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INTRODUCTION 
Science is made offactsjust as a house 
is made of bricks, but a collection offacts is no 
more science than a pile of bricks is a house. 

Henry Poincare 

The aim of the disciplines of praxis 
is not theoretical knowledge .... It is to change 
the forms of action ... .. .. 

Aristotle 

Transportation systems engineering is a broad discipline aimed at the functional 
design of physical and/or organizational projects relating to transportation supply 
systems. These projects defme the functional characteristics and performances of 
system elements (services, prices, infrastructures, vehicles, control, etc.) that, taken 
as a whole, provide transportation opportunities to satisfy the travel demand of 
persons and goods in a given area. The basic approach of transportation system 
engineering is to defme the main characteristics of transportation services starting 
with the analysis and simulation of the demand for such services. Physical elements 
of the system are designed and/or identified among those available to provide the 
characteristics and performances required by the transportation services. 
Transportation system projects have to be technically feasible and defmed on the 
basis of the quantitative evaluation of their main effects with respect to the 
objectives and constraints of the project itself. In the context of this general 
defmition, there are projects of very different kinds. Such projects include the 
functional design of new infrastructures; the assessment of long-term investment 
programs; the evaluation of project fmancing schemes; the defmition of schedules 
and pricing policies for transportation services; the definition of circulation and 
regulation schemes for urban road networks; the design of strategies for new 
advanced traffic control and information systems. In the proposed perspective the 
term "engineering" should be intended rather broadly. The models and techniques 
described in this book are often used by transportation system analysts with 
backgrounds in several disciplines such as urban planning, transportation 
economics, spatial system analysis and control engineering. 

The difficulty, but also the fascination, of this professional practice derives from 
the intrinsic complexity of transportation systems. These are, in fact, "internally" 
complex systems, made up of many elements influencing each other both directly 
and indirectly, often non-linearly, with many feedback cycles. Furthermore, only 
some elements in the system are "technical" (vehicles, infrastructures, etc.), 
governed by the laws of physics and, as such, traditionally studied by engineers. On 
the other hand, the mechanisms underlying the functionality and the performances of 
these elements are often connected to travel demand and users' behavior. Thus the 
analysis of travel demand plays a central role in understanding and designing 
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transportation systems; however, it requires a different approach making reference 
to concepts traditionally used in social and economic sciences. 

Apart from the internal complexity, transportation systems are closely 
interrelated with other systems which, from the point of view adopted, can be 
defmed as external. Transport projects may have implications for the economy, the 
location and intensity of the activities in a given area, the environment, the quality of 
life and social cohesion. In short, they have a bearing on many, often contrasting, 
interests, as can easily be seen from the heated arguments that accompany almost all 
decisions concerning transport. The intensity of these impacts as well as the 
sensitivity to them, have grown considerably in recent decades as a result of the 
economic and social development of our civilization and have to be addressed in the 
design and evaluation of transportation projects. 

For all these reasons, the consequences of projects cannot be predicted on the 
basis of pure experience and intuition. The latter, although prerequisites for any 
good design, do not allow a quantitative evaluation of the effects of a project and 
may be misleading for complex systems. In fact, simulations sometimes provide 
unexpected and apparently paradoxical results: a new infrastructure which increases 
congestion on existing facilities; local projects whose effects propagate to remote 
parts of the network; price increases which lead to revenues reductions; measures 
meant to reduce car usage which result in an overall increase in air pollution and 
energy consumption; and so on. Furthermore, the large number of design variables 
and the complexity of their interactions often require models and algorithms capable 
of simulating the effects of several combinations of such variables to help the 
designer to fmd satisfactory combinations. Finally, social fairness can only be 
addressed through a quantitative approach. 

In order to develop solutions to these problems, the mathematical theory of 
transportation systems presented in this book has been developed over recent 
decades. This discipline is systematic in its approach. It is concerned with the 
relationships among the elements making up a transportation system and their 
performances. It is based on an autonomous theoretical nucleus and on analysis and 
calculation techniques derived from the contributions of many other disciplinary 
areas, especially economics, econometrics, and operation research, in addition to 
those traditionally more directly relevant for transportation engineers, such as traffic 
engineering, transportation infrastructures engineering and vehicles mechanics. 

The discipline'S theoretical foundation is, in my opinion, a "topological­
behavioral" paradigm consisting of a set of assumptions and a limited number of 
functional relationships. This paradigm represents in an abstract way transportation 
services and their performances (supply model), travel demand and behavior of 
system users (demand model) as well as their interactions (demand/supply 
interaction model). 

Over the years, these assumptions and relationships have been extended and 
formalized. The general mathematical properties of these models have been 
investigated producing a wide and internally consistent system of results; these 
results possess a certain degree of formal elegance and can be applied to models 
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differing in their mathematical formulation and their basic assumptions. This does 
not exclude new and significant theoretical and methodological developments. In 
fact, this is probably one of the areas of system engineering, in which research is 
most active, able to generate extensions and generalizations internally, and able to 
widen and even replace the assumptions on which it is based. Examples can be seen 
in research developments on interactions of transportation with land-use and activity 
systems, on models of supply design and on the analysis of within-day dynamic 
systems. 

Transportation systems theory would, however, be of little use for practical 
problems without a set of methodologies operationalizing it. The latter allow the 
construction of systems of mathematical models, which are consistent with the 
theory and able to simulate the relevant elements of different transportation systems 
in the real world. These methodologies range from the rules for defming a supply 
network model to the techniques for estimating travel demand to algorithms for the 
solution of large-scale problems. Transportation system methodologies use the 
results of several disciplinary areas and, taken as a whole, make up the technical 
resources of transportation systems engineers and analysts. 

This book attempts to address both general theory and practical methods, and 
should be useful to readers with different needs and backgrounds. The various topics 
are presented, wherever possible, with a gradually increasing level of detail and 
complexity. It includes a series of topics, which can be used as the basis for graduate 
and post-graduate courses on transportation system engineering, as well as other 
fields, e.g. economics and regional sciences. Some sections deal with topics of 
interest for specific applications or still at a research level; the exclusion of these 
topics, marked with an asterisk, should not detract from the understanding of later 
chapters. The required mathematical background includes calculus, numerical 
analysis, optimization techniques, graph and network theory, probability theory and 
statistics. The general structure of the book is as follows. 

Chapter 1 defmes a transportation system, identifies its components and the 
assumptions on which the theory and the models described in later chapters are 
developed. 

Chapters 2 to 5 explore the theory of transportation systems under the traditional 
assumption of intra-periodic stationarity of the relevant variables. In particular, 
Chapter 2 introduces supply models and describes the networks representing 
transportation services, formalizes supply models, the general relationships between 
flow and performance variables and gives some examples of the models that can be 
used to represent different supply systems. The appendix to this chapter reviews the 
main results of traffic flow theory, and queuing theory needed to develop link 
performance functions. Chapter 3 describes the theoretical basis and the 
mathematical properties of random utility models; these are the tools most widely 
adopted to simulate travel behavior of transportation system users. Chapter 4 
describes mathematical models that simulate the different aspects of passengers and 
freight transportation demand, introduces their theoretical formulations and provides 
several examples. 
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Chapter 5 defmes traffic assignment models, which simulate the interactions 
between transportation demand and supply, and studies their theoretical properties. 
Assignment models simulate the interactions between transportation demand and 
supply. Most of the chapter concerns network equilibrium models, both 
deterministic and stochastic, with rigid and elastic demand and single or multiple 
user classes. Some references are also made to recent inter-period (day-to-day) 
dynamic modeling approaches including both deterministic and stochastic process 
models. 

Chapter 6 extends the results of previous chapters to intra-period (within-day) 
dynamic systems. In particular, this chapter addresses extensions of supply, demand 
and supply-demand interaction models to intra-period dynamic systems, both for 
continuous and scheduled services. 

Chapters 7, 8, 9 and 10 discuss methodological aspects related to the applications 
of transportation system engineering. Chapter 7 describes the algorithms commonly 
used to efficiently compute network flows resulting from the intra-period static 
assignment models described. 

Chapter 8 explores different methods for estimating transportation demand. 
Methodologies derived from statistics and econometrics are applied to the estimation 
of present transportation demand in a given area on the basis of sampling surveys 
and to the specification and calibration of demand models for the simulation of 
demand. The chapter also discusses the techniques that can be used to estimate 
present demand flows and model parameters by using aggregate information, 
specifically traffic flow counts. Chapter 9 briefly describes several supply design 
models and algorithms. These can be applied to set the values of unknown 
parameters defming the design problem at hand by optimizing different types of 
objective functions under various constraints. Design problems related to network 
topology, performance parameters and pricing are introduced with respect to both 
road and transit networks. 

Finally, Chapter 10 describes the fields of application of transportation systems 
engineering, the decision-making process in transportation systems and the role of 
quantitative methods in such a process. The chapter also briefly introduces some 
common project evaluation methods, namely Cost-Benefit and Multi-Criteria 
analyses. 

The book also includes an appendix which, to facilitate reading, summarize the 
main results of some basic disciplines (numerical analysis and optimization theory, 
as well as relevant algorithms), used in the previous chapters. 

Different reading paths can be followed in relation to different theoretical 
interests; for example, a path focusing on demand analysis could consist of Chapters 
3,4 and 8, while one focusing on transportation systems design and planning could 
consist of Chapters 2,5, 7, 9 and 10. 

An effort has been made throughout the book to give credit to the proper authors 
quoted from the literature. Nevertheless, for well-known results credits may be 
unintentionally omitted or misplaced. Apologies are submitted in advance for any 
error of this type. 
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Agostino Nuzzolo, who also co-authored the section 6.5 on dynamic traffic 
assignment for scheduled services. 

Andrea Papola revised the Italian version of the book with intelligence and 
enthusiasm, making many valuable suggestions especially in Chapters 3 and 4. 
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1 TRANSPORTATION SYSTEMS 

1.1. Definition 
A transportation system can be defined as the combination of elements and their 
interactions, which produce the demand for travel within a given area and the supply 
of transportation services to satisfy this demand. This definition is general and 
flexible enough to be applied to different contexts. The specific structure of the 
system is defined by the problem itself (or class of problems) for whose solution it is 
employed. 

Almost all of the components of a social and economic system in a given 
geographical area interact with different levels of intensity. However, it is 
practically impossible to take into account every interacting element to solve a 
transportation engineering problem. The typical system engineering approach is to 
isolate those elements, which are most relevant to the problem. These elements, and 
the relationships among them, make up the analysis system. The remaining elements 
belong to the external environment and are taken into account only in terms of their 
interactions with the analysis system. As will be seen later, transportation system 
engineering is oriented to the design and evaluation of transportation supply 
projects. In general, the analysis system includes the elements and the interactions 
that are expected to be significantly affected by the projects under consideration. It 
follows that there is a strict interdependence between the identification of the 
analysis system and the problem to be solved. The transportation system of a given 
area can also be seen as a sub-system of a wider territorial system with which it 
strongly interacts. The extent to which these interactions are included in the analysis 
system, or else in the external environment, depends on the specific problem. 

These concepts can be clarified by some examples. Consider a city (or an urban 
system) consisting of a set of households, workplaces, services, transportation 
facilities, government organizations, regulations, etc. Within this system, several 
sub-systems can be identified, including the activity and transportation systems both 
relevant for our purposes (see Fig. 1.1.1). 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
© Springer Science+Business Media Dordrecht 2001
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Fig. 1.1.1 Relationships between the transportation system and the activity system 

The activity system of an urban area can be schematically decomposed into three 
sub-systems consisting of: 

- the households divided into categories (by income level, life-cycle, composition, 
etc.) living in each zone; 
- the economic activities located in each zone and divided by sectors (different 
industrial and service sectors), by economic (e.g. added value) and physical (e.g. the 
number of employees) indicators; 
- the floor-space (or volumes) available in each zone for various uses (industrial 
production, offices, residences, shops, building areas, etc.) and relative market prices 
(real estate system). 

The different components of the activity system interact in many ways. For 
example, the number and typology of the households living in the various zones 
depend on employment opportunities and their distribution, and therefore on the 
sub-system of economic activities. Furthermore, the location of some types of 
economic activities (retail, social services such as education and welfare, etc.) 
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depends on the distribution of the households. Finally, the households and the 
economic activities in each zone depend on the availability of specific types of 
floor-space (houses, shops, etc.) and on the relative prices. A detailed analysis of 
the mechanisms underlying each sub-system of the activity system is beyond the 
scope of this book. However it should be noted that the relative "accessibility" of the 
different zones, ensured by the transportation system, is extremely relevant to many 
of these mechanisms. The transportation system can be split into two main 
components: demand and supply. 

The distribution of households and activities in the area is the determinant of 
transportation demand deriving from the need to use different urban functions in 
different places. Household members are the users of the transportation supply 
system and make "mobility choices" (holding a driving license, number of cars, etc.) 
and "travel choices" (trip frequency, time, destination, mode, path, etc.) in order to 
undertake activities (work, study, shopping, etc.) in different locations. The result of 
these choices is the transportation demand; i.e. the number of trips made among the 
different zones of the city, for different purposes, in different periods, by means of 
the different available transportation modes. Similarly, economic activities transport 
goods that are consumed by the households or by other economic activities. Goods 
movements make up the freight transportation demand. 

Both mobility and travel choices are influenced by some characteristics of the 
transportation services offered by the different travel modes (individual car, transit, 
walking). These characteristics are known as level-of-service or performance 
attributes and include travel times, monetary costs, service reliability, riding 
comfort, etc. Thus, the choice of destination may be influenced by the travel time 
and cost needed to reach each destination. The choice of departure time depends on 
the travel time to the destination. The choice of transportation mode is influenced by 
times, costs, reliability of the available modes. 

The characteristics of transportation services depend on the transportation 
supply, i.e., the set of facilities (roads, parking spaces, railway lines, etc.), services 
(transit lines and timetables), regulations (road circulation and parking regulations), 
and prices (transit fares, parking prices, road tolls, etc.) producing travel 
opportunities. The physical elements of the transportation supply system have a 
finite capacity; i.e. a maximum number of users that can be served in a given time 
interval. 

Individual trips can be aggregated into users flows, i.e. the number of users on 
the physical elements of the supply system in a given time interval. Examples are 
automobile and truck flows on road sections, passenger flows on transit lines, and so 
on. 

When flow approaches capacity, the interactions among users increase and 
congestion effects are triggered. Congestion can significantly deteriorate the 
performances of transportation services for the users, e.g. travel times, service 
delays, fuel consumptions all increase with congestion. Congestion can also have 
other "external" negative effects (such as noise, air pollution and visual impacts in 
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the case of road traffic). Congestion can have cross-modal effects; e.g. road 
congestion can influence the performances of surface transit services. 

Finally, transportation performances influence the relative accessibility of 
different zones of the urban area by determing, for a given zone, the "cost" of 
reaching other zones ("active" accessibility), or being reached from other zones 
("passive" accessibility). As has been noted, both these accessibilities influence the 
location of households and economic activities and ultimately the real estate market. 
For example, in choosing the residence zone, households take into account the active 
accessibility to the workplace and to other services (commerce, education, etc.); the 
location of economic activities is chosen taking into account the passive 
accessibility from its potential clients; the location of public services should be 
chosen taking into account the passive accessibility from the users, and so on. 

An urban transportation system contains many feedback cycles, i.e. cycles of 
mutual interdependence between the various elements and sub-systems, as shown in 
Fig. 1.1.1. The innermost cycle, i.e. the one involving the least number of elements 
and which usually has a shorter "reaction time" to any perturbation, is the interaction 
between flows, congestion and costs on modal networks, and on the road network in 
particular. The trips between the various zones made with a given mode (e.g. the 
car) use different paths and result in traffic flows on the different supply elements 
(e.g. road sections). Because of congestion, these flows influence travel times and 
other characteristics of the different paths which, in tum, influence path choices. 

There are outer cycles, i.e. cycles influencing several choice dimensions whose 
changes occur over longer time periods. These cycles involve the distribution of 
trips among the possible destinations and the alternative modes. Modal origin­
destination demand flows induce traffic flows that, due to congestion, modify the 
service characteristics, which in tum influence destination and mode choices. 

Finally, there are other cycles that span even longer time periods in which 
activity locations and transportation demand interact. Again, through user flows and 
congestion, travel demand influences the accessibility of the different zones of the 
urban area and therefore the location choices of households and firms. 

The aim of transportation systems engineering, as will be seen in greater detail in 
Chapter 10, is to design transportation supply projects by using the quantitative 
methods described in the following chapters. The projects may have very different 
"dimensions" and impacts, and consequently the boundaries of the analysis system 
and the external environment will be different. 

If the problem at hand is the long-term planning of the whole urban 
transportation system, including the construction of new motorways, railway lines, 
parking facilities, etc., the analysis system has to include the entire multi-modal 
transportation system and possibly its relationships with the urban activity system. 
In fact, the modifications in transportation performance implied and the time needed 
to implement the project are such that all the components of transportation and 
activity systems will likely be affected. 

There are cases, however, in which the problem is more limited. If, for example, 
the aim is to design the service characteristics of an urban transit system without 
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building new infrastructures (and without implementing new car restriction 
policies), it is common practice to include in the analysis system only the elements 
related to public transportation (demand, services, prices, vehicles, etc.). The rest of 
the transportation system is included in the external environment interacting with the 
public transportation system. 

As will be seen in the following chapters, the above examples can easily be 
generalized to areas of different size (a region, a whole country, etc.) and extended 
to the case of freight transport. 

Transportation systems are generally described as complex systemS, i.e. systems 
made up of several elements with non-linear interactions and several feedback 
cycles. Furthermore, the unpredictability of most features of the system, such as the 
travel time needed to cover a road section or the users' choices, would require the 
state of such a system to be represented by random variables. These random 
variables are often substituted by their expected values as a first approximation. 

Transportation systems engineering, and its quantitative methods, focus on the 
analysis and the simulation of the elements and the relationships that make up the 
transportation system, considering the activity system as exogenously given. More 
specifically, the influence of the activity system on the transportation system, and in 
particular on travel demand, is considered, while the inverse influence of 
accessibility on activity location and level is usually neglected. However, this 
conventional demarcation is rapidly vanishing and the whole activity-transportation 
system is studied more and more often in transportation system projects, though 
with different levels of detail with respect to other disciplines, such as regional 
sciences and spatial economics. 
In the following sections of this chapter, transportation supply and demand systems 
will be described and characterized in more detail, introducing the general 
framework and the basic assumptions used in the theory and models described in 
this book. 

1.2. Transpt;Jrtation system identification 
The identification of the transportation system, i.e. the definition of the elements and 
their reciprocal relationships making up the analysis system, is schematically carried 
out in three phases: 

• identification of relevant spatial and supply characteristics; 
• definition of relevant components of transport demand; 
• identification of relevant temporal dimensions. 

Some comments on the different phases will be given below, it should be stated in 
advance that system identification cannot be reduced to the mere application of a set 
of rigid rules. On the contrary, it is the result of a combination of theory and 
experience, usually referred to as "professional expertise". 
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1.2.1. Relevant spatial and supply characteristics 
The identification of relevant spatial and supply characteristics consists of three 
phases: 

a) delimitation of the study area; 
b) subdivision of the area into traffic zones (zoning); 
c) definition of the relevant infrastructures and services. 

The first two phases are preliminary to the building of a demand/supply model since 
they define the spatial extension of the system, its level of spatial aggregation. The 
next phase relates to the identification of supply characteristics systems, which is 
strongly related to zoning. 

Study area 
This phase defines the geographical area including the transportation system under 
analysis and most of the project effects. 
First, the analyst must consider the decision-making context and the type of relevant 
trips: commuting, leisure, etc. Generally, most trips would have origin and 
destination inside the study area. On the other hand, the study area should include 
possible alternative for re-routing for destination, and so on. 
The limit of the study area is usually known as the area cordon or boundary. 
Outside this boundary is the external area, which is only considered by its 
connections with the analysis system. For instance, the study area might be a whole 
country if the transportation project is at a national level, a specific urban area, or 
part of an urban area for a traffic management project. 

Zoning 
In principle, the trips undertaken in a given area may start and end at any point. To 
model the system, it is necessary to subdivide the area (and possibly portions of the 
external area) into a finite number of discrete traffic zones. Trips between two 
different zones are known as inter-zonal trips, while intra-zonal trips are those 
starting and ending within the same traffic zone (generally not loaded on the 
network). 

Traffic zones may consist of entire cities or groups of cities in regional or 
national wide projects, or of a few blocks in urban traffic projects. Thus zoning a 
given area implies the approximation of the actual starting and terminal points of 
interzonal trips with single points (zone centroids). Zoning is related to the 
subsequent phase of selection of the relevant supply elements. A denser set of 
elements usually corresponds to a finer zoning, i.e. a larger number of traffic zones, 
and vice versa (see Fig. 1.2.1). For example, if the urban system includes public 
transport, it is common practice to consider smaller traffic zones than for a system 
including individual modes. This is due to the need to simulate realistically walking 
access to stops and/or stations through the distance from the zone centroid. 
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There are several possible zoning systems of the same study area and for the 
same problem. However, some general "zoning rules" are often followed. Physical 
geographic separators (e.g. rivers, railway lines) are conventionally used as zone 
boundaries since they prevent "diffuse" connections between adjacent areas and 
therefore usually imply different access conditions to transportation facilities and 
services. Traffic zones are often obtained as aggregations of administrative areas 
(e.g. census sections, municipalities or provinces). This allows to associate to each 
zone the relevant statistical data (population, employment, etc.) usually available for 
such areas. A different level of zoning detail can be adopted for different parts of the 
study area depending on the precision needed. For example, smaller zones may be 
used in the neighborhood of a specific element (e.g. a new road, railway, etc.) for 
which traffic flows and impacts must be simulated more precisely. 

Traffic zones should aggregate parts of the study area which are "homogeneous" 
with respect both to their land-use (e.g. residential or commercial zones in urban 
areas or rural municipalities in extra-urban areas) and to their accessibility to 
transportation facilities and services. 

A larger number of zones provide a more precise representation of the real 
system and a lower incidence of intra-zonal trips, whose effects on the physical 
network cannot be simulated. On the other hand, a large number of zones increases 
the computational burden of any model. In practice, achieving a reasonable 
compromise between these two conflicting requirements depends once again on the 
particular type of project. 

Centroid nodes are fictitious nodes representing the actual starting and terminal 
points of trips beginning or ending in each traffic zone. In principle, several 
centroids could be located within a single zone to represent the terminal points of 
different trip types, e.g. one centroid may represent origins and another destinations. 
In practice, however, a single centroid is usually associated with each zone. 
The external area is usually subdivided into larger traffic zones. In fact, external 
zones are only used to characterize those trips using, at least partially, the transport 
system within the study area. External zones are also represented by zone centroids; 
such centroids can be located at boundary points (road sections, stations, ports, 
airports, etc.) through which the trips from and towards the external zones enter and 
leave the study area. Alternatively they can be located baricentrically with respect to 
the activity systems of external zones and connected to a network of facilities and 
services used to reach/leave the study area. 

Relevant infrastructures and services 
Relevant infrastructures and/or services are identified on the basis of their role in 

connecting the traffic zones in the study area and the external zones. This generates 
a close interdependence between supply selection and zoning. 
Since the flows on network elements resulting from intra-zonal trips are not 
simulated, a very fine zoning with a coarse base network will probably cause 
overestimation of the traffic flows on the included network elements. 
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Fig. 1.2.1 Zoning and base network 
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Vice versa, a very detailed base network with a coarse zoning may cause 
underestimation of some traffic flows. 

Infrastructures and services may relate to only one transport mode (e.g. road, 
railway or air services) or to several modes. The former will be referred to as a 
mono-modal system, the latter as a multi-modal system. 

The set of elements considered for a given application is sometimes known as 
"base network" and is usually represented graphically by highlighting the 
infrastructures used by the selected transportation services. The functional 
characteristics needed to build the mathematical model (network) of the 
transportation supply are often associated to the selected facilities. For example, in 
urban road systems, the road sections and their main traffic regulations such as one­
way, no tum, etc. are indicated (see Fig 1.2.2). For scheduled service systems, the 
infrastructures over which the service is operated (road sections, railways, etc.) will 
be indicated, together with the main stops or stations, the lines traveling along the 
physical sections, etc. 
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The identification of the relevant elements is obviously easier when all the 
services and/or the infrastructures playa role in connecting traffic zones, as may be 
the case for a national airways network. In the case of road networks, only a subset 
is relevant in connecting the different zones. In urban areas, for example, local roads 
are usually excluded from the base network of the whole area, while they may be 
included in the base networks of spatially-limited sub-systems (a neighborhood or 
part of it). Similarly, when dealing with a whole region, most roads within each city 
will not be included in the base network. 

Fig. 1.2.2 Base road network for a portion of urban area. 

1.2.2. Relevant components of transport demand 
Passengers and goods moving in a given area demand transportation services 
supplied by the system. This demand plays a central role in the analysis and 
modeling of transportation systems since transportation projects are motivated by 
the need to satisfy transportation demand, sometimes modifying some of its 
characteristics as in travel demand management policies. In turn, traveler choices 
can significantly affect the performance of supply elements through congestion (see 
Chapters 2 and 5). 

Except for a limited number of cases, travel does not provide "utility" in itself, 
but is rather an auxiliary activity for other activities carried out in different locations. 
Travelers make work-, school-, and shopping-related trips. Goods are shipped from 
production sites to markets, warehouses or industrial plants to be further processed, 
and so on. Transport demand in economic terms is therefore a "derived" demand, 
the result of the interactions between the activity system of the area and the transport 
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services and facilities, as was seen in section 1.1, as well as of the habits underlying 
travel behavior. 

A transport or travel demand flow can formally be defined as the number of 
users with given characteristics consuming the services offered by a transport 
system in a given time period. It is clear that transport demand flows result from the 
aggregation of individual trips or shipments made in the study area during the 
reference period. A trip is defined as the act of moving from one place (origin) to 
another (destination) using one or several means or modes of transport, in order to 
carry out one or more activities. A sequence of trips, which follow each other in 
such a way that the destination of the previous trip coincides with the origin of the 
next, will be defined as a journey or trip-chain. With passenger travel, journeys 
usually start and end at home; for example, a journey home-workplace-shopping 
area-home consists of three trips. The users of a system, or the trips they undertake, 
can be characterized with reference to several factors, as described below. 

Spatial characterization is important because of the very definition of travel. 
Trips can be subdivided by place (zone or centroid) of origin and of destination and 
demand flows can be arranged in origin-destination matrices (O-D matrices). These 
matrices (see Fig. 1.2.3) have a number of rows and columns equal to the number of 
zones; the generic entry dod gives the number of trips (or shipments) made in the 
reference period from origin zone 0 to destination zone d (O-D flow). 
Some aggregations of the elements of the O-D matrix are also useful. The sum of the 
elements of the row 0: 

accumulates the total number of trips "starting" from the generic zone in the 
reference period and is known as the flow "emitted" or "generated" by zone o. The 
sum of the elements of the column d accumulates the number of trips arriving in 
zone d in the reference period: 

and is known as the flow "attracted' by zone d. The total number of trips carried 
out in the study area in the reference interval is indicated by d. : 

In exchange trips, the origin and the destination are one within and the other 
outside the study area. 
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Finally, crossing trips have both the origin and the destination external to the study 
area, but transverse the study area, i.e. use the transportation system under study. 
Fig. 1.2.3 is a schematic representation of the three types of trips and their position 
in the O-D matrix. 

Transport demand can also be classified by user and trips characteristics 
relevant to the analysis. In general, the characteristics of the users are distinguished 
from those of the particular trip undertaken. The former, such as income group or 
driving-license holding, are usually defined socio-economic characteristics. Groups 
of users who are homogeneous with respect to the socio-economic characteristics 
relevant to the specific problem are also referred to as market segments. In the study 
of different pricing policies, for example, market segments can be defined with 
respect to income. In the case of goods, the "user's" characteristics can be those of 
the shipping firm (such as dimensional class, type of plant, production cycle and so 
on). 

Trip characteristics relate to the particular trip. Typically a pair of purposes, or 
activities, can be associated with each trip. In the case of passengers they can be the 
purpose for traveling from (activity carried out at) the origin and the purpose for 
traveling to (activity carried out at) the destination, such as home-work trips, work­
shopping trips, and so on. Furthermore, a whole sequence of purposes (activities) 
can be associated with a journey or trip-chain. 

Other trip characteristics may include desired arrival or departure times, mode, 
etc. for passenger travel, or consignment size, type of goods (economic sector, 
perishability, value, etc. ) for freight transport. 

1.2.3. Relevant temporal dimensions 
A transportation system operates and evolves over time, and both travel demand 

and supply characteristics generally vary in different time intervals. For example, 
the number of trips undertaken in an urban area or the frequencies of transit 
schedules vary at different times of the day, on different days of the week and so on. 

While space has always been recognized as a fundamental dimension of 
transportation systems, time has traditionally been overlooked. The determination of 
the time intervals relevant for analysis and simulation as well as the assumptions on 
the system variability within those intervals are crucial and depend once more on the 
purpose of the analysis. Two different time dimensions are usually relevant for 
design and evaluation of transportation projects. The design of the elements of a 
transportation system (e.g. a road cross-section, traffic lights at an intersection or the 
frequency of a transit line) usually requires information related to short maximum­
load periods (such as the rush hour or part of it). On the other hand, economic and 
financial evaluations of a transport project require information over longer periods, 
comparable to the "technical life" of the project. 

In general two significant time intervals can be defined. The analysis interval 
(period) is the period of time relevant to study a given system (both in the past and 
over a hypothetical future horizon)(I). A reference or simulation interval (period) is a 
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period of time for which the system is simulated (using the mathematical models 
described later in this book). The analysis interval is usually longer and may include 
several simulation intervals. For certain applications the analysis period may span 
several years, but the system is simulated only for a limited number of simulation 
intervals, (say one average day per year), and the results obtained are expanded to 
the whole analysis period. On the other hand, some applications require only the 
simulation over a single reference period (e.g. the a.m. peak period) on an average 
weekday. 

With respect to the system dynamics within the reference interval, two 
hypotheses can be made corresponding to two different modeling approaches. 
Mathematical models of transport systems are traditionally built on the assumption 
of intra-period stationarity. It is assumed that demand and supply remain constant 
over a period of time long enough to allow the system to reach a stationary or 
steady-state condition. During that period all the relevant characteristics, such as 
demand, traffic flows and supply performances are constant on average and 
independent of the particular instant at which they are measured. The other approach 
is based on the hypothesis of intra-period dynamics, i.e. the variations of demand 
and/or supply within the reference interval are explicitly taken into account and 
simulated. It should be noted that in practice also intra-period dynamic models 
assume that some elements of the system, e.g. activity-system variables or global 
travel demand, are constant within the simulation interval. 

If both demand and supply remained (approximately) constant over the whole 
analysis interval, any sub-interval of the analysis interval could be adopted as the 
reference period. The results obtained for one of such intervals could be extrapolated 
to the whole analysis period. However, the assumptions made in the identification of 
the simulation period (Le., the intra-period stationarity of relevant variables) usually 
cannot be extended over the whole analysis interval; thus, the latter is tyrically 
decomposed into sub-intervals, corresponding to different reference intervals(2 . 

The temporal variations of the system characteristics within the analysis interval, 
theoretically can be decomposed into three classes corresponding to the 
decomposition of the time series of the relevant variables. 

a) Long-term variations or trends are the global-level and/or systematic variations 
that can be identified by averaging over several reference periods. For example, 
if reference intervals are single days, the trend consists of variations in the total 
level and/or in the structure of the average annual demand, observed over 
several years. In this case, the daily demand is averaged over 365 elementary 
periods. Long-period variations are often the result of structural changes in the 
socio-economic variables underlying transport demand, or in transport supply. 
For example, variations in the level of economic activity, production 
technologies, available income, individual vehicle ownership, socio­
demographic characteristics of the population, life-styles, urban migration, and 
in the stock of transportation facilities and services have significantly modified 
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the level and the structure of passenger and freight transport demand over the 
years (see Fig. 1.2.4). 

b) Cyclic (seasonal) variations occur within the analysis interval and involve 
several reference periods. These variations repeat themselves cyclically and can 
be observed by averaging over a number of cycles. This is the case, for example, 
with variations of the daily demand for different days of the week or with 
variations at various times within a typical day. Figure 1.2.5 shows the 
breakdown of daily demand by trip purpose against the time-of-day in an urban 
area. In an analysis interval, several cyclic variations with different cycle 
lengths may occur and overlap with long term variations. For example, in an 
urban transportation system, demand and supply change over an analysis period 
of several years (long-term variation), but they also vary cyclically over the 
different months of the year, the days of the week and the hours of each day. 

c) Inter-period variations are the variations in demand and supply over (reference) 
periods with identical characteristics once that trend and cyclic variations have 
been accounted for. This is the case with variations in the demand during a.m. 
peak hours of different days with similar characteristics. These fluctuations 
cannot be associated with systematic events, i.e. variations in the input variables 
taken into account in the model representing the system. Transport demand 
results from the choices made by a large number of users; its actual value in a 
period (e.g. a day or part of a day) depends both on the unpredictable behavioral 
elements connected with these choices and on the influence of the choices made 
in previous periods. Similarly, the actual values of some key supply parameters, 
such as road capacities or travel times for a given day, may vary due to 
unpredictable events, e.g. an accident. Variations in demand and supply between 
successive reference periods, e.g. hours within typical days, are usually known 
as inter-period dynamics. 

Figure 1.2.6 shows the traffic flows counted over some road links in a sequence of 
successive reference periods. 

As already mentioned, in real systems the three types of dynamics overlap and 
their identification depends to a great extent on the perspective adopted. Some 
models can simulate endogenously variations of some relevant parameters within a 
typical day, which in this case may be assumed as the simulation period. Other 
models may require different exogenous input variables to model variations over 
different hourly periods of the day; in this case, single hours may be the best 
simulation periods. Moreover, different application contexts usually require different 
assumptions on the relevant temporal dimensions. 
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Monday Tuesday Wednesday Thursday 

WEEKDAY 

Fig. 1.2.6 Road traffic flows on successive weekdays. 

For example, a freight system project may require an analysis period several 
years long; however, no significant congestion is expected. In this case might be 
appropriate to consider long-term variations of the system over successive years, and 
account for seasonal variations by considering some typical months as simulation 
periods while ignoring cyclic variations within the month. 

For a project with a short-term horizon, such as the traffic plan of an urban area, 
the long-term trend of daily demand (say over several years) can be ignored. The 
analysis period could consist of one or more typical days (e.g. average week and 
weekend days). Cyclic variations may be modeled as hourly variations within the 
typical day. Simulation periods may encompass the a.m. and p.m. peak and off-peak 
hours during which the system is assumed to be stationary. Alternatively, the analyst 
may consider a different perspective where the analysis period is an entire week, 
cyclic variations are relative to both days of the week and hours of the day, reference 
periods encompass full days. In this case the models explicitly simulate the 
distribution of demand and supply performances over sub-intervals of each day 
following an intra-period dynamic approach (see Figure 1.2.7). 

In conclusion, the main assumptions regarding determination of the temporal 
dimensions of a particular study include: 

- determination of the analysis interval and how to model long-term trends of 
exogenous variables; 

- determination of reference (or simulation) intervals considered relevant to 
account for the cyclic variations of transport demand and supply; 

- assumption on the variability of relevant system parameters within each selected 
reference period (intra-period dynamic or static models); 

- inference of relevant information on the system by combining the results relative 
to each simulation interval. 
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1.3. Modeling transportation systems 
The relevant interactions among the various elements of a transportation system can 
be simulated with the mathematical models that will be described in the following 
chapters. It is useful to anticipate an overview of the various classes of models, 
which make up the "system" of models simulating a given transportation system. 
The models and their relationships are described in Fig. 1.3.1. 

Supply models, described in Chapter 2, simulate the transportation services 
available among the different zones with flow network models. More specifically, 
supply models simulate the performance of transportation infrastructures and 
services for the users, as well as the main external effects of transport (pollution, 
energy consumption, accidents). The level-of-service attributes, such as travel time 
and cost, will be input variables for the demand models. To simulate the 
performance of single elements (facilities) and the effects of congestion, especially 
for road systems, supply models use the results of traffic flow theory, which is 
briefly described in the appendix of Chapter 2. 

Demand models simulate the relevant aspects of travel demand as a function of 
the activity system and of the supply performances. Typically, the characteristics of 
travel demand simulated include the number of trips in the reference period (demand 
level) and their distribution among the different zones, the different transport modes, 
and the different paths. 

Other components of travel demand are simulated in specific applications such 
as the distribution between different time intervals within the reference period. 
Demand models, which will be described in Chapter 4, can be applied to passenger 
as well as to freight demand. Travel demand models are usually derived from 
random utility theory, described in Chapter 3. 

Assignment models (or network demand-supply interaction models), studied in 
Chapters 5 and 6, simulate how O-D demand and path flows load the various 
elements of the supply system. Assignment models allow the calculation of link 
flows, i.e. the number of users loading each link of the network representing the 
transportation supply in the reference period. Furthermore, link flows may affect the 
transportation supply performances through congestion and therefore may affect the 
input to demand models. The mutual interdependencies of demand, flows and costs 
are simulated by assignment models and will be addressed in Chapter 5. 

The models described in this book are based on some general assumptions 
already introduced in the previous sections of this chapter, and summarized below. 

a) Physical andfunctional delimitation of the system. The transportation system is 
assumed to be contained within a defined region (study area) and the external 
area is considered only through its relationships with the analysis system. These 
relationships are related to both demand (exchange and crossing demand) and 
supply (transportation infrastructures and services connecting the external area 
with the analysis system). 
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b) Spatial discretization (zoning). The physical area is subdivided into discrete 
sub-areas (traffic zones). It is assumed also that the departure and arrival points 
of all the trips related to a zone are concentrated in an arbitrary point known as 
zone centroid. 

c) Identification of relevant transportation services. Relevant infrastructures 
and/or services connecting the internal and external traffic zones are identified. 

TRANSPORT FACILITIES 
AND SERVICES 

SUPPLY MODEL 

MODELS OF ACTIVITY 

LOCA nON AND LEVEL 

Level-or-Service altributes 
(times. COSlS) 

ACTIVITY SYSTEM 

DEMAND MODEL 

TRANSPORTATION SYSTEM MODEL 

Fig. 1. 3.1 Structure of transportation systems simulation models. 

More assumptions about time evolution concern: 

i) Identification of relevant simulation periods. This refers to the definition of the 
length of the analysis period, the selection of the significant cyclic variations to 
be modeled, and finally the identification of the corresponding reference or 
simulation periods. 

ii) Intra-periodic temporal assumptions. The intra-periodic stationary approach, 
adopted in Chapters 2, 4 and 5, assumes that the transport demand with its 
relevant characteristics and the transport supply have average values constant 
over a period of time long enough to allow stationary conditions to be reached. 
In these conditions, the significant variables assume values independent from 
the reference time. Alternatively, intra-period dynamic models simulate 
explicitly how supply and some demand dimensions vary within each reference 
period. Intra-period dynamic models are still at a relatively early stage of 
development and are discussed in Chapter 6. 
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iii) Type of demand-supply interaction. In the equilibrium approach, it is assumed 
that the system (after a short time) reaches an equilibrium configuration in 
which demand, flows and costs are mutually consistent. Equilibrium 
assignment models have been traditionally studied and are described in 
Chapters 5 and 6. Alternatively, it is possible to adopt an inter-period dynamic 
approach to the modeling of demand-supply interactions by explicitly 
simulating the evolution of the system over different reference periods. Models 
of this type are considered in section 5.8. 

Finally, traditional transportation models are sometimes integrated with models 
simulating activity location and production levels. These models differ according to 
the size of the study area (urban, regional, and national) and the type of activities 
considered to be endogenous (i.e. explicitly represented in the model). For example, 
they may relate to household location in an urban area or to the production level in 
different sectors of the economy at multi-Tegional level. Models simulating the 
transportation system and activity locations are usually referred to as land-use 
transportation interaction models. This class of models is less widely used than 
transportation system models, and their systematic analysis is outside the scope of 
this book. It should be emphasized that most of the concepts underlying land-use 
transportation interaction models are similar to those discussed in the following. An 
example of models simulating the interactions between production levels, economic 
activity location and transportation is described in section 4.6, when looking at 
freight demand models. 
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Reference Notes 

The definition of a transportation system and its elements can be found in most 
textbooks covering the analysis and modeling of transportation systems, though with 
slightly different interpretations. Descriptions of this kind can be found, among 
others, in Manheim (1979), Sheffi (1985), Ortuzar and Willumsen (1994). 

Definitions of transport demand and its characteristics can be found in most 
textbooks on transportation systems analysis, such as Wilson (1974), Hutchinson 
(1974), Manheim (1979), Meyer and Miller (1984), Ortuzar and Williumsen (1994). 

Descriptive analyses of the structure of transportation demand and its 
development over time are given in several publications. Examples are the study of 
the European Conference of Ministries of Transport (ECMT 1992), for passenger 
transport, and that of the Organization for Cooperation and Economic Development 
(OCED 1986) for freight transport. Recent overviews of travel demand trends in 
some transportation markets are in Boyer (1998). 

Notes 

(I) Obviously it is not possible to forecast the future evolution of a transportation system, with or without 
the project under study, with absolute confidence. Thus only hypothetical "futures", or scenarios, can 
be simulated based on a set of assumptions for both exogenous variables and projects on the system. 
This point is discussed further in later chapters. 

(2)Analysis intervals including several stationary sub-periods (e.g. the average day with several 
homogenous time-bands) could be dealt with by considering a single reference period with average 
values of the parameters (e.g. travel demand or supply). This possibility, however, could induce severe 
distortions especially for congested systems (see Chapter 2) as congestion and demand are both highly 
non-linear phenomena and average flows and performances can significantly differ from flows and 
performances computed with average characteristics. 



2 TRANSPORTATION SUPPLY 
MODELS 

2.1. Introduction 
This chapter deals with the mathematical models simulating transportation supply 
systems. In broad terms a transportation supply model can be defmed as a model, or 
rather a system of models, simulating the performances and the flows resulting from 
users' demand and the technical and organizational aspects of the physical 
transportation supply. The general structure of a supply model is depicted in Fig. 
2.1.1, where several elements (or sub-models) can be distinguished. The graph 
defines the topology of the connections allowed by the transportation system under 
study, while the network loading or flow propagation model defines the relationship 
among path and link flows. The link performance model expresses for each element 
(link) the relationships between performances, physical and functional 
characteristics, and flow of users. The impact model simulates the main external 
impacts of the supply system. Finally, the path performance model defmes the 
relationship between the performances of single elements (links) and those of a 
whole trip (path) between any origin-destination pair. 

Transportation supply models combine traffic flow theory and network flow 
theory models. The former ones are used to analyze and simulate the performances 
of the main supply elements, the latter to represent the topological and functional 
structure of the system. Throughout this chapter, as stated in Chapter 1, it will be 
assumed that the transportation system is intra-period (within-day) stationary; 
extensions of supply models to intra-period dynamic systems will be dealt with in 
Chapter 6. 

The elements composing a transportation supply model will be described in 
section 2.2 by applying network flows theory to develop an "abstract" supply model 
(transportation network), together with the set of general mathematical relationships 
between transportation costs and flows on a network (supply model). 

Successively, some general indications about the applications of network 
models will be developed in section 2.3. Specific models for transportation systems 
with continuous services (such as road systems) will be described in section 2.3.1; 
models for discontinuous or scheduled services (such as bus, train or airplane) will 
be described in section 2.3.2. Appendix 2A provides a short review of the main 
results of traffic flow theory. 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
© Springer Science+Business Media Dordrecht 2001
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Fig. 2.1.1 Schematic representation of supply models. 

2.2. Congested network models 
This section provides a general mathematical formulation of transportation supply 
models, based on congested network flow models. The bases for these models are 
graph models. Successively, network models, including link performances and costs, 
and network flow models, including link flows, are introduced. FinalIy, congested 
network (flow) models, modeling relationships between performances, costs and 
flows, are developed. 
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2.2.1. Graph models 
A graph is defined as an ordered pair of sets: N, the set of elements known as nodes 
or vertices, and L ~ NxN, a set of pairs of nodes belonging to N, known as links or 
arcs. Symbolically, a graph G can be represented by G = (N,L). The graphs used to 
represent transportation services are generally oriented; i.e., the links have a 
direction and the node pairs defining them are ordered pairs. A link connecting the 
node pair (i,j) can also be denoted by a single index, say I, representing its position 
in the list of all the links of the graph or by the pair of indices, (i,j), relative to the 
initial and final nodes of the same link (see Fig. 2.2.1). 

The links in a graph modeling a transportation system represent phases and/or 
activities of possible trips between different traffic zones. Thus, a link can represent 
an activity connected to a physical movement (e.g. covering a road) or an activity 
not connected to a physical movement (such as waiting for a train at a station). 
Links are chosen in such a way that physical and functional characteristics can be 
assumed to be homogeneous for the whole link (e.g. the same average speed). In 
this sense, links can be seen as the partition of trips in segments of equivalent 
characteristics; the level of detail of such partition can clearly be very different for 
the same physical system according to the objectives of the analysis. 

Nodes correspond to significant events delimiting the trip phases (links). Nodes 
can correspond to points with different space and/or time coordinates in which the 
events, represented by the nodes, occur. In synchronic networks, nodes are not 
identified by a specific time coordinate, and the same node represents events 
occurring at different moments (instants) of time. For example, the different entry 
or exit times in a road segment, an intersection, a station, may be associated to a 
single node, representing all the entry/exit events. Centroid nodes, introduced in 
section 1.2.1, represent the beginning and/or the end of individual trips. In 
diachronic networks, on the other hand, nodes may have an explicit time coordinate 
and therefore represent an event occurring at a given instant. The graphs considered 
in this chapter are synchronic, since diachronic networks assume a within-period 
system representation; diachronic graphs for scheduled services will be introduced 
in Chapter 6. 

In a graph representing transportation supply, a path, k, is a sequence of 
consecutive links connecting an initial node (path origin) and a final node (path 
destination). Thus a path is a sequence of trip phases. Usually, only paths connecting 
centroid nodes are considered in transportation graphs. These paths are sequences of 
phases allowing travel from a given origin to a given destination and therefore 
represent possible trips. On this basis, each path is unambiguously associated with 
one and only one O-D pair, while several paths can connect the same O-D pair. An 
example of graph with the different paths connecting the centroid nodes is depicted 
in Fig. 2.2.1. 

A binary matrix called the link-path incidence matrix, LI, can represent the 
relationship between links and paths. This matrix has a number of rows equal to the 
number of links, nL, and a number of columns equal to the number of paths, np. The 
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generic element o,k of the binary matrix Ll is equal to one if the link 1 belongs to path 
k, IEk, and zero, otherwise, l'lk (see Fig. 2.2.1). The row of the link-path incidence 
matrix corresponding to the generic link 1 identifies alI the paths including that link 
(columns k for which o,k = 1). Moreover the elements of a column corresponding to 
the generic path k identify alI the links that make it up (rows 1 for which o,k = 1). 

2.2.2. Performance variables and transportation costs 
Some variables perceived by users can be associated with individual trip phases. 
Examples of such variables are travel times (transversal and/or waiting), monetary 
cost, discomfort, etc. These variables are referred to as level-ofservice or 
performance attributes. The average value of the n-th performance variable, related 
to link I, will be denoted by rnl. In general, performance variables correspond to 
disutilities or costs for the users (i.e. users would be better off if the values of 
performance variables were reduced). The average generalized transportation link 
cost, or simply the transportation link cost, is a variable synthesizing (the average 
value of) the different performance variables borne and perceived by the users in 
travel related choice and, more in particular, in path choices (see section 4.3.4). 
Thus, the transportation link cost reflects the average users' disutility for carrying 
out the activity represented by the link. Other performance variables and costs, 
which cannot be associated to individual links but rather to the whole trip (path), 
will be introduced shortly. 

Performance variables making up the transportation cost are usually non­
homogeneous quantities. In order to reduce the cost to a single scalar quantity, the 
different components can be homogenized into a generalized cost applying 
reciprocal substitution coefficients fJ, whose value can be estimated by calibrating 
the path choice model (see section 4.3.4). For example, the generalized 
transportation cost, C" relative to the link 1 can be formulated as: 

where t, is the travel time and mc, is the monetary cost (e.g. the toIl) connected with 
the crossing of the link. More generalIy, the link transportation cost can be 
expressed as a function of several link performance variables as: 

(2.2.1 ) 
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Fig. 2.2.1 Example of a graph and link-path incidence matrix. 
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Different users may experiment and/or perceive transportation costs, which are 
different for the same link and the analyst does not know these costs. For example, 
the travel time of a certain road section is in general different for each vehicle that 
covers it, even under similar external conditions. Furthermore, two users 
experimenting the same travel time may have different perceptions of its disutility. 
Thus, the perceived link cost can be considered a random variable distributed among 
the users; the average value is the transportation link cost c/. 

There may be other "costs" both for the users (e.g. accident risks or tire 
consumption) and for the collectivity (e.g. noise and air pollution) associated to a 
link. It is usually assumed that these costs are not taken into account by the user in 
their travel-related choices and are not included in the perceived transportation cost. 
The transportation cost is, therefore, an internal cost, used for the simulation of the 
transportation system and, in particular, of travelers' choices. The other cost items 
represent an external cost, used for the design and the evaluation of projects. 
External costs are sometimes related to as impacts; they will be dealt with in section 
2.2.5. 

Different groups (or classes) of users may have different average transportation 
costs. This may be due to different performance variables (e.g. their speeds and 
travel times are different or they pay different fares) or to differences in the 
homogenization coefficients, Pm (e.g. different time/money substitution rates 
corresponding to different incomes). In this case a link cost Cil can be associated with 
each user class i. In what follows, for simplicity of notation, the class index i will be 
taken as understood unless otherwise stated. Other considerations relative to users 
belonging to different classes will be made in Chapter 5. 

