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Preface

The wavy dynamics on a liquid film flow down an inclined plate is an everyday life
phenomenon, easily observable on windows or on sloped pavements in the midst
of a rainfall. It is a fascinating sight and so the design of many fountains includes
falling liquid films to captivate and entertain passers-by. From the scientific point
of view, such flows are part of the general class of free-boundary problems, which
hold a strategic position both in pure and applied sciences. The occurrence of free-
boundaries and interfaces, i.e., material or geometric frontiers between regimes with
different physical properties not a priori prescribed, arises in disparate in nature,
inherently nonlinear problems, from fluid and solid mechanics and combustion to
financial mathematics, material science and glaciology. Not surprisingly therefore,
the wavy dynamics of falling liquid films has attracted not only the attention of
Sunday strollers but also of many researchers, and for several decades, to the point
that literally hundreds, if not thousands of research papers have been devoted to this
topic. Falling films have also been the subject of several books and monographs
(see, e.g., [3, 44]) as well as reviews (see, e.g., [201]).

Such considerable interest, which continues up to date with several new devel-
opments, stems not only from the inner beauty of the phenomenon but also from
its many technological applications, in particular in relation to chemical engineer-
ing processes. Typical examples include evaporators and related heat exchange
processes with heat transport from a hot wall to a film and vapor condensation,
absorbers/mass exchange processes with absorption of dilute gas and coating pro-
cesses for which the hydrodynamic behavior of the initial liquid film can affect the
quality of the final coated surface. The cooling of microelectronic equipment or
the separation of multi-component mixtures in the chemical and food industries are
often ensured by means of falling films. Falling films even represent the state-of-
the-art technique in the sugar industry and constitute the basic components in sea-
water desalination plants. Film heat exchangers are commonly used as condensers
of cooling agents in cryogenic technology. In addition, films are also used as lubri-
cant layers for the flow of crude oil in pipes and channels, or as the means of thermal
protection of the combustion chamber walls in the design of rocket engines.

As far as the use of falling films for heat/mass transport applications is con-
cerned, besides small thermal resistance and large contact area at small specific flow
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rates, another advantage is a drastic enhancement of heat/mass transport [58]. For
example, Frisk & Davis [97] and Goren & Mani [106] have shown that heat/mass
transport across a wavy film can increase by as much as 10–100% compared to flat
films. Therefore liquid film flows play a central role in the development of efficient
means for interfacial heat/mass transfer in engineering applications.

With regards to fundamental research efforts, it is not just the presence of a free
boundary that contributes to the complexity of film flows, but also many other chal-
lenging aspects, e.g., heating effects and the way they influence the film flow, three-
dimensional effects and chemical reactions, all with many different subtleties and
peculiarities that have not been fully resolved as of yet. It is precisely for this rea-
son that falling film flows are still the subject of active research, with several new
developments as noted above.

In the recent past, the study of the transition from a state of order to one of dis-
order in spatially extended systems through low-dimensional dynamical models has
been one of the many routes taken by physicists in their quest to understand the de-
velopment of “spatio-temporal chaos” (or “low-dimensional turbulence”) and even
the onset of usual turbulence. A transition to spatio-temporal chaos also character-
izes the dynamics of a falling liquid film. More specifically, one observes a well-
organized cascade of bifurcations that leads from the flat film state (a “laminar”
state) to a state of disorder/spatio-temporal chaos even at low Reynolds numbers. In
the latter state, although the film surface appears to be random one can still iden-
tify robust “coherent structures,” which continuously interact with each other. Such
structures are described well with techniques from nonlinear dynamics and dynam-
ical systems theory. The falling liquid film also shares many analogies and features
with other open flow hydrodynamic systems, such as developing boundary layers.

However, unlike many open-flow hydrodynamic systems, the long wave nature
of the instabilities observed on a falling film and the low-to-moderate values of the
Reynolds number render the problem amenable to a thorough theoretical and numer-
ical investigation within the framework of the long-wave theory. As the waves are
long compared to the film thickness, or equivalently, deformations of the free sur-
face are weak, the viscosity of the fluid ensures a great coherence of the flow across
the film. These fortuitous characteristics inherent to the falling film problem, enable
us to drastically reduce the complexity of the basic equations and to obtain systems
of simplified model equations. The advantage of these models is to isolate the un-
derlying physical mechanisms of the phenomena associated with the nonlinear wave
evolution on a falling film and to simulate them extensively at a reduced analytical
and numerical cost. Hence, a falling liquid film can serve as a canonical reference
system for the study of the general problem of transition to spatio-temporal chaos
and also for the study of other open-flow hydrodynamic systems.

The object of this research-oriented monograph is to summarize and report past
and recent developments of the modeling of falling liquid films subjected or not to
heat transfer. But because falling films are part of the general class of interfacial
flows, we also outline the fundamentals of interfacial fluid mechanics. The concep-
tual framework, the underlying assumptions and the associated limits of applica-
bility of the different methodologies are systematically given at each step of the
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derivations with the aim a ready-to-use text with easy access to mathematical mod-
els of different degrees of complexity. Details of the basic numerical methods we
used, as well as an introduction to the software package AUTO-07P for continuation
and bifurcation problems in ordinary differential equations [79], are provided in ap-
pendices and tutorials, with the purpose of offering easy access to the falling film
area of research. These methods have other uses as well. For instance, the numerical
solution of the Orr–Sommerfeld eigenvalue problem we offer is obviously useful not
only for the falling film problem, but for numerous fluid flow problems as well, with
or without interfaces. Gathering, ordering and giving a detailed overview and com-
prehensive, critical and pedagogical analysis of past and most up-to-date theoretical
and wherever possible experimental advances on film flows have been demanding
tasks in view of the numerous and vigorous efforts on the subject. Our sincere hope
is that this monograph would be helpful to students and young scientists interested
in the field and to scientists both in industry and academia already working with
film flows or in general with interfacial fluid mechanics, hydrodynamic stability
and nonlinear waves.

Before going any further, the reader will find useful Appendix A, where we ren-
der homage to two key scientists, P.L. Kapitza and C.G.M. Marangoni, who made
pioneering contributions on falling liquid films and surface-tension-gradient phe-
nomena. Their works have in turn inspired many applied mathematicians, physi-
cists and engineers on falling liquid films and surface-tension-gradient phenomena,
including ourselves.

S. Kalliadasis
C. Ruyer-Quil

B. Scheid
M.G. Velarde

London, UK
Paris, France
Brussels, Belgium
Madrid, Spain
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Chapter 1
Introduction

1.1 Brief Historical Perspective

The first systematic exploration of the flow characteristics of a liquid film flowing
down an inclined plate (“plate” and “wall” are used indistinguishably in this mono-
graph) in the region of moderate flow rates with and without forcing at the inlet was
first provided by P.L. Kapitza [140, 141]. Kapitza did both theory and experiments.
A short biography is given in Appendix A.1. As a physicist, his theory was built
upon the intuitive simplest approach of balancing work or energy supply (due to
the gravity field) with viscous dissipation. Curiously enough, even though his the-
oretical predictions apparently agreed with his and others’ experiments, part of his
analysis was in error.

Kapitza identified a dimensionless group, combining certain powers of the “kine-
matic surface tension” (as he called the ratio of the usual surface tension over the
density of the liquid), kinematic viscosity (shear or dynamic viscosity divided by
density) and gravity acceleration. This group, known today as the “Kapitza number”
(to be defined in Chap. 2) is very useful in the study of wave growth and instability
in falling liquid films. Kapitza predicted that if the Reynolds number (to be defined
also in Chap. 2) was below a critical value which was a function of the Kapitza num-
ber, the liquid film flow would be uniformly laminar. The critical value “establishes
well the moment of the transition from a laminar into an undulatory flow,” which
he also experimentally observed and described1; however, as said above, he was in
part in error. We shall return to this point later in this chapter and in Chap. 4 when
we define the transition between the two main regimes characterizing the waves on
a falling liquid film.

Following Kapitza’s pioneering theoretical and experimental work, many inves-
tigators have contributed to our understanding of the flow characteristics of falling

1The Kapitza number is actually “hidden” in equation (IX) of his first paper. In fact his prediction
for the instability threshold is given in terms of the “reduced Reynolds number,” to be defined in
Chap. 4.
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liquid films. It is not the purpose of this introductory chapter to summarize or item-
ize in a list all significant works. Most of them will be discussed in the following
chapters. However, there are two monographs, to our knowledge, that have dealt
with the subject of the present monograph, which we ought to mention at this stage.
One is the monograph by Alekseenko, Nakoryakov and Pokusaev [3] and the other
is by Chang and Demekhin [44]. The former focuses on two-dimensional isother-
mal films with some exposition to heat transfer and analyzes primarily experimental
aspects, though some theoretical developments are also included. The latter restricts
attention to mathematical and numerical results of isothermal falling liquid films
and focuses primarily on two-dimensional effects with some short exposition to
three-dimensional ones through a simple model equation. The present monograph
aims to cover isothermal falling films (both two-dimensional and three-dimensional
effects) and falling films in the presence of heat transfer/Marangoni effects (both
two-dimensional and three-dimensional effects). This is accomplished through a
balanced and detailed presentation of the state-of-the-art mathematical and numeri-
cal methodologies used to describe the evolution of a falling liquid film in time and
space, both isothermal and heated (and, whenever possible, the link between theory
and experiments is illustrated). The concepts and tools required for the modeling of
a falling liquid film are introduced in a way that the reader mastering them should
be able to use them to analyze additional complexities and effects in film flows but
also for other purposes/problems.

At this point it seems pertinent to discuss some of the phenomena to be studied
at length in the subsequent chapters.

1.2 Basic Phenomena of a Falling Film

1.2.1 Surface Wave Instability

Experiments with a thin liquid film flowing down an inclined plate under isothermal
conditions have shown the development of “long” wavelength deformations on its
open (referred to as “free,” as we shall justify in Chap. 2) surface, i.e., deformations
much longer than the film thickness, as sketched in Fig. 1.1. “Short” waves have not
been observed in experiments, at least not at smaller flow rates. These long waves
seem to result from the instability of an initially uniform laminar flow (flat film base
flow; it will be discussed in detail in Chap. 2). For a vertical geometry (β = π/2)
wavy motions appear as soon as the film flows down the plate.

There are three related mechanisms influencing this long-wave hydrodynamic
instability [256]: (i) One is due to the presence of gravity, more precisely its stream-
wise component, which is a body force pushing the liquid to fall down to a minimum
potential level; (ii) another is inertia, whose subtle role along with that of viscosity
we shall carefully elucidate later in this monograph; (iii) the third one is the cross-
stream component of gravity leading to hydrostatic pressure that tends to maintain
equipotential levels and hence tends to prevent surface deformation. Needless to say,
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Fig. 1.1 Sketch of a thin
liquid film of mean film
thickness h̄N flowing down an
inclined plate of inclination
angle β with respect to the
horizontal direction; U is the
semiparabolic velocity profile
corresponding to the
“fully-developed” viscous
film flow

surface tension and, depending on the circumstances, surface tension gradients and
thermal diffusivity come into play. Let us now describe the above three mechanisms
in general physical terms:

i. Consider a perturbation to the flat liquid film flow in which the free surface is
deflected slightly upward over a lengthscale l that is much longer than the depth
h̄N of the film (see Fig. 1.1). Because the height of the top surface varies slowly
in the streamwise direction, the velocity distribution at each streamwise location
will remain close to that of a fully developed viscous film flow characterized to
a good first approximation by a semiparabolic (half-Poiseuille) profile depicted
by U in Fig. 1.1. Indeed, by neglecting the hydrodynamic drag of the ambient
gas atmosphere, the theory predicts, that for low flow rates (or, equivalently,
low values of the Reynolds number), the velocity profile in the liquid film is
semiparabolic. It can also be shown that the net streamwise flow rate in the film
is positive and that it increases with the depth of the film. Thus, at the crests of
the deflection the streamwise flow rate is at a maximum, and it is at a minimum
at the troughs. The net result, as shown in Fig. 1.2, is that gravity draws fluid
toward the front face of a crest, deflecting it upward while at the same time it
draws fluid from the rear face, deflecting it downward. This first mechanism
produces a wavy downstream motion of the perturbation without growth and at
a phase speed higher than the velocity of any fluid particle in the undisturbed
film.

ii. Consider now at a particular instance in time a streamwise location that is at the
front face of a perturbation crest. Here, the surface height is increasing because
of the forward motion of the perturbation. The flow in the bulk of the film is
accelerating at this position because it is attempting to follow the fully devel-
oped viscous velocity profile dictated by the surface height increase. However,
inertia effects prevent the flow from accelerating fast enough to completely fol-
low this velocity profile. The result is that the volume flux in the film is not as
large as one due to a fully developed film flow. At the rear face of the crest, the
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Fig. 1.2 Propagation
mechanism of a perturbation
(solid line) of the originally
undisturbed free surface
(dashed line). The control
volume Vc (dotted box)
experiences a net inflow Qin;
to conserve mass the interface
then must move upward.
Likewise, the interface at the
rear of the crest must move
downward
(upward/downward motions
are indicated by arrows)

Fig. 1.3 Film flow and
induced interfacial motion
produced by the effects of
inertia. The dashed line is the
originally undisturbed free
surface

velocity is decreasing, but inertia effects similarly prevent the flow from decel-
erating too rapidly. Thus, the volume flux in the film is larger than that due to
a fully developed film flow. The net effect of these two bulk fluxes results in an
accumulation of fluid underneath the perturbation crest and an increase in the
interfacial displacement, as shown in Fig. 1.3.

iii. Due to the cross-stream component of gravity, the perturbation also produces
an increase in the hydrostatic pressure under the crest, proportional to the local
depth of the film. This pressure tends to push fluid away from the crest and to-
ward the troughs were the hydrostatic pressure is lower, resulting in a depletion
of the fluid under the crest and a decrease in the depth of the film, as shown
in Fig. 1.4. This stabilizing flow competes with the inertia accumulation of the
fluid under the crest. If inertia is strong enough, the film is unstable and the
perturbation grows. Hence, a film flowing a vertical wall is always unstable to
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Fig. 1.4 The direction of the
perturbation film flow and the
induced interfacial motion
when an increase of the
hydrostatic pressure lies
underneath a perturbation
crest; p̃ is the change of
hydrostatic pressure due to
perturbations. The dashed
line is the undisturbed
free-surface position

free-surface perturbations since the effect of hydrostatic pressure is canceled out
[304]. As far as surface tension is concerned, it does not need to come into play
unless wavelengths reach the “capillary length,” which is about a millimeter for,
e.g., liquid water in standard conditions.

Noteworthy is that the intuitively appealing approach followed by Kapitza—that
of determining the flow characteristics from a thermodynamic criterion in which en-
ergy dissipation due to viscosity is in balance with gravitational work—is naive and
not sufficient in the case of a falling liquid film. Surely, the uniform laminar flow
(half-Poiseuille flow) can be obtained from such a thermodynamic criterion. In gen-
eral, the balance between viscous dissipation and energy supply leads to a family
of steady solutions. The solution that actually occurs can then be determined by the
minimization of the “viscous dissipation function” (defined in Appendix D.1, also
referred to as “Rayleigh dissipation function”) for given boundary conditions. But
the uniform flow obtained from this minimization process in the case of a film on a
plate is only observable for horizontal and inclined layers (β �= π/2) and not when
the plate is vertical (β = π/2). This point was the crux of the misunderstanding
made by Kapitza: He thought of the wavy film dynamics as some kind of “equi-
librium state” whose energy dissipation could be defined as a function of “state
variables” (amplitude and wavenumber of the sinusoidal perturbations he consid-
ered).

But a sinusoidal perturbation to the flat film is a nonequilibrium state. In fact,
for vertical layers, Benjamin [19] showed unequivocally that the previous result
by Kapitza on the instability threshold was in error, when, in view of the apparent
absence of waves on very “thin films,” he concluded that, for the flow down a ver-
tical plane, there exists a critical flow rate (or critical Reynolds number) calculated
from the above thermodynamic criterion, below which the uniform laminar flow is
entirely stable. Benjamin studied the stability of the uniform laminar flow for an
arbitrary inclination angle β �= π/2 and showed that although there is a range of
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low flow rates for which such base flow could be observed, this is not possible when
the plate is vertical (β = π/2), in which case the flow is unstable for all flow rates
so that a critical flow rate (or equivalently a critical Reynolds number) in the usual
sense does not exist. In other words, for all finite values of the Reynolds number
there is a class of sinusoidal perturbations which undergo unbounded amplification
according to the linear theory.

Further, he showed that surface tension does not alter the general conclusion
regarding the critical Reynolds number. In fact, a key point of the hydrodynamic
instability mechanism leading to long-wavelength perturbations on the surface of the
film, also referred to as the Kapitza mode or H-mode, is that the waves generated
at the interface travel much faster than any fluid particles inside the film. Inertia
plays a central role in the growth of the instability by introducing a shift between
the vorticity field generated by the waves and the film surface displacement [19].

1.2.2 Flow Evolution Features

The instability onset as outlined in the previous section is just a small part of wave
evolution on a falling film. According to observations, as well as predicted by the-
ory, falling liquid films generally exhibit a cascade of symmetry-breaking bifurca-
tions leading from the flat-film flow to a two-dimensional (streamwise dimension
and height) periodic wave train, which eventually evolves into solitary waves and
further to three-dimensional (streamwise, spanwise dimensions and height)2 soli-
tary waves and complex flows/wave patterns. Figure 1.5 illustrates experimentally
this sequence of events. We note that since the pioneering experiments undertaken
by Kapitza, many more experiments have been performed to describe in detail the
flow evolution features in falling liquid films [1, 4, 25, 56, 57, 167–170, 187, 210,
211, 262, 264, 294, 295, 298]. A historical summary of experimental results can be
found in [44]; here we focus on some of the most recent experimental results.

Let us look at the different stages of the long-wave (much longer than the liquid
film thickness) evolution in more detail. The first stage of the instability is character-
ized by the linear growth of the H-mode. It has been established that such instability
is of the convective type. In other words, the perturbation grows in the wave-moving
frame of reference whereas at a fixed lab/plate point it decays. Equivalently, the
perturbation is advected downstream by the flow while it is being fed by the noise
upstream. We can say that the flow is kind of a noise amplifier. (N.B. As opposed
to the convective instability, an absolute instability is one for which a perturbation
seen at a fixed lab/plate point grows as time proceeds. These two instabilities will
be discussed in detail in Chap. 7.)

2For a two-dimensional flow there is no spanwise dependence and no spanwise velocity compo-
nent, while the surface elevation varies in the streamwise direction only. For a three-dimensional
flow there is dependence in all three directions, while the surface elevation varies in both the
streamwise and spanwise directions.
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Fig. 1.5 Shadow image of
waves naturally occurring on
a film of water falling along a
vertical plate at Reynolds
number Re= 33. Reprinted
with permission from Park
and Nosoko, AIChE,
49(11):2715–2727, Wiley,
2003

The first stage is followed by a second stage with linear saturation of this growth.
Further downstream the wave loses stability, e.g., as a consequence of interaction
between the wave harmonics, and the wave pattern is altered, embracing a wide
spectrum. This process eventually yields highly asymmetric and nonlinear waves
containing most of the liquid, and each of which consisting of a hump with a long
flat tail behind. The front of the hump is steep and is preceded by small ripples (also
denoted radiation) with a wavelength close to the originally linearly fastest growing
wave. These highly asymmetric and nonlinear waves are what we already referred to
as solitary waves and have a velocity that increases with their amplitude. Figure 1.6
shows quasi-two-dimensional solitary waves on a water film on the surface of a
street during a rainy day.

As solitary waves propagate downward they become transversely modulated until
they form horseshoe-like structures further downstream (not shown in Fig. 1.6; these
events will be analyzed in detail in Chap. 8). At this stage of the evolution the
interface is characterized by a turbulent-like dynamic in which horseshoe-like three-
dimensional solitary waves continuously interact with each other.

The wave pattern in a falling film can be very sensitive to perturbations like
time-dependent forcing at the inlet, as shown in Fig. 1.7. For sufficiently large
frequencies, the waves are initially two-dimensional but they easily become three-
dimensional, and exhibit rather irregular patterning, eventually leading to seemingly
turbulent flow (at a forcing frequency of 100 Hz). Various distinct wave flow features
can be identified as the flow rate is increased or the frequency of the forcing at the
inlet is varied, as illustrated in Fig. 1.7. For instance, there is a first region that corre-
sponds to growing infinitesimal perturbations considered as noise near the inlet that
eventually yield downstream a two-dimensional wave of well-defined wavelength.
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Fig. 1.6 Quasi-two-
dimensional solitary pulses
on a water film. They are
disturbed by transverse
perturbations resulting in
solitary waves with curved
fronts but each transverse
cross-section of these waves
resembles a two-dimensional
solitary wave. The
photograph was taken on a
rainy day in Orsay by one of
the authors: the film is falling
down the sloped street Rue de
la Colline in the
neighborhood of Laboratoire
FAST

Fig. 1.7 Shadow images of waves in a film of water flowing down a vertical plate at Re = 52.
With the exception of the first panel on the left, the inlet flow rate is periodically forced at the
frequencies indicated in the upper right corner of each panel (in Hz). The white arrows indicate
the appearance of double-peaked waves. Reprinted with permission from Nosoko and Miyara,
Phys. Fluids, 16(4):1118–1126, American Institute of Physics, 2004

Without forcing (first panel from the left) the wave selected in the first stage cor-
responds to the fastest growing wave according to the linear stability analysis of
the uniform laminar flow. Also, at sufficiently low-frequency of the inlet-forcing,
solitary waves appear right after the linear waves exhibit maximum growth with no
saturation of the latter (see, e.g., for 25 Hz in Fig. 1.7).

Noteworthy is that some experiments have been done at small inclination angles,
so that the development of the free surface is more gradual and the waves remain
two-dimensional for a longer distance, as in Fig. 1.6 or Fig. 1.8. Also, for small
angles the film thickness is typically thicker, which allows for better resolution in the
measurements. Examples of high quality measurements of two-dimensional solitary
waves are shown in Fig. 1.9.
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Fig. 1.8 Solitary pulses on the surface of a water film flowing down a plate forming an angle of
5° with the horizontal direction at Re= 44 and forced at a frequency of 2 Hz. The channel width
is 45 cm. Photo courtesy of Profs. M. Vlachogiannis and V. Bontozoglou

Fig. 1.9 Time traces of the film thickness measured on a film of a 5% by weight aqueous solution
of polyalkylene glycol flowing down a plate forming an angle of 5° with the horizontal direction
at Re = 35 and forced at certain frequencies. With permission from Springer Science+Business
Media. Solitary waves on inclined films: their characteristics and the effects on wall shear stress,
Exp. Fluids, 41, 2006, pp. 79–89, J. Tihon, K. Serifi, K. Argyiriadi, and V. Bontozoglou, Fig. 2,
Springer, 2006

The rich phenomena of isothermal falling films will be analyzed in detail in
Chaps. 7 and 8, where the two-dimensional and three-dimensional models devel-
oped in Chaps. 6 and 8 for the flow, respectively, will be compared to experimental
data available in the literature [3, 167–170, 203].

1.2.3 Marangoni Effect

Surfactants or heat are known to significantly affect interfacial flows. The so-called
Marangoni effect—named after C.G.M. Marangoni (see short biography in Ap-
pendix A.2)—is the appearance of flow or the modification of an existing flow due
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to surface tension nonuniformity, e.g., when the surface tension varies along an in-
terface/free surface with temperature or concentration. This effect is referred to as
the thermocapillary or solutocapillary effect, respectively; only the former will be
considered in this monograph.

When a temperature gradient is applied across a horizontal fluid layer being
heated from below (throughout this monograph we shall consider the heating from
the plate only), the thermocapillary Marangoni effect can lead from a quiescent
conducting state to motion. Two forms of motion may occur and the corresponding
mechanisms have been classified by Goussis and Kelly [107] as the P-mode and
the S-mode. The P-mode generally yields “steady convection rolls” or hexagonal or
square cells, the size of which is of the same order of magnitude with the depth of
the layer (convective motions in a wide variety of physical settings are discussed
in [191]). These convective patterns are called after Bénard, who around 1900 pro-
vided their systematic experimental exploration. The instability leading to Bénard
cells is known as the “Marangoni–Bénard instability” and was first studied by Pear-
son [206]. This instability may occur even with a nondeformable free surface (in
fact, Pearson did not account for the deformability of the surface). On the other
hand, the S-mode corresponds to significant long-scale deformations, whose hori-
zontal size is much larger than the depth of the layer. This instability is referred to
as the long-wave Marangoni instability and was clearly explained by K.A. Smith
[255].3 The P-mode will be analyzed in Chap. 3. However, since this monograph is
devoted to thin films—with thicknesses much smaller than a millimeter—and their
associated long-wave instabilities, the P-mode which is of short-wave type will be
neglected in subsequent chapters. Therefore, for the remainder of the monograph,
with the exception of Chap. 3 where we examine in detail the linear stability charac-
teristics of heated falling films, when speaking about the Marangoni effect we refer
to the long-wave instability, or S-mode.

Let us now examine in detail the mechanism of the surface-tension-driven long-
wave thermocapillary instability, assuming that, as for most liquids, the surface ten-
sion decreases with increasing temperature. Consider a cross-section of a horizontal
liquid layer heated from below at temperature Tw as sketched in Fig. 1.10; T∞ is the
temperature of the ambient gas. If a spontaneous infinitesimal deformation occurs
at the interface at time t1 as shown in the figure, the film temperature in the trough
of a depression, T +, will be larger than at the crest of an elevation, T −, provided
that Tw > T∞. Because surface tension decreases with temperature, a flow is in-
duced along the interface moving liquid away from the hot spot. This flow acts so
as to amplify the initial perturbation to that shown in time t2. What mainly opposes
the deformation is gravity through the hydrostatic pressure, which tends to maintain
the flatness of the horizontal layer, i.e., leveled with an equipotential. For pertur-
bations of sufficiently short wavelength, surface tension also acts and tends to sup-
press surface deformation, a consequence of a law found by Laplace. Therefore, the

3Actually, this mode was first obtained by Scriven and Sterling [246] but without gravity. Thus,
they found that a horizontal liquid layer subjected to a vertical temperature difference is always
unstable with respect to long-wave perturbations. Smith then added gravity and found the critical
Marangoni number for the long-wave mode.
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Fig. 1.10 Mechanism of the
long-wave Marangoni
instability (S-mode) for a film
heated from below. Tw is the
wall temperature and T∞ is
the temperature of the
ambient gas phase above the
film

Fig. 1.11 Convective rivulet
pattern due to the S-mode at
the surface of a falling liquid
film heated from below. This
pattern will be appropriately
modified by the presence of
hydrodynamic waves due to
the H-mode

instability with respect to this mode should take the form of long-wavelength per-
turbations for which the hydrostatic pressure is a stabilizing force. This instability
occurs when the balance between the Marangoni stress produced by the temperature
gradient across the layer and the hydrostatic pressure turns in favor of the former.
The instability can lead to formation of dry spots when at the troughs the liquid
film becomes too thin. For a complete theory in this case we need to incorporate
forces of nonhydrodynamic origin, i.e., long-range attractive intermolecular inter-
actions (between the solid and the gas phases separated by the liquid). We shall not
do this in the present monograph but we shall discuss the significance of including
such forces in Chap. 9 when we analyze three-dimensional wave patterns in heated
falling films.

The consequence of tilting the plate is that the liquid will flow down driven by
gravity, while at the same time we have the long-wave Marangoni instability. This
would lead to flow into downstream aligned rivulets as experimentally observed and
drawn in Fig. 1.11. We shall return to this point in Chap. 9.

The coupling between the two instabilities, thermocapillary-driven motions and
the surface wave instability of a falling liquid film, has been studied by several inves-
tigators. It has been shown from the linear stability analysis of a heated falling liquid
film that the thermocapillary S-mode predominates at low enough flow rates—or
equivalently for sufficiently thin films—where the Marangoni stress in the pres-
ence of surface deformation, generated by the destabilizing temperature gradient
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Fig. 1.12 Coexistence
between three-dimensional
hydrodynamic waves flowing
downstream and rivulets
aligned with the flow induced
by the thermocapillary effect
for pure water at
Re= 22 [133]. The wall is
heated by a constant heat flux
of 0.8 W cm−2. The heated
section of the wall has a
length of 150 mm and begins
120 mm from the inlet so that
the hydrodynamic waves are
already well developed before
the Marangoni effect starts
influencing their dynamics.
Photo courtesy of Prof.
O.A. Kabov

across the layer, overrules the stabilizing hydrostatic pressure [107]. On the other
hand, the hydrodynamic H-mode prevails at high enough flow rates where the
destabilizing inertia effects become dominant. However, for a wide range of pa-
rameter values, the S- and H-modes may coexist and reinforce each other [107,
128]. Figure 1.12 shows experimental evidence [133] of the coexistence between
rivulet structures produced by transverse thermocapillary effect (as for Fig. 1.11)
and three-dimensional hydrodynamic waves (that are also modified by thermocap-
illarity).

It has also been shown that when the S- and H-mode reinforce each other and the
Marangoni effect is strong enough, we may have dry patch formations as sketched
in Fig. 1.13. Again a complete theory of this phenomenon would require taking into
account long-range attractive intermolecular interactions.

1.2.4 Inhomogeneous Heating

Experimental studies have also been performed on thin films falling along inhomo-
geneously heated vertical plates. Various convective patterns have been observed.
Figure 1.14 illustrates the case of a locally heated film at rather low flow rates.
At the upper edge of the heater, the temperature of the plate increases along the
flow direction. Consequently, as the temperature of the fluid surface increases, sur-
face tension decreases downstream. The concomitant surface tension gradient pro-
duces a Marangoni flow opposed to the gravitationally driven flow. This competition
produces a horizontal bump of locally increased film thickness at the upper edge
of the heater, which becomes unstable and develops rivulets with a well-defined
wavelength in the spanwise direction. This problem has been analyzed theoretically
in [138, 254].
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Fig. 1.13 The Marangoni effect reinforces the hydrodynamic wave instability and can lead to
dry-patch formation [124]. Left panel shows the film thickness prior to the dry patch formation
(right panel)

Fig. 1.14 Steady regular structure for a 10% ethyl-alcohol aqueous solution, Re = 1. The bright
rectangular zone corresponds to the heater. The characteristic wavelength of the structure is
10 mm, while the film thickness before the heater is about 100 µm [134]. Photo courtesy of Prof.
O.A. Kabov. Reprinted with permission of Gian Piero Celata

The phenomena shown in both Figs. 1.12 and 1.14 are key in this monograph.
In both cases, the Marangoni effect (once again considered only when heating oc-
curs from below) plays a crucial role in the convective/wavy pattern formation. In
the homogeneous heating case of Fig. 1.12, the flow rate is sufficiently moderate
such that hydrodynamic waves have relatively high amplitudes and become rapidly
three-dimensional. In the local heating case of Fig. 1.14, the flow rate is low enough
such that hydrodynamic waves have very small amplitudes while the thermocapil-
lary effect is dominant and induces steady regular patterns.
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1.3 Mathematical Modeling and Methodologies

Depending on the flow regime, different levels of reduction can be used to sim-
plify the governing equations, namely Navier–Stokes and Fourier equations, and
the wall and free-surface boundary conditions. As already noted, interfacial defor-
mations (such as those in Figs. 1.12 and 1.14) are long compared to the film thick-
ness. The cross-stream scale is then well-separated from the streamwise and span-
wise scales in a way reminiscent of the separation of scales underlying the bound-
ary layer theory in aerodynamics (e.g., [243]). The approximations that lead to the
boundary layer equations there also apply for thin film flows where the pressure is
mostly governed by gravity and surface tension. The disparity in scale between long-
wavelength streamwise/spanwise deformations and film thickness is referred to as
the long-wave approximation (or lubrication approximation for vanishing Reynolds
numbers). This approximation enables us to perform a “gradient expansion” of the
velocity and temperature fields and to subsequently obtain systems of equations of
reduced dimensionality to model the dynamics of the flow.

In the region where inertia is not important, namely if the Reynolds number is
small, the velocity and temperature fields can be considered slaved to the kinematics
of the free surface and a single evolution equation for the film thickness h can be
derived either from the full Navier–Stokes and Fourier equations and associated wall
and free-surface boundary conditions or the boundary layer equations, as we shall
see in Chap. 5. For isothermal films, this was first done by Benney [21] followed
by several other authors (see the reviews by Oron, Davis and Bankoff [201] and
Craster and Matar [61]). The resulting equation, frequently referred to as the Benney
equation and denoted in the following discussions, as BE, has the form

∂th+ h2∂xh+ ∂x
{(
Ah6 −Bh3)∂xh+Ch3∂xxxh

}= 0, (1.1)

where h(x, t) denotes the location of the free surface of the liquid film and A, B and
C are parameters that we shall define in Chap. 5. ∂t and ∂x denote time and space
partial derivatives, respectively.

Benney’s approach is exact close to criticality/instability threshold as far as crit-
ical, neutral conditions (critical Reynolds number, neutral curve) and interfacial
quantities are concerned. However, as the Reynolds number increases, it breaks
down rapidly at an O(1) value of the Reynolds number, leading to unacceptable
finite-time blow-up behavior. This behavior is a sign of the intrinsic dynamics of
the slaved modes (through the gradient expansion associated with the long-wave
approximation) for higher Reynolds numbers. Ooshida realized that the gradient
expansion leading to the BE is divergent and to overcome the unrealistic behavior
of the BE he modified the expansion appropriately by using a “Padé approximants”
regularization procedure for divergent asymptotic series [196]. However, although
the equation he obtained does not suffer from the drawback of finite-time blow-up, it
does fail to describe accurately the dynamics of the film at moderate Reynolds num-
bers (in the region ∼ 10–50) since its solitary-wave solutions exhibit unrealistically
small amplitudes and speeds.
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There is also the so-called integral boundary layer approximation (IBL), which
performs much better in the region of moderate Reynolds numbers. IBL is de-
rived from the boundary layer equations and combines the assumption of a semi-
parabolic velocity profile within the film with the Kármán–Pohlhausen averaging
method of boundary layer theory in aerodynamics. This formulation was first used
by Kapitza [140] to describe stationary waves and later on extended by Shkadov
[248] to nonstationary two-dimensional flows and by Demekhin and Shkadov to
three-dimensional ones [71]. We shall hence refer to this approach as the Kapitza–
Shkadov approximation. In two dimensions, the approximation leads to two coupled
evolution equations for film thickness h and streamwise flow rate q . Results for
isothermal nonlinear waves far from criticality obtained from the Kapitza–Shkadov
model are in quantitative agreement with the boundary layer [72] and full Navier–
Stokes equations for moderate Reynolds numbers [70, 218, 232]. However, the
Kapitza–Shkadov approach does not predict well neutral and critical conditions, ex-
cept for large inclination angles. Indeed, it has been shown that for a vertical falling
film, the Kapitza–Shkadov model gives the correct value for the critical Reynolds
number, i.e., zero. For all other inclination angles, the model is off by 20%. This
discrepancy originates in the velocity profile assumed in the Kapitza–Shkadov ap-
proximation [226]. Although this profile seems to be in agreement with the experi-
ments by Alekseenko, Nakoryakov and Pokusaev [3] and hence does capture most
of the physics, corrections to the profile known to exist at first order in the gradient
expansion (a point to be discussed in detail in Chap. 6), are important for an accurate
prediction of the linear instability threshold.

This shortcoming has been resolved by combining the gradient expansion with a
“weighted residuals” technique using polynomials as test functions [227, 228]. The
resulting models will be referred to hereinafter as weighted residuals models. In the
simplest case, a Galerkin method, leads to a “first-order model” involving two cou-
pled evolution equations for the film thickness h and the local flow rate q , much like
the Kapitza–Shkadov model but with different numerical coefficients of the terms
originating from inertia. The first-order model predicts the correct linear instability
threshold for all inclination angles while at the same time it also predicts rather well
the nonlinear flow features. This is a direct consequence of using a detailed repre-
sentation of the velocity field accounting for its deviations from the semiparabolic
profile. A “second-order model” has also been developed that takes into account the
second-order viscous effects. It involves four equations by allowing the corrections
to the semiparabolic velocity profile to evolve according to their own dynamics. Fur-
ther, an approximation to this four-field model, a “simplified second-order model,”
has been proposed involving only two fields, which allows us to easily scrutinize
the role played by the second-order viscous effects on wave profiles and stationary
wave selection. The spatial evolution of the solutions of the simplified second-order
model in the presence of noise or periodic forcing agrees rather well with both ex-
periments and direct numerical simulations of the boundary layer equations. We
shall be examining in detail these points in Chaps. 6 and 7.

A number of authors have considered the role of heat on the evolution of a falling
liquid film. For the problem of a film flowing down along a uniformly heated wall,
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Joo, Davis and Bankoff [128] included in addition to thermocapillary effects, evap-
oration and intermolecular forces. They used the long-wave approximation to obtain
an equation for the evolution of the local film thickness. Without evaporation effects
and intermolecular forces, which are beyond the scope of this monograph, their evo-
lution equation will also be referred to hereinafter as BE. The equation has a struc-
ture similar to (1.1) but with some additional terms, of course, to account for the
Marangoni effect. These authors compared the influence of the H and S modes on
the shape of nonlinear waves by performing numerical experiments. They observed
that both instability modes reinforce each other (see also our earlier discussion).
They also noted that the H-mode is more sensitive to the local layer thickness—with
the wave crests growing more rapidly compared to the troughs, which diminish in
time—than the S-mode, for which the growth of the crests and troughs is similar.

The interaction between the S- and H-modes has also been studied for two-
dimensional flows with moderate Reynolds numbers, i.e., outside the range of va-
lidity of the BE by appropriately modifying the Kapitza–Shkadov approximation to
include the Marangoni effect. Therefore, as for the isothermal case, the Kapitza–
Shkadov model for the heated falling film does not suffer any finite-time blow-up
like the BE and solitary wave solutions have been obtained for higher Reynolds
numbers than with the BE. Nevertheless, the model suffers from the same limita-
tions with the Kapitza–Shkadov model for isothermal films, i.e., it does not predict
accurately the behavior of the film close to the linear instability of the semiparabolic
base flow when the plate is inclined. The limitations of the Kapitza–Shkadov ap-
proach for two-dimensional heated films have been corrected in previous studies
[230, 240] by extending the weighted residuals approximations discussed above to
include the Marangoni effect. This work will be reviewed in detail in Chap. 9, where
we will also extend it to three dimensions.

Finally, we note that for small deviation amplitudes from the flat film, the models
discussed above, e.g., BE and Kapitza–Shkadov, can be simplified substantially via
a weakly nonlinear expansion, which leads to different weakly nonlinear evolution
equations. This is done in Chap. 5 for the BE. A review of these far simpler and
elegant equations, together with other prototypes occurring often in hydrodynamic
stability and pattern formation in general, is given in Appendix C.5.

1.4 Structure and Contents of the Monograph

We begin with a foundational part in Chaps. 2, 3 and 4, which gives the governing
equations and associated wall and free-surface boundary conditions, linear stability
analysis and derivation of boundary layer equations. These equations are the ba-
sis for subsequent modeling. In Chaps. 5 and 6 we develop in detail the different
methodologies and models used to analyze film flows. We also offer a critical as-
sessment of their domain of validity and discuss their limitations. In Chaps. 7, 8
and 9 we use the models developed earlier and we present results on wave evolution
on an isothermal and heated falling film. We critically compare the theory, numerics
and experimental results (whenever possible).
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More specifically:
In Chap. 2 we introduce the governing equations and their corresponding bound-

ary conditions and we discuss at length possible scalings and the role of governing
dimensionless groups and parameters entering the falling liquid film problem.

Chapter 3 is devoted to the Orr–Sommerfeld linear stability analysis of the base
flow for isothermal and heated falling films. We consider transverse perturbations
without any free-surface deformation and we clearly identify the S- and P-modes
mentioned earlier. We then proceed to the study of evolution of streamwise pertur-
bations. By performing a small wavenumber expansion for the H-mode also men-
tioned earlier, we obtain the neutral stability curve and identify the wavenumber
corresponding to the maximum growth rate. Subsequently, the energy and vortic-
ity balances associated with the onset and growth of wavy perturbations are stud-
ied, elucidating the role played by vorticity, a point not considered by Kapitza
in his much simpler approach. A numerical scheme for the solution of the Orr–
Sommerfeld eigenvalue problem is given in Appendix F.1.

In Chap. 4 we introduce the boundary layer equations, an approach which, as we
already pointed out, is similar to that used in boundary layer theory in aerodynamics.
The equations are scaled using a scaling proposed by Shkadov [248]. This scaling is
inherent to the falling film problem in the region of moderate Reynolds numbers due
to the separation of scales in the streamwise and cross-stream directions in this re-
gion that is in fact due to the strong effect of surface tension. It also makes apparent
the balance among all forces, i.e., inertia, gravity, viscosity and surface tension, nec-
essary to sustain strongly nonlinear waves. Using the boundary layer equations we
identify two flow regimes. One occurs when the streamwise component of gravity is
mainly balanced by the viscous drag with inertia playing little if any role, the “drag-
gravity regime.” The other is a “drag-inertia regime,” where inertia balances viscous
drag. The drag-gravity regime corresponds to low-Reynolds number flows whereas
the drag-inertia flow regime corresponds to moderate values of the Reynolds num-
ber. The transition between the two regimes occurs at a “reduced Reynolds number”
(obtained from the Shkadov scaling) of about one.

Chapter 5 develops the methodologies suitable for the study of flows at low val-
ues of the Reynolds number. These are based on what we have already referred
to as a gradient expansion. We show that the rather complex free boundary prob-
lem describing the evolution of a falling liquid film can be reduced to the study
of a single evolution equation for the free surface, what we already referred to as
BE. The equation is also derived by including the Marangoni effect and we assess
fully its region of validity, with and without the Marangoni effect. We subsequently
derive both the Kuramoto–Sivashinsky (KS) and Kawahara equations defined in
Appendix C.5 restricted to the evolution of small amplitude disturbances. We also
discuss the paradigmatic role played by these model equations. Such models are typ-
ical cases of “driven–dissipative soliton-bearing equations” in a generalized sense
(“driven–dissipative” refer to energy pumping-leak, respectively); indeed, numeri-
cal and experimental evidence shows that collisions between such dissipative soli-
tary waves share common features with solitons in conservative systems, hence the
coinage “dissipation solitons” (e.g., [55]). Dissipation expresses itself in the form of
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front (or rear) radiation of the clearly identifiable bump (or trough) of a wave. We
also study the linear stability of the BE and we demonstrate that the resulting critical
Reynolds number agrees fully with that found from the Orr–Sommerfeld analysis
in Chap. 3. Moreover, the neutral curve and interfacial quantities obtained from
the BE in the vicinity of criticality agree with those found from Orr–Sommerfeld.
Hence the BE describes accurately the linear instability threshold (as far as criti-
cal/neutral conditions and interfacial quantities are concerned). However, far from
criticality the BE is shown to blow up in finite time for both isothermal and heated
films (this blowup behavior corresponds precisely to a reduced Reynolds number
of about 1). Hence, the BE cannot describe correctly the drag-inertia regime and
nonlinear waves far from criticality. An attempt to cure the deficiencies of the BE
due to Ooshida [196] by employing a “Padé approximants” regularization scheme
to the long-wave approximation is then discussed. A “continuation” scheme for the
numerical construction of “traveling-wave” bifurcation diagrams is offered in Ap-
pendix F.2.

In Chap. 6 we consider methodologies for the study of flows at moderate
Reynolds numbers. We review and reexamine in detail work done by ourselves and
others with a view to explore further and deeply scrutinize the different methodolo-
gies/approaches. Our starting point is the derivation of the Kapitza–Shkadov model.
This model forms the basis of a hierarchy of appropriately improved models based
on weighted residuals approximations such as the Galerkin approach (after all, as
we demonstrate in this chapter, the Kapitza–Shkadov model is a particular case of a
simple weighted residuals modeling approach). We compare different possibilities,
including the Galerkin, “collocation” and the “method of moments” and we show
that the Galerkin approach performs best. We also present the “center manifold”
approach of Roberts (e.g., [221]) and analyze its virtues and shortcomings.

Chapter 7 is devoted to an in-depth study of two-dimensional isothermal flows of
the models developed in Chap. 6 and considers the virtues and shortcomings of the
Kapitza–Shkadov model and the weighted residuals models developed in Chap. 6.
For example, we examine the linear stability of these models and demonstrate that
the Kapitza–Shkadov model predicts the critical Reynolds number with a 20% er-
ror as opposed to the weighted residuals models, which predict the correct value
and fully resolve the instability onset. Subsequently we consider solitary waves in
their moving frame by using elements from dynamical systems theory. We provide
features of solitary waves amenable to experimental tests, such as speeds, ampli-
tudes and shapes. Such waves are dissipative and are typically characterized by a
primary hump followed by small-amplitude oscillations at its front (radiation) and a
long tail at its back. The spatial evolution of two-dimensional waves is also analyzed
when forcing at the inlet is introduced, as already done by Kapitza and subsequently
by other experimentalists. This allows us direct comparisons with experiments by
Gollub’s group (e.g., [170]). Further, we discuss absolute and convective instabili-
ties and offer new results dealing with “wave hierarchies” (i.e., “kinematic/dynamic
waves”). A finite-differences scheme that can be used for the numerical solution
of the two-dimensional model equations considered here (and for that matter, other
nonlinear partial differential equations) is outlined in Appendix F.3.
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In Chap. 8 we examine three-dimensional effects for isothermal films. This is the
natural continuation of the analysis of preceding chapters. Theory, numerics and ex-
periments are discussed, including the stability of two-dimensional periodic waves
with respect to three-dimensional disturbances (using Floquet theory for periodic
solutions). The subtleties of modulation effects on two-dimensional waves in par-
ticular are treated in depth. The role of noise at the inlet and its different effects
compared to periodic forcing are also discussed (recall that the flow down the plate
is a kind of noise amplifier). The results are contrasted with experiments by Gollub’s
group. The spectral representation of periodic solutions in Fourier space (including
aliasing), crucial for obtaining the numerical results in this chapter, is outlined in
Appendix F.4.

In Chap. 9, the weighted residuals approach introduced in Chap. 6 is extended
to the problem of the influence of heating and the significant role played by the
Marangoni effect on the dynamics and evolution of the falling liquid film. This is
done at various levels of mathematical complexity and approximation. The linear
stability is examined and fully nonlinear waves, i.e., solitary waves, are constructed.
A wide variety of results is offered to both theoreticians/modelers and to experi-
mentalists. The role of various parameters and constraints involved in the dynamics
of heated films is discussed in detail. Particular attention is given to the study of
three-dimensional patterns and “rivulets” arising from wave-wave interactions.

Finally, in Chap. 10 we offer suggestions for open problems for readers interested
in pursuing research along the avenues explored in the previous chapters.



Chapter 2
Flow and Heat Transfer: Formulation

We present the full statement of the governing equations, boundary conditions and
dimensionless groups for a film falling down a heated plate and exposed to ambient
air. Due to the relatively low dynamic (shear) viscosity of the air the mechanical
influence of the air motion on the liquid can be considered negligible, allowing
us to simplify the boundary conditions on the open surface and thus consider it
a “free” surface. We also ignore the heat transfer in the air by using an ad hoc
boundary condition for the temperature on the free surface so that only the heat
transfer process in the liquid is taken into account.

Our formulation considers in parallel an alternative with two possible thermal
boundary conditions on the plate, namely a specified temperature (Dirichlet condi-
tion) and a heat flux distribution (Robin/mixed condition). For the latter to be real-
istic, heat losses between the wall and the surrounding medium must be included,
which implies one additional empirical parameter in the equations, the heat transfer
coefficient of the wall–air interface.

2.1 Governing Equations and Boundary Conditions

We consider the evolution of a viscous thin film flowing down a heated plate as illus-
trated in Fig. 2.1. The plate forms an angle β with the horizontal direction (β = 0,
horizontal film; β = π/2, vertical film). For the isothermal case, the flow is then
driven by the streamwise gravitational acceleration g sinβ . We introduce a Cartesian
coordinate system (x, y, z) where x is the streamwise coordinate in the direction of
flow, y is the outward-pointing coordinate normal to the plate and z is the spanwise
coordinate. The plate is then located at y = 0 and the interface at y = h(x, z, t),
a single-valued function of x, z and time t . The main hypotheses are:

H1: The density ρ of the liquid is constant, or, equivalently the liquid remains in-
compressible. This assumption is valid for thin films (h̄N < 1 mm) where buoy-
ancy can be neglected, i.e., the effect of thermal expansion upon density in the
buoyancy force is negligible; see, e.g., [27, 58]. We examine this assumption
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Fig. 2.1 Sketch of the geometry for a viscous thin film flowing down an inclined plate forming an
angle β with the horizontal direction. The system is unbounded in the x and z directions. h(x, z, t)
is the local film thickness, h̄N is the mean film thickness, typically < 1 mm, and g is gravitational
acceleration. The surrounding gas phase is air maintained at temperature and pressure T∞ and p∞,
respectively. The wall is heated either by a specified temperature distribution Tw or a given heat
flux distribution qw. l, a typical wavelength of the interfacial waves in the x direction, is much
longer than h̄N

in more detail in Appendix D.1. We shall not, however, consider liquid thick-
nesses in the 100 nm range where intermolecular interactions become signifi-
cant.

H2: The liquid is Newtonian and hence it obeys a linear stress-strain relationship
whose proportionality coefficient is the dynamic (shear) viscosity μ. The kine-
matic viscosity is given by ν = μ/ρ.

H3: The plate is rigid and hence a no-slip (stick) and no-penetration condition for
the velocity field applies on the plate (thus excluding the possibility of porous
walls).

H4: The liquid is assumed to be nonvolatile so that in the range of temperatures we
shall consider evaporation effects can be neglected.

H5: The air acts as a reservoir of infinite heat capacity and hence is maintained
at the constant temperature T∞. It is also maintained at the constant pressure
p∞. In addition, the air is assumed to be mechanically “passive” in the sense
that the viscous stress from the air side is negligible compared to that from
the liquid side (e.g., μair/μwater ≈ 10−2). This “one-fluid” approach enables
us to consider the momentum equation for the liquid without considering the
momentum equation for the air. Note that despite the smallness of the dynamic
viscosity ratio between air and liquid, the opposite is true for the kinematic
viscosity, e.g., νair/νwater ≈ 10. This can make the one-fluid approach at times
problematic when dealing with turbulent flows. However, a discussion of such
flows is beyond the scope of this monograph.

H6: To obtain the constitutive equation for the surface tension σ , let us expand
σ(Ts), with Ts the interfacial temperature in a Taylor series at a reference tem-
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perature taken to be the temperature of the surrounding gas phase, T∞. Taking
the first two terms in the expansion leads to the linear decrease with tempera-
ture,

σ = σ∞ − γ (Ts − T∞), (2.1)

where σ∞ is the surface tension at the gas temperature and γ =−(dσ/dTs)T∞
is positive for most liquids. An alternative for the reference temperature would
be the interfacial temperature for a flat film. However, in this case we would
have to assume that the interfacial temperature remains close to its flat film
value while the ultimate aim of this monograph is to examine the nonlinear
flow regimes where the film thickness departs significantly from its initial con-
stant value. Further, unlike T∞, the flat film temperature is not a control pa-
rameter in experiments. The above constitutive relation is further discussed in
Appendix B.1.

H7: Any boundary between two phases, such as the liquid–gas or the liquid–
solid interface, has typically a nonnegligible thermal resistance that leads to
a difference in temperature across the boundary. This temperature difference
is balanced by the heat flux normal to the boundary so that the following
Robin/mixed condition applies there:

−λ∇T · n= α(T − T0), (2.2)

where n is the outward-pointing (from the phase under consideration to the
other side of the boundary) unit vector normal to the boundary, the dot is used
to denote the dot product either of two vectors or of a tensor with a vector, λ is
the thermal conductivity of the phase under consideration, T is the temperature
at the boundary of the phase under consideration, T0 is the temperature away
from the boundary and α is the heat transfer coefficient that describes the rate
of heat transport from the phase under consideration to the other phase across
the boundary.

The main assumption here is that all the resistance to heat transfer (via con-
duction and convection) happens in a thin layer of the order λ/α in the im-
mediate vicinity of the boundary, i.e., a significant temperature gradient exists
over a small distance from the boundary to the other side. T0 is then the tem-
perature right outside this “thermal resistance layer.” The larger the thickness
of the layer the stronger the resistance to heat transfer. In general, the thick-
ness of this layer is not known, although for high Reynolds number flows, e.g.,
in tube reactors, taking the thermal resistance layer to be the thermal bound-
ary layer and T0 to be the nearly constant temperature in the bulk outside the
thermal boundary layer leads to a good approximation for the heat transfer pro-
cess. Equation (2.2) is usually quoted as Newton’s law of cooling. It is further
discussed in Appendix B.2.

H8: The contribution of viscous dissipation in the heat equation is omitted. This is a
reasonable assumption for thin liquid films and the thermal gradients we shall
consider here (see Appendix D.1 for details).
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H9: In addition to density (H1), all other fluid parameters, i.e., dynamic viscosity μ

(and so kinematic viscosity ν), thermal conductivity λ and thermal diffusivity
χ = λ/ρcp with cp the constant pressure heat capacity, are not altered signif-
icantly by the action of the relatively small thermal gradients in the problem
and are taken to be constant. Tacitly, this corresponds well to our situation of
heating thin films only.

In the following we shall be making use of basic knowledge of fluid mechanics
and interfacial phenomena as well as vector/tensor calculus. The reader should re-
fer to some of the many textbooks available. For example, fundamental principles
and derivations of the basic equations for fluid flow and heat transport are given
in [26, 159, 160] while an interesting derivation of these equations using elements
of nonequilibrium thermodynamics can be found in [69]. Reference [17] focuses
on heat transfer while [158, 159] derive in detail the interfacial boundary condi-
tions. References [12], Appendix A in [26] and [109] cover in detail vector/tensor
calculus.

With hypotheses H1, H2, H8 and H9, the governing equations, namely continu-
ity, momentum (Navier–Stokes) and energy (Fourier) equations, can be written as:

∇ · v= 0, (2.3)

Dv
Dt

=−ρ−1∇p+ ν∇2v+ F, (2.4)

DT

Dt
= χ∇2T , (2.5)

where D/Dt ≡ ∂t + v ·∇ is the “material derivative” (it is the “derivative following
the motion,” also called the “Lagrangian,” “substantial” or “convective derivative”),
∇ ≡ (∂x, ∂y, ∂z) is the gradient operator and the subscripts denote differentiation
with respect to the corresponding variables. v= (u, v,w) is the fluid velocity vector
with components u, v and w in the x, y and z directions, respectively. T and p are
the temperature and total pressure of the fluid (including both dynamic and hydro-
static contributions), respectively, and F = (g sinβ,−g cosβ,0) is the body force
with g the gravitational acceleration.

Equations (2.3)–(2.5) are subject to the following boundary conditions:

At the Plate y = 0:

• The no-slip and no-penetration boundary condition (H3):

v= 0. (2.6)

• The wall heating, e.g., an electric heating device embedded in the wall, gener-
ates a temperature distribution in the film. We impose two types of boundary
conditions for the temperature field in the film, namely a Dirichlet or specified
temperature (ST) and a Robin/mixed or heat flux (HF). The ST thermal boundary
condition is

T = Tw, (2.7)
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Fig. 2.2 Sketch of the heat fluxes at the wall for the HF case. qw is the heat flux generated by the
heater embedded in the wall, qloss is the heat loss from the wall to the ambient gas phase and Tw,
hw, are the wall temperature and thickness, respectively. Ts denotes the interfacial temperature.
Both qw and qloss contribute to the liquid temperature gradient at y = 0

i.e., the heater maintains the wall temperature at the value Tw (> T∞). The HF
thermal boundary condition can be obtained by solving the energy equation in the
wall. The derivation is given in Appendix C.1. The result is

λ∂yT =−qw + αw(T − T∞), (2.8)

where qw is the heat flux generated by the heater and supplied by the plate to
the liquid (see Fig. 2.2) and αw is the heat transfer coefficient of the wall-air
interface. The term αw(T − T∞) is a measure of the heat losses to the gas phase
in contact with the wall. Indeed, formally qloss = λw∂yTw|y=−hw . From (C.3a) in
Appendix C.1 we find λw∂yTw

∣∣
y=−hw

= qw + λwA. But for hw → 0 as we did in
Appendix C.1, λwA = −qw + αw(T − T∞) so that qloss = αw(T − T∞). Hence
the mixed boundary condition in (2.8) expresses the simple physical fact that both
the flux supplied by the plate to the liquid, qw, and the heat losses, qloss, to the gas
phase in contact with the plate contribute to the temperature gradient at y = 0. In
the particular case that this gradient vanishes, qw = αw(T − T∞), so that all the
heat generated by the heater is lost to the gas phase in contact with the wall and
we have a specified temperature boundary condition (Dirichlet condition). If, on
the other hand, the wall is perfectly insulated from the air, i.e., αw = 0, we have a
specified heat flux boundary condition (Newmann condition).

At the Free Surface y = h(x, z, t):

• Provided H4, the kinematic boundary condition is obtained by differentiating y−
h(x, z, t)= 0 with respect to t : y − h is a scalar function which vanishes on the
liquid interface so that its time derivative following any material point on the
interface (which has velocity v) also vanishes, that is,

D

Dt
(y − h)= 0
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at all points on the interface. Using the definition of the material derivative, this
condition provides a relationship between the film thickness and the normal ve-
locity component v =Dy/Dt on the free surface:

v = ∂th+ v ·∇h. (2.9)

It is a constraint on the material velocities in terms of the shape of the interface:
A fluid particle on the free surface will remain there at all times and move with the
velocity of the surface. We shall use extensively the kinematic boundary condition
in this form throughout the monograph.

An alternative form combines the definition of the material derivative with
that of a unit vector n normal to the surface that points into the surrounding gas
as shown in Fig. 2.3,

n= 1

n
(−∂xh,1,−∂zh)≡ 1

n
∇(y − h),

with n = (1+ (∂xh)
2 + (∂zh)

2)1/2, i.e., the vector (−∂xh,1,−∂zh) is appropri-
ately normalized so that its modulus is unity. Since, v − v ·∇h = v ·∇(y − h),
the kinematic boundary condition in (2.9) can be written as,

1

n
∂th= v · n,

where v · n is the component of v normal to the interface. In this form, the com-
ponent of the velocity normal to the interface is balanced by the time variation of
the interface; after all the interface changes for normal motions only (the tangen-
tial component causes motion on the interface but it does not change the material
location of the interface).

• The stress balance or “momentum jump” on the free surface,

(T−T∞) · n= 2σK(h)n+∇sσ, (2.10)

where ∇s is the surface gradient operator (see Appendix C.2) and K(h) is the
mean curvature of the free surface given by the average, K , of the two princi-
pal curvatures k1, k2, K = (1/2)(k1 + k2)= (1/2)(1/R1 + 1/R2)=−(1/2)∇s · n
where R1,R2 are the principal radii of curvature. Hence:

K(h)= 1

2

∂xxh[1+ (∂zh)
2] + ∂zzh[1+ (∂xh)

2] − 2∂xh∂zh∂xzh

[1+ (∂xh)2 + (∂zh)2]3/2
.

The quantity T = −pI+ P is the stress tensor for the liquid with I the identity
matrix, P= 2μE (using H2) is the deviatoric stress tensor and E= (1/2)(∇v+
(∇v)t) is the rate-of-strain tensor. For the gas T∞ = −p∞I (see H5). We then
have:

(p∞ − p)n+ P · n= 2σK(h)n+∇sσ. (2.11)
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Fig. 2.3 Definition of normal
n and tangential unit vectors
τ 1,2 at point P (x, y, z) on the
liquid film free surface.
h(x, z, t) denotes the location
of the free surface and u,v,w

the streamwise, cross-stream
and spanwise components of
the velocity field, respectively

We now identify the physical meaning of the different terms in (2.10). The term
T · n is the force per unit area acting on the liquid side of the interface and in
the direction normal to the interface, the term 2σK(h)n is the Laplace surface
tension term also acting in the normal direction, while the term ∇sσ gives rise
to a force tangent to the interface. The condition (2.10) then simply states that
all forces acting on the interface must balance. Note that for rigid bodies, this
condition is usually ignored as the stress in such materials is indeterminate and
the condition does not provide a useful constraint on the stress.

To obtain the normal stress balance or normal stress boundary condition, we
take the dot product of (2.11) with n. This gives:

p∞ − p+ (P · n) · n= 2σK(h). (2.12)

Hence, in crossing the interface, the normal component of the total stress un-
dergoes a “jump” equal to σ(∇s · n). In the limiting case of no motion in the
fluid, p∞ − p =−σ(∇s · n). Therefore, as Laplace noted, the pressure inside the
convex region of a curved interface at equilibrium is larger than the outside by
an amount that depends on both the curvature and σ . In the limiting case of a
sphere, R1 =R2 =−R, the sphere’s radius. Thus, for a spherical bubble or drop,
p = p∞+ 2σ/R and the internal pressure exceeds the external one by 2σ/R. For
a planar geometry the factor of 2 does not appear.

Let us now define two unit vectors tangential to the free surface (see Fig. 2.3),

τ 1 = 1

τ1
(1, ∂xh,0) and τ 2 = 1

τ2
(0, ∂zh,1),
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with τ1 = (1 + (∂xh)
2)1/2 and τ2 = (1 + (∂zh)

2)1/2, i.e., the vectors (1, ∂xh,0)
and (0, ∂zh,1) are appropriately normalized so that their modulus is unity. The
choice of these vectors is discussed in Appendix C.3. The projection of (2.11)
on these vectors then gives the components of the tangential stress balance or
tangential stress boundary conditions:

(P · n) · τ i =∇sσ · τ i, i = 1,2. (2.13)

The evaluation of the right hand side is discussed in Appendix C.4. An impor-
tant consequence of this condition is that systems with ∇sσ �= 0, such as those
considered here, must undergo motion even in the absence of an externally im-
posed flow: If ∇sσ �= 0, then P �= 0 and thus, any mechanism which maintains
∇sσ �= 0 will necessarily drive motion in the fluid or alter an existing one. This
is the Marangoni effect defined in the Introduction. We refer to such motions as
Marangoni driven flows.

• Newton’s law of cooling (see H7),

−λ∇T · n= α(T − T∞), (2.14)

where α is the heat transfer coefficient that measures the rate of heat transport
between the liquid film and the ambient air.

2.2 Dimensionless Equations, Scalings and Parameters

The system in (2.3)–(2.5) with corresponding plate and free-surface boundary con-
ditions (2.6)–(2.8), (2.9) and (2.12)–(2.14) has a trivial or base solution correspond-
ing to the plane-parallel base state with thickness h= h̄N,

U(y) = g sinβ

2ν
y(2h̄N − y), (2.15a)

V (y) = 0, (2.15b)

W(y) = 0, (2.15c)

P(y) = p∞ + ρg cosβ(h̄N − y), (2.15d)

ST: Θ(y) = Tw − α(Tw − T∞)

λ+ αh̄N
y, (2.15e)

or

HF: Θ(y) = T∞ + qw(λ+ α(h̄N − y))

λ(α + αw)+ ααwh̄N
. (2.15f)

The streamwise gravitational acceleration balances viscous forces giving rise to a
semiparabolic velocity profile while heat propagates by pure conduction, giving rise
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to a linear temperature distribution. The semiparabolic velocity profile was first ob-
tained by Nusselt [194] and we shall refer to the trivial solution in (2.15a)–(2.15f)
as the Nusselt flat film solution. Note that the temperature distributions for the two
thermal wall boundary conditions can also be written in the unified form,

Θ(y)= T∞ + βT
[
α(h̄N − y)+ λ

]
,

where

ST: βT = Tw − T∞
αh̄N + λ

or

HF: βT = qw

λ(αw + α)+ αwαh̄N
.

We now utilize the Nusselt flat film solution to introduce the nondimensionaliza-
tion (details are given in Appendix D.1),

(x, y, z)→ h̄N(x, y, z), h→ h̄Nh, t → tν lν

h̄N
t, (2.16a)

(u, v,w)→ h̄2
N

tν lν
(u, v,w), p→ p∞ + ρ

lνh̄N

t2
ν

p, (2.16b)

ST: T → T∞ + T�T (2.16c)

or

HF: T → T∞ + T�TN, (2.16d)

where the temperature scale �T is chosen as

ST: �T = Tw − T∞, (2.16e)

or

HF: �TN = qwh̄N

λ
=�T hN, (2.16f)

and

lν =
(

ν2

g sinβ

)1/3

and tν =
(

ν

(g sinβ)2

)1/3

are the viscous-gravity length and time scales built from the streamwise gravity
acceleration and the kinematic viscosity. These scales make explicit the balance
between gravity and viscous forces giving rise to the Nusselt flat film solution
in (2.15a)–(2.15f) and are discussed in Appendix D.1. The subscript N in (2.16f)
is used to denote that the corresponding temperature scale for HF is based on h̄N.
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�T = qwlν/λ is a temperature scale for HF based on lν and hN = h̄N/lν is the
dimensionless Nusselt flat film thickness based on lν . Note that the temperature
scales for both ST and HF cases are natural control parameters in experiments. Note
also that utilizing the streamwise gravitational acceleration in the scaling forbids us
from taking the limit of an horizontal plane. As a matter of fact, for slightly inclined
planes the dominant hydrodynamic mode is a shear mode associated with the semi-
parabolic Nusselt profile [23, 94] and not the long-wave interfacial H-mode whose
interaction with the long-wave thermocapillary S-mode is one of the key points in
this monograph (see Introduction).

In terms of these dimensionless variables, the equations of motion and energy
(2.3)–(2.5) become,

∂xu+ ∂yv+ ∂zw = 0, (2.17)

3Re(∂tu+ u∂xu+ v∂yu+w∂zu) = −∂xp+ ∂xxu+ ∂yyu+ ∂zzu+ 1, (2.18)

3Re(∂tv + u∂xv+ v∂yv+w∂zv) = −∂yp+ ∂xxv + ∂yyv + ∂zzv−Ct, (2.19)

3Re(∂tw+ u∂xw+ v∂yw+w∂zw) = −∂zp+ ∂xxw+ ∂yyw+ ∂zzw, (2.20)

3Pe(∂tT + u∂xT + v∂yT +w∂zT ) = ∂xxT + ∂yyT + ∂zzT , (2.21)

where the dimensionless parameters Re and Pe will be defined shortly. These equa-
tions are subject to the dimensionless versions of the boundary conditions (2.6)–
(2.9) and (2.12)–(2.14):

• At the plate y = 0:

u = v =w = 0, (2.22)

ST: T = 1 (2.23a)

or

HF: ∂yT = −1+BwT . (2.23b)

• On the film surface y = h(x, z, t):

v = ∂th+ u∂xh+w∂zh, (2.24)

p = 2

n2

[
(∂xh)

2∂xu+ (∂zh)
2∂zw+ ∂xh∂zh(∂zu+ ∂xw)− ∂xh(∂yu+ ∂xv)

− ∂zh(∂zv+ ∂yw)+ ∂yv
]− 1

n3
(We−M T )

[
∂xxh

(
1+ (∂zh)

2)

+ ∂zzh
(
1+ (∂xh)

2)− 2∂xh∂zh∂xzh
]
, (2.25)

0 = 1

n

[
2∂xh(∂yv− ∂xu)+

(
1− (∂xh)

2)(∂yu+ ∂xv)− ∂zh(∂zu+ ∂xw)

− ∂xh∂zh(∂zv+ ∂yw)
]+M(∂xT + ∂xh∂yT ), (2.26)
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0 = 1

n

[
2∂zh(∂yv− ∂zw)+

(
1− (∂zh)

2)(∂yw+ ∂zv)− ∂xh(∂zu+ ∂xw)

− ∂xh∂zh(∂yu+ ∂xv)
]+M(∂zT + ∂zh∂yT ), (2.27)

BT = 1

n
(∂xh∂xT + ∂zh∂zT − ∂yT ). (2.28)

Let us now introduce the following dimensionless groups and parameters:

– The inclination number

Ct= cotβ, (2.29)

which compares the cross-stream component of the gravitational force to its
streamwise component. It quantifies the contribution of the hydrostatic pressure
that vanishes for a film falling down a vertical wall.

– The Prandtl number

Pr = ν

χ
, (2.30)

which compares the momentum diffusivity to the thermal diffusivity.
– The Kapitza number

Γ = σ∞lν

ρν2
= σ∞

ρ (g sinβ)1/3 ν4/3
, (2.31)

which compares the surface tension force σ∞lν to the force of inertia ρ(uνlν)2 =
ρν2, which is independent of the flow rate. The Kapitza number is a function
of the liquid properties and β . For a vertical falling film the Kapitza number
becomes Γ⊥ = σ∞/ρg1/3ν4/3, a vertical Kapitza number, and depends on the
liquid properties only. It is thus fixed once the liquid is selected.

– The Marangoni number

Ma= γ�T lν

ρν2
= γ�T

ρ(g sinβ)1/3ν4/3
= Γ

γ�T

σ∞
, (2.32)

which for both ST and HF compares the force induced by the surface tension
gradient γ �T lν to ρν2 (recall that for HF �T = qwlν/λ, but we use �TN =
qwh̄N/λ to nondimensionalize the temperature).

– The free-surface Biot number

Bi = α lν

λ
= α ν2/3

λ (g sinβ)1/3
, (2.33)

a dimensionless heat transfer coefficient describing the rate of heat transport from
the liquid to the ambient gas.

– The wall Biot number

Biw = αw lν

λ
= αw ν2/3

λ (g sinβ)1/3
, (2.34)
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a dimensionless heat transfer coefficient describing the rate of heat transport from
the wall to the ambient gas. This dimensionless group appears only in the HF
problem. Note that since the heat transfer coefficient of the liquid–gas interface
is in general smaller to that of the solid–gas interface as pointed out in Ap-
pendix B.2, and Bi and Biw both scale with the thermal conductivity of the liquid,
in general Bi < Biw. As also pointed out in Appendix. B.2 this situation can be
reversed by insulating the solid, in which case Bi > Biw (increasing the thermal
conductivity of the liquid does increase Bi but it cannot really lead to Bi > Biw).

We now define the dimensionless groups in the system (2.17)–(2.28) and we
write these groups in terms of hN and the dimensionless groups in (2.30)–(2.34):

– The Reynolds number

Re= ūNh̄N

ν
= q̄N

ν
= g sinβh̄3

N

3ν2
(2.35)

compares inertia to viscous forces with ūN,1 the average velocity of the Nusselt
flat film solution (2.15a), ūN = g sinβh̄2

N/(3ν), and q̄N, the specific volumetric
flow rate (flow rate per unit width of wall in the transverse direction), defined as

q̄N =
∫ h̄N

0
U(y)dy = g sinβh̄3

N

3ν
, (2.36)

the control parameter that determines the Nusselt flat film thickness h̄N in ex-
periments. Hence, the Reynolds number in (2.35) is merely the dimensionless
flow rate based on the viscous gravity scales, qN = ūNh̄N/[(lν/tν)lν] ≡ q̄N/ν.
From (2.35) we can also directly relate the dimensionless Nusselt flat film thick-
ness based on lν to the Reynolds number:

hN = h̄N

lν
= (3Re)1/3. (2.37)

Clearly the definition of the Reynolds number can vary depending on the chosen
velocity scale, i.e., one can use the average velocity ūN, the velocity at the inter-
face 3ūN/2 (see (2.15a)) or the speed of linear waves 3ūN (see Chap. 3). In this
monograph, we choose the definition (2.35).

– The Péclet number

Pe= PrRe (2.38)

expresses the relative importance of convection and heat conduction. This number
is also referred to as the “heat transport Péclet number” in combined heat-mass
transport problems to distinguish it from the “mass transport Péclet number”,
PrSc, where Sc= ν/D is the “Schmidt number” and D is the molecular diffusiv-
ity.

1Bars are used to distinguish dimensional from dimensionless quantities unless the distinction is
unnecessary.
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– The Weber number

We= σ∞
ρgh̄2

N sinβ
= Γ

h2
N

(2.39)

compares the surface tension pressure σ∞/h̄N to the viscous normal stress gen-
erated by gravity at the film surface, μūN/h̄N = ρgh̄N sinβ . For large We, the
fluid behavior is mainly determined by surface tension (e.g., at small h̄N), while
gravity dominates for small We. The Weber number allows us to access surface
deformability due to the flow. High values of We mean that the viscous forces due
to the flow fail to generate pressure capable of deforming the surface.

– The film Marangoni number

ST: M = γ�T

ρgh̄2
N sinβ

= Ma

h2
N

(2.40a)

or

HF: M = γ�TN

ρgh̄2
N sinβ

= Ma

hN
(2.40b)

expresses the relative importance of the thermocapillary stress induced by the
surface tension gradient, γ�T/h̄N for ST or γ�TN/h̄N for HF, to the viscous
normal stress generated by gravity at the film surface, μūN/h̄N = ρgh̄N sinβ .

– The free-surface and wall film Biot numbers

B = αh̄N

λ
= BihN and Bw = αwh̄N

λ
= BiwhN. (2.41)

As pointed out in Appendix D.1, since all dimensionless parameters in (2.35)–
(2.41) depend on the Nusselt flat film solution, which is controlled by the flow rate,
they vary when the flow rate is varied. Nevertheless, the parametrization in (2.35)–
(2.41) demarcates clearly the dependence of the problem on the flow rate and the
properties of the gas–liquid–solid system (physical properties of the gas–liquid sys-
tem2 and wall temperature/heat flux supplied by the heater) and inclination angle.
As also pointed out earlier the nondimensionalization in (2.16a)–(2.16f) is based on
the Nusselt flat film solution, here the term Nusselt scaling adopted in Appendix D.1.
This is the most widely used scaling in the literature.

The definitions (2.39) and (2.40a), (2.40b) show that M,We →∞ as hN → 0,
while Re → 0 from (2.37). Hence, for very thin films, interfacial forces, i.e.,
Marangoni and capillary forces, dominate over inertia. On the other hand, with
hN →∞, M,We → 0, so that interfacial forces are not important in the region of
large film thicknesses and inertia forces dominate over interfacial ones. This point
will be discussed further in Chap. 9 when we analyze the relative influence of inertia,

2As discussed in Appendix B.2, the liquid–gas heat transfer coefficient is practically independent
of what is happening in the liquid and only dependent on the physical properties of the gas.
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Marangoni and capillary forces on the bifurcation diagrams for single-hump solitary
pulses.

Noteworthy is that in the literature one frequently encounters a “static Bond num-
ber” and a “dynamic Bond number.” They can be written in terms of the conven-
tional Weber number and film Marangoni number for the ST case defined above
as: Bo = ρgh̄2

N sinβ/σ∞ ≡ We−1 and Bod = ρgh̄2
N sinβ/(γ�T ) ≡M−1. Strictly

speaking, the static Bond number is appropriate for static problems, e.g., a motion-
less horizontal liquid layer or a drop at equilibrium. This group compares the role
of gravity trying to make the free surface leveled to an equipotential, with surface
tension trying to make the interface spherical. Setting Bo= 1 gives that h̄N is equal
to the capillary length, lσ = (σ∞/ρg sinβ)1/2, which on Earth is about 2.5 mm for
water at room temperature. Our case, however, is such that the flow is driven by
g sinβ and hence Bo as defined earlier is in fact related to the Kapitza number Γ
through (2.39). But Γ is a direct consequence of g sinβ , and so flow; g here is a
dynamic quantity “creating flow” and not a passive body force whose role is simply
restricted to creating equipotential surfaces, like in static problems. Hence, due to
the nature of our problem Bo appears as a flow-related parameter and compares vis-
cous normal stresses with surface tension. This is the main reason we prefer to use
the Weber number defined by (2.39) instead.

We close this section with comments on the different limits for the Reynolds and
Péclet numbers. The equations of motion and energy in (2.18)–(2.21) describe the
competition between two agents: inertia, which gives rise to the H-mode of instabil-
ity for a falling film, and the long-wave thermocapillary S-mode (see Introduction).
This competition is expressed by two dimensionless groups: the Reynolds num-
ber in (2.18)–(2.20) and the Péclet number in (2.21), which is a “thermal Reynolds
number”, as (2.18)–(2.20) and (2.21) are formally equivalent.

For Pe→ 0 (because Pr → 0 like in liquid metals), the temperature field is slaved
to the velocity field and we can drop the left hand side of (2.21). This then “freezes”
the Marangoni mode, the time evolution is set by the velocity field and the system
is driven by inertia (appropriately modified of course by the Marangoni effect). On
the other hand, for Re→ 0 (while Pe remains finite), the velocity field is slaved to
the temperature field and we can drop the left hand side of (2.18)–(2.20). This then
“freezes” inertia, i.e., the H-mode, the time evolution is set by the temperature field
and the system is driven by the Marangoni forces.

For Pe → 0 and Re →∞, we expect the usual “Kolmogorov–Reynolds inertial
turbulence”, which is characterized by an energy transfer from long to short scales
mostly dissipation-free (within the inertia interval; dissipation occurs only at the end
of the cascade where viscosity kills the small eddies). In this case one can neglect the
viscous terms in (2.18)–(2.20). Note that the “Tollmien–Schlichting instability” and
transition to fully developed turbulence usually occurs for very large Re, in the re-
gion 1000–2000 [56]. This turbulent regime is beyond the scope of the monograph,
which focuses on low and moderate Reynolds numbers (in the region 0–50).

On the other hand, for Re→ 0 and Pe→∞ (because Pr →∞, as with some sil-
icone oils), one expects turbulence with strong dissipation [265] (the velocity scale
is now set by the Marangoni effect which appears in the tangential boundary con-
dition). In this case one can neglect the thermal boundary condition in (2.21). This
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limit should lead to an inverse cascade from small to large eddies (opposite to the
one for Kolmogorov–Reynolds turbulence), e.g., for Bénard–Marangoni convection
increasing the Péclet number increases the Bénard–Marangoni cells: dissipation in-
creases and the cells grow to accommodate the large dissipation [291]. This dissi-
pative turbulent regime is also beyond the scope of the monograph.

As a consequence of the above observations, different liquids should exhibit dif-
ferent behavior with respect to the instabilities considered here, depending on their
Prandtl number. For falling films with liquids having low Prandtl numbers, e.g.,
liquid metals, the waves on the films should be controlled by the H-mode. On the
other hand, for liquids having large Prandtl numbers, e.g., silicone oils, the waves
should be controlled by the thermocapillary S-mode. The competition between the
two modes will be discussed in detail in Chaps. 3 and 9.

2.3 On the Development of the Nusselt Flat Film Solution

For the isothermal case, the Nusselt flat film flow in (2.15a)–(2.15f) will in general
develop very rapidly after the inlet at x = 0: once this happens the flow is “fully
developed” (of course this flow will subsequently develop an instability). Clearly
the location where the Nusselt flat film flow develops depends on the initial film
thickness hi provided by the manifold. From the integral analysis of the momentum
boundary layer in the monograph by Alekseenko et al. [3], we find that for hi/h̄N =
3, the distance xh necessary for the film to reach the Nusselt flat film solution with an
accuracy of 10−4, is xh/h̄N ≈ 1.2Re (which also seems to agree with experiments).
For instance, a water film with h̄N = 0.15 mm and Re= 11 gives xh ∼ 2 mm.

For the nonisothermal case, simple scaling arguments can be used to show
that the thickness δT of the thermal boundary grows proportionally with the Pé-
clet number immediately downstream from the inlet at x = 0 where δT � h̄N;
at y = δT , the terms u∂xT and χ∂yyT of the energy equation in (2.5) scale as
u|y=δT T |y=δT /x and χT |y=δT /δ2

T , respectively. Balancing these two terms yields,
u|y=δT /x ∼ χ/δ2

T . Note that from the continuity equation in (2.3), u|y=δT /x ∼
v|y=δT /δT and hence the terms u∂xT and v∂yT of the energy equation balance au-
tomatically. But u|y=δT ≡ U |y=δT where U is given in (2.15a)–(2.15f) or u|y=δT =
(g sinβ/2ν)δT (2h̄N − δT ) ∼ g sinβh̄NδT /ν ∼ ūNδT /h̄N or δT ∼ (χh̄Nx/ūN)

1/3,
i.e., x/h̄N ∼ (δT /h̄N)

3Pe with ūN the average velocity of the Nusselt flat film solu-
tion and Pe the Péclet number defined in (2.38).

This estimate shows that the development of the thermal boundary layer for
moderate Péclet numbers (i.e., for liquids of moderate Prandtl number and flows
of moderate Reynolds number) occurs close to the inlet. As an example, for a water
film with h̄N = 0.15 mm, Re= 11 and Pr = 7, the location at which δT = h̄N/3 is
x ≈ 0.5 mm. On the other hand, for a water film with h̄N = 0.25 mm, Re= 50 and
Pr = 7, the location at which δT = h̄N/3 is x ≈ 3.2 mm. An accurate estimate of the
length at which entrance effects associated with the inlet region are neglected would
require a detailed integral analysis of the thermal boundary layer which is beyond
the scope of this monograph.
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Consequently, for liquids of moderate Prandtl number and flows at moderate
Reynolds number, the semiparabolic velocity profile and linear temperature distri-
bution can be assumed soon after the inlet so that the film reaches the state governed
by (2.15a)–(2.15f), i.e., both flow and heat transfer are fully developed before they
undergo any instability.

2.4 On the Two Wall Thermal Boundary Conditions: Retrieving
ST from HF

For HF the temperature field has been nondimensionalized with �TN = qwh̄N/λ. An
alternative scaling could have been T ∗ = (T −T∞)/(qw/αw), which with y→ h̄Ny

would convert (2.8) to

∂yT = Bw(−1+ T ∗). (2.42)

In the limit Bw →∞, (2.42) yields T ∗ → 1, thus retrieving the boundary condition
for ST (2.23a); but (2.23a) is obtained by scaling the temperature field with �T =
Tw−T∞. This scaling must be related to that used to obtain (2.42). Converting T ∗ =
1 to dimensional variables and setting T = Tw, yields qw = αw(Tw − T∞): all the
heat generated by the solid is now removed to the gas below so that the temperature
T at y = 0 is kept constant at T = Tw = T∞ + qw/αw. Note that although T refers
to the temperature in the liquid, in the limit Bw →∞, we lose the term (1/Bw)∂yT

in (2.42), hence the communication between the wall and the liquid, and so we must
set T = Tw. In other words, the wall is effectively removed from the problem and
we are only concerned with the heat transfer between the liquid and the gas.

Taking the limit Bw →∞ in (2.23b) yields T → 0. It would then appear that we
cannot retrieve the ST problem from (2.23b) in this limit. However, (2.23b) can be
converted to (2.42) by using the transformation:

T = 1

Bw
T ∗. (2.43)

Thus, in the limit Bw →∞, T ∗ → 1 becomes T → 0 and hence, the alternative
form of the wall thermal boundary condition in (2.42) is equivalent to (2.23b). The
advantage of (2.42) is that it makes the recovery of ST from HF in the limit Bw →∞
transparent. On the other hand, the advantage of (2.23b) is that it makes the limit
Bw → 0 more obvious, as in this limit we retrieve the HF case.

2.5 Role of the Biot Number

The role of the Biot number on the Nusselt flat film temperature distribution and
how it influences the Marangoni effect is subtle. We discuss separately the ST and
HF cases.
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Let us nondimensionalize the temperature distributions in (2.15e) and (2.15f)
with the gravity-viscous scaling, which then expresses these distributions in terms
of hN and Bi for ST, and hN, Bi and Biw for HF:

ST: Θ(y) = 1+ Bi(hN − y)

1+ BihN
(2.44a)

or

HF: Θ(y) = 1+ Bi(hN − y)

Bi+ Biw(1+ BihN)
. (2.44b)

ST

The temperature of the undeformed free surface is obtained from (2.44a) as

Θs ≡Θ|y=hN =
1

1+ BihN
, (2.45)

and consequently, the temperature gradient between the surface and the wall is

bs ≡ Θ|y=0 −Θ|y=hN

hN
= Bi

1+ BihN
. (2.46)

Let us now consider the behavior of (2.45) and (2.46) in the limits of Bi = 0 and
1/Bi= 0; the first limit corresponds to very poor heat transfer characteristics of the
liquid–gas interface; the second one is not physical but it is mathematically useful.

• With Bi = 0, (2.45) shows that Θs = 1. This means that the wall and the free
surface have the same temperature. In fact, in this case the fluid temperature is
uniform and equal to unity.

• In the limit 1/Bi= 0, (2.45) shows that Θs = 0 so that the free surface and the air
have the same temperature.

In both cases, the temperature of the free surface is independent of the film thickness
so that any perturbation of h does not affect the free-surface temperature distribution
and the Marangoni instability (S-mode) does not occur. This can be made explicit
by defining a film Marangoni number M� based on the Nusselt flat film temperature
difference between the wall and the free surface,

�Ts ≡ (Tw − Ts)= bshN(Tw − T∞ = bshN�T, (2.47)

M� ≡ γ �Ts

ρgh̄2
N sinβ

= MaBi

hN(1+ BihN)
= BM

1+B
, (2.48)

referred to hereinafter as the modified film Marangoni number, and where the prod-
uct MaBi appears explicitly through (2.46). Therefore, M� → 0 if Bi → 0 so that
there is no thermocapillary effect in this limit. Nevertheless, it appears that in the
case of a small Biot number, Bi � 1, which is frequently the case for liquid films
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in contact with gases, the base state temperature gradient can be assumed to be in-
dependent of the film thickness, bs ≈ Bi. In this limit, the base state temperature
gradient is uniquely defined by the heat transfer coefficient α and the thermal con-
ductivity λ.

HF

In this case, the temperature of the undeformed free surface is obtained from (2.44b),

Θs ≡Θ|y=hN =
1

Bi+ Biw(1+ BihN)
, (2.49)

and the temperature gradient between the free surface and the wall now reads:

bs ≡ Θ|y=0 −Θ|y=hN

hN
= Bi

Bi+ Biw(1+ BihN)
. (2.50)

The limit 1/Bi = 0 leads to the same conclusion with the ST case. However, the
limit Bi= 0 is now different, as (2.49) shows that the dimensionless temperature on
the free surface is 1/Biw, and therefore depends on the heat transfer characteristics
of the solid-gas interface. If in addition Biw = 0, corresponding to a wall perfectly
insulated from the gas, the interfacial temperature diverges to infinity as the heat
supplied by the wall to the liquid has nowhere else to go.

It should be emphasized that the surface temperature Θs depends on the film
thickness only through the parameter Biw. If the latter vanishes, Θs = 1/Bi is in-
dependent of hN and remains constant (on the other hand for ST, the quantity Θs
always depends on hN, provided that Bi �= 0). In other words, the thermocapillary
instability is suppressed for a wall perfectly insulated from the gas. In this case,
the temperature gradient across the film layer is independent of hN (bs = 1), which
implies that any elevation (depression) of the film thickness will be accompanied
by an increase (decrease) of the wall temperature Θ|y=0 = (1 + BihN)/Bi so that
the film surface temperature remains constant. Therefore, enabling heat losses at the
wall through the Robin/mixed boundary condition (2.8) is the only way to enable
the Marangoni instability when a uniform heat flux qw is applied at the wall. For a
nonuniformly heated wall, which is beyond the scope of this monograph, the ther-
mocapillary instability leads to steady state deformations of the liquid-gas interface
[138, 239, 254]. This thermocapillary effect is still present for the ST case with
Bi= 0 and for the HF case with Biw = 0 [239].

Using the definition (2.47), which remains unaltered for the HF case but now
�T = qwlν/λ, the temperature scale for HF based on the viscous-gravity scaling,
the modified film Marangoni number for HF has the form:

M� = MaBi

hN(Bi+ Biw(1+ BihN))
= BM

B +Bw(1+B)
. (2.51)

This film Marangoni number M� based on the Nusselt flat film temperature dif-
ference between the wall and the free surface will be useful in Chap. 3, where we
examine the linear stability of the Nusselt flat film solution.



Chapter 3
Primary Instability

We consider the linear stability of the base state (2.15a)–(2.15f), i.e., its stability
with respect to infinitesimal perturbations, or equivalently its primary instability.
For moderate Reynolds and Péclet numbers, the base state occurs soon after the
inlet. The linear destabilization of this state is the first step of the evolution that
eventually leads to the disordered spatio-temporal dynamic that typically charac-
terizes falling film flows. It is imperative, therefore, that we analyze the primary
instability and carefully examine the physical mechanisms responsible for its onset.

The linearity of the governing equations for the primary instability allows us
to decompose the perturbations into normal modes, which greatly simplifies the
subsequent analysis. This decomposition leads to the Orr–Sommerfeld eigenvalue
problem, which plays a central role in the analysis of the primary instability.

3.1 Linearized Equations for the Disturbances

In terms of the Nusselt scaling in (2.16a)–(2.16f) the base state in (2.15a)–(2.15f)
reads:

U(y) = y

(
1− y

2

)
, (3.1a)

V (y) =W(y)= 0, (3.1b)

P(y) = Ct(1− y), (3.1c)

ST: Θ(y) = 1− By

1+B
, (3.1d)

or

HF: Θ(y) = 1+B(1− y)

B +Bw(1+B)
. (3.1e)

Substituting

v= (U + ũ, ṽ, w̃), T =Θ + T̃ , p = P + p̃, h= 1+ h̃,
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into the equations of motion and energy (2.17)–(2.21) and wall and free-surface
boundary conditions (2.22)–(2.28), and linearizing for ũ, ṽ, w̃, T̃ , p̃, h̃� 1 yields
the perturbation equations:

∂xũ+ ∂yṽ+ ∂zw̃ = 0, (3.2a)

3Re(∂t ũ+U∂xũ+DUṽ)+ ∂xp̃−∇2ũ = 0, (3.2b)

3Re(∂t ṽ+U∂xṽ)+ ∂yp̃−∇2ṽ = 0, (3.2c)

3Re(∂t w̃+U∂xw̃)+ ∂zp̃−∇2w̃ = 0, (3.2d)

3Pe(∂t T̃ +U∂xT̃ +DΘṽ)−∇2T̃ = 0, (3.2e)

subject to the boundary conditions:

• at the wall y = 0:

ũ= ṽ = w̃ = 0, (3.3)

ST: T̃ = 0 (3.4a)

or

HF: ∂yT̃ = BwT̃ (3.4b)

• at the undeformed film surface y = 1:

ṽ = ∂t h̃+U∂xũ, (3.5)

p̃ = Ct h̃− (We−MΘ)∇2
xzh̃+ 2∂yṽ, (3.6)

h̃ =M(DΘ ∂xh̃+ ∂xT̃ )+ ∂yũ+ ∂xṽ, (3.7)

0 =M(DΘ ∂zh̃+ ∂zT̃ )+ ∂zṽ+ ∂yw̃, (3.8)

∂yT̃ = −B(DΘh̃+ T̃ ), (3.9)

where D ≡ d/dy, ∇2
xz = ∂xx + ∂zz is the two-dimensional Laplacian operator in the

(x, z)-plane and DΘ is the slope of the base-state linear temperature distribution:

ST: DΘ = − B

1+B
(3.10a)

or

HF: DΘ = − B

B +Bw(1+B)
. (3.10b)

The boundary conditions (3.5)–(3.9) have been obtained with the help of Tay-
lor expansions at the undeformed free surface h = 1 since the interfacial bound-
ary conditions are evaluated at y = h = 1 + h̃, i.e., variable X is expanded as
X|h = X(1) + x̃|1 + DX(1)h̃. The resulting linearized interfacial boundary con-
ditions have been simplified using D2U = −1, D2Θ = 0, DP = −Ct, DU |1 = 0,
P |1 = 0 and the continuity equation (3.2a).

Note that for 1/Bw = 0, corresponding to very good heat transfer characteristics
of the solid–gas interface, the temperature perturbation along the wall vanishes and
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HF in (3.4b) reduces to ST in (3.4a). On the other hand, for Bw = 0, corresponding
to very poor heat transfer characteristics of the solid–gas interface or simply a wall
insulated from the gas, the heat flux perturbation along the wall vanishes or, equiv-
alently, we have the specified heat flux condition ∂yT̃ = 0. As was pointed out in
Sect. 2.5 in the limit Bw = 0 the thermocapillary instability is suppressed, and hence
having Bw �= 0 in the HF thermal boundary condition enables the thermocapillary
instability.

The system of equations (3.2a)–(3.2e) can be rearranged so that only the pertur-
bations of the normal velocity ṽ, the temperature T̃ and the film thickness h̃ appear.
Let us first take the divergence of the linearized Navier–Stokes equations in vector
form, i.e., [∂x(3.2b) + ∂y(3.2c) + ∂z(3.2d)]. With the use of the continuity equa-
tion (3.2a), the result is

∇2p̃ =−6ReDU∂xṽ. (3.11)

By applying now the two-dimensional Laplacian operator on the y-component of
the linearized Navier–Stokes equation (3.2c) using (3.11) to eliminate the pressure
and noting that D2U =−1, we obtain:

∇2(3Re∂t ṽ−∇2ṽ
)+ 3Re

(
1+U∇2)∂xṽ = 0. (3.12)

We next consider the two-dimensional Laplacian operator of the linearized normal
stress boundary condition (3.6). From (3.11), ∇2p̃|1 =∇2

xzp̃|1+ ∂yyp̃|1 = 0. Differ-
entiating then (3.2c) with respect to y,

∂yyp̃ =−3Re(∂yt ṽ+DU∂xṽ+U∂yxṽ)+ ∂y∇2ṽ,

and evaluating the result at the undeformed free surface y = 1 gives

∇xzp̃|1 = 3Re(∂yt ṽ +U∂yxṽ)+ ∂y∇2ṽ.

From ∇2
xz in (3.6), where ∇2

xz(p̃|1)=∇2
xzp̃|1, we finally get:

Ct∇2
xzh̃− (We−MΘ)∇2

xz∇2
xzh̃+ 3∇2

xz∂y ṽ+ ∂yyy ṽ− 3Re(∂yt ṽ+U∂xyṽ)= 0.
(3.13)

Taking now the divergence of the tangential stress boundary condition in vector
form, i.e., [∂x (3.7) + ∂z(3.8)], and with the use of the continuity equation (3.2a), we
obtain:

∂xh̃−M
(
DΘ∇2

xzh̃+∇2
xzT̃
)− (∇2

xz − ∂yy
)
ṽ = 0. (3.14)

3.2 The Orr–Sommerfeld Eigenvalue Problem

We then seek the solution in the form of normal modes:
⎛

⎜
⎝

ṽ

T̃

h̃

⎞

⎟
⎠=

⎛

⎜
⎝

φ(y)

τ(y)

η

⎞

⎟
⎠ exp

{
i(k · x−ωt)

}
, (3.15)
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where x = (x, z), k = (kx, kz) is the wavenumber vector and ω is the complex an-
gular frequency that contains the complex wave velocity c= ω/k.

For temporal stability analysis we impose real wavenumber components kx,z
(the disturbance travels in the direction tan−1(kz/kx)) and solve for the complex
eigenvalue ω= ω(k), a relation which is referred to as the dispersion relation. The
temporal growth rate is ωi (subscripts r and i are used to denote real and imaginary
parts, respectively): if ωi > 0 the disturbance grows in time and the base state is

unstable. cr = ωr/k is the phase velocity and k =
√
k2
x + k2

z is the modulus of the
wavenumber vector. The real angular frequency is simply ωr while the phase veloc-
ity along the x, z axes is ωr/kx,z, respectively. There is a simple relation between the
real angular frequency and the ordinary frequency: for a wave with velocity cr and
wavelength l, f = cr/l = cr/(2π/k) = kcr/(2π) = ωr/(2π) or ωr = 2πf . Hence,
the real angular frequency is a simple multiple of the ordinary frequency.

For spatial stability analysis, we consider ω as real and seek complex kx,z
1 so

that k is now the eigenvalue. The simplest case is when one of the two components
kx,z is real, e.g., in Chap. 7 we shall examine the spatial stability of the isother-
mal Nusselt flat film flow in two dimensions, i.e., k · x ≡ kxx. The spatial growth
rate now is −kx i: if kx i < 0, the disturbance grows in space. The phase velocity is
ω/kx r. When both ω and k are complex, we have the concept of generalized spa-
tial/temporal stability analysis to be defined in Chap. 7. In this chapter we perform
a temporal stability analysis only.

Introducing (3.15) into the governing equations (3.12), (3.2e) and the boundary
conditions (3.3)–(3.5), (3.9), (3.13) and (3.14) yields the system,

(
D2 − k2)2φ + 3Rei

[
(ω− kxU)

(
D2 − k2)− kx

]
φ = 0, (3.16a)

(
D2 − k2)τ − 3Pe

[
DΘφ − i(ω− kxU)τ

]= 0, (3.16b)

φ(0)= 0, (3.16c)

ST: τ(0)= 0 (3.16d)

or

HF: Dτ(0)= Bwτ(0), (3.16e)

φ(1)+ i
1

2
η(2ω− kx)= 0, (3.16f)

ηk2[Ct+ (We−MΘ(1)
)
k2]=

[(
D2 − 3k2)+ i

3

2
Re(2ω− kx)

]
Dφ(1),

(3.16g)

1Expression (3.15) now requires the evaluation of k · x where k is a vector with complex com-
ponents. The dot product a · b for two vectors a and b with real components can be easily gen-
eralized to vectors with complex components (see e.g., [108]). Assume a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn). Then a · b =∑n

i=1 ai b̄j where the overbar denotes complex conjugation.
Hence, in our case we simply have k · x= (kx r + ikx i)x + (kzr + ikz i)z.
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(
D2 + k2)φ(1)+M

[
ηDΘ + τ(1)

]
k2 + ikxη= 0, (3.16h)

Dτ(1)+B
[
ηDΘ + τ(1)

]= 0, (3.16i)

where U(1)= 1/2 has been utilized.
The system of equations (3.16a)–(3.16i) is the Orr–Sommerfeld eigenvalue prob-

lem for a film falling down a heated wall subject to either the HF or ST conditions.2

In Sects. 3.4 and 3.5 we shall discuss the solution of (3.16a)–(3.16i) for two limiting
cases: transverse perturbations with kx = 0 and kz �= 0 and streamwise perturba-
tions with kx �= 0 and kz = 0 (perturbations are quantified based on the direction in
which the wavenumber is nonzero). But first it is instructive to define two types of
instabilities typical of the heated falling film problem.

3.3 Oscillatory Versus Stationary (or Monotonic) Instabilities

For simplicity let us consider two-dimensional disturbances only with kx = k and
kz = 0. Let us assume that the dependence of the system on a control parameter,
say Σ , is such that for Σ =Σc, ωi(k = k0)= 0, for Σ <Σc, ωi < 0 ∀k in a finite
region of the k-axis around k0, and for Σ >Σc, ωi > 0 ∀k in a finite region of the
k-axis, i.e., there is a band of unstable modes centered around the wavenumber k0.
k0 then is the critical wavenumber corresponding to the critical value of the control
parameter, Σc. In Sect. 3.4.3 we shall give an alternative definition of the critical
value of a control parameter based on the “neutral curve.”

We distinguish between two cases:

1: If ωr(k0) = 0 for Σ = Σc we have a stationary instability (also called “mono-
tonic”). Both the S- and P-modes introduced in the Introduction belong to this
category.

2: If ωr(k0) �= 0 for Σ =Σc we have an oscillatory instability (also called “over-
stability”). This is the case described by (C.11) in Appendix C.5.

The case of long-wave instabilities, i.e., instabilities with k0 = 0 and with both
ωr and ωi vanishing at this wavenumber, requires special attention. This is pre-
cisely the case of the H-mode introduced in the Introduction and is described
by (C.13a), (C.13b) in Appendix C.5. As we emphasize in the discussion follow-
ing (C.13a), (C.13b), the limit k → 0 is effectively degenerate as the disturbance
reduces to a simple uniform shift of the base state (corresponding to the so-called
Goldstone mode; see Appendix C.5). Finite-size effects remove the degeneracy and

2Some authors reserve the term “Orr–Sommerfeld eigenvalue problem” for the linear stability
analysis of a parallel flow with respect to two-dimensional disturbances and use instead the term
“generalized Orr–Sommerfeld eigenvalue problem” for three-dimensional disturbances—meaning
the “generalization” of the Orr–Sommerfeld eigenvalue problem for two-dimensional disturbances
to three-dimensional ones, e.g., [182]. Others use the term “Orr–Sommerfeld eigenvalue problem”
for both two-dimensional and three-dimensional disturbances, e.g., [44].
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forbid the mathematical artifact of infinite long wavelengths (in practice the smallest
wavenumber is k ∼ 1/L with L the channel’s length), so that a true “Hopf bifurca-
tion” with ωr �= 0 occurs.3 In the linear regime the disturbance grows with a growth
rate ωi(kmax) and at the same time it is periodic in space with wavenumber kmax
and oscillates in time with frequency −λi(kmax). The combination of periodicity in
space and oscillatory behavior in time leads to a “traveling wave” and the H-mode
is clearly an oscillatory instability. Noteworthy is that the definition given in [62]
that a long-wave instability is stationary if ωr(k0 = 0) = 0 is confusing and would
lead to the conclusion that the H-mode is stationary.

3.4 Transverse Perturbations: kx = 0, kz = k

3.4.1 Eigenvalue Problem

When considering transverse perturbations, i.e., kx = 0 and kz = k, system (3.16a)–
(3.16i) becomes:

(
D2 − k2)2φ + 3Reiω

(
D2 − k2)φ = 0, (3.17a)

(
D2 − k2)τ − 3Pe[DΘφ − iωτ ] = 0, (3.17b)

φ(0)= 0, (3.17c)

ST: τ(0)= 0 (3.17d)

or

HF: Dτ(0)= Bwτ(0), (3.17e)

η= i
φ(1)

ω
, (3.17f)

ηk2[Ct+ (We−MΘ(1)
)
k2]= [(D2 − 3k2)+ 3Reiω

]
Dφ(1), (3.17g)

(
D2 + k2)φ(1)+M

[
ηDΘ + τ(1)

]
k2 = 0, (3.17h)

Dτ(1)+B
[
ηDΘ + τ(1)

]= 0. (3.17i)

One notices the symmetry k → −k of these equations, a consequence of the
reflection symmetry z → −z of the full system. By comparing (3.16a)–(3.16i)
and (3.17a)–(3.17i), one also notices that the base flow velocity is absent from
(3.17a)–(3.17i), as the effect of the advection of the perturbations by the base flow

3The S-mode is also a long-wave variety but has ωr = 0 ∀k; on the other hand the P-mode is a
short-wave variety but again with ωr = 0 ∀k.
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∝ kxU has been suppressed. Hence, there should be an analogy between the heated
falling film problem examined here and that of an horizontal film without a base
flow heated from below with a heater that maintains the wall temperature at a con-
stant value (ST) in which case the instabilities are of purely thermocapillary origin
and stationary with ωr = 0 ∀k [58, 107]. After all, apart from the role of mean flow
in setting up the system and fixing the flat film thickness through the flow rate,
mean flow does not influence the eigenvalue problem in (3.17a)–(3.17i). Of course,
as noted in Sect. 2.2, our scaling does not allow the β = 0 limit. However, by iden-
tifying in Re and Pe, hN with the dimensionless flat film thickness of the horizontal
case and appropriately rescaling (3.17a)–(3.17i), i.e., by taking gh̄2

N/3ν for the ve-
locity scale instead of ūN = g sinβh̄2

N/3ν, replacing Re with h3
N/3, setting Ct = 1

and replacing g sinβ with g in the definitions of the dimensionless groups given in
Chap. 2, the formulation of the linear stability eigenvalue problem in (3.17a)–(3.17i)
is identical to that for the horizontal film (see, e.g., [58]).4

The linear instability of the ST case has been analyzed in detail in [107, 261]. In
the next section we shall reproduce some of the previous results but we shall also
analyze the HF case.

3.4.2 Neutral Stability Condition

For temporal stability analysis, a mode with ωi = 0 is said to be neutrally stable.
On the other hand, for spatial stability analysis a neutrally stable mode is one with
ki = 0. The neutral condition is the condition that ensures that the dominant/least
stable mode is neutrally stable. A neutral curve is a plot involving the parameters of
the neutral condition, typically the pertinent dimensionless groups versus wavenum-
ber (and hence by definition on a neutral curve the neutral condition is satisfied) and
might have different branches.

Much like the ST case, for the HF case we also have stationary instabilities with
ωr = 0 ∀k. Then, to obtain the neutral stability condition of stationary instabilities
we must set ωi = 0 or ω = 0 in (3.17a)–(3.17i). In this limit the system admits an
analytical solution, which for HF reads:

HF:

M� =

⎡

⎢⎢
⎣

16k[(B +Bw)k coshk + (BBw + k2) sinhk](2k − sinh 2k)

3Pe[(k + 4k3(Bw − 1)) cosh k− k cosh 3k− 4Bw sinh3 k

+ 4k2(2+ k2) sinh k] − 32k5(Bw cosh k+ k sinhk)

Ct+ k2(We−M�/B)

⎤

⎥⎥
⎦ , (3.18)

where M� =−MDΘ (see (2.51) and (3.10b)).

4For the horizontal case the film thickness is fixed by the amount of fluid; for the falling film the
thickness is fixed through the flow rate.
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By taking the limit Bw →∞ in (3.18), i.e., for very good heat transfer charac-
teristics of the solid–gas interface, we obtain the neutral condition for ST:

ST: M� = 4k(k coshk +B sinh k)(2k − sinh 2k)

3Pe(k3 cosh k− sinh3 k)− 8k5 coshk
Ct+k2(We−M�/B)

, (3.19)

where again M� =−MDΘ (see (2.48) and (3.10a)).
Equation (3.19) can be related to the linear stability of a horizontal film (β = 0)

heated uniformly from below [58, 255],5 a situation that as we have mentioned
earlier is formally forbidden by the nondimensionalization adopted in Sect. 2.2,
which utilizes the average velocity, ūN = g sinβh̄2

N/3ν. Nevertheless, as noted ear-
lier, through appropriate rescaling the formulation of the linear stability eigenvalue
problem in (3.17a)–(3.17i) is identical to that for the horizontal film and hence the
neutral condition in (3.19) is identical to that for a horizontal film. This correspon-
dence demonstrates the decoupling of the transverse Marangoni instability mech-
anism from the gravity-driven base flow. Recall that there is no mean flow in the
transverse direction as we emphasized earlier. Other than fixing the film thickness
through the flow rate, the flow does not play any role when kx = 0.

Further, note that in the limits Ct →∞ and/or We →∞, (3.19) reduces to the
neutral condition found by Pearson [206] for a horizontal layer with nondeformable
interface heated uniformly from below (see Introduction). In these limits, (3.18)
with Bw = 0 reduces also to the neutral condition found by Pearson for a horizontal
layer with a nondeformable interface.

Neutral stability curves for HF, i.e., solutions to (3.18) in the (M�, k)-plane are
displayed in Fig. 3.1. The neutral stability curve for ST, i.e., solution to (3.19), is
also plotted as a particular case of HF in the limit Bw →∞. Note that (3.18) has
two equal positive roots, one relevant for k > 0 and the other one for k < 0. In
fact, (3.18) and its limiting case (3.19) have the symmetry k →−k, as expected.
The curves are the locus of ω = 0, they separate stable regions from unstable ones
and correspond to the onset of stationary instabilities. In the unstable region above
the curves, ωr = 0. The parameter values chosen correspond to a situation in which
the film thickness and the gas–liquid system are held fixed. The set of control pa-
rameters then reduces to the heat transfer coefficient of the wall–gas interface and
the heat flux supplied by the heater, i.e., the modified film Marangoni number M�

and the wall film Biot number Bw, or equivalently Ma and Biw (see Chap. 2).

5Though these works neglect the variation of surface tension with temperature in the normal stress
boundary condition, it has been retained here. In the normal stress boundary condition (3.17g),
the contribution of surface tension variation with temperature, k2MΘ(1), or equivalently the term
k2M�/B in the right hand sides of (3.18) and (3.19), can only be neglected compared to Ct and
k2We when k is small and We is large, respectively—note that in experimental observations We
is large for most liquids, the so called “strong surface tension effect” (this is a crucial point for
the remaining of the monograph and will be discussed in detail in Chaps. 4 and 5). In the general
case, however, i.e., for finite wavenumbers, k =O(1), MΘ(1), or equivalently, M�/B should be
retained.
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Fig. 3.1 Neutral stability
curves from (3.18) (HF) in
the (M�, k)-plane for
different values of the wall
Biot number, Bw. Parameter
values: Ct= 3.73, We= 120,
Re= 1, Pe= Pr = 7 and
B = 1.44. The instability
thresholds for the different
modes are indicated by
bullets: S-mode at k = 0 and
P-mode at k =O(1). M�

c
denotes the critical modified
film Marangoni number for
the S-mode

The curves have two minima corresponding to the onset of the long-wave S-
mode at k = 0 and to the onset of the short-wave P-mode with k =O(1) [107]. The
S-mode leads to long-scale free-surface deformations while the P-mode leads to
“steady convection cells” with phase velocity cr = ωr = 0 (sometimes referred to as
“rolls”) for which the deformation of the interface does not play an important role.
As noted in the Introduction, this monograph is devoted to thin films and their asso-
ciated long-wave instabilities. The short-wave P-mode then will not be considered
in what follows and we shall focus on the long-wave H- and S-modes instead.

3.4.3 Critical Condition and Long-Wave Expansion

An alternative definition of the critical value of a control parameter to the one given
in Sect. 3.3, used quite frequently in hydrodynamic stability, utilizes the concept of
a neutral curve: a minimum/maximum value of a control parameter on a branch of
a neutral curve such that instability occurs above/below the neutral curve and in a
neighborhood around this value is a critical value of this parameter. For example, if
a neutral curve is such that instability occurs above the curve and stability below and
the curve exhibits more than one local minima, the values of the control parameter
at the minima are its critical values. The value of the control parameter at the global
minimum is the critical value of this parameter for all wavenumbers.

This definition based on the neutral curve allows for a systematic identification
of the critical values of a control parameter in the (control parameter-wavenumber)
parameter space as can be illustrated from Fig. 3.1. For the S-mode which is a long-
wave variety, the critical value of M� is obtained from the minimum of the neutral
curve in the region k→ 0. For the ST case, the critical value of M� for the S-mode
coincides with the critical value of this parameter for all k. The critical value of the
P-mode is obtained from the local minimum of the neutral curve at an O(1) value
of the wavenumber.
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It is straightforward to show that the above definition for a critical value of a
control parameter is consistent with that given in Sect. 3.3. Let us consider for in-
stance a situation with ωi =Ak2(Σ −Σc)−Bk4 with A,B > 0, as is the case e.g.,
with the H-mode. The neutral curve is then obtained by setting ωi = 0, which gives
k = 0, a first branch of the neutral curve, and Σ −Σc = (B/A)k2

c , a second branch
of the neutral curve. The band of unstable modes for Σ >Σc is 0≤ k ≤ kc with kc
the cut-off wavenumber. Plotting Σ −Σc = (B/A)k2

c in the (kc,Σ)-plane gives a
parabola whose minimum is located at kc = 0 and Σ =Σc (hence, kc ≡ k0 = 0 is
the critical wavenumber).

The critical modified film Marangoni number for the threshold of the S-mode
can be easily obtained from (3.18) and (3.19) by taking the long-wave limit, i.e., as
k→ 0:

ST: M�
c =

2(1+B)Ct

3
(3.20a)

or

HF: M�
c =

2(B +Bw(1+B))Ct

3Bw
. (3.20b)

Considering now a vertical geometry, Ct= 0, (3.20a)–(3.20b) indicates that the film
is always unstable with respect to the long-wave S-mode, i.e., for all hN (or equiva-
lently all Re). Notice that the critical modified film Marangoni number (3.20b) goes
to infinity for HF in the limit of a vanishing heat loss at the wall (Bw → 0), which
signals the loss of the long-wave thermocapillary S-mode for an insulated wall and
an imposed heat flux (see also Sect. 2.5).

Close to the instability onset, i.e., just above the critical Marangoni number given
by (3.20a)–(3.20b), a long-wave expansion6 of the neutral stability conditions (3.18)
and (3.19), i.e., a regular perturbation expansion of this condition for k� 1, yields
the band of unstable wavenumbers 0 ≤ k ≤ kc for which the linear growth rate of
the infinitesimal disturbances is positive, with kc the cut-off wavenumber. Further,
by considering strong surface tension effects, i.e., large We, and assuming for sim-
plicity that all remaining parameters are of O(1), simple expressions for the cut-off
wavenumbers kc are obtained:

ST: kc =
(

3(M� −M�
c )

2We(1+B)

)1/2

(3.21a)

or

HF: kc =
(

3Bw(M
� −M�

c )

2We(B +Bw(1+B))

)1/2

, (3.21b)

6The long-wave expansion as a methodology for the reduction of the governing equations and
associated wall and free-surface boundary conditions into simpler systems of equations will be
outlined in detail in Chaps. 4 and 5.
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corresponding to analytical representations of the neutral stability curves in Fig. 3.1
in the region of small wavenumbers.

Hence, the stabilizing effect of surface tension, which damps perturbations of
relatively short wavelength, limits the range of unstable wavenumbers 0 ≤ k ≤ kc
close to the origin even away from the vicinity of the instability onset, i.e., for M�−
M�

c =O(1), provided of course that We is sufficiently large.

3.5 Streamwise Perturbations: kx = k, kz = 0

3.5.1 Eigenvalue Problem

Yih extended “Squire’s theorem” [83, 121] to isothermal free-surface flows [303]
and he demonstrated that the stability of the primary flow with respect to two-
dimensional perturbations determines also its stability with respect to three-
dimensional ones. He also found that the most unstable perturbations, i.e., the ones
with the largest maximum growth rate, consist of streamwise waves (kz = 0). Al-
though Squire’s theorem does not apply when the Marangoni forces are present
(M �= 0) [139, 257, 258], and hence the fully three-dimensional Orr–Sommerfeld
problem (3.16a)–(3.16i) cannot be transformed to an equivalent two-dimensional
one, numerical integration of the three-dimensional Orr–Sommerfeld problem
shows that the most unstable perturbations in the region of small wavenumbers

correspond to streamwise waves [107] (in the region k =
√
k2
x + k2

z = O(1), the
most unstable disturbances consist of transverse rolls and are due to the P-mode,
but once again in this monograph we restrict our attention to the H- and S-modes
only).

We therefore focus on streamwise perturbations. As we are dealing with a two-
dimensional flow it is convenient to make use of the streamfunction ψ , which sat-
isfies u= ∂yψ and v =−∂xψ . Denoting with ϕ, the amplitude of the normal mode
representation of the streamfunction perturbation—about the base state streamfunc-
tion, Ψ (y)= ∫ U dy—the amplitude of the normal mode for the perturbation of the
cross-stream component of the velocity can be rewritten as

φ(y)=−ikxϕ(y).
Setting kx = k and writing ω = kc, with c the complex wave speed, the sys-
tem (3.16a)–(3.16i) acquires the form:

(
D2 − k2)2ϕ + 3Reik

[
(c−U)

(
D2 − k2)− 1

]
ϕ = 0, (3.22a)

(
D2 − k2)τ + 3RePrik

[
DΘϕ + (c−U)τ

]= 0, (3.22b)

ϕ(0)=Dϕ(0)= 0, (3.22c)

ST: τ(0)= 0 (3.22d)



50 3 Primary Instability

or

HF: Dτ(0)= Bwτ(0), (3.22e)

η= ϕ(1)

c− 1/2
, (3.22f)

[(
D2 − 3k2)+ 3Reik(c− 1/2)

]
Dϕ(1)

− iηk
[
Ct+ (We−MΘ(1)

)
k2]= 0, (3.22g)

(
D2 + k2)ϕ(1)+ ikM

[
ηDΘ(1)+ τ(1)

]− η= 0, (3.22h)

Dτ(1)+B
[
ηDΘ(1)+ τ(1)

]= 0. (3.22i)

Although an analytical solution of the system (3.22a)–(3.22i) can be found for
k → 0 as we shall see later, the full solution can only be obtained numerically.
Appendix F.1 outlines a numerical procedure to solve (3.22a)–(3.22i) for the simpler
isothermal case (M = 0) based on the continuation software AUTO-07P [79]. This
procedure can easily be extended to the nonisothermal case, as done hereinafter and
in Chap. 9, and for that matter to other problems where a numerical solution of an
Orr–Sommerfeld eigenvalue problem in two dimensions is required.

Worth mentioning is a method presented by Anshus and Goren [10] to obtain
approximate analytical solutions to (3.22a)–(3.22i) for the isothermal case (M = 0).
As the instability occurs at the interface and energy is transferred from the base state
to the perturbations at the interface (as shown in [147] and described in Sect. 3.6),
Anshus and Goren approximated the base-state velocity distribution by its value
at the free surface. Replacing U in (3.22a) with U(1) = 1/2 leads therefore to an
ordinary differential equation with constant coefficients whose solution can eas-
ily be obtained analytically. This approximation is in excellent agreement with the
full solution of (3.22a)–(3.22i) when the pure hydrodynamic instability (M = 0)
is considered [10]. Though never attempted, it is likely that this method will also
work when the hydrodynamic instability is coupled with the thermocapillary one
(M �= 0). Indeed, the transfer of energy from the base state to the perturbations also
occurs at the interface when the thermocapillary S-mode is considered, since the
mechanism of this mode is the generation of surface tension gradients induced by
the deformation of the free surface and the linear distribution of temperature across
the film.

3.5.2 Neutral Stability Condition

Neutral stability curves (ωi = 0) obtained numerically from the full system (3.22a)–
(3.22i) by using AUTO-07P are shown in Fig. 3.2 for the ST case. Parameter values
are chosen to correspond to a situation in which β and the physical properties of
the liquid–gas system are fixed (fixing the viscous-gravity scaling), i.e., we examine
the influence of the flow rate and the temperature difference between the wall and
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Fig. 3.2 Neutral stability
curves for the specified
temperature condition (ST) in
the (Re, k)-plane for different
values of the Marangoni
number Ma. Parameter
values: β = 15° (Ct= 3.73),
Γ = 250, Pr = 7 and Bi= 1.
Note that k = 0 is also a
branch of the neutral curve

the ambient gas phase. Following our discussion at the end of Appendix D.1 then,
the set of control parameters consists of the Reynolds number Re and Marangoni
number Ma. We report the results as a function of Re, different Ma and fixed β , Pr,
Γ and Bi.

The Nusselt flat film solution is found to be stable for large-wavenumber pertur-
bations and unstable with respect to small-wavenumber perturbations. For M = 0,
only the H-mode is present and because of the inclination, the hydrostatic pres-
sure stabilizes small Reynolds number flows, more specifically for Re < 5

6 Ct (see
Sect. 3.5.4). For small positive M , the thermocapillary S-mode sets in for small
Reynolds number flows, opening up a stability window defined by two curves ema-
nating from the k = 0 axis, which eventually disappears for Ma≥ 15.5. Beyond this
limit, the two stability curves merge and the two unstable regions unite, forming
a single unstable domain, showing that the S- and H-modes reinforce each other.
Notice that following the definition of a critical value of a parameter in Sect. 3.4.3,
there is one critical value for Re when Ma= 0, two for 0 < Ma < 15.5 and none for
Ma≥ 15.5.

3.5.3 Long-Wave Expansion

The threshold at which the long-wave instability is triggered can be obtained with a
long-wave analysis of the system (3.22a)–(3.22i) [304]. At zeroth-order in k (equiv-
alently, for k = 0), the system (3.22a)–(3.22i) reduces to:

D4ϕ0 = 0, (3.23a)

D2τ0 = 0, (3.23b)

ϕ0(0)=Dϕ0(0)= 0, (3.23c)

ST: τ0(0)= 0 (3.23d)
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or

HF: Dτ0(0)= Bwτ0(0), (3.23e)

D3ϕ0(1)= 0, (3.23f)

D2ϕ0(1)− ϕ0(1)

c0 − 1/2
= 0, (3.23g)

Dτ0(1)+B

[
ϕ0(1)

c0 − 1/2
DΘ(1)+ τ(1)

]
= 0. (3.23h)

Integrating (3.23a) gives: ϕ0 = A0y
3 + B0y

2 + C0y +D0. Application of the no-
slip condition at the wall (3.23c) and the normal stress condition at the free sur-
face (3.23f) yields A0 = C0 =D0 = 0. The tangential stress condition (3.23g) at the
free surface then determines the eigenvalue c0 at zeroth-order:

c0 = 1.

