎝0

0
1

⎞
⎠ , (B.17)

〈
L ′ = 1, M ′L=−1

∣∣d̂∣∣L=0, ML=0
〉 = 〈L ′ =1‖d̂‖L=0〉√

6

⎛
⎝ 1

i
0

⎞
⎠ . (B.18)

After introducing the short-hand notations |L = 0, ML = 0〉 ≡ |0〉 for the S state,
|L ′ = 1, M ′L =−1, 0, 1〉 ≡ |11〉, |12〉, |13〉 for the P manifold as well as a reduced
matrix element 〈L = 1‖d̂‖L ′ = 0〉 ≡ d10, these results assume the form of (7.103).
They immediately lead to

〈
L=0, ML=0

∣∣d̂∣∣L ′ =1, M ′L=±1
〉〈

L ′ =1, M ′L=±1
∣∣d̂∣∣L=0, ML=0

〉

= |〈L=0‖d̂‖L ′ =1〉|2
6

⎛
⎝ 1 ∓i 0
±i 1 0
0 0 0

⎞
⎠ (B.19)

and

〈
L=0, ML=0

∣∣d̂∣∣L ′ =1, M ′L=0
〉〈

L ′ =1, M ′L=0
∣∣d̂∣∣L=0, ML=0

〉

= |〈L
′ =1‖d̂‖L=0〉|2

3

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ , (B.20)

as stated in (8.57)–(8.59). The total dipole transition tensor is isotropic, as required
for transitions from an S state,
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∑
M ′L=−1,0,1

〈
L=0, ML=0

∣∣d̂∣∣L ′ =1, M ′L
〉〈

L ′ =1, M ′L
∣∣d̂∣∣L=0, ML=0

〉

= |〈L
′ =1‖d̂‖L=0〉|2

3
I . (B.21)

The consistency of this result with the more general description in terms of J and
M can easily be established. Combining (B.4)–(B.11), we find

∑
J ′=1/2,3/2

∑
M ′=−J ...J

〈
J= 1

2 , M = ± 1
2
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2 , M
〉
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2
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2

∥∥d̂
∥∥J= 1

2

〉∣∣2
⎡
⎣ 1

6

⎛
⎝ 1 ±i 0
∓i 1 0
0 0 0

⎞
⎠+ 1

6

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠
⎤
⎦ . (B.22)

The reduced matrix elements 〈J ′ = 3
2‖d̂‖J = 1

2 〉 and 〈J ′ = 1
2‖d̂‖J = 1

2 〉 of the J , M

scheme can expressed in terms of the reduced matrix element 〈L ′ = 1‖d̂‖L= 0〉 of
the L , ML scheme by means of the general relation [3]

〈α′L ′S J ′‖d̂‖αL S J 〉 = (−1)L ′+S+J+1
√

(2J + 1)(2J ′ + 1)

×
{

L ′ J ′ S
J L 1

}
〈α′L ′‖d̂‖αL〉 . (B.23)

The Wigner 6- j symbol in curly brackets can be evaluated to give

〈
J ′ = 1

2

∥∥d̂
∥∥J= 1

2

〉 = −
√

2
3

〈
α′L ′ =1

∥∥d̂
∥∥L=0

〉
, (B.24)〈
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2
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∥∥J= 1

2

〉 = 2√
3

〈
α′L ′ =1
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∥∥L=0

〉
. (B.25)
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Substituting these results into (B.22), we obtain

∑
J ′=1/2,3/2

∑
M ′=−J ...J

〈
J = 1

2 , M
∣∣d̂∣∣J ′M ′〉〈J ′, M ′

∣∣d̂∣∣J = 1
2 , M

〉

= |〈L
′ =1‖d̂‖L=0〉|2

3
I , (B.26)

in agreement with the L , ML result (B.21).
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quasi-, 160, 250, 268
Detuning, 188, 197
Diamagnetic interaction, 14, 264
Dilute-gas limit, 78, 96, 98, 137
Dipole interaction

electric, 15
magnetic, 14

Dipole moment
electric, 10
magnetic

canonical, 14
physical, 10

Dispersion formula, 21, 167
Displacement field, 1
Doppler effect, 269, 273
Dressed states, 190, 211
Drude model, 134
Drude–Lorentz model, 176
Duality invariance

of the Casimir force, 32, 76
of the Casimir–Polder potential, 32, 61, 76
of the Maxwell equation, 31
of the van der Waals potential, 33, 76

Duality transformation, 31, 61, 76
of the Green’s tensor, 288, 291

Dynamics
of a strongly coupled atom, 204, 212
of an atom, 113, 162, 251, 261
of the electric field, 158

Dyson equation
for electric bodies, 36, 84, 296
for magnetic bodies, 39, 296
for magnetodielectric bodies, 42, 296

E
Einstein A-coefficient, 163, 252
Einstein B-coefficient, 252
Electric excitation, 1, 11
Electric field, 1, 4, 10
Electric-dipole approximation, 12, 14, 20, 26,