Link performance variables and transportation costs can be arranged in vectors. 
The performance vector, 'I, is made up by the n-th performance variable for each 
link, its components being rnl' Analogously, the vector c, whose generic component 
Cf is the generalized transport cost on the link I, is known as the link cost vector. 
Link performance and cost vectors have dimension (nLxl) where nL is the number of 
links. The concepts of performance variables and generalized transportation cost can 
be extended from links to paths. 

The average performance variable of a path k, Znk, is the average value of that 
variable associated to a whole origin-destination trip, represented by a path in the 
graph. Some path performance variables are link-wise additive; i.e. their path value 
can be obtained as the sum of link values for all links making up the path. 

Examples of additive path variables are travel times (the total travel time of a 
path is the sum of travel times over individual links) or some monetary costs, which 
can be associated to some or all individual links. An additive path performance 
variable can be expressed as the sum of link performance variables as: 

(2.2.2a) 

or in vector notation 
(2.2.2b) 
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Fig. 2.2.2 Transportation network with link and path costs . 
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Other path performance variables are non-additive; i.e. they cannot be obtained 
as sum of link specific values. These variables are denoted by zn/A . Examples of 
non-additive performance variables are the monetary cost in the case of tolls non­
linearly proportional to the distance covered or the waiting time at stops for high­
frequency transit systems, as will be seen below. 

The average generalized transportation cost of a path k, gh is defined as a scalar 
quantity homogenizing in disutility units the different performance variables 
perceived by the users (of a given category) in making trip-related choices and, in 
particular, path choices. 

The path cost in the most general case is made up of two parts: link-wise additive 
cost, g/DD, and non-additive cost, g/A, assuming that they are homogenous: 

The additive path cost IS defined as the sum of the link-wise additive path 
performance variables: 

(2.2.3) 

Under the assumption that the generalized cost depends linearly from performance 
variables, the additive path cost can be expressed as the sum of generalized link cost 
Ct· 

The relationship between additive path cost and link costs can be expressed by 
combining eqns. (2.2.3), (2.2.2) and (2.2.1): 

(2.2.4) 

where, as stated, 6tk is equal to one if the link I belongs to the path k, zero otherwise. 
The expression (2.2.4) can also be formulated in vector format by introducing the 
vector of additive path costs, gIDD, of dimensions (npx 1): 

(2.2.5) 

An example of the relationship (2.2.5) is depicted in Fig. 2.2.2. 
The non-additive path cost, g/A, includes non-additive path performance 

variables: 

Finally, the path cost vector, g, of dimensions (npx 1), can be expressed as: 

(2.2.6) 
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where !fA is the non-additive path cost vector. 
In many applications, the non-additive path cost vector is, or is assumed to be, 

null since this assumption simplifies the theoretical analysis and allows the use of 
efficient algorithms (e.g. implicit path enumeration) for the network assignment 
models, as discussed in Chapters 5 and 7 respectively. 

2.2.3. Flows 
A linkflow,ji, can be associated to each link I. Link flows, under the assumption of 
intra-period (within-day) stationarity, are the number of homogeneous units using 
the link (Le. carrying out the trip phase represented by the link) in a time unit. Also 
in this case, the flow is properly a random variable whose average value is 
represented by the model. Several link flows can be associated to a given link 
depending on the homogeneous unit considered. User flows relate to users, such as 
travelers or goods possibly of different classes. Vehicle flows relate to the number of 
vehicles, possibly of different types such as automobiles, buses, trains, etc. If the 
link represents the crossing of a physical infrastructure (such as a road segment), the 
flow value, on the stationarity assumption, can be associated with each of its cross­
sections (see Appendix 2A). 

User flows are derived from demand models and influence supply performances; 
vehicle flows are usually associated with supply performance models. For individual 
modes, such as automobiles or trucks, user flows can be transformed quite 
straightforwardly into vehicle flows through average occupancy coefficients. For 
scheduled modes, such as trains, vehicle flows derive from the service schedule and 
are often treated as an input to the supply model. The link flow of the generic user 
class or vehicle type will be denoted by fl. 

Link performance variables and costs are often assumed to depend on equivalent 
flows associated with the links. In this case the flows of different user classes or 
vehicle types are homogenized to a reference class or type: 

(2.2.7) 

where Wi is the homogenization coefficient of the users of class i with respect to 
their influence on link performances. For example, for road flows, automobiles are 
usually the reference vehicle type (Wi = I) and the other vehicle flows are 
transformed into equivalent auto flows with coefficients Wi' The latter ones are 
greater than one if the contribution to congestion of these vehicles is greater than 
that of the cars (buses, heavy vehicles, etc.), less then one in the opposite case 
(motorcycles, bicycles, etc.). 

The link flow vector,/, has dimensions (nLxl), its generic component is the flow 
ji on link I (see Fig. 2.2.3). 
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Fig . 2.2.3 Transportation network with link and path flows. 
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Flow variables can also be associated with paths. Under the within-day 
stationarity hypothesis, the average number of users, who in each sub-interval travel 
along each path, is constant. The average number of users, which in a time unit 
follow path k, is called the path flow hk• If the users have different characteristics, 
i.e. belong to different classes, path flows per class i, hki, can be introduced. Path 
flows of different user classes or vehicle types can be homogenized by means of 
coefficients Wi similar to those introduced for link flows; the equivalent path flow is 
obtained as: 

(2.2.8) 

Using a vector format, can be defined the path flow vectors hi and h; they are 
column vectors of dimensions (npxl) (see Fig. 2.2.3). 

The user flow following each path can also be seen as a random variable since, 
in general, it can vary over different observation periods of the system. 

There is clearly a relationship between link and path flows. The flow on each 
link I, in fact, can be obtained as the sum of the flows on the various paths 
containing that link. This relationship can be expressed by using the elements Otk of 
the link-path incidence matrix as: 

(2.2.9) 

or in matrix terms: 
f=LJh (2.2.10) 

Equation (2.2.9), or (2.2.10), expresses the way in which path flows induce flows 
on individual links. For this reason it will be referred to as the (static) Network Flow 
Propagation (NFP) or Network Loading (NL) model (see Fig. 2.1.1). Note that the 
linear structure of equation (2.2.9) depends crucially on the assumption of intra­
period stationarity (within-day static model); if this assumption is removed, the NL 
model becomes significantly more complicated as will be seen in Chapter 6. 

Furthermore, note the difference between the relationships connecting link and 
path costs and flows. As far as the costs are concerned, the additive path cost is 
given by the sum of the component link costs as expressed in the equation (2.2.3) or 
(2.2.4). On the other hand, the link flow is obtained by the sum of flows on the 
paths, which include that link (equation (2.2.9) or (2.2.10». 

2.2.4. Link performance and cost functions 
Link performance attributes generally depend on the physical and functional 
characteristics of the facility and/or the service involved in the trip phase represented 
by the link itself. Typical examples are the travel time on a road section depending 
on its length, alignment, allowed speed or the waiting time at a bus stop depending 
on the headway between successive bus arrivals. When several travelers or vehicles 
use the same facility, they may interact with each other influencing link 
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performances. This phenomenon is known as congestion. Typically, the effects of 
congestion on link performances increase as the flow increases. For instance, the 
larger the flow of vehicles traveling along a road section, the more likely faster 
vehicles will be slowed by slower ones, thus increasing the average travel time. 
Moreover, the larger the flow arriving at an intersection, the larger the average 
waiting time; the larger the number of users on the same train, the lower the riding 
comfort. 

In general, congestion effects are such that the performance attributes of a given 
link may be influenced by the flow on the link itself and by flows on other links. 

Link performance functions relate the generic link performance attribute, rnl, to 
physical and functional characteristics of the link, arranged in a vector hnl' and to the 
equivalent flow on the same link and, possibly, on other links, arranged in the vector 

f 
(2.2.11) 

where Ynl is a vector of parameters used in the function. 
Since the generalized transportation cost of a link, CI, is a linear combination of 

link performance attributes, as expressed by equation (2.2.1), link cost functions(l) 
can be expressed as functions of the same parameters: 

CI = CI if; hi, n) (2.2.12) 

Given the relevance of congestion effects on the analysis of transportation 
systems, in the following link performance and cost functions will explicitly express 
their dependence of link flows as rnl(f) and CI(f) respectively; vectors hi and n will be 
understood. 

Link performance and cost functions may have some mathematical properties, 
which will be used in Chapter 5 to study the properties of supply-demand interaction 
models and in Chapter 7 to analyze the convergence of their solution algorithms. It 
is sometimes useful to separate the link cost, and therefore the functions simulating 
the component performance attributes, in two parts. The variable cost cvm includes 
those performance attributes, usually travel and/or waiting time, which vary 
significantly because of the congestion effect and are regarded as functions of 
equivalent flows. The fixed cost COl includes those performance attributes, e.g. tolls, 
which are independent of link flows. 

In general, therefore, the link cost function can be expressed as: 

CI(f) = COl + cvI(f) (2.2.13) 

assuming that COl and CVI are expressed in homogeneous (disutility) units. 
Performance and cost functions can be classified as separable and non-separable 

across link. In the former case, the performances and cost variables of a link depend 
exclusively on the (equivalent) flow on the link itself: 
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clf) = clJi) 

In the latter case, they also depend on the flow on other links. Examples of both 
types of function will be given in the following sections. 

The cost function vector, c(f), of dimensions (nLx I), is obtained by ordering the 
nL functions of the individual network links: 

c = c(f) (2.2.14) 

The Jacobian matrix Jac[c(f)] of the functions vector, c(f), has dimensions 
(nLxnL) and can be expressed as: 

Oc. Oc. 

OJ. IfnL 

Jac[c(t)] = 
cc; 

(2.2.15) 
OJ; 

Ocn __ L Oc" __ L 

OJ. IfnL 

Separable and non-separable cost functions can be characterized with reference 
to their Jacobians. In the separable case, the Jacobian will be a diagonal matrix: 
Oc;!C!/j = 0, 'if it=j. Symmetric cost functions have a symmetric Jacobian matrix: 
OC;!C!/j=OC/if;, 'if i,j; i.e. the cost variation on link I, due to a flow variation on linkj, 
is equal to the cost variation on linkj, due to a flow variation on link i. Asymmetric 
cost functions, instead, have an asymmetric Jacobian. Separable cost functions are 
clearly a special case of symmetric functions. A further special case is the cost 
function vector of an uncongested network. In this case the cost functions are 
independent of the flows, so the partial derivatives of (2.2.15) are all equal to zero 
and the Jacobian is null. 

2.2.5. Impacts and impact functions 
Design and evaluation of transportation systems, in addition to performance 
variables perceived by the users, require the modeling of impacts borne by the users, 
but not perceived in their mobility choices, and of impacts on non-users. Examples 
of the first type include indirect vehicle costs (e.g. tire or lubricant, vehicle 
depreciation, etc.) and accident risks with their consequences (deaths, injuries, 
material damages). The impacts for non-users include those for other subjects 
directly involved in the transportation system, such as costs and revenues for the 
producers of transportation services, and impacts "external" to the transportation 
system (or market). Examples of externalities are the impacts on the real estate 
market, urban structure, or on the environment such as noise and air pollution. The 
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mathematical functions relating these impacts to physical and functional parameters 
of the specific transportation systems and, in some cases, to link flows are called 
impact functions. Often these functions are named with respect to the specific 
impact they simulate (e.g. fuel consumption functions or pollutants emission 
functions). Some impacts can be associated with individual network links and 
depend on the flows, elf}. Link-based impact functions are usually included in 
transportation supply models; see Fig. 2.1.1. Some impact functions may be quite 
elementary while others may require complex systems of mathematical models. 
Examples of link-based impact functions are those related to air and noise pollution 
due to vehicular traffic. Some impact functions will be discussed in Chapter lOin 
the context of evaluation of transportation system projects. 

2.2.6. General formulation 
A transportation network consists of the set of nodes N, the set of links L, the vector 
of link costs c, which depend on the vector r of link performances, the vector ttA of 
non-additive path costs and the vector e of relevant impact variables: 
(N, L, c, ttA, e). For the sake of simplicity, the set of relevant paths, as will be 
defined in Chapter 6, is not indicated. For congested networks, the link cost vector is 
substituted by the flow-dependent cost functions c(j); the same holds for flow­
dependent internal and external impacts, e(/), while the non-additive costs vector, 
ttA , is usually assumed to be independent of the flows. In this case the abstract 
transportation network model can be expressed as (N, L, c(/), ttA, e(/)). Performance 
variables and functions are not explicitly mentioned, as they are included in the 
generalized transportation cost functions. 

The set of relationships connecting path costs to path flows is known as the 
supply model. The supply model can therefore be formally expressed combining the 
equations (2.2.6), (2.2.10) and (2.2.14) into a relationship connecting path flows to 
path costs: 

g(h) = LIT c(LI h) + g'A (2.2.16) 

where it is assumed that non-additive path costs, if any, are not affected by 
congestion. Link characteristics can be obtained through performance, cost and 
impact functions for the link flows corresponding to the path flow vector. Clearly 
the model (2.2.16) expresses the abstract congested network model described in the 
previous sections. The same type of models can be used to describe other systems 
such as electrical or hydraulic networks. 
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2.3. Applications of Transportation Supply models 
Network models and related algorithms are powerful tools for modeling 
transportation systems. A network model is a simplified mathematical description of 
the physical phenomena relevant for the analysis, design and evaluation of a given 
system. Thus transportation network models depend on the purpose for which they 
are used. 

Building a network model usually requires a sequence of operations whose 
general criteria will be described in the following. A schematic representation of the 
main activities in the case of a bi-modal supply system (road and transit urban 
systems) is depicted in Fig. 2.3.1. 

In the most general case, a supply network model is built through the following 
phases: 

a) delimitation of the study area; 
b) zoning; 
c) selection of relevant supply elements (basic network); 
d) graph construction; 
e) identification of performance and cost functions; 
f) identification of impact functions. 

Phases a), b) and c) relate to the relevant supply system definition. They are 
described respectively in section 1.2.1 of Chapter 1 and will not be repeated here. 
The rest of this section will introduce some general considerations related to phases 
d), e) and f) for a generic system. Specific models will be described separately for 
two different types of transportation systems: continuous services (such as road), in 
section 2.3.1, and scheduled services (such as train or buses), in section 2.3.2. 

The construction of a transportation graph requires the definition of the relevant 
trip phases and events (links and nodes) that depend on the physical system to be 
represented. Important nodes in transportation graphs are the so-called centroid 
nodes. They correspond to the events of beginning and ending a trip in a given zone. 
As was seen in section 1.2.1, the centroids can approximate the internal points 
within a traffic zone. In general the zone centroid is a fictitious node, i.e. a node 
which does not correspond to any specific location but which represents the set of 
the points of the zone where a trip can start or end. For this reason, a zone centroid is 
placed "barycentrically" with respect to such points or to some proxy variables (e.g. 
the number of households or workplaces). In principle, different centroid nodes may 
be associated to different trip types (e.g. origin and destination centroids). In other 
cases, centroids represent the places of entry into or exit from the study area for the 
trips, which are partly carried out within the system (cordon centroids). In this case 
they are usually associated with physical locations (road sections, airports, railway 
stations, etc.). 
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Fig. 2.3.1 Functional phases for the construction of an urban bi-modal network model. 

A graph usually includes links of different types: real links and connectors. Real 
links represent trip phases corresponding to "physical" components (infrastructures 
or services), such as traversing a road section or riding a train between two 
successive stations. When centroid nodes do not correspond to a physical element, 
connector links are introduced into the graph. These links represent the trip phase 
between the terminal point (zone centroid) and a physical element of the network. 
In the remainder of this section, links will be referred to according to the phase 
(activity) of the trip or to the infrastructure or service, which allows that activity. 
For example, there will be road links, transit line links, and waiting links at stops. 

A transportation graph will have different levels of complexity, depending on the 
system being represented and the details needed for its representation. In general, it 
can be said that short-term, or operational, projects, such as a road circulation plan 
or the design of transit lines, require a very detailed representation of the real 
system. On the other hand strategic, or long-term, projects usually require less 
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detailed, larger-scale graphs both because of the geographical size of the area and of 
the number of elements included in the system. 

As will be seen soon, different graphs can be associated with the same basic 
network, depending on the aim of the model. 

Graphs can also represent transportation infrastructures; in general, 
infrastructure graphs are not used directly for system models, but rather they are 
referred to during the construction of service graphs. User flows and supply 
performances depend on the transportation services using the infrastructures rather 
than on the infrastructures themselves. 

To specify link performance and cost functions for a transportation network, the 
operational characteristics of its elements are needed. Performance functions used 
in practice sometimes derive from an explicit mathematical model, such as queuing 
models, for so-called barrier systems (motorway toll-barriers, road intersections, air 
and maritime terminals, etc.), or traffic flow theory models, for continuous systems. 
When the formulation of an explicit mathematical model, even in a simplified form, 
turns out to be particularly complex, "descriptive" models are used instead. These 
models are statistical relationships between performance attributes and explanatory 
variables. Examples of both types of performance functions will be given in the 
following two sections and in Appendix 2.A. 

Both explicit and descriptive models include unknown parameters, vectors Yn and 
Y in expressions (2.2.11) and (2.2.12) respectively, that should be calibrated for the 
specific supply system. To estimate the parameters of theoretical models or to 
specify the functional form and estimate the parameters of descriptive models, 
traditional estimation methods can be used. In particular, least square estimators are 
often adopted to this purpose. In many applications cost functions calibrated in 
similar contexts are transferred to the system under study to save on times and costs. 

2.3.1. Supply models for continuous service systems 
Continuous and simultaneous services are available at every instant and can be 
accessed from a very large number of points. Typical examples are individual 
modes such as cars and pedestrians using road systems. 

2.3.1.1. Graph models 

In graphs representing road systems, nodes are usually located at the intersections 
between road segments included in the supply model. Nodes can also be located 
where significant variations of the geometrical and/or functional characteristics of a 
single segment occur (such as changes in a road cross-section and lateral friction). 
Intersections with secondary roads not included in the "base network", however, are 
not represented by nodes. Links usually correspond to connections between nodes 
allowed by the circulation scheme. Therefore, a two-way road will be represented 
by two links going in opposite directions, while a one-way road will have a single 
link going in the allowed direction. Fig. 2.3.2 shows the graph representing the part 
of urban road network shown in Fig. 1.2.2. 
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Fig. 2.3.2 Example of a graph representing part of an urban road system. 

The level of detail of the road system depends on the purpose of the model. This 
is especially true for road intersections. In a coarse representation, a road 
intersection is usually represented by a single node where the access links converge. 
Alternatively, it is possible to adopt a more detailed representation that distinguishes 
different turning movement and excludes non-permitted turns (if any). Such a 
representation can be obtained by using a larger number of nodes and links. Fig. 
2.3.3 shows the two possible representations of a four-arm road intersection. Note 
that in the single node representation, paths requiring the left turn (4-5-2) cannot be 
excluded if this turning movement is not allowed; furthermore, different waiting 
times cannot be assigned to maneuvers with different green phase durations, such as 
the right turn (4-5-3). Both of these possibilities are allowed by the detailed 
representation. 

Parking is another element of a road system that can be represented with 
different levels of detail. In detailed road graph, trip phases corresponding to parking 
can be represented with different links for different parking facilities available in a 
given zone, see Fig. 2.3.4. Parking links can be connected through pedestrian links 
to the centroid of the zone where they are located in, and to the centroids of traffic 
zones within walking distance. In less detailed graphs, parking is included in 
connector links; in this case however it is not possible to simulate congestion and 
different parking policies. 
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2.3.1.2. Performance and cost functions 

The generalized transportation eost of a road link is usually made up by several 
performance attributes. For example, three attributes can be selected: travel time 
along the section, waiting time (e.g. at the final intersection, at the tollbooth, etc.) 
and monetary cost. In this case, the cost function can be obtained as the sum of 
three performance functions: 

where: 

trl (f) is the function relating the running time on link I to the flow vector; 
!wI (f) is the function relating the waiting time on link I to the flow vector; 
mel (f) is the function relating the monetary cost on link I to the flow vector. 

(2.3.1) 

The dependence on physical and functional variables, hi, and parameters, r. has 
been omitted for simplicity sake. Note that in equation (2.3.1) it has been assumed 
that homogenization coefficients may be different for the different time 
components. Furthermore, not all of the components in (2.3.1) are present for each 
link; for example, if the link represents only the waiting time for a maneuver, tr{ and 
mel are zero, and the same consideration is true for monetary costs and waiting 
times on most pedestrian links. 

In the most general case, the monetary cost term mel includes the cost items that 
are perceived by the user. Since the users do usually not perceive other 
consumptions (mineral oil, tires, etc.), in applications monetary costs are usually 
identified as the toll (if any) and the fuel consumption: 

The latter depends on the specific consumption (Iiters/km), which can vary in 
relation to the average speed and, therefore, to the congestion level. In practice, 
these variations are sometimes ignored and the monetary cost is calculated as a 
function of the toll and the average unitary consumption. 

Listing all the performance functions that can be adopted for the elements of 
different continuous service systems is beyond the scope of this book. In the 
following, some examples of performance functions for typical links of road 
networks will be given. It should also be stressed that, consistently with the 
assumption of intra-period stationarity, stationary traffic flow variables and results 
will be used (see Appendix 2.A.). Other delay functions are described in Appendix 
2.A. in the context of traffic flow and queuing theories. 
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a) Motorway links 
On motorway links flow conditions are typically uninterrupted and it is assumed 
that the waiting time component is negligible since it occurs on those sections 
(ramps, tollbooths, etc.), which are usually represented by different links. 

Link travel time is usually obtained through empirical statistical relationships. 
One of the most popular expressions, referred to as the BPR cost function, has the 
following specification: 

(2.3.2) 

where: 

LI is the length of link I; 
VOl is the free-flow average speed; 
Vel is the average speed with flow equal to capacity; 
QI is the link capacity, i.e. the average maximum number of equivalent vehicles 

that can travel along the road section in a time unit. Capacity is usually 
obtained as the product of the number of lanes on the link I, NI, and lane 
capacity, Qui; 

YI> Yz are parameters of the function. 

From eqn (2.3.2) it can be noted that, in the case of motorways, cost functions 
are separable. The influence of flows on the performances of other links (e.g. the 
opposite direction or entrance/exit ramps) is significantly reduced by the 
characteristics of the infrastructure (divided carriageways, grade-separated 
intersections, etc.). 

The values of VOl, Vel and QI depend on the geometric and functional 
characteristics of the section (width of lanes, shoulders and median strips, bend 
radiuses, longitudinal slopes, etc.). Typical values can be found in different sources; 
the Highway Capacity Manual (HCM) is the most complete and systematic (see 
bibliographic note). The parameters Yl and Yz are typically estimated on empirical 
data. 

Fig. 2.3.5 shows a diagram of eqn (2.3.2) for different parameter values. Note 
that this function associates a travel time to the link also when flows are above the 
link capacity (over-saturation), even though such flows are not possible in reality. 
However, in applications over-saturation is often allowed for reasons connected with 
mathematical properties and solution algorithms of static equilibrium assignment 
models (see Chapters 5 and 7). From a computational point of view, the over­
saturation assumption should not impact significantly the results if the value of 
parameter Yz, i.e. the delay penalty due to capacity overloading, is large enough. 

Values of Yz are typically much larger than one; i.e. the function is more-than­
linear in flow/capacity ratios. This phenomenon is rather frequent in congested 
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systems. Furthermore, as will be seen in Chapter 5, at equilibrium, users are 
distributed among paths in order to have equal (perceived) costs and, therefore, it is 
unlikely that the resulting flows are significantly higher than capacities. It should 
also be noted that, as shown in Appendix 2.A., if the flow is close to the capacity, 
resulting instability challenges the within-day stationarity assumptions and the cost 
functions adopted. In this sense, delay functions should be considered as "penalty" 
functions preventing major over-saturation, rather than estimates of actual travel 
times. 
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Fig. 2.3.5 Motorway travel time function (2.3.2) for different values of some parameters. 

b) Extra-urban road links 
Users travelling on an extra-urban road behave differently according to the number 
of lanes available for each direction: single lane (two-lane arterial) or two or more 
lanes (four-lane arterial, six-lane arterial, etc.). 

In the former case, the capacity and travel conditions in each direction are not 
influenced by the flow in the opposite direction. For this type of road, the same 
formula (2.3.2) described for motorway links can be used, although with different 
parameters. These can again be deduced from capacity manuals, such as the HCM, 
or from other specific empirical studies. 

In the case of roads with one lane in each direction, link performances depend on 
the flow in both directions since the overtaking maneuvers are not always possible 
and, consequently, the vehicles can reduce the average speed. In practice, it is often 
assumed that the link capacity has a value common to both the directions and the 
travel time function is modified as follows: 
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(2.3.3) 

where, apart from the symbols introduced previously, the link in the opposite 
direction is denoted by 1* and the overall capacity in both directions by QII*. 

c) Toll-barrier links 
In the case of links representing queuing systems, it is assumed that the average 
waiting time is the only significant time performance variable. In simple cases (e.g. 
a link corresponds to all tolling lanes), the average under-saturation waiting time can 
be obtained by using a stochastic queuing model: 

where: 

T" 
d" 
Q,=NtfT" 

tw" (J;) = T, +(T} +a}). J; . 1 
I '2 1-J;!Q, 

(2.3.4) 

is the average service time for each toll-lane; 
is the variance of the service time at the pay-point; 
is the link (toll-barrier) capacity equal to the product of the number of 
lanes (ND by the capacity of each lane (lIT,). 

Expression (2.3.4) is derived from the assumption of a queuing system MIG/l 
(00, FIFO) with Poisson arrivals and general service time (see section 2.A.2.3). 

The values of T, and d s depend on various factors such as the tolling structure 
(fixed, variable) and the payment method (manual, automatic, etc.) 

Note that the average waiting time obtained through equation (2.3.4) is larger 
than the average service time T" even though the arriving flow is lower than the 
system's capacity. This effect derives from the presence of random fluctuations in 
the headways between user arrivals and the service times. For this reason, the delay 
expressed by (2.3.4) is known as "stochastic delay". 

Note also that the average delay computed with equation (2.3.4) tends to infinity 
as the flow It tends to the capacity (i.e. ifft/Q, tends to one). This would be the case 
if the arrivals flow It remained equal to the capacity for an infinite time, which does 
not occur in reality. In order to avoid unrealistic waiting times and for reasons of 
theoretical and computational convenience, two different methods can be adopted. 
The first, and less precise, method assumes that equation (2.3.4) holds for flow 
values up to a fraction aofthe capacity, for example It ::0; 0.95 Q,. For higher values, 
the curve is extended following its linear approximation, i.e. in a straight line 
passing through the point of coordinates a Q" tw( a Q,) with angular coefficient 
equal to the derivative of(2.3.4) computed at this point: 
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(2.3.5) 

with 
T 2 2 

K= s+CYs 

2 (l-a)2 

Fig. 2.3.6 shows the relationships (2.3.4) and (2.3.5) for some values of the 
parameters. 
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Fig. 2.3.6 Waiting time functions (2.3.4) and (2.3.5) at toll-barrier links. 

A more rigorous method is based on the calculation of over-saturation delay 
using a deterministic queuing model with arrival rate equal to fi, deterministic 
service times equal to Ts and over saturation period equal to the reference period 
duration T (see section 2.A.2.2). The deterministic average (over-saturation) delay 
twd, is then equal to: 

d (h)T tw , = Ts + Q, -1 '2 (2.3.6) 

which, for a given value of capacity, is a linear function of the arrivals flow fi. 
Note that in this case the assumption of intra-period stationarity is challenged 

since even if the arrival flow rate, fi, and the capacity, liT., are constant over the 
whole reference period T, the waiting time is different for users arriving in different 
instants of the reference period. In static models it is assumed that users perceive 
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the average waiting time. Intra-period dynamic models, discussed in Chapter 6, 
remove this assumption. 

The average delay, tw" can be calculated by combining the stochastic under­
saturation average delay, tw"" expressed by (2.3.4) with the deterministic average 
over-saturation delay, twd" expressed by (2.3.6). The combined delay function is 
such that the deterministic delay function is its oblique asymptote; see Fig. 2.3.7. 
The following equation results: 
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Fig. 2.3.7 Under- and over-saturation waiting time functions for toll barrier links. 

d) Urban road links 
Links representing urban road sections are often rather short (few hundred meters) 
and the average travel speed is not significantly influenced by the flow, both because 
of the short distance between two successive intersections, and because of the low 
speed limits. 

The running time tr, can be obtained through "descriptive" statistical models. 
Some models express the average speed on the link as a function of physical and 
functional parameters and of traffic flows: 

(2.3.8) 
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An example of estimation of vlji) is the following empirical expression 
calibrated in some Italian urban areas (see bibligraphic note): 

where: 

(2.3.9) 
-[0.000053 + 0.000123 Xi] if, /NWI)2 

is the "net" width, i.e. the road width in each direction, reduced by the 
space occupied by parked vehicles (in meters); 
is the average slope in percentage units (%); 
is the level of winding ness in a scale [0, 1]; 
is the level of circulation hindrance due to pedestrians and parking 
movements in a scale [0, 1]; 
is the number of secondary intersections per kilometers; 
is a dummy variable equal to 1 if the road does not allow overtaking, zero 
otherwise; 
is the link flow in vehicles/h. 

If a single link represents both the running along a road segment and the waiting 
at the final intersection its cost function will include both the components trl and twl, 
the latter discussed in the following subsection. 

e) Intersection links 
The average waiting time, twl, at an intersection can be computed by using 
theoretical and/or empirical formulae obtained for different types of regulation. 

The simplest case is that of a signal controlled intersection not interacting with 
adjacent ones (isolated intersection), without lanes reserved for right or left turns. 
In this case, the average waiting time depends on the ratio between the flow fi on 
the approach corresponding to the link I and the capacity of the approach itself QI. 
The latter is the average value of the maximum number of vehicles that can cross 
the approach in a time unit. 

The capacity of the approach can be expressed as a fraction p of the saturation 
flow, s: 

Q = pS p = GITc 

where: 
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f.1 = CIT, is the effective green ratio i.e. the ratio between the effective green 
duration C (green + yellow -lost time) and the duration Tc of the traffic­
light cycle (green + yellow + red); 

S is the saturation flow of the approach; i.e. the maximum number of 
equivalent vehicles that in a time unit could cross the stop line under 
continuous green light (f.1 = I). Alternatively, the saturation flow can be 
defined as the maximum discharge rate across the stop-line that can be 
sustained by a continuous queue during the green-yellow time. 

Fig. 2.3.8 gives a graphical illustration of the quantities associated with a 
traffic-light cycle. 

Flow 

s ......... , ...... _--------.......... ,Saturation flow S 

time 

Green Yellow Red 
1 I I 

-+-1 I---\--
Lost time 

Effective 
Lost time 

in start-up 
green 

in braking 

1 
Effective red 

Fig. 2.3.8 Discharge flow from signal-controlled intersection in relation to cycle phases. 

The saturation flow rate of an intersection can in principle be obtained through 
specific traffic surveys; in practice, however, empirical models based on average 
results are often used. The Highway Capacity Manual (HCM) describes one of the 
most popular methods. To apply this method, it is necessary to determine 
appropriate lane groups. A lane group is defined as one or more lanes of an 
intersection approach serving one or more traffic movements to which a single 
value of saturation flow, capacity and delay can be associated. Both the geometry of 
the intersection and the distribution of traffic movements are taken into account to 
segment the intersection into lane groups. In general, the smallest number of lane 
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groups that adequately describes the operation of the intersection is used. Fig. 
2.3.9a shows some common lane group schemes suggested by the HeM. 

The saturation flow rate of an intersection is computed from an "ideal" saturation 
flow rate, usually 1,900 equivalent passenger cars per hour of green time per lane 
(pcphgpl), adjusted for a variety of prevailing conditions that are not ideal. The 
method can be summarized by the following expression: 

where: 

S is the saturation flow rate for the specific lane group, expressed as a total for all 
lanes in the lane group under prevailing conditions, in vphg; 

So is the ideal saturation flow rate per lane, usually 1,900 pcphgpl; 
N is the number of lanes in the lane group; 
FlY is the adjustment factor for lane width (12 ft or 3.66 mt. lanes are standard); 
F HV is the adjustment factor for heavy vehicles in the traffic flow; 
Fg is the adjustment factor for approach grade; 
Fp is the adjustment factor for the existence of a parking lane adjacent to the lane 

group and the parking activity in that lane; 
Fbb is the adjustment factor for the blocking effect of local buses that stop within 

the intersection area; 
Fa is the adjustment factor for the area type; 
FRT is the adjustment factor for right turns in the lane group; 
FLT is the adjustment factor for left turns in the lane group. 

The first six adjustment factors not connected with the type of turning maneuvers 
are reported in the Fig. 2.3.9b. 

Once the approach capacity QI = f.1 S is known, the average waiting time twl can 
be calculated with several formulae. 

One of the best known expressions is the Webster formula, proposed for an 
isolated intersection under the assumption of random (Poisson) arrivals and under­
saturation conditions (fi/QI < 1): 

(2.3.l 0) 

where: 

Tc is the cycle length; 
f.1 is the effective green to cycle length ratio for the lane group represented by link 

I; 
QI is the capacity of the lane group represented by link I. 
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Fig. 2.3.9a Typical lane groups for the HeM method for calculating saturation flow. 
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ADJUSTMENT FACTOR FOR A VERAGE LANE WIDTH Fw 
Average lane width, W (FT) 8 1 9 10 11 1 12 1 131 14 1 IS 1 16 

Fw 0.867 1 0.900 0.933 0.967 1.000 1 1.033 1 0.067 1.100 1 1.133 
ADJUSTMENT FACTOR FOR HEA VY VEHICLES FHv 

Percentage of heavy vehicles (%) 0 2 4 6 8 10 IS 20 
FHW 1.000 0.980 0.962 0.943 0.926 0.909 0.870 0.833 

Percentage of heavy vehicles (%) 25 30 35 40 45 50 75 100 
FHW 0.800 0.769 0.741 0.714 0.690 0.667 0.571 0.500 

ADJUSTMENT FACTOR FOR APPROACH GRADE F. 
Grade (%) -6 I -4 -2 0 +2 +4 +6 +8 <: 10 

F. 1.030 I 1.020 1.010 1.000 0.990 0.980 0.970 0.960 0.950 
ADJUSTMENT FACTOR FOR PARKING Fp 

Fp N. of parking maneuvers per hour 
N. oflanes in lane group No parking 0 10 20 30 <: 40 

I 1.000 0.900 0.850 0.800 0.750 0.700 
2 1.000 0.950 0.925 0.900 0.875 0.850 

3 or more 1.000 0.967 0.950 0.933 0.917 0.900 
ADJUSTMENT FACTOR FOR BUS BLOCKAGE Fbb 

Fbb N. of buses stopping per hour 
N. oflanes in lane group 0 10 20 30 <: 40 

I 1.000 0.960 0.920 0.880 0.840 
2 1.000 0.980 0.960 0.940 0.920 

3 or more 1.000 0.987 0.973 0.960 0.947 
ADJUSTMENT FACTOR FOR AREA TYPE Fa 

Type of area Fa 
CBD (Center Business District) 0.900 
All other areas 1.000 

Fig. 2.3.9b Adjustment factors in the HeM method for saturation flow. 

The first term expresses the delay at zero flow, the second term expresses the 
delay due to congestion which tends to infinity if the flow tends to the capacity QI 
(see also section 2.A.3); the third term is a correction term obtained by simulation 
results. 

Applying expression (2.3.10) for flows close to capacity, the delay are very large 
and, as observed previously, are both unrealistic and computationally problematic. 
Again, to correct for this, it is possible to apply the two heuristic methods described 
for equation (2.3.4). The first method applies equation (2.3.10) for values offi up to 
a percentage a of the capacity while for higher values a linear approximation of the 
function is used: 

(2.3.11) 

Fig. 2.3.10 shows the diagram of the function (2.3.11) for a signalized 
intersection approach. The second method computes the over-saturation delay with a 
deterministic queuing model similar to that described in Fig. 2.3.7. The Akcelik 
formula for the calculation of the average delay at signalized intersections is derived 
from this approach: 
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(2.3.12) 

where Xt = f/Q, is the flow/capacity ratio, the times tw, and Tc are expressed in 
seconds, S, in pcph and T is the duration of over-saturation period in hours. 
Equation (2.3.12) is compared with the Webster formula in Fig. 2.3.10 for a value 
ofT=O.5h. 

Note that the application of the previous formulae for the calculation of 
saturation flows, capacities and average waiting times (delays) in case of multiple 
lane groups requires an "exploded" representation of the intersection with several 
links corresponding to the relevant lane groups and their maneuvers. For example, in 
the case of exclusive right-turn lane a single link can represent such a movement and 
the associated delay as in Fig. 2.3.3. Sometimes, to simplify the representation, 
fewer links than lane groups are used; in this case the total capacity of all lane 
groups is associated with the single link and the resulting delay is associated with 
the whole flow. 

From a mathematical point of view the delay functions discussed so far are 
separable only if the traffic-signal regulation is such as to exclude interference 
between maneuvers represented by different links. For example this is the case for 
the 3-phase regulation scheme of a T-shaped intersection shown in Fig. 2.3.11. 
However, if the phases allow conflict points, e.g. left-turn from the opposite 
direction with through flows during the same phase, non-separable cost functions 
may be necessary since the left turn causes a reduction in the saturation flow and, 
thus, an increase on the delay for the through flows and vice-versa. 

In general, if a single node represents the entire intersection, the effects of 
individual maneuvers and lane groups are impossible to distinguish and separable 
functions are adopted, with a single value of saturation flow, reduced to account for 
the interfering turns. When the exploded representation of the intersection is used, 
however, the delay functions of each maneuver might depend on the flow of another 
maneuver if the two maneuvers share some lanes and have the same green light 
phase (i.e. they belong to the same lane group). For example, for the four-arm, two­
phase intersection in Fig. 2.3.11, the delay on the link corresponding to the 
maneuver (C-D) also depends on the flow on the link corresponding to the maneuver 
(C-A) if the two maneuvers share the same accumulation lanes and have the same 
green phase. 
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Fig. 2.3.10 Waiting time functions at a signalized intersection. 
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55 

Finally, in the case of more complex, flow actuated signal control systems, delay 
and cost functions are certainly not separable since the regulation parameters (length 
of the cycle Tc, green/cycle ratios p) depend on the flows loading the various 
approaches converging at the intersection(2). 
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To complete the survey of the delay functions, priority intersections, i.e. 
intersections regulated by give-way rules rather than traffic lights, need to be 
considered. Empirical functions are often used to express average delays; these 
functions are non-separable in that right-of-way rules cause delays due to conflicts 
between flows. As an example, the delay corresponding to the maneuvers at a 4-
arm intersection can be calculated by means of the following HeM function: 

twl (f) = exp { -0.2664 + 0.3967 In (!coni) + 3.959 A [In(!conl} - 6.92]} (2.3 .13) 

where: 

twl (f) is the waiting time expressed in seconds; 
!coni is the total conflicting flow, which varies according to the maneuver as 

shown in Fig. 2.3.12; 
A = 1 if!conl> 1062 vehicIeslhr, 0 otherwise: 

N 
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Fig. 2.3.12 Flows conflicts for computing delays in priority intersection. 
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t) Parking links 
Monetary cost (fares) and search time are the most relevant performance attributes 
connected to links representing parking in a given area. In general these attributes 
are different for links representing different parking types (facilities). The more 
sophisticated models of search time take into account the congestion effect through 
the ratio between the average occupancy of the parking facilities of type p, 
represented by link I, and the parking capacity Qt. 

The average search time can be calculated through a model assuming that 
available parking spaces of type p are uniformly distributed along a circuit, possibly 
mixed with parking spaces of different types (e.g. free and priced parking). If the 
occupancy of a given parking type at the beginning and at the end of the reference 
period is inferior to the capacity, the following expression can be obtained: 

where: 

tslji) is the search time in minutes; 
fi is the flow on parking link I; 
Lp is the average length of a parking space; 
V,I' is the average search speed for a free parking space; 
accl is the parking occupancy at the beginning of reference period; 

(2.3.14) 

accz is the parking occupancy at the end of the reference period, depending on 
flow assigned to parking link and on the turn-over rate; 

Qp is the parking capacity of type p corresponding to link I; 
Q/Ol is the total capacity of all parking types mixed with type p in the zone. 

In the case that one or both occ are above capacity, similar but formally more 
complicated formulas can be obtained. These expressions will not be reported here. 

2.3.2. Supply models for scheduled service systems 
Discontinuous and non-simultaneous transportation services can be accessed only at 
given points and are available only at given instants. Typical examples are 
scheduled services (buses, trains, airplanes, etc.), which can be used only between 
terminals (bus stops, stations, airports, etc.) and are available only at certain instants 
(departure times). Scheduled services can be represented by different supply models 
according to their characteristics and to the consequent assumptions on users' 
behavior (see section 4.2.5.). The approach followed in this chapter is based upon 
the modeling of service lines, i.e. a set of scheduled runs with equal characteristics. 
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This approach is consistent with the assumption of intra-period stationarity and with 
path choice behavior, typical of high frequency and irregular urban transit systems. 

If service frequency is low and/or it is assumed that the users choose specific 
runs, it is necessary to represent the service with a different graph known as a run 
graph or diachronic graph. This is usually the case with extra-urban transportation 
services (airplanes, trains, etc.), which have low service frequencies and are largely 
punctual. In this case, however, the assumption of within-day stationarity does not 
hold. As a matter of fact, the supply characteristics often are not uniform within the 
reference period (arrival and departure times of single runs may be non-uniformly 
spaced). Furthermore, in order to simulate the traveler's behavior desired departure 
or arrival times should be introduced. For these reasons run-based supply models 
will be described in Chapter 6 dealing with intra-period dynamic systems. 

2.3.2.1. Line-based graph models 
lfthe scheduled services have high frequencies (e.g. one run every 5-15 minutes) 
and low regularity, it is usually assumed that the users do not choose an individual 
run, but rather a service line or a group of lines. A service line is a set of runs 
sharing the same terminals, the same intermediate stops and the same performance 
characteristics, as in the case of an urban bus or underground lines. In this case a line 
graph is typically used. In this graph, nodes correspond to stops, and more precisely 
to the relevant events occurring at the stops. Access nodes represent the arrival of the 
user at the stop, the stop node, or diversion node, represents the boarding of a 
vehicle, and the line nodes represent the arrival and departure of vehicles of a given 
line at a given stop. The links represent activities or phases of a trip: access trips 
between access nodes (access links), waiting at the stop (waiting links), boarding 
and alighting from the vehicles of a line (boarding and alighting links), the trip from 
one stop to another of the same line (line links), and vehicle dwelling at the stop 
(dwelling links). 

Essentially, each stop is represented by a sub-graph such as the one shown in 
Fig. 2.3.13. The graph representing an entire public transportation system can be 
built by combining the line graph and the access graph through the stop sub-graphs. 
Access links may represent different access modes depending on the system 
modeled. In urban areas, they may represent pedestrian connections or, sometimes, 
undifferentiated "access modes" including local transit lines to the main network of 
bus and rail services. The line graph is completed by adding nodes and links 
allowing entry/exit from the centroids to the stops; in the urban context this usually 
occurs through pedestrian nodes and links or through road links connected to park­
and-ride facilities (nodes). 
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Fig. 2.3.13 Line-based graph for urban transit systems. 
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2.3.2.2. Performance and cost functions 

The typical performance attributes used in line-based supply models are travel time 
components related to different trip phases and monetary costs. Travel times can be 
decomposed into on-board travel times, Tb, dwelling times at stops, Td, waiting 
times, Tw, boarding times, Tbr, alighting times, Tal and access/egress times, Ta, 
which may correspond to walking or driving time for urban transit networks. In 
general a single time component is associated to each link and the coefficients,p , 
homogenizing travel times into costs (disutilities) are different. In fact, several 
empirical studies have shown that waiting and walking times have coefficients two­
three times larger than that of on board time for urban transit systems. 

Performance functions used in many applications do not take into account 
congestion, at least with respect to flows of transit users, as it is assumed that 
services are designed with some extra capacity with respect to maximum user 
flows. . 

On-board travel time of a transit link can be obtained through a very simple 
expression: 

(2.3.15) 

where vector hi includes the relevant characteristics of the transit system 
represented by link I, while vector n comprises a set of parameters. The average 
speed is strongly dependent on the type of right-of-way. For exclusive right-of-way 
systems, such as trains, the average speed, VI, can be expressed as a function of the 
characteristics of the vehicles (weight, power, etc.), of the infrastructure (slope, 
radius of bends, etc.), of the circulation regulations on the physical section and the 
type of service represented. Relationships of this type can be deduced from 
mechanics for which specialized texts should be referred to. For partial right-of-way 
systems, such as surface buses, the average speed depends on the level of protection 
(e.g. reserved bus-lane) and the vehicle flows on the links corresponding to 
interfering movements. Performance functions of this type typically derive from 
descriptive models. 

The waiting time is the average time that the users spend between their arrival at 
the stop/station and the arrival of the line (or lines) they board. Waiting time is 
usually expressed as a function of the line frequency 'PI, i.e. the average number of 
runs of line I in the reference period. When only one line is available the average 
waiting time, Tw" will depend on the regularity of vehicle arrivals and the pattern 
of users' arrivals to the stop. It can be shown that, under the assumption that users 
arrive at the stop according to a Poisson process with a constant arrival rate(3) 
(consistent with the within-day stationarity assumption), the average waiting time 
is: 
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(2.3.16) 

where B is equal to 0.5 if the line is perfectly regular, i.e. the headways between 
successive vehicle arrivals are constant, it is equal to 1 if the line is "completely 
irregular", i.e. the headways between successive arrivals are distributed according 
to a negative exponential random variable; see Fig. 2.3.14. 
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Fig. 2.3.14 Arrivals and waiting times at a bus stop. 
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In the case of several "attractive lines", i.e. when the user waits at a diversion 
node, m, for the first vehicle among those belonging to a set of lines, ALm, the 
average waiting time can again be calculated with expression (2.3 .16) by using the 
cumulated frequency rpm of the set of attractive lines(4): 
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(2.3.17) 

These expressions of average waiting times will be revisited in section 4.3.4.2 on 
the path choice models. 

Access/egress times are also usually modeled through very simple performance 
functions analogous to expression (2.3.15): 

where Val represent the average speed of the access/egress mode. Also in the case of 
pedestrian systems, it is possible to introduce congestion phenomena and correlate 
the generalized transportation cost with the pedestrian density on each section by 
using empirical expressions described in the literature. 

More detailed performance models introduce congestion effects with respect to 
user flows both on travel times and on comfort performance attributes. An example 
of the first type of function is that relating the dwelling time at a stop, Tdl, to the 
user flows boarding and alighting the vehicles of each line: 

(2.3.18) 

where: 

ial(l) is the users flow on the alighting link; 
fir(/) is the users flow on the boarding link; 
QD is the door capacity of the vehicle; 
Yb Y2, Y3 are parameters ofthe function. 

Another example is the function relating the average waiting time to the flow of 
users staying on board and those waiting to board a single line. This function takes 
into account the "refusal" probability, i.e. the probability that some users may not 
be able to get on the first arriving run of a given line because it is too crowded and 
have to wait longer for a subsequent one. In the case of a single attractive line I the 
waiting time function can be formally expressed as: 

(2.3.19) 
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where qJ,(.) is the actual available frequency of line I, i.e. the average number of 
runs of the line for which there are available places. It depends on the ratio between 
the demand for places - sum of the user flow staying on board, !b(.), and the user 
flow willing to board,fw(.), - and the line capacity Q,. This formula is valid only for 

!b(.) + fw(.) > Q,. 
Note that both performance functions (2.3.18) and (2.3.19) are non-separable, in 

that they depend on flows on links other that the one they refer to. 
Discomfort functions relate the average riding discomfort on a given line section 

represented by link I, dc" to the ratio between the flow on the link (average number 
of users on board) and the available line capacity Q,: 

(2.3.20) 

where, as usual, n. Y4 and Y5 are positive parameters, usually with 15 larger than one 
expressing more-than-linear effect of crowding. 
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2.A. Review of Traffic Flow TheorY°) 
Traffic flow theory and related models simulate the effects of the interactions among 
vehicles simultaneously using a given transportation facility or service. The main 
scope of this review is to provide a theoretical background for the specification of 
performance functions. This appendix also provides basic concepts used in within­
day dynamic supply models covered in Chapter 6. Many traffic flow models 
proposed in the literature are oriented more towards traffic operations rather than 
transportation system planning and design. Thus, a systematic analysis of traffic 
flow theory models is out of the scope of this book. In this appendix, notations are 
slightly different from common use in traffic flow theory to be consistent within this 
book. 

For simplicity, models presented in this appendix will make reference to cars. 
However, most models can be applied to .other types of users interacting while 
travelling along the same infrastructure such as trains, airplanes, and pedestrians. 
The models described below can be classified in two main groups by the type of 
phenomenon simulated. Models for running links simulate vehicle movements along 
a linear facility (e.g. a street), while models for queuing links simulate vehicles 
waiting to be served at a service station (e.g. a tollbooth). 

2.A.1. Models for running links 
Models for running links simulate the interaction among several users moving along 
the same transportation facility. These models can be derived from some simple 
results of traffic flow theory. 

2.A.1.1. Fundamental variables 

Several variables can be observed in a traffic stream, i.e. a sequence of cars moving 
along a road segment referred to as a link, I. In principle all variables should be 
related to link I, however, to simplify notation, the subscript I may be implied. The 
fundamental variables are the following, see Fig. 2.A.l: 

r the time at which the traffic is observed; 
LI the length of road segment corresponding to link I; 
s a point along a link, or better its abscissa increasing (from a given origin, 

usually located at the beginning of the link) along traffic direction 
(s E [0, La); 
an index denoting an observed vehicle; 

v;(s, r) the speed of vehicle i at time rwhile traversing point (abscissa) s. 

