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Preface

This book envisages liquid crystals as particular examples of dissipative ordered flu-
ids. While it may be unique in taking this special perspective, it is not the only math-
ematical book on liquid crystals, and so one should have more than one good reason
to read it. We can only give the reasons that made us write it: the reader will decide
whether they suffice.

First, we felt the need to formulate a unified mathematical framework within
which dynamical theories for liquid crystals can be phrased, a framework that is
general enough also to incorporate dynamical theories for other ordered fluids. Our
general topic is the evolution of order in fluids and its interaction with flow. Liquid
crystals are the ideal arena for testing such a general theory for dissipative ordered
fluids, because they are perhaps the best understood incarnation of these fluids. The
established dynamical theories for liquid crystals have passed the tests of time and
experimental scrutiny. Although we chose to concentrate on this special class of
ordered fluids, we also highlight the opportunities that our general method offers in
other closely related fields.

Since liquid crystals are here only examples of a wider family of ordered fluids,
they are not treated in the full generality of all their condensed phases. Although
our study is not limited to the traditional uniaxial nematics, since it also embraces
the newly discovered (and still disputed) biaxial phases, it does not cover smectic
liquid crystals. This large class of fluids, closer indeed to solids, is too complex to
be included in an introductory book such as this. However, we interpret nematics in
a broad sense, incorporating chiral nematics, often also called cholesterics.

Our narrative starts from a molecular description of the order that gives rise to the
condensed phases of liquid crystals, and it moves on to the construction of continuum
theories capable of describing their evolution. We sought secure guidance in such an
endeavor and found it in a dissipation principle, which can be traced back to both the
work and vision of RAYLEIGH. We interpret this principle in precise, mathematical
terms and phrase it within a thermodynamic context, though most of the theories we
review are purely mechanical in nature.

We have deliberately chosen to talk about theories in the plural. Order in liquid
crystals appears in various guises and can be described in different ways, each more
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appropriate than others for certain purposes or in certain contexts. Theories broadly
fall into two classes, depending on how the molecular order is described on larger
length scales: there are director theories and fensor theories. The way in which the-
ories in these large classes are established and how they are related is the leitmotif of
the core of this book.

We do not limit our scope to harmonizing in a unified setting existing theories,
but we also venture into hitherto unexplored territory. In doing so, we derive a new
theory for the acoustic actions in nematic liquid crystals that is capable of explain-
ing quantitatively experiments performed almost half a century ago that cannot be
completely understood within the classical dynamical theories.

Since this is a mathematical book, we strive for rigor and precision. However,
though we use the languages of analysis, algebra, and geometry, this is not a book in
any of these mathematical disciplines. This is a book on mechanics, the mathematical
science of motion, which is the archetype of all dynamical processes.

Although we tried to be as comprehensive as the scope of an introductory book
allowed us to be, we could not cover all aspects of nematic order evolution. In par-
ticular, defect dynamics and dynamics of thin nematic films on surfaces remain un-
treated. Given the body of theoretical results available in the literature and the interest
in their practical applications, these related subjects would actually deserve to fill a
whole book by themselves.

This is a book on theories and their conceptual interplay. We have therefore, apart
from rare exceptions, not included excercises or assignments. It is our hope that the
reader will learn from this book how to phrase a continuum theory for the dissipative
dynamics of ordered fluids that could stand the scrutiny of experimental physics, as
did the celebrated theories of ERICKSEN—LESLIE and LANDAU-DE GENNES.

Glasgow, Pavia André M. Sonnet
September 2011 Epifanio G. Virga



Contents

1 Molecular Theories. ........ ... ... ... i 1
1.1  Molecular Interactions ..............c.cuuiiiiineineennnenn.. 1
1.1.1 Two-Particle Hamiltonian ............................. 3

1.1.2 Ensemble Potentials ................ ... ...ciuiain.. 10

1.2 Mean-Field Approximation .................ccooiiiieiinnnn... 13
1.2.1 One-Particle Hamiltonian ............................. 13

1.2.2 Mean-Field Free Energy ............... ... ... ... 16

1.2.3  Minimum Principle ........... ... . i 17

1.24 Minimax Principle ........... ... ... . .. i 20

1.2.5 Local Stability Criterion ...................ooieunnn... 27

1.2.6 Biaxial Nematic Liquid Crystals........................ 32

1.3 MAIER-SAUPE Theory ..., 36
1.3.1 Scalar Order Parameters .................cociivinn... 39

1.3.2 Critical Points . ....... ... 43

1.3.3 Stability Analysis .......... . ... 47

1.4 Steric Effects . ... 53
1.4.1 Dispersion Forces. ..., 55

1.42 ExcludedRegion ................ciiiiiiiiiineinnn.. 57

1.4.3 Perturbative Method . .......... ... ... i 61

1.4.4 Steric Biaxiality ........... . ... . i i 64

1.4.5 Special Interactions . ................couuiieeeennnn... 65

1.4.6 Perspective . ..........uuuniiiiuinn i, 69

2  Dynamics of Dissipative Fluids .................................. 71
2.1 Continuum Mechanics Fundamentals . ......................... 71
2.1.1 Bodiesand Shapes ........... ..o, 71
2120 MOION « vttt e et e e e e 74

2.1.3 Frame Indifference . ........... ... ... i 83

2.1.4 Axioms of Classical Mechanics ........................ 95

2.1.5 Classical Balance Equations ........................... 98

2.1.6  General Balance Equations ............................ 107

VII



VIII

Contents
2.2 Dissipation Principle . ........... ... 111
2.2.1 LAGRANGE-RAYLEIGH Equations ..................... 113
2.2.2  Glimpses of Continuum Thermodynamics ............... 124
2.2.3  Principle of Minimum Reduced Dissipation .............. 132
2.24 Simple and Nonsimple Fluids ... ....................... 138
2.2.5 Related and Unrelated Variational Principles ............. 140
2.3 Isotropic Perfect Fluids.......... ... .. .. ... it 151
23.1 InviscidFluids ......... ... o 151
232 ViscousFluids........... ... o i 154
233 HeatConduction............ ..o, 158
2.3.4 Variational Formulations .............................. 160
Director Theories ......... ... ... . 165
3.1 The ERICKSEN-LESLIE Theory ............ ... ... 166
3.1.1 Nondissipative Dynamics ............................. 168
3.1.2 Dissipative Dynamics .................ciiiiiiaia.. 175
3.1.3 Rotational Momentum and Couple Stress ................ 180
3.1.4 Variational Compatibility ............................. 183
3.1.5 Thermal Effects ............ . ... . i 188
3.2 Variable Degree of Orientation ............................... 194
3.2.1 Nondissipative Dynamics .............. ..., 195
3.2.2 Dissipative Dynamics ................cciiiiiii.. 197
3.2.3 Rotational Momentum and Couple Stress ................ 198
33 Biaxial Nematics ........... ... ... .. o i il 198
3.3.1 Nondissipative Dynamics ............................. 199
3.3.2 Dissipative Dynamics .................c.oiiiiiiia.. 202
3.3.3 Rotational Momentum . ..., 205
Order Tensor Theories. .......... ... .. ... .. i, 207
4.1 Uniaxial Nematics . . .. ...ttt 208
4.1.1 LANDAU-DE GENNES Free Energy..................... 208
4.1.2 Nondissipative Dynamics ...................ciiun... 215
4.1.3 Dissipative Dynamics ............. ..o, 218
4.1.4 Specific Dissipation Functions ......................... 220
4.1.5 Rotational Momentum and Couple Stress ................ 223
4.2 Biaxial Nematics . .. ...ttt 224
4.2.1 Two-Tensor Theory ......... ... ... 225
4.2.2  Generic Dynamic Theory ................... .. ....... 226
4.2.3 Constitutive Ingredients . . ......... ... ... ... 228

4.2.4 Simplified Models ......... ... ... .. ... ... 231



Contents X

5 Nematoacoustics .................. ..o 239
5.1 OVeIVIEW .ottt ettt et e e e 239

5.2 KORTEWEGFluids ....... ... i 243
5.2.1 Principle of Virtual Power ..................... ... .... 243

522 KORTEWEG SIIESS ..o vvvvttiitiiiiinnnnn 244

5.23 SurfaceCalculus.............c ... 246

5.2.4 Traction and Hypertraction ............................ 247

5.2.5 Symmetry of the KORTEWEG Stress .................... 249

5.2.6 Balances of Forces and Torques ........................ 251

5.2.7 Dissipative Dynamics .............coiiiiiiiiii... 252

5.2.8 AcousticPlaneWaves ............... ... ... ... ... 254

5.3 Nematoacoustic Theory .......... ... ..., 259
5.3.1 Acoustic Dissipation Function ......................... 261

5.3.2 Nematoacoustic Equations ............................ 264

5.3.3 Propagation Equations .............. ... ... ... 266

5.4 Director Libration ............ ...t 277
5.4.1 Dynamical Balance Equations ......................... 277

542 Plane Wave Solutions. ............... ..., 278

5.4.3 Phenomenological Parameters ......................... 285

A Notation and Basic Concepts ......................... ... ....... 289
A.1 Points, Vectors, and TensOrs. . ... ..o 289

A.2 Basesand Coordinates ..............uuuniiiineiineiine. 293

A3 ROtations ...t 294

A4 Time Derivatives .. .....ouut it 294

A.5 Divergence Theorems . ..., 296
References . . .. ... ... 297






1

Molecular Theories

Any expository account of liquid crystals would invariably commence by saying
that they constitute a state of matter that is intermediate between crystals and liquids.
Their apparently contradictory appellation conveys well their being mesophases, that
is, their participating in properties of two worlds. Macroscopically, they exhibit opti-
cal birefringence, a property typical of crystals, while retaining their ability to flow,
which characterizes fluids. Microscopically, the tendency of liquid crystals to me-
diate between diversities is ascribed to the anisotropy of their molecules. In this
introductory chapter, we present the microscopic basis for our development, which
will mostly be macroscopic. We explore the microscopic origin of the ordering tran-
sition that gives rise to nematic liquid crystals. This discussion will ultimately serve
to identify the most appropriate macroscopic order parameters for nematic liquid
crystals, both in the uniaxial and biaxial phases.

1.1 Molecular Interactions

A picture often drawn describes liquid crystal molecules as rods or ribbons subject to
interactions that tend to make them align alike. Whenever such a tendency prevails
over disorganizing causes, an ordered phase is established from the isotropic, disor-
dered phase. This ordering phase transition, which is usually first-order,' induces a
local common molecular orientation that may vary from place to place. In the ne-
matic ordered phase, which is still fluid, molecules move freely; they do not exhibit
any spatial order, but even if mobile, they reveal a long-range orientational order in
their organization, which at the same place can possibly involve different molecules
at different times. What persists in the dynamical evolution of the system is its abil-
ity to be self-organized, though the average result of the molecular organization may
vary in time.

LA first-order transition occurs abruptly, with a discontinuity in the order parameters that
characterize the phase. By contrast, a second-order transition is smooth and takes place
with gradual changes in the order parameters.

A.M. Sonnet and E.G. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals, 1
DOI 10.1007/978-0-387-87815-7 1, © Springer Science+Business Media, LLC 2012
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Liquid crystals are of two types, thermotropic and lyotropic, according to whether
the temperature or the density drives molecules towards alignment, respectively. For
thermotropic liquid crystals, there is a critical value of the temperature below which
the disorder-to-order transition takes place. Correspondingly, for lyotropic liquid
crystals, there is a critical value of the density above which the disorder-to-order
transition takes place. Here we shall be concerned only with thermotropic nematic
liquid crystals.

The core of this chapter is the celebrated theory of MAIER & SAUPE [208] pre-
sented in Section 1.3. This theory rests upon a properly formulated mean-field ap-
proximation to the HELMHOLTZ free energy of an ensemble of interacting rodlike
molecules.

More generally, mean-field theories play a central role in all of condensed mat-
ter physics. In treating an ensemble of N mutually interacting molecules, deriving
the HELMHOLTZ free energy .% of the ensemble, from which all thermodynamic
properties would follow, is commonly a prohibitive task. In the mean-field approx-
imation, the interactions between molecules are replaced by an effective interaction
of every molecule in the ensemble with a mean field Q, which binds all molecules
together. Within this approximation, the free energy .%, can often be computed ex-
plicitly, albeit constrained by appropriate self-consistency conditions on the mean
field Q, which enters .%, as a parameter. A modern account of mean-field theories
and their ample role in condensed matter physics can be found in [263].

In soft-matter physics, Q generally has the meaning of an order tensor, or a col-
lection of such tensors, which describes at a macroscopic scale the molecular orga-
nization underlying an ordered phase. The equilibrium values of Q that describe the
condensed phases are customarily identified by minimizing .%,. Thus, minimizers of
F¢ branching off a given phase witness second-order phase transitions, while min-
imizers of %y jumping from one phase to another at the same temperature witness
first-order phase transitions. In general, the study of both global and local minimizers
of % reveals both the stable equilibrium phases and the phases eligible to become
SO.

For the mechanician, mean-field theories are also attractive for another reason:
they can be seen as precursors of the continuum, phenomenological theories for com-
plex materials. In this perspective, the statistical MAIER—SAUPE theory heralds the
continuum theory of DE GENNES [59] outlined in Chapter 4. Thus, mean-field theo-
ries stand, as it were, at the border between statistical physics and continuum physics.

Here we formulate in a rigorous manner the mean-field approximation; we phrase
it in a language so general as to be applicable to a wide class of molecular interac-
tions, those that can be expressed through a diagonal, bilinear Hamiltonian involving
appropriately defined collective molecular tensors ¢. The mean-field approximation
Fo to the equilibrium ensemble free energy .%# will be characterized by a minimum
principle. This is the principle of global least free energy, asserting that the “best”
mean-field approximation to the “true” free energy is achieved by the order tensor
collection Q for which % attains its least value among all critical points. For a large
class of interactions, which also includes the one at the basis of the MAIER—SAUPE
theory , the mean-field free energy % attains its global minimum, and so the above
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minimum principle makes all local minimizers of .% eligible to become the global
minimizer describing the condensed phase. It is shown in [116], on which most of
our account in this chapter relies, that the least-free-energy principle also holds when
Fo possesses only saddles as critical points, and so it is indefinite. To keep our devel-
opment simple, we shall often refer the reader to [116] for a more detailed analysis
of indefinite mean-field free energies, though, as shown below in this section, they
arise quite naturally in liquid crystals.

1.1.1 Two-Particle Hamiltonian

Molecular interactions are ultimately responsible for the mesogenic?> behavior of
some molecules that, unlike others, tend to form ordered phases. In general, the inter-
action between two molecules depends on the states of the interacting molecules and
their relative position in space. In the past, several theories were developed that derive
the interaction energy of two molecules from quantum-mechanical computations of
charge distributions [215, 320]. These theories, notable among which is LONDON’s
dispersion forces theory [193], produce a two-particle Hamiltonian that depends on
the charge distribution in both molecules and the vector joining their charge cen-
ters.> The mean-field approximation, which will be described in Section 1.2 below,
can only bear Hamiltonians much simpler than this.

The mean-field approximation has a long history; it has often proved useful
in describing phase transitions in soft matter systems: perhaps the MAIER—SAUPE
theory of uniaxial nematic liquid crystals is its most successful application in this
area. Crucial to the success of this theory is the replacement of the space-dependent
two-particle Hamiltonian with a space-independent one [70]. This is achieved by
assuming that molecules sharing one and the same state—purely orientational, in
the MAIER—SAUPE theory—are isotropically distributed in space around any given
probe molecule and by computing the average interaction energy between the probe
and all other molecules. Such a strategy rests upon the intuitive representation of a
fluid bulk as a molecular assembly in which a probe molecule in a given state can
be approached in all directions with equal probability by any other molecule in an-
other given state, freely wandering in space among all other molecules. Though the
interaction energy for the probe and the wandering molecules depends on both their
distance and the direction of relative approach, the energy binding the probe to the
average field produced by the system of all possible wandering molecules in one
and the same state depends only on this state and that of the probe. In the classical
MAIER-SAUPE theory , such an effective energy is simply a function of the relative
orientation between the interacting molecules.

2 Mesophase is the name often given to an intermediate phase that is characterized by some
partial degree of molecular order.

3 The center of a system of positive (or negative) charges is defined as the electrostatic ana-
logue of the center of mass for a system of mass points. For neutral, nonpolar molecules,
the only ones considered here, the charge center is the point where the centers of positive
and negative charges coincide.
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The averaging process that conceptually leads us here to a space-independent
Hamiltionan is not to be confused with the one that will lead us in Section 1.2 to
the mean field experienced by all molecules in an ensemble. The former is the logic
antecedent of the latter. We may say that the mean-field approximation is indeed
based on two independent successive averaging processes, of which here we describe
only the first, deferring the second to Section 1.2 below, where such a derivation is
illustrated in detail. In Section 1.4 we shall also show how the space-independent
Hamiltonian can embody subtle structural molecular aspects, such as anisotropy of
shape and short-range repulsion.

State Space

Following [116], we make the space-independent two-particle Hamiltonian H the
basis of our development. Often H is also called the pair-potential of the molecular
interaction; the terms “two-particle Hamiltonian” and “pair-potential” will be used
as synonyms throughout this chapter, as will also be “molecule” and “particle.” In
mathematical terms, H is a real-valued mapping defined over 2 x £2, where 2 is
the state space of the molecules:

(w,0") ~ H(w,o).

Here w and o’ describe the states of two interacting molecules. For rigid molecules,
§2 represents all possible orientational states; for flexible molecules, it also embodies
the conformational states.

H must satisfy certain general conditions. Since all molecules are indistinguish-
able particles, H must be invariant under particle exchange,

H' 0)=Hw,o), Yoo €.

H must also be frame-indifferent, that is, it must be invariant under all state trans-
formations that merely amount to a change of frame or, said differently, that can be
reduced to a rigid rotation of both interacting molecules. To formalize this property
in general, we introduce more structure in £2. We shall represent by R the action on
£2 of the rotation group SO(3) in three-dimensional Euclidean space. For a given
rotation R € SO(3),

RR 2 > 2

is the mapping such that for any w € 2, Rg(w) € 2 describes the state of the
molecule that differs from @ only by the effect of the rotation R. The invariance
under rotations of H is then expressed by requiring that

H(Rr(w), Rp(®")) = Hw,»"), Yow,o' €2, YR e SO®).

In a similar way, H must be invariant under the point symmetry transforma-
tions appropriate for the specific species of molecules under consideration. More
precisely, a symmetry transformation is a mapping G : §2 — 2 in the local frame
of the molecule (such as a reflection across a molecular plane or a rotation around a
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molecular axis) that changes a state of the molecule into an equivalent state, possibly
represented by another point of £2. H is required to have the property

H(Gw),0') = Hw,G')) = Hw,0'), Yo,0o' €2, YVGe§, (L1

where G is the symmetry group of the molecules.

Envisioning §2 as a compact measurable space, we endow it with an appropriate
measure p, which assigns a precise meaning to the integral over every measurable
subset X C §2 of an integrable real-valued function g. This will be denoted by

/ ¢(0) du(o).
X

Rigid Molecular Architectures

We discuss here different representations of a specific state space apt to describe
purely orientational states. This space applies to all model rigid molecules, to which
our development will henceforth be restricted.

The main building block of our theory is a molecule (or an idealization of a
molecule) of a certain architecture and symmetry. We think of this in general as a ge-
ometric object, such as a cylinder or a rectangular platelet (both in principle capable
of modeling uniaxial and biaxial macroscopic phases), just to limit our attention to
two notable examples. Different rigid models can serve the same purpose, provided
they share the same symmetry.

The symmetry is characterized by the point-symmetry group of the molecule—
here we use the SCHOENFLIES notation (see, for example, [217]). For each molec-

el e

/

/’ \‘6’3

€2

>

Fig. 1.1. Two molecular architectures and their symmetries: rod (left, oz), platelet (right,
Dap)-

ular species, we imagine that there is a local molecular frame (ey, 2, €3), typi-
cally coincident with symmetry molecular axes, contrasted against a reference frame
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(ex. ey, e;), bothidentified with orthonormal triads. Thus the pair-potential is a func-
tion only of the relative orientation of the frames of the two molecules, and the form
of this function depends on the point-symmetry group of the species. Examples that
we shall use are pictured in Figure 1.1.

Here £2 is the set of possible orientations of an individual molecule, i.e., the pos-
sible orientations of its frame with respect to a fixed (“lab”) frame. Depending on the
system being modeled, §2 could be finite or discrete; however, for the applications
that we have in mind, we shall take it to be the continuum of all possible relative
orientations of a local frame with respect to a fixed frame. The collection of orien-
tational states §2, then, can be viewed as a manifold, isomorphic to S? x S! (where
S™ denotes the unit sphere in R 1) or, equivalently, to the rotation group SO(3).
The S? component of an orientational state @ € §2 orients a designated major (pri-
mary) axis of the frame, while the S! component corresponds to the orientation of a
minor (secondary) axis. The state @ can also be uniquely identified with the proper
orthogonal transformation that maps the reference frame into the frame of the rotated
molecule.

Orientational states can be represented in terms of several different types of co-
ordinates. For example, a point @ € §2 can be represented by a triple of angles
(9, @, ¥); these may be the familiar EULER angles, which range in the intervals

0=d=n O0=¢=27, 0=y =2r

In a notation where the triple (0,0, 0) corresponds to the coincidence of frames
(e1,e2,e3) = (ez, ex, ey), the following is one possible representation of £2:

ei(w) = sindcospex +sindsingpe, +cost e, (1.2a)
ez(w) = (cos ¥ cos ¢ cos Y — sin @ sin Y )ey
+ (cos ¥ sing cos ¥ 4 cos ¢ siny)e,, —sinv} cos ¥ e, (1.2b)
e3(w) = —(cos ¥ cos g sin i + sin @ cos ¥)ey
— (cos ¥ sing sinyy — cos @ cos /)e, + sintt siny e. (1.2¢)
Thus, in addition to our geometric picture for the orientation of a molecule, we have
an equivalent angular representation for its orientational state. In all its realizations,
such an £2 is isomorphic to a three-dimensional closed manifold (compact manifold
without boundary). The appropriate measure p on §2 is the invariant HAAR measure

on SO(3) when SO(3) is viewed as a topological group. In the angular representation,
this is most conveniently expressed as

do = du(w) = sin dd de dy,

whence it readily follows that the total measure |£2| of §2 is

2m 2w k14
|£2] =/ dl/// dgo/ sin d = 8x2. (1.3)
0 0 0

We are guilty of some abuses of notation. We have used the same symbol £2 to
denote the collection of orientations of a species of molecule (a geometric object) as



1.1 Molecular Interactions 7

well as the other mathematical objects to which it is isomorphic, such as S? x S!
and SO(3). In a similar way, we have dilated the meaning of the symbol w also to
include the angular representation of the molecular orientation.

Prototypical Hamiltonian

The molecular states represented by the space §2 can be expressed in different ways
in the two-particle Hamiltonian H, depending on the particular theory being adopted.
To differentiate the molecular state—which pertains only to the model representing
the molecule—from the expression of that state—which pertains to a specific inter-
action theory and to the way this is reflected onto the two-particle Hamiltonian—we
introduce the space Q. This space, which is the image of §2 under an appropriate
mapping q, expresses the ingredients q that constitute H —typically a collection of
molecular tensors, possibly with different ranks. Thus, H can be written as

H(w,0') = H(q.q). (1.4)

where
q=gq(w) and q =q().
We assume that g is a continuous mapping, so that Q is also compact. We further
think of @ as immersed in a finite-dimensional inner-product space ¥ .
A rather general family of functions H is discussed in [116]; it is also shown
there how they can be subsumed in the following diagonal bilinear form

H@.q) = —Uo (e+q; -d} —a—q_-q_). (1.5)

where Uy > 0 is a characteristic interaction energy, ¢, are called, for short, the
collective molecular tensors, and

a4 € {0, 1}.

Formally, @ = (q4.9_) € Q4+ x Q_, while T splits into the Cartesian product
T = T4 xT_and Q+ C T%. In equation (1.5), q4 - ', and q_ - q_ are inner
products in the spaces 34 and T_, respectively, which may also have different di-
mensions. Our development, which is here rather formal, will be further illuminated
by the specific examples presented in the following subsection. In the prototypical
Hamiltonian (1.5), the variables q. are said to be attractive, while the variables q_
are said to be repulsive: the former tend to be equal in both interacting molecules,
q; = q/+, to reduce their interaction energy, while the latter tend to be “orthogonal,”
d_-q_ = 0. Thus, if oy = 1 and ¢— = 0, the Hamiltonian H in equation (1.5)
is called fully attractive, whereas if o4 = 0 and o— = 1, it is called fully repul-
sive; finally, if oy = a— = 1, then H is called partly repulsive. For special spin
systems, partly repulsive Hamiltonians were already considered by BOGOLIUBOV
JR. [27, 28]; in [116] his approach was systematically extended to a wide class of
Hamiltonians appropriate for soft-matter systems.*

We present now two specific Hamiltonians in the form (1.5), both relevant to the
molecular theory of liquid-crystal phases.

4 See also [260].
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Uniaxial and Biaxial Interactions

We consider the examples represented by the molecular architectures in Figure 1.1.
The classical molecular model for the uniaxial nematic phase is associated with the
description of nematogenic molecules as cylindrical rods (see Figure 1.1 left). In our
setting, this model, put forward by MAIER & SAUPE [208], can be derived from a
pair-potential written as

Hu(w’ (,()/) = _UOq(a)) : q(w/)9 (16)

where U is the same interaction energy as in (1.5) and q is the symmetric, traceless,
second-rank tensor defined as

q(w) = el(a))®e1(a))—%l, (1.7)

where I is the second-rank identity tensor in three space dimensions. In (1.6), the
inner product between two second-rank tensors A and B is defined as

A-B:=tr(AB"), (1.8)

where T denotes transposition.’ Inserting (1.7) into (1.6), by use of the following
tensor algebra identities®

(@a®b) - (c®d)=(a-c)b-d),
(a®b) - I1=tr(a®b) =a-b,

valid for all vectors a, b, ¢, and d, we also express H, as

1 2
H, = U, [(e1 eh)? — 5} = —§U0P2(cos 9), (1.9)

where ¥ is the angle between the long axes of the molecules in orientations @ and
@', and P, is the second LEGENDRE polynomial,

cos? = ey - ey, Psr(x) := %xz - %
In Section 1.3, we shall build upon the molecular interaction (1.6) the MAIER—
SAUPE mean-field theory on uniaxial nematic liquid crystals.

Most liquid crystal molecules are far from possessing the cylindrical symmetry
with which they are credited in most of the accounts on their mesogenic nature. Thus,
if real liquid crystal molecules resemble more laths than rods, it is natural to imag-
ine that at sufficiently low temperatures, where random rotations about the longer
molecular axis may cease to render effectively uniaxial a truly biaxial molecule, an

5 See also Appendix A.1.
6 See also Appendix A.2.
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ordered phase condenses with the symmetry molecular axes aligned on average par-
allel to one another, while the molecules retain the spatial mobility characteristic of
liquids. Essentially this intuition, made quantitative, formed the basis of FREISER’S
prediction of the biaxial nematic phase [110, 111] . A long history, paved with both
enthusiasm and delusion, followed FREISER’s work. YU & SAUPE [365] showed
unmistakable evidence of phase biaxiality in certain lyotropic liquid crystals, while
the quest for thermotropic biaxial liquid crystals has only recently issued claims that
have so far resisted the criticism of the skeptic [197, 198, 19917

A molecular model for the biaxial nematic phase, based upon the platelet geom-
etry (see Figure 1.1 right), was put forward in [321] and reconsidered in [315]. The
pair-potential for this model is expressed in [315] as

Hy:=~Uola-d' +y(@-b' +b-q) +b-b], (1.10)
where b is the symmetric, traceless second-rank tensor defined by
b=e;Qe; —e3 R es. (1.11)

As shown in [24], the Hamiltonian in equation (1.10) can be given the diagonal
form R
Hy, = —Up (2141 - ¢} + @22 - Q5) . (1.12)
with
q1,2 = q + y1,2b. (1.13)

In (1.12), the tensors q,» have different expressions for different values of y. Pre-
cisely, for y # 0,

30— 14 /(BA—1)2 + 12y2
6y

Yi2 =
and
V2=V _Y=n
1= , Q= )
V2—N"1 Y2—"
while fory =0,q; = q.q2 = b, oy = 1, and @, = A. Moreover, for A > y2, both
a1 and o are positive, and equation (1.12) can be given the form (1.5) with a single
attractive term («— = 0) by appropriately defining q

a; = (Vo1 Vra) . (1.14)

For A = y2, either a; or a» vanishes; the expression in (1.12) still reduces to (1.5),
with a single attractive term, but now q includes a single tensor:

q:= Janq,, withoy = max{ay, oz}, (1.15)

7 Two more recent contributions [295, 296] have concluded that some allegedly biaxial ne-
matic compounds exhibit rather subtle surface effects. These effects may well be mistaken
for signs of bulk biaxiality but are in fact compatible with bulk uniaxiality. This shows that
the quest for phase biaxiality in thermotropic nematic liquid crystals is far from over.
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For A < y2, either a; or a5 is negative, and equation (1.12) reduces to a partly
repulsive Hamiltonian in the form (1.5), with appropriately defined g, and g_, each
including a single second-rank tensor:

a+ = Jopqn, q- = /—orqr, with oy > ak. (1.16)

1.1.2 Ensemble Potentials

In this section, we construct the thermodynamic potentials appropriate to describe
an ensemble of N identical particles, which we index i = 1,..., N. These particles
interact with each other through the pair-potential H. We can indifferently think of
them as occupying the sites of a lattice, for example, or arranged randomly in some
region. We can assume that each particle interacts with every other particle or that it
just interacts with some proper subset of the rest of the ensemble (such as “nearest
neighbors”). We denote by { the inferaction set. It is composed of all ordered pairs
of interacting particles:

4 = {(i,j) li,j € {1,...,N}, i < J, particle i interacts withparticlej}.
We assume that each particle in the ensemble interacts with at least one other particle:
ie{l,....,. N} =3j€e{l,....,N}:(,j)ed.

Some examples of ensembles with minimal, nearest-neighbor, and maximal inter-
actions are illustrated in Figure 1.2. We let n denote the cardinality of the set &,

N D O

Fig. 1.2. Ensembles with minimal interactions (left, left center), nearest-neighbor interactions
(right center), and maximal interactions (right).

n := |4/, that is, the number of particle—particle interactions in the ensemble. One
can determine n as a function of N for the cases of a minimal number of interac-
tions, nearest-neighbor interactions, and a maximal number of interactions—all par-
ticles interact with each other. These are summarized in Table 1.1 for a simple lattice:
equally spaced points in 1-D, square and cubic lattices in 2-D and 3-D, respectively.
It should be noticed that we always have

=
1A%

l\).l =

(1.17)

In fact, the case n = N/2 is quite exceptional, associated with the situation in which
N is even and each particle is involved in precisely one interaction. This situation is
depicted in Figure 1.2 left for the case N = 4.
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interactions n=|4

.. ”N —‘
minimal —
2

nearest neighbor (1-D) N —1

nearest neighbor (2-D)| 2N — 2N 1/2

nearest neighbor (3-D)| 3N — 3N 2/3

N(N —-1)
2

maximal

Table 1.1. Cardinalities of the interaction set & for minimal, nearest-neighbor, and maximal
interactions. Here [.] denotes the ceiling function, the least integer greater than or equal to its
argument. Thus, in particular, [N/2] = N/2 (if N is even), (N + 1)/2 (if N is odd).

A state of the ensemble corresponds to a set of states of each of its particles. An
ensemble state is represented by

coz(wl,...,wN)e.QN.

The ensemble state space is thus £2V. The total internal energy associated with such
an ensemble state is given by the ensemble Hamiltonian

H(w):= Y  Hw.oj). (1.18)
@i,j)ed

the sum of the two-particle Hamiltonians associated with all of the interactions. The
probability of finding the ensemble in a given state is assumed to follow a BOLTZ-
MANN distribution. The corresponding probability density p is

1 1
. I —BA#(w) .
p(w; ) = —g(ﬁ)e . B= 0’ (1.19)

where kp is BOLTZMANN’s constant, > 0 is absolute temperature, and 2 is the
ensemble partition function

Z(B) = / e PH@ . (1.20)
QN

Here and in what follows, the integral over the ensemble state space 2V of an inte-
grable function g : 2V — R is to be expanded as

/ g(w)dw:/ / g(wy,...,ony)dwy---doy.
QN 2 Q

Accordingly, the ensemble average (g), of g is defined as

(8)p 1= /9 gl f)do. (1.21)
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All relevant thermodynamic potentials are readily derived from the partition
function 2. The ensemble free energy (or HELMHOLTZ potential) is®

1
F(B) = 3 InZ(B). (1.22)
and the ensemble internal energy % is
ad
UB) = (), = —ﬁln Z(B). (1.23)

The entropy . can be deduced from equations (1.22) and (1.23) with the aid of the

thermodynamic relationship
F=U -0,

from which we obtain
S (B) = —kg(Inp),.

It is convenient to introduce for .% the corresponding per-particle potential
1
F:=—%. (1.24)
N

Analogous expressions could be introduced corresponding to % and ..

We close this section by heeding a scaling property of .# that is often useful.
Suppose that the ensemble Hamiltonian .77 is altered by the addition of a constant
C, so that

H— I+ C. (1.25)

Then .% is accordingly transformed as
F = F +C. (1.26)

To prove this, we need only remark that, by (1.20),

f‘f&—>e‘ﬂC/ e B @Gy = PC . (1.27)
N

By applying (1.22), (1.26) readily follows from (1.27). Clearly, the interaction is not
affected by (1.25), nor are the thermodynamics of the ensemble affected by (1.26).
Moreover, by (1.19), the probability density p remains unchanged. Often the scaling
constant C is chosen so as to make either .% or # attain a desired value at a particular
reference phase. We shall customarily scale . through (1.26) so as to make it vanish
in the most disordered phase.

8 For the motivation given in statistical thermodynamics to both definitions (1.22) and (1.23),
we refer the reader to the terse booklet by SCHRODINGER [290] (see, in particular, Chap-
ter II). The definition of internal energy, entropy, and free energy given in continuum ther-
modynamics will be recalled in Section 2.2.2 below.
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1.2 Mean-Field Approximation

Computing the ensemble free energy .# for a general pair-potential H, even in the
diagonalized bilinear form (1.5), in most cases reveals itself to be a formidable task.
Much easier is the task of computing .% if the particles in the ensemble interact only
with an external field. In the mean-field approximation, the interaction binding the
particles together is wisely replaced by an effective internal field that mimics it. We
devote this section to laying the theoretical basis of this approximation in our general
context.

1.2.1 One-Particle Hamiltonian

Conceptually, the mean-field approximation replaces, as it were, the interaction be-
tween particles with the action exerted by a mean field, at the same time produced
and felt by all particles. Mathematically, the mean-field approximation replaces the
two-particle Hamiltonian H with a one-particle Hamiltonian Hy, which also de-
pends on the mean field. There are several ways to formulate these ideas. In molding
ours, we were influenced by the treatments in both [28] and [263], though they differ
to a degree. Still other points of view are exposed, for example, in Chapter 20 of [39]
and in [161].

To build the mean-field theory appropriate to a bilinear Hamiltonian in the form
(1.4), with H as in (1.5), we start by considering the idealized case in which the
ensemble comprises only two molecules: N = 2. In this case, we define the one-
particle Hamiltonian Hy to be

1

where pg is the BOLTZMANN distribution function associated with Hy,

Ho(w:Q) := (H(®."))po

1
w; B,Q) := ———— e PHO@D) 1.29
po(w: B.Q) Zo.Q) (1.29)

Zy is the one-particle partition function,
Zo(B.Q) := / e BHO(@:0) g, (1.30)
2

and Q is the mean field, defined by

Q= (q),. (1.31)

with q the collective molecular tensor. Often, mean-field theory is referred to as self-
consistent field theory, a descriptive definition that owes its name to equation (1.31),
which is indeed a self-consistency requirement, as will become clearer below.

In (1.28), (H(w. ")), is the ensemble mean-field average of H in only one argu-
ment; since H is invariant under particle exchange, there is no ambiguity, since we
have
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(H(w,))py = (H(,0))py V.

(H(-,")) P is the ensemble mean-field average in both arguments of H:

(H(v))p(z) = /(22 H(w,w’)po(w;ﬁ,Q)po(w/;ﬂ, Q) dodo'.

In general, for a function g : 2k 5 R, the average (g) ok is defined by

k
(g)pk = ./Qk g(a)l,...,a)k)Hpo(wh;ﬁ,Q)dwh.

0
h=1

Care is required in interpreting the definition for Hy in (1.28), since, by (1.29),
the probability density pg also depends on Hy, so that (1.28) is properly an implicit
definition of Hy. Moreover, the mean field Q, which appears as a parameter in both
equations (1.28) and (1.29), is subject to the self-consistency condition (1.31), which
may or may not be satisfied. In general, the definition (1.28) is meaningful at most for
a finite number of compatible mean fields Q. We now further dwell on the physical
interpretation of this definition.

Often, the rationale behind subtracting one-half of the double average (H(, -)) P2
from the single average (H (, -)), is explained by the need to avoid double count-
ing of the energy [263]. To make this idea more precise, we compute the ensemble
Hamiltonians 5% and 7 corresponding to H and Hy, still in the case of an ensem-
ble of only two particles. By applying (1.18) to Hy, we arrive at

(w1, w2: Q) := Ho(w1;Q) + Ho(w2: Q), (1.32)

while 7 is simply
H (w1, 02) = H(wy, 02).

By computing the mean-field ensemble averages (%)) e and (.77)
obtain that

2 we readily

()3 = 2ol and ()2 = (H)z. (139
Since, by (1.28),
1
(Ho)po = E(H)p(z),

it follows from (1.33) that

(H0) 2 = (H) 2. (1.34)

This is the formal justification of (1.28): the one-particle approximating Hamilto-
nian H, must be such that the averages in p3 of both % and ¢ coincide at all
temperatures. This ensures that the ensembles governed by H and H, have the same
average internal energy, a natural requirement that makes H and Hj “consistent” in
the language of [263].
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We adopt this requirement on the equal scaling of the average internal energy as
a guiding criterion in extending the definition (1.28) to a general ensemble with more
than two particles. For such an ensemble, we replace (1.28) by

1
How: Q) i= 5 ((H@. My = 5 (HC9),z). (135)

Here 3 is a parameter to be determined so as to enforce the validity of the analogue of
(1.34); we refer to it as the coordination parameter. According to (1.32), the mean-
field ensemble Hamiltonian .77 is now

N
Hy(w;Q) := Z Hy(w;i;Q),
i=1

while 27 is given by (1.18). Computing the ensemble averages of .77j and 7 in pév ,
with the aid of (1.35) we arrive at

(«%’é)pg)v = N(Ho)p, (1.36)
and
N
() = / > H@i.o) [] polwn: B.Q) doy =n(H),z. (137
2N es h=1

where 7 is the cardinality of the interaction set 4. Equations (1.36) and (1.37) clearly
extend (1.33) to the general case in which N > 2 and n = 1. Since, by (1.35),

3
(Ho)py = 5 {H) 2.
the energy scaling
{(Ho)py = (H) v (1.38)
is guaranteed, provided that
2n
= —. 1.39
3= N (1.39)

By (1.17) and the maximal estimate for n in Table 1.1, the coordination parameter
3 obeys the inequalities
1=3=N-1.

For N even, a simple combinatoric calculation shows that 3 can be interpreted as
the number of molecules that interact with any given molecule in an ensemble with
n interacting molecular pairs. The one-particle Hamiltonian (1.35) is then seen to
be scaled so as to ascribe the proper amount of potential energy to an individual
particle based upon the number of interactions that particle has with other molecules
in the ensemble, on average. Proper attention to this scaling and to the value of the
coordination parameter 3 also helps in relating mean-field calculations to the results
of Monte Carlo simulations based upon the same particle—interaction potential.
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Equation (1.35), with 3 as in (1.39), accompanied by equations (1.29)—(1.31),
forms the basis of our mean-field framework. For the prototypical Hamiltonian in
(1.5),

(H(®.))pp = —Uo (@494 -Qr —a—q_-Q_),
where

Q= (94 ) po> (1.40)

while
(H(.))p = U0 (@104 Q1 —2-Q--Q-),

so that, by (1.35),
Hy(w: Q)

= U, |:oz+ (%QJF - q+(a))) Q4 —a (%Q_ - q_(w)) -Q_], (1.41)

where
U; :=3Up (1.42)

and Q := (Q4,Q-). In general, Q, which we call the order tensor collection—
for in most applications of this theory it collects average molecular tensors—is a
member of the linear space T = T x T_, the environment of the compact space
Q = Q4+ x Q_, where all molecular states are expressed. Q must comply with the
self-consistency condition (1.31) (more precisely, its components must separately
comply with conditions (1.40)). However, we can also regard (1.41) as defining a
function Hy on the whole of £2 x T . Such an extended function Hy will be the one-
particle Hamiltonian in the literal sense only when the associated self-consistency
condition (1.31) is satisfied. In the following subsection, starting from the extended
Hy, we shall construct a similarly extended free energy %, the critical points of
which correspond to the legitimate order tensors that obey (1.31).

1.2.2 Mean-Field Free Energy

To derive the ensemble mean-field free energy %, we first compute the ensemble
mean-field partition function 2. By (1.20),

N
Z5(B.Q) :=/ He_ﬂHO(w“Q)po(wi:ﬂ,Q) do; = Zo(B. Q"
N
where Zj is as in (1.30). Thus, by (1.22),
1
yo(ﬂvo) = _BNln Z()(,B,Q) = NFO(ﬂv Q)’ (143)

where, also in accordance with (1.24),
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1
Fo(B.Q) := 3 InZy(B,Q) (1.44)

is the mean-field free energy per particle. As is the case with Hy, also Zy and Fy
can be regarded as extended functions of Q in T. By (1.41), Fj is differentiable in
Q (see Section 1.2.4 below for a formal calculus in ), and (1.44) combined with
(1.29) and (1.30) implies that

aF; 1 0H, . oH
2= | e AH@ g, — <—°> . (1.45)
Q  ZyJp 0Q aQ [,
On the other hand, equation (1.41) implies
dHo (8H0 8H0)
0  \day'aa_ )’
where 9H
—2 = £U;0s (Qr — Q). (1.46)
0Q4

By comparing equations (1.45) and (1.46), we conclude that the order tensor col-
lections Q that satisfy the self-consistency condition (1.31) are precisely the points
where the function %y (f,-) = NFy(B, ), extended over the whole space T, is sta-
tionary. Thus, only at its critical points does the extended function .%, acquire the
meaning of ensemble free energy for the approximating mean-field Hamiltonian Hy.

1.2.3 Minimum Principle

We develop the principle that characterizes the globally stable phase of the mean-
field model even when the mean-field free energy does not have a global minimum.
An inequality, which is familiar in this area, plays a key role.

GIBBS-BOGOLIUBOV Inequality

We require the use of a form of what is generally referred to as the GIBBS—
BOGOLIUBOV inequality [128].

Theorem 1.1 (GIBBS-BOGOLIUBOV Inequality). Ler 57 and 7' be two suffi-
ciently regular ensemble Hamiltonians (on the same ensemble) with associated dis-
tribution functions p, p' and HELMHOLTZ free energies %, F' defined as in (1.19)
and (1.22). Then the following inequality must be true for every 8 > 0:

(H— Ay < T —F (A= H) . (1.47)

Here (-), and (-)y are the associated averages, defined as in (1.21).
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This inequality can be viewed as a consequence of certain convexity properties
of the free energy. Several proofs of this and related variants exist in the literature. It
was proved in [116] how these inequalities follow directly from JENSEN’s inequality.

The inequality (1.47) is valid under quite general circumstances; in particular, it
is valid when 7, p/, and .%" are taken to be the mean-field model functions .74y, po,
and .7 in their extended interpretations (with the tensor order parameters in Q free).
If we restrict ourselves to self-consistent Q’s, then we obtain the following result as
a consequence.

Corollary 1.1. Let F = % (B) be a target ensemble HELMHOLTZ free energy de-
rived from a pair-potential H as in Section 1.1.2, and let %y = Fo(B, Q) be the
mean-field approximation to it constructed as in (1.43). For a given B > 0, if the
order tensors collected in Q all satisfy the self-consistency conditions for this tem-
perature, then the free energies must necessarily satisfy

F(B) = Fo(B.Q). (1.48)
Proof. The right half of the GIBBS—BOGOLIUBOV inequality (1.47) gives

F = Fo S (H = Aoy = ),y = ()

N.
Po Po

Since 77 is scaled to satisfy the condition (1.38), we are assured that
(Ao (. Q) = (), (1.49)
provided that Q is self-consistent, and the result follows. 0O

We emphasize that the general GIBBS—BOGOLIUBOV inequality (1.47) is valid
for the extended functions ¢ and .% for any Q € T, while the inequality (1.48)
is valid only when the tensors collected in Q all satisfy self-consistency. We remind
the reader that .%( (8, Q) represents an approximation to .% () only when Q satisfies
self-consistency, which is equivalent to stationarity of %, whenever (1.5) applies.
The values of %y (8, Q) when Q is far from this critical-point set have no provable
relationship to .% ().

It is worthwhile to illustrate this with an example. Recall from (1.6) the two-
particle Hamiltonian H, for the uniaxial interaction that is at the basis of the MATER—
SAUPE mean-field theory,

Hu(a)’ (,()/) = _UO q(a)) . q(a)/),

where ((w) is the symmetric, traceless, second-rank tensor in (1.7). For this, the
single-particle potential Hamiltonian Hy is given by

1
Ho(w.Q) = U (EQ - q(w)) Q. (1.50)

where
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2n
U3 == FU()
as in (1.42), and Q = (q),, when self-consistency is satisfied. Here, as before, n
is the total number of interactions in an ensemble of N particles. Without the self-
consistency restriction on the tensor order parameter Q, the right-hand side of (1.47)
evaluates to

(= o) gy = =5 Uyl (i + VU {a ~ 5Q) -

At points where Q = (q) ., this then becomes
(A = Ho)y =0,

which is consistent with Corollary 1.1. In the absence of self-consistency, the above
equality fails to hold.

Thus, in the wide class of interaction Hamiltonians representable in the form
(1.5), any self-consistent mean-field free-energy approximation .%,(f, Q) necessar-
ily has value greater than or equal to the true free energy of the system at that tem-
perature, .% (), and so the equilibrium solution with the least value of .%, gives the
best approximation to . and determines the phase in the mean-field approximate
phase diagram. This is true in general, even when the extended % does not possess
a global minimum.

Global Least-Free-Energy Principle

We summarize our observations in the following statement.

Theorem 1.2 (Least-Free-Energy Principle [116]). Let H : 2 x £2 — R be a bi-
linear two-particle Hamiltonian of the form (1.4) with H asin (1.5) on a state space
2, and let F be its associated ensemble HELMHOLTZ free energy, as defined in
Section 1.1.2. Let 74 and % be the mean-field approximate ensemble Hamiltonian
and free energy, as constructed in Section 1.2. If 7 is properly scaled so that the
condition (1.38) is satisfied, then for every B > 0, all stationary points Q* of %
provide self-consistent mean-field approximate free energies Fo(B, Q") to the true
free energy of the ensemble at that temperature, % (B), and we are guaranteed that

F(B) = Fo(B.Q).

We conclude that

A globally stable phase of the mean-field model is given by any stationary
point Q* having the least value of Fo(B,Q*), which must give the best
mean-field approximation to the true ensemble free energy F (B).

We observe that the essential ingredients here are simply a mean-field Hamil-
tonian that gives a consistent approximation to the average internal energy of the
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ensemble in the sense (1.38) and (1.49) combined with the right-hand side of the
G1BBS—BOGOLIUBOV inequality. Also, if the (extended) mean-field free energy %,
were to have a global minimum (attained at a critical point), then such a point would
necessarily coincide with a least-free-energy point. We shall see in the next section
that in the cases in which %y is not bounded from below, all of the candidates for
a globally stable phase point necessarily have a saddle-like nature. We also observe
that these points (both global minimizing points and least-free-energy saddle points)
need not be unique; for example, at a first-order phase transition two or more distinct
equilibrium phases have precisely the same free energy.

1.2.4 Minimax Principle

The bilinear two-particle Hamiltonian H in (1.4) may fail to possess the diagonal
form of H in (1.5), though it can always be reduced to that form through an appro-
priate change of variables, as already shown for the biaxial interactions described at
the end of Section 1.1.1. The diagonal representation (1.5) clearly reveals whether H
is positive definite (the fully attractive case, a4 = 1, a— = 0, F = .F#(Q4)), nega-
tive definite (fully repulsive, ¢y = 0, = = 1, .% = #(Q-)), or indefinite (partly
repulsive, a4 = a— = 1, .% = .Z(Q4,Q-)). The nature of the pair-potential H
drives the nature of the mean-field free energy .%y. In this section, we show that if
H is positive definite, then .% is bounded below and attains its global minimum at
a critical point, if H is negative definite, then .% is bounded above and attains its
global maximum at a critical point, and if H is indefinite, then .% is neither bounded
above nor bounded below but still has a critical point of least free energy, which must
be a saddle point (a minimax point). The first case is the most common in practice,
and it will be exemplified in Section 1.3. The second case is rather rare, and it is con-
sidered here for completeness. The third case occurs in the study of biaxial nematic
liquid crystals, as recalled in Section 1.2.6 below. We consider the first two cases in
the next subsection and the (more difficult) third case in the subsequent one.

H Positive or Negative Definite

We require some information about the way in which the definiteness/indefiniteness
properties of H translate into properties of .%,. The properties that .%, inherits are
types of coercivity.” We have the following.

Lemma 1.1. Let H be a bilinear Hamiltonian in the diagonalized representation
(1.5), and let Fy be the associated mean-field free energy (in its extended interpre-
tation) as constructed in Section 1.2. Assume that q_ and .. are bounded on 2.

1. If oy = 1, then %(Q4+, Q_) is coercive with respect to Q4 for each fixed Q—.
2. Ifa_ = 1, then F(Qy,Q_) is negatively coercive'® with respect to Q_ for
each fixed Q.

9 We recall that a real-valued function f on a normed linear space is said to be coercive if
f(x) = 00, as || x]| = oo.
10 A real-valued function f is negatively coercive if — f is coercive.
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Proof. We let | - | denote the induced norm on the finite-dimensional inner-product
space §4 or T_:
Q> =Q:-Qs. |QP=0Q--Q..

We wish to show that, under the appropriate hypotheses,

F0(Q4+,Q-) > 00, as|Qy| — oo,

and
Z0(Q4+,Q-) > —o0, as|Q_| — oo.
Since .Fy = —% In %y and 2 = Z(I)v , these are equivalent to
Zo(Q4,Q-) - 0, as|Qi| — oo,
and

Zo(Q4,Q-) —> 00, as|Q_| — oo.

With H in the diagonal representation (1.5), the single-particle Hamiltonian (in
its extended interpretation) is given by

U
Ho(w;Q4,Q-) =3 [0+Q4-Qt —-Q--Q]

—U; (0194 (@) -Q —a—q_(0) - Q-]

and
Zo(F.Q4+.Q-)
= e7§“+°+'°+e§“—°—'°—/ eﬁa+q+(“’)'°+ef‘§“_q*(‘”)'°—dw, (1.51)
Q2
where B 3 & B ﬂ W)
" kgl  kgb ’

is the reduced (dimensionless) reciprocal temperature associated with the coordina-

tion parameter 3 and interaction strength Uy. In this expression, the terms quadratic

in Q4 and Q_ dominate the behavior for |Q4 | and |Q_| large, which we show now.
The functions g_ and g, are assumed bounded on £2, and so we can define

M_ = sup |q_(w)|. M, := sup |q; (o).
we wes2
Then we can bound
oPerar(@ray < 630+M+|°+|, Yo €2,

and ~ 7
e—ﬂ(qu,(w)'Qf > e—ﬂan*‘Q*‘, Vow e $2.

With these estimates, it follows from (1.51) that if o > 0, then for each fixed Q_,
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Zo = e§a7|07|2 |:/ e—ﬂaq_(w)oda)} e—§a+(\0+|2—2M+IQ+\) — 0,
Q
as Q4| = oo;

while if «— > 0, then for each fixed Q,

Zo = o~ barlail? [/ eﬁ(x+q+(w)~0+dwi| Ba-(a-P2m_jo-l) , o
B 2
as |Q_| — oo,
which concludes the proof. 0O

As a consequence, we can conclude that in the cases in which the pair-potential
H is either positive definite or negative definite, the mean-field free energy attains its
extremal value at a critical point, provided that q is bounded on £2. This assumption
is normally satisfied, since in most applications the state space 2 is bounded and the
tensors collected in q are continuous functions on £2.

Theorem 1.3. Let H be a bilinear two-particle Hamiltonian in the general form
(1.4) with H as in (1.5), and let %y be the associated mean-field free energy (in its
extended interpretation) constructed as in Section 1.2. Assume that the function q is

bounded on S2.

1. If H is positive definite, then % is bounded from below and attains its minimum
value at a critical point.

2. If H is negative definite, then % is bounded from above and attains its maxi-
mum value at a critical point.

Proof. 1If H is positive definite, then in its diagonal representation, it takes the form
(1.5) with o4 = 1 and «— = 0, and Lemma 1.1 guarantees that %, = %y(8, Q)
is coercive. By construction, .% is differentiable, and a differentiable, coercive real-
valued function on a normed linear space is necessarily bounded from below and
attains its minimum at a critical point (see, for example, Chapter I of [329]). In
a similar way, if H is negative definite, then its diagonal representation takes the
form (1.5) with @y = 0 and «— = 1; Lemma 1.1 guarantees that .% is negatively
coercive, and therefore it must be bounded above and attain its maximum at a critical
point. 0O

As we have noted already, the positive-definite case is the common, familiar one.
The case of a negative-definite H is peculiar and corresponds in some sense to an
interaction energy that completely discourages any natural ordering. Nevertheless,
even in this situation, we are still guaranteed that for every temperature, the mean-
field free energy has at least one equilibrium phase Q*, and all such stationary points
of .%o must still satisfy .7 (8) = .%o (B, Q*), with any one possessing the least value
of .F still giving the best approximation to the true ensemble free energy at that
temperature. The case of an indefinite pair-potential H is more subtle and difficult
to analyze; we discuss this next.
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H Indefinite

The analysis of our model in the case of an indefinite bilinear Hamiltonian requires
some higher-order calculus of the mean-field free energy Fy and single-particle po-
tential Hy. It also relies upon our ability to construct a “deflated model,” which is a
function of a reduced set of tensor order parameters that possesses a global minimum
(analogous to the case of H positive definite). We include here the study of this case
for its relevance to the theory of biaxial liquid crystals; the classical case in which the
bilinear Hamiltonian H is positive definite would suffice to treat the MAIER—SAUPE
theory, which is the most instructive of all molecular theories of liquid crystals. We
shall omit most proofs in our account below, referring the interested reader to the
comprehensive study [116].

Calculus

We require some information about the second derivatives of Fy with respect to the
extended order tensors. This will in turn be related to derivatives of Hy. Derivatives
of functions on vector spaces can be interpreted in various ways and are in general
identified with multilinear forms. For our purposes, for a function such as Hy =
Hy(Q), Q € T, it is expedient to identify aa% with the element of T that represents

the linear form associated with the first derivative and to identify aa (ﬁo with the linear
transformation on ¥ that represents the quadratic form associated with the second

derivative; that is, we set

dH 02 Hy
—eT, — € L(T7),
ile] 9Q? )
where L(T) is the space of all linear transformations on T, so that, for all increments
UeT,

82 82H0

DR (QU-U+o0(?), ase— 0.

9H,
Ho(Q + £U) = Ho(Q) + sa—o"(o) U+

For example, consider the case of the bilinear two-particle Hamiltonian in its
diagonal representation (1.5),

H(w,0') = =Us [+q4(®) - q4 (@) —a—q_(») - q_()],

for which the mean-field single-particle Hamiltonian is given by (1.41):

Us
H()(a); Q+, Q_) 27 [Ol+Q+ . Q+ —a_Q_- Q_]
— U [24+94 (@) - Qr —a—q_(w) - Q_].
For this we obtain (see also (1.46))

9H
ao—"(w; Q..Q)=Ua [q_(w)—Q_] €T
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and 52
Hy ~
Q2 (0;Q4,Q-) = —Uza_l € L(32),
where | is the identity in L(3_), such that
9% H,
W(CU;Q.hQ_)U_ = —U3O[_U_, YU_ e T_.

We say that the linear transformation aa g" is negative definite if the associated

quadratic form is negative definite in the sense

92 H,
0Q?

Observe that for Hyo(w; Q4+, Q_) above, we have (by virtue of the bilinear nature
of Hyp)

U-U<0, YUeT,Us#D0.

92 H 0?2

—20 and 20 are both constant,

Q% Q2
9% H,
Gle
92 H
8020 is negative definite (if «— > 0).

is positive definite (if o > 0),

As a final preliminary note, we indicate that we will conform to the following nota-
tion for tensor products:

Vi,V, € T = Vi®V, e L(T)
via
Vi®Vo))W:= (V- W)V, YWeT.
The first partial derivatives aa% have already been related to aa% in (1.45). The

2
second partial derivatives g IZO can be handled in a similar way. We obtain the fol-

X 2Q
lowing.

Theorem 1.4. Let Hy = Hy(w; Q) be a sufficiently regular real-valued function
defined on 27T, §2 a state space, and T an inner-product space. Let Fy = Fo(8, Q)
be the associated (per particle) HELMHOLTZ potential defined by

1 .
Fo(B,Q) = —Em fﬂ e BHO@:Q) g, (1.53)

The following formula is valid in general:

92 Fy 92 Hy 0H, 0H, 9H, 9H,
=) —B{—® —) +B(— e 1.54
0Q? <802 >p0 p < Q ® Q >p0 p < Q >p0®< 0Q >p0 (1.5
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Proof. The result follows by expansion of
Fo(B.Q+eU) = Fo(B,Q) + -+~

in (1.53), using the definitions of the distribution functions and averages as in Sec-
tion1.2. 0O

We note that formula (1.54) is equally valid for derivatives with respect to subsets
of tensor order parameters, such as Q4 and Q_. For our purposes, the important
consequence of this formula is that whenever a bilinear pair-potential has at least

. 2 . .
some repulsive components (e— # 0), then % 020 must be negative definite at all

Q_-critical points.

Corollary 1.2. Let H be a bilinear two-particle Hamiltonian in the diagonalized
form (1.5) that is either indefinite or negative definite (i.e., partly or fully repulsive),

and let Fy be the associated per-particle mean-field HELMHOLTZ free energy. Then
3> Fo
Q2

is necessarily negative definite at all Q_-critical points:

aFO 82 *
(ﬂ Q1.Q*) =0 = Free (,3 Q. Q) negative definite.

Proof. We know that, in general,

Fy _ [0Hy
Q- \dQ_
>0 oF 0H,
0o _ oo\ _
Q.07 <ao_> o

and the formula in Theorem 1.4 simplifies to

82F0_<82H0> _ﬁ<8H0 8H0>
e\ @2 |, 9a- e/,

Also, we have already observed that for the diagonalized bilinear model, we have
(for any w, Q4+, Q-)

W(w Q+,Q_) = —Uaoc_l,

where U; and o are both positive by assumption. Evaluating the associated quadratic
form, we obtain (using also the fact that § > 0)

92 F, . 9H, 2
e (B,QL.Q)U_-U_ =—U304_|U_|2—ﬂ<|:80_( Q,.Q%)-U_ ] >
)

~Usa_|U_|*> <0, ifU_#0.

BF()

We conclude that is negative definite at (8,Q%,Q*). 0O
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We note that a similar conclusion cannot be obtained for the Hessian with respect

to the attractive variables, %2050. The calculation analogous to the above (at a Q4-
+
critical point, e?aoii = 0) gives
P F 9H 2
2°(/3,Qi,Qf)U+-U+ = o |U+]> - B —2(;Q%,Q%) - U; )
Q7 0Q4 A
0

which is a sum of a nonnegative and a nonpositive term and may be positive, negative,
or zero. In this regard, there is an intrinsic asymmetry in the formalism. Finally, it
does not matter at this stage whether we consider derivatives of the ensemble mean-
field free energy %y or the free energy per particle Fjp, since they are proportional:
Fo = %y/N.

Deflated Model

At this point we focus our attention on the indefinite (partly repulsive) case, the case
in which ¢4 = o— = 1 in the diagonal representation (1.5). We have seen that
in this situation the associated mean-field free energy Fy(f8, Q4+, Q_) inherits three
properties that will be essential to our further development: for each fixed § > 0,

1. Fo(B,Q4,Q-) is coercive with respect to Q. for each fixed Q_,
2. Fo(B,Q4+,Q-) is negatively coercive with respect to Q_ for each fixed Q4, and
3. 9% Fy/0Q2 is negative definite at all Q_-critical points.

While Fj possesses neither a global maximum nor a global minimum, the properties
above allow us to define a deflated free energy that is a function of a reduced set of
parameters (8 and Q4 only) and that does possess a global minimum.

Theorem 1.5. Let H be an indefinite (partly repulsive) bilinear two-particle Hamil-
tonian in the diagonal representation (1.5), that is, with a4 = a— = 1, and let Fy
be its associated per-particle mean-field HELMHOLTZ function, constructed as in
Section 1.2. Then for every fixed B > 0 and Q4+ € T, the equation

daFy
—~—(£,0+,Q-)=0
e (B.Q+.Q-)
is uniquely solvable for Q_:
Q- = Go(B.Q4).

The reduced function

Jo(B.Q4) := Fo(B,Q+, Go(B,Q4))

is well defined for all B > 0 and Q4+ € T, and we term it the deflated mean-field
free energy. For every B > 0 and Q4 € T, it satisfies

fO(ﬂvQ-i-): max FO(ﬂ’Q-i-’Q—)' (1.55)
Q_€eT_

The critical points of fo with respect to Q4 are in one-to-one correspondence with
the critical points of Fy with respect to (Q4+, Q_).
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Minimax Characterization

The deflated mean-field free energy fp inherits coercivity from the Q4 -coercivity of
Fy by virtue of the characterization (1.55). As a consequence, it attains its global
minimum at a critical point, and this point must be a least-free-energy point and
must admit a characterization as a minimax point. The following theorem is proved
in [116].

Theorem 1.6 (GARTLAND & VIRGA [116]). Let H be an indefinite (partly repul-
sive) bilinear two-particle Hamiltonian in the diagonal representation (1.5), and let
Fy and fy be the associated mean-field HELMHOLTZ free energy (constructed as in
Section 1.2) and the deflated free energy (constructed as in Theorem 1.5). Then for
any given B > 0, fo attains its global minimum at a critical point Q% € Ty that
admits the characterization

fo(B.QL) = min fo(B,Q4) = min max Fo(B,Qs, Q).
QreTy QL el

4+ Q_€eT_

The associated point (Q7, QY), with Q* = Go(B,QY), is a least-free-energy point
and characterizes the phase of the mean-field model:

fo(B, QL) = Fo(B,Q%. Q%)
= min{Fy(B, Q+,Q-) | (Q+, Q-) a critical point of Fy}.

Thus the case of the mean-field model associated with an indefinite bilinear pair-
potential (1.5) is completely understood. Existence is guaranteed of at least one sta-
tionary point of Fy that gives the best approximation to the true free energy of the
ensemble at a given temperature among all self-consistent tensor order parameters.
We conclude our treatment with the introduction of a generalized notion of local sta-
bility that stationary points of Fy must satisfy in order to be viable candidates for
global least-free-energy phase points.

1.2.5 Local Stability Criterion

One of the main analyses performed with mean-field models is the construction of
associated phase diagrams, which chart out the bulk equilibrium phases of the system
in different regions of the parameter space to be explored. Under most circumstances,
this must be done numerically. In the computational physics community, this is usu-
ally accomplished by generating a variety of initial guesses (for each fixed set of
parameters) and relaxing the free energy to local minima from these guesses. The
smallest of the values of the local minima defines the phase. If the mean-field free
energy possesses a global minimum (the most common case), then this is a viable
(and popular) approach.

Numerical analysts generally prefer to follow paths of equilibrium points of the
mean-field free energy, using numerical continuation and bifurcation techniques,
along each path, classifying points as locally stable or unstable, computing their free
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energies, and then a posteriori declaring the solution with the minimal free energy
(for a given set of parameters) to be the equilibrium phase of the system—completely
analogous to the direct free-energy minimization approach in this last regard. In the
case of a mean-field free energy with a global minimum, each approach has its advan-
tages and disadvantages, and neither is immune from failing to detect a competing
equilibrium solution. In the case of an indefinite mean-field free energy—the case of
present interest—only the latter approach is viable.

In the case of a mean-field free energy that possesses a global minimum, the
assessment of the local linear stability of an equilibrium point is usually a matter of
examining the sign of the minimum eigenvalue of an appropriate Hessian matrix. In
the case of an indefinite free energy, this is no longer the situation, and a different
approach is required. We develop such an approach now.

Scalar Order Parameters

The practical analysis of specific mean-field models normally necessitates the trans-
formation of Fy(B, Q) to a function of a finite number of scalar variables, also called
the scalar order parameters, that characterize the tensors in Q. The number of scalar
order parameters will not be greater than the dimension of T and is often strictly
less, made so by symmetries or degeneracies or additional modeling assumptions.

Consider again the one-particle Hamiltonian Hy in (1.50) associated with the
two-particle Hamiltonian H,, of the uniaxial interactions in (1.6),

1
Ho(w.Q) = U, (EQ _ q(w)) Q4 (1.56)

where ¢ is a scaling constant introduced here much in the same spirit as was C in
(1.25) and
U; =3Up >0

with Uy the interaction strength for the pair-potential (1.6) and 3 the coordination
parameter for the ensemble, as in (1.35) and (1.39). It then follows from (1.44) that
the corresponding one-particle partition function Zy is given by

ZO(,B»Q) = e_ﬂUS%Q'QL[ eﬂU5Q(a))‘de, (157)
2

ebe
where q(w) is as in (1.7). Setting
ePe =102 (1.58)

makes Zg such that Zy(8,0) = 1, and, by (1.44), the one-particle free energy Fy
vanishes in the isotropic phase. For all values of Q, Fj then reads as

Fo(B.Q) = US%Q'Q— %lnﬁ\/;zeﬂUa‘I(w)'de’ (1.59)

which is more conveniently given the following dimensionless form:
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~ ~ 1 1 1 1
Fo(B.Q) = —Q'Q——~ln—/ ePU@Qg ), (1.60)
° 2 Foiel e
where F U
= 3 3Vo
Fo=-2 and B=p8U, =22, 1.61
0 U3 an ﬁ ﬂ 3 k39 ( )
as in (1.52).

The order tensor Q is real, symmetric, traceless, and of second rank; it has in
principle five degrees of freedom. The free energy Fo, however, is frame indifferent
and depends only on the two independent eigenvalues of Q. If we fix the frame of Q
to be (ex, ey, e;), then we can express Q in the form

1
Q=S(ez®ez—§l)+T(ex®ex—ey®ey), S.T eR, (1.62)

which is the notation used in [315]. By using (1.62) in (1.60), also with the aid of
(1.3), we obtain

Fo(B.Q)

1 1 1 2m T
=82+ T*— = —/ d(p/ P08 sin 9 dy
3 18 4 0 0

= fu(B.S.T), (1.63)

where .
gu(®,¢:;8,T)=3S (005219 — 5) + T sin®® cos 2¢

and the angles ¥ and ¢ are defined by equations (1.2). The function f, defined by
(1.63) will be the basis of our analysis in Section 1.3. Here we see from it that sym-
metry reduces the five degrees of freedom of the order tensor to two scalar order
parameters. The transformation from order tensors to scalar order parameters is not
uniquely defined, and to progress in this section, we must make some assumptions
concerning the free energy expressed as a function of scalar order parameters such
that it retains sufficient structure of the free energy expressed as a function of the
order tensor collection Q.

The case of interest is the case of an indefinite bilinear pair-potential as in (1.5),
the partly repulsive case, for which the associated mean-field free energy has neither
a global minimum nor a global maximum. We assume that, when expressed in terms
of scalar order parameters, the free energy takes the form

f(x,y), xeR™, yeR",

and that it satisfies the following assumptions.
Assumptions 1.7.

1. f is coercive with respect to x for each fixed y,
2. f is negatively coercive with respect to y for each fixed x, and
3. the Hessian Viy f is negative definite at all y-critical points.
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Thus we are assuming that the form of f(x, y) parallels the form of Fo(8,Q4+,Q-)
(with dependence on temperature suppressed). The scalar variables in x parameterize
the attractive order tensors in the collection Q. , while those in y parameterize Q_. It
is shown in [116] that the conclusions reached below hold for any parameterization
that can be transformed to the above by a sufficiently regular change of variables.

Deflated Free Energy

We adopt the following notational conventions for the gradients and Hessians of

f(x.y):

o .
0xq 0y1
sz[gzﬂ, Vef = ol W= |
af af
8xm+ aym_

and ) f 5 f
\Y \Y
sz — |: xXx xy ] ,
Vixf Vi, f
where
9 f 9 f
dy10xy 0Ym_0x1

Vi /=Yy (Ve f) = , etc,

0% f 02 f
0y10Xm . ym_0xm

Under the assumptions we have placed on f above, we can follow exactly the same
path as in Section 1.2.4 to deduce that for each x,

Vy f(x.y) = 0is uniquely solvable for y = g(x).,
and the deflated function

h(x) = f(x.g(x)) = jmax flx.y) (1.64)

is well defined for all x in R™+ and is coercive. As a consequence, % is bounded
from below and attains its global minimum value at a critical point. As before, the
critical points of # and f are in one-to-one correspondence, that is,

Vh(x*) =0 & Vf(x* y*)=0, withy* = g(x*) unique.
We need to relate the Hessians of 2 and f. By definition,

Vyf(x,g(x)) =0, VxeR"+.
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From this follows
0=V [Vyfx,g(x)] = V;, f(x,2(x) + V;, f(x,8(x)Vg(x),
which implies
Vg(x) ==V;, f(x,g(x)7'V], f(x, g(x)).
In addition,
Vh(x) = Ve[f(x,8(x))]
= Ve f(x,8(x)) + Vg(x)'V, fx,g(x)) = Ve f(x,2(x)).
since Vy, f(x, g(x)) = 0. Combining these, we obtain
V2h(x) = Vx [Ve f(x, g(x))]
= Vi, f(x,g(x) + Vg, f(x, g(x)) Vg (x)

= Vi (f(x.g(x) = V3, f(x, g (x))V5, f(x, g (x)) 7' V5, f(x. g (x)).
(1.65)

Necessary conditions for x* to be a local minimum point of / are
Vh(x*) = 0 and VZh(x*) positive semidefinite.
The first-order condition here is equivalent to
Ve f(x*,y%) =0, V) f(x*, ") =0, with y* = g(x¥).

By virtue of the assumed negative definiteness of ij,y f at all critical points, from
(1.65) it now follows that a sufficient condition to guarantee the second-order condi-
tion above is that V2, f(x*, y*) be positive semidefinite. In fact, more can be said
about the relationship between V24 and V2 f.

Local Stability Criterion

We recall the notion of the inertia of a symmetric matrix M as the triple of integers
giving the number of positive, zero, and negative eigenvalues, counting multiplici-
ties:

i(M) = (# positive eigenvalues, # zero eigenvalues, # negative eigenvalues).

SYLVESTER’s law of inertia'! guarantees that the inertia of a matrix is invariant
under congruence transformations:

i(M) = i(NMN"), for any N nonsingular.

As a consequence of this, the following relationship concerning the inertia of the
Hessian of f has been established in [116].

1T gee, for example, Section 4.5 of [148].
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Lemma 1.2. Az all critical points (x*, y*) of the free energy expressed in terms of
scalar order parameters, f(x,y), the inertia of the Hessian of f satisfies

‘ . ([V2h(x*)
I(V2f(x.y™) =i ([ viyf(x*,y*)])'

Here h is the deflated free energy, as in (1.64).

At critical points of f, V;y f is negative definite by assumption and thus has
all negative eigenvalues (m_, counting multiplicity). It follows that the number of
positive and the number of zero eigenvalues of V2 f must be the same as those of
V2h at such points. In order for a critical point (x*, y*) of f to correspond to a
local minimum of A, the Hessian VZh(x*) must be positive semidefinite, and so
V2 f(x*, y*) must have m nonnegative eigenvalues (counting multiplicities). If
V2 f(x*, y*) were to have fewer than m nonnegative eigenvalues (greater than
m_ negative eigenvalues), then V2/(x*) could not be positive semidefinite, and the
point could not possibly be a global minimum point of / (a least-free-energy point
of f). We say that such a point is locally unstable. We have the following.

Theorem 1.8 (Local Stability Criterion [116]). Let (x*, y*) be a critical point of
the indefinite mean-field free energy f(x,y) expressed in terms of scalar order pa-
rameters x € R™+ (attractive) and y € R™— (repulsive) that is assumed to satisfy
the three conditions of Assumptions 1.7. If V2 f(x*, y*) has fewer than m non-
negative eigenvalues (greater than m_ negative eigenvalues) counting multiplicities,
then the point (x*, y*) is a locally linearly unstable equilibrium point of f in the
sense that (x*, y*) cannot possibly correspond to a global least-free-energy point
characterizing the phase of the system. Otherwise, the point is locally linearly sta-
ble, and the associated deflated mean-field free energy h satisfies the first-order and
second-order necessary conditions for a local minimum at x*.

1.2.6 Biaxial Nematic Liquid Crystals

As an application of our method, we compute here the mean-field free energy per
particle Fy for the pair-potential of biaxial nematics in equation (1.10). Though, as
already remarked in Section 1.1.1, equation (1.10) could be set in the form (1.5),
here we deliberately compute Fy for the pair-potential expressed in the molecular
tensors in (1.7) and (1.11). This also serves the purpose of illustrating how the the-
ory presented here requires only that H be reducible to the form (1.5), but it does
not necessarily prescribe employing the diagonal variables g.4. As pointed out in
Section 1.2.5, ultimately only the repulsive dimension m_, that is, the number of
independent scalar order parameters that represent the order tensor collection Q_,
plays a role in our local stability criterion. Note that m_ is necessarily less than or
equal to the dimension of §_, the vector space in which Q_ resides. Thus, in general,
the decomposition in equation (1.5) is crucial to identifying q_ and Q_, and so to
determine m_, but this by no means makes Q. privileged thermodynamic variables.

With the molecular tensors q and b as in equations (1.7) and (1.11), we define
the order tensors
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Q:=(q())py. B :=(b())p,- (1.66)

According to equation (1.35), the one-particle Hamiltonian Hy becomes

U. ~
Ho(@;Q.B) = —}(Q-Q +2yQ - B + AB - B) + U; Ho(; Q. B),
where U; = 3Uj and

Ho(w;Q,B) := —{q(®) - Q + y[q(®) - B + b(w) - Q] + Ab(w) - B}.  (1.67)

By (1.30), the partition function Z reads

Zo(,Q.B) = e";(Q'Q“VQ'B“B'B)ﬁ e~ BHO@QB) g, (1.68)
2

where B is as in (1.52) and Z has been scaled precisely as in (1.57). By (1.44), we
obtain from (1.68) the following dimensionless form of Fjy:

Fo(B.Q.B) := l(Q-Q+2yQ-B+/\B~B)—1~1nL e BHO@:QB) 14, (1.69)
2 B 12 /e
We assume that the order tensors Q and B, both symmetric and traceless, share
the same eigenframe (ex, ey, ez). Under this assumption, which is natural in the
absence of any external field acting on the ensemble, we represent Q as in (1.62) and
we give B a similar form:

1
B=2S (ez®ez—§l)+T’(ex®ex—ey®ey). (1.70)

We note that S, 7', S/, and T’ are the scalar order parameters: S and S’ describe the
uniaxial components of Q and B, whereas 7" and T’ describe their biaxial compo-
nents. A biaxial nematic phase is characterized by the growth of either one of the
latter from zero. By (1.62), (1.67), and (1.70), the function ﬁo in (1.69) can be given
the form

~ o~ 1 1 1
Fo(.Q.B) = 38* +T% +2y (gss’ + TT/) + A (gs’2 + T’Z)

1 1 2w 2w T -
—_ E In 57 dl/’/ d(p/ B @098, T.S" T v.0) 0 9 d9
= Jo 0 0
=: fo(B.S.T.S". T y.}). (1.71)

where
g0, 0, 98, T,8" . Ty, 1)
1
= (cos2 ¥ — 5) (S +yS") +sin®* 9 [(T + yT') cos2¢ + (yS + AS") cos 2y

+ [(1 + cos? 1) cos 2¢ cos 2y — 2 cos ¥ sin 2¢ sin ZW] (yT + AT).
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To apply to f, the local stability criterion of the preceding section, we identify the
attractive and repulsive dimensions m and m_. By (1.13), the second-rank tensors
q; and q» constituting q and ¢_ in equations (1.14)—(1.16) are linear combinations
of q and b depending on the model parameters (y, A). Similarly, the order tensor col-
lections Q4+ and Q_ are linear combinations of Q and B, and so, in view of (1.62) and
(1.70), m = my +m_ = 4. The attractive and repulsive dimensions for the function
fo in (1.71) are easily derived from equations (1.14)—(1.16); they are collected in
Table 1.2 for all possible choices of the model parameters.