The constant B0 remains undetermined since the system is linear and homogeneous.
For convenience, we normalize ϕ0 by setting B0 equal to unity:

ϕ0 = y2. (3.24)

Thus, at zeroth-order in k the perturbed streamwise velocity is linear, Dϕ0 = 2y, and
its origin is the viscous shear stress. Since c0 has no imaginary part, the perturbation
is neither amplified nor damped, only advected with a constant phase speed. The
axis k = 0 is a branch of the neutral stability curve and corresponds to a uniform
change of the base state by a change in the flow rate, corresponding to what we have
referred to as Goldstone mode. However, recall that finite-size effects do not allow
the k = 0 limit and in fact in practice the smallest wavenumber in the system scales
as k ∼ 1/L, with L the channel’s length.

Integrating (3.23b) gives:

τ0 =E0y + F0. (3.25)

The heat transfer conditions at the wall (3.23d) or (3.23e) and at the free sur-
face (3.23h) then lead to

ST: E0 = 2DΘ2, F0 = 0, (3.26)

or

HF: E0 = 2BwDΘ2, F0 = 2DΘ2, (3.27)

where c0 = 1 has been utilized. Notice that DΘ is here a constant given by (3.10a)
and (3.10b) as the base flow temperature distribution (3.1d) and (3.1e) is linear.
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Let us now expand ϕ, τ and c in asymptotic series in k,

c = c0 + ikc1 − k2c2 − ik3c3 +O
(
k4),

ϕ = ϕ0 + ikϕ1 − k2ϕ2 − ik3ϕ3 +O
(
k4),

τ = τ0 + ikτ1 − k2τ2 − ik3τ3 +O
(
k4),

where, since in (3.22a)–(3.22i) only odd powers of k have an imaginary coefficient,
even terms of the above expansion are real while odd ones are purely imaginary.
Substituting this expansion in (3.22a)–(3.22i) gives at first order:

ϕ1 = Re

(
y5

20
− y4

4

)
+ Ct

3
y3 +B1y

2, (3.28)

τ1 = Pe

(
− 3

40
E0y

5 − 1

8
(2DΘ − 2E0 + F0)y

4

− 1

2
(E0 − F0)y

3 − 3

2
F0y

2
)
+E1y + F1, (3.29)

c1 = 2

5
Re− 1

3
Ct− M

4
(2DΘ +E0 + F0). (3.30)

The first-order term ϕ1 of ϕ contains ϕ0 within an arbitrary multiplicative constant
B1, corresponding to a redefinition of the original constant B0 for ϕ0 and thus repli-
cating at first order the solution at zeroth order (ikB1y

2 ∝ ϕ0). By setting B1 equal
to zero so that ϕ0 is suppressed at ϕ1, the latter appears as a true correction to ϕ0.
Next, E1 and F1, the constants of integration of the second-order linearized energy
balance (3.22b), are obtained using the heat transfer conditions at the wall (3.22d),
(3.22e), (3.22h) and (3.22i),

ST: E1 =G, F1 = 0,

or

HF: E1 = BwG, F1 =G,

where

G = 2DΘ2(Ct− Re)+ 2DΘ3M

1+B
− PeDΘ

40B

[
10(4+B)DΘ + (35+ 13B)E0

+ 5(16+ 9B)F0
]
,

thus completing the solution.
Noteworthy is that the above expansion yields the only root of the dispersion

relation that can become unstable, and in fact throughout this chapter we fo-
cus on this root. There is also a countable infinite number of eigenvalues whose
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leading-order terms in the absence of the Marangoni effect assume the simple form
∼ −n2π2/(Rek). These are the shear modes associated with the semi-parabolic
Nusselt velocity profile [42, 94, 207] and generated by the shear induced by the
no-slip boundary conditions at the solid boundary. They are stable in the region of
small-to-moderate Reynolds numbers considered here, but they can be destabilized
for large Reynolds numbers leading to the “Tollmien–Schlichting” instability and
transition to usual turbulence for a falling film.

3.5.4 Critical Condition

Since the first-order term of the velocity, ikc1, is purely imaginary, k2c1 is the first
contribution to the growth rate ωi = kci of the instability. Hence, if c1 < 0, the sys-
tem will be linearly stable, whereas for c1 > 0 the system will be linearly unstable.
Therefore, the onset of the instability occurs at c1 = 0, which yields the critical
conditions:

ST: Ct = 6

5
Re+ 3M�

2(1+B)
, (3.31a)

or

HF: Ct = 6

5
Re+ 3BwM

�

2(B +Bw(1+B))
. (3.31b)

The terms on the right hand sides of (3.31a)–(3.31b) arise from inertia and thermo-
capillary forces, which are destabilizing, while the term on the left hand sides is
due to the hydrostatic pressure which is stabilizing. For M� = 0 the above condi-
tion reduces to the well-known critical condition, Rec = (5/6)Ct, for the onset of
the H-mode in an isothermal falling film obtained by Benjamin [19] and Yih [304].
On the other hand, for M� �= 0, the critical Reynolds number for, e.g., the ST case
is Rec = (5/6)Ct − (5/4)(M�/(1 + B)) and thermocapillarity reduces the critical
Reynolds number, a consequence of the destabilizing influence of the Marangoni
effect.

As we shall see in Sect. 3.6, inertia leads to a phase shift between the interface
location and the vorticity field that originates from the H-mode [256]. For trans-
verse disturbances (e.g., rivulets aligned with the flow; see Fig. 1.11) there is no
mechanism to allow energy transfer from the mean flow to the perturbation, so there
is no term representing the mean shear. Indeed, if Re = 0 in (3.31a)–(3.31b), one
recovers (3.20a)–(3.20b), which define the critical conditions for the thermocapil-
lary instability for long-wave perturbations (S-mode). Hence, the critical M� in the
presence of flow (Re �= 0) is smaller to that in the absence of flow (Re = 0). In
other words, in the presence of flow the system can be unstable in a region that is
otherwise stable with no flow. This result allows us to conclude that in the k→ 0
limit, streamwise perturbations giving rise to interfacial waves have higher growth
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rate than transverse ones leading to rivulets and hence can be considered more un-
stable (see also [107]). Another way to put it, long-wave transverse and streamwise
modes are equally affected by thermocapillarity, but the latter gets an additional
destabilizing boost from inertia; as was shown in Sect. 3.5.2, the H- and S-modes
reinforce each other, at least in the linear regime. For finite amplitude waves, i.e., in
the nonlinear regime, this point will be discussed in Chap. 9.

Let us now consider again the window of stability for the ST case in Fig. 3.2. It
reveals the existence of two critical values of the Reynolds number, or equivalently
the Nusselt flat film thickness hN. This can be understood if we rewrite (3.31a) in
terms of the viscous-gravity scaling, M =Ma/hN, B = BihN and Re= h3

N/3:

Ct= 2

5
h3

N +
3MaBi

2hN(1+ BihN)2
, (3.32)

which can be recast into a polynomial for hN, admitting, for certain values of Ma,
two positive roots between which the film is stable. For the example of Fig. 3.2, this
happens for Ma < 15.5. Hence, the parametrization of the Nusselt groups in terms
of hN and the viscous-gravity parameters has allowed us to unfold the two modes of
instability.

3.5.5 Higher Order in the Long-Wave Expansion of the Dispersion
Relation

We can proceed further with the wavenumber expansion of the system (3.22a)–
(3.22i) in the same manner as for the zeroth and first orders. The complex eigenvalue
for ST has the form:

ST: c = 1+ ik

[
2

5
Re− Ct

3
+ M�

2(1+B)

]

− k2
[

1− 10

21
CtRe+ 4

7
Re2 + M�

80(1+B)

(
57Re+ 15− 7B

1+B
Pe

)]

− ik3
{
−3

5
Ct+ 471

224
Re− 17363

17325
CtRe2 + 75872

75075
Re3 + 2

15
Ct2Re

+ We

3
− M�

3B
+ M�

1+B

[
M�

16(1+B)

(
5Re+ 3−B

1+B
Pe

)
− 49

120
CtRe

+ 2707

1792
Re2 + (6+ 5B)

6(1+B)
− (−5435+B(2090+ 749B))Pe2

44800(1+B)2

+ (9605− 3653B)PeRe

22400(1+B)
− CtPe(33− 7B)

240(1+B)

]}
. (3.33)
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This expansion can then be used to obtain the temporal growth rate, ωi = cik or
ωi = Ak2 − Bk4, where A = (2/5)(Re − Rec) is the coefficient of ik with Rec =
(5/6)Ct − (5/4)(M�/(1+ B)) and B is the coefficient of ik3. The relation for the
growth rate expresses the balance between Ak2 and Bk4 in the linear regime and
links the order of magnitude of k with those of Re− Rec and B; it is precisely this
balance that also determines the cut-off and maximum growing wavenumbers. From
Ak2 ∼ Bk4, Re− Rec ∼

√
Bk2 and the condition k� 1 for the expansion in (3.33)

to be valid is satisfied when the distance from criticality is sufficiently small and/or
B is sufficiently large.

As it was pointed out earlier, in experimental observations, We � 1 for most
liquids (a strict relative order between We and k at this stage is not required). With
this condition and assuming all other parameters in the coefficient of ik3 in (3.33)
to be of O(1), we obtain

ωi = k2
(

2

5
Re− Ct

3
+ M�

2(1+B)

)
− k4 We

3
. (3.34)

Let us now consider the neutral stability condition. We have already seen that the on-
set of instability occurs when the coefficient of k2 vanishes, which yields the critical
condition (3.31a)–(3.31b). Beyond onset, the neutral wavenumber, i.e., wavenum-
ber with zero growth rate, occurs at k = 0, which is always a branch of the neutral
curve as shown also in Fig. 3.2, and at the cut-off wavenumber, obtained by setting
ωi = 0 in (3.34) or

ST:

(
6

5
Re−Ct+ 3M�

2(1+B)

)
− k2

c We= 0, (3.35)

which again in terms of the viscous-gravity scaling and depending on the value of
Ma can unfold into two roots. Equation (3.35) provides an analytical expression of
the neutral stability curves in Fig. 3.2 for small wavenumbers. It also shows that
kc is small due to large We. In particular, with Re− Rec =O(1), kc =O(We−1/2).
From (3.34) then ωi is small. Hence, at onset the evolution is slow in both time and
space.

Therefore, with the order of magnitude assignment We� 1, surface tension ap-
pears at the lowest possible order in the long-wave expansion, which in turn leads to
simple expressions for the growth rate and cut-off wavenumbers; this is due to the
coefficient of ik3 in (3.33) being rather simple when We � 1. Similarly, the order
of magnitude assignment We=O(ε−2) with ε the “gradient expansion parameter”
simplifies substantially the formulation of the nonlinear problem, as we shall see
in Chaps. 4 and 5. (With this assignment, the above discussion indicates that for
Re− Rec = O(1), k ∼ ε. The question of connecting k to ε in general will be ad-
dressed in Sect. 5.1.4.) Moreover, large We is crucial for the validity of the boundary
layer approximation.

If We=O(1), the coefficient B of k4 is affected by inertia and hydrostatic head in
addition to surface tension, two forces that limit the growth rate of short waves; on
the other hand if We is small, the coefficient B is affected by inertia and hydrostatic
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head only. If, however, We� 1, surface tension is the only physical effect that limits
the growth rate of short waves and in the linear regime it should balance the desta-
bilizing inertia and thermocapillarity effects acting at long waves. It is precisely this
balance that determines the temporal growth rate in (3.34) and hence the cut-off and
maximum growing wavenumbers. Of course the role of strong surface tension is not
limited to the linear regime; in the nonlinear regime and for sufficiently large We it
is the only force that prevents the waves produced by inertia from forming shocks
and breaking; this point is discussed in detail in Sects. 4.4, 4.6.

Not surprisingly, the criticality condition in (3.31a)–(3.31b) can also be ob-
tained from (3.35) by simply setting kc = 0. The maximum growing wavenumber,
i.e., the wavenumber with the maximum growth rate, is obtained from ∂ωi/∂k ≡
∂(kci)/∂k = 0, which gives k = 0 (such that at criticality or below, the maximum
growth rate, which vanishes, has a wavenumber which vanishes also) and

ST:

(
6

5
Re−Ct+ 3M�

2(1+B)

)
− 2k2

mWe= 0, (3.36)

or

km = kc√
2
.

Finally, the maximum linear growth rate reads:

ωim ≡ kci|km =
1

12We

(
6

5
Re−Ct+ 3M�

2(1+B)

)2

. (3.37)

Similar results can be obtained for the HF case.

3.6 Mechanism of the Hydrodynamic Instability

The mechanism of the long-wave instability triggered by the S-mode can be fully
understood with heuristic arguments, as done in the Introduction. However, the hy-
drodynamic instability of an isothermal falling film (H-mode) is more difficult to
describe with the help of such arguments only. Indeed, the thermocapillary insta-
bility mechanism is governed by surface tension, independently of the presence of
a flow, whereas the hydrodynamic instability mechanism is triggered by the flow,
and in particular by the requirement that the perturbed flow satisfies the kinematic
boundary condition and the stress balance at the free surface “simultaneously.” Con-
trary to the S-mode, for which the growth of the perturbation is decoupled from its
advection by the flow induced by the kinematic boundary condition, a crucial in-
gredient of the H-mode mechanism is precisely the advection by the flow of the
perturbation. We thus complete below the arguments presented in the Introduction
(see Fig. 1.3) in order to ascertain precisely how and why inertia promotes the in-
stability. This is achieved by formulating the balances of energy and vorticity at the
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interface. For this purpose we utilize the linearized equations for the disturbances
and the long-wave expansion.

We begin by setting M = 0 so that the fluid flow and thermal problems are de-
coupled. As pointed out in Sect. 3.5.1, Squire’s theorem [83] then applies and we
can limit ourselves to streamwise perturbations only. The system (3.2a)–(3.2e), (3.3)
and (3.5)–(3.7) for the perturbation thus simplifies into

∂xũ+ ∂yṽ = 0, (3.38a)

3Re(∂t ũ+U∂xũ+ ṽDU) = −∂xp̃+ ∂xxũ+ ∂yyũ, (3.38b)

3Re(∂t ṽ+U∂xṽ) = −∂yp̃+ ∂xx ṽ+ ∂yy ṽ, (3.38c)

with the no-slip and no-penetration conditions at the plate y = 0,

ũ= ṽ = 0, (3.38d)

and the kinematic and normal and tangential stress balances at the free surface
y = 1,

∂t h̃+U(1)∂xh̃ = ṽ, (3.38e)

p̃+ (We∂xx −Ct)h̃− 2∂yṽ = 0, (3.38f)

h̃D2U(1)+ ∂yũ+ ∂xṽ = 0, (3.38g)

where we have not substituted D2U(1)= 1, in order to keep track of the base-state
shear stress in what follows.

3.6.1 Energy Balance of the Perturbation

Multiplying (3.38b) by ũ, (3.38c) by ṽ and summing up the resulting equations, one
gets the “kinetic energy balance” of the perturbed state:

1

2
(∂t +U∂x)

(
ũ2 + ṽ2) = −DUũṽ − 1

3Re
(ũ∂x + ṽ∂y)p̃

+ 1

3Re

[
ũ(∂xx + ∂yy)ũ+ ṽ(∂xx + ∂yy)ṽ

]
. (3.39)

A perturbation localized in space can be decomposed into a sum of periodic func-
tions through the Fourier transform. Thanks to the Parseval theorem, we decipher
that the kinetic energy contained in the perturbation is the sum of the kinetic ener-
gies of all elements that make the Fourier basis. We can therefore restrict our energy
balance to the kinetic energy of the normal mode of wavenumber k. Through inte-
gration across the film thickness over a wavelength λ= 2π/k, we get

∫ 1

0
U(y)

∫ λ

0
∂x
(
ũ2 + ṽ2)dx dy =

∫ 1

0
U
[(
ũ2 + ṽ2)]λ

0 dy = 0. (3.40)
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Similarly, integrating by parts and with the help of the continuity equation (3.38a)
one obtains:

−
∫ λ

0

∫ 1

0
(ũ∂x + ṽ∂y)p̃ dy dx =−

∫ 1

0
[ũp̃]λ0 dy −

∫ λ

0
[ṽp̃]10 dx =−

∫ λ

0
ṽ|1p̃|1 dx.

(3.41)
Then, integrating twice by parts,

∫ λ

0

∫ 1

0

[
ũ(∂xx + ∂yy)ũ+ ṽ(∂xx + ∂yy)ṽ

]
dy dx

=
∫ 1

0
[ũ∂xũ+ ṽ∂x ṽ]λ0 dy +

∫ λ

0
[ũ∂yũ+ ṽ∂y ṽ]10 dx

−
∫ λ

0

∫ 1

0

{
(∂xũ)

2 + (∂yũ)
2 + (∂x ṽ)

2 + (∂y ṽ)
2}dy dx, (3.42)

from which, using (3.38f), p̃|1 = Cth̃ − We∂xxh̃ + 2∂yṽ|1 and
∫ λ

0 ṽ|1∂yṽ|1 dx =
− ∫ λ0 ṽ|1∂xũ|1 dx =−[ṽ|1ũ|1]λ0 +

∫ λ
0 ũ|1∂xṽ|1 dx. We finally obtain:

1

2λ

d

dt

∫ λ

0

∫ 1

0

(
ũ2 + ṽ2)dy dx

=−1

λ

∫ λ

0

∫ 1

0
ũṽDU dy dx + 1

λ

∫ λ

0

[
1

3Re
(We∂xxh̃−Cth̃)ṽ|1

+ 1

3Re
ũ|1(∂yũ|1 − ∂xṽ|1)

]
dx

− 1

3Reλ

∫ λ

0

∫ 1

0

[
2(∂xũ)

2 + (∂yũ)
2 + (∂x ṽ)

2]dy dx. (3.43)

In this equation the “transport of vorticity perturbation” (∂x ṽ− ∂yũ)|1 by the veloc-
ity perturbation field appears explicitly.

To make explicit the work of the viscous forces, denoted as DIS, where

DIS=− 1

3Reλ

∫ λ

0

∫ 1

0

[
2(∂xũ)

2 + (∂yũ+ ∂xṽ)
2 + 2(∂y ṽ)

2]dy dx, (3.44)

we take the square of the continuity equation (3.38a) and integrate it over the con-
sidered volume of fluid. The result is

0 =
∫ λ

0

∫ 1

0
(∂xũ+ ∂yṽ)

2 dy dx

=
∫ λ

0

∫ 1

0

[
(∂xũ)

2 + (∂y ṽ)
2]dy dx + 2

∫ λ

0

∫ 1

0
(∂xũ∂y ṽ) dy dx
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=
∫ λ

0

∫ 1

0

[
(∂xũ)

2 + (∂y ṽ)
2]dy dx + 2

∫ 1

0
[ũ∂y ṽ]λ0 dy

− 2
∫ λ

0
[ũ∂x ṽ]10 dx + 2

∫ λ

0

∫ 1

0
∂yũ∂x ṽ dy dx

=
∫ λ

0

∫ 1

0

[
(∂xũ)

2 + (∂y ṽ)
2 + 2∂yũ∂x ṽ

]
dy dx − 2

∫ λ

0
ũ|1∂xṽ|1 dx.

This allows us to reformulate (3.43) in a more compact way as

KIN+ STE+HYD= SHE+REY+DIS, (3.45)

where KIN is the rate of change of the kinetic energy contained in the perturbation
of wavenumber k,

KIN= 1

2λ

d

dt

∫ λ

0

∫ 1

0

(
ũ2 + ṽ2)dy dx; (3.46)

STE denotes the surface tension-driven rate of energy change,

STE=− We

3Reλ

∫ λ

0

[
ṽ|1(∂xxh̃)

]
dx; (3.47)

and HYD is the rate of change of the hydrostatic potential energy,

HYD= Ct

3Reλ

∫ λ

0
h̃(ṽ|1) dx. (3.48)

SHE is the work of the shear stress at the interface,

SHE= 1

3Reλ

∫ λ

0
ũ|1
(
∂yũ|1 + ∂xṽ|1

)
dx, (3.49)

and REY is the work of the “Reynolds tensor”,

REY=−1

λ

∫ λ

0

∫ 1

0
ũṽDU dy dx. (3.50)

Using (3.38e), STE can be recast into

STE=− We

3Reλ

∫ λ

0

(
∂t h̃+U(1)∂xh̃

)
∂xxh̃ dx. (3.51)

Similarly, using the tangential stress balance at the free surface, one obtains

SHE=− 1

3Reλ
D2U(1)

∫ λ

0
h̃ũ|1 dx, (3.52)
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where the work of the shear rate due to the displacement of the interface D2U(1)h̃
now appears explicitly.

The Nusselt flat film flow is unstable if KIN is positive, and it is stable other-
wise. STE and HYD are positive when the energy brought from the base flow to
the perturbation is stored through surface tension and gravity. These three terms on
the left hand side of (3.45) correspond to the distribution of the total energy of the
perturbation. The terms appearing in the right hand side correspond to the work of
the forces exerted on the fluid and thus to the extraction of energy from the base
state to the perturbation. It is clear that the energy required for the perturbation to
grow must be produced either through the work of the Reynolds tensor REY or by
the work of the shear at the interface. Numerical integrations of (3.45) show that
the perturbation extracts energy from the base state mostly through SHE with the
Reynolds tensor playing a negligible role in the process [147].

Similar results can be obtained analytically close to the instability threshold using
the long-wave expansion. Assuming for simplicity that Re− Rec =O(1) and from
Sect. 3.5.5, Wek2 = O(1), one can easily obtain the expressions at O(k2) of the
different terms appearing in the balance (3.45):

KIN ≈ 2

9
k2
(

6

5
Re−Ct− k2We

)
E2, (3.53a)

STE ≈ 2

9
k4 We

Re

(
6

5
Re−Ct− k2We

)
E2, (3.53b)

HYD ≈ 2

9
k2 Ct

Re

(
6

5
Re−Ct− k2We

)
E2, (3.53c)

SHE ≈
{

2

3Re
+ k2

[
41

180
Ct+ 20

9Re
− 2Ct2

3Re
+ 4321

6720
Re

+ k2
(

41

180
We− 4

3

CtWe

Re

)
− 2

3
k4 We2

Re

]}
E2, (3.53d)

REY ≈ k2

180

(
Ct− 93

112
Re+ k2We

)
E2, (3.53e)

DIS ≈
[
− 2

3Re
+ k2

(
−17

90
Ct− 20

9Re
+ 4Ct2

9Re
− 1249

3360
Re

+ k2
(
−17

90
We+ 8

9

CtWe

Re

)
+ 4

9
k4W

2

Re

)]
E2, (3.53f)

where E ≡ exp(kcit).
Consequently, the balance (3.45) becomes, to leading order,

SHE=−DIS= 2

3Re
, KIN= STE=HYD= REY= 0. (3.54)
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The energy pumped from the base state is completely dissipated by viscosity and,
since the kinetic energy of the perturbation does not change (KIN = 0), the axis
k = 0 is part of the neutral stability curve (obtained earlier in this chapter) as implied
by the dependence of the base state on the film thickness: a uniform elevation of the
free surface must lead from one Nusselt solution to another one, and therefore is
neither damped nor amplified (this is the Goldstone mode).

The above results show that the work of the Reynolds tensor (REY) is smaller
than the work of the shear at the free surface (SHE). Recall the expression for the
growth rate ωi = kci in (3.34). Consequently, (3.53a)–(3.53f) shows that the kinetic
energy of the perturbation (KIN), the gravity potential energy (HYD) and the sur-
face energy (STE), to leading order all grow proportionally to the growth rate kci,
in agreement with the numerical integrations of (3.45) [147]. This confirms that
the energy is mainly transferred to the perturbation through the work of interfacial
forces.

3.6.2 Vorticity Balance at the Perturbed Interface

Both the H- and S-modes are interfacial instability modes. As shown above the H-
mode is an interfacial instability mode resulting from the unbalance of the perturbed
shear stress at the interface. Let us therefore consider the stress balance at the inter-
face in more detail. Below we follow the arguments by Hinch [114] and Kelly et al.
[147].

We denote by ω̃= ∂xṽ−∂yũ the vorticity perturbation. By differentiating (3.38b)
with respect to the cross-stream coordinate y and (3.38c) with respect to the stream-
wise coordinate x, and subtracting the resulting equations, one obtains the balance
of the vorticity perturbation:

(∂t +U∂x)ω̃− ṽD2U(y)= 1

3Re
(∂xx + ∂yy)ω̃. (3.55)

Seeking the solution in the form of a normal mode, ω̃=Ω(y) exp(ik(x − ct)), and
expanding the amplitude Ω in the asymptotic series, Ω = Ω0 + ikΩ1 + · · · , the
solution φ0 = y2 at leading order of the long-wave expansion (see (3.24)) gives
Ω0 = D2φ0 = −2. The phase of the vorticity perturbation is therefore opposite to
the displacement of the free surface η0, which from (3.22f) reads η0 = 2. Therefore,
the displacement of the free surface is neither amplified nor damped at leading order.

At O(k) the shear acts opposite to the vorticity,

Ω =−D2φ +O
(
k2), (3.56)

so that we get:

D2Ω1 = 3Re
[
(U − c0)Ω0 +D2Uφ0

]
. (3.57)

The first term on the right hand side of the above expression corresponds to the
advection of the vorticity perturbation by the motion of the fluid with respect to the
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Fig. 3.3 (a) Displacement of
the vorticity maximum at the
interface by inertia when
Re≥ Ct; (b) vorticity
correction due to the base
flow and the interface
displacement when Re≤ 5

3 Ct

wave displacement. The second term originates from the advection by the vorticity
perturbation of the base state,−v1D

2U(y). Since c0 >U , ∀y ∈ [0,1] we have (U−
c0)Ω0 = 2− 2y + y2 > 0 which is partially compensated by D2Uφ0 =−y2 < 0 so
that D2Ω1 = 6Re(1 − y) > 0. Integration of this equation requires two boundary
conditions. The normal stress balance at the interface (3.22g) gives one condition:

DΩ1(1)=− Ct

c0 − 1/2
ϕ0(1)+ 3Re

(
c0 − 1

2

)
Dϕ0(1). (3.58)

A second boundary condition is obtained through (3.56) and the choice B1 = 0 in the
expression of ϕ1 in (3.28), as we did below (3.30). Since Ω1(0)= 0 and D2Ω1 > 0,
the correction of the vorticity at the interface Ω1(1) increases with DΩ1(1). On
the right hand side of (3.58) there is a negative term originating from the hydro-
static pressure (−Cth̃) and a positive term brought by the pressure perturbation
promoted by the vorticity perturbation, which is also due to inertia. The sum of
these terms gives DΩ1(1) = 3Re − 2Ct so that Ω1(1) = 2(Re − Ct) after a dou-
ble integration of (3.57). The first-order correction Ω1(1) is thus positive whenever
Re ≥ Ct. As the wavenumber k is small it introduces a phase shift, say ν, through
Ω0 exp(iν)≡Ω(1)≈Ω0(1)+ ikΩ1(1)=−2[1− ik(Re− Ct)], or ν =O(k) < 0.
Consequently, the maximum in absolute value of the vorticity perturbation at the in-
terface is somewhere ahead of the maximum of the displacement of the interface at
lowest order,�(ϕ0(1)/(c0−1/2) exp[ik(x−ct)])= 2 cos[k(x−ct)]. Subsequently,
the induced correction of the velocity field amplifies the interface deformation, as
shown in Fig. 3.3a.

The balance of the tangential stress at the interface (3.22h) can be rewritten as

Ω1(1)+ 1

c0 − 1/2
ϕ1(1)= 1

(c0 − 1/2)2
c1ϕ0(1), (3.59)
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where, besides Ω1(1), a second term corresponding to the displacement of the in-
terface enforced by the correction to the stream function, ϕ1(1)/(c0−1/2)= 2

3 Ct−
2
5 Re, appears. When Re ≤ 5

3 Ct, the interface is displaced upstream, suggesting an
upstream transport of vorticity, −D2Uϕ1(1)/(c0 − 1/2) = ϕ1(1)/(c0 − 1/2) ≥ 0.
This is destabilizing since ϕ0(1)/(c0 − 1/2) = η0 = 2, and thus c1 > 0 (see
Fig. 3.3b).

The above discussion is limited to the effect of the displacement of the maxi-
mum of vorticity on the perturbed interface at lowest order, since the effect on the
correction at O(k) of the interface position is a higher order one.

3.6.3 Summary of the Key Factors for the Hydrodynamic
Instability

To summarize, there are three key elements responsible for the instability:

(i) The interface can be deformed, which enables the perturbation to pump energy
from the base state through the tangential constraint at the interface.

(ii) To leading order in k, the perturbed stream function ϕ0 is fully determined by
the balance of viscosity and gravity acceleration and thus becomes slaved to
the kinematics of the interface.

(iii) The displacement of the interface induced by ϕ0 corresponds to a wave speed
c0 larger than the velocity of the base flow. This allows the displacement of the
maximum of vorticity in a destabilizing fashion [256].

Point (iii) is probably the most significant one.



Chapter 4
Boundary Layer Approximation

The linear stability analysis performed in Chap. 3 shows that for large Weber num-
bers the onset of the evolution of a falling film is dominated by long-wave modes,
which in turn suggests slow variations of the interface in time and space. This then
motivates the introduction of a small parameter, ε, measuring the slow variations
in time and space. This parameter forms the basis of a gradient expansion of the
governing equations and wall and free-surface boundary conditions to let us obtain
the different levels of modeling approaches and approximations utilized in the de-
scription of falling liquid films. The highest level of approximation is based on the
elimination of the pressure. This is achieved by obtaining the pressure by integrat-
ing across the film the y component of the momentum equation with the inertial
effects neglected. The resulting pressure distribution is then substituted into the x

and z momentum equations while retaining the inertia terms in these equations.
The resulting equations are referred to as the boundary layer equations since the
assumptions leading to these equations are essentially the same with those in the
derivation of the Prandtl equations of the boundary layer theory in aerodynamics.
The boundary layer equations are obtained with only the gradient expansion and
without overly restrictive stipulations on the orders of the different dimensionless
groups with respect to ε. These equations serve as the first step toward subsequent
approximations presented in this monograph.

4.1 Three-Dimensional Boundary Layer Equations

In Prandtl’s boundary layer theory, the strong viscous diffusion in the cross-stream
y direction balances inertia as well as the pressure gradient in the streamwise x di-
rection, and it is this balance that gives rise to the Blasius profile [243]. The pressure
distribution is typically obtained by integrating the y component of the momentum
equation where convective/inertia effects are neglected. We shall demonstrate that
the same approach in viscous film flows yields a set of equations very similar to
the Prandtl equations in boundary layer theory. However, the flow is not, strictly

S. Kalliadasis et al., Falling Liquid Films, Applied Mathematical Sciences 176,
DOI 10.1007/978-1-84882-367-9_4, © Springer-Verlag London Limited 2012

65

http://dx.doi.org/10.1007/978-1-84882-367-9_4


66 4 Boundary Layer Approximation

speaking, a boundary layer flow, as there are no inner and outer regions which de-
termine the thickness of the layer. In fact, unlike boundary layer theory, where the
pressure gradient is imposed by the (outer) inviscid flow and is related to the ve-
locity via Bernoulli’s equation, in the case of a falling film the pressure gradient is
self-induced and caused by the capillary forces at the interface and the hydrostatic
head in the direction perpendicular to the wall.

The linear stability analysis performed in Chap. 3 has shown that, with the ex-
ception of the P-mode, which is beyond the scope of the monograph, the dominant
modes, i.e., the H- and S-modes, are long-wave varieties. We then anticipate that,
as is frequently the case with long-wave instabilities, in the nonlinear regime the
free-surface waves will also be long, i.e., they are waves with a wavelength l long
compared to the Nusselt flat film thickness h̄N (see Fig. 2.1). This is especially so as
surface tension is generally large, i.e., We is large and the flow rate is not too large.
Hence the interface remains “smooth” at the scale of the film thickness h(x, t). This
then justifies a long wave assumption corresponding to a slowly varying interface in
time and space, or equivalently, to slow time and space modulations of the Nusselt
flat film solution (2.44).

To express the smallness of the interfacial slope and its slow variation in time, we
introduce a small parameter, ε ∼ ∂x,z,t � 1. In the linear regime it must be related
to the wavenumber of the infinitesimal perturbations, k = 2π(h̄N/l), with the ratio
h̄N/l frequently referred to as the film parameter. This is also a small parameter for
strong surface tension/large Weber numbers (see Sect. 3.5.5) and in fact in Chap. 3
we have already performed long-wave expansions for k � 1 to obtain, e.g., the
instability threshold from the Orr–Sommerfeld eigenvalue problem.

One may be tempted to assume the relative order, k ∼ ε, as is done quite fre-
quently in the literature: after all, ∂x,z ∼ h̄N/l ∼ k and hence if ∂x,z ∼ ε, k ∼ ε. And
yet, as we shall demonstrate in Sect. 5.1.4, the above order of magnitude assignment
between k and ε is true provided that Re− Rec =O(1). We shall then refrain from
assigning a relative order of magnitude between k and ε at this stage: ε will simply
be treated as a perturbation parameter independent of k (a relative order between
k and ε is not really required), allowing us to derive from the governing equations
and wall and free-surface boundary conditions the different levels of modeling ap-
proaches and approximations used in the description of falling films.

As far as the nonlinear regime is concerned, the value of the film parameter can-
not be assigned a priori but rather a posteriori as it is related to the characteristic
scale of the distortions/nonlinear waves of the free surface, which have to be con-
structed from the particular model used to describe the evolution of the interface.
Nevertheless, some estimates can be given a priori: for instance, we expect the char-
acteristic wavelength of the waves in the nonlinear regime to be of the same order
with that at onset. Hence, the film parameter in the nonlinear regime should be of
the same order with that at onset.

Having defined ε, one then typically performs a long-wave expansion of the gov-
erning equations and associated boundary conditions, as is frequently done in the
literature (e.g., [137, 201]). Here we adopt the term gradient expansion instead to
denote the particular way we do the long-wave expansion:
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(i) ε is introduced through the transformation,

(∂t , ∂x, ∂z)→ ε(∂t , ∂x, ∂z) and (∂xx, ∂zz)→ ε2(∂xx, ∂zz), (4.1)

i.e., it acts as an ordering parameter instead of defining it, e.g., from h̄N/l,
with l an a priori unknown long scale in the streamwise and spanwise direc-
tions (which in turn would require nondimensionalization of the x, z directions
with l).

(ii) the long-wave expansion with respect to ε is then carried out as usual; i.e., it is
an asymptotic/perturbation expansion of all pertinent variables in powers of ε.

Let us assume that with the exception of the Weber number, all parameters
Re,Pe,M,B,Bw are of O(1). With Re=O(1), the condition Pe=O(1) is equiva-
lent to Pr =O(1). The Weber number is taken much larger, typically We=O(ε−2).
The above orders of magnitude assignments are made for the sake of simplicity
and in order to illustrate the main points of the derivation of the boundary layer
equations. (As we shall also see in Sect. 5.1.4 it is precisely the order of magnitude
assignment We =O(ε−2) that does not allow us to connect k and ε a priori.) As a
matter of fact, strict orders of magnitude assignments for the different groups are
not required and the above assignments used in the derivation of the boundary layer
equations in this section can be relaxed. This point is discussed in Appendix D.2.

Let us first consider the continuity equation (2.17) which with (i) above becomes:

ε∂xu+ ∂yv+ ε∂zw = 0.

The continuity then imposes that the y component of the velocity v is of O(ε). The
transformation v→ εv is thus applied everywhere in the equations. The continuity
equation finally reads

∂xu+ ∂yv+ ∂zw = 0, (4.2a)

so that all terms in the equation are of the same order (as they should be to ensure
mass conservation) and the continuation equation remains unaltered.

The momentum and energy equations (2.18)–(2.21) with (4.1) and v→ εv read

3εRe(∂tu+ u∂xu+ v∂yu+w∂zu)

=−ε∂xp+ ε2∂xxu+ ∂yyu+ ε2∂zzu+ 1, (4.2b)

3ε2Re(∂t v+ u∂xv + v∂yv +w∂zv)=−∂yp+ ε∂yyv−Ct, (4.2c)

3εRe(∂tw+ u∂xw+ v∂yw+w∂zw)

=−ε∂zp+ ε2∂xxw+ ∂yyw+ ε2∂zzw, (4.2d)

3εPe(∂tT + u∂xT + v∂yT +w∂zT )= ε2∂xxT + ∂yyT + ε2∂zzT , (4.2e)

where terms of O(ε3) and higher have been neglected in the y component of the
momentum equation (4.2c).
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The dimensionless boundary conditions on the wall y = 0 are still given
by (2.22), (2.23):

u= v =w = 0 (4.2f)

ST: T = 1 (4.2g)

or

HF: ∂yT = −1+BwT (4.2h)

and at the free surface y = h(x, z, t), the kinematic condition is still given by (2.24):

v = ∂th+ u∂xh+w∂zh. (4.2i)

The other boundary conditions at the free surface (2.25)–(2.28) acquire the form,

p = 2ε(∂yv− ∂xh∂yu− ∂zh∂yw)− ε2(We−MT )(∂xxh+ ∂zzh), (4.2j)

∂yu = −εM∂xθ + ε2[∂zh(∂zu+ ∂xw)+ 2∂xh(2∂xu+ ∂zw)− ∂xv
]
, (4.2k)

∂yw = −εM∂zθ + ε2[∂xh(∂zu+ ∂xw)+ 2∂zh(2∂zw+ ∂xu)− ∂zv
]
, (4.2l)

∂yT = −BT − ε2
(
B

2
T
[
(∂xh)

2 + (∂zh)
2]− ∂zh∂zT − ∂xh∂xT

)
, (4.2m)

where terms of O(ε3) and higher have been neglected and where the surface tem-
perature θ = T |y=h has been introduced using the relation

[
(∂i + ∂ih∂y)T

]∣∣
h
≡ ∂iθ with i = x, z

(see Appendix C.4).
We then neglect the second-order inertia terms in the y component of the mo-

mentum equation (4.2c), we integrate the resulting equation across the film to ob-
tain the pressure distribution in the film and we substitute this distribution into (4.2b)
and (4.2d), thus eliminating the pressure as in Prandtl’s boundary layer theory [243]:
as the contribution of the pressure in (4.2b) and (4.2d) appears through the terms
ε∂x,zp, neglecting terms of O(ε2) and higher in (4.2c) will be necessary in order to
keep the boundary layer equations consistent at O(ε2); i.e., all neglected terms will
be of higher order. The elimination of the pressure constitutes the main element of
the boundary layer approximation.

It should be emphasized that this elimination would have been impossible at
O(ε3), because of the presence of the second-order inertia terms in (4.2c): going
up to O(ε3) is inconsistent with the spirit of the boundary layer theory as the y

component of the Navier–Stokes equations is still present and we might as well use
the full Navier–Stokes equations without resorting to any approximations.

Equations (4.2k), (4.2l) show that ∂yu, ∂yw are of O(ε) at the free surface, so
that (4.2j) becomes

p|h = 2ε∂yv|h − ε2We(∂xxh+ ∂zzh)+O
(
ε2), (4.3)
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where the O(ε2) terms corresponding to surface tension effects, ∝ ∂xxh+ ∂zzh rep-
resenting the mean free-surface curvature in the long wave approximation, have
been retained due to the assumption ε2We=O(1) while the variation of surface ten-
sion with temperature (MT ) is a higher-order effect and thus it has been neglected.
The order of magnitude assignment ε2We=O(1) brings the surface tension effects
into the pressure distribution at O(1), i.e., the lowest possible order. Surface tension
then contributes terms of O(ε) in the streamwise and spanwise momentum equa-
tions.

Integrating now (4.2c) across the film and utilizing the boundary conditions (4.3)
and (4.2f), one obtains

p = Ct(h− y)− ε2We(∂xxh+ ∂zzh)+ ε(∂yv + ∂yv|h)+O
(
ε2). (4.4)

The first term on the right hand side is the hydrostatic pressure that vanishes for
vertical walls (Ct= 0) while the third term accounts for higher-order viscous effects.
Then, substituting p into (4.2b) and (4.2d) yields

3εRe
[
∂tu+ ∂x

(
u2)+ ∂y(uv)+ ∂z(uw)

]

= 1+ ∂yyu− εCt∂xh+ ε2[2∂xxu+ ∂zzu+ ∂xzw− ∂x(∂yv|h)
]

+ ε3We(∂xxxh+ ∂xzzh), (4.5a)

3εRe
[
∂tw+ ∂x(uw)+ ∂y(vw)+ ∂z

(
w2)]

= ∂yyw− εCt∂zh+ ε2[2∂zzw+ ∂xxw+ ∂xzu− ∂z(∂yv|h)
]

+ ε3We(∂xxzh+ ∂zzzh), (4.5b)

where use has been made of the identity, u∂xϕ+v∂yϕ+w∂zϕ = ∂x(uϕ)+∂y(vϕ)+
∂z(wϕ)− ϕ(∂xu+ ∂yv+ ∂zw) and the continuity equation (4.2a).

Equations (4.5a)–(4.5b) together with the continuity equation (4.2a) and the en-
ergy equation (4.2e), the wall and free-surface boundary conditions (4.2f)–(4.2i),
(4.2k)–(4.2m) are the second-order boundary layer equations, i.e., boundary layer
equations where terms of O(ε3) and higher have been neglected. The first-order
boundary layer equations are simply obtained from the second-order ones by ne-
glecting terms of O(ε2) and higher.

Figure 4.1 shows a typical solitary wave for a vertical falling film obtained
from direct numerical simulation (DNS) of full Navier–Stokes and wall and free-
surface boundary condition [232] (the various DNS studies in the literature are typ-
ically based on numerical techniques such as “finite elements” or “volume of fluids
method”). Solitary-wave solutions of the different low-dimensional models utilized
in the description of falling films will be constructed and analyzed in detail in sub-
sequent chapters. In anticipation of this construction we discuss here and elsewhere
in the chapter some of the solitary-wave characteristics necessary for the under-
standing of the assumptions leading to the boundary layer equations and scaling
arguments from these equations for solitary waves. Figure 4.1 also summarizes the
typical terminology for solitary waves used hereinafter in this monograph.
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Fig. 4.1 Typical solitary wave for a falling film: contours of the y-component of velocity v, pres-
sure p, and stream function ψ , of a solitary wave obtained from full Navier–Stokes. The parameter
values are Re= 6.1, We= 76.4 and Ct=M = 0, corresponding to an experiment by Kapitza [141].
Global minima and maxima for each field are indicated by circles (◦) and bullets (•), respectively.
The solitary wave consists of a hump with a teardrop shape followed by small-amplitude capillary
oscillations/radiation at its front. Reprinted with permission from Salamon, Armstrong and Brown,
Phys. Fluids, 6(6):2202–2220, American Institute of Physics, 1994

The pressure variation in the direction perpendicular to the wall is clearly negli-
gible in agreement with the boundary layer approximation; only small variations are
observed at the trough right in front of the solitary hump and at the front-running
capillary ripples, also called “radiation.” The same conclusion was also drawn from
the DNS study in [99, 176]. This reflects the fact that for the falling film problem,
with the exception of gravity for an inclined plate, there is no mechanism that can
modify the pressure distribution across the film, much like for boundary layers in
aerodynamics.

Note that since the pressure distribution at the interface (4.3) does not depend
on temperature (a direct consequence of neglecting the variation of surface tension
with temperature in the normal stress balance), the second-order equations (4.5a)–
(4.5b), and hence the corresponding first-order ones, are applicable irrespective of
the presence of heating or not.

4.2 Two-Dimensional Boundary Layer Equations

For a two-dimensional flow (w = 0 and ∂z = 0), the second-order boundary layer
equations, i.e., the momentum equations (4.5a)–(4.5b) together with the continuity
equation (4.2a), the wall and free-surface boundary conditions (4.2f)–(4.2i), (4.2k)–
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(4.2m) reduce to

3εRe
(
∂tu+ ∂x

(
u2)+ ∂y(uv)

)− ∂yyu− 2ε2∂xxu

= 1− εCt∂xh+ ε3We∂xxxh+ ε2∂x[∂xu|h], (4.6a)

3εPe(∂tT + u∂xT + v∂yT )=
(
ε2∂xx + ∂yy

)
T , (4.6b)

∂xu+ ∂yv = 0, (4.6c)

u|0 = v|0 = 0, (4.6d)

ST: T |0 = 1 (4.6e)

or

HF: ∂yT |0 =−1+BwT |0, (4.6f)

∂th+ u|h∂xh= v|h, (4.6g)

∂yu|h = 4ε2∂xh∂xu|h − ε2∂xv|h − εM∂x[T |h], (4.6h)

∂yT |h =−B
(

1+ 1

2
ε2(∂xh)

2
)
T |h + ε2∂xh∂xT |h. (4.6i)

It is instructive now to compare the Orr–Sommerfeld eigenvalue problem in
Sect. 3.5 with the corresponding eigenvalue problem obtained from a linear stability
analysis of (4.6a)–(4.6i). The result is

D3ϕ − ik
(
Ct+ k2We

) ϕ(1)

c− 1/2
− k2(2Dϕ +Dϕ(1)

)

− 3Reik
(
(U − c)Dϕ − ϕDU

)= 0, (4.7)

together with (3.22b) and the boundary conditions (3.22c)–(3.22f), (3.22h), (3.22i).
Following the same methodology as in Sect. 3.5, the expansion of the linear sys-
tem of equations around k = 0 also leads to (3.33) for the ST case, except for the
term ik3M�/3B , which is absent, and the coefficient 14513/6720 ≈ 2.16 instead
of 471/224 ≈ 2.10. The small difference in the numerical value of the coefficient
is a direct consequence of the approximated pressure gradient in the streamwise
momentum balance.

4.3 On the Significance of the Second-Order Contributions

The second-order terms in the boundary layer approximation (4.6a)–(4.6i) origi-
nate from streamwise viscous diffusion, second-order contributions to the tangential
stress at the free surface, streamwise thermal diffusion and second-order contribu-
tions to the heat losses at the free surface. We note the following:

(i) These terms are necessary to achieve good agreement with Orr–Sommerfeld in
the region of moderate Reynolds numbers.



72 4 Boundary Layer Approximation

Fig. 4.2 Dimensionless cut-off wavenumber kc as a function of the Reynolds number for an ex-
periment performed by Kapitza [141] for a vertical wall and with alcohol as the working fluid:
ν = 2× 10−6 m2 s−1, and kinematic surface tension, σ/ρ = 29× 10−6 m3 s−2, so that the Kapitza
number is Γ = 528.8. Thick and thin solid lines correspond to the solutions of the Orr–Sommer-
feld problem and to the linear stability of the “simplified second-order model,” whereas the dashed
line corresponds to the “first-order model”—both models will be introduced in Chap. 6

(ii) They play a significant role on the wave profiles especially as far as the small-
amplitude capillary ripples at the front of the solitary humps are concerned,
which in turn are crucial for stationary wave selection in the spatio-temporal
evolution of the film.

The first point is illustrated for the isothermal case in Fig. 4.2, where it is evident
that the “simplified second-order model”—to be derived in Chap. 6 from the second-
order boundary layer equations—follows closely the Orr–Sommerfeld result for suf-
ficiently large Reynolds numbers. On the other hand, the “first-order model”—to be
derived in Chap. 6 from the first-order boundary layer equations—performs well
up to Re∼ 5, but then it starts to deviate rapidly from the exact result. The second
point is illustrated for the isothermal case in Fig. 4.3 with the first-order and sim-
plified second-order models. The figure demonstrates clearly that the inclusion of
the second-order viscous terms has little effect on the main solitary hump, but it
influences significantly the capillary ripples preceding the main hump. More pre-
cisely, for the relatively small value Re= 6.07 in Fig. 4.3 it is the amplitude of the
capillary ripples that is mainly affected by the inclusion of the second-order terms,
while for the moderate value Re = 12, both amplitude and frequency of the capil-
lary ripples are affected. These terms are then crucial for a correct description of the
capillary ripples, which in turn affect the wave interaction in the nonlinear regime
and hence the nonlinear dynamics of the film. In fact this is a very interesting feature
of the falling film problem: the capillary ripples are a linear effect but they have a
significant influence on the nonlinear behavior of the film.
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Fig. 4.3 Periodic wave profiles obtained with the “simplified second-order model” (solid line)
and the “first-order model” (dashed line) for We= 76.4 in their moving frame ξ (moving with the
speed of the pulse so that in this frame the pulse is stationary; we shall give the precise definition
in Chap. 5). Contrast panel (a) with the corresponding DNS solution reproduced in Fig. 4.1

4.4 Strong Surface Tension Limit

The effect of surface tension has been retained in the momentum equations (4.5a)–
(4.5b), though it appears of O(ε3). This is due to the stipulation ε2We = O(1),
which is in fact the simplest possible assumption on the order of magnitude of We.
Based on discussions in Chap. 3 and earlier in the present chapter, we can now
summarize the reasons for assuming a large We as follows:

(i) known experimental observations for most liquids correspond to large We;
(ii) convenience/simplicity, since in the linear regime surface tension effects ap-

pear at the lowest possible order in the long-wave expansion of the dispersion
relation obtained from Orr–Sommerfeld; in the nonlinear regime and in the
framework of the boundary layer equations, they appear at the lowest possible
order in the pressure distribution, thus contributing at O(ε) in the boundary
layer equations. The same is true with the long-wave theory to be developed in
Chap. 5. In all cases the higher-order terms are rather involved;

(iii) it ensures the validity of the boundary layer approximation.

To further ascertain the effect of surface tension, let us first scale away the param-
eter ε from the system (4.6a)–(4.6i). This is possible as the transformations (4.1) and
v→ εv can be easily reversed, reflecting the fact that ε acts as an ordering parame-
ter: space and time gradients have a certain order with respect to ε defined by their
order of differentiation, e.g., ∂xxu in (4.6a)–(4.6i), with ε not appearing explicitly,
is of O(ε2).

Let us consider now the steep front of a large-amplitude solitary pulse. Assume
for simplicity a vertical plane and a two-dimensional flow. The streamwise gravity
force and viscous drag promote the breaking of the wave at the front. As far as the
viscous drag in particular is concerned, it is most active at the front region close to
the wall where the front meets the flat film through the formation of a dimple, thus
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slowing down the liquid there and hence contributing to the steepening of the front.
(Both gravity and viscous drag, represented by the terms 1 and ∂yyu in (4.6a), re-
spectively, and acting in the positive and negative x directions, respectively, always
balance, and in fact it is this balance, that gives rise to the Nusselt profile.) The only
force that opposes this steepening is the pressure gradient induced by surface ten-
sion. As far as the role of the force of inertia is concerned we shall examine it in
detail in the next section.

An estimate of the maximum slope ∂xh of a large-amplitude solitary wave (pre-
cisely at its front) can thus be obtained by balancing the mechanisms competing in
the arrest of the wave-breaking, i.e., streamwise pressure gradient induced by sur-
face tension, We∂xxxh, with the streamwise gravity acceleration and viscous drag,
which are always of O(1) in (4.6a),

We∂xxxh∼ We

κ3
∼ 1 =⇒ κ =We1/3, (4.8)

where κ is the aspect ratio between the streamwise characteristic length scale corre-
sponding to this balance, say lS in dimensional variables, which in turn corresponds
to the characteristic length of the steep front of the waves, and the Nusselt film
thickness: in terms of dimensional variables, σ∂xxxh∼ ρg sinβ , and simple algebra
shows that lS/h̄N ∼We1/3. With the order of magnitude assignment We=O(ε−2),
we have h̄N/lS ∼ ε2/3 so that lS is much larger than the Nusselt film thickness h̄N
and the long-wave assumption is not violated. Equivalently, the long-wave assump-
tion is sustained at the steep front of a large-amplitude solitary wave if ∂xh� 1
there. In fact,

max(∂xh)∼ h̄N

κh̄N
= 1

κ
∼ ε2/3. (4.9)

This estimate also shows that ∂xh at the front of a large-amplitude solitary wave
is much larger than its formal order, O(ε); however, ∂xh never approaches unity at
the front (unlike, e.g., the case of hydraulic jumps—to be discussed in Sects. 7.1.3
and 7.2.2.3). This also implies that we do not have a singular perturbation prob-
lem: the term We∂xxxh with the highest spatial derivative is important throughout
a solitary wave and not just in certain regions as in singular perturbation problems.
We also note that the arguments presented here are based on a separation of scales
between the front and back of the waves. As we shall demonstrate in Sect. 4.7, this
is true only for 3Re > We1/3.

Hence, large We, which is defined as the strong surface tension limit, provides
a clear physical explanation for the validity of the long-wave approximation at the
steep front of a large-amplitude solitary pulse. The long-wave approximation there
is satisfied precisely due to strong surface tension: large We becomes the cornerstone
of the long-wave assumption for the boundary layer approximation. Relaxing the or-
der of magnitude of We, but such that We is still large, also ensures the long-wave
assumption. For example, if We = O(ε−1), then κ = O(ε−1/3). But by decreas-
ing We further, i.e., We = O(1), the boundary layer equations are not applicable.
A manifestation of this is that We=O(1) also causes κ =O(1) and the long-wave
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assumption in the framework of the boundary layer approximation is violated. We
then need to proceed with full Navier–Stokes and Fourier equations, or with the
long-wave theory for We = O(1). However, for We = O(1) the theory leads to a
rather involved free-surface evolution equation as we discuss in Sect. 5.1.2.

Since We= Γ/h2
N, the order of magnitude of We is actually related to the orders

of magnitude of Γ and hN. For hN =O(1), large We corresponds to large Γ , repre-
sentative of liquids with high surface tension and small kinematic viscosity such as
water (Γ ∼ 3000 at 25°C). On the other hand, there are certain liquids such as min-
eral oils [154, 155] and silicone oils [86, 231] whose surface tension is smaller than
that of water, and kinematic viscosity is much larger than that of water. These liq-
uids have Γ ∼ 1. To sustain the boundary layer approximation now, we need to have
hN � 1, i.e., very small flow rates, resulting in a large We. Otherwise, if hN =O(1),
We and hence κ are of O(1), and the boundary layer equations are not applicable.

4.5 Dissipation

In addition to the influence of second-order viscous effects, Fig. 4.3 also reveals the
effect of “dissipation.”

Dissipation here refers to the damping of small scale wavy structures due to
surface tension (in the strong surface tension limit), i.e. “dissipation of energy” at
short scales. The presence of radiation is a signature of dissipation in the system.
This type of dissipation should not be confused with viscous effects which (i) enable
the steady Nusselt flat film solution and (ii) have a dispersive effect on the waves (see
Sect. 7.1.1). Of course viscous dispersion does affect the amplitude and frequency of
the capillary ripples/radiation at the front of solitary pulses. But a dissipative solitary
pulse is always characterized by ripples at the front even in the absence of viscous
dispersion, e.g., the solitary pulse of the KS equation (the equation and other weakly
nonlinear prototypes are discussed in Appendix C.5). Viscous effects are connected
with another type of dissipation, “viscous dissipation,” which was instrumental in
Kapitza’s arguments as discussed in the Introduction.

Figure 4.3 reveals that by increasing Re both amplitude and frequency of oscil-
lations in front of the primary solitary hump increase for both first-order and sim-
plified second-order models. Hence, energy dissipation increases (large dissipation
means either the amplitude or number of visible oscillations in front of the hump
or both increase). This is because increasing inertia leads to more energy input to
the system and this causes more dissipation of energy due to surface tension, as
inertia must balance surface tension—surface tension remains fixed but the surface
tension terms must change to accommodate the increased energy input; the precise
way by which inertia balances surface tension in different parts of a solitary pulse
is discussed in Sect. 4.7. Another way to put it, due to the opposing force of sur-
face tension, some of the energy that goes into increasing the primary solitary hump
by increasing Re, as Fig. 4.3 shows, also goes into increasing the amplitude and
frequency of oscillations at its front.

On the other hand, increasing surface tension but keeping Re fixed also increases
energy dissipation. But now the dissipated energy is distributed differently. Unlike
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the first case where Re increases but surface tension is constant, so that there is
more energy overall and dissipation increases both amplitude and frequency of os-
cillations, now the frequency of oscillations increases but their amplitude decreases.
Moreover, the amplitude of the primary hump decreases. This is to be expected as
surface tension wants to flatten the film.

4.6 Shkadov Scaling

The significance of balancing gravity and viscous drag with surface tension for
large-amplitude solitary waves was first identified by Shkadov [249], who intro-
duced the scale ratio κ through (4.8). He proceeded to a compression of the stream-
wise coordinate by taking its scale as κ times the scale for y. He then introduced
the following transformation for x, t , and v in the system (4.6a)–(4.6i), where ε has
been scaled away:

x→ κx, t → κt and v→ v/κ. (4.10)

The transformation (4.10) is referred to as the Shkadov scaling, to obtain the trans-
formed system

δ(∂tu+ u∂xu+ v∂yu)=1+ ∂yyu− ζ∂xh+ ∂xxxh

+ η
(
2∂xxu+ ∂x[∂xu|h]

)
, (4.11a)

Prδ(∂tT + u∂xT + v∂yT )= η(∂xxT + ∂yyT ), (4.11b)

∂yu|h =−M∂x[T |h] + η(4∂xh∂xu|h − ∂xv|h), (4.11c)

∂yT |h =−B
(

1+ η

2
(∂xh)

2
)
T |h + η∂xh∂xT |h, (4.11d)

together with (4.6c)–(4.6f), and where we have made use of the following parame-
ters:

δ = 3Re

κ
, ζ = Ct

κ
, η= 1

κ2
, M= M

κ
. (4.12)

δ is the reduced Reynolds number, ζ is the reduced inclination number correspond-
ing to the effect of the gravity component normal to the plate1 and M is the reduced
film Marangoni number. The parameter η appears along with every second-order
streamwise viscous and thermal term in the momentum and energy equations and
in the tangential stress balance and heat loss conditions at the interface. Hence by
setting η = 0 we reduce (4.11a)–(4.11d) to the corresponding first-order boundary
layer equations for a two-dimensional flow. In Chap. 7 we shall demonstrate that

1Actually, the reduced Reynolds number introduced by Shkadov is δSh = δ/45. This numerical
factor originates from a slightly different choice of variables. The present choice is preferred since
it does not alter the numerical coefficients of the original boundary layer equations.
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this parameter has a dispersive effect on the speeds of the linear waves, and thus it
is called the viscous dispersion number.

It should be noted η is a small parameter. Even so, its effect is important and
indeed, as we emphasized in Sect. 4.3, the second-order terms in the boundary layer
equations, which are also small and ∝ η when these equations are rescaled with
the Shkadov scaling, are important for a good agreement with Orr–Sommerfeld,
and they play a significant role as far as the radiation in front of a solitary hump is
concerned. Nevertheless, at times we shall be taking η to be of O(1) for illustration
purposes; besides, the question of the behavior of different quantities of interest for
large η is a valid one within the context of the boundary layer equations as “model
equations”.

The Shkadov scaling is inherent to the falling film problem in the region of mod-
erate Reynolds numbers due to the separation of scales in the cross-stream and
streamwise directions in this region that is in fact due to the strong effect of surface
tension. Separation of scales also occurs in the region of small Reynolds numbers,
but is different to that in the region of large ones. In fact we shall demonstrate shortly
that solitary waves have quite different characteristic scales in the two regimes. As
we shall see, the Shkadov scaling makes explicit the balance between all forces
necessary to sustain large-amplitude nonlinear waves and their relative significance,
such as inertia, gravity, viscosity and surface tension.

The Shkadov scaling has more advantages. The coefficient of streamwise surface
tension ∂xxxh is exactly unity while in the region of moderate Reynolds numbers,
δ ∼ 1, e.g., for the moderate value Re ∼ 10 and the large values We ∼ 1000 and
M ∼ 10, δ ≈ 3 and M ≈ 1, which is rather convenient from a numerical point
of view. Further, by neglecting viscous dispersion, the Shkadov scaling brings all
different effects into five parameters, δ, ζ , M, Pr and B , thus reducing the number
of governing parameters by one (from six to five).

4.7 Use of the Shkadov Scaling to Analyze the Balance
of Different Forces on a Solitary Pulse

It is instructive at this stage to scrutinize the balance of the different forces on a
pulse by using the Shkadov scaling. We distinguish between two different cases
large amplitude and small-amplitude waves.

4.7.1 (i) Large-Amplitude Waves

We first examine the case of large Re,2 or for simplicity, δ =O(1). In this region we
have large-amplitude waves.

2Recall that this monograph focuses on the regime of moderate Reynolds numbers (in the region
∼10–50). But occasionally, we shall be taking the Reynolds number to be large precisely for the
same reasons we shall be taking η to be of O(1). We note, however, that strictly speaking for large
Reynolds numbers the film flow behaves more like a “river flow”.
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The x component of the momentum equation (4.11a) in terms of the Shkadov
scaling stipulates that δ must be at most of O(1) so that inertia never dominates the
other terms in the equation. For simplicity, in all cases we assume We = O(ε−2).
With δ =O(1) then we have, Re=O(ε−2/3).

With δ =O(1), (4.11a) stipulates that not only inertia is as important as surface
tension, gravity and viscous drag at the front, but all forces balance throughout a
solitary pulse and the estimate for the slope ∼ ε2/3 is valid throughout and not just
at the front as suggested by (4.9). The same conclusion can be reached from (4.11a),
where ε has been scaled away or (4.6a) where ε is present. Balancing inertia to
gravity, viscous drag and surface tension in (4.11a) yields, Re/κ ∼ 1 or Re∼ κ , so
that δ ∼ 1. Consider now (4.6a). For clarity we replace the variables x, t there with
X = εx and T = εt , equivalent to the transformations ∂x = ε∂X and ∂t = ε∂T of the
gradient expansion: X,T are slow scales while x, t are long ones, i.e., x, t ∼ ε−1

when X,T ∼ 1. We also have V = εv.
Equation (4.6a) for a two-dimensional flow on a vertical plane then takes the

form,

3εRe
[
∂T u+ ∂X

(
u2)+ ∂y(uV )

]= 1+ ∂yyu+ ε3We∂XXXh+O
(
ε2), (4.13)

where the O(ε2) viscous dispersion terms have been neglected. Balancing gravity
and viscous drag with surface tension,

1(∼ ∂yyu)∼ ε3We∂XXXh ⇒ X ∼ εWe1/3 ∼ ε1/3,

while balancing inertia with gravity, viscous drag and surface tension,

εRe

X
∼ 1 ⇒ εRe∼ ε1/3 ⇒ Re∼ ε−2/3,

which in turn also yields, δ ∼ Re/κ ∼ ε−2/3/ε−2/3 ∼ 1. For δ ∼ 1, the length scale
X ∼ ε1/3 is valid throughout the solitary wave and not just at its front. In terms of
the original variable x, this corresponds to a length scale x ∼ ε−2/3, which is much
shorter than the long-wave scale x ∼ ε−1, and a slope ε2/3 throughout a pulse and
not just at its front as suggested by (4.9); as we shall demonstrate shortly, for δ ∼ 1
there is no separation of scales between front and back of the wave.

Absorbing ε in (4.13) is equivalent to the transformations X = εX̄, T = εT̄ and

V = ε−1V̄ . These are then followed by the transformations X̄ = κ ¯̄X, T̄ = κ ¯̄T and

V̄ = (1/κ) ¯̄V in (4.13) due to the Shkadov scaling, giving

3Re

[
1

κ
∂ ¯̄T +

1

κ
∂ ¯̄X
(
u2)+ 1

κ
∂y(u

¯̄V )

]
= 1+ ∂yyu+ We

κ3
∂ ¯̄X ¯̄X ¯̄Xh+O

(
ε2), (4.14)

which is effectively (4.11a), rewritten here in terms of the variables ¯̄X, ¯̄T and ¯̄V .
Once again, the estimate ∂xh∼ ε2/3 is easily confirmed:

∂xh= ε∂Xh= ε∂X̄h
1

ε
≡ h ¯̄X

1

κ
∼ ε2/3.



4.7 Use of the Shkadov Scaling to Analyze the Balance of Different Forces 79

Let us now reexamine the balance between the different forces without substitut-
ing Re∼ ε−2/3 and We∼ ε−2, in order to maintain the explicit Re-, We-dependence
of the different physical effects and hence uncover their dependence on δ.

• Front: At the front of the wave we balance gravity and viscous drag with surface
tension:

1∼ ε3We

X3
f

⇒ X3
f ∼ ε3We ⇒ X̄f ∼ κ ⇒ ¯̄Xf ∼ 1,

where the subscript f is used to denote “front.” The order of magnitude of the
inertia term in this regime is

εRe

Xf

∼ Re

X̄f

∼ Re

κ ¯̄Xf

∼ Re

κ
∼ δ.

Hence, for δ ∼ 1 inertia balances surface tension and gravity and viscous drag at
the front, as we have seen earlier. This balance persists when δ increases from 1
provided that it remains of O(1). But as δ starts deviating from an O(1) value, in-
ertia dominates over all other forces, not only at the front but throughout the wave
as (4.11a) clearly indicates. The question then is which forces balance inertia in
this regime.

As δ becomes large, a progressive deviation from the balance between viscous
drag and surface tension at the front (used to obtain the Shkadov compression
factor κ in Sect. 4.4) occurs. After all, κ = We1/3 and involves gravity, viscous
forces and surface tension. It must therefore be redefined for large δ to reflect
a different balance, this time between inertia, viscous drag and surface tension:
large δ implies a thick film, a “river flow.” For such flows, surface tension is weak
and one must balance inertia, viscous drag and gravity. It is precisely this balance
that gives rise to the Saint–Venant equations to be discussed in Chap. 7. To see this
balance in (4.13), we take the transformations, X = εX̄, T = εT̄ and V = ε−1V̄ ,
followed by X̄ = κ ′ ¯̄X, T̄ = κ ′ ¯̄T and V̄ = (1/κ ′) ¯̄V so that (4.14) becomes

3Re

[
1

κ ′
∂ ¯̄T +

1

κ ′
∂ ¯̄X
(
u2)+ 1

κ ′
∂y(u

¯̄V )

]
= 1+ ∂yyu+ We

κ ′3
∂ ¯̄X ¯̄X ¯̄Xh+O

(
ε2), (4.15)

where κ ′ is the new compression factor. Balancing inertia with gravity and vis-
cous drag in (4.15) then gives

κ ′ = Re,

while the order of magnitude of the surface tension term on the right hand side
of (4.15) is We/κ ′3. With δ > 1 then we have Re > We1/3 or We/κ ′3 < 1 and the
role of surface tension diminishes as δ becomes large.

• Back: At the back of the wave we balance inertia with gravity and viscous drag:

εRe

Xb
∼ 1 ⇒ Xb ∼ εRe ⇒ X̄b ∼ Re ⇒ ¯̄Xb ∼ δ,
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Fig. 4.4 Single-hump solitary wave solutions of the first-order model to be developed in Chap. 6
in their moving frame ξ for increasing δ: δ = 0.2,0.3 (both as solid line), δ = 0.7 (dotted line),
δ = 1 (dashed line) and δ = 1.5 (dotted–dashed line). The profiles for δ � 0.3 are nearly indistin-
guishable. They are also hardly visible, as they correspond to very small deviations from the flat
film thickness 1 (they can be seen clearly in Fig. 4.6 where the film thickness and moving coordi-
nate are rescaled appropriately) but are topologically similar to the profile for δ = 1, a consequence
of the absence of scales separation between the back and front of the waves for δ � 1. Separation
of scales occurs only for δ > 1

where the subscript b is used to denote “back.” Hence, the upstream tail of the
wave scales as δ so that as δ increases from 1 the wave is characterized by a long
scale at the back (∼ δ) followed by a short one at the front (∼ 1), i.e., the wave
has a long tail followed by a steep front (the tail is long relatively to the front).
The order of magnitude of surface tension in this regime is:

ε3We

X3
b

∼ We

X̄3
b

∼ We

κ3 ¯̄X3

b

∼ 1

¯̄X3

b

∼ 1

δ3
.

For δ ∼ 1, surface tension balances all forces at the back (as a matter of fact all
forces balance throughout a solitary pulse in this case, as we have seen earlier),
but as δ increases from 1 the surface tension force decreases at the back.

Having determined the characteristic length scales of the front and back of the
wave, the corresponding slope ∂xh in these regions in terms of δ can be easily
estimated:

∂xh= ε∂Xh= ε∂X̄h
1

ε
= ∂ ¯̄Xh

1

κ
∼ 1

κ ¯̄X
∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

κ ¯̄Xf

∼ 1

κ
∼ ε2/3; front

1

κ ¯̄Xb

∼ 1

κδ
∼ ε2/3

δ
; back.

The above observations indicate an asymmetry between the front and back for
large-amplitude solitary waves for δ > 1 as confirmed in Fig. 4.4. The figure indi-
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cates a clear separation of scales between front and back for δ > 1. The maximum
slope does occur at the front consistent with (4.9). For δ = 1 there is no separation
of scales, the wave is almost symmetric and steep throughout.

• Radiation oscillations: The oscillations at the front correspond to a balance be-
tween inertia and surface tension:

εRe

Xo
∼ ε3We

X3
o

⇒ X2
o ∼

ε2We

Re
⇒ X̄o ∼

√
We

Re
⇒ ¯̄Xo ∼ δ−1/2.

Hence, as δ increases from 1, the wavelength of the oscillations at the front de-
creases as demonstrated in Fig. 4.4. The order of magnitude of the inertia and
surface tension, terms in this regime is

εRe

Xo
∼ Re

X̄o
∼ Re

κ ¯̄Xo

∼ δ3/2.

Therefore, for δ > 1 inertia and surface tension dominate over gravity and viscous
drag in the oscillatory region in front of a large-amplitude solitary pulse.

4.7.2 (ii) Small-Amplitude Waves

We now examine the case of small Re, for simplicity Re = O(1), i.e., small δ. In
this region the waves have small amplitude.

Small inertia leads to small-amplitude solitary pulses, i.e., a small deflection from
the Nusselt flat film flow. As a matter of fact, in this regime the character of the flow
should not be very different from the Nusselt flat film solution, where the dominant
effects are gravity and viscous drag. Therefore, gravity and viscous drag balance to
leading order while inertia and surface tension are higher-order effects. However,
a permanent solitary wave requires the balance of inertia and surface tension:

εRe

X
∼ ε3We

X3
⇒ ¯̄X ∼ δ−1/2,

while the order of magnitude of inertia and surface tension is

εRe

X
∼ δ3/2 � 1,

thus confirming that indeed inertia and surface tension are higher-order effects. Both
front and back of a solitary wave now are of the same order without any separation
of scales between the two, and the hump appears to be almost symmetric, as shown
in Fig. 4.4. In terms of the X variable and with Re∼ 1, We∼ ε−2, the above balance
between inertia and surface tension yields X ∼ 1.

These scaling arguments reveal that the Shkadov scaling is strictly speaking rel-
evant for large-amplitude solitary waves, i.e., for δ = O(1). It is precisely for this
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reason that the momentum equation (4.11a) might lead one to the conclusion that
for small-amplitude solitary waves, i.e., for δ small, surface tension balances grav-
ity and viscous drag. But clearly it is a higher-order effect as is also evident from
the momentum equation (4.6a) prior to the introduction of the Shkadov scaling. Fi-
nally, we note that the computations in Fig. 4.4 indicate that for small δ all profiles
are nearly indistinguishable, which must be due to the convergence of the first-
order boundary layer approximation at small δ to the KS equation defined in Ap-
pendix C.5; this equation is free of parameters and hence it must have a single
solitary-wave solution.

4.7.3 Behavior of the Eigenvalues of the Flat Film Solution
of a Linearized Averaged Model

The above orders of magnitude estimates of the relative importance of the various
physical effects in different regions of a solitary pulse can also be confirmed by
examining the behavior of the eigenvalues of a linearized averaged model around
the flat film fixed point. These terms are explained in detail in Chap. 7. Consider,
e.g., the first-order model used in the computation of Fig. 4.4. For the purposes of
this section it is sufficient to know that linearization of this model about its “fixed
point,” the flat film solution, gives a three-dimensional dynamical system, i.e. a sys-
tem of three first-order ordinary differential equations, whose spectrum is described
by a cubic characteristic equation. This equation has three roots, one real and posi-
tive, and a complex conjugate pair with negative real part. In the three-dimensional
phase space then associated with the dynamical system, a solitary wave represents
an orbit that departs from the fixed point along a one-dimensional “unstable man-
ifold” spanned by the eigenvector associated with the real eigenvalue and returns
back to the fixed point in an oscillatory fashion on the two-dimensional “stable
manifold” spanned by the eigenvectors associated with the complex eigenvalues.
Figure 4.5 depicts the real eigenvalue λ1 corresponding to the unstable manifold
and the imaginary part of the complex conjugate eigenvalues λ2,3 associated with
the stable manifold for the single-hump solitary-wave solutions of the first-order
model as a function of δ.

The quantity 1/λ1 provides a measure of the characteristic scale of the up-
stream tail of a solitary wave. In fact, we can define ltail = 1/λ1. On the other hand
1/�(λ2,3) is a measure of the characteristic scale of the radiation oscillations in front
of the solitary hump. The figure indicates that �(λ2,3) varies as δ1/2 for both δ � 1
and δ > 1 so that the characteristic scale of the radiation oscillations varies as δ−1/2.
This scale increases as δ decreases from 1 and decreases as δ increases from 1.

The figure also indicates that for δ � 1, λ1 varies as δ1/2 so that ltail varies as
δ−1/2, which is the same with the characteristic scale of the radiation oscillations
at the front, a direct consequence of the absence of separation of scales between
the front and back of the wave for δ � 1 as concluded earlier. On the other hand,
for δ > 1, λ1 varies like 1/δ so that ltail varies like δ and increases as δ increases.
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Fig. 4.5 Real eigenvalue λ1
(bottom solid line)
corresponding to the unstable
manifold and imaginary part
of the complex conjugate
eigenvalues λ2,3 (top solid
line) associated with the
stable manifold for the
single-hump solitary-wave
solutions of the first-order
model as a function of δ

Fig. 4.6 Single-hump solitary-wave deviation height (difference from flat film) normalized with
deviation maximum amplitude in its moving frame ξ normalized with the length tail, ltail = 1/λ1,
as δ increases, for the profiles in Fig. 4.4

Also, since the sum of the three eigenvalues vanishes (again details will be given
in Chap. 7), �(λ2,3) = −λ1/2 so that the characteristic length of the envelope of
the radiation oscillations at the front varies like the scale ltail at the back and in-
creases as δ increases, whereas the characteristic length of the radiation oscillations
decreases (due to the δ−1/2-dependence). As a consequence, the number of radiation
oscillations increases as δ increases.

Finally, Fig. 4.6 compares the deviation from 1 of the solitary-wave height of the
profiles in Fig. 4.4 rescaled with the deviation from 1 of the maximum amplitude
as a function of the moving coordinate ξ rescaled with the length of the upstream
tail, ltail = 1/λ1. The figure contrasts directly the back and front of the different
profiles as δ increases. The profiles are nearly indistinguishable for δ � 0.3 due to
the convergence of small δ to the KS equation as pointed out earlier. For δ > 1 an
asymmetry between the front and back of the waves appears but the envelope of the
radiation oscillations at the front is still almost symmetric to the back of the wave.
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(This is because the real part of the eigenvalues of the stable manifold is equal to
half the real eigenvalue of the unstable manifold, so that the characteristic length of
the envelope of the radiation oscillations at the front varies like the scale ltail at the
back, as discussed above). However, a large number of oscillations (corresponding
to a balance of inertia and surface tension) is now visible.

4.8 Cross-stream Inertia

4.8.1 On the Order of Magnitude of Cross-stream Inertia

Since the order of magnitude of the slow streamwise variable X changes from O(1)
throughout a solitary pulse in case (ii)/small-amplitude waves for small δ to O(ε1/3)

throughout a solitary pulse in case (i)/large-amplitude waves for δ = O(1) so that
the order of magnitude of streamwise inertia also changes, it is essential that we
check the order of magnitude of cross-stream inertia that has been neglected in our
boundary layer approximation.

Let us rewrite the cross-stream momentum equation (4.2c) for a two-dimensional
flow on a vertical wall in terms of the variables X,T :

3ε2Re(∂T v+ u∂Xv + v∂yv)=−∂yp+ ε∂yyv. (4.16)

An important step in the derivation of the second-order boundary layer equations
in Sect. 4.1 was to neglect cross-stream inertia in (4.16), which is of O(ε2Rev/X)

(due to the Shkadov scaling, v = (1/κ)V , v∂yv� ∂T v ∼ u∂Xv) compared to the
ε-viscous term of O(εv) or:

ε2Rev

X
� εv ⇒ εRe

X
� 1. (4.17)

This condition is satisfied for case (ii) with Re=O(1):

ε2Rev

X
∼ ε2Rev ∼ ε2v� εv.

However, for case (i) with Re = O(ε−2/3), (4.17) is not satisfied, since now we
require εRe/X ∼ 1. On the other hand, for the first-order boundary layer equations
where both cross-stream inertia and ε-viscous term of the y-momentum equation
are neglected, (4.17) is not required.

The contribution of the left hand side of (4.16), denoted as CSI (cross-stream-
inertia) in the following, to the pressure distribution obtained from this equation is
3ε2Re

∫ h
y

CSIdy, which when substituted into the streamwise momentum equation

becomes 3ε3Re∂x
∫ h
y

CSIdy. (It is straightforward to confirm that this last term, of

O(ε3Rev/X2), is negligible compared to the streamwise inertia, surface tension and
hydrostatic head terms of the streamwise momentum equation, with the exception of
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course of the viscous diffusive terms as we have just shown.) The only way then to
rigorously justify the neglect of cross-stream inertia for large Re is for y very close
to h, i.e., close to the interface. This then would necessarily restrict the region of
validity of the second-order boundary layer equations close to the interface for large
Re (after all the Shkadov scaling and all scaling arguments given earlier are centered
on the interface of a solitary pulse), but these would then raise the question of valid-
ity of the second-order models obtained in Chap. 6 from averaging the second-order
boundary layer equations across the film, i.e., from y = 0 to y = h. Nevertheless,
as we shall see in the next section, in the linear regime energy arguments can be
used to justify neglecting the contribution of

∫ h
y

CSIdy. In the nonlinear regime the
justification is made a posteriori, via comparison of the pressure distribution across
the film obtained from the boundary layer equations with that obtained from DNS.

4.8.2 On the Region of Validity of the Boundary Layer
Approximation

As emphasized earlier, the key assumption leading to the boundary layer equations
is the neglect of the cross-stream inertia effects. It is useful at this point to outline
the conditions on Re for which this is the case. As before, with the exception of
We=O(ε−2), all other parameters are taken of O(1).

Appendix D.2 concludes that for the second-order boundary layer equations we
must have εRe� 1, which automatically ensures that Re�We for the cross-stream
inertia to be negligible compared to surface tension, and Re� ε2. For the first-order
boundary layer equations we must have εRe at most of O(1) (which automatically
satisfies the condition Re � We) and Re � ε. As noted earlier, from the x compo-
nent of the momentum equation in terms of the Shkadov scaling in (4.11a), δ must
be at most of O(1) so that inertia never dominates the other terms in the equation.
With δ ∼ Re/We1/3 ∼ ε2/3Re at most of O(1), Re must be at most of O(ε−2/3),
which then automatically satisfies the condition εRe � 1 (which in turn automati-
cally ensures Re�We) for the second-order boundary layer equations. Re at most
of O(ε−2/3) also satisfies automatically the condition εRe at most of O(1) (which
again automatically ensures Re�We) for the first-order boundary layer equations.

Interestingly, the upper bound on Re is satisfied automatically by the condition
δ at most of O(1) even when the order of magnitude assignment We = O(ε−2) is
relaxed. Appendix D.2 concludes that for the second-order boundary layer equations
we must have Re � min{We, ε−1}, Re � ε2 and We � 1, We at most of O(ε−2).
The condition δ at most of O(1) translates to Re at most of O(We1/3). Consider two
cases: (i) We � ε−1 so that min{We, ε−1} = We and Re � We. With Re at most of
O(We1/3) we must also have Re�We since We1/3 �We due to We� 1; (ii) We�
ε−1 so that min{We, ε−1} = ε−1 and Re � ε−1. With Re at most of O(We1/3) we
also have We1/3 � ε−1 since We is at most of O(ε−2) and ε−2/3 � ε−1.

In all cases, therefore, δ at most of O(1) ensures that the upper bound on Re re-
quired for the validity of the boundary layer equations is satisfied. This upper bound
in turn ensures that cross-stream inertia is negligible compared to both surface
tension (for both the first- and second-order boundary layer equations) and the
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ε-viscous term in the y momentum equation (for the second-order boundary layer
equations). Hence, the size of δ is crucial for the validity of the boundary layer
equations. Let us leave aside for the time being the additional complication of the
cross-stream inertia terms being of the same order of magnitude with the ε-viscous
term in the y momentum equation for the second-order boundary layer approxima-
tion in the case of large-amplitude solitary pulses obtained in the region of large Re
(case (i) in Sect. 4.7).

The condition δ at most of O(1) can be violated for sufficiently large Re. In fact,
for a given liquid and inclination angle, i.e., for a given Kapitza number, the Weber
number decreases when the Reynolds number increases, as can be seen from their
definitions (2.39) and (2.37), respectively, so that δ written below in terms of the
viscous-gravity scaling,

δ = 3Re

We1/3
= (3Re)11/9

Γ 1/3
, (4.18a)

increases with Re. Of interest is also the size of the product ηδ = 3Re/We since
Re � We ensures that surface tension dominates over cross-stream inertia (Ap-
pendix D.2). Clearly, the condition δ at most of O(1) automatically ensures δη small
since η is small. This is consistent with the above observation that δ at most of O(1)
ensures that the upper bound on Re required for the validity of the boundary layer
equations is satisfied. For large δ, the condition ηδ� 1 might not be satisfied auto-
matically. Let us also express the product ηδ in terms of the viscous-gravity scaling,

ηδ = 3Re

We
= (3Re)5/3

Γ
, (4.18b)

which also increases with Re but less rapidly compared to δ.
In situations now where Re is sufficiently large so that the ratio Re/We ∼ ηδ is

no longer small, e.g., ηδ ∼ 1, cross-stream inertia effects are no longer negligible
compared to surface tension. This automatically makes δ large, e.g., ηδ ∼ 1 leads to
Re∼We and δ ∼We2/3, which in turn demands that not only cross-stream inertia is
not negligible compared to surface tension, but also compared to the ε-viscous term
in the y momentum equation.

This raises the question of validity of the boundary layer assumption when the
condition δ at most of O(1) is violated and hence of the models derived from this
assumption when this condition is violated, such as the Kapitza–Shkadov equations
and the weighted residuals models.

Figure 4.7 compares the neutral stability curves and the temporal growth rates
obtained from the Orr–Sommerfeld eigenvalue problem to the corresponding lin-
ear stability problem obtained from the linearized second-order boundary layer
equations ((4.7) together with (3.22b) and the boundary conditions (3.22c)–(3.22f),
(3.22h), (3.22i)). f is the “film-forcing frequency” at the inlet and fc is the “cut-
off frequency” beyond which the film remains flat. (Above the cut-off frequency
the film remains flat—details are given in Sect. 7.1.1. Film-forcing corresponds to
“open flow conditions”—details are given in Sect. 5.3.1.) Parameter values are cho-
sen to correspond to a glycerin–water liquid mixture (ν = 6.27× 10−6 m2 s−1 and
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Fig. 4.7 Comparison of Orr–Sommerfeld analysis (solid lines) and eigenvalue problem obtained
from the second-order boundary layer equations (dashed lines); (a) cut-off frequency as a func-
tion of the Reynolds number; (b) temporal growth rate as a function of the forcing frequency at
Re= 100,200,300, for Γ = 526 and Ct= 8.92

σ/ρ = 62.6× 10−6 m3 s−2) and the slope β = 6.4° of the experiments reported in
[168] for Γ = 526. The Orr–Sommerfeld eigenvalue problem was solved by con-
tinuation starting with the zero-wavenumber solution using the software AUTO-07P

(see Appendix F.1).
For Γ = 526, the product ηδ ∼ 1 corresponds to Re ∼ 14 and therefore cross-

stream inertia terms cannot be a priori neglected when compared to surface tension
effects. At the same time, with Γ = 526 and Re= 14, from (4.18a) we have δ ∼ 12
and hence cross-stream inertia cannot only be a priori neglected compared to sur-
face tension but also compared to the viscous term of the y momentum equation.
Yet, results from the linearized boundary layer equations agree well with the re-
sults of Orr–Sommerfeld analysis up to rather high Reynolds numbers (∼300). This
indicates that, at least in the linear regime, the cross-stream inertia effects do not
contribute to the instability. A plausible explanation for this can be obtained from
energy arguments (see Sect. 3.6): The dominant contribution to the kinetic energy
of the perturbation arises from the work done by the shear stress perturbation at the
free surface. The instability mechanism resulting from inertia is directly associated
with the vorticity perturbation relative to the surface displacement.

Consider for instance, the pressure distribution obtained by integrating the y

component of the momentum equation (4.2c) across the film. In the isothermal case,
p = 3Re

∫ h
y
(Dv/Dt) dy + [∂yv + ∂yv|h] +Ct(h− y)−We∂xxh, where ε has been

scaled away. The contribution of the advection of the cross-stream velocity v by the
flow is important only in the bulk far from the interface, i.e.,

∫ h
y
Dv/Dt dy con-

tributes only for 0 < y � h and not close to the interface. Since the transfer of
energy from the mean flow to the perturbation is weak in the bulk region, this may
explain the observed agreement of the curves in Fig. 4.7.

As also emphasized in Sect. 4.1, DNS studies in the nonlinear regime have shown
small deviations of the pressure distribution across the film [99, 176, 232]. In fact,
deviations were noticeable only for strong free-surface deformations, e.g., in the
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case of solitary waves of large amplitude, and they occur mainly at the front of the
primary solitary hump (see Fig. 4.1). This suggests that the pressure in the film is
well approximated by p ≈ Ct(h−y)−We∂xxh so that the cross-stream inertia terms
have little effect on the waves, even though, e.g., ηδ = 2.1 for the given parameter
values (see (4.18b)). As noted in Sect. 4.1, with the exception of the hydrostatic head
in the direction perpendicular to the wall, there is no mechanism that can modify the
pressure distribution across the film, much like with boundary layers in aerodynam-
ics. Hence, while the contribution of the cross-stream inertia terms 3Re

∫ h
y
(Dv/

Dt) dy in the second-order boundary layer equations appears to be of the same or-
der as the viscous term of the y momentum equation (for a large-amplitude solitary
wave in the region of large Re (case (i) in Sect. 4.7) due to the lengthscale X ∼ ε1/3

of the wave in this regime), the cross-stream inertia effects have a small influence in
both linear and nonlinear regimes.

Therefore, we may conclude that even though the conditions δ at most of O(1)
and ηδ � 1 can be violated, and even though cross-stream inertia in the second-
order boundary layer equations appears to be as important as the viscous term in
the y momentum equation for large Re, the boundary layer equations preserve the
structure of the Navier–Stokes and Fourier equations (with the exception of course
of the elimination of the pressure) and are accurate outside their strict range of
validity. In fact, they can be applied to a much wider range of parameter values than
what could be expected a priori.

4.9 Reduction of the Boundary Layer Equations

Although the pressure has been eliminated, the second-order boundary layer equa-
tions have the same dimensionality as the full problem and hence do not constitute a
drastic simplification. The complexity of the second-order boundary layer equations
also makes them difficult to analyze. For instance, the search of nonlinear solutions
of these equations requires elaborate numerical techniques to track the film inter-
face. Several authors have developed such numerical schemes to simulate the time
evolution of the local film thickness (see, e.g., [44]) but these full-scale computa-
tions are difficult to implement and time consuming. It is hence appropriate to obtain
models of reduced dimensionality that also retain the essential dynamic character-
istics of the full equations.

Such models are based on the method of weighted residuals and will be devel-
oped in Chap. 6. In these models, the dependence of the cross-stream y-coordinate
is eliminated, a consequence of the strong “in-depth coherence” imposed by viscous
diffusion in the y direction for both momentum and energy equations. The result is
systems of equations for the evolution in space (x, z) and time t of the main physical
quantities such as the film thickness h, the local flow rates q and p in the stream-
wise and spanwise directions, respectively, and the interfacial temperature θ . These
equations reveal the existence of two distinct regimes for the velocity of solitary
waves as a function of δ, discussed in the following section.
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Fig. 4.8 Velocity c,
amplitude hmax and length of
the upstream tail, ltail , of
single-hump solitary waves
versus the reduced Reynolds
number δ, for an isothermal
film flowing down a vertical
wall (ζ = 0), obtained with
the simplified second-order
model (to be derived in
Chap. 6). For δ < 1,
ltail ∝ δ−1/2 is the
characteristic scale of both
back and front of the waves

4.9.1 Drag-Gravity and Drag-Inertia Regimes

Figure 4.8 offers a plot of the speed c and the maximum amplitude hmax of single-
hump solitary waves in their moving frame as a function of the reduced Reynolds
number δ for an isothermal film falling down a vertical wall. The figure shows a
steep increase of both speed and amplitude of the waves at δ � 1,3 indicating the
presence of two different regimes, which following Ooshida [196] are named as:

• The drag-gravity regime, where the component of gravity parallel to the flow, is
mainly balanced by the viscous drag so that the character of the flow is close
to that of the Nusselt flat film solution, with both inertia and surface tension
playing effectively only a “perturbative” role throughout the wave. Hence, the
cross-stream velocity distribution is very similar to the semiparabolic profile of
the Nusselt flat film solution. In this regime both the back and front of the waves
have the same length scales, X ∼ 1, without any separation between the two (see
Sect. 4.7.2).

To obtain the dependence of the characteristic scale of the wave in terms of
δ we simply balance in (4.11a) the two small effects, namely inertia ∝ δ∂x and

3Most interestingly, the value δ � 1 is close to Kapitza’s prediction of the threshold δc = 2.093
for the occurrence of waves on a vertical wall (linear instability threshold) [140]. Even though his
analysis was in error as pointed out in the Introduction—the threshold actually being δc = 0 for a
vertical wall as shown in Chap. 3—it was “supported” by his own experimental observations. In
fact, below the sharp transition in speed (and amplitude) of the waves between the drag-gravity
and drag-inertia regimes, the amplitude of the waves is so small that they are difficult to detect
experimentally, and usually in practice the waves become visible only above the value predicted
by Kapitza (see Fig. 4.8).
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surface tension ∝ ∂xxx , which gives the scale ∝ δ−1/2 as shown in Sect. 4.7 for
both front and back. Hence the upstream tail at the back has the scale ltail ∝ δ−1/2,
consistent with the computation in Fig. 4.8. This estimate is in line with the cut-
off wavenumber kc ∝ √

Re/We for a vertical wall under isothermal conditions;
see (3.35): with x→ x/κ , i.e., by inverting (4.10) in order to return to the original
x variable utilized in Chap. 3, and with (4.8) and (4.12), ∂x ∝ δ1/2 becomes ∂x ∝
(1/κ)δ1/2 =√

Re/We ∝ kc . Since kc ∼ ε, the characteristic length scale of both
front and back is∼ ε−1, in agreement with the scaling arguments in Sect. 4.7. The
estimate ∂x ∝ kc above also implies that the drag-gravity regime occurs close
to the linear instability threshold, i.e., close to the onset of the waves resulting
from the primary instability of the Nusselt flat film solution, consistent with our
observation that in this regime inertia and surface tension are corrections to the
Nusselt flow.

• The drag-inertia regime. Inertia and surface tension are no longer corrections to
the Nusselt flow. This is case (i) analyzed in Sect. 4.7. As demonstrated there,
for δ > 1 there is a separation of scales between the front and the back of the
wave with a steep front where gravity, viscous drag and surface tension balance
and a long tail where gravity, viscous drag and inertia balance. From (4.11a)
this balance is simply δ∂x ∝ 1, yielding ltail ∝ δ as first shown in Sect. 4.7 and
consistent with the computation in Fig. 4.8. In such a regime, the basic assumption
of considering inertia as a perturbation is clearly not true and the flow is radically
different from the Nusselt flat film flow.

As noted above, the transition between the two regimes in Fig. 4.8 occurs at
δ � 1, a universal result valid for all liquids. This is actually another advantage
of the Shkadov scaling in addition to those discussed in Sect. 4.6, if not the main
one: the Shkadov parameter δ is the relevant parameter for making the distinction
between the drag-gravity and drag-inertia regimes. The key of course to allow the
capture of the transition between the two regimes accurately is the development of
models valid in both regimes, precisely the subject of Chap. 6.

4.9.2 Hierarchy of Models

The different levels of modeling approaches/simplifications of the Navier–Stokes
and Fourier equations, depending on the flow regime being considered, are summa-
rized in Fig. 4.9. We now discuss the different levels of approximations.

• Low Reynolds number flow: Re=O(1), δ� 1.
Indeed, from δ ∼ Re/κ ∼ Re/We1/3 ∼ ε2/3Re with We=O(ε−2), δ� 1. This

is the drag-gravity regime. A gradient expansion of the governing equations leads
to a single evolution equation for the film thickness h. This is the long-wave
theory that will be developed in Chap. 5. The theory is based on slaving of the
dynamics of the flow to its kinematics, i.e., all variables are slaved to the film
thickness h.
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Fig. 4.9 Hierarchy of approximations from the Navier–Stokes and Fourier equations. For single
surface equations, Re=O(1) represents a typical order of magnitude assignment in thin-film flow
studies. The boundary layer equations are actually valid beyond the strict order of magnitude as-
signment, δ at most of O(1). But at the same time δ should not be large since in this region the
film flow behaves more like a “river flow”

It was first introduced by Benney [21] for an isothermal film and later on ex-
tended by other authors to include a variety of other physical effects such as
heating, surface active agents, evaporation, chemical reactions and topographical
forcing as well as combinations of these (see, e.g., [137, 201]). The success of
this approach is mainly due its simplicity. It is also relatively straightforward to
associate each term of the evolution equation to a specific physical mechanism,
such as gravity, inertia, surface tension, hydrostatic pressure and Marangoni ef-
fect, and hence to easily ascertain the influence of each physical effect on the
dynamics of the film. We note that the assumption Re=O(1) represents a typical
order of magnitude assignment in thin-film flow studies.

• Moderate Reynolds number flow: εRe� 1 and Re� ε2, δ at most of O(1).
Recall that for the second-order boundary layer equations we have εRe � 1

and Re � ε2 (while for the first-order ones, εRe at most of O(1) and Re � ε).
At the same time, the x component of the momentum equation of the boundary
layer approximation in terms of the Shkadov scaling imposes that δ must be at
most of O(1), or with δ ∼ Re/κ ∼ Re/We1/3 ∼ ε2/3Re, where We=O(ε−2), Re
is at most of O(ε−2/3) (which automatically satisfies the condition εRe � 1 for
the second-order boundary layer equations).

This is the drag-inertia regime, which is accurately described by the boundary
layer equations. In this regime it is still possible to reduce by one the number
of dimensions of the boundary layer equations while keeping a model valid for
δ at most of O(1). This is achieved by integrating the boundary layer equations
across the layer following the Kármán–Pohlhausen averaging method in bound-
ary layer theory in aerodynamics. As mentioned in the Introduction, in the context
of the falling film problem, this method was introduced by Kapitza and Shkadov
[140, 248]. The Kapitza–Shkadov’s approach was further improved by Ruyer–
Quil and Manneville [226–228] who combined the gradient expansion with a
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high order, weighted residuals approach. The main advantage of this methodol-
ogy is that the resulting models agree with the exact linear behavior obtained
from Orr–Sommerfeld and they also describe properly the nonlinear dynamics in
a wide range of parameter values. This methodology will be discussed in detail
in Chap. 6 and used in subsequent chapters.

In the case of high Reynolds number flow, εRe� 1, δ� 1, inertia effects become
predominant and the flow is turbulent. The film now is so thick that surface tension
should play a secondary role. The boundary layer equations fail to describe the wave
dynamics in this regime and full-scale Navier–Stokes and Fourier equations must be
considered. This regime is beyond the scope of this monograph.

Figure 4.9 also suggests that each level of simplification can be considered at first
or second order:

• The O(ε)-models, in which the viscous dispersion effects are not included or
equivalently η= 0.

• The O(ε2)-models, in which the viscous dispersion effects are included or equiv-
alently η �= 0.

Finally, it should be emphasized that in the different levels of approximations we
have implicitly assumed that εPe is at most of O(1), the maximum order on the right
hand side of the energy equation (4.2e) (or in terms of the Shkadov scaling, δPr is
at most of O(1)). When εPe is large, the coupling between the velocity and the
temperature fields may be strong enough to violate the approximation of small tem-
perature gradients, ∂xT , ∂zT ∼ ε; for instance, in this case thermal boundary layers
might develop at the front stagnation point of a solitary pulse [279]. This limitation
will be discussed in Chap. 9 when we address the dynamics of nonisothermal films.

4.10 Scalings: Three Sets of Parameters

Three scalings and corresponding dimensionless parameters have been introduced.
They are formally equivalent although each of them has some advantages and draw-
backs which have been discussed in previous chapters and are summarized below.
For simplicity we focus on the ST case:

• Viscous-gravity scaling: {hN,Ct,Γ,Ma,Bi,Pr}.
This scaling expresses the balance between viscosity and gravity and is based

on the length scale lν and the time scale tν . The Reynolds number appears im-
plicitly through hN, Re = h3

N/3 (see (2.37)). Hence, for a fixed gas–liquid–solid
system and β , the equations are effectively free of parameters, which is rather
convenient, and the only free parameter is the Reynolds number (through the inlet
condition), which is quite useful for the physical interpretation of the results and
comparisons with experiments, where the film thickness is typically modified by
changing the flow rate. In addition to the flow rate, any other physical parameters
with which one might control an experiment, i.e., the temperature difference be-
tween the wall and the ambient gas phase, appears in just a single dimensionless
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group, also rather convenient from the point of view of physical interpretation of
the results. The viscous-gravity scaling, however, has the drawback that the Nus-
selt flat film thickness hN appears in the boundary condition h→ hN far from a
local surface deformation, such as a solitary hump, which also corresponds to the
inlet boundary condition. Hence, for numerical purposes there is a need for an-
other scaling in which the film thickness is scaled out of the boundary conditions
and the Nusselt flat film solution is fixed, thus allowing useful comparisons to be
made.

• Nusselt scaling: {Re,Ct,We,M,B,Pr}.
This scaling eliminates the drawback of the viscous-gravity scaling just dis-

cussed. It is based on hN and it coincides with the viscous-gravity scaling for a
film of thickness h̄N equal to lν , i.e., for hN = 1. The Nusselt scaling has the ad-
vantage that it explicitly scales out hN from the equations of motion and energy
and wall and free-surface boundary conditions. However, its drawback is that all
parameters depend on the flow rate. Nevertheless, the parametrization of the Nus-
selt groups (2.35)–(2.41) is in terms of hN and the parameters obtained from the
viscous-gravity scaling, so that the Nusselt scaling distinguishes clearly between
the flow and the properties of the gas–liquid–solid system and β .

• Shkadov scaling: {δ, ζ, η,M,B,Pr}.
As far as the study of nonlinear waves is concerned, this scaling locates the

transition between the drag-gravity and drag-inertia regimes at δ � 1. In addition,
the Shkadov scaling makes apparent the balance of all forces—i.e., inertia, grav-
ity, viscosity and surface tension—necessary to sustain strongly nonlinear waves.
The reason why this balance is not apparent in the Navier–Stokes equations is be-
cause the surface tension effect necessary for the balance is in the normal stress
condition and is coupled to the Navier–Stokes equations through the pressure and
velocity fields. This is precisely the reason why the Shkadov scaling is only de-
fined in the context of the boundary layer approximation. At the same time, for
the generic problem of an isothermal film (M = 0) falling down a vertical wall
(ζ = 0) and by neglecting the viscous dispersion effects (η = 0), the Shkadov
scaling brings into the single parameter δ all the effects crucial for the existence
of small- or large-amplitude solitary waves. Further, it gathers all second-order
viscous and thermal effects in the boundary layer equations under the parame-
ter η. Hence, the truncation of these equations at first order reduces the number
of independent parameters by one. Finally, a technical advantage of this scaling is
that its parameters retain values close to unity in the region of moderate Reynolds
numbers and for large Weber numbers, which is rather useful from the point of
view of convergence of numerical schemes.

The Nusselt scaling is used for full Navier–Stokes and Fourier equations while
the Shkadov scaling is appropriate for the boundary layer equations and hence for
the averaged models to be developed from these equations in Chap. 6. The long-
wave theory developed in Chap. 5 is first given in terms of the Nusselt scaling, as is
often the case in the literature, and subsequently in terms of the Shkadov scaling.

Appendix D.3 summarizes the relations between the different sets of parameters
for the ST case.



Chapter 5
Methodologies for Low-Reynolds Number Flows

We outline the methodologies to model the dynamics of a falling film for low flow
rates, i.e., low Reynolds numbers, corresponding to the drag-gravity regime. The
classical modeling approach for such flows is the long-wave theory based on a gra-
dient expansion of the governing equations and wall and free-surface boundary con-
ditions with respect to a small parameter ε measuring the slow variations of the free
surface in time and space. The theory typically leads to a single evolution equation
for the film thickness, frequently referred to as the BE (Benney equation). Weakly
nonlinear expansions of this equation lead to different prototypes such as the KS
and the Kawahara equations. These are followed by an extensive study of the valid-
ity of the BE in the entire parameter space. It is shown that in certain regions of the
parameter space unbounded solutions occur. A Padé-like regularization method is
subsequently developed to cure this deviant behavior.

5.1 Long-Wave Theory
In the drag-gravity regime, neither inertia nor surface tension changes the Nusselt
flow structure significantly. Therefore, as long as the flow rate is low and in the
general framework of the strong surface tension limit, the slope of the interface
remains “smooth” at the scale of the film thickness h(x, t). This is the basis of
the gradient expansion defined in Sect. 4.1, which consists of the introduction of
a small parameter ε through the transformation (4.1), followed by an asymptotic
series expansion of all pertinent variables in powers of ε.

We then utilize the gradient expansion and seek the solution for the different
variables in the form

u= u(0) + εu(1) + ε2u(2) +O
(
ε3),

v = v(0) + εv(1) + ε2v(2) +O
(
ε3),

w =w(0) + εw(1) + ε2w(2) +O
(
ε3),

p = p(0) + εp(1) + ε2p(2) +O
(
ε3),

T = T (0) + εT (1) + ε2T (2) +O
(
ε3),

(5.1)
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where the zeroth-order solution should correspond to the base state solution as
shown below. Noteworthy is that time does not appear explicitly in (5.1). Instead, the
different fields in (5.1) depend on time through the dependence of the free surface
h on time, i.e., they are adiabatically slaved to h. This in turn is indicative of the
adiabatic elimination of the short-time dynamics necessary to establish the gravity-
viscosity balance. This balance occurs at the short viscous time scale, tvis = h̄2

N/ν,
so that the base flow is fully developed before it undergoes any instability (see also
Sect. 2.3). The first perturbations due to inertia are introduced at first-order in ε and
occur in the long inertia time scale, tine ∼ (h̄N/ε)/ūN.

Before we explore the long-wave theory, it is useful to recall the following points
from Sect. 4.1:

– The film parameter h̄N/l and ε are of the same order only for Re− Rec =O(1);
this point will be addressed in detail in Sect. 5.1.4. Much like with Chap. 4 we
can simply proceed with the perturbation expansion without assigning a relative
order between k and ε.

– The length scale l, or equivalently the wavenumber k = 2πh̄N/l of the perturba-
tions, is unknown a-priori and can only be obtained after the interface is actually
constructed by solving the problem.

To proceed we assume that with the exception of the Weber number all parame-
ters, Re,Pe,M,B,Bw,Ct, are of O(1). The Weber number is taken to be of O(ε−2),
corresponding to the strong surface tension limit. We then substitute (5.1) into the
system of equations (4.2). At leading order in ε, the system reduces to

∂yyu
(0) =−1, (5.2a)

∂yp
(0) =−Ct, (5.2b)

∂yyw
(0) = 0, (5.2c)

∂yyT
(0) = 0, (5.2d)

∂yv
(0) + ∂xu

(0) + ∂zw
(0) = 0, (5.2e)

at y = 0:

u(0) = v(0) =w(0) = 0, (5.2f)

ST: T (0) = 1 (5.2g)

or

HF: ∂yT
(0) −BwT

(0) =−1, (5.2h)

at y = h:

v(0) − u(0)∂xh−w(0)∂zh= ∂th, (5.2i)
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p(0) =−ε2We(∂xxh+ ∂zzh), (5.2j)

∂yu
(0) = 0, (5.2k)

∂yw
(0) = 0, (5.2l)

∂yT
(0) +BT (0) = 0, (5.2m)

whose solution reads

u(0) = h2ȳ

(
1− ȳ

2

)
, (5.3a)

v(0) =−h2 ȳ
2

2
∂xh, (5.3b)

w(0) = 0, (5.3c)

p(0) = Cth(1− ȳ)− ε2We(∂xxh+ ∂zzh), (5.3d)

ST: T (0) = 1+Bh(1− ȳ)

1+Bh
, (5.3e)

or

HF: T (0) = 1+Bh(1− ȳ)

B +Bw(1+Bh)
, (5.3f)

the Nusselt flat film flow and where the reduced coordinate ȳ = y/h has been intro-
duced. The zeroth-order approximations for the film surface temperature (at ȳ = 1),
which we will need later, are:

ST: θ(0) = 1

1+Bh
, (5.4a)

or

HF: θ(0) = 1

B +Bw(1+Bh)
. (5.4b)

We now turn to the kinematic boundary condition (4.2i) or its integral version1

∂th+ ∂xq + ∂zp = 0, (5.5)

where q = ∫ 1
0 udȳ and p = ∫ 1

0 wdȳ are the streamwise and spanwise components
of the flow rate. It is important to emphasize the role of this condition in the cal-
culation procedure as compared to the other equations. It acts effectively as some

1This equation is also obtained by integrating the continuity equation (4.2a) across the film, using
(4.2f) and (4.2i) as boundary conditions.
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type of “solvability condition” at each level of the expansion. As a matter of fact,
the solution for q and p (or equivalently u and w) at each level of the expansion is
a functional of h and its successive space and time derivatives, which are still not
related to each other. Once we obtain the solution for q and p (or equivalently u

and w) at a given order, we insert it in (5.5), which then becomes a constraint re-
lating h and its successive space and time derivatives or equivalently an evolution
equation for h. This equation is formally one order higher than the solution found.

At leading order, (5.2i) furnishes the following nontrivial relation,

∂th+ h2∂xh= 0, (5.6)

which describes the downwards propagation of waves driven by gravity at the film
surface to leading order. (Because the heat transfer and the mechanical equilibrium
of the flat film are decoupled to leading order, (5.6) does not involve the Marangoni
effect. This effect appears at first order in the tangential stress conditions (4.2k),
(4.2l).) Since there is no spanwise contribution at this order, the flow is purely two-
dimensional. The equation can be contrasted to the “Burgers equation” [299]:

∂th+ αh∂xh= υ∂xxh. (5.7)

Equation (5.6) has a nonlinear propagation term as in the Burgers equation, with
the difference that α = α(h) is not constant, but not a diffusive term as in the Burg-
ers equation. In fact, (5.6) can be viewed as a nonlinear wave equation with the
coefficient h2 of ∂xh playing the role of a nonlinear wave velocity.

However, the Burgers equation in the limit υ → 0 is known to produce shocks
and hence steep gradients incompatible with the long-wave assumption in our prob-
lem. This can be easily seen from the nonlinear wave velocity ∼ h2. Consider a
propagating wave solution of (5.6). Points with different heights travel with differ-
ent velocities, e.g., the crest of the wave travels faster than both the front and the
back of the wave. Eventually a shock will develop. The effect of “viscosity” υ in
the Burgers equation is then to smooth out the discontinuity leading to a finite shock
width. Similarly, in our case we need a mechanism to smooth out the discontinuity
appearing at leading order of the expansion. Continuing the expansion is thus neces-
sary for obtaining the required saturating terms. In the strong surface tension limit,
the dominant higher-order effects, which in the nonlinear regime should prevent the
waves from forming shocks and breaking (and in such a way so as to ensure the
validity of the long-wave assumption) are expected to arise from surface tension.
Although, the inclusion of surface tension cannot a priori guarantee that the free
surface will be well behaved in the nonlinear regime, we have no other choice really
but to proceed to the next order of the expansion.

At first-order we obtain the following system:

∂yyu
(1) = 3Re

(
∂tu

(0) + u(0)∂xu
(0) + v(0)∂yu

(0) +w(0)∂zu
(0))+ ∂xp

(0), (5.8a)

∂yp
(1) = ∂yyv

(0), (5.8b)

∂yyw
(1) = 3Re

(
∂tw

(0) + u(0)∂xw
(0) + v(0)∂yw

(0) +w(0)∂zw
(0))+ ∂zp

(0), (5.8c)
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∂yyT
(1) = 3Pe

(
∂tT

(0) + u(0)∂xT
(0) + v(0)∂yT

(0) +w(0)∂zT
(0)), (5.8d)

∂yv
(1) + ∂xu

(1) + ∂zw
(1) = 0, (5.8e)

at ȳ = 0:

u(1) = v(1) =w(1) = 0, (5.8f)

ST: T (1) = 0 (5.8g)

or

HF: ∂yT
(1) −BwT

(1) = 0, (5.8h)

at ȳ = 1:

v(1) − u(1)∂xh−w(1)∂zh= 0, (5.8i)

p(1) = 2
(
∂yv

(0) − ∂xh∂yu
(0) − ∂zh∂yw

(0)), (5.8j)

∂yu
(1) =−M(∂xT (0) + ∂xh∂yT

(0)), (5.8k)

∂yw
(1) =−M(∂zT (0) + ∂zh∂yT

(0)), (5.8l)

∂yT
(1) +BT (1) = 0. (5.8m)

The left hand sides of (5.8a)–(5.8e) and (5.2a)–(5.2m) are identical, and it turns
out that this happens to all orders in ε. As such, instead of using the kinematic con-
dition (5.2i), we could have used the standard Fredhölm alternative as suggested
in [290]. In short, the Fredhölm alternative states that in order to solve the differ-
ential equation LF = G with L a linear differential operator with a null space,
and hence to invert the singular operator L, the right hand side of the equation G

must have no components in the null space of the adjoint operator of L [96, 123].
This notion can be readily generalized to matrix-differential operators as is the case
here.

The solution of the system at first order reads:

u(1) = h2ȳ

(
1− ȳ

2

)[
ε2We(∂xxxh+ ∂xzzh)−Ct∂xh

]

−Mhȳ∂xθ
(0) + Reh5∂xh

(
ȳ4

8
− ȳ3

2
+ ȳ

)
, (5.9a)

w(1) = h2ȳ

(
1− ȳ

2

)[
ε2We(∂xxzh+ ∂zzzh)−Ct∂zh

]−Mhȳ∂zθ
(0),

(5.9b)

p(1) = − h∂xh(ȳ + 1), (5.9c)
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ST: T (1) = 3PeBh4∂xh

(1+Bh)2

[
−Bh

40
ȳ5 + 1+ 3Bh

24
ȳ4 − Bh

6
ȳ3

− 10−Bh(5+ 4Bh)

60(1+Bh)
ȳ

]
, (5.9d)

or

HF: T (1) = 3PeBBwh
4∂xh

[B +Bw(1+Bh)]2
[
−Bh

40
ȳ5 + 1+ 3Bh

24
ȳ4

− B

6

(
h− 1

Bw

)
ȳ3 − B

2Bw
ȳ2 +

(
ȳ + 1

Bwh

)

× 30B − 10Bw +Bh[5(4B +Bw)+ 4BBwh]
60[B +Bw(1+Bh)]

]
, (5.9e)

where the film surface temperature θ(0) = T (0)|ȳ=1 has been introduced (see (5.4a)–
(5.4b)). The first-order corrections of the surface temperature read:

ST: θ(1) = PeBh4∂xh(7Bh− 15)

40(1+Bh)3
(5.10a)

or

HF: θ(1) = PeBh3∂xh[60B − 20Bw +Bwh(35B − 15Bw + 7BBwh)]
40[B +Bw(1+Bh)]3 ,

(5.10b)

and the first-order contribution to the cross-stream velocity is found from the conti-
nuity equation, i.e., v(1) = − ∫ (∂xu(1) + ∂zw

(1)) dy, which is a fifth-order polyno-
mial in ȳ. To obtain the above solutions, the time-derivatives ∂th and ∂xth have been
replaced using the zeroth-order expression (5.6), i.e., ∂th = [∂th](0) + ε[∂th](1) ≡
−h2∂xh+O(ε), where the superscript indicates the order in the ε-expansion. This
rule also applies for ∂t θ(0) since θ(0) is slaved to the film thickness through (5.4a)–
(5.4b). To obtain (5.9a)–(5.9e) and (5.10a)–(5.10b) the second-order terms intro-
duced by [∂th](1) are dropped out and have to be included at next order (see
Sect. 5.1.2).

5.1.1 The Evolution Equation for the Film Thickness

Substituting now u(1), v(1), w(1) into the kinematic condition (5.8i) yields the first-
order evolution equation of the film thickness that in its full three-dimensional form
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reads:

∂th+ h2∂xh+ εRe
2

5
∂x
(
h6∂xh

)

+ ε∇xz ·
[
−Ct

h3

3
∇xzh−M

h2

2
∇xzθ(0) + ε2We

h3

3
∇xz∇2

xzh

]
= 0. (5.11)

The second term in this equation is the convective term due to mean flow, the third
term arises from inertia, the fourth term is due to the hydrostatic head in the direction
perpendicular to the wall, the fifth term is due to the Marangoni effect and the sixth
term contains the streamwise and spanwise curvature gradients associated with sur-
face tension. We note that instead of starting from the full Navier–Stokes and Fourier
equations and associated wall and free-surface boundary conditions, (5.11) can be
also obtained by a gradient expansion of the boundary layer equations, or even from
the averaged models that will be developed in Chap. 6 (which by construction they
yield the long-wave evolution equation). Note also that ε can be scaled out of (5.11)
much like we did with the boundary layer equations.

Equation (5.11) may be written in a “conservative form”2 as

∂th+∇xz · q= 0,

where q = (q,p) is the local flow rate vector. Let us now consider a two-
dimensional flow. The spanwise component of the flow rate then vanishes, i.e.,
p = 0. The streamwise component of the flow rate written first for the Burg-
ers equation (5.7) reads, q = (1/2)αh2 − ευ∂xh. Comparison with the evolution
equation (5.11) yields h-dependent coefficients in the form α(h) = (2/3)h and
υ(h)=−(2/5)Reh6+(1/3)Cth3−(1/2)MBh2/(1+Bh)2, where θ(0) from (5.4a)
has been used. Since υ(h) accounts for diffusive effects, its positive terms will be
stabilizing while its negative ones will be destabilizing. In addition to the terms per-
tinent to the Burgers equation, the flow rate q contains a higher order “diffusive”
term εβ∂xxxh with β = (1/3) ε2Weh3. This term will still be stabilizing if positive.
Based on this high-order Burgers equation prototype, we can easily ascertain the
role of the different terms in (5.11): The third term that originates from inertia is
responsible for the hydrodynamic instability (H-mode), the fourth one represents
the stabilizing effects of the hydrostatic pressure, the fifth one is responsible for the
thermocapillary instability (S-mode) and the last one accounts for the stabilizing
effect of surface tension.

Notice that the Marangoni effect and associated S-mode are captured through the
dependence of the flat film temperature at the free surface θ(0) on the film thickness

2The form refers to an arrangement of an equation or system of equations in the form

∂tH+∇ ·Q(H)=R(H),

where R(H) is a “source” term and Q(H) is the “flux” associated with the quantity H. The right
hand side of the above form should not involve any first-order spatial derivatives; these should be
contained in the flux term of the left hand side.
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in (5.4a)–(5.4b). As emphasized in Sect. 2.5, in the case of HF and for an insulated
wall (Bw → 0), the dependence of the flat film temperature at the free surface θ(0) on
the film thickness h is lost (see (5.4b)) and the long-wave S-mode vanishes (which
does not mean that the short-wave P-mode vanishes, but this mode is not captured
in the gradient expansion framework).

The two-dimensional version (∂z = 0) of (5.11) in isothermal conditions (M = 0)
has the form

∂th+ h2∂xh+ ε∂x

{
2

5
Reh6∂xh−Ct

h3

3
∂xh+ ε2We

h3

3
∂xxxh

}
= 0, (5.12)

an equation often called the BE (see Introduction). Though Benney [21] did de-
velop the systematic long-wave expansion procedure that we used here to obtain
(5.12), he omitted surface tension, which was included by Gjevik [102]. Even so,
the term “BE” is quite generic in thin film studies and is often used to designate
any long-wave evolution equation, either in two dimensions or three dimensions,
used to describe the dynamics of thin films in different settings, as, e.g., the case
with (5.11), which is the BE with the Marangoni effect (see, e.g., [128]).

The approach we have just outlined is known as long-wave theory. It is based on
an asymptotic reduction of the governing equations and boundary conditions that
convert the highly nonlinear boundary value problem that describes the evolution of
the film to a sequence of solvable perturbation problems. The final result is a sin-
gle nonlinear partial differential equation for the film thickness. Notice that unlike
the boundary layer equations that are also derived with the gradient expansion but
without overly restrictive stipulations on the orders of magnitude of the different
dimensionless groups, the long-wave theory requires certain orders of magnitude
assignments for the dimensionless groups.

For the sake of clarity and simplicity, we shall restrict the analysis for the remain-
der of this chapter to the ST case only.

5.1.2 Higher-Order Terms in the Gradient Expansion

For a two-dimensional flow (w = 0, ∂z = 0), it can be shown by iteration that at each
order n of the expansion the velocity field contribution u(n) can be written in the
form of a polynomial in y, h and its derivatives ∂mx h, where m =m(n) an integer.
It can also be shown that for n ≥ 2, the term of highest degree in y appearing in
u(n) has a power 4n and originates from the inertia interactions between the Nusselt
flow profile u(0) and its correction at order n− 1, u(n−1), via εn3Re(u(0)∂xu(n−1)+
v(n)∂yu

(0))= εn3Re(u(0)∂xu(n−1) − ∂yu
(0)
∫ y

0 ∂xu
(n−1) dy). Further, it can be seen

that, if cn is the coefficient of the term y4n in u(n), then

cn+1 =− 3(4n− 1)

2(4n+ 1)(4n+ 3)(4n+ 4)
cn for n≥ 1,
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so that c2 =−9/4480, c3 = 1/506880, etc., demonstrating that the contributions of
these highest-degree terms become quickly negligible in the evolution equation for
h at order n, ∂th+ ∂x(q

(0) + · · · + εnq(n))= 0.
As shown in Sect. 4.1, the inertia terms in the y-component of the Navier–Stokes

equation should be neglected in order to obtain the underlying boundary layer equa-
tions. It is therefore not possible in the context of the boundary layer approximation
to proceed up to third order at which the elimination of the pressure from the gov-
erning equation is no longer permitted. It is also important to be able to contrast
the long-wave theory with the boundary layer equations. For these reasons, we shall
proceed with the asymptotic expansion only up to second order. The second-order
system is identical to (5.8a)–(5.8e) incremented by one in the expansion order and
such that the left hand side will involve the unknown second-order contributions
and the right hand side the known first-order contributions (5.9a)–(5.9e). Because
the algebra at this order is cumbersome, only the results for a two-dimensional flow
are presented.

The second-order BE reads

∂th+ ∂x
(
q(0) + εq(1) + ε2q(2)

)= 0, (5.13)

where the different terms of the flow rate q(x, t) are given by:

q(0) = 1

3
h3, (5.14a)

q(1) =
(

2

5
Reh6 − 1

3
Cth3 + MBh2

2(1+Bh)2

)
∂xh+ 1

3
ε2Weh3∂xxxh, (5.14b)

q(2) =
{

7

3
h3 − 8

5
CtReh6 + 127

35
Re2h9 + BMh5

(1+Bh)4

[
3

4
Pe+ 33

20
Re

+Bh

(
1

840
− 1

4
Pe+ 131

70
Re

)
+B2h2

(
1

840
− 7

40
Pe+ 31

140
Re

)]}
(∂xh)

2

+
{
h4 − 10

21
CtReh7 + 4

7
Re2h10 + BMh6

(1+Bh)3

[
− 1

1680
+ 3

16
Pe+ 5

7
Re

+Bh

(
− 1

1680
− 7

80
Pe+ 5

7
Re

)]}
∂xxh+ Reε2We

(
10

21
h7∂xxxxh

+ 12

5
h6(∂xxh)

2 + 4h6∂xh∂xxxh+ 24

5
h5(∂xh)

2∂xxh

)
. (5.14c)

Noteworthy is that the surface tension term that involves the third derivative of h,
ε2Weh3∂xxxh, though it appears of O(ε3), is included in the first-order expression
for the flow rate (5.14b), a consequence of the stipulation We=O(ε−2). As with the
linear stability analysis and derivation of the boundary layer equations, one of the
reasons for this order of magnitude assignment for We is convenience and simplicity.
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Surface tension appears at the leading-order pressure distribution (5.3d), which in
turn brings the surface tension effects in q(1) given by (5.14b), i.e., at O(ε), and one
notices that q(1) is in fact a much simpler expression than q(2) in (5.14c).

