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Preface

The concept of quantum fluid—a fluid whose properties are governed by the laws
of quantum mechanics—dates back to 1926, when Madelung introduced the hydro-
dynamic formulation of the Schrodinger equation. This, along with the prediction
of Bose-Einstein condensation (BEC) for a non-interacting gas made by Einstein in
1924, and the discovery of superfluidity in liquid helium, achieved independently by
Kapitza and Allen in 1937, can be considered the early milestones of this fashinating
field.

Remarkably, though the role of Bose-Einstein condensation in the superfluid be-
haviour of helium was soon recognized by London in 1938, it took seventy year
before its first direct observation. In fact, it was only in 1995 that the groups of
Cornell, Weiman, and Ketterle achieved to cool a sample of atomic gases down to
temperatures of the orders of few hundreds of nanokelvins, below the critical tem-
perature for BEC. These landmark experiments have produced a tremendous impact
in the experimental and theoretical research in the field of quantum fluids. In fact,
thanks to the fact that interacting Bose-Einstein condensates (BECs) are genuine su-
perfluids and that they can be controlled and manipulated with high precision, they
have made possible to investigate thorougly many of the manifestation of superflu-
idity, as quantized vortices, absence of viscosity, reduction of the moment of inertia,
occurrence of persistent currents, to mention a few.

Very recently, in 2006, following a pioneering proposal by Imamoglou (1996),
BEC was observed in a solid state system: polaritons in semiconductor microcavi-
ties, which are composite bosons arising from the strong coupling between excitons
and photons. Due to their very light mass, several orders of magnitude smaller than
the free electron mass, polaritons can exhibit Bose-Einstein condensation at higher
temperature and lower densities compared to atomic condensates. On the other hand,
polaritons constitute a new type of quantum fluid with specific characteristics com-
ing from its intrinsic dissipative and non-equilibrium nature.

The main objective of this book is to take a snapshot of the state of the art of this
fast moving field with a special emphasis on the hot-topics and new trends. Bringing
together the contributions of some of the most active specialists of the two areas
(atomic and polaritonic quantum fluids), we expect that this work could facilitate
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the exchanges and the collaborations between these two communities working on
subjects with very strong analogies. The book is organized in two distinct parts,
preceded by a general introduction; the first part is focussed on polariton quantum
fluids and the second one is dedicated to the atomic BEC.

In the introductory chapter, M. Wouters gives an overview of the physics of
the Bose-Einstein condensates of ultracold atoms and polaritons underlining their
analogies and differences. This chapter reviews the main achievements and dis-
cusses the current trends of both fields.

Chapter 2 by N.G. Berloff and J. Keeling deals with the central problem of
the universal description for the non-equilibrium polariton condensates. A spe-
cial attention is paid to the theoretical framework describing the pattern forma-
tion in such systems. Different equations characterizing various regimes of the dy-
namics of exciton-polariton condensates are reviewed: the Gross-Pitaevskii equa-
tion which models the weakly interacting condensates at equilibrium, the complex
Ginsburg-Landau equation which describes the behaviour of the systems in pres-
ence of symmetry-breaking instabilities and finally the complex Swift-Hohenberg
equation. The authors also show how these equations can be derived from a generic
laser model based on Maxwell-Bloch equations.

In Chap. 3, A. Kavokin develops a general theory for the bosonic spin trans-
port that can be applied to different condensed matter systems like indirect excitons
in coupled quantum wells and exciton-polaritons in semiconductor microcavities.
The relevance of this approach to the emerging field of Spin-optronics in which the
spin currents are carried by neutral bosonic particles is discussed and fascinating
perspectives like spin-superfluidity are addressed.

Chapters 4 and 5 are focussed on the theoretical description of the properties
of the spinor polariton condensates with a special emphasis on the occurrence of
topological excitations in these fluids. In Chap. 4 by Y.G. Rubo, a review of the spin-
dependent properties of the multi-component polariton condensates is presented.
Special attention is devoted to describe the effect of applied magnetic fields on the
polarization properties of the condensate; fractional vortices are discussed and the
spin texture of the half-vortices in presence of the longitudinal-transverse splitting
is discussed in detail. In Chap. 5, H. Flayac, D.D. Solnyshkov and G. Malpuech first
discuss in detail the specific behaviour of a flowing spinor polariton allowing for
the generation of a new kind of topological excitations: the oblique half solitons.
In the second part of the chapter the authors show that these systems are extremely
promising to study exotic entities analogue to the astrophysical black holes and
wormbholes.

Chapters 6 and 7 deal with experimental studies of hydrodynamics of polari-
ton quantum fluids. In Chap. 6, B. Deveaud, G. Nardin, G. Grosso and Y. Léger
describe the behaviour of a flowing polariton quantum fluid perturbed by the in-
teraction with a potential barrier: this experimental configuration is well suited to
investigate the onset of quantum turbulence in a quantum fluid. The variations of
the phase and density of the fluid are measured with a picosecond resolution al-
lowing for the observation of the nucleation of quantized vortices and the decay of
dark solitons into vortex streets. In Chap. 7, D. Ballarini, A. Amo, M. de Giorgi
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and D. Sanvitto review the first observations of superfluidity in a polariton fluid:
the most relevant manifestations of the superfluid behaviour of these systems are
discussed, namely the friction-less motion with the consequent scattering suppres-
sion in the Landau picture and the establishment of persistent currents in the case
of rotating condensates. Moreover, the authors discuss the interesting regime of the
superfluidity breakdown when the polariton fluid hits a spatially extended obstacle
that can be natural or created in a controlled way by mean of well suited optical
beams. Vortex nucleation, vortex trapping as well as the formation of oblique dark
solitons are analysed in detail. In the last part of the chapter the authors show that
the strong non-linearities of the polariton systems, together with their specific prop-
agation properties can be exploited to develop a new class of optoelectronic devices
for the classical and quantum information processing.

Chapters 8 and 9 are focussed on the properties of polariton condensates confined
in low dimensional structures. In Chap. 8, N.Y. Kim, Y. Yamamoto, S. Utsunomiya,
K. Kusudo, S. Hofling and A. Forchel discuss the properties of exciton-polaritons
condensates in artificial traps and lattices geometries in various dimensions (0D,
1D and 2D). They show how coherent m-state with p-wave order in one dimen-
sional condensate array and d-orbital state in two dimensional square lattices can be
obtained. The authors point out the interest of preparing high-orbital condensates
to probe quantum phase transitions and to implement quantum emulation applica-
tions. In Chap. 9, J. Bloch reviews the recent experiments performed with polariton
condensates in low-dimensional microstructures. The propagation properties of po-
lariton condensates confined in 1D microwires, together with the possibility to ma-
nipulate and control these condensates by optical means, are discussed in detail. In
the second part of the chapter, the author shows how the study of polariton conden-
sates in fully confined geometries, obtained in single or coupled micropillars, allows
gaining a deep physical insight in the nature of interactions inside the condensate
as well as with the environment. In the final part of the chapter, the interesting per-
spectives opened by the confined polariton condensates for the implementation of
devices with new functionalities are briefly reviewed.

While the previous chapters are mainly focussed on the polariton quantum flu-
ids in GaAs-based microstructures where a cryogenic temperature (4K) is needed,
Chaps. 10 and 11 explore the possibilities opened by other materials to achieve
polariton condensates at room temperature. Chapter 10 by J. Levrat, G. Rossbach,
R. Butté and N. Grandjean presents the recent observation of the polariton conden-
sation at room temperature (340 K) in GaN-based planar microcavities and analyses
in detail the threshold of the polariton condensation phase transition as a function
of the temperature and detuning. The role of the spin-anisotropy in the polariton-
polariton interactions and its impact on the polarization properties of the conden-
sate are comprehensively discussed. In Chap. 11, F. Médard, A. Trichet, Z. Chen,
L.S. Dang and M. Richard present the recent progresses towards polariton condensa-
tion at room temperature in large band-gap nanostructures, namely ZnO nanowires.
The unusually large Rabi splitting observed in these systems allows achieving stable
polariton at room temperature, strongly decoupled from thermal fluctuations coming
from lattice vibrations. Despite this behaviour, the authors show several experimen-
tal indications of polariton quantum degeneracy at room temperature.
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Chapter 12, by F. Piazza, L.A. Collins, and A. Smerzi, opens the second part of
the book, dedicated to the properties of quantum fluids made by ultracold atoms.
In this chapter the authors discuss the dynamics of superfluid dilute Bose-Einstein
condensates in the regime where the flow velocity reaches a critical value above
which stationary currents are impossible. They present results for two- and three-
dimensional BECs in two different geometries: a torus and a waveguide configu-
ration, and also discuss the behavior of the critical current, establishing a general
criterion for the breakdown of stationary superfluid flows.

Chapters 13 and 14 are devoted to turbolence effects in atomic BECs, that are par-
ticularly appealing as quantized vortices can be directly visualized and the interac-
tion parameters can be controlled by Feshbach resonances. In Chap. 13, M. Tsubota
and K. Kasamatsu review recent important topics in quantized vortices and quan-
tum turbulence in atomic BECs, providing an overview of the dynamics of quantized
vortices, hydrodynamic instability, and quantum turbulence. In Chap. 14, V.S. Bag-
nato et al. discuss their recent observations of quantum turbolence with a condensate
of 87Rb.

In Chap. 15, Y. Castin and A. Sinatra discuss the coherence of a three-
dimensional spatially homogeneous Bose-condensed gas, initially prepared at finite
temperature and then evolving as an isolated interacting system. They review dif-
ferent theoretical approaches, as the number-conserving Bogoliubov approach that
allows to describe the system as a weakly interacting gas of quasi-particles, and the
kinetic equations describing the Beliaev-Landau processes for the quasi-particles.
They show that the variance of the condensate phase-change at long times is the sum
of a ballistic term and a diffusive term, with temperature and interaction dependent
coefficients, and discuss their scaling behaviors in the thermodynamic limit.

Chapter 16, by R.P. Smith and Z. Hadzibabic, review the role of interactions
in Bose-Einstein condensation, covering both theory and experiments. They focus
on harmonically trapped ultracold atomic gases, but also discuss how these results
relate to the uniform-system case, which may be relevant for other experimental
systems, and for theory in general. Despite the fact that the phase transition to a
Bose-Einstein condensate can occur in an ideal gas, interactions are necessary for
any system to reach thermal equilibrium and so are required for condensation to
occur in finite time. The authors discuss this point clarifying the effects of interac-
tions both on the mechanism of condensation and on the critical temperature, and
then review the conditions for measuring the equilibrium thermodynamics. They
also discuss the non-equilibrium phenomena that occur when these conditions are
controllably violated by tuning the interparticle-interaction strength.

In Chap. 17, T. Mukaiyama and M. Ueda provide an overview of theories and
experiments on the thermodynamics of Fermi gases at unitarity, where the scattering
length diverges, that is characterized by a universal behavior.

Finally, in Chap. 18, G. Barontini and H. Ott introduce the scanning elec-
tron microscopy (SEM), that represents one of the most promising techniques for
probing and manipulating ultracold atomic systems with extremely high resolu-
tion and precision. Thanks to its extremely high resolution, below 100 nm, and
to the single-atom sensitivity, the SEM method permits the observation of in-situ
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profiles of trapped Bose-Einstein condensates and of ultracold clouds in one- and
two-dimensional optical lattices. Moreover, the single lattice sites can be selectively
addressed and manipulated in order to create arbitrary patterns of occupied sites.

We hope this book will be a useful introduction to a wide audience of researchers
who wish to approach the physics of quantum fluids and be updated on the last fasci-
nating achievements in this cutting-edge research field. Last but not least, we would
like to thank all the contributors for their effort in making this project possible.

Paris, France Alberto Bramati
Bilbao, Spain Michele Modugno
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Chapter 1
Quantum Fluids of Exciton-Polaritons
and Ultracold Atoms

Michiel Wouters

Abstract We give an overview of the physics of quantum degenerate Bose gases of
ultracold atoms and of exciton polaritons in microcavities. The physical systems are
described and the main experimentally accessible observables are outlined. We give
a schematic overview of recent trends in both fields.

1.1 Introduction

The physics of the quantum Bose gases took off from the theoretical side, when
Einstein predicted that the bosonic statistics induces a phase transition in a nonin-
teracting gas at low temperatures, when the interparticle distance is comparable to
the de Broglie wave length [39]. Below the transition temperature, the gas enters
the Bose-Einstein (BE) condensed phase, where a macroscopic number of parti-
cles occupies the lowest momentum state, leading to the coherence of the phase
over macroscopic distances. The first physical example of this type of transition
was superfluid Helium. Due to the strong interactions between the Helium atoms
however, its theoretical description is complicate and the connection to the ideal
Bose gas is not so direct. Still the macroscopic phase coherence and superfluidity
are not qualitatively altered by the strength of interactions, so that the ideal Bose gas
remains conceptually a good starting point to understand the remarkable behavior
of superfluid Helium. It was in this context that Bogoliubov analyzed the effect of
weak interactions and Pitaevskii constructed the classical theory for inhomogeneous
Bose-Einstein condensates.

A physical realization of the weakly interacting Bose gas was lacking for many
years. The condition of weak interactions nRS < 1 is only satisfied when the in-
terparticle distance (n~!/3) is much larger than the range of the interactions (R,).
No gases satisfy this condition at thermodynamic equilibrium. Several ideas were
pursued to create metastable quantum gases that are in the weakly interacting limit.
Both excitons in semiconductors and very dilute atomic gases were conceived to
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be good candidates to achieve this goal. The first successful realization was ob-
tained with dilute atoms in 1995 [13]. The condensation of excitons on the other
hand proved to be much harder due to the complicated solid state environment. By
coupling the exciton to a cavity photon, polariton quasi-particles are created. Be-
cause of their much lighter mass as compared to the exciton, they are much easier to
condense in the ground state. Unambiguous proof hereof was obtained in 2006 [28].

The ultracold dilute atomic gases have turned out a very flexible system, and
can be used as emulators for a wide variety of quantum systems and the field has
witnessed a vigorous expansion. It is beyond the scope of the present introduction
to cover this field. We will rather restrict ourselves to the physics of bosonic atoms
in the regime of weak interactions. On the polariton side, the relative simplicity of
the experiments has allowed for many milestone experiments to be performed in a
relatively short time. The field being still much smaller than the cold atom one, we
will cover relatively more of the polariton physics.

1.2 The Systems

In the following sections, we will start with short separate introductions to the mi-
crocavity and cold atom systems to describe their specific features.

1.2.1 The Microcavity Polariton System

1.2.1.1 Microcavity Polariton Properties

A microcavity is a solid state Fabri-Perrot cavity with a distance between the mir-
rors of the order of one micron. The mirrors are flat so that the photon modes have
a conserved momentum in the directions parallel to the mirror plane, making them
a two-dimensional (2D) system. At small momenta, their dispersion is in good ap-
proximation quadratic wc (k) = a)g + k%/2m ¢, where the effective mass is four or-
ders of magnitude smaller than the free electron mass m¢ = 10~%m,. The resonance
frequency a)OC is in the electron volt range, the typical energy scale of electronic tran-
sitions. The mirrors are usually Distributed Bragg reflectors (DBRs) with a quality
factor of the order of 10.000, yielding photon line widths in the 0.1 meV range,
corresponding to a few ps life time [15].

When a material is placed between the mirrors, that has an electronic transition
in resonance with the optical mode, the electronic excitations couple to the light.
Of particular interest is the coupling to an excitonic transition (bound electron hole
pair) in the material, illustrated in Fig. 1.1(a). When a photon creates an exciton,
the center of mass momentum of the exciton is equal to the photon momentum. The
relative wave function of the exciton being fixed, the coupling between a photon
and exciton at momentum Kk can be seen as the coupling in a two-level system. In
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Fig. 1.1 (a) Overview of the microcavity polariton system. A cavity photon is strongly coupled
to an exciton transition in an embedded quantum well. (b) The dispersion of the upper (green) and
lower (blue) polaritons, compared to the bare exciton and photon dispersions (dashed lines). (c),
(d), (e) comparison of the different excitation schemes: resonant (c¢), parametric (d) and nonreso-
nant (e)

second quantization, this coupling can be described by a term in the Hamiltonian of
the form

Q2
= Tszg(kmx(th.c. (1.1)
k

where the coupling parameter §2f is the Rabi frequency and ¢ annihilates a cavity
photon. The operator ¢ describes the annihilation of an exciton (electron-hole
pair). To enhance the binding energy, the exciton is usually confined in a quantum
well. The eigenstates of the full linear Hamiltonian H = Hy + Hpg, with the free
Hamiltonian

Ho =Y [ock) ¥ K)Yck) +ex ¥ K yx (K)], (1.2)

k

can be obtained by diagonalizing it at fixed k. The dispersion of the quasi-particles,
the so-called lower and upper polaritons, is shown in Fig. 1.1(b). The splitting be-
tween upper and lower polariton was first experimentally seen by Weisbuch et al.
in 1992 [56]. Note that in (1.2), we have neglected the momentum dependence of
the exciton energy, which is well justified since its mass is around four orders of
magnitude heavier than the cavity photon.

The coupling between excitons and photons is determined by the Rabi frequency
§2R, that is of the order of a few meV in GaAs up to 50 meV in GaN (discussed in
Chap. 10), 130 meV in ZnO (see Chap. 11) and even higher in organic materials [1].
A larger Rabi frequency makes the polaritons more robust with respect to temper-
ature. Experiments with GaAs microcavities are conducted at cryogenic tempera-
tures around 10 K, where polaritons in GaN (see Chap. 10) and organic materials
can be observed at room temperature. Many experiments are however conducted
with GaAs microcavities, because the growth technology for this material is much



4 M. Wouters

more advanced thanks to its use in commercial opto-electronic applications. Much
progress has however been made in the fabrication of GaN microcavities and many
of the pioneering experiments on polariton condensation have been conducted on a
CdTe microcavity [28, 33, 42].

The microcavities are structurally identical to Vertical Cavity Surface Emitting
Lasers (VCSELSs). The only difference is that their excitonic resonance is carefully
tuned to the cavity photon. The most important consequence hereof is that unlike
photons, the polaritons interact significantly with each other. Indeed, the excitons
consist of electrons and holes and their (exchange dominated) interaction is re-
sponsible for the polariton-polariton interactions [11]. It is theoretically modeled
by adding the interaction term

Hp = %/dx VYL (0 Yx () Px () (1.3)

to the Hamiltonian. Its approximation by a contact interaction is well justified, be-
cause the range of the exciton-exciton interaction potential is of the order of 10 nm,
where the polariton physics takes place on the um length scale.

On resonance, the polariton is half exciton and half photon, so that the effective
polariton-polariton interaction is g7 p = g/4. The relevant dimensionless coupling
constant that characterizes the strength of interactions in a 2D gas of particles with
mass m is § = mg/h? [7]. This means that even though the excitons are in a regime
of strong interactions § = myg/h> ~ 1, the polaritons are in a weakly interacting
regime. For example in GaAs microcavities, the dimensionless interaction constant
is of the order of § =m pg/h>~0.01.

A second major difference with the bare exciton gas concerns the role of disorder.
A certain degree of disorder due to growth fluctuations is inevitable. Fluctuations in
the quantum well width result in an inhomogeneous effective potential for the exci-
tons, with a correlation length on the nm scale and gives a inhomogeneous linewidth
in the order of one meV. It however turns out that when the Rabi frequency is larger
than this inhomogeneous broadening, the polariton modes are quite insensitive to
the excitonic disorder [45]. The major source of disorder acting on the polaritons
comes from the fluctuation in the distance between the two DBR mirrors. A mono-
layer fluctuation gives an energy shift of the order of 0.5 meV, which is of the same
order of magnitude as the other polariton energy scales.

Controllable manipulation of the potential acting on the polaritons is possible by
a variety of techniques, that are discussed in Chap. 8. Among the most successful
strategies of creating potentials acting on the polaritons are etching (see Chaps. 8
and 9), stress induced traps [4], surface acoustic waves [10] and controlled variation
of the DBR thickness (see Chap. 6).

So far, we have simplified the discussion by neglecting the polarization degree
of freedom of the polaritons [47]. The photon however has two polarization states.
In GaAs for example, there are four exciton polarization states. The photon only
couples to the m, = %1 excitons. The other two states with m, = +2 are not coupled
to the light because of angular momentum conservation. They are dark and do not
form polaritons.
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The single particle polariton eigenstates have a well defined linear polarization
due to the splitting of both the photon and exciton linear polarization states. For
what concerns the polariton-polariton interactions however, the conservation of an-
gular momentum in collisions results in the conservation of the circularly polarized
states. The interactions turn out to be anisotropic: the interactions between cocir-
cular polarized polaritons is larger than between countercircularly polarized ones:
g+1 > |g4y 1. This is due to the fact that the dominant contribution comes from
the Pauli exclusion principle (exchange interaction). For countercircularly polarized
excitons, both electron and hole spins are however different, so that the exchange
contribution vanishes. The interactions due to higher order terms have been found
to be negative g4y <0 [31, 54].

Discussions on the spin physics of polaritons can be found in Chaps. 3 and 4.

1.2.1.2 Experiments with Polaritons

In its ground state, the microcavity is empty. Polaritons can be injected by means of
optical or electrical injection. The polariton life time is mainly limited by the finite
photon life time. In state of the art microcavities, it is around 10 ps, which is of the
order of the other time scales of their dynamics and thus presents a severe limita-
tion. Therefore, polaritons are often continuously injected in order to compensate for
these losses. Two different optical injection schemes should be distinguished. The
first excitation scheme is resonant excitation (see Fig. 1.1(c)): A laser is tuned to the
polariton frequency at a given wave vector. The second scheme is nonresonant ex-
citation (see Fig. 1.1(e)). In this latter case, the laser is tuned to an energy above the
polariton energy. High energy excitons or free electron-hole pairs are formed, that
subsequently relax to the bottom of the lower polariton branch. Electrical excitation
has a similar effect.

An important difference between the resonant and nonresonant excitation
schemes concerns the U (1) phase symmetry of the polariton field. In the case of
resonant excitation, the coupling of the external laser amplitude F; to the micro-
cavity adds a term to the Hamiltonian

Hp = Fre “t'wT (k) + h.c. (1.4)

that explicitly breaks the U (1) symmetry. The phase of the polariton field is deter-
mined by the phase of the laser and in particular its spatial and temporal coherence
is determined by the coherence properties of the laser light. Under nonresonant ex-
citation on the other hand, the U (1) symmetry is not explicitly broken and polariton
coherence can spontaneously form. Various models to describe this symmetry bro-
ken nonequilibrium state are discussed in Chap. 2.

An excitation scheme that is intermediate between resonant and nonresonant ex-
citation is the so-called parametric excitation [25, 51]. The lower polariton branch is
excited resonantly at an energy above the ground state carefully chosen so that po-
laritons can scatter into the ground state (signal) and an excited state (idler) through
a single collision. The parametric scheme is illustrated in Fig. 1.1(d). Where under
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parametric excitation, the phase of the pumped mode is fixed by the laser, the signal
phase is chosen spontaneously, because only the sum of signal and idler phases is
fixed ¢; +¢; = 2¢p,,. Therefore, the spontaneous formation of coherence is observed
when the density of polaritons in the signal mode is increased.

Finally, under pulsed resonant excitation, the polariton phase is only fixed as long
as the laser pulse excites the microcavity and is free to evolve afterwards. The main
limitation of this scheme is, as we mentioned earlier, the finite polariton life time
that makes the density drop on the same time scale as the other time scales that are
involved in the dynamics.

1.2.2 The Cold Atom System

Similar to polaritons, also the dilute clouds of ultracold alkali atoms are not in their
ground state, which is the solid phase. The relaxation to a solid however needs
three-body interactions, which are very slow at low densities and the gas phase is
metastable with a life time that can be of the order of one minute. This is much
longer than the time needed to reach thermal equilibrium and much longer than the
typical time scales of the dynamics. It is therefore a good approximation to neglect
the finite life time of the trapped atoms.

Since the realization of Bose-Einstein condensation, the field of ultracold atoms
has witnessed an explosive growth. Nowadays, many experiments are performed on
atoms of bosonic and fermionic [21] statistics, that can be combined with ions [61]
and strongly coupled to light [8]. The scope of this chapter is limited to point out
some aspects of the physics of ultracold bosonic gases. More extensive reviews of
their properties can be found in several text books on the subject [38, 39]. Due to
the three-body losses, the maximum density of the atoms is around n = 104 ecm—3,
This means that the typical interatomic spacing is similar to the polariton spacing of
around 1 micron. Quantum degeneracy is reached when the de Broglie wavelength
reaches this value. Due to the much heavier atomic mass, the temperature require-
ment for the atoms is much more severe and of the order of 100 nK, eight orders of
magnitude smaller than in the polariton case. Thanks to the excellent isolation of the
atomic clouds from any environment, these ultralow temperatures can however be
routinely achieved. While the BEC phase transition does not rely on the interactions
between the atoms, the transition temperature is affected by atomic interactions (see
Chap. 16).

Spin conservation laws in the collisions of atoms make that for several combina-
tions of hyperfine states, the number of atoms in each state is conserved. Mixtures of
a well defined number of atoms in each hyperfine state can thus be prepared, which
allows to study atomic gases with tunable effective spin.

Interactions between ultracold atoms have a range that is of the order of 10 nm,
much shorter than their spacing. The interaction can thus be well approximated by
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a contact interaction, that reads in three dimensions (omitting technicalities con-
cerning their regularization)

Arhlag,
V(x)= Té(r), (1.5)

where ay. is the scattering length, that is typically of the order of the range of the
interactions. Making use of so-called Feshbach resonances, the scattering length
can be tuned at will. Both positive and negative signs for the scattering length can
be reached. In absolute value, it can be tuned from zero to values larger than the
interparticle spacing. In the latter regime, the atomic gas enters a very controlled
strongly interacting regime.

An alternative route to the regime of strong interactions in bosons is by using op-
tical lattices. These are periodic potentials generated by standing laser fields. They
allow to realize a tunable bosonic Hubbard model, where the dramatic effects of
interactions between bosonic particles were first evidenced in the superfluid to Mott
insulator phase transition [22].

Interactions can be meaningfully compared between 2D polariton gases and 2D
atomic clouds. The latter can be created by applying a standing laser field that con-
fines the cloud in one dimension only. In experiments on the 2D Bose gas, the inter-
action strength is tunable and takes values in the range g = 1072-0.3 [12, 24, 26].
As discussed above, Microcavity polariton in GaAs microcavities are in the lower
values of this range.

The coupling of ultracold gases to cavity photons has been achieved as well,
making for a systems that is at first sight strongly analogous to the microcavity
one. For example, in Ref. [8], a BEC was placed inside an optical cavity, that was
tuned to an electronic transition of the atoms, a situation very similar to the quantum
well embedded in a microcavity. An important difference between the two cases is
the dimensionality of the photon. Where it has in the semiconductor case the same
dimensionality as the exciton, in the atomic case, the photon is zero-dimensional
where the condensate is 3D. A second ingredient that causes an important differ-
ence, where the motion of the Ga and As atoms is negligible for the crystalline
solid state materials, the atoms move while they interact with the light, leading to
optomechanical effects [8].

1.3 Observables

1.3.1 Microcavities

The measurement of the polariton state inside the microcavity is straightforward,
thanks to the one-to-one correspondence between the microcavity polaritons and
the light that is transmitted through the microcavity mirrors [46]. Using standard
optical techniques, the polariton density can be measured in real space n(x) or in
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momentum space n(k). Using a spectrometer, the energy spectrum is readily ob-
tained, resulting in images of n(x, w) or n(k, w). When a streak camera is used, the
time evolution of the density can be monitored with a ps resolution.

By interfering the light that is emitted at different positions, the spatial coher-
ence gV (x1,X2) = (T (X)) ¥ (x2))//n(X])n(X2) can be measured [28]. From the
interferrograms, also the average phase difference between different regions in the
condensate can be extracted. This has allowed to evidence the existence of quan-
tized vortices in polariton condensates [32]. This interference technique to visualize
vortices has been first used for atomic condensates by Inouye et al. [27].

It is important to point out that all the measurements of polariton gases are per-
formed over times that are very long as compared to the polariton life time. For a
steady state measurement, this means that actually a long time average is recorded.
In practice, the cw experiments are performed with long pulses. A typical mea-
surement takes a time that is long with respect to the pulse duration and thus av-
erages over many realizations of the condensate. For the observation of vortices,
this means that only an average phase profile is measured, that completely misses
moving vortices. For pulsed experiments where the time evolution is followed, the
measurements record the average over multiple realizations of the dynamics. Again,
the particular trajectory of a single realization cannot be followed.

1.3.2 Ultracold Atoms

The main observable of ultracold atoms is the density: the atomic (column) den-
sity can be imaged through its absorption of laser light. It has turned out that from
the density, combined with an engineered evolution of the system before recording
it, an enormous wealth of information can be derived. The clearcut observation of
BEC in 1995 was a density measurement performed a certain time after the trap
was switched off. The free expansion maps approximately the momentum to the
distance and thus gives a good estimate of the momentum distribution. A further
analysis shows that the mapping of distance to momentum is modified by the inter-
actions during the early stages of the expansion. Note that in the polariton case, the
momentum distribution is also obtained by a kind of free expansion of the emitted
photons. There however, interactions are always negligible, because the propagation
takes fully place outside of the microcavity, where photon-photon interactions are
absent.

Also from the in situ measurements of the atomic clouds, important informa-
tion can be extracted. By using high resolution optical [48] or scanning electron
microscopy (SEM) techniques, the atomic density profiles can be measured with a
resolution that is better than the interparticle distance and the lattice spacing of opti-
cal lattices. Thanks to the single atom sensitivity, also higher order correlations can
be measured. This technique will be described in Chap. 18.

A crucial difference between the measurements of ultracold atoms and polari-
tons is that in the case of the ultracold atoms information is obtained from a single
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shot measurement. A picture of a single realization of the ensemble of atoms is
taken. This is relevant for phase measurements. Two atomic clouds can be made to
interfere with each other and a particular realization of an experiment will always
show interference fringes, irrespective of whether the phases of the two clouds are
related or not. This makes it straightforward to observe spontaneous vortices [24].
The presence of a vortex is signaled by a fork like dislocation in the interference
pattern between the condensate and a reference condensate. By repeating such an
experiment many times, the probability distribution for the number of vortices can
be measured.

Spectral information on the Bose gases can be extracted by applying time-
dependent laser fields. An example is Bragg spectroscopy [50]. In this type of ex-
periments, two lasers with frequency difference Aw and wave vector difference Ak
are applied to the gas. A large response of the atoms is observed when (Ak, Aw)
coincides with a resonance in the structure factor. Another example is modulation
spectroscopy, where the standing laser field that creates an optical lattice is modu-
lated [52]. The excitation frequency and spectrum turns out to be a precise probe for
the properties of the quantum fluid.

For the measurement of temporal coherence, Ramsey type experiments can be
used. A proposal for the measurement of the temporal coherence of atomic conden-
sates is discussed in Chap. 15.

1.4 Physical Properties

1.4.1 Condensate Shape

In contrast to conventional condensed matter systems such as the electron gas or
superfluid Helium, both the ultracold atoms and polariton gases are strongly in-
homogeneous. The overall trapping potential acting on cold atoms is usually well
approximated by a quadratic potential. In the polariton case, not only trapping poten-
tials can be present, but also the excitation that injects particles is inhomogeneous.
The physical consequences of the inhomogeneity are very different for systems at
thermodynamic equilibrium and for nonequilibrium gases.

In the case of cold atoms in equilibrium, the effect of a shallow quadratic trapping
potential can in good approximation be described in the local density approximation.
This means that the gas can be treated locally as homogeneous at a given chemical
potential 1 (r). This chemical potential varies in space as (£ (r) = 1o — Vexr (T), where
Vexr 18 the trapping potential. What at first sight could seem to be a complication,
actually turns out to be a convenience: one has access to a range of chemical poten-
tials in a single experiment. Measuring the local density, it is possible to extract the
equation of state w(n), from which thermodynamic quantities such as the pressure
and phase space density can be extracted. A discussion on this method in the context
of the unitary Fermi gas is given in Chap. 17.
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In the polariton case on the other hand, the inhomogeneity induces more com-
plicated phenomena. Due to the nonequilibrium situation, that breaks time reversal
symmetry, the steady state can sustain flows of polaritons. In other terms, the super-
fluid phase is not guaranteed to be homogeneous in the steady state. For a general
inhomogeneous potential V,(r) and inhomogeneous injection of particles P(r),
it is not possible to find a steady state with a uniform superfluid phase. Because of
these flows, it is a much harder problem to find the steady state. It has been observed
that when exciting the polariton gas with a very small pump spot, the condensation
mainly takes place at a finite wave vector. The physical interpretation is that most
of the particles are flowing away from the region where they are created [42, 57].
It is even possible that under certain conditions, these flows appear under the form
of quantized vortices [32]. Thanks to the polarization degree of freedom, even more
complex topological structures such as half vortices can be generated [34].

1.4.2 Coherence

1.4.2.1 Spatial Coherence

The order parameter of the Bose-Einstein condensation phase transition is the long
range phase coherence, which means that for large separation |x; — X2| — oo, the
first order coherence goes to a nonzero condensate density (W' X)) (x2)) =nc #0.
In ultracold atomic gases, the nonzero value of the condensate density in a 3D con-
densate was observed experimentally in Ref. [6].

For one and two dimensional systems at finite temperature, the Hohenberg-
Mermin-Wagner theorem asserts that no true long range order can exist, n, = 0.
In two dimensions, there is still a phase transition from a normal gas at high temper-
atures to a superfluid phase at low temperatures, that is of the Berezinskii-Kosterlitz-
Thouless (BKT) type. Above the transition temperature, the phase coherence decays
exponentially <¢T(X1)¢(X2)) ~ exp(—|x1 — x2|/€.). Moreover, above the transi-
tion temperature, one expects to see the spontaneous formation of vortices. Below
the transition temperature, the coherence decays as a power law of the distance
(1//T(x1)1/f(x2)) ~1/|x; —x2|%(T). For T — 0, the power goes to zero as well and
long range order is recovered at zero temperature. In a finite size system, the gas can
already show coherence over its full extent at finite temperature.

Pancake shaped clouds of bosonic atoms have been used to study the Kosterlitz-
Thouless transition experimentally. The spontaneous vortices were observed and the
transition in the analytic behavior of the coherence was observed when the gas was
cooled through the transition. The most difficult aspect of the cold atom experiments
is the finite size of the system. The BKT transition is theoretically usually studied
for homogeneous systems, but the finite size effects can mask the algebraic decay
of long range order [23].

As we have pointed out in the general description of polariton quantum fluids,
Sect. 1.2.1.2, only in nonresonantly and parametrically excited microcavities, there
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is a spontaneous formation of coherence. Due to the nonequilibrium character where
the steady state is determined as a balance between driving and dissipation, the
phase fluctuations of the polariton condensates are much less understood.

A fundamental question concerns how the nonequilibrium situation affects the
long range decay of the coherence. Theoretical calculations based on very different
formalisms predict that in the limit of slow phase decay, the coherence still falls
off algebraically in 2D [53] and exponentially in 1D [59]. While this behavior is
the same as the equilibrium Bose gas at finite temperature, the exponent (2D) and
coherence length (1D) are now determined by the strength of the losses rather than
by the temperature. Moreover, the details of the coupling to the reservoir affect the
coherence [60].

Clear experimental results on the spatial decay of the coherence are not available
yet, mainly because the size of the polariton gas is still limited and because in many
experiments disorder is too large. In the recent experiments by Spano et al. [49] on
a high quality sample, the coherence length of a parametrically excited polariton
condensate, the spatial coherence was found to extend over the whole condensate,
without any sign of algebraic decay.

1.4.2.2 Temporal Coherence

The coherence of a Bose gas does not only decay as a function of spatial distance,
but also as a function of the time delay #; — #,. For polariton condensates, the tempo-
ral coherence is in principle directly available from the spectrally resolved images

T
n(x,a)):%/o dtidtre™ (YT (x, 1)y (x, ). (1.6)

The line narrowing at the threshold for condensation/parametric oscillation illus-
trates the expected increase in coherence time a mode gets macroscopically occu-
pied. The same phenomenon takes place above the threshold of a normal laser.

Let us discuss briefly the main mechanisms that limit the coherence time of a
laser. Far above the threshold, the temporal coherence of a laser is limited by the
Shawlow-Townes phase diffusion, that predicts an exponential decay of the coher-
ence with a decay time rng =4N/y, where y is the bare cavity line width and N
the number of photons. The losses and gain contribute both equally to the magnitude
of the decay rate. When the gain medium not only provides a gain for the photons,
but also changes the refractive index and hence the cavity frequency, an additional
contribution to the linewidth appears, the so-called Henry linewidth enhancement
Ty =’y /N, where @ = dwc /dR is the ratio of the change in cavity frequency to
the change in optical gain.

Both the Shawlow-Townes and Henry mechanisms are present in polariton con-
densates as well. In addition, the coherence time of polariton condensates is also
limited by the polariton-polariton interactions [58].

For the case of atomic Bose-Einstein condensates, when losses are neglected,
the only mechanism for phase decoherence comes from the interactions between
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the atoms. The analysis by Castin and Sinatra, presented in Chap. 15, shows that
the ensemble (microcanonical, canonical, grand canonical) changes the functional
behavior of the temporal coherence.

1.4.3 Superfluidity

The phase coherence of a Bose-Einstein condensed gas has profound consequences
on its hydrodynamic behavior and shows effects such as persistent flows and quan-
tization of vorticity. It has turned out that the phenomena associated to superfluidity
are robust with respect to particle losses so that many of the phenomena that were
first studied with “He and ultracold atoms can also be observed in polariton gases.

A major consequence of Bose-Einstein condensation on an interacting system
is the change in the spectrum of elementary excitations from quadratic to linear.
According to the argument by Landau, this change of the excitation spectrum is
responsible for the dissipationless flow of the superfluid component, because the
energy cannot be lowered by creating excitations on top of the superfluid, at least
for superfluid velocities below the speed of sound. When the speed of sound is
exceeded, excitations are created and the superflow is dissipated.

The use of an energetic argument could suggest that the dissipationless flow is
limited to systems at thermodynamic equilibrium, but this turns out not to be the
case. The Landau critical velocity can be derived without relying on energetic min-
imization arguments. Let us limit ourselves to the case of static defects. The excita-
tion spectrum on top of a moving condensate (in equilibrium or not) is obtained in
the rest frame of the defect by a Galilean transformation. A static defect can only
create excitations at the frequency of the condensate. As long as the condensate
speed is below the speed of sound, no excitations can be created.

In the polariton case, this mechanism results in a strong suppression of the
Rayleigh scattering when the polariton gas is in the superfluid regime. Since it is for
this physics not important whether the superfluid phase coherence is spontaneous or
not, the easiest experiment to observe the reduced scattering is under resonant ex-
citation. Following the suggestion by Carusotto and Ciuti [9], this suppression was
experimentally observed by Amo et al. [2], where a resonantly excited polariton
condensate was collided with a natural defect on the sample. In the atomic conden-
sate case, the experiments probing the dissipation of superfluidity were performed
soon after the realization of BEC. The defect they used was created by a laser field
that exerts a repulsive potential on the atoms [41].

The Landau argument being based on the linear excitation spectrum is only valid
for weak perturbations that do not strongly change the condensate density and speed.
For strong defects, the theoretical analysis by Frisch et al. [20] has shown that the
critical velocity is lower by a factor of more than two. The physical reason is that a
large defect strongly alters the density and speed of the superfluid. This implies that
locally the Landau criterion can be violated when the asymptotic speed is still below
the sound speed. In this case, the dissipation of the superflow does not take place
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in the form of elementary phonon excitations, but rather in the periodic shedding
of vortices (at lower speeds) or in the creation of a dark soliton (at higher speeds).
Experimentally, both in cold atoms [37] and in polariton condensates [3, 36] (see
Chaps. 6 and 7), this instability of the superflow was observed. An extensive discus-
sion of the theory of the critical speed in atomic condensates is given in Chap. 12.

The quantization of vorticity is a key feature of superfluids. Soon after the re-
alization of Bose Einstein condensation of ultracold atoms, quantized vortices and
vortex lattices were generated by rotating the trap. The study of rotating atomic
gases have allowed for a detailed study of many phenomena of rotating Bose gases,
such as the Kelvin modes of vortex lines and the Tkachenko modes of vortex lat-
tices [18]. Currently, there is a great interest in reaching the regime of ultrafast
rotation where correlated quantum hall states can be created. One of the most
promising techniques are artificial gauge fields created by a properly designed laser
field [14].

Furthermore, when many vortices are present they can form complex tangles,
a quantum turbulent state. The theory of quantum turbulence applied to ultracold
atomic gases is discussed in Chap. 13, where pioneering experiments are discussed
in Chap. 14.

In polariton condensates, mechanical rotation speeds needed to induce vortices
are technically not achievable, but in this case the nonequilibrium situation can lead
to the spontaneous formation of vortices [32] and even the formation of vortex lat-
tices has been predicted [29].

The interplay between the polarization degree of freedom and superflows gives
rise to the existence of topological defects that are more complicate than standard
quantized vortices. These objects are discussed in Chaps. 4 and 5.

1.4.4 Disorder

The effect of disorder on quantum systems has proven to be very rich. The original
studies were motivated by the unavoidable presence of random fluctuations when
solid state structures are fabricated. The problem of a particle moving in a random
potential whose magnitude is described by a statistical distribution has become an
important field of research. Already on the level of single particle physics, random
potentials have a dramatic impact on the behavior of quantum systems. The solu-
tions of the wave equation are qualitatively different. As it was shown by Anderson,
waves are always localized in a 1D random potential, where in 3D, there is a mo-
bility edge, i.e. an energy above which the waves can propagate through the whole
space.

In the case of ultracold atomic gases, potential fluctuations are absent, but this
makes the atomic gases an almost ideal testing bed for the precise study of the effect
of disorder on quantum systems, by applying an additional laser field with random
intensity distribution [44]. The polariton system is rather in a standard solid state
situation, where the disorder is unavoidable and often of the same order as the other
energy scales.
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In the cold atom gases, the Anderson localization of waves in a 1D random poten-
tial was clearly demonstrated by several groups. The disorder is made by applying a
laser beam on the atoms whose intensity varies randomly in space. In the presence
of such a random potential, the atoms can no longer propagate, but the density dis-
tribution at long times shows an exponential decay, characteristic for the Anderson
localized states [5, 43].

When interactions enter into play, the physical picture becomes much richer. On
the one hand the interactions screen out the disorder potential and thus delocalize
the Bose gas, on the other hand the interactions cause dephasing that is detrimental
to superfluidity. The ground state of the strictly noninteracting Bose gas is the state
where all the particles are in the lowest energy state, that is exponentially localized.
These exponentially localized states below to the so-called Lifshitz tail. In the ther-
modynamic limit where the number of particles goes to infinity, the density goes
to infinity as well. An infinitesimal amount of interactions dramatically changes the
ground state, that spreads over many of the low-lying localized states and forms
many islands, a ‘fragmented’ state.

When the interaction strength is increased, the density spreads out and starts to
cover space more and more homogeneously. Consequently, the coherence of the
Bose gas improves. On the mean field level, the defragmentation transition coin-
cides with the Bose glass to superfluid transition, where the spatial coherence decay
goes from exponential to algebraic. Interactions can thus enhance the coherence of
a disordered Bose gas. This trend is opposite to the quantum depletion of a homo-
geneous condensate that grows with the interaction strength. This effect of quantum
fluctuations starts to dominate when the mean field theory breaks down, i.e. in the
case of strong interactions when the interaction energy is of the order of the tunnel-
ing energy to go from one to the next valey in the disorder potential. The disorder
potential then amplifies the effect of quantum fluctuations due to interactions in a
way that is similar to a periodic potential, where the celebrated superfluid to Mott
insulator phase occurs. At a critical strength of the disorder potential, a phase transi-
tion to the Bose glass phase occurs, that is in analogy with the Mott insulator phase
not superfluid. The difference between the Mott insulator and Bose glass phases is
that the excitation spectrum that is gapped in the Mott insulator and not gapped in
the Bose glass phase [19].

1.4.5 Dynamics

An advantage of both the atom and polariton systems is that the time scales of their
dynamics are slower than the temporal resolution of the measurements. This allows
to study the temporal dynamics of the observables. Moreover, the external forces
acting on the systems can be varied fast with respect to the dynamics.

For cold atoms, the collective excitations that are excited when the clouds are
shaken have revealed a wealth of information on their properties. For example, the
frequency of the breathing mode gives information on the equation of state, where
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the scissor mode is very sensitive to the superfluidity of the gas [39]. Typically, the
oscillation amplitude is moderate and the oscillation frequencies can be computed
in linear response theory.

A more recent direction of the field concerns the study of dynamics far from
equilibrium. For a review, we refer to Ref. [40]. One of the pioneering experiments
on the dynamics far from equilibrium was performed in 2006 by Kinoshita et al.
They created a one-dimensional Bose gas, that is a close experimental realization of
the Lieb-Liniger gas. The atoms were put in a superposition of the momentum states
+po and it was observed that the momentum distribution remained non-Gaussian,
even after thousands of collisions. This lack of thermalization was interpreted in
terms of the integrability of the Lieb-Liniger gas. This experiment motivated a great
body of theoretical studies on questions concerning ergodicity and integrability [40].

A second field of interest concerns quantum quenches. Here a control parameter
is changed so that the system undergoes a phase transition. For classical phase tran-
sitions, this is typically the temperature; for quantum phase transitions it is rather the
coupling constant that tunes the system through the quantum critical point. It is then
predicted that excitations will be created through the so-called Kibble-Zurek (KZ)
mechanism [30, 62]. In the case of Bose-Einstein condensation, those excitations
are quantized vortices and they were observed experimentally by Weiler et al. [55].
In these experiments, the temperature was quickly lowered below the critical one
and the spontaneously formed vortices were observed. Related experiments were
performed with exciton-polaritons [35], where the density was suddenly increased
above the critical density. The subsequent buildup of the spatial coherence was mon-
itored, but no spontaneous vortices were observed, because so far no experimental
technique exists to visualize them (see Sect. 1.3.1).

With respect to dynamics, we remind that the polariton system is intrinsically in
a non-equilibrium situation when the driving compensates for the losses. One has to
resort do descriptions of the dynamics to assess the properties of the stationary state.
In most cases, the steady state of the ultracold atomic gases corresponds to a thermal
state that can be described with statistical methods. The flexibility of ultracold atoms
has however also generated proposals to study driven-dissipative dynamics with ul-
tracold atoms, where an environment is engineered so to introduce nonequilibrium
phase transitions [16] and topological states of matter [17].
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Chapter 2
Universality in Modelling Non-equilibrium
Pattern Formation in Polariton Condensates

N.G. Berloff and J. Keeling

Abstract The key to understanding the universal behaviour of systems driven away
from equilibrium lies in the common description obtained when particular micro-
scopic models are reduced to order parameter equations. Universal order param-
eter equations written for complex matter fields are widely used to describe sys-
tems as different as Bose-Einstein condensates of ultra cold atomic gases, thermal
convection, nematic liquid crystals, lasers and other nonlinear systems. Exciton-
polariton condensates recently realised in semiconductor microcavities are pattern
forming systems that lie somewhere between equilibrium Bose-Einstein conden-
sates and lasers. Because of the imperfect confinement of the photon component,
exciton-polaritons have a finite lifetime, and have to be continuously re-populated.
As photon confinement improves, the system more closely approximates an equilib-
rium system. In this chapter we review a number of universal equations which de-
scribe various regimes of the dynamics of exciton-polariton condensates: the Gross-
Pitaevskii equation, which models weakly interacting equilibrium condensates, the
complex Ginsburg-Landau equation—the universal equation that describes the be-
haviour of systems in the vicinity of a symmetry-breaking instability, and the com-
plex Swift-Hohenberg equation that in comparison with the complex Ginsburg-
Landau equation contains additional nonlocal terms responsible for spatial mode
selection. All these equations can be derived asymptotically from a generic laser
model given by Maxwell-Bloch equations. Such an universal framework allows the
unified treatment of various systems and allows one to continuously cross from one
system to another. We discuss the relevance of these equations, and their conse-
quences for pattern formation.
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2.1 Introduction

For a dissipative macroscopic system in thermal equilibrium, relaxation toward a
state of minimum free energy determines the states that the system may adopt, and
any possible pattern formation. In contrast, if a system is driven out of equilibrium
by external fluxes, then no such simple description is possible. i.e., if a system may
exchange particles and energy with multiple baths (reservoirs), then the states the
system adopts depend not only on the temperatures and chemical potentials of these
reservoirs, but also on the rate at which particles and energy are injected and lost
from the system. This can not generally be captured by relaxation to minimise a
given energy functional.

Both equilibrium and non-equilibrium systems can be characterised by mean-
field variables if field fluctuations are negligible (fluctuations can however be intro-
duced phenomenologically into the evolution equations if required). A mean-field
approach leads naturally to the concept of the order parameter, and the correspond-
ing order parameter equation. The order parameter is either a physical field or an
abstract field which acquires a non-zero value in the an ordered phase (such as a
Bose-condensed or lasing state), and vanishes in the normal state. When consider-
ing a spatially inhomogeneous system (with trapping, or inhomogeneous pumping),
the order parameter may vary in space. When considering a non-equilibrium sys-
tem, or the dynamics of a system as it approaches its equilibrium state, the order
parameter may also vary in time. In such cases, the order parameter equation de-
scribes the space and time dependence of the order parameter, accounting for the
generic features of the system’s dynamics.

One important classification of order parameter equations distinguishes whether
they describe relaxation towards an equilibrium configuration, or phase evolution
in a conservative system, or a mixture of the two [33]. For a dissipative system,
the dynamics may be described by using an energy functional F[], written in
terms of the order parameter ¥ and its spatial derivatives. The dissipative system
dynamics causes this energy functional to decay as a function of time, reaching a
minimal value at equilibrium, i.e. 3,9 = —I"9dy F. The dynamical critical behaviour
of such systems has been extensively reviewed by Hohenberg and Halperin [15].
Such an approach is appropriate for many solid-state systems, including in particular
non-equilibrium superconductivity [22]. In contrast, for isolated systems such as
ultracold atomic gases, the order parameter obeys conservative dynamics, in which
the energy functional does not change with time, and the order parameter instead
follows Hamiltonian dynamics. We will discuss the behaviour of systems that lie
between these two extremes of purely dissipative and purely conservative dynamics,
a scenario that includes the non-equilibrium polariton condensate.

The structure of the energy functional, and thus of the resulting order parame-
ter equation, is determined by the symmetries of the order parameter space. Taking
into account also the fact that near a phase transition, the characteristic lengthscale
of fluctuations diverges, it becomes possible to restrict the form of the energy func-
tional by keeping the lowest order derivative terms that possess the required symme-
tries. This makes it possible to divide systems into universality classes, depending
only on the symmetries and the nature of the dynamics [15, 17]. Identifying which
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classes various system belong to allows one to draw similarities between systems
that are very different in nature and to predict the behaviour of the new systems
that fall into previously known universality class. For instance, symmetry under
changing the phase of the order parameter restricts the energy functionals to depen-
dence on || only, and considering the lowest order form that allows for a symme-
try breaking from disordered (zero) to ordered (nonzero) state gives a potential as a
quartic polynomial in ||. Including the lowest compatible order of spatial deriva-
tive terms then gives the energy functional whose dissipative dynamics correspond
to the Ginzburg-Landau equation:

f=deV1/f~V1/f*+1/U0(,u—Uo|1//|2)2, (2.1

where w is the control parameter that forces the system to move from the normal
state || = 0 to the ordered state with |y |> = u/ Up. Equation (2.1) is expected to
be relevant to a physical system in the vicinity of the phase transition, where the
smallness of the modulus and the derivatives of the order parameter allow to keep
only the leading order terms in the expansion. Higher derivatives and other higher
order terms can be kept to allow for more complex forms of order and associated
phase transitions.

Understanding the universality class of a given system leads to understanding of
fundamentals of the behaviour of that system. The studies of vortices and vortex
dynamics in superfluid helium [14] led to prediction and experimental realisation of
vortices first in nonlinear optics [3], then in atomic Bose-Einstein condensates [10]
and finally in nonequilibrium solid-state condensates [25, 27] all due the hydrody-
namic interpretation of the order parameter equations. Spiral waves in biological
and chemical systems suggested the existence of such meandering waves in class B
lasers. Solitary waves in atomic systems all have their analogs in nonlinear optics.
Finally, many of the experiments in solid-state condensates are now motivated by
finding localised excitations similar to other system that share the same universality
class [1, 11]. Pattern formation in systems that belong to the same universality class
share similar properties. Patterns appear in open nonlinear systems when an ampli-
tude distribution of the order parameter becomes unstable above a certain threshold.
Linear instability gives rise to a so-called pure state that, if nonlinearities are weak,
can dominate the dynamics. Strong nonlinearities may mix the eigenvalues leading
to various stationary or chaotic combinations of pure states with different combina-
tions occupying either all space or different space regions.

In this chapter we shall follow the evolution from equilibrium condensates to
non-equilibrium condensates to lasers analysing their universality, emphasising sim-
ilarities and differences. We will discuss in some detail the origin of the most general
order parameter equation for the laser system, and comment on the relation of this
order parameter equation to that for cold atoms and for non-equilibrium polariton
condensation. We will then demonstrate how the various terms that may exist in the
order parameter equation affect the patterns which arise, focusing on three cases:
the case with homogeneous pumping and no trapping, the case with inhomogeneous
pumping and no trapping, and the case with an harmonic trap.
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2.1.1 Review of Physical Systems

Laser dynamics is described by coupling Maxwell equations with Shrodinger equa-
tions for N atoms confined in the cavity. Expanding the electric field in cavity modes
and keeping only the leading order mode leads to the equations that couple the am-
plitude of this mode with the collective variables that describe the polarisation and
population of the gain medium. Such coupled equations are known as Maxwell-
Bloch (MB) equations. Lasers are then classified depending on the relative order of
the loss rates for the electric field, compared to the decay rates of the gain medium
polarisation and population. The MB equations have two homogeneous stationary
solutions: nonlasing (zero order parameter) and lasing (nonzero order parameter)
solutions. The instabilities of these solutions, and therefore, pattern formation, are
described by universal order parameter equations: the complex Swift-Hohenberg
(cSH) [40] equation for lasers with a fast relaxation of population inversion and the
c¢SH equation coupled to a mean flow if the population inversion is slowly varying.
The universal equation describing the bifurcation of lasing solution takes the form
of a cSH equation coupled to a Kuramoto-Sivashinsky equation [24, 35].
Semiconductor microcavities confine photon modes, which may then interact
with electronic excitations in the semiconductor, see the Introduction. If the cavity is
resonant with the energy to create an exciton (a bound electron hole pair), and if the
exciton-photon coupling is strong enough, then new normal modes (new quasiparti-
cles) arise as hybrids of excitons and photons: polaritons. For low enough densities,
these may be considered as bosonic quasiparticles, and so can form a condensed
(coherent) state above a critical density. These are intrinsically non equilibrium sys-
tems with the steady states set by balance between pumping and losses due to the
short lifetime of polaritons. Depending on whether the emission from the microcav-
ity follows the bare photon or the lower polariton dispersion the system shows either
regular lasing or polariton condensation and in this sense crosses over continuously
from weak coupling at higher temperatures and pumping strengths to strong cou-
pling at lower temperatures and lower pumping intensities. Losses in the microcav-
ity systems can be decreased by improving the quality of dielectric Bragg mirrors.
The smaller the pumping and losses become the closer polariton condensates come
to resemble equilibrium Bose-Einstein condensates (BECs). It seems therefore that
the unified approach should be possible to describe the transition from normal lasers
to the equilibrium BECs via polariton condensates. There are some other differences
between atomic or polariton condensates and normal lasers. The operation of a pho-
ton laser is based on three ingredients: a resonator for the electromagnetic field, an
gain medium and a excitation mechanism for the gain medium. When excited, the
gain medium will undergo stimulated emission of radiation that amplifies the elec-
tromagnetic field in the cavity. In contrast, for polariton condensates there is instead
stimulated scattering within the set of polariton modes, and condensation can take
place without any inversion of the gain medium, and thus potentially having a lower
threshold [16]. A microscopic theory would be required to fully describe how all
of these aspects cross over from polariton condensation to lasing, however given
the universality of order parameter equations, one may hope to write a single order
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parameter equation which captures these different regimes by varying appropriate
parameters.

2.2 Derivation of Order Parameter Equations

In this section we show how various order parameter equations arise in descrip-
tions of lasers, and how these relate to the order parameter equations relevant to
ultracold atoms and polariton condensates. We start with a mean field (semiclas-
sical) model of a laser, the MB system of equations. In Sect. 2.2.2 we show how
the assumption of small relaxation times for atomic polarisation in comparison with
the cavity relaxation time reduces these equations to the complex Ginzburg-Landau
(cGL) equations [2] or the coupled cGL equation and the gain medium population
dynamics [41]. These models have been extensively used to model non-equilibrium
condensates [11, 19, 45, 47]. We discuss how the mode selection, in which a partic-
ular transverse mode grows fastest, is lost in the derivation of these models. Then,
in Sect. 2.2.3 we instead follow the derivation used in [31] based on the multi-scale
expansion technique to derive the cSH equations for class A and class C lasers [9].
A pedagogical review of how order parameter equations can be derived for some
simple models of lasers is given in [37], but not including the multiscale analysis
presented below. In Sect. 2.2.4 we then discuss how nonlinear interactions appear in
these equations, and discuss the interpretation of these equations as order parameter
equations for polariton condensates. If the reservoir dynamics is slow in comparison
with time evolution of the order parameter these equation should be replaced by a
coupled system explicitly modelling the reservoir dynamics. In the limit of the long
life-time of the particles the system becomes the Gross-Pitaevskii (GP) equation aka
the nonlinear Schrodinger (NLS) equation that describes atomic BECs.

2.2.1 Maxwell-Bloch Equations for a Laser

We start with the MB equations for a wide-aperture laser with an intracavity sat-
urable absorber with multiple transverse modes in the single longitudinal mode ap-
proximation [28]

oE ., .

E—lv E=P,— P, — (1+iA,)E, (2.2)
P, .

TlgW—F(l—FZAg)Pg:EG, (23)
P, .

Tl +(14+iA)P, =EA, (2.4)
G 1

rgngo—G—E(E*Pg+EP;), (2.5)
dA D, ., .

rango—A—E(E P, + EP)), (2.6)
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where the complex field E is the envelope of the electric field, the real functions
G and A are the population differences for gain and absorption media, the complex
functions P, and P, are the envelopes of polarisation for gain and absorption media.
Go and Ag are the stationary values of the population difference in the absence of
the laser field; they are proportional to the external gain and losses in the system.
The parameter D = 1,47, ufl [(T1gTe ,ué) is the relative saturability of gain and loss
media and p, and g stand for the atomic dipole momenta. The parameters 714 ¢
and 7, , are the relaxation times for atomic polarisations and population differences
scaled by the cavity relaxation time, the time ¢ is also scaled by the cavity relaxation
time. The parameters A, — A, = (wWg — 0:)TLg and Ay — A, = (g — w)T1g
are detunings between the spectral line centre and the frequency of empty cavity
mode w,. Without loss of generality we work in rotating frame such that the fast
time is eliminated via introduction of A.. The spatial coordinates are rescaled by
the width of the effective Fresnel zone.

2.2.2 Fast Reservoir Dephasing Limit

Following [12, 36, 37] we assume that 7,4, ), are small and consider the first-
order approximations to (2.2)—(2.6). Keeping up to the linear terms in these small
quantities we get
GE d(GE)/ot
Py = ; —Tlg ; 3
I+iAg (I+iAy)

2.7)

and similar for P,. The equation on E after we substitute these expressions for Py
and P, becomes

(1+ in)% —i(VP=A)e=[(1—iAgg— (1 —iAg)a—1]e, (2.8)

where
n=—2t1,80;/(1+ A}) +2t10aAa/(1+ A7), 2.9)

and where we rescaled fields as e = E/(1 + Ai),g =G/(1 + Aé) and a =
A/(1+ Ag). In writing (2.8) we kept leading order contributions in the imaginary
coefficient of time derivative (which is of order O(t1g, T14)). The real coefficient
of the time derivative we kept to O(1) in 71, and 7. The equations for scaled gain
and absorption media populations to leading order take the forms:

T = go— (1+lel)s. (2.10)
da )
raazao—(ljta’lel )a, (2.11)

where ag = Ag/(1 + A2), go = Go/(1 + Ag,) andd =D(1 + Ag)/(l +A2).
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2.2.2.1 Fast Reservoir Population Relaxation
The system of equations (2.8), (2.10), (2.11) can be simplified under more stringent

restrictions on parameters. In the limit of fast population relaxation times 7, 7, < 1
(class A and C lasers) (2.10), (2.11) give

80 ao
= ) =2 2.12
ST e T dep? 2.12)
and (2.8) becomes
. de . (I—iAg)go (1 —ilyao
1 — —iVZe= 800 —1le, 2.13
(+”7(e))at iVZe [ TP T dlel e (2.13)
where the coefficient 7 is given by
A A
n(e)z—z[ T8 Tl } (2.14)
(A+A2D)A+el)  (A+A2)(1+dle])

Close to the emission threshold |e|? <« 0, which allows a cubic approximation
for the nonlinear terms we get the complex Ginzburg-Landau equation (cGL) [2]

3
(i — n(()))a—f =—V2e+ Vet Ulefe+i[a— Blel]e, (2.15)

where weleta = go—ap—1, B =go—ao, U =dagAs—goAg .,V = goAg—apA,.

The cGL equation is not a very accurate model of a laser since it does not take
into account the selection of transverse modes. The lasers emit particular transverse
modes that depend on the length of the resonator. By making the assumption that
T1g,Tiq — 0, we assumed that the gain line is infinitely broad. In order to take
into account the tunability of lasers that allows spatial-frequency selection a more
careful derivation of the order parameter equation is required, which does not take
this limit of fast polarisation relaxation.

2.2.3 Multi-Scale Analysis of the Maxwell-Bloch Equations

In this section we derive the complex Swift-Hohenberg equation capable of se-
lecting particular transverse modes from the MB (2.2)—(2.6). A similar derivation
has been done for the MB equations taking into account gain only and assuming
that A, is small [26]. Here we shall only assume that V2 — A, is small and use
it as a small parameter, €(VZ — A,). We apply the technique of multi-scale ex-
pansion to E, P, 4, G and A looking for solutions in the form of a power series
expansion in €, and introducing two slow time scales 71 = €t, Tr = €%t, so that
0y = €op, + 628T2. Next we solve equations at equal powers of €. At the leading
order we get non-lasing solution (E, Py, Py, G, A) = (0,0,0, Go, Ap). At O(e),
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(E1, Pg1, Pa1, G1, A = (W, Goyr /(L +iAg), Aoy /(1 +iAy,),0,0), where ¥ is a
yet undetermined complex field and G and Ag are linked via 1 = Go/(1 +iAg) —
Ao/(1 +iA,). This condition specifies Gy and Ag at the threshold for laser emis-
sion as Gerit = Ag(1 + Ag)/(Aa — Ag) and Acric = Ag(1 + A2)/(Ay — Ag). We
make near-threshold assumption Go = Grit + ezlg and Ag = Agit +€21,. At O(€?)
we get

oy
o, =1V = AV + Po = P — E», (2.16)
9Py
Tlgam 3T, +(1+1Ag)Pg2—E2G01 2.17)
1 .

Tla 3;1 +iAq)Pa2 = E2 Ao, (2.18)
1

0=-Gy— E(IﬂP;l + ¥ Pg1), (2.19)
D * *

o=—A2—3(w ¥+ Y Pat). (2.20)

From these equations we get the compatibility condition
W _
(1+G0ug —Aoua)— (V —A)Y, (2.21)

and expressions for Py, Py, G2 and A;

~ 9y o~

Py =—-T1,Go— T, Py = —HaAoa—Tl, (2.22)
Goly)? AoD|y|?

- oll 7 Ay = A0 [P ’ (2.23)
14+ A2 1+ A2

where we let E; = 0 and denoted ?J_g,la =Tig1a/(1 +ilAga), 6{) = Go/(1 +
iAg) and Ag = Ao/(1 +iAs). At O(€’) we get

oy
8_Tz = g3 — Py3 — E3, (2.24)

anl anZ
T\ ==+ — | + 1+ iApPy3 = E3Go + ¥ (G2 + 1), (2.25)
T, aTq

3Pa1 8Pa2 .
w57 o7 + (1 4+iA)Ps3=E3Ao+ V(A2 +1,),  (2.26)
2 1

0G»> 1

= _Gxr— — (v P* *p 2.2
s Ty G 2(w 2 TV <2): (2.27)

A,
ra—z—Ag——(w o+ Y Pa). (2.28)

a7y
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The compatibility condition at this order after we substitute (2.22)—(2.23) gives

~ ~o Y . 0Pp . 3Pp
14 GoT e — AgTia) —r Rl O
(I+ Gotg oua)aT2 +Tig 3T, Tla o7,

lg la 62) XBD )
- - - - . (229
<1+iAg 1+ma>‘” (1+A§ 1+ A2 lvImy. (229

We use (2.21) and (2.22) in (2.29), collect the derivatives as 0, = €dr, + 623T2,
absorb € into ¢ and V2 — A, and replace e2lg (€%1,) with Go — Gerit (Ag — Acrit)
as expected. The result is the cSH equation
~ ~ Y
(I+Gotrg — AOTLa)E
(#2,Go — 71 ,A0)

(14 GoTLg — AoT1a)?

Go AoD 5
_ _ , 2.30
vy <1+A§ 1+A§>W| v (2.30)

—i(V2 =AY (V2= Aoy

where y = (Go — Gerid) /(1 +1Ag) — (Ao — Acrit) /(1 + i Ag).

We can simplify the coefficients by considering a limit Ay , K 7144 < 1, ne-
glecting O(A;a) and O(sz_g‘a Ag o) terms and keeping only the higher order terms
for real and imaginary parts of the coefficients. This leads to the following general
form of the cSH equation

oY

(L+in)— = (V2= Ay —8(V2 = A) Y
+@—iV)Y — (B+iD)|Y 1y, (2.31)
with the energy relaxation n = —2GoAgT1e + 2A0A4T 14, the coefficient of su-

perdiffusion § = tf_ gGo - riaAo, the effective pumping « = Go — Ag — 1, the ef-
fective repulsive potential V = GoA, — AgA,, the cubic damping 8 = Go — AgD
and interaction potential U = AgDA, — GoAg.

Apart from nonlinear optics and lasers the cSH equation provides a reduced de-
scription of a variety of other systems [9], such as Rayleigh-Bernard convection [8],
Couette flow [29], nematic liquid crystal [6], magnetoconvection [8] and propagat-
ing flame front [30] among others.

Similar to other universal equations the cSH equation can be derived phenomeno-
logically from general symmetry considerations. Assuming that the system is char-
acterised by an instability at k. # 0, the dominating growth rate (Lyapunov expo-
nent) can be approximated close to k. by a parabola that takes positive values in the
neighbourhood of k.. To the lowest degree of approximation this can be modelled
by

h=a—8(K> —k2)7 +i(k> —K2), (2.32)
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where « is a control parameter that takes Re()) into the positive range of values.
A linear model that has the corresponding dispersion has to be complemented with
a nonlinear term in order to prevent the infinite growth of unstable modes. The
simplest form of such nonlinearity that preserves the invariance of the field phase
is the cubic nonlinearity ||y . So the minimum equation that describes a class of
phenomena in nonlinear optics in the lowest order approximation coincides with the
c¢SH equation (2.31).

2.2.3.1 Slow Population Evolution

For wide aperture CO; and semiconductor lasers the cSH equation introduced in
the previous section is not a good model. The population dynamics is slow which
corresponds to the case of the stiff MB equations that occurs when the parameter b =
T1¢.a/Tg,q» that measures the ratio of the polarisation dephasing to the population
deenergisation rate, becomes small. The order parameter equation in this case is not
a single equation and the analysis of the previous section should be revised taking
into account smallness of b [26]. Instead of going through the multi-scale analysis
we note that we can consider gain selection separate from population evolution and
therefore rewrite (2.8), (2.10), (2.11) to include the gain selection mechanism

0
(L +in T =i (V2 = Ay~ 5(V2 = 8w — v

+[1=iAg)G — (1 —in)A]Y, (2.33)
G
Ty =Go—(1+ lvI*)G, (2.34)
A
ra%—t = Ao — (14 DIy *)A. (2.35)

One may note that in the limit that tg, 7, are small, this equation reduces to (2.31).

2.2.4 Modelling Exciton-Polariton Condensates

The cSH order parameter equation derived above from the MB equations of a laser
can also describe the polariton condensate. In this section we discuss how such
an equation can arise for the polariton system, and the meaning the various terms
would acquire in this context. We also make contact with the limiting cases which
correspond to ultracold atomic gases. For the polariton condensate we interpret ¥ in
(2.33)—(2.35) as a scalar mean field of a polariton matter-wave field operator v (r,1).
We begin by considering the basic energy functional for a polariton condensate. In
addition to the kinetic energy, and any external trapping potential, one must also
take into account repulsive interactions of polaritons. These interactions predomi-
nately come from the short ranged electron—electron exchange interactions (when



2 Universality in Modelling Pattern Formation 29

two excitons swap their electrons). This interaction gives rise to a cubic nonlinear
term —iUp|/|?¢ just as in the right-hand side of (2.31). Rather than coupling the
order parameter equation to the dynamics of the gain medium, one should instead
consider coupling of the order parameter equation to the equation describing the
density of noncondensed polaritons (reservoir excitons), G [21, 45], that may also
contain a diffusion term.

In the limit of vanishing gain and losses, the order parameter equation becomes
the NLS equation also used to model a Bose-Einstein condensation of ultracold
atoms:

oy

== iViy — iV — iUy > . (2.36)

For an ultracold atomic gas this equation can also be derived microscopically from
the Heisenberg representation of the many-body Hamiltonian using the language of
second quantisation. For the case of an ultracold atomic gas, one may also include
the dissipation that arises from collisions of condensate atoms with non condensed
thermal cloud in this equation. This process leads to energy relaxation and atom
transfer between the condensate and the thermal cloud. This can be modelled by
writing the quantum Boltzmann equation, i.e. kinetic equation, describing the dy-
namics of the populations of states [13, 32]. The net rate of atom transfer n as the
result of such collision can be represented by replacing the time derivative in (2.36)
as 9; — (14 in)0;. This parameter n depends on the temperature and the density of
the noncondensed cloud. Similar mechanism of energy relaxation exists in polari-
ton condensates and have been phenomenologically introduced into various models
of polariton condensates [46, 47]. Note that such energy relaxation follows directly
from the MB equations as indicated by (2.8), (2.31). The interactions with noncon-
densed cloud may enhance this coefficient.

In addition to the terms mentioned so far, the polariton system differs from ul-
tracold atoms, but is similar to the laser, in having also terms describing gain and
loss, i.e. pumping and decay. Including these terms, and allowing them to poten-
tially depend on wavevector, gives a modified cSH model that includes all possi-
ble previously discussed limits of lasers, nonequilibrium polariton condensates and
equilibrium atomic BECs:

d
( +in)8—l/; =i(V2= Ay — (V2= Ay — v

+[(1=iA)G — (1 —iA) ¥ —iUoly [y, (2.37)

G

Ty =Go—(1+ lv1%)G, (2.38)
0A

T = Ao — (1+ Dy *)A. (2.39)

Note that V = GA, — AA, gives rise to a reservoir potential which causes the blue-
shift in the condensate, allowing nonlinear interactions between the condensate and
reservoir can further increase such a term [42].
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Some limiting cases of (2.37)—(2.39) have been previously considered. Assum-
ing 6 — 0 and fast relaxation of reservoirs (z,, T, — 0) leads to the cGL equation
introduced for polariton condensates in [19, 45]. In the limit § — 0 and assuming
the slow relaxation of the noncondensed reservoir gives rise to the model of atom
laser [21] that has proved effective for polariton condensates [23, 34, 45, 47]. Fi-
nally, in the limit of vanishing losses and gain all systems approach the conservative
NLS equation.

2.3 Pattern Formation and Stability

Having discussed the physical origin of the order parameter equations of polariton
condensates, lasers and atomic condensates, this section now discusses the conse-
quences of the form of the order parameter equations for pattern forming and sta-
bility analysis. We discuss three cases: the entirely homogeneous case, the case in
which the pumping (gain) is localised, and the case in which there is inhomogeneity
of the condensate mode energy (i.e. trapping) as well as pumping. The homoge-
neous case is most relevant to wide aperture lasers with electrical pumping. For
polariton condensates and photon condensates with external pumping, the second
and third cases are more relevant. As one goes toward equilibrium systems (such
as atomic condensates), the role of trapping potentials to confine the condensate
becomes more important, and so the third case is most relevant in this limit.

All three cases can be written as the short population relaxation time limit
of (2.37):

o)
(1m0 = () — BP) +i(V2 = V)~ Uoly )y
+28A. V2 — 8V, (2.40)

but we will rescale the equation in different ways for the different cases.

2.3.1 Behaviour of Homogeneous Order Parameter Equation

We begin by reviewing the simplest case, of linear stability analysis about the uni-
form solution p = 1/f§ =o/(B + Upn) in (2.40). This uniform solution should be
a stable solution as long as §A, < 0. One may then consider perturbations of the
Bogoliubov-de Gennes form:

1// — (,(p_o + Mei(k-x—wt) + v*e—i(kx—w*l))e—iut (241)

where the chemical potential is uw = Upp. For this ansitz to solve (2.40) (at linear
order in u, v) requires that:

p*(Us + B = ISP+ w1 —inS* —w( +ins — o*(1 +1%), (2.42)
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where S = (k% + pUp) + i (28 A k> + 8k* + pp) (making use of the steady state
values of i and p). For an equilibrium condensate « = 8 =6 = n = 0 one can
recover the expected Bogoliubov spectrum from (2.42):

wp (k) =\/k2(2pUo + k?). (2.43)

Alternatively, in the cGL regime (6 = 0) with n = 0 one recovers the dissipative
spectrum obtained previously [44]:

weeL (k) = —ia + vV op(k)? — o2, (2.44)

which is imaginary for small k, and then above a critical k (set by wp(k) = «),
the imaginary part becomes a constant —« and a real part appears. Introducing the
remaining terms gives

wesn (k) = Tlnz [ifa+ 0 %/ —? +a(2pWo—np) +)]  (2.45)
where xx = k2[n+8Q2A.+k%)] and ¢, = k?[1 —n8(2A, +k?)]. Note that for k = 0,
one always has a mode at zero frequency, as expected given the phase symmetry
breaking present in the ordered phase. As long as n > 0, § A, > 0, the imaginary part
grows for large k, since such a case describes pumping that suppresses high energy
(momentum) modes. If n + 26 A, > 0, the modes are always decaying, but if A, <
—n/28, it becomes possible for the CSH term to make the uniform part unstable—
the exact critical A, depends in a non-trivial way on the remaining parameters.
Other instabilities may also arise due to the content of the square root term.

2.3.2 Inhomogeneous Pumping

We next consider the effect of inhomogeneous pumping, comparing the behaviour of
c¢SH equation and cGL equations when used to model polariton condensates. As the
first example we consider a small pumping spot. This geometry has been considered
extensively in experiments [7, 34, 42, 43] and theory [47]. Our starting point is to
consider (2.40) that we rewrite as

d
(1+ in(P>)8—‘f = (P(X) — ye —AP@Y )Y +i(VZ = V(P) — [y *)y

+28A. V2 — 5V (2.46)
We take
P(r) =4exp(-0.05r%),  y.=03,  1=0.075,

(2.47)
n(P)=0.025P(r),  V(P)=125exp(—0.45r%)P(r).



32 N.G. Berloff and J. Keeling

%) 5]
E E
Il =
Distance Distance
> >
1) 1)
S St
= =
= =

Distance Distance

Fig. 2.1 Comparison between solutions of the cGL and cSH equations for a single pumping spot.
Time evolution of the density measured across the pumping spot (a) for the cGL equation and
(b) cSH equation. Energy of the solutions across the pumping spot (c¢) for the cGL equation and
(d) cSH equation. The results of the numerical simulations of (2.46) with the parameters given
in (2.47)

In writing the last two expressions we recalled that 7, the energy relaxation pa-
rameter representing the rate of transfer between the noncondensed and condensed
polaritons, depends on the density of the noncondensed cloud. We also assumed
spatially dependent energy shifts coming from strong mutual repulsion [18], so that
the repulsive force coming from potential V varies with density of the condensate.
We compare two cases: the cGL equation by letting § = 0 in (2.46) and the cSH
equation with § = 0.1, A, = —1. In the case of the evolution according to the cGL
equation the system reaches the steady state, see Fig. 2.1(a) which shows on the
tomography image Fig. 2.1(c) as a single energy level. The evolution according
to the cSH equation leads to periodic oscillations of the density profile shown on
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Fig. 2.1(b). The corresponding tomography image on Fig. 2.1 shows several discrete
energy levels. Similar behaviour has been observed in some experiments, e.g. [34].

2.3.3 Inhomogeneous Energy (Trapping)

We now turn to consider the behaviour in the presence of an harmonic trap [4, 20].
We will consider how the presence of the dissipative terms in the general order
parameter equation affects the stability of known solutions of the Gross Pitaevskii
equation. We will look both at linear stability analysis (where one can gain insights
from analytical results found by considering the perturbative effect of dissipation),
as well as full numerical time evolution to find the new steady states. Some limiting
cases of these results have been presented in [5, 19].

As a starting point in the absence of dissipative terms, the Gross-Pitaevskii equa-
tion:

Wy =i(V>=r> = Uoly*)¥ (2.48)

can be approximately solved by the stationary Thomas-Fermi profile with 0,y =
—ipy and |¥|? = O(u — r2)(u — r%)/ Up. This density profile results from ne-
glecting the kinetic energy. This is valid as long as the cloud size rrr = /it is
large compared to the healing length 1/4/Ty, i.e. for »/Up > 1. This stationary
Thomas-Fermi profile gives a simple prescription for how to find the density profile
in a given potential landscape. However, as will be discussed below, the stationary
profile does not necessarily remain stable in the presence of the additional terms
in (2.40).

2.3.3.1 Stability Analysis

Starting from (2.40) with «, 8, §, n = 0, we consider in turn the effects introduced
by adding these dissipative terms. We restrict to considering A, < 0 and neglect the
superdiffusion term; after rescaling parameters, we may write:

209 —i(VE—r? — Y1)y =@ — Blv 1> +5(2A, — V)V = 2ifid, |y (2.49)

in which all dissipative terms are placed on the right hand side. We then proceed by
considering normal modes around the stationary solution in an approximation where
the quantum pressure terms can be neglected, this is done by writing the equations
in terms of density and phase and neglecting all quantum-pressure-like terms:

00+ V- (0Ve) = (& — o +270p — 25(V)*)p, (2.50)
2016+ (V9)* + 77+ p=5(2A,V* = V). @2.51)

In the absence of the dissipative terms, this problem is the two-dimensional
analog of that studied by Stringari [38, 39]. Linearising these equations using
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o — p+he i ¢ — ¢+ pe i yields normal modes with frequencies w,; =
V2n2+2(s+1)n+s and density profiles given by hypergeometric functions
h(r,0) < 2Fi(—n,n + s + 1;s + 1,r>)e"?; here n is a radial quantum num-
ber, and s is an angular quantum number. Including dissipative terms, these nor-
mal mode frequencies acquire imaginary parts, describing either growth or decay of
such fluctuations. Instability of the stationary state occurs when at least one of these
fluctuation modes grows.

To account for dissipative terms perturbatively, it is enough to take the normal
mode functions found in the absence of dissipation and find the first order frequency
shift induced by the dissipative terms. At first order in the dissipative terms, there
is no change to the density profile; however a non-zero phase gradient V¢ does
appear at first order in the dissipative terms. Vanishing of the current at the edge of
the cloud then requires j = 3&/(28 + 37).

Formally one may write the linearised form of (2.50) in the form
—iwg pXs.n(r,0) = L0 4+ C(l))xm in which £ is a matrix of differential operators
acting on the fluctuation term x = (h, ¢)7. By identifying the dissipative terms as
LD standard first order perturbation theory' then yields the first order correction:
a)ﬁlls) =i{ x,E(s)) £m X(O))/ ( x,g(s)), x,E(S)) ) where angle brackets indicate the appropriate
inner product. Following this procedure, one eventually finds

2.0 . T ~ ~ 1
(1) =— / 27rrdr|: h(?) (oc —nu— 028+ 77),U«) + Sh,(g) <Ae - EVZ) Vzhfg)
(2.52)

where the normalisation N = [ 27rdrh2; and integration is over the area of the
Thomas-Fermi profile 7> < . The hypergeometric form of the zero order functions
hﬁm allows (2.52) to be evaluated analytically. The terms proportional to § in fact
vanishes, and the remaining term can be written (making use of the above value of

W) as:

.~ 0)y2
<1>_’7 65 (M) 4~_3~} 553

Crucially, (a),(g))2 as given above grows only linearly with s. Thus, at large s the
ratio in parentheses tends to one, and so a),(lly) — iBa/(2B + 37) > 0. This positive
value means that there is an instability, even for non-zero 7. Although neither 7 nor
§ remove the instability in this perturbative approach, this does not prevent these
terms from restoring stability via higher order corrections. This needs to be checked
by numerical simulations.

!'Some care must be taken since the operator £ is not self adjoint and so the left and right eigenstates
of £ must be found separately. This is easiest if one replaces the variable ¢ by u, = 3,9, ug =
(1/r)d9¢ = (is/r)e, in this case the right eigenstates (%, u,, ug) corresponds to the right eigenstate
(h,2pu,,2puy).
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Fig. 2.2 Density plots of the polariton condensate in a harmonic trap according to the cGL equa-
tion with n =0 (a), n = 0.2 (b) and the cSH equation with § = n = 0.2 and A, = —0.5 (¢). Top
panels: luminosity is proportional to density. Red circles show the size of the pumping spot. Bottom
panels: (solid lines) density of the cross section of the condensate at various times; (dashed lines)
analytic approximations, given for (a) and (b) by (2.58), and for (c¢) by the Thomas-Fermi profile
O (u —r?)(p —r?) with ju =30/ (2f +37)

2.3.3.2 Vortex Lattices

Having seen that the stationary profile possesses an instability, we next consider
the behaviour resulting from this instability. In order to reach a final configuration,
it is necessary to restrict the pumping to a finite range. We thus take and a(r) =
@B (ro —r), @o = 8, B = 0.6, where the pumping is a flat top of the radius ro = 7.
For n = §= 0, this model has been found to evolve to a rotating vortex lattice [19].
If one also includes the superdiffusion present in the cSH model, one finds that (in
contrast to the linearised analysis) this may arrest the instability to vortex formation,
and thus lead instead to an oscillating vortex-free state. Figure 2.2 compares the
profiles that result from the numerical simulation of (2.46) for the cases of the cGL
equations for 7 = 0 (Fig. 2.2(a)), 7 = 0.2 (Fig. 2.2(b)) and the cSH equation with
i=5=0.2and A, = —0.5 (Fig. 2.2(c)).

Although the presence of 7 does not remove the instability, it does significantly
effect the resulting rotating profile. This can both be seen in the numerical results
shown in Fig. 2.2, and can also be understood by considering the § = 0 limit of
(2.50), written in a rotating frame. In a rotating frame, we consider solutions to
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(2.49) of the form:

Zi%w:(M—Ziﬂ-rx V) (2.54)

such that the time dependence has two parts: rotation with angular velocity 2 =
(0,0, £2), and phase accumulation at rate . Inserting this ansétz into (2.49) and
then making the Madelung transform, with neglect of quantum pressure terms, one
finds:

V- [p(Vo—Rx1)]=[a—Bp—ii(n+22xr-Ve)]p, (2.55)
—n+ (Vo —@x1)?+(1-2%)r? +p=0. (2.56)

These equations can be satisfied by setting V¢ =~ £2 x r which yields:
0=a— Bp —ii(n+282%r?), —pn+(1-2%)r? +p=0. (2.57)

These give two equations for p which are both satisfied if:

o= — (1 —92)r2= [~ —ﬁ(u+292r2)] (2.58)

= =

hence 2% = B/(B + 27), u = @/(B + 7). This indicates that while for 7 = 0, the
lattice rotates at £2 = 1, cancelling out the trapping potential, for finite 5, the rotation
velocity decreases, hence the density profile becomes non-flat, as seen in Fig. 2.2.

In the above, V¢ >~ € x r would require the phase profile to mimic solid body ro-
tation. For a condensate, this cannot be exactly satisfied, but can be approximately
satisfied (on a coarse grained scale) by having a density of vortices £2. Since in-
creasing 7) causes £2 to decrease, a sufficiently large value of 7 can in effect kill any
finite vortex lattice by reducing the vortex density to values so that the number of
vortices falls below one.

2.4 Conclusions

We reviewed the connection between lasers, polariton condensates and equilibrium
Bose condensates from a common framework based on order parameter equations.
The cSH equations derived for lasers should be applicable to polariton condensates
in the limit of non-negligible interactions and the stimulated scattering between po-
lariton modes. The pattern formation in the framework of the ¢SH equations has
been well-studied for lasers indicating a wealth of dynamics and phenomena. Some
of these phenomena may be achieved in polariton condensates. At the same time the
stronger nonlinearities and different external potentials (engineered or due to disor-
der) may lead to novel properties of the system exhibiting effects not seen in normal
lasers.
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Chapter 3
Bosonic Spin Transport

Alexey Kavokin

Abstract Traditional spintronics relies on the spin transport by charge carriers, such
as electrons in semiconductor crystals. This brings several complications: the Pauli
principle prevents the carriers from moving with the same speed, Coulomb repulsion
leads to rapid dephasing of electron flows. Spin-optronics is a valuable alternative
to the traditional spintronics. In spin-optronic devices the spin currents are carried
by electrically neutral bosonic quasi-particles: excitons or exciton-polaritons. They
can form highly coherent quantum liquids and carry spins over macroscopic dis-
tances. The price to pay is a finite and usually very short life-time of the bosonic
spin carriers, which breaks the flow conservation rule. In this chapter we present the
theory of exciton spin transport which may be applied to a range of systems where
remarkable observations of bosonic spin transport have been reported, in particular,
to indirect excitons in coupled GaAs/AlGaAs quantum wells and exciton polaritons
in planar microcavities. We describe the effect of spin-orbit interaction of electrons
and holes on the exciton spin, account for the Zeeman effect induced by external
magnetic fields, long range and short range exchange splittings of the exciton reso-
nances. We also consider the exciton transport in the non-linear regime and discuss
the definitions of exciton spin current, polarization current and spin conductivity.
We address the perspective of observation of dissipationless exciton spin currents
sometimes referred to as “spin superfluidity”.

3.1 Introduction

Excitons are electrically neutral and have finite lifetimes. These are two obstacles
which slowered the development of excitonic spintronics, or spin-optronics until
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the beginning of this century. How possibly one can speak about the current which
is nearly independent on the applied bias, and whose amplitude changes dramati-
cally with distance and time?—were the typical questions of the sceptics of exciton-
based spintronics. While electrons and holes have been considered as perfectly valid
spin carriers, and exotic effects like spin Hall effect [1] have been enthusiastically
searched for, the spin currents carried by excitons and exciton-polaritons over tens
or even hundreds of micrometers have been studied very poorly by the scientific
community. There existed a huge misbalance of theoretical works on fermionic and
bosonic spin transport. Fortunately, this changes now. More and more researchers in-
vest themselves to investigations of bosonic spin current problems, and this research
is paid for by beautiful recent discoveries. Several chapters of this volume address
in detail the recent progress in optical studies of spin-dependent effects in excitonic
systems. To summarize tens of publications in one sentence: bosonic systems bring
new quantum coherent effects to the physics of spin transport. Stimulation and am-
plification of spin currents as well as “spin superfluidity” are possible in exciton and
exciton-polariton Bose gases. The goal of this chapter is to define what the exciton
spin, magnetization and polarization currents are, and to explain how they can be
described within the most frequently used spin density matrix approach and mean-
field approximation. We consider a very specific system, namely a planar zinc-blend
semiconductor structure containing quantum wells, where excitons can be formed.
This choice is dictated by recent experimental discoveries in GaAs/AlGaAs based
coupled quantum wells or microcavities. However, we do not address any partic-
ular experiment. Instead, we aim at presenting a general approach which may be
suitable for both exciton and exciton polariton gases in quantum wells and micro-
cavities containing quantum wells. We limit the scope of this chapter to heavy-hole
excitons, however, our approach can be easily extended to light-hole excitons or ex-
citons in quantum wells of a different symmetry. We do not speak here about the
recent experimental data and possible applications of the formalism presented here,
as this would bring us too far and because these subjects have been addressed in
detail in other chapters of this volume. On the other hand, we are confident that the
approach formulated here is suitable for description of a great variety of excitonic
spin effects in quantum wells and planar microcavities.

3.2 Spin of Propagating Excitons

In zinc-blend semiconductor quantum wells (e.g. in the most popular GaAs/AlGaAs
system), the lowest energy exciton states are formed by electrons with spin projec-
tions to the structure axis of +1/2 and —1/2 and heavy holes whose quasi-spin (sum
of spin or orbital momentum) projection to the structure axis is +3/2 or —3/2. Con-
sequently, the exciton spin defined as a sum of electron spin and heavy hole quasi-
spin may have one of four projections to the structure axis: —2, —1, +1, 42, see,
e.g. [2]. These states are usually nearly degenerate, while there may be some split-
ting between them due to the short and long-range exchange interactions. Here we
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derive the exciton Hamiltonian in the basis of —2, —1, 41, +2 states, accounting
for the spin-orbit interaction (Dresselhaus and Rashba effects) [3], long- and short-
range exchange interactions [4] and Zeeman effect, but neglecting exciton-exciton
interactions, which will be discussed in the next section. We consider excitons prop-
agating ballistically in plane of a quantum well. We shall characterize them by a
fixed wave-vector K, .

In order to build the 4 x 4 matrix Hamiltonian for excitons, we start with simpler
2 x 2 Hamiltonians describing the spin-orbit and Zeeman effects for electrons and
holes.

The electron Hamiltonian in the basis of (+1/2, —1/2) spin states writes:

1
H, = lge(ke,xax - ke,yay) - EgeMBBGp 3.D

Here g, is the electron g-factor, up is the Bohr magneton, B is a magnetic field
normal to the quantum well plane, 8, is the Dresselhaus constant describing spin-
orbit interactions of electrons, the Pauli matrices are

{01 10 =i {1 0
=11 o0 T o0 %70 -1
Hence

_ _%ge'u’BB ﬂe(ke,x"‘ike,y) . —%ge,u,BB ﬂekegiﬁﬁ -
‘ Be(ke,x — ike,y) %geMBB ,Bekee_i(p %geMBB

Here ¢ is the angle between the electron wavevector ke and the chosen x-axis. The
exciton Hamiltonian needs to be written in the basis of (41, —1, +2, —2) exciton
states, which correspond to (—1/2, +1/2, +1/2, —1/2) electron states. The electron
spin-flip couples +1 and +2 states and —1 and —2 states. For each of these two
couples of states we apply the Hamiltonian (3.2), which results in the following
electronic contribution to the 4 x 4 exciton Hamiltonian:

8eBB/2 0 keﬂeeiiw 0
— 0 - B/2 0 k.B.e'?
H = ' geltpB/ eBee (3.3)
kepee'? 0 —8eBB/2 0
0 keBee™ 0 gempB/2

Note that another possible spin-orbit contribution to the Hamiltonian may came
from the Rashba effect which takes place in biased quantum wells. The Rashba term
to be added in (3.1) writes . (0xke,y — Oyke x), Where a, is a constant proportional
to the applied electric field.

The similar reasoning applies to the heavy hole contribution to the Hamiltonian:
The hole Hamiltonian written in the basis of (+3/2, —3/2) states is

1
Hp, = By (kp xox + kn,yoy) — Egh,uBBUz.
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Here gy, is the heavy hole g-factor, i p is the Bohr magneton, B is a magnetic field,
B is the Dresselhaus constant for heavy holes [5].
Hence

H, —38nip B Buknx —ikny) —38nuBB  Bukne™'? 3.4)
h = . _ ' a
,Bh(kh,x +lkh,y) %gh,uBB ,Bhkhé’“p %thBB

Here ¢ is the angle between the hole wavevector ky, and the chosen x-axis. The ex-
citon Hamiltonian is written in the basis of (+1, —1, +2, —2) exciton states, which
correspond to (+3/2, —3/2, +3/2, —3/2) hole states. The hole spin-flip couples
+1 and —2 states and —1 and 42 states. For each of these two couples of states we
apply the Hamiltonian (3.4), which results in the following hole contribution to the
4 x 4 exciton Hamiltonian:

—8hipB/2 0 0 ki Bne™"¢
— 0 gnB/2  knpe'? 0
= o (3.5)
0 knBre —gnitpB/2 0
knBne'? 0 0 gnpB/2

For the translational motion of an exciton as a whole particle the exciton momentum
is given by Py = (m, + mpp)vey, Where m, and myy, are in-plane effective masses
of an electron and of a heavy hole, respectively, v,y is the exciton speed. Having in
mind that the exciton translational momentum is a sum of electron and hole transla-
tional momenta given by P, j, = m, pnve i, Ve n being the electron (hole) speed, one
can easily see that v = v, = v,x. Having in mind that P,, = hky, P,y = ik, p
we have k., =k + ke, ke = %km, kp = mer:‘hrl;lhh kex.

Besides the contributions from electron and hole spin-orbit interactions and Zee-
man splitting, there may be a purely excitonic contribution to the Hamiltonian,
which is composed from the Hamiltonian for bright excitons written in the basis

(+1, —1):

E )
H, =Epl — Spo = |:_<;)b Ebb:|’ (3.6)

and the Hamiltonian for dark excitons written in the basis (+2, —2):

Eq -8
Hy=Eql — 840, = [_;d Edd} , (3.7)

where [ is the identity matrix. The terms with &, and &, describe the splittings of
bright and dark states polarized along x and y axes in the plane of the structure
due to the long-range exchange interaction. Ep—Ey is the splitting between bright
(41 and —1) and dark (42 and —2) exciton states due to the short range exchange
interaction. In microcavities, this splitting is additionally enhanced due to the vac-
uum field Rabi splitting of exciton-polariton modes formed by bright excitons and
a confined optical mode of the cavity, see, e.g. [6].
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Note that (3.6), (3.7) can be simply obtained from the exciton Hamiltonians writ-
ten in the basis of (X, Y) polarizations. E.g. for the bright excitons:

| Ep—0p 0
HXY—[ 0 Eb+8b:|’

Hbzc_leyC,

(3.8)

_ it 1 Al . . .
where C = ﬁ[i — ], c™' = 7 [1 ; ] are the transformation matrices from linear
to circular basis and vice versa, see e.g. [7]. The same reasoning applies to the dark
excitons as well.