A>y2a =2 <2
my| 4 2 2
m_ 0 0 2

Table 1.2. Attractive and repulsive dimensions m 4 and m_ for the mean-field theory of biax-
ial nematic liquid crystals.

The criterion in Section 1.2.5 classifies as locally linearly stable the critical points
of f, as a function of (S, T, S’, T') whenever the Hessian of f;, possesses four non-
negative eigenvalues if A > y2, or two nonnegative and two negative eigenvalues if
A < y2. The case A = y? is singular, but it is historically relevant, since it was the
first case studied theoretically [110, 111]. FREISER based his prediction of nematic
biaxial phases on the special Hamiltonian in (1.10) with A = y2.

The biaxial phase was first found experimentally in lyotropic liquid crystals [365].
Compelling experimental evidence for biaxial phases in thermotropic liquid crystals
is much more recent [2, 205, 219, 232, 298, 299], and though unanimous consen-
sus has not yet been reached [113, 199, 206, 295, 296], the new experiments have
considerably revived interest in liquid crystal science [198].

As shown by (1.15), a single molecular tensor, ¢ := q + yb, survives in
the two-particle Hamiltonian with A = y2; correspondingly, a single order tensor
6 := Q + yB represented as in (1.62), with scalar order parameters S:=5+ yS’
and T := T + yT’, suffices to express Fo. Accordingly, the scalar order param-
eters (S,7,S’,T’) in (1.71) become redundant, and they can be rearranged in the
independent order parameters (§ , YA"), so that f; reduces to a function ﬁ, of these
latter:

o L
FoB.8. Try) =382+ 12

1 1 27 2w T ~ A
_ Eln 8_2 dl/// dga/ eBE@0. VS, T57) i dd,
= Jo 0 0

where
~ A~ 1\ -~ ~ ~
& (0,0; 8, Ty) = (cos2 U — §) S + sin? (T cos2¢ + y S cos 21//)

+y [(1 + cos? 1) cos 2¢ cos 2 — 2 cos ¥ sin 2¢ sin 21#] T.
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Our stablhty criterion thus classifies as locally linearly stable the critical points of fb
in (S T) where the Hessian of fb has two nonnegative eigenvalues.

In the general case, the stability criterion in Section 1.2.5 has been implemented
numerically and systematically applied in the domain of the model parameter space
(y, A) defined by the inequalities

A>0, 1—2y|+ 1 >0, (1.72)

where the pair-potential H in equation (1.10) achieves its minimum value (preferred
relative orientation) in a completely aligned state ® = w’ (i.e.,q = q' and b = b’),
a domain that goes across the three regimes in Table 1.2 (see Figure 1.3). New types

Fig. 1.3. The admissible region in the parameter space (A, y) described by the inequalities
(1.72). The dashed parabola represents the singular set A = y2.

of uniaxial-to-biaxial transitions were predicted [23, 24, 63, 64, 315], which also
unveiled a tricritical point in the phase diagram [66], whose existence was further
confirmed by an alternative theoretical approach [370] and detected in two indepen-
dent experiments [219, 232]. Describing in detail all these consequences would be
beyond the scope of this book. The few comments above concerning the mean-field
theory of biaxial nematic liquid crystals based on the Hamiltonian in (1.10) should
suffice to illustrate the applicability of the method explained here to this still growing
field. The following section will be devoted to the derivation within this very setting
of the classical MAIER—SAUPE theory for uniaxial nematic liquid crystals, already
variously introduced in this section.

Before proceeding further, we indicate how the theory presented here could be
further generalized. We believe that the basic ideas of GARTLAND & VIRGA [116]
could be used to establish the validity of the minimum principle for indefinite mean-
field free energies in functional settings more refined and advanced than that en-
visaged here. Perhaps the question could also be asked of finding the most general
structure of H, and the most general environments @ and 3 compatible with the
desired property of %y to deliver the best approximation to .7 at its least critical
value.
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1.3 MAIER-SAUPE Theory

The MAIER—SAUPE mean-field theory plays a central role in the molecular descrip-
tion of uniaxial nematic liquid crystals for its formal neatness and its practical ef-
fectiveness. Thus, so far in our development it has often served as a test case for our
general treatment of the mean-field approximation. The two-particle Hamiltonian H,
of the MAIER—SAUPE theory was already introduced in (1.6) above,

Hu(w9 w/) = _qu(w) : q(a)/)v

where Uy > 0 is the interaction strength and q(w) is the molecular tensor

a@) = ¢10) ® () - 51 (1.73)

in the orientation w as in (1.7). H, is a special case of the general bilinear Hamil-
tonian in (1.5); in particular, it is fully attractive, according to the terminology of
Section 1.1.1. The one-particle Hamiltonian Hy associated with H, by the mean-
field approximation illustrated in Section 1.2 is'?

1 1
Ho(w,Q) = U; (EQ - Q(w)) Q+ Eln|9|7 (1.74)
where 8 is the BOLTZMANN factor in (1.19), U; is related to Uy through
v, =2y
3 — N 0,

n is the total number of interactions in an ensemble of N particles.'3, and use has
also been made of (1.58)

The order tensor Q represents the mean field to which all molecules in the en-
semble are subject: by definition, it is a symmetric, traceless tensor in the three-
dimensional vector translation space V. The admissible mean fields Q must satisfy
the self-consistency condition'*

Q= (q)p = fg 4(@)po(@: B, Q)dw, (1.75)

where pg is the probability density function on £2 associated with the one-particle

Hamiltonian Hy,
e~ BHo(2:Q)

Zo(.Q)

In this expression, § is the reciprocal reduced temperature defined as in (1.19) and
Z is the mean-field partition function per particle, which in (1.57) was found to be

po(w: B.Q) = (1.76)

12 Cf. equations (1.56) and (1.58).
13 Cf. equations (1.39) and (1.42) above.
14 Which is the form of (1.31) appropriate to this case.
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Zo(B.Q) = e—ﬂUsiQ'Qﬁ/ eﬂUﬂ(w)'de, (1.77)
Q

where §2 is the orientational state space described in Section 1.1.1. According to
(1.44), the mean-field free energy per particle Fy takes the form in (1.59),

Fo(B.Q) = US%Q-Q— %lnﬁfgewﬂ(”)'Qdm (1.78)

Since H, is positive definite, if properly rescaled by an additive constant, Theo-
rem 1.3 ensures that Fj is bounded from below and it attains its minimum value at a
critical point. By Theorem 1.2, for any given f3, all critical points Q of Fy(f, Q) solve
the self-consistency condition (1.75) and those where Fy attains its minimum realize
the best mean-field approximation to the “true” free energy at the given temperature,
and so they represent the globally stable phases.

It is worth observing that, for every f, there is at least one solution of (1.75), and
so one critical point of Fy: this is Q = 0, which represents the isotropic phase.
Lemma 1.3. Q = 0 is a solution of (1.75) for all values of B.

Proof. By (1.76) and (1.77),
1
po(w:B.0) = —-,
192
and so, also with the aid of (1.73), the right side of (1.75) becomes

1 1 1
A= @/Qq(w)dw = E/§2 (e e — 51) da(e), (1.79)

where a is the area measure over the unit sphere S2. It follows from (1.79) that
1 1
RAR" = — Re @ Re — =1 ) da(e) VR € 0(3), (1.80)
47 S2 3

where the superscript T denotes transposition. Since S? is invariant under the action
of the full orthogonal group O(3), and da(e) = da(Re) for all R € O(3), equation
(1.80) becomes

RAR" = A,
meaning that A commutes with all R € O(3),
RA =AR VR e0(3). (1.81)

By (1.81), every eigenspace of A is invariant under O(3), since, for an eigenvector a
of A with eigenvalue «,
RAa = aRa = A(Ra), (1.82)

and so Ra is an eigenvector of A with the same eigenvalue as a. On the other hand, by
(1.79), A is symmetric, and by the spectral theorem (see Appendix A.1) it possesses
a full basis of eigenvectors, all necessarily with the same eigenvalue by (1.81). We
thus conclude that A = «I, whence it follows that A = 0, since, again by (1.79), A
is traceless. 0O
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In a similar way, we prove that Fy defined as in (1.78) for all symmetric tensors'> Q
can also be expressed as a function of the invariants of Q,

L=tQ, L=tQ’ L=tQ (1.83)
Lemma 1.4. The function Fy in (1.78) is isotropic in Q, that is, it satisfies
Fo(B.RQR") = Fy(8.Q) VR eO(3).
Proof. By direct substitution in (1.78), we easily obtain that

1 1 1
Fo(ﬂa RQRT) — U?,ERQRT . RQRT _ E In E - €ﬂU3(e ®e—%[)-RQRTda(e)

= UalQ -R'RQR'R — L i/ PUs(Re®Re —31)Q 74 (4)
2 ﬂ 4 S2

= Fo(8.Q),
where use has been made of the identieties
R'R=RR" =1
and of the same change of variables in the integral as in (1.80). O

Corollary 1.3. There is a function Fj of both B and the invariants I; of Q in (1.83)
such that

Fo(B.Q) = Fy(B. I, I, I3). (1.84)

Proof. The existence of Fj follows from the representation theorem for all scalar
isotropic functions of a symmetric tensor [357]. O

Letting (A1, A2, A3) denote the eigenvalues of Q and (n, nz, n3) the corresponding
eigenvectors, we write Q in the form

3
Q=) lim ®n, (1.85)

i=1
so that
Lh=Xl+A+2x, L=2A+A+23 L=A+A+213. (186

Thus, (1.84) implies that F can also be expressed as a function ﬁo of the eigenvalues
of Q, symmetric under all their exchanges,

Fo(B,Q) = Fo(B, A1, A2, A3). (1.87)

As explained in Section 1.2.5, our strategy now requires determining, for every
given f3, all critical points of Fy that are eligible to be the points of least free energy,
that is, the points where Fy is locally stable. Such a strategy is better pursued by
scaling Fy to Uj, as in (1.60) and (1.61), and by setting B := BU; in accordance
with (1.52).

15 When Fo (B, ) is extended to the whole space of symmetric tensors, so is also Zg defined in
(1.77). In Theorem 1.9 below, solutions of (1.75) will indeed be sought in such an extended
space.
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Dimensionless Functions

Henceforth, to avoid clutter, we shall use the same symbol Fy in (1.78) to denote the
dimensionless function I::Q in (1.60) and the same symbol § in (1.19) to denote the
dimensionless parameter B in (1.52).'® Thus, with this new interpretation of the old
symbols, we rewrite (1.78) and (1.77) as!”

Fo(B,Q) = %Q-Q— %ln%'/geﬂq(‘”"?dw (1.88)

and .
Zo(B,Q) = e P3QQ__ / ePa@) Qg (1.89)
12| Ja

Both equations (1.75) and (1.76) remain formally unaltered, provided there we ex-
press Hy through

1 1
Hy(w,Q) = (EQ—‘](C‘))) -Q+ BIHWL (1.90)

instead of (1.74).

We shall represent the order tensor Q through an appropriate set of scalars. Our
choice, already shown in (1.62), will be further illustrated and discussed in the fol-
lowing subsection.

1.3.1 Scalar Order Parameters

The order tensor Q will be written as
1
Q:S(ez®ez—gl)+T(ex®ex—ey®ey). (1.91)

This formula represents the most general symmetric and traceless second-rank tensor
Q in its eigenframe (e, ey, e;), the corresponding eigenvalues being 7" — %S ,—T —
%S ,and %S . Here Q is in general a biaxial tensor, having three unequal eigenvalues;
it clearly appears as the superposition of a uniaxial tensor,
1
e, Qe; — 51,
with two equal eigenvalues in the plane (ey, e, ), and a purely biaxial tensor
ex Qex—ey ey,

with one zero eigenvalue along the axis e,. Thus, S and T are called the uniaxial and
biaxial scalar order parameters. When both S # 0 and T # 0, then Q is generally

16 Said prosaically, in Fo and ,3 we drop the tilde.
17 Formally, equations (1.88) and (1.89) are obtained from (1.78) and (1.77), respectively, by
setting Uy = 1.
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biaxial, whereas it is purely biaxial when S = 0 and 7 # 0. When 7" = 0, Q is uni-
axial. It should be noted that the biaxiality of Q is not at all related to the molecular
shape, which is supposed to be uniaxial in the MAIER—SAUPE theory . The possible
biaxiality of Q has its origin in the probability distribution pg, which may fail to be
uniaxial, despite each molecule being so. Sometimes, when we wish to distinguish
this source of macroscopic biaxiality from that connected with the possible molecu-
lar biaxiality, reflected on the macroscopic scale by the order tensor B in (1.70), we
call phase biaxiality that embodied by Q and intrinsic biaxiality that embodied by B;
correspondingly, T and T are the phase and intrinsic biaxiality parameters: in prin-
ciple, they are independent of one another, the former being defined for both uniaxial
and biaxial molecules, whereas the latter is defined only for biaxial molecules.

The eigenframe (ey, ey, e;) of Q has no intrinsic meaning: were the members
of (ex, ey, e;) subject to a permutation, with the scalar order parameters S and T
left unchanged, the order tensor Q would represent the same molecular organization,
and so the same phase, only relative to a different frame. Conversely, we could envi-
sion such an invariance of phase as an equivalence relation involving the scalar order
parameters S and 7': keeping the eigenframe of Q fixed, we consider all transforma-
tions of the pair (S, 7') that leave the spectrum of Q unchanged. These constitute a
six-element group generated by the elementary transformations

(S.T) (3T_S,ﬂ), (1.92b)
2 2
3T-S T-S8
(8.7) — (TT) (1.92¢)

which reflect three elementary exchanges in the eigenvalues of Q: they respec-
tively correspond to exchanging the eigenvalues corresponding to the pairs (ex, ey),
(ex,ez),and (ey, e;). The loci of the (S, T') plane invariant under these transforma-
tions are the lines correspondingly represented by the equations

T =0, T=S, and T =-S. (1.93)

The union of these lines is a set that is invariant under the action of all transformations
(1.92). Moreover, by its very definition, this set constitutes the whole collection of
uniaxial states represented by (1.91). For this reason, we also call uniaxial lines the
geometric loci represented by (1.93).

When the scalar order parameters S and 7" describe through (1.91) an order ten-
sor Q that satisfies the self-consistency condition (1.75), then they obey some bounds
that we now proceed to make explicit. It follows from (1.75) that, for any given unit
vector e,

e-Qe= /Q [(el(a)) e)’ — ﬂ po(@; B,Q)dw,

whence, since 0 < (e1(w) - €)* < 1 for all w € £2, one arrives at
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1
__<e- <
3=¢ Qe =

SSII )

(1.94)

The lower bound in (1.94) is attained only if e; (w)-e = 0, meaning that all molecules
lie in the plane orthogonal to e, whatever may be their alignment, whereas the upper
bound is attained only if e;(w) - ¢ = 1, meaning that all molecules are oriented
along e. We refer to the molecular alignment in these limiting cases as planar and
full, respectively. More generally, a uniaxial state with S < 0 will be called discotic,
while a uniaxial state with S > 0 will be called calamitic: planar and full alignments
are correspondingly the extreme limiting cases of discotic and calamitic states.

It follows immediately from (1.94) and the representation (1.85) that the eigen-
values A; of Q satisfy the same bounds as in (1.94). Moreover, letting e in (1.94) be
in turn e, e, and e, we also obtain

A

1 1
SE1 and —(1-S) =T =:(1-5). (1.95)

| =

These inequalities show that in the limit of planar alignment the biaxial order pa-
rameter 7 ranges in the interval [—%, %], reflecting different degrees of anisotropy
in the molecular distribution. By contrast, in the limit of full alignment, 7" necessar-
ily vanishes, since the molecular distribution becomes peaked at a single orientation.
Inequalities (1.95) delimit a triangle in the (S, 7) plane that comprises all states
represented by (1.91) and is compatible with the self-consistency condition (1.75).
The uniaxial lines (1.93) divide the admissible triangle into six elementary triangles,
one transforming into the other under the action of the transformations in the group
generated by (1.92) (see Figure 1.4). One of them suffices to represent all inequiv-
alent states of the order tensor Q in (1.91). The vertices of the admissible triangle,
Ut = (1,0), U’_i_ = (—% %), and U/jr = (% —%), represent one and the same uni-
axial state with full alignment. U is fixed under (1.92a), while U’, and U’ are its
11

images under (1.92b) and (1.92c), respectively. Similarly, the point U_ = (Z’ Z) is

fixed under transformation (1.92b), while U_ = (—1,0) and U” = (}.—%) are
its images under (1.92c¢) and (1.92a), respectively. The points U_, U’ , and U” in the
(S, T) plane represent the same planar uniaxial state, though all but one have 7' # 0.

As in (1.63), with the aid of (1.91), we now express the dimensionless free en-
ergy per particle Fy(B8,Q) in (1.88) as a function f, of the dimensionless reciprocal

temperature 8 and the scalar order parameters S and 7'

1 1.1 [ ™ .
Fu(B.S.T):==S2+T>——In— | do | eP&P¢SDgingdy, (1.96)
3 B 4
7T Jo 0

where |
gu(,0;8,T)=3S (005219 - 5) + T sin®® cos 2¢. (1.97)

For given f, the stationary points of f, are the points (S, T') that represent through
(1.91) all self-consistent mean-field order tensors Q.

It is instructive to prove directly that f, is positively coercive in (S, T') and so it
attains its global minimum at a critical point. To this end, we remark that by (1.97)
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Fig. 1.4. Admissible order parameters in the plane (S, 7). The shaded triangle OUU_, where
O is the origin of the plane, suffices to describe all possible inequivalent states. U, U/Jr, and
UZ_ represent one and the same state, as do U—, U’_, and U” . Both these states are uniaxial,
though the molecular alignment is full in the former and planar in the latter.

2
lgul < 5IS1+171,
and so, by (1.96),
1., s 2
SuB.S.T) > 382 + T2 = ZIS| = 7).

whence it follows that f, — oo as ||(S,7T)||gz — oo. We are thus assured that
the first of Assumptions 1.7, the only one relevant to a fully attractive interaction
Hamiltonian, is indeed satisfied by the function f,, for which m = m = 2, in the
notation of Section 1.2.5.

There are properties that f, inherits from Fy, which would not be easier to
prove directly. Since by Lemma 1.3 Fj is stationary at Q = 0, f, is stationary for
S = T = 0, that is, at the origin O of the (S, T') plane. Moreover, since Fy can be
expressed through (1.87) as a symmetric function of the eigenvalues of Q in the rep-
resentation (1.85), f, is invariant under the transformations (1.92), which exchange
the eigenvalues of Q in the representation (1.91).

In the following subsection we shall seek the critical points (S, 7') of f,. Since
the corresponding order tensor Q in (1.91) necessarily obeys the self-consistency
condition (1.75), the critical points of f, are guaranteed to obey the bounds in (1.95),
and so they will all fall within the admissible triangle in the (S, 7') plane depicted
in Figure 1.4. Moreover, it would suffice to find those falling in the closure of the
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smaller triangle OU, U_, since all others will be their images under the transforma-
tions (1.92).

1.3.2 Critical Points

A remarkable theorem by FATKULLIN & SLASTIKOV [104] makes our search for
the critical points of f, considerably easier.

Theorem 1.9 (FATKULLIN & SLASTIKOV [104]). If Q is a symmetric tensor that
solves the self-consistency condition (1.75) associated with the one-particle Hamil-
tonian Hy in (1.90), then Q is traceless and either zero or uniaxial.

Proof. We first rewrite the self-consistency condition (1.75) in an equivalent, more
convenient form. We start from rewriting the probability distribution density pg in

(1.76) as follows:
eBe1(0)Qe(w)

po(w; B, Q) = W’ (1.98)

where zg is the reduced partition function defined by

20(B.Q) := /Qe’gel(“’)'Qel(“’)dw = /S2 ePeQ da(e), (1.99)

and use has been made of (1.73). For every § > 0, the function z¢(f, -) is defined
by (1.99) in the whole space of symmetric tensors Q (not necessarily traceless). By
(1.98), (1.75) then becomes

0+ 1= L1190 (1.100)
3 B ,3 Zo 8Q ' '
This tensorial equation can be converted into three scalar equations involving the
eigenvalues A; of Q in (1.85). Let R € O(3) be any orthogonal tensor. It follows
from (1.99) that

zo(,B,RQRT)zf eﬂ”'RQRT”da(e)zf ePRTEQRTE) 744, (1.101)
S2 S2

Since, as in the proof of Lemma 1.3, S? is invariant under the action of the full
orthogonal group O(3), and da(e) = da(Re) for all R € O(3), changing e into Re
does not affect the second integral in (1.101), and so we arrive at

20(B.RQR") = 29(B,Q) ¥ R € 0(3),

which says that z is isotropic in Q. By the representation theorem for the isotropic
scalar functions of a symmetric tensor [357], we conclude that zy can be expressed
as a function of the invariants of Q in (1.83),

ZO(IB!Q) =Z(/)(ﬂ711’12a13)7 (1102)
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and eventually, as a symmetric function of the eigenvalues A4; of Q,

20(B.Q) = Zo(B. A1, A2, A3). (1.103)

By differentiating with respect to Q both sides of equation (1.102), also with the aid
of (1.83), we obtain that

by by 0 0%

= 2, 1.104
0Q 91, 915 Q ( )

By (1.104) and (1.85), since I, Q, and Q? all share the same eigenframe (ny, ny, n3),
from (1.100) we arrive at

1 1 1 [0z 0z 0z
Aito=——— [ =2 4202, +3922), i=1,2,3,
i3 ﬁU26(811+ on" l

which, by (1.83), (1.102), and (1.103), can also be written as

/ / / ~
wesmgg (e i i) s
Letting e in the second integral of (1.99) be represented as
e = X1n1 + Xpny + X303 with xf + x% + x§ =1,
by (1.85) we give Z, the following form:
Z0(B. A1, Aoy A3) = /|| 1eﬁZ?:l)‘ix?da(x). (1.106)
x|=

The proof of the theorem is then completed by the following lemma, which is slightly
adapted from [104] (see, in particular, Lemma 1 of Appendix A). O

Lemma 1.5. Let the real numbers (A1, A2, A3) solve equations (1.105) with Zy as in
(1.106). Then, necessarily,

() -2 =A=2fori=123,
(i) Ay + A2+ A3 =0,
(iii) A; = Aj for some i # j.

The proof of this lemma relies on a semiexplicit representation of the function Zj
by means of BESSEL functions in SOMMERFELD’s representation. Although the
proof given in [104] is not very technical, it is indirect and rather intricate. As
FATKULLIN & SLASTIKOV [104] suggest, there should exist a proof of Lemma 1.5
based on pure symmetry, translating the intuitive idea that the tensors Q solving the
self-consistency equation (1.75) must retain the uniaxial symmetry of the molecu-
lar tensors q they collectively represent. Such a simpler proof, however, if indeed
it exists, has so far remained unknown. Another proof of Lemma 1.5, simpler than
FATKULLIN & SLASTIKOV’s, though not to the desired degree, was given in [373]
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as part of an analysis of the steady states of a SMOLUCHOWSKI equation initiated
by the studies [51] and [52]. In the same vein, yet another proof of Lemma 1.5 was
proposed in [190], which we found as intricate as FATKULLIN & SLASTIKOV'’s.

We have thus learned from Theorem 1.9 that the search for all critical points of f,
in (1.63) can be restricted to the uniaxial lines (1.93) of the (S, T') plane. In particular,
we shall seek the critical points of f, on the first of these lines, 7" = 0, since the
critical points of f, on the remaining two are their images under transformations
(1.92b) and (1.92c). Moreover, since f, is invariant under (1.92a), for any given j
and S,

fu

—(B,5,0) =0,
2 (8.5.0)
and so, for given S, every critical point S = Sy of the restricted function
~ 1 2 1 1 T ﬁS(‘O'zﬁ—l) .
fu(B,S) = fu(ﬂ,S,O)=§S —Elnz PPl 3 ) sind d (1.107)
0

corresponds to a critical point (Sg, 0) of f,. Our search for the critical points of f;
will profit from the properties of DAWSON'’s integral daw, a special function related
to the error function erf, which arises in many branches of physics. To expedite our
analysis of the critical points of ﬁ we now digress slightly to collect the required
properties of daw, mainly obtained from Chapter 7 of [1] and Chapter 42 of [316].

DAWSON’s Integral

The function daw : R — R defined by
2 * 2
daw(x) ;= e~ / el dt (1.108)
0

is also called DAWSON’s integral. It is related to the error function erf : C — C,
defined over the complex field C as

2 z
erf(z) := ﬁ/(; e dt,

VT s

T
da =—i——e"
w(x) i > e

through the formula
: erf(ix),

where i is the imaginary unit. DAWSON’s integral can also be extended to the whole
of C, and for a purely imaginary argument it evaluates to

daw(iy) = igeyz erf(y). (1.109)

By (1.109), both functions
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x > /xdaw(4/x) and xHM,
Jx

which will play a role in our development below, can be extended as real-valued
functions to the whole of R.
For x € R, daw(x) is the unique solution of the differential equation

fl=1-2xf
that satisfies the condition
f(0) =0.

It can be shown that daw(x) is an odd function with the following asymptotic expan-
sions:

2 4
daw(x):x—§x3+15x +0(x7) for x —0, (1.110a)
1 1 3 1
daw(x)—g+m+$+0 ] for x — oo. (1.110b)
Similarly, by (1.110b),
ﬁdaw(ﬁ)—l+ ! + 5 +0 ! for x — 400 (1.111a)
T2 4x 0 8x2 x3 ' '

Moreover, since
erf(x) > 1 for x — oo,

it follows from (1.109) that

V—xdaw (v/—x) ~ — ffe for x — +oo.

A graph of the function daw on the real line is shown in Figure 1.5. The two
stationary points of daw, a maximum and a minimum, are at x = FXx, respectively,
with xo = 0.924.

We now illustrate the relevance of DAWSON’s integral daw to the analysis of the

function ﬁ in (1.107). By setting u := sin? in (1.107), we easily arrive at

~ 2 1 1 S 2

fu(B.S) = S + = S ﬂ PS5 qu. (1.112)
Letting y := /BSu, by (1.108), we also obtain that

' psu? L s Bs
e’ du = —/ e’ dy=ePS —~ 7
/0 VBS Jo Y VBS

which gives (1.112) the following concise form:
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Fig. 1.5. The function daw(x) is plotted in an interval of R, symmetric with respect to the
origin and sufficiently wide to capture the asymptotic behavior in (1.110b).
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In the next subsection, this representation of f, will be instrumental to the stability
analysis of the critical points of the MAIER—SAUPE free energy.

(1.113)

1.3.3 Stability Analysis

We have shown in the preceding subsection that all critical points in Q of the MAIER—
SAUPE dimensionless free energy per particle Fo(8, Q) in (1.88) correspond to the
critical points of the function fAu(/S, S) defined in (1.107) as the restriction to the line
T = 0 of the function f,(8, S, T') introduced in (1.96), which expresses Fy when Q
is represented in terms of the scalar order parameters (S, T') recalled in (1.91). Here
we determine all critical points of fAu for every value of 8 and probe their stability
against perturbations in S'; the stability of the corresponding critical points of f; on
the line 7" = 0 will accordingly be probed against perturbations in 7.
By letting
x = BS, (1.114)

we easily recast ﬁ in (1.113) in the form

7 x\ 1)1 2 daw (/x)
F”(ﬂ’x)'_fu(ﬂvg)—Egﬁxz—gx—ln(7)§,

where, by (1.109), F, is defined for all x € R. By the chain rule,
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%]; = /Sa;; = %x (% — G(x)) , (1.115)
where 3 3 {
G(x) := m_ﬁ_ﬁ' (1.116)
It can easily be shown by resort to (1.110a) that
lim G(x) = 3 (1.117)
x—0 15

Moreover, by both equations (1.111), one sees that
1 1
G(x)~ — for x > 400 and G(x) = 5 for x > —oo. (1.118)
X X

Equation (1.115) shows that, for any given 8, x = 0 is a stationary point of F,; all
other stationary points are the roots of the equation

1
G(x)=-. (1.119)
p
Figure 1.6 illustrates the graph of the function G. By this graph and asymptotic
properties of G listed in (1.118), it is apparent that G possesses a single stationary
point at X = X, which is a maximum; a numerical evaluation gives

Xx = 2.178 and, correspondingly, G, := G(x) = 0.149.

Equation (1.119) has a rather transparent graphical interpretation: its roots can be
identified with the intersections between the graph of G and the straight line y = 113
in the Cartesian plane (x, y) of Figure 1.6. For + > G., there is no such intersection,
and so F, is stationary only at x = 0, which through (1.114) corresponds to the
stationary point S = 0 for ﬁ For % < Gy, two extra stationary points emerge for
F,, since two intersections split on the graph of G from the point (x4, Gx), X1 < X«

and x5 > X, the former diverging to —oo and the latter to 400 as % is reduced from

G, toward 0. Again by (1.114), two stationary points of fAu, S and S, correspond
to x1 and x». R

To probe the local stability of all three stationary points of f,, thatis, S = 0 and
S = S1,2, we compute the second derivative of ﬁl in S. By (1.115) and (1.114), we
readily obtain that

Pf 2B ((1
Evaluating the right-hand side of (1.120) at x = 0, by (1.117) we learn that
P £, 1.2
=0 - = —.
asz| =0 ¥ B=T15
§=0
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Fig. 1.6. The graphs of the functions G, g, and F defined by (1.116), (1.121), and (1.125),
respectively, are plotted against x in the Cartesian plane (x, y). The intersections between
the line y = % and the graph of G represent all possible equilibrium uniaxial phases. The

isotropic phase, which is at equilibrium for all values of the reduced temperature % is repre-
sented by the line x = 0. Solid lines correspond to equilibria locally stable against uniaxial
perturbations; dashed lines represent equilibria unstable against the same perturbations. Where
the graph of G lies below the graph of F, the uniaxially stable equilibria bear less energy than
the isotropic phase. However, below the graph of g all equilibria are unstable against biaxial
perturbations. Thus, only the positive roots of (1.119) can be fully stable. The maximum of
G falls at x = x4 = 2.178; correspondingly, G« := G(xx) = 0.149. In the plane (x, y),
(x*, G™) is the only point besides (O, %) where the graphs of G and F cross; its coordinates

are x* = 2.923 and G* := G(x*) = 0.147.

This shows that the isotropic phase, which according to the MAIER—SAUPE theory

is an equilibrium phase for all values of , is locally stable for % > % and locally

unstable for % < 12—5 For % < Gy, the local stability of the equilibrium phases



50 1 Molecular Theories

corresponding to S = §; and S = S, can be ascertained by computing the right-
hand side of (1.120) along the roots x; and x; of (1.119), both of which depend on
B. By inserting (1.119) into (1.120), we easily see that since x, is positive for all

113 < G4 and satisfies G'(x,) < 0, f; is locally stable at S = S5, whereas it is

locally unstable at S = S as long as x; > 0, that is, for % > 12—5, and it turns again

locally stable as soon as x; < 0, that is, for % < 1—25 In Figure 1.6, the graph of G
is represented by a solid line along the roots of (1.119) that make fu locally stable
in S and by a dashed line along the roots of (1.119) that make fAu locally unstable in
S. The axis x = 0 is also similarly marked to represent the change of stability of the
isotropic phase around B = % In summary, for % > G, the only equilibrium phase
is isotropic, and it is locally stable; for G4 < + < 1—25 two other equilibrium phases
accompany the isotropic phase; they are both calamitic, one locally stable and the
other locally unstable, while the isotropic phase remains locally stable; for + < %,
the isotropic phase becomes unstable and is accompanied by two other locally stable
equilibrium phases, one calamitic and the other discotic.

The stability just discussed, being based on the analysis of the critical points
of ﬁ,, is, however, restricted to the perturbations in S of the critical points of f,
in (1.96). Having proved that to within one symmetry transformation in (1.92) all
critical points of f, can be found along the line 7 = 0 should not prevent one from
exploring their stability against perturbations in 7". To this end we expand the right-

hand side of (1.96) at the lowest order in 7" about the point (S, 0), for any S,

JulB.S.T) = Ju(B.S) + B (% g (ﬂS)) T2 4 0/(T),

where in the auxiliary variable x = 8§ the function g is defined as
1 n 3 1 3
4x  16x2 8 /xdaw(/x) 16xy/xdaw(v/x)

At a critical point S of fT] x = BS makes F, stationary. To assess the stability in T
of f,, we need to see whether

g@%=z+ (1.121)

%—gu)>o (1.122)

at either x = 0 or at the roots of (1.119). It can be checked with the aid of (1.110)
and (1.111) that

2 1
lim g(x) = —, lim g(x)= -,
x—0 15 xX—>—00 4 (1.123)

1
and g(x) ~ 7 for x — 4o0.

Thus, it follows from (1.122) that the isotropic phase is locally stable and locally
unstable against biaxial perturbations precisely in the same ranges of % where it is

locally stable and locally unstable against uniaxial perturbations, that is, for % > %
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and % < %, respectively. For the equilibrium phases represented by the roots of
(1.119), by combining (1.119) with (1.122) we can reduce this latter stability in-
equality to a graphical criterion: the roots of (1.119) that fall where the graph of G
lies above the graph of g are locally stable against biaxial perturbations, whereas the
roots of (1.119) that fall where the graph of G lies below the graph of g are locally
unstable against biaxial perturbations. Figure 1.6 along with the asymptotic behav-
iors in (1.118) and (1.123) allows us to conclude that the graphs of G and g cross at
a single point, that is, at x = 0. Moreover, all negative roots of (1.119), correspond-
ing to discotic equilibrium phases locally stable against uniaxial perturbations, are
locally unstable against biaxial perturbations; the roots in the interval ]0, x.[, which
are unstable against uniaxial perturbations, would instead be locally stable against
biaxial perturbations, whereas the roots x, > x4 of (1.119) are locally stable against
both uniaxial and biaxial perturbations. The equilibrium calamitic phases represented
by these latter roots are thus competing with the isotropic phase for the absolute min-
imizer of the MAIER-SAUPE free energy f, for % in the interval [G*, 12—5], where
they are both locally stable.

To identify the absolute free enery minimizer we need to determine whether, for
given B, the root x,(B) of (1.119) is such that

Fu(B.x2(8)) < lim Fy(B.); (1.124)

whenever this inequality is satisfied, the pair (S, T) = (S5, 0), with S>(8) := 2,

prevails over the pair (S,7) = (0,0) as the absolute minimizer of f,. Since, by
(1.110a),

lim Fy(B.x) =0,
x—0

inequality (1.124) becomes

L 3 (daw (V)
- < + In
BB =@ Jnp

Again inserting (1.119) in (1.125), we change the latter into

=: F(x2(B)). (1.125)

G(x2) < F(x2), (1.126)

which can be given a simple graphical interpretation: for any prescribed §, the ab-
solute minimizer of f,, is (S2(8),0) whenever x;(f) falls where the graph of G lies
below the graph of F', whereas it is (0, 0) whenever x, () falls where the graph of G
lies above the graph of F. Though it would strictly suffice to explore the crossing of
these graphs only within the interval [G*, 1%] in their ranges, we find it convenient
to widen this study to the whole of their ranges. By use of (1.111a) in the definition
(1.125) of F, we obtain the following asymptotic estimate:

F(x) ~ for x — oo,

=N
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while (1.110a) leads us to
lim F(x) = —.
xl—IH) x) 15
These properties of F', combined with the perusal of the graphs of G and F' shown
in Figure 1.6, ensure that (1.126) is satisfied for all x, > x*, since (x*, G(x™)) is the
only point besides (O, %) that the graphs of G and F have in common. A numerical
computation shows that

x*=2923 and G*:=G(x*) =0.147.

We conclude that upon decreasing the reduced temperature % through the su-
percritical value G, the minimizer of the MAIER-SAUPE free energy f, is still the
isotropic phase, but the uniaxial calamitic phase described by the pair (S2(f8), 0) be-
comes locally stable; at the critical reduced temperature % = G*, the minimizer of
Jfu jumps from the isotropic phase to the uniaxial calamitic phase, while the isotropic
phase remains locally stable up to the subcritical temperature % = 1—25 An instructive
illustration of this first-order transition is provided by the graph against the reduced
temperature % of the scalar order parameter .S, which describes both the isotropic and

the uniaxial equilibrium phases. By (1.114) and (1.119), the function % — S2(8)
can be given the following parametric form:

% =G(x), S2(x) =xG(x), for x>0. (1.127)

The graph of this function is plotted in Figure 1.7: a dashed line represents the uni-

1/p

0.03 0.06 0.09 0.12 0.15 0.18

Fig. 1.7. The uniaxial scalar order parameter S as a function of the reduced (dimensionless)
temperature L. Solid lines represent locally stable equilibria; dashed lines represent locally
unstable equilibria. A heavier line marks the absolute free energy minimizer, which displays a
first-order transition at % = G* = 0.147, where S jumps from 0 to $* = 0.429.
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axial phase in the temperature range where it is locally unstable, while a solid line
represents it in the temperature range where it is locally stable. The local stability of
the isotropic phase is represented likewise. It follows from (1.118) and from taking
the limit as x — oo in (1.127) that S, — 1 as % — 0, as also shown in Figure 1.7.
A heavier line identifies the global free energy minimizer; the first-order transition
at % = G* is marked by a thin solid line bridging the jump in S from 0 to S*. By
(1.127), one readily computes

S* =x*G* =0.429.

The prediction of such a phase transition taking place with a universal increase in the
uniaxial scalar order parameter is the most remarkable achievement of the MAIER—
SAUPE mean-field theory.

In the following section, we shall briefly review a fundamental criticism raised
against the MAIER—SAUPE theory and indicate a way to combine the purely attrac-
tive character of the interaction Hamiltonian (1.74) on which the theory is based with
some repulsive features. Despite all criticisms, the MAIER—SAUPE theory remains
exemplary for both its simplicity and the insight that it provides.

1.4 Steric Effects

Molecular interactions are thought to determine the ability of ordered phases to
emerge in certain anisotropic fluids. Perhaps the most telling illustration of this
paradigm is the isotropic-to-nematic transition in liquid crystals described in the pre-
ceding section, where we substantiated the picture often drawn that describes liquid
crystal molecules as rods or ribbons subject to interactions that tend to make them
align alike. In general, whenever such a tendency prevails over disorganizing causes,
an ordered phase is established from the isotropic, disordered phase. This ordering
phase transition, which is usually first-order, induces a local common molecular ori-
entation.

A satisfactory microscopic theory for liquid crystals must be based on the inter-
actions exchanged by the constituent molecules. Different special models for molec-
ular interactions have been proposed in the last decades. We shall be contented in
this book with describing in detail only the MAIER-SAUPE theory ; for an account
of other theories and the still unceasing debate around them; the interested reader is
referred, for example, to the review article [304].

We learned already that in a mean-field approach, a single molecule is envisaged
as immersed in a field produced by the averaged action of all other molecules that
surround it. The key ingredient to a mean-field theory is the pair-potential H, which
is the interaction energy U of two molecules averaged over the molecules’ relative
position. H, also called the two-particle Hamiltonian, has so far been the basis of our
development (see Section 1.1.1). In this section, we explore to some extent how H is
related to U and the assumptions involved in both positing the latter and deriving the
former from it. For molecules described as rigid particles, U in general depends on
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the vector joining the centers of charge of the interacting molecules and on the rela-
tive molecular orientation. For flexible molecules, U is a more complicated function
that also depends on the molecular conformations. '8

The existing interaction models for liquid crystal molecules can be divided into
three broad categories: short-range and repulsive, long-range and attractive, and VAN
DER WAALS . Correspondingly, these models attribute the collective aligning attitude
of molecules to three different mechanisms: to the mutual hindrance of molecules
that reflects the anisotropy of their shape, to the dispersion interaction that reflects
the anisotropy induced by their oscillating charges [193, 215], and to the coexistence
of the former effects in an interaction energy that accounts for both short- and long-
range forces.

The ONSAGER hard-core interaction for long rodlike molecules [258] is the most
noticeable example in the first category. It is an athermal model, where the ordering
transition is driven by increasing density, instead of decreasing temperature. In a way,
this model properly describes lyotropic liquid crystals, since the interaction energy
mimics the pure steric repulsion of molecules. Nonetheless, it can legitimately be
presented on the same footing as the models in the other two categories introduced
above, as a limiting case of extremely short-range interactions. Though conceptually
appealing, the ONSAGER model fails to represent the isotropic-to-nematic transition
faithfully.

Far more successful in this regard is the MAIER—SAUPE model , the simplest and
most celebrated example of long-range dispersion models (see Section 1.3). Cru-
cial to the justification of the mean field associated with this model interaction is
the assumption that the molecules are isotropically distributed around every probe
molecule. As remarked in [70], a relatively small deviation from spherical symmetry
already causes the ordering phase transition to disappear.

A recognized limitation of the purely dispersive MAIER-SAUPE theory is its
complete neglect of short-range interactions. A remedy to this was provided by the
theory of GELBART & BARON [119, 55], where an anisotropic, short-range, repul-
sive interaction is incorporated in the model alongside a long-range, attractive inter-
action, which need not be anisotropic. This theory is often referred to as the general-
ized VAN DER WAALS theory; it is computationally demanding and has been explic-
itly worked out only for special repulsive potentials. However, it has clearly shown
that the anisotropy in the resulting pair-potential is due mostly to the interplay be-
tween two components of the parent interaction, namely, the repulsive potential and
the isotropic part of the attractive potential [364, 359, 89].

Many other models and generalized theories have been proposed. We refer the
interested reader to specialized reviews [118, 117, 304] that also illustrate the intel-
lectual wealth stimulated by the desire to understand in depth the nematic ordering
transition.

18 Here we consider only molecules described as rigid particles. A mean-field treatment for
flexible biaxial molecules can be found in a recent paper by LUCKHURST [201]. In a dif-
ferent vein, molecular shape fluctuations are also considered in [195].
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Often a unifying view is gained by a wise blend of symmetry and averaging. If
every molecule is isotropically surrounded by all others, the pair-potential H intro-
duced in Section 1.1.1 is obtained by averaging the interaction energy U of a given
molecule with respect to all others with the same orientation relative to the selected
molecule. Formalizing rigorously this averaging is indeed less trivial than it may ap-
pear: the major difficulty resides in handling the divergence of U when the distance
between the interacting molecules approaches zero. Such a divergence embodies the
ultimate short-range repulsion between molecules: even in the simplest realization of
this repulsion, that is, in the hard-core interaction, the average over the intermolecular
distance contributes to the dependence of the pair-potential on the relative molecular
orientation. This is precisely the avenue taken in this section. We combine the long-
range induced dipole—dipole interactions with a short-range, hard-core interaction
and we compute the resulting pair-potential H, whose anisotropy stems now from
both long- and short-range components of the interaction energy U'.

An alternative approach was proposed by LUCKHURST & ZANNONT [203]. They
reconciled the antagonism between short-range, repulsive interactions and long-
range, attractive interactions, by assuming that the former are responsible for the
local organization of molecules in clusters, which in turn are subject to the latter.
This syncretic view holds that the molecular clusters bound by short-range interac-
tions are not destroyed at the transition where their long-range organization changes,
and thus survive in both the isotropic and nematic phases. According to this view,
not molecules but stable clusters would be subject to the pair-potential. In either
interpretation, our formal development remains unaffected.

In this section, following [313], we write in a compact form the interaction due to
dispersion forces and we describe the excluded region ®*, the region in space that a
molecule cannot access because of the presence of another molecule. A steric tensor
will then be defined in terms of ®* that embodies the anisotropy of the steric inter-
actions. We also show how to construct the excluded region starting from a given
molecular shape. For a special class of shapes, this construction is carried out explic-
itly, and the steric tensor is computed analytically in Section 1.4.4. In Section 1.4.5,
the steric effect is finally determined for two classical dispersive interactions: for
uniaxial and biaxial molecules, respectively.

1.4.1 Dispersion Forces

Deriving the dispersion energy for the long-range induced dipole—dipole interaction
of two molecules from quantum-mechanical perturbation theory requires resorting
to a number of approximations if one wishes an explicitly computable formula. In
the account given by STONE [320] (see, in particular, Section 4.3.2), one approxi-
mation plays a dominant role: this is the UNSOLD approximation [350] , also called
the average-energy approximation, as employed by LONDON [192]. In the approach
of BUCKINGHAM [38], this approximation amounts to assuming that all states in
the molecules that contribute to their dispersion interaction have excitation energies
close to the same average, which we correspondingly denote by E and E’, for each
molecule.
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Letting A and A’ be the symmetric tensors representing the polarizabilities of
the interacting molecules, we give the approximate dispersion energy the following
compact form:

Uy = —%(U X U)[A]- A, (1.128)

where
B 9EE'’
"~ 4(E + E')(47m€g)?

with ¢ the dielectric constant in vacuum. In (1.128),

Co

ri= |P6 - pol

is the distance between the charge centers p;, and pg of the two molecules, and the
uniaxial, second-rank tensor U is built from the unit vector

1
er = ;(Pf) — Do),

directed from py to py, according to the definition

1
U=U(e) =¢r Qe, — 51' (1.129)

For two given second-rank tensors A and B, the fourth-rank tensor A X B is defined
by its action on an arbitrary second-rank tensor C: it delivers the second-rank tensor
defined by [71, 273]

(AXB)[C] := ACB" forall C.

Moreover, the inner product denoted in (1.128) by a dot - is defined as in (1.8) (and
in Appendix A.1).

Equation (1.128) is valid under the assumption that certain oscillators in one
molecule, all with frequencies very close to one another, are coupled with similar os-
cillators in the other molecule. When the oscillators that contribute to the interaction
in each molecule have quite different frequencies, the total dispersion energy Uy ac-
quires several terms, all in the form (1.128). In the case of N such distinct oscillators,
the dispersion energy is

N
1 /
Ug = — h§k_:1 Cri(URU)[AL] - AL, (1.130)

where Aj; and A) are the polarizability tensors corresponding in each molecule to
the coupled oscillators, and

9ELE|
~ A(Ej + E})(4meg)?’

Chi
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Ej, and E; being the energies of the coupled states.

In the following, we shall build upon (1.128) our explicit representation of the
steric effects in dispersion force interactions, assuming, for simplicity, that, in each
molecule, essentially a single oscillator is involved in the interaction. The general
case would then follow by superimposing all individual dispersion interactions in-
cluding their steric corrections.

1.4.2 Excluded Region

U, is a potential energy of soft forces. For neutral, nonpolar molecules, it is the first
term in a multipolar expansion, valid only if po and pg are sufficiently far apart.
These long-range forces are complemented by short-range hard forces, which rep-
resent the steric hindrance to molecular interactions. While dispersion forces are at-
tractive, as are most long-range forces hard, steric forces are repulsive. We imagine
a simple picture to describe these latter: we think of the charge centers po and py, as
surrounded by three-dimensional regions, ® and ®’, respectively, which represent
the ranges of the repulsive hard forces. These essentially make ® and R’ impenetra-
ble to one another, while they are dormant whenever ® and ®’ are not in contact. ®
and R’, which we call the VAN DER WAALS regions for the two molecules, reflect
the molecular shapes, though they need not coincide with them.

Molecular interactions are ultimately responsible for the mesogenic behavior of
some molecules which, unlike others, tend to form ordered phases. Often, a theoret-
ical understanding of these ordering transitions is achieved within the mean-field
approximation, as in the MAIER-SAUPE theory illustrated in Section 1.3 above.
Replacing the space-dependent dispersion energy (1.128) with a space-independent
one [70] is crucial to the success of this theory. This is achieved by assuming that
molecules with the same relative orientation are isotropically distributed in space
around any given probe molecule and by computing an effective interaction energy
between the probe and all other molecules.

The interaction energy Uy in (1.128) depends via e, on the relative position of
the two molecules and via A and A’ on their relative orientation. The relative hin-
drance of the VAN DER WAALS regions introduces in the effective intermolecular
forces a dependence upon the relative molecular orientation subtler than the one ex-
plicitly appearing in (1.128). Following [313], we now make this idea more precise.
As shown in Figure 1.8, for given ® and R, there is a region R * in space, depending
on R and ®’, inaccessible to the charge center py if ® and ®” are mutually impen-
etrable. We call ®* the excluded region. As suggested by Figure 1.8, the boundary
0R™ of the excluded region is traced by p;, while R’ glides without rolling over
d®. Similarly, the region inaccessible to pg by the impenetrability of R’ is traced by
all possible trajectories described by po, while d® glides without rolling over IR .
Since in both cases the relative motion between ® and ®', regarded as rigid bodies,
is purely translational, the excluded regions obtained in these two ways differ simply
by a translation.

The molecular distribution in space will be taken to be homogeneous. This al-
lows us to define the effective dispersion pair-potential Hy as the average dispersion
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Fig. 1.8. The VAN DER WAALS regions ® and ®’ surrounding the charge centers po and p(/)
of the interacting molecules. The unit vector e, is directed from pg to p6; v and v’ are the
unit outer normals to d® and d®R’, respectively. The boundary IR * of the excluded region ® *
is enveloped by p(’), while R’ glides without rolling over d®. The unit vector v* is the outer
normal to dR*. The region enveloped by all possible trajectories described by po while IR
glides without rolling over d®’ would differ from ®* only by a translation.

energy Uy exchanged between two molecules with a given relative orientation, while
their relative position varies freely in space. Any two such molecules share the same
excluded region R*. To account effectively for the presence of more than a pair of
molecules in the system, we imagine that an infinite number of molecules, all equally
oriented, are uniformly distributed in space so that the same number of molecules,
Nmac, Will be present in the same macroscopic volume V... Let a probe molecule
wander about the molecules of this system while keeping its orientation unchanged.
For any given molecule in the system, the total energy exchanged with the probe
molecule can be computed by imagining this latter exploring an influence ball B;
with radius R; around the given molecule and then taking the limit as R; — oo.
Repeating this argument for each molecule in the system reproduces the same result,
given the homogeneity of the molecular distribution, and so the average energy is fi-
nally estimated by multiplying the total energy exchanged between a single molecule
and its probe companion by the number density 0 := Nmac/ Vinac-
Making precise the above definition for Hy, we obtain from (1.128) that

1
Hy = —Coo | lim —URUAIV | [A]-A, (1.131)
Ri—oo JB\R* ré

where V' is the volume measure in the three-dimensional Euclidean space 8. Differ-
ently said, (1.131) can be obtained by integrating over the whole admissible space
the interaction Uy in (1.128) multiplied by the probability of finding an interacting
molecule at any given point in space, that is, the number density o.

The excluded region ®* defined above through the kinematic construction illus-
trated in Figure 1.8 is indeed subtler than the definition of Hy in (1.131) may at first
glance suggest. This latter could also be valid if R * were defined only as the region
in space inaccessible to the charge center p; when the VAN DER WAALS region ®’
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is approached in all radial directions e, until it is in contact with ® while keeping
its orientation unaltered. The region thus obtained, which depends on the choice of
po and pg and on the relative orientation of ® and ®’, may be called the radially
excluded region ® . It can be seen by example that there are classes of shapes R and
®’ for which ® " and R* differ. A simple example can be obtained when ® is not
star-shaped!? relative to po and R’ is a ball of sufficiently small radius. As is easily
shown, R is star-shaped by construction, while ®”* may fail to be so.

In principle, ®* can be defined for two arbitrary regions ® and ®’, as in Fig-
ure 1.8. However, in our case the two interacting molecules are identical, so that R
and R’ differ only by a rigid rotation R, as do correspondingly A and A’ = RAR.
Thus, Hy ultimately depends on R: explicitly through A’, and implicitly through ® *.

When R* is a ball of radius R, the integral in (1.131) can be evaluated directly,
and one obtains

< 4nC
Hy = —Coo / —/ URUdA)[A]-A = - 2% U R U)e[A] - A,
R r4 s2 3R3

where A is the area measure over the unit sphere S2, and (- - - s> denotes the average
over it:

1
("')S2 = E/gz()dA(er)

By symmetry, (UX U)g2 is a linear combination of isotropic fourth-rank tensors. An
explicit computation shows that?”

(UR U)g2[A]-A = 4—15[A A+ 3(trA)(trA)],

and so, up to a constant that is independent of the relative orientation of the

molecules,

_47‘[ C()Q A-A/
135R3

This formula can be further simplified by introducing the traceless parts Ao and Aj,
of A and A’, respectively, according to

d

(1.132)

1 1
A=Ag+ (AT and A'=Aj+ (AL (1.133)

By (1.133),
1
A-A=Ap-A)+ §(trA)2,

and in (1.132) we can replace A and A’ by Ay and A}, only altering Hy by an
inessential constant. If the polarizability A is uniaxial about a molecular axis ey,

19 A region R is star-shaped relative to a point pg € ® if, for any point p € ®, the whole
segment joining po and p is also contained in ®. See also equation (1.135) below for an
explicit representation of a star-shaped region.

20 The reader is referred to [313] for the details of this computation.
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A= ®e1+ai(I-e; ®ey),

1 (1.134)
Ao = (o) —ay) (81 Re; — 31) ,
where o and o1 denote the polarizabilities along the symmetry axis and perpendic-
ular to it, then (1.132) yields the classical uniaxial MAIER—SAUPE interaction as in
(1.9), since
47 Cpo

2 2
Hd=_135R3 (a”—ou_) |:(el'ei) _§:|’

where e/1 = Re;. As we shall see below in Section 1.4.5, a deviation from the spher-
ical shape of the excluded region ®* will entail a steric correction to the MAIER—
SAUPE theory .

Steric Tensor

Henceforth we assume that ® is such that the excluded region ®* is star-shaped
relative to py, that is, it can be represented as?!

R* ={po €8 : |po— pol <u™(er)}. (1.135)

Here the shape function u™ is defined in such a way that the mapping e, +— u*(e,)e,
maps the unit sphere S? around pg into AR *. In this case, the radial integration in
(1.131) can be performed explicitly, and one finds that

4nCoo | 1 4nC
Hy= -2 °Q< 3U|zU> [A]-A/ = — >0
3 \ur - 3

Sg=+[A]- A/, (1.136)
where we have introduced the fourth-rank tensor

1
Sg+ 1= <u*3 UK U>Sz
We call S+ the steric tensor because it depends only on the shape of the excluded
region and can in principle be computed once u* is known. The steric tensor also
plays a role in expressing the effective pair potential Hy in (1.130), valid when mul-
tiple molecular oscillators participate in the interaction. It readily follows from the
reasoning that led us to (1.136) that

4o

Hy=——

N
Y CuSex[An]- AL,
hk=1

where Aj, and A are the polarizability tensors corresponding to each molecular
oscillator.

Before we tackle in Section 1.4.4 the problem of computing Sg+ for a specific
class of molecular shapes, we first address the problem of how to determine the shape
function u™* for a given molecular shape.

21 In other words, we assume that the excluded region ® * coincides with the radially excluded
: *
region R
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1.4.3 Perturbative Method

Obtaining the excluded region ®* from the VAN DER WAALS regions R and ®’
is not in general an easy task, as also witnessed by some recent work [372, 371],
mostly related to liquid crystals. A vast literature has been devoted to computing the
excluded volume V(R™*). We refer the reader to that literature to appreciate the many
subtleties involved in the geometric problem of constructing ® * .22

Here, following again [313], we further build upon the kinematic construction of
®* and develop an analytic method, which we then apply in a perturbative limit. We
consider molecules whose shape can be represented like ® * in (1.135), that is,

R={pe€|p—po=re, 0=r <u(e)}, (1.137)

where e is the radial unit vector, and u is the shape function of ®. Like R*, the
region R is star-shaped relative to the charge center pyg. It follows from (1.137) that
OR is the image of S? under the mapping #(e) := u(e)e. Figure 1.9 shows both ®
and the unit sphere S? around which d® is built. If u is continuously differentiable

Fig. 1.9. The regions ® and ®R’, the latter being ® rotated through R. ® and R’ are star-
shaped with respect to pg and p6, respectively. The unit spheres of which their boundaries are
images are also depicted. ® and ®’ are in contact at the point p € IR N dR’, where v and v’
denote the corresponding outer unit normals. The vectors u, u’, and u™* are defined as follows:

u:=p—po,u = p— pg andu* := pj — po.

on S2, the outer unit normal v is defined on the whole?® of R, and, as shown in
[313], it can be given the following concise form:

22 There are essentially two methods widely used to determine ®* and V(®R*) in special
classes of shapes; they are based on convex-body coordinates and MINKOWSKI sums: il-
lustrations of these methods and relevant bibliographic sources can be found in [303, 224].

23 Thus the topological boundary d® and the reduced boundary 3*® coincide.
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ue — Viu
Vi + [Vaul?’

where Vu is the surface gradient of u on S2.

When ® is subject to the rotation R € SO(3), thus becoming ®’, each e on the
sphere S? around which d®’ is built can be seen as the image of R"e under R, so
that ®' is represented as in (1.137) with u replaced by

v(e) = (1.138)

u'(e) :=uR"e), VeeS? (1.139)
Correspondingly, the outer unit normal v’ to R’ is given by
v'(e) = Rv(R'e), VeeS2 (1.140)

Figure 1.9 illustrates the situation we envisage. The shapes ® and ®’, with their
charge centers po and p, are in mutual contact at a point p on R NIR’, designated
correspondingly by e and e’ on the unit spheres around which J® and 0®’ are built.
The vector u* := p( — po describes the boundary of d®* of the excluded region,
built around the unit sphere centered at po; formally, we write

u*(e,) = u(e,)e, with e, € S2,
where u* is the radial representation of d®* in (1.135). By construction,
u*(e;)e, = u(e)e —u'(e')e’

and
v(e) = —v'(e)).

By (1.139) and (1.140), these equations may be given a more transparent form,
u*(ey)e, = u(e)e —u(R"e’)e’, (1.141a)

v(R'e’) = —R"v(e). (1.141b)

In general, by (1.141b), one would determine e’ in terms of e, which, once inserted
into (1.141a), delivers both e, and u* as functions of e. This strategy may, however,
fail, since a solution to (1.141b) may not exist for all e € S2. Moreover, the local
contact conditions (1.141), even if satisfied at a point, may conflict with the mutual
impenetrability of ® and ®’ at some other point. We need to seek global solvability
of equations (1.141), that is, we need to identify, for any given rotation R € SO(3),
the mappings e’ = f’(e) and e, = f*(e) from a subset Sg C S? into and onto
S2, respectively, that turn (1.141) into identities for an appropriate positive u*. This
would, in particular, ensure that the excluded region R* is also star-shaped, as de-
sired. Correspondingly, the steric tensor in (1.4.2) could then be converted into an
integral over Sg through the change of variables induced on S? by f*. Such an
analytic program, however, may easily become prohibitive for sufficiently general
shapes ®. Notable examples are convex shapes, for which (1.141b) is uniquely solv-
able, with Sg = S? for all rotations R. Nevertheless, even for this special category of
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shapes, the functions u* and f* may be rather complicated, as illuminated in [313]
already for ellipsoids.

For this reason, we resort to a perturbative approach and apply the method out-
lined above to a special class of molecular shapes. Specifically, we set

u(e) = R[1 + ev(e)], (1.142)

where R > 0 is now a characteristic molecular length, ¢ > 0 is a small perturba-
tion parameter, and v is a bounded, smooth mapping defined on S2. Without loss of
generality, we may normalize v by requiring that

(v)g2 =0, (1.143)

so that R can be interpreted as the average molecular radius. Equation (1.142) repre-
sents a convex spheroidal molecule. It readily follows from (1.142) and (1.138) that
for such a molecule the outer unit normal takes the form

v(e) = e —eVu(e) + o(s). (1.144)

This mapping is clearly one-to-one on S whenever the second surface gradient V2v
on S? is bounded. Under this assumption, which we make henceforth, the shape R is
convex, and so also will be ® *. By use of (1.144) in (1.141b), we arrive at an implicit
function for e’,

e = —e + ¢[Viv(e) + RV,u(RTe’)] + o(e),
whence, since e/ = —e + O(s), it follows that

e’ = —e + ¢[Viu(e) + RV,u(—RTe))] + o(e). (1.145)
By (1.145), (1.141a) becomes

u*(e;)e, = R{2 + ¢[v(e) + v(Re)]}e — eR[RV,u(—R"e) + Viv(e)] + o(e).
(1.146)
Since ®’ is described by u’ in (1.139), ®*, which is to be a spheroid like ®, is
described by
u*(e;) = R*[1 + cv*(e;)] + o(e), (1.147)

where both R* and v* are unknown. Inserting (1.147) into (1.146) and observing
that both Vv (e) and RV v(—R"e) are orthogonal to e, we obtain

R* =2R, v*(e,) = %[v(e,) +v(—=RTe,)] (1.148a)

and
e =e— %S[st(e) + RV,w(—RTe)] + o(e). (1.148b)

Equations (1.145) and (1.148b) are the perturbative limits of the functions f’ and
f*. Thus, for any given R and v representing ® through (1.142), equations (1.147)
and (1.148) determine explicitly the corresponding representation of ®”* through
(1.147). In the following subsection, this representation will lead us to an explicit
formula for the steric tensor Sgx.
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1.4.4 Steric Biaxiality

One assumption in the original derivation of the MAIER—SAUPE interaction [208,
209, 210] is that, for the averaging process, the distribution of the molecules is spher-
ically symmetric. This is a particularly questionable assumption, because the inter-
action energy decays with the sixth power of the intermolecular distance, and so the
most important contributions stem from the nearest molecules. Already MAIER &
SAUPE suggest that the steric effect can be taken into account by considering small
groups of molecules that would then be roughly spherically symmetric [210]. This
leads merely to a renormalization of the constants. Here, without abandoning the
assumption on spherical spatial symmetry for the distribution of molecular charge
centers, we explore directly the effect of nonspherical molecular shapes on the dis-
persion interactions.

As we have seen in Section 1.4.3, for spheroidal molecules the excluded region
is given by the explicit representation (1.147) with R* and v* as in (1.148a). Then,
for small ¢,

1 1 «
3= (27)3(1 —3ev™) + o(e),
and, by (1.4.2),
Sg* = R ((URU) —3¢(v* UK U)) + o(e), (1.149)

where U is as in (1.129). In the second average in (1.149), we also take advantage of
the fact that, at the lowest order in ¢, f* is the identity on S2; see (1.148b). The first
term on the right-hand side of (1.149) is the same that was found in Section 1.4.2
for a spherical excluded region, and the second term gives the steric correction to
the dispersion interaction. To make this more explicit, we consider the multipole
expansion of v in terms of Cartesian tensors:

vie,)=E e, +E-e, e, +E® . ¢, Qe, ®e, (1.150)
+EW. ¢, Qe Qe, @€, +---, (1.151)

where “--' denotes the (symmetric) irreducible part of a tensor, E is the shape dipole,
E is the shape quadrupole, and the E®) are the higher moments. The gauge (1.143)
forbids any constant term in (1.150). Since, by (1.129), UK U is even in e;, the odd-
rank tensors in the expansion (1.150) do not contribute to the steric tensor (1.149).
The first relevant term is the shape quadrupole, a symmetric traceless second-rank
tensor that can be computed for a given v(e) as

15 — 15
E = ?(v(er) e, Qe g2 = ?<UU)S2.

From now on, we neglect higher orders and consider

v=E-e, e, =e, Ee,, (1.152)
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bearing in mind that tr E = 0. By (1.148a), equation (1.152) leads us to
* 1 /
vi(er) = Eer -(E+E)e,,

where E' = RERT. The steric tensor (1.149) can then be found explicitly by noting
that

2
(UK U),-jkleme,,)ssz,,AklA;.j = E S-(BtrA(A + A/) — 2AA/) (1.153)

for symmetric tensors A, A, and S, with trS = 0 and trA = tr A’.?>* With this, by
(1.136) and (1.4.2), the effective dispersion pair-potential Hy becomes

4]TCOQ ’ 2
Hy=——1{7[A-A" +3(trA
4= g aR)T VIATA AN
—3¢(E+E) BrAA+A') —2AA"]} +0(e).  (1.154)
It is convenient to introduce in (1.154) the tensors Ay and Ay defined in (1.133); one
then obtains
47'[COQ , 2
Hi=————=1{7[3A0 - A 10(tr A
d 2835(2R)3{[ 0-Ap + 10(tr A)~]
—3¢(E+E)-[TtrA(Ao + Ap) — 6A0A; } , (1.155)

valid up to the first order in e.

1.4.5 Special Interactions

We now consider the special case in which the shape quadrupole and polarizability
tensor share the same eigenframe, (e, €2, €3). Then both tensors can be represented
as linear combinations of the identity I and the two orthogonal tensors

1
q:=e1®e1—§I and b:i=e; Qe —e3 R ez,

already introduced in (1.7) and (1.11) above. Since the quadrupolar shape tensor E
must be traceless, we write it as

E =o0yq+o.b,
where o) and o are scalar parameters, and then also
E =oyq +o.b
with ¢ = RqR" and b’ = RbR.
24 1n equation (1.153), ez, denotes the mth Cartesian component of the unit vector e, . Simi-

larly, Smn, Ay, and A;.j are the components of the second-rank tensors S, A, and A’, all
in the same basis.
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Uniaxial Interaction

For the MAIER-SAUPE interaction the polarizability tensor A is uniaxial as in
(1.134). Equivalently, A and A’ can also be written as

A=al+ Aaq and A’ =al+ Aaq,

where | |
= gtrA = g(a” +2cy) and Ao :i=op—al. (1.156)

In [313], (1.155) was found to be equivalent, up to an additive constant, to

4 Aa)? 2 v
Hd:_M{[l + 2¢0 (__3_05)](1.(1,

135(2R)3 7 Aa
— 0, %+£ (q-b"+b-q) (1.157)
7 Aa ' ’

This formula embodies the steric correction to the classical MAIER—S AUPE interac-
tion energy. It suggests a few comments.
First, since both & and o are positive and

2 3« _ Sa + 16ay

7 Aa 7Aa

the sign of the correction to the coefficient of q - q’ is opposite to the sign of o A«
meaning that the molecular long axis interaction is depressed if the molecular shape
quadrupole is resonant, as it were, with the anisotropic polarizability tensor, and it is
enhanced otherwise. Thus, for o, = 0, a uniaxial shape quadrupole prolate along the
symmetry axis e; would depress the bare MAIER—S AUPE interaction when Ax > 0,
whereas it would enhance it when Ao < 0.

Second, for o) # 0, that is, for a biaxial shape quadrupole, the dispersion in-
teraction between molecules with uniaxial polarizability tensors becomes effectively
biaxial as in (1.10) with

2 3a
y:_ggL(i+E) and A =0.

As first shown by LUCKHURST & ROMANO [202] by simulation and lately con-
firmed within a general mean-field theory [24], a biaxial interaction potential like
(1.157) with o1 # 0 does not promote condensed biaxial phases. However, at vari-
ance with the classical MAIER—SAUPE potential, the transition temperature for such
a potential would depend on the coefficient of the biaxial correction, which here is a
function of the molecular shape.

Biaxial Interaction

We now consider the more general case of an arbitrary, possibly biaxial polarizability
with eigenvalues o1, o22, and «33. This can be written as
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1
A =al+ Aaq + EAaLb, (1.158)
with the average polarizability

1 1
o= gtrA = 5(0511 + a2 + a33)

and the polarizability anisotropies
1
Aa = 033 — E(all 4+ @) and Aol = oy — oz

When 17 = 5>, this reduces to the MAIER—SAUPE interaction discussed in the
preceding subsection. The effective dispersion pair-potential then takes the form

7 Co0 ’ / ’ ’
Hy=—7"—= . b(q-b"+b- b-b 1.159
e Y IE laq-q +b(q-b +b-q)+cb-b'} (1.159)
with
a = Aa{28Aa + 8¢[o(2Aa — 21a) — 301 Aay ]}, (1.160a)
b= 14AaAa) —2¢elo) (4Aa* + 3Aa})+21a(20 Aa + o Act)],  (1.160b)
¢ = Aa1{7Aa) —4eloy LAa+21a) 4 o Aay]}. (1.160c)

Since ¢ is a small perturbation parameter, it is easily seen that a > 0. Thus, by setting

7 Cooa b ¢
Up = ———, = -, d A:=-—, 1.161
T os0Rp VT ™ a (1.161)
equation (1.159) can be given the form (1.10), put forward by STRALEY [321, 315]
for general biaxial molecules,

Hy=-Up{q-q +y(q-b +b-q)+ Ab-b'}. (1.162)

Earlier than STRALEY, FREISER [110, 111] had proposed a model for thermotropic
liquid crystals composed of biaxial molecules, which appeared as a natural extension
of the MAIER-S AUPE theory. FREISER posited the effective dispersion pair-potential

Hy = —UpA-A/, (1.163)

where Uy is a characteristic coupling energy.”> As shown by (1.132), for spheri-
cal molecules, this formula would result from a dispersion interaction involving a
single oscillator in each molecule. Clearly, by (1.158), (1.163) is a special case of
(1.162), this latter reducing to the former when A = 2. Similarly, again for spher-
ical molecules, (1.162) can be interpreted in the language of dispersion forces if
we imagine three independent oscillators at right angles in each molecule [14]. It is

25 FREISER’s pair potential formed the basis of the first mean-field treatment of biaxial ne-
matics [26].
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remarkable that for nonspherical molecules a steric quadrupolar correction to a bare
FREISER interaction changes it into a STRALEY interaction , which dispersion forces
could justify only through multiple oscillators.

The connection between the STRALEY and FREISER interactions is deeper than
this illustrates. The effective dispersion pair-potential in (1.162) can be given the
diagonal form (1.12), which we recall here:

Hy = —Up (2191 - g} + 2242 - q5) (1.164)

with q; and q3 as in (1.13). Equation (1.164) shows how the STRALEY interaction
(1.162) can be viewed as the superposition of two FREISER interactions. We already
learned in Section 1.1.1 that for A > y2, both «; and a5 are positive, and so both
interactions in the diagonal decomposition (1.164) are attractive. The pair-potential
Hy is then fully attractive, in the language introduced in Section 1.1.1 above. For
A = y2, either oy or a vanishes: (1.164) still reduces to a single attractive term. In
this specific instance, the potential Hy is also called simply attractive. For A < y2,
either oy or o, is negative, and (1.164) appears as a superposition of attractive and
repulsive interactions. The pair-potential Hy is then partly repulsive. The discrimi-
nating parabola A = y?2 in the (y, A) plane has also been referred to as the dispersion
parabola [24, 63].

For the particular realization (1.159) of the STRALEY interaction, one readily
sees from (1.160) and (1.161) that Hy is fully attractive, simply attractive, or partly
repulsive depending on whether the discriminant d := b? — ac is negative, zero,
or positive. When o = o = 0, that is, when the steric effect is neglected, Hy in
(1.159) is simply attractive. In general, it is found that d is a perfect square,

d = 4[o)Aay (4Aa —21@) + 0y (420 A +4A0!2—3Aai)]2 > 0.

This shows that Hy in (1.159) can never be represented by a point that lies above
the dispersion parabola in the admissible region of the (y, 1) plane depicted in Fig-
ure 1.3. Thus, accounting for the steric effect cannot change a bare FREISER interac-
tion into a fully attractive STRALEY interaction . This outcome supports the intuitive
view presented in [24] that partly repulsive interactions reflect somehow steric hin-
drance. However, d can vanish, thus rendering Hy simply attractive, even in the
presence of a steric effect. For example, for o, # 0, d = 0 whenever

o _ 3n* — 428 — 482
oL n(4g—-21) '

where
Aa
f:=— and 7n:=
a

AO(J_

are subject to the bounds

3
—§<§<3 and —3<n<3.
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On the other hand, if 0, = 0, so that the shape quadrupole is uniaxial, d vanishes
only if A = 0, that is, only if the polarizability tensor is also uniaxial. Thus, for
spheroidal biaxial molecules, the steric hindrance may either map a bare FREISER
interaction into another, represented by a new, effective polarizability tensor and pos-
sibly a different coupling energy, or transform it into a partly repulsive STRALEY
interaction.

1.4.6 Perspective

In this section, we computed the formal contribution of molecular hindrance to the
dispersion force interactions of two rigid molecules. Such a steric effect is embodied
by the steric tensor Sg+ defined by (1.4.2) for a star-shaped excluded region ® *, the
region that the repulsion between molecular cores makes inaccessible to both. This is
an attempt to give a rigorous account of the interplay between attractive, long-range
forces and repulsive, short-range forces in molecular interactions.

To explore analytically the steric effect in a specific class of molecular shapes,
we considered spheroidal molecules, and, for simplicity, we restrained up to the
quadrupolar term the multipolar expansion of their shape representation. We showed
how a biaxial quadrupolar shape can turn the classical MAIER-SAUPE interaction
potential for uniaxial nematic liquid crystals into a biaxial interaction potential in
the family envisaged by STRALEY on the basis of pure symmetry. The specific
steric correction to the MAIER—SAUPE interaction is not capable of promoting bi-
axial phases, but it affects the transition temperature. In a similar way, we explored
the consequences of the steric effect on a bare FREISER interaction, a dispersion in-
teraction between single oscillators in molecules with biaxial polarizability tensors .
The steric effect transforms this interaction into a partly repulsive STRALEY interac-
tion, thus corroborating the view that the STRALEY interactions represented by the
potential (1.162) with A < y? somehow embody molecular hindrance [24].

It has been known since the seminal paper of ONSAGER [258] that the order-
ing phase transitions of nematogenic molecules can also be explained by a purely
athermic theory based on excluded volume interactions. For biaxial molecules in the
family of spherocuboids [224], it was shown in [283] that the quadrupolar compo-
nent of the excluded volume interaction is partly repulsive for all geometric parame-
ters describing the molecular shape. Such a conclusion reached for purely hard-core
repulsive interactions somehow parallels the one reached here on the partly repul-
sive nature of the steric correction to a bare FREISER interaction. Since hard-core
repulsive interactions result in a quadrupolar attraction, albeit partly repulsive, so
does the molecular hindrance in a single oscillator dispersion interaction, at least for
spheroidal molecular shapes.

A few questions are raised by these conclusions. First, whether the steric tensor
S+ can be computed, possibly numerically, for nonspheroidal molecules. Second,
as to the nature of the steric correction to a general STRALEY interaction, not neces-
sarily in the spheroidal approximation. Third, whether the pure dispersion model put
forward by BATES & LUCKHURST [12] for V-shaped molecules, which in the way
it is formulated could apply as well to X-shaped molecules, can be more specifically
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tailored to V-shaped molecules by accounting for their specific shape in computing
the steric correction.



2

Dynamics of Dissipative Fluids

In the first chapter we explored the microscopic origins of orientational order. We
now turn to macroscopic continuum theories. These are phenomenological theories
that attempt to model real materials. They do not attempt to explain material proper-
ties by resorting to the molecular structure of matter, but they can draw inspiration
from molecular theories—and the best of modern theories actually do so, in the spirit
of a true multiscale approach to materials science. The same continuum theory can
describe different materials by means of specific constitutive laws, which being first
formulated in accordance with general invariance and symmetry principles, are then
corroborated by matching experimental evidence with theoretical predictions, a com-
parison that eventually determines the phenomenological coefficients of the contin-
uum theory. Often, it is also possible to link microscopic and macroscopic theories
by estimating directly on molecular grounds the values of the phenomenological
coefficients—for example, through a mean field theory. Whenever this happens, we
extract the best from both worlds.

2.1 Continuum Mechanics Fundamentals

This book is not a treatise on continuum mechanics, though it mostly concerns or-
dered continua. The reader will find, for example, in the textbooks [130], [349], and
[131] extensive treatments written in a mathematical language similar to ours. In this
section, in an attempt to make our account self-contained, we only recall the basic
concepts being used here, with a degree of mathematical rigor that would neither
deter the applied scientist nor disappoint the mathematician.

2.1.1 Bodies and Shapes

Here we set forth our language by introducing a number of definitions. Modern con-
tinuum mechanics concerns bodies and their motions treated as mathematical ab-
stractions. Since LODGE [191] first distinctively perceived the need of distinguishing
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between bodies and their placements in space,' it has become customary to regard
a body ® and the whole collection of its parts, or subbodies ® B, as a measure
space, as defined, for example, in [284, p. 217] (see moreover [345, § 15] and, more
diffusely, [349, §§ 2—4]). Properly speaking, one should regard 8 as a material uni-
verse® of subbodies. Here, given a body ®, we shall identify it with an appropriate
region in the three-dimensional Euclidean space® &, and its subbodies with an appro-
priate family of subsets, thus becoming guilty of confusing bodies with their shapes,
in the parlance of TRUESDELL [349].