Of course there is also the contribution of the second-order surface tension ef-
fects in the last row of q(2) in (5.14c) (four terms in total) and in fact the first of
these terms contains the fourth derivative ∂xxxxh, which in turn gives a fifth deriva-
tive ∂xxxxxh in (5.13), i.e., it increases the order of the differential equation (5.12)
already of fourth order by one, which in practice then makes the numerical analysis
of the second-order BE cumbersome. However, it is possible to simplify its numer-
ical analysis by assuming We =O(ε−1): interestingly, the term Weh3∂xxxh in q(1)

then moves to q(2) and the four surface tension terms in q(2) move up to q(3), so that
εWeh3∂xxxh is the only surface tension term that remains in (5.13).

Reducing the order of We further moves the term Weh3∂xxxh to even higher or-
ders of the flow rate, i.e., with We =O(1), Weh3∂xxxh moves up to q(3), which is
rather lengthy and is not given here. However, now the term ∂xxxh is multiplied by
other terms as well, in addition to Weh3. These terms are due to hydrostatic head
and inertia so that for We = O(1) surface tension is not the only force that pre-
vents the waves from breaking. Recall also from the long-wave expansion of the
Orr–Sommerfeld dispersion relation in Sect. 3.5.5 that for We = O(1) in addition
to surface tension, hydrostatic head and inertia also limit the growth rate of short
waves.

5.1.3 Primary Instability for the First-Order BE

The linear stability analysis of the Nusselt flat film flow by using the first order BE
(5.12) is done in the same way as in Sect. 3.1: A perturbation of the base-state film
thickness is imposed in the form of the normal mode,

h= 1+ ς exp
{
i(kx −ωt)

}
, (5.15)

where ς and k are both real and represent the amplitude and the wavenumber of the
perturbation, respectively, while ω is the complex angular frequency. Inserting the
normal mode representation (5.15) into (5.11) and linearizing for ς � 1 yields the
linear phase speed and growth rate:

c ≡ ωr

k
= 1, (5.16)

ωi = ε

[(
2

5
Re− 1

3
Ct

)
k2 + 1

2

BM

(1+B)2
− 1

3
ε2Wek4

]
. (5.17)

The perturbation will grow for ωi > 0, i.e., for perturbation wavenumbers smaller
than the cut-off wavenumber:

kc = 1

(ε2We)1/2

(
6

5
Re−Ct+ 3

2

BM

(1+B)2

)1/2

, (5.18a)
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from which the criticality condition is easily obtained to be

6

5
Re−Ct+ 3

2

BM

(1+B)2
= 0. (5.18b)

We have hence resolved the primary instability of the Nusselt flat film solution
using the long-wave theory. This instability corresponds to a Hopf bifurcation from
the Nusselt flat film solution. The emerging branch of oscillatory solutions will
be called supercritical (subcritical) if it bifurcates toward the region where k < kc
(k > kc), respectively (the reader should consult one of the numerous texts on bifur-
cation theory, e.g., [111], but only basic elements of this theory are required for this
monograph).

Equation (5.17) can be written in general form as, ωi(k,μ)= μk2 − k4 +O(k6)

by suitably rescaling time and k; μ denotes the “control parameter.” It is then not
difficult to see that ωi(0,μ)= 0 ∀μ while ωi(k,μ) remains small at small k. Such
a long-wave mode is a Goldstone mode that has been already discussed in previous
chapters and is linked with a particular conservation law (see Appendix C.5). It
corresponds to a shift of the height of the interface (from one Nusselt solution to
another one), which is neutrally stable as long as the shift is uniform. This explains
that the axis k = 0 in the (μ, k)-plane (with ωi = 0) is always part of the neutral
stability curve.

5.1.4 On the Relative Order Between the Wavenumber
of Interfacial Disturbances and the Gradient Expansion
Parameter

The transformation ∂t → ε∂t ∂x → ε∂x in the gradient expansion is a crucial step in
the development of the long-wave theory earlier in this chapter. This transformation
is equivalent to the introduction of slow time and space variables, T= εt and X= εx

or ∂t = ε∂T, ∂x = ε∂X, so that x, t are long scales, i.e., x, t ∼ ε−1 for X,T∼ 1. Notice
that for purposes of clarity the symbols x, t are here reserved for the space and time
variables prior to the introduction of the gradient expansion used to obtain the BE.

Let us now examine the linear stability of the second-order BE (5.13). For sim-
plicity consider the isothermal case, M = 0. With h= 1+ς exp{i(KX−ΩT)}where
Ω is the complex angular frequency; again for purposes of clarity we use symbols
different to ω and k which are here reserved for the complex angular frequency and
wavenumber, respectively, prior to the introduction of the gradient expansion. The
linear phase speed and growth rate are found to be

C ≡ Ωr

K
= 1+ ε2

(
1− 10

21
ReCt+ 4

7
Re2
)
, (5.19)

Ωi = ε

[
2

5
(Re− Rec)K

2 − 1

3
ε2WeK4

]
, (5.20)



106 5 Methodologies for Low-Reynolds Number Flows

where Rec = (5/6)Ct, as defined from the Orr–Sommerfeld analysis, see (3.31).
Hence, the growth rate is identical to that in (5.17) obtained from the first-order BE,
but the phase velocity has an O(ε2) correction that makes it wavenumber-dependent,
i.e., the O(ε2) terms in the long-wave theory introduce dispersion at onset.

The cut-off wavenumber is

Kc =
√

6(Re− Rec)

5ε2We
, (5.21)

and clearly its order of magnitude is affected by the order of magnitude of Re−Rec,
i.e., by the distance from criticality. We distinguish between two specific cases here:

(i) Re−Rec =O(1) which leads to Kc =O(1). From X= εx, 1/Kc = ε/kc or kc =
εKc ∼ ε, consistent with the relative order k ∼ ε as one might have expected
from the outset (see Sect. 4.1).

(ii) Re − Rec = O(ε2), a convenient order of magnitude assignment due to the
square root dependence of Kc on Re − Rec. Now Kc = O(ε), which suggests
the introduction of a second slow scale, χ = εX or ∂X = ε∂χ . Equivalently, X is
a long scale, i.e., X∼ ε−1 for χ ∼ 1.

Let us first examine if we can assume Re − Rec = O(ε2) in the linear stability
of the second-order BE, i.e., if the neglected terms of O(ε3) in (5.13) are indeed
negligible in the linear regime described by the second-order BE when Re− Rec =
O(ε2). With h= 1+ ĥ, the linearized third-order BE becomes [185]

∂T ĥ+ ∂Xĥ+ 2

5
ε(Re− Rec)∂XXĥ+ 1

3
ε3We∂XXXXĥ

+ ε2
(

1− 10

21
CtRe+ 4

7
Re2
)
∂XXXĥ+ ε3C∂XXXXĥ= 0, (5.22)

where C is a relatively lengthy function of Re and Ct. With X ∼ ε−1, the destabi-
lizing inertia and stabilizing surface tension terms in (5.22) are of the same order,
ε5ĥ; this is to be expected as for large We the two terms represent the physical ef-
fects that determine the emerging pattern at onset—after all, the long scale ε−1 was
suggested by Kc =O(ε), which expresses the balance between inertia and surface
tension. The order of magnitude of the term responsible for dispersion in (5.22) is
ε5ĥ, and it balances the instability and stability terms—it is precisely this balance
that will allow us to obtain the Kawahara equation from the second-order BE in
Sect. 5.2.1. The order of magnitude of the last term in (5.22) is ε7ĥ, and it can
be safely neglected. Hence, we can safely assume Re− Rec = O(ε2) in the linear
stability of the second-order BE.

However, this is no longer the case with the first-order BE where the instability
and stability terms are of O(ε5ĥ) but the neglected terms responsible for dispersion
in the linear regime are also of O(ε5ĥ). This is to be expected since Re − Rec =
O(ε2), i.e., very close to criticality, the wave amplitudes are small. We then need to
go to a higher order BE to resolve small amplitudes.
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Let us now consider the introduction of the second slow scale. From X = εx,
1/Kc = ε/kc or kc = εKc ∼ ε2. Thus, we can no longer stipulate k = 2π(h̄N/l)∼ ε

from the outset. The relative order kc ∼ ε2 is a direct consequence of Re− Rec =
O(ε2) and large We (as opposed to Re− Rec =O(1) and large We in case (i)). The
waves now are much longer.

Setting We=O(ε−2), effectively using We to define ε and at the same time stat-
ing k ∼ ε from the outset, is equivalent to solving the linear problem and determin-
ing the dispersion relation before actually deriving the long-wave model (it is the
dispersion relation that determines the wavelength selected by the system and hence
the relative order between k and ε). Also from K ∼ ε or kc ∼ ε2 � k ∼ ε, so that
disturbances with k ∼ ε are stable. But it is incorrect to stipulate a scale k ∼ ε that is
stable! After all, the characteristic scale must be that corresponding to an observable
pattern, which can only be obtained from an instability.

This apparent paradox is resolved with the second scale mentioned above: ∂X =
ε∂χ or ∂x = ε∂X = ε2∂χ and the two variables x and χ are connected through,
χ = ε2x. Therefore, if K is the wavenumber in the slow scale χ , 1/Kc = ε2/kc .
But since kc ∼ ε2, the cut-off wavenumber in the final slow scale is Kc ∼ 1, as in
case (i).

In other words, ε2 and not ε is now the appropriate small parameter. As a matter
of fact, introducing from the outset the slow scales τ = ε2t and χ = ε2x for the
gradient expansion, would give (5.13) but with q(1) multiplied by ε2, We in q(1)

multiplied by ε4 and q(2) multiplied by ε4. A linear stability now with h = 1 +
ς exp{i(Kχ − ξτ)} would give for the growth rate,

ξi = ε2
[

2

5
(Re− Rec)K2 − 1

3
ε4WeK4

]
,

which with Re− Rec =O(ε2) yields K∼ 1, as expected.

5.1.5 Comparison with Orr–Sommerfeld

We now compare the expression for the cut-off wavenumbers obtained from the BE
with that obtained in Sect. 3.5 from a long-wave expansion of the Orr–Sommerfeld
eigenvalue problem (see (3.35) with M� = 0). For both cases (i) and (ii) kc = εKc ,
so that from (5.21),

kc =
√

6(Re− Rec)

5We
, (5.23)

which is identical to that obtained from a long-wave expansion of the Orr–
Sommerfeld problem.

For M� �= 0 the expression for the cut-off wavenumber in (5.18a) obtained from
the long-wave theory after appropriately transforming it is also identical to that ob-
tained in Sect. 3.5 (see (3.35)) from a long-wave expansion of the Orr–Sommerfeld
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eigenvalue problem; hence it gives precisely the same critical condition with (3.31a)
(see (5.18b)).

It is now evident why prechoosing a priori a precise relative order between k

and ε when We = O(ε−2) (effectively used to define ε as pointed out earlier) can
be deceptive. The exact dispersion relation of the problem, i.e., the one obtained
from Orr–Sommerfeld, imposes certain orders between Re, We and kc and in fact
restricts the relative orders of these parameters: assuming ∂x → ε∂x followed by a
perturbation in ε (the two steps we have called “gradient expansion”) leads to the
BE whose dispersion relation suggests that for Re − Rec ∼ ε2 we need an addi-
tional multiple-scale transformation, ∂x → ε∂x(→ ε2∂x). Instead, considering from
the outset the Orr–Sommerfeld analysis, more specifically the expression for the
cut-off wavenumber from (3.35), leads to the conclusion that for the long-wave the-
ory the most general small parameter should be kc(∼ h̄N/l)∼√

(Re− Rec)/We∼
ε
√

Re− Rec, since We=O(ε−2). This in turn suggests the introduction of a single
slow scale only, ∂x = kc∂X, followed by a gradient expansion in kc.

That we would have the same kc obtained from the BE and a long-wave ex-
pansion of Orr–Sommerfeld could have been anticipated: (a) the long-wave theory
is obtained from a regular perturbation expansion of the full Navier–Stokes and
Fourier equations or the boundary layer equations (whose linear stability properties
agree with those of the full Navier–Stokes and Fourier equations as emphasized in
Sect. 4.8.2); (b) the instability onset occurs at wavenumber k = 0, as opposed to a
finite k. With the same expression for kc we also have the same criticality condi-
tion, i.e., the same value of Rec which is automatically the case in (5.23) as Rec is
by definition the one found from Orr–Sommerfeld (= (5/6)Ct). The reverse is not
necessarily true: for Rec we need to have the same coefficient for k2 in the growth
rate, while for kc we also need the same coefficient for k4.

Actually the BE not only captures exactly the critical conditions but also the
neutral conditions and interfacial quantities in the vicinity of criticality (but clearly,
due to the underlying long-wave assumption it fails to describe accurately the dy-
namics within the film, e.g., development of convection cells due to the Marangoni
effect). More specifically, the neutral stability curve obtained from the long-wave
theory agrees close to criticality with that obtained from Orr–Sommerfeld, i.e., for
Re − Rec up to an O(1) value, but deviates from the Orr–Sommerfeld one as Re
increases further, i.e., for Re− Rec > 1. By including higher-order terms in the BE,
this deviation is progressively delayed to higher Re. However, the same is not true
for interfacial quantities such as h, i.e., the validity of the BE as far as interfacial
quantities is concerned cannot be extended far from criticality by including higher-
order terms in the BE: indeed, we shall demonstrate later in this chapter that the
long-wave theory effectively fails to describe the nonlinear dynamics of the film at
an O(1) value of the Reynolds number.

We then declare that BE is exact close to criticality as far as critical, neutral
conditions and interfacial quantities are concerned.

We close this section by noting that the long-wave theory fails to predict the
shear modes obtained from the Orr–Sommerfeld eigenvalue problem. Their desta-
bilization at very large Reynolds numbers underlines the intrinsic dynamics of these
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modes, which the long-wave theory fails to capture. There is a countable infinite
number of such modes due to the y-dependence of the Orr–Sommerfeld eigenvalue
problem. The long-wave theory eliminates this dependence by slaving all variables
to h, yielding finally a single evolution equation and hence only a single mode
(which in the presence of the Marangoni effect can be unfolded into two through
the parametrization of the Nusselt scaling in terms of the viscous-gravity parame-
ters).

5.2 Weakly Nonlinear Models

Weakly nonlinear prototypes represent a significant development in nonlinear dy-
namics and pattern formation. But in the context of the falling film problem, weakly
nonlinear approaches impose certain a priori assumptions about the wave dynam-
ics, the principal one being small-amplitude waves. As such, the resulting equations
are only appropriate in a limited regime of the parameter space consistent with the
imposed assumptions. However, if their physical relevance might be questionable,
their elegance and simplicity are not. The latter make them amenable to mathemat-
ical and numerical scrutiny allowing us to decipher rapidly some of the falling film
characteristics in the region of small-amplitude waves.

5.2.1 Models in Two Dimensions

The derivation of weakly nonlinear prototypes from the BE combines a weakly non-
linear expansion and multiple scale-type arguments similar to those utilized in Ap-
pendix C.5, for, e.g., the derivation of the BKdV equation in (C.16) from the generic
amplitude equation in (C.15a)–(C.15e), and in Sect. 5.1.4, where we discussed the
relative order of the gradient parameter ε and the wavelength of the perturbations.

Deriving weakly nonlinear models is, in general, considered to be a relatively
simple process, but it involves some subtle points and must be done with care. In
fact, the literature contains an abundance of such derivations in the context of the
falling film and other thin film problems, but often one gets the impression of some
uncertainty regarding the assumptions and precise conditions as well as regions in
the parameter space where the different models are applicable (e.g., [44])

The first basic step in the derivation of weakly nonlinear models from the BE
is the assumption of small-amplitude interfacial disturbances. We stipulate that the
system is close to criticality, i.e., Re−Rec is small, or Re−Rec =O(1). The second
step is a weakly nonlinear expansion combined with a multiple-scale analysis. This
procedure has the advantage that it retains only a single nonlinearity, which is the
simplest possible nonlinearity for the system, i.e., the quadratic dominant nonlinear-
ity h∂xh, which arises effectively from a nonlinear correction to the phase speed, a
nonlinear kinematic effect that captures how larger waves moves faster than smaller



110 5 Methodologies for Low-Reynolds Number Flows

ones. Thus, the weakly nonlinear expansion suppresses the strong nonlinearity in-
troduced by inertia effects that is responsible for the unorthodox finite-time blow up
behavior of the traveling wave solutions of the BE as detailed in Sect. 5.4.

5.2.1.1 Starting from the First-Order BE

For simplicity we assume an isothermal film. The derivation given here can then
be easily extended to the nonisothermal case. We first obtain the simplest of the
models, the KS equation. Consider the first-order BE (5.12) for a vertical plane,
Ct = 0. Substitute h ∼ 1 + εh̃, ξ = x − t , τ = εt , utilize the chain rule (∂t )x =
(∂ξ )τ (∂t ξ)x + (∂τ )ξ (∂t τ )x ≡ ε(∂τ )ξ − (∂ξ )τ , and neglect terms of O(ε3) and higher
to obtain

ε2∂τ h̃− ε∂ξ h̃+ ε∂ξ h̃+ 2ε2h̃∂ξ h̃+ 2

5
ε2Re∂ξξ h̃+ 1

3
ε4We∂ξξξξ h̃= 0. (5.24)

Hence, the moving coordinate transformation ξ = x− t allows us to remove the lin-
ear term ε∂ξ h̃ resulting from the weakly nonlinear expansion of the mean flow term
(1/3)∂x(h3) in (5.12). Note that all terms in (5.24), time-dependent term, nonlin-
earity, inertia and surface tension, are of O(ε2). Note also that with h∼ 1+ εh̃ the
neglected terms of O(ε2) in the first-order BE (5.12) become of O(ε3) and can be
safely neglected compared to the retained terms of O(ε2) in (5.24). Dividing now
with ε2 and proceeding to the following change of variables,

ξ =
√

5ε2We

6Re
X; τ = 25ε2We

12Re2
T ; h̃= 1

5

√
6Re3

5ε2We
H,

we obtain the KS equation defined in Appendix C.5,

∂T H +H∂XH + ∂XXH + ∂XXXXH = 0, (5.25)

describing the weakly nonlinear evolution of the vertical falling film for Re=O(1)
and strong surface tension, We =O(ε−2)—recall that these are the orders of mag-
nitude assignments under which the BE was derived.

It is worth noting that quite frequently in the literature, the KS equation in the
context of the falling film problem is given with a coefficient of 4 for the nonlinear-
ity. This is a direct consequence of the coefficient of 4 in (5.24), instead of a 2 there,
which in turn is due to the different scaling for the velocity and hence time employed
in several thin film studies, which use the interfacial velocity, U0 = gh̄2

N sinβ/(2ν),
instead of that used here, i.e., h̄2

N/(tν lν) (see (2.16b)) or 2U0. Hence in these studies
the time scale is h̄N/U0 instead of the one used here, h̄N/2U0 (see (2.16a)), which
then leads to a coefficient 2/3 in front of ∂x(h3) instead of 1/3 here (see (5.12)).
But in fact, any coefficient in front of the nonlinearity can be easily rescaled to unity,
e.g., if the coefficient is 4 this is achieved with the transformation H → (1/4)H .

Finally, it is noted that the slow time scale τ = εt is consistent with the
dispersion relation obtained from the full BE (5.20). Clearly, the conclusion in
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Sect. 5.1.4 that for Re − Rec = O(1), Kc = O(1), applies for a vertical film as
well (Rec = 0 and Re = O(1)). More precisely, Kc =

√
6Re/(5ε2We). In addi-

tion, Kmax =
√

3Re/(5ε2We), also an O(1) quantity. Hence, the order of magni-
tude of the maximum growth rate is (Ωi)max ∼ ε and the disturbances grow as
ĥ ∼ exp{(Ωi)maxt} ∼ exp{εt}, consistent with the introduction of the slow time
scale εt .

5.2.1.2 Starting from the Second-Order BE

Let us now obtain the weakly nonlinear model for the inclined plane case. Once
again for simplicity we assume an isothermal film. We utilize the second-order BE
(5.13) rewritten here for clarity:

∂th+ ∂x
(
q(0) + εq(1) + ε2q(2)

)= 0, (5.26)

where

q(0) = 1

3
h3, (5.27a)

q(1) =
[(

2

5
Reh6 − 1

3
Cth3

)
∂xh+ 1

3
ε2Weh3∂xxxh

]
, (5.27b)

q(2) =
[(

7

3
h3 − 8

5
CtReh6 + 127

35
Re2h9

)
(∂xh)

2

+
(
h4 − 10

21
CtReh7 + 4

7
Re2h10

)
∂xxh

+ Reε2We

(
10

21
h7∂xxxxh+ 12

5
h6(∂xxh)

2 + 4h6∂xh∂xxxh

+ 24

5
h5(∂xh)

2∂xxh

)]
. (5.27c)

Now substitute into (5.26) h ∼ 1 + sh̃ with s � 1 and approximate the different
terms of this equation as follows:

∂x
(
h3)= ∂x

(
1+ 3sh̃+ 3s2h̃2)+O

(
s3/x

)
, (5.28a)

ε∂x

[(
2

5
Reh6 − 1

3
Ct

)
h3∂xh

]
= ε

(
2

5
Re− 1

3
Ct

)
s∂xxh̃+O

(
εs2/x2), (5.28b)

1

3
ε3We∂x

(
h3∂xxxh

)= 1

3
ε3Wes∂xxxx h̃+O

(
εs2/x4), (5.28c)

ε2∂x

[(
7

3
h3 − 8

5
CtReh6 + 127

35
Re2h9

)
(∂xh)

2
]
=O

(
ε2s2/x3), (5.28d)
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ε2∂x

[(
h4 − 10

21
CtReh7 + 4

7
Re2h10

)
∂xxh

]

= ε2
(

1− 10

21
ReCt+ 4

7
Re2
)
s∂xxxh̃+O

(
ε2s2/x3), (5.28e)

Reε4We∂x

(
10

21
h7∂xxxxh+ 12

5
h6(∂xxh)

2 + 4h6∂xh∂xxxh+ 24

5
h5(∂xh)

2∂xxh

)

= 10

21
Reε4Wes∂xxxxx h̃+O

(
ε2s2/x5), (5.28f)

where the orders of magnitude of the neglected terms take into account a possible
order of magnitude assignment of x with respect to ε later on and hence the presence
of x there. Note that the only nonlinearity is h̃∂xh̃ originating from the mean flow
term h3∂xh. Note also that in the weakly nonlinear regime the second-order surface
tension effects in (5.27c) contribute a fifth-order dispersion term.

We first consider the more involved case (ii) in Sect. 5.1.4, i.e., Re−Rec =O(ε2),
with Rec = (5/6)Ct. We balance the instability with the stability terms in (5.28b),
(5.28c):

ε(Re− Rec)s∂xxh̃∼ ε3Wes∂xxxx h̃ ⇒ x ∼ ε−1,

i.e., for the two terms to balance x must be a long scale. To determine the order of
magnitude of s, we balance the nonlinearity in (5.28a) with the third-order disper-
sion term in (5.28e):

s2h̃∂xh̃∼ ε2s∂xxx h̃ ⇒ s = ε4.

The order of magnitude of the instability, stability, nonlinearity and third-order dis-
persion terms then is

ε(Re− Rec)s∂xxh̃∼ ε9; ε3Wes∂xxxx h̃∼ ε9;
s2h̃∂xh̃∼ ε9; ε2s∂xxxh̃∼ ε9;

and all these terms balance, while the order of magnitude of the higher-order surface
tension terms in (5.28f) is

ε2s∂xxxxx h̃∼ ε11

and can be safely neglected. We can now confirm that the neglected terms
in (5.28a)–(5.28f) are indeed negligible: O(s3/x)=O(ε13), O(εs2/x2)=O(ε11),
O(εs2/x4)=O(ε13), O(ε2s2/x3)=O(ε13) and O(ε2s2/x5)=O(ε15) and can be
safely neglected compared to the O(ε9) nonlinearity, instability, stability and third-
order dispersion terms. Also, the neglected terms of O(ε3) in (5.26) are indeed
negligible: from (5.22), the order of these terms is ε3s/x4 ∼ ε11.

The time scale on which the time derivative term ∂th in (5.26) balances the non-
linearity, instability, stability and third-order dispersion terms can now be obtained
as follows:

∂th∼ s∂t h̃∼ ε9 ⇒ t ∼ ε−5,
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which is a long time scale. The existence of this scale can also be easily confirmed
from the expression for the growth rate in (5.20). With Kc ∼ ε, the order of magni-
tude of the maximum growth rate is (Ωi)max ∼ ε5 and the disturbances grow with
a rate ĥ∼ exp{(λr)maxt} ∼ exp{ε5t}, which in turn suggests the introduction of the
slow time scale ε5t .

With χ = ε(x − t) and τ = ε5t then we obtain the weakly nonlinear model,

ε9∂τ h̃− ε5∂χ h̃+ ε5∂χ h̃+ 2ε9h̃∂χ h̃+ 2

5
(Re− Rec)ε

7∂χχ h̃

+ 1

3
ε11We∂χχχχ h̃+ ε9

(
1− 10

21
ReCt+ 4

7
Re2
)
∂χχχ h̃= 0, (5.29)

and once again the moving coordinate transformation x − t in the definition of
the slow length scale allows us to remove the linear term ε5∂χ h̃ resulting from
the weakly nonlinear expansion of the mean flow term (1/3)∂x(h3). Note that
the dispersive term in (5.29) is due to: (a) second-order viscous diffusive effects,
which contribute the term h4∂xxh in (5.27c) whose weakly nonlinear expansion
yields a coefficient of unity for ∂χχχ h̃ in (5.29); (b) second-order inertia effects,
which contribute the term [−(10/21)ReCth7+ (4/7)Re2h10]∂xxh in (5.27c), whose
weakly nonlinear expansion yields a coefficient of −(10/21)ReCt + (4/7)Re2 for
∂χχχ h̃ in (5.29). However, −(10/21)ReCt + (4/7)Re2 = (4/7)Re(Re − Rec) so
that the contribution of the second-order inertia effects to dispersion is of order
ε9(Re − Rec)∂χχχ h̃ ∼ ε11 and must be neglected since in (5.28a)–(5.28f) the ne-
glected terms are of O(ε11) and higher. Hence, (5.29) is simplified to

∂τ h̃+ 2h̃∂χ h̃+ 2

5

Re− Rec

ε2
∂χχ h̃+ 1

3
ε2We∂χχχχ h̃+ ∂χχχ h̃= 0, (5.30)

which with the change of variables

χ =
√

5ε4We

6(Re− Rec)
X; τ = 25ε6We

12(Re− Rec)2
T ; h̃= 1

5

√
6(Re− Rec)3

5ε8We
H,

i.e., the same with that used to derive (5.25) but with Re replaced with (Re −
Rec)/ε

2, yields the Kawahara equation defined in Appendix C.5,

∂T H +H∂XH + ∂XXH + δK∂XXXH + ∂XXXXH = 0, (5.31)

where

δK =
√

15

2

1

(Re− Rec)We
.

With Re− Rec =O(ε2) and We =O(ε−2), all coefficients in the above change of
variables as well as δK are of O(1).

It is worth noting that in terms of the generic prototype (C.15a)–(C.15e) for a
system with a conservation law considered in Appendix C.5, the above derivation is
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equivalent to F(α)= δ1α
2, γ2,4 =O(ε), γ3 =O(ε2) and Σ −Σc =O(ε2)—these

orders of magnitude assignments emulate the presence of the gradient parameter ε
in (5.26) and the orders Re− Rec =O(ε2), We=O(ε−2). To see this, let us for the
purposes of clarity rewrite (C.15a)–(C.15e) with F(α)= δ1α

2:

∂tα = δ1∂x(α
2)+ γ2(Σ −Σc)∂xxα + γ4∂xxxxα + γ3∂xxxα.

Balancing instability with stability, γ2(Σ −Σc)/x
2 ∼ γ4/x

4 or x ∼ ε−1. Balancing
the nonlinearity with instability and stability, α∂xα ∼ αγ2(Σ −Σc)/x

2 or α ∼ ε4.
The order of instability, stability and nonlinearity terms then is α∂xα ∼ ε9 and that
of the dispersion term, γ3∂xxxα ∼ ε9. All terms on the right hand side of the above
equation are of the same order.

We now turn to the simpler case (i) in Sect. 5.1.4, i.e., Re−Rec =O(1). Based on
the above analysis we anticipate that the pertinent weakly nonlinear model is the KS
equation. As a matter of fact, the situation here is identical to that of a vertical falling
film with Re=O(1). Balancing the instability and stability terms in (5.28b), (5.28c)
now gives x ∼O(1). With this order of magnitude assignment for x, balancing the
nonlinearity with the instability and stability terms in (5.28a)–(5.28c) gives s = ε.
The nonlinearity, instability and stability terms then are of O(ε2) and all these terms
balance, while the dispersion term in (5.28e) is of O(ε3) so that dispersion now is
a higher-order effect and can be neglected. The higher-order surface tension terms
in (5.28f) are also of O(ε3) and can be neglected. We can then readily confirm that
the neglected terms in (5.28a)–(5.28f) are indeed negligible. Also, the neglected
terms of O(ε3) in (5.26) are indeed negligible. The KS equation is then obtained
with the same change of variables used to derive (5.25) but with Re replaced with
Re− Rec.

In terms of the generic prototype (C.15a)–(C.15e) for a system with a conser-
vation law considered in Appendix C.5, the above derivation of the KS equation
is equivalent to F(α) = δ1α

2, γ2,4 = O(ε), γ3 = O(ε2) and Σ −Σc = O(1). In-
deed, balancing instability with stability, γ2/x

2 ∼ γ4/x
4 or x ∼ 1. Balancing the

nonlinearity with instability and stability, α∂xα ∼ αγ2/x
2 or α ∼ ε. The order of

instability, stability and nonlinearity then is α∂xα ∼ ε2, while that of dispersion is
γ3∂xxxα ∼ ε3.

It is possible also to obtain the Kawahara equation in (5.31) but with δK � 1. Bal-
ancing nonlinearity with third-order dispersion in (5.28a)–(5.28f) gives s ∼ ε2/x2.
With this order of magnitude assignment for s, balancing instability with stabil-
ity in (5.28a)–(5.28f) gives x ∼ (Re − Rec)

−1/2. The order of the nonlinearity
then is ε4(Re − Rec)

5/2, of the instability and stability terms ε3(Re − Rec)
3 and

of the second-order surface tension terms ε4(Re − Rec)
7/2. For the nonlinearity

to balance the instability and stability terms, ε4(Re − Rec)
5/2 ∼ ε3(Re − Rec)

3 or
Re−Rec ∼ ε2, which then leads to the Kawahara equation with δK =O(1) as above.
On the other hand, for the nonlinearity to dominate over the instability and stabil-
ity terms, ε4(Re− Rec)

5/2 � ε3(Re− Rec)
3 or Re− Rec � ε2. Once again we can

also confirm that the neglected terms in (5.28a)–(5.28f) and the neglected terms of
O(ε3) in (5.26) are indeed negligible. Now the instability and stability terms are
of higher order compared to the nonlinearity and third-order dispersion terms, i.e.,
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the appropriate model is a perturbed BKdV equation, or a “driven-dissipative BKdV
equation” (see Appendix C.5), which can be easily converted to the Kawahara equa-
tion in (5.31) but with δK � 1. Notice, e.g., that the perturbed BKdV equation
∂T H + H∂XH + α∂xxH + β∂xxxH + γ ∂xxxxH = 0 with α,γ � 1 is equivalent
to a Kawahara equation ∂T H + H∂XH + ∂xxH + δK∂xxxH + ∂xxxxH = 0 with
δK = β/(αγ )1/2 � 1.

For a vertical film with Re = O(1) and We = O(ε−2) we have already seen
that the pertinent weakly nonlinear model is the KS equation. It is possible to
obtain the Kawahara equation for a vertical film, but the orders of magnitude as-
signments Re = O(1) and We = O(ε−2) will have to be relaxed. More specif-
ically, let us assume Re = O(ε) and We = O(ε−1). Recall from Sect. 5.1.2 that
decreasing the order of magnitude assignment of We simply moves the surface ten-
sion term Weh3∂xxxh in (5.14b) to a higher-order term of the flow rate, e.g., with
We=O(ε−1), Weh3∂xxxh moves from q(1) to q(2). Similarly, changing the order of
magnitude of Re also moves the inertia term Reh6∂xh in (5.14b) to a higher-order
term of the flow rate, e.g., with Re=O(ε), Reh6∂xh moves from q(1) to q(2) while
all terms in q(2) involving Re would move to higher orders. The same with the sur-
face tension terms in q(2). For simplicity we set Re= εRe0 and We= ε−1We0 where
Re0,We0 =O(1). The second-order BE equation (5.13) then becomes:

∂th+ 1

3
∂x
(
h3)+ ε2∂x

(
7

3
h3(∂xh)

2 + h4∂xxh+ 2

5
Re0h

6∂xh+ 1

3
We0h

3∂xxxh

)
.

(5.32)

With scaling arguments similar to those we used before, it can be shown that the
pertinent weakly nonlinear prototype is the Kahawara equation with δK =O(1),

∂T H +H∂XH + ∂XXH + δK∂XXXH + ∂XXXXH = 0,

where

δK =
√

15

2

1

Re0We0

with Re0We0 ≡ ReWe.
We can also obtain the Kawahara equation with δK � 1 (perturbed BKdV equa-

tion) but assuming Re=O(ε2) and We=O(1), which would move the inertia and
surface tension terms Reh6∂xh and Weh3∂xxxh, respectively, from q(1) in (5.14b) to
q(3). This is rather complicated and hence we refrain from detailing the derivation
here.

5.2.1.3 Summary of Weakly Nonlinear Prototypes in Two Dimensions
for an Isothermal Falling Film

To summarize, depending on the order of magnitude of Re−Rec, while maintaining
Re =O(1) and We =O(ε−2), we have the following weakly nonlinear prototypes
for an inclined film:
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(i) Re− Rec � ε2: Kawahara equation with δK � 1 (perturbed BKdV equation).
(ii) Re− Rec =O(ε2): Kawahara equation with δK =O(1).

(iii) Re− Rec =O(1): KS equation.

For a vertical film, depending on the order of magnitude of Re, We, we have the
following prototypes:

(i) Re = O(ε2),We = O(1): Kawahara equation with δK � 1 (perturbed BKdV
equation).

(ii) Re=O(ε),We=O(ε−1): Kawahara equation with δK =O(1).
(iii) Re=O(1),We=O(ε−2): KS equation.

5.2.1.4 Some Properties of the KS and Kawahara Equations

Both KS and Kawahara equations have been extensively studied in the literature
(e.g., [47, 51, 144, 145]). They have been reported for a wide variety of systems
such as flame propagation, solitary vortices in plasma, magmons in magma seg-
regation in Earth’s mantle and localized rolls in nematic crystals and, in general,
in nonlinear media with energy supply and dissipation. They provide paradigmatic
models for the study of low-dimensional spatio-temporal chaos or weak/dissipative
turbulence (as defined by Manneville [177, 189]). The Kawahara equation in partic-
ular can be utilized as a generic prototype for the study of the influence of disper-
sion in nonlinear systems with energy supply and dissipation with the coefficient δK
characterizing the relative importance of dispersion. In fact, for small δK the large-
time behavior of the Kawahara equation is similar to that of the KS equation, i.e.,
spatio-temporal chaos/turbulent-like dynamics. On the other hand, Kawahara [144]
demonstrated that sufficiently large δK tends to arrest the spatio-temporal chaos in
favor of spatially periodic cellular structures, each of which approaching the BKdV
soliton as δK increases. After all, the Kawahara equation with large δK is equivalent
to a perturbed BKdV equation as earlier discussed.

To understand the influence of the different terms on the dynamic behavior of
the solution of the Kawahara equation (5.31), consider the linear stability of this
equation. By substituting in (5.31), H = 1 + ς exp{i(kX − ωT )} with ς � 1, we
find that even X derivatives contribute to the growth rate, ωi = k2 − k4, and odd
X derivatives contribute to the phase speed, c ≡ ωr/k = 1 − δKk

2. More specif-
ically, the term H∂XXH is responsible for instability/energy supply and the term
∂XXXXH is stabilizing and corresponds to energy dissipation. The above expres-
sion for the growth rate indicates that small-amplitude sinusoidal disturbances are
linearly unstable for long wavelengths and stable for short wavelengths. The term
∂XH determines the wave propagation of the infinitesimal waves, equal to 1, and
the term ∂XXXH is responsible for the presence of −δKk

2 in the expression for the
phase velocity, thus making the phase speed wavenumber dependent, a signature
of the presence of dispersion. The Kawahara equation then retains the fundamental
elements of any nonlinear process that involves wave evolution in two dimensions
and as such it is a very useful prototype for the study of nonlinear phenomena that
involve wave evolution in two dimensions.
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As far as solitary wave solutions of the Kawahara equation are concerned, their
numerical construction reveals that for large δK they become large in amplitude
(however, in terms of the variables in (5.30) the amplitude is still small) and fairly
close to the symmetric sech2-soliton shape for the BKdV equation [145]. But, for
smaller values of δK the pulses become asymmetric and develop an oscillatory struc-
ture (radiation) at the front of the primary hump. This structure is enhanced by de-
creasing δK further. On the other hand, the width of the pulses is almost the same
for all δK, as the coefficients of the second and forth order derivatives in (5.31) are
unity, which fixes the wavenumber that gives the maximum linear growth rate.

Reducing the oscillatory structure in front of the primary solitary hump by in-
creasing δK appears to contradict our discussion in Sect. 4.5: By decreasing surface
tension, i.e., the coefficient, say γ , of the fourth derivative in the Kawahara equation
(prior to its rescaling to introduce δK in front of the third derivative) should amplify
the oscillations in front of the hump; but decreasing γ is equivalent to increasing δK.
It turns out that in the Kawahara equation prior to its rescaling, when γ is reduced
the ratio of the wave amplitude to the maximum amplitude of the oscillations at the
front increases.

5.2.1.5 Other Prototypes

An additional nonlinearity is also possible in certain systems. This is the case, for
example, when the Marangoni effect is considered on the surface of a shallow hor-
izontal layer heated from below with its upper boundary a free surface open to the
ambient air and in the presence of buoyancy (the so called “Bénard–Marangoni con-
vection”). A weakly nonlinear analysis of the Boussinesq–Fourier equations then
shows that the pertinent weakly nonlinear prototype is of the form [55, 100]:

∂tH + α1H∂xH + α2∂xxH + α3∂xxxH + α4∂xxxxH + α5∂x(H∂xH)= 0. (5.33)

The additional term ∂X(H∂XH) plays a stabilizing role (interestingly, the same non-
linearity appears in the weakly nonlinear equation describing the instability of a con-
tact line driven by gravity [135]). This equation has been referred to in the literature
as the Korteweg–de Vries–Kuramoto–Sivashinsky–Velarde equation (KdV-KS-V)
and reduces to the KS equation when α3 = α5 = 0 and to the BKdV equation when
α2 = α4 = α5 = 0 [55]. Hence, for small α3 and α5, (5.33) becomes a perturbed KS
equation [150], while for small α2, α4 and α5, (5.33) becomes a perturbed BKdV
equation, or a “driven-dissipative BKdV equation” (see Appendix C.5).

In the falling film problem the nonlinearity of the type ∂X(H∂XH) in (5.33)
originates from a term ∼ εs2h̃∂xh̃ in (5.28b), which is of O(εs2/x2) and was
neglected. In the absence of the Marangoni effect, the precise form of this term
is found from (5.27b) to be, ε[(12/7)Re − Ct]s2h̃∂xh̃. As we saw earlier, when
Re− Rec =O(ε2), from balancing instability and stability we have x ∼ ε−1, while
from balancing the mean flow nonlinearity with dispersion, s = ε4. Hence, in the
weakly nonlinear equation, the mean flow nonlinearity, instability, stability and dis-
persion are all of O(ε9) but the nonlinearity ∼ εs2∂x(h̃∂xh̃) is of O(ε11) and must
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be neglected (still it is the dominant term from the neglected terms in (5.28a)–
(5.28f); all other neglected terms are of O(ε13)). In fact, even if the condition
Re − Rec = O(ε2) is relaxed, i.e., Re − Rec � ε2 or Re − Rec = O(1), the non-
linearity εs2∂x(h̃∂xh̃) is always a higher-order term.

Finally, it is worth noting that even though strong nonlinearities are not present
in the above weakly nonlinear models, they can still yield singularities (like with the
BE), depending on the initial conditions. In [200] for instance, the driven-dissipative
BKdV equation is shown to blow up for sufficiently smooth and small-amplitude
initial conditions provided that α5 is smaller than a critical value. When α5 is larger
than this critical value small-amplitude initial data evolves into finite-amplitude ir-
regular patterns. In [150] it is shown that the driven-dissipative BKdV equation
can blow up for localized, finite-amplitude initial conditions. On the other hand,
the KS and Kawahara equations are always bounded for sufficiently smooth, small-
amplitude initial conditions. Problems related to singularity formation in weakly
nonlinear models raise the question of applicability and relevance of these models
to the original physical problem they are supposed to describe.

5.2.2 Models in Three Dimensions

We anticipate that the conditions under which dispersion is important in two dimen-
sions are the same with those in three dimensions. Moreover, the same orders of
magnitude assumptions used to obtain the KS or Kawahara equation in two dimen-
sions should also be true in three dimensions, leading to three-dimensional model
equations which are extensions to three dimensions of the two-dimensional KS or
Kawahara equation and which possibly contain additional terms due to the trans-
verse variation; after all, we should simply be able to recover the appropriate two-
dimensional model from a three-dimensional one by simply dropping the transverse
dependence.

Let us consider the three-dimensional first-order BE in (5.11) rewritten here for
clarity in its expanded form:

∂th+ h2∂xh+ 2

5
εRe∂x

(
h6∂xh

)− 1

3
εCt
[
∂x
(
h3∂xh

)+ ∂z
(
h3∂zh

)]

+ 1

3
ε3We

{
∂x
[
h3(∂xxxh+ ∂zzxh)

]+ ∂z
[
h3(∂xxzh+ ∂zzzh)

]}= 0, (5.34)

where once again for simplicity we focus on the isothermal case. As with the models
developed in two dimensions, we perform a weakly nonlinear expansion with h∼
1+ sh̃ where s� 1 to obtain the following weakly nonlinear equation:

s∂t h̃+ s∂xh̃+ 2s2h̃∂xh̃+ 2

5
ε(Re− Rec)s∂xx h̃− 1

3
εCt s∂zzh̃+ 1

3
ε3We s∇4

xzh̃= 0.

(5.35)
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Contrasting (5.35) with (5.24) shows that the nonlinearity and instability terms re-
main unaltered and the stability term has been extended to account for the varia-
tion of the three-dimensional mean curvature of the surface, ∂xxh + ∂zzh, to both
streamwise and spanwise directions. We also note the presence in (5.35) of the sta-
bilizing term −(1/3)εCt s∂zzh̃ due to the hydrostatic part of the pressure. Indeed,
a linear stability analysis of (5.35) where h̃ is sought in the form of the normal
mode h̃= exp{λt + i(kx +mz)} with k,m the wavenumbers in the x, z directions,
respectively, gives for the temporal growth rate,

λr = 1

3
ε

[
6

5
(Re− Rec)k

2 −Ctm2 − ε2We
(
k4 + 2k2m2 +m4)

]
. (5.36)

Let us now set Re − Rec ∼ α2 and balance the instability and stability terms
in (5.35):

ε(Re− Rec)s∂xxh̃∼ ε3We s∇4
xzh̃ ⇒ x, z∼ α−1.

Balance nonlinearity with instability and stability:

s2h̃∂xh̃∼ ε(Re− Rec)s∂xx h̃ ⇒ s = εα3.

The nonlinearity, instability and stability terms then are of O(ε2α7). The hydro-
static term is of O(ε2α5). All terms then balance if α ∼ 1. The time-dependent
term in (5.35) balances all other terms on the long time scale, t ∼ ε−1, suggesting
the introduction of the slow time scale, η = εt , consistent with the expression for
the growth rate in (5.36). Introducing also the moving coordinate transformation,
ξ = x − t , converts (5.36) to

∂ηh̃+ 2h̃∂ξ h̃+ 2

5
(Re− Rec)∂ξξ h̃− 1

3
Ct∂zzh̃+ 1

3
ε2We∇4

xzh̃= 0, (5.37)

which with the change of variables

ξ =
√

5ε2We

6(Re− Rec)
X; z=

√
5ε2We

6(Re− Rec)
Z; η= 25ε2We

12(Re− Rec)
T ,

h̃= 1

5

√
6(Re− Rec)3

5ε2We
H,

becomes

∂T H +H∂XH + ∂XXH − χ∂ZZH +∇4
xzH = 0, (5.38)

the Nepomnyashchy equation [188], where

χ = Rec

Re− Rec
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is a “parameter of inclination.” For a vertical plane, Ct= 0, (5.38) becomes a three-
dimensional KS equation, which in the absence of transverse variation is reduced to
the two-dimensional KS equation in (5.25).

The linear stability analysis of the two-dimensional solitary wave solutions
of (5.38)—which are two-dimensional KS solitary waves—in the transverse di-
rection was examined in [75]. It was shown that there exists a critical value of χ
corresponding to a critical inclination angle below which two-dimensional solitary
pulses are stable, in agreement with the experiments by Liu et al. [170] for small
inclination angles.

The natural question now is: Can we obtain a three-dimensional Kahawara-type
equation? For this purpose we must include the third-order dispersion in the three-
dimensional version of q(2) in (5.14c). The weakly nonlinear equation (5.35) then
becomes

s∂t h̃+ s∂xh̃+ 2s2h̃∂xh̃+ 2

5
ε(Re− Rec)s∂xxh̃

− 1

3
εCt s∂zzh̃+ 1

3
ε3We s∇4

xzh̃+ ε2s∂x∇2
xzh̃. (5.39)

The only way to balance dispersion with the other terms is to relax the requirement,
x ∼ z. Let us then balance the instability and fourth-order x derivative associated
with the stabilizing surface tension term in (5.39):

ε(Re− Rec)s∂xxh̃∼ ε3We s∂xxxx h̃ ⇒ x ∼ α−1.

We also balance the instability term with the hydrostatic head:

ε(Re− Rec)s∂xxh̃∼ εCt s∂zzh̃ ⇒ z∼ α−2.

Hence, for α � 1, i.e., very close to criticality, the characteristic length scale
in the spanwise direction is much longer than that in the streamwise one. In
other words, very close to criticality the spanwise length of the developed three-
dimensional structures is much longer than their streamwise length, i.e., three-
dimensional structures very close to criticality have a very slow variation in the
transverse direction, and the dynamics of the inclined film in this region are effec-
tively determined by the streamwise direction. On the other hand, as the distance
from criticality increases, more specifically for Re − Rec = O(1), z ∼ x and the
transverse length scale has grown to match the streamwise one, which in turn im-
plies that the three-dimensional structures are now localized.

We also balance nonlinearity with instability,

s2h̃∂xh̃∼ ε(Re− Rec)s∂xxh̃ ⇒ s ∼ εα3,

and instability with the third-order x derivative associated with dispersion,

ε(Re− Rec)s∂xxh̃∼ ε2s∂xxx h̃ ⇒ s = ε4.
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Finally, to obtain the time scale on which the time-dependent term in (5.39) balances
the nonlinearity, instability, fourth-order x derivative associated with surface tension
and third-order x derivative associated with dispersion,

s∂t h̃∼ s2h̃∂xh̃ ⇒ t ∼ ε−5,

a long time scale suggesting the introduction of the slow scale T = ε5t (consistent
with the expression for the growth rate in (5.36)). By introducing now the slow
variables X = ε(x − t) and Z = ε2z, (5.39) becomes

∂T h̃+ 2h̃∂Xh̃+ 2

5

Re− Rec

ε2
∂XXh̃− 1

3
Ct∂ZZh̃+ 1

3
ε2We

(
∂XXXXh̃

+ 2ε2∂XXZZh̃+ ε4∂ZZZZh̃
)+ ∂XXXh̃+ ε2∂XZZh̃= 0,

so that to leading order in ε the only Z-dependence comes from the hydrostatic term
∂ZZh̃:

∂T h̃+ 2h̃∂Xh̃+ 2

5

Re− Rec

ε2
∂XXh̃− 1

3
Ct∂ZZh̃+ 1

3
ε2We∂XXXXh̃+ ∂XXXh̃= 0,

(5.40)

which with ∂Z = 0 is identical to (5.30).
For a vertically falling film we have demonstrated in Sect. 5.2.1 that for

Re = O(ε) and We = O(ε−1) the pertinent weakly nonlinear model is the two-
dimensional Kawahara equation with a dispersion parameter δK = O(1). In three
dimensions and with the same orders of magnitude assignments for Re,We, we ob-
tain the three-dimensional Kawahara equation. As before, we set Re = εRe0 and
We = ε−1We0 where Re0,We0 = O(1). The three-dimensional weakly nonlinear
equation then reads

s∂t h̃+ s∂xh̃+ 2s2∂̃x h̃+ ε2
(

2

5
Re0s∂xxh̃+ 1

3
We0s∇4

xzh̃+ s∂x∇2
xzh̃

)
= 0. (5.41)

By balancing the instability with the stability terms in this equation,

Re0s∂xxh̃∼We0s∇4
xzh̃ ⇒ x, z∼ 1,

and for a vertical film the developed three-dimensional structures very close to criti-
cality have the same length scales in both streamwise and spanwise directions. With
x ∼ 1, the instability and stability terms also balance the dispersion term s∂x∇2

xzh̃.
By balancing the nonlinearity with these terms,

s2h̃∂xh̃∼ ε2s∂xxh̃ ⇒ s = ε2,

while to obtain the time scale on which the time derivative in (5.41) balances non-
linearity, dispersion, instability and stability,

s∂t h̃∼ s2h̃∂xh̃ ⇒ t ∼ ε−2,
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which suggests the introduction of the slow time scale τ = ε2t . Finally, the term
s∂xh̃ can be removed with the moving coordinate transformation, ξ = x − t . Equa-
tion (5.41) then becomes

∂τ h̃+ 2h̃∂ξ h̃+ 2

5
Re0∂ξξ h̃+ 1

3
We0∇4

ξzh̃+ ∂ξ∇2
ξzh̃= 0, (5.42)

which with the change of variables

ξ =
√

5We0

6Re0
X; z=

√
5We0

6Re0
Z; τ = 25We0

12Re2
0

T ; h̃= 1

5

√
6Re3

0

5We0
H

becomes the three-dimensional Kawahara equation,

∂T H +H∂XH + ∂XXH + δK∂X∇2
XZH +∇4

XZH = 0, (5.43)

where

δK =
√

15

2

1

Re0We0
,

an O(1) dispersion parameter, which is identical with that in the two-dimensional
case. With ∂Z = 0, the equation reduces to the two-dimensional one (5.31).

Finally, much like with the two-dimensional case, we can obtain the three-
dimensional Kawahara equation with δK � 1 (perturbed three-dimensional BKdV
equation) but assuming Re = O(ε2) and We = O(1) which would move the in-
ertia and surface tension terms Reh6∂xh and Weh3∂xxxh, respectively, from q(1)

in (5.27b) to q(3), which is lengthy and so details of the derivation are not given
here.

5.3 Traveling Waves

Although the precise methodology for the search of traveling wave solutions will
be outlined in Chap. 7 in the framework of dynamical systems theory, we discuss
here some of the results corresponding to the drag-gravity regime with the important
distinction between “closed” and “open flow conditions.”

5.3.1 Closed and Open Flow Conditions

Traveling waves are computed as stationary solutions in a reference frame moving
at the speed of the wave, denoted c. To obtain the equations governing the traveling
wave solutions we introduce the moving coordinate transformation, ξ = x − ct ,
in the time-dependent models whose traveling wave solutions we seek, and we set



5.3 Traveling Waves 123

Fig. 5.1 Two different flow conditions: (a) the mass is conserved in the domain of length L such
that the amount of liquid leaving the domain (out) is exactly equal to the amount of liquid entering
the domain (in); (b) considering a periodic forcing of frequency f at the inlet x = 0, the quantity
of liquid flowing at any point x > 0 during a period τ = 2π/f is conserved

∂t =−c∂ξ for the waves to be stationary in the moving frame. Of particular interest
in this section are periodic traveling waves.

The most usual boundary conditions imposed are the periodic ones. However,
these boundary conditions correspond to the situation of a closed flow, i.e., one for
which the liquid flowing out of the domain is reinjected at the inlet as depicted in
Fig. 5.1a. Therefore, these conditions do not correspond to an open flow in an actual
experiment. Let us describe in detail these two flow conditions.

For a closed flow:

X|x=L =X|x=0 ∀t, (5.44)

where X refers to any flow variable and L is the length of the closed domain. But be-
cause the flow is continuously driven by gravity in the streamwise direction, (5.44)
cannot be achieved experimentally. As a matter of fact, in experiments the flow is
open and often the film is forced at a given frequency, say f . We then presume that
a synchronization between the flow at any location in space and the inlet forcing
exists so that the developed waves maintain their periodicity in time (see Fig. 5.1b).
Evidently,

X|t=τ =X|t=0 ∀x, (5.45)

where τ is the period of the oscillations, i.e., 2π/f .
Let us now utilize the integral version of the kinematic boundary condition (5.5)

for a two-dimensional flow:

∂th+ ∂xq = 0. (5.46)

In the case of a closed flow situation we define the spatial average of any quantity
X from, 〈X〉x = L−1

∫ L
0 Xdx. Combining then the spatial average of (5.46) with
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(5.44) furnishes

d

dt
〈h〉x = 0. (5.47)

Therefore, the spatial average of the film thickness, i.e., the amount of liquid in the
domain L, is constant at any time t and must equal its value at the initial time, i.e.,
unity. We next presume that the final step of the time-dependent computation is the
formation of a regular wavetrain of traveling waves.3 The computational domain L

containing a certain number of waves, say n, can be written as, L= nλ, where λ is
the wavelength of the traveling waves. In the moving frame ξ = x − ct ,

〈h〉x = 1

L

∫ L

0
hdx = 1

L

∫ L−ct

−ct
h dξ,

since dx = dξ by keeping t constant. A consequence of periodic boundary condi-
tions is that we can define a periodic extension of h outside the domain [0,L] and
in intervals of length L. We then have

∫ L−ct
−ct h dξ = ∫ L0 hdξ so that,

1

L

∫ L

0
hdx = 1

nλ

∫ nλ

0
hdξ = 1

λ

∫ λ

0
hdξ,

where we have made use of the periodicity of the traveling waves in their frame of
reference. Consequently, 〈h〉x = 〈h〉ξ ≡ λ−1

∫ λ
0 hdξ , so that

〈h〉ξ = 1, (5.48)

which will be denoted hereinafter as the closed flow condition for the computation
of traveling wave solutions.

Turning to a time periodic modulation of the film surface, we define the time
average of any quantity X over the period τ of the inlet forcing from, 〈X〉t =
τ−1

∫ τ
0 Xdt . By taking then the time average of (5.46) and utilizing the condi-

tion (5.45), we obtain:

d

dx
〈q〉t = 0. (5.49)

The time average flow rate is independent of the location x and therefore equal
to its inlet value, 〈q〉t = q̄N/[(h̄N/(λνtν))h̄N] = 1/3, where the expression for q̄N

in (2.36) has been utilized. Again, applying this condition to traveling waves,

〈q〉t = 1

τ

∫ τ

0
q dt =− 1

cτ

∫ x−cτ

x

q dξ = 1

cτ

∫ x

x−cτ
q dξ,

3This is mostly the case, however, Ramaswamy et al. [218] reported the formation of oscillatory
modes made of irrationally related periodic oscillations in time at the end of some of their DNS
computations with the periodic boundary condition (5.44) (see also Sect. 7.2.4).
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since dt = −c−1 dξ by keeping x constant. With an argument similar to that used
above for the spatial case, i.e., because of the periodicity in time, we can define a
periodic extension of q with period τ so that

∫ x
x−cτ q dξ =

∫ cτ
0 q dξ . But the syn-

chronization of the flow with the forcing frequency at the inlet and the presence of
a periodic wavetrain in space4 suggest that if λ is the period of the traveling waves
in the moving frame, cτ = λ so that 〈q〉t = λ−1

∫ λ
0 q dξ , or

〈q〉ξ = 1

3
. (5.50)

Equation (5.50) will be denoted hereinafter as the open flow condition for the com-
putation of traveling wave solutions. Such solutions are computed using the con-
tinuation software AUTO-07P [79] and details are given in Appendix F.2. These
computations also give λ (which in fact is a continuation parameter).

Let us now consider the conservation equation (5.46) in the moving frame of
reference of a traveling wave, i.e., with ξ = x − ct , and integrate it once to obtain

q = ch+ q0, (5.51)

where the integration constant q0 represents the (negative) constant flow rate in the
moving frame of reference, i.e., underneath the wave and in the opposite direction
(q0 is also a continuation parameter in AUTO-07P). Further, let us average (5.51):

〈h〉ξ = 〈q〉ξ − q0

c
. (5.52)

By imposing the open flow condition (5.50), (5.52) shows that the average film
thickness is given by

〈h〉ξ = 1/3− q0

c
, (5.53)

and thus it will be influenced by the wave features c and q0. Both (5.48) and (5.53)
are integral constraints used later on in this chapter and in Chap. 7 for the computa-
tion of traveling waves by continuation.

The requirements, 〈h〉x = 1 and 〈q〉t = 1/3, for open and closed flow conditions,
respectively, can be related to time-dependent computations. In fact, in such com-
putations the requirement 〈h〉x = 1 is automatically imposed from the periodicity in
space, i.e., condition (5.44). To compare time-dependent computations with periodic
boundary conditions in a domain of length L to the traveling wave results obtained
with AUTO-07P by using (5.48), we must adjust L to nλ, i.e., the computational
domain must be equal to a number of spatial wavelengths of the traveling waves.

4The implicit assumption here is that a spatially periodic wavetrain results from a time periodic
forcing at the inlet. However, this is not always the case, e.g., Fig. 7.39 shows that for x � 2m we
have a wavetrain that is periodic in time but modulated in space so that the wavelength changes
locally. As a consequence, we cannot relate the period in space with that in time.
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Again, this procedure presumes that the final step of the time-dependent compu-
tation will be the formation of a wavetrain of traveling waves propagating with a
constant shape and speed, which after all is not guaranteed. We can also do the re-
verse: obtain λ from the time-dependent computations and then impose λ in AUTO-
07P: We start with an initial condition a wave profile obtained with AUTO-07P for
a given λ, and then we alter λ by continuation until we match the one obtained from
the time-dependent computations.

For the requirement 〈q〉t = 1/3 there is no guarantee that it will be automatically
satisfied in open flow-time-dependent computations (such as those described in Ap-
pendix F.3): It is a direct consequence of the inlet forcing and the synchronization
condition of time periodicity (5.45) all along the plane. For this to be true the forcing
has to be able to overcome the noise that is always present in computations. If the
noise is sufficiently strong, the time periodicity along the plane might be lost. We
also need a convectively unstable system, i.e., one which is a noise amplifier as first
noted in the Introduction. If the system is absolutely unstable, it will oscillate with
its own intrinsic frequency.

Provided that the above conditions are satisfied, connection of the traveling wave
solutions obtained with AUTO-07P by imposing the open flow condition (5.53) to
those resulting from time-dependent computations requires not only that the inlet
flow rate in the time-dependent computations be set to 1/3 but also that the corre-
sponding time period in the laboratory frame is λ/c and this must be set equal to
2π/f with f the inlet forcing frequency. The same requirement, λ/c = 2π/f , ap-
plies for comparison purposes of traveling wave solutions (obtained with AUTO-07P

by imposing the open flow condition (5.53)) with experiments—usually experi-
ments report the wavelength or forcing frequency and speed of the waves from
which one can compute the wavelength (if the flow synchronizes to the inlet forc-
ing).

As far as comparing time-dependent simulations using periodic boundary con-
ditions with experiments with periodic inlet forcing is concerned, we need to have
synchronization in space of the solution to the numerical simulations, i.e., a regular
wave pattern with a given wavelength. The wavelength selected by the system then
is λ= L/n with L the numerical domain length and n an integer. To compare open
flow-time-dependent computations (such as those described in Appendix F.3) we
ensure that the wavelength L/n matches the experimental one. However, this con-
dition is not sufficient. In fact, in experiments, once synchronization in space to a
regular train of traveling waves has occurred, 〈h〉t is generally different from its inlet
value. As a consequence, careful comparisons between numerical and experimental
results require that the initial spatial mean thickness 〈h〉x of the numerical simu-
lations be adjusted to the experimental value 〈h〉t corresponding to the observed
traveling waves (a value that is generally not reported in the experimental studies,
see Sect. 8.4 where this point is further discussed).

If there is no forcing at the inlet, an integral condition still applies for an open
flow. For this purpose, we must change the earlier definition of the time average to
〈X〉t = T −1

∫ T
0 Xdt where T is some large time corresponding to the time of the

experiment. By taking the time average then of the integral version of the kinematic
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boundary condition, (5.46),

1

T
[h|T − h|0] + d

dx
〈q〉t = 0,

which for large T , and provided that 〈q〉t = T −1
∫ T

0 q dt can be defined, i.e., it is
finite and independent of T , yields 〈q〉x = const and therefore is equal to the inlet
value of the flow rate, 1/3. But in this case we might not be able to connect experi-
ments or time-dependent computations with the results for traveling waves obtained
from AUTO-07P, as we might have a combination of small and large waves in exper-
iments or time-dependent computations and a wavelength that varies substantially
with space.

But clearly, between the two conditions, open and closed flow, the open flow one
is more suitable for comparisons with experiments. However, several studies in the
literature have utilized the closed flow condition. It is, therefore, not surprising that
quite frequently discrepancies between theory and experiments are observed. This
is, e.g., the case with the study by Salamon et al. [232], who imposed the closed
flow condition (5.48) for the computation of traveling waves.

We note finally that in experiments it is usually observed that the formation of
large-amplitude waves is accompanied by a significant decrease of the time-average
film thickness over the time T of the experiments [3]. This can be understood as
follows: Under the crest of large amplitude waves, inertia effects can significantly
reduce the wall shear stress, say τw , from its value for an undeformed surface (the
Nusselt flow solution gives τw ∝ h; see the work by Tihon et al. [273], especially
Figs. 11 and 13 in that reference). A consequence of this decrease of the wall friction
is that the fluid particles travel faster on average when the flow is wavy than for the
corresponding Nusselt flow. Since the average flow rate is conserved, a reduction of
the average thickness ensues.

5.3.2 Traveling Wave Solutions in the Drag-Gravity Regime

For an isothermal vertical film, we can distinguish between two main families of
waves [48, 50]. The first one, referred to as the family of slow waves, is denoted by
γ1 and terminates at small wavenumbers as a slow solitary wave with a dominant
depression, a negative-hump solitary wave (“negative polarity”). The second fam-
ily, referred to as the family of fast waves, is denoted by γ2 and terminates at small
wavenumbers as a fast solitary wave with a dominant elevation, a positive-hump
solitary wave (“positive polarity”). Appendix F.2 outlines in detail the computa-
tional methodology used to compute such wave families. It should be emphasized
that unless, specifically stated, when we refer to waves, e.g., solitary waves in this
monograph, we mean positive waves.

The existence of negative waves can be demonstrated with the KS equa-
tion (5.25), which was derived earlier from both the first- and second-order BE
for small amplitude waves and Re−Rec =O(1). Carrying out a moving coordinate
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transformation, X=X−CT , and setting ∂T =−C∂X for the waves to be stationary
in the moving frame, we obtain their governing equation:

H IV +H ′′ +HH ′ −CH ′ = 0,

where the primes denote differentiation with respect to X. This equation is invariant
under the transformation H →−H , C→−C and X→−X, so-called “reversible
symmetry” [49]. Thus, for every (periodic or solitary) wave propagating in one di-
rection, there exists a counter propagating dual one with an inverted profile. These
hollow negative waves do not actually propagate backward. Recall that the KS equa-
tion (5.25) has been derived in a frame moving with the kinematic wave speed 1.
Hence negative waves travel with a negative speed relative to the critical speed 1.

A reversible symmetry applies for the Kawahara equation (5.31) as well, obtained
earlier from the second-order BE with Re− Rec =O(ε2). In the moving frame,

H IV + δKH
′′′ +H ′′ +HH ′ −CH ′ = 0,

which is invariant under the transformation H →−H , C →−C, δK →−δK and
X→−X [49]. Thus, for every (periodic or solitary) wave propagating in one direc-
tion for δK > 0, there exists a counter propagating dual one with an inverted profile
for δK < 0. Negative waves for the KS equation have been constructed in [50] and
for the Kawahara equation in [49].

Of course for both isothermal and heated films problems, δK > 0, which breaks
the reversible symmetry of the KS equation. Nevertheless, we anticipate that at least
for sufficiently small δK, negative waves are still present, which is in fact the case as
we shall demonstrate in Sect. 7.2.3. In other words, it is not necessary to have δK < 0
to obtain negative waves from the Kawahara equation. For sufficiently large δK and
as the Kawahara equation approaches the perturbed BKdV equation, negative waves
with δK > 0 no longer exist, as demonstrated in Appendix C.6, where we discuss
negative polarity occurring in the BKdV equation.

The bifurcation diagram in Fig. 5.2a shows as solid lines the first two wave fam-
ilies of the first-order BE in terms of the maximum wave thickness hmax and the
phase speed c as a function of the wavenumber k. Typical traveling wave solu-
tions corresponding to the γ2 family are shown in Fig. 5.2b. The γ2 family starts at
cut-off wavenumber kc corresponding to the Hopf bifurcation point (HB) from the
Nusselt flat film solution. This bifurcation is supercritical, so that the wavelength
of solutions is larger than the cut-off value 2π/kc. It yields stationary waves whose
amplitude and phase speed increase as k decreases. In the limit k→ 0, the solutions
correspond to homoclinic orbits—i.e., traveling waves with infinite wavelength—
in the phase space (Chap. 7 provides a detailed description of homoclinicity) or
solitary waves in real space (they satisfy the conditions h→ 1 as x ± ∞). The
γ1 family bifurcates by period doubling (PD) from the family of n = 2 harmonic
solutions (by “harmonic solution” here we mean the solution of the linearized equa-
tion for h, h= 1+A sin(2nπx/l) where l = 2π/k is the period of the waves; n is
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Fig. 5.2 (a) Bifurcation diagram and (b) some typical periodic stationary solutions (i.e., traveling
waves in their moving reference frame of size 2π/k) of the γ2 family obtained with the first-order
BE (5.12). The locations of the profiles 1, 2, 3 and 4 on the γ2 branch are also indicated. Parameter
values are Ct = 0 (vertical and isothermal wall), Re = 2.0667 and We = 1000 (i.e., Γ = 3375).
The closed flow condition has been enforced. HB: Hopf bifurcation; PD: period doubling

the “harmonic parameter” f used in Appendix F.2).5 The corresponding waves are
negative-hump waves whose phase speed slows down as k decreases.

Figure 5.2 also indicates that the two families of slow and fast waves bifurcate
from a family of stationary waves that travel at exactly three times the average ve-
locity of the flow through an imperfect pitchfork bifurcation. Recall that for small-
amplitude waves on a vertical plane and Re = O(1), the pertinent weakly nonlin-
ear prototype obtained from the first-order BE is the KS equation. This equation
has the reversible symmetry as pointed out earlier and as a consequence the cor-
responding bifurcation for the two wave families is a perfect bifurcation (see also
Sect. 7.2.3, Fig. 7.35). The first-order BE does not have the reversible symmetry
(h − 1 →−(h − 1), x →−x and c→−c) and hence the bifurcation in Fig. 5.2
is an imperfect one. The natural expectation here is that for Fig. 5.2 we do have
Re = O(1) and so one might expect a perfect pitchfork instead. After all, we are
not far from the region of validity of the KS equation. But actually, the imperfec-
tion is an effect of the neglected terms in the multiple-scale expansion that gives the
KS equation, e.g., the inertia term ε2∂ξ (h̃∂ξ h̃), which after one integration gives a

5Indeed, as the wavenumber decreases, higher harmonics become linearly unstable at kn = kc/n

with n= 2,3, . . . . The resulting families γ (n)
1,2 for n >1 correspond therefore to trains of n identical

negative- or n identical positive-hump traveling wave solutions. Their maximum heights h(n)max(k)

are not displayed in Fig. 5.2 because they are homothetic in k, i.e., given that h(n)max(kn)= hmax(kc)

it follows that h(n)max(k/n) = hmax(k). The individual solutions correspond simply to n identical
solutions of the n= 1 family placed in a domain of size 2πn/k.
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term ∼ h̃∂ξ h̃, breaking the symmetry h̃→−h̃, ξ →−ξ . We then expect that by re-
ducing Re, i.e., by making the wave amplitude smaller, we will start approaching a
perfect pitchfork. The bifurcation structure of slow and fast waves of the Kawahara
equation will be discussed in Sect. 7.2.3.

5.4 Validity Domain of the BE

As shown in Sect. 5.1.3, the linear stability analysis of BE is in agreement with Orr–
Sommerfeld. The BE also allows for periodic traveling wave solutions that approach
solitary waves, i.e., for k→ 0 with 2π/k the period of the waves. But as we shall
demonstrate in this section, the BE can lead to finite-time blow up in time-dependent
simulations when the Reynolds number exceeds a limiting value. Accordingly, no
solitary waves can be observed beyond this value.

Formally, the BE is a particular case of the generic evolution equation,

∂th+ ∂x
(
h3 +Φhm∂xh+ h3∂xxxh

)= 0, (5.54)

where m is a positive integer and Φ a positive parameter. For m = 6, the struc-
ture of the first-order BE corresponding to an isothermal vertical film is recovered.
Equation (5.54) with m= 3 applies to the problem of thin film flowing down a ver-
tical fiber [95, 136], and numerical simulations in this case do show an accelerated
growth of the amplitude of solitary waves that was associated with the drop forma-
tion process on the film [136], but not a true finite-time blow up. On the contrary,
simulations of (5.54) with m= 6 show that it leads to finite-time blow up obtained
first by Pumir et al. [216] and illustrated in Fig. 5.3a (the numerical scheme for the
time-dependent evolution of the BE equation is based on the scheme described in
Appendix F.3).

Figure 5.3b shows that the solitary waves’ branch exhibits a turning point, say
at Φ =Φ�, and branch multiplicity (with two branches, a lower branch and an up-
per one) for m> 3. It means that for Φ > Φ�, (5.54) does not have any stationary
solitary wave solutions. Numerical evidence suggests that the deviant finite blow up
behavior of the BE occurs in the region where solitary waves do not exist. Actually,
Fig. 5.3a shows that for m= 6 blow up occurs at Φ = 0.36, which is smaller than
Φ� � 0.4 from Fig. 5.3a. Although in general blow up always occurs for Φ >Φ�,
the precise value, somewhere in the vicinity of Φ�, where this happens depends on
the details of the particular computation being performed, in particular coalescence
events, which in turn depend on other factors such as domain size and initial con-
dition. For the particular case considered in Fig. 5.3a, due to coalescence events,
the “local Reynolds number” based on the substrate thickness (“substrate” refers to
the portions of the flat film separating the solitary waves, see also Fig. 4.1)6 of the

6In general, the local Reynolds number can be defined by assuming that locally the flow is a Nusselt
one, i.e., by replacing in the Reynolds number based on the Nusselt flat film thickness (2.35) h̄N
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Fig. 5.3 (a) Space–time plot showing the evolution of the solution of the BE (5.54) with m = 6
for Φ = 0.36 in the isothermal vertical case. The film thickness is plotted at regular time intervals.
The flow is open and oriented from left to right. A periodic forcing with noise is imposed at x = 0.
(b) Branches of single-hump solitary wave solutions to (5.54) for the phase speed c versus Φ for
different values of m

dominant structure is actually larger than the value input in the computation; so, Φ
is “locally larger” than 0.36. This subtle issue is discussed further in [241]. Ref-
erence [117] conjectured that (5.54) has a finite-time blow up behavior whenever
m > 3. In [22] this criterion was refined, proving that nonlinearities with powers
m < 5 can allow for bounded solutions under certain conditions. In any case, the
above observations reveal that the strong nonlinearity ∂x(h

6∂xh) due to inertia is
the cause of the peculiar singularities found with the BE. We now study in more
detail the blow up behavior of the BE.

5.4.1 Blow up Versus Wavenumber

Because the positive-hump solutions have a larger maximum film thickness hmax
than the negative-hump ones, they will be subject to blow up at lower Reynolds
number. This can be understood from the nature of the strongly nonlinear term
∼ ∂x(h

6∂xh) in (5.13) responsible for singularity formation. Similarly, at a given

with h̄ or Reh3. But the local flow rate is q = q̄/[(h̄2
N/(tν lν))h̄N] = ūh̄/[(h̄2

N/(tν lν))h̄N] = h3/3.
The local Reynolds number then is 3qRe. Hence, the local Reynolds number based on the substrate
thickness, say hs , is∼ Reh3

s . For a single soliton, the substrate thickness is almost the same with the
inlet one, hs ∼ hN. For many solitons, hs < hN. A physical explanation is given at the beginning
of Sect. 7.2.3 (the reduction is not related to the arguments given at the end of Sect. 5.3.1 on the
time-average film thickness). With coalescence, the number of waves goes down, which then leads
to hs increasing and hence the local Reynolds number increases.
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Fig. 5.4 Bifurcation diagram showing branches of single-hump traveling wave solutions for vari-
ous Re computed with the first-order BE and Ct=M = 0, Γ = 2950 (i.e., isothermal vertical film
of water at 15°C, see Appendix D.4) like in the experiments reported in [141]. The closed flow
condition is enforced. A= (hmax − hmin) is the wave amplitude. Asterisks and diamonds indicate
saddle-node bifurcations, the loci of which are followed through the parameter space in Fig. 5.5

k the single-hump solutions have larger amplitudes than multi-hump ones, hence
they blow up first. In fact, Pumir et al. [216] demonstrated that during evolution to-
ward blow up, single-hump solutions are always present. The singularity starts from
a solitary wave that suddenly exhibits a catastrophic growth and blows up in finite
time for some Re > Re∗, with Re∗ the value of the limit points of the bifurcation
diagrams for the speed c of the waves as a function of Re.7 Hence, in the following
we will only focus on single-hump traveling wave solutions—i.e., belonging to the
γ2-family of waves—in order to discuss the validity domain of the BE in terms of
the existence of single-hump waves. We shall see that the occurrence of unbounded
γ2-wave solutions to the BE is closely related to the finite-time blow up observed in
time-dependent simulations.

The bifurcation diagram in Fig. 5.4 depicts the families of γ2 traveling wave
solutions computed with the first-order BE (5.13) for several Re. As we discuss
at the end of Appendix D.1, the Nusselt scaling distinguishes clearly between the
flow and the properties of the gas–liquid–solid system and β . It then makes sense to
report the results obtained from the full equations in (2.17)–(2.28), or equivalently

7As already pointed out, intriguingly, the KS and Kawahara equations obtained from a weakly non-
linear expansion of the first- and second-order BE, respectively, remain bounded for sufficiently
smooth and small-amplitude initial conditions. As a matter of fact, they predict solitary wave so-
lutions past the limit values Re∗. Disappointingly, the advantage of the more complex BE over the
KS and Kawahara equations is rather limited.
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Fig. 5.5 Stability diagram of the first-order BE (parameter values are the same with Fig. 5.4). The
Nusselt flat film solution is linearly unstable for wavenumbers smaller than the cut-off wavenum-
ber kc (solid line) and stable otherwise. The blow up boundary (dashed line) separates the bounded
from the unbounded traveling wave solutions and coincides with the results of time-dependent
numerical simulations (circles) [198]. Re∗h and Re∗c indicate the Reynolds numbers at which homo-
clinic orbits (k = 0) blow up and at which all the linearly unstable modes blow up, respectively.
Asterisks and diamonds correspond to the saddle node bifurcation points as shown in Fig. 5.4. The
inset is a zoom on the subcritical region

the BE obtained from a regular perturbation expansion of the full equations, in terms
of Re (or equivalently hN) and the viscous-gravity parameters (whose combination
makes up the Nusselt parameters). In the particular example considered here, we fix
β = 0 and the liquid, i.e., Γ . The only free parameter is then Re (or equivalently
hN).

The closed flow condition (5.48) is enforced. For 3 � Re � 5, the wave families
feature a saddle-node bifurcation at k∗ indicated by an asterisk. This implies that
for k < k∗ and 3 � Re � 5, the BE has no stationary solution of the γ2-type, while
for k > k∗ two stationary solution branches coexist. References [216] and [198]
have shown that only the lower branch of small amplitude corresponds to bounded
solutions. The bifurcation at kc is supercritical for Re � 5. However, the interval
[k∗, kc] shrinks with increasing Re until it vanishes. For larger Re the Hopf bifur-
cation becomes subcritical. Noteworthy is the intrinsic structure of the families for
Re ≈ 5.75− 6, where a second saddle node is present as indicated by the diamonds
in Fig. 5.4.

Figure 5.5 depicts the locus of k∗ for the γ2 family as a function of Re. Refer-
ence [198] gives time-dependent simulations of traveling wave solutions for various
wavenumbers k and constructs a boundary for finite-time blow up as marked out by
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the circles in Fig. 5.5. This boundary matches the dashed line in Fig. 5.5, indicating
the connection between the saddle node bifurcation point of the BE for the γ2 wave
family and the finite-time blow up observed in computer simulations. Consequently,
the traveling waves are bounded to the left of this boundary and unbounded to the
right. We will refer to this boundary in the following as the blow up boundary.

We can now define two limit values of the blow up boundary as indicated in
Fig. 5.5: Re∗h for k∗ → 0 at which only homoclinic orbits become singular, i.e.,
precisely the Re value where the bifurcation diagram for the speed of the solitary
waves as a function of Re turns and above which no solitary waves exist,8 and Re∗c
for k∗ = kc at which all the linearly unstable modes lead to singularities.

Notice that the inset of Fig. 5.5 reveals the existence of a subdomain of solutions
near threshold for wavenumber above kc, indicating the existence of a subcritical bi-
furcation. Consequently, the corresponding solutions are always unstable. However,
this subcritical behavior appears to be unphysical as we shall see.

5.5 Parametric Study for Closed and Open Flows

We now study systematically the blow up features of the BE for a falling film. We
impose both closed and open flow conditions. We start with a vertical isothermal
film and we subsequently analyze the influence of inclination and the Marangoni
effect for the ST case.

5.5.1 The BE with the Shkadov Scaling

Our analysis so far was based on the Nusselt scaling. However, keeping track of
the domain boundaries in parameter space where stationary solutions exist is quite
involved. As a matter of fact, six parameters can be varied, namely the inclination
of the plate (Ct), the surface tension (We), the temperature difference between the
wall and the ambient gas phase (M), the heat transfer coefficient at the interface by
changing the ambient gas phase (B), the liquid (Pr) and finally the inlet flow rate
(Re).

On the other hand, the Shkadov scaling has certain advantages over the Nusselt
one as discussed in the previous chapter. Recall, however, that the Shkadov scaling
is strictly speaking valid for large-amplitude waves, i.e., in the region of moder-
ate Reynolds numbers, but for the sake of convenience and simplicity we use it for
small-amplitude ones as well, i.e., for small δ. We then apply the Shkadov transfor-
mation, x → κx, t → κt , where κ = (ε2We)1/3, to the first-order BE (5.11) for a

8For traveling waves the saddle node bifurcation corresponds precisely to the turning point of the
solution branches. For time-dependent computations things are slightly different; even for slightly
smaller values than Re∗ we can have blow up (see also Sect. 5.4).
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two-dimensional flow and for the ST case

∂th+ ∂x

(
h3

3
+ 2

15
δh6∂xh− ζ

h3

3
∂xh+ h3

3
∂xxxh+ h2

2

MB∂xh

(1+B h)2

)
= 0, (5.55)

where the Shkadov parameters are given again for clarity:

δ = 3Re

κ
, ζ = Ct

κ
and M= M

κ
.

Notice that by rescaling time t with the factor 1/3, (5.55) is formally equivalent
to (5.54) with ζ = 0 and M= 0 when Φ = 2δ/5 and m= 6.

Equation (5.55) for isothermal conditions (M = 0) and for a vertical plane
(ζ = 0) has also been written by Nakaya [186], who arrived at the same scaling
with Shkadov (by aiming at decreasing the number of parameters in this equation,
from two in the isothermal vertical case, Re and We, to only one, δ), but from the BE
itself and not from physical arguments related to the separation of scales inherent to
the falling film problem in the region of moderate Reynolds numbers. Further, with
the Shkadov scaling the coefficient of surface tension in the BE is unity, while the
remaining coefficients either have values close to unity or smaller, which is rather
convenient from a numerical point of view.

With the Shkadov scaling, the wavenumber is also rescaled as k→ k/κ and the
cut-off wavenumber becomes

kc =
(

2

5
δ − ζ + 3

2

MB

(1+B)2

)1/2

. (5.56)

It is now useful to contrast (5.56) for the cut-off wavenumber obtained with the
Shkadov scaling and (5.21) obtained with the Nusselt scaling, or equivalently, the
critical Reynolds number Rec readily obtained from (5.21) by setting kc = 0 while
δc is easily found from (5.56), also by setting kc = 0. Although δ, ζ and M involve
surface tension, i.e., κ , the transformation from δc to Rec implies only a multiplica-
tion of all terms with κ , which then cancels out so that the critical Reynolds number
Rec does not depend on surface tension. This transformation from δc to Rec, or for
that matter from a dispersion relation in terms of the Shkadov scaling to one in terms
of the Nusselt scaling, will be a necessary step, e.g., when we analyze the linear sta-
bility of the averaged models (which are written in terms of the Shkadov scaling,
and hence their linear stability characteristics are expressed in terms of this scal-
ing), each time a comparison is needed, either with full Navier–Stokes and Fourier
equations (Orr–Sommerfeld) or with experiments.

5.5.2 Isothermal Vertical Films: Closed and Open Flows

Figure 5.6 shows the stability diagram obtained with the BE (5.55). The dashed
and dot-dashed lines are the blow up boundaries computed using, respectively, the



136 5 Methodologies for Low-Reynolds Number Flows

Fig. 5.6 Stability diagrams
in the (k, δ), and (f, δ)-planes
for an isothermal vertical
film, i.e., ζ =M= 0: neutral
stability curve (solid line)
computed with (5.56), blow
up boundaries indicated by
the dashed and dot-dashed
lines obtained with the closed
and open flow conditions,
respectively, and “accuracy”
curve (dotted line), at which
the maximum amplitude of
the solutions with the BE for
both flow conditions differs
by 10% from the amplitude
obtained by the first-order
model to be introduced in
Chap. 6 (< 10% to the left
and > 10% to the right)

closed flow condition, 〈h〉ξ = 1, and the open flow condition, 〈h〉ξ = (1/3− q0)/c.
The major difference with the open flow condition is that the Hopf bifurcation is
supercritical for all δ, while for the closed flow condition the bifurcation is always
subcritical for δ > δ∗c , the value corresponding to Re∗c . This then shows that close
to criticality the BE should always give bounded solutions with the open flow con-
dition. However, Fig. 5.6 also shows that for δ > δ∗c |OP the corresponding region
of k is very small. Interestingly, the stability diagram for the frequency f = ck/2π
versus δ (c is the phase speed of either the infinitesimal perturbations (c = 1) or
the nonlinear traveling wave solutions) shows a wider band of bounded solutions
with the open flow condition because of the phase speed c decreasing for δ > δ∗c |OP.
In any case, comparison of the wave amplitudes computed with the BE and with
the first-order model (which is valid in both the drag-gravity and the drag-inertia
regime; Chap. 6), shows good agreement, i.e., less than 10% discrepancy, only in a
small region of the stability diagram in Fig. 5.6.

The blow up features as marked in Fig. 5.6 read

δ∗h = 0.986, δ∗c |CL = 2.358 and δ∗c |OP = 5.401, (5.57)

where the subscripts CL and OP indicate the corresponding flow condition. Note
that since homoclinic orbits are solutions of infinite wavelength, they do not depend
on the flow condition. δ∗h being very close to unity demonstrates that indeed δ is the
natural parameter to discriminate between drag-gravity and drag-inertia regimes,
as first noted in Sect. 4.9.1 and to also show that BE blows up in the drag-inertia
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Fig. 5.7 Stability diagram in the (ζ, δ)-plane computed with (5.55) for an isothermal film, i.e.,
M = 0, and showing the different blow up limits δ∗, along with the condition that defines the
critical value δc

regime, i.e., for δ > 1. Thus, δ = 1 satisfactorily quantifies the transition between the
two regimes, an estimate which was also made in Sect. 4.9.1 based on the behavior
of the wave tail (see Fig. 4.8). As an example, the blow up features in the case of
a water film at 20°C (physical properties are given in Appendix D.4) are Re∗h =
3.0, Re∗c |CL = 6.2 and Re∗c |OP = 12.2. Computations done in terms of the Shkadov
scaling δ for an isothermal vertical film are straightforwardly reverted back to the
Nusselt scalings as follows: from δ = 3Re/κ = 3Re/We1/3 where We= Γ/h2

N and
hN = (3Re)1/3, by fixing the liquid, hence Γ , a δ value can be easily converted to
an hN value, which in turn can be used to obtain the value of Re.

It appears that the range of Re for which solutions are bounded, at least for k >
k∗, is larger with the open flow condition than with the closed one. However, even
though they are bounded, these solutions overestimate by far the amplitude of the
actual ones obtained from the first-order model to be introduced in Chap. 6 (compare
with the “accuracy” limit drawn in Fig. 5.6).

Finally, from the definition of δ, we can also infer that the range of validity of the
BE, i.e., the range of Re for which solitary waves (homoclinic orbits) are bounded,
increases with the Kapitza number as Γ 3/11.

5.5.3 Influence of Inclination

Figure 5.7 depicts the stability diagram of BE in the (ζ, δ)-plane computed
with (5.55) for an isothermal film, i.e., M = 0. The solid line corresponds to the
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criticality condition kc = 0, i.e., ζ = 2δc/5, above which the Nusselt flat film solu-
tion is stable. The short-dashed line indicates the boundary where homoclinic orbits
blow up (δ∗h ), whereas at the long-dashed and the dotted-dashed lines all the linearly
unstable modes blow up (δ∗c ) for closed (CL) and nearly all for open (OP) flow
conditions, respectively. In between, the solutions are bounded only in the range of
wavenumbers [k∗, kc] and unbounded in the range [0, k∗].

As an example, the blow up features in the case of a water film at 20°C (again
physical parameters are given in Appendix D.4) for a plate inclined at 10° from the
horizontal are Re∗h = 5.6, Re∗c |CL = 8.0 and Re∗c |OP = 13.3. These are computed by
utilizing the vertical Kapitza number Γ⊥, which is independent of the inclination
angle, i.e., Γ = Γ⊥/(sinβ)1/3, to isolate the effect of inclination. Using (5.56), this
leads to the relation

ζ = cosβ

(sinβ)10/11

(
δ2

Γ 3⊥

)1/11

, (5.58)

from the definition of ζ . Increasing ζ reduces therefore the range of validity of
the BE in the linearly unstable domain. Again, reverting back to the Nusselt scales
is straightforward: from δ = 3Re/κ = 3Re/We1/3 where We = Γ⊥/[(sinβ)1/3h2

N]
and hN = (3Re)1/3, by fixing the liquid, hence Γ⊥ and β , a δ value can be easily
converted to an hN value, which in turn can be used to obtain the value of Re.

5.5.4 Influence of the Marangoni Effect in the Small Biot Number
Limit: B � 1

For common liquids, the Biot number is usually in the range 10−2 to 10−3 (see
Appendix D.4). Therefore, we can safely use the approximation

MB

(1+Bh)2
≈MB (5.59)

in (5.55) to interrogate the influence of the Marangoni effect with MB as a single
parameter. In this limit, the generic equation (5.54) shows that the Marangoni term
behaves as an “m= 2” term and does not lead by itself to singularity even though it
can promote it.

Figure 5.8 represents the stability diagram of the BE in the (MB,δ)-plane for
a vertical wall, i.e., ζ = 0. Here, a range of unstable wavenumbers exists for all δ.
The relation with physical properties is as follows:

MB =Ma Bi

(
1

Γ 4δ

)1/11

, (5.60)

obtained by eliminating Re from MB and δ using (5.56). The domain of existence
for homoclinic orbits nearly vanishes for large MB . However, from Appendix D.4,
the product Ma Bi remains small for common liquids. For instance, for a vertically
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Fig. 5.8 Stability diagram in the (MB,δ)-plane for a vertically falling film, i.e., ζ = 0. The legend
is the same as for Fig. 5.7

falling water film at 20°C the value Ma Bi = 2 corresponds to ΔT = 28 K when
α = 100 W m−2 K. In this case, the BE can be used with satisfactory accuracy up to
Re= 1.8 (δ10%

h = 0.52).

5.5.5 Subcritical Behavior of the BE

For the isothermal case, we have seen in Fig. 5.4 that the Hopf bifurcation computed
with the BE is always subcritical for Re > Re∗c , at least for the closed flow condition.
In fact, the bifurcation becomes already subcritical for Reynolds numbers slightly
smaller than Re∗c as shown by the inset of Fig. 5.5: In the subdomain bounded from
below by the solid line and by the dashed curves otherwise, the family of solutions
has not only one but two saddle nodes or turning points. Let us here analyze how this
branch behavior is influenced by the Marangoni effect and whether the subcritical
bifurcation in this case may have a physical meaning.

Figure 5.9 displays the stability diagram for different values of MB and the
blow up boundary when the closed flow condition is enforced. It shows that the sub-
domain where subcritical bifurcations are found extends toward smaller δ (< δ∗c )
for increasing MB . Notice that no difference was observed in the curves of Fig. 5.9
when we do not make the small Biot number limit approximation (5.59), but still
using the common values of the Biot number given in Appendix D.4.

The question here is whether this subcritical behavior is really a meaningful con-
sequence of the Marangoni effect. Actually, for a horizontal layer the Marangoni
instability is subcritical and leads to a singularity associated with a touch down of
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Fig. 5.9 Stability diagram in
the (k, δ)-plane for a
vertically falling film, i.e.,
ζ = 0, and different values of
MB: cut-off wavenumbers kc
(solid lines) and blow up
boundaries for closed flow
condition (dashed lines)

the interface in finite time [289]. For the heated falling film problem, the studies
in [139, 279] demonstrated that for sufficiently small Re the solitary wave char-
acteristics (amplitude, phase speed) diverge to infinity. It was conjectured in these
studies that this seemingly anomalous behavior is not associated with the absence
of a solution, and hence it does not correspond to a true singularity formation, as
forces of nonhydrodynamic origin, namely, van der Waals (long-range attractive)
intermolecular forces that have not been included are predominant in the region of
small Re (small film thicknesses), thus arresting the above divergence. In fact, it is
quite likely that for the heated falling film problem, the inclusion of such forces will
lead to a formation of a series of drops separated by “dry” patches. We can then infer
here that the subcritical behavior of the BE including the Marangoni effect described
above is unphysical, in contrast to the subcritical instabilities known for horizontal
liquid layers. Let us give two more arguments in this direction: (i) as shown in [199],
the second-order BE (5.13) does not exhibit such subcritical behavior; (ii) we find
that for vertically falling films, more sophisticated models (presented in Chap. 6)
never yield subcritical behavior.

5.5.6 Concluding Remarks on the Validity Domain of the BE

We have demonstrated that the blow up of solutions to the BE is related to the
absence of homoclinic solutions. By tracking the transition between bounded and
unbounded solutions, we defined the validity domain of the BE up to δ = 1, a limit-
ing value which is decreased by the Marangoni effect. Unfortunately, the addition of
higher-order terms reduces the range of validity even more as the asymptotic series
used to obtain the BE have usually poor convergence properties [232]. It is precisely
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the long-wave expansion that brings in increasingly high-order nonlinearities such
as the inertia term ∂x(h

6∂xh) in (5.12), which is the origin of the unphysical features
of the BE. Hence, one attempt to overcome the limitations of the BE, but to remain
in the framework of the long-wave assumption, is to “regularize” the inertia term,
as shown in the next section.

5.6 Regularization with Padé Approximants

To remedy the singularity formation observed with the BE, Ooshida [196] devel-
oped a resummation technique inspired from the Padé approximants method (see,
e.g., [18, 115]), appropriately extended to differential operators (the classical Padé
technique is outlined in Appendix C.7). More specifically, for the case of an isother-
mal film he introduced a “regularization operator,” G = I+ εG(1)+ ε2G(2), where I
is the identity operator, G(1) =G(1)(h)∂x and G(2) =G(2)(h)∂xx , so the expression
of q as a function of h and its derivatives obtained from the long-wave expansion,
formally written as q ≡Q(h), is rewritten as G−1F .

Let us initially implement the idea at first order since the singular behavior
to be corrected is already present in (5.12). We need to choose G in the form,
I + εG(1)(h)∂x , with G(1)(h) to be determined so as to eliminate the dangerous
terms in F when evaluating GQ:

(
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)[1

3

(
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εRe∂x

(
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εCt∂x
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]
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(
ε2), (5.61)

where G(1) is adjusted to (−2/5)Reh4 so that the terms that contain Re on the right
hand side of (5.61) vanish. Evaluating the regularized identity ∂x(GQ)= ∂xF then
gives

∂xQ− ε∂x

[
2

5
Reh4∂xQ

]
= 1

3
∂x
[
h3 − εCth3∂xh+ ε3Weh3∂xxxh

]
.

Replacing ∂xQ with −∂th (from (5.5) with p = 0) yields

∂th+ h2∂xh+ ε∂x

{
− 2

25
Re∂t (h

5)− Ct

3
h3∂xh+ 1

3
ε2Weh3∂xxxh

}
= 0. (5.62)

At second order, Ooshida chose rather to adjust the “coefficients” G(1) and G(2)

in G so that F (= GQ) could be reduced to q(0)+ εF (1), i.e., F (2) ≡ 0, which yields

G = 1− 10

7
εReh4∂x − ε2h2∂xx. (5.63)
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Computation of the regularized identity ∂x(GQ) ≡ ∂xF with the replacement of
∂xQ with −∂th led Ooshida to the equation

∂th+ h2∂xh+ ε∂x

{
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245
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}
− ε2∂x

(
h2∂xth

)= 0, (5.64)

which can be rewritten using the Shkadov scaling:
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5.7 Generalization of the Single-Equation Model Obtained
with Regularization

The main difference between the BE with M = 0 and the Ooshida equation (5.64) or
(5.62) is that the inertia terms originating from q(1) appear as combinations of ∂t (h5)

and ∂x(h
7) with different weights. In fact, using the equivalence ∂th = −h2∂xh+

O(ε) one can write

h6∂xh= ∂x
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)
+O(ε). (5.66)

Let us then investigate all combinations of ∂t (h5) and ∂x(h
7) when second-order

viscous effects are neglected, and thus consider
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which can be rewritten in terms of the Shkadov scaling as follows:
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and where Δ is a free parameter allowing us to recover different model equa-
tions, e.g., the BE is recovered when Δ = 0. On the other hand, the combination
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Fig. 5.10 (a) Speeds of single-hump homoclinic solutions of (5.68) as functions of the rescaled
Reynolds number δ for a vertical wall (ζ = 0): Δ= 0 (dotted line), Δ= 1 (dashed line), Δ= 25/7
(thick solid line) and solutions to Ooshida’s equation (5.65) with η = 0.1 (thin solid line). (b)
Single-hump homoclinic solutions to (5.65) at δ = 5 and ζ = 0: η = 0.1 (solid line) and η = 0
(dashed line)

of the first-order terms ∂t (h
5) and ∂x(h

7) appearing in Ooshida’s second-order
equation (5.65) corresponds to Δ = 25/7 � 3.6 while Ooshida’s first-order equa-
tion (5.62) is recovered when Δ= 1.

Recall that the blow up behavior of the BE occurs at δ = 1, which also corre-
sponds to the transition between the drag-gravity and drag-inertia regimes. This then
suggests that the reduced Reynolds number δ is the natural parameter for validation
purposes/assessment of the validity of a model that aims to describe the falling film
dynamics. Figure 5.10 displays the speeds of solitary waves as functions of the
reduced Reynolds number δ for the different values of the parameter Δ. These so-
lutions have been computed by continuation using AUTO-07P. The computational
methodology for tracking solitary wave solutions is detailed in Appendix F.2 for
the BE in terms of the Nusselt scaling. The associated codes given can be readily
modified to tackle (5.68) so that the continuation is done with respect to δ with the
other parameters fixed, i.e., ζ for the case considered here. For given liquid and Ct
as would be the case in a real experiment, the continuation can be done through Re
as both δ and ζ depend on Re. This way, plots of the form c= c(Re) for a given Ct
are automatically generated. Such plots are important for comparisons with experi-
ments and DNS.

It can be seen that the solution branches for the homoclinic orbits of the BE (5.55)
(dotted line) exhibit a turning point at δ ≈ 1, in accordance with (5.57), so that
solitary wave solutions are not expected for larger values of δ. The curve corre-
sponding to Δ = 1, i.e., (5.62), remains close to the one obtained with Δ = 0 and
similarly exhibits a turning point. By contrast, when Δ = 25/7 (thick solid line)
the curve does not turn back as δ increases. Equation (5.68) with Δ = 25/7 dif-
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fers from Ooshida’s equation (5.65) only through the absence of the viscous term
−η∂x(h2∂xth). However, this viscous contribution does not play a significant role
in the regularization process. Comparisons of the speed of the solitary waves (thick
and thin solid lines in Fig. 5.10a) in fact show little difference. Viscous dispersion
does not affect significantly the maximum amplitude of the waves, however, it does
have a significant effect on the overall shape of the wave envelope and the number
of visible oscillations preceding the main hump as seen in Fig. 5.10b for η = 0.1,
and as we first announced in Sect. 4.3. Notice here that although, strictly speaking,
homoclinic solutions are solutions of infinite wavelength, in practice their wave-
length/computational domain is taken sufficiently large until we achieve solutions
that are domain-independent. The computation of homoclinic solutions is done us-
ing AUTO-07P with the HOMCONT option for tracing homoclinic orbits.

A consequence of the regularization of the free-surface equation, is the existence
of homoclinic solutions for all Reynolds numbers, which in turn alleviates the sin-
gularity formation observed with BE. In fact, computation of homoclinic solutions
to (5.68) shows that the regularization can be achieved without much algebra by
simply modifying the inertia terms entering the equation with the help of the equiv-
alence, ∂th = −h2∂xh + O(ε). Unfortunately, the regularization procedure is not
sufficient to obtain quantitative agreement with experiments and DNS in the region
of moderate Reynolds numbers. As already noted by Ooshida [196], the amplitudes
and speeds of solitary waves in this region are grossly underestimated by (5.65).
This is a direct consequence of slaving the dynamics of the film to its kinematics.
On the other hand, as we shall demonstrate in Chap. 7, in the drag-gravity regime
the regularized equation performs well but so does the BE. Similarly, (5.68) fails to
predict accurately the solitary waves in the region of moderate Reynolds numbers
for all values of Δ we explored (besides the specific values previously quoted). This
calls for a different approach that would allow accurate modeling in the widest pos-
sible range of Reynolds numbers. The quest for such an approach is described in the
next chapter.



Chapter 6
Modeling Methodologies for Moderate Reynolds
Number Flows

Nearly all low-dimensional models for isothermal films at moderate Reynolds num-
bers found in the literature rely on a fundamental closure assumption for the stream-
wise velocity field: a simple self-similar velocity profile with the variables (x, t) and
y/h separated. This is the basis for the classical Kapitza–Shkadov model. The ve-
locity profile in this model is a self-similar semi-parabolic velocity profile in which
the variables are separated as above and which trivially satisfies the x component
of the momentum equation at zero Reynolds number (in which case the interface is
flat). In this chapter we discuss a systematic methodology to relax the self-similar
assumption while maintaining separation of variables as in the long-wave theory: it
is based on a combination of an expansion for the velocity field in terms of polyno-
mial test functions, the gradient expansion and an elaborate averaging technique that
utilizes the method of weighted residuals. The averaging can be justified by the in-
depth coherence of the flow ensured by the action of viscosity. The result is two “op-
timal” models in the sense that the models are always the same independently of the
particular averaging methodology employed (provided of course that a sufficiently
large number of test functions is used in each case). The two models are: A two-
equation system consistent at O(ε), referred to as the first-order model, and a four-
equation system consistent at O(ε2), referred to as the full second-order model. An
ad-hoc compromise between the two in both complexity and accuracy is provided
by the simplified second-order model, whereas a regularization procedure enables
us to reduce the dimension of the four-equation system and to obtain a two-equation
model consistent at O(ε2) which we refer to as the regularized model. The weighted
residuals formulation developed here is compared to the center-manifold analysis by
Roberts. The momentum equation in Robert’s model contains all the terms of the
momentum equation of the first-order model but with different coefficients. How-
ever, it also contains additional terms including high-order nonlinearities which then
necessarily restrict the applicability of the model in the drag-gravity regime. On the
other hand, the average models we obtain from the weighted residuals formulation,
are capable of describing the drag-inertia regime, even though the formulation pre-
sumes that inertia effects are weak corrections to the balance of viscous drag and
gravity, which strictly speaking holds only in the drag-gravity regime. The reason
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that the average models are capable of describing the drag-inertia regime is that
the nonlinearities in these models do not lead to the unphysical loss of the solitary-
wave branch of solutions at δ > 1 and hence they also cure the deficiencies of the
long-wave theory/BE (Benney equation) in the drag-inertia regime. Traveling-wave
solutions of the averaged models are compared favorably with DNS demonstrating
that indeed low-dimensional modeling of films flows in the drag-inertia regime can
be achieved in terms of a small number of coupled evolution equations.

6.1 Background and Motivation

In Chap. 5 we outlined the long wave theory, which leads to the BE. But the BE
does have its shortcomings, the main one being an unphysical behavior in the drag-
inertia regime, i.e., for δ > 1. The regularization method proposed by Ooshida [196]
enables us to obtain an evolution equation without any blow up in finite time, but
it does not reproduce quantitative features of the drag-inertia regime. In this regime
inertia plays a significant role, as opposed to the drag-gravity regime (which cor-
responds to a balance between viscous drag on the wall and gravity acceleration)
where inertia plays a perturbative role. It is precisely because inertia terms were
considered as first-order perturbations in the gradient expansion parameter ε of the
drag-gravity balance, which in turn corresponds to the Nusselt flat film flow, that the
BE can be derived.

However, even though strictly speaking in the drag-inertia regime, inertia terms
cannot be simply considered as perturbations, experiments [4] and DNS [176]
clearly prove that departures of the streamwise velocity distribution from the Nus-
selt flat film parabolic profile are still small, with the exception of the steep front
of a pulse. This remarkable in-depth coherence of the flow is due to the action of
viscosity and suggests that the elimination of the cross-stream y dependence of the
equations is still possible in the drag-inertia regime. This is achieved by an aver-
aging procedure across the film combined with a projection in terms of amplitude
functions that depend only on the location on the plate x and time t . The outcome is
a small number of coupled evolution equations for the amplitude functions. As we
shall demonstrate in this chapter and in Chap. 7, these equations capture the dynam-
ics of the film both in the drag-gravity and drag-inertia regimes. The fundamental
reason for the inability of the BE to describe nonlinear waves far from criticality
(even though departures from the streamwise velocity distribution from the Nusselt
flat film parabolic profile are small) is the slaving of all flow variables to the film
thickness h. Introducing more degrees of freedom through an averaging procedure
as done in this chapter enables us to move from the description of the motion of a
fluid particle on the interface to that of the motion of a column of fluid between the
wall and the interface, a consequence of the in-depth coherence mentioned above.

In the majority of cases studied in the literature, interface equations for film flows
are based on the mass conservation equation (5.5) rewritten here for clarity,

∂th+ ∂xq = 0, (6.1)
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which is the integral version of the kinematic boundary condition, along with a clo-
sure on the flow rate, q =Q(h), which could be an explicit function of h such as
q = 1

3h
3 (which in turn leads to an evolution equation typical of kinematic waves

[299]), a power series of ε involving h and its derivatives, as in the long wave the-
ory/BE, or a combination of a series and a differential operator as in Ooshida’s reg-
ularization technique. In all cases the closure q =Q(h) expresses the slaving of the
velocity field to the evolution of the film thickness. However, it seems that the only
way to correctly handle the film flow dynamics in the drag-inertia regime, i.e., in
the region of moderate Reynolds numbers, is to relax this slaving, and to recognize
that in this regime, q , and possibly other quantities become genuine degrees of free-
dom at moderate Reynolds numbers. This idea is at the core of probably all efforts
to model the film flow dynamics at moderate Reynolds numbers. Most of the cor-
responding models are based on in-depth averaging of the original equations, i.e.,
averaging of the equations across the film, and certain assumptions on the functional
form of the dependence of the velocity on the film thickness.

The starting point of such averaging approaches is the boundary layer approx-
imation developed in Chap. 4. The velocity field is then projected onto a set of
polynomial test functions followed by averaging of the resulting equations using
the method of weighted residuals. Recall that in the boundary layer approximation
inertia terms can be taken of the same order as the gravity and viscous drag, i.e.,
δ is at most of O(1). However, to make progress we utilize a gradient expansion
for the velocity field, which can only be justified rigorously when inertia plays a
weak/perturbative role; that is, in the drag-gravity regime (δ less than unity). Fol-
lowing then the long wave/BE approach, our highly nonlinear problem is converted
into a sequence of solvable problems. Hence, the velocity field is obtained explic-
itly, at each step in terms of functions of h but with amplitudes that are independent
of h e.g., to leading order, the amplitude of the velocity field contains the flow rate q
(note that it is only asymptotically close to the instability threshold that the ampli-
tudes are connected to h so that the BE can be recovered).

Therefore, contrary to the long wave theory/BE expansion where all variables
are slaved to h, the averaging approach gives a higher level of flexibility to the ve-
locity, thus allowing it to have its own evolution. This is the fundamental difference
between the averaging procedure and classical long wave theory. Yet, the in-depth
coherence of the flow is still ensured by gravity and viscosity with inertia playing a
perturbative role. Surface tension is also assumed small. Therefore, strictly speaking
the derivation is based on the drag-gravity regime and we violate our basic assump-
tion of small inertia and surface tension when we start investigating the drag-inertia
regime. But the averaged models perform well there for the following reasons:

(i) The velocity profile is close to the semiparabolic one obtained from the bal-
ance between viscous drag and gravity, a consequence of the in-depth coher-
ence of the flow as mentioned above. A significant deviation, however, from the
semiparabolic profile occurs close to the steep front of a solitary pulse. On the
other hand, for the derivation of the simplest of the averaged models, the so-
called Kapitza–Shkadov model, inertia and surface tension are not considered
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small. But the basic assumption of this model, a single test function—the semi-
parabolic profile of the drag-gravity regime—is only verified in the inertia-less
limit, Re → 0. Hence, almost by definition, this model cannot capture inertia
correctly.

(ii) The averaged models capture the back of a solitary pulse, capillary ripples at
its front and the amplitude and speed of the pulses. Hence they resolve what is
really important for the dynamics (for example, recall that the capillary ripples
are crucial in the wave interaction problem). The steep front of a solitary pulse
is not crucial for the dynamics, as it is, e.g., with the Euler equations in gas
dynamics, which capture the shock dynamics without resolving the shock front.
It is possible to describe correctly the front of a pulse but then we would need
to relax a key technical assumption in our derivation process: the dependence
of the deviation amplitudes to the amplitude of the leading-order test function.
But then the averaging methodology would become equivalent to a full scale
numerical projection, and we might as well use full Navier–Stokes instead of
the low-dimensional approximations we aim to obtain.

In the models obtained from the averaging procedure we then scale away ε.
Subsequently the models are recast by using the Shkadov scaling. Recall that
δ ≈ 1 nicely demarcates the two regimes, drag-inertia and drag-gravity. In fact,
the reduced Reynolds number δ is the natural parameter for validation purposes/
assessment of the validity of a model that aims to describe the falling film dynam-
ics (the BE blows up in finite time precisely at δ = 1). A primary test then for any
new model consists of the construction of solitary waves as far as possible in the
drag-inertia regime for δ > 1.

The compression factor κ of the Shkadov scaling “freezes” the ordering param-
eter ε to 1/κ and brings at order unity the streamwise pressure gradient induced by
surface tension ∝ ∂xxxh. While this is advantageous from a numerical point of view
as noted in Sect. 4.6, it can also be a drawback. Recall from Sect. 4.7 where we an-
alyzed the balance of different forces for a solitary pulse, that the pressure gradient
induced by surface tension is always comparable to inertia. Surface tension of order
unity thus implies inertia effects of order unity. For this reason, the choice of the
compression factor κ is strictly speaking relevant only for large-amplitude waves,
i.e., when δ ∼ 1. Yet, our modeling approach is based on the in-depth coherence of
the flow enabled by the balance between gravity and viscosity and assumes small
inertia effects, i.e., δ small, or equivalently small-amplitude waves. For this reason,
our formulation will be presented using the Nusselt scaling and ε, thus making ex-
plicit the order of magnitude of the different terms on ε. The Shkadov scaling is not
appropriate for the derivation of the different models as already noted in Sect. 4.7;
starting from the boundary layer equations in terms of the Nusselt scaling and ε

allows us to clearly identify the relative orders of magnitude of the different terms,
which is essential for the derivation of the averaged models.

The Shkadov scaling is then introduced only at the final stage. Once again, the
Shkadov scaling is strictly speaking valid for large-amplitude waves, i.e., when iner-
tia and surface tension are not small. But technically, the introduction of the Shkadov
scaling does not invalidate our assumption of small inertia and surface tension.
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Fig. 6.1 Sketch of a falling
liquid film: from local
original quantities to in-depth
averaged quantities

Rescaling the equations with the Shkadov scaling does not change their solution;
it is the way we present the solution that changes.

For simplicity this chapter focuses on isothermal films. The methodologies de-
veloped here will be extended to nonisothermal flows in Chap. 9.

6.2 Averaged Two-Equation Models

In this section we present most of the available models using only two coupled
evolution equations for the film thickness h and the local flow rate q . The start-
ing point of the derivation of such models is typically the in-depth averaging of
the basic equations across the fluid layer. This simple idea is an application of the
Kármán–Polhausen technique used in boundary layer theory in aerodynamics (see,
e.g., [243]) and was first applied to film flows by Kapitza [140].

6.2.1 Kapitza–Shkadov Model

The key to describing the dynamics of the film via additional degrees of freedom
instead of using a single variable h is to turn our attention from the description of a
fluid particle on the surface to that of a “slice” of fluid of infinitesimal thickness, for
which equations that determine the evolution of “integral quantities” can be sought.
The first of these quantities is an obvious one, the thickness of the film h associated
with the mass of the fluid slice. Another one is the flow rate, q = ∫ h0 udy, associated
to its momentum (see Fig. 6.1).

Numerical simulations by Chang et al. [50] have shown that the basic features of
the different wave regimes on the falling film can be satisfactorily captured by the
first-order boundary layer equations derived in Chap. 4. For purposes of clarity and
convenience we recall here the main steps of the derivation of the boundary layer
equations. When we consider slow space and time modulations, a small parameter ε
is introduced formally along with each derivative in time or space, ∂x,t ∝ ε. The as-
sumed slow space variation implies that the velocity component normal to the plate
v is much smaller than the streamwise component u, as imposed by the continuity
equation rewritten below in two dimensions:

∂xu+ ∂yv = 0. (6.2)
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Consequently, the inertia terms in the y component of the momentum equation are
of higher order and can be neglected. The resulting equation is a linear one and
is subject to the normal stress balance, which to leading order contains the effect
of surface tension only. It is then integrated once to yield the pressure distribution
across the film. After substitution of the latter into the x component of the momen-
tum equation and truncation at O(ε), the streamwise momentum equation reads

3εRe(∂tu+ u∂xu+ v∂yu)= 1+ ∂yyu− εCt∂xh+ ε3We∂xxxh. (6.3)

Boundary conditions are the no slip and no penetration condition on the wall

u|0 = v|0 = 0, (6.4)

the (exact) kinematic boundary condition at the free surface

∂th+ u|h∂xh= v|h, (6.5)

which is equivalent to the mass balance (6.1), and the tangential stress balance,
which at O(ε) reduces to

∂yu|h = 0. (6.6)

Equations (6.3)–(6.6) are the two-dimensional, first-order boundary layer equations.
They are consistent at O(ε), i.e., the neglected terms are all of higher order.

Integration of the continuity equation leads to the mass balance (6.1) for the fluid
slice. Turning to the momentum balance of the fluid slice, the streamwise boundary
layer momentum equation is integrated across the depth from y = 0 to y = h to
furnish

∫ h

0

[
3εRe(∂tu+ u∂xu+ v∂yu)− ∂yyu

]
dy = h− εCth∂xh+ ε3Weh∂xxxh. (6.7)

Recasting the inertia terms as

∫ h

0
(∂tu+ u∂xu+ v∂yu)dy =

∫ h

0
(∂tu+ u∂xu− u∂yv) dy + [uv]h0,

and using the continuity equation (6.2), the boundary condition (6.4) and with the
help of the kinematic boundary condition (6.5), the inertia terms can be rewritten as

∫ h

0
(∂tu+ 2u∂xu)dy + u|h∂th+ u2|h∂xh.

Thus (6.7) reads

3εRe

[
∂t

∫ h

0
udy + ∂x

∫ h

0
u2 dy

]
= h− εCth∂xh+ ε3Weh∂xxxh− ∂yu|0, (6.8)
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or equivalently

3εRe

[
∂tq + ∂

∂x

(
Υ q2

h

)]
= h− εCth∂x + ε3Weh∂xxx − τw, (6.9)

where τw = ∂yu|0 is the shear at the wall and Υ is a shape factor defined as [214]

Υ = h

q2

∫ h

0
u2 dy, (6.10)

which relates the “first moment” of u,
∫ h

0 udy, to its “second moment”
∫ h

0 u2 dy.
The set of two equations (6.1) and (6.9) is closed provided that expressions of the
shape factor Υ and the wall shear τw as respective functions of h and q are known.

Kapitza [140] and Shkadov [248] solved this problem by applying a closure hy-
pothesis which is quite common in boundary layer theory in aerodynamics (e.g., in
the treatment by Blasius of the semi-infinite stationary boundary layer, see [243],
Chap. XII), although we actually do not have a true boundary layer. Kapitza and
Shkadov assumed the velocity field to be self-similar. This means that two velocity
distributions, as functions of the cross-stream coordinate y at two different locations
on the plate x1 and x2, can be related through

u(x1, y/Y1)

U1
= u(x2, y/Y2)

U2
, (6.11)

where U1, U2, Y1 and Y2 are constants depending on the considered locations. The
flow geometry imposes Y1 = h(x1) and Y2 = h(x2). Kapitza and Shkadov there-
fore assumed the velocity distribution to coincide locally with its Nusselt flat film
solution:

u(x, y, t)= 3
q(x, t)

h(x, t)

[
y

h(x, t)
− 1

2

(
y

h(x, t)

)2]
. (6.12)

This ad hoc but convenient assumption is actually supported by experimental re-
sults [4] and by DNS [176] that show that departures of the velocity from a
parabolic distribution across the layer are weak. Still, the long wave theory devel-
oped in Chap. 5 that leads to the BE shows that even at first order in ε, corrections
to (6.12) do exist. In fact, if one is to obtain rigorously a parabolic distribution in
the form (6.12) from the boundary layer equations, the inertia terms in the mo-
mentum balance (6.3) must be neglected. Consequently, the implicit assumption
underlying (6.12) is that a semiparabolic velocity profile that satisfies trivially the x
component of the momentum equation for zero Reynolds numbers persists, even in
the region of moderate Reynolds numbers when the interface is no longer flat. This
is possible through the action of viscosity and because the pressure distribution can
be assumed to be constant across the fluid layer (again this is for a vertical plane;
for a horizontal one the pressure is affected by the hydrostatic head). These can then
ensure that the distribution of the velocity across the layer adapts instantaneously
to the deformations of the free surface and to changes of the flow rate. However,
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the velocity profile is not totally slaved to the film thickness h unlike what the long
wave theory posits: the quadratic function in the brackets of (6.12) is slaved to h but
not its coefficient, which depends on q .

Inserting (6.12) into the definition (6.10) of the shape factor gives the constant
value, Υ = 6/5. Similarly, the wall shear is simply τw = 3q/h2. We thus get a
closed system of two evolution equations. These equations are written below us-
ing the Shkadov scaling through the formal transformation {3εRe → δ, εCt → ζ ,
ε3We→ 1 and ε2 → η}:

∂th = −∂xq, (6.13a)

δ∂tq = h− 3
q

h2
− δ

12

5

q

h
∂xq +

(
δ

6

5

q2

h2
− ζh

)
∂xh+ h∂xxxh, (6.13b)

the Kapitza–Shkadov model first discussed in the Introduction.1 We note, how-
ever, that the system (6.13a), (6.13b) is also frequently referred to as the integral-
boundary-larger (IBL) model (see Introduction also), thus underlying the analogy
between its derivation and the Blasius boundary layer theory. The inertia terms in
this model appear in the averaged momentum balance (6.13b) through the parameter
δ. The first two terms of the right hand side correspond to the streamwise gravity ac-
celeration and the viscous drag, whereas the two last ones account for the stabilizing
effects of gravity (∝ ζ ) and surface tension, respectively.

Solutions to (6.13a), (6.13b) agree qualitatively with both experimental data and
DNS [50, 250, 253]. Yet, the model does have some limitations the main of which
we can identify by simply performing a gradient expansion for the flow rate in the
form, q = q(0) + εq(1) + . . . , then truncating it at first order and solving for q(1).
This yields an expression for q that is identical with the one predicted from the
long wave/BE expansion of Chap. 5, with the exception of a coefficient 1/9 for the
inertia-h6 term of q(1) instead of the correct factor 2/15.2 This 20% error is anal-
ogous to the error introduced by the Kármán–Polhausen averaging approach in the
case of a boundary layer along a semi-infinite plate, where the simplest polynomial
velocity distribution verifying the boundary condition, a simple linear profile, leads
to a 13% error for the prediction of the shear stress at the plate.

1In fact, using the self-similar assumption (6.12), Kapitza formulated a system of equations in

terms of the thickness h and the averaged velocity ū = 1
h

∫ h
0 udy that is nearly equivalent to

(6.13a), (6.13b). However, as pointed out in the Introduction, Kapitza’s original study [140] fo-
cused on stationary waves only. In addition, he omitted the term v∂yu, assuming it is much smaller
than u∂xu. This erroneous derivation was actually included in the first edition of Levich’s mono-
graph Physicochemical Hydrodynamics [163]. Shkadov [248] corrected Kapitza’s derivation and
he was the first to apply the boundary layer approximation to two-dimensional nonstationary film
flows. The extension of the boundary layer approximation to three-dimensional flows was done by
Demekhin and Shkadov [71].
2Although the BE breaks down at δ = 1, it is very useful as a benchmark equation: Any model
attempting to cure the deficiencies of the BE for δ > 1, should yield the BE with an appropriate
gradient expansion, thus confirming the validity of the model close to criticality.
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The first visible consequence of the inaccuracy of the h6-term coefficient is an
erroneous estimation of the linear instability threshold, i.e., Re(KS)

c = Ct instead of
the exact Rec = 5

6 Ct, as obtained from both Orr–Sommerfeld (Chap. 3) and the
BE (Chap. 5). This underestimation of the critical Reynolds number of the primary
instability limits the use of the Kapitza–Shkadov model to the vertical wall case
(Ct= 0), where it predicts the correct result that the flow is unstable at all Reynolds
numbers; still its limitations will show up at the nonlinear stage.

6.2.2 Higher-Level Models Based on the Self-similar Closure

Following the Kapitza–Shkadov approach, several studies have been devoted to film
flows by using the self-similar closure assumption (6.12), mostly aiming at a rem-
edy to the limitations of the Kapitza–Shkadov model. For instance, (6.13b) was aug-
mented with second-order viscous contributions in the bulk (∝ η∂xxu) and at the in-
terface (∝ η[2∂xh(∂xu|h−∂yv|h)−∂xv|h]) [214]. Applying the Kármán–Polhausen
technique on the second-order boundary layer equations, which are slightly modi-
fied to also account for supplementary terms coming from surface tension and pro-
duced by the gradient expansion of the surface curvature, ∂xxh/[1+ (∂xh)

2]3/2, one
obtains the following expression for the pressure at the interface:

p|h = 2ε2∂yv|h − ε3We

[(
1− ε2 3

2
(∂xh)

2
)
∂xxxh− 3ε2∂xh(∂xxh)

2
]
.

