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Preface

The importance of the exciton—polariton phenomenon in the optical properties
of high purity bulk semiconductors was recognized in the late 1950s, with the
pioneering works of Pekar and Hopfield. However, bulk polaritons had three strong
limitations: they were not observable inside the luminescence light cone, the light
field as well as the exciton density in the bulk material could not be changed at
will, and finally 3D polaritons did not show energy minimum for the ground state.
Neverthless in the early 1990s a new stage in polariton physics appeared when
confinement of electronic (quantum wells, wires and quantum dots) and photonic
states was starting to be strongly studied in the scene of optical phenomena in
semiconductors. This was the time when the first vertical cavity surface emitting
lasers (VCSELs) were showing to work under continuous wave regime.

In this context, in 1992, Weisbuch and coworkers realized that in a high finesse
semiconductor VCSEL, the electromagnetic field of increased density inside the
cavity could interact strongly with the excitons of a quantum well, so to lose their
independent character as excitons or photons, to give rise to new eigenstates: the
two-dimensional exciton—polariton modes.

This observation paved the way to the study of a new panorama of polaritonic
effects via optical excitation and detection which was previously impossible in
bulk semiconductors. Indeed, these new half-light/half-matter states had all the
advantages that were lacking in their 3D predecessors. On the one hand the strength
of the coupling was now easy to control by the cavity length, number of QWs or light
confinement, while on the other, the presence of such a peculiar polariton dispersion
could offer a plethora of new interesting physical observations.

State-of-the-art semiconductor microcavities using ultrahigh reflecting distributed
Bragg mirrors (DBRs) can reach Q-factors approaching values as high as 10°, yet
polaritons have a relatively short lifetime compared to their excitonic counterparts,
and all their dynamics is studied within a few tenths of picoseconds in the
best samples. However, one of the very important consequences of their very
short lifetimes is that the photon part leaks out of the cavity at a very high
rate, carrying out all the important information on the exciton—polariton states.
Therefore, a direct and unique one-to-one correspondence between the quantum
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state of a polariton inside the microcavity and the emitted photon emerges. As a
result, exciton—polariton states, their fast dynamics, interactions, unusual collective
phenomena under nonequilibrium conditions, and their related quantum effects can
be studied directly in optical experiments such as photoluminescence, reflectivity,
transmission, and inelastic resonant light scattering. This situation contrasts strongly
with that of polaritons in bulk semiconductors or simply excitons in quantum wells,
and it is the principal reason why the new exciton—polariton physics has acquired
such a strong interest.

Since the first observation of polaritons in microcavities, it took almost 10 years
to unravel an extremely important consequence of this light-matter mixture: the
exceptionally high nonlinearity inherited by the electronic Coulomb interaction.
In the year 2000, it was found that polaritons can undergo a parametric process
converting efficiently two particles resonantly excited at a finite k vector into a
signal at the bottom of the lower polariton branch (LPB) and an idler at higher k
(OPO). This was the first turning point demonstration of the great new possibilities
offered by exciton—polaritons due to their peculiar dispersion and their strong y*
nonlinearities.

In the following years, the quest for pure quantum effects originating from
parametric oscillations has been the topic of many papers, and several geometries—
using coupled cavities or 0D systems—have been studied. However, until now, no
clear proof of true quantum phenomena, related to single pair scattering, has been
experimentally given, and the semi-classical picture could still hold to describe
polariton phenomenology.

However, a true breakthrough which has extended the study of polaritons beyond
its own domain was set by the clear-cut demonstration of a coherent polariton
state, in all aspects similar to a Bose Einstein condensate achieved by stimulation
of bosonic polariton particles accumulating in the ground state. It is interesting to
note that the very same effect, at that time called “exciton boser,” was proposed in
1996. Yet, it took some time to get the present understanding that exciton—polaritons
behave in a wide density range as good composite bosons and another 10 years
to convince the international community of the strong stunning analogy between
the two phenomena. Nevertheless, for their intrinsic dissipative nature, and fast
dynamics of relaxation and decay, polaritons are also similar to a standard photonic
laser, while the similarity with a BEC is mainly in their interparticle interactions.
For this reason there is still now some debate, which has been quite strong in
the past, on whether condensation is an appropriate term for exciton—polariton
quasiparticles. However, beyond the adequate terminology to use, the dissipative
and interacting nature of polaritons, their nonequilibrium character, their peculiar
dispersion and strong nonlinearities render these bosonic quasiparticles definitely
unique and extremely peculiar, with a lot of similarities and differences to both
semiconductor lasers and standard atomic BECs.

It is undoubtful, however, that the exciton—polariton Bose gas is a very interesting
system for studying collective many-body phenomena and for possible application
in the field of quantum photonics. First of all, exciton—polariton systems start to
exhibit the quantum behavior at relatively high temperatures, around tens and even
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hundreds of Kelvin, due to a very small effective mass of the polariton quasiparticle.
Besides, polaritons constitute an ideally two-dimensional or even one- and zero-
dimensional system because motion in the other directions could be practically
frozen due to the advanced semiconductor growth and processing techniques. In
the recent years, we have witnessed the startling observation of new phenomena
associated with this quantum phase transition, some of which have shown to be
unique of this system.

We believe that a book that was collecting almost all the work done on this
subject, which puts together all the advances and recent discoveries on polariton
phenomena made by the major groups who are active in this field, would definitely
be of great interest to both physicists approaching this subject for the first time, as
well as a wide audience of experts in other disciplines who want to be updated on
this fast moving field at the frontier between nonlinear optics and quantum collective
phenomena of condensed particles.

The content of this book reflects the most interesting and important up-to-date
achievements in the field, and it is organized as follows:

In the first chapter, an introduction to the physics of exciton—polaritons in
microcavity with historical sequences of the most important turning points and
outcomes is made by F.P. Laussy which dedicates this chapter to the formation of
coherence in a Bose gas with a full quantum derivation which is extended from 2D
to OD polaritons. Interestingly, in the second part of this chapter, it is shown that
even in the simplest picture of a linear regime, exciton—polaritons can still show
fascinating effects impossible to observe in other systems (such as atomic BEC)
like propagation without scattering and diffusion-less motion.

On the contrary, Chap. 2 by V.D. Kulakovskii, S.S. Gavrilov, S.G. Tikhodeev,
and N.A. Gippius, concerns with the strong nonlinearities, which are fundamental
to determine the parametric scattering regime (OPO). A full theoretical model
based on the Ginzburg—Landau—Gross—Pitaevskii (GLGP), describing the formation
and decay dynamics of the process under different polarization and excitation
conditions, is used to burn out the experimental results showing the complex and
fascinating physics of parametrical pair processes in microcavity polaritons, such as
polarization instabilities and hysteresis effects.

In Chap. 3, B. Deveaud-Plédran and K.G. Lagoudakis review the fundamental
evidences which finally led to the compelling assertion that exciton—polaritons, as
composite bosons undergo a phase transition in every aspect similar to what happens
in a Bose Einstein condensate. Indeed, given the dissipative nature of this quantum
gas, spontaneous formation of pinned vortices, due to pumping and decay, emerges.
In this chapter, an insight into the origin and nature of these vortices, such as the
independent vorticity of different polariton spin population, is provided. In the last
part of the chapter, the authors describe the effect of random potential fluctuations
on the dynamics of spontaneously appearing vortices.

A detailed microscopic picture of the two-dimensional steady-state exciton—
polariton bose-condensate is described by G. Roumpos and Y. Yamamoto in Chap. 4.
The authors present their recent observations of a power-law decay of the spatial
coherence together with the appearance of a bound pair of vortex and antivortex,
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under certain excitation conditions. These outcomes are associated with the char-
acteristic features of the Berezinskii—Kosterlitz—Thouless (BKT) phase transition.
The results suggest that vortex—antivortex pairs can appear in a condensed exciton—
polariton gas without rotation or stirring, just as an intrinsic feature of the 2D nature
of the polariton condensate.

Temporal coherence and the second order correlation function (g?) of a con-
densate of exciton—polaritons are studied in Chap. 5 by D.N. Krizhanovskii,
D.M. Whittaker, M.S. Skolnick, and M. Wouters. Interestingly, the coherence time
and the bunching on the g are independent of the material used to achieve strong
exciton—photon coupling (CdTe or GaAs semiconductors) or the way condensation
is obtained (via nonresonant or OPO configuration). What is truly affecting these
characteristics is the intrinsic particle fluctuations introduced by the laser used
to create the polariton population. Indeed, the effects of particle fluctuations on
polariton—polariton interactions and the non-equilibrium character of the polariton
system determine the coherent properties of the condensate and the behavior of the
first and second order correlation functions.

One of the hallmarks of quantum bosonic fluid is the irrotational character which
leads to the formation of metastable states of quantized vortices with the appearance
of a phase singularity at their center. The theory and the experiments on the
stability of externally induced vortices in a polariton condensate, their interactions
and propagation in a quantum fluid are presented in Chap. 6 by FEM. Marchetti
and M.H. Szymariska. After a complete introduction on the OPO steady state, its
instabilities, and superfluid currents, the concept of triggered optical parametric
oscillator (TOPO) is introduced with the purpose to inject vortices in a steady-
state condensate of polaritons. In this case, a phase patterned pulsed laser pump
is used under the TOPO regime, and polariton dynamics, following the excitation,
is observed and studied.

It has been anticipated that exciton—polariton condensates in semiconductor
microcavities should behave as an unusual quantum fluid with unique properties
due to its nonequilibrium nature. Experiments on superfluidity effects in resonantly
created exciton—polariton states are discussed by A. Amo and A. Bramati in Chap. 7.
Using natural defects present on the sample, the transition from a regime of
superfluidity with no apparent scattering of the condensate to a perturbed state,
evidenced by the appearance of shock waves around the obstacle, is demonstrated.
The experimental observations are in qualitative agreement with the generalized
Gross—Pitaevskii theory and show how exciton—polaritons in microcavities are an
extraordinary interesting system for exploring the rich physics of non-equilibrium
quantum fluids. In the wide field of quantum gases, exciton—polariton condensates
in semiconductor microcavities have provided novel experimental and theoretical
insights into the physics of superfluidity and hydrodynamics, in condensed matter,
the nature of which, sometimes, is still under debate.

Polaritons are also interesting bosonic quasiparticles because they possess a
defined state of spin. In Chap. 8, A. Kavokin addresses some of the effects
derived from this spinor nature of polariton condensates and shows the peculiar
phenomenology of the specific spin-dependent features which make the collective
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polariton state a unique object to study spin effects in a gas of interacting
Bosons. Moreover, a brief introduction to possible spinoptronic devices is described.
Several spin-dependent phenomena are discussed and analyzed, such as the spin-
Meissner effect, polarization multistability, spin switching, and spin rings. The
future perspectives of exciton—polariton spin superfluidity in microcavities are also
considered.

Random disorder is unavoidable and naturally exists in real semiconductor
microcavity structures. The impact of fluctuating disorder potential on the dynam-
ical properties of exciton—polariton condensates is the focus of the presentation by
G. Malpuech and D. Solnyshkov of Chap. 9. In the first part, the authors consider
a stable condensate propagating in a disorder potential and find that the condensate
forms either a glassy insulating phase, at low polariton density (regime of strong
localization), or a superfluid phase above the percolation threshold. Then, the case of
a propagating noninteracting condensate which is always localized due to Andersen
localization is analyzed. Finally, in the last section, the chapter closes with the
case of a propagating interacting condensate where the three regimes of strong
localization, Anderson localization, and superfluid behavior are all accessible. The
calculated localization length is found to be strongly dependent on the system
parameters: infinite in the superfluid regime, but drastically reduced in the regime
where the gas flows at supersonic speeds.

Exciton—polariton kinetics almost always occurs under thermal non-equilibrium,
in the presence of a driving source and subject to dissipation and relaxation
processes. To account for the most recent experiments on polariton dynamics, a
theoretical formalism capable of modeling the phase and amplitude dynamics of
polariton quantum fluids fed by an incoherent reservoir is described in Chap. 10.
The theoretical formalism introduced by M. Wouters and V. Savona is based on
a truncated Wigner approximation (TWA) where the polariton quantum fluid is
described by a classical field subject to stochastic forces and coupled to the reservoir
that produces gain, losses, and energy relaxation mechanisms. Calculations of
polariton distribution functions as well as the first order off-diagonal correlation
functions, below and above condensation threshold, are shown to be rather effective
for describing some recent experimental results on polariton dynamics.

In Chap. 11, the coupling of exciton—polaritons with acoustic phonon is presented
by E. Cerda-Méndez, D.N. Krizhanovskii, M. Wouters, K. Biermann, R. Hey,
M.S. Skolnick, and P.V. Santos. The acoustic phonons are generated via surface
acoustic waves (SAW) from the top of the microcavity samples. The coupling with
polaritons allows the formation of mini-gaps which serve as 1D potentials for the
localization of the condensate generated via OPO. This novel approach leads to
the formation of arrays of quasi one-dimensional interacting polariton condensates
which are similar to the optical lattices of atomic BEC. Using first and second order
correlations, it is demonstrated that the moving deformation, modulated by surface
acoustic waves, affects both the energetic configuration and the spatial coherence
length of polariton condensates.
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One of the most controversial paradigms which is still under debate in the
community is to which extent a polariton condensate is different from a standard
photonic laser. Exciton—polariton condensation and lasing in a standard VCSEL
exhibit many common properties: both emit coherent light, both have density onset
for optical gain, and exhibit rather high temporal and in-plane coherence. So,
the reasonable question appears: what is the principal difference between them?
The detailed analysis of similarities and differences between exciton—polariton
condensation in microcavities and lasing is discussed by D. Snoke in Chap. 12.
Experiments in which each transition can be observed independently and in the
same physical system help to determine differences in the behavior of each regime.
These examples are reviewed also in view of the recent experimental observations
of photon condensation for a dye molecular system in an optical cavity, where the
system is always in the weak coupling regime.

The prospects of technological applications of polariton condensates for a new
generation of low threshold coherent light emitters are considered by J.J. Baumberg
and G. Christmann in Chap. 13. The authors overview the nearest prospects of
room temperature polariton condensates and discuss the importance of the material
choice, as well as sample design, for the realization of low threshold lasers. These
advances are supported by their successful realization of polariton lasing at room
temperature using a Ill-nitride semiconductor microcavity with GaN as active
medium.

Another approach for the realization of room temperature polariton lasers is
the use of organic semiconductors which have a very strong coupling with light
and big exciton binding energy. Organic semiconductors have both electrical and
structural properties that are inherently different from their inorganic counterparts.
The exciton of organic molecular crystals is of Frenkel’ type, for instance, so
strongly localized in the molecular aggregates but can be stable up to room tem-
perature and beyond. Strong exciton—photon coupling and polariton lasing at room
temperature in organic single crystal microcavities and hybrid organic—inorganic
microcavities are discussed by S. Kena-Cohen and S.R. Forrest in Chap. 14. A robust
exciton—polariton state in organic materials is shown to be easily observed at room
temperature with a neat increase of its coherence for high pumping values. These
experimental results lead the way to the realization of inexpensive polariton lasing
devices.

Finally, the recent progress in the rapidly developing field of electrically driven
polariton systems is highlighted by S.1. Tsintzos, N.T. Pelekanos, and P.G. Savvidis
in Chap. 15. The threshold of polariton lasers is few orders of magnitude lower
than that of a conventional semiconductor photon lasers operating in the weak
coupling regime. This makes polariton lasers extremely promising, if not for other
fundamental properties, as low-power sources of coherent light. For this reason,
the possibility to observe polariton emission out of electrical injection is one of
the main tasks to follow. This challenge is the subject of this last chapter in which the
authors describe their recent results on microcavity emission, via electrical rather
than optical excitation, up to room temperature and keeping the system still under
strong coupling regime.
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Chapter 1
Quantum Dynamics of Polariton Condensates

Fabrice P. Laussy

Abstract We illustrate the rich and fundamental physics that is accessible with
the semiconductor implementation of the quantum superposition of light and
matter: exciton—polaritons. The short lifetime of polaritons makes them an out-of-
equilibrium system. Their dynamic is an important ingredient in their behaviour
and properties. Their peculiar dispersion also allows a rich engineering of various
processes, tuning the system from light- to matter-like. Finally, the exciton—exciton
interaction turns them into a non-linear system. The interplay of all these factors
makes polaritons one of today’s most versatile and fruitful research arena, both
theoretically and experimentally. In this chapter we give a rather general picture of
these specificities that we isolate in various dimensionalities (0, 1, and 2D). One
of the most intensively researched area in the semiconductor implementation of
the polariton physics is related to Bose—Einstein condensation. We solve exactly
a configuration of relaxation from the Rayleigh circle into the ground state in
the framework of quantum Boltzmann master equations and show how coherence
builds up spontaneously in the system, by copying in a single quantum state
statistical features characteristic of the macroscopic system. In this way, we extend
to higher order correlations the historical reasoning of Einstein, who predicted the
phenomenon by arguments on the mean populations. We show how lifetime and
pumping allow a simpler treatment by reducing the required number of states, for
which we present a full quantum treatment. We contrast this condensate build-up
with the 0D case where the reduced complexity allows an exact numerical treatment.
The coherence build-up in this cavity QED limit manifests as lasing with a sharp
line in the cavity mode that produces a variation of the Mollow triplet in the exciton
emission, as the cavity effectively replaces the laser in the conventional resonance
fluorescence scenario. We show how lasing also arises in this case as a condensation
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of polaritons, and can be substituted in the case of vanishing intensities by a coherent
field formed when strong coupling is optimum. This zero-dimensional limit also
provides an exact picture of the transition from the quantum to the classical regime,
a universal process of unsuspected complexity. Finally, we illustrate the recent
development of polariton quantum hydrodynamics with propagation of coherent
wave packets. The short lifetime allows a continuous observation of this dynamics
in real space, a picture completed with the observation of their emission spectra
in energy—momentum space. The peculiar polariton dispersion is the source of
interesting behaviours even when described by the most fundamental and simplest
equation of quantum physics: the Schrodinger equation.

1.1 Introduction

Quantum condensates—the quantum states formed by a coherent gathering of a
large number of particles—are one of the chief scientific developments of modern
science. They hold a privileged status that accounts for the excitement they stir in
a wide and multidisciplinary community, in that they wed the quantum (or micro-
scopic) and the classical (or macroscopic) in a unified paradigm, the condensate
wave function . At the quantum level only, the wave function is an amplitude
of probability that collapses upon measurement and with such counter intuitive
properties as entanglement or non-locality. At the classical level, the wave function
is replaced by a continuous and macroscopic field, that embeds and provides all
the information on the object. Quantum condensates are macroscopic fields that
magnify the effect of a single particle by superimposing a large number of them in
the same and identical state, with effect to retain much of their quantum character.
This leads to striking phenomena such as superfluidity and superconductivity. As
obvious from the examples we just took, we shall adopt a rather general definition of
“condensation,” where superconductivity is seen as a condensation or Cooper pairs
and lasing as a condensation of photons. We will also consider the Bose—Einstein
condensate in the most traditional sense of the term.

The main topic of this volume, the polariton, is another peculiar object that arises
from two protagonists lying at opposite extremes—light and matter—wed by the
quantum superposition of their wave functions:

[Ya) = x& [We) + 1 1¥x) (1.1)

where V¢ is for the photon—“C” stands for “cavity”—and x for the material
excitation—"“X" stands for “exciton,” the correlated electron-hole pair excitation
of the semiconductor crystal [1]. Xéx are the so-called Hopfield coefficients which
weigh the polaritons with their photon and exciton character [2]. The “mélange”
is maximum when )(% =+ )@(E =1/+/2. By changing the ratio of these two
components, one can interpolate smoothly between light and matter. This can be
achieved by detuning the two modes in energy, which is usually experimentally
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straightforward, either by tuning the cavity (by designing it with a wedge or by
injection of a gas) or the exciton (by temperature or with an electrical field).
Attributes from light that can be transferred to the polaritons are those such as
high degree of coherence, very small effective mass (the cavity photon acquires
a small mass due to its confinement), or optical interfacing with the external world,
enabling the experimentalist a great ease in both manipulation and detection. Those
attributes inherited from the “matter” part are strong interactions between particles
and large effective masses. Interactions make the polariton physics non-linear and
thus both highly non-trivial, with behaviours of strongly correlated systems, and
extremely rich in terms of applications and engineering. Depending on the particular
application, various combinations of these characteristics play the major role in a
polariton device. Both the light and the matter parts can be optimally implemented
in a semiconductor environment. This makes the system easily configurable, quickly
enhancing its figures of merits as technology progresses and with great promises
for large-scale integration and massive technological deployment. Maybe the most
obvious illustration of this flexibility are the several dimensionalities in which
polaritons can be realised. Figure 1.1 displays various star realisations.

Three-dimensional systems were the first to elicit interest for condensates in the
solid state, with excitons as the candidate bosons [3], but they have been hampered
by various problems such as a too short lifetime or, on the other hand, difficulty
of detection for dark states with a long lifetime. The technological breakthrough of
heterostructures [4] allowed to reduce the dimensionality and solve most of these
problems, for instance, the short exciton lifetime, has been addressed by indirect
excitons in coupled quantum wells [5]. The polariton case also met with difficulties
in 3D that were also circumvented in lower dimensions, such as the absence of an
energy minimum for the bulk polariton since there is no k = 0 bulk photon.

p—i 100 4m

Fig. 1.1 Stages for polariton physics in three dimensionalities as seen by an experimentalist:
examples are given in 0, 1 and 2D. Other realisations are possible. Those specifically highlighted
are as follows: (0D) [left panel] a quantum dot (QD) in an L3 photonic crystal (courtesy of
A. Laucht). Active QDs inside the structure are not visible, but an AFM image is provided for
one of them before overgrowth. (/D) [central panel] a stripe, or etched 2D cavity (courtesy of P.
Savvidis) as seen from the top. Propagation is constrained to 1D inside the stripe, in the plane of
the page. (2D) [right panel] section of a distributed Bragg mirror (courtesy of D. Sanvitto), as seen
from the side. Propagation is constrained to 2D in the plane perpendicular to the page. The labels
0, 1 and 2 (also from P. Savvidis), used here to label the dimension of each case, are grown also
to label characteristics of the samples, such as the dimension of a structure. This illustrates how
technologically advanced is the growth process
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The microcavity polariton field was born in 1992 when Weisbuch et al. reported
strong coupling in planar cavities [6] (much like that in Fig. 1.1c). Although they
had the physics of VCSELs in mind, they identified their finding as the realisation
in the solid state of a much deeper achievement: the cavity QED paradigm of strong
coupling [7]. Anecdotically, they misquote the first author of [7] (M. G. Raizen),
attributing the paper to a co-author (R. J. Thompson), maybe because the latter
published a few months earlier in the same journal a significant improvement of the
1989 atomic experiment, reducing the number of atoms to the quantum limit [8].!
The quoted paper is however the correct one since Weisbuch et al. had not reached
the quantum limit—in a sense that will be shortly discussed—and there is still no
evidence to this date that this has ever been achieved with 2D polaritons or even 1D
polaritons. We will discuss at length what peculiar insights can be learned from the
0D case which arrived there first [9, 10].

The polariton device of Weisbuch et al. [6] quickly demonstrated its great ease
of control by angle-resolved excitation and detection [11]. The next breakthrough
came with the experiments of Savvidis et al. [12] and Baumberg et al. [13] who
demonstrated spectacularly the Bose character of 2D polaritons in a pump and probe
experiment, with stimulated scattering triggered by a pulse. This pointed towards the
feasibility of a “polariton laser,” a mechanism proposed earlier by Imamoglu et al.
[14] where coherent light is emitted from a polariton condensate. There has been
ample debates ever since on the adequacy of the terminology of “Bose—Einstein
condensates” to refer to optical systems where coherence is provided foremost by
the photonic component and is degraded by the excitonic one or in cases where
excitation is resonant, and thus directly transferred in the cavity by the laser [15,16].
Crowning a series of accumulating evidence from various groups [17, 18], Kasprzak
et al. [19] reported Bose—Einstein condensation of polaritons in late 2006. The
next step from there was superfluidity, a concept discussed at an early stage in
the background of polariton lasers [20] and attacked theoretically by Carusotto
and Ciuti [21]. Experimentally, superfluidity of polariton condensates has been
approached from various directions, all pointing towards a positive outcome
[22-28]. In these works, dimensionality is of a more or less fundamental character,
from the mere requirement to provide a space—time background for propagation of
the fluid [23] to its link with universality in the theory of phase transitions [24]
or for topological reasons [22, 27]. Depending on the nature of the propagation
of the condensate, dimensionality might play or not a critical role. For instance,
the propagation of a wave packet in the linear Schrodinger equation is essentially
unrelated to dimensionality and can be, with little loss of generality, projected onto
one dimension. The propagation of a soliton, on the other hand, which stability is
assured by non-linearity, depends crucially on local topology, being stable in 1D
and unstable in 2D. In both cases, however, a spatial degree of freedom exists into
which the quantum dynamics can unravel as a function of time.

'Or maybe because of a simple oversight since Raizen had a different affiliation.
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There is equally rich dynamics of condensation in other degrees of freedom than
real space as a function of time, such as the field amplitude or its phase as a function
of pumping power. The problem of nucleation, or formation, of Bose—Einstein
condensates, for instance, is an illustrious example of a much-investigated dynamics
of condensates [29-33]. In microcavity polaritons, it has practical rather than
fundamental implications since the short lifetime of the particles and the existence
of a bottleneck in their relaxation are two strong obstacles for the formation of a
condensate. The problem has first been attacked with semi-classical rate equations,
of the Boltzmann type, by Tassone et al. [34], Porras et al. [35], Malpuech et al. [36]
and others. Coherence build-up from a master equation approach was investigated
by Rubo et al. [37], Laussy et al. [38], Cao et al. [39] and Doan et al. [40].
As quantum correlations extend into many degrees of freedom, the problem is
extremely complicated. Techniques that bring together the quantum nature of a
ground state with spatial and temporal extensions with classical reservoirs have
recently been proposed by Wouters and Savona [41] and Savenko et al. [42]. It also
has enjoyed much insights from quantum field theories, for instance by Keeling
et al. [43, 44], Szymanska et al. [45], and Marchetti et al. [46]. Reducing the
dimensionality of the system is a way to simplify considerably the system, allowing
to solve it essentially exactly (in the sense of making no approximation, even if it
solved numerically). This is where the ultimate limit of 0D polaritons enters in the
condensation problem.

The first reference in Weisbuch et al. seminal paper [6] is to the pillar of
cavity QED, the Jaynes and Cummings model [47], that describes the full-field
quantisation interaction between light, described as an harmonic mode, and matter,
described as a two-level system. As already alluded to before, the 2D case does
not, however, correspond to this scenario. The strong coupling of quantum well
excitons does not rely explicitly on their quantisation, and in the linear regime, it
can in fact also be interpreted as a classical effect—more appropriately denominated
“normal mode coupling”—in the sense that it is equivalently described by a classical
theory of the electromagnetic field, in this case, Maxwell equations coupled to the
excitonic susceptibility [48,49]. The Jaynes—Cummings physics, on the other hand,
hinges intrinsically upon the concept of quanta: one excitation more or less makes a
difference in the system, by shifting by a discrete amount its energy, with detectable
consequences in the power spectra or the counting statistics of the emitted photons.
As a result, the two-polariton state does not consist of the direct product (properly
symmetrised) of two states from (1.1) as is the case in higher dimension according
to the conventional Bose condensation scenario. Instead, a new polariton state is
formed, which general form reads:

+ +
Int) = xe " In,g) + xx " In—1,¢), (1.2)
where n photons interact with the ground |g) and excited |e) state of the OD exciton.

Following Cohen-Tannoudji [50], we will at times speak of “dressed states” rather
than polaritons. The case n =1 recovers the previous one of (1.1). In (1.2), the
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condensed state appears to be through the photon fraction alone. By contrast,
the linear regime of normal mode coupling in higher dimensions distributes
the excitation throughout various emitters, which behave collectively as another
harmonic oscillator [51], and condensation can be regarded as the accumulation
of one-polariton states, as if the latter were fundamental particles.

The proper solid-state counterpart to cavity QED is provided by quantum dots
(QDs) in microcavities, which achieved the strong-coupling regime in late 2004,
early 2005 [52-54] and shortly thereafter confirming its quantum nature [9, 10].
The quantum regime, ruled by the few quanta of excitations, is interesting in
itself [55], but in the wake of the previous discussion, we shall focus on the opposite
limiting case of the large number of excitations, where the quantisation of the field
breaks down and a continuous, coherent field overtakes. This transition exhibits a
spectacular crossover from the quantum to the classical regime, that puts lasing as a
condensation of the OD polaritons [56,57].

In summary of this rapid overview, polaritons—quantum superposition of light
and matter—are privileged objects to study various aspects of quantum condensates,
where a large and coherent accumulation of them in a single state gives rise to a
macroscopic quantum state. Dimensionality is one of the factors that allows to focus
more particularly on various aspects of the quantum dynamics. In the following,
after a succinct introduction in the formalism and notations in Sect. 1.2, we address
first, in Sect. 1.3, the dynamics of the condensate formation in a gas of bosons.
Dimensionality will play its role here in justifying that polaritons are good bosons:
in 2D, their excitonic fraction is also bosonic. Although we shall assume a particular
configuration, the density of states will also be that of a 2D system. Because of the
complexity of the problem, much approximations will be made, for instance, the
weakly interacting gas will be assumed ideal, an approximation also best justified
in 2D. In Sect. 1.4, we address the same problem but in 0D, which allows us to
keep track of all quantum correlations. Even in this much simplified picture, we
shall see that a full quantum description of the problem is extremely complicated.
In Sect. 1.4, we will turn to another aspect of the dynamics of polariton condensates,
made possible by experiments such as those of Amo et al. [23] and Sanvitto et al.
[58], namely, the space—time dynamics of wave packets, a configuration now shared
by the 2D and 1D systems. For brevity, we will consider the 1D case only, with little
loss of generality in the approximations we shall make. Experiments have also been
conducted in this configuration [59] which makes it valuable for its own sake. A
full 2D description with proper attention to its specifics has been given by Marchetti
and Szymanska [58] and also in their contribution to this volume. In Sect. 1.6, we
summarise the main statements and give an outlook of our approach where, among
other things, we try to provide a unified picture to the two concepts of condensation
and strong light-matter coupling, that transcends or, on the opposite, hangs upon
dimensionality.
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1.2 Modeling of the Polariton Dynamics

The basic Hamiltonian for strong light-matter coupling in a field theory reads, in
real space, H = [ ¥ (r) Dy (r) dr where ¥ is a two-component field [1]:

_ (Ve 5
()

with Y¥c and yx two fields annihilation operators at point r, where r has the
dimension of the problem (0, 1 or 2D). The free energy operator D is most simply
expressed in the reciprocal (k) space, as the linear coupling with strength g of two
free particles of mass mc and mx:

_ [(wc +K*/(2mc) g
b= ( ¢ ox +k2/<2mx))' (9

Strictly speaking, the cavity photon is parabolic only at small momenta and
recovers the free photon linear dispersion at large momenta, but we will keep the
description in terms of an effective photon mass for simplicity and generality. This
provides the basic description of polaritons, where they appear as the eigenstates
of H. The polariton energies, that is, the corresponding eigenvalues, are shown in
Fig. 1.2. There is an imbalance between a small m¢ and a large mx that causes
the asymmetry in the dispersion of the lower polariton. The zero-dimensional case
freezes all the remaining degrees of freedom: r is fixed at the point of interaction ry
where the photon energy becomes constant too. The Hamiltonian reduces in 0D to:

Hop = wca'a + wxo'o + g(a’o + ac?), (1.5)

where we introduced for convenience the notation a = Yc(rg) and 0 = ¥x(ry).
The excitonic field ¥x loses its bosonic character in 0D because the confinement
of the electron-hole pair in the QD results in their separate quantisation, overtaking
the weaker Coulomb interaction which, in higher dimensions, correlates them into
a bound state that behaves approximately like a boson, the better the smaller the
exciton density [60]. This prevents the presence of two electrons or two holes by
Pauli exclusion, and in the ideal OD limit, the light-matter Hamiltonian therefore
couples a Bose and a Fermi OD field, thereby realizing the Jaynes—Cummings
Hamiltonian: light is modelled by an annihilation operator a that follows Bose
algebra, [a,a’] = aa’ — a’a = 1, and matter by an annihilation operator o that
follows Fermi algebra, {o,0'} = 00’ 4+ oo = 1. Dissipation is conveniently and
accurately described in this formalism in the Lindblad form [61]:

Lop=20p0"—0T0p—p0T0, (1.6)
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Fig. 1.2 Polaritons in three dimensionalities as seen by a theorist. The OD case realises in its most
fundamental form the quantum superposition of (1.1). The exciton and photon fractions can be
changed, detuning by A the energy between the bare modes. In this zero-dimensional case, each
quantum should be accounted for through higher excited states leading to new polariton states,
(1.2), shown here up to two quanta. The 1D case has an additional degree of freedom. Because
energy changes with momentum, detuning of the bare mode is intrinsically built in the polariton
dispersion, giving rise to a most peculiar shape in particular for the lower polariton. The 2D case
adds still another degree of freedom resulting in the 2D dispersion that is generated by rotation of
the 1D dispersion. The bottom of the lower polariton dispersion in k-space is the final state where
to accommodate the condensate. In 0 and 1D, the bare modes are represented as well in dashed
lines. In 2D, the particular configuration of states on the Rayleigh circle selected to describe Bose
condensation analytically in Sect. 1.2 are represented along with one particular relaxation towards
the ground state at rate w;—sq

for any operator O. Decay and pumping of mode ¢ at rates y and P, respectively,
follow from this as (y/2)L. and (P/2)L,:+ added to Liouville-von Neumman
equation d;,p = i[H,p]. In a full Hamiltonian picture, lifetime is conveniently
included as the imaginary part of the energy, by promoting the Hamiltonian H to
H —iy/2, which is justified in part by the Lindblad form above (the procedure is
correct within limits and is therefore more a trick than a rigorous step; for instance,
it is well known that commutation relation are violated by this procedure). If v (¢)
is the solution to the Schrodinger equation with potential H, then v (¢)e™""/? is
the solution to the version with the finite lifetime introduced in this way, since
Yy =0(t) = exp(—=iHt)y (t = 0) becomes ¥ (t) = exp(—iHt)exp(—yt/2)y(0) =
exp(—yt/2)Yy=o(1).

In higher dimensions, the second quantization notation in reciprocal space is the
most convenient; it allows to track all processes in a physically transparent way,
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such as scattering 1//17: +q1//k¢2; involving a phonon field ¢ or polariton—polariton

interaction Wlil +qwliz—qwkl Yk, [62]. We will rely only implicitly on this form,
which can be found in full details elsewhere [1]. We will introduce the rest of the
notation as needed.

1.3 Formation of Coherence in a Gas of Boson
(2D Polaritons)

The dynamics of a quantum gas in the context of kinetic theory finds its simplest
description by including quantum statistics in the transition rates of Boltzmann
equation [63], an approach pioneered by Uehling and Uhlenbeck [64] which
amounts to upgrading the rate w;  ; to (1 &7 ;)w;—; with + for bosons (describing
Bose stimulation) and — for fermions (describing Pauli blocking). In both cases,
the term “1” corresponds to spontaneous emission. With the number of particles in
the initial state available for scattering, the resulting quantum Boltzmann equation
acquires a beautiful symmetry in momentum space:

Nk = Z (wk/—>k(nk + Dny — oxswnk(ne + 1)) ) (1.7
k/

with ny the polariton population in the state k, and wg—k’ the transition rate between
states k and K/, that depends on the underlying interaction. The microscopic deriva-
tion of these coefficients for some of the dominant processes has been performed
by Ciuti et al. [65] and Malpuech et al. [66] and is now compiled in textbooks [1].
It consists typically of a matrix element of the interaction calculated with the Fermi
golden rule (with a § energy-conserving term) and weighted by the density of
particles mediating the interaction, such as phonons or electrons at their lattice
temperature. By lowering temperature, rates are increased for relaxation towards
the ground state and condensation may follow, triggered by Bose stimulation. We
do not consider here polariton—polariton interaction although it is known to help and
in some cases to be necessary for condensation.

Because it is such a superficial doctoring up of the classical equation—although
to monumental consequences—(1.7) is usually called the “semi-classical Boltz-
mann equation.” Its algorithmic complexity is the same as the classical version
and thus it can be simulated for complex and realistic systems with many degrees
of freedom and a large number of particles. In the case of polaritons, extensive
numerical simulations have been performed by Tassone et al. [34], Porras et al.
[35], Malpuech et al. [36], Cao et al. [39], and others, and a thorough understanding
of the kinetics of condensation in various limits has now been achieved [67].
Recently, Hartwell and Snoke could even reproduce quantitatively the experimental
data and fit it with the semi-classical Boltzmann equations [68], so the dynamics is
essentially understood and is becoming a problem for engineering to achieve better
condensation within the polariton lifetime.
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What (1.7) is missing is the quantum aspect of the dynamics, in particular, to
describe and to take into account the effect of coherence. That the term coherence is
so loosely defined is partly a misfortune, partly an indication of a deep connection
between various fundamental concepts, that the term “coherence” is so loosely
defined. There is quantum coherence, on the one hand, in the sense of purity of
state (related to the existence of wave function or of a density matrix whose square
traces close to unity), and there is, on the other hand, optical coherence that can be of
temporal, spatial or spectral character (among others) and is related to the ability of
a field to produce interferences. Glauber was awarded the Nobel prize (in 2005) for
identifying what characterises quantum coherence of the optical field [69], namely,
the nth-order (n € N) properties of quantum correlators of the type:

GW(t1,....ty) = (a'(t1)---a’(t)a(ty) -~ a(tr)), (1.8)

where a is the annihilation operator of the bosonic field. This includes as particular
cases of interest the first-order correlator:

GV, 1) = (@ ®)a(t + 1)), (1.9)

whose t-Fourier transform is related to the power spectrum (that can be probed in
the photoluminescence emission, for instance) and the second-order correlator:

GA(t,v) = (a"(t)a' (t + v)a(t + v)a(1)), (1.10)

that is related to photon counting statistics. In the following, we will also use
their normalised version gV (¢, 7) = G (¢, 1) /n,(¢) and gP(r,7) = GP(t,1)/
(na On,(t + ‘L')). The major characteristics of quantum coherence are provided
by the case of zero time delay, t = 0, being the field intensity to first order
and two-photon coincidences to second order. Glauber discussed how and why a
proper definition of quantum field coherence is a factorisation to all orders n of the
correlators:

(a™a"y = (aTa)" (1.11)

and how such a condition is satisfied for the so-called coherent state:

2 S n
Ia)zeXp(—M) 2 n) . (1.12)

with ¢ € C. The coherent state minimises quantum uncertainty, such as position
and momentum. As the phase of this state is exactly determined (by the phase of o
in the complex plane), the particle number—which is its quantum conjugate—has
a fluctuation, which one can see from (1.12) is Poissonian, and that indeed satisfies
g» = 1. The photons from a coherent field are uncorrelated in their detection time,
in stark contrast with a Fock state |#) or a thermal state:
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p=(1—6)p. (1.13)

The discovery, by Hanbury Brown and Twiss [70], that thermal light (from a star)
exhibits the statistical properties of (1.13) has been one of the major achievements
of quantum optics.

From another point of view, in the theory of phase transitions, it is known since
Landau [71] that an “order parameter” characterises the various phases of second-
order transitions and that the order parameter of a quantum condensate (a Bose—
Einstein condensate in the thermodynamic limit, a superfluid or a superconducting
phase) is the quantum average of the field annihilation operator: (¥ (r)) from (1.3),
or in the spatially homogeneous case, simply (a). A theory of phase transitions
for the polariton condensate building upon the semi-classical Boltzmann equations
above, could therefore look forward to upgrading the ground state to the quantum
level while keeping the complex relaxation dynamics at the semi-classical level.
This approach has been taken by Rubo et al. [37], who, isolating the dynamics of
the quantum mode from the others, arrive to the master equation:

1
dp = —5[Woma)(cﬁap+pa*a—2apaT )+ Win(t)(aa’ p+paa*—2a" pa)]. (1.14)

where p is the density matrix for the ground state alone and Wi, ou(?) are time-
dependent transition rates provided by the semi-classical Boltzmann equations.
Rubo et al. [37] obtained the exact time-dependent solution of (1.14) which is,
starting from the vacuum, a thermal state in the form of (1.13) with a time-dependent
0 which is a complicated function of Wi, ou(2), for which there exists a closed-form
expression [37] that we need not reproduce here. The density matrix being thermal
has important (exponential) fluctuations in the number of particles when not close to
the vacuum, and its order parameter is zero, regardless of the intensity. At such, the
quantum promotion of the ground state only is insufficient: isolating the ground state
from the rest of the system does not bring more information than the semi-classical
picture, in particular, the statistics of the state is the same; it remains thermal even
when the population of the ground state grows much above 1, thanks to an incoming
rate overcoming (with the help of Bose stimulation) decay rates. The ground-state
population builds up, which is the semi-classical feature, but its coherence does not.
The condensate nucleation has to be put “by hand,” by introducing a “seed” |«g)
in the form of (1.12) as the initial condition, that is, a coherent state with small
but non-zero amplitude o, in which case the dynamics become D(cg)p(t) D (eto)
where D(o) = exp (aa* - oc*a) is the coherent-state displacement operator. This
shows that the system behaves as a polariton amplifier, able to magnify coherence,
but unable to create it.

Laussy et al. [72] and Rubo [73] considered non-linear corrections to (1.14) able
to circumvent this shortcoming. In laser theory, coherence builds up, thanks to the
positive feedback of the cavity that injects back the photons from the growing field
into the inverted population, which is also, by itself, merely an amplifier. Sarchi
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and Savona [74] also studied nucleation of the polariton condensate, thanks to
exciton—exciton non-linearities. The role of non-linearities is certainly important,
but a mechanism of condensate formation can be found in the spirit of Rubo et al.
[37]—upgrading the Boltzmann equation to the quantum level—even for the weakly
interacting or the non-interacting gas. This mechanism was proposed by Laussy
et al. [38] and coupled to the semi-classical Boltzmann equations of a realistic
polariton system by Laussy et al. [75], showing their spontaneous condensation and
spontaneous coherence growth. We now discuss it in more detail.

The type of quantum Boltzmann equations that can give rise to the sought
behaviour of coherence build-up has been derived and investigated in much details
by Gardiner et al. [32,76-81] to describe the dynamics of condensation in atomic
traps. The main insight is that the quantum upgrade must not be limited to the
ground state, even if only this one will ultimately acquire a quantum character. One

must retain at least some of the quantum correlations (agaoaltak), that, in the semi-

classical description, are factored out into products (agao) (altak). The dynamics of

the polariton gas in this context can be described in the framework of a master equa-
tion, that is, with rates between quantum states in a configuration space rather than
between populations as in (1.7). The equation of motion in this case, that we will call
with Gardiner et al., a “Quantum Boltzmann Master Equation” (QBME), is therefore
a function of p(ng,ny,na,...,ny) = (no,n1,n2,...,0n5|p|no, N1, 02,...,0N),
the joint probability to have n; particle in the state |i). In a closed system (infinite
lifetime and no pumping), it is of the type:

pno,ny,na, ... ,ny) = Z(n, Dnj{wis;pn; +1.n; — D—w;-ip(ni.n;)}

i<j
+ ni(nj+1){wj_,ip(ni — 1,nj + 1) — Cl),'_>jp(}’li,l’lj)},
(1.15)

where we have used in the sum (and will be using from now on) the abbreviation
p(ni,nj) for p(no,...,n;,...,nj,...,ny). The sum is taken over M states with
M — oo in a continuous system. Numerical solutions of this equation become
rapidly much more demanding than for their semi-classical counterparts but remain
tractable for reasonably large systems. Laussy et al. [38] solved analytically the
steady state in the case M =1, which contains the gist of the mechanism for
the condensate nucleation. Based partly on these results, we will present here the
more general solution of the steady state for arbitrary M, in the case where the
excited states are degenerate in energy. This will confirm and extend the previous
discussions [38,75].

With little loss of generality into the mechanism at work, we therefore solve the
QBME under the assumption that:

Wi = 80010 + i 0@o-s1 (1.16)



1 Quantum Dynamics of Polariton Condensates 13

with i # j, that is, we consider relaxation between the ground state (labelled 0)
on the one hand and any of the excited states (labelledi = 1,..., M) on the other
hand with the same rate wy—; and also the opposite process of relaxation from any
one of the excited state to the ground state at a higher (by definition of the ground
state) rate ;0. We introduce the parameter:

£ = wis0/Wo—1, (1.17)

which, as was just said, is larger than one. This situation represents the polariton
system sketched in Fig. 1.2c where the ground state lies at the bottom of the lower
polariton branch and the excited states are degenerated in a Rayleigh scattering
circle. The excited states are not directly linked to each other, but this will not
affect the steady state, so we ignore such a term to keep the solution as simple and
transparent as possible. What is important is the existence of a large M > 1 number
of states available to feed the condensate. The model will show that coherence
grows when a single quantum state—the ground state—acquires characteristic of
the system as a whole. Such characteristics are, for instance, a peaked distribution
of the total number of particles, which is what determines second-order coherence
g = 1 when this is realised in a single state. The peaked distribution is otherwise
always realised in a macroscopic system as a whole because of the central limit
theorem, which states that the sum Zf‘io N; of random variables N; (with a
mean) is a normal distribution. In the boson gas system, each N;,—the number of
particles in the state i—has thermal fluctuations and a small mean. But the total
number of particles has Poissonian fluctuations, as is well known from statistical
mechanics in the canonical ensemble. Under conditions suitable for condensation,
when relaxation rates are high enough towards the ground state, the accumulation of
particles results in a transfer of the macroscopic properties into one single quantum
state, the epitome of a quantum condensate. This is in stark contrast with (1.14)
where correlations are not retained, and as a result, even when the population is
macroscopic, the state has the features of a microscopic degree of freedom, not a
macroscopic one. The results below are no less than the historical Einstein result for
Bose condensation based on statistical arguments only [82], brought to the quantum
coherence picture, thanks to the QBME.

The mathematical details are cumbersome, and we will focus the discussion on
the physical picture. We start with the observation that if we assume the factorisation
p(ng,....npy) = po(no) ... py(ny)in (1.15), which is the counterpart of breaking
out correlators in products of populations, the resulting equation can also be solved,
and by the method of detailed balance, one finds:

pi(n) = (1-60)6;, (1.18)
with 6; = (n;)/(1 + (n;)) and (n;) = >, np;(n); the average population
for i = 0,...,M, showing that, in the absence of correlations, fluctuations

are those of a thermal state, (1.13), regardless of the population. We will now
show that the probabilities computed from tracing the other degrees of freedom,
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pi(n)= an’j# p(no,...,nj,...ny), can be very different in character when
retaining correlations between states. Equation (1.18) will be taken as our starting
point, since we have, at the outset, no reason to suppose special correlations
between states. That is—under our assumption of a degenerate circle of excited
states—we take as the initial condition the thermal equilibrium configuration with
(no) = 60/ (1 — 6) particles in the ground state and (n) = /(1 — 0) in any of the
excited state (the same number by reason of symmetry and equilibrium). They are
both small numbers, but the total mean in the entire system N = (ng) + M (n), is
large thanks to a large number of states M >> 1. The initial state is therefore:

p(no.ny.....ny) = (1—060)85°(1 — 6)M 6>, (1.19)

where ¥ = Z;ﬂil n; is the number of non-condensed particles. Equation (1.19) is
a solution of the QBME (1.15)—(1.16) provided that § = 6,/6. This condition for
thermal equilibrium, where states are uncorrelated, is in the non-condensed phase an
excellent approximation because of a fast dephasing between states. The mean total
N therefore fluctuates according to the probability to have N particles, P(N) =
Zn‘/,2+no=N p(ng,ny,...,ny), that one can compute as:

M -1 0

(1.20)
where , F| is the hypergeometric function [83]. This function is bell-shaped when
N is large enough. This result is the exact mathematical statement that a large
thermal reservoir has normal fluctuations peaked around a macroscopic average.
The solution of (1.15) can be found in a generalisation of the method of Laussy
et al. [38] by normalisation of detailed balanced type of equations within manifolds
of excitations. We give the result directly:

P(N) = (1—6p)(1—6)MeN (M N = 1)2F1 (1, —N,—M — N +1, @) ,

Pno+ %)

M bl
(EETI) _ §n01+1 (MLY:{I-nO)ZFl(l’ M+ +ny+ 1,2 +ny+2, %)
(1.21)

p(f’l(), E) =

where the numerator is given by (1.20) and the denominator follows from

Z‘:)Z (MA;' fl_l)éz_k . As the repartition of particles among the excited states
does not affect the result, we introduced the notation p(ng, ) for any of the
p(ng,ny,...,ny) for whichn; +---+ny sumsto X. The reduced distribution for

the ground state po(ng) = Z;? ay P10, 11, .. nyy) follows from this notation

and (1.21) as po(no) = S5y (M) p(no, T). Note how combinatorics affect
the result by introducing the binomial, which brings the macroscopic into the ground
state when M is large enough. It is evident, from this exact result, that the solution
is considerably more complex than the thermal expression, (1.19), which it includes

as a particular case. The solution is also more complicated than the “co-thermal”
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ansatz [84], which is a mixture of a thermal and a coherent state (the displaced
thermal state discussed above [37] is another example of such a state). Although the
co-thermal state provides excellent and compact approximations, the exact result
hinges on combinatorics and therefore roots Bose condensation into the peculiar
statistical properties of bosons.

We now illustrate with an example how the ideal boson gas condenses based
on solution (1.21), which will be the support for all the figures that accompany
this discussion. We assume (n¢) = 0.3 particle in the ground state (on average) and
(n;) =0.25 in any one of the excited state. With these parameters, the total number
of particles N = (no) + M (n) needs M =7 levels in the exciton reservoir so that the
system may dispose on average of more than two particles, the minimum required
for Bose condensation [38]. With this initial condition, the parameter (1.17) that
maintains thermal equilibrium in the form of (1.19) is & ~ 1.15. This parameter
that we introduced as the ratio of transition rates w;—.o from the reservoir to the
condensate and the other way around, wo— can, from statistical axioms, be related
to the temperature as £ =eF17F0)/kT 5o increasing values of £ correspond to
diminishing temperatures. In Fig. 1.3, we plot p(no, ¥) as given by (1.21). As

M=1¢=115 M =10, =115 M =10,£ = 50
a .

&

M =50,¢ = 1.15

M =50, = 200

Fig. 1.3 Revisiting the Bose—Einstein condensation of the ideal gas, with spontaneous coherence
build-up out of thermal equilibrium when temperature is lowered. The joint probability p(ng, ¥),
(1.21), to have n( particles in the ground state and ¥ distributed in the excited states is plotted
as a function of the number of excited states M (in the configuration sketched in Fig. 1.2) and
the inverse temperature £. The system admits the thermal equilibrium classical solution (1.19)
for § ~ 1.15, with 0.3 particle in the ground state and 0.25 particle in each of the M excited state,
all with thermal statistics. As we lower the temperature (increasing &), a transfer is observed of
the statistics from the macroscopic system—which from the central limit theorem has the form of
a normal distribution—to the ground state. This describes Bose condensation. Larger M results
in higher coherence of the condensate. Figure (e) shows the condensate nucleation where many,
but not most, of the particles are condensed, resulting in a high degree of correlations between the
ground state and the rest of the system as a whole, while individual correlations with any given
particular state are small
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there is no essential information in the way the system distributes its excitations
throughout the various states of its reservoir, and only the overall distribution over
Y= ZZM= | n; needs be recorded, we can conveniently display the solution in a 2D
plot with, as it appears in Fig. 1.3, the macroscopic variable ¥ on the left-hand
side and the microscopic one n¢ on the right-hand side. In the case M =1, with
the ground state and another single state for the excitations, the only parameter
breaking the symmetry between the states is £ > 1. Even in this simplest of cases,
the system can grow some coherence by condensing the bit provided by this one
excited state, but, expectedly, the coherence is small. In (a), the system sustains its
thermal equilibrium (since & &~ 1.15) for M =1 and is an uncorrelated product
of thermal states. Increasing M to 10 excited states in (b) and to 50 excited states
in (d) but retaining thermal equilibrium by keeping & constant, one sees that as the
system becomes macroscopic, it acquires a peaked distribution of its total number
of particles (with an average of &~ 0.25 x 10 =2.5 and 0.25 x 50 = 12.5 particles in
these two cases) although each slice in isolation remains thermal as also does, as can
be seen on the figure, the ground state. From the macroscopic systems (b) and (d), if
we now reduce the temperature, that is, increase £, we see a transfer of the statistics
from the system as a whole, %, to the ground state, ny. The coherence acquired
becomes perfectly Poissonian in the limit M — o0, as is clear comparing (c) and (f),
the latter having much higher coherence, thanks to the larger reservoir. Figure. 1.3e
shows the condensate formation when the ground state is in the process of acquiring
the coherence in a single state from the macroscopic set of levels as a whole. At
this intermediate stage, there are strong correlations between the ground state and
the rest of the system. This is a beautiful and essentially exact picture of quantum
condensation of the ideal gas.