The issue of selecting the smallest class of shapes in space that a body and its
subbodies can occupy while complying with the requirements of constituting a ma-
terial universe and being at the same time amenable to the analytical transforma-
tions typical of continuum mechanics, above all balancing surface and volume in-
tegrals through the divergence theorem, has a long history. It starts perhaps with
KELLOGG [163] and acquires its clearest mathematical formulation in the work of
NoOLL [243] (see also [240] and [241] for earlier statements of this problem). Dif-
ferent classes of fit regions, as they were called in [249], some unnecessarily wide,
have been proposed in the literature.* Here we follow [249], to which we also refer
the reader for all the technical details that cannot be treated in this short account.

To show how simple regions could be inadequate to serve as fit regions, it was
remarked in [249] that open regions with a piecewise smooth boundary would not
necessarily have unions or intersections in the same class. Since stability under set-
theoretic operations is the first requirement for a material universe, the class of fit
regions should be sufficiently large to guarantee this, but hopefully not too large.
The second requirement laid down in [249] for the class of fit regions was that it be
invariant under smooth diffeomorphisms of &. The third requirement was that a fit
region possess a surface-like boundary, for which an appropriately extended form of
the divergence theorem would be valid. Finally, it was considered “desirable that
the class of fit regions include all that can possibly be imagined by an engineer but
exclude those that can be dreamt only by an ingenious mathematician.” The proposal
eventually put forward in [249] requires a fit region to be (i) bounded, (ii) regularly
open, (iii) with finite perimeter, and (iv) with negligible boundary.

A set B C & is said regularly open if it coincides with the interior of its closure,

® = ®. The perimeter of a set is defined according to DE GIORGI as the total

L« it is clear that we have to deal with one continuous geometric manifold (the medium)

immersed in and moving through another one (space); we shall refer to these as the ‘body
manifold’and the ‘space manifold,” and we shall call points of the two manifolds ‘particles’
and ‘places’ respectively.” (reported from [191] in [345, p. 37]).

2 The notion of universe of bodies, which was first introduced by NOLL as a materially
ordered set in his axiomatics of continuum physics [236, 241] and further developed more
recently [247], is presented in great detail in §§ 1.2 and 1.3 of [349].

3 The reader will find in Appendix A the basic geometric and algebraic notions underlying
our language.

4 We record for completeness some other relevant contributions, also witnessing how the
interest raised by this issue has propagated to recent times: [68], [301], [72].
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variation of its characteristic function.’ Finally, a set in & is negligible if its volume
measure vanishes.® It was already clear in [5] that sets with finite perimeter were
potential shapes of continuous bodies. However, the class of sets put forward in [5]
did not obey the axioms for a material universe. Also, it was unnecessarily large.
Also the class proposed in [133], though it obeys all our desired requirements, is
larger than the class of fit regions employed here, as shown in [249].

It worth remarking for later use that the surface-like boundary exhibited by a fit
region is smaller than the its topological boundary: it is indeed through the reduced

boundary 3*® that any subbody ® can be in contact with its exterior ®© := @ \ ®.
This view is justified by the following facts, which are too technical to be proved
here (appropriate references are given in [249, § 6]):

(1) The outer unit normal v to a fit region ® is defined only on 0*®.
(2) The reduced boundary 3*® of a fit region ¢ has finite area measure.

(3) For every continuous function f : ® — R differentiable in ® and with inte-
grable gradient V f,

7

/ VfdV = frdA. 2.1)
® I*@

(4) 0*® differs from the union of a countable collection of compact subsets of C!-
surfaces only by a set of area-measure zero.

Though one can prove that, for a fit region ®, the closure 3*® of 3*® coincides
with the topological boundary d®, it may turn out that A(d® \ 0*®) > 0, as shown
in [249] by example. This shows that in our setting the contact between separate
subbodies can take place on proper subsets of the boundary they have in common.
Formally, one could define the contact between two separate subbodies as the inter-
section of their reduced boundaries. Henceforth, we shall assume that the body 8
and any of its subbodies @ are fit regions, according to the definition recalled above.

We have defined a body B as a measure space identifiable with a fit region in 8.
Its measure, which is meant to express the bulkiness of its subbodies, is its mass M .
We further assume that M is absolutely continuous (see, for example, [356, p. 75])
with respect to the volume measure, so that

M(®) = f 00dV, 2.2)
®

for all subbodies @ of B, where ¢ is the mass density. Equation (2.2) shows how
the mass density can be regarded as the ultimate ratio between mass and volume (as

3 The theory of sets with finite perimeter, especially the theorems about the reduced bound-
ary, recalled in the text, can be retraced in the original papers of DE GIORGI, now also
available in English [60], and in textbooks such as [356], Chapter 5, and [61].

6 The volume measure, here denoted by V, is LEBESGUE measure on 8. The area measure,
which shall be denoted by A, is HAUSDORFF two-dimensional measure. Definitions of
these measures can be found, for example, in [356, pp. 78-80] and [374, §§ 1.2, 1.4].

7 which, incidentally, coincides with the perimeter of ®.
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phrased in [345, p. 38]). More precisely, given a sequence ®, of fit regions having a
point P € ® in common, the mass density at P results from the limit

®,
0o(P) = lim_ Alf((@n))-

In our development, oo will always be a smooth function.

2.1.2 Motion
Formally, given the time interval / € R, a motion of ® is a mapping
x:B8BxI—>E§8 2.3)

such that x (-, ¢) is a diffeomorphism of ® into & for every ¢t € I and x(p,-) is twice
continuously differentiable for every p € ®. For given ¢ € I, we denote by B, the
image of B under y (-, ), and we call it the shape of B at time 7. Similarly, for every
subbody ® of B, we denote by ¢ its shape at time ¢. Often, when ¢ is the time at
which the motion is being observed, we call ®; the present shape of the subbody ®,
and B, the present shape of the whole body. Given a point P € ®, its trajectory in
space is described by the curve p; = x(P,1t), and its velocity is then

. 9
Pt = 5)((P,t)- (2.4)

For every t € I, the velocity field v associated with the motion y delivers the veloc-
ities of all trajectories traversing 8,. Formally, v : €, — U is a mapping defined on
the collection of shapes C, induced by y,

ey = J®.0)cEx1, 2.5)

tel

that takes values in the translation space8 U of &, so that v(-,7) : B; — V, for every
t € 1. This definition reveals that we are adopting the spatial description for the flow
field,” which is most appropriate for fluids. Equivalently, it can phrased as

0
v(x(P,t),t) := EX(P’I)' (2.6)

Given a motion y of 8 as in (2.3) and a time ¢ € I, we call the mapping y; :
®B; x I — & defined by (see also § 1.8 of [349])

x:(p.t) = x(x ' (p.1).1) 2.7)

8 As also recalled in Appendix A.1, the translation space V := & — & is the inner-product
space of all vectors acting on the points of €.

9 Often, such a description is referred to as Eulerian, though, as we learn from [349, p. 97],
it was indeed introduced by D. BERNOULLI and D’ ALEMBERT, showing once more how
deceptive traditional attributions can be.
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the motion of ® relative'® to 8,. It easily follows from (2.6) and (2.7) that

9
v(p.t) = —x:(p.1) (2.8)

at’

t'=t

Since this book concerns only fluids, most of our kinematics will be set forth in the
generic present part @ of B;. As in (2.8), we shall employ the relative motion y; to
define all relevant kinematic fields; the acceleration a, for example, will thus be

2

ad
a(pvt) = _Xt(pvt/)

o 2.9)

t'=t

The material points in any given subbody ® of the body ® are the same at all
times, and this makes the actual region occupied by ® vary in time. Let ® be a part
of B, for any given ¢t € I. We say that ®; is convected in @y by the relative motion
X: in(27)if @y = x,(®,1"). It follows from (2.7), (2.8), and (2.9) that, for a point
p¢ in the present part &, the point p;+. = x:(ps,t + ¢) in the convected part @,
can be written as

1
Di+e = Pt +ev(ps, 1) + Eeza(pt,t) + o(g). (2.10)

which describes up to second order in the time increment ¢ the trajectory of the ma-
terial body point passing through p, at time ¢. In (2.10), we assume that the TAYLOR
expansion of the mapping y;(p;, ) exists for all . Under this assumption, equation
(2.10) could also be used to define the fields v and a, starting from the trajectories of
material body points.'! In particular, it follows from (2.10) that

d .
a(plvl) = Ev(plvl) = v(ptvt)v

where a superimposed dot denotes the time derivative taken along trajectories, also
called the material time derivative. Explicitly, for every ¢t € I, a(-,t) is the vector
field on the present shape 8; of the body represented as

az(Vv)v—}—av

e @2.11)

in terms of the velocity field v(p,t) on C,, where Vv := g—; is the velocity gradient.

More generally, for a smooth vector field b defined like v on Cj, the material
time derivative b is defined by (see also Appendix A.4)

10 When, as customary for example in solid mechanics, ® is called the reference shape (or
configuration) for the motion x, the relative motion y, is also said to be referred to the
present shape B;.

11 More generally, in the following we shall define both derivatives and gradients of smooth
fields through their TAYLOR expansions, which are assumed to exist, an attitude that we
share with [349, pp. 327-328] and [131, p. 43].
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. ob
b:=(Vb)v + TR (2.12)
It is immediately seen that
2 0 AP
t'=t

which could equally be used to define the material time derivative of b.

Tangential and Normal Convections of Vectors and Tensors

We now consider different ways to convect vectors and tensors along a motion y of
the body ®. To this end, we envisage a curve in the present shape B, and study how
it evolves in time when its points are considered as material. Imagine, for example, a
lace of tiny bubbles or dust particles flowing with a fluid. Formally, for a given time
t € I, consider a regular curve'”> ¢; : [0,1] — ®;. Let b(-, ) be the vector field
defined along the image ¢; € B; of ¢; by

d
b(ci(1),1) := Ect(r) #0, (2.14)

where 7 € [0, 1] is the parameter describing the curve ¢;. The vector field b is every-
where tangent to ¢; by construction. As time elapses, the curve ¢; is mapped by the
motion x into the curve

Ct/(t) = Xt(C[(T),[/), T€E [Ov 1]7 (215)
which clearly coincides with ¢; for ¢ = t. The vector field b(-,¢") everywhere tan-

gent to ¢,/ is given by

Ber(e).1) = 2o (@) = Vxulee). Oble @0, 216)

where the gradient V operates on the spatial argument only, and use has also been
made of both the chain rule and (2.14). Differentiating with respect to ¢’ both sides
of equation (2.16), with the aid of (2.8), (2.13), and (2.15) we arrive at

Lbert)| = blete).n = Vol 0be.0. @17)
/=t

which is the evolution equation obeyed by a tangent vector field convected by a flow.
Extending (2.17) to a vector field b defined on the whole collection of shapes C,
induced by the motion y, this evolution equation can easily be written as

b:=bh—Gb=0, (2.18)

12 That is, a curve that possesses one tangent everywhere.
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where, as in [349, p. 118], we have set
G := Vv,

and Z is the tangentially convected derivative' of b. Equation (2.18) is also called
the law of tangential convection, to recall the way in which it was derived.

Consider now two curves like ¢y, egl) and (352), crossing at a point, so that there
their tangent vectors b; and b, are not parallel. Let both curves be convected by
the flow. They will still intersect at a point wandering in space, while their tangent
vectors b; evolve as in (2.16). Since x; is a diffeomorphism by assumption, the
vectors b; will never be parallel at any time ¢/ # ¢, since they are not so at time ¢.
More generally, consider a system of two fields (b1, b,) nowhere parallel on a regular
surface'* 8, in B, that are tangentially convected by the flow.'> They induce the field
f = by X by, which locally identifies one of the two normals to 8;, the other being
— f*. The system curves tangent to b; and b,, which we still denote collectively by
egl) and e§2), draw a local web on 8;, which evolves in time convected by the flow;
so also does f, still designating one normal to the evolved surface S .

According to their definition, neither the tangent field b nor the normal field f
has unit length: the way their lengths change in time is actually a measure of how
length and area are altered in the convecting motion of curves and surfaces. More
precisely, let L(e;) be the length of the curve ¢; in B; parameterized by the mapping
c;. It follows from (2.14) that

1
L(e,) = /O b(c:(7).1)|d . (2.19)

Similarly, given a regular surface S, in B, covered by a web of curves egl) and e?)

with tangent fields b; and b, the area A(S;) of S, is given by!'®

1 1
160 = [ dn [ dulbie .0 x b @0l @20
0 0
where 71 and 1, are the parameters for the mappings ct(l) and ct(z) that represent the

system of curves egl) and e§2).

We wish now to derive the evolution law for f°, under the assumption that both b;
evolve according to (2.18). By computing the material time derivative of both sides
of the equations f - b; = 0, fori = 1,2, and recalling from (2.18) that b; = Gb;,
we easily see that

13 191131, p. 156], the derivative Z defined by (2.18) is called the contravariant rate of b, and
it is given a slightly different geometric interpretation, though closely related to ours.

14 That is, a surface that can be regarded locally as the graph of a mapping at least twice
differentiable from a subset of R? into &.

15 1 the parlance of [349, p. 134], curves like ¢; and surfaces like S; are called substantial,
since they can be thought of as consisting of the same material points at all times 7.

16 1t is well known that the length of the vector b1 x b5 is the area of the parallelogram
delimited by the vectors b1 and b, (see, for example, [131, p. 4]).
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fbi=-G'f b, i=1.2,

whence, since f is orthogonal to both b;, we conclude that

f=-G'f+af, 2.21)

where « is a scalar field that must be determined. Similarly, it follows from the
definition of f and (2.18) that

fZblXb2+b1Xb.2=Gb1Xb2+b1XGb2. (222)

By equating the right sides of equations (2.21) and (2.22), we arrive at the following
equation for o:

af - f =f-Gf +Gby-byx f +Gby- f xby, (2.23)

where use has also been made of the invariance of the mixed product a - b x ¢ under
cyclic permutations of the vectors a, b, and ¢ (see Appendix A.1). Since equation
(2.23) must be valid for all choices of the vectors b and b,, we take them orthogonal
and with unit length, so that (b1, b5, f') is alocal orthonormal and positively oriented
basis for V. Therefore b, X f = by and f x by = b;, and (2.23) gives @ = tr G.
The evolution equation (2.21) for f thus becomes

f =[GI-G"f. (2.24)

which we call the law of normal convection. Paralleling (2.18), we also write this
equation as

f=f+Gf—uG)f =0,

where JA’ is the normally convected derivative of the vector field f.

From the knowledge of the convection laws for b and f', we can now derive the
evolution laws for the length L(e;) of a convected curve ¢; and the area A(S;) of a
convected surface §;. Since

|w=whw=%$

by combining (2.18) and (2.19), we arrive at
. 1
L(ey) = / t-Gtlb|ldt = / t-Gtds, (2.25)
0 €

where t := \{b,_l is the unit tangent vector to e¢; and s denotes the arc length along ¢;.
More specifically, since G = Vv, equation (2.25) can also be given the form

: 9
L(er) = / ‘- a—vds, (2.26)
Ct N
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where g—'s’ := (Vo)t is the derivative of v along ¢,. Finally, by integrating by parts
the integral in (2.26), we also arrive at the following equivalent expression:

L(e,) =1t -V — 110 —/ on-vds,
Cr
where ¢, and #; are the unit tangents at the endpoints p; and p, (with p, follow-
ing p; in the ordering induced by increasing s), v, and v; are the corresponding
velocities, o is the curvature of ¢;, and n its principal unit normal.
Correspondingly, it follows from (2.20) and (2.24) that

1 1 1 1
A(st)=/ dn[ drz|f|'=/ dn/ do|f|v-[(trG)v — GTv]
0 0 0 0 (227)

= | (rtG—v-Gv)dA,
8¢

where v = \;_I is the unit normal to 8; oriented like f. Since trG = divv and

v-Gv = div, v is the normal divergence!” of v, we derive from (2.27) the following
intrinsic equation:

A(8;) = [g divs v dA, (2.28)
t

where divg denotes the surface divergence. By applying the surface-divergence the-

orem,'® we also give (2.28) the alternative, more explicit form

A(S,) = f (o1 +02)v-vdA +/ v-vg,ds,
S[ 38[

where o1 and o, are the principal curvatures of the surface 8; and vg, =t x v
denotes the conormal to its border 98, with unit tangent 7.

The notions of tangential and normal convections introduced above for vector
fields are easily extended to tensor fields. We say that a tensor field T is convected
tangentially on C, if it transforms tangentially convected vectors into tangentially
convected vectors. This means that, also by (2.18),

(Tb) =Th +Th =Tbh +TGb = GTb Vb,
whence it follows that a tangentially convected tensor obeys the evolution law
T:=T+TG-GT =0, (2.29)

v
where T is the tangentially convected derivative of T. Similarly, we say that a ten-
sor field T is convected normally if it transforms normally convected vectors into

17 The fundamentals of calculus on smooth surfaces can be found in [353, § 2.3.6]; they will
also be recalled in Section 5.2.3 below. Here it would suffice to note that on S; the diver-
gence div v splits into the sum of divg v and divy, v.

18 This theorem is stated in (5.20) below, where a more extensive use is made of it.
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normally convected vectors. The evolution law obeyed by such a tensor field, which
follows from the requirement that

(Tf)y =Tf +Tf =Tf + @wG)Tf —TG f
= trG)Tf -G'Tf VT,

is thus R ]
T:=T-TG"+G'T =0,

where ’i‘ is called the normally convected derivative of T.

Formally, there are two other possible definitions of convected derivatives for
a tensor field T inspired by our geometric interpretation for tangential and normal
convections of vector fields. In one definition, we require T to transform tangentially
convected vectors into normally convected vectors. The reader will easily show that
this requires T to obey the evolution law

T =T+TG+G'T=0.

In the other definition, we require T to transform normally convected vectors into
tangentially convected vectors. Such a tensor field obeys the following evolution
law: v )

T:=T-TG'—GT = 0. (2.30)

The derivatives T and ’I‘ just introduced coincide with the covariant and contravari-
ant rates of T, respectively, as defined, for example, in [131, p. 152].

Transport Theorem

We have seen in the preceding subsection how curves and surfaces are convected
by a motion of the body ®; in particular, (2.26) and (2.28) describe the convected
evolutions of length and area. Here we consider the convection of bulkier parts of
® and are interested in the convection of volume. More generally, the main task of
continuum kinematics is to describe how various physical quantities with volume
density evolve in time along a motion.

Let a motion y of 8 be given as in (2.3). Consider an arbitrary part ®; < &; of
the shape of B at time ¢ € I. The volume of this part of the body is given by the
integral

®;

In general, this volume will change with 7, and we can compute the time derivative
V(®, x) of V(®, x) explicitly by regarding the relative motion x, as a local change
of variables. Since ® is convected into ;. by x,, we can write

0
V@ 1) = / Qv = / Xt (o)
Crte ®;

3pt

dv, (2.31)
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where ‘%( Dt» e)‘ denotes the Jacobian determinant of y, with respect to p;. It

follows from (2.10) that

9
‘%(pt,e) = |det V pyie| = |det(I + eVo(ps, )], (2.32)
t

where V denotes the spatial gradient, operating only on p;. Since, as easily follows
from (A.5) in Appendix A.1, det(I 4+ eU) = 1 + etr U + o(¢), for any second-rank
tensor U, and since tr Vv = div v, by (2.32), (2.31) becomes

V(Pite, x) = (1 +divo)dV +o(e) =V (&, x) + 8/ divodV + o(e),
(P[ (Pl‘
whence it follows that
V(®, x) = / divodV, (2.33)
®;
which by the divergence theorem also reads as
V(@ x) = / v-vdA, (2.34)
@,

where v denotes the outer unit normal to 0*®;. Equation (2.34) has a clear intuitive
interpretation: it shows that the local volume change is the product of the normal
velocity v, := v - v and the area of the surface element d A."

The motion of a body ® is said to be isochoric if the volume of any part ®; of B,
is constant at all times. In view of (2.33), this means that

/ divvdV =0 forall .
®;

Since the domain of integration ( is an arbitrary subset of B;, this can hold only if
div v = 0. Thus, a motion is isochoric whenever

dive =0 (2.35)

throughout the motion. A velocity field v that satisfies (2.35) is also called solenoidal.
An incompressible material comprises bodies that can perform only isochoric mo-
tions; for them, (2.35) is a kinematic constraint to be imposed on all admissible
motions, since all flows must be solenoidal.

The same argument that led us to (2.33) can be generalized to any integral shape
Sfunctional along the motion y defined as

19 properly speaking, dV and dA indicate the measures relative to which integrals are to
be evaluated, the former being a three-dimensional volume measure, and the latter a two-
dimensional area measure. However, in interpreting equations like (2.33) and (2.34), it
might be convenient to think of d V' and d A as volumes and areas of the elementary mem-
bers of a partition approximating the set being measured. The mathematical grounds for
such an identification can be found, for example, in [356, § 2.3].
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(@, x) = / o(pe,1)dV, (2.36)

®;
where @ is a scalar field defined on the collection of shapes C, in (2.5) induced by the

motion y, and the integral is extended over the spatial argument p; only. Proceeding
as in (2.31), we write

2@ser) = |

(PH—&

d
Xt (o)

dv.
3p,

go(pt+€,r+e>an/=/(P ote(pre)i +e)
t

Applying the chain rule and letting p;+. = x:(ps,t + €), by (2.32) and (2.10), we
obtain that

0
D(Cre, x) = / |:<p(p,, t)+e¢ (V(p ‘v + a—(tp)i| [1 4+ edivo]dV + o(e)
®;
. dg
=Q(®, x)+¢ godwv—}—V(p-v—}—W dV +o(e),
®;
whence it follows that
@ (@, x) =/ (¢ + @dive)dV, (2.37)
®;
where 3
¢ :=Vo-v+ a—‘f (2.38)

is the material time derivative of ¢(p;,t) along a trajectory p; (see also Ap-
pendix A.4 for a direct definition of this derivative). By (2.38) and the divergence
theorem, since div(¢v) = ¢ divv + V¢ - v, (2.37) can also be given the form

: 9
(@, x) = / (a—(p+div(<pv))dV (2.39)
®, \ 0t
9
=f _“’dv+/ ov - vdA, (2.40)
e, 0t 9+ @,

which shows two distinct contributions to the total rate of change of the functional @.
The former stems from changes in ¢ within the region ®; presently being occupied
by the subbody, as if the subbody were not evolving in time; the latter stems from
changes in the region occupied by the subbody.

The identities (2.37), (2.39), and (2.40) are equivalent expressions of REYNOLD’s
transport theorem. Equation (2.33) is recovered as a special form of (2.37) for
¢ = 1. Similarly, for a vector-valued shape functional @ defined by

& (@, x) = / o(pr 1)V, 2.41)

®;
equation (2.37) is replaced by
(@, x) = f [¢ + (divv)e]dV, (2.42)
®;

where ¢ is the material time derivative of the vector field ¢ defined as in (2.12).
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2.1.3 Frame Indifference

Though in its formal definition the motion of a body may well give the illusion
of being absolute,?’ it makes sense only relative to other bodies. More precisely, it
makes sense only relative to a frame of reference, or observer. As was suggestively
said in [236, p. 278] (also reprised in [345, p. 41]), “physically, a frame of reference
is a set of objects whose mutual distances change comparatively little in time, like
the walls of a laboratory, the fixed stars, or the wooden horses on a merry-go-round.”
Moreover, since a motion ultimately describes how material points change position
in time, time must concur with space in defining a frame. We may also say that fixing
a frame amounts to choosing a representation of the space-time where our description
of the mechanical events is set. As in [349, p. 29], we consider an event as a primitive
concept whose nature is somewhat clarified by the mathematical structure employed
to describe it.

In the same vein, in this book we renounce attributing a precise mathematical
meaning to the concept of frame: we shall be contented with giving a rigorous def-
inition for a change of frame, which we reckon to be a far more important concept.
In no way, however, is a frame to be thought of as a coordinate system.

Our theory is based on the assumption that all principles pertaining to physical
reality must be independent of the frame of reference or observer that is employed to
state them. This axiom, which is essentially an invariance requirement, is called the
principle of frame indifference, and also the principle of objectivity. We next make
it explicit.

Change of Frame

Pragmatically, we identify a frame of reference, often called simply a frame or an
observer, with a rigid body that is endowed with a clock. An event in a given frame
is identified with where and when it takes place, that is, with a pair (x, ¢) of a point
x € 8in space and a time ¢ € R. The set of all events {(x,7)|x € &, t € R} is then
called the space-time.

A change of frame is an automorphism of space-time in which?!

1. all distances are preserved,
2. all time intervals are preserved, and
3. the sense of time is preserved.

Indirectly, by defining what a change of frame preserves, we identify what charac-
terizes all admissible observers: they agree on the metric assigned to the Euclidean
space & that hosts mechanical events and they do not mix up future and past.

20 See, in this regard, the discussion in [349, § .6A] on NEWTON’s absolute space and time
and their relative counterparts.

21 We refer here explicitly and exclusively to classical Euclidean space-time. Similar concepts
exist in relativistic mechanics: the pseudo-Euclidean structure appropriate for that space-
time is presented in great generality in [238].
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The most general form of a change of frame that maps an event (x,?) in one
frame to the event (x*, ¢*) as seen in another frame is given by [337]%?

x* =0%() + R()(x —0), (2.43a)
*=t—a. (2.43b)

Here, a € R is a fixed time difference between the frames, x, x* € 8 refer to the
same point as seen from the two different frames, and R(¢) € O(3) is an orthogonal
transformation that describes the relative orientation of the frames at time 7. The
point o is an arbitrary but fixed point in the first frame. The position of its image point
0* as seen from the second frame in general depends on time. The time difference
between the frames is immaterial for our further discussions, and so we simply use

*

a=0 and ¢t =1.
We synthetically say that (2.43) changes the frame f into the frame f*.

The mapping ¢ — R(?) is here assumed to be at least differentiable. Since det R is
then a continuous function of ¢, it is either identically +1 or identically —1, showing
that R(?) either is a rotation, that is, a proper orthogonal tensor (when detR = +1)
or differs from it by a central reflection (when detR = —1), for all times ¢.

Indifferent Scalars, Vectors, and Tensors

A quantity is called frame-indifferent, or simply indifferent, if two observers in dif-
ferent frames agree on it.

Suppose that one and the same set prescriptions deliver in the frames f and f* the
scalar functions ¢ : € x R — R and ¢* : & x R — R, respectively. They are said to
represent an indifferent scalar whenever they satisfy the following identity:

¢F(x*,t*) = ¢(x,1), (2.44)

for all pairs (x*, ¢*) related to (x,7) as in (2.43).

The prototype of all indifferent vectors is the translation that connects the same
points in both frames. In other words, if u = g— p, then u* = ¢*— p*, where starred
and unstarred points are related as in (2.43a). An indifferent vector transforms as

u* =Ru (2.45)
under the change of frame (2.43). This can be seen as follows:

u*=q*—p*=0"+R(qg—-0)—0"—R(p—-o)
=R[(g—0)—(p—0)]=R(p—9q)
= Ru.
22 The proof of (2.43b) is trivial. A proof of (2.43a), which represents all Euclidean isometries,

can be found in [349, pp. 344-345]. We refer the interested reader to [238] for the extension
of (2.43) to the pseudo-Euclidean spaces relevant to special relativity.



2.1 Continuum Mechanics Fundamentals 85

It follows from (2.45) that the inner product of two indifferent vectors is an indiffer-
ent scalar, since
w* - u*=Rw-Ru=w-R'Ru=w-u.

Indifferent tensors of rank two map indifferent vectors to indifferent vectors. So
if u = Tw, the transformed vectors #* and w* are given by

w*=Rw and u* =Ru,
and then #* = T*w™. To find the way in which T transforms, consider
u* = Ru = RTw = RTR"w*

and compare this to u* = T*w™*. For these expressions of u* to be equal for all
vectors w*, T must transform according to

T* = RTR". (2.46)

Given an orthonormal basis e := (e, €3, e3) of U, the tensor T can be represented
as (see Appendix A.1)
T="Tijei Qej,

where Tj; := e; - Te; are the components of T in e, and summation over repeated
indices is understood. If Ry denote the components in the same basis of the orthog-
onal tensor R in (2.46), the components Tl’] of T* in e are thus

T/, = RinRjx Thi.

On the other hand, by (2.46), the components Tl;‘ of T* in the transformed basis
e* := (e}, e}, e}) are given by

T; = e -T*¢; =Re; -RTR'Re; = ¢; - Te; = Tj;.

Thus the components of T* in e* are the same as the components of T in e, which
shows that they are indifferent scalars. In general, the components of indifferent ten-
sors with arbitrary rank transform as

/
Ty ... = RiiRjrj Rk -+ Tijk...

relative to one and the same basis e of U, while they are indifferent scalars relative
to bases e and e* related by the change of frame (2.43).

Time Derivative of Indifferent Vectors and Tensors

Because the general change of frame (2.43) is time dependent, the time derivative of
an indifferent vector is not indifferent. This is to say that (b*)" # (b)*, where?

23 Since b is a function of ¢ only, its ordinary and material time derivatives are just the same.
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*
dt

To see this, consider an indifferent vector b depending on ¢ and differentiate b* =
Rb:

b*) = and (b)* := Rb.

db* T
= Rb + Rb. 2.47
T + (247)

This shows that . .
(b*) — ()" =Rb, (2.48)

and so b is clearly not indifferent for every mapping ¢ + b(¢). In words, (2.48) says
that the rate of change in the frame f* of the vector b*, which is the vector b as seen
from the frame f*, differs from the rate of change of b in the frame f as seen from the
frame f*.

To illustrate the significance of the right side of (2.48), we choose instead of a
general vector b(7) a vector d that connects two fixed points in the frame f, so that
it is clearly indifferent and constant, d = 0. With d = R"d*, in this case (2.48)
simply becomes )

(d*) =RR'd* = Qd*, (2.49)
where we have introduced the spin tensor
Q := RR’ (2.50)

of the frame f* relative to the frame f. The spin tensor € is skew-symmetric, which
can be seen by differentiating the identity RR" =1 with respect to time to find that
RR" + RR" = 0. This shows that = RRT = —RR" = -7, and so

Q=-Q (2.51)
Therefore, as also shown in Appendix A.1, there exits an axial vector £ such that*
Qu=2xu Vued. (2.52)
This allows us to write (2.49) as
d*)y =82 xd*.

The spin tensor 2 and its associated axial vector §2 describe the motion of the frame
f* as seen from the frame f.
Coming back to the general case (2.48), we have that

(%) = (b)* + Qb*. (2.53)

The rate of change of the vector »* has thus two contributions: one comes from the
rate of change of b in the frame f as seen from the frame f*, and the other arises from
the rotation of the frame f* relative to f.

24 Often, £2 is called the angular velocity associated with the change of frame (2.43). Here,
we refrain from using this name, since we share the concerns of [349, p. 48] as to the false
suggestion that it may imply of an angle being varied in time.
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Consider now a frame-indifferent tensor T depending on time. It follows from
(2.46) that the time derivative of T* in the frame f* is

(T*)" = RTR" + RTR" + RTR",
whence, by use of (2.50), we obtain
(T*) = (D)* + QT* - T*Q, (2.54)

where we have set (T)* := RTRT, which is easily recognized to represent the rate
of change of T in the frame f as seen from the frame f*. As for (2.53), the last terms
on the right side of (2.54) arise from the rotation of f* relative to f.

The fact that ordinary time derivatives are not frame indifferent means that they
cannot be used in expressing basic principles, which are supposed to be objective. At
the same time, in rheology, which is the science of fluid motion, such principles are
expected to be phrased in terms of the velocity field, which by either (2.6) or (2.8) is
a time derivative. To resolve this dilemma, it is essential to consider time rates that
are computed relative to the moving body. Before we can make this explicit, we need
to explore how velocity and velocity gradient in a motion transform under a change
of frame.

Velocity and Velocity Gradient Transformations

In a motion y as in (2.3), a material point P € ® describes the trajectory p; =
x (P, 1); its velocity in a frame f is given by v = p;, as defined by (2.4). Similarly,
seen from a different frame f*, v* = (p{)’. An explicit computation using (2.43)
shows that

v* = (pf) = (0*) +R(pr —0) + R(p; —6) = (0) + R(p; —0) + Ru, (2.55)

where we have used that o is a fixed point in the frame f, and so 0 = 0. We recast
(2.55) in the form

v*~Rv = (0*) +R(p; —0)
= (0*) + RRT(p} — o)
= (0") + Q(p; —0").
The right-hand side of this latter equation is in general different from zero, which

shows that the velocity v does not satisfy (2.45), and so it is not frame indifferent.
We now consider the velocity gradient

where v(-, 1) : 8; — U is the velocity field at time ¢ on the shape B, of the body. It
follows from
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v* =Rv+ (0%) + Q(p] —0%) (2.56)
and from the chain rule that, in the frame *,
av* dv dp;
G*:= =R— + Q. (2.57)
apy ap: Ipf
But 5
Dt T
=R', 2.58
apy 2%
and so
G* =RGR" + Q. (2.59)

This shows that the velocity gradient is not indifferent: the velocity gradient G* in
the frame f* differs from the velocity gradient RGRT measured in the frame f as
seen by an observer in the frame f*. The difference between the velocity gradients
measured by the two observers equals the spin tensor £, and so it is entirely due to
the relative motion of the two frames.

Because R is skew-symmetric, we find for the symmetric part of the velocity
gradient, the stretching (or rate of deformation) tensor

D:=-(G+G'), (2.60)

N =

that
D* — (G* + (G*)T)

= ~(RGR" + 2 + RG'R" + ") = RDR', (2.61)

N =N =

and so D is frame-indifferent. The skew-symmetric part of the velocity gradient, the
vorticity tenso

1
W= 3 (G-G") (2.62)
is not indifferent, since from (2.59) we find that
1
W* = 3 (G*—(G*)") = RWR' + Q. (2.63)

This equation shows how the vorticity tensor W* for the flow v* in the frame f*
results from the sum of the vorticity tensor RWRT for the flow v in the frame f as
seen from the frame f* and the spin tensor £ of f* relative to f.

Let w be the axial vector associated to the vorticity tensor W, so that, as in (2.52),

Wu=wxu VYuc?.

We call w the spin vector: it is related to the vorticity vector ® := curl v by
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1
w= o, (2.64)

Let w* denote the spin vector of W*. By applying the tensors on both sides of (2.63)
to u™ as in (2.45), we easily obtain that

w* xu* =RWu + Qu* =R(w xu) + 2 xu”, (2.65)
where use has also been made of (2.52). Since, as recalled in Appendix A.1,
R(w x u) = (det R)Rw x Ru, (2.66)

(2.65) becomes
w* xu* = (detR)Rw x u™ + 2 x u*,

which is valid for all #* if and only if
w* = (detR)Rw + £2. (2.67)

Equation (2.67) is the vectorial counterpart of (2.63), and, by (2.64), it immediately
translates for the vorticity vector as

®* = (detR)Row + 22

Since neither frame f nor frame f* is absolute, their roles can be exchanged
with no effect whatsoever on our development. Clearly, were (2.43) to represent the
change of f* into f, R would be replaced by R". By also exchanging R and R in
(2.50), we obtain that the spin tensor 2* of f relative to f* is given by

Q*:=R'R=-R'R. (2.68)

By multiplying both sides of (2.63) on the left by R" and on the right by R, using
both (2.50) and (2.68), we readily arrive at

W =R'"W*R + Q*,

which mirrors (2.63) and has precisely the same meaning. An easy computation fur-
ther shows that * in (2.68) can also be expressed in terms of € as

Q* = —R"QR. (2.69)

Rigid Motion

Perusal of equation (2.56) leads us to represent the velocity field of a rigid motion.
Following [349, § 1.10], we call the motion of a body ® rigid if there is a frame *,
also called the rest frame, such that the velocity field vg vanishes identically for all
points p* € ®;. In the frame f, the corresponding velocity field vy is then given by
(2.56) as

vg = —RT(0*) —R"Q(p* — 0¥), (2.70)



90 2 Dynamics of Dissipative Fluids
which, by (2.50), (2.68), and (2.43a), becomes
vR(P’t) = v;)k +52*(p_0)’ (271)

where we have set
vy = —R7(0*)". (2.72)

By (2.70), equation (2.56) can also be written in the form
v* = R(v — vR), (2.73)

which suggests that we interpret v* as the objective transformation into f* of the
velocity v relative to the rigid motion in f for which f* is the rest frame. Perhaps more
transparently, recalling that vy = 0, one can rewrite (2.73) as (v* —vg) = R(v—wgR),
which shows that (v — vg) is indeed an objective vector field. An easy consequence
of (2.73) is the transformation law for the acceleration field @ in a motion of . Since
a* := (v*)", computing the material time derivative of both sides of (2.73), by use
of (2.50) and (2.73) itself, we arrive at

a* = R(a —ag) + L™, (2.74)

where ag := vg is the acceleration field in f of the rigid motion for which f* is the
rest frame. Even recalling that ag = 0, equation (2.74) shows that (e — ag) fails to
be an objective field, though it can still be rewritten in the following somewhat more
telling form:

a* —ag =R(a —ag) + L" —vy).

Equation (2.71), where v§ and ™ are an arbitrary vector and an arbitrary skew
tensor, both depending on time only, represents the most general rigid motion in f. It
is easily seen from (2.71) that

vy (1) = vr(o,1) and R*(t) = Vor(p,1), (2.75)
whence, in particular, it follows also by (2.64) that
diviR =0, wgr =curlvg =227, (2.76)

while the spin vector of vy is simply wg := %wR = £%*. By use of (2.75) and (2.76),
we give (2.71) the equivalent form

vr(p. 1) = vr(0,1) + wr(?) X (p —0), (2.77)
from which we easily obtain that
ar(p,1) = vr(0,1) + wr X (p —0) + wr X [wr X (p —0)],

where vg(0,1) = agr(o, 1) is the acceleration in the rigid motion being considered of
the point that at time 7 coincides with the origin o.
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The special structure of a rigid motion, which (2.77) reveals as being determined
by the velocity vg(0, t) at a point o and the spin vector wg equal at all points, gives
a particularly telling expression for the power #x expended by a system of forces
with density f : €, — U defined on the collection of shapes C, induced by the
motion. Given any subbody ® of a body ®8, the power #x (6, ) expended by f in
the present shape ; is

(@ 1) :=/ f -vrdV. (2.78)
®;
By inserting (2.77) into (2.78), we readily arrive at
WR(®r, 1) = vr(0,1) - F(®, 1) + wr(?) - My (0, 1), (2.79)
where
F@.0i= [ fpnav
®;
and

M@, 1) = /@ (p—0) % f(p.0)dV

are the resultant force and torque relative to o exerted on the present shape of ® by
f-

Rigid motions play a central role in our development, since they ultimately rep-
resent all possible observers. It is instructive to see how one such motion also arises
in connection with an indifferent scalar ¢ as in (2.44). It follows from (2.44) applied
to a trajectory p; as in (2.55) that

%Py, 0] = $(pe.1), (2.80)
which can readily be expanded in

L gt 0 0

= - 2.81
R TR PR P 281)
Now, since p; and p; are related through (2.43a), by the chain rule, (2.44) implies
that 96" 3
» _ g
ap* ap
and so, with the aid of (2.56), (2.81) is given the following form:
ap* _ d¢ ¢

or o Tap ™™

where vy is the rigid velocity field in (2.71). By (2.76), this latter equation becomes

dap* d
g; = a—¢ + div(¢vg), (2.82)
which shows that the partial time derivative of an indifferent scalar, unlike its material

time derivative, fails to be frame-indifferent.
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Frame-Indifferent Rates of Vectors and Tensors

We are now in a position to find indifferent time derivatives for indifferent vectors
and tensors. The key is equation (2.63): it shows that relative to a frame that rotates
with the body at a given point, that is, at a point where W = 0, the vorticity tensor
W* in any other frame coincides with the spin tensor of the corresponding change of
frame, W* = Q. Clearly, normally there is not a single frame in which W vanishes
identically everywhere, but at every individual material point such a frame exists.

This, together with (2.53), suggests that one define an indifferent time derivative
for an indifferent vector field b as

b:=b— Wb. (2.83)

The rate b is the corotational derivative, often also called the JAUMANN derivative,2’
of b. Atany point where W = 0, the corotational derivative (2.83) coincides with the
ordinary material time derivative b. In general, we find with (2.53) and (2.63) that

B Y= (") —W*D" = (13)* + 2b* —RWR'D* — Qb*
= (b)* — RWb = R(b — Wb)
= Rb = (b)*. (2.84)
This shows that the corotational time derivative is indifferent. In any frame, it gives
the rate of change of the field b as measured in the particular frame that rotates
locally with the body. Essentially, the term W*b* in (2.83) and the term 5* in
(2.53) cancel, because 2 = W* exactly when W = 0.

The corotational time derivative defined in (2.84) is not the only indifferent rate
that can be introduced for vectors. Letting G = D + W in (2.18), the tangential

convected derivative b becomes
b=b— (Db+Wb)=b—Db,
which is indifferent, since, by (2.84) and (2.61),
(b*Y= (b*y— D*b* = Rb + RDR'Rb = Rb = (b)*.
Similarly, the normally convected derivative in (2.24) can be written for b as
b =5 +Db— (trD)b,

which like b is indifferent.

A further class of invariant rates was introduced by OLDROYD [252]. They can be
seen as extensions of the rates Z and lﬁ that have above been given a specific geomet-
ric interpretation in terms of deformations induced by the flow. A codeformational
derivative b of a vector b is defined by
25 As pointed out in [345, § 19A], it was indeed first introduced by ZAREMBA [367] (see also

[366] and [368]) and later adopted by JAUMANN [152] in their original formulations of
what we can now recognize as a precursor of the frame-indifference principle.
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b:=b + oDb + t(tr D)b, (2.85)

where o and 7 are indifferent scalars. The derivative b is clearly indifferent since
all three terms on the right-hand side of (2.85) are independently indifferent. More
*

generally, it can be proved that the rate b defined by?®

b= b+ o(G,b)

is indifferent if and only if it can be written in the form

> o
b=>b+ ¢D,b),
where ¢ is an isotropic vector-valued function, that is, a function such that
o(D*,b*) = (D, b)* VD,b. (2.86)

As suggested by the discussion in [131, p. 155], this shows that the corotational
derivative b is the generic indifferent rate of a vector b, to within an isotropic vector-
valued function.

Indifferent rates for tensors can now be found in a similar way. An indifferent
tensor T transforms according to T* = RTR", and its time derivative T transforms
as in (2.54). In analogy to (2.47) and (2.83), this suggests defining the corotational

time derivative T of T as

o

T:=T—WT +TW. (2.87)

A computation analogous to (2.84) then shows that T is indifferent. Using (2.54) and
(2.63), we find that

(T = (T — W*T* + T*W*
=(1)* + QT* —T*Q2 —RWR'T* — QT* + T*RWR" + T*Q
= (T)* = RWTR" + RTWR" = R(T — WT + TW)R"
= RTR" = (T)*.

As we did above for the vector rates Z nd b, making use of (2.87) in equations
v v

a
(2.29)—(2.30), we can express the rates T, 'i‘, ’i’, and T as

T =T+ TD—DT, (2.882)
T=T+DT—"TD, (2.88b)
T=T4+TD+DT, (2.88¢)
T=T-TD-DT. (2.88d)

It is an easy consequence of (2.87) that the corotational derivative T is either
symmetric or skew-symmetric whenever T is correspondingly symmetric or skew-
symmetric, proving that symmetry is preserved in the corotational evolution of a

26 See [131, p. 156].
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tensor. Equatlons (2. 88) show that such a symmetry preserving property is enjoyed
by the rates T and T but not by T and T Furthermore, mirroring the pattern of
(2.85), a codeformational derivative T of a tensor field T can be defined as

T:=T+ o (DT + TD) + t(D)T, (2.89)

where o and t are indifferent scalars as in (2.85) above. The definition of T is such
that it preserves the symmetry (or skew symmetry) of T.
As proved in [131, p. 155] by adapting a classical argument of [234, p. 27], the
*

rate T defined for a tensor field T by

T=T+@G.T

is frame-indifferent if and only if it can be expressed as

* o
T=T+ ®[D,T), (2.90)
where @ is an isotropic tensor-valued function, that is, a function such that
®D*, T")=®D,T)* VD,T. (2.91)

It is easily seen that all the rates in (2.88) and (2.89) are in the form (2.90), and so
they are indifferent.?’

In the same vein, corotational and codeformational derivatives can be defined for
higher-order tensors; see [252, 253] for the general case and [311] for a more specific
form relevant to dissipative ordered fluids.

Hemi-indifference

Often the transformation laws (2.45) and (2.46) are required to hold only for all
R € SO(3). Correspondingly, vector- or tensor-valued functions ¢ or ® that behave
as in (2.86) and (2.91), but only for R € SO(3), are said to be hemitropic, instead
of isotropic. An example of a hemitropic vector function was already encountered in
(2.66) above, which since (detR)? = 1 can also be written more concisely as

w* x u* = (detR)(w x u)*. (2.92)

Inspired by this, more generally we say that a vector v is hemi-indifferent’® if
under a change of frame represented by R € O(3) it transforms as

27 Other invariant tensorial rates are found in [29]. We can apply to all of them the words of
[345, p. 97]: they are examples “of the infinitely many possible invariant time fluxes that
can be used.”

28 Having called a vector frame-indifferent when it is generally called polar, we take here the
liberty of calling a vector that is usually called axial frame-hemi-indifferent. Sure enough,
the axial vector w associated with an indifferent skew tensor W as in Appendix A.1 is
hemi-indifferent. A hemi-indifferent vector is elsewhere also called a pseudovector.
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v* = (detR)Rw. (2.93)

Thus, (2.92) shows how the vector product of two frame-indifferent vectors is only
hemi-indifferent. Similarly, we say that a tensor T is hemi-indifferent® if

T* = (detR)RTR". (2.94)

An example of a hemi-indifferent tensor is given by the spin gradient Vw. Indeed,
by differentiating both sides of equation (2.67) in the frame f*, by (2.58) and since
£ is uniform in space, we obtain that>°

(Vw)* = (detR)R(Vw)R". (2.95)

Here, as in (2.57) above and in the rest of the book, (Vw)* denotes the gradient of
w™* computed in the frame f*.

2.1.4 Axioms of Classical Mechanics

The axiomatics of continuum mechanics is so rich in contributions that a whole
monograph could easily be devoted to it, including the many controversies and con-
trasting views, too often more in their appearance than in their essence. Such a critical
exposition would, however, exceed the scope of this chapter. Here, we shall admit-
tedly be partial: following mostly NOLL’s views,?! especially as presented in [349,
§§ 12,13], we shall posit a few simple axioms capable of justifying the basic balance
laws of classical continuum mechanics and expressed in a form that can easily be
extended to the more complex systems we envisage in our development, in the spirit
suggested in [271] and [272] to make the essence of classical axioms predictive in
nonclassical settings. We shall phrase the basic axioms in terms of indifference re-
quirements.

Axiom 2.1 (Mass indifference). The mass M (®) of any subbody ® of ® is at-
tributed to all shapes {® };c; that ® takes in any motion y of (8, and it is frame-
indifferent.

Formally, Axiom 2.1 can be stated as follows:
M@, x*) =M@, x)=M@E), YVPec® and y, (2.96)

where M(®, y) is the mass of the shape at time ¢ of the subbody ® of B along the
motion y in the frame f and M(®}, x*) is the mass of the same subbody at the same
time as seen from the frame f*.

29 A tensor obeying (2.94) is also called a pseudotensor.

30 1n (2.95).

31 g particular, we refer the reader to the original papers [236] and [237]. NOLL’s axiomatics
has evolved since these contributions, as witnessed, for example, by [245], [248], and [246],
the latter being a short essay on the horizon of mathematics in modern natural philosophy.
A frame-free formulation of classical continuum mechanics plays a central role in these
new developments.
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Axiom 2.2 (Force indifference). All forces assigned to the parts ® of a body ® in
whatever shape they take in their motions are frame-indifferent.

In this book we shall consider only forces that can be represented through densities,
either relative to the volume measure, for body forces, or relative to the area mea-
sure, for contact forces. Body forces express the action at a distance exerted on the
subbody ® in its present shape ®, while contact forces express the action exerted
on ( through its reduced boundary 0*®; by the complement of ® in B, imagined
carved away in an ideal removal of the bonds that constitute the material compris-
ing . Neither concentrated forces nor forces distributed along edges®? will ever be
treated here.

Letting b. denote the total body force density and # the total contact force density,
the resultant external force f. exerted on the present shape & of a subbody ® of &
in a motion y is represented by

Je(®@, x) :=/ b.dV +[ tdA. 2.97)
®, 9 @,

Axiom 2.2 states that both b. and ¢ transform into

b =Rb. and t* =Rt (2.98)
when the frame f where the body performs the motion y is changed into the frame f*
where the body performs the motion x*, so that

SE@H LX) =Rfe(®,x) VP e® and y.

Axiom 2.2 is indeed more demanding than (2.98) may let us think, since it requires
all forces to be frame-indifferent: were we able to split either b or ¢ into the sum
of forces exerted by different identifiable agencies, each individual force should be
subject to the indifference requirement in (2.98). In the light of (2.45), (2.98) says
equivalently that all forces, be they body or contact forces, transform as vectors, that
is, as translations in the Euclidean space where classical mechanics is hosted. Such
an identification between force and space has a long history that goes back at least to
NEWTON, who in a manuscript that dates from the late 1710s wrote:

The forces and speeds of movable bodies do not properly pertain to geom-
etry, but they can be expressed by means of lines, surface-areas, solids and
angles, and to that extent reduced to geometry.>3

Axiom 2.3 (Power indifference). The total power expended by the forces exerted
by external agencies in any motion on every subbody ® of ® is frame-indifferent.

32 For a theory of edge interactions where surface contact forces are supplemented by line
contact forces, we refer the reader to [250] (see also [107] and [73] for related contributions
and [69] for an attempt to extend [250] to less regular shapes).

33 See [233, vol. 8, p.453]. The interested reader is referred to [129, § 4.3] for a description
of the role of geometry in NEWTON’s Principia.
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As suggested by the representation in (2.97) for the resultant f.(®;, x) of the external
forces acting on ®; along the motion y, the total power # © (®;, ) that they expend
can be written as

WO (@, x) ;:f be-vdV+/ t-vdA, (2.99)
®; 0* @

where v is the velocity field associated with the motion y. Axiom 2.3 can then be
phrased in the following form:

WO@ xH)=#O®.x) YVPe® and y. (2.100)

We shall see in the following section how the axioms posited here imply the
balance laws of classical continuum mechanics, which are to be regarded as the basic
evolution laws of the theory. A preliminary, necessary step to this end is the classical
axiom of inertia, which we shall assert in the classical setting, but in a form that
may easily inspire its extension to the more general theories to which our study is
directed.

We customarily split the density b, of the external body forces into the sum

be:=b +b;, (2.101)

where traditionally b and b; are the body force densities of the interactions that can
be ascribed to the near bodies** and to the far bodies*> around ®,, respectively. We
shall call b the density of applied forces and b; the density of inertial forces. We
shall not dwell any further in interpreting the splitting in (2.101); we rather heed that
unlike b, b; is affected by the motion of the body 8, and so it depends on the frame
to which the latter is referred. Whatever may be their representation, both b and b;
must comply with Axiom 2.2, and so they must be frame-indifferent.

The axiom of inertia will identify frames where b; can be given a constitutive
assignment. Once such an assignment is made, we can recover the force of inertia bi*
in any other frame by requiring, in accordance with Axiom 2.2, that

b} := Rb;, (2.102)

where R is the orthogonal tensor describing the change of frame. Here (2.102) prop-
erly appears as a definition.

Axiom 2.4 (Inertia postulate). There is a frame relative to which b; is independent
of v and

/bi-vde—%}((P,,x) V® e€® and y, (2.103)
®;

where .7 (®;, x) is the shape functional traditionally identified with the kinetic en-
ergy of ® along the motion y.

34 In TRUESDELL’s terminology, these are the bodies in the great system [349, § 1.13].
35 More properly, these are the bodies outside the great system. This reflects the Machian
point of view, which also inspires the modern historical perspective of BARBOUR [8].
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In words, equation (2.103) says that the opposite to the kinetic energy %  is the po-
tential of inertial forces, since the power expended by b; can be expressed as the
material time derivative of .#". This form of the postulate of inertia requires the con-
stitutive choices for b; and %  to be consistent with (2.103), at least in one frame.
The requirement that b; be independent of v forbids adding to it any powerless con-
tribution’® that leaves (2.103) unaltered, since such an addition would indeed depend
on v.

By (2.101) and (2.103), in a frame where Axiom 2.4 is valid, the total external
power #© in (2.99) can be expressed as

W@, x) =W (@, x)— (@, x). (2.104)

where
WD (@, x) = b«vdV—i—/ t-vdA (2.105)
(Pt 3*(?[

is the power expended by all external agencies applied to ®, which exclude inertia,
for which Axiom 2.3 requires frame-indifference. It is apparent from (2.104) that
#© can also be interpreted as ner working; according to a definition of TRUES-
DELL [343, p. 9] it represents the external power still available to the subbody after
that gone into motion has been taken into account.’’

The requirement in (2.103) is not frame-indifferent, and its validity is confined to
a specific frame, possibly representative of a whole class not large enough to encom-
pass all frames. A frame where Axiom 2.4 is valid is called an inertial frame. Inertial
frames are characteristic of classical mechanics. EINSTEIN clarified in his general
theory of relativity that gravitational and inertial body forces cannot be distinguished
in an objective manner [236, p. 279]. A consequence of (2.101) is that b, reduces to
the inertial force b; whenever b = 0; thus, b; appears as the irreducible body force
related to the frame. As TRUESDELL [349, p. 70] wrote,

An essential feature of classical mechanics is the existence of special frames in which
the relation between forces and motions they produce is especially simple. Since we
have these felicitous frames, it would be simply foolish not to use them.

In the following sections, we shall both explore the consequences of the axioms
posited here and exploit the formulation we gave them to extend gradually their
validity, without betraying their spirit, so as to encompass the scope this book intends
to cover.

2.1.5 Classical Balance Equations

The basic laws of continuum mechanics express balances of mechanical quantities
evolving in time along a motion: they generally involve both production rates and

36 In a terminology attributed in [271] to SERRIN, such powerless inertial forces, excluded
by our formulation of Axiom 2.4, are named after CORIOLIS. In the same terminology, the
only inertial forces allowed here are called d’ Alembertian.

37 In general, in this book we employ the words power and working as synonyms, with a slight
preference for the latter when it refers to shape functionals such as in (2.104) and (2.105).
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sources, which are separately specified below. In the whole discussion that follows,
a motion x of the body ® is presumed to be assigned in a frame f, as defined in (2.3).

Mass

Since the motion y maps the measure space B into another measure space, B;, at
any time ¢ € I, the mass density g¢ defined by (2.2) for any part ® of the body & can
similarly be defined for any part ®; of B;, so that the mass of & can be represented
as
M@0 = [ eprnav, (2.106)
t

with ¢ : €5 — RT the mass density along the whole collection of shapes €,
induced by the motion y. M in (2.106) is a special shape functional in the form
(2.36).

Axiom 2.1 states, in particular, that mass is conserved, that is, see also (2.96),
that M (®;, y) = O for all # € I and ;. Using the transport theorem (2.37), we see
that this conservation law implies that

M(®,, x) = / 0+ odivv)dV = 0. (2.107)
®;

Since this has to hold for all &, the integrand in (2.107) must vanish identically,
which leads to the local form of conservation of mass,

o+ odive =0. (2.108)

Since the volume measure V is frame-indifferent, Axiom 2.1 also ensures that the
mass density o is an indifferent scalar,

0" = o, (2.109)

and so is also its material time derivative, while its partial time derivative transforms
as in (2.82). Since, by (2.61), div v is a frame-indifferent field, we see that the whole
balance equation (2.108) is frame-indifferent, as it should be.

In the case of an isochoric motion, by (2.35), dive = 0 and (2.108) becomes
¢ = 0, which prescribes the material time derivative of the density to vanish at all
times. This means that the density at any material point P € ® remains the same
throughout the motion.

Many significant mechanical quantities have a specific density, that is, they are
absolutely continuous relative to the mass measure M ; this implies that their density
relative to the volume measure V' is proportional to g, and so they can be written as

W@ x) = /(P o (pr.)dV. (2.110)

As a consequence of conservation of mass, the transport theorem for such quantities
takes a particularly simple form:
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V(@ ) =/@ [(ew)'+awdivv]dV=f(P oV dv. @.111)
because, with (2.108),
(oY) + oy dive = oy + ¥ (0 + odivy) = oy

Similarly, mirroring the definition of the vector-valued shape functional (2.41) in

(@, p) = /(Pew(pz,t)dV,

using (2.42) and (2.108), we also arrive at

Y}(G’t,x)=/ o dv, 2.112)

®;

which parallels (2.111).

Forces and Torques

The mathematical statement of Axiom 2.3 in (2.100) is an identity to be satisfied by
all subbodies @ in all motions y. Following [237], we show now that, for (2.100) to
hold, the external body force b and the traction ¢ cannot be arbitrarily assigned, but
they must satisfy appropriate laws. By (2.98) and (2.73), (2.100) becomes

/ Rbe~R(v—vR)dV+/ Rt - R(v — vR)
e P+ @

=/be-vdV+/ t-vdA,
(P[ a*(Pt

which, since R is orthogonal, is equivalent to

v3‘(~/ bedV+/ tdA)
®; 0* @y
+sz(/ be®(p—o)dV—|—/ t®(p—o)dA)=o, 2.113)
(P[ 8*(?[

where vo* and * are as in (2.72) and (2.69), respectively, and use has been made
of (2.71) and of the change of variables (p* — 0*) = R(p — 0) to reduce @;* to ®;.
Since (2.113) must be valid for any vector vy and any skew tensor 2, it is satisfied
if and only if

/ bedV—}—/ tdA =0, (2.114a)
(Pt 8*6)1‘

(p—o)xbedV—i—/ (p—o0)xtdA =0. (2.114b)
(P[ a*(Pt

These equations express the balance of external forces and torques acting on the
present shape ®; of the subbody ®. In this form, they are valid in all frames. They
will be given the classical form of Cauchy’s laws of motion, valid only in inertial
frames, once a specific constitutive choice for the inertial force b; is made.
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Inertia

We now make use of Axiom 2.4 to obtain the appropriate representation of inertial
forces in classical mechanics. We start by representing .#” in an inertial frame (one
at least existing by Axiom 2.4) as

H(®r, x) = / oko(v)dV, (2.115)

®;

where kg, which is supposed to depend only on v, is the specific density (per unit
mass) of kinetic energy. Then, by (2.110), equation (2.103) becomes

9
bi-vdV = —/ oko(@)dV = —/ 02 qav,
® ® e O0v

which must be valid for all subbodies ® and all motions y, and, consequently, since
b; is independent of v, requires %0 to be linear in v. We set38

8/(0
— =, (2.116)
v
so that k¢ acquires the familiar form
1
Ko = —v-v, (2.117)
2
and, consequently,
b; = —oa. (2.118)

As clearly stated by NOLL [244],% inertial forces have a constitutive nature; here we
derive the constitutive law (2.118) for b; from the classical choice for k¢ in (2.117),
which is equally constitutive in nature. All this care might appear as an unnecessary
complication to a critical reader, since positing directly (2.118) would suffice to the
purposes of classical continuum mechanics. However, in view of our later develop-
ment, exploring the general consequences of our formulation of the inertia postulate
will prove useful in guiding our steps in less familiar territory.

In the same spirit, it is instructive to see how Axiom 2.4 implies in general the
existence of a whole class of frames where (2.103) is valid, and which equally
deserve to be called inertial. To identify such a class of frames, we require that
the kinetic energy %  be indifferent, that is, we define 2™ in such a way that
HH(®F, x*) = (6, x), for all subbodies ® C ® and all motions y. By (2.115)
this requirement becomes

/ 0 kg (v )dV =[ oko(0)dV,
e ®;

38 PODIO-GUIDUGLI [271] writes % = My and calls M, a symmetric tensor independent

of v, the mass tensor. Correspondingly, ¢ is written as kg = %v - Mv. In our choice
(2.116), M is the identity tensor.
39 See also [131, p. 144].
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which, since the mass density o is indifferent and ®; is the image of ® under an
isometry, is equivalent to the local form

kg () = ko (v), (2.119)

where v* is related to v through (2.73). For .#"* to comply with Axiom 2.4 like 2",
it must also obey the identity #* = #", which by (2.111) reduces to

ko () = ko (v). (2.120)
Recalling that (2.119) and (2.73) imply the identity

oKy 0Ko

Jv* v’

using again (2.73), we give (2.120) the following form:

8/(0
— - (RTag — 2*v) =0,
5, (Rlax )
where £ is as in (2.68), which must be valid for all motions. This requires that
©* = 0 and ag = 0, which shows that two inertial frames differ by a constant or-
thogonal tensor and a translation with constant velocity. Often they are said to differ
by a Galilean transformation. By (2.74), in such a transformation, the acceleration a
is an indifferent vector, and so b; obeys (2.102).

For (2.102) to be valid for all changes of frame, we define the inertial force b in
a noninertial frame f* as
b7 = Rb; = —oRa = —pa™* — o(Rag — v*), (2.121)

1

where v* and a* are velocity and acceleration in f*, € is the spin tensor of f* relative
to an inertial frame f, and ay is the acceleration in f of the rigid motion for which f*
is the rest frame. Since (2.121) is the form taken by the inertial force in a noninertial
frame, it should be no surprise that it depends on the spin tensor relative to an inertial
frame. By use of (2.71) and (2.50), we easily arrive at

Rag — Qv* = —(0%)" + (22— )(p* —0*) —22[v* — (0*)],
which allows us to rewrite b;" in (2.121) as
b = —oa”™ + b + b,
with

b = o[(0*)" + (& — R2)(p* —0™)],
bc :=20Q[v* — (0*)],

where b+ and bc are inertial forces different in nature, since only the latter, which is
named after CORIOLIS, depends on the velocity v*.



2.1 Continuum Mechanics Fundamentals 103
Linear Momentum

It follows from (2.118) and (2.101) that in an inertial frame the balance equation of
force (2.114a) can be written as

P((S’,,X)zf tdA+ | bav, (2.122)
0* @ ®;
where
P(®, x) :=/ ovdV (2.123)
®;

is the total linear momentum of the subbody ® in its present shape @, and the trans-
port theorem (2.112) has been used to prove that

P(®. x) :/ oadV. (2.124)

®;

By (2.123), (2.122) can also be interpreted as the balance of linear momentum, for
which ¢ plays the role of a flux and b that of a supply.

Stress Tensor

The field ¢, which in (2.114a) represents the external contact action exerted on the
present shape ®; of the subbody ® through its reduced boundary 9*®;, is properly
to be regarded as a functional of the set 0*®;. Following the pioneering work of
CAUCHY (see, for example, [345, p.40] and [349, Chapter I1I]), we assume that at
a point p € 9*®; the traction # is the same for all shapes that share with 0*®; the
same tangent plane at p. In other words, we assume that all like-oriented contacts
with the same contact plane share the same traction. This assumption, which is often
called the CAUCHY postulate or stress principle, is expressed formally by writing
t = t(p,v), where v is the outer unit normal to 9*® at p. As shown in [349,
p- 172], such a statement could also be derived from some weaker assumptions,40
which forms the content of the HAMEL-NOLL theorem . Here we are interested
only in its consequences, the most fundamental of which is the existence of the stress
tensor.

Theorem 2.5 (CAUCHY). Ifthe balance equation (2.114a) is satisfied and t (-, v) is
a continuous mapping, then there exists a tensor field T such that

t(p,v) =T(p)v. (2.125)

Proofs of this theorem can be found in most continuum mechanics textbooks; see,
for example, [349, p. 174] and [131, p. 137]. The same conclusion (2.125) can also
be reached under weaker hypotheses than that advanced in Theorem 2.5: it would ex-
ceed the scope of this book to review even the most relevant contributions to this field

40 1t is enough to assume that the traction field ¢ in (2.97) is given by a functional of the set
0* ;.



104 2 Dynamics of Dissipative Fluids

of continuum mechanics that borders on analysis.*! Like any vector in the translation
space U, the normal v transforms in an indifferent manner under a change of frame,
that is, like # in (2.45). Therefore, CAUCHY’s stress tensor is frame-indifferent and
transforms as in (2.46), because the traction ¢, being a force, is frame-indifferent by
Axiom 2.2.%2

The tensor T is called the CAUCHY stress tensor: if T is positive definite, then
v-t =v-Tv > 0, and so the traction exerts a tension; if T is negative definite, then
t exerts a pressure.

The existence of the stress tensor allows us to transform the surface integral in
(2.122) into a volume integral:

/ tdA=/ Tva’A:/ divTdV. (2.126)
@, @, ®

With (2.126) and (2.124), the balance of forces in (2.122) can now be written as a
single integral,
(ca—divT —b)dV = 0.
®;
This can hold for an arbitrary subbody ® only if the integrand vanishes identically,
which yields the local form of the linear momentum balance,

oa=divT +b. (2.127)

Equation (2.127) is CAUCHY's first law of motion, valid in any inertial frame. This
equation is frame-indifferent, provided, with the aid of (2.121), in a noninertial frame
we write

Ra = a* + Rag — Qv*.

Rotational Momentum

The balance equation derived in (2.114b) from our assumption on the frame-indif-
ference of the external power is now interpreted as the balance equation for the
rotational momentum (also called the moment of momentum), thus paralleling the
interpretation of (2.114a) as the balance equation of linear momentum.

The total rotational momentum of a part ® in the motion y relative to an arbi-
trarily chosen but fixed point of origin o is

K,(®, x):= / ox xvdV, (2.128)

®;

where x = p — o is the position vector of the point p relative to o. It easily follows
from (2.128) that the rate of change K, of K, is found using (2.112) to be

41 For the interested reader, we record here without comment a list of contributors referred
to in the short, effective review that opens the introduction of [282]: GURTIN & MAR-
TINS [132], SILHAVY [300, 301], DEGIOVANNI, MARZOCCHI, & MUSESTI [68], FOs-
DICK & VIRGA [108], SEGEV [291, 292], SEGEV & RODNAY [293].

42 The reader is advised to recall the reasoning leading to (2.46) on page 85.
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K, =/ o x v+ x x0)dV =/ ox xvdV =/ ox xadV, (2.129)
(Pt (Pf (Pt
because, for a fixed origin 0, X = v. Thus, (2.114b) can be written as
K0=/ xxtdA+/xxde (2.130)
9* @, ®;

and readily interpreted as the balance of rotational momentum, with the torque of
the contact force ¢ as flux and the torque of the body force b as supply. To transform
the surface integral in (2.130) into a volume integral, we use the stress tensor T from
(2.125) to obtain

/ xxtdA=/ xxTvdA:/ AvdA:/ divAdV,
3*0’[ 8*(?, B*G)t (Pt

where we have defined the tensor A such that
Au=xxTu, VYued.

The components 4;; of A in any basis (e1, e, e3) of U are A;; = €;xx; Ty, which
means that in the same basis the components of div A are

(divA); = Airg = €k (X1 Tt + X Tr1) = €k (Thj + % Trr 1)
where we have used that x;; = 8 71, and so, in intrinsic notation,
divA =27 + x xdivT, (2.131)

where 7 is the axial vector associated with the skew-symmetric part skw(T) of T

via®?

skw(Thu =t xu VueD. (2.132)

Hence the total torque transmitted by the contact forces takes the form
/ xXtdA= 2t +x xdivT)dV
8*0’; (Pt
and the balance (2.130) becomes

(ox xa—21t —x xdivT —x xb)dV =0,
®;

where use has also been made of (2.129). The usual localization argument shows that
the integrand has to vanish identically, which leads to

x X (pa —divT — b) = 27.

43 See Appendix A.1.
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Since the term in the parentheses on the left-hand side equals zero by CAUCHY’s first
law of motion (2.127), it follows that

7 =0. (2.133)

By the definition (2.132) of =, equation (2.133) is true if and only if T is symmetric,
that is,
T=T". (2.134)

This is CAUCHY’s second law of motion, which says that the balance of rotational
momentum simply implies that the stress tensor is symmetric.

CAUCHY’s two laws of motion (2.127) and (2.134) govern all simple continua.
We shall see in Section 2.1.6 below how they need to be modified to encompass the
more general continua we envisage in this book.

Power

Equations (2.127) and (2.134) guarantee that the total external power #© is frame-
indifferent. We now make use of these equations to find the explicit frame-indifferent
form that #/® acquires when they are valid.

By use of (2.125) and applying the divergence theorem, we give # @ in (2.105)
the following form:

2D (@ x) =/ [v-b + div(Tv)]dV,
®;

where also (2.134) has been employed. Since div(Tv) = divT - v 4+ T - Vo, by
(2.127), we see that

WD (@, x) :/ (T-D+oa-v)dV, (2.135)
®;

where (2.134) has been used again along with (2.60). By (2.116) and (2.104), we
immediately derive from (2.135) that

W‘e)(@,,x)zf T-DdV = 7Y@, y), (2.136)

®;

where # @ is interpreted as the power expended by the internal forces.** By (2.61)
and (2.46), #'© is frame-indifferent, as it should be, since (2.136) shows that it
equals 7 along all motions that obey CAUCHY’s laws. Moreover, it readily fol-
lows from (2.75) that # ® vanishes identically for all subbodies in any rigid motion.

We shall see below how (2.136) needs to be modified when other internal agen-
cies are able to expend power. At this stage, it suffices to remark that, by (2.136),
equation (2.104) becomes

44 An alternative name for # @ is the power stress, which is often used in the literature (see,
for example, [343] and [131]).
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W@, x)+ (@ x) = W@, x). (2.137)

which says that the power expended in an inertial frame by the external forces applied
to any subbody ® in any motion y is balanced by the power expended by the internal
forces and the rate of change in the kinetic energy.

Constitutive Laws

In deriving the balance equations we have made only fairly general assumptions
about the nature of the underlying continuum. Consequently, they hold for a wide
range of different materials. To describe the behavior of a particular body, additional
assumptions are needed about the nature of the specific material that constitutes the
body. These assumptions are usually stated in the form of constitutive equations.
These equations describe the relationship between the motion of the body and the
stress tensor, and where applicable the couple stress tensor.

The nature of any material is independent of the frame of reference from which it
is observed. A constitutive equation specifies the stress tensor in terms of the motion
of the material. But the stress tensor relates exclusively to forces within a body, and
SO constitutive equations must be written in such a way that all observers agree on
the stress tensor for any given motion of the body.

As we pointed out above, for the stress tensor to be objective, it has to depend on
indifferent quantities only. For example, in a simple fluid the only indifferent quantity
is D, and so the stress T has to be a function that depends only on D. We will see
simple examples of this in Section 2.3 below.

We also insisted in this section on the constitutive nature of inertia. For general
continua, this means that the intrinsic rotational moment k; must be given a consti-
tutive definition in terms of the motion. We shall show in the following section that
the principle we posit there will also serve the purpose of deriving the constitutive
choices for both stresses and inertia from those for simpler scalar functions with a
direct physical interpretation.

2.1.6 General Balance Equations

The axiomatic scheme recalled above, from which we derived CAUCHY’s classical
laws of motion, was extended by BEATTY [13] to the more general situation in which
interactions may transfer to subbodies torques that are not moments of forces. Per-
haps the first coherent mathematical theory for bodies capable of such interactions
was proposed by the COSSERATs [53, 54]: it was based on an appropriate Hamilto-
nian principle, and was not concerned with the effects of dissipation.*’

Here we resume the presentation of the general balance equations valid in this
case from the integral forms of the balances of linear and rotational momenta: it is
shown in [13] how these balance equations can indeed be derived from an extension

45 The interested reader is referred to [345, § 98] for a modern presentation of this theory and
its extension due to TOUPIN [338, 339]. Attention to the COSSERATSs’ theory had already
been drawn by TRUESDELL [341].



108 2 Dynamics of Dissipative Fluids

of Axiom 2.3 on the indifference of the power of external actions. Actually, only
the balance equation of torques is affected by the consequences of assuming that
a distribution of contact couples supplements the moments of contact forces and
a distribution of body couples supplements the moments of body forces, including
their inertial components. No assumption needs in principle to be made on the origin
of these couples, though here we ascribe them to the nature of the order structure that
inhabits what classical continuum mechanics simply regards as a body-point.

The balance of rotational momentum in a continuous body takes the particularly
simple form in (2.134) if the material points are treated exactly as that: points without
any structure attached to them. However, for continua with internal microstructure,
such as all types of liquid crystals, the local spin of the “points” needs to be taken into
account. We show now how the balance of rotational momentum must be augmented
in the case of materials with a microstructure.

Such an internal structure contributes a local spin, and so the total rotational
momentum in (2.128) has to be augmented by the rotational momentum of the mate-
rial element. Though we could derive such an intrinsic rotational momentum from a
proper extension of Axiom 2.4, for brevity, we assume that it possesses the specific
density k;, so that K, in (2.128) is eventually replaced by

K, = / o(x xv+ ky)dV. (2.138)
®

In addition to moments of forces, there also are couples. With a body couple per
unit volume k and a surface contact couple per unit area ¢, the rotational momentum
balance (2.130) becomes

K,= | (xxt+c)dA+ / (x xb +k)dVv. (2.139)
@ ®

The surface couple has a representation in terms of a second-rank tensor similar

to that of the the traction in (2.125). If the surface couple ¢ is, at any point p, a

function of the normal v to 9*®, then it can be shown that it is a linear function of

the normal. It can hence be expressed in terms of a couple stress tensor L. according
{046

¢ =Lv. (2.140)

Together with div A as in (2.131) the balance (2.139) then becomes
K, = /(P[div(A+L)+x x b+ k]dV.
With K, as in (2.138), by (2.112), we have
K, = /(Pg(x x 0+ ki)dV,

and comparing the last two equations then yields

46 See also TRUESDELL & TOUPIN [348, § 200].



2.1 Continuum Mechanics Fundamentals 109
x X (0a —divT — b) +gl€i =27 +divL + k.
Using the local balance of linear momentum (2.127) then results in
ok; =27 + divL + k. (2.141)

This is the local form of the balance equation of rotational momentum that replaces
(2.134) for bodies subject to general interactions, which convey couples along with
moments of forces. In this book we shall make the internal order structure liable for
such extended interactions: equation (2.141) must be satisfied along every admissible
motion of the body. The vector 7, still as in (2.132), is no longer necessarily zero,
and so the stress tensor will in general have a skew-symmetric part.

We derive now from the balance laws for general continua (2.127) and (2.141)
the balance of power that is to replace (2.137) in this setting. We shall, in particular,
learn how to write for these bodies the kinetic energy " in an inertial frame. Inspired
by (2.79) and interpreting the local body point as formally endowed with an extended
structure, we write the power #® expended by the actions applied to the present
shape of a subbody ® in a motion y as

WD (@, 1) = /

8*

t-v+tec-wdA+ | b-v+k-w)ydV, (2.142)
(Pt (Pt

where w = %curl v is the spin vector associated with the flow v, that is, the axial

vector of the vorticity tensor W = skw(Vv) in (2.62). Since the body ® envisaged
in the theory of general interactions is still classical, that is, deprived of the internal
degrees of order that confer further structure to it, here the couples ¢ and k expend
power against the fluid vorticity w. We shall see in the following chapters how these
internal degrees will expend power against other independent rates. In the present
case, ignoring such an order structure, it is as if it were frozen and rigidly conveyed
by the local vorticity of the fluid, like pebbles in a creek.

Equation (2.142) can also be written in Cartesian components relative to a basis
(e1,e2,e3) of U as

: 1
W(d)((Pt,t) = / (T,-jvjv,- + ELihvheijkvk,j) dA +/ (bjv; + kijw;)dV,
a* ®;

(2.143)
where use has also been made of (2.125) and (2.140). By the divergence theorem,
we convert the surface integral in (2.143) into

1

1 1
/(P (Tij,jvi + Tijvij + ELih,hfijkvk,j + ELihGijkvk,jh) dv. (2.144)
t

Since in Cartesian components (2.64) reads as

1
w; = Eeijkvk,j,

we easily realize that the last integrand in (2.144) can also be written as L;,w; j.
Thus, reverting to absolute notation and recalling (2.127) and (2.141), which are
valid only in an inertial frame, we obtain that
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WD (@, 1) = /

[Q(a-v+ki-w)+T-D+L-Vw]dV, (2.145)
®;

having used the identities (see also Appendix A.1)
T-Vv=sym(T)-D+ skw(T) - W=T-D+ 27 - w,

where sym(T) denotes the symmetric part of T. To reduce (2.145) to a form similar
to (2.137), we readily identify the power #© of the internal actions as

WD (@, 1) = / (T-D+L-Vw)dV, (2.146)

t

which shows how the couple stress L, which expends power against the gradient of
the spin vector w, contributes to the internal power. We further define the kinetic
energy % in such a way that

(@ 1) = / ola-v+ki-wydV.