123, 152, 154, 158, 184, 215, 264
Equipotential lines, 95

F
Faraday law, 5
Fine structure, 299
Fluctuation–dissipation

theorem, 2, 5, 6, 118
Fluctuations

of the electric field, 5, 190
Focal plane, 141, 143, 144
Fock state, 6, 115, 185, 186, 214
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Free field, 158, 168
Frequency shift, 149, 164, 167, 179, 181, 197,

198, 208
in front of a half space, 177
thermal, 250, 253, 257

Fresnel reflection coefficient, 293
generalised, 293

Fundamental fields, 3

G
Galilean invariance, 269
Gauss law, 5, 12
Green’s tensor, 3, 287

asymptotic behaviour, 117, 290
decomposition into bulk and scattering

parts, 17, 19, 116, 164, 216, 224,
258, 291, 297

electrostatic, 121, 222
in free space, 47, 84
of a half space, 177

nonretarded limit, 294
retarded limit, 294

of a planar multilayer system, 292
of a plate, 125, 223, 275
separation of singular part, 38, 40

Gyromagnetic ratio, 8

H
Hamiltonian

of an atom, 10, 156, 184
of the electromagnetic field in media, 5
of the electromagnetic field in media

interacting with atoms, 11, 13,
20–22, 26, 28, 114, 152, 156, 184,
215, 264

Heisenberg equation, 5, 153, 157, 158, 264
Heisenberg picture, 155–157, 204
Helmholtz equation

inhomogeneous, 2, 287
High-temperature limit

geometric, 221, 225, 226, 231, 236
spectroscopic, 221, 225, 226, 237, 228

Hyperfine structure, 299, 231, 233, 238,
240, 245

I
Image construction, 141
Image-dipole model, 77, 133
Induction field, 1
Interaction picture, 189
Interference, 132

Isotropic atom, 21, 22, 118, 122, 124, 128,
132, 168, 173, 218, 274

Isotropic polarisability, 168, 173, 274

J
Jaynes–Cummings model, 184, 188, 192, 202

K
Kramers–Kronig relation, 192

L
Lamb shift, 21, 22, 116, 164
Left-handed medium, 140
Level width, 167, 179

thermal, 257
Lifshitz theory, 98, 237
Linear-response theory, 118, 131, 137, 218,

225, 237
Local-field corrections, 33
Long-wavelength approximation, 12, 14, 20,

23, 114, 152, 154, 264
Longitudinal delta function, 7
Longitudinal part of a vector field, 7
Longitudinal time, T1-time, 163, 253
Lorentz force

on a charge distribution, 16, 149
on an atom, 150, 151, 153, 168, 204,

254, 269
on charged particles, 12, 151

Lorentz invariance, 269
Low-temperature limit

geometric, 221, 225, 226, 231, 236
spectroscopic, 221, 225, 226, 237

M
Magnetic excitation, 1, 11
Magnetic field, 1, 5, 11
Magnetic monopoles, 5
Magnetisability

of an atom, 24
diamagnetic, 24
paramagnetic, 23

Magnetisation
of an atom

canonical, 14
physical, 9

Many-atom contributions, 101
to the Casimir–Polder potential, 49, 55, 57,

61, 104
Many-atom van der Waals forces, 78, 96, 99

Index 307



M (cont.)
Many-body contributions

to the Casimir–Polder potential, 62, 70, 73
Markov approximation, 158, 162, 166, 170,

196, 206, 249, 256, 270
Matsubara frequencies, 217
Matsubara sum, 218, 220, 222, 227, 256, 257
Maxwell equations

in media, 2
in the presence of atoms, 11

Meta-material, 140
Microscopic origin

of the Casimir force, 78, 96, 99
of the Casimir–Polder force, 78, 98, 100,

104, 106, 107
Minimal coupling scheme, 11, 20, 114, 149
Multipolar coupling scheme, 13, 22, 25, 123,

152, 154–156, 183, 184, 213,
215, 264

N
Negative refraction, 140
Newton equation, 12, 149
Newton’s third law, 28
Noise charge density, 3
Noise current density, 3
Nonretarded limit, 48, 49, 51–53, 55–58, 60,

69, 70, 72, 73, 75, 77, 86–88, 94,
96, 108, 109, 119–122, 129–132,
134–137, 144, 222, 225–227, 230,
236, 239, 240, 276, 277, 281,
290, 296

Normal ordering, 160, 168, 174, 205, 267

O
Onsager reciprocity, 3, 172, 268, 271, 288

P
Partition function, 215
Pauli interaction, 11
Pauli operator, 184
Permeability, 2
Permittivity, 2
Perturbative energy shift

first order, 20, 23, 114, 215
fourth order, 26, 28
second order, 20, 22, 23, 29, 114, 215
third order, 29