The sum of Hamiltonians (3.7), (3.8) in the 4 x 4 basis writes:

E, =6 0 0
| = Ep 0 0
Hy = 0 0 E; -8, | 3.9)

0 0 -84 Ey4

Let us consider the excitons propagating with a wavevector kex. We shall describe
them by a spin density matrix p = |¥)(¥|, where ¥ = (W41, ¥_1, Y42, ¥_») is
the exciton wave-function projected to four spin states. The elements of this density
matrix p;; are dependent on the distance from the excitation spot r = vt and the
polar angle ¢. The elements of the upper left quarter of the density matrix are linked
to the intensity of light emitted by bright exciton states I and to the components of
the Stokes vector Sy, Sy and S, of the emitted light:

I ‘ . I
p11=§+Sz, P12 =38y —iSy, 021 =8y +iSy, P22:E_Sz-

(3.10)

These expressions can be summarized using the Pauli matrices as [g; ﬁ;i] = %I +

So, where [ is the identity matrix.

The components of the Stokes vector are directly proportional to the polarization
degree of light measured in XY axes, diagonal axes and the circular basis. The cir-
cular polarization degree of light emitted by propagating excitons can be obtained as

28

pC:TZ = (p11 — p22)/(p11 + P22), (3.11)

the linear polarization degree measured in XY-axes can be found from
28
pr=—r= (p12 + p21) /(P11 + p22), (3.12)

the linear polarization degree measured in the diagonal axes (also referred to as a
diagonal polarization degree) is given by
28,

pa=— = i(p12 — p21)/(p11 + P22). (3.13)
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The dynamics of this density matrix is given by the quantum Liouville equation:

dp
inll —

where the Hamiltonian is composed from the electron, hole and exciton contribu-
tions given by (3.3), (3.5), (3.9) as follows:

Ep—(gh—8e)pB/2 —3 keBee™? knpre='¢
= 8 Ep+(gn—8e)ipB/2 knpne'® keBee'?
keﬁee”p khﬁheil(p Edf(gh +ge)l/LBB/2 78(1
knBre'? kePee™? —84 Eq+(gn+ge)pB/2
(3.15)

Till now we neglected all relaxation or scattering processes in the system. The
commonly used way to account for these processes is introduction of a phenomeno-
logical Lindblad superoperator (see, e.g. Ref. [6, Chap. 3]) to the Liouville equation:

~

dp  ~ .
iﬁd—f=[H,p]—L(p>, (3.16)

where the Lindblad superoperator can be introduced as

e/t P12/t P13/Tc P14/ Tc

A | P21/T P22/Te P23/Te P24/ Te
L =ih 3.17
(0) 031/Tc  p32/Tc  P33/Ta  P34/Td 3-17)
P41/t Pa2/Te  P43/Td Pa4/Td

where 7, is the bright exciton lifetime, t; is the dark exciton lifetime, 7. is the
characteristic time of decoherence processes between dark and bright excitons.

The formalism described in this section has been successfully applied for de-
scription of the spin transport in gases of cold excitons in coupled GaAs/AlGaAs
quantum wells [8].

3.3 Non-linear Spin Dynamics of Propagating Excitons
and Exciton-Polaritons

In the previous section we operated with a spin density matrix which is very con-
venient for description of partially coherent and partially polarized exciton gases.
The quantum Liouville equation (3.16) is a very efficient tool for description of
linear in exciton density effects. On the other hand, one cannot straightforwardly in-
corporate the non-linear interaction terms in this equation. Treatment of non-linear
effects in a partially coherent system is a non-trivial task. Much simpler is treatment
of non-linear effects is a perfectly coherent system, such as a condensate or super-
fluid of excitons or exciton-polaritons. In this case, the ensemble of excitons can be
described by a single 4-component wave function ¥ = (W1, W_1, ¥y, ¥_»). The
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linear dynamics of this wave-function for ballistically propagating excitons having
a wavevector k., is described by the Schrodinger equation

d ~
ih—|¥)=H|¥), 3.18
ih|¥)=H|¥) (3.18)

where the Hamiltonian is the same as in (3.14). Note that this equation represents
a set of four coupled linear differential equations for four exciton spin components.
Non-linear effects lead to scattering of excitons in real and reciprocal space. From
now on we shall consider the exciton spin dynamics in the real space, so that the
wave function ¥ will become coordinate-dependent and will not be restricted to
one single k... The non-linear interaction terms for multicomponent exciton gases
are introduced and discussed in detail in the chapter “Mean-field description of mul-
ticomponent exciton-polariton superfluid” by Y.G. Rubo. Here we expand (3.18) by
introducing the kinetic energy (to describe the real space dynamics) and the in-
teraction terms. This results is a system of four non-linear Schrodinger or Gross-
Pitaevskii equations:

owy WV - - ,
ih 3t = _2m Uiy + Belky — lky)lp+2 + Brky — lky)lp—Z + a1 ¥ " P4
ex

+ |V PWe a3 | WP Wi+ aa| WP+ W W W,

L2 m2v? A A 5
ih 5 = o U+ Belky +iky)W 2+ Bplky +iky)Wio + a1 [W_ 1"
ex

oVt PVt + sV PVt + aa [ Wi PPy + WO W,

0¥ h*v? A A . 5
ih 5 = om Wio + Belky +iky) Wiy + Bulky — iky)W_1 +a1|Wi2| "W
ex

+ | WP Wi + a3 | Wi W + aa| W P Wi + WU LW W,

LW, h2v? A a A 5
ih =-— W_p + Belky —iky)W_y + Bk +iky) Wiy + 1| WP
ot 2M ey

+ (¥2|l1/+2|211/,2 + a3|W_q |2l1/,2 + a4|¥iq |2'~I’72 + WW:2W+1 .
(3.19)

Here ky y = —iVy y, mex = me + mpy,. To make this system more compact we
have omitted the terms describing exchange induced exciton splittings given by
the Hamiltonian (3.9). We do not discuss here the nature and value of the in-
teraction constants oj 234 and W. In the system of indirect excitons in coupled
GaAs/AlGaAs quantum wells, a zeroth approximation, one can take o] = ap =
a3 = 4. Note also that in microcavities, where the lower exciton-polariton mode
is strongly decoupled from dark excitons, the dark exciton states may be almost
empty at low temperatures. If this is the case, the spin dynamics of the polariton
condensate is given by the first two of four equations (3.19) with a3 4 = W = 0.
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The remaining constants o » have been widely discussed in literature. We address
the interested reader to the experimental and theoretical study of these constants by
Vladimirova et al. [9].

The Gross-Pitaevskii (GP) equations are widely used for description of coherent
propagation of exciton-polaritons in microcavities, see, e.g. [10]. They allow for
studying of interesting topology effects including quantum vortices, half-quantum
vortices, dark and bright solitons etc., see, e.g. [11]. The polarization of light emitted
by the polariton condensate can be obtained as

28

po =" = ([ | = w2, /(9| + |w2))), (3.20)
28

pr= "7 =2Re(W W) /(|92 + [W2)). 3.21)
28,

pa === =2Im( )/ (|93 |+ |92, ]). (3.22)

These expressions easily follow from (3.11)—(3.13) and definition of the density
matrix.

It should be noted that GP equations as a theoretical tool are not universal. They
fail to describe a wide range of phenomena linked with decoherence processes. To
start with (3.19) are written for excitons (exciton-polaritons) with an infinite life-
time, which is never the case in real systems. Many authors introduce pumping and
radiative decay terms in (3.19) phenomenologically, which strongly affects the final
result. Experimentally, pumping of the polariton condensate may be either reso-
nant (pumping laser energy matching the energy of the condensate) or non-resonant
(the laser populates a reservoir of incoherent states which feeds the condensate). In
both cases, it is difficult to introduce the pumping terms in (3.19) without violating
the common sense in limiting particular cases. The crucial question is: should the
pumping term containing the exciton wave-function be local or not? Another impor-
tant issue is in which extent the features of superfluidity (including suppression of
disorder scattering, vortices and solitons) obtained using GP equation may serve as
a proof that exciton-polariton liquids are superfluid. Answering this question, one
should bear in mind that writing GP equations one assumes that the system is fully
coherent. Therefore, this equation is unsuitable for description of a phase transition
towards superfluidity, which manifests itself as a build-up of spatial coherence. The
density matrix formalism accounting for non-linearities would be better adapted for
description of such a phase transition. On the other hand, if the superfluid is already
formed, GP equation is suitable for description of superfluid currents, including the
spin currents.

3.4 Exciton Spin Currents

Consider an exciton state characterized by a wavevector k., and described by the
density matrix p. The elements of this matrix p11, 022, 033, p44 are the densities of
+1, —1, +2 and —2 excitons, respectively. The current of each of these densities is
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given by a product of the exciton speed and the corresponding density:

pii- (3.23)

with j =1,2,3,4 for o« = +1, —1, 42, —2, respectively. Experimentally, one can
measure the magnetization current associated with the exciton density current. The
magnetization carried by propagating excitons can be found as

M, = —% [(gn — 2)(p11 — p2) + (81 + 80) (033 — pas)]. (3.24)

This expression is obtained having in mind that an electron with a spin projection
to z-axis of +1/2 contributes to magnetization projection to z-axis :Flz‘—hB ge, and a
heavy hole with the spin projection of +3/2 contributes to magnetization :F’é—g gh.
Hence, the magnetization (spin) current produced by the excitons having a wave-
vector K., will be given by

MBkex
2Mex

+ (gn + 8e) (033 (Kex) — pas(Kex)) |- (3.25)

The total magnetization current in the exciton gas can be obtained by integration
over all wave-vectors:

Im(Kex) = — [(gh - ge)(pll(kex) - p22(kex))

. S .
=5 [ K (e, (3.26)
Here S is the area of the sample. This current may be detected e.g. by spatially
resolved Kerr rotation spectroscopy.

3.4.1 Spin Currents in Exciton Condensates

The approach formulated above can be extended to description of spin currents in
coherent exciton (exciton-polariton) condensates. In this case we need to replace the
momentum 4 K., by a momentum operator p = —i AV and the diagonal components
of the density matrix i1, p22. p33. pas by the exciton densities [¥2,[, [¥2 ], &2, ],
|lI/E2 |, respectively, in the expressions (3.24), (3.26). In this case the density currents
become:

h
WEVYY,, (3.27)
Mex

Joo=—i
and the magnetization current can be expressed as:

ot _ LMB
M=

[(gh - ge)(‘I/IlVlIJ_H - lI/leI/_l)

Mex

+ (gh + ) (¥, VWyy — WF, VUL, (3.28)
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One can also introduce the spin conductivity tensor linking the components of the
density current (3.27) with the gradient of potential acting upon each of the exciton
spin components:

jot = 0LV Up m, (3.29)

where [ = x, y and m = x, y indicate the in-plane projections of the current and
potential gradient, respectively, 8 = +1, —1, 42, —2. One can see that oclx"’"é is a 64
component tensor in a general 2D case. The origin of the potential gradient VUg ;,
needs to be discussed separately. As excitons are electrically neutral, the external
electric field does not create a coordinate-dependent potential for them. VUg ,, can
originate from the gradient of the quantum well width, gradient of the barrier height,
or it can be induced by excitons themselves due to e.g. dipole-dipole repulsion.

3.4.2 Polarization Currents

Spatially resolved measurements of the polarization degrees p., p; and pg of light
emitted by excitons give access to the exciton polarization currents. In terms of the
density matrix formalism, they can be defined as products of the exciton speed and
the corresponding polarization degree:

fikex _ fikex

Je(Kex) = Pe = (p11 — p22)/ (P11 + p22), (3.30)
Mex Mex
. ﬁkex ﬁke}f
Ji(Kex) = o= (p12 + P21)/ (P11 + P22, (3.31)
ex ex
. hkg_x . ﬁkex
Ja(Kex) = Pd =1 (p12 — p21) /(P11 + p22)- (3.32)
ex ex

The total polarization currents can be obtained integrating the expressions (3.30)—
(3.32) over the reciprocal space:

. S ]
Jtcéiyd =- 27)?2 /dkex.]c.l,d(kex)~ (3.33)

The polarization currents in a polariton condensate can be found from the GP equa-
tions (3.19) as

i h
jcz_’; (W Vg —w vl /(w2 ]+ [e2). (3.34)
ex
ih
ex
h
ja=—— (W5 VOt =05 V) /(W3] + 92 ]) (3.36)

Mex
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It is important to note that if the spin density currents (3.26), (3.27) can hardly be
constant in excitonic systems, where the lifetime of each spin carrier is limited, the
sum of polarization currents (3.34)—(3.36) is expected to be constant in the so-called
“spin superfluidity” regime where all scattering processes causing depolarization are
suppressed.

3.5 Conclusions

Bosonic spin transport is a young and promising area of solid state physics. The
theories of mesoscopic transport of charge carriers and quantum transport in one-
dimensional channels are among the most interesting chapters of modern physics.
Substitution of fermions by bosons and of a scalar electric charge by a spin vec-
tor cannot be formally done in these theories. Basically, all mesoscopic and quan-
tum transport effects need to be reconsidered if we speak about electrically neutral
bosonic spin carriers like excitons or exciton-polaritons. Moreover, due to the finite
life time of the carriers, the most basic in conventional transport theory requirements
of charge and flux conservation cannot be fulfilled in the excitonic systems. This is
why the area of “spin-optronics” essentially remains ferra incognita. Experimen-
tally, it is much easier to study the steady state of exciton or polariton condensates
than their motion. Nevertheless, recent years are manifested by numbers of publica-
tions on the bosonic transport in exciton and exciton-polariton systems. The rapid
progress in structure growth and experimental methods allows us to hope that very
soon the new interesting bosonic spin transport effects will be discovered.
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Chapter 4
Mean-Field Description of Multicomponent
Exciton-Polariton Superfluids

Y.G. Rubo

Abstract This is a review of spin-dependent (polarization) properties of mul-
ticomponent exciton-polariton condensates in conditions when quasi-equilibrium
mean-field Gross-Pitaevskii description can be applied. Mainly two-component
(spin states £1) polariton condensates are addressed, but some properties of four-
component exciton condensates, having both the bright (spin £1) and the dark (spin
+2) components, are discussed. Change of polarization state of the condensate and
phase transitions in applied Zeeman field are described. The properties of fractional
vortices are given, in particular, I present recent results on the warping of the field
around half-vortices in the presence of longitudinal-transverse splitting of bare po-
lariton bands, and discuss the geometrical features of warped half-vortices (in the
framework of the lemon, monstar, and star classification).

4.1 The Gross-Pitaevskii Equation

Currently, most theoretical descriptions of exciton-polariton condensates observed
[1-5] in incoherently excited semiconductor microcavities are based on the Gross-
Pitaevskii equation (GPE). When the polarization of the condensate is of interest,
this equation can be generically written as

- . SH

th—y(r,t) = /H 4.1)
at 4 51// (

where the order parameter 1Z (7, 1) of the condensate is a complex 2D vector function

of the 2D position in the microcavity plane 7 and time ¢. Alternatively, one can
expand v on the circular polarization basis

V1, (4.2)
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and obtain the coupled GPEs for two circular components 141 (see (4.32a), (4.32b)
in Sect. 4.4).

GPE (4.1) is used in two main flavors, strongly non-equilibrium GPE and quasi-
equilibrium GPE, that treat the energy relaxation in two extreme ways. It is com-
pletely neglected in the former, and it is considered to be essential in the latter. Math-
ematically, these approaches differ in Hamiltonian density ’H(lz, IZ*)Z it is complex
in the former and it is real in the latter. Each approach has its benefits and draw-
backs.

The imaginary part of the Hamiltonian for non-equilibrium GPE [6-9] is given
by the difference of income and escape rates of exciton-polaritons into and out
of the condensate. While the escape rate is given by the reciprocal radiative life-
time of exciton-polaritons and is independent of the particle density, the income
rate is a non-linear function of it. The nonlinearity is essential to stabilize the so-
Iution and it appears due to the depletion of an incoherently pumped reservoir.
This approach resulted to be quite successful in modeling the experimental data
on condensate density profiles for spatially nonuniform exciton-polariton conden-
sates. On the other hand, it cannot describe the spontaneous formation of linear
polarization of the condensate—the fact that is quite unfortunate since the observa-
tion of spontaneous linear polarization is one of the direct experimental evidences
of Bose-Einstein condensation of exciton-polaritons [1, 2]. A workaround is to add
the Landau-Khalatnikov relaxation into (4.1). But this relaxation is rather artificial
because it changes the number of particles in the condensate.

In what follows, we consider the opposite limit assuming fast relaxation of
exciton-polaritons, so that they reach quasi-equilibrium, even with the tempera-
ture that can be different from the lattice one. The balance of income and out-
come rates produces some steady-state concentration of exciton-polaritons, that
can be defined, as usual, by introducing the chemical potential w. The coherent
fraction of condensed particles can be described by the traditional GPE with real

HW o),
H=T —pun+Hin+H. (4.3)

Here 7 is the density of the kinetic energy, Hin; describes interaction between the
particles, H’ stands for some possible perturbations, and n = 1/7* . 1/7 is the exciton-
polariton density.

The kinetic energy of exciton-polaritons in planar microcavities depends on the
orientation of vector 1/7 with respect to the direction of motion. Near the bottom of
lower polariton branch one has

hz hd - 2 hz = b d 2
T=—|V-Y|"+—|V x| (4.4a)
2my 2my
B2 a1 > R0 1|2
_ W9y n V-1 oYy 9y ’ (4.4b)
my| dz* 0z m;| 0z* 0z
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where m; and m; are the longitudinal and transverse effective masses of polaritons,
and the complex derivatives

a 1 ( a .0 ) a 1 < a .0 )

L (=i L= (= +in), @.5)

dz 2\ ox 8y az* 2\ 0x ay
are used. The vector 1Z is proportional to the in-plane electric field vector of exciton-
polariton mode. According to (4. 4a) (4 4b) the frequency of transverse electric (TE)
mode with in-plane wave vector kL w is hk?/2m;, while for the transverse mag-
netic (TM) mode with k||1ﬂ the frequency is k> /2m;. (The same bare frequencies
of both modes at k = 0 are removed from (4.4a), (4.4b).)

The polariton-polariton interaction is also anisotropic: it depends on mutual ori-

entation of w and w* One can construct two quartic invariants from these two
vectors and Hiy is given by

1 1
Him = 5 (Up = Un) (5" V) + SULIY <P (4.6a)

—1U(|w 1+ 1Y) + (U — 20 21y 4.6b
= 5 Uo(I¥+1 Y1)+ (Vo DI l7 [yl (4.6b)
It is seen that Uy is the amplitude of interaction of polaritons with the same circu-
lar polarization (with the same spin), and Uy — 2U] is the amplitude of interaction
of polaritons with opposite circular polarizations (opposite spins). These quantities
are denoted by o and o in some papers. The constant Uy is positive and can be
estimated as ~ Sba%, where &, is the exciton binding energy and ap is the exciton
Bohr radius. The interaction of exciton-polaritons with opposite spins depends sub-
stantially on the electron-electron and hole-hole exchange scattering and is defined
by the electron and hole confinement within quantum wells and by the number of
quantum wells in the microcavity. As a result, the value of Uj is sensitive to the
microcavity geometry.

To end this section it is important to mention the limitations of any GPE in appli-
cation to the condensates of exciton-polaritons in microcavities, or to condensates
of any other bosonic excitations that have a finite radiative life-time. Due to inter-
ference of light emitted from different parts of condensate there appears dissipative
long-range coupling in the system. Most importantly, the escape rate becomes de-
pendent on the symmetry of the condensate wave-function and this favors the forma-
tion of particular long-living many-particle states, or weak-lasing states [10]. These
effects cannot be properly treated in the framework of Gross-Pitaevskii equation
4.1).

4.2 Polarization and Effects of Zeeman Field

The interaction energy (4.6a), (4.6b) of the polariton condensate is polarization de-
pendent. While the first term in (4.6a) does not depend on polarization and is simply



54 Y.G. Rubo

proportional to the square of the polariton concentration n = (12/*- J), the second
term in (4.6a) is sensitive to the degree of the circular polarization of the conden-
sate. For Uy > 0 the interaction energy is minimized when the second term in (4.6a)
is annulated, which is achieved for polarization satisfying w* X w 0, i.e., for the
linear polarization. On the other hand, in the case U; < 0 the minimum is reached
for the circular polarization of the condensate, when 1}* X 1} = *in.

So, there is qualitative change in the ground state of the condensate when U
changes sign [11].

(i) Uy > 0. The ground state is characterized by two angles, the total phase angle 6
and the polarization angle 1. These angles are defined from the Descartes com-
ponents of the order parameter ¥, = /ne'’ cosn and Yy = J/ne? sinn. The
circular components are then 11 = mei(ejF”). There are two broken con-
tinuous symmetries and, consequently, the excitation spectrum consists of two
Bogoliubov branches. The sound velocities for these branches at m; = m; = m*
are vy = o/u/m* and v = /nU;/m*, where u = (Uy — Uy)n is the chemical
potential. The presence of TE-TM splitting leads to the anisotropy of sound
velocities (see [11] for details).

(i) Uj < 0. In this case one of the circular components is zero and the other is
J/ne'?. Since there is only one broken continuous symmetry, the excitation
spectrum consists of only one Bogoliubov branch, and the other branch is gaped
parabolic with the gap 2|Uj|n. The chemical potential is 4 = Upn in this do-
main, so that the sound velocity for the Bogoliubov excitations is /u/m*.

The mean-field theory predicts an arbitrary polarization for U; = 0 since in this
case the energy of the condensate is polarization independent. In reality, fluctuations
destroy the order in this case at any finite temperature 7. It can be already under-
stood from the excitation spectrum, because, apart from the Bogoliubov branch,
there is the gapless parabolic branch with dispersion >k?/2m* and the condensate
would evaporate completely due to excitation of these quasiparticles.! One can also
map this case to the O(4) nonlinear sigma model, where the order is proven to be
absent for T > 0 [14].

Note the similarity between the two-component condensates of exciton-polaritons
and three-component condensates of spin-1 cold atoms [12, 13]. Due to the 3D ro-
tational symmetry, there are also only two interaction constants in the latter case.
These constants are defined by the cross-sections of scattering of two atoms with
the total spin 0 and 2.” Two different atomic condensates can also be found de-
pending on the sign of the scattering length with the total spin 2: ferromagnetic and
anti-ferromagnetic (or polar), which are analogs of circularly and linearly polarized
exciton-polariton condensates, respectively.

IThe concentration of quasiparticles with the energy e(k) is given by f (2n)*2[exp{e(k) /T} —
117'd?k and the integral diverges logarithmically for small k when € (k) o k2.

2The case of the total spin 1 is irrelevant since the orbital wave function of colliding bosons is
antisymmetric and it cannot be realized within the condensate.
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It is the first case, U1 > 0, that is realized in the exciton-polariton condensates
observed so far. The linearly polarized condensate can be seen as composition of
equal numbers mutually coherent spin-up and spin-down polaritons. Therefore, it is
interesting to study the effect of applied magnetic field to this state [15]. Considering
only weak fields, when the magnetic length is much greater than the exciton Bohr
radius, one can study only the effects of Zeeman field, that is described by adding

H =2(1y_11> = [y111%) 4.7)

into Hamiltonian (4.3). Here the Zeeman field §2 is given by the half of the Zeeman
splitting energy for a single polariton.

To find the order parameter for the uniform condensate in the presence of
Zeeman field it is convenient to introduce the concentrations of the components
nel = |4 |2 satisfying ny1 +n_1 = n. Assuming both n1 and n_; to be nonzero,
one can take variations of the Hamiltonian

Hine + H — un

1
=5mmﬂ+mn%4mMmA—m+9mﬂ—w—9m4 (4.8)

oVer n4] to obtain
—2Uing) = (u — Upn F £2). 4.9)

The sum and the difference of (4.9) results in

1 2
uw= Uy —Upn, ni1=§<n:i:7>, for |2]| < 2. =nU,j. 4.10)
1

For higher Zeeman fields, |£2| > §2., one of the components becomes empty, n_1
for 2 > §2. and n4 for 2 < —§2., and in this case u = Upn — |£2].

Remarkably, for subcritical fields the chemical potential does not change at
all, so that there is no change in the position of the emission line. The only ef-
fect of applied Zeeman field is the change of circular polarization degree o, =
(ny1 —n_1)/(ny1 +n_1) = 2 /nUj, that increases linearly with the field. The el-
liptical polarization of the condensate for subcritical fields is characterized by two
angles, and in the same way as for the linearly polarized condensate, there are two
Goldstone modes; only the sound velocities change with the Zeeman field. This im-
plies the full suppression of the Zeeman splitting by polariton-polariton interactions
within the condensate [15]. Note also that for subcritical fields there are two phase
transitions in the left and in the right circular component of the condensate, respec-
tively [16]. The Zeeman splitting (the gap in the exciton spectrum) appears only for
supercritical fields |£2| > 2. where the condensate becomes circularly polarized.
This effect, observed experimentally by Larionov et al. [17], allows to measure the
spin-dependent interaction constant Uj.
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4.3 Vortices in Exciton-Polariton Condensates

Vortices play a key role in various physical phenomena both on macroscopic and
microscopic level. While the vortex formation is very important for description of
different effects in fluid mechanics, in particular, in aerodynamics and turbulent
flow motion, the understanding of properties of quantized vortices is crucial for
description of phase transitions in condensed matter. The well known examples are
the phase transitions in type II superconductors in applied magnetic field, which
are related to the formation and melting of vortex lattices [18], and the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition [19-22].

As it was discussed above, the exciton-polariton condensates possess two-
component order parameter (4.2) and these condensates allow half-quantum vortices
(half-vortices) [23]. Moreover, the half-vortices are basic topological excitations in
this case (see [24] for a review on the properties of half-quantum vortices). In spite
of recent observation of both integer [25] and half-integer [26] vortices in exciton-
polariton condensates, the presence of half-vortices was recently questioned [27]
for the case of two-band dispersion with TE-TM splitting of polariton band given
by (4.4a), (4.4b). In this section I present the details on how the vortex solutions
should be found in this case (a short summary of this theory has been given in [28]).
In what follows only the case of zero Zeeman field will be considered.

For a 2D system of radius R the energy of a vortex is finite but logarithmically
large,

Evor=E.+ EsIn(R/a), 4.11)

where a = hi/+/2m* u is the characteristic radius of vortex core (the effective mass
m* is defined below in (4.17)). The fact that Eyo diverges logarithmically at
R — o0 is good: it prevents the single vortices to be excited at low temperatures
and thus protects the long-range order of the condensate. Knowledge of prefactor
E; allows to estimate [22] the BKT transition temperature 7.. The proliferation
of single vortices appears when the free energy Ey o — TS crosses zero. The vor-
tex core area is a” and the vortex can appear in R?/a’ places, so that the entropy
S =In(R/a)? and this gives T, = E,/2 if one neglects the energy of the core E.
in (4.11). The energy E;In(R/a) is elaborated on large distances from the vortex
core r > a, which we will refer to as the elastic region, and the study of vortices
should begin with establishing the behavior of the order parameter in this region.
When TE-TM splitting is present this behavior is, in general, nontrivial.

4.3.1 The Order Parameter on Large Distances

In the elastic region the order parameter changes within the order parameter mani-
fold, i.e., the polarization of the condensate is linear everywhere in this domain. The
circular-polarization components ¥+ defined in (4.2) can be written in cylindrical
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coordinates (r, ¢) as

Yei(r>a, ¢) = \/g I OFNDN, (4.12)

where n is the constant concentration of the condensate at large distances, and the
phases are written in terms of total phase angle 6 and polarization angle 1. These
angles do not depend on the radius r (such dependence would only increase the
vortex energy), but they are functions of the azimuthal angle ¢. Since the order
parameters should be uniquely defined in the whole space, one has

0@ +27) — n(p) =21k,  O(¢p+27) —O(¢) =27m. (4.13)

These conditions divide all possible solutions of GPE into topological sectors.
Each sector is defined by two topological charges (or winding numbers), k£ and m.
The state from one sector cannot be continuously transformed into another sector,
or, in other words, any state of the condensate evolves within its own topological
sector. The sector k =m = 0 is the ground state sector; the minimum energy here
is reached for position-independent order parameter. By definition, the vortex is the
state that minimizes the energy in a topological sector with at least one non-zero
winding number. The energy of the (k, m)-vortex (4.11) is counted from the ground
state energy, i.e., it is the difference between the minimal energy in the (k, m) sector
and the minimal energy of (0, 0) sector (the ground state energy). Since only the
sum and the difference, 6 + n, enter (4.12), the winding numbers can be either both
integer or both half-integer, and the corresponding vortices are referred accordingly.
Note also that the vortex corresponds to a minimum of Hamiltonian H for specific
boundary conditions: § H/ 31/7* = 0 for the vortex solution and, therefore, it is a static
solution of GPE (4.1).3

According to (4.13) one can add any periodic functions of ¢ to n(¢) and 6(¢)
without changing the topological sector. The proper functions 7(¢) and 6 (¢) for the
(k, m)-vortex should be found from minimization of Hamiltonian in elastic region.
The corresponding part of Hamiltonian is related solely to the kinetic energy term
f Td?r. After substitution of (4.12) into (4.4b) and use of the asymptotic behavior
of the complex derivative for r — oo,

a iy 0

— = e , (4.14)
az 2r Jdp

one obtains the product of integrals over r and ¢ that results in the second term of
(4.11). The integral over r diverges logarithmically and should be cut by the core
size a at small r, and by system radius R at large r. This gives the factor In(R/a).

3Note, however, that this does not imply that a single vortex gives an absolute minimum of the H
in the corresponding topological sector. For example, the integer vortex (1, 0) can be unstable with
respect to decay into the pair of (%, %) and (%, —%) half-vortices for m; < m; (see Sect. 4.3.2).
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The prefactor is then given by

h2n

s =
2m*

E

2
/ {[1+7ycos@)](1+u') +[1 -y cosQu)]§?}dep,  (4.15)
0

where the prime denotes the derivative over ¢ and

u(@) =n(p) — ¢. (4.16)
The effective mass m™* and the TE-TM splitting parameter y are defined in (4.15)
by
1 1/1 1 m; —mj
—=——+—), = . 4.17
m* 2<m1 +m,> v m; + my ( )

Variations of the functional (4.15) over € and u lead to the equations
[1—ycos@u)]0” + 2y sinQu)u'6’ =0, (4.18a)
[1+ 7y cosu)]u” + y sinQu)(1 — u'> — ") = 0. (4.18b)

In general, the polarization will be radial at least at one specific direction and it is
convenient to count the azimuthal angle from this direction and set the total phase
to be zero at this direction as well. Then, the solutions of (4.18a), (4.18b) for (k, m)-
vortex should satisfy the boundary conditions

u(©)=0,  0(0)=0, (4.192)
u@r) =2k — Hm,  6Q2n)=2mr. (4.19b)

The solutions in question are trivial for some particular vortices.

(i) Hedgehog vortices. These are (1, m)-vortices having 6 = m¢ and u = 0, so that
the polarization angle n = ¢. Polarization points into the radial direction every-
where and these vortices look like hedgehogs. The solution (1, 0) is similar to
the magnetic monopole [29].

(i1) Double-quantized polarization vortex (2, 0). In this special case 6 =0, but u =
¢, resulting in n = 2¢. Polarization rotates twice when one encircles the vortex
core. These vortices and experimental possibilities of their excitation in exciton-
polaritons fields have been studied by Liew et al. [30].

In other cases the solutions should be found numerically. Both (4.18a) and
(4.18b) can be integrated once to give

[1—ycosQu)]’ =Cy, (4.202)
[1+ycosu)]u?+[1 -y cos(2u)]0"> — y cos(2u) = C5,  (4.20b)

and the solutions can be written as integrals of elementary functions. The constants
C12 should then be found, e.g., by shooting, to satisfy the boundary conditions
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Fig. 4.1 The dependence of polarization angle n (solid lines) and phase angle 0 (dashed lines)
on the azimuthal angle ¢ for two values of TE-TM splitting parameter: y = —0.4 (thin lines) and
y = —0.9 (thick lines). The panels show the behavior of the angles for the (%, %) half-vortex (a),

the (— % %) half-vortex (b), the (—1, 0) polarization vortex (c), and the (0, 1) phase vortex (d). In
the last case the periodic function 1(¢) has been upscaled for clarity

(4.19a), (4.19b). The functions 6(¢) and n(¢) are shown in Fig. 4.1 for elemen-
tary half-vortices and for two integer vortices (—1,0) and (0, 1), that also exhibit
nonlinear dependencies of polarization and phase angles.

Figure 4.1 demonstrates the behavior of angles for negative values of the TE-TM
splitting parameter y. The functions 6(¢) and 1(¢) for positive y can be found by
the shift. Indeed, the change u — u + (;r/2) in (4.18a), (4.18b) results in the change
of the sign of y. More precisely, to satisfy the boundary conditions (4.19a), (4.19b)
the transformations can be written as

y = -y, (4.21a)
T 4
u(g) — u<¢ + m) + (4.21b)
0(¢) — <¢ + -7 > - 9( i ) 421¢)
20— 1) 20— 1)

and they can be applied to all vortices except the hedgehogs with k = 1 (and where
they are not necessary, of course, since u(¢) = 0).
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The nonlinear change of angles seen in Fig. 4.1 becomes especially evident when
y approaches £1. This limit correspond to a strong inequality between effective
masses, e.g., m; > m, for y — —1. Qualitatively the strong nonlinearities can be
understood if one introduces the effective masses for the phase mg and for the po-
larization m,,

1 cos?u  sinZu 1 sinfu  cos?u

— = + , — = + , (4.22)

meg m; my my my; my

and writes the energy (4.15) as

hz 2 2 9/2
E =" {’7_ + —}d¢>. (4.23)
2 Jo ny me

The effective masses (4.22) depend on the orientation of polarization. Since u(¢)
changes between the values specified by (4.19a), (4.19b), there are sectors where
mg ~ m; and m, ~ m,, and there are sectors where mgy ~ m; and m, ~ m;. To
minimize the energy (4.23) in the case m; > m;, the phase angle changes rapidly
and the polarization angle stays approximately constant in the former, while there is
the opposite behavior in the latter.

4.3.2 The Energies and Interactions of Vortices

In the absence of TE-TM splitting the prefactors E; of vortex energies are

(km) 2, 2 mh?n

E" =Eo(k*+m*), Eg= — (for y =0). (4.24)
It is seen that in this case the energy of an elementary half-vortex is exactly half
of the energy of an elementary integer vortex. Important consequences can be
drawn from this relation concerning the interactions between half-vortices. The
four elementary half-vortices can be divided in two kinds, right half-vortices with
k +m = %1, and left ones with k — m = £1. One can see from (4.12) that the
right half-vortices possess the vorticity of the left-circular component of the order
parameter, the amplitude of this component goes to zero and the phase of this com-
ponent becomes singular in the vortex core center, and, as a result, the polarization
becomes right-circular in the core center. For left half-vortices the picture is oppo-
site. It follows from (4.24) that the left and the right half-vortices do not interact
with each other. Consider, for example, the (%, %) and (—%, %) half-vortices. The
elastic energy of this pair is EgIn(R/a) both when they are far away from each
other and when they are in the same place forming the phase vortex (0, 1). So, the
coupling between the left and the right half-vortices is of the short range, related to
the overlap of their cores and resulting change of the core energy term E. in (4.11).
As a result, the long-range coupling is present only between the half-vortices of
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Fig. 4.2 The logarithmic prefactor of vortex energies Es (see (4.11) and (4.15)) for half-vor-
tices and integer vortices as functions of TE-TM splitting parameter y (4.17). The curves are
labeled by the winding numbers (k, m) of the vortices, and the energies are given in the units of
Eo =nh*n/m*

the same kind. It can be shown that identical half-vortices repel each other log-
arithmically, while the half-vortices and anti-half-vortices, (k,m) and (—k, —m),
attract each other logarithmically, as it is in the case of vortices and antivortices in
one-component condensates [31]. This simple picture is changed in the presence of
TE-TM splitting that leads to the long-range interaction between half-vortices of
different kind.

The logarithmic prefactors E s(k’m) for elementary half-vortices and elementary
integer vortices are shown in Fig. 4.2. For all of them, expect the hedgehog (1,0)-
vortex, these energies are even functions of y, which can be proven using the trans-
formations (4.21a)—(4.21c). These energies decrease with increasing y2. The case
of hedgehog is special, as it has been discussed above. The hedgehog polarization

is radial everywhere and E§1’°) is defined purely by the longitudinal effective mass,

ENO —gh2n/mp = Eo(1 4 y). (4.25)

It can be shown that when two vortices with winding numbers (k1, m1) and (k2, m3)
are injected in the condensate and they are separated by distance r, such that a <
r < R, the energy of the condensate is increased in logarithmic approximation (i.e.,
omitting the core energies) by

Es(k1+k2‘m1+m2) 1n(R/a)

+ [EFm) 4 plhem) _ phitkmtm) 0 /q), (4.26)
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The second term in (4.26) gives the interaction energy of two vortices. The coupling
between vortices arising due to TE-TM splitting can be analyzed analytically in the
limit of small y.

The solutions of (4.18a), (4.18b) for k # 1 are written as series in y,

m .
0(¢) =me + = 1)7/ sin[2(k — )¢ |
k—12%— (1 —m?
ml( 162k_(1)3 n )]y2sin[4(k—1)¢]+~--, (4.272)
[(k—1D>+m*>—D] .
(@) = (k —1)¢ — d—nr Vs =1Dd]
[5(k — D* +2(k — D2(m?> = 3) + (m> — D] , .
+ G yZsin[4(k — D] +--- .
(4.27b)
Substitution of these expression into (4.15) gives
E&™ KRk — 22 4 2[2+ 3k(k — 2)]m? +m*]

and, in particular,

9 5
ECLO = E0|:1 - 3—2)/2 —.. } EQ=D = EO|:1 — gyz —.. } (4.29)

There is no difference between the energies of half-vortices at this order of y -series.
The difference, however, appears in the next order. The series for the angles up to
y* are rather cumbersome to be presented, but they result in

1 1 E 2 3 4

EZED 20[1_77_1_3/6_...}, (4.30a)
14y E 211y

gC7ED) 20[1_%_72_“} (4.30b)

Equations (4.25), (4.29), and (4.30a), (4.30b) can be used to find the interactions
between half-vortices according to (4.26). Most important interaction that appears
due to TE-TM splitting is between the (%, %) and (%, —%) half-vortices. For small
y their coupling constant is linear in y and the interaction energy is [32]

Vv

Loy =~ Eoln(r/a). 4.31)

2

Bl—

)

D=

It should be noted that the interrelation between m; and my, i.e., the sign of y, de-
pends on the detuning of the frequency of the cavity photon mode from the center
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of the stop-band of the distributed Bragg mirror [33]. So, one can have both at-
traction and repulsion of the (%, %) and (%, —%) half-vortices. The coupling of the
other left and right half-vortices is quadratic in y. The (—%, %) and (—%, — %) half-
vortices repel each other with the interaction energy being —(7/32)y2EqIn(r/a).
The (—%, :I:%) and (%, :I:%) half-vortices attract each other with the interaction en-
ergy being (1/8)y2EoIn(r/a).

In the absence of TE-TM splitting there is no coupling between the right half-
vortices (with km > 0) and the left ones (with km < 0) and there are two decoupled
BKT transitions, corresponding to the dissociation of pairs of left and right half-
vortices [16, 23]. The transition temperature is then estimated from the energy of
single half-vortex as E(/4. The TE-TM splitting of polariton bands changes this
picture substantially. First, because all four half-vortices become coupled and, sec-
ondly, because the energies of a vortex and its antivortex become different, so it is
not clear with one should be used in the estimation of critical temperature.

One expects qualitative modifications of the BKT transition in the region of y
close to —1. In this region the attraction of the (%, %) and (%, —%) half-vortices
becomes very strong and, as a result, the hedgehog is the vortex with the smallest
energy in the system for y < y. >~ —0.6 (see Fig. 4.2). It does not mean, however,
that the transition temperature can be estimated from the energy of the hedgehog
in this region. In fact, the phase transition occurs due to dissociation of vortex-
antivortex pairs, and the energy of the (1, 0) and (—1, 0) pair is still bigger than the
energy of the pair of two half-vortices. One expects that when pairs of half-vortices
are thermally excited in the system they will tend to form molecules consisting of
the hedgehog (formed by merging of the (%, %) and (%, —%) half-vortices) with the
(—%, — %) and (—%, %) half-vortices being attached to it. The proliferation of these
(—%, - %) —(1,0) — (—%, %) molecules defines the phase transition for m; > m;.

4.4 Geometry of the Half-Vortex Fields

In general, two coupled Gross-Pitaevskii equations for the circular components of
the order parameter

9 K2 924
it = (AwH +4y%) e
+ [Uo(19411? + [Y—11%) = 201 19— 1 * ]t (4.32a)
Ly R sV
e T T am (A””‘“L‘W 922 )_W‘l
+ [Uo(1W=11* + [Y411%) = 201 Y1 P w1, (4.32b)

are not separated in cylindrical coordinates (r, ¢). The variables are separated only
in special cases of hedgehog vortices and the double-quantized polarization vortex
discussed in previous section after (4.19a), (4.19b). For other vortices one needs to
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solve GPEs numerically in two spacial dimensions with the boundary conditions at
large distances defined by (4.12) and (4.18a), (4.18b).

Each vortex with nonzero phase winding number m is characterized by a finite
superfluid current circulating around its core center. Performing numerical solu-
tions it is important to take into account the fact that streamlines of the current are
deformed with respect to perfect circles in the presence of TE-TM splitting. The
circular components of the current J are given by

_ih GRV 3’#* « V41 « 0¥
JH_ﬁm {(WH + -1 oz A 0z )
8 *
+2y<w+1 glfll —wiﬁ"’i‘)}, (4.33)
Z 0z

and J_; = J,. They are related to the radial J, and the azimuthal J4 components
of the current by

1 . . i .
Jy = ﬁ(e“”m Ye ), Jp= %(em’m —eTgy). (4.34)

At large distances r >> a = h/+/2m* 1 one can use (4.12) to find

Jp = (4.352)

do
do’
hn

1 2 a6 4.35b
*r[ — y cos( u)]% (4. )

Jp =

Note that the condition of conservation of the total number of polaritons for the
static vortex solution of (4.32a), (4.32b),

=1 |: 8]¢]
divJ = — rJ)+— 0, (4.36)
r a¢
implies 0J/0¢ = 0. So, (4.18a) obtained in the previous section is in fact the con-
dition of conservation of the azimuthal current.

The warping of streamlines of current is shown in Fig. 4.3. The order parameter
has been found numerically [34] for different values of TE-TM splitting parameter.
To find the static solgtions of GPE (4.32a), (4.32b), we have been choosing an ini-
tial order parameter v (7, t = 0) satisfying the boundary conditions that follow from
(4.18a), (4.18b) and that are shown in Fig. 4.1 for a given topological sector (k, m).
Apart from this the initial functions were continuous but arbitrary. Then the func-
tions were evolved according to (4.32a), (4.32b) in imaginary time. As a result, the
order parameter relaxed to corresponding static half-vortex solution. The resulting
half-vortex solutions are found to be independent of the initial shape of ¥ (r, t = 0).

In Fig. 4.3 one can see two distinct morphologies of basic half-vortices. The ge-
ometry of half-vortex solutions can be discussed in terms of singular optics [35, 36],
where the polarization singularity related to a half-vortex is referred as C-point, to
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Fig. 4.3 Showing the geometry of half-vortices for different values of TE-TM splitting parame-
ter y (4.17). The plots are obtained from numerical solutions of GPEs (4.32a), (4.32b) [34]. The
interaction constants are related as U; = 0.55U(. The local polarization ellipses are drawn with
the rthick (red) lines. The streamlines of the current are shown by thin (green) lines. The panels
demonstrate the following cases: (a) the half-vortices (%, :I:%) for y = —0.5 (the lemon mor-

phology); (b) the half-vortices (%, :I:%) for y = 0.5 (the lemon morphology); (c¢) the half-vortices

(—%, :I:%) for y = —0.5 (the star morphology); (d) the half-vortices (—%, :I:%) for y = 0.5 (the
star morphology)

indicate that the polarization is circular at the vortex center and, therefore, the direc-
tion of the main axis of polarization ellipse is not defined. The morphologies of the
field around C-points are classified by the index of associated real tensor field, and,
additionally, by the number of strait polarization lines* that terminate at C-point
[37]. The tensor index coincides with the polarization winding number k, and the
number of lines could be either one or three. As a result, three different morpholo-
gies can be found. Following Berry and Hannay [38, 39], these morphologies are
referred as lemon, star, and monstar.

4The tangents of polarization lines define by the direction of the main axis of polarization ellipse
in each point.
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The lemon configuration is characterized by k = % and by only one straight po-
larization line terminating in the vortex center. This is the morphology of vortices in
Figs. 4.3a, 4.3b with the straight polarization line being defined by ¢ = 0. The star
configuration is characterized by k = — % In this case there are always three straight
lines terminating in the vortex center. The stars are realized in Figs. 4.3¢c, 4.3d and
three straight polarization lines are defined by ¢ = 0, +27/3.

The change of parameter y leads to deformation of polarization texture and to
deformation of streamlines of the current, but it does not result in the change of
morphologies of half-vortices. In principle, one could expect the transformation of
lemon into monstar, since these morphologies possess the same topological index
k= % Contrary to the lemon case, however, the monstar is characterized by three
straight polarization lines terminating in the vortex center, similar to the star con-
figuration. So, from geometrical point of view the monstar has got intermediate
structure between the lemon and the star, and this is why its name is constructed
from “(le)mon-star”.

To have the monstar configuration one needs a special behavior of polarization
angle 1(¢). Namely, it is necessary to have

dn
d¢ =0

In this case the polarization angle initially rotates faster than the azimuthal angle ¢,
but since the total rotation of 1 should be still 7 when ¢ is changing up to 2, as
it is dictated by the winding number k = % there will be three roots of the equation
n(¢) = ¢. These roots, 0 and £¢,,, define three straight polarization lines terminat-
ing in the vortex center for the monstar geometry.> One can see from Figs. 4.1a and
4.3a that when y approaches —1 the derivative becomes very close to unity, but it
never becomes bigger than 1, so that the monstar is not formed. The reason prevent-
ing the appearance of the monstar is that it is not energetically favorable to satisfy
the condition (4.37). In fact, it is the most energetically favorable to have n = ¢,
as for the hedgehog—the vortex having the smallest energy when y — —1 (see
Fig. 4.2). The rotation of polarization of the half-vortex is also synchronous with the
azimuth in rather wide sector, but the polarization never overruns the azimuth. The
monstar half-vortices, however, are expected to be found in the exciton-polariton
condensates out of equilibrium [9, 40, 41], where their appearance is not restricted
by energetics.

1
>1 fork= 7 4.37)

4.5 Four-Component Exciton Condensates

Excitons formed by an electron and a heavy hole in the semiconductor quantum
wells can be in four spin states [42]. The states with the total spin projection £1 are

5Note that for the monstar all polarization lines residing within the sector —¢,, < ¢ < ¢,, terminate
in the vortex center, but only three of them are straight, i.e., are having nonzero inclination at r — 0
(see [37] for the details).
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optically active. These bright excitons are formed by the heavy hole with the spin
+% and the electron with the spin — %, or by the —% hole and the +% electron. The
other two states are hidden from the observer and are usually referred to as the dark
excitons. The total momentum of these states is +2 and they are formed either by
the —1—% hole and the —|—% electron, or by the —% hole and the —% electron.

The exciton-polaritons discussed in the previous sections are coupled states of
quantum-well excitons and microcavity photons. Only the bright excitons are in-
volved in this coupling, and the resulting condensates are two-component. Since the
frequency of a single exciton-polariton is shifted down with respect to the single ex-
citon frequency by a half of the Rabi frequency, the presence of dark excitons is irrel-
evant in this case provided the exciton-photon coupling is strong enough. Contrary,
when pure exciton condensates are of interest, all four exciton spin states should be,
in general, taken into account. The formation of exciton condensates is possible for
cold indirect excitons in coupled quantum wells [43—47]. The life-time of these ex-
citons is long enough, the excitons can travel coherently over long distances, and the
condensates can be formed in quasi-equilibrium conditions. The presence of four-
component exciton condensates has also been experimentally demonstrated recently
[48].

The indirect excitons are dipoles oriented along the growth axis of the semi-
conductor structure, and their main interaction is spin-independent dipole-dipole
repulsion. The condensate state, however, is defined by weak spin-dependent in-
teractions arising from electron-electron, hole-hole, and exciton-exciton exchanges
[49]. In what follows, I will assume the signs of these interactions to be such that
they favor the distribution of excitons over all four spin states, populating both bright
and dark components. This state is similar to the linearly polarized two-component
condensates described above, but there is one important qualitative difference be-
tween them. The exchange scattering of two excitons can result in transformation
of their spin states [50]. Namely, two bright excitons can turn into two dark ones
after collision and vice versa. These processes are described microscopically by the
Hamiltonian

Fie = W[ L0 00 0+ 0l 0 v, ). (4.38)

In mean-field approximation, the creation 1}; and annihilation 12/,; exciton oper-
ators (o0 = %1, £2) are replaced by the order parameter components, ¥} and ¥,
respectively. The contribution of the resulting exciton-mixing term Hmpix into the
total energy of the exciton condensate depends on the relative phases of the compo-
nents. The term of this type is absent in the two-component exciton-polariton case.
Remarkably, the mixing of excitons always leads to the decrease of the condensate
energy, which is achieved by fixing the proper interrelation between the phases, i.e.,
by the phase-locking. Denoting by 6, the phase of v/,, one can see that the follow-
ing relation holds within the order parameter manifold

0 (mod2r), ifW <O,
9 +0.9—011—6_ = 439
P2 T T LT 0 (mod 27), if W 0. (4.39)
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The mixing term (4.38) additionally favors the formation of the four-component
exciton condensate with equal occupations of the components. This fact can be seen
from different perspective. Hpyix describes the transformation of pairs of excitons,
and, in the same way as in the BCS theory of the superconductivity, this term leads to
the pairing of particles. This pairing leads to a decrease in the energy of the system
and results in appearance of the gap in the excitation spectrum for one excitation
branch. The other three excitation branches are Bogoliubov-like. This follows from
the fact that the phase locking condition (4.39) leaves there angles to be undefined,
so that there are three Goldstone modes apart from the gaped mode induced by the
mixing.

The effect of applied Zeeman field on four-component exciton condensate is ex-
pected to be very spectacular [49]. The Zeeman splitting is different for dark and
bright excitons: the g-factor is given by the sum of the electron and hole g-factors for
the former, and by their difference for the latter. When such a field is applied to the
exciton condensate its action is two-fold. On the one hand, it polarizes the bright and
dark components with different degrees of circular polarization, and thus reduces the
Zeeman energy of the condensate. On the other hand, the induced imbalance in the
occupation of the components increases the energy of the mixing term (4.38) and
suppresses the gap in the spectrum discussed above. The interplay between these
two effects can lead to the first-order transitions from the four-component exciton
condensate to the two- or the one-component condensates. Note also that due to the
presence of Hpyix the system of equations defining the concentrations of the com-
ponents of the exciton condensate in the Zeeman field is nonlinear, contrary to the
case of two component exciton-polariton condensate (see (4.9)).

Finally, it is important to note that vortices in the four-component exciton con-
densate in the presence of the mixing of the component are composite: the vorticity
of one component should be accompanied by the vorticity of another component
to satisfy the phase-locking condition (4.39). As a result one expect twelve elemen-
tary vortices. These are four polarization vortices (two in each components), and the
eight paired half-vortices in the bright and dark components.

4.6 Conclusions and Perspectives

The mean-field approximation provides simple and reliable method to study the
polarization properties and topological excitations of exciton-polariton and exciton
condensates that possess two and four components of the order parameter, respec-
tively. This includes, in particular, the description of the polarization of the ground
state and elementary excitations of the condensates and their change in applied Zee-
man field, as well as the description of the texture of vortices and vortex interactions.

The elementary topological excitations in two-component exciton-polariton con-
densates are four half-vortices (k,m) with k,m = :I:%, characterized by half-
quantum changes of polarization and phase angles. In the absence of transverse-
electric-transverse-magnetic (TE-TM) splitting of the lower polariton band there is
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no coupling between the left half-vortices (with km < 0) and the right ones (with
km > 0), and one expects two decoupled Berezinskii-Kosterlitz-Thouless (BKT)
superfluid transitions happening at the same temperature in the system. The TE-
TM splitting results in two qualitative effects. First, the cylindrical symmetry of the
half-vortex field is spontaneously broken that leads to warping of the polarization
field around a half-vortex and to deviation of the streamlines of the supercurrent
from the perfect circles. Secondly, there appears long-range interactions between
left and right half-vortices. These interactions are particularly important in the case
of large longitudinal polariton mass m; when it favors the formation of hedgehog
(monopole) vortices (1,0) from the (%, %) and (%, —%) half-vortices. The pecu-
liarities of the superfluid transition in this case and related features of polarization
textures of the exciton-polariton condensates are subjects of further studies. In what
concerns the geometry of the half-vortex field it is shown that only two configura-
tions, lemon and star, are realized. The monstar configuration is not energetically
favorable for any value and sign of TE-TM splitting.

The essential feature of four-component exciton condensates is the presence of
mixing and related phase locking between dark and bright excitons. One expects a
nontrivial Zeeman-field effect resulting in a discontinuous change of the polariza-
tion state of the condensate as a result of the first-order transition. The presence of
composite vortices in different components should lead to the formation of inter-
esting polarization patterns in driven exciton condensates that provide an important
topic for investigation, both experimental and theoretical.
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Chapter 5
Spin Effects in Polariton Condensates:
From Half-Solitons to Analogues of Wormholes

Hugo Flayac, Dmitry D. Solnyshkov, and Guillaume Malpuech

Abstract Cavity exciton-polaritons are the quasiparticles formed of photons and
excitons strongly coupled in microcavities. They have recently become a very con-
venient model system for the Bose-Einstein condensation in 2D and 1D systems
as well as various related effects such as superfluidity, vortices or oblique solitons.
Polaritons are bosons with only two possible spin projections on the growth axis of
the sample which allows a two-component spinor condensate to form. In this chap-
ter we will explain how one can capitalize on the unique properties of a flowing
spinor exciton-polariton Bose-Einstein condensate. In the first part we will describe
how the controlled generation of new types of half-integer excitations: oblique half-
solitons can be achieved. In the second part, we will show that the convenience to
create event horizons and thus black hole analogues in the spinor system will lead
us to the modeling of wormholes.

5.1 Introduction

Bose-Einstein condensation [1, 2] has been a topic of intense research all along
the 20th century, further motivated by its Nobel-prize-awarded observation in dilute
atomic vapors [3]. This new state of matter, occurring at low temperature, possesses
unique and fascinating properties due to the collective behavior of particles. The
superfluidity, being undoubtedly the most famous among them, is the possibility
for the Bose-Einstein condensate to propagate without friction (dissipation) below
a certain critical velocity, given by the speed of sound. The latter is defined by the
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slope of the linear dispersion of the elementary excitations of the BEC at small
momenta [4]. A BEC is a dilute macroscopic quantum object, carrying interacting
entities in their ground state which share the same macroscopic wavefunction. Such
object is called a quantum fluid [5].

Apart from the small amplitude excitations (bogolons), a significant perturbation
of the BEC allows the appearance of nontrivial modifications of its wavefunction,
such as topological defects [6]. Depending on the dimensionality of the system and
on the nature of the interactions between particles, these defects can be of various
types. In one-dimensional (1D) systems they manifest themselves as solitons that
are density dips/humps for the case of repulsive/attractive interactions correspond-
ingly, accompanied with a maximum phase shift of . Such objects are stable thanks
to the interplay between nonlinear interactions and the dispersion that compensate
each other. However, since a soliton can be continuously unfolded into a homoge-
neous solution, it should be rather called a pseudo-topological defect. A vortex, the
soliton’s counterpart in two-dimensional (2D) systems, carries a quantum of angular
momentum and the circulation of the velocity around its core (zero density region)
is quantized in units of 4#/m where h is the Planck’s constant and m the mass of the
particles. On a loop around the vortex core, the phase is allowed to gain an integer
multiple of 2 because of the degeneracy of the phase of the wave function. Vortices
(at least in scalar condensates) cannot be continuously transformed into a vortex-less
solution and are topologically stable. Soliton excitations such as rarefaction pulses
[7], ring solitons [8], and oblique solitons [9] can also occur in 2D.

After the first observation of scalar condensates, even richer multicomponent
(spinor) BECs [10] have been created by separating hyperfine states of the atoms.
Polariton condensates, which will be in the focus of this chapter, are naturally spinor,
and not scalar ones. They can accommodate various spin-dependent excitations.
In the case of the two-component BEC that we will be dealing with, the elemen-
tary topological excitations are half-solitons (HSs) [11], half-vortices (HVs) [12],
or skyrmions [13]. These half-quantum topological defects correspond to their in-
teger counterparts occurring in only one of the two components of the BEC. The
circulation of the velocity around a HV core is quantized in units of #/2m and the
global phase of the BEC is shifted only up to 7 /2 through a HS. These entities are
especially interesting as their core is filled by the other component and thus they rep-
resent localized spin-polarized regions, a very promising property in the framework
of spin-(op)tronics. We will see that such defects are stabilized in the polaritonic
system by the interactions.

Besides being interesting on their own, BECs have shown to be a very convenient
model tool for the study of a system that seems to have, at first sight, nothing in
common: black holes and their event horizons. Indeed, the analogy between the
equations describing the excitations of a BEC (as a quantum fluid) and the metrics of
the curved space-time has been noticed a decade ago [14]. Since then, the scientists
have managed to experimentally observe event horizons in atomic BECs [15]. Sound
waves (phonons) propagation on top of a quantum fluid in a hydrodynamic (low
momentum) approximation correspond to the propagation of an electromagnetic
field in the curved space-time. Changing the speed of the flow and the speed of



5 Spin Effects in Polariton Condensates 73

sound one can construct the so-called sonic (dumb) hole. To do so, one needs to
create a region in space from where the excitations of the BEC, propagating at the
speed of sound, are not able to escape after they have crossed the event horizon.
The horizon itself appears at the transition from superfluid to supersonic flow. One
of the goals of this research was the better understanding of the Hawking Radiation
[16] which is the mechanism for the black hole evaporation and explosion. Given the
theoretical temperature of this radiation it looks hardly possible to extract it from the
background emission. Thus, having a desktop version of a black hole could provide
all the required data. In what follows, we will show the convenience that offers the
decaying polaritonic quantum fluid for the generation of acoustic black holes.

Exciton-polaritons are the mixed states between cavity photons and quantum
well excitons coupled by the strong light-matter interaction within microcavities
[17]. They have recently become a model system for studying Bose-Einstein con-
densation in 2D [18] and 1D systems [19], and various associated effects such as
superfluidity [20], vortex formation [21] and evolution [22] or nucleation of oblique
solitons [23, 24]. They carry fascinating properties, mixing those of light (small ef-
fective mass) and matter (self-interactions and thermalization with phonons). Their
spin structure is especially interesting: polaritons are bosons with only two allowed
spin projections &1 on the growth axis of the sample. A key feature of polaritons
in the view of this chapter is the strong spin-anisotropy of their interactions [25].
Indeed, the exciton-exciton interaction constant in the triplet configuration ¢ is re-
pulsive and approximately twenty times larger than in the singlet configuration oy
[26] (at least in multiple quantum well cavities), whereas the latter interaction is
attractive. Consequently, the interaction energy of the polariton condensate is mini-
mized when the latter is linearly polarized [27]. It gives a chemical potential at least
twice smaller than in the case of circular polarization. The spin-anisotropy of inter-
actions also makes the condensate stable against small in-plane effective magnetic
fields which are acting on the polariton pseudo-spin [25]. As noted above, the two
spin components of the polariton BEC make possible the existence of half-vortices
[28], observed for the first time in 2009, [29] and half-solitons [30].

In this chapter we will first explain how to capitalize on the unique properties of
a flowing spinor polariton BEC. In the first part we will describe how the controlled
generation of new types of half-integer excitations, oblique half-solitons as well as
half-vortex molecules, can be achieved. Their nucleation is provided by the presence
of a defect in the flow of polaritons [23]. Because a momentum-dependent effective
magnetic field (due to the spin-orbit coupling of exciton-polaritons) is present in
the plane of the microcavity [31, 32], the symmetry of the flow is broken not only
with respect to the density but also with respect to the polarization. The resulting
excitations are strongly spin-polarized at their core and can be considered as real
spin-optronic entities, while being fascinating fundamental objects by themselves.

In the second part, we will show the possibility to create the acoustic analogues
of astrophysical black holes thanks to the finite lifetime of the particles. Indeed,
the finite lifetime provides a natural and unavoidable transition from a superfluid
injection region to a supersonic region with the decay of the density. This transi-
tion is an inevitable horizon. We will then discuss the stimulated Hawking emis-
sion seeded by disorder in a 1D microwire. The two-component spinor nature of
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the BEC allows us to imagine even more [33]: The creation of artificial wormholes
(coupled black and white holes), connecting the two spin components of the conden-
sate that embody parallel universes. We consider the propagation of a signal (a 1D
half-soliton) through these wormholes. We will discuss the inter-universe worm-
hole, where a half-soliton is captured by a black hole, being then expelled out of
the wormhole by a white hole. We will also describe an intra-universe configura-
tion and demonstrate that it allows a faster-than-sound travel of the half solitons, in
analogy with the faster-than-light travel expected to occur through Einstein-Rosen
bridges [34].

5.2 Oblique Half-Solitons and Their Generation
in Exciton-Polariton Condensates

Let us begin this section with a necessary background on 1D solitons and vor-
tices/oblique solitons in 2D BECs and review the state of art in polariton conden-
sates. We will then turn to two-component BECs and define the concepts of half-
soliton, half-vortices, and oblique half-solitons. Finally, we will show how such
objects can be generated and observed in the spinor polariton BEC.

5.2.1 1D Solitons in Bose-Einstein Condensates

A BEC is a system of bosonic particles occupying at low temperature the same
lowest energy (ground) state. These particles have the property to share the same
single-particle wave function. One consequently talks about a macroscopic wave-
function or order parameter of the condensate which reads:

Y(r, 1) =+/n(r, )™ (5.1)

This wavefunction is in the general case complex-valued and thus possesses a
phase 6 which can possibly contain a propagation term K - r, while its amplitude
is governed by the density n = |¥|? of particles of mass m in the BEC. The evolu-
tion of the wave function in the mean-field approximation is well described by the
Gross-Pitaevskii equation (GPE):

2
ihgz—h—AlI’—i-alllPFlI/ (5.2)

at 2m
which adds a nonlinear interaction term to the Schrodinger equation with a particle-
particle interaction constant vy (which can be found in the Born approximation). It
what follows we will concentrate on the case «; > 0 which corresponds to repul-
sive interaction between particles. The GPE assumes the normalization condition:
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[l |>dr = N where N is the total number of particles in the system. The most fa-
mous property of the BEC is the superfluidity allowed by the linear dispersion of its
elementary excitations (bogolons) at small momenta. The slope of the linear part of
the dispersion defines a speed of sound, ¢ = /uu/m, where i = an is the chemi-
cal potential. The small-amplitude excitations of the condensate propagate with this
velocity. The Landau criterion [35] allows a propagating BEC to remain superfluid
at subsonic velocities 0 < v < c. In this range there is no final state for the Rayleigh
scattering of the propagating BEC [see Fig. 5.2]. The BEC would therefore ignore
any defect crossing its flow. For v > ¢, the BEC is said to be supersonic, and the
Rayleigh scattering becomes possible again.

In the 1D system (r — x) the GPE allows special solutions to occur: the gray
solitons, namely dips in the density that remain stable (do not spread with time)
even if they propagate. This dip is associated with a shift of the phase through it.
The soliton solution reads:

V52 X — vgt V2 Vs
llls(x,t)za/_noo[‘/l - C—ztanh( ~ 1 — c_2) +z?} (5.3)

Here n is the density far away from the soliton’s core, vy is the speed of the soliton
related to its depth via vy = c4/n(0)/noo and &€ = h/+/2mu is the healing length of
the BEC which defines the size of the soliton’s core. The phase shift through the
soliton is Af = arccos (vs/c) varying between O and . For vy = 0, the wavefunc-
tion is real valued, the density at the soliton’s core is exactly zero and the phase is a
Heaviside function of amplitude , undefined at x = 0. This solution is called “dark
soliton”. Gray solitons remain stable in the system because interactions are present
and compensate the dispersion that would show a wave packet evolving in the linear
Schrodinger equation. However, from the mathematical point of view, nothing pre-
vents this kind of solution from being continuously transformed to a homogeneous
solution, and thus, strictly speaking, a gray soliton is only a pseudo-topological de-
fect. One should by the way note that the Lorentz factor 1/y = /1 — v42/c? appears
in (5.3) because the energy of BEC solitons is described by a relativistic expression
(at least at low wavevectors). Figure 5.1 shows the dark soliton’s normalized density
profile together with its phase.
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5.2.2 Vortices and Oblique Solitons in 2D Bose-Einstein
Condensates

In two-dimensional superfluids, the elementary topological excitations are the quan-
tized vortices [1] well-known in superconductors [36]. These objects are nontrivial
modifications of the wavefunction of the condensate that reveal a breakdown of the
superfluidity. Like dark solitons, vortices are characterized by a vanishing density
as well as a singular phase at their core. But thanks to the dimensionality of the sys-
tem they also possess an angular momentum, particles rotate faster and faster while
approaching the density minimum like in classical whirlpool. The difference with
classical fluids arises from the phase of the condensate. Indeed, the phase is defined
up to a 2 factor for any wavefunction, therefore the circulation of the velocity of
the superfluid on a closed loop encircling the vortex is quantized: ¢ v-dl =1h/m
where the quantum [ is the so-called winding number. Given that v=h/mV#@, one
also sees that 6 = /¢ where ¢ is the polar angle. Vortices and vortex lattices were
nucleated in experiments putting an atomic BEC into rotation [37] above a critical
velocity with a stirring laser, following the prediction of Williams and Holland [38].
In polariton condensates spontaneously generated vortices have been first observed
at deterministic positions pinned to disorder [21, 22]. Next, an artificial phase-
imprinting method was proposed, based on a Gauss-Laguerre probe in the optical
parametric oscillator regime [39, 40]. More recently, vortices have been detected in
turbulences in a polariton fluid propagating past an obstacle [24, 41, 42]. We will
focus on this kind of configuration for the discussion on oblique half-solitons. Such
a large number of experimental observations reflects the convenience offered by the
polaritonic system for the investigation of hydrodynamic-related effects. One of the
advantages is that the vortices are much larger in spatial size than in atomic conden-
sates: & ~ 1 um for polaritons. The other advantage is that using the techniques of
classical optics it is possible to reconstruct the entire wavefunction of the conden-
sate, namely its density—from the intensity of light escaping from the microcavity,
and its phase up to a 2 factor—from interferograms. Furthermore, the control of
the condensate parameters such as its density or its wave vector can be performed
by simply changing the pump intensity and the angle of the excitation laser, for
example.

As mentioned in the introduction, in addition to vortices, various types of soli-
tonic wavefunctions are realizable in two-dimensional BECs. Especially, in 2006,
G.A. El et al. proposed to analyze theoretically the impact of a defect (potential
barrier) crossing the flow of a supersonic BEC [9]. This experiment, quantum ana-
logue of the one involving e.g. a jet aircraft flying at supersonic velocity in a clas-
sical fluid (air), revealed considerable differences between the two systems. Under
the assumption that the defect is large enough with respect to the healing length &
of the condensate to perturb the fluid on length scales comparable to &, (pseudo-)
topological defects can be nucleated in a quantum fluid. The prediction of Ref. [9]
was that a pair of oblique solitons would be generated in the wake of the obstacle
and that they would extend without deformation. One can expect that this kind of
solitonic solution in 2D should become unstable against perturbations. While the
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stability analysis performed later showed that the soliton is indeed unstable [43],
the instability is only convective, which means that the latter is damped while being
dragged away downstream from the defect. The oblique solitons are nucleated from
the shock waves because of the dispersion of the excitations (which is not linear),
and because of the interactions between the particles, which favor the formation of
solitons as stable structures. Another way to describe the generation of solitons is
the following: The fluid tends to accelerate locally close to the defect, and since the
velocity field and the phase of the fluid are related via v = i/mV#, an important
local phase shift is acquired, giving birth to negative interference producing density
dips which are nothing but solitons. Increasing the size of the defect leads to larger
phase shifts and then more than one pair of solitons can appear to accommodate
these phase shifts, leading to multiplets of oblique solitons.

The properties of an oblique soliton can be derived analytically within the quan-
tum hydrodynamic picture. Let v = (vx(x, y), vy(x, ¥)) be the velocity field of the
flow in Cartesian coordinates, the oblique soliton is then completely defined by the
following set of equations:

_ M1 +a’n)
Uy = m (54)
_aM(1—n)
" >
Ve E— 2
n(@)=1-(-p) sech[%a} (5.6)

where o = x — ay is a tilted coordinate perpendicular to the oblique soliton (with a
the slope of the soliton with respect to the y-axis), M = v/c is the so-called Mach
number and p = M?/(1 4+ a?). In 1D systems we have seen that the speed of a
soliton is related to its depth and it is still true in 2D. Indeed, at fixed value of M,
increasing a increases the depth of the soliton and thus reduces its speed. In other
words, the more the soliton is tilted with respect to the x-axis, the faster it moves
with respect to the condensate, and the shallower and larger it becomes.

5.2.3 Topological Excitations in a Polariton Quantum Fluid

The very first experimental evidence of oblique soliton was obtained in an exciton-
polariton condensate in 2011 [24] thanks to the high degree of control offered by
the system. The experiment involved a propagating polariton fluid scattered by an
immobile structural defect in the microcavity, following the proposal of Ref. [23]
analyzed in Ref. [44]. An exciton-polariton condensate has finite lifetime, photons
are continually injected through the microcavity Bragg reflectors by the pump laser
to compensate the decay. The energy of the pump laser can be tuned in resonance
with the polariton branch. One can easily change the momentum of injected parti-
cles by varying the laser angle with respect to the growth axis of the sample. So,
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Fig. 5.2 Dispersions of elementary excitations at finite excitation momentum. The solid red
(black) line shows a superfluid (supersonic) spectrum, the dotted black line is the bare disper-
sion of polaritons in a linear regime and the solid (thin) horizontal black line guides the eye to
available backscattering points. As one can see, no Rayleigh scattering is possible in the superfluid
regime

in principle, any point of the particle dispersion can be excited. One crucial point
is that the configuration described is in fact a strongly nonlinear driven-dissipative
system, for which the dispersion of elementary excitations can strongly differ from
the equilibrium case [45]. Indeed, diffusive regions with flat dispersion can appear
and the Bogoliubov spectrum is recovered only when the detuning § between the
laser energy and the dispersion is exactly compensated by the interaction-induced
blueshift v of the pumped state. Such a situation is depicted in Fig. 5.2. To ac-
curately describe the driven/dissipative polariton BEC, one needs to separate the
photonic mean field ¢ (r, ) from the excitonic one x (r,¢) with a set of modified
Schrodinger and GP equations respectively coupled via the light matter interaction
given by the Rabi splitting §2z:

d h? ; h

ind? _ — " A¢+ Qrx + D + Peikrrorn _ Ly (5.7
ot 2mg 21y

S N P M L 58

ih— = —— o - — .
o o, X R xI7x 2TXX

mg .y and 74 , are respectively the masses and the lifetimes of the particles, P is the
amplitude of the pump laser of frequency wp and wavevector kp. D(r) accounts
for the defect that acts on the photonic part of the wavefunction. The interactions in
the BEC arise from the excitonic part of the wavefunction.

As we have already seen, topological excitations are created by significant lo-
cal phase shifts. The problem with the configuration we consider is that a resonant
continuous wave (cw) pumping scheme imposes a specific phase at any time under
the pump spot. Therefore, it is impossible to generate topological defects using a
large homogeneous pumping spot extending over the whole sample. Pigeon et al.
[23] proposed to use a localized pump spot with finite momentum upstream from
the defect, so that the polariton fluid would be already propagating freely around the
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defect and its phase would evolve without being imposed by the pump. However,
because of the finite lifetime of the particles involved, the density is decaying with
the propagation distance.

The authors of Ref. [23] managed to obtain numerically three regimes with differ-
ent condensate densities (controlled by the laser detuning). At low density (obtained
at large laser detuning) the system is in the supersonic regime and dark solitons are
generated downstream from the defect. In this case, solitons appear as stable sta-
tionary solutions, however, their shape depends on the distance from the defect.
Actually, due to the density decay, the healing length increases with the distance
from the defect £ = £(x — xp) and the oblique soliton adapts itself to the local den-
sity, becoming larger, shallower, and curved. One extra feature of the polaritonic
oblique solitons is that they are able to survive even at subsonic velocities, namely
in regimes where no Cerenkov radiation (ship waves) is visible upstream from the
defect. The oblique soliton is further stabilized by the lifetime induced density decay
[46].

When one reduces the detuning or increases the density, the oblique solitons tend
to disappear with the development of snake instabilities. They are replaced by a train
of vortex dipoles (vortex streets) as predicted in Ref. [43]. This happens at a lower
critical velocity than in the undamped BEC [47]. One should note here that vortices
survive in subsonic regimes thanks to the local acceleration of the fluid close to the
defect [48] which does not violate Landau’s criterion. Increasing the density further
should allow to enter the superfluid regime where no perturbations are induced by
the presence of the defect. Nevertheless in that case the position of the pump spot
becomes determinant. Indeed, if the latter is too much overlapping with the defect
then the pump phase will be imprinted, hiding potential perturbations, if it is too far,
then the density will have decayed too much arriving at the defect’s position. The
approximate condition for superfluidity is: Ej,; > 2 Ey;, where Ej,; = 1 = an is the
interaction energy and Ej;, = m*v?/2 is the kinetic energy, with m* an effective
mass. In brief: the polaritonic system allows the investigation of various hydrody-
namic regimes ranging from oblique soliton generation to a superfluid flow, passing
by emission of vortices, all observed experimentally [20, 24]. Figure 5.3 shows an
example of pair of oblique solitons generated in a subsonic (no visible ship waves)
regime accounting for the lifetime of the polaritons.

5.2.4 Half-Integer Topological Excitations in Spinor
Bose-Einstein Condensates

Multicomponent (spinor) condensates allow even more complex topological excita-
tions [10]. Solitons in spinor 1D condensates [49, 50] (vector solitons) and oblique
solitons in spinor 2D systems have been considered theoretically [51]. In one di-
mension, many possible configurations were described, depending on the strength
and type of the particle interactions (repulsive or attractive). In particular, a solution
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Fig. 5.3 Numerical solution showing stationary 2D oblique solitons appearing in the wake of the
obstacle. (a) Photonic density n4(x, y) and (b) interference pattern revealing the characteristic
phase shifts through the solitons

where the kink lies in only one component was reported: The dark-antidark soliton
or half-soliton (HS) [11]. The counterpart of such a defect in 2D is the so-called
half-vortex (HV), first reported in Ref. [12].

Exciton-polaritons have two allowed spin projections o+ = %1 on the growth
axis of the sample [25] (other excitons are dark and do not couple with photons
to form polaritons), and therefore the polariton condensates are composed of only
two spin components, instead of three components expected for an atomic spin-1
condensate. The polariton BEC is strongly spin-anisotropic: the inter-component
interactions are weak and therefore the BEC forms spontaneously with a linear po-
larization, namely with equal density of o (right circularly polarized) and o_ (left
circularly polarized) condensed particles. A case apart is that of bulk GaN, where
the spin interactions may be isotropic, as shown by the random (including circular)
spontaneous polarization of the condensate [52].

The elementary topological excitations of 2D polariton condensates were shown
to be HVs [28], that carry twice less energy than an integer vortex, and, conse-
quently, their interaction is twice weaker. HVs have already been observed in ex-
periments [29], spontaneously appearing in the currents imposed by the disordered
landscape in the microcavity. Their appearance requires the splitting between the
linear polarizations [25] to be weak as it tends to merge HVs into an integer vortex
[53, 54]. The HVs are of crucial importance for both fundamental and applied as-
pects. First, the superfluid transition in 2D has an universality class of Berezinskii-
Kosterlitz-Thouless transition [1] and is accompanied with the binding of vortex-
antivortex pairs in the vicinity of a critical temperature [55]. Therefore, this tem-
perature would be twice smaller if half-vortex pairs are involved instead. Second,
the HVs are local, strongly circularly polarized objects and are very promising in-
formation carriers in the context of spin-optronics. We will see now how the HVs
and oblique half-solitons (OHSs) can be generated in a flowing spinor polariton
fluid.

A two-component polariton condensate at OK can be described by a vectorial
macroscopic wave function ¥ = (¥, III_)T, whose evolution follows a set of (cou-
pled) GPEs. Assuming first a parabolic dispersion with an effective mass m™ and an
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infinite lifetime of the particles, one has

0w, h?

. 2 2
157=—2m*AW++(0¢1|W+| + |V |*) ¥y (5.9)
2 1> 5 5
lhTZ_Zm*AW7+(a1|W7| +C(2|':[/+| )(1/7 (510)

Time-independent solutions are found upon expressing the BEC’s wave functions
as ¥y (r,t) = Y4 (r) exp(—iut), where u = (a1 +ap)np/2 is the chemical potential
related to the density of the homogeneous condensate ng = no— = ng/2, consis-
tent with the linearly polarized ground state for a spin anisotropy a» ~ —0.1¢ . For
a single-kink solution such as a vortex or a soliton, the asymptotic behavior can be
found analytically. For this, let us assume that far away from the defect the conden-
sate density is unperturbed by the presence of this defect and is therefore constant
in each component.

The order parameter can be written in two distinct representations [28, 53]. On
the basis of circular polarizations discussed previously, each component possesses
its own phase 61 (r) and (Y4, ¥_)T = /no/2(e’+,e/%)T. In the linear polar-
ization basis, the polarization angle 7(r) and the global phase of the condensate
0(r) can be separated: (Y, ¥y) = \/n_o(e"e cos(n), e/? sin(n))T . The transformation
from one to another is obtained via ¥+ = (Yx Fiy)/~/2 and 61 = 6 F 1. In the
linear basis, HVs are characterized by two half-integer winding numbers (k, m) for
both the phase and the polarization angles, which leads to integer shifts of = around
their core as described in Ref. [28].

Similar considerations can be applied to solitons. Indeed, in one dimension the
normalized scalar dark soliton solution [see (5.3)] is simply given by ¥s(x) =
J/notanh(x) and its phase is a Heaviside function of amplitude 7. In the circular
polarization (o4, 0_) basis and, in the simplest case where oy = 0, a half-soliton
(HS) is nothing but a usual soliton appearing in one component (let’s say ¥_)
while the other remains homogeneous. Thus, the associated order parameter reads
(WS YHS) = /ng/2(1, tanh(x)). Rewriting the latter on the linear polarization
basis leads to (wfs, 1//5”) = /no/2(1 +tanh(x),i —i tanh(x))” . Looking for the
asymptotic values at infinity, one can construct the following identities:

YHS (+00) = /nge?™™ cos(2sm) (5.11)
Y (+00) = /nge? ™ sin(2s) (5.12)
YIS (—00) = mge™™ cos(s) (5.13)
Yl (—o0) = /nge"™ sin(sm) (5.14)

with /& and s—half-integer numbers, which can be seen as topological charges. Basic
HSs appear for (h,s) = {(£1/2,£1/2), (£1/2,F1/2)} and their phase and polar-
ization angle change from 0 to 7 /2 going from — to 400, while the center is fully
circularly polarized, just like the half-vortex core. This topological defect can also
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be seen as a domain wall with respect to x- and y-polarized particles [30]. A plot of
the normalized HS density profiles is proposed in Fig. 5.4(a).

Let us now focus on the possibility of creating 2D oblique half-solitons. First of
all, it is clear that in the case where the two components of the spinor BEC do not
interact (op = 0), if they are initially equally populated, a significant perturbation
in only one of the components will lead to the formation of half-integer topologi-
cal excitations. Next, what happens if the interaction between the two components
is no longer negligible? To answer this question following Ref. [51], we turn back
to (5.1) and (5.2), rescale them, look for stationary solutions and switch to the hy-
drodynamic picture, where the phase of each components is expressed by means
of their stationary and irrotational velocity fields via vy (r) = h/m*V64(r), with
r = (x, y). We look for oblique solutions that depend only on the tilted coordinate
x = (x —ay)/~/'1+ a?, which leads to the following set of equations

(W2 /4 —nyn’ J2) + 2% (Ainy +2A0m_) = (g +2p)n’ —qng  (5.15)
(n2/4 —n_n" J2) + 202 (An_ +2A0n3) = (q +2u)n* —gn}  (5.16)

where A12=o12/(0; +a2) and g = U?/(1 +a?) (U is the velocity of the flow).
This system has to be solved numerically, but we can first consider some simple
arguments. The density profile of an integer oblique soliton in a spinor fluid is given
by nops =1 — (1 —q/u) sech[x/ix —q)* with i = (A; + Ax)ng/2 = Ang/2.
Now, for the case of the OHS, the density notch in the o_ component, that con-
tains the defect, is seen as an external potential by the initially unperturbed o
component, because of the interactions between the particles of different spins.
We suppose that the o+ component fits the shape of this potential which is noth-
ing but Asn_. Then, this perturbation creates in turn a potential for the o_ com-
ponent given by —Arny = —A%n_. Therefore, the density profile is modified as
n_ <« (An_ — A%n,) /A. Tterating this procedure leads to a geometric series and
to a renormalization of the interaction constant seen by the component containing
the soliton A « A — A% /(A — Aj). Consequently, the OHS solution is approxi-
mated by

nons =1— (1 —q/fX)sech[x/& — qI* (5.17)

with I = /Tno. In this description, the sound velocity is changed like ¢y — ¢5 =
JT/m* and the healing length like £ — & = 1i//2m*JL. In the case where A3 <0
(>0), which corresponds to an attractive (repulsive) interaction, c; is slightly in-
creased (decreased) and inversely for £. The component without a soliton obviously
presents a minimum (maximum) [30]. This argumentation is compared to direct nu-
merical solutions of (5.4) and (5.5) in Fig. 5.4(b) showing a remarkable accuracy
for small values of A».

Now let us see how HVs and OHSs can be generated in a propagating exciton-
polariton fluid. The setup is basically the same as the one required to generate inte-
ger topological defects described previously [23, 24, 44], namely a continuous and
resonant pumping scheme locally upstream from a defect. However, we will now fo-
cus on the spin degree of freedom of the condensate namely the polarization of the
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Fig. 5.4 (a) HS density 1
profiles scaled to ng and &. (@)
The solid blue and red curves
represent the ny and n_
density profiles while the
dashed-dotted purple and
dashed cyan curves show n, 0
and ny, respectively. (b) OHS
density slice normal to its
axis. The solid blue and red
curves show numerical
profiles, the dashed black
curve is the perturbative
solution described in the text
and the dashed dotted green
curve show the scalar soliton
solution
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pump and the polarization of the emission along the propagation. To describe more
accurately the spinor polariton BEC, we take into account the real non parabolic
dispersion of the particles, their decay and injection via a set of four coupled spin-
dependent equations, similarly to spinless (5.7).

B gy ns 4 Dage 4 B 7i ) 0
i =—— o, T
o amy TR RS TPG T ey ) PF
. 1
4 Pyeikpr—opn _ ! b (5.18)
2‘L'¢
) e I 2 2 in
pxe _ o - 5.19
ih=— 2 X+ + 2rox + (o x£l” + o2l x1°) x+ 27, (5.19)

The novelties that appear with respect to (5.7) are: The pump terms of amplitudes
P+ which allow to choose the polarization of injected photons and thus of po-
laritons, the impenetrable potential barrier D4 that can affect independently each
component, and a k-dependent coupling between the o+ and o_ components of
strength B = h? /2(mf1 — mfl) which models the polarization splitting between
the TE and TM-polarized optical eigen modes of the microcavity [25], associated
with effective masses m, and m;. The effective mass m, is therefore approximated
by mgy =m,m;/(m, + my). To generate half-integer topological defects past the ob-
stacle we need to be able to break the symmetry of the flow not only with respect
to the density (integer topological defects) but also with respect to the polarization
of the flow. In what follows, we present 2 different schemes for the generation of
OHSs.

The first alternative is to find a way to perturb only one of the two components.
This could be done experimentally if the defect is created optically by a circularly
polarized pulse [42, 56]. This scheme is however far from being ideal since it would
bring of lot of unwanted perturbations to the system and it should rather be seen as
a model experiment. In this framework, one needs to impose D_ = 0 and to inject
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linearly polarized photons upstream from the defect which requires P4 = P_ and
creates equal population of polaritons with spin +1 and —1. In that case OHS pairs
(or HV at higher densities) obviously appear in the component containing the defect
and a weak density minimum is imposed in the other component due to the fact that
az < 0 [see Ref. [30] for a figure]. The unavoidable action of the TE-TM splitting
(see below) can unfortunately make the situation more complex in experiments.

The second alternative, that we will discuss in more details is, on the other hand,
completely realistic. The impenetrable defect is restored in both components and
we will this time benefit from the polarization separation brought by the TE-TM
splitting. The TE and TM eigen modes in planar microcavities, which correspond
to particles linearly polarized perpendicular or parallel to the propagation direction,
are non-degenerate for any finite wavevector. As a result, any polarization state that
would differ from them would oscillate between the two. This oscillation can be
associated with the action of an effective magnetic field

217 (k) = 0y (K) cos2)ug, + wy (k) sin2p)uy, (5.20)

which makes a double angle with respect to the wavevector k and whose strength
depends on the magnitude of k in a nontrivial way because of the photon-exciton
mixing [57]. A convenient representation for the polarization of the polaritonic sys-
tem is the three dimensional pseudospin vector [25] (analogue of the Stokes vector)
S = (S, Sy, S;) on the Poincaré sphere. This vector is defined as the decomposition
of the 2 x 2 spin-density matrix p, of polaritons on a set consisting of the unity ma-
trix I and the three Pauli matrices o, y ,: oy =IN/2+S -0 with N the total number
of particles in the system. The pseudospin completely defines the polarization of
the system: the Sy and S, components describe the linear polarization states while
the S, component accounts for the circular polarization the particles. Moreover, it
allows us to map the system to a magnetic one, namely the pseudospin responds to
(effective) magnetic fields like usual magnetic moments and evolves according to
the precession equations of the type 9;S = & x S. It is the action of 277 on S that
leads to the so-called optical spin-Hall effect [24, 31, 58]—k-dependent polariza-
tion splitting. The normalized pseudospin vector of the emitted light can be defined
via the photonic wave functions:

Soz,/S§+S§+S§ (5.21)

Se =R (d+42)/So (5.22)
Sy =3(pFe-)/So (5.23)
S: = (I¢+1> = l¢-17) /250 (5.24)

We note that given the normalization to unity, S, is nothing but the degree of circular
polarization p. = (ny, — ny_)/(ngy, + ne_) of the emission. Accounting for the
TE-TM splitting, we need to carefully select the polarization of the pump laser to
avoid pseudospin rotation before the fluid reaches the defect. We choose the latter
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to be linear in a TM state which corresponds to a polarization along the direction of
propagation (x-axis) and to S pointing along 277.

Arriving at the obstacle, the fluid is split into two parts propagating in oppo-
site oblique directions around the obstacle. Before the defect, the pseudospin was
aligned with the effective field, but when the propagation direction changes, the
angle between the pseudospin and the field starts to increase. It induces an antisym-
metric rotation of the pseudospin: the particles going up (down) will gain a o4 (0_)
component, providing the seed for the OHS/HV generation. The mechanism of nu-
cleation of the OHSs, however, is not as trivial as in the case of the polarized defect.
If no TE-TM splitting is present, our experiment would lead to a pair of integer
oblique solitons and each of them can be seen as a superposition of two perfectly
overlapping OHSs. With the splitting turned on, the OHSs do not overlap perfectly
anymore, becoming slightly shifted because of the antisymmetry of the flow with
respect to circular polarizations, o4+ and o_.

Downstream from the defect the flows are complex, but globally the fluid is mov-
ing along the x-axis. The core of each OHS is strongly circularly polarized because
it is filled with the other component, which corresponds to a pseudospin with a
strong S, projection. As a result, 77 which lies in the plane of the microcavity,
will act strongly at these positions and in an opposite way for each OHS providing
their separation: one of them is bent slightly towards the axis of symmetry of the
flow, becoming deeper, while the other one is moved in the opposite direction, be-
coming shallower and larger and possibly hardly visible for larger values of 2,7
(larger kp). The situation is obviously totally inverse for the lower oblique soliton.
Moreover, this separation effect is emphasized if «; is negative. Indeed, in that case
the presence of a HS in one component induces a density minimum at the same po-
sition in the other component, in such a way that minimums and solitons repel each
other within the same component.

On should make an important remark here. Due to the nonlinearities in the
system, a population imbalance between o4 and o induces an energy splitting
between the corresponding modes. Consequently, an imbalance-dependent effec-
tive magnetic field &, = (a1 — a2)/2n,u, appears along the growth axis which
leads to the so-called self-induced Larmor precession [59]. The total effective field
Q@ + &7 gains a z component especially strong at the cores of HV/OHS, where
the circular polarization degree S, is large. The strength of €; depends crucially
on the value of a» and it is zero for a1 = oy (typical case for atomic BECs). In that
context, the spin-anisotropic polariton BEC offers a clear advantage: half-integer
topological defects are protected against weak in-plane magnetic fields. Therefore,
HV/OHS are stabilized with respect to the TE-TM splitting or other effective fields
[60].

1D HSs are the domain walls between linear polarizations, which means that the
polarization angle 7 rotates by /2 and the in-plane projection of S| = (S, Sy)T
by m going through the HS. This rotation of 7 is also expected for a the 2D sys-
tem, nevertheless, the oblique half-solitons are usually oblique, and therefore have
nonzero density in the center. Thus, the rotation of 1 as well as the shift of the
global phase 6 are slightly smaller than 7 /2. The HV generation at higher densities
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Fig. 5.5 Stationary 2D OHSs. (a) Degree of circular polarization p.: one clearly sees the antisym-
metric pattern imposed by the effective field’s geometry and the OHS separation. (b) Zoom on the
lower o soliton (white one in (a)) with the in plane pseudospin component S|| = (S, Sy) (black
arrows) exhibiting a rotation of almost 7 through the OHS (;r/2 rotation of 7). (¢) Interference
pattern in the o component showing the phase shifts at the OHSs position the situation is obvi-
ously antisymmetric in the other component (not shown). The repelled soliton is shallower which
corresponds to smaller phase shifts. (d) Density slices 50 um downstream from the defect together
with p.

can be understood in a similar way: integer vortices are split into HVs by the effec-
tive magnetic field. The difference is that vortices cannot be more or less shallow
like solitons, they can only appear or not, being real topological defects, which ex-
plains why only one species of half-vortices appears in each half-plane. We show
the corresponding numerical stationary solutions in Figs. 5.5 and 5.6, demonstrating
the three density dependent hydrodynamic regimes: OHSs [Fig. 5.5], streets of HV
dipoles [Fig. 5.6(a), (b)], and finally a superfluid regime [Fig. 5.6(c), (d)].

5.2.5 Conclusion

In this section we have discussed the half-integer topological excitations in exciton-
polariton condensates, paying particular attention to their generation in flowing po-
lariton condensates. Such excitations remain stable against an in-plane effective
magnetic field thanks to the spin anisotropy of the polariton system. This feature
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Fig. 5.6 (a) Degree of circular polarization: HV trains generation increasing the pump intensity
with respect to Fig. 5.5. The inset displays S| for a o HV pair (black arrows) and shows the
opposite winding of the polarization around the HVs core. (b) The interference pattern in the o
component shows the typical forklike dislocations at the HV position. The positions corresponding
to o_ vortices show no phase modification. (¢) Superfluid regime: The flow ignores the presence
of the obstacle and shows no phase perturbation as one can see in the panel (d) showing the com-
plementary antisymmetric o component

allows the control of their trajectory tuning the polarization splittings in the micro-
cavity. Therefore, half-vortices and half-solitons behave as magnetic charges accel-
erated by an effective field and embody the analogues of magnetic monopoles [60].

5.3 Sonic Black Holes and Wormholes in Spinor Polariton
Condensates

In this second part of the chapter we will show that the polariton BEC is an excellent
candidate for the construction of 1D and 2D sonic black holes thanks to the finite
lifetime of the particles. Once again, the spinor nature of the BEC allows to expect
even more interesting features. Indeed, mapping the two spin components to two
parallel universes allows the construction of wormholes or Einstein-Rosen bridges
[34] connecting these universes. To test the wormhole structure one needs to study
the propagation of a signal through it. This signal has to be intrinsically stable and
to initially exist in only one of the two universes. Here half-integer topological de-
fects come into play: a half-soliton appears perfectly suitable for this task. We will
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describe inter- and intra-universe wormholes, the latter offering the possibility of a
“faster than sound” travel.

5.3.1 Sonic Black Holes in the Polariton Condensate

It happens quite often in physics that striking similarities are found between sys-
tems, which from the first glance have absolutely nothing in common. Sometimes,
such similarities can be exploited to perform laboratory studies on accessible ob-
jects similar to inaccessible ones. One of the most recent example is that of Klein
tunneling in graphene [61]: The quasi-particles in a solid-state object obey the same
mathematical equations as very high-energy relativistic particles. Astrophysics al-
lows even less laboratory studies than high-energy physics: scientists are restrained
to the objects in the universe proposed by the Nature, these are studied from very far
and the consideration of gravitational fields require to manipulate very large masses.
Thus, having a desktop version of a black hole would be even more useful. Once
again, the physics of the small comes to the aid of the physics of the large. The anal-
ogy between the equations describing the excitations of a Bose-Einstein condensate
and the metrics of the curved space-time has been noticed about a decade ago [14].
Since then, the scientists have managed to experimentally observe the event hori-
zons in atomic BECs [15].