In Fig. 1.4, we show other quantities, also derived from (1.21), that characterises
condensation more succinctly than the full distribution function. In (a), we show the
condensate distribution, that is, the reduced probability po(7n¢) with all the degrees
of freedom from the rest of the system traced out. Starting from the thermal case
at the point marked (1) by the arrow, the system develops a characteristic peaked
fluctuation that characterises coherence in the sense of Glauber. Slices from the
density plot are shown in (b), with the thermal (1) and fully grown coherent (5) states
filled and also displayed in log scale in (c). The thermal statistics is exponentially
decreasing, and thus, although it has a few excitation on average, it fluctuates wildly.
In (d), we display still another average, this time the mean population in the ground
state, that follows tightly the statistics profile, showing that coherence builds along
with the population. We also show g that goes from 2 at equilibrium towards 1 as
temperature vanishes. We also plot in dotted line the number N —n of uncondensed
particles, to compare with the statistics, showing that coherence growth is even
steeper than population build-up.

An important feature of polaritons is their dissipative nature. Lifetime and, to
compensate, pumping are important factors that are simply included in (1.7) by
adding the terms Py — yknk. In a realistic modelisation of the problem, Py is peaked
at high momenta in the exciton reservoir. It is straightforward to upgrade in this
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Fig. 1.4 Dynamics of condensation in 2D (in the configuration of Fig. 1.2c) as seen from the
particle number statistics. In (a), the density plot py(n() shows the evolution, as temperature is
decreased, from a thermal distribution on the left (with (no) = 0.3 particles in the ground state
with the monotonically decreasing distribution shown in (¢)) to a coherent distribution on the right
(with (ng) close to 25 particles with peaked fluctuations also shown in (c)). Slices at the points
indicated by the arrows are shown in (b). In (d), {(n¢) (and N — (n¢) dotted) are shown together
with g as temperature is decreased. Particles accumulate in the ground state as coherence grows

way the QBME (1.15), by adding to p(n;) terms of the type y;[(n; + 1) p(n; + 1)
—n; p(n;)] for decay and P;[p(n; — 1) — p(n;)] for pumping of the ith level. A
convenient quality of pumping is that it can produce coherence build-up like the
macroscopic model where M >> 1, with the two-level system only. We have shown
previously how Bose—Einstein condensation can be seen as copying the macroscopic
state into a single quantum state, and that a large number of excited states is needed
to describe macroscopic properties such as a peaked distribution of the particle
number. Pumping allows to “copy” in the ground-state macroscopic properties with
only one state to model the rest of the system, since the ground state can keep
sucking particles and build its coherence without depleting the excited state that
is continuously refilled by pumping. This is seen straightforwardly in the solution
of the M =1 QBME with pump (in the excited state) and decay (in the ground
state) [38]:

@1-0(11)n,

@o—1({(n1)ng+1 + 1) +y

obtained by tracing over the excited state an nip(no,ni) = (n1)n,po(no). This
has introduced the conditional average (n,),,, which is the quantity that retains
the correlation needed for the transfer of coherence into the ground state. The
approximate closed-form relation (n;),, = N — no where N is the total average
number of particles in the steady state, which is correct in the mean when ny < N,
provides the solution:

po(no +1) = po(no) , (1.22)

pO(l’lO) = (a)l_)o)”o (1 - N)Vlo
1) 2F(1L1=N,1-N — 2 2=yl - N — L),

(1.23)
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where (x), is the Pochhammer Symbol [83]. The pump P has disappeared from
the solution, but is implicitly present through the existence of a non-zero N in the
steady state for particles with a lifetime. Although (1.21) is exact for arbitrary M,
(1.23) is approximate in presence of pump and decay even for M = 1, hinting at
the difficulty brought by a dissipative system. Equation (1.23) is however a good
approximation provided that not most of the particles are in the condensate. This
restriction was not encountered in the closed system where condensation in the
zero temperature limit was properly described. This limitation is however easily
satisfied with large enough lifetime. In more complicated systems, linearization of
the conditional averages are used instead and also perform well [75].

The full quantum theory of this restricted two oscillators model is possible. In the
following, we note a; the state that models the reservoir as a whole. It also obeys
Bose statistics, and the physics is thus that of two coupled harmonic oscillators with
relaxation described by Lindblad terms £ in the master equation:

W1—0 Wo—1
T Ly + E(aoab]p, (1.24)

dp = I:%ﬁal + %an + %‘Ca;f +
where L is given by (1.6). We can solve (numerically) the quantum Boltzmann
master equation that follows and characterise each mode (x = ao, a;) with the
average population n, = x'x and the second-order correlation function, g,(cz) =
(x"xTxx)/(n,)? as well as for the cross-correlation function between the modes
ap and ay, g((ﬁ) = (non1)/({no)(n1)). These quantities are plotted in Fig. 1.5 as a
function of pumping. To link the present full quantum master equation approach
with the kinetic model, we derive from (1.24) the steady-state solutions for the
average populations that are of the type of a Boltzmann source and sink problem,
that is, (n,) = P&/ T This provides us with the effective pumping and intensity
decay rates for the three modes:

Pi/y Pi/y Pi/y

Fig. 1.5 Dynamics of condensation in an open quantum system with two modes, (1.24), with
pumping P; of the excited state and decay y of both states. The excited state decays to the
ground state with a rate w;—.o=>5y while the opposite process occurs at the smaller rate
wp—1 = Y, allowing condensation in the ground state. The typical phenomenology of condensation
is displayed as follows: at large excitation, (a) the ground state population grows linearly, (b) the
spectral linewidth narrows and (c) g® tends to 1. Approximated semi-classical formulas are
plotted with dashed lines
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P = Py +wosi(ne) . T§" =y — P+ oso(l + g(()zl)(ﬂo)) - wo—>1g(()21)(ﬂo) ,

Pg" = w150(n1) Te" = yo + w1 (1 + g(()zl)("l)) - w1—>0g(()21)("1) .
(1.25)

The semi-classical rate equations are recovered by setting the cross-correlation
function to unity. Solving exactly such rate equations, one obtains approximate
formulas for the populations that, in turn, provide analytical expressions for all the
effective parameters above. The expressions are too lengthy to be given here, but
we plot them in Fig. 1.5a and b in dashed lines. Their asymptotic behaviour at large
pump is constant for (n;) and linear for (ny):

(1) — M, (1.26a)
W1—0 — Wo—1
P — 2 — —

(o) — (@10 + 70)? — (@01 + Y0) [V170 + @10(y1 + 10)] C 26b)

(w150 — wo—1)Yo(@1-s0 + Vo)

In this full quantum derivation, the cross-correlation function is computed
numerically and self-consistently and can be, in general, larger (resp. smaller) than
unity, showing bunching (resp. anti-bunching) of joint emission in the modes a
and a;. This is shown in Fig. 1.5¢ (lower line) where cross emission is slightly
antibunched, as the destruction of the first one implies the creation of the second one.
At very high pumping, the emissions become statistically independent (g(()zl) — 1).

A typical manifestation of coherence build-up is line narrowing of the lumi-
nescence emission. The FWHM of the condensate mode is given approximately
by T in (1.25). ™ decreases appreciably when wj—o > wy—i. To check
that this process is accompanied by the expected line narrowing of the emission
in the regime of Fig. 1.5, we compute the photo-luminescence spectrum S(w) o
N fooo (ag(O)aO (7))e'®*dr. The spectrum is single peaked. The associated linewidth
is extracted and plotted in Fig. 1.5b. The line narrowing follows remarkably well
that predicted by the effective intensity decay rate, (1.25). The value at P; = 0
corresponds to T'¢"(0) = yy + wo—1 (2y in our example). Such a formalism was
used by del Valle et al. [85] with a pulsed excitation to describe the experimental
observation of time-resolved polariton condensation.

1.4 Formation of Coherence in a Fully Quantized System
(0D Polaritons)

In the OD case, the considerable simplicity achieved by the reduced dimensionality
allows an exact treatment of the quantum problem. The simplification even extends
not only in the dimensionality of the Hilbert space but in the dynamical equations
as well, as one can show [86] that the single-time dynamics, for instance, is entirely
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contained in the diagonal correlators (a™a"). They obey the following set of
coupled equations:

- Ly + 2n— 1)y, nYa 2P, (@a")
Ky I'o+m—1)y, Ts+ny,
P, - 2
= Mo gty o EYe it gy (1.27)
Io +(m—1)y, I's + ny,

for n € N. We have introduced shortcuts in notations: I'; = y, + P, and k, =
4g?/y,, which physical meaning (of pump induced broadening and effective Purcell
rate [55, 56, 87]) will not be discussed here. Other non-zero correlators are related
explicitly to (a™a"), such as (a""a"o o) = [Py (at"a") — ya(a™+1a"T1)]/ (T, +
y.(n — 1)) (that provides the QD probability of excitation 1, as the particular case
n = 0) and similarly for (a™a"~'o), which is too lengthy to be written here
but is given elsewhere [57]. Although a closed-form solution, if it exists, might
not be straightforward (del Valle and Laussy [57] give various limiting closed-
form approximations), the problem complexity has been reduced considerably and
is readily solved numerically. Solutions for n, = (a'a) and g® from Laussy
et al. [88] are shown in Fig. 1.6a and b. There are various regions of interest. At
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Fig. 1.6 (a) Cavity population 7, and (b) second-order coherence g® as a function of pumping
power for several configurations of y,/y,, adapted from Laussy et al. [88]. Various regimes are
clearly defined, most importantly, a “condensate formation” that separates the quantum from the
classical regime. (c¢) Universal curve for the second-order coherence g‘® when going from a
coherent field established by strong coupling to one established by stimulated emission lasing and
(d), deviation of the statistics realised from a Poissonian distribution, (1.33), for the points marked
by arrows in (¢). The maximum value ~ 1.10282 is the same for any system realising lasing in
strong coupling
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large pumping,” regardless of the system parameters (in this case the ratio y,/ya),
the solutions (y,n., g®) converge to a unique one, with full statistical coherence
¢» = 1 maintained over a clearly defined plateau. This regime is known in the
literature as one-atom lasing [89]. It has developed a coherent state in a way that
has both similarities and distinctions from the condensate formation discussed in the
previous section. They both share the concept of out-of-equilibrium condensation in
a single mode and put forward the question of its formation. In the OD case, however,
there is no blueprint of coherence to be found in the macroscopic system. We now
describe how the system builds coherence in this fully quantum and microscopic
system.

Before the condensate is formed, at vanishing pumping, the system is in what we
shall refer to as the “quantum regime,” since a few excitations are present and they
manifest with the full quantum character of (1.2). In this regime, in stark contrast
with the lasing where it is pinned to unity, the photon counting statistics covers a
large gamut of values, from anti-bunching (below one) to bunching (above one).
It has been shown by Gartner [90] and del Valle and Laussy [57] that the possible
values are:

) _ Ko (Va + Vo) + Vo (Va + Vo)
0 = T Va4 70) + (a + ¥o)BYa + 70)

with extrema 0 and 2. This is also very different from the un-condensed phase of
the previous section which, being a macroscopic system, was merely a thermal state
with g@ = 2 for any given state and, in particular, the ground state. The 0D system
is linear in this region; as the population is directly linked to the fraction of time, the
system spends in its first excited state rather than in the vacuum, “vac.” Therefore,
the population increases linearly with pumping, namely:

(1.28)

Ky 1
= P,. 1.29
a /(6+ya )/u+)/6 o ( )

The system can be made to operate as a quantum source on the one hand, emitting
photons one at a time, a situation realised for an ideal QD which has no spontaneous
emission other than in the cavity mode (y, = 0 ideally and up to y, < y,). On the
other hand, by making the QD decay dominant in the modes other than the cavity,
Yo > Ya, the other situation of bunched emission is realised. In practice, this is less
appealing since it is the default situation corresponding to the emission of thermal,
or chaotic, sources, or from the un-condensed phase of the 2D system above.

When the condensate is formed in the lasing region at higher pumping, the
specifics of the QD are lost in the cavity field. In this case, the increase of population
is linked to the cavity photon lifetime only:

But not too large such that the system is quenched, a region which we shall not discuss here,
although the breakdown of the condensate is also an interesting transition, which one can see in
Fig. 1.6 is furthermore abrupt.
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1
=3

Py . (1.30)

Ng

By comparing (1.29) and (1.30), one can see that both regimes can be united
under the same linear relationship throughout, a situation realised when:

This relation is the one that maximises the criterion for strong coupling [87]:

[Va — Vol < 4g. (1.32)

In this case, of maximum strong coupling for the given decay rates (possibly large),
not only is the efficiency rate of growth for the cavity field the same in the quantum
and in the lasing regime, it is also the condition that, from (1.28), makes g(z) equal to
unity in these two regions. In this case, even if the number of photon is much below
unity, the photon counting statistics (accumulated over long enough time to acquire
a signal) shows that photons are uncorrelated in their arrival time. Not only g®
but also all higher order coherence g™, cf. (1.11), tend exactly to unity in this
regime [88], proving that, despite its vanishing population, the field is perfectly
coherent in the sense of Glauber [69].

Remarkably, although one can bring the system to perfect Poissonian statistics
both in the quantum and in the classical regime, this situation cannot be sustained
when crossing from one case to the other. In the former case, coherence is
established by a balance of the quantum coupling that maximises strong coupling,
(1.31). In the latter, regardless of this criterion, coherence is established according
to the single-emitter lasing, with stimulated emission into the cavity mode. In
between them, the system passes through a step where the condensate is formed.
This intermediate regime manifests itself in both n, and g as a deviation from
these ideal trends, namely, n, (P,) exhibits a concavity below the line 1/(2y,) and
g exhibits a corresponding jump in the statistics. These are seen in Fig.1.6a
and b, respectively. The case y, = 0 is the most efficient in the quantum regime
to grow the cavity field, and there is a drop from its efficiency to that of lasing as
the system shifts from strong coupling to stimulated emission. On the opposite,
cases where y, > y, have worst efficiencies that get bettered by the onset of
stimulated emission. This is more apparent in cases where y, > y,, provided that
the strong-coupling criterion (1.32) is still maintained. In the optimum case (1.31),
there is a loss of efficiency in the rate of growth of the field as the paradigm is
changed. This transition region is made obvious in the counting statistics, with a
characteristic curve that is magnified in Fig. 1.6¢. In Fig. 1.6d, we show explicitly
how this difference in the photon statistics occurs in the distribution p(n) = (n|p|n),
by comparing it with the ideal Poissonian statistics with the same mean value n,:

8y = p(n) —e"enl/n!. (1.33)
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In the vanishing pumping region, the field is exactly coherent. As pumping is
increased, a small deviation of statistics develops, that affects the bottom of the
Jaynes—Cummings ladder, as is expected since this is where the system is populated.
One finds that in the transition, there is lower probability to have two photons than in
an ideal laser of the corresponding intensity n,. This imbalance grows linearly, and
in the transition region (4-7), it spreads over many rungs, with excess of photons
nearby the maximum of the distribution while neighbouring rungs are depleted
to compensate. In the stimulated emission lasing region (8), this perturbation in
statistics becomes distributed along the ladder at the same time as it becomes
weaker in amplitude, recovering exact Poissonian fluctuations at high intensities
(beyond point (7)). A remarkable property of this transition from the quantum to
the classical is that it is universal, in the sense that the shape is invariant for the
dimensionless parameters P, /y, and y,/y,, for any value of g. Interestingly, such
a local maximum of statistics when crossing the thresholds to stimulated emission
has been observed in experimental realisations of a few-emitters laser with a shape
that resembles the one in Fig. 1.6 [91-94]. However, in the majority of cases, it
was linked to an experimental limitation of finite time resolution, whereas it is
in our case a manifestation of an intrinsic and universal transition in the system,
namely, the formation of the condensate in the OD system, a picture that we will
now substantiate by considering the behaviour of the polaritons.

To achieve lasing with a single QD, one needs very good strong coupling, that
is, Y < g on top of satisfying (1.32). In this case, the polaritons in the various
rungs of the Jaynes—Cummings ladder, (1.2), are well defined. In particular, they
are well separated in energy the ones from the others. The system can then be
seen as a gas of un-condensed polaritons. Its power spectra appear as a sequence
of sharp peaks located at the transition energies between the rungs of the Jaynes—
Cummings ladder, which show that excited states are well defined in isolation.
This is shown in Fig. 1.7a—c, with only the Rabi doublet at very low excitation (a),
that gets flanked by the peaks from higher excited states as excitation is increased
(b and c). We have chosen the QD power spectrum, since it maps better the energy
distribution than its cavity counterpart [95]. As more particles are fed into the
system, coherence starts to grow in the photon field, with a striking transformation
from the quantised picture of sharp peaks [96] to a smooth continuum, for which a
compact analytical expression can be found [56]. This transition is well seen in the
density plot of Fig. 1.7 where one can follow visually the breakdown of quantisation
and the emergence of a smooth triplet. The triplet itself is isolated in Fig. 1.7e. Itis a
counterpart of the resonance fluorescence spectrum under high excitation, known as
the Mollow triplet [97]. Whereas the latter arises when exciting a two-level system
with a laser beam, the one developed here [56, 98] arises with no pre-established
coherence or imposed from outside, but is self-grown by the condensed cavity
photon field. This has interesting consequences for the dynamics of the Rayleigh
scattering peak that exists as in the conventional scenario, in the form of the very
sharp peak centered at the cavity, as seen in Fig. 1.7f. In this case, the condensate is
fully formed and behaves essentially like an external laser field. Its photons scatter
off the QD and account for this sharp resonant emission. Its intensity increases with
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Fig. 1.7 Dynamics of condensation in 0D, as seen through the QD emission spectrum as a function
of pumping power. At vanishing pumping, the system is in the linear regime and exhibits the
Rabi doublet of strong coupling, (1.1). As pumping is increased, higher excited states probe
the quantised structure of the coupled fields and a sequence of peaks appear (b) that reproduces the
structure of the Jaynes—Cummings ladder. In this non-linear quantum regime, polaritons are well-
defined objects in isolations. A new structure emerges in the condensate formation, with more
polaritons added to the system and more peaks contributing to the spectrum (c) that melts into
another structure of much-reduced complexity, a triplet (d—f) reminiscent of the Mollow triplet
[97]. In this phase, on top of the cavity QED counterpart of the Mollow triplet [56], seen most
clearly in (e), sits a sharp peak that is a Rayleigh scattering peak. Interestingly, it can be positive,
as is usual (f), describing coherent scattering of the photons off the QD, but also negative, as seen
in (d), in a stage where the condensate is still forming and excitations are coherently scattered from
the QD into the condensate

pumping power. In Fig. 1.7e, we choose the special case where this Rayleigh peak
just starts to appear, when the condensate has achieved its formation and is now
increasing its magnitude. Below that point, as in the case of Fig. 1.7d, the scattering
peak is negative and results in a sharp absorption line in the QD power spectrum.
At this stage of the condensate formation, the cavity field is building and does so
by sucking up coherently the QD energy, which is the source of excitation: the
pumping excites the QD which scatters at the cavity photon energy its excitation
into the condensate.

The cavity field is the one that undergoes condensation (the QD being bathed
in the condensate) and emits a single and very narrow line that is essentially the
Rayleigh peak in the QD spectrum once it is formed. There is an even richer
dynamics in the polariton basis. This one is not directly accessible experimentally,
but one can compute it theoretically as easily as for the cavity or QD spectra. In
Fig. 1.8, we plot such a transition, by showing the position of the resonances in the
system, that is, the w, where the system can make a transition. More accurately,
the power spectrum S(w) can be decomposed as a sum of peaks at the said
frequencies w, (with a broadening y, that we shall however not discuss here) [61]:

S(w)=%2

PEN

L, — Kp(w— o))

B+ @—w,)

(1.34)

The emission is Lorentzian weighted by coefficients L, which determine the
strength of the corresponding transitions. In addition to the emission at these
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Fig. 1.8 Lasing as a condensation of dressed states (adapted from del Valle and Laussy [57]). The
resonances ), of the system weighted by the strength L, of the associated transition (such that
a resonance disappears with the vanishing intensity of its emission) are plotted as a function of
pumping. In (a), an overall view is given with, in particular, the resonances that give rise to the
Mollow triplet satellites. In (b), a restriction to within the upper (UP) and lower (LP) polaritons
is shown and in (c) the plot is further zoomed. With increasing pumping, polaritons collapse all
together as the condensate is formed. Unexpectedly, there is an extremely complex structure in the
condensate formation

resonances—in the form of spontaneous emission with a characteristic Lorentzian
lineshape—there are interference terms between them, weighted by coefficients K ,.
These terms are negligible when transitions are well separated the ones from the
others, in which case essentially exact results can be obtained with a kinetic theory
of dressed states only, computing the density of occupation with rate equations [99].
But when transitions overlap significantly, they affect each other and the second
terms in the sum of (1.34) become important. These terms are of the type of the
dispersive part in a driven oscillator. The overlap between transitions can be due to
the system not being in very strong coupling, in which case it is natural that the
dressed state picture by itself is inaccurate, but more to the point, it can also be
due to pumping bringing dressed states closer to each others, a situation realised as
the system grows coherence and polaritons condense to acquire a common energy.
Figure 1.8 displays this process by showing w, weighted by K,. The colour code is
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such that zero goes to white, so that lines disappear when the transitions vanish. The
underlying dynamics to the observable transition, that in Fig. 1.7, is considerably
more complicated than a mere collapse of the lines. The system is well defined
with a quantised skeleton in the quantum regime, where it exhibits a few lines well
separated from the others. In Fig. 1.8a, one can see neatly in particular the outer
peaks that come from transitions of the type [n+) — |n — 1, F) and which, thanks
to their broadening y,, will eventually form the side peaks of the Mollow triplet.
We have also marked UP and LP the upper and lower polaritons, that arise from the
decay of |1+) and |1—). The part beyond the lower and upper polariton behaves
as expected. In Fig. 1.8b, we zoom on the region in-between them. As pumping is
increased and the system grows coherence, the set of w, exhibits an unexpected
pattern in the region associated to the formation of the condensate, from the criteria
discussed previously. There is a rich and complex “bubbling” of the dressed states,
one part of which is magnified in Fig. 1.8c, that gets more and more squeezed
towards the condensate energy until, eventually, coherence is fully established and
all resonances have collapsed onto a single line. As pumping is further increased,
the condensate is destroyed by self-quenching, but we do not further discuss this
regime, only do we need to mention that the single line remaining in this case
corresponds to weak coupling. The complexity of such a phenomenon has been
addressed by del Valle [100] in a simplified model of two coupled qubits, with,
therefore, a finite (and small) Hilbert-space, whereas the Jaynes—Cummings system
is unbounded. This behaviour is due to channels of coherence flow in the system
that are opened by the interplay of excitation and decay. We will not discuss it in
more details, but wish to emphasize the extremely rich and unexpected quantum
dynamics of condensation in 0D, where one can keep track exactly of all quantum
correlations. The quantization of the field breaks down, and a smooth, continuous
classical field develops as a result, that can be described with a few degrees of
freedom, corresponding to its macroscopic character, as opposed to the quantum
regime where a large number of correlators are required to keep track of the possible
quantised transitions, manifesting themselves as sharp peaks isolated from their
neighbours. In view of how this transition from the quantum to the classical realm is
achieved in a full microscopic picture, much understanding remains to be achieved
of this fascinating physics.

1.5 Propagation of Polariton Wavepackets (1D Polaritons)

In the two previous sections, we have addressed the dynamics of formation of the
condensate. In this section, we will consider dynamics from a different perspective,
in a way that has been made possible, thanks to the design of a new type of
experiments pioneered in Madrid by Amo et al. [23] and Sanvitto et al. [58], which
take advantage of the versatility of polaritons to set a condensate in motion and
probe continuously its coherent propagation in space and time through the steady
emission of photons. The experiments are fairly recent and more remains to be
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understood than has been explained so far. The propagation of a condensate brings
to mind the problem of superfluidity, and the Madrid experiments indeed display
the phenomenology expected from a superfluid such as propagation unaltered by
potential fluctuations and defects. The real-space propagation of a localised chunk
of condensate is however not the simplest framework to demonstrate and charac-
terise superfluidity. This class of experiment came last with atomic condensates,
for instance, which started by evidencing the more conventional and clear-cut
phenomenology of helium flow below the A point, such as two-fluid hydrodynamics
or quantisation of the angular momentum absorbed by a condensate as an ordered
lattice of an integer number of vortices. The Landau criterion [101]—according
to which superfluidity is the result of stability of the condensate to external
perturbation below a critical velocity because of the linearisation of the spectrum
of excitations—made a lasting impact in the question of defining superfluidity,
a sort of counterpart to the Meissner effect in defining superconductivity. The
subsequent microscopic derivation of the Landau spectrum by Bogoliubov for the
weakly interacting gas [102] (and later by Feynman for helium II [103]) brought
compelling support for this criterion. In polariton physics, the Landau criterion
has been advocated and studied by Carusotto and Ciuti [21], who proposed an
experiment (later carried out by Amo et al. [25]) demonstrating a collapse of the
Rayleigh scattering circle. The Landau criterion is however not as clear cut as the
Meissner effect for superconductivity which is robust to all possible complications
such as various dimensionalities, finite size systems, non-linear regime, etc., and it
has been recently criticised by Cancellieri et al. [104] for polaritons and by others
for other systems [105, 106]. Back to the experiment which motivates our interest
in the space-time dynamics of a condensate [23], another of its remarkable features,
beside flowing unaffected past the obstacles naturally present in the structure, is its
shape-preserving propagation, with a diffusion much smaller than what would be
expected for a wave packet of massive particles with the effective polariton mass.
This shape-preserving propagation, on the other hand, evokes a soliton [107], a
1D class of which is known to exist in a constant density Bose—Einstein condensate,
either as a depletion in the uniform background (dark soliton) [108] or on the
opposite a standing out aggregation (bright soliton) [109], depending on the sign
of the interaction (attractive or repulsive, respectively). There is a vast literature
documenting solitons in non-linear optics, and theoretical predictions from this
community have been made [110] simultaneously or shortly after the Madrid
experiment. As an interacting condensate, the polariton fluid should be able to
sustain soliton solutions and claims have been recently made in this direction [111].
Keeling and Berloff discuss some of these issues in a wider context with comparison
to other systems [112].

We will touch here only the surface of the problem and focus on the new
viewpoint into the dynamics of quantum wave packets that polariton condensates
offer. The generic problem can be cast as a generalised Schrodinger equation:

iho, |y) =(D+V +IT+T)|[y)+F. (1.35)
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where D is the dispersion of the free particles, V' is an external potential, Z is the
self-interaction term (it is italicised because it is a functional that depends on ),
I' is the lifetime and F, the only non-homogeneous term, is an external drive.
As compared to the two previous sections, here, the problem is fully coherent,
even the pumping scheme, and therefore, the system is in a pure state. A typical
explicit pumping in 1D reads F(x, ) = exp (—(x — x1.)?/(201)?) €+, localised in
a (Gaussian) spot of extension oy, and injecting particles at the energy ey, of the laser.
Experimentally, this is realised by resonant excitation with a coherent laser, which
imprints its coherence on the polariton system. On the other hand, in the question of
polariton condensation that was previously discussed, one has to be careful that the
coherence, allegedly spontaneously built up as a result of Bose condensation, is not
in fact the result of a transfer from that of the external laser. In particular, a well-
defined non-zero (a) is automatic with a state imprinted by an external laser, which
has a well-defined phase put “by hand” in the equation. Here, although we will still
speak of a “condensate” in the sense outlined in the definition, we fully accept that
coherence is inherited from outside. Technically, the problem thus reduces to the
dynamics of an initial state,

(x —x0)?

1
exp | —
V2o, ( 202

under the equation of motion (1.35).

The wave-packet propagation has a long history in the quantum theory, starting
with Schrodinger himself [113] who was thinking of the packet as a microscopic
mechanical object. He had provided an equation of motion for it and was looking
solutions that satisfy the correspondence principle. In this way, he derived the
coherent state, (1.12), that allows, thanks to confinement, to keep the particle
located in space and time. The propagation of the free Gaussian wave packet—
the solution of which was probably known to Schrédinger but was first published
by Darwin [114]—diffuses and thus eventually results in complete indeterminacy
of the position of the particle which is spread over the entire space, a situation not
very satisfying when trying to offer an interpretation of the theory. Note that the
free Gaussian packet does not compulsorily only expand. It can also contract, for
arbitrary amount of time, until it reaches a focal point and then expand again. In
any case, however, it is ultimately completely delocalised, and all packets have the
same fate under the dynamics of the free Schrodinger equation [115]. It nevertheless
quickly appeared that quantum reality is conceptually far more intricate and time-
independent properties like eigenvalues are more relevant to describe experiments
than the time dynamics of a wave packet. The interest in this dynamical aspect of
Schrodinger equation back-dropped, with occasional revivals for its own sake such
as in quantum chaos [116], but they are rarely the main focus of some phenomenon.

The situation is drastically opposite with shape-preserving wave packets, at the
top of which lies the soliton, first reported by Russell [117] and explained by
Korteweg and de Vries [118] as a balance between dispersion and non-linearity.
The non-diffusion of solitons (and other properties such as their stability under

Y(x,t=0)=

) exp(ikox), (1.36)
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collisions) makes them identifiable as particles, maybe in the way Schrodinger
was expecting. Solitons are not the only class of shape-preserving packets. Instead
of being self-sustained, the non-linear balance can be enforced in a much more
straightforward way by an external potential, which was the route taken by
Schrodinger. Yan showed that the displacement D(«) of any excited state of the
harmonic oscillator is shape preserving in a harmonic potential, the coherent state
being the particular case of displacing the vacuum [119]. Their energy spectra are
fascinating and offer a new meaning to the wave function [103]. The main drawback
of such a cohesion of the packet that is enforced externally is that, being static
in nature, it works for a stiff class of solutions only. For instance, if the Gaussian
(coherent state or displaced vacuum) in the harmonic potential has not the correct
width, it pulsates (expanding and contracting) as it propagates harmonically in
the potential, giving rise to the so-called squeezed states [120]. The constrained
trajectory within the potential boundaries, which corrects for diffusion by pushing
back the packet, is another limitation of this sort of shape-preserving propagation.
Interestingly, Berry and Balazs found an astonishing shape-preserving solution of
the free Schrodinger equation, where this time acceleration of the packet accounts
for counter acting its diffusion [121]. That a free packet should accelerate is even
more surprising, but this was immediately understood by Berry and Balazs as
the result of the solution not being normalised and therefore representing not one
particle in isolation but a whole family, the Galilean propagation of which causes an
emerging curvature (the caustic) in the space—time trajectory.
All the previous discussion applies for the case of a massive particle, with
dispersion given by:
D = —-V?/(2m). (1.37)

for smoothing out the wave function, in much the same way as it does with
temperature in the heat equation. If we consider a linear dispersion instead, E; =
(k| D |k'y = sk8(k — k'), with s a real number (the “speed of sound”), one can
readily solve the Schrodinger (1.35) that follows, 10,9 (x) = (—isdy + V(x) —
iy/2)y¥ (x), for the Gaussian wavepacket as the initial condition:

Y(x.1) =

1 (x — xo — 51)? .
or exp (—T) exp(iko(x — st)) exp(—yt/2)

oo o) o)) o

where we included a Gaussian obstacle on the way (at xy with strength 1}
and width oy ), but neglected non-linearities (lifetime simply comes as a product
exp(—yt/2) as already discussed). Ignoring for a while the potential on the second
line, V) = 0, one can see that the packet is just translated. With the linear dispersion,
the Schrodinger equation becomes a type of “transport equation,” as is clear from
the solution: it indeed literally transports the wave packet, real and imaginary parts
moving rigidly with the wave packet profile |y (x, 7)|?. Maybe less expected is that
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Fig. 1.9 Propagation of a wave packet whose dispersion is exactly linear, at five regular interval of
times. In free space, the packet is “transported,” both the absolute square |v/|> (thick solid) and its
real (thin) and imaginary parts, so ii is a translated copy of i . As the packet encounters a potential V{
(here located at the origin with its foot shown as the shaded area with the dotted boundary), it passes
through unaffected, with no distortion of its shape, regardless of the strength and extension of the
potential. The real and imaginary parts are what is reacting to the potential. This is observable in
the spectral emission (not shown) with a spreading of the emission towards lower k. As there is no
final state to scatter, though, the packet continues its course; as the dispersion is linear, it does so
unaffected

the presence of the Gaussian potential does not affect this picture as far as the packet
profile |1/|? is concerned: the term on the second line being a complex exponential,
it cancels exactly when taking the absolute square of the wave function. This results
in its shape-preserving motion, totally unaffected by the potential regardless of the
strength of the latter. This is shown in Fig. 1.9. Here, the spectrum of emission is
useful to understand this unexpected behaviour. The second line shows a modulation
of the real and imaginary parts when crossing the potential. The Fourier transform
of this results in smearing out the energy to lower k, the extent of which can be
arbitrarily large, depending on the potential width and strength, but as there is no
final state, the propagation in real space is unaffected. If the dispersion would be,
for instance, conic, E;, = s|k|, a reflected and also shape-preserving packet would
appear in presence of the potential, or it would be totally reflected for a large enough
potential [122].

A particular case of the linear dispersion is the flat dispersion £ = Ej, which
needs to be solved separately:

_ 2 ; _ 2
—(X—XO) + ikgx — g (ZEO + exp (—Mﬁjﬂfo) /Gv)

2 2
20; 207y,

c
V(x,1) = o,
(1.39)

This case completes naturally the linear case since there is still preservation of the
shape and an underlying coherent dynamic of the real and imaginary parts, only
there is no propagation—the packet is frozen—since the speed of propagation,
determined by the slope (being the same for all k), has vanished. Here, also the
amplitude has, nevertheless, a dynamic and the presence of a potential results in
broadening the energy, without affecting the packet profile ||>. In (1.35), the
presence of the driving term F causes the apparition of such a horizontal segment in
the energy spectrum S (k, w) space, located at the laser. The dispersion of the driven
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system will be populated too, but the laser is effectively forcing in the system a
state very much like (1.39), effectively pinning a condensate. Note also that at large
negative detunings (when the photon dispersion “penetrates” deeply into the exciton
dispersion), the upper polariton at small k is locally flat, inheriting this property
from the heavy exciton. One can thus conveniently create polariton states of the
type of (1.39) with a laser shining above the upper polariton at normal incidence.
We now turn to the more general polariton case. The state |1) can be either a
single-valued field (no spin), projecting to ¥ (x,?) in space time (where x is, in
our case, a real variable since we address the 1D problem) or a spinor [123] or
the exciton—photon coupled system, (1.3), or a combination. Without pumping and
decay, and for the scalar field with parabolic dispersion (1.37), (1.35) is a form
of Gross—Pitaevskii equation. Its driven version has been studied by Raju et al.
[124] and Vyas et al. [125]. In the polariton context, where D is given by (1.4),
the system received in-depth attention by Carusotto and Ciuti [21], Egorov et al.
[110], Ciuti and Carusotto [126], Szymanska et al. [127] and others. The non-linear
term Z is the source of much physics under resonant excitation, in particular with
parametric oscillations and scattering [128-130], which is one of the key aspect
of the Madrid experiment [23], where a so-called TOPO—for triggered optical
parametric oscillator—was used to create the condensate with a pulse (the trigger)
and set it in motion by endowing it with a momentum ko, (1.36), by exciting at
an angle. We will not address here this more complicated term but assume directly
the end product which is a generation of coherent wave packet with a momentum.
Another crucial and fundamental role of non-linearity is how the solution affects
and self-adjusts the dispersion, resulting in striking phenomenology. Linearisation
of the dispersion was also clearly observed in the Madrid experiment [23] although
in this case one was too far from this region of the polariton dispersion for such
an effect to be observed without non-linearities. Instead of analysing in details how
non-linear terms of the TOPO result in such a phenomenology (Szymanska et al.
[127] and Marchetti and Szymanska in this volume focus on this configuration), we
will observe it here in the linear regime, by propagating polaritons at various points
of the dispersion. The linear case is already interesting, thanks to the peculiar shape
of the dispersion, shown in Figs. 1.1 and 1.10. In Fig. 1.10b, the lower branch is
reproduced for a small range of k., and (c) shows its first and second derivatives.
At the point k; where aiE = 0 and where, therefore, d; E is locally constant, the
polariton dispersion is linear for a non-vanishing neighbourhood of &, as seen in (b)
where the tangent overlaps neatly with the dispersion. At other points, the contact is
more punctual. Adjusting parameters, one can engineer a variety of cases providing
a linear dispersion around a given mean momentum and with more or less extension.
We solve the dynamics numerically. There are many ways to integrate (1.35). As
we are considering a propagation problem where the solution travels for long times
over large distances, the Crank—Nicolson method is not accurate enough [131].
We adapt for the polariton problem an algorithm from Shao and Wang [132] with
several orders of magnitudes gain in accuracy over conventional finite difference
methods, allowing us to obtain the numerical results in a few seconds on a laptop
on grids of 2'° x 28 in spacextime. Figure 1.10a shows the energy spectra S (w, k)
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Fig. 1.10 (a) The polariton dispersion reconstructed in the energy (E) momentum (k) space
by propagating coherent wave packets. We have selected four illustrative cases: k = 0 where
the condensate only diffuses but does not propagate, k, where the polariton dispersion is linear
over a large neighbourhood of k and £50% this value, where the dispersion changes concavity,
(b) reproduces the lower branch with its tangents at k, and £50%k,, showing how the linear
dispersion can be excellently approximated, thanks to the engineering of the dispersion. (¢) This
engineering is done by analysing the k derivatives of E. When the second derivative vanishes, the
first one is locally constant, resulting in the linear increase of energy with momentum
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Fig. 1.11 Free propagation in real space of two polariton packets with a broad distribution of k:
in (a), the average k is zero, and the condensate expands as shown as a function of time, with a
uniform central part that pushes away its boundaries which develop oscillations. In (b), the average
k is non-zero and the propagation proceeds with the characteristic shape of a wavefront that leaves
an oscillating tail behind

for the points k, = 0 (no average momentum), k, = k; (where the dispersion is
locally linear) and +50% around this point, where the dispersion has a curvature.
Superimposing them, one can reconstruct the polariton dispersion. The initial state
has been set to be the lower polariton, so that the upper one is not, or very little,
populated. One can reconstruct the whole polariton branch with a single packet
which has a large spread of momentum. In Fig. 1.11, two narrow packets in real
space—and therefore broad packets in reciprocal space—are propagated, one (a)
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with ko = 0, the other with ko = k,. As they have a large spread in k space, the
packets echo in real space the peculiar polariton dispersion, namely, they display
an undulatory wavefront, not unlike the Airy beams of Berry and Balazs [121].
The diffusion of the k = 0 condensate is particularly interesting: the central part
provides a uniform background, pushing away its boundaries that propagate with
the characteristic shape of the polaritons of Fig. 1.11b.

In Fig. 1.12, we propagate packets with a narrower distribution of k, resulting
in approximately Gaussian shapes (or smaller undulatory tails). In the upper row,
we show the cavity ¥c and the exciton ¥x components of the wave function (1.3).
They are plotted side by side for clarity. As the system is in strong coupling, they
both behave qualitatively similarly, with different intensities as the exciton or photon
character is more marked depending on where the polariton lies on the dispersion
(at the negative detuning that we have chosen, the lower polariton is photon-like at
k = 0). This situation may change in other circumstances. When the coupling is
weaker, for instance, two beams propagate instead, dragging each other. One can
observe how the packet diffuses and propagates as ruled by the dispersion with,
indeed, a shape preserving propagation at k, where the dispersion is locally linear.
In Fig. 1.13, we repeat the numerical experiment but interposing a potential in the
middle of the trajectory. We have scaled the potential in the three cases so that
it is corrected for the different energies at the three points in the branch. At low
momentum, the potential destroys the bullet, one part is reflected, the other part is
smeared over as it continues along its initial trajectory. At k,, the packet interacts
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Fig. 1.12 Free propagation, in real and reciprocal space, for the points shown in Fig.1.10. The
cavity and the exciton fraction are both shown side by side. The packets expand quickly but for
the case k; where the dispersion becomes linear, allowing to define a polariton packet and track
it over long times. Above and below this point, the curvature has changed sign (from concavity
to convexity), resulting in similar patterns of diffusion and propagation. Below, the trace in the
energy—momentum space, reconstructing locally the polariton branch. The relatively broad set of k
components which has been chosen result in a small expansion of the polariton in the case k = k.
In the spectral image, one can see a small deviation from linearity at the tips of the segment
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Fig. 1.13 Same as in Fig. 1.12 but with an obstacle interceded in the middle of the propagation
(at x = 0). Atlow momentum, the system has the —k states close enough to escape there, resulting
in reflection of the packet, which is however much altered in the process, particularly the part which
tunnels through. At k = k/, the packet is slowed down as it tries to scatter off, but as it finds no
final state, it eventually passes through the obstacle. It is slightly deformed in the process and
propagates in its shape-preserving motion thereafter. At large momentum, the system also does
not find where to scatter off and so continue its course, but diffuses profusely because of the large
curvature of the dispersion at this point. The potential has been scaled to match the increasing
energy when going up the polariton branch

with the potential, resulting in the appearance of a spread in the spectral trace as
the packet is trying to scatter off, but as it finds no final state, it continues its course
unaffected, in a way similar to that of the linear dispersion case, Fig. 1.9. The case
at higher momenta is intermediate between the two previous ones. The state is
also isolated in energy from possible scatterer and therefore carries on its course.
However, as it also diffuses quickly because of the curvature, its existence as a wave
packet is also limited in this sense. Only the case k, is spectacular in this respect:
the bullet propagates essentially unaffected through the potential.

This is the simplest case of polariton propagation, and only remotely approaches
the experimental situation that involves non-linearity and joint, or locked, propaga-
tion of the signal and idler, pinned by the pump. This nevertheless illustrates the
new light that polariton physics can shed on problems as old as quantum mechanics
itself.
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1.6 Summary and Outlooks

Exciton—polaritons bring together antagonist properties of light and matter. In
their condensed phase, they furthermore bring these peculiar properties to the
macroscopic world. For these reasons, they are systems of rich fundamental interest
and great prospects for possible technological applications.

We have focused on the dynamical aspect of polariton condensates, which they
are particularly suited to address since they are open systems. The short photon
lifetime in the cavity allows, for instance, a continuous monitoring of the quantum
dynamics realised within the microcavity.

In a first part, we discussed the problem of the formation of the condensed
phase, from either a thermal gas or from various regimes of strong coupling
in the spontaneous emission regime. In a second part, we discussed the space—
time propagation of wave packets, an emerging framework in microcavity physics
pioneered by a new class of experiments that can set condensates in motion.

The formation of condensation is a fundamental problem with practical appli-
cations since in most systems, particles have a lifetime, even in atomic system
where they can evaporate from their trap. The semi-classical Boltzmann equation
has proved successful in describing condensation in the peculiar polariton geometry
(with its characteristic dispersion and its specific microscopic details, such as
strength of interaction and timescale of lifetimes). To access the quantum properties,
one needs to go beyond the semi-classical description. We have presented an exact
solution of quantum Boltzmann master equations for relaxation from the Rayleigh
circle (with M states degenerate in energy) that spells out how coherence grows;
Bose—Einstein condensation arises when a single quantum state—the ground state—
copies properties of the system as a whole, such as peaked fluctuations of its
number of particles. This is inherited from the macroscopic system, thanks to
the central limit theorem, that states that a large sum (for the whole system) of
random variables (populations) that fluctuate thermally with a small average (each
state in isolation being classical) results in a normal distribution (a Gaussian that
the ground state can copy). This is the quantum version of Einstein’s picture of
condensation of the ideal gas. It can be easily upgraded with pumping, lifetime and
other specifics of a polariton system which, as numerical solutions show, provide
coherence with a build-up as fast as, and steeper than, the population. As this
mechanism relies on a large number of states and we assumed degeneracy in energy
to keep the solution exact but compact, we regard this case as emblematic of the 2D
realisation of polariton physics. In this case, one state only out of a large collection
of a classical system becomes quantum. In the opposite limit of a fully quantised
system, the regime of cavity QED is realised. The reduced simplicity brought by the
fewer degrees of freedom allows an exact solution that keeps track of all quantum
correlators. The condensation in this case appears as a striking transition from the
quantum to the classical regime. In the former case, a small number of micro-
scopic variables, namely, quantum correlators associated to transitions between
well-defined quantum states (the polaritons), describe the dynamics. As pumping
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is increased and coherence grows, a breakdown of quantisation occurs with an
emerging continuous field, in the form of an increasing number of vanishing
quantum correlators. The condensation of polaritons (or dressed states) is accom-
panied by a complex display of crossings and level repulsions. When quantisation
has been smoothen out completely, a classical description is adequate rather than
the exceedingly complicated one accounting for all the quantum correlators, that
loose meaning of their own. The classical limit, on the other hand, recovers a
simple description in terms of a few macroscopic variables, namely, intensity,
population inversion and the coherence degree. Spectrally, a counterpart of the
Mollow triplet is observed with a lasing line sitting on the fluorescence spectrum.
In this coherence build-up process, we outlined the case of a thresholdless laser
where perfect coherence (factoring out of quantum correlators to all orders) is
present throughout the entire process of the quantum to classical transition. In this
case, however, formation of the condensate results in an intermediate stage with
disruption of coherence and universal fluctuations in particle numbers, as the system
shifts paradigm from strong coupling to condensation. Finally, we overviewed
some prospects of polaritons to study the quantum dynamics of propagating wave
packets, following recent breakthrough experiments that could set condensates in
motion. We have shown how and explained why a linear dispersion allows a perfect
tunneling of a shape-preserving packet through any obstacle. Polariton packets
with a small spread in momentum space along the polariton dispersion exhibit a
shape-preserving propagation at points where the dispersion is linear or where its
curvature flattens. The collision of wave packets with a potential reproduces most
of the phenomenology of the linear dispersion, letting it pass through essentially
unaffected. At other points of the dispersion, the bullet is destroyed by the potential
through its subsequent fast diffusion or scattering. As we kept only one variable of
space (and momentum), we cast this part as 1D, but the results are essentially the
same in 2D, from which we took a slice for simplicity.

We have kept in this chapter the description of these important questions of
microcavity physics as simple as possible. We regard the term “simple” here as
an important and noble one, to be understood as a synonymous of “‘fundamental,’
“essential” and “elegant,” and nothing like “oversimplified” or “trivial.” In fact, one
can see that even our simple approach is considerably complex in the mundane sense
of the term. The quantum-to-classical transition in OD, for instance, required days
of computer time on a cluster. Of course, this does not mean the picture is complete.
Most importantly, we have left away the non-linearities (except when intrinsic like
in 0D) which, in the spirit above, would have taken us too far astray. Non-linearities
make the system considerably more complex, in both senses of more rich and in its
traditional meaning. Other chapters in this volume explore some of this fascinating
physics.
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Chapter 2
Polariton Nonlinear Dynamics: Theory
and Experiments

Vladimir D. Kulakovskii, Sergei S. Gavrilov, Sergei G. Tikhodeey,
and Nikolay A. Gippius

Abstract The results of experimental studies are presented of the polariton system
in a semiconductor microcavity excited resonantly at various wave vectors by ns-
long pulse laser with various light polarizations along with a theoretical description
of the nonlinear effects in the polariton system. The interplay between the para-
metric scattering and self-instability of the driven mode results in a rich variety of
scattering scenarios (or cavity dynamics) sensitive to variation of both the intensity
and polarization state of the external pump. The observed instabilities and hysteresis
effects in a scalar polariton system excited with circularly polarized pulses can
be qualitatively reproduced within the semiclassical model of dynamically self-
organized optical parametric oscillator (OPO), based on the resonant approximation
of cavity electrodynamics and the Ginzburg-Landau-Gross-Pitaevskii-type equation
for coherent excitonic interband polarization. However, this model fails to explain
the polarization instabilities in the effectively spinor system excited with elliptically
polarized pulses. The dynamics of such a system is strongly affected by the
long-lived exciton reservoir (excited due to polariton scattering) which brings
about additional blueshift of both components of bright excitons and results in
the qualitative changes in the development of the polarization instabilities in the
driven mode and in the OPO signal. Those transitions are phenomenologically
introduced into the modified semiclassical model. In spite of some limitations,
this model provides a self-consistent approach to description of intracavity field
dynamics under both pulse and continuous wave excitation conditions and gives a
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good qualitative description of the observed polarization instabilities and hysteresis
effects in the dynamics of both the driven mode and OPO signal.

2.1 Introduction

Exciton-polaritons in planar semiconductor microcavities (MCs) are unique bosonic
excitations occurring in an active layer of the MCs due to the strong coupling of
the exciton and MC photon modes [1-3]. They are characterized by a very small
effective mass of the order 10~ of the electron mass in vacuum. The photoexcited
system of exciton-polaritons demonstrates a large number of interesting physical
phenomena due to the combination of several specific properties such as quasi- (2D),
Bose statistics, and unique dispersion law with a very small effective mass and an
inflection point in the range of small (light) wave vectors. The most striking of them
are the giant stimulated polariton—polariton scattering under resonant excitation near
the inflection point of the LP dispersion curve [4-8], polarization multistability
in highly excited MC [9-12], and nonequilibrium Bose—Einstein condensation
of exciton-polaritons under nonresonant excitation, resulting in formation of a
macropopulated state at the low polariton (LP) band bottom and, as a consequence,
in a drastic change of the polariton properties [13].

This chapter is organized as follows: First, we describe the experiments with a cw
pump which demonstrate the polariton—polariton parametric scattering with a low
threshold intensity. Then a quasiclassical nonlinear model of the interacting cavity
and exciton modes is introduced, and the role of nonlinearities is discussed. It is
shown that the marked peculiarities of the parametric LP-LP scattering are due to
the competition between the bistability of the pumped LP mode and its parametric
instability. Next, the experiments with ns circularly polarized pump are discussed,
and the hysteresis effects in the kinetics of LP-LP scattering are demonstrated. The
last part is devoted to the experiments with elliptically polarized pump. It is shown
that in order to explain these experiments, fast scattering of LPs into a long-living
incoherent exciton reservoir has to be added to the theoretical model.

2.2 Giant Stimulated LP-LP Scattering Under
CW Excitation

Giant stimulated LP-LP scattering in the optical response of planar MCs was first
observed in GaAs-based MCs with InGaAs quantum wells (QWs) in the active
layer under cw excitation at wave vector kK, slightly above the inflection point of
LP branch E}p(Kjnq), when the scattering exhibits an unusually low (smaller than
400 W/cm?) threshold of parametric scattering [4, 5, 14] (see the scheme of the
experiment in Fig. 2.1a). Specifically, such excitation results in a strong parametric
scattering into states positioned approximately on the LP dispersion curve Epp(k)
with k; = 0 and k; = 2k, called signal and idler, respectively.
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a b log(l,,/ max {l..})
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Fig. 2.1 The experimental geometry (a). The measured energy — wave vector spectra of the LP
emission under a resonant excitation at E, = 1452.7meV and ¢ = 12.5° with intensity above
the scattering threshold (b)

That is illustrated in Fig.2.1b showing the distribution of the scattered light vs
energy £ = hw and in-plane wave vector k = w sin/c. The emission spectrum is
recorded from GaAs/AlAs MC containing six 10-nm-thick InGaAs quantum wells
in a 3/2A GaAs cavity with a MC mode—-QW exciton detuning of —0.5 meV. The
excitation occurs at £, = Eyp(k,)+0.5meV= 1452.7meV, k, = 1.6 um~! ~ king
and intensity 880 W/cm?, which is above the threshold of stimulated parametric
scattering.

A simple explanation of such LP-LP scattering could be a four-wave mixing or
parametric scattering of two pump polaritons into the signal and idler polaritons with
conservation of energy and in-plane wave vector 2E, = E; + Ej, 2k, = k, + k;.
However, assuming that scattered polaritons belong to the LP branch, one finds
that the idler and the signal have to be on the intersections of Eyp(k) and 2E —
E1p(2k, — k). Thus, it is expected that the signal and idler have to shift along the
LP curve with the shift of the pump from the inflection point on Ej p, as illustrated in
Fig.2.2a. However, further studies [6, 7, 15] showed that it did not occur: the signal
and idler continue to stick to k = 0 and k; = 2k, as shown in Fig.2.2b. The
energy — wave vector conservation is ensured by the strong blue shift of both the
signal and idler.

