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Preface

Density functional theory (DFT) has revolutionized the role of theory by providing
accurate first principles predictions of critical properties for applications in
physics, chemistry, biology, and materials science. Despite dramatic successes,
there remain some serious deficiencies in describing, for example, weak interac-
tions (London dispersion) which are so important to the binding of drug molecules
to proteins, and reaction barrier heights which are so important to the under-
standing of chemical reactions. This book covers the most recent progress in this
area by presenting a new generation of DFT that dramatically improves the
accuracy for these properties by including the role of the virtual (unoccupied)
states. The underlying physics of this so-called doubly hybrid density functional
(DHDF) is explored and the performance in the description of thermochemistry,
thermochemical kinetics, and nonbonded interactions is demonstrated using some
well-established benchmarking data sets. Here we consider only finite systems
(atoms, molecules, etc.). The present book shall be of interest to college students
majoring in physical chemistry as well as to all computational chemists. The
authors are glad to receive any helpful suggestions and comments from the
readers.

We are deeply grateful to the group members and our family members for their
continuous supports. We acknowledge the financial supports from the National
Natural Science Foundation of China, the Ministry of Science and Technology of
China, and Fudan University.

Shanghai, April 15, 2013 Igor Ying Zhang
Xin Xu
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Chapter 1
An Overview of Modern Density
Functional Theory

Abstract Density functional theory (DFT) has become the leading method in
computing the electronic structures and properties from first principles. Its foun-
dation was laid on Hohenberg-Kohn theorems, which proved that there exists a
one-to-one correspondence between the ground state electron density q0 of a
many-body system and its total energy. In practice, DFT is most frequently applied
in the framework of Kohn–Sham (KS) scheme, where an approximate exchange-
correlation functional has to be chosen. Hence, the success of a DFT calculation
critically depends on the quality of the exchange-correlation functional. In this
chapter, we first briefly discuss the Hohenberg-Kohn theorems (Sect. 1.1). After
introducing the KS scheme, various approximations for the exchange-correlation
functionals are presented in Sect. 1.2. These functionals are grouped according to
Perdew’s classification of Jacob’s ladder. Finally, some general trends for the
functional performances along the Jacob’s ladder are outlined.

Keywords Density functional theory � Hohenberg-Kohn theorems � Kohn–Sham
scheme � Exchange-correlation � Jacob’s ladder

1.1 Foundation of Modern DFT

1.1.1 Wavefunction Versus Density as Basic Variables

The ultimate goal of most quantum chemical applications is to solve the time-
independent, non-relativistic Schrödinger equation: [1, 2].

ĤW ~r1r1; . . .;~rNrNð Þ ¼ EW ~r1r1; . . .;~rNrNð Þ ð1:1Þ

where Ĥ is the Hamilton operator for a molecular system consisting of N electrons
in the presence of an external potential text ~rð Þ.

I. Y. Zhang and X. Xu, A New-Generation Density Functional,
SpringerBriefs in Molecular Science, DOI: 10.1007/978-3-642-40421-4_1,
� The Author(s) 2014
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Ĥ ¼ � 1
2

XN

i¼1

r2
i þ

XN

i¼1

text ~rið Þ þ
XN

i¼1

XN

j [ i

1

~ri �~rj

�� ��

¼ T̂ þ V̂ext þ V̂ee

ð1:2Þ

The first term on the right describes the kinetic operator T̂ , where the Laplacian
operator r2

i is defined as a sum of second-order differential operators (in Cartesian
coordinates)

r2
i ¼

o2

ox2
i

þ o2

oy2
i

þ o2

oz2
i

ð1:3Þ

The last term in Eq. 1.2 describes the electron–electron repulsion V̂ee that sums
over all distinct pairs of different electrons. The external potential text ~rð Þ generally
comes from the electrostatic interaction between electrons and nuclei, where

Za; ~Ra
� �

indicate the nuclear charges and their spatial coordinates, respectively.

text ~rð Þ ¼ �
X

a

Za

~Ra �~r
�� �� ð1:4Þ

W ~r1r1; . . .;~rNrNð Þ stands for the wavefunction of the system, which depends on
the 3N spatial coordinates ~rif g, and the N spin coordinates rif g of the electrons.
The wavefunction W contains all information that can possibly be known for the
quantum system that we are interested in. Nevertheless, as electrons are inter-
connected by V̂ee, it is very difficult to find a good approximation to the solution of
Eq. 1.1 for N [ 1 [1–4].

The electron density q ~rð Þ is given by [1–4]

q ~rð Þ ¼ N

Z
:::

Z
W ~rr1; :::;~rNrNð Þj j2d~r2:::d~rNdr1:::drN ð1:5Þ

It determines the probability of finding any of the N electrons within the volume
element d~r but with arbitrary spin while the other N - 1 electrons have arbitrary
positions and spins in the state represented by W. As W is normalized, it is clear,
from Eq. 1.5, one has

Z
q ~rð Þd~r ¼ N ð1:6Þ

Unlike the wavefunction, electron density always depends on only three spatial
coordinates, and it is an observable that may be measured experimentally via, e.g.,
X-ray diffraction. If, instead of the complicated N-electron wavefunction W, the
electron density q could be used as the basic variable, such an approach would be
physically more appealing and computationally more efficient.
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1.1.2 Hohenberg-Kohn Theorems

Hohenberg-Kohn theorems put the modern density functional theory (DFT) onto a
firm physical foundation [2–6]. The first Hohenberg-Kohn theorem is often quoted
as ‘‘proof of existence’’ [5], which stated that ‘‘the external potential text ~rð Þ is (to
within a constant) a unique functional of q ~rð Þ; since, in turn text ~rð Þ fixes Ĥ we see
that the full many particle ground state is a unique functional of q ~rð Þ’’ [5]. The
existence of a one-to-one correspondence between the ground state electron
density q0 of a many-body system and its Hamiltonian Ĥ equivalently proved that
there exists an energy functional in terms of density, that is E q½ �.

At this point, it is instructive to separate the energy expression of E q½ � into its
components, as the external potential energy Vext q½ �, in terms of electrons-nuclei
attractions, is readily expressed as a functional of q.

E q½ � ¼ FHK q½ � þ Vext q½ �

¼ FHK q½ � þ
Z

q ~rð Þtext ~rð Þd~r
ð1:7Þ

FHK q½ � is the so-called Hohenberg-Kohn functional, which shall consist of the
kinetic energy functional T q½ � for electron and the electron–electron repulsion
energy functional Vee q½ �.

FHK q½ � ¼ T q½ � þ Vee q½ � ð1:8Þ

As the classic Coulomb energy J q½ � among electrons is the major contributor of
Vee q½ �, and its expression as a functional of q is known, it is also instructive to
separate J q½ � from its non-classic counterpart Encl q½ � ¼ Vee q½ � � J q½ �.

J q½ � ¼ 1
2

ZZ
q ~r0ð Þq ~rð Þ
~r0 �~rj j d~r0d~r ð1:9Þ

Hence the energy expression for FHK q½ � now reads as

FHK q½ � ¼ T q½ � þ J q½ � þ Encl q½ � ð1:10Þ

As every electron is identical, FHK q½ � is a universal functional, whose form is
independent of a particular molecular system (i.e., independent of charges and
positions of the nuclei).

The second Hohenberg-Kohn theorem is the variational principle in terms of
density [5]. It tells us that functional E q½ � attains its minimum value with respect to
all allowed densities (i.e., Eq. 1.6 is fulfilled), if and only if the input density is the
true ground state density.

E q0½ � ¼ min
q!N

E q½ � ð1:11Þ

This constrained variation on density is equivalent to solving the Euler
Equation 1.13 [2–6].
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d E q½ � � l
Z

q ~rð Þd~r
� �

¼ 0 ð1:12Þ

l ¼ text ~rð Þ þ
dFHK q½ �
dq ~rð Þ ð1:13Þ

Hence the electronic chemical potential appears as a Lagrange multiplier l in
DFT.

The Hohenberg-Kohn theorems are the bedrocks of modern DFT, which prove
the unique mapping between the ground state density q0 ~rð Þ and the ground state
energy E q0½ �. They, however, do not provide any guidance on how FHK q½ � should
be constructed for practical use. In fact, T q½ � is a major contributor of FHK q½ �. Even
the 1 % error in the kinetic energy will prevent DFT from being used as a
quantitative predictive tool [3, 7, 8].

1.1.3 Kohn–Sham Scheme

The Kohn–Sham (KS) scheme [2–4, 9] provides an avenue that the large part of
the kinetic energy can be approached to good accuracy. This was, however,
achieved by utilizing an orbital representation. It is assumed that, for any real
(interacting) system, there exists a local single particle potential ts ~rð Þ corre-
sponding to a fictitious (non-interacting fermion) system, whose ground state
density q ~rð Þ equals the exact ground state density q0 ~rð Þ. Such a system is defined
by the Hamiltonian

Ĥs ¼
XN

i¼1

� 1
2
r2

i þ ts ~rið Þ
� �

ð1:14Þ

which has an exact wavefunction solution that is the single Slater determinant
constructed from the N lowest orbitals of the one-electron equations

� 1
2
r2 þ tsð~rÞ

� �
/i ~rð Þ ¼ ei/i ~rð Þ ð1:15Þ

For this system the kinetic energy and electron density are given by

Ts q½ � ¼ � 1
2

XN

i¼1

Z
/�i ~rð Þr2/i ~rð Þd~r ð1:16Þ

qð~rÞ ¼
XN

i¼1

/i ~rð Þj j2 ð1:17Þ

and its total energy is given by
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Es q½ � ¼ Ts q½ � þ
Z

ts ~rð Þq ~rð Þd~r ð1:18Þ

The corresponding Euler–Lagrange equation is thus

l ¼ ts ~rð Þ þ
dTs q½ �
dq ~rð Þ ð1:19Þ

The quantity Ts q½ �, although not the exact kinetic energy T q½ �, is well-defined
using orbitals /if g. It is a density functional, because the KS orbitals are implicit
functionals of density. Ts is the major contributor of T q½ �. Its proper description is
the key to the success of KS-DFT. Nevertheless, one has to notice that, by rein-
troducing the wavefunction, the full potential of DFT in having only three vari-
ables independent of system size could no longer be realized.

Now FHK q½ � in Eq. 1.10 can be reformulated as

FHK q½ � ¼ Ts q½ � þ J q½ � þ Exc q½ � ð1:20Þ

and the corresponding Euler–Lagrange (Eq. 1.13) becomes

l ¼ text ~rð Þ þ
dTs q½ �
dq ~rð Þ þ

dJ q½ �
dq ~rð Þ þ

dExc q½ �
dq ~rð Þ ð1:21Þ

Here Exc q½ � is the so-called exchange-correlation (xc) functional, which covers
the residual part of the true kinetic energy (Tc ¼ T � Ts) and the non-classic
electrostatic interaction of electrons (Encl ¼ Vee � J).

Exc q½ � ¼ T q½ � � Ts q½ �ð Þ þ Vee q½ � � J q½ �ð Þ ð1:22Þ

The exact xc functional Exc q½ � is unknown, whose construction should be a
relatively ‘‘easy’’ job as compared to the direct construction of FHK q½ �, as the
former is a minor, while the latter is a major, contributor to the total energy
functional E q½ �.

Recall that the KS scheme starts by assuming the existence of ts ~rð Þ, which
remains to be determined. By requiring the chemical potential of the non-inter-
acting system (Eq. 1.19) to be equal to that of the real system (Eq. 1.21), ts ~rð Þ can
then be obtained as

ts ~rð Þ ¼ text ~rð Þ þ tJ ~rð Þ þ txc ~rð Þ ð1:23Þ

where the external potential is given in Eq. 1.4, and the Coulomb as well as the xc
potentials are given by

tJ ~rð Þ ¼
dJ q½ �
dq ~rð Þ ¼

Z
q ~r0ð Þ
~r0 �~rj jd~r

0 ð1:24Þ

txc ~rð Þ ¼
dExc q½ �
dq ~rð Þ ð1:25Þ
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Note that ts ~rð Þ depends on q, via Eqs. (1.23)–(1.25), the KS Equation (1.15)
must be solved iteratively. Furthermore, the exact xc functional is unknown, such
that the exact xc potential, defined in Eq. 1.25, is unknown. Certain approximated
Exc q½ � has to be used in practice. Thus, pursuing more and more accurate and
reliable approximate xc functionals is the key issue in the development of density
functional theory.

1.2 Approximations for the Commonly
Used Exchange-Correlation Functionals

1.2.1 The Jacob’s Ladder

From the above section, we see that the Kohn–Sham scheme allows us to separate
out Exc q½ � from FHK q½ �. This leaves finding an accurate form for Exc q½ � the last
barrier to the finding of the ground state density and the ground state energy.

Various density functional approximations (DFAs) to the xc energy have been
developed in recent decades [9–56]. They are proposed with different philoso-
phies. Functionals may be categorized into non-empirical and empirical. The
former are formulated only by satisfying some physical rules, (e.g. [9–16, 21–23,
31, 32]) while the later are made by fitting to the known results of atomic or
molecular properties (e.g. [25, 26, 33, 38, 39, 45–48]). In practice, the most
popular functionals seem to be those developed by a combination of these two
approaches, i.e., a physically motivated form with a few parameters being opti-
mized for better numerical performance (e.g. [19, 20, 28, 29, 34, 35, 43, 50, 54]).

Perdew proposed a useful scheme to categorize the existing functionals, which
also points out the direction for future functional development. This scheme is
known as the Jacob’s ladder (See Fig. 1.1), where functionals are grouped
according to their complexity on rungs of the ladder, starting from the Hartree
approximation on ‘‘earth’’ to the ‘‘heaven of chemical accuracy’’ [57, 58].

We will now briefly discuss the first four rungs of this ladder to introduce some
of the most widely used xc functionals in the past and present. The focus of the
present book is to introduce, from the next chapter, a new generation of functionals
on the fifth rung.

1.2.2 The First Rung Functionals

Local density approximation (LDA [9–16]) is the foundation of most DFAs,
representing the first rung of the Jacob’s ladder. In this approach, the real inho-
mogeneous system is divided into infinitesimal volumes. In each of the volumes,
the electron density is taken to be constant. The xc energy for the density within
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each volume is then assumed to be the xc energy obtained from the uniform
electron gas for that density. Thus, the total xc energy of the system can be written
as

ELDA
xc q½ � ¼

Z
q ~rð ÞeLDA

xc q½ �;~rð Þd~r ð1:26Þ

where eLDA
xc is the xc energy per particle.

It is usual to decompose Exc q½ � into its exchange Ex q½ � and correlation Ec q½ �
components:

Exc q½ � ¼ Ex q½ � þ Ec q½ � ð1:27Þ

For LDA, the analytical expression for the exchange energy is known by Bloch
and Dirac [11, 12].

ELDA
x q½ � ¼ � 3

4
3
p

� �1=3Z
q ~rð Þ4=3d~r ð1:28Þ

and

eLDA
x ¼ � 3

4
3
p

� �1=3

q ~rð Þ1=3 ð1:29Þ

Slater proposed the Xa method which was once widely used in the solid state
physics [13]. Although it actually differs from Eq. 1.28 for the prefactor, the name
Slater is often used as a synonym for the LDA exchange energy, ES

x , involving the
electron density raised to the 4=3 power.

Fig. 1.1 Jacob’s ladder of
approximate DFT methods
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In the literature, Eq. 1.29 is also often expressed in terms of the Wigner–Seitz
radius rs [59], which corresponds to the radius of the effective volume containing
one electron:

rs ¼
3

4pq

� �1=3
ð1:30Þ

Thus

eS
x ¼ �

3
4

3
2p

� �2=3 1
rs

ð1:31Þ

The correlation energy is more complicated. It has been derived in the high and
low density limits [60–63]. For the intermediate densities, the correlation energy
has been determined to a high precision by quantum Monte Carlo (QMC) methods
[64]. In order to use these results in DFT calculations, it is desirable to have a
suitable analytic interpolation formula. Several such formulas have been con-
structed and all are considered as accurate fits [14–16]. The common LDA cor-
relation functionals are Vosko, Wilk, and Nusair (VWN) [14], and Perdew-Zunger
(PL) [15], and Perdew–Wang [16].

Below, we will discuss more on the VWN parameterization, which is given in
Eq. 1.32 [14].

eP=F
c ¼ A In

y2

Y yð Þ þ
2b

Q
tan�1 Q

2yþ b

�

� by0

Y y0ð Þ
In

y� y0ð Þ2

Y yð Þ þ 2ðbþ 2y0Þ
Q

tan�1 Q

2yþ b

 !# ð1:32Þ

where y ¼ r1=2
s ; YðyÞ ¼ y2 þ byþ c;Q ¼ ð4c� b2Þ1=2 and P/F stands for the para/

ferro magnetic case, respectively. For the paramagnetic case, the parameters
fitted to QMC data are A = 0.0310907 (a.u.), y0 = - 0.10498, b = 3.72744,
c = 12.9352; while for the ferromagnetic case, the corresponding parameters are
2A = 0.0310907 (a.u.), y0 = -0.32500, b = 7.06042, c = 18.0578. In the origi-
nal VWN paper [14], parameters were also fitted to the Random Phase Approxi-
mation (RPA), where y0 = -0.409286, b = 13.0720, c = 42.7198 for the
paramagnetic case, and y0 = -0.743294, b = 20.1231, c = 101.578 for the fer-
romagnetic case (with the same setting for A as in QMC). Note that different
implementations have used different parameterizations which produce different
numerical results and have caused some confusion. For example, Gaussian suite of
program [65] uses the synonym VWN for the RPA parameterization and VWN5
for the QMC parameterization.

The extension of density functionals to spin-polarized systems is straightfor-
ward for exchange, where the exact spin-scaling is known as [66]:
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Ex qa; qb

	 

¼ 1

2
Ex 2qa½ � þ Ex 2qb

	 
� �
ð1:33Þ

and

qa þ qb ¼ q ð1:34Þ

But for correlation further approximations must be employed. The spin-
dependence of the correlation energy density, ec rs; fð Þ, is approached by intro-
ducing the relative spin-polarization [14]:

f ¼
qa ~rð Þ � qb ~rð Þ

q ~rð Þ ð1:35Þ

where f ¼ 0 corresponds to the paramagnetic spin-unpolarized situation eP
c rsð Þ ¼

ec rs; f ¼ 0ð Þ with qa ¼ qb, whereas f ¼ �1 corresponds to the ferromagnetic

situation eF
c rsð Þ ¼ ec rs; f ¼ �1ð Þ where one spin density vanishes. The f-depen-

dent correlation energy density ec rs; fð Þ is then constructed to interpolate these
extreme values. Again, different interpolation formulas may be employed. For
example, the Gaussian implementation [65] of VWN uses the formula suggested
by von Barth and Hedin [10], while its VWN5 implementation uses a slightly more
complicated form where a quality called spin stiffness, ac rsð Þ, was also fitted
against Eq. 1.32 [14].

Thus we now have some commonly used acronyms for the LDA exchange-
correlation functionals, namely SVWN, SVWN5, SPL as in Gaussian.

1.2.3 The Second Rung Functionals

LDA is best suited in describing extended systems, such as metals, where the
approximation of the uniform electron gas is most valid. To account for the rapidly
varying electron densities of many other systems like atoms and molecules,
improvements over LDA have to make the xc energies dependent not only on the
electron density but also on derivatives of the density.

The second rung functionals are based on the so-called generalized gradient
approximation (GGA) [17–20], where the first derivative of the density is also
included as a variable.

EGGA
xc q½ � ¼

Z
q ~rð ÞeGGA

xc q; rqj j½ �;~rð Þd~r ð1:36Þ

Similarly, a GGA xc functional is also assumed to be separable, and the GGA
exchange functional takes the general form as

eGGA
x q; rqj jÞð ¼ eLDA

x � F sð Þ ð1:37Þ
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where F(s) is an enhancement factor and s (or similarly x ¼ 24p2ð Þ
1
3�s) is the

dimensionless reduced gradient defined as

s ¼ rqj j
24p2ð Þ

1
3q

4
3

ð1:38Þ

There are now many exchange functionals of the GGA type (e.g. [17–29]).
They differ from each other in the form of the enhancement factor F(s). One of the
most popular GGA exchange functionals was proposed by Becke, denoted as B or
B88, whose F(s) takes the form as [19]

FB88 sð Þ ¼ 1þ s � a1 � sinh�1 s � a2ð Þ þ a3 � s2

1þ s � a1 � sinh�1 s � a2ð Þ
ð1:39Þ

Another popular exchange functional is called PW91 (Perdew–Wang 1991)
[21].

FPW91 sð Þ ¼
1þ s � a1 � sinh�1 s � a2ð Þ þ a3 þ a4 � e�100s2


 �
s2

1þ s � a1 � sinh�1 s � a2ð Þ þ a5 � sd
ð1:40Þ

Here Ax ¼ � 3
4

3
p

� �1=3
, a2 ¼ 48p2ð Þ

1
3, a1 = 6�a2, a3 ¼ �

a2
2

21=3Ax
� b, a4 ¼

10
81
� a3,

a5 ¼
�a4

2 � 10�6

21=3Ax
, and d = 4. B88 contains one fitting parameter b. Becke

obtained b = 0.0042 from fitting to Hartree–Fock (HF) exchange energies for the
noble gas atoms [19]. PW91 adopted the B88 form by adding a4 and a5 to satisfy
some physical constraints. PW91 is considered as non-empirical as it is an analytic
fit to a numerical GGA obtained by real-space cutoff of the spurious long-range
parts of the second-order gradient expansion of the exchange-correlation hole
[21, 22].

PBE (Perdew-Burke-Ernzerhof) [23] can be considered as a refinement of
PW91. In PBE, the enhancement factor of the exchange functional is given by

FPBE sð Þ ¼ 1þ j� j

1þ l
j s2

� � ð1:41Þ

where j = 0.804 is set to the maximum value allowed by the local Lieb-Oxford
bound [23, 67] on Exc and l = 0.21951 is set to recover the linear response of the
uniform gas such that the effective gradient coefficient for exchange cancels that
for correlation.

Note that the GGA functional form is usually too restrict to fulfill some
important conditions simultaneously. For example, it is known that as r approaches
infinity, q ~rð Þ approaches exp �a~rð Þ so that [19, 68]

lim
r!1

ex ¼ �
q ~rð Þ
2r

ð1:42Þ
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Levy and Perdew showed that some scaling properties can be satisfied if the
asymptotic form of the functional for large s is s�a, where a� 1=2 (Condition 2) [69]

lim
s!1

F sð Þ ¼ 1
sa

a� 1
2

� �
Condition 2ð Þ ð1:43Þ

while the global version of the Lieb-Oxford bound requires that [23, 67]

Ex�Exc� � 1:679
Z

q ~rð Þ
4
3d~r Condition 3ð Þ ð1:44Þ

Figure 1.2 depicts the F(s) functions. B88 fulfills Condition 1 by construction
[19], but violates Conditions 2 and 3. PW91 does not obey Condition 1, but fulfills
the other two conditions by adding a4 and a5 [22]. PBE meets only Condition 3. It
was chosen to sacrifice Condition 2 to avoid the F(s) turnover of PW91, as it was
suspected that this turnover would cause spurious wiggles in the exchange
potential for large s [23]. While all three functionals recover the LDA limit as
s ? 0, the large s behavior cannot be uniquely determined (see Fig. 1.2). As the
density is typically low and varies rapidly in the nonbonded region, proper large
s behavior is important for the description of the nonbonded interactions [43].

There are similarly various GGA functionals being proposed for the correlation
energy (e.g. [20, 22, 23]). The GGA correlation functional is usually expressed as:

EGGA
c qa; qb

	 

¼
Z

q ~rð Þ eLDA
c rs; fð Þ þ H rs; f; tð Þ

	 

d~r ð1:45Þ

where t ¼ rqj j
2gksq

is another scaled density gradient, g ¼ 1
2 1þ fð Þ

2
3þ 1� fð Þ

2
3

h i
is a

spin-scaling factor and ks ¼ 4kF
p

� �1
2 is the Thomas–Fermi screening wave vector

with kF ¼ 3p2qð Þ
1
3 being the local Fermi wave vector.

Fig. 1.2 Enhancement
factors for a set of GGA
exchange functionals
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In the Perdew–Wang-91 correlation functional (EPW91
c ), H is expanded as [22]

HPW91 ¼ H0 þ H1 ð1:46Þ

H0 ¼ g3 b2

2a
ln 1þ 2a

b
t2 þ At4

1þ At2 þ A2t4

� �
ð1:47Þ

H1 ¼
16
p

� �
3p2
� �1

3 Cc rsð Þ � Cc 0ð Þ � 3Cx

7

� �
g3t2 exp �100g4t2 k2

s

k2
F

� �� �
ð1:48Þ

with parameters A ¼ 2a
b

1

exp
�2aeLDA

c rs; fð Þ
g3b2

� �
� 1

, a = 0.09, b = 0.066725, the

Rasolt and Geldart constants (Cc [70]) and the Sham coefficient (Cx [71]). eLDA
c is

the Perdew–Wang’s parameterization ePW
c [16].

In the well-established PBE correlation functional, only the first term in the
PW91 correlation functional is kept [21–23]. This was derived to ensure that the
PBE correlation functional reduces to the correct second-order gradient expansion
in the slowly varying limit, and under uniform scaling of the density
qc ~rð Þ ¼ c3q c~rð Þ
	 


the PBE correlation energy correctly scales to a constant in the
limit c!1. In addition PBE uses a = 0.0716 instead of the a = 0.09 used in
PW91. Note that the PBE form has been revised [27, 28] and the parameters have
been optimized [28, 29].

Another popular GGA correlation functional is called LYP (Lee–Yang–Parr)
[20].

ELYP
c qa; qb

	 

¼ �a

Z
4

1þ dq�1=3

qaqb

q
d~r

�ab

Z
xd~r qaqb 211=3CF q8=3

a þ q8=3
b


 �
þ 47

18
� 7

18
d

� �
rqj j2

��

� 5
2
� 1

18
d

� �
rqaj j2þ rqb

�� ��2

 �

� d� 11
9

qa

q
rqaj j2þ

qb

q
rqb

�� ��2
� ��

� 2
3

q2 rqj j2þ 2
3

q2 � q2
a

� �
rqb

�� ��2þ 2
3

q2 � q2
b

� �
rqaj j2

�

ð1:49Þ

with parameters x qð Þ ¼ e�cq�1=3

1þ dq�1=3
q�11=3, d qð Þ ¼ cq�1=3 þ dq�1=3

1þ dq�1=3
,

a = 0.04918, b = 0.132, c = 0.2533, d = 0.349, and CF ¼ 3=10ð Þ 3p2
� �2=3

.
LYP does not use the electron gas as the reference system, but considers instead

short-range effects in the two-particle density matrix. It is a simplification of the
Colle-Salvetti correlation functional which explicitly depends on the single-par-
ticle orbitals [72]. LYP contains four semiempirical parameters {a, b, c, d}, all
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from the underlying Colle-Salvetti functional and obtained from a fit to the He
atom. Note that LYP is self-interaction free for any one-electron system, but its
correlation energy erroneously vanishes for any ferromagnetic situation.

The LYP correlation functional is often combined with the B88 exchange
functional, while the PBE correlation functional is meant to be combined with its
own exchange functional to ensure a good behavior of the whole xc functional.
Thus we now have three commonly used acronyms for the GGA exchange-cor-
relation functionals, namely BLYP, BPW91, and PBE.

1.2.4 The Third Rung Functionals

The third rung functionals are the so-called meta-GGAs [30–33], which logically
extend the GGA functionals by allowing the xc functionals to depend further on
Laplacian r2q rð Þ, the second order derivative of the electron density.

Emeta�GGA
xc q½ � ¼

Z
q ~rð Þemeta�GGA

xc q; rqj j;r2q; s
	 


;~r
� �

d~r ð1:50Þ

More frequently, meta-GGAs include s as the additional ingredient, which is
the orbital kinetic energy density defined by

sr ~rð Þ ¼
1
2

Xocc

i

r/ir ~rð Þj j2 ð1:51Þ

Here r stands for either a or b spin and s ¼
P

r sr, while occ refers to occupied
orbitals. The orbital kinetic energy density and the Laplacian of the density
essentially carry the same information, since they are related via the orbitals and
the effective potential of the KS equation [73, 74].

sr ~rð Þ ¼
Xocc

i

eir /ir ~rð Þj j2 � tr
s ~rð Þqr ~rð Þ þ

1
4
r2qr ~rð Þ ð1:52Þ

This may also be seen from the gradient expansion for slowly varying densities
[31].

s ¼ sTF þ 1
9
sW þ 1

6
r2qþ O r4q

� �
ð1:53Þ

with sTF ¼ 3
10 3p2ð Þ2=3

q5=3 [2, 3, 13] the Thomas–Fermi kinetic energy density

from uniform electron gas and sW ¼ rqj j2

8q
[31, 73–75] the von Weizsäcker kinetic

energy density. As the representative meta-GGAs, we will introduce VSXC (van
Voorhis-Scuseria) and TPSS (Tao-Perdew-Staroverov-Scuseria). While the former
contains 21 parameters which are fitted to experimental data [30], the latter is a
non-empirical version that improves over the PBE functional [32].
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In VSXC, the exchange functional is expressed as [30]

EVSXC
x qa; qb

	 

¼
X

r

Z
q3=4

r f xr; zrð Þd~r ð1:54Þ

Here xr and zr are defined as xr ¼
rqrj j
q4=3

r

and zr ¼ 2 sr

q5=3
r
� CF


 �
, respectively.

This form was based on a density-matrix expansion, which was then modified
through the introduction of 7 fit parameters {a, b, c, d, e, f, a} [30].

f xr; zrð Þ ¼ a

c xr; zrð Þ þ
bx2

r þ czr

c2 xr; zrð Þ þ
dx4

r þ ex2
rzr þ fz2

r

c3 xr; zrð Þ ð1:55Þ

with c xr; zrð Þ 	 1þ a x2
r þ zr

� �
.