Perturbative limit, 164, 168, 173, 177
Photon

evanescent, 128, 225, 230, 239

propagating, 128, 224, 230, 238
real, 113, 118, 124, 149, 163, 164, 172,

175, 251, 253, 257, 272
thermal, 216, 219
virtual, 20, 26, 113, 118, 124, 128, 164,

172, 175, 223, 224, 235, 253,
256, 272

Plasma model, 134, 137
Polar molecule, 223, 227, 235, 242

LiH, 241, 246, 261
OH, 246
YbF, 242, 246

Polarisability
of an atom, 21, 27
of an atom in a thermal state, 219
of an excited atom, 118, 123, 167, 257

Polarisation
s- and p-polarisation, 292
of an atom, 9

Polarisation unit vectors, 125, 276, 292
Potential for electromagnetic field

scalar, 7
vector, 7

Power–Zienau–Woolley transformation, 13
Probability conservation, 163
Proximity force approximation, 94

Q
Q-factor, 186
Quantum electrodynamics

in a non-dispersive medium, 241
in free space, 131, 137, 225

Quantum regression theorem, 162, 166, 170,
255, 270

Qubit, 163

R
Röntgen interaction, 14, 123, 157, 263, 264,

273, 277, 281
Rabi frequency, 188, 201

generalised, 190, 200
Rabi oscillations, 201, 208, 211
Radiation reaction, 174
Reduced matrix element, 300
Reflection coefficient

of a magnetoelectric half space, 293
of a magnetoelectric multilayer system,

293
Retarded limit, 48, 50, 52, 54, 60, 69, 77, 78,

80, 81, 83, 91, 95, 108, 119, 120,
129, 130, 132–137, 144, 230–232,
239, 240, 243–245, 294
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Rotating-wave approximation, 189, 192, 200,
205

Rotational transition, 223, 246, 241–243
Rydberg atom, 223, 227, 234

S
Scaling function, 72, 91–93
Scaling law, 89

for the Casimir force, 83, 87
for the Casimir–Polder potential, 81, 85
for the Green’s tensor, 81, 85, 297
for the van der Waals potential, 82, 85

Scaling transformation, 79, 296
Schrödinger picture, 155–157, 195, 205
Schrödinger equation, 196
Schwarz reflection principle, 3, 116, 167, 172,

216, 220, 272, 287
Selection rules, 161
Self-energy, 21, 116, 216, 253
Self-force, 17, 19, 171, 206, 256
Single-mode approximation, 186
Snell’s law, 140
Source field, 158, 174
Spherical vector components, 300
Spin, 8
Spontaneous decay, 113, 149, 163, 218, 251
State preparation, 194
Stimulated decay, 251
Stimulated emission, 218
Stratified body, 61, 64
Strong-coupling regime, 183, 192, 200, 202,

207
Superconductor, 134, 137, 178
Superlens, 140, 144
Superstrong-coupling regime, 208
Surface plasmon, 171
Susceptibility

electric, 17, 39
magnetic, 17, 39

Symmetric ordering, 174

T
Temperature

geometric, 225
spectroscopic, 225

Temperature-invariance, 223, 234, 245, 246
Term symbols, 299
Thermal Casimir–Polder potential

in front of a half space, 223
electric, 235, 238, 240
perfectly conducting, 225, 229, 230

near perfectly conducting bodies, 223

of an atom in a thermal state, 219, 223
of an atom in an energy eigenstate, 223,

254
Thermal equilibrium, 219, 227, 237, 242, 252,

261
Thermal photon number, 7, 216, 221, 222,

233, 234
Thermal state

of an atom, 218, 258
of the electromagnetic field, 6, 7, 214, 249,

255
Thermal wavelength, 221
Thomas–Reiche–Kuhn sum rule, 10, 21, 115
Time-reversal symmetry, 26, 172, 257, 268
Transition rate, 250

in free space, 252, 258
in front of a plate, 258

Transverse delta function, 7
Transverse part of a vector field, 7
Transverse time, T2-time, 165
Triangle formula, 50
Two-level atom, 139, 141, 144, 176, 184

V
Vacuum fluctuations, 174
Van der Waals force, 25
Van der Waals potential, 25

in free space, 76, 84, 90
in front of perfectly conducting plate, 95
next to an electric sphere, 109
of N electric atoms, 105–106
of N electromagnetic atoms, 108
of an electric and a diamagnetic atom, 29
of an electric and a magnetic atom, 30
of an electric and a paramagnetic atom, 28
of three electric atoms, 108
of two diamagnetic atoms, 29
of two electric atoms, 27
of two electromagnetic atoms, 30–31, 100
of two magnetic atoms, 30
of two paramagnetic atoms, 28

Vibrational transition, 223, 243, 246

W
Weak-coupling limit, 191, 199, 206
Wigner 3-j symbol, 300
Wigner 6-j symbol, 303
Wigner–Eckhart theorem, 300

Z
Zeeman force, 12, 150
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