The early theoretical descriptions of LP-LP scattering were based on the OPO
model in the simplified polariton basis, when the intensity of the pumped mode
is assumed to be fixed by external excitation [16—19]. Practically, this OPO-based
model is often reduced [16-18] to consideration of three macrooccupied modes,
i.e., the pump, signal, and idler modes, which provides a qualitative explanation
of the threshold behavior of stimulated scattering. With increasing pump intensity,
the signal and idler branches become renormalized via the parametric coupling
(Fig.2.3a). Simultaneously, dampings, i.e., the imaginary parts of the signal and
idler eigenenergies approach zero (see Fig.2.3b). At some critical pump intensity,
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Fig. 2.2 The prediction of a
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Fig. 2.3 The calculated real (left side) and imaginary (right side) parts of the signal and idler
LP branches (thick solid and dashed lines, respectively, for pump intensity |9”p|2 = 0.14 ab
and 0.44 c,d. Left (a, ¢) and right (b, ¢) panels show the corresponding real and imaginary
eigenenergies. Thin lines in panels (a, ¢) are signal and idler at |z@p|2 = 0 from Fig.2.2a. The
pump (triangle) is at (¢, A) = (14°,0.3 meV)

the damping changes sign (becomes gain), which points to the instability and
indicates the threshold of the parametric stimulated scattering.

However, the OPO model also predicts that the signal and idler at the threshold
pump intensity for parametric scattering have to shift along the renormalized LP
curves into regions ks < 0, ki > 2k, with the shift of the pump from the LP
inflection point (as shown in Fig. 2.3a), whereas in the experiments, the signal and
idler maxima are always at ky ~ 0, k; ~ 2k,.
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2.3 Semiclassical Theory of Microcavity Nonlinearities

The main peculiarity of four-wave mixing in planar semiconductor MCs is its
2D character. This makes a strong difference from the bulk (3D) case, when the
driven mode is excited on the 3D polariton dispersion curve, although renormalized
by the nonlinear interactions in the system. In a planar MC, in contrast, external
monochromatic pumping at given frequency w, and in-plane wave vector k,, excites
the polaritonic wave with the same frequency and in-plane wave vector. w, can be
set away from the polariton dispersion, which allows scanning large areas of (wp, k)
space at various pump intensities.

The semiconductor MC is a nonlinear optical system with a complicated spatial
structure that, at first sight, makes the nonlinear optical approach impractical
because of severe computational difficulties. However, in fact, all the nonlinearities
in this problem arise from the QW exciton states located in specific positions inside
the structure. The empty cavity (without QW resonances) is well treated by the
linear approach and described within the resonant approximation [20].

Within this approach, the response function of the empty cavity can be approx-
imated in the frequency domain by an oscillator with the coupling coefficients
being the residuals of the exactly calculated response function. As to the excitonic
polarization, owing to the exciton—exciton interaction, it can be described by a
nonlinear equation of the Gross-Pitaevskii type. Within the semiclassical approach,
it is convenient [9, 15] (see also [21] and the references therein) to describe the
exciton-cavity photon dynamics by coupled equations for the in-plane components
of the electric field E and the excitonic part of electric polarization P in the
cavity active layer. The basis of linear xy or circular & polarizations can be used,
E = (&.6)), P= (P, P)),orE = (&,8),andP = (L, F_), respectively.
In what follows, we will call P the excitonic field, in order to distinguish it from
the polarization states of the involved waves (elliptic, linear, circular, etc.). These
equations can be written as:

iEx = wc(k) Ex + B(K)Py + a(k)Fy, (2.1)
Py = AEy + [0y + Sox (P, .. )] Py + & . (2.2)

Here, F stands for the incident electric field that is usually regarded as a plane wave,
Fy oc e §(k — kp); i is the stochastic Langevin force; w. x = R (wc x) —iycx are
the eigenfrequencies and decay rates of the intracavity photon and exciton modes;
« and B are the cavity response coefficients and A is excitonic polarizability (so that
2\/@ equals the Rabi splitting between the lower and upper polariton dispersion
branches). omega. x are complex-valued eigenfrequencies of the intracavity photon
and exciton modes (with imaginary parts corresponding to the decay rates. The
matrix over the exciton polarization (or spin) states 5wy (P, .. .) is composed of the
energy shifts of the exciton states that depend on the excitonic field and, in general,
on some other parameters.
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The most important thing is that the exciton energy shift in (2.2) ASwx (P, ...)
depends on excitonic field P. This makes the whole problem nonlinear and its
physics really exciting. For example, even in the case of stationary pump, the
solution of nonlinear (2.1), (2.2) for the electric and excitonic fields of pumped mode
E,, P, as a function of the external pump F becomes bistable or even multistable
(if the vectorial nature of the fields is taken into account). As a result, the one-
to-one dependence of the polariton population on the external pump disappears;
the evolution of the system exhibits the hysteresis, memory, and self-organization
effects.

The use of the exciton-photon base (instead of a simplified polariton base)
brings the advantage of taking into account the TE-TM splitting effects, the
angular dependence of the polariton interaction constants, and the influence of
the incoherent exciton reservoir.

In the simplest case of circularly polarized external pump the (2.1), (2.2) can be
written for scalar amplitudes of excitonic and electric fields &2 and & with the same
circular polarization. This corresponds to the experimental fact that in the case of
circular polarized pump, the polariton scattering into states with opposite circular
polarization is small and can be neglected [22]. Then the exciton energy shift in
(2.2) can be written as a simple scalar blue shift, proportional to exciton intensity,
S (2,...) = V|2|*. As aresult, (2.2) takes the form of a nonlinear Shrodinger
or Gross-Pitaevskii equation for exciton field [15].

The numerical solution of (2.1), (2.2) in the scalar approximation for long
(=~ 1 ns) nearly rectangular pump pulses (shown as the dash-dotted line in Fig. 2.4a)
demonstrates a sharp threshold-like transition from the picture which agrees with
the above simple model of four-wave mixing to a completely different one (see
Fig. 2.5). Note that the difference in the pump intensities between the panels (a)
and (b) is &~ 1% only. The integrated intensity of the scattered polaritons increases
above transition by several orders of magnitude (note the logarithmic vertical scale
in Fig. 2.4).

Figure 2.4 explains the time kinetics of the scattering above the threshold pump
intensity. The shape of excitation pulse |.%|?> (dash-dotted line in Fig. 2.4a) was
chosen so that the threshold intensity is approached slowly during pulse duration.
Actually two sharp transitions occur (at ¢ 2~ 600 and 700 ps). Both transitions are
characterized by jumps of driven mode amplitude &7, itself (see the solid line in
Fig. 2.4a).

In order to understand these transitions, one has to investigate the stability
of solutions of (2.1), (2.2) in the case of stationary external field .#,(t) =
const with only one macroscopically filled pumped mode, i.e., of the form
Pk, t) = Pk,t) + 8k,kp@pe_iwp’f, Ek,t) = Ek,t) + Sk,kpéope_iwpt, where
|2/ Pyl. |&/ &p| < 1. In the zero order, we get the following cubic equation for
the amplitude of the driven mode &7,

[(@p — we)(@p — wx — V| Z,P) — AB] 2, = AT, (2.3)
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Fig. 2.4 The calculated time dependences of input excitation pulse (dash-dotted line), of excitonic
field (solid line) and absorption coefficient (dots) (a), and of angular spectra of the scattered light
(b). Excitonic field vs pump intensity during the excitation pulse (c); inset shows the magnified
part of the region of transitions. The time delay in panel (c¢) between empty, black, and triangled
dots is 1, 10, and 100 ps, respectively; the triangles are labeled by time in ps. Solid S-shaped curve
is the solution of (2.3)
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Fig. 2.5 The calculated time-integrated energy-wave vector spectra of the scattered light from
MC when the pump pulse amplitude is slightly below (a) and above (b) the threshold. Dotted lines
are the signal and idler branches from Fig. 2.3a calculated at the parametric scattering threshold
|2,1> = 0.14

The solution of (2.3) is shown as the solid S-shaped line in Fig. 2.4c. Such
S-shape is well known in the theory of interacting excitons [23] and nonlinear
cavities [24, 25], it brings bistability into the behavior of MC polaritons that was
first demonstrated in the MC reflectivity under normal light incidence [26]. The
bistability occurs under the resonant pumping of the polariton mode at k = k;, and
changes significantly the scenario of the polariton—polariton scattering.
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In order to understand these changes, one has to analyze the stability conditions,
linearizing (2.1), (2.2) near the solutions with one macrooccupied mode. This is
described [15, 27] by the linear eigenproblem for parametrically coupled signal
&, Pk,t) = & P(k)e” and idler &*, 2*(k,t)e ' = &, P(k)e "
(where k = 2k, — k),

& (k) E(k)
2m | _ . |20
@5_(1;) = He @5_(/5) , (24)
Pk) P2k
we (k) B 0 0
2 2
A = 1 A w,+2V|P| 0o V72
0 0 2w, — o} (k) —p*
0 —(V7))* —A* 20, —wf =2V P

The change of the sign (from the negative to positive one) of the imaginary
parts of the eigenenergies of (2.4) indicates instability of the solution with a
single macro-occupied mode. The idler and signal branches discussed above (see
Figs. 2.5a,b, 2.3) are the eigenvalues of (2.4) calculated with 93 = 0.14, the
threshold value for stimulated scattering into ks < 0, ki > 2k,. Indeed, Fig. 2.4b
shows that at # < 600 ps, the scattered intensity is maximum at predicted angles
ks < 0, ki > 2k,. However, at t ~ 600 ps, instead of stimulated scattering into
these modes, another type of instability develops. The trajectory of the system
on the [L@(kp, 02, | Fky, t|2] plane (see Fig. 2.4c), shows that the instability at
t ~ 600 ps is the jump of the k;, mode between the lower and upper branches of the
S-shaped curve.

In the empty cavity with quadratic dispersion, the upper branch of S is usually
stable [24, 25]. In an MC with inflective LP dispersion, it can become unstable
against parametric scattering. This can be seen from, e.g., Fig. 2.3c,d, showing the
signal and idler branches calculated on the upper part of the S curve at |32p|2 =
0.44. Instead of damping, a large gain is realized for polariton modes in fairly
wide ranges around ks 3 0, ki S 2k,. This results in fast developing stimulated
scattering into these modes (see Fig. 2.4b). It is enhanced by increased absorption
(see the dashed line in Fig. 2.4a). But because of the fast scattering into these modes,
the pumped mode becomes unstable and eventually jumps back into a lower position
(at t ~ 700 ps). Now, owing to the well-developed scattered noise in the system, this
lower position becomes more or less stable, although subject to noisy fluctuations
because of the already developed scattered states and the competition between them
and the pumped mode.

Thus, the unusual behavior of the signal and idler in stimulated LP-LP scattering
results from the interplay between two instabilities in the resonantly excited MC:
the single-mode bistability of the pumped LP mode intensity with respect to the
external pump, and the parametric instability of the highly excited LP mode with
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respect to the decay into scattered LPs in a wide range of k [15,27-30]. The signal
at ky ~ 0 appears as a result of dynamic self-organization of the scattered polaritons
into a pair of new macrooccupied signal-idler modes ks ~ 0, k; ~ 2k,.

2.4 Kinetics of Stimulated Polariton Scattering: Hysteresis
Behavior of LP-LP Scattering and Experimental
Evidence for Dynamic Self-Organization

Direct evidence of a multimode self-organized nature of scattering was obtained
from the studies of LP system dynamics under ns-long pump pulses with a
spectral width of 0.7meV [31, 32]. Due to spectral broadening of excitation, the
shifts in polariton energy are reflected by temporal variations in the transmission
energy spectrum. Thus, the technique makes it possible to visualize the temporal
correlations between the resonance energy and intensity of the intra-cavity field.
Such experiments allow to investigate the formation of signal at k ~0; strong
hysteresis effects were discovered in the kinetics of the optical response of pumped
as well as of scattered LPs [31, 32].

Figures 2.6a and b show the transmission spectra recorded at k = k, with a
time interval of 100-200ps at peak excitation intensity P smaller and larger Py,
respectively. It is clearly seen that both the spectral position and the FWHM of
the transmission signal recorded at the low excitation density change very weakly
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Fig. 2.6 Transmission spectra recorded at k = k, with time delays between 0.06 and 1.66 ns
at the peak excitation densities P = 11.3 (a) and 17.3kW/cm? (b). The spectral position of the
excitation pulse is shown by black vertical arrows labeled as Pump. The pump pulse profile /,(z)
is shown in the inset
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during pulse duration. Meanwhile, the spectra recorded at high P exhibit a well-
pronounced broadening and a strong blue shift of the signal. The former behavior
is characteristic of a driven mode in a nearly linear regime, while the latter is the
fingerprint of a highly nonlinear regime.

The typical time dependence of excitation pulse intensity /() used in [31, 32]
is shown in the inset to Fig. 2.6 (see also the solid line in Fig. 2.7a); the pump
polarization is o, and pump frequency is approximately 0.5 meV above the LP
dispersion branch at k, = (kpy, kpy) = (1.96,0) um™". Figure 2.7 summarizes the
measured scattering dynamics.
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Fig. 2.7 Time dependences of the MC transmission intensity (a), spectral position of the
transmitted signal (b), and the emission intensity at k = 0 (¢) recorded for several peak excitation
intensities P (shown as numbers near curves) below and above the threshold of the stimulated
parametric LP-LP scattering. Pump profile /,(¢) is shown in panel (a) by a solid line labeled as
Pump
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The population dynamics of the driven LP mode (with k = k;) was obtained
from the MC transmission measurements. The active region in the cavity is sepa-
rated from the detector by a Bragg mirror that does not introduce any nonlinearity
and/or spectral selectivity. Because of that, the spectral intensity of the pump pulse,
transmitted through the MC, I;(w, ), is proportional to the squared magnitude of
intracavity electric field |&(w, kp, 1)|? and, therefore, provides a direct informa-
tion on its spectral and time dependences. Measuring of the spectra at different
time delays with averaging over time intervals of ~ 70ps enables one to obtain
information both on the time dependence of |&'(w, k,|* and its blueshift due to the
interparticle interaction in the photoexcited LP system: The time dependence of a
spectrally integrated intensity [ I(w,)dw = I(t) is proportional to |& (kp., 7)|?,
whereas the time dependence of the first momentum

—1
Eip(t) = [ / Itr(a),t)da):| / hold(w, t)do, (2.5)

provides information on the dynamics of the average energy of the pumped LP
mode.

The time dependence of MC transmission signal /;;(kp, 7) o |& (kp, 7)|? is shown
in Fig. 2.7 along with the pump profile /,(¢) for various peak excitation intensities
P = max I,(¢). At small P < 10.7kW/cm? |&(k,, )| is a superlinear function of
I, on both the ascending and descending parts of the excitation pulse. However,
the monotonous dependence I;(Ip) is violated with increasing P, namely, I
starts showing a very narrow peak in the range of nearly constant exciting field at
t ~ 0.2 ns indicating the instabilities in |&'(ky, #)|*. The peak grows fast with P and
shifts slightly towards the pulse onset. Measurements of the spectral position of the
maximum of the transmission signal showed that it changes very weakly during the
pulse duration at P < 10.7kW/cm?, whereas a further increase in P results in its
strong blueshift (Fig.2.7b). Such a behavior is indicative of a nearly linear regime
of the driven mode at low P and a highly nonlinear regime at high P.

It is revealing to redraw the experimental relationship between /i(¢) and I,,(¢) as
the implicit function 7,(1,) (equivalent to the dependence |&'(k,)|* as a function
of |.Z|%) (see Fig. 2.8a). It can be seen that already at P =10.7 kW/cm?, I,
as a function of /I, demonstrates a weak hysteresis. The hysteresis magnitude
grows quickly with increasing P, which indicates a critical transformation of
the driven LP mode, related to its bistability. The well-pronounced hysteresis
behavior at high P also appears in the dependence of the blueshift vs I, as shown
in Fig. 2.8b. The vertical width of the hysteresis loop is less than 0.1 meV at
P =10.7kW/cm? increasing to ~0.6meV at P =17.3 kW/cm?. Note, however,
the significant difference in the hysteresis loops in /(/,) and ELp(t)(Ip). The sharp
decrease in [+(/}) is followed by a rather weak change in ELP. That indicates the
appearance of a strong contribution to Erp made by polaritons scattered from the
driven mode during highly efficient stimulated LP-LP scattering.
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Fig. 2.8 Measured dependences of intensity (a) and spectral position (b) of the MC transmission
signal as a function of the external field intensity for excitation densities below, close to, and above
the threshold for the stimulated parametric LP-LP scattering. The inset in (a) shows a typical
single-mode response of the intracavity field on the external pump, calculated for a nonlinear
exciton oscillator

In case of single driven mode instability, the hysteresis in the dependence of the
driven mode intensity vs pump is expected to be maximum, i.e., between the upper
and lower borders of the unstable part of S-curve .1 and 2, respectively (see
the inset in Fig. 2.8a). The significant shrinking of this hysteresis (see Fig. 2.4),
may be caused by the fast parametric scattering after the bistability transition of the
driven mode.

The measured dynamics of the scattered k = 0 harmonic of the electric field in
QW inside the MC, found from the time dependences of the MC emission normal
to its plane I;(k = 0,7) o |£(k = 0,1)]> o I5(0,t), is shown in Fig. 2.7c. It
is clearly seen that 1,(0, 7) and, hence, |&(0, ¢)|* differs significantly from exciting
pulse shape /,(7). At low P < 13.4 kW/cm?, the signal reaches its peak value at
t = 0.2—0.3ns, i.e., only somewhat later than the pumping pulse and then decreases
fast, by an order of magnitude at f ~0.35ns, at I, ~0.5P. At P > 15.5 kW/cm?,
the signal behavior changes drastically. After the marked decrease of the signal
at t =0.2 — 0.35ns, it starts to grow and reaches its second peak at # ~0.85ns
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Fig. 2.9 Experimental (a) and calculated (b) time dependences of the k, distribution of LP
emission at k, = 0 and pump intensity P > Py,. The pulse profile is shown at the excitation
wave vector k, = 1.8 wm™!. The scale (in arbitrary units) is explained in color bars. k resolution
is equal to 0.06 um~! at k, < 1 um~' and 0.2 um~—! at k, > 3 um~'. Time dependences of
kuwm corresponding to 1/2maxy Ip(k,,t) are displayed in the upper panels by white lines (i.e.,
the FWHM of the measured “signal” and “idler” k, distributions can be seen between these lines)

when I;(¢) decreases already by more than twice. The intensity of this second peak
increases threshold-like, by more than two orders of magnitude in the range of P
between 14.9 and 17.2 kW/cm?.

The measured dynamics of the wave vector distribution of the scattered LPs in
a wide range of k is shown in Fig. 2.9a. The time evolution of the k-distribution
at ky = 0 for ky from -0.9 to 0.9 um™' and from 3.1 to 4 um™"' is recorded at
P = 1.4Py,. The strong LP emission connected with LP-LP scattering appears
only at # > 0.35ns, just after the abrupt increase in &'(kp) induced by the self-
instability of the driven LP mode.

The scattered signal appears in the range of k, between —0.4 and 0.8 yum™!
(with a maximum at k, ~ + 0.7 um™') and then its maximum shifts fast, during
0.15ns, to k ~ 0. The growth of the signal at k ~0 on  ~0.2 — 0.5ns is followed
by a strong narrowing and the appearance of a narrow idler at k ~ 2k;,. Note that the
signal states from k = —0.7 to 0.8 um™' at £ ~ 0.3 ns are already in the range of
stable states of the three-mode OPO [33]. Nevertheless, the signal shifts with time
towards k = 0. Hence, the simplified three-mode OPO model is not sufficient to
describe the scattering evolution: the development of the signal at an initially less
populated state k ~ 0 compared to k, ~0.7 um™" indicates that the selection of the
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final OPO states is determined by multiple scattering of LPs into the whole range of
populated k-states. The stimulation of the scattering into the signal and idler states
by their macrooccupation leads to a strong hysteresis in their population vs that
of the driven mode [31]. The decay of the stimulated signal at k = 0O starts only
att > 1.2ns.

Numerical simulations using the time dependence of the excitation pulse taken
from the experiment show that this behavior can be qualitatively described within
the framework of the semiclassical model, (2.1), (2.2) [15,27, 30]. For example,
Fig. 2.9b shows the calculated time evolution of the k distribution of LPs which
reproduces qualitatively the experimental panel (a): the simulations predict (1) the
filling of a wide range of k-states with a maximum at positive k just after the jump
of the internal electromagnetic field at k;, and (2) subsequent formation of OPO
states with a dominating signal and idler at k ~ 0 and 2k,

Comparison of the experiment and numerical simulations elucidates the nature
of the observed jumps and hysteresis behavior in the dynamics of the excited LP
system. The hysteresis of I, vs I}, is initiated by the self-instability of the driven LP
mode that leads to a fast increase of & (k;,) and blueshift of the driven mode towards
the pump frequency. Even with decreasing /p, the system retains a considerable
population of scattered LPs. This keeps the driven mode close to the resonance with
the pump frequency, which provides its strong excitation.

The reason for the unusual “hard” regime of the onset of stimulated polariton
scattering is a stepwise increase of eqw(kp) to values well above the parametric
scattering threshold, which occurs due to the bistability of the driven polariton
mode. The strong overshoot of Py, in MCs becomes possible due to the presence of
the inflection point in the LP dispersion. It leads to a very high rate of the LP-LP
scattering which provides an explosive growth of LP population in a wide k range
and, consequently, a rapid decay of the driven mode. The latter causes the strong
modification of the hysteresis loop in /i vs Ip and gives rise to the hysteresis of
Is vs I;; observed in the same experiment.

The eventual quasi-three-mode state with k = ~0, ky, ~ 2k, occurs as an
essentially collective formation. The OPO state forms as a result of a dynamical self-
organization in the multimode scattering including many other weakly populated
LP states along with the three dominating macrooccupied states. Thus, the final
OPO state differs from the “three-mode” OPO solution discussed in [15]. It can be
numerically shown that the actual stability of the three-mode pattern is maintained
by the presence of numerous weak above-condensate modes so that the whole
system appears to be highly correlated; i.e., it demonstrates a new—dynamically
self-organized—type of OPO.

However, a careful examination of the measured hysteresis effects in Figs. 2.8a,c
shows [32] a significantly more pronounced hysteresis of the blueshift as compared
to that of the transmission intensity (panels (b) and (a) in Fig. 2.8, respectively).
This difference cannot be explained within the model [15,27, 30], based on (2.1),
(2.2) and, hence, dealing only with coherent polariton scattering into optically active
states. The scattering into incoherent exciton states (localized and/or with large
wavevectors), not taken into account in this model, seems to play an important role.
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Filling of such relatively long-living optically inactive states may explain the fast
shrinking of the /;(/,) hysteresis loop, while the blueshift which integrates all the
occupied exciton states is still demonstrating a well-pronounced hysteresis (see next
section).

2.5 Polariton Multistability in a “‘Spinor” Polariton System

In the previous, it has been found that the “scalar” approximation of (2.1), (2.2)
neglecting the polariton spin degrees of freedom describes satisfactorily the insta-
bilities and hysteresis effects in the transmission and scattering signal intensities
in MCs excited with a circularly polarized light. It is obvious that the response of
the optically excited polariton system becomes more complicated in the case of
arbitrary optical polarization when the exciton spin degrees of freedom are allowed.
In a general case, one can expect that the system can have several stable states under
a given cw pump, whereas the state actually chosen by the system is determined by
the history of the excitation process [9,21,34,35]. In this section, for simplicity, we
consider the case of pumping at k, = 0 (a single-mode case).

Figure 2.10a—e compare the measured temporal dependences of transmission
of MC with detuning of 1 meV under excitation with linearly, elliptically, and
circularly polarized pulses with degrees of circular polarization (DCP) 0, 0.2, 0.6, 1
at P = 28.5kW/cm? > Py, normal to the QW plane (k = 0). The temporal delay
of the dominating 0™ and 7, polarization components of the signal with respect to
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the pump peak is seen to be in the range of 150-200 ps for all DCPs. The increase in
I+ in the range of decreasing pump power (after the pump peak is already passed)
is provided by the blue-shift of effective polariton energy.

Figures 2.10b and e show that the transmission signal retains both the circular
and linear pump polarizations; in such cases, only a weak depolarization of
the transmitted light is observed. Retaining of circular polarization agrees with
the angular momentum conservation law. On the other hand, under elliptically
polarized excitation 0 < ,oécm) < 1, the ratio between both circularly and linearly
polarized components of the signal intensity (0* and Tx,y, Tespectively) varies
with time (Fig. 2.10c,d). The dominant 0+ component increases relatively to o,
whereas the dominant 77, component decreases relatively to 7, at the pulse onset.
However, these changes are not stable: reverse changes are observed after several
tens of picoseconds, and the ratios of the components in both circular and linear
polarizations return eventually to the initial values close to their values in the pump

(circ)

(1) and pji (7) are in antiphase forany p, ~ and excitation

circ

pulse. The changes in p,

densities (Fig. 2.11).
The increase in pj () of the transmitted pulse at the pulse onset is easily

explained by the model based on vectorial (2.1), (2.2). This model suggests that
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densities. Excitation densities in the experiment are 3.6 (1), 7 (2), 10 (3) and 15kW/cm? (4). Left
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the nonlinear blue shift of polaritons is described by the coherent exciton field
only. It can be characterized by the contact interaction constants between excitons
with same (V) and opposite (V>) circular polarizations. Taking this into account,
one immediately arrives to a Gross-Pitaevskii equation for spinor two-component
(0T ,07) exciton polarization with two constants V] and V, instead of one V' = 1V}
used above for description of the scalar system. For instance, the blue shift of the
24 component in this approximation reads as So] = V|| 24> + V5| Z_|*. In
the polariton system in GaAs-based MCs, V; is negative (the excitons with opposite
spins are attracted to each other) and |V,/ V)| < 1 [22,36]. More studies on the
polariton interaction constants can be found in [37-41].

As |Vo/ V1| < 1, the repulsive interaction between polaritons with the same
J. values is larger than with the opposite ones, and hence, an increase in the
pump density is accompanied by a higher increase in the effective frequency of the
polariton resonance (see (2.5)) El} in the dominant o polarization. This increase
is well seen in Fig. 2.11a. The positive feedback between E}} and the magnitude
of electric field in o™ polarization explains the instability of the system and the fast
increase in pff . in the pumped mode. The decrease in ,oémc) observed just after its
jump up correlates with the sharp blueshift of the spectral maximum in the minor
o~ polarization. Indeed, Fig. 2.11a shows that E~EP increases only with a small
delay compared to El} and rapidly reaches values close to values of E}} As a
result, the delaying o~ component of the electric field in the QW increases along
with decreasing degree of circular polarization of the passed pulse. However, the
increase in EL_P cannot be explained by the model based on (2.1), (2.2), where only
the coherent field mode on the quantum well is taken into account. Indeed, at 1, < 0
an increase in pl% . should lead to a decrease rather than an increase in E~EP.

Figure 2.11a demonstrates another feature of the time dependence of the
spectral position of the transmission maximum that cannot be explained within
the framework of the coherent model based on (2.1), (2.2). That is, its very weak
dependence on ¢ at + = 0.5 — 1ns, where the transmitted signal and, hence,
|€(w, kp, t)|? decreases by almost an order of magnitude. The characteristic time
of the relaxation of ELiP to the initial (unperturbed) value is about 0.3 ns. Such time
is characteristic of long-lived exciton states in the exciton reservoir rather than of
polaritons near the LP band bottom which is by two orders of magnitude shorter.
Thus, the exciton reservoir gives a dominant rather than negligible contribution to
the blueshift in spite of the fact that the pump energy is slightly below the exciton
level, and hence, the reservoir states have to be taken into account for description of
the resonantly excited polariton system.

Recently, there have been developed models that introduce phenomenologically
transitions of optically driven excitons into the incoherent exciton reservoir state
in which the overall pseudospin is relaxed so that the reservoir provides equal
blueshifts for both polarization components in the coherent state [11, 42]. The
equations for intracavity electric field & and exciton polarization & in the circularly
polarized basis coupled with the integral population of reservoir .4” are written as:
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iy = (e —iye) & + a.Fy + BP4, (2.6)
& = (v —iye) & + a.Z_ + B, (2.7

P4 =[x + VI| P4 + Vol 2P+ (Vi + Vo) )2
—i(yx + v+ VI P-P)| P4 + ASy 2.8)

1P_ = [wy + VI|P-|> + V| PP+ (Vi + Vo) A2

—i(yx + v + V24 7) | 2- + A6, 2.9)
JV = _yrr/V + 2yx (|f@+|2 + |f@—|2)
+ AV | 2L P 2| (2.10)

This model is a generalization of (2.1), (2.2). Here, omega.x are real-valued
and y.x are decay rates of the intracavity photon and exciton, yy, is an additional
decay rate of excitons that corresponds to the linear mechanism of light absorption,
providing the term 2y, (| 24> + | 2_|?) in (2.10); V; stands for the rate of the
nonlinear interaction between &1 which provides additional occupation of the
reservoir (4V;| 24 |?|2—|* per unit time) due to the mixture of excitons with
opposite polarizations; and y; stands for the reservoir own decay rate.

Microscopically, the nonlinear absorption of cross circularly polarized excitons
occurs due to the scattering of a pair of bright excitons with opposite spins (J, =
—1 and J, = +1) into dark excitons (J, = —2 and J, = +2), which is closely
related to biexciton creation (see [38] for details). The model does not consider
reverse transitions of incoherent (reservoir) excitons into the driven mode (induced
scattering). Thereby, this approximation is valid as long as the occupation of the
reservoir states is relatively small.

Equations (2.6-2.10) can be easily generalized to the case of a multimode system
with exactly the same nonlinear interaction terms (corresponding to the contact
exciton—exciton interaction in real space), its linear part in the k-space being the
same as in [21]. In the many-mode calculations represented in Figs. 9—11, the cavity
dispersion EJ®™(k) and response coefficients g tm(k), Brerm(k) for the TE
and TM cavity modes are properly taken into account using the transfer matrix
technique [43].

The numerical solutions of (2.8-2.10) carried out with negative constant V, of the
contact interaction between excitons with opposite circular polarizations are shown
in the right panels of Figs. 2.10-2.11. It is seen that they reproduce qualitatively all
the experimental features discussed above. The parameters used in the simulations,
Va/ Vi = —=0.1,V;/ Vi = Tx1073, hy, = 2x 103 meV, and yy; = 3x 107> meV, are
chosen to meet the following experimentally established conditions: (1) the overall
occupation of the reservoir is comparable to that of the driven (optically active)
polariton mode, so that P < P{™ (2) the temporal peak of the signal can be
delayed by one or two hundreds of picoseconds with respect to the excitation peak,
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and (3) the decay time of the reservoir states is of the order of ~ 300 ps, which is
characteristic of excitons localized due to fluctuations of the QW potential and/or
free excitons with large lateral wave numbers.

Comparison of the calculated dependences of the LP mode blueshift and DCP in
Fig. 2.11c and d shows clearly that the increase in pf)irc is due to the instability
leading to the jump in the effective resonance frequency of polaritons in the
dominant ot polarization. The subsequent return of the system into the original
polarization state is due to the occupation of the exciton reservoir; in view of the
fast spin relaxation of incoherent excitons, this occupation leads to equal shifts for
both circularly polarized components of the macro-occupied mode of the field in the
quantum well.

Finally, let us consider the polarization properties of the signal of parametric
scattering under pumping at the magic angle (k, ~ 1.8 um™"). Here, two points
deserve a discussion. First, in the general case of elliptically polarized, excitation
the signal is expected to reflect variations in the DCP of the driven mode that are
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Fig. 2.12 Time dependences of the pump pulse intensity (a, e), transmission intensity (solid
line), and DCP (dotted line) (b, f), weighted mean values of the transmission energy E + in two
polarization components ot and o~ (thick and thin lines, resp.) (¢, g), OPO signal intensity
(solid line), and DCP (dotted line)(d, h), for P > Py,. Straight lines in panels (c, i) indicate
the mean value of pump energy. Left and right panels represent experimental and calculated data,
respectively. In the experiment P = 18 kW/cm?
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strongly affected by the reservoir. Second, the signal polarization axis under the
linearly polarized pump is rotated by 90° [44]. Thus, one should check if (2.6-2.10)
can reproduce this effect in spite of the reservoir-induced interaction between cross-
circularly polarized excitons.

The scattering is investigated at negative photon-exciton detuning (A =
—1.5meV) with a view to make the pump frequency close to that used for normal
incidence pumping considered above.

Figure 2.12 represents measured and calculated dynamics of intra-cavity field at
k = k, (which corresponds to the cavity transmission) and k = 0 (OPO signal)
under elliptically polarized excitation with DCP = 0.5 for P > Py,. The behavior
of the driven mode is similar to that under normal incidence pumping. Indeed,
Fig. 2.12b shows a sharp increase in the transmission intensity at t = 0.1-0.4 ns.
The growth of the field amplitude in the driven mode is first followed by an increase
in its DCP (Fig. 2.12c), which is followed by a fast reverse change. This occurs
as soon as the system enters the above-threshold region where the energies of o+
components of intracavity field (Fig. 2.12d) are partially leveled due to the reservoir
filling.

Figure 2.12 shows that the OPO signal develops with a delay of about 0.1 ns
compared to that in the driven mode. The domination of the leading polarization
component (o) is strongly enhanced in this signal, its DCP reaching ~ 0.85 at
t ~ 0.2 ns. The lowering of the DCP of the driven mode at # > 0.2 ns makes the OPO
signal lose its polarization significantly; however, the signal restores a high DCP
during further evolution accompanied by the decrease in transmission intensity.

The simulation of the time dependences of the driven and signal mode intensities,
DCPs, and blue shifts is shown in the right panels of Fig. 2.12. It is seen
that the calculated dependences reproduce qualitatively the measured instability
peculiarities observed when studying both of the driven and signal modes.

Let us now turn to the case of an exactly linear polarization of the excitation at
kp > 0 parallel to that of the TM cavity mode. The dynamics of the OPO signal
at P > Py, is shown in Fig. 2.13. In the range of high signal intensity, the DLP

a experiment c calculations
=7 1 P=14 kW/cm’
25
Fig. 2.13 Time dependences Q5
of the OPO signal intensity =5 [ signal | signal
(a, ¢) and degree of linear
polarization (b, d) under the 0
pump F (¢) polarized linearly é 0 b d
along the TM cavity mode N
(Z Il &), for P > Pay. i
Left and right panels GE; g-
represent experimental and og \/
calculated data, respectively. £
Time dependences of the 5 -1 5 ; 5 ;

pump pulse intensity are . .
shown in (a, ¢) by thin lines Time (ns) Time (ns)
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of the signal reaches 90%, and the polarization axis is 90° rotated with respect to
the pump (which corresponds to negative DLP values). Figure 2.13c,d show that the
calculations using (2.5-2.9) reproduce both the signal dynamics and its high linear
polarization.

Thus, the dynamics of the OPO signal confirms the important role of the
reservoir. Under elliptic excitation, the o* polarization components tend to be
levelled by the reservoir. Note, that this effect by itself could be assigned to repulsion
between cross circularly polarized excitons, V, > 0. On the other hand, the axis of
signal polarization is found to be inverted with respect to the pump, which shows
that the sign of V, is negative. Reproduction of these effects within (2.6-2.10)
proves that they provide a self-consistent qualitative explanation for the correlation
of the time dependences of the energies and amplitudes of the polarized field
components in the QW and explains the coincidence of the instability thresholds
for the cases of linearly and circularly polarized pump waves. At the same time,
such a simplified model is insufficient for an exact description of the kinetics of
photoexcited polaritons. For example, the calculation does not describe the partial
depolarization of the signal observed in the experiment with linearly polarized pump
light. Comparison of Fig. 2.11a and b indicates that the blue shift at the rear front of
the pump pulse (at # > 0.2 ns) remains stabilized for a much longer time than that
predicted by the model. Such discrepancies are expected, since (2.8-2.10) do not
take into account the nonzero spin relaxation time in the reservoir and the possibility
of reverse transition of excitons from the reservoir to the coherent state.

2.6 Conclusion

The paper addresses non-equilibrium transitions in a multistable system of exciton-
polaritons in planar MCs under ns-long resonant (by frequency and angle) excitation
at a normal to the MC plane and at the magic angle at k = kj,5. Excitation with
spectrally broadened pulses allowed visualizing the temporal correlations between
the effective resonant energy, intensity, and optical polarization of the intra-cavity
field at k = 0 and ki, all of them undergoing the strong changes on reaching
the threshold pump power. The widely used theoretical model based on the Gross-
Pitaevskii equations written for purely coherent macrooccupied polariton states
has been shown to explain qualitatively the instabilities only in a scalar polariton
system excited resonantly with circularly polarized pulses. The hysteresis effects
are due to multimode scattering when the self-instability of the nonlinear pumped
polariton mode is accompanied by the explosive growth of the scattered polaritons
population due to parametric instability of the highly excited polariton mode. The
subsequent self-organization process in the nonlinear polariton system results in a
new—dynamically self-organized—type of OPO.

However, this model fails to provide even a qualitative explanation of the
polarization instabilities and hysteresis effects in the effectively spinor polariton
system excited with linearly and/or elliptically polarized pulses. Most important
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is that the observed phenomena in principle are not described within a model
considering only the two exciton—exciton interaction constants (V] ). The dynamics
of the polariton system above Py, has been found to be strongly affected by the long-
lived exciton reservoir (excited by polariton scattering) which influences the blue
shifts of the LP modes. This results in the qualitative changes in the development of
the polarization instabilities in the driven mode and the OPO signal.

The proposed modified model based on (2.6-2.10) for describing the intra-
cavity field dynamics accounts phenomenologically for the coupling of the macro-
occupied polariton states with an exciton reservoir. In spite of some limitations,
this model provides a self-consistent approach to the intra-cavity field dynamics
under both pulse and continuous wave excitation conditions and a good qualitative
description of the observed polarization instabilities and hysteresis effects both in
the driven mode and OPO signal.
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LLA. Shelykh, D.D. Solnyshkov, and A.I. Tartakovskii for collaboration. This work
was supported by the Russian Foundation for Basic Research, the Russian Academy
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Chapter 3
Vortices in Spontaneous Bose—Einstein
Condensates of Exciton—Polaritons

Benoit Deveaud-Plédran and Konstantinos G. Lagoudakis

Abstract One of the most striking quantum effects in an interacting Bose gas at
low temperature is superfluidity. First observed in liquid “He, this phenomenon
has been intensively studied in a variety of systems for its remarkable features
such as the persistence of superflows and the proliferation of quantized vortices.
The achievement of Bose—Einstein condensation in dilute atomic gases provided
the opportunity to observe and study superfluidity in an extremely clean and well-
controlled environment. In the solid state, Bose—Einstein condensation of exciton
polaritons now allows to plan for the observation of similar phenomenology.
Polaritons are interacting light-matter quasiparticles that occur naturally in semi-
conductor microcavities in the strong coupling regime and constitute an interesting
example of composite bosons. Here, we report the observation of spontaneous
formation of pinned quantized vortices in the Bose-condensed phase of a polariton
fluid. Theoretical insight into the possible origin of such vortices is presented in
terms of a generalized Gross—Pitaevskii equation. In the second part of the chapter,
we provide the clear observation of half vortices, special to spinor condensates. We
then go no, in the last part of this chapter, to study the dynamics of spontaneously
created vortices. We show that their path is determined by the disorder landscape
towards their final stable position.

3.1 Introduction

Exciton polaritons have been cornered, almost by chance, by a careful reflectivity
study of a vertical cavity surface emitting laser (VCSEL) by Claude Weisbuch in
1992 [1]. In this seminal paper, the normal mode splitting was observed for the
first time and attributed to the strong coupling between the excitons confined in the
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quantum wells placed in the spacer layer and the photons confined in the Fabry—
Pérot cavity. Since this initial demonstration, a few years were needed to get to our
present understanding that polaritons can be considered, in a wide density range,
as good bosons. A considerable amount of time has also been necessary to get
convinced that these half-matter/half-light quasiparticles could behave in a way that
is really different from what is observed for laser photons in VCSELSs.

The outline of this chapter will then be the following: in the first part, we will
rephrase some on the important properties that allow polaritons to become such
interesting quasiparticles. In the second part, we will show that these particles are
good bosons and that they can Bose Einstein condense, although as a highly non
equilibrium and strongly interacting type of condensate. In the third part, we will
describe our observation of pinned vortices in condensates. In the fourth part, we
will give evidence for the existence of half vortices due to the fact that polaritons
do have a spin. We will then terminate by some observations of the dynamics of
vortices.

3.2 Basics of Polaritons

As is shown in a very schematic way on Fig. 3.1, polaritons are the result of
the coupling between quantum well excitons and cavity photons (dashed lines
in Fig. 3.1). On the scale of the figure, only ten inverse microns, the parabolic
dispersion of excitons appears to be flat. When the quality of the mirrors is sufficient,
strong coupling occurs between the photon and the exciton modes, leading to
coupled states called polaritons, as proposed initially by Hopfield [2]. Here, we
call the new quasi-particles microcavity polaritons, and we will study the properties
given by their dispersion relation (continuous lines in Fig. 3.1). The strength of
the coupling gives the splitting between the two modes, and is usually labeled Q.

Fig. 3.1 Dispersion curve for
microcavity polaritons. The
dashed red curves show the
dispersion of the uncoupled
exciton (Ex) and photon (Ph)
modes. We assume zero
detuning, i.e., the same
energy at k = 0 The modes

Energy (eV)

resulting from the coupling 1.68 | i
are the two polariton modes
shown by the black LP
continuous lines: the lower YT X :
polariton (LP) and the upper -5x10 N (0 _1) >

ZASY

polariton (UP)
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Polaritons possess quite a number of very interesting properties directly given by
the shape of their dispersion. Importantly enough, it is worth noting that the window
shown in Fig. 3.1 represents only a very small window of the Brillouin zone. The
two properties that we will use extensively in the present work are the fact that
polaritons have a very small mass coupled to the fact that they may be considered
as good bosons in a very extended temperature and density range. One important
feature of polaritons is that, despite the quality of the cavity achievable these days,
with Q factors up to 10°, the lifetime of the photon component of the polariton
is very short. The photon part therefore leaks out of the cavity within 1-10ps,
carrying out all the information on the polariton states. First, the wave vector of
the polariton is directly related to the angle of emission of the photon [3] (10°
corresponding roughly to one inverse micron). Second, the intensity, polarization,
noise, and coherence of the emitted photons exactly map out the properties of the
polaritons inside the cavity [4].

The mass of polaritons comes mainly from their photon part and is smaller
than 10™* times the mass of a free electron. This extremely light effective mass
has been recognized quite soon as a key feature for the Bose—Einstein condensation
of polaritons at relatively high temperatures [5]. In fact, the idea of using quasipar-
ticles, such as, for example, excitons, in solids was even put forward much earlier
by Blatt [6] and by Moskalenko [7] with the same kind of idea in mind.

Different experiments have been carried out following this idea, in particular
experiments using luminescence under high excitation density, in order to try
obtaining evidence for Bose—Einstein condensation. The first experiments were
rather deceiving as, when reaching the saturation density, the oscillator strength
of excitons vanishes and the strong coupling regime is lost [8]. Improving on the
sample quality and optimizing the number of quantum wells included in the spacer
layer (at the antinodes of the electromagnetic field), it has been possible to observe
highly non-linear effects. The first observations were wrongly attributed to polariton
lasing [9] and are now considered as transition to the standard VCSEL regime.
High-quality samples allowed 3 years later to observe similar non-linear effects,
this time in the strong coupling regime [10, 11] At the time, the authors did claim
for stimulated scattering only, when they apparently got the first real signature of
Bose—Einstein condensation in a solid.

Nevertheless, the experiments carried out at the time, and in particular the
experiments on parametric amplification with polaritons, showed that polaritons do
behave as good bosons up to quite high densities [12, 13]. In such experiments, the
non-parabolicity of the lower polariton branch is used that allows getting proper
energy and momentum conservation at the same time in the parametric scattering
process. The efficiency of such processes is very large as it corresponds to real states.

3.3 Bose-Einstein Condensation of Exciton—Polaritons

The constant improvement of the quality of the samples, and of the experimental
skills, allowed after a series of preliminary papers by the group of Dang in
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Grenoble [14], to come to a clear demonstration of Bose—Einstein condensation,
first in a CdTe-based microcavity [15]. All experiments that will be described in this
chapter have been realized on the very same sample that already allowed the group
of Dang in Grenoble to realize very promising steps on the way to the demonstration
of Bose—Einstein condensation [16, 17].

The demonstration took a long series of steps that basically consist in: first
finding conditions where, under non resonant excitation of the system at energy such
that the coherence imprinted by the exciting laser is not passed onto the polariton
gas, the polaritons show a well-behaved Boltzmann distribution below threshold.
Second, the distribution of polaritons that we can directly probe-over the whole
bottom polariton branch, turns from Boltzmann to Bose like. Third, a very strong
narrowing at threshold is observed, that corresponds to the sudden increase of the
intensity emitted at k = 0, as well as of the g(” of polaritons. Fourth, this threshold,
with an intensity increase by more than a factor of 10, exactly corresponds to our
estimation of approximately one polariton per state, i.e., the onset of stimulated
scattering.

Last, but not least, the sudden appearance of long-range order above threshold
has been probed with the use of a stabilized Michelson interferometer. As this set-
up will be an essential part in our experiments on vortices in polariton condensates,
it is worth describing the set-up as is done in Fig. 3.2. The essential part of this
set-up, for the demonstration of the existence of Bose—Einstein condensation of
polaritons, is the stabilized Michelson interferometer in the mirror-retroreflector
configuration. This interferometer provides interference between the image of the
condensate and its centro-symmetric replica, the center of which is the so-called
autocorrelation point.

This system has allowed us to demonstrate, for the first time, the build-up of
long-range order in a polariton condensate when driven above threshold [18]. The
typical result is highlighted in Fig. 3.3. Below threshold, the interferogram only
shows high contrast fringes (and thus a high degree of spatial coherence g)) around
the autocorrelation point, over a size that is of the order of less than one micron,
typically the de Broglie wavelength of the polaritons at the estimated temperature of
the gas. Above threshold, clear interference fringes appear that basically extend up
to the edges of the excitation spot, and consequently, the measured spatial coherence
has significant values over the whole condensate. Strong fluctuations of the intensity
and of the contrast originate in the disorder inherent to the sample itself, and in
particular to the disorder of the Bragg mirrors.

Bose condensation of polaritons has been subsequently confirmed by other
groups on different samples with, for example, the work of the group of David
Snoke [19], using a needle to trap the condensate, the group of Yamamoto [20],
the group of Jacqueline Bloch in particular with the work on 1D condensates [21]
and eventually in the group of Nicolas Grandjean, at room temperature, in GaN
microcavities [22].

One of the main reasons allowing the polaritons to Bose condense, despite the
importance of disorder clearly visible in the images, has been found to be related
to mode synchronization [23]. Such a mechanism, which is very general and gas
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Fig. 3.2 Experimental setup. M Mirror, RNDI—4 (variable) rotational neutral density filters, L,
L1-2 Lenses, RR Retroreflector, BS Beam splitter, MO Microscope objective, SF' Spectral filter,
FM1-3 Flipping mirrors. The flipping mirror FM1 allows switching between CW or pulsed
excitation. FM2 allows for the direction of the luminescence either to the CCD at the output of the
interferometer or to the streak camera if the mirror is in place. Finally, if FM3 is in the indicated
place, the luminescence is directed to the spectrometer entranced slit. The lenses L1 and L2 are
mounted on electronically controlled translation stages which, depending on the position, allow
for the displacement of the real-space image on the entrance slit of the spectrometer or the of the
streak camera. RND1 is the neutral density which regulates the excitation intensity (monitored
by the power meter), and RND2—4 are used to prevent saturation of the detection devices. The
acquisition of images and the translation stage control are computerized, which allows for the
tomographic decomposition experiments to be performed
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Fig. 3.3 Left, spatial coherence of the polariton cloud below threshold, coherence is only observed
at the autocorrelation point, over a size that corresponds to the de Broglie wavelength of the
polaritons. Right, above threshold, sizable coherence is observed over the whole of the excitation
spot. This coherence is strongly modulated by the disorder
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way beyond Bose—Einstein condensates, allows different oscillators, initially with
slightly different frequencies, to come to the same common frequency through
minimal coupling strength. In our case, mode synchronization is achieved through
the polariton interactions, which are coming mostly from their excitonic fraction.

3.4 Vortices in Polariton Condensates

In nature, any flow of fluid with closed streamlines can be considered as vortex flow.
Everyone is familiar with vortices like the ones forming in a water container that is
quickly emptied through a hole in the bottom. Classical vortices are characterized
by a rotational flow of the fluid around the vortex core, which is easily traceable
through the density minimum. The “fluid rotation” is better described by a quantity
called circulation that can take any value.

In quantum fluids, vortices are similar objects (the fluid rotates around the vortex
core, and the core is a density minimum), but here, the circulation is quantized. The
quantization of the circulation is directly imprinted in the phase of the quantum fluid
which is linearly changing from O to multiple integers of 21 when going around the
vortex core. The integer number of 21 phase jumps is the so-called vortex charge.

One of the prominent observations, in superfluids such as Bose-Einstein conden-
sates, is the existence of such quantized vortices. In the case of atom condensates
and liquid “He, beautiful experiments have been realized through stirring of the fluid
with lasers or through rotation of the magnetic trap (the fluid container), and vortices
have been observed in several forms (single vortex or vortex lattices).

In the case of polaritons, the disorder in the sample and the non-equilibrium
nature of the fluid concur to the spontaneous creation and pinning of vortices. As
all properties of the polariton quantum fluid are carried on the emitted photons,
by studying the luminescence image, one should be able to see both the phase
winding and the density minimum of possible vortices. The observation of the
density minimum is straightforward, but the phase winding is not readily available.
In order to access the phase winding property, it is necessary to perform an
interferometric measurement identical to the one mentioned above for the estimation
of the gV function. As it is known, the interference of two oblique constant phase
wavefronts will result in a series of straight interference fringes. On the contrary,
when interfering a constant phase wavefront with a field carrying a vortex (a 2y
singularity), the resulting interference pattern will be similar to the constant phase
interference, the only difference being that at the center of the singularity; the
interference fringes will show a forklike dislocation (the number of fringes changes
by one from above to below the singularity). A vortex in a polariton condensate is
thus evidenced in a very direct way by the presence of a fork-like dislocation in the
interference pattern (Fig. 3.4).

In principle, one would expect that, for polaritons as it is the case for atom
condensates, the observation of quantized vortices should be obtained upon setting
the condensate in rotation through the appropriate means [24]. However, the
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Fig. 3.4 (a) Interference pattern at one given point of the sample featuring a forklike dislocation.
Fringes give evidence for the long range order. The forklike dislocation highlighted by a circle
corresponds to a quantized vortex. (b) The fourier transform of the pattern allows to demonstrate a
24 phase shift around the core of the vortex

initial observation of vortices in polariton condensates has been obtained without
any rotation [25]. In this work vortices appear spontaneously (without setting
the polariton condensate in rotation) and are evidenced to be pinned at specific
locations. Two issues are thus necessary to address: the origin of the vortices and
the pinning mechanism.

There exist a number of scenarios for the vortex generation. Vortices may be
created during the first moments of the condensate formation when “islands” of
particles with different phases merge to create a large condensate with a common
phase. Another possibility is related to the fact that polariton condensates are far
out of equilibrium and are governed by gain-loss mechanisms. It has been shown
that nucleation and trapping of vortices may occur, thanks to the interplay of losses
and gain [26]. Finally, hydrodynamic nucleation of vortices is another possible
mechanism when a polariton condensate flows with high velocity against an obstacle
[27] (flow of particles down a steep potential wall against a small-size local potential
maximum). Pinning of the created vortices can then occur at locations where the
flows are such that a vortex is energetically favored. This can also explain the
necessary pinning of the sign of the vortices that are observed here.

3.5 Half Quantum Vortices in Polariton Condensates

Up to now, the spin of polaritons has been systematically ignored because in the
experiments that were presented above, the polarization of the condensate was either
highly linear or a combination of non degenerate linear polarization states along
the crystallographic axes. In the case of polaritons with low enough disorder, as
will be shown, it is necessary to take into account the spin of exciton—polaritons.
In the circular polarization basis, the linear polarization is a superposition of the
two circular components (the two spins) with equal amplitude and phase. In this
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case, both spin components are forced to behave precisely the same way, thus
suppressing the spin degree of freedom. This type of quantum fluid, that only bears
the phase degree of freedom, is the so-called scalar fluid. On the contrary, if the
polarization degree is not highly linear and the different polarization states (e.g., x
and y) are degenerate, then the two spin components are not necessarily identical
thus allowing for an independent spin contribution. In this case, there is another
degree of freedom coming into play: the spin. This type of quantum fluid, having
not only the phase but also the spin degree of freedom, is the commonly known
spinor quantum fluid. Quantized vorticity is a property of quantum fluids that has
been widely studied in various types of superfluids either with or without spin.