The correlation functional was constructed as

EVSXC
c ¼ Eab

c þ Eaa
c þ Ebb

c ð1:56Þ

Err0
c ¼

Z
eLDA; rr0

c f x; zð Þd~r ð1:57Þ

Err
c ¼

Z
eLDA; rr

c Drf xr; zrð Þd~r ð1:58Þ

where x2 	 x2
a þ x2

b and z 	 za þ zb. eLDA
c is the Perdew–Wang’s parameterization

ePW
c with the spin components as defined by Stoll et al. [76]. The enhancement

factor f xr; zrð Þ takes the same form as in the exchange functional. The fit
parameters are listed in Table 1.1 [30].

Note that Dr is a dimensionless factor given by

Dr ¼ 1� x2
r

4 zr þ 2CFð Þ ð1:59Þ

It is designed to be zero for any system with only one orbital, which guarantees
that the correlation energy is zero for any one-electron system to be self-interac-
tion error free.

In TPSS, the exchange functional is defined as [32]

ETPSS
x q½ � ¼

Z
q ~rð ÞeLDA

x q½ �;~rð ÞFTPSS p;~zð Þd~r ð1:60Þ

The enhancement factor FTPSS
x p; zð Þ is given by

FTPSS p; ~zð Þ ¼ 1þ j� j

1þ ~x
j

� � ð1:61Þ

where ls2 in FPBE (Eq. 1.41) is replaced by a function ~x.
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T
ab

le
1.

1
O

pt
im

iz
ed

fi
t

pa
ra

m
et

er
s

fo
r

V
S

X
C

[3
0]

a
b

c
d

e
f

a

E
x

-
9.

80
06

83
9

10
-

1
-

3.
55

67
88

9
10

-
3

6.
25

03
26

9
10

-
3

-
2.

35
45

18
9

10
-

5
-

1.
28

37
32

9
10

-
4

3.
57

48
22

9
10

-
4

1.
86

72
6

9
10

-
3

E
rr c

3.
27

09
12

9
10

-
1

-
3.

22
89

15
9

10
-

2
-

2.
94

24
06

9
10

-
2

2.
13

42
22

9
10

-
3

5.
45

15
59

9
10

-
3

1.
57

75
75

9
10

-
2

5.
15

08
8

9
10

-
3

E
rr
0

c
7.

03
50

10
9

10
-

1
7.

69
45

74
9

10
-

3
5.

15
27

65
9

10
-

2
3.

39
43

08
9

10
-

5
-

1.
26

94
20

9
10

-
3

1.
29

61
18

9
10

-
3

3.
04

96
6

9
10

-
3

1.2 Approximations for the Commonly Used Exchange-Correlation Functionals 15



~x ¼ 10
81
þ c

~z2

1þ ~z2ð Þ2

" #
pþ 146

2025
~q2

b �
73

405
~qb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

3
5

~z

� �2

þ 1
2

p2

s8
<

:

þ 1
j

10
81

� �2

p2 þ 2
ffiffiffi
e
p 10

81
3
5

~z

� �2

þelp3

)
1þ

ffiffiffi
e
p

p
� ��2

ð1:62Þ

with ~z ¼ sW
�
s, a ¼ s� sW

sTF
, p ¼ s2 the square of the reduced gradient, and

~qb ¼ 9
20

a�1ð Þ
1þb�a a�1ð Þ½ �1=2 þ 2p

3 . Here l ¼ 0:21951, j ¼ 0:804, c ¼ 1:59096 and e ¼
1:537 were fixed from some physical arguments [32], while b was chosen to be
0.40 [71]. Note that we have used symbols ~x and ~z here, rather than symbols x and
z used in the original paper [32], as the latter have already been used in defining
the VSXC functional [30].

In TPSS, the correlation functional is given by [32]

ETPSS
c q½ � ¼

Z
q ~rð ÞerevPKZB

c 1þ d~z3erevPKZB
c

	 

d~r ð1:63Þ

with

erevPKZB
c ¼ ePBE

c 1þ C f; nð Þ~z2
	 


� 1þ C f; nð Þ½ �~z2
X

r

qr

q
~ec ð1:64Þ

C f; nð Þ ¼ C 0; 0ð Þ þ 0:87f2 þ 0:50f4 þ 2:26f6

1þ n2

2
1

1þfð Þ4=3 þ 1
1�fð Þ4=3

h in o4 ð1:65Þ

~er
c ¼ max ePBE

c qr; 0; rqr; 0ð Þ; ePBE
c qa; qb; rqa; rqb

� �� �
ð1:66Þ

where f is the relative spin polarization (Eq. 1.35), n ¼ rfj j
2 3p2qð Þ1=3

. C 0; 0ð Þ and

d were chosen to be 0.53 and 2.8 au-1, respectively [77]. Note that some
parameters in TPSS has been optimized or revised [78].

1.2.5 The Fourth Rung Functionals

As in Eqs. 1.26, 1.36, and 1.50, the xc functional is defined as an integral over~r of
a function of~r which we call an energy density. An LDA corresponds to a ‘local
functional of the density’ where the energy density at~r is determined only by the
electron density at ~r. An GGA is a ‘semilocal functional of the density’ in the
sense that the energy density at ~r is determined by the electron density in an
infinitesimal neighborhood of ~r. As energy density at ~r which employs kinetic
energy density s is computed from the density and the orbitals in an infinitesimal
neighborhood of~r, an meta-GGAs is also ‘semilocal functionals of the density and
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the orbitals.’ Such (semi)locality gives rise to much of the computational conve-
nience of DFT. However, these functionals are best suited for the description of
slow varying density. For a better description of a finite system, there is a demand
for certain nonlocal component.

With the KS orbitals at hand, the exchange energy can be explicitly written as

EHF
x ¼ �

1
2

Xocc

ij

ZZ /�j ~r
0ð Þ/�i ~rð Þ/j ~rð Þ/i ~r

0ð Þ
~r0 �~rj j d~r0d~r ð1:67Þ

The superscript HF recognizes the fact that it shares the same form as in the
Hartree–Fock (HF) theory, which however uses the HF orbitals. EHF

x is nonlocal
which depends on two spatial variables (r, r0).

It would be reasonable to expect that good results were obtainable if the
approximate (semi)local exchange functionals were replaced with this exact
equation for exchange energy:

EDFA
xc ¼ EHF

x þ EDFA
c ð1:68Þ

Regretfully, this form only gave acceptable results for one-center systems
(atoms and ions) [4, 34, 35, 79], and was not very successful in describing
chemical bonds in molecules [4, 34, 35, 80]. It is difficult to develop a (semi)local
EDFA

c that can match well with the nonlocal EHF
x .

It should be emphasized that J q½ � as in Eq. 1.9 includes electron self-interaction
explicitly. An approximated EDFA

xc is unable to remove this self-interaction error
completely, which has been related to many deficiencies of common DFAs [81–
85]. This is the major advantage to use EHF

x , which is one-electron self-interaction
error free. On the other hand, as opposed to EHF

x , the local or semilocal exchange
functional EDFA

x was shown to incorporate an mimic of ‘static correlation’
EDFA

x ¼ EHF
x þ ESta

c

� �
, while the corresponding approximation for correlation

energy models ‘dynamic correlation’ EDFA
c 
 EDyn

c

� �
[26, 86].

EDFA
xc ¼ EDFA

x þ EDFA
c 
 EHF

x þ ESta
c þ EDyn

c ð1:69Þ

Hence, a correct choice that compromises the needs between elimination of self-
interaction and inclusion of nondynamic correlation is to hybrid the right-hand sides
of Eqs. 1.68 and 1.69. The simplest choice is a linear combination, giving rise to a
new class of xc functionals denoted as the hybrid xc functionals [34, 35, 37].

Ehyb
xc ¼ a0EHF

x þ 1� a0ð ÞEDFA
x þ EDFA

c ð1:70Þ

This was first introduced by Becke in 1993 [34], who used a different theo-
retical rationale, namely the adiabatic connection path (see Sects. 2.2 and 2.4)
[34, 35, 37, 50, 87–89]. Ideally, it would be desirable to optimize a0 for each
system and property, but Perdew, based on the accuracy of the fourth order per-
turbation theory for most molecules, suggests a0 = 0.25 as the best single choice.
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This has led to the PBE0 hybrid functional where EDFA
xc is the PBE GGA functional

[37, 40, 41].
One of the most popular functionals is based on Becke’s three-parameter

scheme (B3) [35].

EB3hyb
xc ¼ a0EHF

x þ 1� a0ð ÞELDA
x þ axDEGGA

x þ ELDA
c þ acDEGGA

c ð1:71Þ

The parameters a0 ¼ 0:20; ax ¼ 0:78; ac ¼ 0:81f g were obtained by fitting to
56 atomization energies, 42 ionization energies, 8 proton affinities, and 10 first row
atomic energies. During his fit, Becke has originally chosen EGGA

xc ¼ EBPW91
xc [35].

This hybrid functional is then called B3PW91. Later it appeared [36] that a
combination of the B3 scheme with the BLYP xc functional [19, 20] gave better
results. This has brought about the most widely used functional in chemistry
B3LYP. Although LYP was not separable as PW91 (i.e., Eq. 1.45 vs 1.49) by
construction, it was assumed DELYP

c ¼ ELYP
c � ELDA

c [90], where ELDA
c can be the

VWN5 parameterization in some implementations, or the VWN RPA parameter-
ization in some other implementations such as in Gaussian [65]. This is often a
source of confusion.

The success, as well as the failure, of B3LYP has initiated the development of
many new hybrid functionals (e.g. [38–56]). A recent important development in
DFT is the M06 family of functionals (M06, M06-2X and M06-HF, and M06-L)
[33, 48], which currently provides the highest accuracy with a broad applicability
for chemistry. The exchange for the M06 family consists of a linear combination
of two terms: one term comes from the PBE exchange functional [23] multiplied
by a kinetic-energy–density enhancement factor [33], and the other term is the
VSXC exchange functional [30]. The correlation for the M06 family also involves
two terms: one term is similar to the correlation functional in BMK [45] modified
by Becke’s self-interaction correction factor [91], the other term comes from the
VSXC correlation functional [30]. M06, M06-2X, M06-HF are hybrid methods
with increasing amount of HF exchange (0.27, 0.54, 1.00, respectively) while
M06-L is a pure DFT, with around 40 parameters fitted against different data sets
to emphasize different applications. Thus M06 is of general purpose, M06-2X is
recommended for chemistry of the main group elements, M06-HF is for charge-
transfer states in electronic spectroscopy, and M06-L for transition metal chem-
istry [33, 48].

1.2.6 General Trends for the Functional Performances
Along the Jacob’s Ladder

Table 1.2 gives a first glance for the performance of some traditional DFT
methods as compared with some traditional wavefunction methods [44, 90]. These
methods are still widely used ever since their constructions more than 20 years ago
[92]. More complete assessment will be provided in Chap. 3.
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As shown by the data in Table 1.2, the LDA (SVWN) method gives good
molecular structures and vibrational frequencies in the strongly bound systems as in
the G2-1 set. The mean absolute deviations (MADs) associated with SVWN are
0.017 Å and 75 cm-1, respectively, which is a significant improvement over HF
(0.022 Å and 144 cm-1) and is comparable to those of MP2 (0.014 Å and 99 cm-1),
while the latter is much more time-consuming and computational resource
demanding. LDA does not work for hydrogen bonded (HB) systems as well as for
van der Waals interactions. Besides, its errors for bond dissociation energies (BDEs)
of covalent molecules (43.5 kcal/mol for the G2-1 set) are too big to be useful.

GGAs, as exemplified by data of BPW91 and BLYP in Table 1.2, improve over
LDA dramatically on BDE calculations. MADs for the G2-1 set are of order
6-10 kcal/mol. They give increasingly satisfied molecular structures, especially for
the HB systems, with MADs around 0.003 Å. However, GGAs apparently fail for
van der Waals interactions.

The general trends for the improvement along LDA ? GGA ? Hybrid GGA
are clearly seen in the description of covalently bound molecules of main group
elements. For the G2-1 set, B3LYP only possesses an MAD of 0.004 Å for
geometry predictions, being comparable to those obtained by the CCSD(T) method
using basis set at the triple-zeta quality. B3LYP’s error for BDEs is halved as
compared to those of GGAs. However, along with GGAs, hybrid GGAs do not
work for van der Waals interactions. All these functionals leave much room for
further improvement.

Table 1.2 Performance for some properties obtained by some traditional DFT methods. Results
of some wavefunction methods are also listed for comparison

G2-1a He2 (H2O)2

BDE(Re)
b Dipolec Harm.

Freqd
DE(Re)

e De(RO…O)f

Wavefunction methods
HF 82.0(0.022) 0.29 144 Unbound 1.73(-0.100)
MP2 23.7(0.014) 0.28 99 0.009(-0.02) 0.35(0.045)g

CCSD(T) 11.5(0.005) 0.10 31 0.002(-0.03) 0.42(0.036)h

DFT methods
SVWN 43.5(0.017) 0.25 75 -0.229(0.593) -3.58(0.238)
BPW91 6.0(0.014) 0.11 69 Unbound 1.84(0.002)
BLYP 9.6(0.013) 0.25 73 Unbound 1.27(-0.004)
B3PW91 4.8(0.008) 0.08 45 Unbound 1.40(0.025)
B3LYP 3.3(0.004) 0.09 32 Unbound 0.87(0.022)

a Mean absolute deviations (MADs) obtained by different methods [44, 90, 93, 94] for the 32
molecules belonging to the reduced G2 set [95]. b MADs for bond dissociation energies (BDEs)
and bond distances in kcal/mol and Å, respectively. c MADs for dipole moments in Debye.
d MADs for harmonic frequencies in cm-1 . e Errors (Ref.–Calc.) for binding energy and
equilibrium distance in kcal/mol and Å, respectively. MP2 and CCSD(T) values at aug-cc-pV5Z
are taken from Ref. [96]. Others are taken from Ref. [44]. The reference data, 0.022 kcal/mol and
2.970 Å, are taken from Ref. [97]. f Errors (Ref.–Calc.) for binding energy and equilibrium
distance in kcal/mol and Å, respectively. The reference data, 5.44 kcal/mol and 2.948 Å, are
taken from Ref. [44, 98, 99]. g From Ref. [100].h From Ref. [101]

1.2 Approximations for the Commonly Used Exchange-Correlation Functionals 19



References

1. McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, London
2. Perdew JP, Kurth S (2003) In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density

functional theory. Springer, Berlin
3. Parr RG, Yang WT (1989) Density functional theory of atoms and molecules. Oxford

University Press, New York
4. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn.

Wiley-VCH, New York
5. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864–B871.

doi:10.1103/PhysRev.136.B864
6. Levy M (1979) Universal variational functionals of electron densities, 1st-order density

matrices, and natural spin-orbitals and solution of the V-representability problem. Proc Natl
Acad Sci USA 76:6062–6065. doi:10.1073/pnas.76.12.6062

7. Teller E (1962) On stability of molecules in Thomas-Fermi theory. Rev Mod Phys
34:627–631. doi:10.1103/RevModPhys.34.627

8. Lieb E, Simon B (1977) Thomas-Fermi theory of atoms, molecules and solids. Adv Math
23:22–116. doi:10.1016/0001-8708(77)90108-6

9. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation
effects. Phys Rev 140:1133–1138. doi:10.1103/PhysRev.140.A1133

10. von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized
case i. J Phys C: Solid State Phys 5:1629–1642. doi:10.1088/0022-3719/5/13/012

11. Bloch F (1929) Note to the electron theory of ferromagnetism and electrical conductivity.
Z Phys 57:545–555. doi:10.1007/BF01340281

12. Dirac PAM (1930) Note on exchange phenomena in the Thomas atom. Math Proc Camb
Phil Soc 26:376–385. doi:10.1017/S0305004100016108

13. Slater JC (1960) Quantum theory of atomic structure, vol 2. McGraw-Hill, New York
14. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation

energies for local spin-density calculations–a critical analysis. Can J Phys 58:1200–1211.
doi:10.1139/p80-159

15. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional
approximations for many-electron systems. Phys Rev B 23:5048–5079. doi:10.1103/
PhysRevB.23.5048

16. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas
correlation energy. Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244

17. Langreth DC, Mehl M (1983) Beyond the local-density approximation in calculations of
ground-state electronic-properties. Phys Rev B 28:1809–1834. doi:10.1103/PhysRevB.28

18. Perdew JP (1986) Density-functional approximation for the correlation-energy of the
inhomogeneous electron-gas. Phys Rev B 33:8822–8824. doi:10.1103/PhysRevB.33.8822;
ibid. (1986) 34:7406 (E)

19. Becke AD (1988) Density-functional exchange-energy approximation with correct
asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

20. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron-density. Phys Rev B 37:785–789. doi:10.1103/
PhysRevB.37.785

21. Perdew JP (1991) Electronic structure of solids’91. Akademie Verlag, Berlin
22. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces:

Applications of the generalized gradient approximation for exchange and correlation. Phys
Rev B 46:6671–6687. doi:10.1103/PhysRevB.46.6671

23. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple.
Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

20 1 An Overview of Modern Density Functional Theory

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1073/pnas.76.12.6062
http://dx.doi.org/10.1103/RevModPhys.34.627
http://dx.doi.org/10.1016/0001-8708(77)90108-6
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1088/0022-3719/5/13/012
http://dx.doi.org/10.1007/BF01340281
http://dx.doi.org/10.1017/S0305004100016108
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.28
http://dx.doi.org/10.1103/PhysRevB.33.8822
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevLett.77.3865


24. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and
adiabatic connection methods without adjustable parameters: The mPW and mPW1PW
models. J Chem Phys 108:664–675. doi:10.1063/1.475428

25. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) Development and assessment of
new exchange-correlation functionals. J Chem Phys 109:6264–6271. doi:10.1063/1.477267

26. Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys 99:607–615. doi:10.1080/
00268970010023435

27. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-
functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B
59:7413–7421. doi:10.1103/PhysRevB.59.7413

28. Zhang YK, Yang WT (1998) Comment on ‘‘Generalized gradient approximation made
simple’’. Phys Rev Lett 80:890–890. doi:10.1103/PhysRevLett.80.890

29. Xu X, Goddard WA (2004) The extended Perdew-Burke-Ernzerhof functional with
improved accuracy for thermodynamic and electronic properties of molecular systems.
J Chem Phys 121:4068–4082. doi:10.1063/1.1771632

30. Van Voorhis T, Scuseria GE (1998) A novel form for the exchange-correlation energy
functional. J Chem Phys 109:400–410. doi:10.1063/1.476577

31. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Accurate density functional with correct
formal properties: A step beyond the generalized gradient approximation. Phys Rev Lett
82:2544–2547. doi:10.1103/PhysRevLett.82.2544

32. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional
ladder: Nonempirical meta-generalized gradient approximation designed for molecules and
solids. Phys Rev Lett 91:146401–146404. doi:10.1103/PhysRevLett.91.146401

33. Zhao Y, Truhlar DG (2006) A new local density functional for main-group
thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent
interactions. J Chem Phys 125:194101. doi:10.1063/1.2370993

34. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories.
J Chem Phys 98:1372–1377. doi:10.1063/1.464304

35. Becke AD (1993) Density-functional thermochemistry 3: The role of exact exchange.
J Chem Phys 98:5648–5652. doi:10.1063/1.464913

36. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of
vibrational absorption and circular-dichroism spectra using density-functional force-fields.
J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

37. Perdew JP, Emzerhof M, Burke K (1996) Rationale for mixing exact exchange with density
functional approximations. J Chem Phys 105:9982–9985. doi:10.1063/1.472933

38. Becke AD (1997) Density-functional thermochemistry. 5. Systematic optimization of
exchange-correlation functionals. J Chem Phys 107:8554–8560. doi:10.1063/1.475007

39. Schmider HL, Becke AD (1998) Optimized density functionals from the extended G2 test
set. J Chem Phys 108:9624–9631. doi:10.1063/1.476438

40. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-
correlation functional. J Chem Phys 110:5029–5036. doi:10.1063/1.478401

41. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable
parameters: the PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

42. Xu X, Goddard WA (2004) Assessment of Handy-Cohen optimized exchange density
functional (OPTX). J Phys Chem A 108:8495–8504. doi:10.1021/jp047428v

43. Xu X, Goddard WA (2004) The X3LYP extended density functional for accurate
descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl
Acad Sci USA 101:2673–2677. doi:10.1073/pnas.0308730100

44. Xu X, Zhang QS, Muller RP, Goddard WA (2005) An extended hybrid density functional
(X3LYP) with improved descriptions of nonbond interactions and thermodynamic
properties of molecular systems. J Chem Phys 122:014105. doi:10.1063/1.1812257

45. Boese AD, Martin JML (2004) Development of density functionals for thermochemical
kinetics. J Chem Phys 121:3405–3416. doi:10.1063/1.1774975

References 21

http://dx.doi.org/10.1063/1.475428
http://dx.doi.org/10.1063/1.477267
http://dx.doi.org/10.1080/00268970010023435
http://dx.doi.org/10.1080/00268970010023435
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1063/1.1771632
http://dx.doi.org/10.1063/1.476577
http://dx.doi.org/10.1103/PhysRevLett.82.2544
http://dx.doi.org/10.1103/PhysRevLett.91.146401
http://dx.doi.org/10.1063/1.2370993
http://dx.doi.org/10.1063/1.464304
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1063/1.475007
http://dx.doi.org/10.1063/1.476438
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1021/jp047428v
http://dx.doi.org/10.1073/pnas.0308730100
http://dx.doi.org/10.1063/1.1812257
http://dx.doi.org/10.1063/1.1774975


46. Zhao Y, Lynch BJ, Truhlar DG (2004) Doubly hybrid meta DFT: New multi-coefficient
correlation and density functional methods for thermochemistry and thermochemical
kinetics. J Phys Chem A 108:4786–4791. doi:10.1021/jp049253v

47. Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for
thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A
109:5656–5667. doi:10.1021/jp050536c

48. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group
thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and
transition elements: two new functionals and systematic testing of four M06-class
functionals and 12 other functionals. Theor Chem Acc 120:215–241. doi:10.1007/s00214-
007-0310-x

49. Zhang Y, Wu AA, Xu X, Yan YJ (2006) OPBE: A promising density functional for the
calculation of nuclear shielding constants. Chem Phys Lett 421:383–388. doi:10.1016/
j.cplett.2006.01.095

50. Mori-Sánchez P, Cohen AJ, Yang WT (2006) Self-interaction-free exchange-correlation
functional for thermochemistry and kinetics. J Chem Phys 124:091102. doi:10.1063/
1.2179072

51. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order
correlation. J Chem Phys 124:034108. doi:10.1063/1.2148954

52. Karton A, Tarnopolsky A, Lamere JF et al (2008) Highly accurate first-principles
benchmark data sets for the parametrization and validation of density functional and other
approximate methods. Derivation of a robust, generally applicable, double-hybrid functional
for thermochemistry and thermochemical kinetics. J Phys Chem A 112:12868–12886.
doi:10.1021/jp801805p

53. Chai J-D, Head-Gordon M (2009) Long-range corrected double-hybrid density functionals.
J Chem Phys 131:174105. doi:10.1063/1.3244209

54. Zhang Y, Xu X, Goddard WA (2009) Doubly hybrid density functional for accurate
descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc
Natl Acad Sci USA 106:4963–4968. doi:10.1073/pnas.0901093106

55. Zhang IY, Xu X, Jung Y, Goddard WA (2011) A fast doubly hybrid density functional
method close to chemical accuracy using a local opposite spin ansatz. Proc Natl Acad Sci
USA 108:19896–19900. doi:10.1073/pnas.1115123108

56. Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density
functionals—Evaluation with the extended GMTKN30 database for general main group
thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput
7:291–309. doi:10.1021/ct100466k

57. Perdew JP, Ruzsinszky A, Tao JM et al (2005) Prescription for the design and selection of
density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys
123:062201. doi:10.1063/1.1904565

58. Furche F, Perdew JP (2006) The performance of semilocal and hybrid density functionals in
3d transition-metal chemistry. J Chem Phys 124:044103. doi:10.1063/1.2162161

59. Wigner E, Seitz F (1934) On the constitution of metallic sodium II. Phys Rev 46:509–524.
doi:10.1103/PhysRev.46.509

60. Gell-Mann M, Brueckner KA (1957) Correlation energy of an electron gas at high density.
Phys Rev 106:364–368. doi:10.1103/PhysRev.106.364

61. Carr WJ, Maradudin AA (1964) Ground-state energy of a high-density electron gas. Phys
Rev 133:A371–A374. doi:10.1103/PhysRev.133.A371

62. Nozières P, Pines D (1958) Correlation energy of a free electron gas. Phys Rev
111:442–454. doi:10.1103/PhysRev.111.442

63. Carr WJ (1961) Energy, specific heat, and magnetic properties of the low-density electron
gas. Phys Rev 122:1437–1446. doi:10.1103/PhysRev.122.1437

64. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method.
Phys Rev Lett 45:566–569. doi:10.1103/PhysRevLett.45.566

65. Frisch MJ et al. (2003) Gaussian 03, revision A. 1. Gaussian, Inc, Pittsburgh

22 1 An Overview of Modern Density Functional Theory

http://dx.doi.org/10.1021/jp049253v
http://dx.doi.org/10.1021/jp050536c
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1016/j.cplett.2006.01.095
http://dx.doi.org/10.1016/j.cplett.2006.01.095
http://dx.doi.org/10.1063/1.2179072
http://dx.doi.org/10.1063/1.2179072
http://dx.doi.org/10.1063/1.2148954
http://dx.doi.org/10.1021/jp801805p
http://dx.doi.org/10.1063/1.3244209
http://dx.doi.org/10.1073/pnas.0901093106
http://dx.doi.org/10.1073/pnas.1115123108
http://dx.doi.org/10.1021/ct100466k
http://dx.doi.org/10.1063/1.1904565
http://dx.doi.org/10.1063/1.2162161
http://dx.doi.org/10.1103/PhysRev.46.509
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1103/PhysRev.133.A371
http://dx.doi.org/10.1103/PhysRev.111.442
http://dx.doi.org/10.1103/PhysRev.122.1437
http://dx.doi.org/10.1103/PhysRevLett.45.566


66. Oliver GL, Perdew JP (1979) Spin-density gradient expansion for the kinetic energy. Phys
Rev A 20:397–403. doi:10.1103/PhysRevA.20.397

67. Lieb EH, Oxford S (1981) Improved lower bound on the indirect Coulomb energy. Int J
Quantum Chem 19:427–439. doi:10.1002/qua.560190306

68. Della Sala F, Görling A (2002) Asymptotic behavior of the Kohn-Sham exchange potential.
Phys Rev Lett 89:033003. doi:10.1103/PhysRevLett.89.033003

69. Levy M, Perdew JP (1993) Tight bound and convexity constraint on the exchange-
correlation-energy functional in the low-density limit, and other formal tests of generalized-
gradient approximations. Phys Rev B 48:11638–11645. doi:10.1103/PhysRevB.48.11638

70. Rasolt M, Geldart DJW (1986) Exchange and correlation energy in a nonuniform fermion
fluid. Phys Rev B 34:1325–1328. doi:10.1103/PhysRevB.34.1325

71. Sham LJ (1971) Computational Methods in Band Theory. Plenum, New York
72. Colle R, Salvetti O (1975) Approximate calculation of the correlation energy for the closed

shells. Theoret Chim Acta 37:329–334. doi:10.1007/BF01028401
73. Becke AD (1983) Hartree–Fock exchange energy of an inhomogeneous electron gas. Int J

Quantum Chem 23:1915–1922. doi:10.1002/qua.560230605
74. Becke AD (1998) A new inhomogeneity parameter in density-functional theory. J Chem

Phys 109:2092–2098. doi:10.1063/1.476722
75. Weizsäcker CF v (1935) Zur theorie der kernmassen. Z Physik 96:431–458. doi:10.1007/

BF01337700
76. Stoll H, Pavlidou CME, Preuß H (1978) On the calculation of correlation energies in the

spin-density functional formalism. Theoret Chim Acta 49:143–149. doi:10.1007/
BF02399063

77. Svendsen PS, von Barth U (1996) Gradient expansion of the exchange energy from second-
order density response theory. Phys Rev B 54:17402–17413. doi:10.1103/
PhysRevB.54.17402

78. Perdew JP, Ruzsinszky A, Csonka GI et al (2009) Workhorse semilocal density functional
for condensed matter physics and quantum chemistry. Phys Rev Lett 103:026403.
doi:10.1103/PhysRevLett.103.026403

79. Lagowski JB, Vosko SH (1988) An analysis of local and gradient-corrected correlation
energy functionals using electron removal energies. J Phys B: At Mol Opt Phys 21:203.
doi:10.1088/0953-4075/21/1/016

80. Clementi E, Chakravorty SJ (1990) A comparative study of density functional models to
estimate molecular atomization energies. J Chem Phys 93:2591–2602. doi:10.1063/
1.458899

81. Cohen AJ, Mori-Sánchez P, Yang WT (2011) Challenges for density functional theory.
Chem Rev 112:289–320. doi:10.1021/cr200107z

82. Merkle R, Savin A, Preuss H (1992) Singly ionized first–row dimers and hydrides calculated
with the fully-numerical density-functional program numol. J Chem Phys 97:9216–9221.
doi:10.1063/1.463297

83. Zhang YK, Yang WT (1998) A challenge for density functionals: Self-interaction error
increases for systems with a noninteger number of electrons. J Chem Phys 109:2604–2608.
doi:10.1063/1.476859

84. Gräfenstein J, Kraka E, Cremer D (2004) The impact of the self-interaction error on the
density functional theory description of dissociating radical cations: Ionic and covalent
dissociation limits. J Chem Phys 120:524–539. doi:10.1063/1.1630017

85. Ciofini I, Adamo C, Chermette H (2005) Self-interaction error in density functional theory:
a mean-field correction for molecules and large systems. Chem Phys 309:67–76.
doi:10.1016/j.chemphys.2004.05.034

86. Gritsenko OV, Schipper PRT, Baerends EJ (1997) Exchange and correlation energy in
density functional theory: Comparison of accurate density functional theory quantities with
traditional Hartree–Fock based ones and generalized gradient approximations for the
molecules Li2, N2, F2. J Chem Phys 107:5007–5015. doi:10.1063/1.474864