®;

It is easily seen, also with the aid of (2.110), that this equation follows directly from
the linear constitutive law
k i = Mw,

with M a symmetric constant tensor, and the definition

H (@, 1) := / %Q(v v+ Mw-w)dV. (2.147)

®;

With % as in (2.147) and #® as in (2.146), the balance of powers in (2.137) is
also formally valid for the bodies described by the general balance laws (2.127) and
(2.141). In turn, as shown in [13], these balance laws could bg: obtained from the re-
quirement that the total external power #© = #® — % be frame-indifferent.
Thus, for (2.137) to hold, the internal power w O in (2.146) should be frame-
indifferent as well. Since both T and D are frame-indifferent tensors, whereas, as
shown by (2.95), Vw is only hemi-indifferent, #'® is frame-indifferent only if the
couple stress tensor L is also hemi-indifferent, and so under a change of frame rep-
resented by R € O(3) it transforms as

L* = (detR)RLR";

see (2.94). This, together with (2.140), shows that the contact couple ¢ is hemi-
indifferent, and so it transforms like the vector product of indifferent vectors, see
(2.92), which is the transformation law that holds for the moment of forces.

Often, the bodies for which the balance equation (2.141) is valid are called polar
continua (see, for example, [345, § 98]). Equation (2.141) has been further general-
ized to multipolar continua, by imagining that subbodies may exchange interactions
described by generalized forces that expend power against higher gradients of the
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velocity field. Apart from a limited digression in the closing Chapter 5, our devel-
opment will not concern such bodies; here we are contented with citing the work of
GREEN & RIVLIN [127] that spawned a literature too vast to be mentioned.

Even when the underlying order microstructure is only moderately complex,
equations (2.127) and (2.141) do not suffice to describe the time evolution of the
relevant order tensors introduced in Chapter 1. A more compelling principle is then
required to deliver the general evolution equations, which must still be compatible
with the classical balances expressed by equations (2.127) and (2.141). Several pro-
posals have been made to this end in the literature; in Section 2.2, we shall present
the one we prefer.

2.2 Dissipation Principle

Our aim is to posit a variational principle that would allow us to derive equations
of motion for a dissipative system. To this end, we shall make two central assump-
tions: first, that the total mechanical power, excluding dissipation, can be written as a
product of generalized forces by generalized velocities, and second that these forces
are balanced by frictional forces of the simplest conceivable type, namely those that
possess a quadratic velocity potential.*” A quadratic velocity potential was originally
introduced by RAYLEIGH in analytical mechanics, but he envisaged from the start its
application to continuous bodies [323, footnote on page 364].4%

Conceptually, dissipation is closely related to irreversibility. A question that has
long been debated is how to reconcile the microscopic dynamics, which are governed
by time-reversible laws of motion, such as those advanced in the classical dynamics
of mass-points, and the macroscopic dynamics, which, established here over NOLL’s
axiomatic construction, describe resistive phenomena through appropriate constitu-
tive laws for either stress and couple stress tensors. The conceptual separation be-
tween microscopic reversibility and macroscopic dissipation was clearly perceived
at the close of the nineteenth century, as witnessed, for example, by the following
excerpt from J. J. THOMPSON’s book [331, p.281], where an explanation is also
attempted:

But if every physical phenomenon can be explained by means of frictionless dynam-
ical systems each of which is reversible, then it follows that if we could only control
the phenomenon in all its details, it would be reversible, so that as was pointed out
by MAXWELL, the irreversibility of any system is due to the limitation of our pow-
ers of manipulation. The reason we can not reverse every process is because we
only possess the power of dealing with the molecules en masse and not individually,
while the reversal of some processes would require the reversal of the motion of each
individual molecule.

47 In the following chapters this scheme will grow to include the power both expended and
dissipated against the time rate of the collective order tensor Q introduced in Chapter 1.
48 In general, for RAYLEIGH’s work we also refer the reader to his collected papers [324].
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This question is interwoven with the concept of entropy in the statistical mechan-
ics formulation given by BOLTZMANN, who identified the obscure thermodynamic
notion introduced by CLAUSIUS with a relative measure for the trend toward equilib-
rium, where entropy is maximized. In loose terms, a system evolves in time toward
macroscopic states with more possible microscopic realizations, and finally to the
state with most possible realizations, where it remains, having thus reached its equi-
librium.*

W. THOMSON (LORD KELVIN) [334] also attempted an explanation for the ir-
reversibility riddle: this was particularly disturbing his general view of dissipation as
an irremediable source of energy degradation [332]. KELVIN argued that a complete
reversal of the velocities of all molecules cannot be achieved and that a necessarily
incomplete reversal could at most induce a temporary decrease in entropy:

The number of molecules being finite, it is clear that small finite deviations from
absolute precision in the reversal we have supposed would not obviate the resulting
disequalisation of the distribution of energy. But the greater the number of molecules,
the shorter will be the time during which the disequalising will continue; and it is
only when we regard the number of molecules as practically infinite that we can
regard spontaneous disequalisation as practically impossible.>

BOLTZMANN had to endure two major objections against his statistical inter-
pretation of entropy: reversibility and recurrence. The latter, perhaps more serious
than the former, arose essentially from a theorem of POINCARE [274] stating that a
dynamical system of pointwise atoms subject to interaction forces depending only
on their mutual distances returns infinitely close to its initial configuration in phase
space after a sufficiently long time.’! Here we take TRUESDELL’s attitude toward
such disputes [343, p. 121]:

In fact, it requires no great mathematician to see that the reversibility theorem and
POINCARE’s recurrence theorem make irreversible behavior impossible for dynam-
ical systems in the classical sense. Something must be added to the dynamics of
conservative systems, something not consistent with it, in order to get irreversibility
at all.”?

Different choices can be made that embody irreversibility for macroscopic systems,
each founding a different thermodynamic theory. In Section 2.2.2 below we shall

49 As MULLER [227, p. 101] puts it, BOLTZMANN discovered the strategy of nature, though
“it is not much of a strategy, because it consists of letting things happen and of permitting
blind chance to take its course.” When applied to the whole universe, such a fatal increase
in entropy has stimulated many teleological extrapolations of this concept from which here
we abstain.

50 See [333] and [227, p- 104]. We also refer the reader to [266, Chapter 27] for a stimulating
cosmological interpretation of this concept.

51 A terse and witty account on the controversy that on these themes opposed BOLTZMANN
to ZERMELO, an assistant to PLANCK who was to make fundamental contributions to ax-
iomatic set theory, can be found again in MULLER’s book [227, pp. 103-107].

52 TRUESDELL mainly addressed this criticism against the use made in [256, 257] of a vague
principle of microscopic reversibility to justify a symmetry request for certain bilinear con-
stitutive laws for the entropy production.
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briefly describe the conceptual bases of continuum thermodynamics. This theory
will aid us in putting in a wider perspective the mechanical variational principle that
in this book constitutes the conceptual basis for the dynamics of macroscopic dis-
sipative systems. We go first to the roots of classical mechanics, interpreting in a
variational fashion the first general dynamical equations encompassing systemati-
cally resistive forces, albeit of a special nature.

We recall in Section 2.2.1 the standard LAGRANGE—RAYLEIGH equations of
analytical mechanics and then show how they can be reinterpreted as a balance of
generalized forces and frictional forces, and how the actual evolution prescribed by
these equations minimizes the total dissipation with respect to a class of constrained
variations of the velocities. We then formulate an appropriate variational principle
that is equivalent to the LAGRANGE—RAYLEIGH equations and we generalize it in
Section 2.2.3 to make it applicable also to continua, after having revived in Sec-
tion 2.2.2 the basic concepts of continuum thermodynamics needed to phrase our
principle in that language. We conclude in Section 2.2.5 by putting the dissipation
principle into the context of other related principles.

2.2.1 LAGRANGE-RAYLEIGH Equations

For the reader’s ease, we now retrace the main steps needed to complete the program
so neatly announced by WHITTAKER [362, § 93]:

When a system is subject to external resisting forces which are directly proportional
to the velocities of their points of application, it is possible to express the equations
of motion of the system in general coordinates in terms of the kinetic and potential
energies and of a single new function.

Our treatment of the finite-dimensional case, which is rooted in classical analytical
mechanics, will inspire our extension to the continuum case, which is the main ob-
jective of this book; some peculiar technical aspects may there appear more intricate,
but the conceptual structure will remain the same.

HAMILTON’s Principle

We consider a holonomic dynamical system described by m generalized coordinates
q1.--..qm. We denote by q and g the vectors in R™ of the generalized coordinates
and the generalized velocities. While g lives in the subspace @ € R™ of admissible
Lagrangian configurations, § € R™ is not subject to further restrictions.”> When all
active forces are conservative, the system possesses a potential energy V' = V(q). Its
kinetic energy T = T(q, q) is assumed to be a positive-definite quadratic form in the

53 Generalized velocities are further restrained only in anholonomic systems.
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velocities™ ¢. Both V and T are supposed to be smooth functions®® of q. The evo-
lution of the system is then determined by a single scalar function, the LAGRANGE
function

L(q,q):=T-V. (2.148)

The equations of motion can be derived from HAMILTON s principle, which requires
that the action integral

5]
Alq] = / L(q,q)dt (2.149)
13}
between any two prescribed states of the system at times #; and ¢, be stationary. This
means that any variation of the true evolution will imply a variation in the action A.

To make this notion precise, we consider variations of the functions ¢; (¢); such
variations are arbitrary functions §¢g;(¢) with §g;(t;) = 8qi(t2) = 0, so that the
prescribed states at #; and 7, remain unchanged. The variations are added to the ¢;,
so that these latter are replaced by

Gi (1) = qi(t) + €8q; (1), (2.150)

where ¢ is a small parameter. Any variation of the ¢; consequently entails also a
variation of the ¢;, since

d . d
—qi(t) = qi(t) + e—

8q;(1). 2.151
7 7,59:(1) (2.151)
For simplicity, the notation
. d
8q; = EgCIi(I) (2.152)
is commonly used. The variation §4 of A is then defined by
dA[q
54— 44l (2.153)
de e=0

Principle (HAMILTON). The true evolution of a Lagrangian system is characterized
by having §4 = 0.

Computing the derivative in (2.153) explicitly shows that

JL d oL
“‘/ Z[ B+ g a1 = /Z[—aq,‘mql}w
(2.154)

54 Such an assumption is compatible only with holonomic systems subject to time-
independent constraints; any such system is also called scleronomic, while a system subject
to time-dependent constraints is called rheonomic.

55 Here we are guilty of some abuse of language: we use the same symbol for both a function
and the value it delivers. Whenever confusion is unlikely to arise, we indulge in this attitude
to avoid an unduly hypertrophic notation.
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where the second form is obtained after integrating by parts and using the fact that
the 8¢; vanish at #; and #,. Since the 8¢, are arbitrary, the integral in (2.154) can
vanish only if the EULER-LAGRANGE equations

— = =0, iefl,....,m} (2.155)

hold.

Total Mechanical Power

The EULER-LAGRANGE equations (2.155) can be interpreted as balances of gener-
alized forces. If, using the definition of the LAGRANGE function (2.148), we write

them as
aV oT d 0T —0

-+t — 7 =0,
dgi  dq;  dt 9g;
we can identify the active forces

av

Fi=——
1 8ql

as the negative “gradient” of the potential energy V' and the intertial forces

o aT d 0T
" dq;  dtdg
The balances
F+1,=0 (2.156)

are the form that NEWTON’s second law takes in the Lagrangian formulation. These
equations can also be derived from D’ ALEMBERT'’s principle, which is the classical
extension to dynamics of the principle of virtual work of statics [173, Chapter IV].
A formulation of D’ ALEMBERT’s principle in line with the general spirit of this
book involves virtual velocities instead of virtual displacements. In the Lagrangian
formalism it can be stated as follows.

Principle (D’ALEMBERT). The true motion of a Lagrangian system is character-
ized by having the total virtual power

m
W= (Fi + 1) (2.157)
i=1
vanishing for all virtual velocities c}l

The virtual velocities c}i in (2.157) must not be confused with the velocities %c}i in
(2.151) associated with the varied trajectories ¢; in (2.150); they are characterized
by being compatible with only the present state of all constraints, as if these were
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time-independent.>® Virtual velocities, in general, are to be associated with imagi-

nary, explorative motions taking place, as it were, at time scales much shorter than
that characterizing the actual evolution of the system. Most variational principles
of classical mechanics are stipulations about the power expended in these motions
by an appropriate system of forces. For holonomic systems, the virtual velocities c}i
are all completely arbitrary if the configuration presently traversed by the motion
lies in the interior of the configuration space @, and so D’ ALEMBERT’s principle is
immediately recognized to be equivalent to (2.156).

D’ ALEMBERT’s principle can be given different equivalent formulations. As
shown, for example, in [173, Chapter IV], (2.157) is the ultimate form taken by the
total virtual power defined by

N
W =" (fi — mpap) - 5. (2.158)
h=1

where now the sum is extended over all N mass-points that constitute the mechan-
ical system, f3 being the resultant active force applied to the ith mass my, aj, its
acceleration, and vy, its virtual velocity. This latter, just as for the components of c},
is any vector kinematically compatible with the state of the constraints at the present
time, under the assumption that these are ideally frozen in such a state.’” Writing
W in the form (2.158) is not a pedantic digression: it shows that for both the active
forces f independent of the velocity v, and the inertial forces —myaj, no ambi-
guity may arise in computing the virtual power: they can indeed be considered as
given by the true motion, while their powers are computed against fictitious veloc-
ities. Care must instead be used with forces that, like the most elementary resistive
forces, depend on velocities: considering them as given by the true motion while the
velocities are varied in a virtual motion is not justified. For this reason, the validity
of D’ ALEMBERT’s principle is confined to nondissipative systems. Correspondingly,
the LAGRANGE function accounts only for active and inertial forces, not for dissipa-
tive ones.

Irrespective of its formulation, D’ ALEMBERT’s principle is often mistaken as
a triviality. Unfortunately, this obscures the real value of the principle, which lies in
deriving the evolution equations for a mechanical system from the supposed property
of an invariant scalar, the total virtual power.

In the true motion, the one that obeys the evolution equations (2.156), the total
power W of the system is given by

m
W= Xigi =X-q. (2.159)

i=1

56 Virtual velocities are defined in general for both holonomic and anholonomic systems,
subject to both time-dependent and time-independent constraints.

57 To relate (2.158) to NEWTON’s equations of motion, it suffices to recall the postulate on
which Lagrangian mechanics is based, that is, that the reactive forces expend zero total
virtual power. Constraints enjoying this property are often said to be perfect.
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where the generalized forces X; are the total resultant forces,
Xi=Fh+1li=————, (2.160)

including both inertial and active forces. X is the m-vector of those forces, and the
dot denotes the usual scalar product in R™. In this conservative system, the energy
balance takes the form )

W+ H =0, (2.161)

where H is the rate of change of the total mechanical energy
H=T+V.

That is, ) ) )
H=T+V=-X-q. (2.162)

To prove (2.162), we start by rewriting the time derivative of the kinetic energy
T. Since T is quadratic in g, it is a homogeneous function of degree two, for which

Z —q, =2T. (2.163)
0q;

By direct computation, one finds that
aT . =T . 2od (0T .
‘Z( ) Zaq, (EW) 2 (aq,-)q"

whence, by (2.163), it readily follows that

V=> —iq. (2.165)

Equations (2.164) and (2.165) together show that

d 0L  dL

H=T+V = _——— — — | gi, 2.166
* Z[dfa%‘ 3qz']q ( )

which is (2.162) with the generalized forces in the form (2.160),

Xi=————. (2.167)
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In summary, the equations of motion (2.155) simply require all generalized forces
to be zero. It follows from (2.159) and (2.166) that, along a motion, both

W=0 and H =0, (2.168)

so the total mechanical power is zero and the total mechanical energy is conserved.
For a holonomic system with a finite number of degrees of freedom, (2.168) is the
analogue to the balance of power already encountered in (2.137) for continuum sys-
tems: W is easily identified with the external power W© see (2.104), while the
internal power 7 ® vanishes identically.

Frictional Forces

An important class of nonconservative frictional forces is given by forces that are
proportional and directed opposite to the velocities. Such forces can be derived from
a potential that is a positive semidefinite quadratic form in the velocities. This poten-
tial is called the RAYLEIGH dissipation function R(q,q), and it yields the frictional
forces Y; via

oR

dgi-
From this it is evident that the RAYLEIGH function has the dimension of a general-
ized power, and since it is a homogeneous function of degree two in the velocities, it
satisfies

Y; = (2.169)

2 3R .
—q; = 2R. (2.170)
= i

If the frictional forces are added to the generalized forces (2.167), one obtains
the balance of forces

X; +Y; =0, (2.171)
which becomes, upon inserting the expressions (2.167) and (2.169),

8—L—ia—,L—a—],€:O. (2.172)
dq;  dtdq;  9q;
This extended version of the EULER-LAGRANGE equations (2.155) is the standard
textbook form of the RAYLEIGH equations (see, for example, [362, p. 231]).
Multiplying both sides of (2.172) by ¢; and summing up yields the energy bal-
ance; by (2.159) and (2.170), we find that

2R=W. (2.173)

Since (2.162) is a purely kinematical identity, (2.173) shows that the change in the
mechanical energy is )
H =-W = -2R. (2.174)

What qualifies the frictional forces Y; as being dissipative is the requirement that R
be positive semidefinite. The fotal dissipation
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D :=2R (2.175)

is thus nonnegative. We refer to (2.173) as the dissipation identity; since (2.168) is the
analogue to (2.137) in the finite-dimensional setting, (2.174) heralds a new balance of
power to be set forward in the continuum setting with the aid of the thermodynamic
arguments discussed in Section 2.2.2 below. For the time being, we keep in mind the
simple meaning borne by (2.173) and (2.174): the power of all external forces goes
into dissipation. One may easily anticipate that, in the presence of an internal power,
this direct, simple balance gets richer in options.

Variational Formulation

We want to posit a variational principle that allows one to derive the equations
(2.172) from two scalar functions: the total mechanical power W and the dissipation
function R. This principle would then be generalized to continua in a straightforward
fashion, while a direct generalization of (2.172) to continua would pose various prob-
lems with, for example, boundary conditions or material frame-indifference.

The common physical interpretation of the action functional A in (2.149) sug-
gests that HAMILTON’s principle of least action could not in general account for
frictional forces. However, the problem of phrasing the evolution equations for a dis-
sipative system within a Hamiltonian principle formalism is indeed subtler than usu-
ally believed on purely physical grounds: it is a special instance of the general inverse
problem of the calculus of variations, which asks whether a given differential equa-
tion can be regarded as the EULER-LAGRANGE equation of an appropriate func-
tional. Reading a paper by BATEMAN [11], we learn that this question was already
asked by TOLMAN® and that WHITTAKER had proposed a simple model for a dissi-
pative system with two degrees of freedom that he conjectured could not be derived
from a Hamiltonian principle. BATEMAN states in [11] that CASSEN showed that
WHITTAKER’s equations do not strictly derive from a Lagrangian function, though a
Lagrangian function can be found whose associated equations of motion are compat-
ible with WHITTAKER’s equations, since the set of solutions of the former includes
the solutions of the latter.>

Similarly, as already remarked above, D’ ALEMBERT’s principle of virtual power
is not suitable for extension to forces depending on the velocities. We posit instead
the following.

Principle (of Minimum Constrained Dissipation). For a system with total me-
chanical power W and RAYLEIGH dissipation function R that obey the energy bal-
ance (2.173), the true velocity q traversing a given configuration g is such tklat the dis-
sipation function attains its minimum with respect to all virtual velocities @ = g+ §q
once both the generalized forces X and the total mechanical power W = X - q are
held fixed.

58 See also Sections 10, 11 of [335] for a general Lagrangian formulation of chemical systems.
59 We shall comment again on this issue in Section 2.3.4 below, in connection with the
NAVIER-STOKES equations of motion for a linearly viscous fluid conducting heat.
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The identity (2.173) is valid in every true motion: Since W is prescribed by the
true motion and held fixed while the motion is varied, the minimum value of R is
prescribed as well, but R is virtually freed, and its value prescribed by the true motion
must be the constrained minimum for the varied motion.

It should be recalled that variations here are different from those employed in
HAMILTON’s principle in Section 2.2.1 in an important respect. There, initial and
final states are frozen, and the configuration in between those states is varied by a
time-dependent §q. Here, we freeze the configuration g at a given instant in time and
leave it unaltered. The main players are variations §q of the velocities ¢, which are
not required to be “small” in any regard. These are instantaneous variations in their
own right and should not to be confused with the time derivatives of variations of
the configuration as in (2.152). Additionally, as we shall soon see, we will also need
instantaneous variations 8 of the accelerations. Again, these are not time-dependent
and in particular not time derivatives of the §q, but they can and have to be chosen
completely independent of the 4.

To see how the dissipation principle delivers the evolution equations (2.172),
we require R to be stationary with respect to this special class of variations. The
constraint on the mechanical power W can be treated in the standard way through
a LAGRANGE multiplier, so that g may be arbitrarily perturbed. More specifically,
with no loss of generality, we may represent R as

SR A AU R
R@&) =2 > Rij¢id; = 34 Ra, (2.176)
i,j=1

where R = R(q) is a matrix of R”>™ with entries R;;, which we assume to depend
continuously on q. It follows from (2.176) that

PR
0qi0q;’

ij
and so R can be taken to be symmetric. The variation SR of R, which is defined as
8R(9.9) := R(q,9) — R(q,q), is simply
1. .. .
SR = 58q - R6q + q- Réq,

where use has also been made of the symmetry of R. The condition of constrained
minimality for R prescribed by the principle then reads

1
SR + AW =6R + A6(X-q) = 5561 -R5q + (Rq + AX) -89 = 0, (2.177)

where A is a LAGRANGE multiplier and g is now an arbitrary vector in R™. To
obtain (2.177) it is crucial that X be kept fixed. However, because X in general does
depend on g, a system of variations 8q of the actual velocity vector q that leaves
also the generalized forces X unchanged implies variations §g of g to be chosen
accordingly. That this can indeed be done follows from the fact that the kinetic energy
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T is a positive-definite quadratic form in g and V is independent of ¢. By (2.160), X
is thus linear in g and

aX
det — # 0;
aq 7
this means that g can also be expressed in terms of X, g, and q as

d=B(g.9)X + a(a.q)

(cf. [362, p.40]), where B is an invertible matrix in R”*™ and a is a vector in R™.
It follows that, for any variations 8q, appropriate variations 8q that ensure that X
remains fixed are given by

3G = B(q.q + )X + a(a.q + 6a) — q.

Since §R vanishes for g = 0 and R is positive semidefinite, a necessary and
sufficient condition for (2.177) to be satisfied is that the linear form (Rq + AX) - §q
vanish identically; this is the case if and only if

Rq+ AX =0,
which by (2.176) can also be written as

oR

— +AX=0. (2.178)

dq
The value of A can be determined by taking the inner product of both sides of
(2.178) with q and requiring that the resulting equation agree with the energy balance
(2.173). This shows that A = —1, and so we find that

X— — =0, (2.179)

which by (2.169) is equivalent to (2.171). Thus, the minimality condition for R in
(2.178) just becomes the system of equations of motion (2.172).

In light of the formal reasoning that just led us to show that the principle of
minimum constrained dissipation implies RAYLEIGH’s equations of motion, one can
easily reformulate that principle in an equivalent way. Let the function R be defined
by

R:=R-W. (2.180)

It easily follows from (2.180) that (2.179) is precisely the minimality condition for
R subject to variations that leave only X unchanged but may affect W. While by
(2.173) the minimum of R is %W and it is attained on the true motion, the minimum
of E, similarly attained on the true motion, is —%W. We shall call R the reduced
RAYLEIGH function and we shall rephrase the principle of minimum constrained
dissipation in the following equivalent form.
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Principle (of Minimum Reduced Dissipation). For a system with total mechan-
ical power W and RAYLEIGH dissipation function R that obey the energy balance
(2.173), the true velocity q traversing a given configuration q is such that the reduced
dissipationA function R = R — W attains its minimum with respect to all virtual
velocities g = ¢ + §g once the generalized forces X are held fixed.

This formulation of the dissipation principle has also the merit of showing directly
how it reduces to D’ ALEMBERT’s principle for nondissipative systems: When R
vanishes identically, R reduces to —W, which is simply required to be stationary on
the true motion.

The principle of minimum constrained dissipation for Lagrangian systems was
introduced in essentially the same form adopted here®® by BIOT [19], who also in-
voked it in his Lagrangian formulation of thermodynamics presented in the book
[20].%! He also proposed in [19], among others, the alternative formulation of this
variational principle in terms of the reduced RAYLEIGH function R, though he did
not give it this name. By analogy with (2.175), we also call

D:=2R=D-2W (2.181)

the total reduced dissipation.

Nonquadratic Potentials

If the objective of our variational formulation of the evolution equations for dissipa-
tive systems with finite degrees of freedom were only justifying (2.179) as a mini-
mality (or just a stationarity) condition, we could also easily consider nonquadratic
potentials R. Let indeed R = R(q, q) be any smooth functions in the palr (9,9) and
let R be defined as in (2.180). By subjecting R to free variations in g only, while
keeping the generalized force X fixed, we easily obtain (2.179) as a stationarity con-
dition for R. By taking the inner product of both sides of (2.179) with g, we readily
arrive at

R .

W=—.4=D, (2.182)

99
where D is again to be interpreted as the dissipated energy. Though we might easily
imagine the dissipative mechanisms at work in the system that would suggest one
form or another for D, arriving at the corresponding potential R would in general
require solving the partial differential equation displayed in (2.182). In the case that
D is homogeneous of degree n in g, by the EULER formula for the derivative of
homogeneous functions, the trivial solution of this equation is

1
R=-D,
n

60 A justification of this principle was also provided in [311].
61 Further thoughts, indeed more allusive than conclusive, were presented almost at the same
time in [21].
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but in general the relationship between R and D is not expected to be so simple.

Strictly speaking, much of what we have said (and shall say) could apply to all
homogeneous dissipation functions®?> D, though in this book we shall consider only
the classical quadratic case.

A Simple Example

We illustrate the principle with a simple example in which the generalized forces
are indeed real forces. We consider a particle of mass 72 moving in two dimensions
under the influence of gravity and linear drag. If the position of the particle is given
by

r =xex +yey,

then the kinetic energy is

1
T = —mr?
2

and the potential energy
V=mgy =mgr -e,.

The RAYLEIGH function is |
R = —pur?
> 2

with the positive drag coefficient . With these functions, we find the inertial force
I, the active force F, and the friction force Y to be

I = —m¥r, F = —mge,, and Y = —pur.

With
X=I+F =-m(F + gey). (2.183)

the total mechanical power is
W=X-F=-m(F+gey) r =-T-V.
The dissipation principle requires that
0=0(R+AW) = g—f-c?i +A8(X - F),
where A is a LAGRANGE multiplier and X is to be kept constant. In this case, where

X does not depend on F, this simply means that the variation §# of the acceleration
in (2.183) is zero. We hence find that

R
or

62 With even degree n if we want to salvage the minimality of D, supported by the thermody-
namic interpretation that shall be proposed in Section 2.2.2.
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and so
0= g—f +AX = ur —Am(r + gey). (2.184)
Multiplying this by F shows that
0=2R+AW =2R— AT + V),
and so we need A = —1 to recover the energy balance as
2R=—(T + V).
With this value of A, (2.184) becomes

my¥ = —mgey, — UF,

which is simply NEWTON’s equation of motion.
The total dissipation on the true motion is given by

D =2R = ur>.
On any virtual motion with virtual velocity
V=" +8F,
the total dissipation is
D =ub-9=pu@F?+2F 88 + 8. (2.185)

From (2.184), on the true motion, X = ur. But because both X and its power W =
X - (F 4 6F) are fixed under the constrained variation, this implies that X - §r = 0
for all admissible variations. It follows that also r - § = 0, and so

D = pn(r? + 872,

which shows that the total dissipation D of the true motion is indeed a minimum.
Likewise, by (2.181) and (2.185), the total reduced dissipation on the varied motion
is

D = u(—r? + §F?),

which is again minimized by the true motion.

2.2.2 Glimpses of Continuum Thermodynamics

Though this book is concerned mostly with purely mechanical theories, the princi-
ples we employ to derive the evolution equations are better phrased and understood
within the broader context of continuum thermodynamics. The main difficulty here
is that this is not a single established science; rather, it still appears as a collection of
doctrines, with precepts and prohibitions, praised by different schools with opposed
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adherents. In the little space we can devote to this subject we shall neither attempt to
draw a historical sketch of how different theories have unraveled nor venture a com-
parison between the merits and drawbacks they all have.> We shall rather broaden
our perspective by the amount strictly needed to relate dissipation to entropy pro-
duction, and in doing so we shall stay close to the spirit of the continuum mechanics
infrastructure we have so far adhered to.

Homogeneous Processes

We start by stating the axioms of thermodynamics in the simplest possible context
that grants a sufficient level of generality for them to be further extended by analogy.
We assume that a body B undergoes a homogeneous process, where all quantities of
thermodynamic interest are uniform in space, while they may change in time.

Formally, a homogeneous thermodynamic process is defined by a pair of func-
tions (6(¢).q(t)) depending on the time ¢, where 6 is the absolute temperature,®*
assumed to be positive, and g = (¢1,...,¢m) is a vector in an admissible subset &
of R™ representing here a collection of scalar parameters accounting for the present
state of the body, such as its volume V. Along a thermodynamic process, the time
derivatives 6 and g are the temperature and state rates, respectively; together they
define the process rate (9, §).

Thermodynamics essentially stems from realizing that mechanical power is not
the only means able to increase the internal energy 7/ of 8. This energy % , whose
existence is here assumed, is a function of time given by a functional U of the pro-
cess:

% (1) = U6, ).

The net working #'©, which was given a precise meaning in (2.99) along the mo-
tion of a generic subbody ® of B, denotes here the power expended by all external
agencies in a homogeneous process of the whole body ®. Inspired by (2.99), we as-
sume that #(© is a function of ¢ given by a linear form of the state rate g, so that it
vanishes at equilibrium.

#© is not the only source of changes for % . TRUESDELL [343, p. 9] has well
described the classical equivalence of work and heat, regarded as independent, con-
current causes of energy changes:

If we recognize that doing work may change the energy of a body, and that heating
may effect work, at this level of generality the best we can say is that to describe this
equivalence of heat and work, we assume the existence of a second kind of working,
2, called the heating, which is not identified with anything from mechanics.

63 Only in Section 2.2.5 below shall we not resist making an exception, which we deem nec-
essary.

64 Temperature is here a primitive quantity that assigns to a body the measure of how hot it is.
In the scale adopted here, 6 is a positive measure: the greater lower bound of all measurable
temperatures is 6 = 0, by definition.
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Unlike 79, 2 is given by a linear functional of the whole process rate (é, q), and
like #(© it vanishes at equilibrium.%

We state now for homogeneous processes an axiom that will be further extended
below to more general processes undergone by deformable bodies.

Axiom 2.6 (First Law of Thermodynamics). In a thermodynamic process (6, q),
the internal energy %, the net working # (9, and the heating 2 are related through

the equation ]
U =W 4+ 2. (2.186)

Resort to (2.104) allows us to write (2.186) in the form
U+ ) =7® 4 2,

which shows that the internal energy % and the kinetic energy %~ are both affected
within the body ® by the power # @ expended by the external agencies applied to
® and by the heating 2 transferred to & from without.

A second axiom describes natural processes and provides the little conceptual
quantum that makes irreversibility arise in systems with infinitely many particles.

Axiom 2.7 (Second Law of Thermodynamics). There is an upper bound to the
heating 2 that can be expressed as 6.7, where . is the entropy of the body, that is,

92=<0.7, (2.187)

in all homogeneous processes.

The entropy . is a function of ¢ given by a functional & of the process (8, q). The
inequality (2.187) is meant to be satisfied by all admissible homogeneous processes.
It should perhaps be noted that both %/ and ., which enter (2.186) and (2.187)
only through their time derivatives, are determined to within an arbitrary additive
constant.

In the light of Axiom 2.7, a homogeneous process is said to be reversible when-
ever the equality sign holds in (2.187); otherwise, it is irreversible, as indeed are most
processes. To justify (2.187) as a statement about irreversibility, TRUESDELL [343,
pp- 9-10] proposes that

The irreversibility of natural processes is represented by the existence of an a priori
least upper bound [#.7] for the heating 2. The term “irreversibility” is justified
because 2, the rate of increase of energy not accompanied by mechanical working,
is bounded above but not necessarily below. There is no limit to the magnitude of
negative values of 2, which represents conversion of energy into heating without
performance of work, but there certainly is to positive ones. Work and energy may
always be converted into heat, but there is a limit to the rate at which heat may be
converted into energy without doing mechanical work.

65 Explicit expressions for #© and 2 along homogeneous processes will be given in Sec-
tion 2.2.3 below, where we shall also derive the equations that govern their thermodynamic
evolution.
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We renounce justifying Axioms 2.6 and 2.7 any further; rather, we accept them as
the basis of our understanding of thermodynamic processes. Though formulated for
homogeneous processes, slight formal alterations will suffice to extend their validity
to more general processes of continuum mechanics.

According to this theory, thermodynamic equilibrium is reached when neither of
the thermodynamic functions introduced so far changes in time any longer. Thus, by
the linearity of #© in gand 2 in (6, 4), (2.186) and (2.187) are identically satisfied
at equilibrium, the latter as an equality.

~ We say that a process is adiabatic whenever 2 = 0 and isoentropic whenever
& = 0. It is clear from (2.187) that such processes are equivalent only if they are
reversible.

The quantity that fills the gap created by the second law of thermodynamics in
inequality (2.187) is the total dissipation 2,

D=0 —2=0. (2.188)

By (2.188), a process is reversible if and only if & vanishes along it. A deeper inter-
pretation of & can be gained by introducing the free energy % as

F =U —-07.

By differentiating both sides of this equation with respect to time and making use of
(2.186), we readily arrive at

D= _F 0.7, (2.189)

which clearly appears as an extension of the dissipation identity (2.173) already en-
countered for mass-point systems, provided we introduce the RAYLEIGH dissipation
Sfunction & through

1
K = 5.@, (2.190)

which mimics (2.175). Here the role of the total power W is played by
W= F 07, (2.191)

which is the total power of the external agencies (including inertia) diminished by
the rate of change of the free energy, ., and by what we call the thermal production
of energy,%

T =07, (2.192)

which vanishes identically in any isothermal process. We call # in (2.191) the to-
tal working. In words, equation (2.189) says that the input of external power that
increases neither the free energy nor the thermal production of energy is lost in dis-
sipation.

66 We borrow this name from [131, p- 189].
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Requiring that 2 in (2.189) be positive semidefinite embodies the reduced dis-
sipation inequality.®” Such an inequality is classically®® required to be valid for all
possible processes and thus employed to place restrictions upon the constitutive laws
that may express #©, .%, and . in terms of the process (6, q): these laws must
make & as defined by (2.189) positive definite on all processes.

Here our attitude will be different. Inspired by the perspective offered by the clas-
sical mass-point mechanics to regard R (and D) in Section 2.2.1 as a potential for
RAYLEIGH dissipative forces in Lagrangian dynamics, in Section 2.2.3 we shall con-
sider Z in (2.190) to be constitutively assigned as a positive semidefinite quadratic
potential of the state rate g. We shall thus reformulate the principle of minimum
constrained dissipation as a means to derive the equations that govern the thermody-
namic evolution.

In the rest of this section, we restate the axioms of thermodynamics formulated
here for homogeneous processes so as to encompass the more general processes that
a deforming continuous body may suffer.

Deformable Bodies

For a body B undergoing a motion y defined as in (2.3), a thermodynamic process is
characterized by fields defined on the collection of shapes C, in (2.5). For classical
continuous bodies, a process is defined by the pair of fields (0, ), where 6 is the
absolute temperature. Equilibrium is reached wherever neither 6 nor y depends on
time. For any subbody ® of 8 in the motion y, we call ZZ (®, x) the internal energy
stored in the present shape ® and we assume that it is absolutely continuous with
respect to the mass measure, so that

U(®:, x) = [ ovdV, (2.193)
&
where o is the mass density as above and v is the density per unit mass of inter-
nal energy stored in the present shape B; of the body. The energy density v is here
assumed to be a smooth function of position and time: no specific constitutive as-
sumption is made at this stage that relates it to the thermodynamic process (6, x).
The internal energy in (2.193) is thus a shape functional that is posited as a primitive
quantity of the theory.
Similarly, the heating 2 is a shape functional defined as

2(6, x) :=—/ q~vdA+/ odV, (2.194)
3*(?[ (Pt

where ¢ is the heat flux and o is the heat supply, the former expressing the rate at

which heat enters ®; through its boundary®® and the latter the rate at which heat is

67 Here “reduced” simply means that the heating .2 has been disposed of.

68 See TRUESDELL [343, pp. 13-14].

9 The sign of the first integral in (2.194) is chosen so as to interpret ¢ as the influx of heat
when it makes an obtuse angle with the outer unit normal v and as the efflux of heat when
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supplied to its interior.”® Definition (2.194) has the general appearance of an inte-
gral balance law for a continuous body: both a surface flux and a volume supply
contribute to it, though 2 is not itself the time derivative of a function. In the ther-
modynamics of homogeneous processes, 2 is assumed to be a linear form of the
process rate (6, q), though it is not a rate itself, so as to make it vanish in equilib-
rium. Likewise, we assume that in equilibrium the shape functional 2 in (2.194)
vanishes identically, that is, for all shapes ®; and at all times ¢. Such an assumption
requires that both ¢ and o vanish in 8, for all ¢.

Axiom 2.6 is here replaced by the requirement that the time rate of the internal
energy % in (2.193) be balanced by the net working #( in (2.99) and the heating
2 in (2.194): ]

U@ x) =@ x) + 2@ 1), (2.195)

for all shapes @ and all motions y. By (2.105), (2.195) can also be given the form
[% (@1, x) + H (@1, ) = WD (@1, ) + 2, x). (2.196)

which expresses how both the power expended by all external agencies applied to
the subbody ® and the heating provided to it determine the rate at which both the
internal and kinetic energies stored in @ increase. Equations (2.195) and (2.196) are
equivalent formulations of the first law of thermodynamics for deformable bodies:
they introduce the balance of energy alongside the other classical balances of linear
and rotational momenta posited in Section 2.1.5.

To formulate the second law of thermodynamics for deformable bodies, we as-
sume that the entropy content of a subbody ® in its present shape ®; produced by
the motion y is expressed by the shape functional

(@, x) = /(P ondV,

where 7, which is a function of position and time, is the entropy density per unit mass.
. is a phenomenological quantity whose time rate is to be related to an upper bound
for the heating, much in the spirit of what (2.186) requires for homogeneous pro-
cesses. To grant such an interpretation, we further assume that .’ obeys the growth
law

y?(@,,x);—/ lq-udAJr/ Tav (2.197)

@, 0 e 0

for all shapes ®; and all motions yx. For a temperature field 6 uniform in space,
(2.197) reduces to (2.187), which we postulated for homogeneous processes. In gen-
eral, (2.197), which is also called the CLAUSIUS—DUHEM inequality, shows how the
sources of 2, both flux and supply, provide corresponding sources for a lower bound

it makes an acute angle with v. Convenient as these names may appear, they will never be
used in this book: the contribution that the heat flux ¢ makes to the total heating 2 would
be properly defined mathematically whatever sign precedes the first integral in (2.194).

70 provided, for example, by the absorption of external radiation.
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on the growth of .. As above, a process will be said to be reversible whenever the
equality sign holds in (2.197) throughout it; otherwise, it is irreversible.
An equivalent way to write (2.197) is to set

: 1
y(@t,xH/ —q-vdA_/ %y :;/ o dV
* @, 0 ®; 0 ®;

t

and to require o; to be a positive semidefinite function of position and time. Then
(2.197) can be rewritten as

) 1 o
® =— —q-vdA— ~— +0;)dV, 2.198
(@, x) /a*teq v /;,,(GJFO) ( )

which appears in the classical form of an integral balance law, provided we interpret
%q as the entropy flux and (% + oi) as the entropy supply. While the entropy flux
derives from the heat flux, the entropy supply has a heat component  proportional
to the heat supply, and an intrinsically irreversible component o; that is called the
entropy production. The second law of thermodynamics for deformable bodies re-
quires the entropy production to be positive semidefinite and identifies it as a source
of irreversibility. A thermodynamic process is thus said to be reversible whenever the
entropy production o; vanishes identically along it. In general, if (2.198) represents
the entropy balance, we may say, as also suggested by [131, p. 187], that (2.197)
represents the entropy imbalance.

In principle, there is no reason why in the entropy imbalance (2.197) the entropy
flux should be determined by the heat flux. MULLER [226], perhaps inspired by the
fact that entropy and heat supplies already differ, proposed a theory in which the en-
tropy flux p and heat flux ¢ are independent constitutive quantities. The limited room
we can devote to thermodynamics in this book does not permit exploring further the
consequences of such an assumption, which are indeed more telling for materials
richer in structure than for “classical materials.”’! Here the entropy flux will always
be p = %q.

The statements of both first and second laws of thermodynamics for deformable
bodies just obtained by analogy from Axioms 2.6 and 2.7 posited above for homo-
geneous processes need to be invariant under a change of frame. To ensure this, we
shall assume that 6, v, 1, 0, and o; are all indifferent scalar functions, that is, in the
notation of (2.44),

0% (p*.t*) = 0(p.1), (2.199a)
v (p*. 1) =v(p, 1), n*(p*.t") =n(p.1). (2.199b)
U*(p*,l*)z(f(p,t), O—i*(p*9t*)=oi(p9t)v (2199C)

and that ¢ is an indifferent vector field,
q"(p*.1") =Rq(p.1), (2.200)

71 See, for example, [181].
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where R is the orthogonal time-dependent tensor representing the change of frame.
We have not yet specified the constitutive laws that make v, 7, i, and ¢ depend on the
thermodynamic process for a given category of bodies. All (2.199) and (2.200) tell
us is that these laws must be frame-indifferent. As a consequence, the laws of ther-
modynamics are frame-indifferent provided that #(© is as well, as indeed required
by Axiom 2.3. As shown in Section 2.1.5, this is the case whenever CAUCHY’s laws
of motion (2.127) and (2.134) are satisfied. These latter in turn imply (2.136), by
which both balances (2.195) and (2.198) can easily be reduced to local form.

By (2.193), the definition of heating in (2.194), the transport theorem in (2.111),
and the divergence theorem, under standard smoothness assumptions, (2.195) be-
comes

/ ovdV = [ (T-D—divg +0)dV,
®; ®;
which is valid for all shapes ®; if and only if
ov=T-D—divqg + 0. (2.201)

This is the local form of the balance of energy. Similarly, equation (2.198) is reduced
to
. . (q o
=—div(%) + 2 + o,
on v ) + ) + o

which easily becomes

e Ly ovo—Lavg+ 24 (2.202)
=—q- — —div — + o, .
on = 734 g dive + 5

whence, by eliminating div ¢ with the aid of (2.201), we easily arrive at
. . 1
0n=0ouv—-T-D+ 5q-V9 + fo;. (2.203)
Let the function v, defined by
Yi=v—0n, (2.204)

be the free energy per unit mass. A simple computation shows that (2.203) can be
given the following equivalent form:

. . 1
0oy =T -D— oy — (9917 + 5‘1 . VG) . (2.205)

Integrating both sides of this equation over the shape ®; of the subbody ® conveyed
by the motion y and making use of (2.136), we obtain that

D@, x) = W@, x)— F (@, x) — T(®, x) =0, (2.206)

where

D(®, x) = o, dV (2.207)
®;
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is the fotal dissipation functional, # © is the power expended by all external agen-
cies (including inertia), and .% and .7 are the free energy and thermal production
functional defined by

F(®, x) = / oy dV (2.208)
®;
and .
T (@, x) = / (Qén + 5‘1 . V@) av, (2.209)
®;
respectively.

As for Z in (2.188), requiring Z in (2.207) to be positive semidefinite embodies
the reduced dissipation inequality. Paralleling closely (2.188), (2.206) says that the
total external power that contributes neither to the free energy .# nor to the thermal
production of energy 7 is lost in dissipation. It is worth remarking here for later use
that 2 vanishes identically in equilibrium.

Equation (2.206) clearly extends (2.188) to the thermodynamics of deformable
bodies, and so it further generalizes the dissipation identity (2.173), provided we
replace there W with the total working

W=wO _F_ 7. (2.210)

The RAYLEIGH dissipation functional Z, formally defined by (2.190), is here a shape
functional, which by (2.207) vanishes identically on all reversible processes. It is eas-
ily checked that for a homogeneous process for which all fields are uniform through-
out the shape B; of the whole body ®, (2.206) and (2.209) reduce to (2.188) and
(2.192), respectively.

In the following section, we shall formulate a minimum principle for the reduced
dissipation

~ 1
%:zﬁ—szg—V/, (2.211)

where % is as in (2.210) and ¥ is a quadratic, positive semidefinite functional in the
appropriate dissipation measures.

2.2.3 Principle of Minimum Reduced Dissipation

Here we state the general principle that we set as the basis of our development in
the rest of the book. Our formulation will be first phrased in the language of the
thermodynamics of homogeneous processes introduced in Section 2.2.2. The form
of the principle appropriate for the more general processes undergone by deformable
bodies will then present itself as a rather natural extension, also in the light of the
foregoing discussion. Section 2.3 will present the application of this principle to the
linearly viscous fluids of the NAVIER—STOKES theory, also in the presence of heat
conduction. The following chapters will be based on suitable reformulations of the
general principle in different settings of ordered fluids, particularly apt for describing
liquid crystals in their diverse dynamical manifestations.
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Homogeneous Processes

For a body ® performing a homogeneous thermodynamic process (6, q), with tem-
perature 6 and state variable q in the admissible set @ € R™ thought of as functions
of time ¢, we assume that the net working 7 is given by the following linear form
in the state rate:

m
7O =" pi(0.9)¢ =p-a. (2.212)

i=1
where p = (p1, ..., pm) is a vector of functions of the process (6, q) representing
generalized external forces. Similarly, we assume that the heating 2 is given the

form .
2 =«(0,9)0 +k(0,9q) -q. (2.213)

where « is a scalar constitutive function of the process representing the specific heat
in a constant state and k = (ky,...,ky,) is a constitutive vector of the process,
expressing generalized latent heats.

Furthermore, we assume that the free energy .% and the entropy . are given by
the following smooth’? functions of the process (6, q):

F(t) = W(0@),q()), (2.214a)
Z(t) = HO(1), q(t)), (2.214b)

so that the internal energy % is given by the function
U @) =T(0@),a()) (2.214c)
with
T(6,9) := ¥(0.q9) + 0H(0,q). (2.214d)

We also assume that the RAYLEIGH function in (2.190) is expressed by
1. .
X = 59 R(6.,q)q. (2.215)

where R(6, q) is a continuous mapping of the pair (6, q) into the space of symmet-
ric m x m real matrices. We take R(6, q) as positive semidefinite on all admissible
processes.

By (2.212), (2.213), and (2.214c¢), the first law of thermodynamics in (2.186)

requires that

Yy . oY .
— 0+ —-q=«b k) - q. 221
30 + 7 Kk +(P+Kk-q (2.216)

Likewise, the total working % defined by (2.191) becomes

W =EO+X-q (2.217)

72 At least twice continuously differentiable.
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where & and X are functions of the process (6, q) only, defined by

o

E(0,9) == — (@ + H) . (2.218a)
4

X(0,q) :=p— Fr (2.218b)

The pair (&, X) defines the generalized thermodynamic forces that expend power
against the process rate (6, q). ‘

It is apparent from (2.217) that % is a linear form of the process rate (6, Q)
with coefficients & and X depending on the process. Precisely as (2.217) parallels
(2.159), the definition of Z in (2.215) parallels that of R in (2.176). Letting Z be
defined by analogy to (2.180) as # := % — W, with Z and # as in (2.215) and
(2.217), respectively, we are in a position to posit for homogeneous processes the
following principle, which extends the one formulated on page 122 for a dynamical
system governed by the LAGRANGE—RAYLEIGH equations of motion.

Principle of Minimum Reduced Dissipation (for Homogeneous Processes). For
a body B performing the homogeneous process (6, q) with total working # as in
(2.217) and RAYLEIGH dissipation function & as in (2.215) that obey the second
law of thermodynamics in the form (2.189) with ¥ = 2%, the true thermodynamic
evolution (é, q) through the instantaneous value (6(¢), q(¢)) at time ¢ is such that the
reduced dissipation function Z = % — # attains its minimum with respect to all

virtual process rates ®, a) with 6 = 6 + §0 anda = ¢ + 8q once the generalized
thermodynamic forces (=, X) are held fixed.

‘We now apply this principle to derive the equations that govern the time evolution of
a homogeneous process. By repeating verbatim the reasoning that in Section 2.2.1
led us to (2.179), here we readily arrive at the following condition of minimality:

0% OR
=, =) =(&.X). (2.219)
(ae 8q) (&%)

Since we assumed in (2.215) that % is independent of 6, thus not regarding the
temperature rate as a measure of dissipation, equation (2.219) is equivalent to the
pair

7
E = 0, —_— = X
dq
By (2.218a), the former of these equations requires that’3
H= i (2.220)
967 '

73 Equation (2.220) is essentially an equilibrium condition, since it is independent of the ther-
modynamic evolution: it follows from requiring that 6 not be a measure of dissipation, and
so it has no right to affect R.
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while, by (2.218b) and (2.215), the latter becomes

R(6,q)q=p— aa_w (2.221)
q
Equations (2.220) and (2.221) must be valid in all homogeneous processes of
® that comply with the principle of minimum reduced dissipation stated above. In
particular, (2.220), which is not an evolution equation but rather appears in the form
of an equilibrium condition, must be valid for all initial conditions (6(0), g(0)) ad-
missible for a process. Assuming that the admissible set & is open and that a process
can start from any point in R x @, we regard (2.220) as an equilibrium identity
valid throughout the domain Rt x @, which assigns the entropy function H from the
free energy ¥. By (2.220), (2.214b), and (2.214d), ¥ deserves the name of thermo-
dynamic potential, since both the entropy .# and the internal energy % of a homo-
geneous process derive from it.
If the validity of the second law of thermodynamics is guaranteed by (2.221),
making use of (2.220) and (2.214d) in (2.216), we easily obtain that the first law of
thermodynamics requires that

2 2
(9%+K)9+(p—%—i+k+9;—;)«q:0. (2.222)
Equations (2.221) and (2.222) govern the evolution of a homogeneous process in
this formal thermodynamic scheme. They suggest a few remarks about equilibrium
and reversibility, the former being reached whenever the process rate (6, ) vanishes
identically and the latter characterizing the processes for which % = 0. First, since
the matrix R is only positive semidefinite, it is not in general invertible in the whole
domain RT x @, and so
v
=5
is only a necessary equilibrium condition. For it to become sufficient at a given pair
(6o, o), the following conditions must also be satisfied:

p (2.223)

R/
det R(6y,qo) > 0, (9—2 + K) #0, (2.224)
90 (60,90)

which imply that both 6 and g vanish at (6, qo). In general, wherever det R = 0 in
R* x @, a new process may branch off and a detailed bifurcation analysis is needed
to characterize all possible processes that meet there. If det R = 0 at a putative
equilibrium point that satisfies (2.223), this same bifurcation analysis characterizes
its stability. Dwelling any further on this matter would, however, exceed the scope of
this book.

Equation (2.223) must also be valid along all reversible processes, for which
g # 0 but ARq = 0. Clearly, such a process may exist only if det R = 0 along it.
By contrast, along an irreversible process, (2.221) can be solved for g, and (2.222)
then determines é, provided that the second inequality in (2.224) is satisfied. For
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an irreversible process, (2.223) determines the equilibrium states, and, by (2.222),
also 0 vanishes as soon as an equilibrium state is reached. If both inequalities in
(2.224) are satisfied in the whole domain R x @, then all admissible processes are
irreversible and equations (2.221) and (2.222) describe how the body ® tends toward
local equilibria. Bifurcations in the solutions of the evolution equations, which make
the thermodynamics of homogeneous processes undergone by ® richer in options,
are related to the local failure of inequalities (2.224). In words, one may also say that
local reversibility makes the homogeneous processes of 8 more intriguing.

Deformable Bodies

The thermodynamics of homogeneous processes of a body served the purpose of il-
lustrating the general use of the principle of minimum reduced dissipation that we
shall make in this book. Clearly, for more complex processes, such as those under-
gone by a deformable body, either classical or ordered, the mathematical appearance
of the principle will be different, though its formal structure will remain just the one
already seen above. The reduced dissipation &% will now be the shape functional
defined by (2.211), and similarly the total working % will be given by (2.210).

As in Section 2.2.2 above, a process is now identified by the pair (6, ), to which
there corresponds the process rate (é, v). We assume that the entropy production o;
is a quadratic positive semidefinite function of certain fields collected in a list d,
defined over the collection of shapes C,, which are frame-indifferent measures of
local dissipation. The fields in d may be scalars, vectors, or tensors: they translate
into mathematical terms our perception of the mechanisms of internal dissipation
at work for a particular material. We assume that g := V@ is included’* in d and
that all dissipation measures other than g are linearly related to the velocity field v,
so as to vanish at equilibrium. We also require that # cannot be a local measure of
dissipation, and so it is excluded from d. Thus, we represent &% as

R(®,, x) = / RdV, (2.225)

®;
where the density R is given as

1
R = -d-R[d] (2.226)

and R = R(#, y) represents a symmetric bilinear form in the space of all lists like d
By (2.207), equation (2.226) amounts to writing

fo; = d-R[d] = 2R. (2.227)

By varying instantaneously the velocity field v by v and the temperature gra-
dient” field g by §g, subject to curl§g = 0, without affecting the shape ®;, as in

74 That for a nonisothermal process V6 is an intrinsic source of dissipation is suggested by
the form (2.209) for the thermal production of energy .7 balancing Z in (2.206).

75 Since by constitutive choice 6 is not a dissipation measure, an instantaneous variation 80
of 6, which will soon play a role, has no effect here.
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the spirit of all variations considered here, we produce a variation dd, which in turn
varies % into .
R =R+ 5 | 8d-RisdldV + 62, (2.228)
®;
where
SR = d-R[éd]d V. (2.229)
®;
We further assume that the total working 7 in (2.210) can in general be given
the form

W (@, x) = {Eé+G-v9+B-v}dv+[ T -vdA, (2.230)
®; 0* @

where =, G, B,and T are appropriate fields, scalar the first and vectorial the others,
defined over the present shape ®; of the generic subbody ®. In particular, we can
recognize in B a generalized body force and in T a generalized surface traction,
which is in general a functional of 0* . Letting 86 denote an instantaneous variation
of the temperature rate é, independent of the gradient variation g, we define the
variation induced in % by (89, 8g,8v) as

§W = {559'+G~5g+3.5v}dv+/ T -§vdA. (2.231)
®; 0*®;

Now, since R is positive semidefinite, by (2.228), the reduced dissipation func-
tional # = Z — W attains its minimum under all variations that keep the general-
ized forces £, G, B, and T fixed if and only if the variations §% and §#" defined in
(2.229) and (2.231) are identically equal.

We can finally formulate the principle of minimum reduced dissipation appropri-
ate for the thermodynamics of classical deformable bodies.

Principle of Minimum Reduced Dissipation (for Deformable Bodies). For a clas-
sical deformable body ® undergoing a thermodynamic process (6, y) with total
working # as in (2.230) and RAYLEIGH dissipation functional Z as in (2.225) that
obey the second law of thermodynamics in the form (2.206) with 2 = 2%, the true
thermodynamic evolution through the pair of instantaneous fields (6, x) at time ¢ is
such that the reduced dissipation functional #Z = % — % attains its minimum with

respect to all virtual process rates (é, ), with 6 =0 +860and b = v + Sv, and with
respect to all instantaneous virtual temperature gradients g, with ¢ = g + §g and
curl§g = 0, once the fields =, G, B, and T in (2.230) are held fixed. That is, the
true evolution is characterized by the requirement that

8% = 6w forall @, (2.232)
where 6% and §# are as in (2.229) and (2.231), respectively.

In Section 2.3, as an illustration of this principle, we shall describe the equations
valid in the classical theory of the NAVIER—STOKES fluid with heat conduction,
while in Section 2.2.5 below this very fluid will appear as a special case in the context
of other competing theories. We now comment on constitutive relations for fluids in
general.
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2.2.4 Simple and Nonsimple Fluids

In Sections 2.1.5 and 2.1.6 we have illustrated the balance equations that govern
classical continuum mechanics. They are not sufficient to describe the evolution of a
body as long as T and L, the stress and couple stress tensors, remain unrelated to the
motion x.

According to the general ideas put forward by NOLL [235], where only classi-
cal media were considered, unable to carry couples,’® this is achieved by specifying
the stress tensor at time ¢ as a functional of the whole history up to time ¢ of the
motion: such a functional dependence would distinguish one material from another,
thus being constitutive for it. The general conceptual framework for material behav-
ior formulated by NOLL is effectively summarized in TRUESDELL & NOLL [345,
§ C.III] and TRUESDELL [349, §IV.2].

The materials thus formally defined are called simple. Since here we are con-
cerned only with fluids, it will suffice to recall that a simple fluid is defined by for-
malizing the requirements that

(i) the present stress be determined by the history of the gradient of the deforma-
tion, the tensor of L(V) defined as F := Vp x(P,t) in terms of the motion
(2.3), and

(ii) the symmetry group G, under which the material response is invariant, be the
largest possible.”’

In NOLL’s theory of simple fluids, requirement (ii) is fulfilled by choosing G co-
incident with the unimodular group’® U(3). Since a simple fluid, like any simple
material, cannot sustain couples, its couple stress tensor L vanishes identically, as
do the intrinsic rotational momentum k; and the body couple k, so that the balance
equation for torques (2.141) simply reduces to requiring that the CAUCHY stress ten-
sor T be symmetric. Such a requirement is fulfilled by the theory of simple fluids
by assuming that the range of the functional delivering T is the space of symmetric
tensors in L(V).

There are several ways to go beyond the theory of simple materials. TRUES-
DELL [342, p.33] in one of his lectures had already pointed out two possible ways,
both originally indicated by TOUPIN [338, 339]:7°

In the theory of simple materials, presented in Lecture 1, the stress is as-
sumed to be determined by the history of the deformation gradient. In ori-
ented materials, the body manifold itself is generalized by the addition of di-
rectors at the points, but the point deformation still affects the stress through

76 Often these are also called CAUCHY media.

77 See [345, p.427].

78 The unimodular group comprises all tensors U € L(V) such that |detU| = 1 (see also
Appendix A.3).

79 We cannot resist transcribing TRUESDELL’s comment to the effect that two different non-
simple theories, similar to some extent in their results, were proposed by the same author:
“Since both theories were developed by the same man, we cannot even attribute their di-
verse motivations to socio-economic injustice, wrangling among colleagues, or an unhappy
love affair” [342, p. 34].
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its gradient. A different generalization is equally plausible. Leaving the body
manifold as it is, a set of points only, we may allow the stress to depend
in a more delicate way upon the deformation. NOLL’s general theory of
materials allows all properties of the deformation in a neighborhood of a
point to influence the stress there, but from the outset the stress tensor is as-
sumed symmetric. Mr. TOUPIN has constructed a theory of elastic materials
that may have unsymmetric stress tensors—polar-elastic materials of second
grade 30

The ordered fluids we consider in this book are not simple: they fall within the
first category outlined in TRUESDELL’s excerpt above, though being dissipative, they
are described by neither of TOUPIN’s theories. For them we retain the prescription on
symmetry to be the largest possible, and this explains why we are seldom concerned
explicitly with material symmetry.

Nonsimplicity, at least in our theory, also bears on objectivity, since the notion of
observer is also affected by the extra descriptors of molecular order adopted by the
theory. A rather general attempt to extend the notion of observer to this nonsimple
context was made by CAPRIZ [41, § 3], who introduced a differential manifold Tl to
describe the local order and devised actions on it that represent changes of observers
in the ambient Euclidean space &. Here, since the local molecular order is described
by a list Q of tensors, possibly of different ranks, we need not keep that level of
generality. We only emphasize the role that improper orthogonal transformations R,
which are legitimate in establishing a change of frame as in (2.43a), may play on the
molecular assembly comprising a body-point in the Euclidean space.

Take R = —I and imagine that the molecular interactions are sensitive to the
molecules’ chirality, that is, that two molecules and their inverted images have differ-
ent interaction energies.®! If the macroscopic free-energy functional .Z is to reflect
the molecular origin of the interactions responsible for the ordering of the fluid, it
cannot be invariant under changes of frames involving improper orthogonal transfor-
mations. This will be the basis for the different requirements imposed in Section 3.1.1
below on the elastic free-energy density W for nematic (nonchiral) and cholesteric
(chiral) liquid crystals. As suggested by NOLL [244, p. 14], this assumption can al-
ternatively be given a more traditional interpretation:

Rather, the assumption expresses a certain kind of material symmetry.
Roughly, it states that the director-field interacts isotropically (or hemitrop-
ically in the cholesteric case) with the underlying body. In other words, the
body has no implicit preferred directions in addition to the explicit one given
by the director-field itself.

It remains, however, true that the classical notion of observer needs to be somehow
altered when nonsimple fluids are considered with the meaning used in this book.

80 These are materials whose free energy density is allowed to depend upon both the defor-
mation gradient F and its gradient VF.

81 1t is sufficient to this end that —I not be a member of the molecular symmetry group § in
(1.1). See [137] for a review on molecular chirality and its role in interactions.
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This was already recognized by TRUESDELL [342, p. 117], where he defined in gen-
eral an observer as “a non-sentient invariant.” While geometrically all orthogonal
tensors, proper and not, are allowed to define a change of frame, as soon as body-
points are richer in structure than ordinary points, they become sensitive to chirality.

As will be repeatedly emphasized, our theory requires assigning only two ma-
terial functionals, the free energy .% and the RAYLEIGH functional %, defined as
integrals on the current shape ®; of a subbody ® of the densities { and R. These are
the ultimate elements of our theory. Prescribing them in a frame-indifferent way that
reflects the symmetries of the molecular interactions will be our primary endeavor in
the rest of the book: all our constitutive choices will concern only ¥ and R.

We renounce formalizing here the principle of minimum reduced dissipation for
general ordered fluids, because, as has already transpired, progressing toward higher
generality dims the clarity of our formal statements. The reader can easily imagine
how both (2.229) and (2.231) would be inflated if a general collection Q of order
tensors—Ilike the ones encountered in Chapter 1—were to contribute to the state of
the body and its time derivative Q to the process rate. Accordingly, in such a case
the list d of invariant dissipation measures would also depend linearly on Q, s0 as to
vanish in equilibrium.%?

The essence of our method is clear: it converts the second law of thermodynamics
into a means to determine the relaxation toward equilibrium of a continuous body.
Though its consequences may be different in different contexts, a universal feature is
anticipated by (2.232): the principle invoked here reduces to D’ ALEMBERT’s princi-
ple of virtual power in the absence of dissipation.

2.2.5 Related and Unrelated Variational Principles

Many variational principles have been posited in various attempts to describe the be-
havior of dissipative systems and to provide a rational setting to explain irreversibility
in natural processes. Some have survived, others have been found illusory, all have
been questioned. Here we cannot present a complete account on them, but we feel
the need to mention some other perspectives that would contrast with the one we
have privileged in this book.

As should already be clear to the reader, dissipation cannot be separated from
thermodynamics, even in a purely mechanical theory. Thus, changing our perspective
on dissipation will imply changing, possibly implicitly, our thermodynamic setting.
This we do below by following first the ideas put forward by TRUESDELL (see, for
example, [343] and [342])%® and then contrasting them with those advanced in a
series of papers by ECKART [83, 84, 85, 86]. While the former theory is often called
rational thermodynamics, the latter is traditionally referred to as the thermodynamics

82 An attempt to embrace a broader generality has been made in both [311] and [312]. Here
we prefer a more inductive development for our narrative.

83 These accounts build on earlier work of TRUESDELL [340] and TRUESDELL &
TOUPIN [348, pp. 703-704].
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of irreversible processes.®* In the little room we can afford here, we can recapitulate
in detail neither of these theories; we shall rather show how they can be formulated
in agreement with the basic thermodynamic concepts we have so far established. In
essence, rational thermodynamics is based on the CLAUSIUS—DUHEM inequality,
while the thermodynamics of irreversible processes is based on the GIBBS equation,
both of which we recall below.

CLAUSTIUS-DUHEM Inequality

We have already encountered in (2.197) the integral version of this inequality, whose
local counterpart is obtained by requiring that o; as expressed by (2.205) be positive
semidefinite. In their seminal paper, COLEMAN & NOLL [49] first exploited such
a local formulation of the second law of thermodynamics to enforce restrictions on
the admissible constitutive relations of the theory. Here, mainly following [48], we
apply their general ideas to a larger class of fluids than the one originally considered
in [49]. We shall also see that in the alternative formulation of TRUESDELL [342,
p- 43], the CLAUSIUS—DUHEM inequality becomes a variational inequality, similar
in spirit to the variational approach adopted throughout this book.

Suppose that, being the material that constitutes the body a fluid, the stress tensor
T is a function of the mass density g, the absolute temperature 6, its spatial gradient
V0, and the stretching tensor D, defined by (2.60), which we write in the form

T = (0.0, g.D), (2.233)

where we have set g := V@ as above to abbreviate our notation, and T is a smooth
function subject to the requirement of frame-indifference:

T(0.0.Rg,RDRT) = R¥ (0,6, g, D)R, (2.234)

for all orthogonal tensors R, where use has also been made of the first equation
in (2.199) and (2.109). T is assumed to deliver symmetric tensors, so that (2.233)
defines a special class of simple fluids, which we call perfect.

It is expressive to rewrite (2.233) as follows:

T=T,+T®, (2.235)
where Ty := T(p, 0,0, 0) is the equilibrium stress and
T® = ©(0,6,2.D) := T(0.0.2.D) — T(0.6.0.,0) (2.236)

is the extra stress.

84 For acronym addicts, we note that the former theory is often abbreviated as RT, while
the latter is referred to as TIP (see, for example, [227]). Sometimes, to distinguish TIP
from some of its more recent formulations, it is referred to as CIT, meaning “classical
irreversible thermodynamics,” while the recent extensions are called EIT, where E stands
for “extended” (see, for example, [154]).
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It follows from (2.234) that
T(0,6,0,0) = RT(0.6,0,00R" VR e O(3),

which in turn implies that the equilibrium stress Ty is a spherical tensor, which we
write as

To(0.6) = —pol(e. 0L, (2.237)

where pg is the equilibrium pressure.
We also assume that both the free-energy density ¥ and the entropy density 7 are
given by scalar functions in the same variables entering (2.233):

Vv =W(,0,g,D) and 15 =H(p,H0,g,D). (2.238)

Since both ¥ and H are required to be frame-indifferent, by the representation theo-
rem in [357] (see, in particular, the table on p. 196), they must both be functions of
the following list of scalar invariants:

(0.0.g-g.2-Dg.g-D*g.trD, trD? trD3). (2.239)

Similarly, the heat flux ¢ is assumed to given in terms of a smooth constitutive func-
tion q as
q =q(0.0.2.D). (2.240)

It follows from the requirement that ¢ be a frame-indifferent vector that the function
g must obey the property

q(0.60.Rg.RDR") = Rq(0.6.g.D) VYR eO0@3). (2.241)

By the representation theorem in [358] for isotropic vector-valued functions, (2.241)
translates into the explicit formula

q(0.6.2.D) = (g0l + ¢1D + ¢2D?)g, (2.242)

where g, ¢1, and ¢, are scalar isotropic functions of (g, 8, g, D), reducible to func-
tions of the invariants in (2.239).

In requiring ¥, ¥, H, and g to depend on the same list of variables (p, 6, g, D),
we have adhered to TRUESDELL’s principle of equipresence:

A quantity present as an independent variable in one constitutive equation
is so present in all, to the extent that its appearance is not forbidden by the
general laws of physics or rules of invariance®> (TRUESDELL [342, p. 42]).

85 In addition, TRUESDELL [342, p.43] remarks that “[The principle of equipresence] may
be regarded as a natural extension of OCKHAM’s razor as restated by NEWTON: ‘We are to
admit no more causes of natural things than such as are both true and sufficient to explain
their appearances, for nature is simple and affects not the pomp of superfluous causes.””
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By inserting (2.235), (2.237), and (2.238) into (2.205), we readily give fo; the
following form:

v, BlI’- o w .
do D

QO‘iZ—potrD—i—T(e)-D—Q[ 9+— g+-—-D

which, since div v = tr D, the continuity equation (2.108) transforms into

Do o v . 112 1/
== Al ) 224
bo (g Qag)g Q(ae )9 Q[ag £+ (2249

+ﬂ¢D—1¢g (2.244)
548 .

It is in the spirit of rational thermodynamics that we obtain restrictions for the
constitutive functions ¥, ¥, H, and q, in addition to those already imposed by frame-
indifference, by requiring that the entropy production oj in (2.243) be non-negative
for all admissible processes. These latter include all processes that can be merely
conceived, though they would require assigning arbitrary body forces b and heat
supplies o in (2.127) and (2.195) to be compatible with the balance equations of
the theory. Here, as in the rest of this book, instead of invoking processes whose
existence could easily be questioned, we prefer interpreting the requirement that

fo; 20 (2.245)

as a variational inequality valid for all virtual rates. This is not unprecedented, as we
learn from the following excerpt from TRUESDELL’s booklet [342, p. 38]:

Since the body force b and the heat absorption ¢ [our o] here are regarded
as assignable arbitrarily in principle, while in any particular application they
will be specified uniquely as a part of the definition of the problem, we nay
express COLEMAN & NOLL’s basic assumption in the following alternative
form, using the classical concept of “virtual” changes: Every constitutive
equation must be such as to satisfy both the principle of material frame-
indifference and the Clausius—Duhem inequality for all virtual histories of
deformation and temperature.

In other words, this interpretation makes the second law of thermodynamics valid for
both real and virtual processes. In our setting, we thus regard the rates o, 9 g, and D
in (2.243) as virtual, and so arbitrary, irrespective of the restrictions dictated by the
balance equations, including the mass continuity equation (2.108), which prescribes
the real ¢ in term of ¢ and D. While the rates g, 6, g, and D are regarded as virtual,
and so freely alterable, the fields (o, 8, g, D) are frozen in their real value.

With this remark in mind, we easily see that all terms in (2.243) that are linear in
the virtual rates could jeopardize the sign of 6o; unless they vanish identically. Since
this must be the case for all possible values of the frozen fields (o, 8, g, D), which
may represent arbitrary initial states, we conclude that ¥ can depend only on ¢ and
6. Moreover, the equilibrium pressure is given by
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v
po=0"—> (2.246)
Q
and the entropy function H by
v
H=——. 2.247
30 ( )

While the former equation is often called the thermal equation of state, the latter is
also called the caloric equation of state.3

We learn from these equations that the free energy ¥ and the entropy H are not
affected by the irreversibility of the processes that the fluid may undergo: they are
independent of both g and D and deliver equations of state formally identical to those
valid at equilibrium. All signs of irreversibility are confined to the residual form of
(2.243) and (2.245) after use has been made in it of (2.246) and (2.247):

© 1
TO.D—2g-g 2 0. (2.248)

Correspondingly, the entropy production o; ultimately reads as

o = é (T@ .D— éq -g) ) (2.249)
Since T® and ¢ depend through (2.236) and (2.240) on (p, 6, g, D), (2.248) is the
dissipation inequality that must hold for all choices of these fields, since they define
initial states that can be selected arbitrarily.

In general, since both T® and ¢ depend on both g and D, (2.248) does not split
into two independent inequalities, one thermal and the other mechanical in nature.
However, it follows from (2.248) that for g = 0,

@ (0,6,0,D)-D = 0, (2.250)

which, as in [48], we call the mechanical dissipation inequality. Likewise, for D = 0,
(2.248) becomes

q(0,0,2,0)-g =0, (2.251)

which was also called in [48] the heat conduction inequality. By (2.235) and (2.237)
we can define the mean pressure®’ as

D= —gtrszO—gtrT , (2.252)

which shows how dissipation affects the pressure out of equilibrium.

86 Strictly speaking, the caloric equation of state is the equation that delivers the internal
energy density v in terms of (g, 6). Clearly, once it is proved that ¥ is a function of (g, 6)
only, by (2.204), (2.247) is equivalent to such an equation.

87 This is the name given to p in (2.252) by SERRIN [297, p. 234] (see also [348, § 204] and
[345, p. 72]). Another name often used in the literature for it is the dynamic pressure (see,
for example, [229, p. 181]).
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The general dissipation inequality (2.248) restricts the choices for the constitu-
tive functions © and g that make them compatible with the CLAUSIUS—DUHEM
inequality in the variational interpretation given here. To illustrate these restrictions
in a classical case, we follow [48] in requiring that both T© and g be linear in the
pair (g, D). It easily follows from (2.236), (2.239), and (2.242) that

T© = A (rD)I + 21D, (2.253a)
q=—kKg, (2.253b)

where A, u, and « are functions of (o, #), the former two representing the viscosity
coefficients of the fluid and the latter its heat conductivity.88 While (2.253a) is the
constitutive law characteristic of NAVIER-STOKES fluids, (2.253b) is FOURIER’S
law of heat conduction for all isotropic media. By (2.253), regarding g and D as
independent variables, we transform (2.248) into the pair of inequalities (2.250) and
(2.251), whence we conclude that

.’a)t(trD)2 + 2,utrD2 =20 and «xg-g =0,

for all symmetric tensors D and all vectors g. While the latter inequality readily
reduces to
k=0, (2.254)

a classical argument® shows that the former inequality is equivalent to
nwz0, 31+2u=0. (2.255)

These very inequalities will guarantee in Section 2.3.2 that the RAYLEIGH functional
for a linearly viscous fluid is positive semidefinite, whereas (2.254) will coincide
with the extra condition that in Section 2.3.3 guarantees that the dissipation remains
positive semidefinite also in the presence of heat conduction.

In Section 2.3 we shall start afresh, considering the station of both inviscid
and viscous fluids in the general theory developed in this book. It will there be-
come clearer what marks the difference between our method and that based on
the CLAUSIUS—DUHEM inequality recalled above. In essence, the RAYLEIGH func-
tional Z is our major constitutive ingredient: requiring it to be a quadratic, posi-
tive semidefinite form in the dissipative measures is an assumption that embodies
the second law of thermodynamics. The principle of minimum reduced dissipation,
which also requires that the free-energy functional .# be constitutively assigned, will
then determine both the evolution equations and the subsidiary constitutive relations
compatible with that law. By necessity, the evolution equations determined from the
principle of minimum reduced dissipation obey the CLAUSIUS—DUHEM inequality
of rational thermodynamics. It will be of comfort to realize in Section 2.3.2 that we
easily recover in our setting the conclusions reached here for a linearly viscous fluid
conducting heat.

88 Interesting constitutive equations for T©@ and q different from (2.253) are derived in [48]
by requiring that ¥ be linear in D for fixed g and that q be linear in g for fixed D.
89 Which can be found, for example, in [347, p.237].
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Being bound to linearly viscous effects is the only real limitation of our method:
we can use it to explore new territories of ordered, nonsimple fluids, but nonlinear
irreversibility remains excluded from our theory, as it was from ECKART’s, which
we now outline.

G1BBS Equation

We showed above that, according to rational thermodynamics, ¥ complies with the
CLAUSIUS-DUHEM variational inequality, provided it is a function of (g, #) only.
Thus, it follows from (2.204) that, in a process, the time rate of the internal energy
density v is given by

. . oY, o : .
v=y +0n+0n=—o+|—=+H)O+0n,
do 20

and hence, by (2.246) and (2.247), since 6 > 0,

.1, .
=3 (v - ?Q) : (2.256)

where pg is the equilibrium pressure. Equation (2.256) is called the GIBBS equa-
tion.”

It is remarkable that the entropy growth predicted by (2.256) is just the same as
that valid at equilibrium, since it requires only the equilibrium thermal and caloric
equations of state to be assigned. This amply justifies calling (2.256) the local equi-
librium hypothesis, as has become customary in the thermodynamics of irreversible
Processes,’!, where (2.256) is indeed assumed at the start and not derived as a conse-
quence of the CLAUSTUS—DUHEM inequality, as we have done here. ECKART [83],
who is rightly regarded as the founder of TIP”? actually derived (2.256) from
FOURIER’s law of conduction (2.253b), which he posited for a class of fluids and
employed as a KELVIN hypothesis to show that there is a unique definition (to within
sign and unit) for the absolute temperature. In contemporary TIP, also called EIP
in [154], the GIBBS equation is simply assumed to hold, with no detriment to the
original derivation of ECKART, which applies to a special case.