Superfluids with a two-component (spinor) order parameter are characterized
by a different type of vortices than those found in conventional scalar superfluids.
This new type of vortices is the so-called half-quantum vortices (HQV). They have
lower energy with respect to full vortices and constitute the elementary excitations
of spinor superfluids [28, 29]. When circumventing their core, the phase and the
spin (or polarization) vectors experience a =+  rotation. In this sense, HQV can
be understood as a half-phase vortex combined with a half-polarization vortex [30].
In *He superfluids, the HQV cannot be formed as the spin degree of freedom is
absent. However, in *He or in triplet superconductors, the order parameter has two
or more components, so that the formation of HQV is possible. So far, experiments
have not presented any direct evidence for HQV in *He [31], while more reliable
indications of existence of HQV have been reported in cuprate superconductors
[32]. Recently, HQVs have been proposed as a smoking gun for the superfluid
of exciton—polaritons in semiconductor microcavities [33]. Indeed, the spatially
inhomogeneous polarization splitting that is present in CdTe microcavities, makes
polariton condensates on different areas of the sample to have a different topology,
either that of a scalar or that of a spinor quantum fluid. Taking advantage of the
spinor topology, we will provide evidence of HQV's in polariton condensates.

In order to fully characterize a vortex in a polariton condensate, one needs two
winding numbers, (k, m), one for the polarization angle and one for the phase. One
can express the order parameter of the condensate in the linear xy basis as

Plin = Vnel?") (COS n(r)) :

sinn(r)

where 71(r) is the polar angle that characterizes the orientation of the polarization
and 6(r) is the phase of the coherent polariton fluid. Any kind of vortices (fractional
or full) are described in this notation by rotation of the phase and the polarization
following 6(r) — 6(r) 4+ 2wm and n(r) — n(r) + 2wk where the two winding
numbers k and m can each take either integer or half-integer values provided their
sum is an integer. Four types of half vortices are described by these two winding
numbers being equal to +1/2. In order to reveal the specific phenomenology of
HQVs with respect to the integer vortices, it is convenient to analyze the circularly
polarized components of the order parameter, which can be expressed as
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Two spin components, the phase and the polarization rotations, are now conve-
niently mixed, and for the case of half-quantum vortex where 6(r) — 6(r) + 7 and
n(r) — n(r)+m, itis straightforward that a zero rotation takes place for one circular
polarization, and a full 2v rotation is achieved for the other circular polarization.
This means that if one were to detect a half vortex, it would be easiest when looking
in ot and o— polarizations simultaneously. Then HQV would be observed as a full
vortex in one polarization and no vortex in the other one.

Note that in the case of full phase vortices, the forklike dislocations are expected
to be seen in the same place in both circular polarizations, whereas in the case of
HQV the fork should only appear in one of the circular polarizations. This is indeed
what we have performed by changing the configuration of our interferometer so as
to allow for the separate imaging of the two circular polarizations [34].

The result of the experiment is shown on Fig. 3.5 on a location of the sample
where the polarization splitting is almost negligible (spinor topology). At this
location, a HQV was observed, and indeed, as expected from the simple theoretical
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Fig. 3.5 (a) Circular polarization resolved interferograms of the polariton condensate. On the left
of the image is shown the ot polarization, and the red circle shows a well resolved fork-like
dislocation. (b) 0~ polarization where the same position does not show any dislocation. This is
exactly what is expected for a half quantized vortex. (¢, d) phase extracted from the respective
interferograms showing the existence (or not) of the phase singularities
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comments given above, a forklike dislocation is observed in the right circular
polarization interference when no dislocation is observed on the counter circular
polarization.

In order for the claim of the observation of the half vortices to be solid and
unquestionable, it is necessary to rule out a possibility that has not been taken into
account up to now and might, if true, have devastating consequences: how can we
be sure that we are not observing two independent condensates, one with spin-up
polaritons and a vortex and one in spin down and no vortex? If this were to be true, it
is impossible to claim that we have evidence of HQVs. One hand-waving argument
is that there are many occurrences where a half vortex coexists with full vortices in
the same excitation spot (different topologies depending on the position), and thus,
there has to be phase coherence between the two spin components.

Although solid enough as an argument, it does not apply everywhere because
in most of the cases, HQVs are seen alone. For this purpose, a new experiment is
needed to be designed in order for the phase coherence between the two opposite
spins to be unquestionably demonstrated in the presence of a half-quantum vortex.
A polarization mixing Mach—Zehnder interferometer in the mirror-retroreflector
configuration was used, where the first splitter is a polarizing beam splitter that
separates the two spin components and sends them in the two different paths: one
with a mirror and one with a retroreflector. Note that the polarization in the two
paths is now orthogonal, and so no interference is possible after recombining the
two spin components. A half-wave plate was thus used in one of the two arms to
get the two polarizations collinear which then got recombined at the second beam
splitter and were sent on the camera. The resulting interference pattern can be found
in Fig. 3.6 and corresponds to the same HQV as in Fig. 3.5. The mere existence
of interference fringes provides direct evidence that there is excellent coherence
between the two spin components. Moreover the interference pattern observed has
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Fig. 3.6 (a) Interferogram coming from the polarization mixing interferometer. Although the
symmetry should be the same as for the standard Michelson interferometer, the interferogram is
clearly not centrosymmetric, featuring a forklike dislocation only on one side (red circle) and no
forklike dislocation on the symmetric position with respect to the autocorrelation point (shown in
the inset of panel (a)). (b) Phase extracted from the interference pattern of (a). A phase singularity
is clearly visible in the red circle whereas a quasi-flat phase is seen in the symmetric position



3 Vortices in Spontaneous Bose—Einstein Condensates of Exciton—Polaritons 77

a surprising feature: It is not symmetric with respect to the autocorrelation point
(shown in the inset of Fig. 3.6a) even though there is a retroreflector in one of the
two arms of the interferometer. This is another indication that we are dealing with
a half vortex. By definition, a half vortex can be conceived as a full vortex in one
spin and no vortex in the other spin. The interference between a condensate with a
vortex and a condensate without a vortex will only show one forklike dislocation at
the location of the vortex.

It is worth noting here that half vortices have not been predicted or observed in
VCSELs. No arguments exist though on whether this is impossible or not, and thus,
it is a subject worth more investigation.

3.6 Dynamics of Vortices in Polariton Condensates

In all the experiments described above, the condensate is created non resonantly
through excitation with a quasi-CW laser having an energy much higher than the
polariton resonance. At such energies, the laser photons create unbound electron—
hole pairs, which then relax to the bottom of their respective band, then bind into
excitons in the non radiative part of the Brillouin zone, the so-called “reservoir”.
Excitons therefore accumulate in the reservoir, and, when their density is large
enough, exciton—exciton interactions allow them to scatter to the bottom of the lower
polariton branch. At sufficient excitation density, the occupation of the lower branch
may exceed one, and the stimulated scattering then populates this lower branch
very efficiently. Such a density exactly corresponds to the threshold for polariton
condensation.

A very interesting question is then, how long does the condensate need to build up
the long-range order that we have detected and that in fact constitutes the smoking
gun of the demonstration that condensation exists. We have therefore decided to
carry out time-resolved experiments on the build-up of long-range order in polariton
condensates. For such experiments [35], we use non resonant femtosecond-pulsed
excitation.

Preliminary measurements had shown that, in such a case, the population if the
exciton reservoir indeed builds up for tens of ps, until the threshold for stimulated
scattering is reached [36,37]. The larger the excitation density, the shorter is the
time to reach this threshold. In Fig. 3.7, we show the streak image after non-
resonant excitation of the condensate, of a cross-section of the interferogram of the
condensate. The images are recorded along a narrow line that does not pass through
the center (the autocorrelation point) of the interferogram but is shifted below by
a few microns. Therefore, below condensation threshold (panel (a) of Fig. 3.7), no
coherence is observed.

When we increase the excitation density so as to reach the stimulation threshold,
the population in the lower polariton branch raises with a delay of about 45 ps, and
we do not observe any delay in the build up of coherence (panel (b) of Fig. 3.7).
Rising further the excitation power allows to reach the stimulation threshold much
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Fig. 3.7 Streak images corresponding to cuts of the interferogram of the condensate off the
autocorrelation point. Below threshold, right, no fringes are observed. At threshold, center, the
condensate builds up within about 40 ps, and the fringes appear simultaneously with the population.
At large densities, right panel, the same phenomenology is observed with even shorter delays

sooner (see panel (c) of Fig. 3.7). Once again, the interference pattern appears with
negligible delay with the build up of the population in the polariton ground state.

The next question is therefore to be able to understand how fast are vortices
created in the disordered landscape of the sample: do they appear directly at the
position where we observe them on time-averaged images, or are they created
elsewhere and then move and get trapped at their final pinning position?

Such an experiment requires the time resolution over the full image of the
interferogram. To this aim, we have to send the interferogram to the entrance slits
of a streak camera where it is “decomposed” into multiple slices with real-space
and temporal resolution throughout a tomographic decomposition. This allowed for
a full reconstruction of the two-dimensional interferogram from O to 155 ps with a
3 ps resolution given by the streak camera. The results of the experiment are shown
in Fig. 3.8.

The forklike dislocation observed in the time-integrated interferogram is initially
not pinned. It exhibits a smooth motion along a well-defined path towards the center
of the condensate. The most interesting migration dynamics is found within the first
35 ps of the condensate life.

The vortex appears close to the side of the excitation spot simultaneously with
the formation of the condensate at about 20 ps after the excitation pulse arrival.
The subsequent smooth vortex motion is then abruptly interrupted at 55 ps when
the vortex encounters a potential trap created by the stationary disorder that acts
as a pinning center. Four snapshot interferograms taken during this time interval
are shown in Fig. 3.8. For visibility purposes the constant component of the 2D
interferograms is removed, and the color scale of the remaining interference pattern



3 Vortices in Spontaneous Bose—Einstein Condensates of Exciton—Polaritons 79

Fig. 3.8 Dynamics of the
migration of the vortex. Each
image corresponds to a
subsequent time frame (25,
35, 45, and 55 ps). The red
circle shows the final vortex
location and is present in each
time frame, whereas the
colored squares show

the current vortex location.
The CW part of the
interferogram has been here
removed and the contrast is
saturated for readability
purposes

is saturated, giving a very high contrast. At the sample location we studied here,
the condensate of exciton—polaritons was linearly polarized with a polarization
pinned to one of the crystal axis, suppressing the existence of half-quantum vortices
detected at different places on the same sample.

We have performed numerical modeling of our experiment using the stochastic
generalized Gross—Pitaevskii equation. We have introduced into the model a set of
quite reasonable assumptions. The non-resonant excitation creates hot electron—hole
plasma that further relaxes to form high energy excitons, which we separate in two
subsets:

1. The “inactive” excitons that do not fulfill the required energy and momentum
conservation conditions to scatter directly into the condensate state, described by
the density n; (r,1).

2. The “active” excitons that do fulfill those conditions and act as the condensate
source, described by the density 72 4(r, t).

One has to distinguish between active and inactive excitons in such a way because,
once stimulated scattering into the condensate takes place, the reservoir of active
excitons is immediately depleted.

The initial inactive exciton concentration n;(r,t) is created by the external
pump P(r,t). These excitons disappear by non-radiative recombination, which is
described by the decay rate y;, or they can turn into the active excitons at arate 1/7g.
Those excitons may further relax into the condensate. The dynamics of optically
injected excitons is given by a first rate equation:

any (.t 1
m(r.t) _ —yini(r,t) — —ni(r,t) + P(r,1)
ot TR
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The active exciton population may decay radiatively (with a rate y4) or be
scattered to the condensate of exciton—polaritons. This scattering is stimulated by
the population of the condensate. The rate equation for the reservoir of active
excitons reads

dna(r.t)

1
o —(VA+RR|W(r,f)|2)nA(r,t)—;nz(hl),

where Rp is the rate at which excitons scatter into the condensate. ¥ (r,?) is the
mean scalar polariton field. The Gross—Pitaevskii equation then writes:

oy (r,t hv?2
i- W;Z ) - Ry + gllﬂ(r,z)|2 + V() + grua(r,t) + gru (1, 1)

_%[VC + RRnA(r,t)]} Y(r,1).
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Fig. 3.9 (a—c) Amplitude of the condensate wavefunction during the early moments of the
condensate formation. When stimulated relaxation of particles from the excitonic reservoir to the
condensate takes place, one can observe the formation of particle clusters with a well defined
phase but random phase from cluster to cluster. As the clusters grow and start merging together,
vortices start to form and either leave the condensate or annihilate via vortex-antivortex binding.
In later moments, only few vortices remain that might get eventually pinned. (d—f) Corresponding
phase of the condensate wavefunction. The colored contours depict the wavefunction amplitude of
panels (a—c). At 3.5 ps (panel (f)), one can see that the 2y phase singularities correspond to density
minima, representative of the vortex cores
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The interactions between condensed polaritons in the mean-field approximation are
characterized by the constant g, whereas interactions between incoherent excitons
and polaritons are accounted for by gg. The stationary disorder V(r) has been
chosen as a randomly generated Gauss correlated disorder [38]. Polaritons decay
from the condensate at a rate y¢.

The stochastic element in our model is given by the initial condition:

Y (r.1) = [6(r)/2]dr,

where 0(r) is a stochastic noise, drawn from a Gauss distribution and characterized
by the correlators:

0*(r),0(r") =28(r —r"), (0(r),0(r")) = 0.

This initial condition implies an average mode occupancy of 1/2 and random phase,
which samples the Wigner distribution of a vacuum state and physically represents
the quantum noise of the polariton vacuum.

The relaxation of excitons from the reservoir to the condensate is triggered by
the initial noise and amplifies the density creating small isolated clusters with well-
defined phase as shown in Fig. 3.9 for a single realization. The growth and merging
of these clusters with different relative phase at the transition towards a state with
macroscopic phase coherence leaves initially many topological defects in the phase.
This spontaneous vortex generation process is a manifestation of the Kibble—Zurek
mechanism [39, 40] and is also considered as a vortex generation mechanism for
atomic condensate systems [41].

The above equations can be solved numerically, and each realization of the
initial noise term corresponds to the arrival of a different pulse in the experiment.
Averaging over multiple realizations of the noise is equivalent to the experimental
procedure where the images registered by the streak camera result from averaging
over multiple pulses. Different initial conditions result in an altered distribution of
vortices. We show some typical results on Fig. 3.10.

The kinetics of vortices is defined by the interplay between the local disorder
potential and the non-equilibrium character that induces flows of polaritons. Vortices
appear in a spontaneous way within the excitation spot. They are then dragged
by the existent flows resulting in a vortex migration. The observation of a stable
vortex is the result of a dynamical equilibrium in this disordered system. Recently,
a similar experiment has been realized by Daniele Sanvitto and coworkers whereby
they resonantly imprinted a vortex in the condensate [42] and they observed the
kinetics due to the residual momentum of the beam.
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Fig. 3.10 (a—c) Simulation of real-space vorticity map for subsequent time frames (40, 50, 90)
where the orange pixels correspond to the appearance of vortices under different initial condition
realizations. The colored contours depict the local disorder potential. (d—f) Realization averaged
interference patterns for the same time frames as in (a—c). Many forklike dislocations migrate in
time to different real-space locations. The red circle shows the final location of a pinned vortex.
The colored squares show the current position of the specific vortex for each time frames

3.7 Conclusions and Outlook

In this review chapter, we have detailed the different observations that were made
on a single CdTe microcavity sample, excited by an non-resonant laser so as not
to imprint the phase or polarization of the laser onto the polariton population. The
different realizations of the random disorder on the surface of the sample allowed
us to study different effects linked with the local configuration of disorder, exactly
as if we had many samples available.

In such a way, we have been able, after the clear demonstration of the occurrence
of Bose—Finstein condensation in particular through the build-up of long-range
order, to evidence the occurrence of spontaneously formed vortices. Further on, we
have demonstrated, as predicted by theory, the occurrence of half vortices due to the
spinor nature of the polaritons. Eventually, we have been able to follow dynamically
the formation of vortices, although their initial position is random. Many novel
experiments are coming along that line of research, with more samples [43].

It is important to emphasize that interesting quantum fluid properties of polari-
tons can also been obtained in a non spontaneous fashion. One of the major
interests of polaritons indeed lies in the ease with which they can be optically
generated. This possibility has first been raised by theoreticians, which ideas have
soon be implemented by experimentalists. For example, lacoppo Carusotto and
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Cristiano Ciuti proposed to evidence superfluid properties of resonantly created
polaritons through Rayleigh scattering [44], which proved to be a very clever
idea. This has allowed, for example, very clear demonstration of the superfluid
properties of polaritons in different experimental configurations [45-47]. In another
interesting design, Michiel Wouters has proposed to study, through four-wave
mixing experiments [48], the ghost branch of the Bogoliubov superfluid dispersion.
Such an observation has indeed been recently obtained with the proposed scheme
[49]. Other theoretical prediction does pave the way for future experiments [50,51].

The hydrodynamics of a superfluid on polaritons in the presence of an obstacle
is one of the research lines that, although studied only very recently, have already
shown results of major interest [52, 53].

The ability to realize, with the available techniques at hand, confined environ-
ments for polaritons [54,55], has proven and will prove again to be a very promising
avenue for the finding of novel exciting effects.
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Chapter 4
The Berezinskii—-Kosterlitz—Thouless Phase
Transition in Exciton—Polariton Condensates

Georgios Roumpos and Yoshihisa Yamamoto

Abstract In a homogeneous two-dimensional system at nonzero temperature,
although there can be no ordering of infinite range, a superfluid phase is expected to
occur for a Bose particle system. Theory predicts that, in this phase, the correlation
function decays with distance as a power law, and quantum vortices are bound to
antivortices to form molecular-like pairs. We study the relevance of this theory to
microcavity exciton polaritons. These are two-dimensional bosonic quasiparticles
formed as a superposition of a microcavity photon and a semiconductor quantum
well exciton and have been shown to condense at high enough densities. Because of
the short lifetime, full equilibrium is not established, but we instead probe the steady
state of the system, in which particles are continuously injected from a pumping
reservoir.

We create a large exciton—polariton condensate and employ a Michelson interfer-
ometer setup to characterize the short- and long-distance behavior of the first-order
spatial correlation function. Our experimental results show distinct features of the
two-dimensional and nonequilibrium characters of the condensate. We find that the
Gaussian short-distance decay is followed by a power-law decay at longer distances,
as expected for a two-dimensional condensate. The exponent of the power law is
measured in the range 0.9-1.2, larger than is possible in equilibrium. We compare
the experimental results to a theoretical model to understand the features and to
clarify the influence of external noise on spatial coherence in nonequilibrium phase
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transitions. Our results indicate that the Berezinskii—Kosterlitz—Thouless (BKT)-
like phase order survives in open dissipative systems.

We also present our observation of a single vortex—antivortex pair in a condensate
of the appropriate size. Pairs are generated due to pump noise and are formed
sequentially at the same point due to the inhomogeneous pumping spot profile.
They are revealed in the time-integrated phase maps acquired using Michelson
interferometry. Our results suggest that vortex—antivortex pairs can be created in a
two-dimensional condensate without rotation or stirring. The observed correlated
motion of a vortex and antivortex imply that vortex—antivortex pairs do not
dissociate, which is consistent with the BKT theoretical prediction as well as with
our observation of a power-law decay of the spatial correlation function.

4.1 Introduction

Lower dimensionality is known to enhance the role of fluctuations and interactions
in the formation of a spontaneous coherence in a macroscopic level, which often
leads to the appearance of exotic phases. Such low-dimensional ordered systems are
currently the subject of intense study.

Bose-Einstein condensation (BEC) started as a theoretical peculiarity [ 1] but was
unearthed when F. London realized its connection to superfluidity of liquid helium
[2]. The subject became popular recently, thanks to experimental breakthrough in
atomic gases [3,4]. Experiments that probe many-body effects in atoms have now
reached a high level of sophistication (see, e.g., [5] and references therein), so the
limitations of the system start to appear. In particular, matter-wave interference and
measurement of particle statistics are challenging in atomic condensates. It has not
been possible yet to isolate truly lower dimensional gases, and engineered lattice
potentials have been limited to very periodic structures.

Solid state implementations hold promise to solve all of the above problems.
Optical studies using emitted photons naturally enable interference and particle
statistics experiments, perfect confinement in two or one dimensions is achieved
in quantum well or quantum wire structures, and it is not unreasonable to believe
that, once a suitable experimental system has been identified, any lattice structure
will be realized through electron beam lithography and nanofabrication techniques.

To understand the experimental challenges involved in this approach, we com-
pare the required particle density in solids with that in atomic gases. In three
dimensions, the BEC transition can be crossed by increasing the following phase-
space density to a value of order one

2 hz 3/2
nAd =n (m*”w) ~1, 4.1)

where n is the particle density, m™ is the particle mass, T is the temperature, and A
is the thermal de Broglie wavelength. Atoms are heavy particles, and atomic gases
cannot reach high densities. BEC was possible after the development of trapping and
cooling techniques that allowed the isolation of low-density cold gases. Excitons
in semiconductors have masses comparable to the free electron mass my, so they
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are lighter than atoms. Unfortunately, current technology does not allow to cool
them down to very low temperatures (less than 0.1 K). Therefore, the threshold (4.1)
must be reached by increasing the particle density. In most semicondutor systems,
however, spurious nonlinear effects take place at high densities and obscure the BEC
transitions one wishes to study.

The approach we have taken is to study new quasiparticles of much smaller
effective mass. Microcavity exciton polaritons are superpositions of a quantum
well exciton and a microcavity photon. Because of their photonic component, their
mass is very small, on the order of 10~*my, so that the condensation threshold
can be reached with a reduced particle density. The unambiguous evidence for
exciton—polariton condensation was obtained in a relatively homogeneous GaAs
quantum well (QW) microcavity [6], highly disordered CdTe QW microcavity [7],
an artificial trap [8], and lattice structures [9]. However, photons are very difficult
to confine so that the polariton lifetime is short, and full thermal equilibrium cannot
be reached. In our experiments, we continuously pump a reservoir exciton state
which feeds the system with fresh quasiparticles at the same rate as their decay
rate, so that a constant particle density is maintained. It is instructive to compare
experiments on exciton polaritons to experiments on atomic systems that show
extended phase coherence, since the exciton—polariton condensates are intrinsically
open-dissipative systems at nonequilibrium conditions (see, e.g., [10] and references
therein). Indeed, signatures of nonequilibrium physics are evident in our data,
but this feature can be considered as an advantage. Namely, this unique feature
of the system enables experimental studies that would be otherwise impossible
and raises new questions, such as what superfluidity means in a nonequilibrium
context.

The exciton—polariton system is two dimensional. It is known that Bose—Einstein
condensation cannot occur in an infinite two-dimensional gas [11], but a superfluid
transition of a universal character is expected to take place at low temperatures
[12]. Powerful spectroscopic and interference techniques enable us to probe the
many-body configuration and extract details that are impossible to observe in other
settings.

Section 4.2 presents the equilibrium theory of two-dimensional superfluidity. In
Sect. 4.3, we review the experimental methods for the initial characterization of the
sample and the condensation phenomenon, including real-space and momentum-
space luminescence spectroscopy. In Sect. 4.4, we detail on the measurement of the
spatial correlation function, and Sect. 4.5 addresses the formation and observation
of vortex—antivortex pairs. The dynamics of vortices in OPO polariton superfluids
are theoretically studied in the chapter by EM. Marchetti and M.H. Szymarska.

4.2 Two-Dimensional Bose Gas and Superfluidity

The goal of this section is to describe equilibrium two-dimensional superfluidity.
The theory developed here serves as a background for the experiments described
later in this chapter, which probe superfluid-like behavior in microcavity exciton—
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polariton condensates. In this section, thermodynamic equilibrium is assumed,
so the reader should be careful, as the theory cannot be applied directly to
nonequilibrium condensation studied in this chapter. The theory is still useful,
however, as a guide to theoretical ideas and for comparisons to experiments in
different systems, e.g., atomic gases.

4.2.1 Order Parameter, Spontaneous Symmetry Breaking,
and Long-Range Order

In order to describe a phase transition, it is always useful to define an order
parameter [13]. If v(r) is the lowest energy single particle state with population
Ny, we define the order parameter in a BEC transition of noninteracting Bosons as

W(r) = v/ Noyo(r). (4.2)

Since o (r) is normalized to unity, the normalization for W(r) is

/ |W(r)]*dr = N,. (4.3)

An interacting system cannot be described as a collection of particles, each
one occupying a single-particle state. Instead, one uses a many-body state
¥, (r1, 1y, ..., ry), where N is the total number of particles, r; is the position vector
of the i-th particle, and ,, is symmetric under exchange of any pair of indices. In
the general case, the system is a statistical mixture of mutually orthogonal states m
with weights p,,. We then define the one-body density matrix as [14, 15]

n (r,r) Nme/drzdrg...der//,:(r,rz,...,rN)l/fm (f'.r2,....ry)

= (V" 0P )). (44
Since n® (r,r’) is Hermitian, it can be diagonalized as

n®( Zn, X @) (). (4.5)

BEC occurs when one and only one of the eigenvalues n; is of order N, while all the
others are of order 1. We label this macroscopically occupied state as i =0 and its
occupation number n;—y = Ny and redefine the order parameter instead of (4.2) as

W(r) = v/Noyo(r). (4.6)
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The diagonal (r = r’) part of the one-body density matrix gives the particle density.
The off-diagonal part (r # r’) describes the coherence established between distant
points. To understand its behavior, consider first the momentum distribution

ne) = (¥ @7 ®). .7

where Iﬁ(p) = (27th)_3/ 2 J dr exp(ip-r/ h)tﬁ(r) is the field operator in momentum
space. In a homogeneous system, n!)(r, ) only depends on the relative distance
s=r—r,and nV(s) (= nV(r + s, 1)) is the Fourier transform of the momentum
distribution

nW(s) = %/dpn(p)e_i"'s/h, (4.8)

where V is the total volume of the system. In a noninteracting BEC state, the lowest
energy state with momentum zero is macroscopically occupied, so the density
distribution shows the singular behavior

n(p) = Nod(p) + 71 (p), (4.9

where 7i(p) is a smooth function. The long-distance behavior of n(V(s) is then
dominated by the delta function in the above equation. Specifically, it approaches a
nonzero value as s — 0o
n W (8)s 00 = %. (4.10)
V

This behavior is referred to as off-diagonal long-range order.

nD(s) is an important function that gives information about the thermodynamics
of the system and the ordering mechanism. In the exciton—polariton system, 7! (s)
is a measurable quantity. In an interference experiment between two points at
distance s, similar to a Young’s double slit setup, n(!) (s) is proportional to the fringe
visibility.

For convenience, we also define the first-order correlation function gV (s), which
is just n( (s) normalized by the local particle density

(Fi + i) Ot sm)

1) — = .
g7 > V/n(r + s)n(r)

@.11)

S+ o) (imie

To quantitatively describe an interacting BEC state, we use the (time dependent)
Gross—Pitaevskii equation (GPE)

L, 0¥(r, 1) |: h2
ih = |-
ot 2m

V2 4 Veu(r,0) + g |W(r,r)|2} W(r, 1), (4.12)
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where m* is the single-particle mass, Vex(r,?) is an externally applied potential,
and g is the interaction parameter. The above equation is a good approximation as
long as the interaction is sufficiently weak and short-ranged. In particular, it works
for a weak interraction of the form

U(r) = gé(r). (4.13)

If the external potential Ve (r, ¢) is time independent, then (4.12) has solutions
of the form W(r) exp(—iut /%), where W(r) satisfies the time-independent GPE

2

2m*

p¥(r) = [— v + Vex(r) + g I‘P(l‘)lz} W(r). (4.14)

In a region of space with nearly constant density 7o (r) = |¥(r)|*, we can define

a characteristic length
h

J2ZmFngg
& is called the healing length, and it is the lengthscale over which W(r) can
change significantly. To make this point more explicit, consider a situation in which

a condensate is confined in a box, so that the order parameter vanishes on the
wall, which is defined by the plane z = 0. Then, as z — 0%, W(z) falls off to

zero as tanh [z/ (ﬁé)]. Therefore, we can think of the healing length as some

£ = (4.15)

kind of screening length, since obstacles (e.g., walls) are not visible at distances
longer than £. In the subsequent section, we will see that £ is also the size of the
vortex core.

4.2.2 Superfluidity

The most famous criterion for superfluidity is the Landau criterion. Landau [16]
showed that if €(p) is the excitation spectrum of a liquid, then a particle moving
inside the liquid with velocity smaller than the critical value

L= [@} (4.16)
4 min

does not experience any dissipation.

As is now understood, the Landau criterion is not a sufficient condition for super-
fluidity. Indeed, superfluidity is a collective phenomenon. When a superfluid moves,
all particles coherently participate in this motion. Therefore, phase coherence needs
to be established across the whole volume. The idea of phase coherence and long-
range order is the basis of the modern understanding of superfluidity [17].
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Furthermore, experiments designed to directly test the Landau criterion are
difficult to analyze. In particular, when a large object moves inside a superfluid,
or when a superfluid enters a small tube, turbulent flow occurs and vortices can
be excited. Creation and movement of vortices causes dissipation, so the critical
velocity measured in this type of experiments is almost always smaller than what
(4.16) implies.

Conceptually simpler manifestations of superfluidity occur when a superfluid is
put into rotation [17]. We start from the assumption that the superfluid component
can be described by an order parameter. But now |¥(r)| is going to represent the
superfluid density instead of the condensate density. The theoretical foundation
of this assumption is not rigorous. There is strong evidence that BEC of the type
such as He II has a condensate fraction ~10% at T = 0. But as we shall see
later, superfluidity can occur without BEC. So, one can only argue that, based
on the current experimental facts, the phase coherence established across 3D
superfluids allows the description of the superfluid component by a complex order
parameter W(r).

W(r) is characterized by its amplitude | ¥ (r)| and phase ¢ (r)

W(r) = |¥(r)| exp[ig(r)]. (4.17)

Similar to the quantum mechanical definition of probability density and current
density, we can define the superfluid density ps(r) and current js(r)

ps(r) = ¥ ()], (4.18)

it h
jo(r) = —2;1—*‘-11*(r)V\I/(r) +ec = [P Vo). (4.19)

The ratio js(r)/ps(r) has units of velocity. We call it the superfluid velocity, and it
depends only on the superfluid phase

Vo= i*w(r). (4.20)
m

An immediate consequence of the definition (4.20) is that wherever W(r) is
nonzero (so that ¢ (r) is well defined), we obtain

V x vy(r) = 0. 4.21)

That is, the velocity field is irrotational. This means that the integral of vy over a
closed contour will be zero unless the contour encloses one or more singularities,
namely, points where W(r) vanishes. Since ¢ (r) is defined modulo 27, the change
of phase A¢ around a contour can only be an integer multiple of 25
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A¢=¢V¢-dl=2nl, [=0,£1,£2,... (4.22)
So, the circulation I' around a close contour is quantized

h
I'= 9£v‘y-dl= l—. (4.23)
m

Equation (4.23) is the Onsager—Feynman quantization condition.

4.2.3 Quantized Vortices

One of the most unusual features of superfluids is the appearance of quantized
vortices [18]. As remarked in the discussion before (4.23), the superfluid circulation
can be nonzero if a singularity (a point in which the order parameter W (r) vanishes)
exists in the fluid. In a 3D geometry, such singularities form lines that either
terminate at the boundaries of the fluid or close upon themselves. In the former
case, they are called vortex lines, while in the latter, they are called vortex rings.

The order parameter around a vortex can be calculated using the time-
independent GPE (4.14) [19]. Consider an infinite superfluid with a vortex line along
the z-axis. In a loop around the z-axis, the phase changes by an integer multiple of
2, thus in cylindrical coordinates, the order parameter can be written as

U(r) = f(r)e's. (4.24)

We assume translational symmetry along the z-axis, so W(r) does not depend on z.
Inserting this form into (4.14) and setting the external potential to zero, we find

Com*ror \ or 2m*r?

2 2
h la(r%)Jr U Pf+gf?=uf (4.25)

Far from the vortex, the radial derivative 2L and the term proportional to 1/r? can

ar
be neglected, so f approaches the value

J(r)r—o0 = V 11/ & = fo. (4.26)

Equation (4.25) can be transformed to a dimensionless equation by dividing r
with the healing length & defined (4.15) and f with f;. Then, it can be solved
numerically. A good approximation to the solution of singly quantized vortex
(I=1Dis

10 = fo - = V(. ¢) = . @2

r
N

r
2

N
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Let us look at the qualitative features of solution (4.27). The order parameter
drops to zero on the z-axis r = 0, namely, along the vortex line. The phase ¢
is undefined along the z-axis, so this is a line of singularities. The amplitude of
the order parameter W is perturbed in a cylindrical region or radius ~ & around
the vortex line. This region is called vortex core. The phase of W, however, is
perturbed everywhere in space. In a contour around the vortex line, the change of
phase will always be 27 even if the contour is infinitely far from the vortex core.
These qualitative features are always true, even in a strongly interacting superfluid
like He II, in which GPE is not a good approximation.

A vortex line is a metastable entity. Obviously, the ground state of a superfluid
does not contain any vortices. But because the phase is perturbed everywhere
around a vortex line, disappearance of a vortex from inside the bulk of the fluid
is statistically highly improbable. A vortex can only disappear by reaching the
boundary or by annihilating with an antivortex of opposite circulation.

The energy per unit length of a vortex line can be calculated by appropriate
integration of the solution (4.27). A simpler and physically more transparent
approach [18] is to note that from (4.23), the velocity field around the vortex line is

r
v(r) = 7 (4.28)

Neglecting the core of the vortex and assuming that the fluid extends up to radius
R, we find that the kinetic energy per unit length associated with a single vortex is

K = / 5P 2271rdr= pl In R . (4.29)
2mr 4 &

I" is the total circulation [h/m™*, where [ = 0,41, 42,.... In a 3D geometry, the
total energy of the vortex line is proportional to its length, so it increases linearly
with the system size. On the contrary, in a 2D geometry, the vortex energy increases
as the logarithm of the system size; therefore, it is energetically easier to excite.
This logarithmic functional dependence has profound implications, which will be
discussed later.

Now consider a multiply quantized vortex (|/| > 1). Equation (4.29) predicts that
such a singularity will be unstable, and it will eventually dissociate into multiple
singly quantized vortices. For example, the kinetic energy of a doubly quantized
vortex (/ =2) is four times the energy of a singly quantized vortex. Thus, it is
energetically preferable for it to split into two singly quantized vortices.

The reason why vortices are important in superfluidity is that they modify the
flow properties of the fluid. For a review of the theory of quantized vortices in atomic
gases, see [20,21], and for a guide to all relevant experiments, see [22].

Consider a system of one vortex and one antivortex line and assume that the
lines are straight and parallel to each other at distance x. Following (4.29), a good
approximation for the energy of this system is
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| r \? o2 (x
K=2 —ps| =— ) 2nrdr =——In| - ). (4.30)
¢ 2 2nr 27 &

Therefore, the vortex and antivortex attract each other with a force

dK psI?
F = =——,
) dx 2w x

(4.31)

Because this is a Coulomb’s law of attraction, the problem of an ensemble vortices
and antivortices in a plane can be reduced to the problem of an ensemble of dipole
charges. This idea was employed by Kosterlitz and Thouless, as will be outlined
below.

Around a vortex, there is a rotating superfluid flow. Thus, in a system of a vortex
and antivortex, the flow around the vortex drags the antivortex and vice versa. In
the absence of any other forces, the pair moves along the direction perpendicular
to the line connecting the vortex and antivortex, as shown in Fig. 4.1a with velocity
v = I'/2mx. In the case of two vortices, on the other hand, the system rotates with
angular velocity @ = I'/mx? (Fig.4.1b).

4.2.4 Low Dimensions and the Hohenberg—Mermin—-Wagner
Theorem

Dimensionality of a system profoundly influences its density of states and excitation
spectrum and, consequently, its thermodynamics and phase diagram. We illustrate
this point by a simple example. We consider the one-dimensional (1D) Ising model
with Hamiltonian

H=—J >SS, S =41 (4.32)

<i,j> ! 2

The index < i, j > refers to pairs of nearest neighbors. We assume that the coupling
constant J is positive, so that the ground state consists of all spins pointing along the
same direction, as shown in Fig. 4.2a. An excited state is shown in Fig.4.2b. In the
latter state, a number of neighboring spins, namely, a domain inside the spin chain,
have flipped. The domain wall consists of just two points, so the energy of this state

Fig. 4.1 Motion of vortex a b

pairs. (a) In a v v v
vortex—antivortex pair, the

antivortex is dragged by the

velocity field around the Ve A Ve A
vortex and vice versa. As a

result, the pair undergoes

linear motion. (b) A pair of

two vortices rotates v
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Fig. 4.2 One-dimensional a b
Ising model. (a) Ground state.
(b) Excited state AAAAAAAA A AV

relative to the ground state is AE = J, independent of the size of either the domain
or the system itself. If m is the number of spins that have flipped relative to the
ground state and N is the total number of spins, then there are in total N —m — 1
states with the same energy and total magnetization. Therefore, when the system is
in a statistical mixture of all these states, it has entropy S = kg In(N —m — 1). At
nonzero temperature, the free energy / = E — T'S is minimized in equilibrium. In
the above statistical mixture state, the change in free energy is

AF=AE-TAS=J —kgTIn(N —m—1). (4.33)

For an infinitely long chain (N —o0), AF is always negative. Thus, even at
infinitesimally small temperature, the system chooses to be in a mixture of excited
states, and no long-range order can be established.

Another example relevant to the experiments described in this chapter is the case
of a quantized vortex in a 2D superfluid. The energy of this state was calculated in
(4.29) and is proportional to the logarithm of the system size R. In three dimensions,
we need to further multiply by the length of the vortex line, so in that case, the
vortex energy is proportional to the system size. Consider a 2D superfluid of size
R? containing one vortex. There are R?/£2 possible positions for the vortex, so the
free energy relative to the state with no vortex is

_pI? (R R\*| _ (pI? R
AF="—In (?) —kgT In [(?) } = ( e —2kBT) In (?) (4.34)

where I' = h/m™* for singly quantized vortices. Depending on the temperature 7,
free vortices may or may not spontaneously occur in the system. When they do
occur, they perturb the phase at infinite distances around them, so no long-range
order (LRO) can occur. This is the essential idea behind the Kosterlitz—Thouless
transition.

Hohenberg [11] has rigorously proven that the “assumption of long range order
in Bose or Fermi liquids leads to a contradiction in one and two dimensions at
finite temperature.” His argument is of quite general applicability, and in particular,
Mermin and Wagner [23] extended it to the one- and two-dimensional isotropic
Heisenberg model with interactions of finite range and proved that this system
can be “neither ferromagnetic nor antiferromagnetic at nonzero temperature.”
A special case of the Hohenberg argument is that the noninteracting 2D Bose
gas does not show conventional BEC, in contrast to the 3D gas. In all those
cases, LRO is destroyed by long-wavelength (low energy) thermal fluctuations.
In the case of an interacting Bose gas, the long-wavelength modes are phonons,
while in the Heisenberg model, they are spin waves. In both cases, because of the
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form of the density of states at low temperature, long-wavelength modes have a
diverging contribution in thermal averages and destroy LRO. The above is true for
an infinitely large system. In a finite geometry, however, considerable coherence can
be established across the whole system.

4.2.5 Two-Dimensional Bose Gas

In this section, we present the theory of the two-dimensional (2D) Bose gas. We are
mostly interested in the behavior of the correlation function, which we calculate for
the homogeneous noninteracting and interacting gas. We also discuss the trapped
noninteracting gas case, in which there is a crossover to a BEC-like state. We
follow the pedagogical approach of [24] and [25]. See [26] for a review of more
sophisticated theories and [5] for a review of some relevant experiments.

4.2.5.1 Uniform Noninteracting 2D Bose Gas
Consider a uniform noninteracting 2D Bose gas. The density of states for periodic

boundary conditions is the constant m* L?/(2rh?), where m* is the particle mass
and L is the linear dimension of the system. The total particle number is

N o= Ny g L[ _de 435
= O+27th2 i Bl 1 (4.35)

When p approaches the lowest energy €y, the integral in (4.35) diverges. This is
easy to see from the Taylor expansion of the integrand

1 1 1
P —Tla ~ 1+ Ble—e)l =1 Ble—eo)

(4.36)

which shows a nonintegrable infrared (low energy) divergence. Therefore, the
critical particle number N, is infinite, so that always No/N < 1, and no BEC
occurs.

We define the 2D phase-space density D = nk%, where n is the particle
density and Ay is the thermal de Broglie wavelength Ay = h/+/2nm*kgT. In a
semiclassical approach, At is the extent of the wavepacket required to describe each
particle at a temperature 7. D is a dimensionless number, which is a measure of
the interparticle separation relative to Ar. When D < 1, the interparticle separation
is much larger than Ar, so the single-particle wavepackets do not overlap and the
gas can be considered classical. Such a gas is also called nondegenerate. On the
contrary, when D > 1 (degenerate gas), the single-particle wavepackets overlap
and quantum effects arise. In the rest of this section, we use D as a free parameter,
instead of the temperature T or density 7. From (4.35), assuming Ny = 0,9 = 0
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[e9) d 0 Bre—x
D=/ —x:/ C°  _dr=—In(1-¢), 437
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& u=kgTln (1 - eM%> . (4.38)

We now use (4.8) to calculate the off-diagonal part of the one-body density matrix
nD(s). The momentum distribution function n (%K) is related to the occupation
numbers ng by

L \2
therefore,
nM(s) = T / nie'™s dk. (4.40)

For a nondegenerate gas (D < 1), (4.37) gives ef ~ D, and the momentum
distribution approaches the Maxwell-Boltzmann distribution

ng = nAke KA/ (4.41)

From (4.40), we find that there are only short-range correlations and 7V (s) has a
Gaussian form -
nW(s) = ne ™ /M, (4.42)

For a degenerate gas (D > 1), Bt < 1. The high-energy states fe; > 1 still
follow the Maxwell-Boltzmann distribution and are responsible for the Gaussian
decay of nV(s) (4.42) up to distances ~ At. The low-energy states (e, <K 1 <
k? <« 47 /A3), on the other hand, are strongly occupied

1 1 4 1 (4.43)
ng = o~ = — , .
FT RO T Bluta) MK+
where k. = \/2m|u|/h. Therefore, for s 3> Ar, n'V(s) falls exponentially
/2 —kes
(g ~ X E kT = Are"/2) d. (4.44)

23 ks

4.2.5.2 Trapped Noninteracting 2D Bose Gas

In the previous discussion, we showed that in a uniform noninteracting 2D Bose
gas, the ground state population N is always nonmacroscopic; therefore, no LRO
can be established. However, the correlation length k! calculated in (4.44) grows
exponentially as the temperature is reduced, or the density is increased. In a finite
system, when this correlation length is of the same order as the system size, the
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ground state population Ny can be a considerable fraction of the total particle
number N and the system can show BEC-like features. In this section, we explicitly
solve the problem of a trapped ideal 2D Bose gas.

Consider a gas trapped inside an infinitely deep quantum well of size L>. The
density of states is 2m* L2 /h?, so the total number of particles is

2m* L2

k
N = Ny — WkBTln(l —et/ksT) (4.45)

Using Bose—Einstein distribution, we arrive at the exact expression

2m*L?
N =No+ -
E1s

i kgT |:ln(No) +1n (1 + Ni):| . (4.46)

0

Assuming N >> 1 and that the temperature is small enough so that Ny ~ N

T Th*N
No=N(1-=), kpTo=—n . 4.47
0 ( TC) B 2m*L2In(N) (4.47)

In Fig.4.3, we plot the approximate expression (4.47) for the ground state
fraction. No/ N as a function of temperature 7', as well as the solution to the exact
expression (4.46) for several total particle numbers N. As N — oo, the exact
solution approaches the approximation (4.47).
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Fig. 4.3 2D trapped BEC. Ground state fraction Ny/N vs temperature 7" in a 2D Bose gas trapped
in an infinitely deep quantum well. As the total number of atoms increases, solution of the exact
expression (4.46) converges to (4.47), which is shown in continuous line
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4.2.5.3 Uniform Interacting 2D Bose Gas

In (4.14), we wrote down the Gross—Pitaevskii equation, which depends on the
interaction parameter g. We argued that (4.14) is valid when the interaction is weak.
What “weak interaction” exactly means depends on the system dimensionality. In
2D geometry, we can define a dimensionless coupling constant g from

hz
g=—3. (4.48)
m

We can gain some intuition on what g physically means from the definition of the

healing length (4.15)
h 1

- 2m*ng  \2gn

In the discussion following (4.15), we argued that £ is a lengthscale over which
obstacles are screened from the bulk of the condensate. If interactions are strong,
screening is effective, and £ is small. From (4.49), we see that g determines the
ratio of £ over the interparticle distance 1/ /7.

We can define the weak interaction limit as the values of g for which the
interaction energy of N particles is much smaller than the kinetic energy of N
noninteracting particles equally distributed over the N lowest available states.
Following this approach, the weak interaction limit is

§

(4.49)

g <2 (4.50)

At zero temperature, a weakly interacting gas is condensed and is described
by an order parameter W(r) = +/n(r)e?™. At nonzero temperature, both the
amplitude /n and phase ¢ (r) of ¥ show thermal fluctuations. When the mean-field
interaction energy gn is much larger than the thermal energy kg7, or equivalently
when the phase-space density D > 2m/g, amplitude fluctuations are suppressed.
The interaction energy is then a constant, and the only important contribution to the
system energy is the kinetic energy of the superfluid component

hz
2m

1= [ gmtnpwl ae = g, [196F ar. @51)

where we have used (4.20) for the superfluid velocity vs. Hamiltonian (4.51)
completely neglects density fluctuations, which have a characteristic lengthscale
of £. It also neglects higher energy modes, which involve both phase and density
fluctuations. These modes determine the off-diagonal part of the one-particle density
matrix n‘V(r) at distances r < Ar. Therefore, (4.51) describes long-range physics,
namely, distances r > &, At.
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We can then expand ¢ (r) in Fourier series, assume thermal occupation for each
mode, and calculate

D) = (W* ()W (0)) = n, <ei[¢<f>—¢<°>1>. (4.52)

The calculation uses the identity (exp(iu)) = exp (— (uz) / 2) for a variable u which
follows Gaussian statistics. The final result [24] is a power-law decay

£ 1/(ns22)
nW(r) = ng (;) ) (4.53)

This result suggests that even in infinitesimally small temperatures, n" () goes to
zero as the distance r grows to infinity. So, no long-range order of the type defined
in (4.10) can be established.

We have proven (4.53) in the limit D — oo. From the above discussion, it is
not clear for which values exactly of the phase-space density Hamiltonian (4.51) is
valid and, therefore, when we expect the power-law decay (4.53). Also, result (4.53)
only proves that there can be no conventional LRO in the interacting Bose gas, but
it leaves the question of whether there is another phase transition open. To find out
the answers to these questions, we also need to take into account vortex excitations,
which, as it turns out, dominate the thermodynamics at low temperature.

4.2.6 The Berezinskii-Kosterlitz—Thouless Transition

In the previous section, we saw that no conventional LRO can be established in
an interacting Bose gas, since the correlation function n(V(r) decays to zero as
r — 00 at nonzero temperatures. But this result does not rule out the existence
of a state with superfluid properties. In 1972, Kosterlitz and Thouless developed an
elegant theory that explores the role played by quantized vortices [12,27]. The phase
transition they discovered is now termed Kosterlitz—Thouless phase transition (KT
phase transition) or BKT phase transition after Berezinskii who put forward similar
arguments at about the same time [28, 29].

At low enough temperature, the correlation function 7V (r) decays slowly, so that
superfluid properties can be observed locally. In particular, consider a small enough
contour, so that the superfluid phase can be defined at all points on it. The phase
change A¢ along the contour can only be a multiple of 27. If A¢ # 0, a superfluid
current will flow, which decays when A¢ changes by 2m. This change can only
occur when a quantized vortex moves across the contour, which is possible when
free vortices exist in the system. Thus, a state with free vortices is nonsuperfluid. On
the other hand, at very low temperatures, vortices and antivortices gather in clusters
of zero total vorticity. When one cluster moves across the contour, the total phase
change A¢ does not change, so supercurrents do not dissipate. This is the essential
idea behind the BKT transition.
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Equation (4.34) gives a first estimate of the BKT transition temperature

kg Texr = - (4.54)

When T < Tpgr free vortices are not energetically allowed, whereas higher
temperatures 7 > Tpkr are favorable for the proliferation of free vortices. The BKT
critical temperature (4.54) depends on the superfluid density n, which is not given
beforehand. So this equation is not useful for computation of the critical temperature
given the system parameters. However, the alternative form

NAg, . =4, (4.55)
where A, is the de Broglie wavelength at the critical temperature, predicts an
interesting result. Since ng can only increase when the temperature is decreased,
we see that i cannot have any value smaller than 4/A% in the superfluid phase.
Of course, ng = 0 in the normal (nonsuperfluid) phase. Indeed, Nelson and
Kosterlitz predicted [30] that the BKT transition is of first order, as there is a jump
in the superfluid density ny when the transition temperature is crossed. Another
consequence of (4.55) is that the exponent in the power-law decay (4.53) is always
smaller than 1/4.

In (4.31), we showed that vortices of opposite sign attract each other with a
Coulomb-like force. A similar energy argument can be used to show that vortices
of the same sign repel each other according to the same law. Therefore, the problem
of a 2D superfluid with an ensemble of vortices can be mapped to the problem of
charged rods moving in the plane perpendicular to their axis [27]. The unbinding of
vortices in the superfluid formally corresponds to the divergence of polarizability in
the charged rod problem. Namely, a small electric field is capable of separating a
positively charged rod from a negatively charged one at infinite distance. The mean
square separation between pairs due to thermal fluctuations is

_ Zh2n.

o f;orze BK 2 rdr —l ,kgT —2 zi’ni’* for T 7h3ng 456

() = ==— =3¢ m_ forT < . (4.56)
fé e PK 2 rdr 2 kBT—?,lnfs m*

The polarizability indeed diverges at the transition temperature (4.54).

For a more complete treatment, we need to consider how the interaction between
vortices is influenced by the presence of other pairs. Namely, pairs of small size
screen the interaction between vortices at long distances. In the problem of charged
rods, this can be included as a distance-dependent dielectric constant €(r) in the
Coulomb law, so that the energy of a rod dipole is

e8] (]2
U= / dr — gErcos 6. (4.57)
£ dme(r)
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In the above equation, g is the charge of each rod, E is the externally applied electric
field, and 6 is the angle of the dipole with respect to the electric field direction. The
polarizability of the pair is then given by

d
p(r) :qB_E (r cos 0) (4.58)

E—0
The polarization of small pairs (the charges at short distance) influences the energy
of large pairs (the charges at long distance). We must account self-consistently for
the short-distance behavior in order to calculate the long-distance response. The
calculation [27] results in an improved estimate of the transition temperature Tgkr.
As Tpkr is approached from below, the dielectric function at large distances diverges

e(r — oo)|T_>Tf;(T — 0. (4.59)

As T is further increased above Tgxr and €(r) diverges for progressively shorter
distances r. Physically, this means that pairs of infinite size dissociate first, and as
the temperature is increased, pairs of smaller size become unbound, too.

As we discussed, (4.55) is not suitable for computation of the transition tempera-
ture given the system parameters. In particular, it does not predict any dependence of
Tskr on the interparticle interaction. Microscopic theories give the following result
for the critical phase-space density [26,31-33].

C
Dgkr = nszBKT =In (T) , C =380+3. (4.60)
4

The Berezinskii—Kosterlitz—Thouless theory does not depend on the microscopic
details of the system in study. As long as the geometry is two dimensional and the
order parameter can be represented by an in-plane vector, the same arguments apply
[34, 35], so that the theory can be considered to be universal. In a superfluid, the
local order parameter is the superfluid wavefunction W(r) = /n(r)exp [ip(r)],
but because at low temperature the amplitude fluctuations are frozen, the superfluid
can be described solely by its phase ¢ (r) and the constant n,. ¢ (r) indeed defines
an in-plane vector. The 2D x-y model consists of a spin lattice, in which spins are
free to move only on the lattice plane. So, every lattice cite is characterized by the
angle ¢ (R) of its spin. A 2D crystal can be described by the displacement vector of
the atom at each lattice cite. In all the above cases, when interactions are included,
the low-energy Hamiltonian is of the form (4.51), and vortex dislocations are stable
at low temperature.

In the x-y model, a vortex consists of a point around which the angle of spins
changes by m. Because spins cannot precess out of the plane, a large energy
barrier needs to be overcome in order for the vortex to be destroyed. This is shown
schematically in Fig. 4.4. Considering the Hamiltonian
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Fig. 4.4 Vortex stability in the 2D x-y model (see text). Upper row: schematic of (a) a vortex
state, (c) the ground state of (4.61), and (b) a high-energy intermediate state between (a) and (c).
Bottom row: schematic of the corresponding energy diagrams. The vertical axis is the energy, and
the horizontal axis is an arbitrary parameter that interpolates between states (a) and (c)
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the intermediate state (Fig.4.4b) between a vortex state (Fig.4.4a) and the ground
state (Fig.4.4c) shows a “cut” along one line. Thus, the energy of the state in
Fig. 4.4b is proportional to J x L, where L is the linear dimension of the system.
This energy takes large values for large system sizes. As stated in [35], “The vortex
state, even though it has a much higher energy than the ground state, is stable
because there is no path to the ground state that is not energetically costly.”