References 23

http://dx.doi.org/10.1103/PhysRevA.20.397
http://dx.doi.org/10.1002/qua.560190306
http://dx.doi.org/10.1103/PhysRevLett.89.033003
http://dx.doi.org/10.1103/PhysRevB.48.11638
http://dx.doi.org/10.1103/PhysRevB.34.1325
http://dx.doi.org/10.1007/BF01028401
http://dx.doi.org/10.1002/qua.560230605
http://dx.doi.org/10.1063/1.476722
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1007/BF02399063
http://dx.doi.org/10.1007/BF02399063
http://dx.doi.org/10.1103/PhysRevB.54.17402
http://dx.doi.org/10.1103/PhysRevB.54.17402
http://dx.doi.org/10.1103/PhysRevLett.103.026403
http://dx.doi.org/10.1088/0953-4075/21/1/016
http://dx.doi.org/10.1063/1.458899
http://dx.doi.org/10.1063/1.458899
http://dx.doi.org/10.1021/cr200107z
http://dx.doi.org/10.1063/1.463297
http://dx.doi.org/10.1063/1.476859
http://dx.doi.org/10.1063/1.1630017
http://dx.doi.org/10.1016/j.chemphys.2004.05.034
http://dx.doi.org/10.1063/1.474864


87. Levy M, March NH, Handy NC (1996) On the adiabatic connection method, and scaling of
electron–electron interactions in the Thomas–Fermi limit. J Chem Phys 104:1989–1992.
doi:10.1063/1.470954

88. Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and
solids by the spin-density-functional formalism. Phys Rev B 13:4274–4298. doi:10.1103/
PhysRevB.13.4274

89. Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface: Wave-
vector analysis. Phys Rev B 15:2884–2901. doi:10.1103/PhysRevB.15.2884

90. Adamo C, Barone V (1997) Toward reliable adiabatic connection models free from
adjustable parameters. Chem Phys Lett 274:242–250. doi:10.1016/S0009-2614(97)00651-9

91. Becke AD (1996) Density-functional thermochemistry. 4. A new dynamical correlation
functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046.
doi:10.1063/1.470829

92. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals.
J Phys Chem A 111:10439–10452. doi:10.1021/jp0734474

93. Johnson BG, Gill PMW, Pople JA (1993) The performance of a family of density functional
methods. J Chem Phys 98:5612–5626. doi:10.1063/1.464906

94. Johnson BG, Gonzales CA, Gill PMW, Pople JA (1994) A density functional study of the
simplest hydrogen abstraction reaction. Effect of self-interaction correction. Chem Phys Lett
221:100–108. doi:10.1016/0009-2614(94)87024-1

95. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for
molecular-energies of 1st-row and 2nd-row compounds. J Chem Phys 94:7221–7230.
doi:10.1063/1.460205

96. Roy D, Marianski M, Maitra NT, Dannenberg JJ (2012) Comparison of some dispersion-
corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: Dispersion,
induction, and basis set superposition error. J Chem Phys 137:134109. doi:10.1063/
1.4755990

97. Ogilvie JF, Wang FYH (1992) Potential-energy functions of diatomic molecules of the
noble gases I. Like nuclear species. J Mol Struct 273:277–290. doi:10.1016/0022-
2860(92)87094-C

98. Odutola JA, Dyke TR (1980) Partially deuterated water dimers: microwave spectra and
structure. J Chem Phys 72:5062–5070. doi:10.1063/1.439795

99. Curtiss LA, Frurip DJ, Blander M (1979) Studies of molecular association in H2O and D2O
vapors by measurement of thermal conductivity. J Chem Phys 71:2703–2711. doi:10.1063/
1.438628

100. Taketsugu T, Wales DJ (2002) Theoretical study of rearrangements in water dimer and
trimer. Mol Phys 100:2793–2806. doi:10.1080/00268970210142648

101. Klopper W, Rijdt JGCM van D de, Duijneveldt FB van (2000) Computational determination
of equilibrium geometry and dissociation energy of the water dimer. Phys Chem Chem Phys
2:2227–2234. doi:10.1039/A910312K

24 1 An Overview of Modern Density Functional Theory

http://dx.doi.org/10.1063/1.470954
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1016/S0009-2614(97)00651-9
http://dx.doi.org/10.1063/1.470829
http://dx.doi.org/10.1021/jp0734474
http://dx.doi.org/10.1063/1.464906
http://dx.doi.org/10.1016/0009-2614(94)87024-1
http://dx.doi.org/10.1063/1.460205
http://dx.doi.org/10.1063/1.4755990
http://dx.doi.org/10.1063/1.4755990
http://dx.doi.org/10.1016/0022-2860(92)87094-C
http://dx.doi.org/10.1016/0022-2860(92)87094-C
http://dx.doi.org/10.1063/1.439795
http://dx.doi.org/10.1063/1.438628
http://dx.doi.org/10.1063/1.438628
http://dx.doi.org/10.1080/00268970210142648
http://dx.doi.org/10.1039/A910312K


Chapter 2
A New Generation of Doubly Hybrid
Density Functionals (DHDFs)

Abstract Doubly hybrid density functionals (DHDFs) present a new generation
of density functionals, which not only enfold a nonlocal orbital-dependent com-
ponent (i.e., the Hartree-Fock-like exchange) in the exchange part, but also
incorporate the information of unoccupied orbitals (i.e., the second-order pertur-
bative correlation) in the correlation part. Different types of DHDFs have been
proposed according to different philosophies. They could be empirical as multi-
coefficient methods to allow the mixing of wavefunction-based methods with the
hybrid density functional methods in order to achieve a good compromise of
accuracy, cost, and ease of use for practical calculations, or they have their roots in
multideterminant extension of the Kohn-Sham scheme or Görling–Levy’s cou-
pling-constant perturbative theory. In this chapter, we first introduce a classifica-
tion of the current DHDFs (Sect. 2.1). We then, in Sect. 2.2, discuss the Levy
constrained search approach and adiabatic connection formalism, which provide a
formal route that the exchange-correlation functional can be pursued. Finally, the
underlying physics for the B2PLYP-type DHDFs and the XYG3-type DHDFs is
explored in Sects. 2.3 and 2.4, respectively.

Keywords Levy constrained search approach � Adiabatic connection formalism �
Görling–Levy’s coupling-constant perturbative theory � MP2 � Multi-coefficient
method � Doubly hybrid density functional

2.1 Classification of Current DHDFs

While the fourth rung functionals introduce nonlocality into the exchange func-
tional by using a HF(Hartree-Fock)-like exchange EHF

x (see Eq. 1.67), a simple
combination of EHF

x with a local or semilocal correlation functional EDFA
c was

unsuccessful (Eq. 1.68). There is a need to introduce nonlocality into the corre-
lation functional so as to make a good match within Exc. This calls for the fifth
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rung functionals that include also the information of unoccupied orbitals [1, 2].
There are several ways that the fifth rung functionals can be constructed (e.g.
[3–15]). Here, we focus on the so-called doubly hybrid density functionals
(DHDFs).

2.1.1 The MC3BB Type

Truhlar and co-workers coined, for the first time, the word ‘doubly hybrid’ and
proposed the MC3BB method [12], where the conventional HF total energy and a
scaled MP2 (second-order Møller-Plesset) correlation energy are mixed with the
DFT (density functional theory) total energy as in Eq. 2.1.

EMC3BB
tot ¼ e2 EHF

tot þ e1EMP2
c

� �
þ 1� e2ð ÞEBBX

tot ð2:1Þ

Here the DFT part, BBX, uses Becke88 [16] as its exchange and Becke95 [17]
as its correlation, while X stands for the percentage of the HF-like exchange [18,
19]. The BBX functional adopts a form of one-mixing-parameter hybrid as in
Eq. 1.70. The MP2 correlation energy is calculated using the HF orbitals /i;a

� �

with eigenvalues ei;a

� �
,

EMP2
c ¼ 1

4

Xocc

ij

Xvir

ab

/i/j

� ����/a/bi
�� ��2

ei þ ej � ea � eb
ð2:2Þ

where the subscripts (i, j) and (a, b) denote the occupied and virtual (unoccupied)
HF orbitals, respectively. /i/j /a/bk

� �
¼ /i/j /a/bj
� �

� /i/j /b/aj
� �

is an an-
tisymmetrized combination of the regular two-electron repulsion integrals

/i/j

��/a/b

� �
¼
ZZ

/�i ~r1ð Þ/�j ~r2ð Þr�1
12 /a ~r1ð Þ/b ~r2ð Þd~r1d~r2 ð2:3Þ

The parameters e1; e2;Xf g ¼ 1:332; 0:205; 0:39f g were obtained by fitting
against a set of 109 atomization energies and 42 barrier heights. These parameters
are basis set specific. In particular, the MP2 correlation energy and the HF total
energy in Eq. 2.1 should be evaluated at the basis set level of 6-31 ? G(d,p)
within the frozen core approximation as originally designed [12]. The recom-
mended basis set for the BBX calculations is an augmented polarized triple-zeta
basis set MG3S, which is the same as 6-311 þ G(3d2f,2df,2p) for H-Si but
improved for P-Ar and no diffuse functions on hydrogens [20, 21].

It has to be noted that while the DFT part in Eq. 2.1 uses the KS (Kohn-Sham)
orbitals based on the xc functional of EBBX

xc , the MP2 part uses the HF orbitals.
Therefore, there are two sets of densities associated with Eq. 2.1, which goes
beyond the frame work of KS DFT [22]. By assuming that the HF density and
orbitals are the same as those from DFT, one may view the multicoefficient method
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MC3BB in terms of exchange-correlation functional, i.e., change the expression for
total energy as in Eq. 2.1 to that for exchange-correlation functional [23]

EMC3BB
xc q½ � ¼ f1EHF

x þ 1� f1ð ÞES
x þ f2DEB

x þ 1� e2ð ÞEB95
c þ e1e2EMP2

c ð2:4Þ

where f1 ¼ e2 þ 1� e2ð ÞX ¼ 0:515, and f2 ¼ 1� f1ð Þ ¼ 0:485. From Eq. 2.4, it
can be seen that, in addition to the hybridization in the exchange part
EHF

x ;ES
x ;DEB

x

� �
, the correlation part is also a hybrid between EB95

c and EMP2
c , i.e.,

doubly hybrid.
The name MC3 suggests that this is a multicoefficient method that contains

three parameters. It is empirical with the purpose to generalize the originally
wavefunction based multicoefficient methods to allow the mixing with the hybrid
density functional methods in order to achieve a good compromise of accuracy,
cost, and ease of use for practical calculations [12].

2.1.2 The B2PLYP Type

Grimme proposed a widely recognized DHDF B2PLYP [13]. It employs two
parameters: one is to hybridize the HF exchange with the Becke88 exchange
functional, while the other is to hybridize the MP2-like correlation with the LYP
correlation functional [24].

EB2PLYP
xc ¼ axEHF

x þ 1� axð Þ ES
x þ DEB

x

� �
þ acELYP

c þ 1� acð ÞEMP2
c ð2:5Þ

The parameters ax; acf g ¼ 0:53; 0:73f g [13] were determined by a parame-
terization against heats of formation (HOFs) of the G2/97 set [25, 26].

Note that the orbitals and orbital eigenvalues used to evaluate each term,
including EMP2

c , in Eq. 2.5 are from the self-consistent-filed (SCF) calculation
based on the ansatz of the DFT part alone in B2PLYP. Therefore, Eq. 2.5 can be
reformulated as

EB2PLYP
xc ¼ EDFA

xc;SCF þ 1� acð ÞEMP2
c ð2:6Þ

The mere purpose of the generalized KS type of calculation with EDFA
xc;SCF, similar

to the HF calculation in the standard MP2 theory, is to provide a reference state for
the followed perturbation calculation. Unlike the HF ansatz, the DFT part, EDFA

xc;SCF,
used to generate the orbitals has already contained an ac portion of the LYP
correlation. Hence the MP2-like correlation in B2PLYP is scaled by a factor of
(1� ac). There is no intension with these orbitals to give a mimic of the ground
state density of the real system. This again goes beyond the KS frame work. The
theoretical foundation of the B2PLYP-type DHDFs was later provided by Savin
and co-workers based on the multideterminant extension of the Kohn-Sham
scheme (see Sect. 2.3.1) [15].
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2.1.3 The XYG3 Type

Based on the adiabatic connection formalism [3, 18, 27–29], (see Sect. 2.2.2) and
Görling–Levy coupling-constant perturbation expansion to the second order EGL2

c

[30] (see Sect. 2.4.2), a new type of DHDF, namely XYG3, was proposed, which
takes the form as [14]:

EXYG3
xc q½ � ¼ d1EHF

x þ 1� d1ð ÞES
x þ d2DEB

x þ 1� d3ð ÞELYP
c þ d3EMP2

c ð2:7Þ

The parameters d1; d2; d3f g ¼ 0:8033; 0:2107; 0:3211f g [14] were determined
by a parameterization against HOFs of the G3/99 set [25, 26, 31].

XYG3 distinguishes itself from the other DHDFs by using B3LYP orbitals and
orbital eigenvalues to evaluate each term in Eq. 2.7. In such a way, XYG3 also
shares with B3LYP the kinetic energy Ts q½ �, the Coulomb energy J q½ �, and the
external potential energy Vext q½ � in the construction of its total energy. As B3LYP is
one of the most successful DFAs, it would be reasonable to expect that B3LYP
gives good density that approximates well the true ground state density. This, we
believe, holds the key to the success of the XYG3-type DH functionals [14, 32–42].

We may therefore classify the DHDFs currently available into three groups
according to which orbitals are used to evaluate the perturbative correlation
energy. In Truhlar’s MC3BB [12], HF orbitals are used to compute the MP2
correlation energy, which is then mixed with total energy from a conventional
hybrid meta-GGA as defined in Eq. 2.1. In the B2PLYP family of functionals [13],
a truncated DFA method is used to generate orbitals and density, whose total
energy is then augmented with a scaled MP2 term, evaluated by the as produced
orbitals, to normalize with the DFT correlation. XYG3 uses B3LYP to generate
density and orbitals, which provide a good approximation to the real density [14].
While the MC3BB type of functionals is purely empirical as a generalization of the
multicoefficient method [12], the B2PLYP and the XYG3 types of functionals have
their own theoretical bases [14, 15, 30, 37], respectively, which we will discuss in
the following sections.

2.2 Fundamental Ideas Behind DHDFs

2.2.1 Levy Constrained Search Approach

We start by introducing the ‘‘constrained search’’ approach of Levy [43], which
provides a constructive view of Hohenberg-Kohn Theorems and Kohn-Sham
scheme [22, 44].

Solving the Schrödinger equation (Eq. 1.1) for ground state energy is equivalent
to minimizing W Ĥ

�� ���
W
�

over all normalized, antisymmetric N-particle wave-
functions [43]:
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E ¼ min
W!N

W Ĥ
�� ��W

� �
ð2:8Þ

This can be achieved in a two-step fashion:

E ¼ min
q!N

min
W!q

WjĤjW
� �	 


ð2:9Þ

In the first step, we consider all wavefunctions which yield a given density q,
and in the second step, we consider all allowed densities. The minimizing density
is then the ground state density q0, which is just what has already been stated in
Eq. 1.11 as the Hohenberg-Kohn theorems. Comparing Eqs. 2.9 and 1.11, one
arrives at a definition of functional E q½ �:

E q½ � ¼ min
W!q

W Ĥ
�� ��W

� �

¼ min
W!q

W T̂ þ V̂ee

�� ��W
� �

þ
Z

q ~rð Þtext ~rð Þd~r
ð2:10Þ

The last term in Eq. 2.10 has used the fact that W giving the same q also gives
the same W V̂ext

�� ���
W
�
. Equation 2.10, in turn, as compared to Eq. 1.7, defines the

Hohenberg-Kohn functional FHK q½ �:

FHK q½ � ¼ min
W!q

W T̂ þ V̂ee

�� ��W
� �

ð2:11Þ

For the Kohn-Sham system of noninteracting electrons, V̂ee vanishes so that
FHK q½ � reduces to

Ts q½ � ¼ min
W!q

W T̂
�� ��W

� �
¼ min

U!q
U T̂
�� ��U

� �
ð2:12Þ

where the N-particle wave function W is reduced to U which corresponds to the
single Slater determinant constructed from one-electron orbitals /if g (c.f. Eq. 1.16).

2.2.2 Adiabatic Connection Formalism

The Hohenberg-Kohn theorems merely prove the existence of FHK q½ �, which gives
no direct guidance to the construction of the functional. The Kohn-Sham scheme
pulls out the large part of the kinetic energy via Ts q½ �, but still leaves the exact xc
functional Exc q½ � unknown. The adiabatic connection formalism [3, 18, 27–29]
provides a possible route that Exc q½ � can be pursued.

Let us define a Hamiltonian Ĥk that represents a set of systems in which the
electron–electron interaction is scaled [3, 18, 27–29]
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Ĥk ¼ T̂ þ kV̂ee þ V̂k ð2:13Þ

The one-electron potential V̂k ¼
PN

i¼1 tk q½ �;~rið Þ is also scaled simultaneously
so that a prescribed density q is fixed independent of k. This sets up the so-called
adiabatic connection path along k. Then Ĥk¼0 ¼ T̂ þ V̂s is for the Kohn-Sham
system, and Ĥk¼1 ¼ T̂ þ V̂ee þ V̂ext is for the real system. This suggests:

V̂k¼0 ¼ V̂s and V̂k¼1 ¼ V̂ext ð2:14Þ

For any allowed W, we have

Ek ¼ min
W!q

W Ĥk

�� ��W
� �

¼ Wq
k Ĥk

�� ��Wq
k

� �
ð2:15Þ

Here we use Wq
k to indicate a variational solution of Eq. 2.15 that yields density

q. Clearly, Wq
k is also the wavefunction that minimizes the expectation value of

T̂ þ kV̂ee

� �
:

Fk
HK q½ � ¼ min

W!q
W T̂ þ kV̂ee

�� ���
W
�
¼ Wq

k T̂ þ kV̂ee

�� ���
Wq

k

�
ð2:16Þ

which defines a generalized HK functional Fk
HK q½ �.

Hellman-Feynman theorem tells us [3, 45, 46]

dEk

dk
¼ Wq

k

oĤk

ok

����

����W
q
k

� �
ð2:17Þ

Inserting Eq. (2.13) into Eq. (2.17) and integrating it from k ¼ 0 to k ¼ 1, we
have

Z 1

0

dEk

dk


 �
dk ¼

Z 1

0
Wq

k

o T̂ þ kV̂ee

� �

ok

�����

�����W
q
k

* +
dkþ

Z 1

0
Wq

k

oV̂k

ok

����

����W
q
k

� �
dk ð2:18Þ

Hence,

Ek¼1 � Ek¼0ð Þ ¼
Z1

0

Wq
k V̂ee

�� ��Wq
k

� �
dkþ Vk¼1 � Vk¼0ð Þ ð2:19Þ

In getting the second term on the right-hand side of Eq. 2.19, we have taken
advantage of the assumption that the electron density is held fixed along the
adiabatic path from k ¼ 0 to k ¼ 1. Inserting Eqs. 1.7, 1.18, 1.20, and 2.14 into
Eq. 2.19, we have

Exc q½ � ¼
Z 1

0
Wq

k V̂ee

�� ��Wq
k

� �
dk� J q½ � ð2:20Þ
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This actually defines the exchange-correlation energy in terms of the coupling-
constant integration [3, 27–29, 47–49]

Exc q½ � ¼
Z1

0

Wk q½ �dk ð2:21Þ

where

Wk q½ � ¼ Wq
k V̂ee

�� ��Wq
k

� �
� J q½ � ð2:22Þ

From Eq. 2.22, it is immediate to see that W0 q½ � is nothing but the exchange
energy of the KS determinant

W0 q½ � ¼ Uq V̂ee

�� ��Uq
� �

� J q½ � ¼ EHF
x ð2:23Þ

2.3 Rationale of DHDFs of the B2PLYP Type

2.3.1 Multideterminant Extension of the Kohn-Sham
Scheme

We start by reformulating the total energy Etot for the physical system, given in
Eq. 1.7, in terms of the generalized HK functional

E q½ � ¼ Fk
HK q½ � þ Vext q½ � þ �Ek

Hxc q½ � ð2:24Þ

�Ek
Hxc q½ � ¼ FHK q½ � � Fk

HK q½ � is the complement HK functional [43, 50, 51],
which can be further developed in related to the KS system:

�Ek
Hxc q½ � ¼ FHK q½ � � Ts q½ �ð Þ � Fk

HK q½ � � Ts q½ �
� �

ð2:25Þ

where the first term in the right-hand side is J q½ � þ Exc q½ � (see Eq. 1.20), while the
second term is given by Fk

HK q½ � � Ts q½ �
� �

¼ Wq
k T̂ þ kV̂ee

�� ���
Wq

k

�
� Uq T̂

�� ���
Uq
�
.

Hence [43, 50, 51]

�Ek
Hxc q½ � ¼ 1� kð ÞJ q½ � þ 1� kð ÞEx q½ � þ Ec q½ � � Ek

c q½ �
� �

ð2:26Þ

Here Ek
c q½ � is defined as [43, 46]

Ek
c q½ � ¼ Wq

k T̂ þ kV̂ee

�� ���
Wq

k

�
� Uq T̂ þ kV̂ee

�� ���
Uq
�

ð2:27Þ

which corresponds to the correlation energy of a partial interacting system. Under
uniform scaling of the density qc ~rð Þ ¼ c3q c~rð Þ

� �
; c ¼ 1=k [46, 52–55],

Ek
c q½ � ¼ k2Ec q1=k

h i
ð2:28Þ
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Ek
c q½ � � k2Ec q½ � ð2:29Þ

Equation 2.29 is an approximation where density scaling is neglected

Ec q1=k

h i
� Ec q½ � [15]. �Ek

Hxc q½ � is also called the complement k-dependent Hartree-

exchange-correlation density functional [15].
Equation 2.24 requires to carry out minimization over all allowed W, which is,

however, impractical, due to the existence of V̂ee that leads to W of a general
multideterminant character [15, 43]:

Etot ¼ min
W!q

W T̂ þ kV̂ee

�� ���
W
�
þ Vext q½ � þ �Ek

Hxc q½ � ð2:30Þ

A density-scaled one-parameter hybrid (DS1H) approximation [15] is then
defined by restricting the minimization in Eq. 2.30 to single-determinant wave-
function U:

EDS1H;k ¼ min
U

U T̂ þ kV̂ee

�� ���
U
�
þ Vext qU½ � þ �Ek

Hxc qU½ � ð2:31Þ

This is equivalent to solving the HF problem. The single-particle equations are:

� 1
2r2 þ text ~rð Þ þ tJ ~rð Þ þ ktHF

x ~rð Þ þ 1� kð Þtx ~rð Þ
�

þtc ~rð Þ � dEk
c q½ �

dq ~rð Þ

i
/k

i ~rð Þ ¼ ek
i /

k
i ~rð Þ

ð2:32Þ

If Eq. 2.29 is adopted, Eq. 2.32 is simplified as

� 1
2r2 þ text ~rð Þ þ tJ ~rð Þ þ ktHF

x ~rð Þ þ 1� kð Þtx ~rð Þ
�

þ 1� k2� �
tc ~rð Þ

�
/k

i ~rð Þ ¼ ek
i /

k
i ~rð Þ

ð2:33Þ

which corresponds to the so-called 1H approximation without considering density
scaling [15]. The final DS1H and 1H energies are then given, respectively, by

EDS1H;k
SCF ¼� 1

2

XN

i¼1

Z
/k

i

� ��r2/k
i d~r þ Vext qUk

� �
þ J qUk

� �
þ kEHF

x qUk

� �

þ 1� kð ÞEx qUk

� �
þ Ec qUk

� �
� Ek

c qUk

� �
ð2:34Þ

E1H;k
SCF ¼�

1
2

XN

i¼1

Z
/k

i

� ��r2/k
i d~r þ Vext qUk

� �
þ J qUk

� �
þ kEHF

x qUk

� �

þ 1� kð ÞEx qUk

� �
þ 1� k2� �

Ec qUk

� �
ð2:35Þ

Equation 2.35 has a similar form for its Exc as that in the standard one-
parameter hybrid functionals (c.f. Eq. 1.70) such as B1LYP or PBE0 [28, 56]. One
salient difference, however, is that the correlation energy is weighted by 1� k2� �
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while in the standard one-parameter hybrid functionals it is weighted by a factor
of 1. Due to the scaled interaction kV̂ee, only partial correlation energy is contained
in Eqs. 2.34 and 2.35. The missing part can be repaired by a nonlinear Rayleigh-
Schrödinger perturbation theory [57] staring from the DS1H or 1H reference. Just
like in standard Moller-Plesset perturbation theory, the final energy up to second
order is given by [15]:

EDS1DH;k ¼ EDS1H;k
SCF þ k2EMP2

c ð2:36Þ

E1DH;k ¼ E1H;k
SCF þ k2EMP2

c ð2:37Þ

This provides a rationale for DHDFs of the B2PLYP type. One has to note that,
just like the HF theory whose density is by definition not the ground state density
of the real system, qUk by construction is not meant to be the ground state density
of the real system. From Eq. 2.30 to 2.31, one starts from the adiabatic connection
formulism, but eventually departs from the adiabatic connection path by replacing
the general multideterminant W with a single-determinant wavefunction U with no
constraint on the density q.

2.3.2 Development of DHDFs of the B2PLYP Type

B2PLYP was proposed before DS1DH and 1DH. The later explored the theoretical
foundation of the B2PLYP-type DHDFs in terms of multideterminant extension of
the Kohn-Sham scheme. On the other hand, as Eq. 2.29 is just an approximation,
the scaling factor before Ec q½ � needs not to be k2. Hence ax; acf g in B2PLYP can
be optimized independently. In fact, B2PLYP was originally understood as an
interpolation approach between pure GGA-DFT and MP2, respectively [13].
As seen from Eq. 2.5, if ax; acf g ¼ 1:0; 0:0f g, MP2 is recovered, while if

ax; acf g ¼ 0:0; 1:0f g, B2PLYP is reduced to BLYP. Furthermore, if ax; acf g ¼
0:0; 0:0f g (i.e., B-MP2), an exchange-only SCF calculation may be first per-

formed, whose orbitals and orbital eigenvalues are then used to get the MP2
energy. If ax; acf g ¼ 1:0; 1:0f g (i.e., HF-LYP), the full portion of nonlocal HF
exchange is in company with the semilocal LYP correlation energy.

As typical DFT correlation functionals are superior to MP2 in the description of
short-range correlation, and MP2 is very well suited for the description of long-
range correlation, it was therefore expected that the doubly hybrid functionals that
combine the two should handle both types of correlation better than either con-
ventional DFTs and MP2 [13]. On the other hand, there are areas characterized by
some physically inappropriate combination of ax; acf g which leads to, e.g.,
unbalanced treatment of dynamical and static correlation effects [13, 58]. Hence,

ax; acf g should be optimized.
Along this line, several new functionals of the B2PLYP type (e.g., B2T-PLYP

[59], B2K-PLYP [58, 59], B2GP-PLYP [58], B2p-PLYP [23], ROB2-PLYP [60],
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UB2-PLYP [60], xB97X-2 [61] etc.) have been developed. While ax; acf g in B2T-
PLYP are optimized against some thermodynamic data, those in B2K-PLYP are
optimized against some kinetic data [59]. For a chemical reaction, the forward and
backward reaction barrier heights are connected through the reaction thermody-
namics. Hence, there is a need for some functionals to be of general purpose (e.g.,
B2GP-PLYP) [58]. The B2p-PLYP functional was optimized specially for p-
conjugated systems [23]. ROB2-PLYP and UB2PLYP recognize the importance to
distinguish a restricted and an unrestricted calculation for open shell systems [60].
The xB97X-2 [61] functional can also be put into the B2PLYP class where the
truncated DFT is a long-range corrected hybrid of the B97 [62] type.

Figure 2.1 illustrates the area of ax; acf g where the B2PLYP family of func-
tionals based on BLYP work best for certain properties. More recently, other GGA
and meta-GGA functionals have come into play [13, 59, 64]. Not only the mixing
parameters, but also the parameters within GGAs and meta-GGAs are refitted to
optimize the final performance of DHDFs [64]. These GGAs or meta-GGAs
cannot be used alone, as their mere purpose is to provide a reference state where
the scaled MP2 correction can be evaluated. Furthermore, as the MP2 term con-
tains the same-spin and opposite spin components, spin-component scaled DHDFs
have been introduced [65, 66].

Conventional DFAs miss the R�6 decay behavior in the long-range correlation
[67], and hence fail badly for dispersion-dominant nonbonded interactions. The
delocalized EMP2

c captures the correct long-range behavior by construction.
However, a global fraction (*30 %) of the MP2 correlation is incomplete to
describe the full correlation effect in the long range [68]. It was therefore sug-
gested to add the functionals a posterior force field (FF) like dispersion correction
(-D or -D3) [69–71] to impose the correct long-range R�6 interatomic dependence.
More recently, the DFT-D or DFT-D3 method was made an integrated method
where the parameters in the corresponding DFA (i.e., electronic) part were

Fig. 2.1 The B2PLYP
family of functionals based
on BLYP [76]
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optimized in conjunction with the optimization of the parameters in the FF-like
dispersion correction terms, in a hope that the medium- to long-range correlations
were completely took over by the classic FF terms, and not mimicked by the DFA
part to avoid double-counting [64, 66]. While such DFT-D or -D3 scheme can be
implemented efficiently without additional computational cost, it includes many
empirical parameters, and suffers from some inherent limitations [69, 72]. Espe-
cially, the many-body correlation effects and anisotropy effects in the long-range
dispersive interactions, as well as the orbital-dependence in the medium range
[72, 73], are more subtle, which are difficult to be approximated in the pair-wise
additive FF models.

Detailed benchmark calculations of the B2PLYP-type functionals can be found
in the literature [64]. Some of the key findings are represented in Chap. 3.