(0) Giulio Erberto Cantarella is co-author of this appendix. 
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m(s I r, r + L1r) = 2 

x(r+ L1rl s, s + L1s) = 5 
r+ L1r 

/ m(s + L1s I r, r + L1r) = I 

i-I 

x( r Is, s + L1s) = 4 

s 
s s + L1s 

Fig. 2.A.1 Vehicle trajectories and traffic variables for running links. 

For traffic observed at point s during the time interval [r, r+ L1r], several 
variables can be defined (see Fig. 2.A.I): 

h;(s) 
m(sl r, r+L1r) 

h(s) 

V,(s) 

the headway between vehicles i and i-I crossing point s; 
the number of vehicles traversing point s during time interval 
[r, r+L1r]; 
= :Ei~I.,m h;(s) / m(s I r, r+L1r) the mean headway, among all 
vehicles crossing point s during time interval [r, r+ L1 r]; 
= :Ei~I"m Vi (s) / m(s I r, r+L1r) the time mean speed, among all 
vehicles crossing point s during time interval [r, r+ L1r]. 

Similarly, for traffic observed at time r between points sand s+ L1s, the following 
variables can be defined (see Fig. 2.A.I): 

sp,( r) 
~(rl s, s+L1s) 
sp(r) 

V,( r) 

the spacing between vehicles i and i-I at time r, 
the number of vehicles at time r between points sand s+ L1s; 
= :Ei~I"x sp;( r) / x( r I s, s+ L1s) the mean spacing, among all vehicles 

between points sand s+ L1s at time r, 
= :Ei~I, .. ,x Vi / x( r I s, s+ L1s) the space mean speed, among all 

vehicles between points sand s+ L1s at time r. 

During time interval [r, r+L1r] between points sand s+L1s, a general flow 
conservation equation can be written: 

L1x(s, s+L1s, r, r+L1r) + L1m(s, s+L1s, r, r+L1r) = L\z(s, s+L1s, r, r+L1r) (2.A,1) 
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where: 

L1x(s, s+LIs, T, r+LlT) = X(r+LlT Is, s+LIs) - X(T Is, s+LIs) is the variation of the 
number of vehicles between points s and s+LIs during Lit; 

Llm(s, s+LIs, T, r+LlT) = m(s+LIs I T, r+LlT) - m(s I T, r+LlT) is the variation of the 
number of vehicles during time interval [T, r+ LI T] over space 
LIs; 

L\z(s, s+LIs, T, r+LlT) is the number of entering minus exiting vehicles (if any) 
during time interval [T, r+ LIT], due to entry/exit points (e.g. 
onlofframps), between points sand s+LIs. 

In the example of Fig. 2.A.I there are no vehicles entering/exiting in the segment LIs, 
and L1x is equal to 1 while Lim is equal to -I. 

With the observed quantities two relevant variables, flow and density, can be 
introduced: 

f(s I T, r+LlT) = m(s I T, r+LlT) / LIT is the flow of vehicles crossing point s during 
time interval [T, r+ LIT], measured in vehicles per unit of time; 

k(TI s, s+LIs) =x(TI s, s+LIs) / LIs is the density (or occupancy) between points sand 
s+ LIs at time ., measured in vehicles per unit of length. 

The flows at extremes of the road segment are denoted by special names and are 
represented by specific variables: 

UlT, r+LlT) = fiCO I T, r+LlT) the inflow, i.e. the flow entering link I during time 
interval [T, r+ LI T]; 

wl T, r+ LIT) = fi(L I I T, r+ LIT) the outflow, i.e. the flow exiting link I during time 
interval [T, r+ LI T]. 

Flow and density are related to mean headway and mean spacing through the 
following relations: 

f(s I T, r+ LIT) == 1 / h(s) 

k(Tls,s+LIs) == 11 Sp(T) 

Note that if observations are perfectly synchronized with vehicles, the almost 
equality in the previous two equations becomes a proper equality. 

Moreover, if the general flow conservation equation (2.A.I) is divided by LIT, the 
following equation is obtained: 

L1x / LlT+ Llf= Lie (2.A.2) 
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where: 

Llf(s, s+LIs, T, r+LlT) = Llm(s, s+LIs, T, r+LlT) / LIT is the variation of the flow over 
space; 

Lle(s, s+LIs, T, r+LlT) = L\z(s, s+LIs, T, r+LlT) / LiTis the (net) entering/exiting flow. 

At the same time, dividing by LIs, the general flow conservation equation (2.A. I) 
becomes: 

Llk / LlT+ Llf / LIs = Lie / LIs (2.A.3) 
where: 

Llk (s, s+LIs, T, r+LlT) = L\x(s, s+LIs, T, r+LlT) / LIs is the variation of the density over 
time. 

2.A.1.2. Stationary models 

Traffic flow is called stationary during a time interval [T, r+ LIT] between points s 
and s+ LIs if flow is ( on average) independent of point s, and density is independent 
oftime 1: 

f(s I T, T+LlT) = f= U = W 

k (TI s, s+LIs) = k 

In this case, the time mean speed is independent of location and space mean 
speed is independent of time: 

v.(s) = v, 

ViT) = Vs 

Let x = k-Lis be the number Of ve~icles between points sand s+LIs at any time 
during the interval [T, r+ LI T] and let Vs be the space mean speed of these vehicl~. 
The vehicle at point s at time T, on average, will reach point s+ LIs at time r+ ~ / VS. 

Thus, on average, all m vehicles can cross point s+LIs in a time LIT' =LIs / Vs; the 
number of vehicles crossing point s+LIs during time LIT' is fLIT'. Therefore, the 
average number of vehicles crossing point s+ LIs must equal the average number 
(independent of time due to stationarity) of vehicles in the segment [s, s+LIs] (see 
Fig. 2.A.2): 

k LIs = f LIs / v,. 
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time 

L1t' = LIs / ~s 

kLls=6 

s + LIs 
space 

s 

Fig. 2.A.2 Vehicle trajectories and traffic variables for stationary (deterministic) flows on running 
links. 

Hence, under stationary conditions flow, density and space mean speed must 
satisfy the stationary flow conservation equation: 

f=kv (2.A.4) 

where v = ~s is the space mean speed, simply called speed for further analysis of 
stationary conditions(5). 

Multiple vehicles using the same facility may interact with each other and the 
effect of their interaction will increase with the number of vehicles. This 
phenomenon, called congestion, occurs in most transportation systems, generally 
worsening the overall performances of the facility, such as the mean speed or the 
travel time, since a vehicle may not be able to move at the desired speed. Stochastic 
models can be used to estimate the probability that a vehicle may be slowed down 
by another vehicle, as a function of the flow or density and desired speed 
distribution among vehicles. These considerations are particularly relevant when 
studying systems with scheduled services where congestion arises from out-of­
schedule vehicles without the possibility of overtaking. 

Congested systems with continuous service can be also modeled through 
(aggregate) deterministic models. In fact, under stationary conditions, aggregate 
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relationships may be observed between any pair of variables: flow, density and 
speed: 

v=v(j) (2.A.5) 

v = V(k) (2.A.6) 

f= j{k) (2.A.7) 

This approach is less effective for systems with scheduled services, where the flow 
is generally small and averages are less meaningful. 

Generally, observed values are rather dispersed (see Fig. 2.A.3 for a speed-flow 
relationship) and several models may fit observed values. 
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Fig. 2.A.3 Relationship between speed and flow. 

The general form of relationships (2.A.5), (2.A.6) and (2.A.7) is illustrated in 
Fig. 2.A.3, also known as the fundamental diagram of traffic flow. This diagram 
shows that flow may be zero under two conditions: when density is zero (no vehicles 
on the road) or when speed is zero (vehicles are not moving). In the first case the 
speed assumes the theoretical maximum value, free-flow speed, vo, while in the 
second the density assumes the theoretical maximum value, jam density, kjam• 

Therefore, a traffic stream may be modeled through a partially compressible fluid, 
i.e. a fluid that can be compressed up to a maximum value. 

The peak of the speed-flow (and density-flow) curve occurs at the theoretical 
maximum flow, capacity, Q, of the facility; the corresponding speed Vc and density 
kc are referred to as the critical speed and the critical density. 
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Thus any value of flow (except the capacity) may occur under two different 
conditions: low speed and high density and high speed and low density. 

v 

vo 
v = v(j) 
~--......,..--.. 

------~-------------4, 

kjam 

k 

, , , 

Fig. 2.A.4 Fundamental diagram of traffic flow. 

The first condition represents an unstable state for the traffic stream, where any 
increase of density will cause a decrease in speed and thus in flow. This action 
produces another increase of density and so on until traffic becomes jammed. 
Conversely, the second condition is a stable state since any increase in density will 
cause a decrease in speed and an increase in flow. 

At capacity (or at critical speed or at critical density), the traffic stream is 
relatively unstable; in fact, if the density increases, the speed will decrease and 
traffic will become unstable. 

These results show that flow cannot be used as the unique parameter describing 
the state of a traffic stream; speed and density, instead, can univocally identify the 
prevailing traffic condition. For this reason the relation v = V(k) is preferred to study 
traffic stream characteristics. 
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In literature several authors have proposed mathematical formulations for the 
fundamental diagram, based on single regime or multi regime functions. An example 
of single regime function is the Greenshield's linear model: 

V(k) = Va (1 - klkjam) 

An example of a multi regime function is the Greenberg's model: 

V(k) = al In (azlk) for k > kmin 

for k ~ kmin 

where a], az and kmin ~ kjam are constants to be calibrated. 

Starting from the speed-density relationship, the flow-density relationships f{k) 
can be obtained as: 

f{k) = V(k) k 

The Greenshield's linear model yields: 

f{k) = Vo (k - ~ I kjam) 

In this case the capacity is given by: 

Moreover the flow-speed relationship can be obtained by introducing the 
inverse speed-density relationship: 

k = Vl(V) 
thus 

f{v) = V(k = Vl(V)) . VI(V) = V . VI(V) 

For example, the Greenshield's linear model yields: 

thus 
f{v) = k;am (v - ilvo) 

Generally, the flow-speed relationship cannot be inverted since for each value of 
speed in the range 0 and Vo two values of flow exist, corresponding to the stable and 
unstable regimes. However, for the stable regime only (or the unstable one), an 
inverse relationship speed-flow can be obtained: 
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v=v(j) 

For example, Greenshield's linear model yields: 

VllIIslable(f) = ~ (I-JI-4jIQ) 

Starting from the (stable regime) speed-flow relation, the (stable regime) travel 
time of a running link 1 can be calculated as a function of flow: 

where: 

trl is the running time on link I; 
fi is the flow on link I; 
LI is the length ofthe running link I; 
v, is the mean speed on the link 1 assuming a stable regime. 

(2.A.g) 

Alternatively, travel time on a link can be computed as a function of flow and 
free-flow speed, without an explicit speed-flow relation. Two examples of such 
travel time functions are (see Fig. 2.A.5): 

polynomial (e.g. BPR) 

hyperbolic (e.g. Davidson) 

r tr,=(L/vo,)(l + yfil(Q,-fi) 

i 
l tr, = tangent approximation 

with 0 < 1 and Q, = link capacity. 

for fi> oQ, 

In this last case the tangent approximation is necessary since tr, tends to 00 for fi 
going to Q, (compare with section 2.3.1.2). This condition is unrealistic because the 
over-saturated period has a finite duration. 
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Fig. 2.A.5 Travel time flow functions. 
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2.A.1.3. Non-stationary models 

Non-stationary models simulate explicitly variations of the main variables over 
space and time. For this reason they are also referred to as dynamic traffic models. 
Non-stationary models are mainly used in the context of within-day dynamic supply 
models described in Chapter 6. They are introduced in this appendix to give a 
complete overview of traffic flow theory. These models can be classified in three 
main classes by performance functions and flow representation (see Fig. 2.A.6): 
- Macroscopic models: traffic is represented continuously following the fluid 

approximation (described in details below); individual trajectories are not 
explicitly traced. Aggregate performance measures are calculated using relations 
derived from stationary models. 

- Mesoscopic models: traffic is represented discretely (vehicles or groups of 
vehicles); individual trajectories can be explicitly traced. Aggregate performance 
measures are calculated as for macroscopic models. 

- Microscopic models: traffic is represented discretely (single vehicles); individual 
trajectories can be explicitly traced as for mesoscopic models. Disaggregate 
performance measures are calculated based on explicit modeling of driver 
behavior. 

Petformancefunctions 
ARweRate Disaggregate l . I Continuous MACROSCOPIC -

Flow RepresentatIOn I D' MESOSCOPIC MICROSCOPIC lscrete 

Fig. 2.A.6 Classification of non-stationary traffic models. 

Microscopic models simulate the journey of each single vehicle through explicit 
driving behavior models of speed adjustment (e.g. car following, lane changing, 
overtaking, gap-acceptance, etc.). Such models can be solved only by event-based or 
time-based simulation techniques. Microscopic models provide very detailed traffic 
simulation on a small scale; yet require a significant amount of data and effort for 
specification and calibration. For these reasons microscopic models are used 
primarily for traffic operations rather than transportation planning and will not be 
further analyzed. 

In mesoscopic models all vehicles on a link have the same speed, generally 
depending on density, varying over time. This type of model will be analyzed in 
Chapter 6 on dynamic traffic assignment. 

Macroscopic models, described below, are based on fluid approximation; i.e. a 
traffic stream is represented through a partly compressible fluid, made up by 
infinitesimal particles. This fluid is described by point variables; following this 
assumption, flow and density are considered as function of point s and time r. 

f= f(s, r) 
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k = k (s, r) 

These functions have only a mathematical interpretation since they cannot be 
observed in a discrete phenomenon; for simplicity, the same notation used for 
observed variables will be adopted. Previously introduced observed values are 
related to these functions through the following relations: 

JtLlr j{s, z) dz = m(s I r, r+ .dr) 

!;\'+L!.\'j{z, r) dz =x(rl s, s+LIs) 

(2.A.9) 

(2.A.lO) 

These relations represent the mono-dimensional fluid approximation. According 
to this analogy, speed may only vary with point s (and possibly time r) but not along 
any direction orthogonal to axis s. Thus, a particle may not overtake any particle 
ahead (this condition is also called "first-in-first-out", or FIFO, rule) and all 
movements are parallel to axis s. 

Macroscopic models are generally based on conservation differential equations, 
which can be specified through two different approaches. Space discrete models 
analyze traffic on a link base. Let 

LI be the length of link I; 
xl r) be the number of equivalent vehicles(6) on link I at time To 
kl( r) be the (space) mean density on link I at time To 
UI( r) be the flow entering link I at time To 
W/( r) be the flow exiting from link I at time To 
{,( r) be the (running) travel time of link I arriving at time r. 

For each link I the following link flow conservation equation holds: 

Notice that (2.A.ll) is equivalent to (2.A.2) in the observed variables. 

(2.A.ll) 

The travel time on link I for a vehicle arriving at time r can be expressed through 
(stationary) speed-density functions with respect to the number of vehicles XI at time 
Tag: 

(2.A.12) 

where Vt(kl) is an empirical performance (speed-density) function analogous to those 
described for stationary models. Another relation can be added, expressing the 
mono-dimensional fluid conditions: 

WI (r+ 1;( r» = UI (r) / (1+ al;( r) / ar) (2.A.13) 
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Thus, for each link three equations can be written in the four variables: u/( i), 
w/( i), xl,) and 1;( i). Once the entering flow is given, the others can be obtained. 
Hence the whole model is made up by equations (2.A.ll), (2.A.12) and (2.A.l3) for 
each link together with node consistency equations, that assure flow conservation at 
each node (for each O-D pair and/or user class). These last equations can be written 
as: 

L u/(,)- L w/(,)={ 
/EFS(n) /EBS(n) 

0 11 (,) - AII (,) 

o if n is not a centroid 

if n is a centroid 

where: 

FS(n) is the set of links belonging to the forWard star of node n; 
BS(n) is the set of links belonging to the backward star of node n; 
On( ,) is the flow generated by the centroid node n; 
An( ,) is the flow absorbed by the centroid node n. 

Space continuous models analyze the traffic on a point base; they are based on 
the following flow conservation equations (equivalent to eqn (2.A.3) and (2.AA) 
among observed variables): 

ok (s, ,) I 0,+ O/(s, ,) I os = 0 (2.A.14) 

I(s, ,) = k(s, ,) v(s, ,) (2.A.15) 

assuming that no exit or entry occur at point s. 
For each link a performance function should also be included. In first order 

models this function is directly derived from (stationary) speed-density functions: 

v(s, ,) = V(k(s, i»~ 

For instance, using the Greenshield's relation, the so-called LWR model is 
obtained: 

v(s, ,) = vo( 1 - k(s, ,) I kjam) 

In second order models the performance function is specified through 
acceleration equations. For example, the Payne model is specified by adding the 
following equations: 

dv/d, = av!B,+ v(s, ,) avlos = (v(k(s, ,»-v(s, ,»/iREC - (aAm!'REd oklos 
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where rREe and aANT are parameters to be calibrated. 
Also for space continuous models, consistency conditions must be written for 

any node. 
Both space discrete and space continuous macroscopic models, specified by 

differential equations, can be solved by finite difference approximation methods 
based on time and/or space discretization. Thus, from the application point of view, 
a link segmentation to solve discrete space models gives results similar to a space 
difference formulation of a continuous space model. The need to satisfy mono­
dimensional fluid approximation (FIFO rule) may require additional equations; thus, 
a whole finite difference macroscopic model can yield results similar to a 
meso scopic one. These concepts will be further explored in section 6.2. 

2.A.2. Models for queuing links 
Models for queuing links simulate the interactions among several users waiting to 
receive a service at a given location (e.g. signalized intersections, bottlenecks, 
toll-booths, etc.). The location of the service is called the server and a delay is 
usually associated with the service activity represented by a queuing link. Queuing 
models can be studied following an approach similar to that used for running links, 
even though this similarity is not always recognized in the two specific literatures. 
The notation adopted in this section will underline this similarity. 

2.A.2.1. Fundamental variables 

The following focuses on delays related to a queue of users waiting for service 
upstream of the server. The main variables that describe queuing phenomena are: 

r time at which the system is observed; 
x( r) number of users waiting to exit (queue length) at time r, 
mINer, r+,M) number of users joining the queue during [1; r+Llr]; 
moure r, r+Llr) number of users leaving the queue during [1; r+Llr]; 
u( r, r+ LI r) = mIll ... 1; r+ LI r)/ LI r arrival (entering) flow during [1; r+ LI r]; 
w( r, r+ LI r) = mourC r, r+ LI r)/ LI r exiting flow during [1; r+ LI r]; 
ri arrival time of vehicle i; 
JfNi headway between arrival times T; and T;-I; 
JfN (r, LI r) average arrival headway; 
1'., i service time of vehicle i; 
1'.,( 1; LI r) average service time; 
twi total waiting time (pure waiting plus service time) of vehicle i; 
tw (1; r+ Llr) average waiting time; 
Q( r, Llr) = l/Ts( r, Llr) capacity or maximum exit flow, assumed constant 

during [1; r+Llr] for simplicity's sake (otherwise Llr can be 
redefined). 
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The exiting flow and the capacity are correlated by the capacity constraint: 

w:S;Q 

Notice that the main difference with the basic variables of running links is that 
space (s, LIs) is no longer explicitly referred to since it is irrelevant. Some of the 
above variables are shown in Fig. 2.A.7. 

Nr.ofusers 

Arr'vals 
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Fig. 2.A.7 Fundamental variables for queuing systems. 

The models simulating queuing phenomena can be deterministic or stochastic 
depending on the assumptions for vehicle arrivals and service times, i.e. whether hi 
and Tsi are modeled as deterministic or random variables. 

2.A.2.2. Deterministic models 

Deterministic models are based on the assumptions that arrival and departure times 
are deterministic variables. In spite of the discrete nature of the phenomenon, 
deterministic queuing systems often are modeled and represented as continuous 
systems similarly to the fluid approximation of traffic flows (see Fig. 2.A.8). Flow 
conservation equations (2.A.l) and (2.A.2) introduced for running links still hold, 
leading to: 

x( T) + mllv'(,r, T+ LIT) = mow( T, T+ LIT) + X( T+ LIT) (2.A.16) 

Dividing equation (2.A.l6) for LIT and remembering the defmitions of entering 
and exiting flows, u and w, the flow conservation equation can be expressed also as: 

LIx / LlT+ [we T, r+ LIT) - u( T, r+LlT)] = 0 (2.A.17) 

Taking the limit for LlT~ 0 we get: 
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dx(r) 
--= u(r)-w(r) 

dt 

Deterministic queuing systems can also be analyzed through the cumulative 
number of users that have arrived at the server by time ., and the cumulative number 
of users that have departed from the server (leaving the queue) at time ., as 
expressed by two functions named arrival curve, A( r), and departure curve, D( r) ::;; 
A( r), respectively, see Fig. 2.A.9. 

D(,) 

Time, 

Fig. 2.A.8 Continuous approximation of stationary deterministic queuing systems. 

Fig. 2.A.9 Cumulative arrival and departure curves. 
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Queue length x( T) at any time T is given by: 

X( T) = A( T) - D( T) (2.A.18) 

provided that the queue at time 0 is given by x(O) = A(O) ~ 0 with D(O) = O. 
The arrival and departure functions are linked to entering and exiting users by 

the following relationships: 

mIN (T, rtLlT) = A( rt,M) - A( T) (2.A.19) 

mOUT (T, T+ LIT) = D( rt LIT) - D( T) (2.A.20) 

The flow conservation equation (2.A.16) can also be obtained by subtracting 
member by member the relationships (2.A.19) and (2.A.20) and taking into account 
equation (2.A.IS). 

The above equations (2.A.19) and (2.A.20) can be reformulated in terms of flow 
variables by dividing for LIT and taking the limit for LIT ~ 0, yielding (see Fig. 
2.A.9): 

U(T) = dA(T) 
dT 

W(T) = dD(T) 
dT 

If d!:!.fing time interval (To, To + LI T) the entering flow is constant over time, 
u( T) = u, then the queuing system is named statjonary (see Fig. 2.A.9) and the 
arrival function A( T) is linear with slope given by u: 

A( T) = A( To) + U· (T - To) T E [To, To+ LIT] 

The exit flow may be equal to the entering flow, u, or to the capacity, Q, as 
described below. 

In stationary queuing models used on transportation networks, the inflow u can 
be substituted with the flow It of the link representing the queuing system. TEus, in 
section 2.3.1.2 queuing delays are expressed as a function of It rather then u as in 
the following. 

a) Under-saturation 
When the arrival flow is less than capacity ( u < Q ) the system is under-saturated. 
In this case, if there is a queue at time TO, its length decreases with time and vanishes 
after a time .JTo defined as (see Fig. 2.A.1O): 
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LITO = X( TO)/(Q - u) (2.A.21) 

Before tiIEe To + LI To, the queue length is linearly decreasing with T and the 
exiting flow w is equal to capacity: 

X( T) = X( To) - (Q - u)( T-To) (2.A.22) 

w=Q 

D( T) = D( To) + Q ( T - To) 

w=Q 
x(r) =x(ro) -(Q- u)(r-ro) 

D( r)=D( 11,)+Q( r-11,) 

11, Time r 

Fig. 2.A.1 0 Under-saturated queuing system. 

After time To_ + LI To the queue length is zero and the exiting flow w is equal to 
the arrival flow u: 

X( To + LITo) = 0 (2.A.23) 

w= u 

D(T) =A(T) =A(To)+ U(T- To) 

b) Over-saturation 
When the arrival flow rate is larger than capacity, u ~ Q, the system is 
over-saturated. In this case queue length linearly increases with time T and the 
exiting flow is equal to the capacity (see Fig. 2.A.l1): 

X( TO) = X( To) + ( u - Q ) (T - To) (2.A.24) 

w=Q 
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D( T) = D( To) + Q ( T - TO) 

Comparing the eqns (2.A.22), (2.A.23) and (2.A.24) it is possible to formulate 
this general equation for calculating the queue length at generic time instant To 

x( T) = MAX { 0, [X( To) + ( U - Q )( T- To)] } (2.A.25) 

With the above results, any general case can be analyzed by modeling a sequence 
of periods during which arrival flow and capacity are constant. A relevant case is the 
analysis of delay at signalized intersections (periodical over-saturation conditions), 
as described in the section 2.A.3. (and also in the section 2.3.1.). 

u 

To Time T 

Fig. 2.A.11 Over-saturated queuing system. 

The delay can be defined as the time needed for a user to leave the system (passing 
the server), accounting for the time spent in queue (pure waiting). Thus the delay is 
the sum of two terms: 

tw = Ts + twq 
where: 

tw is the total delay; 
1'., is the average service time (time spent at the server); 
twq is the queuing delay (time spent in queue). 

In under-saturated conditions ( u < Q ) if the queue length at the beginning of 
perio~ is zero (it remains equal to zero), the queuing delay is equal to zero, 
twq( u)=O, and the total delay is equal to the average service time: 

tw( u)=Ts 
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In over-saturated conditions ( u ;?: Q ), the queue length, and respective delay, 
would tend to infinity in the theoretical case of stationary phenomenon lasting for an 
infinite time. In practice, however, over-saturated conditions last only for a finite 
period, T. 

If the_queue length is equal to zero at the beginning of the period, it will reach a 
value ( u - Q ). T at the end of period. Thus, the average queue over the whole 
period Tis: 

-
:; = -'--( u_-....:::Q::..:....)_T 

2 

In this case the average queuing delay is x / Q, and average total delay is: 

-
tw(;) = T. + (u -Q) T 

s 2Q 
(2.A.26) 

The correspondent delay curve is reported in Fig. 2.A.12. 

tw ( u) 

T", 

Q u 

Fig. 2.A.12 Deterministic delay function at a server. 
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2.A.2.3. Stochastic models 
Stochastic models arise when the variables of the problem (e.g. user arrivals, service 
times of server, etc.) cannot be assumed deterministic, as it is often the case, 
especially in traffic engineering. 

If the system is under-saturated, it can be analyzed through (stochastic) queuing 
theory. 

It is necessary to specify the following elements: 
the stochastic process describing the sequence of user arrivals (arrival pattern); 
the stochastic process describing the sequence of service times (service pattern); 
the queue discipline. 

The characteristics of a queuing phenomenon can be redefined in the following 
concise notation: 

a / b / c (d, e) 
where: 

a denotes the type of arrival pattern; 
b denotes the type of service pattern; 
c is the number of service channels; 
d is the queue storage limit (00, xmax); 

e denotes the queuing discipline. 

Arrival and service processes are usually assumed to be stationary renewal 
processes, i.e. headways between successive arrivals and successive service times 
are independently distributed random variables with time-constant parameters. Let X 
be a random variable describing the queue length, and x the realization of X. 

The symbol used for a and b positions refer to the random variables 
corresponding to the arrival and service times respectively, they may be: 

D = deterministic; 
M = negative exponential random variable; 
E = Erlang random variable; 
G = general distribution random variable. 

The main queuing disciplines are: 

FIFO = First In - First Out (i.e. service in order of arrival); 
LIFO = Last In - First Out (i.e. the last user is the first served); 
SIRO = Service In Random Order; 
HIFO = High In - First Out (i.e. the user with the maximum value of an indicator is 

the first served. 
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In the following we will report the main results for the MI Mil (00, FIFO) and the 
MIGIl (00, FIFO) queue systems, which are commonly used for simulating 
transportation facilities, such as signalized intersections. 

a) MIMI] (00, FIFO) systems 
In this case the main parameters regulating the phenomenon are: 

u the average arrival rate; 
Q = 111'., the service rate (or capacity) of the system; 
ulQ the traffic intensity ratio or utilization factor. 

In under-saturated conditions (ulQ < 1) the expected queue length can be 
calculated assuming that the arrivals are exponentially distributed; with this 
assumption the expected value and the variance of number of users in the system(7), 
X, can be obtained: 

u 

E[X]=~=_u_ 
u Q-u 1--

(2.A.27) 

Q 

u 

VAR[X] = Q 2 

(1- ;) 
(2.A.28) 

The expected number of users in the system, E[X], is the product of the average 
time in the system (expected value of delay), E[tw], multiplied by arrival rate u. 
Then, E[ tw] = E[X]/u or: 

1 
E[tw]=­

Q-u 
(2.A.29) 

The expected time spent in queue, E[twq], (or queuing delay) is given by the 
difference between the expected delay, E[tw], and the service time T. = lIQ: 

(2.A.30) 

Let Xq be the number of users in queue, then the expected queue length, E[Xq], is 
the product of the expected queuing delay, E[twq], multiplied by the arrival rate, u: 



b) MlG/I (00, FIFO) systems 
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2 
E[X ] __ U __ 

q - Q(Q-U) 

In this case the main results are the following: 

E[X] = ~[l + u ] 
Q 2(Q-u) 

E[tw]=~[l+ U] 
Q 2(Q-u) 

E[tw ] _ u 
q - 2Q(Q-u) 

2 
E[X ] ___ U __ 

q - 2Q(Q-u) 

2.A.3. Application to signalized intersections 
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(2.A.31) 

Queuing and delay phenomena at signalized intersections can be obtained from 
queuing theory results reported in section 2.A.2. In fact, signalized intersections are 
a particular case of servers, for which the capacity is periodically equal to zero 
(when the signal is red). During such time the system is necessarily over-saturated. 
It is common to divide the cycle length into two time intervals (see also Fig. 2.3.8). 
The effective green time equals the green plus yellow time minus the lost time, 
during which departures occur at a constant service rate, given by the inverse of 
saturation flow. The effective red time is the difference between cycle length and the 
effective green time, during which no departures occur. Let 

Tc be the cycle length for the whole intersection; 
G be the effective green time for an approach; 
R = Tc - G be the effective red time for the approach; 
J1 = GITc is the effective green/cycle ratio for the approach. 

The number of vehicles arriving at the approach during the time interval Tc are 
given by the following equation: 
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The maximum number of the users that may leave the approach, during time 
interval Te, is given by: 

where S is the saturation flow of the intersection approach (i.e. the capacity of the 
approach if the whole cycle were green). 

Hence the actual capacity of the approach is given by: 

S·G 
Q=-=jJ'S 

Tc 

Thus, the approach can be defined under-saturated if: 

that is: 
u<pS 

On the other hand the approach is defined over-saturated if: 

u~pS 

a) Deterministic queuing models 

(2.A.32) 

(2.A.33) 

From equations (2.A.32) and (2.A.33) it is clear that the results discussed in section 
2.A.2 hold for a queuing system representing a signalized intersection approach. 
Here Q is considered the green-time capacity (Q = p S) and the queue length given 
by (2.A.25) should be increased to include the vehicles that arrived during the 
effective red time R. This queue, also named under-saturated queue, shows a 
periodical trend over time, with a zero value at the beginning of effective red 
interval and at the end of the effective green time, and it assumes the maximum 
value at the end of the red interval (see Fig. 2.A.13). 

The under-saturated queue length, xu( 1'), can be computed by equation (2.A.25) 
for a time period equal to R with zero capacity, and a period oftime equal to G with 
capacity S (see Fig. 2.A.13). Then, xu(i· Te) = ° since the under-saturated queue 
length at the end of i-th cycle interval, l' = i· Te, is equal to zero. 

During an effective red time interval the under-saturated queue can be calculated 
by applying (2.A.25) with Q = 0, TO = i· Te , x( To) = 0: 

R - . 
XII (1') = U (1'- I·Te) (2.A.34) 

The queue length reaches a maximum value at the end of the red-time, equal to: 
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During an ~ffective green time interval, applying (2.A.25) with Q = S, To = i· Tc + 
Rand x( To) = U (1 - p) T" the queue length is: 

G - -. 
XII (T) = MAX {O, u (1 - p) Tc - (S - u) (T- r1c - R)} (2.A.35) 

xu(i·Tc + R) 

i r 
G=j.JTc R=(J-j.J)Tc Time r 

Fig. 2.A.13 Deterministic queue model for signalized intersections. Under-saturated condition. 

t: 
::l o 
u 

'" U 
:2 
> 

Time r 

Fig. 2.A.14 Deterministic queue model for signalized intersections. Over-saturated condition. 
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The queue vanishes after a time Ll1'o given by (2.A.2I): 

-
Ll1'o = u(I- ,u)T" 

(,uS-u) 

If over saturation occurs, u 2: Q = ,u S, the under-saturated queue length, xu( 1'), 
is given by the equations (2.A.34) and (2.A.35) for an arrival flow equal to the 
capacity: 

xuG(1') =,uS (1 -,u) Tc - S(l-,u) (1'- i·Tc - R)} 
i·Tc + R:'5: 1':'5: i·Tc + R + G 

(2.A.36) 

(2.A.37) 

The over-saturated queue length can be computed with the queue obtained from 
(2.A.25) with Q = ,uS, 1'0 = 0 andx(1'o) = 0 (see Fig. 2.A.I4): 

xo(1')=( u-,uS) l' 

The total queue length is obtained by summing the over-saturated and the under­
saturated queue lengths (see Fig. 2.A.I3). 

b) Deterministic delay models 
Delays at signalized intersections can be studied separately for under-saturated and 
over-saturated conditions. 

For under-saturated conditions, u < fl S, (the capacity of server is Q = ,u S) the 
average individual delay, twus, can easily be obtained from the evolution over time 
of the queue length, as described by equations (2.A.34) and (2.A.35): 

Tc [1- ,u]2 
tw - -"-"--=-''-

us - 2[1- u/S] 
(2.A.39) 

In over-saturated conditions, u > ,u S, as for the deterministic case, the queue 
length, and respective delay, would tend theoretically to infinity. In practice, 
however, over-saturation lasts only for a finite period of time, T, and the average 
delay, twos, can be calculated from the evolution over time of queue length as 
described by equations (2.A.36), (2.A.37) and (2.A.38): 

twos = Tc [1- fl] + ~[(~ / ,uS) -1] 
2 2 

(2.A.40) 
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Notice that the first term is the value of (2.A.39) for u = jJ S. The delay for the 
arrival flows ~n be computed through equation (2.A.39) for ~ < jJ S and through 
(2.A.40) for u ~ jJ S, as depicted in Fig. 2.A.lS. Note that, unlike the Fig. 2.A.12, 
the diagram depicted in Fig. 2.A.lS shows an increase in the average delay also for 
flows below the capacity. This is due to the increase of the under-saturated delay 
expressed by (2.A.39). 

300.0 ····1··· ····1······ ........ "1' .. . ·· .. ,,··· .. ···T··1 

T~ 1800 sec f' ~0.5 
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Fig. 2.A.15 Deterministic delay function at a signalized intersection. 

c) Stochastic delays models 
Stochastic delay models are based on the results of queuing theory. More precisely, 
a signalized intersection is considered to be a MIGII (C1J, FIFO) system. Therefore, 
the average delay is (see section 2.A.2.3.): 

.\./ () (u I jJS)2 tw q U = -"'---'-----
2u(l- u I jJS) 

(2.A.41) 

d) Total delay models 
The total delay equals the sum of the deterministic and the stochastic terms, and 
sometimes, terms calibrated through experimental observations. 

Among the several models proposed in literature, the model proposed by 
Webster (see also section 2.3.1.2.) is commonly used for under-saturated condition. 
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The first term is the deterministic delay, see eqn (2.A.39), the second is the delay 
due to random arrivals (2.A.41) and the third is a correction term based on numerical 
simulations. Delay tends to infinity for an arrival flow, u, approaching capacity f.l S 
(see Fig. 2.A.16). Thus, Webster's formula cannot be used to simulate delays for 
over-saturated signalized intersections. In order to calculate the delay in over­
saturated conditions, different formulas have been proposed combing stationary 
models (e.g. Webster) with deterministic over-saturation models. The general form 
of these models is obtained by moving the asymptote from a vertical to an inclined 
position, as for over-saturation waiting time functions for toll barrier links (see Fig. 
2.3.7). An example of such a model is the delay formula proposed by Akcelik, see 
eqn 2.4.12 and Fig. 2.3.10. 
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Fig. 2.A.16 Webster delay model. 

Reference Notes 
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The application of network theory to the modeling of transportation supply systems 
can be found in most texts dealing with mathematical models of transportation 
systems, such Potts and Oliver (1972), Newell (1980), Sheffi (1985), Cascetta 
(1998), Ferrari (1996) and Ortuzar and Willumsen (1994). All of these, however, 
deal prevalently or exclusively with road networks. The presentation of general 
transportation supply model and its decomposition into sub models as described in 
Fig. 2.1.1 is original. 
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Performance models and the theory of road traffic flows are dealt with in several 
books and scientific papers. Among the former, Pignataro (1973), the ITE manual 
(1982), May (1990), Mc Shane and Roess (1990), the Highway Capacity Manual 
(1997), the relevant entries in the encyclopedia edited by Papageorgious (1991). 
Among the latter, the pioneering work of Webster (1958), later expanded in Webster 
and Cobbe (1966) and those of Catling (1977), Kimber, Marlow and Hollis (1977) 
Kimber and Hollis (1978), Robertson (1979), and Akcelik (1988) on waiting times 
at signalized intersections. 

In the work of Drake, Shofer and May (1967) is reported a review of the main 
speed-flow-density relationships, and an example of their calibration. The linear 
model was proposed by Greenshields (1934). References of non-stationary traffic 
flow models are in part reported in the bibliographical note of Chapter 6. The second 
order model reported in the text is due to Payne (1971). 

A review of the road network cost functions can be found in Branston (1976), 
Hurdle (1984) and Lupi (1996). The study ofCascetta and Nuzzolo (1982) contains 
experimental speed-flow relationship for urban roadways, reported in the text 
(equations 2.4.9). The cost function for parking links (equation 2.4.14) was proposed 
by Bifulco (1993). 

Supply models for scheduled services have traditionally received less attention in 
the scientific community. The line representations of scheduled systems are 
described in Nguyen and Oakkittubi (1985), Ferrari (1996) and in Nuzzolo and 
Russo (1997). 

Several authors, such as Seddon and Day (1974), Joliffe and Hutchinson (1975), 
Montella and Cascetta (1978) and Cascetta and Montella (1979) have studied the 
relationships between waiting times and service regularity in urban transit systems. 
Congested performance models discussed in section 2.3.2. have been proposed by 
Nuzzolo and Russo (1993), other models for the waiting time at congested bus stops 
are quoted in Bouzaiene-Ayari et al. (1998). 

For a theoretical analysis of queuing theory, reference can be made to Newell 
(1971) and Kleinrock (1975). 

Notes 

(I) A distinction should be made between cost functions in micro-economics and in transportation systems 
theory. In the first case, the cost function is a relationship connecting the production cost of a good or 
service to the quantity produced and the costs of individual production factors. Cost functions in 
transportation systems relate the cost perceived by users in their trips. Transportation cost is therefore a 
cost of use rather than of production. The cost for producing transportation services is usually indicated as 
the service production cost, and similarly the functions relating it to the relevant quantities are called 
production cost functions. 

(2) In general the accurate simulation of delays for coordinated networks of intersection is even more 
complex and it is typically accomplished through more detailed models. 
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(3) More in detail, it is assumed that the users' arrival is a Poisson process, i.e. the intervals between two 
successive arrivals are distributed according to a negative exponential variable. 

(4) Expression (2.3.1 7) holds in principle when vehicle arrivals of all lines are completely irregular. In this 
case cumulated headways can still be modeled as a negative exponential random variable, with parameter 
equal to the inverse of the sum of line frequencies. In practice, however, expression (2.3. I 7) is often used 
also for intermediate values of B. 

(5) It is worth noting that the time mean speed is not less then the space mean speed, as it can be shown 
since the two speeds are related by the equation vT = v,+dl V." where d is the variance of speed among 
vehicles. In Fig. 2.A.2 d = 0 hence vT = v,. 
(6) Different vehicle types (motorcycle, personal car, truck, etc.) are reduced by an equivalence coefficient 
to a standard vehicle (for example personal car), see section 2.2.3. 

(7) Note that the number of users in the system is different from the queue length (Xq) since it includes also 
the user being served. 
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3.1. Introduction 
In Chapter 1 it was stated that transport demand flows result from the aggregation of 
individual trips. Each trip is the result of several choices made by the users: travelers 
in passenger transportation or operators (manufacturers, shippers, carriers) in goods 
transport. Some traveler choices are made infrequently, such as where to reside and 
work and whether to own a vehicle or not. Other choices are made for each trip, 
these include whether to make a trip for a certain purpose at what time to what 
destination, with what mode, using what route. Each choice context, defined by 
available alternatives, evaluation factors and decision procedures, is usually known 
as a "choice dimension". Also, in most cases, choices concerning transport demand 
are made among a finite number of discrete alternatives. 

Starting from these assumptions, many travel demand models described in the 
next chapter attempt to reproduce users' choice behavior (1) (behavioral models). The 
present chapter describes the mathematical models derived from random utility 
theory, which is the richest, and by far the most widely used (2) theoretical paradigm 
for the simulation of transport related choices and, more generally, choices among 
discrete alternatives. Within this paradigm, it is possible to specify several models, 
with various functional forms, applicable to a variety of contexts. It is also possible 
to study their mathematical properties and estimate their parameters using well 
established statistical methods. 

It should be said that random utility models are not the only behavioral models 
that can be used to simulate transport related choices. Other models proposed in the 
literature are based on choice mechanisms, which violate one or more of the general 
hypotheses described in section 3.2. These models are usually referred to as "non 
compensatory" models since they do not allow the compensation of negative 
attributes with positive ones. Non-compensatory models are at present mostly 
research tools and are not widely used in practice. Furthermore, it has been shown 
that a properly specified random utility model can very often satisfactorily 
approximate the choice probabilities obtained with non-compensatory models. 

In this chapter random utility models will be exemplified for personal mobility 
choices. The same models can be applied to simulate freight transport-related 
choices as will be seen in section 4.6. Section 3.2 introduces the general hypotheses 
underlying random utility models and section 3.3 describes their most widely used 
functional forms. Section 3.4 considers the problem of choice set modeling. Section 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
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3.5 defines the Expected Maximum Perceived Utility variable and analyzes the 
mathematical properties of this variable and, of random utility models. Section 3.6 
introduces the concept of elasticity of random utility models. Finally, section 3.7 
analyses various aggregation procedures allowing the estimation of aggregate 
demand, starting from models simulating individual choices. 

3.2. Basic assumptions 
Random utility theory is based on the hypothesis that every individual is a rational 
decision-maker, maximizing utility relative to his/her choices. Specifically, the 
theory is based on the following assumptions: 

a) the generic decision-maker i, in making a choice, considers mj mutually 
exclusive alternatives which make up his/her choice set 1. The choice set may be 
different for different decision-makers (for example, in the choice of transport 
mode, the choice set of an individual without driving license and/or car 
obviously does not include the alternative "car as a driver"); 

b) decision-maker i assigns to each alternative j from his/her choice set a perceived 
utility, or "attractiveness" Ul and selects the alternative maximizing this utility; 

c) the utility assigned to each choice alternative depends on a number of 
measurable characteristics, or attributes, of the alternative itself and of the 
decision-maker, Uj = U(X), where Xj is the vector of the attributes relative to 
alternative j and to decision-maker i; 

d) the utility assigned by decision-maker i to alternative j is not known with 
certainty by an external observer (analyst), because of a number of factors that 
will be described later and must therefore be represented by a random variable. 

On the basis of the above assumptions, it is not usually possible to predict with 
certainty the alternative that the generic decision-maker will select. However, it is 
possible to express the probability of selecting alternative j conditional on hislher 
choice set i, as the probability that the perceived utility of alternative j is greater 
than that of all the other available alternatives: 

(3.2.1) 

The perceived utility U, can be expressed by the sum of the systematic utility Vl , 

which represents the mean or the expected value of the utilities perceived by all 
decision-makers having the same choice context as decision-maker i (same 
alternatives and attributes), and a random residual ij, which is the (unknown) 
deviation of the utility perceived by the user i from this value: 

VjEt (3.2.2a) 

with: 



and therefore: 

E[~']= V; 

E[8~]= 0 

CHAPTER 3 

Var[~']= 0 

Var[8~]= ai~j 

Replacing the expression (3.2.2a) in (3.2.1) we have: 
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(3.2.3a) 

From (3.2.3a) it follows that the choice probability of an alternative depends on 
the systematic utilities of all competing (available) alternatives, and on the joint 
probability law of random residuals 8;. 

Random utility models and relative variables can be represented by introducing a 
vector notation. Let 

pi be the vector of choice probabilities, of dimension (miX 1), with elements /U]; 
c! be the vector of perceived utilities of dimension (miX 1), with elements Uj ; 

V be the vector of systematic utilities values of dimension (miX 1), with elements 
Vj ; 

d be the vector of random residuals, of dimension (miX 1), with elements dj ; 

j(e) be the joint probability density function of random residuals; 
F(e) be the joint probability distribution function of random residuals. 

Expression (3.2.2a) can therefore be written in vector notation as: 

(3.2.2b) 

In general, the choice model (3.2.3a) can be seen as a function, known as a 
choice function, associating a vector of choice probabilities to each vector rI of 
systematic utilities for a given probability law of random residuals: 

(3.2.3b) 

A random utility model is said to be additive if the joint probability density 
function of random residuals, j( e), or its parameters, is not dependent on the vector 
V of systematic utilities: 

f(e/V) = fee) VeE Em, 



98 RANDOM UTILITY THEORY 

It follows immediately from expression (3.2.3a) that for additive models the 
choice probabilities of each alternative do not vary if a constant Vo is added to the 
systematic utility of all the alternatives: 

From the previous expression it also results that, in the case of additive models, 
choice probabilities depend on the differences between systematic utilities, known 
as the relative systematic utilities ~ - Vh, relative to any reference alternative h. 

Before describing some of the random utility models derived from various 
assumptions on the joint probability functions of random residuals, some further 
general remarks on the implications of the hypotheses introduced so far should be 
made. 

The variance-covariance matrix of random residuals. In general, a variance­
covariance matrix I is symmetric and positive semidefinite. When the variance of 
each random residual, Ck, is null, akk = 0, all the covariances must be null, CJkh = ° 
'<:j h, therefore the variance-covariance matrix is null, I= 0; in this case we obtain the 
deterministic choice model whose properties are described in section 3.5. If the 
variance-covariance matrix is not null, I,* 0, a non-deterministic choice model is 
obtained. In this case, it is usually assumed that the variance CTkk= al of each 
random residual, Ck, is strictly positive, akk > 0, and that the random residuals are 
imperfectly correlated (akh)2<ak2ah2; i.e. the rows (or columns) of I are pairwise 
linearly independent. These conditions are equivalent to assuming that the variance­
covariance matrix is not singular, I II ,*0 in addition to being non null, .E;t:O. In this 
case the models are defined as probabilistic(3), and the choice function p=p(V) is 
continuous with continuous first partial derivatives. 

The set of available alternatives t, or choice set, influences significantly the 
choice probabilities, as can be seen from equations (3.2.1) and (3.2.3a). If the choice 
set t of the single decision-maker is known, the definition of choice probability 
(3.2.1) can be applied directly. However, it often happens that the analyst does not 
know exactly the generic decision-maker's choice set. In this case the problem can 
be handled with different levels of approximation as will be seen in section 3.4. 

Expression of systematic utility. Systematic utility is the mean of the perceived 
utility among all individuals who have the same attributes; it is expressed as a 
function Vlx' kj) of attributesXkj relative to the alternatives and the decision-maker. 
Although the function Vj(Xj ) may be of any type, for analytical and statistical 
convenience, it is usually assumed that the systematic utility Vj is a linear function 
in the coefficients 13k of the attributes X kj or of their functional transformations 
!t(Xkj): 

(3.2.5a) 

or 

(3.2.5b) 
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One useful parametric functional transformation for non-negative variables is the 
Box Cox one: 

Xk ~ (X;k -1)/ Ak 

xk ~ log(xk ) 

where Ak is an unknown parameter. This transformation defines a family of 
functions that includes, as special cases, the linear (Ak=l), the power (A.t*O) and the 
logarithmic (Ak=O) transformations. The numerical coefficients /3k in expressions 
(3.2.5.a) and (3.2.5.b) can be estimated using various statistical techniques described 
in Chapter 8. The Box-Cox transformation introduces some difficulties in the 
estimation process due to the non linearity of the utility function in the A that can be 
avoided by iteratively estimate the model for different fixed value of the A. 

The attributes contained in the vector Xj can be classified in different ways. The 
attributes related to the service offered by the transport system are known as level of 
service or performance attributes (times, costs, service frequency, comfort, etc.). 
Attributes related to the land-use of the study area (for example, the number of 
shops or schools in each zone) are known as activity system attributes. Attributes 
related to the decision-maker or his/her household (income, holding a driving 
license, number of cars in the household, etc.) are usually referred to as socio­
economic attributes. 

Attributes of any type might be generic, if they are included in the systematic 
utility of more than one alternative in the same form and with the same coefficient 
f3k. They are specific, if included with different functional forms and/or coefficients 
in the systematic utilities of different alternatives. A dummy variable is usually 
introduced into the systematic utility of the generic alternative j; its value is one for 
alternative j and zero for the others. This variable is usually denoted Alternative 
Specific Attribute (ASA) or "modal preference" attribute(4), and its coefficient /3 is 
known as the Alternative Specific Constant (ASC). The ASA is a kind of "constant 
term" in the systematic utility which can be seen as the difference between the mean 
utility of an alternative and that explained by the other attributes Xkj• 

From expression (3.2.4) it results that the choice probabilities of additive models 
depend on the differences of the ASC of each alternative j with respect to a 
reference alternative h. If the Alternative Specific Constants should appear in the 
systematic utilities of all alternatives, there would be infinite combinations of such 
constants which would result in the same values of the choice probabilities. For this 
reason, in order" to avoid problems in the estimation of coefficients /3, in the 
specification of additive models, ASA's are introduced at most into the systematic 
utilities of all the alternatives except one. 