On the contrary, the BKT theory does not apply to the Heisenberg model, because
of the dimensionality of the local order parameter. This model consists of a lattice
of spins, which are free to rotate in all three directions. Consider a vortex of the type
shown in Fig. 4.4a. We could slowly turn all spins toward the direction perpendicular
to the lattice plane, so that the ground state could be reached without passing through
an intermediate state of high energy.

Experimentally, the BKT theory has been studied in “He thin films [36, 37],
Josephson junction arrays [38, 39], atomic hydrogen [40], and, more recently, in
2D atomic gas [41-44]. Although several of the predictions of the theory could
be tested, in none of these experiments was it possible to directly measure the
correlation function n(V(r) and bound pair of vortex—antivortex. In this chapter,
we present a direct measurement of the normalized correlation function g(!(r) and
the vortex—antivortex pair in a microcavity exciton—polariton condensate. Although
the theory developed in the current section cannot be applied directly to such a
nonequilibrium system, it can still be used as a guide to understand the experimental
data and to point out the features arising from nonequilibrium physics.
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4.3 Basic Characterisation of the Sample and Condensate

In this section, we present the initial characterization of the sample in order to
estimate important parameters and associate the observed transition with exciton—
polariton condensation.

4.3.1 Major Scientific Instruments

In the experiments described in this chapter, we used a Coherent Mira 900
Ti:Sapphire multimode laser. When used in modelocked mode, it generates ps-long
pulses at 76 MHz repetition rate. In our experiments, however, we operate it in the
continuous wave mode. It is pumped with a Verdi V-10 laser, operated at 8 W.

The input power is controlled by a variable metallic neutral density filter and a
combination of a Meadowlark liquid crystal variable retarder and a polarizer. To
create a flat-top pumping profile, we employ a refractive beam shaper (Newport
GBS-AR16) designed for near infrared wavelength. The beam shaper transforms
a collimated Gaussian beam of a particular diameter to a collimated flat-top
beam. Since it uses low-dispersion refractive elements (lenses), its efficiency is
much higher compared to diffractive beam shapers, and it operates over a wider
wavelength range.

The sample is kept in vacuum inside a Janis ST-100 optical cryostat. Continuous
flow of liquid helium cools the cold finger on which the sample is mounted using
silver paint for good thermal conductivity. The cold finger is custom-designed
so that the sample is as close as possible to the optical window. We collect
luminescence through a long working distance objective lens (Mitutoyo BD Plan
Apo 378-835-4). The numerical aperture (NA) is 0.55, the effective focal length is
4.0mm, and the working distance is 13.0 mm. The long working distance provides
us with enough flexibility in placement of the sample behind the cryostat window.

Spectroscopy is performed with an Acton Spectrapro 2,750 spectrometer of
0.75m focal length coupled to a Princeton Instruments SPEC-10:256 Charge
Couple Device (CCD) camera. The camera is cooled with liquid nitrogen and has
an imaging array of 1,024 x 256 pixels of size 26 x 26um? each. Three different
gratings are installed in the spectrometer. For high-resolution spectroscopy, we
use the 1,800 g/mm holographic grating. To capture a large wavelength range, as
in reflection measurements with white light, we use the 300 g/mm grating. The
CCD camera in the Michelson interferometer setup is a high-sensitivity back-
illuminated electron-multiplying CCD (EMCCD Andor iXon DV885KCS-VP). It
has 1,004 x 1,002 pixels of size 8 x 844 m? each. Other CCD cameras used for
recording real-space and momentum-space images are the Astrovid StellaCam II
and the Watec 120N.

For time-resolved measurements, we use a Hamamatsu C5680 streak camera
with 2ps temporal resolution. The streak camera is placed at the output of
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a Chromex 500 is spectrometer. Finally, for motion control, besides standard
translation stages, we employ a Newport ESP300 motion controller along with CMS
series motorized actuators.

4.3.2 Real-Space and Momentum-Space Spectroscopy

Here, we describe the spectroscopy setup as is implemented in our lab [9]. We
can measure energy-resolved luminescence in both real and momentum space. The
real-space image is often referred to as near field (NF), while the momentum-space
image is called far field (FF).

4.3.2.1 Real-Space Spectroscopy

Real-space luminescence is measured through the setup shown in Fig. 4.5a. A com-
bination of two lenses is employed, and the real-space image is formed on the
entrance slit of the spectrometer. A flip mirror in front of the spectrometer allows
us to direct light to a CCD camera for imaging purposes (not shown in the figure).
A sample real-space image of LP luminescence at low pumping power is shown in
Fig.4.5b. Closing the spectrometer slit, we can select just the central column from
the 2D image and spectrally resolve it with the spectrometer. The result is a 2D

a
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Fig. 4.5 Real-space (near field) spectroscopy (see text). (a) Schematic of the spectroscopy setup.
(b) Example of a real-space image. (¢) Example of a real-space spectrum
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image in which the vertical axis corresponds to the vertical position on the sample
and the horizontal axis corresponds to the energy (Fig.4.5¢). This is a real-space
spectrum.

4.3.2.2 Sample Disorder Potential

Because of fluctuations in the cavity width, quantum well thickness and other
inhomogeneities, such as local strain or charged impurities, the LP energy at zero
momentum k& = 0 is different from point to point. With our real-space spectroscopy
setup, we can create a map of the disorder potential. We pump with a low laser
power and large spot and measure the real-space spectrum (Fig.4.5¢). Translating
the last lens before the spectrometer along the direction perpendicular to the slit
and to the optical axis moves the real-space image, so we can acquire the real-
space spectrum along a different column. Employing this technique, we can measure
the spectrum of a two-dimensional grid of points with spatial resolution of 1 pm.
The spectrum at each point contains contributions from all momenta. If we assume
that the spectrum from every momentum component is Lorentzian, then the real-
space spectrum should be a sum of Lorentzians centered at different energies. The
lowest energy contribution should be from the k = 0 component, so the lowest
(long-wavelength) part of the real-space spectrum should decay as a Lorentzian. We
can fit this part of the spectrum with half of a Lorentzian and extract the local energy
for every point (Fig. 4.6a).

We measure a striped pattern for the disorder potential (Fig.4.6b), while the
local energy follows a Gaussian distribution with standard deviation 0 = 71 ueV
(Fig. 4.6¢). This energy scale is much smaller than the repulsive LP-LP interaction
energy, which is on the order of 0.1-1 meV at the pump rate above the condensation
threshold. Therefore, the sample disorder is screened when the condensate is formed
and should not affect the condensate dynamics appreciably.

4.3.2.3 Momentum-Space Spectroscopy

The in-plane translational symmetry enables us to perform momentum-space
imaging. Each emitted photon has the same in-plane momentum as the polariton
it originates from. Each photon carries a normalized momentum k = P/h =
27 /A along the propagation direction, where A is the wavelength. Consider photon
traveling at an angle 6 (inclination angle) with respect to the growth axis. The in-
plane momentum is simply k = 27/ sin 6. Since all photons from the LP branch
have approximately the same wavelength, we can use a common value of A for the
whole far field spectrum.

A traditional way to acquire a far-field image is to place a screen at infinity. The
coordinates of this image would then correspond to the angle 6. A more compact
setup is shown in Fig. 4.7a, and it includes an extra lens compared to Fig. 4.5a. The
extra lens can be mounted on a kinematic base for easy switching between the two
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Fig. 4.6 Sample disorder potential. (a) The fitting method. Blue: spectrum selected from panel a
along x = 0 um. Red: numerical derivative. Black dashed line: fitting of the long-wavelength part
of the numerical derivative with the derivative of a Lorentzian. (b) Map of the disorder potential.
White areas at the corners have low signal to noise ratio. (¢) Histogram of the disorder potential
shown in panel c, and fit with a Gaussian with ¢ = 70.8 eV. From [45]

setups. The far-field image is created on the back focal plane of the last lens, since
light along a given direction is focused at one point (Fig.4.7b). The coordinates
of the generated image correspond to the angle 6, which can be translated to the
momentum. The resolution of our setup is 0.019 um™!, corresponding to one pixel
on the spectrometer CCD camera. A sample FF image is shown in Fig.4.7c, in
which the excitation power is low, so no condensate is formed, and the momentum-
space distribution is broad. In Fig.4.7d we plot the corresponding FF spectrum.
The parabolic form of the LP dispersion near zero momentum is evident, and the
measured curvature gives the LP effective mass.

4.3.2.4 Reflection Measurement

To measure the reflection spectrum of the cavity, we replace the laser in Fig. 4.7 by a
white-light source and the polarizing beam splitter (PBS) by a nonpolarizing beam
splitter (NPBS). We can then measure a reflection spectrum in momentum space.
An example of such a spectrum is shown in Fig.4.8. The stop band extends from
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Fig. 4.7 Momentum-space (far field) spectroscopy (see text). (a) Schematic of the spectroscopy
setup. (b) A far-field image is generated at the back focal plane of a lens. (¢) Example of a
momentum-space image. (d) Example of a momentum-space spectrum
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Fig. 4.8 Far-field reflection spectrum of our sample using a white-light source. The raw data is
plotted. The stop band extends from 0.72 pm up to 0.8 wm. The upper polariton and lower polariton
bands are visible in the interval 0.76-0.77 um

0.72 pm up to 0.8 um, and two narrow minima are visible in the interval 0.76—
0.77 pm. The higher-energy minimum corresponds to the upper polariton, and the
lower-energy minimum to the lower polariton.

For Fig. 4.8, we used an incandescent lamp as a white-light source. Such a lamp
follows the black body spectrum, and its intensity is decreased as the wavelength is
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increased to the near infrared and beyond. This decay is visible in the reflection
spectrum. If we wanted to be more precise, we should have divided the raw
reflectance data by the reflectance spectrum of an ideal mirror.

4.3.3 Condensation Characteristics

4.3.3.1 Excitation Scheme

The sample is pumped at normal incidence at the first reflectivity minimum above
the stop band, at around 723 nm (see Fig.4.8). Transfer matrix calculation using
complex refractive index for GaAs gives an absorption efficiency of ~25% at this
wavelength for our sample design. In the experiments described later, we operate
the laser in the continuous wave mode. The laser generates electron—hole pairs that
subsequently relax and form LPs. Because LPs decay on a ps-timescale, the pump
is continuously on to maintain a constant LP population. So we are probing the
steady state of the system.

Since pumping occurs above band (~100meV higher than the LP energy), the
generated particles suffer multiple collisions with phonons, electrons and holes,
excitons, and other LPs before reaching the condensate energy. Therefore, the phase
of the pump wave cannot influence the condensate dynamics, and any coherence
observed in the condensate cannot be attributed to laser-induced coherence.

The laser spot is created through the setup of Fig. 4.9a. The laser is first coupled
to a polarization-maintaining single-model fiber, and a collimated Gaussian beam
is created at the other end. The beam is then coupled to a commercial refractive
beam shaper, which transforms a collimated Gaussian beam of a particular size to
a top-hat profile. The objective lens needs to be focused with respect to the sample,
since we image the system through it. We can use an extra lens just after the beam
shaper, in order to move the focusing point of the laser beam away from the sample
surface and have a large pumping spot on the sample. The focal length of this lens
determines the size of the pumping spot.

a
] PMSMF b c
PBS —, Beam 8.0mwW
H I Shaper -20
A_1o —_
™ o £
x 10 x
Laser D 20
-20 0 20 -10 0 10
y (um) y (um)

Fig. 4.9 Laser pumping setup. (a) Schematic of the laser pumping setup. (b) The pumping spot
below the condensation threshold and its cross section along the horizontal axis. (¢) Real-space
image of the condensate above threshold
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A flat-top spot is formed (Fig.4.9b) with small loss of laser power. The most
lossy part of the setup is coupling into the single-mode fiber, in which a diffraction-
limited efficiency of ~50% was achieved. Due to diffraction, the excitation spot on
the sample cannot be perfectly flat, but instead, consists of closely spaced bright
and dark rings. For very low pumping power, the polariton diffusion length is long,
and thus, the rings are not visible in polariton luminescence. Above the condensation
threshold, the condensate takes a doughnutlike shape (Fig. 4.9¢c). The physics behind
the condensate shape is a repulsive interaction between the condensate and the
reservoir, which will be discussed later.

It is theoretically predicted [46] that the condensate should be linearly polarized,
with the direction of linear polarization chosen randomly. In experiments with
highly disordered samples [7], there is a preferred direction of linear polarization.
This happens because sample asymmetry (e.g., strain) introduces a splitting between
orthogonal polarizations, so that an LP of a particular linear polarization has lower
energy than an LP of the orthogonal linear polarization. This splitting can be a
fraction of 1 meV. In samples with splittings < 0.1 meV, random selection of linear
polarization occurs. This scenario was verified [47], in which the authors could
detect the shot-to-shot variations in the linear polarization direction, while the time-
integrated luminescence remained unpolarized. Time-integrated luminescence from
our condensates is unpolarized as well (measured degree of linear polarization
< 20%), so we believe that the scenario of random selection of linear polarization
direction is realized. Since the laser is focused on the sample through a polarizing
beam splitter (Fig.4.9a), the pump is linearly polarized. We have checked that
the condensate luminescence remains unpolarized after we rotate the pump linear
polarization by 90°, or when we pump with circularly polarized light.

4.3.3.2 Condensate Spectroscopy

To investigate the condensation characteristics, we perform momentum-space spec-
troscopy. In Fig.4.10a, we plot the luminescence intensity measured around 0°
collection angle versus the laser pump power [45]. The spectrometer discards the
reflected laser light, and we select the integration angle by post-processing the far-
field spectroscopy data. There is a threshold pump power at 20 mW, above which the
signal intensity increases nonlinearly, similar to a lasing transition. In Fig. 4.10b, we
plot the spectra as a function of pumping power. Across the threshold power, there is
a blue shift of about 1 meV, which is mainly due to the repulsive interaction energy
among LPs. A second threshold is also visible at 90mW with a larger blue shift.
We can interpret the first threshold as polariton condensation, but the second one as
a crossover to a new phase is not given a solid and unanimous interpretation right
now. In [48], it has been described as photon lasing.

Figure 4.10c summarizes a set of measurements performed for varying photon—
exciton detuning §. The wedged sample structure allows us to change the detuning
by simply moving to a different position. We can observe the anticrossing between
the upper polariton (UP) and lower polariton (LP) resonances. Furthermore, when



4 The Berezinskii—Kosterlitz—Thouless Phase Transition in Exciton—Polariton 111

1067 — — - olLP — ]
g Db P o UP
¢ condensation

a
E)
s
o A lasing o
<t Lt
+l S A
S} 2 1.62 A A
= Pt A
________________ g . N
% ""‘—AAA °
o @
8 161F.-= A 02 3 g
< g o
100'..... ———rrt ———rrrt 1 1
100 10! 10? -5 0 5
Detuning & (meV)
b 1
1.614
>
2 1612
>
>
2
5 1.6t

1.608

10!
Pump power (mW)

100

Fig. 4.10 Polariton condensation vs. photon lasing. (a) Signal intensity measured by the spec-
trometer at 0 = 4° (0 & 0.57 um™") as a function of pumping power. (b) Normalized spectrum at
0 =& 4° as a function of pumping power. Two thresholds are visible. (¢) LP (blue circles) and UP
(red squares) energies as a function of photon—exciton detuning §. Continuous lines are fits with
Rabi splitting 22Q g = 14 meV. The flat and tilted dashed lines are the energies of the bare exciton
and microcavity photon, respectively. The LP condensation threshold energy (green diamonds)
follows the LP energies, while the photon lasing energy (magenta triangles) follows the photon
energies. From [45]

we plot the energy of the first threshold (at 20 mW in Fig. 4.10b, where § ~0 meV),
we see that it follows the LP resonance as shown by the green diamonds. On the
other hand, the second threshold energy (at 80 mW in Fig.4.10b) exists at a few
meV below the photon resonance as shown by the red triangles. When we move
to higher §, so that LPs become more exciton-like, the first and second threshold
windows shrink, and eventually disappear so that only second threshold is visible.
This data is in accordance to measurements in different samples [48—50].

For the polariton gas to be considered dilute, the density must be smaller than
the Mott density. We assume pumping efficiency of n~20%, based on a transfer
matrix calculation and an LP lifetime of typ ~4 ps. The linewidth of the reflection
spectra gives a lower bound of the lifetime, while the time-resolved measurements
provide an upper bound, and 4 ps is a reasonable estimate. For the data of Fig. 4.10b,
we used a circular pumping spot with radius R ~12 um and laser wavelength of
Als = 723 nm. This results in an estimate of the threshold polariton density.
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Our sample contains twelve QWs, so the density per QW is twelve times smaller
than (4.62). This density of ~8x10%cm™? is indeed two to three orders of magnitude
smaller than the Mott density 1/7aj> ~3 x 10" em™2.

From the blue shift of ~1meV evidenced in Fig.4.10b when the condensate
threshold is crossed and (4.15), we can estimate the healing length & ~0.7 um,

where we have used a typical effective mass of 7 x 10™>m..

4.3.4 Comparison of Pumping Schemes

In our early experiments, we pumped the sample in the high-k part of the LP
band and, in particular, at about 60° incidence angle. Because the cavity is
highly blue detuned at high momenta, this part of the band is exciton-like. The
absorption efficiency calculated with the transfer matrix method is only a few
percent, but condensation can be reached easily with pulsed excitation because of
faster relaxation. Namely, the excitons only need to loose an excess energy of a
few meV before they reach the condensate energy. In this configuration, particles
are created far from the so-called magic wavenumber [51,52], so they need to suffer
multiple scattering events before reaching the condensate. Therefore, the condensate
coherence cannot be inherited directly from the pump laser. In [53], we studied the
polarization characteristics of the condensate, and we showed that the relaxation
process for every LP involves multiple scatterings with phonons and, on the average,
only one scattering with another LP.

The least efficient but conceptually cleaner pumping method is the one imple-
mented in the experiments of this chapter, namely, pumping at normal incidence
above band. In this way, electron-hole pairs of approximately zero momentum
are generated, which then relax toward the LP branch and eventually form a
condensate if the particle density is high enough. Because the laser energy is much
higher than the condensate energy (~ 100meV), there is no doubt that in this
case, the condensate coherence is generated spontaneously. This pumping method,
however, involves a large reservoir density, since the relaxation path is now longer.
Consequently, electron—hole interaction is screened, so that the exciton oscillator
strength is reduced and the microcavity can enter easily the weak coupling regime.
From the data of Fig.4.10, we conclude that in our sample, strong coupling is
preserved at the pumping power required for condensation.

4.4 Power-Law Decay of the Spatial Correlation Function

The spatial correlation function quantifies the coherence properties of a system
[35]. In a three-dimensional Bose-condensed gas, long-range order is observed,
and the correlation function decays toward a plateau at large distances [14, 54].
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In the homogeneous two-dimensional (2D) Bose gas [24], however, no long-range
order can be established [11]. Instead, BKT theory of the equilibrium interacting gas
predicts a transition to a low-temperature superfluid phase, which shows a power-
law decay of the correlation function [12,29]. Unfortunately, it is frequently hard to
directly measure this, and only very recently [41] was indication of the power-law
decay of coherence seen in a two-dimensional atomic gas. It has been theoretically
predicted [55,56] that power-law decay of coherence survives in the nonequilibrium
problem, and it is this prediction that the current experiment sets out to test. Due to
the nonequilibrium nature of polariton condensation, understanding its coherence
properties is quite revealing regarding the different roles of fluctuations in the
equilibrium and nonequilibrium problems. In particular, we show that laser pumping
noise plays a role analogous to the role of temperature in an equilibrium situation.

Previous measurements on polariton condensates have demonstrated coherence
at large distances, but were limited by large experimental uncertainties [57], or
highly disordered samples [7,58], and the long-distance behavior could not be fully
extracted. Recently, the correlation function at large distances was studied in one-
dimensional condensates confined in a quantum wire [59] and in a valley of the
disorder potential [60]. In both these experiments, the microcavity was excited by a
single-mode laser with suppressed intensity noise. This resulted in highly coherent
condensates, as was evident in the interferometric measurements. We are interested
in the question of how the intensity noise of the external laser pump, namely, the
laser, influences the coherence properties of the condensate state. For this purpose,
we employ a multimode laser in the continuous wave operation. Because many laser
cavity modes can lase simultaneously out of phase, the overall intensity fluctuates
randomly on a ps timescale, as determined by the laser bandwidth.

With our setup, we can measure values of g(!)(r) as low as 0.02, so we can
reliably extract the long-distance behavior. We find that, although true thermal
equilibrium is not established, an effective thermal de Broglie wavelength can still
be defined from the short-distance Gaussian decay of gV (r). Furthermore, gV (r)
at long distances r decays according to a power law, in analogy to the equilibrium
BKT superfluid phase. The exponent of the power-law decay is, however, higher
than can be possible within the BKT theory. We apply a nonequilibrium theory
[55, 56] to identify the source of the large exponent. We argue that, although
the spectrum is modified due to dissipation, the exponent would still have the
equilibrium value if the spectrum was thermally populated. If, on the other hand,
a white noise source acts on the system, the exponent can have a large value,
proportional to the noise strength. We therefore conclude that laser pumping noise
can be responsible for the large value of the exponent.

4.4.1 Condensate in Real Space

The pumping spot setup is shown in Fig.4.9a. We pump with a multimode laser
that creates free electron—hole pairs at an excitation energy ~100meV above the
lower polariton (LP) energy, and we probe LP luminescence in the steady state. The
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pump laser is continuously on and replaces LPs that leak out of the microcavity
on a ps time scale. The laser is first coupled to a polarization-maintaining single-
model fiber, and a collimated Gaussian beam is created at the other end. The beam
then propagates through a commercial refractive beam shaper, which transforms a
collimated Gaussian beam of a particular size to a collimated beam with top-hat
profile. The objective lens needs to be focused with respect to the sample, since
we image the system through it. We can use an extra lens just after the beam
shaper, in order to move the focusing point of the laser beam away from the sample
surface, and have a large pumping spot on the sample. The focal length of this lens
determines the size of the pumping spot. In Fig.4.11, we plot LP luminescence
images for the four different spot sizes used in this experiment. The pumping power
is ~10mW, which is below the threshold power Py, for all four spots.

In Fig. 4.12, we plot the real-space images of LP luminescence for various laser
pumping powers, both below and above threshold. We use a combination of two
interference filters, one longpass at 750 nm and one bandpass at 770 & 5 nm, which
block the laser wavelength without distorting the LP luminescence spectrum. For
very low pumping power, luminescence has a top-hat shape. Close to the threshold
power of 55 mW, the diffusion length shortens, and luminescence takes the shape
of the laser excitation spot. Airy-like patterns appear because of diffraction. Above
threshold, the condensate progressively takes a doughnutlike shape. We studied this
effect in [45], and concluded that the reservoir has a complementary profile with a
density maximum at the center and that repulsive condensate-reservoir interactions
render this distribution stable. Also, the condensate is smaller than the original spot

19um 12pum 7pm

30 30

20 20

_ 10 10

> > 10 > 10

-20 -20

- 30 -30 -30

-30-20-10 0 10 20 30 -30-20-10 0 10 20 30 -30-20-10 0 10 20 30 -30-20-10 0 10 20 30
X (um) X (um) X (um) X (um)
x 10%

12000 12000
10000 10000
8000 8000
6000 6000
4000 4000
2000 Y 2000 {7

3500
3000
2500
2000
1500
1000

500

[<x

intensity (a. u.)
intensity (a. u.)
intensity (a. u.)
intensiti (a.u.)

0.5

0 0 . * 0 = x
-30-20-10 0 10 20 30 -20-10 0 10 20 -30-20-10 0 10 20 30 -30-20-10 0 10 20 30
Xy (um) Xy (um) Xy (um) Xy (um)

Fig. 4.11 Varying pumping spot size. By changing the lens just after the beam shaper in Fig. 4.9a,
the pumping spot size can be varied. On the upper row, we plot the LP luminescence images below
threshold for the four different spot sizes used in this experiment. The colorscale is linear, and the
label on top of every figure is the spot radius. On the lower row, we plot the corresponding 1-D
profiles along the x- and y-axes. The dashed line is an empirical fit to a Fermi—Dirac function,
from which we determine the size of the pumping spot
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Fig. 4.12 Real space images of LP luminescence for increasing pumping power. Condensation
threshold is at 55 mW

size because of repulsive LP-LP interactions. In particular, the large condensate
density creates an antitrapping potential that pushes LPs away from the center. This
effect only influences LPs close to the edge for our top-hat pumping spot, whereas
it is prominent in cases of a Gaussian or very small pumping spot or samples with
long LP lifetime [59,61].

4.4.2 Michelson Interferometer Setup

The first-order spatial correlation function is defined as

(vt (ct) v (re2)
VT ) v (en) (07 (e v (rn))

gV (rtr;rny) = (4.63)

where ¥ (rt;) and ¥ (rt;) are the creation and annihilation field operators at space-
time point (r;, ;).

The intensity that a detector at space-time point (r,f) measures is
(D) (x,1) £ (r,1)). Therefore, when light from point (ry, #;) interferes with light
from point (r2, 12), the detector measures the quantity ([ (r, 1) + €7 (r2,1) ]
[EF) (r1,11) + ED) (ry.12)]). Hence, when a parameter such as the time difference
t, —t; changes slowly, fringes are observed. Defining the fringe visibility as the ratio
or the maximum minus the minimum intensity over the maximum plus the minimum
intensity (4.63) gives the fringe visibility when the intensities at points (ry, ;) and
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(12, 1p) are the same. If the intensities are different by a factor p, then the measured
fringe visibility is equal to (4.63) times a factor 2,/p/(1 + p). Surprisingly, this
factor remains close to 1, even for intensity ratios p much different than 1. For
example, for p = 2, we find 2,/p/(1 + p) = 0.943.

To measure this function, we built a Michelson interferometer setup. A schematic
is shown in Fig. 4.13a. It includes a mirror in one arm and a right-angle prism in the
other. We overlap the condensate real-space image with its reflected version, so that
fringes similar to that of Fig.4.13b are observed on the camera. By changing the
length of one interferometer arm, as shown in Fig. 4.13a, the relative phase of the
two beams is shifted. As a result, the intensity measured at one pixel point shows a
sinusoidal modulation (Fig. 4.13c). From the data of Fig. 4.13c, we extract the phase
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Fig. 4.13 Michelson interferometer. (a), Schematic of the setup for measurement of the correla-
tion function. The laser is linearly polarized, and we record luminescence of the orthogonal linear
polarization through a polarizing beam splitter (PBS). We then employ a 50-50 nonpolarizing
beam splitter (NPBS), a mirror (M 1), and a right-angle prism (M2). The latter creates the reflection
of the original image along one axis, depending on the prism orientation. A two-lens microscope
setup overlaps the two real-space images of the polariton condensate on the camera. (b), Typical
interference pattern observed above the polariton condensation threshold along with a schematic
showing the orientation of the two overlapping images. (c), Blue circles: Measured intensity on
one pixel of the camera as a function of the prism (M2) position in normalized units. Red line:
Fitting to a sine function
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difference of the two images at a particular pixel point as well as the fringe visibility.
The latter is proportional to the first-order correlation function, which is the physical
quantity we are interested in this experiment.

The prism M2 in Fig.4.13a forms the reflection of the condensate image along
the prism axis. Therefore, point (x, y) overlaps with either (—x, y), or (x, —y) on
the camera, depending on the orientation of the prism. This allows us to measure

gV, —x:i1) = (g (x.y.t + Ti—x, 3. 1)), (4.64)

or gV (y,—y;1) = (g™ (e, y.t +wix, —y,t))t, (4.65)

where (); denotes time average. In this experiment, we are mainly interested in
interference at t = 0, so when the time argument is not mentioned explicitly, we
imply T = 0.

We repeat the procedure explained in Fig.4.13 for every pixel, so that we
measure the phase difference between the two interfering images in addition to
the correlation function across the whole spot. Representative data are shown
in Fig.4.14. Recording both these quantities allows us to identify useful signal
from systematic or random noise. Because the prism displaces the beam that is
incident on it, the images from the mirror and the prism are focused on the camera
from different angles, so the two phase fronts are tilted with respect to each
other. As a consequence, we expect to measure a constant phase tilt. This is the
case in Fig.4.14b, in which the laser power is above threshold and a condensate
has formed. We conclude that our measurement of the correlation function in
Fig.4.14d is reliable over this whole area. On the other hand, at a pump rate below
threshold, only short-range correlations exist. Figure 4.14a shows that in this case,
the phase difference is measured correctly only over a small area around the center,
(|x| <1 um). So, the measured values of gV (x,—x) outside this area are not
reliable and give an estimate of our measurement uncertainties. As is clear from
Fig.4.14c, the experimental error can be suppressed down to 0.01.

It is known that an ideal autocorrelation measurement with a Michelson inter-
ferometer provides the same information as an ideal measurement of the spec-
trum. In particular, gV (x, —x;) is the Fourier transform of the power spectrum
in momentum-space S(k, w)[62]. However, systematic noise in measurement of
S(k, ) currently makes the direct measurement of gV (x, —x:¢) the only way to
reliably extract A.g of Fig.4.17b as well as the power-law decay at long distances
to be explained later. The Fourier-transform relationship between gV (x, —x;1)
and S(k,®) is illustrated in Fig.4.15. The measured gV (x, —x;¢) at very low
pumping power is shown in Fig.4.15a. At time delay ¢+ = O, it has a Gaussian
form as a function of x, but for increasing ¢, it broadens and acquires a multipeak
structure. This unusual space-time dependence is reproduced by the numerical
Fourier transform (Fig.4.15¢) of measured S(k,w) (Fig.4.15b). Unfortunately,
with the current experimental setup, measurement of the time dependence of
g (x, —x; 1) is limited by inhomogeneous broadening due to time-integrated data,
so it cannot provide an estimate of the homogeneous dephasing time.
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Fig. 4.14 Phase map measured for laser power (a) below and (b) above the threshold power Py,.
The prism in the Michelson interferometer is oriented horizontally. The schematics on the top right
of (a) and (b) show the orientation of the two interfering images. (¢, d) Measured g (x, —x)
corresponding to (a) and (b), respectively, averaged over the y-axis inside the excitation spot area
of 19 pm radius. Blue circles are experimental data. The continuous red and dashed yellow fitting
lines are explained in Figs. 4.17 and 4.19, respectively

4.4.3 Short-Distance Decay

The results of the short-distance decay of the equal-time correlation function gV (r)
can be understood by considering the simplest possible model, namely, the infinite
two-dimensional noninteracting Bose gas. In (4.42), we proved that in the high-
temperature or low-density limit, the decay is Gaussian with a width proportional to
the thermal de Broglie wavelength. In Fig.4.16a, we plot gV (r) by numerically
calculating the Fourier transform of the momentum-space occupation function
(4.40). We assume normal (quadratic) dispersion, Bose occupation function, and
fixed temperature. The normalization density 7. is the density for which the phase-
space density equals one: nck% = 1. As the density is increased, the short-distance
decay remains Gaussian with increasing width. In Fig. 4.16b, we plot the width of
the Gaussian decay in units of the thermal de Broglie wavelength.
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Fig. 4.15 (a) Measured gV)(x, —x;¢) for very low pumping power. (b) Measured momentum-
space spectrum S(k,, hw) for very low pumping power. As explained in the text, g (x, —x; 1) is
the Fourier transform of S(k,, hw). (¢) Fourier transform of the experimental data shown in (b).
The result indeed reproduces accurately (a). In (b) and (c), the data is plotted in linear color scale
in arbitrary units

Figure 4.17a shows the measured short-distance dependence of g(V’(x, —x) for
the same pumping power as in Fig.4.14a,c. Because the prism of the Michelson
interferometer is not completely horizontal, the axis of inversion is slightly tilted
with respect to the columns of the charge-coupled device array. Every point in
Fig.4.17a corresponds to one pixel on the camera, and the x-axis is its distance
from the axis of inversion. Data at distances |x| > 1 um is noise, since the measured
phase in this area is random (Fig.4.14a). At shorter distances, the correlation
function clearly has a Gaussian form in analogy to a thermalized Bose gas.

We note that the temperature extracted from the short-distance behavior of
gV (x, —x) is a measure of the occuparion of the higher energy part of the spectrum,
i.e., the particle-like part of the spectrum. For an insufficiently thermalized system,
it is quite possible that excitations in different energy ranges have different effective
temperatures. Therefore, the temperature measured this way will not necessarily
agree with other measures of temperature.
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Fig. 4.16 g (r) for a noninteracting 2D Bose gas. (a) Numerically calculated g (r) for a
noninteracting 2D Bose gas at increasing densities. We assume constant temperature and define
ne = Ap 2 Dashed lines are fits to a Gaussian function. (b) Width of the short-distance gaussian
decay in units of the thermal de Broglie wavelength A
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Fig. 4.17 Short-distance decay of the correlation function. (a) Measured g(")(x, —x) at short
distances. Blue dots are experimental data, the red line is a Gaussian fit. Data at |x| > 1 um is
noise. (b) Effective thermal de Broglie wavelength A as a function of laser pumping power.
Aett is extracted from the width of the Gaussian fit as shown in (a). Blue circles and red squares
correspond to orthogonal orientations of the prism in the Michelson interferometer (see text). The
condensation threshold is at ~55 mW

In Fig.4.17b, we plot the effective wavelength A as a function of pumping
power. If o is the standard deviation of the Gaussian fit for g(V(x, —x), Aey =
24270 in analogy to the thermal de Broglie wavelength. A shows a smooth
increase for increasing pumping power with no obvious threshold, analogous to the
theory of equilibrium noninteracting 2D Bose gas as the particle density is increased
[24]. We performed the same experiment for two orthogonal prism orientations as
shown in the legend of Fig. 4.17b, namely, horizontal and vertical orientations. In
the former case, we measured g(” (x, —x), whereas in the latter case, we measured
g (y, —y). We found that the effective temperature corresponding to A is larger
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for the vertical prism orientation. We attribute this difference to a small asymmetry
of the laser pumping spot.

We also note that the resolution limit of our imaging setup is ~1um, which
influences the measurement of A.¢ at small pumping power. If the transfer function
of our imaging system is Gaussian (namely, if a delta function is imaged to a
Gaussian) with width A, then the measured width of the Gaussian decay should

be \/AZ + Agff. Therefore, if the real Aoy is similar to A, then the measured

Aegr should be close to As. The height of the Gaussian (unity for a perfect optical
system) should also drop to a lower value, so that the total surface does not change.
From the measured height of the Gaussian fits, namely, gV (0, 0) ~0.7 —0.8 and the
measured Aegr ~1.6 — 1.7um, we estimate a lower bound for the real Ao > 1.3 um
at small pumping power.

4.4.4 Long-Distance Decay

In the equilibrium noninteracting 2D Bose gas, there is a crossover to an exponential
decay of g(V)(r) when the phase-space density D increases to values higher than 1
(see (4.44)). This is true for the interacting gas, as well, although with a different
value for the decay length k!. In the interacting case, however, there is a second
transition at the Kosterlitz—Thouless transition temperature (4.60), below which
g (r) decays as a power law (4.53) for large distances. In this section, we
investigate the functional form of the long-distance decay of the correlation function
g ().

Below the condensation threshold, we can only measure nonzero gV up to dis-
tances Ax = |2x| ~2um (see Figs. 4.14a and 4.17a). Above threshold, measurable
phase coherence is observed across the whole condensate, and the decay is no
longer Gaussian. We found that g1 is influenced by the edge of the condensate. In
Fig.4.18, we plot the measured gV (Ax) = g (|2x]) = gV (x, —x) at pumping

100

Fig. 4.18 Dependence on the
condensate size. Measured
g (Ax) =g (]2x]) = =~ 10~
gW(x,—x) vs Ax for b
various pumping spot radii
Ry. All data is taken above
threshold and is chosen such
that Aeg ~ 4.1 um. As the
condensate size increases, 10-2
gD (Ax) converges to a 10!
power-law decay

AX)

g
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power P ~3 x Py, for increasing pumping spot radius. The measured gV (Ax)
at long distances decreases as the spot size is increased and eventually converges
toward a power-law decay for large condensates.

To determine whether the condensate size is large or small, one needs to compare
the condensate radius Ry with the healing length & defined (4.15). & is the length-
scale at which boundaries are screened because of interparticle interactions, so when
Ry > &, boundaries do not influence the dynamics in the bulk of the condensate.
Also, & is the size of the vortex core. Therefore, a condensate with Ry > & supports
many vortices and vortex pairs, and the thermodynamics discussed in Sect. 4.2 are
valid. More precisely, they would be valid if the system was in thermal equilibrium.
The effective mass of LP’s in our sample near zero photon—exciton detuning (where
the current experiments were performed) is m* ~7 x 10™>m, and the mean-field
interaction energy nog ~1 meV just above threshold, as follows from Fig. 4.10b.
Plugging these numbers in (4.15), we find £ ~0.7um. Thus, a condensate with
radius Ry = 19um can indeed be considered as infinitely large.

In the case of a large condensate, we should recover the limit of (infinitely
large) homogeneous polariton gas. Therefore, we consider a pumping spot radius
Ro = 19um. In Fig.4.19a, we plot the correlation function g(V (Ax) versus Ax
as the pumping power is increased. Only short-range correlations exist for small
pumping power, whereas above the condensation threshold of ~55 mW, substantial
phase coherence appears across the whole spot. The functional form of the long-
distance decay is measured to be a power law over about one decade, as can be seen
in Fig. 4.19b, in which we plot the data at one specific laser power. We fit the data
to a function gV (Ax) = (A,/Ax)“ and plot the exponent a, as a function of
pumping power in Fig. 4.19c¢. It is found to be in the range 0.9—-1.2.

In Fig.4.20, we show log-log plots of the experimental data for g((Ax) as
a function of Ax for several pumping powers above threshold, along with the
corresponding power-law fits. The data is the same as in Fig.4.19a. As is evident
from the figure, all our data can be fit equally well with a power-law function.

In Fig. 4.21, we plot the parameter A, of the (A,/Ax) fit. Although A, has units
of length, it is not a characteristic length of the system. In equilibrium BKT theory,
the long-distance decay of g(’(Ax) is of the form

£ 1/(n547)
(D (Ax) = (M) , (4.66)

where n; is the superfluid density, n is the total density, £ is the healing length,

and At is the thermal de Broglie wavelength. In this notation, A, = (n )n o £.
For a thermalized gas, we expect that as the density is increased above the
critical density, the superfluid fraction ns/n increases, and A, increases accordingly
approaching the healing length &. This behavior is qualitatively reproduced by our
experimental results in Fig. 4.21.

In an equilibrium 2D Bose gas, the exponent of the coherence decay is limited to
ap = 1/nsA? = mkgT/2nh’ng < 1/4, where n; is the superfluid density and A is
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Fig. 4.19 Long-distance decay of the correlation function. (a) Measured g(V(Ax) =
g (12x|) = gW(x,—x) vs Ax for increasing laser power. The laser pumping spot radius is
Ry = 19um and the threshold power Py, = 55mW. (b) gV (Ax) vs Ax for one particular laser
power and for x both positive (blue circles) and negative (red squares). Dashed line is a power-law
fit. (¢) Exponent a,, of the power-law decay as a function of laser power

the de Broglie wavelength. This restriction occurs because increasing temperature
has two effects: it excites long wavelength phase fluctuations, which are responsible
for the power-law decay, and it can also excite vortex pairs. Consider a 2D Bose
gas at zero temperature. As the temperature is increased, thermal phase fluctuations
cause gV (r) to decay as a power law with increasing exponent as the temperature is
increased. When the BKT transition temperature 7pkr is reached, however, vortex
pairs unbind. Because of the random motion of free vortices in the system, gV (r)
decays exponentially. The maximum value of the exponent a, occurs just below
Tgkt. The observation here of a power-law a, > 1/4 implies that effects beyond
thermal equilibrium are required to explain the data; i.e., there is noise which excites
phase fluctuations without leading to vortex proliferation.
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4.4.5 Different Detunings and Orthogonal Prism Orientation

We have repeated the same measurements at several photon—exciton detunings § in
the range —3.7meV < § < 2.6 meV (corresponding to effective mass 7.8 x 107° <
mt < 11.5 x 107°). The results are summarized in Fig.4.22. In Fig. 4.22a, we plot
the experimental results for the effective thermal de Broglie wavelength A.¢ as a
function of pumping power. The behavior is similar for all detunings. The measured
Actr takes about the same values for all detunings at very low pumping power, as the

measurement is resolution-limited in this region. In Fig. 4.22b, we plot the fitting
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Fig. 4.22 Dependence on photon—exciton detuning. (a) Effective thermal de Broglie wavelength
Aetr @s a function of laser pumping power for several photon—exciton detunings §. The prism is in
the horizontal orientation. (b) Exponent aj, of the power-law decay as a function of laser pumping
power
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results for the exponent a,, of the power-law decay of gV (Ax) at long distances.
The long-distance decay was indeed found to be a power law, with an exponent in
the range 0.9-1.3 when including different detunings.

4.4.6 Nonequilibrium Model

The nonequilibrium theory of polariton condensation that best explains our data was
developed in [55,56] (see also [63] for a review of the essential results with minimal
technical details). The model is schematically illustrated in Fig.4.23. The main
part of the system consists of cavity photon fields and localized two-level atoms
randomly distributed in energy. The localized two-level atoms represent the excitons
and do not interact with each other. Because of their random energy distribution,
though, a nonlinear effect is present and models the interactions. Namely, as the
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exciton population increases, all low-energy atoms are occupied, so new excitons
can only be accommodated in high-energy atoms, and the average exciton energy
increases. Pumping is modeled through the coupling of excitons to a pumping bath,
which also consists of localized two-level modes with random energy distribution.
Cavity photons, on the other hand, can leak outside of the cavity, so they are coupled
to external photon modes with the same momentum.

We start with the Hamiltonian

I:I = I:Isys + I:Ibath + I:Isys,baths (467)
where
A=Y e (Bby - a;aa)+zwp¢g¢p+% 3 (supiybli, + e
o P o p
(4.68)

is the system Hamiltonian. The first term in 4.68 describes the excitonic modes
(two-level atoms). €, is the energy of atom «, and l;a, d, are fermionic operators.
by creates a particle on the upper level of the two-level atom ¢, and Ea destroys
a particle from the same level. Equivalently Ez;, and 4, act in the lower level of
mode «. Because only one of the two levels is occupied, it is necessary that l;i l;a +
&l&a =1 for each atom «. In the calculation, this constraint is imposed on average.
The second term in (4.68) corresponds to the cavity photons. w, is the energy, and
1}3, 1/A/p are the field operators of the cavity mode with momentum p. The last term
in (4.68) models the coupling between the exciton and cavity modes through the
coupling matrix elements g, . &, , determine the Rabi splitting of the cavity.

The pumping bath is described by fermionic operators Ay and By that act on
the lower and upper levels, respectively, of the two-level modes k. Correspondingly,

external photons are described by \i/,i and Wy, and the bath Hamiltonian is given by

Hyarr = Zwk“/f]t/fk + Zw,{bégﬁk + Zw,f\i/;z\ilk (4.69)
k k k

Finally, coupling between the system and the baths is described by

I:Isys,bath - Z Fs,k(&lAk + HC) + Fl}l),k(éiék + HC) + Z Cp,k (Iﬁ;‘i’k + HC)
.k p.k
(4.70)

The path integral formulation of nonequilibrium Keldysh field theory is used
[64]. It is assumed that the baths are much larger than the system, so their behavior
is not affected by the interaction with the system. So, we can integrate over the bath
degrees of freedom and calculate an effective action expressed only in terms of the
fields describing the system. Including phase fluctuations to all orders and density
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fluctuations to second order, the first-order correlation function is proven to follow
the equation

gV, 0) =[1+0(1/py)] exp[—f(r,0)], (4.71)

where py is the condensate density and f(r,?) is a function to be determined.

As the long-distance and long-time decay of gV (r,¢) depends on phase fluc-
tuations, the function f(r, ) depends both on the occupation function and on the
spectral function of the excited phase modes. The spectral function determines the
excitation spectrum of the system; thus, changes to the excitation spectrum can (but
need not necessarily) change the behavior of g()(r, 7). In equilibrium, the change
of spectrum from normal to condensed state leads to the appearance of a power-law
decay. In this case, f(r,1) is

k T 21‘2 2
f(r.1) ~ayn (B— V;SCH) , 4.72)

where the exponent @, = 1/pyA3. As expected, the equilibrium result (4.53) is
recovered. ¢, in (4.72) is the sound velocity, whose exact value is not important for
the rest of the discussion.

Including pumping and decay further modifies the condensed spectrum, leading
to diffusive behavior at long wavelengths [55,56,65]; however, whether this change
of spectrum causes a change of power law depends on the occupation function. For
thermal occupation of the excitations, the power law for the spatial decay is not
affected by pumping and decay, so that f(r,z = 0) is given by the equilibrium
result (4.72). The temporal decay of g(V(r = 0,¢) for large ¢ is also a power law,
but the exponent is different that the spatial decay.

For other occupation functions, the power law can be affected by dissipation.
Given that spatial coherence extends further when the same sample is pumped by a
single-mode laser [66], and the known role of pumping noise on temporal coherence
discussed in [67, 68], it is likely that the current results are the manifestation of
such pumping noise acting on the continuum of long wavelength modes. As a crude
model of this, one could take the spectral function of the dissipative system and
assume a flat occupation function (i.e., flat noise spectrum) with strength ¢. This
predicts a, o< {/ng for the spatial decay.

Unfortunately, this approach cannot lead to an expression of the pumping
strength ¢ in terms of experimentally measurable quantities. It does predict, though
that in a nonequilibrium system, it is possible to observe a power-law decay of
gD (r) with a large exponent if the noise is sufficiently strong.

4.4.7 Conclusion

In conclusion, the measured power-law decay of the correlation function suggests
that some form of the BKT superfluid phase survives in nonequilibrium conden-
sates, namely, phase fluctuations are excited but no vortices. The large value of the
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exponent implies that, in the current experiment, this ordered phase is more robust
against external noise than would be expected in equilibrium, in which equipartition
holds. We conjecture that the noise source is intensity fluctuations of the pumping
laser and apply a nonequilibrium theory to show that pumping noise can induce a
power-law decay with a large exponent. One may anticipate that sufficient noise
could induce vortex proliferation and a transition to short-range coherence. This
fascinating possibility remains an open question for future studies.

4.5 Single Vortex—Antivortex Pair

In Sect. 4.2, we argued that in a homogeneous two-dimensional system at nonzero
temperature, although there can be no ordering of infinite range [11,23], a superfluid
phase is predicted for a Bose fluid [12, 26, 29]. Bound vortex—antivortex pairs
dominate the thermodynamics and phase coherence properties in this superfluid
regime. It is believed that several different systems share this common behavior,
when the order parameter describing their macroscopic state has two degrees of
freedom [34] and the theory has been tested for some of them [37-41,44]. However,
there has been no direct experimental observation of a quasicondensate which
includes a bound pair of vortex and antivortex.

Here, we present an experimental result that can identify a single vortex—
antivortex pair in a two-dimensional exciton—polariton condensate. We have created
a pumping spot which generates a minimum of the condensate density at the center.
A zero in density can be thought of as a superposition of a vortex and antivortex
that can be separated by an external perturbation [69]. Thus, the central dip of the
condensate acts as a source of vortex—antivortex pairs. By calculating the energies
of vortex—antivortex pairs observed in the experiment, we conclude that thermal
fluctuations cannot be responsible. We conjecture that this effect is due to pump
laser intensity fluctuations.

We have found that for a particular condensate size, there is on the average
one pair at any time. A Michelson interferometer is used to reconstruct the time-
integrated phase map of the system. When the sample disorder potential is stronger
than the blueshift induced by polariton—polariton interactions, pinned pairs appear
at certain locations. When the sample disorder potential is weak, on the other hand,
they are mobile. They appear along a fixed axis, because of a small asymmetry in
the pumping spot, and are created with a random polarization, namely, the vortex
can appear on the right side of the spot and the antivortex on the left, or vice versa.
In the time-integrated measurement, two distinct characteristic phase defects appear
in the above two cases of pinned pair and mobile pair.

We have applied an open-dissipative Gross—Pitaevskii (GP) equation model [70],
which reproduces the observed density minimum at the condensate center. We next
imprinted a vortex—antivortex pair in a condensate and numerically simulated its
space-time evolution. We found that pair motion is significantly modified compared
to atomic condensates [71] because of the dissipative nature of the polariton
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condensate and the repulsive interactions between condensate and reservoir parti-
cles. The vortex pair is found to migrate perpendicular to its dipole moment due
to the velocity field and, in our experimental parameter space, recombines before
reaching the condensate edge. Despite the short polariton lifetime, vortex pairs
survive for a long enough time to be observed.

Our results suggest that vortex—antivortex pairs can be created in a 2D condensate
without rotation or stirring. Our observation that the vortex and antivortex in each
pair follow a correlated motion and do not separate is consistent with the power-
law decay of the correlation function discussed in Sect. 4.4. If free vortices were
present in the condensate, the correlation function would decay exponentially.
Further measurements on larger condensates containing more vortex—antivortex
pairs should clarify the influence of pair dynamics on phase coherence and polariton
superfluidity [72-77].

4.5.1 Condensate Shape in Real Space

The excitation scheme is described already in Sect.4.4. The pump laser at above
bandgap energy creates free electron—hole pairs, which form excitons and finally
relax toward the lower polariton (LP) branch, as shown in the schematic of
Fig.4.24a. When an LP decays, it emits one photon. In this experiment, we use a
pumping spot radius of 12 um. Figure 4.24b shows measured luminescence below
threshold, which features Airy-function-like patterns because of diffraction effects.
We assume that the shape is the same as the laser pumping spot, and use it as an
input to our numerical calculation. Above the condensation threshold, a population
dip develops at the condensate center, as shown in the measured luminescence
image of Fig. 4.24d. Our numerical simulation reproduces the observed population
dip (Fig.4.24d) and suggests that the inhomogeneity of the pump spot profile,
notably the ring near the center, generates this condensate shape. The condensate
density minimum is stabilized by the repulsive reservoir-condensate interaction,
since the reservoir shows a corresponding density maximum at the same point
(Fig.4.24c). This density minimum can be considered as an overlapping vortex and
antivortex.

Phase fluctuations [78] of the condensate are responsible for the spontaneous
vortex-pair generation [69]. In two dimensions, this is usually the result of inter-
action of the condensate population with thermal excitations. Knowing the energy
E, of a particular vortex-pair configuration, the probability of thermal nucleation
of this vortex-pair configuration can be estimated. In three dimensions, the thermal
excitation of a single vortex requires an energy proportional to the length of the
vortex line and is thus highly improbable. In two dimensions (2D) though, the
confinement along the axis of the vortex line results in a much smaller formation
energy. In the present polariton condensate, the thermal energy is still insufficient to
generate a single vortex whose energy we can estimate from (4.29)
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Fig. 4.24 Pump and condensate profile. (a) Schematic of the pumping mechanism (see text). (b)
LP luminescence image at half the threshold power. The profile along x = 0 is shown in yellow
line. We assume that it has the shape of the laser pumping spot, and use it as an input to our
numerical simulation. (¢) Numerically calculated reservoir density above threshold. (d) Calculated
and measured condensate density images for pumping power three times above threshold.

2 R
E, .~ menel? (_) ~ 106V > ksT. (473)
4 3

In this equation, nc is the condensate density, R is the condensate radius, and
I' = h/myp. When dissipative effects are taken into account (through the dissipative
GPE), the vortex energy is found to be lower than this estimate and nonlinear in n¢
due to the reservoir presence, but is still of order eV'. The energy of a 2D vortex—
antivortex pair depends on its separation and thus can have a smaller energy for
small separations:
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r2 d,
E,= Mreitct — (4 ’ (4.74)
27 &

gives the energy for a uniform condensate, where d, is the vortex—antivortex
separation. Unless the vortex pair is given enough energy for the vortex cores to fully
separate (core—core separation d, = 2§), it will immediately recombine rapidly and
will not be observed. The coefficient of the logarithm is large, though, and thermal
fluctuations (kg T ~ meV) cannot be solely responsible for formation of vortex pairs
with a reasonably large separation d, > £.

Instead, density fluctuations in the reservoir, which has population density
comparable to or higher than the condensate, introduce an alternative formation
source. The mean-field interaction energy due to the reservoir is maximum at the
center, where the reservoir density is maximum. Since the intensity fluctuations of
our pump laser modulate the reservoir population strongly, this results in modulation
of the local interaction energy and thus of the local phase of the condensate, which
induces a separation of the vortex and antivortex. We confirmed that a vortex—
antivortex pair is not regularly generated when a quiet single-mode pump laser is
used [66].

There is no confining potential in this experiment, and the localization of
polaritons near the pumping laser is a result of their finite lifetime, and hence, the
limited distance they can travel before recombining. There are, however, subtleties
regarding the interplay of this expansion of the condensate from the pump spot
and the effects of interactions between the condensate polaritons and reservoir
excitations created by the laser.

