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Chapter 1
Introduction

Many real systems from very different fields, such as food webs [1-3], the electrical
power grids, the social entanglement of acquaintances [4], the Word Wide Web or
the Internet [5—7], were almost intractable just a few years ago due to both their large
number of individuals and the complexity of the pattern of connections among them.
They all have been recently characterized as networks [8—13], opening a new and
very promising subject for researchers all over the world.

In a few words, a network can be defined as a set of nodes or individuals, and a set
of connections or links that represent some kind of physical or abstract relationship
among them. Specifically, a network can be considered complex if it has a pattern of
connections highly non trivial. These systems have found in Graph Theory a useful
tool that allows us to study, analyze, reproduce and describe them accurately, extract-
ing some common structural features to characterize and organize them accordingly.
And surprisingly enough, most of real networked systems seem to share some of
these structural features, regardless their particular origin, thus entitling this new
discipline, far beyond simple anecdotal facts.

Other real examples [12, 14, 15] are neural networks of animals (where the nodes
are neurons, and links represent chemical synapses), cellular and metabolic networks
(where nodes stand for the different molecules or metabolites that take part on the
system of chemical reactions, and a link between two of them means that one is
the reactive and the other one is its product), the network of actors in Hollywood
(two actors have a link if they have worked together in a film), the co-authorship
and citation networks of scientists (similarly, two scientist will share a link if they
have a common paper, or two papers will have a link between them if one cites the
other, respectively), the air transportation network (nodes stand for airports and links
represent direct flights between an origin and a destination) or the network of sexual
human contacts (where a link binds two human beings that have had sex together).

On the other hand, the fact that all of them have complex structures has been
proven to strongly affect the outcome of the great variety processes that may take
place on top of them, in comparison with well-mixed situations or even lattice-like
underlying structures. Thus, it modifies sometimes dramatically the assumptions as
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2 1 Introduction

well as the conclusions one can make from such systems. For example, the dynamics
of disease spreading is very different depending on the social structure one considers
for the propagation process (and so are the measures that should be taken in order to
effectively fight it off), or when dealing with traffic jams in the road network or on
the Internet, it is also essential to know the topology underneath, in order to design
effective strategies.

In Fig. 1.1 we show some other examples of real networks: (a) represents the
email network from the members of the Universitat Rovira i Virgili (Spain), where
we can clearly see different branches (or communities), corresponding to different
departments and areas within those departments [16], (b) is the network that com-
bines local metropolitan commuters and long-range airline travelers during a global
epidemic [17], and (c) shows the New Testament social network (http://www.esv.
org/blog/2007/01/mapping-nt-social-networks/).

The first attempts to model such real networks were over-simplifying: lattices
and regular random networks [18] were foremost used to try to encapsulate some of
the basic characteristics of these complex networks. In a lattice, the individuals are
arranged at regular distances in one, two or three spatial dimensions, with a fixed
number of neighbors (or coordination number). On the other hand, random graphs are
just a set of individuals with aleatory connections among them, but without any order
or periodicity. One can characterize the distribution of probability for the number of
those connections in the system by a Poisson distribution, so there is a well-defined
mean value, or it can also be given by a Dirac-delta, which means that every element
in the system has exactly the same number of neighbors. Nonetheless, the concept
of dimensionality is hard to define in random graphs, and also in complex networks
in general.

Obviously, and despite its undeniable importance as first attempts in the matter,
these kind of models are unrealistic representations of real systems. Due to its lack
of accuracy, they fail to explain some features such as the well-know small-world
phenomenon or six degrees of separation [19, 20]. Roughly speaking, it implies
that any two individuals in the network are likely to be connected through a very
short sequence of intermediate acquaintances. This has been the subject of anecdotal
observation and folklore for a long time: often we meet a stranger and discover,
astonished, that we have an acquaintance in common. Nonetheless, it finally became
a significant area of study in the social sciences, in large part through the striking
experiments by Stanley Milgram in the 1960’s [21]. Later on, it has been shown that
many other real networked systems, such as technological or biological ones, display
often this feature.

Besides, in these social networks, it is very likely that two different friends of a
person have also met (it is to say, they have a high clustering coefficient). Moreover,
these two properties usually appear simultaneously in real networks, so both should
be taken into account if one wants to model reality with some accuracy. On the
one hand, lattices achieve the second property, but not the first one, and for random
topologies, it happens the other way around. Thus the next step was to try to model a
network that combines both features, and the Small-word network [10] does it. This
particular model was the first one to enclose simultaneously the two properties of
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Fig. 1.1 Some examples of real networks: (a) the email network from the Universidad Rovira-
Virgili (Spain) [16], (b) the network of local metropolitan commuters and long-range airline trav-
elers during a global epidemic [17] and (c) the New Testament social network (obtained from the
homepage of the English Standard Version Bible:http://www.esv.org/blog/2007/01/mapping-nt-
social-networks/)

real networked systems mentioned before, and it is built as follows: starting from
a regular lattice, and by randomly rewiring a certain percentage of the links, the
network gets some shortcuts between otherwise distant nodes, so they will have a
low value for the average path length, like random graphs, but still with a high value
of the clustering coefficient, like lattices.

As an ulterior improvement in realism at modeling, one can consider yet another
very common feature among real networks, that is the heterogeneity in the number
of connections a node has: we all know people that are really popular, and some other
people that are incurably unsociable. In the same way, there are a few very important
airports and a lot of medium and even more small ones. None of the previous models
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accounted for this particular feature, and were the so-called Scale-free (SF) networks
[8] the ones that did it. This particular kind of networks, have a power-law degree
distribution (it is, the probability of finding a node with k neighbors), P (k) ~ k™7,
with 2 < y < 3. Usually, real networks are not strictly power-lawed, but they do
present some degree of heterogeneity.

As we have already mentioned, there are very different contexts where networks
can appear (zoology, biochemistry, sociology, technology...) and so the processes that
will take place on top of them can be very different as well [11, 12, 22, 23]: from
disease [11, 12, 24-30] or rumor spreading to synchronization dynamics [12, 23,
31-34], traffic jams and cooperation. This last one is particularly interesting for us,
since there are countless examples of cooperation in Nature: cells cooperate to form
tissues, organs cooperate to form living organisms, and of course, when it comes to
groups of individuals, very complex phenomena can arise: they can cooperate within
a family to raise their offspring, form hunting parties, form alliances, stick together
in order to reduce the risk of predation, and in general, to form societies...

However, why cooperation emerges and survives in hostile environments, when
defecting is a much more profitable sort-term strategy, is a question that still remains
open.

A lot of researchers are currently trying to answer that challenging question, and
some key ideas have been pointed out so far, such as kin selection or the necessity to
protect the offspring or the family in general (for obvious evolutionary reasons, or
as the geneticist and evolutionary biologist J.B.S. Haldane said: ‘I will jump into the
river to save two brothers or eight cousins’). Also, there is a benefit in cooperating
with someone you will probably meet again in the future (direct reciprocity) or if you
gain some (good) reputation because of it (indirect reciprocity, see [35] and references
therein). On the other hand, for repeated-encounter situations, where individuals have
some kind of memory of the past or even plans for the future, there are some complex
strategies that can be more successful than others...

Game theory attempts to mathematically capture the behavior of such individuals
in strategic situations, in which their success in making choices (that is measured
in terms of benefits) depends on the choices of others. Evolutionary Game Theory
is a branch of Game Theory that studies the time evolution of large populations of
individuals who repeatedly play a game and are exposed to evolutionary pressures
(selection and replication, with or without mutation), and it has been proven to be
the mathematical framework to deal with questions such as the problem of evolution
of cooperation. Specifically, the Prisoner’s Dilemma game has been widely used
[35—45] as a perfect metaphor for the study of cooperation among individuals, where
it is clearly more profitable to defect regardless the opponent’s strategy, but also it
would be better for the two adversaries if both of them decided to cooperate, instead
of defecting.

We are interested in cooperation on very simple scenarios: when individuals have
no memory or plan for the future at all, and they do not recognize their families nor
have reputations to keep. Thus, we want to study the merely structural factors that
can help cooperation in a given situation. It is already known that lattices promote
cooperation [46—48], with respect to the all-to-all scenario, because it allow cooper-
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ators to for clusters and hence be more resiliant against defectors. Here we will focus
more on the reasons why cooperation seems to be enhanced by heterogeneity in the
number of connections [22, 49-59], compared to the more regular case of random
topologies.

Therefore, in the first part of this Thesis, we will address the problem of the
sustenance of cooperation in complex static topologies, comparing the dynamics on
top of two fundamental kind of networks: random and scale-free. We will model
the issue of choosing between cooperation and defection via the paradigmatic and
well-known Prisoner’s Dilemma game. This is a very simple 2 x 2 game where
there are two players who can choose between two distinct strategies: cooperate and
defect. And depending on its strategy and its opponent’s choice, they will get an well-
defined benefit (usually represented by a payoff matrix). Essentially, the problem is
that, given the payoff matrix of this game, defecting is the safest strategy regardless
the one the opponent chooses, but, if both decided to cooperate, they would get higher
payoff than if both of them defect (hence, the dilemma).

Specifically, in the first part of this Thesis, we will use computer simulations
to study how cooperators and defectors in the system, spontaneously and after a
transient period of time, arrange themselves at a microscopic level, giving rise to
very different organization patterns, which will be at the root of the very distinct
levels of average cooperation found in different kinds of networks.

On the other hand, we are well aware that real networks are not static entities at
all: not only there can be different dynamics evolving on top of them, but also the
structure of the network itself usually changes over time. New nodes can enter the
system, others can disappear and also new connections can be established or erased.
Moreover, the processes that take place on top of them can shape the topology,
and the other way around as well. So, we consider that a natural next step in our
study of cooperation in complex networks should be a model where the dynamics
and the growth of the network are entangled. In this way, the second part of this
Thesis will be devoted to developing two different models of growing networks that
reflect some of the characteristics of an evolving real network. Thus, in both our
models, the outcome of the dynamics will be taken into account for the growing
process. Specifically, the dynamics will be again the Prisoner’s Dilemma game, and
the payoff obtained by the nodes will affect its capability of attracting links from the
newcomers. Nonetheless, the two models differ in the kind of dependence between
the probability of attachment of the new nodes with the payoff of those already present
in the system, and also in the way a node evaluates whether to keep its current strategy
or not by comparing with its neighbors will also be different in both models. Besides,
we will analyze, along with the average levels of cooperation achieved in every case,
the structures that can emerge from these combined processes, depending on the
specific values of the parameters of the model. In order to do that, we will measure
the relevant topological magnitudes, such as the degree distribution, the average
path length and the clustering coefficient of the resulting networks. Moreover, we
will establish some comparisons between the results obtained with these models,
when the final size is achieved, and those known for fixed-size static networks, such
as Erdos-Rényi (ER) random networks, Barabdsi-Albert (BA) scale-free networks
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and random scale-free networks. In summary, with this work we hope contribute to
solve the open question of how cooperation is affected by the underlaying topological
structure of the population.

References

1

2.

A W

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.
. M. Newman, Phys. Rev. E 66, 016128 (2002).
31.
32.
33.
34,
. M. A. Nowak and K. Sigmund, Nature 437, 1291, 2005.
36.
37.

J. Dunne, R. Williams, and N. Martinez., Marine Ecological Press Series 273, 291 (2004).
J. Cohen, F. Briand, and C. Newman, Community food webs: data and theory. (Springer-
Verlag, New York, 1990).

. R. Williams and N. Martinez, Nature 404, 108 (2000).
. B. Skyrms and R. Pemantle, Proc. Natl. Acad. Sci. USA 97, 9340 (2000).
. R. Pastor-Satorras and A. Vespignani., Evolution and Structure of the Internet: A Statistical

Physics Approach. (Cambridge University Press, Cambridge, 2004).

. A.Brodera, R. Kumarb, F. Maghoula, P. Raghavanb, S. Rajagopalanb, R. Statac, A. Tomkinsb,

and J. Wienerc, Graph structure in the Web. Comput. Newt. 33, 309 (2000).

. M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999).

. A. L. Barabasi and R. Albert, Science 286, 509 (1999).

. S. H. Strogatz, Nature 410, 268 (2001).

. D.J. Watts and S. H. Strogatz, Nature 393, 440 (1998).

. M. Newman, SIAM Review 45, 167 (2003).

. S.Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Phys. Rep. 424, 175 (2006).
. R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).

. T. B. Achacoso and W. S. Yamamoto, AY’s neuroanatomy of C. elegans for computation.

(CRC Press, Boca Raton, Fl, 1992).

. H.Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabasi, The large-scale organization

of metabolic networks. Nature 407, 651 (2000).

. A. Arenas, L. Danon, A. Diaz-Guilera, P. Gleiser, and R. Guimera. Community analysis in

social networks. European Physical Journal B 38(2), 373 (2004).

D. Balcan, V. Colizza, B. Goncalves, H. Hu, J. J. Ramasco, and A. Vespignani, Proc. Natl.
Acad. Sci. USA 106, 21484 (2009).

P. Erd6s and A. Renyi, Publicationes Mathematicae Debrecen, 6, 290 (1959).

S. Milgram, Psycol. Today, 2, 60 (1967).

J. Guare, Six degrees of separation: a play. (Vintage Books, New York, 1990).

J. Travers and S. Milgram, Sociometry, 32, 425 (1969).

G. Szabé and G. Féth, Evolutionary games on graphs. Phys. Rep. 446, 97 (2007).

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Rep. 469, 93 (2008).
R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001).

R. Pastor-Satorras and A. Vespignani, Phys. Rev. E, 63, 066117 (2001).

Y. Moreno, R. Pastor-Satorras, and A. Vespignani, European Physical Journal B, 26, 521
(2002).

R. Pastor-Satorras and A. Vespignani, Phys. Rev. E, 65, 036104 (2002).

M. Boguid, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003).
R.M. May and A.L. Lloyd, Phys. Rev. E 64, 066112 (2001).

J. Gémez-Gardefies, Y. Moreno, and A. Arenas, Phys. Rev. Lett. 98, 034101 (2007).
L. Donetti, P. I. Hurtado, and M. A. Muiioz, Phys. Rev. Lett. 95, 188701, (2005).

J. Gomez-Gardeiies and Y. Moreno, Int. J. Bifurcation Chaos, 17, 2501 (2007).

J. Goémez-Gardeiies, Y. Moreno, and A. Arenas, Phys. Rev. E 75, 066106 (2007).

R. Axelrod, The Evolution of Cooperation. (Basic Books, New York, 1984).
W. Hamilton, J. Theor. Biol. 7, 1 (1964).



References 7

38.
39.
40.

41.
4.
43.
44,

45.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

R. Axelrod and W. D. Hamilton, Science 211, 1390 (1981).

M. Nowak, Science 314, 1560 (2006).

J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. (Cambridge
University Press, Cambridge, UK, 1998).

J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).

M.A. Nowak and K. Sigmund, Nature 355, 250 (1992).

M.A. Nowak and K. Sigmund, Acta Applicandae Math, 20, 247 (1990).

R. Axelrod, The complexity of cooperation: agent-based models of competition and collabo-
ration. (Princeton University Press., Princeton, NJ, 1997).

M.A. Nowak, Evolutionary dynamics: exploring the equations of life. (Harvard University
Press., Cambridge, MA, 2006).

M. A. Nowak and R. M. May, Nature 359, 826 (1992).

M. Nowak, S. Bonhoeffer, and R. May, Int. J. Bifurcation Chaos, 4, 33 (1994).

M.A. Nowak, S. Bonhoeffer, and R.M. May, Proc. Natl. Acad. Sci. USA 91, 4877 (1994).
F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).

E. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).

F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).

F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (20006).
H. Ohtsuki, E. Lieberman C. Hauert, and M. A. Nowak, Nature 441 502 (2006).

G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R) (2001).

V. M. Egui

T. Killingback and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996).

A. Szolnoki, M. Perc, and Z. Danku, Physica A, 387, 2075 (2008).

J. Vukov and G. Szabdand A. Szolnoki, Phys. Rev. E 77, 026109 (2008).

J. Gomez-Gardeiies, M. Campillo, L. M. Floria, and Y. Moreno, Phys. Rev. Lett. 98, 108103
(2007).



Chapter 2
Some Basic Concepts on Complex Networks
and Games

Since this thesis is mainly devoted to the study of one particular game, the
Prisoner’s Dilemma, on complex networks (static ones in the first part of it, and
two more sophisticated models that combine the growth with the play in the second),
we consider that it is useful to state and explain first some notions on both networks
and games. So, in this chapter, we want to provide just a few very basic concepts and
definitions on Complex Networks and Game Theory that we will use later on during
the full elaboration of this thesis. We hope they will help setting the foundations
to understand our work perfectly, so the reader will not need any external help to
comprehend, and also it will serve as an introduction to the two fundamental
components on which this thesis is based.

2.1 Complex Networks

The study of complex networks is a relatively recent field, and it has been inspired
by the observation of many real systems, such as biological, social or technological
ones. In the first part of this chapter we want to give a few examples of real networks,
just to motivate the study of such structures, by establishing its ubiquity in natural
and artificial systems. Then, we will give some of the basic definitions needed in
order to properly describe networks [1], such as the degree of a node, the degree
distribution of a network, the clustering coefficient or the average path length. Then,
we will explain some useful models for building different kinds of graphs, such as
the Erdos and Rényi (ER), the Barabdsi-Albert (BA) or the Small-World by Watts
and Strogatz model. Finally, we will mention some of the many possible processes
that can take place on top of complex networks.

J. Poncela Casasnovas, Evolutionary Games in Complex Topologies, Springer Theses, 9
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2.1.1 Examples of Real Networks

As it has been pointed out along the Introduction of this thesis, many real systems
[1, 2] can be described as complex networks, and this relatively new approach can
provide new insights to better understanding, and tools to deal with unsolved prob-
lems. In very different fields, such as biology, immunology, sociology, technology or
economics, there are plenty of examples of networks. In every particular field, both
the nodes and the links of the networks will represent completely different things,
but the fact that this kind of structures are so ubiquitous in Nature, is surprising and
very promising.

One can consider technological structures, such as the air transportation networks
for a particular region or for the whole planet, where the nodes are airports and the
links represent direct flights between them, the road networks connecting cities or the
power grids that supply electricity to a country, with its power stations represented by
nodes and the links standing for the wires. There is also the WWW, where nodes are
web pages connected by hyperlinks, or the Internet (see Fig. 2.1 (Left)), made up of
billions of hosts, physically connected among them. Since modern societies depend
strongly on these infrastructures, it is obviously very important to have detailed
information about them, in order to be able to predict its behavior or act correctly
during a crisis.

In biology, there are several examples as well, like food webs on an ecosystem
(see Fig.2.1 (Right)), or on a more basic level, the metabolic networks of different
processes. On the other hand, maybe some of the more tangled complex networks
one can consider (from the point of view of both number of interconnections and
variability over time) are those that describe social relationships, where nodes are
people, and links represent some kind of interaction: from groups of mere friends,
people with similar interests or collaborators in some particular field [4, 5] (scientific
collaborations or citations, or networks of musicians that play together regularly,...),
to sexual contact networks or new global phenomena like Facebook, MySpace or
Twitter. It is probablyl because of the complex nature of the human being itself, that
such social structures are often so entangled and fascinating.

On the other hand, we want to point out that, when dealing with real networks one
has to take into account that the available data can (and probably will) have mistakes:
there can be missing or spurious nodes or links. Some effort has been put to try to
obtain the ‘real network’ and its topological properties out of the observational data
(see for example [6]).

Finally, the kind of processes that will take place on top of them can be very
diverse (synchronization, traffic of information or of something else, disease or rumor
spreading, games, learning processes...), but it is very useful to be able to characterize
them structurally as precisely as possible first, trying to find out what are the main
and more relevant features all of them share, if any. Moreover, as we will see later
on, the structure will be a key factor in the outcome of any dynamical process that
will take place on top of such structured systems. Thus, we will address next the
topological characterization of complex networks.
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Fig. 2.1 a Gene regulation network for the Mycobacterium Tuberulosis. Every node represent
a gene, and the links stand for the regulation relationship between a transcription factor and the
correspondent regulated gene. Different colors mean different character of the genes, as far as
regulation dynamics is concern [2]. b Food web of the Caribbean coral reef located in the Puerto
Rico Virgin Islands. Node color represents trophic level: red nodes represent basal species, such
as plants and detritus, orange nodes represent intermediate species, and yellow nodes represent top
species or primary predators. Links characterize the interaction between two nodes, and the width
of the link attenuates down the trophic cascade, so a link is thicker at the predator end and thinner at
the prey end (Original image from [3], and generated by FoodWeb3D). ¢ Visualization of a portion
of the Internet, using over 5 - 10% edges. The colors represent different geographical regions. In the
inset it is shown a particular node and its neighborhood. (Original image from “The Opte Project’:
http://www.opte.org)


http://www.opte.org

12 2 Some Basic Concepts on Complex Networks and Games

2.1.2 Definitions

A network is a set of items (called nodes, points or vertexes), with some connections
between them (l/inks, lines or edges). A complex network is a network with non-
trivial topological features, i.e. its structure is irregular and complex as opposed to
lattices, for example, that present total spatial regularity, or they can even evolve,
adding and/or losing nodes and/or links over time.

Mathematically, we can represent a network using graph theory. A graph
G = (N, L), consists of two sets, N" and £, where N = {ny,na,...,ny} are
the nodes, and £ = {l1, I», ..., [k} are the links. Obviously, N is the total number
of nodes of the network, and K is the total number of links, which has to be a non-
negative number, whose maximum is N (N — 1)/2 (when the graph is complete, i.e.
every node is connected to everyone else). A specific node of the network is denoted
by alabel i in the set A/. On the other hand, every link connects a pair of elements of
N,iand j,andis denoted by /;;. Thereby, the pair of nodes i and j are called adjacent
or neighbors. The usual way of representing a network graphically is by drawing a
dot for every node and a line for every link that connects a pair of nodes. In addition
to this, we can also define a subgraph G’ = (N’, £), of the graph G = (N, L), if
N’ C N and £ C L. A special case would be the subgraph of all the neighbors of a
given node i and its corresponding links, denoted by G;. On the other hand, a graph
is said to be connected if, for every pair of nodes i and j, there is a path to go from
one to the other. If there is not such a path for at least one pair of nodes, then the
graph will be disconnected or unconnected, and it will have therefore, two or more
disconnected subgraphs.

Besides, another very useful way of representing a network is by using matrix
representation. Given a graph G = (N, £), the adjacency matrix A;; isa N x N
square matrix, whose entry a;; (i, j = 1,2,..., N) is equal to 1 when the link /;;
exists, and zero otherwise. Nonetheless, for implementation or practical purposes,
we can use the connectivity matrix C;; of the graph, that is a Nxkyax matrix, where
kmax 1S the maximum connectivity of the nodes of the graph, and where the row i of
it contains all the neighbors of the node i (ordered usually, but not necessarily, from
the first to the last to connect with it when constructing the network). And we can
also define a matrix of the pairs of neighbors, D;;, which is a Lx2 matrix, whose
entries dj1 and dj; are the pairs of nodes that are neighbors, with/ = 1,2, ..., L,and
being L the total number of links in the network. The definition of these two matrices
is not for rigorous mathematical purposes, but nonetheless, they will be very useful
in order to implement them on programs and numerical simulations.

Degree of a Node and Degree Distribution of a Network

The degree or connectivity of a node is the number of neighbors it has. Using the
adjacency matrix, we can formally define the degree of a node as:
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ki = Zaij (2.1

jeN

If the graph is directed, then k; will have two components: the ingoing links kllf "=
>_jaij and the outgoing links k=" ;aji, so the total degree will be k; =
kzl'n + kiout'

On the other hand, the most basic topological characterization of the network as a
whole is the degree distribution. We can define the degree distribution of the graph,
P(k), as the fraction of nodes in the network that have connectivity k, or equivalently,
the probability that a node randomly chosen from the network has k neighbors. For
example, random graphs (also known as ‘one-peaked’ or ‘single-scaled’) have a
Poissonian degree distribution, while the P (k) for a so-called scale-free network is a
power law. For directed graphs, we will have two different distributions, P (k") and
P ( kout ) .

The mean degree of a graph, (k) is the first moment of the degree distribution:

(ky = > kP(k) 2.2)
k

Furthermore, the second moment of the distribution, (k2) is the measure of the
fluctuations of the degree distribution. As we will see later on, (k?) diverges in the
limit of infinite graph size for scale-free graphs for certain values of the exponent of
the power-law distribution, which is a very interesting property, that affects greatly
the outcome of the dynamics that can take place on top of such topologies. For an
uncorrelated graph, i.e. if the degree of every node is completely independent of
its neighbors’, then the degree distribution P (k) is enough to describe the statistical
properties of the network. But if the network is correlated, as it usually happens in
many real systems, then the probability that a node of degree k has a neighbor with
connectivity k', depends on k. In that case, we can define the conditional probability
P (k'|k), that a node with connectivity k has a neighbor with connectivity k’. We can
also calculate the average degree of the nearest neighbor of nodes with degree k,
given by:

knn (k) = Zk/P(k/lk) (2.3)

©

So when the network is uncorrelated, obviously, we have that &, (k) is independent
of k, and equal to k,, (k) = (kz) /(k), but when it is correlated, then we can have
assortative networks, if k,,, (k) is an increasing function of k, or disassortative ones,
when k&, (k) is a decreasing function of k. The first case implies that nodes tend to be
linked with others with similar connectivity, whereas in the second one, the highly
connected ones are mostly linked to the poorly connected ones.
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Weighted and Directed Networks

Depending on the kind of interaction a link describes within the network, it can be
weighted or non-weighted, directed or non-directed, and so will be the network.

If all the interactions in the network are alike, or in other words, when a link only
establishes the presence of an interaction between two nodes, then the network is
non-weighted. Otherwise, if there are different types of interactions, for example,
some more important, or more frequent than others, then the links are weighted,
and so is the graph. In this case, in addition to give the set of nodes and links of
the network, we need to specify also the weight of every link in order to properly
define a graph. So now we have: G = (N, £, W), where W = {wy, wy, ..., wg}is
the set of weights, that are real numbers attached to the corresponding links. Usually,
they will be positive numbers, so the higher the value, the stronger the link between
the pair of nodes, but also negative links have been used, describing some kind of
repulsive interaction, for example [7]. On the other hand, if a link /;; represents that
i interacts with j and vice versa, then it is called undirected, but if in a system i
can interact with j without j interacting necessarily with 7, then in order to describe
it correctly, we need directed links. In this case, the adjacency matrix will not be
symmetric, in general.

Average Path Length, Betweenness and Clustering Coefficient

Given a particular network, it would be interesting to know the minimum distance
between every pair of nodes, i.e. the shortest path lengths or geodesics. The knowl-
edge of this information concerning a network can be useful for some processes that
could take place on top on it (such as information traffic on the Internet, or rumor
spreading on a social club), in order to work the best they can. Thus, we can define a
square matrix D, of size N x N, whose entry d;; is the minimum distance between
the nodes i and j. On the one hand, the maximum of these d;; is called the diameter
of the graph, but a more useful magnitude to characterize the network, is the average
path length, defined as the mean value of the geodesics between every pair of nodes

in the network: ]
L= NV-D Z dij (2.4)
i,jeNi#j

One can also ask how important or ‘central’ a particular node is within a graph,
meaning how many shortest paths, or geodesics go through it. Thus, we can give a
measure of the centrality of a node, by defining its betweenness:

b; = Z nL(i)’ (2.5)

0
jkeNj£k Y
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Fig. 2.2 Examples of the local clustering coefficient (for the dark node) for different
connecting situations. It is computed as the proportion of connections among its neigh-
bors which are actually realized (thick black lines) and the number of all possible con-
nections, which in this particular example, is three. For every situation, the missing
links are represented with dashed lines

O

where 7 ji is the total number of geodesics connecting the nodes j and k, and 7 (i)
is the number of geodesics connecting the nodes j and k that go through the node i.

The betweenness is a useful magnitude when constructing community detection
algorithms [8, 9].

Clustering, or transitivity of a node, is a measure of how many triangles are there
on the graph, or in other words, how likely is that, if a node i has two neighbors, say
Jj and k, then the nodes j and k are also linked to each other. First, given a node i and
the subgraph of its k; neighbors, G;, we can define the local clustering coefficient of
node i as the ratio between the actual number of edges in the subgraph, e;, and the
maximum possible number of them in G;:

_ 2e; _ Z/,m Qa;jajmAmi
ki (ki — 1) ki (ki — 1)

(2.6)

Ci

where a;; are the entries of the adjacency matrix, defined at the beginning of this
section. On Fig.2.2 we show a diagram of how to calculate it for three very simple
cases.

And then, we can define the clustering coefficient of the whole network, as the
average of ¢; over all the nodes in it:

1
C = 5 Z ci 2.7
jeN

Notice that, by definition, both the local and the global clustering coefficient satisfy:
0<¢ <1land 0 < C < 1. As we will see, SF networks have low values for the
average path length, but relatively high values for the clustering coefficient, while
random topologies have low values for both magnitudes.

Finally, is worth mentioning that a power-law dependence of the clustering coeffi-
cient with the degree of the node (C ~ k) is typical of a hierarchical organization on
the network, which implies that sparsely connected nodes are part of highly clustered
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(a) Random network (b) Scale-free network (¢) Hierarchical network

C(k)
C(k)

k k log k

Fig. 2.3 Diagram with some examples of networks, specifically random (a), scale-free (b) and
hierarchical ones (c), and its corresponding plots of the clustering coefficient versus the degree of
the nodes. This dependence is a power-law for the hierarchical structures, while for the other two
types, it is clearly independent. Original figure from [10]

areas, with communication between these different highly clustered neighborhoods
being maintained by a few hubs (see Fig.2.3).

Motifs and Communities on Networks

A motif is a n-noded pattern of connections (a subgraph) in a network that appears
at a much higher rate than expected in a randomized version of the same network
(see Sect.5.1 for a detailed explanation of the randomizing procedure). Some real
networks, such as the metabolic ones, display characteristic motifs, that seem to be
specific of each kind of network. On Fig.2.4 we show as an example, all the possible
motifs for a 3-noded directed subgraph. Note that the number of n-noded motifs
increases rapidly with n.

On the other hand, we can define a community within a network G = (N, £), as
a subgraph G’ = (N, L) or a set of nodes, that are much more connected among
themselves than with the rest of the network. Using just the sense that the intra-
community connections are denser than the inter-community ones is of course a
qualitative way of describing it. Nonetheless, to be able to detect such structures
efficiently, a magnitude has been introduced to determine whether of not a partition
of a network into communities is accurate enough: the modularity.
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Fig. 2.5 Some examples of a network with (left) and without (right) community structure, both
with N = 256 nodes. Original data of the community network created by Dr. L. Izquierdo
(http://luis.izqui.org/communities/redes.zip)

Given an arbitrary network, and an arbitrary partition of it into N, ‘communities’
(and this time, by this term we mean artificial communities, just a way to part the
graph), we can build a N. x N, matrix whose entries e;; are the ratio between the
number of links starting at a node in community i and ending at a node in community
J, and the total number of links present on the network (so the sum of any row or
column, a; = > j €ijs is the fraction of links connected to the community 7).

In the case of a random partition of the network i.e., if it does not correspond to the
actual community structure, or also if the network itself does not have a community
structure (see Fig.2.5 for some examples of networks with and without community
structure), then the fraction of links within communities can be estimated as the
probability that a link begins at a node in partition #, a;, multiplied by the fraction
of links that end at a node in partition i, also a;, so the expected number of intra-
community links is just a;a;. We also know the actual fraction of links exclusively
within a partition, ¢;;, SO now we can compare the two values, and thus, we can define
the modularity for a specific partition of our network as [8]:

N
Q=> (i —a}) (2.8)
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Obviously, the closer to 1 the value of the modularity is, the more accurate the
partition we have made of the network into communities. It is worth noticing that it
is possible to find partitions of random networks that display relatively high values
of modularity (up to Q ~ 0.2). The reason for this is that random graphs might
have some community structure, just due to fluctuations. Moreover, it is important
to stress that the presence of communities on a network can not be detected just via
its degree distribution, so we can have two graphs with the same P (k), one of them
with community structure, and the other one without it.

One can easily realize that the space of possible partitions of a given network into
communities is huge, so in order to effectively explore the landscape of values of Q,
and find an accurately enough partition, we will need the help of some optimization
techniques. For some very nice works on different community detection algorithms,
see [8, 9, 11, 12] and references therein.

Finally, we want to mention that it is also possible to consider complex topologies
with hierarchical structure, it is to say, networks that have communities within the
communities. In this situation, we deal with several levels of description for the
structure of the system (multiscale representation) [? ]. Also, one can have a system
with communities, where there is some degree of overlapping among them, and this
fact will make it harder to detect accurately [13].

2.1.3 Some Network Models

In this section we want to present just a few models for growing networks. Specifi-
cally, we will address the models to build two of the most used kinds of networks: the
ER and the BA model for random and scale-free networks respectively, since we will
use them often, later on in this thesis, and also the well-known Small-World model
by Watts and Strogatz. On the other hand, we will explain the Gardefies-Moreno
(GM) model, which interpolates between the ER and the BA model, because we will
use it also in some chapters to come.

The ER Model

Erdos and Rényi proposed a model (ER) [14] to generate random graphs with N
nodes and K links, where the term random refers to the disordered nature of the
arrangement of links between different nodes. There are two possible ways of con-
structing such networks: in the first one, we start with N disconnected nodes and
choose K pairs randomly, to link them with a probability 0 < p < 1, avoiding multi-
ple connections between two nodes, and also self-links. The alternative procedure is
to start with N disconnected nodes, and link every possible couple with probability
0 < p < 1. While the first option gets different networks with exactly K links and an
average degree of (k) = 2K /N, the second, gets networks with different number of
connections, an average degree (k) = p(N — 1), and the probability of having exactly
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Fig. 2.6 Diagram of the ER model for random networks with N = 20 nodes

K links in a particular realization of the network is pX (1— p)NNV=1/C=K) Nonethe-
less, both models coincide in the limit of large N, or thermodynamic limit. The prob-
ability of finding a node with a large connectivity decreases exponentially with K,
so vertexes with large connectivity, K >> 1, are practically absent (Fig.2.6).