An elementary example of systematic utilities related to transportation mode 
choice is given in Fig. 3.2.1. Many other examples will be given in the following 
chapters. 
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Vwalking =fJl twl 
VaUfO =fJl twfa + !h Iba + /lJ mCa + fJ4 AVAIL + fJs INC + f3s AUTO 
Vbus =fJl twfb + !h tbb + /lJ mCb + Ih IWb + f3e BUS 

ALTERNATIVE LEVEL OF SERVICE ATIRIBUTES SOCIO·ECONOMIC 
SPECIFIC ATIRIBUTES 

ATIRIBUTES 
(ASA) 
AUTO tb = time on board (generic) AVAIL = nOauto/nOlicenses 
BUS tw = waiting time at stop (specific) INC = disposable income 

Iwt = walking time (generic) of the household 
mc = monetary cost (generic) 

Fig. 3.2.1 Specification of systematic utilities and classification of attributes. 

The utility of an alternative can be considered dimensionless, or expressed in 
arbitrary measurement units (uti!). From expression (3.2.5) it results that, in order to 
sum attributes expressed in various units (for example, times and costs) the relative 
coefficients f3k have to be expressed in measurement units inverse to those of the 
attributes themselves (for example time-) and cosr)). Coefficients f3 are sometimes 
denoted as reciprocal substitution coefficients since they allow to evaluate the 
reciprocal "exchange rates" between attributes. This point wiIJ be expanded in 
Chapter 4. 

Randomness of perceived utilities. The difference between the perceived utility 
for a decision-maker and the systematic utility common to all decision-makers with 
equal values of the attributes, can be attributed to several factors related both to the 
model (a,b,c) and to the decision-maker (d,e). These are: 

a) measurement errors of the attributes in the systematic utility. Level-of-service 
attributes are often computed through a network model and are therefore subject 
to modeling and aggregation (zoning) errors; some attributes are intrinsically 
variable and their average value is considered; 

b) omitted attributes that are not directly observable, difficult to evaluate or not 
included in the attribute vector (e.g., travel comfort or the reliability of total 
travel time); 

c) presence of instrumental attributes that replace the attributes actually influencing 
the perceived utility of alternatives (e.g., modal preference attributes replacing 
the variables of comfort, privacy, image, etc. of a certain transport mode; the 
number of commercial operators operating in a given zone replacing the number 
and variety of shops); 

d) dispersion among decision-makers, or variations in tastes and preferences among 
decision-makers and, for the individual decision-maker, over time. Different 
decision-makers with equal attributes might have different utility values or 
different values of the reciprocal substitution coefficients f3k according to 
personal preferences (e.g. walking distance is more or less disagreeable to 
different people). The same decision-maker might weigh an attribute differently 
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in different decision contexts (e.g. according to different physical or 
psychological conditions); 

e) errors in the evaluation of attributes by the decision-maker (e.g. erroneous 
estimation of travel time). 
From the above discussion, it results that the more accurate the model (the more 

attributes included in the systematic utilities, the more precise their calculation, etc.) 
the lower should be the variance of random residuals 8;. Experimental evidence 
confirms this conjecture. 

3.3. Some random utility models 
Various specifications of random utility models can be derived from the general 
hypotheses presented in the previous section by assuming different joint probability 
distribution functions for the random residuals 45) in expression (3.2.3a). This 
section describes the random utility models that are most widely used in travel 
demand modeling. Models are introduced in order of increasing generality and 
analytical complexity. Section 3.3.1 will describe the Multinomial Logit (or MNL) 
model, which is the simplest functional form. Subsequently, progressive 
generalizations of the MNL to the Single-Level Hierarchical or Nested Logit model 
(section 3.3.2), to the Multi-Level Hierarchical or Tree Logit model (section 3.3.3), 
to the Cross Nested Logit model (section 3.3.4), and to the Generalized Extreme 
Value (GEV) model (section 3.3.5) are described. Each of these models includes the 
MNL as a special case and can be obtained from the GEV model. Finally, section 
3.3.6 describes the Probit model and section 3.3.7 introduces the Hybrid Logit Probit 
model. 

3.3.1. The Multinomial Logit model 
The Multinomial Logit (MNL) model is the simplest random utility model. It is 
based on the assumption that the random residuals 8; are independently and 
identically distributed (ij.d.) according to a Gumbel random variable (r.v.) of zero 
mean and parameter () (6). The marginal probability distribution function of each 
random residual is given by: 

(3.3.1) 

where f/J is the Eulero constant (f/J :::::: 0.577). In particular, mean and variance of the 
Gumbel variable expressed by (3.3.1) are respectively: 

Vj 

(3.3.2) 
Vj 
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Further characteristics of the Gumbel r.v. are given in Appendix 3.B. 
Furthermore the independence of the random residuals implies that the 

covariance between any pair of residuals is null: 

'ifj,h E I (3.3.3) 

From this it can be deduced that the perceived utility ~, sum of a constant V; and 
of the r.v. 0, is also a Gumbel random variable with probability distribution 
function, mean and variance given by: 

(3.3.4) 

On the basis of the hypotheses on the residuals 0, and therefore on the perceived 
utilities ~, the residuals variance-covariance matrix, If:> for the available m 
alternatives, is a diagonal matrix proportional by 0"/ to the identity matrix. Fig. 3.3.1 
shows a graphic representation of the assumptions made on the distribution of 
random residuals in the Multinomial Logit model and the Variance-Covariance 
matrix in the case of four choice alternatives. This representation, known as choice 
tree, should be compared to that of the Hierarchical Logit models described in the 
following sections. 

0 A B C D 

, ff'8' r~ 
0 0 

T 1 0 o B Le = 0" e I = -6- 0 0 1 o C 

0 0 0 ID 
A B C D 
Fig. 3.3.1 Choice tree and variance-covariance matrix of a Multinomial Logit model. 

The Gumbel variable has an important property known as stability with respect 
to maximization. The maximum of independent Gumbel variables of equal 
parameter () is also a Gumbel variable of parameter (). In other words, if ~ are 
independent Gumbel variables of equal parameter () but with different means V;, the 
variable UM : 

is again a Gumbel variable with parameter () and mean V M given by: 
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(3.3.5) 

The variable VM is denominated Expected Maximum Perceived Utility (EMPU)(7) 
or inclusive utility and the variable Y to this proportional, because of its analytical 
structure, is denominated "Iogsum": 

Y = In L j exp(Vj / B) 

Stability with respect to maximization makes the Gumbel variable a particularly 
convenient assumption for the distribution of residuals in random utility models. In 
fact, under the assumptions made, the probability of choosing alternative j among 
those available (1,2, ... ,m) E I, given by (3.2.4), can be expressed(8) in closed form 
as: 

. exp(Vj / B) 
p[J] = -m---"--- (3.3.6) 

L exp(V; / B) 
;=1 

Expression (3.3.6) defines the Multinomial Logit model, which is the simplest 
and one of the most widely used random utility models. Under the common 
assumption that the parameter B is independent of the systematic utility, the MNL 
model is additive (see section 3.5) and has certain important properties that will be 
described in the following. 
Dependence on the differences among systematic utilitiei9). In the case of only two 
alternatives (A and B), the MNL model (3.3.6) is called Binomial Logit and can be 
expressed as: 

p[A] = exP(VA / B) 
exp(VA / B) + exP(VB / B) 1 + exP[(VB - VA / B)] 

The choice probability of alternative A depends on the difference between the 
systematic utilities. Furthermore, as shown in Fig. 3.3.2, this choice probability is 
equal to 0.5 if the two alternatives have equal systematic utilities (VB- VA=O). It has 
an S-shaped emi-symmetric diagram for positive and negative values of VB-VA. In 
addition, it tends to one as VB-VA tends to -00 (alternative A has a systematic utility 
infinitely greater than that of B) while it tends to zero as VB-VA tends to +00. The rate 
of variation of the choice probability of A with respect to variations of VB-VA, is 
larger for values of VB-VA close to zero where it is almost linear, and is the larger the 
smaller is the variance of random residuals (parameter (}). As the absolute value of 
VB-VA increases, p[A] shows a flex and becomes sub-horizontal; for large differences 
VB-VA the variations of choice probability have low sensitivity to the variations of 
VB-VA. 
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p[A] 

". '" 

-6 -4 -2 o 2 4 6 

Fig. 3.3.2 Diagram of choice probability ptA] of a Binomial Logit model. 

Similar considerations apply to the more general case of the Multinomial Logit 
model. From expression (3.3.6) and from the general results on additive random 
utility models, it results that the choice probability of any alternative depends on the 
differences between the systematic utilities of all other alternatives. In fact, by 
dividing numerator and denominator of (3.3 .6) by exp(Vj / B) it results: 

p[j] = I 1 
1 + exp[(Vh - V) / B) 

Mj 

It follows that if Alternative Specific Attributes (ASA) and Coefficients (ASC) 
are introduced in each of the m alternatives, choice probabilities are equal to those 
that would be obtained if the ASA were introduced in all the alternatives except one 
and the relative coefficients were replaced with the differences with respect to the 
eliminated ASA coefficient. If the ASC of alternative j is denoted with /3;, and the 
remaining part of the systematic utility with Vj, the Multinomial Logit model 
becomes: 

. exp[(Pj + V'j ) / B) 
p[J] = -m-----''------''----

I exp[ (Ph + V'h ) / B) 
h=! 

exp(V'j / B) 

exp(V'j / B) + I exp[((Ph - Pj ) + V'h ) / B) 
Mj 

Influence of residual variance. From equation (3.3.6) it follows that a smaller 
variance of random residuals and a smaller parameter B correspond to a larger 
choice probability for the maximum systematic utility alternative. This probability 
tends to one (deterministic utility model) as the variance tends to zero. On the other 
hand, as the variance of residuals increases, exponents V/ B tend to the same value 
(zero) and the different alternatives tend to have the same choice probability equal to 
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11m. The effect of random residuals variance, is illustrated in Fig. 3.3.2 and 
numerically in Fig. 3.3.3 for two choice alternatives corresponding to two routes 
with attributes given by travel time (t) and monetary cost (me). 

p[A] = exp[(-O,J·fA -1·mcA)IBl 
exp[(-O,J· fA -I · mcA)IB] + exp[(-O,J· fa -I· mca)IB] 

fA = 20min 
fa = 40min 

I P ... 

cA =3.6unit 
cB = 0.6 unit 

8=10 
0,48 

LA 0,52 

VA = -5.6 
VB =-4.6 

8= 1 ()= 0,5 
0,27 0,12 
0,73 0,88 

Fig. 3.3.3 Effect of the variance of random residuals on choice probabilities for a Binomial Logit 
model. 

Independence from Irrelevant Alternatives. From expression (3.3.6) another general 
property of the Logit model can easily be deduced. Choice probability ratios 
between any two alternatives are constant and independent of the number and 
systematic utility of other choice alternatives: 

pU]/p[h] = exp( ~/ (J)/exp( Vii (J) (3.3.7) 

This property known in the literature as Independence from Irrelevant 
Alternatives (IlA) can sometimes lead to unrealistic results. Consider, for example, 
the case of choice between two alternatives A and B of equal systematic utility. In 
this case the probability of choosing each alternative calculated with the Logit model 
(3.3.6) is 0.50 and the ratio between the probability of choosing A and B is equal to 
one: 

p[A]/p[B] = exp(VA/(J)/exp(VB/(J) = 1 

Suppose that a third alternative C is added to the choice set. Alternative C has an 
equal systematic utility but is very similar to alternative B. Imagine the choice 
between transport modes where alternative A is the car and alternative B is a bus. A 
notional third alternative C is introduced consisting in a new bus line which runs to 
the same timetable and makes the same stops as B. In this case, the ratio between the 
probability of choosing car A, and bus B, because of the IIA property, remains equal 
to one. Therefore each of the three alternatives would have a probability of being 
chosen of 113. Thus, the probability of choosing the car would change from 0.50 to 
0.33 due to the fictitious increase in choice alternatives. This result is clearly 
paradoxical and derives, in the case described, from the lack of realism of the basic 
assumptions of the Logit model; namely that alternatives are distinctly perceived by 
the decision-maker and that their random residuals are independent. A more realistic 
choice model can be obtained by introducing a covariance between the random 
residuals of alternatives Band C, as will be seen in the following sections. In 
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general, in a Multinomial Logit model, any change in the characteristics of a given 
alternative is such that the variation of choice probabilities of this alternative implies 
proportional variations of the choice probabilities of all other alternatives. 

In applications, the Multinomial Logit model should be used with sufficiently 
distinct choice alternatives for which the assumption of independent random 
residuals is plausible. 

3.3.2. The Single-Level Hierarchical Logit model 
The Hierarchical Logit model(lO) allows to overcome partially the assumption of 
independent random residuals underlying the Multinomial Logit model. At the same 
time it retains a closed analytical expression. 

For simplicity of exposition, this section deals with the simpler case of a single 
level of hierarchy, with equal parameters. The model is also introduced referring to a 
graphic representation of the choice process and a decomposition scheme of random 
residuals. These assumptions are not necessary and will be relaxed in the next 
section dealing with general Hierarchical Logit models and in section 3.3.5 dealing 
with Generalized Extreme Value models. 

Suppose that the decision-maker's choice set 1 is subdivided into non­
overlapping subsets h 12, .•• , h, ... so that the utility function of the generic alternative 
j, belonging to the subset h, can be expressed(ll) as: 

(3.3.8) 

with 
E[&)] = E[17d = E[r)!k] = 0 

COV[17k ,17h] = COV[17k' rjlk] = Cov[rjlk' rilk ] = 0 

It is assumed that the global random residual &; can be decomposed into the sum 
of two random variables of zero mean. The first, 17k takes on the same value for all 
the alternatives belonging to the same group, though it can assume different values 
for different groups. The second, ".ilk, takes on different values for each alternative. 
Also, it is assumed that the variables 17k and ".ilk are statistically independent. These 
assumptions imply that the decision-maker perceives the alternatives belonging to 
the same group as similar; this similarity is modeled introducing a covariance among 
the random residuals of these alternatives. In mode choice example, the available 
modes can be divided into two groups: public modes (bus and train) and private 
modes (car and motorbike). The assumption (3.3.8) implies that the decision-maker 
perceives the modes belonging to the same group as being similar since they share a 
number of attributes (flexibility, privacy, etc.). 

The utility structure and the choice mechanism corresponding to a Single-Level 
Hierarchical Logit model can be represented by a choice tree shown in Fig. 3.3.4. 
On the choice tree, "elementary" choice alternatives (e.g transport modes) 
correspond to nodes with no exit links ("leaves" of the tree), the root node "0" has 
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no entering links. The intermediate nodes k, one for each group, represent compound 
alternatives or groups of elementary alternatives. The random residuals T]k and Tjlk 

are associated to the branches corresponding to groups and to single alternatives 
respectively. 

} 

Fig. 3.3.4 Choice tree of a Single-Level Hierarchical Logit model. 

The choice tree can be seen as the representation of a hypothetical choice 
process. The decision-maker, starting from the root node, fIrst chooses group k from 
those available (represented by nodes linked to the root) and then the elementary 
alternative i from those belonging to group k (represented by the leaves connected to 
the node k). The expression of the overall choice probability of the generic 
alternative pU] is obtained as the product of the probability pU;k] of choosing 
elementary alternative i within group k (lower level), multiplied by the probability 
p[k] of choosing group k (upper level). The name of the model is derived, in fact, 
from this probability structure: 

p[j] = p[j / k]· p[k] (3.3.9) 

To specify the probabilities in (3.3.9) further assumptions on the distribution of 
random residuals must be introduced. For the Single-Level Hierarchical Logit model 
it is assumed that the random residuals relative to the alternatives available at each 
decision node are identically and independently distributed (i.i.d.) Gumbel random 
variables. More precisely, residuals TPk are Li.d. Gumbel variables with zero mean 
and parameter () for all groups k and all alternatives i. The perceived utility 
associated with alternative i in the choice among those belonging to group k, ~/k' 
can be expressed as: 

Uj1k = Vj + Tjlk 

E[Tjld = 0 

Var[Tj,d = JZ'2()2 /6 

Vi Elk' Vk 

Vi Elk' Vk 

Vi Elk' Vk 

(3.3.10) 

Under these assumptions the conditional choice probability of the elementary 
alternative i can be expressed as: 
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p[j / k] = Pr[Ujlk > U;lk] = 

= Pr[Vj - V; > 'ilk - 'jlk] 
(3.3.11) 

and given the assumptions on the distribution of residuals 'j!h probability (3.3 .11) 
results in a Multinomial Logit model: 

. / k _ exp(Vj / B) 
p[J ] - "'. ex (V / B) 

L..'Eh P I 

(3.3.12) 

At the upper level, the choice is made among groups of alternatives, with each 
group k being considered as a compound alternative. The probability p[k] is 
equivalent to the probability of choosing an elementary alternative belonging to 
group k. This probability is obtained by assigning to group k an inclusive perceived 
utility U'k equal to the utility of the most attractive alternative, i.e. the maximum 
utility of all the elementary alternatives belonging to the group: 

(3.3.13) 

As stated earlier, the maximum of independently distributed Gumbel variables 
with the same parameter B is also distributed as a Gumbel variable of parameter B 
and mean equal to: 

(3.3.14) 

where V'k is the Expected Maximum Perceived Utility (EMPU) or inclusive utility 
and Yk is the logsum variable. In the expression of the perceived utility (3.3.13) the 
r.v. max(Vj+'jlk) can be replaced by its expected value plus the deviation from this 
value which is a another zero mean Gumbel variable <*k(l2), of parameter B: 

(3.3.15) 

Thus, the perceived utility of group k has a mean value BYk and a deviation e\, 
which is the sum of the two zero mean random variables /k and 7]k. 

The basic assumption of the Hierarchical Logit model is that at each choice level 
the random residuals of the available alternatives are i.i.d. Gumbel variables; i.e. it is 
assumed that the c"k are i.i.d. Gumbel variables of zero mean and parameter Bo: 

E[e;] = 0 

Var[e;] = 7r2B(~ /6 

Vk 

Vk 
(3.3.16) 
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In accordance with this assumption, the choice probability of group k is 
expressed with a Multinomial Logit model. In fact: 

and, given the results of the previous section: 

(3.3.17) 

where ois the ratio of parameters Band Bo associated to the two choice levels: 

o =B1Bo (3.3.18) 

Replacing expressions (3.3.12) and (3.3.17) in (3.3.9), the choice probability of 
the generic alternative} can be obtained: 

p[j] = p[j / k]. p[k] = IexP(Vj / B) exp(OYk ) 

. exp(V; / B) "h exp( oYh ) 
IElk L.. 

(3.3.19) 

Variances and covariances of the random residuals l1 of the overall perceived 
utility (3.3.8) can also be derived. The variance of l1 coincides with that of the 
random residual /k since the two variables are the sum of the same variable (ryk) and 
of another independent Gumbel variable (r"k and 'jlk respectively) with zero mean 
and the same parameter B. Therefore: 

V} (3.3.20) 

The variance of random residuals l1 is constant for all alternatives. There is also a 
positive covariance between the random residuals of any pair of alternatives 
belonging to the same group. In fact: 

COV[epeJ = E[(ryk + 'ilk) ·(ryk + 'jlk)] = 

= E[ry/] + E[ryk 'jld + E[ryk 'ilk] + E[ 'ilk 'jlk] Vi,} E Ik 

Because all the variables ryk, 'ilk and 'ilk, have zero mean and are mutually 
independent, the first term is equal to the variance of ryk and the others are zero 
being the covariances of independent random variables: 
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(3.3.21) 

However, if two elementary alternatives i and) belong to different groups (h and 
k) all the terms are zero as is the covariance between Ci and Cj . 

The variance of 17k can be expressed as a function of the two parameters Band £10 : 

Vk (3.3.22) 

From the previous results, the variance-covariance matrix of random residuals 
has a block diagonal structure. The elements of the main diagonal are all equal to the 
variance of residuals Cj expressed by (3.3 .20). The covariance between each pair of 
alternatives belonging to the same group is constant and equal to the value given by 
equations (3.3.21) and (3.3.22), while the covariance between alternatives belonging 
to different groups is null. Therefore, if the alternatives of each group are ordered 
sequentially, the resulting variance-covariance matrix has a block diagonal structure. 
Fig. 3.3.5 shows a choice tree and the corresponding variance-covariance matrix. 

car motorcycle walking bus metro 

car motorcycle walking bus metro 

car 82 8;;_82 0 0 0 
0 

motorcycle 
,,2 

8;; _82 82 0 0 0 0 

walking 0 0 82 0 0 
6 0 

bus 0 0 0 82 8;;-82 
0 

metro 0 0 0 8;;-82 82 
0 

Fig. 3.3.5 Choice tree and variance-covariance matrix of a Single-Level Hierarchical Logit 
model. 

It is also possible to express the correlation coefficient between two alternatives 
as a function of the parameters introduced: 

(3.3.23) 
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The parameters (), (}o and 0, playa major role in the structure of the Hierarchical 
Logit model and influence choice probabilities. 

First, the parameter 8 defined by equation (3.3.18) can take on values in the 
interval [0,1]. In fact, it is defined by the ratio between two non-negative quantities 
and, since the variance of Gj ('?(}o2/6) cannot be inferior to that of one of its 
components 'l}lk (,?(}2/6) it must be: 

(}o ;:::: () ~ 0::; 0::; 1 
As the variance of 'l}lk tends to that of Gj, i.e. () tends to (}o, the parameter 0 will 

tend to one. In this case, the variance of 17k given by (3.3 .22) will tend to zero as the 
covariance (3.3.21) between two alternatives belonging to the same group and the 
Hierarchical Logit model (3.3 .19) reduces to the Multinomial Logit model. 

In fact, for 0=1 in (3.3.19) we get: 

. exp(Vj / (}) 

p[j] =" ex (V / ()) 

ex}ln" exp(V;I (})] ~ L..J'Elk 

" exprln". exp(V; / (})] 

exp(Vj / (}) (3.3.24) 

"" exp(V; .. / (}) L...ielk :P • 
L..Jh ~ ~'Elh 

L...hL....elh . 

which is a Multinomial Logit model with a different expression of the summation at 
the denominator. 

If the variance of 'l}lk tends to zero, i.e. () tends to zero, the parameter 0 will also 
tend to zero. In this case the two probabilities in the model (3.3.19) will be modified 
as follows: 

the conditional choice of an elementary alternative within a group degenerates 
into a deterministic choice of the maximum utility alternative: 

exp(V / (}) {I if Vi = maxiel (V;) 
lim p[j / k] = lim J = . k 

9->0 9->0" exp(V / (}) ° otherwise 
L....IElk I 

(3.3.25) 

- the systematic utilities of alternative groups, equal to (}Yk, assume the value of 
the maximum systematic utility among the elementary alternatives in each 
group: 

lim () Yk = lim () In ". exp(V; / ()) = maxiel (V;) 
9-> 0 9-> 0 L....el k k 

The choice probability of the group therefore becomes: 
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(3.3.26) 

Thus, if the parameter ois zero, random residuals associated with the conditional 
utilities of elementary alternatives within a group are zero (Var[ 1j'lk]=O), the choice 
between groups is obtained by comparing the alternatives of maximum systematic 
utility within each group with a probabilistic Logit model, since a random residual at 
the group level still exists, while the maximum utility alternative is deterministically 
chosen within each group. 

Some special cases of the model presented can be analyzed. If a group k consists 
of a single alternative j, then pU;k]=l and the general expression (3.3.19) for this 
alternative becomes: 

(3.3.27) 

In some applications of the Single-Level Hierarchical Logit model, and in 
particular for systems of partial shares models covered in the next chapter, the 
systematic utility of alternative j, Vi, is decomposed into two parts: a group-specific 
systematic utility, Vk. and the alternative-specific systematic utility relative to each 
alternative j, V;k: 

(3.3.28) 

This formulation leads to an alternative formulation of choice probabilities p[j/k] 
and p[k]. By replacing (3.3.28) in (3.3.12) and (3.3.17) respectively it follows: 

. exp(Vi Ie) exp[(Vk + Vj1k)le] 
p[; I k] = . = -------=:;-"----I exp(~ I e) exp(Vk I e) . I exp(V; I k I e) 

exp(Vjlk I e) 
'" (3.3.29) 
L.. exp(Vjlk I e) 

iEfk 

and 

p[k]= exp(Vkleo+OY~). 
I exp(Vh I eo + oYh ) 

(3.3.30) 

h 

because: 

"Sln[ expev, ! 0)· ~ exp(V,,, 10) l" 8V, 10 + Sin I;. exP(V,n 10)" 

= Vk I eo + oY~ 
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where Y'k is the logsum variable of group k obtained with the alternative specific 
systematic utilities V;lk. 

3.3.3. The Multi-Level Hierarchical Logit model* 
The Single-Level Hierarchical Logit model described in the previous section is a 
first generalization of the Multinomial Logit model. However, it retains many 
simplifying assumptions such as the constancy of covariance between the 
alternatives belonging to each group and a single level of correlation, or grouping, of 
alternatives. These assumptions can be generalized considerably as described in the 
following. The starting point is once again the representation of the choice process 
and of the covariance between the perceived utilities by means of a general choice 
tree, from which the name "Tree Logit", sometimes given to these models, derives. 
The leaves, or terminal nodes, of the tree correspond to elementary choice 
alternatives (e.g. different transport modes). Nodes i,i, I in Fig. 3.3.6 are elementary 
alternatives belonging to the total choice set I. Each intermediate node r can be seen 
as representing a conditional choice in which the decision-maker chooses from a set 
of available elementary and/or compound alternatives corresponding to the leaves 
and/or intermediate nodes directly linked to node r. Thus, each intermediate node 
represents a compound alternative, i.e. the set of elementary alternatives which can 
be reached by the intermediate node itself. In conclusion, at each intermediate node 
the choice is made among all the elementary alternatives, which can be reached, 
directly or indirectly, through other intermediate nodes, from the node itself. In the 
example in Fig. 3.3.6, the choice represented by node r is made between alternatives 
i,i, I, with the elementary alternatives i and I grouped in the compound alternative! 
More formally, the following elements in Fig. 3.3.6 can be defined on the choice 
tree: 
o is the root or initial node, the beginning of the decision process; 
i, i, I are the terminal nodes or leaves, the elementary choice alternatives; 
r is the generic node of the tree; if this is an intermediate (or structural) node, it 

represents both a group of alternatives (compound alternative) and an 
intermediate choice; 

I is the set of elementary alternatives or choice set; 
IT is the set of descendant nodes (children) of r; the set of nodes which can be 

reached directly by r; it represents the set of elementary or compound choice 
alternatives available for the conditional choice in r; IT = 0, if rEI; 

a(r) is the first ancestor of node r, or a node linked to r by the single oriented link 
(a(r),r) belonging to the graph, a(o)=.0; 

Ar is the set of ancestors of r; set of nodes belonging to the only route linking the 
root 0 and r, excluding r and the root 0, AT:: {a(r), a(a(r)) ... }; 

per,s) is the first common ancestor of the pair of nodes rand s. 
In this formalism single nodes are indicated with lower/case letters (0, i,i, I, r, s), 

groups of nodes with capital letters (A, /), and the generic node related to a particular 
node with lower/case-letter functions of the node itself, a(r),p(r,s). 
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j I 

Fig. 3.3.6 Choice tree of Multi-Level Hierarchical Logit models. 

At each choice node, whether intermediate or initial, it is assumed that a 
conditional choice is made among all the available alternatives. These are 
represented by nodes r, and may be either elementary alternatives (leaves of the tree) 
or compound alternatives (intermediate nodes). The node representing the choice 
will be a(r) and the set of choice alternatives will be Io(r) 

To simulate conditional choice a perceived utility Urla(r) is assigned to each node 
(alternative) r. This is a random variable which, as usual, is decomposed into the 
sum of its mean, V" and of a random residual, 8 r10(r), with the following properties: 

Vr is the expected value of the perceived utility Uria(r) if r is a leaf of the tree. If r 
is an intermediate node, Vr is the expected value of the maximum perceived 
utility (EMPU or inclusive variable) for the alternatives, whether elementary or 
not, belonging to Ir; 
the random residuals 8rla(r) of all nodes r descendants of a(r) are assumed to be 
Li.d. Gumbel variables with null mean and parameter Oo(r). Therefore, the 
variance Var[8rla(r)]=7r202a(r/6 is associated with the conditional choice made at 
node a(r) from all the elementary alternatives, directly or indirectly reached from 
a(r). 
From the above assumptions it results: 

Urla(r) = Vr + 8rla(r) Vr E Ia(r) 

E[8rla(r)] = 0 (3.3.31) 

2/1 2 
7r ua(r) 

Var[8rla(r)] = --6-

From the results on the expected value of the maximum of Gumbel variables 
referred to in section 3.3.1, the systematic utility assigned to any node can be 
determined recursively by starting from the leaves as: 
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(3.3.32) 

Under the above hypotheses, the conditional probability of choosing alternative r 
at the choice node a(r) is expressed by a Multinomial Logit model: 

and also, for (3.3.32): 

[ / ( )] exp(V/Ba(r») 
pr ar = " 

L,.exp(VJBa(r») 
r'ela(r) 

(3.3.33) 

(3.3.34) 

Ifthe alternative r is a compound alternative (i.e. r is an intermediate node) for 
(3.3.32), the numerator of(3.3.33) becomes: 

exp(Vr / Ba(r») = exp[~ Yr) = exp(or Yr) 
Ba(r) 

where Or is the ratio of coefficients Br and Ba(r)' It is analogous to the coefficient 0 
introduced in the previous section (see equation 3.3.18) and, as such, must be 
included in the interval [0,1]. Expression (3.3.33) and (3.3.34) can be reformulated 
as: 

p[r / a(r)] = exp(or~) = exp(orYr) 
L exp(Vr· / Ba(r») exp(Y,,(r») 

(3.3.35) 

r' 

Finally, the absolute (unconditional) probability of choosing the elementary 
alternative jeI, can be obtained from the definition of conditional probability and 
from the assumptions made on the tree choice mechanism: 

pU] = pU/a(j)} p[a(j)/a(a(j))]·... jeI 
or 

pUl = pU/a(j)] II rEA . p[r/a(r)] jeI 
} 

(3.3.36) 

Replacing expression (3.3.34) and (3.3.35) in equation (3.3.36) we get: 
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(3.3.37) 

and also 

[ ']= exp(V/(}aUJ).II exp(or ~) = 
p } () reA} () exp Y" exp ~ 

exp(V/(} ('J) 
= .I a J • II ex [(0 - l)Y] . E I 

(Y ) reA} P r r } 
exp () 

(3.3.38) 

Absolute choice probabilities pU] can therefore be computed recursively through 
the following steps: 

given: rt£.I 
rt£.I 
VjEI 

with (}r = 0 if rEI 
with Ir = 0 if rEI 

- calculate or=(}/(}a(rJ for each node r; 
- recursively calculate values Y" with expression (3.3.32); 
- calculate probabilitiespU],jEI, with expression (3.3.38). 

The model described can be demonstrated with the choice tree in Fig. 3.3.7. The 
leaves of the tree (AI, CD, CP, BS, ST, FT) represent the elementary choice 
alternatives which, in this example, are the transport modes available for an intercity 
trip: air (AI), car driver (CD), car passenger (CP), bus (BS), slow train (ST) and fast 
train (FT). The intermediate nodes represent groups of alternatives, or compound 
alternatives. Node CR represents the car, combining the two alternatives of car 
driver and car passenger, node LT public land transport modes (bus, slow train and 
fast train), while node RW combines the railway alternatives. Finally, the respective 
values of parameters () and 0 are assigned to each intermediate node and to the root. 

Following expression (3.3.36), the choice probability of fast train (FT) can be 
written as: 

where 

with 

p[F1] = p[FTIRW] . p[RWIL1] . p[LTlo] 

P[RWILT] = exp«(}RWYRW I (}LT) 
exp«(}RWYRW I (}LT) + exp(VBS I (}LT) 

exp(V FTI () RW) 

exp(YRW ) 

exp(oRWYRW) exp(oRWYRW) 

exp( 0 RW YRW ) + exp(VBS I () LT) exp(YLT ) 
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with 
(3.3.39) 

p[LT / 0] = exp«()LTYLT / ()o) 

exP«()LTYLT / ()o) + exp«()CRYCR / ()J + exp(VAl / ()o) 

= eXp(oLTYLT) _ exP(OLTYLT) 

[exp(OLTYLT) + exp(oCRYCR) + exp(VAl / ()o)] exp(Yo) 

with 
YCR = In[exp(VcD/()cR) + exp(Vcp/()CR)] 

Yo = In[exp(oLTYLT) + exp(oCRYCR) + exp(VAl / ()o)] 

The absolute choice probability can be written in the form (3.3.38) as follows: 

exp(VFT / ()RW) 
P[RW] = . exP[(OLT -l)YLT ]· exP[(ORW -l)YRw ] 

exp(Yo) 

AI CD CP BS ST FT 

Air Car Car Bus Slow Fast 
driver pass. train train 

AI CD CP BS ST FT 

AI fJ;, 
CD fJ;, fJ;, -ffcR 

L= CP ,(- fJ;, -ffcR fJ;, 
BS 6 fJ;, fJ;, -fitr fJ;, -fitr 
ST fJ;, -fitT fJ;, fJ;, -B;;w 
FT fJ;, -fitr fJ;, -B;;w fJ;, 

Fig. 3.3.7 Choice tree and variance-covariance matrix for a Multi-Level Hierarchical Logit model. 

This choice probability can be seen as resulting from a choice process in which 
the decision-maker first chooses the compound alternative "collective land 
transport" represented by node LT from the available alternatives, which in this case 
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are air, the compound alternative "car" and the compound alternative "collective 
land transport". Subsequently, he/she chooses the group "train" from the alternatives 
available within the land transport group (bus and train), and finally fast train from 
the two elementary alternatives (fast and slow train) which make up the train group. 

Returning to the general model, it is possible to express variances and 
covariances of the random residuals as a function of the parameters Or • Rigorous 
demonstration of these results involves the use of GEV models described in section 
3.3.5. The same results can be (approximately) obtained by using the total variance 
decomposition method described for the Single-Level Hierarchical Logit model in 
the previous section. It is assumed that the total variance of all the alternatives is 
constant and equal to: 

Var[&)] = ,r-O//6 (3.3.40) 

The total random residual of each elementary alternative &) is decomposed into 
the sum of independent zero mean random variables 1'a(r),,., associated with each link 
of the choice tree. Therefore the total variance of an elementary alternative is equal 
to the sum of the variances corresponding to the links of the (single) route 
connecting the root to the leaf representing it. Furthermore it is assumed that the 
variance of random residuals for all the elementary alternatives j reached from any 
intermediate node r and associated to the conditional choice represented by r itself, 
is constant and equal to ,r-O//6. It follows that for all these alternatives, the sum of 
the contributions of the variances relative to the links which connect r to j, must be 
constant and equal to ,r-(),2/6: 

Var[C'j/r] = ;r2();/6 = Var[1'aU),j] + Var[1'a(au»,uu)] + ... + Var[1'rJ(r,j)] 

where j(r, j) is the only descendant of r that is on the route from r to j. Therefore, in 
the example in Fig. 3.3.7, the variance of the elementary alternatives BS, STand FT 
corresponding to the conditional choice between collective land transport modes 
represented by intermediate node LTis constant and equal to ,r-()L//6. This variance 
will correspond to the fraction of variance associated to the link (LT, BS) and to the 
sum of the variances associated with links (LT, RW) and (RW, S1) or to the links 
(LT, RW) and (RW, F1). The variance of the random residuals of the elementary 
alternatives relative to the conditional choice represented by node a(r), predecessor 
of r, is in tum the sum of the variance corresponding to r and the non-negative term, 
Var[1'a(r),r], associated with link (a(r), r); this variance will therefore not be inferior 
to that associated with r, or: 

(3.3.41) 

The variance contribution associated with each link (a(r), r) of the graph can be 
expressed as: 

(3.3.42) 
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Inequality (3.3.41) can be generalized, assigning null variance and ~ = 0 to the 
leaves of the graph, it yields: 

(3.3.43) 

From the preceding expression and the definition of the coefficients 8r = (},I Ba(r), 

it follows that these coefficients must belong to the interval [0,1]. 
Continuing with the example in Fig. 3.3.7, the variance of alternatives STand FT 

relative to the conditional choice between railway services (node RW) will be 
i' BRW2/6, while that relative to the choice between collective land transport modes 
(node Ln will be i'Bj/6 with BLT:2: BRW; the variance contribution assigned to link 
(LT, RW) will be i'(BL/ - BRW2)/6. 

The variance decomposition model described allows to derive the covariances 
between any two elementary alternatives i andj. This covariance will correspond to 
the sum of the variances of random residuals ra(r),r (which are independent with zero 
mean) associated with the links common to the two routes connecting the root to 
leaves i andj. Because of the tree structure, these routes can have in common only 
links from the root to the first separation node, which coincides with the last node in 
common. By applying equation (3.3.42) repeatedly, the covariance of Ei and £1. will 
be: 

Vi,jEJ (3.3.44) 

where p(i,j) is the first common ancestor to elementary nodes i andj. 
If two alternatives have the root node as their first common ancestor, i.c. they do 

not belong to any intermediate compound alternative, their covariance is zero. The 
correlation coefficient between two elementary alternatives can be deduced from 
expression (3.3.40) and (3.3.44) as follows: 

. . COV[Ei;Ej ] 

p[/, J] == [Var[Ei ]' Var[Ej ]]1/2 

B,; - B~(i,J) == 1- B~(i,j) 
B; B,; (3.3.45) 

For the tree in Fig. 3.3.7, the covariance between alternatives ST and FT is given 
by i'(Bo2- BRW2)/6, the sum of the variances relative to links (0, Ln and (LT, RW). 
The covariance between ST and BS will be i'( B} - Bj)/6 which, as stated before, is 
less than or equal to the covariance between FT and ST. In the literature, the 
parameter Bo is sometimes taken to be equal to one since, as will be seen in Chapter 
8 on transport demand estimation, only parameters 8, can be estimated. Since all the 
parameters Br but one can be obtained from coefficients 8" setting Bo = 1 allows to 
express all the other parameters. In this case, the covariance and the correlation 
coefficient between any two elementary alternatives become respectively: 
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In conclusion, the structure of the choice tree is also the structure of the 
covariances between elementary alternatives. Two alternatives that have no nodes in 
common along the route connecting them to the root 0 are independent. On the other 
hand, covariance between elementary alternatives i and j belonging to the same 
group (their routes meet at an intermediate node) is larger the "further" their first 
common ancestor is from the root node and the smaller the parameter Bp(iJ) 
associated with this node. Furthermore, the covariance between the perceived utility 
of two alternatives i and j whose first common ancestor (p(iJ)=a(i)=a(j)) coincides 
with their ancestors is not less than the covariance each of them has with any other 
alternative. Continuing with the example of Fig. 3.3.7, the covariance between ST 
and FT will be greater than or equal to that of each of the two elementary 
alternatives with any other elementary alternative. 

Choice probabilities are significantly affected by the values of parameters B" and 
therefore by the levels of correlation between alternatives. Fig. 3.3.8 shows the 
values of choice probabilities for the alternatives in Fig. 3.3.7, for different 
parameters Br and assuming that all systematic utilities have the same value: 
VAF VCD= Vcp= VB? Vs7'= V FT. If the alternatives are independent (specification nr.l 
B/Bo = I '\Ir), the model becomes a Multinomial Logit and all the alternatives have 
equal choice probabilities. As the correlation increases, i.e. as parameters BCR, Bm 
and BRW decrease, the choice probability of the most correlated alternatives tends to 
decrease. For example in specification nr. 3, the alternatives belonging to the two 
groups car (CD, CP) and collective land transport (BS, ST, FD are strongly 
correlated with a correlation coefficient p = 0.9775. They tend to be seen as a single 
alternative and their choice probabilities tend to be the equal shares of the 
probability of a single alternative associated with each group. For the same reasons, 
the choice probability of alternative AI, which is not correlated with any other 
alternative, is larger the larger the correlation of the alternatives belonging to the 
various groups (specifications nr. 2 and 3). 

From the previous results it can easily be demonstrated that Multinomial Logit 
and Single-Level Hierarchical Logit models are special cases of the Multi-Level 
Hierarchical Logit. Two different approaches can be used for the Multinomial Logit 
model. In the first approach, the tree is that of the Multinomial Logit model 
described in Fig. 3.3.1. In this case, there are no intermediate nodes and the ancestor 
a(j) of any leaf j EI is the root 0, it then results BaUl=Bo, Aj = 0 and by applying 
expression (3.3.38) it follows: 
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which, by developing the term exp(Yo) , gives rise to the expression (3 .3.6) of the 
Multinomial Logit. 

SPECIFICATION NR. 1 2 3 4 5 6 7 
BaIB. 1.000 0.900 0.150 1.000 1.000 0.800 0.400 
tJcR/B. 1.000 0.900 0.150 0.800 0.800 0.600 0.200 
£hI.IO. 1.000 0.900 0.150 0.600 0.200 0.600 0.200 
p[A~ 0.166 0.180 0.304 0.190 0.205 0.212 0.280 
p[CD] 0.166 0.168 0.169 0.166 0.178 0.161 0.161 
p[CP] 0.166 0.168 0.169 0.166 0.178 0.161 0.161 
p[BS] 0.166 0.161 0.120 0.190 0.205 0.174 0.165 
p[F71 0.166 0.161 0.120 0.144 0.117 0.146 0.117 
p[S71 0.166 0.161 0.120 0.144 0.117 0.146 0.117 

Fig. 3.3.8 Choice probabilities of the Multi-Level Hierarchical Logit model of Fig. 3.3.7 for 
varying parameters. 

Alternatively the Multinomial Logit model can be obtained from a tree of any 
form in which the parameters Br of all the intermediate nodes are the same and equal 
to Bo. In this case from equation (3 .3.44) it results that the covariance between any 
pair of alternatives is equal to zero (independent residuals), the coefficients 
or=(),JBa(r) are all equal to one, and (3.3.38) reduces to the MNL expression. 

The Single-Level Hierarchical Logit model described in the previous section can 
be considered as a special case of a tree, which has only one level of intermediate 
nodes 

a(a(j»=o 't/ JEI 

Furthermore, parameters Br are all equal to B while the parameter associated with 
the root is still indicated with Bo. It can easily be demonstrated that the choice 
probability (3.3.19) obtained for the Single-Level Hierarchical Logit model results 
as a special case of expression (3.3.38). 

Finally, as in the case of Single-Level Hierarchical Logit model, a systematic 
utility can be assigned to structural or intermediate nodes. This could be the part of 
the systematic utility common to all the alternatives connected by an intermediate 
node. In this case, if r is a structural node and Vr the systematic utility assigned to it, 
equation (3.3.35) becomes: 

where Y'r is the logsum variable associated with a node r calculated without the 
systematic utility V" "transferred" to the structural node. Specifications of this type 
will be used in Chapter 4. 
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3.3.4. The Cross-Nested Logit model* 
The Cross-Nested Logit model can be seen as a generalization of the Hierarchical 
Logit model allowing a non block-diagonal structure of the variance-covariance 
matrix. In this model an alternative may belong to more than one group, or nest, 
with different degrees ofmembership(13). 

As an example, the path choice context reported in Fig. 3.3.9 can be considered. 
There are four alternatives (paths A, B, C, D). It can be assumed that there is a 
covariance between the perceived utilities of paths A and B (link (1,2) in common), 
between paths Band C (link (4,5) in common) and between paths C and D (link 
(1,3) in common). Such a covariance structure cannot be represented by a tree and, 
in fact, the variance-covariance matrix does not have the typical block-diagonal 
structure (see Fig. 3.3.9). Using a Cross-Nested structure, on the contrary, three 
"cross" nests corresponding to the three assumed binary correlations can be 
specified. Thus alternative B belongs to nests 1 and 2 and alternative C belongs to 
nests 2 and 3 (see Fig. 3.3.10). It should be noted that in the case of Cross-Nested 
models the graph representing the correlation structure should be referred to as 
choice graph (it is no longer a tree) even though there is no immediate interpretation 
as a choice process. 

In the choice graph intermediate nodes correspond to a group of alternatives 
(nest). 

Path A : (1,2),(2,5) 
Path B : (1,2),(2,4),(4,5) 
Path C : (1,3),(3,4),(4,5) 
Path 0 : (1,3),(3,5) 

A 
A • 
B • 
C 
0 

B C 0 
• 
• • 
• • • 

• • 
variance-covariance matrix 

Fig. 3.3.9 Example of path choice and its variance-covariance matrix. 

B 

Fig. 3.3.10 Cross-Nested correlation structure for the path choice example in Fig. 3.3.9. 

With these assumptions, keeping the same formulation of the Single-Level 
Hierarchical Logit model, the choice probability of the generic alternative j, can be 
expressed as: 
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p[j) = Lp[j / k)· p[k) (3.3.46) 
k 

where k represents the generic nest in the single level nesting structure. The 
difference from the Hierarchical model is that the summation is extended over all 
nests. This to account for the fact that an alternative can belong, in principle, to any 
nest k. The degree of membership of an alternative j to a nest k is denoted by Ujk and 
is included in the [0-1) interval. Degrees of membership have to satisfy the 
following normalizing equation: 

(3.3.47) 

The analytical expressions ofpUlk] andp[k) are as follows: 

(3.3.48) 

where h is the generic set of alternatives belonging to nest k, (}k is the parameter 
associated to an intermediate node, (}o the parameter associated to the root and Ok the 
ratio (}i(}o' Combining equations (3.3.46) and (3.3.48) it results: 

(3.3.49) 

Analogously to the Hierarchical Logit Model, the parameters Ok reproduce the 
correlation among the alternatives, and for ok=l (Le. (}k=(}o) Vk, the Multinomial 
Logit model (3.3.6) derives from equation (3.3.49): 
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The Cross-Nested Logit model can be derived from the general assumptions of 
random utility theory as a special case of Generalized Extreme Value (GEV) model 
as shown in Appendix 3A. 

The Cross-Nested Logit model can be seen as a model combining mUltiple 
Hierarchical Logit models. In fact, any Cross-Nested specification gives rise to a 
Hierarchical Logit model for each combination of limit values [Oil] of the 
membership vector a. For example in the cross-nested structure of Fig. 3.3.10, there 
are twelve coefficients a.Jk subject to the following constraints: 

a Al + a A2 + a A3 = 1 
aBl+aB2+aB3= 1 
aCl+aC2+aC3= 1 
aDl+aD2+aD3= 1 

With the choice graph depicted it has also been implicitly assumed that: 

aA2=aA3=aB3= aCl=aDl=aD2=O 
aAl=aD3=1 

(3.3.50) 

Consequently there are only four unknown parameters a BI> a B2, a C2, a C3 and the 
effective constraints are: 

a BI +aB2 = 1 

a C2 +aC3 = 1 

There are four different possible combinations of limit values [011] of the vector 
a consistent with the above constraints that are shown in Fig. 3.3 .11: 

123 4 

[g] mmmm 
Fig. 3.3.11 Possible combinations of limit values [0/1] of the membership parameters a for the 

correlation structure of Fig. 3.3.10. 

For any of these combinations there is a corresponding tree structure (see Fig. 
3.3.12). 

For intermediate a values any intermediate combination of these four Nested 
correlation structures can be reproduced. Variances and covariances corresponding 
to the Cross-Nested Logit models have been specified to reproduce the results 
obtained for Hierarchical Logit models as a special case: 
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(3.3.51) 

4 

~ Xx 1M !FA. 
AB C D ABCD ABCD A BCD 

Fig. 3.3.12 Tree correlation structures corresponding to the cross-nested structure of Fig.3.3.1 O. 

Numerical results seem to validate this conjecture even though they haven't been 
proved formally. 

Applying expressions (3.3 .51) to the example of Fig. 3.3.9, the following 
variance-covariance matrix results: 

A B C D 

A I (1- t512 )aBI 
1/2 0 0 

B (1- t512 )a BI 
1/2 1 (1- t5;)aB2 

1/2 1/2 
0 ,,2(); · a C2 

C 0 (1- t5;)aC2 
1/2 1/2 I (1 - 153

2 )aC3 
1/2 

6 ·aB2 

D 0 0 (1- 153
2 )aC 3 

1/ 2 1 

The re(ider can verify that the above matrix gives rise to the variance covariance 
matrices of the four tree structures of Fig. 3.3.12, when the vector a assumes the 
corresponding limit values reported in Fig. 3.3 .11. 

In Fig. 3.3.13 choice probabilities for the example in Fig. 3.3 .9 with equal 
systematic utilities are reported for various hypotheses for the vector a. 

lXel 1 0.75 0.5 0.25 0 

Us2 0 0.25 0.5 0.75 1 

lXc2 0 0.25 0.5 0.75 1 

Clc3 1 0.75 0.5 0.25 0 

0=0.5 
peA) 0.25 0.2804 0.3039 0.3107 0.2929 

. pCB) 0.25 0.2196 0.1961 0.1893 0.2071 
p(C) 0.25 0.2196 0.1961 0.1 893 0.2071 
p(D) 0.25 0.2804 0.3039 0.3107 0.2929 

Fig. 3.3.13 Choice probabilities for the example in Fig. 3.3.9. 
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From these results it can be observed that an alternative belonging to several 
nests has a choice probability lower than another alternative belonging to only one 
nest with the same systematic utility. 

3.3.5. The Generalized Extreme Value (GEV) model* 
Generalized Extreme Value models, also known as GEV models, are a further 
generalization of Logit, Hierarchical Logit and Cross-Nested Logit models. Rather 
than a single model, GEV models are a whole class of random utility models. They 
are defined by a general mathematical formulation including a characteristic 
function with certain properties; different specifications of the characteristic 
function give rise to different models such as the models of the Logit family 
described in previous sections. 