However, such atomic condensates are still a bit far from being a convenient lab-
oratory tool, because they require ultra-low temperatures for their formation, the
measurements of the distributions inside the condensates are relatively complex to
carry out and the construction of the event horizon is provided by artificial external
potentials. Here the solid-state physics comes into play with the exciton-polariton
condensates: The finite lifetime of polaritons in the range of tens of picoseconds
turns into an important advantage, simplifying all measurements, because the de-
cay of the condensate means the emission of photons from the cavity, and the dis-
tribution of emitted photons gives direct information on the polariton distribution
function, on their dispersion and spatial evolution. Finally, the spin structure of po-
laritons [25] implies possible new effects due to the vectorial nature of the conden-
sates. These particularities favor polaritons with respect to other systems proposed
for the simulation of black holes, including the optical ones based on metamaterials
[62-64].

5.3.2 Theoretical Description of Sonic Black Holes

It has been understood quite a long time ago in hydrodynamics, that an event horizon
can appear if the flow speed increases and becomes larger than the speed of sound
[65]. Indeed, the excitations in the flowing medium propagate with the speed of
sound (in the linear approximation, that is, long-wavelength limit), and therefore in
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the laboratory frame they are unable to go against the flow if its speed is too high. A
great research effort in this domain has recently culminated with the observation of
stimulated Hawking emission in a water tank [66]. A most widespread example of a
structure exhibiting an event horizon is the de Laval nozzle [see Fig. 5.7] used in jet
engines. In order to have the exhaust gas velocity higher than the limit allowed by
the Bernoulli’s principle, the gas is accelerated from subsonic to supersonic speed.
No sound waves are able to propagate backwards in the supersonic part of the flow,
which is therefore separated from the subsonic part by what can be called an event
horizon.

The work of W. Unruh [65] has laid down the foundations for this domain of
research by showing how the hydrodynamic equations can be rewritten using the
metrics to obtain exactly the Schwarzschild’s metric of a black hole. Starting from
the equations of motion for an irrotational fluid:

Vxv=0 (5.25)
n(dv/dt+(v-V)V)=—-Vp—nV (5.26)
an/ot +V - (nv) =0 (5.27)

and considering weak perturbations about a stationary solution, one can obtain the
equations for a massless scalar field with a metric

ds* = (”0 ((¢00) = Vo V)i 4 2d1vo -dr —drdr)  (528)
c(ng

where ¢o = g’In(ng) is the local velocity of sound. For a spherically symmetric
converging flow in the region where the speed of the flow becomes equal to the
sound velocity, this metric takes exactly the form of the Schwarzschild’s metric of a
black hole at the horizon:

» _no(R) B o dr? )
ds N (260((7‘ R)dt 720[0_12) (5.29)

where o is the first coefficient of the development of v(r) around R, that is
a=3v2/dr|,=g.

The seminal work of Unruh considered an arbitrary irrotational fluid, defined by
v =h/mV8, without detailing its nature. An application for BEC has logically come
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20 years later [14], where 0 was interpreted as the phase of the order parameter of
the condensate and

U (r, 1) = /n(r)e? ®e=int/h (5.30)

In order to discuss the hydrodynamic approximation for BEC let us rewrite the
stationary Gross-Pitaevskii equation using the phase-density representation of the
wavefunction:

h2
2m./n

The last term in this equation is the quantum pressure term, which scales as R >
and becomes negligible if the typical density variations occur at scales much larger
than the characteristic length §&. When quantum pressure is neglected, one obtains
what is called the Thomas-Fermi limit or hydrodynamic approximation, because
the equation of motion for the condensate becomes simply the Euler’s equation for
potential flow of a nonviscous liquid.

Considering the density and phase perturbations n’ and 6 for the BEC (as in
the general case of Unruh [65]) and performing the linearization, one obtains the
following first-order equation for the phase:

a0 1 5
hE + Emvs + Vour +an —

vz\/ﬁ) =0 (5.31)

8,4(«/—gg’“’8v9’) =0 (5.32)
with the metric g given by
—(C2 _ v2) _UT
Suv = ( b | (5.33)

As one can see, the condition v = ¢ imposes a diagonal element to be zero, which
defines the position of the event horizon.

5.3.3 Hawking Emission

The most important goal of the research activity centered on the acoustic black
holes has been to verify the famous S. Hawking’s prediction [16], which described
cosmological black holes and showed that vacuum fluctuations producing parti-
cle/antiparticle pairs would behave in a singular way at the event horizon position.
The huge gravitational fields that reign past the event horizon would absorb one of
the photons towards the black hole which it could not escape, while the other one
would propagate away from the horizon. The consequence of such events would
lead to a loss of mass or evaporation of the black hole with time until its explo-
sion. However, no detection of such Hawking photons was reported so far, because
anyway they can hardly be extracted from the warmer cosmic background. Conse-
quently, a quantitative study of such a phenomenon required model systems [67]
and among them are the very promising BECs [14, 68, 69].
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The small amplitude excitations in a BEC, called bogolons, can also exhibit linear
dispersion in the long-wavelength limit, defining a speed of sound [see Sect. 5.2.1].
The finite lifetime of polaritons provides a natural way to vary the speed of sound.
A propagating condensate can be injected locally via non-resonant [19] or resonant
[24] pumping. Its density is bound to decrease with the distance from the pump-
ing spot, and ¢ will therefore decrease as well, whereas the propagation speed will
remain constant or may even increase, if the condensate is accelerated by a poten-
tial ramp (for example, by its own self-interactions). At some point the two speeds
become equal, defining the position of the event horizon of the black hole.

The spinor polariton condensate is described by the set of equations (5.18)—
(5.19). Here D(x,t) becomes a total potential that can encompass: disorder in
the microcavity, potential barriers and time dependent potentials to impose exci-
tations in the system. An extra k-independent polarization coupling (conversion)
term i ho; ¢+ = Ho(r, )¢+ should be added to photonic parts to account for the ex-
tra longitudinal-transverse polarization splitting that occurs in 1D wires at k = 0
[70].

5.3.4 1D Sonic Holes

First, let us consider a 1D configuration neglecting the spin degree of freedom. The
polariton flow is resonantly and locally injected by a pumping laser located close
to x = 0 on Fig. 5.8(a). The medium is assumed to exhibit small structural disor-
der mainly due to the etching of the 1D wire cavities. It is modeled by a random
series of delta-peaks separated by 1 um on average. All results shown in Fig. 5.8
are averaged over 100 disorder realizations. Figure 5.8(a) shows the polariton den-
sity ng(x), the visible decay is mainly due to the finite lifetime of polaritons. The
speed of the sound c(x) decreases together with the density. On contrary, the speed
of the flow v(x) is increasing because of the self-interactions within the conden-
sate. In the left part, the flow is subsonic and cannot be scattered by the disorder
(superfluid). In the right part, the flow is supersonic. The exponential decay is in-
duced not only by the life time but also because of the Anderson like-localization
in the disorder. The two regions are separated by an event horizon at v = c¢. In
the supersonic region no excitation can propagate towards the horizon. The gener-
ation of Hawking emission on the horizon is demonstrated in Fig. 5.8(b). Indeed,
as recently proposed in Refs. [71, 72], emission of Hawking phonons means cor-
related density perturbations propagating on both sides of the horizon. Hawking
emission can therefore be detected using the following density-density correlation
matrix:

@ (y ) = mOD)
¢ ) = G

This matrix is in our case averaged on many realization of disorder, and is shown
at in Fig. 5.8(b). Indeed, as expected, characteristic “Hawking tongues”, indicating

(5.34)
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Fig. 5.8 (a) Propagation of a polariton condensate in 1D: density (black solid line), flow speed
(red dashed line), sound speed (green dash-dotted line). The horizon is indicated by a blue dashed
vertical line. (b) Density-density correlation matrix g (x, x’) at t = 200 ps. Dotted red lines are a
guide for the eyes, indicating the Hawking tongues (positive correlations) extending from the main
diagonal

positive correlations, are extending from the horizon position, marked by the red
dotted lines. We underline that there is no need to introduce quantum fluctuations to
seed Hawking emission thanks to the presence of the disorder potential and to the
finite lifetime which broaden the states in momentum and frequency.

5.3.5 Closed 2D Sonic Holes

The finite lifetime of polaritons allows to organize persistent flows, as shown in
Refs. [21, 73, 74] for the cases of quasi-resonant or non-resonant pumping. This
particular property makes the formation of closed event horizon in 2D possible.
This is much more complicated with atomic condensates, where only 1D configu-
rations have been considered [15]. With polaritons, one needs to pump in a regime
allowing the superfluidity to arise, around a large-scale defect in the microcavity
mirrors possessing a lower quality factor. Polariton-polariton repulsive interactions
will then create a persistent flow converging into the defect region, where the den-
sity is always lower due to the shorter lifetime. The boundary between the superfluid
and supersonic regions forms a circular event horizon.

Figure 5.9 shows the results of a realistic 2D simulation with pulsed spatially
homogeneous pumping. The photon density ny at the time t = 8 ps is plotted as
a function of coordinates [panel (a)]. The defect region with a shorter lifetime is
located at the origin [(x, y) = (0, 0)], while the disorder is neglected. The density
inside the defect region decreases faster than outside, and the repulsive interactions
make polaritons propagate towards the center of the figure. The event horizon at
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Fig. 5.9 (a) 2D black hole around a defect (dark region) in a polariton condensate. The dashed
black circle shows the event horizon, and red arrows point the directions of the propagation of the
Hawking radiation on both sides of the horizon (purple dotted line). (b) Waterfall density plot at
different times. Propagating Hawking phonons are marked by the red dashed lines (Color figure
online)

that time is marked with a dashed blue line. The Hawking radiation is in that case
seeded by the non-equilibrium spatial distribution that populates excited states. It
can be observed on the panel (b) as density waves propagating inwards inside and
outwards outside the horizon (red arrows).

5.3.6 Wormholes Analogue in the Spinor Polariton Condensate

If a single scalar condensate is a model of a universe which might contain black
holes, it seems natural to map two spinor components to two different universes.
They can be completely decoupled from each other if there are no interactions
between the particles of different spins. Adding a magnetic field can provide
a coupling between these two universes, making possible simulation of worm-
holes [76].

In astrophysics, inter-universe wormholes are the pairs of singularities located
in different universes and connected together. Using such wormhole, one could
pass from one universe to the other. A more interesting situation, when both holes
connected together are in the same universe, is called an intra-universe worm-
hole. Such wormhole can connect two distant regions of space with a tunnel much
shorter than the distance between the two, which might allow faster-than-light
travel [77].

Inter-Universe Wormhole Let us start with the simpler case of an inter-Universe
wormhole. We consider a 1D quantum wire, as in Ref. [19]. The idea is to first create
a closed black hole bordered by two event horizons and to connect it with a white
hole in the other spin component using a local effective magnetic field Hp, induced
by the energy splitting existing between linearly polarized (TE or TM) eigen modes.
Hj can be controlled by varying the width of the wire [70], or by applying an electric
field [78].
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Fig. 5.10 (a) Scheme of a Pump Input signal Pump
wormhole between the o a) -\/- Black hole .
(red) and o_ (blue) universes. G’ : > < : ot

Arrows show the directions of
the flow in the two Density/
components. Dashed lines profiles
mark the event horizons in o’ <t
both components. (b) Results
of numerical simulation:
ng(x, t) for both spin
components with black dotted
lines showing the boundaries
of the black/white holes and
white arrows indicating the
propagation of signals

In general relativity, a key concept is the propagation of signals, whose speed
can never exceed that of light in the vacuum. The propagation of phonon wavepack-
ets across the event horizons in BECs has already been studied, for example in
Refs. [71, 75]. In our model system, we need a “signal” that appears in only one spin
component (e.g. o, representing our universe), that is stable and able to propagate.
The perfect candidate for this task appears to be the 1D HS. As already mentioned
in Sect. 5.2.1, solitons have a lot of properties similar to those of relativistic particles
[1, 79], except that their mass is negative (because they are actually holes rather than
particles): ms; = mq//1 — vZ/c?; their size is given by Iy = &/,/1 — vZ/c? where
vy is their velocity. For attractive interactions, the mass can of course be positive.
Pairs of half-solitons are created thanks to a short time-dependent pulsed potential
acting on a single spin component

U(x, 1) = Upe— &30 /wi g=(t=10)*/7> (5.35)

As the speed of a soliton is related to its depth by v = cn(0)/ns where n(0) is the
density at its center and n in its surrounding [1], we need a weak enough potential
U to excite shallow solitons that will be able to travel at speeds close to ¢ in both
spin components (marked as ¢y, ca below).

Figure 5.10 shows the scheme of a numerical experiment with a single worm-
hole [panel (a)] and the results of the simulations [panels (b), (c)]. A 1D polariton
wire is cw-pumped by two spatially separated, quasi-resonant, o4 polarized lasers
allowing the formation of a steady state flow and convenient density distribution
sketched on the panel (a). Polaritons flow away from the pumping regions and a
closed black hole is formed in the middle. A local effective magnetic field convert-
ing o4 to o_ is present in the black hole region. The o_ density therefore shows a
maximum expelling excitations outside from the central region which corresponds
to the formation of a white hole, in which no excitation can enter, in the o_ uni-
verse.
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Fig. 5.11 Faster-than-sound Co>Cyq
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After the steady state is obtained, a pulsed potential is applied in the o-
component [panel (b)] at t =5 ps at the left of the left horizon, creating propagating
half-solitons. The continuity of the phase imposes the creation of solitons by pairs.
One of these propagates freely to the left, whereas the other enters the black hole
and remains partly guided inside. The effective magnetic field converts a part of
this soliton into the other spin component: o_ [panel (c)]. The soliton is then able to
cross the horizon of the white hole, propagating away together with the flowing con-
densate. One can also see that short-wavelength (corresponding to nonlinear parts
of the spectrum) perturbations are still able to cross the horizon of the black hole in
any direction. The holes possess an internal structure. The speed of the flow is zero
at the center and the black hole is in fact composed by two narrower black holes
surrounding a subsonic region.

Intra-Universe Wormhole In the last part, we will discuss a scheme for an intra-
universe wormhole allowing for the transfer of a HS with an apparent velocity faster
than the speed of sound of its original universe. Such intra-universe wormhole is
based on two inter-universe wormholes similar to the ones previously described, but
connecting the Universes in opposite directions. The scheme at the figure 4(a) shows
the proposed o density profiles with the two wormholes. Dashed line indicates the
propagation of a half-soliton. A o half-soliton is generated at the left. It enters in
the o black hole where it is converted in a o_ soliton, which is ejected by the white
hole part of the wormhole. Then, it travels in the o_ component between the two
wormholes with a velocity close to c¢;. It then reaches the second wormhole, which
is a black hole in the o_ component, where it is captured and converted to a o
soliton ejected from the white hole. The average velocity of this soliton is close to
¢ which can be larger than ¢y, the speed of sound in the oy universe. The results of
corresponding simulations are presented in panels (b) and (c).

The pumping is cw quasi-resonant with inhomogeneous elliptical polarization,
providing the density profiles close to Fig. 5.11(a). A pair of half-solitons is created
at t =5 ps in the o-component at x = 0 [panel (b)]. The “reference” half-soliton
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propagates to the left with the speed limited by c¢; and arrives to the edge at around
t = 30 ps. The half-soliton falling inside the black hole converts into the o_ com-
ponent, gets out of the white hole in o_ [panel c] and propagates with a higher
speed, limited by ¢» > ¢;. This half-soliton arrives to the second wormhole and is
converted back into the o -component, appearing there at t = 25 ps (marked by the
dashed green circle). The two events are marked with black horizontal lines, and the
time difference between them is At ~ 5 ps.

5.3.7 Conclusions

Spinor polariton condensates, being relatively easy to produce and manipulate, can
be used for the simulation of astrophysical objects, such as black holes and worm-
holes. A 2D black hole with a closed event horizon can be simulated. Effective
magnetic fields, well known as the cause of non-trivial spin dynamics of polaritons,
can be used to organize the coupling between the black holes and white holes in the
two spin components. Half-integer topological defects allow to test the propagation
of signals through the wormhole structures. A system of two separated and comple-
mentary wormholes allows one to organize “faster-than-sound” signal propagation.

5.4 General Conclusion

The polariton quantum fluid has shown to have an incredible potential for the anal-
ysis of topological defects and hydrodynamic regimes. The resonant injection of
particles allows to organize flows in an unprecedented manner and the finite life-
time of the particles is a key ingredient towards the creation of event horizons. The
spinor nature of the polariton condensate, which allows a mixing of both phase and
spin topologies, together with polarization splittings that couple the two components
enrich the physics even further, and make possible the organization of fascinating
structures such as oblique half-solitons, half-vortices or wormholes. The whole do-
main combines fundamental effects with the applied ones.
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Chapter 6
Dynamics of Vortices and Dark Solitons
in Polariton Superfluids

Benoit Deveaud, Gael Nardin, Gabriele Grosso, and Yoan Léger

Abstract In this chapter we describe some observations linked with turbulence in
quantum fluids of polaritons. We imprint a given velocity and density to the po-
lariton fluid by using an appropriate pulse intensity and wavevector. The flow is
then perturbed by a natural defect or more interestingly, by engineered traps with a
well defined potential change. The flow of the fluid is measured in a time resolved
fashion through the use of homodyne detection. Both the intensity and the phase of
the fluid can then be retrieved with a picosecond resolution. This allows observing
the nucleation of quantized vortices, with the appropriate 27t phase shift around the
core, or the growth of dark solitons in the wake of the obstacle. The dark solitons
are observed to decay into vortex streets. Our results are compared to dynamical
solutions of the Gross-Pitaevskii equation and a very good agreement is obtained
allowing us to hold good confidence in our interpretation.

Hydrodynamics is an important field of physics with a wide range of well estab-
lished results, and still some parts of the field under active investigation because
of the importance of hydrodynamics, and in particular of hydrodynamical instabili-
ties for major practical applications. Hydrodynamical instabilities have been studied
experimentally at the beginning of the twentieth century with in particular the sem-
inal papers of Bénard [1]. Such instabilities include many different possible cases,
with in particular the convective Bénard-Rayleigh flows and Bénard-Von Karman
streets [2]. The flow around an obstacle is characterized, in conventional fluids, by
the Reynolds number, a dimensionless parameter given by R, = vR/v where v
represents the fluid velocity and v its dynamical viscosity, R being the diameter
of the obstacle. Upon increasing the Reynolds number, either through the size of
the obstacle or the speed of the fluid, the following phenomenology is successively
observed: laminar flow, stationary vortices, Bénard-Von Karman streets of moving
vortices and eventually fully turbulent regime [3]. Such phenomena are observed in
various configurations and with a wide variety of classical fluids.
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Superfluids do not show turbulence in the low velocity regime, when their speed
is sufficiently below the sound velocity in the fluid. This simplified view is valid
when superfluids flow at a speed much smaller that the speed of sound in the fluid.
However, quantum turbulence has been predicted to appear at the breakdown of
superfluidity in quantum fluids, such as for example liquid helium [4] or atomic
Bose-Einstein condensates [5, 6]. The absence of viscosity in superfluids, does not
allow defining a Reynolds number as in classical fluids. In superfluids, the presence
of an impenetrable obstacle leads to a local increase of the fluid velocity. In the
vicinity of the obstacle however, quantum turbulence, in the form of quantized vor-
tices, appears simultaneously with dissipation and drag on the obstacle once some
critical velocity is exceeded. This critical velocity for the appearance of turbulence
is predicted to be lower than the Landau criterion for superfluidity [7], far from the
obstacle [8]. For larger speeds, turbulence occurs in a superfluid is the same way as
they appear in a classical fluid, with major differences however in the fact that vor-
tices are quantized, von Karman streets are made of quantized vortices and solitary
waves are quantized and show a & phase shift, which is not observed in standard
fluids. Quantized vortices and solitons have been observed in liquid Helium [9] as
well as in atom condensates [10].

Since the realization of Bose-Einstein condensation in atom vapors in 1995 [11,
12], studies of first the superfluid behavior of such condensates through for example
the stirring of the condensate allowing to create a network of quantized vortices [13]
have been performed. Then, in a second step, the study of quantum turbulence with
the observation for example of dark solitons [14], their decay into vortex rings [15]
was realized. To conclude this incomplete list, vortex nucleation has been reported
in the wake of a blue-detuned laser moving above a critical velocity through the
condensate [16, 17].

In solids, the idea to use excitons in semiconductors for BEC derives from the
observation, with BCS, that composite bosons could be very good candidates for
condensation, in particular thanks to their mass similar to the mass of an electron.
The idea was independently proposed by Moskalenko [18] and by Blatt [19] and
both papers expose that, being composite bosons with very light mass, excitons
should show BEC at reasonable temperatures. Such and idea has been pursued fur-
ther by Keldysh [20], who described the possible transition from BEC to BCS of
excitons. It soon became obvious that exciton condensates, if they are observed,
should also evidence superfluidity [21]. Claims for condensation have been made
by different groups in exciton physics, as early as in the late seventies [22, 23].
The different groups have in particular been using large band-gap semiconductors
where the binding energy of excitons is larger and therefore the saturation density
would be better suited for condensation. Such claims have however subsequently
proved to be premature and have not been confirmed yet. Superfluidity has not been
demonstrated either in such exciton systems.

In 1992, Claude Weisbuch and his coworkers pinned down the appearance of
strong coupling between light and excitons in semiconductor microcavities there-
fore opening the whole field of microcavity polaritons [24]. Polaritons, half exciton
and half photon quasiparticles, result form the coupling of two bosonic particles
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and they inherit this double bosonic character. From the photon part, they get a very
light mass, and from the excitonic part, they are strongly interacting at high densi-
ties. They also carry a spin, common to the exciton as well as to the photon part.
Polaritons possess many interesting properties linked with their dispersion relation,
in particular they possess a very light mass. Such a light mass should allow to ob-
serve Bose-Einstein condensation at rather high temperatures, and even possibly at
room temperature. The observation of Bose-Einstein condensation of polaritons has
been claimed in 2006 [25] in particular based on the observation of spontaneous
long range ordering. Long range order has since then been observed in a number
of other systems and in different labs around the world [26-28]. Subsequently, po-
lariton condensation has also been claimed, without yet the demonstration of long
range order, in different systems and in particular in GaN based cavities at room
temperature [29, 30].

Following these demonstrations of the condensation of polaritons, and after the
observation of quantized vortices pinned by the disorder existing in the sample, both
single quantized vortices [31], half vortices [32] and vortex pairs [33]. Also, follow-
ing the theoretical farseeing proposal by Carusotto and Ciuti [34], Alberto Amo and
coworkers, using a clever “TOPO” configuration (triggered optical parametric os-
cillator), were able to give evidence of both the superfluidity of resonantly injected
polaritons and the onset of turbulence in such a quantum fluid [35, 36]. Polaritons
indeed clearly constitute a very advantageous tool to explore both superfluidity and
quantum turbulence. Their dual light-matter nature gives them many advantages.

Thanks to a one-to-one coupling to the extra-cavity field, with conservation
of in-plane momentum and energy, exciton polaritons can be easily optically in-
jected, manipulated and detected [37, 38]. Thanks to their excitonic part, polari-
tons can interact with each other, leading to spectacular nonlinear behavior (see for
example [39, 40]). At the same time, the interactions between polaritons may be
tuned through the detuning between the exciton and the photon modes in the cav-
ity. The scattering strength between polaritons is an easily adjustable parameter.
The phase of the quantum fluid, and the changes in the phase around singularities,
can be probed very directly with simple interferometric studies not accessible to
the now standard condensates and superfluids: superfluid Helium, superconductors,
cold atom condensates.

In the present work, we follow on the ideas of Carusotto and Ciuti [34] and im-
age, in a time resolved way, the flow of a polariton quantum fluid around an obstacle.
The light emitted by polaritons allows for homodyne detection of the emission and
a very precise resolution of the coherence of the system. Our sample contains two
dimensional polaritons and traps of well-defined geometry. We may excite polari-
ton fluids of any density and peed by adjusting the excitation power and angle of
incidence on the microcavity sample. Our technique has allowed evidencing the nu-
cleation of vortex pairs in the wake of an obstacle. It has also allowed to observe
dark solitons, and to study their stability and their break-up into vortex streets [41].
As the observations of superfluidity in the continuous regime are described in an-
other chapter in this book [42], we will concentrate here on the observation of the
dynamics of quantum turbulence in polariton superfluids.
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Fig. 6.1 Polariton mesas. Polariton mesas constitute potential obstacles with a size and depth that
can be engineered at will. The mesa is realized by proper etching of the cavity spacer layer. (a) Giv-
ing rise to a modulation of the photon energy, which transfer to the polariton energy (b) Typical
energy levels for confined polaritons in a trap. Figure adapted from the PhD of Gael Nardin [43]

6.1 Experimental Details

The sample that we use is a GaAs microcavity sandwiched between two distributed
Bragg reflectors (DBR) with 22 (21) AlAs/GaAs pairs for the bottom (top) DBR.
One single 8 nm thick InGaAs quantum well (QW) placed at the anti-node of the
cavity field. The sample shows a Rabi splitting of 3.5 meV, in agreement with the
exciton oscillator strength in the InGaAs QW and a cavity mode quality factor of
7000. A homodyne detection system (see Fig. 6.2) is used to probe the properties of
the fluid.

Obstacles along the flow of the fluid consists either of a structural defect obtained
randomly in the microcavity plane during the growth process, or of engineered de-
fect, with a well known shape depth and position (polariton mesas [44], see Fig. 6.1).
Both obstacles are penetrable. Their size can be estimated to be of the order of 5 um
in the direction perpendicular to the flow. The sample is placed in a cold-finger
cryostat at liquid helium temperature.

The polariton population is generated using a pulsed Ti:sapphire laser. The laser
pulse is spectrally shaped into 1 meV broad, 3 ps long pulses (we try to get the
best out of the time energy uncertainty: we need a short enough pulse, and a precise
enough energy). The laser is circularly polarized. The pulses are then split into one
excitation pulse and one reference pulse. The reference pulse is directed through a
telescope for spatial filtering and wavefront tuning, and incident at a small angle on
the CCD, to serve as a phase reference [45]. The excitation pulse is passed through a
delay line and focused on the back of the sample using a 25 cm focal length camera
objective, providing a Fourier limited 25 um diameter excitation spot. An oblique
excitation angle is used to create a propagating polariton wave packet in the lower
polariton branch with an initial adjustable in-plane momentum of 1.2 um~" (in most
cases, see Fig. 6.3 for a schematics of the excitation).
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Fig. 6.2 Homodyne detection system. (a) Time and phase resolved imaging setup, based on a
Mach-Zehnder interferometer. In order to obtain the time resolution, a mode-locked Ti:sapphire
laser is used, and a delay line allows to scan the delay between excitation and reference pulses.
A pulse shaper is added for the spectral tailoring of the laser pulse. It is preceded by a A/2 wave-
plate, that allows for the rotation of the laser linear polarization, in order to maximize the output
power of the polarization sensitive pulse shaper’s grating. (b) Detail of the pulse shaper, contain-
ing a 1200 lines/mm blazed grating, a 50 cm focal length lens, a 75 um wide slit and a mirror. (c)
Spectrum of the laser pulse at the pulse shaper output, showing a nearly Gaussian 140 peV broad
pulse. Figure adapted from the PhD of Gael Nardin [43]

The coherent emission is collected by means of a 0.5 NA microscope objective
in a transmission configuration. Real space or Fourier space images of the coherent
emission are allowed to interfere, in a Mach-Zehnder configuration, with the refer-
ence pulse on the CCD. From the interferogram we numerically extract the ampli-
tude and phase of the coherent emission at a time given by the delay between the
excitation and reference pulses. Varying this delay allows us to probe the dynamics
of the coherent polariton population in both real and momentum spaces. By acquir-
ing data over 0.2 s, each measurement corresponds to the integration over millions
of successive experimental realizations.
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Fig. 6.3 Schematics of the experiment. (a) A polariton wavepacket is resonantly injected with an
in-plane wavevector k,, in front of a structural defect on which it scatters. (b) Experimental polari-
ton dispersion curve, under non-resonant pumping. The plain line indicates the theoretical lower
polariton (LP) dispersion, and the dashed line the standard small momentum parabolic approxi-
mation of the LP branch. During the experiment, polaritons are resonantly injected in the lower
polariton branch: the yellow circle indicates the energy and momentum extension of the pulsed
pump. Figure adapted from the PhD of Gael Nardin [43]

To extract the polariton amplitude and phase from the recorded interferogram, we
use a technique known as digital off-axis holography [46]. The principle is to per-
form a two-dimensional Fourier transform of the interferogram. The fringes of the
interferogram provide off-axis contributions in the Fourier plane, which can easily
be differentiated from the cw contributions. Removing the cw contributions and per-
forming an inverse Fourier transform allows one to isolate the fringes, from which
the amplitude and phase are extracted. Such a procedure provides the full informa-
tion on the coherent polariton field.

As a result of polariton-polariton interactions, resonantly pumping the polariton
branch strongly modifies the excitation spectrum [34]. These interactions result in
a blue-shift of the dispersion curve (interaction energy) and a linearization of the
dispersion (Bogoliubov spectrum [47]) in the polariton gas. Such interactions are
exemplified in Fig. 6.4, which allow understanding, in simplified terms, the transi-
tion form superfluidity towards turbulence when the speed of the fluid is larger than
the sound speed in the fluid. In part (a) of the figure are sketched the transformation
of the dispersion of polaritons as a function of density. This corresponds to the Bo-
goliubov transformation and should be accompanied by the appearance of a “ghost
branch” [48, 49] that we will not discuss further in the present work. The linearized
dispersion of the Bogoliubov dispersion explains the absence of scattering of a su-
perfluid at rest. When the fluid is given some speed, the dispersion is modified as
shown in Fig. 6.4b. If the speed is smaller than the speed of sound, we obtain the case
in blue in Fig. 6.4b, where scattering stays impossible for moving polaritons. If, on
the contrary, the speed is larger than the sound speed (see the red curve in Fig. 6.4b,
where in fact the speed as been kept constant, but the sound speed has decreased
because the density of the fluid has decreased), scattering becomes possible.
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Fig. 6.4 Bogoliubov excitation spectra. (a) Plots of the excitation spectra, of the polaritons excited
at k = 0, with the Bogoliubov transformation and the blueshift due to polariton-polariton interac-
tion. (b) Same, with an excitation at 1.2 um~!'. When the density is too small, scattering of the
polariton flow is possible (red curve). Figure adapted from the PhD of Gael Nardin [43]

Frictionless flow of a polariton wave packet has been first reported in a triggered
OPO scheme [35], and the superfluid regime has been demonstrated in a resonantly
injected polariton fluid [36, 50]. In these last papers, depending on the fluid velocity,
superfluid or Cerenkov regimes were observed when the polariton flow scatters on a
defect. Additionally, quantized vortices have been optically imprinted in the optical
parametric oscillator (OPO) configuration [51, 52].

6.2 Superfluidity and Turbulence in Microcavities

As explained above, at too large speeds, similarly to conventional superfluids, quan-
tum turbulence is expected to appear in polariton fluids at the breakdown of superflu-
idity. When the sound velocity in the system is decreased, hydrodynamic nucleation
of quantized vortices should occur when the local fluid velocity in the vicinity of the
obstacle becomes larger than the sound velocity. A Cerenkov regime, accompanied
by soliton lines, follows when the velocity of the fluid far from the obstacle becomes
greater than the speed of sound

In our samples, the sound velocity ¢, for the polariton fluid depends on the po-
lariton density n, following ¢y = «/ng/mrp (where g is the polariton-polariton in-
teraction constant and mp the lower polariton effective mass). The sound velocity
can therefore be controlled simply by tuning the excitation power (see Fig. 6.4a).
In the very low-density regime (black curve in Fig. 6.4b), the possibilities of elastic
scattering due to disorder (the intersection with the dashed line) allow the formation
of the so-called “Rayleigh ring” in the two-dimensional momentum space [53-55],
see Fig. 6.5. Under high excitation density (blue curve), superfluidity arises because
the dispersion no longer offers the possibility of Rayleigh scattering. This prevents
any interaction of the polariton fluid with disorder. This collapse of the Rayleigh
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Fig. 6.5 Time variation of the Bogoliubov excitation spectra. Upper panel: Theoretical disper-
sion curves. Under low excitation density, the system is in the linear regime, and the dispersion is
parabolic in the small momentum approximation (black curve). Polariton population is given by
the black dot, and the intersection of the dashed line with the dispersion gives the possibility of
scattering events, which conserve energy. When increasing the pump power, the excitation spec-
trum is modified, going from a Cerenkov regime (red curve) to a superfluid regime (blue curve).
The black arrow schematically shows the time evolution of the dispersion curve during the decay
of the polariton population. Lower panel: Rayleigh ring in the low intensity regime, at a delay of
5.7 ps after the excitation pulse: no relaxation is observed. Figure adapted from the PhD of Gael
Nardin [43]

ring has been experimentally demonstrated by Amo et al. [35, 36]. In this case, the
Landau criterion is fulfilled, as the fluid velocity is smaller than the sound velocity.

This case corresponds to a Mach number (defined as the ratio of the fluid velocity
v over the sound speed cg) smaller than one (v/cs < 1). The red dispersion curve
depicts a Cerenkov regime, where the fluid velocity is greater than the sound speed
(v/cs > 1). The green dispersion curve in Fig. 6.5 shows an intermediate regime,
corresponding to a Mach number of v/c; = 1. In such a case, the dispersion curve
is flat on a finite distribution of wave vectors, offering a contiguous reciprocal space
region in which Rayleigh scattering can occur. Using a pulsed excitation, we expect
to pass through all these regimes (as schematically indicated by the black time arrow
in Fig. 6.5, upper panel, after the polariton injection, leading to an extremely rich
dynamics).

6.3 Momentum Space Dynamics

We first discuss the dynamics in momentum space. At low excitation pump power,
the system is in the linear regime (black curve in Fig. 6.5). In this case, a Rayleigh
ring (Fig. 6.5, lower panel) appears as the result of elastic scattering of polaritons on
the disorder of the microcavity [56]. The Rayleigh ring disappears together with the
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Fig. 6.6 Disappearance of
the Rayleigh ring. Successive
recordings of the reciprocal
space emission of the
microcavity. In the present
case, where the excitation
density is large enough to
allow polariton-polariton
scattering, and too small to
allow a superfluid regime,

a slow down of the fluid is
obtained, evidenced by the
concentration of polaritons
around small wavevectors.
Figure adapted from the PhD
of Gael Nardin [43]
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polariton decay time. At higher pump power, the time-dependent polariton density
will make the dispersion curve vary with time, passing through the different cases
depicted in Fig. 6.5. The four panels of Fig. 6.6 show different snapshots of this
evolution.

At first the excitation laser creates a wave packet with an in-plane momentum
defined by the excitation laser angle to the sample surface. Then, as time evolves, we
observe the filling of the interior of the Rayleigh ring first due to inelastic scattering.
This results in an average slowing down of the wave packet. At the same time, the
density of the polariton fluid decays due to the short lifetime of polaritons.

This observation may be understood as follows: the decay of the polariton density
is accompanied by a decrease of the sound velocity. When v & ¢, (green curve in
Fig. 6.5), elastic scattering of the polariton wave packet on the disordered landscape
fills a contiguous region inside the Rayleigh ring, relaxing the wave vector conser-
vation rule. This is of crucial importance for the vortex nucleation mechanism, as
vortices can appear only when a significant quantity of fluid has been slowed down
behind the obstacle and a contiguous and sufficiently broad region of the recipro-
cal space provides the necessary wave vectors to form the rotating flow around the
phase singularity.

The observed behavior can be qualitatively reproduced using the generalized
Gross-Pitaevskii model previously introduced by Ciuti and Carusotto for exciton
polaritons [34, 57]. We solve iteratively this generalized Gross-Pitaevskii equation
with parameters adjusted to the experiment. We briefly summarize this model now.
The time evolution of the quantum fluid can be obtained, in a simplified way by only
considering the lower polariton mode i and can be described by:

d
ih () = (—i§+2kjhwk|k><k|+g|w<r, r)}z)vf(r, D+ VY, 0+ Fe(r.0)

The potential V is modeled as a 3 um large and 1 meV high obstacle in the first series
of experiments that we are describing here. Our model accounts for the dissipation
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Fig. 6.7 Superfluid behavior without turbulence. The three rows show the polariton density (I), the
fringes of the measured interferogram, in a saturated color scale (II), and the polariton phase (III).
The estimated obstacle position is indicated with a green circle, and the polariton flow goes left-
ward (see the red arrow in the third row). At low speed, the wavepacket passes the obstacle without
any turbulence. When the polariton population has significantly decayed (last two columns), a vor-
tex pair is created at the boundary of the obstacle. The pair remains stitched to the defect for several
picoseconds, and disappears in the noise when the polariton population has decayed. The density
scale has been multiplied by 3 for the last 3 panels of the first line, for sake of visibility. Figure
adapted from the PhD of Gael Nardin [43]

of polaritons, at rate y /A, after a 1 ps long initial excitation of the system through
Fi(r,t). The polariton—polariton interaction is assumed to depend linearly on the
polariton density |y (r, 7)|* through a phenomenological coefficient g. The lower
polariton dispersion is approximated to a quadratic dispersion with effective mass
myp. The parameters used in the simulations are: y = A/15 ps, g = 0.01 meV um?,
hoy = h*k*/2mpp with mpp = 0.7 meV ps> um~2. The excitation intensity for the
high excitation experiment corresponds to a maximal polariton density of 120 um—2
on 20 um large spot.

6.4 Real Space Dynamics, Superfluid Behavior

At low speed, as evidenced in Fig. 6.7, a very clear superfluid behavior is observed.
This is in close agreement with the observations that have been performed by Al-
berto Amo and coworkers [35, 36, 42]. The three rows of Figs. 6.7 to 6.9 display
experimental images of respectively (I) the normalized polariton density, (II) the
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fringes of the interferogram (in a saturated color scale, to track the fork-like dislo-
cations), and (IIT) the phase of the polariton gas, for different times after the excita-
tion pulse. The estimated obstacle position is indicated with a green circle, and the
polariton flow goes leftward (see the red arrow). The homodyne setup a not only al-
lows to access the dynamics of the polariton fluid density, but also its phase, whose
gradient provides the local in-plane momentum of the fluid.

This superfluid regime is straightforwardly observed in the high excitation den-
sity regime, giving a fast sound velocity, and small excitation angle, leading to a
small speed of the polariton fluid. While the fluid density passes apparently unaf-
fected over the defect, the phase structure allows to evidence a progressive bending
of the phase front, corresponding to the slowing down of the flow behind the obsta-
cle. Eventually, at long time, i.e. when the fluid density has decayed, a unique vortex
pair is nucleated in the vicinity of the defect. at long time, when only a fraction of
the polariton population is remaining. Interestingly, this low velocity regime pro-
vides the most accurate estimation of the obstacle effective size, given by the dark
region in the third column of Fig. 6.71. The defect shows transverse size of about
5 um and a size in the direction of the flow of about 2 ym.

6.5 Real Space: Vortex Dynamics

Let us now discuss the dynamics of the vortex nucleation and migration. Figure 6.8
displays experimental images of (I) the normalized polariton density, (II) the fringes
of the interferogram and (III) the phase of the polariton gas, for different times af-
ter the excitation pulse. In the first column (¢ ~ —0.7 ps), the phase structure im-
posed by the excitation laser is nicely observed. The phase gradient directly al-
lows one to extract the flow velocity, which is homogeneous and measured to be
1.1 £0.2 umps~!, in agreement with the injected velocity of 1.1 4.3 umps~!.

In the following, the fluid velocity will be specifically measured on two points
of interest: behind the obstacle and on the equator of the obstacle perimeter. The
corresponding measurement areas are indicated in Fig. 6.8 by a dashed white square
and a plain white square, respectively. In the second column (1.3 ps), a low-density
region appears in the wake of the defect, along with a curvature of the wavefront.
The measurement of the phase gradient clearly shows that the polariton flow slows
down in the wake of the obstacle. The flow velocity behind the obstacle is shown in
Fig. 6.9a: a monotonous slowing down of the flow is observed.

In the third column of Fig. 6.8 (3.7 ps), the flow velocity is measured to be O :
9+0:2umps~!, dropping to 0:3+0:2umps~! in the fifth column (9.3 ps),
whereas the flow velocity measured on the obstacle perimeter, shown in Fig. 6.9b
(cyan curve), remains above 0.9540.35 um ps~! on this time range. As expected in
a quantum fluid, where the circulation is quantized, the phase accumulation between
the very slow wave behind the obstacle and the main flow has to be accompanied by
the nucleation of quantized vortices [58].

The fluid velocity vector field is extracted from the phase gradient of the polari-
ton field. The values of Fig. 6.9a are obtained by fitting the slope of the phase profile
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Fig. 6.8 Experiment: vortex nucleation regime. Experimental images for high excitation density
(Pexe = 2.1 mW) and high fluid velocity. The wavepacket propagates towards the left, with an
initial momentum of 1.2 pm". The three rows show (I) the polariton density, (II) the fringes of
the measured interferogram, (III) the polariton phase. In the first column (—0.7 ps), the phase
structure is fully imposed by the excitation pulse. Second column (1.3 ps): the polariton fluid starts
to feel the effect of the obstacle, resulting in a zone of low polariton density in the wake of the
obstacle, and a bending of the polariton wavefront. Third column (3.7 ps): nucleation of vortices in
the wake of the obstacle. Vortices are indicated with white markers (x for vortex, + for anti-vortex)
on the density plot and are circled in red on the interferogram and on the phase plots. Dotted circles
indicate short-lived vortices. Fourth, fifth and sixth columns (from 4.7 to 13.3 ps): motion of the
long-lived vortex pair. Previous vortex positions are indicated with white dots on the density plots,
allowing us to follow the vortex motion. Dashed circles in the fifth column (9.3 ps) indicate the
position of a new vortex pair, which moves on a few microns before disappearing due to the decay
of the polariton population. For the sake of visibility, density values are multiplied by a factor three
in the last density plot. Figure adapted from the PhD of Gael Nardin [43]

in the region of interest. The error bars take into account the standard deviation of
the linear fit, as well as a systematic error coming from the determination of the
phase gradient induced by the set-up alignment (see Ref. [40] for how this reference
phase gradient can be determined). The value of the local sound velocity is deter-
mined from the density map, originally in arbitrary units, which needs to be scaled
to the blue-shift ng. We have access only to the spatially and temporally averaged
blue-shift in the polariton dispersion, which is measured to be 0.8 meV. Assuming
that the major contribution to this blue-shift comes from the beginning of the dy-
namics, when the maximal population density is reached, we scale the density maps
to the blue-shift. This allows us to extract a rough estimation for the local speed of
sound along the dynamics (it more probably gives a lower bound to its value, as the
averaging of the blue-shift yields an underestimation of its value). We consider an
error in the local sound velocity, which takes into account the standard deviation on
the averaging in the region of interest, as well as a systematic error on the scaling
method, estimated to 25 %.
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Fig. 6.9 Quantitative velocity measurements. (a) Flow velocity measured behind the defect (in
the region delimited by the dashed white square in Fig. 6.81), for the vortex nucleation regime. An
almost constant slow down can be observed. The small jump observed at around 6 ps is due to
a phase singularity passing in the vicinity of the region of interest. (b) Flow velocity and sound
velocity measured on the obstacle perimeter (in the region delimited by the plain white square in
Fig. 6.8]), for the vortex nucleation regime. The error bars on the velocity take into account the
standard deviation of the linear fit of the phase gradient, as well as a systematic error coming from
the determination of the phase gradient induced by the setup alignment. The error bars on the sound
velocity take into account the standard deviation on the averaging in the region of interest, as well
as the systematic relative error on the scaling method. (¢) Red curve: Mach number on the obstacle
perimeter, for the vortex nucleation regime. Blue curve: Mach number on the obstacle perimeter, for
the low velocity regime. The green line at M = 1 indicates the limit between subsonic flow (below
the line) and supersonic flow (above the line). Figure adapted from the PhD of Gael Nardin [43]

The third column of Fig. 6.8 (3.7 ps) exemplifies the nucleation of vortices. The
ripping of the phase front is clearly visible (this needs good eyes at 3.7 ps, but is very
clear at 4.7 ps). Vortices are unambiguously identified both by a minimum of density
and a fork-like dislocation in the interferogram, accompanied by a phase singularity
in the phase structure. They are indicated by white markers on the density map (x
for a vortex and + for an anti-vortex) and red circles on the interferogram and phase
maps. At the onset of vortex nucleation, four of them are observed in the wake of
the defect. Rapidly, within less than 2 ps, two of them (circled with dotted lines)
merge together and disappear.

In our experiments, the size of the obstacle is large enough to nucleate one vortex
pair only: as discussed above, the defect size measured to be about 5 um across the
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direction of the flow. The defect size however appears to be too small to allow the
nucleation of four vortices. The remaining vortex pair flows downstream, and we
track its motion (white dots on the density map) for 10 um, until the decay of the
polariton population.

In atomic condensates, the vortex trajectories consist in closed loops because
of the trapping potential [59]. In microcavities, the polariton vortices are free to
propagate in the plane. The wandering nature of their tracks is presumably due to the
disorder landscape. Their common change of direction with respect to the direction
of the flow is attributed to the microcavity wedge, which indeed provides a potential
gradient. Interesting also is to note the additional vortex pair created at a delay of
9 ps (visible in the fifth column, dashed circles). This pair propagates only a few
micrometers and then disappears in the noise due to signal decay. This does not
allow us to define a shedding frequency, as this latter is expected to depend on the
fluid density [60] which varies with time in our experiment.

6.6 Real Space Dynamics, Cerenkov Case

Figure 6.10 now shows the scattering of a low-density polariton wavepacket on the
same obstacle, for an excitation power of 15 uW and an excitation angle corre-
sponding to a pump in-plane momentum of 1.2 um~!. As a result, because of the
low polariton fluid density, the speed of sound in the system is low (c; = 1/ng/m).
We devised the excitation scheme so that the observe regime can be seen as strongly
supersonic. In this regime, the polariton gas normally interact with disorder, and
scatters elastically on the obstacle.

In the momentum space, a Rayleigh ring is visible, as shown in Fig. 6.5. In
real space, a parabolic wavefront is created that corresponds to interference be-
tween the propagating polariton fluid and the scattered polaritons. In the first column
(—0.7 ps), the phase structure is imposed by the excitation laser. The fluid density
already shows the precursors of the parabolic wavefronts, though. These wavefronts
are much more defined in the second column, where a nontrivial phase structure has
developed: finite phase jumps can be seen between the successive wavefronts. In the
third and fourth columns, the decay of the polariton population can be observed.

The Cerenkov case (or low density regime) has been observed in similar con-
ditions in the experiments of Amo et al. [36, 42, 61] following the predictions of
Carusotto and Ciuti [34]. The very high speed of the quantum fluid with respect to
the speed of sound does not allow anymore for the creation of quantized vortices.

6.7 Conditions for Vortex Nucleation

In order to be able to determine the nucleation conditions in terms of polariton
density and fluid velocity, we performed the same experiment with different ex-
citation angles and powers. According to theoretical predictions [49, 58] different
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Fig. 6.10 Experiment: low density/Cerenkov regime. Experimental images of the scattering of the
polariton wavepacket on the structural defect (indicated by a green circle), for the low-density
regime (Pgy = 15 uW). The pump in-plane momentum is 1.2 um~!. The three rows show the
polariton density (I), the fringes of the measured interferogram, in a saturated color scale (II),
and the polariton phase (III). With this low excitation density, the polariton wavepacket undergoes
elastic scattering on the obstacle, leading to parabolic interference fringes between the propagating
polariton and the backscattered ones. The phase resolution allows evidencing a finite phase jump
between the different parabolic precursors. Density values are multiplied by a factor three in the
last density plot, for the sake of visibility. Figure adapted from the PhD of Gael Nardin [43]

flow regimes are indeed observed, depending on the Mach number. Turbulence is
expected in the wake of the obstacle when the local velocity on the perimeter of the
impenetrable obstacle becomes supersonic. The original work of Frisch et al. [4]
also predicts that this critical velocity is attained on the obstacle perimeter when
v/cg ~ 0.4 far from the defect, in a homogeneous and steady flow.

In our case, it is not possible to use such a criterion, as we have a finite-size,
time-dependent population, and most likely a penetrable obstacle. The only way to
determine the experimental conditions for vortex nucleation is therefore to look at
the local fluid velocity and sound velocity on the obstacle perimeter. The fluid ve-
locity vector field can be directly extracted from the polariton field phase gradient,
the local speed of sound can be obtained from the density map. It is therefore pos-
sible to estimate the value of the local Mach number v/c; on the obstacle perimeter
along the dynamics. These values, computed in the area delimited by the plain white
square in Fig. 6.8, are displayed in Fig. 6.9b (Cyan curve). This allows us to check
that, indeed, a value of v/cg ~ 1 is obtained on the obstacle perimeter at the onset
of the vortex nucleation mechanism.

Reducing the excitation angle, we have probed different wavepacket momenta,
and observed the nucleation of vortices in the wake of the obstacle down to a critical
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initial fluid momentum of 0.6 um~'. Below this characteristic momentum, the wave
packet passes the obstacle without any visible perturbation. The values of the Mach
number on the obstacle perimeter for this regime are plotted in blue in Fig. 6.4b,
for comparison with the vortex nucleation regime. Our measurements show that
the flow remains mostly subsonic during the major part of its dynamics. Finally,
we have also varied the average excitation power and observed a threshold (at
0.04 uW um~2) under which no vortices are nucleated in the wake of the obstacle.

Instead, parabolic backscattering standing waves are visible on the polariton den-
sity maps, and a Rayleigh ring is visible in the Fourier plane, as shown in Fig. 6.5.
This corresponds to a standard elastic scattering process, where the flow is super-
sonic, as the polariton density and consequently the sound velocity is very low. In
this low-density limit (also called the linear regime), the interaction energy is negli-
gible with respect to the kinetic energy.

6.8 Insights from Numerical Simulations

The three typical behaviors that we have highlighted here are extremely well re-
produced by our numerical simulations. This is true for vortex pair nucleation,
the unperturbed flow and the standard Rayleigh scattering in the low-density flow.
Our simulations take into account the pulsed excitation, the finite spot size and the
exponential decay of the polariton population. The different simulations are high-
lighted in the three Figs. 6.11, 6.12 and 6.13, the main findings being summarized
on Fig. 6.14.

Similarly to our experimental findings, the low-velocity regime remains subsonic
for a longer time than the vortex nucleation regime (see Fig. 6.11). The simula-
tion shows that the fluid passes around the obstacle without being affected. Only at
longer times, when the density of the fluid has decayed, bringing the sound speed
below the speed imposed on the fluid, do vortices appear. They appear at the back-
side of the obstacle, where the speed is the smallest. The vortex pair stays pinned
on the obstacle for some time, and is then dragged away. Such an effect at long time
has not been observed in our experiment, presumably hidden in the fluctuations of
the phase at long times due to the low intensity of the signal.

The next simulation (Fig. 6.12) corresponds to the supersonic regime, where the
injected density is kept small, and therefore the sound speed is quite slow. In such a
case, in the simulation as in the experiments (see Fig. 6.10), no vortices are observed
and the interaction with the defect created a parabolic wave due to the scattering on
this defect. The Rayleigh ring is computed in the simulations, once again in very
good agreement with the experiment.

Figure 6.13 now shows the simulation in a case where vortex nucleation is ob-
served (see Fig. 6.8 for the experiment). There is a very nice qualitative agreement
between the results of the simulation and the experimental observations. This allows
us to go into more detail with the simulation where we can probe details difficult to
attain in an experiment.

Consistently with the argument originally developed by Frisch et al. [4] for the
transition to turbulence in a superfluid, we find in the simulation that the phase
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Fig. 6.11 Simulations: low velocity regime. Simulation of the low velocity regime, reproducing
the features of the experimentally observed low velocity regime of Fig. 6.7. (I) and (II) density
and phase profiles of the polariton fluid. A vortex pair is nucleated at long time, and stay on the
defect for several picoseconds. Simulation show that the vortex pair is eventually dragged away
form the defect at long time, when the fluid density is very low. This effect is not observed in
experiment, as the low fluid density at long times hinder the measurement of the phase. Density
values are multiplied by a factor three in the last density plot, for the sake of visibility. (III) Mo-
mentum space dynamics. The white dashed circle indicates the position that would be expected for
a Rayleigh ring. The position and size of the defect are indicated by the green circle. Parameters:
kpump = 0.6 um~!, excitation power 120 um~2 on a 20 um large spot. Figure adapted from the
PhD of Gael Nardin [43]

accumulation resulting in vortex nucleation starts at the precise time when the fluid
velocity becomes equal to the sound speed (when v/c; = 1) on the obstacle equator.
The nucleation of the vortex pairs occurs just after this event. The higher the initial
velocity, the closer the vortex nucleation will occur to the initial phase accumulation.
The vortices are then dragged away from the obstacle at later times, in a time range
corresponding to the experimental findings.

A snapshot of the computed phase profile is displayed in Fig. 6.14, for the vortex
nucleation regime, at the onset of the first vortex pair nucleation (this correspond to
a time delay of 3.5 ps after the excitation, see the corresponding panel in the second
column of Fig. 6.13). Local values of the Mach number are represented by colored
lines. The thick green line corresponds precisely to a Mach number of 1.

In order to compare further the experimental findings of Fig. 6.9, with the sim-
ulations of Fig. 6.13, we plot in Fig. 6.14b the time evolution of the Mach number
in a small region close to the equator of the obstacle (black circle at the center of
Fig. 6.14a), using simulation parameters corresponding to the three flow regimes de-
scribed previously (vortex nucleation regime, low velocity regime and low-density
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Fig. 6.12 Simulations: low density regime. Simulation of the low density, supersonic regime, re-
producing the experimental features of the experimentally observed low density regime of Fig. 6.8.
(I) and (IT) density and phase profiles of the polariton fluid, displaying parabolic scattering wave-
fronts. (III) Momentum space dynamics, showing the appearance of a Rayleigh scattering ring.
The white dashed circle indicates the expected position of the Rayleigh ring. Position and size
of the defect are indicated by the green circle. Parameters: kpymp = 1.2 pmfl, excitation power
1.2 um~2 on a 20 um large spot. Figure adapted from the PhD of Gael Nardin [43]

regime). Whereas the low-density experiment always lies in the supersonic region
(black curve), the high-density experiments (blue and red curves) remain subsonic
for a significant part of their dynamics.

To conclude this part, our Gross-Pitaevskii numerical simulations allow us to
evidence the role of the polaritonic nonlinearities in the nucleation process of vor-
tices. Indeed, no vortices are nucleated in the wake of the obstacle if the interaction
constant is set to 0. The equations therefore allow us to differentiate clearly hydro-
dynamic nucleation process from linear optical processes, such as the generation of
vortex lattices, whenever three or more plane waves interfere.

6.9 Dark Solitons and Vortex Streets

Aside from quantized vortices, perturbations of quantum fluids can also lead to the
creation of solitary waves called solitons resulting from the compensation between
dispersion and particle interaction [62, 63]. In fact, the Gross-Pitaevskii equations
that we are using are closely related to the wave equations in nonlinear optics that
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Fig. 6.13 Simulations: vortex nucleation regime. Simulation of the vortex nucleation regime,
reproducing the features of the experimentally observed vortex nucleation regime of Figs. 6.7
and 6.8. (I) and (I) density and phase profiles of the polariton fluid, displaying the hydrodynamic
nucleation of two vortex pairs. (III) Momentum space dynamics, showing a spreading into the in-
terior of the Rayleigh ring. The white dashed circle indicates the position that would be expected
for a Rayleigh ring. Position and size of the defect are indicated by the green circle. Parameters:
kpump = 1.2 um~!, excitation power 120 um~2 on a 20 um large spot. Figure adapted from the
PhD of Gael Nardin [43]

allow describing the propagation of light pulses in optical fibers. In the case of
optical fibers, bright solitons are the result of a precise compensation between the
self-phase modulation in the fiber and the chromatic dispersion [64]. Bright solitons
propagate in fibers without changing their shape.

In condensates, in the particular case of repulsive interaction, dark solitons are
expected. Dark solitons are density depressions move in the fluid while keeping a
constant shape. They are characterized by a w phase jump across the density min-
imum. Since the first theoretical prediction [65], dark solitons have been observed
in a variety of systems such as for example thin magnetic films [66]. They have
recently attracted considerable interest in the field of atomic Bose-Einstein conden-
sates [67] because they constitute excitations of the condensate that spontaneously
occur upon the phase transition.

Dark solitons are often considered as the dispersive and nonlinear analog of
shock waves of supersonic motion [68]. The production of dark solitons by phase
imprinting in BEC has recently been reported [69, 70]. Such observations have trig-
gered a clear interest towards their possible hydrodynamic formation and stability.
In particular, dark solitons are known to be unstable with respect to transverse per-
turbations [71, 72] and to eventually decay into other more stable structures [73-75].
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Fig. 6.14 Nucleation criterion: numerical evidence. (a) Numerical simulation of the phase profile,
with simulation parameters corresponding to the vortex nucleation regime, at the onset of vortex
nucleation. The obstacle is indicated with a black circle, and the flow is directed leftward. The
thick red circles show the vortex positions. Color lines indicate lines of equal Mach number. The
green thick line indicates a local Mach number of 1, blue lines indicate a local subsonic flow
(v/cs < 1), yellow to red lines indicate a local supersonic flow (v/cg > 1). (b) Evolution of the
Mach number at the equator of the obstacle (small black and white circle in (a)), using simulation
parameters corresponding to the vortex nucleation regime (red curve), to the low velocity—mainly
subsonic—regime (blue curve) and to the low density—linear—regime (black curve). The phase
accumulation starts when the fluid velocity crosses the sound velocity (v/cs = 1) on the obstacle
equator (dashed lines) resulting in a systematic way in the nucleation of vortices. Figure adapted
from the PhD of Gael Nardin [43]

In this paragraph, we follow on the previous experiments on turbulence, using
the same homodyne detection system, with the same sample, however, this time, the
defect is an engineered defect (mesa) that allows a better control on the experimental
parameters [76]. Solitons are indeed predicted to appear for Mach numbers larger
than 1 with values depending on the nature of the obstacle. Our experiments follow
on observation of dark solitons in polariton fluids by Amo et al. [77], as well as of
bright solitons using the TOPO technique [78].

Figure 6.15 shows an example of the scattering dynamics of a supersonic po-
lariton wave packet against a 3 um mesa (green solid circles at the center of the
images). Polaritons are injected with a 1.5 um~! initial momentum and a pump
power of 5 mW distributed over a laser spot of about 20 um diameter (in all panels
flow is from the bottom to the top). Using such conditions of density and speed of
the polariton fluid allow us to set unambiguously the experiment in the supersonic
regime. The position of the laser spot is indicated by a white dashed circle in the
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Fig. 6.15 Dark solitons in polariton fluids. Time evolution of density (upper panel) and phase
(lower panel) of a polariton wave packet scattering on an engineered circular obstacle (solid cir-
cles) of 3 um diameter. Polaritons are injected at r 1/4 0 ps with a 1.5 um~! initial momentum and
a pump power of 5 mW in the vicinity of the mesa (column I). Solitons (II) are visible few picosec-
onds later and are characterized by low density straight lines and a phase shift. The soliton decay
(IIT) comes along with the breaking of the phase fronts and the formation of vortex streets (circu-
lar arrows). The latter is pointed out by the apparition of several density minima coinciding with
phase singularities. The motion of vortices is tracked along the flow during polariton lifetime (IV).
Figure adapted from the PRL of Gabriele Grosso [76]

density profile of Fig. 6.151. Looking carefully at the figure, it may be observed that
our injection scheme allows to excite some excited states of the mesa, which are
characterized by bright lobes (see [79] and [80] for details).

The mesa provides a continuous perturbation on the condensate in motion that
allows an hydrodynamic formation of solitons. The dynamics of a 2D fluid passing
an obstacle and the soliton formation can be analyzed in both the lab frame and the
fluid reference frame. In the fluid frame, the mesa moves in a fluid at rest, leaving
behind perturbations, which expand as circular waves. Positive interference between
such waves occurs tangentially to the circular waves resulting in the oblique soliton
formation. Solitons subsequently move with respect to the fluid frame in the y;
direction whereas they grow in x; direction in the lab frame (see Fig. 6.151 and
Fig. 6.16).

Dark solitons are clearly visible as linear density minima on Fig. 6.151I, and
underlined by the white straight dashed lines. The phase map allows to measure
the phase jumps across the amplitude minimum. A few picoseconds after the po-
lariton injection, solitons decay into vortex streets and disappear. The linear phase
front of the soliton transforms into a set of singularities associated with density min-
ima in the intensity map: a clear evidence for quantized vortices. The vortices are
highlighted in the phase map by clockwise (blue) and anticlockwise (red) circu-
lar arrows. The density profile and the phase map during the formation of vortex-
antivortex pairs along the vortex streets are plotted in Fig. 6.15I1I. The motion of
vortices can then be tracked in order to retrieve their dynamical movement.

In order to be able to come to a more quantitative vision on the behavior of
solitons, it is interesting to look at things along the direction of one of the two
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Fig. 6.16 Solitons in the fluid
frame. Dynamics of a 2D
fluid passing an obstacle in
the fluid frame, showing the
formation of dark solitons.
The mesa moves with ~vjq,,
leaving behind perturbations
which expand as circular
waves. Positive interferences
occur tangentially, resulting
in the oblique soliton
formation. The latter move in
the y, direction with respect
to the fluid frame, whereas
they grow along x; direction
in the lab frame

Vobs = Vaow

solitons in Fig. 6.15. In Fig. 6.16, we show, as a function of time, the intensity
along the direction of one soliton line (x; in Fig. 6.16). Figure 6.16 clearly show
the pulse arrival at t = 0 and at the edge of the mesa. Immediately after the pulse
arrival, solitons nucleate until about 4 ps after the initial pulse, and their presence
is revealed by the long low-density region starting 5 um away from the mesa. The
soliton length has to be seen horizontally on this figure. The inset of Fig. 6.16 shows
a characteristic soliton profile (black line) across its length. During the whole soliton
lifetime, the soliton width has an almost constant value around 4.5 um, independent
of the laser pump power. The phase jump across the soliton line is shown in the
inset. The phase jump, as expected, is close to the expected value of 7 /2.

Starting five picoseconds after their nucleation, solitons decay into vortex streets,
in the present experimental conditions. The vortices may be visualized by the ap-
pearance of periodic modulations of the density. They are also revealed by sloping
stripes of alternate density in Fig. 6.17. Low-density valleys represent the motion
of the cores of quantized vortices. Once formed, vortices move with a constant ve-
locity v = 0.85 um/ps along the x; axis, as demonstrated by the slope of the core
trajectories in Fig. 6.17.

This velocity of the vortices must be compared with the projection of flow ve-
locity over x;, calculated by considering the ballistic propagation of polaritons with
high momentum of injection [81]. As expected, vortices move along the flow with a
velocity comparable to that of the fluid.

The same experiment has been repeated for a set of excitation powers ranging
from 0.5 to 5 mW. Contrarily to what could come out from a naive picture, we ob-
serve (see Fig. 6.17 lower panel (a)) that the solitons lines become less stable when
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Fig. 6.17 Decay of dark solitons into vortex streets. Upper panel: Density map along the soliton
direction x; versus time. After the pulse arrival, the presence of a low density region stresses the
nucleation of a soliton. Around 5 ps soliton decay occurs together with the formation of vortices
is highlighted by the appearance of periodic modulation of the density in the region previously
occupied by the soliton. The inset plot shows the density and the phase profile along ys at t =3 ps
measured 7 ym away from the mesa center showing the characteristic soliton transversal shape
and the phase jump across the minimum. Lower panel: (a) Pump power versus soliton lifetime.
Horizontal bars show the time window at which vortex street formation occurs. Central black spots
highlight that soliton lifetime increases while decreasing the pump power. (b) Time evolution of
the soliton amplitude ny over polariton fluid density ng for different pump powers. Maximum of
the ratio is found in correspondence of the soliton decay into vortex streets (dashed vertical lines).
Figure adapted from the PRL of Gabriele Grosso [76]

the excitation power is increased. The black dots in this figure show the average
time delay for the vortex street formation. The horizontal bars represent the time
window during which the soliton instability is observed, namely, the time between
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Fig. 6.18 Snapshots of the numerical simulations, based on the generalized Gross-Pitaevskii equa-
tions for the nucleation and the decay of dark solitons. The 2 pym diameter negative potential of
4 meV is indicated by a green circle. Flow direction is upstream. Random potential disorder is
added in order to perturb solitons

the formation of the first and the last of the vortex pairs. Note that we consider the
whole instability with vortices appearing progressively all along the solitons in re-
gion where the density and thus the fluid behavior could be at different stage of the
soliton evolution.

Our observations are in agreement with previous studies on hydrodynamic nu-
cleation of solitons and can be understood in terms of values of the Mach number in
the obstacle perimeter. Solitons become more stable for higher values of M, which
are obtained experimentally by decreasing the sound speed, namely, decreasing the
polariton fluid density.

Our observations are supported by our theoretical investigations using the same
Gross-Pitaevskii equation as before (see Fig. 6.18). Solitons nucleation in the wake
of a negative potential and the subsequent decay into vortex streets is very well
reproduced by the numerical simulations which take into account the pulsed excita-
tion, the finite spot size of the laser, the exponential decay of the polariton population
and the disorder potential. Snapshots of the simulated dynamics reproduce perfectly
the time scale of the experiments. After the polariton injection, solitons are created
almost instantly and transform in vortex streets after about 5 ps. After creation, vor-
tices move along the flow as observed in the experiments. It is interesting to notice
that, while keeping constant all the other parameters, no soliton decay is observed
when the disorder potential amplitude is lowered to zero.

6.10 Conclusions

Quantum fluids of polaritons possess all interesting features of the more conven-
tional condensates. Additionally, their very special character allows them to show
adjustable interactions. Our experiments demonstrate here their great potential of
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semiconductor for the study of turbulence in quantum gases. The key advantages of
polaritons are the direct optical access to the polariton field (in both real and momen-
tum spaces), the absence of a trapping potential and operation at easily achievable
temperature (possibly even at room temperature in a very near future). This chapter,
together with other chapters in this volume, has demonstrated first the superfluid
behavior of the polariton fluid in appropriate conditions. We have also reported on
the observation of the nucleation of vortices in the wake of an obstacle. The creation
of dark solitons, and their decay into vortex streets has also been reported. All our
observations have been compared with the dynamical solutions of Gross-Pitaevskii
equations adapted to our system. The quality of the agreement, across a very wide
range of experimental conditions is impressive.
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Chapter 7
Polariton Quantum Fluids and Devices

D. Ballarini, A. Amo, M. de Giorgi, and D. Sanvitto

Abstract In the following chapter we will review the first observations of fluid-
dynamics of Bose Einstein condensates of polariton quasi-particles, from the prop-
agation of single wavepackets to the continuous flow of steady polariton fluids.
Photons, as intrinsic part of the polariton particle, are not only used as a mean to
create polariton condensates but also to manipulate their quantum state giving spe-
cific momentum and energy, steering their steady state and controlling their flow
velocity and trajectory. On the other hand light emitted from the cavity is also used
as a convenient detection tool to reveal the complete quantum state of polariton flu-
ids. Using the strong polariton non-linearities and spin dependence, we use different
beams of light/polariton state to create ad hoc designed spatial potential landscapes
which can be exploited as artificial defects, barriers and channels to impact with
polariton quantum fluids and so revealing extremely interesting effects like super-
fluidity, oblique dark soliton formation, quantum turbulence, laminar flow and the
effect on vortices of tailored energy barriers. Moreover, we will show that beyond
fundamental turbulence studies, optically controlled polariton quantum fluids can be
used as switches and amplifiers which could eventually be implemented in polariton
chips for the next generation of all optical transistors and logics, which would make
use of light-matter condensates to transport and manipulate quantum and classical
information.
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7.1 Introduction

When dealing with fluids and the study of their motion it is of fundamental impor-
tance the control, as accurate as possible, of many of their parameters, such as their
density and momentum. In this respect, quantum fluids of condensed particles are
as much intriguing as their phenomena are hard to study, given that a full control on
the fluid state is not a trivial task.

One of the most important quantities describing a fluid is its velocity, which is
classically associated to the kinetic energy of each particle moving in the liquid.
In a quantum fluid, a fluid in which macroscopic numbers of particles occupy the
same quantum state, it is the order parameter, the phase, which defines the state,
including its motion, while the momentum of individual particles loses its meaning.
Nonetheless, the access of the condensate phase both in space and in time can only
be obtained via indirect interferometric measurements. Moreover, below a certain
critical speed, bosonic condensates manifest superfluidity [1], which, if on the one
hand it is a very interesting phenomenon to study, on the other could be seen as an
obstacle to transfer a controlled quantity of speed to the fluid.

In this context, polaritons in microcavities are a very interesting and unique sys-
tem in which bosonic condensates can be created. It offers huge advantages to the
study of quantum fluid dynamics and its phenomenology thanks to the easy access
to their quantum state and the possibility of complete control over their formation
and motion [2—4]. In this chapter we will give an overview of the recent advances
in the study of quantum fluids of polariton condensates which span from the obser-
vation of superfluidity to the dynamics of a turbulent flow of a bosonic condensate.
All these observations, and the analysis of the vast phenomenology associated with
polariton condensates, could only be possible thanks to the strong interconnection
between coherent beams of light and polariton condensates inside the microcavity.
In fact, photons, as intrinsic part of the polariton particle, are not only used as a
mean to create polariton condensates but also to manipulate their quantum state giv-
ing specific momentum and energy, steering their steady state and controlling their
flow velocity and trajectory. On the other hand light emitted from the cavity can also
be used as a perfect detection tool to reveal the complete quantum state of polariton
fluids.

7.1.1 Formation of a Polariton Condensate

Emission of a condensed polariton state can be obtained in different ways, each of
which may show advantages and drawbacks. In this chapter we will concentrate
on the generation of a polariton condensate either by the triggering of a paramet-
ric optical amplification process (TOPA) [5-7] or via direct resonant excitation of
the polariton state along the low polariton branch. It is interesting to notice that
such kind of condensate had already been experimentally studied at the beginning
of the years 2000 with the first observation of strong non-linear response at the
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Fig. 7.1 Schematic representation of the three methods used to generate a state of coherent polari-
ton in all similar to a Bose-Einstein condensate via non-resonant incoherent excitation (a), using
a triggered OPO scheme (TOPA) (b) and via resonant laser excitation (c¢). All these cases have
advantages and drawbacks, however in any circumstance the polariton condensate generated under
any condition is always and out of equilibrium condensate and losses need to be compensated by
a driving field

bottom of the LPB due to parametric scattering of a resonant laser pump (OPO)
[8—10]. However, it is only after the observation of the formation of a coherent state
with a non-resonant pumping scheme [11, 12], that the use of the word polariton
condensation-yet with an ongoing debate about it-was associated to a macroscopic
coherent occupation of a polariton state.

A schematic representation of the polariton dispersion and the different genera-
tion processes of a polariton condensate is described in Fig. 7.1 using non-resonant,
TOPA and resonant excitation. In all these excitation schemes, which will be dis-
cussed one by one in the next sections, the created condensates of polaritons in
microcavities present properties which depart from their atomic counterparts. This
is mainly due to the intrinsic lossy nature of polariton quasi-particles, which, in the
best of the cases, reach a dynamical equilibrium between the pumping and the decay
processes.

Non-resonant Excitation Non-resonant pumping of the microcavity structure is
the configuration to generate a polariton condensate which is closest to the condi-
tions for the formation of an atomic BEC. In this case, the symmetry of the order
parameter is spontaneously broken while a sort of thermalised population is present
at the bottom of the low polariton branch (LPB) showing the coexistence of a con-
densed and a normal fluid.

However, in case of a standard BEC, the atomic density is fixed, and the tempera-
ture is reduced beyond a critical T¢ to push De Broglie wavelength to a magnitude of
the order of the inter-particle distance. In the polaritons case, instead, the De Broglie
wavelength is dominated by the spatial size of the particle photonic component,
which, in common GaAs structures, extends up to the micron size, independently of
the polariton temperature. Thus, the parameter used to reach the critical interparticle
distance is the polariton density, which is increased beyond a critical point at which
condensation is achieved. Due to the constant escape of polaritons out of the cavity,
a continuous pump needs to be provided to keep a constant population, which can
then be described as being in a dynamical rather than in a thermal equilibrium. Very
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interestingly, by changing the excitonic and photonic weight, the polariton-polariton
interaction changes and the curvature of the LPB can be tuned almost at will. This
allows the passage from a regime mostly dominated by the relaxation kinematics
at negative detuning, which is far from thermal equilibrium, to a regime in which
the dynamical equilibrium is close to be thermal at positive exciton-photon detun-
ing [13, 14].

We should keep in mind that polaritons are formed by strong exciton-photon cou-
pling and this can only hold if the electron-hole density does not screen the exciton
in the active material. For high pumping powers, this situation can only be avoided
either with very high finesse cavities or by using materials with very strong exci-
ton binding energies. Under non-resonant excitation and good microcavity finesses
condensation was obtained in a variety of materials, from CdTe to GaN based po-
laritons [11, 15] and more recently even in GaAs structures [12, 16]. In all cases,
although polariton condensates are more prone to show a proper temperature, yet
the phenomenology is strongly dominated by their non-equilibrium nature which,
in case of confined systems, or inhomogeneous structures, can easily lead to a dy-
namical condensation in more than just the ground state [17]. Other very interesting
examples are the observation of coherence, which is not just related to the number
of particles, but it is also strongly affected by particle fluctuations in the condensate
or in the exciton reservoir [18-21].

Resonant Excitation = While a polariton condensate generated under non-resonant
excitation has the advantage to appear spontaneously out of a non coherent popu-
lation (typically in the excitonic reservoir), it lacks, though, of the possibility to be
fully controlled: from the ratio between different polariton spin populations to the
condensate position as well as its motion. In this respect the easiest way of generat-
ing a polariton state at a given point in the sample with a defined density, polarisation
and specific momentum is via resonant excitation [22-24]. This is done by exciting
directly with a laser, at a given energy and k-vector, the LPB. Photons are converted
into polaritons straight away while entering the cavity region and any quantum num-
ber is then transferred into the polariton condensate with a one to one conversion
relation. This method has the advantage of giving a complete control over the po-
lariton state, including density and velocity, which is crucial in the study of quantum
fluids. However, the phase of the condensate in space as much as in time is com-
pletely inherited from the laser field and many aspects of the condensate dynamics,
including the appearance of vortices and correlations between different parts of the
fluid, are suppressed or hidden by the incoming photonic radiation. Despite that,
much interesting phenomenology [22-30], some of which will be discussed in the
next section, has been observed using resonant polariton excitation.

Excitation via TOPA  The problem of the polariton condensate to be locked to
the phase of the pumping laser could be avoided by exploiting the peculiar polariton
dispersion for which there is always a region around the inflection point where stim-
ulated pair scattering can take place. This process, consist of parametric oscillations
between two particles at the pump state with energy Ep and momentum kp into a
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signal state at the bottom of the LPB, E, kg =0, and an idler at E; and k; with the
following conservation rules:

2Ep = Es + Ei; 2kp = ks + ki; 2¢0p = ¢s + ¢i. 7.1

The last expression is particularly interesting since—considering the signal state
as the polariton condensate we are interested to study—it leaves the system with a
degree of freedom in the choice of the final phase. In other words there is no con-
strain or bound between the phase of the condensate at the signal and the phase
of the laser, provided that the idler is free to carry the mismatch with the pump
laser phase. No matter how weak this relation can appear, it has a strong concep-
tual meaning which actually changes considerably the physics of the condensate
created under these conditions giving that, differently from the resonant case, here
the symmetry of the choice in the order parameter has been broken spontaneously,
similarly, on this, to the non-resonant excitation conditions. This peculiar character
of the condensate created under OPO has been described in [31].

Such a condensate though, spontaneously generated by stimulated scattering,
usually appears at the bottom of the LPB, similarly to the non-resonant excitation
case. This is caused by the fact that it is in the lowest energy state where the stim-
ulation of the process dominates over the spontaneous scattering in the whole LPB
dispersion [32]. This, apparently, does not add any use compared to the non-resonant
case. However, the stimulated process has the advantage to allow for the triggering
of the final state with the use of an additional external laser source, which can un-
dergo strong non-linear amplification both with pulse [9] as well as CW excitation
(OPA) [33]. Therefore, using the combination of a CW pump, around the inflec-
tion point, and a laser pulse as trigger (either at the idler or the signal state), allows
for the generation of a long living polariton condensate [5] having an initial posi-
tion, momentum and polarisation given by the pulsed triggering laser, but lasting as
long as the CW pump is on. This technique, which is a triggered optical parametric
amplifier (TOPA) has the advantages of giving a good control over the polariton pa-
rameters and at the same time leaving the phase of the signal state free to evolve after
the triggering pulse has passed. Clearly in this case, as well as in the case of direct
resonant formation, the condensate is completely out of equilibrium and the system
can be described fairly accurately by a standard Gross-Pitaevskii equation with the
addition of one term that accounts for the pumping and another for dissipation.

7.1.2 Polaritons Put in Motion: Superfluidity

Frictionless Motion The dynamics of a polariton condensate in the presence of a
potential barrier provides rich information on its quantum fluid state. This situation
can be studied by direct observation of the fluid motion as well as via indirect de-
tection of the effects of the barrier on the condensate compared to the unperturbed
situation. In the latter it is sufficient to reach a steady state in which the condensate
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Fig. 7.2 (a) Real space emission of a polariton droplet, created under TOPA excitation, flowing
inside the driving laser pump at a velocity of 1.2 um/s (upper panels) and under similar experi-
mental conditions but with a natural obstacle set in the droplet trajectory (lower panel). Figures
taken from Ref. [6]. (b) Transition from supersonic (left) to superfluid (right) regime of a polari-
ton condensate flowing against an obstacle. This time the steady state is observed and polaritons
are created under CW resonant excitation at a k-vector of 0.335 um™~!. The experimental images
(upper panels) are compared with the theory (lower panel). Images taken from Ref. [24]

had a finite momentum while the pump and decay processes are compensated; this
is easily reached under resonant excitation with a CW pump laser. In the former,
instead, it is of fundamental importance to overcome the limits of very short polari-
ton lifetime and to set the condensate in motion. For this purpose, the TOPA has
shown to be quite effective in both, generating a controlled population with a finite
wavevector and letting the condensate last for times which are orders of magnitude
longer than the intrinsic cavity lifetime.

The first observation of a condensate put in motion using this technique is shown
in Fig. 7.2a where a droplet of polariton condensate runs across a CW pump used
for feeding the moving polariton state [6]. Under the same conditions it was possible
to observe the unperturbed motion of this droplet across a natural defect present in
the structure with no tangible sign of any scattering or energy relaxation (Fig. 7.2b).
This is the first hint that frictionless motion, typical of superfluids, can be present
even for the case of polariton condensates. Surprisingly the frictionless behaviour
was observed under condensate velocities around 1/100 the velocity of light, many
orders of magnitude higher than the velocity of sound in atomic BEC. However,
a clear demonstration of the transition from superfluid to supersonic motion was
subsequently shown only via resonant CW excitation and under steady state regime
[24] as reproduced in Figs. 7.2c and 7.2d. Here the appearance of Cherenkov like
waves was the smoking gun for a supersonic regime in which the fluid speed is larger
than the speed of sound of the fluid. While the fluid speed can be controlled via the
momentum of the injected polaritons, the speed of sound is fixed by the polariton
density [22]. In this way the passage from a superfluid to a supersonic regime can
be turned by simply playing with the excitation conditions.
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If on the one hand, generating a condensate of polaritons via resonant excitation,
has the disadvantage of fixing the phase by the pumping laser, on the other it has
the benefit that the excitation spectrum of the condensate can be solved analytically
assuming that the excitations, on top of the steady state, are small. In this way it
is possible to compare how close polariton superfluidity is to the Landau criterion
applied to atomic BEC. The spectrum of excitations, in the Landau theory, shows
a linear dispersion at small momenta, with the tangent being the velocity of sound
in the condensate, c¢;. Thus, for a BEC moving at lower velocity than ¢; no ex-
citations are available for the system and the flow is superfluid, while for higher
velocities the condensate becomes supersonic and recovers the behaviour of a clas-
sical fluid. However, in case of a single polariton fluid the system only partially
shows to follow this criterion. Only for specific pumping conditions the excitation
spectrum is Bogoliubov-like while, for sufficiently high density, the opening of a
gap is observed [22, 34]. This situation resembles more that of a superconductor
than an atomic BEC.

For the case of non-resonant excitation the excitation spectrum is significantly
different, being diffusive and flat at small k-vectors, with a value of zero for the ef-
fective speed of sound [35, 36]. This means that by just looking at the real part of the
excitation spectrum several states can be elastically accessible and no superfluidity
would be possible for the polariton system when created by incoherent pumping.
However, due to the dissipative nature of the polariton condensate, the imaginary
part of the excitation spectrum is not vanishing and shows a negative component
which gains importance for small wavenumbers. This negative imaginary part ef-
ficiently damps density perturbations and eventually allows for the superfluid be-
haviour to be recovered [37]. By now, though, there has been no experiment which
could confirm this effect under such excitation condition.

Another case to mention is the one of two or more fluids, resonantly generated
by external coherent light. From a theoretical point of view it is interesting to see
that due to the new combined excitation spectra of the two fluids, the superfluid or
supersonic properties of a single condensate are strongly affected by the presence of
the second quantum fluid, depending on their relative coupling and densities [38].

Permanent Currents Other manifestations of superfluidity can be explored when
considering a condensate in rotation. For atomic BEC this can be done by steering
a laser which is tuned with specific atomic resonances. As a result the BEC shows
the spontaneous formation of vortices carrying a quantum of angular momentum
and typically forming a close packet lattice [39]. Noteworthy, a vortex state, corre-
sponding to a circular motion of the condensate, has the property to keep the rotation
for as long as the condensate persists [40]. This is a consequence of the superfluid
motion of the condensate, in which no external drag forces can alter the circulation.

For a polariton condensate this operation can be done by imprinting a rotation via
the external photonic field, as proposed and shown in Ref. [7]. In that work a sin-
gle vortex state is observed to sustain rotation for times much longer than both the
polariton intrinsic lifetime and the condensate coherence time. This result demon-
strates that, due to the suppression of scattering and friction, a polariton fluid can
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hold its rotation even in presence of defects and inhomogeneities of the photonic
and excitonic potential. This behaviour is analogous to that of supercurrents in a
toroidal superconductor.

The effects of a vortex in the steady state of a polariton condensate are a quite
interesting and yet not completely understood phenomena. Their properties depend
on many parameters. For instance it has been shown that the potential landscape,
the presence of supercurrents flowing internally to the condensate, and the injected
velocity [41-43] are all playing a fundamental role on the vortex dynamics and
stability.

7.2 Beyond Superfluidity

The experiments described in Fig. 7.2 show that the motion of a polariton con-
densate through an obstacle provides an excellent system to study the fundamental
problem of the onset of dissipation in quantum fluids. The transition from the su-
personic to the superfluid regime takes place for velocities of the polariton fluid
below the threshold v., usually associated with the speed of sound c;. However,
near the surface of an obstacle, additional friction mechanisms involving the nucle-
ation of vortex pairs and solitons occur even below the critical velocity v, resulting
in small energy dissipations [44—46]. This transient regime, characterised by a rich
vortex dynamics, is one of the most interesting subjects in the field of quantum
fluids, which can give us a deeper insight even in the still unsolved problem of tur-
bulence in classical fluids. The onset of quantum turbulence in atomic condensates
and quantum fluids will be addressed in detail in Chaps. 12, 13 and 14.

The link between the description of a Bose-Einstein condensate in terms of its
macroscopic wavefunction ¥ (r), characterised by modulus and phase

Yo (1) = | o ()] '™ (7.2)

and the equations describing its fluid dynamics, is the identification of the superfluid
velocity vy with the gradient of the phase of ¥ (r),

vy = EV¢>, (7.3)
m
where m is the mass of the condensed particle and |0 (r)| = ,/p, being p the den-
sity of the condensate. Equation (7.3) shows the irrotationality of the superfluid
motion, with the phase playing the role of a velocity potential. From this represen-
tation, follows one of the most striking quantum effects on the fluid dynamics: the
quantisation of angular momentum (see Sect. 7.3).

The density, p, and phase, ¢, completely define the macroscopic state of the po-
lariton condensate in the absence of thermal excitations, and obey a set of two cou-
pled equations [47]. The equation for the density is obtained from the conservation
of mass, i.e. the continuity equation, which takes the form
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5
=+ div(up) =0, (7:4)

while the equation for the phase ¢ is

ad 1 K2
h§¢ + <2mv + Vexr + 80 — ﬁv2\/_> (7.5)

where V,,, is the external potential and g expresses the interaction coupling be-
tween particles. The quantum effects are emphasised by the Planck constant present
in the term containing the gradient of the density, which is called quantum pressure.
Neglecting this term, the superfluid equations are formally identical to those for
classical irrotational fluids. Anyhow, this approximation is limited to the study of
macroscopic phenomena, where the density of the gas is varying slowly. In strongly
nonuniform gases, the density gradients give rise to a non-negligible quantum pres-
sure term which becomes important when the characteristic distance over which the
density variations occur is of the order of the healing length & of the quantum fluid,
defined by

&= . (7.6)
2mgp

From this equation we notice that the density variations of the superfluid are
sharper than in dilute and weakly interacting gases. Note, however, that in the case of
exciton-polaritons the stronger interactions are overcompensated by the extremely
light mass of this particles, resulting in typical healing lengths of 1-10 um, about
two order of magnitude larger than in atomic systems.

In this scenario, the study of polariton fluids appears very promising in the un-
derstanding of many phenomena related to quantum hydrodynamics because of the
easy access and control of all the relevant quantities of the polariton flow. More-
over, the strong polariton non-linearities allow generating tailored optical obstacles
of defined shape and strength, as we will see below, thus offering an ideal test bed
to study the polariton hydrodynamics.

In these systems, the critical value v, can be associated to the speed of sound c;
in the uniform part of the polariton fluid,

h 2
o = [T8l¥xl”, 7.7
mrp

where |¢X|2 represents the exciton density and my p the effective mass of lower-
branch polaritons. In the simplest case of a resonantly pumped polariton gas flowing
against an obstacle, the transition from the frictionless flow typical of superfluid to
the Cerenkov-like regime was predicted and observed for fluid speed respectively
below and above the sonic threshold v. = ¢g [22, 24]. However, under a monochro-
matic and spatially homogeneous pump, the local phase of the polariton field is
fixed by the pump phase, inhibiting the appearance of topological defects such as
vortices, which are indeed characterised by spatially localised phase singularities.
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Fig. 7.3 Numerical simulation of a polariton flow (moving downstream in the figure) hitting a
large defect for different values of the ratio vy > v.. The continuous wave pumping beam is re-
stricted to an area which covers only half the plane, in order to follow the phase evolution after the
defect. (a) Spatial profile of the pump intensity, with the red circle indicating the size and position
of the defect. (b)—(f) Normalised real-space photonic density for different values of the exciting
parameters, which correspond to increasing values of the flow speed with respect to the speed of
sound, showing a variety of hydrodynamic regimes ranging from superfluidity (b) to dark soli-
tons (e) and emission of sound waves (f), passing through the transient regime of vortex-antivortex
formation and drift (c). The density patterns are stationary in time in all panels except (c). Taken
from [48]

At this point, it is important to remind that the vortex appearance in the polariton
condensate is only possible outside of the laser excitation spot, where the phase is
free to evolve. Therefore, in all hydrodynamic experiments, given the direct relation
between phase and velocity, it is crucial to let the system evolve without having its
phase locked to the one of the laser.

As proposed in [48], and reported here in Fig. 7.3, one of the possible solu-
tion is to block the laser spot to half its size, leaving the space downstream of
the defect without any external optical field. In this way, the phase of the polari-
ton condensate is let free to evolve past the defect. The results of the numerical
simulations, run with a defect size bigger than the healing length, show indeed a
variety of hydrodynamic regimes which can be observed by changing the value of
the speed of sound with respect to the flow speed. For v < v, the expected super-
fluid behaviour is reproduced (panel b)—here the fluid propagation is similar to that
in the presence of a weak defect; for vy > 0.43v,, vortex nucleation occurs from
the defect surface (panel c)—in this case the vortex pairs are dragged away by the
flow, making this turbulent regime accessible only in time-resolved experiments;
for vy > v (panels d, e, f), straight pairs of dark solitons appear in the wake of the
defect with an angle to the direction of the flow, accompanied by the emission of
vortices (panel d) or precursor sound wave (panel f) depending on the local value of
the ratio v /ve.

In the next section we will focus on experiments exploring the turbulent regime
of vortex-antivortex formation in the presence of a large defect, firstly under pulsed
excitation, where the defect is artificially created and controlled by an optically-
induced potential barrier, and secondly under cw excitation with a suitable shape of
the pumping beam which allows for trapping the vortices nucleated past the defect.
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In the last section the hydrodynamic formation of dark solitons will be treated in
detail under cw excitation.

7.3 Vortex

In a superfluid, which is irrotational, the circulation around a closed loop simply
connected is always zero. However, if the density p goes to zero in a small region
(the vortex core), then the phase ¢ can change of 2, or multiple s of 2, around a
closed loop which contains the vortex core. In order to ensure that the wavefunction
is single valued at any point, s should be an integer and the circulation

h h
fvs dl= f —Vedl=2ms . (7.8)

results quantised in units of %

For the conservation of angular momentum, the circulation around a closed
contour does not change in time, which means that within the fluid only vortex-
antivortex pairs can be created from a point. Nevertheless, this is not true at bound-
aries, where the density of the fluid goes to zero and no closed loop can be
drawn.

Within polariton condensates, vortices can be generated by different mecha-
nisms. For instance, an inhomogeneity of the pumping, or the presence of disorder
potentials, form steady currents which may produce vortices. Experimentally, vor-
tices have been observed to spontaneously appear in the disorder potential of the
cavity [49] or in the minima of the excitation laser field [50], but in these cases
they get pinned at the local minimum of such potentials and remain stationary, leav-
ing unclear the conditions in which a turbulent state of matter can be obtained in
exciton-polariton condensates. Only recently, two works have addressed the pos-
sibility to obtain the nucleation of vortices in polariton systems directly involving
the hydrodynamic instabilities rising in the fluid density at the surface of a defect
[51, 52]. In Chap. 6, we have already treated the effects of hydrodynamics in po-
lariton quantum fluids: in this section, we will focus on the high level of control
achievable on the vortex appearance and motion. To this scope, we will first describe
an optical technique that allows us to generate potential barriers of engineered size,
shape and height.

7.3.1 Optically Generated Potential Barriers

In order to study the vortex formation dynamics it is fundamental to have the full
control over the parameters of the obstacle. The optical generation of potential bar-
riers seems the most suitable technique, allowing the modification of the polariton
potential landscape with the use of CW laser beams.
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Fig. 7.4 (a) Real space emission of a dilute polariton gas resonantly injected in the lower polariton
branch with a momentum of 0.35 pm_l and linear polarisation. (b) Same for an intense control
beam injected at zero momentum with perpendicular linear polarisation. The control beam creates
a potential barrier with a linear shape, producing the retro-reflexion of the dilute polariton gas.
This is shown in (¢), where the stripped pattern arises from the interference between incident and
scattered polaritons. (d), (e) Same as (c¢) for two different inclinations of the optically induced
barrier. The excitation conditions are those of Ref. [55]

The main idea behind this technique is to use the strong polariton-polariton and
polariton-exciton interaction to modify the potential. These interactions are domi-
nated by exchange, and are strongly dependent on the spin of the considered par-
ticles. Polaritons posses two possible projections of their spin on the growth axis
of the cavity: S, = %1, coupled, respectively, to right and left circularly polarised
photons. The interaction between polaritons with parallel spins can be parametrised
in the constant «; and it is repulsive, giving rise to an increase of the polariton en-
ergy (blueshift of the emission) equal to fix C;‘WU |2, where |/, |? is the polariton
density of the considered spin population o, and C is the excitonic Hopfield coef-
ficient [22]. On the other hand, the interaction between polaritons of opposite spins
is attractive (o < 0), and gives rise to a decrease of the polariton energy. Note that
while «q is a resonant interaction, oy involves an intermediate excitonic dark state
(S; = £2) located at the energy of the uncoupled exciton. For this reason [53, 54]
a1 > |an|. If we optically create a very large accumulation of polaritons with a given
spin in a certain region of the sample, we can modify the local polariton energy due
to the blueshifts and/or redshifts induced by polariton interactions. A dilute polari-
ton gas encountering this region of the sample will effectively feel the presence of
the dense gas as a potential barrier or depression [55].

We illustrate this technique in Fig. 7.4, which shows real space images of an
InGaAs/GaAs based microcavity for a transmission experiment under the configu-
ration described in [55]. Figure 7.4a shows a resonantly injected dilute polariton gas
at low excitation density, flowing from left to right in an area of the sample free from
structural defects. Panel b, shows a strong resonant beam (control) designed in the
form of a vertical line and injected at normal incidence. This beam is linearly po-
larised, and thus creates both polaritons with S; = +1 and S, = —1. As a1 > |o2|,
this control beam induces a net blueshift of the polariton energy for both right and
left polarisations. Therefore, it will give rise to a potential barrier that will be felt by
the dilute polariton gas shown in Fig. 7.4a, independently of its polarisation. This is
what is seen in Fig. 7.4c, where both dilute and control beams are simultaneously
switched on. In this case we have injected the dilute gas with a linear polarisation
perpendicular to that of the control. By selecting the polarisation of detection paral-
lel to that of the dilute gas, we can minimise the impact of the strong control beam
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in our detectors. Figure 7.4c shows that the dilute gas is retroreflected by the control
barrier, resulting in the observed interference between incident and backscattered
polaritons. The flexibility of this technique is demonstrated in Figs. 7.4d—e, where
the line potential barrier is created at different inclinations with respect to the flow
direction. Note that in these examples we can not only control the shape of the bar-
rier, but also its height by tuning the polariton density. Moreover, due to the strong
spin asymmetry of the polariton interactions, spin selective optical barriers could
also be created.