Here, mainly following the work of ECKART [83], we show how for a vis-
cous fluid conducting heat the GIBBS equation implies the validity of the reduced
CLAUSIUS—-DUHEM inequality (2.248). For definiteness, we assume again that T is

90 According to MULLER [227, p. 691, this equation was actually written down and exploited
by CLAUSIUS, though GIBBS extended its validity to mixtures with the changes that were
in order (see also [154, p. 15]).

91 See, for example, [154, p. 14] or [229, p. 180] where it is also called the principle of local
equilibrium.

92 As MULLER [227, p.246] remarks, “Eckart never received much credit for his work, be-
cause shortly after his publication Josef Meixner (1908—1994) published a very similar
theory [218], and so did Ilya Prigogine (1917-[2003]) [276]. In contrast to Eckart the latter
authors stayed in the field and monopolized the subject, as it were.”
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as in (2.233) and (2.235) and that ¢ is represented as in (2.240). We also assume that
the first law of thermodynamics is valid in the local form (2.201), where the balance
of both linear and rotational momenta expressed by equations (2.127) and (2.134)
are already implicit. By making use in (2.201) of (2.256), (2.235), and (2.237), we
easily obtain that

00n + @Q' = —potrD +T® .D —divg + o,
o

which, by the continuity equation (2.108), reduces to (2.202), provided we write
there o; as in (2.249). Assuming, as did ECKART in [83], that T® s linearly related
to D and that ¢ is linearly related to g, one then recovers (2.253a) and (2.253b), and
with them also the classical inequalities (2.254) and (2.255).

Since upon integrating over the present shape ®; of an arbitrary subbody @ of ®,
equation (2.202) becomes (2.198), and thus it is in turn equivalent to (2.197) when-
ever o; is required to be positive semidefinite as in (2.245). In particular, this shows
that for simple viscous fluids the hypothesis of local thermodynamical equilibrium,
embodied by the GIBBS equation (2.256), implies that the entropy flux p is related
to the heat flux ¢ through p = %, as is customarily assumed in rational thermody-
namics.

Many disputes have opposed in past years the adherents of the theories of rational
thermodynamics and the thermodynamics of irreversible processes, though, apart
from a different care for rigor,”> they were in essence less dissimilar than they might
have appeared. MULLER’s [227, p. 250] judgment is perhaps sufficiently objective to
be shared:

If the truth were known and admitted, rational thermodynamics is not at all
different from TIP. Both theories employ the Clausius—Duhem inequality
and the Gibbs equation. It is true that arguments are shuffled around some:
The Curie principle of TIP is replaced by the principle of material frame
indifference, and the Gibbs equation of rational thermodynamics is a result,
whereas in TIP it is the basic hypothesis. With the Clausius—Duhem inequal-
ity it is the other way round. When applied to linear viscous, heat conducting
fluids, both theories lead to the same results. This is a good thing for both,
because the field equations for such fluids were perfectly well known before
either theory was formulated, and they were known to be reliable.

93 Exemplary is in this respect TRUESDELL’s fustigation of the infamous CURIE principle,
which according to PRIGOGINE & MAZUR [278], who at first did not even attribute it to
CURIE, amounts to “all coupling between quantities of different tensorial character being
forbidden.” This requirement is indirectly referred to in [342] as “a non-existent theorem of
algebra” (see also the first footnote on p. 138 of [343]). It is completely deprived of the rank
of principle by representation formulas such as (2.239) and (2.242), which can actually be
proved.
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Unrelated Principles

As will be shown in the following section, the principle of minimum reduced dis-
sipation that we adopt in this book is also capable of reproducing the correct field
equations for linearly viscous fluids conducting heat. Its major virtue is, however, that
of deriving from two potentials, the free energy .# and the RAYLEIGH functional %,
both field equations and auxiliary constitutive relations for nonsimple, ordered fluids.

Many principles have appeared in the literature that might easily be confused
with this. Here we mention a few that may appear to be the closest to it, though they
are indeed not. First in this list comes the principle of minimum entropy production
generally attributed to PRIGOGINE [277];>* it requires the total entropy production,
which in our language would be the integral of o; over the present shape 8, of the
body ®, to be minimum, albeit for special processes. This principle has been subject
to rather severe criticism, and it was found that it would contradict the first law of
thermodynamics, even for stationary processes. In particular, it was shown in [6] and
reprised in MULLER [229, p. 182] that for a fluid obeying FOURIER’s law (2.253b),
at rest between two parallel walls kept at different temperatures, the requirement that
the total entropy production be minimum would dictate an equation for the equilib-
rium distribution of temperature 6 that agrees with the classical one obtained from
the local form of the balance equation of energy, only for a thermal conductivity k
proportional to the reciprocal of #2, which has no physical motivation.”

Second is the case of the minimax principle for the entropy production density o;.
This was proposed by STRUCHTRUP & WEISS [322] to enforce appropriate bound-
ary conditions for higher moments in the theory of extended thermodynamics, which
to describe a fluid, employs many other fields besides the density p, the tempera-
ture 0, the equilibrium pressure py, and the velocity v. Among the additional fields
are the extra stress T(®), the heat flux ¢, and other quantities with no direct physical
meaning, the higher moments. In this theory, all quantities, be they directly inter-
pretable on physical grounds or not, are not specified by constitutive relations, but
are independent fields obeying a system of balance laws and an entropy inequal-
ity.”® The minimax principle for the entropy production density prescribes that the
boundary conditions for the unphysical moments be determined so as to minimize
the maximum of o; over the body’s shape. It was shown in [322] how such a strategy
could be successful in making the field equations determinate in a simple stationary
one-dimensional case. It was, however, questioned in [45] by showing how in a dy-
namical, two-dimensional case the minimax principle would indeed select an unsta-
ble solution of the equations for a linearly viscous fluid conducting heat.®” A detailed

94 See also the paper [120] and the book [121].

95 Similar results were also proved in [262] and [147].

96 The reader is referred to the monograph by MULLER & RUGGERI [228] as well as to
[154, Part I] and [227, Chapter 8] for accounts different in length and depth on this class of
thermodynamic theories, which we cannot describe here.

97 In such a case, strictly speaking, the minimax principle should not apply, since higher
moments are not needed. However, its inapplicability to such a classical case casts serious
doubts on its validity.
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account on the attempts made to overcome this and similar difficulties related to the
minimax entropy production principle can be found in [154, pp.213-215]. What-
ever may be the reader’s view on the success of these attempts, in one basic respect
the minimax entropy production principle differs from the principle of minimum re-
duced dissipation, in that it is intended to find boundary conditions and not balance
equations.

The last principle we quote that might be thought of as related to the principle of
minimum reduced dissipation, whereas it is not, is not a purely macroscopic princi-
ple. It is ONSAGER’s principle of microscopic reversibility. In what were essentially
papers on statistical mechanics, ONSAGER [256, 257] explored the consequences of
a statistical formulation of this microscopic principle®® on the macroscopic laws of
irreversible approach to equilibrium of a thermodynamic system. ONSAGER’s ideas
were partly reprised and partly criticized by [44], whose treatment was more rigor-
ous than ONSAGER’s. Though no objection could be raised against the reversibil-
ity of microscopic motions, its reverberations on a macroscopic scale are invariably
the object of an assumption, in one fashion or another. In ONSAGER’s case, such
an assumption concerns the mean regression of fluctuations, which is assumed to
obey the same macroscopic law of decay obtained by averaging out at the outset all
stochastic agencies. Though this can be justified” for the fluctuations of Brownian
particles, it remains a true assumption in all other contexts, as clearly recognized by
CASIMIR [44].190

This, however, is not the only assumption: the thermodynamic variables q =
(91, --,qm) fluctuating about zero in R™ are uniform in space, and they obey
macroscopic decay laws that are assumed to be linear. Letting these latter be rep-
resented as

q = Mq, (2.257)

where M is a matrix in R”*™_ constant in time, and letting the entropy . of the
system be defined (to within an additive constant) by

1
S = Eq- Gq, (2.258)

where G is a symmetric, negative definite matrix in R”™>*™, constant in time, ON-
SAGER [256, 257] and CASIMIR [44] concluded that the matrix L := MG~! must be
symmetric. Correspondingly, the equations

Li_,'ZLji, for i,j:l,...,m,
are universally known as ONSAGER—CASIMIR reciprocal relations.

98 Simply stating that paths described by microscopic particles are inverted under time rever-
sal, nearly a truism.
99 With the reservations pointed out in [227, p. 281].

100 Who writes that “The acceptance of Eq. (15) [the formal definition of the regression hy-
pothesis, too technical to be reproduced here] is really a new hypothesis, and although the
same hypothesis is made in the theory of Brownian motion, we do not think that it can
rigorously be proved without referring in some way or another to kinetic theory.”
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A plausibility argument, though not a proof, for the symmetry of L can also be
found at the phenomenological level. By differentiating with respect to time both
sides of equation (2.258), we easily see that the entropy time rate .’ is given by

& =Gq-G= Gq-Mq=q-GMq. (2.259)

where use has been made of (2.257) and the symmetry of G. Requiring the matrix
A := GM to be symmetric and positive semidefinite, we guarantee that .’ = 0 along
all solutions of (2.257). Since L = G"'AG™!, then also L turns out to be symmetric
and positive semidefinite.

The connection between the symmetry of L and a principle of minimal dissipation
can be made by defining with COLEMAN & TRUESDELL [50] a RAYLEIGH function

1
Z# = —q-Rq,
2q q

where R is a symmetric matrix in R”*™_ and requiring that the function S — R
be a maximum under all variations §q, while q is kept fixed. By (2.259), we easily
compute the variation )

8 — Z) = (Gg — RQ) - 89,

which vanishes identically for all §q whenever
Rg = Gq. (2.260)

This is a macroscopic evolution equation for g, which can be given the form (2.257)
only if R is invertible. In such a case, we can set M = R~1G, whence it follows that
L = R™!, which is clearly symmetric. For R just symmetric and positive semidefi-
nite, inserting (2.260) into (2.259), we arrive at

S =2,

whence we see that requiring Z to be positive semidefinite amounts to ensuring that
. grows along all solutions of (2.260).

As remarked in [50], all the above phenomenological motivations for the sym-
metry of the matrix L, as plausible as they may be, are not conclusive. Its proof
remains rooted in statistical mechanics and rests upon the major hypothesis on the
mean regression of fluctuation, which is by no means a theorem.!?!

101 The situation is iconically described by MULLER [227, p. 282]: “Physicists have a way to
quickly become very defensive on Onsager when challenged, probably because of the pre-
cariousness of the proof of the theorem, or because they do not understand it, or because
Onsager has been canonized with the Nobel prize in 1968 ... There is some uneasiness,
however.” This is apparently also felt by DE GROOT & MAZUR [62, p. 102], who qualify
ONSAGER’s hypothesis as “not altogether unreasonable.” Just as mere fact, we reproduce
here the motivation for ONSAGER’s Nobel prize: “For the discovery of the reciprocal re-
lations bearing his name, which are fundamental for the thermodynamics of irreversible
processes.”
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2.3 Isotropic Perfect Fluids

This book is concerned only with fluids. We find it instructive to start our illustration
of the principle of minimum reduced dissipation from the simplest dissipative fluid,
that is, the linearly viscous fluid of the NAVIER—STOKES theory. Actually, in pro-
gressing toward increasing degrees of complexity, we start from the inviscid limit,
where the principle of minimum reduced dissipation is nothing but D’ ALEMBERT’S
principle. We also do so to show the ability of the principle employed here to identify
the balance equations of the theory, even in the classical case. To this end, we shall
not assume as in Axiom 2.3 that the net working #© is frame-indifferent: this will
rather follow as a consequence of the balance equations.

Throughout this section an inertial frame is assumed to be given, to which the
motion of the body ® is referred. Moreover, all constitutive laws we shall consider are
of a local nature, both in space and time: 192 in particular, no hereditary phenomena
will be considered either in this section or in the subsequent chapters, where the
inner degrees of freedom that make fluids ordered will also be considered. While,
as special simple fluids, '3 the fluids considered in this section are isotropic,104 the
ordered fluids studied below will not deserve this name. We shall, however, still call
them perfect, since only local measures of either distortion or dissipation will be
allowed in ¥ or R.

2.3.1 Inviscid Fluids

An inviscid fluid by its very nature does not involve any dissipation. Its motion is
determined entirely by the balance of internal and external powers.

Compressible Fluids

The free energy stored in an arbitrary part ® of a body ® in the motion yx is given by
the shape functional
F@.0= [ avav.
®;
where the free energy density per unit mass v is a function of only the mass density
o: ¥ = ¥(p). Likewise, the kinetic energy % is defined in the classical form

1

H@x)=3 [ evevav.
2 Je,

The power expended by the actions applied by the external world on the present

shape ®; of the subbody ® has two contributions. One stems from external body

102 A5 on page 141, we call perfect the fluids that comply with such a restrictive assumption.

103 Classical simple fluids have been defined in Section 2.2.4 above.

104 Since their symmetry group G, being the full unimodular group U(3), contains O(3) (see
[349, p.243].
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forces with volume density b and the other from contact forces, exerted on ®; by the
material in B, \ ®; via a surface traction ¢, which is itself regarded as a functional of
the reduced boundary 9*®; of ®;. It is thus

”//(a)((Pt,x)=/ b-vdV+/ t-vdA. (2.261)
® * @

Since no thermal effect is considered at first, the total working 7 in (2.210) can
be written as'®

W =9 _(F+x). (2.262)

Clearly, & and G in (2.230) can be set equal to zero, while b and ¢ shall contribute
to B and T, respectively. To determine these latter in full, we need to compute (% +
). By the transport theorem in (2.111), we obtain that

?(@t,)()—i—%}((}),,x):/@ Q(lﬁ—i—i)'v)dV:/@ o(W'o+v-v)dV

= / o(v-v— ¥ divv)dV. (2.263)
®;

Here, we have denoted by w the total time derivative of ¥ and by ¥’ the derivative
of ¥ with respect to its argument. The second equality follows from conservation of
mass (2.108).

The first term in the integrand of (2.263) is already in the form of a generalized
force ov, here an inertial force, times the velocity v. To compute the variation of the
second term, we first have to cast it in the proper form by applying the divergence
theorem. With div(0?¥'v) = 0?¥' divv + v - V(0?¥’), we find that

(F+X) = /(P [0V - v + v - V(0*¥) — div(0®¥'v)]|dV

=/ [Qi)—i—V(gle/’)]-vdV—/ o*W'v - vdA, (2.264)
®; 0* ®;

where v is the outer unit normal to 0*®, Thus, combining (2.261) and (2.264), we
identify B and T in (2.230) as

B =b—90v—Vp, (2.265a)
T =t+ pv, (2.265b)

where p is defined by
p =0V, (2.266)

which is the isothermal counterpart of (2.246). By the arbitrariness of the shape &
and the continuity of the integrands B and T in (2.265), for 6% in (2.231) to van-
ish both B and T have to vanish identically. From B = 0, we obtain the balance
equation

105 Since both § = 0 and V6 = 0, the thermal production of energy .7 vanishes identically.
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0v=-Vp+b, (2.267)

and from T' = 0 we obtain the traction condition
t =—pv. (2.268)

Because in this derivation the shape ®; is an arbitrary part of the present shape B,
of the body ®, both equations hold everywhere in the interior of 8;, and the trac-
tion condition is valid also on 3*®;. If no kinematic constraint is required on a part
of 0*®;, there the traction ¢, still given by (2.268), must be provided by the exter-
nal world. Thus, (2.268) becomes the natural boundary condition for the dynamic
equation (2.267).

Equation (2.268) shows that the traction ¢ on 0*®; is a function of the outer unit
normal v to 0*®, and is indeed a linear function. We can write it as ¢ = Tv, see
equation (2.125), with the stress tensor T simply a multiple of the identity, T = — plI.
Thus the scalar in (2.266) can be interpreted as the pressure of the fluid. By letting
Y be given by a function ¥ of the specific volume 1/, so that ¥ (p) =: lf’(l/Q), we
easily give p in (2.266) the more familiar form

p=-v.

In (2.266), the pressure is a function of the density alone.
The balance equation (2.267) can thus be written in the form of CAUCHY’s first
law of motion as
ov =divT +b=—-Vp+b. (2.269)

Equation (2.269) together with the continuity equation (2.108) forms the standard
EULER equations for an inviscid isotropic elastic fluid.!%

Incompressible Fluids

In the case of an incompressible fluid there is no elastic energy associated with the
density, so that .# = 0 and only the kinetic energy % survives in (2.262). However,
in an incompressible fluid div v = 0, as required by the continuity equation (2.108),
and to enforce this constraint we introduce a space-dependent LAGRANGE multiplier
p and add the power # ) of the constraint,

W@, x) = / pdivedV, (2.270)

®;

to the total working %/, precisely as if it were expended by appropriate agencies
reacting against the internal constraint. That is, % in (2.262) becomes

W=y _x,

106 gee, for example, [297] and [347, Chapter 9].
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which we now need to vary according to the prescription in (2.231). To compute the
variation of the reactive working #(®, we make use of the divergence theorem to
write it in the form

W(C)((P,,)()zf pdivvde—/ Vp-vdV~|—/ pv-vdA. (2.271)
®; ®; *®;

Interpreting the terms Vp and pv as reactive forces, we arrive at the same gen-
eralized forces B and T as in (2.265) and at the same balance equation (2.269)
and boundary condition (2.268), which again allow us to write the stress tensor as
T = —pl. While in the case of a compressible fluid, the pressure p was given as an
explicit function of the density, here it is a LAGRANGE multiplier that is determined
by the equation div v = 0, which has to be solved along with (2.269).

Synopsis

In both cases we have ultimately written the total working %, possibly including the
reactive power # © expended by internal constraints, in the form (2.230),

r@.n= [

B-vdV+/ T -vdA =0, (2.272)
®;

* @
with generalized volume and surface forces B and T. Computing the variation of %
in (2.272) as prescribed by (2.231), we readily arrived at the balance equation

B = 0 in (Pt
and the traction condition
T =0 ond*®;.

In both cases, the generalized surface force T took the specific form
T =t—Tv,

which revealed the character of the shape functional hidden in T and allowed us to
identify the stress tensor T.

While the generalized forces B and T here are simply zero, we will see in the
following subsection how for a viscous fluid they are balanced by corresponding
frictional volume and surface forces.

2.3.2 Viscous Fluids

In a viscous fluid undergoing an isothermal process, a part of the net working V&S,
is dissipated, and in general # () —.% = 0, as required by (2.206) with .7 = 0,
which here reads

2% =W~ F z0.
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We look for the most general RAYLEIGH functional % that is frame indifferent and
quadratic in the velocity v. Since v itself is not frame indifferent, we take % in the
form (2.225) with density R as a function of the stretching tensor D defined in (2.60)
as

D= %[Vv + (Vo).

which is the simplest indifferent measure of dissipation in this context. Formally, the
dissipation list d of Section 2.2.3 here consists only of D. The RAYLEIGH functional
is then given by
w00 = [ ReDIaV.
®;
where the mass density o enters the dissipation density R as a parameter, not as a
dissipation measure.

Before considering specific forms of R(g,D), we derive some general conse-
quences. By (2.232), the principle of minimum reduced dissipation requires the va-
lidity of the identity

8K = 8W .

Finding the variation of 6% is rather straightforward, because it is an unconstrained
variation. We write formally

oR
= | —.§v
N 6, 3V0 sVodV

OR oR
= — div | — -5vdV~|—/ (—v)-SvdA,
/(;)t (8VU) *®; BVv

where we have used the divergence theorem together with the identity

(2.273)

6Vv = Vév.

The derivative of R with respect to Vv can be found by the chain rule; it is simply

oR oR 0D oR
_— = — 0 — = —,
Vo D  oVw aD

Here, we have used the symbol o to denote a specific composition: in Cartesian
components,

(B_RO 8D) _ OR 0Dy
D Vv ), 0Dy 0vi ;-
From the definition of D it follows that

9Dy

1
= —(8kib1; + 8k;i61i).
avi,j 2( kiOlj kj ll)
This fourth-rank tensor, when operating on a second-rank tensor, simply projects
out the symmetric part of that tensor, but the derivative of R with respect to the
symmetric tensor D is already intrinsically symmetric.
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Using (2.272) and (2.273) in (2.232) now leads to the two equations

. [OR .
B = —div (E) in @, (2.274a)
oR
T = Ev on 0*®;, (2.274b)

with B and T as in (2.265).

Compressible Fluids

Like any second-rank tensor, D has three basic invariants,'"” tr D, trD?, and tr D3.
Since the last invariant is already cubic in the velocity, the most general quadratic
RAYLEIGH density R is

1
R(0.D) = ptrD? + E)t(trD)z, (2.275)

with the two viscosity coefficients p and A depending only on g in the isothermal
case. It is a classical algebraic result'®® that R in (2.275) is positive semidefinite
for all symmetric tensors D whenever the viscosity coefficients obey the inequalities
already encountered in (2.255):

nw=0, 3A+42n=0.
For R as in (2.275),

oR oR
Ve — D - 2uD + A(tr D), (2.276)

so that

div BBV% = pu(Av + Vdive) + AVdive = pAv + (A + p)Vdive, (2.277)
where Av is the Laplacian of the velocity field, a vector field whose Cartesian com-
ponents are (Av); = v; ;;. Here, we have assumed that .« and A are simply constants.
Allowing them to be space-dependent through the mass density ¢ would result in two
additional terms, DV and div v VA, where Viu = u/'Voand A = 'V, 1/ and )/
denoting the derivatives with respect to .

Using (2.275) in (2.274) and (2.277) in (2.274b) with B and T read off from
(2.265) yields

ov=—-Vp+b+pudv+ A+ pn)Vdivo in @ (2.278)

107 An invariant is a frame-indifferent scalar. The polynomial invariants of a tensor D are the
basic constituents of any analytic scalar function of D.
108 gee, for example, [297, p. 237].
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and
t =[—p +2uD + A(div v)I]v on 0*®;,

where the pressure p is the same as in (2.266). The traction condition once again
yields the stress tensor T such that Ty = ¢, and we can write the equations of
motion in the standard form (2.127),

ov=divT + b (2.279)
with
T = [—p + A(divv)]T + 2uD. (2.280)
Often the stress tensor in (2.280) is written in the form
T=—pl+TO,
where p is as in (2.266) and
T® := A(divv)I + 2uD (2.281)

is the extra stress defined in complete agreement with (2.235) and (2.253a). Clearly,
T© possesses an isotropic component —z I, where

2
w :=—(A+§/L)divv

is a dynamic pressure of viscous origin. If, as in (2.252), we call p := p + @ the
mean pressure, p can then be designated as the equilibrium pressure, in analogy with
the pressure po defined in (2.237) and given by (2.246).

In conclusion, (2.278) is the classical NAVIER—STOKES equation for the motion
of compressible viscous fluids, and (2.281) is the corresponding constitutive law for
viscous stresses already encountered in (2.253a).

Incompressible Fluids

Here tr D = divv = 0, and so the dissipation density is simply

R(D) = ptrD?,
Consequently,
OR  OR 2uD
ove b "
and

oR
div — = u(Av + Vdivv) = nAv.
oV

With B and T taken from (2.265) we obtain

ov=—-Vp+b+ uAv in®
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and
t =Q2uD— phy ond*®.

As before, the equation of motion is the standard linear momentum balance (2.279),
but with the stress tensor now given by

T =—pIl+2uD,

where the pressure field p needs to be determined by enforcing the incompressibility
constraint div v = 0 on the solutions of the equation of motion.

2.3.3 Heat Conduction

We now suppose that the temperature 0 of a viscous fluid is neither uniform in space
nor constant in time and thus contributes to the dissipation of the net working. For
simplicity, we shall consider only the case of a compressible fluid, since the con-
straint of incompressibility would be treated precisely in the way already illustrated
for isothermal processes.

The RAYLEIGH density R must be a quadratic positive semidefinite scalar func-
tion of both D and V#. Though mixed terms involving both D and 6, such as
V6 -DVE, would be allowed in R by mere frame-indifference, they are ruled out by
the assumption that R is a quadratic form in the collection d of all dissipation mea-
sures, which here comprises D and V6. Thus, to the dissipation density in (2.275)
we may add only a single term, quadratic in V0:

1 1
RQ;DJ%V@)=;LUD24—§Aﬁﬂm2+—§ﬂV9F, (2.282)

where now u, A, and i are material coefficients depending on both the temperature
6 and the mass density o, which enter (2.282) as parameters, not as dissipation mea-
sures. Since D and V6 are independent fields, R in (2.282) is positive semidefinite
whenever both inequalities in (2.255) are satisfied and

k= 0. (2.283)

Since now neither 6 nor V6 vanishes identically, the total working % must be
written as in (2.210) with a nonvanishing thermal production .7 as in (2.209), where
the entropy density 7 is a field on the collection of shapes C, induced by the motion
x by the constitutive law

n = H(0, o). (2.284)

Likewise, the free-energy density per unit mass ¥ is now the field
Y =¥(0.0).
Thus, by (2.208), Z acquires the form

. v . '4
F = / 0 (8—9 — Qa— div v) dv, (2.285)
® a0 do
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which differs in part from (2.263) because ¥ now also depends on 6. With the aid of
(2.284), use of (2.285) and (2.209) in (2.230) reduces #  to the form (2.230) with

7= o+ ¥ (2.286a)
== 3 ) :

1
G=-1q. (2.286b)
B=b—oo—Vp, (2.286¢)
T =t+pv, (2.286d)

where p, which has still the meaning of a thermodynamic equilibrium pressure, is
now given by

p=0——, (2.287)

as was py in (2.246). Comparing (2.286¢) and (2.286d) with (2.265a) and (2.265b),
respectively, we see that they are formally identical, differing only in the expression
for the pressure p, which is given by (2.266) for the latter and by (2.287) for the
former.

With the aid of equations (2.286), §% is readily obtained from (2.231) for all
shapes ®;. To enforce the principle of minimum reduced dissipation in the form
(2.232), we need only compute §Z. By (2.282), the form of §% appropriate here
differs from that in (2.273) with (2.276) by the addition of the integral

/ kVO.-5gdV. (2.288)
®;

Putting together (2.286), (2.288), and (2.273) in (2.232), and invoking both the arbi-
trariness and the independence of the variation fields §6 and §v, we easily conclude
that & = 0, which by (2.286a) implies again (2.220), and that the balance equation

(2.279) still holds with the stress tensor as in (2.280), where now p is as in (2.287).
Furthermore, for (2.232) to be valid, the following condition must also hold:

1
/ (;zve n —q) SgdV =0 V&,
® 6

where the variation §g is subject to curl §g = 0. To account for this constraint, we
set§g = V(8y), for a smooth scalar field y, and by applying the divergence theorem,
we write (2.288) in the equivalent form

1 1
/ (EV@ + —q) -véy dA —/ div (/ZVG + —q) SydV =0,
@, 6 ® 0

which is valid for all shapes , provided that

1 1
div (EVG + gq) =0 in® and (EVQ + gq) -v=0 ond*@.
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By the arbitrariness of 0*®; (that is, the arbitrariness of its normal v and any point
in B;), we conclude that
q = —0kVo, (2.289)

which is the same as FOURIER’s law of heat conduction in (2.253b), provided that
Ok, which is not negative by (2.283), is interpreted as the heat conductivity of the
fluid:
Kk = Ok.
The time evolution of the temperature 6 is also subject to the balance of energy
stated in (2.195). There, by (2.204) and (2.220), which is also valid here, we write

2

PV . R4
)= —00—0+ (- 2p di 2.290
ov =—00—53 +( p+e 898@) v, ( )

where use has also been made of (2.287) and the mass continuity equation (2.108).
By (2.290) and (2.280), (2.201) becomes

W, PV

w20~ Jej 2950 dive + A(divv)? + 2 trD? + div(k VO) + 0 = 0, (2.291)

00

where the source o is the heat supply, which needs to be assigned either as a pre-
scribed field on B; or through a constitutive law of 6 and o. Equation (2.291) together
with the balance equation (2.279) and the continuity equation (2.108) constitute the
set of evolution equations for the fields 8, v, and ¢ on the collection of shapes C,
that describe a perfect fluid with linear viscosity and heat conduction.

For these fluids, it is instructive to express the entropy production oj in terms
of the viscous extra stress and the heat flux that we have determined through the
requirement of minimum reduced dissipation (2.232). With the aid of (2.281) and
(2.289), it follows from (2.227) and (2.282) that

1 1
i=—(TO.D-—¢g.Vo) =0,
=3 ( TROE

which coincides with the classical expression of the reduced CLAUSIUS—-DUHEM
inequality for linearly viscous fluids with heat conduction in (2.243).

2.3.4 Variational Formulations

The classical NAVIER-STOKES equation for compressible viscous fluids arrived at
in (2.278) from the variational principle of minimum reduced dissipation has been
the object of several studies attempting to derive it from a Hamiltonian variational
principle. Here, for completeness, we review these attempts mostly following the
paper by MOBBS [222] that extends earlier work of SERRIN [297].

We shall assume that the viscosity coefficients p and A and the heat conductivity
k are independent of both o and 6, so as to be constitutive constants of the fluid.
By comparing (2.290) and the GIBBS equation (2.256), which is valid here with the
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equilibrium pressure pg replaced by p in (2.287), also by the continuity equation
(2.108), we easily see that (2.291) becomes'?”

007 = A(divv)? + 2pu tr D? 4 K Af, (2.292a)

once the heat source o has been set equal to zero. If similarly, we assume that in
(2.278) the body force b has a potential U, so as to be written as b = VU, the
equation of motion reduces to

00 = —V(p—U) + pndv+ A+ wVdivo. (2.292b)

Equations (2.292a) and (2.292b) must be supplemented with the continuity equation
(2.108), which here we rewrite in the form

0 = —odivu. (2.292¢)

We further assume that the function H defined by (2.220) is globally invertible in
0, so that there is a function 7 '(g, n) for which 8 = T'(¢, H(p,0)) and 8 = T (g, n).
By expressing 6 thus in (2.292a) and transforming likewise p in (2.292b) into a
function of (g, 0), all three equations (2.292) can be regarded as evolution equations
for the triple (n, v, 0). To derive these equations from a Hamiltonian principle, we
need to find a Lagrangian function .# depending on the fields (7, v, @) such that
(2.292) are the EULER-LAGRANGE equations in the present shape ®; of the subbody
® for the action functional .« defined by

1
A (@)n.v.0] = f 2(@)ln. v. oldr.
fo (2.293)
with Z@)lnv.cli= [ €00V,

®;

subject to arbitrary variations that vanish at the endpoints of the time interval [fo, ;].

In the inviscid limit, where © = A = 0, and in the absence of heat conduction, so
that we can formally set k = 0, equations (2.292) describe the isoentropic evolution
of an EULER fluid. HERIVEL [141]'1° showed that for these equations to derive from
<7 in (2.293), £ should be chosen as

1
L(n,v,0) = EQv-v—QUJrU,

where v is the internal energy per unit mass, expressed in terms of (o, ) through
(2.204) and by use of the function 8 = T(o,7n). The HERIVEL-LIN variational

109 A5 above, in the following equations A denotes the Laplacian.

110 gee also SERRIN [297, pp. 147-149], who quotes unpublished work of C.C. LIN.This prin-
ciple, which is often named after both HERIVEL and LIN, was anticipated by ECKART [82],
though he proved it valid only for irrotational flows and when the internal energy of the fluid
depends only on its density.
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principle prescribes .27 to be stationary for all ® subject to the differential constraints
(2.292¢) and
n=0 and (x~') =0, (2.294)

where y ! is the inverse of the mapping x defining a motion in (2.3). While the first

constraint in (2.294) prescribes the entropy to remain constant along the trajectories
described by each fluid particle, the second phrases in the Eulerian formalism the
requirement that the variations of .« maintain unaltered the identity of all fluid parti-
cles.''" MOBBS [222] reviewed the proof of this variational principle and interpreted
in physical terms the LAGRANGE multipliers that need to be introduced to free the
variations of all fields (1, v, ¢) in computing §.<7. As suggested by SERRIN [297,
p- 149], MoBBS [222] extended this method so as to apply it to equations (2.292),
and he concluded that no analogue of the HERIVEL—LIN principle can be valid in
the viscous case.

This is not the only negative result as to the existence of a variational formulation
of equations (2.292). To illustrate it better we start from a positive result, which
will soon be shown to be nearly the only one possible. We show how in the purely
mechanical case (k = 0) a variational principle in the form

8L (®)[v] =0 with .i”((P,)[v]:/ L(v,Vv)dV, (2.295)
®;

where £ is now a frame-indifferent function of v and Vv, implies the equation
uAv =V(p-U), (2.296)

which follows from (2.292b) when div v = 0 and the inertia v vanishes identically.
We say that (2.296) describes the quasistatic motion of an incompressible NAVIER—
STOKES fluid.
It is easy to check that for a solenoidal flow v, the vorticity @ = curl v is such
that
curlw = —Av,

and so if v solves (2.296), @ satisfies
curlw = VX,

where, to within an inessential additive constant,
1
Y =—U -p). (2.297)
7
A classical theorem of HELMHOLTZ says the following.

T A Hamiltonian principle for the equation of the isoentropic motion of an EULER fluid was
also obtained by ECKART [88] in the Lagrangian formalism, where the particles’ trajecto-
ries need to be varied. The reader is referred to [140] for an energy principle of HERIVEL
for the dynamics of inviscid fluids.
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Theorem 2.8 (HELMHOLTZ). A quasistatic motion of an incompressible viscous
fluid governed by (2.296) is characterized by the property that the dissipation

(@, x) =1 / trD?*dV (2.298)
®;

in the present shape ® of any subbody ® is less than or equal to any other flow
consistent with the same values of v on 0*®;.

Proof. Let v be the velocity field associated with the varied motion j. It can be
represented in the form
V=1v 4+ v,

where the variation §v vanishes on 0*®; at any arbitrarily selected time #. Letting D
and D denote the stretching tensors associated with the flows ¥ and v, respectively,
we readily see that

R@,. 7) =A@, 1) + 21 /

D-VévdV +u/ (D — D)2dV,
®;

&

whence, since y = 0, it follows that

SR =R (@, x) — Z(C, x) = 2#/ D-VévdV, (2.299)
®;
the equality sign holding if and only if dv, which must vanish on 0*®;, vanishes
identically in @. Denoting by D;; and §v; the Cartesian components of D and §v in
a given frame (e, e,, €3), we can write

f D-V(SvdV:/ D;;8v; dV:/ [(Dij8vi),j — Dyj,j8vi | d V. (2.300)
(Pt (Pt

®;
where, as usual, a comma denotes differentiation with respect to spatial variables.
Since Dij = 1 (vi,; + vj,i), it follows from dive = vj; = 0 and the symmetry of
second derivatives that D;; ; = %vi,jj. Thus, by (2.296) and (2.297), applying the

divergence theorem, from (2.300) we conclude that'!?
/ D-VSvdV:/ (Dv + 1Xv)-dvdA, (2.301)
®; 0*®;

where use has also been made of the requirement that divdv = 0, which is needed
for ¥ to be solenoidal like v. Since §v vanishes identically on 0*®, it follows from
(2.301) and (2.299) that 6% = 0, which is the desired result. O

By comparing (2.295) and (2.298), we readily see that in this case the functional &%
plays the role of the Lagrangian .Z, but as the proof of Theorem 2.8 clearly suggests,
such a conclusion may not hold in general.

112 Equation (2.301) is often called the HELMHOLTZ-RAYLEIGH formula. See also [327].
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To explore to what extent Theorem 2.8 may be extended, by possibly choosing a
Lagrangian .% different from %, we remark that by (2.11) and the identity

1
Vo)v = EV(v -v) — v x curl v,
the acceleration field for a steady flow (for which g—;’ = 0) can be written as

o1
v = EV(v-v)—vxcurlv.

This, in particular, shows that the proof of Theorem 2.8 could be repeated verbatim,
with only a different scalar field X, for all steady motions such that the vorticity @ is
parallel to the flow. Thus, the NAVIER—-STOKES equation for steady solenoidal flows
admits a variational formulation with Lagrangian & when either

(Vo)v =0 or vxcurlv=0. (2.302)

MILLIKAN [220] first proved that the steady motions of an incompressible NAVIER—
STOKES fluid obeys a variational principle in the form (2.295) if and only if one of
the conditions in (2.302) holds.''® In words, one may summarize as in [105] the vari-
ational status of classical hydrodynamics by saying that variational principles exist
when inertial forces are important and viscous forces are not and when, conversely,
viscous forces are important but inertial forces are not. When both types of forces
need to be taken into account, no variational formulation is indeed possible.

The limited validity of the classical Theorem 2.8 already in a purely mechanical
context casts further doubts on PRIGOGINE’s principle of minimum entropy produc-
tion already criticized in Section 2.2.5.

113 BFINLAYSON [105] simplified considerably MILLIKAN’s proof and gave it a rather elegant
form. He credits J. BRILL for having first realized that Theorem 2.8 also applies to steady
flows that satisfy (2.302),. This was later also remarked by RAYLEIGH [327].
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Director Theories

We have seen in Chapter 1 that the nematic phase is most naturally described by two
order parameter tensors Q and B that can be obtained as macroscopic averages of
molecular tensors. However, different phenomenological theories were first devel-
oped motivated by the unique optical properties of the nematic phase. We postpone
to Chapter 4 the investigation of continuum theories based on the order tensors and
begin here by looking at director theories that are motivated by the observation that
a nematic, although liquid, behaves like a crystal in that it exhibits optically dis-
tinguished local directions. These directions are the main protagonists of director
theories.

The optical properties of a crystal are primarily determined by the nature of the
relationship between an electric field E and the displacement D it induces. In gen-
eral, this relationship can be written as [175]

D =¢(w)E, 3.D

where the dielectric tensor € normally depends on the frequency w of the electric
field. In the limit as w goes to zero, the dielectric tensor describing the behavior of
the crystal in a static electric field is obtained. In the absence of an external magnetic
field, € is symmetric and hence has three real eigenvalues.

In a crystal with cubic symmetry, all three eigenvalues are equal, and so € is
simply a multiple of the identity. Such a crystal behaves optically like an isotropic
material.

When exactly two eigenvalues of its dielectric tensor are equal, a crystal is
optically uniaxial. There exists then a single unique direction, determined by the
eigenvector to the third, distinct eigenvalue, along which the crystal behaves like an
isotropic material. In a uniaxial liquid crystal, this direction can vary in time and
space and is described by a unit vector field called the nematic director n. Because
the director can be identified with an eigenvector of €, it merely describes an axis and
as such is a “headless” vector. This fact, that n is to be identified with —n, is termed
the nematic symmetry. Mathematically, it means that n is to be regarded not as an
element of the unit sphere S? but rather of the real projective plane RP?. Ordinary

A.M. Sonnet and E.G. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals, 165
DOI 10.1007/978-0-387-87815-7_3, © Springer Science+Business Media, LLC 2012
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nematic liquid crystals are nonpolar materials. In a polar material, there is usually a
polarization P that contributes to the displacement D and that is independent of E,
so that, in that case, (3.1) is to be replaced by D = P + €(w)E . If light falls onto a
uniaxial crystal along any direction oblique to the optical axis, birefringence (double
refraction) occurs: the incoming beam splits into an ordinary and an extraordinary
beam. Two indices of refraction can be defined connected with the velocities of light
parallel and perpendicular to the optic axis.

When all three eigenvalues of its dielectric tensor are different, a crystal is op-
tically biaxial. The optical behavior in this case is rather complex [175, 33]. There
are then three different mutually perpendicular directions associated with the three
distinct eigenvalues. While in a solid single crystal these directions are determined
by the crystal symmetry, in biaxial liquid crystals they vary in space and ultimately
depend on the local orientational distribution of the molecules.

In the case of constant scalar order parameter, the dynamical equations for uni-
axial nematic liquid crystals have long been established: they were obtained as bal-
ance equations for linear and rotational momenta, the latter also including the mi-
crostructural contributions [91, 180, 265]. The dynamics of uniaxial nematics with
variable order was treated much later by ERICKSEN [99], who posited an additional
balance equation for the scalar order parameter. The first theories for biaxial ne-
matics were formulated in terms of a triad of three mutually perpendicular direc-
tors [287, 165, 123]. It is sufficient to use just two directors, a route that we follow
below.

We start by treating in Section 3.1 the classical uniaxial case with constant scalar
order. We then extend our results in two different directions. In Section 3.2 we retain
the focus on a uniaxial phase but allow a variable degree of scalar order; in Sec-
tion 3.3, we introduce a secondary director needed for the description of a biaxial
phase while reinstating the assumption of constant scalar order parameters.

3.1 The ERICKSEN-LESLIE Theory

The most common nematic liquid crystal is formed by effectively uniaxial molecules.
Even if the molecules do not posses perfect cylindrical symmetry, any deviation
therefrom does not manifest itself in the macroscopic properties of the phase they
form. It is therefore most natural to idealize the molecules and describe their orien-
tation by the single direction in which their main axis points. If this axis is further
assumed to be nonpolar, then, as we have seen in Chapter 1, the average orientation
of such molecules can be represented by the order tensor Q, which can be written
in the form (1.91) in terms of two scalar order parameters and three orthonormal
vectors. We write it here as

Q:S(n@n—%l)—}-T(m@m—l@l) (3.2)

with the scalar order parameters S and 7' and a set of three orthornormal directors
n, m, and I. The uniaxial nematic phase is characterized by 7" = 0 and hence can be
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described by just 7 and the scalar order parameter S. Since the order parameter S is
primarily determined by temperature (or by concentration in lyotropic nematics), it
is often assumed to be constant, and so the state of the liquid crystal is determined by
n alone. This is the starting point of the ERICKSEN—LESLIE theory. In accordance
with the interpretation of the director n as identifying the unique optical axis of
symmetry of the nematic, it is defined to be a unit vector and as such needs to satisfy
the constraint

n-n=1. (3.3)

Furthermore, because it represents an axis, the further identification
n~ —n, 3.4

known as the nematic symmetry, needs to be made. The nematic symmetry (3.4)
will in particular entail invariance of all relevant scalar constitutive functions of the
theory under reversal of the orientation of n.

The mathematical theory of nematic liquid crystals was first phrased as a varia-
tional theory in the seminal works of OSEEN [259] and FRANK [109]: the nematic
texture represented by the director field » was meant to minimize an elastic distor-
tion energy with density W per unit volume depending on both n and Vn. Both
boundary conditions representing various anchoring mechanisms for n and applied
electric or magnetic fields are the external agents that would antagonize the natural
tendency of a nematic texture to be uniform in space, oriented in whatever direction.
FRANK [109] found the most general function W at most quadratic in Vn that obeys
(3.4). His explicit formula is reproduced below in (3.32); here, as in most of this
book, we are more interested in a general infrastructure in which FRANK’s theory,
like any other, can be phrased.

The classical dynamical theory of nematic liquid crystals resulted from the sepa-
rate efforts of J.L. ERICKSEN and F.M. LESLIE." ERICKSEN [90] started by propos-
ing the balance equations of a simpler theory for anisotropic fluids with neither
couple stress nor intrinsic torque acting on the director. In [92] he also reformu-
lated the variational theory of OSEEN and FRANK in the language of the then re-
vived continuum mechanics and found that his earlier theory for anisotropic flu-
ids does not reduce to OSEEN and FRANK’s in the static limit. OSEEN [259] had
also advanced a dynamical theory that simply rephrased ANZELIUS’s incomplete
attempt.” Building upon his earlier hydrostatic theory [92], ERICKSEN proposed

1 Other accounts on this theory, phrased in a mathematical language different from ours, can
be found, for example, in [351], [352], and [319].

2 OSEEN cites the work of A. ANZELIUS as published in 1931 in the Annual of the Uni-
versity of Uppsala with the title Uber die Bewegung der anisotropen Fliissigkeiten. As
explained in [42], this was indeed ANZELIUS’s dissertation, written under OSEEN’s super-
vision. A short account on its contents is presented in [42], whence we draw the follow-
ing appreciation of ANZELIUS’s work: “The thesis, which consists of an eighty-four page
booklet, represents the only research which Anzelius published on liquid crystals. Never-
theless, this work was the first serious and consistent attempt to derive a dynamical theory
for nematics” [42, p. 1271].
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in [91] a general system of balance laws that generalized OSEEN’s and much in-
spired LESLIE’s theory.> LESLIE [179] reexamined the earlier theory of ERICKSEN
for anisotropic fluids applying the CLAUSIUS—DUHEM inequality to those constitu-
tive equations. Later, broadening the constitutive assumptions on viscous dissipative
actions, LESLIE [180, 181] obtained a general dynamical theory that in the static
limit reduces to ERICKSEN’s hydrostatics.

LESLIE’s viscous torque and stress were postulated independently of any RAY-
LEIGH dissipation potential; it was PARODI [265] who first showed how requiring
LESLIE’s dissipative actions to derive from a dissipation potential embodies a rela-
tionship* among the six phenomenological viscosity coefficients of the theory.

In the following section we shall start afresh to illustrate how the classical dy-
namical theory of nematic liquid crystals can be derived from the general dissipation
principle posited in Chapter 2. In the closing Sections 3.1.4 and 3.1.5, we shall ex-
amine the compatibility of this theory with two extreme neighboring domains: on
one side, the original variational theory of OSEEN and FRANK, and on the other, the
thermodynamic setting in which we have already placed the NAVIER—STOKES fluid
in Section 2.3.3.

3.1.1 Nondissipative Dynamics

We first consider a uniaxial nematic in the absence of viscous dissipation. As in the
case of the inviscid isotropic fluid of Section 2.3.1, the evolution equations can be
derived from D’ ALEMBERT’s principle that requires that the variation § 7/ of the total
working # vanish. The relevant velocities are v and the material time derivative of
the director n. The total working % in (2.210) takes the form

W=D L p© _ o F, (3.5)

where # @ is the power of the external agents, 7 is the power of the constraints,
J is the kinetic energy, and .% is the free energy. We will specify each of these
below. Once all the contributions of the power are written in their appropriate form
as a product of generalized forces and velocities, the evolution equations can be
obtained by requiring that

SW =0, (3.6)

where the variation is defined as in (2.231) so that the generalized forces are fixed
while the velocities are arbitrarily varied.

Since most processes connected with the reorientation of the director are slow
compared with the frequency of sound waves, we consider here the nematic fluid as
incompressible so that the mass density g is constant and divv = 0. The compress-
ible case will be treated within the wider scope of Chapter 5.

3 See also [97] for an effective summary of these early contributions.
4 Being such a relation phrased in the then popular language of ONSAGER’s recoprocity, it
is often called the ONSAGER—PARODI relation, a usage that we do not follow here.
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External Agents

The external power expended on a uniaxial nematic has two contributions. One is the
same power as that expended by external forces acting on the material element® of
an isotropic fluid; see (2.261). In addition to this, power can also be expended on the
director, so that the total external power takes the form

%a)(@,,x):/ (b-v+kn-f1)dV+/ (t-v+cy-n)dA, (3.7)
®; 0* @

where k, and ¢, are generalized body and contact force densities acting on the di-
rector n. While b and k, are assigned sources, generally depending on n, ¢ and c,
are to be regarded as shape functionals of 0*®, also depending on n.

Power of the Constraints

In the present setting there are two constraints. One is incompressibility of the ma-
terial, which leads to the requirement that the velocity fields v remain solenoidal.
The other is the requirement that the director retain unit length throughout its evolu-
tion. Incompressibility is treated as in (2.270) with the pressure p as a LAGRANGE
multiplier. To ensure that » remains normalized, we introduce a further LAGRANGE
multiplier y. The power of the constraint (3.3) is obtained by differentiating it with
respect to time, which leads to the requirement

n-n=0, (3.8)
which simply implies that 2 needs to be orthogonal to n. Upon multiplying (3.8) by
y and adding the powers of the constraints, we find their total power # () to be

W@, x) = / (yn-n+ pdive)dV
®;

= (yn-h—Vp-v)dV+/ pv-vdA, (3.9)
®; *®r

where the second form follows after the same integration by parts used to arrive at
(2.271).

Kinetic Energy

The kinetic energy density has the usual contribution %sz, but because the material
now has internal structure, there is also microinertia. This part of the kinetic energy
is related to director rotation, but since the director stems from the average orienta-
tion of the constituent molecules, it is not normally possible to recover the complete

5 Here we call generically a body-point that possesses an internal order structure a material
element.
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microinertia from knowledge of the director rotation alone. However, because of the
small moment of inertia connected with molecular rotations, the overall microinertia
is necessarily small and usually negligible. We take this point of view and neglect
microinertia, so that the kinetic energy takes its usual form

1
(@, x) = / —ov3dV.
® 2
Accordingly, the rate of change of the kinetic energy is
(@, x) =/ ov-vdV. (3.10)
®;

Elastic Free Energy

In the absence of compressibility, the free energy is independent of the density, and
its only contribution stems from the tendency of the director field to oppose local
variations. This curvature elasticity is usually assumed to have a density W per unit
volume that is a function of the director and its first gradient,’ W = W(n, Vn). For
W to be compatible with the nematic symmetry (3.4), it has to satisfy

W(n,Vn) = W(—n,—Vn). (3.11)

Furthermore, because there is no distinguished direction other than n itself, the en-
ergy density needs to satisfy

W(n,Vn) = W(Rn,RVnR"), (3.12)

where R is an arbitrary proper orthogonal transformation.” For nonchiral nematic
liquid crystals, the requirement (3.12) needs to hold for arbitrary orthogonal trans-
formations R. We postpone giving W a specific form and look at the general case
first.

With the total free energy

F (@, x) = / W(n,Vn)dV, (3.13)
®;
we first observe that, by the transport theorem (2.37) and div v = 0, we simply have
F (@, x) =f W dv, (3.14)
®;

where as usual the dot denotes the material time derivative. By the chain rule,

6 Here we are guilty of some abuse of notation, since we denote by W both the elastic free-
energy density and the function delivering it. Where there is no risk of confusion, we prefer
this venial sin to then unwarranted pedantry.

7 See also [353, §3.1.1] and the quotation on p. 139.
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. 8W aw
W = n+ — - (V 3.15
T ava (Vn)'. (3.15)
To compute (Vn)’, we observe that the material time derivative r is written in index
notation as

d

—ni = —n; +n; kv

dr 9 i i,k Vk
and its gradient Vn as

d 0
—n; = —Nj,j + NjkjVk + NjkVk,j-
(df 1),1. 9t i,j i,kjVk i,k Vk,j

At the same time, the material time derivative of the director gradient (Vn)’ reads as
d
= (ni )= —
dt (ni.1) ot
Comparing these last two expressions yields, for a twice continuously differentiable
director field n, the identity

Ni,j + N, jkVk-

(Vn) = Vi — (Vn)Vo. (3.16)

Using this in equation (3.15), the change in free energy (3.14) becomes
. ow ow ow
ff((Pt,x)zf %(— div ) 1'1—|:(V )T ]-Vu}dv
®; on dVn
aw
— v ) -ndA,
* /a*@, (8Vn ") "

where we have performed an integration by parts and used that

ow

LW
o, (Vo] = [(Vn) m]w.

After a further integration by parts, ZF takes the required form of a product of the
generalized velocities v and n and the corresponding generalized forces:

j(@,,){):/@t{(aav: dlvgg/) n+d1V|:(Vn)TaW] v}dV

W\ . ow
L) et o o

ERICKSEN’s Identity

We show now that the invariance property for the mapping W stated in (3.12) entails
a tensorial consequence that will play a role in Section 3.1.3 shortly below.

By differentiating both sides of equation (3.3), we easily see that a differentiable
director field satisfies
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(Vi)'n =0, (3.18)

which is a constraint for V. Thus, letting N represent any admissible value of Vn,
for given n, we realize that by (3.18) it lives in the linear subspace of L(V) defined
by

L(n,V) :={L e L(V):L'n =0}.

Properly, for n € S, W is a real-valued mapping defined on L(n, V), for which the
requirement (3.12) acquires the following form:

W(n,N) = W(Rn, RNR"), (3.19)

forallm € U, N € L(n, V), and all proper orthogonal transformations R € SO(3).
Let now ¢ > R(?) be a differentiable trajectory in SO(3) such that R(0) = L. It
follows from (3.19) that the mapping w defined by

w(t) := W(R()n, R(t)NR' (1))

is constant. In particular, this implies that its first derivative vanishes at t = 0, that
is, by the chain rule, that

. ow ow
w(0) = o -Sn + N - (SN —NS)
aw W o (IWNT
_S'[W‘X’”WN +(W) N}—O’ 520

where S = R(O). By differentiating with respect to the parameter ¢ the identity
R(t)R"(t) = I and setting ¢ = 0, since R(0) = I, we readily see that S is a skew-
symmetric tensor. Since the trajectory ¢ — R(¢) is arbitrary, (3.20) must hold for all
skew-symmetric tensors, which is the case, provided that

—_NT -
Qn 4+ + N

ow ow ow
on oN

g
) N} € Sym(), (3.21)

where Sym(V) is the subspace of all symmetric tensors in L(V) (see Appendix A.1).
In components, this condition reads as

w BW) =0. (3.22)

ow
€ijk (njﬁ +Nj1N—kl +Nle—lk

Equations (3.21) and (3.22) are equivalent forms of ERICKSEN’s identity, which was
first derived in [91].

Variation of the Working

After the preparation of writing the individual power contributions to the working as
products of the velocities and generalized forces in the forms (3.17), (3.7), (3.10),
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and (3.9), the application of D’ ALEMBERT’s principle is straightforward. In these
expressions, we merely have to replace the velocities v and i by their variations v
and &n, so that (3.6) becomes

SW = {[b —Vp —ov—div ((Vn)Ta—W)} v
®; 8Vn

ow 14 .
+[kn+yn—87+dlvm}-8n}dV
ow ow
I+ (Vn)'— . n— ——v|-8n} dA.
+/a*®{[t+(p + (Vn) 8Vn)v:| 5v+|:c Ban:| Sn}d

(3.23)

This can vanish identically for arbitrary parts ® only if the terms in the integrands
multiplying the variations of the velocities vanish identically. This localization argu-
ment implies the equations

ov =b +divT, (3.24)
ow 14
in @ and
t =Ty, (3.26)
cn = W v
" 9Vn
on 0*®;. Here, we have set
W
T=-pl- (Vn)Tﬁ, (3.27)

which, as shown by the traction condition (3.26), is CAUCHY s stress tensor. ERICK-
SEN [92] interprets the tensor
W
" 9Vn
as the torque stress® introduced by FRANK [109]. It should not be confused with the
couple stress, which shall be identified in both equations (3.73) and (3.75) below.
Often’ the field

(3.28)

ow
h,:=divL, — — (3.29)
on

is called the molecular field. By use of (3.28) and (3.29), equation (3.25) is also
written as
h,+k,=—yn. (3.30)

8 In more recent literature (see, for example, [182]), it is also known as the director stress.
9 See, for example, [59, p. 107].
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Equation (3.24) is the linear momentum balance, and (3.25) is an equation that
we shall soon relate to the balance of torques acting on the director.'” The part of the
stress that depends on the elastic free energy,

ow
Tg = —(Vn)Tm, (3.31)

is usually called the ERICKSEN stress. Depending on the actual form of W, it can
fail to be symmetric, in which case the total stress T will be asymmetric as well.

As remarked by ERICKSEN [92], in the static limit, where v = 0, equations
(3.24) and (3.25) become an overdetermined system for the equilibrium of the direc-
tor n. We shall show in Section 3.1.4 how they can be both made consistent with the
stationarity requirement for an appropriate energy functional.

FRANK’s Formula

FRANK [109] derived the most general form of W(n, Vnr) at most quadratic in Vn
that obeys the symmetry requirement (3.11) and is hemitropic, as prescribed by
(3.12). He found the following formula, valid for cholesteric liquid crystals:

1 1
We(n, Vn) :ZEKI (divn)* + EKZ (n-curln + 1.)?
3.32
1 2 2 N2 032
+ §K3|n x curl n|” 4+ Ko4[tr(Vn)* — (div n)~],

where K, K, and K3 are FRANK’s elastic constants and t. is the characteristic
twist of the field
n, = cos(t.z)ey + sin(t.z)ey, (3.33)

which in the frame (ey, e, e,) represents the generic undistorted orientation of a
cholesteric liquid crystal.'! The field n. describes a helical texture in which the ne-
matic director rotates uniformly along the e axis; the pitch p. of the helix, which is

defined as
2
Pei= —, (3.34)

Tc

represents the extension in space needed for n. to perform a complete turn. The
elastic constants K, K, and K3 are also referred to as the splay, twist, and bend
constants, respectively, since they weight the contributions to the elastic energy den-
sity Wg arising from three distinct distortion modes almost pictorially described by
these names.'?

Since curl n is a hemi-indifferent vector, that is, it transforms as in (2.93), Wk is
isotropic only if 7. = 0, in which case Wy represents the elastic free-energy density
of a nematic liquid crystal.

10 Cf. equation (3.74) below.
11 See [353, p. 114] for more details on the derivation of (3.32).
12 These distortion modes are described, for example, in [353, § 3.3].
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The last term in (3.32) has a peculiar character: it is a null Lagrangian. It was
first shown by ERICKSEN [93] that its integral over any shape ®; on the reduced
boundary 0*®; of which n is an assigned field n, contributes an energy to . that
depends only on n., and so it does not affect the field n in @, as long as n is kept
fixed.!® For this reason, this term is often omitted from (3.32), especially in the study
of bulk properties.'

ERICKSEN determined in [94] the conditions that make Wr positive semidefinite
on all admissible director fields, so as to measure the energy required to produce a lo-
cal distortion starting from a natural, undistorted texture, characteristic of the phase.
For nematic liquid crystals, the natural textures with zero energy are all uniform di-
rector fields, for which Va = 0, whereas for cholesteric liquid crystals the natural
textures are all like 7, in (3.33) in some appropriate frame.'> ERICKSEN [94] proved
that for nematic liquid crystals, W is positive semidefinite whenever

Ki Z Ky, Ky Z Ky =20, K30, (3.35)

which are called ERICKSEN’s inequalities.'® For cholesteric liquid crystals, the pos-
itive semidefiniteness of W away from all fields n. in the form (3.33) requires in
addition that'” K,4 = 0.

3.1.2 Dissipative Dynamics

In a uniaxial nematic liquid crystal there are two different velocities that can lead to
dissipation: the ordinary material velocity v and the rate of change of the director #.
In our setting, outlined in general in Chapter 2, we look for a RAYLEIGH dissipation
function that is a quadratic form in these velocities. At the same time, the dissipation
function needs to be frame-indifferent, because it describes an objective quantity.
In the case of an isotropic viscous fluid, we have seen in Section 2.3.2 how this
requirement can be met by constructing the dissipation function as a quadractic form
in the stretching D = %[Vv + (Vv)T], which is the simplest indifferent tensorial
quantity that is linear in the velocity.

To extend this idea to uniaxial nematics, we need an indifferent time derivative
of the director. We use the simplest choice, the corotational time derivative already
introduced in (2.83),

n=n—Wn, (3.36)

where we recall that 1
W= E[Vv —(Vo)T] (3.37)

is the vorticity tensor. If a different choice of indifferent time derivative is made, the
procedure is exactly the same as that outlined below; in the end, this would merely
lead to a different grouping of terms in the dissipation.

13 See also [353, p. 159].

14 When n is not prescribed on the whole of 3*®;, such an omission is fully unjustified.
15 1t 4s easily seen from (3.33) that divn, = 0, curln; + cn. = 0, and (Vnc)2 =0.

16 See also [353, p. 124].

17 See also [353, § 3.4.2] and [153] for a criticism of this conclusion.
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Generic Dissipation Function

The dissipation function R is constructed as a function of D, 1, and of n itself in
such a way that it is a quadratic form in (D,n). In view of EULER’s theorem on
homogeneous functions, this implies that

oR oRrR

— D+ —-n=2R.

aD + on
It is easily checked that the pair (Vv, 72) depends linearly on the pair (D, #), and so

it follows that
oR Vo 4 R . IR
—_— v —n = N
Vv on
which shows that any R constructed as a quadratic form in (D, r) is indeed also a
quadratic form in (Vv, i), as required by the dissipation principle.
Before giving a specific form for R we formally perform the variation of the

dissipation functional Z,
Z(®, x) = / R(n;D,n)dV. (3.38)
®;

Although R is given explicitly as a function of the indifferent rates n and D, the
variation needs to be performed with respect to v and n. Thus

oR IR
s = [ |2 i+ 25 sve|av
@t[ah " v "]

Z/ [a—l,e-Sh—div(a—R)-Sv}dV+/ (8—Rv)-5vdz4-
e, Lon IV =@, \ IV

The partial derivatives of R in this expression can be found using the chain rule,
which shows that

(3.39)

dR  OR
o ok 3.40
o om (3.40)
and
R 1 n®8R_8R . +8R 34D
Vo 2 on  on ENY ’

Dynamic Equations

We are now in a position to give the general form of the dynamic equations for
the evolution of a uniaxial liquid crystal. The dissipation principle amounts to the

requirement (2.232):
8K =W .

With the variation 6% as in (3.23) and the variation 6% as in (3.39) together with
(3.40) and (3.41) we obtain, as before, the momentum balance in the bulk in the form
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ov=>b+divT (3.42)

and the traction condition on the boundary as
t =Ty, (3.43)

where now the stress is

T= pi—(vay 2 ! R _Ren)+ R (3.44)
-7 Vv T 2\"Y T ") T '

Apart from a contribution proportional to the identity and the ERICKSEN stress Tg
as in (3.31), it contains a viscous or dissipative stress

T L s R _9R Qn)|+ oR (3.45)
is .= < | — = n —_—. .
R on on aD

The equation for the director in the bulk becomes

R oW oW
RV Y e — o 4
on "o Wy ko=m (3.46)

and the condition on the boundary, which by (3.28) we now write as
¢y =Ly, (3.47)

remains unchanged. This reflects the fact that there is no contribution proportional to
n in the boundary integral in (3.39), which in turn is due to the fact that we did not
consider gradients of n in the dissipation function.

General Dissipation Function

The dissipation function R must also obey the nematic symmetry in (3.4), and so it
will be assumed that
R(—n;D,—n) = R(n;D, n). (3.48)

The most general quadratic form in # and D that can be constructed in terms of these
two rates and the director 7 and that obeys (3.48) has five different terms; we write
itas'®

o L o 1 1 1
R(n;D,n) = Eylnz + yon-Dn + 57/3(Dn)2 + 5)/4(n -Dn)? + 5)/5 trD?, (3.49)

where the y’s are viscosity coefficients.!” It is easily seen from (3.49) that R is an
isotropic function, since the only hemitropic term quadratic in (D, 77), namely

18 See [98] and [184].
19 These are constitutive constants as long as thermal effects are ignored. We refer the reader
to [150] and [77] for studies on the thermal dependence of the viscosity coefficients.
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R.:=n-Dnxn, (3.50)

is ruled out by (3.48). Thus, we conclude that both nematic and cholesteric liquid
crystals are represented by a dissipation function R of one and the same form.

For the function R to be positive semidefinite, the viscosity coefficients must
satisfy appropriate inequalities. We find these by introducing a general representation
of n, 1, and D. Since n and 72 must be orthogonal to one another, we let (e, €2, e3)
denote an orthonormal frame such that

n=e;, n=~Ney and D= A;e Qe;, (3.51)
where N is a scalar and the coefficients A;; satisfy
Al'j = Aj,' and Ai,‘ = 0, (352)

since D is a symmetric, traceless tensor. Using both (3.51) and (3.52) in (3.49), we
write R as the sum of four independent quadratic forms:

1
R = (E)/3 + 7/5) A%3 + )/5A%3
1 5 1 )
TSN+ NAp + | Sys +vs ) A, (3.53)

1
+ 5()’3 + s +2y5) AT, + ysA11 A + ysA3,.

This function is positive semidefinite, provided that

¥3+2ys 20, ys 20, (3.54)
and the following symmetric matrices are positive semidefinite:
Y1 Y2 Y3+ va+2ys ys
Hy = . Hai= . 3.55
! |:)’2 y3 + 2)/5] 2 [ Ys 2)’5] (3.55)

For a 2 x 2 symmetric matrix H to be positive semidefinite, both elements of its
principal diagonal and its determinant must not be negative. For H; and H, in (3.55),
such a criterion reduces to

120, yi(ys+2ys)—ys =0,

(3.56)
Y3+ ya+2y5 20, ¥s(2y3 + 2y4 + 3ys) = 0.

Since (3.54), and (3.56)4 imply (3.56)3, the independent inequalities that guarantee
that R in (3.49) be positive semidefinite can be collected in the following list:

Y120, (3.57a)
Y3 +2y5 20, (3.57b)

ys = 0, (3.57¢)

2(y3 +ya) +3y5 20, (3.57d)

y1(ys +2ys5) —y3 Z 0. (3.57¢)
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It readily follows from (3.49) that*

8 ° [ — —
D yon®n +y3n@Dn + y4(n-Dn)n@n + ysD
and R
o = yin + y»[Dn — (Dn - n)n]. (3.58)

Here, L denotes the symmetric traceless part of a tensor (see also Appendix A.1),
— 1 no 1
A = E(A +A)— g(trA)I, VA € L(V).

The viscous stress is thus

| —

Tas =y2n @i +ysn®Dn +ys(n-Dmn@n +ysD 355
+ y1skw(n ® n) + yrskw(n ® Dn).

With (3.58), the director evolution equation (3.46) takes the form

. oW oW
D — —div— —k, = yn.
y1in + y2Dn + on v Vn hn=Yyn

LESLIE Viscosity Coefficients
The form of the viscous stress commonly used is
Ty =a1(n-Dn)n®@n+on@n+ozn@n + oD + asDn ® n + agn @ Dn,

where the a’s are LESLIE’s coefficients (cf. [185, eq. (4.6)]). This expression is the
same as (3.59), provided that

1 1
o = Y4, Q= E(yz —-y1), Qaz= 5(7/2 + 1),
’ » (3.60)
a4 =Yys, Q5= 5()/3 —Yy2), O = 5(7/3 + y2).
whence it follows that
o — 05 = 0y + a3, (3.61)

which is a relation first derived by PARODI [265]. It is automatically satisfied in our
setting because all generalized viscous forces derive here from a potential R.

For completeness, we also record here the formulas that express the y’s in terms
of the «’s, which are easily obtained from (3.60) and (3.61):

20 The derivatives ?TI]; and 28 are to be interpreted in the intrinsic sense (see, for example,

[353, p. 133]): the former is a symmetric, traceless tensor, while the latter is a vector every-
where orthogonal to n.
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Y1 = 03 — Wy, (3.62a)
Y2 = o3 + g, (3.62b)
Y3 = oz + o3 + 205, (3.62¢)
Y4 = Oy, (3.62d)
Vs = O4. (3.62¢)

Use of these formulas in inequalities (3.57) transforms them into the inequalities for
the LESLIE viscosities that are reproduced below to ease the comparison with those
derived in [319, p. 146]:

a3 Z oo, (3.63a)

g = 0, (3.63b)

oy + o3 + 204 + 205 = 0, (3.63¢)

21 + s + @3) + 304 + das = 0, (3.63d)
(a3 — o) (02 + a3 + 204 + 2a5) = (an + a3)>. (3.63¢)

3.1.3 Rotational Momentum and Couple Stress

We have derived the dynamic equations of nematic director theory using generalized
forces acting on the generalized velocity n. We eventually obtained two coupled
balance equations, (3.42) and (3.46), one for the linear momentum and the other
for the orientational order. The format we used is quite general and can be applied
in a similar manner to a wide variety of ordered media [311, 312]. In the present
case, if one takes the naive view that the director represents a rigid body capable
both of being conveyed by the flow and of rotating relative to it, the director balance
is equivalent to the balance of rotational momentum. Correspondingly, in such a
kinematic interpretation, we may attribute two rotational velocities to n in one and
the same frame: one is the spin vector w of the flow, that is, the axial vector associated
with the vorticity tensor W in (3.37), and the other will be denoted by w,. We write

n=wxn

in the first case and
n=w,Xn (3.64)

in the second case. In the former, by (3.36),
n=0,

while in the latter,
n=(w,—w)xn. (3.65)

As LESLIE [185] has shown, it is indeed possible to formulate the theory based on
the classical balances without resorting to generalized velocities and forces.
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In general, the orientational balance cannot be derived from the balance of rota-
tional momentum; this is obvious if the description of the orientation employs more
than three degrees of freedom, as is the case, for example, in the order tensor the-
ories treated in Chapter 4. However, in any event the balance of rotational momen-
tum (2.141) must be satisfied, whether it is equivalent to the orientational balance or
not. As shown in [311] for arbitrary tensorial order structure, this is indeed the case
provided the kinetic and free energies satisfy appropriate invariance requirements.

We show now how the director balance can be interpreted as a balance of torques
on the material element, and we identify the couple stress. Because we have ne-
glected the kinetic energy associated with director rotation, the balance of rotational
momentum (2.141) here takes the simpler form

2t +divL + k = 0, (3.66)

where L is the couple stress, k is a body couple per unit volume, and 7 is the axial
vector associated with the skew-symmetric part of the stress T via (2.132). In index
notation,
2‘1,',‘ = Gijkaj. (367)
Thus 7 is determined by our knowledge of the stress tensor (3.44), and we will now
use this to identify L and k via the rotational momentum balance (3.66).
We start by giving the director balance a different form. Defining

oR
gni= ——5 (3.68)
on
and taking the vector product of n with (3.46), we find that
aw aw
—— 4+ div— +k, | =0, 3.69
”X(gn an + 1V3Vn+ n) ( )
which, by (3.29), also acquires the more compact form
nx(gn+h,+ky)=0. (3.70)

Computing explicitly (3.67) with the stress (3.44) yields
2 + w

T = €k | 1y ni——».
i ijk j8nk 1,j anl,k

where we have denoted by g, the Cartesian components of g, and?!' by 32!% those
of L. ERICKSEN’s identity in the form (3.22) allows us to write 27 as '

ow aw
—hi— —n; _
/ ony H ong,;

=€ nik ni w n;: w
= €ijk JHKnk J ank,l J ]’lank,l

aw
= €jjk (—I’ljknk - |:}’lj ankli| 1) , (3.71)

21 With a common abuse of notation.

2T = €5k (n_/gnk
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where the director balance (3.69) was used to obtain the second line. Comparing
(3.71) with (3.66) shows that the latter is satisfied if we interpret

k=nxk, (3.72)
as the body couple and
ow
L=¢jnj——e; Qe (3.73)
ong.1

as the couple stress, where (e, 2, €3) is any orthonormal positively oriented basis.??

With (3.72) we can regard (3.69) as a balance of torques if we interpret

oR
nXgy=—NnX—
on
as a viscous torque and
ow oW
h, = div e— — —
n x hy, nX(WBVn Bn)

as an elastic torque. Thus, in the inviscid limit, equation (3.25), which can equiva-
lently be rewritten as

w BW) =0, (3.74)

nx(kn+hn)=n><(kn+div———
n

is interpreted as a balance of elastic and body couples.
Finally, the traction condition for the director (3.47) allows us to identify the
surface couple as
¢ =nxcy,

which is consistent with ¢ = Lv. It readily follows from (3.73) that L. can be char-
acterized by its action on any vector u € U as

Lu =nx ow =nxL (3.75)
u=n 3Vn u=n nll. .

Since by (2.92), the vector product of two indifferent vectors is hemi-indifferent, it
follows from (3.75) that

L*u* =L*Ru = (detR)RLu = (det R)RLR'Ru

3.76
=(detR)RLR"u*, (.76)
where R is the orthogonal tensor representing a change of frame. By the arbitrariness
of u*, it follows from (3.76) that the constitutive law (3.73) for the couple stress is
hemitropic, as it should be.

22 Strictly speaking, equation (3.44) determines L to within a divergence-free tensor. We shall
see in Section 3.1.4 how this indeterminacy can be removed.
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If the director is thought of as rotating independently from the flow, its time
derivative is given by (3.64), where the rotational velocity w, may differ from the
spin vector w of the flow and by (3.65), in general, n # 0. With (3.72) and (3.64) we
have

kyp-n=ky, - (wyxn)=w, -(nxk,) =k-w,.

Similarly,
Ch R =cC-W,,

and so the power of the external agents (3.7) can be equivalently written as

V%a)(@,,x):/ (b-v—i—k-wn)dV—i—/ (t-v+c-wn)dA,
(?[ a*(Pt

which reduces to (2.142) only if w, = w, so thatn = 0.

3.1.4 Variational Compatibility

In this section, following essentially ERICKSEN [92], we establish the condition un-
der which the static limit of the balance equations (3.66) and (3.25) can be related to
the EULER-LAGRANGE equation for the stationarity of an energy functional, thus
justifying the purely variational approach to the statics of liquid crystals, which was
the first theory proposed by OSEEN [259] and FRANK [109].

Principle of Virtual Power

Our starting point here will be a principle of virtual power, which is actually the
conceptual antecedent of D’ ALEMBERT’s principle, which in Section 3.1.1 served as
a foundation for inviscid dynamics. Imagine any subbody ® carved from the body
®, subject on its reduced boundary 9*® to a system of generalized tractions (¢, ¢,)

and, in its interior (lo), to a system of generalized body forces (b, k,) expending power
on any virtual motion described by the generalized velocities (v, i2), so that (3.7) still
formally applies, though no real motion y exists here:>

WO (@) :/(b-v+kn-h)dV+/ (t-v+cn-n)dA. (3.77)
® * @

As above, b and k, are assigned sources, whereas ¢ and ¢, are shape functionals to
be determined so as to comply with equilibrium. Like any real flow, the virtual flow
v is also required to preserve the volume of any arbitrary subbody ®, since it is a
means to mimic any admissible isochoric deformation of (, possibly accompanied
by an equally admissible change in the director distortion. Thus, the virtual flow v
will also be subject to the kinematic constraint

23 For notational coherence, we should denote the virtual flow by §v, instead of v, which is
usually reserved for the real motion. However, no confusion is likely to arise here, since
the only motion present is virtual.
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dive = 0. (3.78)

Similarly, denoting now by Z the virtual rate of change of the free energy .%#
in (3.13), by the transport theorem (2.37) applied to a virtual motion, in complete
analogy with (3.14), we write

F(®) = / W dV. (3.79)
®

The principle of virtual power prescribes that at equilibrium an incompressible
liquid crystal in 8 with elastic energy density (per unit volume) W and subject to the
traction system (¢, ¢,,) and to the body force system (b, k) satisfies the requirement

F(@) = #DE®) +#OW®) (3.80)

for all subbodies ® of 8 and for all systems of virtual generalized velocities (v, 1),
where V/(C)((P) is the power of the constraints®* (3.78) and (3.8),

WOP) = / (pdivv + yn-n)dV.
®

Virtually with no change in the formal development of Section 3.1.1, we give Z in
(3.79) the following form:

9"(@):/ (Tv-v+an-iz)dA—/(divT-v+hn-r't)dV,
* @ ®

where h, is the molecular field defined in (3.29), L, is the torque stress (3.28), and T
is the stress tensor as in (3.27). Thus, by (3.77) and (3.79), enforcing (3.80) requires
the following equations to be satisfied:

b+divT =0 and h,+k,+yn=0, (3.81a)

which hold in B, and
t=Tv and ¢, =Ly, (3.81b)

which specify the generalized tractions as special functionals of 0*®.

The first equation in (3.81a) is the static limit of the balance equation of linear
momentum (3.66) in the inviscid case, while the second equation coincides with
(3.30); both have been reobtained®® within an alternative, independent formulation
of statics. Since both these vectorial equations are in the single unknown field n, they
apparently overdetermine it. We shall see below how such an overdetermination can
in general be resolved.

24 Here, as in (3.9), p and y are unknown LAGRANGE multipliers, with precisely the same
mechanical meaning.

25 There is more than a pedagogical reason in favor of such a derivation. The method il-
lustrated here will guide us to obtain the appropriate equilibrium equations when in Sec-
tion 5.2.1 we move in less traditional territories.
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Now we pause briefly to consider other consequences of the principle of virtual
power, which must hold whenever equations (3.81) do, though some might require
more labor to be derived directly from these.?®

Special Virtual Motions

The first of such consequences follows from taking as virtual motion a rigid motion,
described by the system of generalized velocities (vg, fir). Paraphrasing (2.71), we
write vg as

vR(x) = v, + W(x —0), (3.82)

where v, is an arbitrary vector, representing the virtual velocity of the point 0, and
W is an arbitrary skew-symmetric tensor. Moreover, we set

ng := Wn, (3.83)

which, by (3.36), means that n = 0, and so the director n is conveyed along with the
fluid and remains at rest relative to it. By requiring .% (®) to vanish for all ® along
a rigid motion, which is a kinematic consequence of .7 (®) being frame-indifferent,
with the aid of (3.79) and since vy satisfies (3.78), we reobtain ERICKSEN’s identity
(3.21), as the reader will easily verify.