GEV models are consistent with the behavioral hypotheses on which random 
utility theory is based, i.e. that the generic decision-maker associates to each 
alternative} belonging to his/her choice set a perceived utility. This is decomposed 
in a deterministic part V; (systematic utility) and a random residual '1. The joint 
distribution function of random residuals implied by GEV models is such that they 
have the same variance and, in general, non-negative covariances. 

A GEVmodel is defined by means ofa function G(YbY2, ... ,Ym) ofm variables (m 
being the number of choice alternatives), continuous and derivable, defined for Yh 
Y2, ... , Yn :?: 0, which has the following properties: 

1) G(.) is a non-negative function, G(.) :?: 0; 
2) G(.) is a homogeneous function of rank p> 0, that is: 

G(ayh ay2,···, aym)= d' G(YhY2,···,Ym); 
3) G(.) tends asymptotically to infinity for eachYj tending to infinity: 

limYj~",G(yhY2, ... ,Ym)=oo }=1,2, ... ,m; 
4) the kth partial derivative of G(.) (or the derivative of rank k of G(.)) with respect 

to a generic combination of k variables Yj, for} = 1,2, ... , m, is non-negative if k 
is odd and non-positive if k is even. 

Given a function G(.) satisfying these four properties, the first partial derivative 
of GO with respect to Yj, 8G/Oyj = Gj(YIJl2, ... ,Ym), is homogeneous with rank p -1, 
because G(.) is homogeneous of rank p. 

Under the above assumptions it can be shown that choice probabilities of the 
GEV model can be expressed as: 

(3.3.52) 

If Yj is replaced with eVJ (so that the non-negativity of Yj is assured) the GEV 
model can be derived from the hypotheses of random utility theory, assuming that 
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the joint distribution function F(E), of the vector ofthe random residuals (Et, E2,"" 
Em) is: 

l7( ) - [G( -61 -62 -600 )] r'Et,E2,""em - exp- e ,e , ... ,e (3.3.53) 

In fact, as it was seen in section 3.2, the probability of choosing alternative j 
is equal to: 

p[j II] = Pr[V; - Vk > Ek - E j Vk *- j, k E I] (3.3.54) 

i.e. the probability that Ej assumes any value between -00 and +00 and that for 
each alternative k*-j is ek<Ej+17;-Vk. Introducing the joint probability density 
function of random residuals Ej, j(Et, E2,"" Em), this probability can also be 
expressed as: 

Vr VI+6j VrV2+6j +«> Vr Vm+6j 

p[j] = f J... J... ff(EI' ... ,Em)dE! ... dEm (3.3.55) 

Alternatively, if F(et, E2,"" Em), is the cumulated distribution function of 
random residuals, the partial derivative of F with respect to Ej, Fj, is equal to 
the product of the probability density function of Ej and the joint distribution 
function for all Ek with k*-j. The latter, calculated in Ek= 17;-Vk+Ej, gives the 
probability that each Ek"*-Ej is less than 17;- Vk+Ej, for a given value of Ej. 
Consequently, equation (3.3.54) can be expressed more synthetically as: 

+«> 

p[j] = fFj(Vj - V; + Ej' ... ,Ej , ... , V; - Vm +E) dEj (3.3.56) 

All the formulations obtained by specifying the joint probability density 
function j(Et, E2, ... , Em), or alternatively the joint probability distribution 
function F(Et, E2,"" Em), are consistent with the behavioral assumptions of 
random utility theory expressed by equation (3.3.54). 
In particular, the function (3.3.53) where G(.) satisfies the properties 1),2),3) 
and 4) mentioned above, is a cumulated distribution function in that it has the 
following three properties: 
a) F(.) is a non-decreasing function in the Ej over the whole range of 

definition; 
b) F(.) asymptotically tends to zero if at least one of its variables tends to 

minus infinity; it tends asymptotically to one if all variables tend to 
infinity: 

lim&J .... ~F(Ep ... 'En,) = 0 

lim&" ..... m .... _F(Ep ... ,Em) = 1 

c) F(') is a continuous function from the right. 
To demonstrate the first property, it is sufficient to show that the function 
G(e'\ e-S2, ... , e-&m), defmed earlier is a non-increasing function of Ej. In fact, 
from condition 4) on mixed partial derivatives of Go, it results: 
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Gl) 2 0 j=l, 2, m (3.3.57) 
i.e. G(.) is non-decreasing with respect to the variables e-~. It then follows 
that: 

oG(.)/o£} =oG(.)/oe-o'·oe·"/o£} = Gj(.)·(-e-"):::; 0 

The function G(e-EI , e-E" ••• , e-Em ) is therefore non-decreasing in e-~ but non­

increasing in l1. 
As for the second property, from equation (3.3.53) and condition 3) required 
for G(.), it follows: 

lim F(£p""£j""'£m) = lim exp[-G(e-Ol , ... ,e-oJ , ... ,e-O",)] = 
[;/---+-00 [;/-+-00 

= exp[ -G(e-Ol , ... ,00, ... , e-O",)] = exp[ -00] = 0 

which is the first of the two limits. The second limit, derives from the 
homogeneity, condition 2) of G(.) (condition 2) implying that G(O, 0, ... ,0)=0. 
Therefore from equation (3.3.53) it results: 

lim F(£p ... ,£J= lim exp[-G(e-el, ... ,e-O",)]= 
O[··· .. f.·m----).+<XI 6J, ... ,RIIl --++00 

= exp[-G(O, ... ,O)] = exp[-O] = 1 

The third property is easily verified, being F(.) defined by (3.3.53) a 
continuous function. 
Furthermore, it can be demonstrated that the solution of equation (3.3.56) 
with F defined as in (3.3.53) actually gives the expression (3.3.52) of the 
choice probabilities defining a GEV model. 
In fact, substituting equation (3.3.53) in expression (3.3.56), for the 
homogeneity of G(.) and Gl), it follows: 

Ej=-OO 

+00 

= fexp{ -[e -(V; +£;ly . G(evi , ... ,evm)}. [e -(Vj+ej ly-l . G/evi , ... ,ev",), e -ej dB} = 
c) ::::::-00 

+00 

= f{ exp-[e -(Vj+ejly} G(el'l ",el~ l. [e -(vj+ejly-l. G/evi , ... ,ev,,), e -ej dB} = 
Cj =-oc 

v, G ( VI v"') 1 I' I' 1+ 00 eVj , G (e vi eV", ) e . I e , ... ,e { [ -(V'+&)]I'}G(e I e nI) j " .. , = VI v",' exp- e ", = VI Vm 
Ii·G(e , ... ,e ) -00 Ii·G(e , ... ,e ) 

which is the (3.3.52) withy; replaced with eVJ . 

Multinomial Logit, Single-Level Hierarchical Logit, Multi-Level Hierarchical 
Logit, and Cross-Nested Logit models can be obtained as special cases of the GEV 
model opportunely specifying the function G(.) as it will be shown in Appendix 3.A. 

3.3.6. The Probit model 
The Pro bit model overcomes most of the drawbacks of the Logit model and its 
generalizations, though at the cost of analytical tractability. It is based on the 
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hypothesis that residuals '1 are distributed according to a Multivariate Normal 
(MVN)(l4) random variable with zero mean and general variances and covariances: 

E[e j ] = 0 

Var[ej ] = O"~ 

Cov[el'eh ] = O"jh 

(3.3.58) 

Variances and covariances are the elements of the dispersion matrix, 1:, of the 
random vector e with a number of row and columns equal to the number of 
alternatives m. The Multivariate Normal density probability of the vector e is given 
by: 

(3.3.59) 

Perceived utilities U; are also jointly distributed according to a Multivariate 
Normal with mean vector V and variances and covariances equal to those of 
residuals '1; U - MVN(V, 1:). 

The choice probability of alternative j can be formally expressed as the joint 
probability that utility U; will assume a value within an infinitesimal interval and 
that the utilities of the other alternatives will have lower values. Clearly this 
probability must be integrated over all possible values of Uj. This can be expressed 
formally as (see equation 3.3.55): 

(3.3.60) 

The Probit model is an additive model if the matrix I does not depend on the 
vector of the systematic utilities V. In this case the choice probability of a generic 
alternative depends on the differences of systematic utilities. Thus Alternative 
Specific Attributes (ASA) and their coefficients (ASC) can be replaced by their 
differences with respect to the value of reference alternative. 

To illustrate the effect of variances and covariances on choice probabilities, the 
case of three alternatives (m = 3), with systematic utilities equal to zero (VA = VB = 

Vc = 0) and the following variance-covariance matrix: 

o 

can be considered. Fig. 3.3 .14 maps the probability p[ C] obtained with the Probit 
model (3.3.60) for varying values of parameters O"AB and o"c. As the variance of Uc 
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increases compared with those of the other alternatives, the choice probability of C 
increases. In fact, the random residual ec becomes dominant over the value of Vc 
and the perceived utility Vc is either much higher or much lower than the perceived 
utilities VA and VB (limur-"ao p[C]=O.5). Also, as the covariance (in this case 
coincident with the correlation coefficient) between the residuals of alternatives A 
and B increases, the choice probability of alternative C increases since A and Bare 
increasingly perceived as a single alternative. The same effect was shown in sections 
3.3.2 and 3.3.3 for the Hierarchical Logit model. 

p[C] 

0.5 +-------"-''---------___ ~ 

0.45l-__ --~~--

0.4 

0.35 

0.3 

0.25 

0.2 
o 0.2 0.5 0.75 

Fig. 3.3.14 Influence of the variance and covariance of residuals on Probit choice probabilities. 

In general, the Probit model yields choice probabilities similar to those obtained 
from Logit and Hierarchical Logit models if the same variance-covariance matrix is 
assumed. Nevertheless Probit allows a greater flexibility in the specification of this 
matrix. 

Generality of the variance-covariance matrix can also be a problem in the 
practical use of the Probit model. As a matter of fact in a variance-covariance matrix 
there are at most (m(m+ 1))/2 different values, where m is the number of choice 
alternatives. When m is large the specification and calibration of all the possible 
values can be problematic. Different methods have been proposed to reduce the 
number of unknown elements in the variance covariance matrix. All these methods 
assume some structure underlying to the random residuals; the parameters of this 
structure allow to specify the variance-covariance matrix and are less than all the 
possible unknowns. 

A first method known as Factor Analytic Probit expresses the vector of random 
residuals as a linear function of a vector (of independent standard normal variables: 
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n 

Cj = "'fJ'jkSk 
k=1 

c=Fs 

where: 
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(3.3.61) 

(3.3.62) 

c is the (mxl) vector of multivariate normal distributed random variables 
(factors) with elements;: c- MVN(O, L); 

F is the (mxn) matrix of loading with elements fik, mapping the vector S of 
standard random variables to the vector cofrandom residuals; 

S is the (nxl) vector of identical and independent standard normal distributed 
random variables with elements Sk: S - MVN(O, I). 

typically n«m and the number of unknown elements is reduced from the m(m+I)l2 
of the matrix .Eto the m'n of the matrix F. In the extreme case (m=n) the matrix F is 
such that: 

(3.3.63) 

and can be obtained through the Cholesky factorization of .E matrix as described 
subsequently. 

From the (3.3.61), the elements of the variance-covariance matrix .E of random 
residuals; can be expressed as a function of the elementsjjk of matrix F: 

(3.3.64) 

A relevant application of the factor analytic representation of the Probit model is 
in path choice as it will be shown in section 4.3 .4.1. 

This method also simplifies the computation of choice probabilities with 
simulation methods (Monte Carlo) since most statistic routines draw values from a 
standard normal distribution rather than vectors of values from a general MVN 
distribution. 

A different method to reduce the number of unknown coefficients in the 
dispersion matrix is the Random Coefficients (Random Tastes) Probit model. This 
model is based on the assumptions that the random residual ; derives from the 
dispersion of coefficients Pk over the population of decision makers. In particular 
each coefficient pik is assumed equal to an average value Pk plus a random residual 
r/k: 

k=1,2, ... ,K 
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where K is the total number of coefficients used to define the systematic utilities of 
the m alternatives. By assuming the llk independently distributed as normal variables 
with zero mean and variance elk: 

it results: 

with: 

r/k ~ N(O, elk) \if i, k 
COV[l/k, llh] = ° \if i, k, h 

v; = v/ + £~ = I P;X:j = I PkX:} + '7:X;} 
k k 

v; = LfJkX~j; t:; = L'7:X;j; &i ~ MVN(O,~.) 
k k 

Var[C;l= E[( ~~;x;)} ~(X;O",)' 

COV[£~,&~] = E[( ~'7~X~i}( ~'7~X~h)] = ~X~jx~a; 

(3.3.66) 

(3.3.67) 

where XkJ is the value of attribute k in alternative j; it is equal to zero if attribute Xk 

does not appear in the systematic utility of alternative j. Using this approach the 
unknown elements of the variance-covariance matrix are reduced (generally) from 
(m(m+ 1))/2 to K. 

The Random Coefficient Probit model can be seen as an application of the factor 
analytic representation described. In fact, neglecting user index i, it results: 

where: 

& is the (mxl) vector of multivariate normal distributed alternative random 
residual, & ~MVN(O, .E&); 

X is the (Kxm) matrix of attribute values; 
17 is the (Kx I) vector of independent normal distributed coefficient random 

residual, '7 ~MVN(O, .ETJ); 
t; is the (Kx 1) vector of identical and independent standard normal distributed 

random variables, t; ~MVN (0, I); 
F is the (mxK) matrix of loading, F=XT .E/2• 

and it is immediate to verify that matrix F specified above, introduced in the 
(3.3.64) and (3.3.65) gives the (3.3.66) and (3.3.67) respectively. 

Flexibility of the Probit model is achieved at the cost of computational 
complexity. In fact, the Probit model does not allow to express analytically choice 
probabilities since there is no known closed-form solution of the integral (3.3.60). 
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Numerical integration methods are computationally burdensome when there are 
more than five alternatives. Calculation of Probit choice probabilities with several 
alternatives is typically carried out by approximation methods. In the folll'wing, two 
"traditional" methods will be described. However, it should be said that new and 
more efficient methods are currently being studied. 

The Monte-Carlo simulation method generates a sample of perceived utilities 
(these can be thought of as the perceived utilities of a sample of decision-makers) 
and estimates the choice probability of each alternative j as the fraction of times j is 
the alternative of maximum perceived utility. 

At the kth iteration the method generates: 

a vector 1 = (&I k, • •• , &mk/ of random residuals extracted from a zero mean 
Multivariate Normal variable with dispersion matrix.E, 
a vector if of perceived utilities: if = V + I; 
a vector l of deterministic alternative choice probabilities: l = (0, ... , 1, ... , 0). 

where the value one is associated to the largest component if (maximum perceived 
utility alternative). Consequently, the sample estimate p U] of generic probability 

pU] will be: 

"[.] 1 ~ [. / k] n j Pl =-L.JPl & =-
n k=1 n 

(3.3.68) 

where 1 denotes draw k of vector & from a N(O, 1;) and nj is the number of times that 
alternative j is the maximum perceived utility alternative. 

It can be shown that the estimator (3.3.68) is unbiased and efficient. In 
applications, the vector & extracted from a random variable MVN(O,1;) can be 
obtained indirectly by means of m values extracted independently from a standard 
normal variable N(O, 1]. In fact, the positive definite matrix 1;' can be expressed as 
the product of a matrix and its transpose: 

(3.3.69) 

Matrix C can be obtained, for example, with the Cholesky factorization of matrix 
k If z indicates a normal standard vector of dimension (m·l) the vector Cz is 
distributed according to a Multivariate Normal MVN(O, 1;): 

E[CZ] = CE[z] = ° 
Var[ Cz] = E[ Czl C] = CICT = 1: 

Thus the vector & can be obtained as: 
&=Cz 
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With the Monte-Carlo method, each extraction can be considered as the 
execution of a Bernoulli experiment with m possible results. The probability of 
obtaining the /h result is in fact the choice probability of that alternative p[j]. It is 
therefore possible to estimate the sample variance of the estimate p [j] as: 

Var[ prj] ] = ! p[j] (1 - prj] ) (3.3.70) 
n 

A confidence interval for p[j] can be obtained by assuming that p[j] is 
approximately distributed as a normal r.v. with mean, p [j], given by (3.3.68) and 

variance given by (3.3.70) for values of n large enough. 
In Chapter 7 the Monte-Carlo method will be applied in a different context to 

calculate Probit path choice probabilities on a network, exploiting the special 
structure of this problem. 

The Clark approximation method is based on the moments of a r.v. 
corresponding to the maximum of normal random variables. The procedure will be 
illustrated first referring to the choice among three alternatives. In this case 
perceived utilities are distributed according to a multivariate normal with mean 
vector V= (VJ, V2, V3)T and the following variance-covariance matrix: 

Suppose the choice probability of alternative 3, p[3], has to be computed. Clark's 
results express the mean V12 and the variance Sl2 of the random variable Vl2 = 

max(VJ, V2) as: 
V12 = V2 + (VI - V2) F(a) + r.f{a) 

S212 = var[Vd = ml2 - V212 

where ml2 is the second moment around zero of the variable V12 given by: 

(3.3.71) 

(3.3.72) 

The constants r and a in expression (3.3.71) and (3.3.72) are the standard 
deviation of the random variable (VI - V2): 

_ [2 2 2 ]112 r- 0"1 + 0"2 - 0"12 

and the mean standardized value of the random variable (V) - V2): 



CHAPTER 3 135 

The symbols j( a) and F( a) denote respectively the value of the probability 
density function and probability distribution function of a normal standard r.v. 
N(O, I) calculated in a: 

j(a) = (2nr1l2 exp(-d/2) 

F(a) = [f(x)dx 

Clark's formulas also give the covariance between variables ~ and UI2 . .)_1 as: 

~.12 . .i = cov(~, U12 .. J = O'ij + (~·.12 ... ;-1 - O'ij) F(a) 

where it is i = j-I. Thus the covariance between variables U3 and U\2 results: 

Moreover, if UI2 is approximated as a normal r.v., it is possible to calculate the 
probability of choosing alternative 3 as: 

p[3] = Pr[U3 ;::: Ud = Pr[UI2 - U3 :S 0] (3.3.73) 

Since the difference between two normal r.v. is still a normal r.v. with a mean 
given by the difference between the two means V3 and VI2 and variance given by the 
sum of the two variances minus twice the covariance, the choice probability (3.3.73) 
can be computed as: 

[3]-F[ V3 -V12 1 p - (2 + S2 _ 2S )1/2 
0'3 12 3.12 

(3.3.74) 

Choice probabilities with more than three alternatives can be calculated by 
applying sequentially the procedure described. The probability of choosing the 
generic alternative j can be obtained by computing sequentially the mean variance 
and covariance of nested pairs of perceived utilities ordered in such a way that j is 
the last alternative. For example the mean and variance of U\2 = max(Uh U2) as well 
as its covariance with U3 are computed first. Subsequently are computed the mean 
and variance of the variable U123 = max( U3, U\2), together with its covariance with 
U4, and so on until the comparison is made between: 

Ul2..j_1 = max(~_ h max(~_2'" max(Uh U2») 

and ~ to obtain probability pU] by applying expression (3.3.74). The entire 
sequence has to be repeated to calculate the probability expression of each 
alternative. 
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3.3.7. The Hybrid Logit-Probit model* 
The Hybrid Logit-Probit model generalizes Multinomial Logit and Pro bit models 
since both of them can be derived as special cases. The Hybrid Logit-Probit model is 
also computationally more efficient than the Probit model as it will be seen later. 
The random residual E'J of the perceived utility of an alternative j is divided into the 
sum of two independent random variables, !;; and v/ 

u=v+£ =V+~+v .1 .1 .1 .1 } } 
(3.3.75) 

Moreover, the!;; are assumed MVN distributed with mean vector ° and generic 
variance-covariance matrix I (capturing the interdependencies among alternatives), 
while Vi are i.i.d. Gumbel variables with mean 0 and parameter () 

~ ~ MVN(O,I) 

v ~ G(O,a 2]) 

(3.3.76) 

In this way, the normal random residuals ~i give the general Probit structure to 
the model while the Gumbel residuals Vi result in the Logit kernel. As a matter of 
fact, for a given vector ; the classic Multinomial Logit expression for the choice 
probability of the generic alternative j results: 

. - exp[(Vj +f)/()] 
p[; /~] = j I exp[(Vh + qh) / ()] 

(3.3.77) 

Consequently the general expression of the choice probability for Hybrid Logit­
Probit model is: 

(3.3.78) 

Obviously, the same methods proposed to reduce the number of unknown 
elements in I and to compute choice probabilities (factor analysis, random 
coefficients, simulation methods, etc.) can still be used for the Hybrid Logit Probit 
model. For example the variation in utility coefficients and/or in perception of utility 
attributes can be assumed to give rise to MVN residuals r; while other factors, such 
as missing attributes etc, can be assumed to produce residuals v. 

The main advantages of Hybrid Logit Probit with respect to Probit is the 
possibility to compute numerically choice probabilities in more efficient ways, while 
keeping a variance-covariance matrix almost as general as the one associated with 
Probit models(15). The dimensionality of the multifold integrals involved in both 
models requires, in most cases, the use of unbiased efficient estimators of choice 
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probabilities as the MonteCarlo method described in section 3.3.6. The advantage of 
this model is that it leads to smooth and unbiased choice probability simulator: 

1 n 

p[j] = - Lp[j / ~k] 
n k=1 

(3.3.79) 

where t denotes draw k of vector ~ from a MVN(O,L). 
Comparing expression (3.3.79) with its equivalent for the Probit model (3.3.68) 

it can be observed that, while in the simulation of Probit choice probabilities each 
draw of vector t from a multivariate normal yields a vector of deterministic choice 
probabilities [0, ... ,1, ... ,0], in the simulation of Hybrid Logit-Probit choice 
probabilities, each draw of t produces a vector of stochastic choice probabilities 
[Ph.'" Pl"'" Pn] where the generic pU] is given by equation (3.3.77) with vector ~ 
replaced by vector (-. 

3.4. Choice set modeling* 
Random utility models simulate the choice made by the generic individual i from a 
set of alternatives, which make up his/her choice set t, under the hypothesis that the 
analyst is able to specify correctly this set. When this hypothesis is not acceptable, it 
is necessary to simulate explicitly the composition of the generic decision-maker's 
choice set. This problem has been tackled by following two basically different 
approaches. The implicit approach simulates the perception/availability of an 
alternative within the choice model of the alternative. The explicit approach 
simulates explicitly the choice set generation with a specific model. 

The first approach has been adopted in many specifications of random utility 
models proposed in the literature. Some attributes in the systematic utility function 
of an alternative play the role of "proxy" variables, simulating the 
availability/perception of that alternative. For example, the number of cars divided 
by the number of licensed drivers in a household is used to simulate the availability 
of the car in mode choice models. Attributes with this interpretation can be easily 
identified in several random utility models described in the next chapter. The 
implicit approach is undoubtedly simpler from the application point of view, though 
there is a noticeable lack of consistency since "utility" attributes are mixed with 
"availability" attributes. 

In the explicit approach, the choice probability of an alternative j for decision­
maker i is usually expressed through a two-stage choice model: 

pi[j] = Ll[j,t] = Lpi[j / r]p'[t] (3.4.1 ) 
ieG' /'eG I 

where: 

I is the generic choice set of decision-maker i; 
d is the set made up of all the possible non-empty choice sets for decision-
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maker i (non-empty subsets of the set of all the possible alternatives); 
is thejoint probability that decision-maker i will choose the alternative j and 
that 1 is his/her choice set; 
is the probability that decision-maker i will choose alternative j, his/her 
choice set being I; 
is the probability that 1 is the choice set of individual i. 

The choice probability conditional on set I, pi[j/I], can be simulated with one of 
the random utility models described in section 3.3. 

An example of the explicit model of choice set generation can be obtained 
starting from the general model (3.4.1) and assuming that the probabilities that each 
single alternative belongs to the choice set are independent of each other: 

Pr[j E r / hEn = Pr[j E t] V j, h (3.4.2) 

In this case, the probability p[/] can be expressed as : 

IT p[ h E F] . IT [1 - p[ k E 1']] 
p[ 1'] = he!' k<l' 

1- p[I' == 0] 
(3.4.3) 

where the first product is extended to all the alternatives included in I and the 
second to all those not included in I; the probability that the choice set is empty is 
given by: 

p[1' == 0] = IT [1- p[j E 1']] (3.4.4) 

The denominator of expression (3.4.3) normalizes probabilities p[/] to take into 
account the fact that an empty choice set (I == 0) is usually excluded under the 
assumption that the decision-maker's choice set includes at least one alternative. 
Replacing expression (3.4.3) and (3.4.4) in (3.4.1), the choice probability of the 
generic alternative is: 

,. ,~{Dp'[hEI']·D[1-p'[kE/']].P'[j/F]} 
P []] = 1- IT[l- p'[j E /']] 

(3.4.5) 

Specification of model (3.4.5) requires a model simulating the probability that 
generic alternative j belongs to the choice set p[jE/]. Various authors have proposed 
a Binomial Logit model (16): 
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(3.4.6) 

where Yk are the "availability/perception" variables mentioned above and Yk are the 
relative coefficients. 

The explicit approach, though very interesting and consistent from a theoretical 
point of view, poses some computational problems. The number of all the possible 
choice sets, i.e. the cardinality of G', grows exponentially with the number of 
possible alternatives. This complicates the calculation of choice probabilities (3.4.1), 
and therefore the joint calibration of the parameters 13k in the systematic utility and Yk 
in the choice set model. 

An intermediate approach named of Implicit Availability Perception (lAP), is 
based on the simulation of the availability/perception of each alternative with a 
model included in the utility function of the random utility model. This approach is 
based on the generalization of the conventional concepts of availability and choice 
set. It is assumed that an alternative may have various levels of availability/ 
perception for the generic decision-maker. It follows that the choice set of a generic 
decision-maker is seen as a "fuzzy set", allowing for intermediate levels of 
membership of the single elements in the set. The choice set is no longer represented 
as a set of Boolean variables [0/1] (1 if the alternative is available/ perceived, 0 
otherwise) but as a set of continuous variables J.lAi) defined in the interval [0/1]. This 
can be the case of an alternative theoretically available, but not completely 
perceived as such for a particular journey, due either to subjective (lack of 
information, time constraints, state of health, etc.) or to objective (weather 
conditions, etc.) factors. Obviously, extreme values are still possible, representing 
respectively non-availability and complete availability and perception of the 
alternative. The model reproduces different levels of availability/perception of an 
alternative by directly introducing an appropriate functional transformation of J.lAi) 
into the utility function of the alternative: 

(3.4.7) 

where 

Uj is the perceived utility of alternative j for decision-maker i; 
Vj is the systematic utility of alternative j for decision-maker i; 
i j is the random residual of alternative j for decision-maker i; 
J1 Ai) is the level of membership of alternative j to the choice set i of decision­

maker i (O~~l). 

In this way, all the alternatives can be considered as theoretically available. If 
alternative j is not available (Ji Ai)=O), the factor (InJ1 Ai» is such that its perceived 
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utility Uj tends to minus infinity and the probability of choosing it tends to zero, 
regardless of the value of V/, Furthermore, choice probabilities of all the other 
alternatives are no longer influenced by alternative j. If, on the other hand, an 
alternative j is certainly available and taken into consideration (JitJ)=I), the 
additional factor is equal to zero and the perceived utility has the conventional 
expression. Intermediate values of '"' tJ) reduce the utility of the alternative, 
proportionally to its level of availability. 

The true value of the availability/perception level, and therefore of factor In,", tJ), 
for the generic individual i, is unknown to the analyst and can be simulated with a 
random variable. This in tum can be expressed by the sum of its mean value, 
E[ln,", tJ)], and a random residual, 77~' given by the difference In,", tJ) - E[/n,", tJ)]. 
Expression (3.4.7) then becomes: 

u; = ~i + E[lnp; (j)] + 77; + e; (3.4.8) 

In order to operationalize expression (3.4.8), the expected value of the logarithm 
of,", tJ) can be approximately replaced by its second order Taylor series expression 
around the point f/tJ)=E[,",tJ)]. Once the expectation is substituted in equation 
(3.4.8) it results: 

U == Vi + Inlii(J.) _ 1-P: (j) + 0) 
J J rl 2P: (j) J 

(3.4.9) 

The choice probability of alternative j can therefore be calculated by using the 
random utility models described in section 3.3 and will depend on the systematic 
utility of each alternative, on the mean availability/perception of each alternative and 
on the joint distribution of random variables dj • For example, if the latter are 
assumed to be i.i.d. Gumbel (0,19) variables, a new Multinomial Logit model is 
obtained: 

(3.4.1 0) 

where the sum at the denominator is extended to all the alternatives theoretically 
available to decision-maker i. From the above expression, it can be deduced that the 
choice probability of a generic alternative increases as its mean availability/ 
perception increases(17) everything else being equal. 

Other functional specifications of choice models can be obtained from 
expression (3.4.9). For example, a positive covariance between the residuals 77j and 
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1Jh can be assumed if the two alternatives are more likely to be both available/ 
perceived or not. 

To specify completely the model (3.4.10) or a different functional form, the 
mean availability/perception {i lJ) must be expressed as a function of attributes of 
availability/perception, using for example a Binomial Logit model of type (3.4.6): 

(3.4.11) 

Note the different interpretation of the two expressions (3.4.6) and (3.4.11). 
Expression (3.4.6) gives the probability that alternativej belongs to the choice set of 
a given decision-maker, while expression (3.4.11) gives the average degree of 
availability/perception of the alternative . for decision-makers with the same 
attributes }" kj-

3.5. Expected Maximum Perceived Utility and mathematical 
properties of random utility models 
The Expected Maximum Perceived Utility (EMPU) is an important variable 
associated with each choice context. As was seen in section 3.2, random utility 
models are based on the assumption that perceived utilities are simulated as random 
variables and that the lh decision-maker chooses alternative j(i) with maximum 
perceived utility ~(i): 

(3.5.1) 

The variable ~(i) therefore is the perceived utility "obtained" by the decision­
maker in the choice context. This variable is not observed by the analyst because it 
is the maximum value of unobserved perceived utilities. Therefore ~(i) can be 
modeled as a random variable. 

The Expected Maximum Perceived Utility (EMPU) associated with a given 
choice context is defined as the expected value of ~(i): 

Si == i(~== E[UY(i)] == E[max;(lf)] == E[max(V + i)] == 
- LL max(V' + i)j{e) de (3.5.2) 

From (3.5.2) it can be deduced that EMPU is a function of the systematic utilities 
of all the alternatives, vector V, and depends on the joint probability density 
function of the random residuals, j{e), as well as on the composition of choice set 
t(lS). 

A number of mathematical properties of random utility model can be 
demonstrated using the EMPU variable. These properties are useful in building 
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transport demand model systems (see Chapter 4), for the analysis of assignment 
model (see Chapter 5) and for the evaluation of transport system projects (see 
Chapter 10). 

In the following the two cases of probabilistic (&*0) and deterministic (&=0) 
choice models will be addressed separately. 

Mathematical properties of probabilistic choice models. The EMPU associated 
with a particular choice context is always larger than, or equal to, the maximum 
systematic utility: 

s(V) ~ max(V) 

In fact, by definition, it results 

s(V)= [-00 ... (=-00 max(V+c)j(c)dc 
I 111 

and as j( c) ~O and max( V + c) ~ Vk + Ck V kEf, it follows: 

s(V)= [-00 ... (=-00 max(V + c)j(c) dc ~ 

~ [-co ... (=-00 Vk j(c) dc+ [-00 ... (=-00 Ck j(c) dc = 

= Vk [-00 ... [=-00 j(c) dc+ [-00 ... [=-00 Ck j(c) dc= 

= Vk + E[ cd = Vk V kEf 

(3.5.3) 

Therefore s(V) is larger than, or equal to, the largest systematic utility, 
S(V)~Vk VkEJ. 

In addition, the mean systematic utility calculated as the mean of the systematic 
utilities of all alternatives k weighted with the respective choice probability Pk(V) is 
less than or equal to the EMPU variable. In fact, using expression (3.5.3) it follows: 

In order to analyze the EMPU variable in more detail, initially, reference can be 
made to a Multinomial Logit model with constant parameter () For this model s(V) 
can be expressed in closed form. In fact, according to the results reported for the 
maximization of Gumbel variables(l9), the EMPU is given by expression (3.3.5) 
repeated here: 

s( V) = [) In L,j exp( V/ fJ) (3.5.4) 

It can easily be deduced that expression (3.5.4) satisfies condition (3.5.3) as 
exemplified in Fig. 3.5.1. From expression (3.5.4) it is also deduced that the EMPU 
for a Multinomial Logit model increases if the systematic utility of one or more 
alternatives increases since the functions In(.) and exp(.) are both monotonic 
increasing. Furthermore, because of the non-negativity of the exponential function, 
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EMPU increases with the number of available alternatives. The addition of a new 
alternative to the choice set, results in an increase in the expected maximum 
perceived utility, even if the new alternative has a systematic utility inferior to those 
already available. In fact, because of the randomness of perceived utilities, some 
decision-maker will perceive the new alternative as the alternative of maximum 
utility, for these individuals the maxiU) clearly increases with a consequent general 
increase of the mean value over all the individuals of maxi u\ that is the EMPU 
variable. The example in Fig. 3.5.1 exemplifies also this point. 

/\ VA = 5 s=7,127 
VB = 7 

A B 

!l\ VA= 5 
VB = 7 s=7,170 

Vc= 4 

A B C 

Fig. 3.5.1 Example of calculation of the Expected Maximum Perceived Utility (EMPU). 

These properties of EMPU, directly derived for the Multinomial Logit, apply 
also to the largest class of additive random utility models. For these models, the 
density function of random residuals doesn't depend on V: 

j{ &IV) = j( c) (3.5.5) 

All the random utility models described in section 3.3 are additive if the 
parameters of the j( c), do not depend on the vector V. If the joint density function of 
the random residuals j( c) is continuous with its first derivatives, choice probabilities 
p(V), and the EMPU, s(V), are also continuous functions of V, together with their 
first derivatives. All random utility models described in section 3.3 satisfY these 
continuity requirements. Under these assumptions, additive random utility models 
share some general mathematical properties connected with the Expected Maximum 
Perceived Utility. 

1) The partial derivative of the EMPU variable with respect to the systematic utility 
Vk is equal to the choice probability of alternative k: 

o s(V) = p[k](V) (3.5.6) 
oVk 

The gradient of EMPU is thus equal to the vector of choice probabilities: 
\ls(V) = p(V) 

and its Hessian is equal to the Jacobian of choice probabilities: 
(3.5.7) 
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Hess[s(V)] = Jac[p(V)] (3.5.7a) 

In fact, for a continuous function with continuous first derivatives, the 
integration and differentiation operators can be exchanged: 

o s(V) = ~ f.. [ max(V + e)f(e)de = 
oVk OVk ,=~ .=~ 

(3.5.8) 

Since it results: 

omax(V + e) = {I for k such that Vk + ek = max(V + e) 

a Vk 0 otherwise 

the integral (3.5.8) is equal to the probability that the perceived utility of 
alternative k, Vk + Gk, is the largest among all the m alternatives available, 
from which expression (3.5.6) derives. 

This result can be checked immediately for the Multinomial Logit model whose 
EMPU, expressed by (3.5.4), can be differentiated analytically: 

~ [0 In 2: . exp(V. /0) ] = 2:exP(vJ 0) = p[ k ](V) o Vk J J . exp(V/O) 
J 

(3.5.9) 

Furthermore, since the choice probability p[k] is always greater than or equal to 
zero, according to (3.5.6) the derivative of EMPU with respect to the systematic 
utility is always non-negative, EMPU increases (or does not decrease) as the 
systematic utility of each alternative increases and, by extension, increases as the 
number of available alternatives increases(20). 

2) The EMPU function is convex(21) with respect to the vector of systematic utilities 
V. 

In fact, for each e , j( e) ~ 0 and max( V + c) is a convex function of V; it 
follows that the Expected Maximum Perceived Utility function s(V) 
expressed by (3.5.2) is a linear combination with non-negative coefficients of 
convex functions, and therefore it is convex too. 

Note that in virtue of property 2) the EMPU function has a Hessian matrix, 
Hess(s(V», which is (symmetric and) positive semidefinite. Consequently, the 
Jacobian of choice probabilities, Jac(p(v», is (symmetric and) positive semidefinite 
(see equation 3.5.7a). 

3) If the EMPU function is continuous and differentiable it results: 

s(V') ~ S(V") + p(Vllf (V'_V") \iV',v" (3.5. lOa) 
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and choice probabilities are monotonic increasing functions of systematic utilities. 

(p(V')_p(V"))T(V'_V")~O VV',v" (3.5. lOb) 

In fact, because the EMPU function is convex and differentiable, it follows 
that: 

s(V') ~ S(V") + VS(V")T(V'_V") VV' ,V" 

and its gradient must be an increasing monotonic function (see Appendix A): 
(Vs(V') - VS(V"))T (V'_V") ~ 0 VV',v" 

Applying (3.5.7), the two preceding expressions can be formulated in terms 
of the vector of choice probabilities as in (3.5.10a). Moreover from (3.5.lOa) 
it results: 

S(V')-S(V") ~ p(V"f (V'_V") VV',v" 

S(V")-S(V') ~ p(V'f (V"-V') VV',v" 

Summing terms by terms last two equations it yields: 

o ~ p(Vllf (V'_V") + p(V')T (V"-V') VV', V" 

from which the (3.5 . lOb ) is easily obtained. 

In particular, equation (3.5.10b) can be expressed for a single alternative, 
assuming that the systematic utilities of all other choice alternatives are constant: 

In other words, the choice probability of a generic alternative does not decrease 
as its systematic utility increases, if all the other systematic utilities remain 
unchanged. Using an analogous argument, it can be demonstrated that as Vk tends to 
minus infinity, the choice probability of alternative k tends to zero: 

lim p[k] = 0 
Vk~-~ 

Mathematical properties of the deterministic choice model. The deterministic 
choice modeP2) is obtained if the random residuals are all equal to zero. In this case 
the perceived utility coincides with the systematic utility and only the alternative(s) 
of maximum utility can be chosen: 

p[k] > 0 => Vk = max(V) 

and 
Vk = max(V)=> p[k] E [0,1], Vk <max(V)=>p[k]==O 

Note that the deterministic choice model satisfies condition (3.5.5) and can 
therefore be considered an additive model. Ifthere are two or more alternatives with 
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(equal) maximum systematic utility, there are many vectors of choice probabilities 
satisfying the above conditions. In this case, the relation p(V) is not a function, but a 
one-to-many map. Let PDEY(V) be one of the possible vectors of choice probabilities 
corresponding to vector V through the deterministic choice map. 

The following necessary and sufficient condition guarantees that a probability 
vector, P* with p*"C.O, 1 Tp *= 1, is a deterministic choice probability vector: 

p* = PDEY(V) <=> VT p* = max(V) 1 T p* = max(V) (3.5.11a) 

In fact, given a vector of deterministic probabilities, p* = PDEY(V), it follows that 
VTp* = max(V) as Pk* can be positive only for an alternative k of maximum 
systematic utility, and vice-versa. Furthermore, condition 1 Tp* = 1 implies that 

T max(V)l p* = max(V). 
In general, for any vector of choice probabilities, p, since ITp = 1, then, as 

observed earlier: 

Consistently with (3.5.11a), in the above relationship the sign of equality holds 
only for a vector of deterministic probabilities. Combining the above relationship 
with (3.5.11a), a basic relationship for deterministic assignment models described in 
Chapter 5 can be obtained: 

(V - max(V)l/ (p - PDEY(V» ::;; 0 (3.5.11b) 

The deterministic utility model has the properties 2) and 3) described above for 
probabilistic and additive models(23). In particular, for what concern property 2), the 
Expected Maximum Perceived Utility for a deterministic model is a convex function 
of systematic utilities and is equal to the maximum systematic utility: 

s(V) = max(V) = PDET(VfV (3.5.12) 

This condition and result (3.5.3) imply that EMPU for a deterministic choice 
model is less than or equal to the EMPU for any probabilistic choice model for a 
given vector of systematic utilities V. A behavioral interpretation of this result 
suggests that the presence of random residuals makes the perceived utility for the 
chosen alternative, on average, larger than the systematic utility of this alternative 
which is the perceived utility in a deterministic choice model. 

For what concern property 3), the deterministic choice map is non-decreasing 
monotonic with respect to systematic utilities, as for additive probabilistic choice 
functions: 

s(V')"C. s(V") + PDET(V"l (V'-V") VV',V" (3.5. 13 a) 

or: 
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(PDET(V') - PDET(V")l (V'-v") ~ 0 VV"V" (3.5.13b) 

in perfect formal analogy with expressions (3.5.10). 

In fact, from (3.5.11a) it follows: 
max(V') = (V'/PDEr(V') 
max(V") = (VlPDEr(V") 

Subtracting term by term last two equations, it results: 
max(V') - max(V") = (V'/PDEr(V') - (V"/PDEr(V") (i) 

Since: 
(V'/PDEr(V') = max(V') ~ (V')Tp Vp, 

for P = PDEr(V") it follows: 
(V'/PDEr(V') ~ (V')T PDEr(V") 

from which: 
(V'/PDEr(V') - (V"/PDEr(V") ~ (V'/ PDEr(V") - (V"/PDEr(V") (ii) 

Therefore, combining equations (i) and (ii), it yields 
max(V') - max(V") ~ (V'-V"/PDEr(V") 

which is expression (3.5.13a) since s(V) = max(V). 

3.6. Direct and cross elasticities of random utility model 
In every respect, random utility models can be considered demand functions in the 
econometric sense. In fact, choice probabilities can be seen as the mean values of the 
fractions of a certain market segment (a group of decision-makers with the same 
characteristics) using each alternative(24). Also, these fractions are expressed as 
function of the attributes of the available alternatives. In the context of this 
interpretation, it is possible to extend to random utility models the microeconomic 
concepts of direct and cross elasticities of demand functions with respect to 
infmitesimal or discrete variations of the variables in the utility function. 

Recall that direct elasticity is defined as the percentage variation of the demand 
for a certain commodity (in this case, of the choice probability of alternative j) 
divided by the percentage variation of a variable (attribute) relative to the same 
commodity X k/ 

Analogously, cross elasticity is defined as the percentage variation of the 
demand for a certain commodity j divided by the percentage variation of a variable k 
relative to another commodity h, Xkh : 

£PIn = <¥[j] / Mkh 

kh p[j] X kh 
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In the above definitions, the variations of attributes and demand are assumed to 
be finite. In this case, we speak of arc elasticity, which is calculated as the ratio of 
incremental ratios over an "arc" of the demand curve. Point elasticities are defined 
for infinitesimal variations and can be expressed analytically. 

The point direct elasticity of the choice probability for alternative j with respect 
to an infinitesimal variation of the kth attribute of the utility function of this 
alternative, X kj , is defined as: 

£Pljl = 0 p[j](X) X kj olnp[j](X) 
k) 0 X kj p[j] 0 InX kj 

(3.6.1 ) 

where X includes the vectors of attributes for all alternatives. 
Similarly the point cross elasticity of the choice probability of alternative j with 

respect to an infinitesimal variation of the kth attribute of the utility function of the 
alternative h, Xkh, can be defined as: 

EP[;J = 0 p[j](X) X kh olnp[j](X) 
kh OXkh p[j] OlnXkh 

(3.6.2) 

Both direct and cross elasticities(25) are useful measures of the model's sensitivity 
to variations of the attributes. It is evident from (3.6.1) and (3.6.2) that elasticities 
depend on the functional form of the model as well as on the values of attributes and 
parameters in the systematic utilities. 

Analytic and compact expressions of direct and cross elasticities (3.6.1) and 
(3.6.2) can be obtained for the Multinomial Logit model with linear systematic 
utility function Yj = If ~. In this case, it results: 

E;[I) = (1- p[jDfikXk) / e 
Edj] = -p[k]fi X IB kh k kh 

(3.6.3) 

(3.6.4) 

From (3.6.3) it can be deduced that the direct elasticity is positive if attribute Xkj 
is positive (as it is usually the case) and if its coefficient fik is positive. In other 
words, the choice probability of an alternative increases if the value of an attribute 
representing an utility (f3 positive) increases(26). The increase will be higher the 
higher the values of coefficient fik and attribute Xkj and the lower the value of the 
choice probability of alternative j. Thus in a mode choice model, direct elasticities of 
the probability of choosing the car in terms of travel time and cost will be negative 
since the coefficients fik of these attributes are negative; these elasticities will be 
larger in absolute terms, for an Origin-Destination pair with relatively large time and 
cost values. Lastly, if the probability of choosing the car is low, its elasticity will be 
larger, for given values of parameter fik and attribute Xkj. 
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Similar considerations, though with inverted signs, hold for cross elasticities, 
which will be positive if fJk or Xkh are negative and larger the larger in absolute value 
are fJk' Xk and p[ h). Continuing with the above example, cross elasticities of the 
probability of using the car with respect to travel time and cost of another mode will 
be positive (f3k<O). 

Qualitatively similar considerations apply to elasticities for random utility 
models other than MNL. 

Note that the cross elasticity (3.6.4) of the Multinomial Logit model is constant 
for all alternatives j as the variation of an attribute of a certain alternative h produces 
the same percentage variation in the choice probabilities of all other alternatives. 
This result can be considered as a different manifestation of the property of 
Independence from Irrelevant Alternatives of the Logit model described in section 
3.3.1. 

Expression (3.6.3) and (3.6.4) also show that, for given values of coefficients and 
attributes, direct and cross elasticities are higher in absolute terms when the variance 
of random residuals (parameter 8) is lower. Vice versa, for variances tending to 
infinity, elasticities tend to zero. Fig. 3.6.1 shows the values of direct and cross 
elasticities with respect to a generic attribute in a Multinomial Logit model. 

A B c D 

Multinomial Logit 

XM 

IEDlAI 0.75 
[EAIil -0.25 
IEDlc] -0.25 
IEDlD! -0.2 

XItS 
-0.25 
0.75 

-0.2!i 
-0.2 

VA= VB= vc= VD 

fJk=1 V k 
Xkj=1 V k, j 

XkC XkD 

-0.2~ -0.25 
-0.2" -0.2!i 
o.n -0.25 

-0.2e 0.75 

Fig. 3.6.1 Direct and cross elasticities for a Multinomial Logit model. 

For more complex random utility models it is not easy, or even possible, to 
derive analytic expressions of direct and cross elasticities. However, it is useful to 
discuss elasticities for a Single-Level Hierarchical Logit model since they provide 
some insight into the influence of co variances on direct and cross elasticities. 

For the Single-Level Hierarchical Logit model in Fig. 3.6.2 it is possible to 
express the elasticities of alternative A, the only component of a group, with respect 
to the variation of a generic attribute Xk included in the systematic utility of all 
alternatives. 
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XI<A 
EIlIAI 0.7~ 

EIlI8I -0.25 

EdC -0.25 

EIlIDI -0.2 
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VA= Vs= Vc= Vo 
f3,.=1 V k 
Xkj =1 V k, j 

Hierarchical Logit 

8=1 8=0.8 8=0.4 
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Fig. 3.6.2 Direct and cross elasticities for a Hierarchical Logit model. 
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Applying the definitions of elasticity (3.6.1) and (3.6.2) to the Single-Level 
Hierarchical Logit model in expression (3.3 .19) with parameter 00 =1 , it is possible 
to obtain the elasticities of alternative A with respect to attribute k in closed form. 
The direct elasticity (variation of attribute X kA ) and the cross elasticity with respect 
to alternative B belonging to group G, also including alternatives C and D (variation 
of attribute XkB) are respectively: 

E:1IAI = (1- p[ADPkX "--1/ 0 

E:;A) = - P[B]PkXkB /0 

(3 .6.5) 

(3.6.6) 

The elasticities in this case are completely analogous to those obtained for the 
Multinomial Logit model, expressed by equations (3.6.3) and (3.6.4). Things are 
different for the direct elasticity XkB of alternative B belonging to group G: 

E:~B I = {(l- p[GD' p[B / G) + (1- p[B / GD / O}PkXkB (3.6.7) 

If the Hierarchical Logit reduced to a Multinomial Logit model, i.e. if 0= 1, direct 
elasticity (3.6 .7) would become analogous to (3 .6.3) or (3.6.5). On the other hand, if 
o is less than one, the Hierarchical Logit elasticity is larger than that obtained for a 
Multinomial Logit with the same parameters, attributes and residuals variance. 

The cross elasticities of p[B] with respect to variations of the attribute X kA of the 
"isolated" alternative A, and X kC of the alternative C belonging to the group G are 
respectively: 

EpI B) = -p[A] R X 
'\kA JJk kA 

(3 .6.8) 
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(3.6.9) 

Equation (3.6.8) shows that the cross elasticity with respect to an attribute of 
alternative A not belonging to group G, is equivalent to that of the corresponding 
Multinomial Logit model. On the other hand, cross elasticity with respect to an 
attribute of an alternative belonging to group G (correlated with B) is larger for 
smaller values of parameter B, i.e. the larger the covariance between the two 
alternatives. If two alternatives are perceived as being very similar (i.e. their 
respective random residuals are highly correlated), the probability of choosing one 
of them is very sensitive to variations of the attributes of the other. From (3.6.9) it 
also results that if B = 1, the Hierarchical Logit model becomes a Multinomial Logit 
model and the cross elasticity is analogous to (3.6.8). 

Direct and cross elasticities of the Hierarchical Logit model for different values 
of parameter B, are shown in Fig. 3.6.2. For B =1 the elasticities reported in Fig. 
3.6.1 are obtained. 

The general deductions from the above example are that, given equal attributes 
and coefficients, direct and cross elasticities of an alternative are the higher the more 
that alternative is perceived as "similar" to other alternatives. Thus for any random 
utility model, the variation of an attribute of an alternative will produce more 
sensible variations in the probability of choosing alternatives perceived as closer 
substitutes. 