As polariton interactions arise from their excitonic component, potential barriers
can also be created by the direct excitation of excitons in the reservoir. This can be
done via non-resonant pumping of the system. In this case the spin selectivity is lost
as excitons loose their spin orientation extremely fast. If the excitation spot is small,
the photogenerated exciton cloud can be confined to a few microns as the diffusion
time of excitons out of the spot is much longer than their lifetime due to their very
large mass. Reservoir induced potentials have been shown to be a very efficient tool
to accelerate polariton condensates in 1D wires [56], to create optical confinements
[56, 57] or to sculpt the polariton condensate in 2D [58, 59].

7.3.2 Vortex Nucleation in Optical Potentials

The technique we have just described can be used to create convenient potential
barriers of controlled height and size, suitable for the hydrodynamic nucleation of
vortices. We will now analyse the case of a barrier created by a CW laser with a
Gaussian shape spot, in quasi-resonance with the lower polariton branch. Simulta-
neously, in order to study the eventual vortex hydrodynamics, a polariton condensate
can be resonantly excited by another laser beam, with a pulse length of less than the
cavity timescale (usually a few picoseconds). If the pulsed laser, incident on the
sample, has a finite component of the momentum in the plane of the microcavity, it
will result in a finite velocity of the polariton fluid v .

The fluid dynamics after the pulse is described in Fig. 7.5: in the upper row five
snapshots of the polariton field are shown, while the corresponding phase patterns,
obtained from the interference of the cavity emission with a reference beam of con-
stant phase coming from the pulsed laser itself, are shown in the second raw.! Half
of the laser spot is masked with a sharp metallic edge, so to induce a high density
edge in the polariton density which allows to observe, within the polariton lifetime,
the complete evolution of the injected fluid when encountering the potential barrier
(rightward direction in the figure). The images plotted in Fig. 7.5 are the result of
several billions of nominally identical single realisations: the fact that vortices are
visible in the averaged images proves that they are formed at the same position and

'In order for the reference beam to temporally match the whole duration of the polariton dynamics
in the cavity, the optical pulse in the reference beam has been stretched from a few hundred of
femtoseconds (which is the typical laser pulse width) to a hundred of picoseconds.
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Fig. 7.5 Five temporal snapshots of the real space density (a)-(e) and phase profile (f)—(m) of a
polariton condensate resonantly created in the cavity with a rightward velocity vy = 1.1 m/ps. The
shape of the barrier is Gaussian (10 m in diameter, 0.4 meV of mean height) and its position is
indicated by a blue circle in the images. Vortex-antivortex pair, indicated in the images by blue and
green arrows, are visible in (b)—(e) as density minima corresponding to their core, and as fork-like
dislocations in the interferograms shown in (g)—(m). The results of the theoretical simulations run
with the experimental parameters are reported in the bottom raw (0)—(s). Extracted from [52]

follow the same trajectory at each shot. Moreover, the good visibility of the fringes
in the interference pattern proves that the polariton fluid preserves its coherence
during the whole evolution.

Soon after the polariton flow has met the defect position, about 10 ps after the
arrival of the pulse, a pair of vortices with opposite circulation is created in the cen-
ter of the gas, as shown in Fig. 7.5b and Fig. 7.5g. Vortices are revealed as density
minima corresponding to their core in Figs. 7.5b—e, and as fork-like dislocations
in the interferograms shown in Figs. 7.5g—m. In the first 10 ps the vortex and the
antivortex are pushed away from the center towards the equator of the obstacle (the
equator axis being defined to be perpendicular to the flow direction). At this point,
there is a clear deceleration of their motion and a small excursion in the direction
orthogonal to the flow, which reveals the presence of transverse currents in the po-
lariton fluid. After most of the polariton pulse has gone past the defect, the vortices
localise at a distance of a few tenths of microns from the defect, and then disappear.

This exotic regime, characterised by the injection of a polariton fluid via a short
laser pulse with an induced flow speed higher than the speed of sound, manifests
in the creation of a turbulent motion in front of the obstacle and in the conical
modulation of the density past the obstacle. It is important to point out here that,
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Fig. 7.6 Vortex-antivortex trajectories for different size of the barrier: (a)—(c) refer to a fixed pulse
power, Ppyise =4 mW, and different CW powers, P, = 6 mW, 26 mW and 52 mW respectively.
The nucleation point shifts horizontally on the left, towards positions of higher polariton densities,
and vertically further away from the defect axis, towards position of higher tangential flow speed.
The background images are the corresponding time-integrated real space emission patterns

when the flow firstly hits the obstacle, the phase is totally free to evolve allowing
the vortex-antivortex pair to nucleate where the fluid velocity is locally equal to
the critical velocity, condition that in the experiment shown in Fig. 7.5 occurs up
to more than 5 micrometers before the defect. This is confirmed by the solution
of the time-dependent non-equilibrium Gross-Pitaevskii equations with the actual
experimental excitation conditions, shown in the third row of Fig. 7.5.

In the present case, differently from the theoretical prediction shown in Fig. 7.3
which considers a stationary flow hitting a small and spatially abrupt potential, the
optical barrier has a smooth profile and relatively shallow depth, allowing a small
fraction of the condensate to penetrate it. Furthermore, polaritons are injected by a
short pulse and their density swiftly decreases in time after the pulse has gone, being
the situation far different from the steady state in which vortices are continuously
dragged away.”

In the following, the conditions under which the nucleation of vortex-antivortex
pairs can be generated in the polariton flow are further analysed by changing the pa-
rameters of the potential barriers, showing how the vortex formation and trajectories
can be optically manipulated.

Increasing the Shape and Height of the Potential Barrier In Fig. 7.6, both the
height and the effective width of the potential experienced by the moving polaritons
has been changed, by increasing the CW power from P = 6 mW in Fig. 7.6a to
P =26 mW in Fig. 7.6b, and to P = 52 mW in Fig. 7.6c. Increasing the barrier
size, the vortex-antivortex nucleation point is shifted simultaneously upstream and
away from the horizontal axis. This behaviour can be understood considering that

2In the experimental conditions, when polaritons exit the area of the laser spot they acquire an extra
velocity due to the conservation of energy, since the blueshifted energy inside the high density
region of the spot is partially transformed in kinetic energy outside of the spot region, resembling
the waterfall in a river.
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Fig. 7.7 Vortex-antivortex trajectories for different intensities of the pumping pulse: (a)—(c) refer
to a fixed CW power, P, =26 mW, and different pulse powers, Py, =1 mW, 4 mW and
14 mW respectively. To higher pump intensities correspond higher polariton densities and therefore
higher critical velocities: the nucleation of vortices takes place at positions where the local flow
speed is higher, which occurs towards the equator of the defect. The background images are the
corresponding time-integrated real space emission patterns

the fluid hits the barrier in regions where the polariton density is higher, which cor-
responds to higher critical velocities, going from Fig. 7.6a to Fig. 7.6¢c. Therefore,
the local flow velocity matches with the critical velocity only at positions nearer to
the equator of the obstacle, where the tangential velocity is higher [44], pushing the
vortex formation away from the center of the polariton flow. This relation between
changes in the local value of the critical velocities and positions of vortex nucle-
ation has been indeed confirmed by direct measurements of the local changes in the
polariton densities at the defect surface.

Increasing the Density of the Polariton Gas Conversely, the effect of increas-
ing the polariton density can be measured by repeating the experiment with differ-
ent powers of the pulsed laser with a given value of the barrier height and size. In
Fig. 7.7, the barrier parameters are the same as in Fig. 7.6b, but the pulse power has
been increased from Py, = 1 mW (Fig. 7.7a) to Py =4 mW (Fig. 7.7b) and
Ppuise = 14 mW (Fig. 7.7¢). The higher injected polariton density means an increase
of the critical velocity, and manifests in a vertical shift of the nucleation points, as
it is especially clear comparing the cases shown in Figs. 7.7b and 7.7c. The shift
towards the equator of the obstacle, where the flow velocity is higher, is needed for
compensating the higher sound speed experimented by the fluid. A rough estimation
of the sound speed can be obtained from the aperture angle « of the Cerenkov-like
conical density modulation, which forms past the defect, via the relation

sin<g> . (7.9)
2 vf

Consequently, to higher polariton densities correspond wider angles formed by
the vortex trajectories with respect to the direction of the flow, as can be easily
appreciated in Fig. 7.7.
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Fig. 7.8 (a) Interferograms taken 15 ps after the arrival of the pulse, showing the modification
of the phase pattern induced by the presence of two shaped barriers separated by a channel of
20 micron which allows for the polariton flow to pass through. (b) shows the vortex-antivortex
trajectories (open and full red circle respectively) plotted on the background image which is the
time-integrated real-space emission of the polariton fluid while flowing through the barriers

Changing the Shape of the Potential Barrier The remarkable different phe-
nomenology and dynamics of the vortex pairs can also be explored by simple ma-
nipulation of the shape of optical barriers. In Fig. 7.8, the shape of the CW laser
beam has been changed by using convex lenses into a rectangular extended barrier
with a channel of about 20 um to allow polaritons to flow through. In Fig. 7.8a is
shown an interferogram, taken 15 picoseconds after the arrival of the pulse, when
the homogeneity of the phase is altered near the border of the barriers. In Fig. 7.8b,
the time-integrated real space emission, modulated by the presence of the barriers, is
shown as background, while the trajectories of the vortex and antivortex are plotted
in the figure as open and full circle, respectively. When the fluid hits the barriers,
a vortex pair forms near the boundary and then it is scattered back, reflected by
the barrier itself. Subsequently, the flowing polaritons push the vortex towards the
channel, and the antivortex along the barrier, showing the possibility to separate the
vortex-antivortex pair in a controlled and stable way.

Creation/Annihilation of Vortices Around a Small Obstacle If the size and
height of the obstacle are reduced to obtain only a shallow potential barrier, as shown
in Fig. 7.9, the vortex-antivortex pair recombine right downstream of the obstacle,
showing the ultrashort lifetime of a topological excitation created in the quantum
fluid. In Fig. 7.9, the polariton fluid is moving in the rightward direction against a
small circular barrier, indicated by a white open circle. From the interferograms of
Fig. 7.9a, the vortex-antivortex pair formation can be appreciated as typical fork-
like dislocations in front of the defect few picoseconds after the arrival of the pulse.
The polariton fluid pushes the vortex and the antivortex to the opposite sides of the
defect, but keeping a sort of ordered streamline flow, where the vortex pair follows
the boundaries of the obstacle as evidenced in Figs. 7.9b—d. Indeed, the polariton
density is not strongly reduced in the wake of the shallow potential barrier, allowing
for the observation of vortex/antivortex annihilation once the flow has recovered its
unperturbed pathway after passing the position of the obstacle. The coherence of
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Fig. 7.9 Five snapshots of the phase pattern of the polariton fluid, flowing from the left to the right
in the images, taken at different delays after the arrival of the pulse. The position of the shallow
optical barrier is represented by the white open circle at the center of the panels. In (a), polaritons
are mainly distributed before the obstacle, resulting in the higher visibility of the fringes in the
left part of the image. After about 10 ps, a vortex pair nucleates in front of the obstacle and it is
driven by the polariton flow around the obstacle itself (b). In (c), vortex and antivortex follow their
ordered motion thanks to the absence of transverse currents. In (d), the fluid shows only a weak
density deformation behind the barrier, keeping the coherent phase even in this region. Vortex and
antivortex start to recombine. After 20 ps (e), when most of the fluid has passed the barrier, the
homogeneous phase pattern of the fluid is recovered, showing a clean interferograms without phase
singularities

the fluid at this stage is shown as a clean interferograms in Fig. 7.9e. The observa-
tion of this ordered dynamics around the potential barrier is due to the absence of
cross currents perpendicular to the direction of motion and represents the quantum
counterpart of the classical laminar flow.

7.3.3 Vortex Traps

We have seen that an artificial, optically induced, potential barrier is able to produce
the hydrodynamic nucleation of vortices in a flowing polariton fluid. An alternative
strategy is to work under CW excitation, modifying the intensity profile of the beam
by a tailored mask to nucleate and then trap vortices as theoretically suggested in
[48] and experimentally demonstrated in [52].

In Fig. 7.10a, polaritons are sent against a potential barrier formed by a natural
defect present in the microcavity, in the absence of any mask: the phase of the po-
lariton fluid is locked to the one of the pumping laser, so that vortices are prevented
from nucleating even at supersonic speeds, as shown by the homogeneity of the in-
terferograms in Fig. 7.10g. When a triangular metallic mask is used to create a dark
region in the exciting laser field right downstream of the defect (dark triangle in
Fig. 7.10b), a vortex-antivortex pair, nucleated in the proximity of the defect, gets
trapped inside the dark area and can be observed as phase dislocations in Fig. 7.10h.
Indeed, as the phase of the fluid is homogeneous outside the triangle, vortices cannot
diffuse out and a steady state forms where they get permanently trapped within the
triangle borders. Moving the dark region slightly away from the defect, we can still
appreciate the presence of some trapped vortices within this area (Figs. 7.10c—d and
Figs. 7.10i—j). On the other hand, if the dark trap is moved too far away from the de-
fect (Fig. 7.10e and Fig. 7.10k), vortex nucleation is frustrated by the homogeneous
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Fig. 7.10 Real space images (a)—(f) and corresponding interferograms (g)—(1) for polaritons in-
jected by a CW laser beam and flowing rightward against a natural photonic defect present in the
microcavity (black spots in (a), marked by rectangular dotted contours). In (a), (g), no mask is
applied, so that the phase is pinned to that of the laser and the density is almost uniform behind
the defect. In (b), a dark region is created behind the defect and a pair of vortices (green and ma-
genta solid circles) nucleates and gets trapped inside the triangular area, as evidenced by the phase
dislocations shown in the interferograms (h). In (¢)—(e) and (i)—(k), the triangular mask is shifted
with respect to the optical defect. In (c), (d), (i), (j), the lateral shift is small enough for vortices to
still nucleate inside the triangular trap. In (e), (k), the mask has been shifted too far away from the
defect and vortex nucleation is frustrated due to the homogeneous phase imprinted by the pump
laser. In (f), (I) the pumping power of the laser is lowered to allow for many vortex pairs to get
trapped

phase that is imprinted by the pump laser. As a result, no vortex is present. For suf-
ficiently high intensities of the resonant CW laser, the amount of light diffracted by
the edges of the metallic mask is sufficient to partially fix the laser phase in the inner
region, as is the case of Figs. 7.10b, c, d, where only a pair of vortices is present.
However, reducing the total laser power, the light field inside the triangle becomes
negligible and the number of trapped vortices increases, as shown in Figs. 7.10f-1,
demonstrating the possibility of storing different quantities of vortex pairs in an
ordered lattice of vortex-antivortex pairs.

7.4 Oblique Dark Solitons

In the previous section, we have seen that the interplay between the local speed of
sound and the fluid speed determines the nucleation point and trajectory of vortex-
antivortex pairs around an obstacle. The presence of the potential barrier gives rise
to transverse currents resulting in density and velocity gradients with an associated
energy proportional to the gradients. This energy, which arises from the particle in-
teractions and the quantum pressure, characteristic of inhomogeneous boson gases,
is the analogous of the shear stress in classical fluids. When it is large enough (on
the order of hig/(£2)), it relaxes through the emission of a vortex-antivortex pair.
In this way, a non-viscous fluid, like a superfluid, can dissipate its energy. This pro-
cess is different to what is usually described in the Landau model, in which phonons
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are, instead, the quasi-particles which account for the extra energy released by the
fluid, and the process takes place at fluid velocities lower than the speed of sound.

In the case of the experiments on the turbulent dynamics described in Sect. 7.3, in
which the fluid is injected in the form of a spatially and temporally localised packet,
we have seen that just a pair of vortices is nucleated. We can now consider the
situation in which a steady flow is continuously injected upstream from an obstacle.
Also in this case, if the transverse currents induced by the obstacle are big enough,
a sequence of vortex-antivortex pairs will nucleate. When the first pair is emitted,
the transverse velocity is fully compensated by the circulation in the vortices, and
the fluid becomes momentarily laminal. Very rapidly, new transverse currents are
induced by the obstacle and a subsequent vortex-antivortex pair nucleates and is
dragged away. In this way we expect a continuous formation of vortices around
the obstacle, giving rise to vortex-antivortex streets [44, 46]. The generation rate is
given by the ratio of fluid to sound speeds [46, 60]: the higher the ratio the higher
the generation rate.

This situation is studied in the simulations shown in Fig. 7.3, in which the po-
lariton flow is injected with a fixed speed, and the polariton density (i.e., the sound
speed) is varied. The superfluid regime (Fig. 7.3b) is lost when the speed of sound
is decreased below some threshold. Transverse currents appear and give rise to the
continuous emission of vortex-antivortex pairs (Fig. 7.3c). If the speed of sound is
decreased even further, the rate of vortex nucleation increases up to a point in which
the vortex cores start to overlap, giving rise to the formation of oblique dark solitons,
as seen in Figs. 7.3d-f.

Dark solitons are particular solutions of the Gross-Pitaevskii equation describing
boson condensates subject to repulsive interactions. They are characterised by a
notch in the density whose shape is not subject to dispersion thanks to the non-
linearity arising from particle interactions. One characteristic of solitons is that the
phase of the fluid jumps up to = when crossing them [47]. The depth ng/n, width
w and phase jump § are interrelated via the expression [30, 45, 61]:

) ng 172 52 12 Us
sinf = 1=(1--= =|1-== = —, (7.10)
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where v; is the soliton propagation speed in the fluid.

The specific phase structure of the fluid across the solitons has been used in one-
dimensional atomic condensates to nucleate them, via the phase imprinting of the
condensate using optical techniques [61, 62]. Here we will discuss the spontaneous
hydrodynamic nucleation of solitons in the wake of an obstacle. As in the case of hy-
drodynamic nucleation of vortices, the phase of the fluid must be left free to evolve.
This is what is done in the experiments [30] shown in Fig. 7.11. A mask as the
one described for the experiments of Figs. 7.5 and 7.6 is used to inject polaritons
with a resonant cw laser above the red line. In this case, as a potential barrier, we
use a photonic defect naturally present during the growth of the microcavity struc-
ture. At high density (Fig. 7.11a), well in the subsonic regime, the polariton gas is
superfluid, flowing around the obstacle without perturbation. This is also seen in
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Fig. 7.11 (a) Real space image of the polariton fluid in the superfluid regime in the presence of a
potential barrier formed by a photonic defect present in the microcavity. Injection takes place above
the red line in order to leave the phase of the fluid free to evolve. In this regime, at high density, the
fluid presents a homogeneous phase gradient, as observed in the interferometric image (d), formed
from the superposition of the real space emission and a reference beam of constant phase. At lower
density, the presence of the barrier gives rise to the formation of vortex streets, evidenced in the
real space emission as low density traces in the wake of the obstacle (b), and with the formation of
phase singularities in the interferometric images (e). Finally, at lower powers (supersonic regime),
the vortex streets evolve into solitons (c), characterised by a phase shift of the wavefunction when
crossing them. Extracted from [30]
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the interferometric image depicted in Fig. 7.11d, where no phase dislocations are
present, evidencing a thoroughly homogeneous flow.

When the density is decreased, the ratio v, /c; increases, and vortex-antivortex
pairs are continuously nucleated and dragged away in the wake of the barrier. This
is evidenced by the appearance of two low density channels in Fig. 7.11b, and by
the phase dislocations in Fig. 7.11e.

As discussed above, if the ratio vy /c; is further increased by reducing the excita-
tion density, the vortex nucleation regime gives way to the formation of oblique dark
solitons. Dark solitons are evidenced in Fig. 7.11c as long dark traces starting in the
potential barrier, with their characteristic phase jump as shown in the interferometric
image displayed in Fig. 7.11f.

The hydrodynamic regime we have described, has been so far the only way to
nucleate stable solitons in a two dimensional quantum fluid. The reason is that a
dark soliton in a fluid at rest is unstable due to the fact that the soliton energy de-
creases when its depth decreases. A transverse perturbation to the soliton will then
result in its collapse [63], and the dissipation of the soliton energy in the form of vor-
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tices. This is the situation found when trying to nucleate solitons in two-dimensional
atomic BEC at rest [64, 65]. El and coworkers showed theoretically in 2006 that sta-
ble dark solitons could be nucleated in the wake of an obstacle in a flowing atomic
condensate [66]. In this case, if the fluid moves at sufficiently high velocity, instabil-
ities are drifted away towards the end of the soliton, rendering it stable [67, 68]. In
the case of polaritons, the additional damping, originated in the escape of photons
out of the cavity, might result in an additional source of stability. Indeed, soliton
nucleation in polaritons has been observed at subsonic speeds, much lower than the
fluid speeds predicted for atomic condensates with quasi-infinite lifetimes [68].

The experimental examples we have provided above show that polariton quantum
fluids are an excellent testbed for the study of the mechanisms of superflow. The
break up of superfluidity can appear due to the onset of phonon-like excitations, as
predicted by the Landau model, and via the nucleation of topological excitations like
quantised vortices and oblique solitons. We have seen that the polariton dynamics is
very rich, leading to different regimes which depend on the nature, size and shape of
the obstacles, and on the density and speed of the quasi-particle flow. This results in
unprecedented situations like the nucleation of vortices upstream from the barrier,
or the observation of stable dark solitons.

7.5 All Optical Switching, Transistor Operation and Beyond

The fluid dynamics of exciton-polaritons in microcavities are not only interesting
for their intrinsic phenomenology, as we have seen in the previous sections, but they
also show very peculiar non-linear properties which make them very attractive for
applications in the realm of optical devices and, eventually, as classical and quantum
logic elements for optical integrated circuits. Semiconductor microcavities share
many of the properties of an optical Kerr medium with a x® non-linearity. For
instance, low threshold bi-stable behaviour has been observed and, in combination
with the spin [69—71] and transport properties [6] of polaritons they can be exploited
for the creation of novel spintronic devices [72]. One of their advantages is that,
due to their photonic component, polaritons have a much longer coherence time
than electrons in semiconductors. In the last part of this chapter we will review
recent experiments which make use of the strong optical non-linear response in
microcavities in view of new optical functionalities.

7.5.1 Propagating Spin Switch

Polariton interactions present a very strong spin asymmetry arising from their hybrid
light matter nature. As discussed in Sect. 7.3.1 the optical selection rules in com-
bination with the normal mode coupling results in interactions between polaritons
with parallel spin (o) much stronger and of opposite sign than for polaritons with
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Fig. 7.12 Spin-switch operation. (a) Polariton dispersion where with a white spot the energy and
momentum of the pump beam is shown. The slight blue-detuning from the lower polariton branch
gives rise to the non-linear transmission curve schematised in (b), with a sharp threshold Py;,. Point
I corresponds to a low power “off” state while point II shows a high power “on” state. (¢) Shows
the o™ pump spot with a power corresponding to point I and extended over the area marked by the
dashed line. (d) Image of the transmitted control beam in the same polarisation as the pump. When
both beams arrive together at the sample the full pump spot is switched to the on regime (e). If the
control is o~ no switching takes place (f). Please note that panels (¢)—(f) share the same intensity
scale. Detection is performed in the o+ configuration. Extracted from [29]

opposite spins (a2) [54]. The first give rise to a blueshift of the polariton energy,
while the second results in a redshift. These properties can be used to induce spatial
spin patterns by selecting the proper elliptical polarisation of excitation [73-75],
or to enter a regime of multistability in which the system can emit either right-
circular, left-circular or linearly polarised light for the same set of excitation condi-
tions [76, 77]. In this case, indeed, the output polarisation can be selected not only
by the parameters used for the generation of the coherent polariton state, but also
with a specific choice of the path used to prepare the system. The spin interaction
asymmetry along with the presence of a TE-TM splitting results also in polarisation
inversion phenomena observed in the four-wave mixing [69, 71, 78, 79] and bosonic
stimulation regimes [70, 80].

A fundamental and quite spectacular application of the spin dependent inter-
actions in the configuration of quasi-resonant excitation is the propagating spin
switch [29]. Its operation can be understood by looking at Fig. 7.12b. The sketched
emission curve corresponds to polaritons with a given spin (S, = +1) excited by a
circularly polarised pump beam (o +) with an in-plane momentum of 0.5 um~', and
detuned by 0.16 meV from the lower polariton branch energy. As the pump beam
is detuned from the polariton energy, optical injection is inefficient and the polari-
ton population is very low at low power with no significant blueshift. This is the
off state, characterised by a low transmission (point I in Fig. 7.12b). If now the laser
power is increased, the polariton state, although still out of resonance, gets more and
more populated. This corresponds to an increase of the polariton-polariton interac-
tions which result in the renormalisation of the energy of the system. When the pump
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power is raised above a certain threshold Py, the polariton dispersion becomes in
resonance with the pump laser, with a consequent change of the transmission re-
sponse at the energy of the pump beam and an abrupt injection of a strong polariton
population. This corresponds to the on state (point II in Fig. 7.12b), characterised
by a high polariton population and a strong nonlinear emission.

If the system is pumped to point I (Py), an additional control beam with a very
low power Py, — Py will be able to switch the system to point II, with a high trans-
mission. Due to the strong difference in absolute value and sign between o1 and
a2, the passage from I to II is only possible if the weak control beam has the same
circular polarisation as the strong pump beam. Otherwise it will not contribute to
the blueshift of the polariton energy needed to overcome the non-linear threshold.

The rapid polariton motion induces the propagation of the switched signal. This
effect is shown in Figs. 7.12c—f. The ¢ cw pump beam with a polariton density
corresponding to point I, is extended over a spot of 60 um, Fig. 7.12c. A cw control
beam of the same polarisation is turned on in a localised area of 4 pm, within the
pump spot (Fig. 7.12d). Originally, only that area is switched to the on state, but
polaritons move out (to the right) thanks to well-defined momentum of the pump
given by the angle of incidence of the excitation laser. The passage to the on state
rapidly propagates to the whole pump spot (Fig. 7.12e). If the control beam has
a polarisation opposite to that of the pump, no switching takes place (Fig. 7.12f).
Time resolved experiments using a pulsed control have confirmed this propagation
mechanism, with a speed set by the momentum of the pump [81].

The device can also be operated as intensity switch whose polarisation state is
set by the control beam. In order to do so we just need to pump the system with
linear polarisation at a pump intensity corresponding to point I. In this case a circu-
larly polarised control will induce the passage to point II of only the same circular
polarisation component of the pump. In this way we can switch-on the whole pump
spot with a weak control of the desired circular polarisation [29].

The spin-sensitive intensity-switch and the polarisation-controlled switch we
have just described present extremely low values of the switching energy, estimated
to be on the order of 1 fJum~2. Additionally, the reduced polariton lifetime, set by
the cavity decay, reduces the switch-on/switch-off operation to a few ps [81].

Apart from this state of the art values [82], one of the most interesting properties
of the polariton switches is their propagation. While only engaged in a small point
by the control beam, switching propagates all over the pump spot.

7.5.2 Polariton Transistor and Perspectives

The following logical next step, which is at present under study, is the use of polari-
tons as building blocks for an all-optical logic, of which the first element is the real-
isation of a polariton transistor [83]. In fact, optical logic and “switching” operation
have already been demonstrated in many different cases with the use of non-linear
optical elements and strong laser beams [84—87]. However, if a logical gate should
be implemented in a circuit, it should satisfy some fundamental critical conditions
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such as: cascadability, which is the compatibility of the input and output beams for
serial interconnections of several devices; the logic level restoration; the isolation of
the input/output, and, above all, the fact that with one output it should be possible to
feed several devices, so to generate many input channels (fan-out/fan-in). All these
conditions are hard to reach in standard optical devices and, so far, have not been
simultaneously achieved in all the schemes proposed [88]. Nevertheless, using the
combination of polariton fluids, which are very easy to manipulate, and their strong
non-linear response to optical beams, it is possible to show that all these criteria can
be fulfilled, under some conditions in an all-polaritonic device [83]. In combination
with micro-structured patterns, as proposed in [72] for spin based logic gates, this
opens the way to the realisation of polariton circuits, and eventually could work
towards the realisation of a complex logic, based on all-optical elements.
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Chapter 8
Exciton-Polariton Condensates in Zero-, One-,
and Two-Dimensional Lattices

Na Young Kim, Yoshihisa Yamamoto, Shoko Utsunomiya, Kenichiro Kusudo,
Sven Hofling, and Alfred Forchel

Abstract Microcavity exciton-polaritons are quantum quasi-particles arising from
the strong light-matter coupling. They have exhibited rich quantum dynamics rooted
from bosonic nature and inherent non-equilibrium condition. Dynamical condensa-
tion in microcavity exciton-polaritons has been observed at much elevated temper-
atures in comparison to ultracold atom condensates. Recently, we have investigated
the behavior of exciton-polariton condensates in artificial trap and lattice geometries
in zero-dimension, one-dimension (1D) and two-dimension (2D). Coherent 7 -state
with p-wave order in a 1D condensate array and d-orbital state in a 2D square lat-
tice are observed. We anticipate that the preparation of high-orbital condensates can
be further extended to probe dynamical quantum phase transition in a controlled
manner as quantum emulation applications.

8.1 Overview

All optical phenomena, whether visible or invisible, are ultimately resulting from
an underlying mechanism: light-matter interaction. As a form of electromagnetic
waves, the static and dynamical behavior of light and its interaction are well de-
scribed within the classical electromagnetism framework, which was established
more than 150 years ago [1]. Combined with quantum pictures, this fundamental
physical knowledge conceptualized spontaneous and stimulated emission of radi-
ations early 20th century, and the quest of engineering the light-matter interaction
has been a driving force to invent novel and influential photonic devices. An optical
cavity or optical resonator is an essential structure to confine the light and modify
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its interaction. The simplest form of the cavity is a pair of mirrors, wherein reso-
nant standing waves are formed from multiple reflections off the mirror surfaces.
By locating the gain medium inside the cavity with respect to the light standing
waves, light-matter coupling is readily manipulated, consequently enhancing or sup-
pressing spontaneous and stimulated emission [2]. Recently, compact micron-size
cavities, so-called microcavities, have been developed where the overlap between
the light and matter is greatly increased. Numerous crafted microcavities of high
quality factor Q are designed to incorporate with single or ensembles of solid-state
light emitters, leading to influential optical applications and fundamental research
activities in cavity quantum electrodynamics [3].

Among the ingenious designs of cavities, a planar Fabry-Perot resonator which
consists of two mirrors enjoys simplicity and versatility to combine with different
forms of matter. In particular, dielectric Fabry-Perot mirrors created by alternating
two different refractive-index semiconductors can make monolithic structures com-
bining with semiconductor gain media, for example, embedded quantum dots and
quantum wells (QWs). When the gain media resides in a designated position, antin-
odes of the confined electromagnetic field distribution inside the cavity, the light
and matter exchange energy reversibly, reaching the strong coupling regime. This
chapter focuses on strongly coupled microcavity photons with QW excitons in III-V
GaAs based semiconductors. In particular, it describes the recent research activities
to investigate emergent quantum phases appearing in microcavity exciton-polariton
condensates trapped in artificial lattice potentials.

8.1.1 Microcavity Exciton-Polaritons and Condensation

As cavity photons and QW excitons are strongly interacting through multiple
reversible energy exchanges, new quantum quasi-particles, exciton-polaritons,
emerge [4]. Mathematically, exciton-polaritons are eigenmodes of the coupled cav-
ity photon-QW exciton Hamiltonian H. The Hamiltonian is written as a second
quantization format in terms of the cavity photon operator a; with energy hw;, and
the QW exciton operator ék with hwey and their inbetween interaction coupling
constant g,

H= ﬁZ[a)ph&Z&k + wexcé]iék — igk(aAkTCA’k — &kéz)]' (8.1)
k

This Hamiltonian is diagonalized with an exciton-polariton operator at a momen-
tum k, P = u;Cy + viag, a linear superposition of cavity photon and QW exciton
operators. The resulting Hamiltonian Hr is simplified to

Hr =" hsa P Py, (8.2)
k
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and exciton-polariton frequency relations are given by

1 1 5 "
i = 5 e + o) £ 5/ 280 + (e — 0pi)?. 8.3)

This strong coupling manifests unequivocally as a pronounced energy doublet (up-
per polariton (UP) and lower polariton (LP) branches), whose energy separation
indicates the coupling interaction strength (2g) denoted as vacuum Rabi splitting
along the same spirit of the atom-cavity systems [5-7].

The dual nature of microcavity exciton-polaritons provides advantages to explore
fundamental quantum Bose nature [5, 6] and to engineer potential photonic and op-
toelectronic devices [8, 9]. Elaborately, the partial photonic nature reduces the effec-
tive mass of this composite particle down to about 10~#~107 of the electron mass
and about 10~8 of the hydrogen atom mass. The extremely light effect mass of par-
ticles makes us to easily execute experiments at high operating temperatures. There
are abundant photon flux leaked from the cavity structure owing to the finite life-
time of exciton-polaritons. These leaked photons carry out the energy-momentum
distribution of exciton-polaritons under the energy and momentum conversation.
Hence, capturing those leaked photons enables us to access polariton dynamics.
On the other hand, electrons and holes, fermionic constituents of QW excitons, are
Coulombically interacting and their repulsive interaction plays a significant role in
scattering processes. These non-zero interactions among particles enrich the phase
diagram of microcavity exciton-polaritons.

Being composite bosons of photons and excitons, exciton-polaritons in the low
density limit and at low enough temperatures are predicted to reveal novel quantum
Bose nature such as Bose-Einstein condensation (BEC) utilizing bosonic final state
stimulation and stimulated scattering processes [10]. During last two decades since
the discovery [4], the increased interest of microcavity exciton-polariton conden-
sates has led to tremendous advancement both in theory and experiments, exploring
unique BEC nature in microcavity exciton-polaritons. Several groups have reported
strong evidences of exciton-polariton BEC in terms of macroscopic occupation in
a ground state, thermal equilibrium to lattices, spontaneous long-range spatial and
increased temporal coherence properties [11-17].

Exciton-polariton condensates have exhibited distinct features from atomic coun-
terparts in several aspects. First, the reduced effective mass results in elevated BEC
phase transition temperatures, which are inversely proportional to the mass. GaAs
and CdTe systems undergo the phase transition around 4-10 K [11-13, 16], and
large bandgap materials like GaN and organic systems show BEC at room tempera-
tures [18-20], 108-10° times higher than the transition temperatures (tens of nK) of
atomic BECs. Second, the macroscopic condensate population at the ground state
can be accumulated by constant injection of particles in order to compensate leak-
ages due to short quasi-particle lifetime. This open-dissipative nature is responsible
for unique dynamics of exciton-polariton condensates.

Rigorously, owing to the fact that microcavity exciton-polaritons reside in two-
dimension (2D), in the thermodynamical limit, infinite 2D systems cannot ex-
hibit BEC at non-zero temperatures due to phase fluctuations in principle accord-
ing to Hohenberg theorem [21, 22]. However, in finite 2D systems, long-range
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Fig. 8.1 Modified upper and lower polariton (UP, LP) energy dispersion relations (red straight
lines) by shifting either cavity photon (a) or quantum well (QW) exciton modes (b) indicated by
red dotted lines. Black straight lines draw the original UP and LP energy dispersions arising from
the cavity photons and QW excitons drawn in the black dotted lines

off-diagonal coherence can still be preserved through the Berezinskii-Kosterlitz-
Thouless (BKT) transition [23-25], where macroscopic quantum coherence would
be stabilized by forming vortex-antivortex pairs. This fundamental inquiry has mo-
tivated to study trapped exciton-polariton condensates in spatial in-plane potentials
since a well-defined trapping potential profile would guarantee single-mode BEC at
discretized energy states. The following subsection summarizes attempts to create
various types of trapping potentials in exciton-polariton systems.

8.1.2 Types of In-Plane Trapping Potential

Disorder, impurities and imperfections in semiconductor materials form locally iso-
lated traps. While these natural traps are difficult to be controlled, several schemes
to engineer local in-plane spatial traps have been attempted benefitting from the dual
light-matter nature of exciton-polaritons. Figure 8.1 depicts how to modify the po-
lariton branches correspondingly by influencing either the exciton mode energy or
the cavity photon mode energy. The details of natural traps and engineered trapping
potential are given in this subsection.

Natural Trap  Natural spatial traps in semiconductors unavoidably exist due to
semiconductor monolayer thickness fluctuations, defects and disorders. These local
traps appear more often in I[I-VI semiconductors than GaAs materials since GaAs
materials are relatively cleaner and purer. Although the controllability of these traps
is absent, rather strong confinement potential (a few meV) profile leads to many in-
teresting phenomena: to name a few, quantized vortex pinned at disorder [26] and
half-quantum vortex [27]. Sanvitto and colleagues have identified exciton-polariton
condensates populated in discrete modes only via time- and energy-resolved im-
ages [28]. These quantized states are from a ~6 um trap of ~2 meV strength asso-
ciated with one monolayer cavity thickness fluctuation.
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Fig. 8.2 (a) Image of pillar arrays adapted from Ref. [33]. (b) Partial etching and overgrowth
technique developed in Professor B. Deveaud-Plédran group in Ref. [39]. (¢) A schematic of a
mechanical stress setup from Ref. [42]. (d) Illustration of an acoustic lattice in Ref. [46]. (a), (b),
and (d) have acquired copyright permissions from America Physical Society journals. Copyright
2008, 2010, 2006, American Physical Society. (c) is reprinted with permission from Balili et al.,
Applied Physics Letters 88, 031110. Copyright 2006, American Institute of Physics

Gain-Induced Trap Another effective confinement potential is formed due to
the finite excitation laser spot size [29]. This implicit mechanism arises from the
interlay of the finite lifetime and the spatial gain modulation bounded by the laser
spot. Reservoir polaritons are rather short-lived to remain inside the finite laser spot
region, building up the density and reaching the final state stimulation above quan-
tum degeneracy threshold values. In this implicit effective trap, energy states are
clearly quantized both in real- and momentum-spaces, and the Heisenberg-limited
real- and momentum space distribution is observed. The experimental observations
are consistent with the results of the infinite barrier circular trap model. Notwith-
standing the successful description of the zero-dimensional confinement features,
this method suffers from the limitation of the laser spot size control and cannot be
readily scalable.

Etched Structures The aforementioned traps exist associated with material pu-
rity and the excitation scheme, lacking of controllability and scalability. To over-
come the limitation, several schemes have been contrived. As a simplistic method,
micro-sized pillars or photonic dots were fabricated by an etching method for a
transverse spatial confinement [30-32]. Modifying the photonic component spa-
tially, the large refractive index discontinuity is induced at the pillar sidewalls. Fig-
ure 8.2a images the array of pillars with varying sizes, which confirms that scalable
polariton systems can be prepared in this etching technique. The micropillar struc-
tures clearly quantize photonic modes, consequently polariton modes as well. How-
ever, these earlier attempts failed to preserve the strong coupling regime at high
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excitation powers. Recently, improved etching processes enable to show confined
condensates in 2-20 pm-sized micropillar cavity structures [33, 34]. Not only is the
quantized energy states observed as a zero-dimensional condensate confinement but
also condensed polaritons reside near the pillar edges because of the strong repul-
sive interactions. In addition, 1D wire cavities [35] are patterned, where condensed
polaritons are extended away from the excitation pump spot, manifesting strong
correlation effects. Towards the 2D extension, two-by-two photonic molecules are
prepared, where condensed states form bonding and antibonding states analogous
to chemical molecule boding configurations [36].

Having a potential issue of the sidewall quality as a source of exciton loss and
photon field leakage in micropillar structures, a slightly modified method has been
implemented [37-39]. Instead of etching the whole structure, only the cavity space
layer is partially etched by ~6 nm. The height profile continues to be transferred
to the subsequent layers after the overgrowth of the remaining structure (Fig. 8.2b).
This physical cavity length spatial modulation produces strong confinement poten-
tial of ~9 meV. The 3-20 pm-diameter mesa structures behave polariton quantum
dots with discrete polaritonic energy spectra modified by confined photon modes.
The nice thing of this alternative attempt lies in the fact that the partial etching does
not touch QWs so that any spurious effect like surface recombination would be neg-
ligible. Incorporating with semiconductor processing techniques, this method would
have flexibility to pattern arrays of mesa structures even in consideration of coupling
control between nearest neighbor mesas.

Temperature and Electric Field Tuned Trap Whereas both the photonic dis-
order and the etching influence the cavity photon mode, there is another route to
produce in-plane trapping potentials: shifting the QW exciton mode. Since the exci-
ton mode is more sensitive to the environment temperatures through material lattice
constant variations than the photon mode, temperature can tune the exciton energy
and hence the polariton energy as well [40]. However, since temperature affects the
whole device, it is not possible to engineer local trap potentials unless a delicate
approach is introduced. Another tunable way is to apply electric fields through the
quantum-confined Stark effect [41]. Basically, the non-zero electric fields reduce
the overlap of electron and hole wavefunctions in QWs. As a result, the shifted
exciton modes are mixed with cavity photons and the smaller oscillator strength
is measured [40]. Electric-field tuned traps can be scalable by lithographic patterns
and can be controlled in situ by varying the applied field values; however, to our best
knowledge, trapped condensation inside the electrostatic traps has not been reported
yet.

Stress Trap  Another way to affect the exciton mode in the microcavity-QW struc-
ture is to apply mechanical stress. A strain harmonic potential of ~3 meV with ~1 N
force is induced and its schematic sketch is drawn in Fig. 8.2¢ [16, 42, 43]. The har-
monic potential alters the available density of states, and it assists to reduce the
required particle density necessary for condensation. Since the stress-induced po-
tential is rather large-sized 30—40 um due to the rounded-tip pin size (radius 50 um)
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and the back substrate thickness (~100 um), no discrete modes have been observed
yet in this manner. However, exciton-polariton condensates in this wide trap exhibit
several clear BEC phenomena [16, 43, 44], and the trapped condensates would be
a good candidate to explore BEC-BKT crossover in future. One concerns that it is
difficult to imagine how to scale up the stress traps to arrays of them.

Acoustic Trap  All above trapping potentials are time-independent and static,
but dynamical traps would provide an interesting test-bed to explore condensate
properties. A theoretical proposal envisages the acoustic lattices produced by strong
exciton-phonon interaction [45]. Rayleigh surface acoustic waves (SAWs) launched
in piezoelectric GaAs-based microcavity structures produce dynamical phonon su-
perlattices [46] (Fig. 8.2d). The primary mechanisms of the acoustic lattices are
the type I band-gap deformation and the in-phase cavity resonance energy modu-
lation [46, 47]. The lattice constants of the phononic superlattices are determined
by the SAW wavelength. The 5.6 pm and 8 um SAWs are driven by a conventional
GHz microwave technology [46, 47]. Microcavity exciton-polariton condensates are
fragmented into arrays of 1D phonon traps located at the SAW minima, exhibiting
the 1D band structures by a ~160 peV acoustic lattice [47]. Although dynamical
acoustic lattices can be one- and two-dimensional and can be in-situ controllable,
they face challenges: how to handle microwave heating for strongest traps and how
to configure various lattice geometries beyond the simple 1D array or 2D square
geometry.

Metal-Film Trap Finally, the concept of the metal-film traps is introduced as
a new and simple way to create static in-plane potentials. A thin-metal film de-
posited on grown GaAs microcavity-QW wafers affects only the photonic mode [17,
48, 49]. Figure 8.3a and b compare the transfer matrix calculation result of the
electromagnetic fields at the metal-semiconductor interface with that of the air-
semiconductor interface [50]. The photon fields are extended rather smoothly at
the air-semiconductor interfaces (Fig. 8.3a), but the confined electromagnetic com-
ponents have to be zero at the metal-semiconductor interface (Fig. 8.3b). Therefore,
the stiff boundary condition on the photonic mode due to the metal film gives rise
to a locally squeezed cavity length, shifting the polariton energy upward in compar-
ison to the polariton energy value under the air-semiconductor interfaces. With the
30 nm Au film, the cavity photon energy is blue shifted by ~400 peV, and the LP
energy shift becomes half near the zero detuning area, where the photonic concen-
tration is 50 %. In the calculation, we assume the wafer of the 16 top and 20 bottom
distributed Bragg reflectors (DBRs).

Figure 8.3c explicitly draws the LP energy shift versus the metal film thick-
ness at varying detuning parameters § = E.q,(k;; = 0) — Eoc(k/; = 0), where
Ecav(exe)(ky) = 0) denote the energy of cavity (exciton) at the zero in-plane mo-
mentum k;,. The amount of LP energy shift becomes slowly saturated in cases with
more than 30 nm thick metal layers. At a given metal thickness, the resulting LP en-
ergy shift is proportional to the photon concentration. The more negative § is, the LP
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Fig. 8.3 The real part of refractive indices of materials (green) and the electromagnetic field am-
plitudes (blue) are plotted along the growth direction in z by the transfer matrix calculation for a
standing wave at a resonance from the bare surface (a) and from the 30 nm Au metal layer (b).
(c) Lower polariton (LP) energy shifts are shown as a function of the thin metal film thickness in
the 16-20 top-bottom distributed Bragg reflector structure at varying detuning values §. (d) The
relation of the LP energy shift and the detuning values are measured with the a 24 nm—6 nm Auw/Ti
film deposited GaAs microcavity structure

energy shift is bigger. Suppose the metal film induces the cavity photon energy shift
by AE.,y. Then, the overall LP energy at k;; = 0 below the metal film is written as

1
Emetal,LP = E [Ecav + AEcay + Eexe — \/(23)2 + (Ecav — Eexc)2]~ (8.4)

In terms of the detuning §, the LP energy difference between the metal and the bare
surface is derived as

1
Emetal,LP - Ebare,LP = E[AEcav - \/(28)2 +0@+ AEcav)2 +\/(28)2 + 52]- (8.5)

We have measured the LP energy difference with the 26/4nm Au/Ti metal film on
top of the 16/20 DBR structures in Fig. 8.3d, which matches qualitatively well
with the computed results (red line) using g ~ 6.97 meV, E . ~ 1.59241 eV and
AE 4 ~400 peV.

Although the trapping potential strength is much weaker than the above etched
pillars and natural traps, this method possesses several advantages: (1) the non-
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invasive in-plane potentials can be introduced on top of the fully grown wafer, which
does not change the QW quality and exciton states; (2) the dimension of the in-plane
potentials can be readily controlled even down to sub-microns by utilizing advanced
lithographic techniques; and (3) the flexibility to design various geometries in 1D
and 2D is very attractive, especially when many-body interaction effects among
exciton-polaritons are explored in lattices.

The main body of the chapter is devoted to describe the detailed phenomena of
the microcavity exciton-polariton condensates confined in a single trap, and 1D and
2D lattices prepared by the aforementioned thin metal-film technique.

8.2 Microcavity Exciton-Polariton Condensates in Lattices

Before delving into the indepth description of experimental signatures in trapped
microcavity exciton-polaritons employing the metal film technique, the wafer struc-
tures, the abridged fabrication procedure and measurement setup are briefly dis-
cussed in Sect. 8.2.1.

8.2.1 Samples and Fabrication

8.2.1.1 GaAs Samples

Our A/2 cavity contains three-stack of four GaAs QWs located at the central antin-
odes of the microcavity optical field. GaAs 6.8 nm-thick QWs are separated by
2.7 nm-AlAs barriers. The planar Fabry-Perot cavity is arranged by top and bot-
tom DBRs from alternating A/4 Alg.15Gag gsAs and AlAs layers. A 16-layer top and
20-layer bottom DBR structure promises the microcavity quality factor Q ~ 6000
according to the transfer matrix calculation. The measured vacuum Rabi splitting
energy 2g is around 15 meV near the zero-detuned area. A spatial inhomogeneity
caused by a tapering in the layer thickness of the wafer allows us to tune the cavity
resonance with respect to the exciton energy, which is relatively constant over the
whole wafer.

8.2.1.2 Fabrication Procedure

On the top DBR surface of the grown microcavity wafer, we have designed circu-
lar traps, 1D metal strip gratings, and 2D square lattice. The 2D square lattice is
patterned by arranging holes and we applied negative resist to the wafer followed
by either electron-beam or photo-lithography depending on the feature sizes. The
feature sizes vary from 1 to 10 um. Then, a 24/6 nm Au/Ti metal film is deposited
and finished with a lift-off in acetone.
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Fig. 8.4 Pump
power-dependent near-field
lower-polariton population
distributions in a

8 um-diameter single trap.
The bottom panel summarizes
the momentum and position
standard deviations as a
function of the normalized
pump powers. Permission is
acquired from Nature Physics

Ak (104cm-1)
(wrl) xy

8.2.1.3 Photoluminescence Setup

Our primary measurements are to capture time-integrated photoluminescence (PL)
signals of emitted LPs near 4 K in both near- and far-fields. Typically we excite
our samples with a ~3 ps pulse (~0.5 meV spectral width) at ~60 degree (k;; ~
7 % 10* cm™! in air) by a mode-locked Ti:sapphaire laser at a 76 MHz repetition rate.
The laser excitation wavelength is tuned to be near the exciton resonance energy
near 768 nm. The excitation spot is focused on the sample surface, whose size is
around typically 30 x 60 or 50 x 100 um?. The elliptical shape of the excitation spot
is from the large angle side pumping scheme. The LP emission signals are collected
in the normal direction by a high numerical aperture (NA = 0.55) objective lens. We
built a standard micro-PL setup to access near-field (coordinate space) or far-field
(momentum space) imaging and spectroscopy with a repositionable lens behind the
objective lens. For spectroscopic information, the collected signals are fed into a
0.75 m spectrometer, dispersed by gratings and recorded on a liquid nitrogen cooled
CCD camera.

8.2.2 Exciton-Polariton Condensates in a Single Trap

The isolated circular traps are displayed, whose trap diameters are chosen be-
tween 5 um and 100 um and whose LP trapping potential strength is approximately
200 peV. Although the potential strength is compatible with the size of polariton ki-
netic energy (~100-300 peV) in relatively small diameter-traps (5—10 pm), exciton-
polariton condensates remain in a single transverse mode over higher-order trans-
verse modes shown in Fig. 8.4 [51].

To characterize trapped condensates, the standard deviations in momentum (Ak)
and position (Ax) are recorded as a function of the excited laser pump power in
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Fig. 8.5 Pump power-dependent energy dispersion and excitation spectra of trapped lower-po-
lariton condensates at P/ Py, = 0.05, 1.2, 4, and 6 from (a) to (d). The data were taken with a
8 um-diameter single trap, and the energy axis in y spans 8 centered at 1.61 V. The white line indi-
cates the free-polariton parabolic energy dispersion relations, the black line is the shifted parabolic
curve at the condensed state, and the pink line draws the Bogoliubov excitation spectra computed
using the homogeneous model. Permission of this figure is from Ref. [51] is acquired from Nature
Physics

the main panel of Fig. 8.4. Both the momentum and the position fluctuations plum-
met abruptly at the quantum degeneracy threshold values (P & Py;). The measured
uncertainty product Ak Ax has a minimum value, 0.98 just above the threshold val-
ues. It is twice of the Heisenberg uncertainty product value (AkAx ~ 0.5) given
by a minimum uncertainty wavefunction. Where Ak remains constant above Py,
the position uncertainty Ax significantly increases, hence the monotonic increase in
AkAx. The increased condensate size directly manifests the repulsively interacting
coherent LP condensates. The more polaritons are created by higher pump rates, the
interaction energy among LPs increases, consequently LPs extends outward from
the repelling one another. The experimental data show a consistent agreement with
theoretical analysis using the Gross-Pitaevskii equation.

In addition, it is natural to search the influence of the inter-particle interaction on
the condensates. The excitation spectra of condensates indeed reflect the signatures
of superfluidity in terms of the population fluctuations and phase stabilization of
condensates [52, 53]. Quantum and thermal depletions from the condensates excite
the phonon-like spectrum. Clearly deviating from the free-particle quadratic disper-
sion curve, the linear Bogoliubov excitation spectrum of trapped condensates above
the threshold pump powers is observed within the low-momentum regime |k&| < 1.
& is the healing length given by & = h/+/2mU (n) in terms of the effective mass m
and the LP density (n) dependent interaction strength U (n). It is one of superflu-
idity signatures shown in Fig. 8.5. The Bogoliubov energy relation Ep is written
as Ep = \/ Efree(Efree + U (n)), where Efpe = h2k? /2m is the free-particle kinetic
energy at k;; = 0. From the phonon-like linear dispersion relation, the extracted
sound velocity is of the order of 108 cm/s, eight orders of magnitude faster than
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Fig. 8.6 (a) The
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that of atomic condensates. Again this large sound velocity value comes from the
extremely light effective mass of LPs.

8.2.3 1D Condensate Arrays

In order to realize 1D condensate arrays, we have patterned a grating structure,
where a/2-wide metal strips are equidistantly located with a a/2 wide gap. a rep-
resents the 1D lattice period illustrated in Fig. 8.6a, and the experimental data are
taken with a device a = 2.8 um. Below the metal strip, LPs encounter higher energy
barriers caused by the locally squeezed cavity lengths, shifting the LP energy by
Up ~ 200 peV drawn in Fig. 8.6b. The Au/Ti metal film layer gives the spatial LP
energy modulation § Ep as 100 peV measured by scanning the pinhole across the
metal strips (Fig. 8.6c). The reduced LP energy shift measured in Fig. 8.6¢ is due
to the diffraction-limited spatial resolution 1 pm, which is compatible to our device
lattice constant. We have confirmed lower LP energy by 200 peV under the bare
surface independently.

The potential energy 200 peV is of the same order of the kinetic energy Efee =
h?k%/2m at the 1D Brillouin zone (BZ) boundaries k;; = £m/a. The kinetic en-
ergy value is ~500 peV with the effective mass m to be 9 x 107> of the electron
mass. Therefore, this energy scaling comparison justifies us to treat our system as a
single-particle in a weakly periodic 1D potential. We perform the 1D band structure
calculation including a 200 peV potential term. Figure 8.7b presents the theoretical
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Fig. 8.7 (a) The measured angle-resolved spectroscopy of lower polaritons (LP) trapped in the
a = 2.8 pm-period one-dimensional (1D) array taken at the below quantum degeneracy threshold
values. G is the reciprocal lattice vector, 27 /a. (b) The single-particle 1D band structure in the
extended zone scheme with the location of the first Brillouin zone. The circles represent the ex-
pected LP emission intensities. (¢) The energy dispersion diagram above the quantum degeneracy
threshold values. (d) The real-space wavefunction probability amplitudes in space. The figure is
adapted from Ref. [17] with proper permission

band structures against the in-plane momentum in the unit of the 1D reciprocal lat-
tice vector amplitude Go = 27 /a in the extended zone scheme. The weak potential
Uy lifts the doubly degenerate energy states at the first BZ edges and the two en-
ergy states are denoted as A and B in Fig. 8.7b. Below threshold pump powers, the
dominant parabolic dispersion curves together with two relatively weaker parabolas
displaced by £Gy are detected in Fig. 8.7a, which resemble the theoretical band
structure calculation result. The spectral linewidth of the dispersion curves are big-
ger than the energy gap (~|Up|) between two states A and B so that we were not
able to directly measure the energy gap.

Above quantum degeneracy threshold values (Fig. 8.7¢), the angle-resolved en-
ergy spectroscopy consists of narrow interference peaks at two different energy val-
ues as well as blurred emission from the thermal LPs below. The peaks are separated
by Gy (correspondingly, 16° in angles) at given energy values as a manifestation of
diffraction from the 1D lattice. More important, the higher energy states occur at
+Go/2, the first BZ boundaries. The momentum distribution at this energy state is
associated with the Bloch wavefunction at the A state, which has anti-phased rela-
tions between nearest-neighbor sites, whereas two other Bloch states B and C are
in phase depicted in Fig. 8.7d. The anti-phased m-state in A exhibits the p-wave
symmetry, and the in-phase 0-states in B and C show the s-wave symmetry. Even
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though the state A is energetically higher than the state B, LPs are condensed in A
since it is meta-stable protected by local bandstructure curvatures. The narrow emis-
sion lobes are evidences of the coherent condensates. At pump powers far above
threshold values, the LP condensates indeed relax to the state C, which is the global
ground state owing to the enhanced stimulated scattering processes among more LP
particles.

Such dynamical relaxation and mode competition among multi-orbital states
have been studied by the time-resolved spectroscopy. Near the threshold the con-
densates are easily trapped in high-momentum, meta-stable p-wave states initially,
and the LPs in p-wave states decay rather faster than the ground s-wave state. Using
the reasonable lifetime parameters for these energy states, the coupled rate equations
with the s-, p- and reservoir states would well reproduce the observed dynamical be-
havior of s- and p-wave condensation. In comparison to the atomic condensate, the
reason to create coherent condensates at non-zero momentum values readily with
the LPs can be found in the fact that LPs are short-lived so that they leak out of the
cavity before relaxation into the ground states at a certain particle density range. We
have also shown that the off-diagonal long-range coherence preserves the entire LP
condensate sizes bounded by the laser pump spot size ~50 x 100 um?. Hence, the
LP system has a knob of excitation power, detuning parameters and the geometry
to manipulate the condensate orbital symmetry and to search macroscopic quantum
order. Next, we will describe a simple extension to the 2D square lattice using the
advantage of the LP condensates.

8.2.4 2D Square Lattice

The dimensionality of 2D is very special in that many exotic physical phenomena
in strongly correlated materials are closely tied to the high orbital electronic states
arranged in 2D. High temperature superconductivity is one of the prime examples,
and its properties would be owing to the d-orbital copper- and p-orbital oxide 2D
planes. Utilizing the bottleneck condensate nature, exciton-polariton condensates
can be engineered to form the excited state orbital symmetry in terms of the lattice
constants and the excitation pumping condition.

A square lattice is one of the simplest 2D lattice structures with orthogonal real-
and reciprocal-Bravais unit vectors. The Bravais lattice forms a square first BZ with
a unit length 27 /a, where a is the square lattice constant. The square lattice holds
translational, rotational and reflection symmetries and three high symmetry points
are denoted as I, X, M. Both I and M preserve the four-fold rotational symme-
try, while X points exhibit two-fold rotational symmetry. The fabricated 2D square
lattice device is shown in Fig. 8.8a [49].

The single-particle square lattice band structures are calculated using the plane-
wave basis [54] by solving the Schrodinger equation,

2
—zh—vzlp(r) + V@Y () =E¥ (). (8.6)
m
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Fig. 8.8 (a) Photograph of a representative two-dimensional (2D) square lattice device with the
lattice constant a. The brighter area is where the metal films are deposited and the darker holes
with the diameter a/2 are artificial lattice sites. (b) The single-particle bandstructures along high
symmetry points (I", X, M) in the presence of a weak square potential. (¢) The multiple Brillouin
zones (BZs) of the 2D square lattices. (d) Experimentally observed first and second BZs in the
momentum space (k/,,x, k;/,y). Figure permission is acquired from Nature Physics

The 2D periodic potential V (r) is modeled as V (r) =) _; /(r — R;) where R; is the
ith site center location, and the circular potential /(r) is set to be —V{y within the
radius ro = a/2 and 0 otherwise. V) is the square lattice potential depth. Note that
the bold symbols (e.g. r) represent 2D vectors. We define the characteristic energy
scale as Eg = % | 27” |> ~ 1 meV for the @ = 4 pum device. Within the first BZ, the
plane wave basis has a form of |k + G,,) in terms of the 2D reciprocal lattice
vectors Gy,,. Diagonalizing the Hamiltonian matrix (k 4+ Gy, |I-7 |k 4+ Gyyp) With
the operator H=— % + V in the momentum space, the resulting bandstructures
along I', X, M are plotted in Fig. 8.8b. Figure 8.8c draws the first four BZs with
locations of I", X, M and the experimentally observed BZs are shown in Fig. 8.8d
above threshold values. Because of the non-zero periodic potential, the degenerate
eigenstates are lifted at the high symmetry points and classified according to the ro-
tational group symmetry analogous to the atomic orbital denotations. For example,
at I" point, the lowest ground state exhibits the non-degenerate 1 s-wave symmetry,
whereas the next quartet states exhibit 3d 2 _ 25 2pyx, 2py, and 2s-wave symmetries
from the top to the bottom respectively. Similarly, at M point, the degenerate quartet
states are split into 3d,y, 2px, 2py, and ls-wave symmetries.
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Fig. 8.9 (a) Power-dependent momentum space lower-polariton population distributions. (b) An-
ti-phased d- and in-phased s-wave near-space wavefunctions. (¢) Michelson interference images
of the dyy-orbital condensates taken at P/ Py = 1, and the folding plane is denoted as the dotted
line at the center. Figure is adapted from Ref. [49] with a proper permission

Figure 8.9a shows the evolution of the LP momentum space population distribu-
tions taken from the far-field (FF) images. The regular square-patterned sharp in-
terference peaks come from the diffracted laser signals from the 2D square lattices,
which are useful to calibrate the momentum space. Since the device sits around
—3 meV detuned area, the donut shape,the bottleneck nature of the LP distribu-
tion in momentum space appears at P/ Py, ~ 0.29. As the injected polaritons are
increased, the emission intensity grows at the four M points, the corners of the
first BZs. These peaks are further sharpened, and LP populations are further trans-
ferred to X points and ultimately relaxed to the inside of the first BZ. Furthermore,
the states at M points are stronger emissions under the metal films (red circles) in
comparison to the lower energy states which emit strongly through the holes (blue
squares) from the near-field spectroscopy measurements above threshold (Fig. 8.9b).
Similar to the p-wave symmetry in the previous 1D section, we can conclude that
the M eigenstates are also anti-phased. And the coherence among M points pro-
duces the interference patterns by the self-folding in the Michelson interferometer
shown in Fig. 8.9c.

Figure 8.10 summarizes the theoretical near-field (NF) and the FF distributions of
Ls, 2py and 3d,y states in the 3-by-3 square lattice obtained by the previous single-
particle calculation. Since the potential depth is relatively weak, the LP wavefunc-
tions are rather extended in the 2D; however, it is still clear that both 2p, and 3d,,
states are anti-phased in the NF space unlike the 1s state. Due to the orthogonal
square lattice geometry, the interference peaks at M points emerge uniquely from
the anti-phased 3d., states (Fig. 8.10c). Experimentally, we are able to access both
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Fig. 8.10 Computed near-field lower polariton wavefunction (upper panel) and far-field inten-
sities (lower panel) in the weak square lattice potential. 1s- (a), 2p,- (b) and 3d,y- (c) orbital
condensates are presented. The black dotted circles are where the circular apertures are located in
the metal film pattern. Whereas the 1s wavefunction is in-phased (a), both 2p, and 3d,, orbitals
are anti-phased, inducing the strong interference peaks at X and M points in the far-field images.
Permission of figure from Ref. [49] is obtained from Nature Physics

NF and FF LP population information (Fig. 8.9) to nicely confirm the theoretical
conjecture.

This is the first time to observe that the dynamic condensation takes place with
the anti-phased d,y,-wave symmetry. Again, the advantages to create high-orbital
condensate states in the exciton-polariton systems come from the competition be-
tween the leaked photons through the cavity mirrors and the thermal relaxation pro-
cesses to the ground states. In addition, the compact photoluminescence setup using
the Fourier optics allows to examine both the NF and FF images and spectroscopies.
The high-orbital condensate state is the stepping stone to realize solid-state quantum
simulators, which would explore macroscopic quantum order in designated solid-
state systems with high-orbital electronic states.

8.3 Outlook

Solid-state microcavity exciton-polariton condensates are regarded as a promising
physical system to explore the fundamental physical phenomena revealing quan-
tum Bose nature at much elevated temperatures and in non-equilibrium situations.
There are active research activities to engineer the trap potential for condensates in
a controlled and systematic manner. Among numerous trapping schemes, our group
has been using a simple metal-film deposition method to enjoy flexibility and scal-
ability in multi-dimensions. We have observed high-orbital condensates in meta-
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stable states formed by given lattice bandstructures and short polariton lifetimes
in the cavity. The capability to manipulate condensate orbital states selectively is
essential to emulate real material systems. For example, the 2D CuO plane of the
high-temperature superconductors mixes with the d- and p-orbitals. Thus, we are
equipped to arrange multi-orbital condensates in 2D. In addition, upon the success-
ful demonstration in the 1D and 2D square lattices, it is straightforward to extend to
other 2D lattices, for example, triangular, honeycomb and kagome geometries. The
polariton-lattice system has shown a great potential to investigate exciting physical
questions even including spin degrees of freedom, from which we would envision to
grasp important clues towards the understanding of strongly correlated condensed
matter systems.
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Chapter 9
Polariton Condensates in Low Dimensional
Cavities

Jacqueline Bloch

Abstract In the past few years, semiconductor microcavities have appeared to be a
very attractive system for the exploration of the physics of interacting Bose conden-
sates. In addition to the flexibility and richness of optical experiments that can be
performed on polariton condensates in microcavities, the powerful tools offered by
technological processes developed for opto-electronic devices can be used to fully
engineer the potential landscape in which these half-light half-matter condensates
evolve. In the present chapter, we will describe how polariton condensates can be
confined in low dimensional microstructures. We will review some experiments per-
formed in these geometries, highlighting the huge potential of microstructures for
the development of innovative polaritonic devices.

We will first address experiments performed in wire cavities, which open the field
of mesoscopic physics with polaritons. Propagation of polariton condensates over
macroscopic distances has been demonstrated as well as the optical manipulation of
these condensates (tunnel coupling and trapping). We will also discuss scattering by
disorder in this one dimensional propagation.

Then we will describe experiments in fully confined systems like single or cou-
pled micropillars. These 0D resonators allow proper investigation of the nature of
interactions undergone by polariton condensates. To conclude we will mention sev-
eral theoretical proposals which make use of the propagation and manipulation of
polariton condensates in photonic circuits to develop new optical functionalities and
reveal new physics.

9.1 Introduction

Cavity polaritons are now clearly identified as a powerful system to investigate the
physics of Bose condensates [1—4]. They arise from the strong coupling regime be-
tween the optical mode of a Fabry-Perot cavity and excitons confined in quantum
wells [5]. Because they are mixed exciton photon states, cavity polaritons possess
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specific properties coming from this dual nature. Via their excitonic component they
interact with their environment, namely with phonons [6], excitons [7, 8], polari-
tons [9-12], and electrons [13]. Their photonic character gives them a very small
effective mass, typically three orders of magnitude smaller than the bare exciton.
This is the key property which enables their condensation at very high tempera-
tures (below 50 K for CdTe or GaAs based samples, room temperature for higher
band gap semiconductors such as ZnO [14] (see Chap. 11) or GaN [13, 15-17]
(see Chap. 10)). Cavity polaritons are coupled to the free space optical modes via
the escape of their photonic part through the mirrors. These photons fully reflect
the polariton quantum states they come from: their distribution in real space and
momentum space, their energy, their degree of polarization, their spatial and tem-
poral coherence can be measured and this allows the detailed investigation of the
system via optical spectroscopy experiments. After the first demonstrations of po-
lariton condensation [18-20], the quantum hydrodynamics of polariton condensates
could be explored (see Chaps. 1-7 of the present book): superfluidity [21, 22], as
well as the formation of quantized vortices [23, 24], bright solitons [25] have been
reported. For the first time in any system, the formation of oblique dark solitons has
been recently observed [26]. As described in other chapters of the present volume,
these developments illustrate the huge potential of this non-linear system. Another
advantage of semiconductor microcavities is that we can make use of the powerful
technological techniques developed for opto-electronic devices to fully engineer the
potential in which polariton condensates are created. In particular in materials such
as GaAs/GaAlAs, dry etching techniques are particularly well mastered and allow
fabricating low dimensional resonators with very good optical quality. The aim of
the present chapter is to review some recent experiments performed with polariton
condensates in low dimensional microstructures. We will first address how polari-
ton states are discretized when the lateral dimensions of a microcavity are reduced.
Different examples of resonator geometries will be described. We will then review
experiments performed in one dimensional cavities, where extended polariton con-
densates have been generated. We will show how these condensates can propagate
with strongly reduced scattering by disorder. Optical manipulation of these con-
densates is possible using interaction of the condensate with its environment. Con-
trolled tunnel barrier can be created and optical trapping via optical means has been
demonstrated. In the fourth part of this chapter, condensation in zero dimensional
cavities will be shown. These structures are particularly interesting as they allow
to distinguish the effect of the interaction of the condensate with the reservoir of
uncondensed excitons from that of the interactions within the condensate itself.

9.2 Confining Polaritons in Low Dimensional Structures

9.2.1 Starting from the Planar Microcavity

Let us first recall the standard situation of a planar microcavity (embedded between
two Bragg mirrors) containing a given number of quantum wells. A two dimensional
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continuum of photon modes is coupled to a two-dimensional continuum of exciton
states.

On the one hand, the optical cavity can be considered as a Fabry Perot, defining
confined optical modes with a quantized in plane wavevector along the z direction,
perpendicular to the (xy) plane of the layers given by k, = ’z—”. Here p denotes
the order of the considered Fabry Perot optical mode and L. the thickness of the
cavity layer. Thus we can define a two dimensional continuum of photon modes,

labeled by their in-plane wavevector k,, and with energy Ec(k;/) = @‘ /kz2 + k% /s

Neay
where 74, is the cavity layer refractive index. Close to k;; = 0, the cavity mode
energy has a parabolic dispersion, which enables defining an effective mass Mo, =
h”L”T”C““ for the cavity mode.

On the other hand, the lowest energy excited states of the quantum wells, which
can be populated for instance via optical excitation, are excitonic states. They de-
scribe the quantum states of an electron hole pair bound by Coulombic interac-
tion and free of motion in the plane of the quantum well. The 1s excitonic states
can be labeled by their in-plane wavevector k;,, and have an energy of the form

272
Ec(k;)) =E; + ZT](/X/’ where My = m, + my, is the exciton effective mass and m,
(resp. my,) the electron (resp. hole) effective mass. This energy dispersion describes
the kinetic energy related to the exciton center of mass in-plane motion. Excitons
and photons are coupled via dipolar interaction. Because of the in-plane translation
invariance, each exciton of a given in-plane wave-vector k;, is coupled to the photon
mode of same k,,. As a result, for each k,,, the Hamiltonian describing the coupled

system reads:
_( Ex(kyp) g
H(k)) _< g Ec(k//)) 9.1

The eigenstates of the system are exciton-photon mixed states, which are called
cavity polaritons [5]. The lower polariton branch has a peculiar s-shaped dispersion

. . . 2 w?
[27], with an effective mass Mp,; close to k;; = 0 given by ﬁ = % + ﬁ,

where weye and wpp,; are respectively the exciton and photon weight of the polari-
ton state. Since My, is typically three orders of magnitude smaller than My, a
small photon weight in the polariton state is enough to give an effective mass to
the polariton much smaller than that of the exciton. This small effective mass is
expected to favor Bose condensation at high temperature [28, 29].

9.2.2 Lateral Confinement of the Polariton States

We will now consider cavities which have a lower dimensionality. This can be re-
alized experimentally by several methods. One can induce a lateral potential barrier
acting either on the exciton part of the polariton or on its photon part.

The polariton energy can be changed via the exciton part applying a local stress.
Several methods to do that have been reported. For instance the stress can be applied
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Fig. 9.1 (a) Schematic of the mesa sample developed by the group of B. Deveaud; (b) Far field
emission and (c¢) spatially resolved emission of a single mesa structure showing the coexistence
between laterally confined polaritons and two dimensional polaritons. This figure is adapted from
Refs. [39] and [40]

locally with a tip pushing on the back side of the cavity sample: using this method
a potential trap for the polariton states has been realized [20, 30]. Surface acoustic
waves have also been used to modulate the polariton energy and confine them into
1D or 0D states [31, 32].

The alternative way of reducing the polariton dimensionality is to laterally con-
fine the photon part. For instance one can deposit a patterned thin layer of metal on
top of the cavity sample (see Chap. 8): metallic stripes or discs have been shown
to induce a shallow potential on the polariton states, modulating the cavity mode
energy [33, 34]. Similar methods have been theoretically proposed to laterally con-
fine polariton surface states and guide their in-plane propagation. This approach
can be applied to Tamm polariton states [35, 36] (confined at the interface between
two mirrors) or to polariton Bloch surface waves [37] (localized close to the sur-
face of a finite size Bragg mirror). Another very promising and versatile method has
been pioneered by the group of B. Deveaud. It consists in defining mesa structures
by etching of the cavity layer itself, before depositing the top Bragg mirror. The
mesa region where the cavity thickness is larger defines a zero dimensional cavity
in which the optical mode and thus the polariton states are fully confined into dis-
crete states [38, 39]. This is illustrated in Fig. 9.1 where these polariton states have
been imaged both in real and reciprocal space. A particularity of this technique is
that the system offers the coexistence of 0D discrete polariton states with a contin-
uum of two dimensional polariton states in the regions surrounding the mesas.

Another way of laterally confining the photon mode is simply to fully etch the
planar cavity into wires, pillars or more complex microstructures. This is the geom-
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Fig. 9.2 (a) Scanning electron microscopy image of an array of wires and pillars etched starting
from a planar microcavity; (b) Far field emission measured on a single wire cavity showing several
1D polariton subbands; (c) and (d) Same as (b) for a single squared micropillar of lateral dimension
10 pm for (¢) and 2.8 um for (d)

etry we describe in more details in the following and which is used in the condensa-
tion experiments we will review. Let us first consider the case of a one dimensional
cavity with transverse dimension L. The in-plane translational invariance of the
polariton states is lost and the in-plane wave-vector is quantized as: k, = "L’—” As
a result the polariton states are split into one-dimensional subbands describirfg the
free motion of the polaritons along the y direction [41-43]. An example of such
sub-bands measured by angle resolved photoluminescence is shown on Fig. 9.2.

One can also fully confine the polariton states into micropillars [44—46]. For in-
stance if we consider a squared micropillar, both k. and &y are quantized as follows:
k=2 LXXN and ky = % [47]. As aresult, the polariton states in a micropillar are dis-
crete states, which are spectrally more separated as the pillar size is reduced. This is
illustrated on Fig. 9.2 where far field emission of single micropillars of various sizes
is shown. If cylindrical micropillars are considered, the spherical symmetry has to
be taken into account to find the polariton confined states and their degeneracy, as
is well described in Ref. [48].

Note that a condition necessary to write a 2 x 2 matrix describing the coupling
of each exciton and photon state with given wave vector is that exciton and photon
states have the same dimensionality. This is the case for instance in planar cavity:
both photons and excitons are two dimensional, excitons being confined in the quan-




182 J. Bloch

tum wells while photons are confined in the cavity. Another example is the case of
bulk semiconductor materials [49-52], where polaritons arise from the strong cou-
pling of three dimensional excitons with three dimensional photons.

In laterally confined cavities such as those described above the situation is appar-
ently different. Indeed the lateral dimensions of the cavities (a few microns) are typ-
ically 100 times larger than the exciton Bohr radius. As a result, the two dimensional
character of the excitonic density of states is preserved, and there is no excitonic lat-
eral quantum confinement. Therefore one dimensional photon modes in wire cavi-
ties (or zero dimensional photon modes in micropillars) are coupled to a continuum
of two dimensional exciton states, a situation which may seem incompatible with
the establishment of the strong coupling regime. As clearly explained in Ref. [53],
when a quantum state is coupled to a continuum, the criterium for establishment of
the strong coupling regime is the relative strength of the coupling interaction with
respect to the spectral width AE of the continuum of emitting states. In our case,
only excitons within the light cone can emit light. It is straightforward to show that

2
AE is of the order of 5 ME'“ = ~ 4 peV. This spectral width of the excitonic contin-

uum is much smaller than the typical Rabi splitting of 15 meV in the sample we will
consider in the following. Thus it is legitimate to consider that each photon state in
microwires or micropillars, is coupled to a single exciton state and this is why the
eigenstates of the system are exciton-photon mixed states with the dimensionality
of the photon modes. It is therefore legitimate to describe the light-matter coupling
in these system in the framework of the strong coupling regime.

9.3 Extended Polariton Condensates in 1D Cavities

9.3.1 Polariton Condensation Under Non-resonant Excitation

In the rest of the chapter we will review experiments performed under non-resonant
excitation. This means that the sample is excited with a laser beam, which energy
is tuned far above the polariton resonances (typically 100 meV above the lower po-
lariton branch, tuned to the first reflectivity dip above the stop-band of the Bragg
mirrors). As schematically represented on Fig. 9.3, hot electron-hole pairs are in-
jected at the laser energy. They relax down to lower energy states via optical and
acoustic phonon emission, and bind into excitons. Notice that the region in k-space
indicated by blue circles is a region of very high density states and these states are
excitonic-like states. For these two reasons, this region in k-space, called the exci-
tonic reservoir is highly populated under such non-resonant excitation.

Excitons may also relax down to lower k/, states to populate polariton states
close to k;; = 0 on the lower polariton branch. I, describes the mean relax-
ation rate of excitons toward k = 0. This relaxation can occur via several scattering
mechanisms. At low excitation powers, exciton phonon interaction is the dominant
relaxation mechanism. This scattering mechanism is nevertheless not efficient for
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Fig. 9.3 Schematic of the polariton excitation scheme using non-resonant optical pumping. [ ejax
is the relaxation rate of excitons from the excitonic reservoir into k;; 2 0 polariton states while
I, is the escape rate of photons out of the cavity. f is the occupancy of the polariton states close
to k /] = 0

exchange energies larger than a few meV. Multiple phonon scatterings are neces-
sary to populate the polariton states close to k;; = 0. These polariton states have
a short lifetime, mostly because of the fast escape of the photon out of the cavity
(typically I lies between 1 to 30 ps depending of the quality factor of the consid-
ered sample). As a result at low excitation density, [y iS smaller than Fegcl . Under
steady state conditions, the resulting population of the lower branch is strongly out
of equilibrium: excitons mainly populate the excitonic reservoir and the bottom of
the lower polariton branch is depleted. This has been described as the relaxation
bottleneck [6] and observed experimentally [54, 55]. Polariton electron scattering
has been proposed as an alternative mechanism for efficient polariton thermaliza-
tion [13]. This has been investigated experimentally: the bottleneck amplitude has
been found to be reduced [56-59], but not enough to reach thermalization of the
system.

Increasing the excitation power, exciton-exciton and polariton-polariton scatter-
ing become efficient relaxation mechanisms [54, 55, 60], which contribute to popu-
late low energy polariton states close to k;; = 0. As a result I}, increases. When
it becomes larger than I, a large occupancy of the lowest energy polariton states
can start to develop. Once the occupancy of these states exceeds unity, the relaxation
rate into these states becomes accelerated by bosonic stimulation and an exponential
increase of the polariton occupancy close to k/; = 0 occurs. The regime of polariton
condensation is achieved [29, 61-63].

This highly populated polariton state will be named in the following polariton
condensate. Polariton condensates have been extensively studied in two dimensional
cavities and some of their fascinating properties are described in the present volume.
Here we want to emphasize a specificity of the non-resonant excitation condition,
which will be crucial for the rest of the chapter. Because of its excitonic nature, a
polariton condensate undergoes interaction with its environment. In particular in the
case of non-resonant excitation, the interaction with the reservoir of uncondensed
excitons present in the excitation area has to be taken into account. Let us consider
the macroscopic wavefunction ¥ (x, y, t) describing the time dependant probability
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Fig. 9.4 Spatially resolved emission measured on a single wire cavity above condensation thresh-
old. An extended polariton condensate is imaged. The high energy part of the graph has been
magnified to observe the emission of the excitonic reservoir localized in the excitation area. On
the left we have schematized the local blueshift of the polariton energy induced by the excitonic
reservoir which tends to expulse polariton from the excitation region

density of the polariton condensate. It obeys the following Gross Pitaevski equation
[64]:

L0 (x,y,1) 1 b
ih Y = { Vz + Ve (x,y) — li(yc — Rnyes(x, y, t))

ot 2My01
2
+ Grestires(x, y, 1) + ¥ (x, y,1)| }lﬂ(x,y,t) 9.2)

Vext(x, y) describes the potential defining the cavity geometry (wire, pillar or
other); y, accounts for the loss due to photon escape rate out of the cavity while
the term Rn,.s(x, y,t) is a gain term describing relaxation into the condensate
from excitons from the reservoir which spatial density is n,(x, y,#). The term
gl (x, y)|? is due to polariton-polariton interaction within the condensate while the
term geshres(Xx, y) comes from polariton interaction with the excitonic reservoir.
These two interaction terms will be shown to strongly renormalize both the energy
and the wavefunction of the polariton condensate. In particular the term due to in-
teraction with the reservoir will have strong influence on the condensation process
and is very specific to non-resonant excitation of the system.

9.3.2 Generation of an Extended Polariton Condensate

We describe here the generation of extended polariton condensates in 1D wire cav-
ities [65]. In these experiments, a single wire is excited using a non-resonant laser
beam focused down to a spot size of a few microns. The emission intensity of the
excitation area presents an abrupt threshold in the excitation power above which
the emission intensity increases exponentially. Figure 9.4 shows an example of the
emission distribution measured above threshold along a 200 pm long wire. Surpris-
ingly the emission at the energy of the condensate is spread all along the wire. This
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Fig. 9.5 Far field emission of a single wire cavity excited above the condensation threshold with
a spatial selection of the excitation region in the central panel, and of the left (resp. right) side of
the excitation area for left (resp. right) panel. Figure extracted from Ref. [65]

feature can be well understood when one looks at angle resolved emission with at
the same time some spacial resolution. As shown in Fig. 9.5, where the far field
emission of the excitation region is imaged, one clearly sees the formation of a con-
densate at k;; = 0, blueshifted by an energy E g with respect to the polariton energy
measured in the low density regime. This blueshift is induced by repulsive interac-
tion with the reservoir of uncondensed excitons. Since excitons are quasi-particles
much heavier than polaritons, they easily localize in the potential minima induced
by disorder in the sample and remain in the excitation area. The emission of the
reservoir visible at high energy in the upper part of Fig. 9.4 (which has been mag-
nified) is indeed restricted to the excitation area. Thus the condensation generated
in the excitation area stands at the top of a potential barrier induced by the opti-
cal excitation. This is why polaritons tends to be expelled from the excitation area,
accelerated by this interaction energy with the reservoir and thus acquiring the cor-
responding kinetic energy. The far field imaging of the emission on both sides of
the excitation area (see Fig. 9.5) evidences a beam of polaritons, at the same energy
than the condensate in k;; = 0 and with a well defined finite in-plane wave-vector.
Thus because of repulsive interaction with the excitonic reservoir, the condensate
generated in the excitation tends to expand throughout the entire wire.

Analogy with the Atom Laser = We want to mention here that there is a strong
analogy between the present experiment and the realization of an atom laser [66—
68]. Indeed in the atom laser experiments, a Bose Einstein condensate of atoms is
generated in a confined region of space. Then a mechanism is able to extract atoms
from the condensate, as if a little hole had been done in the box containing the con-
densate. A coherent beam of atom is thus extracted from the condensate, presenting
coherence and directionality properties very similar to that of a laser beam. Here the
excitation area is analogous to the box containing the condensate. The extraction
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Fig. 9.6 (a) Experimental set-up to measure the spatial coherence of the polariton condensate;
(b) Interference pattern obtained when interfering the emission of the two ends of a wire cavity
(spatial separation of 200 pm). (c) Spatially resolved emission when a single wire cavity is excited
50 um away from the right wire end. The observed modulation in the intensity reflects interferences
between polaritons expelled from the excitation area and polaritons reflected at the wire end. Figure
partly extracted from Ref. [65]

mechanism is provided by the repulsive interaction with the reservoir: a beam of
polaritons which will be shown to be highly coherent is emitted within the cavity on
each side of the excitation region. Our experiment can be considered as the demon-
stration of a polariton laser in the sense that coherent polaritons are emitted within
the sample.

Spatial Coherence The extended polariton condensate which is formed in
the wire cavity presents very high spatial coherence. This can be shown with a
Young slit experiment. The set-up to do this experiment is schematically shown
on Fig. 9.6a: an image of the wire emission is formed in a plane where a screen with
two tilted slit is positioned. This set-up selects the emission from two small regions
on the wire separated by a distance a. The mutual spatial coherence between these
two regions can be probed looking at interference pattern arising from the emission
of the selected zone. Figure 9.6b shows the fringe pattern arising from interfence
between the emission of the two ends of the wire (¢ = 200 pm). The high fringe
contrast indicates that the polariton condensate presents a spatial coherence over
the entire wire. In this experiment interferences occur outside the sample. Signature
of the high spatial coherence can also be seen in interferences occurring inside the
sample. This is the case when the excitation spot is positioned close to one end of
the wire cavity. Figure 9.6c shows the emission intensity measured along the wire
when the excitation is located 50 um from the wire end. Strong spatial modulation
of the intensity is observed, due to interferences between polaritons escaping the
excitation area and polaritons reflected by the end of the wire. These experiments
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show that the condensates generated under non-resonant excitation propagate over
large distances while preserving their spontaneous coherence. As a result one ob-
tains polariton condensates with macroscopic spatial coherence.

9.3.3 Polariton Scattering by Disorder

One of the fascinating properties of Bose condensates is superfluidity, evidenced for
instance with liquid helium [69, 70] and cold atoms [71, 72]. The characteristic sig-
nature of a superfluid propagation is the disappearance of all scattering by disorder.
This friction-less propagation is due to a renormalization of the condensate excita-
tion spectrum due to inter-particle interactions. A necessary requirement to reach the
superfluid regime is that inter-particle interactions should be larger than the kinetic
energy [73]. Polariton superfluidity has been reported in an experiment where the
condensate was resonantly excited in a planar cavity [22]. To observe the superfluid
regime [74], a small in-plane wave-vector was chosen for the propagating conden-
sate so that the polariton kinetic energy could be smaller than interaction energy.
On the contrary, if a large in-plane wave-vector was imprinted to the condensate,
Cherenkov waves were observed, characteristic of the propagation of a supersonic
condensate [22].

Scattering by disorder in the 1D propagation condensates has been investigated
[75]. Since the in-plane wavevector of these condensates is given by the blueshift
induced by the excitonic reservoir, it is not really controlled by the experimental-
ist, and always provides a large kinetic energy to the condensate of the order of
2-3 meV. In these experiments, the kinetic energy always remains larger than the
interaction energy and therefore the polariton condensates, which spontaneously
form, are always supersonic. Nevertheless a very strong suppression of the scat-
tering by disorder (in a 1D geometry this is limited to backscattering) has been
evidenced in this supersonic regime. This is illustrated on Fig. 9.7. A polariton con-
densate is generated via optical non-resonant excitation close to the right end of a
microwire. The emission is probed from the left side of the excitation region. Be-
low threshold a broad distribution of polariton traveling toward the left is measured
in the far field emission. Polariton propagating in the opposite direction are also
observed, which is the signature of polariton backscattering induced by disorder.
Notice that because the probed region is always far from the left end of the wire,
these polaritons traveling toward the right are not polaritons which have been re-
flected at the left end of the wire. As shown in the figure, when the excitation power
is increased, the intensity of the backscattered signal is strongly reduced (by almost
two orders of magnitude at the highest investigated excitation powers). Simultane-
ously to this non-linear effect, we observe signature of strong polariton-polariton
scattering. Instead of a single polariton condensate generated at an energy related
to the blueshift induced by the excitonic reservoir, we observe the formation of sev-
eral condensates at lower energy. Simulation of the polariton propagation has been
performed by the group of G. Malpuech. A photonic disorder is introduced to ac-
count for the observed backscattering at low density. These calculations show that
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Fig. 9.7 Upper part: polariton are non-resonantly injected at the right end of a wire cavity; po-
lariton far field emission (shown in logscale) is probed in the central part of the wire (a) below
threshold and (b) above threshold

polariton-polariton scattering favors the propagation through the disorder potential
and as a result the backscattering is reduced. This is a new mechanism which allows
a quasi-frictionless propagation of a supersonic condensate [75].

9.3.4 Making Use of the Reservoir to Shape the Potential
Landscape

The local blueshift induced by the reservoir can be used to shape the potential land-
scape of the polariton states. Two examples will be described below in experiments
where a single non-resonant excitation beam is used. It is also possible to use sev-
eral optical beams to modulate the potential. Such approach has been used to create
a controlled localized defect or to confine vortices [76, 77].

Making Use of the Reservoir to Create a Tunnel Barrier In the regime de-
scribed above where polariton-polariton interactions are responsible for the genera-
tion of several condensates, the blueshift induced by the excitonic reservoir creates a
tunnel barrier. This is directly imaged by spatially resolved emission measurements,
as illustrated in Fig. 9.8a. Several extended condensates are seen on each side of the
excitation region while in the excitation region the absence of emission at low en-
ergy directly reflect the presence of a tunnel barrier. Polaritons close to the top of
the barrier are coupled via tunneling through the barrier, while at low energy the
barrier completely decouples the right and left side of the excitation region. This is
further demonstrated by probing the mutual phase coherence between both sides of
the excitation region performing young slit interferometry. As shown on Fig. 9.8b,
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Fig. 9.8 (a) Spatially resolved emission of a single wire excited with a non-resonant laser beam:
the tunnel barrier due to polariton interactions with the excitonic reservoir is directly imaged with
extended polariton condensates on both sides. (b) Interference pattern using two slits located on
each side of the excitation area. Figure adapted from Ref. [65]

pronounced fringes are observed for the highest energy polariton condensates. This
shows that synchronization between left and right condensates occurs via tunnel
coupling. On the opposite, no fringe is observed for the lowest energy states, where
no signal is detected in the excitation region. Since, at this energy, the polariton
condensates on each side of the excitation spot are fully decoupled by the tunnel
barrier, no fixed phase relation exists between the two regions. Because the acquisi-
tion time of the measurements (typically of the order of 1s) is very large compared
to the condensate coherence time (of the order of a few ns) the position of the fringes
strongly fluctuates during the acquisition and as a result the fringe contrast is com-
pletely washed out. Of course it should be possible to recover a nice fringe contrast
even for the low energy condensate if the experiment could be performed within the
polariton coherence time.

Making Use of the Reservoir to Create an Optical Trap One can make use
of the potential induced by the repulsive interaction with the excitonic reservoir to
shape a potential trap. Figure 9.9a shows an example of such an experiment: a trap
is formed between the excitation spot and the end of the wire. Its size is optically
controlled by the position of the excitation spot. The spatially resolved photolumi-
nescence allows direct imaging of the lobes of the polariton wavefunctions confined
inside the optical trap. Both the energy level and the intensity distribution can be
well reproduced using a Shrodinger equation describing the confinement inside the
trap of a particle with the polariton effective mass. When the considered polariton
modes have a strong photon content, relaxation into the trap is inhibited and a clear
relaxation bottleneck is observed (see Fig. 9.9b). For more excitonic-like states, re-
laxation into the trap becomes efficient and polariton condensation into the trap can
be achieved. It has been possible to observe the accumulation of more than 10* po-
laritons in the lowest energy state of the trap. Notice that in this configuration, the
excitonic reservoir and the condensate are spatially separated. This is particularly
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Fig. 9.9 Potential traps optically controlled by the excitonic reservoir: (a) The excitation spot is
positioned close to one end of the wire and the trap is located between the excitation spot and
the end of the wire; (b) same as (a) for a more negative detuning (more photon-like polariton) so
that polariton relaxation into the trap is not efficient giving rise to a relaxation bottleneck; (c) Two
pump spots are used to design the optical trap. The figure is partly adapted from Ref. [65]

favorable for the investigation of polariton interactions, as we will describe in the
next section.

Finally using two non-resonant excitation spots it is possible to generate an opti-
cal trap which is fully optically controlled. This has been reported by the group of
J.J. Baumberg in Ref. [78] and is illustrated in Fig. 9.9c in the case of a wire cavity.

9.4 Polariton Condensation in Zero-Dimensional Resonators

Polariton condensation can also be obtained on the discrete states of a micropillar
[79]. In this system dramatic renormalization of the condensate wavefunction is ob-
served, due to interaction with the reservoir. Also it is possible to investigate in detail
both the interaction with the reservoir and interactions within the condensate itself
[80, 81]. Finally micropillars have been the first system in which clear observation
of both polariton condensation and photon lasing were reported [79]. The spatial
emission patterns in both regimes differ drastically, which highlights the fact that
they correspond to different physical lasing mechanisms.

9.4.1 Renormalization of the Polariton Wavefunction Induced
by Interactions

We first consider polariton condensation in a single micropillar and are interested in
the spatial emission pattern of the condensate in such zero-dimensional geometry.
As in the wire cavity, polariton interaction with the excitonic reservoir tends to ex-
pel polaritons from the excitation area [80]. For instance when exciting a micropillar
with a spot size much smaller than the pillar size, the reservoir creates a potential
in the middle of the pillar which reshapes the polariton wavefunctions. This is il-
lustrated on Fig. 9.10: as the excitation power is increased the polariton condensate
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Fig. 9.10 Emission spatial distribution of a 10 um square pillar excited at its center with a 2 pm
excitation spot for several excitation powers. The potential induced by uncondensed excitons at the
center of the pillar strongly modify the shape of the polariton wavefunction. The figure is partly
adapted from Ref. [80]

tends to be expelled toward the four corners of the square micropillar. This behav-
ior is fully reproduced when considering the confinement of a quasi-particle in a
micropillar with a Gaussian potential at its center which increases linearly with ex-
citation power. It has been carefully checked that the four lobe mode observed is
not a high order mode of the pillar but really the lowest energy mode for the con-
sidered excitation power. So the observed behavior is characteristic of a polaritonic
behavior, and different from a mode hoping in a standard laser. Further analysis of
the difference with photon lasing will be presented in a next section.