Written in terms of the Shkadov scaling, the resulting averaged momentum balance
is

δ∂tq = h− 3
q

h2
− 12

5
δ
q

h
∂xq +

(
6

5
δ
q2

h2
− ζh

)
∂xh

+ h

[(
1− 3

2
η(∂xh)

2
)
∂xxxh− 3η∂xh(∂xxh)

2
]

+ η

[
6
q

h2
(∂xh)

2 − 6

h
∂xq∂xh− 6

q

h
∂xxh+ 5∂xxq

]
, (6.14)

to be used in conjunction with the mass conservation equation (6.1). Though intro-
ducing O(ε2) corrections, the system (6.1)–(6.14) suffers from the same drawback
as the Kapitza–Shkadov model (6.13a), (6.13b) as it still leads to an erroneous crit-
ical Reynolds number, which in turn limits its use to vertical walls. Even worse,
the extra surface tension terms, ∝ h(∂xh)

2∂xxxh and ∝ h∂xh(∂xxh)
2, are strongly

nonlinear. The computation of solitary pulse solutions to (6.1)–(6.14) reveals the
presence of a limiting Reynolds number above which solitary wave branches of so-
lutions disappear. This is unacceptable on physical grounds, much like with the BE
(Chap. 5).
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Other approaches have been devoted to relaxing some of the underlying assump-
tions of the boundary layer approximation, especially the neglect of the cross-stream
inertia terms, Dv/Dt ≡ (∂t + u∂x + v∂y)v, in the y component of the momentum
balance [9, 161, 288]. The idea then is to retain cross-stream momentum in the y

component of the momentum equation and to substitute there the self-similar clo-
sure assumption (6.12). However, this leads to rather involved expressions for the
pressure as function of h and q , which we shall not write here. After averaging the
streamwise momentum equation, a system of two equations is obtained consisting of
the streamwise momentum balance and the mass balance (6.1). Unfortunately, due
to the nonlinearities in such models, unphysical singularities appear in certain re-
gions of the parameter space when one studies traveling wave solutions. Moreover,
even though the models are more elaborate, the self-similar closure assumption is
still maintained. Alas! The self-similar semiparabolic profile (6.12) holds partly be-
cause the pressure distribution can be assumed to be constant across the fluid layer
(once again for a vertical layer). At the same time, as emphasized in Sect. 4.8.2,
comparisons with DNS suggest that the pressure in the film is well-approximated
by p ≈ Ct(h−y)−ε2We∂xxh so that the cross-stream inertia terms have little effect
on the waves. Therefore, one may question the purpose of relaxing the approxima-
tion of constant pressure distribution across the film while at the same time making
use of the closure assumption (6.12).

6.3 Center Manifold Analysis

One way to avoid the self-similar parabolic closure (6.12) has been proposed by
Roberts [221, 223]. The idea comes from the “center manifold” analysis for finite-
dimension systems of nonlinear ordinary differential equations (see, e.g., [38, 111]),
and its extension to partial differential equations may be sketched as follows. As-
sume that the evolution of a set of physical variables u is governed by the differential
equation

∂tu=Lu+N(u, ε), (6.15)

where ε is a vector of parameters, L is a linear matrix-differential operator that de-
scribes the flow dynamics close to the origin, (u, ε) = (0,0), and N is a nonlinear
functional of u and ε. Several physical systems are described by systems of equa-
tions of this form.

Assume now that the linear operator L has n eigenvalues with zero real part and
all other eigenvalues have negative real parts. u can be projected onto the eigenfunc-
tions of L. If a is the vector of the amplitudes or “modes” of the eigenfunctions of
L with zero real part in the projection for u, the dynamics of the “flow” in a small
neighborhood of the origin in the (u, ε)-space is governed by the n modes, i.e., by
a. This means that the n-dimensional vector a of the associated amplitudes satisfies
in the small neighborhood of the origin

∂ta=G(a, ε) such that u=U(a, ε), (6.16)
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where the “hypersurface” C of equation u=U(a) is the center manifold and ∂ta=G
is the n-dimensional model of the dynamics. The existence of the center manifold
is then assured by the convergence of the solution to C: Suppose a solution u(t0)
of (6.15) lies at time t0 in a small neighborhood at the origin in the (u, ε)-space.
Then there exists a trajectory U(a) on the center manifold that verifies

∥∥u(t0 + t)−U
(
a(t0 + t)

)∥∥=O
(
exp(−αt)) for t > 0 (6.17)

where ‖ · ‖ is an appropriately chosen norm and −α is some upper bound on the
negative real part of the eigenvalues of L. In Appendix C.8 we sketch the center
manifold projection for a scalar equation.

Equation (6.17) underlines a first limitation of the approach. Indeed, the center
manifold is of no use if a sufficiently small upper bound−α, i.e., a sufficient separa-
tion between the eigenvalues of zero real part and those of negative real part, cannot
be found in the spectrum of L. The second and most important limitation of the
applicability of the center manifold theory to film flows is that the theory holds for
systems with a finite dimension, that is, for finite-dimension systems of ordinary dif-
ferential equations [38]. When partial differential equations are considered, which
can be viewed as systems of ordinary differential equations of “infinite dimension,”
such as Navier–Stokes, a rigorous theory is still under construction and very few
results are available [98]. Thus, Roberts’ approach must be viewed as a derivation
technique of models whose range of validity in the parameter space must be checked
a posteriori by comparing their solutions to those of the primitive equations.

In fact, the approach relies on the linear viscous modes of a uniform film in
the zero-wavenumber limit and in the absence of gravity. Slow modulations of the
free surface and gravity effects are thus considered as small perturbations around
the motionless state. Let us then temporarily change our scaling and rewrite the
primitive equations using space and times scales based on the film thickness h̄N and
the viscous time scale h̄2

N/ν. The Navier–Stokes equation (2.4) thus reads

Dv
Dt

=−∇p+∇2v+GaF, (6.18)

where F= (sinβ,− cosβ,0) is the body force and Ga= gh̄3
N/ν

2 = 3Re/ sinβ is the
“Galileo number”. Therefore, the assumption of small gravity effects as compared
to viscous damping implies Ga � 1 and is equivalent to the small inertia assump-
tion Re � 1 (provided that the nearly horizontal case (β � 1) is avoided). Hence,
the set of parameters ε is made of the gradient expansion parameter ε and Ga (or,
equivalently, the Reynolds number Re).

Linearizing now around the motionless film of uniform thickness, i.e., intro-
ducing perturbations of the form h = 1 + h̃, u = ũ, v = ṽ, p = p̃ in the zero-
wavenumber and zero-gravity limits, ε =Ga= 0, gives

∂yṽ = 0, ∂t ũ− ∂yyũ= 0, ∂t ṽ + ∂yp̃− ∂yy ṽ = 0, (6.19)

completed by the no-slip and no-penetration conditions at the wall y = 0,

ũ= ṽ = 0, (6.20)
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the kinematic boundary condition and the continuity of the stress at the free surface
y = 1,

∂t h̃− ṽ = 0, 2∂yṽ − p̃ = 0, ∂yũ− (1− γ )ũ= 0. (6.21)

Note that the linearized tangential stress condition at the free surface has been arbi-
trarily modified through the introduction of an artificial parameter γ such that the
primitive linear system is recovered for γ = 1. Systems (6.19), (6.20) and (6.21) can
be written in the form ∂tu = Lγ u, which defines the linear matrix-differential op-
erator Lγ parameterized by γ and acting on the set of variables u = (ũ, ṽ, p̃, h̃).
The eigenmodes are the Goldstone mode with h̃ = const, ũ = ṽ = p̃ = 0 cor-
responding to the zero eigenvalue (these are the four components of the zero
eigenfunction), and the family of decaying viscous modes, ũ ∝ sin(ly) exp(λt),
ṽ = p̃ = 0 and h̃ = const, whose eigenvalue λ and cross-film wavenumber l sat-
isfy

λ=−l2, l cot l = (1− γ ). (6.22)

Notice that both Goldstone and viscous modes have h̃= const but the difference is
that the Goldstone mode corresponds to λ= 0.

Let us now consider the eigenvalues of the unmodified operator L1, i.e., 0 and
−(2n + 1)2π2/4. L1 has only one zero eigenvalue and the corresponding center
manifold C1 is of “codimension” (codim) 1, meaning that the dynamics on C1 is
governed by a unique evolution equation for the amplitude associated with the Gold-
stone mode, which is naturally the film thickness h. The velocity field thus remains
enslaved to h. The “spectral gap,” say s, between the zero eigenvalue and the largest
nonzero one is only π2/4. Therefore, the advection time of the fluid particles, whose
ratio to the viscous time scale is precisely Re−1, becomes comparable to the relax-
ation time s−1 of the trajectories in the phase space of the codim 1 center manifold
C1 when Re is of order unity, which necessarily limits the approach to low Reynolds
numbers, as with the classical BE long wave expansion analyzed in Chap. 5. As a
matter of fact, the construction of C∞ performed by Roy et al. [224] leads exactly
to the BE (5.12).

The modification of the boundary conditions (6.21) enables the first nonzero
eigenvalue to shift to zero. For γ = 0, the set of zero eigenvalues is augmented
by one and the corresponding center manifold C0 is of codim 2. The spectral gap s

is then larger than 20. We then hope that the range of Reynolds numbers for which
the approach gives reliable results may extend to the region of moderate or even
large Reynolds numbers. The set of associated amplitudes is then made of the film
thickness h and the averaged velocity ū= (1/h)

∫ h
0 udy, which becomes a genuine

degree of freedom. After construction of the center manifold C0 at γ = 0, the dif-
ficulty is to come back to the initial problem and thus to find the “extension” C′1 at
γ = 1 of the center manifold. Notice that, if the exponential convergence property
(6.17) holds for the codim 2 center manifold C0, there is no indication of such a
result for the extension C′1.
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In practice, C′1 may be constructed step-by-step through the expansion

u(x, y, t)=U=
∞∑

m,n,p=0

γmεnGapU(m,n,p)
(
h(x, t), ū(x, t)

)
(6.23)

and the evolution equations

∂th =Gh =
∞∑

m,n,p=0

γmεnGapG(m,n,p)
h

(
h(x, t), ū(x, t)

)
, (6.24a)

∂t ū =Gū =
∞∑

m,n,p=0

γmεnGapG(m,n,p)
ū

(
h(x, t), ū(x, t)

)
. (6.24b)

The ansatz in (6.23) and (6.24a)–(6.24b) is then substituted into the dynamical sys-
tem

∂U
∂h

Gh + ∂U
∂ū

Gū =Lγ U+N(U), (6.25)

where Gh,Gū represent the components of the vector G in (6.16) (the center mani-
fold is two-dimensional) and the left hand side is simply ∂tU (so that (6.25) has the
generic form in (6.15)). The asymptotic expansions of U, Gh and Gū lead to a hier-
archy of equations that can be solved order after order. The center manifold is then
approached through the “approximation theorem”: If the governing equations are
satisfied to some order of accuracy, then the center manifold will have been found
with the same degree of accuracy. Yet, solving (6.25) can be in practice a formidable
task that requires an iterative strategy [222] that heavily relies on symbolic manip-
ulation software (Roberts used the computer algebra package REDUCE that can be
downloaded for free from http://www.reduce-algebra.com). The main difficulty of
the approach is then to check that the γ series in (6.23) and (6.24a)–(6.24b) have
convergence radii larger than one.

Finally, the two-equation system governing the evolution on C′1, or Roberts’
model, is recast below in terms of the film thickness h and the flow rate q = hū:

δ∂tq ≈ π2

12

(
h− ζh∂xh+ h∂xxxh− 3

q

h2

)
+ δ

(
−2.504

q

h
∂xq + 1.356

q2

h2
∂xh

)

+ η

(
3.459

q

h2
(∂xh)

2 − 3.353
∂xh∂xq

h
− 4.676

q

h
∂xxh+ 4.093∂xxq

)

+ 1

100

[
δ
(
1.727hq∂xh+ 0.7983h2∂xq

)+ δ2
(
−0.1961

q3

h2
(∂xh)

2

− 1.78
q2

h
∂xh∂xq + 0.1226q(∂xq)

2 − 1.792
q3

h
∂xxh+ 0.7778q2∂xxq

)]

+ ζ δ

100

(−1.357hq(∂xh)
2 − 1.012h2∂xh∂xq − 1.713h2q∂xxh

http://www.reduce-algebra.com
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+ 0.4821h3∂xxq
)+ δ

100

(
−10.98

q

h
(∂xh)

4 + 7.12(∂xh)
3∂xq

+ 10.68q(∂xh)
2∂xxh− 4.451h∂xh∂xq∂xxh− 1.113hq(∂xxh)

2

− 2.225h(∂xh)
2∂xxq + 0.6404h2∂xxh∂xxq + 0.244hq∂xh∂xxxh

+ 1.225h2∂xq∂xxxh+ 0.4269h2∂xh∂xxxq + 1.713h2q∂xxxxh

− 0.4821h3∂xxxxq

)
, (6.26)

taken together with the mass balance (6.1) and written using Shkadov’s scaling.
One can easily recognize in the first line of (6.26) all terms present in the

Kapitza–Shkadov averaged momentum balance (6.13b), but with different coeffi-
cients. Second-order terms gathered under the parameter η in the second line corre-
spond to the effects of viscous dispersion. Such terms were already present in (6.14).
The additional terms correspond to ε2 corrections due to inertia (∝ δ2), gravity
(∝ ζ δ) and inertia arising from corrections to the velocity profile due to capillary
effects (last bracketed terms, ∝ δ). The coefficient −π2/4 of the viscous diffusion
term q/h2 corresponds to the first nonzero eigenvalue of the spectrum of the dif-
fusion linear operator L1, as expected, since the whole procedure is basically a re-
duction of the slow time and space evolution of the film to the two first eigenmodes
(h,u)∝ (1,0) and (h,u)∝ (0, sin(πy/2)) of L1.

A linear stability analysis around the Nusselt flat film solution shows that the
correct critical Reynolds number is in fact recovered using (6.1) and (6.26). How-
ever, (6.26) contains nonlinearities of order as high as seven. Computations of the
solitary wave branches of solutions to this model then leads to turning points in
the parameter space such that no solitary wave solutions can be found above a cer-
tain value of δ. As with the BE where the higher-order inertia term is responsible
for its unphysical behavior, the loss of solutions with the Roberts model seems to
be directly related to the additional high-order nonlinearities contained in (6.26) as
compared to (6.13b).

There is no question that Roberts’ center manifold approach is a powerful tool
for the derivation of low-dimensional models when the effects of inertia [221], or a
slowly varying wall [224], or both are considered [223]. Its main advantages are that
it offers a systematic derivation procedure, one that can be applied fruitfully to sev-
eral other problems, provided that the underlying assumptions for its applicability
are met, and that no closure assumption on the velocity distribution is necessary. In
fact, the dependence of the velocity field on the amplitude h and average velocity ū

is obtained as a result of the derivation process and is not assumed from the outset.
However, this technique suffers from its complexity (which may explain that the

introduction of further degrees of freedom has not been considered by Roberts him-
self), and also from the necessity of a “numerical trick” through the introduction
of an artificial parameter γ , which is finally set equal to unity: As already pointed
out, one may wonder if the extension C′1 of the codim 2 center manifold C0 shares
the convergence property (6.17), which is rigorous only for dynamical systems of
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finite dimension. In addition, the application of the center manifold approach de-
pends on the degree of complexity of the linear operator L. For the problem of a
film on a planar wall one can easily construct the eigenfunctions and eigenvalues
of the operator as done earlier. But this is not always the case in other systems.
For example, for the problem of a film falling down a vertical fiber, the operator
involves 1/r with r the radial distance from the fiber centerline [231]. As a result,
the eigenfunctions contain logarithmic terms, which in turn make the applicabil-
ity of the center manifold approach cumbersome. These logarithmic terms can be
simplified by considering small aspect ratios h̄N/R with R the fiber radius. This is
precisely the approach followed by Roberts and Li [223]. However, quite frequently
in experiments, h̄N ∼R [86, 149].

In the remainder of this chapter a different strategy from Roberts’ approach is
proposed. It is based on a combination of a gradient expansion and an extension
of the Kapitza–Shkadov averaging approach by an expansion of the velocity field
in terms of polynomial test functions. After all, the gradient expansion shows that
in the asymptotic limit ε→ 0, the cross-stream distribution of the velocity is poly-
nomial, a property that enables one to obtain models that are both accurate and
consistent at order ε or ε2 with relatively simple algebra.

6.4 Relaxing the Self-similar Assumption

Shkadov was the first to propose the relaxation of the self-similar parabolic-profile
assumption and expansion of the velocity field on a basis of functions of the re-
duced cross-stream variable ȳ = y/h(x, t) [248]. In fact, at least close to the insta-
bility threshold, Re − Rec � 1, the long wave theory indicates that the first-order
correction to the velocity profile (5.9a) has the form

u(1) = 1

3
(3Re)h5∂xhf

(1)(y/h)+ (−Cth2∂xh+ ε2Weh2∂xxxh
)
f (0)(y/h) (6.27)

(ε2We=O(1)) where f (0)(ȳ)= ȳ− (ȳ2/2) corresponds to the parabolic profile and
f (1)(ȳ) = ȳ − (ȳ3/2)+ (ȳ4/8). The velocity distribution can then be rewritten in
the form

u(x, y, t)= a0(x, t)f
(0)(ȳ)+ εa1(x, t)f

(1)(ȳ), (6.28)

so that close to onset, the distribution of the velocity field across the layer is utterly
determined by the two amplitudes a0 and a1 only and such that the variable ȳ is sep-
arated from the variables x, t . We note that for simplicity, and in order to illustrate
the main points of the derivation process of the models we will develop in this chap-
ter, we shall treat Re as an O(1) parameter, which allows for an easy “bookkeeping”
of the orders of magnitude of the different terms. A similar assumption was made in
Sect. 4.1 in the derivation of the boundary layer equations.

To relax the self-similar assumption while keeping the idea of separation of
variables, one can assume u(x, t) = 2a(x, t)y + 3b(x, t)y2 and obtain three cou-
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pled equations for h, a and b [190]. However, inserting this ansatz into the tan-
gential stress condition for the first-order boundary layer equations ∂yu|h = 0 de-
creases the number of degrees of freedom by linking a and b through the condition
2a+ 6bh= 0. Therefore, the velocity profile actually reads u= 2a(y− y2/(2h))=
2ha(ȳ − 1

2 ȳ
2), leading to the erroneous prediction of the instability threshold,

Re(KS)
c = Ct. A similar attempt consists of the projection of u onto a set of five

polynomials adding collocation conditions at the wall and free surface to (6.3) and
(6.1) [306].

Another idea [226] is to correct the parabolic velocity profile with the polynomi-
als that appear in the long wave theory, or, more precisely, by linearly independent
combinations of these polynomials appropriately chosen for the ease of algebraic
calculations. This way a full agreement with the long wave theory can be expected
by construction. Let us then expand u as

u(x, y, t)= b0(x, t)g
(0)(ȳ)+ b1(x, t)g

(1)(ȳ), (6.29)

where g(0) ≡ f (0) and g(1) ≡ (1/6)((1/4)ȳ4 − ȳ3 + ȳ2). Simple algebra shows that
g(1) is a linear combination of f (0) and f (1). Further, the unknown fields b0 and b1
are supposed to be slowly varying functions of x and t , and from the definition of q
they satisfy the relationship

q =
∫ h

0
u(y)dy = 1

3
h

(
b0 + 1

15
b1

)
. (6.30)

At this stage we have three unknowns, h, b0, and b1, but from (6.30) it is evident
that h, q and b1 can be viewed as unknowns, with b0 given by b0 = (3q/h)− 1

15b1.
Substituting this into τw ≡ ∂yu|0 = b0/h gives τw = (3q/h2)− (b1/15h). Then, b1
appears as a correction to the shear at the plate that would be created by a parabolic
velocity profile corresponding to a film with thickness h and flow rate q . To see this,
redefine b1 as b1 =−15hτ so that

τw = 3q

h2
+ τ. (6.31)

What we have just done is pass from the original algebraic variables b0 and b1 to the
more physically sound variables q and τ . Accordingly, (6.29) can be transformed to

u=
(

3q

h
+ hτ

)
g(0)(ȳ)− 15hτg(1)(ȳ). (6.32)

A useful condition can be obtained from the momentum balance (6.3) differenti-
ated with respect to y,

3εRe[∂tyu+ u∂xyu+ v∂yyu] − ∂yyyu= 0,

and evaluated at y = 0 giving

3εRe∂t (τw)− ∂yyyu|0 = 0. (6.33)
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This equation shows that the shear perturbations at the wall are directly linked to the
presence of corrections to the velocity profile departing from the parabolic shape for
which they vanish identically. Using (6.32) in (6.33) we get

τ = ε
1

15
h2∂t τw.

Hence, τ is a first-order correction, a result of the derivation and not an a priori
assumption, so that the term ε∂t τ is in fact of second order and can be dropped from
(6.33). Thus, τw reads

τw = 3q

h2
+ 3εRe

h2

5
∂t

[
q

h2

]
. (6.34)

Substituting (6.34) into the averaged momentum balance (6.9), using (6.1) to elimi-
nate ∂th and the zeroth-order estimate Υ = 6/5, which is enough here, we obtain

3εRe∂tq = 5

6
h− 5

2

q

h2
− 3εRe

7

3

q

h
∂xq + ε

(
3Re

q2

h2
− 5

6
Ct

)
∂xh+ 5

6
ε3Weh∂xxxh.

(6.35)

This equation together with (6.1) is a model consistent at first order, and with the
same structure as the Kapitza–Shkadov one (6.13a), (6.13b) but with slightly differ-
ent coefficients. The differences arise from a better account of the perturbations of
τw introduced via the third derivative term in (6.33) by the ȳ3 term in g(1).

Let us now consider a gradient expansion of (6.1) and (6.35) of the form
q = q(0) + εq(1) + · · · , relevant for small-amplitude waves. This gives q(0) = h3/3
(as expected) and q(1) = (2/15)(3Re)h6∂xh− (1/3)Cth3∂xh+ (1/3)h3ε2We∂xxxh,
which, when substituted into ∂th+ ∂x[q(0)+εq(1)] = 0, gives us back the first-order
BE (5.12). Hence, by construction the near-onset behavior is correctly predicted by
this modified Shkadov model, which no longer underestimates the value of the in-
stability threshold. Noteworthy is that the inability of the Kapitza–Shkadov model
(6.13a), (6.13b) to accurately predict the instability threshold is not due to a wrong
estimate of the averaged streamwise acceleration, i.e., the shape factor Υ , but to
the neglect of the inertia corrections to the shear at the wall due to the delay of the
velocity distribution to adjust to the free-surface deformation.

At zeroth-order in ε, q is slaved to h and τw does not fluctuate: Inserting a
parabolic profile for u in (6.33) gives ∂t (∂yu|0) = 0. At O(ε), q and h are two
slowly varying effective degrees of freedom linked to τw through (6.34). Proceed-
ing to the next step, for a consistent modeling at O(ε2), four additional fields must
be introduced associated with the velocity corrections induced by the gradient ex-
pansion at second order. Supplementary conditions at the wall analogous to (6.33)
can be derived to determine these additional fields. Further, assuming these four
fields to be of O(ε2) corrections to the velocity field, which is the case as long as
the long-wave expansion holds, they can be expressed as functions of the variables
h, q and τ . After substitution, we are left with three equations for three unknowns,
h, q and τ , the latter playing the role of an additional independent effective degree
of freedom [226].
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6.5 Method of Weighted Residuals

Several conclusions can now be drawn from the previous sections:

(i) The origin of the discrepancy between the results from the Kapitza–Shkadov
approach and the BE/long wave expansion rests on the treatment of the O(1)
terms of the streamwise momentum balance and, in particular, the viscous dif-
fusion term ∂yyu there.

(ii) A drastic reduction of the complexity of the system of equations to be solved
can be achieved through an appropriate elimination of the amplitudes/fields of
the velocity profile that are effectively slaved to the true degrees of freedom of
the system.

(iii) To account for the wave dynamics deeply into the drag-inertia regime, one has
to be careful with the order of the nonlinearities as high-order nonlinearities
may trigger an unphysical behavior of the solutions similar to the unorthodox
finite-time blow up behavior encountered with the BE.

Every model presented up to now in this chapter, with the exception of the
Roberts model (6.1) and (6.26), is derived by presuming u to be a sum of poly-
nomials in the cross-stream coordinate y, or equivalently the reduced one ȳ = y/h,
and by performing an across-the-layer averaging of the momentum balance. These
ideas are now developed further and made more explicit: It can be shown that by
writing u as a polynomial in ȳ and through a general averaging formulation, at each
specific level of truncation with respect to the gradient expansion parameter ε “op-
timal” models can be obtained in the sense that the resulting models are the same
independently of the particular averaging methodology that is adopted [227, 228].
Also, at each level of truncation the best choices for the scalar products and weight
functions are sought out, i.e., the ones that lead to the final results with a minimum
of algebra and which in turn help us to select the averaging technique. In that respect
the Galerkin projection is the most efficient one.

This formulation presumes that inertia effects are weak corrections to the balance
of viscous drag and gravity. Of course, strictly speaking this holds only in the drag-
gravity regime. Nevertheless, our hope is that the obtained optimal models can be
accurate outside their region of validity and are thus capable of describing the drag-
inertia regime. This can only be tested by comparison of the linear wave regime
with experiments and Orr–Sommerfeld and of the nonlinear wave characteristics
with experiments and DNS of the full Navier–Stokes equations (as we do later in
this chapter and in Chap. 7). At the same time optimal models should ensure the
existence of solitary wave solutions for the widest possible range of parameters thus
preventing the occurrence of unphysical blow ups.

We now focus on the description of the averaging methodology. In general, most
physical problems can be formally written as E(U) = 0 for some set of field vari-
ables U in a space S . In the particular case examined here E corresponds to the
momentum balance and U to the streamwise velocity field. The methodology devel-
oped here can be extended to more involved and sophisticated problems, e.g., when
spanwise dependence (see Chap. 8) and/or Marangoni effects (see Chap. 9) are in-
cluded. In the weighted residuals method, the solution to E is sought in the form
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of a series expansion U =∑jmax
j=0 ajfj , where the fj , j = 0, . . . , jmax, are chosen

test functions that form a complete basis for S and the amplitudes aj have to be
determined [92]. S is supposed to be equipped with an inner product, noted 〈·|·〉.
Weight functions wj , j = 0, . . . , jmax, are next chosen as the main ingredients of
a projection rule to define the residuals: Rj ′ = 〈wj ′ |E(∑ajfj )〉, j ′ = 0, . . . , jmax.
The vanishing residuals Rj ′ = 0 thus yield a system for the amplitudes aj .

This is a method of weighted residuals. It is used quite frequently in a wide
variety of applications and problems. “Finite differences,” “finite elements,” and
“spectral” methods are essentially byproducts of the above general idea. Choice of
the wj fixes the particular weighted residuals method being used. “Collocation,”
“subdomain” and Galerkin methods are the most commonly used weighted residual
methods. The corresponding weight functions are: Dirac delta functions in the case
of the collocation method, “hat functions” in the case of the subdomain method,
and finally the test functions themselves in the case of the Galerkin method. Con-
vergence to the solution is generally achieved quickly by increasing the number of
residuals jmax, which explains the widespread use of the weighted residual methods.
In particular, the finite element method and the finite volume method are often used
in DNS studies of wavy film flows [99, 116, 175, 176, 218, 232]. However, the aim
here is not to apply the weighted residuals approach as a numerical methodology,
but rather to employ analytically the basic ingredients of this approach as a means
to reduce the complexity of the original set of equations. Accordingly, the weighted
residuals technique will be combined with the long wave approximation.

Once again we emphasize that although the BE fails to capture the dynamics far
from criticality, it is a rather useful as a template model such that any new model
attempting to cure the deficiencies of the BE model far from criticality must agree
with the BE model close to criticality. For this reason, the consistency with the long
wave theory is imposed at each step of our approximation so that a gradient expan-
sion of the reduced equations coincides with the corresponding gradient expansion
of the original set of equations, i.e., with the corresponding long wave theory at
the same level of approximation. We will see that the complexity of the equations
to be solved increases rapidly with the order of truncation. Consequently, we shall
restrict our attention to low-order approximations and the corresponding equations
will contain terms at most of O(ε2). Therefore, the proposed approach is somewhere
in between a direct application of the weighted residuals method and the gradient
expansion.

Let us now expand E = 0 and the variables U as an asymptotic series in the gra-
dient expansion parameter ε, E (0) + εE (1) + ε2E (2) + · · · = 0 and U (0) + εU (1) +
ε2U (2)+· · · = 0. Assume that in the projection of the variables U onto the test func-
tions fj it is possible to assign an order with respect to ε for the amplitudes aj so

that U (0) =∑j0
0 a

(0)
j fj , U (1) =∑j1

j0
a
(1)
j fj and so on. One could therefore solve a

sequence of problems E (0) = 0, E (1) = 0, . . . , as is typically the case with asymp-
totic expansions, and thus sequentially determine the amplitudes a(0)j , a(1)j , . . . . This

would lead back again to a complete slaving of U to the film thickness h and thus to
the classical long wave theory interface equations.
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Instead, we may truncate E = 0 at a given order, for example, O(ε), so that
E (0) + εE (1) = 0, i.e., we treat ε as a mere index/ordering parameter and not as a
strict perturbation parameter; effectively performing only the first step of the gradi-
ent expansion as introduced in Sect. 4.1 but without the second step, i.e., the asymp-
totic/perturbation expansion in series of ε. The resulting residuals are next solved
for the amplitudes a(0)j and a

(1)
j . Since time and space derivatives of the amplitudes

a
(1)
j are of higher order than ε, it is then possible to show that these amplitudes

are slaved to the evolution of h and a
(0)
j , leading to a drastic simplification of the

system of equations to be solved. The basic idea is therefore to make some use of
the gradient expansion in the averaging procedure without pushing it to its utmost
consequences, thus allowing a certain level of flexibility for the variables U .

6.6 First-Order Formulation

We are now ready to apply the weighted residuals method. For the first-order formu-
lation the starting point is the first-order boundary layer equations (6.3)–(6.5). The
streamwise velocity component is expanded as

u(x, y, t)=
jmax∑

j=0

aj (x, t)fj
[
y/h(x, t)

]
, (6.36)

while the cross-stream velocity component can be readily obtained through integra-
tion of the continuity equation (6.2), v =− ∫ y0 ∂xudy. The slow space-time evolu-
tion of the film suggests a natural separation of variables with the (x, t) dependence
included in the amplitudes aj and the cross-stream dependence accounted for by
test functions in terms of the reduced variable ȳ = y/h. As already mentioned,
Shkadov did propose an expansion of the velocity field in terms of test functions
of the cross-stream variable y which satisfy the boundary conditions (6.4) and (6.6)
[248]. But he did not pursue it. The use of ȳ, instead of y, means that from the start
the test functions are locally slaved to the film thickness modulations; however, the
amplitudes of the test functions can be independent of h (e.g., to leading order, the
amplitude of the velocity field contains the flow rate q) and hence the above expan-
sion provides a certain degree of flexibility for the velocity, allowing it to have its
own evolution.

Instead, Shkadov considered only a single test function

f0 = ȳ − 1

2
ȳ2, (6.37)

which corresponds to the self-similar parabolic velocity assumption (6.12). Follow-
ing Shkadov, we demand that the test functions verify the boundary conditions (6.4),
(6.6):

f ′j (1)= 0, fj (0)= 0. (6.38)
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We now recall the following important points: (i) the Nusselt flat film velocity profile
is parabolic; (ii) in the BE/long wave theory, corrections to this profile are polyno-
mials in ȳ; (iii) the set of polynomials of increasing order forms a complete basis
for the space of sufficiently smooth functions in [0,1] which satisfy the conditions
(6.4) and (6.6). Based on these points, it is then reasonable to take polynomials as
test functions:

fj = ȳj+1 − j + 1

j + 2
ȳj+2. (6.39)

Item (i) is the most important one. When the film is uniform, the velocity distribution
is semiparabolic and every amplitude aj vanishes except for a0. Therefore, the aj
are departures from the semiparabolic velocity profile induced by the deformations
of the free surface. The following proof confirms that the amplitudes aj are also
slowly varying in time and space: by differentiating jmax times (6.3) we get

∂yjmax+2u= 3εRe∂yjmax (∂tu+ u∂xu+ v∂yu). (6.40)

Now ∂yjmax+2u = −(jmax + 1)2jmax(jmax − 1) . . .2ajmax and the right hand side of
(6.40) is of O(ε) so that ajmax is also slowly varying. Differentiating next, (jmax−1)
times (6.3) shows that ajmax−1 is also of O(ε) or higher, and so on until a1. As a
consequence, derivatives of the fields aj , j ≥ 1, can be neglected in the evaluation
of the right hand side of (6.40). Therefore, since f0 is a polynomial of degree two,
∂tu+ u∂xu+ v∂yu is a polynomial in ȳ of degree four at most, and the right hand
side of (6.40) vanishes for jmax ≥ 5. Thus, aj = 0 for j ≥ 5, which shows that the
amplitudes aj are of order higher than ε for j ≥ 5.

In practice, after having defined the weights and written down the residuals, one
obtains at O(ε),

MA= εB, (6.41)

where A = (a1≤j≤jmax) is a vector of dimension jmax, B is a vector of dimension
jmax + 1 function of h, a0, ∂th, ∂xh, ∂ta0 and ∂xa0 and M is a jmax + 1 × jmax
matrix. The inversion of the linear system (6.41) gives explicit expressions for the
amplitudes aj as functions of the film thickness h, a0 and their derivatives, as well
as the solvability condition that both h and a0 must fulfill. This condition, together
with the mass conservation equation (6.1) and the flow rate

q =
∫ h

0
udy = h

jmax∑

0

2

(j + 2)(j + 3)
aj , (6.42)

gives a system of two equations for the two unknowns h and a0 for the film flow
evolution. We shall return to this point shortly.

Until now, we have avoided specifying particular weights. It is easy to show that
the results obtained so far are independent of the choice of the weights provided
that jmax ≥ 4. Indeed, requiring (6.3) to be satisfied everywhere—and not simply
on average—and inserting into this equation the expansion (6.36), leads to the can-
cellation of one polynomial in the reduced normal coordinate ȳ, say P . Truncation
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at O(ε) of the advective terms ∂tu+ u∂xu+ v∂yu involves only the parabolic pro-
file corresponding to a0, and the corresponding polynomial in ȳ is of degree four
only. Therefore, the monomial of highest degree appearing in P originates from
the term ∂yyu so that P is of degree jmax. The number of independent conditions
on the unknowns aj provided by the cancellation of P is thus jmax + 1 and it is
equal to the number of the residuals (6.41). In this case, any choice of the weight
functions would lead to equivalent systems of equations (much like, e.g., invertible
linear transformations can lead from one system to another) and then to the same
model for the evolution of the flow.

Requiring the fulfillment of (6.3) by identifying all the coefficients of this poly-
nomial sequentially in order of increasing degree yields

1

h2
(−a0 + 2a1)=−1+ εCt∂xh− ε3We∂xxxh, (6.43a)

1

h2
(−4a1 + 6a2)= 3εRe

[
∂ta0 − a0

h
∂th

]
, (6.43b)

1

h2
(−9a2 + 12a3)= 3εRe

[
−1

2
∂ta0 + a0

h
∂th+ 1

2
a0∂xa0 − a2

0

2h
∂xh

]
, (6.43c)

1

h2
(−16a3 + 20a4)= 3εRe

[
−1

3
a0∂xa0 + 2a2

0

3h
∂xh

]
, (6.43d)

1

h2
(−25a4 + 30a5)= 3εRe

[
1

12
a0∂xa0 − a2

0

6h
∂xh

]
, (6.43e)

1

h2

(−(j + 1)2aj + (j + 1)(j + 2)aj+1
)=O

(
ε2) for 5≤ j ≤ jmax − 1, (6.43f)

and

− (jmax + 1)2

h2
ajmax =O

(
ε2). (6.43g)

Inversion of the linear system (6.43a)–(6.43g) gives

a0 = h2 + 3εRe

[
−1

3
h2∂ta0 + 1

6
ha0∂th− 1

10
h2a0∂xa0 + 1

30
ha2

0∂xh

]

− εCth2∂xh+ ε3Weh2∂xxxh, (6.44a)

a1 = 3εRe

[
−1

6
h2∂ta0 + 1

12
ha0∂th− 1

20
h2a0∂xa0 + 1

60
ha2

0∂xh

]
, (6.44b)

a2 = 3εRe

[
1

18
h2∂ta0 − 1

9
ha0∂th− 1

30
h2a0∂xa0 + 1

90
ha2

0∂xh

]
, (6.44c)
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a3 = 3εRe

[
1

60
h2a0∂xa0 − 1

30
ha2

0∂xh

]
, (6.44d)

a4 = 3εRe

[
− 1

300
h2a0∂xa0 + 1

150
ha2

0∂xh

]
, (6.44e)

and one recovers ai =O(ε2) for i ≥ 5. Equation (6.44a) is the solvability condition
for h,a0 we mentioned earlier. After substitution of (6.44b)–(6.44e) into (6.42) we
have

q = 1

3
ha0 + 3εRe

[
− 1

45
h3∂ta0 + 1

360
h2a0∂th− 3

280
h3a0∂xa0 + 1

504
h2a2

0∂xh

]
.

(6.45)

The solvability condition (6.44a) and the mass conservation equation (6.1) with the
flow rate q given by (6.45) form a closed system for the two unknowns h and a0.
It is then tempting to neglect second-order terms appearing in (6.1) and to write
simply

∂th=−1

3
∂x(ha0). (6.46)

The set of equations (6.44a) and (6.46) remains consistent at O(ε). With the help of
the change of variables q̃ = ha0/3, (6.44a) and (6.46) are transformed into

∂th = −∂xq̃, (6.47a)

3εRe∂t q̃ = h− 3
q̃

h2
+ 3εRe

[
q̃

h
∂th+ 6

5

q̃2

h2
∂xh− 7

5

q̃

h
∂xq̃

]

− εCth∂xh+ ε3Weh∂xxxh. (6.47b)

Substitution of −∂xq̃ with ∂th and introducing the Shkadov scaling leads back
to the Kapitza–Shkadov model (6.13a), (6.13b). However, the mass conservation
equation (6.1) shows, as we shall demonstrate in Chap. 7, that waves on falling film
flows are basically kinematic waves, and hence (6.1) seems to have a special status.
It is therefore preferable to keep (6.1) (which is exact), and to make approximations
based on the flow rate q , which is an intrinsic variable with a solid physical meaning
and does not depend on the choice of the test functions. Equation (6.45) then gives

a0 = 3
q

h
+3εRe

[
1

15
h2∂ta0− 1

120
ha0∂th+ 9

280
h2a0∂xa0− 1

168
ha2

0∂xh

]
, (6.48)

which combined with (6.44a) gives:

h2 − 3
q

h
+ 3εRe

[
−6

5
h∂tq + 69

40
q∂th− 333

280
q∂xq + 108

70

q2

h
∂xh

]

− εCth2∂xh+ ε3Weh2∂xxxh= 0. (6.49)
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With a first-order expansion we can then replace a0 with 3q/h in (6.49) and by
using the identity ∂th=−∂xq we obtain

3εRe∂tq = 5

6
h− 5

2

q

h2
− 3εRe

17

7

q

h
∂xq + ε

(
3Re

9

7

q2

h2
− 5

6
Cth

)
∂xh

+ 5

6
ε3Weh∂xxxh, (6.50)

which can be rewritten in terms of the Shkadov scaling through the formal transfor-
mation {3εRe→ δ, εCt→ ζ , ε3We→ 1 and ε2 → η},

δ∂tq = 5

6
h− 5

2

q

h2
− δ

17

7

q

h
∂xq +

(
δ

9

7

q2

h2
− 5

6
ζh

)
∂xh+ 5

6
h∂xxxh. (6.51)

Again the number of parameters has been reduced from three to only two—δ and ζ .
Equation (6.51), together with (6.1), constitutes a closed and self-consistent model,
which will be referred to as the first-order model.

We now perform a gradient expansion of the form q = q(0) + εq(1) in the sys-
tem (6.1) and (6.50). At zeroth order we obtain, 0 = 5

6h − 5
2q

(0)/h2, therefore
q(0) = 1

3h
3, as expected. At first order we get

3εRe∂tq
(0) = −5

2

q(1)

h2
− 17

7
3εRe

q(0)

h
∂xq

(0) + ε

(
3Re

9

7

(
q(0)

h

)2

− 5

6
Cth

)
∂xh

+ 5

6
ε3Weh∂xxxh.

Making use of the expression for q(0) and substituting −∂xq(0) with ∂th we ob-
tain, q(1) = (3Re 2

15h
6 − 1

3 Cth3)∂xh+ 1
3ε

2Weh3∂xxxh, which in turn leads back to
the first-order BE (5.55) when inserted into the integral version of the kinematic
boundary condition, ∂th+ ∂x(q

(0) + εq(1))= 0.
Therefore, the gradient expansion of the system (6.1) and (6.51) fully agrees

with the classical long wave theory, as can be expected from the consistency at
O(ε) of its derivation as all neglected terms are of order higher than ε, i.e., by
construction. This agreement ensures that the system (6.1) and (6.51) does not suffer
from the major limitation of the Kapitza–Shkadov model (6.13a), (6.13b), i.e., an
erroneous prediction of the instability threshold. Most impressively, the model in
(6.1) and (6.51) is optimal at first order in the sense that once an expansion for the
velocity field in terms of polynomials has been performed and the amplitudes of
this expansion have been assigned certain orders of magnitude with respect to ε

(all amplitudes are of O(ε) and higher except the first one, which is of O(1)), the
model is independent of the particular projection methodology, i.e., it is always the
same, independent of the averaging technique employed (any other approximation
based on weighted residuals and polynomial test functions will thus converge to
it when the number of the test functions is increased). This will be demonstrated
in the next section. At the same time, the polynomial velocity field reconstructed
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from the coefficients aj fulfills (6.3) exactly and not only on average, i.e., once the
amplitudes have been ordered with respect to ε, then (6.3) is satisfied exactly.

6.7 Comparison of Weighted Residuals Methods

As stated earlier, weighted residuals methods differ from each other by different
definitions of the weights wj(ȳ). The residuals are obtained by integrating (6.3)
over the layer depth

∫ h

0
wj ′(y/h)

[
3εRe

(
∂tu+ u∂xu+ v∂yu

)− ∂yyu
]
dy

= h
(
1− εCt∂xh+ ε3We∂xxxh

)∫ 1

0
wj ′(ȳ) dȳ. (6.52)

As discussed in Sect. 6.6, neglecting inertia at second-order demands setting the
derivatives of the amplitudes aj , 1 ≤ j ≤ jmax, to zero in these equations. This
leaves us with a system that can be solved for the amplitudes, and from which an
equation for q is finally derived. Whatever the weighting strategies and the approxi-
mation levels, the equation expressing momentum conservation in all two-equation
models for h and q obtained in this way will always have the same functional form
as (6.51) but with different coefficients depending on the approximation level. Com-
parison between approximation levels can thus be made on the basis of the coeffi-
cients κi of the averaged momentum equation written below in terms of the Shkadov
scaling

δ∂tq = κ1

(
h− 3

q

h2
− ζh∂xh+ h∂xxxh

)
+ κ2δ

q

h
∂xq + κ3δ

q2

h2
∂xh, (6.53)

and by studying the convergence of the coefficients κi toward the corresponding
values in (6.51) as the truncation level increases.

6.7.1 Method of Subdomains

This is a generalization of the averaging method leading to the Kapitza–Shkadov
model (6.13a), (6.13b): Integrating (6.3) over the layer depth using just f0 and a
uniform weight and neglecting terms of O(ε2) indeed yields (6.13b). The ȳ-interval
[0,1] is split into jmax + 1 equal adjacent subintervals by jmax break points ȳi =
(i/jmax + 1). Equation (6.3) is integrated over each of these subintervals:

∫ ȳi+1

ȳi

[
3εRe(∂tu+ u∂xu+ v∂yu)− ∂yyu− 1+ εCt∂xh− ε3We∂xxxh

]
dȳ = 0,

(6.54)
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Table 6.1 Method of subdomains

jmax h− 3
q

h2
− ζh∂xh+ h∂xxxh δ

q

h
∂xq δ

q2

h2
∂xh Rec/Ct

0 1 −12

5
=−2.40

6

5
= 1.20 1

1
16

19
≈ 0.84 −1851

760
≈−2.44

993

760
≈ 1.31

16

19
≈ 0.84

2
5

6
exact −175

72
≈−2.43

31

24
≈ 1.29

5

6
exact

3
5

6
−2487

1024
≈−2.43

1317

1024
≈ 1.29

5

6

4
5

6
−17

7
exact

9

7
exact

5

6

which is equivalent to the definition of jmax + 1 “hat functions”:

ȳ→
{

1 for ȳ ∈ [ȳi , ȳi+1]
0 for ȳ ∈ [0, ȳi[ and ]ȳi+1,1].

One recognizes easily the Kármán–Pohlhausen technique when jmax = 0. The lin-
ear system for the aj resulting from (6.52) is then solved as discussed earlier. The
corresponding coefficients κi appearing in (6.53) are given in Table 6.1. Linear prop-
erties are recovered for jmax = 3 (κ1 = 1). Convergence is nearly achieved already
for jmax = 3 but jmax = 4 is necessary for a complete nonlinear agreement.

6.7.2 Collocation Method

The weight functions wj are now Dirac delta functions located at equally spaced
collocation points in the interval [0,1]. The vanishing residuals correspond to the
exact fulfillment of the equation at the locations of the Dirac delta functions. When
jmax = 0, the corresponding residual represents the evaluation of (6.3) at ȳ = 1/2.
A solvability condition is next obtained in the form (6.53) with coefficients given in
Table 6.2. Full convergence is observed at level jmax = 4.

6.7.3 Integral-Collocation Method

In this method, a simple averaging of (6.3) is augmented with additional conditions
generally placed at the boundaries. As an example, one can choose to specify the
derivatives of the momentum equation (6.3) at the wall:

∂yk
[
3εRe

(
∂tu+ u∂xu+ v∂yu

)− ∂yyu
]= 0, at y = 0,1≤ k ≤ jmax. (6.55)
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Table 6.2 Collocation method

jmax h− 3
q

h2
− ζh∂xh+ h∂xxxh δ

q

h
∂xq δ

q2

h2
∂xh Rec/Ct

0
2

3
≈ 0.67 −5

2
=−2.50

3

2
= 1.50

2

3
≈ 0.67

1
32

39
≈ 0.82 −251

104
≈−2.41

129

104
≈ 1.24

32

39
≈ 0.82

2
5

6
exact −697

288
≈−2.42

121

96
≈ 1.26

5

6
exact

3
5

6
−4973

2048
≈−2.43

2631

2048
≈ 1.28

5

6

4
5

6
−17

7
exact

9

7
exact

5

6

Table 6.3 Integral-collocation method

jmax h− 3
q

h2
− ζh∂xh+ h∂xxxh δ

q

h
∂xq δ

q2

h2
∂xh Rec/Ct

0 1 −12

5
=−2.40

6

5
= 1.20 1

1
8

11
≈ 0.73 −126

55
≈−2.29

48

55
≈ 0.87

8

11
≈ 0.73

2
5

6
exact −21

8
≈−2.62

15

8
≈ 1.87

5

6
exact

3
5

6
−19

8
≈−2.37

9

8
≈ 1.12

5

6

4
5

6
−17

7
exact

9

7
exact

5

6

In fact, expanding the streamwise velocity u on a basis of polynomials in ȳ is simi-
lar to performing a Taylor expansion of the solution at y = 0. Shkadov’s averaging
method is recovered at level 0. Results are given in Table 6.3. The hope is that the
additional “regularity” demanded by the solution at the boundaries might accelerate
the convergence process, as is the case in the treatment of the Blasius equation for
the semi-infinite boundary layer along a flat plate (see [243], Chap. XII). However,
despite our expectations, the integral-collocation method has rather poor conver-
gence properties (cf. Table 6.3).

6.7.4 Method of Moments

The weights used at the projection step are monomials of increasing degree wk = ȳk

so that the residuals correspond to the moments of E in increasing order (〈ȳ|E〉 is
the average value, 〈ȳ2|E〉 is a linear combination of the variance and the mean of E ,
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Table 6.4 Method of moments

jmax h− 3
q

h2
− ζh∂xh+ h∂xxxh δ

q

h
∂xq δ

q2

h2
∂xh Rec/Ct

0 1 −12

5
=−2.40

6

5
= 1.20 1

1
16

19
≈ 0.84 −231

95
≈−2.43

123

95
≈ 1.29

16

19
≈ 0.84

2
5

6
exact −17

7
exact

9

7
exact

5

6
exact

etc.). The equation E = 0 is fulfilled when its successive moments vanish. Level 0
with w0 ≡ 1 again corresponds to simple averaging, thus leading to the Kapitza–
Shkadov model (6.13a), (6.13b). The convergence of the method is rather fast, as
seen from data in Table 6.4.

6.7.5 Galerkin Method

The Galerkin method is the most widely used of the weighted residuals methods.
The test functions are now taken as the weight functions themselves, wj ≡ fj . The
residuals Rj thus read

∫ h

0
fj (y/h)

(
3εRe[∂tu+ u∂xu+ v∂yu] − ∂yyu

)
dy

− 2h

(j + 2)(j + 3)

(
1− εCt∂xh+ ε3We∂xxxh

)
. (6.56)

It can be shown that this method leads to the optimal equation (6.51) already at
level 0. Let us consider the first residual R0 corresponding to the parabolic velocity
profile f0. Only the term

∫ h
0 f0(y/h)∂yyudy of R0 is of special concern, since

the first-order terms ∂tu+ u∂xu+ v∂yu involve a0 and h only. Through a double
integration by parts using the boundary conditions fj (0) = 0 and f ′j (1) = 0, this

term can be written as
∫ h

0 uf ′′j (ȳ) dy. In the case j = 0 for which f ′′0 (ȳ)≡−1 we get

∫ h

0
f0(y/h)∂yyudy =− q

h2
(6.57)

from the definition of q = ∫ h0 udy, which also contains the special combination of
the ai given by (6.42) we need to close the model. Residual R0 reads explicitly

3εRe

(
2

15
h∂ta0 − 7

120
a0∂th+ 37

840
ha0∂xa0 − 11

840
a2

0∂xh

)

+ q

h2
− 1

3

(
h− εCth∂xh+ ε3Weh∂xxxh

)
. (6.58)
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Since at O(ε), a0 and 3q/h are interchangeable in all terms containing derivatives
in x or t , the cancellation of the residual (6.58) gives

3εRe

(
2

5
∂tq − 23

40

q

h
∂th− 18

35

q2

h2
∂xh+ 111

280

q

h
∂xq

)

= 1

3
h− q

h2
− εCt

3
h∂xh+ ε3We

3
h∂xxxh. (6.59)

Using the relationship ∂th = −∂xq leads finally back to the optimal system (6.1)
and (6.51). The Galerkin method is the most efficient one, requiring less algebra.

6.7.6 Remarks

Tables 6.1–6.4 show that the variations of the coefficients are not monotonic as the
approximation level is increased, and that their limiting values can be reached from
above as well as from below. This might have been expected since the full origi-
nal problem has no underlying “variational structure.” Even more interestingly, the
subdomain method and the collocation method are seen to display slow conver-
gence properties, which is quite likely connected with their “finite difference”-type
of approximation. In contrast, the method of moments and the Galerkin method
converge faster, very much like spectral methods. The latter, involve basis functions
well adapted to the problem and hence it turns out to be the most efficient.

6.8 Second-Order Formulation

Having outlined the weighted residuals strategy at first order, let us now sketch the
main steps leading to a model consistent at second order. The starting point is the
second-order boundary layer equations derived in Chap. 4. For purposes of clarity
we rewrite here the streamwise momentum balance,

3εRe(∂tu+ u∂xu+ v∂yu)− ∂yyu− 2ε2∂xxu

= 1+ ε2∂x(∂xu|h)− εCt∂xh+ ε3We∂xxxh, (6.60)

and the tangential stress balance at the interface

∂yu|h = ε2(4∂xh∂xu|h − ∂xv|h). (6.61)

The continuity equation (6.2), the no-slip condition (6.4) and the kinematic bound-
ary condition (6.5) (or equivalently the mass conservation equation (6.1)) remain
unchanged. The cross-stream component of the velocity v is linked to the stream-
wise velocity component u through the continuity equation, v =− ∫ h0 ∂xudy. Equa-
tions (6.60) and (6.61) differ from their first-order counterparts (6.3) and (6.6) by
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the retention of the viscous second-order terms, which as we shall demonstrate in
Sect. 7.1.3 modify the dispersion of the waves.

Comparison of the different weighted residuals methods reveals that the Galerkin
method is again well adapted to the problem even at second order and is the most
efficient one, requiring less algebra.

6.8.1 Full Second-Order Model

At O(ε), test functions were chosen to satisfy boundary conditions (6.4) and (6.61),
which leads to the definition (6.39) of the functions fj . However, unlike the first-
order problem where the tangential stress balance is homogeneous, the tangential
stress balance (6.61) is nonhomogeneous, i.e., its right hand side is nonzero due to
the presence of the second-order viscous terms and cannot be satisfied from the start
by the test functions. This boundary condition then becomes a new constraint on the
amplitudes aj and is effectively satisfied through a tau method.3 The set of test func-
tions is therefore restricted to polynomials satisfying the no-slip condition fj (0)= 0
only. The simplest possible basis then is the “canonical” one, yi , i ≥ 1. Unfortu-
nately, the level of complexity of the system to solve increases dramatically with
the required order of consistency in ε. In fact, by extending the argument leading to
the conclusion that the first-order approximation to u, say ufirst, is a polynomial of
degree six, gives that the second-order approximation is a polynomial of degree ten:
the inertia term, ∂tu+u∂xu+v∂yu, is formally quadratic, hence of degree eight, the
sum of the degrees of f0 and ufirst, and has to be compensated by a term originating
from ∂yyu, hence u, of degree ten. The general solution thus depends on h plus ten
supplementary amplitudes (condition u|0 = 0 suppresses one coefficient), of which
five at most are first-order quantities, since the fields aj , 0 ≤ j ≤ 4, are nonzero at
that order. Written as a polynomial in ȳ equal to zero, the inversion of the result-
ing system by sequentially setting the coefficient of each monomial to zero, is still
possible.

However, the resulting model is a complicated set of six equations with six un-
knowns! The choice of the canonical basis gives no indication on the way to reduce
effectively the complexity of the model and to isolate significant amplitudes other
than those that can be adiabatically eliminated, i.e., slaved to the evolutions of the
former ones. Recall that our objective is to obtain the simplest formulation consis-
tent at O(ε2) that accounts for the observed physical phenomenon quantitatively, or
at least qualitatively. As for the derivation process at first order, amplitudes can be
eliminated easily if their derivatives are slowly varying, i.e., of order higher than ε2.

3In weighted residuals terminology the term “tau method” typically refers to a variant of the
Galerkin method invented by Lanczos in which a number of amplitudes of the projections of the
unknown functions onto a set of test functions has been eliminated via substitution of the projec-
tion onto the boundary conditions. The resulting expansions of the unknown functions then satisfy
the boundary conditions [Gottlieb & Orszag 1977]. In essence, the tau method “homogenizes” the
nonhomogeneous boundary conditions.
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This shows in turn that they are of order higher than ε, which means that the corre-
sponding test functions are not needed to approximate the velocity field at that order.
We are thus led to determine the minimal number of polynomials that are required
to approximate u at O(ε) consistently, which corresponds also to the number of in-
dependent fields required to ensure consistency at second order (in addition to h,
only one, namely q , is necessary at first order).

It can be shown that the minimum number of fields necessary to approximate u

at O(ε) can be obtained directly from the first-order boundary layer system (6.2)–
(6.6). Differentiating once (6.3) with respect to y and making use of the continuity
equation (6.2) yields

3εRe(∂tyu+ u∂xyu+ v∂yyu)− ∂yyyu= 0, (6.62)

that we next apply at y = h. The kinematic boundary condition (6.5) gives
v|h∂yyu|h = (∂th+ u|h∂xh)∂yyu|h so that,

3εRe
[
∂t (∂yu|h)+ u|h∂x(∂yu|h)

]− ∂yyyu|h = 0, (6.63)

which in view of the tangential stress balance (6.6) reduces to

∂yyyu|h = 0. (6.64)

Similarly, differentiating now three times (6.3) with respect to y and making use of
the continuity equation (6.2), one obtains

3εRe(∂ty3u+ u∂xy3u+ v∂y4u+ 2∂yu∂xyyu+ 2∂yv∂yyyu)− ∂y5u= 0. (6.65)

Written at y = h with the help of (6.6) and (6.64), (6.65) now reads

3εRe(∂ty3u|h + u|h∂xy3u|h + v|h∂y4u|h)− ∂y5u|h = 0, (6.66)

or by making use of the kinematic boundary condition (6.5),

3εRe
[
∂t (∂yyyu|h)+ u|h∂x(∂yyyu|h)

]− ∂y5u|h = 0. (6.67)

Thus, we finally obtain

∂y5u|h = 0. (6.68)

The argument now on the successive differentiation of (6.3) developed in Sect. 6.6
still applies and shows that for polynomials of degree higher or equal to seven, the
associated amplitudes bj are of order higher than ε.

Let us assume that at O(ε), u is given by u=∑jmax−1
0 aj f(j)(ȳ), where the fields

ai are functions of q , h and their derivatives, and where the ai are not linearly
independent (there is at last one linear combination of the ai that is zero). Assume
also that f(i) is a polynomial of degree i. Thus, jmax ≤ 7. Then (6.4), (6.6), (6.64) and
(6.68) give, f(i)(0) = d f(i)/dȳ(1) = d3f(i)/dȳ3(1) = d5f(i)/dȳ5(1) = 0. Therefore,
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a0 = a1 = a3 = a5 = 0, and hence f(2) must be proportional to f0. Set f(2) ≡ f0. The
polynomial d2f(4)/dȳ2 is of degree two and satisfies (6.6). We thus have

d2f(4)

dȳ2
= c1f0 + c2, (6.69)

where c1,2 are constants. With similar arguments, we get d4f(6)/dȳ4 = c3f0 + c4,
where c3, c4 are constants, which upon integrating twice yields d2f(6)/dȳ2 =
c3(− 1

3 ȳ + 1
6 ȳ

3 − 1
24 ȳ

4)− c4f0 + c5 or finally

d2f(6)

dȳ2
= 1

6
c3

(
f1 − 1

3
f2

)
−
(
c4 + 1

3
c3

)
f0 + c5. (6.70)

We have thus proved that only three fields are necessary to approximate the velocity
field at O(ε) and that these fields correspond to polynomials of degree two, four and
six, verifying relations (6.69) and (6.70).

Let us now turn to the explicit computation of the expression for u at O(ε) as
a function of q , h and their derivatives. Substituting a0 with q in the expressions
(6.44b)–(6.44e) through a0 = 3q/h+O(ε) we obtain

a1 = 3εRe

[
−1

2
h∂tq − 3

5
h∂x

(
q2

h

)]
,

a2 = 3εRe

[
1

6
h∂tq + 2

5

q2∂xh

h
+ 1

5
q∂xq

]
,

a3 = 3εRe

[
3

20
h3q∂x

(
q

h3

)]
,

a4 = 3εRe

[
− 3

100
h3q∂x

(
q

h3

)]
.

(6.71)

As a1 + 3a2 = −(3/5)h3q∂x(q/h
3) = −4a3 = 20a4, and thus a2 = −(1/3)a1 −

(4/3)a3, the velocity field therefore at O(ε) reads

u= 3
q

h
f0 + a1

(
−2

5
f0 + f1 − 1

3
f2

)
+ a3

(
8

35
f0 − 4

3
f2 + f3 − 1

5
f4

)
. (6.72)

It can be verified without difficulty that the polynomials appearing in (6.72) satisfy
(6.69) and (6.70).

To take advantage of the specific form of u given by (6.72), it is best, instead of
using the fj , to turn to appropriate combinations of these functions dictated by the
above expression for u. Let us denote them as Fj and the corresponding amplitudes
as bj . Again, F0 ≡ f0 is needed to ensure that b0 (or equivalently q) is the only
amplitude of O(ε0); the other polynomials Fj are corrections to the parabolic profile
F0, and the associated bj amplitudes are at least of O(ε). Two other polynomials,
F1 and F2, must be defined to account for the departures of the velocity profile from
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its parabolic shape at O(ε) with the second one being of higher order. The difficulty
here is to find the simplest formulation without having to invert the complicated
system of seven linear equations for the expressions of bj , 3 ≤ j ≤ 9. Fortunately,
a shortcut is possible by considering again the O(ε0) terms of the residuals Rj

of which
∫ h

0 wj∂yyu is the only term of special concern, since the unknowns bj ,
i ≥ 3, may enter into the evaluation of the residuals only through this term. Two
integrations by parts give

∫ h

0
wj

(
y

h

)
∂yyudy =

[
wj

(
y

h

)
∂yu

]h

0
− 1

h

[
w′
j

(
y

h

)
u

]h

0
+ 1

h2

∫ h

0
w′′
j

(
y

h

)
udy.

(6.73)

As ∂yu|h (6.61) is already of O(ε), it may only involve h, b0 and their derivatives.
By making also use of the no-slip condition on the plate, u|0 = 0, only three terms
are left, namely wj(0)∂yu|0, w′

j (1)u|h and
∫ h

0 w′′
j (y/h)udy. Considering relations

(6.69) and (6.70), a complete set of orthogonal polynomials
∫ 1

0 FiFj dȳ ∝ δij is
the most appropriate. As a matter of fact, as the polynomials F0, F1 and F2 are
linear combinations of f0, f1 and f2 all verify w′

j (1)= 0. More importantly, (6.69)
and (6.70) ensure that F ′′

0 , F ′′
1 and F ′′

2 are linear combinations of 1, F0 and F1.
This dramatically simplifies the definitions of the seven polynomials and hence the
approximation of the velocity field at O(ε2) and the evaluation of the corresponding
residuals.

For this reason, an orthogonal basis can be constructed through a “Gram–
Schmidt orthogonalization” procedure. More specifically, F1 is sought as a linear
combination of F0 and f1 − (1/3)f2. Next F2 is sought as a linear combination of
F0, F1 and −(4/3)f2 + f3 − (1/5)f4. We then arrive at

F0 = ȳ − 1

2
ȳ2, (6.74a)

F1 = ȳ − 17

6
ȳ2 + 7

3
ȳ3 − 7

12
ȳ4, (6.74b)

F2 = ȳ − 13

2
ȳ2 + 57

4
ȳ3 − 111

8
ȳ4 + 99

16
ȳ5 − 33

32
ȳ6. (6.74c)

The basis is next completed with other independent polynomials of increasing
degree, whose expressions have no importance since the Galerkin procedure avoids
the determination of their coefficients. As expected, F ′′

0 , F ′′
1 and F ′′

2 are linear com-
binations of 1, F0 and F1. We have

[F0]′′ = −1, [F1]′′ = 14F0 − 17

3
, and [F2]′′ = 1485

28
F1 + 909

28
F0 − 13,

and consequently

∫ h

0
F0(y/h)∂yyudy = 1

2
∂yu|h − q

h2
, (6.75a)
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∫ h

0
F1(y/h)∂yyudy = − 1

12
∂yu|h − 17

3

q

h2
+ 14

h2

∫ h

0
F0(y/h)udy, (6.75b)

∫ h

0
F2(y/h)∂yyudy = 1

32
∂yu|h − 13

q

h2
+ 909

28h2

∫ h

0
F0(y/h)udy

+ 1485

28h2

∫ h

0
F1(y/h)udy. (6.75c)

As for the first-order model, it is therefore appropriate to substitute b0 with the
flow rate q . Similarly, it is convenient to work with amplitudes homogeneous in q .
We thus set

u = 3

h
(q − s1 − s2)F0(ȳ)+ 45

s1

h
F1(ȳ)+ 210

h

(

s2 −
9∑

i=3

si

)

F2(ȳ)

+
9∑

i=3

1
∫ 1

0 Fi(ȳ) dȳ

si

h
Fi(ȳ), (6.76)

where s1, s2 are at most first-order inertia corrections to the velocity distribu-
tion (they also contain terms of O(ε2)) and sj , j ≥ 3, are corrections at most of

O(ε2) (they also contain terms of O(ε3)). By noticing that
∫ 1

0 F0(ȳ) dȳ = 1/3,
∫ 1

0 F1(ȳ) dȳ = 1/45 and
∫ 1

0 F2(ȳ) dȳ = 1/210, one can easily see that the flow rate

definition, q = ∫ h0 udy, is still satisfied by the expansion (6.76). This also ensures
that the projections of u on F0 and F1 only involve the corrections s1, s2 and not the
sj , j ≥ 3, corrections,4 which combined with (6.75a)–(6.75c) enables one to close
the system of equations by obtaining the first three residuals only,

∫ h

0
Fj (y/h)

[
3εRe(∂tu+ u∂xu+ v∂yu)− ∂yyu− 2ε2∂xxu

]
dy

= h
[
1+ ε2∂x(∂xu|h)− εCt∂xh+ ε3We∂xxxh

] ∫ 1

0
Fj (ȳ) dȳ, (6.77)

for j = 0, 1 and 2. Finally, we get a system of four evolution equations for the four
unknowns h, q , s1 and s2 that we rewrite below using the Shkadov scaling:

∂th = −∂xq, (6.78a)

δ∂tq = 27

28
h− 81

28

q

h2
− 33

s1

h2
− 3069

28

s2

h2
− 27

28
ζh∂xh+ 27

28
h∂xxxh

4Although sj , j ≥ 3, are at most of O(ε2) (and they contain terms of O(ε3)), their contribution in
the projection (6.75a)–(6.75c) and hence in the resulting system is of O(ε3) and higher due to the
orthogonality between Fj , j ≥ 2, and F0,F1.
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+ δ

(
−12

5

qs1∂xh

h2
− 126

65

qs2∂xh

h2
+ 12

5

s1∂xq

h
+ 171

65

s2∂xq

h
+ 12

5

q∂xs1

h

+ 1017

455

q∂xs2

h
+ 6

5

q2∂xh

h2
− 12

5

q∂xq

h

)
+ η

(
5025

896

q(∂xh)
2

h2

− 5055

896

∂xq∂xh

h
− 10851

1792

q∂xxh

h
+ 2027

448
∂xxq

)
, (6.78b)

δ∂t s1 = 1

10
h− 3

10

q

h2
− 126

5

s1

h2
− 126

5

s2

h2
− 1

10
ζh∂xh+ 1

10
h∂xxxh

+ δ

(
− 3

35

q2∂xh

h2
+ 1

35

q∂xq

h
+ 108

55

qs1∂xh

h2
− 5022

5005

qs2∂xh

h2

− 103

55

s1∂xq

h
+ 9657

5005

s2∂xq

h
− 39

55

q∂xs1

h
+ 10557

10010

q∂xs2

h

)

+ η

(
93

40

q(∂xh)
2

h2
− 69

40

∂xh∂xq

h
+ 21

80

q∂xxh

h
− 9

40
∂xxq

)
, (6.78c)

δ∂t s2 = 13

420
h− 13

140

q

h2
− 39

5

s1

h2
− 11817

140

s2

h2
− 13

420
ζh∂xh+ 13

420
h∂xxxh

+ δ

(
− 4

11

qs1∂xh

h2
+ 18

11

qs2∂xh

h2
− 2

33

s1∂xq

h
− 19

11

s2∂xq

h
+ 6

55

q∂xs1

h

− 288

385

q∂xs2

h

)
+ η

(
−3211

4480

q(∂xh)
2

h2
+ 2613

4480

∂xh∂xq

h
− 2847

8960

q∂xxh

h

+ 559

2240
∂xxq

)
. (6.78d)

As required, a gradient expansion q = q(0)+ εq(1)+ ε2q(2), s1,2 = εs
(1)
1,2+ ε2s

(2)
1,2

(recall that s1, s2 contain terms of O(ε) and O(ε2)), recovers the second-order
BE (5.13) (including the second-order surface tension terms in q(2)). The above
system will be referred to as the full second-order model.

6.8.2 Simplified Second-Order Model

The second order model (6.78a)–(6.78d) is complicated. But, it can be straightfor-
wardly simplified by assuming s1 and s2 to be of order higher than second, i.e., that
the dynamics of the flow is in effect governed by only two variables, the film thick-
ness h and the flow rate q (a justification of this assumption will be given in the next
section). Thus, the derivatives of s1, s2 or their products with h and q derivatives can
be dropped so that they only enter into the calculation via the terms 1

h2

∫ h
0 F ′′

j udy
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appearing in the evaluation of the residuals (6.77) as earlier noted. With this assump-
tion and because F ′′

0 =−1, the quantities s1 and s2 do not appear into the evaluation
of the first residual. Thus, applying the Galerkin method to the second-order prob-
lem but with a single function F0 leads to the solvability condition:

δ∂tq = 5

6
h− 5

2

q

h2
− δ

17

7

q

h
∂xq +

(
δ

9

7

q2

h2
− 5

6
ζh

)
∂xh+ 5

6
h∂xxxh

+ η

[
4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+ 9

2
∂xxq

]
. (6.79)

The terms within the square brackets are generated by the second-order contribu-
tions originating from η[2∂xxu+ ∂x(∂xu|h)] in the momentum equation (6.60) and
the tangential stress boundary condition (6.61). As such they include the effect of
viscous dispersion that was lacking at first order. Hereinafter, (6.1) and (6.79) will be
referred to as the simplified second-order model. As will be shown later, the system
(6.1) and (6.79) is the simplest formulation that accurately accounts for the two-
dimensional traveling wave evolutions of film flows at moderate Reynolds numbers
(see Chap. 7).

Although taking s1 and s2 of order higher than second is a drastic assumption, it
is not equivalent to using the self-similar parabolic profile (6.12). With this assump-
tion, the system of the two residuals R1 and R2 that contain the weights F1 and
F2 can be solved for s1 and s2. Consequently, the corrections of the velocity profile
from its parabolic shape, which are assumed to be varying in time and length scales
much slower than the film thickness, are not set to zero, but can still be computed
from the solutions of the system (6.1), (6.79).

Yet this closure assumption and associated elimination of s1 and s2 is not satis-
factory, since second-order inertia terms originating from the corrections to the ve-
locity distribution are not taken into account in the simplified second-order model.
Though these second-order corrections are small at onset, the gradient expansion of
(6.79) fails to reproduce the exact expression for the flow rate at O(ε2) given by
the long wave theory. Actually, the flow rate expression obtained from a gradient
expansion of (6.79) differs from the exact one only through the coefficient of the
first inertia term whose value is 636

175 instead of the correct value 127
35 , a very small

deviation indeed of ∼ 0.2%. Still, small differences with the exact result, i.e., full
Navier–Stokes, quite likely will be amplified as Re increases and especially when
the flow becomes three-dimensional (in Chap. 8 we discuss the effects of second-
order inertial terms on three-dimensional wave patterns). A different strategy for
eliminating s1 and s2 is then required.

6.9 Reduction of the Full Second-Order Model

Our discussion above highlighted the need to include the second-order inertia cor-
rections to the velocity distribution. At the same time of particular interest would
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be the derivation of accurate second-order models taking into account these cor-
rections but involving only two equations for two independent variables such as h
and q . The theoretical analysis and the numerical integration of models such as (6.1)
and (6.78a)–(6.78d) are indeed simpler than full Navier–Stokes and the boundary
layer formulation (6.60). However, dealing with the four fields of (6.1) and (6.78a)–
(6.78d) remains a difficult task, and a definitive two-field formulation consistent at
O(ε2) seems desirable. Accordingly, we follow [238] and develop a reduction strat-
egy aiming at obtaining a two-equation model which also yields with a gradient
expansion the BE at O(ε2).

A simple argument permits us to justify the elimination of s1 and s2. Since vis-
cosity acts so as to ensure the coherence of the flow across the layer, velocity pertur-
bations varying rapidly in the direction normal to the wall are efficiently damped by
viscosity. Thus s1 and s2 corresponding to high degree polynomials should be also
efficiently damped. This concept can be checked by linearizing system (6.78a)–
(6.78d) around the Nusselt flat film flow in the zero wavenumber limit, that is, as-
suming no spatial variations. The flat film mass balance (6.1) thus suggests a con-
stant thickness. By writing h= 1+ εh̃ and q = 1/3+ εq̃ , si = εs̃i where ε� 1, we
get,

δ
dṼ
dt

=MṼ, (6.80)

where Ṽ = (h̃, q̃, s̃1, s̃2) and M is a matrix corresponding to the linear part of
(6.78a)–(6.78d). The first equation of (6.80) is simply dh̃/dt = 0. The eigenval-
ues λi of Ṽ are 0, −2.47, −22.3, and −87.7. Because of the large gap between (λ1,
λ2) and (λ3, λ4), it is evident that, at low Reynolds numbers and provided that the
long wave assumption is valid, the evolution of the flow is governed by the neu-
tral mode with λ1 = 0 associated with the free surface elevation (the corresponding
eigenvector is (h̃, q̃, s̃1, s̃2) = (1,0,0,0)) and the mode corresponding to λ2; the
corresponding eigenvector is (h̃, q̃, s̃1, s̃2)= (0,1.00,−1.33× 10−2,1.38× 10−4)

(this argument is similar to the presence of a sufficient spectral gap necessary for
the center manifold approach followed by Roberts). Consequently, given that this
eigenvector is nearly aligned with the null eigenvector, the quantities s1 and s2 are
truly slaved to the evolution of the thickness and of the flow rate, at least close to
the instability threshold.

6.9.1 Elimination of s1 and s2

Having justified the elimination of s1 and s2, let us attempt its practical implemen-
tation. The fields s1 and s2 are corrections to the Nusselt flat film parabolic profile
corresponding to F0. Hence, they are at least first-order terms produced by the de-
formation of the free surface. In the first residual R0 associated with the weight
F0, the amplitudes s1 and s2 appear through inertia terms involving their space and
time derivatives or through products with derivatives of h and q , which are terms



182 6 Modeling Methodologies for Moderate Reynolds Number Flows

of O(ε2). In fact, as already mentioned, the corrections to the velocity field can-
not appear in R0 at lowest order since the viscous term

∫ h
0 F0(y/h)∂yyudy yields

1
2∂yu|y=h− q/h2, owing to the definition of the streamwise flow rate, q = ∫ h0 udy,
and 1

2∂yu|y=h is already of O(ε2), as can be seen from the expression of the tan-
gential stress balance at the free surface (6.61).

At this stage, we need to determine both quantities s1 and s2 as functions of h,
q and their derivatives truncated at O(ε). Such relations can easily be obtained by
dropping all second-order terms from residuals R1 and R2 and then solving for s1
and s2. One gets

s1 = 3εRe

(
1

210
h2∂tq − 19

1925
q2∂xh+ 74

5775
hq∂xq

)
+O

(
ε2), (6.81a)

s2 = 3εRe

(
2

5775
q2∂xh− 2

17325
hq∂xq

)
+O

(
ε2). (6.81b)

Finally, substitution of (6.81a), (6.81b) into R0 and introducing the Shkadov scaling
gives

δ∂tq = 5
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17
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q

h
∂xq +

(
δ
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q2
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ζh

)
∂xh+ 5

6
h∂xxxh

+ δ2K(h, q)+ η

(
4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+ 9

2
∂xxq

)
, (6.82)

where the additional terms arising from the elimination of s1 and s2 are second-order
inertia terms all gathered in K:

K = 1

210
h2∂tt q − 1

105
q∂xh∂tq + 1

42
h∂xq∂tq + 17

630
hq∂xtq + 653

8085
q(∂xq)

2

− 26

231

q2

h
∂xh∂xq + 386

8085
q2∂xxq + 104

2695

q3

h2
(∂xh)

2 − 78

2695

q3

h
∂xxh. (6.83)

These corrections contain nonlinearities up to seventh order. They also contain time
derivatives that are difficult to handle in numerical computations. Fortunately, the
Nusselt flat film/zeroth-order relationship between q and h, q = h3/3, allows us to
simplify the expression of K. Using also ∂th=−h2∂xh+O(ε), we obtain the more
compact expression

K=− 1

630
h7(∂xh)

2. (6.84)

The behavior of (6.82) with the inertia corrections K given either by (6.83)
or (6.84) in the drag-inertia regime can be understood by computing the single-
hump solitary wave solutions for a vertical wall and by neglecting second-order
viscous effects (η = 0). The computations were performed using the software
AUTO-07P with the HOMCONT subroutines for continuation of homoclinic orbits
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Fig. 6.2 Speed c (a) and amplitude hm (b) of the single-hump solitary waves as functions of the
reduced Reynolds number δ. The wall is vertical and viscous dispersion is omitted (ζ = η = 0).
1: Full second-order model (6.78a)–(6.78d); 2: simplified second-order model (6.1, 6.79); 3: (6.1,
6.82) with K given by (6.83); 4: with K given by (6.84); 5: with K given by (6.85); 6: regularized
model (6.1, 6.92); solid squares: solutions to the first-order boundary layer equations from [46]

(an introduction to AUTO can be found in Appendices F.1 and F.2). Figure 6.2
displays the speed and amplitude of the solitary waves as functions of the re-
duced Reynolds number δ from (6.82) with the inertia corrections K given ei-
ther by (6.83) or (6.84), compared against the solutions of the full-second order
model (6.78a)–(6.78d), the simplified second-order model (6.1), (6.79), the “reg-
ularized model,” to be introduced in the next section, and the results obtained
by Chang et al. [46] with the first-order boundary layer equations (6.2)–(6.6).
The construction of the solitary wave solution branches is an important test for
the validity of the different models obtained from the weighted residuals meth-
ods.

The simplified model and the full second-order model both exhibit single-hump
solitary wave solutions for all δ and their speeds agree well with the results of Chang
et al. [46]. Noteworthy is that with both expressions (6.83) and (6.84) of K the
corresponding branch of single-hump solitary wave solutions has a turning point
in the transition region between the drag-gravity and the drag-inertia regimes. This
unorthodox behavior is similar to that encountered with the BE in Chap. 5 and is
related to the high degree nonlinearities present in (6.83) and (6.84) resulting from
the elimination of s1, s2. We therefore end up with basically the same difficulty as
in the case of single-variable interface equations such as the BE. The fundamental
problem then is how to obtain the inertia terms in a form that accounts accurately
for the drag-inertia regime for the widest possible range of values of the reduced
Reynolds number δ.

On the other hand, the full second-order, simplified second-order and regularized
models seem to be performing well without any turning points and hence unphysical
behavior. However, the full second-order model seems to “overshoot” the speed
of the solitary waves at δ � 2 where the solution branch for the amplitude of the
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waves exhibits a slight “bend,” which then makes the branch move toward higher
amplitudes and eventually overestimates the amplitudes of the waves for δ � 2.5.

Interestingly, the full second-order model that has a relatively large number of
fields (four), h, q , s1 and s2 performs worse for η = 0 than the simplified second-
order model, where s1 and s2 are suppressed. This appears to be in contradiction
with a basic property of the weighted residuals methods: As we have already pointed
out, weighted residuals methods have good convergence characteristics and in fact
their convergence improves as the number of test functions increases. However, in
the approach adopted here, it is the truncation of the averaged equations resulting
from a certain ordering of their terms implied by the long wave assumption—with
the consequence that several terms are dropped out—that affects the convergence
properties of the weighted residuals method. One then anticipates that were we to
follow closely the spirit of the weighted residuals technique as a numerical tool for
the solution of sets of partial differential equations, i.e., in a purely numerical im-
plementation of the technique in our problem, we would find that indeed increasing
the number of fields si improves the convergence of the technique. However, the
drawback would be that the resulting system of equations would be substantially
more complicated than (6.78a)–(6.78d).

Therefore, the problem with the full second-order model is not the number of
fields but rather the simplification of the average equations using the long wave
approximation. This then produces high-order nonlinearities, an effect similar to
what is happening with the long wave theory where higher-order terms with high-
order nonlinearities lead to poor convergence characteristics of the corresponding
expansions. Hence, as for the BE, whose validity domain when traveling wave so-
lutions are considered shrinks in the limit k→ 0, i.e., when traveling waves become
increasingly localized leading to solitary pulses (Chap. 5), the range of parame-
ters for which boundedness of the solutions and reasonable agreement with DNS
and experiments can be expected for the different weighted residuals models can
also be limited when solitary waves are considered. We note that the high-order
nonlinearities produced by the long wave approximation, which are responsible
for the overshoot of the full second-order model in Fig. 6.2, are due to inertia.
These second-order inertia terms are gathered under the parameter δ in (6.78b)–
(6.78d).

Setting η = 0, as in the construction of the solitary wave branches of solutions
displayed in Fig. 6.2, is the most stringent test one can think of, since the stabilizing
effects of the streamwise viscous dispersion are absent. Decreasing η has little effect
on the main solitary hump but affects the amplitude and number of the oscillations
at its front (Sect. 4.3) as predicted by the linear stability analysis of the flat film
(Sect. 7.1.1). As far as the number of frontal oscillations are concerned, decreasing
η increases the band of unstable modes as the cut-off wavenumber kc increases. This
follows from the analysis in Sect. 7.1.1. For example, for the simplified second-order
model, rewrite the equation obtained by substituting the expression for c in (7.11a)
into (7.11b) in terms of the Shkadov scaling. The resulting equation shows that as
η decreases, kc increases. The same conclusion can also be drawn from Fig. 7.2 for
the cut-off frequency as a function of Re (the cut-off frequency is directly related
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to kc). Simply compare the first-order model with the simplified and full second-
order models: When η �= 0, fc (and similarly kc) is reduced.

As η decreases, the number of oscillations at the front increases while the oscil-
lations are close packed and with a smaller wavelength (because kc increases). An
example of a solitary pulse with many oscillations at the front is given in Fig. 7.31
for the large value δ = 5, i.e., deeply in the drag-inertia regime. This pulse is difficult
to construct numerically with AUTO-07P. Indeed, in the numerical implementation
of AUTO-07P, we find that in the absence of viscous dispersion, the number of
points in the domain must increase substantially in order to achieve convergence.
But convergence has indeed been achieved in all cases in Fig. 6.2. The reason for
the overshoot of the second-order model is not numerical but it is due to the second-
order inertia terms as first noted above. The long wave approximation fails in the
oscillatory region in front of a pulse due to the presence of rapid and sharp oscilla-
tions there: Because of the high-order nonlinearities in the second-order terms and
large slopes in the oscillatory region, the second-order terms are no longer small
compared to the first-order ones (the order of magnitude of nonlinearities is more
sensitive to the local slope when nonlinearities are high, as in the BE, where indeed
the “dangerous” terms originate from the high-order nonlinearities). On the other
hand, we note that the behavior of the first-order model (not shown in the figure) is
similar to the simplified one, i.e., there is no overshoot despite the rapid and sharp
oscillations at the front. Simply, there are no second-order inertia terms in the first-
order model.

We then expect the performance of the full second-order model to improve sub-
stantially in the drag-inertia regime when more realistic situations with η �= 0 are
considered (and still the plane remains vertical). The local slope in the oscilla-
tory region in front of the pulse is now smaller while the oscillations have a larger
wavelength. Indeed, this is the case in Fig. 6.3 where single hump solitary wave
solutions of the different models are shown. The Kapitza number is fixed at the
value Γ = 529 corresponding to the conditions of an experiment by Kapitza [141]
(ν = 2× 10−6 m2 s−1 and σ/ρ = 29× 10−6 m3 s−2).

With the help of the definitions δ = 3Re/κ , η = κ−2 and κ = We1/3 =
Γ (3Re)−2/3, one obtains the dependence η= δ4/11Γ −6/11 of the viscous dispersion
number η in terms of Γ and δ. As a consequence, for given liquid, i.e., Γ = const,
the effect of streamwise viscous dispersion increases with the reduced Reynolds
number δ so that, for Γ = 529, η reaches 0.059 at δ = 5. Though “small,” the
stabilizing effect of viscous dispersion in reducing the amplitude and number of
oscillations at the front of the pulses is noticeable and the questionable overshoot
of the branch of solutions to the full second-order model observed in Fig. 6.2 is no
longer present in Fig. 6.3. Figure 6.3 then represents a rather compelling test of the
validity of the full second-order in realistic situations where η �= 0.

Let us note the topological similitude of the solution branches obtained from the
simplified second-order and regularized models (labeled 2 and 6 in Figs. 6.2 and 6.3)
to those obtained from the first-order boundary layer equations (solutions to these
equations are identical for the computations shown in Figs. 6.2 and 6.3 since second-
order viscous terms are neglected). The simplified second-order model seems to be
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Fig. 6.3 Speed c (a) and amplitude hm (b) of the single-hump solitary waves as functions of the
reduced Reynolds number δ. The wall is vertical and the liquid is fixed (ζ = 0 and Γ = 529).
1: Full second-order model (6.78a)–(6.78d); 2: second-order simplified model (6.1, 6.79); 3: (6.1,
6.82) with K given by (6.83); 4: with K given by (6.84); 5: with K given by (6.85); 6: regularized
model (6.1), (6.92); solid squares: solutions to the first-order boundary layer equations from [46]

following more closely the first-order boundary layer equations compared to the
regularized one. However, the numerical solution of the first-order boundary layer
equations might not be accurate enough in the drag-inertia regime, where the steep-
ness of the solitary wave front and the large number of capillary ripples preceding
the main solitary hump call for refined numerical mesh grids in the region in front
of the main hump. The precise details of the numerical scheme used by Chang et al.
[46] are not given in their study. Yet, some details of their algorithm are given, i.e.,
a maximum of 7 mesh points in the cross-stream direction and a number of 70 com-
plex Fourier modes in the streamwise direction, which in our view is insufficient
to represent correctly one-hump solitary wave solutions deeply in the drag-inertia
regime.

As far as the regularized model is concerned, our anticipation is that it is more
accurate than the simplified second-order one. In Chap. 7 we shall demonstrate,
however, that for two-dimensional traveling waves the regularized and the simpli-
fied models give similar results. In fact, the regularized model turns out to be more
accurate than the simplified one when the wave dynamics of the film become three-
dimensional at larger Reynolds numbers. Further, in Chap. 8 we shall see that the
inertial terms included into the regularized model (via an appropriate regularization
procedure) capture the synchronous three-dimensional patterns observed in the ex-
periments by Liu et al. [170]. The same is true for the full second-order model but
not for the simplified second-order one. A precise answer to the question of which
model is more accurate in the drag-inertia regime can only be given by compar-
isons with exact solitary wave solutions from DNS, which are not available as of
yet, unlike traveling wave solutions. DNS solutions for homoclinic orbits are not
straightforward, especially in the region of moderate-to-large Re, where the number
of capillary ripples at the front of the primary solitary hump increases substantially,
thus necessitating long computational domains.
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Fig. 6.4 Traveling wavetrain approaching solitary waves corresponding to an experiment by Liu
and Gollub [168]. The forcing frequency is f = 1.5 Hz. Parameters are β = 6.4°, Re= 19.33 and
Γ = 526 (δ = 17.7, ζ = 2.72 and η= 0.093). The thick solid line is obtained from the DNS study
by Malamataris et al. [176]. Results of the regularized (simplified) model correspond to the solid
(dashed) line. Solution to the full second-order model is the dotted line. The bottom panel is a
zoom of the top one at the front of the main hump

Figure 6.4 compares the profiles of traveling wave solutions of the different mod-
els to the DNS study performed by Malamataris et al. [176]. The conditions corre-
spond to an experiment by Liu and Gollub [168] (β = 6.4°, Re= 19.33, Γ = 526,
and a time period of 0.67 s). The computed traveling waves are sufficiently long to
start resembling isolated solitary waves. Results of the simplified second-order, reg-
ularized and full second-order models are in excellent agreement with the DNS re-
sults. The full second-order result is closest to the DNS one around the primary soli-
tary hump, whereas the simplified model predicts a wave amplitude slightly lower
than the DNS result. The regularized model is somewhere in between.

Other forms of the second-order inertia corrections K can be obtained by using
the Nusselt flat film/zeroth-order relation q = h3/3. For example, the center mani-
fold analysis outlined in Sect. 6.3 yields the inertia corrections [221]

K = 1

100

(
−0.1961

q3

h2
(∂xh)

2 − 1.78
q2

h
∂xh∂xq + 0.1226q(∂xq)

2

− 1.792
q3

h
∂xxh+ 0.7778q2∂xxq

)
, (6.85)

which effectively correspond to the terms gathered under δ2 in (6.26).
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The results obtained with this expression of K are also displayed in Figs. 6.2
and 6.3. For η = 0, a bending of the solution branch is observed at δ ≈ 2 and sub-
sequently the branch turns back on itself in a very small area. Of course, the center
manifold analysis is based on a perturbation from the Nusselt flat film solution,
which is strictly valid only in the drag-gravity regime where inertia effects are small
compared to both gravity and viscous drag. The same assumption has been used
in the average models presented here. However, the center manifold analysis pro-
duces nonlinearities in the second-order inertia terms K higher than those in the
second-order model (which in turn are responsible for its overshoot in Fig. 6.2). In
the presence of viscous dispersion, no turning points are observed for the center
manifold analysis (cf. Fig. 6.3). Yet, the presence of a significant overshoot for the
speed c at large δ is a clear indication of failure.

Equation (6.82) with K given either by (6.83) or (6.84) also leads to failure for
the solution branches. This is due to the high-order nonlinearities produced by the
elimination of s1, s2, as noted earlier, in fact the same with those resulting in the
center manifold analysis—as a general rule, the smaller the number of degrees of
freedom in the system, the higher the nonlinearities are produced. Then, reducing
the number of degrees of freedom, and thus the complexity of the system of equa-
tions to solve, does not necessarily lead to better convergence properties in the drag-
inertia regime as all two-equation models consistent at second order presented up
to this point behave worse than the four-equation second-order model. As a mat-
ter of fact, the contribution of the second-order inertia terms to the inability of the
corresponding two-equation second-order models to accurately describe the drag-
inertia regime can be proved by switching them off. Setting K to zero in (6.82)
thus leads to the second-order simplified model (6.1), (6.79) which exhibits soli-
tary wave solutions for all values of δ. It seems therefore possible to describe the
drag-inertia regime with a relatively simple model involving only two degrees of
freedom: h and q . Yet, as stressed before, the simplified model is not consistent at
second order, precisely because the second-order inertia terms have been neglected,
so that the reasonable behavior of the solitary wave solutions in the drag-inertia
regime occurs at the price of accuracy (in terms of consistency with the long wave
theory and also in terms of comparisons to the experiments for three-dimensional
flows as will be shown in Chap. 8). This raises the question of a possible expres-
sion of K that yet ensures validity for a large range of values of the Reynolds
number and also consistency at second order. This is the objective of the next sec-
tion.

6.9.2 Padé-Like Regularization

As mentioned earlier, the second-order inertia corrections K contain high-order non-
linearities, which are responsible for the turning points of the single-hump solitary
wave solution branches, which in turn can trigger unphysical blow ups in time-
dependent computations in the drag-inertia regime, much like with the BE. To cure
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the singular behavior of these terms, a procedure has been formulated [238] that
follows more closely the classical Padé approximants technique outlined in Ap-
pendix C.7, rather than Ooshida’s regularization approach [196].

The starting point is the residual R0 obtained by averaging the momentum equa-
tion (6.60) with weight F0 and written as a series in ε, R(0)

0 + εR(1)
0 + ε2R(2),η

0 +
ε2R(2),δ

0 . In the second-order terms of this expansion, terms having viscous origin
(superscript η) have been isolated from those accounting for the convective accel-
eration induced by the departures of the velocity profile from the parabolic shape
(superscript δ). The simplified equation (6.79) is recovered by neglecting R(2),δ

0 . In
line with the Padé approximants technique, R0 is then sought in the form G−1F
where G is now simply a function of h, q and their derivatives (an “algebraic pre-
conditioner” instead of “differential one,” like in Ooshida’s approach), and F is
reduced to R(0)

0 + εR(1)
0 + ε2R(2),η

0 . This is the residual obtained by assuming a
parabolic velocity profile corresponding to the simplified model (F = 0 is the resid-
ual for the simplified model, the momentum equation of this model). We then form
the residual equation R0 = 0, or more precisely GR0 = 0 (since solutions to R0 = 0
should also verify GR0 = 0),

3εReG(h, q)
∫ h

0
F0(ȳ)(∂tu+ u∂xu+ v∂yu)dy

= G
∫ h

0
F0(ȳ)

{
1+ ∂yyu− εCt∂xh+ ε3We∂xxxh+ ε2[2∂xxu+ ∂x(∂xu|h)

]}
dy,

which must be supplemented with the mass equation (6.1) and where the inertia
terms isolated on the left hand side read
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“Matching” (6.86) with
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leads to the regularization factor

G =
(

1+ ε
R(2),δ

0

R(1),δ
0

)−1

. (6.88)
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An asymptotically equivalent expression of G can be found using

q = h3

3
+O(ε), (6.89)

and ∂th=−h2∂xh+O(ε). We then obtain
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0 =− 6

15
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2 +O(ε),

which, when substituted into (6.88), yields
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)−1

+O
(
ε2). (6.90)

In order to keep the order of nonlinearities as small as possible, G is rewritten
in terms of the local slope ∂xh and the “local Reynolds number” 3Req (defined in
Sect. 5.4)

G =
(

1− ε
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)−1

. (6.91)

Finally, the resulting equation in terms of the Shkadov scaling is
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, (6.92)

together with the mass balance equation (6.1).
Hereinafter, the system (6.1) and (6.92) will be referred to as the regularized

model. Homoclinic orbits corresponding to single-hump solitary wave solutions to
(6.1), (6.92) have been computed and are displayed as curves labeled 6 in Figs. 6.2
and 6.3. Unphysical turning points resulting in bending of the solution branches
have never been observed for all values of δ we examined. Further, the system (6.1),
(6.92) is consistent at second-order with the BE long wave theory but at the same
time it takes into account modifications of the momentum balance of the film in-
duced by the departures of the velocity profile from the parabolic Nusselt flat film
solution, which become crucial deeply into the drag-inertia regime.

Of course to be consistent with the perturbation approach for small ε, the reg-
ularization factor G in (6.91) should be expanded for small ε, i.e., it should have
the form 1 + ε, . . . . A natural question that might be asked here is. Why is G not
expanded? First of all, many different forms of the regularization factor G have been
tried and only the one that works has been kept. In fact, expanding G = 1/(1−ε, . . .)
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as ∼ 1+ ε, . . . leads to failure of the model, i.e., occurrence of unphysical turning
points for the speed c of the single-hump solitary wave solutions as a function of δ.
The reason for this failure can be seen from the dynamical system for the traveling
wave solutions of (6.92): We immediately get that h′′′ is equal to a fraction with a
denominator equal to 1+ ε3Req∂xh/70, which can go to zero. In other words, this
form of G creates a region in the phase space that is forbidden for the homoclinic
trajectories (a “singular surface” in the phase plane that we cannot cross).

Different forms (but asymptotically equivalent) of the regularization factor not
leading to the same result is a sign of the gradient approach starting to fail.5 In
the drag-inertia regime, inertia effects cannot be treated as corrections to gravity
and viscous drag, and the hypothesis sustaining the gradient expansion approach
is violated (see also the discussion in Sect. 6.1). Regularization is a way to extend
the two-equation second-order model to a region in the parameter space where the
gradient expansion starts to fail. In fact, Ooshida followed a similar approach. But
his procedure, also based on a gradient expansion, cannot overcome the BE inherent
limitation that inertia is a small correction. Yet, it provides a way to extend the BE
approach to a regime where the gradient expansion should not work.

The main idea of the regularization procedure followed here is to manipulate
the inertia terms in K to obtain asymptotically equivalent expressions that allow us
to move into the drag-inertia regime. It is the regularization factor G that allows
us to obtain K asymptotically from, e.g., (6.92); recall that both the regularized
model and the models with K are consistent at second order. After the elimination
of the fields s1 and s2 to obtain (6.83) and the utilization of the equivalence ∂th=
−h2∂xh+O(ε) to obtain the more compact expression in (6.84), we produce high-
order nonlinearities. The regularization procedure then attempts to reduce the order
of the nonlinearities so as to avoid nonphysical blow ups. For instance, we reduce
the order of the nonlinearities when we go from (6.90) to (6.91). Of course, much
like with the BE, there is no guarantee beforehand that the regularization procedure
will work.

But, as it turns out, the regularization procedure does work, and the reasons for
that can be summarized as follows:

(i) it reduces the order of the nonlinearities associated with second-order inertia
corrections;

(ii) it avoids the presence of a denominator that can vanish in the dynamical system
for traveling waves obtained from the resulting regularized model;

(iii) the numerical factor 3/70 in front of εReq∂xh in (6.91) is small.

Finally, as mentioned earlier both regularized and second-order models capture
the synchronous three-dimensional patterns observed in the experiments by Liu et

5Similarly, Oron and Gottlieb [199] in their study of the subcritical or supercritical nature of the
primary bifurcation from the Nusselt flow found dramatically different results when using the first-
order and second-order BE: The bifurcation is supercritical for the first-order BE but it can change
to subcritical when the second-order BE is used. They attributed this to the poor convergence
characteristics of the gradient expansion used to obtain the BE.
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al. [170]. However, the simplicity of the regularized model compared to the full
second-order model, with two dynamic variables as opposed to four, makes it a
useful prototype for numerical and mathematical scrutiny for both two-dimensional
and three-dimensional effects in falling film flows.

6.10 Contrasting the Center Manifold Analysis and the Method
of Weighted Residuals

To conclude this chapter, let us underline the similarities and differences of the cen-
ter manifold analysis by Roberts detailed in Sect. 6.3 and of the weighted residuals
formulation developed later on in this chapter.

The center manifold analysis does not rely on an expansion in series of polynomi-
als for the velocity field, but nevertheless it is based on similar hypotheses utilized in
the averaging methodology: coherence of the flow in the cross-stream direction and
the long wave assumption, ε� 1. In addition, the center manifold analysis requires
that inertia effects are weak corrections to the viscous drag-gravity balance. The mo-
mentum equation in the Roberts model (6.26) contains all the terms of the Kapitza–
Shkadov averaged momentum balance (6.13b) or the momentum equation (6.51)
of the first-order model but with different coefficients. This agreement originates
in the fact that the velocity profile, urob ∝ sin(πȳ/2) (first nonzero mode for the
velocity with l = π/2 for γ = 1 in (6.22)), is very close to the parabolic profile
since 〈urob,F0〉/√〈urob, urob〉〈F0,F0〉 ≈ 0.999, where F0 = ȳ− (1/2)ȳ2. However,
the Roberts model also contains high-order additional terms including high-order
nonlinearities, which then necessarily restrict the applicability of the model in the
drag-gravity regime.

Similarly to Roberts’ analysis, the weighted residuals formulation developed in
this chapter presumes that inertia effects are weak corrections to the balance of
viscous drag and gravity. Once again, this, strictly speaking, holds only in the drag-
gravity regime as we have stated several times. Nevertheless, our hope was that the
averaged models we obtained can be accurate outside their region of validity and are
thus capable of describing the drag-inertia regime. As a matter of fact, we have al-
ready demonstrated (Figs. 6.2 and 6.3) that the full second-order, simplified second-
order and regularized averaged models contain nonlinearities that do not lead to the
unphysical loss of the solitary wave branch of solutions at δ > 1, and hence they
cure the deficiencies of the BE/long wave theory in the drag-inertia regime.

Still, solutions to the averaged models must be checked against both experiments
and DNS. This was done here with DNS for traveling waves (Fig. 6.4) and in the
next chapter where we demonstrate good agreement with both experiments and DNS
for traveling waves. Thus, the method of weighted residuals is the definitive low-
dimensional modeling of film flows leading to a small number of coupled evolution
equations which are accurate in the drag-inertia regime.



Chapter 7
Isothermal Case: Two-Dimensional Flow

A falling liquid film can serve as a paradigm for the study of open flow hydrody-
namic systems. This is because: (i) the flow is nearly parallel, unlike other hydrody-
namic systems, e.g., jets that break up into drops; (ii) it can be studied experimen-
tally relatively easily; (iii) the Reynolds number is small-to-moderate, which makes
the problem amenable to theoretical analysis.

In fact, falling liquid films have several similarities with many other hydrody-
namic systems. The analogy with boundary layer flows has already been empha-
sized in the modeling approaches described in Chaps. 4 and 6, while similarities
with the three-dimensional instabilities developed in boundary layer flows will be
discussed in Chap. 8. Similarities can also be found with the propagation of bores
in rivers (in the “torrential regime”), a topic that will be discussed in this chap-
ter.

More importantly, falling film flows offer an excellent opportunity for the theoret-
ical study of the route toward spatio-temporal disorder and the specific events char-
acterizing its development, not only in open flow hydrodynamic systems but other
nonlinear systems as well. The wide variety of phenomena that can be investigated
with falling film flows are: (i) development of convective instabilities; (ii) spatial
response to external perturbations; (iii) development of traveling waves; (iv) com-
petition/interplay between different instability mechanisms, e.g., for the problem of
a heated film; (v) “condensation” phenomena such as formation of bound states,
i.e., well-defined and robust groups of coherent structures.

Figure 7.1 shows a snapshot of the thickness of the film at the end of a simu-
lation of a naturally excited wavy motion. The initial growth of the waves at the
inlet is rapidly followed by a wavy regime where localized structures are separated
by relatively large portions of nearly flat films. Subsequently, the dynamics on the
film is dominated by these dissipative structures, which seem to organize the flow.
The dynamics is therefore “weakly disordered” and the spatial evolution of the film
is an example of weak/dissipative turbulence in the Manneville sense [177]. Iso-
lated waves look like tear drops made of a large-amplitude hump preceded by small
capillary ripples, also referred to as radiation, as noted in previous chapters. These
waves resemble the infinite-domain solitary waves we have already encountered at
several places in this monograph. The evolution of the film is therefore dominated
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Fig. 7.1 Simulation of a noise-driven film flow down a vertical wall (see also Sect. 7.3.2). Param-
eter values correspond to an experiment by Kapitza [141] with alcohol (ν = 2.02× 10−2 cm2 s−1,
γ /ρ = 29 cm3 s−2). The flow rate is 0.123 cm2 s−1 (Re= 6.07, We= 76.4)

by solitary-like coherent structures, which are stable and robust and interact indefi-
nitely with each other as “quasi-particles.”

Increasing the Reynolds number in the simulation of Fig. 7.1 makes the inter-
face appear more complicated, but despite the apparent complexity one can still
identify solitary-like coherent structures in what appears to be a randomly disturbed
surface. It is then essential that in order to understand the spatio-temporal evolu-
tion of the film, we fully understand the properties of individual solitary waves,
which in turn can help us understand the way they interact with each other. In
fact, these coherent structures are truly elementary processes so that the dynam-
ics of the film can be described by their superposition. Hence, the falling liquid
film can serve as a canonical reference system for the study of weak/dissipative
turbulence. This is further facilitated by the substantial reduction of the complex-
ity of the governing equations offered by the long wave nature of the instabil-
ity.

The “self-organization” of the flow into interacting solitary waves is characteris-
tic of active dispersive-dissipative nonlinear media, where typically an “instability”
mechanism generates waves that are subsequently “synchronized” through a pro-
cess involving dispersion. The instability mechanism acts at large scales and pumps
energy from the basic state (“main flow” in the case of hydrodynamic systems) to
the perturbations, while at small scales a “stability” mechanism is effective. This
mechanism is also responsible for energy transfer from the large scales to the small
ones, known as “dissipation”.

In the case of falling films, dissipation is triggered by surface tension and insta-
bility is due to inertia (H mode). As far as the dispersion of the waves is concerned, it
is due to second-order viscous effects, often underestimated in the literature, which
we have already referred to in this monograph as “viscous dispersion.” The primary
instability considered in Chap. 3 as well as the nontrivial dispersive effect of the vis-
cosity will be examined in this chapter within the framework of the wave hierarchy
concept. We shall further scrutinize the models derived in Chap. 6 with the tools of
linear stability analysis, dynamical systems theory and numerical simulations. We
shall demonstrate that these models satisfactorily account for all features of the two-
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dimensional wavy regime and are in quantitative agreement with both experiments
and DNS.

7.1 Linear Stability Analysis

7.1.1 Dispersion Relations and Neutral Stability

Let us now consider infinitesimal perturbations around the Nusselt flat film solution,

h= 1, q = 1

3
,

and in the case of (6.78), si = 0, to obtain conditions for instability.
By substituting w = w0 + w̃ into the Kapitza–Shkadov model (6.13a), (6.13b),

where w0 and w̃ refer to the values of the different variables for the Nusselt flat
film solution and their deviations from these values, respectively, and linearizing for
w̃� 1 leads to

∂t h̃ = −∂xq̃, (7.1a)

δ∂t q̃ = −4

5
δ∂xq̃ +

(
2

15
δ − ζ

)
∂xh̃+ 3h̃− 3q̃ + ∂xxxh̃. (7.1b)

The solutions of these equations can be sought in the form of normal modes,

w̃ =w′ exp
{
i(kx −ωt)

}
, (7.2)

where k and ω are the complex wavenumber and complex angular frequency, re-
spectively. Inserting (7.2) into (7.1a), (7.1b) leads to the dispersion relation

δω2 +
(
−4

5
kδ + 3i

)
ω− k4 + k2

(
2

15
δ − ζ

)
− 3ik = 0. (7.3)

To simplify comparisons with the linear stability analysis presented in Chap. 3, it
is convenient to rewrite (7.3) using the Nusselt scaling. Recall that this is a necessary
step whenever a comparison is needed either with full Navier–Stokes (including
Orr–Sommerfeld), or with experiments. The change of scales does not affect the
speed and does not introduce any modifications to the coefficients of the equations
except for a coefficient of 3 along with the Reynolds number (which retains its
standard definition (2.35)). With the transformation ω → κhN, k → κk/hN and
using the definition of the reduced variables δ = 3Re/κ , ζ = Ct/κ , η = 1/κ2 and
κ3 =We,

3iω+ 3Reω2 +
(
−3i − 12

5
ωRe

)
k+

(
−Ct+ 2

5
Re

)
k2 −Wek4 = 0, (7.4)
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the dispersion relation of the Kapitza–Shkadov model in terms of the Nusselt scal-
ing.

Controlled experiments devoted to the detection of neutral stability conditions
are generally performed by forcing either the film thickness or its flow rate at some
frequency and by detecting the cut-off frequency fc beyond which the film remains
flat. The cut-off frequency fc is thus determined from the dispersion relation by im-
posing that ki = ωi = 0 in this relation (otherwise disturbances grow in both space
and time). This then yields the Reynolds number as a function of the cut-off fre-
quency fc (≡ ωr/(2π)).

By considering then both ω and k to be real in the dispersion relation (7.4) and
by separating real and imaginary parts, we obtain

ω= kc and Re= Ct+ k2
c We, (7.5)

or

kc =
√

1

We
(Re−Ct), (7.6)

where the second relation is the neutral stability curve and kc is the cut-off
wavenumber, which can be directly related to the cut-off frequency, kc = 2πfc.
Hence the phase velocity is c= ω/kc ≡ 1 and is equal to the speed of the kinematic
waves (we shall discuss these waves in detail later on in this chapter) described by
the mass conservation equation ∂th+ ∂xq = 0 with q ≡ h3/3. The absence of any
wavenumber dependence for the phase velocity is due to the absence of viscous dis-
persion in the Kapitza–Shkadov model. Moreover, the minimum of Re at the neutral
curve is Ct (alternatively, simply set kc = 0; the maximum growing linear mode at
criticality has a vanishing growth rate and wavenumber) and hence the critical value
of Re is Rec = Ct, deviating 20% when compared to the correct value Rec = 5

6 Ct
obtained from Orr–Sommerfeld.

The dispersion relation of the first-order model (6.1), (6.51) reads,

3iω+ 18

5
Reω2 +

(
−3i − 102

35
ωRe

)
k +

(
−Ct+ 18

35
Re

)
k2 −Wek4 = 0, (7.7)

which differs from (7.4) only in the numerical coefficients. The neutral stability
conditions corresponding to (7.7) are now,

ω= kc and Re= 5

6

(
Ct+ k2

c We
)
, (7.8)

or

kc =
√

1

We

(
6

5
Re−Ct

)
. (7.9)

The minimum of Re at the neutral curve then is the correct critical Reynolds number,
Rec = 5

6 Ct, obtained from Orr–Sommerfeld.
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The simplified and the regularized models, (6.1), (6.79) and (6.1), (6.92), respec-
tively, yield the same dispersion relation:

3iω+ 18

5
Reω2 +

(
−3i − 102

35
ωRe

)
k

+
(
−Ct+ 18

35
Re+ i

27

5
ω

)
k2 − 12

5
ik3 −Wek4 = 0. (7.10)

A comparison of (7.10) to (7.7) shows that two new terms appear in (7.10): they
account for viscous effects. Taking both ω and k as real and separating real and
imaginary parts in (7.10) yields:

ω= kc
1+ 4k2

c/5

1+ 9k2
c/5

and c= ω

kc
= 1+ 4k2

c/5

1+ 9k2
c/5

, (7.11a)

6

35

(
21c2 − 17c+ 3

)
Re= Ct+ k2

c We. (7.11b)

kc for the simplified and regularized models is not the same with that in (7.9). To
obtain kc for these models, substitute the expression for c in (7.11a) into (7.11b) to
obtain a single equation for kc.

It is not difficult to see that for the simplified and regularized models the mini-
mum value of Re at the neutral curve, i.e., the critical value of Re, occurs at kc = 0
and c= 1 or Rec = 5

6 Ct, the correct answer.
Notice the presence of the dispersive terms 4k2

c/5 and 9k2
c/5 in the expression for

the phase velocity, unlike the Kapitza–Shkadov and first-order models. Therefore,
on the neutral curve the phase velocity is a function of wavenumber and in fact
smaller to the speed of the kinematic waves, i.e., unity. Hence, viscous effects make
the falling film dispersive at the instability onset. In other words, viscous effects
modify the phase velocity at onset by introducing a wavenumber dependence and
we may therefore refer to this effect as viscous dispersion. In fact, in terms of the
Shkadov scaling, i.e., with the transformation k→ (1/κ)k, the above expression for
the phase velocity becomes,

ck = 1+ 4ηk2
c/5

1+ 9ηk2
c/5

,

thus justifying the term “viscous dispersion number” for η, introduced in Sect. 4.6.
The derivation of the linear dispersion relation corresponding to the full second-

order model (6.1), (6.78) is more involved and the relation more complicated than
the ones we’ve just given. The result is:

A+ Bk +Ck2 +Dk3 + Ek4 + Fk5 +Gk6 = 0, (7.12)

with

A = 3iω+ 54

13
Reω2 − 90

143
iRe2ω3 − 12

715
Re3ω4, (7.13a)
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B = −3i − 522

143
Reω+ 98

143
iRe2ω2 + 108

5005
Re3ω3, (7.13b)

C = −Ct+ 498

715
Re+ω

(
27

5
i + 12

65
iCtRe− 26424

117117
iRe2

)

+ω2
(

3231

3640
Re+ 27

5005
CtRe2 − 612

65065
Re3
)
− 2027

80080
iRe2ω3, (7.13c)

D = −12

5
i − 304

5005
iCtRe+ 1368

65065
iRe2 +ω

(
− 2441

20020
Re− 16

5005
CtRe2

+ 1104

715715
Re3
)
+ 3439

145600
iRe2ω2, (7.13d)

E = 30993

320320
Re+ 148

325325
CtRe2 − 48

715715
Re3 −We

+ω

(
− 4591

650650
iRe2 + 12

65
iWeRe

)
+ 27

5005
WeRe2ω2, (7.13e)

F = 1773

2602600
iRe2 − 304

5005
iWeRe− 16

5005
WeRe2ω, (7.13f)

G = 148

325325
WeRe2. (7.13g)

Comparison of (7.10) and (7.12) reveals that the terms independent of Re are identi-
cal. The terms linear in Re are recovered but with slightly different coefficients. The
remaining terms in (7.12) have Re at some power. These terms are due the inclusion
of inertia corrections in the second-order model not present in the simplified and
regularized models.

Although complicated, the dispersion relation (7.12) is still much simpler to
solve than the Orr–Sommerfeld eigenvalue problem, for which the system of ordi-
nary differential equations (3.22a)–(3.22i) needs to be solved. In fact, solving (7.12)
amounts to finding the roots of a polynomial in k and ω. The neutral stability condi-
tions corresponding to (7.12) have been obtained by continuation using the software
AUTO-07P [79] starting from the instability threshold Re = Rec, k = 0 and c = 1.
The numerical procedure is similar to that outlined in Appendix F.1.

The neutral stability curves obtained from the different models are compared in
Fig. 7.2 with the experiments carried out Liu et al. [170]. The curves are obtained
by fixing the liquid properties and the inclination angle (hence the Kapitza number)
to the values used in the experiments. The only free parameter then is the film thick-
ness hN or equivalently the Reynolds number. The simplified and full second-order
dispersion relations (7.10) and (7.12), are displayed in the figure as a thick dashed
and thin solid line, respectively. Recall that the regularized model (6.1), (6.92) and
the simplified model share the same dispersion relation and so we no longer refer to
the regularized model for the remainder of this section.

Both results agree equally well with the experimental data by Liu et al. [170].
However, comparison with the Orr–Sommerfeld analysis (thick solid line) shows
that, as expected, the full second-order is more accurate than the simplified one. At
the same time we notice that the simplified model is closer to the experiments than
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Fig. 7.2 Cut-off dimensional frequency f̄c in Hz as a function of the Reynolds number Re for the
conditions of the experiments in [170] (glycerin–water mixture, β = 4°, ν = 2.3× 10−6 m2 s−1,
σ/ρ = 62.6×10−6 m3 s−2, i.e., Γ = 2341). Orr–Sommerfeld analysis (thick solid line) and exper-
imental results (crosses) compared to predictions from the Kapitza–Shkadov model (dotted line),
first-order model (dashed line), simplified second-order model (thick dashed line), and full sec-
ond-order model (thin solid line)

both Orr–Sommerfeld analysis and full second-order model, but the departure of the
Orr–Sommerfeld and full second-order model results from the experimental points
is small. This small departure can be accounted for by noting the sensitivity of the
results with respect to the inclination angle β at small β: a small error in the mea-
surement of β can cause a visible shift of the whole neutral curve in the plane (Re,
f ). We also note the increasing discrepancy between the prediction of the first-order
model represented by the dashed line in Fig. 7.2—the Kapitza–Shkadov model (dot-
ted line) does even worse as it predicts erroneously the instability threshold—and
the experimental data. This is due to the neglect of viscous effects, which influence
the change of the phase velocity with Re [226].

From Chap. 2, the time scale for the Nusselt scaling is tν lν/h̄N(= h̄N/3ūN) =
tν/hN = [(ν/(g sinβ)2]1/3/hN. Fixing the liquid and the inclination angle, i.e., the
Kapitza number, then means that the time scale is ∼ 1/hN. Hence, the relation
between the dimensional and dimensionless frequency is f̄c ∼ hNfc ∼ Re1/3fc,
which with fc ∼ kc becomes f̄c ∼ Re1/3kc. But for large Re, (7.5) and (7.8) give
kc ∼ (Re/We)1/2 ∼ h

5/2
N ∼ Re5/6. Hence, f̄c ∼ Re7/6 for the Kapitza–Shkadov and

first-order models, which explains the seemingly linear behavior seen in Fig. 7.2 for
the corresponding neutral curves.

7.1.2 Absolute and Convective Instabilities

A more stringent test of the accuracy of the different models can be obtained from
the study of the linear dynamics of wave packets, for which numerical results from
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Fig. 7.3 Schematic of the development of a wave packet in the laboratory frame for convective/
absolute instabilities

Orr–Sommerfeld are available [31]. We start by writing formally the dispersion
relation as, D(k,ω) = 0. Following Huerre and Monkewitz [120] we can asso-
ciate a differential operator D(−i∂x, i∂t ) in the physical space (x, t) to the dis-
persion relation D(k,ω) = 0 in the (k,ω) space such that the perturbations w̃ sat-
isfy

D(−i∂x, i∂t )w̃ = 0.

Let us now consider the fate of an infinitesimal perturbation initiated at position
x = 0 and time t = 0 (see Fig. 7.3). Mathematically, the linear response to a local-
ized perturbation in space and time can be obtained by the solution to

D(−i∂x, i∂t )G(x, t)= δ(x)δ(t), (7.14)

where δ denotes the Dirac delta function and G(x, t) is the “Green’s function”

G(x, t)= 1

(2π)2

∫

Lω

∫

Fk

exp[i(kx −ωt)]
D(k,ω)

dk dω, (7.15)

where the integration paths Lω and Fk are appropriately chosen in the complex ω-
and k-planes so as to ensure the convergence of the two integrals. A natural choice
for Fk is the real axis, k ∈ R, so that a necessary condition for the convergence of
the integration in time is that Lω lies above all zeroes of the dispersion relation
for k ∈ Fk = R, i.e., above all temporal modes. Spatial modes are conversely ob-
tained by considering ω real and k complex, whereas the integration path Lω defines
generalized spatial modes as the solutions to the dispersion relation (7.16a) for an
angular frequency ω belonging to the contour Lω in the complex plane (ωr,ωi).

The asymptotic behavior of the Green’s function as t →∞ in a frame of ref-
erence moving at a speed V with respect to the laboratory frame of reference, i.e.,
on the ray x/t = V , is determined by the fastest growing part of the wave packet
which travels with a group velocity vg = dω/dk equal to the ray velocity V . By
writing ω(k)= ω′(k)+ V k, this is equivalent to finding the solution, denoted ωV,i,
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of largest imaginary part of the angular frequency ω′i of the system:

D(k,ω′ + V k) = 0, (7.16a)

dω′/dk = 0. (7.16b)

The solutions of system (7.16a), (7.16b) correspond to double roots of the dis-
persion relation (7.16a). Considering the generalized spatial branches k(ω′) defined
by the contour Lω′ = {ω′ ∈ C,ω′i = const}, system (7.16a), (7.16b) defines saddle
points in the complex plane (kr, ki), where two generalized spatial branches k(ω′)
collide. A saddle point must satisfy the so-called collision criterion established by
Briggs [32, 121]. This criterion, which follows from “causality” (for t < 0, the film
is at rest), states that, in order to be physically acceptable, the saddle point has to
arise from the “pinching” of two k(ω′)-branches coming from different sides of the
real axis ki = 0 as the contour Lω′ is displaced downward in the complex plane (ω′r,
ω′i). Practically, one proceeds by lowering the integration path Lω′ lying initially far
above all temporal modes [120]. As Lω′ approaches one of the temporal branches,
i.e., when ω′i = max{ω′i,D(k,ω′ + V k) = 0, k ∈ R}, the integration paths Fk must
be deformed to ensure the convergence of the integrals in (7.15). The deformation of
the integration path Fk from the real axis then defines generalized temporal modes as
the solutions (k,ω′(k)) to the dispersion relation (7.16a) for k lying in Fk �=R. The
process ends with the finding of the first saddle point verifying the Briggs criterion,
as it is no more possible to deform the integration path Fk in the k-plane. However,
in practice the construction of the generalized temporal modes is unnecessary and
the monitoring of the generalized spatial modes in the k-plane is sufficient.1

The basic flow is stable whenever the initial perturbation is asymptotically
damped along all rays, i.e., ωV,i < 0 for all ray velocities V . When instability oc-
curs, there exists a range of values of V for which the perturbation grows along the
ray x/t = V , i.e., ωV,i > 0. The front and the rear of the linear wave packet are then
defined by ωV,i = 0 and are illustrated by straight lines in Fig. 7.3.

Considering the ray x/t = 0, i.e., the laboratory frame, the saddle point given
by (7.16a), (7.16b) defines the absolute frequency ω0 and absolute wavenumber k0.
Further, the instability is termed convective if the perturbation vanishes on the spot
of initiation (ω0,i < 0) and absolute in the opposite case (ω0,i > 0). In the connec-
tively unstable case the perturbations originating from the noise upstream are con-
vected downstream by the flow: The flow responds to the upstream perturbations as a
noise amplifier. In the absolutely unstable case, the perturbations grow, i.e., they are
able to move upstream, and the flow behaves as an oscillator having its own intrin-
sic dynamics. The convective or absolute nature of the instability can be determined

1In most cases, the task of identifying the relevant saddle point can be reduced to monitoring
of only one generalized spatial mode, which is identified as follows: After the temporal mode
corresponding to the instability is found, which is very easy in our case since ω = 0 must belong
to this mode, the intersection of this temporal mode and the real axis ω ∈ R defines a point also
belonging to a spatial mode (w ∈ R, k ∈ R). Increasing the growth rate ωi above the maximum
growth rate then defines a point on the generalized spatial mode whose deformations in the k-
plane are then monitored as ωi is lowered up to the finding of a pinching point.
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from the sign of the maximum of ωi for all the k roots of the dispersion relation
D(k,ω)= 0, verifying the collision criterion. From a spatial Orr–Sommerfeld anal-
ysis, it has been shown that the flow over inclined plates is connectively unstable at
least up to very high Reynolds numbers [31].