In particular, the repulsive interactions among condensate particles and between
the condensate and reservoir influence the condensate shape, but whether this leads
to spatial spreading of the condensate depends on the size and shape of the excitation
spot. A small excitation spot creates a strong antitrapping potential, which leads to
condensation in a high-momentum state, so that the condensate propagates away
from the excitation spot and spreads in space. This was observed in [79] in a CdTe
sample and reproduced in [59] in a GaAs sample. When the excitation spot is large,
on the other hand, a smooth antitrapping potential is formed that cannot prevent
condensation in the zero momentum state. In this case, the condensate is localized
and does not propagate far from the excitation spot. This was observed in our
experiment. Both cases of the small and large pumping spots were theoretically
studied in [61], and the above picture was established. We theoretically studied
the condensate using the model of [61] and confirmed the doughnut shape for our
sample parameters.

4.5.2 Pinned Vortex—Antivortex Pair

The expected phase map for a pinned vortex—antivortex pair is shown in Fig. 4.25a.
If we perform an interferometry measurement, in the way described in Sect. 4.4,
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Fig. 4.25 Phase map of a pinned pair. (a) Expected phase map of a condensate including a single
vortex—antivortex pair. Arrows show the direction of the phase increase around the vortex and
antivortex. (b) Simulation of the experimentally measured phase map when panel a interferes with
its reflection along the horizontal (dashed) line. A global phase slope along the vertical direction
is added. (c) Experimentally measured phase map at 55 mW above the condensation threshold of
20 mW. The blue square marks the position of a double dislocation pattern. (d) Expanded view of
the blue square in ¢, where the global slope along the horizontal direction is subtracted. ¢ and d are
rotated by 90° with respect to all other experimental data in this chapter

with this phase map as an input, the expected result is shown in Fig. 4.25b. The two
double-dislocation patterns, one at the upper part and the other at the lower part of
the figure, mark the position of the pair in the original and in the reflected images.
Figure 4.25¢ shows a phase map measured experimentally. It features the double
dislocation pattern characteristic of a pinned vortex—antivortex pair. In Fig.4.25d,
we have subtracted the global phase slope to reveal the actual phase map of a single
vortex—antivortex pair, corresponding to the expected one (Fig. 4.25a).

The sample is mounted using silver paint on a copper sample holder, attached
to the cold finger of a helium flow cryostat. Because of the different thermal
expansion coefficients, when the system is cooled down, the sample experiences
some amount of strain. Strain can induce a splitting A £, between emitted photons
linearly polarized along the horizontal and vertical directions. Hence, AEy can
be considered as a measure of local strain. Data in Fig.4.25 are taken with
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AEg=150ueV. Due to the sample disorder potential, the pair has a pinned
position and polarization, defined as the vector pointing from the antivortex to the
vortex. This is similar to the experiment in [72], where a single vortex pinned by the
disorder potential was observed.

However, when special care is taken to reduce strain during cooldown, by
applying a homogeneous layer of silver paint between the sample and sample holder,
AEg can be reduced below 50ueV. In this case, the disorder potential is very
weak, much smaller than the blueshift due to polariton—polariton interactions, so
the disorder is screened when the condensate is formed. Therefore, there are only
very few locations where pinned vortex—antivortex pairs can be observed.

4.5.3 Mobile Vortex—Antivortex Pair

From the previous discussion, we expect vortex—antivortex pairs in our second
experiment to be mobile. We next numerically study the evolution of a mobile vortex
pair imprinted along the horizontal axis, using a time-dependent open-dissipative
GP equation [70]. In a harmonically trapped conservative condensate, a single
vortex pair will undergo linear motion with velocity v,—,, = #/m*d,, which
is inversely proportional to the vortex—antivortex separation d, (Fig.4.1). Upon
interaction with the boundary, it will wrap back upon itself with a cyclical motion
[20, 71]. However, a polariton condensate with considerable repulsive condensate-
reservoir interaction (due to large reservoir population present in the experiment)
experiences drag forces strongly perturbing the vortex-pair motion [80], causing it to
recombine after only a short travel distance. For these types of micromotion, despite
the vortex-pair motion, a signature of the pair in time-integrated interferogram is
preserved. There are two areas where the phase is shifted by , one at the top and
the other at the bottom of the figure, and they are surrounded by minima in the fringe
visibility. The measured positions of the phase defects depend on the time averaged
positions of the vortex and antivortex. The above scenario is illustrated in Fig. 4.26.

To better understand the characteristic pi-phase-shift interference pattern
expected for a single vortex—antivortex pair with random polarization, consider
Fig.4.27. Figure 4.27a shows the interference fringes we expect to observe on the
camera when there is a single pair at a fixed position along the horizontal axis, and
the prism in the Michelson interferometer is oriented vertically. Two trident patterns
appear. When the pair polarization is reversed (Fig.4.27b), the trident patterns are
also reversed. Figure 4.27¢ results from 50-50 statistical mixture between the two
pair polarizations. There are two areas where the phase of the fringes is shifted by
pi compared to outside, and around these areas, the fringes are blurred, namely, the
fringe visibility has a minimum. This is because in the case of panel a, the fringes
are bent one way, whereas in the case of panel b, the fringes are bent the other way.
Figures 4.27d,e shows the phase and visibility maps corresponding to Fig.4.27c,
where the pi-phase-shift areas are clearly seen. Obviously, the shape of these areas
depends on the position of the pair and should be different when the pair can move
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Fig. 4.26 Summary of the vortex—antivortex pair production, evolution, and detection. (a) Con-
densate shape and its cross section along the line x = 0. (b) Schematic of the vortex—antivortex
pair trajectory. Depending on the pair polarization (whether the vortex is on the left or right of the
antivortex), the pair moves in the upper or lower half of the condensate. (¢) Measured phase map
revealing the presence of a single vortex pair

Fig. 4.27 Explanation of the interference pattern for a single pair with random polarization
(simulation results). (a) Interference fringes observed in the camera for one vortex—antivortex pair
polarization and for vertical orientation of the prism in the Michelson interferometer. It features
two trident-like patterns. (b) Interference fringes for the opposite pair polarization. The trident-like
patterns are now reversed. (c¢) Interference fringes for 50-50 statistical mixture of the two pair
polarizations. (d) Phase map and (e) visibility map corresponding to ¢

inside the condensate without changing its orientation, as will be discussed later.
We expect that this motion takes place in our experiments and is captured by our
theoretical model.

Figure 4.28a,b shows the results of our numerical simulation for the time-
integrated phase and visibility maps, respectively. We indeed observed such
unique patterns experimentally when the sample strain was removed, as shown
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Fig. 4.28 Phase and fringe visibility map of a free pair. (a) Theoretical time-integrated phase map
for a vortex—antivortex pair imprinted into a condensate and evolving according to the dissipative
GP equation. (b) Corresponding fringe visibility map. (¢) and (d) Measured phase and fringe
visibility maps. (e) Same data as in ¢, but now the global phase slope is not subtracted. (f) Blue:
phase cross section along the continuous and dashed lines in c. Red: fringe visibility cross section
along the same lines. (g) Measured phase map when the prism is rotated by 90°, along with a
schematic showing the orientation of the interfering images. (h) Corresponding fringe visibility
map. Experimental data are taken at 55 mW, above the condensation threshold of 20 mW

in Fig.4.28c,d, which illustrates typical experimental data. We found that there
is no noticeable dependence of the measured phase maps on the laser pumping
power, up to ~5 times the threshold power. In Fig.4.28e, we have not subtracted
the global phase slope, so that the direct experimental phase map is given. In
Fig. 4.28f, we plot the cross section of the phase along two (continuous and dashed)
lines passing through the two areas of sm-phase shift, where this phase shift is
shown quantitatively. We also plot the measured fringe visibility along the same
lines and find that the visibility minima coincide with the phase jumps. This result
demonstrates that the vortex—antivortex pairs are created with a random polarization
after the removal of strain.

Moreover, when we rotate the prism by 90°, so that the reflected image is along
the vertical axis, no phase defect is observed (Fig. 4.28g). The difference between
Fig.4.28e and g can be understood as follows (see Fig. 4.29): The vortex pair always
remains on the horizontal axis, and we fold the reflected image along the vertical
axis. In this case, the phase rotation around the vortex by 27 and that around the
antivortex by —2m cancel out, thus there is no phase defect in the interference
pattern. The corresponding visibility map without any defect is shown in Fig. 4.28h.

The free pair of Fig. 4.28 shows a distinct signature compared to the pinned pair
of Fig.4.25. Indeed, in the interferogram of Fig.4.25d, there are two singularity
points, one at the location of the vortex and the other at the location of the antivortex,
and the measured phase is continuous everywhere else. The experimental data in
Fig.4.28 suggests that such vortex—antivortex pairs are not pinned and travel a
distance comparable to the spot size in a process similar to the one described in [81].
When the pair can form with random polarization and also move, the measured
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Fig. 4.29 Horizontal versus vertical prism orientation. (a) When the vortex—antivortex pair lies
along the horizontal axis and the original image interferes with its reflection along the vertical
axis, then the vortex and antivortex in the reflected image annihilate those in the original image. So
the final image does not show any phase defects, corresponding to Fig.4.28g. (b) When the prism
creates the reflection of the original image along the horizontal axis, then the final image shows
a double vortex and a double antivortex, corresponding to Fig. 4.28e. This is a qualitative change
with respect to a.

27

Fig. 4.30 Interference images with a pumping spot rotated by 90°. (a) Phase map with one prism
orientation. (b) Phase map with the orthogonal prism orientation

time-integrated interferogram is a superposition of many interferograms of the same
type as Fig.4.25d with varying positions for the vortex and antivortex. This results
in a pattern with two m-phase shift areas (Fig.4.28c), which is consistent to our
theory (Fig.4.28a).

We consistently observe pairs along the same axis, even after we rotate the
sample by 90°. However, when we rotate the pump laser spot by 90°, the
polarization axis of the vortex pair is also rotated by 90°. We rotated the original
pumping spot by using a Dove prism just before the PBS in Fig.4.9a. The vortex—
antivortex pair is also rotated by 90° in this case, as is clear from Fig. 4.30. The two
panels can be directly compared with Fig. 4.28e,g. These results suggest that the
pair polarization direction is determined by a small asymmetry of the pump laser
spot, rather than by the disorder potential landscape in the sample. Although the
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pair orientation follows the rotation of the laser spot, the random switching of pair
polarization confirms that the pair generation mechanism is nondeterministic.

4.5.4 Different Condensate Shapes

To make sure that the observed w-phase shift areas are not an experimental artifact,
we perform the same Michelson interferometer measurement using a Gaussian
pumping spot by removing the beam shaper from the setup of Fig.4.9a. In this
measurement, we switch to a single-mode Ti:Sapph ring laser with long coherence
time. For both prism orientations, no phase defect is observed in the interference
pattern directly seen on the camera (Fig. 4.31a,c) or in the phase maps (Fig. 4.31b,d).
According to the generation mechanism of vortex—antivortex pairs discussed in the
main text, the population dip in the condensate formed because of the maximum
of the reservoir density at the center is essential. This mechanism is absent when
the Gaussian pumping spot is used. This observation supports our argument that
the minimum of the condensate density at the center of the spot acts as a source of
vortex—antivortex pairs.

X (um)

X (um)

Fig. 4.31 Interference images with Gaussian pumping spot. (a) Interference fringes observed on
the camera with one prism orientation. (b) Phase map corresponding to a. (c¢) Interference fringes
observed on the camera with the orthogonal prism orientation. (d) Phase map corresponding to ¢
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Fig. 4.32 Interference images with a small flat pumping spot. (a) Interference fringes observed on
the camera with one prism orientation. (b) Phase map corresponding to a. (c) Interference fringes
observed on the camera with the orthogonal prism orientation. (d) Phase map corresponding to ¢

Finally, we created a pumping spot with radius 7 um, instead of 12 um. No phase
defects were observed. This is shown in Fig.4.32, which features the measured
interference patterns (Fig. 4.32a,c) and phase maps (Fig. 4.32b,d). We conclude that
in this small condensate, pairs recombine quickly at the boundary and do not leave
any trace in the interferogram. Therefore, the 12 pum-radius condensate is of just the
right size for which on the average one pair is present at all times.

Using a prism in our Michelson interferometer (M2 in Fig. 4.13a) instead of a
retroreflector has the advantage that a single vortex should always be observable,
even if it is mobile. The idea is illustrated in Fig. 4.33a and is based on the fact that
the sense of rotation changes when an image is reflected. Consider the case that the
original image includes one vortex. The reflected image will include one antivortex.
Because the interferometer measures the phase difference between the two images,
the final image will feature two vortices. Figure 4.33b shows the simulated time-
integrated interference pattern when a single vortex is moving randomly inside the
red circle. Figure 4.33c shows the same interference pattern for the case of a mobile
antivortex, while in Fig.4.33d, we consider a 50-50 probability for either vortex
or antivortex. None of these interference patterns is observed in our data, which
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Fig. 4.33 Interference images for a single mobile vortex (simulation results). (a) Schematic of
the Michelson interferometer measurement for the case that a single vortex is present in the initial
image (see text). (b, ¢), Simulated time-integrated interference patterns for the case that a single
vortex (b) or a single antivortex (¢) are moving randomly inside the red circle. (d) The same as b
and c, but now, there is a 50-50 probability for vortex or antivortex

suggests that there are no free vortices in the condensate, but only bound vortex—
antivortex pairs.

4.5.5 Vortex-Pair Dynamics Described by Open-Dissipative
Gross—Pitaevskii Equation

The open-dissipative Gross—Pitaevskii equation [70] consists of two coupled equa-
tions describing the time evolution of the condensate order parameter v (r, ¢) and
exciton reservoir density ng(r, t)

T B
lhT = (— e 2 [yc — R ((nr(r,1))] (4.75)
+gcly (.0 + anR(l‘,l))w(r, 1),
ong(r,t) 2
= Pi(r,t) — yrur(r, 1) — R(ng(r, 0)|¥ (r,2)]". (4.76)

ng(r,t) is controlled by laser pumping gain Pj(r) and reservoir loss ygr. Interaction
between condensate and reservoir is represented by a coupling constant gg = 2gc,
where the condensate—condensate interaction constant is gc = 6 x 10> meVum?2.
Other parameters are the condensate polariton loss rate yc = 0.33ps™' and
stimulated scattering rate R(ng(r,?)).
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Though some of the parameters (particularly ng(r,¢) and R(ngr(r,?))), cannot
be measured directly, the strong influence of the reservoir population on the
condensate spatial profile allows us to indirectly probe the reservoir population
density and uniquely determine the parameter space. In particular, we obtain
the best fits to experimental sequences of spatial data as a function of P; for
pumping threshold Py, =25 mW with 24% pumping efficiency and yr ~ 1.5y and
R(ng(r.1))/ngr(r, 1) ~ ycyr/ Pn.

To study the vortex—antivortex pair dynamics, a vortex pair is imprinted in a
steady-state condensate directly via a phase factor '’ for the vortex and e~ for the
antivortex and is subsequently left free to evolve in time. The temporal frames are
stored and then cumulatively subjected to the same time-averaging mechanism as in
the experiment.

We have analyzed the dynamics and stability of a vortex—antivortex pair in a
polariton condensate in detail [80] and demonstrated significant deviations from
the usual vortex-pair motion expected in the conservative atomic condensate. We
found that the vortex pair will either recombine within the condensate or separate
and dissipate from the condensate boundary. The choice between these two types
of trajectory (in a largely homogeneous but confined condensate) is a competition
between the force due to the radially directed superfluid flow of the unconfined
repulsively interacting condensate and the drag forces due to the interaction with
noncondensate (reservoir and thermal polaritons). The cross over between these
regimes essentially depends only on the magnitude and profile of ng(r)

The pumping profile used in this simulation is an experimentally measured top-
hat profile (see Fig.4.11), and the condensate polariton lifetime is 7, = 3 ps. The
scattering rate R(nr) = Ry.nr(r)is assigned a linear dependence on ng(r), and a
measurement of the threshold pumping power Py, permits us to estimate the scatter-
ing rate via Ryc = ycyr/ Pm, Where we assume yg is comparable to yc, necessary to
study this experimental parameter space. Thus, with these parameters fixed to cor-
respond to experiments, a variation in the normalized pumping power P = P; /Py,
notably alters the relative fraction of reservoir ng to condensate n¢ particles accord-
ing to Z—g = V—Cﬁ , and thus, the pumping power should also control the choice
between the two possible vortex-pair trajectories outlined in [78]. Additionally spe-
cific to these experiments, as the healing length of the condensate is not significantly
smaller than the condensate size, the condensate boundaries are expected to also
affect the vortex-pair motion. Depending on the vortex pair initial energy and the
local condensate environment, the process of vortex pair either recombining within
the condensate or splitting and leaving the condensate will happen on the order of
the condensate polariton lifetime due to the small condensate size.

It is desirable to know in more detail how the dynamics and life cycle of a
single vortex—antivortex pair are reflected in the time-integrated measurements and,
specifically, why the defects in the fringes are not washed out by vortex motion. We
assume that the vortex pair (imprinted in the calculation directly via a phase factor
e!'wheref) = tan_l(ﬁ) and [ = =£1) is formed along the x-axis with core—
core separation dy and is subsequently free to evolve in time. Essentially, given
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the mirror symmetry of the problem across the y-axis, the interference fringes
will be observed due to the correlated motion of the vortex and antivortex. The
system topology restricts the pair motion to identical velocities in the y-direction
and opposite velocities in the x-direction, so that the pair does not rotate.

In Fig.4.34, we show time snapshots of the real-time evolution of an imprinted
vortex pair, which subsequently moves along the +y-direction. The ratio of
condensate density to reservoir density is defined approximated by

e | B(l — P(0)), 4.77)
nR Yc

and the parameter space is adjusted such that the vortex-pair trajectory (which
is largely determined by this ratio) is modified to produce the scenarios of (a) a
radially splitting pair (indicative of small reservoir population and lack of confining
potential) and (b) a recombining vortex pair (indicative of a strong dissipation with
large reservoir population). A perfect top-hat pumping profile is used for simplicity.
In (c), we show the simulation result for the system parameters most relevant to
our experiment. The pumping profile is the experimentally measured one, and the
parameters are the same as for the phase and visibility maps shown in Fig. 4.28,
as well as the condensate shape images. The pair is found to recombine rapidly, as
expected for a dissipative condensate with large reservoir population.

t=4.8ps «10'4um2  t=6.55ps xwg‘g,imfz t=8.3ps x|4o‘3pm’2 t=10.05ps  ,q0'%ym2  t=11.8ps <102
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Fig. 4.34 Numerical simulations giving the time-dependent dynamics of (a) a radially splitting
vortex pair and (b) a slowly recombining vortex pair and (c¢) a rapidly recombining vortex pair.
The first two scenarios use a perfect top-hat pumping profile, while the third uses the measurement
of the experimental profile. The parameter space of (c) is also chosen to closely match that of the
experiment, notably that this parameter space dictates both the presence of a central density dip in
the steady-state profile as well as a recombining vortex-pair trajectory
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The dislocations in the interference measurement and visibility minima patterns
are easily reproduced despite vortex-pair motion given that (a) the mirror symmetry
of the vortex pair about its midpoint and (b) that the condensate is occupied by
a vortex pair most of the time. The shape of these w-phase-shifted regions in the
interference and fringe visibility experiments and simulations have a strong depen-
dence on the vortex-pair dynamics, specifically a correspondence between the area
of the w-phase-shifted region and area mapped by the vortex-pair trajectory. Small
m-phase-shifted areas (as in experiments) are only reproduced with recombining
vortex pairs, while separating vortex pairs generally give distinct and significantly
larger areas.

Thus, two requirements are (a) strong modulation of condensate spatial profile by
an inhomogeneous pump and (b) the vortex pair recombines rather than splits both
imply a similar parameter space position to successfully explain the experimental
results. In this parameter region, the condensate and vortex dynamics are strongly
influenced by interaction with reservoir populations.

4.6 Future Directions

The results presented in this chapter provide a detailed microscopic picture of the
steady-state condensate realized in two-dimensional exciton—polariton systems. We
have presented the two characteristic features of the BKT phase transition in a
homogeneous two-dimensional exciton—polariton system. One feature is a power-
law decay of the spatial correlation function and the other is a bound pair of vortex
and antivortex. In contrast to the BKT phase transition at thermal equilibrium, the
exponent for the power-law decay of the spatial correlation function is larger than
1/4 and the vortex—antivortex pair recombines to disappear before it is reflected
from the condensate boundary. However, except for these details, the exciton—
polariton condensate keeps the basic BKT-like behavior. The power-law decay
of the spatial correlation function is consistent with our observation that no free
vortices are spontaneously created in the cold enough condensate. According to the
theoretical analysis, we conjecture that phase fluctuations are the main source of
noise in our system. To test this hypothesis, two complementary directions can be
followed.

The first one is to repeat the same measurements of the correlation func-
tion gV (r) at samples with longer lifetime. Although current technology cannot
increase the lifetime to the point where thermal equilibrium is fully established,
such a sample is expected to show weaker nonequilibrium effects. Therefore, the
exponent of the power-law decay of g‘")(r) should be smaller.

The second path is to apply electrical pumping. Instead of creating electron—hole
pairs by shining a noisy laser beam at above bandgap energy, carriers can be injected
much more quietly by pn junctions. This way, we can control the intensity and phase
noise of the system.
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Chapter 5

Coexisting Polariton Condensates and Their
Temporal Coherence in Semiconductor
Microcavities

D.N. Krizhanovskii, David M. Whittaker, M.S. Skolnick, K.G. Lagoudakis,
and M. Wouters

Abstract In this chapter, we study macroscopically occupied condensates, which
can be observed in semiconductor microcavities under conditions of resonant or
non-resonant excitation. In the case of resonant excitation, polariton condensates
form due to optical parametric oscillation (OPO) and are strongly non-equilibrium
states. In case of non-resonantly incoherently pumped system, the distribution of
the higher energy polaritons shows some thermalisation, but the resultant polariton
condensates are also far from thermodynamic equilibrium due to finite polariton
lifetime. In this chapter, we show that both systems have very similar properties.
We reveal the effects of polariton—polariton interactions and non-equilibrium
character on the condensate properties. Above threshold condensation into several
polariton levels with different energies and k-vectors is observed, which arises
from the non-equilibrium character of the polariton system. The specific k-vectors
at which condensation is triggered are determined by the local disorder potential
landscape. We also investigate the coherence of a single condensed mode by
measuring the first (g(1)- and second (g®)-order correlation functions. We find
that the decay times of these functions are ~100-150 ps, much longer than the
1.5 ps polariton lifetime. Even though the polariton condensate is a non-equilibrium
system, the strong slowing down of the decay allows coherence decay processes
characteristic of an equilibrium, interacting BEC to be observed. The signature
of the interactions is a Gaussian form for the g-function and a saturation of
coherence time with increasing number of particles in the condensate, as observed
experimentally and confirmed theoretically. Although predicted, these effects have
not been observed for atom BECs.
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5.1 Coexisting Non-equilibrium Polariton Condensates

5.1.1 Introduction

As described elsewhere in this book, there is significant contemporary interest in
the study of strongly coupled semiconductor microcavities, where mixed exciton-
photon quasiparticles, two-dimensional (2D) polaritons with very small effective
mass can be created. Such a small effective mass favours Bose-Einstein con-
densation (BEC) of polaritons at high temperatures and relatively small optical
excitation densities. Most notably, the formation of macroscopically occupied states
has been recently observed in CdTe [1,2], GaAs [3,4], and GaN [5, 6] microcavities
under conditions of non-resonant excitation. Polariton condensates are observed to
exhibit long-range spatial coherence, which is a characteristic property of BEC.
Although there is evidence for equilibrated polariton distributions [1-3, 7] and
macroscopic occupation of the k' = 0 ground state, polariton condensates are far
from thermodynamic equilibrium: due to the rather small polariton lifetimes, these
states originate from a dynamical balance of pumping and losses in the system.
We also consider strongly non-equilibrium polariton condensates, which are formed
due to optical parametric oscillation (OPO) in the case of resonant excitation into
lower polariton branch [8]. Such condensates have properties very similar to those
observed under no resonant excitation. Such similarity is discussed in this chapter.

It is important to note that the polariton condensate is a strongly interacting sys-
tem due to the excitonic component in the polariton wave function. The interactions
alter the dispersion of condensate excitations, which becomes nearly linear at high
k-vectors with defined sound velocity [9]. They were shown to decrease the healing
length of vortices, which is a fundamental concept of a condensed phase determining
the length scale on which the locally perturbed condensate wave function returns to
its unperturbed value [10]. There are several approaches based on both microscopic
calculations and generalisation of the Gross—Pitaevskii equation, which describe the
consequences of the non-equilibrium aspect of the interacting polariton BEC system
[9,11-13].

The imperfections of semiconductor microcavity result in a disordered polari-
tonic potential landscape, which plays an important role in the formation of 2D
macroscopically occupied polariton states. The influence of polaritonic disorder was
discussed for the case of the OPO, where condensed signal and idler modes arise
from direct scattering of the resonantly excited pump polaritons. The polaritonic
disorder strongly affects the real space distribution of the signal [14], which consists
of spatially localised modes emitting at different energies [15]. Polariton conden-
sates which are formed under condition of high-energy no resonant excitation are
also observed to consist of several localised maxima [16], which occurs due to
polariton trapping by the polaritonic potential disorder. It was shown that polariton
condensates subject to a disorder potential may spontaneously exhibit quantised
vortices due to interplay between the disorder potential, polariton flow, and decay
of the non-equilibrium condensate [17].
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In this chapter, we present spectrally resolved real and momentum space
images of the multimode polariton condensate. We observe that above threshold
condensation occurs into several polariton levels. This is a result of the non-
equilibrium aspects of the system, which prevents thermodynamic equilibrium
being reached for the states near the bottom of the lower polariton (LP) branch.
The low-energy condensate states are found to be strongly localised within a deep
potential minimum, whereas the higher energy states are spatially extended over a
few potential minima. In momentum space, these delocalised states typically consist
of a few bright maxima distributed on a ring. Similar to the phenomenon of coherent
back scattering in disordered systems, a peak at a certain k is often accompanied
by a weaker satellite at —k. Such observations became possible since the diode
laser has reduced intensity noise on a timescale of 100—1,000ps and results in
reduced fluctuations of the number of excitons and polaritons, which otherwise lead
to marked broadening of BEC spectra and prevent the observation of the coexisting
condensates [18].

5.1.2 Experimental Technique and Sample

The sample employed here is the A CdTe microcavity with 16 embedded quantum
wells, which is one used in [1, 2] where a polariton condensate with extended
spatial coherence was observed. The exciton—photon detuning at k = 0 is nearly
zero, and the Rabi splitting is about 26 meV. The sample was cooled to 10K.
To avoid heating of the sample, quasi-CW non-resonant excitation was employed
by means of CW diode lasers at 685nm using a mechanical optical chopper
with a frequency of 300Hz. The size of the excitation spot was about 20 pm.
High-resolution submicron imaging was achieved by a high numerical-aperture
microscope objective (N.A. = 0.5). Spectrally and spatially resolved images were
recorded using a double monochromator of about 40 eV resolution and a CCD
camera.

5.1.3 Real and Momentum Space Imaging of Coexisting
Condensates

Figure 5.1a shows spectra from the bottom of the LP branch at excitation powers
P =16 mW well above the threshold (Py, ~ 4 mW) for polariton condensation.
The spectra are recorded from a section of ~1 x 20 wum dimension across the
20 wm excitation spot in two perpendicular linear polarisations, X and Y parallel
to the (110) principal crystal axes. The emission in each polarisation consists of
six narrow peaks with energy separation 0.080-0.2meV. A splitting of ~0.1 meV
between X- and Y-polarised narrow lines is observed for each of the modes. Such
a splitting also exists for the LP mode below threshold and is probably due to
intrinsic anisotropy in the microcavity mirrors, leading to a cavity birefringence.
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In both polarisations, the peaks are quite narrow (FWHM ~ 60 eV, resolution
limited). The strong spectral narrowing and the observed super linear increase of
the intensity of each single mode (not shown) with excitation power [18] indicate
the build-up of coexisting macroscopically occupied states (polariton condensates)
and condensation into both no degenerate X- and Y-polarised states. The phenomena
are only observable due to the significantly increased temporal coherence obtained
using a noise-free laser.

Figure5.2 compares spectra of incoherently pumped condensate emission
recorded at power two times above threshold using a noise-free diode laser (a) and
a multimode Ti:S laser (b). Obviously, the condensate emission is much broader
in case of pumping using the “noisy” laser. The relevant difference between the
Ti:S and the diode laser is the timescale of intensity fluctuations. For the Ti:S laser,
the mode spacing is of the order of 250 MHz, resulting in intensity fluctuations on
an ns timescale. The intensity fluctuations of the diode laser are much faster (ps
timescale) due to their much larger mode spacing (~25 GHz). The importance of
the intensity fluctuation timescale can be understood in the following way: slow
laser intensity fluctuations are followed by the exciton reservoir (relaxation time of
the order of ns), whereas fast fluctuations are averaged out. A fluctuating reservoir
density results in a temporal variation of the blueshift of polariton condensates and
hence a linewidth broadening. This explains why the condensate linewidth under
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Fig. 5.2 Spectra of incoherently pumped condensate emission recorded at power two times above
threshold using noise free diode laser (a) and multimode Ti:S laser (b)

Ti:Sapph excitation (hundreds of peV) is much larger than the one under diode
laser excitation (tens of pueV) (see Fig.5.2) [16].

The multimode structure of the stimulated emission originates from the inter-
action of the non-equilibrium condensate with the fluctuations of the transverse
photonic potential, which typically occurs on a length scale of 2—4 um with
amplitude of 0.5-0.7meV in CdTe samples. To reveal the role of the potential on
the formation of spectrally narrow coexisting condensates, we recorded spectrally
and spatially resolved 2D images in real and momentum space. The images were
obtained above threshold for each of narrow peaks in Fig.5.1a. Figure5.1b, c
shows images of polariton emission recorded in energy-momentum space for the
same excitation conditions and spot as in Fig.5.1a. It is seen that the lowest
energy state is localised at around k = O for both polarisations. By contrast,
higher energy condensed states have well-defined k-vectors different from zero.
Figure 5.3a—f shows 2D images recorded in momentum space for X-polarised
modes. The first ground state mode emitting at 1.675005eV is localised around
k = 0 within #0.5 um™". The second mode emitting at energy of 1.675115meV
already consists of two lobes at (ky = Oum™', ky, = +1.2pm™!) and (k, =
Oum~' k, = —1.2um™"), respectively. The pattern of the higher energy modes
3—6 becomes more complicated: each mode has k-vectors distinct from zero, which
corresponds to momentum of the propagating LP states at the same energy. We
note that modes 3 and 6 consist of two strong maxima with opposite k-vectors at
(ky = £1.15um™!, k, = 0) and (ky ~ £23um™!, k, = 0), respectively,
suggesting efficient backscattering of the propagating polaritons in the condensed
modes with finite k-vectors due to interaction with the disorder potential.

Although the Y-polarised modes are spectrally distinct from the corresponding
X-polarised modes, they are observed to have very similar pattern (not shown).
Such a similarity arises from the fact that photonic potential, which is given by the
spatial fluctuations of optical thickness of the cavity and distributed Bragg reflectors,
is identical for both X- and Y-polarised polariton modes despite the modes being
split due to different refractive indexes along X and Y directions (birefringence).
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The splitting between X and Y modes is of the order of 0.1-0.2meV, which is
smaller than the typical amplitude of the photonic potential disorder (0.5-0.7 meV).

Figure 5.4 shows spectrally resolved images in real space recorded for each
of the narrow modes in X polarisation. The images of the condensed modes in
real space recorded in two polarisations are almost identical, which is consistent
with the similar X- and Y-polarised k-space images of these modes. Mode 1 is
strongly localised in real space within an area of ~5 x 3 wm, whereas the wave
functions of the higher energy polariton states are observed to consist of several
maxima separated by ~3—-4 um and are extended over a length scale 10-20 pm.
Moreover, all the modes show strong spatial overlap, indicating coexistence of
the condensed phases. We performed studies of the spatial coherence between the
spatially separated regions of the spectrally distinct condensates using standard
Michelson interferometry [18]. Above threshold an interference pattern is observed
between the emissions from separated regions emitting at the same energy. Such
observation indicates formation of a coherence length of the each high-density
polariton mode comparable to its size (~10-20 pm). Similar coherence lengths
were reported previously for polariton condensates excited with a noisy multimode
Ti:Sapph laser [1,2]. The fact that the higher energy condensed modes have maxima
in momentum space different from zero indicates the large phase difference between
the polaritons at the different potential minima.



5 Coexisting Polariton Condensates and Their Temporal Coherence 153

[a WE,1=1.675005 ¢V [l |b W E,2=1675115eV

e £ Ex5=167603

i

X33

Fig. 5.4 Images of polariton condensed modes in real space recorded in X polarisation at
particular energy of each mode. Here the emission intensity is indicated by colour. The emission
intensities are normalised by the factors shown in each panels

5.1.4 Gross-Pitaevskii Formalism of Non-equilibrium
Polariton Condensates

In a true equilibrium, BEC system condensation is expected to occur only into a sin-
gle ground state with its resultant massive occupation below a critical temperature,
whereas the population for the higher energy states should obey a Boltzmann
distribution with a well-defined temperature. The polariton system is far from
equilibrium. At powers much below threshold, polariton relaxation towards the
ground state due to polariton—phonon scattering is very inefficient [19, 20], and
hence, polaritons are not thermalised. By contrast, with increasing excitation power,
polariton—exciton scattering from the reservoir of exciton states towards the LP
states becomes dominant [20]. Such scattering enables simultaneous macroscopic
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occupation of several polariton modes with different k-vectors. The scattering
between the condensed modes itself is an order of magnitude weaker than stimulated
scattering from the reservoir into the modes since the reservoir population is much
higher. Above threshold a dynamical balance is formed between losses in the
condensed polariton modes and gain due to relaxation from the reservoir. Therefore,
there is a close analogy between the phenomena of polariton condensation and a
laser, with a significant difference that no population inversion is required to obtain
a macroscopic occupation, because stimulated relaxation is ensured by the bosonic
nature of polaritons.

The k-vectors at which polariton condensation is triggered are determined by
the spatial fluctuations of the photonic potential. These fluctuations of the order
of 0.5meV result in the formation of discrete localised polariton levels. Above
threshold condensation into each localised level occurs resulting in a multimode
stimulated polariton emission. The higher energy polariton condensates, which have
energies 0.5—1 meV above the polariton ground state and thus above the fluctuations
in photonic potential, arise from delocalised polariton states as observed in Fig. 5.4.
These condensed polariton modes also interact with the potential: particles with
particular k-vectors determined by a pattern of local potential may undergo coherent
backscattering, which minimises in-plane losses and triggers condensation into the
states with these specific k-vectors.

Given that there is good spatial coherence of each individual condensate mode,
we can neglect in our theoretical description the fluctuations and study the formation
of multiple condensates within a mean-field model [9]. Here we will use the
equations introduced in [9] for explanation of the effects of a finite size pump
spot [21] and the appearance of quantised vortices [17] in polariton condensates.
These equations consist of a Gross—Pitaevskii equation including losses and gain
for the macroscopically occupied polariton field ¥ (r):

Loy (r) K2
h——— = Ey— —
! Jt 7 om

Ve (1) + g [V (1) + Va(r) | 9 () (5.1)

v+ % [R [n2()] = 7]

where Ey and m are respectively the minimum energy and the effective mass
of the lower polariton branch, and g > 0 quantifies the strength of repulsive
binary interactions between condensate polaritons. The term Ve (r) describes the
external polaritonic potential, which originates from photonic potential disorder due
to variation of the cavity optical thickness across the sample [14]. In addition, some
long-range variation in the average exciton energy with a correlation length of a
few microns may also contribute. At the simplest level, the corresponding gain rate
R[ng] can be described by a monotonically growing function of the local density
ng(r) of exciton reservoir in the so-called bottleneck region [19, 20]. At the same
time, the reservoir produces a mean-field repulsive potential V(r) that can be
approximated by the linear expression Vg (r) ~ grxng(r) + G* P(r), where P(r)
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is the (spatially dependent) pumping rate and gg.G > 0 are phenomenological
coefficients. The GPE (5.1) for the condensate has then to be coupled to a rate
equation for ng(r):

IR _ p(ry = yrn(r) = R ()] ()2 5.2)

ot

where P describes the filling of the reservoir by the no resonant excitation. It is
useful to consider the solutions of the (5.1) and (5.2) in the spatially uniform case
Vext = 0. For low excitation density P, a stable steady state is given by ¥ = 0 and
ng = P/yg. The exciton density reaches the threshold for polariton condensation
when the gain from stimulated scattering from the exciton reservoir into the lower
polariton branch equals the polariton loss rate: R(ng) = y.. For pump powers
above the threshold P > P;;, = ygng(th), the solution without a condensate v = 0
becomes dynamically unstable. The dynamically stable solution is then given by
the condition that the gain is clamped to the losses R(ng) = y, and the condensate
density is |¥/|> = (P — P;;)/y. The condensate wave function oscillates at the
frequency w = g|y|> + Vk.

In the presence of an external potential, this simple picture breaks down. In
particular, it is no longer guaranteed that only a single frequency appears above the
condensation threshold. In the context of polariton condensation, multiple frequency
solutions of the related complex Ginzburg—-Landau equation have been found for
certain types of regular external potentials [22].

The disorder potential that we used for the theoretical calculations is shown in
Fig.5.5a. The shape of the disorder potential is determined from the spatial dis-
tribution of the low pump intensity photoluminescence. The spatial variation of the
lowest emission energy follows the disorder potential, albeit not perfectly because of
the zero point kinetic energy that smooths out the variations of the potential energy.
To compensate for the effect of the kinetic energy, we have multiplied the variations
in the experimentally observed energy landscape by a heuristic factor of 3.5 so
as to reproduce approximately the separation between the condensate frequencies.
The solution of our model (5.1) and (5.2) is shown in Figs.5.5b-5.7. As in the
experiment, multiple frequencies are present in the spectrum. The observation of
multiple frequencies is consistent with the parameters used in the simulations: the
fluctuations in the disorder potential are larger than the blueshift due to condensate-
condensate interactions g|v|? (its maximal value in the simulation is 0.3 meV).
The coupling between the various modes at different energies is therefore too weak
to ensure synchronisation [22]. The real and momentum space distributions of the
peaks in Fig. 5.5b are shown in Figs. 5.7 and 5.6, respectively. First of all, we want
to draw the attention to the strong qualitative similarities between the theoretical
simulations in Figs. 5.6 and 5.7 and the experimental measurements in Figs. 5.3 and
5.4.In both cases, the lowest energy states are very localised in real space (extended
over a few microns). In contrast, the states at higher energy are delocalised: they are
extended over a much larger area, with a diameter of the order of 10 um.
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Fig. 5.5 (a) Disorder potential landscape used in the theoretical simulations and (b) energy
spectrum from a simulation with the mean field model (1) and (2). Multiple condensates are
found in the simulation. The zero of the energy is the same as in (a). Values of parameters
used in the simulations: g = 0.015meV/pum?, hy, = 0.5meV, hiyg = 10meV, AR[ng] =
(meVum?) X nphgr =0,G =0and P/Py, =2

The qualitative correspondence between the experimental and theoretical recip-
rocal space images is also excellent. The low-energy states form a disk around
k = 0, while the states at highest energy lie on a ring in momentum space.
Note that all the modes except the lowest one do not exhibit inversion symmetry
in k-space. This lack of inversion symmetry is also present in the experimental
momentum distributions above threshold: we have observed many peaks in the
momentum distribution which have a satellite at the opposite wave vector. This is
likely to be related to the phenomenon of backscattering in disordered systems as
was mentioned above.

Time reversal of the linear Schrodinger equation requires that the eigenstates in
the disorder potential are invariant under k — —k. The condensate modes therefore
do not coincide with the linear eigenstates of the microcavity [18]. An identification
of the condensate states with the linear eigenstates can only be made for the lowest
condensate state (it corresponds with the lowest eigenstate A). The higher energy
states, on the other hand, cannot be identified with a linear eigenstate. Instead, the
non-linear dynamics of pumping, dissipation, and polariton—polariton interactions
define the new modes into which the polaritons condense.

5.1.5 Conclusion

We have presented a detailed experimental and theoretical analysis of a multimode
polariton condensate. The real and reciprocal space densities of the different
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Fig. 5.6 Momentum space distribution of the polariton field at the corresponding mode frequen-
cies in Fig. 5.5b

modes were recorded. It was shown that such a multimode structure of polariton
condensation phenomena arises due to interplay between pump, polariton decay, and
polariton propagation in a transverse potential disorder. Such a multimode structure
is not expected to occur in a true non-interacting equilibrium BEC.

5.2 Effect of Interactions on Temporal Coherence
of Polariton Condensates

5.2.1 Introduction

Temporal coherence is a fundamental property of system which undergoes transition
into macroscopically occupied high-density states. The decay of the first-order
correlation function gV defines the phase coherence time of a condensate, whereas
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Fig. 5.7 Real space distribution of the polariton field at the corresponding peak frequencies in
Fig.5.4b

the second-order correlation function g is determined by the statistics of the
particle number in a non-equilibrium system with pump and decay [23].

The polariton condensate is a strongly interacting system due to its excitonic
component. These interactions are expected to influence the condensate coherence
as we show in this section. Here the phase coherent properties of a single non-
equilibrium polariton condensed mode in a CdTe microcavity are studied. We
observe coherence times of 100—150ps for both the g() phase correlation function
and the second-order intensity correlation function g®. The g!) decay is about 30
times longer than reports using a multimode excitation laser [1-3]. The coherence
times of the condensate are nearly two orders of magnitude longer than the
polariton lifetime below threshold (~1.5 ps), demonstrating a strong slowing of
the decay in the coherent regime. Such slowing occurs because, as in a laser,
stimulated scattering from the polariton reservoir into the condensate dominates
OVer spontaneous processes.

The g™V function is found to have a Gaussian shape and a decay time which
saturates with increasing numbers of particles in the condensate. We show that
these properties are well explained by a model which includes interactions between
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polaritons in the coherent state and the effects of gain and loss. The interactions
play a central role in the decay of phase coherence because they cause spontaneous
number fluctuations in the coherent state to be translated into random energy
variations. Although this process has been predicted to occur in atomic BECs [24], it
has yet to be observed experimentally. This is because the coherence of atom BECs
is measured in atom-laser experiments [25,26]. The atom laser has been realised
only in pulsed mode; under these conditions, the coherence is limited by the lifetime
of atoms in the trap (few ms). Although the coherence times of polaritons are several
orders of magnitudes shorter than those of atom condensates, the interactions are
stronger too. Combined with the slowing of the decay, this makes interactions the
factor limiting the coherence of the polariton system.

5.2.2 Measurement of the First-Order and the Second-Order
Correlation Functions of Non-resonantly Pumped
Condensates

Having achieved spectral resolution of the localised condensed states in the previous
section, we are able to investigate the coherence properties of the individual modes
of polariton condensate. We employed a Mach—Zehnder interferometer to study
the time dependence of the first-order coherence. Figure5.8a shows a typical
dependence of the first-order correlation function (g (7)) for an individual mode
above threshold. It is found to have Gaussian time dependence with a coherence time
7. of ~100 ps. Figure 5.8b shows the variation of the measured coherence time of a
single condensate mode as a function of the intensity of the polariton emission,’
which in turn is proportional to the number of particles in the condensed state.
The coherence time first increases rapidly with increasing intensity, from a value of
~1.5 ps below threshold to a value of ~150 ps at ~3 times threshold, beyond which
it then shows near saturation. This coherence time is about one order of magnitude
longer than that reported previously for the polariton condensate [1-3].

The initial increase of coherence time with occupancy arises from the build of
the macroscopic occupation as the ratio of stimulated to spontaneous processes
increases [23]. The subsequent saturation value can be understood physically if the
interactions between the coherent polaritons and the reservoir of polaritons in other
modes are considered as we show below. These interactions also give rise to the
Gaussian shape of the polariton emission.

Further insight into the quantum nature of the condensed polariton state is
provided by the measurements of the second-order intensity correlation g (z)
using a standard Hanbury Brown-Twiss (HBT) setup [23].

'During the power dependence measurements of 7., the g1 (r) is measured at the delay times t of

5-150 ps and t. is extracted as —7/+/In(g(V(7)).
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Fig. 5.8 (a) Variation of g1 first order correlation function versus delay time for a single
condensate mode above threshold. (b) Coherence times 7. of condensate mode versus signal
intensity /;.(c, d) Typical variation of g®-second order correlation function versus delay time
for polariton emission below (¢) and above (d) threshold. The true variation of the g —function
versus delay time for polariton emission below (e) and above (f) threshold after correction for the
efficiency and the resolution time of the detectors

The g results below and above threshold are presented in Fig.5.8c, d. For
P < P, photon bunching is observed: the measured value of g(z), gf,,z(_,)as has a
maximum at T = 0 of 1.04 and then decays within ~40ps, determined by the
temporal resolution of the detectors (~40 ps). Below threshold, the state is expected
to be thermal for which the actual g®(0) = 2 and g%(r > ©'”) = 1, where
r((l) ~ 1.5ps is the phase coherence time for the thermal polariton state given by
the polariton lifetime. The small observed value of g,(nze)as 1.04 arises because of the
finite efficiency of the detectors and because W is very much less than the system
time resolution of 40 ps. Above threshold in Fig.5.8d, photon bunching is again
observed: g,(,lze)as has a maximum at t = 0 of ~1.04, but now decays on a longer
timescale of 100 ps, twice as long as the resolution time. This indicates that the
intensity fluctuations in the condensate are correlated on the same timescale as the
phase coherence time (Fig. 5.8a).
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By fitting the experimental data below threshold of Fig. 5.3c using the expression
for the measured g,(fgas(r) in [23],

T T+t
¢2.(0) =14 (§?0) - / d, / dts) exp(—|ts — 1]z,
0 0

where T, is the detector resolution time (~40 ps) and r(@ is the decay time of the
second-order coherence which is given by the polariton lifetime below threshold,
we obtain a value for the detector efficiency (~25%) in line with the manufacturer’s
specification. Using this value for the efficiency and the detector resolution time,
we are then able to obtain the true value for g of 1.1 & 0.015 above threshold by
fitting the experimental data of Fig. 5.8d. From the same fits the coherence time ?
is obtained to be 100 ps above threshold.

5.2.3 Quantum Optical Treatment of Temporal Coherence
in Non-equilibrium Polariton Condensates

Interparticle interactions and the fluctuations of the number of particles limit the
coherence of polariton condensate. This can be understood qualitatively as follows:
the energy blueshift of the polariton mode Egnire with respect of the unperturbed
LP polariton branch is proportional to the number of particles N: Egire ~ kN.
Fluctuations in the number of particles §N cause fluctuations in the condensate
energy 8 Egnige ~ k8N, thus establishing the upper limit for the condensate coherence
time 7. < o

We now discuss our detailed model for the first- and second-order coher-
ence treating initially an isolated, equilibrium BEC and then introducing the
non-equilibrium character. Consider an isolated state, with a Gaussian probabil-
ity distribution for the number of polaritons, P(n), characterised by its mean,
i1, and variance, o2. This state evolves under a non-linear Hamiltonian H =
kataa*ta, describing the polariton—polariton interaction. To find g™ (z), we
evaluate < a™(7)a(0) >, which corresponds to removing a polariton at time = 0
and putting it back at t = t. The phase change is t times the difference in energy
of states with n and n — 1 polaritons, that is, k7(n> — (n — 1)?) ~ 2kTn. Averaging
over the probability function P(n) gives:

gW(r) ~ / dnP(n) exp(Riktn) — exp(—2k>0*7?) (5.3)

which has the Gaussian form observed experimentally in Fig. 5.3a.

We obtain the variance o2 from the second-order correlation function,
g?(0) =1+ (0> —ii)/ii>. Using the measured g (0) of 1.1 and estimating
n ~ 500 from the emission intensity, we obtain 02 = 25,500. As shown below, « is
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estimated to be 2 x 10~ ps_1 from the blueshift (0.5 meV) of the mode from below
to above threshold. This gives a decay time 7. ~ 220 ps, close to the experimental
value of 150 ps.

The coherent mode is, of course, not isolated, as it is not in equilibrium; polari-
tons are lost by external emission at a rate determined by the cavity linewidth, y,
and are replaced from the reservoir of particles in other modes.” This disrupts the
Hamiltonian evolution on a timescale 7,, which depends on the loss rate, but is
generally slower than y~!, because the stimulated component of the scattering into
the mode exactly replaces the particle which is lost. This timescale is obtained most
directly from the decay of g'?(t), thatis, 7, ~ 100 ps. It is this slowing down which
allows us to see decoherence mechanism which occurs in equilibrium condensates,
despite the short cavity lifetime.

To make these considerations more quantitative, we have solved a generalisation
of a model for atom lasers with interactions [24]. Authors of [24] consider the
regime far above threshold, where the gain is saturated, so no slowing of 7, occurs.
We extend this treatment to cover the case where the occupation of the mode may
be less than or comparable to the saturation value, ng. The population dynamics are
given by a master equation of the form:

. 1
Pl‘l = )/nc [LPI‘I—] (n + )

P Gy ) T DB k) 6

where n. is a measure of the pumping strength. Above threshold, the steady-state
P, has a Gaussian form with mean n = n. —n, and variance .. Solving this model,
we find approximate expressions for the correlation functions, valid for 7 > 3, /n,:

g2(x) = 1+ =5 exp(—77) (5.5)
1&gV (0) |~ exp(—2k*n.7?) exp(—yt/2i1) (T < 1) (5.6a)
~ exp(—4k*n.t/y) exp(—yt/4i(yt > 1) (5.6b)

where the decay rate y = 7i1y/n. is much slower than that of the bare cavity mode.

It is the slowed decay of g®, with decay rate y = 7iy/n., which determines
that we are in the early time regime yr < 1 for g(!) as given by (5.6a). In
this regime, the first factor in g(!) is identical to the Gaussian expression for an
equilibrium condensate of (5.3) since the variance 0> = n.. The second factor,
exp(—yt/2n), corresponding to a Schawlow-Townes phase diffusion, is much
slower. From the measured g®(0) of 1.1, we obtain n; = 25,000 which predicts
77! to be ~100 ps when 77 ~ 500, in very good agreement with the experimental
decay of g (100 ps). The deduced value of 7 means that we are in the regime

2The reservoir consists of all the occupied modes in the system, predominantly exciton states at
high wavevector.
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7t < 1 for long enough to see almost the entire Gaussian decay of g(!) with the
decay time of 220 ps, shown above to be in quantitative agreement with experiment.
Using experimentally determined input parameters and our modelling, we are thus
able to explain quantitatively the decay times of both gV and g®, corresponding
to very different physical mechanisms.

In addition to the exchange of particles above between the condensate and the
reservoir, there is a direct interaction through the non-linear Hamiltonian, which
means that noise in the reservoir will cause energy fluctuations and decoherence.
This effect explains the short coherence times obtained previously using multimode
laser excitation. For such a laser, we measure intensity fluctuations of ~15-20%
on a nanosecond timescale; comparable variations in the reservoir population will
be expected. The interaction with the reservoir population causes a blueshift of the
mode energy to ~0.5 meV above the low power peak. The fluctuations will thus be
20% of this, ~0.1 meV, which translates into the coherence time ~20 ps, consistent
with the experimental results under multimode excitation (~5-10 ps linewidths).

Even with a noise-free excitation laser, there will be thermal fluctuations in the
reservoir population, which can cause decoherence. If the mean population is N,,
the variance will also be ~N,. The blueshift of the mode due to the interactions
is ~4kN,.> From the blueshift and the variance, the coherence time is found to
be (8N,k?)~!/2. Estimating N, ~ 10* using the pump power, we get k ~ 2 x
107 ps~! from the blueshift, and thus a coherence time ~180 ps.* We conclude that
the decoherence due to the thermal fluctuations is unlikely to obscure the intrinsic
effects of interactions between the polaritons in the mode.

5.2.4 Temporal Coherence of a Polariton Condensate Excited
in the Optical Parametric Oscillation Configuration

5.2.4.1 Introduction

In the previous sections, we investigated polariton condensates which are formed
under high-energy no resonant excitation in CdTe microcavity samples, when
the photocreated carriers undergo multiple scattering before forming a polariton
condensate. In GaAs microcavity samples, such non-resonant excitation is more
problematic. Since the exciton Bohr radius in GaAs (~10nm) is a factor of 3 larger
than that in CdTe material (~3 nm) at high particle densities, exciton resonance

3The factor of 4 is a counting factor which arises when the interaction is between two different
modes.

“Due to the small spatial overlap (~10%) between the pump mode and emitting spots, the relevant
value of N, may be a factor of 10 smaller than the total reservoir population, thus increasing the
estimated coherence time due to interactions with the reservoir by up to a factor of ~3, further
decreasing any contribution from thermal reservoir fluctuations.
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can be bleached by particle—particle interactions resulting in collapse of polariton
states before the condensation occurs. To overcome this effect, samples with a large
number of quantum wells [27] or so-called “cold” excitation resonant with the upper
polariton branch [4] or with high-momentum excitons have been employed [7].