2.4 Rationale of DHDFs of the XYG3 Type

2.4.1 Becke’s Hybrid-DFT Methods

In Sect. 1.2.5, we have tried to motivate Becke’s hybrid-DFT methods from a view
for a balanced treatment of static and dynamic correlations [74]. In fact, adiabatic
connection formalism [3, 18, 27–29] provides a better way to comprehend these
methods [18, 19, 75].

It is true that the main problem or challenge of the adiabatic connection
approach for functional construction by using Eq. 2.21 is that the exact integrand
Wk q½ � is unknown. The optimistic picture is that while W ~r1r1; . . .;~rNrNð Þ to be
solved in the Schrödinger equation is of 4 N dimension, the divine xc functional
Exc q½ � characterized by q is only 3-dimensional. Hence, the problem is simplified.
Within the adiabatic connection approach, one can then focus on the k space of
1-dimension to approximate Wk q½ � by a model function of k. This may seem to be
an even ‘easier’ task. In fact, this scenario has been explored for functional
construction by several researchers [18, 19, 28, 29].

Becke assumed a linear model for Wk q½ � [18]:

Wk q½ � ¼ a q½ � þ b q½ �k ð2:38Þ

Integrating Eq. 2.21 by using Eq. 2.38 leads to an energy expression

Exc q½ � ¼ aþ 1
2

b ð2:39Þ

From Eq. 2.38, it is obvious that

a ¼ W0 q½ �; b ¼ W1 q½ � �W0 q½ � ð2:40Þ
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While W0 q½ � is just the HF exchange (Eq. 2.23), W1 q½ � corresponds to the
potential energy contribution to the xc energy of the fully interacting system,
which is yet unknown. Originally, Becke used a LDA to approximate W1 q½ � [18]:

W1 q½ � � WLDA
xc ¼ ELDA

x þWLDA
c ð2:41Þ

Nevertheless, it is quite common to approximate WLDA
c with ELDA

c or 1
2 WLDA

c

with EGGA
c such as ELYP

c , leading to

EBHandH
xc q½ � ¼ 1

2
EHF

x þ ES
x

� �
þ 1

2
ELYP

c ð2:42Þ

EBHandHLYP
xc q½ � ¼ 1

2
EHF

x þ EB
x

� �
þ ELYP

c ð2:43Þ

Equation 2.42 corresponds to the so-called BHandH functional, while Eq. 2.43
stands for the so-called BHandHLYP functional as implemented in Gaussian suite
of program [76]. Mixing in some portion of the HF exchange results in a signif-
icant improvement in functional performance for covalent bonded systems over
(semi)local functionals. The take-home message from Eq. 2.43 is that the source
of errors shall be traced back to the improper behavior of (semi) local exchange
functionals at the k! 0 limit [18]. Within this linear model, half of the (semi)-
local exchange should be replaced by half of the HF exchange.

For greater accuracy, Becke introduced the well-established three-parameter
scheme (B3, Eq. 1.71) [19], which is a more empirical model by relaxing the linear
approximation. Heavily parameterized functionals (e.g., the M06 family of func-
tionals [77, 78]) have appeared recently, which have push limits of the hybrid
functionals, providing very high accuracy for a broad range of complex systems.

2.4.2 Coupling-Constant Expansion

Let us start by reformulating the Hamiltonian Ĥk (Eq. 2.13) of the partially
interacting system with respect to the Hamiltonian Ĥs (1.14) of the noninteracting
KS system

Ĥk ¼ T̂ þ kV̂ee þ
XN

i¼1

tk q½ �;~rið Þ

¼ T̂ þ
XN

i¼1

ts q½ �;~rið Þ
 !

þ kH0
ð2:44Þ

In writing Eq. 2.44, we have emphasized the fact that density is fixed to be q for
any Ĥk of varying k. Equation 2.44 defines the perturbation
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Ĥ0 ¼ V̂ee þ
1
k

XN

i¼1

tk ~rið Þ � ts ~rið Þ½ � ð2:45Þ

According to the standard perturbation theory [30, 54], the ground state energy
associated with Ĥk can be written down as:

Ek ¼ E0
s þ kE 1ð Þ þ k2E 2ð Þ þ k3E 3ð Þ þ O k4� �

ð2:46Þ

where E0
s corresponds to the ground state energy associated with Ĥs, and E kð Þrefers

to the kth-order energy correction to E0
s . Here, we have assumed that Ĥs has a

nondegenerate ground state U0
s ¼ Uq with other eigenstates Um

s of eigenvalues
Em

s m 6¼ 0ð Þ. Hence,

E0
s ¼ U0

s

� ��Ĥs U0
s

�� �
ð2:47Þ

E 1ð Þ ¼ U0
s

� ��Ĥ0 U0
s

�� �
ð2:48Þ

E 2ð Þ ¼
X1

m 6¼0

W0
s

� ��Ĥ0 Wm
s

�� ��� ��2

E0
s � Em

s

ð2:49Þ

This provides a tool that correlation energy with scaled density may be esti-
mated [30, 43, 46]:

Ec q1=k

h i
¼ 1

k2 Ek
c q½ � ¼ 1

k2 Wk
q

D ���T̂ þ kV̂ee Wk
q

���
E
� U0

s

� ��T̂ þ kV̂ee U0
s

�� �h i

¼ 1

k2 Wk
q

D ���Ĥk Wk
q

���
E
� U0

s

� ��Ĥs U0
s

�� �
� k U0

s

� ��Ĥ0 U0
s

�� �h i

¼ Eð2Þ þ kO k3� �

ð2:50Þ

In order to keep the density q constant for all values of the coupling constant
k ¼ 0! 1, it is required that the chemical potential l should be constant for this
family of partially interacting N-electron systems. As the generalized HK func-
tional is given by

Fk
HK q½ � ¼ FHK q½ � � �Ek

Hxc q½ �

¼ Ts q½ � þ kJ q½ � þ kEx q½ � þ k2Ec q1=k

h i ð2:51Þ

the corresponding Euler-Lagrange equation (c.f. Eqs. 1.13 and 1.21) becomes

l ¼ dFk
HK q½ �

dq ~rð Þ þ tk ~rð Þ ¼
dTs q½ �
dq ~rð Þ þ ts ~rð Þ ð2:52Þ

giving
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tk ~rið Þ � ts ~rið Þð Þ ¼ �k tJ ~rið Þ þ tx ~rið Þ þ k
dEc q1=k

h i

dq ~rið Þ

2

4

3

5 ð2:53Þ

Hence Ĥ0 in Eq. 2.45 can be simplified for k! 0 as [30]:

D ¼ lim
k!0

Ĥ0 ¼ V̂ee �
XN

i¼1

tJ ~rið Þ þ tx ~rið Þ½ � ð2:54Þ

Inserting Eq. 2.54 into Eq. 2.50, we arrive at a perturbation description of

Ec q1=k

h i
:

lim
k!0

Ec q1=k

h i
¼ Eð2Þ ð2:55Þ

where as a weak perturbation, Eq. 2.49 is simplified as

E 2ð Þ ¼
X1

m 6¼0

U0
s

� ��D Um
s

�� ��� ��2

E0
s � Em

s

ð2:56Þ

E 2ð Þ is widely recognized as the Görling–Levy theory of coupling-constant
perturbation expansion to the second order, which may be explicitly written in
terms of KS orbitals as [30]

Eð2Þ ¼ EGL2
c ¼

Xocc

i

Xvir

a

/ih jtx � tHF
x /aj i

�� ��2

ei � ea
þ 1

4

Xocc

ij

Xvir

ab

/i/j

� ����/a/bi
�� ��2

ei þ ej � ea � eb
ð2:57Þ

Equation 2.57 should be compared with Eq. 2.2 for MP2. In addition to the
difference in the meaning of orbitals, i.e., HF orbitals in MP2 and KS orbitals in
GL2, there is an additional term from singles’ contributions [30].

2.4.3 Development of DHDFs of the XYG3 Type

Based on the adiabatic connection formalism [3, 18, 27–29] and Görling–Levy
coupling-constant perturbation expansion [30] to the second order, we proposed
XYG3 [14].

For a partially interacting system, the xc functional may be defined as

Ek
xc q½ � ¼ Wq

k T̂ þ kV̂ee

�� ���
Wq

k

�
� Uq T̂

�� ���
Uq
�
� kJ q½ � ð2:58Þ

which can be reformulated as
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Ek
xc q½ � ¼ kEHF

x q½ � þ k2Ec q1=k

h i

¼ kEHF
x q½ � þ k2Eð2Þ þ O k3� �

¼
Z k

0
Wk0 q½ �dk0

ð2:59Þ

Hence, for weak perturbation, we have

Wk q½ � ¼ EHF
x q½ � þ 2kEGL2

c þ O k2� �
ð2:60Þ

This demonstrates that EGL2
c defines the initial slope of the xc potential energy:

W 00¼
oWk

ok

����
k¼0

¼ 2EGL2
c ð2:61Þ

Equation 2.60 provides a formula with which Wk q½ � can be approximated. As
compared with Eq. 2.38 for the linear model (Fig. 2.2), it is clear, instead of
choosing the initial point and the ending point of fW0; W1g but approximating
W1 � WLDA

xc as Becke did in his half and half functional [18], parameters a; bf g in
Eq. 2.39 can be rigorously fixed using {W0, W 00} [14]:

a ¼ EHF
x ; b ¼ 2EGL2

c ð2:62Þ

This provides an exact functional in terms of KS orbitals, if the linear depen-
dence of Wk q½ � on k is faithfully fulfilled.

ElinearAC
xc ¼ EHF

x þ EGL2
c ð2:63Þ

Equation 2.63 may look similar to the standard MP2 theory where the HF
exchange is augmented with the MP2 correlation. It has to be emphasized that the
MP2 method is just the lowest level correlated wavefunction method for many
electron systems, whereas Eq. 2.63 is exact for any system with linear
k-dependence.

Fig. 2.2 Linear (a) or
nonlinear (b) model for
adiabatic connection path
[79]
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To go beyond the linear model, we proposed to choose b as in Eq. 2.64, where
b1; b2f g are empirical parameters introduced here to optimize the functional

performance [14]:

b ¼ b1EGL2
c þ b2 EDFT

xc � EHF
x

� �
ð2:64Þ

Assuming that EDFA
c � EDFA

xc � EHF
x

� �
contains a complete description of cor-

relation effects, the second term of Eq. 2.64 may also be viewed as a way to
extrapolate the second-order perturbation to infinite order to account for the higher
order, O k2� �

in Eq. 2.60 dependence of Wk on k.
In analogy to the B3 scheme shown in Eq. 1.71, we proposed a new type of

DHDFs which read as [14, 37]

ExDH
xc q½ � ¼ a0EHF

x þ 1� a0ð ÞELDA
x þ axDEGGA

x

þa1EGL2
c þ 1� a1ð ÞELDA

c þ acDEGGA
c

ð2:65Þ

Here EGGA
x q½ � ¼ ELDA

x þ DEGGA
x ;EGGA

c q½ � ¼ ELDA
c þ DEGGA

c . Of course, the
GGA functional can be replaced by a meta-GGA functional. Equation 2.65 sug-
gests that not only some portion of the (semi) local exchange functional be
substituted by the HF exchange, but also some portion of the (semi) local corre-
lation functional be substituted by the GL2 correlation. While it is important to
properly describe the initial value of Wk with EHF

x , it is also essential to accurately
describe the initial slope of Wk with EGL2

c .
In setting up the first xDH functional XYG3 (Eq. 2.7), we have adopted

LDA = SVWN [80, 81] and GGA = BLYP [16, 24]. As the LYP functional does
not reduce to the correct limit for a uniform electron gas by construction, we have
constrained 1� a1ð Þ ¼ ac, which practically eliminated one fitting parameter.

Note that single-excitation contribution is also not explicitly calculated in
XYG3, such that the GL2 term [30] is actually approximated by the MP2-like PT2
term. We have argued that the singles contribution can be absorbed into EDFA

c and
the fitting parameters against the experimental data [14].

Unlike in LDAs and GGAs, where the xc energy is represented by an explicit
functional of the density, DHDFs are formally orbital-dependent functionals which
are implicit functionals of the electron density [12, 14]. The so-called optimized
effective potential (OEP) method [82–86] should be invoked where the variational
optimization of the energy associated with DHDFs should be carried out under the
additional constraint of a local xc potential. It is interesting to note that the kinetic
energy of the KS system has already been represented by an orbital-dependent
functional, while the HF exchange is another evident orbital-dependent functional.
Here, we again make a detour to avoid OEP by using the well-established B3LYP
to provide the orbital information required for the construction of energy terms in
XYG3. We believe that other fully functionalized DFAs (i.e., nontruncated) can
play a similar role as B3LYP does in XYG3. In particular, pure GGAs with local
multiplicative potentials are in better accordance with Görling–Levy coupling-
constant perturbation expansion theory [30].
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Chapter 3
Benchmarking the Performance
of DHDFs for the Main Group Chemistry

Abstract On one hand, chemistry is very rich. On the other hand, density
functionals are all approximate and mostly contain empirical parameters, such that
not every functional is equally applicable to every chemical problem. This has
made benchmarking of the functional performance inevitable. Our focus here is to
examine the performance of some fifth rung functionals, while selected results of
the lower rung functionals are presented for comparison. We have examined the
DHDFs’ performance in the prediction of heats of formation (HOFs, Sect. 3.1),
ionization potentials (IPs, Sect. 3.2), electron affinities (EAs, Sect. 3.2), bond
dissociation energies (BDEs, Sect. 3.3), reaction barrier heights (RBHs, Sect. 3.4),
and noncovalent interactions (NCIs, Sect. 3.5) using some well-established
benchmarking data sets.

Keywords Heats of formation � Ionization potential � Electron affinity � Bond
dissociation energy � Reaction barrier height � Noncovalent interaction

3.1 Heats of Formation Against the G3 Set

Heats of formation, DHh
f , are among the most important chemical data, with which

energy associated with a chemical reaction can be assessed. For stable molecules,
experimental DHh

f may be found from some handbooks and/or from some web-
sites.[e.g., 1–4] They are typically obtained from calorimetric measurements [5]
using chemicals of very high purity. However, data for many other molecules still
remain missing. This is especially true for reactive intermediates such as free
radicals. Furthermore, the experimental data are frequently subject to substantial
uncertainties [6]. Hence accurate computational chemistry methods are highly
desirable such that a reliable prediction of thermochemical data can be made
possible.
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3.1.1 Performances of Various Rungs of the DFT Methods

The Gn paradigm was originally developed by Pople and co-workers for
extrapolating levels of wavefunction based methods, as well as adjusting the
empirical constants in the Gn methods to achieve increasingly accurate thermo-
chemistry [7–9]. It has become a valuable dataset for developing density func-
tionals to describe covalent bonding in the main group molecules. In particular, we
use the G3 set of 223 molecules collected in 1999 (the G3/99 set) [9].

Table 3.1 summarizes the statistic data for the predicted DHh
f of the G3/99 set

from various rungs of the DFT methods [10]. The calculations are based on the
theoretical atomization enthalpy of a molecule corrected by the experimental
atomization enthalpies of the constituent elements in their standard states at
298 K [9].

The mean absolute deviation (MAD) for the lowest rung LDA (e.g., SVWN5
[11, 12]) is 120.83 kcal/mol. This implies that LDA is not useful for thermochemistry.

GGAs on the second rung greatly reduce the errors. BPW91 [13, 14] leads to
MAD of 8.78 kcal/mol, being one of the best GGAs up-to-date for molecules. The
PBE functional [15] is less satisfactory for thermochemistry of molecules with
MAD of 22.76 kcal/mol. There exists a large tendency of overbinding with
maximum positive deviation (Max+) of 80.28 kcal/mol occurring at azulene.

The meta-GGA functionals on the third rung display further improvement.
TPSS [16] gives MAD = 6.36 kcal/mol, being substantially better than its prec-
edent PBE, while M06-L [17] and VSXC [18] lead to MAD of 5.82 and 3.51 kcal/
mol, respectively.

Table 3.1 demonstrates that the hybrid functionals give an overall improvement
for thermochemistry as compared to either pure GGAs or meta-GGAs. Thus the
performance is significantly improved on going from pure BPW91 to three-
parameter hybrid B3PW91 [13, 14, 19] (MAD = 3.85 kcal/mol). The popular
functional, B3LYP [13, 19–21], is actually inferior (MAD = 4.74 kcal/mol). The
best performer in this rung is xB97X-D [22], whose MAD is 2.40 kcal/mol.

A recent important development in DFT is the M06 family of functionals (M06,
and M06-2X) [23]. For the G3/99 set, these methods lead to MAD of 4.17 for
M06, and 2.93 for M06-2X.

XYG3 [24] with the 6-311 ? G(3df,2p) basis set [25–27] leads to MAD of
1.81 kcal/mol, being substantially better than the lower rung functionals
(Table 3.1). While MC3BB [28] gives MAD = 3.81 kcal/mol, B2PLYP [29, 30]
yields MAD of 2.74 kcal/mol. The latter was achieved by using a very large
CQZV3P basis set including core-polarization [31], which was the way that
B2PLYP was optimized [29].

We recall that B2PLYP employs its DFT portion for the SCF calculation to
generate the orbitals from which the PT2 correction is computed. This is much like
MP2 which uses HF for the SCF calculation [32]. Using just the DFT portion of
B2PLYP with 6-311 ? G(3df, 2p) leads to MAD = 174.20 kcal/mol for the
G3/99 set, while HF gives MAD of 211.48 kcal/mol. The latter is * 40 kcal/mol
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worse. The complete B2PLYP method leads to MAD = 4.63 kcal/mol, while the
corresponding MAD associated with MP2 is 10.93 kcal/mol. Due to the approx-
imation adopted by restricting the minimization in Eq. 2.31 to single-determinant

Table 3.1 Theoretical errors a for heats of formation b (HOFs, kcal/mol) at 298 K for the G3/99
set c

MAD d Max ? e Max- f

G2-1 G2-2 G3-3 G3

1st Rung SVWN 39.36 120.02 213.09 131.40 378.82 (azulene) -0.30 (Li2)
SVWN5 36.03 110.76 195.51 120.83 345.45 (azulene) -0.47 (Li2)
SPL 38.46 115.85 204.12 126.45 360.68 (azulene) -0.16 (Li2)

2nd Rung BLYP 4.99 8.76 13.75 9.51 28.44 (NO2) -41.77 (n-octane)
BPW91 5.18 9.31 10.82 8.78 31.89 (NO2) -24.10 (Si(CH3)4)
PBE 8.37 22.62 33.48 22.76 80.28 (azulene) -9.90 (Si2H6)
BP86 9.82 25.14 36.99 25.28 71.10 (azulene) -8.18 (SiF4)

3rd Rung M06-L 3.72 5.72 7.50 5.82 27.13 (C2Cl4) -14.75 (PF5)
TPSS 4.70 7.46 6.22 6.36 25.04 (ClF3) -13.64 (SiF4)
VSXC 2.24 3.04 5.05 3.51 10.24(CS2) -12.75 (n-octane)

4th Rung BHHLYP 2.16 3.46 8.20 4.74 8.03 (BeH) -19.22 (SF6)
B3PW91 2.53 3.74 4.98 3.85 15.21(naphthalene) -23.87 (SiF4)
B3LYP 2.16 3.46 8.20 4.74 8.03 (BeH) -19.22 (SF6)
PBE0 2.85 6.43 10.48 6.91 35.69 (naphthalene) -19.89 (SiF4)
BMK 2.24 3.29 3.30 3.03 12.52 (pyrimidine) -13.32 (O3)
TPSSh 4.24 4.13 3.48 3.94 17.10 (Si2H6) -23.90 (SiF4)
xB97X 2.27 2.69 2.29 2.45 13.82 (C2F4) -8.32 (Si2)
xB97X-D 2.19 2.59 2.33 2.40 12.41 (C2F4) -12.27 (SiF4)
M06-2X 1.90 3.20 3.36 2.93 17.39 (P4) -20.77 (O3)
M06 2.92 4.46 4.74 4.17 25.89 (C2F6) -11.25 (O3)

5th Rung XYG3 1.53 1.78 2.06 1.81 6.28 (BCl3) -16.67 (SF6)
MC3BB 2.28 3.81 4.94 3.81 18.92 (naphthalene) -10.38 (CN)
B2PLYP g 1.36 2.00 4.68 2.74 6.60 (BeH) -13.60 (Si(CH3)4)
B2PLYP 1.85 3.67 7.84 4.63 8.01 (C2F4) -20.37 (n-octane)
B2PLYP-D 1.71 2.83 4.80 3.22 8.74 (C2F4) -13.18 (Si(CH3)4)
B2GP-PLYP 2.62 4.46 8.69 5.43 6.14 (C2F4) -20.32 (n-octane)

Ab Initio HF 74.61 191.57 336.54 211.48 0.46 (BeH) -582.72 (n-octane)
UMP2 7.34 11.12 13.33 10.93 48.34 (C2F6) -29.21 (Si(CH3)4)
QCISD(T) h 6.09 13.45 24.09 15.22 1.44 (Na2) -42.78(n-octane)
G2 i 1.23 1.76 2.52 1.88 9.39 (C2F6) -7.14 (SiF4)
G3 i 0.96 0.91 1.28 1.05 4.95 (C2F4) -7.07 (PF5)

a Errors, (kcal/mol, Expt. – Theo.). The geometries were optimized using B3LYP with the 6-
311 ? G(d, p) basis set. Analytical vibrational frequencies were calculated at the same level and
scaled by 0.9877 to estimate zero-point energies. Single point calculations are performed with the 6-
311 ? G(3df, 2p) basis set [25–27].
b Experimental data are from Ref. [9].
c The G3/99 set are usually divided into three subsets, G2-1, G2-2 and G3-3, of increased molecular
size.
d Mean absolute deviations.
e Maximum positive deviations.
f Maximum negative deviations.
g Data from Ref. [30].
h Data from Ref. [40].
i Calculated with the Gn theory [7–9]
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wavefunction U [32], density in B2PLYP does not corresponds to the ground state
density by construction just as in the HF method. While B2PLYP density should
be an improvement over HF density, due to the partial correlation embedded in the

complement HK functional E
k
Hxc q½ � (see Sect. 2.3). B2PLYP is certainly an

improvement over MP2 in terms of the G3 set for covalent bonds.
XYG3 is rooted within the adiabatic connection formulism [33–37] and the

Görling-Levy theory [38] of coupling-constant perturbation expansion, we con-
sider it very important to have accurate KS orbitals to provide an accurate density
and the zero-order approximation for perturbation theory [24]. It has been shown
that B3LYP densities are similar to those from CCSD(T) ab initio wavefunctions
(for the molecules discussed in Ref. [39]). Hence, XYG3 adopts B3LYP densities,
as well as the large energy terms T q½ �, J q½ �, and Vext q½ �, but only updates the small
energy term Exc q½ �.

From Table 3.1 it is clear that there is a general tendency for the improvement
of the DFA performance along the rungs upwards. MADs are gradually reduced
from 120.83 kcal/mol for SVWN5 [11, 12] to 8.78 for BPW91 [13, 14], to 3.51 for
VSXC [18], to 2.40 for xB97X-D [22], and to 1.81 for XYG3 [24].

The G3 method leads to a MAD of only 1.05 kcal/mol, while that given by the
G2 method is 1.88 kcal/mol [8, 9]. Gn is a composite method, based on the
6-311G** or 6-31G(d) basis sets but with several basis set extensions [7–9,
25–27]. Electron correlation is treated by the MP perturbation theory and by
quadratic configuration interaction (QCISD(T)). Even though we have grouped the
Gn method under the title of ab initio, we must not overlook the fact that it
includes an empirical ‘high-level correction (HLC)’. Removing this HLC leads to
much poorer thermochemistry as shown by the QCISD(T) results listed in
Table 3.1 (MAD = 15.22 kcal/mol) [40]. Thus the current generation of DFT
functionals lead to HOFs significantly better than the standard ab initio methods
(e.g., QCISD(T) with basis sets of triple-zeta quality). There is no doubt, however,
that increasing the basis set size will significantly improve the QCISD(T) per-
formance. Coupled-cluster based method at sufficiently large basis set, although
much expensive, has set up the gold standard that DFAs are trying to approach to.

3.1.2 Basis Set Dependence

It has to be noted that the good behavior of XYG3 for HOFs as listed in Table 3.1 is
partly because that XYG3 was fitted against the G3/99 set with the 6-311 ? G(3df,
2p) basis set. HOFs was found to be subject to a large basis set dependence [10, 41],
since all chemical bonds are broken during the atomization process. The basis set
dependence of XYG3, along with those of B3LYP and MP2, have been investigated
[10, 41]. The basis sets examined included [25–27] B1: 6-311 ? G(d, p), B2:
6-311 ? G(2d, p), B3: 6-311 ? G(2d, 2p), B4: 6-311 ? G(3d, 2p), B5:
6-311 ? G(2df, p), B6: 6-311 ? G(2df, 2p), B7: 6-311 ? G(3df), B8: 6-311 ?

G(3df, p), B9: 6-311 ? G(3df, 2p), and B10: 6-311 ++G(3df, 3pd), where B9 is the

50 3 Benchmarking the Performance of DHDFs for the Main Group Chemistry

http://dx.doi.org/10.1007/978-3-642-40421-4_2


designed basis set. This choice echoes the common wisdom in the molecular orbital
(MO) theory that a triple-zeta basis set is relatively complete for moderate accuracy
and the major source of errors in calculating chemical reaction energies such as
HOFs comes from the incompleteness of the polarization functions [42, 43].

Figure 3.1 depicts the MADs for HOFs against the G3/99 set with this set of
basis sets [10, 41]. B3LYP shows a mild basis set dependence. MAD associated
with B3LYP/B1 is 12.63 kcal/mol, which decreases to 4.74 with the B10 basis set.
This is expected as adding more polarization functions improves the description of
the molecules, reducing B3LYP’s tendency of underestimating the stability of the
molecules. Figure 3.1 clearly shows that MP2 is more basis set dependent than
B3LYP. MAD associated with MP2 spans a range of 13.30 kcal/mol from B1
(MAD = 31.35) to B10 (17.95 kcal/mol), as opposed to the B3LYP range of
7.89 kcal/mol. XYG3 has inherited the strong basis set sensitivity of MP2. MAD
for XYG3/B1 is as high as 18.93 kcal/mol. When augmented with suitable number
of polarization functions, XYG3 starts to behave significantly better than B3LYP.
Overall, XYG3 presents an improvement over both B3LYP and MP2 in HOF
predictions with B5, B6, B8, B9 and B10 basis sets [41].

3.1.3 Molecular Size Dependence of Representative DHDFs

The G3/99 set is usually divided into three subsets, G2-1, G2-2, and G3-3 [7–9].
While the G2-1 set consists of 55 molecules with the maximum number of non-
hydrogen atoms of 3, the G2-2 set and the G3-3 set are made of 93 and 75
molecules up to 6 and 10 nonhydrogen atoms, respectively. The averaged non-
hydrogen atoms are 1.6 (G2-1), 3.6 (G2-2), and 5.8 (G3-3), indicating an increased
size from G2-1 to G2-2 and G3-3.

Fig. 3.1 Mean absolute deviations (MADs): basis set dependence for heats of formation against
the G3/99 set. B1: 6-311 ? G(d, p), B2: 6-311 ? G(2d, p), B3: 6-311 ? G(2d, 2p), B4: 6-
311 ? G(3d, 2p), B5: 6-311 ? G(2df, p), B6: 6-311 ? G(2df, 2p), B7: 6-311 ? G(3df), B8: 6-
311 ? G(3df, p), B9: 6-311 ? G(3df, 2p), and B10: 6-311 ++G(3df, 3pd)
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Figure 3.2 depicts the molecular size dependence against the G3/99 set for the
methods we are interested in. More data are presented in Table 3.1 [10]. B3LYP
leads to errors that increase dramatically with size [42, 43], with MAD = 2.12 kcal/
mol (G2-1), 3.69 (G2-2), and 8.97 (G3-3). B2PLYP (at the 6-311 ? G(3df, 2p)
level) does not improve over B3LYP, leading to MADs of 1.85 (G2-1), 3.70 (G2-2),
and 7.83 kcal/mol (G3-3). Size dependence is mild for MC3BB [28], giving MADs
of 2.28 (G2-1), 3.81 (G2-2), and 4.97 kcal/mol (G3-3). For XYG3 [24], we obtain
MADs of 1.52 (G2-1), 1.79 (G2-2), and 2.06 kcal/mol (G3-3), which exhibits the
best description for larger molecules [10, 24].

3.2 Ionization Potentials, and Electron Affinities Against
the G2-1 Set

Ionization potential (IP) and electron affinity (EA) are essential molecular properties
[44–46]. They define many useful concepts such as electronegativity [47], chemical
potential [44], hardness and softness [45], as well as electrophilicity and nucleo-
philicity [46], etc. They can be used in assessing the electron donating and accepting
abilities of a system involved in any redox processes [48–50]. IP and EA have been
widely employed in understanding the electron transfer processes occurring in gas
phase or in condensed phase, and are of fundamental importance in setting up
structure–reactivity relationships to aid the design of new materials [51–54].

3.2.1 Error Statistics for Calculated Ionization Potentials

Table 3.2 lists the error statistics for IPs of 38 molecules in the G2-1 set [8, 10,
55]. Generally, charged species are more inhomogeneous than the corresponding
neutral systems. Thus it is expected that LDA leads to the worst results for IP

Fig. 3.2 Mean absolute
deviations (MADs):
molecular size dependence
for heats of formation against
the G3/99 set
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calculations. This is indeed true for SVWN [11, 12] (MAD = 0.663 eV), but not
necessary so for SVWN5 [11, 12] and SPL [11, 56] (MADs = 0.224 and
0.232 eV, respectively). This suggests that the correlation functionals play an
important role.