Let us now compare the linear stability analysis of the models introduced in
Chap. 6 to the exact results from the Orr–Sommerfeld analysis, restricting our at-
tention to the full second-order model (6.78) and its simplified version (6.1), (6.79),
since the first-order model (6.1), (6.51) fails to reproduce the neutral stability condi-
tions correctly. Whereas for full Navier–Stokes, the dispersion relation is obtained
from the numerical solution of the Orr–Sommerfeld eigenvalue problem, a differ-
ential eigenvalue problem in the cross-stream coordinate, for the models introduced
in Chap. 6 the dispersion relation is just a polynomial equation in k and ω whose
numerical solution is easier than that of Orr–Sommerfeld.

We first consider the case Re= 26.7, Γ = 769.8, β = 4.6°, corresponding to an
experiment by Liu and Gollub [167] and to the Orr–Sommerfeld analysis performed
by Brevdo et al. [31], reproduced here by using a numerical scheme similar to the
one described in Appendix F.1. For this purpose an additional variable ki and an
additional constraint ωi = const must be added in subroutine ICND to define the
integration path Lω . Generalized spatial branches kn in the complex plane (kr, ki)
are displayed in Figs. 7.4 and 7.5 for the dispersion relations (7.12) and (7.10), re-
spectively. The k roots are computed as ωr is varied for different values of ωi. Upon
decreasing the imaginary part ωi of the angular frequency from positive to nega-
tive values, no pinching of the generalized spatial branches kn is observed before ωi
becomes negative, which is a clear indication of the convective nature of the insta-
bility. The agreement between the full second-order dispersion relation (7.12) and
the exact results obtained from Orr–Sommerfeld is remarkable. All the branches ob-
served by Brevdo et al. as well as their change as ωi is varied from 0.01 (Fig. 7.4,
top) to 0 (bottom), are recovered. Small departures from the exact solutions are only
significant far from the origin (Fig. 7.4, left). Approaching the origin k = 0 (right)
makes the predictions indistinguishable from the exact results obtained from Orr–
Sommerfeld. The agreement turns out to be excellent when approaching the origin
k = 0 (right), in line with the expectations from the long wave assumption underly-
ing the models. Hence, (7.12) may be seen as an expansion of the exact dispersion
relation for k,ω� 1.

The behavior of the generalized spatial branches corresponding to the simplified
second-order dispersion relation (7.10) is displayed in Fig. 7.5. The dispersion re-
lation now is a polynomial of degree four in k so that not all the branches obtained
with the Orr–Sommerfeld analysis can be recovered. However, branch 2 in Fig. 7.5
seems to result from a hybridization of branches 2 and 3 in Fig. 7.4. Branch 1, which
is more physically important since it crosses the real axis (ki = 0) from above (com-
pare panels b and c in Fig. 7.5) and ultimately pinches with branches 4 and 5 as ωi is
further lowered, approximates well those obtained using either the full second-order
model or the Orr–Sommerfeld analysis.

The agreement close to the origin between the models and the exact results found
for the case V = 0, extends to the case V �= 0. Figures 7.6 and 7.7 summarize the
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Fig. 7.4 Generalized spatial branches kn in the complex (kr, ki)-plane with ωi = 0.01 (top) and
ωi = 0.0 (bottom). Re = 26.7, β = 4.6°, We = 41.46 (Γ = 769.8). Solutions of the full sec-
ond-order dispersion relation (7.12) and the Orr–Sommerfeld equations (3.22a)–(3.22i) are rep-
resented by the dotted and solid lines, respectively. Left: Overall view. Right: Enlarged view of the
neighborhood of the origin in the complex k-plane

characteristics of the saddle points, verifying the collision criterion as a function of
the speed V of the moving frame considered and for different values of the Reynolds
number, from Re = 13.3 to Re = 133. The maximum of the temporal growth rate
ωi(V ) governing the long time evolution of the perturbations on the ray x/t = V

is found to be positive only for V > 0 (see panel (a) in Fig. 7.6). Therefore, the
instability is always convective as observed in experiments [169]. Presumably, this
is a consequence of the high speed of the waves, approximately three times the
average velocity of the Nusselt flat film flow.

In all cases an excellent agreement is observed between the results obtained
from the full second-order dispersion relation (7.12) and the solution of the Orr–
Sommerfeld equations, including the very peculiar change of the saddle point veri-
fying the Briggs criterion and corresponding to the largest growth rate ω′i , or equiv-
alently the “dominant” saddle point (see Table 7.1). The simplified model appears
accurate only up to about Re = 67, a sufficiently large value nevertheless. Beyond
Re = 67 the latter model does not succeed in reproducing the two branches. How-
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Fig. 7.5 Generalized spatial branches kn in the complex (kr, ki)-plane for dispersion relation (7.10)
(dotted lines) and the Orr–Sommerfeld equations (3.22a)–(3.22i) (solid lines). See also the caption
of Fig. 7.4

ever, it seems to interpolate smoothly between them, predicting the total V -width of
the unstable band and all other features of the instability satisfactorily as a function
of V—compare Fig. 7.7 to Fig. 7.6.

The displacement of the spatial branches in the complex plane (kr, ki) is depicted
in Fig. 7.8 as the temporal growth rate ω′i decreases. The ray x/t = 0.58 is chosen
to closely correspond to the exchange of the dominant saddle points as the ray ve-
locity V is varied. Two successive collisions of the branches are clearly observable
and should be contrasted to the results obtained with the simplified dispersion rela-
tion shown in Fig. 7.9. For the latter, the absence of the change of dominant saddle
points is clearly related to the absence of one generalized spatial branch of solu-
tions to (7.16a) due to the lower degree of the polynomial of the dispersion relation
(7.10). A possible reason for this behavior is that, while the number of basis func-
tions used for the projection in the Galerkin method is not sufficiently large to fully
account for all the flow properties, a projection onto the first parabolic test function
only recovers most of the main linear stability results, including the positions of the
dominant saddle points.
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Fig. 7.6 Characteristics of the saddle point solutions to (7.16a), (7.16b) as function of the speed
V of the moving frame for the Orr–Sommerfeld equations (3.22a)–(3.22i) (solid lines) and the full
second-order dispersion relation (7.12) (dotted lines). Parameter values correspond to a glycer-
in–water mixture and the inclination angle considered in [167] (Γ = 769.8, β = 4.6°). Re= 13.3
(curve 1), Re = 26.7 (curve 2), Re = 40 (curve 3), Re = 66.7 (curve 4) and Re = 133 (curves I
and II)

7.1.3 Wave Hierarchy

The origin of the primary instability can be understood within the framework of
the wave hierarchy theory proposed initially by Whitham [299]. The theory has
found applications in many different settings, from traffic flows and gas dynam-
ics to two-phase flows, shallow water waves and even crystal growth. An account
of the Nusselt flow stability in terms of wave hierarchy has been offered by Alek-
seenko et al. [4] and Ooshida [196]. In this section we provide a brief outline of the
concept of wave hierarchy restricted to linear waves, we extend both Alekseenko’s
and Ooshida’s works to include viscous effects and connect with the shallow water
theory.

To illustrate the main ideas of the wave hierarchy approach with a minimum of
algebra, let us first consider the linearized Kapitza–Shkadov model, the simplest
of all averaged models. For the sake of simplicity we neglect surface tension. The
simplified model leading to more complicated algebra and including both surface
tension and second-order dispersion effects will be considered later on.

The linearized equations (7.1a), (7.1b) are rewritten here in terms of the Nusselt
scaling

∂t h̃ = −∂xq̃, (7.17a)
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Fig. 7.7 Characteristics of the saddle point solutions to (7.16a), (7.16b) as function of the speed
V of the moving frame for the Orr–Sommerfeld equations (3.22a)–(3.22i) (solid lines) and the
simplified second-order dispersion relation (7.10) (dotted lines). Re = 13.3 (curve 1), Re = 26.7
(curve 2), Re= 40 (curve 3), Re= 66.7 (curve 4) and Re= 133 (curve 5). See also the caption of
Fig. 7.6

Re∂t q̃ = −4

5
Re∂xq̃ +

(
2

15
Re− 1

3
Ct

)
∂xh̃+ h̃− q̃. (7.17b)

Differentiating (7.17b) with respect to x and replacing ∂xq̃ with −∂t h̃ gives the
following wave equation:

(∂t + ∂x)h̃+ Re

(
∂tt + 4

5
∂xt + 2

15
∂xx

)
h̃− 1

3
Ct∂xxh̃= 0. (7.18)

To consider the behavior of the solutions to (7.18) when x, t →∞, let us rescale
the time and space coordinates according to

Δx =X, Δt = T , (7.19)

so that Δ→ 0 corresponds to x, t →∞. Then, the limit Δ→ 0 gives to leading
order (∂T + ∂X)h̃= 0, which when rewritten with the original scales becomes

∂t h̃+ ∂xh̃= 0. (7.20)

Conversely, the initial stage of the development of a localized wave packet x, t → 0
corresponds to Δ→∞. This limit gives to leading order

Re

(
∂tt + 4

5
∂xt + 2

15
∂xx

)
h̃− 1

3
Ct ∂xxh̃= 0, (7.21)
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Fig. 7.8 Displacement of the spatial branches kn in the complex (kr, ki)-plane as ωi decreases for
dispersion relation (7.12) and Re = 133, V = 0.58, β = 4.6°, Γ = 769.8. Solid and dotted lines
refer to the solutions to the Orr–Sommerfeld equations (3.22a)–(3.22i) and to the full second-order
dispersion relation (7.12), respectively

which can be rewritten as

(∂t + cd−∂x)(∂t + cd+∂x)h̃= 0, (7.22a)

where

cd± = 2

5
±
√

2

75
+ 1

Fr2
. (7.22b)

The Froude number Fr, which compares the advection by the flow at speed 3ūN, i.e.,
the speed of the kinematic waves and the speed of gravity waves

√
gh̄N cosβ (see

below), is given by, Fr2 = 3Re/Ct = (3ūN)
2/(gh̄N cosβ). The above discussion

shows that the wave equation (7.18) is effectively the combination of two levels of
description corresponding to the first-order wave equation (7.20) and second-order
wave equation (7.21). The series of wave equations of different order obtained from
the original wave equation is precisely what Whitham referred to as “wave hierar-
chy.” The early stages of a localized perturbation are governed by the higher-order
wave equation (7.22a) and consequently the wavefronts at the front and back of the
produced wave packet must travel at speeds cd+ and cd−, respectively. The effects
of lower-order waves moving at speed ck = 1 on the higher-order ones traveling at
speed cd− can be approximated by substituting the time derivatives ∂t with −cd−∂x
in (7.18), except for the operator ∂t + cd−∂x , which vanishes with this substitution.
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Fig. 7.9 Displacement of the generalized spatial branches kn in the complex (kr, ki)-plane as ωi
decreases for dispersion relation (7.10). See also the caption of Fig. 7.8

Table 7.1 Comparison of the saddle point positions between solutions of the dispersion relation
of the second-order model, (7.12), of the simplified model, (7.10) and Orr–Sommerfeld [31] (Re=
133, β = 4.6° and Γ = 769.8)

Branch kr ki ω′r ω′i

V = 0.575

Orr–Sommerfeld I 0.170 −0.179 0.0092 0.0031

Equation (7.12) I 0.172 −0.176 0.0091 0.0031

Orr–Sommerfeld II 0.040 −0.046 0.0053 0.0037

Equation (7.12) II 0.040 −0.046 0.0054 0.0037

Equation (7.10) 0.0478 −0.0387 0.0050 0.0036

V = 0.580

Orr–Sommerfeld I 0.177 −0.165 0.0083 0.0039

Equation (7.12) I 0.181 −0.163 0.0083 0.0040

Orr–Sommerfeld II 0.0431 −0.0475 0.0051 0.0039

Equation (7.12) II 0.0430 −0.0475 0.0051 0.0039

Equation (7.10) 0.0516 −0.0385 0.0049 0.0038

We thus have after one integration in space:

(∂t + cd−∂x)h̃≈ 1

Re

cd− − ck

cd+ − cd−
h̃
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Fig. 7.10 Sketch of the
spatio-temporal diagram of
wave solutions to (7.18) when
stability condition (7.23)
holds (after [125, 299])

(ck = 1). The long time evolution of the signal, i.e., for t = O(Re), thus leads to
an exponential growth of the higher-order waves if cd− > ck = 1, and conversely,
an exponential decay if cd− < ck = 1. Since the same argument applies for waves
traveling at speed close to cd+, we conclude that the inequality

cd− ≤ ck ≤ cd+ (7.23)

must hold. When (7.23) is not satisfied, the long time evolution of the wave packet
cannot be described with the linear hyperbolic equation (7.18). When (7.23) holds,
higher-order waves decay for t =O(Re−1) or longer, and the phase speed of a wave
solution to (7.18) must be close to the speed of the lower-order waves, c≈ ck . Sub-
stituting the time derivative ∂t in the highest order terms of (7.18) with −ck∂x gives

∂t h̃+ ∂xh̃≈−Re(cd− − ck)(cd+ − ck)∂xxh̃. (7.24)

Therefore, the effect of higher-order waves on the lower-order ones is “diffusive.”
When the hierarchy condition (7.23) is not satisfied, the “diffusion coefficient,”
−Re(cd− − ck)(cd+ − ck) is negative, which signals again the occurrence of an
instability (see Fig. 7.10).

Physically, wave solutions to (7.20) and (7.22a) have different characteristics.
Solutions to (7.20) are kinematic waves. They correspond to the linearized conser-
vation equation for the mass (7.17a) for which the flux q̃ is written as an explicit
function of h̃, q̃ = h̃, which corresponds to the vertical wall and inertia-less limit
of (7.17b) (Re→ 0 and Ct → 0). The term “kinematic” has its origin in the formal
equivalence between the mass conservation, ∂th+ ∂xq = 0, and the kinematic con-
dition at the free surface, ∂th+ u|h∂xh= v|h. These waves are fast. They propagate
at speed ck = 1, which is three times the average speed of the base flow.

Wave solutions to (7.22a) have a more subtle interpretation. This second-order
wave equation is obtained from (7.17b) by dropping out the drag and gravity con-
tribution q̃ and −h̃, respectively, which corresponds to Re→∞ and Ct →∞ with
Fr2 = 3Re/Ct = O(1). This limit corresponds to the propagation of free-surface
long waves in hydraulics when we deal with problems such as “flood on rivers,”
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“tidal waves” and “hydraulic jumps.” For large Reynolds numbers, the flow can be
assumed to be potential, except for at a viscous boundary layer at the bottom of the
channel. The velocity is therefore assumed to be independent of the cross-stream co-
ordinate y and one is led to the shallow-water equations, or Saint-Venant equations,
written in dimensional form as [215, 299]:

∂th+ ∂xq = 0, (7.25a)

∂tq + ∂x

(
q2

h

)
= gh sinβ − τw − gh cosβ∂xh. (7.25b)

The reader can recognize in (7.25a) the mass conservation equation and in (7.25b)
the averaged momentum balance. The wall drag τw is generally modeled using the
so-called “Chézy law”, τw = Cf q

2/h2, where the dimensionless “friction coeffi-
cient” Cf is assumed to be constant [84]. The Chézy law is an empirical friction
law obtained from experimental data [33]. Apart from the wall drag, and a differ-
ent coefficient in front of the convective term ∂x(q

2/h), the Saint-Venant equations
are very similar to the Kapitza–Shkadov model when surface tension is neglected.

The balance of gravity acceleration and of wall friction gives q =
√
gh3 sinβ/Cf

and the corresponding linear kinematic waves travel at speed 3
2q/h, which is 1.5

times the speed of the flow. Using the Nusselt scaling based on the uniform film
thickness h̄N and the speed 3

2 q̄N/h̄N (so that kinematic waves again propagate at
a dimensionless speed equal to unity), the Saint-Venant equations in dimensionless
form are

∂th+ ∂xq = 0, (7.26a)

∂tq + ∂x

(
q2

h

)
= 1

Re

(
2

3
h− q2

h2

)
− 1

Fr2
h∂xh, (7.26b)

where Re = 2
3C

−1
f and Fr2 = 3

2 Re/Ct. The Reynolds number Re = 2
3C

−1
f com-

pares the wall friction time h̄2
Nq̄

−1
N C−1

f and the advection time 2
3 h̄

2
Nq̄

−1
N , whereas

the Froude number Fr2 = 3
2 Re/Ct compares the speed of the kinematic waves,

3
2

√
gh̄N sinβ/Cf , to the speed,

√
gh̄N cosβ , of the gravity waves created by the

action of gravity on perturbations of the free surface elevation. (Fr2 is again propor-
tional to Re/Ct, but with a factor 3/2 instead of the factor 3 earlier, a difference that
arises from a different definition of the speed of the kinematic waves, 3ūN in the
earlier case, (3/2)ūN now. But in both cases, the definition of the Froude number as
the ratio of the speed of the kinematic waves to that of “gravity waves” remains the
same.)

Linearizing the Saint-Venant equations leads to a single multispeed equation sim-
ilar to (7.18), with lower- and higher-order waves traveling at speed unity and

cd± = 2

3
± 1

Fr
, (7.27)
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respectively. Higher-order linear wave solutions to the Saint-Venant equations thus
correspond to the advection by the flow, whose velocity is 2/3, of two waves propa-
gating in opposite directions at speed Fr−1, that is, in dimensional form

√
gh̄N cosβ .

Physically, perturbations of the free surface elevation induce perturbations of hydro-
static pressure, which are transported in the moving frame of the flow at speed,
±
√
gh̄N cosβ . For this reason, these waves are generally referred to as surface

gravity waves. However, when a vertical wall is considered (Fr →∞), these two
different wave solutions do not vanish but reduce to a single solution that remains
stationary in the frame moving at the speed 2/3 of the flow. Yet, in that case the
hydrostatic pressure is not affected by perturbations of the free surface elevation.
In fact, considering a vertical wall and negligible wall drag (Fr,Re→∞), the mo-
mentum balance (7.26b) reduces to a single wave equation ∂tu+ u∂xu= 0 for the
averaged speed of the flow u = q/h. For this reason, higher-order linear wave so-
lutions to (7.26a), (7.26b) are also referred to as dynamic waves [126], in contrast
with the kinematic waves induced by the mass conservation equation (7.26a). Since
film flows are generally considered in nearly vertical wall geometries, we prefer
the latter terminology. The differences between expressions (7.27) and (7.22b) of
the speed of the dynamic waves in the case of the Kapitza–Shkadov model and the
Saint-Venant equations originate from the assumption of different velocity profiles.

The propagation of long wave small perturbations on a general inviscid shear
flow was examined by Burns [35]. The pertinent equations are

∂t ũ+U∂xũ+DUṽ+ ∂xp̃ = 0, ∂yp̃ = 0, ∂xũ+ ∂yũ= 0, (7.28a)

where tildes refer to the perturbations, D ≡ d/dy and U(y) is the streamwise ve-
locity of the base flow. The system of equations is completed with the boundary
conditions

ṽ = 0, on y = 0, (7.28b)

ṽ = ∂t h̃+U∂xh̃, p̃ =−h̃DP, and

∂yũ=D2Uh̃= 0, all on y = 1,
(7.28c)

where P(y)=−Fr−2y is the hydrostatic pressure distribution of the base flow. By
looking for solutions to (7.28a)–(7.28c) that remain stationary in the moving frame,
ξ = x − c t , we have

(U − c)2D

[
ṽ

U − c

]
=−DP h̃′,

where the prime refers to differentiation with respect to ξ . Integration with respect
to y then gives

ṽ = 1

Fr2
(U − c)h̃′

∫ y

0

dy

(U − c)2
.



212 7 Isothermal Case: Two-Dimensional Flow

Fig. 7.11 Speed times Froude number cFr as function of the Froude number Fr. Solid lines cor-
respond to the solutions to the Burns condition (7.29). Dotted lines correspond to the kinematic
waves. Dashed-dotted lines (left) and dashed lines (right) refer to the dynamic waves with speed
given by (7.22b) and (7.33) with k→ 0, respectively

The kinematic condition at the free surface, ṽ|1 = (U(1) − c)h̃′, thus leads to an
equation for the phase speed c,

Fr2 =
∫ 1

0

dy

(U − c)2
, (7.29)

which admits two solutions for a given Froude number. The numerical solution to
the Burns condition (7.29) for a parabolic velocity profile U = y− 1

2y
2 is compared

to the expression (7.22b) in Fig. 7.11. The Burns condition admits a backward mov-
ing (c < 0) and a forward moving (c > 0) solution, whereas both dynamic waves
corresponding to (7.22b) are forward moving for Fr > 2.74. However forward mov-
ing Burns dynamic waves have a speed close to the corresponding dynamic waves
of the Kapitza–Shkadov model.

The stability condition (7.23) with the speed of the dynamic waves given by
(7.22b) gives Fr <

√
3 or, by making use of the definition of the Froude number,

Re < Ct, with Ct corresponding to the value of the critical Reynolds number for the
onset of the primary instability for the Kapitza–Shkadov model (7.5).

Let us now turn to the analysis of the primary instability based on the simpli-
fied second-order model (6.1), (6.79). As with the Kapitza–Shkadov model (6.13a),
(6.13b), a multispeed wave equation governing the evolution of infinitesimal pertur-
bations around the Nusselt flat film solution can similarly be obtained:

(∂t + ∂x)h̃+ 6

5
Re

(
∂tt + 17

21
∂xt + 1

7
∂xx

)
h̃− Ct

3
∂xxh̃

+ We

3
∂xxxx h̃− 9

5

(
∂xxt + 4

9
∂xxx

)
h̃= 0. (7.30)

This equation is also obtained from the regularized model (6.1), (6.92), as expected,
since the simplified and regularized models are equivalent at the linear stage.

Compared to (7.18), new terms enter into (7.30) corresponding to viscous effects
(third-order terms) and surface tension (fourth-order terms), such that (7.30) is no
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more hyperbolic. Yet, we may still take advantage of the idea of wave hierarchy to
give a physical interpretation of the different terms in the dispersion relation. Apart
from third-order viscous terms missing in the formulation by Alekseenko et al. [4],
(7.30) is similar to the linear part of the equation obtained by these authors. The
decomposition of the infinitesimal perturbations into normal modes of wavenumber
k and angular frequency ω then leads back to the dispersion relation (7.10). By
recognizing that (7.10) can be split into two parts having a π/2 phase difference
due to the parity of differentiation, (7.30) after separating odd and even derivatives
becomes [196]

(∂t + ∂x)h̃− 9

5

(
∂xxt + 4

9
∂xxx

)
h̃ = λ, (7.31a)

6

5
Re

(
∂tt + 17

21
∂xt + 1

7
∂xx

)
h̃− Ct

3
∂xxh̃+ We

3
∂xxxxh̃ = −λ. (7.31b)

Hence, viscous effects modify the speed ck of the kinematic wave solutions
to (7.31a), which is now dependent on the wavenumber k,

ck = 1+ 4k2/5

1+ 9k2/5
, (7.32)

an expression identical to (7.11a). Dynamic wave solutions to (7.31b) travel at
speeds

cd± = 17

42
±
√

37

1764
+ 5

6

(
1

Fr2
+ 3k2 We

Re

)
. (7.33)

Therefore, surface tension has a dispersive effect on dynamic waves similar to the
effect of second-order viscous terms on kinematic waves. Since the phase speed of
the slower dynamic waves is always lower than the speed of kinematic waves, the
stability condition (7.23) reduces to

1+ 4k2/5

1+ 9k2/5
≤ 17

42
+
√

37

1764
+ 5

6

(
1

Fr2
+ 3k2 We

Re

)
. (7.34)

One can easily confirm that equality of the two sides in (7.34) is equivalent to the
neutral stability condition (7.11a), (7.11b). Notice that the stability condition ck =
cd+ implies that neutral waves propagate at the speed of the kinematic waves thus
justifying the equality of the expressions for the phase speed (7.11a) and (7.32).

The stabilizing effects of viscous dispersion and surface tension can now be ex-
plained within the framework of wave hierarchy. Viscous dispersion reduces the
speed of the kinematic waves whereas surface tension accelerates the dynamic
waves, both effects being obviously stabilizing by shifting upward the critical
Froude number at which the kinematic waves move faster than the dynamic ones.

As the onset of the primary instability for falling film flows occurs at k = 0, it
is always possible to neglect the dispersive effects of viscosity and surface tension
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on the kinematic and dynamic waves, at least for a Reynolds number very close to
the critical value, Re− Rec � 1. As already discussed earlier in our analysis of the
Kapitza–Shkadov model, there is an analogy between the onset of long wave insta-
bility in film flows and the torrential regime of rivers characterized by the presence
of turbulence. In steep channels, such as spillways from dams, run-off channels or
open aqueducts, a uniform and steady (on average) flow evolves eventually to a se-
ries of “breaking waves,” or “bores,” separated by regions of gradually varying flows
arranged in a staircase manner.

These bores are generally referred to as roll waves. The breaking of bores cannot
be described in principle by the Saint-Venant equations as their derivation requires
a slowly varying free surface, an assumption that is violated at the sharp fronts of
the waves, i.e., when they form shocks prior to breaking. Yet the instability leading
to bores is well captured by these equations. In fact, for not too high Froude num-
bers, the steep fronts of the shocks can be neglected and the roll wave properties are
satisfactorily predicted by (7.26a), (7.26b) [33]. As for film flows, kinematic waves
are controlled by the balance of the gravity acceleration along the slope and the wall
drag. The speed of the kinematic waves exceeds the speed of the fastest dynamic
waves (7.27) when Fr > 3 (actually, in most studies dealing with roll waves the
velocity scale corresponds to the average velocity of the uniform flow giving a crit-
ical Froude number equal to 2). The instability is here possible because kinematic
waves move at a different speed than the fluid velocity. In fact, for large inclina-
tions or flow rates, that is Fr →∞, dynamic waves, which transport the kinetic and
potential energies of the perturbations, are simply advected by the flow.

When an inviscid free surface flow with a semiparabolic velocity profile is con-
sidered,2 the speed of the fastest (Burns) dynamic waves tends to the velocity of the
fluid moving at the interface as Fr →∞, which is again slower than the kinematic
waves and the flow becomes unstable for Fr >

√
1+ π/2 ≈ 1.62 [125], a value

that is quite close to the onset of the film flow instability (Rc = 5
6 Ct gives a constant

value of the Froude number Fr =√5/2≈ 1.58). In Fig. 7.11, the speed of the fastest
linear dynamic wave solutions to the model (6.1), (6.79) is compared to the corre-
sponding results from the Burns condition (7.29). The agreement is excellent, which
explains why the two predictions give a similar value for the critical Froude num-
ber. The speed cd+ given by (7.33) tends to ≈ 0.55 as k→ 0 and Fr →∞, a value
close to the velocity of the fluid at the interface. Due to the normal component of
the gravity acceleration, dynamic waves are much faster than the fluid when the
channel is slightly inclined (Fr � 1) and then tend to the largest possible velocity
of the flow for a vertical wall (Fr →∞). After all, in the first case dynamic waves
essentially transport gravitational potential energy of the perturbations, whereas in

2The roll wave instability is a shear-driven instability produced by inertia and with negligible
contribution from viscous effects. But the basic laminar flow does result from viscous effects,
e.g., Johnson [126] neglected viscous effects except in the definition of the basic laminar flow.
Considering a shear-driven instability by assuming that viscous forces are negligible, but at the
same time having a basic velocity profile that results from viscous effects, is quite common in the
analysis, e.g., of a shear-driven Kelvin–Helmholtz instability of a mixing layer.
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the second case they mostly transport the kinetic energy of the perturbations. Con-
sequently, the instability can occur only if the speed of the kinematic waves is not in
the range of admissible velocities for the undisturbed flow. As for the onset of roll
waves in channel flows, the ability of the kinematic waves to move faster than any
fluid particle is therefore a crucial ingredient of the instability mechanism [256].

7.2 Traveling Waves

With periodic forcing at the inlet, waves rapidly reach a constant shape and speed
after the inception region; Since the film acts as a spatial noise amplifier, regu-
larly spaced waves are observed downstream without further change in the film
texture. Although these waves remain almost stationary in their moving frame, they
are commonly referred to as traveling waves. Traveling waves have been the sub-
ject of numerous theoretical and experimental studies for more than 60 years since
Kapitza’s pioneering efforts and they have already been encountered in earlier chap-
ters. A comprehensive study of all possible traveling wave solutions is not done here.
Our principal aims are to analyze traveling waves within the framework of dynami-
cal systems theory, to examine the influence of the physical parameters on the wave
characteristics and to assess the validity domain of the weighted residuals models
developed in Chap. 6 (for solitary waves, a particular class of traveling waves with
an infinite period, this was already done in Chap. 6). As already noted, these models
capture most of the features of the nonlinear dynamics of film flows.

7.2.1 Dynamical Systems Approach

7.2.1.1 General Settings

Let us consider periodic waves steady in their moving frame ξ = x − c t , where c

is the speed of the waves. Time dependence can then be eliminated via a suitable
Galilean transformation. The initial system of partial differential equations can thus
be reduced to a system of ordinary differential equations. For example, the isother-
mal BE in terms of the Shkadov scaling ((5.55) with M = 0) gives a fourth-order
ordinary differential equation which can be integrated once, yielding a third-order
differential equation (see also Appendix F.2),

1

3
h3h′′′ − ζ

1

3
h3h′ + 2

15
δh6h′ + 1

3
h3 − ch− q0 = 0, (7.35)

where the prime denotes differentiation with respect to the moving coordinate ξ .
For the two-equation formulations, such as the Kapitza–Shkadov model in (6.13a),

(6.13b) or the first-order model in (6.1) and (6.51), a similar equation can be ob-
tained. First, the mass conservation equation (6.1), −ch′ + q ′ = 0, can be integrated
once to yield

q = ch+ q0, (7.36)
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where q0 =
∫ h

0 (u − c) dy is an integration constant corresponding to the rate at
which the fluid moves under the wave in its moving frame. This constant is negative,
as the waves move faster than the flow. In fact, surface equations (such as the BE
or the Ooshida equation) or two-equation models in the absence of second-order
viscous dispersion effects, all lead to the following generic equation:

1

3
h3h′′′ − ζ

1

3
h3h′ + δN (h, c)h′ + 1

3
h3 − ch− q0 = 0. (7.37)

The functional N contains all inertia effects as is evident by the presence of the
multiplicative factor δ. The third-order derivative arises from surface tension effects,
the term 1

3h
3 corresponds to the gravity acceleration and the two last terms account

for the viscous drag.
In the case of the two second-order two-equation models—simplified model

in (6.1), (6.79) and regularized model in (6.1), (6.92)—we get,

1

3
h3h′′′ − ζ

1

3
h3h′ + δN (h, c)h′ + 1

3
h3 − ch− q0

+ η
[
I(h, c)[h′]2 +J (h, c)h′′

]= 0, (7.38)

where

I(h, c)= 8

5
q0 − 1

5
ch and J (h, c)=−3

5
ch2 − 12

5
q0h

account for viscous dispersion effects.
The integration constant q0 can be fixed by demanding h = 1 as a solution to

(7.37), corresponding to the unperturbed Nusselt film thickness hN which leads to

q0 = 1/3− c. (7.39)

Notice that there is actually a one-parameter infinite family of solutions with con-
stant film thickness. Making the transformation

h→Hh, c→ Cc, q→Qq, (7.40)

preserves the structure of equations (7.35), (7.37) and (7.38) provided that ξ is also
rescaled as ξ →Ξξ and the control parameters as δ→Δδ, ζ →Λζ and η→ Υ η.
By substitution then one is led to Ξ = H 1/3, Δ = H−11/3, Λ = H−2/3 and Υ =
H−4/3, whereas C =H 2 and Q=H 3.

Our starting point will thus be the general equation

1
3h

3h′′′ − ζ
1

3
h3h′ + δN (h, c)h′ + η

[
I(h, c)[h′]2 +J (h, c)h′′

]+H(h, c)= 0,

(7.41a)

which contains all previous equations, surface equations and two-equation models
as special cases. The functional H is given by

H(h, c)≡ 1

3
h3 − ch− q0 = 1

3
(h− 1)

(
h2 + h+ 1− 3c

)
, (7.41b)



7.2 Traveling Waves 217

and the functionals N (h, c) corresponding to the different cases are detailed below:

BE (5.55):
2

15
h6

Ooshida equation (5.62):
10

21
ch4 − 12

35
h6

Kapitza–Shkadov

model (6.13a), (6.13b):
2

5
q2 − 4

5
cqh+ 1

3
c2h2 = 2

5
c2 − 4

15
c+ 2

45
− 1

15
c2h2

Models (6.1), (6.51)

and (6.1), (6.79):
18

35
q2 − 34

35
cqh+ 2

5
c2h2

= 1

35

[
18c2 + 2

3
ch− 12c− 2c2h(h+ 1)+ 2

]

Model (6.1), (6.92):

{
18

35
q2 − 34

35
cqh+ 2

5
c2h2

}[
1− 1

70
δqh′

]
.

(7.41c)

Notice that the expression of q given by (7.36) and (7.39) has been utilized in the
above expressions for N to eliminate q0. Notice also that due to a misprint in [229]
the formula for N corresponding to the Kapitza–Shkadov model was given as N =
2
5c

2 − 4
15c+ 2

45 − 2
15c

2h2 in that study.
Equation (7.41a) can be recast as a three-dimensional dynamical system:

U ′
1 = U2, U ′

2 =U3,

U ′
3 = −3

{[
δN (U1, c)− 1

3
ζU3

1

]
U2 +H(U1, c)

+ η
[
I(U1, c)[U2]2 +J (U1, c)U3

]}
U−3

1 , (7.42)

in the phase space spanned by U= (U1,U2,U3) where U1 = h, U2 = h′, U3 = h′′.
The traveling wave solutions of the full second-order model (6.78) are governed by
a five-dimensional dynamical system—see Appendix E.1. The solutions to (7.41a)
are trajectories in the phase space, also referred to as “phase curves”; “level curves”
is another term. The reader should consult some of the numerous texts on dynam-
ical systems theory, e.g., [111, 292, 301], but only basic elements of the theory are
required.

The vector field U generates a “phase flow” or simply “flow.” A common no-
tation for flows is �(U, t); in our case the moving coordinate ξ plays the role of
“time” t . A flow satisfies the associated dynamical system, say dU/dt = F(U).
Formally we write: d

dt
(�(U, t))|t=τ = F(�(U, τ ) [111]. It then looks like flow is

just the solution U of the dynamical system and so the natural question is: Why is



218 7 Isothermal Case: Two-Dimensional Flow

there a need for a different symbol? Let us represent the solution of a dynamical
system as U(t, t0,U0) [301]: This is the solution through point U0 at t = t0 with
U(t0, t0,U0)=U0. In the solution U(t, t0,U0) we can now think of t and t0 as fixed
and then study how the “map” U(t, t0,U0) moves sets of points around in phase
space. For a set S we could denote its image under this map by U(t, t0,S). Since
points in phase space are also labeled by the symbol U, it is often less confusing to
change the notation for the solution, and hence the use of the symbol �. From the
physical point of view one can think of the flow as simply the motion along a phase
curve.

We now turn to the evolution of phase-space volumes as governed by the dynam-
ical system dU/dt = F(U) (a “volume” in phase space can be defined by a set of
points in the phase space such as a “hypercube,” ΔU1ΔU2ΔU3). Consider a domain
D in the phase space which is supposed to have volume V . We denote by D(t) the
image of the region D under the action of the phase flow �, and by V (t) we denote
the volume of the region D(t). From “Liouville’s theorem” [292] we have

dV

dt
=
∫

D(t)

∇U · FdU1 dU2 dU2,

where the gradient operator ∇U is defined as ∇U = (∂U1 , ∂U2 , ∂U3). In other words,
the variation with respect to time of the volume of a region in the phase space is
given by the volume integral of the divergence of F in this region. Therefore, if
∇U · F = 0, the phase flow preserves the volume of any region of the phase space.
Such a flow can be viewed as the flow of an “incompressible phase fluid” in the
phase space. On the other hand, for the special case where the divergence of F is a
negative constant, say ∇U ·F=−λ, as is the case with the simple dynamical system
dU/dt =−U , where we have attraction toward U = 0, Liouville’s theorem yields
dV/dt = −λV , so that V (t) = V (0) exp(−λt). Thus, phase space volumes shrink
exponentially in time.

For (7.42), the divergence of F is equal to −3ηJ (U1, c)U
−3
1 and it is directly

proportional to the viscous dispersion parameter η. For η= 0 the dynamical system
is volume-conserving. For η > 0, an initial volume in the phase space will expand or
contract depending on the sign of J (U1, c). From the expression of the functional
J in (7.38) and (7.39), the zeroes of ∇U · F correspond to U1 = hdiv0 given by

hdiv0 = 4

(
1− 1

3c

)
, (7.43)

where the subscript “div0” is used to denote zero divergence. For most of the solu-
tions to (7.42) considered here, when η > 0, J (U1, c) is found to be positive and
a contraction of the phase volume surrounding an orbit is observed for all posi-
tions of the vector U belonging to this orbit (this point will be discussed further in
Sect. 7.2.1.5).

Fixed points of (7.42) are its equilibrium points corresponding to F= 0 or U2 =
U3 = 0 and

3H(U1, c)= (U1 − 1)
(
U2

1 +U1 + 1− 3c
)= 0, (7.44)
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from which it is seen that U1 = 1 is a solution corresponding to the Nusselt flat film
solution h= 1. Additional roots are given by

U2
1 +U1 + 1− 3c= 0. (7.45)

Accordingly, for c > 1/3, i.e., for waves traveling faster than the average speed of
the Nusselt flat film flow, there is an additional positive solution

hII ≡−1/2+√3(c− 1/4). (7.46)

Hence (7.42) admits two fixed points, UI = (1,0,0) and UII = (hII,0,0), with the
uniform film of constant thickness corresponding to one of the two. This multiplic-
ity of solutions of (7.44) indicates that for a given flow rate two different flat film
solutions are possible so that hydraulic jumps can be constructed as trajectories in
the phase space connecting one flat film solution to the other. To obtain the behav-
ior of a dynamical system close to a fixed point we must linearize the dynamical
system about this fixed point. This will yield a Jacobian whose eigenvalue spectrum
determines the stability of the fixed point.

Before proceeding further we need to define the saddle-focus fixed point and
saddle fixed point. A saddle-focus point has either a real positive eigenvalue and a
pair of complex conjugate ones with negative real part or a real negative eigenvalue
and a pair of complex conjugate ones with positive real part. Each of the two cases
can be obtained from the other by reflection with respect to the imaginary axis.
Further, when the fixed point admits a real eigenvalue, say λ1, and two complex
conjugate eigenvalues, say λ2, λ3, that are equidistant from the imaginary axis, such
as �(λ2,3) = −λ1, the fixed point is a saddle-focus that is said to be “neutral” or
“resonant.” On the other hand, a saddle point has three real eigenvalues, either a
positive and two negative ones, or a negative and two positive ones. Each of the
two cases can be obtained from the other by reflection with respect to the imaginary
axis. Neither saddle-focus nor saddle points are “stable” fixed points (the real parts
of the eigenvalues do not have the same sign; a stable fixed point is one for which
all eigenvalues have negative real parts).

Spatially, periodic waves generated experimentally by forcing at the inlet (pro-
vided there is synchronization between the forcing and the flow at any location
in space as was emphasized in Sect. 5.3.1) correspond to periodic orbits in the
phase space or limit cycles. They arise through a change of the nature of the fixed
point from focus (all eigenvalues have a negative real part) to saddle-focus when
a pair of complex conjugate eigenvalues, say λ2, λ3, cross the imaginary axis,
�(λ2) = �(λ3) = 0, corresponding to a Hopf bifurcation. Instead, solitary waves
in real space correspond to homoclinic orbits in phase space: They leave the fixed
point for an excursion in the phase space and eventually return back to it. More pre-
cisely, for a positive-hump solitary wave, a homoclinic orbit leaves the fixed point at
ξ =−∞ on the unstable manifold Wu and gets back to it at ξ =+∞ on the stable
manifold Ws (as the flow of (7.42) is “steady” on the fixed points, trajectories start
or return to a fixed point infinitely slowly).
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The approach of setting h= 1 to obtain the value of q0 in (7.39) corresponding to
the flow rate at which the fluid flows under the wave in its moving frame is used for
both limit cycles, around UI or UII—limit cycles in the latter case are constructed
in Sect. 7.2.1.3—and solitary waves. After all, h= 1 corresponds to the fixed point
UI = (1,0,0) of the associated dynamical system and the aim is to use the position
of one fixed point as a reference solution for this dynamical system. As far as the
condition h→ 1 as x →±∞ for solitary waves is concerned, in practice solitary
waves are numerically constructed with periodic boundary conditions in a finite
domain. The closed flow condition 〈h〉ξ = 1 is then recovered asymptotically as
the domain tends to infinity. However, the condition h→ 1 as x →±∞ cannot
be related to time-dependent computations as it cannot be related to 〈h〉x = 1 or
〈q〉t = 1/3 (see Sect. 5.3.1; of course, the solitary pulses obtained in time-dependent
computations do resemble the infinite domain computations).

We note that our analysis of homoclinicity is restricted to positive-hump solitary
waves with corresponding homoclinic orbits in a three-dimensional phase space.
The associated dynamical system admits a real positive eigenvalue, say λ1, corre-
sponding to the unstable manifold, and either a complex conjugate pair with negative
real parts, or two negative real eigenvalues, say λ2, λ3, corresponding to the stable
manifold. This situation arises explicitly when homoclinic orbits connecting UI to
itself are considered. In the case of homoclinic orbits around UII, the situation is
reversed: One eigenvalue is negative and the two others have positive real parts so
that the unstable manifold is two-dimensional, whereas the stable manifold is one
dimensional. The extension to negative-hump waves would simply require exchang-
ing the role of the unstable and stable manifolds and is thus straightforward.

Actually, a homoclinic orbit can only exist for specific values of c, as most of the
time, an orbit leaving the fixed point along its unstable manifold Wu never comes
back. Equivalently, the construction of homoclinic orbits in a three-dimensional
phase space is a nonlinear eigenvalue problem for the speed c of the correspond-
ing solitary wave as function of the other parameters of the associated dynamical
system. Depending on the value for c, the homoclinic orbit may come back to the
vicinity of the fixed point and eventually onto its stable manifold, either through
a single loop in the phase space, or it can be repelled from the fixed point several
times and perform several loops in the phase space before it eventually returns onto
the stable manifold Ws. In dynamical systems theory the former homoclinic or-
bit has been christened principal/primary homoclinic orbit and the latter subsidiary
homoclinic orbit [103, 301]. The precise conditions under which subsidiary homo-
clinic orbits are possible are given below. Principal/single-loop homoclinic orbits
correspond to single-hump solitary pulses in real space, and subsidiary/multi-loop
ones to “multi-hump solitary waves” or “trains of solitary waves” (“multi-pulse
waves”).

By now the reader must have understood that a solitary hump is the (clearly iden-
tifiable) large amplitude bump of a solitary wave as, e.g., Fig. 4.1 nicely demon-
strates. A hump corresponds to a loop in the phase space. A series of humps, as is
the case with multi-hump waves, resembles a large-amplitude oscillation and cor-
responds to several loops in the phase space. Hence, a solitary wave can be either
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single-hump or a multi-hump. For a multi-hump wave, the extra loops of the cor-
responding homoclinic orbit about a fixed point do not pass close to it but revolve
around a second fixed point, i.e., they require two fixed points as is the case with the
falling film. For a dissipative wave the first fixed point is a saddle-focus and has one
real and positive eigenvalue and a complex conjugate eigenvalue pair with negative
real parts.

Solitary pulses on a falling film are dissipative waves (the second fixed point in
the falling film problem is also a saddle-focus but with one negative real eigenvalue
and a complex conjugate pair with positive real parts as noted earlier). The profile
of a solitary pulse consists of a monotonic increase of the interface from the flat film
up to the first hump, corresponding to the monotonic departure of the homoclinic
orbit from the fixed point in the direction of the unstable manifold, while the final
hump is always preceded by an oscillatory radiation structure corresponding to the
spiraling return of the homoclinic orbit to the fixed point on the stable manifold.
For nondissipative solitary waves, the fixed point is a saddle with three real eigen-
values from which only one is positive. When a homoclinic orbit is connected to a
saddle point the corresponding solitary wave exhibits a smooth entry in the positive
ξ direction without any oscillations.

Even though, strictly speaking, a solitary wave exists in an infinite domain, quite
frequently we use this term loosely to denote a localized structure in a finite domain
that resembles an infinite-domain solitary pulse, or to denote trains of localized
structures in an infinite domain each of which resembles an infinite-domain solitary
pulse. Such structures are typically separated by portions of nearly flat film corre-
sponding to the returns of the phase space trajectory in the neighborhood of the fixed
point associated with the flat film solution. Such trains are what we have referred to
as “trains of solitary waves” or “multi-pulse waves”; their separation distance has
to be sufficiently large for each wave in the train to resemble the infinite-domain
solitary pulse—see, e.g., Fig. 6.4.

From the above discussion it is clear that a homoclinic orbit is necessarily as-
sociated with a saddle-focus point or a saddle point. Stable and unstable manifolds
Ws,u are locally tangent to the linear eigenspaces Es,u spanned by the eigenvectors
associated with the eigenvalues λi with negative and positive real parts, respectively.
It is then clear that a homoclinic orbit departs from the fixed point following a di-
rection in the subspace of the tangent eigenspace spanned by the eigenvectors cor-
responding to eigenvalues whose positive real parts are closest to zero. Conversely,
by reversing the time direction the same argument applies also to the stable mani-
fold. It can be concluded that trajectories in the vicinity of a fixed point are mainly
influenced by the eigenvalues that are the closest to the imaginary axis, known as
leading eigenvalues. The closest to the imaginary axis of all is sometimes called the
determining eigenvalue.

As far as the study of the homoclinic orbit solution to the five-dimensional dy-
namical system corresponding to the full second-order model (6.78) is concerned,
it requires the continuation of only three eigenvalues in the parameter space, as is
the case with the three-dimensional flows in (7.42). There are in fact three leading
eigenvalues for the dynamical system corresponding to the full second-order model
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Fig. 7.12 Intersections P
and L of the unstable and
stable manifolds Wu,s of the
fixed point UI with a sphere.
The arrow indicates that
when P is in L, a homoclinic
orbit is created. In the case of
fixed point UII, the roles of
Ws and Wu are simply
exchanged

as the other two eigenvalues are real and positive and located further away from
the imaginary axis. As a consequence, the study of homoclinic orbits for the full
second-order model is qualitatively similar to the much simpler case of the three-
dimensional flows in (7.42) and we restrict ourselves to the latter.

Let us see now how a homoclinic orbit can be created in a three-dimensional
phase space. Assume that a fixed point of a three-dimensional dynamical system
admits a real positive eigenvalue, say λ1, corresponding to the unstable manifold,
and either a complex conjugate pair with negative real parts, or two negative real
eigenvalues, say λ2, λ3, corresponding to the stable manifold. (Once again this sit-
uation arises explicitly when homoclinic orbits connecting UI to itself are consid-
ered. In the case of homoclinic orbits around UII, the situation is reversed. However,
apart from exchanging the role of the unstable and stable manifolds the demon-
stration remains unchanged.) The homoclinic orbit corresponds to an intersection
of the unstable manifold with the stable one. Imagine a sphere in the phase space
centered at the fixed point as shown in Fig. 7.12. Since the unstable manifold is
one-dimensional and the stable manifold is two-dimensional, the intersections of
the sphere with the unstable and stable manifolds, Wu and Ws, are a point P and a
curve L, respectively. A trajectory starting along the unstable manifold most often
never comes back to the neighborhood of the fixed point, as already emphasized.
However, it might do so for a specific value of c and we might assume that the cor-
responding trajectory intersects the sphere centered on the fixed point at point P .
If we suppose now that the sphere is sufficiently small and that the considered tra-
jectory is homoclinic, this trajectory would return to the fixed point along the stable
manifold so that its intersection with the sphere would belong to Ws and thus to L.
The idea is then to place P on L. If P does not belong to L, the trajectory is only
approximately homoclinic and the point P will be repelled from the vicinity of the
fixed point in the direction of the unstable manifold. Notice that a point movement
on a curve in a two-dimensional manifold is a codim 1 phenomenon, i.e., it requires
the monitoring of only one parameter. In our case we can simply adjust the speed c

to ensure that P ∈ L, thus obtaining the homoclinic trajectory. The condition P ∈ L

gives a unique relation for the speed c as a function of the other parameters.
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A “shooting method” to numerically obtain homoclinic orbits follows directly
from the above idea of adjusting P onto L. The phase speed c is adjusted by mon-
itoring the function d(c) of first comeback of a trajectory starting close to the fixed
point in the direction of the unstable manifold, i.e., the first local minimum of the
distance of the trajectory to the fixed point in the phase space. For appropriately
chosen values of c, a loop is observed in the phase space before the trajectory is
repelled from the vicinity of the fixed point, which enables us to define d(c) un-
ambiguously. Then c can be refined by dichotomy to make d(c) as small as possi-
ble [216]. Another numerical procedure to obtain homoclinic orbits is to look for the
homoclinic bifurcation of a limit cycle approaching a fixed point. This procedure is
easy to implement using the continuation software AUTO07P and its toolbox HOM-
CONT and the homoclinic orbits constructed throughout the monograph have been
obtained using the second method. If the determining eigenvalue is real, homoclinic
orbits correspond to clearly separated codim 1 surfaces c(δ, ζ, η) in the parameter
space or solution branches (also referred to as families of solutions) in the four-
dimensional parameter space. The phase portrait becomes much more complicated
when the determining eigenvalues are complex while the corresponding solution
branches/codim 1 surfaces are no longer well separated. In this case, the so-called
Shil’nikov theorem states in its most common form that if a primary homoclinic or-
bit exists in the parameter space, e.g., in our case we have a homoclinic solution
branch c = c∗(δ, ζ, e), then a countable infinite number of limit cycles/periodic or-
bits and subsidiary/multi-loop homoclinic orbits also exist in a local neighborhood
of c∗ provided that the Shil’nikov criterion

−�(λ2,3)/λ1 < 1 (7.47)

is satisfied or, alternatively, when the sign of the Shil’nikov number λ1 +�(λ2,3) is
> 0 [103]. If the Shil’nikov criterion is not satisfied, we either have a finite number
of subsidiary/multi-loop orbits or none.

We note that the subsidiary/multi-loop orbits about a fixed point of the Shil’nikov
criterion are of the type for which the extra loops pass close enough to the fixed
point. The Shil’nikov criterion does not ensure the existence of the other type in
which the extra loops of a homoclinic orbit about a fixed point do not pass close
enough to this point. However, the criterion can be extended to other orbits, for
example a double-loop subsidiary homoclinic orbit with a loop that does not pass
close to the fixed point; after all it is based on a local analysis near the fixed point
(construction of a “Poincaré section”) on a plane close to the fixed point [103].
Hence, in its most general form, the Shil’nikov criterion ensures the existence of
subsidiary homoclinic orbits for both primary and multi-loop subsidiary orbits of
the type with extra loops that do not pass close to the fixed point.

The existence of an infinite number of subsidiary homoclinic orbits in the neigh-
borhood of a primary one corresponds to a situation that is usually called homoclinic
chaos. This term actually refers to the existence of a “chaotic attractor” in the vicin-
ity of a homoclinic orbit in phase space and does not imply the construct of chaos in
time and space; i.e., complex spatio-temporal dynamics of the corresponding par-
tial differential equations. The presence of resonant saddle-focus points signals the
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onset of homoclinic chaos: In general, by changing appropriately the governing pa-
rameters of a system one can go from a case with λ1 + �(λ2,3) < 0 to one with
λ1 +�(λ2,3) > 0.

We finally note that formation of subsidiary homoclinic orbits in the neighbor-
hood of a principal homoclinic orbit (such as the one we have been discussing due to
the intersection of a one-dimensional manifold with a two-dimensional one) is con-
nected with the fact that homoclinic orbits are “structurally unstable”: An arbitrarily
small variation of one of the parameters can break this intersection and can lead to
subsidiary homoclinic orbits in the vicinity of the primary homoclinic loop [301].3

7.2.1.2 Stability of Fixed Points

To complete the study of the traveling wave solutions to the different models we
need to examine the stability characteristics of the fixed points of the corresponding
dynamical systems. We shall focus on the Hopf bifurcation and resonant saddle-
focus points that signal the onset of homoclinic chaos.

Let us first consider the stability analysis of the fixed points of the models de-
scribed by (7.37), corresponding to the BE, Ooshida equation, Kapitza–Shkadov
and first-order model, which neglect viscous dispersion (η = 0). Linearization of
the associated dynamical systems around the fixed point UI yields

u′ = LIu, (7.48)

where u represents a small perturbation around UI and LI is the Jacobian matrix
[L]ij = ∂Uj

Fi |UI , i, j = 1,2,3, where F is the right hand side of (7.42) with η = 0.
The eigenvalues of LI are given by the characteristic equation |L1 − λI| = 0, where
I is the 3× 3 identity matrix, or

λ3 + [3δN (1, c)− ζ
]
λ− 3(c− 1)= 0. (7.49)

As viscous dispersion is neglected, volume is conserved in the phase space, as
pointed out earlier: ∇U · F= 0. This property implies that λ1 + λ2 + λ3 = 0 where
λi, i = 1,2,3, are the roots of (7.49). Indeed, with F= LIu,

∇U · F=∇U · (LIu)=∇u · (LIu)= tr(LI)=
∑

i

λi = 0, (7.50)

as the trace of a matrix is equal to the sum of its eigenvalues. Hence, a zero trace for
the Jacobian is linked directly to conservation of volume. Further, one of the roots is

3This concept characterizes the response of a dynamical system to a weak perturbation, i.e., a weak
vector field added to the dynamical system yielding a perturbed dynamical system. If the phase por-
traits of the perturbed and unperturbed dynamical systems are topologically equivalent (“homeo-
morphism”), i.e., if it is possible to go from one to the other by a continuous deformation, then the
dynamical system is structurally stable.
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real, λ1, and has the sign of the product λ1λ2λ3 = 3(c− 1), which is positive when
c > 1 and negative when c < 1. The two others roots are complex conjugate (real)
when

ΔI = 4
[
3δN (1, c)− ζ

]3 + 243(c− 1)2 (7.51)

is positive (negative).
When c = 1, since the sum of the roots is equal to zero and their product is also

equal to zero, the fixed point UI undergoes a Hopf bifurcation and a transcritical
bifurcation (an eigenvalue crosses the imaginary axis) at the same time: The real
eigenvalue λ1 and the pair of complex conjugate ones λ2, λ3 cross the imaginary
axis simultaneously. This is the case of a “codim 2 bifurcation point” in the pa-
rameter space, or Gavrilov–Guckenheimer point [39], which can be thought of as
a conjunction of a stationary instability and an oscillatory instability, λ1 = 0 and
λ2, λ3 = ±iω, respectively, with respect to “time” ξ . In the vicinity of this point,
homoclinic chaos is expected [101]. Recall that the two types of instability, “sta-
tionary” and “oscillatory,” have been defined in Sect. 3.3. As we pointed out there,
there is something very subtle about long wave instabilities that have ωr = ωi = 0 at
the critical wavenumber k0 = 0. Since ωr = 0 at criticality, one might think of them
as stationary instabilities, but actually they are oscillatory—otherwise we would not
get traveling waves. But here when λ1 = 0, we do not have the same problem as
with traveling waves; the issue with k0 = 0 does not appear here; in the discussion
of Sect. 3.3 we considered both time and space dependence, as opposed to “time” ξ
only here.

Needless to say, there is a close relation between the linear stability analysis
of the flat film and the stability analysis of the fixed points. In fact, the changes
∂x → i k and ∂t →−i ω associated with the linear stability of the flat film are for-
mally equivalent to the sequence ∂x → ∂ξ , ∂t →−c ∂ξ and ∂ξ → λ where c and λ

are complex. Consequently, the Hopf bifurcation occurs precisely at the neutral con-
ditions of the linear stability analysis of the flat film (c= 1). At the Hopf bifurcation
point, the complex eigenvalues are

λ2 and λ3 =±i
√

3δN (1,1)− ζ . (7.52)

Therefore, the onset of limit cycles demands also that 3δN (1,1) ≥ ζ . This condi-
tion coincides with the instability threshold of the Nusselt flat film. From the linear
stability analysis of the Nusselt flat film, in the case of the BE and the first-order
model, the critical reduced Reynolds number is δc = 5

2ζ , whereas in the case of
the Kapitza–Shkadov model, δc = 3ζ . The instability of the Nusselt flat film, which
occurs for δ ≥ δc, is therefore a necessary condition for the onset of limit cycles.

At the second fixed point UII, we get

h3
IIλ

3 + [3δN (hII, c)− h3
IIζ
]
λ− 3

(
c− h2

II

)= 0, (7.53)

and the sum of the roots is again zero. One of the roots is real and has the sign of
c − h2

II, hence negative when c > 1, since c > hII implies c − h2
II = c − (3c − 1−

hII)= (1− c)+ (hII− c) < 0. By performing the transformation (7.40) that allowed
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Fig. 7.13 Location of the
fixed points hI and hII and
their stability diagrams as
function of the wave speed c

in the case of the BE (5.55).
The positions of the
eigenvalues in the complex
plane (�(λ), �(λ)) are
indicated by crosses. A Hopf
(H) and transcritical (T)
bifurcations are
simultaneously observed at
c= 1

us to rescale equations (7.41a)–(7.41c) in order to reset hII to unity, it can be seen
that the sign of

ΔII = 4
[
3δN (hII, c)− h3

IIζ
]3 + 243h3

II

(
c− h2

II

)2 (7.54)

is the same with that of ΔI. Hence the stability properties of UII can be obtained
from those of UI by just exchanging the dimensions of their stable and unstable
manifolds.

The case of the BE (5.55) [216] is the easiest one, thanks to the simplicity of
the corresponding expression of N , N (h, c) = 2

15h
6, independent of c. Since N

is always positive, both fixed points have one real root and one complex conjugate
pair for all c. As shown in Fig. 7.13, they are both saddle-foci. As N (1, c) is posi-
tive, when c > 1 we have λ1 > 0, while λ2, λ3 are complex conjugate with negative
real parts. As discussed earlier, in this case the homoclinic orbit leaves the fixed
point UI monotonically along the one-dimensional unstable manifold Wu and re-
turns to the fixed point by spiraling on the two-dimensional stable manifold Ws.
Because hII > hI = 1, the corresponding wave profile is a hump preceded by radi-
ation corresponding to the spiraling return to UI. One can check that N (1, c) > 0
for the Ooshida equation, as well as for the two-equation models (6.13a), (6.13b)
and (6.1), (6.51). Accordingly, ΔI is positive and the fixed point UI is of the same
type with the BE: a saddle-focus with a one-dimensional unstable manifold and a
two-dimensional stable manifold. Note that for all first-order models and surface
equations, i.e., (7.41a)–(7.41c) with η = 0, the sum of the roots of (7.49) is equal
to zero so that �(λ2)=�(λ3)=− 1

2λ1 and hence the Shil’nikov criterion (7.47) is
always satisfied whenever a homoclinic orbit exists.

Let us now turn to the second-order models, i.e., the simplified (6.1), (6.79) and
regularized models (6.1), (6.92) for which viscous dispersion is taken into account
(η �= 0). The characteristic equation of the associated dynamical system (7.41a)–
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(7.41c) is

λ3 + λ2η

(
−12

5
+ 27

5
c

)
+ λ

[
δ

(
6

5
c2 − 34

35
c+ 6

35

)
− ζ

]
− 3(c− 1)= 0, (7.55a)

which can be written in compact form as

λ3 + Aλ2 + Bλ+C= 0, (7.55b)

where A= η(− 12
5 + 27

5 c), B= δ( 6
5c

2 − 34
35c+ 6

35 )− ζ and C= 3− 3c.
For η �= 0, the sum of the roots is no longer equal to zero but to−A∝ η. Equating

hdiv0 given by (7.43) with 1 gives c= 4
9 ≈ 0.44. When c ≥ 4

9 the sum of the roots is
negative and ∇U ·F < 0, i.e., the flow is locally contracting and the local “amount of
phase flow” entering a small neighborhood around UI is less than the amount leav-
ing it. From hdiv0 = hII we similarly obtain an upper bound, c ≈ 3.8, above which
the phase volume is locally expanding in the vicinity of the second fixed point hII.
It should be emphasized, however, that for all the solutions to the dynamical system
(7.42) considered in this chapter, the speed of the corresponding periodic or solitary
waves is in the interval (0.44,3.8) and the two fixed points are located in contracting
regions of the phase space. A transcritical bifurcation at c= 1 corresponding to the
coalescence of the two fixed points UI and UII appears in addition to the Hopf bifur-
cation. The simultaneous occurrence of an oscillatory instability (λ2, λ3 =±iω) and
a stationary instability (λ1 = 0) is encountered with all first-order models including
the BE. This degeneracy is removed by the introduction of the viscous second-order
effects, i.e. the Hopf bifurcation and the transcritical bifurcation cease to occur si-
multaneously.

Setting λ= λr + i λi for λ and separating the real and imaginary parts of (7.55a),
(7.55b) leads to

λ2
i = B and C= AB. (7.56)

The behavior of the imaginary part λi and speed c is presented in Fig. 7.14 as func-
tion of the reduced Reynolds number δ when the Hopf bifurcation occurs, i.e., when
the complex eigenvalues cross the imaginary axis λr = 0. This corresponds exactly
to the neutral stability of the Nusselt flat film (see Sect. 7.1.1). The imaginary part
λi decreases with viscous dispersion η corresponding to the reduction of the range
of unstable wavenumbers for the flat film (λi ∼ k). The decrease of λi as function
of the distance from the threshold δ − 5

2ζ is faster when the wall is less inclined
(ζ large) compared to the vertical case (ζ = 0). However, the effect of viscosity (η)
on the speed of the waves is more visible when the wall is vertical than when it is
slightly inclined.

Double eigenvalues of (7.55b) written as a polynomial P = λ3 + Aλ2 + Bλ
+ C = 0 can be found by demanding that λ be a root of both P and its deriva-
tive P ′, or that P ′ divides P , i.e., that λ is a root of the polynomial of second degree
P(λ)− λP ′(λ):

(
C− AB

9

)(
−4

9
A3 + 5

3
AB− 3C

)
− B

(
−2

9
A2 + 2

3
B

)2

= 0. (7.57)



228 7 Isothermal Case: Two-Dimensional Flow

Fig. 7.14 Location of the Hopf bifurcation for different values of the parameters ζ and η for the
characteristic equations (7.55a), (7.55b) corresponding to the simplified model (6.1), (6.79) and
regularized model (6.1), (6.92). Upper and lower figures correspond to the imaginary part of the
eigenvalue λi and phase speed c as functions of the distance from threshold δc = 0, respectively

In a point of the parameter space where (7.57) is satisfied, the fixed point UI changes
from a saddle-focus to a saddle or from a stable focus to a “node” [177] (a node
fixed point has real eigenvalues of the same sign). In the first case and as pointed
out earlier, the shapes of the homoclinic orbits change as they cease to spiral back
to the fixed point, which in turn corresponds to the disappearance of the radiation
preceding the hump of a solitary wave and the appearance of a smooth monotonic
entry in the positive ξ direction. In the second case, the unstable manifold of UI is
empty, which then disallows the existence of solitary waves.

We have already seen that when η = 0 the sum of the eigenvalues vanishes, so
that �(λ2) = �(λ3) = − 1

2λ1 and the Shil’nikov criterion (7.47) is satisfied when-
ever a homoclinic orbit is found. For η > 0, this is not automatically the case. At the
onset of homoclinic chaos, the eigenvalues are equally distant from the imaginary
axis, λ1 = −�(λ2) = −�(λ3). The sum of the eigenvalues is thus −λ1 = −A and
the monomial λ− A divides P . We then have:

2A3 + AB+ C= 0. (7.58)
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Fig. 7.15 Behavior of the eigenvalues in the complex plane as functions of δ and c for ζ = 0 (ver-
tical wall) and η= 0.1. Upper and lower figures correspond to the fixed points UI and UII, respec-
tively. The diagrams on the right are blow ups of the left figures at c = 1 and δ = 0. The locus of
the transcritical bifurcation c = 1 and of the Hopf bifurcation are indicated by solid lines. Dashed
line (upper left panel) and dashed-dotted lines (right panels) refer to the onset of the Shil’nikov
homoclinic chaos (7.58) and to the transition from saddle to saddle-focus (7.57), respectively

Since for η = 0, �(λ2) = �(λ3) = − 1
2λ1, which combined with the equidistance

of the eigenvalues from the imaginary axis leads to λ1 = �(λ2) = �(λ3) = 0, the
product of the eigenvalues vanishes and (7.58) reduces to c= 1.

Additional pieces of information can be extracted by investigating the behavior of
the eigenvalues in the complex plane as the parameter space is explored. We restrict
our attention to situations where the flat film is unstable (δ > 5

2ζ ). Since surface
tension is predominant, viscous dispersion is small, but we shall assume here that
it can be as large as unity. The location of the eigenvalues in the complex plane is
schematically indicated in Figs. 7.15, 7.16, 7.17, 7.18, and 7.19 for ζ = 0, ζ = 10,
η = 0.01, η = 0.1 and η = 1. Again the figures are obtained with the characteristic
equations (7.55a), (7.55b) corresponding to the simplified model (6.1), (6.79) and
regularized model (6.1), (6.92).

Let us first discuss the behavior of the eigenvalues of the fixed point UI by vary-
ing δ and c and for given values of ζ and η. When the wall is vertical (ζ = 0), and in
the presence of moderate viscous dispersion, η= 0.1 (see Fig. 7.15), the location of
the Hopf bifurcation remains close to the axis c= 1. The Shil’nikov criterion (7.47)
is satisfied in a rather small region of the (δ, c) plane limited by the axis δ = 0 and
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Fig. 7.16 Behavior of the eigenvalues in the complex plane as functions of δ and c for ζ = 0
(vertical wall) and η= 1. Left and right figures correspond to fixed points UI and UII, respectively.
Dashed-dotted lines refer to the transition from saddle to saddle-focus (7.57)

Fig. 7.17 Behavior of the eigenvalues in the complex plane as functions of δ and c for the fixed
point UI. Parameter values are ζ = 10 and η= 0.01. The figure on the right is an enlarged view of
the region around c= 1, δ = 25. Left panel: dashed line (c > 1) refers to the onset of the Shil’nikov
homoclinic chaos (7.58) whereas dashed-dotted line (c < 1) corresponds to the transition from sad-
dle to saddle-focus (7.57). Right panel: dashed lines refer to the onset of the Shil’nikov homoclinic
chaos (7.58)

the dotted line and below the solid line indicating the Hopf bifurcation. Moreover,
UI is a focus except for a small neighborhood of the point (δ = 0, c = 1) corre-
sponding to the instability threshold of the film. For a large value of the dispersion
parameter η= 1, the region where the Shil’nikov criterion is satisfied reduces to the
portion of the plane below the location of the Hopf bifurcation.

The situation is again modified for a slightly inclined wall (ζ = 10). For η= 0.01
(see Fig. 7.17), the regions where homoclinic chaos are possible, i.e., where the
Shil’nikov criterion applies, form a small strip limited by the locations of the Hopf
bifurcation (solid line) and double eigenvalues (dashed-dotted line) and a region
limited by the axis δ = 5

2ζ and the dotted line. This last region disappears when
η = 0.1 and the domain where the Shil’nikov criterion is satisfied diminishes again
for η= 1 (cf. Fig. 7.19).



7.2 Traveling Waves 231

Fig. 7.18 Behavior of the eigenvalues in the complex plane as functions δ and c for the fixed point
UI. Parameter values are ζ = 10 and η = 0.1. The figure on the right is an enlarged view of the
region around c= 1, δ = 25. Dashed-dotted lines refer to the transition from saddle to saddle-focus
(7.57)

Fig. 7.19 Behavior of the
eigenvalues in the complex
plane as functions δ and c for
the fixed point UI. Parameter
values are ζ = 10 and η= 1.
Dashed-dotted lines refer to
the transition from saddle to
saddle-focus (7.57)

The stability diagrams of the fixed point UII can be obtained from those of UI by
performing a transformation similar to (7.40),

U1 → h−1
II U1, c→ h−2

II c, δ→ h
−11/3
II δ, ζ → h

2/3
II ζ, η→ h

4/3
II η,

(7.59)

which allows us to reset hII to unity. As for the BE, the Hopf bifurcation now occurs
at values of c larger than unity.

7.2.1.3 Limit Cycles and Homoclinic Bifurcations

To fix ideas we limit ourselves to the dynamical system (7.42) corresponding to the
simplified model (6.1), (6.79). The results are quantitatively similar when another
dynamical system is considered.
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As noted earlier, limit cycles/periodic orbits can emerge from a Hopf bifurcation.
The resulting family of limit cycles is referred to as the principal/primary periodic
orbits in contrast to the subsidiary periodic orbits that may further branch off the
principal family [103]. As a control parameter changes and we pass the Hopf bifur-
cation point, the period of these solutions, say 2π/k, with k the wavenumber of the
corresponding periodic wave, increases. Consequently, their size in phase space in-
creases and they start approaching the fixed point until they “collide” with this point,
i.e., they intersect this point exactly (topologically, when the coalescence with the
fixed point occurs, the homoclinic orbits approach the eigenvectors of this point tan-
gentially), yielding an orbit of infinite period (k→ 0), i.e., a homoclinic orbit. After
the creation of a homoclinic orbit there is no longer a periodic orbit.

This type of bifurcation is a homoclinic bifurcation. It is a “global bifurcation”
as the corresponding topological change affects the entire phase space and its study
cannot be reduced to the study of the neighborhood of the fixed point. In general,
a global bifurcation corresponds to a modification of the phase space that cannot
be reduced to the study of a neighborhood of a fixed point [111]. On the contrary,
a “local bifurcation,” e.g., Hopf, occurs when a parameter change causes the stability
of the fixed point to change.

A global bifurcation offers a relatively simple way to numerically construct ho-
moclinic orbits. This is the method used by the continuation software AUTO07P as
noted earlier. Limit cycles emerging from both fixed points UI (branch labeled 1,
c < 1) and UII (branch labeled 2, c > 1) are displayed in Fig. 7.20. In this exam-
ple the limit cycle emerging from UII is seen to approach the vicinity of UI and
finally ends up as a homoclinic orbit connecting UI to itself within only one loop.
It is a typical example of the principal homoclinic orbit solutions that correspond
to single-hump solitary waves. Since UI is a saddle-focus with a one-dimensional
unstable manifold and a two-dimensional stable one, the wave profile consists of a
large hump preceded by radiation (see Fig. 7.20, bottom). But quite frequently the
waves observed in both experiments and computations are trains of solitary waves,
which, as pointed out earlier, are sometimes referred to as “multi-pulse waves”;
recall that both multi-pulse and multi-hump waves correspond to subsidiary/multi-
loop homoclinic orbits in the phase space.

Primary homoclinic orbits can arise form the homoclinic bifurcation of the pri-
mary limit cycle branch that appears through a Hopf bifurcation. On the other hand,
subsidiary homoclinic orbits can emerge through homoclinic bifurcations of sub-
sidiary limit cycles, which have bifurcated in turn from the primary limit cycle
branch (through a period-doubling bifurcation, as we shall see below). Clearly,
a point in the phase space, say M(ξ), of a limit cycle is invariant under the trans-
formation ξ → ξ + nP where P is the period in the phase space and n an integer.
A countable infinite set of new limit cycles can then emerge by breaking this sym-
metry.

An example is given in Figs. 7.21 and 7.22, showing that the corresponding bi-
furcation diagram and phase space can become complicated. Figure 7.21 depicts a
bifurcation diagram in the plane (c, k). The Hopf bifurcation is indicated by label 1,
the principal limit cycle branch emerging in this example from fixed point UII. As
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Fig. 7.20 Limit cycles emerging from Hopf bifurcations for δ = 1 and η = 0.1 from fixed points
UI (label 1) and UII (label 2). The control parameter is the speed c and the upper left diagram shows
the wavenumber k of the corresponding periodic wave as function of its speed c. The upper right
diagram corresponds to projections of the limit cycles emerging from UII in the three-dimensional
phase plane onto the plane (U1 ≡ h, U2 ≡ h′) for different values of the wave speed c. For k� 1,
the limit cycle approaches a homoclinic orbit around UI (thick solid line in the upper right panel).
The wave profile corresponding to this homoclinic orbit is shown in the lower diagram

the amplitude of the limit cycle is increased, a secondary branch emerges through
period doubling, i.e., breaking of the symmetry ξ → ξ +P (label 2). This branch of
solutions then terminates at a homoclinic orbit connecting UI to itself and made of
two loops around UII (Fig. 7.22, left). At point 4a, this secondary branch undergoes
another period doubling giving rise to a tertiary branch of limit cycles (the terms
“secondary” and “tertiary” here are used to simply count the branches of solutions)
that merges back to the secondary one through a reverse period-doubling bifurcation
(point 4b). Finally, the tertiary branch shows up again at point 4c of the bifurcation
diagram through period doubling and terminates at a homoclinic orbit made of four
loops around fixed point UII (Fig.7.22, right).

7.2.1.4 Bifurcation Diagrams of Limit Cycles

It is now pertinent to discuss the stability in the phase space of the different limit cy-
cles obtained from Hopf bifurcations and subsequent period-doubling bifurcations.
With the term “stability,” we refer here to the sensitivity of trajectories in the phase
space to small perturbations of the initial conditions at ξ = 0, i.e., stability in the
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Fig. 7.21 Bifurcation
diagram in the (c, k)-plane
corresponding to limit cycles
emerging from fixed point UII
(ζ = 0, δ = 1, η= 0.1)

Fig. 7.22 Projections on the plane (U1 ≡ h, U2 ≡ h′) of the subsidiary homoclinic orbits where
the limit cycle branches of solutions shown in Fig. 7.21 terminate for k→ 0. Locations of the fixed
points are indicated by crosses

Lyapunov sense.4 A relatively easy way to address this question is to compute tra-
jectories in the phase space starting from points in the vicinity of the considered
limit cycle. If the limit cycle is recovered, it is a stable orbit, and moreover a “local
attractor.”

Local attractors in the vicinity of limit cycle branches of solutions have been ob-
tained starting from a trajectory in the vicinity of the fixed point UII and increasing
the wave speed c gradually. For each value of c, the trajectory is computed for a
long time, leading to one local attractor or diverging to infinity when no attractors
can be found. Parameter values are initially chosen so as to correspond to the limit

4This concept is different from the “structural stability” defined earlier in this chapter which deals
with the topological properties of the complete phase portrait of a dynamical system when a per-
turbation is applied, for example when one parameter is slightly modified. Here we consider only
the stability of a single trajectory in the phase space.
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cycles displayed in Figs. 7.20 and 7.22 (δ = 1, ζ = 0, η = 0.1). Trajectories sys-
tematically return to UII before the principal limit cycle branch of solutions arises,
which signals an “exchange of stability” between the fixed point and the limit cycle
at the Hopf bifurcation point. Similar exchanges of stability are next observed when
period-doubling bifurcations occur.

To visualize the sequence of bifurcations observed when c is increased,
a Poincaré section in the phase plane can be useful (e.g., [301]). A simple example
of such sections can be obtained by searching for local maxima hm of the wave
height (h ≡ U1). Typical examples of the corresponding bifurcation diagrams for
these maxima as functions of the bifurcation parameter c are offered in Fig. 7.23
for a moderate reduced Reynolds number and a vertical wall (δ = 1 and ζ = 0). The
bifurcation diagram obtained for weak viscous dispersion (η= 0.01) and displayed
in panel (a) exhibits a well-defined period-doubling route to chaos [177]. As the bi-
furcation parameter c is increased, the initial period doubling is followed by a rapid
sequence of period doublings, ending in a disordered trajectory in the phase space,
for which the local maxima are no longer isolated points of the Poincaré section
but now cover finite-size bands. The trajectory is at this stage weakly chaotic and
is nothing more than a periodic trajectory superimposed with some noise. As c is
further increased, a reverse cascade is next observed with bands merging with one
another so that local maxima occupy an interval of increasing size. If trajectories
are chaotic, windows of periodic stable attractors exist in the bifurcation diagram as
predicted by the theory [177]. At the last stage of our computations, the chaotic tra-
jectory starts to approach the vicinity of the first fixed point UI, as indicated by the
presence of local maxima close to unity, until finally the trajectory diverges to infin-
ity and no attractors are detected. The corresponding wavetrain (h = U1 versus ξ )
is shown in Fig. 7.24(a).

When η is increased to η = 0.15 (Fig. 7.23(b)), chaotic attractors are still ob-
tained through a period-doubling route, but the range of values reached by the local
maxima of h is smaller. For the largest values of c, periodic attractors are system-
atically obtained and a homoclinic bifurcation leading to a complicated homoclinic
orbit is finally observed. More precisely, the wavetrain shown in Fig. 7.24(b) reveals
the formation of a group of four two-hump waves.

At a larger value of the viscous dispersion parameter, η = 0.17, the range of the
bifurcation parameter c for which chaos is observed is reduced to only two intervals
separated by a window of stable limit cycles. Curiously, two cascades of period
doublings are observed: One by decreasing the value of c and one by increasing
it. For the largest values of c, the trajectory is again periodic and a homoclinic
bifurcation is observed again, leading this time to a two-hump subsidiary homoclinic
orbit (see Fig. 7.24(c)).

At even stronger viscous dispersion (η= 0.2), no chaotic attractors are found and
a single period doubling is directly followed by a homoclinic bifurcation leading to a
two-hump solitary wave (Figs. 7.23(d) and 7.24(d)). Increasing η further, the period-
doubling bifurcation observed for η = 0.2 disappears and the bifurcation diagram
reduces to a Hopf bifurcation, followed by a homoclinic bifurcation leading to the
principal homoclinic orbit.
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Fig. 7.23 Bifurcation diagrams of limit cycles emanating from UII for increasing values of the
viscous dispersion parameter η with δ = 1 and ζ = 0 (vertical wall)

The above discussion is limited to the bifurcation diagrams starting from the
Hopf bifurcation of fixed point UII as c is increased. However, limit cycles aris-
ing from UI can be recovered by our making use of the transformation (7.59). The
corresponding bifurcation diagrams are therefore similar to those we have just dis-
cussed except that the bifurcation parameter c decreases from its value at the Hopf
bifurcation and that the corresponding bifurcating homoclinic orbits connect UII to
itself (examples of such diagrams can be found in the literature, e.g., [161, 288]).

Finally, let us underline the link between the presence of homoclinic chaos and
the chaotic trajectories observed in the vicinity of limit cycle branches of solutions
emanating from UII. In the case of the three bifurcation diagrams corresponding to
η= 0.15, η= 0.17 and η= 0.2, the Shil’nikov numbers λ1+�(λ2,3), computed for
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Fig. 7.24 Film thickness h versus ξ corresponding to the orbits obtained at the last stage of the
bifurcation diagrams displayed in Fig. 7.23

the homoclinic orbits around UI are negative and homoclinic chaos is not present,
which explains that stable homoclinic orbits (in the Lyapunov sense) are observed
(panels b, c and d in Fig. 7.24). Conversely, the Shil’nikov number is positive for
η= 0.1, in agreement with the observation of a chaotic trajectory at the final stage of
the computation. However, the wavetrain illustrated in Fig. 7.24(a) is rather far from
the succession of nearly identical pulses separated by portions of flat films of various
lengths, which is expected when homoclinic chaos is observed. This discrepancy
can be explained by noting that homoclinic chaos is observed for values of the wave
speed c that are very close to the speed c� of the homoclinic orbit giving birth to it.
Unfortunately, whenever the speed c exceeds c� the computed trajectory diverges
to infinity, which makes the computation of trajectories for values of c close to c�

through the numerical procedure followed here rather difficult.
To conclude, the procedure adopted here, i.e., following long-time trajectories

starting close to a fixed point of the associated dynamical system, has enabled us to
detect structural instabilities of the dynamical system when the speed is varied. For
instance, the transition from the phase portrait observed when η is raised from 0.1
to 0.15 is an example of structural instability. Indeed, the phase portrait is suddenly
drastically modified.

7.2.1.5 Principal Homoclinic Orbits: Single-Hump Solitary Waves

Needless to say, the autonomous dynamical system (7.42) has a rich dynamics in
the phase space and exhibits a large variety of limit cycles and homoclinic orbits,
of which only a few representative examples have been singled out. Even when vis-
cous dispersion is neglected (η = 0), as is the case, e.g., with the simple Kapitza–
Shkadov model (6.13a), (6.13b), giving a thorough account of all possible traveling
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wave solutions and a detailed unfolding of their bifurcation scenarios is an almost
impossible task. In fact, many branches/families of solutions can be obtained show-
ing complex interconnections and forming many-folded and many-sheeted surfaces
in the parameter space [253, 281, 287].

In spite of this complex bifurcation picture, only a few families of solutions are
pertinent, the most important being the principal homoclinic orbits. In order to fix
ideas, let us consider the principal homoclinic orbits around the fixed point UI of the
simplified model (6.1), (6.79). As already noted, such orbits correspond to positive-
hump solitary waves in real space. The corresponding speed c and wavetrains are
shown in Figs. 7.25 and 7.26 for a vertical wall ζ = 0, or a slightly inclined plate
ζ = 10, respectively. The viscous dispersion parameter η ranges from η = 0.01 to
η = 1. At threshold (δ = δc = 5

2ζ ), solitary waves have an infinitesimal amplitude
and thus correspond to the neutral linear waves in the limit k→ 0, i.e., kinematic
waves with speed c = 1 (cf. Sect. 7.1.3). The speed and amplitudes of the waves
increase with the distance from threshold, δ − 5

2ζ . The back tail of the waves is
also increasing as the reduced Reynolds number δ is increased. Unlike inclination
(ζ ), which affects the maximum amplitude and speed of the waves, viscous dis-
persion (η) has a small effect on these quantities. However, the amplitude and fre-
quency/number of ripples preceding the hump is very sensitive to the value of η
to the point that they disappear for δ < 5.8, η = 1 and a vertical wall. The dis-
appearance of radiation corresponds to the transition of the fixed point UI from
a saddle-focus to a saddle, with the pair of complex eigenvalues λ2, λ3 reducing
to a double real eigenvalue (�(λ2) and �(λ3) = 0 indicated by the label “DE” in
Figs. 7.25 and 7.26). Hence, for sufficiently large viscous dispersion the falling film
can have nondissipative solitary waves.

From the stability diagrams of Figs. 7.15–7.19 and the locations of the principal
homoclinic orbits in Figs. 7.25, 7.26, the portions of hypersurfaces (codim 1 sets of
points) in the four-dimensional parameter space (δ, ζ , η, c) where the flow exhibits
homoclinic chaos can be readily determined. Recall that when viscous dispersion is
negligible (η small), the Shil’nikov criterion (7.47) is satisfied and these hypersur-
faces then correspond entirely to the locations of the homoclinic orbits. However,
as soon as viscous dispersion is taken into account, the size of the hypersurfaces
where homoclinic chaos is found shrinks dramatically. When the wall is vertical
(ζ = 0) and η = 0.01, homoclinic chaos disappears for δ > 7 (the transition point
from complex to real determining eigenvalues is labeled “HC” in Figs. 7.25 and
7.26). At η = 0.1, the part of the principal homoclinic branch in the space (c, δ)
where homoclinic chaos is possible has already been reduced to a small portion.
At η = 1, homoclinic chaos is never observed. The effect of viscous dispersion on
the existence of homoclinic chaos is even more dramatic for slightly inclined plates
(ζ = 10). The portion of the principal homoclinic curve is already small at η= 0.01
and homoclinic chaos cannot be observed above η= 0.1.

Noteworthy is that homoclinic chaos is independent of the form of the homoclinic
orbit (e.g., primary around the fixed point UI or double-loop subsidiary one with
one loop not passing close to the fixed point UI but revolving around UII). From
our previous discussion, it is clear that homoclinic chaos requires: (i) a homoclinic
orbit; (ii) that the Shil’nikov criterion is satisfied.
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Here we only checked for the principal homoclinic orbits, the regions in the pa-
rameter space where the Shil’nikov criterion is satisfied. These regions are located
with the help of the stability diagrams in Figs. 7.15–7.19, which pinpoint where
the Shil’nikov criterion is satisfied (for η = 0 it is satisfied everywhere; for η �= 0
it is satisfied only in certain regions that shrink rapidly as η increases). By check-
ing the curves in the bifurcation diagrams of Figs. 7.25 and 7.26, which give us
the locations of the homoclinic orbits in the parameter space, with the diagrams in
Figs. 7.15–7.19, we can mark in Figs. 7.25 and 7.26 the upper boundary of homo-
clinic chaos. In this way, we determine the regions in the parameter space where the
above two criteria for the existence of homoclinic chaos are satisfied.

But, clearly, since we only examined the principal homoclinic orbits, the diagram
in Fig. 7.23 is incomplete. In fact, we could have double-loop subsidiary homoclinic
orbits with one loop that does not pass close to the fixed point UI, located sufficiently
far from the primary orbits (the Shil’nikov criterion depends on the speed; double
loop orbits could have speeds sufficiently different to those of the principal ones
and hence located far from the principal ones in the parameter space). Then, if the
Shil’nikov criterion is satisfied for these double-loop orbits, we could also have
homoclinic chaos in the regions of the parameter space where such orbits exist.
On the other hand, if these double-loop orbits have speeds sufficiently close to the
primary ones, there is a chance that the Shil’nikov criterion is satisfied for these
orbits as well so that the conditions given here (in terms of the parameters δ, ζ
and η) for the existence of homoclinic chaos associated with primary orbits are also
conditions for homoclinic chaos associated with the double-loop orbits.

An additional piece of information can be extracted by considering the contract-
ing or expanding nature of the right hand side F of the dynamical system (7.42)
in the vicinity of the principal homoclinic orbits obtained so far. From Liouville’s
theorem, expansion or contraction is locally observed in the phase space depending
on the sign of ∇U · F, which is proportional to the viscous dispersion parameter η
and whose zeroes are given by (7.43). Therefore, when η > 0 and U1 is smaller (re-
spectively, larger) than hdiv0(c), F is contracting (expanding). In Fig. 7.27, we com-
pare the thickness limit hdiv0(c) (7.43) corresponding to the speed c of the solitary
waves with the maximum height hm =max(U1) achieved by the homoclinic orbits.
Above U1 = hdiv0 the volume in the phase space is expanded by the dynamical sys-
tem (i.e., ∇U · F > 0), whereas whenever U1 < hdiv0 the volume is contracted. For
η = 0.1 and a vertical wall, ζ = 0, hm < hdiv0 when δ < δlim ≈ 2.9 and the volume
in phase space is always contracted by F in the vicinity of the corresponding princi-
pal homoclinic orbits. However, when δ > δlim, hm > hdiv0, the loop in phase space
corresponding to the main hump of the solitary waves, crosses regions of the phase
space where the volume is expanded by the dynamical system. The curves obtained
for η = 0.01 and η = 1 (not shown) are qualitatively similar with a threshold δlim,
above which the homoclinic orbits start to visit expanding regions in phase space,
equal to 2.7 and 3.5, respectively. The same phenomenon is observed for a slightly
inclined plane (cf. Fig. 7.27(b)) but the crossing of the curves is now observed for
much larger values of the distance from threshold δ − δc.

The occurrence of volume expansion in phase space in the vicinity of the ho-
moclinic orbits for δ > δlim is questionable because of the viscous origin of a
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Fig. 7.25 Left: Speed of single-hump solitary waves (principal homoclinic orbits) as function of
the distance δ from threshold δc = 0. Homoclinic chaos is indicated with the label HC. The transi-
tion from a saddle-focus to a saddle is labeled DE. Right: Wave profile h(ξ)=U1 corresponding to
increasing values of δ (0.5, 1, 2.5, 5, 10 and 15). Other parameter values are ζ = 0 (vertical wall)
and from the top panel to the bottom one η= 0.01, η= 0.1 and η= 1

nonzero divergence of F (see also our earlier discussion where we showed that
∇U ·F=−3ηJ (U1, c)U

−3
1 ). Hence, viscous dispersion is the ingredient that makes

our dynamical system “nonconservative,” a property that is followed by a contrac-
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Fig. 7.26 See caption of Fig. 7.25. Parameter values are identical except for ζ = 10, so that the
threshold of instability is given by δc = 5

2 ζ = 25

tion of volume in phase space. (Volume conservation in the phase space is not related
to the possibility of writing the original dynamical system in conservative form—
given in Sect. 5.1.1—e.g., the first-order model does conserve phase volume but
cannot be written in conservative form.) However, we note that volume expansion
in phase space in the vicinity of the maximum amplitude is not problematic and has
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Fig. 7.27 Maximum height hm =max(U1) as function of the distance from threshold δ − δc, for
the principal homoclinic orbits (solid lines) and limit height hdiv0, given by (7.43), above which
the volume in phase space starts to expand in the vicinity of the orbits (dashed lines)

no consequences on the observed dynamics in the phase space. On the other hand,
volume contraction in the vicinity of the fixed points—which is always observed in
the presence of viscous dispersion (η �= 0) and for all orbits of interest—can dra-
matically modify the dynamics in the phase space (consider, e.g., the bifurcation
diagrams in Fig. 7.23).

Further, recall a basic underlying assumption of the derivation process of low-
dimensional models is weak inertia effects. Volume expansion is observed only for
large solitary waves with a maximum thickness that is at least 3.5 times the thickness
of the uniform film at infinity. For such large waves inertia effects become dominant.
However, we are unaware of any experimental data that show the existence of soli-
tary waves with such large amplitude. In fact, recent experimental studies for a film
on an inclined plane [273] report waves for which hm does not exceed≈ 1.8. There-
fore, the occurrence of volume expansion for the dynamical system (7.42) does not
necessarily inhibit its ability to account for the dynamics of film flows, as we further
demonstrate in this chapter.

7.2.1.6 Subsidiary Homoclinic Orbits: Bound States and Multi-hump Solitary
Waves

Up to now we have focused on single-hump solitary waves corresponding to princi-
pal homoclinic orbits of the dynamical system (7.42). We are now ready to consider
the subsidiary homoclinic orbit solutions to (7.42). We have already seen that some
of them can be found by looking for homoclinic bifurcations of subsidiary limit
cycles emerging from the primary branch through period doublings (cf. Figs. 7.21
and 7.22).

By comparing the subsidiary orbits in Fig. 7.22 with the principal homoclinic
orbit represented by a thick solid line in the upper right plot of Fig. 7.20, it is clear
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that the extra loops of the orbits in Fig. 7.22 do not pass close to the fixed point UI.
The corresponding waves are multi-hump. When the extra loops pass close enough
to UI, the corresponding waves are trains of solitary waves (multi-pulse waves).
The subsidiary homoclinic orbits in the latter case can be found numerically using
Lin’s method as described in [195] and implemented in the AUTO-07P software.
Examples of switching from principal to subsidiary branches of homoclinic orbits
are detailed in AUTO-07P user’s manual, Chap. 27 [79].

The general idea of Lin’s method is to construct an n-pulse solitary wave through
the addition of n “truncated” single-hump solitary waves, in fact traveling waves
approaching homoclinicity in a periodic domain of period, say P . One therefore
sets up a set of (n− 1) boundary value problems corresponding to the connections
of the different waves with one another. This method introduces (2n−2) parameters
corresponding to the (n− 1) “gaps” separating the trajectories at the extremities of
the subdomains and the (n− 1) lengths of the subdomains in ξ , all equal initially
to P . A rigorous and detailed exposure of the method can be found in [195]. Using
the AUTO-07P implementation of Lin’s method, we have computed the branches
of subsidiary homoclinic orbits emerging from the principal homoclinic orbit for
δ = 1, a vertical wall ζ = 0 in the presence of viscous dispersion, η = 0.1, and in
the absence of viscous dispersion, η= 0 when two or three pulses (n= 2 and 3) are
concatenated.

Figure 7.28 shows the loci of the numerically constructed subsidiary branches
in the (δ,c)-plane. When second-order viscous terms are neglected, the loci of the
subsidiary orbits are relatively close to the primary homoclinic branch, indicating
all solitary waves (single-pulse and multi-pulse) have similar speeds for the given
parameters, despite the large variety of possible solutions. Conversely, when second-
order viscous effects are accounted for, the subsidiary homoclinic orbits explore a
wide interval corresponding to a significant variation of the speed of all solitary
waves. Therefore, the second-order viscous effects influence not only the linear
waves as demonstrated in Sect. 7.1.3, but also the nonlinear waves associated with
subsidiary orbits, precisely because they influence the tails through which nearly
homoclinic loops are connected. However, recall that speed and amplitude of the
principal homoclinic orbits are hardly affected by viscous dispersion.

Some of the wave profiles obtained for δ = 1.5, ζ = 0 and η = 0 are presented
in Fig. 7.29. As the Shil’nikov criterion is satisfied, we expect a countable infinite
family of subsidiary homoclinic orbits whose corresponding wave speeds are in a
neighborhood of the speed c� associated with the principal homoclinic orbit. Some
of these subsidiary orbits are examples of bound states, in which several solitary
waves are locked into constant relative positions in a moving frame (a “bound state”
is a generic term in physics used to denote a composite of two or more particles or
bodies that behave as a single body). Such orbits are shown, e.g., in Figs. 7.29(a)–
7.29(c); they belong to the same solution branch.

The bound states in these figures are made of two single-hump solitary waves
propagating steadily with a speed less than that of an infinite-domain solitary wave
and separated by a constant distance as they propagate. Notice that the separation
distance between the two pulses in Figs. 7.29(a)–7.29(c) increases as |c − c∗| de-
creases, which is to be expected as each of the two waves starts approaching the
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Fig. 7.28 Speed c of solitary waves as a function of the reduced Reynolds number δ. Dashed lines
refer to the loci of some branches of subsidiary homoclinic orbits corresponding to multi-pulse
waves. Primary homoclinic orbits are indicated by solid lines. The plane is vertical (ζ = 0). Left:
η= 0 and right: η= 0.1

infinite-domain solitary wave. Of course, Shil’nikov’s criterion predicts a countable
infinite number of multi-pulse waves, only three of which are shown in the figure,
but numerically they are difficult to construct, e.g., a fourth member of the family of
these waves would correspond to a |c− c∗|� 10−8 which is beyond the precision of
AUTO-07P. It is also possible to obtain bound states consisting of three single-hump
pulses (with a separation distance roughly the same as that between the two pulses
in a two-pulse bound state) or several single-hump waves so that the whole of the
computational domain is occupied by these waves (“periodic wavetrains”).

The computations reveal a wide variety of wave shapes. In most cases, the ho-
moclinic orbit performs one or several loops in the phase space, each repelled from
the vicinity of the fixed point UI after several oscillations corresponding to radiation
waves (Fig. 7.29(a)–7.29(h)). But, interestingly, in some cases, the homoclinic orbits
approach the vicinity of the second fixed point UII (cf. Figs. 7.29(g) and 7.29(h)).
Figures 7.29(i) and 7.29(j) in particular are examples of three-hump waves found
relatively far from c�. Recall that the Shil’nikov criterion applies not only for a pri-
mary homoclinic orbit about a fixed point but also for a subsidiary homoclinic orbit
about a fixed point of the type in which the extra loops do not pass close to the fixed
point. Therefore, we expect a countable infinite number of subsidiary homoclinic
orbits associated with Figs. 7.29(i) and 7.29(j). The corresponding waves are trains
of three-hump solitary waves.

Figure 7.29 demonstrates clearly the two types of subsidiary homoclinic orbits
that we have introduced: those whose extra loops are repelled from the vicinity of
the fixed point UI (cf. Fig. 7.29(a)) and those whose extra loops do not pass close
enough to UI (cf. Figs. 7.29(i), 7.29(j)).

We close this section with comments on the study by Glendinning and Spar-
row [103]. These authors introduce a clear distinction between the two types of
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Fig. 7.29 Wave profiles of some subsidiary homoclinic orbits. Parameters are δ = 1.5, ζ = 0 and
η= 0. c� refers to the speed of the primary homoclinic orbit (infinite-domain single-hump solitary
wave)

orbits by adopting the term “subsidiary” homoclinic orbits for the former and “sec-
ondary” for the latter. Nevertheless, we have found that such subsidiary and sec-
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ondary orbits may belong to the same family of solutions. For example, one can
move continuously from Fig. 7.29(c) to a two-hump wave (not shown), by follow-
ing two parameters, i.e., by changing both c and δ (a codim 2 phenomenon). On the
other hand, the subsidiary orbit shown in Fig. 7.29(e) belongs to the same branch of
solutions as the secondary orbit displayed in Fig. 7.29(f), but of course the orbit (f)
is not a straightforward secondary one as it consists of a single-hump wave together
with a two-hump one ((g) and (h) also belong to the same branch; (d), (i) and (j)
belong to branches which are not connected in the (δ,c)-plane).

Of course in general there is no guarantee that subsidiary orbits can be contin-
ued to secondary ones, i.e., that the two families of solutions are connected in the
parameter space (if that were the case, the existence of a subsidiary orbit, i.e., if
the Shil’nikov criterion were satisfied, would ensure the existence of a secondary
one as well). But in our case we refrain from making a clear distinction between
subsidiary and secondary orbits, precisely because the two families of solutions are
connected with one another through parameter continuation. It is for this reason,
that all multi-loop orbits are referred to as subsidiary in this monograph.

Finally, it is worth noting that Glendinning and Sparrow [103] also introduce a
clear distinction between subsidiary and secondary limit cycles. In our case, sub-
sidiary ones consist of two loops around UI, while secondary ones of two loops
around UII. When these limit cycles grow and collide with UI we have the for-
mation of double-loop subsidiary and secondary homoclinic orbits, respectively. In
Sect. 7.2.1.3 we focused on the secondary limit cycles only. From our discussion
there it is clear that secondary homoclinic orbits originate from the homoclinic bifur-
cation of the secondary limit cycle branches that come up through period-doubling
bifurcations of the primary limit cycle branch (on the other hand, recall that primary
homoclinic orbits arise from the homoclinic bifurcation of the primary limit cycle
branch that appears through a Hopf bifurcation). But again, much like with homo-
clinic orbits, in our case we can go from one type of limit cycle to the other, and
hence the distinction between subsidiary and secondary limit cycles in the Glendin-
ning and Sparrow [103] terminology is not clear. As a consequence we also adopt
the term subsidiary limit cycles for all multi-loop limit cycles.

7.2.2 Solitary Wave Characteristics for δ � 1 and δ � 1

We now focus on the behavior of single-hump solitary waves as the reduced
Reynolds number δ approaches zero or infinity. For simplicity consider a vertical
wall (ζ = 0) and without loss of generality assume negligible dispersion (η = 0).
Even though strictly speaking δ must be at most of O(1), the question of an asymp-
totic behavior for the solitary waves for large δ is still a valid one within the context
of the boundary layer equations as model equations. This is similar to what we have
done with η: again, even though, strictly speaking, it is a small parameter, at times
we have taken it as large as O(1). Besides, Fig. 7.25 indicates that δ does not really
have to be very large in order for the solitary waves to reach their asymptotic state:
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Fig. 7.30 Speed c (left) and maximum height hm (right) as functions of the reduced Reynolds
number δ for the single-hump solitary wave solutions of the different models: solid and dashed
lines correspond to the BE and the Ooshida equation, respectively. Dotted and dash-dotted lines
correspond to the Kapitza–Shkadov (6.13a), (6.13b) and to the first-order models (6.1), (6.51), re-
spectively. Solid circles correspond to the first-order boundary layer equations (6.2)–(6.6) after [46]

δ � 3 is large enough to be in the asymptotic regime. The results given here can be
easily generalized to include viscous dispersion (η �= 0).

Whenever possible we include the more general situation of a fixed Froude num-
ber (Fr2 = 3Re/Ct = δ/ζ , see Sect. 7.1.3). This is relevant for the study of the
analogy of solitary waves with roll waves in the torrential regime of river flows for
which we took the distinguished limit Re→∞, Ct→∞ and Fr =O(1). The speed
c and maximum height hm of the single-hump solitary waves (the principal homo-
clinic orbits) of the dynamical system (7.42) corresponding to the BE (5.55), the
Ooshida equation (5.62) and two-equation models (6.13a), (6.13b) and (6.1), (6.51)
are displayed in Fig. 7.30 as functions of δ. We have encountered similar diagrams
comparing the speeds and amplitudes of solitary wave solutions of different models
as function of δ in previous chapters: Figs. 4.8, 5.10, 6.2 and 6.3.

Figure 7.30 shows that all models are in reasonable agreement in the small
Reynolds number limit, δ � 1 (which underlines the slaving of the velocity field
to the free-surface evolution—see Chaps. 5 and 6), except for the Kapitza–Shkadov
model (6.13a), (6.13b) whose gradient expansion does not lead to the correct re-
sult. Yet, for a vertical wall (ζ = 0), the prediction of the instability threshold cor-
responding to the Kapitza–Shkadov model, δc = 3ζ = 0, agrees with the correct
answer, δc = 5

2ζ = 0, from Orr–Sommerfeld analysis, which explains that all curves
in Fig. 7.30 converge to the point (δ, c)= (0,1).

The turning point of the BE solution branch signals a loss of solutions for δ

greater than δ� ≈ 0.986, a value that closely corresponds to the occurrence of blow-
ups of unsteady solutions for the BE examined in detail in Chap. 5. By contrast,
the Ooshida equation (5.62) and models (6.13a), (6.13b) and (6.1), (6.51) pos-
sess single-hump solitary wave solutions for all values of δ. The same is true of
the numerical results by Chang et al. [46] for the first-order boundary layer equa-
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tions (6.2)–(6.6) (recall, however, that the accuracy of the numerical results of the
Chang et al. study can be questioned). With the exception of the BE, for all other
equations the speed of solitary waves saturates rapidly after δ � 1.5–2. But the out-
come of the Ooshida regularized equation is clearly the least satisfactory in compar-
ison with the more reliable results from the two-equation models and the first-order
boundary layer equations. As a matter of fact, the Ooshida equation predicts satu-
rated speeds and amplitudes that are by a factor of more than 2 smaller than those
obtained from models (6.13a), (6.13b) and (6.1), (6.51) and the first-order boundary
layer equations (6.2)–(6.6). Moreover, the amplitudes of the two-equation models
and the first-order boundary layer equations continue to increase beyond δ = 2.
This trend is not reproduced by Ooshida’s solutions, suggesting that the shape of
the waves is also not properly approximated by (5.62) at large δ.

Figure 7.25 also shows the two different behaviors in the drag-gravity and drag-
inertia regime of the speed and amplitude of the waves as a function of the reduced
Reynolds number δ. The speed and amplitude increase slowly first, followed by a
rapid increase at δ � 1, and then they reach an asymptote. This transition at δ � 1
demarcates the two different regimes—the drag-gravity and drag-inertia regimes.
It is then pertinent to analyze the characteristics of the solitary waves in the two
regimes, i.e., to consider the limits δ� 1 and δ� 1.

7.2.2.1 Drag-Gravity Regime, δ � 1

For small reduced Reynolds number, the amplitudes of the waves are small which
allows for a weakly nonlinear expansion by imposing h = 1 + αH where α� 1.
The characteristic equation (7.49) gives λ = 0 at δ = 0 and c = 1. Therefore, ho-
moclinic orbits connecting UI to itself have lengths with tails ∼ 1/|�(λi)| going to
infinity in the limit δ→ 0, which justifies the scaling, ξ = β−1X with β� 1. After
substitution in (7.37), one gets to leading order in β:

1

3
β3 d3

dX3
H + βδ

[
N (1,1)− 1

3Fr2

]
d

dX
H + (1− c)H + αH 2 = 0. (7.60)

To have all terms in (7.60) of the same order, δ ∼ β2, α ∼ β3 ∼ c − 1. By setting
1
3β

3 = 2α = βδ[N (1,1)− (3Fr2)−1], (7.60) reads

d3

dX3
H + d

dX
H + 1

2
H 2 −μH = 0, (7.61)

where μ= 3(c− 1)/[δ(3N (1,1)− Fr−2)]3/2. Hence, in the limit δ→ 0, branches
of homoclinic orbits correspond to particular values of the relative speed μ and of
the relative maximum amplitude, say μn and Hn. Further, β ∼ √

δ, αHn ∼ δ3/2

and c − 1 ∝ μnδ
3/2. Consequently, as δ tends to zero, the speed c and maximum

amplitude hm of the solitary waves corresponding to the homoclinic orbits satisfy

hm − 1∼ c− 1∼ δ3/2, (7.62)
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which agrees with the results for the case of the BE (5.55) for a vertical wall
(Fr →∞) [216] (see also Fig. 5.10 in Chap. 5).

Notice that (7.61) corresponds precisely to the traveling wave solutions of the KS
equation (5.25),

∂T H +H∂XH + ∂XXH + ∂XXXXH = 0 (7.63)

(see also Sect. 4.7). Looking for stationary solutions of (7.63) in the moving frame
X=X−C T gives after integration

d3

dX3
H + d

dX
H + 1

2
H 2 −CH =Q, (7.64)

where Q is an integration constant. Setting Q to zero, which corresponds to de-
manding that H = 0 be a solution, and identifying C with μ, finally leads back to
(7.61).

7.2.2.2 Drag-Inertia Regime with δ � 1

We now investigate the limit δ� 1. The speeds and amplitudes of the single-hump
solitary wave solutions to the Ooshida equation (5.65) and to the two-equation mod-
els (6.13a), (6.13b) and (6.1), (6.51) saturate as δ increases. As seen in Fig. 7.31, the
large-δ trajectories have three different parts: two of them extending the linearized
dynamics around UI to the weakly nonlinear regime; the third one, in-between, ac-
counts for the strongly nonlinear region away from UI where they bend back. To
proceed we will need only two assumptions supported by numerical evidence: (i)
smooth single-hump solitary waves (with a monotonic rear and an oscillatory front),
i.e., corresponding to a surface elevation h(ξ) where h(ξ) and all its derivatives are
continuous, do exist in the limit δ→∞; and (ii) their speeds are larger than unity.

The linearized dynamics around UI are controlled by (7.49) so that
∑

i λi = 0.
By setting λ1 = 2σ and λ2, λ3 =−σ ± iω, we get

ω2 − 3σ 2 = δ
[
3N (1, c)− Fr−2] and 2σ

(
σ 2 +ω2)= 3(c− 1),

since Fr2 = δ/ζ . Assuming c > 1 and Fr > Frc, and thus 3N (1, c)− Fr−2 > 0, we
have

ω∼ δ1/2
√

3N (1, c)− Fr−2 and σ ∼ 3

2
δ−1(c− 1)/

[
3N (1, c)− Fr−2].

The above estimates agree with the numerical result shown in Fig. 4.5. Accordingly,
the escape from UI along the one-dimensional unstable manifold Wu is slow and
monotonic while the convergence toward UI along its two-dimensional stable mani-
fold Ws should lead to a slow relaxation of fast oscillations, in agreement with what
is observed.

When the trajectory has left the immediate vicinity of UI, one must return to the
nonlinear equation (7.41a) with H(h, c) given by (7.41b) (recall that second-order
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Fig. 7.31 Principal homoclinic orbit (single-hump solitary waves) solutions to model equa-
tions (6.1), (6.51) at large δ, δ = 5. Left: Trajectory in the phase space. The spiraling behavior
toward the fixed point UI has been truncated in order to illustrate the escape of the trajectory from
the vicinity of UI along the unstable manifold Wu. Right: Profile of the wave h= h(ξ) in the frame
moving at speed c. The critical level hc is indicated by a dotted line

corrections I and J are set to zero). The homoclinic trajectory starts along the one-
dimensional unstable manifold of UI, whose tangent eigenspace corresponds to the
eigenvalue 2σ ∼ δ−1 � 1. The initial escape from the fixed point of the trajectory
h − 1 ∝ exp(2σξ) is therefore slow, which suggests the introduction of the slow
variable ξ̃ = ξ/δ. Equation (7.41a) then reads

[
N (h, c)− h3

3Fr2

]
h′ = −H(h, c)− 1

3
δ−3h3h′′′, (7.65)

where prime now denotes differentiation with respect to ξ̃ . The last term in (7.65) is
negligible all along the first part of the trajectory corresponding to ξ (or ξ̃ ) coming
from −∞, i.e., at the rear of the wave, so that (7.65) reduces to

[
N (h, c)− h3

3Fr2

]
h′ = −H(h, c). (7.66)

For Fr larger than its critical value Frc corresponding to the onset of the primary
instability, N (1, c)−1/(3Fr2) > 0, and, at a given c, N (h, c)−h3/(3Fr2) decreases
as h increases, which is readily seen from the expressions given earlier in the three
cases of interest. This follows immediately for the Kapitza–Shkadov model and for
model (6.1), (6.51) since c > 1 is assumed. For the Ooshida equation the decrease
only occurs for h2 > 25

27c but this does not change the argument. On the other hand,
h increases with ξ̃ as long as h′ > 0. Since H(h, c) < 0 for 1 < h < hII, where hII

is given by (7.46), h′ is positive as long as h is below hII and a “critical level” hc
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defined as the root for h of

N (hc, c)− h3
c

3Fr2
= 0. (7.67)

If, for the considered value of c, hII < hc, h′ does not diverge and h generally goes
through a maximum so that it cannot reach hc, at least in the rear part of the trajec-
tory, which contradicts the assumption of single-hump solitary waves. On the other
hand, if hc is reached first, then a singularity takes place with h′ diverging at ξ̃ = ξ̃c,
which now contradicts the assumption of nonbreaking solitary waves (continuous
free surface elevation h(ξ) and continuity of its derivatives) originating from em-
pirical evidence. The only possibility then to remove the divergence of h′ is when
hII = hc, in which case N (h, c)−h3/(3Fr2) and H are both zero for the same value
of h. Solving (7.67) with hc = hII given by (7.46) yields the asymptotic values c∞
reached by c in the limit δ→∞. For a vertical wall (Fr→∞), the values obtained
for (5.65), (6.13a), (6.13b) and (6.1), (6.51) are [229]

Ooshida equation (5.65): c∞ = 9

841

(
83+ 5

√
141
)≈ 1.524

Kapitza–Shkadov

model (6.13a), (6.13b): c∞ = 1+ 1/
√

6+
√

1/2+√2/3≈ 2.556

First-order model (6.1), (6.51): c∞ = 1

6

(
9+

√
43+ 2

√
37
)≈ 2.738.

The values are in good agreement with the value obtained from computations of
the corresponding equations (Fig. 7.30, left). For the BE (5.55), (7.67) admits
no nonzero solutions, which explains the lack of solitary wave solutions at large
Reynolds numbers.

For δ large but finite, the singularity in (7.65) remains at h= hc defined by (7.67).
This singularity will be avoided again if the right hand side is zero when h= hc. In
the region h∼ h∞ where h∞ = hII(δ→∞) as determined above, the shape of the
solution has no reason to change rapidly as δ increases since N − h3/(3Fr2) �= 0 at
h= hII(δ→∞). Therefore, one can generally expect h′′′ ∼ h′′′∞, where h′′′∞ �= 0 is
the asymptotic value of the third derivative of h in ξ̃ (the slow variable). We thus
have

N
(
hc(δ), c(δ)

)− [hc(δ)]3
3Fr2

=Kδ−3, (7.68)

where K is a numerical constant depending on h∞ and h′′′∞. The solution to (7.67)
and (7.68) through their expansion around (h∞, c∞) yields

c− c∞ ∝ δ−3, (7.69)

a convergence rate complemented by direct numerical integration of the different
models as shown in Fig. 7.32.
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Fig. 7.32 Convergence of the speeds of solitary waves toward their asymptotic values c∞ as func-
tion of δ and for a vertical wall (Fr →∞). 1: Ooshida equation (5.65). 2: Kapitza–Shkadov model
(6.13a), (6.13b). 3: Model (6.1), (6.51)

While the above analysis explains the asymptotic behavior of the speed of single-
hump solitary waves, their existence has not been justified and was taken for granted.
This existence property is likely to be more difficult to prove than in the small-δ
limit, where analysis of the vicinity to a codim 2 bifurcation point corresponding to
the simultaneous onset of a stationary and an oscillatory instability (λ1 = 0, λ2, λ3 =
±iω) enables one to show the existence of homoclinic orbits [101].

It should be noted that the critical value hc introduced in the above derivation,
makes sense only on the slow rear part of the wave, i.e., for the value of ξ̃ where
the critical condition is achieved for the first time when ξ̃ increases from −∞, since
h= hc also happens at least once in the fast oscillating front part when h decreases
from its maximum value, hm > hc. However, the dominant term (7.41a) is then the
surface tension term 1

3h
3h′′′ and to deal with it one has to follow the dynamics in

terms of a fast variable, say ξ̂ = ξ
√
δ. The presence of the surface tension term

prevents the divergence of h′ when h∼ hc. The third derivative does not diverge as
long as h is not close to zero.

7.2.2.3 Analogy to Roll Waves in Open Channels

The distinguished limit δ→∞ with Fr =O(1) is equivalent to the limit Re→∞
and Fr =O(1) already discussed in the wave hierarchy context. There is again anal-
ogy between the features of solitary waves of film flows and the roll waves observed
on steep water channels when the flow is “supercritical,” i.e., when the Froude num-
ber is above the instability threshold of the uniform thickness solution (we recall
from our discussion in Sect. 7.1.3 that the instability threshold Rec = 5

6 Ct corre-
sponds to a fixed value of the Froude number Frc =√5/2).
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This analogy follows from the presence of the Poiseuille solution to the full
Navier–Stokes equations in an open channel with a fluid layer of arbitrary uniform
thickness. The Poiseuille solution is identical to the Nusselt flat film solution at
small thicknesses and links the film flow problem, for which surface tension is a
dominant effect, i.e., for We � 1, when the fluid layer thickness h̄N is at most com-
parable to the capillary length lσ = (σ/ρg sinβ)1/2, to the problem of a hydraulic
flow in an inclined open channel, for which surface tension can be neglected (i.e.,
We� 1 or h̄N � lσ ). Indeed, to leading order in δ−1, the escape of the homoclinic
trajectory from the fixed point UI, hence the rear of the solitary wave, is governed by
(7.66), where the effects of surface tension are negligible. Equation (7.66) is similar
to the equation that governs traveling wave solutions to the Saint-Venant equations
(7.26a), (7.26b)

[
(u− c)2 − h

Fr2

]
h′ = u2 − 4

9
h, (7.70)

where u= q/h is the local mean velocity of the flow. Integration of the mass con-
servation equation (7.26a) gives (7.36) and thus, u= c+q0/h. Notice that the coor-
dinate ξ has been compressed by the transformation ξ → Reξ . Equation (7.70) can
be recast as

[
cd+(u,h)− c

][
cd−(u,h)− c

]
h′ = u2 − 4

9
h, (7.71)

where cd±(u,h) = u ±√
h/Fr are the speeds of the infinitesimal dynamic waves

propagating on the uniform flow of depth h and velocity u.
Roll waves consist of hydraulic jumps connected by sections of gradually varying

flows. In a roll wave flow, the crests of the waves are connected to their troughs by
discontinuities, that is, hydraulic jumps or bores. The flow crosses a hydraulic jump
from the “supercritical region,” where dynamic waves travel slower than the speed
of the wave (cd± < c), to the “subcritical region,” where some dynamic waves can
propagate upstream toward the hydraulic jump (cd+ > c) (see Fig. 7.33). One may
therefore define a reduced Froude number Frr as the ratio of the speed of the flow
relative to the roll wave and the speed of surface gravitational waves

√
gh̄ cosβ:

Frr = |u− c|√
h/Fr

= Fr
c− u√

h
,

since the wave moves faster than the flow (u − c < 0). The supercritical region
at the front of the moving hydraulic jump therefore corresponds to Frr > 1 and,
conversely, the subcritical region at the back corresponds to Frr < 1. In the sections
of slowly varying flows separating the hydraulic jumps, the fluid must return from
subcritical to supercritical regions. As a consequence, between two hydraulic jumps
there must be at least one critical point (Frr = 1). Since u is a function of h, this
defines a critical level hc. As the flow is continuous between the hydraulic jumps,
h′ is finite so that at h= hc the left hand side of (7.71) vanishes. This demands that
the right hand side of (7.71) vanishes as well [270]. Therefore, at the critical level
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Fig. 7.33 Sketches of roll
waves propagating down a
steep water channel, i.e.,
sufficiently steep for the flow
to be supercritical, Fr > Frc.
Directions of propagation of
the dynamic waves with
respect to the roll waves are
indicated by arrows. In the
frame moving at the speed of
the roll waves, the flow is
moving upstream from the
supercritical to subcritical
regions (u− c < 0) (after [33,
172])

where dynamic waves travel at the speed of the roll wave, the wall friction must
compensate exactly the gravitational acceleration.

For a film flow, this is precisely what condition hII = hc stipulates—by demand-
ing that at the critical level the right hand side of (7.66), −H(h, c), must vanish.
The dynamics of the flow at the rear of the wave are governed by (7.66), which
can be recast in a form similar to (7.71) with a right hand side given by 3u/h− h

and c±d(u,h) = 6
5u±

√
6
25u

2 + hFr−2 in the case of the Kapitza–Shkadov model

(6.13a), (6.13b), and c±d(u,h)= 17
14u±

√
37
196u

2 + 5
6hFr−2 in the case of the first-

order model (6.1), (6.51) and the simplified model (6.1), (6.79). Similarly to roll
waves, solitary waves traveling on film flows can be divided into two parts. For
h > hc, in the subcritical region, infinitesimal dynamic waves can travel faster than
the solitary waves, whereas for h < hc, in the supercritical region, infinitesimal dy-
namic waves are slower than the solitary wave.

One is therefore tempted to view solitary waves on film flows at large reduced
Reynolds numbers δ as roll waves whose breaking is arrested by surface tension.
Let us then compare the features of roll waves traveling on film flows when sur-
face tension is negligible to the characteristics of the corresponding solitary waves.
Infinitely long roll waves must verify condition hII = hc such that their speed is ex-
actly c∞. Their amplitude can be determined through the conservation of mass and
momentum across the “shock.” Considering the Ooshida equation, shock conditions
can be obtained by splitting (5.62) into

∂th+ ∂xq = 0
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and

3q = h3 − δ

[
2

7
∂t
(
h5)+ 36

245
∂x
(
h7)− 1

4Fr2
∂x
(
h4)
]
+ h3∂xxxh.

By neglecting then surface tension and the thickness of the shock, the jump condi-
tions across the discontinuity are obtained through the formal substitutions ∂x →[ ]
and ∂t →−c∞[ ], where the brackets indicate a jump in the corresponding quanti-
ties [299]:

−c∞[h] + [q] = 0 and − c∞
2

7

[
h5]+ 36

245

[
h7]− 1

4Fr2

[
h4]= 0. (7.72)

Across the shock, the thickness of the film goes from its maximum, hm, to its mini-
mum, 1. For c∞ ≈ 1.524 one obtains hm ≈ 1.68. Computations of the solitary wave
solutions to (5.62) seem to indicate that the maximum of the thickness approaches
an asymptotic value ≈ 1.70. Written in conservative form (see Sect. 5.1.1), the
Kapitza–Shkadov equations read

∂th+∂xq = 0 and δ

[
∂tq+∂x

(
6

5

q2

h
+ 1

Fr2

h2

2

)]
= h−3

q

h2
+h∂xxxh, (7.73)

and the corresponding shock conditions are

−c∞[h] + [q] = 0 and − c∞[q] +
[

6

5

q2

h
+ 1

Fr2

h2

2

]
= 0. (7.74)

c∞ ≈ 2.556 and q is given by (7.36) and (7.39) so that one obtains from (7.74),
hm ≈ 4.54 while the maximum thickness of the solitary wave solution to (6.13a),
(6.13b) hm ≈ 3.7 at δ = 10.