Another illustration of the complex spatial properties of polariton condensation
is found in photonic molecules (made of two coupled micropillars [82]). The con-
densation process under non-resonant excitation dramatically depends on the exact
excitation conditions [83]. For instance the coupled system can be excited in a non-
symmetric way, pumping with a small excitation spot only one of the two pillars.
The excitonic reservoir creates a local potential in the excited pillar, which blueshift
this micropillar with respect to the other. The spatial behavior of the condensation
process in such excitation conditions is shown on Fig. 9.11. At threshold conden-
sation occurs in the excited micropillar, even if this is not the lowest energy state
of the system, which would be localized in the other pillar. Indeed the overlap be-
tween the lowest energy state and the states which are directly populated via inter-
action with the reservoir is too weak to allow for efficient scattering into the lowest
energy state. As a result, condensation occurs in a metastable state located in the
pumped pillar. As the excitation power is increased, further renormalization of the
polariton wavefunction occurs, changing the relaxation rates between the different
states. Eventually transfer of the condensate from the excited pillar into the lowest
energy state of the other one becomes favorable. The condensate is then fully trans-
ferred into the pillar which is not optically excited. Such strong coherent emission
from a region of the sample which is not pumped is another striking example of
a condensation process, which would not be possible in a regular photon laser. To
reproduce these results, it is not only necessary to consider the reservoir influence
on the wavefunction space distributions, but also to recalculate the relaxation rates
between these renormalized states. Indeed the change in the wavefunction dramati-
cally modifies the overlap between the different states and thus the whole polariton
relaxation mechanism [83].
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Fig. 9.11 (a)—(c) Spectrally resolved emission distribution measured for several excitation powers
along a single molecule axis; The molecule is formed by two 3.5 um diameter pillars separated by
a center to center distance of 3.5 um. (d)—(f) Calculated emission patterns for the corresponding
excitation powers. The figure is extracted from Ref. [83]

9.4.2 Renormalization of the Polariton Energy Induced
by Polariton-Polariton Interactions

We have seen above the strong effect of the excitonic reservoir on the polariton states
and on the relaxation process. In particular, we have seen that both in an optical trap
or in large micropillars, a spatial separation can be observed between the reservoir
of uncondensed excitons and the condensate itself. In this configuration, because
the spatial overlap between reservoir and polariton states is reduced, the blueshift
due to the reservoir potential is smaller. This reveals another contribution to the en-
ergy renormalization, namely polariton-polariton interaction within the condensate
itself. This is illustrated on Fig. 9.12, where the measured blueshift of the confined
condensates is shown as a function of excitation power for several pillar sizes and
for an optical trap. When the pillar size is very small (typically smaller than 3 pm),
the condensate cannot be separated from the reservoir. The blueshift induced by the
reservoir is strong and masks any other contribution to the energy renormalization.
When the size of the pillar is reduced, the blueshift observed around condensation
threshold decreases, due to the spatial separation from the reservoir. Then, above
a given excitation level, an abrupt increase in the energy blueshift is observed. As
shown on Fig. 9.12, this effect is simultaneous to the massive accumulation of po-
laritons in the considered quantum state. The population of the polariton state can be
directly estimated considering its emission intensity normalized to the intensity at
threshold: Ny = (|¥ (x, V|2 = lil(t’}t)f)z)' As shown on Fig. 9.12 polariton-polariton
interaction when the polariton occupancy becomes large is indeed responsible for
the strong increase in the polariton energy. This measurement allows quantitative
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Fig. 9.12 (a) Blueshift measured in a 10, 6 and 3.2 um micropillar and in the optical trap; the
red (resp. blue) line shows the excitation range dominated by interactions with the reservoir (resp.
within the condensate); the inset shows the measured intensity in the four systems. (b) (Sym-
bols) Measured blueshift of the lowest energy polariton state in the 10 pm micropillar; Calculated
blueshift induced (red line) by the excitonic reservoir or (blue line) by interactions within the con-
densate deduced from the measured polariton occupancy; (black line) Total calculated blueshift;
(c) Same as (b) for the optical trap. The figure is extracted from Ref. [80]

estimate of the exciton-exciton interaction constant g, which is found to be of the
order of 3 peV cm?, in accordance with theoretical calculation of exciton-exciton
interactions [8]. Evaluation of the strength of polariton-polariton interaction is very
important since this term is the non-linear term in the Gross Pitaevski equation re-
sponsible for many fascinating polaritonic features such as polariton bistability or
superfluid behavior.

9.4.3 Polariton Condensation and Photon Lasing

There has been a long debate these last years in the scientific community about the
understanding of the distinction between polariton condensation (or polariton las-
ing) and regular photon laser [84—88]. On a microscopic point of view, in a photon
laser it is the emission of light that is stimulated whereas in a polariton laser, operat-
ing in the strong coupling regime, it is the polariton relaxation which is accelerated
by bosonic stimulation. Nevertheless both devices emit coherent light and one could
argue that these microscopic descriptions may be two different ways to describe the
same physical mechanism. Here we want to show that it is possible to observe both
regimes in the same cavity structure, either increasing the excitation density or in-
creasing temperature. Very different spatial behaviors are observed in both cases,
giving strong indication that indeed polariton lasers have very specific properties
and are different from more conventional photon lasers.
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Fig.9.13 (a) and (b) Emission spectra measured on a single 3 um pillar for several excitation pow-
ers. Polariton condensation (photon lasing) is observed in (a) (resp. (b)); (¢) Emission linewidth
measured on a single 3 um pillar as a function of the excitation power: pronounced spectral nar-
rowing is observed both at polariton and photon lasing threshold. (d) and (e) Spatial emission
distribution measured on a single 10 pm pillar in the polariton condensation regime and in the
photon lasing regime. Figure partly extracted from Ref. [80]

Polariton and photon lasing can be successively observed in a single micropillar
by increasing the excitation power, as illustrated in Fig. 9.13. A first threshold is
primarily obtained, above which the emitted intensity strongly increases accompa-
nied by a continuous blueshift of the emission due to polariton interactions. Further
increasing the excitation density, the blueshift dramatically increases and then tend
to saturate. Estimate of the exciton density shows that the system is pumped above
the Mott density so that excitons are bleached. The system operate in the weak cou-
pling regime and the emission comes from the uncoupled cavity mode (the energy
of which may be slightly renormalized by the high pumping rate). Then a second
threshold is seen, which is interpreted as the onset for photon lasing. Figure 9.13c
shows that at both thresholds strong spectral narrowing of the lines is observed,
further confirming the onset of two coherent regimes. A recent report of similar ex-
periments in a planar cavity shows that the measure of the autocorrelation function
2%(0) also confirms the onset of two coherent regimes. Nevertheless strong dif-
ference in the two regimes are evidenced when analyzing the emission pattern, for
instance in the case of a large micropillar. We have seen that in the polariton conden-
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sation regime, the emission comes from the four corners of the pillar. When passing
through the second threshold, the emission abruptly arises from the very center of
the excitation region and appears tightly focused. Thus going from polariton lasing
into photon lasing, a completely different emission pattern is observed.

We want to mention also that the propagation features reported in 1D cav-
ities completely vanish when operating the system at high enough temperature
(above 50 K), such that the non-linear emission observed occurs in the weak cou-
pling regime [65]. Indeed in this case, instead of observing long distance propaga-
tion, the emission only comes from a tightly focused region, within the excitation
area.

So in all situations where lasing emission occurs in the weak coupling regime,
the coherent emission is highly localized in the excitation region. Because of high
pumping level, the index of refraction is modified and this creates a lateral confine-
ment of the gain region. Such gain confinement was also reported in a cavity which
was supposed to operate in the strong coupling regime [89], but this result needs to
be confirmed.

To summarize, opposite spatial behaviors are observed in the weak and strong
coupling regime. In the polariton condensation regime, repulsive interactions within
the excitation area tend to expel polaritons from the excitation area. On the contrary,
in the weak coupling regime, gain confinement induces a tight focus of the coherent
emission. This clearly shows that the polariton device is not a standard laser and
presents specific properties induced by interactions.

9.5 Conclusion

We have shown in this chapter that it is possible to spontaneously generate polariton
condensates with a non-resonant optical excitation in semiconductor microcavities.
The quality factor in GaAs based microcavities is now made large enough to en-
able ballistic propagation of these condensates over macroscopic distances, while
preserving their spatial coherence. Via their excitonic part, polariton condensates
undergo strong interactions with their environment. This is evidenced by strong
renormalization of the condensate wavefunction and energy induced by polariton-
polariton interaction within the condensate and also, by repulsive interactions with
clouds of uncondensed excitons. Taking control of these interactions, it becomes
possible to optically manipulate these condensates. Controlled trapping or tunnel
coupling using interaction with a localized excitonic reservoir has been demon-
strated. Finally it is possible to generate these polariton condensates in cavities
etched into microstructures. We have shown the generation of macroscopically ex-
tended condensates in wire cavities or in fully confined resonators like micropillars
or photonic molecules.

The very good control of the processing techniques and in particular of the dry
etching of planar cavities now enables envisioning more complex photonic circuits
to generate and manipulate polaritons. The experimental realization of several the-
oretical proposals for innovative circuits and new optical functionalities now be-
comes feasible. For instance very interesting physics is expected when considering
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polaritons evolving in a periodic potential. Spatial Bloch oscillation of a polariton
wavepacket could be revealed with interesting spin features [90, 91]. Polariton in-
teractions could lead to localization of polariton condensates into gap solitons, as
previously described for atomic condensates in an optical lattice [92] or in non-
linear optical fibers [93]. The use of spin dependant polariton bistability [94] in
polaritonic circuits has been proposed to implement optical gates, analogous to a
polariton neuron [95]. Also interesting could be the propagation and interaction of
polariton bright solitons in photonic circuits [25]. Another very promising direction
is the fabrication of a polariton interferometer, a ring shape polaritonic circuit [96].
In the presence of an external magnetic field, a polariton Berry phase is predicted
in such device, resulting from competing effects of the longitudinal transverse split-
ting on one side and of the Zeeman splitting on the other side. Varying the magnetic
field, strong modulation of the output polariton intensity is expected, in a similar
way as for the Aharanov-Bohm effect in mesoscopic physics [97].

Finally following the implementation of photonic molecules composed of two
coupled micropillars, one dimensional or two dimensional arrays of coupled pillars
can be envisioned. This is the ideal system to investigate new quantum phases for a
Bose Hubbard Hamiltonian in a dissipative system [98—100].
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Chapter 10

Toward Quantum Fluids at Room Temperature:
Polariton Condensation in III-Nitride Based
Microcavities

Jacques Levrat, Georg Rossbach, Raphaél Butté, and Nicolas Grandjean

Abstract The combination of high exciton-binding energy and large coupling
strength makes exciton-polaritons in wide bandgap semiconductor microcavities
(MCs) eminently suitable to promote quantum effects up to ambient conditions.
In this respect, the III-nitride material system is a very promising candidate owing
to the recent observation of room temperature (RT) polariton condensation, which
should even benefit further from rapid developments in the areas of growth and pro-
cessing. This chapter deals with GaN-based planar MCs where the phase transition
of exciton-polaritons to an out-of-equilibrium macroscopic quantum state has been
demonstrated up to 340 K. A comprehensive study of the threshold of the polariton
condensation phase transition as a function of temperature and detuning evidences
the interplay between carrier kinetics and thermodynamics. It turns out that polari-
ton relaxation is predominantly driven by thermodynamics at RT. The evolution of
the order parameter, i.e., the wavefunction of the polariton condensate, can thus be
confronted to Bose-Einstein theory. In particular, it is expected that spontaneous
symmetry breaking leads to the observation of randomly-oriented linearly polarized
light as the condensate acquires a different phase for each realization. This behavior
is evidenced for the case of a bulk but not for a quantum-well based GaN MC as
the dimensionality of the system is affecting the spin dependence of the polariton-
polariton interactions. In particular, in the case of a two-dimensional system, inter-
actions between polaritons with parallel and opposite spins are no longer equivalent
causing the self-induced Larmor precession of the polariton pseudospin. This fea-
ture is evidenced by the progressive depinning of the order parameter above the
polariton condensation threshold.
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10.1 Introduction

10.1.1 Polariton Condensation and Its Path Toward Room
Temperature

After the first demonstration of the strong coupling regime (SCR) in planar GaAs-
based microcavities (MCs) in 1992 [1] and the proposal of polariton condensation as
a driving force for the realization of novel low-threshold coherent light emitters by
A. Imamoglu and co-workers in 1996 [2], the polaritonic field has grown at a fast
pace. In particular, the first report of non-equilibrium Bose-Einstein condensation
(BEC) of polaritons in a CdTe-based MC [3] and the subsequent observations of
integer [4] and half-integer quantum vortices [5], superfluidity [6—8], and solitons
[9] in polariton fluids, attracted a lot of attention. Cavity-polaritons exhibit unique
characteristics inherited from their mixed light-matter nature. Thus, their photonic
component confers them a very low effective mass, while their excitonic one allows
them to interact causing non-linearities in polaritonic quantum systems.

From the point of view of integrated optoelectronics, cavity-polaritons are of
high interest as they can carry information via their pseudospin S, their phase, their
amplitude and their energy. When decaying, an exact copy of this information is
transferred to the emitted photons allowing the readout of the polariton state. An-
other important aspect of cavity-polaritons is that the light-matter content can be
controlled via the detuning 6 between cavity-photons and excitons, e.g., by vary-
ing the cavity thickness or the lattice temperature. Thus, the way polaritons interact
with each other can be modified: for negative § values the lowest energy polari-
ton state is mainly photon-like, while for positive ones the situation is reversed.
Based on these unique properties, cavity-polaritons were proposed as promising
candidates for several applications in optoelectronics and spinoptronics, including
the generation of entangled photon pairs [10, 11], the realization of micro-optical
parametric oscillators [12] and amplifiers [13, 14], ultrafast optical spin switches
[15, 16], new coherent light sources [2, 17-20], mesoscopic optical Berry-phase
interferometers [21], Sagnac interferometers [22], exciton-polariton BEC mediated
high-temperature superconducting circuits [23], logic gates [24], polarization/spin-
sensitive devices [25-29], THz emitters [30] and devices using spin-independent
bistability [31]. Most of those phenomena or concepts have been proposed based on
the properties of GaAs and CdTe MCs, which exhibit on the one hand an advanced
structural and optical quality but on the other hand a limited exciton binding energy
(E;’() restricting their experimental demonstrations to cryogenic temperatures and
thus preventing the realization of devices. Indeed, despite the demonstration of an
electrically-injected polariton light emitting diode, a system operating in the linear
emission regime, at room temperature (RT) in a GaAs-based MC, it seems that the
cut-off temperature Tt for the observation of polariton related non-linearities is set
by the thermal stability of excitons, i.e., Teye & E?( / ks [14]. To overcome this issue
E%’( has to exceed the thermal energy at RT (~26 meV) and defines the main figure
of merit to bring polariton non-linearities up to ambient conditions.
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Figure 10.1 shows E% values for a variety of inorganic bulk semiconductor ma-
terials as a function of their bandgap energy Eg. Within the hydrogen-like approx-
imation the relation E;’( o miy/ &2 holds, where mZ is the reduced effective mass
of the exciton and ¢, is the static dielectric constant of the material of interest. Both
quantities are a function of Eg: as a first approximation mef x Eg and ¢ «x 1/Eg
[32]. The resulting power law E;’( ' Eg is shown as a guide to the eye in Fig. 10.1
and highlights the limited number of bulk semiconductor MCs for high temperature
exciton-based applications. This situation can be significantly improved if quantum-
well (QW) based structures are considered instead of bulk ones. Indeed, due to
carrier-confinement effects the value of E;’( can theoretically be enhanced by a fac-
tor of up to four compared to the bulk case in perfectly two-dimensional (2D) QWs
[33]. However, owing to deviations from the ideal 2D-symmetry real structures of-
ten exhibit a maximum enhancement factor of about two.

10.1.2 Systems Suitable for Room Temperature Polariton
Condensation

Polariton condensation in semiconductor MCs under non-resonant excitation has
been reported for the following material systems: GaAs [34, 35], CdTe [3], GaN
[18, 19], anthracene [20], and very recently in ZnO [36]. Thus far, the critical tem-
perature for this phase transition T < T, amounts to ~40 K for GaAs [35] and
~50 K for CdTe [3]. A major breakthrough on the road toward higher tempera-
tures occurred with the report of polariton condensation at RT in GaN-based MCs
[18, 19]. These observations attracted a lot of interest and GaN is probably the most
promising candidate to date for the realization of polariton-based devices operating
under ambient conditions. However, ZnO and organic MCs are considered as alter-
native possibilities to GaN: their relevant characteristics are briefly discussed in this
section and compared to the GaN ones in Table 10.1.
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Table 10.1 Exciton binding energy E%’( and vacuum Rabi-splitting £2yRrs for the material systems
exhibiting high temperature (RT, except Tz,0 = 120 K) polariton condensation in planar MCs

GaN (bulk) GaN (QW) ZnO (bulk) Organic (bulk)
EY (meV) 26 [37] 48 [19] 60 [38] ~1000 [20]
2vrs (meV) 30 [18] 56 [19] 130 [36] 256 [20]

10.1.2.1 ZnO-Based Microcavities

Considering its high exciton binding energy (~60 meV for bulk material [38]) and
oscillator strength, ZnO has been proposed in 2002 as a candidate of choice for high
temperature polariton condensation [39]. As a matter of fact, the SCR for a bulk
cavity has been achieved in several geometries: in epitaxial cavities grown on top of
a lI-nitride bottom distributed Bragg-reflector (DBR) [36, 40, 41], in fully-hybrid
microcrystalline ZnO structures relying on two dielectric DBRs [42, 43], and in
other ZnO-based systems with vacuum Rabi-splittings as large as £2yrs ~ 280 meV
[44].1 Although the SCR has been demonstrated up to 410 K in this system [45],
non-linear emission in the SCR corresponding to polariton lasing has only been
reported very recently at T = 120 K [36]. Despite a substantial research activity the
insufficient material quality prevented more advanced studies on planar ZnO-based
MC:s so far and the lack of a highly reproducible and stable p-type doping might
hamper the path toward devices.

10.1.2.2 Organic Microcavities

Optical excitations in organic semiconductors are preferentially described in the
framework of Frenkel excitons [46], i.e., strongly bound and localized electron-hole
pairs (E;’( of up to 1 eV [20]) exhibiting a large oscillator strength and a transition
energy commonly occurring in the visible spectral range. In combination with the
ability of doping, organic MCs present serious advantages over inorganic ones and
the potential low cost of device fabrication is a major trigger for this research activ-
ity. Until now the SCR has been demonstrated for various planar sample geometries
and active media [47-53] up to RT. Nevertheless, polariton condensation has only
been observed recently in an anthracene-based MC under non-resonant optical ex-
citation by Kéna-Cohen and Forrest [20]. Despite obvious advantages, the limited
thermal, mechanical and chemical stability of the most common organic compounds
constitutes the major drawback of those MCs.

1 Q2yrs corresponds to the minimum mode splitting between the lower and the upper polariton
branch (LPB and UPB, respectively) for zero detuning between cavity-photon and exciton eigenen-
ergies.
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Fig. 10.2 (a) Bandgap of the common wurtzite III-nitride compounds versus lattice constant a
emphasizing the possibility of bandgap engineering via alloying. (b) Wurtzite crystal structure
with highlighted main planes. (¢) Sketch of the quantum-confined Stark effect: polarization dis-
continuities at polar heterostructure interfaces lead to the formation of compensation charge planes
and to a built-in electric field separating electron and hole wavefunctions

10.1.3 Basics on III-Nitrides

Recently III-nitrides became the second largest market in the semiconductor indus-
try just after silicon. This development was mostly driven by the progress made
by the Ill-nitride technology for numerous daily life applications relying on spe-
cific material properties. In the hexagonal phase all compounds provide a direct
bandgap, which is continuously tunable from the ultraviolet down to the infrared
spectral range via ternary alloying and thus also spans the whole visible spectrum
(cf. Fig. 10.2(a)). Taking into account the well-established possibility of p-type dop-
ing for Ga-rich alloys, these characteristics make III-nitrides extremely suitable for
optoelectronic applications. Besides the violet laser diodes used for optical data stor-
age systems, the market of white light emitting diodes increases extremely rapidly.
The latter provide record luminous efficacies and will progressively revolutionize
general lighting. On the basis of their chemical and thermal robustness III-nitrides
are further used for high-power and high-temperature electronics.

Basic characteristics of a material system can already be inferred from its crystal
structure: II-nitrides preferably crystallize in the wurtzite phase, which is shown
in Fig. 10.2(b). The hexagonal symmetry of the lattice causes uniaxial anisotropy
to many material properties and in combination with the ionicity of the chemical
bonding an intrinsic polarity along the c-axis. This so-called spontaneous polariza-
tion is specific for each binary compound and might be additionally modified by
a strain related piezoelectric component. The discontinuity of the polarization vec-
tors projected onto the growth axis z at the interfaces of heterostructures causes a
large built-in electric field and leads to the so-called quantum-confined Stark effect
(QCSE) [54]. Figure 10.2(c) displays the band profile of a c-plane (z || [0001]) GaN
QW embedded in an AlGaN matrix. The electric field generated by the sheet charge
densities o and o~ shifts the occupancy probability maximum of electrons and
holes toward opposite sides of the well. Owing to the reduced wavefunction over-
lap the oscillator strength is decreased, which detrimentally affects the efficiency of
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devices and in view of polaritons weakens the coupling strength between excitons
and photons. This effect scales with the well thickness leading to a narrow optimum
well width for nitride structures grown along the polar surface orientation, usually
in the 1 to 2 nm range [55]. A way to completely circumvent the drawbacks of the
QCSE consists in growing structures on non-polar surfaces, like the m- or a-planes
(cf. Fig. 10.2(b)), where z and c-axis are orthogonal to each other and the projection
of the polarization vectors onto z is thus equal to zero. However, due to the lack
of adequate substrates crystal quality is still an issue for those structures and the
well-controlled c-plane growth orientation is widely preferred.

The small Bohr radius of the exciton in a GaN QW (~2 nm) implies a high sen-
sitivity of the latter to crystal defects, local lattice deformations and alloy composi-
tion fluctuations in the barriers, and leads in general to an increased inhomogeneous
broadening iy, compared to semiconductors with lower exciton binding energy.
Indeed it was shown that an increased inhomogeneous linewidth will decrease the
polariton mode splitting and might potentially switch the system to the weak cou-
pling regime [56, 57]. Therefore all design aspects of IlI-nitride MCs have to be
carefully balanced with respect to their impact on the crystal quality. An important
role is assigned to the bottom DBR: from the optical point of view it should provide
a sufficient number of bilayer pairs exhibiting a refractive index contrast as large as
possible to guarantee a high peak reflectivity, a broad stopband width and a small
penetration depth. On the other hand it represents the template on which the active
region of the MC will be grown. Thus a limited number of defects and a flat surface
are required to reduce the inhomogeneous broadening of the exciton due to in-plane
strain fluctuations, i.e., ¥inh < §2vrs, and to have a low photonic disorder. The key
to combine those features in a monolithic layer stack is the minimization of strain.
Based on Fig. 10.2(a) a lattice-matched UV AlGaN/AlInN based bottom DBR has
shown to be the best compromise [58, 59].

10.2 Polariton Condensation Phase Diagram in a GaN-Based
Microcavity

The first demonstration of polariton lasing [18] and BEC of exciton-polaritons [60]
at RT was achieved in a bulk GaN-based MC. However, with respect to Table 10.1
and the previous discussion, a lattice temperature of 300 K roughly corresponds to
T for this active material. Since device operating temperatures are usually exceed-
ing the ambient one, a structure relying on a bulk GaN layer looks thus hardly proba-
ble. This intrinsic limitation can be effectively overcome by switching to appropriate
multiple QW-based active regions. Quantum confinement enhances the exciton os-
cillator strength and the robustness of excitons: E;’( values of up to 50 meV have
been obtained [59]. This approach also induces a reduction in the critical density for
condensation n by at least one order of magnitude [61] and the observation of po-
lariton condensation over a wider range of detunings § and temperatures 7 [62, 63].
Note that the range of accessible § directly scales with £2yrs and corresponds to
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Fig. 10.3 LPB far-field emission spectra measured at 280 K (a) far below and (b) slightly above
the threshold pumping power ( Py ), respectively. The macroscopic occupancy of the ground state
is clearly seen at threshold and is associated with a blueshift of about 4.8 meV (§ ~ —56 meV).
(¢) The deduced LPB occupancy shows the transition from a non-thermal distribution below thresh-
old, i.e., a relaxation bottleneck is present [66], to a thermal one above

polariton states with a non-negligible excitonic fraction, i.e., |§| < £2yrs,> which
explains why wide band gap semiconductors cover such a wide range of detunings.
The situation is illustrated in Fig. 10.4(a) for the case of GaAs, CdTe and GaN quan-
tum well-based structures (white dashed lines) together with bulk ZnO and organic
microcavities (black dashed lines).

In the forthcoming section the phase diagram, i.e., the evolution of the polariton
condensation threshold power density Py, as a function of the independently tunable
parameters § and T will be presented and discussed for a multiple QW GaN-based
MC. Py, will be shown to be either governed by the carrier relaxation kinetics or by
the thermodynamics depending on the set of § and T investigated [64]. The sample
studied is described in detail in Ref. [59]. Note that in the following sections the ter-
minology polariton condensation encompasses both polariton lasing and polariton
BEC. In the former case, the system transits from a metastable uncondensed phase
to a condensed one and neither below nor above Py, the system reaches thermal
equilibrium, whereas for the polariton BEC the system exhibits a well defined tem-
perature below and above the condensation threshold [64]. At this stage it is worth
pointing out that a polariton BEC does not correspond to a BEC in the classical
sense: polaritons rely on the strong coupling between photons and electronic exci-
tations in the solid state and are thus short-living quasi-particles. This means that
the condensate has to be continuously pumped to compensate for losses and as such
it represents an intrinsically open system. Nevertheless, both phenomena share nu-
merous essential characteristics leading to the denomination non-equilibrium BEC
for exciton-polaritons [65].

ZNote that this criterion sets an arbitrary frontier and the excitonic fraction at k| = 0 corresponds
to 15 % for §/$2yrs = —1 and 85 % for §/$2yrs = 1. For |8|/$2yrs = 2, these ratios still amount
to 5 and 95 %, respectively.
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Fig. 10.4 (a) Excitonic fraction at kj =0 as a function of § and vacuum Rabi splitting £2yrs.
The horizontal dashed lines represent the state-of-the art for different MCs. The continuous white
lines are defined by the condition 6§ = +£2yrs and set the range where the polaritons significantly
depart from the bare modes. (b) Polariton lifetime at k| = 0 as a function of the MC quality factor
and the exciton cavity-photon detuning § calculated for a GaN QW-based planar semiconductor
microcavity operating in the SCR with an exciton transition at 3.65 eV at RT and £2yrs = 60 meV.
The horizontal dashed lines illustrate the state-of-the-art for hybrid MC structures [73] and the
sample investigated here, respectively

Typical far-field emission spectra of a GaN-based MC measured at 280 K are
shown in Fig. 10.3. Far below the condensation threshold the LPB occupancy
clearly appears non-thermal. With increasing polariton density, relaxation toward
the ground state becomes more efficient resulting in a thermal carrier distribution
when approaching Py,.. Note that for the transition region between both regimes the
effective polariton temperature T.¢ does not necessarily have to coincide with the
lattice one and commonly exceeds the latter.

10.2.1 The Polariton Dispersion and Lifetime

When the coupling strength between excitons and cavity-photons exceeds the corre-
sponding damping rates the SCR takes place, where lower and upper polaritons are
the new eigenmodes of the system. Their energy evolves with the in-plane wavevec-
tor k| according to:

1 1
Eves/ups (k) = 58, + Ex (k) F 5,/8, + 2Vgs» (10.1)

where the — and + signs stand for LPB and UPB, respectively, and &, de-
notes the energy difference between the uncoupled cavity and exciton dispersion:
Ecav(k) — Ex(ky). Since the momentum dependence of §, is simply given by the
different effective masses except for a constant offset, the detuning § = &, (k) = 0)
will be used as a characteristic quantity in the following. From (10.1) it appears
that the detuning significantly influences the shape of the polariton dispersion. For
the extreme case where § > £2yrs, the LPB dispersion reduces to the uncoupled
exciton one, and in the opposite case where § < £2vrs, ELpg (k) converges to the
cavity-photon dispersion around zero in-plane momentum. This asymptotic behav-
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ior highlights the fact that the polariton description only holds in the region where
Sk, is small or of the order of the light-matter coupling strength, i.e., [5] < §2vrs.
In this detuning range, whose extent critically depends on the system of interest,
the polariton behavior can be continuously tuned from photon to exciton-like (see
Fig. 10.4(a)). Thereby, the excitonic fraction along the LPB dispersion is strongly
dependent on §2yrs and &, and is given by:

|X (ky, )| = W22 /[ 2 + 4(Evpn (k) — Ex(kp)’], (10.2)

while the evolution of the corresponding photonic fraction is set by the relation
|C(/’<”)|2 =1—-1X (k”)|2. Note that excitons and cavity-photons exhibit different
lifetimes (tx # tc) resulting in a polariton lifetime t,0; given by:

1 _ |CkH|2 |XkH|2

_ (10.3)
Tpol (k) C X

All experiments reported in the following are performed using a non-resonant exci-
tation scheme. Hence, the electronic population consists first of a hot electron-hole
plasma with a very high kinetic energy excess, typically 1 eV. Despite the high
temperature of the electronic gas, relaxation via longitudinal-optical (LO) phonon
emission down to the exciton dispersion is very efficient in GaN and lasts for about
a few 100 fs [67]. This high efficiency is attributed to both the high LO-phonon
energy (ErLo = 92 meV) and the intrinsic polarization field in the wurtzite crystal
along the c-direction. As a consequence, the fast generation of a Boltzmann dis-
tribution of excitons with a temperature given by the LO-phonon energy can be
reasonably assumed. Once this initial population is formed, it further thermalizes
via interactions with acoustic phonons and the surrounding electronic population.
This process is rather slow (scattering time ~10 ps [68]) and does not allow the ex-
change of a significant amount of energy, the latter typically amounting to 1 meV.
However, the main limitation preventing thermalization of the polariton population
is the decrease in Ty close to the center of the Brillouin zone according to (10.2)
and (10.3). In addition, the increasing photonic content of lower polaritons inhibits
those interactions and further promotes a non-thermal LPB occupancy character-
ized by the presence of a relaxation bottleneck [69]. This latter feature is commonly
observed in semiconductor MCs whatever the material system [70-72].

For the achievement of a thermal carrier distribution and thus to minimize Py,
the relaxation bottleneck has to be overcome, which directly implies a relaxation
timescale ] smaller or at least comparable to the mean lifetime of the polariton

ensemble:
1 1 1 nk,
= = , (10.4)
(tpo)  \7pot(k) [y, Niot N Tpot (k)

where Niot = Zk” ny, is the total number of particles in the system and ny, is the
occupancy number of a polariton state with in-plane momentum k.

Since the exciton lifetime in (10.3) significantly exceeds the photon one, the
lifetime of the polariton condensate, i.e., the lifetime at zero in-plane momentum
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Tpol (k) =0) = T;?ol’ appears to be clearly limited by the photonic component and is

well approximated by T;?ol ~ 7c/|Col?. As a consequence, the MC quality factor
Q = Ectc/h, which mainly depends on the structural quality [74], is a key param-
eter to improve the relaxation efficiency as it directly sets the number of scattering
events before polariton decay. The hybrid MC structure investigated in the follow-
ing sections exhibits a Q-factor of ~1000, but values in excess of 6000 have been
demonstrated in similar nitride-based MCs [73]. Figure 10.4(b) illustrates the evo-
Iution of the polariton condensate lifetime as a function of detuning and quality
factor. In the Q-factor range displayed, it is particularly visible that lifetimes longer
than 5 ps are restricted to positive values of 8, even for full dielectric MCs that are
expected to exhibit significantly larger Q-factors.

The majority of Ill-nitride based MCs feature a hybrid architecture, i.e., the
bottom DBR and the overgrown cavity region consist of a monolithic III-nitride
layer stack in order to ensure an optimum optical quality of the active medium.
Thereby, the refractive index contrast of the DBR bilayer components (An/n)nitride
is strongly limited and amounts to about 10 % in the best cases [75]. Hence, a high
number of pairs (typically >30) is required to reach a reflectivity as large as 99.5 %
and a stopband width exceeding 200 meV [76]. This implies a significant penetra-
tion length of the light electric field into the DBR, which detrimentally affects the
coupling strength in this geometry. The presence of propagating defects, interface
roughness and residual absorption might further decrease the polariton lifetime. For
all these reasons the full dielectric MC approach providing a high refractive index
contrast: (An/n)giel > 30 %, and low absorption looks better suited to achieve Q-
factors exceeding 10000 but they raise serious challenges in terms of fabrication
and processing.

10.2.2 A Pedestrian Approach to the Phase Diagram: Kinetic
vs. Thermodynamic Regimes

The polariton lasing threshold behavior crucially depends on how far the polari-
ton gas is from thermal equilibrium, which in turn depends on the characteristic
timescales involved in the system: the polariton ensemble lifetime (tpo1) and the
relaxation time T, i.€., the time required for the polaritons to thermalize with the
lattice. As a consequence, a good figure of merit to understand the behavior of Py,
is the ratio R = (Tpo1)/ el that can be naively understood as the ratio between the
respective roles played by the thermodynamics and the kinetics. Intuitively, when
R tends to zero, the polariton distribution cannot reach a thermal distribution and
the final state of the system is fully governed by the relaxation kinetics. By contrast,
when this ratio tends to large values, the polariton distribution approaches equilib-
rium and the threshold can be reasonably described within the BEC thermodynamic
theory framework. The case R~ 1 defines an intermediate regime where both theo-
ries cannot be applied independently.
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Fig.10.5 (a) Schematic phase diagram representing the evolution of the characteristic times, (7,01)
and 1y as a function of § and T (see text for details). Adapted from Ref. [63]; (b) Critical den-
sity for polariton condensation (color scale) as a function of § and 7'. The saturation density for a
GaN-based MC with 1 and 67 thin GaN QWs (corresponding to the investigated structure) is sym-
bolized by the thin black dashed lines. The vertical blue line represents the dissociation temper-
ature for QW excitons in the present structure. The filled white circles represent the experimental
data for the optimum detuning corresponding to the minimum threshold power density required
for condensation. This line separates the kinetic and thermodynamic regimes and the thick black
dashed line represents the expected trend. The dashed white rectangle displays the experimentally
accessible detunings and temperatures in the present MC

The following subsections will focus on the influence of the cavity-exciton detun-
ing § and the temperature T on the different timescales. As a result separate regions
where the polariton relaxation is governed either by the thermodynamics (R — c0)
or by the carrier kinetics (R — 0) emerge in the (8, T)-plane.

10.2.2.1 Effect of Detuning and Temperature on Polariton Relaxation

The role played by é in semiconductor MCs operating in the SCR is essential
as it allows to adjust the light-matter content of polaritons. According to (10.2)
and Fig. 10.4(a), when § is negative the LPB becomes photon-like and conversely
exciton-like for positive detunings. More precisely, polaritons mimic the behavior
of the closest bare mode and can be tuned from quasi non-interacting particles for
| X (0) |2 — 0 to strongly interacting ones when | X (0) |2 — 1. As a consequence Ty is
a monotonically decreasing function of § for a given temperature (cf. Fig. 10.5(a)):>

0Tre1 (8, T)

. 10.
5% <0 (10.5)

T =cst

Hence, a higher excitonic content has been shown to favor relaxation processes
bringing the system closer to the thermodynamic limit [72]. On the other hand in-

3This is true if one discards extra relaxation channels such as the LO-phonon assisted one [77].
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creasing the temperature strongly affects the particles behavior. Even if polariton-
polariton and polariton-acoustic phonon scattering rates decrease when the carrier
temperature is increased [66], the overall dynamics is faster since the imbalance be-
tween income and escape rates for a given state with wave vector k| increases with
temperature. In particular, Porras and coworkers have shown that there is an approx-
imately linear relation between the exciton reservoir temperature and the maximum
energy loss in the relaxation process, i.e., the higher the temperature, the faster the
relaxation dynamics [78]. The relaxation dynamics is further accelerated by the pro-
gressive apparition of free thermal electrons inducing additional polariton-electron
scattering events. Consequently, a rising temperature promotes the relaxation effi-
ciency (cf. Fig. 10.5(a)):

071 (8, T)
oT

This effect becomes more pronounced for positive detunings as the total scattering
rate Wl?it—)kﬁ is proportional to the product of the excitonic fraction of the initial
and final states. It is worth mentioning that the temperature also affects the exciton
reservoir lifetime Tpes = r)IZIR. The latter decreases with rising lattice temperature
resulting in an additional increase in Py,,. However, this effect is neglected in the
present situation as it only occurs at high temperatures where the system is in the
thermodynamic regime and thermal depopulation is then the predominantly limiting
contribution affecting Py, as described hereafter.

<0. (10.6)

d=cst

10.2.2.2 Impact of the Thermodynamics on the Threshold Power Density

In the previous section, the evolution of ;¢ has been qualitatively deduced depend-
ing on the weights of interactions for different regions in the phase diagram (5, T')-
plane (cf. Fig. 10.5(a)). However, so far the discussion has only accounted for the
carrier kinetics. In order to get a complete picture of the Py, evolution the role
of thermodynamics has to be considered. Figure 10.5(b) displays the critical density
ntch(S, T) of polaritons, which corresponds to the total density of particles in the sys-
tem at P = Py,,. Even if this treatment is only valid for a perfect 2D non-interacting
Bose gas, it provides basic understanding of the system behavior. For instance, it
appears that for a given §-value ngh continuously increases with temperature due to
the progressive population of the higher energy states:

anh(s, T)

0. 10.7
3T > (10.7)

d=cst

Note that for temperatures higher than a certain T, the increase in ngh is faster due
to the onset of thermal detrapping. T thus corresponds to the temperature where
the thermal energy kg7 becomes comparable to the lower polariton trap depth in
k) -space defined as the energy gap between the bottom of the branch and the onset
of non parabolicity in the LPB. Indeed, it was shown that in our III-nitride MQW
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Fig. 10.6 (a) Color map of the lower polariton branch dispersion (LPB) relative to the free exciton
line vs. in-plane momentum k) for different § values and £2yrs = 60 meV. The continuous white
lines keross(8) define the maximum k| occupied for different temperatures. The black dashed line
ki p(8) corresponds to the position of the inflection point in the LPB. The transition detuning djip, is
found when these two curves cross each other for each temperature. e sets the onset of thermal
detrapping for each detuning §ji,. For less negative § values, thermal depopulation is triggered;
(b) Experimental condensation phase diagram: Evolution of the polariton lasing threshold as a
function of temperature and detuning. Adapted from Ref. [62]

based MC thermal depletion is triggered when polaritons start populating the LPB
beyond its inflection point [55]. This mechanism acts as an extra loss channel and
hampers the polariton condensate formation. In Fig. 10.6(a) the LPB is shown for
detunings ranging from —100 to 100 meV as a function of k. The position of the
inflection point k; p(8) is indicated and shown together with kcross (), which is given
by the condition E1pg(k =0, 8) + kp Tiax = ELPB (kcross, 6) and denotes the highest
accessible momentum for the polariton gas. The intersection of kcross(8) and k; ,(5)
defines, for a given lattice temperature Tegc, the critical detuning )i, above which
thermal depopulation becomes the dominant effect. In the region of the phase dia-
gram where § > 81, and T > Tegc, the polariton condensation threshold undergoes
a significant increase as illustrated in Figs. 10.5-10.7 [55]. This simple picture is
in agreement with the experimental values extracted from the phase diagram (see
Sect. 10.2.4), where Tesc ~ 260 K and 8jj, ~ —45 meV.

To have a complete picture of the mechanisms ruling Py, the evolution of néh
with & should also be considered. From Fig. 10.5(b) it appears that nf:h increases
with § for the whole temperature range:

anth(s, T)

> > 0. (10.8)

T=cst

This can be intuitively understood when considering that for more positive detun-
ings the density of states at zero in-plane momentum increases due to the rising
matter-like character of polaritons. Thus, more particles have to be brought to the
bottom of the LPB to reach the degeneracy condition. Interestingly, at the same
time 7y undergoes a significant decrease due to the enhancement of interactions.
The system is therefore facing simultaneously two opposite constraints: the thermo-
dynamic threshold is low in the region where R is small and the relaxation efficiency
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is comparably low (kinetic regime) while it increases where R is large (thermody-
namic regime) but 7y is short. As a consequence, for each temperature an optimum
situation occurs where both kinetic and thermodynamic regimes are competing with
each other and (z,01) and 7] become comparable. In this region, a minimum value
for Py, is expected and an optimum detuning dop¢ can be estimated by:

Tpol (Bopt> T) = Trel (Sopt, T) = Rinykin (Sopt, T) =1, (10.9)
while satisfying:
0Py (8, T
3P (8. T) —0. (10.10)
948 T =cst

A calculation of 8qpt(T') from (10.9) based on the knowledge of the average polari-
ton lifetime (7,01) corresponding to (10.4) and the derivation of |, which requires
a modeling of the polariton relaxation kinetics by solving semiclassical Boltzmann
equations, is presented in the following section.

10.2.3 Theoretical Description of Polariton Relaxation

The calculation of the phase diagram requires the use of the correct formalism de-
pending on the dominant regime, the kinetic or the thermodynamic one. Even if
the kinetic approach can be applied to the whole phase diagram, it is of major im-
portance to define the domain of validity of the thermodynamic one. This section
provides a brief overview of the behavior of Py in the two regimes.

10.2.3.1 The Thermodynamic Limit

When polariton relaxation is predominantly driven by the thermodynamics, thus
implying that R tends toward infinity, the polariton states are occupied according to
the Bose-Einstein statistics [79]:

Evpp(k)) — Evps(0) — u) _ 1}] (10.11)

fee(ELp(ky), T, n) = |:exp< ~

where 1 < 0 is the chemical potential and T is the polariton effective temperature
which converges to that of the lattice in the thermodynamic limit [64]. The critical
density for polariton condensation is then given by the total number of polaritons
which can occupy all energy levels apart from the ground state. Considering that the
sample is probed over a typical spot size r and calling n™(8, T, 11) the total polariton
density, the critical density for polariton condensation is reached when the chemical
potential x vanishes. Beyond this point, each newly added particle to the system will
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accumulate in the ground state. Thereby, the critical density can be derived via [80]:

. 1
nd(@8.T)=limn™(8, T, p) = — f foe(ELp(k)). T, v =0)kydky.
n—0 ky>2m/r

2w
(10.12)
Figure 10.5(b) displays the calculated values for ntch(é, T) over a wide range of
detunings and temperatures for the investigated MC based on 67 thin GaN-QWs
(Low = 1.2 nm, E;’( ~ 48 meV [59]) forming the active region, which theoretically
allows the observation of the SCR up to ~540 K.

As already mentioned this discussion is only suitable for a perfect 2D ensem-
ble of non-interacting bosonic particles. The non-idealities of the current system,
namely the intrinsic interacting nature of polaritons and the non-equilibrium char-
acter arising from their finite lifetime, restrict its validity to regions of the phase
diagram where the ratio R(§, T) is significantly larger than unity. Since polariton
condensation occurs far from thermodynamic equilibrium, it is important to keep
in mind that the above-mentioned analysis can be considered as valid because a
quasi-thermodynamic approximation is adopted.

10.2.3.2 The Kinetic Limit

The polariton relaxation kinetics, i.e., the time evolution of the occupancy number
ng, (1), can be numerically solved through a semi-classical Boltzmann approach by
using the following set of equations for ny (¢) for discrete values of k:

dnk”

ar T Tt T ; Wig—ig (g + D + (g + 1) ) W=t M
I k|

: (10.13)

where [i, and I}, account for the pumping and decay rates (both of radiative and
nonradiative origin) of the particles and Wi, - K is the total scattering rate between

the initial state k| and the final state kl/| . The scattering rates are treated perturbatively
and encompass all the interactions polaritons can undergo with their environment,
namely exciton-phonon, exciton-exciton and exciton-electron interactions. Owing
to strong piezoelectric effects in GaN-based systems attention has to be paid in
particular to the treatment of the exciton-phonon interaction.

From the ensemble of solutions ng, various information can be deduced such as
the polariton relaxation time 7|, defined as the characteristic time of the polari-
ton temperature decay, or the critical density n. for each temperature and detuning
of the phase diagram accounting correctly for the system specificities via the total
scattering rates. Note that the critical density calculated within the polariton kinetics
approach is always larger compared to the ideal thermodynamic one ngh. However,
R monotonically increases with § and T bringing the system closer to the thermo-
dynamic limit and the gap between ngh and n. can eventually vanish [61]. Finally,
it is worth mentioning that the Boltzmann approach in the current form neglects the
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Fig. 10.7 (a) Optimum detuning 8op(7") as a function of the lattice temperature; (b) Evolution
of Py at 8ope(T). The black solid lines in (a) and (b) act as guide to the eye for the experimental
values emphasizing 7es.. Adapted from Ref. [63]

spin state of polaritons. This approximation is expected to be correct under non-
resonant excitation where the various processes of decoherence induce fast random
changes of the phase of polaritons, which then nearly behave as classical particles.
At and above the polariton condensation threshold, where the phase of the conden-
sate is stabilized and amplified by the stimulated scattering process, the spin state
has to be properly taken into account via the introduction of the two-component
order parameter of the condensate (see Sect. 10.3).

10.2.4 Phase Diagram: Experimental Results vs. Theory

Figure 10.6(b) displays experimental values for the polariton condensation threshold
power density for a wide range of detunings and temperatures. The accessible §
and T values are restricted by the sample geometry and the experimental setup.
Nevertheless, for temperatures exceeding ~100 K there is an obvious minimum
of Py for a certain detuning corresponding to opt. From there, Py, increases in
both directions according to the previous analysis: for § < dopt due to a decreased
scattering efficiency and in the opposite case § > Jopt because of a concomitant
increase in n. and thermal detrapping. Owing to the limited detuning range and the
expected behavior of op¢ in the low temperature range, only the kinetic regime is
observable for 7 < 100 K. In summary, it can be stated that the experimental results
qualitatively coincide with the predictions of the elementary theoretical discussion
presented in Sect. 10.2.2.

The results of the numerical modeling introduced in Sect. 10.2.3 are confronted
to the experimental values of §op in Fig. 10.7(a). As expected from our intuitive
approach &op¢ shifts toward more negative values with increasing temperature due
to the larger weight played by thermal detrapping. The other interesting feature is
that within the experimentally explored range of T and & values (cf. Fig. 10.5(b))
the optimum detuning is always negative and especially for 7 > 100 K far from
zero. This is in sharp contrast to the expected behavior for a vertical cavity surface
emitting laser where the optimum situation corresponds to the maximum overlap
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between the gain band and the cavity mode, i.e., for § = 0 [55], thereby highlight-
ing the matter character of polaritons and the important role of interactions in the
formation of the condensate. The position of dop, at a given temperature, also sets
the frontier between kinetics and thermodynamics and its absolute value is a char-
acteristic of the system fixed by the relative weights of these two regimes. For in-
stance, GaAs and CdTe-based systems are less dominated by the kinetics leading
to Sopt values much closer to zero compared to GaN-based MCs at low tempera-
tures: 8545 (10K) ~ —3 + 1 meV [35] and 555" (4K) ~ 3 & 1 meV [64]. However,
hints for a shift toward more negative § values with increasing temperatures due to
enhanced thermodynamics is also observed in these two systems [35, 64]. Note that
the discrepancy between experiments and theory seen in Fig. 10.7(a) is likely arising
from the fact that the semiclassical Boltzmann approach is only accurate in the low
density regime where renormalization effects of the LPB are negligible. Owing to
the important impact of interactions and saturation on the LPB dispersion in GaN-
based MCs [62], the currently applied modeling approach is restricted to a qualita-
tive rather than a quantitative agreement with the experimental phase diagram.

10.3 Polarization Properties of III-Nitride Based MCs

10.3.1 Representation of the Polariton Spin State

Cavity polaritons result from the coupling between heavy- (hh) or light-hole (1h)
excitons and a cavity photon.* Thereby, the exciton total angular momentum along
the growth direction z consists of that of the electron J; = 45 L and that of the hole:
JZlh :I:1 or J; hh :I:z respectively. Consequently, the resultmg spin projection
reads JZX € {j:l, +2} for hh-excitons and JZX € {0, £1} for 1h ones. As the photon
carries a momentum J, C — 1 (right-circular polarized, o) or J; C = —1 (left-circular
polarized, 0 7), couplmg of excitonic states with J; X =0 and J X = 42 to the pho-
tonic mode is forbidden by spin selection rules. They are thus calleddark excitons.
Referring to QW excitons, the dominant free-carrier relaxation channel is given
by the Bir-Aronov-Pikus mechanism, which exclusively involves transitions be-
tween optically active states ensuring that the contribution of dark excitons for car-
rier relaxation can be neglected [82]. As there are only two possible spin projec-
tions, polaritons form a classical two-level system® whose spinor wavefunction | /)
is expressed in the basis {|v| ), [¥/4)} corresponding to the total angular momentum
J; = —1 and +1, respectively. Despite this natural geometric representation of |i)
in the Bloch sphere, it is convenient to make use of the one-to-one correspondence

“This simple picture is valid for zincblende semiconductors such as GaAs or CdTe. In wurtzite
compounds, the crystal-field and spin-orbit splitting lift the valence-band degeneracy at the I
point: the A-exciton is equivalent to the heavy hole but B and C are mixed [81].

SThis discussion is generally valid for any in-plane momentum k. However, throughout the fol-
lowing discussion we only consider the pseudospin of the condensate.
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Fig. 10.8 In the Poincaré sphere, the pseudospin vector S describes the spin state of the polariton.
The equatorial plane corresponds to a linear polarization while the poles correspond to circular po-
larization of the emitted light. By_, and Bief are the effective magnetic fields created by the static
disorder splitting A Ex_y and polariton-polariton interactions A Ej|f, respectively. (b) Schematic
representation of the polariton free energy as a function of the real and imaginary parts of the po-
lariton wavefunction x; and xj, respectively. Below threshold, the symmetric solution ¥ =0 is

stable while above threshold, it spontaneously acquires a different phase for different realizations
of the condensate (e.g., paths 1 and 2)

between the polarization of the emitted photons and the components of |i/) to di-
rectly relate the polariton pseudospin S, which is a complex vector describing the
quantum state of this 2-level system, to the Stokes-vector parameters [83, 84]. Thus,
the linear (o), diagonal (pq) and circular (p.) polarization degrees of the emitted
light and the polariton pseudospin components Sy y,, are directly linked via the re-
lations p1,c,q = 2S8x,y,,/N where N denotes the occupancy number of the polariton
condensate. As a consequence, the pseudospin S can be represented in the Poincaré

sphere (cf. Fig. 10.8(a)) and is directly obtained from the polariton wavefunction
components via the relations:

1, .
Sc =5V +¥iv),
Sy = %(wm — i), (10.14)

1
S, = 5(|x/f¢|2—|m|2).

Note finally that the norm of the pseudovector |S| is related to the degree of spin
coherence: If |[S|/2N < 1 the polarization state contains a certain degree of inco-
herence whose limit |S| — 0 corresponds to a fully incoherent system, exhibiting

totally unpolarized emitted light.
10.3.2 Spontaneous Symmetry Breaking and Polariton BEC

In a thermodynamic phase transition an order parameter x can be defined whose
value is zero below the transition point, i.e., the condensation threshold, and acquires
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a finite value above. In the Landau functional theory—providing a phenomenolog-
ical description of the phase transition—the system free energy F is expanded in
powers of the order parameter, which is small close to the transition point:

Flx]= Fo+ Fix + Fox* + F5x° + Fx* + 0(x°), (10.15)

where F{ can be ignored as it has no influence on the treatment and F; and F3
vanish due to symmetry arguments. For a given temperature the value of x is deter-
mined by minimizing F[x]. Owing to the spinor nature of the order parameter for
exciton-polaritons physically associated with the macroscopic wavefunction of the
polariton condensate ¥, x has the form x = {x1, x2} = {Re(y), Im(¥)} [85]. Once
the expression of F' is known, the state of the polariton condensate is defined by the
minimum of F[v]. The situation is illustrated in Fig. 10.8(b). At the transition point
the symmetric solution x = 0 is no longer stable and the whole system chooses a
certain phase spontaneously. This remarkable effect is referred to as spontaneous
symmetry breaking.

On the basis of in-plane translation invariance and 2D-character of cavity-
polaritons, it is convenient to express the free energy in the MC (x, y)-plane with
V4= %(wx +ivy). The free energy then reads [68]:

1
FIS;. N1=—pN + (e + @) N? + (a1 — ap)S2, (10.16)

where the occupancy number of the polaritons in the condensate is given by
N =9 - ¢* = [Yx|* + [Py |* = 45> (with §? = §¢ + 57 + 7). The non-linear terms
in F account for the polariton-polariton interactions including a repulsion of polari-
tons with the same spin («; > 0) and a weak attraction of polaritons with opposite
spins (a2 < 0). This spin anisotropy arises from the dominant role of the exchange
term in the polariton-polariton interaction [86]. The chemical potential u, i.e., the
energy needed to add a particle in the system, is fixed by the imbalance between the
escape rate Woyue ~ 1/7po1(0) of polaritons limited by their short radiative lifetime
and the income rate Wj, into the condensate from the higher energy states. In this
framework, u is simply given by the minimum of the free energy with respect to N,
which leads to:

_ (a1 +a2)
2

This expression shows that the injection-dependent blueshift observed in photolu-
minescence (PL) experiments depends on the interaction constants and allows an
estimation of N above threshold. Similarly, minimization of F with respect to S,
leads to the polarization state at condensation threshold S, = 0, i.e., the pseudospin
S of the light emitted by the condensate lies in the equatorial plane of the Poincaré
sphere, which corresponds to linearly polarized light. Note that the minimum of F
is not unique and each realization of the condensate should result in a randomly-
oriented linearly polarized state (see Fig. 10.8(b)). Thus, a true BEC requires the
build-up of the order parameter which in turn can be considered as a necessary con-
dition [60, 87].

N. (10.17)
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Note that the presence of optical in-plane anisotropy of the cavity mode and/or
the exciton will cancel the observation of spontaneous symmetry breaking. In this
case F contains an extra term —A Ex_y Sy, where AEy_y is the energy splitting be-
tween the two in-plane polarizations x and y [88]. Without loss of generality the
lowest energy is assumed to lie along the x-axis in the following. In this case, the
minimum of F is reached for Sy = §, = 0. As a consequence, in the presence of
optical anisotropy the order parameter is pinned to the x-direction and the same po-
larization is adopted by the condensate for each experimental realization. However,
these considerations are only valid in the thermodynamic limit. Even if this situa-
tion is hardly realized in a polariton condensate, this thermodynamic approach gives
a qualitative trend, at least in the region of the phase diagram where R(5,T) > 1.
For this reason the measurements presented hereafter are performed at RT, i.e., at a
temperature where quasi-thermal equilibrium is reached [89].

10.3.3 Polarization Behavior in I1I-Nitride-Based Microcavities

The formation dynamics of polariton condensates is still subject to intensive re-
search. A deeper understanding of the build-up and the evolution of the condensate
order parameter is thus of major interest. Due to the efficient polariton relaxation
and the possibility of performing measurements at high temperatures, IlI-nitride
based MCs appear as the system of choice to probe polariton condensation close to
the thermodynamic limit. In the experiments presented below the structure already
investigated in Sect. 10.2.2 is pumped non-resonantly (~1 eV above the condensate
emission energy) in order to guarantee the memory loss of the laser polarization.
Time-integrated polarization-resolved PL measurements are performed at RT under
quasi-cw excitation (Tpuise = 500 ps, repetition rate 8.52 kHz) and give access to
the average linear polarization degree (p;) of the emitted light. The laser beam was
focused down to a 50 um diameter spot on a sample region and a power density
range where the emission spectrum was unaltered by competing modes. Contrary to
the bulk case, where the build-up of a stochastic linear polarization was observed at
RT [60], the current GaN QW-based MC presents a pinning of the order parameter
at threshold: (o) does not average to zero. This pinning is commonly observed in
all QW-based MCs investigated so far, i.e., in CdTe [3], GaAs [34] and GaN ones
([19] and Fig. 10.9(f)), and originates from the optical in-plane anisotropy A Ex_y at
zero in-plane momentum, k = 0, of either the excitonic or the photonic component,
or from both of them assuming a linear dependence on the excitonic and photonic
fractions:

AEx_y=|Xo?AEY , +|Col*AEC . (10.18)

Since all the above-mentioned material systems are expected to exhibit isotropic
optical properties,® AE))((_y likely originates from structural non-idealities such as

SNote that GaN is a uniaxial anisotropic material. However, for the c-plane structure investigated
here the optical axis coincides with the surface normal and therefore no in-plane anisotropy is
expected.
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Fig. 10.9 All the figures correspond to room temperature conditions with a detuning of —40 meV.
(a)—(d) Time-integrated simulation of the pseudospin components for different pumping regimes,
equal to 0.2, 1, 1.4 and 2P/ Py, respectively. The increasing role of the self-induced Larmor pre-
cession is indicated by the effective magnetic field Bger and that of the static influence of pinning
by Bx_y. () Evolution of the average linear polarization degree (o) as a function of P/ Py,. The
inset represents polar plots for the minimum (black squares) and the maximum power regimes (red
squares). (f) Emission spectra at P = Py, for the two orthogonal emission directions, correspond-
ing to x- (red circles) and y-polarizations (black squares). Adapted from Ref. [89]

a reduced symmetry of the QWs (in or out of plane) as the exciton ground state
splitting is forbidden in a perfectly symmetric QW [90]. Indeed, due to the vici-
nal growth of the IlI-nitride based MC on sapphire substrates with a slight miscut,
the in-plane crystalline directions are not completely equivalent possibly resulting
in a x—y splitting of the excitonic state. In polar QW-based MCs, the presence of
a built-in electric field enhances this effect as it separates electrons and holes to-
ward opposite sides of the QW, making the exciton more sensitive to interface and
alloy disorder [91]. Note that AExC_y is non-zero only if at least one of the MC
building blocks exhibits some birefringence. However so far no experimental evi-
dence allowed to firmly assess the origin of the mechanism involved in the pinning
of the order parameter. The role of AEy_y on the polariton population is important
since it acts as an effective magnetic field Bx_y in the plane of the structure around
which the pseudospin S can precess [84] (cf. Fig. 10.8(a)). Under resonant pumping,
AEx_y can lead to time beats between circular-polarized components of the photoe-
mission [92], or to a conversion between linear and circular light polarization [27].
However, in the non-resonant injection scheme, the polariton condensate is formed
spontaneously and AEx_y causes the pinning of the order parameter as expected
from the thermodynamic picture, where the energy relaxation brings the system to
its lowest energy state which is a linearly polarized one. For the present GaN-based
MC the ideal thermodynamic picture does not hold above the polariton condensation
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threshold, where a rapid decrease in (p0;) with injected carrier density is observed
(cf. Fig. 10.9(e)). This behavior deviates from the one observed in CdTe-based MCs
at low temperatures [88]. In this latter case, a fast increase in ;) is followed by a
saturation with no evidence of a decrease up to 5 Py,;. Thus, for a reasonable descrip-
tion of the depinning behavior the stochastic formation of the polariton condensate
in the time-domain has to be considered, while accounting for the relative weights
of two antagonistic effects: the in-plane static polarization anisotropy that pins the
order parameter and the spin dependent polariton-polariton interactions that tend
to destroy it as demonstrated hereafter. The polarization behavior of the polariton
condensate and its formation is described using a stochastic approach accounting
for the spinor nature or the order parameter v, () with o € {|, 1} [87]. An impor-
tant role is played by the incoming flux of polaritons from the incoherent reservoir
with random phases and polarizations, which is responsible for the stochastic na-
ture of the condensate formation. The order parameter thus evolves following the
Langevin-type equation [87]:

d o 1 l .
v = _[Win(t) - Wout(t)]wa + —|:J/ + I_AEX—yi|w—o*

dt 2 2 h
= el P + anltro P + 65 0. (10.19)

This equation consists of four terms: The first one describes the evolution of the
order parameter due to a changing polariton condensate population, which is caused
by the imbalance between the income rate from the reservoir Wi, (¢) and the de-
pletion rate of polaritons at the Brillouin zone center Wou(2) ~ 1/7po1(0), which
is set by the short radiative lifetime. Wi, (¢) is usually obtained by solving (10.13)
for a two-level system formed by the condensate and the incoherent reservoir. The
second term accounts for the spin relaxation rate y > Wy, and the in-plane polar-
ization splitting AE_y that is responsible for the pinning of the order parameter.
The third term includes the effect of the anisotropic polariton-polariton interactions
between polaritons with parallel («; >0) and antiparallel spin orientations (ay <0).
Its impact rises when the carrier density increases. The last term 6, (¢) accounts for
the shot noise originating from spontaneous scattering of polaritons out of the in-
coherent excitonic reservoir into the polariton condensate. It is a complex function
with correlators (6, (t)0,(t")) = 0 and (6, ()0, (¢")) = %Win(t)éw/é(t —t'). The
description of the noise is the central point in the stochastic description of the for-
mation dynamics as it is responsible for the fluctuations of phase and polarization
in the condensate. It depends on the pumping regime via the polariton income rate.

Formally, without 6, (¢) and without the pinning term AEx_y, (10.19) is per-
fectly isotropic and cannot explain the build-up of any preferential polarization. Due
to spontaneous scattering modeled by the noise term, some random polarization ap-
pears that quickly vanishes below Py, but is amplified above it due to the onset of
stimulated scattering. Without energy relaxation pinning is inhibited since S would
just precess around the effective in-plane magnetic field Bx_y (cf. Fig. 10.8) and
any polarization would occur with the same probability. Taking into account en-
ergy relaxation the system shifts toward the minimum of free energy resulting in
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a linearly-polarized state with random orientation. This behavior has been observed
in the experiments of Baumberg et al. on a bulk GaN MC [60]. The polarization
is large for each experimental realization but as it has no preferential orientation, it
averages to zero over many pulses. In the presence of a AE_y value distinct from
zero but without interactions (i.e., when the third term in (10.19) is set to zero), the
lowest energy state would always be pinned along the same direction corresponding
to that of Bx_y (x-polarized in our case).

The role of interactions is of paramount importance as their contribution to the
order parameter evolution increases together with the pump power density. As al-
ready mentioned the interactions between polaritons with equal and opposite spin
are not equivalent. In the mean-field approximation the anisotropic interaction term
reduces to an equation of precession of S along an effective magnetic field Bger
oriented in the z-direction with an absolute value given by [68]:

Bgeif o (a1 — a2)(N, — Ny), (10.20)

where (N — N4) represents the population imbalance between the polariton popula-
tions with spin up and down. In the case of a spin-isotropic interaction, i.e., ¢ = o2,
Bgelr vanishes. Similarly, in the case where populations with opposite spins are bal-
anced, Bgelr is also reduced to zero. This corresponds to the general case when 6,
is neglected in (10.19) emphasizing the important role of statistical fluctuations in
the process of the polariton condensate formation. Thus, the polariton ensemble ex-
periences the contribution of two magnetic fields: one caused by the static disorder
B, _y being completely power independent and that of Bgejf, which strongly depends
on the injection regime. Byt is responsible for the precession of the polariton pseu-
dospin around the z-axis and tends to lift any asymmetry in the equatorial plane
of the Poincaré sphere. This effect is referred to as self-induced Larmor precession
[93, 94]. As a consequence, in the presence of interactions but without pinning,
the phase of each condensate realization would exhibit a random polarization, so
that (1) would average to zero as for the bulk case. With AEx_y # 0 both pinning
and interactions compete with each other and the polarization degree continuously
changes when the pump increases: the higher the injection the stronger the effect of
depolarization due to the pseudospin precession.

Polarization-resolved PL studies allow to probe the components of the Stokes
vector, which is directly related to the condensate pseudospin S. The polarization
degree of the emitted light can be traced out time-dependently [95] with high ex-
perimental effort. However, in the present case, it is integrated over several exper-
imental realizations of the condensate (pulsed excitation in the quasi-cw regime,
~200 realizations per measurement). For a given realization, i.e., one specific value
of 65 (), the observed polarization corresponds to the normalized time-integrated
components s;j with i € {x, y, z}:

o [ Si(r)dt _2f Si(t)dt
T lIS(mlde T T [n(nydt”

where n(t) is the instantaneous condensate occupancy number and the time-
integration is performed over the whole condensate lifetime. The obtained value

(10.21)
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of s; gives precious information about the order parameter v as the role of the
fluctuations is directly reflected by the build-up of the linear polarization degree.
As the experimental data displayed in Fig. 10.9(e) represent an average over mul-
tiple pulses, it is necessary to average s; over many realizations of the noise term
0, (). This procedure is repeated for each pump power density of the investigated
experimental range between 0 and 2 Py, and the obtained normalized pseudospin
values are reported in the Poincaré sphere illustrated in Figs. 10.9(a)-10.9(d) [89].
After this averaging procedure, it turns out that (sy) ~ (s,) ~ 0, which is consis-
tent with the system symmetry, so that the only remaining contribution comes from
(sx). Thus, the experimentally determined degree of linear polarization (o)) directly
corresponds to 2 - (sx). In Figs. 10.9(a)-10.9(d) four representative situations are
displayed corresponding to:

o P &K Pyy: Far below threshold, when the condensate occupation is low, the effect
of pinning is not pronounced. ¥ corresponds to an incoherent state and (p;) = 0.

e P = Py, At threshold, the condensate formation is fully dominated by the effect
of static disorder and (1) is maximum.

e Py < P < Ppax: Both pinning and self-induced Larmor precession compete to
be the dominant effect. The resulting (p;) is decreased with respect to the thresh-
old case.

e P = Py For the highest injection regime the Larmor precession sets the tone
and lifts any remaining asymmetry in the equatorial plane leading to a value of
(1) approaching zero.

In conclusion, the progressive depinning observed experimentally is well described
by the competition between the static disorder anisotropy, which dominates in the
low density regime, and the Larmor precession at high excitation density, which
successively breaks up the degree of linear polarization [89]. The efficiency of the
pinning at threshold depends on § in a non-monotonous way. Intuitively, one would
expect that the pinning follows the behavior of (10.18), meaning that depending on
the polariton character (light or matter-like), () reproduces the behavior of AEx_y
that changes with § according to the excitonic and photonic fraction of the kj =0
state. Experimentally, the situation looks more intricate and a minimum of (o) is
observed at § ~ —60 meV (cf. Fig. 10.10). This peculiar feature can be qualitatively
understood from the present model by comparing the evolution of (o) as a func-
tion of 4 to that of the phase diagram, i.e., the evolution of Py, (5, T = 300 K) (cf.
Fig. 10.10). What matters in the present theoretical description is the timescale of
polariton relaxation from the reservoir to the condensate. As detailed in Sect. 10.2,
both 7 and § govern Py, an effect directly related to . In the optimum case
8 = opt the condensate builds-up quickly and the polariton relaxation time is short
(R = tpol/Trel = 1) implying that there is no time for polaritons to relax to the lowest
energy state, which would be linearly polarized. This results in an apparent decrease
in (o) at 8 = dopt.

The fact that the build-up of (p;) is limited by the kinetics comes from the short
lifetime of polaritons in GaN owing to the moderate Q-factor of the presently avail-
able samples (Q ~ 1000, cf. Fig. 10.4(b)). Thus, the difference between GaN [89]
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L

-100 -80 -60 -40 -20

Threshold power density (W/cm?)

Detuning (meV)

Fig. 10.10 Evolution of the average linear polarization degree (p;) at the condensation threshold
power density Py, (left axis) and Py (right axis) as a function of § at RT. The coincidence of the
minima highlights the role of the relaxation dynamics in the polariton condensate formation. The
continuous lines are guide to the eye. Adapted from Ref. [89]

and CdTe-based MCs [88] can be explained by the difference between (<9T¢) and

pol
(rpc('fl‘N). In CdTe-base MCs any imbalance between circular polarization compo-

nents is hardly achieved due to polariton interactions within the long cavity lifetime
preventing the occurrence of self-induced Larmor precession. Hence, the free en-
ergy approaches its minimum and the polarization vector of the condensate lies in
the equatorial plane of the Poincaré sphere along the preferential crystal direction.

10.4 Conclusion and Perspectives

In this chapter we highlighted that properly designed III-nitride QW based planar
microcavities have been instrumental in bringing cavity polariton nonlinearities ob-
served under incoherent excitation up to room temperature. Such samples clearly
expand the opportunity to study the quantum phase-transition of interacting bosonic
quasi-particles toward a condensate over a wide temperature range (here from 4 to
340 K) thanks to the large exciton binding energy and oscillator strength allow-
ing for the formation of robust cavity polaritons. It turned out that the condensa-
tion threshold is governed by the interplay between the polariton lifetime (primarily
governed by the cavity photon lifetime) and their relaxation efficiency toward the
ground state, namely the very bottom of the lower polariton trap formed in k| -space.
Both timescales critically depend on the light-matter content of polaritons at play.
Thus for large negative detuning values condensation of polaritons can be hindered
owing to their low excitonic fraction, which implies an inefficient carrier relaxation
rate and a short lifetime—a limitation set by the carrier kinetics. On the other hand,
for polaritons with a higher excitonic fraction their increased effective mass leads
to a larger critical density for condensation and to an increasing role of thermal de-
trapping effects with rising temperatures—here carrier thermodynamics will govern
the condensation threshold. Hence, when the timescales of polariton lifetime and
relaxation time become similar there is an optimum detuning 8op; for which the
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condensation threshold power density is minimized. Contrary to the case of con-
ventional lasers dop¢ is found to be negative, a feature that can be unambiguously
ascribed to the admixed light-matter nature of cavity polaritons.

Furthermore, the investigation of the polarization properties of the emitted light
as a function of carrier injection above the condensation threshold allowed gaining
a deeper insight into the condensate formation, a process which is still the object of
an intense research. Contrary to the bulk GaN MC case [60], the anisotropy induced
by the static disorder potential in multiple QW-based GaN MCs pins the condensate
order parameter at threshold. With increasing injection this effect competes with the
self-induced Larmor-precession triggered by the stochastic nature of the condensate
formation process and the anisotropic polariton interaction constants, which finally
results in a depinning of the order parameter.

II-nitride compounds clearly demonstrate that they are not exclusively suit-
able for optoelectronic applications, where they dominate the semiconductor market
nowadays, but also for studying light-matter coupling phenomena based on cavity-
polaritons at room temperature. The ambient condition stability of such condensates
should thus offer unprecedented opportunities to probe superfluidity-related proper-
ties at temperatures otherwise not accessible to the GaAs- and CdTe-based systems.
In other words, exotic features of the quantum world should be made readily accessi-
ble in a condensed-matter system without the need for cooling. It would encompass
various quantum hydrodynamic effects like the observation of quantized vortices,
two-fluid hydrodynamics or solitary waves [6]. On a more prosaic level the demon-
stration of an electrically-injected polariton laser operating under ambient condi-
tions appears as the next logical step. This would correspond to the realization of
a room temperature operating quantum device based on interacting bosonic quasi-
particles! Although this target might look quite close temporally some effort has still
to be brought. The most promising design includes InGaN/GaN quantum wells [96],
which are well suited for electrical injection and commonly exhibit high quantum
efficiency. However, the latter are subject to a large disorder-induced inhomoge-
neous broadening, which could potentially prevent the strong coupling regime to
take place. Finally note also that thanks to the recent progress made in the substrate
fabrication and their expected better efficiency non-polar III-nitride heterostructures
currently attract a lot of attention. Thus it is worth mentioning that strong coupling
and polariton lasing have been recently demonstrated in an m-plane GaN-based mi-
crocavity [97, 98].
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Chapter 11

Toward Room Temperature One-Dimensional
Quantum Fluid in the Solid State: Exciton
Polaritons in Zinc Oxide Microwires

F. Médard, A. Trichet, Z. Chen, L.S. Dang, and M. Richard

Abstract Exciton-polaritons in semiconductor nanostructures constitute a model
system of quantum fluid of ultra light Bose excitations in a driven-dissipative sit-
uation. Owing to recent progresses in the domain of nanofabrications, polaritons
environment may now be tuned at will in terms of external potential and dimension-
ality. In this chapter we present a nanostructure of particular interest to generate and
manipulate one dimensional polaritons with unusual properties: ZnO microwires.
Within such a structure we show that polaritons are stable at room temperature
and have the property of being strongly decoupled from the lattice thermal vibra-
tions, therefore naturally protected from thermal decoherence. We also find that at
cryogenic temperature, the 1D superfluid phase is surprising as polaritons are much
heavier than usual and quasi purely excitonic in nature. At room temperature, an-
other polariton superfluid phase is also observed, and several experimental facts
indicate that the strong coupling is well preserved in spite of a much larger critical
density.

11.1 Introduction

Upon tightening the confinement potential of a quantum fluid along one direction,
the motional degree of freedom is getting quantized, and eventually frozen when
the inter-level spacing exceeds the thermal energy. In this regime, the physical prop-
erties of the system are profoundly modified with respect to the unconfined case.
It is a general trend that lowering the dimensionality of a quantum fluid results in
enhanced quantum fluctuations and correlations.

The particular situation of 1-dimensional confined Bose liquid with repulsive in-
teraction is of particular interest because it shows unique behavior which has no
counterpart in 2D and 3D. For example, upon lowering the density or increasing the
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interactions: the mean field shift gipnip overcomes the characteristic kinetic en-
ergy h2n%D /2m [1]. This situation results in a diluted highly correlated phase called
“Tonks-Girardeau liquid” (TG), where the interactions result in a mutual exclusion
between bosons, in rigorous analogy with Pauli’s for fermions [2]. Also, the phe-
nomenon of superfluidity—which is the most natural expectation in an interacting
Bose system—is strongly affected in 1D due to umklapp-type of excitations in the
superfluid. These excitations have increasing probability for increasing interactions
and cost no energy; therefore, for non-zero interaction strength the usual Landau
criterion for superfluidity cannot be rigorously verified [3].

From the experimental point of view, the actual realization of 1-dimensional con-
fined system has been achieved with many different types of quantum fluids (see [4]
for a comprehensive review). Superfluid “He for example has been successfully
trapped in cylindrical capillaries of 1 nm diameter, and a linear increase of heat
capacity versus temperature has been found as expected for phonons with 1D den-
sity of states [5]. With ultra-cold atom gas confined in 2D optical lattice, a lot of
striking 1D physics has been reported already. Both limits of weak and strong inter-
actions have been achieved and explored extensively [6—8], like for instance a direct
demonstration of TG by spatial second order correlations measurement [9].

1D quantum fluids can also be created and studied in solid state system. Cooper
pairs for example, may be confined into quasi 1-dimensional geometry using linear
arrays of Josephson junctions. An insulating to superconducting phase transition has
been reported in this system [10]. A completely different approach is offered with
antiferromagnetic materials: indeed, elementary magnetic excitations—magnons—
can be identified as a many-body Bose system [11] which has been observed to un-
dergo Bose-Einstein condensation at room temperature [12]. In certain complex ma-
terials made of long molecular chains, magnons can be intrinsically 1-dimensional,
with no degree of freedom between neighboring chains [13]. In such a system, the
dimensionality reduction is accompanied by an interesting boson to fermion transi-
tion [11].

In this chapter, we are interested in a specific realization of quantum fluid in
solid state environment which has been quite successful so far: exciton-polaritons
in semiconductor nanostructures. As already explained in Chaps. 1, 5-10 of this
book, exciton-polaritons are bosonic excitations which result from the strong cou-
pling regime between photons confined in a cavity and excitonic excitations (bound
electron-hole pair) of a semiconductor material embedded in the cavity [14]. Thus,
in the strong coupling regime, polaritons have a mixed exciton and photon nature.
This ubiquitous nature results in a very light mass of the order of 10~%m,, as well as
significant repulsive interactions mediated by Coulomb interaction. Owing to these
properties, Bose-Einstein condensation [15] and superfluidity [16] are observed at
cryogenic temperature. Recently, many fascinating effects of quantum hydrodynam-
ics have been reported [17, 18]. One of the most important advantages of polaritons
over other quantum fluids is the fact that the observables characterizing the polari-
ton field can be fully accessed by optical measurements taking advantage of the
radiative escape of polaritons through the mirrors of the cavity. Thus, coherence
at any order, spin, energy and momentum can all be measured completely and in
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real-time if needed. On the other hand, this fast escape (1 ps to 20 ps typical life-
time) constitutes a loss channel for the quantum fluid. Then, the system needs to be
continuously replenished by optical excitations. This situation results in an unusual
driven-dissipative situation, harder to describe theoretically than those at equilib-
rium, but physically richer.

In general, polaritons are studied in planar microcavities and their dimensionality
is strictly 2. In Chap. 9, 1-dimensional polariton waveguides are fabricated by care-
fully etching a GaAs-based planar microcavity. In this chapter, we propose a differ-
ent strategy to achieve one-dimensional confinement, using a large bandgap material
(ZnO) and a design different from usual microcavities: microwires. Large bandgap
materials are very interesting in this context due to the larger binding energy of the
exciton and larger oscillator strength. Unlike polaritons in Arsenide-based material,
this strategy results in a polariton fluid stable at room temperature and high density.
Moreover the fabrication of microwires is a bottom-up technique, which is much
simpler to implement than top-down techniques with microcavities.

After a brief introduction of the strong coupling regime in ZnO microwires, we
will show that owing to an unusually large Rabi splitting, some polariton modes
are decoupled from thermal fluctuations mediated by the lattice vibrations. This
is a nice advantage to preserve the coherence at room temperature. On the other
hand, this decoupling also makes it harder to reach quantum degeneracy of polari-
tons by stimulated relaxation of excitons. However, strong indications for polariton
quantum degeneracy are observed at room temperature. Other interesting effects are
observed at room temperature like parametric oscillation between several quantized
transverse modes. At lower temperatures, quantum degeneracy is easier to reach and
features original properties like polariton fluid with very excitonic character. This
unexpected characteristic is favorable to reach stronger interactions as required for
TG liquid. Prospects and future experiments involving large bandgap microwires
will be discussed as a concluding section.

11.2 ZnO Microwires: Interest and Fabrication Technique

11.2.1 Why Microwires?

The realization of polariton quantum degeneracy at elevated temperature requires
high quality photonic structures to achieve the strong exciton-photon coupling
regime and strongly bound excitons to remain stable under high density and high
temperature conditions. These excitons can be found in the wide band gap semicon-
ductors ZnSe (zinc-blende structure; room temperature band gap of 2.82 eV; free
exciton binding energy of 20 meV), GaN (wurtzite structure; 3.45 eV; 25 meV) or
ZnO (wurtzite structure; 3.4 eV; 60 meV). Recently, it has been shown with GaAs
materials that 1D photonic structures up to 200 um long and 2—4 um wide can be
etched out of planar microcavities with quality factors Q exceeding 10000 [19].
Such top down approach to photonic wires is out of reach in the near future for
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wide band gap semiconductors due to much less advanced growth and processing
technologies combined with the very difficult strain management of heterostructures
with large lattice mismatch.

On the other hand, it has been shown theoretically that the strong coupling of
the light-matter interaction can be achieved also in cylindrical structures between
whispering gallery modes, which are standing optical waves confined in the cross
section plane of the cavity by total internal reflection at the lateral facets, and bulk
excitons [20]. Furthermore, the resulting Rabi splitting is expected to be much larger
than in planar microcavities embedding quantum wells thanks to a photon-exciton
overlap integral close to unity. This regime is evidenced in ZnO wires 50 pm long
and 1 pum wide [21] where 1-dimensional degree of freedom of polariton is found
[22]. In this chapter we will mostly address the physics of these ZnO microwires.

11.2.2 Growth Technique

Single-crystalline (wurtzite) ZnO microwires are grown by a vapor-phase transport
method under atmospheric pressure at ~900 °C [23]. This method results in large
microwires (diameters ranging from 100 nm to several microns and lengths rang-
ing from 15 pm to 100 um) with hexagonal cross section and the c-axis aligned
with the wire axis. The air/semiconductor interface that is obtained is of high qual-
ity in terms of surface roughness and shape regularity. Indeed, hexagonal whisper-
ing gallery modes (HWGMs) of quality factor up to 1000 maybe sustained within
the microwires. In these microwires, a very low photoluminescence inhomogeneous
broadening (<1 meV) of bound as well as free excitons is observed, this is the foot-
print of an excellent crystalline quality.

Other techniques are possible like MOCVD (Metallo-Organic Chemical Vapor
Deposition) epitaxial growth [24, 25]. Although more versatile (possibility of grow-
ing axial and radial heterostructures with more complex alloys) and accurate, these
techniques result in general in microwires of smaller diameter and shorter length,
thus lower quality factor.

These techniques are of “bottom-up” type, i.e. the microwire shape forms spon-
taneously during the growth when the right conditions are met. It is not the result of
advanced etching processes which are realized after the growth.

11.3 ZnO Microwires Polaritons in the Low Density Limit

In this paragraph, we focus on the low density regime where polaritons behave like
a dilute gas with negligible inter-particle interactions. It allows us to characterize the
single particle properties: i.e. characteristics of the exciton-photon strong-coupling
regime, dimensionality and interactions of polaritons with the solid-state environ-
ment.
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{a) z (k) lum

Fig. 11.1 (a) Definition of the main axis of the wire and the corresponding angles 6 and ¢ used
in the text; (b) SEM image of a typical ZnO microwire with a measured radius p ~ 500 nm; the
black solid and dashed line materialize the microwire hexagonal cross section; the main axis of the
wire is found to correspond to the crystallographic c-axis

11.3.1 Principle of the Strong Coupling Regime in ZnO
Microwires

11.3.1.1 Photon Confinement Through Hexagonal Whispering Gallery Modes
(HWGMs)

Our zinc oxide microwires exhibit typical diameters a few times larger than the
wavelength of the visible light. Thus, these structures are suitable to confine pho-
tons in the direction perpendicular to the wire axis (referred as x and y axis, see
Fig. 11.1) whereas these same photonic modes are free to propagate along the wire
crystallographic c-axis (z-axis in the following) with a momentum k.. An important
consequence of this only degree of freedom is that for a given transverse mode, the
confined photons have a ground state E( (i.e. non-zero energy at zero momentum
along z-axis). The photon dispersion is an hyperbola parameterized by the dielectric
function €, which simplifies into a parabola for kinetic energy much lower than Eq:

hck 5 (hek\* (hik,)?
E.=—= [E}+ NG ~Eo+ o (11.1)

According to this dispersion, confined photons behave as free particles of mass
m* 2~ 4 . 1079 m,, m, being the mass of the electron. Thus, these quasi-particles
are very light compared to atoms (10°m,) or even excitons (0.1m,).

As the hexagonal shape of these wires tends to complicate the calculation of the
photonic eigenstates, the system can be first considered, in a rough approximation,
as a cylinder with a translational invariance along the z-axis. In such a system, the
light is confined into the cross-section due to total reflections at the air-dielectric
interface. It corresponds to Whispering Gallery Modes (WGMs) which are free
to propagate along the wire axis. However, these kinds of modes are different in
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essence from the guided modes exploited in optical fibers which cannot be con-
fined for vanishing k,. WGM energy and field distribution may be calculated using
Maxwell equations: the electric E and magnetic B field inside the wire have to
satisfy the wave equation [26]:

2
(Vz—i-ue%) {g} —0 (11.2)

where w is related to the energy of the mode through E = hw, € is the dielectric ten-
sor accounting for the anisotropy of the crystal, and u its permittivity. If the length of
the wire is large compared to its diameter (translational invariance along the z-axis),
the solution of (11.2) is the product of a radial function R;(r) (j is a positive inte-
ger) with an azimuthal phase term e ~"*% which accounts for the angular momentum
of the mode (m is a signed integer), and a free propagation term e "%, Hence, for
k; ~ 0, each WGM is defined by its azimuthal quantum number m (i.e. the number
of half-wavelengths in one round-trip in the cross-section plane), its radial quantum
number j (i.e. number of wavelengths along the radius) and its polarization TE or
TM depending on the field whose component is non zero along the z-axis. Assum-
ing a wire radius much larger than the photon wavelength, a simplified equation for
the energy of these modes can be derived as [20]:

Ej 15 (ke 0) = f

where p is the radius of the wire and the plus or minus sign arises from the polar-
ization dependent internal reflection dephasing. In this ideal case, in addition to be
degenerated in +m and —m, each mode is twofold degenerated into a (TE, m) mode
and a (TM, m + 1) one. The radiative decay rate of such modes is only limited by
the diffraction at the air-dielectric interface where their wave-functions spill over the
wire cross-section. Theoretical calculations of the linewidth of WGMs [20] show an
almost exponential decrease of the linewidth when the azimuthal quantum number
m is increased. This can be seen in a simple point of view: the more the number
of half-wavelengths needed to obtain a complete trip around the wire increases, the
more the ray light model is relevant, and thus the mode becomes lossless.

A more elaborate model needs to account for both the hexagonal shape of the
wire and the anisotropy of the wurtzite structure (C¢ point group). As a conse-
quence of the specific geometry of the system, the rotational invariance around the
z-axis is broken. However, photons are still confined into the section of the wire
by total internal reflections, leading to the so-called Hexagonal Whispering Gallery
Modes (HWGMs). A wave-model has been developed specifically for hexagonal
geometries [27, 28]. It takes advantage of the knowledge of the modes in cylindri-
cal geometry, by expanding the modes in the hexagonal geometry on the basis of
cylindrical harmonics:

(2 + Im| £1/2) (11.3)

Wz ) =Y A (¢, 2.1) (11.4)
m
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where in practice, a finite number of harmonics is considered. A,, may be ob-
tained by introducing the hexagonal boundary conditions. The full calculation of
the energy, linewidth and polarization has been carried out for HWGMs in ZnO
microwires [27]. Due to the sharp corners of the hexagonal shape, HWGMs suffer
from much larger losses than WGMs leading to a linewidth more than two orders
of magnitude larger. However, in the context of the strong coupling regime, we will
see that the losses are largely acceptable. Concerning the polarization degree of the
modes, such a hexagonal shape strengthens the mixing of polarization for k, # 0 in
the case of TM modes (degree of polarization almost reversed) whereas the TE ones
remain almost pure.

11.3.1.2 Excitonic States in Bulk Zinc Oxide Material

Since the typical diameter of our microwires is in the micron range, electronic con-
finement is not relevant. Thus, only purely three-dimensional electronic states are
considered. Zinc oxide is a direct band-gap semiconductor with a threefold valence
band [29, 30] of p-like character, whereas the conduction band is of s-like character.
Both the spin-orbit interaction and the crystal field induced by the anisotropy of the
wurtzite structure are responsible of the valence band splitting which lead to three
bands of respective symmetries [31] A—I7, B-Iy and C-I7. These different sym-
metries result in a set of polarization selection rules for the light-matter interaction.

In usual semiconductors, the lowest energy excited state is the exciton. In a sim-
ple picture, the exciton can be seen as an electron-hole pair attracted via electro-
static interaction. Its wavefunction satisfies a hydrogen-like Schrédinger equation
[32] with an effective Rydberg constant R;“, and an effective Bohr radius a; (re-
spectively 60 meV, and 1.8 nm in ZnO [33]). The exciton behaves as a free particle
characterized by its effective mass M*and a parabolic dispersion relation Ex(K)
valid for low momentum K:

h2|K|2
2M*

%k
Eszg—n—;Jr (11.5)
where Ej is the band gap energy of the semiconductor and 7 the principal quantum
number. As the mass M* is much larger than that of confined photons, the dispersion
of excitons is almost constant within the light-cone.

The light-matter interaction between excitons in semiconductors and photons can
be described using a linear response theory, i.e. by assuming that the continuum of
excitonic states behaves like a Lorentz oscillator driven by an electromagnetic field
via their dipolar momentum. This semi-classical approach relies on the dielectric
function € (w) which characterizes the amount of excitonic polarization field gener-
ated by an electromagnetic field. Taking the electric displacement as a sum of the
electric field and the polarization emitted by the dipoles, the dielectric function can
be written as:

2

D=¢cE+ P=¢cxec(wE =6<>o<1 + ;)E (11.6)
wy—w?+iyw
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Table 11.1 Brief summary of ZnO excitons properties: the group symmetry I refers to the wave-
function of each exciton; experimental data are taken from Chichibu and coworkers. [34]

Exciton band  Energy at 0 K (eV)  Oscillator strength (meV?)  Polarization selection rules

A-T5 3.3768 10130 mainly £ Lc
B-TI5 3.3830 75100 mainly Elc
C-In 3.4214 95100 mainly E || ¢

where f is the oscillator strength per unit of volume and is linked to the dipole
transition matrix element of the exciton and y is the damping of the oscillation cor-
responding to the broadening of the transition due to dephasing or non-radiative
losses. The main parameters of the three bright exciton states in ZnO are summa-
rized below in Table 11.1.

11.3.1.3 Excitonic and Photonic Fraction of Polaritons

Since polaritons are mixed exciton-photon quasi-particles, it is necessary to char-
acterize the balance between their light and matter parts. The quantity of interest
is the amount of energy stored into the exciton field, which obviously depends on
the eigen-energy of the polariton. Equation (11.7) gives an expression of the ex-
citonic fraction |X|? in a classical point of view considering the photon mode as
a plane electromagnetic wave and the exciton as a polarization described through
the dielectric function. This result is equivalent to that obtains through a quantum
calculation as developed by Hopfield [35]:

X = 22 (11.7)
Q2+ 4(E, — Ex)?

where £2 is the Rabi splitting, £, and Ey the polariton and exciton energies, re-
spectively. Firstly, this excitonic component will provide interactions within the po-
lariton gas, and allow the achievement of thermal equilibrium, which is forbidden
with pure photons. Secondly, the photon part decreases by several orders of mag-
nitude the polariton mass with respect to the exciton and leads to a higher critical
temperature for reaching quantum degeneracy and superfluid behavior.

11.3.1.4 One-Dimensional Degree of Freedom

Following Hopfield theory of the light-matter coupling [35], polaritons (i.e. a quasi-
particle arising from the reversible exchange of energy between photon and exciton),
and not excitons, are the true eigenstates of a semiconductor crystal. The polariton
dispersion can be computed from the implicit equation (11.8) considering both the
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Fig. 11.2 (a) Theoretical dispersion of a polariton mode arising from the strong coupling of a
confined photon mode and an exciton transition (black dashed lines); the lower and upper polariton
branches (red/dark gray lines) are split in energy by a minimum value equals to the Rabi splitting
(b) several polariton branches (black lines) are obtained when a single photon mode is replaced
with a set of modes such as whispering gallery modes (WGM) in a wire

HWGM quadratic dispersion (11.1) and the complex dielectric function of zinc ox-

ide (11.6).
[e(Ep)E, = E, (11.8)

Although complicated, this equation may be solved analytically in a simple case of
a single undamped excitonic transition without spatial dispersion. It results in two
distinct polariton branches split by a minimal energy 2 = /f, the Rabi splitting,
as shown on Fig. 11.2.

An interesting issue concerns the dimensionality of the polariton modes arising
from the strong coupling regime between bulk zinc oxide excitons and hexagonal
whispering gallery modes. Usually, a textbook description will consider photons and
excitons with the same dimensionality such as quantum wells in a planar microcav-
ity [36]. However, in the case of ZnO microwires, a given state of the electromag-
netic field £, (k;) is coupled with a continuum of excitonic states described by
their momentum in the cross section K, and K, as long as K remains within the
light cone.

In fact it has been shown that equal dimensionality is a sufficient condition but
not necessary to reach the strong coupling regime [37]. Indeed, as long as the con-
tinuum overall linewidth remains small as compared to the strength of the light-
matter interaction, the strong coupling regime can be reached. This is the case in
our microwires as well as in other microcavities with bulk active medium: it is a
general situation that the linewidth of the exciton continuum contained within the
light cone, is limited by its homogeneous linewidth, and not by its dispersion which
is negligible. Thus, even in this situation, the strong coupling regime is reached as
soon as the Rabi splitting exceeds the homogeneous linewidth of both excitons and
photons.
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But what is the dimensionality of the resulting polaritons? It is actually imposed
by HWGMs, simply because they have a much lower density of states as compared
to excitons. In other words, the polariton wavefunction is imposed by that of the
photon. We demonstrate that fact experimentally for ZnO microwires in the next
section.

11.3.2 Properties of One-Dimensional Polaritons in a Single ZnO
Microwire

In this part we report on the measured optical properties of a single zinc oxide
microwire using spatially resolved photoluminescence at room temperature. A small
excitation spot (1 um diameter) is chosen to both illuminate homogeneously the
wire across its cross-section and select only a region of almost constant diameter.
The photoluminescence intensity is also recorded in the Fourier plane to obtain a
direct access to the spectral dispersion of the polaritons in momentum space.

11.3.2.1 Large Rabi Splitting at Room Temperature

Experimental data obtained at room temperature are shown in Fig. 11.3, the angles
of emission are defined in the same way as in Fig. 11.1, i.e. 0 is related to the photo-
luminescence emission direction with respect to the wire axis and ¢ is the angle in
the plane of the wire cross-section. Left part of Fig. 11.3 displays the angle-resolved
photoluminescence; the angle 0 is connected to the momentum k, along the free
axis due to translational invariance. Several polariton modes are detected as max-
ima of emitted photoluminescence (yellow or white part of the color scale used in
Fig. 11.3). Two families of polaritons can be selected with respect to the polarization
of their photonic part as they arise from the coupling between polarized HWGMs
and ZnO excitons. At k; close to zero (i.e. 8 ~ 0°), one set of modes is mainly TE-
polarized whereas the other one is TM-polarized. The respective quantum numbers
of the corresponding HWGM are labeled according to theoretical calculations.

The dispersion of each mode demonstrates a specific behavior which unam-
biguously attests the strong coupling regime between excitons and photons. Firstly,
modes of high energy (i.e. closer to the exciton transitions) show a dispersion shape
much flatter than those at lower energy. And second, an inflexion point is clearly
visible around 6 ~ 45° which results from the anticrossing between HWGMs and
exciton levels.