If one starts increasing the value of the probability of connection, from p = 0
(nodes totally disconnected) to p = 1 (complete graph), there is an interesting
change of behavior at the critical value p. = 1/N. Thus, if p < p,, the graph is
not connected (it has no component of size greater than O(InN)), if p > p, then
the graph has a component of O(N), and the transition at p. displays the typical
features of a second phase transition. On the other hand, the probability of having a
node with k = k; connections follows the Binomial distribution:

Plk=k)=Ck_pra— pN-1=* (2.9)

where pF is the probability of having k edges, (1 — p)¥~17* is the probability of
the absence of the remaining (N — k) links, and C1]§/—1 is the number of different
ways of selecting the end points of these k nodes. Notice that, since all nodes of
the networks are equivalent, this probability P(k = k;) is also the probability of
choosing randomly a node with k; neighbors. In the limit of large N and fixed (k),
the degree distribution of the network can be accurately described by the Poisson
distribution:
Pk — o0
(k) =-e o (2.10)
Moreover, for this particular topology, the dependence of the clustering coefficient
with the size of the system N is given by:

(C)er=p = (k)/N 2.11)

and the average path length, on the other hand shows a dependence given by:
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InN
In{k)

(L)ER (2.12)

Notice that the value of the clustering coefficient tends to zero in the limit of large N.
It is also important to point out that this model produces homogeneous random
graphs, which do not share certain topological features with the real networks, for
example, they have low values of the clustering coefficient, and do not show any kind
of correlations between nodes.

Small-World Networks

A graph in which, although most pairs of nodes are not directly connected to each
other, they can nonetheless be in touch by a small number of steps is called Small-
world network, since it captures this so-called phenomenon of strangers being linked
by a mutual acquaintance (also known as six degrees of separation [16—18]). Some
properties of real networks can be well modeled using Small-world networks, for
example social networks, gene networks or the Internet. Nonetheless, itis important to
keep in mind that ‘small-world’ is a concept that includes several kind of topologies:
empirical data [19] suggest the existence of three classes of small-world networks, as
far as its degree distribution is concern: scale-free networks, broad-scale or truncated
scale-free networks, and single-scale or random networks.

The first Small-world network model was proposed by Watts and Strogatz [15],
and itinterpolates between a regular graph and a random graph, depending on a single
parameter p € [0, 1], without altering neither the number of nodes nor the number of
connections per node of the original graph. This is a random graph generation model
that produces networks with Small-world properties, possessing short average path
length and high clustering coefficient provided the adequate range of the parameter
p (see Fig.2.8).

Departing from a one-dimensional regular lattice or a ring, where each node has
exactly the same number of neighbors, z, we rewire every link with a probability p,
avoiding multiple connexions between two nodes and self-connections. In another
version of the model, we depart from a ring, where each node has exactly z neighbors,
and we add a link between every pair of nodes, with probability p, instead of rewiring
the existing links. Regarding the degree distribution, for p = 0 we have P (k) =
0(k — z), where z is the coordination number of the lattice (z = 4 in the case shown
in Fig.2.7); whereas for finite values of p € (0, 1], P(k) still has a peak around
z, but it obviously gets broader as p increases. For the cases where p € (0, 1], the
probability of finding a node with a large connectivity decreases exponentially with
k, as it happen for ER random networks, so vertexes with large connectivity are
practically absent as well. For p = 0 we keep the initial ring structure, which has
high values both for the clustering coefficient (C ~ 3/4), but also for the average
path length (L ~ N/(2k) > 1).

On the other hand, for p = 1 we have a random network -though, to be rigorous, in
the second version, there are not any nodes with connectivity k < z/2, as there would
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Regular Small-warld

Increasing randomness

Fig. 2.7 Diagram of the random rewiring procedure for interpolating between a one-dimensional
lattice and a random network in the Small-world model. The networks have N = 20 nodes and
k = 4. Original figure from [15]

be in a random network built with a mechanism such as ER. Its average path length
is short (L ~ L,qngom ~ lfrll—ll\!), but its value for the clustering coefficient is also low
(C =~ Crandom ~ k/n < 1). Nonetheless, there is an intermediate region of p where
we can get a network with both features: a high value for the clustering coefficient
and a short average path length. This is due to the presence of long-range connections
or shortcuts introduced by the rewiring procedure. Notice that the introduction of
these shortcuts makes the average path length drop, not only for the pair of nodes
involved, but for all their neighbors too. Moreover, the removal of some links from a
neighborhood due to the rewiring process, does not affect the clustering coefficient
too drastically, so it remains unaltered for small values of p < 0.01 (see Fig.2.8). In
other words, during the dropping of L(p)/L(0), the clustering C(p)/C(0) remains
almost unaltered, which means that this transition to the Small-world is undetectable
on a local level.

Regarding the dependence of the small-world behavior with the size of the system,
it has been shown [20] that the emergence of this regime occurs for a value of p that
approaches zero as N diverges.

The BA Model

Both the Small-world model and the ER model, explained previously, although
are most undoubtedly useful and insightful, display two important features that
make them very different from the real networks. The first one is the assumption
that the whole system is present from the very beginning, it is to say, that the network
has a fixed size N and it does not grow, no new nodes are added. In contrast, it has
been observed that most real networks are open systems, and they get new vertexes
that connect with the ones already present, so the number N keeps increasing through-
out the lifetime of the graph. The second one is the assumption that the probability
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that two vertexes are connected is uniform. Again, in contrast, most real networks
show clearly a preferential attachment: usually, the more connected a node is, the
more easily it will get even more neighbors due to connections from new nodes.

The Barabdsi-Albert (BA) [20] is a model for building scale-free networks that is
based on two fundamental ingredients: preferential attachment, i.e. the assumption
that the likelihood of receiving new edges increases with the node’s degree, and
growth. Actually, variants of the model, with just one of the two ingredients have
been tried, but neither of them get networks with power-law distributions. This was
a model originally inspired on the growth of the World Wide Web, and as we have
already mentioned, the idea behind it is that the highly connected nodes get new links
at a higher rate than the lower connected ones or, in other words, the catchphrase
‘rich get richer’ [21]. This is a phenomenon easily found on real systems (and it is
known in sociology as the Matthew effect [22]).

Thus, we start with a little core of m( disconnected nodes, and at each time step
t=1,2,3,..., N —mp, anew node i is added to the system with m < m links to
existing nodes. The probability that an existing node j gets one of the links from the
newcomer is proportional to its own connectivity, k;, in a linear way:

m, =
./_zlkl

Since every new node links to m other nodes, at any given moment ¢, the network
has N (t) = mg + t nodes and K () = mt links. Besides, for long times, the average
degree of the network is (k) = 2m. The degree distribution of these networks is a
power law, P (k) ~ k=7, with v = 3. A scale-free degree distribution implies that
there are a lot of nodes with just a few connections, and a small number of nodes
with a very high connectivity. These highly connected nodes are called hubs and they
usually play an important role in most dynamical processes that can take place on
the system, as we will see with some detail during this thesis. Besides, the degree

(2.13)
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distribution P (k) of the BA networks is independent of time, and thus independent
of the size of the system, indicating that despite its continuous growth, the system
organizes itself into a scale-free stationary state.

The dependence of the clustering coefficient with the size of the system N is
approximately a power law, given by:

(Cypa ~ N7 (2.14)
The average path length, on the other hand shows a dependence given by:

InN

Lhpa~ 0wy

(2.15)

The value of the average path length in BA networks is smaller than in ER networks
for any value of N, so obviously, the heterogeneous topologies help bringing the
nodes together more than the homogeneous ones. On the other, hand, comparing the
values for the clustering coefficient, the corresponding values for the BA networks
are about five times higher than for ER networks, and this factor even increases
slightly with the size of the system. Moreover, it is worth pointing out the existence
of the so-called age correlations [23-25] among nodes for the scale-free topologies,
which means that the older nodes, i.e. the ones that appear first on the system, are
more likely to end up being hubs, just by construction, while the later a node appears,
the lower connectivity it will get.

We consider that it is important to stress again that SF networks built via this
BA procedure have very low values for the clustering coefficient, when comparing
with real networks, so we must admit that this kind of topologies might reproduce
the degree distribution of those systems, but can not do the same for the clustering
coefficient. Along these lines, there have been some other models that, based on BA,
tried to put a remedy to this fact. For example, the work by Holme and Kim [26],
presents a model for constructing SF networks with tunable clustering coefficient.
In few words, this model starts with a set of m( unconnected nodes and adds a new
one to it every time step, up to N. Each one of the new nodes launches m < my
links. The probability of an existing node i to receive the first link of a newcomer
J 1s proportional to its connectivity k;, but for the remaining m — 1 links that the
new node j has to establish, there is a probability p to launch them to a (randomly
selected) neighbor of i, and a probability (1 — p) to launch them following the original
preferential attachment rule. In this way, the family of networks we obtain have all
exactly the same power-law degree distribution P (k) ~ k~3, but the higher the value
of the probability p, the higher the value of the clustering coefficient (it can easily
achieve values of 0.5, when we recall that for BA, it tends to zero as N increases,
so the order of magnitude of a typical value can be around 10~2 for N = 103). For
the particular case p = 0, we recover the original BA model, obviously. Moreover,
with this Holme-Kim model, the clustering coefficient is independent of the size of
the system, as opposed to what happens with BA, where it decreases with N, as
we have seen. On the other hand, it is also worth mentioning that, one may think
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that by increasing p the average path length of the final structure will decrease,
since some links that would help shortening it by linking to nodes far apart, are now
linking nodes in the same neighborhood. As it turns out, the value of the average
path increases slightly with the probability p, but the dependence with the size of
the system remains logarithmic, so we do not lose the "small-world’ property with
this model.

Finally, we also want to remark two points regarding preferential attachment.
First, other mechanisms for building SF networks have been proposed [27], that are
not based on growth and preferential attachment like the BA model is. Instead, an
intrinsic fitness (from a given probability distribution) is assigned to each node in
the system, and then pairs of them are linked together, according to a function of
their fitness. And second, if one combines growth, preferential attachment and some
aging mechanism or introduces a cost per link, then one will obtain SF topologies
with a cutoff on the degree distribution, or even make the scale-free regime disappears
altogether [19].

The GM Model

The Gardefies-Moreno is a model [28] that interpolates between Erdos-Rényi random
networks and Barabdsi-Albert scale-free networks as far as the degree distribution is
concerned, through a tunable parameter o, so it generates a one-parameter family of
networks. This parameter o € [0, 1] determines the degree of heterogeneity of the
network, whose final size will be 2. Thus, & = 0 gives rise to scale-free networks
and a = 1 to random graphs, and for in-between values, the topology will have an
intermediate degree of heterogeneity.

The procedure to generate these networks is as follows: we start with a small fully
connected core of mq nodes, and a set U/ (0) of (2 — m() disconnected nodes. At
each time step, a new node j from the set ¢/(0) is chosen, and it makes a link in two
possible ways: with a probability «, it attaches to any other node i from the whole
set of Q2 — 1 nodes with uniform probability:

i 1
rreniform — 2.16

i g_1 (2.16)
and with probability 1 — a, it establishes a link following a preferential attachment
(PA) strategy. This means that the probability for any other node i to get attached to
node j is a function of its connectivity, in a way given by:
B4 A,
njt= ————— ;,L ’ (2.17)

2ok + A

where ; P4 is the incoming PA degree of the node i, that is, those links received by
i when other node launches (in average) (1 — a)m links following the PA rule. On
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the other hand, A; is an initial attractiveness (or fitness) the new node has when it
is introduced in the connected component (either because it is chosen at random by
any node or because it is launching its m outgoing links over the rest of nodes). This
associated parameter is zero if the node i is not in the connected setand is A; = A ifit
is linked to other nodes, i.e., if it belongs to N (¢). Thus, the preferential attachment is
strongly correlated with the simultaneous uniform random linking, and, on the other
hand, it is linear with the incoming PA degree of the node ki P4 Next, we repeat the
linking procedure for another m — 1 times for the same node j, and then we repeat
the whole process altogether for the rest of the nodes, i.e., for another Y = Q — my
more time steps.

On Fig.2.9 we show the degree distribution for some networks obtained with the
GM model, for several values of the parameter « but the same size 2 and average
connectivity k. Notice that the transition between heterogeneous and homogeneous
topologies is smooth, as « increases.

2.1.4 Processes on Networks

So far in this chapter, we have studied some general topological properties of net-
works, as well as some well known and widely used models to generate them, and
some real examples too. Nonetheless, we have to keep in mind that the ultimate goal
of studying these structures, is to finally be able to model, describe and predict the
different dynamics that can take place on top of them. Those include a wide and
varied collection, such as disease [1, 2, 29-35] or rumor spreading, synchronization
[1, 36-40], diffusion, traffic information and congestion, network search and navi-
gation, percolation, robustness against random failures or targeted attacks [41, 42],
cultural dissemination, opinion formation or language dynamics [43], and games
[44]. In this section, it is not our intention to go exhaustively though all of them at
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Fig. 2.10 Schematic repre-

sentation of the SIR model | Susceptible - —>» f

all (for some very nice reviews on the subject, see [1, 2, 40, 44]), but just to briefly
examine a few of them, as an example, describing some the most popular models
or approaches that have been proposed, and also pointing out the differences intro-
duced by the underlying topology on the outcome of the dynamics, in comparison
to well-mixed situations or lattices.

Disease Spreading

Epidemic spreading is a very interesting and obviously very important object of study
[1, 2, 29-35]. The aim in this field is not only to understand the mechanisms through
which diseases spread on a population, but also to design strategies to control them,
and to be able to protect the population from pandemics.

Specifically, Compartmental Models in epidemiology stand for some models that,
in order to describe the progress of an epidemic in a large population comprising
many different individuals, reduce such population diversity to a few key character-
istics which are relevant to the infection under consideration. For example, for most
common childhood diseases that confer long-lasting immunity, such as the chick-
enpox, it makes sense to divide the population into those who are susceptible to
the disease, those who are infected and those who have recovered and are therefore
immune. Thus, one can ignore the rest of the information about the population, such
as age distribution or race, because it is irrelevant for the model. These subdivisions
of the population are called compartments.

In particular, one of the more used (and at the same time simple) models to study
disease spreading is the SIR model. It considers that the population is compartmental-
ized into three possible states: Susceptible, Infected (and infectious), and Recovered
(or removed). Thus, a susceptible individual can get infected with a certain proba-
bility if it is in direct contact with an infected one, and in turn, an infected individual
recovers (or dies) with a different probability, not being able to get infected again
in any case. This simple model describes many infectious diseases, such as measles,
mumps and rubella. On Fig.2.10 we show a simple scheme for the dynamics of this
model. Of course, there are other models much more sophisticated, that take into
account other intermediate states in the infectious process, such as latency, infected
asymptomatic individuals or vaccination (see for example [44, 45]).

As a first approximation, one can consider the homogeneous mixing hypothe-
sis, which assumes that people with whom a susceptible individual has contact are
chosen at random from the whole population. This is a strong and somehow question-
able assumption, since it does not take into account local details, such as individual
diversity on the number of acquaintances, community structure or geographic con-
strictions. And, on the other hand, one should take into account that some illness like
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the common cold, can be modeled accurately enough as a random-contact process,
ignoring the social structure underneath, while it has been proved than for some
others, such as the venereal diseases, one can not even describe them using a random
degree distribution for the population, but a scale-free, so in these cases, the structure
is essential.

Nonetheless, this approximation made by the SIR model allows us to describe
analytically the behavior of the models simply by using ordinary differential equa-
tions for the densities of individuals in each compartment:

dil(f) = —Mep(1)s (1)
d _
% = —pp(t) + Nep()s (1) 2.18)
ar(t)
PR pp(t),

where s(7), p(t) and r(t) are respectively, the fraction of susceptible, infected and
recovered individuals on the population at time 7, so s(¢) + p(¢) + r(t) = 1. On the
other hand, one susceptible individual becomes infected (if in contact with another
infected one) with a probability A, an infected individual recovers (or dies) with a
probability s, and k stands for the connectivity of the population, assumed exactly
the same for everyone.
The most relevant prediction of this model is the existence of a non-zero epidemic
threshold,
e = 1/k (2.19)

so if A > )., the disease spreads and infects a finite fraction of the population,
and if A < )., the total number of infected individuals (the so-called epidemic
incidence, defined as roo = lim;— o7 (t)) is infinitesimally small in the limit of a
large population.

On the left panel of Fig. 2.11 we show an example of time evolution of the dynam-
ics for a meaningful set of the parameters, namely, for A = 0.94, i = 1.0, k = 6 and
using as inital conditions: s(0) >~ 1, p(0) ~ 0 and r(0) =~ 0. On the right panel, it is
shown the dependence of the epidemic incidence with the infection probability .

To deal with situations where the population is not well-mixed, or as we have
mentioned before, the nature of the disease itself does not allow us to treat the
pattern of interactions as homogeneous, we will need to represent the system as a
graph, where nodes are the individuals (belonging to one of the three possible states:
Susceptible, Infected or Recovered), and links are the interactions through which a
susceptible node can become infected, if it has another infected node as a neighbor.
So now, we want study the SIR process on an uncorrelated heterogeneous network
(with generic degree distribution P (k) and a finite average connectivity (k)). We will
study sx (¢), px (t) and rg (t), meaning the time evolution of the fractions of susceptible,
infected and recovered individuals, respectively, within a connectivity class k, and
with the normalization condition: s (z) + px () +r (t) = 1 for any given connectivity
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Fig. 2.11 Time evolution of the SIR dynamics (left) for A = 0.94, = 1.0, k = 6 and taking
5(0) >~ 1, p(0) >~ Oand r(0) =~ O as initial conditions, and the dependence of the epidemic incidence
(right) with the probability of infection, A for x = 1.0 and k = 6

class and time instant. The global magnitudes are now given by the average over all
the classes of connectivity present on the graph, so for example, the total fraction of
infected individuals on the population at a given time 7 is: pi () = >, P (k) px (t).
Here it is important to notice that the network is considered static, so P (k) does not
change over time.

The equations for the evolution of the three compartments are similar to Eq.2.18,
but now we differentiate among connectivity classes:

d

Sf;,(” — s (O()
d

FZ,(I([) = —pupi(t) + Mesp (1) O (1) (2.20)
dr(t)

T ppr (1),

where © () is the probability of a given link to point towards an infected node, and

is given by:

2 kP k) pi(t)
(k)

Notice that this probability is the same for any node we consider, so it does not take

into account any possible correlations between the connectivity of the nodes.
Again, one can get that there is an epidemic threshold, given by:

O@) = 2.21)

k
Ao = (2.22)
(k=)
below which the epidemic incidence is zero, and above which it has a finite value.
As we can see, this threshold depends inversely on the connectivity fluctuations of
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the network the disease is spreading on, so for a system whose topology has a finite
value, (k?), such as a random graph, then we get a threshold with a finite value as
well (and therefore, a standard phase transition scenario). However, for scale-free
networks we know that their connectivity fluctuations (k2) diverge when N — oo,
which implies a vanishing epidemic threshold for increasingly larger systems.

The absence of a threshold in scale-free topologies is an important result that dif-
fers drastically from the one obtained for random networks or well-mixed scenarios,
and it should be taken into account, for instance for prevention or vaccination strate-
gies to be used by the health authorities, in order to efficiently fight off epidemics.

On the other hand, it is also worth noticing that real networks, even when they
present some degree of heterogeneity on the connections, do have a finite size, and
thus an effective threshold, depending on its (k) and (k?). Nonetheless, this value is
usually very small for a large enough population, and is considerably smaller than
the one for a random graph of the same size.

With regard to immunization strategies on scale-free topologies, we can point out
that random vaccination is not effective, since there is always a non-zero epidemic
incidence, even for very high vaccination ratios among the population. Nonetheless,
targeted immunization, i.e., vaccinating the most connected individuals in a popu-
lation, can give better results. On the other hand, is not always realistic to assume
that the number of connections of a node on a real network can be known. A possi-
ble solution to this problem is the vaccination of random acquaintances of random
chosen individuals, since the probability of reaching a particular node by following
a randomly chosen edge is proportional to its degree.

Finally, we will say that for correlated networks it has been found that the qual-
itative behavior is the same as for uncorrelated networks, although there are some
quantitative differences: on the one hand, while the likelihood of an epidemic out-
break is not modified when taking into account positive correlations, the epidemic
incidence is smaller than in networks without correlations, and on the other hand,
the diseases can live longer in assortative topologies.

Synchronization

Synchronization [1, 36—40] is a self-organized phenomenon where a set of individ-
uals, initially acting on their own, gradually become more similar in their deeds,
without any appointed leader or environmental external signal to guide them. In this
way, after some time, they start behaving under the same pattern, showing, if not
total, at least some identifiable level of clocking: they became somewhat ‘in sync’.
There are many examples of synchronization in natural and human systems: crickets
chirping in a summer night, neurons firing at the same pace, kids playing or singing
along on spur of the moment, or groups of women living together, whose periods
synchronize,...

A simple model has been frequently used in order to address synchronization: the
Kuramoto model. It approaches the problem considering a mean field approxima-
tion, where every individual is an oscillator, and they are all supposed to interact to
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everyone else through a purely sinusoidal coupling, so the governing equations for
each one of them is given by:

. kY
O =wi+ 5 Z} sin(0; — 6;) (2.23)
]:

where K is the coupling constant, w; is the natural frequency of the oscillator i,
and the factor 1/N is incorporated to make sure that the system behaves correctly
in the thermodynamic limit. The natural frequencies are assumed to be distributed
according to some unimodal and symmetric function, whose mean frequency is 2.

The collective behavior of the whole system is described by the macroscopic
complex order parameter:

N
. 1 .
r(t)e' " = 5 > el (2.24)
j=1

so the modulus 0 < r < 1 measures the phase coherence of the population, whereas
¢(t) is the average phase. The value r ~~ 0 corresponds to the lack of synchronization
(the oscillators move incoherently) and r >~ 1 to the case where almost the whole
system is in sync (their phases are locked). The existence of a critical value, K., can
be derived for the coupling, which separates a ‘disordered’ from an ‘ordered’ regime.
In this second regime (when K > K,), there are two types of long term behavior:
a group of oscillators for which |w;| < Kr, that are phase-locked at frequency €2,
and the rest of them, with |w;| > Kr, that are drifting around the circle, sometimes
accelerating and sometimes rotating at lower frequencies.

If one should include some kind of structure in the population in order to give
an account of the complex interaction patterns among individuals, then, instead of
Eq.2.23, one needs to consider an extension of it:

N
éi = w; + ZU,-jaij sm(GJ — 9,) (2.25)
j=1

where o;; accounts for the specific coupling strength between individuals i and j,
and g;; is the adjacency matrix of the network.

The mean field approach for complex networks considers that every oscillator is
influenced by the local field created in its neighborhood, so the local order parameter
is proportional to the connectivity of the node, k;. It can be obtained the critical
coupling for this situation:

Op = Ko~ (2.26)

It is to say, we get a rescaled critical value for the all-to-all topology, K., by the
ratio between the mean connectivity of the particular network and its fluctuations.
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Fig. 2.12 Squematic representation of the different paths to synchronization displayed for SF
(bottom) and ER (top) networks (higher values of the coupling strength are shown from left to right.
Original figure from [36]

So once again, it is clear that for random networks there will be a threshold, but for
(infinite) SF networks, this critical value will tend to zero.

Besides, itis important to point out that no exact analytical results for the Kuramoto
model on general complex networks are available up to date, but one can always
numerically simulate its dynamics. These simulations [36, 39] confirm the theoreti-
cal predictions, since they have shown that the onset of synchronization first occurs
for SF, and as the topology becomes more homogeneous, the critical point moves to
larger values, and the system seems to be less synchronizable. On the other hand,
the particular paths to synchronization [36, 40] are also very different depending on
the underlying structure (see Fig.2.12): in SF networks, links and nodes are incor-
porated together to the largest of the synchronized clusters, while for homogeneous
topologies, what are added are links between nodes already belonging to such cluster,
making the route to complete synchronization a ‘sharper’ process, somehow. In other
words, in the presence of hubs, a giant component of synchronized pair of oscilla-
tors forms and grows by recruiting nodes linked to them, while on the contrary, in
homogeneous structures, many small clusters first appear and then group together.

Cultural Dissemination

A very interesting aspect of human interactions is how people from different cultures
can relate to each other, changing some of their own cultural traits when they meet.
Nonetheless, if two individuals do not share any cultural features to begin with, it
will be probably very hard for them to communicate and interact, but if they do
have initially something in common (like some interests, hobbies, goals or even an
aversion against something), they may start some kind of relationship. Moreover,
it makes sense to assume that the more similar they are before meeting each other,
the more likely it is for them to interact and become even more similar after that
(this phenomenon is known as homophilia). As a result, not only individuals, but
also societies change over time due to this mechanism of cultural influence. Thus,
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one would expect these societies to became homogeneous (global) over time, as
far as culture is concern, but as it turns out, sometimes they do not. Instead, such
interactions can give rise to different groups with practically nothing in common,
surprisingly enough.

Since Axelrod proposed his agent-based model [46] to address the issue of cultural
dissemination in 1997, much effort has been put on studying these kind of processes
[43, 47-52]. Under this paradigm, we generally consider that an individual’s culture
can be represented in terms of a set of attributes, such as language, religion, technol-
ogy, dressing style, literary and musical preferences, sport preferences and so on.
Thus an individual can be represented using a vector V = (v 2 F ), with

=1,2,..., N, and where F is the total number of features that deﬁne a culture.
Each one of these components can take only Q integer values, or cultural traits, and
we assume that Q is the same for the F features. It is worth noticing that within this
model, we do not consider as ‘cultural’ those features an individual can not change,
for example skin color or physical constitution. Besides, we will consider our society
to be placed in a lattice of size L x L = N, where individuals will interact only with
their neighbors.

Once we have randomly distributed the initial values for all the features of every
individual in the system, the cultural interaction dynamics is defined as follows:
every time step, an individual i is randomly chosen and one of its neighbors j, is
also randomly selected. One measures the overlap between their cultural vectors,
given by:

F
1 [ )
Sij = - ;6(1)1- — ) (2.27)

where §(x) = 1if x = 0 and §(x) = 1 otherwise. If these two individuals are totally
different (S;; = 0) or exactly the same (S;; = 1), then nothing happens, since the
link between them is blocked. But if that is not the case, and S;; € (0, 1), then the
link is ‘active’, and we then consider the value of the overlap S;; as the probability
that one of them imitates the other in one of the other features they have different.
Obviously, the more similar they are, the higher the probability of becoming even
closer through social interaction.

Letting the system evolve, it will eventually reach a frozen state, meaning that all
the links between individuals are blocked. A useful order parameter is the relative
size of the largest cultural cluster, Spax, it is to say, the largest group of individuals
that share the values for all their cultural features. According to some studies on
lattices [47, 49, 51, 53], when F' > 2, a non equilibrium first-order phase transition
from order to disorder is observed as a function of the number of traits Q (the control
parameter). There is a critical value, so if Q < Q, the final state of the system
corresponds to Smax ~ 1, a global, homogeneous state, while if Q@ > Q, then
Smax < 1, a polarized state with different cultural domains arises (see Fig.2.13
(left)). This transition gets sharper as the size of the system increases.

If we analyze the time evolution of the relative number of blocked links (see
Fig.2.13 (right)), it can be seen that there is a non-zero initial value, due to just
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Fig. 2.13 Left Dependence of the largest cluster of global cultural consensus with the number of
traits per feature for a 50 x 50 node square lattice with a 4-node neighborhood (/eft), ER random
network (center) and BA scale-free network (right), and always for F' = 10. The last two topologies
have (k) = 6 and N = 10 nodes. Every point is the average of 100 independent realizations. Right
Several examples of time evolution of the relative number of blocked links. The underlying topology
is a SF network made up of N = 103 nodes and (k) = 6 and for a fixed value of F = 10

random assignment of the traits, that drops quickly as the dynamics starts, and indi-
viduals begin to interact. Then, this magnitude remains very low for a considerable
amount of time, to finally rise up to the final value, corresponding with the rapid
rise of Spax (¢). This reflects the fact that, while the individuals have almost noth-
ing in common, the system seems to spend a lot of time in that state, unable to get
to an agreement, but once the individuals share some values for the features, then
the final state is rapidly achieved. Notice that every realization shown in Fig.2.13
(right) reaches its final state at its particular ’consensus time’, since it is an stochastic
process.

If we consider now that the pattern of interactions is given by a finite complex
network [47], instead of by a lattice, the general picture of the phase transition remains
unaltered (see Fig.2.13 (left)), but with a higher value for Q. (even higher for SF
than for random networks, but qualitatively similar).

On the other hand, recent studies [52] have shown that, one can analyze the cultural
evolution process towards the final state, from a global point of view (it is to say,
considering the macroscopic level of consensus in the system though Syax), but also
from a feature level. It means that at any given time, we consider F' layers or subgraphs
of the original graph G. In the subgraph G ¢ (¢), two individuals are connected if they
are physically connected in G, and if they share the value of the feature f at that
precise instant of time. In this way, we can observe how cultural consensus evolve
in every layer, Sﬂ;ax, and we get to discover that there are some relevant differences
between the two approaches: while for the global consensus point of view, the system
remains apparently unordered for a large fraction of the simulation time, to finally get
organized very quickly (Fig. 2.14 (left)), the organization at a feature level starts much
earlier. Actually, Sr{lax increases monotonously over time from the very beginning
(Fig.2.14 (right)).
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Fig. 2.14 Time evolution (relative to the final consensus time 7') of the largest cluster of cultural
consensus at global (left) and at feature (right) level for a value of F = 10 in SF networks made
up of N = 4 - 103, with average connectivity (k) = 6

Finally, it is also worth mentioning that there are many other works with different
variations of the Axelrod model [43], including for example noise [54], an external
field [55], rewiring of the connections between nodes [56], even movility of the
individuals [57], or even a combination of the original Axelrod model for cultural
dissemination with the original Schelling model of social segregation [58].

2.2 Games

A game can be considered as a formal abstraction of social interactions between
individuals. There must be at least two decision makers (or players), who can choose
between at least two different actions (also called strategies). It is worth stressing that
a player does not need a brain in order to adopt a strategy, on the contrary, they can
be very simple agents: bacteria, for example, have the basic capacities to play games,
since they are highly responsive to certain aspects of their chemical environment, and
they can respond differently depending on the actions of their neighbors, the behavior
can affect the fitness of others and vice versa, and finally, the conditional strategies
can be inherited by the offspring [59]. The outcome of the interaction depends on the
strategy every player adopts. Thus, Game Theory is a branch of applied Mathematics
that tries to capture these situations and it is usually considered to have its origin with
the work of von Neumann and Morgenstern [60] in 1944. Historically, Game Theory
has been used in very different fields, such as economics, biology, political science
or sociology, and there are two main different approaches: Classic Game Theory and
Evolutionary Game Theory, which made different assumptions about the systems
they model.

Classic Game Theory formally studies how rational players should behave in
order to obtain the maximum possible benefit or payoff. Nonetheless, one could
easily object to the concept of ‘rational player’ as an accurate representation of real
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individuals in a social or biological context. ‘Rational player’ means that its only
goal and motivation is to maximize its benefits, given its belief about its opponent’s
strategy, but there are plenty of real situations where the actions of the players do not
seem to aim a maximum payoff.

Evolutionary Game Theory [61-63] was originated in 1973 by the work of
Maynard Smith and Price works. It studies the time evolution of large populations of
individuals who repeatedly play a game and are exposed to selection and replication
(with or without mutation). Their strategies are fixed, and usually, the encounters
between the individuals are supposed to happen at random, in a ‘well-mixed’ situa-
tion, so there is no social structure behind it (everyone interacts with everyone else),
and it allows for the analytical treatment of the problem. Thus, the probability of
interacting with an individual that uses strategy i is proportional to the fraction of
individuals that are using that particular strategy in the system at the moment, x;.
The payoffs from all these interactions are added up, and success in the game is inter-
preted as reproductive success. Thus, payoff means fitness in the Darwinian way:
the strategies that perform better, reproduce faster, which can be straightforwardly
interpreted as natural selection.

In this section we intend to establish just a few useful concepts and results in
Classical Game Theory, always keeping in mind that our goal is to understand the
problem of cooperation. Then we will move on to the approach given by Evolution-
ary Game Theory, and finally, we will point out some mechanisms that have been
introduced to explain the survival of cooperation observed in several natural and
social systems, specially, the differences in the outcome of a game when dealing
with a structured population, it is to say, when we have an underlying topology.

2.2.1 Classical Game Theory

In Classical Game Theory (CGT), we consider that interacting individuals can choose
astrategy -or a way to act- among a well-defined set of them. A game is called normal-
form if it is determined by a payoff matrix. Thus, for instance in a 2 x 2 game, we
have two players and two different strategies A and B, and then depending on their
particular choices, the benefits the players will obtain are given by the payoff matrix:

A B
A fa b (2.28)
B (c d)
This means that, for instance, when a player uses strategy A against a player using
also A, it get a payoff equal to a, when a player uses strategy A against a player
using a strategy B, it get a payoff equal to b, and so on. We say that strategy
A dominates strategy B, if a > ¢ and b > d. In that situation, no matter what

strategy your opponent uses, it is better always to use A. Conversely, B dominates
A,ifa <cand b < d.
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Now, in a general case of a N x N payoff matrix U, if we denote the N pure

strategies by R1, R, ... Ry, then the simplex Sy of the linear combinations of pure
strategies:
SN=[p=(p1,pz,...,pzv):pi20 and Zp,:l] (2.29)
i

is the set of mixed strategies. A mixed strategy can be seen as the one used by a
player that chooses strategy R; with a probability p;, wherei =1,2,..., N.The N
vertexes of the simplex Sy are the N pure strategies, while the interior of the simplex
is the set of completely mixed strategies, it is to say, those for which p; > 0 Vi.
The boundaries of the simplex, on the other hand, correspond to mixed strategies
that must have necessarily one of the probabilities set to zero. We can calculate the
benefit of a p-strategist against a g-strategist as:

rUq = ZPiuijqj' (2.30)
i,j

and the set of strategies for which the application p — pUgq achieves its maximum
value is called best responses to q.

A strategy ¢ is called a Nash Equilibrium (originally called ‘equilibrium for
n-person games’ by Nash in 1950 in [64]) if it is the best response to itself. This
means that if two individuals are both using a strategy that is a Nash Equilibrium,
then neither of them can unilaterally deviate form that strategy and increase its payoff.
Moreover, a Nash Equilibrium is called Strict if it is the only best response to itself,
therefore Vp # ¢ it is fulfilled that pUq < qUgq. If q is a Nash Equilibrium, then
there is a constant ¢ that satisfies that (Ug); < ¢, and from this result can be derived
that a Nash Equilibrium is always a pure strategy.