An alternative way to create a polariton condensate in GaAs microcavities is to
excite resonantly the lower polariton branch at kp. In this case, with increasing
pump power, polariton—polariton scattering enables efficient population of the
lower polariton branch at k ~ 0 and condensation. This regime corresponds to
the so-called OPO [11-15], where macroscopically occupied signal and idler are
formed at k ~ 0 and k = 2 kp due to polariton—polariton scattering from the pump.
It is important that the phase of the signal or idler condensate is not determined by
that of the pump but appears due to spontaneous Ul symmetry breaking as in the
case of BEC [28]. As for non-resonantly pumped condensate, the signal condensate
also exhibits long-range spatial coherence [29] and hence properties very similar to
those in non-resonantly pumped system.

Here we show that temporal coherence of an OPO condensate shows coherence
properties very similar to those observed for non-resonantly pumped polariton
condensed phases studied above. We show that the signal consists of a number of
narrow, spectrally distinct modes. Transverse spatial images show that these modes
arise from regions with localisation size ~10 wm and strongly overlap indicating
coexistence of several condensates due to interactions with transverse photonic dis-
order. Using spatial and spectral filtering to isolate individual modes, we study the
coherence of the OPO emission. As for incoherently pumped polariton condensates
with increasing excitation power, the phase coherence times of OPO system exhibit
saturation behaviour with state occupancy and achieve maximum values of ~500 ps.
The effect is explained by polariton—polariton interactions between macroscopically
occupied signal, idler, and pump states. The coherence times of signal and idler are
found to be very similar over the whole range of excitation powers, showing that
the coherence is a property of the coupled OPO system, and that energy and phase
fluctuations of signal and idler are anti-correlated. We also investigated the second-
order intensity correlation function g of an individual signal mode and observed
its long decay of about 250 ps. Such observation is similar to that observed for non-
resonantly pumped condensate reflecting similar physical process occurring in the
two systems. However, up to now, no quantitative theoretical model exists to explain
the observed effect.

The microcavity (MC) studied had very similar structure to that of [11-13].
Several regions were investigated, all with Rabi splitting £2 ~ 6 meV and near zero
detuning between exciton and cavity modes. The beam from a single-frequency
diode laser (FWHM ~10 MHz) was focused to ~40 jum on the sample at an angle
of incidence of ®, =~ 12°-15° to achieve resonant excitation of the LP branch.
Spatially and spectrally resolved images of the LP emission (collected in a solid
angle 0 £ 5°) were recorded (see Fig.5.8a). First-order correlation functions were
measured using a Mach—Zehnder interferometer.
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Fig. 5.9 (a) Schematic showing polariton—polariton scattering under resonant excitation resulting
in condensate “signal” and “idler” formation. (b) Spectra of the signal emission recorded from
different areas across the excitation spot revealing multimode condensate structure

5.2.4.2 The First-Order and the Second-Order Correlation Functions
of OPO Condensates

Figure 5.9b shows spectra from the bottom of the LP branch (the signal emission
at @5 =~ 0°) at excitation powers P = 31 mW well above the threshold (P, ~
3 mW) for stimulated polariton—polariton scattering. The spectra are recorded from
two spatially separated sections of ~5 x 40 um dimension across the 40 pum
excitation spot. The emission consists of a number of narrow features with energy
separation and linewidth of 0.05-0.06 meV (FWHM, resolution limited). As seen in
Fig. 5.9b, different peaks dominate depending on the detection area across the spot.

Spatially resolved images (5pum resolution) of the signal are presented in
Fig.5.10a—d. Each individual image in Fig.5.10a—d is recorded at a specific
emission energy of an individual peak. Below threshold at a power P = 1.5mW,
the LP emission has a near-Gaussian distribution, determined by the excitation
beam. By contrastat P = 31 mW above threshold (Fig. 5.10a—d), the signal consists
of a number of spatially separated modes (spectrally resolved in Fig.5.9b) with
localisation size of ~10-15 um and with emission at different energies. It is notable
that the different modes strongly overlap in space indicating again the formation of
coexisting condensates.

The explanation for the multimode signal emission above threshold is similar to
that presented for CdTe non-resonantly pumped condensates. There are fluctuations
in the photonic potential of ~0.2meV possibly due to misfit dislocations in the
Bragg mirrors [30], which contribute to a spatial variation of the signal energy. As a
result, condensation occurs into different localised polariton modes above threshold.
The detailed study with a theoretical modelling of OPO condensation in disorder
potential are presented in [14].

Having achieved spectral and spatial resolution of individual signal modes, we
are able to investigate the coherence properties of the OPO, without the influence of
multimode phenomena which reduce the apparent coherence time and obscure the
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Fig. 5.10 (a—d) Two dimensional images of signal emission in real space recorded at each
particular energy of the individual modes in Fig. 5.1

physics determining the coherence time. Figure 5.11a shows a typical dependence
of the first-order correlation function g'(z,) versus time for the single signal mode
above threshold, decaying within a coherence time 7o, of ~230ps. To provide
information on the factors determining the OPO coherence, t.,, was studied as a
function of excitation power for both signal and idler at detection angles ®s ~ 0
and @; ~ 24° (Fig.5.8a), respectively. The ratio of the signal to idler intensities is
measured to be ~50—100. Correcting for the photon fractions of the signal and idler
states, N is deduced to be a factor of 5—10 larger than the population of the idler, N;.
The idler depletion mainly arises due to “idler—idler” and “idler-pump” scattering
towards high k exciton states.

Surprisingly, despite the extra scattering channel out of the idler state, both
the signal and idler have very similar coherence times. Moreover, as shown in
Fig.5.11b, very similar coherence times for the signal and idler are observed over
the whole range of pump powers.’> Coherence times (z.on) of ~100 ps are observed
at powers just above threshold. As a function of signal intensity (I o Nj), a

SThe idler intensity is too weak to permit study of its coherence close to threshold.
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Fig. 5.11 (a) Decay of gV of an individual signal mode above threshold. (b) Dependence of
coherence time of signal (solid) and the corresponding idler (open) modes as function of signal
intensity. (¢) Decay of g of an individual signal mode above threshold

rapid increase is then seen, followed by saturation behaviour at values of ~500 ps,
which is very similar to coherence time behaviour of the non-resonantly pumped
condensates.

We have also investigated the decay of the second-order correlation function
2@ (14) of a signal mode at powers 2—3 times above threshold. As seen in Fig. 5.11c,
photon bunching is again observed: g‘® has a maximum at ¢ = 0 of ~1.04 and
decays on a long timescale of 250 ps, with a decay time similar to that of g'(z4).
This indicates that the intensity fluctuations in the condensate are again correlated on
the similar timescale as the phase coherence time (Fig.5.11a). Taking into account
the efficiency of detectors in our HBR setup at 850 nm and using similar procedure
we described above, we deduced the true value of g (0) ~ 1.6, which indicates
that the OPO condensate is not a fully coherent system. This value is larger than that
observed for non-resonantly pumped condensates indicating stronger fluctuations of
the number of particles in the system.

5.2.4.3 Semi-classical Qualitative Model of OPO Coherence

The observed behaviour of the first- and the second-order coherence of OPO
condensate is very similar to that observed for non-resonantly pumped CdTe
condensates. Nevertheless, one has to remember that the OPO system is much more
complicated. It is a system of three coherently coupled macroscopically occupied
states: pump, signal, and idler, which requires a much more complicated theoretical
treatment. To explain the observed results, here we will only use qualitative
explanation based on semi-classical treatment of OPO.
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In a non-interacting stimulated system such as a laser [23],° the coherence time
is proportional to the ratio of the number of stimulated to noise photons, due to
spontaneous emission into the lasing mode. In the OPO, spontaneous scattering
occurs within a time 7, ~ ,/ys¥i ~ 5ps, determined by the polariton losses,
where y; and y; are polariton linewidths below threshold. Therefore, making the
analogy with the laser and assuming the limitation of the OPO coherence only by
spontaneous scattering, the coherence time of the signal and idler is expected to vary
linearly with polariton population (Ns + N;) ~ N; (Ns > N;) and is given by
Teoh = < Ns > 15p. We note, despite the strong depletion of the idler population, the
coherence times of signal and idler are expected to be the same within this picture
since an equal polariton flux into these states due to polariton—polariton scattering
implies the same fractional contribution of spontaneous noise polaritons for signal
and idler.

The observed variation of the temporal coherence, which saturates with N;, finds
anatural explanation if polariton—polariton interactions are included [15,16,31]. The
repulsive interaction leads to the blueshift of the condensate energy, determined by
the total polariton population in the system [32]. Following [32] for a fixed energy
of the pump, the energy shift of the signal, determined by the polariton—polariton
interactions between pump, signal, and idler states, is given by

|1 X |yi ( ySIX,-|4) 20X,
AE. ~ y3 N. — N; + AX. 12 — X2\ N
e ((yi +y) U0 X (Vi +vs) (i lX:]* = wlXiP) N,

(5.7)

Nj, i is the mean number of polaritons in the signal, pump, and idler respectively,
ys ~ 0.3meV, y; ~ 1meV are the polariton linewidths below threshold and
|Xs|?> ~ 0.5, |X,> ~ 0.7 and |X;|> ~ 0.95 are the excitonic contents of the
signal, pump and idler states, respectively; x3 is proportional to the third-order non-
linearity coefficient which determines the strengths of the scattering processes. The
energy of the idler is given by energy conservation by E; = 2E, — E;.

In macroscopically occupied states, there are always fluctuations in the number
of particles. For coherent states, the minimum amplitude of the fluctuations is
determined by Poissonian statistics with §N;, = N®° 8N; = N 6N, =
N 3'5 [23]. These fluctuations will result in equal energy fluctuations for signal and
idler §E; = —8E; (and thus reduction of the coherence time) due to the population-
dependent blueshift and hence equal coherence times in agreement with experiment.
The coherence is thus a property of the whole OPO system, rather than of either
signal or idler separately. The scattering out at the idler is stronger than at the signal
due to its higher excitonic content and proximity in energy to uncoupled exciton
states. Such scattering affects not only the coherence of the idler state but also that

SVCSEL Design, Fabrication, Characterization and Applications (Cambridge University Press,
1999), p. 240.
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of the signal, which is coupled to the idler and the pump by polariton—polariton pair
scattering.

Taking into account the broadening of the OPO emission due to spontaneous
processes discussed above, and the broadening due to fluctuations in polariton
number, derived from (5.1), the coherence times of the signal and idler are given by

| X [4y: )2 41X, |4

(il X512 = vs| Xi [P)2N
Yi + ¥ Vi + vs)? !

1/Tc0h = 1/(TstNs)+X3\/(
(5.8)

In the formula, we omit the N; term from (5.7) since N; < Ny, N,,. Above threshold
the number of polaritons in the pump is almost independent of the excitation power
and is given by the threshold value since with increasing power, the additional
polaritons are transferred efficiently to the signal and idler [32]. Therefore, the
variation of 7., with occupation is mainly governed by N;. N, is estimated to be
~6,000 =£ 3, 000 at threshold pump powers of ~3—7 mW. We measure the power of
the total emission in the signal beam to be ~200 wW for P = 30 mW. This enables
us to deduce the average polariton number in a single signal mode (Fig.5.9) to be
~1,000-2,000 at P = 30 mW. y3 is deduced from the energy shift of the signal of
~0.25meV at P = 30 mW. Equation (5.8) was then used to calculate the coherence
time 7¢on at high-density N;. For Ny = 2,000 at P = 30mW and N, = 3,000,
close to the values deduced from experiment, we obtain the maximum value of .o
of ~450 ps (corresponding to linewidth of ~2 peV), which is in a good agreement
with the experiment.

The increased coherence time of the second-order correlation function (~250 ps),
much longer than polariton lifetime, cannot be explained by a semi-classical model.
This requires development of a quantum theory of OPO taking into account pump
and decay of polariton states like for a non-resonantly pumped condensate in
Sect. 5.2.3 [16], which is beyond the scope of the current manuscript.

5.2.5 Conclusion

In conclusion, we report the observation of long decay times for both the first-
and the second-order correlation functions of polariton condensates, which arise
under the conditions of non-resonant or resonant excitation. In the case of non-
resonantly pumped condensates, the decays of both coherence functions, as well
as the Gaussian lineshape of g(1), are well explained by a consistent model which
takes into account pumping and decay of the coherent mode along with the effect of
interactions. More generally, the polariton condensate exhibits properties expected
in equilibrium BEC, even though it is subject to gain and loss with its environment.
For OPO macroscopically occupied modes, the coherence times of individual signal
and idler modes have been observed to be similar over the whole excitation range of
powers even though the idler is subject to strong additional scattering. This shows
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that the temporal coherence is a property of the interacting OPO system, rather than
of signal and idler separately. Semi-classical qualitative model is presented to show
how the interactions between OPO modes limit its coherence. Overall, gV and g®®
decay times and its behaviour with power in non-resonantly and resonantly (OPO)
pumped condensates are very similar.
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Chapter 6
Vortices in Polariton OPO Superfluids

Francesca M. Marchetti and Marzena H. Szymanska

Abstract This chapter reviews the occurrence of quantised vortices in polariton
fluids, primarily when polaritons are driven in the optical parametric oscillator
(OPO) regime. We first review the OPO physics, together with both its analytical
and numerical modelling, the latter being necessary for the description of finite
size systems. Pattern formation is typical in systems driven away from equilibrium.
Similarly, we find that uniform OPO solutions can be unstable to the spontaneous
formation of quantised vortices. However, metastable vortices can only be injected
externally into an otherwise stable symmetric state, and their persistence is due
to the OPO superfluid properties. We discuss how the currents characterising an
OPO play a crucial role in the occurrence and dynamics of both metastable and
spontaneous vortices.

6.1 Introduction

Quantised vortices are topological defects occurring in macroscopically coherent
systems, and as such have been broadly studied in several areas of physics. Their
existence was first predicted in superfluids [1, 2], and later in coherent waves [3].
Nowadays, quantised vortices have been the subject of extensive research across
several areas of physics and have been observed in type-II superconductors, ‘He,
ultracold atomic gases, non-linear optical media (for a review, see, e.g., [4]) and very

F.M. Marchetti (0<))

Departamento de Fisica Tedrica de la Materia Condensada, Universidad Auténoma de Madrid,
Madrid 28049, Spain

e-mail: francesca.marchetti @uam.es

M.H. Szymarska
Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
e-mail: M.H.Szymanska@warwick.ac.uk

D. Sanvitto and V. Timofeev (eds.), Exciton Polaritons in Microcavities, 173
Springer Series in Solid-State Sciences 172, DOI 10.1007/978-3-642-24186-4_6,
© Springer-Verlag Berlin Heidelberg 2012



174 F.M. Marchetti and M.H. Szymanska

recently microcavity polaritons [5—12], the coherent strong mixing of a quantum
well exciton with a cavity photon.

This chapter reviews the occurrence of quantised vortices in polariton fluids,
primarily when polaritons are driven in the optical parametric oscillator (OPO)
regime. The interest in this area of research is manifold. To start with, the search
for condensation in solid-state excitonic systems has been arduous and lasted more
than 2 decades: Unambiguous evidence for condensation has been reported for
microcavity polaritons for the first time in 2006 [13]. These results have been
followed by a wealth of experimental and theoretical advances on aspects related
to macroscopic coherence, condensation, superfluidity, quantum hydrodynamics,
and pattern formation, just to mention few (for a review, see [14]). Two different
schemes of injecting polaritons and spontaneously generating a macroscopically
coherent state can be employed: (1) non-resonant pumping, and (2) parametric drive
in the OPO regime. What both condensates have in common is the phenomenon
of spontaneous phase symmetry breaking (and the consequent appearance of a
Goldstone mode) and the non-equilibrium ingredient. However, the way polaritons
are pumped has strong effects on the type of condensed regime that can be reached.
In both regimes (li) and (2), the quest for superfluid behaviour has been and is
being widely investigated. As it has been recently discussed in [15-17], one of
the aspects that makes condensed polariton systems novel compared to known
superfluids at thermal equilibrium, is that now all the paradigmatic definitions of
a superfluid, such as the appearance of quantised vortices, the Landau criterion, the
existence of metastable persistent flow, and the occurrence of solitary waves, have
to be singularly examined and might in general be fundamentally different from the
equilibrium case. Several of these popular topics are examined in Chapters 1, 3, 5,
7,9, 10 and 12 of this book.

Resonantly pumped polaritons in the OPO regime [18, 19] have been recently
shown to exhibit a new form of non-equilibrium superfluidity [8, 20]. Polaritons
continuously injected into the pump state, undergo coherent stimulated scattering
into the signal and idler states. Superfluidity has been tested through as frictionless
flow [20] of a travelling signal triggered by an additional pulsed probe laser
(the triggered OPO [TOPO] regime). In addition, the study of quantised vortices
imprinted using pulsed Laguerre-Gauss laser fields has attracted noticeable interest
both experimentally [8] and theoretically [21-24], providing a diagnostic for
superfluid properties of such a non-equilibrium system. In particular, vorticity has
been shown to persist not only in absence of the rotating drive but also longer than
the gain induced by the probe, and therefore to be transferred to the OPO signal,
demonstrating metastability of quantised vortices and persistence of currents [8,22].

The chapter is arranged as follows: After a very short introduction to microcavity
polaritons in Sect.6.2, we describe the optical parametric oscillator regime in
Sect. 6.3, stressing the analogies and differences with an equilibrium weakly inter-
acting Bose—Einstein condensate (Sect. 6.3.2.1) and the numerical modelling that is
necessary to use for finite size pumps (Sect. 6.3.3). In Sect. 6.3.5, the occurrence of
spontaneous stable vortices in OPO is described for clean cavities, while the case of
disordered cavities is studied at the end of Sect. 6.3.3. Next, we describe in general
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terms the role of adding a pulsed Gaussian probe to the OPO regime (the so-called
TOPO regime) in Sect. 6.4, while metastable vortices triggered by a Laguerre-Gauss
probe are discussed in Sect.6.5. Here, in Sect.6.5.2, we also describe the onset
and dynamics of vortex—antivortex pairs. Stability of multiply quantised vortices is
analysed in Sect. 6.6, and finally, we mention the occurrence of vortices in polariton
fluids in other regimes than OPO in Sect. 6.7.

6.2 A Very Short Introduction to Microcavity Polaritons

Before focusing on the main topic of this review, we give here a very short
introduction to microcavity polaritons in order to fix the notation for later on. A
more complete introduction can be found in several review articles [14,25-29] and
books [30-33] on microcavity polaritons.

Microcavity polaritons are the normal modes resulting from the strong coupling
between quantum well (QW) excitons and cavity photons. In semiconductor
microcavities, the mirrors employed to confine the light are distributed Bragg reflec-
tors, i.e., alternating quarter wavelength thick layers of dielectrics with different
refractive indices. Between the Bragg reflectors, the cavity light forms a standing
wave pattern of confined radiation, which can be described by an approximatively
quadratic dispersion, wc(k) = w® + k*/(2mc) (from here onwards, we fix & = 1).
Excitons are the hydrogenic bound states of a conductance band electron and a
valence band hole; therefore, their mass is much larger than the cavity photon mass
(typically m¢c ~ 10~°m., where m. is the free electron mass). For this reason, the
exciton dispersion can be neglected, wx (k) = a)g. In microcavities, one or multiple
QWs are grown in between the mirrors so that excitons are at the antinodes of the
confined light, giving rise to strong coupling. In addition, cavity mirrors are built
with a wedge, so as to change the detuning between the normal incidence energy of
the cavity field and the exciton one, § = a)g - a)g. Typical parameter values for a
GaAs-based microcavity are listed in Table 6.1.

The polariton normal modes can be found by solving the coupled Schrodinger
equations for exciton and photon fields, ¥x c = ¥x c(r, )

o (Vx5 (Vx ~ (0% —ikx )2
i0; (WC) = Hy (WC) Hy = ( ?211/2 wc(—iV) —iKc) , 6.1)

where §2g is the Rabi splitting and xx ¢ are the decay rates of exciton and photon.
For an ideal cavity, kx c = 0, the eigenstates of this equations in momentum space,
Uxc(r, 1) = e Y, e®Tyy ¢k, are the lower (LP) and upper polaritons (UP)

Yxk\ _ (€0s O —sin Qk) (wLP’k) s
(Wc,k) (sin 6 cosbr ) \Yupa)’ (6.2)
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1 k) — ¥
cos? 6y, sin® 6 = 3 1+ wek) — ox , (6.3)
J0@elt) — 0% + 2
with an energy dispersion given by (see Fig. 6.1):
1 0 1 072 2
woLpup(k) = 3 [wc(k) + 03] F 3 [oc(k) — o3 |” + 23 . (6.4)

At zero detuning (§ = 0) and normal incidence (k = 0), polaritons are exactly
half-light and half-matter quasiparticles (cos? 6y = 0.5 = sin® §). The value of the
momentum k of polaritons inside the cavity is related to the emission angle ¢ (with
respect to normal incidence) of photons outside the cavity by ck = wpp(K) sin¢.
Thanks to this property, microcavity polaritons can be directly excited by a laser
field and detected via reflection, transmission, or photoluminescence measurements.
In Fig. 6.1, the energy dispersion of the lower and upper polariton are plotted as a
function of both wavevector, k [um™!], or the emission angle, ¢ [degree], for typical
values of microcavity parameters.

6.2.1 Exciton-Exciton and Exciton—-Photon Interaction

A fundamental property of polaritons is their non-linear behaviour inherited from
the exciton—exciton interaction and the saturation of the exciton—photon coupling.
In this review, we treat excitons as bosonic particles; therefore, the effective exciton—

¢ [degree]
-31-23-15-7 0 7 15 23 31
1.534 T T T T T T T T T
1.533 | up/ ¢ -
1.532
fig. 6.1 L9wer (LP) and ; 1.531
pper polariton (UP) energy o |
dispersions (solid) together > 1.530
with the dispersions of the ? 1.529 |
photon (C) and exciton (X) E L
fields (dashed) as a function 1.528
of either the wavevector 1.527 I
k [um™!] or the emission .
angle ¢ [degree] for 1.526 7
me =23x10"m), 15 L . 4 .o 4.
2r = 4.4meV, -4 -2 0 2 4

wy = 1.5280¢V, and a iy
detuning § = 1 meV k [pm ]
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Table 6.1 Characteristic parameters of a GaAs-based microcavity,
divided between the parameters of the quantum well (/eff) and those
describing the microcavity (right). Here, {c = A/1/(mcS2R) is a
characteristic length for the cavity photons. The photon decay rate k¢
refers to a cavity mirror with typically 25 bottom pairs and 15 lower
pairs (see, e.g. [8])

QW Cavity

€~13 0 ~ 0} >~ 1.53eV
me = 0.063m? 8 € [—10, 10] meV
my = 0.3m? me =2.3x107°m!?
ax ~70 4 Lc = 0.868 um
RZyx =~ 17TmeV 2r >~ 4.4meV

kx ~ eV kc = 0.1 meV

exciton interaction can be written as:

1
Hxx = 24 Z Va¥xacra¥xn—aVxaVxics
kK .q

where the effective interaction potential V;, can be determined starting from the
microscopic electron—hole Hamiltonian [34,35]. The typical wavevector involved
in the physics described by this review are much smaller than the inverse exciton
Bohr radius, ¢ < ax !, where ax = €/(2ue?) is the two-dimensional exciton Bohr
radius, € the dielectric constant, and p,_l = me_l +my ! the electron—hole reduced
mass. In this limit, it can be shown [34] that the momentum dependence of ¥, can be
neglected, thus approximating it with a contact interaction, V, ~ gx = 6e’ax/e =
6 Zyx a%, where Zyy = €*/(eax) = 1/(2pna%) is the exciton Rydberg. Typically,
for GaAs quantum wells (see Table 6.1), € = 13, ax >~ 7 nm, and Zyyx =~ 17 meV,
therefore, gx ~ 0.005 meV(,urn)z. We will see, however, that the exact value of the
coupling constant gx has no relevance for the mean field dynamics we are going to
describe, i.e., gx can be rescaled to 1.

The composite nature of excitons, as a bound state of an electron and a hole,
is also visible in the saturability of the exciton—photon coupling, resulting in an
anharmonic interaction term which adds to the usual harmonic one:

0 2
e =2 [ ar [ @ve® + v @] [1 - M} .69

sat

where ng, = 7/ (1671a>2() is the exciton saturation density [35]. In GaAs, ng =~
2842 (um)~2 and for a Rabi splitting of £2r = 4.4 meV, the ratio between saturation
and exciton—exciton interaction strength:

2r

—— >~ 0.1,
28xNsat
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allows us to neglect the anharmonic term in (6.5) for the kind of physics we want to
describe in this review.

Therefore, the mean field evolution of the coupled cavity photon—exciton
dynamics is described by the following non-linear Schrédinger equation or Gross—
Pitaevskii Equation (GPE):

o (Vx| 5 gx|vx*> 0 )} (Kﬁx)
o (wc)_[H”( o vem)]\ye) S

Here, we have also added an external potential Vc(r) acting on the photon
component, which later on will be used to describe the effect of photonic disorder
present in the cavity mirrors. Note that (6.6) is a classical field description, which
assumes the macroscopic occupation of a finite number of states, each described by
a complex classical function .

6.3 Optical Parametric Oscillator Regime

An accurate control of the polariton dynamics can be achieved by directly injecting
polaritons at a given wavevector and frequency with a properly tuned external
laser—the resonant excitation scheme. Within this scheme, two regimes can be
singled out: (1) the regime where only the polariton state generated by the pump is
a stable configuration of the system (we refer to this as the pump-only state) and (2)
the regime where the polaritons continuously injected into the pump state undergo
coherent stimulated scattering into the signal state (close to the normal direction)
and the idler state (on the other side of the pump). Parametric scattering from pump
to signal and idler can be self-induced by the continuous-wave (cw) laser above a
pump strength threshold, in which case, one refers to the OPO regime. However,
below the threshold for OPO, a second weak probe beam shined close to either the
(expected) signal or idler states, can be used to “seed” the parametric scattering
processes and amplify the probe; in this case, one refers to the optical parametric
amplification (OPA) regime.

We introduce the concept of polariton parametric scattering and review the main
experimental results on optical parametric amplification in the next section. In
Sect. 6.3.2, we use a simplified theoretical model in terms of plane waves, for both
the pump-only resonant state and the OPO state, summarising the main properties
of both regimes and drawing an analogy with equilibrium weakly interacting Bose—
Einstein Condensates (BECs). Finally, in Sect. 6.3.3, we explain the necessity for
carrying out a numerical analysis of the OPO. Much experimental work has been
carried out on polaritons in the OPO regime [18, 19, 36-45] (for a review on the
experiments, see [46]). We will discuss the experimental achievements along with
the theoretical description.
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6.3.1 Polariton Parametric Scattering and Optical Parametric
Amplification

In the parametric scattering process, two polaritons from a pump mode, with
wavevector and frequency {Kp, wp}, scatter into a lower energy signal mode {k;, w;}
and a higher energy idler mode {k;, w;}. This scattering process has to conserve
energy and momentum, therefore requiring that

2k, = ks + ki
20, = ws + wj. 6.7)

This condition cannot be satisfied by any particle dispersion: For example, para-
metric scattering is forbidden for particles with a quadratic dispersion. In order to
check whether parametric scattering is allowed for polaritons, one has to verify if
the condition:

2CULP(kP) = wrp(ks) + wLP(|2kp - k) (6.8)

can be satisfied. If k, = 0, then the momenta of pump and idler are uniquely
selected (see left panel of Fig.6.2). In this case, the value of the pumping angle
is also referred to as the “magic angle,” and is located close to the inflection point of
the LP dispersion. However, for a generic signal wavevector, k, = k = (k,, k) and
a fixed pump angle k;, (assumed to be oriented along the x-direction, (kp, 0), in the
right panel of Fig. 6.2), the final states allowed in the parametric scattering process
describe a figure-of-eight in momentum space [28,47,48].

¢ [degree]
15 -7 0 7 15 lwg p(k)+wp p(|2kp—k|) ~2wg p(kp)|
0 T T T T T 3F = LA ' . "
2l
= 1f f
1 (]
E I
=0 L]
o \
-1
-2
-3 T~ =
=2 0 2 -3 -2 -1 0 1 2 3
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Fig. 6.2 Illustration of the basic idea of parametric scattering. Left: 2 LPs scatter from the pump
state {kp,, w, } towards the signal {k, w} (here at zero momentum) and the idler state {k; = 2k, —
ks, wi = 2w, — ws} (at higher momentum), conserving momentum and energy. Right: Following
Refs. [28,47], we plot |w.p (k) + wpp(12k, — K[) — 2w, p (k,)| as a function of k = (k,, k,),
where the pump is oriented along the x-direction, k, = (k,, 0). The white line is the zero value
of the contour. The parameters used in both panels are the same as the ones of Fig. 6.1
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In the case of optical parametric amplification experiments, parametric scattering
is stimulated by a weak additional probe field. OPA was first observed in an
InGaAs/GaAs/AlGaAs microcavity [49], where a substantial signal gain of up
to 70 was measured. Much experimental work has followed this first result
[50-59]. Pump-probe parametric amplification of polaritons with an extraordinary
gain up to 5000 and at temperatures up to 120 K has been reached in GaAlAs-based
microcavities and up to 220K in CdTe-based microcavities [55]. In three-beam
pulsed experiments [51], polaritons scatter from two equal and opposite angles,
k, and —kp, into the LP and UP states at k = O—mnote that at zero detuning,
§ = 0,20% = wp(0) + wyup(0). Interestingly, parametric amplification has been
also obtained for ultracold atom pairs confined in a moving one-dimensional optical
lattice [60]. The role of the periodic optical lattice is to deform the atom dispersion
from the quadratic one, allowing parametric scattering to happen.

The stimulated scattering regime can be reached also in the OPO configuration,
i.e., without an additional probe beam. Now, stimulated scattering is self-initiated
at pump powers above a threshold intensity, where the final state population is
close to one. We will see that in this case, there is no special significance of
the “magic angle,” rather, a broad range of pumping angles larger than a critical
value, (6, 2 10° for the parameters in [61]) allow OPO with a signal emission
close to normal incidence, 65 ~ 0°. In addition, for finite size pumping (see later
Sect. 6.3.3), the pump, signal, and idler momenta are smeared in a broad interval,
while their frequency still satisfy the matching conditions (6.7) exactly. In the next
three sections, we will focus mainly on the theoretical description of polariton
resonant excitation with a cw laser field, describing the properties of first the pump-
only state and then the OPO state.

6.3.2 Bistability and OPO in the Plane-Wave Approximation

The theoretical description of polaritons in the resonant excitation regime can be
formulated in terms of the same classical two-field non-linear Schrodinger equation
previously introduced in (6.6), where now an external driving field F,(r, ¢) is added
in order to describe the coherent injection of photons into the cavity:

. WX _ 0 ~ gxlwxl2 0 ):| (WX)
lat (I/IC) - (Fp(r,t)) + |:H0 + ( 0 Vc(l') I//C . (69)

A continuous-wave (cw) pumping laser can be written as:
Fy(r.1) = Ff, g, (r)e! "), (6.10)
where 7 5 (r) can either describe a homogeneous pump with strength fp,

a@fpﬂp (r) = fp, or, as we will assume later in Sect.6.3.3, a Gaussian or a top-hat
spatial profile with strength f, and full width at half maximum (FWHM) o,,.
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For a homogeneous pump, ¢, » (r) = f,, and for a clean system, Vc(r)= 0,
the conditions under which a stable OPO switches on can be found by making
use of an analytical treatment [28, 61-63]. In fact, in this limit, each mode can be
approximated as a plane wave. To simplify the analytical expressions, it is useful
to rotate (6.9) into the LP and UP basis, as described by (6.2), and to neglect the
contribution from the UP states, assuming that the LP and UP branches are not
mixed together by the non-linear terms. In this case, working in momentum space,
Yrp(r, 1) = Y, eX Ty pk(7), (6.9) can be written as:

10 Yrpk = [op(k) — ik (k)] Yrpx + Z gk ko VT P, +1o—k VLP K VLP Ky
ki ko

+ sin O fre 7P ik (6.11)

where k (k) = kx cos? 6 + kc sin® 6 is the effective LP decay rate and the interac-
tion strength now reads as gi k, k, = gx €08 Ok €os 0|, +k,—k| COS O, cOs O, .

If we consider the solutions of Eq. (6.11) where only the pump mode, k = K, is
populated, we can find an exact solution in the form:

Yip(r, 1) = pel®rr=en?)

Yiek(t) = pSik,e (6.12)
where the complex amplitude p is given by:
[wLp(kp) — wp — ik (kp) + gx cos* Qkp|p|2] p+sinb, f, =0. (6.13)

For practical purposes, one can substitute gx cos* Ok, +> 1 by redefining the
pump strength fp/ = . /gx cos’ Ok, sin O, f, and rescaling the field strength p by
1P/l = /gxcos’ b, |pl|. Note that the x*-non-linear interaction term, |p’|*p’,
renormalises the effective detuning of the pump mode from the LP dispersion:

Ay = wp — orp(ky) — P/, (6.14)

which now includes the blue-shift of the LP dispersion due to interactions.

The general solution of the cubic equation (6.13) is well known, and exhibits
a qualitatively different behaviour depending whether the pump frequency is blue-
or red-detuned with respect to the LP dispersion. In particular, if w, — wrp(kp) <
ﬁk(kp), the system is in the optical limiter regime, where the population |p’|?
grows monotonically as a function of the pump intensity fp’ . If instead w, —

wrp(ky) > LY (kp), the system displays bistable behaviour, with a characteristic
S-shape of |p’|? as a function of /,» the second turning point coinciding with the
point where the effective detuning A, (6.14) changes sign (see Fig. 6.3). Because
the branch with negative slope is unstable, the polariton density in the pump-only
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fp [arb. units] fp [arb. units]

Fig. 6.3 Dimensionless LP population | p’|?/« (ky) = gx cos® 6| p|*/k (k;) as a function of the
dimensionless pump intensity fp’ = ./&x cos? Ok, sin O, f, for different values of the parameter
§= [wp — wrp(kp)]/K (kp). When 8§ < /3 (left panel), the system is in the optical limiter regime,
while for sufficiently blue-detuned pump frequencies, § > /3, a bistable behaviour is obtained
(right). The sign of the interaction renormalised detuning, A, (6.14), is also given

mode follows a hysteretic behaviour: Increasing the pump intensity, eventually
the pump-only mode jumps abruptly into the upper branch, while if the intensity
is then decreased, the polariton population decreases and jumps back down to
the lower branch for smaller values of the pump intensity. Optical bistability in
microcavity polaritons has been observed in [64, 65], with evidence of a hysteresis
cycle of the polariton emission as a function of the pump intensity. Multistability
of two different polariton states, generated by either populating two different spin
states [66—68] or by injecting two states with two different pumps [69], has been
also recently proposed and, in the spin case, observed. Part of the interest in this
field is to realise all-optical switches [70] and memories.

The dynamical stability of the pump-only solution (6.12) can be established
by allowing other states than the pump (i.e., the signal and idler states) to be
perturbatively populated via parametric scattering processes:

wLP,k(Z) — PSk,kpe_iwpt + Sgk,kp—qe_i(wlj_w)r + i*gk,kp+qe_i(wp+w*)t . (615)
where, {ks; = k, F q, w5; = wp F o} and by assessing whether the time evolution

of these states grows exponentially in time or not. Expanding to the first order in s
and 7, one obtains an eigenproblem for the amplitudes s and i [61-63]:

w— Ay —ik(k)  gxescicy p? s
=0, 6.16
( gxescic2p*?  —w — A +ik(ki) ) \i (6:16)
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where Ag; = wp — wrp(ks;) — Zchiic§|p|2 and ¢ps; = cos Qkp.,ks,kr The complex
eigenvalues @ can be obtained imposing that the determinant of the matrix in (6.16)
is zero. The dynamical stability is ensured if J(w) > 0. Therefore, the threshold
for instability of the pump-only solution (6.12) can be found imposing the condition
S(w) = 0. By fixing the pump wavevector and energy (k,, wp) and the signal
wavevector kg (as well as the exciton and photon lifetimes, xx c), the condition
above provides a criterion for establishing the boundaries of the instability region,
i.e., the lowest and highest values of the LP population | p|? for which the pump-only
solution is not stable. As shown in [61-63], one can classify the instability as a single
mode instability when q = 0 and therefore k, = k; = k;—the Kerr instability.
In particular, the branch with negative slope of the bistable curve (dashed line in
Fig. 6.3) is always single mode unstable [61, 63]. If instead q # 0, the instability
is parametric like. Now, the total extent of the instability region corresponding to
different values of k; is significantly larger than just the branch with negative slope.
In addition, the OPO state does not require a bistable behaviour and can turn on also
in the optical limiter case. In particular, it is possible to plot a “phase diagram” [61]
of pump energy wp as function of pump wavevector k;,, showing the regions where
a pump-only solution is always stable, where the OPO switches on, and where
instead only a Kerr-type instability is possible. In this way, in [61], it was shown
that there is no particular significance to the “magic angle” for the pump. Rather,
OPO conditions can be found for all angles larger than a critical value, 6, > 6.
(~10° for the parameters of [61]), as also confirmed experimentally [39, 40]. In
addition, the energy renormalisation of the polariton dispersion due to interactions
moves the emission angles for the signal always close to 85 ~ 0 [40,61]. This is also
confirmed by the numerical simulations we have carried out and illustrated later on
in Sect. 6.3.3.

The method described above implies negligible populations of the signal s and
the idler i, and therefore, it allows to find the conditions for the OPO threshold.
In order to find the OPO states, one cannot linearise in s and i but instead must
include the contributions of finite signal and idler populations to the dispersion
renormalization [61]. In this way, in the region unstable to parametric scattering
determined with the method described above, one can describe first the increase
(switch-on) and later the decrease (switch-off) of the signal and idler populations
as a function of the pump power. It is interesting to note that by doing that,
i.e. by substituting (6.15) into (6.11), “satellite states” oscillating with energies
Wy, = 2ws—w, = wp—2w and w;, = 2w; —w, = w, + 2w automatically appear. In
fact, above the OPO threshold when signal and idler populations are not negligible,
parametric scattering from the signal (idler) state into the pump and second-signal
(second-idler) satellite state take place, i.e., 2s +— p + 52 (2i — p + i»), and
therefore, 2w, = w, + w,, (2w; = wp, + w;,). This is clearly seen in the “exact” OPO
solution obtained numerically (see, e.g., Fig. 6.4), as well as it has been observed
experimentally (see, e.g., [37]). One has to note, however, that the population of the
“satellite states” by multiple scattering processes is always negligible w.r.t. the one
of pump, signal, and idler (see right panel of Fig. 6.4).



184 F.M. Marchetti and M.H. Szymanska

£y W, [arb. units]

ek [arb.units] 4 S 3 8 8 8
o [=] (=] o o o o
3 ¥ w
1
2 0.1 - 12 ¥
N 0.01
% 1 {0001 | =~
£, 0.0001 | el
& 1e05 | —P| B
s -1 1e:06 | ~ S
P 1ot7 |P———s |
1e0s |
-3 : le-09 5= G

ky [um™]

Fig. 6.4 Left panel: OPO spectrum |c x(k, w)|? for a top-hat pump of FWHM 6, = 70 um
and intensity f, = 1.25 p‘h above the threshold pump power for OPO, fp(th). For this particular
run, we resonantly pump at k, = 1.6 um™! in the x-direction, k, = (k,,0), and at , — 0y =
—0.44 meV. Polaritons at the pump state undergo coherent stimulated scattering into the signal

and idler states, which are blue-shifted with respect to the bare lower polariton (LP) dispersion
(green dotted line) because of interactions. Cavity photon (C) and exciton (X) dispersions are
plotted as gray dotted lines. As discussed in the text, above threshold, we observe the population
of the satellite states in addition to the one of signal and idler. Right panel: momentum integrated
spectrum, Y |¥cx(k, w)|?, as a function of the rescaled energy w — w¥. Pump, signal, idler, and
satellite states are all equally spaced in energy by roughly 1.19 meV

We will introduce the numerical modelling used to describe the problem for
a finite size pump later in Sect.6.3.3. Before doing that, in the next section,
we concentrate on the analogies and differences between an OPO state and an
equilibrium weakly interacting BEC.

6.3.2.1 Spontaneous U(1) Phase Symmetry Breaking and Goldstone Mode

The OPO state looks at first sight very different from an equilibrium weakly
interacting BEC. In particular, the OPO is an intrinsically non-equilibrium state
characterised by the (macroscopic) occupation of three polariton states only, one
directly populated by the external pump and the signal and idler states populated
by parametric scattering. Contrast this with the thermodynamic phase transition
in a BEC, where the macroscopic occupation of the ground state occurs when,
for a thermal distribution of bosons, either the temperature is lowered below a
critical value or the density is increased. The OPO state does, however, share with
a BEC the fundamental property of spontaneous symmetry breaking of the phase
symmetry [61,71]. In fact, the external laser fixes the phase of the pump state ¢,
and parametric scattering processes constrain the sum of the signal and the idler
phase only, 2¢, = ¢ + ¢;, but leaves the system to arbitrarily choose the phase
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difference ¢ — ¢i. In other words, one can easily show that the system of three
equations obtained by imposing the OPO solution (6.15) into the mean field (6.11)
is invariant under the simultaneous phase rotation of both signal and idler states:

s > se'?

i ie '?, (6.17)

This U(1) phase rotation symmetry gets spontaneously broken in the OPO regime,
where the signal and idler spontaneously select their phase, though not indepen-
dently. Note that in this respect the OPO regime differs very much from the OPA
regime, where both signal and idler phases are fixed by the external probe, and
therefore the U(1) phase rotation symmetry is explicitly broken by the probe and no
phase freedom is left in the system.

Goldstone’s theorem states that the spontaneous symmetry breaking of the U(1)
phase symmetry in OPO is accompanied by the appearance of a gapless soft mode,
i.e., a mode w(k) whose both frequency J[w(k)] and decay rate J[w(k)] tend
to zero in the long wavelength k — 0 limit. The dispersion for the Goldstone
mode in OPO has been derived in [71], where also an experimental setup to
probe its dispersion has been proposed. In addition, the appearance of spontaneous
coherence in OPO has been shown via quantum Monte Carlo simulations [72]
through the divergence of the coherence length when the pump intensity approaches
the threshold. In contrast, in the OPA regime, where the phase rotation symmetry is
explicitly broken by the probe, there is no Goldstone mode, and a gap opens in the
imaginary part of the elementary excitation dispersion, J[w(K)].

We would like to stress here that even though an equilibrium weakly interacting
BEC and an OPO state share the fundamental property of spontaneous symmetry
breaking of the phase symmetry, some care needs to be applied in pushing this
analogy further. In particular, the existence of a free phase alone is not sufficient to
ensure the paradigmatic properties of a superfluid, such as the Landau criterion, the
stability of quantised vortices, and the persistency of metastable flow. For example,
let us consider here the case of the Landau criterion: In an equilibrium weakly
interacting BEC, the existence of the soft Goldstone mode (the Bogoliubov mode),
with its characteristic linear dispersion fork — 0, w(k) >~ ¢k implies the existence
of a critical velocity, v. = minkw(K)/k = ¢, (the speed of sound), below which a
perturbative defect dragged through the fluid cannot dissipate energy (superfluid
regime). In the non-equilibrium OPO regime instead, similarly to what happens for
incoherently pumped polaritons condensates [21, 73, 74], the unusual form of the
excitation spectrum—diffusive at small momenta—poses fundamental questions on
the fulfilling of the Landau criterion and the possibility of dissipationless superflow.

Similarly, properties such as the appearance and stability of quantised vortices
and the persistency of metastable flow need to be independently assessed in
polariton fluids in the three different pumping schemes available—(1) non-resonant
pumping, (2) parametric drive in the optical parametric oscillator regime, (3)
coherent drive in the pump-only configuration. In fact, in the case of an equilibrium
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condensate, the ground state is flow-less, i.e. a vortex solution is unstable in non
rotating condensates.! In contrast, in a polariton fluid, its intrinsic non-equilibrium
nature implies the presence of a flow even when a steady state regime is reached.
In this sense, not always the presence of vortices can be ascribed to the superfluid
property of the system. We will discuss these aspects more in depth later in Sect. 6.5.

6.3.3 Numerical Modelling

We have seen in Sect. 6.3.2 that, for homogeneous pumps, 7 £, ;, = fp, the condi-
tions under which a stable OPO switches on can be found analytically by assuming
that pump, signal, and idler states can be described by plane wave fields (6.15) and
therefore are characterised by single wavevectors Kk, s ; and by uniform currents, the
intensity and direction of which are given by kpﬁs,i.z However, for pumping lasers
with a finite excitation spot, ¥, 5 (r), such as the ones employed in experiments,
one can only resort to a numerical analysis [78] of the coupled equations (6.9). A
finite size pump implies that, in the OPO regime, pump, signal, and idler states are
broaden in momentum; as a consequence, these states are going to be characterised
by non-trivial configurations of the currents (see Fig. 6.5). We will see later on that
these currents play a crucial role in the occurrence and dynamics of both metastable
and spontaneous vortices in OPO.

In particular, we numerically solve (6.9) on a 2D grid of typically N x N =
28 x 28 points and a separation of 0.47 jum (i.e., in abox L x L = 140 x 140 um)
by using a Sth-order adaptive-step Runge—Kutta algorithm. We have checked that
our results are converged with respect to both the resolution in space L/N and the
one in momentum 5/ L. Note also that of course the extension of the momentum
box kmax = mN/L has to be big enough to contain the idler state. In the specific
case of Figs. 6.4, 6.5, and 6.6, we have chosen a smoothed top-hat profile # ¢, ;. (r)
with FWHM o, = 70 um and (maximum) strength f;, (later for Fig. 6.8, we have
chosen instead a FWHM o, = 35 um). Considering the case of zero detuning,
§ = 0, we pump at k, = 1.6 um™! in the x-direction, k, = (k;,0), and at
wp — a)g = —0.44meV, i.e. roughly 0.5meV above the bare LP dispersion, and
gradually increase the pump strength until the OPO switches on. We find that
broader LP linewidths imply a wider range in pump strength of stable OPO, and
for this reason, we fix kx = kc = 0.26 meV in these particular runs. We define f;h

! In rotating condensates, a vortex can be created if the angular velocity is higher than a critical
value [75,76]. When the rotation is halted, then the vortex will spiral out of the condensate [77].

2 Given a complex field or wavefunction, |y (r, t)|e'*™"), describing either a quantum particle of
mass m or a macroscopic number of particles condensed in the same quantum state, the current is
defined as [76]:

h
i) = —yr, DIPVe (. 1) = [y (r.0) v(r. 1), (6.18)

where v (r,7) is the flow velocity. In the following, with a slight abuse of notation, we will refer
to the current as the gradient of the phase only, V¢ (r, 7).
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as the pump strength threshold for OPO emission—here and in the following, we
only select OPO solutions which reach a dynamically stable steady state (dynamical
stability is studied in Sect.6.3.5.1). In the case of Figs.6.4 and 6.5, the pump
strength is fixed just above threshold, f, = 1.25 fp‘h.

The numerical analysis provides the time evolution of both photon and exciton
fields either in space, Y¥c x(r,t), or in momentum, Yc x(k, 7). The OPO implies
the simultaneous presence of (at least) three states emitting at different momenta,
and therefore, at a fixed time ¢, the full emission ¢ x(r,?) is characterised by
interference fringes. Because, like for the pump, the dominant wavevectors for
signal and idler are in the x-direction, the fringes are vertical, i.e. predominantly
oriented along the y-axis (see first panel of Fig. 6.5). We plot the photon component
only, which is what can be measured experimentally. Note, however, that in cw
experiments, emission is always integrated in time, which clearly washes away
the interference fringes. The OPO phase information can instead be recovered by
obtaining interference fringes with a reference beam in a Michelson configuration.
In addition to the full emission, either in space or momentum, one can also evaluate
the spectrum resolved in momentum ¢ x (K, w) by taking the Fourier transform
in time of Ycx(k,t) (in Fig.6.4, a grid in time of 2° points spaced by 0.3 ps
has been used). As shown in Fig.6.4, for the chosen parameters, a signal at
oy — 0% = —1.66meV and an idler at s — 0% = 0.75meV appear with a sharp
8-like emission in energy, which satisfies exactly the energy matching condi-
tion (6.7), 2w, = ws + wj, as clearly shown by the momentum-integrated spectrum
on the right panel of Fig.6.4. In contrast, the momentum distribution is broad
(because of the pump being finite size) and peaked respectively at ks ~ —0.2 um™!
and k; ~ 3.5 um~!, which only roughly satisfies the momentum matching
condition, 2k, = Kk, + k;. Note that the idler intensity is always weaker than the
signal one because of the small photonic component at the idler. Further, note that,
in addition to signal and idler, the spectrum also shows the appearance of satellite
states (s, 53, . .. and iy, i3, ...) all equally spaced of around 1.19meV one from the
other. As discussed at the end of Sect. 6.3.2, their presence is a consequence of the
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Fig. 6.5 Full emission (first panel, with superimposed currents) and filtered emission of signal
(second), pump (third), and idler (fourth) states for the same parameters of Fig. 6.4. We plot the
rescaled currents of the signal in the second panel by subtracting the dominant uniform flow, i.e.,
by plotting V¢ x — kg
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secondary parametric scattering processes 25 > S+ p, 2i > i+ p, 285, > $+53,
and so on, which trigger on automatically as soon as signal and idler have finite
populations. The occupation of the satellite states gets gradually suppressed the
further we move higher in energy above the idler and lower in energy below the
signal—which is why they are usually neglected in the plane wave approximation,
as discussed in the end of Sect. 6.3.2. Note also that the satellite states just described
do not imply the presence of phase symmetries additional to the U(1) one described
in Sect.6.3.2.1. These satellite states therefore differ from the states which one
could obtain as a result of secondary instabilities, e.g. 25 + 55 + s) with 57 # p
and 2i +— i} + i) with i} # p, and successive spontaneous symmetry breaking
mechanism [79].

In order to analyse the OPO properties, similarly to what is done in experiments,
it is also useful to filter the full emission in order to select only the emission coming
from the signal, pump or idler. This can be equivalently done either filtering in
momentum space in a cone around the momenta Kk ; or filtering in energy, bringing
to the same results. We indicate the filtered spatial profiles of pump, signal, and idler

by |1ﬂg’;§ (r, t)|ei¢gsxll(r'f). The associated currents, V(;Sgs)’(l, are a superposition of a
dominant uniform flow k;s; (which is subtracted from the images of the second
panel of Fig.6.5) and more complex currents (caused by the system being finite
size), which move particles from gain to loss dominated regions. Note that because
we select only steady state OPO solutions, the profiles of pump, signal, and idler,
|¥&X (r,1)|, are time independent. In addition, note that the fact that the pump is
shined on the microcavity with a finite angle with respect to the normal incidence,
implies that, for rotationally symmetric pump profiles, the symmetry inversion r +—
—r is broken in the direction of the pump wavevector k. For example, if the pump is
shined on the x-direction, k, = (k;, 0), as in the case of Fig. 6.5, only the symmetry
y +— —y is left intact. Clearly, this symmetry, while allowing vortex—antivortex
pairs, does not in principle permit OPO solutions carrying single vortices, which
can spontaneously appear in presence of a symmetry breaking perturbation, such as
disorder (next paragraph) or a noise pulse (see Sect. 6.3.5.1).

The typical changes of the signal space profile as the pump power is increased
above threshold, together with the pump, signal, and idler intensities, are shown in
Fig. 6.6. For these runs we fix the parameters, such as wp, K, and the pumping spot
size op, as in Fig. 6.4, but we also include a static photonic disorder potential—
see (6.6). In particular, here, we consider a disorder potential with zero average,
(Ve(r)) = 0, and a spatial distribution:

(Ve(m)Ve(r)) = ode FrP/2, (6.19)

with a correlation length £; ~ 20 um and strength 6; >~ 0.1 meV. Below threshold,
the system is in a pump-only state. By increasing the pump power f,, above
threshold, the OPO signal first switches on only in a small (compared with the pump
spot FWHM o, = 70 pum) region (see inset 1). At f, = 1.2 fp‘h (inset 2), the signal
becomes large and quite homogeneous, though, already at f, = 2.3f t the OPO
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Fig. 6.6 Evolution of the signal, idler, and pump state intensities as a function of the pump
intensity f, /fp‘h (left). Space profiles of the filtered signal at different values of the pump intensity
(right). The parameters are the same as in Fig. 6.4, with the addition of a photonic disorder potential
Ve(r), with a correlation length £; =~ 20 pm, and strength o; =~ 0.1 meV (contour-level lines in
the panels on the right)

signal starts switching off in the middle (inset 4), and then, it slowly switches off
everywhere. A similar behaviour has been found in the numerical simulations of
[78] (though there a smaller pump beam of FWHM o}, ~ 20 um has been used), as
well as observed experimentally in [42].