To fully characterize the strong coupling regime, the Rabi splitting is extracted
from a simple modeling of the polariton dispersion as a function of the emission
angle 6 along the free axis. As we do not need to reproduce the eigenenergies of the
modes but only their dispersions, we can directly link the energy of the polariton
mode E,(0) at any given angle with its energy £,(0) at zero momentum along k;
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Fig. 11.3 (a) and (b) Angle-resolved and polarization-resolved (right: TE; left: TM) room-tem-
perature PL of a single ZnO microwire; the emission intensity is color scaled and increases from
black to white; angle 6 resolution (a): the white dashed lines are the calculated dispersion of un-
coupled HWGM modes; the white dotted lines represent the calculated exciton-polariton modes;
angle ¢ resolution (b): the labels “mPn” on the left-hand side of the figure refer to the polariton
mode quantum numbers (azimuthal m, and radial n) and polarization (P = TE or TM) according to
the HWGM they derive from (calculated HWGM modes have their labels in italics) (¢) measured
density of states of the polariton labeled 13TEO1; the solid blue line corresponds to the DOS for a
1D massive particle with a parabolic dispersion; dashed blue lines represent the shape of 2D and
3D DOS

through (11.9) where € is the dielectric function and 6 the detection angle.

sin(9)2>—1/2

—_— 11.9
e(E,) (11.9)

E,0) = Ep(0)<1 —
Following the linear response theory as developed in the previous section, the
dielectric function € (E) can be expressed using (11.10). This formula accounts for
each exciton transition by its energy E; and its bulk Rabi splitting £2;. In a first
step, the exciton linewidth is set to 0 on purpose in this expression. The polariton
linewidth will be properly accounted for in Sect. 11.3.3. In order to account for the
finite fraction of the HWGM that lies outside of the wire, as well as in the outer
shell of the wire where excitons are submitted to a strong electric-field [38], an
exciton-photon overlap integral o < 1 is considered:

202
eooe(E)zeoo<1+ 3 i) (11.10)

2 _ g2
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Note that this procedure is not valid at large angles (8 > 30°) due to mixing between
the polarizations in the HWGM and the complicated selection rules of ZnO excitons.
However, this modeling relies only on two free parameters (the spatial overlap inte-
gral o and the background dielectric function €,) leading to an accurate value of the
Rabi splitting without a-priori knowledge of the energies of the uncoupled modes.
Using the above equations and the exciton parameters found in the literature (see
for example Table 11.1), this model is applied to the set of polaritons observed in
Fig. 11.3. It leads to a Rabi splitting of 320+ 30 meV for TE-polarization [22], com-
parable to that of bulk zinc oxide and larger than the value obtained in other typical
semiconductor systems, e.g2. 15 meV in GaAs-based micropillar cavity [39], around
50 meV in bulk GaN microcavity [40], or 130 meV in bulk ZnO microcavity [41].
To fit the full angle scale dispersion of polariton modes and to attribute a set of
quantum numbers to the corresponding HWGM s as shown on Fig. 11.3, it is neces-
sary to solve a set of Maxwell equations for an anisotropic cylinder as introduced in
the above part on WGMs. A detailed description of this model is beyond the scope
of this chapter. We refer our readers to the work of Pavlovic and coworkers [22, 27].

11.3.2.2 Experimental Determination of the One-Dimensional Character

The polariton dispersion is also recorded versus the angle of emission ¢ as shown in
the upper right part (b) of Fig. 11.3. The energy dispersion versus this angle reflects
the possible dispersion of the radial and azimuthal part of the polariton wavefunc-
tion. Due to confinement, i.e. frozen degree of freedom in the cross-section plane,
we observe no dispersion versus angle ¢ but a well defined constant energy (note
that since we measure this dispersion over 60°, we know it also over 360° thanks
to the hexagonal symmetry of the wire cross-section). This behavior is a direct evi-
dence of the one-dimensional (1D) nature of the polaritons arising from the strong
coupling in ZnO microwires. Such a clear demonstration of a confinement along
two directions has been rarely achieved in other semiconductor systems and never
at room temperature [19, 42].

From the experimental dispersion of a chosen polariton, it is also possible to
compute the density of states (DOS) to assess the 1D character. Assuming a flat
dispersion along the angle ¢ for every value of 6, the experimental DOS extraction
is performed by numerically flattening the intensity in data of Fig. 11.3(a) over all
angles of emission 8. Then, the data are reshaped in order to reflect k, instead of 6
for the abscissa and the sum over angles ¢ (E) is performed. ¢ (E) reflects the DOS
p(E) according to the relation

(11.11)
T

CL(IENT'  Li(E)
'O(E)__(£> T nlo

where L is the microwire length and £y a normalization factor. The homogeneous
broadening of the polariton is also taken into account in this numerical method. The
result is shown in the lower right part of Fig. 11.3, and compared to the theoretical
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DOS of a massive particle with a parabolic dispersion (proportional to 1/+/E for a
1D system). The excellent agreement is found with the 1D DOS up to large energy
where the polariton dispersion non-parabolicity becomes significant. This result is
another way of demonstrating the one-dimensional character of polaritons in ZnO
microwires.

11.3.2.3 Polariton Spin in ZnO Microwires

Polariton superfluid is a so-called spinor superfluid: it has a 1/2-spin degree of free-
dom which results from both spin states of the bright heavy-hole exciton (of spin
projection 1) coupled with both polarization states of light [43]. Thus the polariton
condensate state may be represented by a two-component vector. In bi-dimensional
polariton superfluids like in microcavities, this leads to peculiar properties such as
half-vortices, which can be understood as a  -shift of the phase plus a 7 -shift of the
polarization around the vortex core [18].

However, the polariton spin states are not always degenerate: for instance, at non-
zero momentum, the TE/TM splitting acts as an effective field which rotates the spin.
Moreover if the material exhibits anisotropy (e.g. due to crystalline properties), even
zero-momentum polariton state is split. This results for example in a pinning of the
condensate polarization state, and the condensate wavefunction becomes scalar [15].

In ZnO microwires, polaritons are subject to a strong TE/TM splitting plus a
strong crystalline anisotropy. In Fig. 11.3, we clearly observe that TE and TM po-
larized polariton branches show up at completely different energies. Moreover, the
measurement shows that the polarization state strongly depends also on 6: if we look
at mode 13TEO1, we observe a complete shift from a purely TE-polarized mode at
6 ~ 0° to an almost TM one above 6 ~ 30°. Thus, the most frequent situation in
ZnO microwires is to obtain a 1D polariton superfluid in a frozen linear polarization
state. However, by carefully choosing the diameter of the microwire, it is in prin-
ciple possible to bring a TE mode in resonance with a TM mode with a different
orbital momentum. Then the degree of freedom of the spin could be restored and
tuned in this way.

This control over the polarization degeneracy of our polariton condensate could
lead to interesting 1D quantum hydrodynamic effects like half-solitons with spatial
separation of the spin components as recently predicted theoretically by H. Flayac
and coworkers [44].

11.3.3 Suppressed Coupling Between Polaritons and the Lattice
Vibrations

In solid state environment, the lattice vibrations (i.e. phonons) constitute the ther-
mostat to which is coupled the superfluid. Therefore the influence of the cou-
pling between polaritons and lattice vibrations is important. A basic idea of this
coupling strength is provided by the thermal polariton linewidth. Surprisingly, the
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overall linewidth (including thermal broadening and photonic losses) of polaritons
at room temperature is very low as compared to that expected from the strong
interaction with phonons in zinc oxide [33]. Considering the polariton labeled
13TEO1 in Fig. 11.3, a figure of merit (i.e. the ratio between Rabi splitting and
linewidth) as high as 75 is measured. This broadening (I, ~ 4 meV) is one order
of magnitude smaller than the value reported for a high quality ZnO bulk sample
(I'x ~40 meV) [45].

11.3.3.1 Evidence of an Unexpectedly Low Broadening

In the simplest approach, the polariton linewidth is estimated using a coupled os-
cillators model [46]. According to this naive picture, the lineshape of a polariton is
given by the convolution of the respective lineshapes of the exciton and the photon.
Thus, considering only homogeneous broadening (i.e. due to the photon escape and
the exciton thermal broadening), the linewidth of the polariton I, at room temper-
ature is defined as an average of exciton and photon contributions (respectively Iy
and ;) following (11.12). The weighting term | X |2 is the excitonic fraction of the
considered polariton mode.

Iy =X+ (1= X)) (11.12)

To estimate the lower bound of the linewidth of the observed polariton 13TEO1, we
neglect the linewidth of photonic origin, i.e. I ~ 0. According to (11.12), in this
limit, the mode should have a FWHM larger than 25 meV. This result is obviously
in contradiction with what is shown on Fig. 11.3. Indeed, the simple picture exposed
above, is not correct in our situation because the exciton-photon interaction domi-
nates over the exciton-phonon interaction by more than one order of magnitude [47].

11.3.3.2 Quenching of the Polariton-Phonon Interaction

The first indication of a peculiar coupling mechanism between polaritons and
phonons is found by looking at the spatially resolved emission of a tapered ZnO
microwire at two different temperatures. The result is shown in Fig. 11.4. Such a
wire allows tuning the polariton energy along the wire axis (i.e. the HWGM eigen-
energies are inversely proportional to the wire diameter as seen above). The black
and white pictures in the left part of Fig. 11.4 are the luminescence spectra obtained
at 70 K and 300 K along the wire axis. In the energy range referred as A in Fig. 11.4,
an obvious change occurs between the two temperatures, as no more polaritons are
visible at room temperature (modes labeled as M3, My and M5s). However, below
this range, polariton modes are not affected. This peculiar behavior is attributed to
the interaction with LO-phonons.

At low temperature, LO-phonons are almost unpopulated and only acoustic
phonons contribute slightly to the thermal broadening of polariton modes (see
Fig. 11.4(a)). Then, at room temperature (Fig. 11.4(b)), the contribution of LO-
phonons increases dramatically but only polaritons in the energy range A = [E;



11  Toward Room Temperature 245

Calculated thermal contribution to the polariton linewidth {meV)
0 2 4 6 8 10 0 2 4 6 8 10 12

=
[-1] [-1]
E £
- 3240°%
] &
g -]
S 3220 §

20 25 30 35 40 45 20 25 30 35 40 45
Position L {im) Position L {um)

Fig. 11.4 Spatially resolved TE-polarized emission spectrum along a segment of a tapered ZnO
microwire at temperature (a) 7 = 70 K and (b) 7 = 300 K; along this portion of the microwire,
the inhomogeneous diameter (presently increasing from left to right) provides a natural way to
continuously vary the exciton-photon detuning; M; labels the five visible polariton modes at 70 K;
the A = (Ex, Ex — Erp) energy range is shown by the white arrows; red solid lines show the
calculation of the phonon contribution to the polariton linewidth vs energy

Ex — Ero] are affected. This can be explained as follow: polaritons in the range
A can be scattered by an acoustic or an optical phonon of the thermal bath, to the
exciton reservoir (i.e. pure excitonic states with large momentum). The process is
very efficient in ZnO because of the large interaction with optical phonons and the
high density of states in the reservoir. Thus, at room temperature, polaritons whose
energy lies within A are strongly scattered out.

The situation is very different for polariton states below A: there, regardless of
the phonon involved, scattered polaritons can only end up in higher energy polariton
states but not in the reservoir, as depicted in the sketch of Fig. 11.5(a). Because
the density of states is four orders of magnitude lower in this part of the polariton
dispersion than in the reservoir, this mechanism is very inefficient and hardly affects
polaritons during their lifetime.

The exact amount of broadening due to polariton interaction with the thermal
bath of optical and acoustic phonons can be computed using the Fermi golden rule.
Because of the very low polariton density of states, the intrabranch scattering is
neglected compared to the scattering toward the exciton reservoir. In this limit, the
scattering rate of polaritons I, with energy E, is

d3q
(2m)3

Iy(Ep) = nV|X|2/ N(@) x [|Mac@|*8(Ep — Ex(@) + Eac(@))

+|Mro@)|*8(E, — Ex(g) + Ero)] (11.13)
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where | X|? is the excitonic fraction (i.e. Hopfield coefficient) of the considered
polariton state, V is the quantization volume, q, E,;.(q) and Ejpare the phonon
momentum and energies and M. 0)(q) are the matrix elements for exciton and
acoustic phonon (optical LO phonon) interaction. The polariton momentum is neg-
ligible as compared to q. The phonons are assumed to be at thermal equilibrium,
thus following a Bose distribution N(q) at the lattice temperature. The results of
this calculation are shown in Fig. 11.4(a) and (b) as red solid lines for tempera-
tures 7 = 70 K and room temperature. It confirms indeed the weak contribution of
phonons at low temperature and the quenching of polariton-phonon interaction at
room temperature below A. To be more quantitative, the linewidth of bare excitons
and a polariton modes below the A range are measured and compared in Fig. 11.5(b)
and (c¢). Upon increasing temperature, the linewidth of polariton state labeled M, on
Fig. 11.4 remains almost constant whereas the exciton is strongly broadened. Note
that the excitonic fraction of polariton state M» changes by 17 % between T = 10 K
and T =300 K from which we can deduce a 3 meV maximum thermal broadening
of polaritons at room temperature [22].

The quenching of the interaction between polaritons and optical phonons is usu-
ally not achieved with polaritons in other microcavity systems because the LO-
phonon energy is larger than the Rabi splitting. Thus for polariton states with signifi-
cant excitonic fraction, the “polariton trap” is not deep enough to prevent scattering.
Nevertheless, in some cases, the scattering with acoustic phonons has been found
quenched because of their lower energies as compared with optical phonons [48, 49]
but the effect on the thermal broadening is less dramatic. Obviously, for zinc oxide
microwires, a combination of a large Rabi splitting (£2 ~ 300 meV) and a compara-
tively low optical phonon energy (Ero ~ 72 meV) allows to observe polariton states
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with significant excitonic fraction and negligible thermal broadening at room tem-
perature. In the superfluid phase, at large polariton density, this decoupling with the
lattice vibrations provides an efficient protection against thermal decoherence even
at room temperature.

11.4 Properties of ZnO Microwires Polaritons in the High
Density Limit

11.4.1 Polariton Lasing with a High Excitonic Fraction

A superfluid state of polaritons may be achieved at high density in different ways:
upon non-resonant excitation, Bose-Einstein condensation [15] or polariton las-
ing [50] can occur, depending on the experimental conditions (thermal equilibrium
achieved within the polariton lifetime or not). The polariton coherence can also be
driven directly by a resonant laser [16] but then it is experimentally more difficult
to distinguish between the laser and the polariton emission.

Reaching the polariton lasing regime at room temperature is at the moment quite
challenging in every ZnO-based structures. Indeed, it is not clear yet whether the
strong optical excitation required to achieve lasing destroys or not the strong cou-
pling regime [41, 51]. This point will be discussed in Sect. 11.4.2. Thus, with ZnO
microwires, we first focused our attention on cryogenic temperatures where a co-
herent polariton state with unusual characteristics is achieved upon non-resonant
optical excitation orders of magnitude lower than at room temperature.

We characterized experimentally this polariton lasing mechanism at 7 =40 K
using a tapered microwire: The emission spectra in real space are recorded for var-
ious excitation power densities (gray color scale maps, Fig. 11.6). The shape of
the wire allows to chose a short segment (~3 um length, i.e. the laser spot size)
of constant diameter, thus with almost constant polariton energies. The polariton
modes are labeled M; (i =1,...,5 ordered in descending energy) as shown in
Fig. 11.6(a). Since we are dealing with bulk material, optically active transitions
other than polaritons are also visible like free A excitons and donor-bound exci-
tons states (respectively labeled X4 and DBX on Fig. 11.6(a)). They show up as
straight lines in the spatially resolved maps since unlike polaritons their energies do
not depend on the wire diameter. Figure 11.6(a) is obtained at the lowest excitation
density. Figure 11.6(b) and (c) are obtained respectively at and above the polariton
lasing threshold which occurs in polariton state M. At threshold the M4 mode pop-
ulation strongly increases as compared to the other modes due to onset of bosonic
stimulation (i.e. the number of particles in the considered state is higher than one)
and eventually dominates completely over all other modes (Fig. 11.6(c)).

To be more quantitative, the integrated intensity of polariton mode My is plotted
as a function of the incident power density on Fig. 11.7(b). At threshold, (corre-
sponding to P/Py = 1 on the plot), the slope of the intensity drastically increases
from an almost linear part to a 3.3-power law. This is the consequence of stimulated
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Fig. 11.6 Spatially resolved TE-polarized emission spectrum at 7' = 40 K along a segment of a
tapered ZnO microwire at low temperature; in the range where L varies from 7 um to 10 pm, the
diameter of the wire is almost constant; (a) the whole wire is lit at very low power density; polariton
modes are labeled as M s and intrinsic zinc oxide transitions are positioned (free exciton X 4
and donor-bound exciton DBX); (b) and (c) the same picture under (b) and above (c) polariton
lasing threshold with a laser spot focused on the constant diameter part of the wire
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relaxation of polaritons into M4 ground state. Due to its driven-dissipative character,
the coherence dynamics of the polariton condensate is governed by laser physics. In-
deed, we observe in Fig. 11.7(b) that the strong non-linearity is accompanied with
a significant linewidth narrowing above threshold. This corresponds to a coherence
time enhancement from 7, = 0.5 ps at low density to T, > 2.5 ps above threshold.
Finally, we have to check whether this threshold occurs in the strong coupling
regime, otherwise our polariton condensate would be instead a regular laser where
a pure photon field is amplified. The conservation of the strong coupling regime
is demonstrated Fig. 11.7(a) where a negligible blueshift (<0.5 meV for pumping
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power 10 times above threshold) of the polariton mode is found over a large range
of excitation density. Since the M4 energy is 18 meV below the exciton energy, this
blueshift correspond to 2.8 % of that required to break down the strong coupling
regime.

One last important characteristic of this polariton condensate formed in mode My
is its large excitonic fraction. Indeed, due to the large Rabi splitting of 300 meV, the
polariton/exciton energy difference of 18 meV corresponds to an excitonic fraction
as high as 97 % for mode M. Interestingly, this 3 % photonic fraction is sufficient
to reach polariton quantum degeneracy at low temperature. This is in contrast with
most of the typical polariton systems where the polariton condensates are rather
in the 50 % range of excitonic fraction. This high excitonic fraction confers orig-
inal properties to the condensate. Since the polariton-polariton interactions scales
like the square of the excitonic fraction, they are much larger than in other ZnO
microcavities. Moreover the linewidth is not governed only by the photonic losses
anymore but also by pure excitonic dephasing.

11.4.2 Room Temperature Operation

In this section, we discuss experimental studies of ZnO microwire polaritons un-
der non resonant and high pumping conditions at room temperature. Evidence of
polariton lasing and first observation of spontaneous interbranch parametric scatter-
ing will be examined. Hot carriers are injected in the microwire using the 355 nm
(3.493 eV) line of a tripled Nd: YAG pulsed laser (10 Hz repetition rate and 3 ns
pulse duration). The lowest stimulation threshold is usually obtained for TE modes
since both A and B excitons are strongly TE polarized and more thermally populated
than C excitons.

11.4.2.1 Polariton Lasing at Room Temperature

Figure 11.8(a) shows how the microwire far field emission around the TE modes
N =46,47,48,and 49 (3.10-3.25 eV) is modified with increasing excitation power.
Strong stimulated emission can be clearly observed for mode N =48 at angle 6 =
0° for an average excitation power Py = 30 nW. This stimulation is characterized
by a strong nonlinearity above threshold shown in Fig. 11.8(b). These results raise
again the question of polariton or photon lasing. First, the data in Fig. 11.8 have
been acquired by time integrated photoluminescence measurements under pulsed
excitation, and therefore could contain mixed information corresponding to both
high and low excitation power due to the Gauss-like time profile 7 (¢) of the pulse.
However, considering the strong nonlinearity between the excitation intensity and
the polariton emission in the lasing regime, it is reasonable to say that the emission
spectrum is dominated by the emission in the lasing regime. Moreover, the dynamics
of the emission, dominated by the stimulation (time-scale of the order of 1 ps), is
much faster than the pulse duration. Then, to confirm that the strong coupling regime
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Fig. 11.8 (a) Angle-resolved emission intensity (TE polarized) at room temperature for increasing
excitation power from left to right (10 nW to 100 nW average excitation power); Py, is the exci-
tation power required to reach lasing threshold for mode N = 48 visible at 3.182 eV (third panel
from the left); mode N =47 (at 3.15 eV) starts lasing at 2.98 Py, on the second panel from the
right; (b) Mode N = 47 emission intensity versus excitation power; the vertical black line marks
the lasing threshold
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is maintained throughout the threshold, Fig. 11.9 shows a detailed measurement of
the blueshift of modes N =46, 47 and 48.

As explained in the previous section the magnitude and behavior of the blueshift
around threshold provides indication on the conservation of the strong coupling
regime. In this room temperature experiment, the magnitude of the blueshift is
larger and could be attributed to a jump to a pure photonic mode of different N
in resonance with the gain peak. However, the magnitude of the blueshift of modes
N =47 and N = 46 is not consistent with this explanation. Indeed, the strong cou-
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pling regime should be lost for them as well (they share the same reservoir as mode
N =48) and the blueshift magnitude should be larger (uncoupled modes of lower
Ns should show up at unrelated spectral positions as compared to that of polari-
ton modes N = 46 and 47) and not with decreasing magnitude for decreasing N.
It can be explained instead within the polariton picture taking into account interac-
tions with the exciton reservoir. This corresponds to what we observe on Fig. 11.9,
where the blueshift is more important for polariton modes of higher energy, which
are more exciton-like, and should interact more strongly with reservoir excitons.
Beyond threshold, the shift is less pronounced since, like for regular lasers, addi-
tionally injected excitation would preferably participate in the on-going stimulation
process. Further indication of the strong coupling regime above threshold is the
mode dispersion which remains unchanged at the crossover (see Fig. 11.8).
Stimulation in the ground polariton state k, = 0 would occur when the feeding
rate to this state is faster than the polariton radiative lifetime (<1 ps). Feeding by the
“standard” exciton-exciton scattering mechanism from the exciton reservoir would
favor polariton modes at higher energy because of their higher excitonic fraction and
their smaller energy to scatter (neglecting variation of density-of-states). In fact, in
the studied microwire, stimulation is found to occur first for the N = 48 polariton
mode at ~3.19 eV, and then for the N = 47 mode at ~3.16 eV, but not for the
N =49 mode at 3.22 eV. We have no clear explanation for this behavior yet. With
additional unambiguous proof of strong coupling regime at threshold, these results
will constitute a unique realization of a 1D-polariton superfluid at room temperature.

11.4.2.2 Interbranch Parametric Scattering

An interesting property of this superfluid state in the transverse mode N arises from
the existence of the previous transverse modes N — 1 tens of meV below. This
situation allows interbranch parametric scattering which leads to balanced signal
and idler polariton states [52].

Some indications of this spontaneous scattering process are shown in Fig. 11.10:
with increasing pump power beyond the lasing threshold for mode N = 48 ground
state, we can observe strong polariton scattering towards a spectrally degenerate sig-
nal and idler in the N = 47 mode, followed by stimulation in the N = 47 ground
state and scattering towards another degenerate pair in the N = 46 mode. In both
cases, the signal and idler emissions are equally strong, which is desirable for prac-
tical applications. Furthermore they exhibit a non linear behavior, more marked for
the N = 47 pair, which could be related to its stronger exciton character. Time and
polarization correlation measurements are planned to confirm these promising ob-
servations.

11.5 Conclusion

ZnO microwires are strikingly simple objects: no heterostructures, just bulk semi-
conductor material, naturally shaped into a wire by setting the right thermodynamic



252 F. Médard et al.

P=0.50uW  P=0.68uW P=0.91uW P=1.08uW Log Scale Energy
‘ 4.0
Il
ump LI)\
3.5
3.0
2.5
0 27 45 560 27 45 56 0 27 45 560 27 45 56 i &,
(a) 0 (degree) (b)

Fig. 11.10 (a) Angle-resolved emission intensity (TE polarized) at room temperature for increas-
ing excitation power from left panel to right panel (500 nW to 1080 nW average excitation power);
intensity in A and C feature a linear relationship with respect to intensity at k, = 0 of mode N = 48;
intensity in B taken on mode N =47 at large angle is strongly non-linear as expected from para-
metric scattering; the same behavior is found for A’, B’ and C’ and the pair of modes N =47 and
46; (b) Schematic representation of interbranch polariton parametric scattering: two polaritons in
k; =0, of mode N scatter into two polaritons of mode N — 1 and momenta k;; = —kz

conditions into the growth chamber. And yet, they can sustain high quality polariton
gases with surprising properties. We have shown so far that these polaritons have a
1-dimensional degree of freedom, that due to the large Rabi splitting, they are ef-
ficiently decoupled from the lattice vibrations even at room temperature, and that
at cryogenic temperatures due to very low structural disorder, they can have a very
large excitonic nature.

Obviously these characteristics are advantageous and original for the superfluid
phase. The latter has not been rigorously demonstrated yet; however we have shown
that a polariton condensate can be obtained spontaneously at cryogenic temperature
by a polariton lasing mechanism. Its superfluid character is very likely as long as
we have non-zero interactions. We also have encouraging results showing that the
polariton condensate may subsist up to room temperature.

The characterization of the superfluid regime is a promising task where the
polariton-polariton interaction plays a key role. Although the interactions should be
weaker than in lower bandgap materials, the high excitonic character of polaritons
counterbalances this fact. Moreover our condensate is very close to the biexcitonic
resonance where significant enhancement of the interactions is expected [53], in
complete analogy with Feshbach resonance in ultracold atom gases [54].

We have verified recently that the physics of polaritons described in this chap-
ter for ZnO microwires is found qualitatively identical in GaN microwires [55].
However, the lasing regime has not been achieved yet due to a purely technical
problem which should be sorted out soon. The major interest of working with GaN
microwires is its potential in terms of electrical injection. Indeed unlike ZnO, fab-
ricating a microwire featuring a p—i—n junction in the strong coupling regime is a
technically feasible thing. This would open the way to electrically-pumped polari-



11

Toward Room Temperature 253

ton superfluid, interesting for an alternative coherent light emitter in the near UV
with low threshold, and for opto-electronic applications.
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Chapter 12
Superfluid Instability and Critical Velocity
in Two and Three Dimensions

F. Piazza, L.A. Collins, and A. Smerzi

Abstract Using the mean-field GP equation, we study the dynamics of superfluid
dilute Bose-Einstein condensates (BECs) in the regime where the flow velocity
reaches a critical value above which stationary currents are impossible. We present
results for two- and three-dimensional BECs in two different geometries: a toroidal
and a waveguide configuration, and also discuss the behavior of the critical current,
or critical velocity, establishing a general criterion for the breakdown of stationary
superfluid flows.

12.1 Introduction

Macroscopic phase coherence allows superfluids to sustain a stationary flow be-
tween regions in which a constant phase difference is maintained. The existence
of a finite critical current is due to interactions between particles, and is responsi-
ble for the characteristic absence of viscosity observed with superfluids since their
discovery. For currents larger than this critical value, a stationary flow is no longer
possible, even if a constant phase gradient is enforced. Superfluidity therefore loses
one of his crucial features and is to some extent “dissipated”.

As we shall discuss in detail, the superfluid dissipation dynamics reveals the
nature and behavior of the excitations produced above the critical velocity, and de-
pends on the dimensionality and geometry of the system. However, they share the
same underlying mechanism: the phase-slip. This scenario for the slowdown of a su-
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perfluid was first introduced by Anderson [3]. In a phase-slip event, the phase dif-
ference across the system drops by 2, and thereby the velocity is decreased by a
quantized amount. Due to a phase-slip, the order parameter changes the total number
of phase-windings across the system. Therefore, at some time during a phase-slip
event, the order parameter must become zero at one point in space [24].

In the one-dimensional case, when the velocity is dynamically increased above
the critical value, the density first forms a notch with increasing depth, which even-
tually touches zero at the center of the weak link. At this moment, the number of
phase windings of the order parameter drops by one unit, and a dark soliton is cre-
ated inside the weak link, having zero density at its center and a = phase difference
across it. The dark soliton subsequently evolves into a gray soliton which drifts away
from the weak link, carrying the energy subtracted from the superfluid flow.

In two- or three-dimensional cases, phase-slippage takes place through the nu-
cleation of quantized vortices. As discussed by Anderson, since the total phase vari-
ation along any closed contour encircling a singly-quantized vortex core must be
27, the total current drops by a quantized amount when a vortex crosses the system
perpendicular to the flow direction.

The mechanism of phase-slippage based on vortex nucleation was proposed by
Anderson in the context of superfluid helium. However, ultracold dilute atomic
gases present some advantages for the study of superfluid dynamics in general, and
in particular can shed new light on the physics of phase-slips. With these dilute
atomic Bose-Einstein condensates (BECs) a weak link can be created by a laser
beam generating a repulsive barrier for the atoms.

A distinctive feature of ultracold dilute quantum gases rests with the possibility
of experimentally interrogating the response of the system in a wide variety of traps
and dynamical configurations, exploiting powerful probing tools (see Chap. 18).
Moreover, even if the dilute BEC is described by a Gross-Pitaevskii (GP) equation
with a contact interaction potential [33, 34], and therefore lacks the rotonic part of
the helium spectrum, its nonlinearity, together with the macroscopic phase coher-
ence (see Chaps. 15 and 16), appears to be the only crucial ingredient needed to
reveal the microscopic mechanisms underlying the vortex-induced phase-slips.

On the experimental side, the critical velocity for superfluid instability and some
aspects of the dissipation dynamics have been already studied with dilute BECs.
The superfluid critical velocity in a harmonically trapped cloud swept by a laser
beam has been observed experimentally in [28] and associated with the creation of
vortex phase singularities in [16], while solitons were observed in the effectively-
one-dimensional geometry of [11]. Superfluid dissipation and critical velocity in a
toroidal BEC is currently under investigation at NIST [36, 37]. Such problems have
been the object of many theoretical efforts, mainly based on numerical simulations
of the GP equation, starting from the seminal work of Frisch, Pomeau, and Rica,
who examined the instability due to vortex nucleation in a two-dimensional flow
past an impenetrable disk [13]. A two-dimensional flow inside a constricted waveg-
uide with inpenetrable walls was explored in [41]. The already mentioned work [14]
was devoted to the study of a one-dimensional flow past a repulsive barrier, as done
later also in [29]. The phase-slip dissipation caused by a moving barrier inside both
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a homogeneous and trapped condensate has been studied in two [17, 30, 46], and
three [2, 46] dimensions, as well as the production of Cherenkov radiation [7].

In this chapter, using the mean-field GP equation, we will consider the dynamics
of superfluid dilute BECs in the regime where the flow velocity reaches a criti-
cal value above which stationary currents are impossible. We will present results
for two- and three-dimensional BECs in two different geometries: a toroidal and
a waveguide configuration, and also discuss the behavior of the critical current, or
critical velocity, in different geometries and dimensionalities, establishing a general
criterion for the breakdown of stationary superfluid flows.

12.2 Phase-Slip Dissipation in Two Dimensions: Dilute BEC
in a Toroidal Trap

In this section, we will treat a dilute BEC inside a toroidal trap, by which a con-
striction for the flow can also be created by an offset of the central hole of the torus.
Broadly speaking, such multiply connected configurations allow for the observa-
tion of macroscopic phase coherence effects and can lead to a range of important
technologies. While superconducting Josephson junctions are already employed in
magnetic sensors and detectors, their superfluid counterparts can realize ultrasensi-
tive gyroscopes to detect rotations [15]. For instance, a toroidally shaped superfluid
weak link provides the building block of a d.c.-SQUID, which is a most promising
sensing device based on superfluid interference.

Superfluid instability of a BEC confined in a torus has been experimentally ob-
served at NIST [36, 37]. The BEC was initially stirred by transfer of quantized or-
bital angular momentum from a Laguerre-Gaussian beam and the rotation remained
stable up to 20 seconds in the multiply connected trap. The breakdown of the super-
fluid flow was studied by raising a repulsive barrier across the annulus.

We theoretically study the dynamics of a dilute BEC flowing inside a toroidal
trap at zero temperature and in the presence of a repulsive barrier [31]. This barrier
is broader than the annulus width and extends over a few healing lengths along the
flow direction. In this way, we create a constriction for the flow in the barrier region.
In a toroidal trap, the constriction can also be created by an offset in the position of
the central hole of the torus. In the latter situation, which will not be discussed in the
following, the superfluid instability dynamics is qualitatively similar to the barrier
case. The dynamics starts with the condensate flowing with a finite orbital angular
momentum in the cylindrically symmetric torus. The critical regime is reached by
adiabatically raising the standing repulsive barrier. The instability is characterized
by singly-quantized vortex lines crossing the flow, thereby dissipating the superfluid
flow through the phase slip mechanism introduced above. Due to the radial depen-
dence of the superfluid velocity in the torus, which creates an asymmetry between
the two edges of the annulus, two different critical barrier heights appear. At the
smallest critical height, a singly-quantized vortex moves radially along a straight
path from the center of the torus and enters the annulus, leaving behind a 2w phase
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slip. The vortex keeps circulating without crossing completely the torus so that the
total angular momentum decreases only by a fraction of unity. At the highest critical
height, a singly-quantized anti-vortex enters the torus from the outward low density
region of the system. Above the second critical barrier height, the vortex dynamics
depends on the size of velocity asymmetry between the inner and the outer edge of
the annulus as well as on the final barrier height and ramping time. For instance, a
vortex and an anti-vortex can just circulate on separate orbits or can collide along a
radial trajectory and annihilate. When they orbit on the same loop or annihilate, the
system undergoes a global 27 phase slip with the decrease of one unit of total angu-
lar momentum. In general, after the penetration of a few vortices, the BEC flow can
stabilize again in a lower angular momentum state. In the hydrodynamic regime,
where the condensate healing length is smaller than all the other length scales in
the system, a general criterion for the onset of the instability can be established.
Namely, the latter occurs when the local superfluid velocity equals the average of
the local sound speed along the transverse section of the annulus. In the presently
discussed geometries, this happens inside the barrier region and close to the edges
of the cloud. As we shall see in the next section, such a criterion applies also to fully
three-dimensional flows.

The results discussed in this section are relevant for toroidal BECs in effectively
two dimensional regimes so that the degrees of freedom along the axial direction
do not come into play. Indeed, we will discuss the above scenario using numerical
simulations of the two-dimensional time-dependent GP equation. Here we will also
present results of calculations performed with the three-dimensional GP equation,
but with a very tight axial confinement, employing the experimental parameters
of a squashed toroidal trap created at NIST. However, experiments carried out in
the latter setup proved not to be well described by a mean-field, and were actually
performed to demonstrate the role of quantum fluctuations when dimensionality is
reduced [8].

12.2.1 The Model

‘We numerically solve the two-dimensional time-dependent GP equation

Y, 1) [ h*v?
ih =|(-
ot 2m

+ Vie(r) + vbar(r,r>+g|w|2}w(r, ). (12.1)

The trapping potential is made by a harmonic potential plus a Gaussian repulsive
core creating a hole in the trap center:

hw 202 /o2
Vir (1) = Vho(r) + Voo (r) = W(xz + y2) + Voe & +yD/oe (12.2)
1

From now on, we express quantities in trap units of time a)J__l and length d . As
an initial condition, we consider the numerical ground state obtained with Vp, =0,
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and transfer by linear phase imprinting a total angular momentum L, = N¢, with
N the total number of particles and £ integer. The transferred angular momentum is
low enough to have flow velocities in the torus region much smaller than the sound
speed. Over each loop of radius » = \/x2 + y? the circulation is C = 27 ¢ and the
modulus of the fluid velocity,

v(r) = i, (12.3)
2rr

is constant and directed along the tangent of the same loop.

After angular momentum is transferred to the cloud, the barrier potential
Vbar (T, t) is adiabatically ramped up over a time # to a final height V;. We use a
repulsive well with widths w, centered at the maximum density, and w, centered at
y = 0. We always choose w, > d, where d = R, — R; is the width of the annulus.
More precisely, the barrier potential is

Voar(r, 1) = f (1) Vs Vox (X) Voy (), (12.4)
with f(z) =¢t/t (f(t) =1fort > t), and
_1 x— Ry +xp —x + Ry + x9
Vox = 2 <tanh(b—s) +tanh<b—s>>. (12.5)

Here R, is the x-shift of the center of the barrier while its width is w, ~ 2xo. The
other part of the barrier potential, Vyy, has the same shape as Vpx, but with Ry = 0.
The final height of the barrier is Vi as long as xo, yo > bs.

We solved the two-dimensional GP equation numerically by a finite-difference
real space product formula (RSPF) approach and employed a spatial grid of 300 to
600 points extending from —15 to 415 in both the x and y directions, with a time
step of 1 x 1073 (see [9] for details).

12.2.2 Vortex-Nucleation and Phase Slips

The ¢ quanta of circulation are carried by singly-quantized vortices confined within
the low-density central hole of the torus [1, 10]. In our simulations, as soon as a finite
angular momentum is transferred to the condensate, the vorticity field component
perpendicular to the x—y plane,

v(r, 1) =(V xv(r,1) -2, (12.6)

shows a “sea” of positive and negative vorticity spots, corresponding to a mesh of
vortices and anti-vortices, see Fig. 12.1(b). This is observed inside the two regions
of very low density, close to the center and in the space surrounding the torus. The
presence of the “vortex sea” is probably due to numerical noise acting inside very
low density regions, possibly triggering an instability of GP equation. As we will
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Fig. 12.1 Vortex nucleation and dynamics. (a), (b) and (¢) #, =10, L,/N =8 and Vs = 0.34u.
(a) t =7.6. Density contour plot with no visible vortex core. (b) t = 7.6. The z component of
the vorticity field v(r). The white dashed lines indicates the Thomas-Fermi radii of the cloud. The
encircled dot corresponds to a vortex about to enter the annulus from the inner edge. (c) t = 11.6.
A vortex circulates along the annulus while the vorticity (inset) shows an anti-vortex about to enter.
(d)t, =10, L,/N =2, V3 =0.611. Vortex anti-vortex annihilation

discuss in this and the following section, even though the above consideration seems
to suggest that this vortex mesh is void of any physical meaning, it actually appears
to be the reservoir from which the “physical” vortices, responsible for the superfluid
dissipation, are generated.

Initially, if the repulsive barrier is raised slowly enough to preserve adiabatic-
ity, the superfluid is able to adapt its density and velocity field and moves through
neighboring stationary states at different barrier heights such that no excitation ap-
pears in the condensate. In the barrier region, where the density is depleted, the flow
velocity increases mainly at the edges of the annulus. Meanwhile, as appears from
the vorticity field, the two vortex seas are strongly fluctuating, with vortices and
anti-vortices trying to escape but still being pushed back into the mesh.

However, when the barrier reaches a critical height V1, a vortex from the inner
sea can successfully escape and enter the bulk of the density inside the annulus.
The onset of instability at this stage is depicted in Fig. 12.1(a) and (b). In this ex-
ample, before raising the barrier, the flow velocity at the maximum density, located
at ryy, = 7.2, is v(rym) = 0.67¢4, where ¢g is Thomas-Fermi estimate of the sound
speed in the ground state. The corresponding value of the healing length at ry, is
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Fig. 12.2 Circulation (solid lines) for loops with different radii and total angular momentum (dots)
as a function of time. The parameters are the same as in Fig. 12.1(a). The 2 drops in the circulation
atr =4,4.8, 6.4 are due to a singly-quantized vortex moving outwards from the center. The drop
atr = 8 and t ~ 12 is due to the passage of an anti-vortex entering the annulus from the outer edge.
The oscillation in the circulation at r =4 and t ~ 16—17 is due to a double crossing of a vortex
trying to escape the inner region

& ~1/+/2gp(rm, 0) = 0.28. The Thomas-Fermi width of the annulus is d = 3.59.
In this case, the barrier widths are w, ~ 4 and wy ~ 2, and the observed critical
barrier heights are V1 ~ 0.14u, and Vo ~ 0.24 .

The dissipation dynamics is better understood by combining the information
coming from the superfluid density and vorticity field. In Fig. 12.1(a), we observe
the depletion of the density but not a visible vortex core. However, if we inspect
the vorticity field (12.6) plotted in Fig. 12.1(b), we clearly see an isolated red spot,
corresponding to a positive vorticity, moving radially from the center of the torus
towards the higher density region, indicating the presence of the core of a singly-
quantized vortex. Such vortex cores inside low density regions which appear only
as phase singularities have been referred to as “ghost vortices” [43].

As we discussed in the introduction, the passage of a vortex core between two
points causes a 2 slip in the phase difference between them. In Fig. 12.2, we ob-
serve 27 sharp drops in the circulation C on a given loop of radius r, taking place
when a vortex core crosses the latter. Consistently with the above discussed dynam-
ics, the larger the loop radius 7, the later the vortex core reaches it and creates the
phase slip. The fact that the circulation at small (and large) radii is not exactly inte-
ger, but slightly larger, is due to numerical difficulties related to the calculation of
the velocity field where the density is very small. However, even at r = 4, where
the density is small, we see single 2w phase slips taking place at regular intervals
and corresponding to (ghost) vortex core crossings. The behavior of circulation at
small radii also provides further useful information. Indeed, close to the inner sea
of vortices, the circulation shows spikes at which it decreases by 2, then quickly
goes back to its previous value. These are associated to the above mentioned events
where a vortex moving out of the sea but is pushed back by a region of high density
located slightly outwards. Indeed, in this way, a loop is crossed back and forth by
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the same vortex. We have observed a similar effect with anti-vortices trying to enter
the annulus from the outer vortex sea.

Due to phase slippage, the angular momentum is reduced, and eventually the
system becomes stable again after a finite number of spawned vortices. The circu-
lation is lowered by a few quanta, and the fluid velocity on vortex-crossed loops
is brought back below the critical value. If the ramping is stopped at V;, vortices
do not cross the torus completely and move on stable circular orbits. The vortices
circulate on a fixed loop within our computational times. Vortices orbiting inside a
two-dimensional toroidal trap have been studied with GP equation in [25, 26].

12.2.3 Instability Criterion and the Second Critical Velocity

The onset of the above instability can be understood, at least qualitatively, from
energy considerations. A persistent flow in a toroidal geometry is possible because
of the pinning of the vorticity in the low density regions near the center and outside
of the torus. This can be explained with an effective energy barrier, arising from the
nonlinearity of the GP equation, felt from a vortex core when trying to move towards
a region of higher density [4, 6, 22, 42]. Within this interpretation, the obstacle
raised across the annulus steadily decreases the density during the ramping process,
suppressing the effective energy barrier and thereby unpinning a singly-quantized
vortex.

This said, it must be however emphasized that the critical condition which quanti-
tatively corresponds to the onset of instability observed here seems to have no direct
connection to energy balance considerations. Indeed, in the hydrodynamic regime,
when § < d, wy, wy and Vy < i, we observe the onset of instability towards vor-
tex penetration as soon as the local superfluid velocity reaches the “true” sound
speed [47]. In this geometry, the latter corresponds to the velocity of propagation
of phononic excitations along the direction of the flow and depends on the average
density calculated on a line perpendicular to the flow. In particular, this is small-
est inside the constriction, more precisely at the maximum of the repulsive well (at
y = 0 in our case). The critical condition is thus first met inside the barrier region,
at the Thomas-Fermi radius of the cloud where the superfluid velocity is highest.

It is important to mention at this point that for a one-dimensional flow through a
constriction, a different criterion has been verified [23, 45]. Namely, in the hydro-
dynamic regime, the one-dimensional flow becomes unstable as soon as the local
sound speed equals the superfluid velocity at the same point. This local instability
criterion corresponds to the absence of stationary solutions of the classical inviscid
and irrotational flow equation [21]. The present criterion is different from the local
criterion verified in one dimension insofar as it involves the true sound speed and not
the local sound speed, and the latter should be compared to the superfluid velocity
at the Thomas-Fermi radius of the cloud.

The instability criterion appearing in two dimensions is neither connected to en-
ergetic arguments, nor corresponds to the local criterion, coming from classical hy-



12 Superfluid Instability and Critical Velocity in Two and Three Dimensions 265

drodynamics, verified for the one-dimensional GP equation. In the next section, we
will return to the study of this instability criterion, giving quantitative results.

This general criterion also explains the existence of two different critical barrier
heights. Indeed, as already mentioned above, if the barrier is stopped at V¢ only
singly-quantized vortices penetrate the annulus from the inner edge, while nothing
happens at the outer edge. According to the instability criterion, this is explained
by the fact that only the inner edge of the annulus is unstable since there the fluid
velocity is larger (v(r) o< £/r) and can reach the true sound speed while at the outer
edge the velocity is still small. If instead the barrier reaches a second critical height
Vea > Vi1, the outer part of the annulus also becomes unstable. Anti-vortices then
enter from the outside while vortices enter from the inner edge. Anti-vortices move
radially inwards and contribute to stabilize the outer part by phase slips. Indeed,
an anti-vortex crossing a loop makes the circulation drop as a vortex crossing the
opposite way.

In Fig. 12.1(c) we see a vortex already circulating inside the high density region
of the annulus while an anti-vortex begins to enter. The separation between V.; and
V.2 is proportional to the velocity difference Av = £(R; — R2) /(R R;) between the
two edges. In general, depending on Av, the dynamics at barrier heights larger than
Ve can vary. For instance, at lower angular momenta Av becomes smaller, and a
vortex and an anti-vortex enter the annulus almost simultaneously. They can then
collide and annihilate, as shown in Fig. 12.1(d). When a vortex and an anti-vortex
annihilate or separately orbit on the same loop, the system undergoes a global 27
phase slip, and the total angular momentum is decreased by one unit.

12.2.4 Three-Dimensional Calculations in a Squashed Torus

We extended our two-dimensional calculations into a three-dimensional configu-
ration. The parameters of the squashed toroidal trap are those employed experi-
mentally at NIST. To transfer angular momentum to the cloud, we use a Laguerre-
Gaussian beam. We employ an harmonic trapping with w; = 27 x 20 Hz (such
that d; =4.69 um) and @, = 48w, . The Laguerre-Gaussian beam is modeled by a
proper external potential term in the GP equation [40]. The core repulsive potential
is Veo(r,2) = —Vc(r/ac)ze_z(’/ "0)2, and the resulting condensate has a shape close
to a hollow disk. We add a repulsive well potential of the same kind used in two
dimensions, whose shape, however, is not crucial in determining the qualitative fea-
tures of the dissipation, as long as wj is larger than the width of the annulus. We
solve the three-dimensional GP equation numerically by a finite-element discrete
variable representation in the spatial coordinates and a RSPF in time. The x and y
coordinates were divided into boxes of span [—20.0, +20.0] with 160 elements and
order 5 Gauss-Legendre bases while the z-direction covered a box [—10.0, 4+10.0]
with 80 elements of order 5 bases. The time step was 1 x 1073 (see [38] for details).

Since the healing length is of the order of the harmonic length along z, we found,
as expected, that the nucleation of singly-quantized vortex lines and their dynamics
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resemble those observed in two-dimensional calculations. In particular, we have
two critical values for the barrier height V.; and V., connected respectively with
the nucleation of vortices or both vortices and anti-vortices.

The study of the instability scenario in fully three dimensional cases, where the
degrees of freedom along all the three directions play a role, represents a neces-
sary extension of the above results. Indeed, understanding how the phase-slippage
dynamics changes from two to three dimensions is also experimentally relevant,
since the first demonstration of persistent currents at NIST has been achieved in a
fully three-dimensional torus [37], while the recent experimental study of the cur-
rent decay in a weak link has been performed much more squashed toroidal trap
[36].

Another interesting observation which deserves further investigation, is the dis-
covery of a new instability criterion, different from the local hydrodynamic criterion
verified with one-dimensional GP equation. These issues will be the object of the
next section.

12.3 Phase-Slip Dissipation in Three Dimensions: The Role
of Confinement Asymmetry and the Instability Criterion

In this section, we will study the critical velocity and superfluid dissipation mech-
anism in a three-dimensional constricted flow configuration, where the size of the
cloud along all the three directions is much larger than the healing length & [32].
We consider a subsonic flow of a zero-temperature dilute BEC, and numerically
solve the GP equation in two different geometries: (i) a wave guide with periodic
boundary conditions, which can mimic an elongated cloud along the flow direction
as created in the experiments of [11, 39], and (ii) a torus, already introduced in
the previous section. Again, the unstable regime is reached by raising a repulsive
penetrable barrier, which is broader than the cloud size transverse to the flow, and
extends over typically 5 to 10 healing lengths along the direction of flow, as shown
in Fig. 12.3. As in the previously described two-dimensional study, we start from
a stationary flow with a given velocity and adiabatically raise the barrier during
the dynamical evolution until the instability sets in. In three dimensions, the latter
corresponds to the nucleation of vortex rings penetrating the cloud and taking en-
ergy from the superfluid flow by the same phase-slip mechanism described in the
previous section.

The two geometries under study present significative differences in the phase slip
dynamics. We will show that vortex rings, which can find a stationary configuration
after entering an axially symmetric waveguide, are instead always transient in the
torus, and, more generally, as soon as the axial symmetry about the direction of flow
is broken.

In this section, we will also present more quantitative results regarding the gen-
eral criterion determining the critical velocity for superfluid instability, which we
already introduced for the two-dimensional case described earlier. In both of the
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Fig. 12.3 Constriction
configuration. The light-gray
surface corresponds to the
classical (Thomas-Fermi)
surface of the cloud. The
dark-gray surface shows an
isosurface of the barrier
potential used to create the
constriction
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three-dimensional geometries studied here, in the hydrodynamic regime of the GP
equation, the instability criterion, which determines the critical velocity, is not given
by the local hydrodynamics condition, according to which the flow breaks down as
soon as in any point the local sound speed equals the superfluid velocity. Instead,
consistently with the criterion verified in the two-dimensional case treated in the
previous section, the instability sets in as soon as the fluid velocity at the Thomas-
Fermi surface of the cloud equals the true sound speed, which in this case is the
local sound speed averaged over the transverse plane of the waveguide/annulus.

12.3.1 The Model

In order to study these various configurations, we solve the time-dependent GP
equation (12.1) for three spatial dimensions in scaled form as

ih%: [—%Vz—i-V(r, z)+g|¢f|2]1/f(r, D) (12.7)
where length, time, and energy are given in units of d, = [m—’Z)U]%, 1/w,, and hw,
respectively for a representative harmonic frequency w, that characterizes the trap.
V (r, t) is the external potential. The condensate wavefunction v (r, ¢) is normalized
to the total number of particles N. The external potential has components associated
with the trapping and the barrier potentials of the form

V(1) = V() + Voar (r, 1). (12.8)

In both cases, we find the ground state of the system with Vi = 0.
The waveguide geometry is implemented by choosing the trapping potential

1
Vie(r) = E[x2 + 2%, (12.9)

with w, = wy =30 x 27 Hz, y = w;/wy, and periodic boundary conditions along
the flow direction y. We considered three different values of the y, namely 1,
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1.05, and 1.2, which correspond, respectively, to a ground state chemical potential
w=11.7,12.0,16.5 with N =3 x 10° 37Rb atoms and a nonlinear scaling value
gN =10134.

The toroidal geometry is implemented by choosing the trapping potential

1
Vu(r) = E[Ozzx2 + B2 4 2] 4 Vee 201, (12.10)

where @ = w,/w; and B = wy/w,. We take a = B = 0.5 with w, = w; =25 X
27 Hz and form the torus by including a core potential with parameters V., = 144,
and o, = 1.88 with p? = x? 4+ y2. The ground state chemical potential is ;1 = 7.6
for N = 2.5 x 10° 23Na atoms, corresponding to a nonlinear scaling value gN =
2028.

During the dynamical evolution, we use a time-dependent barrier potential of
the same kind used in the two-dimensional calculations of the previous section
(see (12.4)):

Vo(r, 1) = () Vs Vox () Voy () Vo (2) /8, (12.11)

with f (1) =1/t (f(t) =1 for t > t;) and Vix = tanh(*=2:10) 4 tanh(=2HRatx0y,
Here R, is the x-shift of the center of the barrier while its width is w, ~ 2x0. Voy (y)
and V;,(z) have the same form as Vix. The final height of the barrier is V; as long
as xo, Yo, 20 > bs.

As done in the two-dimensional study, before starting the dynamics, we put the
condensate in motion by imprinting an appropriate spatially dependent phase 6(r)
on the wavefunction. In the waveguide case, 6(r) = mvy/h generates a uniform
flow of velocity v along the y direction. In the torus, 6(r) = ml¢/h, with [ integer,
generates a tangential flow of speed v(r) =1/p, where ¢ = arctan(y/x).

The numerical solution of the GP equation used to obtain the results presented
here can be sketched as follows. After finding the ground state with an imaginary-
time propagation, the dynamical evolution is performed in real time. All the sim-
ulations rely on a finite-element discrete variable representation (DVR)[38]. In the
waveguide geometry, a split-operator method was employed, with a Fast-Fourier-
Transform algorithm used for the kinetic part of the evolution, while the simulations
in the torus use a Real Space Product Formula [38]. The spatial grid for the waveg-
uide calculations is ny = 60, n, = 120, n, = 60 (or n, = 180, ny, = 120, n; = 180
for Figs. 12.6 and 12.7) with box sizes Ly = 12, Ly, =24, L, = 12 for the axially
symmetric case (see below), ny =90, ny, = 120, n, = 80 with box sizes L, = 18,
Ly =24, L, =16 for the axially asymmetric case, while the time-step is dt = 1074,
In the torus simulations, the spatial grid consists of 80 elements in each dimension
with 4 DVR Gauss-Legendre functions in each element spanning cubic box lengths
of [—12,12], [—12,12], and [—10, 10] in the x, y, and z-directions respectively.
This choice gives 241 grid points in each direction. The convergence has also been
tested with 5 basis functions and 321 points with only a few percent change in basic
quantities such as energies, momentum, and positions.
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Fig. 12.4 Ratio of the higher local fluid velocity at the Thomas-Fermi radius, v(RTr), to the sound
speed c inside the barrier, as a function of the barrier height. The red-shaded area correspond to the
critical point plus uncertainty. The results are obtained for the cylindrically symmetric waveguide
y = 1 and initial flow velocity v = 1.05. The inset shows a sketch of the behavior of the local fluid
velocity along a radial cut inside the barrier region. The red solid line indicates the value of the
sound speed ¢, which with transverse harmonic confinement is just the average of the local sound
speed, c¢(r) (red dashed line) over the transverse plane. The black (blue) solid line corresponds to
a subcritical (critical) condition

12.3.2 Criterion for Instability in Three-Dimensions

Let us start by presenting a quantitative study of the instability criterion, that is,
the general condition which determines the critical velocity above which the super-
fluid flow starts being dissipated. We shall see that the following results for three-
dimensional GP equation provide a criterion which is consistent with the one veri-
fied in the two-dimensional geometry discussed in the previous section.

Indeed, in the hydrodynamic regime, that is, when the healing length & is much
smaller than all other length scales (the smallest of which is the barrier width along
the flow direction), it can be verified that the onset of instability coincides with the
simple condition, vTr = c: inside the barrier region, the local fluid velocity at the
classical (Thomas-Fermi) surface of the cloud, vTF, equals the sound speed c, as de-
picted in the inset of Fig. 12.4. Again, the sound speed which sets the threshold for
the critical velocity is the Bogoliubov sound speed, calculated inside the barrier re-
gion, for the low-lying modes propagating along the flow, taken as if the system was
homogeneous in this direction. In the present case of a harmonic transverse confine-
ment, and within the Thomas-Fermi approximation, this sound speed is simply the
average of the local sound speed on a plane perpendicular to the flow ¢ = c(0)/+/2,
where c(0) is the local sound speed at the center of the transverse harmonic trap
[47]. Notice that in two-dimensions exactly the same expression for the criterion
can be used, with the only difference that the integration is on a line and not a plane,
which turns into a different numerical factor relating ¢ with ¢(0).
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In Fig. 12.4, quantitative results for the three-dimensional waveguide geometry
are presented. In a waveguide with cylindrical symmetry, the condition vtp = ¢ is
verified simultaneously at points on a circle perpendicular to the flow, from where a
vortex ring will then enter. Instead, as discussed in Sect. 12.2.3, in the torus, due to
a higher flow speed at the inner edge of the annulus, the critical condition is reached
first on the interior of the cloud, with the consequence here that vortex rings, if ever
formed, must be asymmetric, as we discuss below.

We again see that this criterion allows for a simple understanding of the details of
vortex penetration dynamics, based on the observation that vortex cores enter first
where the critical condition is first reached.

Before going on with the study of the three-dimensional phase slip dissipation
dynamics, it is interesting to return to the discussion of “ghost” vortices and of
“vortex sea”, already encountered in the previous section. As already seen in the
two-dimensional torus case, below the critical point, we also observe in the present
three-dimensional calculations vortices getting closer to the edges of the cloud but
failing to enter. The presence of these “ghost” vortices detaching from the “vortex
sea” located at the boundaries of the system suggests that a pre-instability is trig-
gered at the edges of the condensate, but, since the vortices do not enter the bulk
region, it is not sufficient to dissipate the superflow. This observation can help to
build a connection between the present criterion and the local criterion coming from
classical hydrodynamics. As anticipated, the latter is clearly not valid here, since
it would predict the flow to be always unstable for the simple reason that the local
sound speed goes to zero at the edges of the waveguide (see Fig. 12.4). Therefore
the condition is always met, even before raising the obstacle. However, even though
not giving the condition for the real instability, the local criterion can be signaling
the onset of the above pre-instability. Indeed, the “vortex sea” is present as soon
as the fluid moves, providing a source for the ghost vortices which try to enter the
cloud before the critical velocity.

12.3.3 Phase Slip Dynamics in the Three-Dimensional Waveguide

The first geometry we will discuss consists of a waveguide with periodic boundary
conditions along the flow direction y. This configuration can be realized experimen-
tally with a BEC inside an elongated trap along the flow direction. As stated above,
before raising the barrier in the simulations, a stationary flow is created by imprint-
ing a phase mvy/h on the condensate wavefunction, where v is the constant flow
speed. In the experiment, such situation can be for instance realized by sweeping the
barrier across the cloud at a constant velocity. We consider a harmonic confinement
in the transverse x—z plane, such that d, = «/h/mw, and d, = \/h/mw, are both
sufficiently larger than the bulk healing length. The effect of transverse degrees of
freedom comes thus into play, giving rise to a fully three-dimensional dynamics. A
recent experiment which would be relevant for the present study has been described
in [39]. In the latter, the possibility of creating a penetrable repulsive barrier across
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Fig. 12.5 Four subsequent stages of the vortex ring penetration in the waveguide. The gray surface
indicates the position of the Thomas-Fermi surface of the condensate. Black dots show the position
of the vortex cores. Here the waveguide is axially symmetric y = 1, the initial flow velocity is
v = 1.05, and the final barrier height is Vy = 0.17u. (a) The ring is shrinking around the cloud in
barrier region, still outside the Thomas-Fermi borders of the cloud. (b) The ring has just entered
the cloud. (¢) The ring has shrunk to its final size and is already outside the barrier region, moving
along the flow direction. (d) The ring has moved far from the constriction region, with a constant
speed and radius

an elongated three-dimensional condensate, with a control over a length comparable
to the healing length, has been demonstrated.

When the waveguide is axially symmetric, as soon as the critical barrier height
is reached, a vortex ring detaches from the system boundaries and starts shrinking
into the cloud inside the barrier region, as shown in Fig. 12.5(a), (b). In the figure,
black points indicate the position of vortex cores while the gray surface corresponds
to the Thomas-Fermi surface of the cloud. Detection of vortex cores is performed
using a plaquette method, described in [12].

We observe that a vortex ring shrinking into the cloud is the three-dimensional
analogue of the penetration of a vortex-anti-vortex pair in two dimensions, shown in
Fig. 12.1(d). Indeed, vortex cores located at opposite sides of a circular vortex ring
carry opposite vorticity.

Depending on the initial flow velocity, waveguide transverse section, and barrier
height at the critical point, the ring attains a certain radius and velocity with which
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Fig. 12.6 Four subsequent stages of the vortex ring annihilation in the waveguide. The gray sur-
face indicates the position of the Thomas-Fermi surface of the condensate. Black dots show the
position of the vortex cores. Here the waveguide is axially symmetric y = 1, the initial flow ve-
locity is v = 0.52, and the final barrier height is V; = 0.94 . (a) The ring is shrinking around the
cloud in the barrier region, still outside the classical borders of the cloud. (b) The ring has entered
the cloud. (¢) The ring is about to shrink completely and annihilate. (d) The ring has annihilated
and no vortex core is now inside the Thomas-Fermi surface

it propagates in the flow direction in a stable fashion, as long as axial symmetry
is preserved, as depicted in Fig. 12.5(c) and (d). Here the vortex ring eventually
propagates at the speed u; = 0.65, and a radius R =2.9.

12.3.4 Motion of Vortex Rings

Both in Figs. 12.5 and 12.6, we see that, at least initially, the vortex cores are sub-
jected to an essentially radial motion, corresponding to the shrinking of the vortex
ring. This behavior can be understood by considering what contributes to the motion
of vortex cores in non-homogeneous systems [27]. Let us consider a single vortex
core located at some position x.. Its velocity is the sum of two terms: (i) the back-
ground flow velocity at x., and (ii) a term perpendicular to the gradient of the density
at x.. Both contributions must be calculated as if the vortex was not present. Since
the relative weight of term (ii) is proportional to the value of the healing length cal-
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culated at x., in high density regions, a vortex core will move mainly with the back-
ground superfluid velocity, while in low density regions, it will move mainly due to
the gradient of the density. Therefore, when the vortex ring is inside the constric-
tion, where the density is low, and especially when it is close to the Thomas-Fermi
surface, it will principally move perpendicular to the gradient of the density, whose
main contribution comes from the density modulation induced by the barrier along
the flow direction. This results in an essentially radial motion of the cores, and thus
into the shrinking of the ring.

12.3.5 The Full Phase Slip Event: Vortex Ring Self-annihilation

In analogy to what happens to vortex-anti-vortex pairs in a two-dimensional geom-
etry (see Fig. 12.1(d)), for sufficiently strong barriers, the ring shrinks to a point,
thereby annihilating and completing a full single phase-slip, as shown in Fig. 12.6.
After this process, the velocity has dropped everywhere by the same quantized
amount. Again, such an event is the three-dimensional analogue of vortex-anti-
vortex annihilation in two dimensions.

Let us now analyze the full phase slip event in more detail, since vortex ring self-
annihilation contains interesting information about the properties of the solutions of
the GP equation [35].

In Fig. 12.7(a) and (b), respectively, we show the position of the vortex cores to-
gether with the density on a plane parallel to the flow direction, at a time just before
and just after the ring has shrunk to a point. In Fig. 12.7(c), the density on the same
plane is plotted at four subsequent times after the annihilation. If we consider the
position of the vortex cores, we see that the points of phase singularity form a loop
which shrinks inside the constriction, Fig. 12.7(a), and whose radius eventually be-
comes zero, Fig. 12.7(b). At this moment, we see the zero-density core being filled
with atoms, thereby transforming into a density depression, which further propa-
gates out of the constriction as a rarefaction pulse, as shown in Fig. 12.7(c). Finally,
this rarefaction pulse decays into sound. The details of self-annihilation process
which we observe are consistent with the previous studies of axisymmetric vortex
ring solutions [5, 18-20]. Namely, an analysis of stationary solutions of the GP
equations shows that the vortex ring branch, for decreasing momentum (or equiv-
alently ring radius), meets a rarefaction pulse solution branch. The two branches
merge into a cusp at a given momentum.

12.3.6 Phase Slip Dynamics in the Three-Dimensional Torus

We now consider the study of the phase-slip dynamics in the torus. As we learned in
the previous section, here the scenario is richer since the tangential flow velocity at
a given total angular momentum decreases like 1/r, where r is the distance from the
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t =5.40 t=06.28

Fig. 12.7 Details of the ring self-annihilation event studied in Fig. 12.6, at six subsequent times.
In (a) and (b), left panel, the gray surface indicates the position of the Thomas-Fermi surface of the
condensate, while black dots show the position of the vortex cores. In (a) and (b), right panel, and
(¢), the density on a z = 0 plane parallel to the flow direction is shown. A very small loop structure
of vortex cores, in (a), shrinks to a point and has disappeared in (b). The ring has transformed into
a rarefaction pulse, whose propagation and decay into sound appears in (c)

center of the torus. This introduces an asymmetry between the inner and the outer
edges of the cloud, which is not present in the waveguide case. In three-dimensional
configurations, this implies that vortex rings are transient features in a toroidal ge-
ometry. As we shall see, vortex rings either break or self-annihilate, or even not be
formed at all.

As observed in the two dimensional torus (see Fig. 12.1), for a sufficiently small
asymmetry between the inner and the outer edge of the annulus, which is typically
achieved with low angular momentum, at the critical barrier height, a vortex ring can
enter the cloud and shrink down to a point and self-annihilate. The self-annihilation
process, shown in Fig. 12.8, is very similar to the one taking place in the waveguide
(see Sect. 12.3.5), with the only difference that in the torus the ring is never axially
symmetric.

However, the difference between the toroidal and waveguide geometry is more
clearly demonstrated by the vortex ring breaking process we will describe next. As
shown in Fig. 12.9, after entering the cloud, the ring is strongly deformed since the
inner part moves faster (the velocity of a vortex core, when the healing length is
much smaller than the length scale of density variation, is essentially given by the
background flow velocity, see Sect. 12.3.4). The deformation increases in time up
to the point at which the ring bends in on itself, forming a right angle with a kink at
its vertex, as shown in Fig. 12.9(b). Meanwhile, a vortex line coming from the inner
core of the torus approaches the vertex, and also forms a kink in correspondence
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Fig. 12.8 Three subsequent stages of the vortex ring annihilation in the torus. The gray surface
indicates the position of the Thomas-Fermi surface of the condensate. Black dots show the position
of the vortex cores. Here the initial circulation is / = 1, and the final barrier height is Vy = 0.5u.
(a) The ring is shrinking around the cloud in barrier region, still outside the classical borders of the
cloud. (b) The ring has entered the cloud. (¢) The ring is about to shrink completely and annihilate

c)

Fig. 12.9 Four subsequent stages of the vortex ring breaking in the torus. The gray surface in-
dicates the position of the Thomas-Fermi surface of the condensate. Black dots show the position
of the vortex cores. Insets show the top and side views. Here the initial circulation is / = 4, and
the final barrier height is V; = 0.2u. (a) The vortex ring is bending to form a right angle. (b) The
vortex ring has formed a right angle whose vertex is close to a vortex line coming from the center
of the torus. (¢) The vortex ring and line have just reconnected: a vortex line and a portion of a
ring vortex are now inside the Thomas-Fermi surface. (d) The vortex line and the ring have moved
apart
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Fig. 12.10 Three subsequent stages of the vortex ring formation in the torus. The gray surface
indicates the position of the Thomas-Fermi surface of the condensate. Black dots show the position
of the vortex cores. Insets show the side view. Here the initial circulation is [ = 4, and the final
barrier height is Vi = 0.2u. (a) The vortex line is bending around the cloud in barrier region,
partially outside the Thomas-Fermi borders of the cloud. (b) The vortex line has developed two
kinks. (¢) The vortex ring has just formed

to the latter. Eventually, the line and the ring connect, joining each other at the
position of the kinks. Such an event produces a vortex line plus a new ring vortex,
appearing in Fig. 12.9(c). Therefore, we can understand the vortex ring breaking as
a vortex reconnection. These reconnections between vortex lines or rings play an
important role in turbulent scenarios since they provide a very efficient mechanism
for increasing the number of vortices in the system [44], see also Chaps. 13 and 14.

In the two-dimensional torus, we observed a single vortex entering the cloud
and circulating (see Fig. 12.1(b)), when the barrier was not strong enough to make
both the edges of the annulus unstable. We observe the corresponding case in three
dimensions, when the ring is not formed at all, and a strongly bent vortex line enters
the cloud from its inner edge, to circulate around the torus. As already discussed, the
fact that the vortex line enters the inner edge of the annulus is due to the asymmetry
in the velocity field which makes the instability set in there first, according to the
criterion discussed in Sects. 12.2.3 and 12.3.2.

To conclude the study of the phase slip dynamics in the three-dimensional torus,
let us discuss the formation of a vortex ring in this geometry. It is interesting to see
that the latter event is nothing more than a reconnection of a vortex line with itself.
Indeed, as shown in Fig. 12.10, a bended vortex line is always present at first. While
the bending increases, the vortex line develops two sharp kinks whose tips get closer
to each other, up to when they join, thereby cutting the original line into a vortex
ring plus a yet another line. The latter is then reabsorbed at the system’s boundary.

12.3.7 Crossover from Two to Three Dimensions

In the final part of this chapter, we will study how the phase slip dynamics change
when the effective dimensionality of the system crosses from two to three. When
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the condensate is effectively in two dimensions, i.e. the cloud size along the third
direction is comparable with the healing length &, vortex lines oriented along the
direction of tighter confinement become the preferred excitations with respect to
vortex rings, as we learned in the previous section, by studying a condensate inside
an effective two-dimensional toroidal trap (the system’s size along the axis of the
torus was about one healing length). We indeed observed that superfluid dissipation
took place through the formation of vortex lines entering the cloud.

On the other hand, for the three-dimensional trap configurations considered in
this section, we have shown that phase slip dissipation can happen through vor-
tex rings. More precisely, at first we observed vortex rings in the very low den-
sity regions outside the condensate classical Thomas-Fermi surface, the so called
“ghost” vortices, not visible from the condensate density profile. In some cases,
these “ghost” vortex rings are able to enter completely the classical surface of the
cloud, transforming into what we should then call “real” ring vortices. Now, in the
crossover between effective two- and three-dimensional regimes, moving from a
scenario in which only vortex lines are present to one in which real vortex rings
come into play, it is reasonable to expect an intermediate regime in which ghost
vortex rings are formed, but the condensate is sufficiently squashed along the third
dimension that the full vortex loop is not able to enter the cloud’s classical surface.
In this regime, superfluid would be dissipated by vortex rings, which are partly real
and partly ghost, appearing as simple bent vortex lines in the density profile. As
we shall see next, this is only partially true, since the breaking of axial symmetry
about the flow direction, which is necessary to move from three- to two-dimensional
regimes, introduces a more complex dynamics with respect to the axially-symmetric
case.

In what follows, we will use the waveguide geometry, and break the symmetry of
the trap along the flow direction. An example of such situation is given in Fig. 12.11,
where the waveguide asymmetry parameter is y = 1.2. After the instability sets in,
a ghost vortex ring forms and shrinks around the cloud in the barrier region up
to when we observe a full-fledged ring vortex, which is only partially inside the
Thomas-Fermi surface of the condensate (Fig. 12.11(a)). This is indeed the partially
real and partially ghost ring vortex mentioned above.

However, since the part of the ring which is inside the Thomas-Fermi surface
moves with a larger speed along the flow direction with respect to the part which
remains outside, the ring vortex is soon deformed (Fig. 12.11(b)), and eventually
breaks up (Fig. 12.11(c)). Indeed, as already discussed in Sect. 12.3.4, the vortex
cores located inside the Thomas-Fermi surface of the cloud move, to a good ap-
proximation, along with the background velocity field. On the other hand, cores in
the low density region outside the surface of the cloud essentially do not feel the
background velocity and move along the flow direction only because of the pres-
ence of transverse density gradients. After the vortex ring breaks up, the two lines
move downstream and continue to deform, and eventually re-join to form a vortex
ring (Fig. 12.11(d)). The latter undergoes the same deformation described above,
leading to another break up.

We also verified that, even in a very slightly non-axially symmetric waveguide,
ring vortices eventually break up. With y = 1.05, the deformation is created more
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Fig. 12.11 Four subsequent stages of the vortex ring dynamics in the axially asymmetric waveg-
uide. The gray surface indicates the position of the Thomas-Fermi surface of the condensate. Black
dots show the position of the vortex cores. Insets show the front and side view. Here the waveg-
uide is non-axially symmetric y = 1.2, the initial flow velocity is v = 1.05, and the final barrier
height is V; = 0.13 . (a) A partially-ghost ring vortex has formed. (b) The ring vortex is strongly
deformed. (¢) The ring vortex has broken up leaving two vortex lines. (d) The vortex lines have
joined back to form a new ring vortex

slowly with respect to the y = 1.2 case, but the ring breaks up anyway, though at a
later time.

We thus see how the partially real and partially ghost ring vortices which come
into play due to the trapping asymmetry are unstable toward deformation and break-
ing, giving rise to a very rich phase slip dissipation dynamics.

12.4 Conclusions

In these chapter, we have seen that the excitations which show up above the critical
velocity, when the superfluid is flowing through a weak link in two and three dimen-
sions, are always vortices: inside the cloud there are cores of zero density around
which the circulation is quantized. These cores are connected with each other to
form lines ending at the boundaries of the system, or to form loops. The nature
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and dynamics of these vortex structures are very rich, and dependent on the system
geometry.

The phase slip instability studied here is a superfluid dissipation mechanism
since, as already discussed; it subtracts energy from the flow of the superfluid.
However, the GP equation does not include the dissipative processes which bring
the system to thermal equilibrium. In a realistic situation, the vortices, carrying the
energy subtracted from the superfluid, are supposed to eventually thermalize, with
the result of heating the system. The role of finite temperature on the superfluid
instability scenario presented here deserves further study.

We also showed that there exists a general criterion which determines the critical
velocity for superfluid dissipation in one-, two-, and three-dimensional GP equation.
Remarkably, we found that this criterion coincides with the local criterion coming
from classical hydrodynamics only in one-dimension, and the latter fails to predict
the critical velocity in two- and three-dimensional cases.

The study of the critical velocity for phase slip dissipation based on the mean-
field Gross-Pitaevskii equation provides a simple theoretical model containing the
fundamental ingredients for the understanding of general superfluidity properties.
Moreover, the GPE dynamics is of direct (and quantitative) experimental relevance
for ultracold atoms. In particular, the recent experiments with BECs in a toroidal
geometry are mostly interesting since they provide an ideal setup both for testing
models for superfluidity and also for building an ultracold atomic SQUID.
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Chapter 13
Quantized Vortices and Quantum Turbulence

Makoto Tsubota and Kenichi Kasamatsu

Abstract We review recent important topics in quantized vortices and quantum tur-
bulence in atomic Bose—Einstein condensates (BECs). They have previously been
studied for a long time in superfluid helium. Quantum turbulence is currently one
of the most important topics in low-temperature physics. Atomic BECs have two
distinct advantages over liquid helium for investigating such topics: quantized vor-
tices can be directly visualized and the interaction parameters can be controlled by
the Feshbach resonance. A general introduction is followed by a description of the
dynamics of quantized vortices, hydrodynamic instability, and quantum turbulence
in atomic BECs.

13.1 Introduction

Bose-Einstein condensation is often considered to be a macroscopic quantum phe-
nomenon because bosons occupy the same single-particle ground state below the
critical temperature for Bose—Einstein condensation so that they have a macroscopic
wave function (order parameter) ¥ (r,t) = |¥ (r, t)|ei9("’) that extends over the
entire system. Here, the absolute squared amplitude |¥|> = n gives the conden-
sate density and the gradient of the phase 0(r, t) gives the superfluid velocity field
vy = (h/m)VEO with boson mass m as the potential flow. Since the macroscopic
wave function should be single-valued for the space coordinate r, the circulation
I = 55 v, - d€ for an arbitrary closed loop in the fluid will be quantized with the
quantum x = h/m. A vortex with such quantized circulation is known as a quan-
tized vortex. Any rotational motion of a superfluid is sustained only by quantized
vortices. Hydrodynamics dominated by quantized vortices is called quantum hy-
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drodynamics (QHD), and turbulence comprised of quantized vortices is known as
quantum turbulence (QT).

A quantized vortex is a stable topological defect that is a characteristic of a Bose—
Einstein condensate (BEC). It differs from a vortex in a classical viscous fluid in the
following three ways. First, unlike a classical vortex that can have an arbitrary circu-
lation, the circulation of a quantized vortex is quantized. Second, since a quantized
vortex is a vortex of inviscid superflow it cannot decay by viscous diffusion of vor-
ticity, which occurs in classical fluids. Third, the core of a quantized vortex is very
thin, being of the order of the coherence length (i.e., only a few angstroms in su-
perfluid “He and submicrometer in atomic BECs). Since the vortex core is very thin
and does not decay by diffusion, the position of a quantized vortex in the fluid can
always be identified.

Since any rotational motion of a superfluid is sustained by quantized vortices, QT
usually takes the form of a disordered tangle of quantized vortices. QT is currently
the most important research topic in QHD, which is an area in the field of low-
temperature physics. The turbulence in a classical fluid, which is known as classical
turbulence (CT), has been extensively studied in a number of fields, but it is still not
well understood [1]. This is mainly because turbulence is a complicated dynamical
phenomenon that is highly nonlinear. Vortices may represent the key for under-
standing turbulence, but they are not well defined for a classical viscous fluid. They
are unstable and appear and disappear repeatedly. The circulation is not conserved
and varies between vortices. Comparison of QT and CT reveals definite differences,
which demonstrates the importance of studying QT. QT consists of a tangle of quan-
tized vortices that have the same conserved circulation. Thus, QT can be easier to
study than CT and it offers a much simpler model of turbulence than CT.

Quantized vortices and QT have historically been studied in superfluid helium.
However, the realization of Bose—Einstein condensation in trapped atomic gases in
1995 provided another important system for studying quantized vortices and QT.
The existence of superfluidity has been confirmed by creating and observing quan-
tized vortices in atomic BECs and a lot of effort has been devoted to studying lots of
fascinating problems. Atomic BECs have several advantages over superfluid helium,
the most important being that modern optical techniques can be used to directly con-
trol their properties and to visualize quantized vortices.

In a weakly interacting Bose system at zero temperature, the macroscopic wave
function ¥ (r, t) obeys the Gross—Pitaevskii (GP) equation [2, 3]:

W (r.t
2P0 _

ot 2m

2
( 2h V2+U(r)+g|l1/(r,t)|2—,u>l1/(r,t). (13.1)
Here, U (r) represents the external potential (trapping potential, obstacle poten-
tial, etc.), g = 4m h2a /m denotes the strength of the interaction characterized by
the s-wave scattering length a, and w is the chemical potential. The only char-
acteristic length scale of the GP model is the coherence length. It is defined by
& =n/(y/2mg|¥|) and gives the vortex core size. The GP equation has been used
to interpret many properties of BECs in a dilute atomic gas [4, 5]. It can explain both
vortex dynamics and vortex core phenomena, such as reconnection and nucleation.
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This chapter is organized as follows. Section 13.2 describes the dynamics of
quantized vortices. It is very difficult to directly observe their dynamics in superfluid
“He and *He, which is one important advantage of atomic BECs over superfluid
helium. In Sect. 13.3, we discuss hydrodynamic instability and QT in atomic BECs.
The last section presents the conclusions.

13.2 Dynamics of Quantized Vortices

Since the realization of atomic BECs, many researchers have formed vortices by
stirring a condensate or phase engineering. The details of these studies have been
reviewed in other articles [6, 7]. This chapter describes some recent contributions to
this topic.

13.2.1 Dynamics of a Single Vortex and Vortex Dipoles

To gain insight into diverse superfluid phenomena, it is essential to understand
the dynamics of a single vortex or vortex dipoles (i.e., vortex—antivortex pairs). A
few important observations have recently been made. Neely et al. nucleated vortex
dipoles in an oblate BEC by forcing superfluid flow around a repulsive Gaussian
obstacle generated by a focused blue-detuned laser beam [8]. The nucleated vor-
tex dipole propagates in a BEC cloud for many seconds; its continuous trajectory
was found to be consistent with a numerical simulation of the GP model. Freilich
et al. observed the real-time dynamics of vortices by repeatedly extracting, expand-
ing, and imaging small fractions of the condensate to visualize the motion of the
vortex cores [9]. They nucleated vortices via the Kibble—Zurek mechanism [10, 11]
in which rapid quenching of a cold thermal gas through the BEC phase transition
causes topological defects to nucleate [12]. This produces single-vortex precesses
in the cloud, whose frequency is in good agreement with a simple theoretical anal-
ysis [13]. Freilich et al. also nucleated vortex dipoles and observed their real-time
dynamics. This new technique enables quantitative comparisons to be performed
between experiment and theory for vortex dynamics [14, 15].

Vortex dipole generation has been investigated theoretically and numerically in
some recent studies based on the GP model. Sasaki et al. studied vortex shedding
from an obstacle potential moving in a uniform BEC [16]. The flow around the ob-
stacle is laminar when the velocity of the potential is sufficiently low. When the
velocity exceeds a critical velocity of the order of the sound velocity, the potential
commences to emit vortex trains. The manner in which vortices are emitted depends
on the velocity and the width of the potential. The first pattern is the emission of the
alternately inclined vortex pairs in a V-shaped wake, as shown in Fig. 13.1(a). The
second pattern is produced by sequential shedding of two vortices having the same
circulation. The two vortices rotate about their center without varying their separa-
tion, forming a train of vortices similar to a Bénard—von Karman vortex street, as
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Fig. 13.1 Density and phase distributions of a condensate past an obstacle potential. The veloc-
ity and potential width are (a) (v,d/&) = (2.4,0.04), (b) (2.6,0.05), and (¢) (3.0, 0.05), where
7 = v(103m/gng)'/? and &€ = h(10°/(mgno))'/? with no the atom density without perturbation.
The white arrows in (a) indicate the directions in which the vortex pairs move. The field of view is
6& x 3&. [Sasaki, Suzuki and Saito: Phys. Rev. Lett. 104, 150404 (2010), reproduced with permis-
sion. Copyright 2010 by the American Physical Society]

shown in Fig. 13.1(b). For a wide potential with a high velocity, the periodicity dis-
appears, as shown in Fig. 13.1(c). Aioi et al. subsequently proposed controlled gen-
eration and manipulation of vortex dipoles by using several Gaussian beams from a
red (attractive potential) or blue (repulsive potential) detuned laser [17]. For exam-
ple, when a red-detuned beam moves through a BEC cloud above a critical velocity,
a vortex dipole nucleates at the head of the potential. In contrast, a blue-detuned
beam generates vortex dipoles on both sides of the potential. Double beams can gen-
erate various kinds of dipole wakes depending on the velocity and the distance of the
two beams. The trajectory of emitted vortices can be modified by another potential.

13.2.2 Dynamics of Vortices Generated by an Oscillating Obstacle
Potential

Recently, in the field of superfluid *He and >He, several groups have experimentally
studied QT generated by oscillating structures such as wires, spheres, and grids [18].
Despite significant differences between the structures used, their responses with re-
spect to the alternating drive have revealed some surprising common phenomena.
The response was laminar at low driving rates, whereas it became turbulent at high
driving rates.

This strategy can also be applied to trapped atomic BECs. Fujimoto and Tsub-
ota numerically investigated the two-dimensional dynamics of trapped BECs in-
duced by an oscillating repulsive Gaussian potential [19, 20] and found a strong
dependence on the amplitude and frequency of the potential. Unlike a potential with
constant velocity [16], an oscillating potential continually sheds vortex pairs with
alternating impulses, a typical example of which is shown in Fig. 13.2. The nucle-
ated pairs form new vortex pairs through reconnections that move away from the
obstacle potential and toward the condensate surface. The BEC cloud eventually
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(a)

Fig. 13.2 Reconnection of vortex pairs about an oscillating potential. The symbols — and + in-
dicate vortices with clockwise and counterclockwise circulations, respectively. The black arrows
indicate the direction in which the potential moves. The horizontal and vertical dimensions of (a),
(b) and (c) are 27.0 and 14.0 micrometer, while those of (d) are 145 and 34.0 micrometer. When
the potential moves to the right, it generates a vortex pair with an impulse in the same direction
as the potential. When the potential (a) (r = 31.4 ms) changes direction and moves to the left,
(b) (t = 38.3 ms) it collides with the pair and (¢) (+ = 43.2 ms) emits another pair. These two
pairs reconnect to form new pairs that move away from the potential. (d) The BEC cloud eventu-
ally becomes filled with such vortices. [Fujimoto and Tsubota: Phys. Rev. A 83, 053609 (2011),
reproduced with permission. Copyright 2011 by the American Physical Society]

becomes full with such vortices, as shown in Fig. 13.2(d). An oscillating potential
is thus a useful tool for generating QT in a trapped BEC.

13.2.3 Kelvin Wave Dynamics

Kelvin waves are three-dimensional excitations along a vortex line. Kelvin waves
play an important role in dissipation in superfluid helium at very low tempera-
tures in which the normal fluid component is negligible [21]. Kelvin waves have
been experimentally demonstrated in a trapped BEC [22] by exciting a collective
quadrupole mode to a single-vortex state that subsequently decays to Kelvin modes
by a nonlinear Beliaev process. This was supported by numerical analysis based on
the Bogoliubov—de Gennes equation [23] and the GP equation [24]. Rooney et al.
recently studied the dynamics of Kelvin waves using the stochastic projected GP
equation [25]. They showed that Kelvin waves can be suppressed by tightening the
confinement of the trap along the vortex line, which drastically reduces the vortex
decay rate as the system becomes two-dimensional. This behavior is consistent with
observations of the decay of vortex dipoles [8].

13.3 Hydrodynamic Instability and Quantum Turbulence

Some theoretical ideas for achieving QT in trapped BECs have been proposed.
The turbulent state may be generated during the formation of a condensate from
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a nonequilibrium non-condensed Bose gas by rapid quenching [26]. Conversely,
turbulence is expected to be generated during the destruction process from the equi-
librium condensed state. This subsection describes recent studies on hydrodynamic
instability and the resulting nonlinear dynamics that may lead to QT. These insta-
bilities are formed by applying an external driving force to condensates or by com-
plicated interactive phenomena between multicomponent BECs (some of which are
analogs of well-known phenomena in classical hydrodynamics).

13.3.1 Methods to Produce Turbulence in Trapped BECs

A major problem when investigating QT in atomic BECs is the difficulty in applying
adc velocity field in superfluid helium. Here, we summarize some proposals for and
a recent experimental realization of QT generation in a trapped single-component
BEC.

Simple Rotation An important way for generating vortices in trapped BECs is
to rotate the external potential [27-29]. However, rotation alone cannot lead to QT
because it generates an ordered vortex lattice along the rotational axis [30], which
is the equilibrium state in the corresponding rotating frame. Nevertheless, Parker
and Adams suggested the emergence and decay of turbulence in a BEC under a
simple rotation, starting from a vortex-free equilibrium BEC [31]. A numerical sim-
ulation based on the energy-conserving GP equation suggests the existence of a
turbulent regime that contains many vortices and high-energy-density fluctuations
(sound field) on a route to the ordered vortex lattice.

Two-Axis Rotation  Since the above turbulence is generated during the ordering
process, it is not steady turbulence. Kobayashi and Tsubota suggested performing
rotations about two axes [32], as shown in Fig. 13.3(a). When the spinning and pre-
cessing rotational axes are perpendicular, the two rotations do not commute and thus
cannot be represented by their sum. This situation can be modeled by simulations
based on the GP equation:

v hv?2
ot 2m

ih— = ——+U+g|11/|2—Sl-L)l1/, (13.2)

where L is the angular momentum and the rotation vector is written as $2(¢) =
(82, £2,sin 82, t, §2, cos §2,t) with frequencies of £2, and 2, for the first and sec-
ond rotations, respectively. The inclusion of these non-commuting rotations and
phenomenological dissipation which is effective only at scales smaller than the heal-
ing length successfully generate steady turbulence [32].

Donnelly-Glaberson Instability = When both rotation and a linear velocity are ap-
plied to the system, the right-hand side of the GP equation (13.2) will have the term
—V - p in the corresponding helically moving frame. For V = Vz the dispersion
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Fig. 13.3 QT in atomic BECs. (a) A method for realizing steady turbulence in an atomic BEC
subject to precession. A BEC is trapped in a weakly elliptical harmonic potential. A rotation is
applied along the z-axis followed by a rotation along the x-axis. (b) Energy spectrum of steady
QT obtained by two-axis rotation. The dots represent the numerically obtained spectrum for an
incompressible kinetic energy, while the solid line is the Kolmogorov spectrum. Here, RF is the
Thomas—Fermi radius and a.p = +///ma is the characteristic length scale of the trap [Kobayashi
and Tsubota: Phys. Rev. A 76, 045603 (2007), reproduced with permission. Copyright 2007 by the
American Physical Society]

of the vortex waves (Kelvin waves) on a straight vortex line parallel to the z-axis
behaves as w — Vk, and its frequency will become negative above a certain critical
velocity. This is known as the Donnelly—Glaberson instability in superfluid helium
and it amplifies Kelvin waves [33]. If the rotating BEC contains a vortex lattice, the
amplified Kelvin wave induces reconnections of adjoining vortex lines, eventually
leading to a turbulent state [34].

Combined Rotation and Oscillating Excitation As a method that enables bet-
ter control of turbulence, Henn et al. introduced an external oscillatory potential to
an 8’Rb BEC [35, 36]. This oscillatory field induced a successive coherent mode
excitation in a BEC. They observed that increasing the amplitude of the oscillating
field and the excitation period increased the number of vortices and eventually lead
to the turbulent state [36]. In the turbulent regime, they observed a rapid increase
in the number of vortices followed by proliferation of vortex lines in all directions,
where many vortices with no preferred orientation formed a vortex tangle. The os-
cillatory excitation (which mainly consists of oscillation, rotation, and deformation)
nucleated vortices. However, it is still not known theoretically how the turbulence is
generated.

13.3.2 Signature of Quantum Turbulence

It is important to determine whether the highly excited state is really QT. Several
methods are used to identify the turbulent state; they are discussed in this subsection.
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In most numerical simulations, apart from observing a random configuration of
vortices, the turbulent regime has been identified by checking if its incompressible
kinetic energy spectrum obeys Kolmogorov’s —5/3 law [1]. When the condensate
wave function is written in the form ¥ (r, 1) = /n(r, 1)e'?") | the kinetic energy is
expressed by the sum Eyi, = Ex + E;, where E; = (h2/2m) fafr|\/ﬁV9|2 denotes
the superfluid kinetic energy and E, = (1?/2m) [dr|Vyn |? is the quantum pres-
sure energy. The vector field /n V6 can be divided into incompressible (solenoidal)
and compressible (irrotational) components: \/nV60 = (/nV8)' + (/nVO)¢, where
V. (/nV0) =0and V x (/nV8)¢ = 0. Thus, the incompressible and compress-
ible kinetic energies are defined by E; ¢ = (h2/2m) [ dr|(v/nV0)"¢|>. They corre-
spond to the kinetic energies in the vortices and the sound waves, respectively. Since
the compressible and incompressible fields are mutually orthogonal, it follows that
Eyr=E ,’{ + E;. The kinetic energy spectrum as a function of wave number k is
defined by

2

e (k) = n /k%meded(p‘/ o (Juvaye 4

o )3 (133)

such that E}’ e = o e,lc “(k)dk. The Kolmogorov law states that the incompressible
energy spectrum obeys the power law €; (k) ~ k¥ where v = —5/3 over the inertial
range of k. For a trapped BEC, the inertial range that follows the Kolmogorov law is
determined by the Thomas—Fermi radius Rtr and the coherence length & = i/2mpu
[32] [see the right panel of Fig. 13.3].

The structure of QT is reflected in the time dependence of the decay of the total
vortex line density L after turning off the excitation that sustains the turbulence.
Correlations of vortex tangles can be classified into two kinds [37]: correlated and
uncorrelated tangles. In a correlated tangle, turbulent energy is concentrated in the
“classical” length scale range that is larger than the intervortex distance /, where the
correlated tangle exhibits a Kolmogorov spectrum. The energy is then transferred to
smaller scales by a Richardson cascade and L decays as r~>/2. In an uncorrelated
tangle, the turbulent energy is associated with a random vortex tangle with spacing /
and it is concentrated in the “quantum” range of length scales smaller than /. Then,
L decays as t~!. Thus, observing the scaling behavior of L on ¢ provides useful
information about QT.

In addition, White et al. [38] showed that QT is characterized by a power-law be-
havior of the probability density function of the velocity field vy (r) = (h/m)VO(r),
whereas classical turbulence obeys Gaussian velocity statistics. This non-Gaussian
behavior originates from the singular nature of a quantized vorticity with a 1/r ve-
locity field, which appears in the high-velocity region determined by the intervortex
distance v ~ « /7l [39].

It is difficult to measure the above statistical or scaling properties experimentally.
Henn et al. observed another remarkable feature of turbulent condensates: suppres-
sion of aspect ratio inversion during free expansion after turning the trapping po-
tential off [36]. Despite the asymmetric expansion (from a cigar shape to a pancake
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shape) of a conventional BEC or isotropic expansion of a thermal cloud, the turbu-
lent state exhibited a self-similar expansion that preserved the initial aspect ratio.
Although a quantitative theoretical understanding of this effect has yet to be fully
realized [40], it represents a remarkable new effect in the turbulent regime.

13.3.3 Hydrodynamic Instability in Multicomponent BECs

Multicomponent atomic BECs can be created in cold-atom systems with, for exam-
ple, multiple hyperfine spin states or a mixture of different atomic species. Such sys-
tems yield a rich variety of superfluid dynamics due to the intercomponent interac-
tion. Two-component BECs are the simplest multicomponent system. Schweikhard
et al. experimentally investigated the vortex-lattice dynamics of two interacting and
rotating condensates by transferring some of the initial population of 8’Rb BECs
with a vortex lattice to its other hyperfine state via a coupling pulse [41]. They ob-
served the ordering dynamics change from a triangular lattice structure to a stable
square lattice through the transient turbulent regime.

Recent experimental advances have provided more controllable ways to study the
rich dynamics of two-component BECs. External potentials can be prepared that can
act independently on both components; this enables initial conditions to be prepared
that are suitable for studying a particular problem. In addition, the intra- and inter-
component interactions can be tuned with the help of the Feshbach resonance [42—
441]. This allows phase separation to be performed and interface phenomena between
two superfluids to be studied in a well-controlled manner.

In the mean-field theory, a two-component BEC is described by macroscopic
wave functions ¥;, where the subscript i refers to each component (i = 1,2). The
Lagrangian for this system is given by

L=/dr(P1 Py — gl PwaP). (13.4)
where
L 2 iy,
P,-:zhllfi*a—tl—f-z—millli*v v — Ul - £l (13.5)

with m; and U; being the atomic mass and the external potential of the ith compo-
nent, respectively. The intra- and inter-component interaction parameters have the
form
_ 2 -1 -1

gij = 2w’ a;; (m; +m; ), (13.6)
where a;; is the s-wave scattering length between the ith and jth components; we
assume a;; > 0 in the following. For homogeneous condensates, the condensates are
miscible and immiscible when g11g22 > g%z and g11822 < gfz, respectively. Below,
we review the characteristic hydrodynamic instability that occurs in each condition.
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13.3.3.1 Counter-Superflow Instability

When two-component BECs coexist with a relative velocity, they exhibit dynamic
instability above a critical relative velocity [45]. This phenomenon is known as a
counter-superflow instability (CSI). Takeuchi et al. suggested that the nonlinear dy-
namics triggered by the CSI generates a binary QT composed of coreless vortices
and that thus has a continuous velocity field [46, 47]. Hamner et al. realized the CSI
experimentally for quasi-1D geometry and observed the generation of shock waves
and dark-bright solitons [48].

The CSI can be understood from the Bogoliubov spectrum for a system of a
uniform two-component BEC with a relative velocity [45]. The functional derivative
of [dtL, where L is the Lagrangian in (13.4), with respect to w* gives the GP
equation,

v R s 2
i h =|- \% i |V ;. 13.7
i Y ( m; + /;:zgtﬂ j| i ( )

In this subsection, we assume U; = 0 and the miscible condition g11g22 > gfz. The
wave functions ¥; = ¥ in a stationary state can be written as

lI/i() = «/}’l—i()ei(mivi'r_uit)/h (138)

with the velocity V; and the chemical potential u; of the ith component. Counter
superflow occurs when V1 # V. We consider a small excitation above the station-
ary state as ¥; = W;o + §¥;, where we write the excitation of the wave functions
8¥; in the form

SW; = ei(m;V;-r—;t,-t)/h[uiei(k-r—a)t) _ vfke—i(k-r—a)t)] (13.9)
i . .