Starting from that of SVWN, one may see that the second rung functionals of
GGAs dramatically improve the prediction of IPs over LDA(SVWN). Actually,

Table 3.2 Statistic theoretical errorsa,b,c for calculated ionization potentials (IPs, eV) at 0 K for
the G2-1 Set (38 systems)

AD MAD RMS Max ? Max-

1st Rung SVWN -0.663 0.663 0.698 NAg -1.15 (F ? F+)
SVWN5 -0.175 0.224 0.269 0.30 (Be ? Be+) -0.56 (O2 ? O2

+)
SPL -0.190 0.232 0.279 0.58 (H ? H+) -0.73 (O2 ? O2

+)
2nd Rung BLYP 0.078 0.200 0.240 0.43 (Cl2 ? Cl2

+) -0.56 (O ? O+)
BPW91 0.064 0.229 0.377 1.71 (H2S ? H2S+ 2A1) -0.46 (O ? O+)
PBE -0.004 0.161 0.200 0.34 (Cl2 ? Cl2

+) -0.46 (O ? O+)
BP86 -0.040 0.231 0.367 1.60 (H2S ? H2S+ 2A1) -0.63 (O ? O+)

3rd Rung M06-L 0.077 0.193 0.239 0.64 (Na ? Na+) -0.59 (O2 ? O2
+)

TPSS 0.037 0.173 0.205 0.31 (C2H2 ? C2H2
+) -0.45 (B ? B+)

VSXC 0.046 0.192 0.346 1.64 (H2S ? H2S+ 2A1) -0.33 (N ? N+)
4th Rung BHHLYP 0.076 0.213 0.281 0.47 (C2H4 ? C2H4

+) -0.99 (O2 ? O2
+)

B3PW91 -0.056 0.159 0.208 0.32 (Be ? Be+) -0.72 (O2 ? O2
+)

B3LYP -0.087 0.162 0.226 0.20 (Be ? Be+) -0.79 (O2 ? O2
+)

PBE0 -0.001 0.165 0.204 0.34 (Be ? Be+) -0.68 (O2 ? O2
+)

BMK -0.034 0.161 0.236 0.52 (Be ? Be+) -0.81 (O2 ? O2
+)

TPSSh 0.074 0.214 0.347 1.73 (H2S ? H2S+ 2A1) -0.53 (O2 ? O2
+)

xB97X 0.007 0.135 0.187 0.46 (Be ? Be+) -0.63 (O2 ? O2
+)

xB97X-D -0.006 0.132 0.187 0.49 (Be ? Be+) -0.67 (O2 ? O2
+)

M06-2X -0.011 0.119 0.196 0.28 (SiH4 ? SiH4
+) -0.82 (O2 ? O2

+)
M06 0.027 0.159 0.211 0.39 (Be ? Be+) -0.76 (O2 ? O2

+)
5th Rung XYG3 0.010 0.057 0.075 0.20 (N2 ? N2

+,2Rg) -0.16 (O2 ? O2
+)

MC3BB 0.070 0.120 0.150 0.42 (Be ? Be+) -0.40 (O2 ? O2
+)

B2PLYP 0.049 0.109 0.130 0.31 (Be ? Be+) -0.31 (O2 ? O2
+)

B2PLYP-D 0.054 0.110 0.131 0.31 (Be ? Be+) -0.31 (O2 ? O2
+)

B2GP-PLYP 0.050 0.101 0.123 0.33 (Be ? Be+) -0.31 (O2 ? O2
+)

Ab initio HF 0.954 1.005 1.135 1.82 (Be ? Be+) -0.84 (O2 ? O2
+)

UMP2 0.077 0.163 0.218 0.50 (Be ? Be+) -0.69 (CS ? CS+)
MP4SDQ 0.116 0.150 0.173 0.33 (S ? S+) -0.38 (CS ? CS+)
QCISD(T) 0.106 0.111 0.125 0.27 (S ? S+) -0.11 (CS ? CS+)

a IPs are calculated as ground state energy differences between the neutral species and the
corresponding ionic species [8, 10, 55]. As in the G2 method [8], the geometries were optimized
using MP2(full) with the 6-31G(d) basis set. Analytical vibrational frequencies were calculated at
the level of HF/6-31G(d) and scaled by 0.8929 to estimate zero-point energies. Single point DFT
calculations were performed with the 6-311 ? G(3df, 2p) basis set [25–27].
b Experimental data are from Refs. [8].
c AD: Averaged deviations (Expt. – Calc.), MAD: Mean absolute deviations, RMS: Root-mean-
square errors, Max ? : Maximum positive deviations, Max-: Maximum negative deviations
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GGAs on average give an MAD of 0.20 eV, being close to that of SVWN5, while
PBE [15] gives an MAD of 0.161 eV, which is the best GGA for IP predictions.
From Table 3.2 it can be seen that meta-GGAs slightly outperform GGAs,
although TPSS [16] (MAD = 0.173 eV) is slightly worse than its precedent PBE.

As ionization may create or quench a singly occupied orbital, the IP error may
therefore be related to the self-interaction error [57] which differs on the amount
between the neutral and the corresponding charged species. Hence, one sees, from
Table 3.2, a steady improvement for IP prediction along the ladder up to hybrid
functionals, possibly due to the mitigation of the self-interaction error because of
the introducing of the HF exchange. The majority of the 4th rung functionals give
an MAD around 0.16 eV, while some hybrid functionals, (e.g., xB97X and
xB97X-D [22]) give an MAD around 0.13 eV. M06-2X [23] is outstanding,
giving an MAD of only 0.119 eV for the G2-1 set.

As it should be expected, the 5th rung functionals should further improve the
accuracy because of the further improvement on the correlation part. Indeed, all
DHDFs give MADs below 0.12 eV. Significantly, XYG3 gives an MAD of only
0.057 eV for the G2-1 set [8, 10, 55].

Fig. 3.3 Histogram of deviations (Expt. – Calc.) for 38 ionization potentials (IPs) in the G2-1 set
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It is worthwhile to make a comparison to the IP performances of the wave-
function based methods. Clearly, HF (MAD = 1.005 eV) is useless for the IP
prediction, emphasizing again the importance of correlation effects. MP2 has
dramatically reduced MAD to 0.163 eV, which has been further reduced to
0.150 eV for MP4SDQ and to 0.111 eV for QCISD(T). It should be emphasized
that basis set requirement is generally higher for wavefunction based methods.
With larger basis set than 6-311 ? G(3df, 2p) used here, we expect that QCISD(T)
will lead to more satisfactory results, albeit at higher expense.

Figure 3.3 shows the histogram of deviations (Expt. – Calc.) for selected
methods in the predictions of 38 IPs in the G2-1 set [55]. PBE errors scatter around
a range with more negative deviations, indicating that neutral species are sub-
stantially overbound relative to the ions. B3LYP behaves worse than PBE. Both
B2PLYP and XYG3 are outstanding for IP calculations. In particular, 25 out of 38
entries are within the 0.0–0.1 eV error range for XYG3, showing the predictive
power of this functional. We emphasize that ions were not included in the training
set for XYG3. The three mixing parameters in XYG3 were optimized by using
only heats of formation of the G3 set where all species are neutral.

3.2.2 Error Statistics for Calculated Electron Affinities

Table 3.3 lists the statistics for EA calculations of the total 25 systems in the G2-1
set [8, 10, 55]. The DFA performances may be compared with those of wave-
function methods such as MP2 and QCISD(T).

Similar to the IP calculations, SVWN [11, 12] also performs quite differently
from SVWN5 [11, 12] and SPL [11, 56] for EA calculations. SVWN gives an
MAD = 0.750 eV, significantly worse than MADs of 0.289 and 0.311 eV for
SVWN5 and SPL, respectively. Unlike situations in IP calculations, Table 3.3
clearly demonstrates that GGAs and meta-GGAs perform considerably better than
LDAs for EA calculations. The best GGA and meta-GGAs lead to MADs of 0.094
(BPW91 [13, 14]) and 0.104 eV (TPSS [16], VSXC [18]). Some hybrid func-
tionals (e.g., xB97X-D [22]) and DHDFs (e.g., XYG3 [24]) can still improve the
accuracy to some extent, giving MADs around 0.08 eV. Indeed, the error histo-
grams displayed in Fig. 3.4 suggest that XYG3 is the most satisfactory DFT for
EA predictions.

From theoretical point of view, there has been debate in the literature, con-
cerning whether conceptually DFT methods are suitable for calculating electron
affinities [58–60]. It has been argued that two artifacts that combine fortunately in
the right way for error cancelation. On one hand, the ‘self-interaction error’ causes
the Kohn–Sham orbital energies to shift upwards artificially, leading to a positive
(unstable) orbital energy for the highest occupied orbital of the anion. On the other
hand, an artificial stabilization is provided by employing a finite basis set with
functions localized at the anion. This debate continues [57].
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From practical point of view, it is encouraging to see from Table 3.3 that many
DFT methods outperform MP2 (MAD = 0.166 eV) and QCISD(T) (MAD =

0.135 eV) for EA calculations. With larger basis set than 6-311 ? G(3df, 2p) used
here, there is no doubt that QCISD(T) will lead to more satisfactory results,
although its steep scaling will prevent its applications to larger systems.

Table 3.3 Statistic theoretical errors a,b,c for electron affinities (EAs, eV) at 0 K for the G2-1 Set
(25 systems)

AD MAD RMS Max ? Max-

1st Rung SVWN -0.750 0.750 0.766 NAg -1.15 (F / F-)
SVWN5 -0.289 0.289 0.269 NAg -0.63 (F / F-)
SPL -0.311 0.311 0.345 NAg -0.67 (F / F-)

2nd Rung BLYP -0.026 0.105 0.135 0.19 (Si / Si-) -0.36 (Cl2 / Cl2
- )

BPW91 -0.060 0.094 0.123 0.12 (S2 / S2
- ) -0.27 (C / C-)

PBE -0.086 0.102 0.133 0.10 (S2 / S2
- ) -0.29 (C / C-)

BP86 -0.211 0.211 0.232 NAg -0.39 (Cl2 / Cl2
- )

3rd Rung M06-L 0.118 0.160 0.186 0.37 (OH / OH-) -0.28 (Cl2 / Cl2
- )

TPSS 0.015 0.104 0.122 0.19 (OH / OH-) -0.27 (Cl2 / Cl2
- )

VSXC -0.017 0.104 0.148 0.25 (O2 / O2
- ) -0.54 (Cl2 / Cl2

- )
4th Rung BHHLYP 0.198 0.248 0.285 0.58 (OH / OH-) -0.29 (Cl2 / Cl2

- )
B3PW91 -0.030 0.103 0.126 0.17 (OH / OH-) -0.29 (Cl2 / Cl2

- )
B3LYP -0.084 0.106 0.144 0.06 (OH / OH-) -0.45 (Cl2 / Cl2

- )
PBE0 0.036 0.128 0.146 0.29 (OH / OH-) -0.20 (Cl2 / Cl2

- )
BMK 0.007 0.106 0.127 0.22 (F / F-) -0.32 (CN / CN-)
TPSSh 0.053 0.130 0.153 0.29 (OH / OH-) -0.26 (Cl2 / Cl2

- )
xB97X 0.009 0.083 0.106 0.17 (Si / Si-) -0.25 (CN / CN-)
xB97X-D -0.013 0.079 0.100 0.15 (OH / OH-) -0.22 (Cl2 / Cl2

- )
M06-2X 0.051 0.103 0.126 0.25 (F / F-) -0.17 (CN / CN-)
M06 0.048 0.095 0.116 0.24 (SiH2 / SiH2

- ) -0.23 (NO / NO-)
5th Rung XYG3 0.058 0.080 0.090 0.16 (CH3 / CH3

- ) -0.18 (Cl2 / Cl2
- )

MC3BB 0.132 0.175 0.188 0.29 (NH / NH-) -0.26 (CN / CN-)
B2PLYP 0.056 0.090 0.102 0.17 (CH3 / CH3

- ) -0.22 (Cl2 / Cl2
- )

B2PLYP-D 0.056 0.091 0.104 0.17 (CH3 / CH3
- ) -0.23 (Cl2 / Cl2

- )
B2GP-PLYP 0.083 0.114 0.124 0.21 (CH3 / CH3

- ) -0.19 (CN / CN-)
Ab initio HF 1.148 1.148 1.283 2.21 (F / F-) NA

UMP2 0.079 0.166 0.224 0.37 (P / P-) -0.78 (CN / CN-)
MP4SDQ 0.175 0.208 0.229 0.36 (NH / NH-) -0.41 (CN / CN-)
QCISD(T) 0.135 0.135 0.148 0.23 (NH / NH-) NA

a EAs are calculated as ground state energy differences between the neutral species and the
corresponding ionic species [8, 10, 55]. As in the G2 method [8], the geometries were optimized
using MP2(full) with the 6-31G(d) basis set. Analytical vibrational frequencies were calculated at
the level of HF/6-31G(d) and scaled by 0.8929 to estimate zero-point energies. Single point DFT
calculations were performed with the 6-311 ? G(3df, 2p) basis set [25–27]. b Experimental data
are from Refs [8]. c AD: Averaged deviations (Expt. – Calc.), MAD: Mean absolute deviations,
RMS: Root-mean-square errors, Max ? : Maximum positive deviations, Max-: Maximum neg-
ative deviations, NA: Not applied
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3.3 Bond Dissociation Enthalpies Against the BDE/07 Set

Covalent bond dissociation enthalpy (BDE) is defined as energy absorbed when a
bond is cleaved by homolysis. It is a fundamental concept in chemistry, being
widely used in pursuit of the understanding of a diversity of chemical processes
such as atmospheric and combustion reactions, or enzymatic catalysis, etc.
Nevertheless, the majority of experimental BDE data suffers from an uncertainty
of 1–2 kcal/mol [1–3, 6, 8], and some of them are contradictory to each other.
Theory provides a valuable alternative. In particular, it offers a way to provide
BDEs of unknown species or unstable species that are not amenable to any
experimental techniques. Hence, developing accurate theoretical methods for BDE
prediction is vitally important.

Fig. 3.4 Histogram of deviations (Expt. – Calc.) for 25 electron affinities (EAs) in the G2-1 set
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3.3.1 Performances of Various Rungs of the DFT Methods

We calculated BDE of a single bond according to the enthalpy change of the
following reaction in the gas phase at 298 K and 1 atm:

X � Y gð Þ ¼ X � gð Þ þ Y � gð Þ

BDE ¼ DrH
h
298 ¼ Df H

h
298 X�ð Þ þ Df H

h
298 Y �ð Þ � Df H

h
298 X � Yð Þ ð3:1Þ

where we supplied the experimental or calculated HOF with the given method for
each species. When X or Y happened to be an atom, we used the experimental HOF
[7–9].

Twenty-seven radicals and seventy-six molecules contained in the G3/99 set
have been used to set up ninety-two bond dissociation reactions (the BDE92/07
set). Five radicals and thirty-nine molecules that go beyond the G3/99 set have
further been included to set up fifty additional bond dissociation reactions, leading
to the so-called BDE142/07 set. The bond types include C–H, X–H, C–C, C–O,
C–N, C–F, C–Cl, C–S and X–Y (X, Y = C, H). The lowest BE is that for CH3–CO,
10.98 kcal/mol, while the highest BE is that for NC–CN, 136.50 kcal/mol. Heats
of formation span from -321.3 (C2F6) to 135.1 (CCH) kcal/mol.

As HOFs are routinely calculated via atomization energies, which present a
harsh chemistry where every bond in the molecule is broken, it is generally
believed that errors associated with BDE calculations are smaller than HOF cal-
culations. Contrary to this general belief, Table 3.4 and Fig. 3.5 show that a good
prediction of HOFs does not necessarily guarantee a good performance for BDE
prediction [61–63].

As indicated in Eq. 3.1, if errors in HOFs for radicals and the parent molecules
are of the opposite sign, there will be an error accumulation in the prediction of
BDE. This is obviously the case for B3LYP [13, 19–21] as shown in Fig. 3.5 for
the BDE142/07 set where MAD for HOFs is 3.96 which increases to 6.14 kcal/mol

Fig. 3.5 Mean absolute deviation for the performance of some representative functionals in
calculating heats of formation and bond dissociation enthalpies
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for BDEs. On the other hand, even though PBE0 [15, 58, 64] leads to MAD of
6.46 kcal/mol for HOFs, the corresponding MAD for BDEs is reduced to
3.87 kcal/mol, benefiting from error cancelations between HOFs of molecules and
radicals. As shown in Table 3.4, such favorable error cancelations are most sig-
nificant for LDA(e.g., SPL [11, 55]), GGA(e.g., PBE [15]), and the HF method.

As for DHDFs, we find that MAD associated with XYG3 is 1.45 kcal/mol for
HOFs, which is slightly increased to 1.87 kcal/mol for BDEs, being quite satis-
factory for both quantities. MADs for HOFs are 2.98 (B2PLYP-D [30]), 3.33
(MC3BB [28]), 4.47 (B2PLYP [29]), and 5.42 (B2GP-PLYP [65]), the corre-
sponding errors for BDEs are 2.65 (MC3BB), 2.51 (B2PLYP-D), 2.64 (B2GP-
PLYP), and 3.44 (B2PLYP). In comparison, G2 and G3 give MADs of 1.76, and
0.80 kcal/mol, respectively, for HOFs, and 2.35, and 1.35 kcal/mol, respectively,
for BDEs.

Table 3.4 Statistic theoretical errors (in kcal/mol)a,b for bond dissociation enthalpies (BDEs) at
298 K (the BDE142/07 set) and the associated set of heats of formations (HOFs)

Method BDE HOF

AD MAD Max+ Max- AD MAD Max+ Max-

1st Rung SPL -16.79 16.81 1.02 -48.95 137.63 137.63 430.65 NA
SVWN -17.79 17.79 0.30 -49.70 142.37 142.37 452.75 NA
SVWN5 -16.01 16.03 1.09 -46.80 130.71 130.71 412.44 NA

2nd Rung BLYP 7.39 8.15 22.71 -13.22 -2.52 10.05 41.66 -43.41
PBE 1.92 4.74 14.46 -21.40 24.21 24.48 89.89 -9.90
BPW91 5.35 6.71 19.82 -16.44 6.23 10.25 49.23 -22.75
BP86 3.13 5.15 16.78 -19.37 28.56 28.56 79.92 NA

3rd Rung M06-L 3.45 4.56 12.01 -10.58 1.69 4.97 21.02 -9.53
TPSS 5.96 6.78 19.05 -10.19 6.91 7.02 23.33 -3.99
VSXC 4.86 5.36 12.18 -7.29 0.92 3.28 14.91 -8.81

4th Rung BHHLYP 7.53 8.12 21.23 -9.01 -29.41 29.51 2.82 -90.79
B3PW91 4.25 5.40 16.80 -12.76 2.79 3.85 18.48 -13.22
B3LYP 5.74 6.14 18.55 -.78 -2.11 3.96 8.50 -19.81
B3P86 1.41 2.20 13.01 -9.68 29.93 29.93 89.51 NA
PBE0 2.91 3.87 12.46 -8.94 5.82 6.46 40.99 -7.24
BMK 0.45 2.16 9.05 -11.07 1.25 2.18 6.99 -5.93
TPSSh 6.18 6.61 18.17 -8.78 0.95 3.48 17.10 -8.68
M06-2X -0.67 2.06 5.16 -12.07 0.37 2.31 15.80 -9.54
M06 0.57 2.32 7.12 -8.94 1.99 3.51 25.89 -4.24

5th Rung XYG3 1.62 1.87 7.34 -3.35 0.01 1.45 6.87 -7.65
MC3BB -1.61 2.65 4.75 -21.46 1.93 3.33 22.36 -10.38
B2PLYP 2.97 3.44 9.26 -6.61 -3.37 4.47 10.24 -21.16
B2PLYP-D 2.14 2.60 6.25 -6.82 -2.70 3.48 8.94 -10.99
B2GP-PLYP 1.85 2.64 6.33 -10.77 -5.08 5.42 3.90 -20.38

Ab initio HF 32.04 32.27 80.66 -6.63 -231.61 231.61 -24.33 -666.43
UMP2 -8.29 9.34 8.62 -57.10 -0.18 12.06 48.34 -25.88
G2 d -2.12 2.35 3.85 -8.88 0.44 1.76 9.39 -7.11
G3 d -0.16 1.35 4.62 -6.56 0.17 0.80 3.60 -4.85

a B3LYP/6–311 ? G(d,p) optimized geometries are adopted for all calculations. ZPEs are scaled with 0.9877. B3LYP/
6–311 ? G(3df, 2p) is used for single point energy calculations [25–27]. Experimental data are from Refs. [8, 9].
b AD: Averaged deviations (Expt. – Calc.), MAD: Mean absolute deviations, RMS: Root-mean-square errors, Max ? :
Maximum positive deviations, Max-: Maximum negative deviations, NA: Not applied
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3.3.2 Error Statistics for Different Bond Types

Statistical analyses are also performed according to bond types in the BDE142/
07 set (see Table 3.5). For 16 comparisons of C–H bonds, B3LYP leads to
MAD = 2.70 kcal/mol, which is one of the best results, on average, as compared
to its own performance against other bond types. XYG3 reduces B3LYP MAD
to only 1.06 kcal/mol. M06-2X and B2PLYP-D give MADs of 1.49 and
1.98 kcal/mol, respectively, while all other DFAs lead to MADs higher than
2.0 kcal/mol. G3 is most satisfactory for C–H bonds, whose MAD is only
0.50 kcal/mol; while G2 is less satisfactory as compared to G3 with MAD being
1.53 kcal/mol.

For 12 comparisons of X–H bonds (X = C), XYG3 performance is degraded,
with MAD being 2.41 kcal/mol. The best DFA performer is M06, whose MAD
is 1.38 kcal/mol, while MC3BB is the second best (MAD = 1.66 kcal/mol).
Note that MAD is more than doubled for G3 to 1.35 kcal/mol, it is slightly
improved to 1.42 kcal/mol for G2, as compared to their own performance for
C–H bonds.

The C–C bond type presents the largest subset in our benchmarking set
(44 comparisons). It covers various chemical situations where a C–C bond is
embedded. MAD of B3LYP is significantly increased to 8.03 kcal/mol. The most
difficult cases are when the carbon is highly alkylated [66–68]. Both XYG3
(MAD = 1.69 kcal/mol) and M06-2X (MAD = 1.41 kcal/mol) present a signifi-
cant improvement, which are comparable to the G3 method (MAD = 1.23 kcal/
mol), while G2 is inferior, giving MAD of 2.51 kcal/mol. This suggests that both
XYG3 and M06-2X have taken good care of middle range correlations [68–70]. In
fact, long-range dispersive correlations are also believed to be taken into account
to some extent [24].

We have also included fifteen X–Y bonds, where X, and Y are neither C nor H
atoms [63]. Accurate description of these bonds is a great challenge as it may
involve subtle balance between hyperconjugative effect and steric repulsion of
lone pair electrons as in HO–OH and H2N–NH2. G3 gives MAD of 2.11 kcal/mol,
being one of the worst sets of its own according to the bond types. MC3BB, being
the best method for this bond type, leads to MAD of 1.45 kcal/mol, whereas
MADs of other DHDFs are within 3.0–3.6 kcal/mol.

B3LYP performance for C–X (X = O, N, S) in alcohols, ethers, thiols, sul-
fides, and amines is poor. For a total of 40 comparisons in three subsets, MAD is
as high as 7.4 kcal/mol. Increasing alkylation again leads to increasing errors.
PBE0 is better, which nearly halves the errors. The M06 family is even better.
While M06 is good for C–O/C–N bonds, with MADs of 1.67/1.79 kcal/mol;
M06-2X is good for C–S with MAD of 1.06 kcal/mol. XYG3 is fair, with MADs
around 2 kcal/mol. The best DHDF is MC3BB, whose MADs are 1.32, 1.98, and
1.04 kcal/mol for C–X (X = O, N, S, respectively). Even the Gn methods are not
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satisfactory for C–O, with MADs of 3.50 and 2.12 kcal/mol, for G2 and G3,
respectively.

Fifteen C–halogen bonds have been included in Table 3.5 for comparisons. G2
is particularly erroneous for these sets, with MADs of 3.35 and 2.93 kcal/mol for
C–F and C–Cl, respectively. G3 improves over G2 by including the spin-orbital
corrections for atoms [9]. Such corrections can be conveniently included in the

Table 3.5 Bond dissociation enthalpies (BDEs, kcal/mol) at 298 K (BDE142/07): Theoretical
errors a for various bond types

Method C–H
(16)

X–H
(12b)

C–C
(44)

C–O
(19)

C–N
(12)

C–F
(5)

C–Cl
(10)

C–S
(9)

X–Y
(15c)

1st Rung SPL 8.05 8.79 15.03 19.79 18.03 30.32 21.78 17.57 24.74
SVWN 8.68 9.71 16.18 21.00 19.25 30.91 21.09 18.97 26.18
SVWN5 7.79 8.39 14.07 18.78 17.13 28.54 22.09 16.34 23.87

2nd Rung BLYP 4.18 4.95 10.97 10.17 10.55 2.57 4.94 8.08 6.28
PBE 4.61 4.88 4.92 5.44 3.68 4.45 3.02 2.76 6.58
BPW91 5.40 5.65 8.57 8.18 7.95 2.08 2.86 5.10 5.72
BP86 2.75 2.83 6.77 6.44 5.76 3.07 2.61 3.66 5.91

3rd Rung M06-L 4.21 4.40 5.03 5.53 6.62 2.00 2.89 3.54 3.42
TPSS 3.27 3.91 9.72 8.21 9.62 2.38 2.85 5.61 4.91
VSXC 3.45 3.78 6.50 6.98 7.66 2.03 2.13 4.59 5.11

4th Rung BHHLYP 2.96 4.75 8.02 9.44 8.47 9.42 7.69 9.66 13.55
B3PW91 4.44 3.64 7.16 6.06 6.28 1.89 3.06 4.97 4.15
B3LYP 2.70 3.04 8.03 7.25 7.87 2.64 4.74 7.13 5.51
B3P86 2.21 1.22 4.58 3.59 3.14 2.19 2.43 3.09 3.17
PBE0 4.15 4.09 4.65 4.10 3.79 1.36 2.35 3.17 3.17
BMK 1.44 1.99 2.71 2.44 1.15 1.64 1.72 1.30 2.87
TPSSh 3.06 3.48 9.08 7.95 9.18 3.91 4.41 5.90 4.65
M06-2X 1.49 2.31 1.41 3.17 2.16 2.02 2.87 1.06 2.95
M06 2.09 1.38 2.74 1.67 1.79 3.13 2.76 2.41 2.76

5th Rung XYG3 1.06 2.41 1.69 2.10 2.44 1.62 0.78 1.52 3.09
MC3BB 2.18 1.66 4.11 1.32 1.98 4.05 4.06 1.04 1.45
B2PLYP 2.19 2.87 4.15 3.61 4.25 1.60 2.18 3.73 3.55
B2PLYP-

D
1.98 2.71 2.65 2.46 2.86 1.57 1.70 2.72 3.04

B2GP-
PLYP

2.10 2.52 3.15 2.15 2.61 1.28 1.82 2.85 3.36

Ab initio HF 23.75 26.85 31.23 32.95 30.91 42.85 33.14 32.49 44.75
UMP2 5.44 4.28 14.28 7.47 9.18 13.95 12.50 3.73 5.24
G2 d 1.53 1.42 2.51 3.50 2.60 3.35 2.93 1.41 1.65
G3 d 0.50 1.35 1.23 2.12 1.32 0.99 1.30 0.85 2.11

a Mean absolute deviation, (MAD, kcal/mol). B3LYP/6–311 ? G(d,p) optimized geometries are
adopted for all calculations. ZPEs are scaled with 0.9877. B3LYP/6–311 ? G(3df, 2p) is used for
single point energy calculations [25–27]. Experimental data are from Refs. [8, 9].
b X–H: N–H, O–H, S–H, P–H, S–H.
c X–Y: O–O, N–N, N–O, C–Si, Si–Si, Cl–O, Cl–N.
d Data from Refs. [8, 9]. Calculated with the Gn theory [7–9]
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BDE calculations with DFAs. For these C–halogen bonds, MADs are reduced
from B3LYP to B3PW91 to PBE0. These traditional hybrid functional perform
better than the M06 family. The 3rd rung functionals are similarly good as the 4th
rung functionals. With the exception of MC3BB, other DHDFs are good per-
formers. For example, XYG3 gives MADs of 1.62 and 0.78 kcal/mol for C–F and
C–Cl, respectively.

3.3.3 Basis Set Dependence of B3LYP, MP2 and XYG3

Figure 3.6 shows the basis set dependence for BDEs in the BDE92/07 set [10, 41].
For B3LYP, MAD from B1 = 6-311 ? G(d, p) is 5.86 kcal/mol and that from
B10 = 6-311 ++G(3df, 3pd) is 5.18 kcal/mol. Hence the basis set dependence is
not evident. Basis set dependence for BDEs associated with MP2 is also signifi-
cantly attenuated as compared to that for the corresponding HOFs, while it is still
sizable as compared to that of BDEs associated with B3LYP. MAD from UMP2/
B1 is 6.18 kcal/mol, which increases, rather than decreases, to 8.41 for UMP2/
B10. This reflects that higher order correlation effects have to be introduced.
XYG3 is particularly satisfying for BDE predictions. Even with XYG3/B1, MAD
for the BDE92/07 set is 3.29 kcal/mol, smaller than the best values of UMP2/B1
(6.18) and B3LYP/B10 (5.17). Improving basis set improves steadily the XYG3
performance, such that XYG3/B10 gives MAD = 1.46 kcal/mol.

Fig. 3.6 Mean absolute deviations (MADs): basis set dependence for bond dissociation energies
against the BDE92/07 set. B1: 6-311 ? G(d, p), B2: 6-311 ? G(2d, p), B3: 6-311 ? G(2d, 2p),
B4: 6-311 ? G(3d, 2p), B5: 6-311 ? G(2df, p), B6: 6-311 ? G(2df, 2p), B7: 6-311 ? G(3df),
B8: 6-311 ? G(3df, p), B9: 6-311 ? G(3df, 2p), and B10: 6-311 ++G(3df, 3pd)
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3.4 Reaction Barrier Heights Against the BH76
and PES(H-CH4) Sets

3.4.1 Error Statistics Against the BH76 Set for Various DFT
Methods

Zhao and Truhlar have compiled several benchmark sets for reaction barrier
heights in 2004 [17, 23, 71–73]. These sets are grouped together and dubbed the
name BH76/04. The functional performances summarized in Table 3.6 were based
on the calculations with the 6-311 ? G(3df, 2p) basis set [25–27].