The qualitative behaviour of the signal (as well as the idler) profiles, in particular
their switching on and then off, as a function of the pump power that we have
just described for a disordered sample is very similar to the case of an OPO in
a homogeneous sample 3 (i.e., with no photonic disorder, Vc(r) = 0). One of
the main differences is that for homogeneous samples, the profiles are y — —y
symmetric, while this symmetry is explicitly broken by the photonic disorder. In
addition, the fundamental difference between the homogeneous and the disordered
case is that the presence of photonic disorder promotes stable vortex solutions in
large pump spot OPOs at intermediate pumping strengths, f, ~ 1.4 fp‘h—such as
the one shown in panel 3 of Fig. 6.6 which carries two vortices. Single or multiple
vortex solutions are generally not allowed in the homogeneous case because of the
y +— —y symmetry, which instead only allows pairs of vortex—antivortex solutions
which are y — —y symmetric. In large pump spots, such as the one of Fig. 6.6,
vortex—antivortex solutions in the clean case tend to be dynamically unstable, i.e.
easily destabilised by a weak noise pulse, while, as analysed later in Sect.6.3.5,
spontaneous vortex solutions in homogeneous cavities can be stabilised by a small
pump spot (see Fig. 6.8) confining the vortex inside. Note finally that spontaneous
vortices in disordered cavities with a large pump spots are not pinned into minima
of the disorder potential, rather, as analysed in the Sect. 6.5.2.2, are the OPO steady
state currents in the signal to play an essential role in the stabilisation of vortices.

3 Note also that we find that the value of the pump threshold for OPO is not altered by the presence
of a weak photonic disorder.
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6.3.4 Vortex Phase and Profile

Before moving on to describe the occurrence of stable vortices in OPO and, later,
the onset and dynamics of metastable vortices, let us briefly remind the definition of
a quantised vortex in an irrotational fluid. In general, a quantised vortex with charge
m is described by a wavefunction:

Y (r) = Yo(r)e™®, (6.20)

the phase of which, m¢(r), linearly winds around the vortex core from 0 to 27t m
(with m integer)—i.e. in cylindrical coordinates centered at the vortex core, ¢ is the
azimuthal angle. This implies that the vortex carries a quantised angular momentum,
Aim. In addition, the phase has a branch cut and therefore is not defined at the vortex
core, implying the vortex wavefunction has to be zero at the vortex core. An example
of an m = —1 vortex, with ¥(r) = re™""/2%) has been plotted on the left panel
of Fig.6.7. Here, the phase winds clockwise around the core, from 0 to 27, and
therefore the vortex current:

~

Vo(r) = %, 6.21)

is constant at fixed distances from the vortex core, r, while decreases like the inverse
distance (right panel of Fig. 6.7). Contrast this with the case of a rotational vortex
in a classical fluid which rotates as a solid body with an angular velocity §2: Now,
the fluid tangential velocity is zero at the vortex core and increases linearly with the
distance, i.e., vy, = £2r¢. Quantised vortices can be detected in interference fringes
(middle panel of Fig. 6.7) as fork-like dislocations, the difference in arms giving the
charge |m| of the vortex.

6.3.5 Stable Vortices in a Small-Sized OPO

As explained later in Sect. 6.5, spontaneous stable vortices differ from metastable
vortices (described in Sect. 6.5.1): Metastable vortices can only be injected exter-
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Fig. 6.7 Typical profile (left), phase and currents (6.21) (right), and interference fringes (middle)
of an m = —1 vortex (6.20)
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nally, for example, by an additional Laguerre-Gauss beam probe, into an otherwise
stable symmetric state, and their persistence is due to the OPO superfluid proper-
ties [8,22]. The metastable vortex is a possible but not unique stable configuration
of the system. In contrast, as for non-resonantly pumped polaritons [5, 80], the
appearance of spontaneous vortices is not a consequence of the polariton condensate
being superfluid, but rather of the presence of currents related to the non-equilibrium
nature of these condensates. This strongly differs from the case of equilibrium
superfluids, the ground state of which is flow-less. Later, in Sect. 6.7 we will briefly
discuss how, for polaritons non-resonantly injected into a microcavity, the presence
of a confining potential can generate currents favourable to the spontaneous
formation of vortices [5, 81] and vortex lattices [80].

For resonant excitation, currents arise in the OPO regime due to the simultaneous
presence of pump, signal, and idler emitting at different momenta, as well as due
to the fact the system is finite size (see Fig.6.5). We have seen in Fig. 6.6 that,
similarly to non-resonantly pumped polaritons, the presence of a disorder potential
can lead to the spontaneous appearance of vortices. However, it is remarkable that,
even in the absence of disorder or trapping potentials, the OPO system can undergo
spontaneous breaking of the y = —y symmetry and becomes unstable towards the
formation of a quantised vortex state with charge m = =1 if the size of the OPO
is small enough [22]. This is the subject of this section. Further, as discussed in
some detail later in Sect. 6.3.5.2, like for equilibrium superfluids, both stable and
metastable vortices are characterised by a healing length which is determined by
the parameters of the OPO system alone. Spontaneous stable vortex solutions are
robust to noise (Sect. 6.3.5.1) and to any other external perturbation and thus should
be experimentally observable. However, while spontaneous vortex solutions in OPO
have been observed for a toroidal pump spot,* so far, they have not been observed
in OPO with a “simply connected” pump profile, for example, either a Gaussian or
a top-hat.

6.3.5.1 Dynamical Stability

As mentioned in Sect. 6.3.3, if the pump is shined on the x-direction, k, = (k;, 0),
only the symmetry y +— —y is left intact in the system. Clearly, this symmetry,
allows for OPO solutions where the signal (and therefore also the idler) have vortex—
antivortex pairs, with the vortex core position at (xc, y.) and the antivortex core
position at (x., —y.). However, both single and multiple vortex solutions explicitly
break the y +— —y symmetry and cannot be accessed by the dynamics—note that
two vortices located at opposite sides with respect to the x-axis break the y — —y
symmetry because of their currents.

In order to check the dynamical stability of the OPO states, one has to add small
fluctuations to the steady state mean field solution: The existence of modes with

4 D. Sarkar (University of Sheffield), private communication.



192 F.M. Marchetti and M.H. Szymanska

positive imaginary part in the excitation spectrum indicate dynamical instability
towards the growth of different modes. The dynamical stability analysis for OPO
described within the plane-wave approximation of Sect.6.3.2 has been discussed
in [61, 71]. Equivalently, dynamical stability can be numerically checked by
introducing a weak noise. In particular, we add white noise as a quick (§-like in
time) pulse at a certain time 7y to both modulus and phase of excitonic and photonic
wavefunctions in momentum space, |Vx.c (k, 1)|eixc®n:

[Yx c(k, 1) = |¥xc(k, o) + 8|¥x.c(K)|
ox.ck, 1o) = ¢dxc(k, to) + Spxc(k) .

Both §|¥x c(K)| and §¢x c(K) are white noise functions, with an amplitude 25 for
the phase §¢x c(Kk), while the amplitude of the noise in the modulus 6|v¥x c(K)| is
specified in units of the maximum of the pump intensity in momentum space.

Following this procedure, we have been able to single out symmetric OPO states,
as shown in Fig. 6.8a, which are unstable towards the spontaneous formation of
stable vortex solutions. After the y — —y symmetry is broken by the noise pulse,
we have observed a vortex with quantised charge m = +1 (m = F1) entering and
stabilising into the OPO signal (idler)—note that parametric scattering constrains
the phases of pump, signal, and idler by 2¢, = ¢, + ¢; (see Sect. 6.3.2.1); therefore,
an m = —1 vortex in the signal at a given position implies an m = 1 antivortex
in the idler at the same position and vice versa. In the case of Fig. 6.8 and the right
panel of Fig. 6.9, the noise strength is 0.01 and 432 ps after the noise pulse, a vortex
with m = —1 (m = +1) enters the signal (idler) and stabilises. The strength of the
noise has no relevance on the final steady state, and, notably, it can be infinitesimally
weak. Different noise strengths do only affect the transient time the system needs
to accommodate the vortex and to reach the new steady configuration. We have in
addition examined whether the vortex steady state is dynamically stable by applying
an additional noise pulse. For weak noise, with a strength up to 0.1 (in units of the
maximum of the pump intensity in momentum space), the vortex is stable and can
only drift around a little before settling again into the same state. For strong noise,
with strength 1 and above, the vortex gets washed away, but after a transient period,
the very same state enters and stabilises again into the signal, with the possibility of
flipping vorticity.®> Different noise strengths do not affect the final steady state, but
only the transient time.

As discussed later in Sect. 6.5, one can alternatively break the y - —y symmetry
by a pulsed vortex probe (6.24) and assess whether the stable steady state is in any

5 When generated by a noise pulse, both stable and metastable vortices have equal probability to
have either charge 1. Similarly, when vortices are triggered via a Laguerre-Gauss probe, their
vorticity can flip during the transient period. In particular, flipping can follow the appearance of
two antivortices at the edge of the signal, one recombining with the triggered vortex. Note that
the vorticity flipping conserves the total orbital angular momentum, in the sense that when for the
signal m flips, say, from +1 to —1, for the idler the opposite happens, i.e. m flips from —1 to +1.
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Fig. 6.8 Appearance of a spontaneous stable vortex solution in a homogeneous small-sized OPO.
Filtered signal profile |¢(r, 7)| with superimposed currents V@g(r, t) (upper panels (a—c)) and
full momentum emission |¥c(ky,0,1)| (lower panels (d, f), in arb. units) at three different times:
t = 0(a,d), s = 432ps (b, e), and 1.2ns (c, f). At = 0, a pulsed weak random noise of
strength 0.01 (see text) is added to the OPO steady state (in (d) both OPO momentum profiles
without and with the added noise are shown for comparison) and at t = 432 ps a vortex, with
m = —1, enters the signal and settles into a steady state. Note that, because of phase matching
conditions, the presence of an m = —1 vortex in a signal implies the presence of an m = 1
antivortex in the idler. A vortex (antivortex) in the signal (idler) space emission appears also as a
dip in momentum space at the signal (idler) momentum (e, f). Parameters used: smoothed top-hat

pump with FWHM o}, = 35um, pump strength f, = 1.12 fp(th), ky = 1.6 um ™" in the x-direction,
wp — a)?( = —0.44 meV, zero detuning § = 0, and kx = xc = 0.22 meV. Adapted from [22]

way dependent on the external perturbation. The homogeneous OPO states which
are unstable towards the spontaneous formation of stable vortices following a white
noise pulse, exhibit the same instability following a vortex Laguerre-Gauss (LG)
probe pulse (see the left panel of Fig. 6.9). The steady state vortex is independent on
both the probe intensity f,, and size opp; however, the weaker the probe the longer
the vortex takes to stabilise, between 30 and 400 ps for our system parameters. As
shown in Fig. 6.9, the stable vortex following the LG probe is exactly the same as
the one triggered by a weak white noise, indicating that the probe acts only as a
symmetry breaking perturbation.

Summarising, one can find OPO conditions where the y — —y symmetric
solution is dynamically unstable, and any symmetry breaking perturbation allows
the signal and idler to relax into a stable steady state carrying a vortex with
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Fig. 6.9 Steady state filtered signal profile (dotted line) ¥ (x,0,t) for y =~ 0 before the arrival
of either a Laguerre-Gauss vortex probe (6.24) with oy, =~ 1um (left panel, red dashed line) or
a noise pulse of strength 0.01 (right panel, red dashed line)—same OPO conditions as Fig. 6.8.
After the arrival of any perturbation breaking the y = —y symmetry, the same vortex with charge
m = =1 (solid shaded curve) stabilises into the signal. From [22]

charge 1. For homogeneous cavities, i.e., in absence of any disorder or confining
potential, we found that this requires either a small Gaussian or small top-hat like
pump spot which can confine the vortex inside or a doughnut-shape pump spot.
Instability of the uniform state to spontaneous pattern (e.g. vortex) formation is
a typical feature of systems driven away from equilibrium [79]. Similarly, we find
conditions for which the uniform OPO solution is unstable to spontaneous formation
of a quantised vortex. In alternative, a disorder potential breaks the symmetry
explicitly and allows the pinning of stable vortex solutions in OPO, (like in the
case cosindered in Fig. 6.6) which is less surprising.

6.3.5.2 Healing Length

In contrast to their classical counterpart, quantised vortices with the same angular
momentum |m| are all identical, with a size (or healing length) determined by
the system non-linear properties [76]. In the case of a superfluid in equilibrium
with a typical interaction energy gn (n is the average density) and mass m, the
healing length, £ = 1/./2mgn, is the typical distance over which the condensate
wave function recovers its “bulk” value around a perturbation. In particular, for an
|m| =1 vortex (6.20), £ is the typical size of the vortex.

Similarly, in OPO, one case show that, like in equilibrium superfluids, both
stable (see Sect. 6.3.5) and metastable (see Sect. 6.5) vortices are characterised by
a healing length which is determined by the parameters of the OPO system alone.
In particular, shape and size of the metastable vortices described in Sect. 6.5 are
independent on the external probe. In the case of vortices in OPO, an approximate
analytical expression for the vortex healing length can be derived for homogeneous
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pumping [9, 22], assuming that only signal and idler can carry angular momentum
with opposite sign, £m, y*i(r) = /i, el TeXM9Wsi(r), while the pump remains
in a plane-wave state, Y7 (r) = ﬁeikp'r, as also supported by our numerical
analysis. For pump powers close to the OPO threshold, it can be shown [9, 22]
that signal and idler steady state spatial profiles are locked together and satisfy the
following complex GP equation:

L(& 1 miy (#2-1)|ws =0
—_ _ —_— o R R s
2mc \dr?2  rdr r?

where |a| ~ gx/s1;.° This equation describes a vortex profile [76] with a healing
length given by:

& = (2megx ) 7 (6.22)

This expression is similar to the one of an equilibrium superfluid, with the
condensate density replaced by the geometric average of signal and idler densities.
Further above threshold, one can show that signal and idler profiles are no longer
locked together, and that they start to develop different radii. In both the simulations
of Figs. 6.9 and 6.6, we find § ~ 4m compatible with the estimate (6.22).

In [9], vortices in OPO have been created in a controlled manner by adding a
weak continuous probe in resonance with the signal. Even if the phase freedom of
the OPO system is explicitly broken in this configuration by the vortex cw probe,
because the ratio of the probe to signal power density is low, the size of the vortex
has been demonstrated to be determined by the OPO non-linear properties only
rather than by the imprinting probe. In particular, a systematic study of the decrease
of the vortex core radius with increasing pump power above threshold has allowed
to confirm the behaviour described by the (6.22).

6.4 Triggered Optical Parametric Oscillator Regime

Before moving on into the description of metastable vortices in OPO, i.e. vortices
which are transferred by a pulsed vortex probe to the OPO signal and idler, and
their relation to superfluidity (Sect.6.5), we summarise here first the effect of an
additional pulsed probe on OPO in general terms. As described previously, in the
OPO regime, polaritons are continuously injected into the pump state, and undergo
coherent stimulated scattering into the signal and idler states. The OPO is a steady
state regime, where the filtered profiles of signal, idler, and pump, [y (r, 7)], are
time independent. This also is reflected in the typical flat dispersion around pump,

OThis is in reality an oversymplified version of the full equation satisfied by y*/(r), because one
can show that there are small terms breaking the rotational symmetry, implying the vortex is not a
pure angular momentum state, though it still has a definite winding number [D. Whittaker, private
communication]. This, however, does not affect the expression of the healing length.
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signal, and idler which can be observed in the OPO spectra (see Fig. 6.4). The group
velocity of pump, signal, and idler, defined as the derivative of the energy dispersion
at kp s, is therefore zero. This, however, does not mean that there is no flow of

polaritons, which instead is described by the phase velocity or current, V¢>g’;’£ (see
footnote 2 on page 186), with a dominant uniform flow given approximatively
by kp,s,i-

In resonantly pumped polaritons, in order to initiate a travelling wave packet
characterised by a finite group velocity, one needs to use an additional pulsed laser
beam on top of the cw one. The description of the system is therefore still in terms
of the (6.9), with a total pump term given by the sum of the cw laser (6.10) and a
probe beam F (T, £):

F(r,t) = Fp(r,t) + Fp(r, 1) . (6.23)

For the moment we will consider the generic case of a pulsed probe with a Gaussian
space profile, shined at a momentum and energy {Kpp, wpp} '

pr(l',l) — fpbe—\r—rpb\2/(2031,)ei(kpr—wpbt)e—(t—fpb)z/(ZUf) . (6.24)

A pulse duration of 3 ps (defined as the FWHM in time of Fy,(r,)) corresponds
to 0; = 1.3 ps. The idea, first introduced by [20], is that the pulsed probe triggers
parametric scattering 8 between the probe state at momentum and energy {Kpb, wpp }
and a conjugate state at {k. = 2k, —Kpyp, 0. = 2w, — wp, j—because one can either
have Kk, > k;, or Ky, < kp,, we use the state labels “probe” and “conjugate,” rather
than “signal” and “idler”’; by doing so, one also does not confuse the states generated
by the OPO (signal and idler) with the additional ones generated by the probe (probe
and conjugate). Both probe and conjugate states are travelling decaying states which
can evolve freely from the laser probe constraints once the pulse switches off. Such
states are referred to as TOPO states. Note that a TOPO can be triggered in two
regimes: either (1) in a regime where the cw laser drives the system above threshold
for OPO, in which case the probe and conjugate states are the extra population states
on top of the steady state OPO signal and idler states, or (2) when no OPO is present,
i.e. for the cw pump strength below threshold. For simplicity, the numerical analysis
discussed below in Sect. 6.4.1 is conducted in the regime (2), but we have checked
that the qualitative results also hold in the regime (1)—where, now, the steady state
OPO population needs to be subtracted so that one studies the properties of the
population triggered by the probe only.

7 Note that, differently from the cw laser beam, the energy distribution spectrum of which is
essentially §-like, a pulsed beam has an intrinsic width in energy, proportional to the inverse pulse
duration, (r,_l.

8 If the cw pump drives the system into the OPO regime, then the parametric scattering triggered
by the pulsed probe will emerge in addition to the one related to OPO. However, as discussed later,

the TOPO regime can be reached also in absence (below threshold) of the OPO.



6 Vortices in Polariton OPO Superfluids 197

0 T T T ] W [ Ins T

- mx [meV]

2 15 -1 05 0 05 1 L5 2 -100 T 100
K, [ gt

Fig. 6.10 Spectrum (left) and spatial profiles of pump and filtered signal |y¢ (x, 0, 1) (right) for
the TOPO regime. A short, o, = 1ps, m = 2 Laguerre-Gauss (6.25) (left) or Gaussian m = 0
(6.24) (right) probe shined at ky, = (1.4,0) um™! triggers the propagating probe and conjugate
states, which lock to the same group velocity (for these simulations we fix kx = 0 and k¢ =
0.02 meV). Adapted from [23]
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6.4.1 Theoretical Description of the TOPO

In order to analyse the dynamical evolution of a TOPO wave packet, we study
numerically the time-dependent solutions of the equations (6.9), with a total pump
given by (6.23) and (6.24). The probe triggers parametric scattering between a
probe state and a conjugate state. In the majority of cases, as discussed in [23],
the parametric scattering is too weak to induce any significant amplification, and an
exponential decay of both probe and conjugate populations is observed immediately
after the probe Fpy(r,t) switches off. Here, the spectrum shows a strong emission
from the pump state and a weak emission from the LP states mainly at momenta ki,
and k..

However, we have found conditions under which both signal and conjugate
states get initially strongly amplified by the parametric scattering from the pump,
then decay slowly and, only at later times, decay exponentially (see Figs.6.10
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Fig. 6.12 Left panel: probe (solid lines) and conjugate (dashed lines) density profiles at different
times after the arrival of the probe (same parameters as in Fig. 6.10). Right panel: Group velocity,
vy, of the propagating probe state as a function of the probe momentum kyy,. The black dots are
determined from simulations, whereas the solid (red) line is the derivative of the LP dispersion
evaluated at kpy, v,';i. The blue dashed line is a guide for eye to indicate where the LP dispersion

deviates from the quadratic. Adapted from [23]

and 6.11)—we refer to this as the “proper” TOPO regime. A similar behaviour has
been also observed in experiments.9 Now, the spectrum is observed to be linear,
® = vg -k (see Fig.6.10). A linear spectrum can be explained by the fact that,
in order to have efficient parametric scattering, probe and conjugate state must
have a large spatial overlap and therefore similar group velocities. Thus, signal and
conjugate group velocities need to lock, which is only possible if the dispersion
becomes linear—a similar result has been also found in 1D simulations (see Chap. 1)
as well as in experiments [20]. The group velocity is defined as the derivative
of the energy dispersion with respect to the momentum. However, we can also
measure it from the probe and the conjugate density variations in time, i.e., as
ng,c = dr}';lb’C /dt, where rpmb’c is the maximum of either the probe or conjugate
spatial profile, which we use as a reference position. By analysing the change
in time of the spatial profile of the TOPO probe state |1pgfx(r, t)|, it is possible

to show [23] that its group velocity vgb is given exactly by the derivative of the
lower polariton (LP) dispersion evaluated at Ky, i.e., for zero detuning and low
densities by v,fplz = kpp/@2mc) =k, /2mc [k}, + 4mE $23) (see Fig. 6.12). This

behaviour is consistent with the form of the spectrum shown in Fig. 6.10.!° Further,
we have been able to determine [23] that the TOPO linear dispersion is tangential to
the LP branch at kpyp; thus, its slope is given in this case also by vk:b.

? See, for example, Fig. 3 of [82], where the intensity maximum of the extra population is reached
within 4 ps after the maximum of the pulsed probe, is followed by a slow decay.

10 Tn the regime where the probe generates only a weak parametric scattering, aside the strong
emission from the pump state, the dispersion is simply that of the LP and thus is not surprising
that the signal propagates with a group velocity given by vk{i. Remember that here, the cw pump
is below the threshold for OPO.
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From the PL spectrum, we can also deduce the nature of the wave packet
propagation. For systems characterised by a linear dispersion, like in the TOPO
regime, one expects a soliton-like behaviour, where probe and conjugate states
propagate without changing neither their shape nor intensity. For quadratic
dispersion, a Gaussian wave packet moves at a constant velocity v,fp}z =
k,»/(2mc), and it preserves its overall shape in time, but its width grows
(FWHM = (cr;b + (t/ (chopb))z)l/ 2) [76]. Note, however, that, due to the finite
polariton lifetime, the total density decays exponentially, with a rate given by
(k¢ + kx)/2 at zero detuning. Finally, for non-quadratic dispersion, propagation
becomes complex: The wave packet gets distorted and there are beatings in the
spatial profiles. In general, due to the dynamical nature of the TOPO state, the
system evolves between these different scenarios. In particular, only in the strong
amplification regime the spectrum is linear, while it evolves back to the LP one at
longer times. However, for a one-dimensional version of the equations (6.9), and
for uniform, infinitely extended in space, pumping spots, non-decaying, soliton
solutions have been recently found [83]. This has been also generalised to a
two-dimensional infinite systems [84], where, for some narrow range of pumping
strengths, a soliton-like behaviour has been predicted for kp, = 0 and kypp, = kp.
However, to date, a non-decaying wave packet propagation has not been found in
experiments.

Finally, we would like to note that, the typical behaviour of probe and conjugate
states (left panel of Fig. 6.12) is analogous to the one discussed in four-wave-mixing
experiments [85, 86]: When the probe arrives, and shortly after that, the conjugate
propagates faster then the probe, before getting locked to it with a small spatial
shift of their maximum intensities. At later times, when the density drops and the
parametric process becomes inefficient, the two wave packets start unlocking—the
conjugate slows down with respect to the signal if k. < kpp, as in Fig. 6.12, or it
moves faster when k¢ > kpp.

6.4.2 Experiments

The TOPO regime has been recently studied in experiments in [20,45] (for a review,
see [87]). As previously described, the additional pulsed probe has been used to
create a travelling, long-living, coherent polaritons signal, continuously fed by the
OPO. A large increase of the signal lifetime has been observed for a pump intensity
approaching and exceeding the OPO threshold [45]. This observation can be
explained in terms of a critical slowing down of the dynamics following appearance
of a soft Goldstone mode in the spectrum close to threshold. It is also consistent
with the nature of wave packet propagation in systems with linear dispersion. This
has been used to interpret subsequent experiments, where the linearisation of the
dispersion leads to the suppression of weak scattering and therefore to a polariton
motion without any dissipation [20, 87] (see Chap. 1). Due to the finite size of the



200 F.M. Marchetti and M.H. Szymanska

excitation spot, the travelling TOPO signal lives only as long as it reaches the edge
of the excitation spot. However, as discussed in detail in [87], in order to asses the
sustainability in time of the TOPO process, both pump and probe beams can be
chosen so that the probe state forms at k ,;, ~ 0. In such a case, the polaritons in the
probe state are not travelling, and it is thus possible to measure the lifetime of the
TOPO wave packet, which is of the order of a nanosecond. The decay of the TOPO
population in time, as well as the finite lifetime of TOPO pulses, indicate that the
soliton behaviour predicted in [84] is not the explanation of the current experiments.
However, the linearisation of the system’s dispersion due to the parametric process,
as well as the appearance of the Goldstone mode provide a sufficient explanation
of dissipationless propagation in free space, as well as frictionless flow against an
obstacle, during the part of the dynamics when parametric processes are strong and
the spectrum linear.

6.5 Triggered Metastable Vortices as a Diagnostic
of the OPO Superfluid Properties

OPO condensates, as well as polariton condensates pumped incoherently, share
with weakly interacting Bose—Einstein condensates at equilibrium phenomena such
as the spontaneous breaking of the phase symmetry and the appearance of a
Goldstone mode (see Sect.6.3.2.1). However, being intrinsically non-equilibrium,
all polaritonic systems need continuous pumping to balance the fast decay and
maintain a steady state regime. In strong contrast with equilibrium superfluids,
the ground state of which is flow-less, pump and decay lead to currents that carry
polaritons from gain- to loss-dominated regions. This can lead to the spontaneous
formation of vortices: The presence of currents in polariton condensates can
lead to the spontaneous appearance of vortices without invoking any superfluid
properties. This is true for incoherently pumped polaritons in presence of a confining
potential [5,80,81], as well as for polaritons in the OPO regime, with the difference
that here, even in the absence of disorder or a trapping potential, the system becomes
unstable towards the formation of a quantised vortex state with charge m = +£1
(see Sect.6.3.5). In addition, the hydrodynamic nucleation of quantised vortices
can appear as a consequence of the collisions of a moving polariton fluid with
an obstacle, as it will be briefly discussed in Sect. 6.7. Therefore, in general, for
polaritonic systems, one has to apply some care when using the appearance of
vortices as a diagnostic for the superfluid properties of such a non-equilibrium
system.

In the case of equilibrium superfluids, the rotation of a condensate is accom-
panied, above a critical angular velocity [75, 76], by the creation of quantised
vortices. Here, vortices are stable as far as the system is kept rotating and become
unstable when the imposed rotation is halted [77]. However, persistent flow can be
observed when a BEC is confined into a toroidal trap and the quantised rotation is
initiated by a pulsed Laguerre-Gauss beam [88-90]. The toroidal trap is essential
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to allow the vortex stability because of the energy cost of the vortex core to
move through the high density region from the centre of the torus where the
density is zero. The very same idea of questioning the persistency of flow in a
BEC via a pulsed Laguerre-Gauss beam as a diagnostic for superfluidity, can be
applied to polaritons.!! As recently proposed for non-resonantly pumped polariton
condensates in [21], this definition of superfluidity as metastable flow is equally
meaningful in non-equilibrium systems as in equilibrium ones. However, as we will
see, the important difference is that, in the OPO regime, flow persistency is possible
even in a simply connected geometry, i.e., without the need of a toroidal trap which
pins the vortex.

A pulsed Laguerre-Gauss (LG) probe beam carrying a vortex of charge m can be
described by:

Fop(r.1) = folr — rpbl|m|eim¢e_|r_rpb‘2/(201313)ei(kpb'r_wpbf)e_(t_fpb)z/(zgtz)’ (6.25)

where {Kyp, @pp} can be tuned resonantly with either the OPO signal or idler. As
discussed in the next section, by using a pulsed LG beam (6.25), vorticity has
been shown to persist not only in absence of the rotating drive, but also longer
than the gain induced by the probe, and therefore to be transferred to the OPO
signal, demonstrating metastability of quantised vortices and persistence of currents
in OPO. Experiments and theory will be discussed in the next Sect. 6.5.1.

6.5.1 Theory and Experiments

In the case of metastable vortex solutions, the symmetric vortex-less OPO steady
state is dynamically stable but, because of its superfluid properties, can support
persistent metastable currents injected externally. From a theoretical point of view,
metastable solutions can be equally induced by either a vortex probe pulse (6.25)
or a noise pulse (of the same kind of the one considered in Sec. 6.3.5.1). However,
differently from the case of stable vortices, metastable solutions require a threshold
in the perturbation breaking the system y — —y symmetry. For the simulations
of [8], as we were interested mainly into the transfer of angular momentum from
the probe to the OPO signal and idler, we have been considering conditions where
the parametric scattering induced by the probe is too weak to induce any significant
long-lasting amplification, and the gain introduced by the probe on top of the OPO
disappears quite quickly. We have found conditions where the vortex is transferred

' Note, however, that even if in the atomic and polaritonic cases the same Laguerre-Gauss laser
field is used, the mechanism of spinning the BEC atoms is different from the one which rotates
polaritons.
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from the probe to the signal !> (and antivortex in the idler) immediately '* when
the probe is shined. The transfer is followed by a transient time during which the
imprinted vortex drifts around inside the signal and in certain cases settles into a
metastable solution. Similarly to what happens to stable vortex solutions, we have
found that the spatial position of the metastable steady state vortices is close to
the position where the OPO signal has the currents pointing inwards (see second
panel of Fig. 6.5). The influence of currents on the formation of vortices is discussed
further in Sect. 6.5.2. Such metastable solutions do not always exist: If the probe is
positioned well inside a wide OPO signal, as the creation of a vortex is accompanied
by the creation of an antivortex (see Sect. 6.5.2), often, the vortex—antivortex pair
quickly recombines; in other cases, during the transient period, the excited vortex
can spiral out of the signal. Finally note that, as discussed in Sect. 6.3.5.2, the shape
and the size of metastable vortices are independent on the external probe but are
only determined by the parameters of the OPO.

In the experiment of [8] also shown in Fig.6.13, a vortex is excited by a
probe smaller than that of the signal to allow free motion of the vortex within
the condensate. Vortices are detected, and their evolution in time followed by a
streak camera, in interference images, generated by making interfere the OPO
signal with a constant phase reference beam in a Michelson interferometer (second
row of Fig.6.13). As single shot measurements would give a too low signal to
noise ratio, every picture is the result of an average over many pulsed experiments
taken always for the same OPO conditions. The probe triggers a TOPO response,
creating a strong gain and an extra decaying population on top of the OPO signal
(TOPO). In experiments, different regimes have been investigated. In particular, it
has been possible to establish that, only under high pump power and at specific
points in the sample, the vorticity was transferred from the TOPO to the OPO
signal, generating a metastable vortex solution. This not only demonstrates that
the OPO polariton condensate can show unperturbed rotation but also that a vortex
can be another metastable solution of the final steady state, demonstrating therefore
the superfluid behaviour in the non-equilibrium polariton OPO system. After the
vortex is imprinted into the OPO signal, it has been possible to observe the vortex
core slowly drifting, changing in shape and moving with different velocities. Note
that a minimum probe power is required for the vortex to be imprinted to the
OPO. However, once the vortex is imprinted, the probe power does not change
significantly the depth of the vortex in the steady state.

12 We checked that m = &1 (m = F1) vortex solutions can appear only into the OPO signal
(idler). A vortex probe pulse of any charge m injected resonantly to the pump momentum, and
energy gets immediately transferred to an m = %1 (m = F1) vortex in the signal (idler), leaving
the pump vortex-less.

13 Later, in Sect. 6.6.1, in connection to the stability of multiply quantised vortices, we also describe

vortices in the TOPO regime, where we follow the vortex dynamics not of the OPO like here, but
of the extra population only.
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Fig. 6.13 Time evolution of the polariton signal following the arrival of a LG pulsed beam
carrying a vortex of m = 1. The first row shows the interference images obtained by overlapping
the vortex with a small expanded region of the same image far from the vortex core, where the phase
is constant, while the second row shows the space profiles of the signal. The sequence demonstrates
that the vortex remains steady as a persisting metastable state for times much longer than the extra
population created by the probe pulse and eventually gets imprinted in the steady state of the OPO
signal. This is revealed by the strong contrast of the fork in the interference images for as long as
the core remains within the condensate area. From [8]

6.5.2 Onset and Dynamics of Vortex—Antivortex Pairs

There is an aspect that we have been neglecting in the discussion of the previous
section on the occurrence of metastable vortex solutions in OPO triggered by an
external LG probe. If the extension of the probe carrying a vortex with charge
m = -1 is smaller than the size of the vortex-free OPO signal, continuity
of the polariton wavefunction requires that necessarily an antivortex with charge
m = —1 has to form at the edge of the probe (see Fig. 6.14). Indeed, “unintended”
antivortices have been shown to appear in the signal at the edge of the imprinting
vortex probe, and we have explained in [91], both theoretically and via experiments,
the origin of the deterministic behaviour of the antivortex onset and dynamics, i.e.
where antivortices are more likely to appear in terms of the currents of the imprinting
probe and the ones of the underlying OPO.

6.5.2.1 Random Phase Between Pump and Probe

As mentioned earlier in Sect. 6.5.1, single shot measurements would give a too
low signal to noise ratio; therefore, an average is performed over many pulsed
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Fig. 6.14 Profile and currents of the steady state OPO signal before the arrival of the probe (a) and
associated interference fringes (d)—parameters for OPO are exactly the same as the ones of the
inset 2 in Fig. 6.6 (f, = 1.2fp‘h). Location of antivortices (dots (b)) and vortices (stars (c)) at the
arrival of a vortex (stars (b)) or an antivortex (dots (c)) probe, for 1,000 realisations of the random
relative phase between pump and probe, @qp,. The size of dots in (b) (stars in (c)) is proportional
to the number of times the antivortices (vortices) appear in that location. Panel (e) (f) shows single
shot interference fringes relative to the plot in (b) (¢). Contour-level lines in (b) and (c) represent
the photonic disorder V¢ (r). The white circle represents the edge of the probe. From [91]

experiments taken always for the same OPO conditions. What differs at each probe
arrival is the random relative phase @4, between pump and probe:

F(r,t) = Fp(r,t) + Fyp(r, t)e'®m, (6.26)

with @y uniformly distributed between 0 and 2w. We simulate the dynamics
of the vortex-free signal OPO (same conditions of Fig.6.6 at f, = 1.2 fp‘h)
following the arrival of a vortex probe (6.24) for 1000 realisations of @4, and then
average the complex wavefunctions over such realisations at fixed time and space,
(W, D))y .

The steady state currents of the OPO signal before the arrival of the probe have
a dominant component pointing leftwards and an equilibrium position where all
currents point inwards (bottom left part of the panel (a) in Fig.6.14). In single-
shot simulations of Fig. 6.14d,f (one realisation of the phase @), we find that
if the probe is positioned well inside the OPO signal, then the imprinting of a
vortex m = 41 (antivortex m = —1) forces the system to generate, at the same
time, an antivortex m = —1 (vortex m = +1) at the edge of the probe. This
is a consequence of the continuity of the polariton wavefunctions: If the signal
OPO phase is homogeneous and vortex-free before the arrival of the probe, then
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imposing a topological defect, i.e. a branch cut, on the signal phase at the probe
core, requires the branch cut to terminate where the phase is not imposed by the
probe any longer and has to continuously connect to the freely chosen OPO signal
phase, i.e. at the edge of the probe. As repeatedly mentioned in this review, OPO
parametric scattering processes constrain the sum of signal and idler phases to the
phase of the laser pump by 2¢, = ¢ + ¢;. Thus, at the same positions where the
V—=AV pair appears in the signal, an AV-V pair appears in the idler so that locally
the phase constraint described above is satisfied. This agrees with the experiments
in [9], though there only a single V (AV) in the signal (idler) could be detected,
because the signal size was comparable to the probe one.

Different relative phases @4y, cause the antivortex (vortex) to appear in different
locations around the vortex (antivortex) probe. However, over 1000 realisations of
the random phase uniformly distributed between 0 and 27, we observe that the
antivortices (vortices) are more likely to appear on positions where the current of the
steady state OPO signal before the probe arrival and the probe current are opposite.
For example, for the m = 41 (m = —1) probe of Fig. 6.14c (Fig. 6.14e), the current
constantly winds anticlockwise (clockwise); therefore, comparing with the signal
current of Fig.6.14a, the two are antiparallel in the bottom right (top left) region
on the probe edge, region where is very likely that an antivortex (vortex) is formed.
Note also that the onset of antivortices (vortices) privileges regions where the steady
OPO signal has a minimal intensity. This agrees remarkably well with what it has
been recently measured experimentally in [91].

6.5.2.2 Multi-Shot Averaged Dynamics

Crucially, via numerical simulations, we elucidate the reason why an experimental
average over many shots allows detecting a vortex by direct visualisation in density
and phase profiles. Recently, it has been suggested by stochastic simulations [21]
that vortices in non-resonantly pumped polariton condensates undergo a random
motion which will hinder their direct detection, unless they are close to be pinned
by the stationary disorder potential and thus follow a deterministic trajectory [7]. In
the case considered here of a superfluid generated by OPO, we can instead explain a
deterministic dynamics of the V-AV pair in terms of the OPO steady state currents,
which determine a unique trajectory for the pair, allowing their observation in multi-
shot measurements.

By averaging the 1000 images obtained at the probe arrival, for example,
in Fig.6.14c, neither the imprinted vortex nor the antivortex can be detected:
Both phase singularities are washed away by averaging the differently positioned
branch cuts. However, the steady state signal currents push the V and AV, initially
positioned in different locations, towards the same equilibrium position where all
currents point inwards. Thus, exactly at the time where the probe is shined, on
average, there is no V-AV pair; after ~10 ps, both V and AV appear and last ~75 ps
(see [91)), till they eventually annihilate.
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It is interesting to note that it has been experimentally shown [91] that the onset
of vortices in polariton superfluids does not require a LG imprinting beam, but
instead, vortex—antivortex pairs can be also generated when counter-propagating
currents are imposed, similarly to what happens in normal (classical) fluids. In [91]
a Gaussian pulsed beam has been shined either at rest with respect to the OPO
signal, kp, = ks > 0, or moving ky, # ks. While no vortex—antivortex pair appears
in the first case, in the second, a vortex—antivortex pair appears on opposite sides of
the probe edge.

6.6 Stability of Multiply Quantised Vortices

The energy of a vortex is proportional to its quantum of circulation m (see
equation (6.20)) squared [76], m?. Thus, ignoring interactions, a doubly charged
m = 2 vortex has higher energy than two single m = 1 vortices. However,
including interactions between vortices, the energy of an m = 2 vortex turns to
be the same as the energy of two m = 1 interacting vortices close together. The
behaviour of doubly quantised vortices has been the subject of intensive research in
the context of ultra cold atomic gases. In particular, it has been established that the
nature of the splitting is the dynamical instability. Nevertheless, m = 2 vortices
have been predicted to be stable for specific ranges of density and interaction
strength [92, 93], though, so far, they have not been observed experimentally [94].
As for single vortices, multiply quantised vortices can be, however, stabilised in
multiply connected geometry. Indeed, stable pinned m = 2 persistent vortices have
been recently observed [89] by using a toroidal pinning potential generated by an
external optical plug and demonstrated to split soon after the plug was removed.
In this case, the presence of a plug beam at the vortex centre can pin both m = 1
and m = 2 vortex states and stabilise them against respectively spiralling out of the
condensate for m = 1 and splitting for m = 2. In other words, the external trap
mechanically prevents the persistent flow to undergo any movement.

In contrast to equilibrium superfluids, such as atomic gases, both stable and
unstable m = 2 vortices have been experimentally realised in polariton OPO
superfluids [8]. In this section, we provide a theoretical explanation of the stability
and splitting of doubly charged polariton vortices. As done previously, vortices in
OPO are generated by an external pulsed probe (6.25). As such, we classify the
response of the system to an m = 2 LG probe, depending whether the probe
generates a TOPO state (and the vortex is only carried by the extra population
but is not transferred to the OPO signal), as described in Sect. 6.6.1, or instead is
transferred to the OPO signal (Sect. 6.6.2).
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Fig. 6.15 Intensity of the TOPO probe profile |1//Cpb(r, t)| after the arrival (at t = 0) of anm = 2
vortex pulsed probe (6.25) with o, = 87um. The case of a small kyy, is shown in panels (a) and
(b), while a large kyyp, in panels (c) and (d). While in the case (a, b), the m = 2 vortex does not split
within its lifetime; in (¢, d), the vortex splits soon after the probe arrives. The intensity scale in (b)
is 200 times smaller then in (a)—the signal expands and the density drops two orders of magnitude
(see text). Adapted from [23]

6.6.1 TOPO Regime

We first consider the TOPO regime (see Sect. 6.4), i.e., when the vortex propagates
inside the triggered probe and conjugate wave packets, and it get not transferred
to the OPO signal and idler. It has been found [8, 23] that, in the TOPO regime,
m = 2 vortices are stable within their lifetime when triggered at small momenta
kpo (see Fig.6.15 panels (a) and (b)), while they split into two m = 1 vortices
for large values of k,, (see Fig.6.15 panels (c) and (d)). This conclusion was
reached both by experimental observations [8] and theoretical analysis [8,23]. The
numerical analysis shows that the crossover from non-splitting to splitting happens
for the probe momenta where the LP dispersion deviates from the quadratic one (see
Fig. 6.12). The two different cases are shown in Fig.6.15: For ky, = 0.2 um™!, at
short times, the probe propagates without changing shape and with little change in
intensity (not shown in Fig. 6.15), consistent with the linear dispersion of spectrum
characterising this regime. However, at longer times, the density of the triggered
probe and conjugate states drops more then two orders of magnitude, the dispersion
changes to the quadratic one and the wave packet expands (panel (b)). A uniform
expansion of the wave packet leads to the decrease of the probe and the conjugate
polariton densities and thus to an increase of the vortex core, but it does not cause
the vortex to split. In contrast, for kp, = 1.4 um_l, where the LP dispersion is not
quadratic, the m = 2 vortex state splits into two m = 1 vortices shortly after the
arrival of the probe (panel (d)). This behaviour can be understood by analysing the
evolution of the system’s excitation spectrum in time: The dispersion of the time-
dependent TOPO evolves from LP (before the probe arrival) to linear (at early times
after the probe arrival, when the stimulated scattering is strong), and back to the
LP at later times. For large k,, the LP dispersion deviates strongly from quadratic
(see Fig. 6.12 right panel). Wave packets propagating with non-quadratic dispersion
do not keep their shapes (as discussed in Sect. 6.4.1), and the simulations show that



208 F.M. Marchetti and M.H. Szymanska

the distortion can be very pronounced in particular at later times of the evolution.
The distortion during the early times of the propagation leads to the mechanical
splitting of an m = 2 vortex, analogous to the structural instability discussed in
[95]. Additionally, as discussed in [8], for small kpy, within the quadratic part of
the dispersion, the group velocity of the wave packet carrying the vortex equals the
velocity of the net supercurrent (given by k) associated with phase variations. This
is not, however, the case for larger kyp, beyond the quadratic part of the dispersion.
In this case, the propagating vortex feels a net current in its moving reference frame,
which may provide additional mechanism for splitting.

6.6.2 OPO Regime

In contrast to the TOPO regime described above, it has been shown both experi-
mentally and theoretically [8,23] that m = 2 vortices that do get imprinted into the
steady state OPO signal are never stable and split into two m = 1 vortices almost
immediately, even before the probe reaches its maximum intensity (see Fig. 6.16).
By analysing the system’s dispersion in different regimes, as well as the dynamics
of currents visible in the simulations, we have been able to identify several causes
for the splitting: Before the arrival of the probe, the steady state OPO dispersion
is flat around the pump, signal, and idler. However, the triggering probe favours
the signal and conjugate to lock and propagate with the same velocity v%;. This
behaviour corresponds to a linear dispersion. Further, once the vortex gets imprinted
into the stationary OPO signal and idler, the system’s dispersion changes back to
be flat. The evolution of the dispersion between flat, linear, and again flat leads to a
complicated dynamics of both signal and idler (the transient period described in [22]
and previously in Sect. 6.3.5.1), causing the structural instability and splitting of the
m = 2 vortex during the transient time. Another reason for the structural instability

% [m] % [Hm]

Fig. 6.16 Filtered signal profile and currents above threshold for OPO (f, = 1.12 fp(th)) for a top-
hat pump with FWHM o, = 35 um at t = —3ps (first panel) before the arrival of an m = 2
probe. The doubly quantised vortex gets transferred from the probe to the OPO signal and splits
into two m = 1 vortices even before the probe reaches its maximum intensity at # = 0 ps (second
panel). In this simulation, the vortices coexist for sometime (roughly 15 ps), then one gets expelled
from the signal (fourth panel). Adapted from [23]
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and splitting are the non-uniform currents (see Fig. 6.16) present in the OPO signal
caused by the interplay between spatial inhomogeneity, pump and decay, which the
OPO vortex experiences in its reference frame.

6.7 Vortices in Other Polariton Fluids

We do not pretend to give an exhaustive review of the broad field which studies
vortices in polariton fluids in this chapter, where we have mostly focussed on the
occurrence of vortices in polariton OPO superfluids. However, we would like at
least to briefly mention what happens for polariton fluids other than OPO.

6.7.1 Spontaneous Vortices in Trapped Incoherently Pumped
Polaritons

For incoherently pumped polaritons, the presence of a harmonic trapping potential,
can make the non-rotating solution unstable to the spontaneous formation of a vortex
lattice [80] (This work has been generalised to include the effects of polarisation in
[96]). In experiments, spontaneous vortices in incoherently pumped systems, have
been observed in [5,97] and their existence explained in terms of pinning by the
disorder present in the CdTe sample. Adding the polarisation degrees of freedom,
can give rise to the appearance of half vortices [6,98]. Polariton vortices have been
also observed in cavity mesas [81]. (see Chap. 3).

Vortex—antivortex pairs have been observed in the non-resonantly pumped
experiments of [10], where the mechanism of V-AV generation is explained in terms
of density fluctuations originating from the cw multi-mode pumping laser, while
for a single-mode laser, no V-AV pairs have been observed. In this sense, their
motivation and interpretation is in terms of the BKT transition. The pair dynamics
in the condensate has been studied in [99]. (see Chap. 4)

Finally, as mentioned previously in Sects.6.5 and 6.5.2.2, generation and
detection of metastable vortices have been also recently discussed for polariton
condensates generated by toroidal non-resonantly pumping in [21], where vortices
have been seeded with an external LG probe. Interestingly, very recently in [100],
it has been observed an all-optical spontaneous pattern formation in a polariton
condensate non-resonantly pumped with a ring geometry.

6.7.2 Resonantly Pumped-Only Polaritons

In [11, 12], the hydrodynamic nucleation of V-AV pairs is studied by making the
polariton fluid collide with a large defect. In particular, polaritons are resonantly
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(coherently) injected with a pulsed laser beam, creating a population in the pump
state only. The focus and interest of these studies are the possibility of exploring
quantum turbulence, the appearance of dissipation and drag above a critical velocity
because of the nucleation of vortices in the wake of the obstacle.
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Chapter 7
Superfluidity and Hydrodynamic Topological
Excitations of Microcavity Polaritons

A. Amo and A. Bramati

Abstract Bosonic condensates subject to interactions may give rise to the phe-
nomenon of superfluidity. This is the case of polaritons in semiconductor microcav-
ities, in which superfluidity is manifested in a number of effects like the frictionless
flow, persistence of currents, or the quantisation of the angular momentum of
the fluid. The dissipative nature of polaritons, determined by their finite lifetime,
results in specific properties diverting notably from equilibrium systems like Bose—
Einstein condensates of alkali atoms. In the first part of this chapter we describe
the superfluidity of polaritons attending to the propagation characteristics of these
gases in the presence of a potential barrier. We concentrate our analysis on the
body of available experimental results, which can be well understood in terms
of the shape of the spectra of excitations. We devote the second part of the chapter to
the conditions for the break up of superfluidity via the nucleation of hydrodynamic
topological excitations, i.e. quantised vortex pairs and solitons. We discuss how the
out-of-equilibrium nature of polariton condensates favours the nucleation of these
excitations, opening the way to novel turbulent regimes.

7.1 Introduction

Superfluidity, the ability to flow without friction [1], is one of the most striking
manifestations of quantum phenomena at the macroscopic scale. It was first
observed in 1938 as an abrupt drop of the viscosity below some critical temperature
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(the lambda point, 2.17 K) when circulating “He through very thin capillaries. In
fact, superfluidity manifests in a number of effects. Some examples are the so-called
Hess—Fairbanks effect and the quantization of circulation, observed when exploring
the rotational properties of a superfluid. For instance, if liquid “He above the lambda
temperature is introduced in a toroidal container set in rotation, within a few minutes
the whole liquid will achieve a steady angular velocity equal to that of the container.
If we now cool down the liquid below the lambda point, the angular velocity
of the liquid, the superfluid, can only get discrete quantized values (including
staying at rest if the initial angular velocity is below some critical quantity). These
effects can be understood from the fact that the superfluid is described by a single
macroscopic wavefunction with the property of being irrotational, and they have
been experimentally observed not only in superfluid *He [2—4] but also in Bose—
Einstein condensates of alkali atoms [5-7].

However, the most popular image of superfluidity is that of the flow without
friction, which was first evidenced in the above-mentioned reports of 1938. This
phenomenon can be intuitively described in terms of the Landau criterion, which
will be treated in detail in the next section. The Landau model considers the
linearized spectrum of excitations characteristic of a Bose—Einstein condensate
subject to particle—particle repulsive interactions. The slope of the spectrum of
excitations is known as the speed of sound of the system, cs, as it sets the group
velocity at which density sound-like perturbations propagate in the fluid.

A most striking feature of superfluidity is the absence of density excitations
when the fluid hits a localised static obstacle at flow speeds vy below some critical
velocity v.. For small potential barriers, this critical speed is given by c¢s. On the
other hand, for supersonic flows (v¢ > ¢s), the presence of a small obstacle induces
dissipation (drag) via the emission of sound waves. Superfluidity in the framework
of the Landau criterion has been experimentally observed in “He, both in bulk and in
droplets by measuring the kinetic energy loss of ions and atoms traversing the fluid
at controlled velocities [8, 9]. In atomic condensates, a critical speed [10, 11] and
the emission of sound-like shockwaves in supersonic flows have been reported [12].
Additionally, if the superflow is made to rotate in a toroidal container, the quenching
of excitations results in a metastable state holding a persistent current for an, in
principle, infinitely long time [13, 14].

The situation with respect to the fundamental excitations of a superfluid is even
more interesting when the barrier is strong and its size is larger than the healing
length of the fluid. The healing length is the characteristic distance at which the
interparticle interaction energy is of the same order as the kinetic energy related to
the spatial variations of the condensate density. In other words, it is the minimum
distance over which the density of the condensate can vary, limited by the repulsive
interactions. The presence of a large barrier in the flow path results in flow velocities
around the barrier which can be as high as twice the flow speed far away from the
barrier [15]. The velocity and density gradients induced by the obstacle can give rise
to the nucleation of topological excitations, such as vortices [15] and solitons [16],
which carry energy away and induce drag [17]. These are the fundamental quantum
hydrodynamic excitations and are not accounted for by the Landau criterion. Their
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nucleation results in critical velocities smaller than ¢y, a feature already observed
both in He and atomic condensates [10, 11,18, 19].

In the panorama of quantum gases, polaritons in semiconductor microcavities
have provided novel theoretical and experimental insights on the physics of
superfluidity and quantum hydrodynamics. Since the first reports of polariton
condensation in 2006 [20], coherent propagation and quantum fluid effects have
been thoroughly studied. The continuous escape of photons from the cavity allows
for the direct visualisation of the polariton wave function with a high spatial and
temporal resolution using standard optical imaging techniques. Additionally, under
resonant excitation, polariton condensates of controlled frequency, momentum and
density can be created. These assets have played a very important role in the
experimental development of quantum fluid experiments in polaritons. Some of
the observations include the formation of quantised vortices [21, 22], long-range
order [20, 23, 24], Goldstone mode physics [25, 26], persistent currents [27-29],
superfluidity according to the Landau criterion in the presence of small defects
[30-32], supersonic Cerenkov wavefronts [32] and the hydrodynamic nucleation of
vortices [33,34] and solitons in the wake of a potential barrier [35,36]. Additionally,
the relatively high optical losses set polariton condensates out of equilibrium, giving
rise to richer possibilities in the spectrum of excitations as compared to equilibrium
systems [25,30,37—40] and resulting in new quantum fluid effects [29,41-44]. Some
of these specific properties will be treated in this chapter.

7.2 Superfluidity According to the Landau Criterion

A very intuitive picture of the flow without friction characteristic of a superfluid
was that introduced by Landau in what is now known as the Landau criterion
for superf