By linearizing the GP equation (13.7) with respect to §¥;, we obtain the Bogoliubov—
de Gennes equations (i # j):

h*k?
(2 +hk-Vi+ gii”iO)“i — giiniovi + gij/nionjo(u;j — vj) = hou;,

h;zg (13.10)
<2m_ —hk-V;+ gumo) Vi — giitiolti — &ij/Mionjouj — v;j) = —hov;.
1
(13.11)

Diagonalizing the eigenvalue equations (13.10) and (13.11), we obtain the Bogoli-
ubov excitation spectrum. For simplicity, we set m| =my =m, g11 = g»n =g, and
n1p = noo = no, and neglect the center-of-mass velocity of the two condensates. The
eigenvalue of (13.10) and (13.11) then has the simple form:

1
2.2 2 212v72
7uU=e+thmiwk%%mﬁ+@§%%, (13.12)
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Fig. 13.4 Characteristic nonlinear dynamics of CSI of two-component BECs. The parameters
are set to m| =mp =m, g1 = g2 = g, and g1 = 0.9¢g, similar to those in experiments. In the
numerical simulation, the initial state is prepared by adding small random noise to the stationary
wave function ;o with n19 =ny9 =ng and V| = —V,. The panels show the time development of
low-density isosurfaces with 111 () = 0.05n for V| = 1 V. Because of the symmetric parameter
setting, the second component behaves in a similar manner to the first component (not shown)
[Takeuchi et al.: Phys. Rev. Lett. 105, 205301 (2010), reproduced with permission. Copyright 2010
by the American Physical Society]

where Vg = V1 — V3 is the relative velocity and we denote €2 = egleg + 2gnop),
€0 = h*k*/2m, and k* = ki 4+ k7 with kjj = (k - Vg)/ Vg and k1 > 0. The system
is dynamically unstable when the excitation frequency @ becomes imaginary (i.e.,
w? < 0), which reduces to e_ < hk|Vg/2 < e with e = JVeoleo +2(g £ g12)nol.
This inequality determines the unstable region in wavenumber space (k||, k1 ), where
Vg exceeds the critical relative velocity V., = V_ with Vi = 2./gno/m+/1+£ g12/g.
The total momentum density §J carried by the excitation can be defined as §J =
8J1 + 8J > with a change in the momentum density 8.J ; = hk(|u; [ — |vi|?) of the
ith component. The unstable modes, which trigger CSI, should satisfy the condition
8J =0 with §J1 = —8J2 # 0 due to the law of momentum conservation. Since the
CSI is the dynamic instability triggered by unstable modes with an imaginary part
Im w # 0 [45], the amplification of the unstable modes will exponentially enhance
the momentum exchange.

Figure 13.4 depicts the characteristic nonlinear dynamics of the CSI in an uni-
form two-component BEC obtained by numerically solving the GP equation (13.7).
In the early stage of the dynamics, amplification of the unstable modes creates disk-
shaped low-density regions that are orientated in the x direction [Fig. 13.4(b)]. The
lowest density inside the disk region reaches zero, creating a local dark soliton. The
soliton in the ith component transforms into a vortex ring via snake instability [49]
with a momentum antiparallel to the initial velocity V; [Fig. 13.4(c)]. The vortex
ring distribution can be determined by the characteristic wavenumber of the unsta-
ble mode k) ~mVg/h and k; ~ mVg/2h for a large relative velocity Vg > V.
The length scale ~ k/ Vg with « = 2 h/m then characterizes both the radii of the
vortex rings and the intervals between the rings along V g immediately after vortex
nucleation. Thus, the vortex line density /,, after the instability is roughly estimated
tobel, ~ 1% /2, which can be controlled by varying the relative velocity V.

Momentum exchange accelerates after vortex ring nucleation. The vortex motion
then dominates the exchange. Since the momentum carried by a vortex ring in-
creases with increasing radius, the radii of the nucleated vortex rings increase with
time for momentum exchange. This dynamics resembles that of quantized vortices
under thermal counterflow of liquid helium [50], where the vortices are dragged
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by the mutual friction between the superfluid and normal fluid components. When
the vortex rings become large, the interaction between the vortex rings deforms the
rings and vortex reconnections occur, which depresses the momentum exchange
[Fig. 13.4(d)]. These effects make the vortex dynamics very complicated, leading
to binary QT in which the vortices of both components are tangled with each other
[Fig. 13.4(e)]. The momentum exchange almost terminates and each component has
an average momentum of nearly zero.

The relative motion of two-component BECs and the resulting CSI can be ex-
perimentally realized by employing the Zeeman shift of atomic hyperfine states.
Hamner et al. [48] initially prepared overlapping two-component BECs of 8’Rb in
the hyperfine states |F,mp) = |1, 1) and |2, 2), which satisfy the miscible condition
211822 > g%z. When a magnetic field gradient was applied along the longer axis of
the trap, the gradient generated forces in opposite directions for the two components
due to the Zeeman shifts. Counter superflow then occurred and its relative velocity
was controlled by the magnetic field gradient [48, 51].

13.3.3.2 Interface Instability

Next, we consider the interface instability of phase-separated two-component BECs.
The interaction parameters satisfy the immiscible condition g11g2; < g122. We as-
sume that components 1 and 2 are phase separated at the interface near the y =0
plane, which is sustained by the external potential U;(y). The density distributions
n;(y) are also assumed to depend only on y and n; =0 for y > n and np = 0 for
y < n, where y = n(x, z, t) is the interface position. Here, we neglect the interface
thickness for simplicity. The Lagrangian of (13.4) can then be rewritten as

n o0
L= /dxdz(f dy P +/ dsz) —as, (13.13)
o "

where « is the interface tension coefficient o [52-54], which originates from the
excess energy at the interface, and S = fdxdz[l + (E)r)/ax)2 + (877/81)2]1/2 is the
interface area. Taking the functional derivative of the action [ d7L with respect to
n(x, z, t) and setting it to zero, we obtain

?n  n
Pi(y=mn) Pz(y—n)JrOt(ax2 + 3Z2> =0, (13.14)
which corresponds to the Bernoulli equation in hydrodynamics.

We consider a stationary state in which the ith component flows with a velocity
Vi = Vix as Yo = /n; (y)e! " Vix—1iD/h which is similar to (13.8) except that the
density depends on y. Substituting this into (13.14) with n = 0 gives the equilibrium
condition for the pressure, g1171(0)?/2 = g2nn2(0)?/2.

To analytically derive the dispersion relation for the interface wave, we apply
the discussion of the surface modes for a single-component BEC; see Sect. 7.4 in
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Ref. [4]. We consider the small phase fluctuation ¥; = W;0e%% and the interface
mode n = 4n as

86, = Aje~ VR coskx — wt), (13.15)
dn = asin(kx — wt), (13.16)

where A; and a are infinitesimal parameters. From the kinematic boundary condi-
tion, the interface velocity in the y direction (d/0¢ 4 V;0/dx)n must be equal to
R/ (imin; )W 0W; /dy|y=y, giving

- h i
—(=D) = Ajke= VR = (Vik — w)a. (13.17)
m;

Substituting (13.15)—(13.17) into (13.14) and neglecting second and higher orders
of A; and a, we obtain

1 2
%(w —Vik)? — fing = —%(w — Vak)? — fang + k., (13.18)

where ng) =n1(n —0), ngo =na(n +0), p; =m;ng, and f; =dU;/dy|,—,. Equa-
tion (13.18) gives the dispersion relation,

VK2 Fk+ak3
w:VGk:I:\/—'Ol'OZ R TREOR (13.19)
(o1 + p2) P11+ 02

where Vg = (01V1 4+ 0V2)/(p1 + p2) is the center-of-mass velocity and F =
ng1 f1 — ns2 f> is the force due to the gradient of the external potential. We note
that (13.19) has the same form as the dispersion relation for an interface wave in
classical incompressible and inviscid fluids. In fluid dynamics, the gradient of the
potential is equivalent to gravity.

Rayleigh—Taylor Instability  First, we consider the case Vi = V, = 0. For F <
0, the system is always dynamically unstable in the wavenumber range 0 < k <
/1F1/a, which is known as a Rayleigh-Taylor instability [55, 56]. This situation
corresponds to a layer of a lighter fluid under a heavier fluid layer in a classical
fluid, where the translation symmetry of the interface is spontaneously broken.
Sasaki et al. [55] proposed a system of two immiscible BECs with different hy-
perfine spins (e.g., |F, mp) =|1, —1) and |1, 1) of ’Rb atoms) placed in an external
magnetic field gradient B’ = d B/dz. Such condensates experience the potentials
+upB'z/2 and —upB’'z/2, where up is the Bohr magneton. The force generated
by this potential can realize F' < 0 so that the two condensates are pushed in oppo-
site direction. Numerical simulations of the GP equations reveal that this gradient
modulates the interface so that it grows in a mushroom pattern. Vortex rings then
nucleate due to atoms near the center flowing upward and atoms at the periphery of
the cap of the mushroom shape flowing downward. Gautam and Angom [56] con-
sidered a system of a 3 Rb—8"Rb BEC mixture and the Rayleigh-Taylor instability
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caused by tuning the interspecies interaction through a Feshbach resonance. The
signature of the instability should appear in the damping behavior of the collective
shape oscillation.

Richtmyer—-Meshkov Instability = The Richtmyer—Meshkov instability occurs
when an interface between fluids with different densities is impulsively acceler-
ated (e.g., by the passage of a shock wave). For atomic BECs, this instability can be
caused by a magnetic field gradient pulse B’(r) o« §(¢) [57]. The nonlinear stage of
this evolution is qualitatively similar to that of the Rayleigh—Taylor instability. How-
ever, the instability dynamics differs considerably from that of classical fluids. The
main difference originates from the quantum surface tension and capillary waves,
which suppress perturbation growth and droplet detachment from an elongated per-
turbation finger. The instability for more general time-dependent forces has been
discussed in Ref. [58].

Kelvin—Helmholtz Instability Finally, we consider a system with the shear
flow Vi # Vo #£ 0 (Vg # 0). The dispersion relation (13.19) implies that, for
V]% > 2J/Fa(p1 + p2)/p1p2 = VI%H, the imaginary part Im(w) becomes nonzero
and the shear-flow states are dynamically unstable against excitation of the inter-
face modes with k_ < k < k4, as in classical Kelvin—Helmholtz instability, where
ks =ko £ \/k} — F/a with ko = p1p2V3/2a(p1 + p2). When F =0, Vku van-
ishes and the system is always dynamically unstable for Vi > 0. In addition to
dynamic instability, thermodynamic instability can occur due to dissipation when
w < 0 [59]. Here, we restrict ourselves to dynamic instability in nondissipative sys-
tems.

Figure 13.5 demonstrates the Kelvin—Helmholtz instability for Vg > Vky [59].
In the linear stage of the instability, the sine wave corresponding to the most un-
stable mode with the maximum imaginary part maxy{Im[w(k)]} is predominantly
amplified. As the amplitude increases, the sine wave is distorted by nonlinearity
[Fig. 13.5(b)], and deforms into a sawtooth wave [Fig. 13.5(c)]. The vorticity wes in-
creases on the edges of the sawtooth waves and creates singular peaks [Fig. 13.5(d)].
Subsequently, each singular peak is released into each bulk, becoming a singly quan-
tized vortex [Fig. 13.5(e)]. The release of vortices reduces the vorticity of the vortex
sheet and therefore reduces the relative velocity across the interface. The released
vortices drift along the interface and the system never recovers its initial flat in-
terface. These nonlinear dynamics differ considerably from those in classical KHI,
where the interface wave grows into roll-up patterns.

The above discussion is valid when the interface thickness ~ §+/g12/g — 1 (for
the case g11 = g22 = g) is much smaller than the wavelength of the unstable inter-
face mode, typically given by ~ i/mVg. In the opposite case, the CSI becomes the
dominant instability of the flowing state. The crossover relative velocity between
the two instabilities is evaluated as Vg ~ fiy/g12/8 — 1/mé& [60].
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Fig. 13.5 Nonlinear dynamics of Kelvin—Helmholtz instability in phase-separated two-component
BECs with a relative velocity Vg = V| — V5 > Vxg. The numerical simulation of the GP equation
was performed with a period L = 64£ along the x-axis and the Neumann boundary condition with
L = 32¢ in the y-direction, where & is the healing length. The unit of time is &/c, where c is
the sound velocity. The initial state (a) is lI/iO with a small random seed to trigger the instability.
(Upper panels) The height and color show the vorticity wesr = (V X V), and the density differ-
ence n| — ny between the two condensates, respectively. (Lower panels) Two-dimensional plots of
ny — ny. [Takeuchi et al.: Phys. Rev. B 81, 094517 (2010), reproduced with permission. Copyright
2010 by the American Physical Society]

13.4 Conclusions

Since the realization of BEC in a dilute atomic gas in 1995, most studies on its
QHD have been limited to vortex lattices under rotation or motion of a few vortices.
However, as research on superfluid helium has shown, there are many other inter-
esting problems on QHD in atomic BECs, some of which have been discussed in
this paper. Important topics are quantum hydrodynamic instability and QT beyond
this instability. Unlike classical fluid dynamics, most QHD phenomena can be re-
duced to the motion of quantized vortices. For example, for QT in atomic BECs,
the cascade process of quantized vortices, which transfer energy from large to small
scales, can be visualized. The observation of Kolmogorov spectra could confirm
the cascade process in wavenumber space. The observation of QT in atomic BECs
enables us to combine cascade processes in real and wavenumber spaces. Such in-
vestigations are almost impossible in superfluid helium and in classical turbulence.
We anticipate that this research field will develop rapidly in the near future.
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Chapter 14

Characteristics and Perspectives of Quantum
Turbulence in Atomic Bose-Einstein
Condensates

V.S. Bagnato, R.F. Shiozaki, J.A. Seman, E.A.L. Henn, G. Telles, P. Tavares,
G. Roati, G. Bagnato, K.M.F. Magalhies, S.R. Muniz, and M. Caracanhas

Abstract In spite of being a phenomenon studied over centuries, turbulence re-
mains an intriguing phenomenon of nature. In the low temperature regime, turbu-
lence has been investigated in superfluid helium during the last decades. Due to the
quantum nature of superfluids, this phenomenon is named Quantum Turbulence and
it is characterized by a particular configuration of quantized vortices in the sam-
ple. Recently, this topic started to be investigated in a different kind of superfluids,
namely, trapped atomic Bose-Einstein condensates (BEC). In this text we review the
first experimental evidences of Quantum Turbulence in a BEC of 8’Rb. We describe
our most important observations and discuss possible research perspectives.

14.1 Introduction

Turbulent processes are everywhere on Earth and beyond. It is crucial to life sup-
port from microscopic scale, inside the human body, to the macroscopic scale of the
Earth’s rotating core. There are many familiar examples of turbulent processes tak-
ing place in the everyday life as they are natural phenomena occurring on airplane
flights, or on the sky’s clouds motion, forming characteristic patterns.

Despite of being commonly observed, turbulence is known to be difficult to treat
and study. The interplay from small to large scale in turbulent fields makes it difficult
to study due to the need to resolve spatial and temporal ranges over several orders of
magnitude. This often requires large experimental samples and the need to measure
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fast fluctuations on microscopic (or mesoscopic) scales. The nonlinear equations
(Navier-Stokes) of motion are difficult to handle because of the large span of scales
involved in turbulence. As a result, many terms in the equations cannot be neglected
because their contribution may change over the relevant scales.

Quantum fluids, such as superfluids, superconductors, and Bose-Einstein con-
densates, may present turbulent states that are different from classical due to long-
range quantum order, which poses constraints to their dynamics. All vorticity, in the
case of superfluids and Bose-Einstein condensates is restricted to topological de-
fects in the order parameter of the system. The resulting linear structures are named
quantized vortices because continuity in the order parameter quantizes the circu-
lating flow around each topological defect. As such, turbulence in a quantum fluid
displays a tangle of interacting quantized vortices, as first pointed by Feynman [1]
and others [2-6], that is very different from the continuous distributions of vorticity
observed in classical turbulence.

Since then many studies have investigated the distinct characteristics of this
phenomenon (for a comprehensive and complete review, please see Ref. [7]). Re-
cently the experimental realization of Bose-Einstein Condensation (BEC) in trapped
atomic samples [8—10] and its relation with superfluidity [11-13] opened up new
possibilities to investigate Quantum Turbulence (QT). A series of published papers
by M. Tsubota and collaborators [14, 15] presented a possible mechanism for induc-
ing QT in atomic superfluids. Using a model based on the Gross-Pitaevskii equation,
they have successfully derived the Kolmogorov spectrum for QT in atomic superflu-
ids, analogous to the previous observations made on superfluid “He. See Chap. 13
for details.

There are a few advantages when using BECs of trapped atoms to investigate QT.
A first clear advantage is the fact that BECs are weakly interacting systems, hence,
its theoretical description is simpler. Second, the number density is much smaller
than in liquid 4He, therefore, the vortex cores will be much larger, making their
observation easier. Finally, these systems present a larger variety of controllable
parameters such as the density, temperature, geometry and even the interatomic in-
teractions. This controllability allows a vast exploration of the phenomena.

During last years, our group have observed the first clear evidences of QT emerg-
ing in a BEC of 8’Rb atoms, produced by an external oscillating magnetic field [16].
Also, several peculiarities of QT in this system have been investigated. First, the
generation of clusters of vortices and anti-vortices when the oscillatory excitation is
introduced [17] represents an essential ingredient to reach QT. Second, effects due
to the finite size of the sample are related to the existence of a definite boundary
region in between the turbulent and non-turbulent regimes [18]. Finally, the differ-
ent levels of excitation produced in the BEC can be summarized in a diagram of
the excitation parameters [19]. This diagram shows the evolution of the number and
distribution of vortices nucleated in the condensed sample.

In the next section we give a general introduction to the phenomenon of QT
in atomic trapped BECs. In Sect. 14.3, we briefly describe our experimental setup
and present our first results on the vortex nucleation in a BEC sample. The evolution
from regular vortices to the turbulent state is explained in Sect. 14.4. We then present
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a simple model to help understanding the role of the BEC finite size in the transition
to quantum turbulence. Then, in Sect. 14.5, a very important characteristic of the
turbulent cloud is explained: the peculiar dynamics of the system when expands
freely. In this section we also present a new analysis of the turbulent state in terms
of the Reynolds number of the system. Finally, in Sect. 14.6, we discuss the current
directions of our research and introduce our future perspectives.

14.2 Turbulence in Trapped Bose-Einstein Condensates

Superfluid BECs have some important characteristics. Since BEC samples comprise
condensed and thermal fractions, these systems must be described by a two-fluid
model. BECs must also obey certain constraints imposed by quantum mechanics.
For instance, the vortices inside a condensate are quantized, with integer number
of fundamental circulation (see, for instance, Ref. [20]). There are many ways to
produce a collection of vortices in the condensate, Ref. [21] is a review on this
topic. Rotating condensates normally results in a collection of vortices presenting
the same circulation and spatially distributed forming a lattice [22], equivalent to the
Abrikosov lattice in superconductors [23, 24]. Rotating condensate is not the only
way to introduce vortices. A phase imprinting technique recently demonstrated [25]
is another alternative.

However the simple presence of vortices in the condensate does not fulfill the
conditions to obtain QT. Following the concepts introduced by R. P. Feynman, QT
is a phenomenon characterized by a spatial distribution of quantized vortices in a
tangled way. Therefore, simple rotation does not take the trapped superfluid to QT.
To generate such a tangle configuration, one can imagine the introduction of rotation
in two orthogonal axes as suggested by M. Tsubota and co-workers [14]. Another
alternative is the introduction of periodic density modulation either by trap oscilla-
tions [16] or by oscillating the s-wave scattering length near Feshbach resonances
[26]. We have applied in our system the oscillation of the trap by the introduction of
an external oscillating magnetic field [16, 27].

14.3 Generation and Proliferation of Vortices

We start with a Rb condensate whose experimental setup has been described in
details elsewhere [28]. The basic system is composed of a QUIC trap with frequen-
cies given by w, = wp and wy = wy = 9wy, with wy = 27 x 23 Hz, and produce a
condensate with about 2 x 10° atoms in the |2, 2) hyperfine state.

Superimposed to the trap coils are two extra coils as shown in Fig. 14.1. The
symmetry axis of these coils is slightly tilted with respect to the symmetry axis of
the trap itself. Through these coils runs a small sinusoidal current which causes a
combination of rotation and translation on the trap bottom. Such motions take place
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Fig. 14.1 Schematics of the (a) above and (b) side view of the coils configuration. Superimposed
to the QUIC trap coils, there are two ac-coils slightly misaligned from the Ioffe coil axis

Magnetic trapping and
| rf—evaporailvc cooling | Excitation | Waiting time | Time-of-flight | Time
5 >
| ~20's | 0-55ms | 20 ms | 15 ms |
BEC is Trapping potential  Absorption
produced is switched off imaging

Fig. 14.2 Experimental time sequence. Once in the QUIC trap, the atoms are evaporatively cooled
for 20 s to form a BEC. Then, for a time ranging from 0 to 55 ms, the ac-coils excite the sample
which, later, rests in the trap for 20 ms. Subsequently, the trap coils are turned off and the cloud
freely falls for 15 ms before an absorption image is taken

for an oscillation frequency £2 close to 207 Hz, the highest trapping frequency. Am-
plitude and time of the excitation are the main parameters controlled for the vortices
production. A typical time sequence for the experiment is presented in Fig. 14.2.
Once the Bose condensate is produced, the excitation by the oscillatory field is ap-
plied during a time interval that can range from 0 to 55 ms. After this excitation
period, there is a waiting time in the trap followed by a time-of-flight (TOF) mea-
surement using the absorption on a CCD camera.

The result of this excitation is the generation of collective modes in the con-
densate cloud. A typical sequence of TOF images is reported in Fig. 14.3. A clear
composition of dipole, quadrupole and breathing modes is present in the conden-
sate cloud. We believe that such excitations are essential to couple energy and an-
gular momentum into the cloud to further generate other excitations. Besides the
collective modes, the long axes of the condensate (after 15 ms of TOF) shows an
angular oscillation (scissors mode) due to the superfluid nature of the condensate
[13,29].

As the excitation amplitude increases we start to nucleate vortices in the cloud.
As recently reported [30], those vortices are first nucleated at the edge of the cloud
where a low density cloud of excited atoms (probably originated from the whole
excitation process) surrounds the dense condensate cloud. Figure 14.4 highlights the
vortices being nucleated at the edges. It seems that many of the nucleated vortices
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Fig. 14.3 Sequence of absorption images for different wait times showing the presence of collec-
tive modes of excitation in the sample

Fig. 14.4 Absorption image
of the cloud showing the
nucleation of vortices at the
edges

50 pm

do not survive to the interior of the cloud. In fact, in Ref. [30] we have presented
evidences that vortices and anti-vortices are all produced together, and they undergo
dynamical processes after which only few of them survive.

The final number of vortices observed in the sample is strongly dependent on
the combination of time and amplitude of excitation. Smaller amplitudes or shorter
times produce only the bending mode already discussed. To observe vortices within
the cloud, a compromise between amplitude and time is necessary. In Fig. 14.5 (ex-
tracted from Ref. [19]) we show the evolution for the average number of vortices as
a function of the amplitude of excitation for two different times (17 ms and 33 ms).
Figure 14.6 shows pictures for the observed vortices distribution. While for both
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Fig. 14.5 Average number of vortices formed as a function of the excitation amplitude for two
fixed excitation times. The behavior is roughly linear for few vortices, and shows a strong prolifer-
ation later

Fig. 14.6 Absorption images
of the cloud showing different
number of vortices formed
within the sample
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times, the number strongly increases with the amplitude, longer excitation times
take the system to higher number of vortices for a given amplitude. The strong
proliferation for the number of vortices soon starts to cover the full sample with
dark spots observed in the probe laser description. The peculiar way we excite the
sample, through oscillations, results in vortex nucleation in different directions. We
believe that this technique is similar to the combination of rotations proposed by
Kobayashi and Tsubota [14]. The production of vortex filaments along different di-
rections builds up the necessary ingredients for the evolution of the configuration of
vortices to a tangle configuration characterizing QT in the system.
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14.4 Observation of Tangled Vortex Configuration

From the graphic of Fig. 14.5, one can imagine that as the energy is pumped into
the system part of it is coupled to the superfluid resulting in the vortex formation.
Following Ref. [20] the energy of each vortex line within the cloud is given by:

R
Evory=——1InZ, (14.1)
mly &

where [y is the typical harmonic oscillator length for the trap (lp =,/ %), Who =

(wxwya)z)l/ 3 &= \/8;7% is the healing length, n is the peak atomic density, and a;
is the s-wave scattering length. In writing (14.1), we have considered that the vortex
line crosses the cloud diametrically.

When the cloud volume is saturated with vortex lines, the energy to create addi-
tional vortices starts to be very high and a turn over in the evolution of the vortices
number with increasing amplitude should appear. However a change in overall cloud
behavior is observed. Although the additional coupled energy to the cloud is not
enough to generate more vortices, it is certainly sufficient to accelerate the dynam-
ics, promoting a fast movement of the vortex lines. The final result is the production
of a tangled configuration of vortices, characterizing the turbulent state. Considering
the total rate of pumped energy into the cloud as Rpymp, the energy coupled to the

cloud in the form of vortices can be written as

Epump = anump(t — o), (14.2)

where 7 is the time of excitation, n is the fraction of energy converted into rota-
tion. The time #( corresponds to the mean time to form the first vortex. Elapsed the
excitation time ¢, the number of vortices accumulated must be N,,;. In a first ap-
proximation where annihilations of vortex-anti-vortex pairs are not considered, one
can write:

anump(t —10) = NvortEvort (14.3)
or
R
Nors = L2 (1 — 19). (14.4)
Eyvort

This shall be the number of vortices in the atomic cloud for an excitation time ¢.
A graphic showing the evolution of the observed number of vortices in the cloud
as a function of time for different energy pump rates (here produced using different
amplitudes of excitation) is presented in Fig. 14.7.

Considering the simple model represented by (14.2) and (14.4) we find that in this
experimental conditions fy &~ 15 ms. Times shorter than that shall be very inefficient
to produce vortices. Considering that the saturation number of vortices in the cloud
must be on the order of N,,; = [p/&, a limiting relation between the pumped energy
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Fig. 14.7 Average number of vortices formed as a function of the excitation time for two fixed
excitation amplitudes. A strong proliferation of vortices takes place after a certain excitation time

and the excitation time, before the occurrence of turbulence can be obtained

lOEvurt 1
§n t—1o

Ryump = (14.5)

And since Rp,mp is proportional to the amplitude of excitation (for a fixed exci-
tation frequency), the relation between amplitude and time of excitation to generate
QT must be on the type:

A(t)(t —t)=C. (14.6)

The existence of this limiting condition to generate turbulence is a consequence
of the finite size of the atomic superfluid [18]. QT develops for the atomic super-
fluid densely filled with vortices. After this point the energy pumped into the system
transforms not only into the formation of vortices but mostly into their motion, with
the evolution to a tangle configuration. Such configuration is believed to produce re-
connections and the formation of many oscillations into the vortex filaments. Sooner
the rotation field is all distributed in the sample. At this point the absorption image
becomes hazy, which can be considered as a first manifestation of the presence of
turbulence. Figure 14.8 shows a typical transition between a regular cloud, prolifer-
ation and QT.

The distributed vortices in our sample do not reveal any regular pattern as re-
ported in other experiments [22]. We strongly believe that this a consequence of the
excitation process generating vortex and anti-vortex all together, and covering many
spatial directions.

As stated before, the generation of QT is a consequence of a compromise be-
tween amplitude and time of the excitation. The diagram of Fig. 14.9 shows this
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Fig. 14.8 Absorption images showing the transition from a regular BEC with no vortices, to one
vortex, to many vortices, and to a turbulent state

240

220 - (¢) Turbulence

200

180 |-
=y F (o] (o] o (o]
E 160 |
_i-: L
G “of
E ol
" L
< W0 O O o o
;g 80
(=¥ L
E e, 0 o o o
Q: i \

L

3 L] ® °
20 (a) No vortices (bending only)
] " 1 n 1 1 1 n 1 " 1 1 1 1 1 L 1 n 1 L 1 1 1 "
0 5 10 15 20 25 30 35 40 45 50 55 60

Time of excitation (ms)

Fig. 14.9 Diagram of the amplitude x time of excitation showing three domains: (a) no vortices,
only bending is observed; (b) well defined vortices are formed; and (c) QT takes place. Figures on
the top show typical observations for each regime, and grey guide lines on the diagram separate
the domains

compromise through the existence of domains in the amplitude x time space. This
diagram was presented before in Ref. [19] and for the simplicity we have omitted
the granulation domain of the diagram which will not be discussed in this paper.
Three regimes presented in the diagram of Fig. 14.9 are useful in the understanding
of the QT formation in a trapped atomic superfluid and the routes to achieve such
regime.
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As mentioned before, after reaching QT, increasing even further the excitation
time and/or amplitude takes the sample to a distribution where pieces of condensate
are spread in space characterizing a configuration named as granulation. There are
many questions and many observations related to this regime which we are still
considering and must be reported after we reach a conclusive understanding.

14.5 Characteristics Observed on the Turbulent Cloud

One of the fingerprints of QT in a BEC is the change of the expansion behavior dur-
ing time-of-flight. Quantum degenerate Bose gas when confined by an anisotropic
potential will present asymmetric velocity distribution. An excess of kinetic energy
is liberated on the most confined direction causing an inversion of the cloud aspect
ratio after a certain time of flight. This effect was well investigated by many authors
(see Ref. [20]). Typically, for a cigar type condensate cloud, the aspect ratio f{j 8))
grows with time-of-flight, reaching an asymptotic value which has a strong depen-
dence with the initial aspect ratio for the in situ cloud. For a typical elongated cloud,
there will be a faster expansion along the most compressed direction, and vice-versa,
which causes an aspect ratio inversion. In contrast, a cloud with only thermal atoms
liberates its energy during expansion, in a way that the asymptotic behavior tends to
a unitary value for the aspect ratio. The thermal cloud always ends its expansion in
an isotropic way.

A quite different behavior is observed for a turbulent cloud during free expan-
sion. The aspect ratio is observed to stay constant from the beginning to the end
of the expansion. This complete suppression of the aspect ratio change was well
reported in Ref. [16]. We refer to this as a self-similar expansion during the time-
of-flight for the turbulent cloud [27]. Similarly to the fact that the inversion ratio
is a macroscopic evidence for the condensate, the self-similar expansion seems to
be a good evidence for the presence of random distribution of vortex lines within
the sample, fact that is associated with QT. Figure 14.10 from Ref. [16] shows the
expansion behavior comparing the evolution of the aspect ratio for a thermal cloud,
the pure condensate and the turbulent condensate. To explain this observation, we
have recently produced a theoretical analysis where the effect of vorticity in the
behavior of free expansion was investigated using a hydrodynamic approach [31]
in a rotational version. Due to the presence of vortices, we considered a rotational
component in the cloud velocity field, such that |V x v| = 2£2, where 2 = % The
vortex density, n,, is derived considering a uniform distribution of a large number
of equally oriented vortices [20]. That leads to the modified Euler equation:

dv 1
m-+ V(Emvz + Virap + gn(r, z)) =mvxV XV, (14.7)
with g = MZJ while a; is the s-wave scattering length. Together with the continu-
ity equation, the free expansion of the cloud was calculated starting with an Ansatz
for the density n(r, t) equivalent to the TF profile.
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8 Thermal cloud
® Regular BEC
4  Turbulent BEC

Aspect ratio

Expansion time {ms)

Fig. 14.10 Aspect ratio as a function of expansion time for a thermal cloud, a regular BEC and
a turbulent BEC. The thermal cloud aspect ratio tends to 1, the regular BEC expansion shows an
aspect ratio inversion, and the turbulent BEC aspect ratio does not change during expansion. The
lines are guides to the eye

We have demonstrated that the extra kinetic contribution due to the vorticity not
only produces a larger initial cloud, but also introduces an extra acceleration for the
expansion in the plane perpendicular to £2. For large values of §2, this term becomes
dominant and the presence of angular momenta in many directions promotes an
expansion with insignificant time variation of the aspect ratio. Even being a “toy
model” calculation, it provides the main physical insights towards the understanding
of the experimental behavior.

As described previously, the oscillatory excitation of the condensate is always
accompanied by the excitation of collective modes including the dipole mode. In
this mode the condensate cloud as a whole travels inside the potential at the excita-
tion frequency. One could think that such a motion is “like” a flow of the superfluid.
Considering that this is truth, one can make a Reynolds type of analysis. For a clas-
sical fluid, flowing with velocity v under the influence of a lateral confinement of
dimension D, the Reynolds number is defined as R, = Dv ith n the viscosity. This
non dimensional quantity indicates if the flow will remain as laminar or if the tur-
bulence will take place. Conventionally, for R, &~ 1000 turbulence starts to appear.

For superfluids, the viscosity is replaced by the quantum of circulation #/m, and
the quantum Reynolds number is given by ReQ = hD/—; [32]. For the oscillating cloud
as indicated in Fig. 14.11, the condensate is always embedded in a thermal cloud,
since our experiment is done at finite temperature. Considering D = 2R7F, i.e., the
flow dimension as twice the Thomas-Fermi radius, and v = wA, where A is the
oscillatory amplitude and w the frequency, we can evaluate ReQ for many different
amplitudes of oscillation, which corresponds to different velocities for the cloud
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Fig. 14.11 Absorption image
of a cloud showing a BEC
embedded in a thermal cloud < >

B
50 um

center of mass. The quantification of ReQ for many excitation conditions shows that
for ReQ < 0.5 there was no turbulence. On the other hand, for the cases where tur-
bulence was observed, ReQ > 2. In the region going from 0.5 < REQ < 2, the exper-
imental observations shows that in those conditions of oscillation sometimes QT is
observed and sometimes not.

In Ref. [32], G.E. Volovik proposes an interesting diagram relating ReQ with a
frictional parameter (g). There, the transition between QT and laminar flow, for
q <1 (low frictional parameter for the sample), takes place for REQ ~ 1. At this
point we cannot present yet all the arguments that guarantee the validity of taking the
oscillatory motion of the superfluid sample in the potential as a flow experiment. But
it certainly produce numbers that are not far from the existing theoretical predictions
for flow experiments with “*He-superfluid.

14.6 Present Stage of Investigation

In classical viscous fluids, the change in the viscosity distribution during the devel-
opment of turbulence represents an intrinsic problem to characterize the turbulent
flow. Therefore it is more convenient to determine statistical laws instead of the dy-
namics of individual variables. In a turbulent regime fully developed in its steady
state, the injected energy is transferred to smaller scales without dissipation and the
energy spectrum is given by:

E(k) = Ce* k313, (14.8)

known as Kolmogorov Law [33, 34]. The energy spectrum is defined as E (k), such
that £ = f dKE(Kk), where k is the wavenumber originated from the Fourier trans-
form of the velocity field. Kolmogorov law is well verified in classical turbulence. In
QT, it was first experimentally demonstrated in “He [35]. Many other experiments
follow this one and much theoretical work was developed in order to understand
the similarities between the energy spectrum of classical and quantum turbulence
[7, 36-39]. In the case of atomic BECs, a work conducted by M. Tsubota and co-
workers [14, 15] has demonstrated theoretically that QT can be developed in a BEC,
and the originated energy spectrum is related to the Kolmogorov law. The research
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in this direction is quite important since it may allow us to directly observe the
relation between real-space and reciprocal-space.

To obtain the energy spectrum of our experimental turbulent samples, we are per-
forming measurements and calculations using time-of-flight images of the turbulent
cloud obtained by absorption after time-of-flight. A normal cloud in time-of-flight is

actually a momentum distribution. Considering n(x, y, z) as the density profile, after

: : hk hk hk, C . .
a time-of-flight 7, x = T,y = Tyt and z = T So the distribution n(x, y, z)

turns into o (ky, ky, k;) which can be used to determine 7 (k) such that £ = %n(k).
The only problem is that the absorption image provide us with ['n(x, y, z)dx rather
than n(x, y, 7). We are therefore processing our images in order to obtain informa-
tion about the energy spectrum. The preliminary results seem very promising and
may allow us to investigate n (k) which, according to the Kolmogorov discussion, is
expected to be proportional to k3.
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Chapter 15
Spatial and Temporal Coherence
of a Bose-Condensed Gas

Yvan Castin and Alice Sinatra

Abstract The central problem of this chapter is temporal coherence of a three-
dimensional spatially homogeneous Bose-condensed gas, initially prepared at finite
temperature and then evolving as an isolated interacting system. A first theoretical
tool is a number-conserving Bogoliubov approach that allows to describe the system
as a weakly interacting gas of quasi-particles. This approach naturally introduces the
phase operator of the condensate: a central actor since loss of temporal coherence is
governed by the spreading of the condensate phase-change. A second tool is the set
of kinetic equations describing the Beliaev-Landau processes for the quasi-particles.
We find that in general the variance of the condensate phase-change at long times ¢
is the sum of a ballistic term o > and a diffusive term oc ¢ with temperature and
interaction dependent coefficients. In the thermodynamic limit, the diffusion coeffi-
cient scales as the inverse of the system volume. The coefficient of 72 scales as the
inverse volume squared times the variance of the energy of the system in the initial
state and can also be obtained by a quantum ergodic theory (the so-called eigenstate
thermalization hypothesis).

15.1 Description of the Problem

We consider a single-spin state Bose gas prepared in equilibrium. To extract the
relevant physics, we avoid the complication of harmonic trapping present in real
experiments [1-3] and we consider a spatially homogeneous system in a paral-
lelepipedic quantization volume V with periodic boundary conditions. In all the
chapter except Sect. 15.4.3 the total particle number is fixed and equal to N. In
all the chapter except in Sect. 15.3.2 the system is three-dimensional. We restrict
to the deeply Bose-condensed regime where the non-condensed fraction is small.
This implies that the temperature 7 is much lower than the critical temperature 7,
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and that the system is weakly interacting. Interactions between the cold bosons are
characterized by the s-wave scattering length a, that we take positive for repulsive
interactions. The microscopic details of the interaction potential are irrelevant here
since the interaction range is much smaller than the typical de Broglie wavelength
of the particles. The weakly interacting regime, in the considered low temperature
regime, is then defined by (pa®)!/? « 1 where p = N/ V is the mean density.

We assume that the gas is prepared in thermal equilibrium at negative times with
some unspecified experimental procedure generally implying a coupling with the
outer world. For clarity we consider first that the system is prepared either in the
canonical or the microcanonical ensemble, then we apply our theory to a more gen-
eral ensemble: a statistical mixture of microcanonical ensembles with weak relative
energy fluctuations. After the preparation phase, at positive times, the system is
supposed to be fotally isolated in its evolution. This implies that the total particle
number N and the total energy E are exactly conserved in time evolution. This
assumption is realistic for ultra-cold atom experiments: the atoms are hold in con-
servative immaterial traps and the three-body loss rates are very low in the weak
density limit. As we shall see, this has important consequences for the temporal
coherence of the gas.

A first property that we discuss in this chapter is the spatial coherence of the gas.
This is determined by the first-order coherence function

g1(r) = (¥ ()9 (0) (15.1)

where the bosonic field operator ¥ (r) annihilates a particle in position r. The g
function has been measured using atomic interferometric techniques [4]. In the ther-
modynamic limit, g (r) tends to the condensate density pp > 0 at large distances r.
One refers to this property as long-range order.

A second, more subtle property, that we discuss in detail is the temporal coher-
ence of the gas. We define the temporal coherence function of the condensate as

(agao(0)) (15.2)

where ag is the annihilation operator in the condensate mode that is the plane wave
with k = 0. Contrarily to the case of g1, here the operators appear in the Heisen-
berg picture at different times. The temporal coherence function of the condensate
is measurable (as we argue in Sect. 15.4.1) but it was not measured yet. The clos-
est analog that has been measured is the relative coherence of two condensates in
different external or internal states at equal times [5, 6]. The coherence time of the
condensate is simply the half width of the temporal coherence function. Remarkably
at zero temperature it was shown that the coherence function does not decay at long
times, it rather oscillates [7]

(ag (1)ao(0)) ~ (ig)e T =01/n (15.3)

where (7g) is the mean number of particles in the condensate and u(T = 0) is the
ground state chemical potential of the gas. This implies an infinite coherence time.
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At finite temperature however one expects a finite coherence time for a finite size
system. We find that in the thermodynamic limit this coherence time diverges with a
scaling with the system volume V that depends on the statistical ensemble in which
the system is prepared.

This chapter is based on our works [8—10]." It is organized as follows. We give
a pedagogical presentation of the number conserving Bogoliubov theory, a central
tool for our problem, in Sect. 15.2. We apply this theory to the spatial coherence in
Sect. 15.3. The more involved issue of temporal coherence is treated in Sect. 15.4.
In Sect. 15.4.1 we discuss how to measure (&g (1)ao(0)) with cold atoms. General
considerations are given in 15.4.2, showing the central role of condensate phase-
change spreading, that is then studied for different initial states of the gas. First for a
single-mode model in 15.4.3 and for the canonical ensemble Sect. 15.4.4, where one
of the conserved quantities (the particle number N or the energy E) has fluctuations
in the initial state. Then for the microcanonical ensemble Sect. 15.4.5, where none of
these conserved quantities fluctuates. Finally in the already mentioned more general
statistical ensemble within a unified theoretical framework in Sect. 15.4.6.

15.2 Reminder of Bogoliubov Theory

The central result of Bogoliubov theory [11] is that our system can be described
as an ensemble of weakly interacting quasi-particles. The necessity to go from a
particle to a quasi-particle picture to obtain weakly interacting objects is due to the
presence of the condensate that provides a large bosonic enhancement of particle
scattering processes in and out of the condensate mode. In the initial work of Bo-
goliubov the quasi-particles are non-interacting. We will need to include the inter-
actions among quasi-particles that give them a finite lifetime through the so-called
Beliaev-Landau mechanism [7, 12]. Here we present a powerful formulation of Bo-
goliubov ideas introducing the phase operator 6 for the condensate mode [13]: in
addition to making the theory number conserving [14-16], 6 will play a crucial role
for the study of temporal coherence.

15.2.1 Lattice Model Hamiltonian

Commonly a zero range delta potential Vi, = g§(r; — ry) is used to model particle
interactions with an effective coupling constant

_ 47 h%a

m

8 (15.4)

IParticle losses are not discussed in this chapter. Their effect on temporal coherence is weak at
relevant times as explicitly shown in [10] for one-body losses in the canonical ensemble.
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(here the s-wave scattering length is a > 0 and m is the mass of a particle). This
however does not lead to a mathematically well defined Hamiltonian problem, even
for two particles. As explained in [17] a convenient way to regularize the theory
while keeping the simplicity of contact interactions is to discretize the coordinate
space on a cubic lattice with lattice spacing b. This automatically introduces a cut-
off in momentum space, since single particle wave vectors are restricted to the first
Brillouin zone (FBZ) of the lattice [— 7 —)3 Then

8
Vio = go rb;z (15.5)
where now § is a discrete Kronecker §. The bare coupling constant gy is adjusted to
reproduce the true s-wave scattering length on the lattice [17],

8

80 =

where C = 2.442749 .. . is a numerical constant.” The Bogoliubov method is appli-
cable when the zero energy scattering problem is treatable in the Born regime [18]
which requires here that a < b. In this limit gg ~ g. For the lattice model to well
describe continuous space physics the lattice spacing b should be smaller than the
macroscopic length scales £ and A of the gas. The healing length £ is defined as

hZ
— = 15.7
ome2 P8 (15.7)
and the thermal de Broglie wavelength as
,  2mh?
A= (15.8)
ka T

Note that in the weakly interacting and degenerate limit one has £ > a and A > a.
The system Hamiltonian in second quantized form is

A

ﬁzzzf[&*howg 7 1//'1/?1&} (15.9)

where h is the one-body Hamiltonian reduced here to the kinetic energy term, hg =
—%Ar, with a discrete Laplacian reproducing the free wave dispersion relation

Ei = h?k*/2m when applied over a plane wave. The bosonic field operator &(r)
obeys the discrete commutation relation

[V @), ¥ ()] = — (15.10)

. — 3
2This results from the formula g =g 1= Jerz % T
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15.2.2 Bogoliubov Expansion of the Hamiltonian

We split the field operator into the condensate field and the non-condensed field
Y (r) orthogonal to the condensate wave function ¢ (r):

P (1) = ¢ (r)ao + ¥1 (1) (15.11)

where dg is the annihilation operator of a particle in the condensate mode. For the
homogeneous system that we consider, ¢ (r) = 1/V!/2. The main idea of the Bo-
goliubov approach is to use the fact that the non-condensed field is much smaller
than the condensate field to expand the Hamiltonian in powers of 1/} L (r). This be-
comes truly operational if one succeeds in eliminating the amplitude ag of the field
on the condensate mode. For the modulus of ay we can use the identity

~ A

no=N—N| (15.12)

with N the total particle number operator, 79 = &g a4 the condensate particle number

operator and N, = dor b 1}1 V1 the non-condensed particle number operator. The
elimination of the phase of dg at the quantum level is more subtle, and it was not
performed in the original work of Bogoliubov. We introduce the modulus-phase
representation [13]

ag = enl/* (15.13)
with the hermitian phase operator 6, conjugate to the condensate particle number:
[Ag, 0] =i (15.14)

It is known that the introduction of a phase operator in quantum mechanics is a
delicate matter [19]. As we explain below, our formulation is not exact but it is
extremely accurate in the present case of a highly populated condensate mode. As
it appears from (15.14), there is a formal analogy with the position operator x and
the momentum operator p of a fictitious particle in one spatial dimension. For the
fictitious particle p is the generator of spatial translations so that

(%, pl=ih = ?/Mx)=|x—1)
N A b
[0,0]=i == e"|ng:¢)=Ino—1:¢)
where |x) represents the fictitious particle localized in position x and |ng : ¢) is the
Fock state with ng particles in the condensate mode. As a consequence the represen-
tation (15.13) of dg has the correct matrix elements in the Fock basis. The operator

exp(i 6) is a respectable unitary operator. .. except when the condensate mode is
empty where one gets the meaningless result:

¢900: ) 2 |=1: ) (15.15)
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This is in practice not an issue if, in the physical state of the system, the probability
for the condensate mode to be empty is negligible. For a finite size system the prob-
ability distribution of ng was calculated using the Bogoliubov approach and even an
exact numerical approach [20, 21]. In the thermodynamic limit we expect that the
probability of having an empty condensate vanishes exponentially with the system
sizeat T < T,.

In order to eliminate the condensate phase we introduce the number conserving
operator [14, 15]

Ay =e 00 (r) (15.16)

The success of the elimination procedure is guaranteed since the Hamiltonian con-
serves the particle number: Injecting the splitting of the field (15.11) in the Hamil-
tonian and expanding, generates a series of terms in which dg appears either with
&g or with Iﬂ_ (r). Expanding H to second order in @@ 1 and using (15.12) we obtain

the Bogoliubov Hamiltonian

2

A~ goN ~ ~ l ~ l ~ AL A
Hyop ==+ +Zb3[AT(h0—uo)A+uo<§A2+§AT2+2A‘A)}
r

(15.17)

We have assumed that the total particle number is fixed and equal to N and we
have replaced N by N. Still, one obtains a grand canonical ensemble for the non-
condensed modes, with a chemical potential ;o = gop. The condensate indeed acts
as a reservoir of particles for the non-condensed modes. The expression o = gop
is in fact the zeroth order approximation (in the non-condensed fraction) to the gas
chemical potential. In what follows we shall take

Ho = gp (15.18)

which is consistent with the Bogoliubov theory at this order. The terms ATA in
(15.17) represent elastic interactions between the condensate and the non-condensed
particles. They also appear in the simple Hartree-Fock theory. The terms A2 and
hermitian conjugate represent inelastic interactions where two condensate particles
collide and are both scattered into non-condensed modes with opposite momenta.
They are absent in the Hartree-Fock theory and they play a crucial role in explaining
the superfluidity of the gas.

15.2.3 An Ideal Gas of Quasi-particles

To extract the physics contained in the Bogoliubov Hamiltonian one has to identify
the eigenmodes of the system putting the quadratic Hamiltonian in a normal form.
We present here a brief overview, a more detailed discussion was given in [16, 22].
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In the Heisenberg picture the equat10ns of motion of the field operators are linear,
provided one collects Aand A into a single unknown:

. A _ (ho+ 1o o A _ A
e (/1*) _< —Ko —(%—i—uo))( AT >_$( AT > (15.19)

The matrix % is not hermitian for the usual scalar product, but it is “hermitian”
for a modified scalar product of signature (1, —1). It has moreover a symmetry
property ensuring that its eigenvalues come in pairs +&.

We now expand the field operators over the eigenvectors of .Z:

A(I‘) B eik~r Uy e—ik r Vi <
(/i"'(r))_kzﬂvl/z vi )ty (g ) 01520

with U kz — sz =1 (this is the normalization condition for the modified scalar prod-
uct). An explicit calculation gives

U+ Vi =

1 ( R2k2/2m )1/4
= (15.21)

Uc— Vi 20+ h2k2/2m

The coefficients by and l;f( obey the usual bosonic commutation relations e.g.
[I;k,l;i/] = Ok k- Injecting the modal decomposition (15.20) in the Bogoliubov
Hamiltonian (15.17) one obtains a Hamiltonian of non-interacting bosons called
quasi-particles:

R2k2 [ h2k2 172

A A .

Hpog = Eo(N) + E ekb by withgp = | — | —— + 2o (15.22)
o 2m \ 2m

The quantity Eo(N) is the Bogoliubov approximation of the ground state energy. It
reads

Eo(N) =

(15.23)
K#0

In the continuous space limit b/§ — 0, the sum over k has an ultraviolet (k — 00)
divergence. If one replaces g by its expression (15.6) expanded to first order in
a/b, go ~ g(1 + Ca/b), this exactly compensates the ultraviolet divergence and
one recovers the Lee-Huang-Yang result

gN? 128 112
Eo(N) == [1+ 517 (pa’) (15.24)

The Bogoliubov spectrum ¢j starts linearly at low k: the quasi-particles are then
phonons. At high k one recovers the free particle spectrum shifted upwards by po:
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quasi-particles in this limit are just particles. At thermal equilibrium in the canonical
ensemble for the original system the Bogoliubov density operator is

e PHBos  with B=1/kpT (15.25)

where Zpog is the partition function in the Bogoliubov approximation. This den-
sity operator in the canonical ensemble for particles, corresponds in fact to a grand
canonical ensemble, with zero chemical potential, for the quasi-particles whose
number is not conserved.

15.3 Spatial Coherence

In this section we discuss the spatial coherence properties of a weakly interacting
Bose-condensed gas, using the Bogoliubov theory. As expected one finds long range
order in the thermodynamic limit. To complete the discussion we briefly address the
case of a low-dimensional system where long range order is in general lost (except
for the 2D gas at zero temperature) but where the ideas of the Bogoliubov method
can be adapted for quasi-condensates [17, 23].

15.3.1 Non-condensed Fraction and g, Function

In a spatially homogeneous gas, the non-condensed fraction is the ratio of the non-
condensed density (AT A) and the total density p. Using the modal decomposition
(15.20) and the thermal equilibrium state (15.25), one obtains in the thermodynamic
limit in 3D:

(N (ATA) 1 [ &Pk JUR+VE .,
== el (1520

This integral has no ultraviolet (k — 00) divergence since sz = O(1/k%). One can
thus take the continuous space limit » — 0 and integrate over the whole Fourier
space. The integral has no infrared (k — 0) divergence either, since Uk2, V,f =
O(1/k). In order for the Bogoliubov theory to be applicable, the non-condensed
fraction should be small. From the result (15.26) one can check that this is indeed
the case for the degenerate pA> > 1 and weakly interacting (pa®)!/? « 1 regime.

The first-order coherence function (15.1) in the thermodynamic limit is given in
the Bogoliubov theory by

3 2 2
B d3k Uz+v,
glog(r)zp—/—(zn)S(l—cosk-r)[ieggk_Ii + V2 (15.27)
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where we used the exact relation (&g 1/A/ 1) =0. In the large r limit, the contribution
of the oscillating term cosk - r vanishes and g tends to the condensate density. This
implies that spatial coherence extends over the whole system size.

15.3.2 In Low Dimensions

In a straightforward generalization of (15.26) to low dimensions, the non-condensed
fraction is infrared divergent in 2D for T > 0, and in 1D for all T: there is no Bose-
Einstein condensate in the thermodynamic limit in agreement with the Mermin-
Wagner-Hohenberg theorem [24, 25]. Nevertheless, in the weakly interacting and
degenerate regime there are weak density fluctuations and weak phase gradients.
This is the so called quasi-condensate regime [23, 26]. The main ideas of the Bo-
goliubov approach can still be applied after the introduction of a modulus-phase
representation of the field operator 1& in each lattice site [27]:

J(@) =™ /p(r) (15.28)

where ﬁ(r)bd and 0 (r) are conjugate variables similarly to (15.14) and d is the
spatial dimension. As we discussed in Sect. 15.2.2 and in [17], the modulus-phase
representation of the annihilation operator in a given field mode is accurate if this
mode has a negligible probability to be empty. This in particular requires that the
mean number of particles per lattice site is large, pb? >> 1. In the weakly interacting
p&9 > 1 and degenerate pA9¢ >> 1 regime, one can adjust b to satisfy this condition
while keeping b < &, A so as to well reproduce the continuous space physics. In this
regime one also finds that the probability distribution of the number of particles on
a given lattice site is strongly peaked around the mean value pb? >> 1, with a width
much smaller than the mean value, which legitimates the representation (15.28).

If one blindly applies the plain Bogoliubov result (15.27) in the absence of a
condensate,” one finds that the first-order coherence function g?og (r) > —oo atin-
finity, logarithmically with r in 2D (T > 0) and in 1D (T = 0), and even linearly

in r in 1D at T > 0. One may believe at this stage that g?og(r) is simply mean-
ingless in those cases. The extension of the Bogoliubov theory to quasi-condensates
however produces the remarkable result [27]:

g 1}
0

e lm=p exp[ (15.29)

The quasi-condensate first-order coherence function g?c(r) tends to zero for r —
oo as a power law in 2D (T > 0) and in 1D (T = 0), and exponentially for 7 > 0
in 1D, as expected [23]. The gas has then a finite coherence length /. (e.g. the

30ne may wonder in 2D about the value of o = gop, since go logarithmically depends on the
lattice spacing b [27], and dimensionality reasons prevent from forming a coupling constant g
(such that gp is an energy) from the quantities 2, m and a, where a is now the 2D scattering length,
given in [26, 28]. According to [27] one simply has to take for j1o the gas chemical potential (7).
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half-width of g1) much larger than £ or A in the weakly interacting and degenerate
regime. Over distances r < [, phase fluctuations are small, and the system gives
the illusion of being a condensate: one can linearize the exponential in (15.29),
to obtain g?c (r) ~ gllsog (r). The phase and density fluctuation properties of the
quasi-condensates at nonzero temperature have been studied experimentally with
cold atoms in 1D [29-31] and in 2D [32, 33] and confirm the theoretical picture.

15.4 Temporal Coherence

In this section we discuss the temporal coherence properties of a finite size Bose-
condensed gas, defined by the coherence function (&g (t)ap(0)) already introduced
in (15.2). Although, strictly speaking, this coherence function was not measured
yet with cold atoms, we argue in Sect. 15.4.1 that it is in principle measurable. In
Sect. 15.4.2 we show that the condensate coherence function (15.2) can be related to
the condensate phase-change during the time interval ¢. The loss of temporal coher-
ence is thus due to the spreading in time of this phase-change, which is the quantity
that we actually calculate. Whenever one of the conserved quantities (total particle
number N or total energy E) fluctuates in the initial state from one realization to the
other, the phase-change spreads ballistically. Once the effect of fluctuations of N is
understood (Sect. 15.4.3), the more involved effect of energy fluctuations for fixed
N can be understood by analogy. The resulting guess for the phase-change spread-
ing can be justified within the quantum ergodic theory (Sect. 15.4.4). The only case
in which pure phase diffusion is found is when the conserved quantities N and E are
fixed, that is in the microcanonical ensemble (Sect. 15.4.5). For fixed N and a gen-
eral statistical ensemble for energy fluctuations, we finally give in Sect. 15.4.6 the
expression for the variance of the phase-change in the long time limit, that includes
both a ballistic term and a diffusive term.

15.4.1 How to Measure the Temporal Coherence Function

We give here an idea of how to measure the condensate temporal coherence function
(Ezg (t)ap(0)) in a cold atom experiment [10]. The scheme uses two long-lived atomic
internal states |a) and |b) and it is a Ramsey experiment as in [5], with the notable
difference that the pulses are arbitrarily weak instead of being /2 pulses.

The Bose-condensed gas is prepared in equilibrium in the internal state |a) and
the state |b) is initially empty. At time zero one applies a very weak electromagnetic
pulse, of negligible duration, coherently coupling the two internal states. After the
pulse, the system evolves during a time ¢ in presence of interactions only among
atoms in |a): we assume no interactions between a and b components* and neg-

4This can be realized experimentally either using a Feshbach resonance [34] or spatially separating
the two components [35].
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ligible interactions within the b component due to the very weak density in that
component. At time ¢ one applies a second pulse of the same amplitude, and one
measures the particle number in state |b) in the plane wave k = 0.

The scheme can be formalized as follows. The first pulse, at # = 0, coherently
mixes the two bosonic fields x@a and tﬁb with a real amplitude 7 so that

Va(r, 07) = /1= 02 (r.07) + nifp (r, 07) (15.30)
U (r, 07) = /1= 24 (r,07) — nifa(r,07) (15.31)

In between time 0T and time ¢~ the two fields evolve independently. Field Va
evolves in presence of kinetic and interaction terms as in (15.9). Field v, evolves
with kinetic and internal energy terms so that its amplitude on the k = 0 mode obeys

bo(t7) = € hy(0T) (15.32)

where § is the detuning between the electromagnetic field and the a — b atomic tran-
sition (the calculation is performed in the rotating frame). The second pulse at time
¢ mixes again the two fields with the same mixing amplitudes as in (15.30), (15.31).
After the second pulse one measures Npo(f) = ((l;gl;o)(ﬁ)). Using the mixing rela-
tions and (15.32) one expresses 50 (tT) as a function of Eo (07), ap(07) and ap(t ™).
Since the initial state for component b is the vacuum, the contribution of 50(0’)
vanishes and one obtains the exact relation:

+ 1 =n?[e®{af(r)ao(07)), e + e ]} (15.33)
that we expand for vanishing 7:
Nio(t) = 20*{ (o) + Re[e"® (g (1)a0(0))]} + O (i) (15.34)

In particular, the subscript (...)puse On the expectation values, indicating that they
are taken for a system having experienced the first pulse, was removed.> The desired
correlation function (&S (t)ap(0)) can be extracted from the contrast of the fringes
obtained by varying the electromagnetic field frequency. The signal Npo () itself is
small (it is proportional to 1?) but the contrast of the fringes is independent of 1 in
the small 5 limit, and it starts at unity at t = 0.

5The expectation values (.. Jputse differ from the original ones (...) in the absence of pulse by

0(n?): To first order in 7, the perturbation of 1/70 due to the pulse is linear in 1&;, (07) and has a
zero contribution to the expectation values since component b is initially in vacuum.
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15.4.2 General Considerations About (a0 (t)ap(0))

15.4.2.1 Phase-Change Spreading

Here we go through a sequence of transformations that relates the temporal co-
herence function (&g(t)&o(O)) to the variance of the condensate phase-change
é(t) — é(O). We use the modulus-phase representation (15.13) of the annihilation
operator dg. Since the non-condensed fraction is very small, we simply neglect the
fluctuations of the modulus of dg i.e. we replace 719 with its mean value in (15.13).
We then obtain®

(63 (a0 (0)) = (Rg) (e~ 1000 (15.35)

If the phase-change 6 ) — 6 (0) has a Gaussian distribution, which may be checked
a posteriori, the application of Wick’s theorem yields

<&(T)(t)gl0(0)) ~ <ﬁ0>e*i(é(1)*é(0)> o~ Varld () —0(0)1/2 (15.36)

This remarkable formula quantitatively relates the loss of temporal coherence in an
isolated Bose-condensed gas to the spreading of the condensate phase-change.
The operational way to determine the condensate phase-change spreading is to

work with the phase derivative: contrarily to 6,0isa single-valued hermitian oper-
ator that has a simple expression within the Bogoliubov approach. The correlation
function of the phase derivative

C(t) =610 (0) — (H)? (15.37)

gives access to the variance of the phase-change by simple integration:

t t
Var[é(t)—é(O)]=2z/ drCR(r)—Z/ dt T Cr(1) (15.38)
0 0

where Cr is the real part of C. One obtains a single integral (rather than a double

integral) using the fact that the real part of (é(tl)é(tg)) is a function of |t — 12|
only, for a system at equilibrium. The long-time behavior of Cr determines how the
phase-change spreads at long times as summarized in Fig. 15.1.

At finite temperature, one might expect that 9([) decorrelates from 9(0) at long
times so that Cg — 0 and the phase-change spreading is diffusive. As we will see,
this is however not the case, except if the system is prepared in the microcanonical
ensemble. This is a consequence of energy conservation between times 0 and ¢ in
our isolated system. This point was overlooked in the early studies of [36—38] where

SHere we have neglected the non-commutation of é(t) and 6 (0). From the Baker-Campbell-
Hausdorff formula, and to zeroth order in the non-condensed fraction, see (15.45), the correction

. it -2 L. . .
is a factor e~ 264 (NFOMNT) which is irrelevant for our discussion.
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diffusive regime ballistic regime
Cr(t) = _o(l/7) lim; ..Cr(7) =A #0
Var[0(r) — 0(0)] ~ 2Dt Var[6(1) — 6(0)] ~ Ar®
C A A - C A A
K lar [B()-6(0)] ~ 2t [ dt C (1) x® Var [8(0)-6(0)] ~A ¢

0

0 T 0 T

Fig. 15.1 Different regimes of the condensate phase-change spreading at long times. Cg is the
real part of the correlation function C defined in (15.37)

the non-condensed modes were treated as a Markovian reservoir and phase diffu-
sion was predicted. A subsequent study [39] based on a many-body Hamiltonian
approach showed that phase-change spreading is ballistic for a system prepared in
the canonical ensemble. The coefficient of 2 in [39] was however calculated within
the pure Bogoliubov approximation, neglecting the interactions between the Bo-
goliubov quasi-particles, which is illegitimate in the long time limit as we shall see.

15.4.2.2 Key Ingredients of the Theory

In order to correctly determine the phase-change spreading in the long time limit, we
shall use two key ingredients in our theoretical treatment: an accurate expression of
the phase derivative and the inclusion of the interactions among Bogoliubov quasi-
particles, to which we add the constraint of strict energy conservation during the
system evolution.

Time Derivative of Condensate Phase Operator ~ The commutator of 6 with H
given by (15.9) is calculated exactly using

s ipm)
[0, 0] =~

(15.39)

and its hermitian conjugate, with the condensate wave function ¢(r) = 1/ V1/2.
The exact result is given in (67) of [8]. Expanding up to second order in the non-
condensed field A and using the modal decomposition (15.20), one obtains for
fixed N:’

7We have neglected oscillating terms in bb and HTH': after time integration of 0 they give a negli-
gible contribution to é(t) -y 0).
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S .
[0, B~ ——u(T =0) — s—OZ(Uk+ Vi) i (15.40)
v k=40

We have introduced the zero-temperature chemical potential (7 = 0) = % Eo(N),
where Eg(N) is given in (15.23), and the quasi-particle number operators

A

fix = bi bk (15.41)

The expression (15.40) of the phase derivative differs from the one heuristically

introduced in [37, 38]: 6 is not simply equal to —gng/hV.

Interactions Between Quasi-particles  Pushing one step further the Bogoliubov
expansion of Sect. 15.2, that is including terms up to third order in the non-
condensed field, one obtains

H =~ Hpog + Hs (15.42)
where I-AIBOg is the Bogoliubov Hamiltonian (15.22) and

Hy=gop'?Y DAY (A+ AT)A (15.43)

r

The Hamiltonian Hj is cubic in the field A and it corresponds to interactions be-
tween quasi-particles. While ﬁBOg is integrable (all the nk are conserved quantities),
the Hamiltonian IT-AIBOg + Hs is not integrable, which plays a central role in conden-
sate dephasing. By replacing A with its modal decomposition (15.20) in H3, two
types of resonant processes appear, that do not conserve the total number of quasi-
particles: the b*b'h Beliaev process and the b*bb Landau process. In the Beliaev
process one quasi-particle decays into two quasi-particles, while in the Landau pro-
cess two quasi-particles merge into another quasi-particle. The processes involving
b*btb" and bbb are non-resonant (they do not conserve the Bogoliubov energy) and
they cannot induce real transitions at the present order.

15.4.3 If N Fluctuates

In this subsection we allow fluctuations of the total number of particles and we
investigate their effect on temporal coherence. The effect is already present in the
case of a pure condensate, so that we restrict to a one-mode model in this subsection:
identifying the condensate particle number 71¢ with the total particle number N, we
obtain the model Hamiltonian

I:Ione mode = %Nz (15-44)
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The condensate phase derivative is

A 1
0)=—
i

h[é’ I:Ione mode] = _M(N)/h (15.45)

where the chemical potential for the system with N particles is simply w(N) =
gN/V for the one-mode model. Since N is a constant of motion, temporal integra-
tion is straightforward:

6(1) —6(0) = —u(N)t /R (15.46)

If N is fixed there is no phase-change spreading. If the initial state is prepared with
fluctuations in N then the phase-change spreads ballistically [40, 41]:

. . du\*.
Var[@(t) — 9(0)] = (t/h)2<ﬁ> Var N (15.47)
Correspondingly the temporal coherence function (&g (t)ap) decays as a Gaussian
in time3[42, 43]. A similar phenomenon was observed experimentally [44—46] not
for the temporal correlation of a single condensate but for equal-time coherence

(&S (t)l;o (7)) between two condensates prepared in different modes or internal states
with a well defined relative phase and fluctuations in the relative particle number.

15.4.4 N Fixed, E Fluctuates: Canonical Ensemble

We assume in this subsection that the gas is prepared in equilibrium at finite tem-
perature T in the canonical ensemble with N particles. We first treat this case by
analogy with the previous subsection, and then we expose a systematic derivation
of the result based on quantum ergodicity.

15.4.4.1 Using an Analogy with the Case of Fluctuating N

Similarly to N in the previous subsection, here H is a conserved quantity that fluc-
tuates in the initial state. Indeed the canonical ensemble is a statistical mixture of
energy eigenstates with different eigenenergies. By analogy with (15.46) we expect
that

0(t) —6(0) ~ —pume(H)t /1 (15.48)

where umc(E) is the chemical potential of the microcanonical ensemble of en-
ergy E. As relative energy fluctuations are vanishingly small for a large system, we

8The phase revivals at macroscopic times multiples of 2777V /g [42, 43] are absent here due to the
Gaussian hypothesis used to obtain (15.36).
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can linearize um¢(E) around the mean energy E to obtain a ballistic phase-change
spreading

Var[6(1) — 6(0)] ~ (t/h)2 [ “‘“C(E)] Var A (15.49)

The coefficient of 72 is proportional to the variance of the energy in the initial state
and scales as the inverse of the system volume in the thermodynamic limit. For con-
venience, one can reexpress this coefficient in terms of canonical ensemble quanti-
ties using ,umc[E(T)] = u(T) (for a large system) so that %umc(lf) = %u/%ﬁ,
where 1 (7T') and E(T) are the chemical potential and mean energy in the canonical
ensemble at temperature 7. An explicit expression of the coefficient of ¢? is given
in (73) of [8] using Bogoliubov theory to evaluate the partition function, E(T') and
w(T). The obtained formula for w(7') also gives the intuitive and interesting side
result

<5> =—u(T)/h (15.50)

15.4.4.2 From Quantum Ergodic Theory

In the previous analogy leading to (15.49) there is a strong implicit hypothesis. The
fact that the phase-change is a function of the Hamiltonian only, see (15.48), is in
general true only for an ergodic system in the long time limit. For example if the
Hamiltonian was truly equal to ﬁBOg, 2 (1) — 6 (0) would depend on the set of all
occupation number operators 7k and (15.48), (15.49) would not apply.

We now derive (15.49) using quantum ergodic theory. To this end we calculate
the asymptotic value of the correlation function C(¢). To eliminate oscillations of
C(r) we evaluate its time average. By inserting a closure relation over exact eigen-
states |¥) ) with eigenenergies E; of the interacting many-body system, we obtain

1 2
t/ dr C(x) - Zm! W, 1619) [ <Zm wumxm) (15.51)

where p, is the probability to find the system in the eigenstate |¥; ). In the canon-
ical ensemble p;, = exp(—BE,)/Z. In (15.51) we have assumed that there are no
degeneracies consistently with the non-integrability of the system.’ For a classical
system, ergodicity implies that the time average over a trajectory of energy E coin-
cides with the microcanonical average at that energy. The extension of this concept
to a quantum system is the so-called eigenstate thermalization hypothesis [47—49]:

9For a large system the level-spacing 8 E vanishes exponentially with the system size, and one may
fear that an exponentially long time 7 > 1i/$ E is needed to reach the limit (15.51). However, the

corresponding off-diagonal matrix elements of § also vanish exponentially with the system size in
the eigenstate thermalization hypothesis [47].
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the mean value of a few-body observable Oina single eigenstate |¥, ) is very close
to the microcanonical average at the same energy:

(W ]01W3) = O (E = Ej) (15.52)

We apply this hypothesis to the operator O = 0. The last step is to realize that within

the Bogoliubov theory, the microcanonical average of 0 is proportional to the mi-
crocanonical chemical potential '

Ome (E) = —pime(E) /1 (15.53)
One then obtains
R R 2 N
Var[Q (1) — 9(0)] N y= Var pume (H) (15.54)

Linearizing umC(I:I ) in (15.54) for small relative energy fluctuations around E one
recovers (15.49).

15.4.4.3 Physical Implications

A consequence of (15.49) is that, for a system prepared in the canonical ensemble,

the correlation function C(t) of 6 does not tend to zero when T — ~+00. The same
conclusion is reached for the correlation function of 719, whose long time limit can
be calculated with the quantum ergodic theory [8]. This qualitatively contradicts
[36-38]. It only qualitatively agrees with [39] since the system Hamiltonian H in
[39] was eventually replaced by the integrable Hamiltonian I:IBOg.

In [36-38] the non-condensed modes were treated as a Markovian reservoir. This
approximation is excellent to calculate temporal correlation functions of “micro-
scopic” observables such as the quasiparticle numbers. For example, this gives for
k, k' #£0[8]:

(i (e () — (i) i) ™ e (i (1 + (s ) e ™! (15.55)
where the damping rate Ik is due to the Beliaev-Landau processes. However quan-
tum ergodic theory shows that the exact long time limit of this correlation function
is nonzero (even for k # K’) but rather a quantity of order 1/N. In the double sum
over k and K’ that appears in C(7), this introduces a macroscopic correction of order
N missed by the Markovian approximation.

We illustrate this discussion in Fig. 15.2 with a classical field model [8]. The
exact numerical result (black squares linked by a solid line) confirms the ergodic

10Gee Ref. [45] of [8]. In fact for a large system it is sufficient to prove the equality in the canonical
ensemble of mean energy E, as already given by (15.50).
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Fig. 15.2 For a gas prepared
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result (dash-dot-dotted blue curve). The flat red dashed line is the Bogoliubov theory
where the ny are constants of motion. It is close to the numerical result only at short
times. The dash-dotted violet curve that tends rapidly to zero is a Markovian model
based on (15.55).

15.4.5 N Fixed, E Fixed: Microcanonical Ensemble

In this section we assume that the gas is prepared in the microcanonical ensemble
of energy E. According to (15.54) the coefficient of the ballistic spreading of the
phase-change is zero. It was found in [10] that C(7) = 0(1/13) at long times, so
that the phase-change spreads diffusively, with a diffusion coefficient defined by

Var[d(r) —6(0)] ~ 2Dt with D = / dt Cg(x) (15.56)
0

To determine D we thus need the whole time dependence of C(t). From (15.40),
C () can be deduced from all the correlation functions (Ax (7 )7k (0)) of the quasi-
particle number operators. Within the Bogoliubov approximation for the initial equi-
librium state, the gas is prepared in a statistical mixture of Fock states |{n8}) of
quasi-particles where, in any given Bogoliubov mode of wave vector ¢, there are
exactly ng quasi-particles (ng is an integer). One can then calculate the correlation

functions for an initial Fock state |{n8}) and average over the microcanonical prob-
ability distribution for the {n{}.
For a given initial Fock state, one then simply needs

(1) = ({n§} Ak (D) |{nd}) (15.57)

In the thermodynamic limit, the evolution of such mean numbers of quasi-particles
are given by quantum kinetic equations including the Beliaev-Landau processes due
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Fig. 15.3 Solid line: E

: ~ 7 e
Universal result for the phase 10'E D-Thnln T 3
diffusion coefficient in the E
Bogoliubov limit " E
(pa®)' 2P <1, T<LT,. ]
Dashed line: Low-T S 3
analytical result (15.60). The A l0E E
high-T behavior is only = o
conjectured, and the dotted 107¢ 3
line is an arbitrary linear o E
function of T to guide the 10 ¢ 3
eye. V is the volume and g Z E
the effective coupling ]06).01 Ll Ll Ll Ll
constant (15.4) k,T/pg
to Hs [50]:
g%p 3 [k-+ql\2
ik=—1—3 /d q[nknq — nksq(1 +nq + l’lk)](%’k )78 (ex + &4 — Ekrq)
g2p 3 k 2
~ 5 /d q[nk(1 + nq + nk—q) — ngnk—q| (ﬁfqylqul) 8(eq + €k—q| — &)
(15.58)
with the Beliaev-Landau coupling amplitudes:
Al =UgUp Uy + Vg ViVie + Uy + V) ViUp + Ui Vo) (15.59)

The first line in (15.58) describes Landau processes and the second line describes
Beliaev processes. In practice we linearize the kinetic equation (15.58) around the
equilibrium solution 71, ' and we solve the resulting linear system numerically. We
refer to [10] for technical details.

The phase diffusion coefficient is shown in Fig. 15.3 as a function of the temper-
ature T such that the mean canonical energy E(T) is equal to the microcanonical
energy E. Remarkably, when D and T are properly rescaled (as in the figure), the
curve is universal. In particular this shows that D vanishes as the inverse of the
system volume in the thermodynamic limit. Interestingly, at low temperature, D
vanishes with the same power-law T* as the normal fraction of the gas:

ADV kT \*
AP 0.3036(3—) (15.60)
g g

We performed classical field simulations in the microcanonical ensemble [9].
As expected we found that the phase-change has a diffusive behavior: its variance

"For an infinite system, the stationary solution of (15.58) is ensemble independent and corre-
sponds to the Bose formula ng(E) = 1/(exp Bex — 1), where 8 is adjusted to give the mean en-
ergy E. Finite size effects on the 7k, that can be calculated from (61) of [8], are here not relevant.
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Fig. 15.4 Classical field simulations in the microcanonical ensemble. Left panel (taken
from [9]): Probability distribution P (¢) of the condensate phase-change fluctuations ¢ = 6(t) —
0(0) — (8(t) — 0(0)) at a large time ¢. The dashed line is the expected Gaussian. Right panel (taken
from [10]): Diffusion coefficient as a function of the temperature, extracted from the numerics (bul-
lets with error bars) and calculated by the classical field version of the kinetic equations (15.58)
(crosses linked by segments)

increases linearly in time at long times (not shown) and the phase-change probability
distribution is well adjusted by a Gaussian as we show in the left panel of Fig. 15.4.
In the right panel Fig. 15.4 we show that the diffusion coefficient is well reproduced
by a classical field version of the kinetic theory.

15.4.6 A General Statistical Ensemble

We now consider a generalized ensemble at fixed N that includes both the micro-
canonical and the canonical ensembles as particular cases. This is a statistical mix-
ture of microcanonical ensembles with a probability distribution P (E) of the system
energy E that depends on the particular experimental procedure to prepare the ini-
tial state of the gas. Remarkably the approach of the previous subsection based on
kinetic equations can be extended to this case.

15.4.6.1 General Result for the Phase-Change Spreading

Provided that the relative energy fluctuations vanish in the thermodynamic limit, we
find the long time limit [10]

. . me =1 1
Var[0(1) — 6(0)] S Var(E)[%(E)} 12 +2D(t — o) + O <?)

(15.61)

For the coefficient A of the ballistic 1> term we recover the form of the quantum
ergodic result (15.49). This is not surprising as the reasoning of Sect. 15.4.4 does not



15 Spatial and Temporal Coherence of a Bose-Condensed Gas 335

rely on the fact that the system is prepared in the canonical ensemble. On the other
hand the value of the coefficient does depend on the statistical ensemble through the
mean energy E and the variance of the energy. A physical derivation of this result
within kinetic theory is given in the next subsection.

A remarkable result is that, in the general ensemble, the phase derivative correla-
tion function C () is the sum of its long time limit A and of the correlation function
Cme(7) in the microcanonical ensemble of energy E:

C(t)=A+ Cnc(7) (15.62)

As a consequence the diffusion coefficient D of (15.61) is the same as the one for the
microcanonical ensemble of energy E. The same conclusion holds for the constant
time offset Zofr: 12

o0
D:/ dT CR.me(7) (15.63)
0

Jo~ dt T Crome(7)
Jo~ dT Crome(T)

toff = (1564)

where Cg mc is the real part of Ciyc. The physical origin of the time offset #os is
apparent in (15.64): it is due to the finite width of the phase derivative correlation
function. As Cg mc(7) is found to be positive, foff can be simply interpreted as the
correlation time of the phase derivative in the microcanonical ensemble. The formal
expressions for D and zr, in terms of the matrix of the linearized kinetic equations,
are given in [10].

These results are made more concrete by Fig. 15.5: for a quantum system in
the thermodynamic limit, we show the microcanonical correlation function Cpyc(#)
as a function of time, and the variance of the phase-change either in the canonical
ensemble of temperature kg7 = 10pg or in the microcanonical ensemble with the
same mean energy. This reveals in particular that the asymptotic expression (15.61)
becomes rapidly accurate.

15.4.6.2 Recovering the Ballistic Spreading from Kinetic Theory

Due to energy conservation, the linearized kinetic equations have a zero-frequency
undamped mode. We will show that, in presence of energy fluctuations in the initial
state, the amplitude over this mode is nonzero, so that the phase derivative correla-
tion function C(7) does not tend to zero at long times and the phase-change variance
shows a #2 term as in (15.61). The derivation presented here was significantly sim-
plified with respect to the original one of [10].

12This is true to leading order in the system size since our linearized kinetic approach cannot access
the subleading terms.
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Fig. 15.5 For a quantum system in the thermodynamic limit, the microcanonical phase derivative
correlation function Cy¢ () (red solid line, right vertical axis) and the variance of the phase-change
(black lines, left vertical axis) are shown as functions of time. For the variance, the upper (lower)
solid line is for the canonical (microcanonical) ensemble, and the dashed lines are the correspond-
ing asymptotic forms of (15.61). kgT = 10pg, V is the system volume, g is the effective coupling
constant (15.4) and & is the healing length (15.7). This is Fig. 3 of [10]. In atomic condensates & is
in the um range and the time unit of the figure is in the ms range

‘We introduce the notation
fix(E) = figme(E) (15.65)

for the average number of quasi-particles in mode k in the microcanonical ensemble
of energy E. The kinetic equations (15.58), linearized around the stationary solution
{nq(E)}, can be put in the form

X(t) = Mx(7) (15.66)

where we have collected all the unknowns ng(7) — ik (E) in a single vector X ()
and M is a matrix. The existence of a zero-frequency mode can be understood in
two different ways that we explain.

First Reasoning ~ Consider an energy E close to E. In the same way as {iix(E)},
the set of occupation numbers {nk(E)} constitutes a stationary solution of the full

kinetic equations (15.58). Since the solutions are close, their difference {nk(E) —
ik (E)} obeys the linear system (15.66) so that the vector €y of components

d _
= —nk(E 15.67
Ok =" Enk( ) ( )
is a zero-frequency eigenmode of M.

Second Reasoning  The Bogoliubov energy » £0 exnk(t) is conserved by the
kinetic equations. An a consequence £ - X(t) is a constant (the vector € has compo-
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nents g;) and its time derivative is zero. This holds for all initial values of ¥, and
thus implies that £ is a left eigenvector of M with zero eigenvalue. A basic theorem
of linear algebra then implies the existence of a right eigenvector of M with zero
eigenvalue. Actually we already found it: it is €y of components (15.67). Such left
and right eigenvectors are called adjoint vectors. For our normalization choice, their
scalar product € - ey = ﬁE =1 as it should be.

We now go back to the correlation function C (7). We introduce the (zero-mean)
fluctuation operators

Sng = fx — ik (E) (15.68)

where we have neglected the difference between (fix) and 71y (E) in the large system
size limit. The correlation function C(7) is then obtained as

C(r)=A %(r) withxg(r)= —<8ﬁk(r)é(0)) (15.69)
where we have collected in a vector A, the coefficients in é given by (15.40):
80 2
Ax = — (U +V, 15.70
iy Uk + Vi) ( )

Followmg the reasoning of Sect. 15.4.5 on finds that x(r) obeys (15.66). Splitting
X(t)=vyeo+ X(r) we have in the long time limit that X(r) — 0 due to the Beliaev-
Landau damping processes whereas y = ¢ - X(0) is a constant. At long times one
then has

C(@) - [E-XO]A-&) (15.71)

Taking the microcanonical average of (15.40) and using (15.53) on obtains the Bo-
goliubov expression for the microcanonical chemical potential:

Mme(E) = u(T = 0)(N) +ZhAkflk(E) (15.72)
K0

Using the expression of ¢y this leads to A o= % tme (E) /. We now evaluate the
expectation value (...) appearing in € - X(0) in two steps. We first take the expec-
tation value in the mlcrocanomcal ensemble of energy E: one can then replace the
operator ) ) & 8ny (0) with E — E, since the total Bogoliubov energy is fixed to E.

One is left with a microcanonical average of 0(0) at energy E, an average already
given by (15.53), and that one can expand around E to first order in E — E. The
last step is to average over E with the probability distribution P(E) defining the
ensemble, to obtain

- (0) = Var(E) 7 “ me

(E) (15.73)

Collecting all the results, we exactly recover the coefficient of 72 in (15.61).
After this last reasonlng, it becomes apparent that, contrarily to the zero-
frequency component y €y, the contribution of the damped component X (1) of X(1)
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can be treated to zeroth order in the energy fluctuations: one can directly take E = E
without getting a vanishing contribution to C(t) and to (15.61). This explains why
both the diffusion coefficient D and the time offset 7o, that purely originate from
X (1), are essentially ensemble independent.

15.5 Conclusion

After a reminder of the spatial coherence properties, we focused on the temporal
coherence of a homogeneous interacting Bose-Einstein condensed gas at finite tem-
perature. We assumed that the system, prepared at thermal equilibrium at time zero,
is isolated in its further evolution. As expected, the coherence time of the condensate
is finite for a finite interacting system and diverges in the thermodynamic limit.

The loss of temporal coherence of the condensate is due to a spreading in time of
the condensate phase-change induced in particular by the non-linear coupling to the
thermally populated non-condensed modes. Using quantum kinetic equations de-
scribing the Landau and Beliaev interaction processes among the Bogoliubov quasi-
particles, we found that the variance of the condensate phase-change at long times ¢
includes both a ballistic term o > and a diffusive term o< ¢ with temperature and
interaction dependent coefficients. For a large system, with vanishing relative en-
ergy fluctuations, the diffusion coefficient is independent of the statistical ensemble
and scales as the inverse of the system volume. On the contrary, the coefficient of ¢
strongly depends on the ensemble: it scales as the inverse volume squared times the
variance of the system energy. This result, implying that paradoxically some correla-
tion functions in the system do not tend to zero at infinite time, can also be obtained
by a quantum ergodic theory (the so-called eigenstate thermalization hypothesis).

Finally, we sketched a possible scheme to measure the condensate coherence
time and test our predictions in cold atoms experiment.
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Chapter 16
Effects of Interactions on Bose-Einstein
Condensation of an Atomic Gas

Robert P. Smith and Zoran Hadzibabic

Abstract The phase transition to a Bose-Einstein condensate is unusual in that it is
not necessarily driven by inter-particle interactions but can occur in an ideal gas as
a result of a purely statistical saturation of excited states. However, interactions are
necessary for any system to reach thermal equilibrium and so are required for con-
densation to occur in finite time. In this chapter we review the role of interactions
in Bose-Einstein condensation, covering both theory and experiment. We focus on
measurements performed on harmonically trapped ultracold atomic gases, but also
discuss how these results relate to the uniform-system case, which is more theoreti-
cally studied and also more relevant for other experimental systems.

We first consider interaction strengths for which the system can be considered
sufficiently close to equilibrium to measure thermodynamic behaviour. In particu-
lar we discuss the effects of interactions both on the mechanism of condensation
(namely the saturation of the excited states) and on the critical temperature at which
condensation occurs. We then discuss in more detail the conditions for the equilib-
rium thermodynamic measurements to be possible, and the non-equilibrium phe-
nomena that occur when these conditions are controllably violated by tuning the
strength of interactions in the gas.

16.1 Introduction

Virtually all thermodynamic phase transitions are driven by interactions between
particles, which promote symmetry breaking into an ordered state. The phase tran-
sition comes about as a result of the competition between the energy, which favours
the ordered state, and the entropy, which favours the disordered state. In contrast,
Bose-Einstein condensation (BEC) is a purely statistical phase transition, which at
least in principle should not rely on interactions. The transition is instead a direct
consequence of the finite-temperature saturation of the number of particles in the
excited states of the system [1-4]. While this statistical argument does not explicitly
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invoke interactions between the particles, it does assume that the gas is in thermal
equilibrium, which is impossible to attain in a completely noninteracting system. !
This makes it challenging to experimentally observe ideal-gas behaviour and disen-
tangle the role of interactions on the thermodynamics and dynamics of condensa-
tion.

In this chapter we review our recent experiments on this topic [6—8], performed
with an ultracold Bose gas of 3°K atoms with tuneable interactions. We were able to
identify the interaction regime in which the gas may be considered to be in thermal
equilibrium and also to extrapolate our results to the noninteracting limit where
direct equilibrium measurements are not possible. This allowed us to verify the
statistical-saturation BEC mechanism in the noninteracting limit, and to accurately
determine the deviations from ideal-gas behaviour due to interactions; these are seen
both in the non-saturation of the excited states and in the shift of the critical point.
Before presenting the experimental results we briefly review some background the-
ory that will be useful for our discussion.

16.1.1 Noninteracting Bosons

We start by considering an ideal, noninteracting Bose gas. We first derive the key
results for a uniform system, which we then apply to the trapped gas using the local
density approximation (LDA). This “local” approach will be useful later when we
consider the effects of interactions, and in particular for the comparison of a uniform
Bose gas with one that is harmonically trapped.

The equilibrium momentum distribution of noninteracting bosons with mass m
at a temperature 7 is given by the Bose distribution function

1
ep?2m—w/ksT _ 1’

Jp (16.1)

where p is the momentum and p < O the chemical potential. The total particle den-
sity n can be found by integrating over all momentum states:

dp 1 g3/2(et/ksT)
n= —
(2mh)3 ep?/2m—p)/ksT _ | A3

, (16.2)

where g3/2(x) = Z,filxk /k3/? is a polylogarithm function and A = [27 7%/
(mkg T)]]/ 2 is the thermal wavelength. We can re-express this result in terms of
the phase space density D as

D =ni? = g3 (e *T). (16.3)

'In the recently observed Bose-Einstein condensation of a photon gas [5], there is no direct inter-
action between the light particles. However the interaction with the material environment, which
ensures thermalisation, leads to a second-order interaction between the photons.
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Equation (16.3) shows that there is a maximum value that D can take. This critical
value is reached when u = 0 and is given by D, = g3/,2(1) = ¢(3/2) ~ 2.612 (where
¢ is the Riemann function). At a given temperature this corresponds to a maximum
density. If this density is reached all the excited states saturate and any additional
particles must accumulate in the ground state, forming a Bose-Einstein condensate.”
At a given density n the BEC transition temperature is given by

O_Znh2< n )2/3
kpT) == am) (16.4)

where the superscript © refers to the fact this is an ideal gas result.
For a gas in a potential V (r) we may apply LDA to (16.2). This amounts to
having a local chemical potential

p(r) =p—V(r). (16.5)

Specifically for a harmonic trap, V (r) = Z(I/Z)ma)izr?, where w; (withi =1, 2, 3)

are the trapping frequencies along three spatial dimensions.
The local density is then

g3/ (eHV (D/ksT )

n(r) 3 , (16.6)

and the local phase space density D(r) = n(r)A>. The total number of particles in
the excited states can be found by integrating over all space:

=V @)/ ke T
N = / 83/2( ) dr. (16.7)

A3

The critical point for a trapped gas is the point at which the maximal local D
reaches the critical value of ¢(3/2). For a fixed T it makes sense to define the critical
point in terms of the critical total particle number N.. For a harmonic trap, with the
geometric mean of the three trapping frequencies , the integral in (16.7) for u =0
gives

3
N = §(3)<kBT) : (16.8)

héd

2The singular ground-state contribution to the total density is implicitly excluded from the integral
in (16.2). As u approaches zero from below the ground state occupation can become arbitrarily
large, as can be seen by inspecting (16.1).
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'+ saturated gas

Fig. 16.1 Ideal Bose gas condensation. Number of thermal atoms N’ (black line) and number of
condensed atoms Ny (grey line) are plotted versus the total atom number N, at a fixed temperature.
As atoms are added to trap N’ = N and Np = 0 until the critical atom number N is reached.
At this pointothe excited states of the system saturate, and for N > NC0 we have N/ = N? and
No=N — N;

where ¢(3) &~ 1.202. The equivalent expression for the transition temperature at a
fixed particle number is given by>

1/3
kpT? = hw(%) . (16.9)

The ideal-gas picture of Bose-Einstein condensation driven by the purely statis-
tical saturation of the excited states is simply summarised graphically in Fig. 16.1.
Here we plot the number of atoms in the excited states, N’, and in the condensate,
Ny, as the total atom number N is increased at constant temperature. For N < Ng
no condensate is present and N’ = N. However for N > N9 the thermal compo-
nent is saturated at N’ = Né’ and the number of condensed atoms is simply given
by No = N — N2. In Sects. 16.3 and 16.4 we will examine the effects of interac-
tions both on the saturation of the excited states and on the value of the critical atom
number.

16.1.2 Interacting Bosons

The dominant effects of interactions on Bose-Einstein condensation are quite differ-
ent in a uniform system and in the experimentally pertinent case of a harmonically
trapped atomic gas. This complex problem has a long history and for reviews we

3Finite-size corrections slightly reduce the ideal-gas critical temperature, by kBATJ’ =
—£(2)/(2¢(3))hwy, ~ —0.684hw,,, where w,, is the algebraic mean of the trapping frequen-
cies [9].
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refer the reader to, for example, [3, 4, 9, 10]. Here we just briefly introduce some
key points.

The simplest theoretical framework to address the effects of interactions in a
Bose gas is the Hartree-Fock approximation [9]. In this mean-field (MF) model one
treats the thermal atoms as a “noninteracting” gas of density n’(r) that experiences
a self-consistent MF interaction potential g[2no(r) +2n’(r)], where g = 4w h?a/m,
a is the s-wave scattering length, and n¢(r) the condensate density. We can then
define an effective total potential

Veir(r) = V (r) + 2g[no(r) +n'(r)], (16.10)

and apply the LDA by replacing V (r) with Veg(r) in (16.6). Meanwhile the con-
densed atoms feel an interaction potential g[ng(r) + 2n'(r)], where the factor of
two difference in the condensate self-interaction comes about due to the lack of the
exchange interaction term for particles in the same state.*

In a uniform system, the MF potential gives just a spatially uniform energy offset
and the most interesting effects arise due to beyond-MF quantum correlations.

On the other hand, in a harmonically trapped gas (with repulsive interactions) the
inhomogeneous density results in a mean-field repulsion of atoms from the central
high-density region. This geometrical effect often dominates and makes it harder to
experimentally observe the more interesting beyond-MF physics.

16.1.3 Chapter Outline

In Sect. 16.2 we briefly outline our experimental procedure for performing precision
measurements of the effects of interactions on Bose-Einstein condensation of an
atomic gas.

In Sects. 16.3 and 16.4 we discuss the effects of interactions on the thermo-
dynamics of a Bose gas with tuneable interactions. Here the range of interaction
strengths we explore experimentally is such that the gas can always be assumed to
be in thermal equilibrium. In Sect. 16.3 we scrutinise the concept of saturation as
the driving mechanism for Bose-Einstein condensation, and in Sect. 16.4 we focus
on the interaction shift of the critical point for condensation. We compare the exper-
imental results to both MF and beyond-MF theories and discuss how they relate to
the case of a uniform Bose gas.

In Sect. 16.5 we discuss the conditions required for equilibrium measurements,
and non-equilibrium effects that are observed when they are violated.

4This approach does not take into account the modification of the excitation spectrum due to the
presence of the condensate, which is included in more elaborate MF theories such as those of
Bogoliubov [11] and Popov [12] (see also [9]). However, it is often sufficient to give the correct
leading order MF results.
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16.2 Precision Measurements on a Bose Gas with Tuneable
Interactions

All the results presented here were obtained by performing conceptually simple ex-
periments which are close in spirit to the ideal-gas theoretical plots of Fig. 16.1,
but are performed for various strengths of repulsive interatomic interactions, char-
acterised by the positive s-wave scattering length a.

Our experiments start with a partially condensed gas of 3°K atoms, produced in
an optical dipole trap [13] with @/27 varying between 60 and 80 Hz for data taken
at different temperatures. The strength of interactions in the gas can be tuned by
applying a uniform external magnetic field in the vicinity of a Feshbach scattering
resonance centred at 402.5 G [14].