Common DFAs are usually problematic for the stretched partially broken bonds
due to the so-called self-interaction errors (SIE) [57]. This has led to a general
tendency for common DFT methods to underestimate the reaction barrier heights.
Table 3.6 shows that MAD is 15.18 kcal/mol for LDA(SPL), which is reduced to
9.04 and 8.22 kcal/mol for GGAs of PBE and BLYP, respectively, and is further

Table 3.6 Reaction barrier heights (RBHs, kcal/mol) for Truhlar’s BH76/04 set: a Theoretical
errors.b

Method UM10 NS16 HAT12 HT38 Total (76)

1st Rung SPL 5.90 8.56 23.24 17.86 15.18
SVWN 5.86 8.59 23.20 18.01 15.25
SVWN5 6.01 8.46 23.44 17.78 15.16

2nd Rung BLYP 3.57 7.33 14.69 7.77 8.22
PBE 3.41 6.94 14.97 9.52 9.04
BPW91 2.88 5.95 13.02 7.59 7.48
BP86 3.94 6.87 15.55 9.38 9.11

3rd Rung M06-L 1.86 3.33 5.86 4.36 4.05
TPSS 4.08 7.84 14.67 7.93 8.47
VSXC 2.45 5.01 7.49 5.12 5.12

4th Rung BHHLYP 1.95 1.42 3.01 2.60 2.33
B3LYP 2.02 3.38 8.51 4.43 4.54
B3PW91 1.96 2.18 7.22 4.25 3.98
B3P86 2.87 2.97 9.15 5.80 5.35
X3LYP 2.06 3.41 8.51 4.57 4.62
PBE0 2.23 1.99 6.66 4.44 3.99
B97-1 0.94 1.38 1.47 1.27 1.28
B97-D 3.14 6.02 9.72 7.32 6.87
xB97X 2.36 1.24 2.27 2.17 2.01
xB97X-D 1.89 0.80 2.05 2.31 1.90
M06-2X 0.94 1.38 1.47 1.27 1.28
M06 1.68 1.62 3.41 2.23 2.22

5th Rung XYG3 0.98 1.42 1.38 0.75 1.02
MC3BB 1.50 0.72 2.39 0.82 1.13
B2PLYP 0.73 2.16 3.05 1.81 1.94

(continued)
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reduced to 4.54 for the most widely used hybrid functional B3LYP. Hence, there is
an improvement along the rungs up. The improvement with the third rung is,
however, controversy. While M06-L gives MAD of 4.05 kcal/mol for this property,
TPSS leads to MAD of 8.47 kcal/mol, which is comparable to those of GGAs.

Large portion of HF exchange proves to be valuable here. Doubled portion of
HF exchange in M06-2X improves its performance over M06, with MAD of
1.28 kcal/mol for the former and 2.22 kcal/mol for the latter against the BH76 set.

Hybrid B97-1 functional [74] is also found to be very satisfactory in reaction
barrier height calculations, giving MAD of only 1.28 kcal/mol for the BH76 set.
Disturbingly, B97-D [75], which is a re-optimized version with the dispersion term
is very poor for BH76 set, whose MAD is as high as 6.87 kcal/mol.

DHDFs generally represent an important advance. B2PLYP, MC3BB, XYG3,
and B2GP-PLYP lead to MADs of 1.94, 1.13, 1.02 and 0.97 kcal/mol, respec-
tively. This accuracy is comparable to that of the QCISD(T) ab initio method with
the same basis set (MAD = 1.10 kcal/mol). We emphasize that barrier heights are
not included in the XYG3 training set, but are included in the M06 family,
MC3BB, and B2GP-PLYP training sets. Probably it is the presence of * 80 %
exact exchange in XYG3 that decreases the self-interaction errors (SIE) of local
DFT functionals.

3.4.2 Potential Energy Curves
for the H 1 CH4 ? H2 1 CH3 Reaction

Accurate potential energy surfaces (PES) are essential for using theory to predict
chemical processes, but the accuracy depends critically on the level of the
theory. Because of its important roles in CH4/O2 combustion chemistry, the
H ? CH4 ? H2 ? CH3 reaction has long been the subject of both experimental
and theoretical interest [76].

Table 3.6 (continued)

Method UM10 NS16 HAT12 HT38 Total (76)

B2PLYP-D 0.81 2.51 3.29 2.21 2.26
B2GP-PLYP 0.98 0.90 1.86 0.73 0.97

Ab initio HF 3.82 6.69 16.86 13.41 11.28
UMP2 5.43 1.69 11.42 3.82 4.78
QCISD(T)c 0.53 1.08 1.21 1.24 1.10

a BH76/04 set contains UM10, NS16, HAT12, and HT38 subsets, where HAT12 refers to the
forward and reverse barrier heights for 6 heavy-atom transfer reactions, NS16 refers to
the forward and reverse barrier heights for 8 nucleophilic substitution reactions, UM10 refers to
the forward and reverse barrier heights for 5 association and unimolecular reactions, and HT38
refers to the forward and reverse barrier heights for 19 hydrogen transfer reactions.
b Mean absolute deviation, (MAD, kcal/mol). The calculations were performed using geometries
from Truhlar database website [73]. W1 reference data are from Ref. [71].
c Data from Ref. [71]
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Figure 3.7 presents a point-to-point comparison among the results of various
methods along the reaction coordinate. It is expected that the CCSD(T)/
6-311 ++G(3df, 2pd) curve should be the most accurate, leading to a barrier of
15.03 kcal/mol. Remarkably XYG3 predicts the barrier of 15.08 kcal/mol, and is
within 0.44 kcal/mol of the CCSD(T) results for the entire reaction path.

B3LYP and MP2 are both inadequate for the potential energy surface calcu-
lations. B3LYP underestimates the barrier height by 5.40 kcal/mol, whereas MP2
overestimates the barrier height by 5.81 kcal/mol. B3LYP and MP2 are also poor
for reaction heats. While B3LYP underestimates it by 1.89 kcal/mol, MP2 over-
estimates the endothermicity of the reaction by 4.70 kcal/mol.

Figure 3.8 gives a comparison among other DHDFs and CCST(T) results.
MC3BB is less satisfactory for this reaction. The maximum error is as high as
2.85 kcal/mol, occurring at the product area. As comparing the MC3BB curve with
the MP2 curve, it is clear that MC3BB inherits some weakness of MP2. B2PLYP

Fig. 3.7 Comparison of the
calculated potential energy
curves for the
H ? CH4 ? H2 ? CH3

reaction with B3LYP, MP2
and XYG3 [24]. The
CCSD(T)/6-311 ++G(3df,
2pd) data are used as the Ref.
[76]. Reaction coordinate is
defined as [R(CH)-R(HH)]
(in Å)

Fig. 3.8 Comparison of the
calculated potential energy
curves for the
H ? CH4 ? H2 ? CH3

reaction with MC3BB,
B2PLYP and B2GP-PLYP
[10]. The CCSD(T)/6-
311 ++G(3df, 2pd) data are
used as the Ref. [76].
Reaction coordinate is
defined as [R(CH)-R(HH)]
(in Å)
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leads to very good reaction heat for this reaction (2.58 as compared to 2.59 kcal/
mol of CCSD(T)). However, B2PLYP underestimates the barrier height by
1.83 kcal/mol. It is shown that the B2GP-PLYP functional is quite satisfactory for
the description of this potential energy curve. The barrier height is 0.41 kcal/mol
lower and the product level is 0.61 kcal/mol higher than the corresponding
CCSD(T) values.

3.4.3 Basis Set Dependence for the Calculated Reaction
Barrier Heights

Figure 3.9 displays the results of basis set dependence against BH76 as comparing
the performance of B3LYP, MP2, and XYG3 with basis sets from B1 = 6-
311 ? G(d, p) to B10 = 6311 ++G(3df, 3pd) [25–27]. The basis set dependence is
found to be quite mild for B3LYP. This is also true for MP2 and XYG3, showing
that triple-zeta basis set plus a minimum set of polarization functions is generally
good for barrier height predictions. B3LYP with various basis sets leads to MAD
around 4.6 kcal/mol. MAD from MP2/B1 is 5.82 kcal/mol, which is reduced to
4.44 kcal/mol with B10. XYG3 is obviously superior to B3LYP and MP2, leading
to MAD around 2.0 kcal/mol for B1, B3, B4, and B7 and around 1.0 kcal/mol for
other basis sets.

We have also studied the basis set dependence for the calculated potential
energy curves with XYG3. Figure 3.10 shows such a comparison. The B7 = 6-
311 ? G(3df) results is not included as it contains no polarization function on
hydrogen atoms, which it is certainly unbalanced for this H-abstraction system.
The close agreement among the results of various basis sets is encouraging, which
once more demonstrates quite good basis set convergence for the XYG3
functional.

Fig. 3.9 Mean absolute deviations (MADs): basis set dependence for reaction barrier heights
against the BH76/04 set
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3.5 Nonbonded Interactions Against the NCIE31
and PES(CH4-C6H6) Sets

3.5.1 Error Statistics Against the NCIE31 Set for Various
DFT Methods

Noncovalent interactions (NCIs) determine the structures of biomacromolecules
like DNA, RNA, and proteins [77–83]. To elucidate their geometric and electronic
structures, reliable calculations are mandatory [83–87]. Zhao and Truhlar have
constructed a set, dubbed NCIE31/05, which has now been frequently used as a
training and/or testing set of NCIs for the development of DFAs [17, 23, 71–73].
This set covers various kinds of NCIs, consisting of 6 hydrogen bond (HB)
complexes, 7 charge-transfer (CT) complexes, 6 dipole interaction (DI) com-
plexes, 7 weak interaction (WI) complexes, and 5 p-p stacking (PPS) complexes.

The errors against NCIE31/05 for various DFT methods are summarized in
Table 3.7. The basis set used is generally 6-311 ? G(3df, 2p). Basis set super-
position error corrections are not included, which may facilitates the NCI calcu-
lations of intramolecular interactions. Geometries and reference energies are taken
from the Truhlar database website without modifications [73].

LDA(SPL [11, 56]) leads to a relatively good performance for WI7
(MAD = 0.34 kcal/mol) and PPS5 (MAD = 0.68 kcal/mol), but is particularly
poor for HB6, CI7, and DI6, with MADs of 4.61, 6.83, and 3.13 kcal/mol, respec-
tively. The final MAD for the whole NCIE31/05 set is as high as 3.23 kcal/mol.

Fig. 3.10 Basis set dependence for the calculated potential energy curves of the
H ? CH4 ? H2 ? CH3 reaction [41]
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GGAs such as BLYP [13, 21] and PBE [15] lead to MAD of 1.45 and 1.20 kcal/
mol for the same set, showing a good improvement in general. PBE is quite
satisfactory for HB6, DI6, and WI7 (MADs = 0.41, 0.56, and 0.16 kcal/mol,
respectively), but is pretty bad for CT7 and PPS5 (MADs = 3.01 and 1.84 kcal/
mol, respectively). TPSS [16] (MAD = 1.13 kcal/mol) improves over PBE
slightly, while M06-L [17] (MAD = 0.70 kcal/mol) displays a clear improvement.

The M06 family of functionals is indeed outstanding, giving MADs of 0.31, and
0.46 kcal/mol for M06-2X, and M06, respectively [23]. In particular, M06-2X and

Table 3.7 Noncovalent interaction energies (kcal/mol) for Truhlar’s NCIE31/05a set:theoretical
errorsb

Method HB6 CT7 DI6 WI7 PPS5 Total (31)

1st Rung SPL 4.61 6.83 3.13 0.34 0.68 3.23
SVWN 4.85 7.03 3.27 0.36 0.76 3.36
SVWN5 4.60 6.82 3.11 0.34 0.68 3.22

2nd Rung BLYP 1.20 1.71 0.85 0.41 3.58 1.45
PBE 0.41 3.01 0.56 0.16 1.84 1.20
BPW91 1.67 1.44 0.98 0.67 3.79 1.60
BP86 0.75 2.10 0.64 0.61 3.18 1.39

3rd Rung M06-L 0.26 1.96 0.65 0.20 0.20 0.70
TPSS 0.43 2.24 0.50 0.20 2.48 1.13
VSXC 0.35 2.94 1.31 1.01 7.26 2.38

4th Rung B3LYP 0.63 0.76 0.61 0.27 2.93 0.95
B3PW91 1.06 0.67 0.77 0.49 3.16 1.13
B3P86 0.35 1.13 0.48 0.43 2.51 0.92
X3LYP 0.41 1.03 0.38 0.17 2.47 0.82
PBE0 0.40 1.13 0.36 0.13 1.79 0.72
B97-1 0.37 1.26 0.36 0.11 1.56 0.70
B97-D 0.37 1.91 0.42 0.18 0.20 0.66
xB97X 0.87 0.74 0.80 0.05 0.44 0.57
xB97X-D 0.37 0.33 0.38 0.06 0.58 0.33
M06-2X 0.39 0.43 0.29 0.20 0.22 0.31
M06 0.22 1.12 0.45 0.23 0.18 0.46

5th Rung XYG3 0.38 0.64 0.19 0.12 0.26 0.32
MC3BB 0.64 0.27 0.59 0.24 1.06 0.52
B2PLYP 0.35 0.75 0.30 0.12 1.30 0.53
B2PLYP-D 0.62 1.17 0.48 0.13 0.28 0.55
B2GP-PLYP 0.35 0.70 0.23 0.09 0.77 0.41

Ab initio HF 2.25 3.61 2.17 0.29 3.32 2.27
UMP2 0.99 0.47 0.29 0.08 1.69 0.64
QCISD(T) d 0.90 0.62 0.47 0.07 0.95 0.57

a NCIE31/05 set consists of 6 hydrogen bond (HB) complexes, 7 charge-transfer (CT) com-
plexes, 6 dipole interaction (DI) complexes, 7 weak interaction (WI) complexes, and 5 p - p
stacking (PPS) complexes. b Mean absolute deviation, (MAD, kcal/mol). Our calculations used
the 6-311 ? G(3df, 2p) basis sets with geometries from Truhlar database website [73]. Coun-
terpoise corrections [90] for possible basis set superposition errors were not included. W1 ref-
erence data are from Ref. [72]
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M06 give MADs of 0.22 and 0.18 kcal/mol, respectively, for the PPS5 subset,
where the traditional hybrid functionals such as B3LYP [13, 19–21] (MAD =

2.93 kcal/mol) and PBE0 [15, 58, 64] (MAD = 1.79 kcal/mol) find this dispersion
dominant subset extremely difficult.

It has been argued that it is due to an artifactual exchange effect that the
traditional functionals may give dispersion-like binding near minimum-energy
separations [88]. Nevertheless, dispersion is a dynamical correlation effect, arising
from instantaneous fluctuation of the electron density [88, 89]. Even though some
nonlocal information is introduced by including the kinetic-energy density, meta-
GGAs still do not incorporate the physics of dispersion correlations [88].

Conventional DFAs miss the R-6 decay behavior in the long-range correlation
[86]. The delocalized PT2 term in DHDFs, on the other hand, captures the correct long-
range behavior by construction. Hence, XYG3 leads to MAD of 0.32 kcal/mol for the
NCIE31/05 set, showing significant improvement over B3LYP on all its five subsets.

Note that these nonbonded interactions were not included in the XYG3 training
set, but were included in the M06 training set. The performances of other DHDFs are
comparable to that of XYG3 for other subsets with the exception of the PPS subset
(see Table 3.7). It has been argued that it is the type of the orbitals used to evaluate
the PT2 term that makes such difference among different DHDFs [10, 24]. Generally,
only * 30 % PT2 correlation is used to replace part of the DFT correlation. This
PT2 portion is too small to embrace the full pieces of long-range dispersion [91].

There are other empirical and nonempirical approaches to modeling dispersion
interactions within DFT methods [92–98]. Indeed, as shown in Table 3.7, B97-D and
B2PLYP-D significantly improve over B97-1 and B2PLYP for the description of the
PPS subset. These –D methods have imposed the correct long-range R-6 interatomic
dependence by adding the functionals a posterior force field (FF) like dispersion
correction. While such DFT-D schemes can be implemented efficiently without
additional computational cost, it includes many empirical parameters, and suffers
from some inherent limitations [94, 95, 99]. Especially, the many-body correlation
effects and anisotropy effects in the long-range dispersive interactions, as well as the
orbital-dependence in the medium range [30, 69, 95, 96, 99, 100], are more subtle,
which are difficult to be approximated in the pair-wise additive FF models.

3.5.2 Intermolecular Potential Curves for the CH4-C6H6

Complex

As steric constraints might prevent the ligand from adopting its optimum geom-
etry, proper description of the whole potential energy curve is very important for
describing the binding of ligands to biological systems. Figure 3.11 compares the
intermolecular potentials of the CH4-C6H6 complex calculated by B3LYP, MP2,
and XYG3 [24]. The CCSD(T) results at the complete basis set (CBS) limit are
used as Ref. [101].
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As shown in Fig. 3.11, B3LYP displays a repulsive potential energy curve,
whereas MP2 leads to a potential energy curve which is too attractive. The XYG3
results compare very well with those of CCSD(T), where the deviations are
generally smaller than 0.1 kcal/mol. It should be emphasized that basis set
superposition error (BSSE [90]) corrections were not included in all these calcu-
lations. This omission, although may facilitate real applications, can deteriorate the
statistics for some functionals, as well as MP2, if their potential energy curve is
overbonded, or if they were developed when BSSE corrections were taken into
account. The BSSE effects of XYG3 have been checked by Sherrill and co-
workers [102]. The counterpoise-corrected XYG3 curve was found to be under-
bound, and it was suggested to use the uncorrected results for XYG3.

Figure 3.12 plots the intermolecular potentials for other DHDFs. It is an
obvious advancement that all these fifth rung functionals correctly lead to
appreciable attractive wells, showing the importance to include the delocalized
PT2 correlations. Quantitatively, however, all these DHDFs underestimate the
binding energies. B2PLYP gives only half of the binding energy, MC3BB and
B2GP-PLYP recover two-third of the binding energy as compared to the CCSD(T)
reference value. Errors become quite significant in the wall area. For example, at
R = 3.2 Å, MC3BB, B2GP-PLYP, and B2PLYP are too repulsive by 0.78, 0.95,
and 1.64 kcal/mol, respectively, as compared to the CCSD(T)/CBS value.

It was found that meta-GGA functionals demand a very large integration grid to
avoid spurious oscillations on potential energy curves for dispersion-bound com-
plexes [88]. Wiggles are still detectible for MC3BB which uses B95 [103] meta-
GGA correlation functional, even though a fine unpruned (250,590) grid has
already been adopted in the calculations. Similar problems were encountered for
the M06 family of functionals.

All other DFA calculations listed in Figs. 3.11 and 3.12 used a cheaper pruned
(75,302) grid. In fact, meta-GGA calculations with finer grid can be more
expensive than the PT2 calculations. For the CH4-C6H6 complex with the

Fig. 3.11 The
intermolecular potentials for
the CH4-C6H6 complexes
from B3LYP, MP2, and
XYG3. R is defined as carbon
of CH4 to the ring center of
C6H6 (in Å). Data in solid
blue are CCSD(T) at the
complete basis set limit from
Ref. [101]. A pruned (75,302)
grid is used for B3LYP and
XYG3
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6-311 ? G(3df,2p) basis set, it takes about 7 min to run a M06-L calculation using
the pruned (75,302) grid for one point on the potential curve with a dual processor
Intel Xeon 5345–3.33 GHz Clovertown computer. It increases to *11
and *40 min with (99,590) and (250,590) grids, respectively, while XYG3 takes
about 25 min job cpu time [10].

Basis set dependence of XYG3 on the calculated intermolecular potentials of
the CH4-C6H6 complex has also been investigated [41]. The results are reproduced
in Fig. 3.13. The basis set dependence is not very significant for this system. All
basis sets from B1 = 6-311 ? G(d, p) to B10 = 6-311 ++G(3df, 3pd) lead to
good results, correctly predicting the equilibrium geometry. The largest deviation
(0.44 kcal/mol) occurs at the wall area with basis set of B2 = 6-311 ? G(2d, p).
XYG3/B1 seems to be of practical value for NCIs, partly benefiting from BSSE.

Fig. 3.12 The
intermolecular potentials for
the CH4-C6H6 complexes
from MC3BB, B2PLYP and
B2GP-PLYP. R is defined as
carbon of CH4 to the ring
center of C6H6 (in Å). Data in
solid blue are CCSD(T) at the
complete basis set limit from
Ref. [101]. An unpruned
(250,590) grid is used in
calculations with MC3BB,
while a pruned (75,302) grid
is used for other DHDFs

Fig. 3.13 Basis set dependence for the calculated intermolecular potentials of the CH4-C6H6

complexes [41]. We omit the B7 results as it contains no polarization function on hydrogen
atoms, and hence is unbalanced. Results for B9 are also not shown here, as B9 is the default 6-
311 ? G(3df, 2p) basis set used in this work

3.5 Nonbonded Interactions Against the NCIE31 and PES(CH4-C6H6) Sets 71



References

1. Lide DR (2001) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton
2. Callonion JH, Hirota E, Kuchitsu K, Lafferty WJ, Maki AG (1976) Numerical data and

function relationships in science and technology. Springer, West Berlin
3. Masterton ML, Slowinski EJ, Stanitski CL (1983) Chemical principles. CBS College

Publishing, Philadelphia
4. Neutral Thermochemical Data (2005) NIST Chemistry WebBook, http://webook.nist.gov/

chemistry. Accessed 15 Aprl 2013
5. Chase MW, Davies CA, Downey JR et al (1985) Janaf thermochemical tables—3rd

edition.Parts 1 (Al-Co). J Phys Chem Ref Data 14:1–926. doi:10.1063/1.555747
6. Ruscic B, Boggs JE, Burcat A et al (2005) IUPAC critical evaluation of thermochemical

properties of selected radicals. Part I. J Phys Chem Ref Data 34:573–656. doi:10.1063/
1.1724828

7. Pople JA, Head-Gordon M, Fox DJ et al (1989) Gaussian-1 theory - A general procedure for
prediction of molecular-energies. J Chem Phys 90:5622–5629. doi:10.1063/1.456415

8. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for
molecular-energies of 1st-row and 2nd-row compounds. J Chem Phys 94:7221–7230.
doi:10.1063/1.460205

9. Curtiss LA, Raghavachari K, Redfern PC et al (1998) Gaussian-3 (G3) theory for molecules
containing first and second-row atoms. J Chem Phys 109:7764–7776. doi:10.1063/1.477422

10. Zhang IY, Xu X (2011) Doubly hybrid density functional for accurate description of
thermochemistry, thermochemical kinetics and nonbonded interactions. Int Rev Phys Chem
30:115–160. doi:10.1080/0144235X.2010.542618

11. Slater JC (1960) Quantum theory of atomic structure, vol 2. McGraw-Hill, New York
12. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation

endergies for local spin-density calculations–a critical analysis. Can J Phys 58:1200–1211.
doi:10.1139/p80-159

13. Becke AD (1988) Density-functional exchange-energy approximation with correct
asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

14. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces:
Applications of the generalized gradient approximation for exchange and correlation. Phys
Rev B 46:6671–6687. doi:10.1103/PhysRevB.46.6671

15. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple.
Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

16. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional
ladder: Nonempirical meta-generalized gradient approximation designed for molecules and
solids. Phys Rev Lett 91:146401. doi:10.1103/PhysRevLett.91.146401

17. Zhao Y, Truhlar DG (2006) A new local density functional for main-group
thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent
interactions. J Chem Phys 125:194101. doi:10.1063/1.2370993

18. Van Voorhis T, Scuseria GE (1998) A novel form for the exchange-correlation energy
functional. J Chem Phys 109:400–410. doi:10.1063/1.476577

19. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange.
J Chem Phys 98:5648–5652. doi:10.1063/1.464913

20. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of
vibrational absorption and circular-dichroism spectra using density-functional force-fields.
J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

21. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy
formula into a functional of the electron-density. Phys Rev B 37:785–789. doi:10.1103/
PhysRevB.37.785

72 3 Benchmarking the Performance of DHDFs for the Main Group Chemistry

http://webook.nist.gov/chemistry
http://webook.nist.gov/chemistry
http://dx.doi.org/10.1063/1.555747
http://dx.doi.org/10.1063/1.1724828
http://dx.doi.org/10.1063/1.1724828
http://dx.doi.org/10.1063/1.456415
http://dx.doi.org/10.1063/1.460205
http://dx.doi.org/10.1063/1.477422
http://dx.doi.org/10.1080/0144235X.2010.542618
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.91.146401
http://dx.doi.org/10.1063/1.2370993
http://dx.doi.org/10.1063/1.476577
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1103/PhysRevB.37.785


22. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with
damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620.
doi:10.1039/B810189B

23. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group
thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and
transition elements: two new functionals and systematic testing of four M06-class
functionals and 12 other functionals. Theor Chem Acc 120:215–241. doi:10.1007/s00214-
007-0310-x

24. Zhang Y, Xu X, Goddard WA (2009) Doubly hybrid density functional for accurate
descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc
Natl Acad Sci USA 106:4963–4968. doi:10.1073/pnas.0901093106

25. Frisch MJ et al. (2003) Gaussian 03, revision A. 1. Gaussian, Inc, Pittsburgh
26. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital

methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654.
doi:10.1063/1.438955

27. Frisch MJ, Pople JA, Binkley JS (1984) Self–consistent molecular orbital methods 25.
Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269. doi:10.1063/
1.447079

28. Zhao Y, Lynch BJ, Truhlar DG (2004) Doubly hybrid meta DFT: New multi-coefficient
correlation and density functional methods for thermochemistry and thermochemical
kinetics. J Phys Chem A 108:4786–4791. doi:10.1021/jp049253v

29. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order
correlation. J Chem Phys 124:034108–034116. doi:10.1063/1.2148954

30. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion
corrections: higher accuracy and extended applicability. Phys Chem Chem Phys
9:3397–3406. doi:10.1039/b704725h

31. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and
quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem
Chem Phys 7:3297–3305. doi:10.1039/B508541A

32. Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-
functional theory. J Chem Phys 137:044104. doi:10.1063/1.4733672

33. Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface: Wave-
vector analysis. Phys Rev B 15:2884–2901. doi:10.1103/PhysRevB.15.2884

34. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories.
J Chem Phys 98:1372–1377. doi:10.1063/1.464304

35. Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and
solids by the spin-density-functional formalism. Phys Rev B 13:4274–4298. doi:10.1103/
PhysRevB.13.4274

36. Perdew JP, Emzerhof M, Burke K (1996) Rationale for mixing exact exchange with density
functional approximations. J Chem Phys 105:9982–9985. doi:10.1063/1.472933

37. Mori-Sánchez P, Cohen AJ, Yang WT (2006) Self-interaction-free exchange-correlation
functional for thermochemistry and kinetics. J Chem Phys 124:091102. doi:10.1063/
1.2179072

38. Görling A, Levy M (1993) Correlation-energy functional and its high-density limit obtained
from a coupling-constant perturbation expansion. Phys Rev B 47:13105–13113.
doi:10.1103/PhysRevB.47.13105

39. Cremer D (2001) Density functional theory: coverage of dynamic and non-dynamic electron
correlation effects. Mol Phys 99:1899–1940. doi:10.1080/00268970110083564

40. Wu JM, Xu X (2007) The X1 method for accurate and efficient prediction of heats of
formation. J Chem Phys 127:214105–214113. doi:10.1063/1.2800018

41. Zhang I, Luo Y, Xu X (2010) Basis set dependence of the doubly hybrid XYG3 functional.
J Chem Phys 133:104105. doi:10.1063/1.3488649

42. Boese A, Martin J, Handy NC (2003) The role of the basis set: Assessing density functional
theory. J Chem Phys 119:3005–3014. doi:10.1063/1.1589004

References 73

http://dx.doi.org/10.1039/B810189B
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1073/pnas.0901093106
http://dx.doi.org/10.1063/1.438955
http://dx.doi.org/10.1063/1.447079
http://dx.doi.org/10.1063/1.447079
http://dx.doi.org/10.1021/jp049253v
http://dx.doi.org/10.1063/1.2148954
http://dx.doi.org/10.1039/b704725h
http://dx.doi.org/10.1039/B508541A
http://dx.doi.org/10.1063/1.4733672
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1063/1.464304
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1063/1.2179072
http://dx.doi.org/10.1063/1.2179072
http://dx.doi.org/10.1103/PhysRevB.47.13105
http://dx.doi.org/10.1080/00268970110083564
http://dx.doi.org/10.1063/1.2800018
http://dx.doi.org/10.1063/1.3488649
http://dx.doi.org/10.1063/1.1589004


43. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) Assessment of Gaussian-3 and
density functional theories for a larger experimental test set. J Chem Phys 112:7374–7383.
doi:10.1063/1.481336

44. Job G, Herrmann F (2006) Chemical potential—A quantity in search of recognition. Eur J
Phys 27:353. doi:10.1088/0143-0807/27/2/018

45. Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness,
hardness and softness kernels, and relations among these quantities. J Chem Phys
88:2554–2557. doi:10.1063/1.454034

46. Ingold CK (1934) Principles of an electronic theory of organic reactions. Chem Rev
15:225–274. doi:10.1021/cr60051a003

47. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on
valence ionization potentials and electron affinities. J Chem Phys 2:782–793. doi:10.1063/
1.1749394

48. Yokojima S, Yoshiki N, Yanoi W, Okada A (2009) Solvent effects on ionization potentials
of guanine runs and chemically modified guanine in duplex DNA: Effect of electrostatic
interaction and its reduction due to solvent. J Phys Chem B 113:16384–16392. doi:10.1021/
jp9054582

49. Steenken S, Telo JP, Novais HM, Candeias LP (1992) One-electron-reduction potentials of
pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA
redox chemistry. J Am Chem Soc 114:4701–4709. doi:10.1021/ja00038a037