3.7. Aggregation methods for random utility models 
Random utility models described in previous sections express the probability that a 
decision-maker i chooses each alternative j, as a function of the attributes of all 
available alternatives. To highlight the dependence of choice probabilities on 
individual attributes, expression (3.2.3a) can be reformulated as: 

(3.7.1) 

where Xj is the vector of attributes of alternative j for decision-maker i, and X the 
vector of the attributes of all alternatives. For convenience of notation, from now on 
(3.7.1) will be represented more compactly as pUIX). 

Applications of random utility models to the simulation of travel demand often 
require the mean value of total demand flows, i.e. the mean number of decision­
makers choosing each alternative. Aggregation techniques allow to pass from 
individual choice probabilities to group, or aggregate probabilities. To introduce 
these techniques, it is useful to describe the theoretical aggregation process. Suppose 
that, for each individual i of the population, the vector X of attributes, the functional 
form and the coefficients of the random utility model are known. Suppose also that 
there are NT individuals in the population and that they choose independently. Under 
these assumptions, the number of decision-makers who actually choose the generic 
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alternative) is a random variable, the sum of NT independent Bernoulli random 
variables y~, each of which is equal to one if individual i chooses alternative), zero 
otherwise. The mean value of the number of individuals choosing alternative), Dl , is 
therefore the sum of the means, pUIX'], of the NT Bernoulli random variables: 

~ ~ D j = LE[y~] = Lp(j I X] (3.7.2) 
1=1 ;=1 

The fraction, or the average percentage, of the population choosing alternative), 
Pl' can be estimated as: 

(3.7.3) 

For populations large enough to replace the sum with the integral, equation 
(3.7.3) can be rewritten as: 

Pj = Jp(j I X]g(X)dX (3.7.4) 
x 

where g(X) represents the joint probability density function of the vector of 
attributes over the whole population, a measure of the frequency with which the 
different values of X occur in the population. In practice, the distribution g(X) is not 
known, and to calculate the percentage Pl' aggregation techniques allowing to find 

an estimate Pi using information on a limited number of individuals must be used. 

In the literature, various aggregation methods have been proposed; these can be 
seen as approximate integration techniques of equation (3.7.4). 

The methods most frequently applied are: 

1) average individual; 
2) classification; 
3) sample enumeration; 
4) classification/enumeration. 

1) In the first method, an "average individuaf' is considered, whose attributes X are 
the average values over the population with respect to the g(X). The aggregated 
choice percentage is calculated as a function of these attributes: 

(3.7.5) 

This method is acceptable only if the relationship between the vector of 
attributes and the choice probabilities, pUIX], is linear or almost linear. Should the 
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probability function be convex or concave, the method would respectively 
underestimate or overestimate the actual value of the fraction of the population 
choosing alternative j (see Fig. 3.7.1). It can also be shown that the deviation of 

linear estimate Pj from its true value is the larger the more dispersed are the values 

of X in the population, i.e. the larger the variances in the marginal distributions of 
g(X). 

pU/X] 

0.5 

P[xtl 

pm 
P[X] 
P[xz} 

o 5 10 15 X 20 

Fig. 3.7.1 Bias of average individual estimates of population fractions. 

2) The classification method can be seen as an extension of the average individual 
method described above. In order to reduce the variance of g(X), the population is 
divided into homogeneous and mutually exclusive classes, with i representing the 
generic class of Ni components; the average individual technique is applied to each 
class. The estimated value of the fraction of population choosing alternative j 
therefore becomes: 

(3.7.6) 

where Xi is the vector of attributes for the average individual of the i th class. 
In applications, classes are defined on the basis of few main criteria having the 

greatest effect on systematic utilities. Variables influencing the distribution of the 
attributes, are often adopted as classification criteria, e.g. professional status or 
income. The number N/ of individuals belonging to each class should be available 
from statistical sources. The classification technique gives satisfactory results when 
the number of classes is limited and classes show good internal homogeneity with 
respect to the attributes included in the model. 
3) With the sample enumeration method, it is assumed that the whole population 
can be represented by a random sample of individuals (decision-makers) extracted 
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from it. The average fraction of individuals choosing alternative) in the whole 
population, is estimated starting from the probability that) is chosen by the 
individuals belonging to the random sample. If /V., is the number of individuals in the 
sample, then: 

(3.7.7) 

where X' is the vector of the attributes relative to the Hh individual in the sample. 
Expression (3.7.7) is relative to the estimation of the mean percentage of the 
population in the case of simple random sampling (27). 

4) Sample enumeration and classification methods can be combined; this is 
equivalent to assuming a stratified random sample of decision-makers. A random 
sample of individuals is extracted from each of the J strata in which the population is 
divided. If N; is the number of individuals belonging to stratum i and N,,; is the 

number of sample individuals extracted from stratum i, the faction Pj can be 

estimated as: 

(3.7.8) 

where the ratio W;=N/Nr is the weight of stratum i in the population. The total 
number of decision-makers choosing each alternative) (aggregate demand for 
alternative) can be calculated by multiplying expressions (3.7.6), (3.7.7) and (3.7.8) 
by Nr. The ratio between the number of individuals in the population (or a class) and 
the number of individuals in the sample, N1!/V.., or N INs;, is called "expansion factor" 
of individuals from the sample to the population. 

The sample enumeration method allows significant flexibility in the use of 
random utility models, since the attributes considered in vector X might include 
variables relating to the individual for which it is difficult, if not impossible, to 
obtain mean values over the whole population or sub-populations (classes). This 
flexibility is achieved at the cost of greater computational complexity. However, this 
drawback is becoming less important with the steady increase in available 
computing power. Another problem related to the sample enumeration method 
involves the availability of samples of decision-makers for each class i and each 
choice context (e.g., each traffic zone in the study area). The samples should be 
large enough to guarantee sufficient coverage of the distribution of attributes X. This 
leads to the need for large samples of decision-makers for each zone. To overcome 
this problem, the prototypical sample method has been proposed. The same sample 
of /V." decision-makers of class i is used for different traffic zones while different 
weights W; are adopted for each class i in each zone z (W; = N/NrJ. This method is 
based on knowledge of the number, N;, of individuals of class i in each zone which 
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can be obtained from statistical sources (present scenario), or from socio­
demographic forecasts (future scenarios). 

Estimation of the average number of individuals choosing alternative j in zone z, 
DZ

j , with the sample enumeration method requires the expansion factors gZi of each 
category in each zone: 

(3.7.9) 

where the expansion factors can be formally expressed as: 

Sometimes, the number Ni of individuals of class i in zone z is unknown, 
especially when several classes have been defined. In this case, it is not possible to 
estimate the weights of the individual classes (Wi = N /NT) and the average choice 
percentages by (3.7.8). Additionally, the expansion factors ti and the total number 
of individuals choosing alternative j, Dj , cannot be estimated by (3.7.9). To 
overcome this drawback, the target variable method can be adopted. This method 
will be described in reference to the calculation of expansion factors; once these are 
known, the weights Wi can easily be calculated. The expansion factors are 
calculated so that once the prototypical sample is rescaled to its universe it 
reproduces the values of some aggregated variables, known as target variables, r,. 
Typical target variables are the number of residents by professional status, age, sex, 
income group, etc. Formally expansion factors ti must satisfy the following 
equations: 

(3.7.10) 

where K(t, h) is the contribution to the tth target variable of the hth component of the 
prototypical sample belonging to category i. For example, if the tth target variable is 
the number of workers in the zone, individual h of category i will contribute one if 
employed, zero otherwise. In general, the number of unknown expansion factors, or 
classes in each zone, is larger than the number N, of target variables, and the system 
of equations (3.7.10) does not have a unique solution. In this case, the vector of 
expansion factors for each category It can be obtained by solving a Least Square 
problem minimizing the weighted distance from a vector of reference expansion 
factors g and, at the same time, satisfying as closely as possible the system of 

equations (3.7.10): 
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(3.7.11) 

Reference expansion factors can be obtained as sample estimates of the users' 
fraction belonging to each category. The parameter a is the relative weight of the 
two parts of the objective function in (3.7.11), i.e. the relative weight that the analyst 
associates to the target variables (3.7.10) and to the initial estimates g in the solution 

of problem (3.7.11). 
The Least Square problem with non-negativity constraints on the variables 

(3.7.11) is similar to that formulated for the estimation of O-D demand flows with 
traffic counts discussed in Chapter 8, and can be solved by using the projected 
gradient algorithm described in Appendix A. 
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3.A. Derivation of Logit models from the GEV model 
As stated in section 3.3.5 the choice probability of a GEV model can be expressed as 
(see equation 3.3.52): 

,', G ( ,', ,,~ I;,,) . e· j e , ... ,e , ... ,e 
p[J] = /' V " 

fl' G(e ', ... ,e ' , ... ,e ",) 
(3.A.l) 

In the same section it was also stated that Multinomial Logit, Hierarchical Logit and 
Cross-Nested Logit models can be derived as GEV models. For the Multinomial 
Logit and the Hierarchical Logit this is possible by specifying the function GO as: 

G( e'" , ... , e"" ) = e)~ (3.A.2) 

where y" is the logsum variable relative to the root node of the choice tree related to 
the model under study. 

3.A.1. Derivation of the Multinomial Logit model 
In the case of the Multinomial Logit model, the choice tree has the root node 0 

directly connected to all the elementary alternatives) (see Fig. 3.3.1). 
In this case the variable Yo can be expressed as: 

Y = In ~ e,;lo 
" L... 

and equation (3.A.7) becomes: 
no 

G(e" , ... ,eV",) = LeV,lo (3.A.3) 
j::ol 

It can easily be verified that this function satisfies the four properties mentioned 
in section 3.3.5, given some limitations to parameter e. 

In fact: 
I) G:2: 0 for any value of eand Vi (i = I, ... ,m); 

2) G(ae'i , ... ,ae";") = ! (ae'; )'10 = a"o! (e';)"o = aIIOG(e'i , ... , eV") 

;::1 i=1 

i.e. G(.) is homogeneous of degree 1/ e, positive if e> 0; 
no 

3) lim" G(e'i , ... , e";") = lim " " e"i IO = 00, for i = 1,2, ... ,m ; 
e'--+-oo el-+C()L...J 

;=1 

4) the first derivative of GO with respect to any e/" is equal to: 
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v e",[(118)-'1 

Gk = oG(.)/ oe j = ---e 
it is non-negative for any e ~ O. Furthermore, higher-order mixed derivatives are 
all null, and therefore both non-negative and non-positive. Condition 4) is 
therefore certainly verified if condition 2) on the positivity of the coefficient e is 
verified. 

Substituting the expression (3.A.3) in equation (3.A.I), it results: 

which is the expression of the Multinomial Logit model of parameter e. 
To complete the demonstration, the joint probability distribution of random 

residuals can be derived. In fact, substituting expression (3.A.3) in the joint 
probability distribution function (3.3.53), the product of m Gumbel probability 
distribution functions of parameter e is obtained: 

Thus expression (3.A.3) of the function G(.) implies that random residuals are 
identically and independently distributed as Gumbel variables of parameter e and 
therefore with variances and covariances defined by expressions (3.3.2) and (3.3.3). 
Note that the Euler's constant f/J has been included in systematic utilities V; with no 
loss of generality since, as stated in section 3.3.1, Logit choice probabilities are 
invariant with respect to the addition of a constant to all utilities. 

3.A.2. Derivation of the Single-Level Hierarchical Logit model 
In the Single-Level Hierarchical Logit model with equal covariances, the choice tree 
has the root node 0 connected to intermediate nodes k to which elementary 
alternatives j are connected (see Fig. 3.3.4). The parameters e associated with all 
intermediate nodes k are equal. 

With this tree structure, the variable Yo becomes: 

with 
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Y, =ln2:e'"'8 
iEh 

Consequently equation (3.A.2) becomes: 

159 

(3.A.4) 

Also in this case, it can be shown that G(.) satisfies the four properties mentioned 
above, given some limitations on parameters {} and {}o. 

= (a)I/Bo . G(i" , ... , eV"') 

i.e. G is homogeneous of degree 11 {}o, positive if (}o > 0 ; 

3) lim" G(e", , ... , e'~") = 00, for k = 1,2, ... , m ; 
e ""0:; 

4) the first-order partial derivative of G(.) with respect to any eVh is equal to: 

Gh = {)G(.)I () e" = {}/ {}o . (2: e";'o )(OIOOJ-I .1/ {}. e,,[(IIOJ-'] with h E Ik 
IEh 

which is non-negative if: 
(}o?: 0 (3.A.5) 

Inequality (3.A.5) is implied by condition 2) on the positivity of the homogeneity 
coefficient. 
Moreover, second-order mixed derivatives are equal to: 

. . {~. eV,[(lIOJ-11 .(~ -IJ .(" ev,IOJ<0100J-2 ~eVh[(I10J-II 
{)'G(.)/&"&'h = {} {} L... {} 

o 0 IE~ 

0, 

which, given (3.A.5), are non-positive if: 
0:0; (}:o; ()" 

It can be easily shown that condition 4) is always satisfied, 
mixed derivatives, if (3 .A.6) holds. 

for j, h E Ik \::j k 

otherwise 

(3.A.6) 
for higher order 
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Also in this case, therefore, conditions 2) and 4) impose limitations for the two 
parameters 8and 80 (0 < 8::;, ( 0 ) analogous to those described in section 3.3.2. 

Choice probabilities can be obtained by substituting function (3.A.4) in equation 
(3.A.I): 

8 ('" "i/O )~_I I Vj [(1I0)-I[ ("'. eV;lO)~ " B· L- e "(j" e I' /0 L-
[ .J e 0 IEih e ) IE/h 

P J = -1-· !!... = Ii;'o .---'---~-!!...::-
8" I(Iel.;/O)o. leI, I(Ie'i/O)O. 

k ieik k ie1k 

(3.A.7) 

which is the expression of the Single-Level Hierarchical Logit model with 
parameters 80 and 8. Introducing the parameter 8=8180 and the logsum variable Yk: 

Yk = In I expert, 18) 
ie1k 

(3.A.7) becomes: 

which is another expression of the Single-Level Hierarchical Logit with constant 
covariances. 

3.A.3. Derivation of the Multi-Level Hierarchical Logit model 
The demonstration that the Multi-Level Hierarchical Logit (Tree-Logit) can be 

derived from function (3.A.2) satisfying the four properties mentioned cannot be 
easily generalized since it is difficult to express the choice tree structure in a general 
form. To demonstrate the statement that the Multi-Level Hierarchical Logit model is 
a GEV model, reference to an easily generalizable example will be made. 

Consider the structure of the choice tree in Fig. 3.A.l. 
80 

A B c D 

Fig. 3.A.1 Choice tree for a Multi-Level Hierarchical Logit model. 
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There are two intennediate levels and three parameters: Bo, Bh 8;.. Let VA, VB, Vc 
and VD be the systematic utilities of the four elementary nodes. According to what 
stated in section (3.3.3), it follows: 

01 = BilBo 

O2 =B2 IBI 

Y2 =In(lC IO, +l'oIO,) 

1'; = In(el'slO, + eO,y,) = In[eVSIO, + (e"C IO, + eVoIO, )0,10,] 

>: =In(eVAIOo +eO'Y')=ln{eVAIOo + [eVslo, + (e FCIO, + eVo1o,t,IO,t,/Oo} 

v e A 

p[A] =-y 
eO 

Substituting the expression of Yo given by (3.A.8) in (3.A.2) it results: 

(3.A.8) 

(3.A.9) 

(3.A.lO) 

It can be verified that this function satisfies the four properties given some 
limitations on the parameters B. 

In fact: 
1) G ~ 0 for any value of~, (j = 0, 1,2), Vi, (i = A, B, C, D); 
2) G(ae'A , .. "aeI'O) = (aeV, )"00 + {(aeVS )"0, + [(aeVC )"0, + (aeVD )"0, t"O, }o,lOo 

= (a)lI/Jo .(eVA)II/Jo + {(a)II/J1 .(eVB)II~ + [(a)IIOz . (e VC t/J2 + (a) I 1/J2 .(eVD)II/J2t2/~}~//Jo 

= (a)lI/Jo . (eVA )II/Jo + {(a)lI~ . (eVB )I/~ + (a)II/J1 . [(eVC )11/J2 + (eVD )1I/J2 t2//J1 }~//Jo 

= (a)lI/Jo .(eVA)II/Jo + (a)ll/Jo .{(eVB)I/~ +[(eVC)II/J2 +(eVD)II/J2t2/~}~//Jo 

= (a)lI/Jo . G(eV.4 , ... ,eVD ) 

i.e G(.) is homogeneous of degree lIBo' positive if Bo > 0; 

3) lim,. G(ev\ ... ,eVO ) = 00, for i = A,B,C,D; 
e '-+00 

4) first-order partial derivatives can be expressed as: 
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;; G / ;; eV.' = 1/8
0 

• eVA(I/B"-I) 

;; G / ;; eVB = 8 /8 . (e VB /B, + eO,y, )0,-1 .1/8 . eVB(I/B,-I) 
1 0 1 

;; G /;; eVe = 8 /8 . (e VB /B, + eO,y, )0,-1. 8 /8 . (e ve /O, + e VD /O, )0,-1.1/8 . eVe(I/O,-I) 
1 0 2 1 2 

Note that in this case there is no structural symmetry, and they differ from each 
other. First order derivatives are non-negative if: 

80 ~ 0 (3.A.ll) 
Other limitations on parameters 8 can be deduced from the second order mixed 
derivatives. In particular, it is sufficient to use only the following two mixed 
derivatives: 

A' G/oe"oe'c =~.e"8(*-'). e, -eo . (eVB/Or +eo,Y,),,-, .~.(e';'/1Iz +e''oIIIz)o,-''e'e(f,-') 
eo eo e, 

a' G/ oe'e oe''v =~. e'c(f,-'). e, -eo. (eVs'Or +eo,Y, )",-2. e2 . [(eVe/liz +e'D/1Iz )o,-'r. ~ .e"D(~-') + 
eo~, e, e2 

+~.e"e(f,-'). e2 -e, . (e'e /1Iz +eVD/IIz)o,-2 .~.e"D(.l;-') . (eV8 /Or +eo,Y,)bi-' 
~,e, e, 

(3.A.I2) 
In particular the first one, imposing inequality (3 .A.II), is non positive if: 

0::::; 81 ::::; eo (3.A.I3) 
In the second one, imposing (3 .A.I3), it results that the first term is always non­
positive while the second term is non-positive if: 

0::::; ~::::; 81 (3.A.I4) 
Combining expression (3.A.I3) and (3.A.I4), it follows: 

0::::; ~::::; 81 ::::; 80 (3.A.IS) 
It can be shown that condition 4) for the other second order mixed derivatives 
not included in (3.A.I2) and for higher-order mixed derivatives is always 
verified if inequality (3.A.IS) holds. 

Choice probabilities for the Multi-Level Hierarchical-Logit model described, can 
be obtained substituting expression (3.A.I 0) in equation (3.A.l). It then results: 

VB 8 /8 . ( VB/O, + o,Y, )0'-' .1/8 . eVB(1I0,-I) VB/O, 
p[B]=_e_. 1 "e e , =_e_.e(O,-I)Y, 

1/8 eY" eY" 
" 
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equal to the expressions (3.A.9) 
The conditions on parameters e obtained for the three models described so far 

are both necessary and sufficient; if they are not satisfied the function G(.) doesn't 
have the properties 1, 2, 3 and 4 and the models are not compatible with random 
utility theory. 

3.AA. Derivation of the Cross-Nested Logit model 
The Cross-Nested Logit model has a choice graph shown in Fig. 3.3.10 and can be 
obtained as a GEV model by specifying the function G(.) as: 

(3.A.I6) 

with ()k= ei eo and the membership parameters aik in the interval [0, I]. Also in this 
case, it can be verified that G(.) satisfies the four properties, given some limitations 
on parameters ek• 

In fact: 
1) G;:>:O foranyvalueofeh Vi(i= I, ... m),aim[O;l]; 

2) G(fJev, , ... , fJe Vm ) = I [I aik II", (fJeVi )110, )"k = I [fJ IIOk I a ik IISk (eV; )110, )"k 

k iE/k k iE/k 

i.e. G(.) is homogeneous of degree 11 eo, positive if it is eo;:>: 0; 

3) lim, G(e", , ... , e"",) = 00, fork=I,2, ... ,m; 
ek-tc.(l 

4) the first order partial derivative of G(.) with respect to any /i is equal to: 

G} =oG(.)/oe" = I[(), ·(Iaik"S'e'·;lo.)s,-,. aik"'" '(eVJ)t-'] 
k IElk Ok 

and is non negative if it is 
eo;:>: 0; (3.A.I7) 

Inequality (3.A.I7) is implied by condition 2) on the positivity of the 
homogeneity coefficient. 
Moreover, second-order mixed derivatives are equal to: 

{)'O(.)/&/'&" = I[a",lIo, .~(e'h)o'.-' '(0, _1)'(Ia"lIo' el',10,)O,-2. a/,"O, '(e"')O;-'] 
,e, ,," eo 

If inequality (3 .A.I7) is satisfied, all terms of the summation are non-positive if: 
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O:S:Bk:s:Bo Vk (3.A.lS) 
Thus the condition of non positivity is always satisfied (for any value of Vi. aik) if 
the (3 .A.lS) is true. 
It can be easily shown that condition 4) for higher order mixed derivatives is 
always verified if (3 .A. IS) holds. 

Choice probabilities can be obtained by substituting the function G(.) expressed 
by (3.A.16) in equation (3.A.l): 

(3.A.19) 

which is the expression of the Cross-Nested Logit model (cft. 3.3.49). 
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3.B. Random variables relevant for random utility models 

3.B.1. The Gumbel random variable 
The Gumbel variable is a continuous variable, which plays a very important role in 
the building of random utility models of the Logit family. In the following the 
probability functions of this variable are described and some important properties 
are illustrated. To facilitate the immediate application of the results to random utility 
models, the Gumbel variable will be indicated by U (instead of XG) and its expected 
value by V (instead of E[XG)). 

The probability density function of a Gumbel r.v. U with mean V and parameter 
e is given by: 

JU(u) = l/e·exp[-(u-V)/e-tP] exp{-exp[-(u-V)/e-tP]} (3.B.1) 

and its distribution function is: 

F u(u) = exp{ -exp[-(u-V)/e-tP]} (3.B.2) 

wheretP is the Eulero's constant approximately equal to 0.577. 
The mean and the variance of the Gumbel variable are: 

E[U] = V 

(3.B.3) 

From expressions (3.B.3) it is deduced that the standard deviation of the Gumbel 
r.v. is directly proportional to the parameter e. Fig. 3.B.1 shows some probability 
density functions of the Gumbel r.v. with zero mean for different parameters e. 

It can easily be demonstrated, by substitution in expression (3.B.2), that if U is a 
Gumbel variable with parameters (V, (}), any r. v. obtained by linear transformation 

Y=aU+b 
is also a Gumbel r.v. of mean 

E[Y] = aV+ b 

and the same parameter e (same variance). From this result it follows immediately 
that the residual of a random utility model B = U- V (a = 1, b = - V) is a Gumbel r. v. 
of zero mean and parameter e. 

The Gumbel r.v. has an important property of stability with respect to 
maximization. In other words, if ~, j=l, ... ,N, are independent Gumbel r.v. with 
different mean ~ but the same parameter e, the maximum of these variables: 
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(3.B.4) 

is also a Gumbel r.v. of parameter B. 

In fact, the probability distribution function of UM , , can be obtained as: 

FUM (u) = Pr(U M < u) = Pr[maxj=I"N{U;}::; u] 

and for the independence of the ~, it follows: 

Pr[maxj=".,N{Uj}::;u]=Il._ Pr[Uj<u]=Il_ Fu(u) 
J-l, ... ,N J-l, ... ,N } 

Substituting the expression (3.B.2) of the Gumbel probability distribution 
function in the previous expression, it follows that: 

FUAl (u) = Il= exp{-exp[-(u - V)/ B - <fJ]} 
J 1, ... ,N 

which yields: 

Fu (u) = exp[-exp( -<fJ). exp( -u / B)· '" . exp(VJ. / B)] 
M ~J 

(3.B.5) 

If the EMPU variable described in Chapter 3 is indicated by VM : 

VM = Bin Lj exp(fj/(J) (3.B.6) 
and it is substituted in the expression (3.B.5), it follows 

FUM (u) = exp{-exp[-(u - VM )/ B - <fJ]} 

which is still the probability distribution function of a Gumbel random 
variable with mean VM and parameter B as is deduced immediately by 
comparison with (3.B.2). 
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Fig. 3.B.1 Probability density functions of a Gumbel r.v. 
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The Multinomial Logit model can be obtained by using the definition of random 
utility model (3.2.1) and the property of stability with respect to maximization of the 
Gumbel r.v. described above. 

In fact, from (3.2.1) it results: 

p[j] = Pr(U; > V M') 

with 

V M' = maxk;<j{Vk} 

This probability can therefore be expressed as the product between the 
probability that the perceived utility ~ has a value included in an 
infinitesimal neighborhood of x and the probability that VM has a value less 
than x. This product must obviously be integrated with respect to all the 
possible values of x: 

p[j] = Pr(Vj > V M') = [FuM' (x)· fu/x)dx (3.B.7) 

where FUM' andf~ are the probability distribution function and the probability 
density function of the random variables VM • and ~ respectively. If the Vk 

are i.i.d. Gumbel variables of parameter () and mean Vk, VAl', as shown above, 
is also a Gumbel variable with the same parameter () and mean equal to: 

VM , = ()/n :l:k4 exp (Vk/fJ) (3.B.8) 
Expression (3.B.7) then becomes: 

p[j] = [exp{ -exp[ -(x - V M') / () - cP]} . exp{ -exp[-(x - Vj ) / () - cP]} . 

. exp[ -(x - V) / () - cP] . (1 / ()) dx = 

= ['" exp{ -exp[ -(x - V)/ () - cP] - exp[ -(x - V M')/ () - cP]} . 
'" J 

exp[ -( x - Vj ) / () - cP] . (1 / ()) dx = 

= exp(Vj / () - cP)· [exp{-exp(-x / ()). [exp(Vj / () - cP) + exp[VM' / () - cP]}· 

exp( -x / ()). (1/ ()) dx = 
(V / () cP) ['" [ (/ ())][exP(vj/()-(/J)+exP[VM./()-(/J] = exp j - . '" exp -exp -x 

. exp( -x / ()). (1/ ()) dx = 

exp(Vj / () - cP) ! [ (/ ())][exP(vj /()-(/J)+exP[VM,/()-(/J]!+oo 
= . exp -exp -x = 

exp(Vj / () - cP) + exp(V M' / () - cP) -'" 

exp(Vj / ()) 

exP(Vj / ()) + exp(V M' / ()) 

and, substituting expression (3.B.8) for VM " it follows: 
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. expW; /0) exp(V; /0) 
prj] = . =' 

exp(V; /0) + L expWk /0) L exp(Vk /0) 
k".i k 

which is the Multinomial Logit model described in section 3.3.1. 

3.B.2. The Multivariate Normal random variable 
The Multivariate Normal LV., XMVM is the generalization of the normal r.v. to the 
case of n dimensions. Its probability density function is given by: 

!X,WN (x) = [2;r" det(I x )r'/2 exp[-I / 2(x - f.1 x) T I-;' (x - f.1 x)] (3.B.9) 

where the parameters are the vector f.1 and the matrix 1:, and det(};) denotes the 
determinant of the matrix .E. 

The parameters of a multivariate normal r.v. are the vector of the means with 
components f.1x; and the variance-covariance matrix that can therefore assume any 
value as long as it is positive semi-definite. In other words: 

I -I 
X,III',V - x 

The surfaces of equiprobability of the multivariate normal variable, or the loci of 
points in the n-dimensional Euclidean space for which the density function is 
constant, have the equation: 

(3.B.IO) 

where C is a constant. Expression (3 .B.I 0) is the equation of an ellipsoid with f.1 as 
its center (see Fig. 3.B.2). 

The Multivariate normal r.v. has the property of invariance with respect to linear 
transformations, which can be considered an extension of the property of invariance 
with respect to the summation of the normal r.v. In other words, if X is a random 
vector with probability density function (3.B.9), the vector Y = AX, where A is a 
matrix of dimensions (mxn), is also a Multivariate normal variable with mean vector 
and dispersion matrices given by: 

E[ Y] = AE[X] = A f.1x 
T T T Iy = E[A (X - f.1x)(X - f.1x) A ] = A Ix A 

Furthermore, from (3.B.9) it can be easily deduced that if the n components of 
X MVN are non-correlated, i.e. the matrix I is diagonal, they are independent, i.e. the 
probability density function (3.B.9) is the product of n density functions of 
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univariate normal r.v. with means f-lx; and variances 0\. It can be worth recalling 
that two independent random variables are non-correlated in any case. 
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Fig. 3.8.2 Equiprobable surfaces ofthe Multivariate Normal r.v. 

Reference Notes 

Random utility theory has stimulated, both in theory and in applications, the 
understanding and modeling of the mechanisms underlying transportation demand. 
One of the first systematic accounts of its foundation can be found in the book by 
Domencich and McFadden (1975). The book formalizes the theoretical work carried 
out in the early 70's on random utility models and on Multinomial Logit models in 
particular. 

Theoretical analyses ofrandom utility models can be found in Williams (1977), 
Manski (1977) and in the book by Manski and McFadden (1981). The book by Ben­
Akiva and Lerman (1985), gives a very comprehensive account of random utility 
theory, of Logit family models and of many applicative issues dealt with in this 
chapter (e.g. elasticities, aggregation procedures) and in Chapter 8 (calibration and 
tests). 

The work of Williams and Ortuzar (1982) analyzes the limitations of random 
utility (or "compensatory") models and compares them with other behavioral 
discrete choice models. The paper also contains a comprehensive, though dated, 
bibliography on non-compensatory models. A detailed analysis of the state of the art 
on the use of random utility models in modeling transportation demand can be found 
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in the note by Horowitz (1985). More recent systematic reviews of random utility 
models can be found in Bath (1997) and in Ben-Akiva and Bierlaire (1999). 

As for specific random utility models, references to the Single-Level 
Hierarchical Logit model can be found in Williams (1977) and Daly and Zachary 
(1978), while for an exposition of the Multi-Level Hierarchical Logit model in its 
most general form, reference can be made to Daganzo and Kusnic (1992). The 
Multi-Level Hierarchical-Logit have been reformulated and specified in more 
compact and general form than in the literature. The Cross-Nested Logit model was 
first presented by McFadden (1978) in the context of residential location choice; 
applications to other choice dimensions ca be found in Small (1987) and Vovsha 
(1997) (1998). The formulation reported in section 3.3.4 is from Papola (2000). The 
GEV model was proposed by McFadden (1978) and subsequently generalized by 
Ben-Akiva and Francois (1983). The demonstration of GEV models as random 
utility models and the derivation of Hierarchical Logit models as GEV models is 
from Papola (1996) while the derivation of the Cross-Nested Logit model as a GEV 
model is from Papola (2000). 

A detailed analysis of the Probit model is contained in the book by Daganzo 
(1979); for the calculation of Probit choice probabilities reference can be made to 
the work of Horowitz, Spermann and Daganzo (1982) and Langdon (1984). 
Reference to the Factor Analytic Probit can be found in Ben-Akiva and Bierlaire 
(1999) while reference to the Random Coefficients (Tastes) approach can be found 
in Ben-Akiva and Lerman (1985) and in Ortuzar and Willumsen (1994). 

The Hybrid Logit-Probit model is also a rather recent development of random 
utility models. One of the first papers dealing with its theoretical and computational 
aspects is Ben-Akiva and Bolduc (1996). Other references to this model are in 
Bolduc et al. (1996) and in Ben-Akiva and Bierlaire (1999). 

The general approach to modeling choice set alternatives is contained in Manski 
(1977). A recent outline of the state of the art of explicit models of choice set 
generation and a number of specifications are found in Ben-Akiva and Boccara 
(1995). The Implicit Availability Perception approach is described in Cascetta and 
Papola (2000). 

The Expected Maximum Perceived Utility function and its mathematical 
properties are dealt with in Daganzo's volume (1979). Reference can also be made 
to the work of Cantarella (1997) which draws on and generalizes the results. 

The definition of elasticity associated with random utility models and the 
expressions for the Multinomial Logit model are given in various texts, particular 
reference can be made to Domencich and McFadden (1975) and to Ben-Akiva and 
Lerman (1985). The results relative to elasticities for the Single-Level Hierarchical 
Logit model are from Koppelman (1989). 

A systematic treatment of the aggregation procedures proposed by Ben-Akiva 
and Atherton (1977) is given in Ben-Akiva and Lerman (1985). The "prototypical" 
sample method is described in Watanatada and Ben-Akiva (1979) and in Gunn and 
Bates (1982). 
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Notes 

(I) Behavioral models, like all microeconomic demand models, attempt to reproduce the results of choice 
behavior "as if' decision makers behaved in accordance with certain hypotheses rather than the actual 
psychological mechanism leading to decisions. 

(2) Discrete choice models in general, and random utility models in particular, can be considered one of 
the most significant contributions of the transport field to economis and econometrics. From the 
theoretical point of view, they represent the development of the classical micro-economic demand 
models. In fact discrete choice models simulate choices made among discrete alternatives while classical 
micro-economic demand models simulate the choice of the (continuous) quantity of "commodities" to be 
consumed. Discrete choice models, originally developed to simulate transport demand, are used in many 
fields of econometrics, from the choice of insurance policies type and investment portfolios to the choice 
of car models. 

(3) The case in which the variance-covariance matrix is non-null, L:;<O, but singular, I L: 1= 0, because the 
variance of a random residual is null and/or two random residuals are perfectly correlated, is of limited 
practical interest and will not be given further attention. 

(4) This denomination derives from early applications of random utility models to the choice among 
different transport modes. 

(5) In this section, for the sake of simplicity, the symbol i indicating the generic decision maker will be 
systematically given as understood. 

(6) Some texts, assume as the Gumbel parameter the reciprocal of B, i.e. a= 11 B. In the following the B 
notation will normally be used for its analytical convenience in the specification of Hierarchical Logit 
models. Clearly it is possible to express all results using the parameter c£ with a simple variable 
substitution. 

(7) The Expected Maximum Perceived Utility variable will be dealt with extensively in section 3.5. 

(8) Stability with respect to maximization of the Gumbel variable and the derivation of the Multinomial 
Logit model from the general expression (3.2.3) are described in Appendix 3.B. 

(9) This property and its implications hold for the whole class of additive models, as was stated in section 
3.2. In the following, the general results will be particularized for the Logit model, where they can be 
obtained analytically. 

(10) The Hierarchical Logit model is also known in the international literature as Nested Logit . 

(II) The Hierarchical Logit model can be obtained in a different and more rigorous way, as a special case 
of the GEV model described in section 3.3.5. 

(I2)The r.v. r'k, for the stability with respect to maximization of the Gumbel variable, is distributed like 
each variable Tj,k associated to alternatives j belonging to group k, i.e. as a Gumbel variable of zero mean 
and parameter B. 

(11) Cross Nested Logit models have been less studied with respect to other models of the Logit family. In 
this section a single-level cross-nesting structure will be presented. From this point of view, the Cross­
Nested Logit model discussed is a generalization of the Single-Level Hierarchical Logit. 

(14) Further elements of the Multivariate Normal random variable are given in Appendix 3.B. 
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(I5)The Hybrid Logit-Probit model imposes an upper bound on the correlation of any pair of random 
residuals due to the variance cr2 of i.i.d. Gumbel residuals. In fact the maximum correlation between two 
alternatives is: 

(16) The Binomial Logit model (3.4.6) should be seen as a functional relationship rather than a random 
utility model since it does not simulate any "choice". 

(17) This consideration clarifies the importance of information on the availability of alternatives. 

(18) In what follows, for the sake of simplicity, the dependence of the Expected Maximum Perceived 
Utility on the joint density functionj{l') and on choice set r is not expressed. When the choice set is not 
observed, Expected Maximum Perceived Utility should be calculated by averaging over the various 
choice sets with their probabilities. The index i denoting the generic decision-maker will also be given as 
understood. 

(l9)The maximum of i.i.d. Gumbel variables with zero mean and variance cr' is also a Gumbel variable 
with the same variance. See also Appendix 3.B. 

(20) The availability of a new alternative can be seen, in fact, as a passage of the systematic utility of that 
alternative from minus infinity to a finite value. 

(21) Convexity of a scalar function of a vector is defined in Appendix A. 

(22) Deterministic utility models and their properties will mainly be used in section 4.3.4 on path choice 
models and in Chapter 5 on assignment models. 

(21) Property I) requires the introduction ofthe concept of subgradients of a convex function. 

(H) The actual number of decision-makers with the same attributes actually choosing alternative j is a 
random variable, so is the ratio between this number and the total number of decision-makers. The mean 
of this LV. is equal to choice probability pU] given by the model. 

(25) The elasticities discussed in this section are disaggregate, i.e. related to variations in the probabilities 
of a single decision maker or of a group of decision makers sharing the same values of the attributes. 
Aggregate elasticities refer to variations in the average choice fraction: 

n 

p(j) = L p' (j) 
i=1 

in a group of decision makers with different attributes. Variations are computed with respect to an 
uniform infinitesimal variation of a given attribute. In this case it is possible to express the aggregate 
elasticity as a weighed average of individual elasticities. For instance the direct point elasticity will be: 

Ipi[j]Et;;111 

ECIJ1 = -","::.I-n----

Lp'[J] 
1:::1 

(26) The increasing monotonicity of Multinomial Logit choice probabilities with respect to systematic 
utilities is obtained again. It holds, more in general, for all additive models described in previous sections. 
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(27) Further elements of sample theory are discussed in Chapter 8 on demand estimation and its 
bibliography. 



4 TRANSPORTATION DEMAND 
MODELS 

4.1. Introduction 
Recall from Chapter 1 that transportation demand derives from the need to carry out 
activities in different locations. Thus, its level and characteristics are influenced by 
the activity system and the transportation supply in the area. 

In order to analyze and design transportation systems, it is necessary to estimate 
the present demand and to simulate its variations due to the projects under study 
and/or to variations in external factors. Mathematical demand models can be used 
for all these purposes. 

A transportation demand mode/I) can be defined as a mathematical relationship 
associating the average values of demand flows with their relevant characteristics to 
given activity and transportation supply systems. In formal terms, it can be 
expressed as follows: 

dod [K), K2, ••• ] = d(SE, T; P> (4.1.1) 

where the average travel demand flow between zones 0 and d with characteristics 
K\, K2, ••• , is expressed as a function of a vector, SE, of socio-economic variables 
related to the activity system and/or to the decision makers and of a vector T of 
level-of-service attributes of the transportation supply system, typically obtained by 
the models described in Chapter 2(2). Demand functions also depend on a vector P of 
coefficients or parameters(3). 

Each trip is the result of several choices made by the users, i.e. the individual 
traveler or the operators (manufacturers, shippers and carriers) in freight transport. 
In the case of the traveler, these choices range from long-term decisions such as 
residence and employment location and vehicle ownership, to more frequent 
decisions such as trip frequency, timing, destination, mode and route. In freight 
transport, long-term decision influencing transport demand include the location of 
production plants and acquisition/selling markets, the ownership, of a fleet of freight 
vehicles, storage facilities etc. Short-term decisions include shipment frequency, 
choice of mode, intermodal operator, route etc. The choices underlying ajoumey are 
made with respect to different choice dimensions; these are defined by a set of 
available alternatives and by the values of their relevant attributes. For example, the 
mode choice dimension is defined by the alternative transport modes available for a 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
© Springer Science+Business Media Dordrecht 2001



176 TRANSPORTATION DEMAND MODELS 

given origin-destination pair together with their attributes. In the same trip, the user 
may also make choices on other dimensions, such as route and destination. 

The literature proposes several mathematical models to simulate travel 
demand(4); these models are based on different assumptions and have different 
specifications. Before describing some such model families in detail, some 
classification criteria will be introduced (see Fig. 4.1.1). 

TYPE OF SIMULATED Mobility or context models 
CHOICES Travel models 

Trip demand models 
APPROACH TO TRAVEL 

Journey or trip chaining models REPRESENTATION 
Activity participation models 

BASIC ASSUMPTIONS 
Behavioral models 

Descriptive models 

Fig. 4.1.1 Classification factors of travel demand models. 

The first classification factor is related to the type of choice (i.e. choice 
dimension) implicitly or explicitly simulated by the model. Decisions on some 
choice dimensions influence individual trips indirectly, by identifying the context or 
the conditions. Locations of residence and workplace, holding a driving license and 
the number of cars owned by the household are examples of this type of dimension. 
Residence and workplace locations determine the origin and destination of 
commuting trips, holding a license makes the car available as a transport mode, and 
so on. These choice dimensions and the models simulating them are known as 
mobility choices and models. 

Usually, mobility choices are relatively stable over time since they have high 
variation costs and can be assumed invariant in the short term. Travel choices and 
models relate to dimensions characterizing individual journeys (sequences of trips) 
and/or the trips comprising them. Frequency, destination, transport mode, and route 
are examples of this type of choice dimension. 

The second classification factor relates to the approach taken for simulating 
travel demand, i.e. the reciprocal conditioning of decisions (choices). Trip demand 
models implicitly assume that the choices relating to each origin-destination trip are 
made independently of choices for other trips within the same journey and other 
journeys. This approximation is used to simplify the analysis. This assumption is 
reasonable when most of the journeys in the reference period consist of two trips 
(origin - destination - origin), also called round trip journeys. 

Journey demand or trip chaining models, on the other hand, assume that the 
choices concerning the entire journey influence each other. In this case, the 
intermediate destination, if any, is chosen taking into account preceding or 
subsequent destinations, transport modes taking into account the whole sequence of 
trips, and so on. Models of this type have been studied for several years and are 
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applied to real contexts, though less frequently than trip demand models. Some 
examples of models of this type will be described in section 4.4. 

Finally, activity participation demand models simulate transportation demand as 
the result of the need to participate in different activities in different places. They 
therefore take into account the relationships occurring among different journeys 
made by the same person during an "average" day and, in the most general case, 
between journeys made by the members of the same household. Models of this type 
are obviously more complex than those described previously and are aimed at 
understanding relationships between the demand for travel and the organization of 
the different activities of a person and hislher family. These models are presently at 
the research stage and will not be dealt with in this chapter. 

The last classification factor considered relates to the basic assumptions of the 
models. Models are known as interpretative or behavioral if they derive from 
explicit assumptions about users' choice behavior and non-interpretative or 
descriptive if they describe the relationships between travel demand and the 
variables SE and T without making specific assumptions about decision makers' 
behavior. There are also mixed model systems in which some sub-models are 
behavioral while others are descriptive(5). 

Models of all types are also classified as either aggregate or dis aggregate. In the 
first case, the variables (attributes) refer to a group of users (e.g., average times and 
monetary costs of all the trips between two traffic zones or the average number of 
cars owned by families of a certain category). In the second case, the variables refer 
to the individual user (e.g., times and costs between actual origin and destination 
points or the number of cars in the household). The level of variable aggregation 
depends on the purpose of demand modeling. The prevailing use considered in this 
book is simulation of the whole transport system, schematized through a network 
model. This implies an aggregation level which is at least zonal since, as stated in 
Chapters I and 2, the level-of-service variables T obtained with network models 
relate to pairs of centroid nodes representing traffic zones(6). 

Finally, it should be noted that transportation demand models, like all models 
used in engineering and econometrics, are schematic and simplified representations 
of complex real phenomena intended to quantify certain relationships between the 
variables relevant to the problem under study. They should not be expected therefore 
to give a "perfect" reproduction of reality especially when this is largely dependent 
on individual behavior, as is the case with transportation demand. Furthermore, as 
will be seen later, different models with different levels of accuracy and complexity 
can describe the same context. However, more sophisticated models require more 
resources (data, specification and calibration, computing time, etc.) which must be 
justified by the requirements of the application. 

The sections of this chapter will describe the characteristics of different types of 
transportation demand models with an emphasis on passengers travel demand. 
Section 4.2 will describe the partial share systems of trip demand models. Individual 
sub-models, including emission (or frequency), distribution, modal choice and route 
choice, as well as an example of an overall model system for intercity travel, are 
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described in section 4.3. Section 4.4 deals with some trip chaining demand models. 
Section 4.5 discusses the interpretation of results obtained with demand models and 
their application for different purposes. Finally, section 4.6 describes some models 
used for the simulation of freight transportation demand. 

4.2. Trip demand model systems 
Trip demand models simulate the average number of trips of given characteristics 
undertaken in a specific reference period (average trip flows). The trip 
characteristics often considered relevant are: 

s the purpose, or more properly the pair of purposes ofthe trip(7); 
h the period, i.e. the time band in which trips are undertaken; 
0, d the zone of origin and of destination of the trip; 
m the mode, or sequence of modes, used during the trip; 
k the route used for the trip, represented by a series of links connecting the 

centroids 0 and d on the network representing the transport service supply of 
mode m. 

Furthermore, demand models are often differentiated by user groups 
homogeneous with respect to their attributes, parameters and the functional form of 
the models themselves. Such user groups are usually known as user categories. The 
generic user category is denoted by i. This formulation does not preclude the 
possibility of having dis aggregate models and aggregation procedures based on 
methods of sample enumeration (see section 3.7) since the categories can be 
considered coincident with single individuals. In this case i denotes the generic 
individual. 

With demand flow denoted by dod [s, h, m, k], the demand model is formally 
expressed as: 

dod [s, h, m, k] = d(SE, T) (4.2.1) 

Assuming that the decision maker is in zone 0, the choice dimensions involved 
are typically travel choices: the number of trips (x) for purpose s, the time period h, 
the destination (d), the transport mode (m) and the route (k). Although travel choices 
are dependent on each other, for reasons of analytical and statistical convenience it 
is usually preferable to "decompose" the global demand function into the product of 
sub-models, each of which relates to one or more choice dimensions. 
The sequence most often used is the following: 

where: 

dod[s,h,m,k]=nto]1;xptxlosh](SE,T)ptdlosh](SE,T)­

pi[ mloshdj(SE, T)'l[ kloshdm leSE, T) (4.2.2) 



d[o] 
pi [x/osh] (SE, 1) 

pi [dlosh] (SE, 1) 

l [m/oshdJ (SE, 1) 

pi [kIoshdm] (SE, 1) 
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is the number of individuals belonging to category i in zone 0; 
is the trip emission or frequency model, which gives the 
fraction of category i users who, being in 0, undertake x trips 
for purpose s in the reference period h; 
is the distribution model, which gives the fraction of category 
i users who, undertaking a trip from 0 for purpose s in the 
period h, travel to destination zone d; 
is the modal choice or split model, which gives the fraction of 
category i users who, traveling between 0 and d for purpose s 
in the period h, use transport mode m; 
is the route choice model, which gives the fraction of 
category i users who, traveling between 0 and d for purpose s 
in the period h by mode m, use route k. 

The system of models described above simulates the average trip demand flow 
with its relevant characteristics by initially estimating the total number of trips 
(demand level) from each zone 0 in the reference period do[sh] and then splitting 
these trips between the possible destinations, modes and routes. For this reason the 
model is known as a partial share model (or system of models). The model 
described also assumes that destination, mode and path fraction model do not 
depend on the number of trips undertaken. 

The order of the sequence of sub-models in expression (4.2.2) may differ from 
that described. Each formulation (or specification) corresponds to an assumption 
about the order in which the choices corresponding to different dimensions are made 
by the user and therefore about how they influence each other. The specification 
used in (4.2.2), which corresponds to the structure of models shown in Fig. 4.2.1, 
implies for example that mode choice depends on destination and frequency choices, 
while route choice depends on mode choice. On the other hand, upper-level choices 
(e.g. destination) are actually made taking into account the alternatives available at 
lower-levels, such as the modes and routes available to reach each destination. 
Different sequences are clearly possible therefore; for example some specifications 
proposed in the literature invert the position of destination and mode in the sequence 
(4.2.2). Any sequence should be carefully reviewed in the calibration phase (see 
Chapter 8) and compared with reasonable alternatives. 

The fractions included in the models may be different from those shown; 
expression (4.2.2), because of its structure, is also known as the four-level or four­
stage model. However, more or less levels can be used. For example, it is possible to 
specify a six-level urban demand model which explicitly includes a choice model for 
the time period h in which to conduct a given activity (trip purpose s) pthlosx] (SE, 
1) and a choice model of parking location (dp) and type (tp) for auto trips (a) 
between origin 0 and final destination d, l[dpt/oshda](SE,1): 



180 TRANSPORTATION DEMAND MODELS 

d," "h,a,t"d"k ]~n'[ 0]' :s: k [x / 0' ](SE, T) . ~ y • . p' [y. /0" ](SE, T) } . 

i[d/osh](SE,1}i[a/oshd](SE,1}pi[dpf,Joshda](SE,1)'i[k/oshdadptp](SE,1) (4 .2.3) 

where x in this case represents the number of trips undertaken in a longer period 
(e.g. the whole day) and Yh represent the number of trips undertaken in the time 
period h (hourly time bands) given x. 
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p[:cIosh) 

do[sh) 
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dod(shm] 

PA TH CHOICE MODEL 
p[k/odshm) 

[ OlD """AND BY MOLlE PUWE. 
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Fig. 4.2.1 Four-level trip demand model system. 
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The model structures described simulate trip demand over all choice dimensions. 
This is common practice if the projects planned and/or the evaluation time horizon 
significantly modifies performance and/or activity variables. In some short-term 
project applications, a "reduced" version of the model described could be used, e.g. 
assuming as given present origin-destination matrices by purpose and user category 
dod [sh] and simulating only mode and path choice levels: 
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c!od[S, h, m, k] = c!od[sh]i[m/oshd](SE, np'[k/oshdm](SE, 1) (4.2.4) 

Estimates of present O-D matrices c!od[sh] can be obtained with different 
methods as will be seen in detail in Chapter 8. 