A strategy p is Evolutionary Stable if Vp € Sy with p # p the inequity:

pUep+ (1 —)p) < pU(ep + (1 —)p) (2.31)

is fulfilled Ve > 0, as long as it is smaller than a certain appropriate invasion threshold
€(p). It can be proven the following logic chain:
Strict Nash Equilibrium — Evolutionary Stable Strategy — Nash Equilibrium.
Let’s now consider again a particular set of 2 x 2 games. We can analyze the
possible outcomes within the CGT framework. We consider two different strategies:
cooperate (C) and defect (D), and the correspondent payoff matrix:

C D
c (R S (2.32)
p\r p

Depending on the relative ordering of the parameters, we can define three games:
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e The Hawks and Doves (or Snow Drift or Chicken) game [65-68] fulfills: T > R >
S > P. Players are referred to as greedy, since they prefer unilateral defection to
mutual cooperation (7 > R). In this situation, C is the best response for D, and
vice versa, so one should always try to choose the opposite of what the opponent
does, in order to maximize the benefits.

e The Stag Hunt game [69, 70] satisfies R > T > P > S. Players prefer mutual
defection to unilateral cooperation (S < P), resulting in an intrinsic fear of indi-
viduals to cooperate. In this situation, C is the best response for C, and D is the
best response for D, or in other words, both are Nash equilibria, so it is better
always to try to play the same strategy as your opponent.

e The Prisoner’s Dilemma game [59, 63, 71-73], for which T > R > P > S, both
tensions described above are incorporated at once, so is the most difficult situation
for cooperation to arise. In this scenario, D dominates C. No matter what strategy
your opponent uses, it is better always to defect.

2.2.2 Evolutionary Game Theory

Within the Theory of Evolution, the central actor of an evolutionary system is the
replicator. A replicator is an entity that possesses the ability of making copies of
itself. It can be a gene, an organism, a strategy in a game, a particular belief or
opinion, a technique or any other cultural trait in general. A replicator system is a set
of replicators in a particular environment, with some kind of interaction among the
individuals. An evolutionary dynamics of a replicator system is a process of change
over time on the replicator frequency distribution, in such a way that the strategies
with higher benefits reproduce at a faster pace.

Let us consider that the population is divided into n types of individuals E;, E,
..., E, with frequencies (or relative abundances) x1, x2, ..., x, respectively. The
fitness (or expected number of descendants) f; of the type E; will be assumed to be a
function ot the composition of the whole population. If the population is big enough,
and the individuals of a generation are supposed to meet and interact continuously
and at random (well-mixed scenario), then we can consider that the state of the system
x(t) evolves in the simplex S, as a derivable function of time. The increase of the
rate x; /x; of the type E,, is a measure of its success, in the Darwinian evolutionary
sense of the term. Then, we can express this success as the difference between the
fitness f; of this type and the average fitness of the population, f(x) = > Xi fix),
and thus describe the evolution of every type in the population using the Replicator
Equation [62, 74-76]:

Xi = xi[fi(x) — f(x0)] (2.33)

withi = 1,2,...,n. It is easy to see that the simplex S, is invariant under these
equations, so if x(0) € S, then x(¢) € S,Vt > 0. Moreover, the faces of the
simplex are also invariant: if one or several strategies are not present at a given
moment #y of the evolution of the system, then they will never be for any 77, such as
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t1 > to. In the case of having mixed strategies, we can also obtain the correspondent
Replicator Equation. If there is a game with N pure strategies R, Ry, ..., Ry and
a N x N payoff matrix U, then a strategy is a point in the simplex Sy, and the
E|, E,, ..., E, types of individuals present in the system correspond to n points
plop? ... p" e Sh.

The state of the whole population is given by the frequencies x; of the types E;.
The benefits of a p'-strategist playing against a ¢’ -strategist is given by a;; = p'U p/,
and thus, the fitness f; of the type E; is fi(x) = Z ajjxj = (Ax);. Astate X € S,
is a Nash Equilibrium if xAX < XAX, Vx € S,, and it can be proven that if x is a
Nash Equilibrium, then it is an equilibrium point of the Replicator Equation. A state
X € S, is said evolutionary stable if Vx # X in an environment of ¥ it is fulfilled that
XAx > xAx. The same way, it can be proven that if § is an evolutionary stable state,
then it is a point of asymptotically stable equilibrium of the Replicator Equation (but
the reciprocal result is not necessarily true).

Replicator Equation for 2 x 2 Games

For the particular case of a 2 x 2 symmetric game, we will have again that the generic
payoff matrix is given by:
A B

A fa b (2.34)
B \c d

And according to the Evolutionary Game Theory, we should consider that the fitness
of an individual playing a certain strategy depends on the fraction of individuals that
play every strategy (it is to say, the so-called frequency-dependent selection), so if
the vector X = (xa, xp) represents the composition of the population, in terms of
the two possible strategies, and we denote respectively, f4(X) and f(X) the fitness
of both of them. The selection dynamics can be written as

XA =xalfa(x) — ¢l
ip = xplfe(X) — ¢] (2.35)

where ¢ = x4 fa(X) + xp fp(X) is the average fitness of the entire population.
Obviously, since x4 + xp = 1, we can consider x = x4 and 1 — x = xp, and then
we can rewrite the previous differential Eq.2.35 in a simpler way as:

X =x(1=x)[fatx) — f()] (2.36)

It can be easily shown that x = 0 is a stable equilibrium if f4(0) < fp(0), and
conversely, x = 1 is a stable equilibrium if f4(1) > fp(1). On the other hand, any
interior value of x € (0, 1) is a stable equilibrium x* if the first derivative of the
fitness functions satisfies f,(x*) < f;(x*).



2.2 Games 39

In particular we can calculate the expected fitness of an individual playing A or
B respectively, in the well-mixed scenario explained before as:

fa =ax,+bxp
fB =cxq +dxp (2.37)

so if we again introduce this expression for the fitness in 2.35 we obtain:
x=x(1—x)[(a—b—-—c+d)x+b—d] (2.38)

Depending on the relative ordering of the coefficients of the payoff matrix, we
can have different situations for the selection dynamics [73, 77, 78]:

(a) A dominates B, if a > ¢ and b > d. No matter what strategy your opponent
uses, it is better always to use A, and selection will lead to a final state where all
players are A.

(b) B dominates A, if a < c and b < d. No matter what strategy your opponent
uses, it is better always to use B, and selection will lead to a final state where all
players are B.

(c) A and B are bistable,ifa > c and b < d. In this situation, A is the best response
for A, and B is the best response for B, so itis better always to try to play the same
strategy as your opponent. There is an unstable equilibrium at x* = %,
and depending on the initial fraction of every strategy, the system will converge
to all-A (if x(0) > x*) or all-B (if x(0) < x™).

(d) A and B coexist,if a < c and b > d. In this situation, A is the best response for
B, and vice versa, so one should always try to choose the opposite of what the
opponent does. Selection will make the system converge to the interior equilib-
rium x* = =2

(e) A and B are neutral, if a = ¢ and b = d. No matter what action you choose,
you will always win exactly the same as your opponent, so selection will not
modify the initial fraction of every strategy, but this scenario is obviously not
very interesting for us.

And some other useful concepts are:

(a) Strategy A is called risk-dominant if a + b > ¢ + d, and then strategy B has a
basin of attraction smaller than 1/2.

(b) Strategy A is called pareto-efficient if a > d.

(c) Strategy A is advantageous if a + 2b > ¢ + 2d, and then strategy B has a basin
of attraction smaller than 1/3.

As aparticular example of 2 x 2 game, we have the Prisoner’s Dilemma (see 2.32),
that has been widely used to study the phenomenon of cooperation in very different
fields, from biology to sociology or economics. It is obvious that defection is the best
response, regardless the opponent’s (it is in fact, the only Nash equilibrium), despite
the fact that, if both cooperate, then they will win more than if both defect.
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Thus, both in a Classic Game Theory approach, and in an Evolutionary context
using the Replicator Equation we obtain straightforwardly an all-D state, since defec-
tors have higher payoff than cooperators. Cooperation can not survive in a well-mixed
situation, it is inevitable. In fact, there are a great deal of examples of this well-
mixed or transitory-pairing environments in Nature, which lead to non-cooperative
or exploiting situations for the individuals, on the contrary to what usually happens
with stable pairing, or even mutualism between different species [59].

Finite Populations

Additionally, one can wonder what happens to the dynamics in the very realistic case
of finite populations (notice that we still do not take into account an internal structure).
In this case, in order to describe the evolution of a N-sized population, a stochastic
theory is needed, and we calculate fixation probabilities for the different possible
strategies [73, 79], instead of equilibrium states of the system. The probability of
fixation of strategy B is the probability of a single mutant B to invade an entire
population of A-players.

In order to approach this situation, we can use, among other stochastic processes,
the Moran process [80], which could be a finite-N analogue to the Replicator Equa-
tion. It is a birth-death process that describes the probabilistic dynamics in a finite
population of constant size N in which two strategies A and B are competing for
dominance. In each time step, a random individual is chosen for reproduction and a
random individual is chosen for death; thus ensuring that the population size remains
constant. To model selection, one type has to have a higher fitness (considered con-
stant) and is thus more likely to be chosen for reproduction. The same individual can
be chosen for death and for reproduction in the same step. It is worth mentioning
that in finite populations, even if all different strategies had the same fitness, all but
one type will eventually go extinct. This principle is called neutral drift. Thus, since
coexistence is not possible, there are as many absorbing states as different strategies
at the beginning. In a population on size N made up of A individuals, we can calcu-
late [73] the probability of fixation of another strategy B (it is to say, the probability
for a single neutral mutant to take over the entire population), and it is given by 1/N.
It means that when dealing with finite populations, just due to random drift, a mutant
(with the same fitness as the majority strategy) can invade the system, which is a
very different outcome from the infinite-population scenario, where having the same
fitness meant coexistence of different strategies. In the same way, the probability
of ending up in an all-B state, just due to random drift, when starting with i < N
individual playing B in a population of A is i/N. On the other hand, if a mutant
B has a relative fitness r, with respect to the A players, it can be proven [73] that
its probability of fixation is then p = 11__11/r "> . Notice that in this scenario, there is
always a non-zero probability that a mutant strategy will invade and take over the
whole population, even though it is opposed by selection [81].
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2.2.3 Evolution of Cooperation

As we have seen previously, neither within the Classic or the Evolutionary Game
approach, can cooperation survive. Nonetheless, there are plenty of examples of
real situations where cooperators arise and thrive, so there must be some mecha-
nisms behind it. Over the years, five main ideas [77] have been proposed to help
understand this phenomenon: kin selection, direct reciprocity, indirect reciprocity,
group selection and network reciprocity.

According to Hamilton [72], natural selection can favor cooperation if the donor
and the recipient of an altruistic act are genetic relatives. More precisely, Hamilton’s
rule establishes that the coefficient of relatedness, r, must exceed the cost-to-benefit
ratio of the altruistic act, itis to say: r > c/b. This coefficient r is defined as the prob-
ability of sharing a gene (it is equal to 1/2 for siblings, equal to 1/8 for cousins,...).
This theory is called Kin Selection, but obviously it can not help understand cooper-
ation among unrelated individuals, or even members of different species.

Trivers proposed the Direct Reciprocity mechanism. Let us assume that there are
repeated encounters [71] of a the Prisoner’s Dilemma Game between the same two
individuals, and every time they can choose to be cooperators or defectors. The idea
is that if I cooperate in this round of the game, maybe you will cooperate in the next
one. When considering the repeated game on a whole population, it can be proven
that direct reciprocity leads to the evolution of cooperation only if the probability of
another encounter between the same two individuals, w, exceeds the cost-to-benefit
ratio of the altruistic act: w > b/c.

Let us now consider the following scenario: among a population, two individuals
meet once, one of them is in the position of helping the other one (this help is supposed
to be less costly for the donor than beneficial for the receiver), and although there is
no possibility for direct reciprocation, helping others will establish a good reputation
which will be rewarded by others. In this way, when deciding how to act, one will
take into consideration the consequences for their reputation. Moreover, the next
step can be to take into consideration the opponents’ reputation, in order to decide
whether or not he/she deserves our help, and how it will affect our own. This theory
constitutes Indirect Reciprocity [82, 83], and when applied to human behavior, it can
help understand the origin of moral and social norms.

We can take into account that selection not only acts on the individual level, but
also on the group level. A simple model for Group Selection is as follows [84]: the
population is divided into different groups, and individuals cooperate inside its own
group, while defectors do not help anyone. Individuals reproduce proportional to its
fitness and the offspring belongs to the same group as the ancestors. When a group
reaches certain size, it can split in two, making another group disappear, in order
to preserve the total size of the population constant. In a mixed group, a defector
reproduces faster than a cooperator, but groups of pure cooperators split faster than
those of pure defectors. For the limit of weak selection and considering the case
of rare group splitting, it can be obtained that, if n is the maximum group size and
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m is the number of groups, then Group Selection allows evolution of cooperation,
provided that: b/c > 1 + (n/m), where b/c is the cost-to-benefit ratio.

Finally, one can realize that the Evolutionary approach for the PD game always
leads to all-D situations, but it considers a well-mixed scenario, it is to say, at any
given time, every individual has equal probabilities to interact with everyone else.
Nonetheless we know that this is a very unrealistic assumption, since groups and
societies have usually some kind of internal structure. In other words, there is a
well defined pattern of interactions among individuals, so every one of them has a
fixed number of neighbors. It has been shown that spatial structure affects greatly
the outcome of an evolutionary dynamics, allowing cooperators to survive in many
situations. Specifically, cooperators form network clusters, where they help each
other. The analytical treatment of this problem is hard, and many times, even impos-
sible, but it has been found that this Network Reciprocity can favor cooperation if
b/c > k, where k stands for the average number of connections of the individuals in
the population.

Prisoner’s Dilemma Game on Structured Populations

According to what we have seen previously, one of the mechanisms that helps
promote cooperation is Network Reciprocity, and it happens to be also the one
we will be interested during this thesis. Thus, the natural next step for us in order
to build more realistic models of social or biological interactions, is to consider
some sort of underlying structure, in account for the particular pattern of relation-
ships between individuals. The first attempts to model such social structure for the
Prisoner’s Dilemma game considered the individuals placed in a regular lattice
[85-91]. Those studies found that spatial structure affects greatly the outcome of
such dynamics. Specifically, by making the agents play just with a small number of
fixed neighbors, we can make cooperation and defection coexist, or even enhance
cooperation. In fact, when dealing with games in spatial structure populations, the
equilibria among strategies are no longer necessarily characterized by their having
equal average payoff. Instead, the asymptotic equilibrium properties are now deter-
mined by ’local relative payoffs’, and not by global averages [88]. It was also found
for the PD in lattices, that under certain symmetrical initial conditions for the dis-
tribution of strategies, certain values of the temptation to defect b, and as long as
we use deterministic updating rules, kaleidoscopic carpet-like chaotically-changing
spatial patterns arise [86, 87]. Moreover, it has been found that there is a critical
phase transition in the Prisoner’s Dilemma game in lattices that falls into the same
universality class than directed percolation [91].

Some effort was put also on the analytical study of how different kind of structures
can favor fixation of the strategies or, on the contrary, favor neutral drift, explicitly
calculating to that end the corresponding probabilities of fixation of the strategies on
some networks with very particular topologies, such as stars, paths, downstreams,
upstreams or funnels [73, 76, 92]. Moreover, striking results in terms of survival of
cooperation were found for random and SF networks, but for such general structures,
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no explicit calculations can be performed, so one needs to rely totally on simulations.
In this area, a great deal of effort has been put too, and as a very general remark,
it can be said that the complex topologies behind the interactions among a given
population affect the outcome of any process [29, 30, 36, 40—42, 93] not only games
[44, 76, 86, 92] to a large extent. Specifically, as we will see with some detail in
Chap. 3, when it comes to the Prisoner’s Dilemma game on complex networks, a
large number of studies [66, 94—98] have pointed out that cooperation benefits from
heterogeneity. It is to say, it has much better chances to survive in scale-free than in
random topologies, for the same given values of the parameters of the game.
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Part 1
Evolutionary Dynamics on
Static Complex Networks

Presentation of Part I

In this first part of the Thesis, we want to focus on the effect that the structure of
interactions among the constituents of a given complex system has on the
evolutionary dynamics that takes place on top of it. On the one hand, the
individuals of the system form a complex network [1-6, 7, 8], that could represent
a very simple version of a society or a social organization [9, 10] of humans or
other species. On the other hand, the kind of dynamics we will be taking into
consideration is dictated by Evolutionary Game Theory [11-14]. We will focus on
the situation in which nodes represent individuals engaged with their neighbors in
a certain (2 x 2) game, using a certain strategy that can be updated after every
round of the game, depending on the outcome of it. In other words, the outcome of
the game, meaning the accumulated payoff every node gets in a single round, will
affect the probability of maintaining or changing its strategy for the next round of
the game. This can also be interpreted in terms of evolutionary fitness and
reproduction of the individuals: instead of considering individuals of a population
that update their strategies for the next round of the game, one can also think of the
benefits of an individual in terms of its reproductive success or fitness, meaning the
probability of its offspring to be present in the system in the next generation, using
its very same strategy [15]. In this way, we are not specially interested in the
evolution of a particular node, but in the entire population as a whole, and to this
end, we will measure the proportion of the different strategies that are present in
the stationary state of the dynamics, as well as its microscopical organization
within the network.

Specifically, in Chap. 3 we will study in detail the outcome of the (weak)
Prisoner’s Dilemma game [16-18, 15, 19, 11, 20-23, 12] on top of complex
networks [24-26, 27-29], comparing the results obtained mainly for two kind of
topologies: ER [30] and BA [1] networks. We will also consider the same
dynamics on top of some other systems with intermediate degree of heterogeneity.
On the one hand, in order to confirm and understand the well-established fact that
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cooperation is enhanced by the heterogeneity of the underlying graph [31, 32-42],
we will look into the microscopic organization of cooperation in the stationary
state, studying the formation of clusters for both strategies. We will find that this
organization is quite different depending on the kind of network we are dealing
with. We will also analyze the level of cooperation for every connectivity class, for
the case of heterogeneous graphs, finding there a plausible explanation for the high
levels of cooperation these particular structures can sustain. On the other hand, we
will show the asymptotic existence of pure strategists and fluctuating individuals.
Moreover, we will prove it by using a simplified but general enough case of a
graph (Dipolar Model), where some analytical calculations can be performed.

In Chap. 4 we will expand all these studies not only to the general Prisoner’s
Dilemma, but also to the Hawks and Doves game [16, 35, 39, 42-44, 45-49],
comparing the results with the ones found previously for the weak Prisoner’s
Dilemma. Analogously to Chap. 3, we will study the stationary state of the system,
the level of cooperation it can achieve, the microscopic organization of the dif-
ferent strategies and the formation of strategic clusters. All of it will be considered
depending on the underlying topology, remarking the differences found not only
between homogeneous and heterogeneous graphs, but also between the Prisoner’s
Dilemma game and the Hawks and Doves game.

In Chap. 5, we want to address the issue of cooperation in random scalefree
networks, comparing the level of cooperation obtained in such correlationfree
heterogeneous topologies with those corresponding to the BA networks, in order to
confirm the role that the correlations among nodes [6, 42, 50, 7] may play on the
sustenance of the level of cooperation in the system [32, 34]. On the other hand,
we will propose a degree-based mean-field approach to try to explain the outcome
of the Prisoner’s Dilemma dynamics on top of random SF networks. We will make
further a compartmentalization of the fraction of cooperators and defectors into
different connectivity classes, to formulate a set of differential equations for the
time evolution of the fraction of cooperators in each degree class. The idea behind
this approach is inspired by several works focused on the study of disease
spreading on an heterogeneous population, using a similar theoretical framework
[51-53]. Thus, we will compare the analytical results with the conventional
numerical simulations performed on top of such random SF graphs. We will
analyze this in a general case, where we will find that the theoretical approxi-
mation and the numerical simulations do not agree. However, we will also explore
some particular initial conditions, where cooperators are not placed initially at
random, but occupying the largest degrees of connectivity (targeted cooperation).
In this latter case we will be able to reproduce (up to an extent) the results from a
simulation on top of random SF graphs using these analytical calculations.

Finally, in Chap. 6 we will propose a more realistic scenario for a population
with a complex pattern of connections engaged in an evolutionary dynamics such
as the Prisoner’s Dilemma. The set of individuals will form a network of social
contacts, namely a scale-free graph, and will play the game with their neighbors as
usual. Nonetheless, we will consider a restriction in the number of interactions a
node can sustain in every round of the game. To our knowledge, there are not any
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works addressing this particular issue, apart from [33], where a cutoff is imposed
to the degree distribution of a SF network. However, we will not proceed by
altering the degree distribution of the underlying topology. Instead, we will force
the nodes to choose randomly a different selection among its topological neighbors
for every round of the game. In this way, we want to acknowledge the fact that the
amount of energy and time an individual can spend interacting with its neighbors
is finite, so the number of acquaintances it interacts with per unit of time should
not be given just by its topological connectivity, but it also should be subject to
some kind of practical limitations. We will find some striking results that point out
that in a situation with some degree of restriction in the number of interactions
allowed per node and per round of the game, cooperation can be enhanced even
more than in an unrestricted scale-free scenario, when participation costs are also
introduced in the formulation of the evolutionary game.

References

1. A. Barabasi and R. Albert, Science 286, 509 (1999)

2. S. H. Strogatz, Nature 410, 268 (2001)

3. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998)

4. M. Newman, SIAM Review 45, 167 (2003).

5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Phys. Rep.
424, 175 (2006)

. R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks. From biological
nets to the Internet and the WWW. (Oxford University Press, Oxford, UK, 2003)
8. S. Bornholdt and H. G. Shuster, Handbook of graphs and networks. (Wile-

VCH, Germany, 2003)
9. A. Arenas, L. Danon, A. Diaz-Guilera, P. Gleiser, and R. Guimera,

EuropeanPhysical Journal B 38(2), 373 (2004)

10. M. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001)

11. J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics.
(Cambridge University Press, Cambridge, UK, 1998)

12. M. Nowak, Evolutionary dynamics: exploring the equations of life. (Harvard
University Press., Cambridge, MA, 2006)

13. J. Maynard Smith and G. Price, Nature 246, 15 (1973)

14. H. Gintis, Game theory evolving. (Princeton University Press, Princeton,NJ,
2000)

15. R. Axelrod and W. Hamilton, Science 211, 1390 (1981)

16. M. Nowak and K. Sigmund, Nature 437, 1291 (2005)

17. R. Axelrod, The Evolution of Cooperation. (Basic Books, New York, 1984)

18. W. Hamilton, J. Theor. Biol. 7, 1 (1964)

19. M. Nowak, Science 314, 1560 (2006)

20. J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003)

21. M. Nowak and K. Sigmund, Nature 355, 250 (1992)

~N N



50

22
23

24.
25.
26.

27.

28.
29.
30.
31.
32.
33.
34.
35.

35.
36.
37.

38.
39.
40.
41.

42.
43.
44.
45.
46.

47.
48.

49.
50.
51.

52.
53.

Part I: Evolutionary Dynamics on Static Complex Networks

. M. Nowak and K. Sigmund, Acta Applicandae Math 20, 247 (1990)

. R. Axelrod, The complexity of cooperation: agent-based models of compe-
titionand collaboration. (Princeton University Press., Princeton, NJ, 1997)
M. A. Nowak and R. M. May, Nature 359, 826 (1992)

M. Nowak, S. Bonhoeffer, and R. May, Int. J. Bifurcation Chaos 4, 33(1994)
M. Nowak, S. Bonhoeffer, and R. May, Proc. Natl. Acad. Sci. USA 91, 4877
(1994)

M. Nowak and K. Sigmund, Games on Grids, in: The Geometry of Ecological
Interactions. (Cambridge University Press, Cambridge, UK, 2000)

G. Szab¢6 and C. Toke, Phys. Rev. E 58, 69 (1998)

M. Nakamaru, H. Matsuda, and Y. Iwasa, J. Theor. Biol. 184, 65 (1997)

P. Erd6s and A. Renyi, Publicationes Mathematicae Debrecen 6, 290 (1959)
G. Szab6 and G. Fath, Phys. Rep. 446, 97 (2007)

F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)

F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006)
F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006)

F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103,
3490 (2006)

H. Ohtsuki, E. L. C. Hauert, and M. A. Nowak, Nature 441, 502 (2006)

G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R) (2001)

V. M. Eguiluz, M. G. Zimmermann, C. J. Cela-Conde, and M. San Miguel,
American Journal of Sociology 110, 977 (2005)

T. Killingback and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996)

A. Szolnoki, M. Perc, and Z. Danku, Physica A 387, 2075 (2008)

J. Vukov and G. S. A. Szolnoki, Phys. Rev. E 77, 026109 (2008)

J. Gémez-Gardefies, M. Campillo, L. M. Floria, and Y. Moreno, Phys. Rev.
Lett. 98, 108103 (2007)

C. P. Roca, J. A. Cuesta, and A. Sanchez, Phys. Rev. E 80, 046106 (2009)
M. Tomassini, L. Luthi, and M. Giacobini, Phys. Rev. E 73, 106 (2006)

C. Hauert and M. Doebeli, Nature 428, 643 (2004)

M. Sysi-Aho, J. Saramaki, J. Kertész, and K. Kaski, European Physical Journal
B 44, 129 (2005)

L. Zhong, D. Zheng, B. Zheng, C. Xu, and P. Hui, Europhys. Lett. 76,724
(2006)

A. Kun, G. Boza, and 1. Scheuring, Behav. Ecol. 17, 633 (2006)

F. C. Santos, J. M. Pacheco, and T. Lenaerts, PLos Comput. Biol. 2(10), e140
(2006)

J. Maynard Smith, Evolution and the Theory of Games. (Cambridge University
Press, Cambridge, UK, 1982)

S. N. Dorogovtsev, J. F. Mendes, and A. N. Samukhin, Phys. Rev. Lett. 85,
4633 (2000)

R. Pastor-Satorras and A. Vespignani., Phys. Rev. Lett. 86, 3200 (2001)

R. Pastor-Satorras and A. Vespignani., Phys. Rev. E 63, 066117 (2001)

Y. Moreno, R. Pastor-Satorras, and A. Vespignani., European Physical Journal
B 26, 521 (2002)



Chapter 3
The Prisoner’s Dilemma on Static Complex
Networks

The PD game has been frequently used [1-5] when trying to model the emergence of
cooperative behavior in a social or biological system. The questions of why and how
cooperation arises and survives in an environment where it is clearly more expensive
for the individual than defection in the short term have been subject of intense research
for quite some time, and the PD turned out to be a very useful tool for this aim. One of
the aspects that have been pointed out as responsible for the survival of cooperation
is, among others, the so-called network reciprocity [6]. Several studies have shown
that cooperation can be greatly promoted by placing the individuals of a population
on the nodes of a network of contacts, instead of letting them interact in a well-
mixed situation, where no asymptotic cooperation exists. First, some effort was put
on studying the PD on regular lattices, finding that, as long as the connectivity of the
nodes was not to high, cooperation actually got a chance at survival (however, when
the number of neighbors increases, the situation resemblances more and more an
all-to-all scenario, and cooperation dies out again). Next, PD was studied in complex
topologies [7—18], in an attempt to model more accurately the pattern of connections
of a real system, and this is precisely the problem we will consider in this chapter of
the thesis.

In this way, we want to address the dependence of the PD dynamics on the topology
of the underlaying structure. As we have already advanced, we are interested in
characterizing the final equilibrium state that the system achieves when implementing
the dynamics of such structures, namely random and SF graphs, paying special
attention not only to the asymptotic level of cooperation, but more important, to the
microscopic organization of the strategies. This is actually, as we will see in detail,
the key point of the differences found between both topologies when it comes to
the asymptotic level of cooperation. We will also take care of other aspects of the
dynamics, such as the dependence of the final level of cooperators in the system with
the initial fraction of them, or the distribution of strategies according to the different
classes of connectivity for SF networks.

J. Poncela Casasnovas, Evolutionary Games in Complex Topologies, Springer Theses, 51
DOI: 10.1007/978-3-642-30117-9_3, © Springer-Verlag Berlin Heidelberg 2012
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3.1 The Model

The Prisoner’s Dilemma is a two-player game defined in its more general form by
the payoff matrix (see Sect.2.2):

cC D

C (R S (3.1

D (T P)
where the element g;; is the payoff received by an i-strategist when playing against a
Jj-strategist, with i = 1 meaning cooperator (C), and i = 2 defector (D). Thus, both
receive R (Reward) under mutual cooperation and P (Punishment) under mutual
defection, while a cooperator receives S (Sucker’s Payoff) when confronted to a
defector, which in turn receives T (Temptation to defect). The payoff ordering is
given by T > R > P > §. Under these conditions, defection is the best response
regardless the opponent’s strategy. Indeed, in a well-mixed population of N replica-
tors, i.e. where every individual interacts with everyone else, the defection strategy
is unbeatable and reaches fixation. However, if individuals only interact with its k;
neighbors, as dictated by the underlying network of contacts, it has been proven
the asymptotic survival of cooperation for 7 > R on different types of complex
topologies [7-18].

Following several studies [7, 8, 18-20], we set the PD payoffs to R = 1 (so
the reward for cooperating fixes the payoff scale), T = b > 1, P = 0 (no benefit
under mutual defection), and P — S = ¢ — O7T. This last choice places us in the
very frontier of PD game, or the ‘weak’ Prisoner’s Dilemma. It has the effect of not
favoring any strategy when playing against defectors (while being advantageous to
play defection against cooperators). Small positive values of the parameter ¢ < 1
leads to no qualitative differences in the results [19], so the limit ¢ — 07 is agreed
to be continuous.

The dynamic rule is specified as follows: each time step is thought of as one
generation of the discrete evolutionary time, where every node i of the system plays
with its nearest k; neighbors (given by the underlying network) and accumulates the
payoffs obtained during the round, say P;. As Evolutionary Game Theory approach
dictates, the benefit an agent gets from the game should be interpreted as its fitness
in the Darwinian sense of reproductive success [2, 21]. Specifically, we consider that
individuals are then allowed to synchronously change their strategies by comparing
the payoffs they accumulated in the previous generation with that of a neighbor j
chosen atrandom. If P; > P;, playeri keeps the same strategy for the next time step,
when it will play again with all of its neighbors. On the contrary, whenever P; > P;,
i adopts the strategy of j with probability

P, — P

n, =———
1 max{k;, k)b

(3.2)
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Following previous studies, we called this updating rule Replicator-like [4, 5, 8, 9,
22, 23], because it is obviously similar to the Replicator Equation (see Sect.2.2.2):
the probability of changing strategy is proportional to the difference of payoffs of
the nodes involved, and it is normalized by the maximum payoff a node can get, i.e.,
b times its connectivity. Note also that this dynamic rule, though stochastic, does not
allow the adoption of irrational strategy, i.e., I1;_. ; = O whenever P; < P;.

Regarding the synchrony of the strategy updating of the individuals in the pop-
ulation, it is worth mentioning here that we have not found significant differences
when comparing to asynchronous updating (also known as sequential updating or
continuous time), and thus in good agreement with previous findings for this partic-
ular PD game and Replicator-like rule [24], in spite of the fact that one can always
argue that synchronous or asynchronous updating more accurate in order to describe
different biological or social scenarios, respectively [20].

Let’s now specify precisely the family of networks on top of which the evolu-
tionary PD game is evolving. Strategists are located on the vertexes of a fixed graph
of average connectivity (k) = 4. The heterogeneity of the networks is controlled by
tuning a single parameter o, according to the recipe introduced by Gardefies-Moreno
(GM) in [25]. As we explained in detail in Sect.2.1.3, the GM model creates a net-
work by combining the mechanisms of preferential attachment with probability «
and uniform random linking with probability 1 — a. Thus, in this model, when o = 0
the generated networks are of the ER [26] class of random graphs, and when o = 1
they are of the BA [27] scale-free networks class. On the other hand, networks with
an intermediate degree of heterogeneity can be built with 0 < a < 1. We will study
the dynamics on top of such networks with intermediate heterogeneity at the end
of this chapter (see Sect.3.9), but for now, we will focus just on the extreme cases
a = 0 and o = 1. It is also worth stressing that the different topologies we will
compare during this chapter have always the same number of nodes, N, and average
connectivity (k).

3.2 Dynamic Equilibrium

The initial strategy of each one of the N nodes is randomly set, with a probability of
being a cooperator pg = 0.5 (note that py is also the initial fraction of cooperation on
the system), and then the dynamics starts. We let the system evolve for 5 x 103 time
steps or generations, after which we check whether the equilibrium has been reached.
To do so, we observe the time evolution of the fraction of cooperators, c(¢), during
a time window of 103 generations. If the slope of c(¢) is smaller than 1072, then
we consider the equilibrium has been reached. Otherwise, we let the system evolve
5 x 10° more generations, after which, we will evaluate the equilibrium condition
again.

We show several examples of temporal evolution of the system in Fig.3.1. The
behavior during the transient time of the fraction of cooperators in the system can
be understood as follows: as we have said, the system starts with a fraction of pg
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Fig. 3.1 Several examples of the temporal evolution of the level of cooperation in the system for
ER (a) and SF (b) networks as a function of b. The size of the networks is N = 4 x 103 nodes and
average connectivity (k) =4

cooperators, randomly distributed on the network. The defectors take advantage of
this initial situation, getting very high payoff exploiting its cooperator neighbors,
and forcing other nodes to imitate them. Therefore, the level of cooperation drops
initially. However, after a few more time steps, the defectors are surrounded by more
defectors, and they can not get benefits anymore, while cooperators start clustering
themselves, and providing payoff from one another. Thus, cooperators self-organize
and hold a non-negligible level of cooperation on the network. As it can be seen in
Fig.3.1, the macroscopic behavior of the system towards its dynamical equilibrium
is qualitatively very similar, regardless the underlying topology. Nevertheless, as we
will explain later in detail in Sect.3.7, the microscopic organization of cooperators
and defectors when the equilibrium has been reached is very different depending on
the network, and it is specially non-trivial for BA networks.

From any initial condition for the whole system {s;( = 0)} (withi =1,..., N,
and where s; = 1 if node i is an instantaneous cooperator and s; = 0 if it is a defector
in that step), and after many generations, the instantaneous fraction of cooperators,
given by

N
c®)=N"D "5 (3.3)

i=1

in the stochastic trajectory, {s; (¢)}, fluctuates around a well-defined mean value (c).
In turn, this average value of cooperation can be defined as follows:

to+T

€)= 7 2 e, (34)

T=Iy

where fg is the transient period, and T is the period of time during which we observe
the system, once it has reached the equilibrium. Thus, this average level of coop-
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eration depends only on the value of the parameter b, and the initial fraction of
cooperators po (and also on the topology of the system, as we will see). The aver-
age level of cooperation (c) is computed as the average of (c) over 103 independent
realizations with different initial conditions (different random distributions of a fixed
value for the fraction pg of cooperators, as well as network realizations).