Of course replacing the radiation preceding the hump of a solitary wave with
a shock is a crude assumption for at least two reasons. First, it does not give any
information on the way the actual solution approaches its shocklike characteristics.
From Sect. 7.2.2.2 we know that the convergence of the wave speed to its limit c∞
depends on the balance of inertia and surface tension in the oscillatory region at the
front of the main solitary hump. Second, the derivation of the jump conditions (7.74)
is based on the formulation of the Kapitza–Shkadov equations in the form (7.73),
a conservative form following Sect. 5.1.1: H = (h, q), the flux Q is a function of
H and the right hand side R contains the influence of gravity acceleration, viscos-
ity and surface tension terms, all of them being neglected across the shock. As a
consequence, the estimates obtained with the Kapitza–Shkadov model for the am-
plitude of the waves cannot be extended to the first-order model (6.1), (6.51) and to
the simplified second-order one (6.1), (6.79). (Recall that the first-order model does
not have a conservative form; the simplified second-order model is essentially the
first-order one with additional second-order terms due to dispersion, and hence it
also does not have a conservative form.)

Nevertheless, the estimates of the wave amplitudes from the shock conditions
(7.72) and (7.74) are quite reasonable. This supports the idea that solitary waves at
large δ are in essence roll waves whose breaking is arrested by surface tension.
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7.2.3 Closed Flow Conditions

We have already seen that computation of traveling wave solutions requires assign-
ing a value to the rate q0 at which the fluid flows under the wave in its moving frame.
This was done by demanding that the constant thickness h = 1 be a solution. Ob-
served solitary waves are positive-hump waves (see, e.g., Fig. 7.1) under which the
fluid is locally accelerated so that the local flow rate q can be several times larger un-
der the wave humps than in the portions of the flat film (also known as “substrate”;
see Sect. 5.4) separating the solitary waves. Consider now the flow rate at a given
location x. Since the time average T −1

∫ T
0 q dt of the flow rate over a sufficiently

long time T is conserved (see Sect. 5.3.1) and corresponds to the Nusselt flat film at
the inlet, i.e., T −1

∫ T
0 q dt = 1/3, the flow rate in the substrate flat films separating

the solitary waves is lower than the Nusselt flow rate at the inlet. Thus, the corre-
sponding substrate thickness is also smaller than the inlet thickness of the film, i.e.,
unity (for a waveless flow, the film thickness equals the inlet thickness throughout).

The above observations imply that the relationship (7.39) between q0 and the
speed c of the waves cannot be used to account for experimental results. As already
discussed in Sect. 5.3.1, where we defined the open and closed flow conditions,
periodic-wave regimes observed in experiments with forcing at the inlet correspond
to a constant temporal average flow rate 〈q〉t = τ−1

∫ τ
0 q dt = 1/3, with τ the pe-

riod of the oscillation, or “open flow condition,” provided of course that the flow
synchronizes all along the plate with the inlet forcing. Yet, as was first pointed out
in Sect. 5.3.1, several studies (e.g., [128, 198, 232, 239]) rely on periodic bound-
ary conditions in space and hence implicitly prescribe a constant space average film
thickness, 〈h〉x = 1, the “closed flow condition.” This is inherent to time-dependent
numerical simulations that use a spectral method in which periodic boundary con-
ditions are enforced. Thus, the amount of liquid leaving the domain downstream
is reinjected upstream and the average film thickness is constant. A simulation of
the actual film flow dynamics using periodic boundary conditions is still possible
though, but requires sufficiently extended computational integration domains (an
example of such simulations can be found in [218]).

Many studies have been devoted to obtaining a detailed picture of the differ-
ent branches of traveling wave solutions of the Kapitza–Shkadov model (6.13a),
(6.13b) or the first-order boundary layer equations (6.2)–(6.6) (hence η = 0) [50,
250, 253]. These studies have been restricted to the case of a vertical wall (ζ = 0)
and the closed flow condition 〈h〉ξ = 1. The family of γ1 waves bifurcating from
the neutral stability curve was computed first by Shkadov [248] (the γ1, γ2 wave
families were first introduced in Sect. 5.3.2 and they correspond to slow and fast
waves, respectively). The slow waves have a speed smaller than that of spatially
amplified infinitesimal waves at the same frequency. The corresponding solution
branch terminates at small frequency as a (infinite-domain) negative-hump solitary
wave with a deep trough and capillary ripples at the back. However, the experimen-
tally observed waves excited by low frequency forcing are fast waves, i.e., trains of
positive-hump solitary waves having speeds larger than that of infinitesimal waves
(at large frequencies we have trains of negative-hump waves—we shall examine this
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Fig. 7.34 Speed of periodic wavetrains (limit cycles) as functions of their wavenumber k for a
vertical wall. Parameter values are δ = 0.844, ζ = 0 and η = 0.0112 (Ct = 0, Re = 2.66 and
Γ = 3375). The closed flow condition 〈h〉ξ = 1 is enforced. Left: First-order optimal model (6.1),
(6.51); Right: Simplified second-order (6.1), (6.79). To simplify comparisons with Figs. 12 and 14
in [232], the wavenumber k is made dimensionless using the film thickness h̄N. Branch 1 bifurcates
from the flat film solution through a Hopf bifurcation at k = kc. Branches 2 bifurcate from the so-
lutions made of two branch 1 waves (dashed lines) through period-doubling bifurcations indicated
by solid circles

point in Sect. 7.3.1). This second family of waves γ2 was first obtained by Bunov et
al. [34], who showed that it emerges from the γ1 branch through a period-doubling
bifurcation. Due to the symmetry-breaking of a wave made of n identical γ1 waves
(i.e., the γ

(n)
1 waves introduced in Sect. 5.3.2), many more branches of solutions,

denoted here as γ n
1 , γ

n
2 , exist. γ n

1 , γ
n
2 waves bifurcate from γ

(n)
1 and γ

(n)
2 through

period-doubling bifurcations at low values of δ in pairs of slow and fast waves that
terminate at low wavenumber as (infinite-domain) solitary waves having different
numbers of troughs and humps [253]. Increasing δ, a series of pinchings of the γ2
branch of solutions with the γ n

1 waves is observed, [50]. New branches of solutions
originate from these pinchings. At large δ, all branches of solutions correspond to
slow waves except for the single γ2 family [250].

Several studies have also been devoted to the computation of traveling wave so-
lutions from DNS [13, 116, 218, 232]. They are based on spectral/finite-element
methods and have enforced the closed flow condition 〈h〉ξ = 1. They provide reli-
able data to which the results of the low-dimensional models developed in Chap. 6
can be compared. Computations by Salamon et al. [232] have notably shown that
drastically different bifurcation scenarios take place for constant δ and ζ but vis-
cous dispersion effects vary, i.e., when η is modified. Bifurcation diagrams for the
wavenumber versus velocity corresponding to the first-order model (6.1), (6.51) and
the simplified second-order model (6.1), (6.79) are shown Fig. 7.34. In agreement
with the DNS results in [232] (to be discussed later together with Fig. 7.36), the
structure of the bifurcation diagram is drastically changed when viscous dispersion
effects are taken into account, i.e., when we move from the first-order model (a)
to the second-order one (b). Indeed, in the first case with no viscous dispersion,
branch 1, which arises from a Hopf bifurcation at a wavenumber k equal to the cut-
off wavenumber kc, connects the primary solution to slow γ1 waves (c < 1) whereas
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branch 2a, which bifurcates off branch 1 by a first period doubling, corresponds to
fast γ2 waves (c > 1). When viscous dispersion effects are taken into account (see
Fig. 7.34b), the connections of the branches are reversed. The other curves, labeled
2b, 2c, 2d in Fig. 7.34(a, b), correspond to different branches of solutions arising by
secondary period-doubling bifurcations off branch 1 (dashed lines indicate the loci
of solutions made of two branch 1 waves) and approaching at small wavenumber
multi-hump solitary waves.

The bifurcation diagrams formed by branch 1 and branch 2a in Fig. 7.34 are
typical examples of an imperfect pitchfork bifurcation with k as the bifurcation
parameter. Its origin close to the instability onset (δ − δc � 1) can be understood
within the framework of weakly nonlinear analysis by considering traveling wave
solutions to the KS equation (7.63) and its extension when dispersion is considered,
hence using the Kawahara equation (5.31) [49, 73]. Indeed, the KS equation has
been derived in Sect. 5.2 from the first- and second-order BE while the Kawahara
equation has been derived from the second-order BE. The first- and second-order
BE can be in turn obtained from a gradient expansion of the first-order and full
second-order models (6.1), (6.51) and (6.78), respectively (see Sects. 6.6 and 6.8.1).
Dispersion, characterized by the parameter δK in (5.31), originates from second-
order viscous effects.5 This origin can be made explicit by recasting the expression
of δK in (5.31) in terms of the reduced parameters δ and η:

δK = 3

[
5

2(δ − δc)

]1/2

η. (7.75)

Traveling wave solutions to the ordinary differential equation (7.64) when the closed
flow condition 〈H 〉X = 0 is enforced are displayed in Fig. 7.35. The wavenumber
K is defined with respect to the variable X introduced in the derivation of the KS
equation (7.63). Standing waves (C = 0) evolve from neutral wavenumbers K = 1
and K = 1/2, where two identical waves are put in the same computational domain.
A period-doubling bifurcation occurs at K = 0.497783, from which another branch
of standing waves emerges. These standing waves correspond to kinematic waves
traveling at speed c = 1 since C ∝ c− 1 is in fact a deviation speed. The pitchfork
bifurcation occurs at K = 0.5462 leading to the two branches of slow γ1 and fast γ2
waves.

Since (7.64) is invariant under the transformation (see also Sect. 5.3.2),

H →−H, X→−X, C→−C, Q→Q, (7.76)

the wave profiles shown in Fig. 7.35 are symmetric. Hence, for any γ2 wave traveling
to the right there exists a corresponding symmetric γ1 wave traveling to the left. As
emphasized in Sect. 5.3.2, these negative waves do not actually propagate backward.
In fact, turning back to the laboratory frame, γ1 waves effectively correspond to
right-moving waves traveling slower than the kinematic waves.

5Contributions from inertia to the dispersive term δK∂XXXH are of higher order. To include inertia
in the dispersive term, the Kawahara equation would have to be modified to include higher-order
nonlinearities—see Sect. 5.2.
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Fig. 7.35 (a) Wavenumber K of primary traveling waves versus deviation speed C. Solutions
to the KS equation (7.63) correspond to solid lines. Solutions to the Kawahara equation (5.31)
are displayed for increasing dispersion δK = 0.001, δK = 0.01 and δK = 0.1 as dashed lines. The
branches of waves with δK < 0 can be obtained by symmetry around the axis c = 0. (b) Profiles
of periodic waves close to the solitary wave limit at K = 0.1 as function of the reduced coordinate
X/λ where λ is the period of the waves

Noteworthy is that the invariance of the KS equation under the transformation
(7.76) is broken when positive dispersion is included and the KS equation becomes
the Kawahara equation, i.e., when the term δKd

2H/dX2 with δK > 0 is added to
(7.64) as shown in Fig. 7.35 (see also Sect. 5.3.2). The original branch of standing
waves separates into two branches, one being connected to the slow γ1 waves, and
another one being connected to the fast γ2 waves. Notice also from Fig. 7.35 that
the curves for δK < 0 are simply mirror images of those with δK > 0 with respect
to the c = 0 axis—recall from Sect. 5.3.2 the reversible symmetry of the Kawahara
equation. Of course, as was pointed out there, for both isothermal and heated falling
film problems, δK > 0.

It is then clear that the imperfection in Fig. 7.34(a) is due to the absence of sym-
metry, h− 1 →−(h− 1), x→−x and c→−c, for the first-order models, much
like the first-order BE (see Sect. 5.3.2 and Fig. 5.2). In Fig. 7.34(b), the symmetry-
breaking is due to the same reason as that in Fig. 7.34(a), but the presence of disper-
sion changes the connectivity of the branches.

In Fig. 7.34(a), branch 1 of traveling waves bifurcating from k = kc is connected
to γ1 slow waves as k→ 0, whereas branch 2a, which emerges through a period-
doubling bifurcation, terminates into γ2 fast waves as k→ 0. The situation is re-
versed in Fig. 7.34(b) due to the effect of viscous dispersion. The exchange of con-
nections between branches 1, 2a, hence γ1 and γ2, is still observable at a larger value
of the reduced Reynolds number, δ = 2.79, as the viscous dispersion parameter η is
increased from 0.015 to 0.075, as demonstrated in Fig. 7.36. The phase velocity cr
of the temporally most amplified linear waves (ω ∈ C and k ∈ R) is here compared
to the speed c of the traveling waves. Since the speed of the waves is now signif-
icantly different from unity (the reference speed of kinematic waves in the limit
k→ 0), a rigorous demarcation between slow and fast waves is achieved by their
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Fig. 7.36 Periodic wavetrains (limit cycles). Left: Wavenumber k versus speed c. Dashed lines
refer to solutions of model (6.1), (6.79), whereas solid lines refer to the DNS results in [232].
The phase velocity cr of the temporally most amplified linear waves is indicated by dashed-dotted
lines. Right: Wave profiles and streamlines in the moving frame of reference for the wave families
γ1 (panels a to d) and γ2 (panels e to h). As in Fig. 7.34, k is made dimensionless using the film
thickness h̄N

comparison to the most amplified linear waves with the same wavelength. The bi-
furcation diagrams and solution profiles obtained with the second-order simplified
model (6.1), (6.79) are in remarkable agreement with the DNS study in [232].

It is important to note at this stage that unlike the models considered here, e.g.,
the simplified second-order model (6.1), (6.79), where viscous dispersion can be
suppressed by simply setting η = 0, the same is not true with a DNS study. But
one can approach an equivalent limit of small η with large Γ or large We (indeed
η decreases when We increases). This then means that in order to keep δ the same,
Re must be increased when We is increased. This is precisely how the topological
change of the solution structure from Fig. 7.36(a) to Fig. 7.36(b) was found by
Salamon et al. [232].

Comparisons of the profiles of solitary-like waves (panels h in Fig. 7.36) show
that viscous dispersion affects significantly the number and amplitude of the cap-
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Table 7.2 Phase speed c (cm s−1) of the traveling waves from the experimental data by Kapitza
and Kapitza [141], from DNS and from the second-order models. Parameters are Re= 6.07, We=
76.4 (inlet flow rate 0.123 cm2 s−1, kinematic surface tension σ/ρ = 29× 10−6 m3 s−2, kinematic
viscosity 2.02× 10−6 m2 s−1 and wavelength λ= 1.77 cm). The first column corresponds to the
closed flow condition and the second to the open flow condition

〈h〉ξ = 1 〈q〉ξ = 1/3

Full second-order model (6.78) 23.5 20.4

Simplified model (6.1), (6.79) 23.5 20.3

Regularized model (6.1), (6.92) 23.5 20.3

Kapitza and Kapitza [141] – 19.5

Ho and Patera [116] 24.7 –

Salamon et al. [232] 23.5 –

Ramaswamy et al. [218] 23.1 –

illary ripples preceding the humps, as already noted several times in this mono-
graph. An excellent agreement (not shown) is also obtained with the full second-
order model (6.78) and the regularized model (6.1), (6.92) derived in Chap. 6. Ta-
ble 7.2 shows a comparison of the wavespeed of an experimental γ2 traveling wave
reported by Kapitza [141] to the solutions obtained by DNS and to the solutions
of the different second-order models derived in Chap. 6. Some corresponding wave
profiles have already been shown in Chap. 4 (see Figs. 4.1 and 4.3). The agreement
of the results obtained with the low-dimensional second-order models to DNS is
very convincing indeed. The discrepancy between the wavespeed of the DNS solu-
tions and Kapitza’s experimental result is due to the use of the closed flow condition
〈h〉ξ = 1, instead of the open flow condition 〈q〉ξ = 1/3, which corresponds to the
experiments (but once again, this requires synchronization between the flow and the
inlet forcing—see Sect. 5.3.1).

7.2.4 Open Flow Conditions

As already emphasized, most numerical studies on falling liquid films enforce
the closed flow condition, 〈h〉ξ = 1. Here we impose the open flow condition
〈q〉ξ = 1/3, which fits experimental settings where typically the film is forced peri-
odically at its inlet. In fact, we shall demonstrate in Sect. 7.3, where we examine the
spatio-temporal evolution of the film, that by imposing the open flow condition we
are able to capture the traveling waves observed experimentally at the final stage of
the spatio-temporal evolution of the film. We examine the case of an inclined plate
when viscous dispersion is taken into account. Different branches of traveling waves
obtained for the conditions of the Liu and Gollub’s experiments [170] are depicted in
Fig. 7.37 at increasing values of the Reynolds number for a fixed inclination β = 4°
and Kapitza number Γ = 2340. For illustration purposes we present the solutions
to the regularized model (6.1), (6.92). The bifurcation diagrams obtained with the
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simplified second-order model (6.1), (6.79) (not shown) are nearly identical. (Dis-
crepancies between the results from the simplified and regularized models are ob-
served further from the threshold of the instability, when the wave dynamics become
three-dimensional; in particular, the inertial terms included in the regularized model
capture the synchronous three-dimensional patterns observed in the experiments by
Liu et al. [170]—see Chap. 8.) We chose to display the wavespeed as a function of
the dimensional frequency in order to simplify comparison with the experiments.
Among a wide variety of solution branches we chose to show only those that relate
to the branch of the fast γ2 waves. In particular, only the single-hump nearly solitary
γ2 fast waves are displayed in Fig. 7.37, whereas n-hump nearly solitary fast waves
can also be found. (Thus, we will not discuss in this section the families γ (n)

1 , γ
(n)
2

corresponding to trains of n-negative or n-positive identical traveling wave solutions
discussed in Sect. 5.3.2—except γ (2)

1 , γ
(2)
2 .) However, single-hump nearly solitary

γ2 waves are always the fastest at a given frequency.
Very close to criticality (Rec = 11.9), the γ2 family emerges at the cut-off

wavenumber kc whereas the γ1 waves appear through a period-doubling bifurcation
from the family of n = 2 harmonic solutions, i.e., the γ

(2)
2 branch. This situation

is different from the description given by Chang et al. [50], where a Hopf bifurca-
tion at the cut-off wavenumber gives rise to the slow γ1 branch of solutions and a
period-doubling bifurcation from the branch γ

(2)
1 leads to the formation of the fast

γ2 waves. A similar discrepancy is observed with the DNS study performed by [232]
for a vertical film but smaller Reynolds number and small η (we discussed earlier
how the limit of small η can be approached in a DNS study) in which case the DNS
study gives a bifurcation diagram similar to that in Fig. 7.36(a). Hence, the different
bifurcation diagram obtained by Chang et al. is a direct consequence of neglecting
viscous dispersion, which is not taken into account by the simple Kapitza–Shkadov
model used by Chang et al. (see also Sect. 7.2.3).

Figure 7.37 indicates that close to criticality, the γ1 and γ2 families form an im-
perfect bifurcation similar to what is observed for the Kawahara equation (compare
the top panel of the figure to Fig. 7.35). As the Reynolds number is increased, the
fast-wave γ2 branch experiences several collisions with other branches. In Fig. 7.37,
two successive pinchings are displayed, for 14.3 < Re < 14.4 (middle panels) and
16.3 < Re < 16.4 (bottom panels). Each of these pinching events is reminiscent of
the imperfect bifurcation affecting the γ1 and γ2 wave branches. They occur at fre-
quencies close to 1/3 and 1/4 of the cut-off frequency, respectively, and give rise to
the secondary γ ′1 and γ ′′1 branches of slow-wave solutions—at low frequency, these
waves are slower than the most amplified linear waves and thus belong to the γ1 type
of waves. Close to the pinching points in the speed-frequency diagram, the waves
resemble a train of three and four γ1 waves. Accordingly, we refer to these branches
as γ 3

1 and γ 4
1 , respectively (γ 3

1 and γ 4
1 branches must not be confused with the γ (3)

1

and γ
(4)
1 solutions consisting of trains of three and four identical γ1 waves—see

Sect. 5.3.2).
However, no bifurcation has been found at Re ≈ 14.3 and Re ≈ 16.3 when the

emergence of new wave branches has been sought from the γ1 family by placing
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Fig. 7.37 Wavespeed c versus dimensional forcing frequency f in Hz at increasing Reynolds
numbers. Parameter values are β = 4° and Γ = 2340 corresponding to the experimental conditions
in [170]. Solid lines are computed with the regularized model (6.1), (6.92). Dashed lines refer to
the spatially most amplified solutions of the corresponding linear dispersion relation. The initial
Hopf bifurcations and the period-doubling bifurcation giving birth to the γ2 family and also the γ ′1
family for Re > 14.4 are indicated by open circles
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Fig. 7.38 Shape of different wave families at Re = 16.4 and frequency f = 1 Hz. Parameter
values are β = 4° and Γ = 2340 corresponding to the experimental conditions in [170]

three or four identical waves close to each other in the computational domain. In
fact, the γ 3

1 and γ 4
1 families have been found through continuation of the γ2 branch

from larger values of Re after pinching of the branches has occurred. The profiles
of the waves corresponding to the different branches shown in Fig. 7.37 are given in
Fig. 7.38 for Re= 16.4 and f = 1 Hz. Figures 7.38(a–e) correspond to slow waves
made of several troughs followed by radiation before the troughs return to the level
of the flat film. The shape of the fast-speed end of the γ2 branch is different from the
shape of slow waves γ n

1 with a main hump preceded by ripples (compare Fig. 7.38(f)
to Figs. 7.38(a–e)). The γ1 waves correspond to a unique trough whereas γ ′1, γ ′′1 and
the low-speed end of the γ2 branch have several troughs. Notice the similarities
between the shapes of the waves shown in Figs. 7.38(b) and 7.38(c), due to the fact
that they both originate from the same γ 3

1 family. Figures 7.38(d) and 7.38(e) are
even more similar since Re = 16.4 corresponds more closely to the value at which
the γ2 and γ 4

1 branches collide, giving rise to the γ ′′1 waves. γ n
2 and γ ′2 wave families

also exist but are not shown in Fig. 7.37, to limit the complexity of the figure.
As it can be seen from Fig. 7.37, the bifurcation diagram becomes increasingly

complicated as the Reynolds number is increased, and at a given frequency sev-
eral traveling wave solutions exist. This raises the question of the attractiveness of
these solutions, which is in turn related to their relevance and the way they attract
initial conditions. In other words, we ask “Which traveling wave solutions will be
selected by the flow following the inception region of linear growth of the inlet
periodic perturbations?” An answer to this question can be given through numer-
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ical solution in time and space of the model used to describe the film dynamics.
Shkadov and Sisoev [250] have performed a thorough analysis of the attractive-
ness of traveling wave solutions by considering the evolution in time of solutions
to the Kapitza–Shkadov model when periodic boundary conditions are enforced.
In addition to traveling wave solutions, they found “invariant tori,” i.e., oscillatory
modes made of the superpositions of two irrationally related periodic oscillations.
The presence of these quasi-periodic attractors was also detected by the DNS study
in [218]. Oscillatory modes generally correspond to successions of two different
traveling wave solutions. When traveling wave solutions were found as the final
stage of the unsteady computations, which is by far the most common situation, the
selected waves are the fastest. We shall examine this point in Sect. 7.3.1. They also
correspond to the largest maximum height among all traveling waves with the same
wavelength and were referred to by Shkadov and Sisoev as “dominant waves” [250].

Finally, in line with experimental evidence, slow γ1 waves are expected to fol-
low the linear inception region at high frequency (i.e., close but below the cut-off),
whereas at low frequency, γ2 waves are expected [3, 168, 170]. Oscillatory modes,
obtained by integration in time and space with periodic boundary conditions, are
generally not observed in experiments. When they are observed, a secondary insta-
bility leads further downstream to a regular wavetrain of traveling waves [37, 168]
(see Fig. 7.43 and its discussion below).

7.3 Spatio-temporal Evolution of Two-Dimensional Waves

The problem of the spatio-temporal evolution of two-dimensional waves on film
flows has attracted great interest, both experimental [4, 37, 167–169, 294, 305] and
computational [45, 176, 218]. These studies have revealed a rich variety of phenom-
ena: traveling waves, quasi-periodic modulated waves, secondary instabilities and
the complexity of wave interactions. It is not our strategy here to track all possible
phenomena. Instead, we aim to capture the more pertinent ones by making use of
time-dependent numerical simulations of the simplified model (6.1), (6.79) and the
regularized model (6.1), (6.92) for parameter values corresponding to the experi-
ments conducted by Liu and Gollub [168]. The finite-differences numerical scheme
for the time-dependent computations is given in Appendix F.3.

7.3.1 Periodic Forcing

In his seminal work more than 60 years ago, Kapitza did not take long to realize
that a falling liquid film behaves as an amplifier of the inlet noise [140, 141]. This
observation is now clearly established theoretically as demonstrated in Sect. 7.1.2.
Kapitza consequently applied well-controlled periodic perturbations at the inlet, and
thus he was able to observe traveling waves with the same or related time periodic-
ity. The same procedure was followed by almost all experimentalists studying falling
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Fig. 7.39 Comparison between experiments [168] (left) and simulation of the simplified model
(6.1), (6.79) (right). The plate is inclined at β = 6.4° from the horizontal, the liquid is a glycer-
in–water mixture and the Reynolds and Kapitza numbers are Re = 19.3 and Γ = 524.4, respec-
tively. The figure shows three snapshots of the film thickness at three different locations along the
plate from upstream (top) to downstream (bottom) at forcing frequency f = 4.5 Hz and forcing
amplitude, A= 0.03

film flows after Kapitza. Possibly the most comprehensive and definitive account of
the spatial evolution of waves produced by a periodic forcing at the inlet can be
found in the work by Gollub’s group. Their observations can be summarized as fol-
lows. At high frequency, close but below the cut-off frequency fc (above the cut-off
frequency the film is stable—see Fig. 7.2), traveling waves of the slow γ1 type are
observed close to the inlet. At low frequency, in comparison to fc, the exponen-
tial growth of the waves is directly followed by the formation of fast solitary-like
wavetrains of γ2 type.

The two situations are illustrated in Figs. 7.39 and 7.40, where results from
the simplified model (6.1), (6.79) are compared to the experimental findings corre-
sponding to a glycerin–water mixture film flowing down a plate inclined at an angle
β = 6.4° from the horizontal and at a Reynolds number Re = 19.3. The periodic
forcing on the entrance flow rate has been simulated by setting

q(0, t)= 1

3

(
1+A cos(2πf t)

)
. (7.77)

At lower—but not too low—frequencies, waves are multi-peaked (see Fig. 7.39).
Both the experiments and our numerical simulations show in this case a complex
nonlinear process leading to multi-peaked waves. These saturated multi-peaked
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Fig. 7.40 Comparison between experiments [168] (left) and simulations of the simplified model
(right) for f = 1.5 Hz. Values of the other parameters are given in the caption of Fig. 7.39

waves move slower than corresponding growing linear waves of infinitesimal am-
plitude at the inlet and thus belong to the γ1 type of waves. After the growth of
a subsidiary peak, the time shift separating the primary and subsidiary peaks in a
time series at a given location x approaches an asymptote further downstream, a
phenomenon that we refer to as phase-locking. A modulated two-peak wavetrain is
then observed. This phase-locking can also be interpreted as a sequence of splittings
and mergings of the primary and subsidiary peaks. If the details of the phase-locking
process are modified by the amplitude A (see Fig. 7.41), the resulting multi-peaked
wavetrain is not affected by the level of the inlet forcing. Computations of the corre-
sponding traveling wave families by continuation using AUTO07P reveal that these
multi-peaked waves are slow γ ′1 waves coming out from a period-doubling bifurca-
tion of the γ1 branch that emerges at the cut-off frequency; the bifurcation diagram
is then similar to those displayed in the lower panels of Fig. 7.37. When the inlet
forcing is applied to the film thickness h rather than to the flow rate q , similar results
are obtained. These observations also apply to the formation of the γ2 solitary-like
waves at low frequency (see Fig. 7.42).

The experiments by Gollub’s group reveal a transition at Re ≈ 30 between
only spatially modulated wavetrains and wavetrains modulated in both space and
time [37]. For Re � 30, the signal remains periodic in time at any location and the
wavetrain modulation is only spatial: the splitting and merging events occur always
at the same positions on the plate. At larger Reynolds numbers, the time periodicity
of the signal is lost, and the splitting and merging of the waves occur at random
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Fig. 7.41 Film thickness evolution for the experimental conditions [168] and in good agree-
ment with the DNS study in [218]. The parameter values are given in the caption of Fig. 7.39
(f = 4.5 Hz). The film thickness is plotted at regular intervals of 0.104 s. Left: Forcing amplitude
A= 0.03; right A= 0.15

locations. Numerical simulations of the spatial evolution of the flow based on the
simplified model (6.1), (6.79) reveal that modulations in time of the primary wave-
train can be obtained only when noise is added to the periodic forcing at the inlet
(the numerical implementation of natural noise is detailed in Sect. 7.3.2). This sug-
gests that the onset of space-time modulations observed in experiments is triggered
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Fig. 7.42 Same caption as for Fig. 7.41 except for the forcing frequency f = 1.5 Hz and the
forcing amplitude (left) A= 0.03; (right) A= 0.15

by the unavoidable ambient noise. However, our simulations, for which a small but
noticeable noise was added to the periodic forcing, did not show a sharp transi-
tion at Re ≈ 30 but rather a smooth one with the onset of space-time modulations
depending on the level of noise added to the forcing at the inlet. Though our simula-
tions unequivocally demonstrate the significant influence of inlet noise, the precise
mechanism of the transition from spatial modulations to both spatial and temporal
modulations remains an open question.



270 7 Isothermal Case: Two-Dimensional Flow

Fig. 7.43 Snapshots of the film thickness from a simulation using the regularized model (6.1),
(6.92). Parameters correspond to an experiment in [168] (β = 6.4°, R = 19.3 and Γ = 524.4,
f = 4.5 Hz). Forcing amplitude is A= 0.05. Contrast with Figs. 7.39 and 7.41 presenting simula-
tions corresponding to the same set of parameters

Ultimately, the addition of a small noise to the inlet forcing leads to the disor-
ganization of the modulated primary wavetrain, as illustrated in Fig. 7.43, which
depicts snapshots of the film thickness at the end of simulations with an extended
computational domain (corresponding to a 3-m long plane). The figure was com-
puted with the regularized model (6.1), (6.92). The solution to the simplified model
is again very similar. Our simulation shows that in the absence of inlet noise there
is a spatial modulation of the primary wavetrain. This modulation is easily visible
on the wavetrain envelope in panel a of Fig. 7.43: it is an oscillation in space of
the envelope in the region ∼ 0.7–2.5 m, but it seems to be damped further down-
stream. On the other hand, when a small amount of noise is added to the inlet forcing
(panel b of Fig. 7.43), the spatial modulation is still visible close to the inlet but now
the primary wavetrain is rapidly replaced by a train of solitary-like waves similar to
the periodic wavetrain observed at low frequency (see Fig. 7.40). This is an example
of a secondary instability of the primary wavetrain. Secondary instabilities will be
further discussed in Chap. 8, where we shall also make the distinction between two-
dimensional and three-dimensional secondary instabilities. The precise mechanism
by which the spatial modulation triggers a secondary instability leading to a train
of solitary-like waves is not known. However, it seems that without noise the sys-
tem prefers to remain periodic in time; it synchronizes to the period of the forcing.
To produce solitary waves, we need to “break” this synchronization by introducing
noise at the inlet.



7.3 Spatio-temporal Evolution of Two-Dimensional Waves 271

Since the presence of a small amount of noise cannot be avoided in experiments,
we conclude that the two-dimensional dynamics of the flow is governed at the final
stage by trains of solitary-like waves in interaction. The noise-driven dynamics of
film flow is further investigated in the next section.

The waves at x = 3 m in Fig. 7.43(a) are of the γ1-type (more precisely, they
belong to the γ ′1 branch bifurcating from the γ1 branch through period doubling). On
the other hand, in Fig. 7.43(b) γ1 waves are observed in the interval� [0.6 m,1.5 m]
but they eventually give rise to γ2 waves toward the end of the domain. This raises
the question of stability of γ1 waves. After all, as noted at the end of Sect. 7.2.4,
previous studies show that in unsteady computations, the selected waves are the
fastest [250]. But actually in the numerical implementation of the finite-difference
numerical scheme used to discretize the regularized model in time and space, there
is always some numerical noise, albeit small, i.e., the level of noise is not sufficient
to excite the instability within 3 m from the inlet (that the instability of γ1 waves
is not excited does not make them stable; instead they are “metastable”-like states),
and with a much longer plane, we could still observe the same disorganization as in
Fig. 7.43(b), leading eventually to the formation of γ2 waves.

Hence, γ1 waves are unstable, giving rise to γ2 waves. As a matter of fact, they
are unstable to all disturbances, both streamwise and spanwise as will be shown
with the Floquet analysis in Sect. 8.3. This is in agreement with the experimental
observations by Gollub and collaborators, who observed γ1 waves with high fre-
quency (close but below the cut-off) near the inlet but which afterward become γ2
waves or three-dimensional negative solitary waves, which in turn reorganize them-
selves into three-dimensional horseshoe waves. Without forcing γ1 waves are not
even observed.

Most interestingly, the middle left and bottom right panels of Fig. 7.41 and the
middle left and bottom left panels of Fig. 7.42 indicate that an “excited” solitary
wave, i.e., a soliton of larger amplitude and speed to those of an equilibrium solu-
tion for the same conditions and hence carrying additional mass compared to the
equilibrium soliton, releases this mass through the formation of a γ1 solitary wave,
with a trough-like shape similar to the wave displayed in Fig. 7.38(a). But the for-
mation of this wave is just a transient effect: an upcoming fast γ2 wave will coalesce
inelastically with the γ1 one and absorb it. γ1 waves are in fact too slow to be seen:
If we excite both slow and fast waves, the fast ones will eventually win (hence the
term “dominant waves” for the γ2 waves of Shkadov and Sisoev [250]).

7.3.2 Noise-Driven Flows

The interaction between nonlinear waves in the evolution of noise-driven falling liq-
uid films has received considerable attention over the past few years. Central to this
quest has been the aim to describe through a coherent structure theory the dynamics
of the film and hence provide a systematic description of spatio-temporal disorder
or, equivalently, weak/dissipative turbulence as defined by Manneville [177, 189].
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Fig. 7.44 Spatio-temporal
diagram of a noise-driven
film flow. The final stage of
the simulation is shown in
Fig. 7.1. Parameter values are
Re= 6.07, β = 90° and
We= 76.4. The simulated
duration is 50 s and the
simulated spatial domain is
0.83 m. Bright (dark) regions
correspond to depressions
(elevations). Arrows labeled
(a) and (b) indicate a
repulsion event and a
coalescence event,
respectively

For example, for the conditions in Fig. 7.39 the final stage of the two-dimensional
evolution of a falling liquid film seems to be a fairly regular train of coherent
structures, each of which resembles an infinite-domain solitary pulse, or, equiva-
lently, a periodic wavetrain close to the solitary wave limit (further downstream
these structures suffer a transverse instability, which eventually gives rise to a three-
dimensional wave regime; some features of this regime will be explored in Chap. 8).
In the presence of random noise with sufficiently large amplitude, the dynamics be-
come more complicated, e.g., dynamic interaction with continuously varying sep-
aration seems to persist indefinitely. This interaction seems to be of the type that
makes neighboring coherent structures attract or repel each other continuously. Nev-
ertheless, one can still identify the generic solitary wave shape in what appears to
be a random interface; see for example Fig. 7.43(b). Solitary waves then become
elementary processes so that the dynamics of the film can be described as their su-
perposition.

An example of a computed noise-driven two-dimensional film flow is given in
Fig. 7.44. Inlet noise is simulated by the inlet boundary condition [46]

q(0, t)= 1

3

(
1+ F(t)

)
,

F (t)=A

M∑

m=1

cos

(
m

M
2πf�t − θm

)
,

(7.78)

where A is the noise amplitude and f� is a multiple of the cut-off frequency fc, i.e.,
f� = nf fc, with nf an integer. The phases θm are generated randomly in the range
[0,2π] using a generator of pseudo-random numbers with a uniform distribution
between zero and unity. This procedure ensures that the inlet noise does not contain
high frequency modes. The resulting noise is said to be “colored” to differentiate it
from “white” noise that covers all possible frequencies.
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Perturbations are introduced in time only and at the first node of the compu-
tational domain; the frequency content of the excitation is controlled by the time
step. High frequency perturbations may trigger spurious numerical instabilities at
the inlet by generating unrealistic gradients: a high frequency signal gives large
time derivatives which in turn result in large spatial gradients (space derivatives are
connected to time derivatives through the speed of the resulting wave). Such large
spatial gradients might not be resolved accurately if the space step is not sufficiently
small, because of the coarse sampling in the discretization of the computational do-
main, which in turn leads to numerical instabilities. Of course, this instability may
be damped further downstream by surface tension and viscous dispersion but not
when it is sufficiently strong. If there were no problem with numerical instabilities,
white noise would give the same results as colored noise precisely because the in-
stability is selective, i.e., at the inception region all disturbances with wavenumbers
above the cut-off one kc are damped (since the film behaves as a low frequency
amplifier—Sect. 7.1.2—high frequency-modes are damped in the inception region).
Similarly, with some very careful experiments in which we impose colored noise at
the inlet (to carefully filter out high frequencies), the result downstream would be
the same as that obtained in the presence of white noise.

After the linear inception region, nonlinear wavetrains undergo a series of sev-
eral coalescence events. Faster waves, having also larger amplitudes, catch up with
smaller ones and absorb them giving rise to waves of even larger amplitude. Fur-
ther downstream, the dynamics are dominated by trains of large-amplitude nearly-
solitary waves separated by portions of nearly flat films. These waves correspond
to the principal homoclinic orbits constructed in Sect. 7.2, having the shape of iso-
lated humps preceded by capillary ripples/radiation. They interact with each other
through their (exponentially decaying) tails. As mentioned earlier, the interaction
between neighboring coherent structures is either repulsive (see label a in the upper
diagram of Fig. 7.45) or attractive, giving rising to coalescence (label b) and hence
birth of even larger waves. This is a dynamic process with continuous coalescence
events, but the number of these events decreases downstream.

Dispersion plays a crucial role in the formation of coherent structures. Through
the corresponding nonlinearities, it enables the transfer of energy from the large
scales, where the instability mechanism pumps energy from the mean flow to the
perturbations, to the smaller scales where dissipation is triggered by surface ten-
sion. The simplest equation including “negative diffusion” (i.e., a diffusion process
with a negative diffusion coefficient thus concentrating energy in the small-scale
structures), associated here with the pumping of energy to the perturbations by iner-
tia effects, as well as surface tension effects on small scales and dispersion (whose
origin is viscosity), is the Kawahara equation (5.31).

Integration in time of the Kawahara equation with periodic boundary conditions
has revealed a transition from the turbulent-like regime that is typical of the KS
equation (7.63) to a regime dominated by localized coherent structures resembling
periodic trains of nearly solitary waves as the dispersion parameter increases (see
also Sect. 5.2.1). In the case of strong dispersion these coherent structures repel each
other, whereas, at moderate dispersion, bound states of steady humps separated by



274 7 Isothermal Case: Two-Dimensional Flow

Fig. 7.45 Absorption of a train of traveling waves by a solitary wave of larger amplitude. Param-
eter values are Re = 26, β = 8°, We = 35 and ν = 6.28 cS. After a periodic forcing of frequency
f = 2.5 Hz has been applied, a localized perturbation is introduced at the inlet followed by the
suppression of the forcing. The simulated duration is 12 s for a plate of 2.2 m length. Upper panel
is a spatio-temporal diagram. Dark (bright) regions correspond to elevations (depressions). Lower
left panel is a snapshot of the film thickness at t = 8 s. The absorption of a wave by a larger one is
illustrated in the lower left diagram

fixed distances have been found [87, 90, 144, 284, 286]. As we already demonstrated
in Sect. 7.2.1, the presence of bound states is connected with the behavior of the
corresponding homoclinic orbits in the neighborhood of the fixed point in the phase
space of the associated dynamical system.

As far as coherent structure theories are concerned, previous efforts include [15,
44, 45, 90], which, however, are either incomplete or which overlooked some serious
details and subtleties, which are crucial for a complete and rigorous description of
coherent structures interaction; these are resolved in the most recent studies in [87,
212, 284, 286]. Extensions to three-dimensional problems are given in [233–235,
283].
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Most coherent structure theories are based upon the assumption of weak inter-
action of two successive humps through their (weakly) overlapping tails. This type
of interaction can be described by the translational mode of the linearized operator
that accounts for the perturbations introduced by a solitary wave to its neighbors. On
the other hand, a key element of the approach developed by Chang and coworkers
(e.g., [44]) based on the Kapitza–Shkadov model is the presence of an additional
invariance that allows one to describe the process of mass exchange between neigh-
boring structures. This type of interaction is a “strong” one and can be observed
in Fig. 7.1: The nearly flat portions of the film separating each solitary pulse are
not of equal thicknesses; hence the solitary waves move on substrates of different
thicknesses. The presence of a continuous family of solitary wave solutions param-
eterized by the substrate thickness therefore introduces a second invariance to the
system, which is effectively the Goldstone mode.

We shall not describe the various coherent structure approaches in this mono-
graph. It should be emphasized, however, that the coherent structure theory for
falling films developed by Chang and coworkers was based on the Kapitza–Shkadov
model and as such it ignores the effect of viscous dispersion. Yet, as noted earlier,
several times, viscous dispersion modifies the shape of the oscillatory structure at the
front of solitary waves: it reduces the number and amplitude of radiation preceding
the humps and therefore modifies the interaction between successive waves. Correct
description of the radiation is crucial for an accurate prediction of the average sep-
aration distance between the coherent structures and hence of the stationary wave
selection in the spatio-temporal evolution of the film. As a consequence, a compre-
hensive and accurate description of the noise-driven dynamics of film flows based
on a coherent structure approach must account for viscous dispersion effects. This
calls for a revision of the theory by Chang and coworkers through use of the more
refined models developed in Chap. 6, such as the simplified second-order model
in (6.1), (6.79). The theory must also be corrected in view of our comment above
that previous studies overlooked some serious details. A decisive first effort in this
direction is the recent study by Pradas et al. [212] which scrutinized the effects of
viscous dispersion on coherent structures interaction and formation of bound states.



Chapter 8
Isothermal Case: Three-Dimensional Flow

In Chaps. 6 and 7 we focused on stationary two-dimensional periodic and solitary
waves and their dynamics. We now examine the three-dimensional wave dynamics.
Experiments show the development of three-dimensional wave patterns for moder-
ate Reynolds numbers resulting from the instability of two-dimensional waves [3,
44, 170]. Since two-dimensional waves result from the primary instability of the
Nusselt flat film solution, the transition from two-dimensional to three-dimensional
waves is a type of a secondary instability.1 The final state of wave evolution on
a falling film corresponds to a weakly disordered dynamics where the interface is
randomly covered by three-dimensional coherent structures, which are stable and
robust and continuously interact with each other as quasi-particles, like their two-
dimensional counterparts in the two-dimensional wave regime (see also discussion
in the introduction of Chap. 7). These three-dimensional coherent structures resem-
ble three-dimensional solitary pulses. Therefore, like their two-dimensional coun-
terparts in the two-dimensional wave regime, three-dimensional pulses are also ele-
mentary processes so that the three-dimensional wave dynamics can be described as
their superposition. This stage of the evolution is often referred to as interfacial tur-
bulence or soliton gas [264], and much like the weakly disordered two-dimensional
dynamics of the film, it is also an example of weak/dissipative turbulence.

Figure 8.1 is a replica of typical three-dimensional wave patterns observed on a
falling film [3]. The rather rich phenomena of three-dimensional wave dynamics in
falling films are still an open subject of research. Here we review the main known
experimental results on the three-dimensional regime and explore it theoretically
and numerically within the framework of the low-dimensional averaging approach
developed in Chap. 6.

1Two-dimensional waves resulting from the primary instability may also undergo a spanwise-
independent instability, a streamwise modulation leading to a secondary two-dimensional wave-
train. This instability is also referred to as a “two-dimensional secondary” instability. An example
is provided in Chap. 7, Sect. 7.3.1, Fig. 7.43.

S. Kalliadasis et al., Falling Liquid Films, Applied Mathematical Sciences 176,
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Fig. 8.1 Three-dimensional wave patterns obtained experimentally (water–ethanol solution, incli-
nation angle β = 75°). Reprinted from Wave Flow of Liquid Films, S.V. Alekseenko, V.E. Nako-
ryakov and B.G. Pokusaev, Copyright 1994, with permission from Begell House, Inc.

8.1 Phenomena

Experimental results on three-dimensional waves in falling films can be found
in [1, 3, 170, 192, 193, 203]. The majority of these studies focused on vertical or
near-vertical configurations. In contrast, Gollub and collaborators examined exper-
imentally the three-dimensional dynamics of film flows for a moderately inclined
plate [37, 167–170]. This configuration enabled them to consider the wave dynam-
ics relatively close to the onset of the instability, Rec = 5

6 Ct, where the sequence of
the primary instability of the Nusselt flat film leading to a primary saturated wave-
train followed by secondary instabilities of the primary wavetrain, is more easily
identified than in the vertical case for which the flow is always unstable (Rec = 0)
and therefore, by definition, in the experiments one is already far from onset. The
picture by Gollub’s group of the transition from a two-dimensional wave regime
to a three-dimensional one has been recently completed by Nosoko and collabora-
tors for a vertical wall [192]. Noteworthy is that Gollub and collaborators imposed
spanwise-uniform perturbations of the inlet flow rate, whereas Nosoko and collab-
orators controlled the development of the three-dimensional waves with the help of
an array of needles.

Based on these experimental observations, the different secondary instabilities
leading to seemingly irregular patterns are schematically summarized in Fig. 8.2.
Four stages, each corresponding to a different region, can be broadly distinguished
by following the flow along the inclined plate.

The inception region is the domain close to the inlet where the primary linear
instability of the flat film develops in space. Squire’s theorem stipulates that the
most dangerous (fastest growing) perturbations are spanwise-independent, so that
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Fig. 8.2 Schematic description of the spatial evolution of film flows

the observed primary waves are two-dimensional [303] (see also Sect. 3.5.1). The
amplitude of the waves next saturates and their shape remains practically unchanged
over distances corresponding to a few wavelengths (region II). Subsequent events
depend on the forcing frequency.

At large frequencies but below the cut-off frequency (Fig. 8.2(a)—after all, above
the cut-off frequency the system is linearly stable), the observed primary waves are
slow (here, as in previous chapters, slow and fast waves refer to waves propagat-
ing at rates slower or faster than the linear waves) and are characterized by wide
bumpy crests and deep thin troughs. They belong to the γ1 family following the
terminology introduced in [48, 50] (see also Sects. 5.3.2, 7.2.3 and 7.2.4). Two dif-
ferent scenarios are possible for the subsequent evolution and, most interestingly,
they are strongly reminiscent of what happens in boundary layers [244]. The first
one, referred to as a synchronous instability, is characterized by in-phase deforma-
tion of neighboring troughs in the spanwise direction, whereas the crests remain—at
least for a while—undisturbed (see Fig. 8.3). The second one, less commonly ob-
served, is characterized by a phase shift of π between two successive crests. This
leads to herringbone patterns, characteristic of a spanwise modulation combined
with a streamwise subharmonic instability, corresponding to a resonance between
the frequency f of the two-dimensional traveling waves and its subharmonic f/2
(see Fig. 8.3). This instability triggers a doubling of the wavelength of the primary
waves. Herringbone patterns resemble checkerboards, which justifies the alternative
term “checkerboard patterns” used sometimes in falling film studies. Both modes,
the synchronous instability and herringbone pattern instability, are reminiscent of



280 8 Isothermal Case: Three-Dimensional Flow

Fig. 8.3 (a) Synchronous instability; (b) herringbone pattern. From Émery and Brosse [91]. Cour-
tesy of Prof. P. Manneville

Fig. 8.4 (a) Quasi-two-dimensional solitary wave; (b) spanwise instability of a quasi-two-dimen-
sional solitary wave. From Émery and Brosse [91]. Courtesy of Prof. P. Manneville

aligned and staggered Λ-vortices developing in transitional boundary layers, and
they are analogous to the type-K and type-H transitions, respectively [113]. At high
enough forcing frequency, the flow becomes disordered before the two-dimensional
solitary waves have a chance to appear because three-dimensional instabilities are
stronger than two-dimensional, which explains the absence of region III in the cor-
responding picture (Fig. 8.2(a)).

At low frequencies (Fig. 8.2(b)) saturated waves triggered by the flat film pri-
mary instability experience a secondary instability which eventually leads to large-
amplitude two-dimensional solitary waves in the form of fast humps preceded by
capillary ripples (region III) (see Fig. 7.43 in Chap. 7). Such waves belong to the
γ2 family, following the terminology introduced in [48, 50] (see also Sects. 5.3.2
and 7.2.3). They are generally unstable to transverse perturbations, which leads to
the last stage of secondary three-dimensional instabilities (region IV, see Fig. 8.4).
For films of water on a vertical wall, the spanwise modulations of the γ2 waves
seem to saturate for Re below approximately 40 [75]. By increasing Re, the waves
tend to break into horseshoe-like solitary waves (their shape strongly resembles a
horseshoe) having pointed fronts and long oblique legs. For the three-dimensional
Kawahara equation, such waves were examined in [233–235] and for the three-
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dimensional Kapitza–Shkadov model in [76] (the model will be discussed shortly).
These waves are reminiscent of the Λ vortices in boundary layers (e.g., [2]; hence
the christening “Λ solitons” in [76]). At even higher values of Re the flow be-
comes increasingly disorganized (cf. Fig. 8.1), but one can still recognize three-
dimensional pulses in what appears to be a randomly disturbed surface.

Finally, at very low forcing frequencies, saturated γ1 waves (region II) do not
show up. Inlet forcing then directly generates solitary-like wavetrains of the γ2 fam-
ily.

8.2 Modeling of Three-Dimensional Film Flows

We now turn to the three-dimensional formulation of the problem. the aim is to ob-
tain equations in the streamwise (x) and spanwise (z) coordinates by averaging the
governing equations over the cross-stream coordinate y. This is the approach fol-
lowed in [238] and is an extension of the averaging procedure developed in Chap. 6
for two-dimensional flows. Therefore, it is based on the long-wave approximation,
which ensures slow time and space modulations of the Nusselt flat film solution,
formally expressed as ∂t , ∂x, ∂z =O(ε) with ε� 1 the gradient expansion parame-
ter.

The first step in reducing the Navier–Stokes equations and associated wall and
free-surface boundary conditions to simpler equations consists of the elimination of
the pressure in the Navier–Stokes equations truncated at O(ε3). This leads to the
three-dimensional second-order boundary layer equations, developed in Sect. 4.1
and rewritten below for purposes of clarity:

3εRe
[
∂tu+ ∂x

(
u2)+ ∂y(uv)+ ∂z(uw)

]

= 1+ ∂yyu− εCt∂xh+ ε2[2∂xxu+ ∂zzu+ ∂xzw− ∂x(∂yv|h)
]

+ ε3We(∂xxxh+ ∂xzzh), (8.1a)

3εRe
[
∂tw+ ∂x(uw)+ ∂y(vw)+ ∂z

(
w2)]

= ∂yyw− εCt∂zh+ ε2[2∂zzw+ ∂xxw+ ∂xzu− ∂z(∂yv|h)
]

+ ε3We(∂xxzh+ ∂zzzh), (8.1b)

∂xu+ ∂yv+ ∂zw = 0, (8.1c)

together with the no-slip and no-penetration condition at the wall,

u= v =w = 0 at y = 0, (8.1d)

and the projections of the tangential stress balance at the free surface along the x

and z directions, respectively:

∂yu = ε2[∂zh(∂zu+ ∂xw)+ 2∂xh(2∂xu+ ∂zw)− ∂xv
]

at y = h, (8.1e)
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∂yw = ε2[∂xh(∂zu+ ∂xw)+ 2∂zh(2∂zw+ ∂xu)− ∂zv
]

at y = h. (8.1f)

These equations are invariant under the exchange {u↔ w, x↔ z}, except for the
gravity term, equal to unity, in (8.1a).

The Nusselt flat film solution is a parallel flow with no spanwise component, i.e.,
w = 0. A first approach to the problem would therefore be to consider w of O(ε),
assuming that spanwise flows are triggered by weak three-dimensional modulations
of two-dimensional waves, thus simplifying the analysis of the three-dimensional
flow dynamics [227]. However, we assume w =O(1) and hence the velocity com-
ponents in the x and z directions are treated equally.

For simplicity and as done in the derivation of the two-dimensional models in
Chap. 6, we shall treat Re as an O(1) parameter whereas We must be large, corre-
sponding to the strong surface tension limit, more specifically, We=O(ε−2). These
assumptions can be relaxed but the final equations remain the same, as with the
derivation of the two-dimensional models (Sect. 6.4). Truncated at first order, which
is when second-order viscous terms are suppressed, system (8.1a)–(8.1f) reduces
to the three-dimensional first-order boundary layer equations. Further, by assum-
ing self-similar velocity profiles for the velocity components u and w, substituting
these profiles into the x and z components of the momentum equation of the three-
dimensional second-order boundary layer equations and averaging these equations
across y, i.e., extending effectively the procedure in Sect. 6.2.1 for the Kapitza–
Shkadov model for two-dimensional flows, leads to the formulation of the Kapitza–
Shkadov model for three-dimensional flows [71]. A gradient expansion of the three-
dimensional Kapitza–Shkadov model leads to the three-dimensional BE for a verti-
cal plane (Sect. 5.1). Finally, with appropriate orders of magnitude assignments for
the different parameters, a weakly nonlinear expansion of the three-dimensional BE
leads to the three-dimensional Kawahara equation (Sect. 5.2.2; see also [233–235])
or the three-dimensional KS equation.

Several numerical studies of the three-dimensional dynamics of film flows were
based on these reduced equations [44, 52, 71, 74, 127]. These studies focused on
the three-dimensional instability of two-dimensional periodic waves or numerical
experiments for the fully three-dimensional problem. Recent theoretical and numer-
ical efforts by use of the three-dimensional Kapitza–Shkadov model focused on the
stability of well-separated (isolated) two-dimensional pulses to three-dimensional
disturbances, the mechanism by which two-dimensional pulses are destabilized,
leading to the formation of three-dimensional pulses, construction of the latter and
their stability to three-dimensional disturbances [75, 76]. One of the main findings
in [75, 76] was that three-dimensional solitary pulses result from the instability
of well-separated two-dimensional solitary pulses. However, all the above studies
were generally limited to the vertical case, Ct = 0—with the exception of a dis-
cussion in [75] for small inclination angles by using the Nepomnyashchy model
equation [188] (Sect. 5.2).

Three-dimensional numerical computations and stability analyses for two-
dimensional periodic waves based on the Kapitza–Shkadov model or the first-
order boundary layer equations revealed only a subharmonic instability leading
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to checkerboard/herringbone patterns [52, 282]. However, Liu et al. [170] clearly
observed the widespread presence of the three-dimensional synchronous secondary
instability of the saturated slow γ1 waves. The subharmonic instability leading to
checkerboard/herringbone patterns was observed in a relatively narrow range of
parameters. Synchronous instability is therefore not satisfactorily captured by first-
order equations.

Here, the stability characteristics of γ1 slow periodic waves are examined in de-
tail by extending some of the models developed in Chap. 6 to three dimensions while
the stability of well-separated fast solitary pulses by using the three-dimensional
models developed in this monograph (i.e., extending the studies in [75, 76]), is left
to a feature study. An important question that is addressed here is the origin of the
synchronous in-phase instability reported by Liu et al. [170].

To account for both second-order inertia and viscous effects the weighted-
residual approach at second order detailed in Sect. 6.7 is extended appropriately
to three-dimensional flows as was done in [238]. Six fields are needed for the ve-
locity components at second order: both the streamwise and spanwise flow rates,
q‖ =

∫ h
0 udy and q⊥ =

∫ h
0 wdy, respectively, and four corrections, s1, s2, r1 and

r2, corresponding to the polynomial test functions F1 and F2 and accounting for the
deviations of the velocity profiles from their zeroth-order parabolic shapes, i.e., the
polynomial F0 (for details see Appendix E.2).

The boundary layer equations are then averaged using the Galerkin method by
formulating residuals 〈E‖,Fi〉 and 〈E⊥,Fi〉 where 〈f,g〉 = ∫ h0 fg dy, and E‖ and
E⊥ refer to the streamwise (8.1a) and spanwise (8.1b) momentum balances, respec-
tively. These residuals yield a system of six evolution equations for h, q‖, s1, s2, q⊥,
r1 and r2, completed with the mass balance obtained through integration of (8.1c)
across the layer depth, ∂th + ∂xq‖ + ∂zq⊥ = 0. This system is referred to as the
full second-order model for three-dimensional flows and is given explicitly in Ap-
pendix E.2 in terms of the Shkadov scaling.

The regularization procedure developed in Sect. 6.9.2 is extended here to three
dimensions with the aim of reducing the three-dimensional full second-order model
to only three equations for h, q‖ and q⊥. We shall demonstrate that the three-
dimensional regularized model does capture the synchronous patterns observed by
Liu et al. The same is also true for the full second-order model, but it is more com-
plicated and its numerical implementation is much more involved. The simplified
model does not capture the synchronous instability but it does capture the herring-
bone one, which is also captured by the regularized model. Hence, the regularized
model serves as a useful prototype for the mathematical and numerical scrutiny of
three-dimensional effects on film flows.

First-order expressions of the fields s1, s2, r1 and r2 are readily obtained from
the truncation at O(ε) of the residuals corresponding to the weights F1 and F2.
Substitution of these expressions into the first residuals, R0,‖ = 〈E‖,F0〉 and

R0,⊥ = 〈E⊥,F0〉, produces second-order inertia terms, formally denoted as R(2),δ
0,‖

and R(2),δ
0,⊥ . These terms contain nonlinearities that may lead to nonphysical singu-

larities and hence are removed by adjusting algebraic preconditioners, as was done
in the two-dimensional case in Sect. 6.9.2. Residuals R0,‖ and R0,⊥ are then sought
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in the form G−1
‖ F‖ and G−1

⊥ F⊥ where F‖ and F⊥ correspond to the expressions of
the residuals R0,‖ and R0,⊥ when a parabolic velocity profile for the components u
and w is assumed; i.e., when the corrections si and ri are neglected. Isolating inertia
terms, one thus sets

G‖
(
εR(1),δ

0,‖ + ε2R(2),δ
0,‖

)= εR(1),δ
0,‖ and

G⊥
(
εR(1),δ

0,⊥ + ε2R(2),δ
0,⊥

)= εR(1),δ
0,⊥ ,

(8.2)

where superscripts refer to first-order and second-order inertia terms. Zeroth-order
expressions of the flow rates, q‖ = h3/3 + O(ε) and q⊥ = O(ε), i.e., the Nusselt
flat film flow, are next invoked to reduce the degree of nonlinearities of the regular-
ization factors G‖ and G⊥. Consequently, from the inertia terms R(2),δ

0,⊥ induced by
deviations of the spanwise velocity field from the parabolic profile appearing asymp-
totically at order O(ε3), one merely gets, G⊥ = 1+O(ε2). Similarly, the asymptotic
expression of R(2),δ

0,‖ corresponds exactly to the one obtained for a two-dimensional
flow. Hence,

G⊥ ≡ 1 and G‖ ≡
(

1− 3εRe

70
q‖∂xh

)−1

, (8.3)

where G‖ is identical to the expression (6.91).
Introducing now the Shkadov scaling, {3εRe → δ, εCt → ζ , ε3We → 1}, the

three-dimensional regularized model finally reads

∂th = −∂xq‖ − ∂zq⊥, (8.4a)

δ∂tq‖ = δI2D‖ + G‖
{

5

6
h− 5

2

q‖
h2
+ δI3D‖ + η

[
D2D‖ +D3D‖

]+ 5

6
h∂xP

}
, (8.4b)

δ∂tq⊥ = δI2D⊥ − 5

2

q⊥
h2

+ δI3D⊥ + η
(
D2D⊥ +D3D⊥

)+ 5

6
h∂zP, (8.4c)

where the terms I and D originate from inertia and viscous dispersion, and P =
ζ(1 − h) + (∂xx + ∂zz)h is the pressure distribution. In (8.4b), we have also sep-
arated terms already present in the two-dimensional model (superscript 2D) from
those arising from the spanwise dependence (superscript 3D). Subscripts ‖ and ⊥
indicate terms that are symmetric under the exchange {q‖ ↔ q⊥, x↔ z}. The three
equations, (8.4a), (8.4b) and (8.4c), correspond to the mass conservation and aver-
aged momentum balances in the directions x and z, respectively. Viscous drag is
represented by the terms 5

2q‖/h
2 in (8.4b) and 5

2q⊥/h
2 in (8.4c). As with system

(8.1a)–(8.1c), the gravity acceleration contributes only to the streamwise momen-
tum balance through the term 5

6h in (8.4b). The full three-dimensional second-order
regularized model in (8.4a)–(8.4c) is given explicitly in Appendix E.3.

The regularized model (8.4a)–(8.4c) is fully consistent with the BE long wave
expansion up to second order given in Sect. 5.1.2, while the three-dimensional sim-
plified model (corresponding to the averaging of the momentum balance equations
in the cross-stream direction assuming both parabolic velocity profiles and weights)
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is not, much like its two-dimensional counterpart (see Sect. 6.8.2). The latter can
be recovered from the former by replacing the factor G‖ with unity, or, equivalently,
by assuming the order of si, ri to be higher than ε, so that their derivatives can be
neglected in the full second-order model (E.6a)–(E.6c) given in Appendix E.2.

8.3 Floquet Analysis: Three-Dimensional Stability of γ1 Waves

We are interested in the stability of two-dimensional periodic waves to trans-
verse perturbations. The aim is to understand the experimental observations by
Liu et al. [170]. We note that the two main types of instabilities observed for
small inclination angles in [170], namely a synchronous transverse modulation
and a herringbone-pattern instability, are connected with the instability of two-
dimensional periodic waves and not well-separated (isolated) two-dimensional soli-
tary pulses. As a matter of fact, by imposing a periodic forcing at the inlet, Liu et
al. observed two-dimensional periodic waves with the same periodicity in time, at
least prior to the onset of secondary instabilities. Integrating the two-dimensional
mass balance, ∂th+ ∂xq = 0, over a period shows that the temporal mean flow rate,
〈q〉t = τ−1

∫ τ
0 q dt , with τ being the period, is constant at each location on the plate,

at least prior to secondary instabilities, and is therefore equal to its value 1/3 at the
inlet (see also Sect. 5.3.1). Nonlinear saturation of the spatial growth of the inlet
signal yields waves that are periodic in time and remain periodic in space over a
long distance. These waves are nearly stationary in a frame of reference moving at
a constant speed c and approach the periodic traveling wave solutions considered in
Chaps. 5 and 7.

Experimentally obtained wave profiles indicate that the traveling waves selected
by the linear inception are of γ1 type (see Sect. 7.3.1 and Fig. 7.39), i.e., slow waves
with deep troughs and bumped crests. Our effort is accordingly concentrated on the
stability analysis of the γ1 traveling waves. These waves have been computed us-
ing AUTO-07P [79] by continuation, starting from infinitesimal sinusoidal waves
at linear threshold and increasing the period (see Appendix F.2). The constant flux
condition 〈q〉 = 1/3 was enforced by adjusting the flow rate in the moving frame,
q0 =

∫ h
0 (u− c) dy (since traveling waves are stationary in their moving frame, spa-

tial average over a wavelength and temporal average over a period are identical, and
it is not necessary to invoke the subscripts used in Sect. 5.3.1 to identify the variable
used in the definition of the average when traveling waves are considered).

The stability of traveling wave solutions can be analyzed within the framework
of Floquet theory [54, 93]. In the moving frame ξ = x− ct , the system of equations
reduces to a set of ordinary differential equations. Each field X, e.g., the film thick-
ness h, the flow rate q or the amplitudes s1, s2 of the corrections to the parabolic
velocity, is expanded in the moving frame as

X(ξ, z, t)=X0(ξ)+ εX̃(ξ, z, t), (8.5)

where ε � 1, X0 is the value of the field for the base two-dimensional traveling
wave and X̃ is the perturbation. The equations to be solved for the perturbations can
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be written as

∂t X̃= L(X0; ∂ξ , ∂z)X̃, (8.6)

where X̃ and X are the vectors formed by the sets of perturbations X̃ and solution
fields X. The linear matrix-differential operator L is periodic in ξ with the periodic-
ity of the traveling wave solution X0(ξ + 2π/kx, z, t)= X0(ξ, z, t), where kx is its
wavenumber.

Floquet theory of ordinary differential equations with a periodic operator sug-
gests the inclusion of the periodicity of the base state X0 into the normal mode
projection of the perturbation X̃, which is then expanded as

X̃(ξ, z, t)≡
∑

ϕ,kz

X̃ϕ,kz (ξ) exp
[
i(ϕkxξ + kzz−ωt)

]
, (8.7)

where X̃ϕ,kz is periodic in ξ with period 2π/kx , kx is the wavenumber of the basic
two-dimensional stationary wave, kz is the wavenumber of the perturbation in the
transverse direction and ω is the complex angular frequency. The “detuning param-
eter” ϕ is the ratio of the streamwise wavenumber of the perturbation to that of the
base state, hence ϕ ∈ [0,1]. ϕ ∈Q signals a subharmonic mode, especially ϕ = 1/2,
and ϕ /∈Q an incommensurate modulated mode.

The linearized set of equations can then be formally written as

ωX̃ϕ,kz = Lϕ,kz (X0, ∂ξ ; c, q0, δ, ζ, η,ϕ, kz)X̃ϕ,kz , (8.8)

where Lϕ,kz is a linear operator. Equation (8.8) constitutes an eigenvalue problem
for ω with X̃ϕ,kz the corresponding eigenvector. The maximum imaginary part of ω,
denoted by ωM

i , corresponding to the fastest growing temporal perturbation, is of
interest from the experimental point of view.

The parameter space ϕ × kz can be reduced by invoking two symmetries: (i)
the reflection of the waves in the spanwise direction, which allows us to consider
only positive kz; (ii) the nature of the base equations, which makes (8.8) invariant
under the transformation, (ϕ, kz, ω, X̃ϕ,kz )→ (−ϕ, −kz, ω�, X̃�

ϕ,kz
), with the star

denoting complex conjugation. Thus, the parameter space ϕ × kz can be limited
to [0, 1

2 ] × [0,∞]. For convenience, the eigenvalue problem (8.8) can be solved in
Fourier space. For this purpose up to 256 real modes are enough to represent the
two-dimensional waves and up to 128 complex modes to represent the perturbation
(limited to 32 for the full second-order model owing to its complexity). The two-
dimensional waves are computed with AUTO-07P, but the eigenvalue problem is
solved in Fourier space where both the basic solution and the perturbation are de-
composed into a series of Fourier modes. Convergence of the discretized solution in
Fourier space to the solution of (8.8) has been confirmed by doubling the number of
modes.

Liu et al. [170] considered a falling film of a glycerol–water mixture (ρ =
1070 kg m−3, ν = 2.3 × 10−6 m2 s−1 and σ = 67 × 10−3 N m−1), with β = 6.4°
and Re = 56. They measured the wavelength of the two-dimensional base state λx
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Fig. 8.5 Streamwise wavelengths λx of two-dimensional periodic waves (a) and spanwise wave-
lengths λz (b) of the most amplified three-dimensional perturbations versus forcing frequency f ,
with β = 6.4°, Re = 56 and Γ = 2002. Open squares correspond to the experimental findings
[170]. Solid, dashed and dotted lines correspond to the full second-order model (E.6a)–(E.6c), the
regularized model (8.4a)–(8.4c) and the simplified model, respectively. Notice that in panel (a),
solid and dashed lines are superimposed

as well as the wavelength of the transverse modulations λz as a function of frequency
of the periodic forcing. Results of the Floquet analysis using the full second-order,
regularized and simplified models are presented in Fig. 8.5 by use of dimensional
units and are contrasted with experiments. The agreement with experiments turns
out to be better when streamwise and spanwise velocities are assumed to be of the
same order, as done here, than when the spanwise velocity field w is assumed to
be of O(ε). The computed wavelengths λx of γ1 waves are in good agreement with
experimental findings. As with the results reported by Liu et al., the computations
also indicate relatively small variations of λz with frequency. The transverse wave-
lengths of the fastest growing perturbations for the regularized and the full second-
order models are close to each other as f increases, whereas the Floquet analysis
of the simplified model indicates larger wavelengths in the transverse direction as f
increases.

These observations emphasize the important role played by the second-order in-
ertia terms—induced by the deviations of the velocity profile from its parabolic
shape—in the mechanism of the three-dimensional secondary instability. Yet,
at low frequencies, the fastest growing perturbation is spanwise-uniform (two-
dimensional, λz tends to infinity) while the experimental findings suggest a three-
dimensional instability with a finite wavelength λz in the transverse direction. An-
other difference between the results of the Floquet analysis and the experimental
findings is that the detuning parameter for the most amplified perturbation (not
shown) systematically corresponds to a subharmonic secondary instability (ϕ = 1

2 ),
whereas Liu et al. reported a synchronous instability (ϕ ≈ 0). These differences may
be explained by (i) the relatively weak selection mechanism of the evolving wave
pattern by the secondary instability, with the growth rate being weakly sensitive to
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Fig. 8.6 Stability of the γ1 waves to three-dimensional disturbances as function of the Reynolds
number Re and the frequency f for β = 4° and Γ = 2340 [170, Fig. 6]. (a) Experimental stability
chart. Stability zones are bounded by thick lines: “2D” where no three-dimensional instability was
observed, “Sub” for three-dimensional subharmonic instability, and “Syn” for three-dimensional
synchronous instability. The neutral stability curve is represented by a thin solid line (Orr–Som-
merfeld analysis). Squares refer to parameter sets in Table 8.1. (b) Detuning parameter, where the
synchronous (Syn) and subharmonic (Sub) instability regions correspond to ϕ = 0 and 0.5, respec-
tively. (c) Wavenumber kz of the fastest growing transverse modulation (in cm−1). (d) Enlarge-
ment of panel (c): “SH” subharmonic two-dimensional instability (ϕ = 1

2 ), “IM” incommensurate
modulated two-dimensional mode (0 < ϕ < 1

2 ). Dashed lines indicate the limit (4 Hz) of the com-
putations in panels (b, c). The results presented in panels (b)–(d) have been obtained using the full
second-order model (6.1), (6.78)

variations in ϕ and kz; (ii) the simultaneous saturation of the two-dimensional base
traveling waves and growth of the three-dimensional instability, an effect that is not
taken into account by our Floquet analysis, which presumes that two-dimensional
waves saturate before undergoing an instability.



8.3 Floquet Analysis: Three-Dimensional Stability of γ1 Waves 289

Figure 8.6(a) summarizes the experimental findings by Liu et al. in the Re× f -
plane for the glycerol-water mixture of Fig. 8.5 and with β = 4°. The stability zones
are bounded by thick solid lines. In the “2D” region no three-dimensional instability
was observed: there are γ1 waves followed by a two-dimensional instability leading
to γ2 waves. The regions “Sub” and “Syn” correspond to three-dimensional subhar-
monic and three-dimensional synchronous instabilities, respectively. Corresponding
results for the stability of γ1 waves are presented in Figs. 8.6(b–d) obtained from
the full second-order model. The results for the solutions to the regularized and sim-
plified models are very similar to those obtained with the full second-order model
and thus are not shown. The detuning parameter (Fig. 8.6(b)) and the spanwise
wavenumber (Fig. 8.6(c, d)) of the fastest growing perturbation have been com-
puted with a Reynolds number step of 1 and a frequency step of 1 Hz (the lowest
frequency considered is 4 Hz owing to the large number of modes necessary to rep-
resent the solution). It appears that, for a given frequency, kz decreases steadily as
Re is lowered and goes to zero in a region close to the neutral stability curve (see
Fig. 8.6(d)).

On the other hand, for a fixed Reynolds number lowering the frequency induces
a rapid decrease of kz in a small frequency interval corresponding to the boundary
separating two- and three-dimensional secondary instabilities. This agrees well with
the results of Liu et al., who reported two-dimensional flows rather close to the
threshold of the primary instability.2 In this small region, the γ1 waves undergo a
subharmonic two-dimensional instability (ϕ = 1

2 ). At low frequency and moderate
Reynolds number, the instability is also found to be two-dimensional (kz = 0) but
corresponds to an incommensurate mode (ϕ ∈ ]0, 1

2 [). This provides an indication
that a frontier between two-dimensional and three-dimensional flows actually exists
and is not just an experimental artifact due to finite-size effects. At low frequency
and moderate Reynolds number, the Floquet stability analysis of γ1 waves predicts a
two-dimensional region wider than reported in experiments. This discrepancy may
arise from the limited length of the experimental plane, from the level of ambient
noise in the experiments or because γ2 waves are observed (γ2 waves are likely to
develop in this region of the parameter plane in place of γ1 waves).

It should be emphasized at this point that γ1 waves are in fact unstable to
both two- and three-dimensional disturbances (and in fact in all cases we found at
least one unstable mode for purely two-dimensional disturbances and purely three-
dimensional ones). In some cases, the growth rate of two-dimensional disturbances
can be larger than the growth rate of three-dimensional ones and the instability
will be two-dimensional instead of three-dimensional (this happens in Fig. 8.6 at
small frequencies). The finding that γ1 waves are unstable to both two- and three-
dimensional disturbances is consistent with the experimental observations by Liu et
al. They never observed γ1 waves over all the plane. Beyond the inception region

2The experimental boundary separating two- and three-dimensional secondary instabilities is the
bottom solid line in Fig. 8.6(a); it does not correspond exactly to the boundary found numerically
(this is the accumulation of the different kz curves in Fig. 8.6(c) as kz → 0). This boundary has not
been resolved very accurately due to the relatively coarse f step of 1 Hz.
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Table 8.1 Dimensionless wavenumber k, phase speed c and averaged thickness 〈h〉 of the com-
puted γ1 two-dimensional traveling waves corresponding to the experimental conditions in [170].
The constant mean flow rate condition 〈q〉 = 1/3 was enforced. The control parameters are the
Reynolds number Re, the inclination β , the Kapitza number Γ and the forcing frequency f

Set Re β (deg) Γ f (Hz) k c 〈h〉

1 40.0 4.0 2340 13 1.565 0.824 0.987

2 60.0 4.0 2340 13 1.494 0.689 0.970

3 42.7 4.0 2340 7 0.953 0.703 0.975

4 48.0 6.4 2002 10 0.980 0.628 0.965

and the formation of a primary γ1 wavetrain, this train always undergoes a secondary
instability, which could lead to γ2 waves or three-dimensional negative waves (later
referred to also as “depressions”), which subsequently reorganize themselves into
three-dimensional horseshoe waves. Which types of waves, γ2 or three-dimensional
negative, emerge from γ1 waves depends on the distance from the instability thresh-
old: Close to the threshold, γ2 waves are born from γ1 ones. Somewhat far from
the threshold, three-dimensional negative waves are observed, which eventually re-
organize themselves into horseshoe waves. Of course we need forcing (as without
forcing, γ1 waves are not even observed) and noise: Without noise the instability
of γ1 waves is not excited, as first noted in Sect. 7.3.1 (see also Fig. 7.43). In fact,
as was pointed out there, this does not mean that γ1 waves are stable; rather, they
behave more as “metastable”-like states. In addition to the absence of noise, there
is one more case where γ1 waves could be observed all along the plane: Very close
to the instability threshold and with sufficiently strong viscous dispersion, γ1 waves
could be stable. But this corresponds to more like an “academic” possibility. In
practice, being very close to the threshold would imply that the wave amplitude
is so small that it is practically impossible to detect any waves (as in some of the
experiments by Kapitza, in fact).

As already mentioned, the computations predict an overwhelming presence of
the subharmonic scenario (ϕ = 1

2 ) whereas Liu et al. observed it only close to the
neutral stability curve at large frequencies and moderate Reynolds numbers. In fact,
our Floquet analysis predicts a region of synchronous three-dimensional instabil-
ity at large Reynolds numbers, thus in agreement with experimental findings, only
when the regularized model is employed (not shown). Figure 8.7 shows the isocon-
tours of the growth rate ωi of the fastest growing perturbation in the plane ϕ × kz
for the three models, corresponding to set 2 of Table 8.1. The full second-order and
the regularized models agree well with each other for the selection of the fastest
growing spanwise wavenumber, whereas the simplified model predicts longer span-
wise wavelengths, a difference that is already noticeable in Fig. 8.5(b) (for suffi-
ciently large f , more specifically f � 11 Hz in Fig. 8.5(b); f = 13 Hz in Fig. 8.7,
but the values of β and Re for the two figures are similar). Moreover, Figs. 8.7(a),
and 8.7(b) show that ωi varies very little with the detuning parameter ϕ. Indeed, for
the full second-order and regularized models, the growth rates for ϕ = 0 and ϕ = 1

2
are close to each other so that the instability does not distinguish between them. On
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Fig. 8.7 Isocontours of maximum temporal growth rate in s−1 as function of the detuning param-
eter ϕ and the transverse wavenumber kz in cm−1, computed with the different models for set 2
(Table 8.1)

Fig. 8.8 Same caption as for
Fig. 8.7 with parameter set 3
(Table 8.1)

the contrary, the simplified model is more selective (see Fig. 8.7(c)) and clearly pre-
dicts a subharmonic instability. This result points out again the subtle role played by
the second-order inertia terms included in the regularized model in the process of
pattern selection. Figure 8.8 presents isocontours of ωi in the ϕ×kz-plane for the pa-
rameter set 3 of Table 8.1. Results obtained with the full second-order model are not
shown since they are too close to those corresponding to the regularized model. It is
clear that the detuning parameter does not significantly affect the growth rate and the
Floquet stability analysis again does not make a distinction between a synchronous
or a subharmonic instability. However, by comparing Fig. 8.8(a) to Fig. 8.8(b), one
can see that the growth rate of the fastest growing perturbations of the γ1 waves
is again more sensitive to changes in the detuning parameter ϕ for the simplified
model than for the regularized one.

Finally, let us note that the comparison between results from the Floquet analy-
sis and the experiments is based on three assumptions. First, the γ1 waves emerge
from the primary instability. Second, a broadband white noise is assumed. Third, γ1
waves are assumed to saturate before the onset of the three-dimensional instability.
As indicated by Liu et al. the inlet forcing signal induced by the distributor has time-
independent geometric irregularities which preferentially trigger in-phase modula-
tions of the evolving three-dimensional patterns. Therefore, experimental noise con-
tains a larger part of in-phase perturbations than out-of-phase ones, which in turn
may trigger the synchronous instability easier than the subharmonic mode, given
that they have growth rates close to each other. In fact, Liu et al. were compelled to
apply controlled perturbations to subharmonic instabilities. It is precisely because
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inlet noise may contain significant spanwise perturbations that three-dimensional
instabilities may arise before the saturation of γ1 waves has a chance to develop.
Such a sensitivity to changes in inlet conditions can only be checked by numerical
simulations of the models in time and space.

8.4 Simulations of Three-Dimensional Flows

The Floquet analysis predicts that the subharmonic scenario is predominant, which
contradicts experimental observations. This discrepancy has been attributed to the
inability of the secondary instability to discriminate well between a subharmonic
instability and a synchronous one, since the maximum growth rate is nearly the
same over the whole range 0 ≤ ϕ ≤ 1/2 of the detuning parameter. This property
makes the three-dimensional instability strongly dependent on the initial conditions,
and thus prevents one to relate unequivocally the results of the Floquet analysis to
the experimental findings.

We therefore turn to spatio-temporal simulations of the three-dimensional dy-
namics promoted by an inlet forcing to recover the experimental results by Liu et
al. In this section, we discuss time-dependent integrations of the full second-order
model (E.6a)–(E.6c), the regularized model (8.4a)–(8.4c) and the simplified model
obtained when taking G‖ = 1. Periodic boundary conditions in both x and z direc-
tions are imposed. This allows us to make use of a pseudo-spectral scheme and
thus exploit the good convergence properties of spectral methods. The derivatives
are evaluated in Fourier space and the nonlinearities in physical space. The time
dependence is accounted for by a fifth-order Runge–Kutta method, which allows
controlling the error from the difference with an embedded fourth-order scheme
(see [213]). Details of the scheme, such as representation of the variables in Fourier
space as well as the treatment of the associated aliasing phenomenon, can be found
in Appendix F.4. In practice, the time step is adapted to limit the relative error on
each variable to 10−4. The explicit character of the algorithm makes it easy to im-
plement for the different models.3 The computational domain of size Lx × Lz is
discretized with M ×N regularly spaced grid points with coordinates xk = kLx/M

and zj = jLz/N . We also define the energy of deformation in each direction [127,
213] as the quadratic sum of the Fourier coefficients obtained from the Fourier trans-
form of each streamwise and spanwise profile scanned over the whole computational

3However, this is not the case when one tries to simulate precisely the spatio-temporal wave dy-
namics on the whole plane with open-flow conditions as we did in Chap. 7 for two-dimensional
flows (Sect. 7.3 and Appendix F.3). Since now nonreflective downstream boundary conditions must
be considered, pseudo-spectral schemes using fast Fourier transforms are unavailable. The numer-
ical domain should be sufficiently large to account for the actual physical plane, which means a
large number of space steps. To limit the computational time then, implicit schemes should be
used.
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domain:

Ex(t) ≡ 1

MN

N∑

j=1

(
M/2−1∑

m=1

∣∣Âm(zj , t)
∣∣2
)1/2

, (8.9a)

Ez(t) ≡ 1

MN

M∑

l=1

(
N/2−1∑

n=1

∣∣B̂n(xl, t)
∣∣2
)1/2

, (8.9b)

where the spatial Fourier coefficients Âm and B̂n are defined by

Âm(z, t) =
M−1∑

l=0

h(xl, z, t) exp

(
2πiml

M

)
, (8.9c)

B̂n(x, t) =
N−1∑

j=0

h(x, zj , t) exp

(
2πinj

N

)
. (8.9d)

Due to the spatial periodicity in the streamwise direction, the simulations cor-
respond to a closed flow, as explained in Sect. 5.3.1. But as mentioned there, the
closed-flow condition cannot be achieved experimentally and the open flow condi-
tion should be used instead. In fact, the conservation condition in the moving frame

〈h〉 = 〈q〉 − q0

c
(8.10)

shows that the averaged thickness 〈h〉 can be significantly lower than the inlet thick-
ness, depending on the wave characteristics c and q0. Therefore, in order to im-
prove comparisons of numerical results to experimental data, one can turn to its ad-
vantage the closed-flow condition inherent in the numerical scheme by imposing a
film thickness tuned to the value obtained from (8.10) for two-dimensional traveling
waves at the corresponding forcing frequency using AUTO-07P. Doing so ensures
that the right amount of liquid is “inserted” in the computational domain. Since the
local flow rate varies as the cube of the local film thickness, this trick can be cru-
cial in recovering experimental results. Thus, the development of two-dimensional
waves undergoing three-dimensional instabilities is simulated by enforcing initial
conditions in the form

h(x, z,0)= 〈h〉 +Ax cos

(
2πnxx

Lx

)
+Az cos

(
2πnzz

Lz

)
+Anoiser̃(x, z), (8.11)

where Ax,Az,Anoise are small amplitudes, nx,nz ∈ N represent the numbers of
harmonic waves in each direction, and r̃ is a random function with values in the
interval [−1,1]. The last term of (8.11) accounts for ambient white noise whose
amplitude is set to Anoise = 10−3. Moreover, to facilitate the comparison with the
experimental results, we keep the aspect ratio of the computational domain equal
to unity by setting, Lx = Lz ≡ L. The value of L must be taken large enough to
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allow complex flow dynamics. The general form of (8.11) enables us to explore a
wide range of experimental results on three-dimensional waves emerging from two-
dimensional ones. In the following, we consider three-dimensional modulations of
traveling waves of the γ1 and γ2 types that are induced by inlet forcing, as well as
three-dimensional modulations of natural waves, i.e., waves driven by inlet noise.
In practice, the length of the numerical domain is adjusted to fit an integer number
of the two-dimensional traveling waves under consideration.

Nonlinearities are well known to generate aliasing errors, i.e., distortions of
high frequency Fourier modes due to the truncation in Fourier space (sampling)
when pseudo-spectral methods are used (see Appendix F.4 where the aliasing phe-
nomenon is discussed in detail). Let us denote by σNL the order of the nonlinearities
involved in the equations to be solved. σNL is an integer defined as the maximum
number of elements involved in a combination of products or divisions. In the case
of the Navier–Stokes equations, the advection term u ·∇u is a quadratic nonlinear-
ity. In the case of the simplified model, the advection terms, e.g., (q‖/h)2∂xh, give
σNL = 5. σNL = 5 also for the full second-order model, whereas for the regularized
model, σNL = 7.

As shown in Appendix F.4, applying a low-pass filter such that only the first
2/(σNL + 1) modes are kept, suppresses aliasing errors. This means that in the case
of the regularized model, 3/4 [2/(7+ 1)= 1/4] of the modes should be set to zero
at each time step and thus not be used to represent the corresponding solution. Con-
sequently, to maintain the spatial resolution and at the same time to avoid aliasing
errors, it is sufficient to increase by 4 the number of mesh points in each direction.
This is a numerically costly procedure though unnecessary. In practice, setting only
2/3 of the modes at each time step appears to be sufficient for all simulations pre-
sented in this chapter, except for two cases (sets 7 and 8, Table 8.2) when the wave
structure becomes too sharp and needs higher frequencies to be properly resolved,
in which case 1/2 of the modes were set to zero at each time step (this was checked
by monitoring the amplitudes of the highest frequency Fourier modes).

8.4.1 Three-Dimensional Modulations of γ1 Waves

We first consider the transition from γ1 waves to three-dimensional patterns, which
corresponds to the experimental results by Liu et al. [170]. These well-controlled
experiments will also serve as a benchmark for a systematic evaluation of the accu-
racy and usefulness of the different models.

Liu et al. have imposed a spanwise-uniform periodic forcing. To mimic their
experiments, we set Ax = 0.1 and Az = 0 in (8.11). L is set equal to five times the
wavelength 2π/k of the precursor two-dimensional traveling wave, i.e., nx = 5. The
number of grid points for the simulations in this section is M×N = 128×64, hence
64× 32 Fourier modes, or effectively 42× 21 modes due to the aliasing treatment.

The values of the parameters for the different numerical experiments are indi-
cated in Table 8.1. The flow conditions for an inclination angle β = 4° and Kapitza
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Fig. 8.9 Snapshots of free surface deformations giving rise to a herringbone pattern, computed
for the parameter set 1 in Table 8.1 with the regularized model at different times. Isocon-
tours of the thickness are separated by an elevation step of 0.06. The number of grid points is
M ×N = 128× 64 and L= 2nxπ/k. The amplitudes of the initial periodic forcing are Ax = 0.1
and Az = 0, with nx = 5. The dark and bright zones correspond to depressions and elevations,
respectively

number Γ = 2340 are first considered (sets 1–3 in Table 8.1 and in Fig. 8.6(a)). Each
chosen pair of (frequency, Reynolds number) is indicated by a cross in Fig. 8.6(a).
Set 1 (Table 8.1) corresponds to the region of the plane (f , Re) where herringbone
patterns were observed experimentally, i.e., the region of subharmonic instability.
Simulations of the full second-order, regularized and simplified models agree with
both the Floquet analysis and the experimental data. Isocontours of the thickness of
the wave patterns are shown at different times in Fig. 8.9 for the regularized model:
At its final stage (Fig. 8.9(c)), the film evolves toward a staggered arrangement of
round and large humps and thin and deep depressions (three-dimensional negative
waves) that agrees well with the experimental observations.

Using the parameter set 2 in Table 8.1, we move next to the region in Fig. 8.6(a)
where synchronous secondary instability has been reported in [170], whereas
the Floquet analysis predicts a subharmonic instability (compare Fig. 8.6(a) to
Fig. 8.6(d)). Time integrations of the different models, given in Fig. 8.10 for the
same spanwise energy of deformation Ez, show disagreement: The full second-
order model (panel a) shows a sideband instability, corresponding to a resonance
between the frequency f of the two-dimensional pattern, a low frequency ϕf (the
detuning parameter ϕ is small), and (1 − ϕ)f . The sideband instability observed
with the full second-order model then leads to a synchronous pattern, while from
the simplified model (panel c) one gets staggered troughs and more deformed crests
indicating a subharmonic instability, ϕ = 1

2 . The solution to the regularized model
(Fig. 8.10(b)) corresponds to a combination of synchronous and subharmonic mod-
ulations, but it is closer to the solution to the full second-order model (and exper-
imental observations) than to the solution of the simplified one. More specifically:
(i) crests are hardly deformed whereas troughs tend to form deep isolated depres-
sions; (ii) spanwise and streamwise wavelengths have values close to each other
(four spanwise modulations for the full second-order and regularized model, in con-
trast with three for the simplified one); (iii) nonlinear docking of two neighboring
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Fig. 8.10 Snapshots of free surface deformations computed for parameter set 2 at Ez ≈ 0.05 for
the three models. Isocontours of the thickness are separated by a level difference of 0.08. See also
caption of Fig. 8.9

Fig. 8.11 (a) Energy of streamwise deformations Ex computed for parameter set 4 in Table 8.1
as function of time; (b) corresponding two-dimensional wave profiles. The full second-order
model (E.6a)–(E.6c) has been used for computations and Ax = 0.1, Az = 0, Anoise = 0, nx = 5,
Lx = 10π/k for the initial condition

depressions (the two neighboring crests in the top right part of Fig. 8.10(a) and in the
bottom left part of Fig. 8.10(b)). Recall that in Figs. 8.7(a) and 8.7(b), the secondary
instability does not discriminate between a synchronous (ϕ = 0) or a subharmonic
(ϕ = 1/2) scenario for the parameter set 2. On the other hand, as expected from the
linear prediction (Fig. 8.7(c)), the simplified model clearly selects the subharmonic
instability, ending in a herringbone pattern (Fig. 8.10(c)). Similar behaviors of the
three models (not shown here) also have been found for parameter set 3 (Table 8.1).

Parameter set 4 (Table 8.1) corresponds to a more pronounced inclination an-
gle (β = 6.4°) and thus to a smaller Kapitza number (Γ = 2002). The simulations
indicate that if the initial excitation is spanwise uniform (Az =Anoise = 0), the two-
dimensional steady state corresponds to an oscillatory mode instead of a traveling
wave. This is illustrated in Fig. 8.11, where is plotted (a) the time evolution of the
streamwise deformation energy Ex and (b) the wave profiles at two different times
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Fig. 8.12 Free surface deformations computed for the parameter set 4 at Ez ≈ 0.05 for the three
models. Isocontours of the thickness are separated by an elevation step of 0.08. The amplitude of
the initial forcing here is Ax = 0.2

corresponding to a maximum (label 1) and a minimum (label 2) of Ex during one
oscillation period. Such an oscillatory mode has also been evidenced numerically in
the DNS study by Ramaswamy et al. [218] and it is referred to as a quasi-periodic
mode. Their study also indicates that the quasi-periodic regime is widely present in
the case of a vertical wall when the Reynolds number increases. In the language
of dynamical systems theory, the flow in the phase space tends to a torus (quasi-
periodic regime), instead of evolving toward a limit cycle (traveling wave). This
behavior is generated by the destabilization of the existing limit cycle and can be
predicted by looking at the maximum growth rate ωi of Floquet perturbations, which
was also found to be positive for the parameter set 4 in Table 8.1.

The wave patterns for the different models are shown in Fig. 8.12. The amplitude
of the initial streamwise modulations is increased to Ax = 0.2 (Az = Anoise = 0).
Both the full second-order and the simplified models yield herringbone patterns
whereas the regularized model yields a synchronous pattern, in agreement with ex-
perimental data [170]. The observed discrepancy between the results obtained with
the full second-order model and the experiment does not invalidate the weighted
residuals approach but rather underlines the sensitivity of the three-dimensional
dynamics to the boundary conditions at the inlet. In fact, it appears that the on-
set of the three-dimensional pattern is strongly influenced by the presence of the
two-dimensional oscillatory mode and then by the exchange of energy between this
mode and the growing spanwise modulations. This exchange depends on the initial
conditions and in particular on the amplitude Ax of the initial streamwise modula-
tions. Figure 8.13 shows three-dimensional wave patterns computed with the regu-
larized model for two different values of Ax . Significant qualitative differences can
be noted by comparing these patterns to Fig. 8.12(b): At low initial amplitude Ax ,
the final transverse modulations seem to have longer wavelengths than at larger val-
ues of the initial amplitude Ax . Further, crests display out-of-phase modulations for
smaller values of Ax and in-phase ones for larger values of Ax . Time evolutions of
the energies Ex and Ez are shown in Fig. 8.14. When Ax = 0.1, the system clearly
approaches the two-dimensional traveling wave solution and remains close to it for a
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Fig. 8.13 Free surface
deformations computed for
the parameter set 4 in
Table 8.1 at Ez ≈ 0.05:
(a) t = 300, (b) t = 220

Fig. 8.14 Deformation
energies computed for
parameter set 4 in Table 8.1
using the regularized model
(8.4a)–(8.4c) and various
values of Ax . Solid and
dashed lines correspond to
Ex and Ez , respectively.
Figures 8.13(a), 8.12(b) and
8.13(b) correspond to
snapshots taken at the time
instants when Ez crosses the
level 0.05

long time. Therefore, the Floquet analysis still applies and the obtained herringbone
pattern corresponds to the predicted subharmonic instability. This is no longer the
case for larger values of Ax where the modulation of the two-dimensional wavetrain
occurs prior to the development of the three-dimensional instability. The observed
synchronous pattern is thus a complex result of two ingredients: The growing two-
dimensional oscillations and the three-dimensional instability.

We have already noticed how sensitive the pattern formation process is to the
initial conditions, a consequence of the poor selection of the synchronous or sub-
harmonic secondary instability. Nevertheless, experiments show a clear selection
of the synchronous instability, most probably triggered by small defects of the in-
let distributor. In order to mimic such inlet inhomogeneities in computer simula-
tions, an x-independent noise r̃ ′(z) has been added to the initial condition (8.11),
whose amplitude A

(z)
noise represents the “inlet roughness.” A realistic estimate of

about 1 µm roughness gives an amplitude of A(z)
noise = 0.01 for a typical film thick-

ness of 100 µm. Figures 8.15 and 8.16 depict results obtained with the regularized
model together with those obtained experimentally [170, Figs. 7 and 11]. The fig-
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Fig. 8.15 Snapshots of the film free surface obtained using the regularized model (8.4a)–(8.4c)
at two different times, along with an experimental snapshot in the center [170, Fig. 7]. Parameter
values correspond to set 3 in Table 8.1. Ax = 0.2, nx = 5, Az = 0, L = 2nxπ/k, Anoise = 10−3

and an x-independent noise with amplitude A
(z)
noise = 10−2 is added to mimic the effect of inlet

roughness. The size of the computational domain is 89 × 148 mm. Isocontours of the thickness
are separated by an elevation step of 0.06. The location of a saddle point in the right snapshot (see
text) is indicated by a cross and two arrows

ures reveal the influence of the perturbation, which effectively biases the evolution
in favor of the synchronous instability. To facilitate comparison to experimental re-
sults, numerical snapshots are separated in the vertical direction by the distance
covered by the waves between the two time instants at which the snapshots were
taken (roughly 14.2 cm and 5.8 cm in the case of Figs. 8.15 and 8.16, respectively).
There is rather good agreement with experiments even though some differences can
still be noticed, mostly because of the choice of periodic boundary conditions. The
spanwise wavelength selected in the simulation shown in Fig. 8.15 seems to be a
little smaller than in the experiment (37 mm instead of about 46 mm), whereas in
the case of Fig. 8.16, the simulation and the experiment give essentially the same
answer (28 mm, very close to the experimental one of 26 mm).

In fact, experiments and simulations share several common qualitative features.
Isocontours of the thickness agree well with each other, and strong modulations of
the troughs are observed, whereas the crests remain nearly undeformed, which leads
to the formation of isolated depressions (all depressions in Figs. 8.9, 8.10, 8.12, 8.13,
8.15 and 8.16 are three-dimensional negative waves, but the corresponding patterns
are different). In particular, as experimentally observed by Liu et al., the numerical
simulations here indicate the occurrence of local saddle points on the wave pattern
corresponding to minima in the spanwise direction and maxima in the streamwise
direction (see the right panel of Fig. 8.15, where one such saddle point is indicated
by a cross and two arrows). Liu et al. have measured the difference of height be-
tween the minima of the thickness at a trough and the height of the nearby saddle
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Fig. 8.16 Same caption as for Fig. 8.15 with the parameter set 4 in Table 8.1 [170, Fig. 11]. The
size of the computational domain is 71× 118 mm. Isocontours of the thickness are separated by
an elevation step of 0.08

point. They called it “trough transverse modulation amplitude,” denoted �hmin(x).
From the measurement of �hmin(x) at different locations for the experimental data
corresponding to the parameter set 3, i.e., their Fig. 7 (center of Fig. 8.15), they
computed a spatial growth rate of approximately 0.11 cm−1. Following a similar
procedure, �hmin(t) is defined as the height difference between the minimum of
the thickness in the entire computational domain and the closest saddle point at a
given time t . From the measurement of �hmin(t) in the simulation, the temporal
growth rate is found to be approximately 2.6 s−1 with the help of the speed of the
corresponding γ1 waves, 20.8 cm s−1, which is converted into a spatial growth rate,
0.125 cm−1, hence of the correct order of magnitude.

Let us emphasize that a good agreement between computer simulations and ex-
periments is achieved provided that initial conditions are appropriately tuned. The
widespread observation of the synchronous instability in experiments thus seems
to result from the presence of spanwise nonuniformities at the inlet, which favors
in-phase modulations of the wavefronts. In fact, the synchronous instability of the
slow γ1 branch has not been found in studies focusing on vertically falling films
and where the viscous dispersion effects were neglected [42, 282]. Both the small
inclination of the plate and viscous dispersion play an important role in the onset of
the synchronous scenario.

Moreover, comparison of simulations of the full second-order, regularized and
simplified models to the experimental results in [170] shows that the streamwise
second-order inertia terms, which result from the departure of the velocity profile
from its parabolic flat film shape, also play a crucial role in the onset of the syn-
chronous instability. In the case of the simplified model, which does not take into
account the second-order inertia corrections, the secondary instability is much more
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Table 8.2 Parameter values of the simulations corresponding to the experiments in [203] for a
vertical wall and pure water at 25°C. λz,ndl is the spanwise wavelength of the needle array and kz
is the corresponding dimensionless wavenumber. The dimensionless wavenumber k, phase speed
c and average thickness 〈h〉 of the corresponding γ2 waves are also given

Set Re β (deg) Γ f (Hz) λz,ndl (mm) k c 〈h〉 kz

5 20.7 90 3375 15.0 10 0.3461 0.900 0.899 0.699

6 20.9 90 3375 19.0 30 0.4720 0.832 0.911 0.233

7 40.8 90 3375 19.1 20 0.3845 0.714 0.912 0.377

8 59.3 90 3375 17.0 20 0.3126 0.630 0.955 0.393

selective in favor of the subharmonic scenario and the synchronous instability was
not observed. The full second-order model (seven equations) and the regularized
model (three equations) give results in reasonably good agreement with experimen-
tal data in all cases. As far as the regularized model is concerned, this agreement
is likely due to the incorporation of the second-order inertia corrections using the
regularization technique described in Sect. 6.9.2 and extended here to three dimen-
sions. This procedure ensures that the second-order terms remain small compared
to the first-order ones for the widest possible ranges of parameter values. For this
reason, the regularized model is an accurate and simple alternative to the full model
or DNS for a large range of parameter values. It contains the main ingredients of the
film flow dynamics. Therefore, the regularized model (8.4a)–(8.4c) will be the only
model used for the remainder of the chapter to compare theory with experimental
findings.

8.4.2 Three-Dimensional Modulations of γ2 Waves

We now consider the experimental conditions investigated by Park and Nosoko
[203]. These authors observed three-dimensional wave patterns emerging from two-
dimensional waves of γ2-type on a vertical wall. Parameter values corresponding to
the different numerical experiments are given in Table 8.2. Park and Nosoko im-
posed a periodic modulation in the spanwise direction, which biased the selection
toward synchronous patterns. They placed an array of regularly spaced needles with
period λz,ndl at the inlet. The initial conditions (8.11) corresponding to the inlet
conditions imposed by Park and Nosoko and adapted to the present simulations are
taken to be Ax = 0.2, Az = 0.05 and Anoise = 0.

Figure 8.17 shows snapshots for parameter set 5 in Table 8.2. Initial spanwise
modulations of period λz,ndl = 10 mm (nz = 6) are quickly damped, i.e., Ez →
0, and the pattern evolves to two-dimensional traveling waves, i.e., Ex → const,
whose profile is given in Fig. 8.17(c). It corresponds to a γ2 wave with a large hump
preceded by capillary ripples, since, when the forcing frequency is small, the γ1 slow
waves are not observed and the linear inception region is immediately followed by
the formation of fast γ2 waves. Such genuine two-dimensional waves were observed
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Fig. 8.17 (a), (b) Snapshots of the film free surface at two different times computed with the reg-
ularized model and for set 5, Table 8.2. Initial conditions are Ax = 0.2, Az = 0.05, Anoise = 10−3,
nx = 3, nz = 6 and L= 2nxπ/k. The computational domain is 60× 60 mm with 128× 128 grid
points. Bright/dark zones correspond to elevations/depressions, respectively. (c) Two-dimensional
wave profile of (b)

by Park and Nosoko in the downstream part of their test section (their Fig. 7a), while
in the upstream part they observed large spanwise modulations with a wavelength of
about 3λz,ndl. These modulations can be recovered (not shown here) by increasing
the period λz,ndl to 30 mm (nz = 2). However, they also decay (with Ez → 0) but
at a much smaller rate, indicating that the wavelength λz = 3 cm is close (but still
below) the cut-off wavelength for spanwise instability.

Figure 8.18 shows the results for parameter set 6 in Table 8.2. In this case, the
initial spanwise modulation is unstable and Figs. 8.18(a) and 8.18(b) give patterns
equivalent to those observed experimentally [203, Fig. 7b]. To allow comparison of
the evolution in time of the computer simulations to the evolution in space of the
experimental waves, we need a way to convert locations in the laboratory frame to
dimensionless time in the computations. This is gotten by exploiting the fact that
a wave traveling at speed c reaches location x at time x/c. The speeds of the two-
dimensional traveling waves corresponding to the experimental conditions have thus
been computed using AUTO-07P. The test section in the experiments is 20 cm long,
which corresponds approximately to 200 dimensionless time units in the computer
simulations. After running the simulation for a much longer time (1500 time units),
time oscillations of the spanwise modulations can be observed. Figure 8.19 shows
that the energy of spanwise deformations Ez varies with a periodicity of about 300
time units. The region of the experimental domain corresponding to t ≈ 300 is thus
located beyond the test section, which explains why Park and Nosoko did not ob-
serve any time oscillations of the spanwise modulations as suggested by our compu-
tations. Oscillations of shorter period (about 60 time units) can also be seen, more
pronounced for Ex than for Ez in Fig. 8.19. Their amplitudes are small at the be-
ginning so that it is difficult to observe their effects on the three-dimensional wave
pattern. However, they grow for t > 900 where they begin to influence the pattern
evolution in a complex way, as illustrated by the panels i–l of Fig. 8.18. As time pro-
ceeds, spanwise modulations of the fronts depart more and more from their initial
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Fig. 8.18 Simulations for the parameter set 6 in Table 8.2. Remaining parameters are given in the
caption of Fig. 8.17, except for nx = 4, nz = 2 and L= 2nxπ/k. Corresponding times are given in
Fig. 8.19

harmonic shape. The fronts start to develop rounded tips separated by flat regions.
At least two symmetry breakings can be observed. The first one corresponds to a
streamwise period doubling of the modulated fronts triggered by a two-dimensional
subharmonic instability, since two identical fronts are observable in panel i instead
of four in panel h. The second one corresponds to the development of a phase shift of
π , observable between the tips of two successive fronts (compare panel l to panel k).

Simulation results for a larger Reynolds number, Re = 40.8, are depicted in
Fig. 8.20 for parameter set 7 in Table 8.2 and compared to experimental findings
[203, Fig. 7c]. Like for Re = 20.7, harmonic spanwise modulations of the two-
dimensional waves are first observed. However, they rapidly evolve into rugged
modulations, made of nearly flat rears and rounded fronts. The pattern then saturated
for a while (at least during 30 time units), traveling downstream in a quasi-steady
state. These rugged-modulated waves were also observed at smaller Reynolds num-
bers (not shown), when streamwise and spanwise initial perturbations have compa-
rable wavelengths. In this case, they remain steady for longer times. To facilitate
qualitative comparison to the spatial evolution observed in experiments, snapshots
of only a third of the numerical domain, corresponding to one streamwise wave-
length, are displayed in Fig. 8.20 at increasing times. The interval of time sepa-
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Fig. 8.19 Deformation
energies for simulations of
set 6 in Table 8.2: dashed line
for Ex and solid line for Ez.
Letters refer to the snapshots
of Fig. 8.18

Fig. 8.20 (a) Experimental
snapshot (real size
85× 130 mm) for set 7 in
Table 8.2 [203, Fig. 7c].
Reprinted with permission
from C.D. Park and
T. Nosoko, AIChE J.,
49(11):2715–2727, Copyright
2003, John Wiley and Sons;
(b) Simulations with nx = 3,
nz = 3 and L= 2nxπ/k. The
domain size is 60× 60 mm
with 256× 256 grid points

rating each pair of snapshots roughly corresponds to traveling of the fronts over a
distance equal to one wavelength. Despite the use of periodic boundary conditions,
the resemblance with the experimental findings [203, Fig. 7c] is convincing. For in-
stance, the checkerboard interference pattern of the capillary ripples preceding the
flat zones is recovered.

Above Re ≈ 40, Park and Nosoko [203] observed a breaking of the modulated
fronts leading to horseshoe waves having pointed fronts and long oblique legs. Sim-
ulation results for Re = 59.3 are presented in Fig. 8.21 for parameter set 8 in Ta-
ble 8.2, where they are also compared to the experimental findings [203, Fig. 7d].
Due to computational limitations, the computational domain was limited to only
one and two wavelengths in the streamwise and spanwise directions, respectively
(nx = 1 and nz = 2). As compared to the case with Re= 40.8, the rugged modula-
tions develop faster and do not saturate. Instead, the bulges of the wavefront contin-
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Fig. 8.21 (a) Experimental
snapshot (real size
90× 120 mm) for set 8
(Re= 59.3) [203, Fig. 7d].
Reprinted with permission
from C.D. Park and
T. Nosoko, AIChE J.,
49(11):2715–2727, Copyright
2003, John Wiley and Sons.
(b) Snapshots of the
simulated free surface. The
domain size is 40× 25 mm
with 256× 256 grid points

uously expand into horseshoe shapes, reducing the span of the flat parts at the rear.
As time proceeds, the legs of the horseshoes extend and split off into “dimples,” in
qualitative agreement with experimental observations. The growth of the spanwise
perturbations in the simulation is, however, faster than in the experiment.

In contrast with the experiments by Liu et al. [170] focusing on the secondary
instabilities of the slow γ1 waves, one can observe that secondary instabilities of
the γ2 waves lead neither to herringbone patterns—made of bumpy crests and deep
troughs—nor to an array of isolated depressions when the instability is synchronous,
but rather to modulated wave fronts.

8.4.3 Three-Dimensional Natural (Noise-Driven) Waves

We are now interested in the formation of natural (noise-driven) three-dimensional
waves in the absence of periodic forcing. To match the experimental conditions
reported in [3], initial conditions (8.11) correspond to white noise of amplitude
Anoise = 10−3 and Ax = Az = 0. Parameter values for the different numerical ex-
periments are given in Table 8.3. The experimental pictures are shown in Fig. 8.1.

Snapshots of the free surface deformation computed with the regularized model
are reported in Fig. 8.22, where the three columns correspond to different Reynolds
numbers (sets 9–11 of Table 8.3). Each row in Fig. 8.22 corresponds to a particular
transient regime: The first row to mostly two-dimensional waves, the second row to
coalescence processes, and the two last rows to the evolution of three-dimensional
solitary waves. Since these regimes are time-dependent in computer simulations but
space-dependent in experiments, both the dimensionless time t and the approximate
location of the numerical domain on the experimental plate are given in Fig. 8.22;
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Table 8.3 Parameter values of the simulations corresponding to experiments in [3] for an inclined
plate and a 16% water–ethanol solution at 25°C (ρ = 972 kg m−3, ν = 1.55 × 10−6 m2 s−1 and
σ = 40.8× 10−3 N m−1). The two-dimensional wave characteristics k, c and 〈h〉 were computed
from the wavelength λx , which was estimated by the average streamwise separation of the three-
dimensional waves observed in the experimental pictures. See also the caption of Table 8.1

Set Re β (deg) Γ λx (mm) k c 〈h〉

9 8 75 1106 40 0.15 1.322 0.906

10 16 75 1106 30 0.21 1.062 0.876

11 45 75 1106 25 0.28 0.749 0.904

the distance is again estimated from the phase speed c of the two-dimensional waves
(see Table 8.3).

Close to the inlet (first row in Fig. 8.22), the waves are mostly two-dimensional.
For Re= 8 (panel a) their profile is quasi-harmonic—bright and dark zones occupy
equivalent areas—and for Re = 16 (panel b) they become of γ2-type with steep
humps of large amplitude. For Re = 45 (panel c) the waves have larger crests and
thinner and deeper troughs. These waves are of the slow γ1-type. Connections be-
tween two wavefronts in the patterns are observed for the three sets.

Further downstream (second row of Fig. 8.22), three-dimensional secondary in-
stabilities of the primary wavetrain show up. The large amplitude waves travel faster
and catch up with the preceding slower ones, they coalesce with them and absorb
their mass leaving an increasing flat zone behind them. As time proceeds (third
row of Fig. 8.22), fast γ2 waves are clearly observable. The coalescence process
yields solitary waves with preceding capillary ripples and large flat zones in be-
tween. Snapshots g, j and h, k of Fig. 8.22 share many similar features with exper-
imental findings. The unsteady experimental pattern is characterized by seemingly
interacting quasi-steady three-dimensional solitary waves separated by portions of
constant thickness of length 10 to 50 cm. This is precisely the stage of interfacial
turbulence or soliton gas we discussed in the introduction of this chapter.

At Re= 8 the mean distance between solitary waves tends to saturate for t > 890,
which indicates that solitary waves have reached their fully developed regime. Alek-
seenko et al. [3] did not observe such a saturation in their experiments, either be-
cause the length of their test section was not long enough to observe saturation, or
because this behavior is a consequence of the streamwise periodic boundary condi-
tion imposed in the computer simulations. The fact that coarsening of natural waves
apparently terminates suggests that the system approaches a fully developed quasi-
turbulent three-dimensional wavy regime.

At Re = 16 saturation is not observed at all, at least during the 1500 time units
of the computer simulation. In that case, the final stage corresponds to interacting
oblique fronts rather than three-dimensional horseshoe waves. At Re= 45, the three-
dimensional waves tend to form localized structures rather than extended wave-
fronts, as was the case for lower values of Re. This is in agreement with results
of [3] and [203], who observed horseshoe-like solitary waves with a sharp pointed
front and long tails under similar conditions.
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Fig. 8.22 Numerical simulations of natural (noise-driven) three-dimensional wave patterns cor-
responding to the experiments shown in Fig. 8.1 (see Table 8.3). The computational domain is
100× 100 mm2 with 256× 256 grid points for set 9 and 10 and 512× 256 for set 11 in Table 8.3
except for panel (i) and (l) where it corresponds to 50× 50 mm2 and 256× 256 grid points: the
obtained snapshot is repeated four times. l is the estimated distance from the inlet. The bright/dark
zones correspond to elevations/depressions, respectively
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Yet, several features of the transition from modulated waves to horseshoe-like
solitary waves are far from being understood, e.g., the region of the parameter space
were oblique solitary waves are present has not been delineated. Some issues re-
lated to the mechanism of the transition from two-dimensional waves to fully de-
veloped three-dimensional horseshoe-like solitary waves and the linear stability of
three-dimensional waves to three-dimensional disturbances, including questions re-
lated to the convective instability of such waves, have been examined in [75, 76] by
the three-dimensional Kapitza–Shkadov model, whose several shortcomings have
already been flagged. Hence, there is a need for a full-scale careful and detailed
examination of the three-dimensional wave regime by the regularized model.



Chapter 9
Nonisothermal Case:
Two- and Three-Dimensional Flow

We have now accumulated enough tools to extend the modeling of falling liquid
films developed in Chaps. 6 and 7 to the case of a uniformly heated inclined plate,
i.e., the specified temperature (ST) case. As with the isothermal case, we shall model
the nonisothermal one by a gradient expansion combined with a Galerkin projec-
tion using polynomial test functions for both the velocity and temperature fields.
The outcome is a set of equations for the evolution of the velocity and tempera-
ture amplitudes at first and second order in the gradient expansion parameter. We
shall then proceed to a regularization of the second-order model in the same manner
with the isothermal case. Solitary wave solutions of the two-dimensional regular-
ized model to this system will be constructed. Through numerical computations in
the three-dimensional regime we shall explore the complex interaction between the
thermocapillary/S- and the hydrodynamic/H-modes, which under certain conditions
can give rise to three-dimensional rivulet structures aligned with the flow. These
rivulets can channel two-dimensional solitary waves riding on them.

9.1 Formulation
As with Chap. 6, our starting point is the two-dimensional boundary layer equa-
tions (4.11a)–(4.11d) for ST. We shall apply the polynomial expansion approach
and the method of weighted residuals outlined in detail in Chap. 6 for isothermal
films (Sect. 6.5). The basic idea then is to separate the variables and to expand the
velocity and temperature fields on a set of test functions of the reduced coordinate
ȳ = y/h, a naturally rescaled variable as it converts the boundary value problem in
the interval [0, h] to the interval [0,1]. To satisfy the Dirichlet boundary conditions

u|0 = v|0 = 0 and T |0 = 1, (9.1)

we write the velocity and temperature distributions in the form

u(x, y, t) =
imax∑

i=0

ai(x, t)fi

(
y

h(x, t)

)
, (9.2a)
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T (x, y, t) = 1+
imax∑

i=0

bi(x, t)gi

(
y

h(x, t)

)
, (9.2b)

where fi(0)= gi(0)= 0.
Let us next choose

f0 = ȳ − 1

2
ȳ2, (9.3a)

g0 = ȳ, (9.3b)

corresponding to the base state (3.1a), (3.1d) and complete the set of test functions
with

f1(ȳ) = ȳ, fi(ȳ)= ȳi+1, i ≥ 2, (9.3c)

gi(ȳ) = ȳi+1, i ≥ 1, (9.3d)

to obtain the polynomial bases for the projection. Note that the basis for the velocity
field here is different to that in Sect. 6.6 where at first order we chose a basis to
fulfill all boundary conditions from the outset. In the present case the tangential
stress boundary condition on the free surface (4.6h) is nonhomogeneous at first order
due to the Marangoni effect. Hence, unlike the isothermal case at first order, we
cannot identify from the outset a basis of test functions to satisfy the tangential
stress boundary condition. We therefore choose the simplest basis possible. The
tangential stress condition then becomes a constraint on the amplitudes ai and can
be satisfied through a tau method as introduced in Sect. 6.8 for the second-order
isothermal formulation.

Since (2imax+3) unknowns have been introduced, namely h, ai and bi , 2imax+3
equations are required to determine them. The first one is the kinematic condition
at the interface (4.6g), which can be replaced by integrating the continuity equa-
tion (4.6c) along the normal coordinate to give

∂th+ ∂xq = 0, (9.4)

as we have done several times in this monograph and where q = ∫ h0 udy is the
flow rate in the streamwise direction. Two additional equations are the boundary
conditions (4.6h), (4.6i), and by defining 2imax weight functions wj(ȳ), the closure
equations are obtained by the vanishing residuals from (4.6a)–(4.6b):

Rq(wj ) ≡
∫ h

0
wj(ȳ)

[
3εRe(∂tu+ u∂xu+ v∂yu)−

(
∂yy + 2ε2∂xx

)
u

− 1+ εCt∂xh− ε2∂x(∂xu|h)− ε3We∂xxxh
]
dy = 0, (9.5a)

Rθ (wimax+j ) ≡
∫ h

0
wimax+j

[
3εPe(∂tT + u∂xT + v∂yT )

− (ε2∂xx + ∂yy
)
T
]
dy = 0, (9.5b)
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with 0≤ j ≤ imax − 1 and where u and T are given by the expansions (9.2a), (9.2b)
while v is obtained from the continuity equation, v =− ∫ y0 ∂xudy.

At this point, the method we are using is simply one of the numerous weighting
residual strategies, which differ from each other only by the specific choice of the
weights wj . As demonstrated in Sect. 6.7, it is not necessary to specify the weighted
residuals method we are applying if the number imax of test functions and residuals
is large enough. In fact, requiring the momentum and the energy equations (4.6a)
and (4.6b) to be satisfied everywhere—and not simply on average—and inserting
the expansions (9.2a), (9.2b) using (9.3a), (9.3b) leads to the cancellation of two
polynomials in the reduced normal coordinate ȳ. By examining then the order of
magnitude with respect to ε of each term in (4.6a) and (4.6b), it can be proved
that the number of independent conditions on the unknowns ai and bi provided by
the cancellation of these two polynomials is equal to the number of the residuals
(9.5a), (9.5b), provided that imax is chosen large enough (see Sect. 6.5). Any choice
then of the weighting functions would lead to equivalent systems of equations and
then to the same reduced model for the dynamics of the flow, as was shown for an
isothermal film.

Nevertheless, it is important to keep in mind that we are not simply applying a nu-
merical method. The aim is rather to combine some well-known numerical strategy
with a perturbation technique from the flat film base state (3.1a)–(3.1d) correspond-
ing to

a0 = h2, b0 = −Bh
1+Bh

, ai = bi = 0, i ≥ 1.

9.2 Formulation at First Order

To illustrate the procedure we restrict our attention to the formulation consistent at
O(ε), with all terms of higher order neglected. The aim is to develop the simplest
possible methodology for the projection of the velocity and temperature fields to the
amplitudes of the polynomial expansion appearing at first order. For simplicity, we
also assume as we did with the derivation of the isothermal models in Chap. 6, that
the parameters, Re, Pe and M are of O(1) and that We is of O(ε−2), corresponding
to the strong surface tension limit. These assumptions can be relaxed and strict or-
ders of magnitude assignments are not required, but the final equations remain the
same as they were with the isothermal formulation.

The system of equations (4.6a)–(4.6i) at O(ε) reduces to

∂xu+ ∂yv = 0, (9.6a)

3εRe(∂tu+ u∂xu+ v∂yu)= ∂yyu+ 1− εCt∂xh+ ε3We∂xxxh, (9.6b)

3εPe(∂tT + u∂xT + v∂yT )= ∂yyT , (9.6c)

v|h = ∂th+ u∂xh, (9.6d)
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∂yu|h =−εM∂x[T |h], (9.6e)

∂yT |h =−BT |h, (9.6f)

together with the Dirichlet conditions (9.1). Thus, the 2imax residuals to be evaluated
are simplified to

∫ h

0
wj(ȳ)

[
3εRe(∂tu+ u∂xu+ v∂yu)− ∂yyu

]
dy

+ h
(−1+ εCt∂xh− ε3We∂xxxh

) ∫ 1

0
wj(ȳ) dȳ = 0, (9.7a)

∫ h

0
wimax+j (ȳ)

[
3εPe(∂tT + u∂xT + v∂yT )− ∂yyT

]
dy = 0. (9.7b)

The amplitudes ai and bi , i ≥ 1, result from the slow space and time modulations of
the free surface so that they are first-order quantities in ε. Therefore, the space and
time derivatives of ai and bi , i ≥ 1, are negligible. One then is led to a linear system
of 2imax+2 conditions for ai and bi—consisting of the 2imax residuals (9.7a), (9.7b)
and the two stress balances (9.6e) and (9.6f)—whose coefficients depend at most on
a0, b0, h and with a right hand side that depends on h, a0, b0 and their derivatives

2imax+1∑

j ′=0

αjj ′Aj ′ = βj (h, a0, b0, ∂x,th, ∂x,t a0, ∂x,t b0), 0≤ j ≤ 2imax + 1, (9.8)

where Aj ≡ aj and Aimax+1+j ≡ bj , 0 ≤ j ≤ imax. Solving for the Aj then leads
to explicit expressions for the amplitudes aj , bj , j ≥ 1, as functions of a0, b0, h
and their derivatives, making clear their slaving to the film thickness, the parabolic
velocity profile and the linear temperature distribution. As in Sect. 6.6, the inversion
of (9.8) also provides two solvability conditions for a0 and b0 forming a set of two
evolution equations for a0 and b0 which, together with the conservation equation
(9.4) for h, describe the entire dynamics of the film flow.