Random utility models for partial shares. Each partial share in the previous 
structure can be modeled in many ways. However, it is particularly interesting to 
express systems of partial share models consistent with the general results of random 
utility theory reported in Chapter 3. Again, each trip can be seen as the result of 
choices made on several dimensions. Therefore, choice alternatives of a random 
utility model are combinations of alternatives in the dimensions considered. For 
example, an alternative in a four-level model is defined by the number of trips x to 
be made for purpose s, in the reference period h, in order to reach destination d, by 
mode m and path k. In this case the symbol j denoting the generic alternative in 
Chapter 3, is equivalent to the sequence [x,d,m,k]. To simplify the notation, i will be 
understood as being the user class, 0 the origin zone, s the trip purpose and h the 
reference period. 

Thus the problem is that of making consistent assumptions on the structure of the 
utility of compound alternatives [x,d,m,k] such that the probability of choosing any 
of them can be expressed as the product of conditional choice probabilities 
representing the individual shares. This problem can be defined asfactorialization of 
random utility models. 

Consider each of the models expressing a different partial share as a random 
utility model, possibly of a different functional form (e.g., Multinomial Logit for 
mode choice, Probit for car route choiCe and deterministic for transit and walk path 
choice). In this case the entire demand model turns out to be consistent with the 
behavioral assumptions of random utility theory if the systematic utility 
corresponding to each choice dimension includes, as utility attribute, the EMPU 
corresponding to the choice made on the "lower" dimension (and, through this, those 
on the lower dimensions). 

Consider first a very simple example for a two-level model. The model assumes 
there is a single mode and consists only of destination and path choice models. The 
perceived utility Udk of the compound alternative destination-path dk is given by: 

(4.2.5) 

Assume that the systematic utility can be expressed as the sum of two terms: 
E[ Udd = Vdk= Vd+ V kid, where Vd includes the attributes depending only on the 
destination and V k'd those related to the path for a given destination. Similarly the 
random residual is expressed as the sum of two independent random variables: 
cdk=TkId+'7d, thus yielding: 

(4.2.6) 
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Clearly, the variance of any random residual lidk is the sum of the variances of Tldd 

and 17d. 

These assumptions on the utility structure are consistent with the hierarchy of 
choice dimensions described before: the choice of destination is influenced by that 
of path but the latter, for a given destination, depends only on the attributes of the 
alternative paths and not on those specific to the destination. 

The perceived utility for a path k, conditional to destination d, is given by: 

since Vd and 17d are constant for all paths k, k E Kod. The conditional probability of 
choosing path k for a given destination d can thus be expressed as: 

(4.2.7) 

If random residuals Tkid for path k conditional to destination d are jointly 
distributed as a MVN variable, a Probit model is obtained for path choice. 

The perceived utility for a destination d, whichever the path, is given by: 

(4.2.8) 

The random variable maxk (Vldd + Tldd) can be expressed by the sum of its 
expected value E[maxk (Vldd + T.W)] = SJCVklId, V k2/d,"') (EMPU) plus the random 
residual(8) 1* d, thus yielding: 

(4.2.9) 

It must be remembered that the EMPU variable Sd is a function whose value 
depends on the values of the systematic utilities of all the alternative paths, k E Kod, 

as well as on the joint probability function of the random residuals Tkld (in this case a 
Multivariate Normal). Furthermore, if it is assumed that the random variable b"'d 

(sum of the two variables r*d and 17d) is distributed as a Gumbel G(O,Bd) r.v., the 
destination choice model is a Multinomial Logit model: 

(4.2.10) 

Therefore, the joint destination-path choice probability can be obtained as: 
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where the vector V kid comprises the systematic utilities of all path connecting a 
certain O-D pair, the vector Sd the EMPU of path choice for all destinations and Vd 

the systematic utilities of all destinations. 
This approach can be extended to all choice dimensions, under the assumption 

that destination, mode and path systematic utilities and residuals do not depend on 
the number of trips x, consistently with the specification of the partial share model 
expressed by (4.2.2): 

where the Expected Maximum Perceived Utility variables are: 

Smld = E[maX(Vk'ldm + 'k'ldm)] 
k' 

Sd = E[maX(Vm'ld + sm'ld + cm'ld)] 
m' 

Sx = E[max(Vd, +Sd' + cd')] 
d' 

and the models expressing the various shares may have any functional form as long 
as they can be obtained from the assumptions of random utility theory(9). 

If each choice dimension is represented by a Logit or a Hierarchical Logit model, 
then the demand model turns out to be a Hierarchical Logit model with alternatives 
given by [x,d,m,k], as described in sub-section 3.3.3. In this case, returning to the 
two-level example, 'kid is a Gumbel variable G(O, ek) and so is ,* d for the property 
of stability with respect to maximization of Gumbel variables. Furthermore, the 
EMPU Sd can be expressed analytically as the product of ek and the Logsum 
variable. 

The total four-level partial share model in the case of Hierarchical Logit can be 
expressed as: 

(4.2.11) 

eXP[Vmld I em + 0mYmld] exp[VkldmIBk] 

Lm,exP[Vm'ld I em + 0mYm'ld] . Lk,exp[Vk'ldmIBk] 

with 

(4.2.12a) 
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(4.2.l2b) 

(4.2.12c) 

Finally if all Ii coefficients are equal to one, i.e. all () are equal to ()o, the partial 
share model turns out to be the factorialization of a Multinomial Logit model with 
choice alternatives [x,d,m,k]. 

4.3. Examples of trip demand models 
This section describes some models usually adopted within a four-level structure, 
with the introduction of some possible extensions such as the choice of parking type 
and location in the context of mode choice model. An example of a whole model 
system for inter-city travel demand is also described at the end of the section. 

4.3.1. Emission or trip frequency models 
The emission or trip frequency model estimates the mean number of "relevant" trips 
do[sh] undertaken in the period h for the purpose s by the generic user belonging to 
category i with origin in zone a. The relevant trips may be all the trips undertaken 
for a certain purpose, or the fraction of these which satisfies certain conditions, e.g. 
car trips or those external to the origin zone. It is clear that in this second case there 
is a distortion in the interpretation of the model and the variables that appear in it 
must take into account factors which exclude "non-relevant" trips (in the previous 
examples, trips with other modes or intra-zonal trips). In this case, the emission 
model includes elements belonging to other choice dimensions (in the previous 
examples, mode and destination). For these reasons, in the remainder of this section 
reference will be made to the case in which the emission model refers to the totality 
of trips originating in zone a. 

The emission models used in applications can be classified in two main 
categories: behavioral models (or more properly, random utility models) and 
descriptive models. 

To describe the emission model, first define the mean number of trips undertaken 
by the individual in category i, departing from a, for the purpose s in the period h: 

m' [ash] = Ix xp' [x/ash] (SE,1) (4.3.1) 

The flow of trips from zone a can then be expressed as follows: 

do [sh] = d[a] mi [ash] (4.3.2) 
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where nt 0] is the number of users in zone 0 belonging to category i. 
The Binomial and Multinomial Logit are the random utility models most 

frequently used to simulate pi [x/osh] in 4.3.1. If h is short so that the probability of 
undertaking more than one "relevant" trip is negligible, a Binomial Logit with two 
alternatives - undertaking or not undertaking the trip - can be used. Otherwise, a 
Multinomial Logit gives the probability l[x/osh] of undertaking x trips with x equal 
to 0,1,2, ... ,n or more trips: 

i [.J h] exp(V: /(0 ) P x/os = . I.- exp(V; /(0 ) 
]-O •...• n 

Systematic utility functions include variables representing the "need" or the 
"possibility" to carry out activities connected with the purpose examined. These 
variables may relate either to the family or to the individual. Examples of variables 
of the former type are income and the number of members of the household, while 
examples of individual's variables may be occupational status, sex, family role, age, 
etc. Other variables often used in the systematic utility of trip frequency models 
relate to the area of origin, and especially its "accessibility" with respect to the 
possible destinations for the trip purpose. Accessibility can be expressed by the 
Expected Maximum Perceived Utility (EMPU) corresponding to the destination 
choice model, for example the logsum Yx given by expression (4.2.12a), in the case 
of a Logit distribution model. Fig. 4.3.1 gives an example of trip frequency model 
for the morning peak period in an urban area. 

A model of this type should be considered as a tool for quantitative analysis of 
the determinants of urban mobility(lO) rather than an operational tool. Its application 
for the simulation of travel demand in an entire urban area would require a 
considerable amount of information. However, this is not necessarily true for all 
behavioral models and operative trip frequency models are often used for the 
simulation of large-scale systems; the extra-urban trip frequency models reported in 
section 4.3.5 are examples of this type of models. 

Category index is the simplest descriptive emission model. For each category of 
users, assumed to be homogeneous with respect to a given trip purpose, the average 
number of trips mi[osh] for the purpose s in the reference period h is directly 
estimated. As an example of "category index" models, Fig. 4.3.2 shows the daily 
home-based work, school and other trip purpose indices obtained as the average of 
the indices estimated in the mid-80s in five medium-sized Italian towns. Note the 
different definition of user typology adopted for different trip purposes: the workers 
in the different economic sectors for Home-Work trips, the students of different 
levels for Home-School trips, and the family for Home-Other Purpose trips. The 
main limitation of category index models is that trip frequencies and demand levels 
are not expressed as functions of socio-economic variables other than those used to 
define categories; data availability restricts the number of categories to be small. 
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Category regression models are more sophisticated. These models express the 
average index mlosh] for the generic element of category i for purpose s as a 
function, typically linear, of variables corresponding to the category and the zone of 
origin: 

VrR1P = /3I CA + /32WRK + /33 AGE + /3JNL + /3sWMN + /36ACC 

V NOTRIP = /37 TOP + /3gTOF + /39NT 

Typology of variables Name of variables 
K::ar availability 
Working status 

Socio-economic fA.ge 
Income level 
Woman 

Location Accessibility 

(4.3.3) 

CA 
WRK 
AGE 
INL 
WMN 
ACC 

Time availability 
Nr. of other trips made by the person for 
other purposes TOP 

Individual-family relationships 
Nr. of trips of made by other family 

TOF members for the same purpose 
fA.lternative Specific Attributes (ASA) NOTRIP NT 
CA dummy variable: 0 - car not avai lable; 1 car available 
WRK dummy variable: 0 = non-worker; 1 = worker 
~GE dummy variable: 0 = < 35 years; 1 = > 35 
INL Income level in 6 points scale: 0 = low income; 5 = hioh income 
WMN dummy variable: 0 = man, 1 = woman 

No trip Trip 
TOP TOF NT CA WRK AGE INL WMN ACC 

Shopping 0.55 0.61 1.35 0.24 -2.69 -2 .53 0.08 0.60 0.11 
t 5.4 3.7 5.4 1.2 -9.7 -8.0 1.5 3.8 1.7 

Other purposes 0.22 -1.18 2.66 - -0.34 -0.34 0.20 0.53 -
t 2.2 -10.9 15.3 - -2.0 -2.0 3.5 3.3 -

Goodness of fit Statistics 
p' % right LR 

I Shopping 0.431 0.847 1904 
lather purposes 0.689 0.933 3041 

Fig. 4.3.1 Trip frequency model for the morning a.m. peak period. 

The attributes 100 are usually the mean values of socio-economic variables such 
as income, number of cars owned, etc., but they may also include level-of-service 
attributes such as zonal accessibility, defined by the inclusive variable Yx, or by 
some other variable. The name "category regression" is derived from the statistical 
model , linear regression, used for the specification of variables X; and the estimation 
of coefficients /3;. In early applications, model (4.3.3) was specified for traffic zones 
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(zonal regression). Thus, its explanatory variables represented attributes of an entire 
zone (e.g., population, number of workplaces, number of shops, etc.). 

Recently, more disaggregate categories have been used in these models, typically 
families and individuals (family or individual regression). The application of model 
(4.3.3) at a disaggregate level, however, can lead to problems since some variable­
coefficient combinations may give negative mobility indices. For this reason, it is 
better to use Logit or other random utility specifications for disaggregate model 
representations. 

PURPOSE TYPE OF USER EMISSION INDEX 
Worker in the Industrial sector 1.024 

H-W 
Worker in the Services sector 1.084 
Worker in the Private Services sectors 1.245 
Worker in the Public Services sector 0.931 
Primary school students 0.84 

H-Se 
Lower secondary school students 0.87 
Upper secondary school students 0.86 
Professional secondary school students 0.88 

H-Sndg Familv 0.25 
H-Sdg Family 0.11 
H-Ps Family 0.H5 
H-Sr Family 0.27 
H-Aec Family 0.11 
H-oth Family 0.13 

Trip identification . 
H-W Home-Work 
H-Sc Home-School 
H-Sndq Shopping for non-durable qoods 
H-Sdg Shopping for durable goods 
H-Ps Personal services 
H-Sr Social-recreational 
H-Ace Accompaniment of others 
H-Oth Other purposes 

Fig. 4.3.2 Daily urban trip emissions indices. 

Clearly, random utility models (4 .3.1), or family or individual regression models 
(4.3.3) require more information(lI) than the category index model (4.3 .2). The latter 
however has the shortcoming of not being elastic with respect to variations of 
variables other than those used to define the category. 

Finally, both for random utility models and descriptive models, the emission 
model for purpose s in the reference period h is sometimes decomposed into two 
models: an emission model mi[o,s] over a longer period, e.g. the whole day, and a 
time-distribution model: 

x 

mi[osh] = 2:>i[X/OS] (SE, T). ~>hpi[Yh/OSX] (SE, T) 
x Yh =1 
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The fraction of the x trips undertaken during the time period h, pi[yi/oSX), can be 
obtained with a random utility model simulating the allocation of trips (or activities) 
among available time periods. This case can be handled as yet another stage in the 
traditional structure of the partial share model, which was introduced in equation 
(4.2.3). 

4.3.2. Distribution models 
Distribution models express the percentage (probability) /[d/osh] of trips 
undertaken by users of category i going to destination d, given departure from zone 
0, purpose s, and period h. For simplicity of notation, the category index wiII be 
omitted and it wiII be assumed, as in expression (4.2.2), that the number x of trips 
does not affect the distribution among destinations. 

Typically, distribution models have a Multinomial Logit structure: 

p[d/osh](SE,T)= exP(Vd/()d) 
L exp(Vd' / () d) 
d' 

(4.3.4) 

The systematic utility Vd is a linear combination of the attributes of possible 
destinations in relation to the zone of origin 0: 

(4.3.5) 

In general, the attributes in function (4.3.5) can be divided into two categories: 
attributes representing the "attractiveness" of zone d, i.e. the convenience of 
carrying out activity s in d, and "cost" attributes which represent the inconvenience 
of undertaking a trip from 0 to d. Distribution models can be interpreted and 
specified following either a behavioral or a descriptive approach with various 
specifications and interpretations of the attributes. 

According to the behavioral interpretation, the distribution model simulates the 
choice of a destination among possible alternatives. It should be noted that typically 
the destination chosen for carrying out an activity is not a traffic zone but one (or 
more) "elementary" destination (such as a shop, an office, etc.) within it. The traffic 
zone d is therefore a "compound" alternative composed of the aggregation of Md 
elementary alternatives. 

If a positive covariance between the perceived utilities of elementary 
destinations belonging to a same zone d is assumed, the utility of each elementary 
alternative r of a zone d, Urd, can be expressed as: 

(4.3.6) 
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that implies: 
'\Ir, sEd; '\Id (4.3.7) 

while the utility of each compound alternative d ,U*d, becomes: 

where Sd is the EMPU of elementary destinations of zone d: 

Sd = E[max-,.{ Ur'ld}] 
,* d = [maxr,{ Ur'ld}] - E[maxr ,{ Ur'ld}] 

If the r.v. 'rid are assumed i.i.d. Gumbel, 'rid ~ G(O, Br), it results: 

(4.3.8) 

r* d ~ G(O, Br) 

and if also the r.v. &* d are assumed i.i.d. Gumbel, &* d ~ G(O, ()d) the choice 
probability of a zone d becomes: 

where: 

and the (4.3.7) becomes: 

p[d]= exp(Vd/()d+b"dYd) 

L exp(Vd' / () d + b" dYd') 
d' 

(4.3.9) 

'\Ir,s E d; 'lid 

Alternatively a null covariance between the perceived utilities of elementary 
destinations belonging to a same zone d can be assumed posing 17d = ° in equation 
(4.3.6), i.e. ()r = ()d. In this case the utility of each compound alternative d, U*d, 
becomes: 

and the choice probability of a zone d becomes: 

p[d] = exP(Vd / Bd + Yd) 
L exp(Vd' / () d + Yd,) 
d' 

(4.3.10) 
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It results generally hard the evaluation of the EMPU variable (4.3.8) (and thus 
also that of the logsum variable Yd in (4.3.9) and (4.3.10» since it is generally hard 
the evaluation of the Vrd terms. To overcome this problem, this variable, through 
some an~lytic manipulation, can be expressed as a function of the mean systematic 
utility Vd of the elementary destinations: 

as well as the number of elementary alternatives Md and a heterogeneity term taking 
into account the variability of the elementary utilities Vrd compared with the mean 

value V,,: 

(4.3.1Ia) 

In (4.3. 11 a), the second and the third terms are non-negative (Mr-I, 
I,..exp(.)'?Md) and thus, consistently with the properties of the EMPU variable 
described in section 3.5, Sd is larger than the mean of the systematic utility of the 
elementary destinations. 

Also, if all the elementary destinations in d had the same systematic utility (e.g., 
the generalized trip cost and an attractivity value equal for each elementary 
destination), the heterogeneity term would be equal to zero. In this case, Sd would be 
equal to the sum of the constant utility of each elementary destination, and a positive 
"size" variable (In Md). The latter increases with the number of elementary 
alternatives included in d. 

In applications Vd is generally simulated through attributes of the zone, J0d. 
Moreover, an estimate of the heterogeneity term is unlikely to be available and for 
this reason it is usually omitted or replaced by a "proxy" (e.g. the variance of the 
number of workers in each elementary destination). In this case, the proxy variables 
are included in the attributes of the zone and thus it results: 

Sd = L fJjXjd +OJnMd 
j 

(4.3.IIb) 

For certain trip purposes it is possible to assume that the number of elementary 
destinations, Md, within each traffic zone d can be measured (e.g., the number of 
shops for the shopping purpose). However, for several trip purposes the precise 
identification of the elementary destinations and their number is not possible. In this 
case the size variable In Md may be replaced by a "size function" expressing the 
actual (unknown) number of elementary destinations as a function of other variables 
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(such as population, employment in different sectors, number of firms of different 
types, etc.): 

In this case it can be shown that the coefficients f3k of the size function can all be 
identified except one, which is arbitrarily set equal to one (see Chapter 8) (since we 
are actually calibrating the products (Jr f3k ) and thus equation (4.3.11 b) becomes: 

(4.3. 11 c) 

It should also be noted that, given the behavioral interpretation of the distribution 
model, one of the zone attributes, Xjd, should be the inclusive variable Y'd 
representing lower choice dimensions, typically mode choice, expressed by 
(4.2.l2b) in the case of Logit model. 

In this case, equation (4.3.11c) becomes: 

(4.3.l1d) 

with 

Some examples of destination choice models with size functions are reported in 
section 4.3.5. 

Descriptive distribution models generally have a simpler functional form than 
behavioral models. However, in many cases descriptive distribution models can be 
recast in a Multinomial Logit structure (4.3.4). The variables included in descriptive 
distribution models can be divided into two groups: attributes of the activity system 
located in zone d, or attractivity attributes, and cost or separation attributes between 
zones 0 and d. Attractivity attributes are variables or functions similar to those 
described for behavioral models, although their interpretation may be different. 
Examples of such variables are total (or sectorial) employment for home-work trips, 
the number of students attending schools for home-school trips, retail employment 
for home-shopping trips, etc. Cost attributes are variables measuring the generalized 
cost of a trip from 0 to d; their coefficients f3k are therefore negative. Several 
descriptive cost attributes have been proposed in the literature, from the crow-flight 
distance between zone centroids, to generalized cost variables including various 
components (on foot, on board times, monetary cost, etc.) for the different transport 
modes available. The most elementary descriptive distribution model has the form: 

P[f3IAd' - f32Cod'] = L exp(f3I Ad - f32 Cod) (4.3.12) 
d,exp(f3I Ad' - f32 Cod') 
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where Ad and Cod are respectively an attraction variable and a cost variable. In 
applications, special forms of the model (4.3 .12) called simply constrained 
gravitational models are sometimes used{l2). A model of this type is obtained by 
taking the natural logarithm of the attraction variable. Substituting In(A 'd) for Ad in 
expression (4.3.12) yields: 

(4.3.13) 

If parameter PI is equal to one, specification (4.3.13) is invariant with respect to 
the aggregation or disaggregation of traffic zones, given equal "distance" from the 
origin. In this case, the probability of going to a zone d obtained by aggregating two 
smaller zones d l and d2, is equal to the sum of the probabilities of d l and d2• In fact, 
if the cost is constant (Cod = Cod) = Cod) and the attraction variable associated with d 
is the sum of those for zones d l and d2 (Ad = Ad) + Ad2) it follows: 

The property of invariance with respect to zone aggregation is convenient in 
applications since it eliminates the influence of the level of spatial disaggregation 
adopted. 

Ifthe logarithmic transformation of the cost variable Cod (In(Cod)) is carried out, 
model (4.3.12) becomes: 

(4.3.14) 

4.3.3. Mode choice models 
Mode choice models simulate the fraction (probability) ptmloshdj of trips of 
category i users using mode m, from zone 0 to zone d for trip purpose s in time 
period h. Mode choice is a typical example of a travel choice that can be modified 
for different journeys in which performance or level-of-service attributes have 
considerable influence. It was not simply by chance that the first random utility 
models were formulated with reference to transport mode choice. 
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The identification of relevant alternatives (the choice set) depends on the 
transport system under study. For example, in an urban system, modes such as 
"walking" or "bicycle" are typically considered to be choice alternatives while, for 
obvious reasons, they are not included for interurban systems. In some cases 
"mixed" modes, Le. combinations of different modes such as car + train and car + 
bus, or different services of the same transport mode (e.g., Intercity, Regional and 
Night for the railway mode) are included as choice alternatives. For modal choice 
models, the definition of the choice set of each decision-maker (described in Chapter 
3) is particularly important. In fact, not all transport modes are available for all trips, 
either because of an objective impossibility (e.g., the personal car is not available to 
a user without driving license) or because it is not perceived as an alternative for a 
particular trip (e.g. motorized modes are not considered for very short trips). 

Mode availability has been handled in mode choice models using the different 
approaches described in section 3.4, usually with a combination of several heuristic 
methods. "Objective" non-availability is usually dealt with by excluding the 
alternatives from the decision-maker's (or category of decision-makers) choice set; 
while "contingent" non-availability or non-perception is generally simulated by 
including "availability/perception variables" in the systematic utility specification. 
The attributes of car, bicycle and motorcycle availability in the specification 
described in Fig. 4.3.3 should be interpreted in this way. Recently, lAP models that 
implicitly simulate the probability of an alternative being available/perceived (as 
described in section 3.4) have been applied to mode choice. 

Attributes in the systematic utility functions of mode choice models are usually 
level-of-service and socio-economic attributes. As stated in Chapter 2, level-of­
service or performance attributes describe the characteristics of the service offered 
by the specific mode. Examples are travel time (possibly decomposed into 
access/egress time, waiting time, on-board time, etc.), monetary cost, regularity of 
the service, number of transfers and so on. These attributes have negative 
coefficients since they usually represent dis utilities for the user. In addition to level­
of-service attributes, it is possible to include Alternative Specific Attributes (ASA) 
or modal preference, variables which account for qualitative characteristics of each 
mode (e.g., the privacy of the car) or those not explicitly included in the attributes 
(e.g. service regularity for metro systems). In Chapter 3 it was shown that in order to 
estimate ASA coefficients (ASC) in additive random utility models, ASA variables 
may be included in the systematic utility expressions for all but one alternative. 
Thus, ASA variables represent the relative preference of each mode with respect to a 
reference alternative that remains unexplained by other attributes. On the basis of 
this interpretation, the ASC might have a positive or a negative sign. 

The ratios between coefficients of level-of-service attributes, also called 
reciprocal substitution rates, are considered to be important. Among these, in the 
context of project evaluation discussed in Chapter 10, the substitution rates with 
monetary cost are particularly relevant, Le. the monetary value of level-of-service 
attributes. If /3, and /3c are respectively the coefficients of travel time and monetary 
cost, the perceived Value Of Time (VOT) implicit in modal choice behavior will be: 
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f3 [h- I ] 
VOT = -' . _I = [mon.unit/h] 

ftc [mon.umt ] 
(4.3.15) 

Level-of-service attributes, and in particular times, monetary costs, etc., should 
take into account alternatives on the "lower" choice dimension, in this case path 
choice. Thus, level-of-service attributes should refer to the different routes that the 
user can take on the network of each mode. This is done by using the EMPU of 
route choice, which, in Logit or Hierarchical L('Igit models, is the logsum variable 
Ymd• Sometimes, for the sake of simplicity, attributes are calculated only for the 
"minimum" cost route though this introduces a theoretical inconsistency if route 
choice is not simulated with the deterministic utility (minimum cost) model 
described in the next section. 

Socia-economic attributes are characteristics of the decision-maker or hislher 
family. Typical examples are gender, age, family income, car ownership or 
availability (number of cars owned by the family or the ratio between the cars 
owned and number of driving licenses), etc. Since socio-economic attributes don't 
depend on the alternative, for additive models with linear in coefficients systematic 
utilities, they cannot be included in the systematic utilities of all alternatives. 

Finally, in more sophisticated specifications some attributes may depend jointly 
on service and user characteristics. For example, monetary cost can be divided by 
user income, or differentiated by income level with different coefficients. In both 
cases the value of time (VOT) is differentiated on the basis of income, and is usually 
higher for users with higher income. 

With respect to the functional form, Multinomial Logit modal choice models are 
often used: 

i[ / hd] exp(Vi mlo.,hd) pmos = . 
Lm' exp(V' m'/mhd) 

(4.3.16) 

Fig. 4.3.3 shows the alternatives, attributes and coefficients of a Logit mode 
choice model for commuting trips in an Italian medium-sized city. Other examples 
of MNL modal choice models are reported in section 4.3.5 and in Chapter 8 on the 
estimation of transportation demand. 

Hierarchical Logit specifications are also being increasingly used. These models 
assume different levels of correlation between the perceived utilities of different 
mode groups, for example individual modes and public modes, and/or between 
different services of the same mode. Fig. 3.3.7 shows a possible choice tree and the 
associated correlation structure for an inter-city mode choice model. As another 
example, a Hierarchical Logit mode choice model could be used to simulate jointly 
mode choice and parking in urban areas. 
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WALKING 
Tw.Jl<ing Time (hr.) -6,8237 
BICYCLE 
Tbir Time (hr,) -8,2718 
NbcllNad Number of bicycles owned in family per adult 0,6646 
Bcl Alternat ive Specific Attribute -1 .58 18 
MOTORCYCLE 
Tmblc Time (hr,) -8.2718 
Age Age variable (1 if S 35 yea rs 0 otherwise) 0.6863 
Nmbk/Nad Number of scooters and motorbikes owned in family per adult 1.8572 
Mbk Alternative Specific Attribute -2 ,3789 
CAR 
TCN Time (hr.) -1 ,6142 
MccOI Monetary cost (E) -0,3338 
Park Parking (1 for priced parking destinations, 0 otherwise) -1 ,1469 
Hfam Position in the family (1 if head of family, 0 otherwise) 0.4931 
Ncar/Nad Number of cars owned in family per adult 0.40 14 
Car Alternative Specific Attribute -1 .7103 
BUS 
Tbu• Tota l travel time (hr,) -1.6142 
MCbus Monetary cost (E) -0.3338 
Ntrn Number of transfers -01772 
Bus Alternative Specific Attribute -1 .7827 

InLIJ3MLJ -475 
InL(O) -697 

l 0,317 
% right 0.651 

Fig, 4,3,3 Alternatives, attributes and coefficients of a MNL mode choice model for urban 
commuting trips. 

In some applications to urban areas, the specification of the systematic utility of 
the car mode includes level-of-service attributes related to parking, such as the time 
spent looking for a free parking space, walking distance, fare. In the most general 
case where several locations and types of parking are available, individual modes, 
e.g. auto, are simulated as groups of alternatives each corresponding to a specific 
parking location (dp) and parking type (Ip) with the given mode, see Fig. 4.3.4. 

The lower-level Multinomial Logit model for parking choice can be specified as 
follows: 

with 

exp(V~ / ) 
p'[d,,tp / oshda] = '" PP i 

L.d' /' exp(Vd,pt'p) 
p p 

Bus 
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with 
Tear 
Tmbk 
Tbb 

TWb 
Twi 
Age 

TRANSPORTATION DEMAND MODELS 

Vear = fJlb ' Tear 
V mbk = fJlb' T mbk 
Vbus = fJlb-Tb 
Vwalk = fJtwalk-TWalk 

+ Op·Yp 
+ Op·Yp 
+ fJtw·lwb 
+ fJwalk ·Walk 

= Car travel time [h] 
= Motorbike travel time [h] 
= Bus on board time [h] 
= Bus waiting time [h] 
= Walking time [h] 

+ fJc·Meear + fJear·Car 
+ fJc-MCmbk + fJAgeAge +fJMbk Mbk 
+ fJc·Mcb 

MCear = Monetary cost Car [€] 
= Monetary cost Motorbyke [€] 
= Monetary cost Bus [€] 

Car, Mbk, Walk 
= Dummy variable of value 1 if age is < 35 years, 0 otherwise 
= Mode Specific Attributes 

Yp 
dp= parking destination zone 

= In ~ exp(V~. I' ) L.... p p 
d'p t'p 

tp=type of parking: 

= fJls Tsrd I + fJeMc~ I + fJtw Twld Id p p p p p 

With 

free limited duration 
toll on street 
tool off street 
illegal 

Tsr = Average time spent finding a parking space [h] 
Mc = Parking monetary cost [€] 
Twl = Walking time from parking location to destination [h] 

Fig . 4.3.4 A Hierarchical Logit model of mode and parking choice in an urban area. 

where the variables indicate: 

parking location (zone) and type (free on street, toll on-street, toll off­
street, illegal etc.); 
average search time to find a parking space of type tp in the zone dp ; 

monetary cost (price or expected fine) of the alternative depending on the 
category of users i (e.g., related to the parking duration); 

time on foot needed to reach final destination d from location dp' 
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In this case, the logsum inclusive variable Ypcan be expressed as: 

r; = In L exp(V~,pI'p) 
d'pt'p 

and included in the car systematic utility of the MNL model simulating choice 
among modes, 

An example of Hierarchical Logit mode and parking choice model in an urban 
area is reported in Fig, 4.3.4, 

4.3.4. Path choice models 
The path choice model provides the fraction (probability) iWoshdm] of the trips 
undertaken by users of category i, using route k on mode m from 0 to d for trip 
purpose s in the time period h, Path choice models used in practice are all behavioral 
and the relevant attributes are mostly performance or level-of-service variables 
obtained from the network supply models described in Chapter 2, 

Path choice behavior and the models representing it depend on the type of 
service offered by the different transport modes. In particular, the case in which the 
whole path is chosen before starting the trip (pre-trip chOice) can be distinguished 
from that in which the route is chosen in two phases and it is completely defined 
only during the trip itself (pre-trip/en route mixed choice), Pre-trip choice behavior 
is usually assumed to simulate route choice for continuous service systems; the 
typical examples are road networks for individual modes like car, motorcycle, etc, 
Pre-trip choice behavior is also assumed for scheduled transport services with 
sufficiently low frequency and high regularity under the assumption that the user 
knows the service timetable and makes hislher decisions before beginning the trip 
(see section 6.5.1). On the other hand, pre-trip/en route mixed behavior is usually 
assumed for scheduled transport systems with high frequency and/or low regularity, 
as is the case for urban transit systems (see section 5.5). 

As for all behavioral models, the complete specification of a path choice model 
can be decomposed in three phases: definition of the alternatives; identification of 
the set of possible alternatives (choice set) and definition of the choice model. The 
first two phases are particularly important for path choice, 

In the following, behavioral assumptions and choice models will be described 
separately for pre-trip and mixed path choice behavior with regard to road 
continuous systems and to transit networks with high frequency/low regUlarity. Path 
choice models for low frequency/high regularity scheduled services will be 
described in Chapter 6. 

4.3.4.1. Path choice models for road systems 

Definition of choice alternatives, The hypothesis usually accepted for road systems 
is that the user, before undertaking the trip, chooses a sequence of road segments to 
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follow, or the phases of the trip, which can be represented as a path(l3). This is a 
sequence of nodes and links on the graph representing the road system as described 
in Chapter 2. Only elementary (loop-less) paths are considered, and thus their 
number is finite. 

Identification of the choice set. The definition of the paths considered as choice 
alternatives, i.e. the definition of the choice set, is particularly relevant since the 
topological complexity of the network could generate an unrealistic high number of 
routes connecting a single O-D pair. The set of feasible routes Kodm connecting the 
centroid pair od on the mode network m should be defined through an explicit 
choice set model, as described in section 3.4. In practice, however, heuristic 
approaches of two types are used. 

The exhaustive approach considers all elementary paths on the network. This 
approach may generate many routes that share many links; thus, these routes are 
correlated in their perceived (dis)utilities. Furthermore, given the computational 
complexity of explicitly enumerating all the routes in a network, this operation is 
usually carried out implicitly (implicit path enumeration) by using implicit 
algorithms for the calculation of path choice probabilities and flow assignment, as 
will be described in Chapter 7. 

The selective approach, on the other hand, identifies only some elementary paths 
on the basis of heuristic behavioral rules. For example, a route may not include more 
than one entrance and one exit from the same motorway, may not go "further away" 
from the destination, may not have a generalized cost exceeding the minimum cost 
by a given amount, etc. Various criteria for the selection of feasible routes have been 
proposed in the literature. They correspond to different application contexts 
(urban/extra-urban networks) and to different algorithms for generating the routes 
and calculating choice probabilities and link flows. Some examples of selection 
criteria are given in Fig. 4.3.5 where Zo.;and ZOJ represent the minimum cost to reach 
node i and node j from the origin 0 (see Chapter 7). 

In general the selective approach requires explicit path enumeration between 
each O-D pair, and usually a combination of criteria is adopted. Chapter 7 describes 
some algorithms for path enumeration, and Fig. 4.3.6 depicts an example of the 
complete set of elementary paths and a selective set for an origin-destination pair. 
For more sophisticated feasible path generation models, the criteria to be used must 
be "calibrated" like other parameters in the model. Calibration can be carried out by 
comparing, the paths generated by the model with the paths perceived (or at least 
with those actually chosen) by a sample of users, in order to maximize the coverage 
of the latter with the former. 
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SELECTION CRITERIA SPECIFICATION 
Topological A path is feasible (Dial efficient) if each link "goes away· from the 

origin and/or "move towards· the destination , see section 7.3.1 a 
ke Kod if Zo / < Zo,/ ':J(iJ) e k 

Comparison of costs Paths with a generalized cost not exceeding by more than 0. the 
minimum cost 
k e Kod if Qk < (1 +0.) Qmin 

Progressive The first n minimum generalized cost paths 
Multi-attribute Minimum paths with respect to various attributes (usually the relevant 

performance variables such as: travel time, monetary cost, motorway 
distance, etc.) 

Behavioral Paths excluding behaviorally unrealistic link sequences (e.g. repeated 
entrances and exits for the same motorwav) 

Distinctive Paths overlapping for no more than a given percentage of their length 

Fig . 4.3.5 Criteria for path feasibility on road networks. 

Some experimental results suggest that a good level of coverage of the routes 
used by a sample of users, at least for extra-urban networks, can be achieved by 
generating the first n paths for some criterion (e.g. minimum time, minimum 
monetary cost, maximum motorway use, etc.). 

The selective approach guarantees better control of the "feasibility" of the 
generated routes while allowing the use of performance attributes that are not 
additive over links as will be seen later(J4). These advantages are obtained at the 
expense of greater computational complexity. 

Conversely, implicit path enumeration methods are computationally more 
efficient and are used in assignment models in commercial software. However, it 
should be emphasized that no systematic analysis of the computational complexity 
and memory requirements of the two assignment algorithms exists and that the 
literature seems to suggest a tendency towards explicit path enumeration models in 
applications (see Chapter 7). 

Specification of the choice model. The specification of the path choice model 
requires, as usual, definition of the attributes in the systematic utility function and of 
the joint probability distribution of random residuals, i.e. the choice probability 
functional form . It is usually assumed that the variables influencing path choice are 
performance attributes with negative coefficients(J5), e.g. travel times, monetary cost, 
distance, etc. Thus it follows that: 

Uk = Vk + Ck \::j k E Kodm 

Vk = -gk 

(4.3.17a) 
(4.3.17b) 

where gk is the average generalized cost of path k expressed in utility units and Kodm 

is the set of paths connecting the pair 0 d via mode m. Systematic utility and average 
cost should be differentiated by user category, Vk and gik' although in what follows 
the superscript i will be omitted for simplicity of presentation. 
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Paths 1-16: exhaustive set of elementary paths 
Paths 1-2 + 4-8: selective set of paths on the basis of behavioral (eliminating paths 3 

and 11) and topologic (eliminating paths 9 to 16 going "further away" 
from the destination criteria) 

Fig. 4.3.6 Examples of exhaustive and selective set of feasible paths. 

In section 2.2.2 it was stated that the average path cost is usually a linear 
combination(16) of performance attributes with coefficients estimated with a path 
choice model: 

(4.3.lSa) 

If each attributes Znk can be obtained as a sum of the corresponding link variables 
rnl, the path cost gk will be purely additive: 

(4.3.lSb) 

where 0k are the (011) elements of the link-path incidence matrix LI and CI is the 
average cost of link I introduced in Chapter 2. 

In some cases, the average cost might include some variables that cannot be 
obtained as the sum of link variables (non-additive cost gNA k). This occurs, for 
example, if the monetary cost depends non-linearly on the path length, or if there is 
a dummy variable for minimum travel time or maximum motorway length paths. In 
the most general case, the expression (4.3.l7b) therefore becomes: 
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Generally, a non-additive path cost variable requires explicit path enumeration. 
Fig. 4.3 .7 shows some examples of systematic utility specification for path 

choice models in urban and extra-urban road systems environments. 

PA TH CHOICE MODEL FOR URBAN ROAD NETWORKS 

ITP = Travel time on primary roads [hI 
TTS = Travel time on secondary roads [hI 
L = Total length [km] 
NTS = Number of traffic-signal intersections on the path 
NL T = Number of left turns 
M7W = Dummy variable for the maximum motorway path 

ITP ITS L NTS NLT M7W tf %right L ratio 
- 16.462 -61.257 -9.601 -0.209 -2.296 3.158 0.403 0.532 844.344 

It -7.514 -16.445 -1.224 -1.143 -3.978 2.678 

PA TH CHOICE MODEL FOR HEA VY VEHICLES IN EXTRA-URBAN ROAD 
NETWORKS 

IT = Travel time [hI 
Me = Monetary cost [€] 
ML = Total motorway length [km) 
MinT = Dummy variable for minimum time path (011) 
MaxM = Dummy variable for maximum motorway use path (011) 
HVP = Dummy variable for minimum time path for perishable andlor high value goods (011) 
CF = Path commonality factor 
VOT = Value of time [€/h] 

IT Me ML MinT MaxM HVP CF VOT d LRratio 
-4.525 -0.0165 0.013 -0.9524 68.5605 0.176 -2440 

t -19.3 -6.7 12.3 -12.9 
-3.110 -0.0155 0.012 1.785 -0.839 50.1515 0.250 -2222 

t -14.2 -6.1 11 20.8 -11 .6 
-5.440 -0.018 0.012 2.292 2.585 -1.296 75.5555 0.306 -2055 

t -20.5 -6.9 10.5 19.9 20.1 -15.7 
-3.650 -0.015 0.009 3.370 3.702 3.788 -1 .205 60.8335 0.450 -1630 

t -14.1 -5.6 7.5 21.6 22 22.1 -14 

Fig . 4.3.7 Examples of Multinomial Logit path choice models in urban and extra-urban road 
networks. 
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The probability of choosing path k can be obtained with any random utility 
model whose depending on the distribution of random residuals Ck in (4.3.17). 

The first model used to simulate path choice is the deterministic utility model, 
which is a special case of a random utility model in which the variance of the 
residuals Ck is assumed equal to zero: 

In this case, path k can be used only if its cost gk is the least among those of 
alternative paths: 

(4.3.19) 

As already noted in section 3.5, the deterministic utility model does not provide a 
unique path choice probability vector, except in the case in which there is a unique 
minimum cost path. In this case: 

p[klosdm]=1 ifgk<gh Vh*k h,kEKodm 

= 0 otherwise 
(4.3.20) 

The deterministic choice model, though less realistic than probabilistic models, 
is still used for computational reasons in the case of very congested networks with 
implicit path enumeration. In fact, in those cases, it gives results that are largely 
comparable with those obtained by using probabilistic models, as will be seen in 
section 5.4.3. 

The probabilistic choice models generally used to calculate path choice 
probability are Logit and Probit. In this case, the Multinomial Logit model takes the 
form: 

p[k loshdm] = exp( -gk I ()) 
LhEK exp( -gh I ()) 

odm 

(4.3.21) 

The Multinomial Logit model results from the hypothesis that the random 
residuals Ck are i.i.d. Gumbel variables of parameter (), with () proportional to the 
standard deviation of random residuals Ck. As will be seen in Chapter S, the 
parameter () cannot be estimated separately for linear utility functions of the type 
(4.3 .lSa) and is therefore included in the coefficients Ph. The urban and extra-urban 
path choice models described in Fig. 4.3.7 have a Multinomial Logit specification. 

The assumption of identically and independently distributed random residuals 
that underlies the Logit model and its property of Independence of Irrelevant 
Alternatives (see section 3.3.1) are unrealistic when alternative paths share several 
links. In this case, it may be conjectured that the perceived costs of heavily 
overlapping paths are highly correlated, giving rise to choice probabilities smaller 
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than those of other paths with the same average costs but with no overlapping. In the 
extreme case of two practically coincident paths, the MNL model gives 
unrealistically large choice probabilities as is shown in Fig. 4.3.8. Thus, the 
Multinomial Logit model should be used with an explicit path enumeration 
eliminating highly overlapping paths to reduce the effects of the IIA property. 

Path Links 
A (1.2) (2.3) (3.4) 
B (1.2)(2.4) 
C (1.4) 

gA=gB=gC=g 
p[A]=p[B]=p[C]=O,333 
p[A]+p[B]=O,66 

A B c 

Fig. 4.3.8 Application of a Logit model in the case of highly overlapping paths. 

Alternatively, if it is assumed that the residuals lik are distributed according to a 
Multivariate Normal variable, the choice model has the Probit form. The most 
widely used specification assumes that the variance of the random residuals is 
proportional to an additive path cost attribute, Zk, and that the covariance of the 
residuals of two paths is proportional to the cost attribute of the links shared by the 
two paths (Zkh): 

var[lik ] = q Zk k E Kodm 

COV[lik' lih] = q Z kh h, k E Kodm 

(4.3.22a) 

(4.3.22b) 

Usually, variables Zk differ from the actual path cost gk (e.g. length or 
uncontested cost). These specifications satisfy the random utility model's property 
of additivity described in section 3.3.5 and are useful in the analysis of the 
theoretical properties of equilibrium assignment models to be dealt with in Chapter 
5. 

Note that the specification (4.3.22) of the variance-covariance matrix of random 
residuals depends on a single calibration parameter q and can be derived by applying 
the Factor-Analytic Probit model described in section 3.3.6 to the path choice 
context. As a matter of fact, assuming that a perceived disutility UI is associated to 
each link I, with: 

where the link random residuals, 1]1 (1=1,2, ... , L), are independent normal variables 
1]1 ~ N(O, OJ) with: 
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Var[ 1]1] = Oi = ¢rl 
COV[I]I, I]j] = 0 

1]- MVN(O, I'7) I'7 = ¢ DIAG(r) 

where rl is the link related performance variable corresponding to path attribute Z 

and DIAG(r) is the (nLxnL) diagonal matrix containing link variables, rl. Assuming 
that the path utility is the sum of its link utilities, it follows that: 

Uk = LOlkUI =E[Uk]+ck 
1 

E[Ud = LOlkE[UI ] = -LO'kCI = -gk 
1 1 

ck = Uk - E[Uk] = LOlk(UI + c1) = LOlk1]1 
1 1 

Var[Ck] = LOlk ·var[l]l] = LO'k ·¢rl =¢Zk 
1 1 

COV[ck,ch] = E[ck,ch] = E[LOlkl]l . LOlhl]l] = E[LI]/] = L var[l]n = ¢ Zkh 
1 1 IEhk IEhk 

i.e. the relationships 4.3.22. Since the sum of normal variables is still a Normal 
variable it results: 

C- MVN(O, L) 

where Iis the variance covariance matrix with elements given by 4.3.22. 
In other words, specification 4.3.22 of the Probit model can be obtained by 

applying the Factor Analytic Probit to the path choice context with: 

where: 

& is the (npx 1) vector of multivariate normal distributed path random residuals, 
C -MVN(O, L); 

A is the (nlxnp) link-path incidence matrix; 
I] is the (nix 1) vector of independent normal distributed link random residuals, 

I] -MVN(O, I'7); 

(; is the (nix 1) vector of i.i.d. standard normal random variables, (; -MVN (0, /); 
F ATLryl12 = AT[¢ DIAG(r)] 112 is the (npxnl) matrix that maps the random vector (; 

into path choice random residuals G, 

np is the total number of paths; 
nl is the total number oflinks, usually nl« np-
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It is, in fact, immediate to verify that matrix F specified above, introduced in the 
(3.3.64) and (3.3.65), gives the (4.3.22a) and (4.3.22b) respectively. 

This representation of the Probit path choice model will be used also in section 
7.3 .I.b for the specification of an algorithm for network assignment to uncongested 
networks. 

The capacity of the Pro bit model to handle path overlapping, or perceived cost 
correlation, makes it particularly suitable for applications with exhaustive path 
generation (implicit enumeration). Furthermore, the difficulty of explicitly 
calculating the Probit choice probabilities can be overcome with algorithms based 
on the Monte Carlo simulation described in section 3.3.6. These algorithms will be 
discussed in Chapter 7. 

Recently, a modification to the Logit path choice model has been proposed, 
called C-Logit, which overcomes the problems deriving from Logit IIA property 
while at the same time retaining an analytical formulation. The C-Logit path choice 
model has the following specification: 

p[k /oshdm] = exp[( -gk - CFk ) / 0] 
LexP[(-gh -CFh)/O] 

hEKodm 

(4.3.23) 

where the term CFk, known as the commonality factor, reduces the systematic utility 
of a path proportionally to its level of overlapping with other alternative paths. The 
commonality factor can be specified in various ways, for example as: 

(4.3.24a) 

where the attributes Zh, Zk, and Zhk are analogous to those described for the Probit 
model. Expression (4.2.24) shows immediately that the attribute CFk is inversely 
proportional to the level of a path's independence, and it is equal to zero if all the 
links of paths k do not belong to any other path. In this case, it follows that: 

Zhk = 0 '1/ h:f.k ~ CFk = flo [n(l) =0 

Conversely the attribute CFk is larger if more paths share the "longer" links of 
path k. The C-Logit model (4.3.23), for given path costs, reduces the probability of 
choosing heavily overlapping paths and increases the probability of choosing non­
overlapping paths. Furthermore, if the coefficient flo is equal to I, C-Logit choice 
probabilities in the limit case of N coincident paths tend to liN of those calculated 
with a Multinomial Logit model applied considering the coincident paths as a single 
path. These results are illustrated in Fig. 4.3.9, which reports Logit, C-Logit and 
Probit choice probabilities for a network similar to that in Fig. 4.3.8. As can be seen, 
C-Logit and Probit probabilities are very similar and lower than those obtained by 
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the Logit model for heavily overlapping paths. Some calibrations of extra-urban 
truck path choice models confirm the significance of the attribute CFk and give /3" 
values of the coefficient close to one (see Fig. 4.3.7). 

Paths 
Link A B C 

1 0 1 1 
2 1 0 0 
3 0 1 0 
4 0 0 1 

[i§§J 

Path 
A 
B 
C 

[K=17l 

Path Cost cv=0.1 
A 17 0.091 
B 16 0.454 
C 16 0.454 

Link costs 

14 
K 
2 
2 

Cost 
16 
16 
16 

logit 
cv=0.3 cV=1.1 
0.227 0.302 
0.387 0.349 
0.387 0.349 

logit 
('t {!J 
0.333 
0.333 
0.333 

cv=0.1 
0.156 
0.422 
0.422 

Clogit 
cv=0.3 
0.350 
0.325 
0.325 

link numeration 

Clogit 
fJu=1 
0.478 
0.261 
0.261 

cv=1.1 
0.442 
0.279 
0.279 

cv=0.1 
0.162 
0.419 
0.419 

Probit 
{=1 
0.450 
0.275 
0.275 

Probit 
cv=0.3 cv=1.1 
0.342 0.421 
0.329 0.289 
0.329 0.289 

Fig. 4.3.9 Comparison between path choice probabilities with logit, C-logit and Probit models. 

Expression (4.3.24a) allows computation of the commonality factor additively 
over the links making up the path and thus application of implicit path enumeration 
algorithms similar to Dial's (see Chapter 7). 

Other specifications of CF have been proposed. Among them, a first one is: 

CFk = Po I Wlk In NI 
IEk 

(4.3.24b) 

where the summation is extended to all links I belonging to path k, WJk is equal to the 
weight of link in path k: 

rl 
WJk= -

Zk 

and NJ is the number of paths between the same O-D pair using link I. 
Expression (4.3 .24b) takes into account the relative weight of shared links with 

respect to the overall path cost; for example if two paths hand k, share the same 
common link I: 
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The attribute CF is larger for a path whose shared links are a larger fraction of its 
total "length". 