It is worth mentioning that the time scale of microscopic invasion processes, it is
to say, the pace of the updating rule for any given node, is controlled by

B! = max{k;, k;}b, (3.5)

which is essentially determined by the highest connectivity of the pair of nodes we
take under consideration. This makes that the very high payoff of a hub (due to
its very high k) to be balanced by 3 oc k~! [8, 9, 18], with the side effect that
the invasion processes from and to hubs are slowed down, if hub’s (and neighbor’s)
payoff is much smaller than its connectivity k. On the other hand, the transient time #
should be greater than characteristic fixation times for the nodes, if one is interested
in measuring observable quantities associated to the dynamical equilibrium.

3.3 Pure Strategists and Fluctuating Individuals

After the transient time #( has passed, we establish a 10* time step window during
which we measure the relevant magnitudes of the system. This procedure allows us
to scrutinize in depth the microscopic temporal evolution of cooperation as well as
to characterize how its local patterns are formed. We note that individual’s strategies
asymptotically (i.e. + > ty) follow three different behaviors. Let P(x,t) be the
probability that a node adopts the strategy x at any time r > fy. We say that an
element i of the population is pure cooperator (PC) if P(s; = 1,1) = 1, i.e., it plays
as cooperator in all generations after the transient time. Conversely, pure defectors
(PD) are those individuals for which P(s; = 0,¢) = 1. And there is a third set,
constituted by fluctuating nodes (F) which are those that are neither pure cooperators
nor pure defectors, so they spend alternatively some time as cooperators and some
time as defectors. This set is what was first called ‘unsatisfied elements’ by Abramson
and Kuperman in [11].

From now on, we denote by pc = (u(PC)) the measure (relative size) of the set
of pure cooperators (averaged over initial conditions and network realizations), by
pp = (u(P D)) that of the set of pure defectors, and by pr = (u(F)) that of the
set of fluctuating strategists. At any given time during the simulation, the relation
between the fractions pc 4+ pp + pr = 1 must be fulfilled by the system, obviously.

On the other hand, the macroscopic average level of cooperation (c) can be written
as:

(c) = pc + pr(Tc) (3.6)

where (T¢) is the average proportion of time spent by the fluctuating subpopulation
as cooperators (see Sect. 3.6 for further details).
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Fig. 3.2 Fraction pc of pure cooperators (Red Area), fraction pp of pure defectors (Blue Area),
fraction pr of fluctuating nodes (Green Area) and the average level of cooperation (c) in the system
(Solid black line) as a function of b for ER networks (Left) and BA networks (Rigth). The size of
the networks is N = 4 - 10? nodes and average connectivity (k) = 4

In the Fig. 3.2 we show the fraction of pure strategists and fluctuating individuals,
and the average level of cooperation as a function of b, for BA and ER networks.
As one could expect, both the average level of cooperation and the fraction of pure
cooperators decrease as the temptation to defect b increases, as cooperation gets more
and more expensive. The fluctuating individuals are present in the network only for
a range of intermediate values of b, during which, the cooperation in the system
depends almost entirely on them, because there are not pure cooperators anymore.

Regarding the different topologies, we confirm that BA networks can hold higher
levels of cooperation than ER networks, even for quite big values of b [8, 9, 18, 28].
As we can see in Fig. 3.2, for random topologies, the average level of cooperation
is equal to 1 until it drops quite abruptly around b = 1.2, and it disappears almost
completely for b > 1.8. For SF networks on the other hand, the cooperation starts
decreasing slightly but very soon (for values of b = 1), but its main drop takes place
for higher values (around b = 1.6), and, moreover, the cooperation survives for much
higher values of the temptation to defect, approximately until » = 3. It is interesting
to stress again that for values next to b = 1, the level of cooperation is pc = 1 for ER
networks i.e., all the nodes in the system are pure cooperators, but it is slightly lower
for SF, since there are already a few fluctuating individuals. Nevertheless, this level
of pc will hold on longer before the main fall in SF, while it will drop faster for ER.
This fall of p¢ is present for both topologies, but it is very sharp for ER, so p¢c drops
to zero when b = 1.3, while for SF is smoother, allowing the system to keep a small
but non-zero value of pc until b = 2.5.

3.4 Dipolar Network Model

As we have seen, the asymptotic state of evolutionary dynamics on networks is often
not a static equilibrium configuration under the Replicator rule for the update of the
strategies. On the contrary, we have shown that there is an asymptotic partition of
the graph into three sets, namely, pure cooperators, pure defectors, and fluctuating
individuals. This last group experience cycles of invasion by the competing strategies.
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Fig. 3.3 Schematic represen- F
tation of the Dipolar model
network. Nodes 1 and 2 are
connected to all nodes in F.
Node 2 is also linked to all
nodes in C. Connections
inside F and C are arbitrary.
The colors represent a set of
2"F different initial configura-
tions. As we usually do, blue
stands for defector and red
for cooperator, while green
means arbitrary strategy

Ty

In order to prove the generality of these results, we make a little digression now,
and present a model that mimics a local environment of a heterogeneous graph, with
simplifications that allow analytical calculations for a better insight. On the other
hand, it is perhaps the minimal (though general enough) network model where the
partition into PC, PD and F can be rigorously proved, illustrating thus the dynamical
organization of cooperation in heterogeneous graphs.

Let’s consider the schematic graph in Fig.3.3, composed of the following
elements:

(a) A component F of nr nodes with arbitrary connections among them.

(b) A node, say Node 1, that is connected to all the nodes in F' and has no other
links.

(c) A component C of n¢ nodes with arbitrary connections among them.

(d) A node, say Node 2, that is connected to all the nodes in F and C, but not to
Node 1.

Let’s also consider the set of initial conditions defined by: (i) Node 1 is a defector,
(i1) Node 2 is a cooperator, and (iii) all nodes in component C are cooperators.
Note that this choice allows 2"*F different initial configurations. We now prove that,
provided some sufficient conditions (see below), this is an invariant set for the evo-
lutionary dynamics.

If we consider that the nodes are engaged on the Prisoner’s Dilemma game, with
the specific choices for the parameters of the payoff matrix detailed in Sect. 3.1, then
the payoff of a cooperator node i in F is given by:

PE=k{ +1+eli —k{ +1), 3.7

where k; is the number of its neighbors in F" and kl.C < k; is the number of those that
are cooperators. The payoff of Node 1 is then

Py > (kf + 1)b. (3.8)
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For the PD game, where ¢ < 0 for the general case, the inequality P; > Pic always
holds, so Node 1 will always be a defector. Thus, a sufficient condition for P; > PI.C
isb > 1 4+ e(kr + 1), where kr (< nr) is the maximal degree in component F, i.e.
the maximal number of links that a node in F' shares within F'.

The payoff of a defector node i in F is

PP = (kf + )b, 3.9)

where kic is the number of its cooperator neighbors in F, while the payoff of Node
2is
Py =nc +nre+nS(l —e), (3.10)

where ng < nr is the number of cooperators in F. Thus, a sufficient condition for
Py > PZ.D isnc > Int(b(kr + 1) — nrpe). With this requisite, Node 2 will always be
a cooperator, which in turn implies that all the nodes in the component C will remain
always cooperators.

This argument proves that provided the sufficient conditions

ne > Int(b(kp +1) —enp)
b>1+4+¢etkr+1) (3.11

hold, the set of initial conditions defined by (i), (ii), and (iii) is an invariant set: any
stochastic trajectory starting in the set remains there. Moreover, as no equilibrium
configuration is included in this set, one concludes that no trajectory from this set
evolves to an equilibrium configuration. While nodes in C and Node 2 are permanent
cooperators, and Node 1 is a permanent defector, nodes in F are forced to fluctuate:
at every time step, a defector in F has a positive probability to be invaded by the
cooperation strategy, and at the same time, a cooperator in F has a positive probability
of being invaded by the defection strategy. In other words, every configuration in the
set of initial conditions is reachable (in one time step) from any other, thus it is almost
sure that it will be reached (ergodicity).

In any stochastic trajectory starting from the set of initial conditions explained
previously, the network is partitioned into three subsets: a set of pure cooperator
nodes, a set of pure defector nodes and a set of fluctuating individuals. The fluctu-
ations inside the subpopulation F' reflect the competition for invasion among two
non-neighboring hubs with fixed opposite strategies in their common neighborhood,
a local situation that occurs in heterogeneous networks. It can also be understood as
a schematic model for the competition for influence of two powerful superstructural
institutions like “mass media”, political parties, or lobbies on a target population.

Let’s now obtain some exact results for the simplest choice of topology of con-
nections inside the fluctuating set, namely kr = 0. It means that in this case each
node in F is only connected to Nodes 1 and 2. Note that the sufficient conditions for
fixation of defection at Nodes 1 and 2 are respectively, b > 1 +¢,andnc > b—enp.
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Denoting by c(¢) the instantaneous fraction of cooperators in F, the payoffs of
Nodes 1 and 2 are

Py =benp, Py=nc+cnp+e(l—onr,
and the payoffs of a cooperator node and a defector node in F are respectively
Pc=1+4¢ Pp=>.

Then one finds for the one-time-step probability I1¢p of invasion of a cooperator
node in F, it is to say, the probability of a node in F to change from cooperator to

defector
_ cb—(+e¢e)/nF

IT
CD A

(3.12)

where A = max{b, b — €}. And on the other hand, using the simplifying notation
A=¢e+ (nc—b)/nrand B=1+nc/nr we get

A4+c(l —e¢)

3.13
2AB 313)

IMpc =

for the probability of invasion of a defector node in F, meaning analogously, the
probability of changing from defector to cooperator. Note that A > 0 because Node
2 can not be invaded.

In this way, the expected fraction of cooperators at time ¢ + 1 is:

ct+1)=c)d —Icp)+ (1 —c)pc,
and provided nr > 1, the fraction of cooperators ¢ in F evolves according to the
differential equation
¢=(1-0ollpc —clcp,
which after insertion of Eqs.3.12 and 3.13 becomes

é=f@c)= Ao+ Arc+ Axc?, (3.14)

where the coefficients are

A
Ag= ——
2AB
A — l1—e—A+B(l+e¢/nfp
b= 2AB
1 — bB
oo _lctbB

2AB
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One can easily check (A9 > 0 and A, < 0) that there is always one positive root
c* of f(c), which is the asymptotic value for any initial condition 0 < ¢(0) < 1 of
Eq.3.14. Thus, cooperation is never driven to extinction even for large values of the
temptation to defect b.

Back to the general case, i.e. arbitrary structure of connections in F, it should
be emphasized that the sufficient conditions expressed in Eq.3.11 do not impose
bounds on the network’s average connectivity (k), that can take arbitrarily large
values, independently of the game parameters. This result differs from the bound on
(k) reported in [6, 10] for different stochastic updating rules in the weak selection
limit.

3.5 Distribution of the Strategies Among Connectivity Classes
on SF Networks

In order to understand the role of the heterogeneity of SF networks on the asymptotic
behavior of the dynamics, and once we have proven the existence of a partition of the
nodes into different sets of strategies for a general enough case, we will now proceed
to study the fraction of pure cooperators, pure defectors and fluctuating nodes, within
every class of connectivity, that we denote by pkc, p’i) and p’j,, respectively. Note that
the total fraction of each type of individuals in the system can be written as:

pa =D PR, (3.15)
k

with @« = C, D, F, and being P (k) the degree distribution. Recall that pc + pp
+ pr = 1, and also p’é + plz) + p]; = 1. Thus, in Fig. 3.4 we represent the fraction
of pure cooperators and fluctuating nodes as a function of the degree of connectivity
of the node and the temptation to defect, b. It can be seen that there are very distinct
areas: first of all, for 1 < b < 1.7, the pure cooperators control the system, with
values of pc = 0.9, while there is only a small fraction of fluctuating strategists,
among the nodes with medium or low connectivity. When 1.7 < b < 2, the pure
cooperators decrease to pc = 0.1, being set only on the high connectivity nodes,
while the fluctuating individuals take over the low classes, up to k < 11. There
is a third region, where the fluctuating nodes invade higher and higher classes of
connectivity as b increases, with the pure cooperators still occupying the very high
ones (for example, for b = 2.9, only the hubs remain being cooperators). Finally, for
even higher values of b, pp starts increasing at the expense of pr, but interestingly
enough, it does so quite independently of the degree of connectivity. This has to
do with the fact that defectors can not take advantage of the heterogeneity of the
system, as we will explain in detail next, so this defector invasion for high values of
b is consequently independent of the degree of the nodes.

The preferential fixation of pure cooperators in nodes with high degree £k when
cooperation is very expensive can be understood by the following plausible argument
[9, 17, 18]: a necessary though non sufficient condition for a node i to be a pure
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Fig. 3.4 Strategists proportion by classes of connectivity. Color-coded densities of pure cooperator
(Left) and fluctuating individuals (Right) as a function of k and b for BA networks. The size of the
networks is N = 4 - 103 nodes and average connectivity (k) = 4

cooperator at a given time ¢ is that the number kl.C of instantaneous cooperators in
its neighborhood (i.e., the payoff of i in the current round, since R = 1 and § = 0)
must be greater than the current payoff of any instantaneous defector neighbor j,
that is, kl.c > bkC. This condition is clearly favored when the cooperator node i
belongs to a high k class and its fluctuating neighbors j belong to lower & classes.
This argument is consistent provided that heterogeneous topologies in general either
have no degree-degree correlations, so the neighbors of a node of degree k have
no preferential degrees, or they are assortative, i.e., neighbors of high degree nodes
have preferentially also high degrees. Specifically, SF networks used here, built via
preferential attachment using the GM model [25], do have age-correlations, which
means that the oldest nodes of a network are usually the hubs, and moreover, they are
interconnected, since they formed the initial core of size m, from which the whole
system was grown. This particular feature enhances even more cooperation, so if one
destroys such age-correlations, by rewiring the structure and preserving the degree
distribution, the average level of cooperation achieved by the system will suffer an
important drop, as we will see in some detail in Chap. 5.

The fixation of pure cooperation on hubs is a byproduct of the stabilization of
cooperation around them. If we set a cooperator on a hub, it will get very high pay-
off, because it has very high connectivity, and it will make a lot of its neighbors imitate
its strategy. Thus, an all-cooperating area will be created around the hub, from which
every cooperator involved will get high benefits too (specially the hub, of course),
making this situation very stable. It is to say, the imitation of a successful cooperator
hub by its neighbors reinforces its future success, then favoring the fixation of coop-
eration in highly connected nodes. Nonetheless, if a hub is occupied by a defector, it
will get high benefits at the beginning, due to its high connectivity, exploiting all its
cooperator neighbors. But this will make more and more of them imitate it, creating
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an all-defector area around the hub, where nobody will get any benefits at all (recall
that a defector against another defector gets P = 0). And so the hub will stop getting
high payoff too, eventually becoming susceptible of being invaded by a cooperator.
In that way, the imitation of a successful defector hub undermines its future success,
so that defection cannot take long-term advantage from degree heterogeneity. In a
static topology scenario it is impossible for a defector to persist on a hub in the
long term. Nonetheless, when dealing with growing heterogeneous structures, a very
different picture can arise, as we will see in Chap. 7.

We also want to point out that, as we show on the left panel of Fig. 3.4, for a fixed
given value of b > 2, p’é varies rather quickly from O to 1 in a small interval of
values of k centered around some b-dependent value k*(b), so that the nodes with
degree k > k*(b) are mostly pure cooperators and those with degree k < k*(b)
are mostly fluctuating (see right panel, 2 < b < 2.9). In the absence of degree-
degree correlations the degree distribution density in the neighborhood of a given
node is independent of the node degree, and thus the proportion of cooperators in
the neighborhood of a given node is that of the whole network. This implies that
the necessary condition for a pure cooperator i, stated previously (kic > bkjc),
becomes k; > bk;, where j is the fluctuating neighbor of i with highest degree,
say k; >~ k*. Now, a small increase Ab makes those pure cooperators i fulfilling
(b + AD)k* > ki > bk™ become fluctuating, so that Ak* >~ k*Ab. From these
conditions one concludes that k*(b) grows exponentially with b, k*(b) o exp(b).
The linear shape of the bright-color line in the (b, log k) plane at the left panel of
Fig.3.4 for b > 2 nicely confirms this prediction, thus supporting the validity of our
heuristic argument.

Finally, we want to mention that the invasion process of defectors as the temptation
to defect increases on a SF topology could be quite different if we were dealing with
structures with a high level of clustering coefficient. As it has been investigated
in [29], the existence of a high number of triangular relations within a SF network
makes cooperation resilient for even higher values of b on the one hand, but also
makes the invasion of defectors quite independent of the degree classes. It is to say,
defectors invade homogeneously all the classes of connectivity almost at the same
time, which makes the plot (c)(b) much sharper.

3.6 Cooperation Times of the Fluctuating Set on SF Networks

We have stated that the fluctuating subpopulation in the dipolar model (see Sect. 3.4)
is such that any fluctuating individual has a positive probability of changing strategy
in one time step, so that the dynamics is ergodic in the set of all configurations
compatible with the partition. This is not necessarily the case in a general heteroge-
neous network, being perfectly possible that a fluctuating node at a given time has
a null one-time-step probability of invasion, but a positive n-time-steps probability
for some n > 1; thus, ergodicity in the set of configurations compatible with the
partition is neither ensured nor discarded.
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Fig. 3.5 Cooperation times in the fluctuating set. Permanence times 7¢ of the cooperation strategy
of a fluctuating node (7op) and the fraction of time 7¢ it cooperates (Bottom) as a function of the
node’s degree k and the game parameter b for BA networks and € = 0. The size of the networks is
N =4 - 103 nodes and average connectivity (k) = 4

In SF graphs each fluctuating individual is wired to (and then could be invaded
by) a different number of fluctuating individuals, and (eventually) pure strategists,
so that one should expect that the fraction of time T¢ it spends as cooperator differs
widely from node to node. The lower panel of Fig.3.5 shows the average frac-
tion of time TCk a fluctuating node of degree k spends cooperating. The average of
these quantities ), P (k) Té in the subpopulation F, defines the parameter (7¢) that
appears in Eq. 3.6, i.e. the average individual contribution of fluctuating nodes to the
macroscopic level of cooperation (c). To avoid misunderstandings concerning the
relative importance of the contribution of connectivity classes to (c}), it is important to
bear in mind both, the power-law dependence of P (k) and the right panel of Fig. 3.4,
showing the fraction p'; of fluctuating nodes inside the class of degree k.

Given that T¢ is a proportion of time, it does not provide information on the time
scales of the invasion cycles that fluctuating nodes experience. The random variable
Tc (cooperation permanence time) is defined as the time spent as cooperator by a
fluctuating node in each cycle. For the dipolar network, when kr = 0, the one-
time-step invasion probabilities, [1cp and [1pc (Egs.3.12 and 3.13), become time
independent in the asymptotic regime. Then one can compute the probability that
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the cooperation strategy remains for a time 7¢ > 1 at a fluctuating node, simply as
P(r¢) =Tlep(1—Tep) (3.16)

In a similar way, the distribution density P(7p) of defection permanence times is
obtained as
P(rp) = Tpc(l — Mpe) ™" (3.17)

Thus the density distributions of permanence times for both strategies are exponen-
tially decreasing. For example, at e = 0, i.e. at the border between the PD and the HD
game, if one further assumes that the relative size ;1 (F) of the component F is large
enough, i.e. u(F) — 1, and u(C) — 0, one obtains that the stationary solution of
Eq.3.14 behaves as ¢* >~ (b+ 1)~ ! near the limit w(F) — 1. The distribution density
P(7¢) of the cooperation permanence times of a fluctuating node, as a function of
the parameter b is thus

1%m)=Qb+D_12b+1 C, (3.18)
2b+2

and the distribution density P(7p) of defection permanence times

(3.19)

P(1p) = b(b +1) — 1)~} (M) D.

2b(b + 1)

For SF networks, one expects that the permanence times at the fluctuating nodes show
some correlation with the node’s degree. The upper panel of Fig. 3.5 represents the
average permanence time, Té, that fluctuating nodes of degree k spend as cooperators
as a function of » and k, for observation times of 10* generations. We see that
cooperation permanence times are strongly correlated with degree: highest 7¢ occurs
along the line k*(b) of maximal degree in the fluctuating set.

As we have mentioned before, the heterogeneity of social contacts in SF networks
provides local environments where cooperation has a distinctive selective advantage
at high degree nodes. This not only enhances the size of the subpopulation where
fixation of cooperation occurs, but also enlarges the average total fraction of time of
cooperation in the fluctuating subpopulation.

3.7 Microscopic Organization Dynamics of Cooperation

We would like to achieve now a better understanding of the important differences
found between the random and the SF topologies, and in order to do that, we will
perform a microscopic study of the dynamic organization of the system. First of
all, we need to define the concept of cluster or core of nodes for both strategies.
A cooperator cluster (CC) is a connected component (a subgraph) fully and per-
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manently occupied by cooperator (strategy s; = 1), i.e., by pure cooperators so
that P(s;(t) # 1,Vt > 1p,Vi € CC) = 0. Analogously, a defector cluster (DC)
is the subgraph whose elements are pure defectors, namely, when the condition
P(si(t) #0,Vt > 19, Vi € CD) = 0is fulfilled. It is easy to see that a CC cannot be
in direct contact with a DC, but with a cloud of fluctuating elements that constitutes
the frontier between these two cores. Note that a CC is stable if none of its elements
has a defector neighbor coupled to more than k€ /b cooperators, where k€ is the
number of cooperators linked to the element. Thus, the stability of a CC is clearly
enhanced by a high number of connections among pure cooperators, which implies
abundance of cycles in the CC. This microscopic structure of clusters is at the root
of the differences found in the levels of cooperation for both networks and explains
why cooperative behavior is more successful in SF networks than in homogeneous
topologies. In fact, as far as loops are concerned, the main difference between the
two topologies is that the number of small cycles of length L, Ny, are given by
(k) — DX and (log N)L, respectively [30—32]. Therefore, it is more likely that SF
networks develop a CC than ER ones. This has been tested numerically by looking
at the probability that at least one cooperator core exists. The results [17] indicate
that this probability remains equal to 1 for SF networks even for b < 2 and that it
approaches zero for large values of b. On the contrary, for ER networks, the same
probability departs from 1 and shows a sudden drop to zero for b = 2.

Thus, we will focus now on the number of clusters of cooperators N, and the
number of clusters of defectors N.; for both topologies. In Fig.3.6 we show the
dependence of N.. and N4 with b for ER and BA networks. The first and most
relevant result we notice concerns the number of cooperator cores: while for ER
graphs N, there is a wide region of b where there are several clusters of cooperators,
for the SF networks the number of cooperator clusters is always 1: no matter the value
of b, they always form a single core. We have also verified that the cooperation core
in SF networks contains the hubs, which are the ones that hold the whole cluster
together, that would otherwise be disconnected. This important difference greatly
contributes to the well-known advantage of cooperators in SF networks, compared
to ER. Looking at the organization of pure defectors, one can see that there are
important differences depending on the topology, too. In ER networks, pure defectors
first appear distributed in several clusters that later coalesce to form a single core
for values of b < 2, it is to say, before the whole system is invaded by defectors.
Conversely for SF topologies, defectors are organized in several clusters, except when
they finally occupy the whole system completely. This latter behavior results from
the role that hubs play: as they are the most robust against defector’s invasion, highly
connected individuals survive as pure cooperators until the fraction pc vanishes,
thus keeping around them a highly robust cooperator core that loses more and more
elements of its outer layer as b increases, until cooperation is finally defeated by
defection. In Fig. 3.7 we show the dependence of the number of clusters of defectors
N¢q as a function of the fraction pp of defectors present in the system (realize that
this last magnitude obviously increases with b).

We have summarized in Fig. 3.8 the picture obtained from the analysis performed.
Clearly, two different paths characterize the emergence (or breakdown) of coopera-



66 3 The Prisoner’s Dilemma on Static Complex Networks

30 ‘ ‘ ‘ ‘ ‘ 70 ‘
. ER ---e-- . ER oo
25| i SF e | 60 SF o
i 50 i
20 ¢ i 1 i *
H il * X
; 40| :
S 151 3 ;
z ] z X
: 30+
10F : ¥
: 20+ P
. ¢ i
5 k ; *
10+ i s
0 - b el t i 0 K6 s reeeneee, Mxoxmnx
1 12 14 16 18 2 22 1 15 2 25 3 35
b b

Fig. 3.6 Number of clusters of cooperators (Left) and number of clusters of defectors (Right) as a
function of the parameter b for both ER and BA topologies. The size of the network is N = 4 - 10°
with average connectivity (k) = 4, and each point shown is the average of 103 different realizations
of the game and the network
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Fig. 3.7 Dependence of the number of clusters of defectors N4 with the fraction of pure defectors
in the system pp for both SF and ER topologies (note that, in general, though pp increases with b,
the same value of pp for both topologies corresponds to different values of b). The size of the
network is N = 4 - 103 with average connectivity (k) = 4, and each point shown is the average of
103 different realizations of the game and the network

tion. Starting at b = 1 all individuals in both topologies are playing as pure cooper-
ators. However, for b > 1, the pure cooperative level in SF networks drops below 1
and the population is constituted by pure cooperators forming a single CC, as well
as by a cloud of fluctuating individuals. As b is further increased, the size of the
cooperation core decreases and some of the fluctuating nodes turn into pure defec-
tors. These defectors are grouped in several clusters around the fluctuating layer
(recall that pure cooperators and pure defectors are never in direct contact). For even
larger payoffs, the cooperator core is reduced to a small loop tying together a few
individuals, among which is highly likely to find the hubs, while the cores of pure
defectors gain in size. Finally, pure cooperators and fluctuating elements are invaded
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by defectors an a single N-sized defector core is formed. On the contrary, the original
N-sized cooperator core survives for higher values of b when it comes to ER graphs.
However, when b grows, this cluster splits into several cooperator cores that are in a
flood of fluctuating elements. Larger payoffs first give rise to several defector cores
that by coalescence form an outer layer that is separated from a single central core
of cooperators by individuals of fluctuating strategies. Finally, for » = 2, an N-sized
defector core takes over.

3.8 Dependence on the Initial Conditions

So far, we have studied the evolution of the PD dynamics on the system starting
always from an initial fraction of cooperators equal pg = 0.5, i.e., at the beginning
of every simulation, poN nodes have been chosen randomly as cooperators on the
network, on average. In other words, the initial probability for any node to be a
cooperator has been 0.5. Now we want to address the issue of changing this initial
cooperation fraction, so it can vary between 0 < pg < 1. We want to analyze the
possible influence of py on the final equilibrium state of the system, for all the range
of values of the parameter » and we also want to make a comparison between the two
topologies, as usual, ER and SF networks. Besides, it is important to clarify, however,
that the distribution of cooperators, given by py will still be made randomly among
the nodes.

The variation with the game parameter b of the stationary (asymptotic) average
level of cooperation, (c)(b), for several values of pg, is shown in Fig.3.9 for ER
graphs and BA networks. And as we can see, (c) depends on pg generally speaking,
in such a way that increases with it, but this dependence is different for random and SF
topologies. When b 2 1, the behavior of (c) for both topologies is quite independent
from pg, because there is not a big difference between being a cooperator or a defector
as far as payoffs is concerned. This is also the case when b is bigger enough to make
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Fig. 3.9 Average cooperation level in ER (Leff) and SF (Right) networks as a function of b for
several fixed initial concentrations of cooperators po as indicated. The size of the networks is
N = 4103 nodes and average connectivity (k) = 4. The scale-free network is a BA graph whose
P(k) ~ k=3. Every point shown is the average of 107 different realizations of the game and the
network

the whole system defect. But there is a wide range of intermediate values of b where
this behavior depends on the heterogeneity of the graph.

In the case of ER networks, different initial concentrations po produce a family
of curves that mainly differs in their tails, so the larger the value of py, the slower the
decay of (c) as b increases (as we will see next, this is in correspondence with the
perfect saturation of (c)(po) at fixed b, Fig. 3.10). On the other hand, in BA networks
the effects of different initial conditions are appreciated in the whole range of b
values. We thus see that heterogeneity not only favors the survival of cooperation,
but also makes the value of the average cooperation, at fixed b value, more dependent
on initial conditions.

In order to study these differences more thoroughly, we plot these same results
as (c) versus pg for several values of the (fixed) parameter b. As it can be seen in
Fig.3.10, {c) typically increases with pg until saturation is reached much before pg
approaches 1. One observes that saturation occurs sooner for smaller values of b.
These features are common for both classes of networks. However, some details of
the (c)(po) curves are different: first, for ER networks, the departure from zero of
(c)(po) occurs, as b increases, only above some b-dependent threshold value of the
initial fraction of cooperators; on the contrary, for BA networks (c) (pop) departs from
zero as long as pg > 0, at all values of b inside the coexistence region between
both strategies. Second, saturation is more perfect for ER networks, while for BA
graphs the plateau in the (c)(pg) curve shows a small positive slope. It is interesting
to consider these results in the light of those found for the Prisoner’s Dilemma in
regular square lattices, where the proportion of C and D tends to depend on the
starting proportion for relatively small values of b, but for larger b the proportions
are essentially independent of the initial configuration [20].

Let’s now focus on the relation between the fraction of pure strategists (pc and
pp) and the parameter b. As stated in the Sect.3.2 (and [17]), for any asymptotic
trajectory there is a partition of the network into three sets, namely the set P C of pure
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Fig. 3.10 Average cooperation level in ER networks (Leff) and BA networks (Right) as a function
of the initial concentration p, for several values of b as indicated. The size of the networks is
N = 4103 nodes and average connectivity (k) = 4. Each point shown is the average of 10°
different realizations of the game and the network

cooperator nodes, the set P D of pure defector nodes, and the set F' of fluctuating
nodes. The behavior of pc and pp versus the game parameter b is plotted in Fig. 3.11
for different initial cooperator concentrations. The first remarkable result is that in
ER networks, the density of pure cooperators does not depend on pg for the whole
range of b values, in sharp contrast with the above mentioned results for the tails
of the average level of cooperation (c)(b) (Fig.3.9). It is worth recalling that, as
we have discussed in Sect. 3.6, there are two additive contributions to the average
fraction (c) of cooperators, namely the measure pc of the set of pure cooperators,
and the overall fraction of time (7¢) spent by fluctuating nodes as cooperators,
weighted by the relative size pr = (u(F)) of the fluctuating set (see Eq. 3.6). Though
the first contribution is, for ER networks, independent of pg, the second one does
indeed depend on the initial conditions, as inferred from Fig.3.9 and the relation
pc + pp + pr = 1. High initial concentrations of cooperators favor the fluctuating
set F' at the expense of pure defectors, while the number of nodes where fixation of
cooperative strategy occurs remains apparently unaffected. Thus, pc is being mainly
determined by the network structural features. For example, in our simulations, for
large values of b where pc is very small, we have observed that the pure cooperator
nodes form cycles. The fixation of cooperation in these structures is assured if none
of their elements is linked to a fluctuating individual that, while playing as a defector,
is coupled to more than k¢ /b cooperators, where k¢ is the number of cooperators
attached to the element. The number of such structures is finite in ER graphs, but as
soon as their vertexes are occupied by cooperators, they will be immune to defectors
invasion.

The right panel of Fig. 3.11 shows the results obtained for BA networks. Regarding
the proportion of pure cooperators, one may differentiate two regimes: For b < 1.7,
there is a moderate dependence of pc on pg, while pc is almost independent of pg
for larger values of b. This behavior correlates well with our observations (Sect. 3.5)
on the distribution of strategists inside the degree classes. In the first range of b
values, pure cooperators are present in all k-classes and fluctuating individuals are



70 3 The Prisoner’s Dilemma on Static Complex Networks

1
0.8
0.6
0.4

0.2

Fraction of Pure Strategists
Fraction of Pure Strategists

Fig. 3.11 Fraction of pure strategists in ER (Lef) and SF (Right) networks as a function of b and
several values of pg. The size of the system is N = 4- 10% nodes, with average connectivity (k) = 4.
Every point shown is the average of 103 different realizations

almost homogeneously disseminated over low-to-intermediate k classes. However,
for b > 1.7, there is a b-dependent value of &, say k*, such that k-classes are fully
occupied by pure cooperators if k& > k* while basically no pure cooperators are
found in lower k-classes. In the second range of b values, where the degree-strategy
correlations are strong, the influence of pg on the asymptotic proportion of pure
cooperators is very small.

As discussed in previous paragraphs, while the proportion of pure cooperators is
either independent (ER) or slightly dependent (BA) on initial concentration pg, the
measures of the other sets in the partition, F and P D, are indeed more influenced
by the initial conditions. The dependence of the fraction of pure defectors pp with
po for BA and ER networks is qualitatively the same, that is, the proportion of pure
defectors is favored (at the expense of the fluctuating set) by a higher initial proportion
of defectors. This is consistent with the lack of degree preference (correlation) of
pure defectors, which cannot take advantage of degree inhomogeneity: the higher
their instantaneous payoff, the more likely they invade neighboring nodes, which has
the effect of diminishing their future payoft.

Finally, we analyze the connectedness of the pure strategists sets, as measured
by the number of cooperator cores N.., and defector cores Ny.. As we have shown
in Sect. 3.7 for BA networks and py = 0.5, for all values of b where PC is not an
empty set, it is connected, i.e. N.. = 1. Looking at Fig.3.12, it can be said that this
result turns out to be independent of pg: there is only one cooperator core in BA
networks, which contains always the most connected nodes or hubs, for any initial
fraction of cooperators. The grouping of pure cooperators into a single connected set
PC allows to keep a significant fraction of pure cooperators isolated from contacts
with fluctuating nodes. This “Eden of cooperation” inside P C provides a safe source
of benefits to the individuals in the frontier, reinforcing the resilience to invasion of
the set. Pure defectors, on the contrary, do not benefit from grouping together, and
the set P D appears fragmented into several defector cores. Note that for values of
b >~ 1, where the set P D is empty, Ny, = 0, while for very high values of b defection
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Fig. 3.12 Dependence with b of the number of clusters of cooperators (N..) and defectors (Ny.)
for both BA networks (7op) and ER graphs (Bottom), and for different values of pg. The size of the
system is N = 4 - 10? nodes, with average connectivity (k) = 4. Every point shown is the average
of 103 different realizations

reaches fixation in the whole network, so that Ng. = 1. Thus, N4.(b) must increase
first and then decrease to 1. In Fig. 3.12 we show the computed Ny (b) curves for BA
networks for several values of pg. It is remarkable that these curves almost collapse,
in spite of the fact that the fraction pp of pure defectors does indeed depend on pg
(see Fig.3.11). This fact suggests that it is the size of the defector clusters, what
changes with b, not its number, for the case of BA structures.