Since .% (®) vanishes on all virtual rigid motions, (3.80) requires that % @ (®) +
# © (@) vanish as well. Use of (3.82) and (3.83), by the arbitrariness of v, € V and
W € Skw(), yields

/de—l—/ tdA =0, (3.84a)
® @

/[(x—0)®b+n ®kn]dV+/ [(x—0)®t +n®cp]dA € Sym(V). (3.84b)
® I* @

While (3.84a), easily recognized as the balance of all forces acting on the subbody
® in equilibrium, is an immediate consequence of (3.81a); and (3.81b);, (3.84b) can
be employed to establish more directly formula (3.75) for the couple stress tensor L.

By requiring the skew-symmetric part of the tensor in (3.84b) to vanish and us-
ing the fact that the axial vector of the tensor (b ® a —a ® b) is a x b (see also
Appendix A.1), we give (3.84b) the following equivalent form:

/[(x—o) xb+nxk,dV +/ [(x —0)xTv +nxLyv]ldAd =0, (3.85)
® * P

where use has also been made of (3.81b). Equation (3.85) clearly indicates that the
tensor L. defined as in (3.75) designates the couple stress. Use of (3.75) and the
divergence theorem reduces (3.85), valid for all ® € @, to its equivalent local form
(3.66), which we need not reproduce here.?’

26 This again serves more the purpose of illustrating a method than that of drawing new con-
clusions.
27 We thus remove the indeterminacy on L signaled on page 182 above.
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Compatibility Potential

Here we write explicitly the condition that must be met to ensure the compatibility
of both equations in (3.84). We start from an identity that follows from (3.29) and
(3.27),

VW +divTg + (Vi) h, = 0, (3.86)

and is more easily proved in indicial notation. By (3.31), we may write

ow ow ow ow ow
Wi — |\ Ngis— = T Ni+ —Nk,ji — nk,ija_ — Nk ,
J Nk.j J

ank,j ong 8nk,j ank,j

whence, since for a smooth director field ng j; = ny ;;, we obtain (3.86) in compo-
nent form. Making use of both equations in (3.81a) and recalling (3.18), we arrive
from (3.27) at the following compatibility equation:

VW +Vp—b—(Vn)'k, =0, (3.87)

which is equivalently stated by requiring that there be a function U = U(x,n) of
position x € ® in space and orientation n € S? such that

b+ (Vn)'k, = VU. (3.88)

Once (3.88) is met, (3.87) delivers the pressure p to within a hydrostatic, uniform

pressure po:
p=po+U—-W (3.89)

A way to satisfy (3.88), though presumably it is not the only one, is to assume

that
oUu oUu

b= o and k, = PR (3.90)
Here the derivative %—Z is meant to be computed ignoring the possible spatial depen-
dence of n. The derivative 38—[,{ is to be interpreted in the intrinsic sense, made clear
for example by Lemma 3.6 of [353, p. 133]: it is by definition a vector orthogonal to
n. By (3.90) and (3.29), the second equation in (3.84), now compatible with the first,
may also be written as

. [ OW aw U
div (—avn) T on + on +yn=0, (3.91)

which is the EULER-LAGRANGE equation for the energy functional
&n] = / (W -=U)dV, (3.92)
®

subject to the constraint (3.3).
Thus we have shown that the static limits of equations (3.24) and (3.25), which
can also be obtained independently from a principle of virtual power, are compatible
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with a purely variational formulation with energy functional & as in (3.92), provided
that compatibility condition (3.88) is satisfied. The stress tensor T in (3.27), com-
puted with p as in (3.89) on a solution of (3.91), describes the distribution of internal
forces in B at equilibrium. It has also been employed in [115] to compute elastic
forces on defects of the director field, a topic that exceeds the scope of this book.??
We now illustrate a physically significant case in which both equations in (3.90)
hold for a potential U that can easily be determined.?’ This case arises when the
liquid crystal is subject to a magnetic field H . According to the explicit computations
of LEATHEM [176], H exerts both a magnetic body force by, and a body couple k,
given by
b,=(VH)M and k,=M x H, (3.93)

where M is now the magnetization induced by H. Under the assumption that M is
linearly related to H, a classical symmetry argument (see, for example, [307] and
[353, p. 95]) shows that

M=y H+ (x)— x1)(H -n)n, (3.94)

where y| and y are the magnetic susceptibilities of the material when H is parallel
to n and when H is orthogonal to n, respectively.’’ The diamagnetic anisotropy,
defined by

Ay =) — XL (3.95)

can be either positive or negative, each sign characterizing a different interaction
between H and n, as we shall soon show.
By (3.94), (3.95), and (3.72), we obtain from (3.93) that

b=y (VH)H + Ay(H -n)(VH)n, (3.96a)

knw=Ax(H -n)nx H =n xk,. (3.96b)

In particular, (3.96b) shows that for Ay > 0 the magnetic torque is aligning, since it
tends to align n like H, whereas for Ay < 0 it is misaligning, since it tends to align
n at right angles with H . Equation (3.96b) also implies that

kn=Ax(H -n)(I1-n®@n)H, (3.97)

since, by (3.90),, k,, - n = 0. We now show that both (3.96a) and (3.97) agree with
(3.90), provided we set

28 Static defects are singularities in the solutions of equation (3.91). There is a vast literature
concerned with them. We cite only the following works, which treat this topic at different
levels of generality and rigor: [36, 37, 135, 136, 114, 166, 167, 168, 169, 172, 230, 286,
308, 355]. More recently, defect dynamics has also become the object of mathematical
studies. We refer the reader to some papers that may be suggested as first readings: [25, 46,
47,74, 151, 162, 261, 264, 269, 270, 285, 309, 314, 330, 336].

29 See also [92] and [183].

30 Here both x| and x| are considered to be material constants, uniform in space.
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1 1
Un = EM -H = E[;(L(H “H) + Ay(H -n)?]. (3.98)
While differentiating the magnetic potential Uy, in (3.98) with respect to n readily
delivers’! (3.97), to obtain (3.96a) we note that

OUn
ox

since the field n is regarded as fixed in computing this derivative. To prove that (3.99)
delivers the same body force b as (3.96a), we need only remark that H is irrotational
in B, and so its gradient V H is a symmetric tensor.

By (3.92), — U, is the magnetic energy that must be minimized together with the
elastic energy W for n to attain a stable configuration. It readily follows from (3.98)
that for Ay > 0 the energy —U,, is minimized when n is parallel to H, whereas for
Ay < 0 it is minimized for n orthogonal to H. This shows how a magnetic field
interacts with the nematic director. A completely analogous characterization can be
derived for the action of an electric field in the linear regime.*?

= y.(VH)'H + Ay(H -n)(VH) n, (3.99)

3.1.5 Thermal Effects

We have so far studied the isothermal dynamics of liquid crystals: all thermal ef-
fects have been deliberately neglected. On the other hand, in Section 2.3.3, we have
shown already how heat conduction can be incorporated in the theory of isotropic,
linearly viscous fluids, including the temperature gradient g := V6 among the lo-
cal measures of dissipation. Here, following closely the line of thought presented
in Section 2.3.3, we set the scene to study thermal effects in liquid crystals: we
shall encounter a new torque affecting the director motion, which is imparted by
a temperature gradient. We shall see how the polar symmetry of nematics prevents
such an action from deploying, so that it will be effective only in cholesteric lig-
uid crystals, proving itself a cause likely to explain an old effect, first observed by
LEHMANN [178].

As we first did in (2.282), we allow g in the collection d of dissipation measures,
along with D and n. A quadratic form in (g, D, r), which may also depend on n as
a parameter, is both hemitropic and even under simultaneous inversion of n and n,
only if represented in the form?}

31 With the aid of the projection that makes k,, obey the condition ky, - n = 0.

32 MAXWELL’s equations have here made only a partial appearance. We have subjected H
to curl H = 0, but we neglected to enforce div B = 0, where the magnetic induction B
is related to H in a fashion similar to (3.94). An approximation in which the equation for
B can be ignored is discussed in [353, §4.1.1], to which we also refer the reader for an
analogous discussion on the dielectric interaction.

33 The two hemitropic, but not isotropic, terms appearing in (3.100) are similar in structure to
(3.50), which was ruled out by the nematic symmetry (3.4); the inclusion of g in the list d
of dissipation measures has made these terms available. See also [279].
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o 1 o 1 1 1
R(n;g.D.n) =§Vln2 + y2n-Dn + 5)’3(])”)2 + 5)’4(" -Dn)* + Vs trD?

1 1 o -
+ Elegz + Ekz(g -n)? +ksg-nxn+isg-Dnxn,
(3.100)

where the first five terms reproduce the dissipation function in (3.49), the sixth term
is the analogue of the thermal term in (2.282), and only the last three terms are new,
the first reflecting the anisotropy of the medium and the last two expressing thermal
interactions with director relaxation and flow, respectively. Together with the y’s, the
k’s are now functions of the temperature 6.

For R in (3.100) to be positive semidefinite, these functions cannot be arbitrary.
Reasoning precisely as we did to obtain the inequalities (3.57), we prove that these
must be supplemented by the following to ensure positive semidefiniteness to the
extended dissipation in (3.100):

k1 + k2 =20,

k1(ys +2ys) =3 2 0,

yikL— i3 0,

k1[y1(ys + 2ys) — v3] — 2yikaka — y1k5 — k3 (y3 + 2y5) Z 0.

Requiring R in (3.100) to be an isotropic function, so as to comply with the sym-
metry of nematic liquid crystals, would set both k3 and k4 equal to zero. It will be
apparent below how this would simply reduce all thermal effects to an anisotropic
heat conduction. Thus, to avoid lessening the consequences of the theory, in this
section we shall consider cholesteric liquid crystals.

Allowing for thermal effects, we also need to consider an elastic free-energy
density W depending on the temperature 6. That this can be achieved by simply
regarding the elastic constants in FRANK’s formula (3.32) as functions of 6 or by re-
sorting to a more general functional dependence is here immaterial: we shall simply
assume that W = W(6, n, Vn), so as to write the time rate of the free energy .% as

. aw . oW oW
= —_— - . R _ v : | .
F(®, x) /@t[869+ o n+3Vn ( n)]dV (3.101)

Echoing (2.284), we assume that the entropy per unit volume, o7, is a function of
(0,n,Vn):
on =H(0,n, Vn), (3.102)

so that, by (2.209), the thermal production .7 can be written as

T(®, x) = / (Hé + éq -g) dv, (3.103)
®

where g is the heat flux. According to the general prescription (2.210), the total
working # in (3.5) here becomes
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WO =@ Ly© g -7,

where _W("‘), #'© and A are still given by (3.7), (3.9), and (3.10), respectively,
while .% and .7 are as in (3.101) and (3.103) above.
The form of the principle of minimal reduced dissipation appropriate to the
present setting is thus
S0 =55, (3.104)

where Z is the functional with density R in (3.100), formally defined as in (3.38).
An easy computation shows that

. 1 w .
SO =sw — (H59~|——q-g)dV—/ a—sedv,

which, by combining (3.23) with the reasoning that in Section 2.3.3 led us to (2.286a)
and (2.289), here we conclude that

H = _8W (3.105)
T ’
and
oR
q=-90—. (3.106)
g

While the former equation simply restates for liquid crystals the result proved in
(2.247) for classical fluids, the latter extends the classical FOURIER’s law. It is read-
ily seen from (3.100) that ¢ is explicitly given by

g =—k18 —Kk2(g -n)n —k3n xn—k4Dn xn,
where the functions «; of 8 defined by
K,‘IZ@IZ,‘, i=1,...,4,

represent generalized thermal conductivities.

Equations (3.105) and (3.106) followed from the thermal variations (66, 5g) in
(3.104); the mechanical variations (§v, §n) are to be performed precisely as they
were in Section 3.1.2 above, and they yield formally the same balance equations as
in (3.42) and (3.46). However, new thermal contributions can be recognized in both
the dissipative stress tensor Tyis and the viscous generalized force gy, still delivered
by (3.45) and (3.68), but with R as in (3.100); these are given by

1_ _ 1
Tgﬁi:zm[n@(gxn):(g Xn)@n|+iks(nxg)Qn (3.107)
and
g = —icsg xn,

respectively. Thus, the stress tensor T that enters the balance of linear momentum
(3.42) now reads
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T=—pl+Tg+ T((;;s]) + T((j?s,

where Tg is the ERICKSEN stress (3.31), Tg‘;) is the mechanical dissipative stress
tensor, still given by (3.59), and Tgl?s is the thermal stress in (3.107). Likewise, the

balance of torques expressed by (3.70) now becomes
n x (gn(m> + g9+ hy+ kn) -0, (3.108)

where grfm) is the mechanical generalized force, which by (3.58) can still be written

as

g™ =

though the viscosities y; and y» are now functions of temperature. In (3.108),

—y1n — y;[Dn — (Dn - n)n],

kO :=nx grft) = —ik3n X (g xn) = —i3[g — (g - n)n] (3.109)

is clearly to be interpreted as the thermal torque acting on the director.*

LEHMANN [178] first noted a thermal phenomenon in cholesteric liquid crystals
that is now traditionally named after him. He observed that an undistorted cholesteric
texture like the one represented by equation (3.33) would perform a precessional
motion at uniform rotational speed, as though it were a rigid whole, once subjected
to a temperature gradient g directed along the helical axis e3. No flow appears to
sustain the motion, which is ultimately a uniform rotation of all directors n about the
axis e3. LESLIE [181] showed how the thermal torque in equation (3.109) has the
potential to explain LEHMANN's effect:> since g is orthogonal to n, in this case k®
is parallel to g; in general, as shown by (3.109), k® is proportional to the component
of g orthogonal to n.

As also shown by LESLIE [181], the mechanical balance equations must be sup-
plemented by an equation for the thermal field 6: in LEHMANN’s problem this equa-
tion is solved by a constant g, orthogonal to the plates bounding the sample, which

34 Though ACEN clearly responsible for the thermal effects in cholesteric liquid crystals, the
reader should not be induced to believe that it is the only one depending on the temperature:
all other torques in (3.108) actually do.

35 LEHMANN’s effect was also referred to by OSEEN [259] as follows: “He [Lehmann] found
that in certain cases a substance, spread out between two glass surfaces, would be put into
motion, when influenced by a flow of heat coming from below, during which motion the
different drops of liquid seemed to be in violent rotation. Further investigations convinced
Lehmann that in this case it was not the drop itself, but the structure that moved.” It is
instructive to read how LESLIE [181] in turn comments about OSEEN’s interpretation of
LEHMANN'’s effect: “Oseen goes on to state that he considered that the motion was due
to the molecules rotating with uniform speed around vertical axes drawn through their
centres of gravity. He claims that his theory provided an explanation of the violent rotation,
since his viscous terms vanished for such a motion. However, he offered no explanation
of the forces creating the motion.” The torques responsible for LEHMANN’s effect have
the thermal nature first illuminated by LESLIE [181]. We also refer the reader to [182],
[34], and [75], where thermomechanical effects in cholesteric liquid crystals are further
explored.
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are taken at constant, different temperatures. As already shown in Section 2.3.3, such
an equation stems from the first law of thermodynamics (2.195). Letting the internal
energy per unit volume be denoted by W, by (2.204), (3.102), and (3.105), we set

oW
We:=W+0H=W—0W. (3.110)
Thus, (2.195) becomes
( Wed V) =W @ x) + 2(C. x). (3.111)
®;

where #/© = w@ _ ¢ is the external power,*® and 2 is the heating, which we
recall from (2.194),

2(®, x) =—/ q-vdA+/ odV, (3.112)
@ ®

where o is the heat supply.

Before deriving from the local form of (3.111) the energy balance equation, we
find it instructive to give #/( an equivalent form, valid along the solutions to the
mechanical balance equations, thus extending a result obtained in (2.136) for the
power stress of classical continuum mechanics. It readily follows from (3.42) and

(3.46) that
aR W oW
7@, =/ —divT- — 4+ —— —div———| i |dV
(@20 (ptI: v v+(8n + on v BVn) n:|
+/ (Tv-v+a—Wv-i1)dA
@, aVn (3.113)
oW OR oW
— T.-V — . Vn — 4+ — | -n|dV
/(;’;I: n+8Vn n+(8ﬁ+8n)ni|
= 7@, p).

where, as in (2.136), #' @ is interpreted as the power of all internal actions. Like
(2.137), equation (3.113) expresses the balance of power: the power expended in
an inertial frame by the external forces applied to a subbody ® in a motion y is
balanced by the power expended by the internal forces and the rate of change of
the kinetic energy. Clearly, in this case the viscous, dissipative actions, which also
include thermal contributions, are to be reckoned among the internal forces.
Letting
O.—r.ve+ v (3_R B_W)

wW.=T-Vv + Vn Vn + 0 + on n (3.114)
denote the density per unit volume of the internal power # ®, by (3.110) and (3.112),
we give (3.111) the following local form:

36 With #/© and ¥ as in (3.7) and (3.10), respectively.
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oW A
(W 93_9) =W _divg + 0. (3.115)

We shall soon give an equivalent, more expressive variant of this equation. Here
we pause to remark that, by (3.113), # O must be frame-indifferent, since W © ig
so. On the other hand, the single terms that constitute W ® are not frame-indifferent.
It is instructive to transform W® in (3.114) into a sum of indifferent terms. To this
end, writing Vv = D + W and making use of (3.44), we easily prove that

ow oR
T-Vvo=T-D— — - (Vo)W +n-W—-. (3.116)
oVn on
Using (3.116), (3.36), and (3.21) in (3.114), we arrive at
0 R 0 o
wh =T.D+ a_W [Vi — W(Vn)] + (a + a—W) n. (3.117)
n

While the first and last terms on the right-hand side of (3.117) are clearly frame-
indifferent, proving that the tensor [Vi — W(Vn)] is also indifferent is an exercise
that at this stage the reader should be able to do with little’” or no guidance.

Yet another form of W may be derived, which further simplifies (3.115). Since
trD =0,

oW
T-D:Tdis-D—(Vn)Tm-D, (3.118)

where Ty = T((;::) —i—T(l) is the total dissipative stress tensor. It follows from inserting
(3.118) into (3.117), from making again use of (3.36) and (3.21), and from applying
the kinematic identity (3.16) that

aw 0

w® = — - (Vn) + —
Tais - D+ o5 - (Vm)' + == -1t (3.119)

Computing W in (3.115) with the aid of the identity

W . ew oW
N RS STAASIE v
W=350% 30 "t v V0

already implicit in (3.101), we readily obtain from (3.119) that (3.115) reduces to

W 9 Tgs - D+
809 = Ldis * n

(3.120)

where all terms are frame-indifferent and ¢ is given by (3.106). Equation (3.120)
is the energy balance equation, which must be added to the mechanical balances to
determine the evolution of the temperature 8 along with that of the director n and the
flow v.

37 The reader is advised to prove first that (Va)* = £(Vn)* + RVaR", where  is the spin
tensor in (2.50), and then employ (2.63) together with the frame-indifference of Vn, that
is, (Vn)* = RVnR".
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One final consequence can be drawn from (3.117) when the director n is con-
veyed by the flow. Whenever this is case, n vanishes identically and (3.117) reduces
to

wO =T.D+ W [Vi — W(Vn)],
oVn
where now n = Whr. By differentiating in space both sides of this latter identity and
applying (3.75), we arrive at

WO =T.D+L-Vuw, (3.121)

where w is the spin vector. Equation (3.121) coincides with (2.146), thus showing
that here the balance of power reduces to that contemplated by BEATTY’s theory of
general interactions presented in Section 2.1.6 only when the motion of n relative to
the flow is artificially suppressed. An equivalent way of saying this is that BEATTY’s
theory is subsumed under ERICKSEN—LESLIE’s.

3.2 Variable Degree of Orientation

We have seen in Section 1.3 that the MAIER—SAUPE mean field theory predicts uni-
axial equilibrium states of the form

Q=S(n®n—%l), (3.122)

with a temperature-dependent scalar order parameter S that is given by
S = (Pa(n-u)),

where the brackets (...) indicate a local orientational average over the molecules
and P, is the second Legendre polynomial in n - u, the cosine of the angle between
the molecular figure symmetry axis # and the nematic director n. S can take values
between —% and 1. It can be expected and it is usually observed that the alignment
is well approximated by the form (3.122) also away from equilibrium as long as
distortions do not get too large. A theory for uniaxial nematics with variable order
can naturally be obtained as a special case of a theory for the alignment tensor as
treated in Chapter 4. Here, following mainly ERICKSEN [99], we directly derive
such a theory by treating S and n as independent variables and extending the uniaxial
director theory with constant scalar order presented in the preceding section. In this
way, the new theory arises as an extension of the old one, and the differences between
the two theories present themselves in a most transparent fashion.

The formal development of the theory is precisely the same as before, but now
the ingredients of the power and dissipation can also depend on the variable scalar
order parameter S and its spatial and time derivatives. D’ ALEMBERT’s principle and
the principle of reduced minimum dissipation hold in the very same form. However,
because n and S are treated as independent variables, a new independent general-
ized velocity S is present, and apart from the equations governing flow and director
evolution, a third equation for the evolution of S arises.
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3.2.1 Nondissipative Dynamics
Conceptually, our development here parallels rather closely that of Section 3.1, and
so we can afford to be more concise, almost schematic.
External Agents

The external power expended on a uniaxial nematic with variable order is an exten-
sion of (3.7) that accounts for possible external actions on S,

W@)((P,,X):f (b-v+kn-r'l+LS')dV+/

(t-v+cn-i1+KS‘)dA,
®; 0* @

where L and K are generalized body and contact force densities acting on the order
parameter S

Power of the Constraints

The constraints on the velocity field and the unit director are the same as before.
Although S is by its definition constrained® to be between —% and 1, we treat it as
a free variable, and so we have, as before,

V/(C)((Pt,x):/ (yn'it—Vp'v)dV—i—/ py-vdA.
(P[ 3*(91‘

Kinetic Energy

While the kinetic energy in principle contains a contribution related to S, this is
generally negligible for the same reasons cited before, namely, that molecular inertia
is small. Thus we use as before

f((?,,x):/ ov-vdV.

®;

Free Energy

The free energy density is now a function W = W(S,VS,n, Vn), and it will in
general contain not only elastic terms, but also a LANDAU-DE GENNES potential in
S, which is illustrated in detail in Section 4.1.1. In analogy to (3.22), W has to satisfy
the invariance requirement

W(n,Vn) = W(S,RVS,Rn,RVrR") (3.123)
38 The unilateral bounds to which S is subject are different from the other constraints consid-

ered so far: they are to be valid on the solutions to the equations of the theory and may be
favored by the action of some internal potential, such as the one considered in Section 4.1.1.
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for any proper orthogonal transformation R.
We again have

F@.x)= | Wdv,
®;
where now
) ) W . W )
W Ly S+ —— . (VS).
W=w " avn VW 355+ 555 (V9

Computations analogous to those performed to arrive at (3.16) show that the material
time derivative of the gradient of S can be written as

(VS) = VS — (Vu)TVS.
With this, after an integration by parts we find that

— vl (vl — + Vv — .
F (@, x) /, %dw |:( n) 3 +VS® p } v

+(8—W—diva—W)-h+(a—W—div 8W)-S}dv
n n

as A

w oW
—(Vm)T ooy — VS :
+/a*a>,%[ N ®avs"} ’

Variation of the Working

Requiring the variation §77 of the total power to vanish shows that the equations for
the director remain the same as before, while the balance of linear momentum and
the associated traction condition hold with the stress tensor
ow aw
T=-pl—(Vn) — - VS ® ——.

PI=Vm) 5e, ¥ 9vs
In addition, requiring the generalized forces multiplying the variations §S to vanish
shows that the equation

W (3.124)
S ovs
must hold in ®; and that
ow
avs V=K

on 0*®;.
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3.2.2 Dissipative Dynamics

Since S is an indifferent scalar, its material time derivative S is frame-indifferent by
(2.80), and we can construct the dissipation function as R = R(n, S; D, n, S), which
is a quadratic form in (D, n,S), where both n and S are regarded as parameters. The
most general shape this can take that complies with the nematic symmetry (3.4) is

o - . 1 . 1 R .
R(n,S:D.n,S)=B1Sn-Dn+ 5;3232 + Eylnz + yon -Dn
1 1 1
+ 5;/3(Dn)2 + E;/4(n -Dn)? + 375 trD?, (3.125)

where only two new viscosity coefficients 81 and 8, are needed to account for the
dissipation due to changes in S. However, the viscosity coefficients are no longer
constants, but all §’s and y’s are functions of S subject to the requirement that R
in (3.125) be positive semidefinite. Reasoning as to arrive at (3.57) above, we easily
prove that the positive semidefiniteness of R is equivalent to the following list of
inequalities:

Y1 20,

ys 2 0,

y1(ys +2ys) —y3 2 0,

B2 =0,

B2(2ya +2y3 +3ys) — B 20

which were also obtained by ERICKSEN [99] by a different method.
It then follows that the equations of motion still hold in the form (3.24) and
(3.25), where the stress instead of being given by (3.44) is now

®8n E(X) + =

w1 dR  9R aR
T:—pI—(Vn)—+ ( ) D

ow
—VS(X)a +,31$n®n

Furthermore, the additional equation (3.124) becomes

W oW oR
s Wovstas T b

which with (3.125) is

+ﬁ1n-Dn+ﬂZS=L

Apart from the microinertia, which we have neglected here, the evolution equations
that we find are the same as ERICKSEN’s [99], where again the extra PARODI-type
relation he derived is automatically satisfied.
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3.2.3 Rotational Momentum and Couple Stress

The invariance property (3.123) of the free energy here leads us to the equation

ow oW
ovVS ~ On dVn

T
VS ® — + — ®n+ %(VH)T + (8—W) (Vn):| € Sym(V),

in analogy to (3.21). Performing exactly the same computations as in Section 3.1.3
for the standard director theory then shows that the balance of rotational momentum
holds with body couple and couple stress that are formally precisely the same as in
(3.72) and (3.73). No use is made in this derivation of the balance equation (3.124)
for S, and the external actions on S do not contribute to the body couple. This shows
that while once again the classical balance equation of rotational momentum is valid,
other than in the case of the standard ERICKSEN-LESLIE theory, the continuum
theory for a director with variable scalar order parameter cannot simply be reduced
to the balance of rotational momentum.

3.3 Biaxial Nematics

As we have seen in Chapter 1, the average orientation of an ensemble of biaxial
molecules can be represented by two order tensors Q and B, defined in (1.66) in
terms of their microscopic counterparts q and b. If the simplifying assumption is
made that these tensors share a common eigenframe (n, m, ), they can be written in
the form

1
Q=S(n®n—gl)+T(m®m—l®l), (3.126a)

1
B:S’(n@n—§I)+T’(m®m—l®l) (3.126b)

with four scalar order parameters S, 7', S, and 7".

It is easy to confuse the microscopic origin of biaxiality and its macroscopic
manifestion. Even experienced researchers have made the simplification of identi-
fying the microscopic molecular axes with the macroscopic directors, for example
in [43]. However, this is sensible and permissible only in special cases, such as for
a perfectly oriented sample. In such a sample, the four order parameters have the
valuesT =S’ =0and S = T’ = 1, and so Q and B take the form

1
Q:n®n—§I and B=m@m-1QI.

In this case, all the long molecular axes are aligned along the common direction n
and all short molecular axes are aligned along m. However, the more general case
(3.126) can also be used to motivate a director theory. If all four order parameters
are assumed to be constant, the orientation of the biaxial nematic can indeed be
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described by the triad of unit vectors (n, m, [), where now no assumption is made
about individual molecules.

The first theories for biaxial nematics were formulated in terms of three perpen-
dicular directors [287, 165, 123]. While this approach has a certain appeal because of
its symmetry with respect to the three directors, it ultimately leads to unnecessarily
complicated equations. It also fails to account for the fact that the symmetry in the
three directors is superficial: there is usually a dominant director that is the only one
that survives in the transition from a biaxial to a uniaxial nematic phase.

A more transparent approach was presented in [186]: there the theory is phrased
in terms of two unit vectors, the usual director n and a single secondary director
m perpendicular to it.* In line with their interpretation as eigenvectors of €, both
directors have to obey the nematic symmetry, that is, one requires that both n ~ —n
and m ~ —m. In practice, this implies that scalar quantities like the elastic free
energy have to be even expressions independently in both n and m. The resulting
equations for both directors are analogous to the one for the single director in the
uniaxial case, and also many of the stress components are analogous to those found
in the uniaxial case. We follow this approach and derive equations for two directors.

Two-Director Description of the Biaxial Phase

We want to phrase a continuum theory for a biaxial liquid crystal, assuming that the
degree of orientational order is constant throughout. This means that we need to em-
ploy two orthogonal unit vectors, the directors n and m. They satisfy the constraints

n-n=m-m=1, andn-m = 0. (3.127)
We assume biaxial nematic symmetry of the material, that is,

n~—-n and m~ —m. (3.128)

3.3.1 Nondissipative Dynamics

Here our development parallels that in Section 3.2.1: an extra order descriptor is
added to n, but instead of being the scalar S it is the other director m.

External Agents

In the case of a biaxial nematic, external agents can expend power against both direc-
tors. Even though the directors themselves are not free to move independently, forces
acting on them can in principle be completely independent. One could, for example,
imagine molecules with two different axes of symmetry where each of the axes is
susceptible to a different type of interaction with external fields. The macroscopic

39 If desired, the third director I can always be recovered via the vector product I = n x m,
but there is no need for / to enter explicitly the dynamical equations.
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directors as averages of the molecular axes’ orientations would in turn be susceptible
to different external influences. The power of the external agents is thus given in the
general form

WO@, )= B-v+kon+ky-m)ydv
@ (3.129)

+/ (t-v+en-n+cen-m)dA
8*(?,

with the body force b and traction ¢, and generalized volume and surface forces k,
and ¢, acting on n and k, and ¢, acting on m.

Power of the Constraints

The power of the constraints has four parts. As usual, a pressure p serves as LA-
GRANGE multiplier for the incompressibilty constraint. Three further terms arise
from the directors’ constraints (3.127): they keep the directors at unit length and
perpendicular to each other. We introduce three further LAGRANGE multiplier fields
y, T, and k that ensure that the power of the constraints, obtained by differentiating
(3.127) with respect to time, vanishes. We obtain

W@, x) =/ [yn-n+tm-m+xk@m-n+n-m)+ pdivv]dV
®;

= [yn-n+tm-m+x@m-n+n-m)—Vp-v]dV
®;

+/ pv-vdA.
a*(P[

Kinetic Energy

While the kinetic energy in principle contains contributions related to 7 and m, these
can usually be considered negligible because of the small molecular inertia. Thus we
use as before

Jf'(@z,x):/ gi-vdV.

®;

Free Energy Density

We assume that the elastic free energy density is a function of the two directors and
their first gradients, W = W(n, Vr, m, Vm). For such a function W to be compati-
ble with the biaxial nematic symmetry (3.128), it has to satisfy

Wn,Van,m,Vm) = W(—n,—Vn,m,Vm) = W(n,Vn,—m,—Vm).

Furthermore, in analogy to (3.12), W has to satisfy the invariance requirement
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W(n,Vn,m,Vm) = W(Rn,RVnRT,Rm,RVmRT),

where R is an arbitrary orthogonal transformation, or, in the case of a chiral biaxial
nematic, a proper orthogonal transformation. The general form of W is derived in

[122], an equivalent expression also including surface terms is given in the appendix
of [318].
The total free energy .% then results as usual from the integral

F (@, x) = W(n,Vn,m,Vm)dV.
®;

Using exactly the same steps that led us to (3.17), we can cast its time rate Z in the

form

oVm

n 8W—d' ow a1 3W_d. ow gy
on v oVn " om lVBVm "

F(®, 1) =/(P {div [(V”)TgTWn + (my ].v

n m
ow ) ow .
+ (mv) -n+ (8va) -m}dA.

Variation of the Working

The variation of the total power % now takes the form
aw oW
W = b—Vp—po—div| (V) — + (Vm) —— | | - §
@,%[ P 1V(( " 5va t O 3Vm)} °

oW oW .
kq, —— +div— |-
+ |: + yn +km n + div 8Vn] on

ow ow
+lkmw+tm+xkn— — +div———>/|-6m; dV
om oVm
oW oW
t I+ (Vn)'— + (Vm)" —— -8
+/3*@,%[ +(p O gen O™ avm)"} v
oW oW
— vl sn — " yl.8m'ldaa.
+ [cn Vn v} sn + [cm Vm v} 8m} d
The equations resulting from the requirement that this variation be identically zero
are

pv = b +divT,
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and
g—W—div BBVW —kn=1tm +«kn
in @; and
t =Ty,
aw
ch = mv,
and
14
Cm mv,

on 0*®. Here, the stress tensor is
oW oW
T=-pIl—(Vn)'—.—(Vm) —.
P (Vn) oVn (Vm) aVm
The part of the stress that is analogous to the ERICKSEN stress (3.31) is

w

0 ow
Tg = —(Vn)'— — (Vin)"——.
E (V) oVn (Vi) oVm

3.3.2 Dissipative Dynamics

According to our principle, the dissipation function depends on the stretching D, the
directors n and m, and indifferent time derivatives of the directors. We choose the
corotational time derivatives

n=n—Wn and m=m—Wm.

The dissipation function needs to be a quadratic form in (D, n, m); it is found by
considering all scalar invariants in these three rates and the two directors. The biaxial
nematic symmetry (3.128) requires that this function be even independently in both
(n,n) and (m, m). The relevant invariants can be constructed, for example, from the
table in [357]. However, the integrity basis given there is minimal only if all the
vectors and tensors entering it are unrestrained and independent of one another, so
care has to be taken to remove redundant terms.
We write the dissipation function as

R(n,m:D,n,m)
) B

o 1 1 1
:51/1"2 + yan - Dn -+ §y3(Dn)2 + 5)’4(" . Dn)2 -+ 57/5 tI'DZ

o 0 1 1
+ SHun? + potit - Dm + 2 pa(Dm)? + 2 pia(m - Dm)*

—_—N | =

0 [ m)? 4 Giem)?] 3o (i m — i) (- D)

+ —A3(n-Dm)?, (3.130)

N =
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where the y’s are the viscosity coefficients already encountered in (3.49) for the
single director theory, while the p’s and the A’s are additional viscosities introduced
by the biaxial director theory.*” The contributions to R in A; and A, are written in
a symmetric fashion. Only one term is needed for each of these dissipation modes
due to the identity 1 - m = —m - n, which is obtained by differentiating with respect
to time n - m = (. However, because we treat the constraints using LAGRANGE
multipliers, the two directors should be considered independent in performing the
variation, and hence both terms need to be retained. This also ensures that the two
resulting director equations will have the same form; keeping only one of the two
ultimately equivalent terms would destroy this formal symmetry.

Furthermore, a term proportional to (r - Dn)(m - Dm) has been omitted because
of the identity

trD? = 2{(Dn)*> + (Dm)> + (m - Dm)(n - Dn) — (m - Dn)?} ,

which holds for any traceless D and orthonormal vectors n and m. Clearly, other
terms could equivalently have been omitted. Our choice is the same as that made
in [43].

Stress Tensor

In analogy to (3.45), the viscous stress takes the general form

IR
Tis—_
d dVo
_OR L L(OR OR R OR
T I A G R I S T

With Z given by (3.130), the symmetric part of the viscous stress is

= 0R
dls—aD

| —

=yon®n +y3n@Dn +y,(n-Dn)n@n

+uom@m + p3mDm + py(m-Dm)m @ m
+ [A2(n-m) + A3(n-Dm)| n @ m + A4D.

Furthermore, with

oR o 1 o
W y1n+y2Dn+E[Al(n-m)—i—)tz(n-Dm)]m (3.131)
n
40 To our knowledge, a complete set of inequalities in all these 12 viscosities that would guar-
antee positive semidefiniteness of the dissipation function R in (3.130) as (3.57) guaran-
tees positive semidefiniteness of the dissipation function in (3.49) has not yet been derived;
some necessary conditions are mentioned in [43].
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and

R . 1 o
o = am —i—/LZDm—E[Al(n-m)—i—kz(n-Dm)]n (3.132)

we find the skew part of the viscous stress to be

oR oR
skw(Tg) =skw | Q@ — | +skw | m ® —
on om

= y1skw(n ® n) + yrskw(n ® Dn)
+urskw(m ® m) + paskw(m ® Dm)
+[A(m-m) + Az(n - Dm)] skw(n ® m).

Director Evolution Equations

The equations for the two directors are formally given by

oR oW aw

ﬁ—km—dwm—kn:yn—i—xm (3.133)
and

oR n aw di 14 k " (3.134)

— 4+ — —div— —k,, = Tm + kn. .

om  Om oVm "

Equations (3.133) and (3.134) are basically those obtained in [186]. The only
difference is that there the terms with A; and A, appear only in the equation for
n. However, this difference is merely formal, because it disappears once the LA-
GRANGE multipliers have been eliminated.

Formally, the LAGRANGE multipliers can be found by taking the scalar prod-
ucts of equations (3.133) and (3.134) with »n and m. The multipliers can then be
inserted to find two scalar equations of motion: they turn out to be the /-components
of (3.133) and (3.134). A third equation arises from the requirement that the two
different expressions obtained for the multiplier « coincide.

An equivalent, more direct way of finding the equations of motion is by observing
that the /-components of the left sides of both (3.133) and (3.134) vanish, and that
the m-component of the left side of (3.133) equals the n-component of the left-hand
side of (3.134).

Using the abbreviations

oR oW ow
N = — + — —div — — ki,
on * on N 9V "
oR oW ow
M = —+——di —knm,
om + om N oVm "
the equations for the director orientation become
[-N =0, (3.135a)
I-M =0, (3.135b)

m-N=n-M. (3.135¢)
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As can be seen from (3.131) and (3.132), this is a system of three equations that
is implicit in the time derivatives of the directors n and m. Explicit expressions for
the time derivatives can be obtained by observing that

n=ouol+Bm, (3.136a)
w =yl —fn, (3.136b)

with some coefficients «, 8, and y. This is a consequence of the identities n - n =
m-m = 0and n-m = —m-n. Inserting (3.136a) and (3.136b) in (3.135a) to (3.135c)
yields a system of three linear equations in the unknowns «, 8, and y. Its solution

1S41

l-A
o =— ,
Y1
_n-B—m-A
i+ pm+ A
l-B
V== .
M1
Here, we have introduced the abbreviations
14 14 1
A= a—n —div m —kn + y.Dn + EAZ(" -Dm)m,
14 14 1
B = o div m ko 4+ pu2Dm — Ekz(n -Dm)n.

Hence, we find that
l-A n-B—m-A
l + m,
71 Y1+ 11+ A
. l-B m-A—n-B

m = I+ n.
51 i+ i+ A

o
n=—

3.3.3 Rotational Momentum

Another form of the power has been used [186], and it is illuminating to compare
the two different approaches. Because they ultimately stem from actions on differ-
ent parts of a molecule, the generalized forces on the two directors are in principle
independent. However, if one takes the naive view that the director triad (n, m, 1)
behaves as a rigid body, the external power # @ takes the form

W@((Pt,x):/ (b-v~|—k-wn)dV+/ (t-v+c-wy)dA,  (3.137)
(Pt 8*(Pt

where b and ¢ are body and surface forces, while & and ¢ are body and surface
moments, and wy, is now the local rotational velocity of the director triad in the given
frame.

41 Under the assumption that y; # 0, g # 0, and y1 + 1 + A1 # 0.
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To see that (3.137) is just a special form of the more general power employed in
(3.129), we note that if the directors are seen as a rigidly moving whole, then their
time derivatives are given as functions of the rotational velocity w, by

n=w,xn and m = w, X m. (3.138)

An elementary computation, using the orthonormality of the directors n and m along
with (3.138), then shows that w,, can in turn be expressed as a function of 7 and m
as

Wo=nxn+mxm+ (n-m)mxn.

Taking the scalar product with an arbitrary vector / yields
k-wo=n-(kxn)+m-(kxm)—(n-m)[m-(k xn) (3.139)
. 1 . 1
=n-(I—§m ®m) (kxn)—i—m-(l—zn@n)(kxm).
To arrive at the second, symmetric, form of the above equation, we have used the

identity
(n-m)m-(kxn)]=m-n)[n-(kxm).

Equation (3.139) shows that a torque k on the material element can be interpreted
in terms of generalized forces on the directors n and m if we set, for example,

kn:= (I—%m@m)(kxn)

and .
kn = (I—§n®n) (k x m).

Corresponding relations can be used to define ¢, and ¢, in terms of the surface
moment c.
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Order Tensor Theories

The history of order tensor theories is a long and winding one. Since DE GENNES in-
troduced what he called the tensor order parameter in [57, 58] to phrase a LANDAU—
GINZBURG-type theory for the nematic order, many steps have been taken toward a
general continuum theory of nematics with tensorial order. Using standard meth-
ods of nonequilibrium thermodynamics, HESS [142, 143] and later OLMSTED and
GOLDBART [254, 255] obtained constitutive theories for homogeneous alignments,
later generalized by HESS and PARDOWITZ to include also spatial variations [145].
All these attempts were impaired by not yielding the full anisotropy of viscosities
predicted by the ERICKSEN-LESLIE director theory. An extension using a code-
formational model was proposed in [144], and while it recovered the complete
anisotropy of viscosities, it failed to be otherwise fully consistent with the phe-
nomenological ERICKSEN—LESLIE theory [267].

Perhaps more satisfactorily, QIAN and SHENG arrived in [280] at a system of
evolution equations for both the velocity field and the order tensor that in the limit
of uniaxial alignment reduces to the full director theory. However, their derivation
is inspired by analogy with the balance of rotational momentum, which, as we have
already learned in Section 3.2, is appropriate only for a director theory with fixed
scalar order parameter, but which could be misleading for the more general tensorial
order. Eventually, in [310] the dissipation principle of Section 2.2.3 was used to
develop a general framework for a nematic described by a second-rank order tensor.
This framework both unifies the older theories and provides an elegant way to phrase
the general equations.

This chapter has two parts. In the first, we describe the general phenomeno-
logical theory for a single order tensor. We begin with the celebrated LANDAU-
DE GENNES theory, which was originally conceived to describe a liquid crystal close
to the nematic-to-isotropic phase transition. It employs a single order parameter ten-
sor that can readily be related to a distribution of effectively uniaxial particles. We
then develop a general continuum theory that describes the coupled evolution of flow
and orientation.

This theory can, in principle, also be used to describe biaxial phases formed by
uniaxial particles. However, there is as yet no experimental evidence of any nematic
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DOI 10.1007/978-0-387-87815-7_4, © Springer Science+Business Media, LLC 2012



208 4 Order Tensor Theories

formed by such particles exhibiting phase biaxiality at equilibrium. As we have seen
in Chapter 1, a biaxial phase formed by biaxial particles is most naturally described
by a mean-field theory that employs two order tensors. We therefore devote the sec-
ond part of this chapter to a phenomenological theory with two order tensors. As
we shall see, this theory can be developed paralleling exactly the steps taken for
the single-tensor theory, and it therefore offers surprisingly little technical difficulty.
This emphasizes the power of the dissipation principle.

4.1 Uniaxial Nematics

The vast majority of nematic liquid crystals do not, at least in homogeneous equilib-
rium states, show any sign of biaxiality. This is consistent with the MAIER-SAUPE
theory, which is based on a uniaxial interaction between molecules. As we have
seen in Section 1.3, in all equilibrium states the order tensor Q is indeed uniax-
ial. This suggests that one regard the nematogenic molecules as effectively uniaxial
and neglect any actual asymmetry and hence the related order tensor B. Neverthe-
less, biaxiality can still occur, even in stationary states. When competing biaxial
external agents such as electric or magnetic fields, boundary conditions, or a biaxial
imposed flow break the uniaxial symmetry, the alignment can locally become biax-
ial [288, 7, 302, 207]. In chiral nematic liquid crystals, there can even be a small
degree of biaxiality throughout a liquid crystal sample at equilibrium because of the
interplay between chirality and biaxiality [275, 289, 76]. There is no spatially ho-
mogeneous uniaxial minimizer of the free energy. This state biaxiality is not a pure
thermodynamical one but is brought about by the frustration of the liquid crystal that
has to live in ordinary flat space when it could be at perfect ease only in a curved
space [81].

All these manifestations of biaxiality, however, pertain exclusively to a biaxiality
in the distribution of effectively uniaxial particles. If the particles are in fact biaxial,
this might also encourage B to be different from zero. Describing effects of this type
would, however, require a description of the liquid crystal order in terms of the two
tensors, which we develop in Section 4.2 below. For now, we focus attention on a
single tensor.

4.1.1 LANDAU-DE GENNES Free Energy

A phase transition is usually connected with a change in a certain type of order in the
system. The idea behind the LANDAU theory of phase transitions is to write the free
energy as a power series in an order parameter. This order parameter is a quantity that
vanishes in one of the phases. In temperature-driven transitions, this phase is usually
the one with higher symmetry. Upon decreasing the temperature, this symmetry is
broken when the transition to the more ordered phase occurs.
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Order Tensor

The application of LANDAU theory to the nematic-to-isotropic transition is due to
DE GENNES [57, 58], who introduced what he called the tensor order parameter and
what we call simply the order tensor. This is motivated by the optical properties of a
liquid crystal. To find a suitable phenomenological order measure, we look again at
(3.1), the relationship between the electric field E and the displacement vector D:

D =¢E.

In the isotropic phase, D is simply parallel to E, and so the dielectric tensor € is
a multiple of the identity. By contrast, in the nematic phase the dielectric tensor is
normally anisotropic. It can then be written in the form

1 n
€ = g(tre)l—}— € 4.1

as the sum of two parts. The first, %(tr €)1, is the isotropic contribution, and the

second, the symmetric, traceless tensor € = € — %(tr €)1, is the deviation from
isotropy. Because it vanishes in the isotropic phase, it can be used to introduce the
desired order measure. We define the phenomenological order tensor QP via

Q° =7k, (4.2)

where 7 is an arbitrary constant that can be chosen conveniently. By its definition,
QP is symmetric and traceless.

In Chapter 1 we had defined the order tensor Q in (1.66) as the ensemble average
Q = (q) of the molecular tensor q defined in (1.7). We want to choose 7 so as to
make the two definitions compatible. Recall that

1
q=e1®e; =e1®e1—§l,

where e is a unit vector along the symmetry axis of the molecule. If €| and € denote
the permittivities parallel and perpendicular to the symmetry axis, the permittivity
tensor of a single molecule takes the form

€' =cle1 Qe +el(e2®er +e3Qe3).

which can be written as
" =¢cl+ Aeq, 4.3)
where, echoing (1.156), we have introduced the average permittivity
= 2 tre™ ! (€ +2€1)
€:=—-tre" = —(e €
3 3 €l 1

and the dielectric anisotropy
Ae 1= €|| —€]. (4-4)
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Computing the effective permittivity tensor € as the ensemble average of the molec-
ular permittivity tensor €™ leads us to

€ = (M) =€l + Ae{q) = €I + Ae Q. 4.5)
Comparing (4.5) with (4.1) shows that choosing n = 1/ A€ in (4.2) gives

1 A
—0OF —
Q=Q VAR

From now on, we will use this definition, drop the superscript, and simply denote the
order tensor by Q.

By construction, Q and € have the same eigenvectors. Thus the single tensor Q
describes both the degree of order and the orientation of the optical axes. Its eigen-
values, which add up to zero, are the scalar order parameters. When the latter are
assumed to remain fixed, one can recover a director description such as those de-
scribed in Sections 3.1 and 3.3. In this section, we begin by looking at the opposite
case: we assume that the eigenframe of Q remains fixed, which leaves as variables
two scalar order parameters for the description of the phase transition. We then allow
the full tensor to vary and add an elastic contribution. Thus, we proceed to develop
the full continuum theory for the order tensor in two stages, first without and then
also including dissipation.

The free energy density proposed by DE GENNES has two contributions. The first
is a LANDAU-type potential that is a polynomial in the invariants (1.83) of the order
tensor Q. The second is an elastic free-energy density in the form of a quadratic ex-
pression in the gradient of Q. Because of these gradient terms, the resulting overall
expression resembles the GINZBURG—LANDAU expression for the free-energy den-
sity of a superconductor, and the model is sometimes referred to as the LANDAU—
GINZBURG-DE GENNES theory [194].

Bulk Free Energy

We want to write a polynomial in the invariants (1.83) of the order tensor. Because Q
is traceless, its first invariant /; is zero, and only the two invariants I, = tr Q? and
I3 = tr Q3 can be used in constructing a free energy. Up to fourth order, the most
general form of the energy density is

UL(Q) = U + gter + qu3 + % (trQ2)2 + 0(Q%). (4.6)

There is no linear term, and the constant term Uj can be set equal to zero by an
appropriate renormalization of the total free energy. In some older papers a further
term of fourth order proportional to tr Q* appears, but this is redundant because the
CAYLEY-HAMILTON theorem' guarantees that a second-order tensor has at most
three independent invariants. In particular, its application to a traceless tensor shows

1 See (A.4) in Appendix A.1 for a more general identity that implies this classical theorem.
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that 2trQ* = (tr QZ)Z. The fourth order is the lowest that is suitable for the de-
scription of a phase transition, because it allows the free-energy density to have two
distinct minima. For the free energy to be bounded from below, the highest order of
the expansion must be even. Higher orders than the fourth have been considered, and
going to sixth order allows a stable biaxial phase to occur [59, 3]. We do not pursue
this avenue here, because it is more natural to expect a biaxial phase to be formed
by biaxial particles. These give rise to two molecular tensors and so to two order
tensors, a case that is treated separately in Section 4.2 below.

The signs of the coefficients in (4.6) are as follows. For the energy to be bounded
from below, C needs to be greater than zero. For a uniaxial state where the molecules
are aligned on average along the nematic axis of symmetry, tr Q> > 0. By contrast,
if the molecules are aligned on average perpendicular to the axis of symmetry, then
trQ3 < 0. To be able to distinguish between those two states, we must have B # 0.
For the free energy to favor the state of parallel alignment, B < 0 is required, which
we henceforth assume. The coefficient A can have either sign. Normally, B and C
are assumed to be temperature independent, in which case the value of A determines
the phase transition. Usually, the additional assumption is made that, regarded as a
function of temperature 6, A can be expanded in a TAYLOR series around a temper-
ature 6* close to the phase transition, and it is written in the form [59]

A9) = Ao (6 — 0% @.7)

with a constant Ag. Here, 6* marks the temperature at which A = 0 and, as we shall
see below, at which the isotropic phase becomes unstable. Thus, it is the supercooling
temperature of the isotropic phase at the isotropic-to-nematic phase transition.’

We do not use the specific form given in (4.7) but explore the properties of the
LANDAU-DE GENNES potential in terms of a generic temperature-dependent func-
tion A. The first observation is that all minimizers of the free energy density (4.6)
correspond to uniaxial states, which mirrors Theorem 1.9 of the MAIER—S AUPE the-

ory.

Theorem 4.1. If Q is a symmetric, traceless tensor that minimizes the free energy
density in (4.6) with B # 0, then Q is either uniaxial or zero.

Proof. While it is tempting to start from a representation of Q in the form (1.62) and
perform directly a minimization with respect to the order parameters S and 7', this
is not as straightforward as it might appear. Apart from the obvious unixial states
with T = 0, there are also uniaxial states with 7" # 0, as equations (1.92) show. We
follow instead the indirect proof given in [212].

If the invariants (1.83) of Q are represented in terms of its eigenvalues as in
(1.86), we have

rQ* =A%} +23+213 and rQ®=A]+23+13,
2 An alternative model for the temperature dependence of A that is sometimes used assumes

that A(0) = A (1 — 97*) with a constant Ag; see, for example, [142]. The special tem-

perature 6* plays essentially the same role in both models.
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where the tracelessness of Q implies the constraint
A+ Ay + A3 =0. 4.8)

The free energy (4.6) with Uy = 0, when written as a function Uy of the eigenvalues
of Q, thus takes the form

- AL B < ()
UL(Al,xz,x3)=EZAHgZAH;(ZA?) :
i=1 i=1

i=1

Stationary points of U have to satisfy

3

AXj + BA? 4+ C (Z xi) A=k, ie{l,23} (4.9)
k=1

where « is a LAGRANGE multiplier that stems from the constraint (4.8). The system

(4.9) can be rearranged in the form of the three equations

3

Ai—=A)|A+BRA+A)+CY A2 | =0, 1Zi<j=3. (4.10)

J J k
k=1

Let us assume now that there is a solution (A1, A3, A3) of this system with three
distinct eigenvalues. Then the three expressions in the square brackets in (4.10) are
all zero. Taking, for example, the difference of the two expressions with A1 then
shows that

B(A2—A3) =0,

which, since B # 0, contradicts the assumption that A, # A3. Hence any minimizer
has at least two equal eigenvalues, that is, it is either uniaxial or zero O

Let now a uniaxial Q be given in the form

1
Q=S(n®n—§I) 4.11)
with a unit vector n. An elementary computation shows that trQ? = %S 2 and

rQ3 = %S 3, so that the free energy Uy as a function of S is
. A 2B C
UL(S) = =8+ =8+ —s*.
e L TR

To find the minimizers, we set the derivative of ﬁL equal to zero,

N 2A 2B 4C
Ul(S)==-S+—8*+—8§*=0.
L) = 5 5
3 We have actually proved that all stationary points of Uy in (4.6) other than 0 must be
uniaxial tensors.
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This equation has the three roots,

—B + v/ B%2-24AC
So=0 and S4 = ic .

The isotropic state with So = 0 is always stationary. However, since

N 2A 4B 4C
U/(S) = =+ —S + —S2,
L(S) 3 + 9 + 3
and so ﬁL” 0) = %, So is a minimizer of the free energy only when 4 > 0 =: A*.

Its free energy is ﬁL(SO) = 0. The other two solutions exist only when 4 = A™**,

where 5
*k B

T 24C
In this case we find that always S+ > 0, while S_ < 0 for 4 < 0 and S_ > O for
A > 0. The former corresponds to an ordinary calamitic uniaxial state where the
molecules are on average parallel to n, the latter to a discotic uniaxial state where
they tend to be perpendicular to n; see also page 41 above. Their energies can be
readily compared when written in the form [212]

X s2
Ou(S5) = 25 OA + BS).

This shows that, with B < 0, the ordinary uniaxial state with S; always has the
lower energy. The value A, of A at the clearing point, where the nematic and the
isotropic state both have the same (zero) energy, is given by

94, + BS4 =0,

which yields
BZ
T 27C
To summarize, there are three crucial values of A. For A < A* = 0 the isotropic

c

phase is unstable. The value 4 = A, = % marks the transition point at which the
nematic and the isotropic phases have the same free energy. For A > A™* = %
the nematic phase is unstable. Phase coexistence is possible for A* < A < A™*. The
isotropic phase is metastable for A* = A < A, and the nematic phase is metastable
for A, < A < A**. Furthermore, A™* = %AC, so the temperature interval in which
the isotropic phase is metastable is eight times bigger than that in which the nematic
phase is metastable.

Elastic Free Energy

Up to second second order in Q and its gradient VQ there are four scalar invariants:
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Qijx Qijk = IVQI*, (4.12a)
0ij,j Qi = |divQ[?, (4.12b)
Qijk Qik,j» (4.12¢)
€ijk Qji1,i Okl- (4.12d)

Under space inversion, the first three of these terms are invariant, while the last one
changes sign. This latter is thus allowed only in the energy density of a chiral nematic
liquid crystal.* Furthermore, the second and the third terms differ by only a null
Lagrangian, as can be seen from the identity

q24 = Qijxk Qik,j — Qijj Qikk = (Qijk Qix — Qij Qik,k).j (4.13)

and showing that the surface energy density (Q;jxQix — Qij Qikk)v; to which
(4.13) reduces upon integration over any subbody  depends only on the derivatives
of Q along directions orthogonal to the normal v to 9*® [194]. Introducing a tensor-
valued curl of a tensor via

VxQ=c¢€ix0rrei Qej,

the energy density can be written in compact form as’

1 . 1
WQ.VQ) = SL1divQ + 5L |V x Q+ 22Ql” + Laagaa,  (4.14)

where L1, L,, and L4 are elastic constants, while 7, is related through (3.34) to the
pitch p. of the helix spontaneously induced in a chiral nematic. Inequalities akin to
ERICKSEN’s in (3.35) that guarantee that (4.14) is positive semidefinite are derived
in [58, 194].

In the purely (nonchiral) nematic case, for which t, = 0, especially in view of
numerical minimization of the total free energy .% (see, for example [56, 114]), the
elastic energy density W is often written in the following equivalent (indicial) form:

1 1 1
W= ELllQi_i,k Qijk + EleQij,j Qikx + ELS Qijk Qik,j- (4.15)

It is easily seen by comparing (4.15) and (4.14) that the elastic constants L), L’,, and
L’3 are related to Ly, L,, and L4 through the relations

L/l = L2, L/z = Ll - 2L24, Lg = 2L24 - Lz.

The inequalities that guarantee that IV in either (4.15) or (4.14) is positive semidefi-
nite are expressed in terms of the elastic constants as follows:

4 See the discussion of FRANK’s formula (3.32) in Section 3.1.1.

5 Cf. [59, p. 329].

6 The elegant form of the energy given in [59] and reproduced here differs from that em-
ployed in [58, 194] by a reordering of terms and a different assignment of elastic constants.
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L’1 =0, —L’1 = L'3 = 2L’1, 6L'1 + lOL'2 + L =0,

—Ly = Ly —2Ls4 = 2L, Ly 20, S(L1+ L2) —8Ly4 = 0.

In the chiral case when 7, # 0, the elastic energy written in the form (4.14) has
a contribution 2L, 72 tr Q2. Thus, in view of (4.6), it is no longer the change of sign
of A as in the pure bulk case, but the change of sign of A + 4L,7? that triggers the
phase transition.

Because there are only two independent constants in the elastic energy density
(4.14), it is not possible to recover from it the full anisotropy of FRANK’s elastic
energy (3.32). The energy (4.14) does not distinguish between splay and bend defor-
mations. It is possible to recover the full anisotropy by allowing energy terms that are
quadratic in VQ and linear in Q. Though a single such term would suffice to recover
the FRANK energy, there are seven of them, six for ordinary nematics and a further
one for chiral nematics [15].

4.1.2 Nondissipative Dynamics

The total working of a fluid described by an order tensor theory is formally the same
as that in a director theory; we write it as in (3.5) as

W =W Ly - F,

where 7@ is the power of the external agents, #© the power of the constraints,
J the kinetic energy, and .% the free energy. We specify below the precise nature
of these terms.

External Agents

As in the director case, the external power exerted on the nematic has two contribu-
tions. One is again the same power as that exerted by external forces acting on the
material element of an isotropic fluid; see (2.261). In addition to this, power can also
be expended on the order tensor, so that the total external power takes the form

V%a)(@t,x):/ (b-v+KQ-Q)dV+/

®; 9@, (t-v—}—CQ-Q) a4,

where K@ and C? are generalized body and contact force densities acting on Q.

Constraints

The order tensor is symmetric and traceless. In principle, these two constraints can
be dealt with using appropriate LAGRANGE multipliers. However, it is simpler and
more elegant to use intrinsic derivatives on the space of symmetric, traceless tensors.
In practice, this means that we will regard any derivative taken with respect to a
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symmetric, traceless tensor or one of its derivatives as symmetric and traceless. Thus
we will write, for example,

durQ?

202 — 202 (1 O2
io = ¢ =3 -whn

Similarly, with an expression such as jQU_ L we denote the components of the sym-
L

metric, traceless tensor dd—% and not just the derivative of Uy, with respect to the
components of Q.

We could have done systematically the same in Sections 3.1 and 3.2 on single-
director theory, and this is indeed the way the theory is presented in [353, Chapter
3]. However, this does not extend easily to the two-director theory described in Sec-
tion 3.3: the constraint that the two directors need to remain perpendicular to one
another ultimately becomes a constraint coupling two equations. In this case, the use
of LAGRANGE multipliers is both easier and more transparent because it allows us to
treat the equations for the two directors independently and in a symmetric fashion.

In the case of two order parameter tensors in Section 4.2, no such complication
arises. The two tensors are both symmetric and traceless, but independent of one
another. Hence computing all derivatives intrinsically suffices.

The only constraint that we treat via its power is the one arising from incom-
pressibility, so

7/@(@,,;():/ pdivvde—/ vp-vdv+/ pv-vdA.
®; ®; * @

Kinetic Energy

As before, we neglect the kinetic energy connected with the orientation and have
simply
A @) = [ picvay
®;

for the rate of change of the kinetic energy.

Free Energy

The free energy has two contributions, the bulk or thermotropic energy given by
the LANDAU-DE GENNES potential U (Q) as a function of Q and an elastic free
energy density W(Q, VQ) as a function of Q and its gradient VQ. Other than their
dependence on these variables we here make no further assumptions on the specific
form of either of these energies.

With the free energy in the form

ﬁ(d’,,){):/@ (UL +W)dv
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its time rate is simply
F (@ x) = / (G +W)av.
®;
where as usual the dot denotes the material time derivative. By the chain rule,

UL

U= — 8Q -Q
and oW W

A computation analogous to that used to arrive at (3.16) here yields
(VQ)' = VQ - (VQ)Vv, (4.16)

where we have set
[(VQ)Vv]ijk = Qijivik.
With this we find that

9 .
F(®.x) = {( U, ) Q+m (VQ)}

L e )
(oo )]
L () 2[00 )] o

where we have performed integrations by parts to deal with the two terms from the
right-hand side of (4.16) and have defined the second-rank tensor VQ © aaTW:) via its
components in an arbitrary orthonormal positively oriented basis (e, 5, e3) as

1174 1174
VQO —— = i—e Rej. 4.17)
vQ =~ Qig, g

Variation of the Working

With the individual power contributions to the working written as products of the ve-
locities and generalized forces, the application of D’ ALEMBERT’s principle is again
straightforward. We find the variation of the working to be
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W = %[b—Vp—pi)—div(VQ@a—W)]c?v
®;

avQ
+[K0—3—W +diva—W] -SQ}dV

ow
+/a*a>, {|:t+(pI+VQ®m)v:|-8v

+ [CQ — aag;v] -SQ} dA. (4.18)

For this to vanish identically, the integrands have to be zero. This yields the bal-
ance of linear momentum with corresponding traction condition in the classical form,
(3.42) and (3.43), with the stress tensor

ow
T=-pI-V —_—=.
p Q®8VQ

The part of the stress that depends on the elastic free energy is

oW
Tg := -V — 4.19
E Qo ) (4.19)
and it is analogous to the ERICKSEN stress (3.31) of the standard director theory.
The equations for the order tensor are

ow ow
T di —K® =
70 div VO 0
in @ and -
Q _
¢ = Ban
on 0*®.

4.1.3 Dissipative Dynamics

The relevant quantities for constructing a frame-indifferent dissipation are the order
tensor Q, the symmetric part of the velocity gradient D, and an invariant rate of
change for the order tensor. The most general form of such a rate that also preserves
the symmetry of the order tensor is the codeformational time derivative (2.89). While
it has two parameters o and t that can be used as constitutive parameters [267], as
remarked by ERICKSEN [99], choosing o # 0 in general just amounts to a reordering
of terms in the dissipation. The same is true for t. In our formal development, we
will thus simply use the corotational derivative (2.87) as the invariant rate Q of Q.
The RAYLEIGH dissipation density is thus a function R(Q; D, Q) that is quadratic in
the pair (D, Q) and depends on Q as a parameter. In the language of Section 2.2.3,

the dissipation list d consists of the pair (D, (o)).
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Because we have chosen Q and v as the measures of the rates against which
the generalized forces expend power, to apply the variational principle (2.177) we
need to compute the derivatives of the dissipation density R with respect to these
quantities. By the chain rule, these are

R OR
Q  9Q
and
B_RZB_R 8R_3RQ
dVv 9D 3Q 40

The variation of the total dissipation then takes the form

alf-sQ—div Qalf—alfQJra—R St dv
9Q Q 9Q D

JR  OR oR
o)

Dynamic Equations

8% =

@

-SvdA. (4.20)

To obtain the dynamic equations we apply the dissipation principle (2.232) and re-
quire that

8K =W .

With 7 as in (4.18) and §% as in (4.20) this yields the momentum balance in its
usual form with the stress
ow oR  OR oR

T=—pl-VQO o= +Q 5 — — Q+ . 21)
avQ 3Q 9Q oD
Apart from a contribution proportional to the identity and the ERICKSEN stress Tg

as in (4.19), it contains the viscous stress

OR  OR oR
Tos =Q———Q+ <.
9Q 9Q oD

The equation for the order tensor in the bulk becomes

oR ow 14
— —div

20 9Q IvVQ
and the condition on the boundary remains unchanged,

. W

= _8VQv'

In general, the stress given by (4.21) contains a skew-symmetric part, at variance
with the theory proposed by MACMILLAN [204], which provides a phenomenolog-
ical setting for DOT’s constitutive molecular theory [80], among others.

K? =0, (4.22)
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4.1.4 Specific Dissipation Functions

In contrast to in the case of the director theories, there is no limitation on the number
of terms that can appear in the dissipation function for a nematic described by an
order tensor Q. While for the directors, because of their unit length, there is only a
finite number of different scalars that can be constructed between them, their invari-
ant time derivatives, and the stretching, here there is no limit on the number of times
that Q itself can appear in the dissipation function. There are two different possible
approaches that can be taken.

The tensor Q, if defined as the average of the molecular tensor (1.7), has a
bounded spectrum. Its eigenvalues lie in the interval [—% %], and in this sense it
is a tensor with small norm. This motivates regarding the dissipation function as an
expansion and limiting the order to which Q may occur in it.

A different approach can be taken that is reminiscent of the way we constructed
the dissipation function (3.125) for the director theory with variable order parameter.
In that case, while the number of terms remains finite, the viscosity coefficients are
no longer constants but functions of the order parameter S. Similarly, the dissipation
function for the order tensor can be written with a finite number of terms if the
viscosity coefficients are allowed to be functions of the invariants I, and /3 of the
order tensor Q.

For both ways of writing the dissipation function we need a list of all the scalar

invariants that can be built with the three symmetric traceless tensors Q, D, and Q.

Scalar Invariants

Lists of integrity bases for symmetric tensors can be found, for example, in [306] or
[357]. Apart from the traces of the three tensors that are zero, we have omitted from
the following list those invariants that are of order higher than two in the generalized

velocities D and Q.
1. Invariants of single tensors:
trQ?, rQ3?, rQ?, trD?;

2. Invariants involving two tensors:

trQ(o), tr QD, tr(o)D,
tr Q2Q, tr Q2D, tr Q*Q, trD?Q,
rQ%2Q?, rQ?D?;

3. Invariants in all three tensors:

tr QQD, tr Q2QD.
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Dissipation up to Second Order

From this list of invariants we choose all those terms that are at most of second order
in Q and Q. Using these terms and their combinations that are exactly of second

order in D and Q, we find that the general form of the dissipation in this limit is

o 1 o 0 o
R(Q:D.Q) =§§1 trQ* + £ trDQ + £3 rDQQ

+ {4 D*Q + %zs rD*Q* + ézs(trDQ)2

+ %g rD? tr Q? + %;8 trD?, (4.23)

where the {’s are viscosity coefficients. Requiring the dissipation function in (4.23)
to be positive semidefinite would result in a number of inequalities involving both
the viscosity coefficients ; and the order tensor Q that need to be satisfied for all ad-
missible values of Q. Sufficient consideration has not yet been given in the literature
to the consequences of such inequalities.

We derived five algebraic inequalities that characterize all R in (4.23) that are
strictly’ positive definite, but they are too complicated and obscure to be reproduced
in full here. The ones that can be printed in a single line are

>0 (4.24a)

and
(6185 + 687) — E318% + 6(8283 — £184)S + 91 (85 + 287)T? + 9(81ls — §3) > O,
(4.24b)

where the pair of scalar order parameters (S, T) represents Q through equation
(1.62). Inequality (4.24b) must hold for all (S, T') that satisfy the bounds in (1.95),
which describe the admissible triangle in Figure 1.4. In particular, it follows from
setting S = T = 0 in (4.24b) that

t18s — &5 > 0.

Other necessary conditions involving only the viscosities {; can easily be obtained
from (4.24b), but we shall not dwell any further on this issue, which is more technical
than conceptual in character.

If terms of higher orders in Q are added to those in (4.23), the number of vis-
cosity coefficients grows quickly, and the hope of determining them experimentally
or obtaining inequalities restricting them diminishes correspondingly. On the other
hand, it is possible to simplify (4.23) further. The dissipation function

7 The quadratic form R in (4.23) is strictly positive definite whenever the symmetric matrix
H associated to a representation of R akin to (3.53) has all positive eigenvalues. A criterion
for the strict positive definiteness of H, which we seldom employ in this book, is recalled
on page 263 below.
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RQ:D.Q) = 361 Q% +5uDQ + L4 rD?Q+ 546(rDQ)? + 3 5 1D (4.25)

has only five viscosity coefficients and leads to the model suggested by QIAN and
SHENG [280], who in addition also consider an electric-field-induced MAXWELL
stress.

While on first inspection the terms in (4.23) omitted in (4.25) appear to have
been picked rather randomly, the particular choice made can be motivated by consid-
ering the order parameter dependence of the corresponding viscosity coefficients of
the uniaxial limit. This is done by assuming the order tensor to remain uniaxial with
constant scalar order parameter S and comparing coefficients of the dissipation func-
tion (4.23) in terms of a uniaxial order tensor and the dissipation function (3.49) in
terms of a director. As shown in [310], if S remains constant in time, (4.11) implies
that i

Q=Sr®n+n®n), (4.26)

and inserting both (4.26) and (4.11) in (4.23), one concludes that the latter coincides
with (3.49), provided that

Y1 =26 52, (4.272)
2 =208 + %;“352, (4.27b)
Y3 =S + %CsSZ, (4.27¢)
va = {652, (4.27d)
ys = {8 — %QS + % (%és + 267) 52, (4.27¢)

Thus, setting {3, {5, and {7 equal to zero merely amounts to neglecting corrections
to the director viscosities that are of higher order in the scalar order parameter S

Clearly, for R as in (4.25) to be positive semidefinite, the viscosities y given by
(4.27) as functions of S must satisfy inequalities (3.57) for all S € [—%, 1]. Also, the
simpler form of R in (4.25) encourages us to write the algebraic conditions ensuring
that R is strictly positive definite for any Q. Letting Q be represented as in (3.2), one
finds that these conditions are given by (4.24a) and

61(3Cs —2048) — 325 > 0,
G1[8a(S + 3T) + 345] — 383 > 0,
—4838486S> + 2801[51(3868s — £5) — 385861 + 36(784l6ST?
+61[51 (8688 — 283) — 383861 T? + 9(&3 — G18s)* > 0,

8184(S —3T) +3(5152 — &) > 0,
which must hold for all (S, 7') subject to the bounds in (1.95).
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General Dissipation Function

The most general dissipation function can be written as a sum of nineteen terms.
These are products of viscosity coefficents that are regarded as functions of the in-
variants of Q, namely, tr Q? and tr Q3, and the following terms. The first nine terms
are those in the list of invariants above that are already quadratic in the generalized
velocities,

tr (022, trD?, tr éD, tr (O)zQ, trD?Q, tr Qzéz, trQ’D?, tr QéD, tr Q2(02D.

A further ten terms are obtained as all possible products of two of the four terms in
the set

{tr Q(Ol, tr QD, tr QZ(OQ, tr QZD}

of invariants that are linear in the velocities.

4.1.5 Rotational Momentum and Couple Stress

Whatever the specific form of the elastic energy density, for it to be objective it has
to be invariant under rotations, which means that

W(Q.VQ) = W(Q*, (VQ)"), (4.28)
with
Q" = RQRT and (VQ):;]( = RipRjqRir Opq,r,

needs to hold for an arbitrary proper orthogonal transformation R. Using the same
reasoning that led us to (3.22) here shows that (4.28) implies

aw w aw
€ijk (szpaQ—k + 2ij,an—k + Opq.j aQ—k) = 0. (4.29)
V4 PK.q prq,

Likewise, we compute the axial vector T associated with the skew-symmetric part of
the stress tensor defined by (2.132). Starting from the stress tensor in (4.21), we find
with (3.67) that

oR w
2t = €k Ty = €ijk |20k —— — Qimk 77—
anj 8le J
By (4.29), this becomes
oR aw ow
2t = 2€jjk | Okt —— + Qi + Okim=— |-
90, 9015 3Q1j,m

and using the order balance (4.22) we find that
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ow
2t = 2€451 {—kaKlj + Qi ( ) + Okim §
m

anj,m anj,m

oW
= 2¢ijk {(ka 30, ) - lesz} :
Jm/ m

The balance of rotational momentum (2.141) is indeed satisfied, provided we
identify the torque per unit volume k and the couple stress tensor L as follows:®

k = 2¢€;x Or1 Kjj e (4.30)
and W
L =—2€xQrim——¢€ Qem,
17} Q an],m 1 m

where (e1, €3, e3) is any orthonormal positively oriented basis.

It is clear from (2.140) that the couple stress depends only on the elastic energy.
The absence of any viscous contribution to the couple stress is a consequence of VQ
being excluded from the dissipation.’

To give a concrete example of a torque we consider an imposed electric field E.
This can be derived from a potential

W.(Q) = —3 AcE - QE.

where Ae is the dielectric anisotropy defined in (4.4). Hence a generalized force K.

results from - )
K= —=——AcEQ®E
c=5Q T 2o eh:

and (4.30) implies that the electric torque per unit volume is then given by
k. = AcE x QE.

Thus whenever the field E is an eigenvector of the order tensor Q it exerts no torque,
and on average the molecules are either parallel or orthogonal to the field.

4.2 Biaxial Nematics

In this section we present a phenomenological theory for the description of a biaxial
nematic liquid crystal in terms of two order tensors, Q and B. These are the two
tensors that arise naturally as ensemble averages of the molecular tensors q and b
of STRALEYs interaction model for biaxial molecules, see the discussion in Section
1.2.6.

8 The same conlusions as in (4.30) and (2.140) can also be reached by paralleling here the
developments that in Section 3.1.4 led us to (3.84b).
9 Cf. [185] for the analogous result in director theory.
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The motivation for using two order tensors is primarily microscopic. At first
glance, if only the macroscopic optical properties are considered, a single tensor
appears to be sufficient to describe a nematic in its isotropic, uniaxial, and biaxial
phases. It has indeed long been known that if the LANDAU-DE GENNES potential
of a single order tensor is taken up to sixth order, it can have minima describing all
three phases. However, from a microscopic point of view, it is more natural to expect
the symmetry group of the phase to coincide with that of the molecules. In other
words, it seems more likely to find a biaxial phase to be formed by biaxial rather
than uniaxial molecules. Indeed, so far, all observed examples of biaxial phases stem
from biaxial molecules [365, 205, 2, 298, 219].

After introducing the two order tensors and looking briefly at their macroscopic
manifestations, we formulate the general theory in terms of such tensors first in terms
of generic free energy and dissipation densities. We then briefly comment on the
constitutive ingredients of the theory. Because not much is as yet known about the
free energy and dissipation in their general forms, we have to restrict ourselves to
giving an overview of the current state of play, pointing out what work still needs to
be done to complete the theory.

As was the case for the director theories, where a second director was introduced
to describe biaxiality, the advent of a new order tensor and its derivatives in the
free energy and dissipation leads to a proliferation of new terms, which complicates
matters considerably. This makes the need for simplifying assumptions even more
pressing than in the uniaxial case. We therefore close the section by proposing what
we regard as a minimal reduced model that can serve as a starting point for further
explorations and practical applications.

4.2.1 Two-Tensor Theory

We have seen in Chapter 1 that the interaction of biaxial molecules can be conve-
niently described by the two symmetric traceless tensors

1
q=e1®e1—§l and b=e;,®e; —e3 R ez, 4.31)

where (e, €2, €3) is an orthonormal basis of eigenvectors of a molecular polarizabil-
ity tensor. The ensemble averages of these molecular tensors are the order tensors

Q=(q) and B=(b).

To see how these order tensors are related to the macroscopic properties of the
liquid crystal, let us consider as in (4.3) a molecular permittivity tensor €™. If €1, €5,
and €3 are its eigenvalues, i.e., the permittivities in the directions of the respective
eigenvectors, then we have

€"=¢ce1®e;t+ere Qe +e3e3 R es.

This can be written in terms of the molecular tensors q and b as
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m _ 1
€ zel—l—Aeq—i—EAelb,

where

1 1
€= gtrem = 5(61 + €3 + €3)

is the average permittivity,

1
A€ :=¢€] — 5(62 + €3)
is the anisotropy of the permittivity with respect to the main molecular axis e, and
A€ = €3 — €3

is the transverse anistropy of the permittivity; see also (1.158). Computing the aver-
age shows that the macroscopic permittivity tensor € is given by

1
ez(em)=EI+AeQ+§AqB (4.32)

as a function of Q and B.