In each experimental series we fix a by choosing the value of the Feshbach field,
and keep the temperature constant by fixing the depth of the optical trap. The to-
tal number of trapped atoms N is then varied by holding the gas in the trap for a
variable time #, up to tens of seconds. During this time N, initially larger than the
critical value N, slowly decays and eventually drops below N.. Meanwhile elastic
collisions between the atoms act to redistribute the particles between the condensed
and thermal components of the gas.

In each experimental run within a given series, corresponding to a particular
hold-time 7, the thermal atom number N’ and the condensate atom number Ny are
extracted from fits to the absorption images of the gas after 1820 ms of free time-
of-flight (TOF) expansion from the trap [15, 16]. The interactions are rapidly turned
off at the beginning of TOF, by tuning the Feshbach field to the a = 0 point. This
minimises the condensate expansion and allows us to home in on the critical point
by reliably measuring condensed fractions as low as 0.1 %.

For accurate measurements of the small interaction shift of the critical point it
is particularly important to minimise various systematic errors, e.g. due to finite-
size effects [9], uncertainties in the absolute calibration of N and @, and small
anharmonic corrections to the trapping potential [13]. We achieve this by perform-
ing “differential measurements”, always concurrently running two experimental se-
ries which are identical in every respect except for the choice of the scattering
length [7].

16.3 Non-saturation of the Excited States

In this section, we focus on the concept of the saturation of the excited states as
the underlying mechanism driving the BEC transition. In superfluid *He, which is
conceptually associated with BEC, strong interactions preclude direct observation
of purely statistical effects postulated by Einstein for an ideal gas. On the other
hand it is generally accepted that a close-to-textbook BEC is observed in the weakly
interacting atomic gases. Therefore, one might expect that the saturation inequal-
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Fig. 16.2 Lack of saturation .
of the thermal component in a 300- L ' o s N
quantum degenerate atomic S gedd
Bose gas. N’ (black points) N, '«pf"

and Ny (grey points) are :

plotted versus the total atom 200 ceen e /”s aturated gas
number N at 7 = 177 nK and

a = 135ag. The
corresponding predictions for
a saturated gas are shown by
black and grey solid lines.
The critical point N = N is
marked by a vertical dashed
line. (Figure adapted

from [6])
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ity N’ < Ng is essentially satisfied in these systems, with just the value of the
bound on the right-hand side slightly modified by interactions. However, as shown in
Fig. 16.2, this is far from being the case under typical conditions of an ultracold gas
experiment. Here, in an experimental series taken with a = 135ag (where ag is the
Bohr radius) and T = 177 nK, the measured critical atom number is N, ~ 200 000;
if the total number of atoms is increased to 450 000, only half of the additional atoms
accumulate in the condensate.

In order to explore the relationship between the experimentally observed non-
saturation of the thermal component and the interatomic interactions, we first iden-
tify the relevant interaction energy. As a BEC is formed and then grows, the change
in the average density of the condensed atoms is much larger than the change of
the thermal density. Therefore one expects the non-saturation of the thermal com-
ponent to result primarily from its interaction with the condensate (the 2gng(r) term
in (16.10)). The relevant energy scale is then provided by [9]

ho 2/5
Mo:gng(r:O):—(lSNoi) , (16.11)
2 aho

where ap, = (h/m®)'/? is the spatial extension of the ground state of the harmonic
oscillator. The energy g is the MF result for the chemical potential of a gas with
Np atoms at zero temperature in the Thomas-Fermi limit [9].

Guided by this scaling, for the data shown in Fig. 16.2 we plot N’ as a function of
Né /3 in Fig. 16.3. The growth of N’ with Né /3 is not perfectly linear, so we quantify
the non-saturation effect with two linear slopes: (1) the initial slope So for No — 0,
and (2) the course grained slope S = A[N’]/A[Ng/S] for 0.1 < uo/kgT < 0.3 [6].
The data shown in Fig. 16.3 can also be described by a second-order polynomial fit,
as described later.

The initial slope Sp may be compared with the HF model. In order to obtain the
non-saturation effect to first order within the HF approach, we only consider the
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Fig. 16.3 Quantifying the

lack of saturation. Here N’ is 3204
plotted as a function of Ng &
for the same series as in

Fig. 16.2. The horizontal @ 280
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dotted line is the saturation 2
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slope So and the slope S for ;

0.1 < pno/ksT < 0.3. The
solid grey line is a guide to 200 +F el
the eye based on a
second-order polynomial fit. y Y y y '
(Figure adapted from [6])

repulsive interaction of the thermal atoms with the condensate and not with other
thermal atoms. From (16.10) this leads to an effective potential5

Verr(r) = V (r) 4 2gno(r) = |V (r) — uo| + wo- (16.12)

Note that within this theory N, = Ng since Vegr(r) = V (r) when Nog = 0. By inte-
grating (16.7) with the effective potential of (16.12) one can predict a linear variation
of N’/ NL(.) with the small parameter uo/ kT :

!

N pe (16.13)
N? ksT

with & = ¢(2)/¢(3) ~ 1.37. This first order non-saturation result is identical to that
obtained in more elaborate MF approximations, which only modify higher order
terms.

The origin of the non-saturation effect can be qualitatively understood by not-
ing that interactions with the condensate modify the effective potential seen by the
thermal atoms from a parabola into the “Mexican hat” shape of (16.12); this effec-
tively allows the thermal component to occupy a larger volume, which grows with
increasing Ny.

From (16.11) and (16.13) we define the HF non-saturation slope

dN’ 2)
Sur = = 29 (16.14)
W2 B
where X is the dimensionless parameter
c@3) (kgT\? [ 15a\*
X=2"|— . 16.15
2 ( ha ) aho ( )

The measured Sy is found to agree with Sgr for a range of @ and T values [6].

SNote that gng(r) = max{uo — V (r), 0}.
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Fig. 16.4 Deviation from the saturation picture at a range of interaction strengths and tem-
peratures. The non-saturation slope S is plotted versus the dimensionless interaction parame-
ter X o« T2a*/ (see text). A linear fit (black line) gives dS/dX = 2.6 & 0.3 and an intercept
S(0) = —20 % 100, consistent with complete saturation in the ideal-gas limit. The data points
are based on measurements with the 3K gas (closed circles) at a range of scattering lengths
(a = 40-356a0) and temperatures (7 = 115-284 nK), and two additional experimental series taken
with a 87Rb gas (open circles). (Figure adapted from [6])

We now consider the non-saturation at higher Ny values, where the data is
not well described by (16.14). Figure 16.4 summarises the non-saturation slopes
S(a, T) for a wide range of interaction strengths and temperatures. Within exper-
imental error all data points fall onto a straight line with gradient 2.6 &+ 0.3 and
intercept S(0) = —20 = 100 when plotted against the dimensionless interaction pa-
rameter X.

The first and most important thing to notice is that both non-saturation slopes,
So and S, tend to zero for X — 0. These experiments thus confirm the concept of
a saturated Bose gas, and Bose-Einstein condensation as a purely statistical phase
transition in the non-interacting limit.

A question that is still open is the deviation of S from the first order HF result
SHF, 1.e. dS/d X =~ 2.6 versus ¢ (2)/¢(3) ~ 1.37 predicted from HF theory. This dis-
crepancy can partially be explained by higher order terms in the mean-field theory,
either directly from using (16.12) in (16.7), or using more elaborate MF theories
such as the Popov approximation [3]. However the effect is far stronger in the ex-
perimental results than any of these MF theories predict. To see this we consider
the next order term in (16.13), writing N'/NO = 1 + a(uo/kpT) + a2 (120/knT)?
with o = 1.37. Experimentally, by identifying S with the gradient of this quadratic
function evaluated at wo/kpT = 0.2, we get ap = 3 = 0.7. For comparison the
Popov approximation gives oy &~ 0.6. At present the reason for this discrepancy
and the possible role of beyond-MF effects are unclear, and require further investi-
gation.

In summary, we can quantify the non-saturation of the thermal component in
a harmonically trapped gas by writing the number of thermal atoms in a partially
condensed cloud as
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N'= N+ SoNg"” + SNy, (16.16)
where
Q) (kgT\? [ 15a\*
So=%<§—@) - (16.17)
(6]
and
3) kT [ 15a\*°
S2=(3i0.7)¥;—@<aha> . (16.18)
(0]

We have seen that in a harmonic trap the dominant non-saturation effect is “geo-
metric”, arising from an interplay of the mean-field repulsion and the inhomogene-
ity of the condensate density. It is then interesting to consider the case of a uniform
system, where this geometric effect is absent. Within MF theory, as the total den-
sity of a uniform Bose gas is increased past the critical value the thermal density n’
actually decreases. This is due to the fact that the atoms in the condensate have
less interaction energy, as discussed in Sect. 16.1.2. In addition, close to the transi-
tion, beyond-MF effects are expected to play an important role. This would make
measurements in a uniform system (or of the local density in a trapped system)
particularly interesting.

16.4 Interaction Shift of the Transition Temperature

Having considered the effect of interactions on the saturation of the thermal compo-
nent we now consider the location of the critical point itself.

It is generally accepted that in a uniform system there is no interaction shift of the
critical temperature 7, at the level of mean-field theory. However, the beyond-MF
correlations between particles which develop near the critical point are expected to
shift T, [10, 17-28]. For several decades there was no consensus on the functional
form, or even on the sign of this 7, shift (for an overview see e.g. [10, 23, 26, 28]).
It is now generally believed that the shift is positive and to leading order given by
[23, 24]:

e 1 3an'B 182 (16.19)
TCO 20
where AT, =T, — TCQ and A is the thermal wavelength at temperature TLQ. Equiv-
alently, the n, shift at constant 7' is An./ ng ~—3/2)AT,/ TCO. The positive AT,
implies that condensation occurs at a phase space density below the ideal-gas critical
value of 2.612.

The problem of the T, shift in a harmonically trapped gas is even more complex.
In this case, at least for weak interactions, the shift is dominated by an opposing
effect that reduces the critical temperature [29]. This negative T, shift is due to
the broadening of the density distribution by repulsive interactions (see Fig. 16.5).
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n(x)

Fig. 16.5 Opposing effects of interactions on the critical point of a trapped Bose gas. We sketch
the density distribution in a harmonic potential V (r) at the condensation point. Compared to an
ideal gas (dotted line) at the same temperature, repulsive interactions reduce the critical density,
but also broaden the density distribution (solid line). Mean-field theory (dashed line) captures only
the latter effect, and predicts an increase of the critical atom number N, at fixed T, equivalent to a
decrease of T at fixed N. (Figure adapted from [7])

To leading order it can be calculated analytically using MF theory [29], by self-
consistently solving (16.6) with Vegr = V (r) + 2gn’(r):

AT, a
o~ —3.426—. (16.20)
T Ao

c

For the experimentally relevant range of interaction strengths, 0 < a/Ag < 0.05, we
numerically obtain the second-order MF shift, ~ 11.7(a/ )\0)2 [8].

The two opposing effects of repulsive interactions on the critical point of a
trapped gas are visually summarised in Fig. 16.5, where we sketch the density dis-
tribution at the condensation point for an ideal and an interacting gas at the same
temperature.® In the spirit of LDA, the critical density should be reduced by inter-
actions. However, interactions also broaden the density distribution. For weak in-
teractions the latter effect is dominant, making the overall interaction shift AN (T)
positive, or equivalently AT.(N) negative.

The dominance of the negative MF shift of T, over the positive beyond-MF one
goes beyond the difference in the numerical factors in (16.19) and (16.20). In a
harmonic trap, at the condensation point only the central region of the cloud is close
to criticality;’ this reduces the net effect of critical correlations so that they affect 7.
only at a higher order in a/Ag. The MF result of (16.20) should therefore be exact at
first order in a/A¢. The higher-order beyond-MF shift is still expected to be positive,
but the theoretical consensus on its value has not been reached [30-34].

6The shift of the critical point can be equivalently expressed as AT.(N) or AN.(T), with
AN (T)/NO ~ —3AT./TD.

TThe size of the central critical region is 7. ~ (a/Ao) RT, where Ry = \/kgT /mw? is the thermal
radius of the cloud [30].
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Fig. 16.6 Determination of the critical point and the differential interaction shift. (a) Condensed
(Np) versus thermal (N') atom number for two concurrently taken data series with a = 56aq (cir-
cles) and a = 274ay (squares). Note that all points correspond to condensed fractions below 2 %.
The data is scaled to the same temperature (7 = 240 nK) and shows the shift of the critical point
in the form AN (T). Solid lines show the extrapolation to No = 0, necessary to accurately de-

termine N,. (b) N’ is plotted versus Ng/ 3 for the same data as in (a), showing more clearly the
extrapolation procedure. (Figure adapted from [7])

16.4.1 Measurements on a Harmonically Trapped Bose Gas

Since the early days of atomic BECs there have been several measurements of the
interaction 7, shift in a harmonically trapped gas [35-37]. These experiments, per-
formed at a /A ranging from 0.007 [37] to 0.024 [36], nicely confirmed the theoret-
ical prediction for the linear MF shift of (16.20), but could not discern the beyond-
MF effects of critical correlations.

The recent measurements [7] presented here provided the first clear observa-
tion of the beyond-MF T, shift in a trapped atomic gas. Several improvements
contributed to making this possible. First, we explored slightly higher interaction
strengths, up to a/Ag =~ 0.04. Second, by performing precision measurements out-
lined in Sect. 16.2, and directly accessing the small differential 7, shift due to the
variation in a/Ag, we significantly reduced the experimental error bars. Third, un-
derstanding the non-saturation effects discussed in Sect. 16.3 was also essential for
accurately determining the critical point from the measurements performed close to
it (see Fig. 16.6).

Figure 16.6 illustrates a differential measurement with a = 56ag and a = 274ay.
The rise of Ny in Fig. 16.6(a) is not simply vertical because the thermal component
is not saturated at N, (see Sect. 16.3). It is therefore essential to carefully extrapolate
N’ to the Ny = 0 limit in order to accurately determine N,. For small Ny the extrap-
olation is done using N’ = N, + S()Ng/ 5, with the non-saturation slope So(7, @, a)
given by (16.17).

In Fig. 16.7 we summarise our measurements of A7,/ TC0 [7]. The data taken with
different atom numbers, N &~ (2-8) x 10°, fall onto the same curve, confirming that
the results depend only on the interaction parameter a /Xg. The MF prediction agrees
very well with the data for a/A¢ < 0.01, but for larger a/A¢ there is a clear deviation
from this prediction. All the data are fitted well by a second-order polynomial
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Fig. 16.7 Interaction shift of the critical temperature. Data points were taken with N ~2 x 10°
(open circles), 4 x 10° (black squares), and 8 x 10° (open triangles) atoms. The dashed line is the
MF prediction. The solid line shows a second-order polynomial fit to the data (see text). Vertical
error bars are statistical, while systematic errors in AT,/ Tv0 are assessed to be <1 % [7]. (Figure
adapted from [7])

AT, a a\?
~bi—+by| — |, 16.21
70 oy + Z(A()) ( )

c
with by = —3.5£0.3 and by =46 £ 5. The value of b; is in agreement with the MF
prediction of —3.426. The b, value strongly excludes the MF result of bg/": ~11.7
and its sign is consistent with the expected effect of beyond-MF critical correlations.
Fixing b1 = —3.426 (which is expected to be exact even including beyond-MF ef-
fects) gives an improved estimate of by =42 £ 2.

16.4.2 Connection with a Uniform Bose Gas

In order to make a connection between the experiments on trapped atomic clouds
and the theory of a uniform Bose gas we also need to consider the effect of interac-
tions on the critical chemical potential p..

In a uniform gas the interactions differently affect 7, (or equivalently n.) and
fc at both MF and beyond-MF level. The simple MF shift BuMF = 4¢(3/2)a /Ao
(where B = 1/kpT) has no effect on condensation. To lowest beyond-MF order we
have:?

2
a
Bite ~ B + By (A—O) : (16.22)

8Note that B, is not just a constant but contains logarithmic corrections in a/Ag [23]. We neglect
these in our discussion since they are not discernible at the current level of experimental precision.
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Fig. 16.8 Beyond-MF effects near the critical point in a harmonically trapped Bose gas. (a) For a
fixed T, the density distribution at the critical point N = N, < NMF (solid grey line) is compared
with the MF prediction (dashed line). In the trap centre we expect n{VIF —ne & a/ig, characteristic
of a uniform system. However the experimentally measured NéVIF — N, x (a /}»0)2 is dominated
by the density shift outside the central critical region, and is not directly related to the n. shift.
(b) If N is increased to NFMF > N, a condensate induced by critical correlations forms within the
critical region of size o a/Ag. The condensed atom number Ny  (a/Ao)* directly relates to the
critical density shift An. oca/Ag. (Figure adapted from [8])

We see that there is a qualitative difference between (16.19) and (16.22). Specifi-
cally, we have n?"F —ne xa/kig, but ME"F — e X (a/ko)2. This difference high-
lights the fact that the problem of the 7, shift is non-perturbative; near criticality the
equation of state does not have a regular expansion” in y, otherwise one would get
Ane X e — /LIC\./[F. For a harmonic trap, within LDA the uniform-system results for
n. and p. apply in the centre of the trap, and elsewhere local u is given by (16.5).
The result for the T, shift however does not carry over easily to the non-uniform
case. As illustrated in Fig. 16.8(a), in the centre of the trap we expect An, ca /Ao,
but the measured beyond-MF AN, « (a /)Lo)2 (see (16.21)).

In fact, the experimentally observed T, shift (16.21) qualitatively mirrors (16.22),
with the MF term linear in a/Ao and the beyond-MF one quadratic in a/A¢ (to
leading orders). This similarity can be understood as follows: The interaction shift
of . affects the density everywhere in the trap; outside the small critical region the
equation of state is regular in © and the local density shift is simply proportional to
the local p shift; the contribution to the total N, shift from the non-critical region
greatly outweighs the contribution from within the critical region and therefore one
qualitatively expects N. — NMF oc . — uMF. More quantitatively, this connection
is given by'? [23]

_ @
16)

The key conclusion of this discussion is therefore that the beyond-MF T, shift
observed in a trapped gas is directly related to the beyond-MF g, shift (in either

—3(by — b)) (16.23)

9The non-interacting equation of state (16.3) cannot be expanded about D, in S, but rather in
/—Bw; up to first order this expansion gives D = D, — 2/ /—B . This scaling goes some way
in explaining the qualitative difference between (16.19) and (16.22) although it cannot be used
quantitatively.

10Note that this relationship is closely related to (16.13).
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trapped or uniform system). It does not however directly reveal the expected linear
n. shift and the theoretically most intriguing non-perturbative connection between
e and n. shifts. In fact one could say that the historically puzzling (theoretical)
connection between n. and p. is just replaced by the puzzling connection between
(expected) n. and (measured) N,.

This problem can be partly overcome by studying the condensed fraction fj in
a trapped atomic cloud at the MF-predicted critical point [8]. By definition fy van-
ishes within MF theory, and so directly measures the effect of critical correlations
which shift 7, above TMF. At a fixed T we consider the condensed fraction of a
gas, Ng/N, at the point where N = NCMF > N, as illustrated in Fig. 16.8(b). The
analogous quantity for a uniform gas was first theoretically studied by Holzmann
and Baym [38], who showed that!! no/n x An. < a/rg. The condensate density
ng vanishes at the point where the local & = ., so from (16.5) and (16.22) we get
that the spatial extension of the condensate is also o a /Ao, and hence fy o (a/Xo)*.

The quartic scaling of f with a /A is thus directly related to the expected linear
scaling of An. with a/Ag; the two scalings are simply connected by the volume of
the critical region, o (a/Ao)>. This scaling is indeed confirmed experimentally [8],
as shown in Fig. 16.9.

One can take the comparison with theory beyond just the scaling of fy with a/A,
and quantitatively compare the measured N at the MF critical point with the Monte-
Carlo (MC) calculations [39] for a uniform gas. This also works out very well, with
the measured and predicted Ny agreeing within a few percent [8]. It is however
important to carefully summarise the conceptual steps involved in this comparison:

(i) On the one hand, the measurements of the 7, shift [7] experimentally pro-
vide (up to logarithmic corrections) the value of u%’IF — e o (a/rg)?, via (16.21),
(16.22), and (16.23) [8].

1'Thig scaling holds for any distance from the critical point given by (1 — ¢) (Ao /a)2 = const. By
applying it to the MF critical point we neglect the logarithmic corrections to MI;/IF — W¢, which are
so far not experimentally observable.
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(i1) On the other hand, the MC calculations [24, 39] that predict the n. shift of
(16.19) also provide tabulated values of the uniform-system condensate density ng
for any p — e o (a/ro)?.

(iii) Combining these two results and the LDA (16.5) we calculate the expected
Np in a trapped gas with N = NMF and find excellent agreement with the measure-
ments shown in Fig. 16.9 [8].

Overall this provides strong cross-validation of theory and experiment. However
it is important to note that the two different measurements of beyond-MF effects
(i.e. of the T, shift and f) do not provide two independent quantitative tests of the
uniform-system theory. Instead, what we have shown is that they are consistently
connected via the MC calculations for a uniform system. Finally it is also important
to stress that we are still lacking a direct measurement of the n. shift, which would
explicitly test the historically most debated theoretical result of (16.19). This goal
remains open for future measurements, either of the local density in a harmonically
trapped gas or on a uniformly trapped atomic gas.

16.5 Equilibrium Criteria and Non-equilibrium Effects

Finally, we discuss the criteria for the measurements on a trapped Bose gas to faith-
fully represent its equilibrium properties, and the non-equilibrium effects revealed
when they are violated. It is helpful to distinguish two types of non-equilibrium
behaviour, transient and intrinsic.

Transient non-equilibrium effects are more familiar, and occur whenever some
system parameter, such as the interaction strength, is rapidly changed (quenched).
After such a quench the system relaxes towards its new equilibrium. Classically, one
can estimate the relaxation time to be several elastic scattering times 1/ye], where
yel s the elastic scattering rate [40—43].

However a system with continuous dissipation can only be “close to” thermody-
namic equilibrium and is to some extent always intrinsically out of equilibrium. The
proximity to equilibrium broadly depends on the competition between relaxation
and dissipation. For an atomic gas, this leads to a criterion based on the dimen-
sionless parameter y. T, where T is some characteristic dissipation time, e.g. for
atom loss. In practice, the relevant t and the criteria for equilibrium measurements
depend on the required measurement precision.

In the case of the 7, measurements presented in Sect. 16.4, N, is determined to
about 1 %, so we require that the gas continuously (re-)equilibrates on a timescale T
corresponding to only 1 % atom-loss. This requires about 100 times higher y, than
one would naively conclude by taking the 1/e lifetime of the cloud as the relevant
timescale.

An interesting question is then what happens if we violate these stringent equi-
librium criteria. In Fig. 16.10(a) we show measurements extending beyond the equi-
librium region shown in Fig. 16.7, and in Fig. 16.10(b) we plot the corresponding
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Fig. 16.10 Non-equilibrium L T
effects. (a) AT,/ T2 is @)
determined assuming

equilibrium, as in Fig. 16.6. & 07
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curve. (b) Equilibrium criteria 8]
(see text): ye T (solid squares)
is the number of elastic
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(open circles) marks the onset :_E

of the hydrodynamic regime. .
(Figure adapted from [7]) .
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el T. Individually, ) and 7 vary vastly as a function of a (y.] increasing and 7 de-
creasing) [7], but the breakdown of equilibrium appears to occur at y¢T & 5 in both
the low- and high-a limit.

In the small-a limit the apparent 7, is significantly above the equilibrium curve.
We can qualitatively understand this effect within a simple picture. In this regime,
losses are dominated by one-body processes which equally affect Ny and N’'. The
net effect of equilibrating elastic collisions would therefore be to transfer atoms
from the condensate to the thermal cloud. However the dissipation rate is too high
compared to ye], and so Ny remains non-zero even after the total atom number drops
below the equilibrium critical value N,.

In the large-a limit the initial breakdown of equilibrium again appears to result in
condensates surviving above the equilibrium 7,.. However the physics in this regime
is much richer, with several potentially competing effects requiring further inves-
tigation. For example, three-body decay affects No and N’ differently, the thermal
component is far from saturation, and the thermal component of the gas also enters
the hydrodynamic regime, /@ > 1.

16.6 Conclusions and Outlook

In this chapter we reviewed the recent advances in the experimental observation and
theoretical understanding of the effects of interactions on Bose-Einstein condensa-
tion (BEC) of harmonically-trapped ultracold atomic gases.

These systems are generally considered weakly interacting, but still display in-
tricate deviations from the textbook picture of ideal-gas condensation. Even very
weak interactions, necessary to maintain thermal equilibrium, lead to a strong devi-
ation from the purely statistical picture of condensation driven by the saturation of
the excited states in the system. The condensation temperature 7, is also affected
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by interactions; recently it became possible to measure beyond-mean-field effects
of interactions on 7, and quantitatively relate the experiments on trapped atomic
gases with the theoretical literature on spatially uniform systems. Based on preci-
sion measurements of the non-saturation effects and the 7, shift, it is now possible
to construct a simple effective equation of state describing a weakly interacting Bose
gas in the vicinity of the BEC critical point.

Most of the experimental research so far focused on the equilibrium properties
of an interacting gas. However these studies also led to an improved understand-
ing of the conditions necessary for the system to be in thermal equilibrium, and
first observations of non-equilibrium effects that emerge when those conditions are
violated. Further study of these non-equilibrium phenomena promises to become
a particularly exciting new research direction. Ultracold atomic gases are very well
suited for such a study because non-equilibrium dynamics occur on easily resolvable
timescales of milliseconds to seconds. Ultimately this research could improve our
understanding of condensation in intrinsically out-of-equilibrium quantum systems,
such as polariton gases.

References

—

A. Einstein, Sitz.ber./Phys. KI. Preuss. Akad. Wiss. 1, 3 (1925)

2. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

3. C. Pethick, H. Smith, Bose—Einstein Condensation in Dilute Gases (Cambridge University
Press, Cambridge, 2002)

4. L. Pitaevskii, S. Stringari, Bose—Einstein Condensation (Oxford University Press, Oxford,
2003)

5. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

6. N. Tammuz, R.P. Smith, R.L.D. Campbell, S. Beattie, S. Moulder, J. Dalibard, Z. Hadzibabic,
Phys. Rev. Lett. 106, 230401 (2011)

7. R.P. Smith, R.L.D. Campbell, N. Tammuz, Z. Hadzibabic, Phys. Rev. Lett. 106, 250403
(2011)

8. R.P. Smith, N. Tammuz, R.L.D. Campbell, M. Holzmann, Z. Hadzibabic, Phys. Rev. Lett. 107,
190403 (2011)

9. F Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

10. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

11. N.N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947)

12. V.N. Popov, Functional Integrals and Collective Modes (Cambridge University Press, Cam-
bridge, 1987)

13. R.L.D. Campbell, R.P. Smith, N. Tammuz, S. Beattie, S. Moulder, Z. Hadzibabic, Phys. Rev.
A 82, 063611 (2010)

14. M. Zaccanti, B. Deissler, C. D’Errico, M. Fattori, M. Jona-Lasinio, S. Mueller, G. Roati,
M. Inguscio, G. Modugno, Nat. Phys. §, 586 (2009)

15. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Bose-Einstein condensation in atomic gases,
in Proceedings of the International School of Physics Enrico Fermi, vol. CXL (I0S Press,
Amsterdam, 1999)

16. F. Gerbier, J.H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. A 70,
013607 (2004)

17. T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957)

18. T.D. Lee, C.N. Yang, Phys. Rev. 112, 1419 (1958)



19.
20.
21.
22.

23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.
40.
41.

42.
43.

Effects of Interactions on Bose-Einstein Condensation of an Atomic Gas 359

M. Bijlsma, H.T.C. Stoof, Phys. Rev. A 54, 5085 (1996)

G. Baym, J.P. Blaizot, M. Holzmann, F. Lalog, D. Vautherin, Phys. Rev. Lett. 83, 1703 (1999)
M. Holzmann, W. Krauth, Phys. Rev. Lett. 83, 2687 (1999)

J.D. Reppy, B.C. Crooker, B. Hebral, A.D. Corwin, J. He, G.M. Zassenhaus, Phys. Rev. Lett.
84, 2060 (2000)

P. Arnold, G. Moore, Phys. Rev. Lett. 87, 120401 (2001)

V.A. Kashurnikov, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 87, 120402 (2001)

M. Holzmann, G. Baym, J.P. Blaizot, F. Lalog, Phys. Rev. Lett. 87, 120403 (2001)

G. Baym, J.P. Blaizot, M. Holzmann, F. Lalog, D. Vautherin, Eur. Phys. J. B 24, 107 (2001)
H. Kleinert, Mod. Phys. Lett. B 17, 1011 (2003)

M. Holzmann, J.N. Fuchs, G.A. Baym, J.P. Blaizot, F. Lalog, C. R. Phys. 5, 21 (2004)

S. Giorgini, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 54, R4633 (1996)

P. Arnold, B. Tomasik, Phys. Rev. A 64, 053609 (2001)

M. Houbiers, H.T.C. Stoof, E.A. Cornell, Phys. Rev. A 56, 2041 (1997)

M. Holzmann, W. Krauth, M. Naraschewski, Phys. Rev. A 59, 2956 (1999)

M.J. Davis, P.B. Blakie, Phys. Rev. Lett. 96, 060404 (2006)

0. Zobay, Laser Phys. 19, 700 (2009)

J.R. Ensher, D.S. Jin, M.R. Matthews, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 77, 4984
(1996)

F. Gerbier, J.H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. Lett.
92, 030405 (2004)

R. Meppelink, R.A. Rozendaal, S.B. Koller, J.M. Vogels, P. van der Straten, Phys. Rev. A 81,
053632 (2010)

M. Holzmann, G. Baym, Phys. Rev. Lett. 90, 040402 (2003)

N. Prokof’ev, O. Ruebenacker, B. Svistunov, Phys. Rev. A 69, 053625 (2004)

C.R. Monroe, E.A. Cornell, C.A. Sackett, C.J. Myatt, C.E. Wieman, Phys. Rev. Lett. 70, 414
(1993)

M. Arndt, M.B. Dahan, D. Guéry-Odelin, M.W. Reynolds, J. Dalibard, Rev. Mod. Phys. 79,
625 (1997)

N.R. Newbury, C.J. Myatt, C.E. Wieman, Phys. Rev. A 51, R2680 (1995)

G.M. Kavoulakis, C.J. Pethick, H. Smith, Phys. Rev. A 61, 053603 (2000)



Chapter 17
Universal Thermodynamics of a Unitary
Fermi Gas

Takashi Mukaiyama and Masahito Ueda

Abstract A Fermi gas at the unitarity limit, where the scattering length diverges, is
believed to exhibit universal thermodynamics. Recently, it has become possible to
derive thermodynamic properties of a uniform system from those of a harmonically
trapped system, enabling one to directly compare experimental results with many-
body theories. In this chapter, we provide an overview of theories and experiments
on the thermodynamics of a unitary Fermi gas.

17.1 Introduction

Strongly interacting Fermi systems offer a universal testbed for several subfields
of physics such as atomic physics, condensed-matter physics, and nuclear physics.
The interatomic interactions can be tuned simply by changing the strength of an
external magnetic field. In an ultralow-temperature regime, a two-component Fermi
gas of atoms shows superfluidity in various ways. In the positive s-wave scattering-
length side of a Feshbach resonance, where interatomic interactions are repulsive,
a two-component Fermi gas of atoms behaves as a gas of diatomic molecules and
exhibits Bose-Einstein condensation of molecules. In the negative side, where the
interactions are attractive, atoms form Cooper pairs and show BCS-type superflu-
idity. These two different regimes are considered to be the opposite extremes of a
single phase and cross over to each other across the Feshbach resonance.

The superfluid phase diagram in the BCS-BEC crossover regime was theoret-
ically predicted by Sa de Melo et al. in 1993 [1]. Back in those days, it was not
clear whether a strongly-interacting Fermi gas would show superfluidity at very
low temperatures or whether the system would be stable at all. In 2002, the Duke
group experimentally demonstrated that a system of fermionic lithium atoms in the
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unitary regime is stable [2]. They also found a hydrodynamic behavior in the expan-
sion of the gas [3] which is analogous to the elliptic flow in quark-gluon plasmas.
In 2004, the Innsbruck group observed a smooth change in the atomic density dis-
tribution across the Feshbach resonance, which indicates that the system crosses
over from the BEC to BCS regimes without undergoing a phase transition [4]. The
Innsbruck group also measured the pairing gap in this crossover region by using
RF spectroscopy [5]. In the same year, the JILA group and the MIT group ob-
served the emergence of condensation in ultracold Fermi gases in the BCS-BEC
crossover regime [6, 7]. However, the entire superfluid phase diagram in the BCS-
BEC crossover regime has not yet been determined, because of the difficulty in de-
termining the thermodynamic quantities including the temperature due to the strong
interatomic interaction. Understanding the thermodynamic behavior of a Fermi gas
at the unitarity limit is among the most important problems in the strongly interac-
tion Fermi system.

At the unitarity limit, thermodynamics is expected to become universal. In 1999,
Bertsch raised the question about the ground state of dilute spin-1/2 particles when
the scattering length diverges and the range of interaction is negligible [8]. He en-
visaged such a situation as an extreme case of the inner crust of neutron stars in
which the range of interaction R, neutron density n, and the scattering length ag
satisfy R ~ 1 [fm] < n~1/3 < las| ~ 18.5 [fm]. When the scattering length diverges
and the zero-range approximation is valid, the interaction parameter drops out of the
thermodynamic description and therefore we may expect the same thermodynamic
behavior at unitarity, regardless of the atomic species of constituent particles. This
is called the universal hypothesis. In this chapter, we present an overview of the
universal properties of a unitary Fermi gas.

17.2 Universality in a Unitary Fermi Gas

17.2.1 Universal Thermodynamics

We consider s-wave collisions in a two-component Fermi gas of atoms. The scat-
tering amplitude is described as f (k) = 1/(—1/ay + rek?/2 — ik), where k is the
relative wavenumber, a; is the scattering length, and r. is the range of the inter-
actions. At the unitarity and zero-range limits, where k|as| — oo and k|re| — O,
the scattering amplitude reaches the maximum f(k) = —1/ik. The characteristic
length scale of fermionic atoms is the Fermi wavenumber kg, which is on the or-
der of a typical interatomic distance n~!/3. The condition of the unitarity limit is
Ire] < n~1/3 « |a,|. In the case of fermionic lithium-6 (°Li) near quantum degener-
acy, a typical interatomic distance n~'/3 is on the order of a few hundred nanometers
and the range of interaction 7. is 5 nm. By tuning the s-wave scattering length to in-
finity using a Feshbach resonance, the unitarity limit can be realized experimentally.

Since the divergent scattering length and the negligibly small range of interac-
tion do not enter the thermodynamic description, the thermodynamics of a unitary
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Fermi gas depends only on the Fermi energy g and the temperature kg 7" [9, 10].
According to this universal hypothesis, the internal energy, which is the sum of the
kinetic energy and the interaction energy, is described by the following universal
thermodynamic function:

E = NEg fp(kpT /Ep) = N Eg fe(T/Tr). (17.1)

Here, Tf is the Fermi temperature and fg is a dimensionless universal function.
Other thermodynamic functions can also be described in similar universal forms;
for example, the chemical potential i, Helmholtz free energy F, and entropy S are
described as

w=Epf (T/Tp), (17.2)
F=NEpfr(T/Tp), (17.3)
S = Nkg fs(T/T). (17.4)

According to the universal hypothesis, the internal energy of a unitary Fermi
gas at T = 0 is given by E(l)lmmy/N = E(i)deal(l + B), where E(i)deal = %SFN is the
internal energy of an ideal Fermi gas, and B is a dimensionless universal parameter.
The ratio of the ground-state energy of a unitary Fermi gas to that of an ideal Fermi

gas E(l)mitary / E(i)‘]leal =1+ B =¢£ is called the Bertsch parameter, where 8 has been

measured to be —0.64(15) [11], —0.68(*013) [12], —0.49(4) [13], —0.54(*3%)
[14], —0.54(5) [15], —0.50(7) [16], —0.61(2) [17], —0.565(15) [18]; at the time
of writing, the latest experimental result gives & = 0.376(4) [19]. The fact 8 < 0
shows that the effective interatomic interaction is attractive at unitarity. This can be
confirmed by the experimental fact that the size of the cloud of a unitary Fermi gas
in a harmonic trap is smaller than that of an ideal Fermi gas with the same number
of atoms.

17.2.2 Pressure-Energy Relation and Virial Theorem

A unitary Fermi gas features several key properties that can be derived from the
form of the universal thermodynamic functions in (17.1)—(17.4). One is the rela-
tion between the pressure P and the energy density E/V [20, 21]. We consider
N atoms in a volume V. The pressure of the gas is determined from the relation
P =—(0E/dV)p,s. Equation (17.4) shows that the constant entropy implies con-
stant T/ Tg. Therefore, the pressure can be described as

2E 2F
P=—QE/OV)N 1/ = —Nfe(T/Tp)IER/0V = NfE(T/TF)§7 =3y
(17.5)

where we used Ep o« V—2/3. This relation is the same as the one for a uniform ideal
Fermi gas.
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Another key property of a unitary Fermi gas is the virial theorem [21]. The virial
theorem can be derived from (17.5) and the equation of force balance of a gas. At
mechanical equilibrium, an inward force due to a trapping potential and an outward
force due to the gas pressure balance everywhere inside the gas:

VP(r) +n(r)VUyp(r) =0. (17.6)

Taking the inner product of this equation with r and performing the volume integra-
tion, the first term yields

/r-VP(r)dr:/V-(rP(r))dr—/P(r)V-rdr

= —3/ P(r)dr
=-2N- Einternal - (17~7)

Here Einternal 1S the internal energy per particle. The first term on the right-hand
side of the first equality vanishes and (17.5) is used in deriving the last equality.
In a harmonic trapping potential which gives r - VUyp (r) = 2Uyap (1), the second
term in (17.6) is transformed by taking the inner product with r and performing the
volume integration to

/r “n(r)V U (r)dr = / 2n(r) Utrap (r)dr = 2N Epot. (17.8)

Thus, (17.7) and (17.8) give
Epot = Einternal- (17.9)

This is the same as the one for an ideal Fermi gas since the derivation starts from
(17.5) and (17.6), which hold for both a unitary Fermi gas and an ideal Fermi gas.
The experimental verification of (17.9) is reported in [21]. Since Epqt is proportional
to the mean square size of the cloud (x?), (17.9) can be verified by checking the re-
lation (x2(E)) / (x2(Ep)) = E /Eo, where E( denotes the ground-state energy. To
measure the energy of the gas, Thomas et al. first prepared the gas in the ground
state and then added the energy to the gas by turning off the optical trap for a
short time and recapturing the atoms. By recapturing the atoms after the expan-
sion, a controlled amount of energy was added to the gas in the form of a potential
energy. Since the unitary Fermi gas is strongly interacting, the expansion of the
unitary Fermi gas can be well described by hydrodynamics. By calculating the en-
ergy that is added to the gas due to the hydrodynamic expansion, they found the
precise energy of the gas after thermalization. Figure 17.1 shows the experimental
result of (x>(E))/(x>(Eg)) — 1 vs. E/Eq — 1. The dashed line in Fig. 17.1 shows
(xz(E))/(xz(Eo)) = 1.03(0.02) E/ Ep, which is consistent with the virial theorem.
Equation (17.9) is quite useful in experiments because the total energy of the gas is
derived from the potential energy, which can be measured directly from the density
profile.
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17.2.3 Measurement of Trap-Averaged Thermodynamic
Quantities

The first thermodynamic quantity that was measured experimentally was the
ground-state energy of a unitary Fermi gas in a harmonic trap. The ground-state en-
ergy is described as (1 4 ) EF, and several measurements of 8 have been reported
from the measurement of the size of the cloud [11-14, 17] and the measurement of
the first sound velocity [9] at the low-temperature limit.

Kinast et al. measured the heat capacity of a unitary Fermi gas using the opti-
cally trapped °Li atoms [13]. They measured the trap-averaged energy of the gas
as a function of temperature and observed a clear change in the temperature de-
pendence of the heat capacity upon the emergence of superfluidity. To determine
the energy, they applied the energy input technique [13]. In this experiment, they
determined the temperature by using the calibration curve from an empirical tem-
perature estimated by applying the Thomas-Fermi profile to a unitary Fermi gas.
Although the change in the heat capacity due to superfluidity was clearly observed,
the accuracy of the estimation of the critical temperature was limited by the em-
pirical temperature calibration. Later, they invented a new scheme to determine the
temperature of a unitary Fermi gas more accurately from the measurement of the
total energy and entropy [17, 22]. The entropy of the gas can be determined from
the density profile at a magnetic field where the scattering length is small enough
to guarantee that the entropy versus cloud size curve is to a good approximation
given by that for an ideal gas. From the energy and entropy measurements, they
determined the relation between energy and temperature by applying the thermo-
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dynamic relation 1/7T = 9dS/0E to the entropy vs. energy data. Therefore, once
we know any one of the energy, entropy or temperature, we can find the other
quantities from the relations obtained by the Duke group. This is quite useful be-
cause the total energy can easily be obtained from the potential energy which is
calculated from the absorption image and the information about the trapping poten-
tial.

Stewart et al. measured the potential energy of a unitary Fermi gas of “°K [14].
They investigated the temperature dependence of the potential energy of a gas in a
harmonic trap and determined f at the low-temperature limit. Their result is consis-
tent with that obtained from experiments using oLi [11-13, 15-18], which indicates
the universality of the thermodynamics.

Hu et al. analyzed the data of the trap-averaged energy vs. entropy measured at
Duke and Rice using °Li and at JILA using “°K (Fig. 17.2) [23]. All the experi-
mental data are consistent with each other, which indicates that the thermodynamics
of a unitary Fermi gas is universal independent of the atomic species and trapping
condition over a wide range of temperature.

However, these results are obtained from trap-averaged quantities, and they do
not provide direct information on the universal thermodynamic functions. The uni-
versal thermodynamic functions for a unitary Fermi gas have kg7 /EF as an ar-
gument. Since the scattering between atoms occurs so frequently that the ther-
mal equilibrium is always achieved, implying that kg7 is constant over the entire
atomic cloud. However, since an atomic gas in a harmonic trap has a nonuniform
density profile, the Fermi energy Ef, which depends on the density n, becomes
position-dependent. Therefore kg7 / EF is also position-dependent, which makes it
difficult to derive the thermodynamic functions from the trap-averaged thermody-
namic quantities and to compare experimental results with theoretical ones [24—
28]. To determine the detailed shape of the thermodynamic functions, it is neces-
sary to measure both the thermodynamic quantities and kg7 / EF at the same posi-
tion.
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Fig. 17.3 Experimental confirmation of the universal behavior of a strongly interacting Fermi
gas. (a) Momentum distribution of a unitary Fermi gas measured at JILA using *“°K. The high-
momentum tail shows the k~* dependence. (b) RF spectrum showing the v~/ dependence at the
high-frequency region. (¢) Static structure factor measured by the Swinburne group, showing the
1/k dependence. (a) and (b) are taken from [34] and (c) is taken from [35] with permissions

17.2.4 Tan Relations

In 2008, Tan predicted several remarkable relations between the momentum distri-
bution and thermodynamic quantities [29-31]. These relations, known as Tan rela-
tions, hold quite generally for interacting gases in the sense that they can be applied
to any system that satisfies

ro < ay, n= V3, (hymaw)'/?, (17.10)

where rg is the range of interaction, n~!/3 is the mean interparticle distance,
A =h//2rmkgT is the thermal de Broglie length, and (71/mw)'/? is the size of the
harmonic potential with the energy separation /w. In typical cold atom experiments
near quantum degeneracy, ro is much smaller than any of n='/3, A, and (fi/mw)'/2.
At the unitarity limit where a; diverges, the Tan relations become exact. When the
condition (17.10) is met, it is known that the momentum distribution of a Fermi gas
over the range

a7l 0307 (yme) TP <k <yt (17.11)

can be described as n(k) = C /k4 [32], and Tan dubbed C as contact. Since the
number of atoms with the wavenumber larger than K¢ is given by N (k| > K¢) =
C/27*Kc, the contact may be interpreted as a measure of the number of high-
momentum atoms [33]. The contact is also related to the density-density correlation
of atoms and can be considered as a measure of the number of pairs of atoms in a
small volume [33].

The universal properties of interacting fermions have been experimentally con-
firmed by several groups. Figure 17.3(a) shows the measurement of the momentum
distribution of a unitary Fermi gas performed at JILA [34]. The magnetic field was
tuned quickly to switch off the atomic interaction when the atoms were released
to measure the momentum distribution. The JILA group confirmed that the high-
momentum tail of the distribution has the predicted k~* dependence and obtained
the contact from the asymptotic behavior of the rf spectrum. Figure 17.3(b) shows
the frequency dependence of the transition rate in the RF spectroscopy [34]. The
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v~3/2 dependence of the line shape of the RF spectrum at the high-frequency region
is another consequence of the universal behavior. Since the static structure factor is
the Fourier transform of the density-density correlation which can be described in
terms of the contact [33], the static structure factor S(k) can also be used to test the
universal behavior. Figure 17.3(c) shows the measurement of S(k) using the Bragg
spectroscopy performed by the Swinburne group [35]. The 1/k dependence of S (k)
shows the predicted universal behavior.

Although the contact depends on the scattering length, atomic density and tem-
perature, the relations between thermodynamic quantities and the contact are uni-
versal. A prime example that has been verified experimentally is the virial theorem
[34]. For interacting particles in a harmonic trap, the kinetic energy T, the interac-
tion energy I and the potential energy V satisfy the following equation:

T+1-V=—-C/4nkga. (17.12)

The virial theorem for the unitary gas mentioned in the previous sectionis 7 + I —
V =0, which is given as the special case of (kpa)~! = 0. Figure 17.4 shows the
experimental verification of the virial theorem over a range of the scattering length.
The left- and right-hand side of (17.12) are plotted as closed and open circles. Those
two quantities agree within the uncertainty, showing the universality of the system.
The JILA group also tested the adiabatic sweep theorem [34]. Tan relations show
that many thermodynamic quantities are related to one another through the contact,
and it will therefore be useful to derive thermodynamic quantities which cannot be
measured directly from the experiment.

17.3 Experimental Determination of Universal Thermodynamics

17.3.1 Determination of Universal Energy Function E(T)

One way to determine the universal thermodynamic functions is to measure the local
energy density [36]. As mentioned in Sect. 17.2.2, the local pressure of a trapped
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gas is related to the internal energy through (17.5) at the unitarity limit. Therefore,
we can determine the local energy by measuring the local pressure in a gas. At
thermal equilibrium, (17.6) can be used to determine the local pressure P(r) from
the information of the trapping potential Uyap(r) and the atomic density profile
n(r). By relating fg(r) =3P(r)/2n(r)Er(r) to the reduced temperature 7'/Tf at
the same position, we determine the universal energy function fg(7 /7). In fact,
we can determine fg(7/Tr) over a wide range of temperature from a single density
profile because it contains the information of the universal functions ranging from
fe(T/ TFO) at the cloud center to fg(co) at the edge of the cloud, where TF0 is the
Fermi temperature at the center of the cloud.

The degenerate Fermi gas of °Li are prepared in the two lowest spin states in an
optical dipole trap, and the magnetic field of 834 gauss is applied to realize the uni-
tary gas condition. The temperature of the gas is controlled by the final trap depth
of evaporative cooling, and the gas is held until the system reaches thermal equilib-
rium. The atomic density distribution n(r) is determined from the absorption image
taken perpendicular to the axial direction after a 3 ms free expansion at the same
magnetic field. From the image, we construct an in situ three-dimensional atomic
density distribution under the assumption of local density approximation (LDA)
and hydrodynamic expansion. The temperature T is determined by using thermom-
etry for the trapped unitary Fermi gas, which allows us to estimate 7'/ TF yap from
Eotal/ EF,trap [17, 37]. Here, EF rap = kBTF,trap = hw(3N)'/3 is the Fermi energy
in the trap and Eig = 3mw§(zz) is the total energy per particle. The absolute tem-
perature T is obtained by multiplying the given T/ TF trap by TF trap-

Since the thermodynamic function of an ideal Fermi gas also has the univer-
sal form and obeys (17.5) and (17.6), we first applied the measurement scheme
mentioned above to an ideal Fermi gas to check the validity of the scheme. 50 pro-
files taken at 526 gauss, where the scattering length is zero, are analyzed according
to the above procedure. The green open circles in Fig. 17.5 show the experimen-
tally obtained thermodynamic function of the internal energy for an ideal Fermi gas

}Edeal(T /Tr). The experimental data show excellent agreement with the theoreti-
cal curve (green curve), which indicates that we have successfully determined the
thermodynamic function for an ideal Fermi gas.



370 T. Mukaiyama and M. Ueda

(b) 10 (c)

05 20
0.0 - 0.5 - 25—
-05 — 2.0
& “200 | \\ & 15—
-1.0 N :
-0.5 1.0
-15 — 4
"‘n\ 05—
20+ -1.0 4 i
0.0 —
T T T T 1 1 T T T T 1 1T 1T T T T T
02 04 06 08 10 12 00 02 04 06 08 10 1.2 00 02 04 06 08 10 12

Fig. 17.6 Universal functions for (a) the Helmholtz free energy, (b) chemical potential, and (c) en-
tropy. The red dots show the measured data for a unitary Fermi gas, and the green solid curves show
the corresponding functions for an ideal Fermi gas

Next, the same scheme is applied to the unitary Fermi gas. By analyzing 800
measured profiles, we determined fr (7 /Tg) for various trap geometries and tem-
peratures, and confirmed that fg (7 /Tr) determined by this method is independent
of the trap geometry. The red dots in Fig. 17.5 show the experimentally determined
fE(T /TF) for the unitary Fermi gas. Because of the effective attractive interaction at
the unitarity limit, fg(7/TF) for the unitary Fermi gas is smaller than }Sdeal(T /Tr).

Now that the universal function of the internal energy is determined, other ther-
modynamic functions for the unitary gas can also be determined from the energy
function. The universal function of the Helmholtz free energy, chemical potential,
and entropy are derived from the standard thermodynamic relations as fg(T/Tf) =
FE(T)Te) = T/ T f(T/Tr), £u(T/Te) = {5 fr(T/Tr) — 2T T f}(T/Tr)}/3, and
fs(T/Tg) = — f.(T /T), respectively, and plotted in Fig. 17.6.

17.3.2 Determination of the equation of state P(u, T)

Nascimbene et al. determined the equation of state P (w, T') for a unitary Fermi gas
of ®Li [38]. They determined the local pressure of the gas from the in sifu absorption
images, following the proposal by Ho and Zhou [39] who showed that the local
pressure is related to the doubly-integrated density profiles:

My wy

P(0,0,z; 1(0,0,2), T) = o

7(z), (17.13)

where P (0,0, z; i, T) is the local pressure in the gas on the z-axis, m is the atomic
mass, wy and w, are the angular frequencies of the trap in the x and y directions,
and n(z) = f n(x,y, z)dxdy is the doubly-integrated density with n(x, y, z) being
the atomic density. They trapped a small number of "Li atoms together with °Li,
made both atomic species thermally equilibrated with each other, and determined
the temperature of ®Li from that of 7Li which was measured by the time-of-flight
measurement. To determine the chemical potential, they started with the data at a
high-temperature region, where the second-order virial expansion can be used as a
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reference. Once the equation of state for the high-temperature cloud is determined, it
can be used as a new reference for a colder gas in determining the chemical potential.
By iterating this procedure, they were able to determine the equation of state over a
wide range of temperature.

The pressure of the gas can be described as

w w
P, 2. T) = Pidear (01, T)h(n =8 = exp(——‘)), (17.14)
J1%] kg T

where w; and w, are the chemical potentials for two different species and
Pigeat(pt1, T) is the pressure of an ideal Fermi gas. The equation of state for a
spin-balanced gas h(1, ¢) is plotted as black dots in Fig. 17.7. From this data, they
derived the third and fourth virial coefficients and compared them with theoreti-
cal predictions. They analyzed the data to focus on the temperature dependence of
the pressure by plotting P(u, T)/ Pigeal (4, 0) as a function of (kg T/u)z. The data
show the T2 dependence of the pressure from the high-temperature side down to
(kgT /1)> ~0.1. The T? dependence of the pressure above the critical temperature
is consistent with the Fermi liquid behavior. By fitting the data with Fermi liquid
theory, they determined the Fermi liquid parameters. They observed the deviation
of the data from the 72 dependence at (kgT'/ w? ~ 0.1, and interpreted it as a
signature of the superfluid phase transition.

Now that there are two independent sets of experimental results on the thermo-
dynamics, we can compare them and check the consistency between them. The re-
sult discussed in Sect. 17.3.1 is the canonical equation of state E(n, T) and the
result mentioned in this section is the grand-canonical equation of state P(u, T).
By converting P(u, T') obtained by the ENS group to E(n, T) [40], we can di-
rectly compare these two results. Figure 17.8 shows the thermodynamic function
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Fig. 17.8 Comparison of
fE[T/Tr]. Red dots show
fE[T/Tr] measured by the
Tokyo group [36] and blue
squares show fg[T/Tr]
measured by the ENS group
[38, 40]

02 04 06 08 10 12
/T

fe[T/Tr] = E /N EFf obtained by the Tokyo group (red dots) and the ENS group
(blue squares). The two data sets are consistent with each other.

17.4 Signatures of the Superfluid Phase Transition

17.4.1 Detection of the Phase Superfluid Transition

To detect an emergence of a condensate, we release an atomic cloud from a trap to
measure its momentum distribution and observe the bimodal distribution which is
composed of a zero-momentum component at the center and a thermal component
surrounding it. This technique can be used to probe the condensation of Bose gases
but cannot be used for a fermion pair condensate except in the deep BEC regime.
This is because the fermion pairs are formed due to the many-body effect and there-
fore pairs are broken as the density of atoms decreases during the expansion. There-
fore, to detect a condensation in a Fermi gas, it is necessary to measure the center-
of-mass momentum distribution of the pairs. In 2004, Regal et al. demonstrated a
new scheme to detect the condensation of fermions using *°K [6]. When they re-
lease the Fermi gas, they sweep the magnetic field from the BCS-BEC crossover re-
gion to the deep BEC regime to convert correlated fermion pairs into tightly-bound
molecules. When the magnetic field sweep is slow enough to satisfy the adiabatic
condition for the atom pairs to follow the two-body bound state, and fast enough
to ensure that collisions between atoms can be neglected within the sweep time,
atom pairs are efficiently converted into tightly-bound dimers (Fig. 17.9(a)). By ap-
plying the magnetic field sweep just before expansion of the gas, we are able to
measure the center-of-mass momentum distribution of atom pairs. Figure 17.9(b)
shows a typical center-of-mass momentum distribution of atom pairs obtained in
the actual experiment. An emergence of the condensate can clearly be seen when
the temperature is lower than the critical temperature. The onset of superfluidity can
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Fig. 17.9 Schematic illustration of converting pairs of fermions into tightly-bound dimers. (a) To
measure the center-of-mass momentum of correlated atom pairs at the Feshbach resonance By,
the magnetic field is swept to the BEC side of the resonance as indicated by the green arrow.
(b) Time-of-flight images taken after the magnetic field sweep. Top image shows the center-of-mass
momentum of atom pairs at T, and the lower ones were taken at lower temperatures, where the
central peak shows the condensate

be identified by observing a sudden change in the thermodynamic properties. The
changes in the frequency and damping rate of collective excitations were extensively
studied to observe a superfluid hydrodynamic behavior. However, since the atoms
near a Feshbach resonance are strongly interacting, they show collisional hydrody-
namic behavior even at temperature higher than 7¢. It was difficult to distinguish
between superfluid and collisional hydrodynamics. In 2005, the Duke group deter-
mined the superfluid transition point as a change in the heat capacity of a unitary
Fermi gas [13]. More recently, the ENS group measured the pressure as a function
of (kgT/u)? and observed the deviation from a Fermi liquid behavior at 7. Very
recently, the MIT group measured the compressibility and the specific heat as a
function of temperature for a homogeneous gas and observed the superfluid lambda
transition at 7¢ [19].

17.4.2 Measurements of Critical Parameters

Figure 17.10 shows the condensate fraction as a function of the ratio of the total
energy to the Fermi energy EF ip in a harmonic trap [36]. The condensate frac-
tion was determined by fitting the momentum distribution of molecules measured
after the magnetic-field sweep with a bimodal distribution. In this measurement, the
sweep time required to leave the strongly interacting regime is 2 us. This time scale
is much shorter than the typical relaxation time of 500 ps. Therefore, the condensate
fraction is not likely to change noticeably during the sweep.

In our experiment [36], the critical total energy is determined to be E¢/EF trap =
0.76(1) and the reduced temperature is determined to be T;,/Tg = 0.17(1) from the
peak atomic density and the cloud temperature. The universal functions have the
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critical values of fg[T./Tr] =0.32(2), fr[1c/Tr]l =0.21(1), f,[Tc/Tr] = 0.42(2),
and fs[7T./Tr] = 0.7(2). The experimental and theoretical results of the critical
temperature, energy, chemical potential and entropy obtained by several groups are
listed in Table 17.1.

17.4.3 Fermi Liquid vs. Non-Fermi Liquid

In high-T; materials, a gap structure in the single-particle density of states has been
observed above the critical temperature. This phenomenon is known as a pseudo-
gap, the origin of which has long been debated. Among the possible scenarios for
explaining the pseudo-gap phenomenon is pre-formed pairing which implies that
formation of pairs and emergence of the superfluidity occur at different temper-
atures. Identification of the microscopic mechanism of pairing and characteriza-
tion of the pseudo-gap phase are important for understanding the superfluidity in a
strongly-interacting Fermi gas.

The JILA group conducted a photoemission spectroscopy of “°K atoms in a
strongly-interacting regime [42, 43]. By resolving momentum and energy at the
same time, which is analogous to the angle-resolved photoemission spectroscopy,
they observed a change in the dispersion relation of a strongly-interacting Fermi gas
from above to below the superfluid critical temperature. An RF field was applied to
drive one of the two components of the Fermi gas to a third state that has negligi-
ble interactions with the original two states. The dispersion relation of atoms in the
third state is then the same as the one for a free particle, and therefore it is possible
to measure the energy of a unitary Fermi gas from the resonant frequency of the ap-
plied RF field. Furthermore, they released the atoms at the same time and measure
the momentum of atoms in the third state by reconstructing the three-dimensional
momentum distribution from the time-of-flight images. This technique cannot be
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Table 17.1 Experimental and theoretical superfluid critical parameters of a unitary Fermi gas

T./Tr E(T)/NTe w(To)/Te  S(Tc)/Nks

Experimental results Horikoshi et al. [36] 0.17(1) 0.32(2) 0.42(2) 0.7(2)
Nascimbene et al. [38] 0.157(15) 0.49(2)
Ku et al. [19] 0.167(13) 0.73(13)

Calculated values Bulgac et al. [24] 0.23(2) 0.41 0.45 0.99
Burovski et al. [25] 0.152(7)  0.31(1) 0.493(14) 0.16(14)
Hu et al. [26] 0.225 0.4 0.459 0.91
Haussmann et al. [27] 0.16 0.304 0.394 0.71
Nishida [41] 0.249 0.212 0.18 0.698

applied to ®Li atoms because there is no useful third state with negligible interac-
tions with the initial states. The JILA group measured the temperature dependence
of the dispersion relation by the photoemission spectroscopy and observed the back-
bending of the dispersion around k ~ kg, which is a characteristic behavior of the
BCS-type dispersion relation even above the critical temperature. They concluded
that the pseudo-gap theory based on the existence of a finite excitation gap due to
preformed pairs describes the properties of a strongly-interacting Fermi gas.

On the other hand, Nascimbene et al. observed the T2 dependence of the pres-
sure, which is a characteristic feature of the Fermi liquid above the critical tem-
perature [38]. The MIT group also measured the temperature dependence of the
magnetic susceptibility of a unitary Fermi gas and showed that their result is consis-
tent with no excitation gap above the critical temperature, which is consistent with
Fermi liquid theory [44]. It seems that the fundamental understanding of the unitary
Fermi gas above T is still elusive, as in high-T, superconductivity.

17.5 Summary and Outlook

In this chapter, we have reviewed the recent developments on the thermodynamics
of a unitary Fermi gas. Experimental studies on the thermodynamics using ultra-
cold atoms had been conducted through trap-averaged thermodynamic quantities.
Recently, it has become possible to determine local thermodynamic quantities of
harmonically trapped gases. Universal thermodynamic functions and the equation
of state of a unitary Fermi gas have thus been quantitatively determined. Such ex-
perimental advances have enables us to study thermodynamics of a homogeneous
gas and to directly compare experimental results with theories.

A future challenge is to improve the accuracy of the measurement of the ther-
modynamics. In this direction, Ku et al. recently performed the measurement of the
equation of state of a unitary Fermi gas without any external data input [19]. In
their work, clear thermodynamic signatures of the superfluid phase transition have
been identified via high precision measurement of the compressibility and specific
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heat. Another challenge will be to extend the measurement of the thermodynamics
to a Fermi gas away from unitarity. ENS reported the experimental determination
of the thermodynamics of a Fermi gas in the BCS-BEC crossover regime at the
low-temperature limit. Measurements of thermodynamic properties over a broad
temperature range in the crossover regime will be the next challenge. New schemes
that can be applied at finite temperature need to be developed.

As for thermodynamic measurements on a Bose gas near unitarity, Papp et al.
measured the excitation spectra of a strongly-interacting Bose gas of 3°Rb using
Bragg spectroscopy, and observed the beyond mean-field effect in the spectra [45].
More recently, the ENS group observed the equation of state of a Bose gas of ’Li
with the scattering length of 2000ag [46]. The same group also determined the up-
per bound of the universal parameter for a Bose gas in a non-equilibrium condition.
However, the thermodynamics of bosons at the unitarity limit is not yet fully under-
stood because of the strong inelastic loss near Feshbach resonances.
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Chapter 18
High Resolution Electron Microscopy
of Quantum Gases

Giovanni Barontini and Herwig Ott

Abstract The complete understanding of the properties of ultracold and degen-
erate samples requires the ability to probe and manipulate such systems with ex-
tremely high resolution and precision. The introduction of the scanning electron
microscopy (SEM) techniques on ultracold atoms provides the necessary tool for
such purposes, thus allowing the observation of several fundamental phenomena
with unprecedented clarity. Thanks to its extremely high resolution (<100 nm) and
to the single-atom sensitivity the SEM method permitted the first observation of in
situ profiles of trapped Bose-Einstein condensates of 8’Rb and of ultracold clouds
in one- and two-dimensional optical lattices. Moreover the single lattice sites were
selectively addressed and manipulated thus demonstrating the possibility to create
arbitrary patterns of occupied sites. In addition to the spatial characteristics of ul-
tracold samples the SEM technique allows for the investigation of their dynamical
processes. Moreover, exploiting the single atom sensitivity of the method, second
and higher order correlation functions can be measured as well.

18.1 Introduction

The density distribution of a many-body wave function of an ultracold quantum gas
can be visualized by various techniques. Absorption imaging [1] the workhorse in
most experiments and is typically applied in time of flight in order to increase the
cloud size and reduce the optical density. To date, it is possible to image a single
atom in absorption [2]. Fluorescence imaging [3—10] also allows for single atom
detection with almost 100 % efficiency. It can be applied in time of flight or in situ.
The success of this technique is best reflected in the studies of the properties of
two-dimensional Mott-insulators where single atom sensitivity was combined with
single site resolution [9, 10]. One fundamental aspect of fluorescence imaging is
that the atoms have to be hold in a trap during the imaging procedure in order to
accumulate enough scattered photon. The available resolution of optical imaging

G. Barontini (<) - H. Ott

Research Center OPTIMAS and Fachbereich Physik, Technische Universitit Kaiserslautern,
67663 Kaiserslautern, Germany

e-mail: g.barontini@gmail.com

A. Bramati, M. Modugno (eds.), Physics of Quantum Fluids, 379
Springer Series in Solid-State Sciences 177, DOI 10.1007/978-3-642-37569-9_18,
© Springer-Verlag Berlin Heidelberg 2013


mailto:g.barontini@gmail.com
http://dx.doi.org/10.1007/978-3-642-37569-9_18

380 G. Barontini and H. Ott

techniques is limited by the wavelength of the used light field. In practice, the best
reported resolution is about 400 nm [2].

Direct particle detection, e.g. of metastable atoms [11, 12] or of ionized atoms,
is an alternative way which allows for the detection of the particle in a single in-
stant. It does not require the accumulation of scattered photons from the sample and
no trap is needed. However, as only one single interaction process is involved, the
detection efficiency can be limited. Especially attractive are such techniques which
allow for the time-resolved in situ observation of ultracold atoms. Scanning electron
microscopy is a versatile in sifu detection technique of single atoms in a quantum
gas [13]. It combines high spatial resolution with single atom sensitivity and can be
applied to bulk and lattice systems. The range of possible applications spans from
density measurements over correlation measurements up to density engineering and
dissipation effects. By the basic principle, this method can reach an unprecedented
spatial resolution. In standard scanning electron microscopy, the current record in
resolution is below 1 nm and has reached atomic distances.

Here, we describe how the principles of scanning electron microscopy can be ap-
plied to the investigation of ultracold atoms. The structure of the article is as follows:
in the first section we review some technical aspects of our experimental approach.
They cover the preparation of the ultracold quantum gases, the details of the elec-
tron column and a review of the relevant electron-atom scattering mechanisms. The
working principle of the microscope is slightly different from standard electron mi-
croscopy and is also explained. The reader might skip this technical part and directly
continue with the second part. There, we show results on the bimodal distribution of
a Bose-Einstein condensate in a harmonic trap and the density distribution in a one-
and two-dimensional optical lattice. We also discuss the possibilities to manipulate
the atoms by precise density engineering of a BEC in an optical lattice. We close
the article by a study of the pair correlation function in a thermal gas—an example
for the measurement of an intrinsically time-dependent observable.

18.2 The Scanning Electron Microscopy Technique

18.2.1 Experimental Setup

Our experiment combines an apparatus for the production of Bose-Einstein 3’Rb
condensates with the setup of a scanning electron microscope. We limit the presence
of inhomogeneous magnetic fields that can distort the electron beam by making the
BEC in an optical way, by employing amagnetic materials and by shielding the
main chamber with p-metal plates. Except for these additional cares, the setup is
exactly the one of a standard BEC experiment. The electron column is mounted
on top of the main chamber and completely occupies its vertical axis. The lower
part of the column, ion optics and detection devices are placed directly inside the
vacuum chamber. In the following we will give a brief description of the typical
experimental sequence and we will concentrate our attention on the description of
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the electron column. A detailed explanation of the interaction mechanisms between
the electrons and the ions will be also given.

Production of the Degenerate Samples In a pre-cooling chamber, atoms from the
vapor pressure of a solid Rb sample are cooled and trapped by a 2D-MOT scheme
which combines the action of two counterpropagating laser beams, along two or-
thogonal spatial directions, and a quadrupolar magnetic field. A push beam, reso-
nant on an atomic transition force the precooled atoms to enter the science chamber
through a differential pumping stage. There the atoms are first trapped in a 3D-
MOT. After a dark-MOT stage of a few tens of ms the atoms are loaded in a sin-
gle beam CO; dipole trap. The CO» trap is already on when the MOT is active
and a fraction of typically 4 x 10° atoms with a temperature of 170 uK remains
trapped once the MOT is completely extinguished. To perform evaporative cooling
the power of the CO» laser is decreased from the starting value of 10 W accord-
ing to an experimentally optimized exponential ramp. The critical temperature for
condensation is reached at 160 nK with typically 3 x 10° atoms. A pure BEC with
103 atoms is obtained at a final power of ~50 mW, corresponding to trapping fre-
quencies of w,y = 2w x 13 Hz and w,4q = 27 x 170 Hz. In our optical dipole trap
all magnetic substates of the F' = 1 manifold are trapped, which results in a spinor
condensate [14].

The Electron Column  There are several requirements that the electron column it-
self has to fulfill in order to build an electron microscope that is able to image ultra-
cold atoms. It should provide an electron beam that can be focused to a diameter of
a few hundred nanometers and below. Furthermore, the current of the electron beam
should be as high as possible since the probability for a scattering event between
the electron beam and the atomic sample is proportional to it. Finally, the electron
column has to be UHV compatible. The electron column that we have chosen to
satisfy these requirements is a custom made column with thermal ZrO-Schottky
emitter, which provides an electron beam with an energy up to 6 keV (for more
details see [15]). The upper part of the column consists of three different vacuum
chambers: the gun chamber which holds the electron emitter, the aperture chamber
in which a movable stage with several apertures is mounted and the so called inter-
mediated chamber which mainly consists of a pneumatic isolation valve connected
to the main vacuum chamber. This valve, that is open during normal operation, is
necessary to isolate the main chamber from the electron column when this one is
vented to substitute the emitter, which has a lifetime of roughly 12000 hours. The
lower part of the column, consisting of a pole piece made of an iron-nickel alloy
extends into the main chamber (see Fig. 18.1). The current of the electron beam is
measured with a Faraday cup, which is placed 5 cm underneath the tip. The electron
column has two magnetic lenses to focus the beam at a working distance of 13 mm
below the tip. The magnetic field produced inside the second lens, the closest to the
atoms, reaches 2000 G and is guided in the p-metal pole piece of the tip. However
due to the self-shielding of the pole piece, the magnetic field rapidly decreases to
1 G at the position of the atoms, resulting in a negligible perturbation. The size of
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Fig. 18.1 Technical drawing of the electron column

the actual probe is enlarged due to spherical aberrations, which can be reduced by
inserting apertures into the electron beam. Astigmatic aberrations and displacement
of the electron beam, caused by the lenses, are corrected respectively by stigmators
and by electrostatic deflectors, which are placed in a combined unit behind each
lens [16]. The movable aperture strip with apertures of 300 um, 250 pm, 150 um,
100 pm, 50 um and 20 um is placed underneath the first deflector and stigmator
stage in the aperture chamber together with an electrostatic blanking unit, which
allows for the dumping of the electron beam inside the column with a frequency
up to 5 MHz. Two physically separated scanning units, consisting of electrostatic
quadrupoles, can move the electron beam over the atomic cloud. The fast scan unit
has a field of view of 200 um x 200 um and can be moved with a bandwidth of
10 MHz. The slow scan unit provides scans up to 20 kHz and a field of view of
1 mm x 1 mm.

Alignment and Characterization  The current value and the beam aperture are cho-
sen according to the peculiar measurement we want to perform on the atoms. The
alignment and the characterization of the electron beam is done prior to any appli-
cation of the column. To this purpose, we use two different test targets mounted on
a movable holder. The first target is a copper mesh and the second is a hole with
a diameter of 200 um. Furthermore, a Multi Channel Plate (MCP) is placed on the
holder to detect secondary and backscattered electrons from the test targets. The
alignment consists in adjusting the two lenses, deflectors and stigmators to maxi-
mize the resolution of the image in a convenient field of view. Typically we use the
mesh target for a first alignment and we fine adjust the settings with the hole target,
which is at a slightly different vertical position. The hole target is then used to ob-
tain the beam diameter by taking a line scan over the edge of the hole. The measured
scan is fitted with an error function, from which we derive the beam waist. Finally
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we remove the targets holder and we perform the alignment at the real atoms po-
sition by adjusting the second lens and stigmator to maximize the visibility when
scanning a two dimensional lattice realized by trapping the atoms in a strong 2D pe-
riodic optical potential with spacing 600 nm [15, 17, 18]. The smallest beam waist,
i.e. the highest spatial resolution that we can obtain for a typical current of 20 nA is
~100 nm. The depth of focus is derived by measuring the FWHM of the electron
beam at different vertical positions without refocusing. This is achieved by moving
the hole target along the beam axis by a micrometrical translational stage. Assuming
a Gaussian shaped electron beam to fit the data, the Rayleigh length is obtained. We
measured a value of 35 um for a beam waist of 130 nm. Being the vertical extension
of the atomic cloud 6 pm at most, with the optical traps we have in use, a depth
of focus of 35 pm guaranties a constant electron beam diameter over the atomic
sample.

Ion Optics and Detection  Once the atoms are ionized by electron impact, they
are attracted by the high negative voltage of —4.8 kV of a conversion dynode. On
their way to the dynode, the ions are guided by a series of different electrodes. Once
they hit the dynode, secondary electrons are produced, which are then accelerated
towards the channeltron. The input of the channeltron has a voltage of —2.2 kV
and is grounded at the end. The conversion efficiency of the conversion dynode is
almost 100 %. A detected ion produces a negative voltage peak at the anode of
the channeltron of 10 to 60 mV. This signal is then converted into a TTL pulse by
a discriminator and amplified. To each ion is thus associated a single TTL pulse,
which is recorded into a channel scaler card (MCS). The card has 65536 channels
with a variable bin length and allows for time-resolved recorded signals.

18.2.2 Electron-Atom Interaction Mechanisms

The interaction between atoms and electrons can be elastic or inelastic. The elec-
tron impact ionization of atoms is a special case of inelastic scattering which we
consider here as an independent process. In an elastic scattering event, the internal
state of the target atom remains unchanged. The scattered atom carries some energy
and momentum of the incident electron and the transferred energy depends on the
scattering angle. For all angles except an extremely narrow (and therefore negligi-
ble) window of scattering angles around zero degrees, the atom gains enough kinetic
energy to escape from the trapping potential. Note that the potential depth of an op-
tical dipole trap holding a Bose-Einstein condensate corresponds to a kinetic energy
of 107! eV. As the atom remains in its ground state it is not seen by the ion detec-
tor. Elastic scattering therefore constitutes a loss channel. In an inelastic scattering
event, the target atom is excited to a higher lying state. The energy transfer to the
atom is accompanied by a momentum transfer, which occurs even under a scattering
angle of zero degree. Again, the atoms escape from the trap and will not be detected
as no ion is created. In electron impact ionization, the incident electron knocks out
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one or more bound electrons from the target atom and promotes it to the continuum.
The resulting ions are then extracted by a continuously applied electrostatic field
and are guided towards the detector.

The applicability of this scheme for the imaging of ultracold quantum gases de-
pends on several questions: (i) Is there enough signal? (ii) How fast and efficient
is the detection process? (iii) What is the role of multiple scattering and secondary
processes? (iv) Can the ion be assigned to the position of the electron beam? The
last question is answered quickly. The initial cold temperature of the atoms and the
fact that the majority of the ionization processes occurs at small momentum trans-
fer to the remaining ion (the collision are almost pure electron-electron scattering
processes) ensure that the created ions have a negligible initial velocity. The time
of flight to the detector is therefore identical for all ions and the detection time of
the ion can be unambiguously assigned to the position of the electron beam. Only
multiply charged ions are wrongly assigned. We can avoid this by either reducing
the scanning speed or by subsequent post processing [19].

The magnitude of the signal is a crucial point. Electron impact ionization does not
only produce an ion but also one or even more electrons. For typical beam currents
of several nA the background of primary electrons is very large so that the discrim-
ination of electrons stemming from impact ionization is a challenge. We therefore
exclusively detect the ions. As a consequence, the maximum signal we can get is
given by the number of atoms in the gas. To calculate the ratio of electron impact
ionization events to elastic and inelastic scattering processes, we can rely on the first
Born approximation as the incident electron energy is very high (6 keV). In first
Born approximation, all particles are described by plane waves and the scattering
process is described by a single matrix element. For elastic and inelastic scattering
processes, the differential cross section is given by

2

4 222 4 k/
_mee ( , (18.1)
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where §,,, denotes the Kronecker symbol and F}, is a modified form factor defined
as follows:

ZF,(@) = (¢al Y ¢ V]go). (18.2)
J

Here, q = k — Kk’ is the momentum change of the incoming electron (k is the incom-
ing and K’ the outgoing wave vector). The charge of the nucleus is given by Z, the
initial ground state of the atom is given by |¢o) and the state after the collision is
denoted by |¢,). The case n = 0 corresponds to the elastic scattering. The total cross
section is given by the integral over the solid angle. Analytical and approximative
results can be found in [20]. Note that the total inelastic cross section scales at high
but non-relativistic energies as E~!'log E, where E is the energy of the incident
electron [20]. For the case of electron impact ionization, the cross section is triply
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differential and reads for single ionization processes

2
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Here, k” and r” are the wave vector and the coordinate of the second outgoing
electron and —h K = hk — A(k’ + Kk”) is the recoil momentum of the residual ion.
For a more detailed description of electron impact ionization we refer to [21]. The
total ionization cross section is again retrieved by integration. The sum of all three
contributions gives the total scattering cross section. The total scattering cross sec-
tion amounts to (1.78 £ 0.14) x 10717 ¢cm? and the fraction for ionization is around
40 % [22]. From the total scattering cross section one can also deduce the lifetime of
an atom against a collision. We assume a Gaussian shaped electron beam with a full
width half maximum (FWHM) of 100 nm and a beam current of 20 nA which are
typical beam parameters in our experiment. When an atom is exactly in the center
of this beam, its lifetime is given by

e

JoOtot

T= (18.4)
where jo is the current density in the beam center and oy is the total scattering cross
section. For the given numbers we find t = 5 ps. This time gives an estimate for a
reasonable dwell time per pixel. If the chosen dwell time is smaller, only a fraction
of the atoms is detected. In fact, most of our experiments are done with a dwell time
of one or two microseconds per pixel. This allows for a faster scanning procedure.
As the atoms inside the quantum gas move with a speed of a few mm per second
we can do scans that proceed faster than the motion of the atoms. This ensures that
we can scan a cloud of atoms fast enough to effectively interact with an unperturbed
cloud. Electron impact ionization represents about 40 % of all scattering events.
Given a full transmission of the ion to the detector and assuming a well adjusted
ion detector with 90 % overall detection efficiency, about 35 % of the atoms can be
detected. This signal is enough to extract all relevant quantities from the quantum
gas.

In scanning electron microscopy, multiple scattering and secondary scattering
processes often pose a problem for the proper interpretation of the signal. In our
approach, the scattering cross sections are so small and the atomic cloud is so di-
lute, that only a fraction of 107 of the incident electrons undergoes a collision. All
other electrons pass through the gas without any interaction. Multiple scattering is
therefore completely negligible. As to secondary processes however, ion atom colli-
sions are of some importance. As the ions are created inside the gas, they can scatter
with other atoms on their way out of the gas. As the potential between an ion and
an atom scales as %, where r is the relative distance, the scattering cross section
can become very large when low temperatures are approached [23]. Depending on
the specific imaging mode or investigation these processes have to be taken into ac-
count. They can be suppressed by reducing the transverse extension of the atomic
gas or by increasing the electrostatic extraction field as the cross section rapidly
drops with the ion energy [23].
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18.3 Probing and Imaging Ultracold Quantum Gases

In order to acquire an image of the trapped BEC we can, in principle, move the
electron beam following any arbitrary scan pattern. A fraction of the atoms which
undergo collisions with the electrons is ionized and the produced ions are then ex-
tracted and detected. The knowledge of the scan pattern and the obtained ion signal
allows to reconstruct the image of the atom cloud. A standard image is taken by
using a rectangular scan pattern and synchronizing it with the signal from the ion
detector: an illustration of the working principle is depicted in Fig. 18.2. The volt-
ages for the scanning unit are produced by using two waveform generators, one for
each imaging axis. The first generator provides the deflection along the x-axis using
a saw tooth voltage form. The second generator sets the deflection along the y-axis
and uses a repetition of several identical saw tooth voltage waveforms. The electron
beam is therefore continuously moved and not in discrete steps. The lower limit
for the dwell time is given by the smallest time bin of the MCS card which is 100
ns. The ion signal intensity is, in case of small depletion, proportional to the dwell
time.

Figure 18.3 shows such an image of a Bose-Einstein condensate. Even though
the cloud contains about 10° atoms, only a fraction of the atoms has been detected
in order to get an unperturbed image of the cloud. From this image one can already
retrieve substantial information on the density distribution; as an example the size
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Fig. 18.3 Top: An image of a
trapped 87Rb condensate. The
image has 400 x 150 pixels
with a pixel size of

300 nm x 300 nm. Each pixel
was illuminated for 2 ps with
the electron beam (140 nm
FWHM beam diameter).
Every dot corresponds to a
detected atom. In total, 350
ions were collected during the
exposure. The condensate
contains about 10> atoms.
Bottom: The sum over 300
images. Each image was
taken in a separate lons/pixel

experimental run B —

of the cloud can be determined within a precision of 5 %, (see Fig. 18.4). In order
to obtain a more precise picture of the trapped sample in Fig. 18.3 we can sum over
many individual images, corresponding to an overall number of processed events
that is comparable to the total number of atoms in the condensate. This picture
shows how accurately the shape of the condensate would be determined if all atoms
were detected in an idealized experiment. For each run, which lasts roughly 15 s,
the condensate has to be produced again. Essentially no energy is deposited in the
cloud, as we observe an additional heating of merely 5 nK after exposure to the
electron beam, as shown in Fig. 18.4. Thus, the perturbation caused by the detection
process is very small. This, in combination with a high detection efficiency could
make it possible to take several images of the same condensate, thus allowing for a
direct observation of the dynamical evolution of an individual system.

Notably, the extremely high resolution ensured by our detection technique allows
a direct quantitative comparison with the theory. This is a great advantage with re-
spect to those techniques which need the cloud to expand before being imaged. We
have indeed compared the experimental density profiles with those obtained solving
the Gross-Pitaevskii equation (GPE). The solution of the GPE, ¥, is then used to
model an effective potential for the thermal component V = Vj,, + 2g|¥|?, where
g =4mh?a/m, being a the s-wave scattering length and m the Rb mass. From this
we obtain the density distribution of the thermal component as p = g3,2(exp(—(V —
w)/kpT)), where p is the chemical potential, kg the Boltzmann constant and
83,2(z) the 3/2 polylogarithmic function of z. As reported in Fig. 18.4 this approach
allows us to reproduce the measured profiles, matching their bimodal nature.

It is obvious that the spatial resolution of a scanning electron microscope exceeds
that of an optical microscope by far. However, the high resolution is achieved at
the cost of beam current. In order to get a decent signal we cannot go to beam
currents below 5 nA. In fact, many experiments even require higher beam currents.
As all characteristic length scales in a quantum gas are in the order of a few hundred
nanometers a too high resolution is of no great use. We therefore have working
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Fig. 18.4 Top: The axial distribution of the condensate shown in Fig. 18.3, integrated in the radial
direction. The experimental data (blue columns, 900 nm bin size) are compared with a bimodal dis-
tribution (red line) calculated for a temperature of 80 nK. The condensate fraction is 80 %. The inset
shows absorption images of the condensate after 15 ms time of flight with and without exposure
to the electron beam. The number of atoms after exposure is reduced by 7 % on average. Center:
The distribution in the radial direction (300 nm bin size). In the inset we have plotted the radial
density of the thermal component in the trap center as calculated from the model. The minimum
is due to the repulsion from the condensate fraction. Bottom: The estimated density distribution in
the axial direction for the single-shot image in Fig. 18.3 (blue line). The data (columns) have been
binned over 3 um. The blue shaded area indicates the uncertainty of the estimated distribution. For
comparison, the red dashed line shows the solution of the theoretical model

Table 18.1 Electron beam

characteristics. Typical Beam diameter (FWHM) Beam current
working points of our
experiment 90 nm 12 nA

250 nm 100 nA

400 nm 180 nA

5000 nm 800 nA

points that are rather unusual for scanning electron microscope and are optimized
for our experimental needs. Table 18.1 summarizes the different combinations of
beam current and beam diameter we can realize.
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Fig. 18.5 The lattice has a
period of 600 nm. Each image
is the sum of 50 individual
images. The pixel size is

200 nm x 200 nm. The lattice
depth is 20 recoil energies
and the FWHM diameter of
the electron beam was 95 nm

18.3.1 Single Site Addressability in Optical Lattices

In order to demonstrate the high spatial resolution of our approach, we have imaged
a Bose-Einstein condensate in a one-dimensional and in a two-dimensional optical
lattice (Figs. 18.5 and 18.6). With a lattice constant of 600 nm we can clearly resolve
individual lattice sites. This possibility opens up many future studies as it is possible
to observe the tunneling dynamics and the behavior of taylored quantum systems in
periodic potentials.

Furthermore we have demonstrated the single-site addressability of a quantum
gas in such optical lattices with 600 nm lattice spacing. After loading a Bose-
Einstein condensate in the lattice potential, we selectively remove atoms from indi-
vidual sites by means of the dissipative interaction with the focused electron beam.
In this way, arbitrary patterns of occupied lattice sites can be produced, as shown in
Figs. 18.7 and 18.8. The addressing of individual sites in the optical lattice works
as follows: the electron beam is pointed at selected sites for a dwell time of 1-3 ms
per site (35 ms for 1D lattice) in order to remove the atoms. Immediately after the
preparation, the imaging procedure is started. Four elementary examples of this pat-
terning technique are presented in Fig. 18.8. A single defect in the lattice structure
is shown in the first panel. The structure resembles a Schottky defect in a solid and
is an ideal starting point to study the tunneling dynamics close to a defect. The op-
posite situation corresponds to an isolated lattice site and is shown in the second
panel. Such a mesoscopic ensemble provides, for instance, the possibility to study



390 G. Barontini and H. Ott

Fig. 18.6 Image of a Bose-Einstein condensate in a 2D optical lattice with 600 nm lattice spacing
(sum obtained from 260 individual experimental realizations). Each site has a tubelike shape with
an extension of 6 um perpendicular to the plane of projection. The central lattice sites contain about
80 atoms

Fig. 18.7 We first remove
atoms from the optical lattice,
pointing the electron beam at
the specific sites for 35 ms.
Thereafter the image is taken
(200 x 325 pixels, 50 nm
pixel size, 2 us pixel dwell
time)

the transition from few-body systems to the thermodynamic limit. It can also act as
a paradigm for Rydberg blockade studies as the spatial extension of the ensemble is
very small. A chain and a ring of lattice sites are shown in the lower panels in order
to illustrate the large variety of achievable geometries. We remark that our approach
allows for any arbitrary pattern that fits to the underlying quadratic one. Notably, in
terms of writing time, a lattice site can be prepared in about 1 ms, provided that the
site is hit in the center. Imperfect addressing leads indeed to longer depletion times.
The dependence of the depletion time constant on the position of the electron beam
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Fig. 18.8 Patterning a
Bose-Einstein condensate in a
2D optical lattice with a
spacing of 600 nm. Every
emptied site is illuminated
with the electron beam (7 nA
beam current, 100 nm
FWHM beam diameter) for a
few ms. The imaging time is
45 ms. Between 150 and 250
images from individual
experimental realizations
have been summed for each
pattern

Fig. 18.9 Depletion time
constant for different
positions of the electron beam
with respect to the lattice site.
At all distances we find an
exponential decay. For central
hits, the population decays
with a time constant of

100 ps. The inset shows the
depletion at a distance of

90 nm. The solid line is a fit
with an exponential decay.
The offset of 10 % represents
atoms that are refilling the 0.0 T T S S
lattice site between the end of 0 50 100 150 200 250 300
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is shown in Fig. 18.9. Whereas for central hits we find a time constant of 100 ps,
it is more than 10 times larger if the electron beam points at the edge of a site. For
all positions we find an exponential decay of the atom number. In conclusion, if we
allow for a preparation time of 100 ms, a total of 100 sites can be emptied. This is
in general sufficient to tailor a large part of the gas.

18.3.2 Temporal Correlation Functions

A peculiarity of our approach is the fact the a scanning probe technique also allows
for an in vivo study of the atoms. In the case of a gaseous target this gives access
to dynamical investigations on the temporal evolution of the gas. In this context,
we have measured temporal correlation functions of ultracold thermal bosons in
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equilibrium [24]. As outlined above, the interaction with the electron beam leads to
almost no heating of the system. As quantum objects are imaged, the detection of
an atom is intrinsically connected with a change of its external and internal state.
Therefore, after the detection, the atom is no longer part of the many-body quantum
system and its ionization and subsequent extraction is no problem. Consequently,
despite the removal of atoms from the system, the probing technique can neverthe-
less be considered as minimal invasive.

While first order correlations are often accessible via interference experiments,
higher order correlations require in general the recording of density or atom number
fluctuations by a probe sensitive enough to detect single particles (counting tech-
niques) or, at least, atomic shot-noise (absorption imaging). In order to have a good
statistical description, an average over many realizations of the system (in theory
all possible realizations) is needed. Consequently correlations, especially at orders
higher than two, are usually difficult to measure because of the huge statistics re-
quired for a reliable signal. Using scanning electron microscopy as time-resolved
local detection method, our measurements directly yield the second and third order
time correlation functions. Notably, our approach is not complicated by the time of
flight expansion and directly manifest the properties of the many-body system.

The general form of the normalized spatio-temporal correlation function of n
particles at position r; at time #;, withi =1, ..., n, is given by:

(@, )T, 1)V (On, 1) - - T (1, 11))
(WT(I‘I, tl)ll/(l'l, t1)> e (III%(rn, l‘n)ll/(l'n, tn)>

(18.5)

gt 1) =

where @ are the bosonic operators and (---) indicates the ensemble average. We
first derive an analytical expression of g(l)(rl ,11; 12, 1) for an ideal Bose gas at
temperature 7' above the critical temperature 7, trapped in a harmonic potential
V(r) = mw?r?/2, with average trapping frequency w, extending the approach of
Ref.[25] to take into account also the temporal evolution. Given T =, — #; and
r =r; —r and assuming w7, hiw/(kpT) < 1, we obtain:

(18.6)
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where 7. = kBLT is defined as the correlation time. From the above expression we can
derive any higher order correlation function for thermal bosons and, in particular,
the second order correlation can be easily calculated as g (r, ) = 1+ |g (r, 7)|2.

From (18.5), integrating on the absolute time and averaging on the different
repetitions of the experiment, we calculate the correlation function g (7) for a
cold thermal cloud, analyzing the time-resolved signal from the ion detector. In
Fig. 18.10 we report the measurements for two different temperatures 7 = 45 nK
and T = 100 nK. Averaging over several experimental cycles, fluctuations in the to-
tal number of detected ions affect the normalization of the correlation function. As a
result, an offset shifts the uncorrelated signal to a value 1 % above 1. To compensate
for these fluctuations we normalize g® (1) by the factor 1+ o2/(N)2, where o2 and
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Fig. 18.10 Normalized second order temporal correlation function. Data (dots) acquired at dif-
ferent temperatures (circles for 45 nK, squares for 100 nK) are plotted together with the fitting
functions (/ines) explained in the text. The inset displays the data (diamonds) acquired for a BEC
and the corresponding fit (/ine). Please note that even well below the critical temperature (the ther-
mal fraction cannot be detected in time of flight absorption imaging) we are able to measure a
small residual bunching induced by the thermal component

(N) are respectively the variance and the mean value of the total number of detected
ions in the different experimental realizations. A measurement with a BEC is also
presented in the inset of Fig. 18.10. Notably, we can still detect a small correlation
signal due to a residual thermal fraction present well below the critical tempera-
ture 7,.. The g@ (1) data points are fitted with the function we derived for an ideal
non interacting gas of bosons integrated over the volume, leaving the amplitude and
7. as free parameters (lines in Fig. 18.10). In the inset of Fig. 18.11 we show the
fitted amplitude of the normalized second order correlation functions at different
temperatures together with the values expected from the volume integration of the
non-interacting model and of its extension to the interacting case [25]:

2a? da
g (r.0) =1+ —+ g, 0)!2(1 - 7), (18.7)

being a the s-wave scattering length. As expected, repulsive interactions play a role
for in situ measurements since they induce short-range anti-bunching that reduces or
overcomes the bunching signal of bosons. The inclusion of interactions in our model
contributes in shifting the theoretical prediction towards the range of compatibility
with the experimental results.

In addition, we also calculate the third order correlation function, extracting it
from the same data sets for which we derived the g® (). The results are reported
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Fig. 18.11 Correlation time 7. as a function of the temperature. The values obtained fitting the
experimental data (circles) are compared with the function t. = h/(kgT) (line). The inset shows
the fitted bunching enhancements (circles for thermal gases and a triangle for the BEC) and
the corresponding theoretically expected values for the non-interacting (solid line) and the in-
teracting (dashed line) model. Each curve segment refers to a different power of the dipole trap
(P =3,4,5mW)
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Fig. 18.12 Normalized third order correlation function (dots) along the axis (11 =, — 11,
7 =13 — t; = 277) for a thermal cloud with 7 = 100 nK. The solid line is the fitting function
explained in the text

in Fig. 18.12. Bunching is expected to be more pronounced at higher orders n as
a consequence of the factorial law n! that regulates the dependence of the cor-
related to the uncorrelated amplitudes. For this reason higher order correlations
can be employed as a highly sensitive test for coherence, with the only drawback
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represented by the need of high statistics, as proved by the very few experiments
reporting correlations at orders higher than 2. The solid line in the picture is a
fit made with the volume integration of the non interacting model g® (r1, ) =
1+ @) P +1gP @) P +1gV (- P+ 20V (1) gV (—1) gV (12 — 1)),
along the same axis, leaving the amplitude as the only free parameter.

18.3.3 Perspectives and Outlook

We expect that scanning electron microscopy applied to ultracold quantum gases
will add new aspects on the research with ultracold atoms. The detection of pair cor-
relations in the spatial and temporal domain is an ideal tool to investigate strongly
correlated quantum system which currently pose a challenge to their theoretical de-
scription. One-dimensional quantum gases are promising candidates for this. The
strong correlations that appear require sophisticated numerical and analytical tools
to predict and calculate the measured quantities [26-28]. Another interesting field
of research is connected to the fact that the atoms are removed from the trap locally.
This can be considered as a localized dissipative defect that acts back on the remain-
ing atoms. Theoretical simulations [29] have shown that intriguing phenomena such
as quantum Zeno like dynamics should be observable. The system has also promis-
ing perspectives in connection with Rydberg atoms. These highly excited atoms
have recently attracted a lot of attention due to their unique interaction properties
[30-34]. A direct detection via electron impact ionization seems to be feasible as the
total ionization scattering cross section scales quadratically with the principal quan-
tum number. If successful, intriguing quantum phases such as crystalline structure
of Rydberg atoms are detectable [35]. Finally, the technique is also ideally suited to
study mixtures of different atomic species [36—39]. The different mass can be easily
separated in the analyzing channel and a full time-, spatial- and mass-resolved de-
tection is possible which can be even extended to ultracold molecules [40, 41]. This
short list of applications gives only a first glance of the potential of this technique
which we plan to further exploit in the future.
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