In Fig. 3.12 we also show the number of clusters N..(b) and Ny (b) for ER graphs,
and for different fixed values of pg. Regarding the number of cooperator cores, first
we notice that the picture described in Sect. 3.7 for the case pg = 0.5 still holds when
it comes to other values of the initial proportion of cooperators, it is to say, in general
both cooperators and defectors form several unconnected clusters. We also see that
except in the small range 1.4 < b < 1.6, the different curves N, () coincide, in fair
agreement with the independence of pc on initial conditions. Note that in the small
interval where they do not coincide, the fraction p¢ of pure cooperators is below 1%,
for all values of pg. On the other hand, we see that for higher initial proportion pg of
cooperators, the set P D is more fragmented and also that Ny, reaches its maximal
values at higher values of b.
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3.9 Influence of the Degree of Heterogeneity of the Network

As we established at the beginning of this chapter, we have been comparing the results
of the PD dynamics and its microscopical organization for the extreme cases of the
GM model, i.e., for random and SF topologies only. Now it is the time to analyze the
possible differences for intermediate degrees of heterogeneity. In order to inspect in
detail how the results depend on the degree distribution of the network, we monitor
the same magnitudes studied previously just for SF and random topologies, but
now when the value of « varies between 0 and 1 (we will also include the extreme
values, for better understanding). As we have mentioned before, the GM model builds
networks with different degree of heterogeneity, depending only on the parameter
« € [0, 1], in such a way that makes the networks less heterogeneous as « increases
and approaches 1.

Figure3.13 shows, from left to the right and from top to bottom, the average
level of cooperation (c), the density of pure cooperators pc and the density of pure
defectors pp as a function of b for several values of . In this case, the initial
distribution of cooperators was set again to pg = 0.5, i.e., at# = 0 the nodes have the
same probability to cooperate or to defect. The results show that indeed the densities
of pure strategists and the average level of cooperation do depend on . Therefore,
the role played by the underlying topology is confirmed: the more homogeneous
the graph is, the smaller the level of cooperation in the system for a fixed value
of the temptation to defect b. Moreover, the transition for different values of « is
absolutely smooth and the systems do not exhibit any abrupt crossover from one kind
of behavior (o« = 0) to the other (v = 1).

We have also explored how nodes where strategies have reached fixation are
organized into clusters of cooperation and defection as a function of «. Figure 3.14
summarizes our computational simulations for the number of cooperator cores.
In this case, we have represented N, as a function of (1 — p¢), that obviously
grows with b. We do it this way in order to have a common reference for different
values of a until cooperation breaks down, so the comparison is easier. The observed
dependence of N, with « is again smooth and no abrupt change in the behavior
of this magnitude occurs. It is worth stressing that as soon as the underlying net-
work departs from the limit « = 0 corresponding to a BA scale-free network, the
number of CC slightly differs from 1. This means that some realizations give rise to
more than one cluster of CC. The probability to have such realizations is very small,
but in principle, they are possible. As « is further increased towards one, it is clear
that pure cooperators do not organize anymore into a single cluster. We think that
this deviation is due to the fact that when o > 0 the exponent «y of the underlying
network, which still is a scale-free degree distribution, is larger than 3. It is known
that this value of v marks the frontier of two different behaviors when dynamical
processes are run on top of complex heterogeneous networks. This is the case, for
instance, of epidemic spreading. For 2 < « < 3, the second moment of the degree
distribution P (k) diverges in the thermodynamic limit, while it is finite for v > 3.
As the critical properties of the system are determined by the ratio between the first
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(that remains finite for v > 2) and the second moment, the divergence of the latter
when N — oo and 2 < v < 3, makes the epidemic threshold null. On the contrary,
when the process takes place in networks whose v > 3, the epidemic threshold is
recovered, although no singular behavior is associated to the critical point [33, 34].
We expect that a similar phenomenology is behind the results shown in Fig.3.14.
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3.10 Conclusions

In this chapter we have studied the influence of the topology on the dynamics, specifi-
cally, the differences between ER and SF networks when implementing the Prisoner’s
Dilemma on top of them. On the one hand, we have measured the mean levels of
cooperation as a function of the one free parameter of the game, the temptation
to defect, b, as well as the dependence with the initial proportion of cooperators
present on the system, and we have also checked the distribution of the cooperation
among the connectivity classes, for the SF networks. On the other hand, we have
shown and analytically proved that there is always a partition of the network into
three different sets of individuals, as far as strategies are concerned, and we have
also determined that two different patterns of cooperative behavior can be clearly
identified, depending on the underlying structure.

We have found that the evolution of cooperation in complex topologies shows a
very rich structural and dynamical behavior. For values of the temptation to defect
b close to one, ER networks outperform SF topologies, but the presence of hubs
and the relative abundance of small loops in SF networks revert the behavior of
the level of cooperation for intermediate to large values of the payoffs. The reason
why SF networks can foster much higher levels cooperation than ER, even when the
temptation to defect makes it very expensive, is that heterogeneous populations offer
to the cooperative strategy the opportunity of evolutionary mechanisms of positive
feedback, making cooperation the fittest overall strategy, in spite of not being the best
reply to itself in the one-time step scenario. Besides, we have found that regardless
of the topology and even the values of the parameters of the model, there are always
three different classes of individuals according to their asymptotic strategies: the set
of pure cooperators PC, pure defectors P D and fluctuating individuals F, and we
have developed a simple but very useful analytical model that mimics the competition
for invasion of two highly connected nodes in order to prove the existence of this
partition of the network in a general case.

Regarding the microscopic organization of the system, we have found important
differences between ER and SF: we have measured the number of clusters of coop-
erators, and shown that, while in SF networks cooperators form always one single
cluster (its relative size depending obviously on the value of the temptation to defect),
in homogeneous topologies they form several disconnected clusters, and therefore
they are ‘an easy target’ for the attacks of the defectors. Nonetheless, the number
of clusters of defectors is always more than one, in general, for both ER and SF
networks.

Here, we have also shown that the enhancement of cooperation due to the hetero-
geneity of the pattern of connections among agents is robust against variations of the
initial conditions (meaning different initial concentrations of cooperators, pg, always
randomly distributed on the population). While both the measure of the cooperator set
P C where cooperation reaches fixation, and its connectedness properties are either
independent or only slightly dependent on pp, the measure of the fluctuating set F
and the defector set P D where defection is fixed show a clear dependence on the
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initial conditions, for defection cannot profit from degree heterogeneity. On the other
hand, the characteristics of the asymptotic evolutionary states of the PD analyzed
here, show a smooth variation when the heterogeneity of the network of interconnec-
tions is one-parametric tuned from Poissonian to scale-free, demonstrating a strong
correlation between heterogeneity and cooperation enhancement.

Finally, though the numerical results presented here correspond mostly to network
sizes N = 4 - 103, we have studied also larger networks, up to N = 10*, with no
qualitative differences in the results. The increase of network size, while keeping
constant the average degree (k), turns out to be beneficial for cooperation, due to
the fact that it has the effect of increasing the maximal degree, and thus the range of
degree values. This further confirms how efficiently cooperation takes advantage of
degree heterogeneity.
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Chapter 4
Other Games on Static Complex Networks

In the last chapter, we have been discussing in some detail the dynamics and
microscopical organization of the the so-called weak Prisoner’s Dilemma Game
[1] on static complex networks, where the payoff for a cooperator against a defector
was fixed to § = O (strictly speaking, for this value of S, we are really at the border
between the Prisoner’s Dilemma game and the Hawks and Doves -HD- game). In
this chapter we want to address very briefly the issue of other evolutionary games on
graphs.
Given the usual payoff matrix for the 2 x 2 games:

C D
C (R S 4.1)
D\T P
and once we have fixed R = 1 and P = 0, we have four different games, depending

on the relative ordering of the parameters (the first three of which are interesting
well-known social dilemmas) [2—4]:

e The Stag Hunt game [5, 6], with R > T > P > §,isacoordination game and both
strategies are strict Nash equilibria. Players prefer mutual defection to unilateral
cooperation (S < P), resulting in an intrinsic fear of individuals to cooperate.

e In the Hawks and Doves (or Snow Drift or Chicken) game [7-14], with T > R >
S > P, the players are referred to as greedy, since they prefer unilateral defection
to mutual cooperation (7 > R). This is an anti-coordination game, because the
best strategy for an individual is the opposite to its opponent’s.

e In the Prisoner’s Dilemma game, for which T > R > P > S, and where both
tensions described above are incorporated at once, is the most difficult situation
for cooperation to arise.

e In the Harmony game, for which R > § > T > P, mutual cooperation is the best
option. Thus, this game does not represent a very interesting case of study for us.

J. Poncela Casasnovas, Evolutionary Games in Complex Topologies, Springer Theses, 77
DOLI: 10.1007/978-3-642-30117-9_4, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 4.1 Schematic represen- S
tation of the different games Harmony +1  Hawks&Doves
on the 7-S plane

R>S>T>P T>R>S>P

0 2 T
R>T>P>S T>R>P>S
Stag Hunt ] Prisoner's Dilemma
-

On Fig. 4.1 we sketch the disposition of all of them on the 7S plane.

As we explained in Sect. 2.2, Evolutionary Game Theory predict that cooperation
can not survive when playing the Prisoner’s Dilemma game on well-mixed popu-
lations, whereas there is an interior equilibrium in the Hawks and Doves game, so
the system will end up in a situation where a certain proportion of both strategies
is present. Nonetheless, we also know of the important differences introduced by
the topology on the outcome of the weak PD game. Now we will study and compare
the cases of a general Prisoner’s Dilemma game and the Hawks and Doves game on
complex networks. Our approach will be very similar to the one used in Chap. 3, it
is to say, we will study the asymptotic equilibrium state of the system, given by the
average level of cooperation, when engaged in general PD game and HD respec-
tively, on top of a complex network, and comparing homogeneous and heterogeneous
topologies. Then we will focus on the partition of the graph into several sets, and
also on the number and distribution of clusters of the different strategies. Finally,
we will look into the level of cooperation among the different connectivity classes
for SF topologies. On the one hand, we want to study a more generalized Prisoner’s
Dilemma game, it is to say, situations with other values of the payoff parameter
S < 0, to test the results found in the preceding chapter. And on the other hand, we
will analyze the behavior of the system when playing another 2 x 2 game, namely
the Hawks and Doves game, and we will compare the outcome of the game for both
scenarios.

We have used here the same dynamic rule as in the previous case of the weak
Prisoner’s Dilemma (Chap. 3), it is, at each time step, every node i of the system
plays with its nearest k; neighbors, as dictated by the underlying network, and accu-
mulates the payoffs P; obtained during that round. Then, individuals are allowed to
synchronously change their strategies by comparing the payoffs they accumulated
in the previous generation with the one obtained by a randomly chosen neighbor ;.
In this way, if P; > Pj, player i keeps the same strategy for the next round of the
game, when it will play again with all its neighborhood. On the contrary, whenever
P; > P;, i adopts the strategy of j with probability [11, 15-19]:

Hisj=BPj = P) 4.2)

where ﬂ” =max{k;, k;}A, and A is the maximum possible difference between
the parameters of the payoff matrix, it is to say A = T (given that § > 0 for the
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Hawks and Doves game). For the weak Prisoner’s Dilemma studied before, it was also
A = T, but for a more general case of the game, with § < 0, it willbe A =T — S.
This probability is proportional to the difference of payoffs of the nodes involved,
and it is normalized by the maximum payoff a node can get. It is important to keep in
mind that, though it is stochastic, the Replicator-like rule does not allow the adoption
of irrational strategy, i.e. I1; . ; = 0 whenever P; < P;. In other words, a node will
never adopt the strategy of a neighbor whose payoff was worse than its own in the
previous round of the game.

As we did in Chap. 3, the dynamics evolves on top of ER [20] or BA [21] networks,
i.e. strategists are located on the vertices of a fixed graph that dictates the pattern of
social interactions of the population. The size of the systemis N = 4 x 103 nodes, and
the average connectivity of the networks is (k) = 4. The initial strategy of each one
of the N nodes in the system is randomly set, with a probability of being a cooperator
equal to pg = 0.5 and then the dynamics starts. We let the system evolve for 5 x 10
time steps or generations, after which we check whether the equilibrium has been
reached. As usual, we observe the system during a time window of 10° generations.
If the slope of C(¢) is smaller than 1072, then we consider that the equilibrium
has been reached. Otherwise, we let the system evolve for another 5 x 103 more
generations, after which we evaluate it again. The results that we show are usually
the average of 103 different realizations of networks and initial conditions, except
we state otherwise.

4.1 Average Level of Cooperation, and Fractions of Pure
Strategists and Fluctuating Individuals

As we have already mentioned, we set R = 1 and P = 0, and explore the dynamics
for a continuum of values of § and 7. So the figures we present next will include
a comparison of the general Prisoner’s Dilemma game (S < 0) and the Hawks and
Doves game (S > 0) at once.

The first result we present is that the asymptotic existence of the partition of the
networks into pure strategists and fluctuating individuals (see Sect3.3) is a general
result for the games studied in this chapter. In Fig.4.2 we show the color-coded
average level of cooperation reached for the system after the transient period, as well
as the fractions of pure strategists and fluctuating individuals for ER topologies. On
the other hand, in Fig. 4.3 we represent the same magnitudes for BA networks.

We also confirm that the dependence of the dynamics on the parameter S is smooth:
there is not an abrupt change of behavior around the line S = 0. Or in other words,
we were entitled to use the weak Prisoner’s Dilemma, fixing and eliminating the
parameter S, instead of using a more strict version of the game, because the results
do not change drastically with small variations around S < 0.

For a fixed value of the temptation to defect 7 and for both topologies, the more
expensive being a cooperator against a defector gets (i.e., S going from positive to
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Fig. 4.3 Color-coded average level of cooperation (Top left), fraction of pure cooperators (Top
right), fluctuating individuals (Bottom left) and pure defectors (Bottom right) for BA networks

negative values), the lower the average level of cooperation. On the other hand, the
fraction of pure cooperators pc does not show a strong dependence with S neither
for BA nor ER networks. Pure defectors take over the whole system for a wide range
of the parameters studied (half of the S — T plane represented, on the ER case). As
expected, the value of T for which all the nodes are pure defectors decreases as S does
so, since lower values of S or higher values of 7" make cooperation more expensive.
The most important result is that there are not always fluctuating players present
on the system for any given value of the parameters. Obviously, if S < 0 and T is
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high enough, all nodes are pure defectors, and if T is low, all individuals act as pure
cooperators, no matter what the value of S is. However, there is also an intermediate
area of parameters for which the fluctuating nodes occupy almost the entire system,
being responsible for the maintenance of the average level of cooperation shown on
the system.

If we look at panels in Fig.4.2, we observe that the frontier between PC and
F is almost S-independent, but the frontier between F' and P D does depend on
the parameter S. This makes that the transition in 7 from total cooperation to total
defection also S-dependent: for high values of S, this transition is smooth, while for
negative values of S it is quite sharp, suggesting an almost immediate conversion of
the nodes of the system from PC to PD.

Regarding the influence of the topology, as one could expect, both the average
level of cooperation and the fraction of pure cooperators are higher for BA than for
ER networks. We also see that the fraction of fluctuating individuals (when present)
is larger in ER networks, and the limits of the area for which they are present are
more clearly drawn in this case.

4.2 Number of Clusters of Cooperators and Defectors

Using the same definition of Cluster presented in the Sect. 3.7, we consider a coop-
erator cluster (CC) as a connected component (subgraph) fully and permanently
occupied by the cooperator strategy s; = 1, i.e. composed of pure cooperators so
that P(s;(t) # 1,Vt > 19, Vi € CC) = 0. Analogously, a defector cluster (DC)
is the subgraph whose elements are pure defectors, that is, a subgraph where the
condition P (s;(t) # 0,Vt > 19, Vi € DC) = 0 is fulfilled.

In Fig. 4.4 we show the number of clusters of cooperators N.. and defectors Ny, as
afunction of T for several discrete values of the parameter S and for both ER and BA
topologies in both the Hawks and Doves (S > 0) and the general Prisoner’s Dilemma
game (S < 0). As we can see, once again the general result obtained previously for
the weak Prisoner’s Dilemma (Sect. 3.7) holds in these scenarios: while cooperators
form several clusters on ER topologies, for the BA networks, as long as cooperators
survive in the system, they remain together forming one single cluster which always
includes most of the higher connected nodes, making thus the system much stronger
against the attacks of the defectors. Those, on the other hand, always form more than
one cluster, in general, on both random and scale-free networks. This aspect of the
microscopic organization of the strategies in the system for the Hawks and Doves
and the general Prisoner’s Dilemma is not very surprising, since it is proven to be
basically due to the underlying topology, but it definitely affirms the robustness of the
results presented in Sect. 3.7, and highlights the differences between homogeneous
and heterogeneous networks.
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Fig. 4.4 Number of clusters of cooperators N, and defectors N, as a function of 7" for the Hawks
and Doves game (Top panels) and the general Prisoner’s Dilemma case (Botfom panels), for both
ER (empty symbols) and BA (full symbols) topologies. The size of the networks is N = 4000 nodes
and average connectivity (k) = 4. Every point shown is the average of 5 x 10? values

4.3 Distribution of the Cooperation Among the Degrees
of Connectivity

We can study the role of heterogeneity on the dynamics of both PD and HD games
by plotting the probability of a node with degree k of being a cooperator, ,oé, ina
similar way as we did in Sect. 3.5. Recall that the total fraction of pure cooperators
in the system can be written as:

pc =D Pt (4.3)
k

with P (k) being the degree distribution, and where the relations pc + pp + pr = 1
and pé + p]l‘) + ,o’,‘7 = 1 are fulfilled. As one can see in Fig.4.5, when T is small
enough, all nodes are cooperators, regardless of their connectivity, but as T increases,
nodes with intermediate degree are less likely to be cooperators, while the higher
classes remain as cooperators until the value of T is such that level of cooperation
vanishes in the system completely. This is in perfect agreement with the results
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Fig. 4.5 Probability of finding a Pure Cooperator of degree k in SF networks for different values of
the parameter 7.a S = —0.2 and b S = —0.1 correspond to Prisoner’s Dilemma scenarios, while
¢S =0.1andd S = 0.2 are Hawks and Dove situations. The networks have N = 2 x 10% nodes

found for the weak Prisoner’s Dilemma [17, 22, 23], and shown in Sect.3.5. As
we commented in detail in that section, the reason why the cooperation can survive
for SF topologies is because of the existence of the hubs, which are interconnected,
play as cooperators, and surround themselves by more cooperators, creating a nice
environment of cooperation (or ‘Eden’) where other cooperator nodes with lower
degree can get benefits from it, and resist the attacks of defectors. On the other hand,
defectors can not take advantage of the heterogeneity of the network, because they
are not stable in the long term when set in a hub.

4.4 Conclusions

In this chapter we wanted to check whether or not some of the important previous
results exposed in Chap.3 for the weak Prisoner’s Dilemma (it is, when S = 0)
still hold for the general case of the game, and even for other two-strategy game,
specifically the Hawks and Doves.

As we have seen, given the payoff matrix of the game, the parameter ordering for
the Prisoner’s Dilemmais 7 > R > P > S, while for the Hawks and Doves game,
itis7T > R > § > P. So, although in both cases players prefer unilateral defection
to mutual cooperation, the difference between them is that in the first case, the worst
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strategy is to cooperate against a defector, while in the second setting, it is to mutually
defect. As usual, we have fixed the parameters P = 0 and R = 1, so to have two
free parameters, the temptation to defect, 7' and the sucker’s payoff, S. In this way,
for a fixed value of 7 > 1, if S < 0, we are playing Prisoner’s Dilemma, while if
S > 0, we are playing Hawks and Doves. Cooperation gets more expensive every
time T increases or if S decreases. On the general Prisoner’s Dilemma (meaning,
for values of S < O strictly, instead of the weak limit, S = 0), we have checked
that the dependence with the parameter S is smooth, there are no abrupt changes,
but nonetheless, there are some differences. In particular, for a fixed value of the
temptation to defect, the more negative S gets, the more expensive the cooperation
is, so both the mean value of cooperation, (c), and the level of pure cooperators, pc,
decrease. And also the level of fluctuating individuals, pr, drops remarkably, while
obviously, the level of pure defectors, pp, increases. In this situation, since the levels
of F' are low, the transition from pure cooperation to pure defection as 7" increases is
quite sharp. On the other hand for Hawks and Doves (S > 0) the cooperation is less
expensive than for the Prisoner’s Dilemma for the same value of T, so both the mean
value of cooperation (c), and the fraction of pure cooperators pc are obviously higher
than in the Prisoner’s Dilemma scenario, and the level of fluctuating individuals, pF,
is also much higher. In fact, when S > 0, there is a wide region of the S — T plane
where fluctuating individuals clearly take over the entire system, and this makes the
transition from pure cooperation to pure defection as 7' increases smooth.

Regarding the influence of the underlying topology, we can confirm that the
heterogeneity of the network always favors the cooperation for both games. Thus, (c)
and pc are much higher for SF than for ER networks, while the fluctuating and pure
defectors are less present on heterogeneous systems. We have checked the micro-
scopic organization of the cooperation on the system as well, and we have found
that the results shown in Sect. 3.7 still hold both for the general Prisoner’s Dilemma
case and the Hawks and Doves: while for SF topologies, cooperators organize into
just one single cluster, for ER they form several. Thus, in the first case the system
can hold much higher levels of cooperation even when it is very expensive (for high
values of T or negative values of S). On the other hand, the defectors always organize
into several clusters, in general, regardless the underlying topology.

Finally, if we look at the distribution of the cooperation across the connectivity
classes in SF networks, we can see that, as we have proved previously for the weak
Prisoner’s Dilemma case, when cooperation is not expensive (7" < 1.5), practically
the whole system plays as a cooperator, but when it gets more expensive, the defectors
start taking over the medium classes, while the high classes remain unconquered as
long as cooperation can survive. This hierarchical organization is preserved for all
the values of S explored.

To summarize, in this chapter, we have proven the robustness and strength of the
important results previously shown in Chap. 3. We have proved that all of them hold
for a wide range of parameters, specially the important differences regarding the
topology and the microscopic organization of the system.
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Chapter 5
The Prisoner’s Dilemma Game on Random
Scale-Free Networks

As it has been well established in previous chapters, when implementing the
Prisoner’s Dilemma (PD) game on top of complex networks, the scale-free (SF)
topologies greatly enhance cooperation [1-12], compared to other topologies as ER
networks. It is also well known that the heterogeneity on the degree distribution of
these structures is a crucial factor in order to achieve such high levels of cooperation
in the system. More specifically, the hubs, or nodes with the highest connectivity, act
always as cooperators, surrounding themselves with middle-class cooperators, and
creating a unique cluster (or ‘Eden’) of cooperation that is able to resist the attack of
defectors, even when cooperation gets really expensive. Nonetheless, up to now we
have only focused on the BA model [13], among other SF network models available
in literature (for a quick review of some of them, see [14, 15]). BA SF networks
have some correlations by construction, the so-called age-correlations [16—18]. That
means that older nodes, the ones that arrived earlier to the system when it was being
built are interconnected, since they formed the original core of nodes, and besides,
these older nodes usually become hubs as the network grows. The existence of age-
correlations can be found in some real systems also, such as the collaboration or
citation networks, or the ‘old boy’ network, made up of former students of the Ivy
League that now work at the top investment banks [19].

In this chapter we want to study the evolution of cooperation in random SF
structures, it is to say, those without any kind of correlations. We presume that these
age-correlations among the highly connected individuals of BA networks enhance
cooperation [1, 3], by making the single cooperator cluster even more robust to the
possible invasion of defectors. Thus, now it is our intention to analyze the situation
when considering the same PD dynamics taking place on top of a randomized version
of BA topologies. Our first goal in the study of such random SF networks is to check
if the deletion of the hub-to-hub links affects indeed the microscopic organization
of cooperation observed in BA networks, explaining qualitatively the drop in the
cooperation level as a break down of the cohesive arrangement of cooperators.

‘We want to study in detail the structure of cooperation in random SF networks, and
in order to do so, on the one hand we will perform our usual numeric simulations.

J. Poncela Casasnovas, Evolutionary Games in Complex Topologies, Springer Theses, 87
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Specifically, we will perform a rewiring process of the SF networks obtained by
means of the BA model, which is a procedure that destroys any kind of correlations
present in the original system [18], preserving the connectivity of every node, and
therefore the original degree distribution, and then we will implement the usual PD
dynamics. On the other hand, we will also address the problem analytically, by using
a degree-based mean field approximation in order to try and incorporate the hetero-
geneity in the number of social contacts of individuals in the Replicator Equation
[20-23] (see also Sect.2.2.2). To this end, we will make a further compartmentaliza-
tion of the strategists in degree-classes, by defining the fraction of cooperators and
defectors with degree k, so we will have an equation for the evolution of the cooper-
ation in every class of connectivity k. Finally, we will compare the results obtained
with both methods, discussing whether or not this approximation is accurate enough
to explain some of the basic behaviors of the cooperation in the system.

5.1 Numerical Simulations on Random Scale-Free Networks

To study the structure and dynamics of cooperation in random SF networks we have
performed a rewiring process [24] of SF networks built via BA mechanism. As we
have already seen in Sect.2.1.3, the BA model makes the network grown from an
initial core of mg nodes, incorporating a new node to the network every time step.
Besides, every new node launches m links to the nodes already present in the network,
following a preferential attachment rule, i.e., the probability of receiving a link from
the new node is proportional to the degree of the nodes. The networks generated
using the BA model have a power-law degree distribution, P (k) ~ k=7, with v = 3.
Nonetheless, they possess important features that make them different from random
SF networks built by means of purely statistical algorithms such as the Molloy-
Reed configurational model [25]. These differences are the previously mentioned
age-correlations that have as a consequence the interconnection of highly-connected
elements or hubs. The links between hubs have been shown to play a crucial role
in the survival of cooperation [1, 3], since the cooperation level decreases notably
when they are removed.

The rewiring process is made as follows (see Fig.5.1): let i and j be a pair of
neighbors, so they share a link, and let be m and n be another pair of nodes linked
together. Then we interchange the i — j and the m — n links, in such a way that in the
final state, i —n and m — j are the new pairs of neighbors. Of course, we make sure
thati # j # m # n, to avoid double links and auto-links, i.e., links that connect a
node with itself. We repeat the process N times, checking that the final networks have
aunique connected component.As we have mentioned before, applying this rewiring
scheme destroys any kind of correlations present in the original network preserving
the degree sequence of the graph, and thus keeping the same degree distribution
(P (k) ~ k—3) as in the original BA network.
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Fig. 5.1 Schematic represen- i m i m
tation of the rewiring process
of two pairs of nodes Rewiring

process

Once the network is rewired, we perform the numerical simulation of the evolu-
tionary dynamics dictated by the Prisoner’s Dilemma, whose payoff matrix is given,
as usual, by:

C D
C (R S (5.1)
D (T P)
where we set, again P = S =0,R =1,T = b > 1, so we only have to deal
with one control parameter, the temptation to defect b [26, 27, 1].
In the initial configuration of the system, the probabilities of being a cooperator
or a defector are the same (pg = 0.5), and the strategists are randomly distributed
across the network. On the other hand, we will use the same updating rule as in

previous chapters, the Replicator-like rule [1, 2, 22, 28-30], so player i adopts the
strategy of its neighbor j for the next game round with probability:

;=8P — P) (5.2)

where P; and P; are their correspondent payoffs from the last round of the game,
and with 8 = (max{k;, k;}b)~".

The details of the numerical simulations are similar to those in previous chapters:
the networks we generated have N = 4 - 10 nodes and an average connectivity
(k) = 4. We let the system evolve until a stationary regime is reached. This stationary
regime is characterized by an average level of cooperation that is the fraction of C
players in the network, (c) = ¢/N. To compute (c) we let the dynamics evolve
over a transient time 79 = 5 - 103, and we further let the system evolve over time
windows of 7 = 10° generations. In each time window, we compute the average
value and the fluctuations of c¢(¢#). When the fluctuations are less than or equal to
1/+/N, we stop the simulation and consider the average cooperation obtained in the
last time window as the asymptotic average cooperation (c). In order to make an
extensive sampling of initial conditions and network realizations we have performed
103 independent numerical simulations for each value of the temptation to defect b
studied, and averaged the values (c) found in the realizations.

First of all, in Fig. 5.2 we show a comparison of the levels of cooperation achieved
by such random SF networks, as well as original BA and ER topologies, and as it
can be seen, our results confirm previous findings: the removal of age-correlations
makes random SF networks much less robust to defection than BA networks [2, 3],
so the level of cooperation drops substantially. On the other hand, in Fig.5.3a we
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Fig. 5.2 Comparison of the
levels of cooperation achieved
in the stationary state for ER,
BA and random SF networks,
as a function of the temptation
to defect b. All networks are
made up of N = 4 - 103
nodes and have an average
connectivity (k) = 4. Every
point shown is the average
over 103 different realizations

ER — A
BA e |
random SF -«
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have also plotted the average level of cooperation (c) as a function of b, along with
the level of pure strategists and fluctuating individuals present on the network. It is
to say, on these topologies we have also found that there is a partition of the network
into pure strategists (pure cooperators PC and pure defectors P D), and fluctuating
individuals (') on the stationary regime. Notice that the partition of the system into
pure strategists and fluctuating individuals has been made following the same criteria
as in Sect. 3.3. As one could expect, the fraction PC decreases with b, the fluctuating
take over the network for a wide range of intermediate values of b, and the P D finally
invade the system for high values of the parameter. Nonetheless, the fraction of PC
is remarkably lower than that for the case of BA networks or even ER topologies,
whereas the fluctuating individuals dominate the system for a wider range of b, so
the level of cooperation is almost exclusively due to them. This is a very different
scenario from those studied for BA SF networks (compare with Fig.3.2).
Moreover, in Fig.5.3b we have plotted the number of cooperator clusters N,
and defector clusters N, as a function of b, using to that aim the same definition
as in Sect.3.7: a cooperator (defector) cluster is a connected subgraph composed
of nodes that are pure cooperators (defectors). The first difference with respect to
BA networks is that here we find realizations with more than one cooperator cluster,
whereas for BA networks, the number of clusters was always exactly N.. = 1, aslong
as (c)(b) > 0. This difference explains the drop in the cooperation level previously
observed [1]: the more fragmented the cooperators are arranged, the less sources of
benefits they find in their surroundings and the larger is the probability to be invaded
by the instantaneous defectors that are in contact with them. Regarding the defector
clusters we observe the same picture as in BA networks: PD are arranged in several
clusters when they start to invade the network (b = 2). The number of defector
clusters decreases as they start to grow in size and glue together, and finally collapse
into a single one, when all the network has been totally invaded by pure defectors.
We have also checked the probability that a node of degree k is a cooperator in the
stationary regime. Our numerical simulations show that high degree nodes are more
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Fig. 5.3 a Average level of cooperation (c) as a function of the temptation to defect b in random
SF graphs. The panel also shows the corresponding dependence of the fraction of pure cooperators
(PC), pure defectors (PD) and fluctuating (F) players. b Average number of cooperator clusters N,
and defector clusters Ny, as a function of b. The networks are made up of N =4 - 103 nodes and
an average connectivity (k) = 4. Every point shown is the average over 10° different realizations

likely to act as cooperators than intermediate or low degree individuals, in agreement
with previous numerical observations we have made in BA networks (see Sect. 3.5).

Summing up, in random SF networks the fragmentation of the cooperator clusters
together with the extremely low fraction of pure cooperators and the prevalence
of fluctuating individuals not only makes the average level of cooperation drop in
comparison with that same PD dynamics on top of BA networks, but also lead to an
organization of cooperation that is quite different to that observed in BA SF networks.
Therefore, we can confirm that the high level of cooperation that BA SF networks
can hold is not only due to its degree distribution, buy also due to the so-called
agdicorrelations that link together the hubs.

5.2 The Degree-Based Mean Field Approximation

The random SF graphs used in the simulations above are free of any kind of correlation
between the properties of two adjacent nodes (age, degree, etc...). Therefore, it is
reasonable to try and study analytically the evolution of cooperation in these systems
by considering a similar approach to that used for disease spreading processes in
complex networks with arbitrary degree distributions and no correlations [31-33].
To incorporate the heterogeneity in the number of social contacts of individuals
we make a further compartmentalization of the strategists in degree-classes. In this
sense, we label ¢ and dj the fractions of cooperators and defectors with degree k,
respectively, so that the total number of cooperators and defectors will be:

c=N> Pk . (5.3)
k
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d=N Z P(k)dy . (5.4)

Obviously the relation c; + di = 1 holds, and, instead of describing the evolution of
the fraction of cooperators in the population via the well-known Replicator Equation
[20-23], we can write now the evolution of the fraction of cooperators with degree
k as:
¢ = (1 —e)IPC — ¢IEP | (5.5)
where T1 kD ¢
cooperation, and analogously,
change its strategy to defection.
Assuming that the network has no degree—degree correlations, and following the

is the probability that a defector of degree k changes its strategy to
H,?D is the probability that a cooperator of degree k

replicator-like update rule (5.2), we can write the probabilities I1 ,? € and l'[kCD as
KPPk
DC c D
e =3 w0 [Pk, — p ]ck/ , (5.6)
k/
kK'P(k")
CD D C
P =3 50O [P0 - PE]a=c), (5.7)
k/

where the function ®[x] is defined as O[x] = x if x > 0 and ©[x] = 0 otherwise.
Besides, PkC and PkD are the payoffs obtained by a cooperator and a defector of
degree k respectively, and can be written as:

K Pk
PE =k % ¢y =kl (5.8)
k/
PP =b-ki, (5.9)

where [, is the probability that a node has a cooperator neighbor. Now we can insert
the above two expressions (5.8) and (5.9) in equations 5.7 and 5.6 and finally write
the evolution equation of the fraction of cooperators with degree & (5.5) as

G=(1-cr) Y. kP Bl (K — bk)cy
k' >bk
— Z kp()k)ﬁz (bk' —k)(1 —cp)
k' >bk
P )
—a Y o ﬂl(bk (1 —cp), (5.10)

K >k/b
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where we have separated the contributions to the transition C—D that come from
neighbors with " > bk and k' < bk, so that it is clear that the number of degree
classes that participate in the transition C— D is larger than those that influence the
change D—C.

We have numerically solved the set of equations 5.10 using both power-law and
a Poisson distribution for the generic expression of the degree distribution P (k).
As initial conditions, we have used a homogeneous distribution of cooperators and
defectors for all the degree classes: cx(f = 0) = a Yk where a is a random variable
homogeneously distributed between [0, 1]. This way, the initial fraction of coopera-
tion is pp = 0.5, in agreement with the numerical experiments shown in the previous
sections.