Equation (4.32) shows that in a biaxial phase of biaxial molecules both order
tensors contribute to the macroscopic properties of the liquid crystal. While there is
no simple way to reconstruct Q and B from the knowledge of €, both play individual
roles that can in principle also be distinguished experimentally, for example if Ae
and Ae] have different frequency dependencies. If either Ae; or B vanishes, the
single order tensor case (4.5) is recovered.

4.2.2 Generic Dynamic Theory

The two tensors Q and B, both symmetric and traceless, are in principle independent.
The formal development of the theory is therefore very similar to that for the uniaxial
nematic with a single order tensor as described in Section 4.1. Because with the
material time derviative B of B a third generalized velocity joins Q and v, there
are now three bulk equations and three traction conditions. Owing to the identical
tensorial nature of the two order tensors, the equations governing their dynamics are
formally the same, and they are indeed carbon copies of the equation for Q in the
uniaxial theory. It would be too repetitive and downright boring to give the full details
of the derivation. We therefore content ourselves with a summary of the changes and
additions that need to be made if a second tensor enters the stage and simply state
the dynamic equations and the stress tensors.

External Agents

Because Q and B are independent, so are the generalized forces that could act on
them. This is also apparent when we consider the microscopic origin of the order
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tensors: one is connected with the long molecular axis, and one with the plane per-
pendicular to it. In principle, different molecular axes can be susceptible to different
agents that might act on them. Consequently, we write the power of the external
agents as

79@.0 = [

®;

+/a*a>, (t-v+CQ-Q+CB-B)dA,

(b-u+KQ-Q+KB-B)dV

where K@ and C? are generalized body and contact force densities acting on Q, and
K® and CB are generalized body and contact force densities acting on B.

Free Energy

As in the case of a single tensor, the free energy has two contributions. There is
a bulk or thermotropic energy density given by a LANDAU potential that here is
a polynomial UL (Q,B) in both order tensors. Correspondingly, the elastic energy
density is a function of both order tensors and their gradients, W(Q, B, VQ, VB). It
is subject to the invariance requirement

W(Q.B.VQ.VB) = W(Q".B*.(VQ)". (VB)"),

where
Q" =RQR', (VQ)jjk = RipRiqRicr Qpq.r.

B* =RBR', and (VB)};; = RipRjqRirBpg.r

for an arbitrary rotation R. In the usual way, it follows that

ow )14 ow

0=¢ k(zg‘ —— 4+ 20— + Opgj
iy jp ank Jp,q ank,q p4q,J anq,k
28, W op,, W g, W )

Jp 8Bpk Jp,q aBpk,q pq.J] 8qu,k

Dissipation

We choose as an invariant rate of B its corotatlonal derivative B The RAYLEIGH
disspation density is then a function R(Q, B; D, Q B) quadratic in (D, Q B)

Dynamic Equations

The derivation of the evolution equations is precisely along the lines of that for a
single order tensor. The variation of the additional velocity B leads to a third equation
of motion and to additional terms in the elastic and viscous stresses that are the
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double of the terms that stem from the variation of Q We find the usual balance of
linear momentum with the stress in the form

T =—-pI+ Tg + Tgis.

It has an elastic contribution Tg given by

W W
=-VQO -— VB0 —
Q0 590 ©3ve’

where VB © WB is defined in the same way as VQ © BVQ in equation (4.17). The
viscous contribution to the stress is

IR dR  OR R
+B— - —B+ —

Tdis = - > ry + .
9Q dB OB oD

The equation governing the evolution of Q in the bulk is formally the same as
(4.22),

oR + w di w 0 (4.33)
— + — —div =0, .
9Q 9Q avQ
and the corresponding equation for B is
orR oW ow
—di =0. (4.34)

5 B “Vovs

The associated traction conditions on the reduced boundary are

Q — a_Wv
avQ
and oW
CB = .
8VB

The couple stress is

w oW
L =2 B  ® em.
€ijk (QHBQ o + By 3Bz,m)e’ ® em

4.2.3 Constitutive Ingredients

The general theory presented in Section 4.2.2 springs to life only once the generic
functions U, W, and R introduced above are made specific. We now show for each
in turn the explicit form it can take.
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LANDAU Potential

For two symmetric, traceless tensors in three-dimensional Euclidean space € there is
a list £ of eight basic scalars invariant under the full orthogonal group SO(3) [306]:

£ = {rQ* uB? rQ* B’ rQB, r Q*B, tr QB?, tr Q*B?} . (4.35)

If Q and B have the same eigenframe, the number of basic invariants in £ is reduced
to seven, because in that case the identity

tr B2 tr Q% = 6tr(Q*B?) — 2(tr QB)? (4.36)

holds."?

The isotropic phase of a biaxial nematic is characterized by Q = B = 0. An ap-
propriate LANDAU free-energy function is a rotationally invariant power-series ex-
pansion in the order tensors Q and B. It can be constructed from the terms in (4.35).
The lowest-order polynomial that allows the occurrence of isotropic, uniaxial, and
biaxial nematic phases is of fourth order. The most general SO(3)-invariant polyno-
mial up to fourth order in Q and B has fourteen terms. We write it in the form given
to it in [65],

UL(Q,B) =a; tI'Q2 +as tI'Q3 + as (trQ2)2 + as tr B2 + as (tI'BZ)z
+ ag tr QB? + a7 tr Q*B? + ag (tr QB)2 + agtrQB + a1 tr B3
+antrQ*B+apntrQ°B + a3 tr QB3 + ay, tr Q* tr B2, (4.37)

with phenomenological coefficients ajy,...,aj4. The terms tr Q’B and tr B3Q in
(4.37) can be expressed as polynomial functions of the basic invariants:'!

3 1 2 3 1 2
trQ°B = EtrQ trQB and «B°Q = EtrB tr QB.

From (4.37) we easily recover the conventional single-tensor LANDAU-DE GENNES
free energy (4.6) by setting B = 0 and identifying a, a,, and a3 here with %A, %B,
and %C there.

Only a very limited analysis of the general potential (4.37) has so far been per-
formed [65]. We will give a more detailed account of the properties of a simplified
LANDAU potential below.

Elastic Energy

The most general elastic energy density quadratic in the two order tensors consists
of the terms (4.12) in Q and VQ and corresponding terms in B and VB,

10 The identity (4.36) follows from the generalized CAYLEY-HAMILTON theorem (A.4) and
the fact that if Q and B have the same eigenframe, then they commute, so that QB = BQ,
whence it follows that tr(Q?B2) = tr(QB)2.

11 These identities are again consequences of (A.4).
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Bijk Bijk.
Bij.j Bik k-
Bijk Bik,j,
€ijk Bji,i Bl
In addition, there are a further five mixed terms,
QijkBijk
Qij,j Bik k-
QijkBik,j,
€k Qj1,i Bri,
€ijk Bj1i Oki-
In analogy to (4.13), we can identify two new surface terms via
Bijk Bik,j — Bij,j Bikk = (BijikBik — Bij Bik k).
and
QijxBik,j — Qij,jBikx = (Qijx Bik — Bij Qik k).
= (Bijx Qik — Qij Bixk).j-

Omitting the surface terms, the energy can be written as

1 . 1
W(Q.B.VQ.VB) = SLi|divQl® + 5 L2 |V x Q +2(q0Q + ¢1B)I*

1 1
+3 M| divBP” + S M3 |V x B +2(¢2Q + ¢3B)
+N1divQ-divB + N,VQ - VB,

where the dot in last term denotes the inner product between the two third-rank ten-
sors defined by

VQ- VB = Q;jxBijk- (4.38)

So far, neither have identities between these terms been ruled out nor has a gen-
eral set of inequalities enforcing positive semidefiniteness of the elastic energy den-
sity been established.

Dissipation

If terms up to quadratic in the scalar order parameters and their time derivatives
are taken into account, there are already 21 terms in the viscous dissipation. The
RAYLEIGH function comprises the eight terms already listed in (4.23) for a single
order tensor, seven parallel expressions relating to B, and a further six mixed terms
featuring both order tensors. We write it as
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R(Q.B:D,Q.B)
=%§1 rQ? + & rDQ + &3 rDQQ + &4 trD2Q
+ %gs rD?Q? + %éﬁ(trDQ)z + %a trD? tr Q% + %;8 trD?
+ %m trB2 + 0, trDB + 73 tr DBB + 7,4 r DB
+ %775 trD’B? + %776(trDB)2 + %n7 tr D? tr B?
+ £ trQB + & tr DQB + £5 tr DBQ

+ %54 trD*QB + %és(trDQ)(tr DB) + %g(, tr D? tr QB. (4.39)

The new viscosity coefficients 1; pertain to B and the coefficients &; to mixed terms
in the two order tensors. This function needs to be positive semi-definite. Deriving
neccessary and sufficient conditions on the viscosity coefficients for positive semi-
definiteness of the dissipation density seems a formidable task.'?

We derive below a set of inequalities (4.46) for a simplified model. In the general
case, these inequalities are at least necessary conditions.

4.2.4 Simplified Models

We now consider plausible simplifications of the LANDAU potential, the elastic en-
ergy density, and the dissipation function. In principle, these are independent of one
another, and our general format allows one to use as its constitutive ingredients any
combination of the simplified and the more complex forms of these scalar functions.
We conclude by giving the explicit form of the stress tensor and the dynamic equa-
tions for a simple model that might serve as a starting point for explorations into the
realm of biaxial nematics described by two order tensors.

Symmetric LANDAU Potential

The general LANDAU potential (4.37) of fourth order consists of fourteen invariant
terms. Here we describe a model that enjoys an additional symmetry property. We
require the LANDAU potential to be invariant under the transformation (Q,B) —
(Q, —B), so that (4.37) reduces to

UL (Q.B) =a, trQ?> + ar trQ*® + a3 (ter)2 + astrB? + as (t1rB2)2
+ a6 tr QB? + a7 tr Q?B? + ag (tr QB)?
+ a1 trQ* tr B2, (4.40)

12 Even establishing strict positive definiteness, usually an easier task, would be challenging.
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Molecular Motivation

To motivate this choice of symmetry in the LANDAU potential, we need to digress
from our line of purely phenomenological reasoning in this chapter and revert to
an argument based on the molecular theories expounded in Chapter 1. A symme-
try corresponding to that enforced in (4.40) has been proposed and its consequences
examined in the pair-potential (1.10) of STRALEY’s general biaxial molecular inter-
action [321]. To facilitate our discussion, we recall (1.10),

Hy:=~Us[q-q +y(q-b +b-q)+2b-b'], (4.41)

which specifies the pair-potential in terms of a typical interaction energy Uy and two
parameters y and A. Here q and b are the molecular tensors (4.31) of one molecule,
and their primed versions are the corresponding tensors of a second molecule inter-
acting with the first.

Setting y = 0 in (4.41) makes the pair-potential invariant under the simulta-
neous changes b > —b and b’ +— —b’. This specific choice of y was introduced
and its consequences explored in [315]: it models a nematogenic compound with
a simple frequency-dependent biaxiality for which, for example, the low-frequency
part would be purely uniaxial and the high-frequency part would add the required
biaxiality. This amounts to the least possible coupling between uniaxial and biax-
ial susceptibilities. The mean-field phase diagram of this model exhibits first-order
transition lines between the isotropic and nematic phases and both first- and second-
order transition lines between the uniaxial and the biaxial nematic phase, meeting at
a tricritical point. Furthermore, as shown in [24], there is a second tricritical point
on the transition line between the biaxial and the isotropic phases at which the first-
order transition becomes of second order. It was also shown in [24] that the topology
of the phase diagram in the symmetric case with y = 0 is the same as the topology
of the universal phase diagram derived within the mean-field approximation of the
general pair-potential (4.41).

This is not simply a coincidence, because there are indeed physical reasons to
believe that the symmetric case embodies the essence of the general quadrupolar
biaxial interaction. In the classical uniaxial interaction, only the long molecular axes
interact with one another. If there is any type of interaction between them and the
two short axes, a good first approximation would be to assume that this interaction
is effectively the same for both short axes, which requires y = 0, as exchanging
the short axes in both molecules amounts to reversing the sign of both b and b’ in
(4.41). Since there the term multiplying A aligns the short axes independently of the
long axes, setting y = 0 in (4.41) simply amounts to neglecting a small difference
between two dominant interactions, likely with no qualitative consequence on the
equilibrium phases. As shown in [315], even when y = 0, the ground state of the
pair-potential (4.41) is the one in which the interacting molecules are parallel with
both long and short axes aligned, provided that A = 0. This discussion suggests
that Uy in its symmetric form (4.40) should be sufficiently general to reproduce the
universal phase diagram of biaxial nematics.
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Symmetric Minimizers

It is natural to expect that in the absence of any external symmetry-breaking agent
the minimizers of both the general LANDAU potential (4.37) and the symmetric one
(4.40) would be pairs of order tensors (Q, B) that share a common eigenframe. As
shown in [65], any such pair would indeed be stationary at least with respect to a
relative rotation of the tensors’ eigenframes. Requiring those stationary pairs also
to be minimizers of Up leads to inequalities for the coefficients of the LANDAU
potential.

Further inequalities arise when the critical points of Up, are required to reflect
the symmetry property U, (Q,B) = UL (Q, —B). Precisely, one assumes that any
tensorial macroscopic observable A = «Q+ B resulting from the ensemble average
of a microscopic observable a = aq + Bb, with o and B scalars, has the same
spectrum as the tensorial macroscopic observable A* = «Q — B resulting from the
ensemble average of a* = aq— fb. It is shown in [63] that this requirement amounts
to the following constraints on the two order tensors:

rB3>=0, «BQ*=0, and trQB=0.

By combining these equations with the representations (1.62) and (1.70) of Q and
B in one and the same eigenframe, it follows that both 7 and S’ must vanish at
equilibrium, and so the admissible critical points of Uy in (4.40) are represented by

1
Q=S(ez®ez—§l), B=T'(ex®ex—ey®ey).

This effectively reduces the number of scalar order parameters at equilibrium from
four to two. While this is a particular property of the symmetry-reduced potential,
the scalar order parameters S and 7’ are also the dominant ones in a mean-field
approximation to the general interaction (4.41) with y # 0, as shown in [22].

Potential Properties and Phase Diagram

Normally, only the coefficients of the quadratic invariants, a; and a4 in the case of
(4.40), are taken to depend on temperature 6. If we assume this dependence to be
linear, we can write

a; = dap (9 — 9*) and a4 = by (9 — 9;) with ag, bg > 0. 4.42)

The temperature 60* is, as in the single-tensor case (4.7), the supercooling tempera-
ture of the isotropic phase at the isotropic-to-uniaxial phase transition, while 6, is
the supercooling temperature of the isotropic phase at the isotropic-to-biaxial phase
transition. In principle, there could be liquid crystalline materials for which 8, < 6*,
and others for which 91;* = 6*. In materials with 0,;‘ < 0*, the molecules interact in
a predominantly uniaxial fashion. In materials with 6, > 6*, molecular interactions
are predominantly biaxial, and, accordingly, the likelihood of a direct isotropic-to-
biaxial phase transition is increased, thus possibly precluding an intermediate uniax-
ial phase.
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Motivated by the desire that the LANDAU potential (4.40) lead to a phase diagram
that shows the same topological features as the universal phase diagram predicted by
the mean-field approximation to (4.41) in [24], a number of inequalities were derived
in [65] that restrict the phenomenological coefficients in (4.40):

1. Stability of coincident eigenframes of the order tensors is guaranteed if

ag>0 and a7 > 0. (4.43a)

2. Stability of symmetric minimizers with 7 = S’ = 0 is guaranteed if
1
a, <0, a¢>0, and ag= —§a7. (4.43b)

3. Positive definiteness of the LANDAU potential (4.40) when expressed in terms
of the scalar order parameters (S, T’) of a symmetric minimizer is guaranteed if

a3 >0, as>0, and a7+ 6a14 > —12./azas. (4.43¢)

4. The existence in the phase diagram of a triple point and two separate tricritical
points is guaranteed if

az +6a14 =0 and asas < asal. (4.43d)

The conditions (4.43) are quite general and not too restrictive. If they are met, a
typical phase diagram in the a;-a4 plane would look like the one shown in Figure
4.1. The directions of the arrows indicate increasing temperature and hence potential
phase sequences; different arrows correspond to different ratios of ag and by and
different values of the two supercooling temperatures 6 and 6 in (4.42).

Reduced Elasticity

Any elastic free energy density of a nonchiral biaxial nematic would have to en-
courage a homogeneous state in both order tensors Q and B. In the simplest case,
inspired by the one-constant approximation to the elasticity of a uniaxial nematic, it
would include only the terms |VQ|? and |VB|?. Because Q is an average related to
the long molecular axes while B is an average related to the short molecular axes,
deformations in Q can be expected to have a different energetic cost from those in
B. In any event, it is safe to assume that the ratio of the elastic constants pertaining
to the two types of deformations is a positive number 2. If also a coupling between
the gradients VQ and VB should be taken into account, it is natural to expect this to
lie energetically between the contributions from the individual tensor gradients.
A simple model for an elastic energy density that meets these requirements is

W(Q,B,VQ,VB) = %L(VQ + kVB)? = %LIV (Q +«B) %, (4.44)

where L is a positive elastic constant and x € R can in principle be either positive or
negative. The square in the first equality is to be interpreted using the inner product
between third-rank tensors defined in (4.38). The form given on the far right shows
that this model is a one-constant approximation for an elastic energy of a single
effective order tensor Q + «B.
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= |st—order
= = = 2nd-order

s isotropic

biaxial

Fig. 4.1. A typical phase transition diagram predicted by the symmetric LANDAU potential
UL in (4.40). The coefficients are selected so as to comply with the inequalities (4.43). Both
second- and first-order transitions between the isotropic and biaxial phases and between the
uniaxial and biaxial phases are possible, with the appearance of two tricritical points, C; and
Ca. The transition between the isotropic and uniaxial phases remains first-order for all pa-
rameters chosen according to (4.43). T is the triple point where the isotropic, uniaxial, and
biaxial phases coexist in equilibrium. The arrows represent temperature axes with tempera-
ture increasing in the direction of the arrows. These straight lines are parameterized by the
phenomenological coefficients ag and bg and by the difference between the two supercooling
temperatures 6* and 6;".

Minimal Dissipation Function

A simple dissipation function can be constructed by considering only the minimum
number of terms needed to account both for dissipation in the three individual rates
and for dissipation arising from the three possible combinations of two different
rates. This requirement is met if only the six quadratic terms in (4.39) are chosen.
This means that we have

o o 1 o o
R(Q.B:D.Q.B) =3 (£ Q? + 1 rB? + {g wD?)
+ £ trQB + & tr DQ + 7, tr DB. (4.45)
For this quadratic form to be positive semidefinite, its symmetric coefficient matrix

SRIRS
H=|& m n
2 m2 s
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has to be positive semidefinite. This requires all its minors to be nonnegative, which
yields the following inequalities:

{1 20, (4.46a)

n =0, (4.46b)

lg = 0, (4.46¢)

am Z &, (4.46d)

t18s = &3, (4.46¢)

més = 3, (4.46f)

Gimils +2618mn = 5177% + 771;% + §8$12- (4.46g)

As evident from the first three inequalities, the right-hand side of the last inequality
is nonnegative.

Stress Tensor and Dynamic Equations

With the simplified elastic energy density (4.44), the elastic stress (4.2.2) takes the
form
Tg = —LV(Q + «B) © V(Q + «B),

which is symmetric.
The viscous stress (4.2.2) arising from the simplified dissipation function (4.45)
is

Ta =CsD + Q + 1B + 25kw [Q (01Q + &2D + 1B)
+B (Thi" + 72D + 516)] :

When both the simplified elastic energy density (4.44) and the simplified dissi-
pation function (4.45) are used, the dynamic equations (4.33) and (4.34) for Q and
B take the explicit forms

(Q+ GD+ B+ S~ LAQ+B) =0 (4.47)
and .
7713+ 7)2D+S1Q+ B —kLA(Q + «B) = 0. (4.48)

Here, we have not made any assumptions about the specific form of the LANDAU
potential Up, because it does not affect the structure of the equations: ultimately, the

terms 83% and 8UL will be polynomials in the order tensors Q and B.

The viscosity coefficient &1, which in the dissipation function couples Q and
103, also makes equations (4.47) and (4.48) coupled. Indeed, unless & = 0, time
derivatives of both order tensors are present in both equations. They cannot then
be regarded as individual equations for the two order tensor evolutions, but they
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constitute a system of nonlinear partial differential equations for Q and B, where Q
and B enter linearly. To obtain explicit equations for the time evolution of the order
tensors, weonegzd to consider the determinant of the coefficient matrix of the linear
system in (Q, B), which is {17y —£7. This shows that the system of equations can be
decoupled if we enforce strictly inequality (4.46d), that is, if we require {;n — 512 >

0. Of course, once decoupled in 6 and 103, the two resulting explicit equations will
still be coupled together and with the flow.
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Nematoacoustics

At this stage of our development we apply our general theory to a field that is still
somewhat controversial. Though the orienting effect of an ultrasonic wave on the
nematic texture has long been known,' its interpretation in terms of a coherent dy-
namical theory, widely if not universally accepted, has not yet been achieved. In
this chapter, following [354] and [67], we phrase such a theory within the setting
of this book; hopefully, this will serve as a further illustration of the generality of
our method. Below, we first summarize the diverse theoretical approaches attempted
in the past to describe the interaction between sound and molecular orientation in
nematic liquid crystals. We then revive a theory for second-grade fluids, which we
believe provides the most appropriate theoretical background to posit our nematoa-
coustic theory that elaborates on a proposal not new in its intuitive phrasing, but
which has only recently found both a more precise theoretical formulation and its first
experimental validation. We shall actually depart from the latest theoretical formula-
tion in an effort to draw from it all its consequences. A closing explicit application to
a simple computable case will also show some predictions of our theory, which are
both qualitatively and quantitatively confirmed by a number of experimental results.

5.1 Overview

Experimental acoustic studies in nematic liquid crystals have a long history including
early contributions from pioneers of liquid crystal science such as LEHMANN and
ZOLINA.? Several reviews provide accounts of the effect of an acoustic field on the
orientation of nematic molecules; we quote only [155], [156], and [160] among the
most recent ones, which also report the still unappeased debate between the different
theories that have attempted to explain the interaction between acoustic waves and
nematic textures.

1 Also with potential practical applications; see [134].
2 See [155].

A.M. Sonnet and E.G. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals, 239
DOI 10.1007/978-0-387-87815-7_5, © Springer Science+Business Media, LLC 2012
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The main experimental findings that called for explanation were the anisotropy
observed in both attenuation and speed of sound in the propagation of ultrasonic
waves in nematic liquid crystals where the orientation of the director is kept fixed
by an aligning magnetic field [196, 187, 164, 221, 231] and the reorientating action
exerted on a uniformly aligned nematic cell by the propagation of ultrasonic waves
in the absence of any other external action [211, 16, 10]. This evidence supported
the hypothesis that a condensation wave can affect the director orientation in a way
similar in its appearance, though not in its cause, to the action exerted by an external
magnetic or electric field. Actually, the acousto-optic effect, as it is often called,
produces an alteration of the birefringence in a nematic cell, which is easily detected
and closely resembles the optic effect induced by an external field, as if the acoustic
field could also impart a torque on the nematic director.

The theories so far proposed to explain the acoustic action on nematic liquid
crystals can essentially be grouped into two wide categories: theories that explain
the acoustic—nematic interaction by means of an intermediate hydrodynamic flow
of one sort or another, and theories that explain the acoustic—nematic interaction
through a direct coupling between acoustic field and nematic director, with its own
associated elastic energy. The theories in the former category build essentially on the
ERICKSEN-LESLIE theory presented in Chapter 3 and assume that an acoustic wave
is capable of inducing a steady nonuniform flow, which in turn acts on the director
field, thus distorting it, whereas the theories in the latter category posit an elastic
interaction between an acoustic wave and the director field, which is also capable of
inducing distortions in the absence of any induced flow.

The major hydrodynamic mechanism that has been imagined to transmit torque
from the acoustic field to the nematic director is a nonlinear coupling relying on the
occurrence of a variant of REYNOLDS stresses in the fluid. Related to these stresses
is also the notion of acoustic streaming, which describes a phenomenon also known
for dissipative isotropic fluids; a rather general description of these concepts and the
mathematical techniques connected to them can be found in [189] (see, in particular,
Section 4.7). Here, following in part [317], we shall be contented with outlining the
general ideas underlining this method, to the extent that it may be applied to our
context. Another, more recent application of these ideas is illustrated in [40].

Let u be any of the fields describing the flow: it may designate either the pressure
or the density, a component of the velocity field or a component of the nematic
director. We expand u in the form

u=ug+ suy + *uy + o(e?),

where ¢ is a perturbation parameter, u¢ is the equilibrium value of u, and u; and
U, are the first- and second-order corrections to ug, respectively. In a plane-wave
solution to the dynamical equations of the ERICKSEN-LESLIE theory, u; has zero
average, whereas 1, can in general be written as

Uy = Uy + Uz,

where it is decomposed into a steady component, %,, and a varying component, iio,
oscillating at a frequency twice the frequency of u1, which like this latter averages
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out to zero. The dynamical equations for the various fields like u,, which capture
the slow, second-order evolution of the fluid, are derived by averaging in time the
contributions to the general dynamical equations that are second-order in ¢, as is
typical in any perturbation method. Such second-order equations will invariably be
affected by the time averages of terms quadratic in ©;, which will thus act as forces
for the growth of inhomogeneities in u,. This is the essence of the acoustic streaming
method applied in [317] to the ERICKSEN-LESLIE dynamic equations for nematic
liquid crystals. The second-order character of the stresses responsible for the onset of
the steady second-order flow makes them resemble REYNOLDS stresses of ordinary
fluid dynamics (see, for example, pp. 328-330 of [189]). These stresses are respon-
sible for making turbulent velocity perturbations about a mean flow interfere with
the mean flow itself, thus generating sound. Conversely, waves propagating through
a mean flow affect it through exactly the same mechanism (see p. 330 of [189]). This
is indeed the conceptual connection between turbulence and acoustic streaming, also
implied in the extension to nematic liquid crystals proposed in [317]. In summary,
according to [317], acoustic streaming in nematic liquid crystals would be responsi-
ble for the hydrodynamic coupling that transfers torque from a traveling ultrasonic
wave to the nematic director.

Essentially the same approach as in [317], though with some apparent variants,
was more recently adopted in [171] and further applied in a series of other works
[157, 158, 159] to explain nematic alignment produced by ultrasonic waves.

Within a slightly different category, though still postulating a hydrodynamic me-
diation, falls the explanation of the acoustic action on the nematic director proposed
in [138]. In general, sound is known to produce a radiation pressure in the medium
where it propagates (see, for example, Section 64 of [174]). Such a pressure is to be
distinguished from the acoustic pressure, often also called the excess pressure; the
latter is the difference between the pressure carrying an acoustic wave and the uni-
form pressure of the unperturbed medium; it averages out to zero in time, and so has
no net mechanical effect. The radiation pressure is the time average of the second-
order correction to the unperturbed pressure, and it is determined by the second-order
components of the dynamical equation. In isotropic fluids, the radiation pressure can
induce a force only along the direction of propagation, but in anisotropic fluids, such
as nematic liquid crystals, the time average of second-order stresses may also induce
transverse actions resulting in a torque on the nematic director. As for the acoustic
streaming, such a torque would thus be of a viscous nature.

Here we shall follow a conceptual avenue that essentially differs from those al-
ready outlined in the nature of the postulated aligning torque, which will be elastic
rather than viscous. Thus no flow will be needed for an acoustic field to act upon
the nematic director. This line of thought first arose in [225], whose experimental
results suggested that the elastic energy density be supplemented with the following
acoustic contribution:

W, = c1k? 4 ca(n - k)?, (5.1
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where ¢ and c5 are constitutive constants, k is the acoustic wave vector, and n is the
nematic director. A similar interaction, even if not explicitly formulated as in (5.1),
was also adduced in [10] to interpret some acousto-optical observations.

DioN [78] is often credited with having first proposed a direct interaction be-
tween acoustic propagation and molecular alignment. However, the further interpre-
tation of this interaction within the general principle of minimum entropy production
[79] has obscured its elastic character, thus bringing it into the realm of dissipation, to
which it does not really belong. In DION and JACON’s own words [79], according to
their hypothesis, “in a medium with acoustical anisotropy, the molecules tend to re-
orient so as to minimize propagation losses.” Such an interpretation of the acoustic—
molecular interaction has fueled controversies and caused misunderstanding (exem-
plary to this effect is the comment on DION’s work on p. 184 of [160]).

As proposed independently and almost simultaneously in [294] and [31], we hold
that the acoustic—nematic interaction is of an elastic nature and results from the cou-
pling between the density gradient induced by the acoustic wave and the average
molecular orientation represented by the nematic director. Since the typical charac-
teristic times of acoustic waves are much shorter than the director’s relaxation time,
it is actually the time-averaged interaction energy that will affect the nematic elas-
tic energy. Both papers [294] and [31] were followed by further extensions of the
original assumption along with the first experimental confirmations of that theory;
in particular, we refer the reader to the series of works [126, 213, 124, 125, 214]
and [32, 30, 268]. Here, we shall indeed posit a slight variant of this assumption
and we shall interpret through the ensuing theory experiments long published in the
literature, though never completely explained.

At the time scale of the acoustic oscillations, at which the director texture can
be regarded as prescribed and immobile, a nematic liquid crystal behaves like an
anisotropic KORTEWEG fluid, that is, an elastic fluid whose free energy density also
depends on the density gradient. KORTEWEG [170] first considered an isotropic fluid
with the elastic stress tensor depending on both the first and second gradients of the
density field; he built his capillarity theory on such a constitutive assumption, as also
recalled in [345] (see, in particular, pp. 513-515). Under appropriate assumptions, a
KORTEWEG stress tensor is hyperelastic, that is, it can be derived from a potential
that depends on the density and its first gradient (see also Section 18 of [41]).

In the following section, mainly following [354], we shall present a general vari-
ational theory for KORTEWEG fluids, which will be further adapted to nematoacous-
tics in Section 5.3, where we show how the time-averaged elastic actions associated
with acoustic propagation affects the dynamics of nematic liquid crystals, in both its
components, director relaxation and hydrodynamic flow. In particular, we shall draw
the consequences of our general theory for the propagation of acoustic plane waves
in a uniformly aligned nematic liquid crystal: we shall compute both the speed of
propagation and the wave attenuation as functions of frequency, propagation direc-
tion, and nematic viscosities. For simplicity, these conclusions are reached under the
assumption that the director is kept fixed in a uniform alignment by some external
agent, as was indeed the case in most of the early experiments. In the closing Sec-
tion 5.4, we relax this assumption by allowing oscillations of the director around a
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fixed uniform orientation to be excited by an incoming acoustic wave. Such a motion,
which we call a libration, will affect the attenuation of the wave, but not its speed of
propagation.

5.2 KORTEWEG Fluids

In this section we digress slightly from our natural development and consider both
equilibrium and motion of a perfect second-grade fluid, whose elastic energy density
is a function of both the mass density o and its spatial gradient V. Our objective
is identifying both stresses and traction laws relevant to this class of fluids. The
extension to nematoacoustics of the balance laws derived here will be the object of
the following section, where the time scale at which a nematic liquid crystal behaves
like a KORTEWEG fluid will be separated from the time scale at which only the
average effects of such a behavior survive.

5.2.1 Principle of Virtual Power

Here, as in the classical treatment of second-grade materials of TOUPIN [338, 339]
(see also [112] for a more recent application of the same method), we start by de-
riving both balance equations and traction laws of statics from a principle of virtual
power. In the hierarchy of variational principles encountered in this book, the prin-
ciple of virtual power is the most basic one: it is subsumed under D’ ALEMBERT’S
principle of inviscid dynamics, which is in turn subsumed under the principle of
minimum reduced dissipation of dissipative dynamics illustrated in Section 2.2.3.
Formally, by setting equal to zero both the dissipation functional & and the thermal
production of energy .7, we learn from (2.206) that the net working W@, x)
and the time rate .% (&, x) of the free energy functional .7 (®;, x) must be equal for
all shapes @ in any motion x. The principle of virtual power ignores inertia and re-
quires .Z to equal # @ the power expended by all applied external agencies? in all
virtual motions that would attempt to deform any subbody ® of ® at equilibrium.*

Let the free energy .#x(®) of the fluid occupying the subbody ® of the body B
be given by

F(®) = /@ 00k (0. Vo)dV,

where oy is the internal energy per unit mass and V' denotes as above the volume
measure. Following [339, 112], we posit for 7@ (®) the following form:

WD (@) :=/ b-vdV+/ (t-v~|—m-a—v)dA, (5.2)
® 9* @ dv

3 If inertia is neglected, % = 0, and so, by (2.104), #'(© reduces to #'@.
4 A similar study, though in a simpler context, was presented in Section 3.1.4 above. Here
we extend the method illustrated there.
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where A is the area measure and v is the velocity field inducing a virfual flow of
the subbody ®, thought of as carved out of the whole body B, while the actions
exerted both in its bulk and on its boundary are held fixed, and the subbody & \ ®
surrounding it is equally frozen.’ Since @ is an arbitrary subbody of ®, it complies
with the requirements of a fit region listed on page 73. In particular, 0*® denotes in
(5.2) the reduced boundary of ®, where the unit outer normal v to 0® is defined.

In (5.2), b is the external body force defined in the whole of 8, while ¢ and m are
surface contact actions, the former expending power against v, and so identifiable as
a force, the latter expending power against the normal derivative of v,

B_v = (Vo)v, 5.3)

v
with v the outer unit normal to *®, and so identifiable as a hypertraction, according
to TOUPIN [339] (see also Section 98 of [345]). The hypertraction m would not be
present in a classical simple fluid, for which the elastic energy density is independent
of Vp; as is soon to be shown, its presence in (5.2) is needed to counterbalance
the internal power associated with the dependence of ox on Vp. While, as already
illustrated in Chapter 2, the body force b is a prescribed source, both surface actions
t and m should be considered as unknown functionals of the boundary 0*®, to be
determined so as to comply with the variational principle posited by the theory. For
statics, this principle is illustrated below; it is intended to provide both the balance
equations valid within the body at equilibrium and the traction laws revealing how
contact actions are transmitted through the boundary of internal subbodies.

We shall require the equilibrium configurations of the body ® to be such that, for

every subbody ® C ®,

Tk (@) = WD (@), (5.4)

where the time derivative of .#x is meant to be computed along the virtual incipient
flow v that at time ¢ brings ® into .

A virtual flow of ® is described by a velocity field v(:, ) defined for every ¢ €
[0, T] with T > 0 on the evolved subbody . Formally, for every ¢ € [0, T], p(¢) €
®; whenever the trajectory ¢ — p(t) solves the evolution problem

p@) =v(p@).1), with p(0) €@,

so that @y = ®.

5.2.2 KORTEWEG Stress

The time derivative of %k in (5.4) is to be computed with the aid of REYNOLD’s
transport theorem in the Eulerian formalism, which we now recall from page 82. For
a functional @ defined on the evolving subbody ®; as

3 For all intents and purposes, in the notation of Section 2.2.3, the virtual velocity in (5.2) is
properly a variation §v of the still field v = 0. We prefer denoting it simply by v to avoid
unnecessary complication.
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o) = [ otx.nav, 55)
®;
where ¢(:, ) is a smooth scalar field on ®;, REYNOLD’s transport theorem says that
@ (@) =/ (pdive + @) dV, (5.6)
®;

where ¢ is the material time derivative of ¢ defined in (2.38).
A mass evolution is associated with the virtual flow v; it is described by a mass
density function o(-, ¢) defined on @ for every ¢ € [0, T']. In particular, the functional

M@, = /(P o(x.0)dV,

which represents the mass stored in &, is a special form of @ in (5.5). By (5.6),
requiring )
M(®)=0 forall ® C @,

which translates the conservation of mass along the virtual motion of any subbody,
is equivalent to the continuity equation (2.108), which we now recall for the reader’s
ease:

0+ odive =0. 5.7

This equation must hold identically along all virtual motions of ®, and so the trans-
port theorem in the form (2.111) will also apply to virtual motions. Thus we obtain
that

Fe@) = | oocav, (53)
®;
where, by the chain rule,
. dog . dog
= — — (Vo). 5.9
ok =0t avg( 0) (5.9)

Applying (2.12) to the vector field Vo, we readily arrive at

(Vor = (Voo + (Vo). 5.10)

Under the assumption that o is a sufficiently smooth function, also by (5.7) we see
that

0 0

(Vo) =V (a—f) — —V(Vo-v)—V(odivy)
= — (V?0)v — (Vv)'Vo — V(o divv),

where the superscript T denotes transposition, and thus (5.10) becomes

(Vo) = —V(edivv) — (Vv)' (Vo).
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By this latter equation, using (5.7), from (5.8) and (5.9) we finally arrive at

Tk (®r)

aﬁK . BOK . T
_ Ok 99K 1y Vo)V
- /(PQ{ % levv+8V@ [V(odivo) + (Vo) Q]}dV,
(5.11)

since ® = @. Integrations by parts and repeated use of the divergence theorem
allow us to give (5.11) the following form:

. ad
Fr(®r) =—/divTK-vdV+/ TKv-vdA—f Qzﬁ-vdivvdA,
1=0 @ @ e 9dVo
(5.12)
where 5
0
Tk = —pl - 0Vo ® 7= (5.13)
aVo
is the KORTEWEG stress tensor and
80K . aﬁK
2
= 0°"— —od — 5.14
PK o 90 oawv (Q 3VQ) ( )

is the associated KORTEWEG pressure.

5.2.3 Surface Calculus

The second surface integral in (5.12) must be further transformed to give (5.12) a
form compatible with (5.2). To this end, we recall from Section 2.3.6 of [354] the
surface-divergence theorem.

Let 8 C 8 be a smooth, orientable, closed surface in the three-dimensional Eu-
clidean space € and let u be a differentiable vector field on 8. The surface divergence
of u is defined by

divyu := trViu,

where Viu is the surface gradient of u.
It can be shown that
Vi = (Vi)P(v), (5.15)

where
Pv) =I-vQ®v (5.16)

is the projection onto the plane orthogonal to a unit normal v to 8, and # is any
smooth extension of u to a three-dimensional neighborood of 8. It follows from
(5.15) and (5.16) that

A~

9
Vsu=Vﬁ—(Vﬁ)v®v=Vﬁ—a—u®v,
v

which, letting
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and noting that Vsu = Vi, we can also rewrite as
Vu =V + Vyu, (5.17)

whence we interpret V, & as the normal gradient of &. By computing the trace of the
tensors on both sides of (5.17), we conclude that

diva = divgu + div, @, (5.18)
where R
N . ou

divpu:=tuuVyu=—-v (5.19)
av

is the normal divergence of u.
The surface-divergence theorem states that

/divsudA =/u-vdivsvdA, (5.20)
8 s

for all smooth vector fields # on §. In (5.20), divy v embodies the differential prop-
erties of the surface 8,

divv = trVsv = 2H, (5.21)
where Vv is the curvature tensor, which enjoys the properties
(V)" =V and (Viw)v =0,

and H is the mean curvature of 8.

Similarly, for a smooth scalar field y on 8, the surface gradient-integral theorem
says that

/stdA :/)((divS v)vdA, (5.22)
8 8

which is the analogue of (2.1).

5.2.4 Traction and Hypertraction

By (5.18) and (5.19), we have that

dox dok av
2 2 .
— -vdivvdA = — v |divgv + — - dA, 5.23
/8*@98 -vdivo /;*@Qa 0 v(lv‘v 3 v) ( )

and using the identity

8 oK . a OK aO'K
v sV N v Vs
8V -vdivg v = div [( Vo v) v] ( BVQ)

and the surface-divergence theorem in (5.20), we can also write
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80K . 80’1(
2 2
0“— -vdiv vdA=/ (Q—-v)ZH(v-v)dA
/a*(P Vo ’ ¢ \_ dVo
ad
—[ Vs (Qzﬂ)-vdA.
@ Ve

Making use of both this equation and (5.23), we finally arrive at

dog v

=— [ divTx-vdA— 2 —=— v]|—-vda

=0 f@ v fa*@g (aVa ) v

8UK aO’K
T Vilo?—— v)—(0>— v |2Hv | -vdA. (5.24
+/a*c>[ Kot (Q o ") (Q Vo ) "] vad. G2

Inserting both (5.24) and (5.2) into (5.4), and requiring the latter to be valid for
every virtual flow v of @ and for every subbody ® of B, we derive the equation

Tk (®r)

b+divTx =0, (5.25)

expressing the balance of external and internal forces at equilibrium in &, and the
traction laws

80’1{ BOK
t=T Vilo?—— v|-0*—=— v |2H 5.26
kv (Q o ”) o (an ”) v ©:20)
and 5
m=—o (%-V) v, (5.27)

valid on the boundary 0*® of every subbody ® of 8.

Equation (5.26) illustrates a notable variance from the linear dependence of the
traction ¢ on the outer unit normal v established by CAUCHY’s classical theorem
(see Theorem 2.5 above), a deviation typical of second-grade fluids. It should be
noted, however, that by (5.21) ¢ is still an odd function of v, thus complying with
NEWTON’s action and reaction principle (see also p. 164 of [349]).

Equation (5.27) represents the hypertraction m as a function of v; unlike ¢, m is
even in v; it is given by a third-rank tensor M, which TOUPIN [338, 339] suggested
be called a hyperstress: in Cartesian components,

m; = Mjl-k\ijk, (5.28)

with repeated indices denoting summation and

My = —Qza—&'k, (5.29)
Q,j

where §;; is KRONECKER’s symbol and a comma denotes differentiation with re-
spect to Cartesian coordinates (x1, X2, X3).
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Clearly, were ok independent of Vo, m would vanish identically, while ¢ would
be given the classical CAUCHY’s form with a stress tensor purely spherical and the
KORTEWEG pressure pg in (5.14) reduced to®

px = polo) := %oy (0). (5.30)

characteristic of a compressible perfect fluid.” Since the deviations from the behavior
of such a fluid introduced in equations (5.13), (5.26), and (5.27) all stem from ok also
being a function of Vo, we often refer to these equations as being nonlocal extensions
of the classical equations.

As also reported in Section 124 of [345], in his original work, KORTEWEG [170]
assumed the following form for Tk:

Tk = —(«|Vo|?> —yA0)I — BVo ® Vo + §V?0, (5.31)

where «, B, y, and § are constitutive functions of g, and A denotes the Laplacian. It
is easy to verify that setting

1 d
ook = ZBIVol’,  a= ~gg©@P) vy =of. and §=0 (532

would make (5.13) agree with (5.31). Under these assumptions, KORTEWEG’s origi-
nal fluid would then become hyperelastic, since Tk could be derived from the energy
density ok in (5.32) within the theory presented here.

5.2.5 Symmetry of the KORTEWEG Stress

Another property of the KORTEWEG stress in (5.13) is worth mentioning: it is neces-
sarily symmetric.This is indeed a direct consequence of ok being frame-indifferent.

Let R € O(3) be any orthogonal tensor representing a change of observer through
the equations (2.43). In particular, we recall that

x* = Rux, (5.33)

where x := x — o is the position vector of a body point at x € & relative to the origin
o selected by one observer and x* := x* — o is the position vector of the same body
point seen at x* € & by a different observer selecting the same origin. As already
discussed on page 84, x and x* refer one and the same body point to two frames.

It readily follows from (5.33) that

Vx* =R.

Letting the density fields o and o* relative to the two observers be functions of x and
x*, respectively, we require them to satisfy

®In (5.30), O’I/< would then denote the derivative of ox with respect to .
7 See also (2.266) above.
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0" (x*) = o(x), (5.34)

since both x* and x refer to the same body point seen against two different frames in
space. That is, we require o to be a frame-indifferent scalar, as defined in (2.44). By
differentiating both sides of (5.34) with respect to x, by (5.33), the chain rule, and
the property R™! = R, we show that

Vo* = RV,

where the gradient of ¢* is meant to be computed at x*. Thus, for ox to retain its
meaning for the new observer, in complete analogy with (5.34), it must obey the
invariance property

ok (0™, Vo*) = ok(0.RVp) = 0x(0. Vo) VR e€0(3). (5.35)

A classical theorem of CAUCHY (see also [357]) ensures that (5.35) is satisfied
if and only if o can be expressed as a function 6k of ¢ and |Vol:

ok(e, Vo) = ok(o, [Vol). (5.36)
Since
8|VQ| 0 Vo Vo
. Q g _’
GVQ BVQ Vol

by the chain rule,
do K 88K VQ
Ve  0|Vel Vol
and so Tk in (5.13) is symmetric.
There is another, perhaps less direct, proof of this property, which follows from
a variant of the principle of frame-indifference, that is, the requirement that the free

energy time rate JK((Pt) be zero for every subbody ® C ® along any rigid
t=
motion. To prove this, we begm by representing a rigid motion through the flow

vr(x) = vr(0) + Wx, (5.37)

where W is a skew tensor, also called the spin tensor of vg.® It readily follows from
(5.37) that Vog = W, and so, for a rigid motion, div vg = 0. Thus (5.11) becomes

9 9
- ﬂ “WVodV = -W. /Qv ®ﬂdv

TRy = Jo %9v0

Hence requiring JK((P,) 3 to vanish along any rigid flow and for every ® amounts

to requiring that the tensor

aO'K
\V4 =
0® Vo

be symmetric, thus proving the symmetry of Tk.

8 By comparing (5.37) and (2.71), the reader will easily realize that they are identical, pro-
vided that W is identified with £*.
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5.2.6 Balances of Forces and Torques

A second-grade material can in general convey internal torques by means of a couple
stress deriving from the hyperstress [338, 339] (see also Section 94 of [345]). We
show now that the couple stress associated with the hyperstress M in (5.29) vanishes
identically. To this end, we consider again a rigid virtual flow like (5.37). Since along
it the left-hand side of (5.4) vanishes, so must also its right-hand side, provided that
the balance equation (5.25) and the traction laws (5.26) and (5.27) are satisfied.

By inserting (5.26) and (5.27) into (5.2) evaluated along the flow (5.37), we read-
ily obtain that

WD (@) =v(o)-[/ de+/ (TKv+tK)dA]
® I* @
+W-|:fb®de+f (TKv®x+tK®x+m®v)dAi|,
® o* @

where we have introduced the KORTEWEG traction

do do .
tx 1=V, (Qzﬁ . v) — 92 (ﬁ . v) (divg w)v. (5.38)

# @ (®) vanishes identically for all choices of v(0) and W if and only if
/de+/ (Txv +tx)dA =0 VP CB® (5.39)
® @
and
[xxde—i—/ [x x(Tgv +tg) +vxm]dA=0 V®CB® (540)
® @
These equations have a transparent mechanical interpretation; the former repre-
sents the balance of all forces acting on ® and the latter represents the balance of all

torques exerted by both forces and couples. By applying the divergence theorem, use
of (5.25) reduces (5.39) to

[ txdA =0 VP C B, 5.41)
*®
while (5.27) and the symmetry of Tk reduce (5.40) to
/ x XtgdA =0 VP C 8. (5.42)
@

This latter equation shows that, by its specific structure, the hypertraction m in (5.27)
does not convey torque, and so the couple stress associated with the hyperstress M in
(5.29) vanishes identically.

We now prove directly that both equations (5.41) and (5.42) are identically sat-
isfied as a consequence of (5.38), as they should, having been obtained by applying
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the principle of virtual power to a specific virtual flow, whereas both the balance
equation (5.25) and the traction laws (5.26) and (5.27) were established by that very
principle in its full generality.

Let e be any given unit vector. Then, by (5.38), (5.41) is equivalent to

dok dok .
. 2_ . — 2 —_ . —
/8*(? [e Vs (Q Vo v) 0 (BVQ v) divg v(e v)] dA =0,

which, since Ve = 0, can also be written as

~ zaﬂ.) _z(aﬂ.)- . } _
[*(P {dlvs[(g Vo v]e|—o Vo v ]divgv(e -v); dA=0. (543)

By applying to (5.43) the surface-divergence theorem, we conclude that this equation
is identically satisfied for all e € S? and ® C 8.
We find it convenient to rephrase (5.42) in Cartesian components:

/a €ijk [%) Xk — Xjvisnxvie | dA =0, (5.44)
*®
where
280’1(
xi=0">—vi.
90,i

€ijk is RICCI’s alternator, and a semicolon denotes surface differentiation. Integration
by parts and use of the surface gradient-integral theorem in (5.22) allow us to rewrite
the left-hand side of (5.44) as follows:

/a . €ijk [X) XVIVRh — XXjsd — XjVign XV | dA = _/a , €ijkxPik dA, (5.45)

where P are the Cartesian components of the projection P(v) in (5.16). Since P(v)
is symmetric, the integral on the right-hand side of (5.45) vanishes, and so (5.42) is
identically satisfied for all ®.

We thus conclude that the KORTEWEG traction f¢ defined in (5.38) represents a
system of self-equilibrated contact forces, which, in particular, would not affect the
motion of any submerged rigid body. By contrast, in general, the hypertraction m
in (5.27) is not self-equilibrated. However, according to (5.2) and (5.3), the power
expended by m against a rigid motion vanishes identically, since, by (5.37),
8vR 2 ( do K

m.a—v:m-sz—Q m-v)v-Wv=0,

since W is a skew tensor.

5.2.7 Dissipative Dynamics

The foregoing discussion on the equilibrium of isotropic KORTEWEG fluids served
the purpose of identifying KORTEWEG stress, traction, and hypertraction. Our main
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interest in this book lies with dissipative fluid dynamics. To derive the basic equations
of motion for a dissipative isotropic KORTEWEG fluid, we may replace the principle
of virtual power with the principle of minimum reduced dissipation formulated for
deformable bodies on page 137 of Chapter 2. Our treatment of both inertial and
viscous forces would here be the same as that in Section 2.3.2 for a compressible
NAVIER-STOKES fluid, and need not be repeated at this stage of our study. Thus the
extension of (5.25) into the balance equation for linear momentum is as in (2.279),

ov=divT + b, (5.46)

where now
T = Tk + 2uD + A(divv)I (5.47)

is the complete stress tensor, including both elastic and viscous stresses.’ The traction
law (5.26) is accordingly modified,

t =Tv + tx,

while the expression for m in (5.27) remains unchanged. These equations should
further be supplemented by the continuity equation (5.7).

Constitutive Assumption

We shall consider in this section a simple constitutive assumption for ok, which
complies with the frame-indifference requirement (5.36):

1
ok = 00(0) + Eulwaﬁ (5.48)

where oy is an increasing convex function of o and u; is the acoustic susceptibility,
which we take independent of p. With this choice of ok, the stress tensor Tk and the
traction and hypertraction g and m are given the following explicit forms:

Tk = —pxl —u10Vo ® Vo with px = on(’) —uy0div(eVo), (5.49)

txk =u; [Vs (szvQ) — (divy V)Qz(vvg)v] >
m = —u10*(Vy0)v.

where o, denotes the derivative of o with respect to 0, and V,0 = Vo-v. We further
assume that b = 0, so that no body force is applied to the medium.

It is easily seen that, under these assumptions, any uniform density field oo would
be compatible with equations (5.46) and (5.7) with v = 0, the equilibrium value g¢
being selected by the total mass present in the body when the body is confined in
space, or being treated as a parameter when the body is indefinite.

9 Cf. (5.47) with (2.280).
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5.2.8 Acoustic Plane Waves

We now seek a special solution to the equation of motion (5.46) under the specific
constitutive assumption (5.48).

We imagine that an acoustic plane wave is being forced in the fluid by the vibra-
tion of a rigid plane at the angular frequency w, which produces a disturbance in o
represented as

0 =o0o(l +5), (5.50)

where the condensation s is given the form
s(x,t) = soN (ei(k‘x_‘”t)) , (5.51)
where ) denotes the real part of a complex number, x := x — o with o0 a given

origin, s¢ is a small dimensionless parameter, and k is the complex wave vector to be
determined in terms of w. Correspondingly, the velocity field v is taken as

v(x,1) = st (ei(k’x—w”) a, (5.52)

where the amplitude a is an unknown complex vector.

As customary in acoustics, equations (5.7) and (5.46) for the perturbed mass
density and the oscillating flow are linearized in s¢; in them the fields ¢ and v will be
represented as complex exponentials, with the proviso that only their real parts bear
a physical meaning. We shall represent k as

k =ke with k =k + iks, (5.53)

where e € S? represents the propagation direction. Similarly, @ will be represented
as
a=af with a=a;+ia,, (5.54)

where f € S2. The imaginary part k, of k will be associated with the attenuation
of the wave: when k, > 0, its reciprocal represents the length over which the wave
amplitude is reduced by the factor 1/e; such a length is also called the attenuation
length. The imaginary part a, of a is related to the phase shift between the conden-
sation wave and the velocity field it carries along.

Our program is now to seek solutions in the form (5.51) and (5.52) to the con-
tinuity equation (5.7) and the balance equation of linear momentum (5.46) with the
stress tensor T expressed as in (5.47), under the assumption that only linear terms in
the perturbation parameter s¢ are to be retained.

To this end, we set

E := ¢ikx—on), (5.55)

for brevity, and we compute
Vv = spiFa Q k,

whence it follows that
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1
D= EsoiE(a Rk +k®a) (5.56)

and
divv = sgiEa - k.

Similarly, we obtain
VQ = SoiQ() Ek.

It easily follows from (2.38), (5.50), and (5.51) that
0 = —soigo Ek + 0(so).

Thus, up to first order in s¢, equation (5.7) becomes

w=a-k. (5.57)
Similarly, also by (5.52) and (5.56),
oV = —sgigowEa + o(sp) (5.58)
and
T =—pxl+soinE(@ @k +k @ a) + soirE(a - k)L (5.59)

By (5.49), px can here be given the following expression:
Pk = po(00) + $000cs E + sooquik?E + o(so), (5.60)

where we have set
Po(0o) := Q%U(/)(Qo)
and
co 1= +/Po- (5.61)

where py, the derivative of po with respect to g, is the velocity of sound in a classical
isotropic compressible viscous fluid described by (5.47) and (5.49) with u; = 0.

It readily follows from (5.58) and (5.59) that for ¢ and v as in (5.50), (5.51),
and (5.52), up to first order in s, the balance equation of linear momentum (5.46)
becomes

ioowa = igoclk + iu105k*k + ulk*a + (a-k)k] + A(a - k)k. (5.62)

By (5.53) and (5.54), this equation implies that f = e, and so the wave is purely
longitudinal. This, in turn, transforms (5.57) into

(% + ikz) (a1 +ia2) = o, (5.63)

where we have set

k1 =:

2 (5.64)
C
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with ¢ representing the still undetermined velocity of sound in the KORTEWEG fluid
being studied. Equation (5.63) has the following solution:

2 2

w*c wc“ky
a = ——, ap = ———, 5.65
T w24 k2 2 2 + c2k32 5.65)

showing that for k» > 0 the velocity wave has a negative phase shift relative to the
condensation wave, so that the latter wave precedes the former. Moreover, taking the
inner product with k of both sides of equation (5.62), we arrive at

iw? = ictk? + i 05k* + vok?, (5.66)

where {
vi=—Q2u+A).
Qo

It follows from inequalities (2.255), which ensure positive semidefiniteness to the
RAYLEIGH dissipation function for a compressible NAVIER—STOKES fluid, that

1,>4_/”L>0

~ 300

By (5.64) and (5.53), (5.66) is equivalent to the pair of equations corresponding for
any @ > 0 to its real and imaginary parts:

)t (@) ot (D) [(2) -] 0 6o
@ [ (@] [reia ()]

1 2/4 Co o
+ o’k + (c)vkz—O. (5.68)

Here we have set

o = 2?-24/7 , (5.69)

0
which defines a characteristic time related to the acoustic susceptibility u;, and we
have introduced the following dimensionless quantities:

w

ky = c—0k2 and V' = —v. (5.70)
a) o

For v/ = 0, that is, in the inviscid limit, equation (5.67) possesses three roots,

namely, k5, = 0 and
2 Co 2
Py RN
2 w21} ¢
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Inserting these latter into (5.68) with v/ = 0, we find the following equation for c:

Co\?2 Co\2
0*tf + 1 = —w?t} (—0) [a)ztlz (—0) + 2] ,
¢ c
which clearly fails to possess a real root. Hence, if v = 0, then k}, = 0 and c is
determined by the dispersion equation

1 4 2
“we? (C—°) ¥ (c—") _1=o, (571
4 c c

obtained from setting k, = 0 in (5.68). The only positive real root of (5.71) is

c 0Ty
= . (5.72)

* F)

Thus, as expected, in the inviscid limit the wave is not attenuated, and, as also shown
in Figure 5.1, ¢ = ¢y, for all @ = 0, where ¢ = ¢¢ only for u; = 0. Moreover,

c/co
2.4 A

2.2 A
2.0 A
1.8
1.6
1.4 1

1.2 1

1 T T T T T a)rl
0 2 4 6 8 10

Fig. 5.1. The speed of sound ¢ in the KORTEWEG fluid described by (5.48), scaled to the speed
co corresponding to the limit of zero acoustic susceptibility, u1 = 0.

asymptotically,

Co
c~ —.Jot; for wt > 1.
V2

Attenuation

For v/ > 0, we now determine both k7 and ¢ in a perturbation limit by continuing
the solution just found for v = 0. In particular, we assume that both v" and k) are
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O(s9) and neglect in equations (5.67) and (5.68) all terms of order higher than 1 in
s0. Doing so, we readily obtain from (5.67) that
v/ 1
! S
=T S (5.73)
J— _l_ —w ‘L'l —_
co 2 c

while, to this order of approximation, (5.68) still reduces to (5.71). By (5.70), assum-
ing k% to be small amounts to assuming that the attenuation length associated with
ko is much larger than the wavelength corresponding to the limiting case of zero
acoustic susceptibility, u; — 0.

ko /ag

1.0
08 |
0.6 1
0.4 1

0.2

0 T T T T T wT)
0 2 4 6 8 10

Fig. 5.2. The acoustic attenuation k5 for the KORTEWEG fluid described by (5.48), scaled to
the attenuation «¢ corresponding to the limit of zero acoustic susceptibility, 1 = 0.

Again by (5.70), we derive from (5.73) the following dimensional form:

ky, = c +1 - (5.74)
=4 —w?22
Co 2 1
where
vo?
oy = —5
0 203

is the attenuation in the limit of zero acoustic susceptibility and ¢ is expressed by
(5.72) as a function of w. As also shown in Figure 5.2, k; < «g for all w > O,
provided that u; > 0; asymptotically,

V20

ky n ————
2 (wTI)B/Z

for wt; > 1.
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Thus, for any given frequency w, the wave propagating in the viscous KORTEWEG
fluid considered here is quicker and less attenuated than the corresponding wave
propagating in the limit of zero acoustic susceptibility.

Within the same approximation that led us to (5.74), we obtain from (5.65) that

2

c
air=c¢ and a, = ——ks.

w

Acoustic Intensity
The acoustic intensity carried by the wave is defined as
I = (pxv-e), (5.75)

where (-) now denotes the time average over a period and e € S? designates the
direction of propagation. To within second order in s¢, by (5.60), (5.64), and (5.75),

2
_ o202 297 ) [ )2 = R W)
L = 0052 (c0c+u190 : )((.tE) )=1o [(CO) + 50’ (c) . (5.76)

where

1
Iy = EQosgcge_ﬂ‘z"'e (5.77)

is the acoustic intensity of the wave in the limit of zero acoustic susceptibility and ¢
is given by (5.72) as a function of w.

The graph of I, scaled to Iy is shown in Figure 5.3 against wty; it reveals how the
acoustic susceptibility u; increases the acoustic intensity. The asymptotic behavior
of I, for large frequencies compensates exactly the attenuation k,, since

Lky ~ Iyag for wt > 1.

The viscous KORTEWEG fluid studied in in this section was isotropic. We shall
examine in the following section what consequences relate especially to the propaga-
tion of a plane acoustic wave in a nematic liquid crystal by adding to the elastic free
energy density in (5.48) an anisotropic acoustic susceptibility coupling the density
gradient with the director. Such a formal alteration will open the way to regard a ne-
matic liquid crystal as an anisotropic KORTEWEG fluid at the time scales comparable
to the period of ultrasonic waves.

5.3 Nematoacoustic Theory

Having developed in the preceding section the general theory for dissipative isotropic
KORTEWEG fluids, in this section we base our nematoacoustic theory on the postu-
lation that at sufficiently high frequencies a nematic liquid crystal behaves like a
particular anisotropic KORTEWEG fluid, symmetric about the local director n. The
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Ia/IO

1 T T T T — WT]
0 2 4 6 8 10

Fig. 5.3. The acoustic intensity /, for the KORTEWEG fluid described by (5.48), scaled to the
acoustic intensity /o corresponding to the limit of zero acoustic susceptibility, u1 = 0.

behavior at longer time scales remains as already described in the preceding chap-
ters of this book; in the presence of a fast phenomenon, such as the propagation of an
ultrasonic wave, what survives at the longer time scales is the average of whatever
fast variable bears a mechanical meaning. We imagine distinguishing fast and slow
dynamics, the former evolving as if the latter were not, this latter being influenced
only by the time average of the other.

In the fast dynamics, a nematic liquid crystal may reveal features that do not
generally characterize its slow dynamics. For example, the very possibility of sound
propagation in liquid crystals resides in their being compressible, a property that is
generally denied to the slow dynamics. Fast and slow dynamics mutually interfere
with one another: the fast dynamics interfere with the slow dynamics by provid-
ing time-averaged sources; the slow dynamics in turn drive the background against
which the fast dynamics are taking place. Such an interplay will in particular be illu-
minated by the propagation of ultrasonic waves: they produce an acoustic torque on
the nematic director, which later affects the slow director dynamics; this will eventu-
ally alter the wave propagation and with it the acoustic torque. Bridging rigorously
the different time scales of fast and slow dynamics for ultrasonic wave propagation
in nematic liquid crystals will be the primary object of this section. We begin by
considering the RAYLEIGH dissipation function for a compressible nematic liquid
crystal.
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5.3.1 Acoustic Dissipation Function

At the acoustic time scale, a nematic liquid crystal is regarded as being compressible,
and so the velocity field v is no longer solenoidal, though its time average is so. This
point of view is not unprecedented in the literature: for example, in the hydrodynamic
theory of liquid crystals proposed in [106] and [149], liquid crystals are compressible
fluids. Thus, the acoustic dissipation function R,, which like R in (3.49) above de-
pends on the director n, its corotational time derivative n, and the stretching tensor D,
being quadratic in the pair (D, 7), may also depend on tr D, the new invariant intro-
duced by removing the constraint on the divergence of v. Only two quadratic terms
in D containing tr D may be added to R in (3.49), namely, (tr D)? and (trD)n - Dn.
Therefore, R, is defined as
o 1. o 1 2, | 2, | 2
R,(n;D,n) :==yn° + yon-Dn + E)@(Dn) + 5)/4(11 -Dn)” + 5)/5 trD

2
1
+ 576(trD)” + y;(wD)n - D, (5.78)
where y1, ..., y5 are viscosity coefficients related to LESLIE’s viscosities oy, .. ., &5

through equations (3.62)!° and yg, y7 are new viscosity coefficients arising from
the material compressibility in the fast acoustic propagation. Here all coefficients
Y1,--.,y7 will be considered as functions of the mass density o.
We already described in (3.57) the conditions on the viscosity coefficients yq,
.., Ys that make R in (3.49) positive semidefinite in all admissible motions. That
discussion must now be extended to R,; the additional viscosities y¢ and y7 are likely
to play a role in the positive semidefiniteness of R,. For given n, n is subject only to
the condition of being orthogonal to r, while D is here an arbitrary symmetric tensor.
As we did in (3.53) for R, with no loss in generality, we can now represent them in
the following form:

3
i=Ne, and D= ) Aje;®e; with A=A, (5.79)
i,j=1

where (eg, e, e3) is an orthonormal frame such that n = e;. By inserting (5.79)
into (5.78), we transform R, into the sum of four quadratic forms in the independent
variables A13, A3, (N, A12), and (A11, A2z, A33), respectively:

1
R, = (5?3 + )/5) A3 + ys A3,
o, 1 )
+ EVIN + Y2 NAp + V3 +ys5 | Al
1 1
+ 5()’3 +Va+ys+yve + 21/7)14%1 + (Y6 + y7)A11422 + 5(7/5 + V6)A§2
1
+ Y6A22A33 + (Y6 + y7)A11 433 + E()’s + y6) A3

10 Conversely, equations (3.60) express the a’s in terms of the y’s.
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Necessary and sufficient conditions for R, to be positive semidefinite are the inequal-
ities
ys=20 and y3+2ys =0, (5.80)

and the positive semidefiniteness of the symmetric matrices

Y1 V2
Hy =
! [)’2 3 +2)’5]

and
Y3+ ya+vys+ve+2v7 V6 + V7 Ve + V7
Hy = Y6 + V7 Ys+%Ye Ve
Y6 + ¥7 143 Y5 + Ve

Following in part [319] (see, in particular, p. 146), we recall that both H; and H,
are positive semidefinite whenever all their principal minors are nonnegative!! (see,
for example, p. 7 of [18] for this positive semidefiniteness criterion). The principal
minors of H; are its determinant and the entries y; and y3 +2ys, and so H; is positive
semidefinite whenever

120, y3+2ys20, and yi(ys +2ys)—y3 = 0. (5.81)

Clearly, (5.81), reproduces (5.80),, which will henceforth be redundant.
To ensure that H, is positive semidefinite, we begin by requiring that all its lead-
ing principal minors'? be nonnegative:

Y3+ va+ys+ys+2y; 20, (5.82a)
Y3Vs + V3Vs + v3 + 2VsVe + Vsva + vavs + 2ysyr — v 2 0, (5.82b)
vslysys +2ys3¥e + v3 +3ys¥s + vsva + 2yave + 2ysy7 — 2771 2 0. (5.82¢)

It is easily seen, also with the aid of (5.80), that inequalities (5.82b) and (5.82c) are
equivalent to
ysa+b =0 and ysa—+2b=0, (5.83)

respectively, with

a:=y3+vys+ys+ys+2y; and b5=)’6()/3+7/4+)/5)—)/72-

Since, by (5.80); and (5.82a), both y5 and a are nonnegative, the second inequality
in (5.83) is more stringent than the first, and so (5.82c) implies (5.82b).

Three extra inequalities are derived by also requiring the remaining principal
minors of H, to be nonnegative. The first coincides with (5.83);, while the others are

1T A principal submatrix of an 7 x # matrix M is a submatrix of M whose principal diagonal is
part of the principal diagonal of M. A principal minor of M is the determinant of a principal
submatrix of M. We suggest [17] and [18] as general references on these matters.

12' A leading principal minor of an 7 x n matrix M is the determinant of a principal submatrix
of M identified by the first j rows and the first j columns of M, with j = n.
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¥s+vs 20 and ys(ys +2y6) Z 0.
Again by (5.80)1, the latter inequality implies the former.'?
In summary, R, is positive semidefinite whenever
y1 20, (5.84a)
y3 +2ys = 0, (5.84b)

ys = 0, (5.84¢)

¥s + 2y6 Z 0, (5.84d)

V3 +va+ys+ye+2y7 20, (5.84¢)

y1v3 +2y1ys —v3 2 0, (5.84f)

Ys(v3 + va + vs + ve + 2v7) + 2[ve(ys + va + vs) — 3] 2 0. (5.849)

These inequalities should be compared to those already collected in (3.57) for
the positive semidefiniteness of the RAYLEIGH dissipation function R in the incom-
pressible limit and to the corresponding inequalities (3.63), expressed in terms of
LESLIE’s viscosities, which we reproduce below for the reader’s ease:

a3 Z oo, (5.852)

04 20, (5.85b)

oy + o3 + 204 + 205 = 0, (5.85¢)

2(a; + o3 + a3) + 304 + 4as = 0, (5.85d)
(a3 — o) (02 + a3 + 204 + 2a5) = (a2 + a3)>. (5.85¢)

By letting y¢ = y7 = 0 in (5.84), which amounts to silencing the extra acoustic dis-
sipation terms introduced in (5.78), and by using (3.62), we see that (5.84d) collapses
into (5.84c), which is equivalent to (5.85b), and that, by (5.84c), (5.84g) reduces to
(5.84e), and together they become

ar +ax + a3 +as + 205 2 0. (5.86)

While (5.84a), (5.84b), and (5.84f) reproduce (5.85a), (5.85c), and (5.85¢), respec-
tively, (5.86) and (5.85b) imply (5.85d), as is easily seen by multiplying both sides
of (5.86) by 2 and then adding o4 to the left-hand side. This shows that inequalities
(5.84) and (5.85) are not equivalent in the limit as both y¢ and y7 vanish, but that

13 We note in passing that were we to require a real symmetric matrix M to be strictly pos-
itive, we could be contented with requiring all its leading principal minors to be positive;
positivity of all other principal minors would follow as a consequence. The simple matrix

m=[o ]

illustrates how nonnegativity of all leading principal minors of M does not imply positive
semidefiniteness of M (see again p. 7 of [18]).
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the former inequalities imply the latter. That inequalities (5.84) with y¢ = y7 = 0
are more stringent than (5.85) should not surprise us, for in deriving (5.84) the vari-
ables A1, Azz, and A33 were not subject to the constraint Ay; + Azz + Azz = 0
in (3.52), which was instead enforced to obtain (3.57), and so (5.85), which simply
transliterate the former into the alphabet of the «’s.

5.3.2 Nematoacoustic Equations

Here we derive the equations that govern acoustic propagation in nematic liquid crys-
tals, assuming that a nematic liquid crystal, as seen from an acoustic wave propa-
gating through it, behaves like an anisotropic, compressible KORTEWEG fluid with
RAYLEIGH dissipation function R, as in (5.78). More specifically, we assume that
at the acoustic time scale (comparable with the wave period) the nematic director
n is immobile, so that its dynamics can be appreciated only over much longer time
scales. Similarly, we assume that at the acoustic length scale (comparable with the
wavelength) n is undistorted, that is, Vr = 0, so that nematic distortions can appear
only over much larger length scales. In particular, this latter assumption will imply
that the nematoacoustic equations may be derived by neglecting the elastic energy
density W introduced in (3.13) on page 170. At the acoustic length scale, the role of
W is to be played by the KORTEWEG energy density ok introduced in Section 5.2
above.

Balance Laws

Following the general theory presented in Section 3.1, in the absence of body forces,
the balance of linear momentum is expressed by the equation

ov = div (Tg + Tk + Tas) . (5.87)

where, as shown in in Section 3.1.4, the ERICKSEN stress has the form

oW
Ty = —WI— (Vn) —
B (Vm) o5

the KORTEWEG stress Tk is defined as in (5.13), and the dissipative stress Tgis is

given by
1( oR, OR, ) R,
n

Tais = (5.88)

2" % T ®") T
It is worth noting that by (5.78),
oR, OR

o on’

where R is the RAYLEIGH dissipation function in the incompressible limit (3.49),
whereas

oR, OR
> =~ ap T [v6 rD + y7(n - Dn)]I + y7(tr D)n @ n.
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Similarly, by (3.68) and (3.69), the balance of torques is expressed by the equa-
tion
( dok OR, OW ow )
—n X =0,

on + on + on div aVn
where the external body couple n x k™ has been set equal to zero. As customary in
nematodynamics, no inertial torque appears in (5.89), since the microkinetic energy
k associated with the motion of n is systematically neglected relative to the predomi-
nant macroscopic kinetic energy ko = %sz of the flow. At the acoustic frequencies,
however, such an assumption must be subject to scrutiny. Here we write k as

(5.89)

1 .

K= 5982n2, (5.90)
with § a molecular radius of gyration. We shall estimate in Section 5.4.2 below the
acoustic frequency that cannot be exceeded for this energy to be safely neglected
with respect to k.

Letting W be a quadratic form'* of Vn, we write

1 1 1
W (n,Vn) := EKI (divn)® + 51(2 (n-curln)® + §K3|n xcurln|?,  (5.91)

where the elastic constants K1, K», and K3 are material parameters, which we as-
sume to be independent of the mass density o. We easily conclude from (5.91) that
for a uniform director alignment, for which Va = 0, Tg vanishes identically, and so
also does the elastic torque, since

ow

— =0 and w =
on

— =0.
oVn

Both these equations must be inserted into (5.89).

At the acoustic time and length scales, equation (5.89) does not govern the direc-
tor evolution: as shown below, its time average over an acoustic period will provide
the acoustic torque unbalance, responsible for linking the fast acoustic dynamics with
the slow director relaxation.

As usual, the balance equations (5.87) and (5.89) are to be supplemented by the
mass continuity equation (5.7).

As explained in Section 5.2.4, the total traction ¢ transmitted through a surface §
within the fluid is given by

t = (TK + Tdis) Vv + Ik,

where #x is as in (5.38) and v is the outer normal to §. Likewise, the hypertraction
m is given by (5.27).

14 As originally proposed by FRANK [109] (see also Chapter 3 of [353]).
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Constitutive Assumption

Elaborating on (5.48), here we write ok as a function of o, Vg, and n,

1
ox(e. Vo.m) = 00(e) + 5 [mi| Vol +uz (Vo-m?].  (5.92)

where the acoustic susceptibilities u1 and u, are assumed to be constitutive param-
eters independent of p. Clearly, the KORTEWEG behavior of a nematic liquid crystal
at the acoustic time and length scales described by (5.92) is anisotropic about n. In
(5.92), the terms in square brackets represent the most general addition to o that
depends on n and is both quadratic in Vp and frame-indifferent. It is easily seen that
for such an additional energy to be positive semidefinite, it is necessary and sufficient
that u; and u, obey the inequalities

u; =20 and u; +up =0.
By (5.13) and (5.14), the associated KORTEWEG stress tensor Tk is then
Tk = —pxl—0[u1Vo® Vo + u(Vo-n)Vo ® nj, (5.93)

where
px = @0 — e divie (1 Ve + uz(Ve - m)m)]. (5.94)
For completeness, we record here the form given by (5.27) and (5.38) to the hy-

pertraction m and to the KORTEWEG traction f, respectively, under the constitutive
assumption (5.92):

m = —0%[u (Vo -v)+us(Vo-n)n-v]v,
tx = Vo {o> [u1(Vo - v) + uz(Vo-nn - v]}
— 0% [u1(Vo - v) +uz(Vo - n)n - v] (div, v)v.
Finally, it follows from (5.88) and (5.78) that

1 0 e 1 | o
TdisZE)’I(”®”_”®”)+EV2("®D"_D”®”)+5)’2("®”+n®n)

1
+ 5]/3(71 ®Dn+Dn®@n)+ ysD+ (yan -Dn+ y;rD)n @ n
+ (ystrD + y7n - Dn) L. (5.95)
In the following section, we shall seek plane wave solutions to equation (5.87)
with Tk and Tg;s given as in (5.93) and (5.95).
5.3.3 Propagation Equations

Our postulation15 here is that, at the acoustic time scale, n = 0, since n is thought
of as being immobile; thus, by (3.36), the corotational time derivative n reduces to

15 This assumption will be relaxed in Section 5.4 below, where we shall allow for a librational
motion of n around a uniform immobile direction. We found it instructive to proceed by
degrees of increasing complexity in presenting this subject.
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o

n = —Wn, where W is the vorticity tensor, and the dissipative stress tensor T g
becomes

1 1 1
Tais =§()’1 —y2)Wn®@n — 5()/1 +y2)n @ Wn + E()/z +y3)n @ Dn

1
+ 5()’3 —y2)Dn®n +ysD+ (yan-Dn+ y;uD)n @ n

+ (ystrD + y7n -Dn) L. (5.96)

With the acoustic fields o and v represented as in (5.50), (5.51), and (5.52) above,
the stretching tensor D reads as in (5.56), while the vorticity tensor becomes

1
W= EsoiE(a ®k —k ®a), (5.97)

where E is the complex exponential function defined in (5.55), k is the wave vector,
and a is the amplitude vector. Both k and a are represented here as in (5.53) and
(5.54) above. By use of (5.56) and (5.97) in (5.96), we readily arrive at

. 1 1
div Tgis = — ESOE %[5(71 —2y> + y3)(k -n)* + VskZ] a

+ B(ya —y1+4y)(a-n)(k-n)+ (ys + 2ys)(a-k) | k

= [J0s—n + e m -

| -

+ 300+ 20 vk + 2y i ]
On the other hand, reasoning precisely as in Section 5.2.8, by (5.93) and (5.94), we
show that

divTx = — Vpk + o(so)
= —s5000iE [c§ + 0 (u1k® + ua(k - n)*)] k + o(so),

where g is the unperturbed density and cy is the velocity of sound in the limit of
zero acoustic susceptibilities, u; = u, = 0, defined as in (5.61).