As noted earlier, inserting the expansion (9.2a), (9.2b), (9.3a), (9.3b) into (9.6a)–
(9.6f) leads to the cancellation of two polynomials in the rescaled normal coordinate
ȳ, say P(ȳ) and Q(ȳ), corresponding to the momentum and energy equation, re-
spectively. Because the advection terms ∂tu+u∂xu+v∂yu and ∂tT +u∂xT +v∂yT

are first-order quantities, their truncation at O(ε) involves only the parabolic and
linear profiles corresponding to a0 and b0. Consequently, it can be shown that the
advection terms are polynomials in ȳ of only degree four and three, respectively.
Therefore, the monomials of highest degree appearing in P(ȳ) and Q(ȳ) originate
from the terms ∂yyu and ∂yyT such that P(ȳ) and Q(ȳ) are of degree imax−1. Can-
celing those two polynomials gives 2imax independent relationships, i.e., the same
as the number of residuals (9.7a), (9.7b). Completing these 2imax relationships with
the two boundary conditions (9.6e) and (9.6f) gives a system of equations equivalent
to (9.8) leading to the same evolution equations for a0 and b0 (provided imax is large
enough).
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The solution to system (9.8) will be explicitly given later in this section and in the
next (the solution to (9.8) is written in (9.12), (9.16) and (9.18a)–(9.18h) formulated
using the definition of the flow rate q = ∫ h0 udy). The algebra required to solve (9.8)
is cumbersome but doable. However, turning to the formulation of the model at sec-
ond order—as will be done in the next section—significantly increases the algebraic
manipulations required to invert the system of equations and a shortcut is desirable.
Since each different weighting residual technique only differs by its specific choice
for the weighting functions wj , it is relevant to look for the best choice of wj that
would simplify the algebraic manipulations leading to the two solvability conditions
that complete the set of evolution equations for the O(1) unknowns h, a0 and b0.
Another reason for the search for the most efficient weighted residual technique is
to obtain a suitable set of test functions at second order on which we project the
velocity and temperature fields (with again the will to reduce algebraic manipula-
tions). Indeed, in Chap. 6 the construction of the set of test functions Fj given in
(6.74) was performed by imposing an orthogonality condition, which enabled us to
drastically reduce the algebra when the Galerkin method was next applied.

Let us first consider the residuals (9.7a). Because ∂tu+ u∂xu+ v∂yu are first-
order terms, the unknowns ai , i ≥ 1, may enter into their evaluation only through
the integral

∫ h
0 wj∂yyu. Two integrations by parts give

∫ h

0
wj

(
y

h

)
∂yyudy =

[
wj

(
y

h

)
∂yu

]h

0
− 1

h

[
w′
j

(
y

h

)
u

]h

0
+ 1

h2

∫ h

0
w′′
j

(
y

h

)
udy.

(9.9)

These two integrations by parts enable us to bypass the constraint on the amplitudes
aj brought by the stress balance at the free surface (9.6e). As ∂yu|h in (9.6e) is
proportional to ∂x[T |h], it can only involve h, a0 and b0 at first order. Making also
use of the no-slip condition on the solid plate u|0 = 0, only three terms are left to
consider, namely wj(0)∂yu|0, w′

j (1)u|h and
∫ h

0 w′′
j (y/h)udy. With the introduction

of the flow rate q ≡ ∫ h0 udy, this suggests we choose w0 so as to have w0(0)= 0,
w′

0(1)= 0 and w′′
0 a constant. Interestingly, f0 in (9.3a) has precisely these features1

and we can readily take w0 ∝ f0.
As discussed in Sect. 6.6, it is appropriate to relate the amplitude of the parabolic

profile a0 to the flow rate q , which is a quantity appearing explicitly in the integral
form of the kinematic condition (9.4). To introduce q explicitly into our expansion,

1Recall that the parabolic profile f0 corresponds to the zeroth-order formulation of the problem for
the velocity:

∂yyu=−1, u|0 = 0, ∂yu|h = 0. (9.10)

Therefore, considering the two integrations by parts performed in (9.9), the similitude between
the weight function w0 and the test function f0 is related to the linear operator L ≡ ∂yy being
self-adjoint in the space of functions satisfying the boundary conditions (9.10).
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let us integrate (9.2a) between 0 and h to obtain the expression

a0 = 3
q

h
− 3

2
a1 −

imax∑

i=2

3

i + 2
ai. (9.11)

Therefore, evaluating the residual (9.7a) corresponding to j = 0 with w0 ∝ f0, and
using the boundary condition (9.6e) leads to

3εRe

(
2

5
∂tq − 23

40

q

h
∂th− 18

35

q2

h2
∂xh+ 111

280

q

h
∂xq

)
+ q

h2

+ 1

3
h
(−1+ εCt∂xh− ε3We∂xxxh

)+ 1

2
εM ∂x(T |h)= 0, (9.12)

where the unknowns ai do not appear, a consequence of the weighting strategy.
(Although (9.12) involves projection onto more than one test function, we could
have obtained it by projecting u onto the single test function f0, i.e., by substitut-
ing u= (3q/h)f0 in the expression (9.9) obtained from integrations by parts.) We
therefore obtain straightforwardly the solvability condition for a0 we were looking
for, written here in terms of the flow rate q . Choosing the weight functions to be
the test functions themselves is the essence of the Galerkin method, which in turn is
equivalent to a variational method (whenever a variational formulation is available
[92]). As in Chap. 6, the Galerkin method is then identified as the most efficient one
providing the momentum averaged equation with the minimum of algebra.

Turning to the weighted residuals for the energy equation (9.7b) and with the
same arguments used for the treatment of the momentum equation, the unknowns
bi , i ≥ 1, may play a role only through the integral,

∫ h
0 wj∂yyT . Two integrations

by parts give

∫ h

0
wj

(
y

h

)
∂yyT dy =

[
wj

(
y

h

)
∂yT

]h

0
− 1

h

[
w′
j

(
y

h

)
T

]h

0

+ 1

h2

∫ h

0
w′′
j

(
y

h

)
T dy. (9.13)

Again, the two integrations by part enable us to bypass the condition on the coeffi-
cients bj brought by the heat flux balance at the free surface (9.6f). Making use of
(9.6f) and the constant temperature distribution at the solid wall T |0 = 1, we get
∫ h

0
wj

(
y

h

)
∂yyT dy = −Bwj(1)T |h −wj(0)∂yT |0 + 1

h

[
w′
j (0)−w′

j (1)T |h
]

+ 1

h2

∫ h

0
w′′
j

(
y

h

)
T dy. (9.14)

Following exactly the same approach as before would lead to the choice for the first
weight function, wimax(0) = 0, w′

imax
(1) = 0. Setting w′′

imax
to a constant would in-

troduce the average temperature across the flow, (1/h)
∫ h

0 T dy. This choice would
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obviously be problematic since the term involving T |h would remain in (9.14) and
in (9.12) through the Marangoni effect. On the other hand, it is rather the heat flux at
the surface ∂yT |h or the temperature at the surface T |h that have physical meaning.
Because it already appears in (9.12), we prefer to put the emphasis on θ ≡ T |h by
choosing wimax(0) = 0, w′′

imax
= 0 so that wimax ∝ ȳ = g0. This choice has the ad-

vantage of dissociating the coupling term (1/2)M∂x[T |h] in (9.12) from the defini-
tion of any other amplitudes needed to describe the temperature distribution. Again
we find that the weight function is identical to the test function itself and that the
Galerkin method is the most effective one. It is therefore appropriate to replace the
physically meaningless unknown b0 by θ through the substitution

b0 = θ − 1−
imax∑

i=1

bi. (9.15)

From the residual (9.7b) corresponding to wimax = g0 = ȳ, we then get the second
solvability condition rewritten in terms of θ ,

3εPe

(
1− θ

3
∂th+ 1

3
h∂tθ + 11

40
(1− θ)∂xq+ 9

20
q∂xθ

)
+ θ − 1

h
+Bθ = 0. (9.16)

Using now the equivalence ∂th=−∂xq from (9.4), a model consistent at O(ε) can
be formulated in terms of three coupled evolution equations for h, q and θ written
here in terms of the Shkadov scaling:

∂th = −∂xq, (9.17a)

δ∂tq = 5

6
h− 5

2

q

h2
+ δ

(
9

7

q2

h2
∂xh− 17

7

q

h
∂xq

)
− 5

4
M∂xθ

− 5

6
ζh∂xh+ 5

6
h∂xxxh, (9.17b)

Prδ∂t θ = 3
[1− (1+Bh)θ ]

h2
+ Prδ

[
7

40

(1− θ)

h
∂xq − 27

20

q

h
∂xθ

]
. (9.17c)

Equations (9.17a)–(9.17c) will be hereinafter called the first-order model for the
heated falling film problem.

Finally, we can easily see how to relax the order of magnitude assignments for
the different parameters. For example let us relax the order of magnitude assignment
Pe=O(1), or Pr =O(1), since Re=O(1). εPr must be at most of O(1), the max-
imum order in the right hand side of the energy equation (9.6c). At the same time
the convective terms in the energy equation must dominate over the neglected terms
in the first-order boundary layer equations (9.6a)–(9.6f), or Pr � ε. The amplitudes
of the test functions then for the projection of the temperature field (9.2b) become
of O(εPr) (see (9.18a)–(9.18h)), with the exception of b0, which is of O(1).
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9.3 Formulation at Second Order

The aim now is to derive a model consistent at second order, i.e., to account for all
ε2 terms of the boundary layer equations (4.6a)–(4.6i) such as the ε2-order viscous
and thermal diffusion terms of the momentum and energy equations (4.6a), (4.6b).
For this purpose, we explicitly need the solution of (9.8) for the amplitudes of the
projections:

a1 = 3εRe

[
−6

5
h∂x

(
q2

h

)
− h∂tq

]
− εMh∂xθ, (9.18a)

a2 = 3εRe

[
q∂xq + 1

2
h∂tq

]
, (9.18b)

a3 = 3εRe

[
−3

4

q2

h
∂xh− 1

8
h∂tq

]
, (9.18c)

a4 = 3εRe

[
− 3

40
h6∂x

(
q2

h6

)]
, (9.18d)

a5 = 3εRe

[
1

80
h6∂x

(
q2

h6

)]
, (9.18e)

b2 = 1

6
3εPeh

[
(θ − 1)∂xq + h∂tθ

]
, (9.18f)

b3 = 1

8
3εPeh

[−(θ − 1)∂xq + 2q∂xθ
]
, (9.18g)

b4 = 1

40
3εPeh

[
(θ − 1)∂xq − 3q∂xθ

]
, (9.18h)

b1 = 0, ai = bj = 0, i ≥ 6, j ≥ 5,

completed by the two solvability conditions (9.12), (9.16).2 Note that the amplitudes
ai of the monomials of degree greater or equal to seven are identically vanishing at
first order. This can be shown by examination of the degree of the polynomial in
ȳ corresponding to the left hand side of (9.6b). Because f0 is of degree two, the
above polynomial is of degree four, so that the right hand side of (9.6b) is also a
polynomial of degree four. Hence, the amplitude an corresponding to fn = ȳn+1 is
equal to zero if n ≥ 6, with the operator ∂yy decreasing the degree in ȳ of the left
hand side of (9.6b) by two. The same argument can be applied to (9.6c) where the
convection terms ∂tT + u∂xT + v∂yT on the left hand side constitute a polynomial
in ȳ of degree three only.

Consequently, the derivatives of the fields ai with i ≥ 6 and bj with j ≥ 5 are
of order higher than ε2 and can be dropped at this stage of the approximation.

2Compared to (6.44), system (9.18a)–(9.18h) contains one more nonzero amplitude ai (five instead
of four). In fact, this is a consequence of the need for a supplementary amplitude to fulfill the
boundary condition (9.6e) using the tau method.
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Their dynamics are thus slaved to the dynamics of the other variables. From the
expressions (9.18a)–(9.18h) we can now obtain a4 =−6a5, a2 =−4a3 + 40a5 and
a1 = 8a3 − 96a5 − εMh∂xθ so that eliminating these amplitudes in (9.11) yields
a0 = 3q/h− 48

5 a3+ 816
7 a5+ 3

2εMh∂xθ . The velocity field at first order can then be
written as

u= 3
q

h
f0(ȳ)+ εMh∂xθf̃1(ȳ)+ a3f̃3(ȳ)+ a5f̃5(ȳ), (9.19)

where f̃1 =− 3
4 ȳ

2 + 1
2 ȳ, f̃3 = ȳ4 − 4ȳ3 + 24

5 ȳ
2 − 8

5 ȳ and f̃5 = ȳ6 − 6ȳ5 + 40ȳ3 −
408

7 ȳ2+ 144
7 ȳ. Therefore, u is a combination of four independent fields, q/h, a3, a5

and h∂xθ , rather than six, as might be expected at first. Similarly, T can be written at
first order as a combination of four independent fields, namely, θ , b2, b3 and b4. As a
consequence, a consistent model for the dynamics of the flow at second order would
require nine unknowns corresponding to the introduction of eight independent fields
to correctly represent the velocity and temperature distributions as well as the film
thickness h.

Since the degree of the polynomials f̃1, f̃3, f̃5 is smaller or equal to six, the
second-order diffusive term ∂yyu and the quadratic nonlinearities of the Navier–
Stokes equations imply that the description of the velocity field at O(ε2) involves
polynomials of degree up to 10. Therefore, the set of test functions for the veloc-
ity field needs to be completed by six other functions in order to obtain a basis for
the set of polynomials of degree up to 10 satisfying the Dirichlet condition at the
solid wall. Turning now to the modeling of the energy equation at second order,
a basis for the set of polynomials of degree up to nine verifying the Dirichlet con-
dition is required to fully describe the temperature field at that order. This means
that six amplitudes for the velocity field and five for the temperature field need to be
eliminated—through a slaving procedure—to obtain a set of eight evolution equa-
tions for the eight unknowns, plus the conservation equation (9.4). Needless to say,
such a task would require some cumbersome algebraic manipulations and hence a
shortcut is desirable.

Such a shortcut is possible by following the same approach with the isothermal
case, i.e., by constructing a new set of polynomial test functions Fi satisfying the
orthogonality condition

∫ 1
0 Fi Fj dȳ ∝ δij with the help of a Gram–Schmidt orthog-

onalization procedure so that F0 ≡ f0, F1, F2 and F3 are linear combinations of f0,
f̃1, f̃3 and f̃5. The result is

F0 = ȳ − 1

2
ȳ2, (9.20a)

F1 = ȳ − 17

6
ȳ2 + 7

3
ȳ3 − 7

12
ȳ4, (9.20b)

F2 = ȳ − 13

2
ȳ2 + 57

4
ȳ3 − 111

8
ȳ4 + 99

16
ȳ5 − 33

32
ȳ6, (9.20c)

F3 = ȳ − 531

62
ȳ2 + 2871

124
ȳ3 − 6369

248
ȳ4 + 29601

2480
ȳ5 − 9867

4960
ȳ6. (9.20d)
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The functions F1 and F2 have been chosen so that they correspond exactly to the
polynomials introduced in the isothermal case (Sect. 6.8). The introduction of the
polynomial F3 is made necessary by the presence of the Marangoni effect, which
modifies the stress condition (9.6e) at the interface.

Similarly, a set of orthogonal test functions for the temperature field is con-
structed from linear combinations of g0, g2, g3 and g4, with G0 ≡ g0

3:

G0 = ȳ, (9.21a)

G1 = ȳ − 5

3
ȳ3, (9.21b)

G2 = ȳ − 7ȳ3 + 32

5
ȳ4, (9.21c)

G3 = ȳ − 56

3
ȳ3 + 192

5
ȳ4 − 21ȳ5. (9.21d)

Therefore, the velocity and temperature fields at O(ε) are as follows:

u = 3

h
(q − s1 − s2 − s3)F0 + 45

s1

h
F1 + 210

s2

h
F2 + 434

s3

h
F3, (9.22a)

T = 1+ (θ − 1− t1 − t2 − t3)G0 − 3

2
t1G1 + 5

2
t2G2 − 15

4
t3G3. (9.22b)

In line with our previous derivation of a second-order model for the isothermal
case (Sect. 6.8), the first-order fields si , 1 ≤ i ≤ 3, have been introduced so that
u preserves the definition of the flow rate q = ∫ h0 udy, as it should. These fields
correspond to corrections to the amplitude of the parabolic velocity profile and at
the same time their role in the velocity profile is similar to that of q so that the final
evolution equations for q and si will have similar functional forms. In the same
spirit, the introduction of the fields ti , 1 ≤ i ≤ 3, preserves the definition of the
temperature at the surface, θ = T |y=h.

To complete our set, now, of test functions so that a basis for the set of polyno-
mials of degree up to 10 satisfying the no-slip condition can be obtained, we write:

u = 3

h
(q − s1 − s2 − s3)F0(ȳ)+ 45

s1

h
F1(ȳ)+ 210

s2

h
F2(ȳ)

+ 434

h

(

s3 −
9∑

i=4

si

)

F3(ȳ)+
9∑

i=4

1
∫ 1

0 Fi(ȳ)dȳ

si

h
Fi(ȳ). (9.23)

As it will be shown below, the explicit formulations of the polynomials Fi , 4 ≤
i ≤ 9, will not be required so that in practice the Gram–Schmidt orthogonalization
procedure is limited to the determination of F1, F2 and F3.

3Note that G0 and − 3
2G1 are Legendre polynomials. Such polynomials form an orthogonal basis

with respect to the scalar product 〈f |g〉 = ∫ 1
−1 fg dȳ instead of 〈f |g〉 = ∫ 1

0 fg dȳ.
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We are now ready to apply a Galerkin projection. Let us consider closely the first
four residuals for the momentum equation. Being of O(ε2) or higher, the correc-
tive fields si , 4 ≤ i ≤ 9, can contribute to the formulation only through the evalu-
ation of the zeroth-order viscous term

∫ h
0 Fi(y/h)∂yyudy, which after integrating

twice by parts becomes
∫ h

0 F ′′
i (y/h)udy. Notice that F ′′

0 = −1, F ′′
1 = 14F0 − 17

3 ,
F ′′

2 = 1485
28 F1 + 909

28 F0 − 13 and F ′′
3 = 88803

868 F1 + 31779
868 F0 − 531

31 , are linear combi-
nations of 1, F0 and F1. Consequently, by making use of the orthogonality of the
polynomials Fi , the first four residuals of the momentum equation (9.5a) written
as Rq(Fi), 0 ≤ i ≤ 3, do not involve the second-order fields si , i ≥ 4. Thus, after
some algebraic manipulations, they lead to a set of evolution equations for q , s1, s2,
s3 only, which are given in Appendix E.4 in terms of the Shkadov scaling, namely
system (E.8d)–(E.8e).

The same argument applies to the temperature field so that the set of test functions
Gi must be completed at second order with five polynomials of degree up to nine.
Nevertheless, since G′′

i , 0≤ i ≤ 3, are not linear combinations of Gi , 0≤ i ≤ 3, the
first four residuals do not form a closed set of equations for θ , t1, t2 and t3. Yet, a
basis for the set of polynomials of degree up to five satisfying the Dirichlet condition
at the solid wall can be obtained by introducing only one polynomial orthogonal to
the first four Gi . This polynomial, G4, is given explicitly by

G4(ȳ)= ȳ − 128

15
ȳ2 + 24ȳ3 − 192

7
ȳ4 + 11ȳ5. (9.24)

The temperature field can now be written to second order as

T = 1+ (θ − 1− t1 − t2 − t3 − t4)G0(ȳ)− 3

2
t1G1(ȳ)+ 5

2
t2G2(ȳ)

− 15

4

(

t3 −
8∑

i=5

ti

)

G3(ȳ)+ 105

4
t4G4(ȳ)+

8∑

i=5

ti
Gi(ȳ)

Gi(1)
. (9.25)

This formulation ensures that the evaluation of
∫ h

0 G′′
i (ȳ)T dy, 0 ≤ i ≤ 4, does

not require the definitions of Gi , i ≥ 5. By applying next a Galerkin projec-
tion to the energy equation, the first five residuals (9.5b) written as Rθ (Gi), 0 ≤
i ≤ 4, constitute a closed set. Since the amplitude t4 is of O(ε2), its space and time
derivatives can be neglected so that an explicit formulation as function of h, θ , t1,
t2 and t3 can be obtained, thus expressing the slaving of the former to the latter.
After some lengthy algebraic manipulations, one gets a set of evolution equations
for θ , t1, t2, t3, which is given in Appendix E.4 in terms of the Shkadov scaling
(system (E.8f)–(E.8i)).

The system of nine coupled equations (E.8a)–(E.8i) that we have obtained in this
section will be referred to hereinafter as the full second-order model for the heated
falling film problem. This model is unique, unlike the reduced models that will be
obtained in the next sections.

We close this section with a comment on (9.19). So far we have followed a sys-
tematic procedure by using the Galerkin method and integrations by parts, while
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below (9.12) we offered a shortcut for the averaged momentum equation of the
first-order model by projecting u onto the test function f0 only. The same argument
can also be applied to the temperature field: Projecting onto the single test function
g0, T = 1 + (θ − 1)g0, and with the above projection for the velocity, we obtain
the averaged energy equation of the first-order model. An alternative shortcut also
exists [138, 139, 276]. One could guess a priori a velocity profile that satisfies all
boundary conditions: It would consist of (9.19) truncated after the first two terms
corresponding precisely to a tau method, which “homogenizes” the first-order tan-
gential stress balance u= 3 q

h
f0(ȳ)+εMh∂xθf̃1(ȳ). Together with the above simple

expression for the temperature, T = 1+ (θ−1)g0, the momentum and energy equa-
tions of the first-order model (9.17a)–(9.17c) are obtained straightforwardly: Sub-
stitute the above profiles into the momentum and energy equations (4.6a) and (4.6b)
of the boundary layer approximation followed by their averaging with weight func-
tions f0(ȳ) and ȳ, respectively. This is the essence of the Galerkin method. Note
that since the expression for u satisfies all boundary conditions, we do not need to
incorporate them into the momentum equation through integrations by parts as be-
fore. The expression for T , however, does not satisfy the leading-order free-surface
boundary condition in (4.6i). But this condition is incorporated into the averaged en-
ergy equation during integrations by parts as was done in (9.13). Note also that when
we substitute the above two-term expansion for u into the momentum and energy
equations (4.6a) and (4.6b), respectively, the contribution of the Marangoni effect
to the convective terms of these equations is of O(ε2) and hence negligible. The
Marangoni effect only contributes to the cross-stream viscous and thermal diffusion
terms.

9.4 Reduced Models

Admittedly, the full second-order model, derived from a systematic weighted resid-
uals approach, is cumbersome to use because of its complexity and large dimen-
sionality. It is hence necessary to obtain simpler models and in terms of a reduced
number of independent variables, but still retaining the dynamic features of the full
second-order model.

9.4.1 Gradient Expansion

A significant reduction can be achieved by performing a gradient expansion of the
full second-order model with (∂t , ∂x, ∂xx)→ (ε∂t , ε∂x, ε

2∂xx) and

q = q(0) + εq(1) + ε2q(2) + · · · ,
θ = θ(0) + εθ(1) + ε2θ(2) + · · · ,
si = εs

(1)
i + ε2s

(2)
i + · · · ,

ti = εt
(1)
i + ε2t

(2)
i + · · · .
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At O(ε0) we recover the Nusselt flat film solution:

q(0) = h3

3
and θ(0) = 1

1+ Bih
. (9.26)

Inserting q = q(0) into the kinematic equation ∂th + ∂xq = 0 yields a single evo-
lution equation for the film thickness (a Burgers equation with zero viscosity—
see (5.6)). As the heat transfer and the mechanical equilibrium of the flat film are
two decoupled problems in this limit, this equation does not involve the Marangoni
effect that appears at first order through the term M∂xθ—i.e., the first-order con-
tribution to the tangential stress (4.6h) at the interface. At O(ε) we obtain the first-
order correction to the flow rate and the surface temperature, respectively,

q(1) =
[

Re
2

5
h6 − Ct

3
h3 + BM h2

2(1+Bh)2

]
∂xh+ 1

3
ε2Weh3∂xxxh, (9.27)

θ(1) = BiPeh4∂xh
7Bih− 15

120(1+ Bih)3
, (9.28)

where the expression for θ(0) has been used. Since the surface temperature θ is
coupled through its gradient ∂xθ in the momentum balance equations, the expression
for q(2) can be obtained without a need to solve for the gradient expansion up to
second order of the temperature fields θ and ti :

q(2) = (∂xh)
2
{

7

3
h3 − 8

5
CtReh6 + 127

35
Re2h9 + 3ReBMh5

(1+Bh)4

[
11

20
+ 1

4
Pr

+Bh

(
5

8
− 1

12
Pr

)
+B2h2

(
3

40
− 7

120
Pr

)]}

+ ∂xxh

{
h4 − 10

21
CtReh7 + 12

21
Re2h10 + 3ReBMh6

(1+Bh)3

[
19

80
+ 1

16
Pr

+Bh

(
19

80
− 7

240
Pr

)]}
+ 3ε2WeReh5

{
8

5
(∂xh)

2∂xxh+ 4

5
h(∂xxh)

2

+ 4

3
h∂xh∂xxxh+ 10

63
h2∂xxxxh

}
. (9.29)

Finally, the second-order evolution equation for the free surface reads

∂th+ ∂x
(
q(0) + εq(1) + ε2q(2)

)= 0, (9.30)

which fully agrees with the second-order Benney equation (BE) (5.13). Hence, the
full second-order model fully resolves the behavior close to the instability threshold.

However, as shown in Chap. 5, the BE suffers from a very serious drawback as
it exhibits an unphysical finite-time blow up behavior at some Reynolds number,
Re − Rec > 1. Hence, the BE is necessarily restricted close to criticality, i.e., for
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Re− Rec up to an O(1) value. It is then essential that any reduced model obtained
from the full second-order model not suffer from the drawback of the BE. For this
purpose the reduced model should have a higher degree of complexity than the BE
in (9.30) and should consist of at least two or more equations. But at the same time,
it should be a lower degree of complexity than the full system having nine unknowns
in (E.8a)–(E.8i). Further, it should fully resolve conditions near criticality and hence
not only correct all critical quantities but also give the BE with an appropriate gra-
dient expansion, much like the full second-order model does. Finally, the reduced
model should also include the second-order viscous and thermal effects.

9.4.2 Reduction of the Full Second-Order Model

To render these arguments explicit, let us start the reduction procedure by consid-
ering the projections of the velocity and temperature fields given by (9.23) and
(9.25). The corrective fields si and ti correspond to polynomials of increasing de-
gree and, hence, they exhibit increasingly abrupt variations. Therefore, viscosity
and thermal diffusivity will tend to damp them. This can be shown, as was done
in Sect. 6.9 for the isothermal case, by linearizing the full second-order model
(E.8a)–(E.8i) around the Nusselt flat film solution, assuming no spatial dependence
of the perturbations, i.e., by setting their wavenumber equal to zero. With this hy-
pothesis, dh/dt = 0, and the film thickness is constant. Further, both systems for
(q, s1, s2, s3) and (θ, t1, t2, t3) are decoupled and by writing q = 1/3+ εq̃ , si = εs̃i ,
θ = (1 + εθ̃)/(1 + B), ti = εt̃i with ε� 1, one obtains two linear systems in the
form

δ
dV

dt
=AV, Prδ

dW

dt
= BW, (9.31)

where V = (q̃, s̃1, s̃2, s̃3)
t , W = (θ̃ , t̃1, t̃2, t̃3)

t and A and B are two square matrices
of dimension 4× 4. The eigenvalues of A and B are −190.8, −87.7, −22.3, −2.47
and −267.3, −63.0, −22.2, −2.47, respectively. Therefore, there is a large gap be-
tween the least stable (largest) eigenvalues and the other eigenvalues. The spectra
are hence well separated and the perturbations associated with the eigenvalues far
from zero are quickly damped. The evolution of the flow in the limit of long waves is
therefore dominated by the eigenvectors corresponding to the eigenvalues closest to
zero. These are (q̃, s̃1, s̃2, s̃3)

t = (−1.00,1.33×10−2,−1.38×10−4,2.22×10−7)t

and (θ̃ , t̃1, t̃2, t̃3)
t = (0.976,−0.219,8.08× 10−3,7.52× 10−4)t . In both eigenvec-

tors, the coefficients corresponding to the corrections s̃i and t̃i are negligible except
for t̃1 which is, however, four times smaller than the coefficient corresponding to θ̃ .
Then, even if nine amplitudes, h, q , θ , si and ti , 1 ≤ i ≤ 3, are needed to describe
the dynamics of the flow at second order, only q , h and θ will play a significant role
and the other ones will be virtually slaved to q , h and θ , at least for some range
of Reynolds and Péclet numbers. Therefore, it seems that at least in principle it is
possible to obtain a reduced model in terms of h, q and θ only, reproducing reliably
the dynamics of the film up to moderate Reynolds and Péclet numbers.
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Let us now consider the two residuals corresponding to the parabolic velocity
profile Rq(F0) and to the linear temperature distribution Rθ (G0). In these two
residuals, the fields si and ti appear through inertia terms involving their space and
time derivatives or through products with derivatives of h or q , which are terms of
O(ε2). Therefore, the fields si and ti can be eliminated at second order provided
explicit expressions of them as functions of h, q and θ and their derivatives are
available at first order. Such relations can easily be obtained if we drop all second-
order terms from residuals Rq(Fi) and Rθ (Gi) (i = 1,2,3) and then solve for si
and ti . We get

s1 = 3εRe

(
1

210
h2∂tq − 19

1925
q2∂xh+ 74

5775
hq∂xq

)
+ 1

40
εMh2∂xθ, (9.32a)

s2 = 3εRe

(
2

5775
q2∂xh− 2

17325
hq∂xq

)
− 299

53760
εMh2∂xθ, (9.32b)

s3 = 5

3584
εM h2∂xθ, (9.32c)

t1 = 3εPe

[
1

15
h2∂t θ + 133

5760
h(θ − 1)∂xq + 73

960
hq∂xθ

]
, (9.32d)

t2 = 3εPe

[
− 111

22400
h(θ − 1)∂xq + 79

11200
hq∂xθ

]
, (9.32e)

t3 = 3εPe

[
1

3150
h(θ − 1)∂xq − 1

1050
hq∂xθ

]
. (9.32f)

Substituting these expressions into the first residuals of the momentum and energy
equations Rq(F0) and Rθ (G0), corresponding to a parabolic and a linear weight,
respectively, and making use of the kinematic equivalence ∂th=−∂xq yields

3εRe∂tq = 5

6
h− 5

2

q

h2
+ 3εRe

(
9

7

q2

h2
∂xh− 17

7

q

h
∂xq

)
− 5

6
εCth∂xh− 5

4
εM∂xθ

+ ε2
[

4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+ 9

2
∂xxq

]
+ 9ε2Re2K[h,q]

+ 3ε2MReKM [h,q, θ ] + 5

6
ε3Weh∂xxxh, (9.33a)

3εPe∂t θ = 3
(1− θ −Bhθ)

h2
+ 3εPe

[
7

40

(1− θ)

h
∂xq − 27

20

q

h
∂xθ

]

+ ε2
[(

1− θ − 3

2
Bhθ

)(
∂xh

h

)2

+ ∂xh∂xθ

h
+ (1− θ)

∂xxh

h
+ ∂xxθ

]

+ 3ε2Pe
{
3ReKθq [h,q, θ ] + 3PeKθ [h,q, θ ] +MKM

θ [h,q, θ ]
}
,

(9.33b)
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where K, KM , Kθq , Kθ and KM
θ contain the second-order inertia terms introduced

by the corrections to the flat film solution, namely si and ti given in Appendix E.5.
K contains terms of the momentum equation produced by the advection of the first-
order corrections of the velocity profile as in isothermal conditions (see (6.83)). KM

denotes the terms of the momentum equation associated with the Marangoni flow
produced by the temperature gradient at the free surface. Similarly, Kθ contains
terms originating from the averaged energy equation through the advection of the
first-order corrections of the temperature profile (t1, t2, t3). The terms contained in
Kθq and KM

θ originate from the advection of the linear flat-film temperature distribu-
tion by the first-order corrections of the velocity profile induced by the deformation
of the free surface and the Marangoni flow, respectively.

Although the explicit expressions of K, Kθq , Kθ , KM and KM
θ are complicated

and involve time derivatives (see Appendix E.5), they can be drastically simplified
by using the relations provided by the zeroth-order flat film solution:

q = h3

3
+O(ε) and θ = 1

1+ Bih
+O(ε). (9.34)

In fact, as shown for the isothermal case in Sect. 6.9, the second-order terms ap-
pearing in (9.33a), (9.33b) do not have a unique formulation since a large number
of asymptotically equivalent expressions is possible via the expressions in (9.34)
(note, however, that the full second-order model (E.8a)–(E.8i) is unique). Hence,
we do not end up with a single three-field model fully compatible with the second-
order BE (9.30) but with a whole family of such models.

Nevertheless, even if all of them are asymptotically equivalent, they might not
necessarily behave in the same manner. In isothermal conditions, for instance, the
branch of solitary wave solutions to (9.33a), with KM = 0 and K given by (E.9a),
shows a turning point (Sect. 6.9.1). As earlier noted, this unphysical behavior is re-
lated to the high-order nonlinearities present in (E.9a). The second-order corrections
in nonisothermal conditions, as given in Appendix E.5, also possess such high-order
nonlinearities, suggesting that the corresponding branch in nonisothermal condi-
tions will have the same kind of unphysical catastrophic behavior. However, like in
the isothermal case, we can apply a regularization procedure that reduces the order
of nonlinearities and prevents singularities, so that a model that also accounts accu-
rately for the drag-inertia regime can be obtained, i.e., a model valid in the widest
possible range of both Reynolds and Péclet numbers. The aim then is to elucidate
the interaction between the H- and S-modes in the widest possible range of these
parameters.

9.4.3 Padé-Like Regularization

We shall extend the Padé-like regularization procedure developed in Sect. 6.9.2 to
the nonisothermal case. Let us first consider the residual Rq,0 =Rq(F0) from (9.5a)
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obtained by averaging the momentum equation with weight F0, which can be writ-
ten as R(0)

q,0+R(1)
q,0+R(2),η

q,0 +R(2),δ
q,0 , where the numbers in the superscripts refer to

the different orders in the gradient expansion. In addition, we separate the second-
order terms into those having a viscous origin (superscript η) from those accounting
for the convective acceleration induced by the departures of the velocity profile from
the parabolic shape, including here the Marangoni effect (superscript δ). So Rq,0 is
sought in the form G−1F , where G is now simply a function of h, q , θ and their
derivatives, and F is reduced to R(0)

q,0 +R(1)
q,0 +R(2),η

q,0 , i.e., the residual obtained
by assuming a parabolic velocity profile (i.e., (9.33a), (9.33b) with all K terms set
to zero). Formally, the regularization factor has the same form as in the isothermal
case (see (6.88)):

Gq =
(

1+ R(2),δ
q,0

R(1),δ
q,0

)−1

, (9.35)

with

R(1),δ
q,0 = 3εRe

(
2

5
∂tq − 18

35

q2

h2
∂xh+ 34

35

q

h
∂xq

)
, (9.36)

R(2),δ
q,0 = −6

5
ε2Re

(
3ReK+MKM

)
, (9.37)

where K and KM are given explicitly in Appendix E.5. An asymptotically equivalent
expression for Gq can be found using the zeroth-order expressions (9.34) and the
kinematic equivalence ∂t ≡ −h2∂x +O(ε) that applies to the three variables h, q
and θ . Therefore, ∂xt θ in KM is asymptotically equivalent to ∂x(−h2∂xθ)+O(ε2).
We then obtain

R(1),δ
q,0 = −2

5
εReh4∂xh+O

(
ε2),

R(2),δ
q,0 = ε2Re2

175
h7(∂xh)

2 − 3ε2MRe

(
1

84
h3∂xh∂xθ + 1

6080
h4∂xxθ

)
+O

(
ε3),

which, when substituted in (9.35), yields

Gq =
[

1− εRe

70
h3∂xh+ εM

(
5

56

∂xθ

h
+ 1

224

∂xxθ

∂xh

)]−1

+O
(
ε2). (9.38)

Though h cannot be zero (assuming that no dry spots are possible), ∂xh can vanish.
The last term in (9.38) will thus lead to singularity and should be avoided in its
present form. It turns out that it is not possible to obtain an expression asymptotically
equivalent to the right hand side of (E.9b) in the form of a second-order correction
of first-order inertia terms, i.e., like

KM ∝ ∂xθ

h

(
∂tq − 9

7

q2

h2
∂xh+ 17

7

q

h
∂xq

)
, (9.39)
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due to the presence of the last two terms in (E.9b), 1
48h

2∂xt θ and 15
224hq∂xxθ . Hence,

the closest form to (9.39) asymptotically equivalent to (E.9b) is

KM = 5

56

∂xθ

h

(
∂tq − 9

7

q2

h2
∂xh+ 17

7

q

h
∂xq

)
+ 1

224
qh∂xxθ. (9.40)

Expression (9.40) will be used hereinafter.
To achieve a maximum reduction of the order of nonlinearities, Gq is finally

rewritten in terms of the local slope ∂xh and the local Reynolds number 3Req (de-
fined first in Sect. 5.4):

Gq =
(

1− 3

70
εReq∂xh+ εM

5

56

∂xθ

h

)−1

. (9.41)

As far as the averaged energy balance (9.33b) is concerned, its regularization
appears to be very cumbersome because of the coupling between the different
physical effects (momentum and energy advections, free-surface deformations and
Marangoni effect). In fact, for the second-order inertia and thermocapillary terms
represented by Kθ , Kθq and KM

θ (induced by the deviations of the velocity and
temperature profiles from the Nusselt flat film solution), it has not been possible to
obtain asymptotically equivalent formulations analogous to (9.40), if the tempera-
ture field is assumed to be slaved to the free surface temperature θ only. This failure
suggests that we should try to describe the temperature field by allowing at least the
first correction t1 to θ , to have its own dynamics. Notice that we already reached
the same conclusion from the result of the linear eigenvalue problem associated
with (9.31). However, for the sake of simplicity, we will not extend here the model
to include the additional field t1. Instead, Kθq , Kθ and KM

θ will be simply neglected.
The argument supporting this option is twofold: (i) there is still consistency with the
gradient expansion at second order since the interfacial temperature is coupled to
the local flow rate through its gradient only which is of O(ε); (ii) other limitations
intrinsic to the energy equation will prevent in any case the extension of the range
of validity of any of its regularized forms (see Sect. 9.6).

In conclusion, we only apply the regularization procedure to the momentum
equation (9.33a) to ensure, despite high-order nonlinearities, the smallness of the
second-order corrections K and KM relative to the corresponding first-order terms,
thus avoiding unphysical blow-up behaviors. The model thus has the following
form:

∂th = −∂xq, (9.42a)

3εRe∂tq = 3εRe

(
9

7

q2

h2
∂xh− 17

7

q

h
∂xq

)
+
(

1− 3εRe

70
q∂xh+ εM

5

56

∂xθ

h

)−1

×
[

5

6
h− 5

2

q

h2
+ ε2

(
4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+ 9

2
∂xxq

)
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− 5

6
εCth∂xh+ 5

6
ε3Weh∂xxxh

− εM

(
5

4
∂xθ − δ

224
hq∂xxθ

)]
, (9.42b)

3εPe∂t θ = 3
(1− θ −Bhθ)

h2
+ 3εPe

[
7

40

(1− θ)

h
∂xq − 27

20

q

h
∂xθ

]

+ ε2
[(

1− θ − 3

2
Bhθ

)(
∂xh

h

)2

+ ∂xh∂xθ

h

+ (1− θ)
∂xxh

h
+ ∂xxθ

]
, (9.42c)

and will be referred to hereafter as the regularized model for the heated falling film
problem. As expected, a gradient expansion of (9.42a)–(9.42c) recovers exactly the
expressions in (9.27) and (9.29) of q(1) and q(2) and hence leads to the BE (9.30).
Using the Shkadov scaling, (9.42a)–(9.42c) becomes

∂th = −∂xq, (9.43a)

δ∂tq = δ

(
9

7

q2

h2
∂xh− 17

7

q

h
∂xq

)
+
(

1− δ

70
q∂xh+M 5

56

∂xθ

h

)−1

×
[

5

6
h− 5

2

q

h2
+ η

(
4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+ 9

2
∂xxq

)

− 5

6
ζh∂xh+ 5

6
h∂xxxh−M

(
5

4
∂xθ − δ

224
hq∂xxθ

)]
, (9.43b)

Prδ∂t θ = 3
(1− θ −Bhθ)

h2
+ Prδ

[
7

40

(1− θ)

h
∂xq − 27

20

q

h
∂xθ

]

+ η

[(
1− θ − 3

2
Bhθ

)(
∂xh

h

)2

+ ∂xh∂xθ

h

+ (1− θ)
∂xxh

h
+ ∂xxθ

]
. (9.43c)

Noteworthy is that the momentum equation (9.43b) with M = 0 reduces to its
isothermal version (6.92).

In the next two sections we shall demonstrate that this model satisfies a number of
criteria, both linear and nonlinear: (i) good agreement of its linear stability charac-
teristics with Orr–Sommerfeld; (ii) its nonlinear solutions, in particular single-hump
solitary pulses, exist for the widest possible range of parameters.

The regularized model for the heat flux (HF) case is developed in Appendix E.6.
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9.5 Linear Stability

We now examine the linear stability of the Nusselt flat film solution by using the
regularized model (9.42a)–(9.42c) and we compare the results to those obtained
from the Orr–Sommerfeld eigenvalue problem of the full Navier–Stokes and Fourier
equations presented in Chap. 3. It is also instructive here to include the linear sta-
bility analysis obtained from: (i) the second-order boundary layer equations (4.5a),
(4.5b) together with the continuity equation (4.2a), the wall and free surface bound-
ary conditions (4.2f)–(4.2i), (4.2k)–(4.2m); after all, the models developed here are
based on the boundary layer approximation; (ii) the full second-order model (E.8a)–
(E.8i) to assess the depth-averaging approach leading to equations independent on
the cross-stream coordinate y; (iii) the first-order model (9.17a)–(9.17c) to assess
the influence of the second-order effects included in the regularized model—i.e.,
viscous and thermal effects as well as second-order corrections due to inertia; (iv)
the first-order BE.

For a temporal stability analysis, the dispersion relation corresponding to
(9.42a)–(9.42c) is obtained by first expressing the perturbations to the flat film so-
lution in the form of normal modes with real wavenumber k and complex angular
frequency ω:

⎛

⎝
h

q

θ

⎞

⎠=
⎛

⎝
1

1/3
1/(1+B)

⎞

⎠+ ς

⎛

⎝
1
Aq

Aθ

⎞

⎠ exp
[
i(kx −ωt)

]
. (9.44)

Expressions (9.44) are next substituted into (9.42a)–(9.42c), which are subsequently
linearized for ς � 1. For the resulting system of linear algebraic equations to have
nontrivial solutions, it is necessary and sufficient that its principal determinant be
equal to zero. Likewise, substituting (9.44), si = ςAsi exp[i(kx − ωt)] and ti =
ςAti exp[i(kx − ωt)] in (E.8a)–(E.8i) leads to the dispersion relation for the full
second-order model.

A small wavenumber expansion of the dispersion relations shows that all models
developed in this chapter lead to the following neutral stability results obtained from
the Navier–Stokes and Fourier equations (or equivalently from the boundary layer
equations) and the BE in Chaps. 3 and 5, respectively:

c≡ ωr

k
= 1, kc =

[
2

5
δ − ζ + 3BM

2(1+B)2

]1/2

, (9.45)

where c is the linear phase speed and kc is the cut-off wavenumber. The critical
condition for the instability can be obtained by setting kc = 0 in (9.45), which yields

2

5
δ + 3BM

2(1+B)2
= ζ. (9.46)

To simplify comparisons with the linear stability analysis presented in Chap. 3
obtained from full Navier–Stokes and Fourier equations, it is convenient one rewrite
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the expressions in (9.45) and (9.46) using the Nusselt scaling. As already done sev-
eral times in this monograph, the conversion from the Shkadov scaling to the Nus-
selt one simply consists by destretching the x-coordinate through the transforma-
tion (k,ω)→ κ(k,ω) and using the definition of the reduced variables, δ = 3Re/κ ,
ζ = Ct/κ , M=M/κ , where κ3 =We. Equations (9.45) and (9.46) are then

c= 1, kc = 1

We1/2

[
6

5
Re−Ct+ 3M�

2(1+B)

]1/2

, (9.47)

6

5
Re+ 3M�

2(1+B)
= Ct, (9.48)

where the film Marangoni number M� =M�Ts is based on the temperature differ-
ence across the uniform fluid layer, and �Ts = B/(1 + B) (see Sect. 2.5). Notice
that the change of scales does not affect the speed—it is equal to unity so that the
linear waves propagate with a velocity three times the averaged velocity—and does
not introduce any modifications to the coefficients of the expressions for the cut-
off wavenumber and critical condition except for the coefficient 3 along with the
Reynolds number.

The expressions for the cut-off wavenumber and criticality condition in (9.47)
and (9.48) coincide with (3.35) and (3.31) obtained from Orr–Sommerfeld and
(5.18) obtained from the BE. Note that for kc in (5.18a) we need the additional
transformation kc → kc/ε to remove ε present in (5.18a) due to the presence of ε
in the BE; for the average models on the other hand, ε is scaled away prior to the
introduction of the Shkadov scaling.

From the definitions of the different parameters in Chap. 2, one has We∝ Re−2/3,
B ∝ Re1/3 and M� ∝ Re−1/3 ∝ 1/hN. Therefore, in the region of large Re, i.e., large
film thicknesses or equivalently large flow rates, the interfacial forces due to both
the Marangoni effect and surface tension are not important compared to the domi-
nant inertia forces, and the H-mode prevails. Conversely, in the limit of vanishing
Reynolds numbers, i.e., vanishing film thicknesses or equivalently vanishing flow
rates, the inertia effects are negligible and the Marangoni effect becomes dominant,
i.e., the S-mode prevails: for small film thicknesses, the destabilizing inertia forces
are vanishing, but the destabilizing interfacial forces due to the Marangoni effect
are still present—the interfacial forces due to capillarity are always stabilizing. Also
since We∝ Re−2/3 and M�/We∝ Re1/3, from (9.47) the cut-off wavenumber tends
to zero like

√
M�/We ∝ Re1/6. The fidelity of this scaling law will be confirmed

with computations of the different models next.

9.5.1 Neutral Stability Curves

Our aim now is to decipher the neutral stability characteristics of a falling film
heated uniformly from below. We assume that the gas–liquid–solid system (physical
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Fig. 9.1 Neutral stability curves in a log–log plot for a heated falling film with Γ = 250, Ct = 0,
Pr = 7, Ma = 50 and Bi = 1 obtained from various models: OS, Orr–Sommerfeld; BL, sec-
ond-order boundary layer equations; F, full second-order model (E.8a)–(E.8i); R, regularized
model (9.42a)–(9.42c); 1st, first-order model (9.17a)–(9.17c); BE, first-order BE and (9.47). For
the region of Reynolds numbers in the figure, OS and BL are indistinguishable

properties of the gas–liquid system and wall heating conditions i.e., wall tempera-
ture) and inclination angle β are fixed, as in a real experiment, and the only control
parameter is the inlet flow rate (see Appendix D.1). Fixing the gas–liquid–solid sys-
tem and β means fixing the viscous-gravity set of parameters, Ct, Γ , Ma, Bi and Pr
(see again Appendix D.1). Therefore, we only vary the Nusselt film thickness hN or,
equivalently, the Reynolds number Re∝ h3

N.
Figure 9.1 depicts the neutral stability curves in the wavenumber–Reynolds num-

ber plane for Pr = 7, Γ = 250, Ct = 0, Ma = 50 and Bi = 1 computed with the
various models we have developed for the heated falling film as well as the Orr–
Sommerfeld eigenvalue problem. The neutral curves are given in a log–log plot,
which helps us separate them in the region Re→ 0. The parameter values are cho-
sen so that the differences between the various systems of equations can be clearly
identified; hence, the choice Bi = 1, an unrealistically large Biot number, which
amplifies the Marangoni effect. (In the derivation of the averaged models we as-
sumed Bi = O(1), but as we emphasized in Sect. 9.2, this order of magnitude can
be relaxed; for example, for the first-order model the most general order of magni-
tude assignment for this parameter would be Bi� ε2 and Bi at most of O(ε).) The
wavenumber k is obtained from the dimensional wavenumber k̄ nondimensionalized
with 1/h̄N.
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As noted earlier, as Re tends to zero, the wavenumber k given in (9.47) tends to
zero like

√
M�/We∝ Re1/6, as also shown on the bottom left corner of Fig. 9.1. As

Re increases, the first-order models (1st, BE) deviate significantly from the other
models, showing the importance of the second-order viscous and thermal effects,
as first noted in Sect. 4.3. Notice that the curve for the first-order BE is precisely
the one given by (9.47). On the contrary, the full second-order model (F) compares
very well with the boundary layer approximation (BL)—or equivalently the Orr–
Sommerfeld solution (OS), which is indistinguishable from the BL solution for the
region of Reynolds numbers in the figure—but it slightly underpredicts the neutral
wavenumber in the region of large Reynolds numbers. This discrepancy is most
likely due to the limited radius of convergence of the perturbation scheme used to
obtain the full second-order model, as is the case with any approximate method.
Notice also that for large Re, the neutral stability curves obtained with any of the
second-order models behave like k ∝ Re1/3, as shown on the upper right corner of
Fig. 9.1. This means that the dimensional wavenumber k̄ becomes independent of
the film thickness h̄N for large Re. On the other hand, at low Reynolds numbers all
models yield results in agreement with the asymptotic result (9.47). In this region
the dynamics of the flow is slaved to its kinematics, i.e., both flow rate and interfacial
temperature are adiabatically slaved to the film thickness and they depend on time
only through the dependence of the film thickness on time. This is precisely the
region where the BE long wave expansion applies.

The dramatic change of slope in Fig. 9.1 with increasing Re is connected with
the transition from the drag-gravity regime at low Re to the drag-inertia regime at
moderate Re (Sect. 4.9.1). The two instability modes are closely connected with
these regimes: the thermocapillary S-mode is predominant for small Re and the hy-
drodynamic H-mode is predominant for large Re. For the conditions in Fig. 9.1 the
transition between the drag-gravity and the drag-inertia regimes occurs at Re ≈ 3 (or
equivalently δ ≈ 2.3, i.e., an O(1) value of δ as expected) and thus corresponds to
an intermediate regime where both the S- and H-modes are of same order of magni-
tude. Figure 9.1 also indicates that at the transition the full second-order model (F)
is in good agreement with the boundary layer approximation (BL), but the regu-
larized model (R) predicts a smaller neutral wavenumber (still, the agreement with
more exact models is qualitatively satisfactory). This clearly shows the limitation
of the regularized model to correctly take into account the convective heat transport
effects at the transition where the S-mode and the H-mode compete with each other.
Moreover, as we shall demonstrate in Sect. 9.6 in the nonlinear regime and for large-
amplitude waves, the regularized model fails to describe correctly the temperature
field as the Péclet number increases, in which case the convective heat transport
effects become increasingly important.

9.5.2 Growth Rate Curves

Of particular interest are also the growth rates in the range 0 < k < kc of unsta-
ble wavenumbers defined by the neutral stability curves. Figure 9.2 shows typical
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Fig. 9.2 Dispersion relations
for the growth rate as a
function of wavenumber, for
two different Reynolds
numbers obtained from the
Orr–Sommerfeld eigenvalue
problem (solid lines), the full
second-order model
(E.8a)–(E.8i) (dotted lines)
and the regularized model
(9.42a)–(9.42c) (dashed
lines). Parameter values are
given in the caption of
Fig. 9.1

growth rate curves ωi as functions of k for two different Reynolds numbers, Re= 1
and Re = 50. The curves feature a band of unstable wavenumbers in 0 < k < kc,
which contains the maximum growing wavenumber with the largest growth rate.
The figure also shows that the growth rates predicted by the regularized model
(dashed line) and the full second-order model (dotted line) are fairly close to the
growth rate obtained by the Orr–Sommerfeld eigenvalue problem (solid line), even
for the relatively large value Re= 50, where the H-mode is dominant. This demon-
strates the significance of having a model consistent at second order, as it has al-
ready been demonstrated for isothermal conditions (see, e.g., Sect. 7.1). In fact,
the second-order viscous and thermal effects are crucial for a good agreement with
Orr–Sommerfeld. Yet, the regularized model is of lower complexity than the full
second-order model—three variables instead of nine—which makes it an attractive
prototype for mathematical and numerical scrutiny. It will hence be used in the rest
of this section to investigate the influence of Bi,Ma,Pr,Γ and Ct on the neutral
curves. It will also form the basis for the computations of nonlinear solutions in
Sect. 9.6.

9.5.3 Influence of Bi,Ma,Pr,Γ on the Neutral Stability Curves

We now turn our attention to the influence of the parameters Bi,Ma,Pr,Γ on the
neutral curves. These parameters depend on the properties of the gas–liquid–solid
system and their influence is reported in Fig. 9.3 for the regularized model (9.42a)–
(9.42c). The results are for a vertical wall (Ct= 0) and are presented in logarithmic
plots, as in Fig. 9.1. Figure 9.3a shows the influence of heat transfer through the
Biot number. For Bi= 1 the influence of the Marangoni effect is large at small and
moderate Reynolds numbers. In fact, if Bi tends to zero or infinity, the free surface
temperature becomes uniform (hence independent of thickness variations so that any
perturbations on h do not affect the free-surface temperature—see also Sect. 2.5)
and the Marangoni effect is simply not an issue. For the other plots of Fig. 9.3,
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Fig. 9.3 Influence of Bi,Ma,Pr,Γ on the neutral stability curves for a film falling down a vertical
wall, obtained with the regularized model (9.42a)–(9.42c): (a) various Bi with Pr = 7, Ma = 50
and Γ = 250; (b) various Pr with Bi= 0.1, Ma= 50 and Γ = 250; (c) various Ma with Bi= 0.1,
Pr = 7 and Γ = 250; (d) various Γ with Bi= 0.1, Ma= 50 and Pr = 7. Neutral curve correspond-
ing to isothermal conditions (Ma= 0) is plotted in (c) (thick dashed line)

we choose a smaller Biot number, Bi = 0.1, which corresponds to more realistic
values as are encountered in experiments (see, e.g., Appendix D.4). Figure 9.3(b)
depicts the influence of viscous and heat diffusion through the Prandtl number on
the neutral stability curves. Clearly, the Prandtl number has little influence for large
Re, i.e., when the H-mode predominates, whereas the curves are strongly affected
by the Prandtl number for Re=O(1), i.e., when the S-mode is of the same order of
magnitude with the H-mode. After all, the origin of the S-mode is the gradient of
temperature at the interface. This gradient may be weakened by the transport of heat
from the troughs to the crests of a free surface deformation due to the motion of the
fluid, a process that is intensified with large Prandtl numbers (see also Sect. 9.6.3).

Figure 9.3(c) depicts the influence of the thermocapillary effect through the
Marangoni number. As expected, for Ma = 0, we recover the classical H-mode,
with the corresponding curve starting from the origin. For Pr = 7, increasing the
Marangoni number increases the range of unstable wavenumbers especially at low
Reynolds numbers where the Marangoni effect is predominant (S-mode). If Re is
sufficiently large, the hydrodynamic H-mode predominates and the thermocapillary
effect as measured by Ma should not modify significantly the cut-off wavenumber,
and the neutral curves should all converge to the curve for Ma = 0. Therefore, the
small disparity of the curves as compared with the curve for isothermal conditions
(thick dashed line) is a consequence of the increased inaccuracy of the regularized
model as the Reynolds number increases.
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Fig. 9.4 Influence of the
Marangoni number on the
neutral stability for an
inclined plate forming an
angle β = 15° with the
horizontal direction with
Γ = 250, Pr = 7 and Bi= 1,
and computed with the
Orr–Sommerfeld eigenvalue
problem (solid lines) and the
regularized model
(9.42a)–(9.42c) (dashed
lines)

Finally, Fig. 9.3(d) shows the influence of the Kapitza number Γ on the neu-
tral stability curves. Decreasing the value of Γ increases the range of unstable
wavenumbers. It is precisely because we wish to show the effect of viscous dis-
persion and thus emphasize the differences between the different models, that
Γ (= 250) has been deliberately chosen relatively small as compared to usual values
(Γ = 3175 for water at 18°C).

9.5.4 Influence of Inclination

For inclined walls the critical condition (9.48) shows that there is a critical value
of the Reynolds number, denoted Rec, above which the Nusselt flat film solution is
unstable, first given in (3.31). Recall that if the critical condition is rewritten using
the viscosity-gravity scaling introduced in Chap. 2, with Re = h3

N/3, M = Ma/h2
N

and B = BihN, that is,

2

5
h3

N +
3BiMa

2hN(1+ BihN)2
= Ct, (9.49)

it can have two real and positive roots in terms of hN for certain parameter values.
The film is then stable for thicknesses between the two roots and unstable other-
wise, with the small thickness root corresponding to the thermocapillary S-mode
and the large thickness root corresponding to the hydrodynamic H-mode. This is
also illustrated in Fig. 9.4 for a plate inclined at an angle β = 15° with respect
to the horizontal direction. The parameters are identical to those in Fig. 3.2. For
Ma < 15.11 two distinct unstable regions are observed. Noteworthy is the excellent
agreement of the curves corresponding to the regularized model (9.42a)–(9.42c)
with Orr–Sommerfeld in the vicinity of the two thresholds resulting precisely from
a correct representation of the instability threshold. The agreement persists even far
from the threshold, a direct consequence of taking into account the second-order
terms in the formulation.
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9.6 Solitary Waves

In the previous section we showed that the regularized model compares well in the
linear regime with the Orr–Sommerfeld eigenvalue problem for a wide range of
parameters. Hence, the regularized model satisfies the first of the two criteria listed
at the end of Sect. 9.4.3.

In this section, we shall seek traveling wave solutions of the regularized model.
We restrict our attention to single-hump solitary waves. After all, by now we know
that for isothermal films the long-time evolution is characterized by a train of
soliton-like coherent structures each of which resembling the infinite-domain soli-
tary pulses. Therefore, by analogy with the isothermal case, we anticipate that for the
nonisothermal problem, the long-time evolution is also dominated by solitary waves.

Before we examine traveling waves, it is worth noting that all parameters of the
regularized model written in terms of the Shkadov scaling (9.43a)–(9.43c) vanish as
the Reynolds number tends to zero except for M, which diverges: With Re∼ h

1/3
N ,

Re → 0 or hN → 0 implies We = Γ/h2
N →∞ and hence δ, ζ, η→ 0. Therefore,

for low flow rates the terms multiplied by these parameters can be neglected such
that (9.43b) and (9.43c) become

q = h3

3
(1+ ∂xxxh)− M

2
h2∂xθ, θ = 1

1+Bh
= 1−Bh+O

(
B2), (9.50)

where we have retained the leading-order term in θ involving B . The mass conser-
vation equation (9.43a) then gives

∂th+ ∂x

[
h3

3
(1+ ∂xxxh)+ MB

2
h2∂xh

]
= 0, (9.51)

where MB ∝ Re−1/9, which diverges as Re→ 0. By rescaling x and t in (9.51) as

∂th= φ∂τ , ∂x = φ∂ξ ,

the coefficients of the Marangoni and surface tension terms are equal when φ =
(MB/2)1/2 and the equation becomes:

∂τ + ∂ξ

[
h3

3

(
1+ φ3∂ξξξ h

)+ φ3h2∂ξh

]
= 0

(suggesting a universal behavior for h in the region of hN → 0). Hence, in the region
of small Reynolds numbers where the S-mode dominates over the H-mode, the sta-
bilizing surface tension terms are still present (after all both Marangoni and capillary
forces are surface forces), as they should be for the formation of nonlinear structures.

It can be shown that the homoclinic solutions to (9.51) blow up when MB tends
to infinity, i.e., the Reynolds number tends to zero [139]. However, this does not
correspond to a true singularity formation: in this region of small flow rates and
hence small film thicknesses, the film is expected to form isolated drops separated by
very thin layers of fluid for which forces of nonhydrodynamic origin such as van der
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Waals forces not included here may become important. Such forces, if stabilizing,
are expected to arrest the singularity formation observed for the homoclinic orbits in
the region of low Reynolds numbers. Inversely, if Re tends to infinity, both M and
MB tend to zero and the velocity and temperature fields are decoupled in this limit.
Therefore, at large Reynolds numbers, the shape of the waves should be unaffected
by the Marangoni effect. In this region, the H-mode dominates over the S-mode.
These two limits will enable us to elucidate the influence of Reynolds number on
the shape of the waves.

In what follows, we discuss in detail the properties of the solitary wave solutions
of the system (9.43a)–(9.43c) as well as the influence of the different physical effects
and different parameters, primarily Re, Pr and Ma, on these waves. In all cases the
wall is taken to be vertical.

9.6.1 Bifurcation Diagrams

Consider traveling wave solutions propagating at constant speed c and hence sta-
tionary in the moving frame of coordinate, ξ = x − ct . In this frame, the set of
equations (9.43a)–(9.43c) can be written in a dynamical system form as

dU
dξ

= F(U; δ, ζ, η,B,M, q0), (9.52)

where U = (h,h′, h′′, θ, θ ′)t . The constant q0 is the mass flux under the wave in
the moving frame and is obtained after one integration of the mass conservation
equation: −ch′ + q ′ = 0 or q0 = q − ch. For solitary pulses, the Nusselt flat film
solution, h = 1, should be approached far from the solitary humps which gives,
q0 = 1/3− c. Since the speed of the waves is larger than the maximum velocity in
the liquid, q0 is a negative constant.

As in previous chapters, single-hump solitary wave solutions, whose phase-plane
analogues are referred to as principal homoclinic orbits [103], are computed using
the continuation software AUTO-07P with the HOMCONT option for tracing ho-
moclinic orbits [79]. Their numerical construction also involves periodic boundary
conditions in an extended finite domain. We focus on positive-hump waves. In fact,
much like the isothermal falling film (see Sects. 7.3.1 and 8.3) negative-hump waves
are unstable in time-dependent computations.

In Fig. 9.5 we present the maximum amplitude and speed of the single-hump
solitary wave family of the regularized model as function of Re for two different val-
ues of Prandtl and Marangoni numbers. For comparison we also show in the same
figure the wave family corresponding to isothermal flows (Ma = 0). In all compu-
tations in this section we take the values Γ = 250 and Bi= 0.1 for the Kapitza and
Biot numbers, respectively. The Kapitza number is chosen much smaller than its
value for common liquids in order to clearly demonstrate the role of the second-
order viscous dispersion and inertia effects. Notice that for a given point (Ma,Re)
in Fig. 9.5, the reduced parameters (δ, η, M,B) can be obtained easily with the help
of Appendix D.3.
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Fig. 9.5 (a) Speed and (b) maximum height of single-hump solitary wave solutions of the regu-
larized model (9.43a)–(9.43c) with Ct = 0, Bi = 0.1 and Γ = 250. The transition from the drag–
gravity to the drag-inertia regime occurs for Re≈ 1.5–2 corresponding to δ ≈ 1–1.4, in agreement
with Chap. 4

The single-hump solitary wave solution branch obtained from (9.43a)–(9.43c)
seems to exist for all Reynolds numbers, i.e., it does not present any turning points
with branch multiplicity connected to finite-time blow up behavior as occurs with
the BE. Different reduced second-order formulations (Sect. 9.4) were also tested
(not shown) and their solitary-wave solution branches do exhibit turning points.
Hence, the regularized model in (9.43a)–(9.43c) satisfies also the second of the two
criteria listed at end of Sect. 9.4.3, and thus it is a well-behaved low-dimensional
model.

Increasing the Marangoni number leads to larger amplitudes and speeds, show-
ing that the S-mode reinforces the H-mode. This effect is more pronounced at low
Reynolds numbers (M being proportional to Re−4/9). This is also consistent with
the linear stability analysis presented in the previous section which suggests that the
Marangoni effect destabilizes the film for all Reynolds numbers, but its influence
is enhanced in the region of small Reynolds numbers. On the other hand, in the re-
gion of large Re the different curves merge with the isothermal one. In this region
the destabilizing interfacial Marangoni forces are weaker compared to the dominant
inertia forces.

The effect of the Prandtl number is more subtle. At low Reynolds numbers,
Re � 0.5, larger values of Pr seem to slightly favor instability, whereas for any larger
Re, we have the opposite effect. To elucidate the influence of the Prandtl number, we
shall compute the streamlines and isotherms in the moving frame by calculating the
velocity and temperature fields from their respective polynomial expansions and by
utilizing the first-order approximation of the corrections si and ti in (9.32a)–(9.32f).
The second-order corrections for both fields can also be computed from the residu-
als associated with the corresponding test functions followed by an inversion of the
resulting linear system. Nevertheless, due to the complexity of this procedure, we
assume here that the velocity and temperature fields are described sufficiently accu-
rately by their representation at first order, at least for the purposes of a qualitative
discussion. In all computations the Marangoni number has been fixed at Ma= 50.
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Fig. 9.6 Streamlines (above)
and isotherms (below) of a
solitary wave in its moving
frame, ξ , normalized with the
length of the computational
domain L. The wave is
computed for the point
(Re,Ma)= (0.01,50) in
Fig. 9.5 and for Pr = 7. The
reduced parameter values are
δ = 0.0022, η= 0.0053,
M= 37.7 and B = 0.031.
θ represents the interfacial
temperature (dashed line).
There are 12 isotherms
separating 13 equally spaced
intervals, ranging from T = 1
on the wall to Tmin = 0.929 at
the crest of the wave

9.6.2 Drag-Gravity Regime

Figure 9.6 shows the streamlines and isotherms for Re= 0.01 of a solitary wave so-
lution in the moving coordinate, ξ = x−ct . Once again, though solitary waves have,
strictly speaking, an infinite wavelength numerically, and as we did before in this
monograph, they are calculated in an extended periodic domain of wavelength L.
For all solutions given in the rest of this section, L= 250. Figure 9.6(b) also depicts
the free-surface temperature distribution, which is also a solitary pulse, but of rather
small amplitude for the conditions in the figure. Since the parameters Prδ, η and B

are small, the film flow evolution is well approximated by the evolution equation
for the free surface (9.51). We also have ∂yyT ≈ 0 so that the temperature field is
nearly linear, T ≈ 1−By. Therefore, the isotherms are practically aligned with the
wall. Notice also from Fig. 9.6 that the interfacial temperature θ is almost uniform
since B � 1. For the small Reynolds number used, inertia effects play little if any
role at all and the large-amplitude solitary hump for the free surface (with a large
phase speed c = 2.35) is due to the Marangoni effect. This large-amplitude wave
then exhibits a recirculation zone (turning clockwise), which in turn transports the
“trapped” fluid mass downstream (and in that respect solitary pulses carry mass).
This behavior induced by the Marangoni effect is very similar to that triggered by
inertia for larger Reynolds numbers as we will see.

The streamlines and isotherms computed for Re = 1 are shown in Fig. 9.7. For
Pr = 1, the isotherms are nearly aligned (with both B and Prδ being relatively
small). Conversely, at Pr = 7, the isotherms are deflected upward by the motion of
the fluid in the crest. Therefore, the minimum of temperature (which is achieved
at the crest of the solitary wave) is not as low as for Pr = 1 and consequently the
Marangoni effect is reduced, which in turn reduces the amplitude and the phase
speed of the wave. Hence, with this mechanism the transport of heat by convection
has a stabilizing effect in the drag-gravity regime.



9.6 Solitary Waves 339

Fig. 9.7 Streamlines (above) and isotherms (below) for the point (Re,Ma) = (1,50) in Fig. 9.5
and for two different values of Pr. The reduced parameter values are δ = 0.61, η = 0.041,
M = 4.87 and B = 0.14. (a) Tmin = 0.765; (b) Tmin = 0.8. In all cases, a total of 12 isotherms
separating 13 equally spaced intervals between T = 1 and T = Tmin are shown

9.6.3 Drag-Inertia Regime

For larger Reynolds numbers, corresponding to the drag-inertia regime, inertia be-
comes increasingly dominant, and the speed and amplitude of solitary waves in-
crease substantially, as shown in Fig. 9.5. As a consequence, a recirculation zone
can now be present inside the main solitary hump, much like in Sect. 9.6.2, but
there the large amplitude and speed of the solitary wave and hence recirculation
zone in the main hump were due to the action of the Marangoni effect.

Streamlines computed for Re= 2 and Re= 3 shown in Figs. 9.8 and 9.9, respec-
tively, do exhibit such recirculation zones, turning clockwise. These zones suggest
the existence of two stagnation points at the free surface, one at the rear and one at
the front of the hump. Again, these recirculation zones transport the “trapped” fluid
mass downstream. On the other hand, for Re= 2 and Ma= 0, there is no recircula-
tion zone, so the recirculation zone for Ma= 0 should be born somewhere between
Re= 2 and Re= 3.

As noted earlier, the presence of a recirculation zone seems to be related to the
amplitude of the waves. This then would suggest that since we have a recirculation
zone for Re = 3 and Ma = 0 we should have one also for Re = 2 and Ma = 50,
since, as we see from Fig. 9.5 the two cases have roughly the same amplitude and
speed. It turns out that is indeed the case.

Hence, in the presence of the Marangoni effect recirculation zones appear for
smaller Re. This early appearance is also connected with the abrupt increase of
amplitude and speed of the solitary waves corresponding to the transition from the
drag-gravity to the drag-inertia regimes occurring for smaller values of the Reynolds
number if the Marangoni effect is present, as shown in Fig. 9.5.

The role of the Marangoni effect coupled to that of heat transport is pretty intri-
cate. Consider the case Re= 3 depicted in Fig. 9.9. A recirculation zone is already
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Fig. 9.8 Streamlines (above) and isotherms (below) for the point (Re,Ma)= (2,50) in Fig. 9.5.
The reduced parameter values are δ = 1.42, η= 0.056, M= 3.58 and B = 0.18. (a) Tmin = 0.591;
(b) Tmin = 0.429 and Tmax = 1.26

Fig. 9.9 (a) Streamlines (above) and isotherms (below) for the point Re = 3. The reduced pa-
rameter values are δ = 2.33, η = 0.067, M = 2.99 and B = 0.21 with Tmin = 0.414. Black dots
represent stagnation points; (b) same parameter values for δ, η as in (a) but for the isothermal case

present at Ma= 0 as shown in Fig. 9.9(b). When the wall is heated, Fig. 9.9(a), heat
is transported upward at the front, which then seems to deflect upward the stream-
lines there; this in turn is accompanied by an upward displacement of the front stag-
nation point. At the same time, the temperature minimum Tmin occurs at the front
stagnation point (this, however, is not always the case; see, e.g., Fig. 9.8(a)) and
because this point is now higher it enhances the thermocapillary flow, which in turn
increases the amplitude and speed of the wave. But as a consequence of the increase
of the amplitude of the wave, the recirculation zone is enhanced, which helps even
more the transport of heat at the front (with Pr the coupling parameter).
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Notice also that the influence of the Marangoni effect from Fig. 9.9(b) to
Fig. 9.9(a) is noticeable due to the relatively small value Re= 3, which is still at the
transition between the drag-gravity and drag-inertia regimes: increasing Re dimin-
ishes the influence of the Marangoni effect and eventually the H-mode dominates
the S-mode (see Fig. 9.5).

Figure 9.8 indicates that, given a recirculation zone, increasing Pr (for a fixed
Re) enhances heat transport due to enhanced mixing of the temperature field, which
in turn contributes to homogenizing the temperature field (this point is further dis-
cussed in Sect. 9.6.4). This then reduces the temperature gradients at the free sur-
face, and hence the Marangoni effect, which in turn reduces the amplitude of the
wave (actually a small effect for the value Re = 2 in Fig. 9.8), and much like with
the drag-gravity regime (see end of Sect. 9.6.2), the transport of heat by convec-
tion has a stabilizing effect in the drag-inertia regime also. This observation is
also consistent with the linear stability analysis in Sect. 9.5.3. Hence, unlike the
Marangoni number, which increases the temperature gradient on the free surface,
the Prandtl number decreases these gradients. But both shift the stagnation point
toward the crest—see Figs. 9.8 and 9.9—a process that involves an intricate com-
bination of both Marangoni effect and heat transport, as noted in our discussion
above of Fig. 9.9; however, the Marangoni effect is a surface one, unlike the Prandtl
number effect, which is a bulk effect.

We also note that comparison of Figs. 9.8(a) and 9.8(b) indicates that increasing
the Prandtl number from Pr = 1 to Pr = 7 at Re= 2 enhances the cooling process of
the crest and reduces the temperature minimum from Tmin ≡ θmin = 0.591—which
appears on the surface and very close to the front stagnation point, again as a result
of enhancing the mixing of the temperature field—to 0.429. Similarly, comparing
Figs. 9.8(a) and 9.9(a), we notice that Tmin ≡ θmin drops from to 0.591 to 0.414
when Re increases from 2 to 3 at Pr = 1 (in both cases mixing is enhanced due to
increasing the Péclet number).

Finally, much as in the isothermal case, where viscous dispersion effects deter-
mine the amplitude and frequency of the radiation oscillations in front of the free
surface pulses (Sect. 4.3), for the heated film case the second-order viscous and
thermal effects are important for the amplitude and frequency of the radiation oscil-
lations in front of the free surface and interfacial temperature pulses.

9.6.4 Limitations Related to the Surface Temperature Equation

For R = 2 and Pr = 7, the temperature maximum is Tmax = 1.216 and is no longer
located at the wall (not shown). At larger values of the Reynolds number, negative
values of the dimensionless temperature appear in the fluid. Turning back to dimen-
sional quantities, this would lead to a temperature in the fluid that can be locally
higher than the temperature of the wall or lower than the temperature of the air.
This is physically unacceptable, as the temperature everywhere in the fluid should
be bounded between the wall and air temperatures.
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To understand the appearance of this unphysical behavior when a recirculation
zone is present, i.e., for large-amplitude waves, let us consider the influence of the
heat transport convective effects in the high-Péclet number limit, Pe = RePr � 1.
More specifically, since the heat transport convective effects are multiplied by εRePr
(e.g., energy equation (9.6c)) we are interested in the case εRePr of O(1) or larger
(recall, however, from Sect. 9.2 that strictly speaking εRePr is at most of O(1)). For
such values of εRePr we start seeing the formation of a thermal boundary layer at the
front stagnation point and also part of the interface associated with the recirculation
zone [279]. If εRePr is small, we do not have to worry about boundary layers, even
though we might have a recirculation zone. This is precisely the case in Fig. 9.6.
Conversely, if εRePr is of O(1) or larger but we do not have a recirculation zone,
then again we have no thermal boundary layers.

Therefore, the presence of a recirculation zone and εRePr of O(1) or larger, is
a sufficient and necessary condition for the initiation of the formation of thermal
boundary layers at the front stagnation point of a solitary pulse. In Sect. 9.6.3, we
observed that the presence of a recirculation zone is connected with the amplitude
of the solitary wave: In general, large-amplitude pulses have recirculation zones and
small ones do not. Therefore, for a fixed Re increasing Ma increases the amplitude
of the pulses (see Figs. 9.5 and 9.9) and promotes the creation of recirculation zones
and hence the formation of thermal boundary layers (again provided we have εRePr
of O(1) or larger).

The boundary layer becomes fully developed when εRePr � 1. In this case,
transport of heat via molecular diffusion can be neglected except in the (fully de-
veloped) boundary layer of thickness (εRePr)−1/2. Hence, cross-stream convection
associated with the recirculation zone dominates diffusion; The temperature field
in the recirculation zone is simply transported by the flow, and the streamlines are
identical to the temperature contours (see, e.g., [252, 278]). This means that the tem-
perature along each streamline is constant due to the strong advection mixing. The
temperature field becomes a passive scalar and is simply transported by the flow.
Hence, within the recirculation zone the isotherms are closed curves, as shown in
Fig. 9.8(b) (the isotherms are not identical to the streamlines in the figure as the
Prandtl number is not sufficiently large; besides, for the conditions in the figure our
model cannot capture accurately the temperature field). Consequently, the hypothe-
sis ∂yT � ∂xT necessary for the derivation of the models would be violated in these
regions.4

At the same time we have neglected in the averaged heat balance (9.43c) the
transport of heat due to the Marangoni flow, KM

θ (see (9.33b)). Though these terms
are formally of second order, they could be quite significant due to the enhance-
ment of the Marangoni flow by the hydrodynamics. This might also contribute to

4Notice, however, that the presence of recirculation zones does not invalidate the assumption u� v

necessary for any boundary layer approach. In fact, the computed streamlines correspond to the
envelopes of the velocity field in the moving frame, (u−c, v). Recirculation zones indicate regions
where v � U , e.g., points where the flow returns with U = 0 and the stagnation points where
U = v = 0. However, in the laboratory frame, these regions have u= c� v so that the conditions
u� v in the laboratory frame and v�U in the moving frame can both hold at the same time.
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the appearance of negative temperatures. There are different possibilities to cure
this strong limitation of the three-equations regularized model (9.43a)–(9.43c). One
such possibility is to consider more unknowns, such as t1, for the description of
the heat transfer process in the flow. Another possibility is to relax the assumption
∂yT � ∂xT and use instead the original energy equation without any approxima-
tions. In this case the original energy equation should be solved numerically to ob-
tain the temperature distribution within the film. And another possibility explored
in [279] consists of the introduction of appropriately modified weight functions for
the energy equation prior to averaging.

Finally, notice that since the appearance of unphysical temperatures at large
Prandtl numbers is connected with the formation of recirculation zones in soli-
tary waves, the regularized model (9.43a)–(9.43c) should give results in reasonable
agreement with experiments for waves of smaller amplitude for which no recircula-
tion zones are present.

9.7 Three-Dimensional Regularized Model

The methodology outlined in Chap. 8 for three-dimensional isothermal films can
be readily used to extend the regularized model for ST in (9.43a)–(9.43c) for two-
dimensional flows to three-dimensional ones. The outcome is a four-field model for
the film thickness h, the streamwise and spanwise flow rates q and p, respectively,
and the interfacial temperature θ , which in terms of the Shkadov scaling read

∂th = −∂xq − ∂zp, (9.53a)
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Equation (9.53a) is the integral version of the continuity equation in three dimen-
sions expressing mass conservation, (9.53b) and (9.53c) are the averaged momen-
tum equations in the x and z directions, respectively, and (9.53d) is the averaged
energy equation.

9.7.1 Small-Size Domain

We first investigate the three-dimensional dynamics of a uniformly heated falling
film for low Reynolds numbers, i.e., when a one-field model, such as the BE (5.11),
can still be valid (recall that the BE is valid up to δ ∼ 1). The aim is to scrutinize
the formation of rivulet structures due to transverse thermocapillary effects [129,
219]. Results of simulations with the three-dimensional regularized model (9.53a)–
(9.53d) are shown in Fig. 9.10 (corresponding to the case of Fig. 9 in the DNS study
by Ramaswamy et al. [219]). The computational method is similar to the pseudo-
spectral scheme in a periodic domain discussed in Sect. 8.4 for three-dimensional
isothermal flows.

This simulation uses as an initial condition a simple harmonic perturbation of the
form

h(x, z,0)= 1+ 0.1 cos(kx x)+ 0.1 cos(kz z), (9.54)

as shown in Fig. 9.10(a). The wavenumbers kx = kz = 0.335 correspond precisely to
the wavenumbers chosen in Fig. 9 in the DNS study by Ramaswamy et al. [219]. The
wavenumbers corresponding to the maximum linear growth rate in each direction
are kxmax = 0.56 and kzmax = 0.53, respectively. The wavenumber kz is chosen so that
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Fig. 9.10 (a)–(g) Inception and development of a rivulet aligned with the flow computed with
(9.53a)–(9.53d) for δ = 0.15, η = 0.022, ζ = 0, M = 1.49, B = 1 and Pr = 7, correspond-
ing to Re = 1/3, Γ = 300, Ma = 10 and Bi = 1. The domain size is 2π/kx × 2π/kz where
kx = kz = 0.335. The computational mesh consists of 32× 32 points. The flow direction in each
box is from top to bottom as indicated by the arrow; (h) streamwise (Ex ) and spanwise (Ez) ener-
gies of deformations versus time

it is at most kzc/2 where kzc is the cut-off wavenumber5 or kz < kzc/2, i.e., 2kz < kzc

which then gives at least two unstable modes in the linear regime, thus allowing for

5In the long-wave expansion of the Orr–Sommerfeld eigenvalue problem in Chap. 3, the cut-off
wavenumbers in both directions are

kxc =
[
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5
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2
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−ζ + 3

2

MB
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, (9.55)
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interesting secondary flow development in the spanwise direction. Ramaswamy et
al. chose a square computational box of size 2π/kx × 2π/kz, where kx = kz which
then fixes kz = 0.335. The initial perturbation corresponds to a trough in the center
of the domain (a). Then, thermocapillarity sets in, displacing the fluid from this
hotter trough toward the surrounding colder crests. However, the growth rate of the
hydrodynamic mode is dominant at the beginning and surface waves develop (b).
As the local phase speed is proportional to the square of the local film thickness, the
crests travel faster than the troughs, leading to steepening of the wave as it grows (c).
Due to the absence of mean flow in the spanwise direction, the liquid is more easily
displaced laterally due to thermocapillarity. Hence, as time progresses the thinning
of the liquid layer persists in the trough and forms a valley surrounded by rivulets
aligned with the flow (d) (see also Introduction and Fig. 1.11). This process is similar
to the evolution of a heated thin film on a horizontal plate [156, 197]. Likewise,
the inclined film exhibits the formation of a secondary rivulet between the main
ones (e). As found in [29] for horizontal layers, a “cascade of structures” takes
place in thinner zones (g), prior to film rupture.

It should be emphasized here that the computation with the BE (5.11) compares
well with the DNS study of the full Navier–Stokes and energy equations as shown
by Ramaswamy et al. [219] up to t = 120 and then diverges at t = 146 when rupture
occurs. Beyond this time, the BE fails to properly account for the dynamics of the
flow. On the contrary, the last stage before rupture obtained by Ramaswamy et al.
with DNS at t = 153 is in excellent agreement with Fig. 9.10f. Most impressively,
our computation with the regularized model (9.53a)–(9.53d) can continue beyond
this time (up to t = 175) and reveals finer structures in the thin film region and just
prior to rupture6 (see Fig. 9.10g). It is possible that the DNS performed in [219] was
not capable of resolving the evolution of the film past t = 153 due to the choice of
the number of mesh points in the direction normal to the wall. Quite likely, with a re-
fined grid resolution, the authors would have been able to compute the evolution for
larger times. However, this would have been at the expense of computational time,
which demonstrates the significant advantage—especially for moderate Reynolds
numbers and large system sizes as considered in the next section—of working with
a model of reduced dimensionality and in terms of interfacial and averaged variables
(for instance, the time necessary for computing the case of Fig. 9.10, with an accu-
racy of 10−4 for each variable, is about one hour on a standard desktop computer).

(see (3.21a) and (3.35)) which fully agree with those obtained from the regularized model. The
wavenumber then corresponding to the maximum linear growth rate is

kimax =
kic√

2
with i = x, z.

6The computations are terminated when the film thickness reaches a “minimal thickness” of
about h ∼ 10−3 for which long-range van der Waals intermolecular forces cannot be neglected
(∼ 100 nm). Consequently, as far as the computations with the regularized model are concerned,
we describe rupture to be when the film reaches this minimal thickness. The dynamics subsequent
to rupture can only be resolved by including a disjoining pressure term in (9.53b), (9.53c) as is
typically done in thin film studies (see, e.g., [24, 237]).
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Fig. 9.11 Same as for Fig. 9.10 but for Re= 2

Figure 9.10h depicts the energy of streamwise and spanwise deformations, Ex

and Ez, given by (8.9). While Ez increases until the film ruptures, Ex increases first
and then decreases continuously, showing that the presence of rivulets damps the
evolution of hydrodynamic waves as time progresses and can eventually suppress
them altogether: for small Reynolds numbers the system is thus dominated by the
thermocapillary Marangoni effect.

Let us now increase the Reynolds number to Re= 2 and keep the other physical
parameter values, Γ , Ma, Bi and Pr, the same. The reduced Reynolds number be-
comes δ = 1.33, which now lies outside the range of validity of the BE in (5.11),
restricted up to δ � 1. The streamwise and spanwise wavenumbers are chosen as
before, i.e., kx = kz = 0.335, so that the computational domain is the same with
that in Fig. 9.10. But now since Re is different to that in Fig. 9.10, the maximum
growing wavenumbers have changed to kxmax ≈ 0.62 and kzmax ≈ 0.34, so that
kx = kz = 0.335≈ kxmax/2≈ kzmax. Hence, the wavenumber kx in the streamwise
direction is sufficiently far from the cut-off one kxc allowing for a sufficiently long
domain, which is necessary for the development of a solitary wave.

Figure 9.11 shows that the hydrodynamic H-mode quickly generates a large-
amplitude deformation (a, b) leading to a solitary-like wave with preceding capil-
lary ripples (c). However, the thermocapillary S-mode causes film rupture before
this wave fully develops. This is depicted in Fig. 9.11(d), where both components of
the energy of the streamwise and spanwise deformations, Ex and Ez, increase con-
tinuously in time but Ex < Ez and the system is still dominated by the Marangoni
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effect. A remarkable interaction between the two instability modes is observed: As
the thermocapillary flow feeds the core of the rivulet, the rivulet grows and thus the
mean film thickness at the crest increases and so does the local flow rate. Hence, the
wave profile at the crest of the rivulet does not saturate but rather follows the change
of the local Reynolds number by increasing its amplitude and its phase speed. This
process terminates at t > 620 when the film is sufficiently close to the wall for the
viscous stresses to slow down the lateral thermocapillary flow. The hydrodynamic
wave and the transverse rivulet are found to coexist over a long time before the film
ruptures.

9.7.2 Large-Size Domain

We now present large-size computations for a water film at 20°C (Γ = 3375,
Pr = 7) with a temperature difference between the vertical wall and the ambient
air of 5°C (Ma= 50) and a high transfer coefficient of 1000 W m−2 K−1 (Bi= 0.1).
The time-dependent simulations are started with white noise of maximum ampli-
tude 1/1000 relative to the flat film thickness h̄N, which is itself varied between 85
and 146 µm (i.e., for 2 < Re < 10). Aliasing is treated by applying a low-pass filter
whose optimum cut-off frequency has been found from a trial–error process which
ensures the convergence of the numerical solution. Effectively, we keep only the
first 2/3 of the Fourier modes in each direction (i.e., the 42 first modes) before each
iteration (see Appendix F.4 for details).

Figure 9.12 shows as before the formation of rivulets due to the Marangoni
effect: After the development of a parallel wave train (a), drop-like accumulation
breaks the two-dimensional wave structure into a fully developed three-dimensional
pattern (b, c), prior to rivulet-like patterns aligned with the flow (d, e). As shown
before in Fig. 9.11, the liquid then accumulates into rivulets, which increases the
local Reynolds number and fosters two-dimensional solitary-like waves of larger
amplitude and phase speed than in isothermal conditions (f).

The rivulet formation shown in Fig. 9.12 continues until rupture of the film,
whose snapshot is shown in Fig. 9.13(a). Similar rivulet patterns, but with larger
wavelength, are also found for Re = 5 (b). If the Reynolds number is fur-
ther increased to Re = 10, the flow rate is sufficiently large to prevent the for-
mation of rivulets (c) and the film behaves like in isothermal conditions (see
Sect. 8.4.3).

We can draw here a correlation between the different wave patterns shown in
Fig. 9.13 and the branches of homoclinic solutions that are plotted in Fig. 9.14 for
Ma= 50 as well as for isothermal conditions, Ma= 0: For low Reynolds numbers
and small phase speeds, i.e., in the drag-gravity regime, inertia effects are small rela-
tive to thermocapillary effects, while the opposite is true for large Reynolds numbers
and large phase speeds, i.e., in the drag-inertia regime, where inertia is dominant.
The resulting patterns plotted in Fig. 9.13 are consequently radically different. In
the drag-gravity regime, quasi-regularly spaced rivulets arise and grow up until rup-
ture (a). Meanwhile, the rivulets confine the flow in such a way that waves riding
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Fig. 9.12 Water film free surface at different times computed with the three-dimensional regular-
ized model (9.53a)–(9.53d). Parameter values are Re = 2 for Ma = 50, Bi = 0.1, Pr = 7, Ct = 0
and Γ = 3375. The domain size is 2π/kx × 2π/kz where kx = kz = 0.05. The spatial mesh is
fixed to 128× 128 points. Bright/dark zones correspond to elevations/depressions, respectively

Fig. 9.13 Wave patterns for Ma = 50, Bi = 0.1, Pr = 7 and Γ = 3375 for different Re. Times
given for (a) and (b) are close to rupture

them behave like two-dimensional solitary waves, but of higher flow rate because of
the local increase of the Reynolds number. On the contrary, no qualitative influence
of the Marangoni effect has been observed in the drag-inertia regime, at least dur-
ing the time of the computer simulations, showing that inertia fully dominates the
dynamics of the film (c). The transition between these two regimes for 4 < Re < 6
shows a complex cooperative behavior between both hydrodynamic H- and thermo-
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Fig. 9.14 Phase speed c of
homoclinic solutions (i.e.,
solitary waves) versus Re for
Ma= 50 (solid line) and
Ma= 0 (dotted line). The
letters refer to Fig. 9.13

capillary S-modes, as illustrated for Re= 5 in Fig. 9.13(b) (additional details can be
found in the study by Scheid et al. [242]).



Chapter 10
Open Questions and Suggestions
for Further Research

The fascinating dynamics of a water film flowing down a vertical plane, certainly
the most common example of falling films, easily observed on windows or in streets
during rainfalls, is not yet fully understood, despite the considerable attention and
intense scrutiny it has received for several decades now since Kapitza’s pioneering
work more than 60 years ago. The long-time evolution is dominated by a three-
dimensional wavy process, a weakly turbulent flow, characterized by the presence of
three-dimensional coherent structures which interact continuously with each other
as quasi-particles. The precise details of this regime still remain elusive. Open ques-
tions include the number per area, or “density,” of the horseshoe-like solitary waves
that structure and organize the flow, or the role of viscous second-order effects on
solitary pulse interaction, in particular coalescence or repulsion processes, espe-
cially as most previous studies have ignored viscous effects [44]. A noted excep-
tion is the recent effort in [212], which developed a coherent structure theory for
the simplified second-order model and scrutinized the effect of viscous dispersion
on solitary pulse interaction. But this study was restricted to two dimensions. The
models developed here, can reproduce not only qualitatively but also quantitatively
both the two- and three-dimensional wave dynamics. One may then expect some
decisive achievements on the understanding of the three-dimensional turbulent-like
regime in the years to come by using these models.

As far as the influence of additional effects and complexities are concerned, for
pedagogical reasons we have limited ourselves to the consideration of heated falling
films on planar substrates, which more or less corresponds to our own contributions
to the field. We have endeavored to treat and to critically revise and reexamine the
Marangoni effect as comprehensively as possible. But clearly, several problems re-
lated to heat transport and encountered in most chemical engineering processes have
not been addressed. For instance, the consequences of the coupling between the hy-
drodynamic H-mode and the thermocapillary S-mode are far from being fully under-
stood, in particular when three-dimensional flows are considered. Indeed, Chap. 9
reports a preliminary study, the “tip of the iceberg” that underlines the richness of the
problem. In fact, in most problems involving heat transfer, phase changes through
either evaporation or condensation or both, also have to be taken into account [260].

S. Kalliadasis et al., Falling Liquid Films, Applied Mathematical Sciences 176,
DOI 10.1007/978-1-84882-367-9_10, © Springer-Verlag London Limited 2012
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As far as mass transport is concerned there is a large class of problems that involve
transport of a species from a gas to a falling film. An important question in these
problems is the development of systematic ways for obtaining effective heat/mass
transport coefficients.

Another important class of falling film flows is that of reactive falling films.
Long wave theories for the problem of a falling film in the presence of an exother-
mic chemical reaction were developed in [274, 277], while the weighted residuals
methodology of Chap. 6 has been extended to the same problem in [275]. Chemi-
cal reactions, exo- or endothermic may exhibit intricate dynamics that could further
complicate the already quite complex flow features due to the underlying hydrody-
namics. As a result the studies in [274, 275, 277] were limited to a paradigmatic
model problem with first-order kinetics, with the coupling of heat to flow through
the thermocapillary Marangoni effect. Yet, another case of interest is the coupling of
the free surface deformation to chemical reactions by the solutocapillary Marangoni
effect. A step in this direction is the recent studies in [207, 251] on a nonreactive
falling film with surfactants. Of particular interest would also be the evolution of a
falling film in the presence of oscillatory or even chaotic chemical kinetics such as
the Belousov–Zhabotinskii [245] and the CDIMA reactions [16] or excitable me-
dia [181]. In fact, the recent study in [208, 209] on a horizontal reactive film with
insoluble reactive surfactants participating in a reaction described by the FitzHugh–
Nagumo prototype reveals a quite intricate evolution.

The generation of Marangoni stresses through gradients of concentrations can
also be used to increase the spreading rates of droplets deposited on hydrophobic
substrates, which is desirable in the manufacturing of chemical sprays or in mi-
croprinting/patterning (e.g., pattern replication through deposition of liquids in a
regular manner determined by the template). The resulting fingering instability at
the contact line of spreading droplets is an example of a solutocapillary instability
of thin film flows [36]. This system belongs to a wide variety of problems related to
both solutocapillary and thermocapillary Marangoni effects and where inertia is not
important. Such problems have been treated before within the framework of the lu-
brication approximation. But the methodologies outlined in this monograph should
not only be applicable when inertia is important, but also when inertia is small but
the convective terms of the concentration or energy equation become increasingly
important, i.e., when the corresponding mass or heat Péclet numbers are no longer
small (e.g., due to slow diffusion of a solute). On the other hand, the methodolo-
gies developed here should be applicable in the treatment of contact line problems
without any soluto/thermocapillary Marangoni effects but in the presence of inertia
(previous studies utilized the BE long wave expansion, e.g., [174]). We note here
that the incompatibility between a moving contact line and the no-slip boundary
condition at the wall, known as the “contact-line paradox,” remains as of yet an
open question [68, 78, 88, 89, 122, 183]. In practice, a popular but ad hoc approach
is to replace the no-slip boundary condition with a Navier slip model. As far as the
control of the fingering instability of the contact line is concerned, one approach is
to impose a surface anisotropy [143, 152].

Actually, a great variety of systems involve thin film flows in one fashion or an-
other, several of which are detailed in [61]. Some of them are related to the substrate
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Fig. 10.1 Viscous beads on the surface of a film flowing down a vertical fiber of radius R: stream-
lines in the moving frame obtained from an average model indicating the appearance of recircu-
lation zones inside the beads and experimental snapshots. The flow is excited at the inlet with a
forcing frequency f ; (a) silicon oil v100, R = 0.2 mm, h̄N = 0.52 mm and f = 4 Hz; (b) silicon
oil v50, R = 0.2 mm, h̄N = 0.64 mm and f = 8 Hz; (c) v50, R = 0.475 mm, h̄N = 0.76 mm, and
f = 7 Hz; (d) solitary pulse with hmax = 2.66 mm for v50 and R = 1.5 mm. Reprinted with per-
mission from Duprat, Ruyer-Quil and Giorgiutti-Dauphine, Phys. Fluids 21(4):042109, Copyright
2009, American Institute of Physics

geometry, for instance when the wall is corrugated, a configuration that is commonly
used to enhance heat or mass transport in the design of two-phase heat exchangers,
absorption columns using flooding and distillation trays and other chemical engi-
neering processes and devices. The coupling between the instability mechanism and
the wall corrugation is presently the subject of intense research (see, e.g., [11] and
[63] and references therein). A first shot to the problem of flow over a corrugated
substrate using the Kapitza–Shkadov approach was done in [236], while a success-
ful application of the weighted residuals method including the development of a
regularized model for this problem was done in [112].

Another geometry of interest is the flow of a film outside a cylinder [60, 136, 149,
217, 280]. When the radius of the cylinder R is comparable to the film thickness h̄N,
the hydrodynamic instability mode is coupled to a capillary Rayleigh–Plateau insta-
bility induced by the curvature of the cylinder; see Fig. 10.1. The weighted residual
methodology presented here has been successfully extended to this problem [231].
The corresponding average model for this flow has been validated experimentally
in [85]. A film coating a vertical fiber is an excellent prototype for the study of
absolute and convective instabilities [86] and formation of bound states [284, 286].
The latter studies demonstrated that a coherent structures theory of solitary pulse
solutions of the Kawahara equation is in qualitative agreement with experiments.
An interesting future research direction would be the extension of the theory to the
weighted residuals model developed in [231].



354 10 Open Questions and Suggestions for Further Research

In some applications, adsorption of the fluid to the substrate is desirable [204,
205]. Indeed, for ink jet printing and in paper coating processes, the spreading
of droplets and thin films on unsaturated porous substrates are of significance
(e.g., [267]). In civil engineering, certain coating is sometimes used to treat porous
concrete surfaces [7]. Let us also note the cases of moving solid walls, either vibrat-
ing [165, 166, 184] or rotating [64–66].

A related topic is the problem of thin films on soft deformable substrates that is
encountered, for example, in lung airways [110]. It should be emphasized that most
biological fluids present a non-Newtonian rheology and mucus flows in bronchi do
not constitute exception. An amusing example of non-Newtonian biological films
is the adhesive locomotion of snails on mucus [40]. But, the biological thin film
problem that has attracted the most interest is probably tear film dynamics because
of its importance for the contact lens industry and ophthalmology (the “dry-eye
syndrome”). Experiments have confirmed that in that case too, tear films are made
of a non-Newtonian shear-thinning fluid [272].

Non-Newtonian fluids, generally shear-thinning also, are also frequently encoun-
tered in coating processes [6, 148, 297]. The difficulties for the practitioners of the
“art of coating” include the control of the dynamic wetting line of liquid curtains
on the web, with possible air entrainment and development of laminar boundary
layers, instabilities of multilayered film flows as well as chemically induced surface
activity, contamination of the free surface and temperature variations due to rapid
evaporation, all of which could generate surface tension-driven flows. Dewetting
and fingering instabilities associated with a contact line are also frequently encoun-
tered phenomena in coating processes. A graduate-level introduction to the problem
of the fingering instability of a thin film flowing on an incline can be found in [151]
(see also [201]).

Surface patterning is a rapidly developing area of thin film applications, e.g., in
the design of microstructures at microscales for ultra miniaturized optoelectronic
devices. The basic principle is to generate self-organized patterns by applying a
spatial varying force field, either by using electric field across a dielectric thin
film [247, 285, 293] or by employing chemically patterned substrates. In the lat-
ter case, the idea is to replicate the substrate pattern on a soft material obtained after
spinodal dewetting of a polymer solution (see, e.g., [142]).

The strategy followed in the case of isothermal and heated films here should be
applicable to the flows of non-Newtonian fluids, dewetting and fingering phenomena
as well as surface patterning phenomena listed above if inertia is significant and/or
heat/mass transport convective effects are important. And more general, it should
be applicable to other configurations or geometries, which can be connected to the
“thin film” case.

One example that falls in this category is flows of liquids in a Hele–Shaw cell,
made of two rigid walls separated by a small gap. Hele–Shaw cells constitute the
simplest geometry of porous media. They are, therefore, model systems for the study
of phenomena occurring at the scale of the pores, e.g., diffusion of pollutants and
chemical reactions [77, 302]. Another reason for the enduring interest for the Hele-
Shaw cells is the existing analogy with quasi-static solidification. The “Saffman–
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Taylor instability” of a driven fluid–fluid interface is an analogue to the “Mullins–
Sekerka instability” of a solidification front [153, 157]. An example of an inertia-
driven instability in a Hele–Shaw cell, to which the methodologies detailed here can
be applied, is the Kelvin–Helmholtz instability of a gas–liquid interface [105, 225].
An interesting extension would be the inclusion of chemical reactions which affect
the fluid flow through solutal and/or thermal contributions to the density.

Another large class of problems is the long wave instability of two-phase flows,
and more general multiphase flows, of particular interest in industrial applications.
A classical example is a vapor-generating channel in which a vapor and a liquid flow
simultaneously. The relative motion of the liquid and vapor result in an additional
shear that affects the dynamics of the interface. Another example is the core-annular
flow of two liquids inside a tube, a problem that is typically found in oil extraction.
The so-called “bamboo waves” are typically observed when the viscosity of the
outer liquid is smaller than the viscosity of the inner liquid. In horizontal pipes the
generation of waves at the interface separating core and outer flows is a necessary
condition for the levitation from the wall of the core fluid, either lighter of heavier
than the lubricating outer one. Experiments suggest that inertia plays a key role
in the levitation process [130]. We believe that the strategy outlined here can be
fruitfully transposed to the core-annular flow problem.

Geophysics also offers several problems to which the methodologies developed
here can be straightforwardly applied. Amongst these we have already mentioned
torrential flows in rivers and the dynamics of roll waves frequently observed in dam
spillways (see also [43]). Roll waves can also be observed in overland flows, espe-
cially in rill flows, with a potential increase of the soil erosion [172], and in mud
flows [14]. Notice that rill bottoms may have a typical staircase geometry—as ob-
served in the Loess Plateau area of China—with a possible effect on the instability.
Rivers may carry large amounts of clay, in particular in estuaries. The resulting mud
flows are frequently pulsating and resemble roll waves in turbulent flows of clear
water [171]. Roll waves in mud flows can also be observed soon after torrential
rains in mountain streams. Induced debris flows can move stones, boulders and even
trees, with destructive power on their path. A related geophysical flow, one which
can be modeled as non-Newtonian gravitational flow, is lava flow from a volcanic
eruption. In this case heat transfer and the dependence of the rheological proper-
ties with temperature must be accounted for. Research on these problems should be
rather exciting.



Appendix A
Historical Notes

A.1 Piotr Leonidovitch Kapitza (1894–1984)

Kapitza together with his son Sergey Petrovitch Kapitza (born in 1928) conducted
the first well-controlled experiment on a falling film [141]. Kapitza’s theoretical
contribution [140] to the subject contains some innovative and pioneering ideas,
such as the averaging of the governing equations across the film thickness. The
resulting averaged equations were later on developed with great success.

However, Kapitza is better known for his experiments on intense magnetic fields,
helium liquefaction and the discovery of helium superfluidity (see Fig. A.1), for
which he earned the Nobel Prize for Physics in 1978. His pioneering work on falling
liquid films is actually minor in comparison to his contributions to low temperature
physics, high-power electronics and plasma physics, not to mention his contribu-
tions to air liquefaction and fractionation technologies (his design of a high effi-
ciency compressed gas turbo engine is still used in the large scale production of
oxygen). Yet, how Kapitza got interested in the problem of falling films is an inter-
esting story by itself [28].

Kapitza was born in 1894 at Kronstad, an island fortress near St. Petersburg.
He graduated from Petrograd/St. Petersburg Polytechnic Institute in 1919. In 1916

Fig. A.1 P.L. Kapitza (right)
and his assistant
S.I. Filimonov conducting an
experiment on helium
superfluidity at the Institute
for Physical Problems,
Moscow, 1940. Reprinted
with permission from Kapitza
Memorial Museum, Kapitza
Institute for Physical
Problems, Moscow
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he married Nadezhda Kirillovna Chernosvitova. In the years 1919–1920 he lost his
wife and two children. Their death was due to the terrible conditions following the
revolution and the civil war, augmented by the so-called Spanish influenza. This
dramatic period was overcome thanks to the encouragement of eminent colleagues
and friends like A.F. Ioffe, A.N. Krylov and N.N. Semenov, who firmly believed
in Kapitza’s brilliance for science. As member of a scientific committee, Kapitza
embarked on a trip to England in 1921, eventually ending up working on his PhD
with the eminent E. Rutherford at the Cavendish Laboratory of Cambridge Univer-
sity. He completed his doctorate in 1923 and continued working with Rutherford
for several years after that, and although the original plan was for him to stay only
over the winter of 1921, he remained in Cambridge for 13 years. In 1927 he married
Anna Alekseyevna Krylova, daughter of the earlier mentioned Krylov. The couple
had two sons, Sergey (born in 1928) who became a physicist, and Andrei (born in
1931), who became a geoscientist. In 1929 Kapitza was elected to the Fellowship of
the Royal Society.

During his time in England, Kapitza frequently returned to Russia to give sem-
inars. From 1926 to 1934 he visited Russia nearly every summer and was always
granted a return visa to come back to England, a very unusual practice at that time.
In autumn 1934, on one of his trips back to Russia, his unusual status came to an
end and his passport was seized at Stalin’s order. The reasons of Kapitza’s retention
in Russia are unclear. According to Rutherford, “Kapitza in one of his expansive
moods in Russia told the Soviet engineers that he himself would be able to alter
the whole face of electrical engineering in his lifetime.” The need of talented re-
searchers in physical sciences to support the Soviet economy at that time supports
Rutherford’s testimony [28, p. 46]. Kapitza had to wait 32 years before permission
was granted him to visit England again. In Moscow he was ordered to open a new
laboratory and to found the Institute for Physical Problems, of which he was the first
director and which since then has borne his name. Kapitza’s equipment at the Royal
Society Mond laboratory was purchased by the Soviet government with the help
of Rutherford and then shipped to Russia. It is at that time that Kapitza conducted
his work on low temperature physics and discovered the superfluidity of helium II
(1937). In 1978 he was awarded the Nobel Prize in Physics “for his basic inventions
and discoveries in the area of low-temperature physics” (unusual indeed, as these
results had been obtained four decades earlier).

After the war, Kapitza refused to work under Beria (also head of the state police,
the N.K.V.D., soon renamed M.V.D., after the war) on the Russian nuclear weapon
project. Due to Beria’s hostility, he was fired from the post of director at his Institute
and he had no other choice but to retire to his dacha in Nikolina Gora (Nicholas Hill)
near Moscow to the end of the Stalin era (1946–1953). It was not the first time that
Kapitza had to face the all powerful N.K.V.D. Already in 1938, in the midst of one
of the worst purges preceding Word War II, he wrote directly to Stalin and to Beria
and obtained the release of his friend Landau, who was then accused of spying on
behalf of Germany.
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According to Landau’s own testimony:

“Kapitza went to the Kremlin and announced that he would have to leave his Institute if I
wasn’t released. It is hardly necessary to say that such an action in those years required no
little courage, great humanity and crystal-clear honesty” [28, p. 67].1

Not without a good sense of humor, Kapitza rebaptized his small dacha “Izba
for Physical Problems.” It was there that Kapitza conducted amongst other pieces
of work his pioneering experiments on falling film instabilities with the help of his
son Sergey and, at times, of his other son, Andrei.

Here is what the father Kapitza wrote about their falling film house experiments
in one of his letters dated 2 December 1949 and addressed to one of his friends and
colleagues, Vladimir Engelhardt, molecular biologist and member of the Russian
Academy of Sciences:

“I then thought that in the position I found myself, the only possibility of continuing scien-
tific research work was to take up biology. I thought there was no branch of physics where
it would be possible to look for really new and significant phenomena. But I was wrong. Al-
most immediately after I was deprived of my Institute and its facilities for low temperatures
and high magnetic fields, I came across an interesting question in hydrodynamics—the flow
of a thin layer of a viscous liquid. Ever since the time of Poiseuille this was considered as a
classical case of laminar flow, but I realized that there are a number of indications that this
is not so. [. . . ] It is rare to discover a new form of wave motion and I decided to look into it.
With the modest means at my disposal in my dacha, and of course with the help of my son
[Sergey], I succeeded in observing and studying this type of wave flow and in confirming
my theory” [28, p. 388].

Would Kapitza have ever considered the problem of falling liquid films if he
had not been compelled to stop working on low temperature physics? Probably not.
In another letter addressed directly to Stalin, Kapitza complained about his work
conditions at Nikolina Gora. Referring to his experiment on falling films, he wrote:

“But the work goes slowly since I have to do everything myself, even making the necessary
apparatus with my own hands, helped only by my family” [28, p. 386].

It is not an overstatement to say that Kapitza was an outstanding experimentalist.
A favorite hobby was to dismantle watches and to repair them, manufacturing him-
self the spare parts.2 Indeed, reading Kapitza’s own description of his falling film
experimental set-up, one wonders how he achieved such accuracy while assigned
to residence in his country home. The fluid, water or alcohol, was injected at the
top of a vertical glass tube of 2.5 cm in diameter and 20 to 25 cm in length. To
ensure the axisymmetry of the observed waves, a great accuracy was necessary in
manufacturing the surface of the tube and of the supply unit. In fact, an accuracy to
within one micron was necessary in the design of the conical shape mandrel placed

1All quotations in Appendix A.1, are reprinted from “Kapitza in Cambridge and Moscow: life and
letters of a Russian scientist,” J.W. Boag, P.E. Rubinin and D. Shoenberg, North-Holland, pp. 67,
386 and 388, Copyright (1990).
2An anecdote underlines his interest on watchmaking: On a trip to Strasbourg in 1926, Kapitza
asked the clockmaker in charge of the maintenance of the famous cathedral clock to show him the
details of the clock mechanism.
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at the top of the tube to maintain a regular distribution of the fluid. Kapitza designed
a clever stroboscopic device to illuminate the free surface of the film and to detect
the waves. A task that was not easy considering that the film thickness was no more
than a few tenths of a millimeter. The vibrations of the motor rotating the strobo-
scope were transferred to the tube at a small but sufficient level to synchronize the
wave dynamics of the film and the stroboscope so that standing permanent images
of the traveling waves on the film surface were produced. Up to now, the quality of
the experimental results obtained by Kapitza and his son has been rarely reached
in other experiments and their data are still used as benchmarks for the numerical
studies devoted to falling film flows.

A.2 Carlo Giuseppe Matteo Marangoni (1840–1925)

Marangoni’s influence on interfacial phenomena in liquids through two seminal con-
tributions [179, 180] is so great that his name is nearly always associated with this
area of research. He was born in Pavia, Italy, and graduated from the University
of Pavia (“Laurea in Mathematiche pure e applicate”—somewhat equivalent to a
Masters thesis) in 1865, under the supervision of Professor Giovanni Cantoni, with
a dissertation entitled “Sull’ espansione delle goccie liquide” (On the spreading of
liquid drops) [178]. He then moved to Florence where he eventually became a high
school physics teacher at the high school “Liceo Classico Dante,” where he taught
for four decades (1869–1916) (see Fig. A.2). He died in Florence in 1925.

He dedicated much of his time to the development of the Department of Physics,
especially the Laboratory of Physics. He was recognized by his colleagues and stu-
dents as a consummate teacher but also as a skilled investigator and scientist,3 pa-
tient and ingenious, always stimulating interest and curiosity.

Marangoni left many writings attesting to the high scientific quality of his works.
The most significant ones are those on capillarity, drops, on certain optical illusions
and various educational experiments. Though James Thompson [271] initially un-
derstood that the formation of “tears of wine” at the wall of a glass was promoted
by the difference of surface tensions between water and alcohol, it was Marangoni
who gave the first rigorous explanation of this phenomenon. He formulated a rather
complete theory for flows driven by surface tension gradients due to variations in
temperature or composition, an effect that now bears his name. Despite the expla-
nation of the “tears of wine” he was a fervent teetotaler.

Marangoni also contributed to meteorology and invented an apparatus to observe
clouds. Anecdotally, the formation of hail was for him an assiduous topic, for which
he tried to give an explanation for many years. Though he did not manage to give
a satisfactory theory, his numerous observations and ideas were shown to be useful
for subsequent generations.

3During the time, a great part of scientific research was actually conducted in high school labora-
tories, which were often equipped better than university ones.
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Fig. A.2 Carlo Marangoni at
the Liceo Classico Dante in
Florence, Italy [173]. This
picture comes from a larger
one showing a group of high
school teachers and students
celebrating final year high
school graduation in 1909.
The original photograph
belongs to a private collection
(Dr. Valleri). A photographic
reproduction of the original
photograph is deposited in the
archive of Liceo Classico
Dante. Photo courtesy of
Prof. G. Loglio

Noteworthy is that he had the singular merit of being one of the very first (since
1882) to claim that the “future and the economic wealth of Italy was in its mountain
water, and forests that protect water and fuel.” Being an apostle of reforestation, he
was also involved in agricultural economics.



Appendix B
On the Surface Tension Constitutive Relation
and Newton’s Law of Cooling

B.1 Surface Tension Relation

The linear approximation for the surface tension in (2.1) is the basic equation used
to model the Marangoni effect and can be viewed as an equation of state for the
interface. The rate (dσ/dTs)T∞ is the agent for this effect. Notice that although gen-
erally the surface tension decreases when the temperature increases (this is the case
of “normal thermocapillarity,” γ > 0), there are systems like some water–alcohol so-
lutions and liquid crystals that display the opposite behavior or even exhibit a min-
imum for σ = σ(Ts) (“anomalous thermocapillarity” [189], γ < 0 or both γ > 0
and γ < 0). For most of the monograph, when we examine the influence of the
Marangoni effect, i.e., in Chaps. 3, 5 and 9 where we consider the case of a film
heated uniformly from below, we restrict our attention to the normal thermocapil-
larity case, i.e., γ > 0.

B.2 Newton’s Law of Cooling

Around 1700 Newton considered the convective cooling of a warm body by a cool
gas and suggested that cooling would be such that the temperature T of the body
changes according to dT /dt ∝ T − T∞, where T∞ is the temperature of the incom-
ing fluid, but he never wrote the expression (2.2). However, from the first law of ther-
modynamics for a closed system and in the absence of work, Q= dU/dt ∝ dT /dt ,
where Q is the heat transfer rate between the system and its surroundings and U its
internal energy. Hence, Q ∝ T − T∞, which can be rewritten in terms of the heat
flux q =Q/A with A the body’s area as q = α(T − T∞).

Newton’s law of cooling is not based on fundamental principles, as, e.g., New-
ton’s law of viscosity, but it is phenomenological in that it is the relation that defines
the heat transfer coefficient α. It is introduced for simplicity and mathematical con-
venience as it allows us to bypass the substantially more involved conjugated heat
transfer problems in the air–liquid, liquid–solid and solid–air interfaces. (Although
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substantially more involved, by assuming continuity of temperatures and normal
components of heat fluxes in any boundary, in principle one could solve for the
motion and temperature distribution in all phases.)

In general, the factors influencing the heat transfer coefficient α will depend on
the particular mode of heat transfer [162]:

(i) “Forced convection,” e.g., flow over a flat plate. In this case α depends on the
physical properties of the phase to which heat is being transported. (The prop-
erties are in general a function of temperature, but for gases and relatively small
temperature differences, as is the case here, this dependence is weak.) α also de-
pends on the physical state of this phase, i.e., a fast moving fluid will in general
have better heat transfer characteristics than a slowly moving one.

In fact, α increases with the average velocity of the phase to which heat
is transported, e.g., it is directly proportional to the average velocity raised to
the 1/2 power for flow over a flat plate. In our case the gas is dragged by the
liquid, but due to the relatively slow motion of the liquid (in this monograph the
Reynolds numbers are small to moderate) most likely forced convection in the
gas has a minimal effect on heat transfer.

(ii) “Natural convection” caused by density changes, which is quite likely the case
here for the gas in contact with both the liquid and the solid; however, in the for-
mulation of the basic equations we adopt a one-fluid approach in which the mo-
tion of the gas does not influence the motion of the liquid (from H5 in Chap. 2).

α depends on the physical properties of the phase to which heat is being
transported (again, for gases the properties have a weak dependence on temper-
ature) and the temperature difference T − T0 (e.g., it is directly proportional to
(T − T0)

1/4 for natural convection from a vertical or horizontal heated plane);
hence it depends indirectly on the heat resistance of the phase under considera-
tion or equivalently its thermal conductivity—large thermal conductivity of the
phase under consideration will in general lead to a larger T and hence larger α.

These observations imply that the heat transfer characteristics of the liquid–gas
interface will in general be different from those of the solid–gas one, leading to
different heat transfer coefficients for the two interfaces. More precisely, since in
general the temperature, say Tliq, of the liquid at the liquid–gas interface will be
smaller than the temperature of the solid at the solid–gas interface and since the
heat transfer coefficient grows with T −T0, the liquid–gas coefficient will be smaller
than the solid–gas one.

Further, since by nature a falling film evolves in both time and space, α would
also depend on both time and position. For simplicity we shall assume that wavy
regimes more or less homogenize the heat transfer process at the liquid–gas inter-
face. In addition, changing the liquid flow rate will also influence the temperature
difference in the liquid and hence the liquid–gas heat transfer coefficient. However,
provided that the temperature difference in the liquid is small relative to the tem-
perature difference Tliq − T∞ to begin with, the effect of liquid flow rate on the
liquid–gas coefficient will be small. As an example, consider a situation where the
temperature difference in the liquid is 2°C, Tliq = 30°C and T∞ = 0°C. Assume
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now that the flow rate is quadrupled, which from our discussion above suggests that
for convection heat transfer in the liquid, the heat transfer coefficient in the liquid
is doubled leading to a 50% reduction of the temperature difference in the liquid.
That is, it results in a difference of 1°C, which in turn leads to a new Tliq = 31°C
(assuming that the liquid temperature at the solid–liquid interface is not affected).
The heat transfer coefficient at the liquid–gas interface then changes only by a factor
of (31/30)1/4 ≈ 1.008, and hence it remains practically unaltered. A small temper-
ature difference in the liquid can be achieved either with a high liquid conductivity
and/or by increasing the flow rate, which for simplicity we shall assume is the case
here. The liquid–gas heat transfer coefficient then becomes practically independent
of the liquid and depends only on the physical properties of the gas.



Appendix C
Definitions and Derivations

C.1 Heat Flux Boundary Condition (HF)

The HF thermal boundary condition is obtained by solving the steady state energy
equation (2.5) for the wall temperature Tw augmented with a heat generation term
on its right hand side, qw/hw, representing the heat flux generated by the heater per
unit wall thickness:

λw∂yyTw + qw

hw
= 0, (C.1)

where λw is the wall thermal conductivity. This is a Poisson equation in a region
bounded by two surfaces: the top surface where we impose continuity of tempera-
tures:

y = 0 : Tw = T , (C.2a)

with T the liquid temperature on the wall, and the bottom surface where Newton’s
law of cooling in (2.2) applies:

y =−hw : λw∂yTw = αw(Tw − T∞), (C.2b)

where αw is the heat transfer coefficient between the wall and the gas. The geometry
is sketched in Fig. 2.2. At y = −hw, n = −j, with j the unit vector having the
direction of the positive y-axis. Notice that the heat conduction term λw∂xxTw has
been neglected in (C.1): Once we obtain the solution for Tw the wall thickness will
be shrunk to zero as the wall is just a heat source while the liquid and the gas are
just heat sinks, and hence streamwise heat conduction in the wall is negligible. This
would not be the case, however, for nonuniform heating, qw = qw(x), e.g., localized
heating/point source, which would induce conduction in the streamwise direction so
that the term λw∂xxTw in (C.1) should be retained.

The solution of (C.1) is readily obtained to be

Tw =− qw

2λwhw
y2 + Ay + B, (C.3a)
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where the two integration constants A and B are determined from the boundary
conditions (C.2a), (C.2b):

A = −qw(1+ αwhw
2λw

)+ αw(T − T∞)

λw + αwhw
, (C.3b)

B = T . (C.3c)

Continuity of fluxes at the substrate demands

y = 0 : λ∂yT = λw∂yTw. (C.4a)

By using (C.3a), (C.3b), the right hand side of (C.4a) becomes

y = 0 : λw∂yTw = λwA. (C.4b)

We then shrink the wall thickness to zero: As already noted, the wall is just a bound-
ary that serves as a heat source and its thickness is of no consequence. The resulting
solution will be then used in the development of a boundary condition for the liquid.
Taking the limit of (C.3b) as hw → 0 gives

A= −qw + αw(T − T∞)

λw
,

so that (C.4a) becomes

y = 0 : λ∂yT =−qw + αw(T − T∞). (C.5)

Of course at the liquid–solid interface we also have Newton’s law of cooling in
(2.2) with n= j,

y = 0 : −λw∂yTw = αw(Tw − Tliq), (C.6)

where αw is the heat transfer coefficient between the wall and the liquid and Tliq
is the liquid temperature right outside the thermal resistance layer in the immediate
vicinity of the wall (see also our discussion on Newton’s law of cooling (2.2) in
Sect. 2.1); so it happens that the temperature gradient in the liquid is linear through-
out for the Nusselt flat film solution in (2.15a)–(2.15f) and strictly speaking we do
not have a thermal resistance layer in the immediate vicinity of the wall. At this
stage, however, we do not know a priori what the temperature distribution in the
liquid will be; as a matter of fact we are utilizing the concept of a thermal resistance
layer precisely so we may obtain the thermal boundary condition for the HF case.
Besides, we shall eventually demonstrate that for the boundary condition we are af-
ter, the heat transfer characteristics at the liquid–solid interface are good to the point
that there is no resistance to heat transfer in the immediate vicinity of the wall and
the layer there does not exist.