Unfortunately, the numerics clearly showed that the total cooperation always
decays to zero whenever b > 1, thus failing to explain the cooperation levels observed
in the numerical simulations in both random SF networks and ER graphs. Nonethe-
less, this result is consistent with previous findings, which have shown that the mean
field approximation can not explain satisfactory the observed survival of cooperation.
However, in the next section we will study the behavior of the system when it starts
from a very specific set of initial conditions: fargeted cooperation.

5.3 Targeted Cooperation

We have failed to use the degree-based mean field approximation to explain the
observed non-zero level of cooperation when simulating the PD dynamics on top
of random SF networks. Now we study a very particular case for both random SF
network simulations and our degree-based mean field approximation with a particular
set of initial conditions. As we will see next, the results show that at least, if not in
perfect agreement, the two cases show similarities on the qualitative behavior of both
the time evolution C(¢) towards the stationary state and the final state achieved by
the state, expressed through the dependence (c) (D).

It is important to stress that the main assumption behind the above mean field
approach is that the average level of cooperation inside a degree-class, cy, is a prop-
erly defined magnitude for describing the state of the nodes within that degree. In
particular, this assumption is strictly correct when ¢y is either 1 or 0. This motivated
us to study the solution of Eq.5.10 using a particular set of initial conditions that we
have called the targeted cooperation, and that are explained next.

We define targeted cooperation as a set of initial conditions for the system
described by 5.10, where ¢, (t = 0) = 1ifk > k* and ¢, (t = 0) = 0if k < k™. Itis
to say, all nodes whose connectivity is higher than a given value k* are set initially
as cooperators, while all those with lower number of neighbors will be defectors. We
have carefully explored the solutions of Eq.5.10 when P (k) is a power-law degree
distribution. To this end, we have considered power-law distributions with several
values of the exponent 7y, and we have also used different values for the degree thresh-
old k*. The numerical solution of Eq.5.10 reveals that, in this case, the cooperation
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Fig.5.4 Time evolution of the 1
fraction of cooperators (c)(t) |
obtained solving equation 5.10
numerically, when targeted
cooperation is used as initial
conditions and being P (k) a | & |
power-law with v = 3. The ' ‘
different curves correspond to

several values of b, as shown
in the bottom of the figure.
The targeted cooperation used
correspond to (a) k* = 2 and
(b) k* = 3. Notice the log-log
representation of the axes
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survives for b > 1, reaching a stationary value that depends on both the value of b
and that of the threshold k*. In figure 5.4 we show the time evolution of the average
level of cooperation for several values of b and k* = 2 and k* = 3. The degree
distribution in the figure is a power-law with v = 3. The solutions show that the
larger k* and/or b are, the lower the cooperation level is, which makes perfect sense,
since they imply, respectively that the number of initial cooperators is lower, or that
the cooperation itself gets more expensive.

On the other hand, itis interesting to compare these results with the values obtained
for our conventional simulations on top of random SF networks (see Fig.5.5). We see
that the behavior of both systems are relatively similar, as far as time evolution of the
cooperation is concerned (but, of course, the evolution of the random SF networks
displays finite size fluctuations). As it can be seen in the (Left) panel of Fig.5.5,
for a fixed value of k* and for low or medium values of b, the level of cooperation
increases with time, until it gets its final value (which depends inversely on b), and
for higher values of b, the level of cooperation on the system eventually goes to zero.
Conversely, if we fix the value of b ((Right) panel of Fig.5.5), the higher the k*,
the lower the final level of cooperation the system can achieve. Besides, in Fig.5.6
we show the dependence of the level of cooperation (c) with both the temptation to
defect b and with the value of the threshold k*.
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Fig. 5.5 Several examples of individual time evolutions of the random SF network simulations for
targeted cooperation. All the cases shown in the Left panel have k* = 20, while those in the Right
one, correspond to simulations with a fixed value of b = 1.2. The networks are made of N = 4103
nodes, with average connectivity (k) = 4 and v = 3. Notice the log-log representation of the axes

Te e v . .
os T N =5
LN ey K*=20 -—-u---
. K*=50 o
06 Ko e
¢ g K*=100 o
\
04 ]
0.2 ]
0

1.8 2

Fig. 5.6 The average level of cooperation (c) as a function of the temptation to defect b, for several
values of the degree threshold k* for simulations on top of random SF networks with targeted
cooperation. The networks are made of N = 4 - 10> nodes, with average connectivity (k) = 4 and
7=3

5.4 Dependence with the Exponent of the Power-Law
Distributions for the Mean Field Approximation

Returning now to the degree-based mean field approach, it is interesting to study in
detail the effect of the degree threshold k* over the asymptotic level of cooperation. In
particular, we can focus on the minimum amount of degree classes that we have to fill
initially with cooperators so that cooperation is able to survive asymptotically in the
system. We have carefully explored different sets of initial conditions corresponding
to different values of k*. Starting from a low value of k* we have solved Eq.5.10
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Fig. 5.7 Phase diagram k (b). The three curves correspond to different power-law distributions
(namely, v = 4, 3 and 2). Each curve k(D) represent the border between two different asymp-
totic regimes for the evolution of Eq.5.10 with targeted cooperation: The area below the curves
correspond to the points (b, k*) where targeted cooperation yield nonzero asymptotic level of coop-
eration. Conversely, the area above the curves correspond to the targeted initial conditions for which
the evolution of Eq.5.10 yields (¢) — 0

and computed the final level of cooperation (c). If (c) > 0 we increase the value of
k* and solve again the system 5.10. This process is iterated until we reach a value k*
for which cooperation finally vanishes. The critical value k represents the minimal
amount of cooperator degree classes needed at time O to sustain asymptotically a
nonzero level of cooperation. In Fig.5.7 we have plotted the functions k(b) for
three power-law degree distributions (y = 2, 3 and 4). Obviously, we observe that
as the cooperation gets more and more expensive, it is necessary to fill more degree
classes to assure a nonzero level of cooperation. More interestingly, we show that
the heterogeneity of the network (or in other words, a lower value for the exponent
< in the degree distribution P (k)) increases the value of k. This result is related to
the fact that filling a given amount of degree classes is more efficient (more nodes
are initially set as cooperators) when the network is more heterogeneous.

5.5 Comparison Between Simulations and Mean-Field
Approximation for the Targeted Cooperation Initial
Conditions

We can say that the mean field approach represents a useful tool for substituting
computationally expensive numerical simulations to a given extent. However, how
accurate are the results of the solutions of Eq.5.10 when compared to simulations
on top of networks with targeted cooperation as the initial condition? To check
the reliability of the degree-based mean field approach in the context of targeted



5.5 Comparison Between Simulations and Mean-Field 97

1 g ' T
MF k*=3 ——
0.8 f NS k*=3 @ ]|
MF k=4 ---m--
NS k=4 ---0---
06 1
A
O
\%
04 1
02 F 1
0 .

Fig. 5.8 Evolution of the asymptotic level of cooperation (c) obtained when (i) solving the mean
field (MF) Eq.5.10 and (ii) computed through numerical simulations (NS) of the evolutionary
dynamics on top of a random SF network. The degree distribution used is a power-law with v = 3.
In both cases we have set targeted cooperation as initial conditions for the evolutionary dynamics.
We have used k* = 3 and 4

cooperation we have computed the diagram (c)(b) for random SF networks with
~ = 3 using two different sets of initial conditions corresponding to k* = 3 and 4. In
Fig.5.8 we show the results of the simulations compared to the results obtained by
solving Eq.5.10. Obviously, the agreement is not complete but we can say that the
dependence of the level of cooperation with the temptation to defect b follows the
same qualitative behavior and the cooperation tends to zero around the same values
of b.

The values of b for which (c) = 0 in each of the curves of the figures are obviously
related to the values k. Our results show that, although the level of cooperation starts
decreasing earlier (it is to say, for lower values of b), the curves (c) (b) obtained from
simulations on top of random SF networks can hold larger values of b with (c¢) > 0
than the system described by Eq. 5.10. On the other hand, the simulations yield very
low (but yet non-zero) values of (c) for those values of b for which cooperation
asymptotically vanishes solving Eq.5.10. The drop of the level of cooperation is
much more abrupt for the mean field scenario. Therefore, this mean field approach
seems to be, at least, of help to study the behavior of k() and the asymptotic level of
cooperation of the system when targeted cooperation is initially placed in the system.

Regarding general (i.e., non-targeted cooperation type of) initial conditions for
the degree-based mean field Eq.5.10, some comments are in order. For both, power-
law and Poisson degree distributions P (k), random uniformly distributed values for
cx(t = 0), as well as fixed value ¢, (¢ = 0) = 0.5 (mimicking the initial conditions
in the numerical simulations of previous section), led to asymptotic zero level of
cooperation as soon as b > 1. This suggests that, generically speaking, mean field
approaches to the evolutionary dynamics of prisoner’s dilemma games on graphs
(even in generalized forms, as Eq.5.10) are likely bound to fail to account for the
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numerically observed survival of cooperation. This would be in agreement with
some previous results on a particular type of artificial networks that allow a rigorous
analysis of the issue [34]. To put it in plain terms, the network reciprocity mechanisms
that enhance the evolutionary survival of cooperation in network settings [35] seem
to be out of reach of the (homogeneity) mean field assumptions, in the sense that
they are associated in an essential way to fluctuations of averaged quantities, like ci
which are the basic descriptors in mean field approaches. Besides, the existence of
loops and cycles is also a mechanism able to promote cooperation that is overlooked
by the mean field approach.

5.6 Conclusions

Scale-free networks have been recently shown as the graphs that better promote
cooperation. In this chapter we have shown that the power-law degree distribution
cannot be considered as the only root for the promotion of cooperation. At variance
with the BA networks, the SF graphs considered in this chapter are free of any kind
of node-node correlation. The first conclusion of our study is that we confirm the
previous finding pointing out the fact that cooperation decays when no correlations
are present in the network. Moreover, we have shown that the organization of cooper-
ation is dramatically different from that of the BA network, showing that cooperators
can arrange in more than one cluster, increasing the probability of being invaded by
defectors. In other words, the fixation of cooperation is much lower than in SF net-
works with correlations, thus completing the picture provided by other studies where
correlations were added into SF networks enhancing the promotion of cooperation
of BA networks [36, 37]. On the one hand, our study in random SF networks can
be considered as the null model for the study of the cooperation in other types of
SF graphs. Besides, our results highlight the importance of taking into account other
structural properties beyond the degree distribution of the network [38] in order to
capture the mechanisms that help to fixate cooperation in real complex networks.

The second part of the chapter presents a degree-based mean field approach to
analytically study networks with an arbitrary degree distribution and no node-node
correlations (such as random SF networks). The approach relies on a degree com-
partmentalization of cooperators and defectors strategists. We have shown that, con-
trary to diffusion dynamics where a similar approach has been applied successfuly
[31-33], the degree-based mean field equations do not work correctly when general
initial conditions are applied, since no asymptotic level of cooperation is observed
when the temptation to defect is larger than the reward for cooperation (b > R = 1).
On the other hand, when a particular set of initial conditions is used (consisting in
placing all the cooperators in the higher degree classes of the network) the solution
of the mean field yields a non zero level of cooperation for a number of targeted
initial configurations. The results obtained in this latter context qualitatively agree
with those obtained when extensive simulations on top of random SF graphs are
performed.
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As aconclusion, the results presented in this chapter complete the studies about the
Prisoner’s Dilemma on top of SF networks showing that node-node correlations play
akey role for sustaining a high level of cooperation. In this line, the wrong functioning
of the degree-based mean field approach further confirms that heterogeneity is not
the unique responsible of enhancing cooperation. The presence of features that are
beyond the scope of this mean field formulation (even in uncorrelated graphs) such
as cycles or loops seems to be at the root of cooperation enhancement.

References

1

2.

3

4.

5

6.
7.

8.
9.
10.
11.
12.

13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.
31.
32.
33.

F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).

F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).

E. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (20006).

F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2000).
H. Ohtsuki, E. L. C. Hauert, and M. A. Nowak, Nature 441, 502 (2006).

G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R) (2001).

V. M. Eguiluz, M. G. Zimmermann, C. J. Cela-Conde, and M. San Miguel, American Journal
of Sociology 110, 977 (2005).

T. Killingback and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996).

G. Szabé and G. Fdith, Phys. Rep. 446, 97 (2007).

A. Szolnoki, M. Perc, and Z. Danku, Physica A 387, 2075 (2008).

J. Vukov and G. S. A. Szolnoki, Phys. Rev. E 77, 026109 (2008).

J. Gémez-Gardeiies, M. Campillo, L. M. Floria, and Y. Moreno, Phys. Rev. Lett. 98, 108103
(2007).

A. Barabasi and R. Albert, Science 286, 509 (1999).

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Phys. Rep. 424, 175 (2006).
G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. M. noz, Phys. Rev. Lett. 89, 258702 (2002).
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks. From biological nets to the
Internet and the WWW. (Oxford University Press, Oxford, UK, 2003).

M. Newman, SIAM Review 45, 167 (2003).

R. Albert and A. L. BarabA;si, Rev. Mod. Phys. 74, 47 (2002).

S. H. Strogatz, Nature 410, 268 (2001).

J. Hofbauer, P. Schuster, and K. Sigmund, J. Theor. Biol. 81, 609 (1979).

P. Taylor and L. Jonker, Math. Biosci. 40, 145 (1978).

H. Gintis, Game theory evolving. (Princeton University Press, Princeton, NJ, 2000).

H. Ohtsuki and M. A. Nowak, J. Theor. Biol. 243, 86 (2006).

S. Maslov and K. Sneppen, Science 296, 910 (2002).

M. Molloy and B. Reed, Combinatorics, Probability and Computing 7, 295 (1998).

K. Lindgren and M. Nordahl, Physica D 75, 292 (1994).

M. A. Nowak and R. M. May, Nature 359, 826 (1992).

C. Hauert and M. Doebeli, Nature 428, 643 (2004).

J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. (Cambridge
University Press, Cambridge, UK, 1998).

J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).

R. Pastor-Satorras and A. Vespignani., Phys. Rev. Lett. 86, 3200 (2001).

R. Pastor-Satorras and A. Vespignani., Phys. Rev. E 63, 066117 (2001).

Y. Moreno, R. Pastor-Satorras, and A. Vespignani., European Physical Journal B 26, 521
(2002).



100 5 The Prisoner’s Dilemma Game on Random Scale-Free Networks

34. L.M. Floria, C. Gracia-Ld;zaro, J. Gomez-Gardefies, and Y. Moreno, Phys. Rev. E 79, 026106
(2009).

35. M. Nowak, Science 314, 1560 (2006).

36. S. Assenza, J. Gomez-Gardeiies, and V. Latora, Phys. Rev. E 78, 017101 (2008).

37. A.Pusch, S. Weber, and M. Porto, Phys. Rev. E 77, 036120 (2008).

38. L. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas., Advances in Physics 56, 167
(2007).



Chapter 6
The Prisoner’s Dilemma Game on Scale-Free
Networks with Limited Number of Interactions

It has been widely studied in the literature how on complex networks, far from the
well-mixed assumption or regular lattices [ 1], cooperation has much better chances to
survive, even when it gets very expensive [2-5]. Specifically, it has been proved that
heterogeneity not only reproduces much better some topological features of the social
systems [6, 7], such as the degree distribution, but also greatly favors cooperation.
This happens, as we have seen in some detail in Chap.3, thanks to the formation
of one single cluster, centered on the interconnected cooperator hubs, that create a
‘supporting system’ for the individuals, in order to resist invasions from defectors
[8, 9]. Nonetheless, when modeling some aspects of the behavior of individuals in
a society using evolutionary games on complex networks, usually the number of
interactions a node establishes in every round is considered equal to the number of
topological neighbors it has. This widely used assumption does not take into account
real constrains such as the limited amount of time to deal with social acquaintances
nor the energy it costs to the node to pay attention to each of its neighbors.

In this chapter we analyze a more realistic scenario in which agents are limited
to interact with a given number of neighbors during each round of the game. In
particular, we will study the effect of such a restriction in the number of interactions
per round of the evolutionary Prisoner’s Dilemma game on scale-free networks. In
this sense, some effort has been put on studying the effect of restricting the maximum
number of possible contacts a node can have due to the finite resources of the node, but
in a different way than the approach we propose now. In [10], the level of cooperation
achieved by the system is studied when the SF networks have a cutoff at a certain value
for the connectivity, kcysoff, s0 there will be no nodes with a number of connections
above that given value. In this scenario, it was found that the level of cooperation
remains high enough even for an important cutoff of the degree distribution (up to
a value keyroff > 20 for a network made up of N = 104 nodes), and what is more,
some slight improvement can be found in the average cooperation as the value kcrof ¢
decreases, as long as it is larger than a certain threshold ko7 S 20.

It is also worth mentioning that, a different approach but in the same direction of
restricting somehow the available resources for a node has been used when dealing
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with the Public Goods Game. In [11], Santos et. al. compared the level of cooperation
in the system for two scenarios: a fixed-cost-per-individual situation where a node
with connectivity k contributes ¢/(k + 1) in every one of the (k + 1) rounds of
the game, and a fixed-cost-per-interaction where it contributes ¢ in every round
of the game, regardless of its connectivity. They found that the former situation
promotes cooperation more than the latter, due to the introduction of an extra source
of heterogeneity, apart from the topological one. Namely, this diversity in the amount
that every node contributes to the common goods has been proved to be beneficial
for the overall level of cooperation in the system.

Nonetheless, we want to address this restriction from a different angle: the degree
distribution of the topological substrate remains untouched, it is to say, the PD
dynamics will take place on top of unaltered BA scale-free networks. However,
every node i of the network, even when it has k; topological connections, will only
be allowed to establish k* interactions per round of the game among its neighbors.
This restriction is the same for all nodes in the system, but it will specially affect
those nodes having a large topological connectivity, the hubs, that will only play with
a small fraction of their otherwise large number of neighbors, while it will not affect
those nodes with a very low connectivity at all. We will analyze the consequences
that limiting the number of game mates may have on the global dynamics of the sys-
tem, and more precisely on the average level of cooperation, comparing the results
with the well-known case of a standard framework in which every node plays every
round of the game with all its neighbors, as dictates the underlying topology.

One should also keep in mind that the formulation of the Prisoner’s Dilemma that
will be used in this chapter is different from the one used in previous chapters. It
means that the specific values of the coefficients of the payoff matrix will be different,
but not their relative ordering. In this way, now, instead of having the temptation to
defect, b as the (only) free parameter, we will have the ratio b/c, between the benefit
of playing against a cooperator and the cost of being one. This particular formulation
will be used again in Chap. 8.

6.1 The Model

We use scale-free networks built via the Barabési-Albert (BA) preferential attachment
model [12]. As we have already explained (see Sect. 2.1.3), the well-known BA model
is based on growth and preferential attachment, and starting from a small set of m
fully connected nodes, every time step we add a new node j to the network. This new
node will attach to m of the existing nodes. The probability that a link from node j
connects to an existing node i is proportional to its degree, P; = % This procedure
continues until the network reaches its final size N. The degree distribution of such
networks is a power-law, P (k) ~ k7, with an exponent y = 3 and the average
connectivity is (k) = 2m. In our case, we have used networks with N = 4 x 103
nodes and an average value for the connectivity (k) = 4.


http://dx.doi.org/10.1007/978-3-642-30117-9_8
http://dx.doi.org/10.1007/978-3-642-30117-9_2

6.1 The Model 103

We consider that every node on the network is a player whose initial strategy,
cooperator (C) or defector (D), is randomly assigned with equal probability pg = 0.5.
Next, we go node by node, forcing them to choose, also randomly, k* among its k;
topological neighbors, so we get an ‘effective connectivity matrix’ for the current
round of the game. Obviously, if k; < k* for a particular node i, then it chooses all its
neighbors to play with them every single time, but if k; > k*, then it will play only
with some of them, making a different selection every round. Notice that, in order to
preserve the symmetry of the interactions, if node i chooses node j, it means that j
also chooses i straightaway (apart from those corresponding k* neighbors that j has
chosen or will choose when its time comes), so the real effective connectivity of the
nodes is not strictly £*, but it is in general kff ! > k*.

We can calculate the dependence of the effective connectivity kfff with the topo-
logical connectivity of a node k;. To this aim we distinguish between those nodes
having k; < k* and those with k; > k*. For the former group we trivially have
kff /" — k; while for the second set we have kff L ki". In this latter case k!"
stands for the number of extra connections a node i gets from being selected by other
neighbors not contained in its own set of k* selected neighbors. We can write the

expression for the extra k;” game mates as:

. k*
K" =ki| D Pk + > Pk | (6.1)

K <k K>k

where P (k’|k) is the conditional probability that a node of degree k is connected with
anode of degree k’. Assuming that the network is uncorrelated (as the BA network)
we have P (k'|k) = k' P(k")/ (k). Taking the continuous approximation for the degree
we can write Eq. 6.1 as

. k* 00
i~ | [ wpwan i [T pwa | (6.2)
<k) ko *

where kg is the minimum degree of the network.
Solving the right hand side of the above equation for a scale-free network,

P(k) = (y — l)kg_lk’y, we obtain:

ki~

ki(y — OIS [ké‘y — (k*)”} 63

(k) y—2 y—1

In our particular case we have networks with y = 3, (k) = 4 and ko = 2, therefore
the effective connectivity for those nodes with k; > k* reads

~ 1
K~k 4 k(1 - =) (6.4)
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In order to check the above approximation, we plot in Fig. 6.1 the function kl.e 11 (ki)

along with the pairs of values (k;, kff f ) obtained in a single realization of the network
when k* = 5, k* = 10 and k* = 30, respectively. From the figure it becomes clear
that the agreement with Eq. 6.4 is good. ‘

Once all the nodes have selected their current effective neighborhood, kff ! , they
play a round of the PD game with every single one of them, and accumulate their
corresponding benefits m;, according to the payoff matrix of the Prisoner’s Dilemma
game we are using [3, 13, 14], given by:

c D C D

C (b—c —c C (bjc—1 -1
D(b 0) D(b/c 0) 6.5)
where c is the cost of being a cooperator, and b is the benefit of playing against one
(obviously, the larger the ratio b/c gets, the cheaper it becomes to be a cooperator).
Immediately afterwards, and in order to update its strategy, every node i compares
its own payoff 7r; with the payoff of one of its neighbors, 7 ;, randomly chosen from
the current effective neighborhood. For the probability that i imitates j’s strategy for

the nextround of the game, and following previous works [15—19], we have chosen the
so-called Fermi function from Statistical Physics, given by:

1

1+ ew@m—m)) (©6)

Pi—>j =

where w is a parameter that accounts for the importance of the relative difference of
payoffs on the change of strategy of node i. Notice that, for w — oo, the probability
P;_, j strongly depends on the difference of payoff between the two nodes involved,
so with a very high probability, if 7; < 7;, i will imitate j, and if 7; > 7, i will
not imitate j. But on the other hand, when w — 0, one gets that the probability of
changing strategies is P;_.; = 1/2, independently of the values of the payoffs (in
this case we have the so-called random drift evolution of the system). We can also
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interpret this situation as a total loss of information: the individuals know nothing at
all about their neighbors, so they decide by tossing a coin [17]. The results shown on
this work correspond only to the value w = 1. Nonetheless, we have checked that
they are quite robust: when testing out other values for w we get qualitatively the
same outcomes.

We iterate the above discrete-time dynamics for a number of time steps, until the
system reaches the final szatic state. As oppose to what happened with the replicator
dynamics used in previous chapters, where cooperation and defection could coexist
in the asymptotic state which, moreover, fluctuated in general around a well define
mean value of cooperation (c) (), now, due to this particular choice for the probability
function (Eq. 6.6), the final state of the system will be one of the two absorbing states:
all-Corall-D [19]. As we have seen, with this probability we allow irrational changes
of strategy, so that a node will always have a non-zero probability of adopting the
neighbor’s strategy, even when the neighbor’s payoff is smaller than its own. It is
worth noticing that this affects the dynamics of the system in such a way that it will
always end up on one of the two possible absorbing states. Therefore, one should
interpret the average level of cooperation for a particular set of the parameters b/c
and w, as the fraction of realizations in which the system ends up in the all-C state,
(instead of the average fraction of cooperators present in the stationary state of the
system).

It is worth stressing that the neighborhood that a node selects to play one round of
the game with is also the one used to choose the node to compare its benefits with, but
for the next round, all the nodes will select a different new effective neighborhood
(except, of course, those with k; < k*, that play with the same opponents). This
neighborhood selection procedure is quite expensive in terms of computational time.
And, in addition to this, the fact that the system must achieve eventually one of the
two absorbing states, makes the time evolution of the dynamics remarkably slow,
specially, for the range of b/c values corresponding to intermediate values of (c).

6.2 Average Level of Cooperation

In Fig.6.2 we plot the level of cooperation (c) as a function of the ratio b/c for
different values of the restriction k*. Obviously, as one can easily expect, the larger
the value of b/c is, the cheaper being a cooperator is, and thus the larger the average
level of cooperation the system can achieve. On the other hand, we have found a
surprising and non-trivial dependence of the level of cooperation (c) with the value
of the restriction for the number of connections k*. From Fig. 6.2 for some low values
of b/c, i.e., when cooperation is relatively expensive, the largest level of cooperation
is achieved when no restriction is imposed to the connectivity of the nodes, but for
larger values of the ratio b/c, the opposite trend occurs, and a network with some
level of connectivity restriction performs better than the original one, meaning that
it achieves larger levels of cooperation. Of course, those cases with a too restrictive
value for k* < 10, always perform worse, regardless of the value of the ratio. Notice
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Fig. 6.2 Average level of
cooperation as a function of
the ratio b/c for the case
of restricted number of
connections without frus-
tration (see Sect.6.3 for
details). The SF networks
are made up of N = 4 x 103
nodes, and the average con-
nectivity is (k) = 4. Every
point is the average over 500
different realizations

Fig. 6.3 Average level of
cooperation as a function of
the restriction k* for different
values of the ratio b/c. The
SF networks are made up of
N = 4 x 10 nodes, and
the average connectivity is
(k) = 4. Every point is the
average over 2 x 103 different
realizations

that by setting k* = k4, We actually mean that every node i plays always with all
its k; topological neighbors.

As a matter of fact, if we represent the level of cooperation as a function of k* for
a fixed value of the ratio b/c, we obtain a non-monotonous behavior (see Fig. 6.3),
where moreover, the optimum value of k*, i.e. the value that yields the larger level of
cooperation for a fixed b/c, seems to increase as the cooperation gets more expensive.

6.3 Imposing a More Tight Connectivity Restriction

As we have already mentioned, the first presented for the restriction of the number
of interactions per node and per round of the game, k*, is not as strict as one would
like, and does not guarantee the value k* for every node with k; > k* present on the
network. On the contrary, and due to the need of symmetry, kl.ef ! turns out to be larger
than k*, in general. In order to obtain a more severe restriction, while preserving the
symmetry condition for the interaction between nodes, we propose now a different
restriction method.
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This second selection scheme works as follows: starting with the nodes of lower
degree for a given network, we make them choose its k* neighbors (or k; < k* if
necessary), among its topological connections, but now, we keep track of the number
of possible connections still available for every node, using a tagging system, so all
the nodes start with its label set to [; = k* if k; > k*, and [; = k; if k; < k*, and
every time an effective connection between nodes i and j is made, we rest one unit
to the labels /; and [;. Thus, if one node i intends to chose another node j whose
label is already set to /; = 0, then this pick will not be allowed, even if node i can
not establish connections with anyone else. When this situation happens, we say that
node i gets frustrated. We repeat this process for all the increasingly connected nodes,
ending up with the hubs, and then, as usual, everyone plays a round of the game with
its current effective neighborhood, and accumulates its benefits ;. Then every one of
them compares this value r; with that corresponding to a neighbor, randomly chosen

among its kff ! , and decides whether or not it will change its strategy with the same
probability function used before. All the nodes change their strategy synchronously.

Notice that we have obviously chosen to start from the lowly connected nodes,
and not the other way around in order not to margin poorly connected nodes due to
the restriction procedure, so they would not get the chance to play. It is also worth
mentioning that we have checked the ‘average level of frustration’ for the nodes
on the network at a given round of the game, defined as the fraction between the
sum of labels different from zero present on the system once the assignment process
has finished (i.e. the number of connections that were not able to be established, and
remain ‘unused’, although they were allowed), and the maximum possible number of
connections the whole network would have made with the restriction k* but without
frustration. This quality always yields values under ten percent for any set of the
parameters of the system. So we consider that this method, though not perfect and
somehow more artificial than the first one, is a good approach to this non-trivial
problem of restricting the number of connections to a constant value on a scale-free
underlying topology.

Similarly to what we have done in the previous section, we show now in Fig. 6.4 the
level of cooperation as a function of the ratio b/c for several values of the restriction
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Fig. 6.5 Average level I T
of cooperation as a function
of the restriction k* for differ-
ent values of the ratio b/c for
the case of restricted number
of connections with frustra-
tion. The SF networks are
made up of N = 4 x 10
nodes, and the average con-
nectivity is (k) = 4. Every
point is the average over

2 x 103 different realizations

k* for the case of restricted number of connections with frustration. It can be seen that
they are quite similar to those presented for the case without frustration, with mainly
one quantitative difference: the value of b/c needed to maintain the same level of
cooperation is larger, it is to say, the cooperation is in general more expensive in this
second scenario with frustration.

But as far as the qualitative behavior is concerned, we can say that this second
model behaves in the same way as the first one, so when we represent the level of
cooperation as a function of k* for a fixed value of the ratio (see Fig.6.5), we also
find a non-monotonous dependence which clearly indicates that, in order to achieve
the highest level of cooperation for a fixed value of the parameters of the payoff
matrix, it is better to restrict the number of interactions to a certain extent.

In order to understand better the origin of this optimum value for the number
of interactions, k7, when playing the Prisoner’s Dilemma game with costs, we
will next check it for two other different scenarios: first, we will change the payoff
matrix to its form without cost, and second, we will keep the cost-benefit ratio but
we will adopt another updating rule, namely, the Replicator rule. By introducing
these changes in our original model, we want to determine the crucial factor for the
observed optimum in the number of interactions.

In this way, let us now consider the Prisoner’s Dilemma game with the Fermi
updating rule, but with the formulation without cost per cooperation, given by the
following payoff matrix:

C D C D
C (R S\Y_C (10
D(T P):D(b 0) 67

where we fix, asusual, R = land P = § = 0.InFig. 6.6 we show the average level of
cooperation in the system as a function of the restriction k*, for different values of the
temptation to defect, b. In this case, we can clearly see that, for any fixed value of b,
the system renders the highest value of cooperation for the unrestricted situation i.e.,
for k* = 4 x 107 (not explicitly shown). So, comparing Fig.6.6 with Figs.6.5 or
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Fig. 6.6 Average level of cooperation as a function of the matching limitation, k*, for the case of
restriction in the number of connections without frustration, and using the Fermi updating rule and
the formulation of the Prisoner’s Dilemma without cost for cooperation. The SF networks are made
up of N = 4 x 103 nodes, and the average connectivity is (k) = 4. Every point is the average over
200 different realizations
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6.3, we can conclude that the reason why such an optimum, k;“p,, exists is due to a
necessary compromise every node has to establish between the cost of cooperating
with all its neighbors and the benefits obtained in those interactions. It is reasonable
to think that, even if all neighbors are cooperators, it will be very expensive to pay
the cost for cooperating with all of them, so the benefits will decrease. On the other
hand, if one interacts with too few of its neighbors, the cost will be low, but so will
be the benefit.

Finally, as a further check, let us consider the second change to our model: the
Prisoner’s Dilemma game with cost and the Replicator updating rule. We show in
Fig. 6.7 the result of our simulations, and we can see that the optimum, k;"pt ,reappears
in this scenario, though it is not so pronounced as in the case with Fermi-like updating
rule for any value of the ratio b/c. We can conclude that the root of this optimum is
indeed in the use of a cost formulation of the Prisoner’s Dilemma.
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6.4 Conclusions

In this chapter we have studied a realistic -but almost unexplored until now- scenario
where the number of interactions that a node can establish per round of the game
are restricted to a maximum value k*, regardless of its topological connectivity of
the nodes. We have studied two different mechanisms to perform such restriction.
The first method does not need any global information, since every node chooses its
k* game mates and it just guarantees the symmetry of the interactions. However, as
it turned out, this is not a very strict restriction, since the actual connectivity of some
of the nodes is in general kff f 2 k*. The second one is somehow more artificial,
since one needs some global knowledge of the network (precisely the degree of every
node) in order to proceed. But on the other hand, it strictly imposes the restriction of
having k* game mates.

We have studied the effect of such restrictions on scale-free networks and found
that the results are qualitatively the same for both methods. In particular, we have
focus on the level of cooperation achieved by the system at the stationary state,
comparing the results with those for the Prisoner’s Dilemma game on the original
BA scale-free networks. Our main result is that for a range of values of the cost-
benefit b/c ratio of the payoff matrix, the highest levels of cooperation are achieved
when some connectivity restriction is imposed on the network, i.e., the larger levels of
cooperation do not occur for the original unrestricted BA scale-free network scenario,
but for a more realistic situation, where every node can engage on a round of the
game just with a certain number of neighbors k* that is, in general, lower than its
actual topological connectivity, ;.

This is a quite surprising result, since previous studies always have pointed out
the well-known enhancement of cooperation due to heterogeneity of the underlying
topology. Here we have clarified that this is only true up to a certain extent: although
heterogeneity does greatly favor cooperation when comparing it with the case of
random networks, the restriction of forcing the nodes to play just with k* < k;
of its neighbors in every round of the game seems to lead to even larger levels of
cooperation in some regions of the parameter space of the ratio b/c.

We also showed that the existence of this optimum, k;‘p,, was due to the compro-
mise between the cost of cooperating with all its neighbors and the benefits obtained
from those interactions. In order to confirm this hypothesis, we simulated the dynam-
ics for two other scenarios: in the first one, we kept the updating rule, but we changed
the formulation of the dilemma, using a payoff matrix where the cost per cooper-
ation is zero. As we expected, now the highest values of cooperation achieved by
the system occur when there is no limitation to the number of interactions. On the
other hand, if we consider the dynamics with a different updating rule, namely the
Replicator rule, but we keep the cost-benefit ratio formulation, then the optimum
value k7, appears again. In conclusion, the results shown in this chapter point out
that the particular formulation chosen when implementing the Prisoner’s Dilemma
on top of complex topologies will introduce important differences in the outcome of
the dynamics, specially in realistic scenarios as the one proposed here.
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Part 11
Evolutionary Dynamics
on Growing Complex Networks

Presentation of Part I1

In this second part of the Thesis, we will focus on the study of the coupling between
the growth of a complex topology and the dynamics taking place simultaneously on
top of it.