50. Khistyaev K, Bravaya KB, Kamarchik E et al (2011) The effect of microhydration on
ionization energies of thymine. Faraday Discuss 150:313–330. doi:10.1039/C0FD00002G

51. Vijayaraj R, Subramanian V, Chattaraj PK (2009) Comparison of global reactivity
descriptors calculated using various density functionals: A QSAR perspective. J Chem
Theory Comput 5:2744–2753. doi:10.1021/ct900347f

52. Fayet G, Joubert L, Rotureau P, Adamo C (2009) On the use of descriptors arising from the
conceptual density functional theory for the prediction of chemicals explosibility. Chem
Phys Lett 467:407–411. doi:10.1016/j.cplett.2008.11.033

53. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory.
Chem Rev 103:1793–1873. doi:10.1021/cr990029p

54. Thanikaivelan P, Subramanian V, Raghava Rao J, Unni Nair B (2000) Application of
quantum chemical descriptor in quantitative structure activity and structure property
relationship. Chem Phys Lett 323:59–70. doi:10.1016/S0009-2614(00)00488-7

55. Su NQ, Zhang IY, Wu JM, Xu X (2011) Calculations of ionization energies and electron
affinities for atoms and molecules: A comparative study with different methods. Front Chem
China 6:269–279. doi:10.1007/s11458-011-0256-3

56. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations
for many-electron systems. Phys Rev B 23:5048–5079. doi:10.1103/PhysRevB.23.5048

57. Cohen AJ, Mori-Sánchez P, Yang WT (2011) Challenges for density functional theory.
Chem Rev 112:289–320. doi:10.1021/cr200107z

58. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-
correlation functional. J Chem Phys 110:5029–5036. doi:10.1063/1.478401

59. Galbraith JM, Schaefer HF (1996) Concerning the applicability of density functional methods
to atomic and molecular negative ions. J Chem Phys 105:862–864. doi:10.1063/1.471933

60. Rösch N, Trickey SB (1997) Concerning the applicability of density functional methods to
atomic and molecular negative ions–Comment. J Chem Phys 106:8940–8941. doi:10.1063/
1.473946

61. Wu JM, Xu X (2008) Improving the B3LYP bond energies by using the X1 method. J Chem
Phys 129:164103–164111. doi:10.1063/1.2998231

62. Zhang IY, Wu J, Luo Y, Xu X (2010) Trends in R - X Bond dissociation energies
(R� = Me, Et, i-Pr, t-Bu, X� = H, Me, Cl, OH). J Chem Theory Comput 6:1462–1469.
doi:10.1021/ct100010d

63. Zhang IY, Wu J, Luo Y, Xu X (2011) Accurate bond dissociation enthalpies by using
doubly hybrid XYG3 functional. J Comput Chem 32:1824–1838. doi:10.1002/jcc.21764

74 3 Benchmarking the Performance of DHDFs for the Main Group Chemistry

http://dx.doi.org/10.1063/1.481336
http://dx.doi.org/10.1088/0143-0807/27/2/018
http://dx.doi.org/10.1063/1.454034
http://dx.doi.org/10.1021/cr60051a003
http://dx.doi.org/10.1063/1.1749394
http://dx.doi.org/10.1063/1.1749394
http://dx.doi.org/10.1021/jp9054582
http://dx.doi.org/10.1021/jp9054582
http://dx.doi.org/10.1021/ja00038a037
http://dx.doi.org/10.1039/C0FD00002G
http://dx.doi.org/10.1021/ct900347f
http://dx.doi.org/10.1016/j.cplett.2008.11.033
http://dx.doi.org/10.1021/cr990029p
http://dx.doi.org/10.1016/S0009-2614(00)00488-7
http://dx.doi.org/10.1007/s11458-011-0256-3
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1021/cr200107z
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.471933
http://dx.doi.org/10.1063/1.473946
http://dx.doi.org/10.1063/1.473946
http://dx.doi.org/10.1063/1.2998231
http://dx.doi.org/10.1021/ct100010d
http://dx.doi.org/10.1002/jcc.21764


64. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable
parameters: The PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

65. Karton A, Tarnopolsky A, Lamère JF et al (2008) Highly accurate first-principles
benchmark data sets for the parametrization and validation of density functional and other
approximate methods. Derivation of a robust, generally applicable, double-hybrid functional
for thermochemistry and thermochemical kinetics. J Phys Chem A 112:12868–12886.
doi:10.1021/jp801805p

66. Coote ML (2004) Reliable theoretical procedures for the calculation of electronic-structure
information in hydrogen abstraction reactions. J Phys Chem A 108:3865–3872. doi:10.1021/
jp049863v

67. Izgorodina E, Coote M, Radom L (2005) Trends in R-X bond dissociation energies
(R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A surprising shortcoming of density
functional theory. J Phys Chem A 109:7558–7566. doi:10.1021/jp052021r

68. Check C, Gilbert T (2005) Progressive systematic underestimation of reaction energies by
the B3LYP model as the number of C–C bonds increases: Why organic chemists should use
multiple DFT models for calculations involving polycarbon hydrocarbons. J Org Chem
70:9828–9834. doi:10.1021/jo051545k

69. Grimme S (2006) Seemingly simple stereoelectronic effects in alkane isomers and the
implications for Kohn-Sham density functional theory. Angew Chem Int Ed 45:4460–4464.
doi:10.1002/anie.200600448

70. Wodrich MD, Corminboeuf C, Schleyer PV (2006) Systematic errors in computed alkane
energies using B3LYP and other popular DFT functionals. Org Lett 8:3631–3634.
doi:10.1021/ol061016i

71. Zhao Y, González-García N, Truhlar DG (2005) Benchmark database of barrier heights for
heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and
its use to test theoretical methods. J Phys Chem A 109:2012–2018. doi:10.1021/jp045141s

72. Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for
thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A
109:5656–5667. doi:10.1021/jp050536c

73. Minnesota Database Collection (2006) Lynch BJ, Zhao Y, Truhlar DG. http://
t1.chem.umn.edu/misc/database_group/database_therm_bh. Accessed 15 Aprl 2013

74. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) Development and assessment of
new exchange-correlation functionals. J Chem Phys 109:6264–6271. doi:10.1063/1.477267

75. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-
range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

76. Zhang LL, Lu YP, Lee SY, Zhang DH (2007) A transition state wave packet study of the
H ? CH4 reaction. J Chem Phys 127:234313. doi:10.1063/1.2812553

77. Saenger W (1984) Principles of nucleic acid structure. Springer, New York
78. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction—A mechanism of protein-

structure stabilization. Science 229:23–28. doi:10.1126/science.3892686
79. Lehn J-M (1990) Perspectives in supramolecular chemistry—From molecular recognition

towards molecular information-processing and self-organization. Angew Chem Int Ed
29:1304–1319. doi:10.1002/anie.199013041

80. Guallar V, Borrelli KW (2005) A binding mechanism in protein-nucleotide interactions:
Implication for U1A RNA binding. Proc Natl Acad Sci USA 102:3954–3959. doi:10.1073/
pnas.0500888102

81. Vondrášek J, Bendová L, Klusák V, Hobza P (2005) Unexpectedly strong energy
stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic
residues: correlated ab initio quantum chemical calculations. J Am Chem Soc
127:2615–2619. doi:10.1021/ja044607h
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Chapter 4
XYG3 Results for Some Selected
Applications

Abstract In this chapter, some selected applications of the XYG3 functionals are
described. In Sect. 4.1, a set of gas-phase reactions relevant to the Fischer–Tropsch
synthesis has been constructed. With this set, we have tested the validity of the widely
used PBE and B3LYP functionals, as well as XYG3. As gas-phase reactions and the
corresponding surface reactions are related through the Born–Haber cycle, we argued
that computational catalysis on surfaces will be less meaningful if gas-phase
behaviors cannot first be suitably determined. In Sect. 4.2, we predict the heat for-
mation of 5-chloromethylfurfural (CMF), which has been proposed as a central
intermediate in the conversion of carbohydrate-based material into useful organic
commodities. Using XYG3, the conversion from CMF to 5-Hydroxymethylfurfural
(HMF) and levulinic acid (LA) in water, and that to biofuels 5-ethoxymethyl furfural
(EMF) or ethyllevulinate (EL) in alcohol have been studied. New reaction mecha-
nisms have been proposed, which complement the well-recognized Horvat’s mech-
anisms. In Sect. 4.3, we have reported the XYG3 results on the processes for D-glucose
pyrolysis to acrolein. It has been shown that the most feasible reaction pathway starts
from an isomerization from D-glucose to D-fructose, which then undergoes a cyclic
Grob fragmentation, followed by a concerted electrocyclic dehydration to yield
acrolein. This study provides the first mechanism based on theory that can account for
the known experimental results. In Sect. 4.4, a non-fitting protein–ligand interaction
scoring function has been introduced and applied to the screening of kinase inhibitors.
A good correlation has been found between the calculated scores and the experi-
mental inhibitor efficacies with the square of correlation coefficient R2 of 0.88 when
XYG3 is used to calculate the relative binding enthalpies in the gas phase. Such a good
performance can only be achieved after proper treatment of the solvation effects, as
well as the entropic effects on the relative binding affinities. This represents the first
high-level theory based non-fitting scoring function.

Keywords XYG3 � Gas-phase thermodynamics � Catalysis � 5-Chloromethyl-
furfural � 5-Hydroxymethylfurfural � Levulinic acid � 5-ethoxymethyl furfural �
Ethyllevulinate � Pyrolysis of D-glucose � Non-fitting scoring function � Kinase
inhibitor
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4.1 Gas-Phase Thermodynamics as a Prevalidation
for Computational Catalysis on Surfaces

Understanding the mechanism of a catalytic process is a prerequisite for the
rational design of catalysts. Even with significant advances in in situ surface
chemistry techniques [1], the mechanism is still more a matter of opinion than a
matter of experimental fact. There is no doubt that DFT has become the main tool
in predicting the catalytic mechanisms [2]. Unfortunately, the utilization of an
approximate function may have artificially biased against or favored certain
mechanisms [3]. One shall be cautious about such errors and find a way to provide
an early warning before going into detailed calculations on surface reactions.

Due to the scarcity of clean and reliable experimental data on surfaces, the
theoretical methods used in studying heterogeneous catalytic mechanisms are
usually less well validated than those for the gas-phase reactions. It was argued
that gas-phase reactions and the corresponding surface reactions are related
through the Born–Haber cycle and computational catalysis on surfaces will be less
meaningful if gas-phase behaviors cannot first be suitably determined [4]. As
schematically shown in Fig. 4.1, if admitting an error of *10 kcal/mol in the gas-
phase reaction energies, one will have to assume a similar amount, but with the
opposite sign, of the net error for the adsorption energies to ensure a good
description of the corresponding surface reactions. Such a coincidence would be
too good to be true.

There has been renewed interest in the Fischer–Tropsch synthesis (FTS) due to
volatile and diminishing oil supply. The mechanism of FTS is, however, a matter
of ongoing debate since its discovery in the 1920s [e.g., 6–9]. Based on the
available gas-phase experimental thermodynamics, [10–12] a set of gas-phase
reactions have been constructed [4], which are related to FTS (see Tables 4.1, 4.2,
4.3, 4.4, 4.5). It includes C–O direct and hydrogen-assisted dissociations, hydro-
genation and C–C bond couplings, as well as CH2 and CO insertion reactions. This
FTS set has been used as a testing set to check the validity of the widely used
functionals (e.g., PBE and B3LYP) in their capability to explore FTS mechanisms

A(g) B(g)
AB(g)

AB(s) B(s)A(s)

A(g) + B (g) AB(g)

A(s) + B (s) AB(s)

Fig. 4.1 A schematic representation of the A ? B ? AB reaction according to the Langmuir–
Hinshelwood mechanism (left) and the Born–Haber cycle (right) that relates the gas-phase
reaction to the surface reaction [4, 5]. Reprinted from Ref. [4]. Copyright 2012, with permission
from John Wiley & Sons Ltd
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[4]. Note that many of the reactions examined here are also important ingredients
in other processes including hydrocarbon synthesis and refining, [13] hydrocarbon
oxidation and combustion [13, 14] as well as CO2 recycling [14, 15], etc.

FTS initiates through CO dissociation. However, whether it is a direct CO
dissociation or hydrogen-assisted CO dissociation remains the topic of much
debate [6–8]. As shown in Table 4.1, the free CO molecule possesses a strong C–O
bond of 255 kcal/mol. Its strength is reduced dramatically with successive
hydrogenation. Hence it can be expected that hydrogenation lowers the activation
barrier heights for C–O cleavage. However, Table 4.1 suggests that PBE overes-
timates C–O BDEs (i.e., negative errors), which infers that C–O dissociation
barriers may have been overestimated based on the Brønsted–Evans–Polanyi
relationship [16]. In particular, barrier associated with HC–O dissociation may be
artificially too high (by *6 kcal/mol) as compared to C–O direct dissociation.

It is very likely that CO can do insertion as is common in organometallic
chemistry [17]. The first two reactions listed in Table 4.2 may serve as prototypes
of CO insertion into metal-H and metal-alkyl bonds. The third one in Table 4.2
may be related to the mechanism of the so-called water–gas shift reaction [7]
concurrently occurs under most FTS conditions. From Table 4.2, it is clear that
PBE overestimates the exothermicity of CO insertion reactions in the gas phase by
various amounts (6–11 kcal/mol). If PBE can predict reliable adsorption energies,
it can be expected that the tendency of CO insertions on the surfaces should also be
overemphasized by PBE. As compared data in Table 4.1 and those in Table 4.2, it
is clear that a method (such as represented by PBE here) can lead to negative errors
for one type of reactions or positive errors for the other type of reactions, such that
the mechanism can be artificially (or falsely) biased by the chosen method.

Statistically, B3LYP/XYG3 lead to MADs of 1.73/1.09 kcal/mol for C–O
dissociation, and 1.13/0.76 for CO insertion, being superior to PBE in terms of
gas-phase reaction energies [4].

Hydrogenation is involved in many steps during FTS. In the initial steps, it
helps CO activation or does hydrogenation of surface carbide to form active CHx

species. In the chain growth steps, it transforms unsaturated surface hydrocarbons
to surface alkyls, facilitates a-olefin readsorption on the surface, or does reduction
of the acyl group to the alkyl group. In the chain termination steps, it releases

Table 4.1 C–O dissociation energies (kcal/mol): experimental dataa and theoretical errorsb

Expt PBE B3LYP XYG3

CO ? C ? O 255.07 -10.16 3.35 0.52
HCO ? CH ? O 191.26 -16.28 -0.81 -1.23
H2CO ? CH2 ? O 178.42 -8.63 1.35 0.95
CH3O ? CH3 ? O 89.66 -10.75 -1.42 1.66
MAD 11.45 1.73 1.09

Reprinted from Ref. [4]. Copyright 2012, with permission from John Wiley & Sons Ltd
a Experimental data are taken from Refs. [10–12]
b Theoretical errors are calculated via (Expt – Theor)
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Table 4.2 CO insertion energies (kcal/mol): experimental dataa and theoretical errorsb

Expt PBE B3LYP XYG3

H–H ? CO ? H2CO 0.46 7.53 0.34 0.62
CH3–H ? CO ? CH3CHO 4.62 8.27 -0.93 -0.10
H–OH ? CO ? HCOOH -6.28 10.90 3.96 1.79
CH3–OH ? CO ? CH3COOH -28.98 8.43 0.56 0.16
CH3–OCH3 ? CO ? CH3COOCH3 -27.98 7.81 0.23 0.36
CH3–CH3 ? CO ? CH3COCH3 -5.43 7.83 0.96 -0.32
CH3–CH2CH3 ? CO ? CH3COCH2CH3 -5.68 7.61 0.70 -0.28
CH3–CCH ? CO ? CH3COCCH -2.18 5.99 -1.32 -2.47
MAD 8.05 1.13 0.76

Reprinted from Ref. [4]. Copyright 2012, with permission from John Wiley & Sons Ltd
a Experimental data are taken from Refs. [10–12]
b Theoretical errors are calculated via (Expt – Theor)

Table 4.3 Hydrogenation energies (kcal/mol): experimental dataa and theoretical errorsb

Expt PBE B3LYP XYG3

C ? H ? CH -79.02 0.77 1.49 -0.62
CH ? H ? CH2 -100.43 3.46 0.11 0.65
CH2 ? H ? CH3 -110.33 -1.74 0.40 0.46
CH3 ? H ? CH4 -104.53 -2.55 -1.83 -0.80
CO ? H ? HCO -15.21 6.90 5.01 1.13
HCO ? H ? H2CO -87.59 -4.19 -2.50 -1.52
H2CO ? H ? H2COH -29.75 -0.23 0.83 -0.80
H2CO ? H ? CH3O -21.57 0.38 2.72 -0.26
CH3O ? H ? CH3OH -103.73 -5.38 -5.10 -1.31
CH2OH ? H ? CH3OH -95.55 -4.77 -3.21 -0.76
CH2CO ? H ? CH3CO -42.68 -3.58 -1.41 -0.08
CH3CO ? H ? CH3CHO -88.93 -4.69 -3.31 -1.73
CH3CHO ? H ? CH3CH2O -15.63 -0.03 2.13 -0.08
CH3CH2O ? H ? CH3CH2OH -104.14 -6.55 -6.04 -1.64
CH3CH2 ? H ? CH3CH3 -100.61 -4.05 -2.89 -0.66
CH3CHCH3 ? H ? CH3CH2CH3 -98.13 -5.78 -4.34 -1.00
CH2 = CH2 ? H ? CH3CH2 -35.27 0.48 1.59 1.22
CH3CH = CH2 ? H ? CH3CHCH3 -34.91 1.10 1.90 1.38
(CH3)2C = CH2 ? H ? (CH3)2CCH3 -35.33 0.93 1.36 0.61
O ? H ? OH -101.22 3.24 1.54 -1.42
OH ? H ? H2O -118.83 -1.72 -3.78 -2.28
MAD 2.98 2.55 0.97

Reprinted from Ref. [4]. Copyright 2012, with permission from John Wiley & Sons Ltd
a Experimental data are taken from Refs. [10–12]
b Theoretical errors are calculated via (Expt – Theor)
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paraffins or oxygenates. It helps to remove surface oxygen to form water. These
steps are mimicked by gas-phase reactions as shown in Table 4.3.

Statistically, both PBE and B3LYP work reasonably well with MADs of 2.98
and 2.55 kcal/mol, respectively. Nevertheless, the error ranges for these func-
tionals are still too wide. PBE errors spread from 6.90 to -6.55 kcal/mol, while
those for B3LYP are within (5.01, -6.04). Hence, there are error bars larger than
10 kcal/mol associated with these two methods. For this set of reactions, it can be
seen that some of the reaction enthalpies are overestimated with some others being
underestimated, showing an artificial bias for some types of surface reactions.
While XYG3 fares best for these hydrogenation reactions with MAD of
0.97 kcal/mol. Its error range (1.38, -2.28) is, however, not yet quite satisfactory,
leaving room for further development.

An important step in FTS is the C–C coupling, which competes with the
methanation step, leading to long-chain hydrocarbons. The issue of which way is
the most preferred C–C coupling pathway is still under hot debate. The monomer
building block CHx was often believed to be CH2, the mechanism can then be
classified according to the primer chain CyHz. If CyHz is R (i.e., CnH2n+1), this is
called the alkyl mechanism [18, 19]; if CyHz is CHR (i.e., CnH2n), this is called the
alkylidene mechanism [20]; and if CyHz is CH = CHR (i.e., CnH2n-1), this is
called the alkenyl mechanism [6]. Instead of using CH2 as the building block,
some other C–C coupling mechanisms have also been proposed which involve CH
plus R or CHR [21], as well as C plus CR [22]. Furthermore, the chain growth may
follow the so-called CO insertion mechanism [23] and the hydroxy-carbene
mechanism [24].

Table 4.4 C–C coupling energies (kcal/mol): experimental dataa and theoretical errorsb

Expt PBE B3LYP XYG3

CH ? C ? HCC -177.29 10.27 -4.68 -0.81
CH ? CH ? HCCH -230.81 7.64 -5.45 1.02
CH ? CH2 ? CHCH2 -164.6 8.22 -0.78 0.73
CH2 ? CH2 ? CH2 = CH2 -174.86 -0.27 -3.84 -0.94
CH2 ? CH3 ? CH2CH3 -99.8 1.95 -2.47 -0.17
CH2 ? CH2CH3 ? CH2CH2CH3 -98.7 -0.58 -4.61 -0.59
CH3 ? CH3 ? CH3CH3 -90.08 -0.37 -5.58 -1.29
CH3 ? CH2CH3 ? CH3CH2CH3 -88.9 -2.57 -7.42 -1.31
CH3 ? CCH ? CH3CCH -125.9 2.55 -1.57 1.49
CH3 ? CHCH2 ? CH3CHCH2 -101.82 -2.44 -6.82 -1.49
CH2 ? CO ? H2CCO -78.63 12.26 3.80 1.26
CH3 ? CO ? CH3CO -10.98 10.42 2.62 0.72
CH3 ? CH3CO ? CH3COCH3 -84.53 -2.96 -7.19 -2.33
2 CH3OH ? CH3CH2OH ? H2O -18.01 -2.39 -3.54 -1.51
MAD 4.63 4.31 1.12

Reprinted from Ref. [4]. Copyright 2012, with permission from John Wiley & Sons Ltd
a Experimental data are taken from Refs. [10–12]
b Theoretical errors are calculated via (Expt – Theor)
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The prototypical gas-phase reactions for different ways of C–C coupling are
summarized in Table 4.4. PBE gives quite accurate results for (CH2 ? CH2) and
(CH2 ? R), whereas it overestimates the tendency for (CH ? C), (CH ? CH), as
well as (CH ? CH2). Coincidently, some recent DFT studies favor the latter three
coupling mechanisms against the former two on the surfaces [22, 25, 26]. Possibly,
errors in the gas-phase reactions are carried over into the description of the surface
reactions, such that it is the PBE functional that has chosen certain reaction
mechanisms against the others.

The maximum error associated with PBE is around 12 kcal/mol for this set of C–
C coupling reactions listed in Table 4.4. B3LYP halves this error to *6 kcal/mol.
In terms of MAD (i.e., 4.63 and 4.31 kcal/mol for PBE and B3LYP, respectively),
these two methods behave similarly. XYG3 gives a MAD of 1.12 kcal/mol, with
the largest error being -2.33 kcal/mol.

A widely favored pathway in the literature is the so-called alkyl mechanism, in
which the chain growth proceeds via the insertion of the CH2 species. Reactions in
Table 4.5 mimic this pathway. There would be a tendency of error accumulation
with CH2 insertion. This is clearly seen in the results of B3LYP. PBE and XYG3
that perform well. Errors could be smaller when B3LYP is applied to study the
corresponding surface reactions. Again, this relies on the error cancelation from
the CH2 adsorption energy on the surfaces.

Note that a good behavior of a functional in the gas-phase reactions is not
necessarily a guarantee for its good description of surface reactions. It is empha-
sized that it is hardly conceivable that a meaningful description of a surface reaction
is obtainable if the corresponding gas-phase reaction cannot first be suitably
determined. Examining the related gas-phase reactions can provide important

Table 4.5 C–C chain growth according to the alkyl mechanism: experimental dataa and theo-
retical errorsb

Expt PBE B3LYP XYG3

CH3–H ? CH2

? CH3CH2–H
-95.88 0.44 -3.36 -0.03

CH3CH2–H ? CH2

? CH3(CH2)2-H
-98.62 -0.26 -4.30 -0.19

CH3CH2–H ? 2 CH2

? CH3(CH2)3–H
-197.32 -0.66 -8.77 -0.42

CH3CH2–H ? 3 CH2

? CH3(CH2)4–H
-296.12 -1.28 -13.45 -0.83

CH3CH2–H ? 4 CH2

? CH3(CH2)5–H
-394.62 -1.53 -17.77 -0.86

CH3CH2–H ? 5 CH2

? CH3(CH2)6–H
-493.32 -2.06 -22.36 -1.15

CH3CH2–H ? 6 CH2

? CH3(CH2)7–H
-592.02 -2.51 -26.88 -1.39

MAD 1.25 13.84 0.70

Reprinted from Ref. [4]. Copyright 2012, with permission from John Wiley & Sons Ltd
a Experimental data are taken from Refs. [10–12]
b Theoretical errors are calculated via (Expt – Theor)
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information on the validity of the theoretical methods for surface catalysis, hence,
gas-phase thermodynamics can be and shall be used as a prevalidation for
computational catalysis on surfaces.

4.2 Thermochemistry for Conversion
of 5-Chloromethylfurfural into Valuable Chemicals

There is a growing interest in developing efficient biorefinery technologies for
converting biomass into biofuels and valuable chemicals due to the pressing
energy demands and environmental concerns. Recently, a new but possibly very
valuable biomass-derived platform, 5-chloromethylfurfural (CMF) has been
reported, which can be converted not only into biofuels 5-ethoxymethyl furfural
(EMF) or ethyllevulinate (EL) in alcohol, but also into other value-added biomass
platform such as 5-hydroxymethylfurfural (HMF) or levulinic acid (LA) in water
(cf. Fig. 4.2).

However, no basic thermodynamic properties of CMF are available. In par-
ticular, no accurate energetics has been reported for the hydrolysis or alcoholysis
of CMF. Such information is vitally important in addressing the challenge for
thermal or catalytic conversion of biomass to fuels and useful chemicals.

First, a methodology assessment using experimental HOFs (298 K, 1 atm) [29]
for selected sets of 18 furan-derivatives and 20 chloro compounds has been carried
out [27]. Figures 4.3 and 4.4 display the error distributions. B3LYP is certainly not
suitable for HOF calculations, whose MAD is as high as 9.4/11.7 kcal/mol for
furan/chloro compounds. B3LYP consistently underestimates the stability of the
species, as indicated by negative Max of -23.5/-30.7 kcal/mol. The same is true
for B2PLYP with the present basis set of 6-311 ? G(3df,2p). Increasing the basis
set size to quadruple-zeta shall reduce the errors by stabilizing the molecule more

Fig. 4.2 Production of CMF and its conversion to EMF and EL, as well as its connection to other
biomass platforms HMF and LA [27, 28]
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than its constituent atoms. Nevertheless, this will increase dramatically the com-
putational costs for larger molecules. On the other hand, there is a clear tendency
for M06-2X to overestimate the stability of each species. MAD associated with
M06-2X is 4.4/3.7 kcal/mol with positive Max of 10.0/13.8 kcal/mol for furan/
chloro compounds. G4 [30], XYG3 and X1 methods give the best performance for
HOF calculations of these sets of compounds. As compared to the experimental
values, they all present an MAD around 1.6 kcal/mol for the furan-derivatives and
1.9–2.8 for the chloro compounds. Note that X1 is a neural network correction
method on top of B3LYP [31]. Max associated with X1, XYG3, and G4 are 7.3/
6.5, -4.7/-8.2, 5.6/-6.9 kcal/mol, respectively, for furan/chloro compounds,
which are less than half of those for B2PLYP and B3LYP in magnitude.

It should be pointed out that the experimental data may also suffer from large
errors. Max (5.6 kcal/mol) for the G4 method occurs at dihydro-5-hexyl-2-
furanone in the furan set. Such a large error is suspicious. The corresponding X1,
M06-2X, and XYG3 HOFs are -125.9, -123.8, and -121.7 kcal/mol, respec-
tively, lending support to the G4 value (-124.2 kcal/mol), rather than the
experimental data (-118.6 kcal/mol) [29]. Similarly, we suspect the reliability of
the experimental data (-106.1 kcal/mol) for chloroacetic-acid-methyl-ester
ClCH2COOCH3 in the chloro set [29]. G4, X1 and XYG3 methods predict the
HOF of -99.2, -100.9, and -97.9 kcal/mol, respectively for this molecule, which
differ from the experimental data by more than 6 kcal/mol.

Experimental HOFs for furan-derivatives are scarce. HOF for HMF was
measured to be -79.9 kcal/mol [32]. The corresponding G4, X1, and XYG3
values are -81.8, -80.8, and -79.2 kcal/mol, respectively, confirming the
experimental data. There is no experimental HOF being reported for CMF. The
predicted values by G4 and XYG3 are -51.2 and -50.7 kcal/mol, respectively.

Fig. 4.3 Calculated deviations for 18 furan-derivatives at the levels of G4 theory and several
DFT methods
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The process for conversion of CMF into LA was proposed as shown in Fig. 4.5
[27], while thermodynamic information for the detailed mechanism, at the level of
XYG3, involved in the HMF to LA conversion is provided in Fig. 4.6 [27]. Sol-
vation effects on the reaction free energy changes are investigated using the
polarizable continuum model in conjunction with united atom topological model
with atomic radii optimized at Hartree–Fock level (PCM-UAHF) [34].

The transformation starts by converting CMF to HMF, which is then followed by
sequential HMF hydrolysis to LA. Based on the intermediates revealed by 13C-
NMR spectroscopy, the mechanism of the HMF to LA has been proposed by Horvat
et al. [33], which is labeled as Route 1. It was proposed that HMF undergoes 4,5-
addition (R2 in Fig. 4.5) to intermediate 1 (Int 1). This step imposes a substantial
free energy barrier due to the entropy penalty and loss of p-electron conjugation.
After overcoming this barrier (16.1 kcal/mol), the reaction proceeds smoothly and
goes all the way downhill. Dehydration (R3) from Int 1 leads to Int 2, where the
p-electron conjugation reappears with the formation of the butadiene moiety.
Rehydration of Int 2 (R4) occurs via a 1,4-like addition of butadiene by water,
which is accompanied by -2.8 kcal/mol exothermicity to form Int 3.