The constants A and B in (C.3a) are now replaced by

A = −qw(1+ hwαw
2λw

)+ αw(Tliq − T∞)

λw(1+ αwhw + αw
αw )

, (C.7a)



C.2 Surface Gradient Operator 369

B = −λw

αw A+ Tliq. (C.7b)

The true boundary condition felt by the liquid is (C.4a), which with (C.6) be-
comes

y = 0 : λ∂yT = αw(Tliq − Tw). (C.8)

Via (C.3a) and (C.7b) the right hand side of this equation can be written as αw(Tliq−
Tw)= λwA at y = 0. As before we take the limit of (C.7a) as hw → 0 which yields

λwA= −qw + αw(Tliq − T∞)

1+ αw
αw

.

Further, it is quite natural to assume that αw is large so that the above expression is
further simplified to

λwA=−qw + αw(Tliq − T∞).

The boundary condition in (C.8) then becomes

y = 0 : λ∂yT =−qw + αw(Tliq − T∞), (C.9)

which is the same with (C.5) but with Tliq instead of T on the right hand side.
However, from (C.8), Tliq − Tw|y=0 = (1/αw)λ∂yT |y=0, which for large αw gives
Tliq → Tw|y=0 (αw is large and Tliq − Tw|y=0 small, but the product ∂yT |y=0 is
finite). But Tw|y=0 = T |y=0—continuity of temperatures at the substrate always
holds. Hence, the temperature variation in the thermal resistance layer in the imme-
diate vicinity of the wall is negligible and Tliq → T |y=0 so that (C.9) and (C.5) are
identical.

The condition of large αw implies that the liquid thermal resistance layer is
very thin. Indeed, using a linear profile to approximate the liquid temperature in
the layer, we can estimate the layer’s thickness, say δTRL: from δTRL ∼ (Tliq −
T |y=0)/(∂yT |y=0)→ 0 as Tliq → T |y=0. Physically, the heat transfer process in
the immediate vicinity of the wall is good to the point that the thermal resistance
layer does not exist.

To summarize, it is by approximating Tliq with T |y=0 in the second derivation,
that we obtain (C.5). But this requires one additional condition, that of large αw,
compared to the first derivation, where only hw → 0 is assumed. This additional
condition then effectively gets rid of αw and the boundary condition at y = 0 in (C.6)
that involves αw. And that is precisely why the final forms of the wall boundary
condition obtained from the two derivations are the same.

C.2 Surface Gradient Operator

The surface gradient operator is defined as

∇s = (I− n⊗ n) ·∇, (C.10)
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where I is the identity matrix and n⊗ n is the dyadic product of the normal vector
n with itself, i.e.,

n⊗ n= 1

n2

⎛

⎜
⎝

(∂xh)
2 −∂xh ∂xh∂zh

−∂xh 1 −∂zh
∂xh∂zh −∂zh (∂zh)

2

⎞

⎟
⎠ .

The tensor I− n⊗ n singles out the tangential projection of a vector, e.g., (I− n⊗
n) · v= vs : (I− n⊗ n) · v= I · v− (n⊗ n) · v= v− (v · n)n= v− vnn= v− vn =
vs +vn−vn = vs , where vn is the velocity component normal to the surface and we
have used the identity (n⊗ n) · v≡ (v · n)n.

C.3 On the Choice of the Unit Vectors Tangential to the Surface

When we gave the governing equations and boundary conditions in Chap. 2, we de-
liberately did not choose the set of orthogonal tangential vectors (1/τ1)(1,0, ∂xh)
and (1/τ2)(0,1, ∂zh), since the only requirement for τ 1 and τ 2 is that they be lin-
early independent but not necessarily normal to each other. For example, (1,0, ∂xh)
and (0,1, ∂zh) (with appropriate normalization coefficients) are two such vectors
which also could have been chosen. To see this, let us write the tangential stress
balance in the form f · τ i = 0, where f = P · n − ∇s . Consider now the two lin-
early independent tangential vectors si ; i = 1,2. We then write τ 1 = a1s1 + a2s2
and τ 2 = b1s1 + b2s2, so that f · τ 1 = a1(f · s1) + a2(f · s2) = 0 and f · τ 2 =
b1(f · s1)+ b2(f · s2)= 0. But

∣∣ a1 a2
b1 b2

∣∣ �= 0 due to the linear independence of the vec-
tors si . Hence, the only solution to this system is the trivial solution, f ·s1 = f ·s2 = 0.
The general form of the tangential stress balance is then preserved. But the two
new tangential boundary conditions will have in general a different functional form
than the previous ones. Nevertheless, each new condition is simply a linear com-
bination of the old equations, and so we can recover the old from the new. In-
deed, with the decompositions s1 = c1τ 1 + c2τ 2 and s2 = d1τ 1 + d2τ 2, we have
f · s1 = c1(f · τ 1) + c2(f · τ 2) = 0 and f · s2 = d1(f · τ 1) + d2(f · τ 2) = 0, which,
since

∣∣ c1 c2
d1 d2

∣∣ �= 0 due to the linear independence now of τ 1 and τ 2, respectively give
f · τ 1 = 0 and f · τ 2 = 0. In other words, f · si = 0 if and only if f · τ i = 0, so that in
all cases we end up with the same set of equations for the tangential stress balance.

C.4 On the Evaluation of the Right Hand Side of the Tangential
Stress Balance (2.13)

Here we comment on the evaluation of τ i ·∇sσ in (2.13). Using the definition of the
surface gradient operator (C.10) we obtain

τ 1 ·∇s = 1

τ1
(∂x + ∂xh∂y)
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and

τ 2 ·∇s = 1

τ2
(∂z + ∂zh∂y).

If we now operate on σ we have τ 1 ·∇sσ = (1/τ1)(∂xσ + ∂xh∂yσ ) and τ 2 ·∇sσ =
(1/τ2)(∂zσ + ∂zh∂yσ ) at y = h(x, z, t). From H6 in Chap. 2, σ = σ(Ts), with Ts =
T (x,h(x, z, t), z, t) ≡ Ts(x, z, t). Hence, σ is only a function of x, z and t . As a
result

τ 1 ·∇sσ = 1

τ1
∂xσ

and

τ 2 ·∇sσ = 1

τ2
∂zσ.

By using the equation of state in (2.1) we obtain,

∂xσ = dσ

dTs
∂xTs =−γ ∂xTs,

and

∂zσ = dσ

dTs
∂zTs =−γ ∂zTs.

The gradients of the interfacial temperature ∂xTs and ∂zTs can be further related to
the temperature field T at y = h(x, z, t). Using the chain rule,

∂xTs = (∂xT + ∂xh∂yT )|y=h
and

∂zTs = (∂zT + ∂zh∂yT )|y=h,
where it is understood that we first take the derivatives on the right hand side with
respect to x, y and z and then we substitute y = h. The final form of τ i ·∇sσ in (2.13)
is then

τ 1 ·∇sσ =− γ

τ1
(∂xT + ∂xh∂yT )|y=h

and

τ 2 ·∇sσ =− γ

τ2
(∂zT + ∂zh∂yT )|y=h.

The same expressions can also be obtained by noting that τ i ·∇σ is the “direc-
tional derivative” ∂ti σ on the direction ti defined by τ i . We then have

τ 1 ·∇sσ = ∂t1σ =−γ ∂t1Ts =−γ τ 1 ·∇Ts =− γ

τ1
∂xTs =− γ

τ1
(∂xT +∂xh∂yT )|y=h,
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and

τ 2 ·∇sσ = ∂t2σ =−γ ∂t2Ts =−γ τ2 ·∇Ts =− γ

τ2
∂zTs =− γ

τ2
(∂zT + ∂zh∂yT )|y=h.

C.5 Short Library of Weakly Nonlinear Model Equations:
Bottom-up Dispersion Relation Approach

Several studies have examined the film flow dynamics within the framework of
weakly nonlinear analyses [19, 20, 41, 42, 44, 53, 164, 185, 199]. The basic idea
underlying these studies is that, sufficiently close to onset, the flow dynamics are
determined by the properties of the linear stability of the base flow and that de-
viations from it remain small. Fluctuations are then decomposed into elementary
instability waves of the “normal mode” form, a(x, t) exp(λt + ikx), with k their
(real) wavenumber and λ= λr + iλi a complex eigenvalue whose real part λr is the
(temporal) growth rate (subscripts “r” and “i” are used to denote real and imaginary
parts, respectively) and imaginary part λi is the negative value of the (real angular)
frequency (precise definitions of these terms are given in Chap. 3). The structure of
the weakly nonlinear equations, or amplitude equations, giving the evolution of the
envelope a(x, t) is then determined by the dispersion relation, which expresses λ as
a function of the wavenumber k.

It is then possible to invert the procedure by starting from the possible structure of
the dispersion relation at the onset of the instability. Hence, writing from the outset
generic amplitude equations without deriving them from the fully nonlinear system
is a “bottom-up dispersion relation approach,” a heuristic approach that guides qual-
itatively the understanding of the competing generic linear and nonlinear effects for
small amplitude disturbances. In Chap. 5 the pertinent amplitude equations for the
falling film problem are derived systematically with weakly nonlinear expansions
from the BE.

Considering the hydrodynamic surface wave instability and the Marangoni in-
stability described earlier, the transition from the uniform laminar flow to a wavy
one can be understood as a transition from a steady to an oscillatory flow. Typically,
“oscillatory instabilities” occur when “negative feedback” exists and hence a pertur-
bation switches on some compensating mechanisms that try to diminish it. However,
these mechanisms do not always suppress the perturbation, but sometimes they lead
to “overshooting oscillations” (“overstability”). It seems essential that the destabi-
lizing and stabilizing factors have different time scales, so that their counteraction
is characterized by a certain effective “time delay.” The asynchronous changes of
fields of different physical variables leads to the appearance of oscillations instead
of a monotonic growth or decay of the perturbation, in which case the instability
is referred to as “monotonic” or “stationary.” We give the precise definitions of the
two basic types of instabilities, oscillatory and stationary, in Chap. 3.

A way to classify instabilities, oscillatory and otherwise, is obtained via the min-
imum of the neutral stability curve, that defines the critical value of the control pa-
rameter (see Chap. 3 for the definitions of these terms). If the “critical wavenumber,”



C.5 Short Library of Weakly Nonlinear Model Equations 373

i.e., the wavenumber of the fastest growing perturbation at the instability onset, k0,
is nonzero, the oscillatory instability is, generally, short wavelength; otherwise (if
k0 = 0), it is a long wavelength instability. For the long wavelength instability, it is
necessary to further distinguish between two cases.

In the first case, the eigenvalue λ(k,Σ) that determines the (temporal) growth
rate λr and the (real angular) frequency of the oscillations −λi as a function of a
given control parameter Σ (used as a generic quantity whose definition now is not
needed), can be expanded into a Taylor series near the critical point (k0 = 0,Σc) as

λr = (∂Σλr)0(Σ −Σc)+ 1

2
(∂kkλr)0k

2 + · · · , (C.11a)

λi = (λi)0 + (∂kλi)0k + (∂Σλi)0(Σ −Σc)+ 1

2
(∂kkλi)0k

2 + · · · , (C.11b)

where the subscript 0 denotes that the corresponding quantity is evaluated at the crit-
ical point. In this case, the spatially homogeneous perturbation with k = 0 oscillates
and grows with the largest growth rate, (∂Σλr)0(Σ −Σc). This type of oscillatory
instability occurs frequently in reaction–diffusion systems.

However, there is a wide class of problems where growth of a spatially homoge-
neous disturbance is forbidden by a “conservation law.” An example is the falling
film problem. It is a system that involves liquid flow from an inlet and the conserva-
tion law is imposed by the inlet flow rate. A homogeneous change of the base state
film thickness is only possible through a change in the flow rate, but it is not allowed
if the flow rate remains fixed. The mode associated with a homogeneous change of
the base state is called Goldstone mode in condensed matter physics (e.g., [58]; we
return to this mode on several occasions in this monograph) and is characterized by

λ(0,Σ)= 0 (C.12)

for any Σ , which can produce a long wavelength instability for small but nonzero k.
In the latter case, it is not λr(0,Σ) but ∂kkλr(0,Σ) that changes sign at the threshold
of the instability, Σ =Σc:

λr = 1

2
(∂kkΣλr)0k

2(Σ −Σc)+ 1

24
(∂kkkkλr)0k

4 + · · · , (C.13a)

λi = (∂kλi)0k+ (∂kΣλi)0k(Σ −Σc)+ 1

6
(∂kkkλi)0k

3 + · · · . (C.13b)

Past the instability threshold, the growth rate is proportional to k2 at small k (this
effect appears akin to the role of an effective “negative viscosity”).

Equations (C.13a), (C.13b) correspond precisely to the H-mode of instability for
a falling liquid film. The dispersion relation for the growth rate λr features a band
of unstable modes extending from zero up to a “cut-off wavenumber” kc, above
which the system is stable, kc = [−12(∂kkΣλr)0(Σ −Σc)/(∂kkkkλr)0]1/2. The un-
stable band 0 ≤ k ≤ kc contains the “maximum growing wavenumber” kmax with
the largest positive growth rate, λr(kmax). We notice that even though at the critical
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wavenumber k = 0, λi vanishes, the instability is oscillatory. As a matter of fact,
k→ 0 is a “degenerate” limit where from (C.12) the exponential part of the distur-
bances reduces to exp 0 = 1 corresponding to a uniform shift of the base state (by
changing the flow rate), the Goldstone mode defined earlier (it is neither damped
nor amplified). Infinitely long waves are a mathematical artifact and finite-size ef-
fects (finite length of the channel) will remove the degeneracy (because of the dis-
crete spectrum of modes imposed by the finite size, while the smallest wavenumber
scales as k ∼ 1/L with L the channel’s length)1 so that a true “Hopf bifurcation”
with λi �= 0 occurs. In the linear regime the disturbance will grow at rate λr(kmax)

and at the same time it is periodic in space with wavenumber kmax and oscillates in
time with frequency −λi(kmax). The combination of periodicity in space and oscil-
latory behavior in time leads to a traveling wave.

The behavior of the eigenvalue in the vicinity of the point (k0,Σc) is crucial for
the evolution of the weakly nonlinear waves generated by the oscillatory instability.
In the case of a short wavelength instability where the fastest growing disturbance
has a finite wavenumber, k0 �= 0, the complex Ginzburg–Landau equation

∂ta = γ0a + γ2∂xxa − δ0|a|2a (C.14)

is a universal equation for a complex envelope function a(x, t) describing the mod-
ulation of the waves; here γ0, γ2 and δ0 are complex constant coefficients. The
space-independent case (formally γ2 = 0) is called the “Landau equation” in sev-
eral areas of physics such as phase transitions. It was introduced by Stuart (e.g.,
[263]) to study flow instabilities with transition between steady fluid motions and is
also frequently referred to as the “Landau–Stuart equation.”

The Ginzburg–Landau equation (C.14) can also be used to describe the transi-
tion when an unstable wave motion of given (“fundamental”) wavenumber interacts
with its first stable harmonics (in fact, the Ginzburg–Landau equation is only valid
when the fundamental wavenumber is weakly unstable—i.e., just below kc—while
the overtone with a wavenumber twice that of the fundamental is stable [53, 274]).
This situation occurs for monochromatic waves excited on a falling film by forc-
ing at the inlet with a frequency close to the cut-off frequency, which then yields
a wavenumber k close to the cut-off wavenumber kc (details are given in Chap. 7)
determined by the balance of the H-instability mechanism and the damping effect
of surface tension. Using (C.14), Lin [164] showed that such monochromatic waves
are sideband stable.2 This, however, was in contradiction with the experimental re-
sults by Liu and Gollub [168]. Later on, Oron and Gottlieb [199] corrected Lin’s

1In a finite-size container, e.g., the annular container used to investigate the propagation of waves
due to solutocapillary Marangoni effect in [189, 300], the λ= k = 0 mode is removed. Clearly, due
to the conservation law, i.e., conservation of fluid volume, a homogeneous change of the layer’s
thickness is not allowed.
2In general, the term “sideband instability” of a wave refers to a resonance between three frequen-
cies, the frequency of the wave, say f , and two frequencies, f + δf and f − δf with δf small.
Sideband instabilities in three dimensions are examined in Chap. 8.
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analysis and demonstrated that excited monochromatic waves at k � kc can be side-
band unstable.

It is then evident that for the falling liquid film, and more general long wave in-
stabilities with k0 = 0 and with the dependence λ(k,Σ) determined by (C.13a),
(C.13b), the Ginzburg–Landau equation (or its simplified version, the Landau–
Stuart equation) has a limited applicability, since as already emphasized above it
is only valid when the fundamental wavenumber is weakly unstable. For example,
the maximum growing wavenumber kmax ∈ [0, kc], which, in general, is not weakly
unstable (unless we are very close to criticality), cannot be captured by (C.14).
As a matter of fact, due to the multiplicity of the dominant Fourier modes more
than one amplitude equation must be considered [42]. Alternatively, the Kuramoto–
Sivashinsky equation introduced later (which is not necessarily valid only for con-
ditions very close to criticality—Chap. 4) can accommodate a large band of Fourier
modes.

Let us consider now the case of a negative viscosity (dispersion relations (C.13a),
(C.13b)) caused by a conservation law. The structure of an amplitude equation com-
patible with a conservation law is

∂ta = Lxa + ∂xF(a), (C.15a)

where the linear operator Lx involves derivatives with respect to x only and has the
structure

Lx = γ1∂x + γ2(Σ −Σc)∂xx + γ3∂xxx + γ4∂xxxx + · · · , (C.15b)

where

γ1 = (∂kλi)0 + (∂kΣλi)0(Σ −Σc), γ2 =−1

2
(∂kkΣλr)0, (C.15c)

γ3 = −1

6
(∂kkkλi)0, γ4 = 1

24
(∂kkkkλr)0, . . . , (C.15d)

and

F(a)= δ1a
2 + δ2∂x

(
a2)+ · · · . (C.15e)

It should be noted that if the conservation law is an approximate one, the amplitude
equation can contain additional small terms not differentiated with respect to x.
The term containing γ1 can be removed by a Galilean transformation to a suitable
moving reference frame. It should also be noted that the nonlinearity in the ampli-
tude equation (C.15a) is actually a guess, while the linear operator in (C.15a) gives
precisely the dispersion relation (C.13a), (C.13b) (which can be either exact, i.e.,
obtained from the fully nonlinear system, or a guess).

First, let us consider the generic case where all the coefficients γn, n= 1,2, . . .
in (C.15a)–(C.15e) are of O(1). A weakly nonlinear prototype can be obtained
from (C.15a)–(C.15e) by utilizing multiple scale-type arguments. Taking Σ −
Σc = O(ε2) where ε � 1, the expression for the cut-off wavenumber, kc =
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[−12(∂kkΣλr)0(Σ −Σc)/(∂kkkkλr)0]1/2, shows that kc ∼ ε so that x ∼ ε−1, a long
scale, or equivalently ∂x = O(ε) (the order of magnitude of the spatial gradient is
dictated by the order of the cut-off wavelength, which is the wavelength of the in-
stability pattern emerging at the onset). Assuming that the largest nonlinear term
δ1∂x(a

2) is balanced by the dispersion term γ3∂xxxa (the term “dispersion” is used
to denote that the wave velocity depends on wavelength or “color” as in optics—
this is clarified in Sects. 5.1.4, 5.2.1), we find that a = O(ε2), and the amplitude
equation is

∂ta = γ3∂xxxa + δ1∂x
(
a2)+ γ2(Σ −Σc)∂xxa + γ4∂xxxxa + δ2∂xx

(
a2). (C.16)

The first two terms on the right hand side of this equation are of O(ε5); the last
three terms, describing the instability at long wavelengths, the stabilization at short
wavelengths, and a nonlinear correction to the negative viscosity coefficient, are of
O(ε6) (such that very close to criticality, instability at long wavelengths balances
stability at short ones). Further, the time derivative balances the dispersive and non-
linear terms on the long time scale t ∼ ε−3. Thus, we find that the generic ampli-
tude equation in (C.16) is a driven-dissipative Boussinesq–Korteweg–de Vries equa-
tion (BKdV) which is effectively a perturbed “BKdV equation”. The equation with
γ4 = δ2 = 0 is the “BKdV–Burgers equation.” The terminology used here deserves a
remark. We use BKdV equation, instead of the standard terminology “Korteweg–de
Vries equation,” because the former equation was first obtained by Boussinesq—
actually written in a footnote: p. 360, Eq. (283 bis) in [30]!

In fact, it is not necessary to introduce the small parameter ε. We need only
Σ − Σc � 1, a condition required to obtain the dispersion relation (C.13a),
(C.13b). Now kc ∼ (Σ − Σc)

1/2 � 1 and the appropriate long scale should be
x ∼ k−1

c (Σ − Σc)
−1/2 � 1. Balancing the instability with the stability terms,

a(Σ −Σc)/x
2 ∼ a/x4, gives x ∼ (Σ −Σc)

−1/2, consistent with the above assign-
ment (to be expected, as the balance between the instability and stability terms is
precisely what determines kc). Balancing the nonlinearity with the dispersion term,
a∂xa ∼ ∂xxxa or a ∼Σ −Σc. The order of magnitude of the nonlinearity and dis-
persion terms then is a∂xa ∼ (Σ − Σc)

5/2, while that of instability and stability,
a(Σ − Σc)/x

2 ∼ (Σ − Σc)
3 � (Σ − Σc)

5/2, and the relevant weakly nonlinear
prototype is the BKdV equation. In other words, the BKdV equation is always the
relevant weakly nonlinear prototype when Σ −Σc � 1 and all coefficients γi of the
dispersion relation are of O(1).

If the dispersion coefficient is small, γ3 =O(ε) (for instance, this feature is char-
acteristic of the modulational instability of periodic waves with small wavenum-
bers), it is balanced by the nonlinearity if a =O(ε3), and one obtains the Kawahara
equation (e.g., [144]):

∂ta = γ2(Σ −Σc)∂xxa + γ3∂xxxa + γ4∂xxxxa + δ1∂x
(
a2), (C.17)

with all terms on the right hand side of O(ε7). The time derivative now balances all
terms on the right hand side on the long time scale t ∼ ε−4.
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If the dispersion coefficient vanishes (γ3 = 0), the Kawahara equation is reduced
to the Kuramoto–Sivashinsky equation (KS)

∂ta = γ2(Σ −Σc)∂xxa + γ4∂xxxxa + δ1∂x
(
a2), (C.18)

first derived by Homsy [118, 119] and typical for instabilities in a wide variety of
nonlinear processes. Note that the Kawahara equation in (C.17) is also frequently
referred to as the generalized KS equation.

The KS equation can also be obtained in the case where the instability region
is no longer narrow as above because of large γ4: This allows increase in the or-
der of magnitude of the stability and hence instability (the two should always bal-
ance) as well as nonlinearity terms compared to dispersion. Consider, e.g., the case
Σ −Σc =O(1), γ4 =O(ε−2) (of course the dispersion relation in (C.15a)–(C.15e)
was obtained with an expansion for Σ − Σc � 1, but here we consider (C.15a)–
(C.15e) as a model exact dispersion relation). The cut-off wavenumber then is
kc ∼ √

(Σ −Σc)/γ4 ∼ ε so that the corresponding long scale is x ∼ 1/kc ∼ 1/ε.
At this long scale the two terms representing instability at long wavelengths and
stability at short ones balance as expected: a(Σ − Σc)/x

2 ∼ aγ4/x
4 or x ∼ 1/ε.

To balance the nonlinearity with these two terms, a∂xa ∼ a/x2 or a ∼ ε. The order
of instability, stability and nonlinearity then is aax ∼ ε3 while that of dispersion is
∂xxxa ∼ ε4.

On the other hand, having large γ4, small Σ−Σc and γ3 =O(1) gives the Kawa-
hara equation. Consider, e.g., the case, Σ − Σc = O(ε2) and γ4 = O(ε2). Then
kc ∼ ε2 and x ∼ 1/kc ∼ ε−2. Balance instability with stability, (Σ−Σc)/x

2 ∼ 1/x4

or x ∼ ε−2, consistent with the above order (as expected). Balance the nonlinearity
with the instability and stability terms, a∂xa ∼ a(Σ −Σc)/x

2 or a ∼ ε4. The or-
der of instability, stability and nonlinearity terms then is a∂xa ∼ ε10 while that of
dispersion is ∂xxxa ∼ ε10, so that all terms are of the same order.

In Chap. 5 we demonstrate that both KS and Kawahara equations can be obtained
from the governing equations of a falling liquid film via a weakly nonlinear expan-
sion and multiple scale-type arguments similar to the ones adopted here. We also
demonstrate in Chap. 5 that the second-order viscous effects are responsible for the
dispersion term in the Kawahara equation.

The KS equation, which has both locally stable regular wavy solutions and
spatio-temporal chaotic regimes, provides a paradigmatic example of the transition
between regular and chaotic patterns, as well as a reference model for the applica-
tion of the “dynamical systems” approach to spatio-temporal chaos. It suffices at
this point to say that the path allowing the use of the theory of dynamical systems
is the following. By a suitable Galilean boost we can look at the expected waves in
their moving frame of reference. This change of reference frame converts a partial
differential equation into an ordinary differential one, which underlines the corre-
sponding dynamical system. A solitary wave then corresponds to a homoclinic orbit
or trajectory of the dynamical system, while the presence of dissipation exhibits re-
pelling and attractive directions on the orbit (these points are clarified in Chap. 7).
When periodicity in time is present, as when a given steady wave solution becomes
unstable through a (new) Hopf bifurcation, the new wave solution corresponds to
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a limit cycle of the transformed problem. Other possibilities exist including chaotic
solutions, and they are studied in this monograph.

It should be noted that the KS equation is formally equally valid for both os-
cillatory and stationary instabilities. The only “sign” of the “wavy” origin of this
equation is the lack of the invariance of the nonlinear term to the parity (reflec-
tion) transformation x→−x: The presence of ∂x(a2) breaks this symmetry and is
connected with the fact that the system has a preferred direction (this is a “mean
flow” term in the context of fluid mechanics). However, the transformation a = ∂xh

provides another form of the KS equation,

∂th= γ2(Σ −Σc)∂xxh+ γ4∂xxxxh+ δ1(∂xh)
2, (C.19)

which is invariant to the parity transformation.
Finally, it is noteworthy that the analysis of the long wavelength instability just

given was based on the assumption of the analyticity of the function λ(k,Σ) at the
point k = 0. If the analyticity condition does not hold, the amplitude equation can
contain some nonlocal integral terms.

C.6 Negative Polarity in the BKdV Equation

Let us consider the BKdV equation with a dispersion coefficient δK:

∂u + u∂xu+ δK∂xxxu= 0. (C.20a)

This equation is invariant under the transformation u→−u, x →−x and δK →
−δK (t is always > 0 and we do not change it). Alternatively, consider (C.20a) in
the moving frame x→ x − ct ,

−c∂xu+ u∂xu+ δK∂xxxu= 0, (C.20b)

which is invariant under the transformation u → −u, x → −x, c → −c and
δK →−δK. This symmetry shows that (C.20a) admits negative-hump waves travel-
ing backward, but can we have such waves for δK > 0 much like with the Kawahara
equation as we point out in Sect. 5.3.2.

It is the sign of δK that determines the direction of propagation: δK > 0 means that
positive-hump solitary pulses travel forward while negative-hump ones travel back-
ward. To see this consider the solution of (C.20a), H = 3c sech2[(1/2)

√
c/δK(x −

ct)], corresponding to a solitary wave traveling with speed c. It is then clear that
both c and δK must have the same sign for solitary waves to exist. Hence, as we note
in Sect. 5.3.2, negative waves of the Kawahara equation with δK > 0 no longer exist
as the Kawahara equation approaches the perturbed BKdV one.

As far as the above mentioned symmetry is concerned, it is lost with the trans-
formation,

u= δ
1/3
K u, x = δ

1/3
K x, (C.21a)
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which converts (C.20a) into the BKdV equation

∂tu+ u∂xu+ ∂xxxu= 0 (C.21b)

with a dispersion coefficient of unity. This equation is not invariant under the trans-
formation u→−u and x→−x and hence it does not admit negative-hump pulses
traveling backward. In fact, integrating numerically (C.21b) with an initial condi-
tion a negative-hump wave obtained by simply inverting the positive-hump wave of
the equation, shows that the negative-hump wave collapses and degenerates into a
wave train that disperses and at the same time travels backward [82]. Accordingly,
the equation ∂tu+ u∂xu− ∂xxxu= 0 admits only negative-hump waves propagat-
ing backward. In essence, the transformation in (C.21a) collapses the two fami-
lies of solitary wave solutions, positive-hump ones with δK > 0 and negative-hump
ones with δK < 0 of (C.20a), into the single family of positive-hump solutions with
δK = 1 of (C.21b).

C.7 Padé Approximants

To remedy the singularity of the BE, Ooshida [196] developed a resummation tech-
nique inspired from the Padé approximants technique (see, e.g., [18, 115]). The
technique relies on the basic idea that the divergence of a power series representa-
tion of a function Q(x), namely, Q(x) =∑k=0,1,2,... Qkx

k on [0, a], is due to the
hidden presence of poles. The divergence reflects the inability of the polynomial
representation to approximate the function adequately near a singularity. This leads
us to express Q(x) as the ratio of two polynomials FN(x) and GM(x) of degrees N
and M , respectively, where the zeros of GM are supposed to capture the causes of
the divergence. Let us define the rational function

RN,M = FN(x)

GM(x)
for 0≤ x ≤ a.

We wish to make the maximum error between this function and Q(x) as small as
possible. The Padé approximants technique then requires that Q(x) and its deriva-
tives be continuous at a point, say, x = 0. The polynomials employed are of the
form

FN(x)= f0 + f1x + · · · + fNx
N and GM(x)= 1+ g1x + · · · + gMxM.

They are constructed so that Q(x) and RN,M and their derivatives up to degree
N +M agree at x = 0. For a fixed value of N +M (the degrees of the polynomials
F and G are open to choice) the error is smallest when N =M or N =M + 1. The
easiest way to obtain these coefficients is by writing, Z(x)=Q(x)GM(x)−FN(x)

and ensuring that the coefficients of xk in Z(x) vanish for k = 0, . . . ,N +M .
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C.8 Center Manifold Projection for a Scalar Equation

Here we illustrate how to implement the center manifold approach for a scalar non-
linear partial differential equation. Assume that the evolution of a physical variable
u(x, t) is described by

∂tu= Lu+N(u, ε), (C.22)

where ε is a control parameter, L ≡ Lx is a linear differential operator that de-
scribes the “flow” close to the origin (u, ε) = (0,0) and N is a nonlinear func-
tional. We define the eigenvalue problem, LΦk = λkΦk; k = 0,1,2, . . . associ-
ated with L, where Φk and λk are the eigenfunctions and eigenvalues of L, re-
spectively, and where appropriate boundary conditions depending on the physi-
cal problem have been imposed. We also define the adjoint eigenvalue problem,
L∗Φ̂k = λ̄kΦ̂k; k = 0,1,2, . . . , where the overbar is used to denote complex con-
jugation. The adjoint operator L∗ can be defined with respect to an appropriately
chosen inner product, e.g., in an infinite domain the L2(−∞,+∞) inner product,
〈f |g〉 = ∫ +∞−∞ f ḡ dx, for any two functions f and g decaying sufficiently fast at
infinity and such that 〈Lf |g〉 = 〈f |L∗g〉.

Assume now for simplicity that the linear operator L has a single zero eigenvalue,
λ0 = 0, while all other eigenvalues have negative real parts (all eigenvalues assumed
simple). We then decompose u into eigenmodes as u = aΦ0 + û where û is the
“complement” with respect to the null eigenfunction Φ0 and is given by

û=
∑

i≥1

uiΦi. (C.23a)

By introducing the “projection operator”, P to denote projection onto the null space,

Pf = 〈f |Φ̂0〉Φ0,

and the “complementary projection operator”, F −P to denote projection onto the
complement of Φ0,

(F −P)f =
∞∑

i=1

〈f |Φ̂i〉Φi

for any function f in the domain of L, u can be written as

u=Pu+ (F −P)u. (C.23b)

The above expansion is a real-valued function even when complex eigenvalues
and eigenfunctions are present: For real operators complex eigenvalues and eigen-
functions appear in conjugate pairs and hence if 〈u|Φ̂k〉 and 〈u|Φ̂k+1〉 are the co-
efficients of Φk and Φk+1 in the projection for u, respectively, with λk+1 = λ̄k and

Φk+1 = Φ̄k , we must have 〈u|Φ̂k+1〉 =
∫∞
−∞ u

¯̂
Φk+1 dx = 〈Φ̂k|u〉 = 〈u|Φ̂k〉.
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Substituting the projection for u into (C.22) and taking inner products of both
sides with the adjoint eigenfunctions Φ̂0, Φ̂i with i �= 0 and using the orthogonality
condition 〈Φi |Φ̂j 〉 = δij leads to

∂ta = F(û, a, ε) (C.24a)

û= Lû+H(a, û, ε), (C.24b)

where the functions F and H are given from

F(û, a, ε)= 〈N(aΦ0 + û, ε)|Φ̂0〉 (C.24c)

and

H(a, û, ε)= (F −P)N(aΦ0 + û, ε). (C.24d)

Assume now that we wish to study small solutions of (C.22) for ε � 1. The
center manifold approach requires that the eigenvalues of L have zero or negative
real parts and in addition the eigenvalues with zero real parts must be well isolated
from those with negative ones. However, for the system in (C.24a)–(C.24d) it can
very well happen that the associated linearized problem has eigenvalues that are
positive (and small) for ε �= 0 (see [38] for examples of application of the center
manifold theorem to systems of nonlinear ordinary differential equations and to
singular perturbation problems). Nevertheless, we can write the above system in the
following “extended manner”:

∂ta = F(û, a, ε) (C.25a)

û= Lû+H(a, û, ε) (C.25b)

∂t ε = 0, (C.25c)

thus ensuring that all eigenvalues are either zero or negative. The addition of (C.25c)
introduces a second zero eigenvalue.

According to the center manifold approach then, the system (C.25a)–(C.25c) has
a two-dimensional center manifold given by the “adiabatic coupling” û= û(a, ε)=
O(2) to leading order with respect to a, ε. To obtain the flow onto the center mani-
fold we note that ∂ta =O(2) so that ∂t û=O(3) and the leading-order center man-
ifold projection, the so-called “tangent space approximation,” is simply ∂t û= 0 or
Lû = −H2 where H2 contains the O(2) terms of H (terms of O(3) and higher
are neglected). Note that L is a singular operator and hence the right hand side
of (C.25b) must satisfy the Fredhölm alternative solvability condition (see Sect. 5.1),
but it does so automatically since the null eigenfunction has already been removed
in the projection that leads to (C.24a)–(C.24d) (see, e.g., [135] for an example on
how this is done in practice). By inverting L, i.e., taking inner products with the
adjoint eigenfunctions, one then obtains explicitly û:

û=−L−1H2 =−
∞∑

i=1

1

λi
〈H2|Φ̂i〉Φi.
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Substituting this result into (C.25a) eliminates û from the problem and leads to a
partial differential equation for a:

∂ta = F
(−L−1H2, a, ε

)≡G(a, ε).



Appendix D
Scalings, Dimensionless Groups and Physical
Parameters

D.1 The Viscous-Gravity Scaling

In the falling liquid film the gravitational acceleration g causes flow, and the kine-
matic viscosity ν (friction) resists the flow. The balance between the two, which
gives rise to the Nusselt flat film solution in (2.15a)–(2.15f), can be rendered explicit
with the viscous-gravity length and time scales introduced in Sect. 2.2. These scales
can be obtained from simple physical considerations without prior knowledge of the
specific details of the system. In fact, straightforward dimensional analysis dictates
that

g sinβ ∼ lν

t2
ν

and ν ∼ l2ν

tν
,

from which lν and tν , can be readily obtained:

lν =
(

ν2

g sinβ

)1/3

and tν =
(

ν

(g sinβ)2

)1/3

.

Their ratio gives the characteristic velocity for viscous-gravitational drainage:

uν ∼ lν

tν
∼ g sinβl2ν

ν
∼ (νg sinβ)1/3.

With this definition of uν , viscous diffusion in the y direction and gravity in (2.4)
balance automatically, i.e., μ∂yyu ∼ ρg sinβ . The pressure scale is selected from
balancing the pressure gradient with viscous forces in (2.4), i.e., ∂xp ∼ μ∂yyu or

pν ∼ μuν

lν
∼ ρu2

ν ∼ ρ(νg sinβ)2/3.

With sinβ ∼ 1 and for water at 25°C, ν ≈ 10−2 cm2 s−1, which yields lν ≈ 4.7×
10−3 cm. The corresponding Nusselt flat film thickness is then always small, e.g.,
with Re= 50, from (2.37) h̄N ≈ 0.25 mm.
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The above scaling will be referred to as the viscous-gravity scaling as it expresses
the importance of viscous and gravitational forces in our system. This scaling is rel-
evant for inclined plates for which sinβ is of order unity and film thickness h̄N
of the order of the length scale lν . It allows us to assess the incompressibility as-
sumption in H1, Sect. 2.1. For a film with thickness h̄N ∼ lν , the Reynolds number
Re = g sinβh̄3

N/(3ν
2) is of O(1) (l3ν ∼ ν2/(g sinβ)) so that the “Grashof number”

Gr = γT �T/Re is small since the thermal expansion coefficient γT is usually small
for typical fluids (the “Boussinesq approximation”). The Grashof number decreases
further as Re increases, i.e., the film thickness h̄N becomes large compared to lν .
Hence, buoyancy can be neglected.

We can also assess the neglect of heat production by viscous dissipation in H8,
Sect. 2.1. In fact, this is not just a complementary assumption but a direct conse-
quence of a small h̄N and large constant pressure heat capacity. By comparing the
strength of the dissipation function Φv

1 to the heat transport by the flow leads to the
ratio ν2/(cp�T h̄2

N) = BqRe2 where Bq = gh̄N/(cp�T ) is the “Boussinesq num-
ber.” With h̄N very small and the constant pressure heat capacity of the liquid being
generally high, the Boussinesq number is in general very small so that the group
BqRe2 has in general a negligible value, even with Re > 1.

By introducing the nondimensionalization,

(x, y, z)→ lν(x, y, z), h→ lνh,

t → tν t, (u, v,w)→ uν(u, v,w),
(D.1a)

p→ p∞ + pνp, T → T∞ + T�T, (D.1b)

where �T = Tw − T∞ for ST and �T = qwlν/λ for HF (see Sect. 2.2), the dimen-
sionless versions of the equations of motion and energy (2.3)–(2.5) and wall and
free surface boundary conditions (2.6)–(2.9) and (2.12)–(2.14) contain the param-
eters in (2.29)–(2.34). The Reynolds number based on uν and lν , uνlν/ν does not
appear in the equations as it is equal to unity. That is because with the viscous-
gravity scaling inertia balances automatically all other terms in (2.4): ρ∂tu∼ μ∂yyu

and ρ∂tu∼ ρu∂xu.
However, the Reynolds number in (2.35) based on film thickness h̄N and aver-

age velocity ūN is effectively hidden in the inlet boundary condition that defines
the Nusselt flat film solution (2.15a)–(2.15f). Therefore, the dimensionless equa-
tions of motion and energy and wall and free surface boundary conditions obtained
with the viscous-gravity scaling are governed by the dimensionless Nusselt flat film

1The “viscous dissipation function” is defined as [26]

Φv = μ
{
2
[
(∂xu)

2 + (∂yv)
2 + (∂zw)

2]

+ (∂xv+ ∂yu)
2 + (∂yw+ ∂zv)

2 + (∂zu+ ∂xw)
2}

such that the product (ν/cp)Φv represents the viscous heating that would have been added to
the energy equation (2.5) if significant. Curiously enough, the minimization of φv leads to the
semiparabolic Nusselt flat film solution, as pointed out in the Introduction.
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thickness hN = h̄N/lν or, equivalently, the Reynolds number, which appears implic-
itly through hN, Re= h3

N/3 (see (2.37)), Ct and the four dimensionless groups, Γ ,
Ma, Pr and Bi for ST and the five dimensionless groups, Γ , Ma, Pr, Bi and Biw
for HF. Hence, a complete investigation over the entire parameter space would be
very cumbersome. However, for a fixed liquid and inclination angle β , the Prandtl
and Kapitza numbers are fixed, thus reducing the number of relevant parameters
by three. On the other hand, for given properties of the gas–liquid–solid system
(physical properties of the gas–liquid system and wall heating conditions (wall tem-
perature/heat flux)) and β , the only free parameter is the Reynolds number (through
the inlet condition), which from Sect. 2.2 is the flow control parameter.

In other words, by using the above nondimensionalization, which is based on
viscosity and gravity, we have ended up with only one parameter, Re, that depends
on hN, with the remaining parameters, Ct, Γ , Ma, Pr, Bi and Biw are all independent
of hN and fixed for a given gas–liquid–solid system and given β . Hence, the viscous-
gravity scaling is experimentally quite relevant: In experiments the film thickness is
modified by changing the flow rate and therefore for comparisons with experiments
it is useful to have only one parameter that depends on hN.

However, the Nusselt flat film solution can also be taken as the boundary condi-
tion h→ hN far from a local surface deformation like a solitary hump, which also
corresponds to the inlet boundary condition as discussed above. Hence, for numeri-
cal purposes the formulation of a model in which the film thickness has been scaled
out of the boundary conditions and the Nusselt flat film solution is fixed, thus al-
lowing useful numerical comparisons to be made, seems desirable. Therefore, for
convenience another scaling is employed based on hN through the following trans-
formation of the dimensionless variables in (D.1a)–(D.1b):

(x, y, z)→ hN(x, y, z), h→ hNh, t → t
hN
, (D.2a)

(u, v,w)→ h2
N(u, v,w), p→ hNp, (D.2b)

ST: T → T , (D.2c)

or

HF: T → hNT , (D.2d)

which converts the boundary condition h→ hN far from a solitary hump to h→ 1.
The combination of (D.1a)–(D.1b) and (D.2a)–(D.2d) is precisely the scaling given
in (2.16a)–(2.16f). This scaling is based on the Nusselt flat film solution (2.15a)–
(2.15f) and is defined as the Nusselt scaling. Notice that the numerical factor of 3
appearing along with the Reynolds and Péclet numbers in the dimensionless mo-
mentum and energy equations (2.18)–(2.21) is due to the definition of the Reynolds
number (2.35) based on the flow rate.
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The Nusselt scaling explicitly scales out h̄N from the full equations of motion
and energy and wall and free surface boundary conditions, but as a consequence all
governing dimensionless groups, Pe, We, M , B , Bw, and of course Re, depend on
the flow rate (through the dimensionless Nusselt flat film thickness hN).

As an example, assume that we wish to construct numerically a local surface
deformation like a solitary hump and examine the influence of the flow rate and
the temperature difference between wall and ambient gas phase or wall heat flux
(corresponding to the ST or HF cases, respectively) only on this deformation. We
then need to fix β and the physical properties of the liquid–gas system, i.e., fix the
viscous-gravity parameters Pr, Γ and Bi or Biw for ST or HF, respectively. The only
free parameters then are Re or, equivalently, hN and Ma. In the numerical scheme
for the construction of the deformation, the Nusselt parameters Pe, We and B are
then varied with hN according to their definitions in (2.38), (2.39) and (2.41) while
M is varied with both hN and Ma according to (2.40a) for ST and (2.40b) for HF.
The results of different characteristics of the deformation, e.g., amplitude, speed are
then reported as a function of Re or hN, different Ma and fixed β , Pr, Γ and Bi or
Biw for ST or HF, respectively, reflecting precisely how the different parameters are
input in the numerical scheme.

Hence, although the Nusselt scaling is the most widely used scaling in the liter-
ature, in this monograph it is used as in experiments (where it is much easier to fix
the gas–liquid–solid system and β), instead of, e.g., varying independently Re and
We, as is often the case in the literature.

D.2 On the Orders of Magnitude for the Different Groups in the
Boundary Layer Equations

The orders of magnitude assignments for the different dimensionless groups in the
derivation of the boundary layer equations in Sect. 4.1 are made for simplicity and
in order to fix ideas. These assignments can be relaxed.

For example, let us relax the order of magnitude assignment on Re while the
remaining groups have the assignments used in the derivation of the boundary layer
equations in Sect. 4.1. For the second-order boundary layer equations then, the y

component of the momentum equation (4.2c) shows that in order to neglect the
O(ε2Re) cross-stream inertia terms on the left hand side of this equation compared
to the smallest term on the right hand side, i.e., ε∂yyv, we must have εRe� 1. Hence
Re can only increase at a rate slower than 1/ε. This also ensures automatically that
Re�We, the condition for cross-stream inertia to be negligible compared to surface
tension in the free surface pressure distribution across the film (4.4). At the same
time, in order for the streamwise inertia terms in (4.2b) to be kept compared to the
neglected O(ε3) terms on the right hand side of this equation we must have Re� ε2.

For the first-order boundary layer equations, εRe can be at most of O(1), the
maximum order on the right hand side of the streamwise momentum balance (4.2b),
which automatically satisfies ε2Re � 1 for cross-stream inertia to be negligible in
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the y component of the momentum equation (4.2c) and it satisfies Re � We for
cross-stream inertia to be negligible compared to surface tension in the pressure
distribution across the film (4.4). At the same time, for the streamwise inertia terms
in (4.2b) to dominate over the neglected O(ε2) terms of the right hand side in the
same equation, Re� ε.

As an example, let us take the upper bound on Re for the first-order boundary
layer equations, Re∼ 1/ε. Assume also that we are not too close to criticality, more
specifically, Re− Rec = O(1). As pointed out in Sect. 4.1, in this case k ∼ ε. For
a wavelength of the waves ∼1 mm, i.e., of the order of the capillary length (see
Introduction) and h̄N ∼ 0.1 mm, k ∼ 0.1 so that ε ∼ 0.1, which gives Re ∼ 10,
a moderate value.

Let us now relax the order of magnitude assignments for both Re and We in the
second-order boundary layer equations while the remaining parameters remain of
O(1). The y component of the momentum equation (4.2c) then shows that in order
to neglect cross-stream inertia, ε2Re� ε∂yyv, i.e., εRe� 1. The neglected terms in
the pressure distribution (4.4) then are of O(ε2, ε2Re), while for surface tension we
require ε2We at most of O(1). At the same time, for surface tension to dominate over
these neglected terms we need ε2We� ε2, or We� 1, and ε2We� ε2Re, or simply
Re � We. The pressure distribution (4.4) is then substituted into the x component
of the momentum equation (4.2b). Following the differentiation of this distribution
once, the contribution of its neglected terms in (4.2b) is of O(ε3, ε3Re). To keep
the inertia terms on the left hand side of (4.2b), we need εRe� ε3 or Re� ε2 and
εRe � ε3Re, which is automatically satisfied. Also, the viscous terms on the right
hand side of (4.2b) must be kept compared to the O(ε3Re) neglected terms in ε∂xp,
i.e., ε3Re� ε2 or εRe� 1, a condition we already have.

To summarize:

(i) The conditions on Re are Re � ε2, Re � We and Re � ε−1 or Re �
min{We, ε−1}.

(ii) The conditions on We are ε2We at most of O(1), We� 1.

Assume now that for the first-order boundary layer equations, B,Bw remain of
O(1), but we relax the orders of magnitude assignments for Re, We and M . The more
general orders of magnitude assignments for these groups then are εRe at most of
O(1), Re � ε, εM at most of O(1) and M � ε, and ε2We at most of O(1) and
εWe� 1 (i.e., We� Re, a condition that has already been utilized in the derivation
of the above orders of magnitude assignments). However, the final (first- or second-
order) boundary layer equations remain the same, and in fact the neglected terms are
of O(ε2) for the first-order boundary layer equations and of O(ε3) for the second-
order ones, as they should be: e.g., for the first-order equations the neglected terms
are of O(ε2, ε3Re, ε3M)≡O(ε2) since εRe, εM are at most of O(1) [207].

In all cases, We must be large, i.e., We = O(ε−2), O(ε−1) and We = O(ε−2),
O(ε−3/2) are possible orders of magnitude assignments for the second- and first-
order boundary layer equations, respectively. Large We is an essential requirement
for the validity of the boundary layer approximation. This point is discussed in detail
in Sect. 4.4.
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D.3 Dimensionless Groups and Their Relationships for the ST
Case

Reynolds number: Re= δ

3η1/2

Inclination number: Ct= ζ

η1/2

Kapitza number: Γ = δ2/3

η11/6
=We(3Re)2/3

Marangoni number: Ma= Mδ2/3

η5/6
=M(3Re)2/3

Biot number: Bi= B

(3Re)1/3

Weber number: We= 1

η3/2
= Γ

(3Re)2/3

Film Marangoni number: M = M
η1/2

= Ma

(3Re)2/3

Film Biot number: B = Bi (3Re)1/3

Reduced Reynolds number: δ = 3Re

We1/3
= (3Re)11/9

Γ 1/3

Reduced inclination number: ζ = Ct

We1/3
= Ct(3Re)2/9

Γ 1/3

Viscous dispersion number: η= 1

We2/3
= (3Re)4/9

Γ 2/3

Reduced film Marangoni number: M= M

We1/3
= Ma

Γ 1/3(3Re)4/9

D.4 Physical Parameters

Table D.1 shows typical properties and parameter values for different liquids used
in experiments [3, 131, 132, 239]. The Marangoni number is calculated with the

Table D.1 Physical properties of different liquids [296] and corresponding dimensionless param-
eters, with ΔT = 1 K used for Ma and α = 100 W m−2 K−1 used for Bi

Liquid lν (µm) tν (ms) Γ Ma Bi

Water at 20°C 47 2.2 3375 8.9 0.008

Water at 15°C 50 2.3 2950 7.7 0.009

FC–72 at 20°C 26 1.6 1100 9.7 0.045

MD–3F at 30°C 31 1.8 703 5.8 0.047

25% ethyl alcohol at 20°C 87 3.0 500 1.5 0.02
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temperature difference ΔT = 1 K and the Biot number with the heat transfer co-
efficient α = 100 W m−2 K−1. These are reference values and in practice, typical
values would be 10 times larger for Ma, i.e., �T = 10 K, and 5 times larger for Bi,
i.e., α = 500 W m−2 K−1.



Appendix E
Model Details

E.1 Dynamical System Corresponding to the Full Second-Order
Model

In the moving frame ξ = x− ct , the four-equation system (6.78) is transformed into
a set of four ordinary differential equations. One corresponds to the mass balance
q ′ = ch′, which after one integration gives q = c h + q0. We can then eliminate
q from the other three equations. Solving the system of equations for h′′′, s1

′ and
s2
′ leads to an autonomous five-dimensional dynamical system in the phase space

spanned by U = (U1,U2,U3,U4,U5) where U1 = h, U2 = h′, U3 = h′′, U4 = s1
and U5 = s2:

U ′
1 = U2, U ′

2 =U3, (E.1a)

U ′
3 = 3

q0

U3
1

+ 3
c

U2
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(E.1b)
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U ′
4 =

1

δU1(c2U2
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11 cq0U1 − 444
11 q

2
0 )

×
{(

13689

11
q0 + 949

11
cU1

)
U4 +

(
91143

22
q0 + 37479

11
cU1

)
U5

+
[
δ

(
45942

4235
q3

0 +
24986

4235
cq2

0U1 − 533

8470
c2q0U

2
1 −

16003

25410
c3U3

1

)

+ δ

(
−50772

605
q2

0 +
5850

121
cq0U1 + 1069

55
c2U2

1

)
U4

+ δ

(
−166644

4235
q2

0 −
96825

847
cq0U1 + 5058

385
c2U2

1

)
U5

]
U2

+ η

(
−905931

24640
q2

0 +
436553

12320
cq0U1 + 35659

3080
c2U2

1

)
U2

2

+ η

(
−1647087

49280
q2

0U1 + 61217

9856
cq0U

2
1 +

50167

18480
c2U3

1

)
U3

}
, (E.1c)
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. (E.1d)

This dynamical system becomes singular with U′ not defined at points where the
denominator of (E.1b)–(E.1d) vanishes:

δU1

(
c2U2

1 +
152

11
cq0U1 − 444

11
q2

0

)
= 0. (E.2)

U1 = 0 corresponds to the onset of dry patches on the inclined plate. However,
physically the formation of dry patches requires forces of nonhydrodynamic ori-
gin, such as long-range attractive intermolecular interactions that are not con-
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sidered in this monograph. The touch down with U1 = 0 of a trajectory in the
phase plane therefore is a nonphysical solution. The other two roots of (E.2) are
Using± = 2

11q0(−38±√2665)/c. At least one of these roots is positive. The pres-
ence of the singular planes U1 = Using± in the phase space is a sign of the com-
plexity of the full second-order model and does not result from any actual physical
limitations. It is rather a direct consequence of the projection of the velocity field on
a small set of polynomials.

On the other hand, the three-dimensional dynamical system (7.42) does not have
any denominators and the above difficulty is avoided. This is due to the simplicity of
the corresponding models. Notice, however, that the choice of only one test function
does not necessarily sidestep the onset of singular planes in the phase space. The
formulation adopted by Lee and Mei [161] by retaining cross-stream inertial terms
while using the assumption of a self-similar parabolic velocity profile also led to the
presence of singular planes in a three-dimensional phase plane.

By setting q0 to 1/3 − c as in (7.39), the two fixed points of the flow (E.1a)–
(E.1d) verify U2 = U3 = U4 = U5 = 0 and (7.44). To simplify notations, the two
fixed points are denoted with the same symbols used for the fixed points UI and UII
of the three-dimensional system (7.42). Heteroclinic orbits must connect the two
fixed points without encountering one of the singular planes. For c > 1/3, q0 < 0
and only Using− = 2

11 (38 + √
2665)(1 − 1/(3c)) is positive. Using− = 1 admits a

root

c− = 2

3

38+√2665

65+ 2
√

2665
≈ 0.355127.

Similarly, Using− = hII leads to c= 1/3 or to the second-order equation,

16436

1089
+ 304

√
2665

1089
−
(

17272

363
+ 326

√
2665

363

)
c+ c2 = 0,

which admits two roots, c− ≈ 0.315117 and c+ ≈ 93.6279. The first value is lower
than the limiting value 1/3, below which the second fixed point UII vanishes. The
second one is much larger than the usual speed of observed waves. The limiting
speeds c− and c+ correspond to extreme positions of the fixed point UII, either very
close to the origin, UII ≈ 0.0615879, or very far from it, UII ≈ 16.2372. Therefore,
the condition

c− < c < c+ (E.3)

is not restrictive and does not limit the exploration of the pertinent solutions (limit
cycles, homoclinic and heteroclinic orbits) to the dynamical system.

The position of the fixed points influences the orbits in the phase space. Ho-
moclinic orbits connecting UI to itself spiral around UII such that the maximum
amplitudes of U2, . . . ,U5 increase with the distance separating the two fixed points.
The two values 1 − c− and c+ − 1 can be viewed as upper limits on the distance
between the two fixed points, which in turn correspond to upper limits on the wave
amplitude.
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E.2 Three-Dimensional Full Second-Order Model

Following the weighted residuals methodology detailed in Chap. 6, the velocity field
is projected onto the polynomials F0, F1 and F2 defined in (6.74) and repeated
below for convenience:

F0 = ȳ − 1

2
ȳ2 (E.4a)

F1 = ȳ − 17

6
ȳ2 + 7

3
ȳ3 − 7

12
ȳ4 (E.4b)

F2 = ȳ − 13

2
ȳ2 + 57

4
ȳ3 − 111

8
ȳ4 + 99

16
ȳ5 − 33

32
ȳ6. (E.4c)

The streamwise and spanwise velocity distributions thus read

u = 3

h
(q‖ − s1 − s2)g0(ȳ)+ 45

s1

h
g1(ȳ)+ 210

s2

h
g2(ȳ) (E.5a)

w = 3

h
(p− r1 − r2)g0(ȳ)+ 45

r1

h
g1(ȳ)+ 210

r2

h
g2(ȳ), (E.5b)

where ȳ = y/h and the streamwise and spanwise flow rates q‖ =
∫ h

0 udy and q⊥ =∫ h
0 wdy, respectively, appear with two corrections each, namely s1, s2 and r1, r2.

Applying the Galerkin method, which consists of integrating the boundary layer
equations (4.5a), (4.5b) across the film, substituting the projections (E.5a)–(E.5b)
into the integrated equations, taking the test functions (E.4a)–(E.4c) as weight func-
tions and using the boundary conditions (4.2f), (4.2k), (4.2l) yields the full second-
order model for three-dimensional flows. Let us define two fictitious parameters,
εx ≡ 1 and εz ≡ 0. They will be used as “tracers” to identify in-plane gravity terms
that are equal to zero for the momentum equations in the transverse z direction. The
evolution equations for q‖, s1 and s2 read

δ∂tq‖ = εx
27

28
h− 81

28

q‖
h2
− 33

s1

h2
− 3069

28

s2

h2
+ δ

(
−12

5

q‖s1∂xh

h2
− 126

65

q‖s2∂xh

h2

+ 12

5

s1∂xq‖
h

+ 171

65

s2∂xq‖
h

+ 12

5

q‖∂xs1

h
+ 1017

455

q‖∂xs2

h
+ 6

5

q2‖∂xh
h2

− 12

5

q‖∂xq‖
h

− 6

5

q‖∂zq⊥
h

− 6

5

q⊥∂zq‖
h

+ 6

5

q‖q⊥∂zh
h2

− 6

5

q‖r1∂zh

h2

− 63

65

q‖r2∂zh

h2
− 6

5

q⊥s1∂zh

h2
− 63

65

q⊥s2∂zh

h2
+ 6

5

s1∂zq⊥
h

+ 108

65

s2∂zq⊥
h

+ 6

5

r1∂zq‖
h

+ 63

65

r2∂zq‖
h

+ 6

5

q‖∂zr1

h
+ 576

455

q‖∂zr2

h
+ 6

5

q⊥∂zs1

h

+ 63

65

q⊥∂zs2

h

)
+ η

(
5025

896

q‖(∂xh)2

h2
− 5055

896

∂xq‖∂xh
h

− 10851

1792

q‖∂xxh
h
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+ 2027

448
∂xxq‖ + ∂zzq‖ − 2463

1792

∂zq‖∂zh
h

+ 2433

1792

q‖(∂zh)2
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− 5361

3584

q‖∂zzh
h

+ 7617
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q⊥∂xh∂zh
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3584
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3584
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q⊥∂xzh
h

+ 1579

448
∂xzq⊥

)
− 27

28
ζh∂xh+ 27

28
h(∂xxx + ∂xzz)h (E.6a)

δ∂t s1 = εx
1

10
h− 3

10

q‖
h2
− 126

5

s1

h2
− 126

5

s2

h2
+ δ

(
1

35

q‖∂xq‖
h

− 3

35

q2‖∂xh
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+ 108

55
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− 5022

5005

q‖s2∂xh
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− 103
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+ 9657
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h

− 39

55

q‖∂xs1

h
+ 10557

10010
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35

q‖∂zq⊥
h
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h
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35
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h
− 2511
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)
+ η
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− 69

40
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+ 21
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− 1
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h(∂xxx + ∂xzz)h (E.6b)

δ∂t s2 = εx
13

420
h− 13

140

q‖
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− 39

5

s1

h2
− 11817
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s2
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+ δ
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h
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s2∂zq⊥
h
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+ 27

385

q‖∂zr2

h

)
+ η

(
−3211

4480

q‖(∂xh)2

h2
+ 2613

4480
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− 2847
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+ 559
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h(∂xxx + ∂xzz)h. (E.6c)

The equations for q⊥, r1 and r2 are obtained from (E.6a)–(E.6c) through the ex-
changes {x ↔ z, q‖ ↔ q⊥, s1,2 ↔ r1,2, εx ↔ εz} (hence the introduction of the
“tracers” εx,z reduces to a minimum the set of equations to be written). The set of
equations is completed by the mass conservation ∂th=−∂xq‖ − ∂zq⊥.

E.3 Three-Dimensional Regularized Second-Order Model

∂th = −∂xq‖ − ∂zq⊥ (E.7a)

δ∂tq‖ = δ

[
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q2‖
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h
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(E.7b)

δ∂tq⊥ = δ
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E.4 Full Second-Order Model for the ST Case

∂th = −∂xq (E.8a)
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δ∂t s1 = 1
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δ∂t s2 = 13
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δ∂t s3 = 8
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+ 8441321

26478400

(1− θ)∂xs2

h
+ 121848419

30552000

(1− θ)∂xs3

h
− 95509

190950

s1∂xθ

h

+ 55645211

13239200

s2∂xθ

h
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h

)
+ η

(
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6365
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h

+ 45232

6365

(1− θ)(∂xh)
2

h2
− 22616

6365
B
θ(∂xh)

2

h

)
. (E.8i)

E.5 Second-Order Inertia Corrections to the Regularized
Model (9.33a), (9.33b) for the ST Case

K = 1

210
h2∂tt q + 17

630
hq∂xtq − 1

105
q∂xh∂tq + 1

42
h∂xq∂tq − 26

231

q2∂xh∂xq

h

+ 653

8085
q(∂xq)

2 + 386

8085
q2∂xxq + 104

2695

q3(∂xh)
2

h2
− 78

2695

q3∂xxh

h
(E.9a)

KM = 5

112
q∂xh∂xθ + 19

336
h∂xq∂xθ + 1
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h2∂xt θ + 15

224
hq∂xxθ (E.9b)

Kθq = − 19
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(E.9c)

Kθ = 1
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h2∂tt θ + 23
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+ q2∂xxθ
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KM
θ = 3

40
h(∂xθ)

2 − 3

40
(1− θ)∂xh∂xθ − 3

80
(1− θ)h∂xxθ. (E.9e)

E.6 Weighted Residuals Modeling for the HF Case

Up to now, the weighted residual approach has been applied for the problem of
a uniformly heated film corresponding to the ST condition. Here we develop the
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weighted residuals modeling for the HF condition which takes into account heat
losses from the wall to the gas phase in contact with the wall. The condition is given
in (2.23b) and is rewritten here for clarity:

∂yT |0 =−1+BwT |0. (E.10)

As emphasized in Sect. 9.4, at zeroth order the heat transfer and mechanical
equilibrium of the film are decoupled from each other. The coupling between the two
appears at first order through the presence of interfacial deformations. Moreover, the
zeroth-order formulation of the surface temperature (5.4b)

θ(0) = 1

B +Bw(1+Bh)
(E.11)

yields the same formulation of the second-order terms KM (recall that these terms
are induced in the momentum equation by the Marangoni flow produced by the
gradient of temperature at the film surface) as obtained in (9.40) for ST. Therefore,
the momentum equation (9.43b) of the reduced model will remain unaltered with
HF and we hence focus only on the energy equation in what follows. In addition,
the Galerkin averaging procedure for the energy equation is overall similar to the
one presented in Sect. 9.2, but with some modifications.

Much like with the ST case, we wish to have the film surface temperature θ in
the formulation of the averaged model. Let us then rewrite the linear zeroth-order
temperature profile across the film (5.3f) in terms of the surface temperature θ :

T (0) = θ + F(h− y) where F= 1−Bwθ

1+Bwh
. (E.12)

The effective heat flux F(x, t) at the wall decreases with the intensity Bw of the
heat losses from the liquid to the wall and with the increase of the film surface
temperature θ . To satisfy the boundary condition (E.10), we write the temperature
field as

T (x, y, t)=−F(x, t) y +
imax∑

i=0

bi(x, t)gi

(
y

h(x, t)

)
, (E.13)

where g0 = 1 corresponds to the base state, and the set of test functions is completed
with gi(ȳ)= ȳi+1, i ≤ 1, to obtain the polynomial basis for the projection.

E.6.1 Formulation at First-Order

Turning to the weighted residuals for the energy equation (9.7b) and with the same
arguments as in Sect. 9.2, the unknowns bi , i ≥ 1, may only play a role through the
integral,

∫ h
0 wj∂yyT . With two integrations by parts and making use of the boundary
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condition at the surface (9.6f) and the heat flux condition at the wall (E.10), we
obtain

∫ h

0
wj

(
y

h

)
∂yyT dy = −Bwj(1)T |h +wj(0)(1−BwT |0)

+ 1

h

(
wj

′(0)T |0 −wj
′(1)T |h

)

+ 1

h2

∫ h

0
wj

′′
(
y

h

)
T dy. (E.14)

In order to put the emphasis on θ ≡ T |h, we choose for the first weight function
w′
imax

(0)= 0, w′′
imax

= 0, so that wimax ∝ 1= g0. It is next appropriate to replace the
physically meaningless unknown b0 by θ through the substitution

b0 = Fh+ θ −
imax∑

i=1

bi. (E.15)

The evaluation of the first residual (9.7b) corresponding to wimax = g0 = 1 then
yields

3εPe

[
F∂th+ 1

2
h∂tF+ ∂t θ + 3

8

(
Fq∂xh

h
+ F∂xq + q∂xF

)
+ q∂xθ

h

]

− (F−Bθ)

h
= 0. (E.16)

Substituting now F = (1− Bwθ)/(1+ Bwh) and using the kinematic equivalence,
∂th=−∂xq , leads to the following equation for θ :

3εPe∂t θ =
{
(1−Bwθ)

h(1+Bwh)
− Bθ

h
+ 3εPe

[
(5+Bwh)(1−Bwθ)

8(1+Bwh)2
∂xq

− 3

8

(1−Bwθ)

(1+Bwh)2

q

h
∂xh−

(
1− 3

8

Bwh

(1+Bwh)

)
q

h
∂xθ

]}

×
(

1− Bwh

2+ 2Bwh

)−1

, (E.17)

where the unknowns bi do not appear. This equation is consistent at O(ε) and can
be substituted for (9.17c) into (9.17a)–(9.17c) to get the first-order model for the
heat flux condition; the model consists of three coupled evolution equations for h,
q and θ .

E.6.2 Formulation at Second-Order

As in Sect. 9.3, we extend here the first-order formulation to take into account the
second-order thermal effects. For this purpose, we need the explicit expressions for
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the amplitudes bj of the projection at first order. This is done by eliminating the
coefficients of the polynomial obtained by substituting the temperature field (E.13)
and the velocity field (9.2a) into the second-order energy equation (4.6b). Since the
amplitudes ai are known from (9.18a)–(9.18e) and b0 from (E.15), and the bi , i ≥ 1,
are at least of O(ε), the coefficients of the above polynomial provide the required
expressions of the bi as functions of h, θ , q and their derivatives:

b1 = 3

2
εPeh2(h∂tF+ ∂t θ − F∂xq) (E.18a)

b2 = −1

2
εPeh

[
h2∂tF− 3q(F∂xh+ h∂xF+ ∂xθ)

]
(E.18b)

b3 = −3

8
εPeh

[−hF∂xq + q(3F∂xh+ 3h∂xF+ ∂xθ)
]

(E.18c)

b4 = 3

40
εPeh

[−hF∂xq + 3q(F∂xh+ h∂xF)
]

(E.18d)

bi = 0, i ≥ 5. (E.18e)

In contrast to the ST case, here the amplitude b1 is nonzero. Therefore, the temper-
ature T at first order is a combination of five independent fields, namely, θ , b1, b2,
b3 and b4. As a consequence, a consistent formulation of a model for the dynamics
of the flow at second order would require 14 unknowns, instead of 13 for the ST
case. However, rather than solving 14 equations, let us use the same approach as for
the ST case and construct a set of orthogonal test functions for the temperature field
from linear combinations of g0, g1, g2, g3 and g4 such that G0 ≡ g0:

G0 = 1 (E.19a)

G1 = 1− 3ȳ2 (E.19b)

G2 = 1− 15ȳ2 + 16ȳ3 (E.19c)

G3 = 1− 45ȳ2 + 112ȳ3 − 70ȳ4 (E.19d)

G4 = 1− 105ȳ2 + 448ȳ3 − 630ȳ4 + 288ȳ5. (E.19e)

Therefore, the temperature field can be accurately described at O(ε) from

T =−Fy + (Fh+ θ − t1 − t2 − t3 − t4)G0 + 1

2

4∑

i=1

(−1)i tiGi. (E.20)

The set of test functions Gi must be completed at second order with 10 polynomi-
als of degree up to 14. Nevertheless, since G′′

i , 0≤ i ≤ 4, are not linear combinations
of Gi , 0≤ i ≤ 4, the five first residuals do not form a closed set of equations for θ ,
t1, t2, t3 and t4. Yet, a basis for the set of polynomials of degree up to five satisfying
the HF condition can be obtained by introducing only one polynomial orthogonal to
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the first four Gi . This polynomial, G5, is

G5(ȳ)= 1− 70

3
ȳ + 140ȳ2 − 336ȳ3 + 350ȳ4 − 132ȳ5. (E.21)

The temperature field can now be written explicitly at second order as

T = −Fy + (Fh+ θ − t1 − t2 − t3 − t4)G0(ȳ)− 1

2
t1G1(ȳ)

+ 1

2
t2G2(ȳ)− 1

2
t3G3(ȳ)+ 1

2

(

t4 −
9∑

i=6

ti

)

G4(ȳ)

− 3t5G5(ȳ)+
9∑

i=6

ti
Gi(ȳ)

Gi(1)
. (E.22)

The choice of this formulation ensures that the evaluation of
∫ h

0 G′′
j (ȳ)T dy, 0≤

j ≤ 5, does not require the definitions of Gj , j ≥ 6. By applying next the Galerkin
method to the energy equation we find that the first six residuals Rθ (Gi), 0 ≤
i ≤ 5, constitute a closed set. Since the amplitude t5 is of O(ε2), its space and
time derivatives can be neglected at this order, so that an explicit formulation in
terms of h, θ , t1, t2, t3 and t4 can be obtained, expressing the slaving of the former
to the latter. We can then derive a set of five evolution equations for θ , t1, t2, t3, t4
that couple with the five other evolution equations (E.8a)–(E.8e) to provide the full
second-order model, a system of 10 equations with 10 unknowns.

However, we will take a shortcut here based on considerations already developed
in the ST case (see Sect. 9.4.3). In fact, the aim is once again to obtain a three-
unknown regularized model for h, q and θ that remains asymptotically correct up
to O(ε2) with the long-wave theory. Yet, as temperature is coupled through its gra-
dient in the momentum equation, the second-order terms in the energy equation do
not enter the second-order gradient expansion. Further, recall that it is not possible
to take into account the second-order corrections appearing in the averaged energy
equation—which are induced by the deviations of the temperature and velocity pro-
files from the Nusselt flat film solution—if the temperature field is assumed to be
slaved to the free surface temperature θ only. Hence, we restrict ourselves here to
the second-order averaged energy equation obtained from the first residual, Rθ (G0)

with G0 = 1, as we did for the first order. The result written in terms of the Shkadov
scaling is

F−Bθ
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8
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2∂xF∂xh+
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2
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2
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h
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2
h∂xxF+ F∂xxh+ ∂xxθ

]
= 0, (E.23)
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where the second bracketed expression contains the second-order thermal effects.
Equation (E.23) should be coupled with the continuity and the momentum equa-
tions (9.43a), (9.43b). This three-equation system constitutes the regularized model
for the HF case.



Appendix F
Numerical Schemes

F.1 Solving the Orr–Sommerfeld Equation by Continuation

Solving the Orr–Sommerfeld eigenvalue problem is not a straightforward task. Nu-
merical schemes for its solution were proposed as early as 1964 [298] for the prob-
lem of a falling film with surfactants (the Orr–Sommerfeld problem for the purely
hydrodynamic case was treated for the first time in [10]). The different schemes are
based, for example, on the “shooting method” (see, e.g., [67] or [259]), “pseudo-
spectral methods” (see, e.g., [44, 202]) or “finite differences.” In the last two cases
the aim is to discretize the (infinite-dimension) differential eigenvalue problem ap-
propriately and thus convert it to a (finite-dimension) matrix eigenvalue problem,
whereas, in the shooting method one looks for the parameter values for which the in-
tegration of the equation from one side of the domain (the wall) satisfies the bound-
ary conditions at the other side (the free surface).

Here we present an alternative approach based on continuation, which demands
a minimum of code writing due to a freely distributed software. The basic idea is
the following: Suppose one trivial solution of the problem at hand is known and that
this solution is not isolated in the parameter space but lies on a continuous branch of
solutions, i.e., a continuous distribution of solutions as a function of a single param-
eter (a “codim 1 manifold”). One may then construct the whole branch of solutions
in small steps, starting from the known trivial solution. An introduction to continua-
tion methods can be found in the monograph by Allgower and Georg [8]. Based on
the initial work by Keller [146], accurate continuation algorithms have been devel-
oped by Doedel et al. [80, 81] and implemented in the software package AUTO-07P,
which can be downloaded from http://indy.cs.concordia.ca. The software is designed
as a collection of subroutines that enables the solution of bifurcation problems for
ordinary differential equations. It can be installed on most operating systems, in-
cluding Windows and Linux. For details, we refer the reader to the documentation
of the software. Here we provide the basic steps to using the software and how to
implement it for the numerical solution of the Orr–Sommerfeld eigenvalue problem.

The user gives a name to the problem to be solved, say xxx, and defines it in
the file xxx.f. The numerical constants of each run are specified in separate files
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c.xxx.1, c.xxx.2 and so on. The computations are initiated by the command
@r, by typing in a unix shell @r xxx 1, for example. The software then compiles
the program using the routines defined in xxx.f, reads the numerical constants
stored in c.xxx and the initial solution stored in the file q.1 produced by a previ-
ous run.1

The results of the computation are stored using @sv. They can be plotted with the
software PLAUT run by the command @p. Details can be found in the user manual,
which contains numerous useful examples, i.e., a variety of dynamical systems, such
as reaction-diffusion equations [79].

As an example, let us consider the search for the neutral stability curve of stream-
wise perturbations in terms of the wavenumber k versus angular frequency ω for
an isothermal film falling down an inclined plate. We then need to solve numer-
ically (3.22a) with boundary conditions (3.22c), (3.22g) and (3.22h), where η is
given by (3.22f) and M is set to zero.

As the Orr–Sommerfeld system is linear, a constraint/normalization condition on
the amplitude must be added. Here we choose the integral constraint

∫ 1

0
ϕ dy = 1/3, (F.1)

which is compatible with the normalization of ϕ0 in (3.24). In practice, the search
for the neutral stability conditions is facilitated by the long-wave nature of the insta-
bility. The onset of instability corresponds to a zero wavenumber k and the neutral
stability curve emerges from the “trivial solution”:

ϕ = y2, k = 0, c= 1. (F.2)

We therefore proceed in two steps.
Step 1: We start from the trivial solution (F.2) and follow the horizontal axis

ω= k = 0 until the critical value of the Reynolds number is detected as a bifurcation
point.

Step 2: We restart the computation from Re= Rec and construct the neutral sta-
bility curve. The process is called stab and the three necessary files, stab.f,
c.stab.1 and c.stab.2 are in the AUTO source code discussed later.

The first step is implemented with the following sequence of commands:

cp c.stab.1 c.stab
@r stab
@sv 1

During the computation, AUTO summarizes the results on the screen:

1The latest distribution AUTO-07P, released in 2007, has a user-friendly command line interface
based on the “Python language,” as well as a graphical user interface (GUI). Yet, AUTO-07P, like
older versions of AUTO, can still be used effectively with the help of the standard Unix commands.
Therefore, we leave to the reader the choice of using the Python and GUI interfaces or not and
present only the standard Unix procedure to which most current users of AUTO are accustomed.
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BR PT TY LAB PAR(1) L2-NORM MAX U(1)
MAX U(2) MAX U(3) MAX U(4) PAR(2) PAR(3)
1 1 EP 1 1.00000E-01 2.42212E+00 1.00000E+00

0.00000E+00 2.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
1 15 BP 2 1.19172E+01 2.42212E+00 1.00000E+00

0.00000E+00 2.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
1 100 EP 3 9.69172E+01 2.42212E+00 1.00000E+00

0.00000E+00 2.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

The switch from the trivial solution to the neutral stability boundary is enabled by
setting the constant ISW to −1 in c.stab.2. The results are stored in files b.1,
s.1 and d.1. The critical point is detected as a “branch point” (indicated by BP in
the screen outputs) at Re= 11.91722, in agreement with the theoretically predicted
value of the critical Reynolds number, Rec = 5/6 cot(4π/180). This point is labeled
as 2 and gives the starting conditions for the second step. Notice that the detection of
the (bifurcation) point 2 is enabled by setting the constant ISP to 2 in the constant
file c.stab.1.

The second step is achieved with the following commands:

cp c.stab.2 c.stab
@r stab 1
@sv 2

The computation is stopped when Re reaches the value 70 (last row of the constant
file c.stab.2). The results are then stored in files b.2, s.2 and d.2, and can
be visualized with the command @p 2 using the software PLAUT which opens a
Tektronix window. Next, typing the following commands in the PLAUT window

ax
1 8

select the Reynolds number and the frequency (first and eighth columns of the file
b.2). Finally, the neutral stability curve is plotted and saved in a file 2.fig using
the commands:

bd0
sav
2.fig

To convert this file into a postscript one, we can use the command @ps 2.fig,
which creates the file 2.fig.ps. The result is displayed in Fig. F.1 for a particular
set of parameters (β = 4°, ν = 2.3 10−6m2 s−1, σ/ρ = 62.6× 10−6 m3 s−2) corre-
sponding to an experiment by Liu et al. [170] and to Fig. 7.2. Notice that AUTO

draws the neutral curve for ω < 0. As the curve is symmetric around ω= k = 0, its
part for positive values of ω can be easily recovered through ω→−ω, k→−k.

F.1.1 AUTO Source Code

The files necessary for the above example on the use of the software AUTO can be
downloaded from extras.springer.com (search for the book by its ISBN, you will

http://extras.springer.com
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Fig. F.1 Neutral stability curve as plotted by the software Plaut in the (Re, ω)-plane. Notice
that the second run of the computation, stored in b.2, s.2 and d.2 follows the first run stored in
b.1, s.1 and d.1. File s.1 already contains three solutions labeled 1, 2 and 3, so that the fourth
one, stored in s.1, is labeled 4 and corresponds to the solution at the end of the computation

then be asked to enter a password, which is given on the copyright page of this print
book). They are written in the “old” Fortran style and are therefore compatible with
the current release AUTO-07P (and of course with older versions). File stab.f
contains the Orr–Sommerfeld equation (3.22a) in the format of an autonomous com-
plex dynamical system of dimension 5 (subroutine FUNC), the boundary conditions
(3.22c), (3.22g) and (3.22h) (subroutine BCND), the integral condition (F.1), and
the trivial solution (F.2) (subroutine STPNT).

There are three “active” continuation parameters in the problem the way it is
formulated: Re, k and c, corresponding to the parameters PAR(1), PAR(2) and
PAR(3), respectively (subroutine FUNC). There are two more active parameters
that are not changed in the runs, Ct and Γ , whose values are set once and for all in
STPNT. Since the frequency ω is not a true continuation parameter in the chosen
formulation based on the wavenumber k but a combination of the two parameters k
and c, the dimensional frequency ω is denoted as PAR(6) in a separate subroutine
PVLS that defines specific “solution measures” (non-free parameters). Of course,
the value of the dimensionless frequency can be obtained as a combination of k and
c, but it is useful to store the dimensional frequency in a user-defined parameter
(UZR) in AUTO such that it explicitly appears in the output AUTO files and there is
no need for additional post-processing.

F.2 Computational Search for Traveling Wave Solutions and
Their Bifurcations

To investigate the behavior of the solutions of the BE, we employ bifurcation anal-
ysis using numerical continuation techniques [79]. Continuation is a very effective
method for determining branches of stationary solutions and their bifurcations, fol-
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lowing them in the parameter space using the Newton iteration method. In the con-
text of thin films, continuation was applied in studies of traveling and solitary waves
of falling films [52, 227, 228, 239], sliding drops on slightly inclined plates [268,
269], and transverse instabilities of sliding liquid ridges [266].

We seek traveling wave solutions, i.e., stationary solutions of (5.13) in a frame
of reference moving downstream at constant speed c. We present the computational
methodology for the BE in terms of the Nusselt scaling to illustrate how some of
the figures in Chap. 5, prior to the introduction of the Shkadov scaling, are obtained.
Introducing h(x, t) = h(ξ) with ξ = x − c t , the BE (5.13), truncated at first order
for simplicity and dropping ε, can be integrated once to yield

−c h+ h3

3
− q0 + 2

5
Reh6h′ +We

h3

3
h′′′ −Ct

h3

3
h′ + h2

2

BM h′

(1+B h)2
= 0, (F.3)

where the primes denote differentiation with respect to ξ ; q0 is the integration con-
stant and represents the flow rate in the moving frame of reference (see (5.51)). Its
value is negative because the phase speed c of surface waves is generally higher
than the mean velocity of the film. Assuming that no dry spots are possible, i.e.,
h �= 0, (F.3) can be divided by −We h3/3 to get

h′′′ = F [h,h′] = 1

We

[
3

h3
(q0+c h)−1− 6

5
Reh3h′ +Cth′ − 3

2

BM h′

h(1+B h)2

]
. (F.4)

The differential equation (F.4) is recast into a dynamical system, as follows:

⎧
⎪⎨

⎪⎩

U ′
1 =U2

U ′
2 =U3

U ′
3 = F [U1,U2],

(F.5)

where U1 = h, U2 = h′ and U3 = h′′. The dimension of the dynamical system
(= 3) is fixed by the third-order surface tension term, which makes the system (F.5)
applicable to the majority of the equations for the film thickness discussed in this
monograph.

To determine iteratively the periodic solutions of the dynamical system (F.5),
we use the continuation and bifurcation tools for ordinary differential equations
in the software AUTO-07P. During the computations the periodicity of the solu-
tion is enforced, the “phase” of the wave is fixed by U1|ξ=0 = 1 (which fixes the

origin) and the total volume
∫ λ

0 U1 dξ = 〈h〉ξ—with λ = 2π/k—is controlled as
specified by the flow condition, open or closed (see Sect. 5.3.1; both boundary con-
ditions have been treated even though for the specific example given in the source
code the closed-flow condition is enforced). This amounts to one integral and four
boundary conditions, hence the continuation requires three free parameters [146].
By specifying the set of viscous-gravity parameters {Re,Γ,Ma,Bi,Ct}, the remain-
ing free parameters are {k, c, q0}. The continuation is started from the neutral mode
at criticality corresponding to the Hopf bifurcation point with kc from (5.18a) and
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c from (5.16). The starting value of q0 is fixed by the Nusselt flat film solution
h(ξ)= 1 such that from (F.3), q0 =−2/3.

Notice that we have avoided specifying the set of Nusselt parameters {Re, We, M ,
B , Ct} (see, e.g., Appendix D.1 and Sect. 4.10). Indeed, the advantage of working
with the viscous-gravity parameters is that all these parameters, apart from Re, are
independent on the flow rate, which is usually the principal control parameter in
experiments.

We now give the necessary steps to compute the results in Figs. 5.2, 5.4 and 5.5,
namely how to follow a branch of stationary solutions from the Hopf bifurcation
point, how to detect and follow a period-doubling bifurcation and, finally, how to
trace the locus of saddle-node bifurcation points in the parameter space.

F.2.1 Hopf Bifurcation

We compute here the γ2-family of traveling wave solutions of (F.3) using the equa-
tion file be.f and the constants files c.be that define the different constants. The
command is

@r be

Once this is executed, one can visualize the results by launching the PLAUT program
with the command

@p

In the PLAUT environment, entering successively the commands

ax
1 3
d1bd0

gives the γ2 branch as plotted in Fig. 5.2a for hmax versus k. Now, entering succes-
sively

2d
a

gives solutions for different values of k as specified in the constants file c.be.
The labels 2–5 correspond to the wave profiles 1–4 plotted in Fig. 5.2b. Exiting the
PLAUT environment using the “quit” command, one can save the γ2-family with
the command

@sv g2

F.2.2 Period-Doubling Bifurcation

Let us now compute the γ2-family of solutions for the first harmonic. To do so
one has to set f = 2, the “harmonic parameter” (≡ n, the number of waves in the
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wavetrain required to compute the period-doubling bifurcation—see Sect. 5.3.2)
in the solution subroutine STPNT() of the file be.f. Once changed and saved,
the file must be run with another constant file, c.be.HP2, where the detection of
the bifurcation point is enabled (ISP = 2), the number of mesh points is doubled
(NTST= 100), the tolerance parameters (EP*) are slightly decreased and the initial
continuation stepsize is adjusted (DS=−1.e−06). The commands then to run and
save are

@r be HP2
@sv be

AUTO-07P finds several bifurcation points (BP), the first one of which corre-
sponds to the period-doubling bifurcation point for the γ1-family of traveling waves.
We shall then compute the corresponding branch using the third constants file,
c.be.PD, where the label of the starting bifurcation point is specified (IRS = 2),
the branch switching is enabled (ISW=−1) and the direction of the continuation is
changed (by changing the sign of DS). The commands then to run and save are

@r be PD
@sv g1

One can finally append the two families of solutions and plot them as follows

@ap g1 g12
@ap g2 g12
@p g12

In the PLAUT environment, entering as before the commands

ax
1 3
d0bd0

shows the two families of solution for hmax versus k, while entering

ax
1 7
d0bd0

shows the two families of solution for c versus k, exactly as presented in Fig. 5.2a.
As an exercise, one can try to compute other bifurcating families by changing the
value of the BP-starting solution in the constants file c.be.PD, i.e., IRS = 3–6,
then following the same procedure as above to run, save, append and plot. Once
finished and before going to the next section, delete the bifurcation, solution and
diagnostic files, respectively b.be, s.be and d.be, with the following command,

@dl be

and set back to f = 1 the harmonic parameter in be.f.
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F.2.3 Locus of Saddle-Node Bifurcation Points

The different branches of solutions reported in Fig. 5.4 can be reproduced by tuning
the Kapitza number to Γ = 2950 in the equation file be.f and varying the value of
the Reynolds number. Let us trace here the branch for Re= 3:

@r be
@sv be

Because the detection of fold is enabled (ILP= 1) in the file c.be, a turning point
(see the asterisk in Fig. 5.4) is found (LP) and recorded with the label 6. We shall
then track the locus of this turning point in the parameter space. The constants
file c.be.TP0—with the turning point as initial solution (IRS= 6), the Reynolds
number as an additional continuation parameter (PAR(3)), the continuation of fold
enabled (ISW = 2) and the tolerance parameters (EP*) decreased—is first used to
generate starting data

@r be TP0
@ap be

The fold continuation can then be performed using the constants file c.be.TP
starting with the last solution (IRS = 11), and where the iteration parameters are
increased (ITMX= 10, ITNW= 8) and the initial continuation stepsize is adjusted
(DS= 0.1):

@r be TP
@ap be

Launching the PLAUT environment with @p and typing the commands

ax
7 1
d0bd0

shows the blow up boundary as plotted in Fig. 5.5 (dashed line).

F.2.4 AUTO Source Code

The Fortran files necessary for the above example on the use of the software AUTO-
07P can be downloaded from extras.springer.com (search for the book by its ISBN,
you will then be asked to enter a password, which is given on the copyright page of
this print book). These are: be.f that contains subroutines FUNC, STPNT, BCND,
ICND and all the constants files.

F.3 Time-Dependent Computations Using Finite Differences

We briefly present here the key points of the algorithm implemented to simulate the
spatio-temporal evolution of the film based on models of reduced dimensionality,

http://extras.springer.com
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i.e., one evolution equation for h, e.g., the BE (5.12), two coupled evolution equa-
tions for h, q , e.g., the Kapitza–Shkadov model (6.13a), (6.13b) and the regularized
model (6.1), (6.92), or more than two as, e.g., the three-equation model formulated
in [226]. The reader interested in more details of finite difference schemes can refer
to one of the many available textbooks, e.g., [220].

In all cases, the equations to be solved can be recast in the form

∂tH=L(H)+N (H), (F.6a)

where H denotes the set of unknowns. Therefore, in the case of the Kapitza–
Shkadov model or the more refined two-equation models, H = (h, q). L is a lin-
ear matrix-differential operator and N is a nonlinear functional of H and its spatial
derivatives. The spatial evolution of the film is then determined by solving sys-
tem (F.6a) in a semi-infinite domain with initial conditions

H(x,0)=H0(x) (F.6b)

and boundary conditions

H(0, t)=Hf (t), H(∞, t)=H0(∞)= const. (F.6c)

appropriate for a semi-infinite domain, where Hf is a function of time correspond-
ing to the forcing at the inlet. Notice that for a semi-infinite domain the boundary
condition at infinity will not affect the spatial evolution, provided that it is compat-
ible with the initial condition, more specifically that the limit of the initial condi-
tion at infinity coincides with the boundary condition there, as is indeed the case
with (F.6a)–(F.6c).

Because boundary conditions (F.6c) are not periodic, a spectral method for the
numerical integration of (F.6a)–(F.6c) cannot be used. Instead, a finite-difference
scheme is employed.

The computational domain of size L is discretized into a regular grid of N points
or “nodes,” xj = j�x; j = 1,2, . . . ,N , �x = L/N . The discretized variables at

the node (xj , tn) are denoted by H(n)
j = (h

(n)
j q

(n)
j , . . .). Notice that the necessary

limitation in size of the actual semi-infinite domain demands the introduction of
additional boundary conditions at the downstream limit x = L that do not generate
parasitic reflections upstream. We shall return to this point below.

We choose the Crank–Nicholson scheme,

H(n+1)
j −H(n)

j = �t

2

(
L
(
H(n+1)
j

)+N
(
H(n+1)
j

)+L
(
H(n)
j

)+N
(
H(n)
j

))
, (F.7)

where �t = tn+1 − tn is the time step. As the solution H(n)
j is known at time step n,

the inversion of (F.7) gives H(n+1)
j . This can be achieved using Newton’s method.

However, it might not always be easy to implement due to the nature of the nonlin-
earities N (H(n+1)

j ) and the dimensionality of the equations to be solved. A quasi-



416 F Numerical Schemes

linearization can be employed instead which gives

H(n+1)
j −H(n)

j = �t

2

[
L
(
H(n+1)
j

)+L
(
H(n)
j

)+ 2N
(
H(n)
j

)

+N ′(H(n)
j

)(
H(n+1)
j −H(n)

j

)]
. (F.8)

This scheme substantially simplifies the numerical analysis, though in general the
time steps must be smaller than those required for the Newton method. The scheme
(F.8) is “consistent” (the solution of the numerical scheme converges to the solution
of the partial differential equation (F.6a) as �t goes to zero) and of “second-order
precision” in time (the error associated with the time integration is of O(�t2))).
Indeed, a Taylor expansion at the node (xj , tn+1/2 = 1

2 (tn+1 + tn)) yields

�t

2

[
L
(
H(n+1)
j

)+L
(
H(n)
j

)+ 2N
(
H(n)
j

)

+N ′(H(n)
j

)(
H(n+1)
j −H(n)

j

)]− (H(n+1)
j −H(n)

j

)

−�t
[
L
(
H(n+1/2)
j

)+N
(
H(n+1/2)
j

)− (∂tH)
(n+1/2)
j

]=O
(
�t2). (F.9)

The spatial derivatives are approximated by central difference schemes whose pre-
cision is again of second-order:

(∂xH)j = 1

2�x
(Hj+1 −Hj−1)+O

(
�x2) (F.10a)

(∂x2 H)j = 1

�x2
(Hj+1 − 2Hj +Hj−1)+O

(
�x2) (F.10b)

(∂x3 H)j = 1

2�x3
(Hj+2 − 2Hj+1 + 2Hj−1 −Hj−2)+O

(
�x2). (F.10c)

The quasi-linearized Crank–Nicholson scheme is then formally written as

Hn+1 = LnHn, (F.11)

where Ln corresponds to the linear operator I− (�t/2)[L+N ′(H(n)
j )] and where

Hn and Hn+1 are the unknowns. Thanks to the choice of central differences, Ln

is a diagonally dominant matrix2 with a nonzero determinant, which then ensures
the existence of the inverse of this matrix, which in turn ensures the existence and
uniqueness at each time step of the solution to (F.8). Ln is a “banded matrix,” i.e.,
a sparse matrix whose nonzero entries are confined to a diagonal band whose band-
width depends on the order of the spatial derivatives. In practice, the numerical

2A matrix A= (aij ) is said to be “diagonally dominant” if in every row of the matrix the magnitude
of the diagonal entry in that row is larger than the sum of the magnitudes of all the other (nondi-
agonal) entries in that row, i.e., ∀i |aii | ≥∑j �=i |aij |. For the properties of diagonally dominant
matrices see for example [104].
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inversion of (F.11) at each time step can be achieved effectively by direct methods
like “LU decomposition,” for which, in the case of a banded matrix, the number of
required operations is proportional to N and to the bandwidth.

Applying our equations at the first node j = 1 demands the values of the film
height at two fictitious nodes, x0 = 0 and x−1 =−�x, upstream of the left end of the
computational domain: The finite difference approximation for the third derivative
in (F.10c) (the highest derivative for h) involves the nodes j − 1 and j − 2. For the
flow rate, the highest derivative of our equation is a second one, which from (F.10b)
involves the node j − 1 and hence we need to know the flow rate at the fictitious
node x0 = 0. We then impose

h
(n)
−1 = h

(n)
0 = hf (tn), (F.12a)

q
(n)
0 = qf (tn), (F.12b)

so that nodes h1 and h0 are excited simultaneously. Hence, we have a total of three
boundary conditions at the inlet.

The treatment of the outlet boundary condition is more subtle. If we had to solve
a system of hyperbolic equations (where information travels from left to right) we
would not need an outlet boundary condition. But the presence of surface tension
makes our equations parabolic and we need boundary conditions at two points. At
the same time, we wish to avoid fictitious nodes outside the right end of the compu-
tational domain, as we do not have any information about the dynamics there (we
wish to keep the “flow” of information from the left to the right). Hence, if j =N is
the last node, we could utilize backward finite differences and use only the informa-
tion at nodes j =N − 1,N − 2,N − 3, . . . . Any boundary condition which would
require more than three nodes would introduce more diagonals in the matrix to be
inverted (and hence the bandwidth of the matrix to be inverted would be larger) and
would therefore increase the number of operations needed at each time step, which
in turn might generate spurious reflections of the waves at the endpoint of the do-
main. A simple and effective way then to deal with the right end of the domain is to
impose there a set of linear hyperbolic equations, e.g.,

∂tH= vf ∂xH, (F.13)

with vf > 0, corresponding to two boundary conditions for h and q at the outlet,
which together with (F.12a), (F.12b) means a total of five boundary conditions for
our equations (we have a third spatial derivative for h and a second one for q). The
wave equation (F.13) is an ad hoc outlet “soft” boundary condition that simulates
the wavy behavior of the film, with vf being a relaxation parameter that is empir-
ically tuned to limit wave reflections. It has a first-order spatial derivative whose
discretization in (F.14) requires only the j = N,N − 1,N − 2 nodes and hence it
does not increase the bandwidth of the matrix to be inverted.

Equation (F.13) ensures that the information is transported downstream and lim-
its wave reflection. It effectively “hyperbolizes” our original system of equations
at the end of the domain, ensuring that the information travels from the left to the
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right. The drawback of using (F.13) is the generation of some numerical errors at
the outlet. However, thanks to the convective nature of the primary and secondary
instabilities of falling film flows (Sect. 7.1.2), these numerical disturbances can-
not invade the numerical domain and therefore affect only a few nodes at an outlet
boundary layer. At the last node, the spatial derivative is discretized using an up-
stream second-order accurate scheme (for consistency with (F.10a)–(F.10c)):

(∂xH)N = 1

2�x
(HN−2 − 4HN−1 + 3HN)+O

(
�x2). (F.14)

Notice that according to the “Lax–Richtmyer equivalence theorem”, for a consis-
tent difference scheme for a linear system of equations, there is equivalence between
convergence and stability [220]. For linear systems a stability analysis is therefore
sufficient to determine the convergence properties of the scheme. However, in our
case, a stability analysis is rather difficult, if not impossible.

As far as the Crank–Nicholson scheme is concerned, Richtmyer and Morton
[220] give the following result on its stability. Consider the one-dimensional prob-
lem

∂tu+ a(x)∂xu = 0, (F.15a)

u(0, t) = 0, u(x,0)= F(x), (F.15b)

where a(x) is a positive function. The Crank–Nicholson scheme for (F.15a), (F.15b)
is stable and convergent if

4KL�t < 1 (F.16)

is satisfied, where KL is a Lipschitz constant of the function a(x) such that
∀x, x′, |a(x)− a(x′)| ≤KL|x − x′|. Since a(x)=−∂tu/∂xu∼−�x/�t , this re-
sult suggests that we impose a condition similar to the “Courant–Friedrichs–Lewy
(CFL) condition” [5, 59]. Stated in simple terms, the CFL condition demands that
the speed at which the information propagates in the numerical scheme (∼�x/�t)
must be larger than the speed of propagation of the physical phenomenon (∼KL)
that is simulated, which in turn implies a constraint on the time step, �t < K ′�x,
where K ′ is a constant.

Assume for simplicity now that we are dealing with a surface equation so that H
is a scalar, H . For our quasi-linearized Crank–Nicholson scheme (F.11) then let

a
(n)
j =�t

|(∂xH)
(n)
j |

|H(n)
j −H

(n−1)
j |

be a measure of the local propagation speed of the physical phenomenon. At each
time step, the maximum speed maxj |a(n)j | is computed and the time step is adjusted
to verify the CFL-like condition,

�t <
C�x

maxj |a(n)j |
, (F.17)

where C a constant larger than unity.
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F.4 Spectral Representation and Aliasing

The time-dependent simulations and the stability analysis of the traveling wave so-
lutions shown in Sects. 8.3 and 8.4 made extensive use of the representation of
periodic solutions in Fourier space. For this purpose, an efficient algorithm, the fast
Fourier transform (FFT), was utilized. It enables us to go back and forth from the
physical space to the Fourier space at a low computational cost. We sketch below
the representation of the solutions in the Fourier space and its main limitation re-
lated to the aliasing phenomenon to be defined soon. Interested readers can consult
the book by Press et al. as an introduction to the use of spectral and pseudo-spectral
methods [213].

Real periodic solutions can be represented by Fourier series of the form

X(ξ)= Ξ̂0 +
∞∑

j=1

Ξ̂2j−1 cos(jkxξ)+ Ξ̂2j sin(jkxξ), (F.18)

where kx again denotes the streamwise wavenumber. Equation (F.18) can be rewrit-
ten in the equivalent form

X(ξ)= 1

Lx

∞∑

j=−∞
X̂j exp(−ijkxξ). (F.19)

Complex Fourier coefficients X̂j are defined by means of a continuous Fourier trans-
form,

X̂j =
∫ Lx

0
X(ξ) exp(ijkxξ) dξ, (F.20)

where i = √−1 denotes the imaginary unit. As X is a real function, the complex
coefficients X̂j satisfy X̂�−j = X̂j = Lx(Ξ̂2j−1−iΞ̂2j ), where the star denotes com-
plex conjugation.

An approximation to X can be obtained by truncating the Fourier series (F.18) at
N coefficients,

X � Ξ̂0 + Ξ̂N−1 cos
[
(N/2)kxξ

]+
N/2−1∑

j=1

Ξ̂2j−1 cos(jkxξ)+ Ξ̂2k sin(jkxξ),

(F.21)

where N is an even integer; this is equivalent to canceling the coefficients of all
frequencies that are not in the interval [−fc, fc] with fc =N/(2Lx), the “Nyquist
cut-off frequency.” This truncation is acceptable only when the neglected part of the
spectrum has a sufficiently small norm, which can be easily controlled by looking
at the coefficient Ξ̂N−1 of the cut-off frequency.

Whenever the condition Ξ̂N−1 � 1 is satisfied, one can replace the continuous
Fourier transform with a discrete one,
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X̂N
j =

N−1∑

p=0

X(ξp) exp(ijkxξp), (F.22)

where the nodes ξp = pLx/N are evenly distributed over a period. We note that
X̂N
N/2 = X̂N

−N/2 are real coefficients. The exponent N here is reserved for the dis-
crete Fourier transform and is introduced to distinguish discrete and continuous
Fourier transforms. For periodic signals the two transforms converge to the same
result after rescaling:

lim
N→∞

LxX̂
N
j

N
→ X̂j . (F.23)

The bad news about the discrete Fourier transform is that it “confuses” harmon-
ics:

X̂N
j =

N−1∑

p=0

1

Lx

∞∑

q=−∞
X̂q exp(−iqkxξp) exp(ijkxξp)

= 1

Lx

∞∑

q=−∞
X̂q

N−1∑

p=0

exp
[
i2πp(j − q)/N

]

= N

Lx

∞∑

q=−∞
X̂j+qN . (F.24)

As a result, the part of the power spectrum density that does not lie in the frequency
range [−fc, fc] is moved into that range. This phenomenon is called aliasing. Any
frequency coefficient outside this range is aliased, that is falsely displaced. Alias-
ing errors can be limited by ensuring that the norm ‖X̂N

N/2‖ corresponding to the
Nyquist frequency is sufficiently small.

In any algorithm based on pseudo-spectral methods, derivatives are computed in
the Fourier space, as a differentiation there corresponds to a simple product,

X̂′N
j =−ijkxX̂N

j , (F.25)

whereas nonlinearities are computed in the physical space as they correspond to
convolutions in the Fourier space. Unfortunately, convolutions in the Fourier space
widen the spectrum.

Consider an order σNL nonlinearity XσNL with σNL an integer. We have

[
X(ξp)

]σNL =
(

1

N

N/2∑

j=1−N/2

X̂N
j exp−ijkxξp

)σNL

= 1

NσNL

σNLN/2∑

j=σNL−σNLN/2

∑

DN
j

(
σNL∏

l=1

X̂N
jl

)

exp(−ijkxξp), (F.26)
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where DN
j is the set defined by

DN
j =

{

(j1, j2, . . . , jσNL)
/ σNL∑

l=1

jl = j ; −N/2+ 1≤ jl ≤N/2

}

. (F.27)

Let us assume that σNL is even (only the details of the proof are modified in the odd
case) and let us “aliase” the frequencies outside the interval [−fc, fc], first by use of
the periodicity exp(−ijkxξp)= exp[−ip(j +N)kxLx/N ] = exp[−i(j +N)kxξp],

[
X(ξp)

]σNL = 1

Nσ
NL

[ −(σNL−1)N/2∑

j=σNL−σNLN/2

∑

DN
j

(
σNL∏

l=1

X̂N
jl

)

e−i(j+σNLN/2)kxξp

+
−(σNL−2)N/2∑

j=−(σNL−1)N/2+1

∑

DN
j

(
σNL∏

l=1

X̂N
jl

)

e−i(j+(σNL−2)N/2)kxξp

+ · · · +
σNLN/2∑

j=(σNL−1)N/2+1

∑

DN
j

(
σNL∏

l=1

X̂N
jl

)

e−i(j−σNLN/2)kxξp

]

, (F.28)

and then through a change of variables,

[
X(ξp)

]σNL = 1

Nσ
NL

[
N/2∑

j=σNL

∑

DN
j−σNLN/2

(
σNL∏

l=1

X̂N
jl

)

e−ijkxξp

+
0∑

j=−N/2+1

∑

DN
j−(σNL−2)N/2

(σNL∏

l=1

X̂N
jl

)
e−ijkxξp

+ · · · +
N/2∑

j=−N/2+1

∑

DN
j

(
σNL∏

l=1

X̂N
jl

)

e−ijkxξp

+ · · · +
0∑

j=−N/2+1

∑

DN
j+σNLN/2

(
σNL∏

l=1

X̂N
jl

)

e−ijkxξp
]

. (F.29)

In (F.29) the result of the convolution of the frequencies that lie inside the inter-
val [−fc, fc] is the sum

∑N/2
j=−N/2+1

∑
DN
j
(
∏σNL

l=1 X̂
N
jl
)e−ijkxξp . All other terms in

(F.29) arise from the aliasing of frequencies outside this interval.
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The Fourier coefficients of Xσ
NL for j < 0 are thus given by

1

N

(
X̂σ

NL

)N
j
= 1

Nσ
NL

[
∑

m∈[0, (σNL−2)/4[∩N

∑

DN
j−(σNL−2−4m)N/2

(
σNL∏

l=1

X̂N
jl

)

+
∑

m∈[0, σNL/4[∩N

∑

DN
j+(σNL−4m)N/2

(
σNL∏

l=1

X̂N
jl

)

+
∑

DN
j

(
σNL∏

l=1

X̂N
jl

)]

. (F.30)

Similar expressions are obtained for j > 0.
One solution to limit aliasing is to truncate the Fourier spectrum of the func-

tion X. Let M be an integer that divides N and ftrunc = M/(2Lx) = Mfc/N ,
a truncation frequency. If the coefficients of all frequencies outside the range
[ftrunc, ftrunc] are set to zero, expression (F.30) is modified by the substitution of
the sets DM

j for DN
j . It is therefore sufficient to chose M so that the set

( ⋃

m∈[0, (σNL−2)/4[∩N

DM
j−(σNL−2−4m)N/2

)
∪
( ⋃

m∈[0, σNL/4[∩N

DM
j+(σNL−4m)N/2

)

is empty. A sufficient condition is that the sets DM
j±N be empty, which reads

j −N <

σNL∑

l=1

jl < j +N; j, jl ∈ {−M/2+ 1,M/2}, (F.31)

or, equivalently,

−N <

(
σNL∑

l=1

jl

)

− j < N; j, jl ∈ {−M/2+ 1,M/2}. (F.32)

Since, σNL− (σNL+1)M/2≤ (
∑σNL

l=1 jl)−j ≤ (σNL+1)M/2−1, we finally obtain
the sufficient condition

M ≤ 2

σNL + 1
N. (F.33)

For quadratic nonlinearities (σNL = 2), as in the case of the Navier–Stokes equa-
tions, condition (F.33) is known as the “two-third rule.” Inequality (F.33) is a con-
straining condition. As the price to pay for the elimination of the cross-stream coor-
dinate y in our modeling strategy is the emergence of high-order nonlinearities, the
treatment of the aliasing phenomenon imposes shutting down a significant number
of Fourier coefficients.
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Boussinesq–Korteweg–de Vries–Burgers
equation, 376

Burgers equation, 98, 321
Burns condition, 212

C
Capillary length, 5, 34
Capillary ripples, 70, 73, 75, 185, 186, 257,

306
Causality, 201
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436 Index

Center manifold projection, 153, 380
Checkerboard pattern, 279
Chemical reaction, 352
Chézy law, 210
Closed flow, 122, 256
Closure

flow rate, 146
self-similar, 150–152

Co-dimension
1, 222, 238
2, 225

Coherent structures, 193, 194
theory, 272

Collision criterion, 201, 203
Complex wave velocity, 42
Conservation law, 373
Conservative form, 101, 241, 255
Constant pressure heat capacity, 24
Continuity equation, 24
Crank–Nicholson scheme, 416
Critical condition, 48, 54, 328
Critical value of control parameter, 43, 47, 372
Curvature

mean, 26
principal radii, 26

D
Detuning parameter, 286, 289
Dimensionless groups, 388
Dirac function, 162, 200
Dirichlet condition, 21, 24, 309, 317
Dispersion, 105, 106, 112–114, 116–121, 173,

194, 196, 256, 258, 259, 273, 274,
376–379

Dispersion relation, 42, 53, 55, 73, 104, 106,
107, 110, 135, 195–198, 200,
202–208, 263, 328, 332, 372

Dissipation, 1, 5, 18, 23, 34, 75, 116, 194, 273,
377, 384

Dissipation function, 5, 384
Dissipative structures, 193
Dissipative turbulence (see also weak

turbulence), 116, 193, 194, 277
Drag-gravity regime, 17, 89, 95, 146, 183, 248,

338, 350
Drag-inertia regime, 17, 90, 183, 248, 249,

339, 350
Driven-dissipative equations, 17, 114, 117,

118, 376
Dynamical system, 156, 217, 336, 389, 409

nonconservative, 241
Dynamical systems approach, 215

E
Eigenvalue

determining, 221
leading, 221

Energy method, 58
Energy of deformation, 292, 347
Evolution equation, 14, 16, 17, 98, 100, 102,

129, 146, 151, 155, 156, 178, 283,
312, 315, 319, 321, 392, 400, 402,
413

F
Feedback, 372
Film parameter, 66
Finite-time blow up, 109, 129, 131, 321
Finite-time blow-up, 162, 326
First-order model

heated film, 315, 328
isothermal film, 15, 72, 167, 199, 255, 258

Fixed point, 218, 219
focus, 219, 228
node, 228
saddle, 219, 221, 228, 238
saddle-focus, 219, 221, 226, 228, 238

resonant, 219
unstable, 219

Floquet theory, 285
Flow

three-dimensional, 6
two-dimensional, 6

Fourier equation, 24
Fredhölm alternative, 99, 381
Frequency

cut-off, 87, 196, 199, 266, 267, 272, 279
forcing, 87, 266, 280, 293
Nyquist, 418
ordinary, 42

Froude number, 207, 210, 247
critical, 213, 214
reduced, 253

Full second-order model
heated film, 319–322, 324, 328, 330, 332,

395, 400
isothermal film, 15, 179, 180, 182–186,

191, 198, 199, 203, 205, 207, 208,
217, 221, 258, 261, 283, 285–288,
291, 292, 294–297, 300, 389, 391,
392

Fully developed flow, 35

G
Galilean transformation (see also moving

coordinate transformation), 215
Galilean transformation (see also moving

coordinate transformation, 375



Index 437

Galileo number, 154
Gavrilov–Guckenheimer point, 225
Ginzburg–Landau equation, 374
Glycerol–water film, 286
Goldstone mode, 52, 62, 105, 275, 373
Gradient expansion, 14, 17, 66, 320
Graham–Schmidt orthogonalization, 176, 318
Grashof number, 384
Green’s function, 200
Group velocity, 200
Growth rate, 48, 54, 331

spatial, 42
temporal, 42, 372

H
H-mode, 6, 54, 57, 62, 101, 329, 331, 332,

347, 350, 373
Hat function, 162, 169
Heat flux

effective, 399
Heat flux condition, 24, 38, 367
Heat transfer coefficient, 28, 363
Hierarchy of models, 90
Homoclinic

bifurcation, 223, 232, 235
chaos, 223–225, 228, 229, 231, 236, 238,

240
orbit, 128, 133, 135, 137, 138, 143, 219,

220, 222, 335, 377
principal, 220, 223, 232, 238, 336
secondary, 246
subsidiary, 220, 223, 232, 244

Hydraulic jump, 210, 219, 253
Hydrodynamic instability mechanism, 57

I
In-depth averaging, 146, 148
In-depth coherence, 145
Inclination number, 31, 388

reduced, 76
Inclincation number

reduced, 388
Incommensurate mode, 289
Instability

absolute, 6, 199, 201
convective, 6, 193, 199, 201
herringbone pattern, 279, 295, 297
long wave (see also long wave instability),

43
oscillatory, 43, 225, 372
primary, 39, 104, 213, 277
secondary, 270, 277, 278, 285, 289

subharmonic, 287
short wave, 44

sideband, 295, 374
stationary, 43, 225, 372
subharmonic, 279, 288, 289, 295, 298
synchrnous, 289
synchronous, 279, 287, 288, 295, 300

Instability onset, 258, 373
Integral-boundary layer approximation, 15
Interfacial turbulence, 277
Isotherms, 338

J
Jacobian matrix, 219

K
Kapitza number, 31, 388

vertical, 137
Kapitza–Shkadov approximation, 15
Kapitza–Shkadov model, 147, 148, 151, 166,

196, 210, 212, 217
Kapiza number

vertical, 31
Kármán–Pohlhausen technique, 15, 148, 152,

169
Kawahara equation, 106, 113–116, 118, 121,

127, 131, 258, 259, 262, 273,
376–378

Kinematic boundary condition, 25, 26
Kolmogorov–Reynolds turbulence, 34
Korteweg–de Vries equation, 376
Korteweg–de Vries–Kuramoto–Sivashinsky–

Velarde equation,
117

Kuramoto–Sivashinsky equation, 82, 83, 110,
114–119, 127, 129, 131, 249, 258,
259, 274, 375, 377

generalized (see also Kawahara equation),
377

L
Landau equation, 374
Landau–Stuart equation, 374
Limit cycle, 219, 223, 232, 235, 378
Linear stability

averaged models
heated film, 328
isothermal film, 195

full equations, 39
Liouville’s theorem, 218, 239
Long wave

approximation, 14
expansion, 48, 66, 102, 179
instability

hydrodynamic, 2
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Long wave (cont.)
Marangoni, 10

limit, 48
theory, 90, 93, 95, 102, 146, 150, 151, 158,

159, 164, 183, 191
Long wave approximation, 16, 18, 74, 162,

183, 184, 281
Long wave approximation: lubrication

approximation, 14
Long wave instability

Marangoni, 11
Long-wave

expansion, 51
theory, 402

Lyapunov stability, 234, 237

M
Manifold

stable, 219, 221, 222
unstable, 219, 221, 222

Marangoni driven flows, 28
Marangoni effect, 9, 12, 13, 28, 138, 139, 318,

320, 321, 333, 337, 338, 340, 341,
347, 363

solutocapillary, 10
thermocapillary, 10

Marangoni number, 31, 388
critical, 10, 48
film, 33, 329, 388

modified, 37
reduced, 76, 388

Material derivative, 24
Method

collocation, 162, 169
Galerkin, 15, 162, 171, 283, 314, 319
integral-collocation, 170
of moments, 170
pseudo-spectral, 292
shooting, 223
subdomain, 162, 169
tau, 173, 310, 316, 320

Moving coordinate transformation, 122, 338
Multiple scales, 109, 375

N
Navier–Stokes equation, 24
Nepomnyashchy equation, 119
Neutral stability

condition, 45, 46, 50
curve, 46, 47, 50, 52, 196, 329, 334, 372

Neutrally stable mode, 45
Newmann condition, 25
Newton’s law of cooling, 23, 28, 363
No-slip/no-penetration boundary condition, 24

Noise
colored, 272
white, 272, 305

Noise amplifier, 6, 201, 266
Noise-driven flow, 194, 272, 305
Normal mode, 41, 372
Normal stress boundary condition, 27
Nusselt flat film

average velocity, 32
solution, 29
temperature distribution, 28
thickness, 28, 32
velocity profile, 28, 164
volumetric flow rate, 32

Nusselt flat film solution, 219, 281, 321, 385
Nusselt scaling, 33, 93, 147, 329, 385

O
One-fluid approach, 22
Ooshida equation, 217
Open flow, 122, 193, 256, 261
Operator

gradient, 24
Laplacian, 40
singular, 381
surface gradient, 26, 369

Ordering parameter, 67
Orr–Sommerfeld eigenvalue problem, 43, 49,

66, 71–73, 77, 87, 92, 104, 105,
107, 108, 129, 135, 152, 162, 195,
196, 198–200, 202–208, 247, 288,
328–332, 334, 345

numerical solution by continuation, 405
Oscillatory mode, 264, 296, 297
Overstability, 43, 372

P
P-mode, 10, 47
Padé approximants, 14, 140, 188, 379
Péclet number

heat transport, 32
mass transport, 32

Periodic orbit
principal, 232
secondary, 246
subsidiary, 232

Perturbations
streamwise, 43, 49
transverse, 43, 44

Phase
flow, 217, 227
portrait, 223
space, 217, 239
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Phase locking, 267
Phase velocity, 42, 328
Poincaré section, 223, 235
Prandtl number, 31, 337, 341

Q
Quasi-periodic mode, 297

R
Radiation, 7, 70, 75, 81, 193, 226
Ray velocity, 200
Recirculation zone, 338, 340, 341
Regularization, 14, 140, 146, 188, 283, 324,

343
Regularized model

heated film, 326, 328, 330–335, 337, 343,
346, 348, 398, 403

isothermal film, 182, 185, 186, 189, 191,
197, 198, 212, 216, 226, 228, 229,
261, 263, 271, 284, 287, 290, 291,
294–302, 305, 353, 394

Reynolds number, 32, 388
critical, 5, 15, 18, 54, 152, 196, 212
local, 130, 189, 326
reduced, 76, 347, 388

Rivulets, 11, 12, 54, 346, 349
Roberts model, 156, 161
Robin condition, 21, 23, 24, 38

S
S-mode, 10, 47, 57, 101, 329, 331, 332, 347,

350
Saddle point, 201, 203
Saint–Venant equations, 210, 214
Schmidt number, 32
Self-organization, 194
Shallow-water equations, 210
Shape factor, 150
Shear modes, 54, 108
Shil’nikov

criterion, 223, 226, 231, 238, 244
number, 223, 236

Shkadov scaling, 76, 93, 147, 151, 167, 329,
335, 343

Shock conditions, 255
Simplified second-order model, 15, 72, 89,

179, 182–186, 188, 191, 197–199,
202, 206, 208, 212, 216, 226, 228,
229, 231, 238, 256, 258, 261, 262,
266, 267, 269, 284, 287, 291, 294,
296, 297, 300

Soliton gas, 277, 306
Solitons, 17

dissipative, 18, 75, 221

Lambda, 281
Solvability condition (see also Fredhölm

alternative), 97, 165, 170, 179
Solvability condition (see also Fredhölm

alternative, 313
Solvability condition (see also Fredhölm

alternative), 314
Spatial modes, 200

generalized, 200
Specified temperature condition, 24, 37
Spectral representation, 417
Squire’s theorem, 49, 58
Stability analysis

spatial, 42
temporal, 42, 328

Stream function, 64
Streamlines, 338
Stress balance boundary condition, 26
Strong surface tension limit, 73, 75, 95, 96, 98,

311
Structural stability, 224, 234
Substrate thickness, 130
Surface tension, 3, 5, 22

constitutive relation, 22, 363
Surface tension

Laplace, 27
Symmetry

reflection, 44, 378
reversible, 127

Synchronization, 122, 256
Synchronous pattern, 297

T
Tangential stress boundary conditions, 28
Temporal modes, 200

generalized, 201
Tensor

deviatoric stress, 26
rate-of-strain, 26

Thermal conductivity, 23, 24
Thermal diffusivity, 24
Thermal resistance layer, 23
Thermocapillarity

anomalous, 363
normal, 363

Thin film, 5, 10, 11, 21
Time-dependent computations

finite differences, 412
spectral method, 256, 417

Tollmien–Schlichting instability, 34, 54
Torus, 264, 297
Type-H transition, 280
Type-K transition, 280



440 Index

V
Van der Waals forces, 335, 346
Viscosity

dynamic, 22
kinematic, 22

Viscous dispersion, 75, 77, 143, 173, 179, 184,
187, 194, 196, 197, 213, 216, 224,
226, 229, 235, 237, 238, 241, 243,
256, 257, 260–262, 273, 290, 333,
377

Viscous dispersion number, 76, 197, 388
Viscous-gravity scaling, 29, 92, 383

W
Wall friction, 127, 210
Water–ethanol film, 306
Wave

bore, 193, 214
dominant, 264, 271
dynamic, 211, 214
hierarchy, 205
horseshoe, 271, 280, 290, 304, 308
kinematic, 146, 166, 196, 207, 209, 210,

213
multi-pulse, 220, 221, 232
negative-hump, 127, 257
packet, 199, 200
positive-hump, 127

roll, 214, 253
solitary, 6, 70, 73, 127–129, 136, 142, 147,

162, 182, 186, 193, 215, 219, 232,
281, 305, 306, 334, 338

excited, 271
hump, 7, 70, 127, 185, 186, 220
multi-hump, 220, 232

standing, 258
surface-gravity, 211
traveling, 122, 127, 186, 215, 257, 262,

293, 296, 374
numerical solution by continuation, 408

Wave breaking, 57, 73, 98, 254
Wave hierarchy, 207
Wavenumber

critical, 43, 48, 225, 372, 374
cut-off, 48, 72, 104, 128, 262, 328, 345,

347, 373
maximum growing, 346, 347, 373
vector, 42

Weak turbulence, 116, 193, 194, 272, 277
Weakly nonlinear models, 109, 372
Weber number, 33, 388
Weighted residuals method, 15, 18, 161, 162,

168, 183, 309
Weighted residuals models, 15, 163, 168, 172,

311, 316, 367, 392, 395
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