As we have been seeing, a great deal of effort has been aimed to study the
influence of a (static) complex topologies on the outcome of several games [1-14].
Specially the PD, being a paradigmatic example of cooperative-defective
interaction, has been proved to be a very useful tool when trying to explain the
reasons why such a expensive behavior as cooperation can arise and survive in a
population. On the other hand, it has been proved for many real networked systems
in a wide variety of contexts that topology greatly affects dynamics but also the
other way around ([15] and references therein), establishing thus a feedback loop.
In this way, when it comes specifically to Evolutionary Game Theory on non-static
graphs, some nice works [16—19] have tried to consider a more complex situation,
as far as the structure is concerned, by placing the dynamics on a N-sized network
whose links are being rewired, according to some dynamics-dependent rules
(adaptative networks), or even using two different networks, one for the
interaction, the other one for the comparison procedure. Nonetheless, to our
knowledge, the attempt we have made is the first to aim a growing structure, where
this growth is entangled somehow with the dynamics of the nodes. We have
developed two models to address this issue, and in both of them the particular
dynamics evolving in the population is the PD game. However, there are some
important differences between the specifics of each one.

Thus, in Chap. 7 we introduce the first model, for which we will consider that
the probability of attachment is a linear function of the fitness of the chosen node.
On the other hand, the strategy updating rule we will use is Replicator-like. During
this chapter, we will study the different topologies that can arise depending on the
values of the relevant parameters of the system. Specifically, we will be able to
build random and SF networks. We will study the dynamical organization of
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cooperation among connectivity classes for heterogeneous structures obtained with
our model, comparing these results with the well-known ones for SF BA networks,
and trying to explain the differences found. Also, we will check the average level
of cooperation achieved by our networks, in two instants: when the growth has just
stopped, and some time later, after letting the population play the same game, but
without adding new individuals. We will show that the structures built via this first
model can support, when used as static substrate for the PD game, higher levels of
cooperation than the celebrated BA SF networks [3-5]. Besides, we will compare
these levels of cooperation with those for a rewired version of the resultant
topology, and we will be able to make some conclusions about the adequacy of the
networks our model gives rise to, when it comes to supporting cooperation.
Moreover, we have found that the structures obtained with this model share some
topological features with real systems, such as the power-law dependence of the
clustering coefficient with the degree of the nodes, compatible with hierarchical
organizations. So we consider that our work can help understand the origin of
these heterogeneous networks from an evolutionary point of view.

In Chap. 8 we propose a second model, that is somehow different from the first
one, but always within the framework of an interdependence between the growth
and the dynamics. Thus, we consider again that the nodes are playing the PD
game, although with another formulation in terms of the payoff matrix. Also, the
strategy updating rule is dictated by a Fermi-like function, which allows irrational
changes of strategy, it is to say, it is possible to imitate a neighbor with a worse
payoff. As we will see, the introduction of this Fermi probability will affect greatly
the final state of the system, when it comes to the levels of cooperation. Moreover,
the probability of attachment we will use in this second model is exponential with
the fitness of the nodes, instead of linear, which permits the appearing of not only
random and scale-free structures, buy also star-like ones, with a few nodes that are
‘super-hubs’. Apart from the degree distribution and the final levels of cooperation
in the system, we are also interested in analyzing whether cooperation benefits
from the growth process or just from the resulting complex structure, and to that
aim, we will look again into both the level of cooperation after finishing the growth
and after letting the system evolve for some time. We will also consider the case of
using the full grown network as a static substrate, and letting the dynamics evolve
after reinitializing the level of cooperation to 50 % of each strategy, randomly
distributed. In this department, we will find some remarkable differences between
the two models, since for this second one cooperation turns out not to get promoted
when using the resulting topologies as static substrate for the dynamics.
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Chapter 7
Complex Networks from Evolutionary
Preferential Attachment

In this chapter we analyze the growth and formation of complex networks by coupling
the network formation rules to the dynamical states of the elements of the system. As
we have already mentioned, some mechanisms have been proposed for constructing
complex scale-free networks similar to those observed in natural, social and techno-
logical systems from purely topological arguments (for instance, using a preferential
attachment rule or any other rule available in the literature [1, 2]). As those works do
not include information on the specific function or origin of the network, it is very
difficult to discuss the origin of the observed networks on the basis of those models,
hence motivating the question we are going to address. The fact that the existing
approaches consider separately the two directions of the feedback loop between the
function and form of a complex system demands for a new mechanism where the
network grows coupled to the dynamical features of its components. Our aim here
is to introduce for the first time an attempt in this direction, by linking the growth of
the network to the dynamics taking place among its nodes.

Our model combines two ideas in a novel manner: preferential attachment and
evolutionary game dynamics. Indeed, with the problem of the emergence of coop-
eration as a specific application in mind, we consider that the nodes of the network
are individuals involved in a social dilemma and that newcomers are preferentially
linked to nodes with high fitness, the latter being proportional to the payoffs obtained
in the game. In this way, the fitness of an element is not imposed as an external con-
straint [3, 4], but rather it is the result of the dynamical evolution of the system. At
the same time, the network is not exogenously imposed as a static and rigid structure
on top of which the dynamics evolves, but instead it grows from a small seed and
acquires its structure during its formation process. Finally, we stress that this is not
yet another preferential attachment model, since the quantity that favors linking to
the new nodes has no direct relation with the instantaneous topology of the network.
In fact, as we will see, the main result of this interplay is the formation of homoge-
neous or heterogeneous networks (depending on the values of the parameters of our
system) that share a number of topological features with real world networks such
as a high clustering and degree—degree correlations. Thus, the model we propose not
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only explains why heterogeneous networks are appropriate to sustain cooperation,
but also provides an evolutionary mechanism for their origin. On the other hand, we
will find that there are some important and quite surprising differences between the
networks we build using this model, and SF topologies, as far as the microscopic
organization of the dynamics is concerned.

7.1 The Model

Our model naturally incorporates an intrinsic feedback between dynamics and topol-
ogy. In this way, the growth of the network starts at time t = 0 with a core of m fully
connected nodes, whose initial strategy is cooperation. New elements are incorpo-
rated to the network and attached to m existing nodes with a probability that depends
on the payoff of each node. On the other hand, the particular dynamics we consider is
dictated by the Prisoner’s Dilemma (PD) game [5]. Initially, every node adopts with
the same probability one of the two available strategies, cooperation C or defection
D. At equally spaced time intervals (denoted by 7p) each node i of the network
plays with its k; (f) neighbors and the obtained payoffs are considered to be the mea-
sure of its evolutionary fitness, f;(¢). There are three possible situations for each
pair of nodes linked together in the network, as far as the outcome of the game
is concerned: (i) if two cooperators meet, both receive R, when (ii) two defectors
play, both receive P, while (iii) if a cooperator and a defector compete, the former
receives S and the latter obtains 7'. The ordering of the four payoffs is the following:
T=b>R=1> P =S =0, where we haver fixed the value of the three para-
meters as usual [6-8], when considering the weak Prisoner’s Dilemma game (see
Chap. 3). Thus, the temptation to defect b remains as the unique free parameter of
the dynamics. After playing, every node i compares its evolutionary fitness (payoff)
with that corresponding to a randomly chosen neighbor j. Then, if f;(r) > f; (1),
node i keeps its strategy for the next round of the game, but if f;(¢) > f;(¢) node i
adopts the strategy of player j with probability [8—14]

- £
~ b-max [ki(0), k()]

(7.1)

i

The growth of the network proceeds by adding a new node with m links to the
preexisting ones at equally spaced time intervals (denoted by 77), and the probability
that a node i in the network receives one of the m new links is

I —e+efi(®)
A —etefi)

where N () is the size of the network at time ¢, and the parameter € € [0, 1) controls
the weight of the fitness f;(#) [15] during the growth of the network. Provided that
€ > 0, nodes with f;(¢) # 0 are preferentially chosen.

I1; () =

(7.2)


http://dx.doi.org/10.1007/978-3-642-30117-9_3

7.1 The Model 119

The growth of the network as defined above is thus linked to the evolutionary
dynamics that is simultaneously evolving in the system, and it is controlled on the
one hand by the parameter e, but also by the two time scales, 77 and 7p, associated
to both processes. Therefore, Eq.7.2 can be viewed as an ‘Evolutionary Preferen-
tial Attachment’ (EPA) mechanism. Depending on the value of ¢, we can have two
extreme situations:

(1) When € =~ 0, referred to as the weak selection limit [16], the network growth is
almost independent of the evolutionary dynamics as all nodes have roughly the
same probability of attracting new links.

(i) Alternatively, in the strong selection limit, ¢ — 1, the fittest players (highest
payoffs) are much more likely to attract the links from newcomers.

Between the above situations, there is a continuum of intermediate values that will
give rise to a wide range of in-between behaviors.

We have carried out numerical simulations of the model exploring the (e, b) space.
It is worth mentioning that we have also explored different time relations 7p /77, but
for the time being, we focus on the results obtained when 7p /77 > 1, namely, the
network growth is faster than the evolutionary dynamics. Later on we will discuss the
effects associated to other time ratios. Taking 77 = 1 as the reference time, networks
are generated by adding nodes every time step, while they play at discrete times
given by 7p. As Tp > 77, the linking procedure is done with the payoffs obtained
the last time the nodes played. All results reported have been averaged over at least
103 realizations, and the number of links of a newcomer is taken to be m = 2 (so
the average connectivity will be (k) = 2m = 4), whereas the size of the initial core
is mg = 3.

7.2 Degree Distribution and Average Level of Cooperation

The dependence of the degree distribution on € and b is shown in Fig.7.1. As it
can be seen, the weak selection limit produces homogeneous networks characterized
by a tail that decays exponentially with k. Alternatively, when ¢ is large, scale-free
networks arise. Although this might a priori be expected from the definition of the
growth rules, this needs not be the case: indeed, it must be taken into account that
in a one-shot PD game, defection is the best strategy regardless of the opponent’s
strategy. However, if the network dynamics evolves into a state in which all players
(or a large part of the network) are defectors, they will often play against themselves
and their payoffs will be reduced (we recall that P = 0). The system’s dynamics
will then end up in a state close to an all-D configuration, rendering f; () = 0 Vi
€ [1, N(¢)] in Eq.7.2. From this point on, new nodes would attach randomly to
other existing nodes (see Eq.7.2) and therefore no hubs can come out. This turns
out not to be the case, which indicates that for having some degree of heterogeneity,
a nonzero level of cooperation is needed. Conversely, the heterogeneous character
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Fig. 7.1 Degree distribution of the topologies created for fixed values of b = 1.5 (Top left) and
b = 2.5 (Top right), and fixed values of € = 0.3 (Bottom left) and € = 0.99 ( Bottom right). The
networks are made up of N = 103 nodes, with average connectivity (k) = 4, and 7p = 1077.
Every point is the average of 300 independent realizations

of the system provides a feedback mechanism for the survival of cooperators that
would not overcome defectors otherwise.

In Fig.7.1 we also show the dependence of the degree of heterogeneity of the
networks with the temptation to defect, and we found out that only in the strong
selection limit, it depends slightly on b. On the other hand, for small values of e,
there is not any dependence of the degree distribution on b, because in this scenario
the dynamics does not play a relevant role on the attachment, on the contrary, it is
almost random.

Regarding the outcome of the dynamics, we have also represented the average level
of cooperation (c), as a function of the two model parameters ¢ and b. The Fig.7.2
shows that as e grows for a fixed value of b 2> 1, the level of cooperation increases.
In particular, in the strong selection limit (c), the system attains its maximum value.
This is a somewhat counterintuitive result as in the limit ¢ — 1, new nodes are
preferentially linked to those with the highest payoffs, which for the PD game,
should correspond to defectors. However, the population achieves the highest value
of (c). On the other hand, higher levels of cooperation are achieved in heterogeneous
rather than in homogeneous topologies, which is consistent with previous findings
[8, 14, 17].
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Fig. 7.2 Color-coded average
level of cooperation in the
system (c) right at the end of
the EPA procedure, it is to say,
when the final size is achieved
as a function of the temptation b
to defect b and the selection
pressure €. The networks are
made up of 103 nodes with
average connectivity (k) = 4
and T, D = 107 T

7.3 Degree Distribution Among Cooperators

In this section we want to study the dependence between strategy and degree of con-
nectivity, comparing this results with those obtained for the static SF scenario, where
we recall that cooperators occupy always the highest and medium classes of connec-
tivity, while defectors are not stable when setting on the hubs (Sect.3.5). As we will
show, the interplay between the local structure of the network and the hierarchical
organization of cooperation seems to be highly nontrivial, and quite different from
what has been reported for static scale-free networks [8, 14]. In Fig.7.3 one can see
that, surprisingly enough, as the temptation to defect increases, the likelihood that
cooperators occupy the hubs decreases. Indeed, during network growth, cooperators
are not localized neither at the hubs nor at the lowly connected nodes, but in inter-
mediate degree classes. It is important to realize that this is a new effect that arises
from the competition between network growth and the evolutionary dynamics. In
particular, it highlights the differences between the microscopic organization in the
steady state for the PD game in static networks and that found when the network is
evolving.

To address this interesting and previously unobserved phenomenon, we have
developed a simple analytical argument that can help understand the reasons behind
it. Let k; be the number of cooperator neighbors of a given node i. Its fitness is
f,.d = bk{ if node i is a defector, and f° = k; if it is a cooperator. The value of k{
is expected to change because of two factors. On the one hand, due to the network
growth (node accretion flow, at a rate of one new node each time unit 77) and on the
other hand, due to imitation processes dictated by Eq. 7.1, that take place at a pace
Tp. As it has been mentioned before, we will focus on the case in which 7p is much
larger than 77, for now. Thus, the expected increase of fitness is:

Afi = Aflowfi + Aeuolfi, (7.3)

where A f10y fi stands for the variation of fitness in node i due to the newcomers
flow, and A,y fi is the change in fitness due to changes of neighbors’ strategies.
The above expression leads to an expected increase in k{ given by:


http://dx.doi.org/10.1007/978-3-642-30117-9_3

122 7 Complex Networks from Evolutionary Preferential Attachment

B b=1.0
0.8 [ b=1.8
b M b-2.2
P(k . B b=24
AKk)
[ ] b=3.0
0.2

e

éO 40 60 80 100 120 140 160 180 200
k

Fig. 7.3 Probability P.(k) that a node with connectivity k plays as a cooperator for different values
of b in the strong selection limit (¢ = 0.99) at the end of the growth of a network with N = 103
nodes and average connectivity (k) = 4

Ak = ki (t + 1p) — ki (t) = A fiowki + Acvolk; . (1.4)

On the other hand, the expected increase of degree of node i in the interval of
time (¢, ¢ + 7p) only has the contribution from newcomer flow, and recalling that
new nodes are generated with the same probability to be cooperators or defectors,
i.e, po = 0.5, it will take the form:

Ak; = Aflowki = 2Af10wkic. (7.5)

If the fitness (hence connectivity) of node i is high enough to attract a significant
part of the newcomer flow, the first term in Eq.7.3 dominates at short time scales,
and then the hub’s degree k; increases exponentially. Connectivity patterns are then
dominated by the growth by preferential attachment, ensuring, as in the BA model
[18], that the network will have a SF degree distribution. Moreover, the rate of
increase of the connectivity:

1 A
A flowki = EmTDL (7.6)

ijj

is larger for a defector hub by a factor b, because of its larger fitness, and then
one should expect hubs to be mostly defectors, as confirmed by the results shown
in Fig.7.3. This small set of most connected defector nodes attracts most of the
newcomer flow.

On the contrary, for nodes of intermediate degree, say of connectivity m < k; <
kmax, the term A ¢y f; in Eq.7.3 can be neglected, in other wor.ds, the arrival of
new nodes is a rare event, so for a large time scale, we have that k; = 0. Note that
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Fig. 7.4 (Left) Clustering coefficient CC as a function of b and e. (Right) Scaling of CC with the
network size for several values of b in the strong selection limit (e = 0.99). The networks are made
up of N = 103 nodes and have average connectivity (k) = 4

if k; (t) = 0 for all 7 in an interval 7o < ¢ < to + T, the size of the neighborhood is
constant during that whole interval T, and thus the evolutionary dynamics of strate-
gies through imitation is exclusively responsible for the strategic field configuration
in the neighborhood of node i. During these periods, the probability distribution of
strategies in the neighborhood of node i approaches that of a static network. Thus,
recalling that the probability for this node i of intermediate degree to be a cooperator
is large in the static regime [14] (see also Sect. 3.5), we then arrive to the conclusion
that for these nodes the density of cooperators must reach a maximum, in agreement
with Fig.7.3. Of course, it is clear that this scenario can be occasionally subject to
sudden avalanche-type perturbations following “punctuated equilibrium” patterns in
the rare occasions in which a new node arrives.

Furthermore, our simulations show that these features of the shape of the curve
P.(k) are indeed preserved as time goes by, giving further support to the above
argument based on time scale separation and confirming that our understanding of
the mechanisms at work in the model is correct.

7.4 Clustering Coefficient and Degree—Degree Correlations

Apart from the degree distribution, we are also interested in exploring other topo-
logical features emerging from the interaction between network growth and the evo-
Iutionary dynamics in our EPA networks. Namely, we will focus on two important
topological measures that describe the existence of nontrivial two-body an three-body
correlations: the degree—degree correlations and the clustering coefficient respec-
tively. We will show that the networks generated by the EPA model display both
hierarchical clustering and disassortative degree—degree correlations.
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7.4.1 Clustering Coelfficient

The clustering coefficient of a given node i, cc;, expresses the probability that two
neighbors j and m of node i, are also connected. The value of cc; is obtained by
counting the actual number of edges, denoted by ¢;, in G;, the subgraph induced by
the k; neighbors of i, and dividing this number by the maximum possible number of
edges in G;:

26’,‘

Tkt —1) D

CCq

The clustering coefficient of a given network, CC is calculated by averaging the
individual values {cc;} across the network nodes, CC = Zi cci/N. Therefore, the
clustering coefficient CC measures the probability that two different neighbors of a
same node, are also connected to each other. In the left panel of Fig.7.4 we show
the value of CC as a function of b and e. In this figure we observe that it is in the
strong selection limit where the largest values of CC are obtained. Therefore, in
this regime, not only highly heterogeneous networks are obtained but the nodes also
display a large clusterization into neighborhoods of densely connected nodes. In the
right panel of Fig.7.4 we show the scaling of the clustering with the network size
CC(N) in the strong selection limit. In this case we observe that for b > 2.5 the
value of CC is stationary while when b < 2.5 the addition of new nodes in the
network tends to decrease its clustering.

We now focus on the dependence of the clustering coefficient C C with the degree
of the nodes, k, in the strong selection limit (¢ = 0.99). Interestingly enough, we show
inFig.7.5 thatthe dependence of C C (k) is consistent with a hierarchical organization,
and it can be approximately expressed by the power law CC (k) ~ k=", a statistical
feature found to describe many real-world networks [2]. The behavior of CC (k) in
Fig.7.5 can be understood by recalling that in scale-free networks, cooperators are
not extinguished even for large values of b if they organize into clusters of cooperators
that provide the group with a stable source of benefits [14]. But to understand this
feature in detail, let us assume that a new node j arrives to the network: since the
attachment probability depends on the payoff of the receiver, node j may link either
to a defector hub or to a node belonging to a cooperator cluster. In the first scenario,
it will receive less payoff than the hub, so it will sooner or later imitate its strategy,
and therefore will get trapped playing as a defector with a payoff equal to f; = 0.
Thus, node j will not be able to attract any links during the subsequent network
growth. On the other hand if it attaches to a cooperator cluster and forms a triad with
m elements of the cooperator cluster, two different outcomes are possible, depending
on its initial strategy: if it plays as a defector, the triad may eventually be invaded
by defectors an may end up in a state where the nodes have no capacity to receive
new links. But if it plays as a cooperator, the group will be reinforced, both in its
robustness against defector attacks and in its overall fitness to attract new links.

To sum up, playing as a cooperator while taking part in a successful (high fitness)
cooperator cluster reinforces its future success, while playing as a defector under-
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mines its future fitness and leads to dynamically and topologically frozen structures
(it is to say, with f; = 0), so defection cannot take long-term advantage from coop-
erator clusters. Therefore, cooperator clusters that emerge from cooperator triads to
which new cooperators are attached can then continue to grow if more cooperators are
attracted or even if defectors attach to the nodes whose connectivity verifies k > mb.
Moreover, the stability of cooperator clusters and its global fitness grow with their
size, specially for their members with higher degree, and naturally favors the for-
mation of triads among its components. Thus, it follows from the above mechanism
that a node of degree k is a vertex of (k — 1) triangles, and then

k—1

which is exactly the sort of functional form for the clustering coefficient we have
found (Fig.7.5).

7.4.2 Degree-Degree Correlations

Now we turn our attention to the degree—degree correlations of EPA networks.
Degree—degree correlations are defined by the conditional probability, P (k' [k), that
a node of degree k is connected with a node of degree k. However, since the com-
putation of this probability yields very noisy results, it is difficult to assess whether
degree—degree correlations exist in a given network topology. A useful measure to
overcome this technical difficulty is to compute the average degree of the neighbors
of nodes with degree k, K, (k), that is related with the probability P(k|k/) as
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Kun(k) = >k P(K |k) . (7.9)
k/

In networks without degree—degree correlations the function K, (k) is flat whereas
for degree—degree correlated networks the function is approximated by K,,, ~ k”
and the sign of the exponent v reveals the nature of the correlations. For assortative
networks v > 0 and nodes are connected to neighbors with similar degrees. On the
other hand, for disassortative networks, v < 0, and high degree nodes tend to be
surrounded by low degree nodes.

In Fig. 7.6 we plot several functions K, (k) corresponding to different values of
b in the strong selection limit. We observe that for all the cases exists a negative
correlation that makes highly connected nodes to be more likely connected to poorly
connected nodes and vice versa. Therefore the EPA topologies are disassortative, and
this behavior is enhanced as the temptation to defect, b, increases as observed from
the slope of the curves in the log-log plot. This disassortative nature of EPA networks
will be of relevance when analyzing the results presented in the following section.

7.5 Dynamics on Static Networks Constructed Using
the EPA Model

Up to this section we have analyzed the topology and the dynamics of the EPA
networks while the growing process is still going on. Now we adopt a different
perspective by considering the networks as static substrates while studying the
evolutionary dynamics of the nodes. This approach will be done in different ways
allowing us to have a deeper insight on the EPA networks and their robustness.
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7.5.1 Stopping Growth and Letting the Evolutionary Dynamics
Evolve

To confirm the robustness of the networks generated by Evolutionary Preferential
Attachment, let us consider the realistic situation that after incorporating a large
number of participants, the network growth stops when a given size N is reached,
and after that, only evolutionary dynamics takes place. The question we aim to address
here is: will the cooperation observed during the co-evolution process resist?

In Fig.7.7, we compare the average level of cooperation (c) when the network
just ceased growing with the same quantity computed after allowing the evolutionary
dynamics to evolve many more time steps without attaching new nodes, (¢)co. The
green area indicates the region of the parameter b where the level of cooperation
increases with respect to that at the moment the network stops growing. On the
contrary, the red zone shows that beyond a certain value, b.., of the temptation to defect
the cooperative behavior does not survive and the system dynamics evolves to an all-
D state. Surprisingly the cooperation is enhanced by stopping the growth for a wide
range of b values, pointing out that the cooperation levels observed during growth
are very robust. Moreover, the value of b, appears to increase with the intensity of
selection e in agreement with the increase of the degree heterogeneity of the substrate
network. These results highlight the phenomenological difference between playing
the PD game simultaneously to the growth of the underlying network and playing
on fixed static networks.

7.5.2 Effects of Randomizations on the Evolutionary Dynamics

Now, in order to gain more insight in the relation between network topology and the
supported level of cooperation, we study the evolution of cooperation when network
growth is stopped and we make different randomizations of both the local structure
and the strategies of the nodes. In particular, in Fig.7.8, we show the asymptotic
level of cooperation when the following randomizations are made after the growth is
stopped: (i) the structure of the EPA network is randomized by rewiring its links while
preserving the degree of each node; (ii) the structure of the network is kept intact
but the strategies of the nodes are reassigned while preserving the global fraction of
cooperation (strategy randomization); and (iii) when the two former randomization
procedures are combined.

As it can be seen from Fig.7.8, the crucial factor for the cooperation increment
during the size-fixed period of the dynamics is the structure of these EPA networks,
since its randomization leads to a decrease of cooperation at levels far away from
those of the original one or even of a BA SF network [2, 18]. This drop of coopera-
tion when randomizing the structure is in good agreement with previous findings in
complex topologies, specifically, for static BA networks [11, 19] (see also Sect.5.1).
On the other hand, the strategy randomization does not prevent high levels of coop-
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Fig. 7.7 Level of cooperation when the last node of the network is incorporated, (c), and the
average fraction of cooperators observed when we let the system evolve after the network growth
has ended, (c)so. The four panels show these measures for several values of €. From top to bottom
and left to right we show ¢ = 0.5, 0.75, 0.9 and 0.99 (strong selection limit). The networks are
made up of N = 103 nodes with average connectivity (k) = 4 and 7p = 1077. Every point is the
average over 103 realizations

eration, thus confirming that the governing factor of the network behavior is the
structure arising from the co-evolutionary process. Moreover, the asymptotic level
of cooperation in this case (squares in Fig.7.8) is larger that those observed when
the network is simply let to evolve without any randomization (C in Fig.7.7). This
result points out that using a random initial condition for the strategies differs strongly
from starting from a configuration where degrees and strategies are correlated as a
result of the EPA model (Fig.7.3). We will come back to this point in Sect. 7.7.

7.5.3 EPA Networks as Substrates for Evolutionary Dynamics

The high levels of cooperation observed when applying a random initial configu-
ration for the strategies to EPA networks motivate the question on whether EPA
networks are best suited to support cooperative behavior than other well-known
models. In order to answer this question, we consider our EPA networks when used
as static substrates for the evolutionary dynamics and compare with the cases of both
Barabasi-Albert [18] and Erdés-Renyi (ER) [20] graphs. To this aim, we take a par-
ticular example of our model networks, grown with b = 2.1 and € = 0.99, and run
the evolutionary dynamics starting from an initial configuration with 50% coopera-
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Fig. 7.8 Cooperation levels at the end of the growth process and after letting the network relax
as a function of b. The original network was grown up to N = 4 - 10> nodes with ¢ = 0.99 and
average connectivity (k) = 4, and the asymptotic cooperation levels are computed 107 time steps
afterwards. Full circles show the cooperation level when the network stops growing. The other
curves show the asymptotic cooperation when the structure of the network has been randomized
(triangles), when the strategies of the nodes have been reassigned randomly (squares) and with
both randomizations processes (diamonds)

Fig. 7.9 Cooperation levels 1
in ER, BA, and our Evolution-
ary Preferential Attachment
network models, as a function
of the temptation parameter
b. The EPA network is built
up using the model described
in the main text for b = 2.1
and € = 0.99. All networks 04—
are made up of N = 103
nodes, with average connec-
tivity (k) = 4, and every point
shown is the average over 10
independent realizations ol

|
ee LR
== BA
¢ EPA, b=2.1

0.8

tors and defectors placed at random. The average level of cooperation as a function
of the temptation to defect is represented in Fig. 7.9 together with the diagrams for
BA and ER networks. Surprisingly, the plot shows that the EPA network remarkably
enhances the survival of cooperation for all the values of b studied. Therefore, the
attachment process followed by EPA networks seems to be more efficient than the
BA preferential attachment model studied in [8, 14, 21]. Obviously, the roots of this
behavior cannot be found in the degree distribution, P (k), but in the high levels of
clustering [22] and the disassortativeness [23] shown above.
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Itis worth mentioning here that we have performed an study of the asymptotic state
of the system, and we have computed the fractions of pure strategist and fluctuating
individuals (as we have defined them in Sect. 3.3), once the network has grown to its
final size. But since they are not very novel results, we will not discuss them right
now. Instead, we will show them as a comparison with the case 7p = 77, in Sect.7.8.
We just confirm here the existence of the partition of the (static) EPA network into
the usual sets of pure cooperators, pure defectors and fluctuating individuals.

7.6 Time Evolution of the P.(k) After Network Growth

As it has been well established before, SF topologies are able to sustain higher
levels of cooperation than random structures due to the microscopical organization
of the strategies [8, 14]. In particular, it has been shown that in those heterogeneous
settings the hubs always play as cooperators being surrounded by a unique cluster
of cooperators, while defectors cannot take advantage of high connectivity, and thus
occupy medium and low degree classes. Nonetheless, in our EPA structures, we
have observed (Sect. 7.3) that while the network grows, some hubs play as defectors,
thus implying a very different microscopic scenario than that of static heterogeneous
networks.

In this section we turn again to the situation in which the network growth has
stopped (and no randomization is made) to study the roots of the increment of the
asymptotic level of cooperation reported in Fig.7.7.

To this aim we look at the temporal evolution of the probability that a node of
degree k is a cooperator, P.(k), once the network growth has ceased. As we have
observed in Sect. 7.3, the growth process leads to a concentration of cooperators at
nodes with intermediate degree, explained from the fact that while the network is
growing, newcomers join in with the same probability of being cooperators or defec-
tors. In this situation, defectors have an evolutionary advantage as they get higher
payoffs from cooperator newcomers. Although these cooperators will eventually
change into defectors and stop providing payoff for the original defector, the stable
source of fresh cooperator nodes entering the network compensates for this effect.
However, when the growth stops while the dynamics continues, we observe that low
degree nodes are rapidly taken over by cooperators, and after 10* time steps they are
mainly cooperators. On the contrary, hubs are much more resistant to change, and
even after 107 time steps not all of them have changed into cooperators (revealed by
those values P.(k) = 0in Fig.7.10).

The persistence of hub defectors is a very intriguing observation, in contrast with
previous findings in static SF networks [8, 14, 19] (see also Chap.3), for which
hubs are always cooperators or, in other words, a defector hub is unstable. As we
have widely explain in Chap. 3, this occurs because a defector sitting on a hub will
rapidly convert its neighbors to defectors, which in turn leaves it with zero payoff;
subsequently, if one of its neighbors turns back to cooperation, the hub will eventually
follow. It seems, however, that the coupling of evolutionary game dynamics with the
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network growth leads to a structural and dynamical configuration that stabilizes the
defectors on hubs. The unexpected result that Fig. 7.10 shows is that defector hubs
can also be asymptotically stable once the network growth has ceased, i.e., it has
become static. Indeed, we have observed in our simulations that some hubs are
defectors for as long as the dynamics continues (at least, r = 107 extra time steps
after finishing growing the network). However, it is important to stress that not all
realizations of the process end up with defector hubs. For low values of b, this is
practically never the case and almost no realizations produce defectors at the hubs.
However, as b increases, the percentage of realizations where this phenomenon is
observed increases rapidly.

In Sect.7.3 we have discussed why a hub can be a defector while the network is
growing: it is because it takes advantage of the newcomer flow, getting high benefits
from them. Nevertheless, the surprising fact that defector hubs may have very long
lives on the static regime, may be the relevant feature for the behavior of the network
resulting from the growth process, and it is important to fully understand the reason
for such a slow dynamics. We claim that it can be traced back to the payoff structure
of the network, so in Sect. 7.7, we will analyze it in detail.

7.7 Microscopic Roots of Cooperation After Network Growth

Having identified the coexistence of cooperator and defector hubs, we next study
why this configuration seems to be asymptotically stable and why the hubs are not
invaded by opposite strategies. In Fig.7.11, we present an example taken from a
single realization of the process. Had we plot the results of payoffs averaged over
realizations, we would not have been able to obtain this picture, because in that case
payoffs are seemingly very different in the region of large degree, as a consequence
of the statistical properties of our networks, in which hubs do exist but their degree
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and payoff depend on the specific realization. As can be seen, the payoff grows
approximately as a power law, f;y ~ k%; however, the key point here is not this
law but the fact that the payoffs for defectors and cooperators of the same degree
are very similar. In view of the strategy update rule (Eq.7.1), it becomes clear that
the evolution must be very slow. Moreover, if we take into account the role of the
degree in that expression, we see that hubs have a very low probability to change
their strategies, whatever they may be.

Considering now the disassortative nature of the degree—degree correlations
(Fig.7.6) we can explain how these dynamical configurations can be promoted by
the structure of the network. The large dissasortativity of EPA networks suggests that
hubs are mostly surrounded by low degree nodes and not directly connected to other
hubs. Instead, the connection with hubs is made in two steps (i.e. via a low degree
node). This local configuration resembles that of the so-called Dipole Model [24] and
3.4, a configuration in which two hubs (not directly connected) are in contact with a
large amount of common neighbors which in turn are low degree nodes. In this con-
figuration, it can be shown analytically that the two hubs can coexist asymptotically
with opposite strategies, provided that the hub playing as cooperator is in contact
with an additional set of nodes playing as cooperators, for this will provide the hubs
with a stable source of benefits. On the contrary, defector hubs are only connected to
the set of nodes that are also in contact with the cooperator hubs. In this setting, the
low degree individuals attached to both hubs experience cycles of cooperation and
defection (we call them fluctuating individuals, because their strategies can never
get fixed) due to the high payoffs obtained by the hubs. If such a local configuration
for the strategies of hubs and their leaves arises, neither of the two hubs will take
over the set of fluctuating individuals, nor the latter will invade the hubs as they are
mainly poorly connected nodes with small payoffs.

In order to test if the grown networks exhibit local dipole-like structures, we have
measured the connectivity of the neighbors of defector and cooperator hubs, which
we represent in Fig. 7.12. The figure undoubtedly shows that highly connected nodes
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Fig. 7.12 Connectivity matrix of cooperators with defectors (left) and of cooperators with them-
selves (right) for a single realization of the process. The element (i, j) is set to 1 (black square in
the figure) when a link between a defector (cooperator) of degree i and a cooperator (cooperator)
of degree j exists, respectively

playing as defectors are mainly connected to poorly connected cooperators (acting
as the set of fluctuating strategists), whereas cooperator hubs are connected to each
other and also to a significant fraction of lowly connected nodes. This fully confirms
that, in contrast to all previous results, there is a structure allowing the resilience of
defector hubs, and moreover, it gives rise to a situation quite similar to that described
by the Dipole Model.