Up to the first order in s¢, the balance equation of linear momentum (5.87) then
reduces to the purely geometric form

2iwa =2i[c§ + 0f (u1k* + uz(k -n)*) ] k

M1
+ E(Vl —2v, +v3)(k -n)? + v4k2:| a

+ _%(U3 —v1 +4vy)(a-n)(k -n) + (vs + 2v6)(a- k)] k

1 1
+ 5(1)3 — vy +4vy)(k-n)k-a)+ E(vl + 205 + v3)(a - n)k?

+ 2vs(a - n)(k -n)21|n, (5.98)
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where we have set )
vi=2 for i=1.....7. (5.99)

Qo
Equation (5.98) must be supplemented with the mass continuity equation (5.7),
which for the acoustic fields still takes the form (5.57); this latter, however, does not
reduce to the form (5.63), since by (5.98), in the nematic case, acoustic waves are no

longer longitudinal. Letting k and a be represented as
k=ke and a =a.e + aun, (5.100)

with e € S? designating the propagation direction and k, a., and a, all complex
numbers to be determined, we write (5.57) in the form

kae + kaycos B = w, with cosf:=e-n. (5.101)

It follows from (5.100) and (5.101) that whenever sinf8 = 0, a, and a, are not
uniquely defined; we resolve this ambiguity by setting a,, = 0 for sin 8 = 0.

Before solving equations (5.98) and (5.101), we introduce new dimensionless
variables defined as

c c . a a w
K =2k = (—0 + 1k;), a,:=-"=, a,:=-", and v := — Vi,
w c Co co 5
(5.102)
fori = 1,...,7, where c is the velocity of sound in the nematic medium, still to be

determined. Written in the new variables, equation (5.101) readily yields

1
=7 —aj, cos . (5.103)

Similarly, by (5.57), taking the inner product of both sides of (5.98) with k, we obtain
the scalar equation

1
2i =2i (1 + szfzk’z) k"
1 / / ’ 2
+13 (v —2v5 + v}) cos® B

+ = (V5 — v} + 4v}) (cos B + aj,k’sin® B) cos B + 2 (v} + vg):| k'

N =

+ [% (V5 — v+ 4v])cos B+ % (v} 4 205 + v4) (cos B + al,k’sin® B)

+ 205 (cos B + a, k' sin® B) cos* ,Bj|k’2 cos B, (5.104)

where use has been made of (5.103) and t is the anisotropic characteristic time

defined by
v := 220 /ur + us cos? B. (5.105)
C

0
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Moreover, taking the inner product of both sides of (5.98) with n and using again
(5.103), we arrive at

2i(cos B + a, k' sin? B)

1
=2i (1 + szrzk’z) k" cos B

+ % (v} —2v5 + v}) cos® B + vé] (cos B + al,k’sin® B) k>
+ % (v5 — vi + 4v}) (cos B + al,k’sin® B) cos B + (v} + 2vg)] k"% cos B
+ % (v — v} + 4v)) cos B + % (v} + 2v5 + v}) (cos B + a, k' sin® B)

+ 5 (cos B + aj,k’ sin® B) cos® ﬁi|k'2. (5.106)

Equations (5.104) and (5.106) are algebraic in k" and a),. They determine all
propagation modes allowed by our theory. We begin by considering special instances
of these equations that are easier to solve. Let us first set sin § = 0, so thata,, = 0
and the wave is longitudinal. Then equation (5.104) becomes

1
i=i (1 + Za)ztsz) k™ 4+ (Vs + v+ vs + vg + 205) k2, (5.107)

and (5.106) reduces to the same equation (5.107) with both sides multiplied by cos f.
It also follows from (5.103) that
a,=—. (5.108)

Let us now set cos § = 0. Then (5.103) implies that ), is still given by (5.108).
Moreover, equations (5.104) and (5.106) become

1
i=i (1 + szrlzk’z) k™ + (vy + vg) k2 (5.109)
and .
ank’ [2i -3 (v + 205 + v} + 2v)) k’2:| =0,
whence it follows that @, = 0. Then the wave propagating at right angles to the

nematic director is also longitudinal.

Though both equations (5.107) and (5.109) can easily be solved explicitly, their
solutions are given by rather cumbersome expressions, which do not make their in-
terpretation transparent. As in Section 5.2.8, we prefer to study the limit of small
viscosities, where all v/ are treated as perturbation parameters of the same order. To
this end, we first consider the inviscid limit, in which all viscosities are set equal to
zero. Equation (5.104) then becomes
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1
(1 + szrzk’z) K*—1=0, (5.110)

which, together with (5.106), also requires a;, = 0, and correspondingly implies that
a,, is as in (5.108). The only solution of (5.110) with positive real part has k), = 0
and

€ _ i . (5.111)

“ (Ve )

We drop the solution with negative real part, since it represents the same wave prop-
agating in the opposite direction. We also drop the other two purely imaginary solu-
tions, since they do not represent traveling waves. Were t replaced by 7; in (5.69),
equation (5.111) would exactly coincide with (5.72). However, since t depends on
B, the dispersion described by (5.111) is anisotropic.

We now assume that all dimensionless viscosities v; are O(gg), where & is a
small dimensionless parameter, and we continue in g¢ the solution to the propagation
equations already found in the inviscid limit. In particular, we write kK’ as

K= 0 ik, (5.112)
C

and we assume that both /] and k), are O(g¢). By (5.102), assuming k5 < 1 amounts
to assuming that the attenuation length of the propagating wave is expected to be
much smaller that the wavelength. Intuitively, this is grounded in the assumption that
all viscosities are small, in the sense made precise by requiring that v; < 1, for all 7.

Inserting (5.112) into (5.104), (5.106), and (5.103), at the lowest order of approx-
imation in s, we obtain that

I, =0, (5.113)
1
kb = 5% [vi + v + (V5 + 20)) cos® B + vicos* ], (5.113b)
2— 4w tT—
Co c
1 sco\ cosp
a, = —is (;) m [V5 + v} + 20 — (V5 + v — 205 + 2v)) cos® B
—2v5cos* B] for sinB #0, (5.113c)
2
a =5 i (i) k, — ., cos B. (5.113d)
Co Co

where c is expressed by (5.111) as a function of both @ and S.

The solutions to equations (5.104) and (5.106) for which the real part vanishes in
the inviscid limit can also be continued as all dimensionless viscosities v; move away
from zero. The continued solution with positive real part of k’ can be represented as

k' = h, + ik,

where
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2(1@)

hhy =
2 ot

and 1}, = O(eo). It turns out that, at the lowest order of approximation,

A 231 4 w212 0(1)

EZv"‘—i—vé+(vg+2v;)cosz,3+vgcos4,3: €0

This would thus correspond to a wave propagating with a speed ¢ much larger than
co and with an attenuation length much shorter than the wavelength. Such a wave
could not indeed propagate, and so it will henceforth be disregarded, though it might
rise and compete with the wave that propagates in the asymptotic limit of small
viscosities in the complete nonlinear analysis of propagation equations (5.104) and
(5.106).

Anisotropic Dispersion

The same Figure 5.1 that above represented the dispersion of ¢ in the case of isotropic
acoustic susceptibility studied in Section 5.2.8 also represents equation (5.111) for a
given propagation direction specified by the angle §: it suffices to replace 7; with .
What the graph in Figure 5.1 fails to represent is the anisotropy in the speed of sound.
To capture this feature of (5.111), we define the relative sound speed anisotropy Ac

as
¢ - C|,3=%
Aci= ——=. (5.114)
C|ﬂ=0

Here Ac is a function of both w and B, which vanishes for 8 = 7. To distinguish in
Ac the dependence on w from the dependence on 8, we find it convenient to let

gi= 22 (5.115)
ui

and to assume that ¢ is also a small parameter. Then, by (5.111), (5.114) yields
Ac = ef (wty) cos? B + O(£?), (5.116)
where 7 is defined as in (5.69) and
1 x2 -2 (m — 1)
S0 =+

. (5.117)
4\/1+x2<«/1+x2—1>

It readily follows from (5.117) that

1 1
f(x)=<x*+0(x* for x <1, and lim f(x)=-.
8 xX—00 4
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Fig. 5.4. In the limit where the susceptibility u7 is much smaller than the susceptibility u 1, the
frequency dependence of the speed anisotropy Ac in (5.114) is represented by the function f
in (5.117), here plotted against wt;. At small frequencies, f is quadratic; at large frequencies,
it saturates to %.

As shown by Figure 5.4, f is a positive, strictly increasing function, so that,
in particular, the speed of propagation along the nematic director is larger than the
speed of propagation at right angles to it. The prediction in (5.116) also agrees with
the observations of [225] for p-n-butyl-aniline (MBBA) at 21°C and wave frequency
10 MHz under the action of an aligning magnetic field with strength 5 Oe. The data
for Ac were represented in Figure 2 of [225] as Ac = A cos? B; they will be further
discussed in Section 5.4.3 below in this chapter.

Anisotropic Attenuation

As already remarked in Section 5.2.8 above, dispersion in wave propagation disrupts
the simple quadratic dependence in w of the wave attenuation k,. Here we shall
further explore the dependence of k, on the propagation direction. By (5.99) and
(5.102), we readily derive from (5.113b) the dimensional form of the attenuation:

2
®
ka = 3 1 [vs + ¥6 + (v3 + 2y7) cos® B + ya cos* B].
2@060 c 2 2Co
— F+ ot —
co 2 c
(5.118)
It is worth noting that k; = 0 for both B = 0 and f = 7, as a consequence of

inequalities (5.84c) and (5.84e). The proof that k, = 0 also for all § € [0, 7] will be
given shortly below, on page 284; it will follow as a special case of a more general
result.

The angular dependence exhibited by (5.118) coincides with that predicted by
LEE & ERINGEN [177] in their theory for wave propagation in nematic liquid
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crystals phrased within the general micromorphic theory of continuum mechan-
ics first put forward by ERINGEN & SUHUBI [103] and later extended by ERIN-
GEN [100, 101, 102]. However, as pointed out in [361] and [223], at the lowest order
in the condensation, this theory does not predict dispersion of sound, and conse-
quently the frequency dependence of the attenuation is classically quadratic. In par-
ticular, it is shown in [223] that this is indeed a feature common to both the theories
presented in [106] and [149] and the theory of LESLIE [180].'® While the depen-
dence on B of k5 in (5.118) has been widely confirmed [361, 139], a purely quadratic
dependence of k, on @ has no experimental basis [361, 223]. Since in our theory ¢
depends on w and t does not vanish, equation (5.118) exhibits indeed a nonquadratic
dependence on w, which we now explore more closely, introducing an appropriate
measure of attenuation anisotropy.

g

1.5 A

1.0

0.5

0 T T T T T wTy
0 1 2 3 4 5

Fig. 5.5. In the limit where the susceptibility u, is much smaller than the susceptibility uq,
the frequency dependence of the attenuation anisotropy Ak, in (5.119) is represented by the
function g in (5.121), here plotted against wty. At small frequencies, g is quadratic; at large
frequencies, it exhibits a square-root growth.

The attenuation anisotropy Ak, is here defined as

16 properly speaking, to be applicable to the propagation of condensation waves, LESLIE’s
theory should be extended to encompass also compressible liquid crystals, as done in [223]
essentially along the lines followed in Section 5.3.1 above.
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Akz = k2 — k2|ﬂ=0 , (5119)

which like Ac is a function of both @ and . By assuming again that ¢ in (5.115) is
a small parameter, we easily give (5.119) the following form:

Coy 2

Aky = ———— G 0] , 5.120
2 4\/§qu1g(ml) (B)+ 0() ( )

where

xvVA/14+x2—1
gx) i = ————, (5.121)
V14 x2
G(B) := —sin’ B (1 + %cos2 ﬂ) , (5.122)
and

Yy i=Yy3+ va+2y7.

The function g, which is plotted in Figure 5.5, possesses the following asymptotic
behaviors:

1
gx) = —=x>+0(x* for x<«1

V2

and :

gx)=Vx+0 ( NG
For y > 0, by (5.119), (5.120), and (5.122), g is proportional to the difference be-
tween the attenuations in the propagation parallel to » and in the propagation orthog-
onal to n. Since g = 0, (5.122) shows in particular that for y > 0 the attenuation
in the orthogonal propagation is smaller than the attenuation in the parallel propaga-
tion. It is to be noted how the graph of g differs from the classical parabolic form,
characteristic of the case in which dispersion is absent, which in the present setting
would correspond to the limit of zero acoustic susceptibilities, u1, uy — 0. The
early measurements of LORD & LABES [196] for Ak, at = 7 and for various
frequencies, shown in their Figure 2, reproduce qualitatively the behavior of g.

In Figure 5.6, we illustrate the graphs of G against 8 for y4 = %y and yq4 = —2y.
For y > 0, the former graph reproduces the qualitative features shown by the graph
in Figure 1 of [196], which fits the experimental values of Ak, measured at a given
frequency for various propagation angles. For y > 0 and y4 = 0, Ak, is negative
for all propagation angles, and so the less-attenuated wave travels orthogonally to
the nematic director; clearly, when either y or y4 is negative, this conclusion is not
necessarily true.

The acoustic intensity [, of the propagating wave, as defined by (5.75), is still
given the form (5.76), where now 77 is to be replaced by t in (5.105), and I is as
in (5.77), but with k, now given by (5.118). For a prescribed value of 8, the graph
in Figure 5.3 is still appropriate for representing [, scaled to Iy, provided we read
it against wt. One should, however, keep in mind that two independent sources of
anisotropy are now hidden in /,, namely, 7 and k5.

) for x> 1.
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Fig. 5.6. In the limit where the susceptibility u5 is much smaller than the susceptibility u 1, the
angular dependence of the attenuation anisotropy Akj in (5.119), for y > 0, is represented
by the function G in (5.122), here plotted against  for y4 = %y (solid line) and y4 = =2y
(dashed line).

Acoustic Torque

As already pointed out, one major issue related to ultrasonic wave propagation in
nematic liquid crystals is to explain the ability of ultrasound to act on the nematic
director.!” The KORTEWEG nature of nematic liquid crystals at the time and length
scales characteristic of ultrasound propagation has been here the main idea to explain
the acoustic interaction with the molecular alignment.

We read through the balance equation of torques (5.89) the action exerted by the
acoustic field on the nematic director. It follows from (5.92) and (5.78) that

do
S =z [ (Vo m) Vo~ (Vo-m)’n]
n
and
OR, .
P y1n + Y2 [Dn — (n - Dn) n] . (5.123)
n

In particular, for the acoustic flow considered here, where the director does not li-
brate, 1 = 0 and equation (5.123) becomes

oR
8—,; =—y1W+y2[Dn — (n-Dn)n],
which, by (5.97), (5.56), and (5.55), implies that

0R,
—2) =,
(5 )

where (-) denotes time average over an acoustic period. Thus, at time scales longer
than the acoustic period, equation (5.89) reveals an unbalanced acoustic torque k,
that has its origin in the KORTEWEG coupling we have postulated; k, is defined as

17 Also, the role of director—ultrasound coupling in the order—disorder transitions in nematic
liquid crystals has recently been illuminated in [200].
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ad
ky:=-nx <Q%> = —un X (Vo ® Vo) n. (5.124)
n

For p as in (5.50), at the lowest order of approximation, we obtain that

1 I 2
(Vo ® Vo) = - s,:g:]n(uz)—oa)zrz2 (C—O) e®e, (5.125)
4 Co c

where sgn denotes the sign function,
. Qo
Ty = 2c—2\/ |u2|,
0

cisasin (5.111), and Iy is given by (5.77) with k, as in (5.118). By inserting (5.125)
into (5.124), we arrive at

k, = —sgn(uz)Ko(n-e)nxe, (5.126)

where

A couple of remarks are suggested by (5.126). First, since Ko = 0, k, is an
aligning torque, that is, it tends to bring n along the propagation direction e only
if up < 0; otherwise, it is a misaligning torque, which tends to make n orthogonal
to e. Second, it may appear that k, behaves essentially like the magnetic torque k,
encountered in Section 3.1.4, the case with positive diamagnetic anisotropy being
the analogue of the case with negative acoustic susceptibility u,, and, conversely,
the case with negative diamagnetic anisotropy being the analogue of the case with
positive acoustic susceptibility u,.'® This analogy, however, is only formal, since the
dependence of Ky on the propagation direction makes the dependence of k, on the
angle between n and e more complicated than it appears from (5.126). In case of
pure acoustic relaxation of the nematic director, such a dependence might result in a
relaxation law more complicated than a simple exponential decay.

Synopsis

The nematoacoustic theory presented in this chapter is variational in that it retraces
the source of the interaction between the acoustic field and the nematic molecular
alignment in an elastic coupling of capillary type. It remains a phenomenological
theory, since the acoustic susceptibilities u; and u, introduced in (5.92) need to
be determined experimentally by exploring the consequences of the theory. Among
these, some appear particularly promising, namely, the anisotropy and dispersion
in sound speed, and the unconventional frequency-dependence of wave attenuation.
These features, which other theories do not possess, stem from the assumed KO-
RTEWEG nature of the acoustic coupling.

18 The reader is advised to compare (5.126) and (3.96b).
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Strictly speaking, our propagation equations in Section 5.3.3 were derived under
the assumption that the director n is uniform and immobile, as if it were held fixed by
some external action, such as an applied magnetic field. This is indeed the situation
envisaged in the wealth of experimental studies recalled above. We shall see in the
following Section 5.4 the consequences of relaxing in part such an assumption by
allowing the nematic director to vibrate around a fixed orientation.

More generally, in the absence of any external cause, the director is free to vary in
time and be distorted in space. These variations take place at time and length scales
much larger than the acoustic characteristic times and lengths, so that especially an
ultrasonic wave propagates locally in an undistorted medium, where our equations
still apply. Such reasoning might suggest that the evolution of the director, which
is governed by the balance of torques where now k, results from the acoustic in-
teraction, would interfere with the wave propagation only marginally, by affecting
locally its anisotropic character. This would indeed be correct, were the sound speed
independent of the propagation direction. On the contrary, we have shown above that
this is not the case in our theory. Such an acoustic birefringence causes the director
texture to alter the ultrasound propagation: the director, which can be distorted by
an acoustic wave, in turn causes the refringence of the distorting wave. Studying the
ultrasound propagation in a moderately distorted nematic medium is a challenge our
theory should next face. We might also learn from it how to steer an acoustic wave
by acting on the nematic texture through controllable external actions.

5.4 Director Libration

In Section 5.3, at the time scale of the acoustic vibrations, the director texture is
still regarded as immobile, in accordance with previous experimental work and in
line with experimental studies where the director is kept fixed by external magnetic
fields. Here, following [67], we shall relax such an assumption: the director is set free
to vibrate in time and be possibly distorted in space around a constant and uniform
orientation, this latter possibly held fixed by an external (magnetic) field. We refer to
such a motion as the director libration, and we imagine it to arise as a consequence
of the sound wave that propagates through the nematic liquid crystal. The theoretical
outcomes of our analysis will allow us to interpret quantitatively the experimental
results published long ago in the literature and to estimate some phenomenological
parameters involved in the theory.

5.4.1 Dynamical Balance Equations

‘We begin by recapitulating the balance equations that govern the motion of the fluid.
Here care must be used in treating elastic forces and torques, since n, vibrating with
the wave, is no longer uniform in space. To simplify matters, we shall assume that in
(5.91) all elastic constants are equal to K, so that (5.91) reduces to

1 2
W = SK|Val. (5.127)
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The balance of mass has the classical form of the continuity equation (5.7), which
we find it convenient to write in the equivalent form

9
a—‘; + div (ov) = 0. (5.128)

In the absence of body forces, the balance of linear momentum is expressed by equa-
tion (5.87), which we recall for the reader’s ease:

Ql) = div (Tg + Tk + Tais). (5.129)

With the aid of (5.92), (5.127), and (5.78), the ERICKSEN elastic stress Tg, the KO-
RTEWEG elastic stress Tk, and the dissipative stress Ty are given by

Te = —K [WI+ (Vn)"(Vn)], (5.130)
Tk = —pxl—0[u1Vo® Vo +uz(Vo-n)Vo ® nj, (5.131)
where
Pk := po(o) —odiv]o (u1Vo +uz2(Vo - n)n)] (5.132)
with

po(0) == 0%04(0)

assumed to be an increasing function of o, and
1 o o 1
Tais =§y1(n ®n—nQ®n)+ EVZ(n Q@ Dn —Dn ® n)

| B . 1
+§V2("®"+"®”)+EVs(n®D"+D"®") (5.133)
4+ ysD+ (y4n-Dn + y;trD)n @ n
+ (YyetrD + y7n - Dn) L

Similarly, using again the constitutive equations (5.92), (5.127), and (5.78) for ok,
W, and R,, we give the balance of torques in equation (5.89) the following form:

K div(Vr)xn—u0 (Vo -n) Voxn—yianxn—(y,Dn — yyWn)xn = 0. (5.134)

Equations (5.128), (5.129), and (5.134), where Tg, Tx, and Tg;s are as in (5.130),
(5.131), and (5.133) above, represent the basic balances of the theory. They will be
solved below in a special setting.

5.4.2 Plane Wave Solutions

Here, as in Section 5.3, we study the propagation of forced plane waves of condensa-
tion,'” but we abandon the simplifying assumption that n is held fixed by a compli-
ant external action, such as a magnetic field. In such an approach, the elastic torque

19 Not to be confused with either the shear acoustic waves studied in [216] and [9] or the weak
and twist waves studied in [95] and [96].
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in (5.134) vanishes, as does the viscous torque opposing the tumbling of n, while
the viscous torque opposing the acoustic flow vanishes once averaged in time. The
only nonvanishing torque is the time-averaged acoustic torque that must be imag-
ined as balanced by a reactive torque exerted by the external constraint keeping n
fixed. Here, allowing the director to vibrate, we need to solve the balance equation of
torques (5.134): we can no longer be contented with reading off from it the average
unbalanced acoustic torque. Thus, our attention will now turn to the director motion
and to its consequences on the balances of linear momentum and torque.

The linearized balance laws resulting from (5.128), (5.129), and (5.134) and the
constitutive relations in (5.130), (5.131), and (5.133) are solved and used to find
the anisotropic dispersion of waves and to study the relationship between energy
dissipation and wave attenuation. Solutions are sought as above in the plane wave
form

o(x,t) =00 (1 +soNE), v(x,t) =soN(Ea), (5.135)
where E := ¢/**~®" 9t denotes the real part of a complex number, x is the position
vector, g is the unperturbed mass density, so is a small dimensionless parameter
measuring the scale of perturbation, k is the complex wave vector to be determined
in terms of the angular frequency w, and a is an unknown complex amplitude vector.
We also allow for a director libration*® described by

n = I+ soR(EA)] no, (5.136)

where A is a complex skew-symmetric tensor and ng is a uniform unperturbed direc-
tor field.

The basic governing equations are solved within the above class of flows, in the
limit where s is a small perturbation parameter. In particular, it follows from (5.135)
that

1

D= _sif@®k+k®a). (5.137a)
1

W= siE@®k-k®a). (5.137b)

Here and in what follows we drop 9t from equations like (5.137), while keeping in
mind that as in (5.135) and (5.136) only their real parts bear a physical meaning. Up
to first order in s¢, equation (5.128) becomes

w=a-k,
which is the same as (5.57). Using (5.135) and (5.56), one readily arrives at
oV = —sgigowEa + o(sp). (5.138)

Since ng is uniform in space, it follows from (5.130) that Tg is o(sp), and so at the
lowest approximation in sy the elastic stress does not contribute to the balance of
linear momentum. On the other hand, by (5.131) and (5.132), one obtains that

20 By libration we mean here a motion in which the director keeps a nearly uniform orienta-
tion ng and vibrates about it as a consequence of the flow perturbation.
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div Tk = —s000iE {c§ + 0f [urk? + ua(k - no)*]} k + o(so). (5.139)

co(o) 1= 1/ Py(o) (5.140)

is the velocity of sound in the isotropic limit where u; = u, = 0. Finally, by (5.56),
(5.97), and (5.57), one also arrives at

where

. 1 1
div Tgis =§(V1 + 12)s0wE (k - Ang) ng + E(yz —y1)sowE (k - ng)Ang

1

1
- ESOE{[E(VI — 2y + y3)(k - no)* + Vskz} a

+ [%(J’s —v1 +4y7)(a-no)(k -no) + (ys + 2y6)(a -k)}k

+ 500 m ke

1
+ E(Vl +2y2 + y3)(a - no)k? + 2ya(a - no)(k - ”o)z]no},
(5.141)

where k2 = k - k. Equations (5.138), (5.139), and (5.141) will be used in Sec-
tion 5.4.2 to derive the propagation equation that applies in the presence of director
libration. To this end we also need to solve the balance equation of torques (5.134).

Libration Equation

At the lowest order in s¢ and under the assumption that ng is uniform in space and
constant in time, equation (5.134) becomes

. L
[Kk? —iyi0] (Ang) X ng + PR (r2—v1) (k -ng)a x no
1
+ Ei(Vz +y1)(@a-no)k xng=0. (5.142)

By the constraint set in Section 5.3 on the director motion, the balance of torque was
there satisfied only on average, since, as shown by (5.142), for a proper instantaneous
balance, the viscous torque exerted by the acoustic flow entrains a director vibration.
It is also worth noting that at the lowest order of approximation in the acoustic con-
densation parameter sg, the acoustic torque in (5.134) does not contribute to the
libration equation (5.142). As already shown in Section 5.3.3, the acoustic torque is
of second order in so and manifests itself at times longer than the acoustic period
through a time-averaged action similar in character to an acoustic streaming. We
shall further elaborate on this in Section 5.3.3; here we only remark that among the
second-order effects that characterize the slow (streaming) dynamics taking place at
time and length scales larger than the acoustic ones, we should also include ERICK-
SEN’s elastic stress in the balance equation of linear momentum.
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Since A is skew-symmetric, Ang is orthogonal to ny. Letting Any = d X ny,
with d L ngy, we can easily solve (5.142) for d and then arrive at

Ang = =X 1yy (k - no) (a - no) ng
| 1 (5.143)
+ E(Vl —y2) (k-no)a— 5()’1 +y2)(a@-no) kg,

where
1

yio +iKk?’

A consequence of (5.143) is especially worthy of notice. In the limit as both viscosi-

ties v, and y; vanish, so does Ang, this implying by (5.136) that no director libration

occurs in that limit and a wave can propagate while n remains immobile, even in the

absence of any external restraining field. In brief, one could also say that the director

libration is a motion fed by dissipation. Henceforth we shall assume that y; > 0.
We now use the explicit solution (5.143) for the director libration to derive the

equation that governs the wave propagation from the balance of linear momentum
(5.129).

XY=

Wave Propagation

By employing (5.139) and (5.141), with the aid of (5.143), up to first order in s,
equation (5.129) is reduced to the purely kinematic form

2igowa =2igo [¢§ + 0f (u1k? + uz(k - no)*)] k

+50n = 224 o) k7 = 1 Stk o2
+ 500 = 1+ e m ko) + 5+ 20 a k)

307 1) Solk - no)a '"0)}"
+ 500 =+ ko)

+ %(yl + 2y + y3)(a - no)k? + 2y4(a - no)(k - ng)*

£ 2350k - no @ mo) + 307 —v3) Tolk - no)a k)

1
- E(Vl +12)°Zow(a 'ﬂo)kz]no,
(5.144)

where all y;’s are evaluated at the unperturbed density oo. We let k and a be repre-
sented as
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k=ke and a=a.e +a,ng, ay, a., keC, (5.145)

where the unit vector e designates the propagation direction and k, a, and a, are all
complex numbers to be determined. The imaginary part k, of k is associated with the
attenuation of the wave: 1/k, represents the attenuation length,?! that is, the length
over which the wave amplitude is reduced by the factor 1/e. Equation (5.144) must
be supplemented with the mass continuity equation (5.57), which by (5.145) takes
the form

kap, + ka, cos p = w, with cosf :=e-nyg. (5.146)

It follows from (5.145) and (5.146) that whenever sin8 = 0, a, and a, are not
uniquely defined; we resolve this ambiguity by setting a,, = 0 for sin 8 = 0.

Were ¥ = 0, equation (5.144) would reduce to the propagation equation (5.98)
found in the absence of director libration. What makes (5.144) more difficult to solve
than that equation is the way X depends on the unknown k2. Here we assume that

Yo > K|k, (5.147)

so that, in (5.144), ¥ can be approximated by 1/y;. Physically, this approximation
amounts to disregarding the elastic torque in the balance equation (5.134); elastic ef-
fects thus disappear from the balances of both linear momentum and torque, though
for different reasons. In Section 5.4.2, we shall derive the upper bound to be imposed
on w to make (5.147) compatible with the solution to the propagation equation ob-
tained here. As in Section 5.3.3, we also consider the limit of (5.144) where all
viscosities are small. More precisely, we assume that there is a small dimensionless
parameter gq such that

2
0

Yi = 00— Of(eo), i=1,...,7, (5.148)

w
and we further seek solutions of (5.144) such that

ky = Cﬁ O(s0),  an = co O(e0), (5.149)
0

where ¢y is as in (5.140). The validity of (5.148) requires that w not exceed an upper
bound that will be discussed in Section 5.4.2 along with the one that makes (5.147)
compatible.

Under assumptions (5.147), (5.148), and (5.149), proceeding exactly as in Sec-
tion 5.3.3 above, we finally arrive at the following solution of (5.144) and (5.146) at
the lowest order of approximation in &q:

21 We shall show in Section 5.4.2 that inequalities (5.84) imply kp = 0.
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k=2 ik, (5.150a)
c
w? 1 2
ky = 3 I [Vs + Ve + ()/3 +2y7 — )/_2) cos”
200cy € 4220 Y1
co 2 c
y2
+ (y4 + —2) cos* ﬂ], (5.150b)
V1
icosf ( w y: >
an =—5——5-3——|v2+tvs+2y7—(v3—2ysa+2y; —3=)cos” B
2sin” B oo 71
2 c? +
-2 ()/4 + J/_z) cos? ,3] - —O—yZ()/I 2 VZ)}
Y1 ¢ Y1
for sinf #0, (5.150¢)
2
ae =c¢ —i—ky —ay cos B. (5.150d)
o)

Here c is the velocity of sound along e, which depends on both @ and f through the
same equation (5.111) obtained in Section 5.3.3 in the absence of director libration,
while the expressions for k5, a,, and a, above would correspondingly reduce to
the equations (5.118), (5.113c¢), and (5.113d) found in Section 5.3.3 in the limit as
y1/y2 — 00, where the director libration would be hampered by an arbitrarily large
rotational viscosity y;. We record here for future reference the limiting expression
of k, in the absence of libration, which here we denote by k5°,

a)Z

1
k3° = 3 1 [Vs + ¥6 + (v3 + 2y7) cos” B + yacos® B]. (5.151)
200cy € 2_2¢0
— + —°T"—
Co 2

As already pointed out in Section 5.3.3 for k5°, since ¢ in (5.111) is a func-
tion of w, k, in (5.150b) does not depend on w in a purely quadratic fashion,
as in earlier theoretical studies on wave propagation in nematic liquid crystals
[361, 223, 106, 149, 139]. Such a nonquadratic dependence is a characteristic signa-
ture of our assumption on the KORTEWEG nature of the acoustic coupling; it will be
quantitatively compared in Section 5.4.3 with the available experimental data.

Wave Attenuation

We now proceed to show that both k» and k3° are not negative whenever the dissi-
pation inequalities (5.84) are satisfied. To this end, we set z := cos? B and denote by
h(z) the function defined by the expression enclosed in brackets on the right side of
(5.150b):

2
h(z) == ys + ¥6 + (v3 + 277)z + vaz® — %[—(22 —2)].
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Clearly, the sign of k; is the same as the sign of /. Since we assumed that y; > 0,
by (5.84f) we also have that

V2
2 < y3 4 2ys,
Y1
and so,

h(z) Z ys+ve+2(y7—5)z + (ya+y3+2y5)z% = ho(z) Yz €[0,1]. (5.152)

It readily follows from (5.84c¢), (5.84d), and (5.84e)) that both /19(0) = 0 and /o(1) =
0. Thus, if &g is either linear or concave, that is, if y4 + y3 + 2y5 = 0, then h(z) =
0 Vz € [0, 1], which by (5.152) is the desired conclusion. If, on the other hand,
hg is convex, that is, if y4 + y3 + 2y5 > 0, the desired conclusion follows from
the inequality Ao (z,) = 0, where zp, is the minimizer of /¢ in R. Indeed, an easy
computation shows that

(vs + ¥6)(y3 + va + 2ys) — (y7 — v5)?

ho(zy) =
0(2m) Y3 + va + 2ys

While the denominator of this ratio is positive by assumption, the numerator can be
shown to be nonnegative by taking the product of the left sides of (5.84c) and (5.84e)
and adding the result to the left side of (5.84g).

Similarly, we show that k5° = 0. By (5.151), A is then replaced by

h*°(2) :=ys + y6 + (v3 + 2y7)z + yaz>,

which can also be written as
yz
h*°(z) = h(z) + 2 [—(22 — Z)] =Zh(z) 20 Vzel0,1], (5.153)
Y1
since y; > 0.

Admissible Frequency Ranges

Several simplifying assumptions have been made to arrive at (5.150); here we iden-
tify the ranges in which to choose the angular frequency w of the propagating wave
to make these assumptions admissible.

First, we identify the values of w that make &y in (5.148) a small parameter.
Estimating from [4] the velocity of sound ¢ = 1.3x103 ms™!, from [59] (p. 231) the
average viscosity y = 107! Pas, and from [369] the mass density oo = 10> Kgm ™,
one easily sees from (5.148) that g < 1 whenever 0 < w,,, with

2
C
w, = OVQO —0.8x 105! ~ 10* MHz.

Second, we identify the angular frequencies that make the solution (5.150) of the
propagation equation (5.144) compatible with the assumption (5.147). To this end,
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we note from Figure 5.1 that ¢ ~ ¢¢ for wt < 10, and so, since by (5.150a) k ~ w/c,
estimating y; as 2y and taking K ~ 107! N from [59] (p. 103), we see that (5.147)
is satisfied for the solution (5.150) whenever w < wg, with

2
wg = ‘OKVI =338 x 1015571 ~ 101° MHz.

Finally, as remarked in Section 5.4.1 above, our theory has neglected the direc-
tor inertia. Such an approximation is valid if « in (5.90) is much smaller than the
kinetic energy density associated with the acoustic flow. By (5.135), (5.145), and
(5.150d), this latter can be estimated as 10osZcZ. On the other hand, by (5.136),
In| = sow|Ang| + O(s), and by (5.143), for the solution (5.150), [Ang| = O(1),
so that k can be neglected whenever w < ws, with??

ws = %" — 65% 102571 ~ 105 MHz.

It is clear from the estimates above that the largest upper bound on o for the
validity of our theory is wg: such a bound of an elastic origin can still not be exceeded
when the rotational kinetic energy « comes into play. For @ ~ wgs, however, our
solution (5.150) ceases to be valid, since the upper bound w, is violated and so
(5.148) no longer applies. The most stringent bound on w is thus w,; it will follow
from the estimate of 7 in Section 5.4.3 that this easily complies with the requirement
that wt < 10.

5.4.3 Phenomenological Parameters

Using data published in the literature for N-(p-methoxybenzylidene)-p-butylaniline
(MBBA), numerical evaluations for both dispersion and attenuation are made in this
section and compared to acoustic experiments. Our objective is to estimate the phe-
nomenological parameters introduced by our theory, namely, ¥, ¥, Vs, and y7.

To account for the experimental data available in the literature [196, 225], we use
the measure of anisotropy Ac for the speed of sound c¢ introduced in (5.114). Ac is
a function of both w and B, which vanishes for 8 = 7. By assuming that ¢ defined
as in (5.115) is a small parameter, we approximate Ac as in (5.116). By (5.115), we
can write the characteristic time  in (5.105) as

1
T=10 (l + §8C0S2 /3) + 0(s?),

where 7 is the same as in (5.69).
Similarly, we introduce the following measure of anisotropy for the attenuation
kzl
Ak,

Avky = ——,
1=

22 Here we take the molecular radius of gyration § as a typical molecular length, and following
[59] (p. 98) we estimate § ~ 2 nm.
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where Ak, = kp — ka|g—¢ expresses the change in attenuation and A 1k, :=
Aks|g—z is the value of Ak, when the wave propagates at right angles to ng. It
follows from (5.150b) that, in the limit of small &,

Ak = G (B) + O (e), (5.154)

where

. yiva +v3 2
G(B) :=sin? B (1 + cos“ B ).
Yi(ys + va + 2y7)
To represent how A k, depends on w relative to a reference angular frequency wo,
we introduce the quantity

Ak

Apky i = ———————
22 AJ_k2|w=w0

which in the limit of small £ becomes

J1+ o2 =1 [1 1L 2,2
! A 1 o). (5.155)
V1t tied -1 I+ o

In this approximation, A,k,, unlike Aqk», is independent of the viscosities: it de-
pends on a single phenomenological parameter, that is, 7;.

We used formulas (5.114), (5.116), (5.154), and (5.155) to fit the data measured
for Ac in [225] for MBBA at the wave frequency w/27 = 10MHz and the data
measured for Ak, in [196] in the range 2—-6 MHz for w/27. The former data were
taken from Figure 2 of [225] and the latter data from Figures 1 and 2 of [196].

We started from Figure 2 of [196], which exhibits the dependence of Ak, on the
wave frequency w/2m. We fitted these data with formula (5.155) using wo /27 =
6 MHz as reference frequency. By employing the built-in function FindFit in
Mathematica [363] for least-squares fit, we obtained 7; = 3.47 X 1078 s for the
only fitting parameter. From this value, we computed t;w; = 2.18 at the frequency
w1 /27w = 10 MHz used in [225]. We inserted this value of w; 7 in the exact formula
(5.114) for Ac to validate our assumption about the smallness of ¢, which was then
found to be ¢ = 7.74 x 1073 by fitting the data in Figure 2 of [225] for us = su;.
Thus, our using (5.155) to fit the data in [196] was fully justified. Moreover, the data
in Figure 2 of [225] for Ac could also be fitted directly with the function A cos? B,
which gave 4 = 11.25 x 1074, consistent with the value 4 = 12 x 10™* found in
[225] from the raw data. On the other hand, using the approximate formula (5.116)
for Ac, we found instead A = ef(tjw;) = 11.28 x 10™*, which is in very good
agreement with the value found by the direct fit and thus further confirmed the valid-
ity of our assumption on ¢. Finally, we used (5.154) to find the value of the viscosity
y7, taking for 1, ..., y4 in G the standard values for MBBA (see p. 231 of [59]). We
thus arrived at y; = 1.58 x 107! Pas. Since both A1k, and A,k, are independent
of yg, this latter viscosity would be determined only with the aid of (5.150b) from
direct measurements of k.
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Synopsis

We extended the variational theory for nematoacoustics presented in Section 5.3 to
the case in which the nematic director can freely librate around an average orienta-
tion. According to this theory, the acoustic field interacts with the nematic texture
through an additional elastic energy of KORTEWEG type, characterized by the phe-
nomenological susceptibilities ©#; and u, introduced in (5.92). We estimated these
constitutive parameters with the aid of experimental data available in the literature
for the anisotropy of both sound speed and wave attenuation. We also estimated one
additional viscosity introduced in the RAYLEIGH dissipation function (5.78) by the
relaxation of the incompressibility constraint.

We solved the balance equations of the theory in the linear approximation, ap-
propriate for acoustic propagation. In particular, we sought plane wave solutions also
involving the director libration and we proved that the wave attenuation is not nega-
tive as a consequence of the semipositive definiteness of the RAYLEIGH dissipation
function.

We showed that in the (fast) acoustical regime, elastic stresses and torques do not
affect the motion: the ERICKSEN stress tensor is of second order in the acoustical
perturbation parameter, and the elastic torque is negligible with respect to viscous
torques as long as the angular frequency of the propagating wave does not exceed
an upper bound much larger than the frequency at which the rotational inertia of the
director—neglected here as usual—should also be taken into account.

Also the torque imparted to the director by the acoustic wave is of second order
in the acoustical perturbation parameter. Acoustic torques and elastic stresses thus
act at time and length scales larger than the acoustic ones. They should be regarded
as streaming sources that affect the flow through their time averages. Other steady
motions of the director texture can then take place at time and length scales much
larger than the acoustic characteristic times and lengths. Correspondingly, though
no net hydrodynamic flow takes place at the time scale of the acoustic vibrations,
at longer time scales even an initially stagnant fluid may develop steady flows by
acoustic streaming, as already proved for isotropic viscous fluids in a vast literature
[87, 360, 251, 188], originated from RAYLEIGH’s work [325, 326, 328]. For nematic
liquid crystals, elastic stresses and acoustic torques are new streaming sources: they
both affect the slow director and flow dynamics, mutually interwoven, for which the
appropriate balance has still to be derived and studied.



A

Notation and Basic Concepts

This appendix is meant to introduce the reader to the notation employed throughout
the book and to illustrate some basic concepts in possibly a less formal style, though
with the same rigor as in the main text. Only on occasion does it serve the purpose
of a repository of technical results to be invoked wherever the need arises, since we
strove to make the text as self-contained as possible, preferring moderate digressions
to excessive referencing.

A.1 Points, Vectors, and Tensors

In this book, we consider fluids in the three-dimensional Euclidean space &. The
basic elements of this space are its points.! Associated with € is the linear space of
translations U that are mappings of & into itself. The elements of v € U are called
vectors:

v:8—>8, prou(p).

For any two points p,q € & there is exactly one vector v that takes p into g. We
denote it by v = g — p and write v(p) = ¢, or sometimes ¢ = p + v. We note
that while the difference of two points is a well-defined unique vector, the sum of
two points is not defined. If an origin 0 € & is chosen, points can be identified by
their position vectors relative to that origin, p = p — 0. Care needs to be taken not to
confuse position vectors with ordinary vectors. A given point has different position
vectors with respect to different origins. A vector v = p—gq, however, is independent
of the choice of origin. By contrast, p = p—o and p* = p—o* are different position
vectors of the same point p with respect to different origins o and o*. We also write
v? for v - v.

The inner product of two vectors u and v is denoted by u-v, and the cross product
by u x v. The mixed product of three vectors u, v, and w is the scalar

1 For simplicity, we identify material points with their positions in Euclidean space, even
though they may be richer in mechanical structure than a mere geometric point can suggest.
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U-vXWw.
It is invariant under cyclic permutations of the three vectors, that is,
u-vxXw=v-wxu=w-uxv VYu,v,we?.

Two vectors u and v are orthogonal if u - v = 0 The length of a vector v is given by

v=|v]=v-v.
A tensor of rank two, usually simply called a tensor, is an element of the linear
space L(V) of all linear mappings of VU into itself:

T:V—->7V, v T().
We write Tv for T(v). The transpose T" of a tensor T is defined via
u-T'v=v-Tu forallu,ve.

We say that a tensor T is symmetric if T = T" and skew-symmetric if T = —TT.
All symmetric tensors constitute a linear subspace of L(V), which we denote by
Sym(V). Likewise, all skew-symmetric tensors constitute a linear subspace of L(V),
which we denote by Skw(V). Given any tensor T, it can be uniquely written as the
sum of a tensor in Sym(V) and a tensor in Skw(V):

1 1
T= E(T +T) + E(T —T7).

We set | |
sym(T) := E(T +T") and skw(T):= E(T —T7),

and we call the former the symmetric part of T and the latter the skew-symmetric
part of T. The identity tensor I is defined by Iv := v for all v € U, and it is clearly
symmetric. The trace and determinant of a tensor T are denoted by tr T and det T. It
is sometimes convenient to denote in a concise manner the symmetric, traceless part
of a tensor T; we shall employ the following notation:

= 1
T = sym(T) — g(tr )L

For a tensor L € L(V), we say that A € R and e € S? are an eigenvalue and the
corresponding (normalized) eigenvector of L if

Le = Ae.

Symmetric tensors are peculiar in regard to eigenvalues and eigenvectors. The spec-
tral theorem states that for every tensor S € Sym(V) there is a basis (ey, ez, €3) of
U such that

S=1ie1 ®e1 + Arer R es + Azes R es.
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Thus, clearly, e, e,, and e3 are eigenvectors of S, and Ay, A,, and A3 are the cor-
responding eigenvalues. Given any skew-symmetric tensor W in Skw(V), there is
precisely one vector w € U such that

Wo=wxv Vve®. (A1)

We say that w is the axial vector associated with W. The linear mapping established
by (A.1) between the spaces Skw(V) and U is indeed invertible. The axial vector w
of W belongs the null space of W, that is, it is a (nonnormalized) eigenvector of W
with zero eigenvalue. Actually, all (nonnormalized) eigenvectors of W are parallel
to w, which amounts to saying that the null space of W is one-dimensional. For the
special skew-symmetric tensor W in the form

W=>bRQa—-—a®b,

the associated axial vector w is
w=axh.

The dyadic product u ® v of two vectors u and v is a tensor that is defined by its
action on an arbitrary third vector w:

u@v)w:=(v-w)u forallw e V.
The composition of two tensors C = AB is defined via
Cv=ABv forallve®.
An inner product between two tensors S and T is defined by
S-T:=trST'. (A.2)

With it, we have tr T = T-I for all tensors T. The norm of a tensor T is |T| = ~/T - T.
In particular, I- T = trI = 3.
The inner product in L(V) defined by (A.2) enjoys the following properties:

S-T=S"-T" VS, TelL(V),

AB-C=A-CB"=B-A'C VA, B, CelL().

Moreover, given two skew-symmetric tensors W, and W, with associated axial vec-
tors wy and w,, respectively, the inner product of W, and W, is related to the inner
product of w; and w, through the equation

W1 'Wz = 2w1 s Wy,

The linear subspaces Sym(V) and Skw(V) are orthogonal complements of L(V) with
respect to the inner product in (A.2), and so any symmetric tensor is orthogonal to
any skew-symmetric tensor.
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The principal invariants 2 (T),i =1,2,3,of atensor T € L(V) are defined as
the coefficients of the following polynomial in A:

det(T + AL) = A3 + [{(T)A2 + L(T)A + I5(T).
‘We have that

L(T)=uT, L(T)=-[uT)?-uT?], I(T)=detT.

1
2
While the principal invariantAfl (T) coincides with the invariant /;(T) := tr T intro-
duced in (1.83), I5(T) and /5(T) are not the same as the corresponding invariants
I5(T) := tr T? and I3(T) := tr T3. They are related as follows:

i—l(l2 1) h=n-2nn+lrs
2—21 2), 3—33212 i)

The latter equation in particular follows from the CAYLEY-HAMILTON theorem,
which states that every tensor T obeys the equation

T -T2+ L,T—L1=0. (A.3)

Equation (A.3) also follows from a more general identity of RIVLIN [281] valid for
any triple of tensors A, B, C:
ABC + ACB + BCA + BAC + CAB + CBA
—(trBC—trBtrC)A — (rCA —trCtrA)B — (trAB —trAtr B)C
—trA(BC + CB) — tr B(CA + AC) —tr C(AB + BA)
—(rAurBurC—trAtrBC —trBtr CA
—trCtrAB + tr ABC + tr CBA)I
=0, (A.4)

by settingA =B =C=T.
For an invertible tensor A and every tensor C,

det(A + sC) = (detA)(1 + I; (A7 C)s + I,(A™'C)s? + I3(A™1C)s?),

whence it follows that

d ~
- det(A + 5sC) = (detA)I;(A"1C) = tr[(det A)A™'C]. (A.5)
S s=0
A tensor of rank three is a linear mapping a from the vector space U into the
space L(V) of second-rank tensors:

a:V—LW), v a).

We write av for the second-rank tensor a(v). More generally, a tensor of rank n = 1
is a linear mapping that takes a vector into a tensor of order n — 1. A continuous
mapping from a region B of & into the space of tensors of rank n that assigns a
tensor to every point p € ® is called a tensor field of rank n.
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A.2 Bases and Coordinates

An ordered set of three mutually orthogonal unit vectors (e1, 2, e3) forms a basis for
V. We normally choose a positively oriented basis, that is, one for which e; x e; =
e3.2 Every vector v € U can be expressed in terms of its components v; 1= v - e; as

3
v = E v;é;.
i=1

To simplify notation, we apply the summation convention: a term with a repeated
index is to be summed over all three values of that index from 1 to 3. Hence, we
simply write v = vje;.

The components of a second-rank tensor are defined as T;; := e; - Te;. For a
dyadic product this implies (# ® v);; = u;v;. The components of the identity I in
any basis are e; - Ie; = e; - e; = §;;, with

1 ifi = j,

0 ifi # j,

the KRONECKER delta. The tensor T can be represented in terms of its components
T;; as

8,'1' =

T = T,-jei Rej.
Indeed,
ei-Tej =e; - (Tupeqa @ ep)e; = (e -eq)Tup(ep - €;) = 8iaTapdp; = Tij.

Thus, if (e1, 2, e3) is a basis of U, then (e; ® e;,i, j = 1,2, 3) is a basis of L(V).
In general, if v; are the components of a vector v in (e, e, e3), then T;;v; are the
components of Tv in the same basis. It follows immediately from the definition of the
transpose tensor that (T7);; = T};. The trace of a tensor T is given by tr T = T;;, and
the components of the product C = AB of two tensors are given by C;i = A4;; Bji.
The inner product of two tensors is thus tr STT = S;;T;;. Specifically for dyadic
products, we have
uv) - I=tr(u®v)=v-u
and
s®t)- (®@v)= (s -u)(t-v).
For the components of a vector product we have
e; - (uxXv)=€pujvg,

where

1 if (i, j, k) is an even permutation of (1,2, 3),

€ijk = 1—1 if (i, j, k) is an odd permutation of (1,2, 3),

0 in all other cases,

is the RICCI alternator.

2 A negatively oriented basis (e1, €2, 3) is one for which e] x e5-e3 = —1. We shall always
use positively oriented bases.
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A.3 Rotations

An orthogonal transformation is a linear transformation that preserves the length of
all vectors and their relative angles. Hence, it takes a set of basis vectors (e, ez, €3)
into a new set of basis vectors, say (e}, e5, e3). More generally, given any two vec-
torsu and v in U,

Ru-Rv=u-v,

whence it follows that
RR—-Du-v=0 Vu, v e?.

This means that RTR = I. It follows that 1 = detl = det(R'R) = (detR)?,
and so detR = +£1. Two consecutive orthogonal transformations Ry R, result in a
new orthogonal transformation R = R;R;. The set of orthogonal transformations in
three-dimensional Euclidean space forms the group O(3).

For any two vectors u and v, an orthogonal tensor R is such that

Ru x Rv = (detR)R(u x v).

A rotation is an orthogonal transformation that transforms a positively oriented
basis into a positively oriented basis.? It is an orthogonal transformation R € O(3)
with detR = +1. Rotations form the group of special orthogonal transformations
SO(3).

Both SO(3) and O(3) are proper subgroups of the unimodular group U(3) defined
by

UQB) :={U e L(V)||detU| = 1}.

As proved by BRAUER and NOLL [35, 239], O(3) is the maximal subgroup of U(3),
meaning that no subgroup of U(3) exists that is not included in O(3).

A.4 Time Derivatives

The position of a point p in motion is a function of time p(¢). The velocity v of the
point p is defined as
dp p+e€)—p@)

v(p,t) = p = — = lim

A.6
dt >0 € (A-6)

The field v(p, t) thus gives the velocity of the point that at time ¢ occupies the posi-
tion p.

For a scalar quantity ¢ (p, t) that depends on time and position we write %—It’ for the
local time derivative. It is the rate of change of ¢ at the fixed position that p attains
at time 7. The dependence of ¢ at fixed time on position is given by the gradient
Vo = g—ﬁ. The material time derivative is the rate of change of ¢ at the moving

3 Actually, it also transforms a negatively oriented basis into a negatively oriented one.
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material point p. We denote it by ¢, and it is the total time derivative of ¢(p(7), 1),
¢ =90 =3P 1 % With (A.6), we obtain
¢

h=— + V.

b=75 +V¢

Time derivatives of vectors and tensors are defined similarily. We use the convention
that

(VIJ),‘_]‘ = Vi,j-
For example, the acceleration of a point p isa = v = p, and we have

Jdv

ot

v = + (Vo)v.
Elaborating on these basic kinematic concepts, in Section 2.1.2 we define the motion
of a continuous body.

Gradients of tensors of rank two and higher are defined in a similar way, for
example,

(VDijk = Tijks

so that 4T
T=— + (VD).
5 + (VD)

The divergence of a vector field v is defined by
dive :=tr(Vv) = v;,;.
We define the divergence of a tensor field T to be the vector div T such that
a-divT = div(T'a) foralla € V.
To find an expression for the components of div T we first compute
T'e; = Tpa(ea ® ep)ei = Tpalei - ep)es = Thabipea = Tiaea.

Now
div(Tigeq) = V(Tia) - ea = Tia,jej - eq = Tiq,j0ja = Tjj,j,

and so
e; -divT = Tij,j.

The divergence of a higher-rank tensor is defined similarly as the contraction of the
gradient of that tensor over its last two indices.
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A.5 Divergence Theorems

For a smooth vector field v : ® — U on a fit region* ® C 8, the divergence theorem

states that
/divvdV:/ v-vdA,
® * @

where 0*® is the reduced boundary of @, and v is its outer unit normal.

An immediate consequence of the divergence theorem is the integral-gradient
theorem. By applying the divergence theorem to a vector field v(p) = f(p)a that is
the product of a scalar function f(p) and an arbitrary vector @ uniform in space, one
finds that

/Vdez fvdA.
® *®

Considering the divergence theorem for the vector field T'a, where a is again an
arbitrary uniform vector, leads us to the following identities:

/div(TTa)dV=/ TTa-vdA=a-/ TvdA =:a-/dideV,
® I*® *® ®

the last of which actually defines div T in such a way that the divergence theorem

holds in the form
/dideV:/ Tv dA.
® * @

Analogous theorems hold for higher-rank tensors.

4 The definition of a fit region is given in Section 2.1.1, where also the use of these regions
to describe the shapes of a body in continuum mechanics is justified.
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Index

Absolute temperature 125, 160
Acceleration 75,90, 295
Acoustic
attenuation 258
birefringence 277
dissipation function 261
field 239-241,276
intensity 259, 260, 274
oscillations 242
pressure 241
propagation 242,264
streaming 240, 241, 280, 287
susceptibilities 266, 276
inequalities 266
zero limit 274
susceptibility 253, 256, 258, 259
zero limit 260
torque 240, 260, 275, 287
time-averaged 279
wave 239,240, 268, 277
plane 240,242,254, 259,266, 278,
279,287
vector 242,254
Acoustic—nematic interaction 240, 242
Acousto-optic effect 240
Action integral 114
Admissible order parameters 42
Admissible region 35, 68
Admissible triangle 41
Angular velocity 86
Anisotropic attenuation 272
Anisotropic dispersion 270, 271
Applied forces 97

Attenuation 254
anisotropy 240, 273, 275, 285
length 254,258,270
Average molecular radius 63
Axial vector 86,94, 109, 291
Axioms of classical mechanics 95

Balance equations
classical 98
general 107
Basis 293
negatively oriented 293
orthonormal 85
positively oriented 78,293
Biaxial
crystal 166
interaction 66
liquid crystals 166, 224
nematic phase 9
two-director description 199
two-tensor description 225
Biaxiality
intrinsic 40
phase 40
steric 64
Birefringence
acoustic 277
optical 1,166
Body 72,128,129, 153
couple 181,182,187,198
deformable 128,132,136
far 97
force 96, 169, 195,227,244
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316 Index

magnetic 187 action 244
near 97 between bodies 73
placement of 72 couple 108
point 75,108 force 96,169, 195,227,252
rigid 180,205 moment of 108
shape of 72,74, 128,296 Continua
present 74 general 106, 107
state of 125 multipolar 110
Body-point 108 polar 110
BOLTZMANN’s constant 11 simple 106
BOLTZMANN distribution 11,13 Continuum mechanics 71, 98, 108
BOLTZMANN factor 36 Continuum theories 'V, 71
Convected subbody 75
Calculus of variations Convection
inverse problem of 119 normal 76, 78,79
Capillarity theory 242 tangential  76,77,79
CAUCHY postulate 103 Coordination parameter 15,21
CAuCHY theorem 103 Corotational time derivative 92
CAYLEY-HAMILTON theorem 292 COSSERATSs’ theory 107
Characteristic function 73 Couple stress 108, 181, 182, 185, 198, 224,
Charge center 3 228,251
Chirality 140 Critical points 17, 20, 25-27, 32, 38,43
CIT, classical irreversible thermodynamics global minimum 28
141 least-free-energy point 27
CLAUSIUS—DUHEM inequality 129, 141, minimax point 20, 27
143,145 tricritical point 35
Clearing point 213 Cross product 289
Clock 83 Crystals 1
Coercivity 20, 26, 29 Curl of atensor 214
Collection Curvature elasticity 170
of molecular tensors 7 Curvature tensor 247
of order tensors 16, 32, 34 Curve length 77
of orientational states 6
of shapes 99, 128, 136, 158 D’ ALEMBERT’s principle 116, 151, 168,
Collective molecular tensors 2,7, 13 217
Complex materials 2 DAWSON’s integral 45, 47
Complex wave vector 254,279 Defects 187
Components 85 Deflated model 23,26
tensor 293 Deformable bodies 128
vector 293 Degrees of freedom 29
vector product 293 Density gradient 242
Computational physics 27 Description
Condensation 254 Eulerian 74
Condensation wave 240, 254,273,278 spatial 74
Conformational states 4 Dielectric anisotropy 209
Conormal 79 Dielectric tensor 209
Constitutive equations 107 Dimension
Constitutive law 107, 131, 145 attractive 34

Contact repulsive 34



Director 165, 167
inertia 285
libration 277,279, 281

Dispersion energy 55
Dispersion equation 257
Dispersion parabola 68
Dissipation
functional 132
reduced 137
identity 119
inequality
reduced 128
macroscopic 111

measure 132, 136, 140, 158
reduced 132
total 118,127,132

total reduced 122
Dissipative system 111
Divergence

normal 79

of a tensor field 295

of a vector field 295

surface 79,246
Divergence theorem 72, 81, 106, 131, 155,

159,296
Double

average 14

counting 14
Dyadic product 291
Dynamical system

anholonomic 113,116

holonomic 113,114, 116,118

rheonomic 114

scleronomic 114
Dynamics

Lagrangian 128

macroscopic 111

microscopic 111

Efflux 128
Eigenvalues 29,31, 32, 34, 35, 3844, 66,
165, 166, 290, 291
minimum eigenvalue 28
Eigenvectors 165,290, 291
EIT, extended irreversible thermodynamics
141
Elastic constants 174,214, 265
inequalities 175,214
Elastic coupling 276

Index 317

Elastic energy 170, 174,200, 213,227,
229, 230, 234, 240, 243,265
acoustic contribution 241

one-constant approximation 234,277
Electric displacement field 165,209
Electric field 165,209
Energy

free 127,131,132, 139

internal 125,128, 129, 135

kinetic 97

scaling 15

thermal production of 127,132,152,

158
Ensemble 10
average 11
entropy 12

free energy 12
Hamiltonian 11
internal energy 12
partition function 11
potential 10

state 11

state space 11
Entropy 112,129, 135

density 129, 142

flux 130

imbalance 130

production 130, 144

supply 130

Equal scaling 15

Equation of state

caloric 144

thermal 144

Equipresence

principle of 142
ERICKSEN stress 174,202, 218, 264, 278
ERICKSEN’s identity 172, 185
ERICKSEN’s inequalities 175
ERICKSEN-LESLIE theory 166
Error function 45

Euclidean space 72,289
EULER angles 6

EULER formula 122

EULER-LAGRANGE equations 115, 118,
119, 161, 186

Eulerian description 74

Event 83

Evolution

thermodynamic 128



318 Index

Excess pressure 241 soft 57
Excluded volume 61 thermodynamic 134
Frame
Far bodies 97 change of 4, 83,104, 139
Field inertial 98, 101, 103
electric 165,209, 224 noninertial 102
electric displacement 165,209 of reference 83
magnetic 187 rest 89
molecular 173 Frame indifference 4, 83, 84
Fitregion 72,296 principle of 83,250
Fluctuations FRANK’s elastic constants 174
mean regression of 149 Free energy 127,131, 132
Fluids 75 deflated 30
anisotropic 167 density 142
compressible 151, 156, 158 functional 139
EULER 153 one-particle 28
incompressible 153, 157 FREISER model 9, 34, 67-69
inviscid 151
isotropic 151 Galilean transformation 102
perfect 151 GIBBS equation 141, 146, 147
KORTEWEG 242 GIBBS—-BOGOLIUBOV inequality 17
anisotropic 259, 264 Great system 97
linearly viscous 145 Group
NAVIER-STOKES 145,162 orthogonal 294
nonsimple 138, 139 special orthogonal 294
ordered 'V, 139,151 symmetry 5, 6,225
perfect 151 unimodular 294
second-grade 239,243, 248
simple 138, 141 HAAR measure 6
perfect 141 HAMEL-NOLL theorem 103
viscous 154 HAMILTON’s principle 113-115,119, 120
Flux 103 Hamiltonian
Force 100 bilinear 13
applied 97 ensemble 11
body 96, 143,152, 169, 195 extended 16
contact 96, 152, 169, 195, 252 fully attractive 7,20, 36, 68
dispersion 3, 55,57 fully repulsive 7,20, 25
frictional 118 indefinite 23
generalized 115, 118, 168, 206, 226 negative definite 20
generalized surface 154 one-particle 13,33
hard 57 partly repulsive 7,20, 25-27, 68
inertial 102 positive definite 20
internal 106 prototypical 7
moment of 107 simply attractive 68
of inertia 97, 101 two-particle 3,4, 28,53
RAYLEIGH dissipative 128 HAUSDORFF measure 73
reactive 154 Heat 125
resultant 91 conduction 158

external 96 anisotropic 189



FOURIER’s law of
inequality 144

160, 190

flux 128, 142
supply 128,143
Heating 125,128

HELMHOLTZ free energy 2,17,25,27
HELMHOLTZ function 26
HELMHOLTZ potential 12,24
HELMHOLTZ theorem 163
HELMHOLTZ-RAYLEIGH formula 163
Hemi-indifference 94
Hemi-indifferent tensor 95,110
Hemi-indifferent vector 94

Hemitropic function 94

Hyperstress 248,251
Hypertraction 244,248, 252, 265, 266
Hypothesis

KELVIN 146

of local equilibrium 146
on mean regression of fluctuation 150

Indifference
of force 96
of mass 95
of power 96
Indifferent scalar
Indifferent tensor
Indifferent vector
Inequality
CLAUSIUS-DUHEM 129, 141, 143, 145
GiBBS—-BoGoLIuBovV 17
heat conduction 144
JENSEN’s 18
mechanical dissipation 144
variational 141, 146
Inertia 31, 101
SYLVESTER’s law of 31
Inertia postulate 97
Inertial force 97,101, 102
constitutive nature of 101
in a noninertial frame 102
Inertial frame 98, 101, 103, 109
Influence ball 58
Influx 128
Initial guesses 27
Inner product 289
between second-rank tensors 291, 293
between third-rank tensors 230
Integral-gradient theorem 296

84, 85,91
84,85
84,85

Index 319

Interaction

biaxial 66
dispersion force 57
edge 96

induced dipole-dipole 55
maximal 10
minimal 10
nearest-neighbor 10
quadrupolar 232
uniaxial 66
Interaction energy 53
Interaction models
attractive 54
FREISER 9, 67-69
long-range 54
MAIER-SAUPE 54
ONSAGER 54
repulsive 54
short-range 54
STRALEY 67-69
VAN DER WAALS 54
Interaction strength 21

Internal energy 125, 128, 129
Invariant 140
Invariants 210, 220, 229

principal 292
Irreversibility 126
Isotropic function 38

tensor-valued 94

vector-valued 93
Isotropic phase 1,209

JAUMANN derivative 92
JENSEN’s inequality 18

Kinematic field 75
Kinetic energy 97, 109, 169
KORTEWEG fluid 242

anisotropic 259, 264
KORTEWEG pressure 246, 249
KORTEWEG stress 242, 246, 249, 264,

266,278

KORTEWEG traction 251, 252,255, 266

LAGRANGE function

LAGRANGE multiplier
169,200

LAGRANGE-RAYLEIGH equations 113,
134

114,116
120, 123, 153, 154,



320 Index
Lagrangian configuration 113
Lagrangian function 161, 163

114
210,227,229, 234

Lagrangian system
LANDAU potential

symmetric 231
LANDAU theory 208, 209
LANDAU-DE GENNES potential

211,225

Least-free-energy principle
LEBESGUE measure 73
LEGENDRE polynomial 8
LEHMANN effect 188
LESLIE’s viscosity coefficients
Libration 243

equation 280
Liquid crystals V

biaxial 166

cholesteric

lyotropic 2

nematic V

195,210,

2,19

179

v, 174

biaxial V,23,33,198,224

chiral V

uniaxial 'V, 165,208
smectic 'V

thermotropic 2
with variable degree of orientation
Liquids 1
Local equilibrium hypothesis
Local linear stability 28
Local stability criterion

194
146
27,31,32,35

Magnetic field 187
MAIER-SAUPE interaction 60
MAIER-SAUPE model 54
MAIER-SAUPE theory 2, 3,8, 18, 23, 35,
36, 40,49, 53, 54
free energy 47
absolute minimizer
local stability analysis
steric correction 60

51,52
47,49

Mass 73,99
conservation 152
density 73,99

Material
classical 130
element 108
functional 140
nonpolar 166
point 75,108

polar 166
second-grade 243,251
universe 72
Mean curvature 247
Mean field
approximation 2, 13,232,233

deflated free energy 26

free energy 16, 17

partition function 16

phase diagram 232
Measure

area 73

HAUSDORFF 73

LEBESGUE 73

mass 99, 128
space 72
volume 73,99

Mechanical dissipation inequality
Mechanics VI

analytical 111

classical 96,101, 116

axioms of 95

continuum 71,98, 108, 125

Lagrangian 116

relativistic 83

statistical 150
Mesophase 3
Microinertia 169
Microkinetic energy 265
Micromorphic theory 273
Minimax principle 20,27
Minimum principle 17

Mixed product 78,289
Molecular
alignment 41
full 41
planar 41
assembly 3
chirality 139

clusters 55
conformations 54
field 173
interactions
order 3
organization 1
shape 40
tensors
attractive 7
repulsive 7

2,139,232

144



Molecules 4
biaxial 8
flexible 4
biaxial 54
probe 58
rigid 4
rodlike 2
spheroidal 63
V-shaped 69
Momentum
linear 103, 147
moment of 104
rotational 104, 108, 147
Monte Carlo simulations 15
Motion VI, 74, 81,97, 128, 158
CAUCHY’s first law of 104
CAUCHY’s laws of 131
CAUCHY’s second law of 106
isochoric 81
libration 243
NEWTON’s equation of 124
quasistatic 162
RAYLEIGH’s equations of 121
relative 75
rigid 89,90, 102
solenoidal 81
Multiscale approach 71

Natural boundary condition 153

NAVIER-STOKES equation 160, 164
NAVIER-STOKES theory 132,151

Near bodies 97

Nematic

biaxial 224

director 165

phase 209

symmetry 165, 167
biaxial 199,200

Nematic texture 239

Nematoacoustic theory 239,259

NOLL’s axiomatics 111

Nonsimplicity 139

Normal divergence 247

Normal gradient 247

Null space 291

Number density 58

Numerical continuation 27

Objectivity 139

Index

principle of 83
Observable

macroscopic 233

microscopic 233
Observer 83,139, 140

change of 139
OCKHAM’s razor 142
ONSAGER model 54
ONSAGER principle 149

321

ONSAGER—CASIMIR reciprocal relations

149
Optical birefringence 1
Order V

internal degrees of 109
molecular 139
orientational 1
parameters 1

scalar 166

tensor 2, 166,207,209, 224,225

Ordered fluids V
Ordered phases 1

Orthogonal transformation 84, 294

Pair potential 4, 53,232
bilinear 25
dispersion 57,67

PARODI relation 179, 197

Particles 4
indistinguishable 4

Partition function
mean-field 36
one-particle 13,28
reduced 43

Perimeter of a set 72

Permittivity
anisotropy 226
average 209,226
tensor 209, 226
transverse anisotropy 226

Phase diagram 27,234
of biaxial nematic 235
universal 232,234

Phase transition 211
first-order 1,20, 52,232,235

isotropic-to-biaxial nematic 233

isotropic-to-nematic 211

isotropic-to-uniaxial nematic 233

ordering 1
second-order 1,232,235



322 Index

uniaxial-to-biaxial 35
Phenomenological coefficients 229
inequalities 234
Phenomenological parameters 277, 285
Pitch 174,214
Point 289
Polar vector 94
Polarizability

anisotropies 67

average 67

tensor 56, 66
Postulate

CAUCHY 103

of inertia 97
Potential

compatibility 186
LANDAU-DE GENNES 195
magnetic 188

nonquadratic 122

of inertial forces 98
thermodynamic 135
Power 91

external 106, 169

total 96
Present shape 74
Pressure 104, 153, 157
acoustic 241

dynamic 144,157
equilibrium 142, 157, 159
excess 241

KORTEWEG 246,249

mean 144,157

radiation 241
Primitive quantity 125, 128
Principal invariants 292
Principal minors 262

leading 262
Principle

CURIE 147
D’ALEMBERT’s 116,151, 168
HAMILTON’s  113-115,119, 120
HERIVEL-LIN 162
minimax 20

for entropy production 148
of equipresence 142

of frame indifference 83,250
of least action 119

of least free energy 2,19

of microscopic reversibility 149

of minimum constrained dissipation 119
of minimum entropy production 148
of minimum free energy 17
of minimum reduced dissipation 122,
132
for deformable bodies 137
for homogeneous processes 134
for ordered fluids 140
of objectivity 83
of virtual power 183,243
RAYLEIGH dissipation V
stress 103
Probe molecule 58
Process rate 125

Product
cross 289
dyadic 291
inner 289

between second-rank tensors 291, 293
between third-rank tensors 230
mixed 78,289
Propagation modes 269
Pseudotensor 95
Pseudovector 94

Radiation pressure 241
Radius of gyration 265
Rate of deformation 88
Rational thermodynamics 140, 141, 143,
145-147
RAYLEIGH density 156, 158,218
RAYLEIGH dissipation function 118,119,
123,127,133, 150
acoustic 261
compressible nematic 261
ERICKSEN-LESLIE theory 177, 189
order tensor theory 221,223
reduced 121,122
two-director theory 203
two-order tensor theory 227,230,235
variable degree of orientation 197
RAYLEIGH dissipation functional 132,
137, 140, 145, 148, 155
RAYLEIGH dissipation principle V
RAYLEIGH equations 118
Reciprocal relations 149
Recurrence 112
Reduced boundary 73,296
Reduced temperature 21, 36



Region
excluded 55,57, 58, 60-62, 64,69
fit 72
radially excluded 59
star-shaped 59-62, 69
Relative motion 75
Relativistic mechanics 83
Rest frame 89
Resultant force 91
Resultant torque 91
Reversibility 112
microscopic 111
REYNOLD’s transport theorem 82
REYNOLDS stress 240
Rheology 87
Rigid body 180, 205, 252
Rigid molecular architecture 5
Rigid motion 90, 102, 250
Rigid rotation 4
RT, rational thermodynamics 141

Scalar
indifferent 84, 85,91
Scalar order parameters 28, 33, 39,233
attractive 32
biaxial 39
dominant 233
repulsive 32
uniaxial 39
SCHOENFLIES notation 5
Second-grade
fluid 239,243,248
Second-grade material 243, 251
Self-consistency 13, 14, 36
Set
boundary of 72
reduced 73
topological 73
interaction 10
materially ordered 72
of finite perimeter 72,73
regularly open 72
Shape
dipole 64
function 60
functional 81, 103, 128, 132
of abody 72,128,296
present 109
quadrupole 64

Index 323

Short-range repulsion 4

Sound

speed of 257
anisotropy 240,271,276
dispersion 276

velocity 255

Space

absolute 83

Euclidean 72,96, 139,289
measure 72,99

null 291

relative 83

translation 74

Space-time 83

Spatial description 74

Spectral theorem 37,290

Spin tensor 86, 102, 250

Spin vector 88, 109

State space 4,5, 19,22,24,37

Steric biaxiality 64

Steric correction 64

Steric effects 57

Steric tensor 55, 60, 62, 64, 69

STRALEY model 67-69, 224

Strategy of nature 112

Streaming sources 287

Stress

couple 108, 181, 182, 185, 198, 224,
228,251

equilibrium 141
ERICKSEN 174,202,218,264,278
KORTEWEG 242,246,249, 264, 266,
278

principle 103

REYNOLDS 240

tensor 103, 154

thermal 191

torque 173

viscous 177,179,203, 219, 228, 236

Stretching tensor 88

Subbody 72,128, 129, 131, 140
convected 75

Supply 103

Surface 77

areaof 77

conormal of 79

couple 182

Surface divergence 79, 246

Surface gradient 246



324 Index

Surface gradient-integral theorem 247 adiabatic 127
Surface-divergence theorem 79, 246, 247 homogeneous 125, 133
Symmetry isoentropic 127

group 5,6 isothermal 154

material 139 Thermodynamics

preservation 94 continuum 113,124

transformation 4 first law of 126, 147

for deformable bodies 129

Temperature of irreversible processes 141

absolute 125, 160 rational 140, 143, 145-147

supercooling  211,233-235 second law of 126, 140, 143
Tension 104 for deformable bodies 129, 130
Tensor 290 Thermodynamics of irreversible processes

biaxial 39 147

CAUCHY stress 104 Time

couple stress 108 absolute 83

curvature 247 relative 83

dielectric 165, 166 Time average 241

field 292 Time derivative

gradient 295 codeformational 92

hemi-indifferent 95 corotational 92,93

indifferent 84, 85 of the director 175

of rankn 292 indifferent 92

order 2,166,207,209,224, 225 local 294

order parameter 27,207,209 material 75,294

purely biaxial 39 of the density gradient 245

spin 102,250 of the director 171

steric 55, 60, 62, 64, 69 of the director gradient 171

stress 103 of the order parameter gradient 196

stretching 88 of the order tensor gradient 217

trace 293 normally convected 76, 78,79, 92

uniaxial 39 of indifferent tensors 85

vorticity 88, 109 of indifferent vectors 85
Theorem tangentially convected 76,77,79,92

CAUCHY 103 total 295

CAYLEY-HAMILTON 292 Time rate

divergence 72, 81,106, 131, 155, 159, contravariant 80

296 covariant 80

HAMEL-NoLL 103 frame-indifferent 92,94

HELMHOLTZ 163 TIP, thermodynamics of irreversible

integral gradient 296 processes 141, 146

spectral 37,290 Topological boundary 73

surface gradient-integral 247 Torque 100, 107, 206, 224

surface-divergence 79, 246,247 acoustic 260, 275, 287

transport 80, 82,99 aligning 241,276
Thermal production 127, 132, 152, 158 misaligning 276
Thermodynamic potential 135 time-averaged 279
Thermodynamic process  125-128, 130, elastic 182,265

131,133,137 electric 224



internal 251
resultant 91
thermal 191
viscous 182
Traction 265
condition 153, 154, 173,177,226,228
law 248,253
Transformation
Galilean 102
orthogonal 84,294
Translation space 74
Transport theorem 80, 82, 99
Transpose 290
Tricritical point 35, 232, 234,235
Triple point 234,235
Turbulence 241

Ultrasonic
wave 259
Ultrasonic wave 239, 240, 260
propagation 275
torque 241
Uniaxial
crystal 165
interaction 66
lines 40
liquid crystal 165,208
states
calamitic 41,213
discotic 41,213
UNSOLD approximation 55

VAN DER WAALS model 54
VAN DER WAALS regions 57
VAN DER WAALS theory 54
Variational formulation 160
Variational principles 140
Vector 289

axial 94,109, 291
hemi-indifferent 94
indifferent 84, 85

polar 94

Index 325

position 289
spin 109

Velocity 74,294

generalized 113, 168, 194,226

gradient 75,87
transformation 87

sound 255

transformation 87

virtual 115

Viscosity coefficients 177,203, 221, 231,

261

inequalities 178, 180, 189, 197, 221,
222,236,263

LESLIE’s 179

order parameter dependence 222

Vorticity

tensor 88, 109
vector 88

Wave

acoustic 239, 240, 268, 277
aplitude 282
attenuation 242,257,272,274, 276,

279,282,287
condensation 240, 254,273,278
dispersion

anisotropic 279

frequency 272,286,287

longitudinal 255,269

period 264

plane 240,242,259, 266, 278, 279, 287

propagation 242, 259,272,273, 277,
281,283

speed 242,271

ultrasonic 239, 240, 259, 260

vector 242,254,267,279

Wavelength 258, 264, 270, 271
Work 125
Working

net 98,125,129, 158
reactive 154
total 127,152-154,158, 168
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