The reaction comes to a fork at Int 3. We will first follow Route 1 as proposed
by Horvat [33]. Int 3 undergoes tautomerization to form Int 4, where furan ring is
opened (R5). R5 is favored in terms of free energy by 5.3 kcal/mol. Dehydration of
Int 4 to produce Int 5 is slightly downhill by 0.6 kcal/mol (R6), possibly due to the
disruption of the hydrogen bond network, but it is favored in terms of free energy
as water is released to increase the entropy contribution. Originally, Horvat et al.
[33] proposed that Int 5 reacts with two water molecules to form Int 7 and formic
acid, as indicated by the dashed arrow in Fig. 4.5. We decompose it stepwise,

Fig. 4.4 Calculated deviations for 20 chloro compounds at the levels of G4 theory and several
DFT methods
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where Int 5 first reacts with one water molecule to form formic acid plus Int 6,
which then reacts with the second water to form Int 7. The first step (R7) is
downhill by -13.2 kcal/mol; while the second step (R8) is thermoneutral. Indeed
Int 7 is just a transient, which undergoes tautomerization, leading to the final
product LA.

We then check Route 2, which is proposed based on the XYG3 calculations as
an alternative to Horvat mechanism [33]. In this route (Route 2), hydration to

Fig. 4.5 Reaction mechanisms for the conversion of CMF into LA. Route 1 follows Horvat’s
original proposal [27, 33]
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release formic acid occurs first (R10), which is then followed by furan ring
opening (R11). It would not be necessary to undergo dehydration to form Int 7 via
R12. Instead, dehydration via R13 from Int 7 leads to direct formation of LA. The
large exothermicity in terms of free energy provides a strong thermodynamic
driving force along this route to form LA.

Horvat mechanism (Route 1) is a widely recognized mechanism for HMF
conversion to LA. The present calculations using XYG3 plus the PCM-UAHF
model suggest an alternative pathway (Route 2) which is more thermodynamically
favored (see Fig. 4.6). More detailed study is required to characterize the kinetics
of Routes 1 and 2.

In analogy to the mechanisms for the hydrolysis of CMF to produce HMF and
LA, the reaction mechanisms for the conversion of CMF into EMF and EL was
proposed as shown in Fig. 4.7 and the calculated free energies are reproduced in
Fig. 4.8. Route 3 is similar to Route 1 in that de-alcoholization happens first,
which is then complemented by decarboxylation and alcoholization; while Route 4
is similar to Route 2 which undergoes decarboxylation and alcoholization first,
followed by de-alcoholization. In contrast to hydrolysis where Route 2 is much
more favored than Route 1, Route 3, and Route 4 were found to be comparable in
terms of free energy changes.
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Fig. 4.6 Calculated free energy changes for the CMF conversions to LA in solution phase. Free
energy changes in gas phase are calculated using XYG3 [27]. The solvation free energy changes
are calculated with the PCM-UAHF model [27, 34]
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4.3 Reaction Mechanisms for Pyrolysis of D-glucose
to Acrolein

Understanding of the chemistry of D-glucose pyrolysis is vitally important, which
acts as a useful representative of carbohydrate pyrolysis, being heavily involved
not only in the utilization of biomass [35, 36], but also in food industry and
tobacco industry [36, 37]. Simple aldehydes, such as formaldehyde, acetaldehyde,
and acrolein, are formed during pyrolysis [38–40]. These simple aldehydes are not
only widely used industrial chemicals, but also classified as carcinogens.
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Fig. 4.7 Proposed reaction mechanism for the conversion of CMF to EL [27]

90 4 XYG3 Results for Some Selected Applications



CMF

EL

EMF

I nt 10
I nt 11

I nt 12

I nt 13
I nt 5

I nt 6
I nt 14

I nt 15

I nt 16

G(kcal/mol)

0.0
(R14)

(R15)

(R16)

(R17)

(R18)

(R19)

(R20)

(R21)
(R22)

(R23)

(R24) (R25)

(R26)

3.8

22.9

20.1
17.3

2.9

-1.1 2.2

-11.8
-10.6

3.1

-40.1

10.0

20.0

0.0

-10.0

-40.0

Δ

Route 3

Route 4

Int 17-2.6

(R27)

Fig. 4.8 Calculated free energy changes for the CMF conversions to EL in solution phase. Free
energy changes in gas phase are calculated using XYG3 [27]. The solvation free energy changes
are calculated with the PCM-UAHF model [34]

In spite of this importance, much of the detailed mechanism of carbohydrate
pyrolysis is still unknown [38–43], even though a recent systematical experimental
work of Paine et al. [38–40] has partially filled the gap. Using variously labeled 13C in
conjunction with gas chromatography/mass spectroscopy (GC/MS), possible mecha-
nisms of D-glucose pyrolysis have been suggested, although no theoretical calculations
have been carried out to quantify the mechanisms, partially because the calculations of
reaction barrier heights are complicated by the network of hydrogen bonds.

In the literature, there are some related theoretical studies. For instance, Abella
et al. [43] have investigated the reaction mechanisms of cellulose pyrolysis and
levoglucosan decomposition by using B3LYP as well as MP2 [43]. Nimols et al.
[42] have performed CBS-QB3 [44] calculations to investigate dehydration
mechanisms of neutral glycerol. As a specific validation of XYG3 for carbohydrate
chemistry, the B3LYP and XYG3 energetics for glycerol dehydration have been
first checked. As compared to the accurate CBS-QB3 results, MAD associated
with XYG3/6-311 ? G(3df,2p) is 2.2 kcal/mol, while the corresponding MAD of
B3LYP with the same basis set is 7.7 kcal/mol.

The first theoretical study on the pyrolysis mechanisms from D-glucose to acrolein
was reported. Geometry optimizations and frequency calculations were carried out
by using B3LYP/6-311G(d,p). The final energies were evaluated by single point
calculations using XYG3/6-311 ? G(3df,2p). All energies were reported as DG in
kcal/mol at 700 K to be in line with the experimental condition [36].

It is expected that D-glucose shall bear a heavy conformational complexity due to
the formation of internal hydrogen bonds. To simplify the calculations, the open
chain conformer (1 in Fig. 4.9) was chosen as the initial reactant for each reaction
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path. The terminal aldehyde carbon is labeled as C-1, and all six carbons are labeled
sequentially. The possible reaction mechanisms for pyrolysis of D-glucose to acro-
lein are summarized in Fig. 4.9. The calculated reaction energetics are depicted in
Fig. 4.10, and the optimized transition state structures are shown in Fig. 4.11.

Path 1 starts by forming a hemiacetal 2 at C-5, which is an anomer of six-
membered pyranose, being 5.9 kcal/mol more stable than glucose 1 in the open
chain form. From 1 to 2, a barrier of 40.0 kcal/mol (TS1) has to be overcome. This is
followed by a 1,2-dehydration process, where a hydroxyl group at C-1 and a
hydrogen at C-2 are expelled as a water to generate a cyclic enol 3. This is the rate
determining step of Path 1, as the associated barrier height (TS2) is as high as
67.9 kcal/mol. Fragmentation is carried out via a retro-Diels–Alder reaction. The
corresponding reaction barrier was found to be 44.5 kcal/mol (TS3). Fragment 4
(prop-1-ene-1,3-diol) is the alkene and fragment 5 (2,3-dihydroxy acrylaldehyde) is
the corresponding diene in the Diels–Alder reaction. Fragment 4 is made of C-4, C-5
and C-6, which may undergo a concerted electrocyclic dehydration with a barrier
height of 27.7 kcal/mol (TS4), leading to the target product acrolein 6.

Cyclic Grob fragmentation was believed to be the main reaction path for car-
bohydrate degradation [38–40]. A barrier of 63.1 kcal/mol was found for such a
process from 1 via TS5 (Path 2). Proton in the hydroxyl group at C-3 would be
transferred to the hydroxyl group at C-5, losing the 5-oxygen as water. Meanwhile,
the C–C bond between C-3/C-4 would be cleaved, forming fragments 4 and 7.
Fragment 7 (2-hydroxy malonaldehyde) is a tautomer of fragment 5 in Path 1,
while fragment 4 would again undergo electrocyclic dehydration, yielding the
desired product acrolein 6.

Fig. 4.9 Reaction mechanisms for pyrolysis of D-glucose to acrolein
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XYG3 calculations suggest that the isomerization of D-glucose to D-fructose can
also be realized in gas-phase pyrolysis without going through enolization as a
base-catalyzed reaction. As shown in Path 3 in Fig. 4.9, a one-step process can be

Fig. 4.10 Schematic potential energy curves for pyrolysis of D-glucose to acrolein. Energies are
in kcal/mol

Fig. 4.11 The optimized geometries of the transition states for pyrolysis of D-glucose to acrolein.
Bond distances are in Å
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initiated via a 1,2 hydride migration that exchanges the carbonyl and the hydroxyl
group between C-1 and C-2. This converts D-glucose 1 to D-fructose 8. The cor-
responding transition state (TS6) is shown in Fig. 4.11, where the hydride at C-2
attacks the electro-positive C-1, and simultaneously, proton of hydroxyl at C-2 is
transferred to the terminal aldehyde oxygen. The activation barrier for this step
was calculated to be 43.8 kcal/mol. The next step is the cyclic Grob fragmentation
of D-fructose 8 via TS7, producing fragments 4 and 9. As compared to that via
TS5, barrier height via TS7 is lowered by 10.3 kcal/mol, which may be attributed
to a more favorable structure for internal hydrogen bondings. Fragment 9 (3-
hydroxy-2-oxo propanal) is an isomer of 5 in Path 1 and 7 in Path 2. It was found
that 9 and 7 are 3.5 and 4.7 kcal/mol, respectively, more stable than 5. As com-
pared to the other two pathways, Path 3 is the most favorable. The barrier from 8
to TS7 is 52.8 kcal/mol.

There is an earlier experimental conjecture of Stein’s for the pyrolysis mech-
anism of D-glucose. Radicals were assumed to be formed via a homolytic cleavage
of C–C bond between C-1 and C-2 [41]. And an activation energy
(55.6 ± 5.5 kcal/mol) was reported [41]. Paine criticized Stein’s conjecture as
being not consistent with the energy needed for C–C bond homolysis [38–40].
Instead, by means of isotopic 13C labeling and GC/MS, Paine et al. proposed the
alternative pathways [38–40]. As 63 % of all the acrolein formed was found to be
from C-4, C-5, and C-6, with the aldehyde group derived specially from C-4 and
the vinyl group derived from C-5 and C-6, they suggested that the dominant
mechanisms should be unimolecular, where there were two competing channels as
Path 1 and Path 2 shown in Fig. 4.9 [38–40]. Nevertheless, there were no cor-
responding calculations reported up to now to quantify Paine’s proposals [39]. The
XYG3 calculations fulfill such a purpose, giving strong support to Paine’s cyclic
unimolecular mechanisms. It was shown that Path 1 and Path 2 are indeed
competitive. Particularly, the best pathway is identified as Path 3 where glucose is
first converted to fructose, which then undergoes cyclic Grob fragmentation.
Path 3, possessing an effective barrier of 49.3 kcal/mol, also yields acrolein made
of C-4, C-5, and C-6, in good agreement with known experimental results.

4.4 A Non-Fitting Protein–Ligand Interaction Scoring
Function Applied to the Screening of Kinase Inhibitors

Currently, a hot topic in the fields of cancer research and drug design is the so-
called targeted therapy [45, 46]. For such an approach to be successful, it is
necessary to develop potent and selective inhibitors for the identified target pro-
tein. An accurate theoretical prediction of the protein-inhibitor interaction is,
therefore, vital to the screening and discovery of the inhibitors, which could sig-
nificantly accelerate the rational design of an effective drug. However, current
ways of estimating inhibitor efficacy rely on empirical protein–ligand interaction
scoring functions which are usually heavily parameterized. A significant limitation
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lies in that one should not use an empirical method to treat a system that is beyond
its parameterization range, whereas a drug candidate is quite possibly a new
molecule, such that the good performance of an empirical method cannot be
guaranteed. Even for the molecules that are within the parameterization range, the
accuracy is limited, whose squared correlation coefficient R2 generally ranges only
from 0.1 to 0.5 [47].

In order to get improvement over empirical scoring methods, several difficulties
have to be first surmounted to introduce quantum mechanical (QM) methods
[48–51]. For example, as atoms involved in the short-range interactions between a
drug molecule and the nearby protein residues can often add up to hundreds of
atoms, the QM region has to be sufficiently large, while at the same time, the QM
calculations have to be carried out efficiently. As nonbonded interactions often
play an important role in protein–drug interactions, the QM methods employed
have to be capable of describing nonbonded interactions accurately. Entropic and
solvation effects have to be considered properly.

Recently, a non-fitting scoring function has been proposed [52], which consists
of three terms:

Score ¼ DDHgas phase þ DDGsolv þ TDDS ð4:1Þ

The first term is the relative protein–ligand binding enthalpy in gas phase.

DDHgas phase ¼ Hgas;0k
protein�ref � Hgas;0k

protein�targ � Hgas;0k
ref þ Hgas;0k

targ ð4:2Þ

Hgas;0k
protein�ref and Hgas;0k

protein�targ represent the electronic structure energies of the

reference and the target protein–ligand complexes, respectively. This was obtained
by using an eXtended ONIOM (XO) method [53, 54], which introduced the
‘‘divide and conquer’’ strategy [55] into the original ONIOM method [56] to
enable a cheap and accurate high-level description of a very large QM region
based on an integration of DFT methods (e.g., XYG3) and the semi-empirical PM6
[57] method.

The second term is the solvation effect on the relative binding affinity, which
mainly reflects the penalty for transferring a solvated drug molecule into the
binding pocket of the protein.

DDGsolv ¼ DGsolv
protein�ref � DGsolv

protein�targ � DGsolv
ref þ DGsolv

targ ð4:3Þ

The DGsolv calculations have taken advantage of the newly developed SMD
solvation model, which was parameterized to give good total solvation free
energies for over a hundred solvents [58].

The third term is the entropy effect, which mainly reflects the penalty for a free
drug molecule being trapped in the binding pocket of the protein. This was esti-
mated by using standard DFT frequency analysis [52]. Since proteins are soft
matters, it is reasonable to expect that there is still certain flexibility even when the
drug molecule has already bound to the proteins. A simple approximation is to
consider that the ligand molecule is ‘‘half trapped’’, loosing half of its freedom
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upon binding. Hence 50 % of the free ligand molecule entropy is taken as the
penalty on binding affinity due to entropic effect.

An example is given for the PAK1-FL172 reference complex (See Fig. 4.12).
The function of protein kinas PAK1 is to regulate cell motility and morphology,
and has been suggested as a target in cancer therapy [59]. A previous experimental
work results in a PAK1 inhibitor database, which includes the chemically inert
organometallic lead structure FL172 and its 19 derivatives, with the corresponding
data for inhibited PAK1 activity [60, 61].

Table 4.6 shows the experimental data ln[Activity/(100 - Activity)], the cal-
culated protein–ligand interaction score of 20 PAK1 inhibitors and the corre-
sponding components. The data show that the three components actually make
comparable, in many cases opposite, contributions to the final score. Figure 4.13a
shows the plot of the theoretical scores (x) versus the experimental data (y) for
the PAK1 inhibitor dataset. The theoretical results and experimental data dis-
play significant linear correlations. The R2 coefficient found is as high as 0.88.

Fig. 4.12 The eXtended ONIOM (XO) scheme for the calculation of the PAK1-FL172 complex.
The high-level region is shown in stick model. The high-level region is divided into seven
overlapping fragments. Six of them are used to cover the nonbonded interaction between the
protein residues and the functional groups of the drug molecule (shown in different colors). One
of them is used to describe the whole drug molecule
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Figure 4.13b, c displays the plots for the correlations between the calculated
components and the experimental data of inhibitor efficacies. In fact, none of the
components alone shows a good correlation with the experimental data. The R2

coefficient from DDHgas phase is 0.48, whereas those from DDGsolvand TDDSare
only 0.06 and 0.003, respectively. This demonstrates that all of the components
have to be accurately evaluated and combined together to give a satisfactory
description of the protein–ligand interactions [52].

It should be emphasized that a better method should always lead to a better
performance for a first-principles based score function. This is in sharp contrast to
the heavily parameterized empirical scoring functions, where improvements on the
calculations of certain descriptors usually lead to a declined performance, unless
the whole scoring function is re-parameterized. Furthermore, the non-fitting
scoring function should be applied well to different proteins, while a significant
degradation in accuracy is always observed in the trans-protein applications of
empirical scoring functions. The same score function has been successfully tes-
tified on a CDK2 inhibitor database including 76 CDK2 protein inhibitors [52, 62].

Table 4.6 Experimental data, calculated protein–ligand interaction score and its components of
20 PAK1 inhibitors (FL172 is the Ref. [52])

Ligand DDHa,b

(gas phase)
DDG(Solv)a,c TDDSa,d Score ln[A/(100-A)]

FL172 0.00 0.00 0.00 0.00 -1.52
FL237 -0.61 -1.90 -1.71 -4.23 0.58
FL252 -1.28 -0.59 -0.49 -2.36 -0.58
FL254 6.63 -5.32 -3.50 -2.19 -1.39
FL256 4.76 -4.41 -0.63 -0.27 -1.99
FL258 -0.35 -0.72 -3.49 -4.57 -0.12
FL2901 0.17 -1.71 0.00 -1.54 -1.15
FL293 -0.19 -0.70 -1.55 -2.44 -0.36
FL408 1.51 -0.96 -2.70 -2.14 -0.94
FL410 -0.46 -0.17 -2.78 -3.40 -0.75
FL327 -1.58 1.48 -1.19 -1.29 -1.27
FL343 -1.15 -4.27 -1.18 -6.60 1.45
FL363 1.32 -1.08 -1.82 -1.58 -1.59
FL411 6.76 -4.87 -0.88 1.00 -1.82
FL735 1.09 -0.59 -1.70 -1.19 -1.66
FL752 4.69 -2.52 -2.40 -0.23 -2.02
FL809 8.94 -5.01 -3.08 0.85 -1.82
FL1088 2.28 -1.22 -0.78 0.28 -2.70
FL07111 -4.81 -0.91 1.11 -4.61 -0.08
FL134 -6.49 1.37 -1.20 -6.31 1.32

a Unit: kcal/mol
b DDH(gas phase) = DDHgas phase is the gas phase relative binding enthalpy given by the
eXtended ONIOM (XO) calculations using XYG3 as the highest level
c DDG(Solv) = DDGSolv is the solvation effect on the relative binding affinity given by SMD
cluster calculations
d TDDS is the entropic effect on the relative binding affinity given by xB97-D frequency analysis
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Chapter 5
Concluding Remarks

Abstract In the application of Kohn-Sham density functional theory (KS-DFT),
the exchange-correlation energy must be approximated. A ladder of such
approximations has been proposed, none of which is equally good for every
problem. There is still a long way to go. In this chapter, we first give a brief
summary of what we have learned in pursuing an improved functional Sect. 5.1,
giving a list of the doubly hybrid density functionals (DHDFs) developed till date
in the literature. We then outline, in Sect. 5.2, the limitations and the anticipated
future development for the XYG3 type of DHDFs. Finally, a perspective is
presented, which highlights some fundamental issues in the ground state KS-DFT.

Keywords Density functional theory � Exchange-correlation � XYG3 � Doubly
hybrid density functionals

5.1 Lessons Learned

Kohn-Sham density functional theory (KS-DFT) replaces the correlated wave-
function problem by a more tractable problem of non-interacting electron system.
Although exact in principle, KS-DFT requires in practice an approximation to the
exchange-correlation functional. With increasingly sophisticated approximations,
KS-DFT has now become the most widely used method for electronic structure
calculations, and has made great contribution to our understanding of molecular
science.

This book focuses on some recent advances in construction of the so-called
doubly hybrid density functionals (DHDFs). It is our opinion that DHDFs cur-
rently available shall be classified into three groups according to how they are
constructed based on the underlying principles, or technically which orbitals are
used to evaluate the second-order perturbative correlations.

I. Y. Zhang and X. Xu, A New-Generation Density Functional,
SpringerBriefs in Molecular Science, DOI: 10.1007/978-3-642-40421-4_5,
� The Author(s) 2014

103



Table 5.1 lists the first type of DHDFs, which mix the total energies of a DFT
calculation and those of wavefunction methods [1, 2]. The latter are not limited to
MP2 (Møller-Plesset perturbation theory at second order) as in MC3BB [1], but
updated even to the QCISD(T) level [2] (i.e., quadratic configuration interaction
with single and double plus fourth-order and fifth-order quasi-perturbative terms
involving triple excitations). They are actually multi-coefficient methods. One can
think of these methods as improving the correlation part of hybrid DFT, or one can
think of them as adding static correlation and additional dynamic correlation to the
best practical single reference wavefunction theory methods. It has been argued
that, in the eye of KS-DFT, the exchange-correlation energy in this class of
DHDFs depends on both Hartree-Fock (HF) orbitals and KS orbitals, both of
which are functionals of the density [3].

The second type is represented by B2PLYP [4]. Technically, it is very similar to
the standard MP2. Instead of using HF orbitals, it uses orbitals generated from a
hybrid DFT that already contains partial correlation. Such a hybrid DFT is not
supposed to be used alone, which has to be completed after the PT2 term is
augmented. Later, the theoretical basis of the B2PLYP type of DHDFs is provided
by the multi-determinant extension of the Kohn-Sham scheme [5]. Table 5.2
summarizes the DHDFs in this class [4–18].

We proposed the third type of DHDFs to use orbitals from a fully functional-
ized DFT [19]. The key idea of the XYG3 type of functionals is to combine the
Görling-Levy (GL) coupling-constant perturbation theory [20] and the standard
KS scheme [21] in the framework of the adiabatic connection formalism [22, 23].
In particular, XYG3 can be considered as a natural evolution of the well-tested

Table 5.1 Summary of the MC3BB type of DHDFs

Name DFT
exchange ? correlation

Compounds of wavefunction methods Ref.

MC3BB B88 ? B95 HF/MP2 [1]
MC3MPW mPW ? PW91 HF/MP2 [1]
MC3MPWB mPW ? B95 HF/MP2 [2]
MC3TS TPSS ? KCIS HF/MP2 [2]
MCCO-MPW mPW ? PW91 HF/MP2 [2]
MCCO-MPWB mPW ? B95 HF/MP2 [2]
MCCO-TS TPSS ? KCIS HF/MP2 [2]
MCUT-MPW mPW ? PW91 HF/MP2/MP4(SDQ) [2]
MCUT-MPWB mPW ? B95 HF/MP2/MP4(SDQ) [2]
MCUT-TS TPSS ? KCIS HF/MP2/MP4(SDQ) [2]
MCQCISD-MPW mPW ? PW91 HF/MP2/QCISD [2]
MCQCISD-MPWB mPW ? B95 HF/MP2/QCISD [2]
MCQCISD-TS TPSS ? KCIS HF/MP2/QCISD [2]
MCG3-MPW mPW ? PW91 HF/MP2/MP4(SDQ)/QCISD(T) [2]
MCG3-MPWB mPW ? B95 HF/MP2/MP4(SDQ)/QCISD(T) [2]
MCG3-TS TPSS ? KCIS HF/MP2/MP4(SDQ)/QCISD(T) [2]
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hybrid functional B3LYP [24, 25]. Because of using B3LYP orbitals, XYG3
shares with B3LYP the kinetic energy, the classic Coulomb interaction energies
between electrons and electrons, as well as those between electrons and nuclei.
These are the larger terms in the total energy of any interested system. As com-
pared to B3LYP, only the exchange-correlation term is updated in XYG3, where
each term, including the PT2 contribution, is evaluated using the B3LYP orbitals.
Other fully functionalized standard KS functionals can serve the same role as
B3LYP in XYG3, while the parameters in the DHDFs shall be re-parameterized
accordingly, as, after all, we only have an approximate KS functional at hand to
generate the orbitals and the GL theory is truncated at the second order. Table 5.3
summarizes the DHDFs in this class [19, 26–30].

There are several intensive tests for DHDFs of different kinds (e.g., See Refs.
[17, 31–33]). Our observation is that all these DHDFs contain fitting parameters
which can be tuned, leading to similar accuracies, and are especially useful for the
main group chemistry. Not every functional is equally applicable to every prob-
lem. This makes benchmarking evitable in choosing the right functional for the
right problem.

Table 5.2 Summary of the B2PLYP type of DHDFs

Name Description Ref.

B2PLYP B88 exchange; LYP correlation; PT2 correlation based on hybrid-GGA part [4]
mPW2PLYP Like B2PLYP, but with mPW exchange [6]
B2KPLYP Re-parameterized B2PLYP version for kinetics [7, 8]
B2TPLYP Re-parameterized B2PLYP version for thermochemistry [7, 8]
B2GPPLYP Re-parameterized B2PLYP version for general purpose applications [8]
B2pPLYP Re-parameterized B2PLYP version for conjugated p-systems [9]
B2P3LYP Modified B2PLYP version with long-range PT2 correction [10]
B2OS3LYP Similar to B2P3LYP, but with SOS-PT2 correlation [10]
ROB2PLYP Re-parameterized B2PLYP version within a restricted KS formalism for

treating open-shell systems
[11]

xB97X-2 Ingredients of the B97 functional; long-range corrected; SCS-PT2
correlation

[12]

B2-PPW91 Like B2PLYP, but with PW91 correlation [13]
DSD-BLYP Modified B2PLYP version with SCS-PT2 correction; fitted together with

DFT-D dispersion correction
[14]

DSD-
PBEP86

Like DSD-PBEP86, but with PBE exchange and P86 correlation [15]

1DH-BLYP One-parameter version of B2PLYP [5]
PTPSS-D3 Re-optimized TPSS exchange and correlation; SOS-PT2 correlation; fitted

together with DFT-D3 dispersion correction
[16]

PWPB95-
D3

Re-optimized PW exchange and B95 correlation; SOS-PT2 correlation;
fitted together with DFT-D3 dispersion correction

[16]

PBE0-DH No fitting parameters based on PBE exchange–correlation [17]
PBE0-2 No fitting parameters based on PBE exchange–correlation [18]
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5.2 Limitations

There are limitations in the current version of the XYG3 family of functionals,
which point to the direction of future development.

(1) The functionals are trained and validated with benchmark sets developed for
the main group chemistry. Although some DHDFs, such as B2PLYP [7, 8,
14–16], are shown to have encouraging results for some transition metal
involved complexes, systematic validation and possible extension are needed
for the XYG3 family of functionals being applied confidently to transition
metal chemistry.

(2) Only single-point energy calculations have been carried out for the results of
the XYG3 type of DHDFs presented in this book, which may fail if the B3LYP
geometries diverge significantly from the experimental geometries. Potential
energy scans suggest that XYG3 should be able to give accurate geometries
for either covalently bonded or noncovalently bonded complexes with stan-
dard basis sets commonly used [31]; more systematical investigation can only
be made possible when the analytical gradients are feasible. Development of
analytical gradient has just appeared [34], while development of analytical
hessian shall be made possible in the near future.

(3) Evaluation of the PT2 term scales formally as N5, where N measures the
system size. The SAC model has been adopted to speed evaluation of the PT2
terms in DHDFs [26]. XYGJ-OS has been implemented, which explores the
possibility of using techniques of resolution of identity and scaled-opposite-
spin MP2 [28]. We anticipate that other methods developed for the second-
order Møller-Plesset perturbation theory can be readily used in DHDFs for
efficient calculations of large molecules.

(4) Extensions to include other properties (e.g., electric properties and nuclear
magnetic properties, etc.), excited states and periodic systems are valuable
directions to go.

Table 5.3 Summary of the XYG3 type of DHDFs

Name Description Ref.

XYG3 B88 exchange; LYP correlation; evaluated with B3LYP orbitals and densities [19]
XYG3s Like XYG3, but introducing the scaling all correlation (SAC) method to speed

the PT2 evaluation
[26]

XYG3o Like XYG3, but with re-optimized parameters for smaller basis sets [27]
XYGJ-

OS
Like XYG3, but with SOS-PT2 correlation [28]

xDH-
PBE0

PBE exchange and correlation; evaluated with PBE0 orbitals and densities;
SOS-PT2 correlation

[29]

lrc-XYG3 XYG3 plus scaled long-range PT2 correlation [30]
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5.3 Perspective

Despite its great success, there are fundamental issues that remain to be answered
in ground state density functional theory. For example, Ruzsinszky and Perdew
have raised 12 outstanding problems [35]. They are

Problem 1: Problems of finding the minimum.
Problem 2: Is there a systematic way to construct density functionals?
Problem 3: Approximating the density functional for the kinetic energy.
Problem 4: What is the correct long-range behavior of the exchange–correlation
hole?
Problem 5: Remaining problems of semi-local functionals.
Problem 6: Can we construct a proper density functional for non-collinear
magnetism?
Problem 7: Can we make fourth-rung density functionals without empiricism?
Problem 8: What are the range-separated hybrid functionals telling us?
Problem 9: Can we describe both long-range charge transfer and static correlation?
Problem 10: Can we find a useful correction to the random phase approximation?
Problem 11: What is the best way to incorporate long-range van der Waals
interactions?
Problem 12: Is symmetry breaking acceptable?

More recently, Cohen, Mori-Sánchez and Yang have reviewed the challenges
for density functional theory [36]. Five challenges they summarized are:

Challenge 1: To develop a functional that performs uniformly better than B3LYP.
Challenge 2: The need to improve the description of reaction barriers and dis-
persion/van der Waals interactions.
Challenge 3: To understand the significance of E[q] vs E[{Ui, ei}], OEP (optimized
effective potential), and beyond.
Challenge 4: Delocalization error and static correlation error.

Fig. 5.1 a Dissociation curves of H2
+; b Dissociation curves of H2. All calculations are

performed using the 6-311 ? G(3df,2p) basis set
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Challenge 5: The energy of two protons separated by infinity with one and two
electrons: Strong correlation.

The basic errors of current DFT functionals, mostly from the first to the fourth
rungs, have been highlighted by their abilities to describe the stretched H2

+ and H2

systems [36]. Figure 5.1 displays the performance of DHDFs. From Fig. 5.1 it is
seen that restricted XYG3 (RXYG3) provides a good, although not perfect,
description of the stretched H2

+, but it fails for the H2 system. If symmetry
breaking is acceptable, unrestricted XYG3 (UXYG3), as well as other functionals,
is able to give good description of the H2 system.

The holy grail in KS-DFT is to find better and better approximations to the
exact exchange-correlation functional. There is still a long way to go.
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