7.8 Other 7p/7r Time Relations

During this whole chapter, we have always worked with a time relation between
the dynamics and the growth of the network equal to 7p = 1077, meaning that the
network grows in ten nodes at the time, and then one single round of the dynamics
takes place. We have studied the degree distributions that can arise from this Evo-
lutionary Preferential Attachment mechanism, as well as the levels of cooperation,
comparing them with some well-known cases, such as BA scale-free or ER random
static networks. Nevertheless, it is interesting to explore the behavior of the system
for other time ratios. Specifically, now we will explore briefly the case when both
time scales are exactly the same 7p = 77, i.e., starting with a small core of nodes
fully connected, we add a new node at a time and then we make the system play one
round of the game. We will compare the results with the 7p = 1077 scenario.
Thus, in Fig.7.13 we show some degree distributions obtained for this particular
time relation, and as we can see, there are some qualitative differences between this
case and the one with 7p = 1077 one (see Fig.7.1 to compare them). First of all,
if we look at the two upper panels, we can see that the dependence of P (k) with €
and for a fixed value of the temptation to defect is less clear in this case, while it
was obvious and very gradual for the 7p = 1077 scenario. Also, when € = 0.99, the
networks that arise from the process have very fat-tailed degree distributions (even
more so for high values of the parameter »), which means that there are ’super-hubs’
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Fig. 7.13 Degree distribution for fixed values of b = 1.5 (Top left) and b = 2.5 (Top right), and
fixed values of € = 0.3 (Bottom left) and € = 0.99 (Bottom right). The networks are made up of
N = 103 nodes, with average connectivity (k) = 4, and 7p = 77. Every point is the average of
300 different realizations

present in the system, which were not there in the previous case. On the other hand,
there is a more pronounced dependence on the parameter b for a fixed value of €
(bottom panels of Fig.7.13), while for the 7p = 1077 case, the degree distributions
were almost b-independent.

In order to characterize better the behavior of the system when the time relation
is Tp = 77, we also need to look at the level of cooperation, comparing the (c)(b)
curves, as well as the fractions of pure strategist and fluctuating individuals for
several cases. But first of all, we need to point out an important difference between
the present scenario and the one studied in previous sections. In the situation with
7p = 1077, we observed that the final state of the system was, in general, fluctuating
around a well-defined value of cooperation, so the interpretation of the magnitude
(c) was the fraction of cooperation present in the network in the stationary state.
Nonetheless, for the case we are studying now, the situation is different, since the
system always reaches an all-C or an all-D state. Thus, one should interpret (c) as
the fraction of realizations for which the system ends up in an all-C state. Now, as
we can see in Figs.7.14 and 7.15 for both extreme values of ¢, the weak and strong
selection limits, the average level of cooperation is remarkably lower for the case of
7p = 7r. This fact can be understood as follows: if we start with a small core of
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Fig.7.14 Average level of cooperation and fractions of pure strategists and fluctuating individuals
as a function of b, for Tp = 71 (Left) and 7p = 1071 (Right), both for ¢ = 0.0 (weak selection
limit). The networks are made up of N = 103 nodes, with average connectivity (k) = 4. Every
point is the average of 300 independent realizations
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Fig. 7.15 Average level of cooperation and fractions of pure strategists and fluctuating individuals
as a function of b, for 7p = 77 (Left) and 7p = 1077 (Right), both for e = 0.99 (strong selection
limit). The networks are made up of N = 103 nodes, with average connectivity (k) = 4. Every
point is the average of 300 independent realizations

nodes fully connected, and the networks grows very slowly (since the time relation is
now 7p = 7r), the situation is in many ways similar to a well-mixed scenario, where
it has been proved that the cooperation cannot survive [25-28] (see Sect.2.2.2). On
the contrary, if the network grows faster (for example, when the relation 7p = 1077
is fulfilled), the cooperation has better chances to survive, due to the structure of the
graph. We can also notice that the level of fluctuating individuals is lower for the
Tp = Tr situation, since the pure defectors start invading the network much earlier,
it is to say, for much lower values of the temptation to defect.

We have also tried other time relations, such as 107p = 77, it is, a new node is
added, and then the system plays 10 rounds of the game. Obviously, in this case we
have found the same well-mixed effect than in the 7p = 77 but enhanced: the level
of cooperation drops even more, because this new scenario promotes cooperation
even less than the previous one.
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7.9 Conclusions

In this chapter we have presented a model in which the rules governing the formation
of the network are linked to the dynamics of its components. The model provides an
evolutionary explanation for the origin of the two most common types of networks
found in natural systems. Thus, when the selection pressure is weak, homogeneous
networks arise, whereas strong selection pressure gives rise to scale-free networks.
A remarkable fact is that the proposed evolution rule gives rise to complex networks
that share many topological features with those measured in real systems, such as
the power law dependence of the clustering coefficient with the degree of the nodes.
Interestingly, our results make it clear that the microscopic dynamical organization
of strategists in evolutionarily grown networks is very different from the case in
which the population evolves on static networks. Namely, there can be hubs playing
as defectors during network growth, while cooperators occupy mainly the middle
classes. It is worth stressing that the level of cooperation during network growth
reaches the highest values for the strong selection limit in which the newcomers
launch their links to the fittest elements in the system.

Furthermore, the generated networks are robust in the sense that after the growth
process stops, the dynamical behavior keeps its character. Moreover, we have shown
that for most cases the cooperative behavior arising in these networks exhibits a great
resilience, in the sense that it does not decrease for a wide range of parameters upon
stopping the growth process, and, in most cases, it even displays a large increase of
the cooperation level. We have also shown that the non-trivial topological patterns of
EPA networks are the roots for such enhancement of the cooperation. In particular,
we have shown that rewiring the links while keeping the degree distribution (thus
destroying any kind of correlations between nodes) yields a dramatic decrease of the
levels of cooperation. On the other hand, a randomization of the strategies does not
affect the asymptotic levels of cooperation. Therefore, the ability of EPA networks
to promote the resilience of cooperation is rooted in the correlations created during
network formation via the co-evolution with the evolutionary dynamics.

Finally, maybe the most important difference we have found between the networks
grown with our model and the static SF case, is the dynamic stabilization of defectors
on hubs. We have shown that these defector hubs can be extremely long-lived due
to the similarity of payoffs between cooperators and defectors arising from the co-
evolutionary process. Moreover, we have been able to link the payoff distribution to
the network structure. In particular, we show that the disassortative nature of EPA
networks together with the formation of local dipole-like structures [24] (and see
also Sect. 3.4) during network growth is responsible for the fixation of defection in
hubs.
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Chapter 8
Complex Networks from Other
Dynamic-Dependent Attachment Rules

In this chapter, we will continue exploring the issue of the entanglement between
the growth of a complex structure and the dynamics that is taking place on top of it
simultaneously, in such a way that the outcome of the game, meaning the benefits
the nodes get out of the interaction, will affect the probability of the existing nodes
to attract links from newcomers. So we will work with a model similar to the one
introduced in Chap.7, but with two important differences: on the one hand, the
dependence of the probability of attachment will be exponential with the fitness of
the nodes, instead of linear. On the other hand, we will also modify the imitation rule
to a Fermi-like function, instead of using a Replicator-like probability, so irrational
changes of strategy will be allowed now, meaning that a node can imitate a neighbor
whose payoff is lower than its own.

The approach we will take here will be a little different too. Since this model
has one more parameter than the one exposed in Chap. 7, instead of presenting it at
once, considering simultaneously all the effects, we will study first a case where the
dynamics has no effect on the growth, just to separate the two contributions, and then
we will take the dynamics into consideration, too.

In the model we presented here, new individuals establish connections to the exist-
ing individuals, and the newcomers can either connect to m arbitrary individuals or
preferentially attach to those that have been successful players in the past, depending
on the values of the corresponding parameter. Success is based on the cumulated
payoff 7 from a round of an evolutionary game, which each individual plays with
all its neighbors on the network. Although for the model itself we do not need to
specify the kind of game or the number of strategies, we will use the two-strategy
Prisoner’s Dilemma, as in Chap. 7. However, the formulation of the game, it is to
say, the values of the coefficients of the payoff matrix, will be different. We will use
the cost-benefit ratio approach, like we did in Chap. 6.

J. Poncela Casasnovas, Evolutionary Games in Complex Topologies, Springer Theses, 139
DOI: 10.1007/978-3-642-30117-9_8, © Springer-Verlag Berlin Heidelberg 2012
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8.1 The Model

We start from a small complete network of m individuals with one strategy. Subse-
quently, new individuals arrive and form connections to existing individuals. Evolu-
tionary dynamics proceeds in the following way: At each time step, every individual
J plays with all its neighbors and obtains an accumulated payoff ;. All players
choose then synchronously between their old strategy and the strategy of a randomly
selected neighbor. In this way, player j will adopt the strategy of its neighbor i with
probability [1-5]: X

1+ ) (8.1)

Tj—)i =

where 3 is the intensity of selection. Obviously, with probability (1 —T;_,;), node j
will stick to its old strategy. This updating rule is usually called Fermi rule, since it is
based on the Fermi distribution function from Statistical Mechanics. The parameter
(3, which in Physics means inverse of temperature, can be here also interpreted as
noise associated with errors in the decision making process [6]. Thus, depending on
the value of this parameter, we can have now different limiting situations:

e For J « 1, selection is weak and the game is only a linear correction to random
strategy choice, it is to say, a random drift process.

e For strong selection, 5 — o0, node j will always adopt a better strategy and it
will never adopt a worse strategy (imitation dynamics).

Itis important to stress that, by using this strategy updating rule, we allow individuals
to be irrational, in the sense that they can adopt a strategy that performs worse than
its own current one.

Every 7 time steps, a new individual with a random strategy is added to the
system. It means that when 7 < 1, several nodes are added before one round of
the dynamics takes place on the system, and when 7 >> 1, the network grows very
slowly and the game dynamics can bring the system close to equilibrium before a
new node is added. The new individual establishes m links to preexisting nodes,
which are chosen preferentially according to their performance in the game in the
last time step. Node j is chosen as game partner with probability:

g+Oé7T j

T — 2
[7] l]i(;«) g+0471'l (8 )
where N () is the number of nodes that already exist when the new node is added
at time 7. The remaining m — 1 links are added in the same way, excluding double
links, as usual. Again, one should realize that different cases are possible, depending

on the value of the parameter «:

e For a = 0, the newcomer attaches to a randomly chosen existing node.
e For small o, attachment is approximately linear with payoff.
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e For high «, the newcomers will make connections to only a small set of nodes
with the high payoffs.

e In the limit @« — o0, all newcomers will always attach to the m most successful
players.

Besides, since m links and a single node are added at each 7 time step, the average
degree of the network at a given moment is:

mo(mo —1)3 +m*t ©3)
mo + £ '

T

(k) () =

where 7 is the number of time steps that has passed. Throughout this chapter, we will
use m = 2 (therefore, (k) = 4) and mg = 3.

8.1.1 A Simplification of the Model

As we have mentioned previously, in order to fully understand this model and the
different contributions each feature makes to the final outcome, we want to focus on
the simplest case, in which each interaction leads to the same payoff, which we set
to one. Or in other words, it would correspond to a game whose entries of the payoff
matrix were all equal: it does not make any difference which strategy you or your
opponent may choose. Then, the payoffs 7; are just the number of interactions an
individual has, i.e. the degree k; of the node (note that normalizing by the degree of
the node would essentially wash out the effect of the topology at this point [7, 8]).

Thus, evolutionary dynamics of strategies has no consequences and thus, the
topology is independent of (3. This allows us to discuss the growth dynamics without
any complications arising from the dynamics of strategies. We have several simple
limiting cases:

e For a = 0, the newcomer attaches at random to any pre-existing node. This leads
to a network in which the probability that a node has k links decays exponentially,
similar to ER networks. In this case, topology is independent of strategies for all
intensities of selection /3, even when individuals play different strategies leading
to different payoffs. Nonetheless, whenever o > 0, there is an interplay between
topological dynamics and strategy dynamics.

e For oo < 1, we can linearize the probability of attachment p;, and we obtain:

(8.4)

Thus, we recover the linear preferential attachment model introduced by Doro-
govtsev et al [9]. When strategies differ in their payoffs, then not only the degree,
but also the strategy of the nodes and their neighbors will influence the attachment
probability.
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(a)

P(k)

(b)

P(k)

(c)

P(k)

Fig. 8.1 Networks for a game in which both strategies have identical payoffs, such that the payoff
is given by the degree of a node. The /eft hand side shows the degree distributions of networks of
size N = 10*, while the right hand side shows snapshots of networks of N = 100 nodes. a For
« = 0.0, the degree distribution decays exponentially. b For o = 0.1, some highly connected nodes
appear in the network and the degree distribution begins to resemble a power-law. ¢ Already for
« = 1.0, the vast majority of nodes (>99.9 %) has only two links. In addition, (k) = 2m = 4 of the
mq = 3 initial nodes are connected to almost all other nodes. Degree distributions are obtained from
an average over 10? networks of size N = 10*. Note that the x-axis is linear in a, but logarithmic
inbandec¢

e When « is large, we will typically observe a network in which m of the m( nodes
of the initial complete network will be connected to almost all nodes that have
been added during the growth stage. The emergence of these super-hubs is due to
the nonlinearity in Eq. 8.2.

Examples for the network structures in these limiting cases are given in Fig. 8.1.
As it is shown, for a = 0, random networks are generated. On the other hand, when
« increases, some degree of heterogeneity appears in the resulting structure, whereas
for a = 1, the probability of attachment is so strongly dependent of the connectivity,
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that it exclusively benefits m among the m initial nodes, that become super-hubs,
and so the model always gives rise to star-like structures.

Next, we will go back to evolutionary games in which the payoff per interaction is
no longer constant, but depends on the strategies of the two interacting individuals.
In general, such an interplay of evolutionary dynamics of the strategies and the
payoff-preferential attachment will change the structure of the network.

8.2 Degree Distribution

After this brief study of a simplified version, let’s now address the whole model again.
The dynamics we will consider here is once again the Prisoner’s Dilemma [10-12],
where the two players can choose between two possible strategies: cooperation (C)
and defection (D). But as we have mentioned before, in this case, the values of
the coefficients of the payoff matrix will be different from those we used mainly
in previous chapters, although the relative ordering of them must remain the same.
Namely, the parameter that characterizes how expensive cooperation is, compared
with defection, will be the ratio b/c, instead of using the temptation to defect b. In
this way, we will consider that there is a cost ¢ for cooperation, whereas a cooperative
act from an interaction partner leads to a benefit b (> c¢). Thus, the lower the value
of b/c is, the more expensive the cooperation is. The payoff matrix of the game can
be written as:

C D C D
C (b—c —c\~ C (b/c—1 -1 (8.5)
() o (et )

No matter what the opponent does, defection always leads to a higher payoff,
because b > b—cand 0 > —c, thus selfish, rational players should defect. Similarly,
if the payoff determines reproductive fitness, evolution will lead to the spread of
defection. However, the payoff for mutual defection is smaller than the payoff for
mutual cooperation (b — ¢ > 0) and thus players face a dilemma. As we discussed
in previous chapters, one way to resolve it is to consider structured populations in
which players only interact with their neighbors [13]. Here, we follow this line of
research and consider in addition growing populations, as discussed above.

Since there is an interaction between strategy dynamics and network growth, the
topology of the system will obviously change under selection. So, in Fig.8.2, we
show how it changes with the benefit to cost ratio b/c, the intensity of selection
[ and the attachment parameter « for the particular dynamics of the Prisoner’s
Dilemma game. From Fig. 8.2, it is clear that the influence of the game on the degree
distribution is relatively weak, for small degrees a clear difference is only found
for large o and small b/c. The distribution of the relatively few nodes with many
connections, however, is more sensitive to changing either b/c or 3. Moreover, as
we have already learned from the simplified version of the model in Sect. 8.1.1, for a
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Fig. 8.2 Impact of the game dynamics on the degree distribution at the end of network growth.
Left column corresponds to o = 0.1, while the right one is for « = 1. The networks are made of
N = 10° nodes, with average connectivity (k) = 2m = 4, mg = 3, and 7 = 0.1. All values are
obtained from the average of 103 different realizations

value o = 1 we have structures where super-hubs are present, regardless of the values
of the other two parameters of the system, b/c and 3. On the other hand, for more
moderate values of a, we can observe some differences in the topologies arising from
the model, depending on the values of the two other mentioned parameters. Thus,
for a fixed value of the ratio benefit-cost, some different degree distributions appear,
depending on 3. We can also say that, in general, almost all structures obtained have
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Fig. 8.3 The average level of cooperation under strong selection (5 = 1) and o = 1, depending
on the time scale of attachment, 7. Cooperation benefits most from small values of 7, i.e. when
many new nodes are added before players update their strategies. For random attachment (a = 0,
inset) cooperation does not emerge, only for high benefit to cost ratios a few cooperators prevail.
The networks are made of N = 103 nodes, with average connectivity (k) = 2m =4, mo = 3, and
all values are obtained from the average of 10 different realizations

fat-tailed P (k). We can see that there is not a very important dependence of the degree
distribution with b/c, which was also the case of the model presented in Chap. 7.

8.3 Average Level of Cooperation as a Function of the
Parameters of the System

Typically, we are interested in the promotion of cooperation on different network
structures, so Fig. 8.3 shows the average level of cooperation for strong selection as
a function of 7 and for several fixed values of the ratio b/c. It turns out that payoff
preferential attachment increases the level of cooperation in the system significantly
compared to random attachment. We want to point out here that, although we do
not show it, this effect is also present for weak selection, but less pronounced. On
the other hand, we observe that cooperation gets higher levels for small values of
T, i.e. when many nodes are added before dynamics takes place and strategies are
changed (which is in good agreement with the results obtained in Chap.7, where
we showed that the equivalent time relation 7p = 1077 promotes cooperation much
more than when 7p = 77). Indeed, this particular choice for the time ratio puts the
system further from equilibrium, whereas the case of large 7 means that strategies
have been equilibrated at least locally before the next new individual with a random
strategy is added to the system. Note that for 7 larger than a certain value (7 < 1),
cooperation levels become independent of 7, which points out that playing just once
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Fig. 8.4 The average level of cooperation, (c), 10* time steps after the network stops growing. For
o = 0.1 (Left) the level of cooperation exceeds 50 % only for very high benefit-to-cost ratios b/c.
For a = 1.0 (Right), the abundance of cooperators is significantly higher. Even for neutral strategy
dynamics (6 = 0), payoff preferential attachment can lead to high levels of cooperation in this case.
The networks are made of N = 103 nodes, with average connectivity (k) = 2m =4, mg = 3, and
7 = 0.1. All values are obtained from the average of 103 different realizations

after a given number of new players have been incorporated is enough to reach a
dynamical equilibrium.

8.4 Average Level of Cooperation After the Growth has Finished

Now, we intend to focus on analyzing the level of cooperation the system achieves
once the growth has finished, it is to say, when the individuals of the network just
play the game, but no new nodes are added anymore. As in most structured popu-
lations, cooperators are disadvantageous in the Prisoner’s Dilemma in well-mixed
population, but they can benefit from the spatial structure. Of course, this effect is
larger when cooperation becomes more profitable, i.e. when the benefit to cost ratio
b/c increases. It turns out that for weak payoff preferential attachment (small «),
the promotion of cooperation is relatively weak and levels of cooperation beyond
50 % are only reached when cooperation is very profitable (see Fig. 8.4). However,
when the probability to attach to the most successful nodes becomes large (large «),
then the average fraction of cooperators becomes larger, approaching one when the
benefit to cost ratio b/c is large.

Interestingly, for small b/c ratios, the abundance of cooperators decreases with
increasing (3, whereas it increases with the intensity of selection for large b/c ratios.
The existence of a threshold for intermediate b/c can be illustrated as follows for
large «: assume that we start from m fully connected cooperator nodes. For 7 < 1,
we add 1/7 nodes with m = 2 links, half of which are defectors and half cooperators,
on average. All new players interact only with the initial cooperator nodes, such that
an initial cooperator will on average obtain mLOT new links. Thus, the payoff of a
new defector is mb. The average payoff of an initial cooperator is (b — ¢)(mg — 1 +
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B[—
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b %+ mo(n;:rl)
DU mo(mo—1) ° (8.6)
£ — mg + molmo=l)

For large values of b/c, cooperators will dominate in the very beginning of network
growth. The threshold increases with 7 and decreases with m: the larger the initial
cooperator cluster and the more nodes are added before strategies are updated, the
easier it is for cooperation to spread initially. This argument shows qualitatively that
a crossover in the abundance of cooperators should exist, and therefore that above a
certain threshold, it is easier for cooperation to spread. Only in the very beginning
of network growth, this argument will hold quantitatively.

In general, the average level of cooperation can be based on two very different
scenarios: either it is the fraction of realizations of the process that ultimately ends
in full cooperation, or it is the average abundance of cooperators in a network in
which both cooperators and defectors are present. This also happened in the model
we presented in Chap.7: when the time relation was 7p = 1077, the average level
of cooperation (c) must be interpreted as the fraction of cooperators present in the
system in the stationary state, whereas for 7p = 77, the whole network always ends
up in a state all-C or all-D, so (c) means the fraction of realizations for which the
system achieves the all-C state.

For any finite intensity of selection 3, we have T;_,; > 0, regardless of the pay-
offs. Thus, after growth has stopped, our dynamics describes a Markov chain with
two absorbing states in which all players follow one of the two strategies. There-
fore, ultimately one of the two strategies will go extinct, in contrast to evolutionary
processes that do not allow disadvantageous strategies to spread. In other words,
using this model, the systems will always end up whether on an all-C or on an all-D
state. Nonetheless, it is important to remark that the time to extinction can become
very large, in particular when the intensity of selection is high or the population size
is large [4, 5, 14].

8.5 Probability of Fixation

Now, we want to analyze this issue numerically, and in order to do that, we compute
the probability that fixation (for either cooperation or defection) occurs within 10*
time steps after the network has stopped growing, during which only the dynamics
takes place on the system, but no new nodes are added (see Fig. 8.5). For small «, the
results follow the intuition from well-mixed populations: Fixation within this time is
more likely if the intensity of selection is weaker. With increasing benefit to cost ratio,
fixation times increase, so fixation within the first 10* time steps becomes less and
less likely. For large o, however, fixation is faster for strong selection (large () for a
wide range of parameters. Only when the b/c ratio is very high, fixation times are very
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Fig.8.5 The probability of fixation for one strategy within 10* time steps after growth has stopped as
afunction of the attachment parameter: (Left) « = 0.1 and (Right) o = 1, for different intensities of
selection 3. The networks are made up of N = 103 nodes, with average connectivity (k) = 2m = 4,
mo =3 and 7 = 0.1. Every point is the average over 10° independent realizations

large under strong selection. This is based on the peculiar structure of the network
obtained for large «. In addition, we observe an area in Fig. 8.5 where the fixation
time increases slightly before it decreases again, i.e. the probability for fixation in
the first 10 time steps has a minimum. Interestingly, this occurs for the range of
b/c ratios where the average levels of cooperation intersect at 50 % for the different
intensities of selection. In this parameter region, neither cooperators nor defectors
are clearly favored. Thus, both of them spread initially. When the abundance of both
strategies is approximately the same in the beginning, then it will be more difficult
to completely wipe out one strategy later. Thus, the increased time of fixation in the
parameter region where the abundance of cooperation becomes 50% makes intuitive
sense.

8.6 Level of Cooperation After Re-Initializing the Strategies

Finally, we want to focus on studying what happens when the network stops growing:
Does cooperation benefit from the growth or only from the topology? Typically, one
would expect that defectors profit from the growth, because there is a steady flow of
new cooperators that they can potentially exploit. Thus, cooperation should increase
if the game dynamics continues on the fully grown, static network (in fact, this was
the result we obtained in Chap. 7). In contrast to that case, here we have changed
the game dynamics in such a way that individuals sometimes can also adopt a worse
strategy (irrational changes). It has been shown in previous works that this apparently
small change can significantly decrease the level of cooperation [15]. The overall
level of cooperation drops significantly and is only higher than 50% if cooperation is
very profitable. Indeed, we have found that with this model, the level of cooperation
now decays once the network no longer grows (see Fig. 8.6). This means that in the
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Fig. 8.6 The average level of cooperation in three cases: once the network is fully grown (circles),
after the game dynamics has proceeded 10* additional steps beyond the growth phase of the network
(squares), and 10* time steps after the fully grown network has been re-initialized with random
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respectively. The networks are made up of N = 10 nodes, with mo = 3, average connectivity
(ky =2m = 4 and 7 = 0.1. Every point is the average over 10? different realizations, and a = 0.1
in all cases

current case, cooperators, not defectors, benefit from the continuous supply of new
players, so when the structure stops growing, they stop getting such high benefits,
and their proportion in the system drops a little.

Thus, it makes sense to ask whether the topologies that are obtained from the net-
work growth are cooperation promoters at all. This can be tested, as we did in Sect. 7.5,
by taking the fully grown structure as a static substrate, and run the game dynamics
on that fixed topology with initially random strategies, 50% cooperators and 50 %
defectors. Interestingly enough, this does not lead to any significant enhancement
of the level of cooperation, on the contrary, cooperators almost disappear from the
system after 10* steps of the dynamics, once the re-initialization has been made (see
Fig. 8.6). Thus, our model of network growth based on payoff preferential attachment
itself leads to comparably high levels of cooperation, while the resulting topology
alone, used as a static substrate, does not support cooperation at all in the Prisoner’s
Dilemma.
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8.7 Conclusions

In this chapter, we have studied another dynamical model for evolutionary game
dynamics in a growing, network-structured population [16]. In contrast to most mod-
els for evolutionary games on dynamical networks that consider a constant population
size [17-23], these networks grow. Nonetheless, individuals cannot break links and
cannot control directly how many new individuals will establish connections with
them. The two main changes we have made in this new model, with respect to the
evolutionary preferential attachment studied in Chap. 7, are on the one hand, that
now the probability of attachment is exponential with the payoff of the node, and
on the other hand, that we allow irrational strategy changes, by using a Fermi-like
function for the probability of changing the strategy.

One important difference that has been found is that under strong Payoff Prefer-
ential Attachment (o« = 1), the topology of the networks generated are dominated
by the presence of a few super-hubs, which attract most of the links of the rest of
the nodes. The existence of very few hubs and a large number of poorly connected
nodes in network models have been widely reported before [24]. In fact, it has been
shown that when networl§s are grown following a non-linear preferential attachment

rule of the sort p; = ZN—jk"’ with v > 1, star like structures are obtained [25]. Here,
I=1"
we have shown that the same kind of networks can be produced when the dynamics

driving the attachment process is dominated by the most successful players.

Even when Payoff Preferential Attachment is not too strong (for instance, for
a = 0.1), super-hubs emerge, a clear mark that successful players are likely to
attract many of the links of the new nodes. If newcomers preferentially attach to
the successful players in the game, then high levels of cooperation are possible.
But this cooperation depends on the growth of the network, the population structure
alone will not lead to such high levels of cooperation. Thus, payoff preferential
attachment differs from the usual promotion of cooperation in structured populations.
In particular, it has been shown that heterogeneous static structures favor cooperative
behavior due to the existence of hubs. However, as Fig. 8.6 shows, the presence of
super-hubs is not enough to sustain cooperation in the networks grown following the
scheme discussed here.

In other models, the probability to adopt a strategy that performs worse than
your own is zero [26, 27] (see also some previous chapters). In particular, together
with synchronous updating of strategies, this can lead to evolutionary deadlocks, i.e.
situations in which both strategies stably coexist. Here, we have adopted an update
scheme in which individuals sometimes adopt a strategy that performs worse. Due to
the presence of such moves, sooner or later (often much later) one strategy will reach
fixation. It is to say, the final state of the systems discussed here will be inevitably
all-C or all-D. However, when 5 and the ratio b/c are large enough, both cooperation
and defection can coexist for a very long time.

We also want to remark that our growth mechanism has another interesting feature:
it has been shown that the average level of cooperation obtained in static, scale-free
networks, is robust to a wide range of initial conditions (see Chap. 3). However, for


http://dx.doi.org/10.1007/978-3-642-30117-9_7
http://dx.doi.org/10.1007/978-3-642-30117-9_3

8.7 Conclusions 151

the networks grown using the Payoff Preferential Attachment, the initial average
number of cooperators in the neighborhood of the super-hubs determines the fate
of cooperation in the whole network, leading to a much more sensitive dependence
on the initial conditions of the system. This has been proved by the huge drop
of cooperation in the system after some time steps, once we have reinitialized the
strategies randomly among the individuals when the full size had been achieved.
From this point of view, the weak dependence on the initial conditions reported in
static scale-free networks is not trivial.

Finally, we point out that it would be of further interest to study the model dis-
cussed here with other 2 x 2 games. As we have shown, the game dynamics seems
to have a weak impact on the structure of the resulting networks. Whether or not this
holds in general will elucidate the question of the influence of different games on the
network formation process.

In summary, the model studied in this chapter shows that the interplay between
the game dynamics and the network growth leads to complex network structures.
Moreover, not only the structure of the interaction network is important for the
evolution of cooperation, but also the particular way this structure has been obtained.
Our work shows that playing while growing can lead to radically different results
with respect to the most studied cases in which game dynamics proceeds in static
networks (which is in fact a conclusion we also made when studying the model of
Chap. 7).
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Chapter 9
Summary

Finally, as a conclusion of this Thesis, we will now summarize the main results we
have obtained in the different parts of it. We have addressed the study of the evolution
of cooperation on complex networks, using among the different social dilemmas,
mainly the Prisoner’s Dilemma game as a metaphor of the problem, analyzing the
possible outcomes of the dynamics, depending on the underlying topology.

In the First Part of this work, we have focused on the evolutionary approach to
several 2 x 2 games on static complex networks. In the first chapters we have studied
the evolution of cooperation in ER vs. SF graphs when playing the weak Prisoner’s
Dilemma (Chap. 3), and the general Prisoner’s Dilemma and the Hawks and Doves
game (Chap.4). We have confirmed the fact that cooperation benefits from degree
heterogeneity, and we have also checked the differences between random and scale-
free networks, as far as the microscopical organization of the strategies is concerned.
Specifically, while for the first kind cooperators form several clusters, for the latest,
they congregate in one single cluster that always includes the hubs. Moreover, we
have studied the influence of the initial concentration of cooperators, pg, on the final
outcome of the dynamics, finding also important differences between both topologies:
for random networks, there is a threshold in pg under which, cooperation does not
survive, while for scale-free systems, there is always a non-zero level of cooperation,
as long as pp > 0.

On the other hand, in Chap.5 we have performed an study focused on the Pris-
oner’s Dilemma game on random SF networks. These structures are obtained by
rewiring conventional BA-SF graphs, in a way that destroys any node-node correla-
tions. We confirm the fact that random SF networks can not sustain such high levels
of cooperation as BA ones. Thus, the absence of age-correlations is a crucial factor
in the dynamics of cooperation. Besides, we have found that the organization of
cooperation into clusters is very different from the well-know case of BA structures.
In this case, instead of forming only one cluster, cooperators form several of them,
being in this way more vulnerable to the attack of defection. This result is a conse-
quence of the fact that there are no age-correlations: the oldest nodes (that are usually
the hubs) are no longer connected forming a single cooperation core, but they are
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apart, forming several. Thus, this work can be consider a useful null-case for new
studies to come on SF networks. Moreover, we have made an analytical approach to
the problem, using a mean-field treatment, with a further compartmentalization of
cooperators and defectors into degree classes. The results render by this calculations
do not coincide with the numerical simulations performed on top of random SF net-
works in the general case. Nonetheless, we have considered a particular set of initial
conditions, where we have assigned as cooperators all nodes with connectivity higher
than a given value k*. In this particular situation, we can say that our calculations
qualitatively agree with the simulations. We consider that this work can be expanded
to a more general scenarios.

In Chap. 6 we have approached the problem of cooperation in SF networks from
a new perspective. We are not aware of any previous work addressing the study of
cooperation in such topologies when restraining the number of interactions per node
and per round of the game, but leaving the degree distribution of the system intact.
Thus, we have considered this new situation, analyzing the level of cooperation
achieved by the system when individuals are engaged on the Prisoner’s Dilemma
game but they are allowed to interact in every round of the game just with k* of
its topological neighbors. We have found some interesting results, such the fact that
the highest level of cooperation for a given value of the ratio cost-benefit is not in
general for the case of unrestricted interaction, but for the situation where some kind
of constrain is imposed to the nodes. This is a somehow unexpected result, because it
is well known that heterogeneity favors cooperation, but now we introduce a further
consideration, restricting the number of interactions up to an extend renders even
higher levels of cooperation in SF topologies.

On the other hand, we know that real networks are not static entities, but they
evolve in time. New nodes and links may be added or removed, so the structure
keeps changing, and this fact will most certainly affect the outcome of the processes
developing on top of them. Thus, in the Second Part of this Thesis, we wanted to
take into consideration that idea, studying systems where not only an evolutionary
dynamics is taking place, but also the network itself is growing, and this growth is
connected with the outcome of the dynamics. Specifically, we have developed two
models where we combine the growth of the network and the outcome of the game
in which the nodes are engaged. Although the basic idea is the same for both models,
they differ in some particular details.

In Chap.7 we have presented the first model, where growth and dynamics are
entangled. In this case, the probability of an existing node to get a link from a new-
comer node is a linear function of its fitness (understood as the payoff accumulated
during the last round of the Prisoner’s Dilemma game). We can tune the relative
importance of the fitness in this process with a parameter that represents the inten-
sity of selection. In this way, it can range from a random process, where the outcome
of the game is irrelevant for the attachment of the nodes, to a strong selection situa-
tion, where it is the decisive factor. On the other hand, the updating rule chosen for
the dynamics is Replicator-like, so the probability of a node for changing to its neigh-
bor’s strategy is proportional the difference between their payoffs. Using this model,
we have analyzed some relevant topological properties of the systems, depending
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on the parameters. Thus, we have found that for the weak selection limit, we obtain
random structures, and SF ones arise when imposing strong selection. Moreover,
this model allows us to obtain several intermediate topologies, as far as the degree
distribution is concerned. We have also found that some of the networks created with
this model share other topological features with real networked systems, such as
the power-law dependence of the clustering coefficient with the connectivity of the
nodes. Regarding the evolution of cooperation, we have found that these systems can
sustain very high levels (even higher that the BA structures). What is more, once the
growth has ended, the system evolve to even higher levels of average cooperation.
This fact is rooted in its particular microscopical organization of cooperation among
connectivity classes: these systems display some important differences with respect
to cooperation in complex static networks such the fact that now hubs can be stable
defectors in the long term. To the best of our knowledge, this is the first time that
stable defector hubs are reported.

Finally, in Chap. 8 we have exposed the second model, where there are two fun-
damental changes with respect to the first one: on the one hand, the probability of
attachment is an exponential function of the fitness, and on the other hand, the updat-
ing rule we have used is Fermi-like, so now, we allow irrational changes of strategy
(a node can imitate a neighbor that has obtained less benefits). As the the previous
model, we have analyzed the resulting structures and the outcome of the dynamics.
The topologies arising from this second model can be not only random or SF, but also
star-like, due to the exponential dependence mentioned before. Nonetheless, regard-
ing the evolution of cooperation, we have found that these systems do not promote
cooperation as well as the first model does.
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