Another useful expression of the CF is the following: 

(4.3.24c) 

According to expression (4.3.24c), the CF of a path depends also on the cost of 
non shared links. In this way, the ratio CFAICFB between the commonality factors of 
two paths increases as the overlapping between two paths (the percentage of 
common cost with respect to the total one) increases, being ZA>ZB. 

The C-Logit model has a behavioral interpretation as an Implicit Availability 
Perception (lAP) model simulating simultaneously the perception of paths as 
alternatives and the choice among the perceived alternatives as discussed in section 
3.4. The commonality factor CFk, in fact, can be interpreted as an attribute of the 
model, giving the level of membership of path k to the set of perceived paths Iodm' 

Plo""( k): 

(4.3.25) 

i.e, it is assumed that the perception of path k as an elementary alternative is larger if 
its overlap with other paths is smaller, and vice versa. On the other hand, the first 
order lAP Logit model described in section 3.4 can be formally expressed as: 

p[k I odm] = exp[( -gk + InPlod.,(k»I ()] 
L exp[( -gh + lnplodm (h»1 ()] 

heKotlnt 

Substituting expression (4.3.25) into (4.3.26), expression (4.3.23) results. 

4.3.4.2. Path choice models for transit systems 

(4.3.26) 

As stated in Chapter 2, public transport systems offer services which are both non­
continuous in space (Le., between discrete points such as stations or stops) and non­
simultaneous in time (i.e., available only at times corresponding to departures and 
arrivals). Supply models (transport networks) representing such systems can be built 
following two main approaches: "line" based and "run" based. This choice depends 
on the frequency and the regUlarity of the service and resulting assumptions on 
users' behavior. In the following reference will be made to path choice models for 
scheduled services with frequencies high enough to justify a line-based(17) 
representation as described in section 2.3.2.1 and repeated in Fig. 4.3.10 for reader's 
convenience. This assumption is consistent with the within-day stationariety 
assumption underlying this chapter. 
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BASE GRAPH 

Station A Station B 
line 2 

~ :-:..: :-.....: :-~ .....: :-:..: :-:..: :- . 
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line 1 

LINE GRAPH 

line 2 

~~~.:-.....::-.....: :-~.....::-.....: :-.....: :-~~;::?': 

~~~. :-.....::-.....: :-~.....::-.....::-.....: .~~~ 

o Pedestrian node 

• Diversion node 

o Line node 

line 1 

o-----~----o Pedestrian link 

0-----1.--. Waiting link 

•• I--- ..... ----jo Boarding link 

0- .. .... .. -0 On-board link 

0-- ".--0 Dwell ing link 

O--•• ----jO Alighting link 

Fig . 4.3.10 Line-based representation of a scheduled transport system. 

Also in the case of scheduled service networks, as already said, the complete 
specification of a path choice model involves three phases: definition of choice 
alternatives, identification of the set of alternatives and specification of the model 
simulating choice among alternatives. This in tum implies the definition of the 
attributes and the systematic utility of the alternatives as well as the functional form 
of the choice model. 
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Definition of choice alternatives. In high frequency transport services, It IS 
unrealistic to assume that the user considers as choice alternatives only elementary 
paths on the graph representing service lines. If this were the case, a user might 
consider as different and mutually exclusive the paths identified by each of the lines 
connecting the same pair of stops even when there are several, perfectly equivalent 
lines. Consider a user traveling in the network represented by the graph of Fig. 
4.3.11. Ifhe/she chose the path b shown in Fig. 4.3.12 and the line 5 belonging to it, 
he/she would, on arrival at stop F, refuse to board a vehicle of line 6 arriving at the 
stop earlier than one of line 5 despite the fact that they are perfectly equivalent. To 
overcome these potential problems, one should allow for the possibility that the 
choice alternatives considered by a user before beginning a trip, include several 
"equivalent" lines, or several paths on the graph representing them. The basic 
assumption for the definition of choice alternatives is that users of high-frequency 
transit systems, at the beginning of their trips, do not have complete information. For 
example, the generic user may be unable to anticipate exactly hislher arrival time at 
the stops and/or the actual arrival time of the vehicles (trains, buses, etc.) of the 
different lines calling at each stop. Under this hypothesis it is assumed that the user 
does not choose a predetermined path but rather a travel strategy with the lowest 
perceived average trip cost. A strategy is defined by a set of pre-defined choices and 
behavioral rules to follow during the trip, to adapt to random or unknown events. In 
the example given in Fig. 4.3.11, a strategy could be to go to stop F and board the 
first vehicle belonging to line 5 or 6; another possible strategy could be to go to stop 
F and wait only for vehicles of line 5. Two types of behavior are involved in 
choosing a path under the above assumptions. 

En-route choice behavior underlies user choices during the trip. This behavior 
describes how users respond to unknown or unpredictable events. The type of 
adaptive choice behavior and the set of alternatives to which it is applied define a 
strategy. 

Pre-trip choice behavior underlies user choices before departure. It includes the 
comparison of possible alternative strategies and the choice of one of them on the 
basis of expected characteristics, or attributes. Pre-trip choices are analogous to 
those assumed for path choice in continuous service networks and, in general, to 
choices on other dimensions. 

The definition of choice alternatives (strategies) therefore requires assumptions 
about en-route behavior. Usually it is assumed that en-route choices take place at 
diversion nodes (stops) m and that the en-route behavior rule consist in boarding the 
first arriving vehicle among those belonging to a given set of lines ALm, called the 
set of attractive lines(l8). On the other hand, the choice of boarding and alighting 
stops is made pre-trip. To continue the example of Fig. 4.3.11, a strategy cannot 
include the option of alighting at stop C or at stop D of line 1, because it has been 
assumed that these are pre-trip choices. This means that there are no events 
unknown to the user that he/she would adapt to in deciding between either stop. 
Analogously, a strategy cannot include moving to stop A to take line I or to stop B 
to take line 4. 
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A line I cp=5/h D 

B 
-~ .. ¢ 
~:~"~E 

I "" line 3 cp=6/h G 
I " 
: ··_·0---.0 ; 
: line 5 cp=4/h 

~ine 4 ~2!h ... ...o---Q..... H \\, 

L..J-l......./"· · .. o---·O<... ...:.0---.0"'''''' 
F ~ •• 

line 6 cp=6/h 

Fig, 4,3,11 Example of a transit line-based network, 

If we assume that user and vehicle arrivals at the stops can be modeled as 
Poisson random processes with homogeneous probability of arrival at any time, the 
probability of boarding line I belonging to the set of attractive lines at stop m, ALm, 

can be expressed as: 

Pr[l / m, ALm] = CfJ, / LCfJII (4.3.27) 
lle Alnt 

where CfJ, represents the frequency (number of arrivals/time units) of line I. 
Expression (4.3.27) is valid also on the assumption of Poisson arrivals for the user 
and of deterministic equally-spaced arrivals of the lines belonging to ALm • 

In accordance with these assumptions, a travel strategy, i.e. a pre-trip choice 
alternative, can be represented by a sub-graph of the line-based graph, known as a 
hyperpath. Elementary paths are theoretically possible strategies, in particular 
strategies that exclude adaptive choices. Elementary paths are defined simple 
hyperpaths. Strategies that include one or more stops with en-route choices can be 
represented as the union of simple hyperpaths, such that multiple links can emanate 
only from diversion nodes(19). These subgraphs are known as composed hyperpaths; 
Fig. (4.3 .12) enumerates all the hyperpaths of the line network in Fig. 4.3.11. 

Each diversion node m of hyperpath} will correspond a diversion set ALm} of 
attractive lines belonging to that hyperpath. To the boarding links I=(m,n) 
connecting the diversion node m to the nodes n of the lines belonging to ALm}, it is 
possible to assign a diversion probability, 'lI}. This is the probability expressed by 
equation (4,3 .27) of using the line corresponding to link I ofhyperpath} due to the 
random events underlying en-route choices: 
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TJ' ,j = pr[l = (m, n)/ m, ALmj ] = fP, / L fPn if IE ALmj boarding link (4.3.28) 
IIEALm,} 

Typically a diversion probability equal to one is assigned to all non-boarding 
links belonging to the hyperpath: 

TJIj = I if I E j, I non-boarding link 

and a null probability is assigned to the links not belonging to the hyperpathj: 

5 SIMPLE HYPERPATHS 
a, b, c, d, e; 
4 COMPOSED HYPERPATHS 
a+b, a+c, b+c, a+b+c; 
TJ diversion probability; 
tw waiting time at boarding link (m) ; 
Tw total waiting time (m) ; 
Wk probability choice of path k; 
Ii = I 

simple hyperpath b (2) 

g~ =s.o Tw =20,0 

I 
I 

~..cJ-+O..~ .. 

simple hyperpath d (4) 

if I ~j 

9 simple hyperpath a (I) 

Tw=IO,O 8tW =IO,O 

~~q 
" 

simple hyperpath c (3) 

~ Tw= 15,O 
~tw =5,0 

I 
I 
t tw =IQ,O 
O+C::r+O+CJ..~ .yO-+O" '" 

simple hyperpath e (5) 

Fig. 4.3.12a Enumeration of simple hyperpaths for the transit network of Fig . 4.3.11. 
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In 

~
. Composed hyperpath a+b (6) 

Wu= 0,33 Tw =13,3 
rw =3,3 Wb= 0,67 

, ,, =0,33 

:~~-o+O 
I I] =0,67 \. +., v , v. Iw=15,~. ..... 

~I]=I .O :A()+(). 

~
; Composed hyperpath b+c (8) 

(Qh=0,40 Tw = I I,O 
tw =5,0 We = 0,60 

, 
' 'F I,OO 
I I] =0,4 

~..o-+G»o+o. 
Iw =6,0 ~ 

I] =0,6 

~
. Composed hyperpath a+c (7) 

wu= 0,33 T\V = IO,O 
rw =3,3 We= 0,67 

",7 =0,33 

:~~O 
I .... -+ 1] =0,67 _ \ 

D-+[}K}+Q.I] = I,O ~.~ 
rw = IO,O ~ 

r s 

~ 
Composed ~~p~rpO,a3t3h a+b+c (9) 

.... , Tw= 7,3 
Il =33 (Vb = 0,27 

v , CtJc=0,40 

,1] =0,33 

I~~o 
II] =0,67 I] ~ \\ 

~rs~. 
rw=6,O ~ 

,, =0,6 

Fig. 4.3.12 b Enumeration of composed hyperpaths for the transit network of Fig. 4.3.11. 

For example, the diversion set ALm6 corresponding to diversion node m in 
composed hyperpath 6 in Fig. 4.3 .12b consists of the lines 3 and 4: ALm6 = {3,4} and 
the diversion probability of boarding link (f) on line 3 can be calculated as: 

On the basis of the diversion probabilities 17/j it is possible to express the 
probability {J)kj of following the path k of the hyperpath j during a given trip. In fact, 
assuming statistical independence of the random events underlying en-route choices, 
the probability of following path k within hyperpath j is equal to the product of the 
diversion probabilities for all links I belonging to path k, i.e.: 

(4.3.29) 

which yields: 

This probability is obviously equal to one if path k coincides with (simple) 
hyperpathj. Continuing with the previous example, the probability {J)a6 of following 
path a within hyperpath 6 is equal to 0.33; the probability offollowing the same path 
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within another hyperpath is different, for example ((}al = 1, ((}a2 =0 and so on. Note 
that a path may belong to more than one hyperpath. It is also possible to calculate 
the probabilities AIj of crossing a link I of hyperpath j as the sum of the probabilities 
to follow one of the paths k belonging to hyperpathj which includes the link I: 

(4.3.30) 

which yields: 
if I ~ j 

where Otk is the generic element of the link path incidence matrix. Continuing with 
the example in Fig. 4.3.12b, the probability of crossing all the links belonging to 
path b within hyperpath 2 is equal to one; the probability of crossing the link (r,s) is 
equal to 0.67 in hyperpath 7 and to 0.40 in hyperpath 9. The user choosing a given 
strategy (or a hyperpath representing it) does not know before starting the trip which 
path and therefore which lines and links he/she will use since they depend on 
random events such as the sequence of vehicle arrivals at each stop. On different 
trips, the same user following the same strategy might use different lines, paths and 
links with probabilities given by the equations (4.3.28), (4.3.29) and (4.3.20) 
respectively. Furthermore, on each trip he/she will experience different travel times 
and, in general, different costs whose mean value can be expressed in function of the 
probabilities Wkj, as will be shown shortly. 

Identification of the choice set. Once choice alternatives (strategies and 
hyperpaths) have been defined, the issue of the set of such alternatives (choice set) 
which the user will take into consideration can be considered. As in the case of path 
choice on road service networks, there are two approaches to the identification of the 
set of choice alternatives. In the exhaustive approach, all strategies (or the 
hyperpaths that represent them) are feasible. This approach is typically associated 
with implicit enumeration of the hyperpaths. In the selective approach, only those 
hyperpaths satisfying certain conditions are feasible. For example, hyperpaths 
including paths with more than one transfer may be excluded from the choice set if 
there are "direct" paths and hyperpaths. In applications, the most commonly used 
approach is the exhaustive one, given the calculation complexity of the explicit 
enumeration ofhyperpaths. 

Specification of the choice model. Specification of the choice model requires the 
definition of the attributes and of the functional form of the random utility model. 
Also, in the case of scheduled service networks, it is assumed that for each 
hyperpath j belonging to the set Jod.m of hyperpaths connecting the pair o,d on the 
network of the transit mode (or modes) m, the perceived utility of the hyperpath ~ 
will have a negative systematic utility ~ equal to the mean cost Xj of the hyperpath: 

(4.3.31) 
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The average cost of hyperpath x; can be expressed as the sum of an additive part 
X/DD and a non-additive part X/A, which in this case, differently from the path costs 
on continuous service networks, is always present: 

x' = X ADD + X NA 
J J J 

(4.3.32) 

The additive cost X/DD is a linear combination of the attributes (typically on 
board, boarding, alighting, dwelling and access/egress times) associated with the 
non-waiting links belonging to the hyperpath: 

(4.3.33) 

where the j3 are the respective coefficients. 
This cost can be obtained starting from the generalized costs of the single links c, 

and the probabilities of crossing the single links (AIj) or through the additive path 
costs g/DD and the probabilities of following these paths OJk/ 

(4.3.34) 

The non-additive cost can be expressed as the sum of the waiting times (costs) 
Tw;, as well as any further non-additive costs, i.e. costs which cannot be associated 
with single links, e.g. fixed fares or transfer costs N;. 

where j3w and j3N are the coefficients of reciprocal substitution between the different 
non-additive cost items. 

The average waiting time (cost) TWj connected with hyperpath j can be 
calculated starting from the waiting times twlj associated with each waiting link / 
entering diversion node m; as discussed in section 2.3.2.2, this can be expressed as: 

{
BILIIEAL ,fPlI if I is a diversion link 

tw - I m.J 
r -
~ 0 otherwise 

(4.3.35) 

where B is a parameter with values included in the interval [0.5-1] depending on the 
probability laws of users and vehicle arrivals (see section 2.3.2.2). 

The average total waiting cost TWj associated with hyperpath j can be expressed 
as: 

Tw =" OJk, r"" twl ,] = " A1tw" .I L..kEj g IL/Ek ~ L.., ~ g 
(4.3.36) 
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From equation (4.3.35) it follows that the waiting time twlj for the diversion link I 
depends on the hyperpath and therefore the total waiting time TWj cannot be 
expressed as a linear combination of link attributes independent of the hyperpath; 
i.e. a non-additive hyperpath attribute. 

The choice model among alternative hyperpaths can be expressed formally as the 
probability qj that hyperpathj is that of maximum perceived utility: 

v)' ,j,)'E J ad (4.3.37) 

Again, in the case of the hyperpath choice model there are two possible 
approaches. The deterministic choice (Var['1]=O) approach assigns the whole 
demand to the minimum generalized cost hyperpath(s); alternatively, random utility 
models, typically Logit and Pro bit, assign a positive choice probability to all 
available hyperpaths. When applying the MNL model, however, the problems due to 
the IIA property are even more significant for hyperpaths that include a large 
number of overlapping lines. Alternatively, it is possible to use a Probit model with 
a variance-covariance matrix structure similar to that described for paths on road 
networks. 

Unlike path choice models on road networks, in the literature there are no 
examples of calibration and validation of hyperpath choice models based on 
observed behavior; this can be explained at least in part by the difficulty of obtaining 
information on the alternatives (hyperpaths) chosen by users. 

Finally, once the hyperpath choice probabilities have been calculated, it is 
possible to obtain path probabilities: 

(4.3.38) 

4.3.5. A system of demand models 
This sub-section describes, as an illustration, the system of extra-urban passenger 
trip demand models developed and used in the Information System for 
Transportation Monitoring and Planning in Italy (SIMPT). The system, presented 
schematically in Fig. 4.3.13, includes models for mobility choices (license holding 
and number of cars in the family) and partial share trip demand models. 

All of the models have a Logit specification and the sequence of 
frequency/distribution/modal choice models has a three-level Hierarchical Logit 
structure with inclusive (EMPU) variables taking into account the influence of 
"lower" choice dimensions on "upper" levels as described in section 4.2. In the 
following the attributes and their relative interpretations for individual sub-models 
will be briefly described. 

The driving license holding model (Fig. 4.3.14) is a Binomial Logit with license 
holding or not-holding alternatives for each individual. Its systematic utility 
attributes include the socio-economic characteristics of the individual (age, gender 
and professional status) and the family (income). The urbanization level of the 
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Fig . 4.3.1 3 Structure of a model system for extra-urban trip demand. 

residence zone is also significant. Densely urbanized zones usualJy have a more 
efficient public transport system and guarantee better accessibility to various urban 
functions, reducing the need to use the car. The coefficients indicate that factors 
such as gender, age, professional status, family income have a significant effect on 
license holding. Furthermore, it can be observed that the coefficients of socio­
economic variables describing gender and age (woman 18-48 and woman> 48) are 
positive and increasing in the systematic utility of not holding a license. This result 
can be interpreted as an indicator of the delay with which the female population has 
gained access to car use, even though this gap is closing for younger generations. 
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AGE AGE EMpLOYED AVERAGE HIGH DENSE WOMAN WOMAN AsA 
pl..:o.437 18-24 25-56 (011) INCOME INCOME URDANZONE 18-48 >48 

(Olt) (Oil) 40-BO ml >80ml (0/1) (Oil) (Of\) 

License 0.173 1.146 1.279 0.716 1.229 
t 2.1 16.4 19.5 10.2 5.9 

No license 0.262 1.197 2.384 -1.022 
/ 5.1 17.1 34.9 -16.2 

Fig. 4.3.14 License holding model. 

The car ownership model (Fig. 4.3.15) simulates the choice of the number of 
cars owned in the family; the model is a trinomial Logit, with alternatives 0, 1, 2 or 
more cars. The significant attributes are again socio-economic variables of the 
family such as income, number of license holders, number of workers and of 
students. The urbanization level of the residence zone reduces the utility (and the 
probability) of owning 2 or more cars, confirming the interpretation given for this 
variable in the license holding model. 

As" NROF NR.OF FAMILY AVERAGE HIGH DENSE N°OF 

p'=O.376 WORKERS UNIV. HEAD INCOME INCOME URBAN ZONE LICENSES 
STUD. (0/1) 40-80 ml >BOml (01t) 

o cars -1.33 -1.44 -0.99 -0.73 
I -13.5 -17.2 -4.3 -7.2 

I cars -0.48 1.06 
I -24.6 27.3 

2 or more cars 1.01 1.53 -0.56 
I 12.4 6.1 -6.9 

Fig. 4.3.15 Car ownership model. 

The trip demand model system estimates the average number dod[s,h,m,k] of 
extra-provincial round trips undertaken by the generic individual i between the zone 
of residence 0 and the destination d, for purpose s in the reference period h, with 
mode m and path k: 

d~[s,h,m,k] = :LxXpi[X I osh](SE, T). pi[d I osh](SE, T). 

·/[ml oshd](SE,n·/[kl oshdm](SE,T) 
(4.3.39) 

where: 

pi[xlosh] is the probability that individual i undertakes x extra-provincial trips 
for purpose s in the period h obtained with the trip frequency model; 

p' [dlosh] is the probability of choosing destination d obtained with the 
distribution model; 

l [mloshd] is the probability of choosing mode m obtained with the modal choice 
model; 

l[k/oshdm] is the probability of choosing path k in mode m network obtained with 
the path choice model. 
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Five travel purposes are considered: commuting, professional business, study, 
recreational and tourism, and other purposes. 

The trip frequency model P'[x/osh] has a Logit structure with three alternatives: 
"no trip", "making a single trip", "making more than one trip" in the reference time 
period h (two winter weeks). The average number of trips undertaken by each 
individual is therefore obtained as weighted average of the number of trips 
corresponding to each frequency class (respectively zero, one and the average 
number estimated by the sample). Weights are given by the probability of choosing 
each frequency class (see equation 4.3.1). The attributes in the systematic utility 
functions are the socio-economic characteristics of the family (income level, number 
of members and cars in the household) and of the traveler (age group, professional 
status, license holding) and the inclusive utility associated with destination choice 
[Yoi = In'Ld exp(Vod)]. Since the model expresses the probability of undertaking 
journeys external to the province of residence, it includes an "auto-attractivity" 
variable (e.g. total employment in the province) in the systematic utility of the 
alternative "no trip" . This variable is a proxy for the minor need to carry out 
activities outside the province for individuals who, everything else being equal, live 
in areas with more opportunities satisfying their needs. The accessibility variable in 
the utility of making one or more round-trips has a positive coefficient between zero 
and one, consistent with the behavioral interpretation of the Hierarchical Logit 
model. Fig. 4.3.16 shows as an example the attributes and the coefficients calibrated 
for the "professional business" trip frequency model. 

TOTAL ACCESSffilllTY AVERAGE HlGH MALE MANAGER ASA 
p'=O.7061 EMPLOYMENT Yo' INCOME fNCOME (0/1) (0/1) 

(xl (6) IN ZONE 0 (40-8OmI) (>80ml) 
o journeys 0. 11 

I 4.8 

I journey 0.14 0.61 1.53 0.96 0.33 -4.80 
/ 2.3 5.3 7.2 4.9 10.2 -13.5 

2 or more journeys 0.14 0.61 1.53 2.34 1.47 -5 .592 
I 2.3 4.9 11.3 -14.5 

Fig. 4.3.16 Travel frequency model: for "professional business". 

The distribution model p'[dlosh] has a Multinomial Logit specification. Its 
systematic utility includes the logsum variable rod for mode choice as a (inverse) 
separation variable between two zones. In order to account for the unknown number 
of elementary destinations in each zone, "size functions" are used as zone 
attractiveness attributes, see section 4.3 .2. In summary, the utility function of the 
distribution model can be expressed as: 

m 
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where the third term includes all the attributes common to the elementary 
destinations included in d, e.g. the dummy variable "same region" introduced to 
represent the greater attractiveness, other attributes being equal, of the zones 
belonging to the same region. The variables included in the "size functions" that 
depend on trip purpose are service and commerce employment, the number of 
tourist facilities, and the like. 

In the example reported in Fig. 4.3 .17 for professional business trips, service 
employment is used in the "size function" as an indicator of the number of 
elementary destinations included in each zone. Also in this case, the coefficient of 
the logsum variable r od lies on the [0,1] interval. 

Yod SERVICE SIZE SAME REGION 
p2:0.3129 EMPLOYMENT (0/1) 

X'd (X103) 

0.334 1.000 0.913 1.787 
t 61.3 - 13.8 42.3 

Fig . 4.3.17 Destination choice model: for professional business. 

The mode choice model/[mloshd] is a Multinomial Logit with six mode or 
service alternatives: car, bus, air, slow train (inter-regional, express), fast train (inter­
city), night train. For each mode, the generic attributes considered are total travel 
time and monetary cost. In particular, there are two different coefficients for 
monetary cost, one for low-income users and the other for average-to-high income 
users . This accounts for different willingness to pay and value of time for users with 
different incomes, as described in section 4.3.3. The value of time (VOT) perceived 
by low-income and medium-to-high income users was found to be statistically 
significantly different. In the example reported in Fig. 4.3.18 for "professional 
business", the VOT is approximately 5.5 Euro per hour for low-income travelers and 
12.5 Euro per hour for medium-to-high income travelers. For "recreational and 
tourism" and "other purposes", the VOT difference is less dramatic: for medium-to­
high income individuals the value of time is approximately 50% higher than for low­
income travelers. Other level-of-service attributes are included in the model, such as 
the number of transfers and the average distance between two runs for scheduled 
modes/services. For the latter a dummy variable is included, equal to one if the 
destination zone is not a medium or large city. The negative coefficient of this 
variable can be interpreted as an (aggregated) measure of the difficulty of reaching 
the final destination from the service terminal (station, etc.) in the case of low 
density zones due to less attractive local public transport services. Finally, the 
specification of the model includes car availability (number of cars divided by the 
number of licensed drivers in the family) as a socio-economic variable linked to the 
availability of that alternative. 

The path choice model on the road network /[kloshdm] is also a Multinomial 
Logit model; the choice alternatives are obtained through an explicit path 
enumeration technique eliminating heavily overlapping paths. The variables used are 
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exclusively level-of-service ones. Path choice on scheduled service networks (slow 
train, fast train, bus and air) is simulated with a Logit model among hyperpaths 
explicitly enumerated on the lines-based network in accordance with heuristic 
feasibility rules. Path choice models are applied to origin-destination matrices by 
mode and trip purpose obtained with the aggregation technique described below. 

TIME MON. COST MON. COST CAR ~ON URBAN NR.OF TIME ASA 
p2".O.7S8 (hI LOW INC. MED-HIGH AVAIL. DESTIN. ~RANSF. HEADWAV TRAIN 

I€] I€] (0/1) [hI IR IC NOTT. AIR BUS 

ar -1 .2 -0.22 -0 .098 3.Bl 

Inter-regional -1.2 -0.2 -0.098 -3.72 -0.97 -o.se 0.95 
'ntercity -1.2 -0.22 -0.098 -3.7 -0.97 -o.se -0.5 
Night -1 .23 -0.2 -0.098 -3.72 -0.97 -o.se 9.9S 
Air -1.23 -0.2 -0.098 -3.7 -0.97 -o.se -1.S2 
Bus -1 .23 -0.2 -0.098 -3.7 -0.97 -0.60 -2 .31 

t -26.2 -5.4 -15. 30. -1B.C -5. ~ -24.C -O. f -4.4 3.f -12. -14.4 

Fig. 4.3.18 Mode and service choice model: for professional business. 

The aggregation procedure estimates aggregate origin-destination demand flow 
starting from individual average trips. Since the models described adopt several 
socio-economic variables at the individual and household level, it would be not 
feasible to identify user classes characterized by equal values of these attributes. The 
aggregation procedure adopted is based on the sample enumeration technique 
described in section 3.7 with the identification of a "prototypical sample" of 
individuals and families and the calculation of zonal expansion factors calculated so 
as to satisfy zonal values of aggregate target variables. 

4.4. Trip-chaining demand mode/s* 
In section 4.1, it was stated that traditional travel demand models simulate the trips 
making up a journey (sequence of trips starting and ending at home), assuming that 
the decisions (choices) for each trip are independent of those for other possible trips 
belonging to the same journey. It has also been said that these assumptions are 
reasonable when the journey is a "round trip" with a single destination and two 
symmetric trips. 

In recent years, however, there has been an increasing complexity of the 
structure of human activities, and therefore of travel, especially in urban areas. This 
has implied an increased number of journeys connecting several activities in 
different locations, i.e. journeys consisting of sequences of trips influencing each 
other (Fig. 4.4.1). Consider, for example, the use of car, which cannot be chosen for 
subsequent trips in the sequence if not used for the first. For these reasons, the 
literature has proposed several demand models simulating the sequence, or the 
chain, of trips making up each journey. In particular, some of the models proposed 
simulate the carrying out of activities (i.e. the purposes of the journey) and the 
related journey. 

The mathematical models proposed to simulate trip chains, or activity chains, do 
not have a "standard" structure like the case for trip demand models . This is due 
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both to the recent interest in these models with fewer examples, and to the greater 
complexity ofthe phenomenon to be represented. 

d, (fixed workplace) 

d, (fixed workplace) 

O(home)C--~(I'i,"~) 
• d3 (shopping) 

o (home) 

Fig. 4.4.1 Examples of "round trip" and "chain" journeys. 

However, the modeling structure most commonly used and closest to that 
described in the previous sections for single trips is based on the concept of a 
primary activity (destination) for a particular journey. In other words it is assumed 
that each journey can be associated with a primary activity (or purpose), and that 
this activity is conducted in a particular place, known as the primary destination. 
Several experimental studies indicate that the activity perceived by the user as being 
primary for a particular journey can be identified by applying different criteria such 
as: 

hierarchical level of purpose (in decreasing order, fixed workplace and study, 
services and professional business, other purposes); 
duration of the activity (the primary activity is that which, within the same 
hierarchical level, takes most time); 
distance from zone of residence (the primary activity, given the same 
hierarchical level and duration, is that carried out in the place furthest from the 
residence ). 
Adopting this definition, it is possible to specify a system of demand models for 

trip sequences Gourneys) with a partial share structure analogous to the "standard" 
four-level model described in section 4.2. In order not to excessively complicate the 
notation, it is assumed that the journeys can have at most two destinations (see Fig. 
4.4.2). One of the possible partial share structures for trip chaining is the following: 

d iod)d20 [Sl hi ml S2 h2 mz h3 m3] = d[o] ptx=1I0 SI hd(SE, I} 

ptdl/o SI hd(SE, n· i[szhz/o S hi dd(SE, n· pldz/o SI hi dl Sz hz](SE, n- (4.4.1) 

i[h3/0 SI hi dl Sz hz dz](SE, n . ptml mz m3/o SI hi dl Sz hz dz h3](SE, n 
where: 
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d iod,d2o [SI ml hI S2 m2 h2 m3 h3] is the average number of journeys with origin in 
zone 0 undertaken by users of category i and composed of trips for primary 
activity SI carried out in zone d] in the time period h] and secondary activity S:z 

carried out in zone d2 in the time period h2 and return home in the time period h3; 
trips undertaken with modes ml> m2 and m3 respectively. Round trip demand is a 
special case in which S2 is return home, d2 coincides with the origin and m3 and 
h3 are not meaningful; 

pi[X=1/o SI hd(SE, n is the frequency model expressing the probability that an 
individual of category i resident in zone 0 undertakes a journey(20) for primary 
purpose SI in the time period hI; 

Ad/o SI hd(SE, n is the primary destination choice model; it gives the probability 
that the journey for primary purpose SI undertaken by individuals of category i 
in the time period hI has its primary destination in zone d l ; 

l[S2 h2/0 SI hI dd(SE, n is the journey type model; it gives the probability of 
undertaking a trip for secondary purpose (carrying or not a secondary activity) S2 
in time period h2 for a user of category i who has decided to undertake a primary 
journey in dl in the time period hI. Note that the time period h2 can precede or 
succeed hI> i.e., the secondary destination can be reached before or after the 
primary one, as described in Fig. 4.4.2. Furthermore, if a trip is not undertaken 
for a secondary purpose, the journey is of the round-trip type and S2 is the 
purpose "return home"; 

ptd2/0 SI hI dl S2 h2]{SE, n is the secondary destination choice model expressing 
the probability of choosing zone d2 to carry out activity S2, if this is not the return 
home, in the time period h2 for a user who is undertaking a journey for primary 
purpose (activity) SI in zone d l in the time period hI. This model is obviously 
meaningless if the journey is a round-trip; 

pi[h3/0 SI hI dl S2 h2 d2](SE, n is the return home time period distribution model; it 
gives the probability of returning home in time period h3 conditional on all the 
elements that define the chain (0 SI hI dl S2 d2 h2) or round-trip (0 SI dl) journey; 

ptml m2 m3/0 SI hI dl S2 h2 d2 h3](SE, n is the "mode sequence choice model" for 
the entire sequence of trips conditional on the elements defining it. Note that 
mode choice is simulated simultaneously to take into account consistency 
constraints between successive trips. Some modes (in particular individual 
modes) are available for successive trips only if they have been used in the first 
trip. 

Path choice models are equivalent to those described in section 4.3.4. It is 
assumed, in fact, that the probability of choosing a certain path depends exclusively 
on the origin-destination pair, the mode, and the time period of each single trip 
without interaction with other trips within the same journey. For this reason, they 
have not been reported to simplify the analytical formulation and the graphic 
representation of the models system. Furthermore, SE and T denote, as usual, the 
vectors of socio-economic and level-of-service attributes included in the models. 
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d, d, 

d, 

o (home) o o 

Fig. 4.4.2 Types of journey simulated by the model (4.4.1). 

Fig. 4.4.3 is the graphic representation of the structure of the models system 
described. It can be observed that, similar to the trip demand models system, some 
choice dimensions are conditional on others, for example the journey type by the 
primary destination, the secondary destination by the journey type and the primary 
destination. Upper choice dimensions take into account the lower ones through 
inclusive or EMPU variables represented by the dotted arrows in Fig. 4.4.3. In the 
figure, some models in expression (4.4.1) have been further factorialized in the 
product of two models. In particular, the trip frequency models (primary, secondary 
and return home) in a certain time period have been decomposed into the product of 
the probability of undertaking the trip and the probability of choosing a certain time 
period. The probability of undertaking a return home trip is assumed to be equal to 
one and is therefore not modeled. 

In the context of the partial share structure, different specifications of the whole 
sequence as well as of individual models can be adopted. Below, a simplified 
models system for the simulation of trip-chaining travel demand in urban areas is 
given as an example. 

The total model is a Hierarchical Logit, with inclusive logsum variables linking 
the different choice dimensions; exceptions are the percentages of trips (activities) 
distribution in the time periods hI> h2 and h3, which are assumed to be constants. The 
system considers four possible primary purposes: workplace, study, other purposes 
"constrained" by destination (professional business, personal services, medical 
treatment, etc.) and other purposes "not constrained" by destination (shopping, 
recreational, other purposes). 

The main models for primary purpose "other non-constrained" are given below. 
The mode choice model is not included since it is analogous to those described in 
previous sections; the only significant difference is that the choice alternatives are 
not single modes/services but their "feasible" combinations, depending on the 
journey's structure. For example, for round-trip journeys it is assumed that the 
outward mode coincides with the return mode. For chain journeys it is assumed that 
if the user employs the car or motorcycle for the first trip, he/she must use it for the 
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next two, while all combinations of "walking" and public transport modes are 
possible. 

tOURNEY fREQUENCY MODjL r--- FOR PRIMARY PURPOSE s 

! --:r-.-i ~ , 
! ( PRIMARY DEST;'~TION 
L___ CHOICE MODEL 

"---- pfdtlos,h,](SE,7) 

LPERIOD DISTRIBUTION 
FOR PRIMARY TRIP 

plh,lo ... ·d(SE.1) 

--I , , , , , 

TIME PERIOD DISTRIBUTION 
FOR SECONDARY TRIP 

p(hJo.f,h,d,sz)(SE,l) 

DESTINATION 

CHOICE MODEL 

p(JZ/O,\',h,J,,\·-Jtl)(SE.n - -"--1 
r--TI-ME-PE-Rl-OD DISTRlB-U-T-IO~--
, FOR RETURN HOME 1-------+0 

, , , , , , , 

TIME PERIOD DISTRIBUTION 

FOR RETURN HOME IN 

ROUND JOURNEYS 
p(h'/os,h,d,)(SE.7) 

1 __ PI_hJ~)_.flh_,d_'S~_!dl_)(SE, 7) , , , 
--~--~-~----- -_ .. _-- : tp CHAIN MODE CHOICE MODE~ 1 

p{mlm~Jo'~lhltll.v,.hzdJ,lJ(SE.1) )---~ 

__ . _......l........ _~ __ ~_ 

COUND TRIP MODE CHOICE MOD~ 
plm,mJos.h,tI,h1)(SE.1) ) 

------------_._---_ ... -

Fig. 4.4.3 Structure of a trip chaining models system. 

Journey frequency model/[x/o Sl h1](SE, 1). The journey frequency model is a 
Binomial Logit with systematic utilities of the two alternatives (undertake a journey 
for the primary purpose or not) given by: 

where: 

viol/meY"1 = PIY:SI + P2 EMP + P3 HSWF + P4STU + PPTHER 

V~oiollmeY'\'1 = P6Nojourney 

(4.4.2) 

=In};d,exp(Vo.\·,d,) is the logsum variable corresponding to 
primary destination choice for the purpose Sl; it represents the 
accessibility of the residence zone with respect to all the possible 
destinations where the primary activity can be conducted; 
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EMP is a dummy variable, equal to one if the individual IS of 
occupational status "employed", zero otherwise; 

HSWF is a dummy variable, equal to one if the individual is of 
occupational status "housewife", zero otherwise; 

STU is a dummy variable, equal to one if the individual is an upper 
school or university student, zero otherwise; 

OTHER is a dummy variable, equal to one if the individual is 
"unemployed" or retired; 

NOJOURNEY is the alternative specific attribute (ASA) not to undertake a 
journey for the primary purpose Sj. 

Fig. 4.4.4 reports the parameters calibrated for the described model (4.4.2) for an 
average weekday. Accessibility of the residence zone increases the probability of 
undertaking the journey and the log sum inclusive variable has a coefficient on the 
interval (0,1). The occupational status (category) of the individual considerably 
influences the probability of undertaking journeys for non-constrained other 
purposes; employed individuals in particular show, everything else being equal, a 
lesser utility compared with other categories, probably because of their reduced time 
budget. 

Yoo EMP HSWF STU OTHER NOJOURNEY 
0.1904 -0.5879 0.06948 0.5017 0.3607 0.2795 

I t 14.6 -26.2 3.10 12.7 18.6 8.30 

Fig. 4.4.4 Parameters of the journey frequency model for non-constrained other purposes. 

Primary destination choice model/[d/o SI hd(SE,n. The primary destination 
choice model is a Multinomial Logit with a systematic utility function of the type: 

where: 

EMPretd" 
EMPservd, 

(4.4.3) 

=lnLmexp(Vod,mh) is the logsum variable corresponding to mode 
choice and accounting for the (dis)utility to move from 0 to d l using 
the available transport modes with reference to the user category i 
and to the departure interval hi ; 
is a dummy variable equal to one if the zone d l coincides with that 
of residence 0, zero otherwise; 
are the total employment in retail and service sectors respectively; 
these variables represent the attractiveness of each primary 
destination. Since the number of actual elementary destinations in 
each zone is unknown, this is approximated by means of a "size 
function" as described in section 4.3.2. 
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The coefficients reported in Fig. 4.4.5 indicate an increase in the zone's 
systematic utility as its attractiveness grows. Furthermore, the systematic utility 
increases as the logsum associated with modal choice increases or decreases the 
perceived mean cost. Also, the residence zone has an extra-utility, probably due also 
to the approximations in computing intra-zonal level-of-service attributes. 

Y"" h, S4/0 Size EMPret d (10') EMPservd (10') 
1.428 1.003 0.7725 1.000 0.065 

I t 19.1 970 19.4 -- 2.73 

Fig. 4.4.5 Parameters of the primary destination choice model for other unconstrained 
purposes. 

Journey-type choice model plS2/0 S] h] d] h2](SE,n, This model simulates the 
choice between two alternatives: undertaking a further trip for a secondary purpose 
(trip-chain journey) or return home (round-trip journey). The model is therefore a 
Binary Logit with the following systematic utility functions: 

V,hain = /3] ML + i32 EMP + /33 STU + /34 OTHER + /35 MRNG + 
+ /36 AFTN + /37 EVNG (4.4.4) 

Vround = /38 ROUND + A DACCodl 

where: 

ML 

EMP 

STU 

OTHER 

MRNG 

AFTN 

EVNG 

ROUND 

DACC""l 

is a dummy variable, equal to one if the individual is male, zero 
otherwise; 
is a dummy variable, equal to one if the person is employed, zero 
otherwise; 
is a dummy variable, equal to one if the person is an upper secondary 
school or university student, zero otherwise; 
is a dummy variable, equal to one if the person is a housewife, retired, 
unemployed, zero otherwise; 
is a dummy variable, equal to one if the trip starts before 12.00 (h]<12), 
zero otherwise; 
is a dummy variable, equal to one if the trip starts between 12.00 and 
16.00 (l2<h]<16), zero otherwise; 
is a dummy variable, equal to one if the trip starts between 16.00 and 
20.00 (16<h] <20), zero otherwise; 
is the Alternative Specific Attribute for the alternative "round trip"; 
is the accessibility differential of the residence zone 0 and primary 
destination zone d]; accessibilities are calculated as logsum variables 
with respect to destination choice for the considered purpose. 
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The coefficients obtained from the calibrations are reported in Fig. 4.4.6. As can 
be seen, employees and students have, everything else being equal, a greater utility 
for chained trips, most likely because of their limited time budget. There is a larger 
systematic utility for, and therefore a larger probability of undertaking chain trips 
during the morning than during the evening and, even more, than during the 
afternoon. The role of the accessibility attribute DACCod deserves some further 
comment. If a residence zone has a larger accessibility with respect to the possible 
locations satisfying mobility needs for "other unconstrained purposes" than the 
primary destination, the return home probability increases; on the other hand, if the 
residence zone has a lower accessibility, the probability of undertaking a chain trip 
increases. Schematically, it is more likely, everything else being equal, that a person 
who lives in the suburbs and undertakes a primary trip to the city center, will 
undertake a trip chain than the opposite case in which the person, once home, can 
undertake another journey to satisfy his/her further needs. 

ML EMP STU OTHER MRNG AFTN EVNG ROUND DACCod 
1.708 0.4185 1.107 -0.3559 0.5295 -1 .311 0.1835 4.4640 0.3934 

I t 24.8 7.30 11.10 -4.80 8.60 -11.9 3.10 61.9 7.8 

Fig. 4.4.6 Parameters of the journey type choice model for "other unconstrained" purposes. 

Secandary destinatian chaice madell[d2/a Sl hI S2 h2](SE,T). The secondary 
destination choice model is a Multinomial Logit with systematic utility functions 
similar to those described for the primary destination choice model: 

where: 

EMPretd2' 
EMPservd2 

(4.4.5) 

logsum inclusive variable of the mode choice model accounting for 
the (dis)utility of all modes from primary destination dl to 
secondary potential destination d2 and to residence zone a; 
dummy variable equal to one if the zone d2 coincides with that of 
residence a, zero otherwise; 
total employment in the retail and service sectors respectively 
included in the "size function" which expresses the attractiveness of 
zone d2 as a potential secondary destination. 

The coefficient estimates, reported in Fig. 4.4.7, align with expectations 
indicating, everything else being equal, a larger utility for secondary destinations 
with lower generalized transport cost and larger attraction capacity (greater number 
of elementary destinations). 
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Ydd,oll, SZCl-jo Size EMPretd,(W) EMPser~(10·) 
0417 1.865 0.684 1.0000 0.618 

I t 2.90 S.OO 3.80 --- 1.0 

Fig. 4.4.7 Parameters of the secondary destination choice model for "other unconstrained" 
purposes. 

4.5. Applications of demand models 
To conclude the analysis of traveler demand models, it is useful to comment on the 
"nature" of their application and on their fields and modalities of application. 

The "true" values of demand flows (present and predicted) are generally 
unknown to the analyst and as such must be represented as random variables. 
Demand models provide possibly unbiased estimates of average demand flow values 
with certain characteristics. In some cases it is also possible to compute variances 
and covariances of the estimates obtained. For example, with reference to the case 
of a four-level demand model and a single trip for each purpose s in reference period 
h the demand flow dod[s,h,m,k] can be modeled as a multinomial r.v. In other words, 
the demand estimates obtained with a partial share model are the mean (expected) 
values of random variables which, assuming statistical independence of individual 
decisions, can be assumed to be distributed with a multinomial law. It is therefore 
possible to express the variances and covariances of demand flows obtained from 
the models: 

E[dod [shmk]] = n[osh] p[xdmklosh] 
Var[dod [shmk]] = n[osh] p[xdmklosh] [l-p[xdmklosh]] (4.5.1) 
Cov[dod [shmk] dod [shm'k']] = n[osh] p[xdmklosh] p[xdm'k'iosh] 

The actual "deviation" of the estimates obtained with the models with respect to 
the "true" demand flows is certainly larger than that expressed by the variance 
(4.5.1). In fact, models, however sophisticated, are only simplified representations of 
the complex phenomena underlying mobility, and therefore the probabilities 
p[xdmklosh] are only estimates of real percentages whose deviation (variance) can 
only be calculated on an empirical basis. 

The practical uses of demand models can be divided into three categories: 
estimation of present demand and its variations, quantitative analysis of the 
characteristics of mobility, and components of the system of demand-supply 
interaction, i.e. assignment models. These three application typologies imply several 
requirements of the models that will be briefly dealt with below. 

Estimation of present demand and its variations. This is the "classic" use of 
demand models. The models can be used as estimators of present demand, i.e. as 
mathematical structures underlying transport demand which, once specified and 
calibrated, are applied to present activity and transportation supply systems to 
estimate unknown demand flows. Alternatively the models can be used to simulate 
(or "forecast") variations in travel demand induced by changes in the activities 
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and/or transportation supply systems. For both these applications, different 
techniques can be used depending on the application context and the models can be 
integrated with other information available. 

Application of the models both to estimate present demand and to simulate its 
variations requires the results to be aggregated in order to obtain estimates of 
demand flows between different origin-destination pairs. For this function, the 
different aggregation techniques described in section 3.7 for random utility models 
can be used, depending on the characteristics of the models specified. Aggregate 
models refer to aggregation techniques by category, implicitly assumed in 
expression (4.2.2), while dis aggregate models can be used in conjunction with 
sample enumeration techniques with target variables corresponding to the present 
situation or predicted for a future scenario. These topics will be dealt with in more 
detail in Chapter 8. 

Tools for quantitative analysis of mobility. Another possible use of demand 
models is as a statistical tool for quantitative analysis of mobility phenomena. In 
this case the models are seen as relationships allowing the opportunity to evaluate 
quantitatively the influence of both socio-economic and level-of-service variables on 
mobility. In this case the emphasis is not on the application of the models to obtain 
aggregate demand estimates (present or future) but on the specification and the 
estimation of the coefficients of the model itself. 

Some of the models described in this chapter could be used, for example, for the 
quantitative analysis of the influence of factors such as age, sex, income, 
occupational status, etc. on the different aspects of mobility that have been 
examined. For this type of application, the variables used might be very detailed 
since it is not necessary to know their present values over the whole universe or their 
predict future values. 

Demand models for assignment to transport networks. Demand flows obtained 
with models are often used as input for assignment models to simulate flows and 
performance of various elements of the supply system represented by the links of a 
transportation network. For this type of application, the models are considered to be 
demand functions. They express origin-destination flows with different modes 
during the reference period as a function of socio-economic variables SE and of 
generalized route costs g. On the other hand, route choice models are explicitly used 
for the formulation of assignment models. 

For the formulation of assignment models, demand models are represented with 
a notation slightly different from that used so far. Since the demand-supply 
interactions simulated with assignment models relate at least to route choice, the 
route choice model is separated from those on other levels (choice dimensions). In 
this case, the generic partial share model becomes 

d~[hmk]CSE,T)= d~[hm]CSE,T) /od,kClod,m) 

where, as will be seen in more detail in Chapter 5, giod.m is the vector of generalized 
route costs corresponding to the odpair on the mode m network and to user class i 
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and the attributes corresponding to route choice different from those contributing to 
the generalized transportation cost are implied. As stated in section 4.3.4 on route 
choice models, path cost coincides with the opposite of systematic utility, Vk = -gk. 

Generalized route costs giod.m' homogenize different attributes which are components 
of the vector T. It should also be noted that trip purpose s does not appear explicitly 
in the previous expression since, in the assignment context, the index i will denote 
the class of users defined by the pair (category, purpose)<2l). 

Furthermore, in assignment models the aggregated O-D flow for user class i is 
denoted by d odm if the demand is considered rigid, i.e. not sensible to variations of 
generalized costs due to network congestion. If the demand is considered elastic on 
some or all dimensions, the demand function is denoted by dodm(s(g». In the case of 
elastic demand, models simulating variations on other dimensions use the EMPU 
variable Smlod corresponding to route choice on the mode network m in time period h 
for users of class i which depends on the costs of the different routes. The EMPU 
variables corresponding to all O-D pairs can be ordered in the column vector Sm. The 
different notation between demand flow d odm and demand functions dodm(s(g» does 
not imply that the latter cannot be obtained with the demand models described in 
this chapter; it rather underlines the dependence of demand on congestion-related 
costs in the analysis of interactions between elastic demand and supply (elastic 
demand assignment models). This notation will be taken up in more detail in 
Chapter 5. 

4.6. Freight transport demand models* 
Freight transport demand is closely connected to the production and distribution of 
goods, i.e. to the economic system under study and to its interactions with external 
economic systems. Many of the definitions and classifications presented for 
passenger transport demand can be extended to freight transport demand, although 
their interpretation is in general very different. A system of freight demand models 
can be formally expressed as: 

dod [K" K2, ••• ] = d (SE, T, fJ) (4.6.1) 

although, beyond the formal analogy with expression (4.1.1) for passenger demand 
models, the interpretation of the symbols is significantly different. Demand flows 
represent movements of quantities of freight (usually expressed in tons); the relevant 
characteristics K}, K2, ••• , are normally associated with goods typology (raw materials, 
semi-finished products, finished products, etc.), with economic activity sectors, with 
industrial logistics characteristics (e.g. shipping frequency and size) as well as with 
modes of transport. The latter are usually defmed not only by the physical vehicle 
(truck, train, ship) but also by their organization (own shipment, by carrier, etc.). 
The SE variables are those of the economics of production (value of production by 
sector, number and size of local units, etc.) and consumption (household 
consumption, imports, etc.); the variables of the transport system, T, are still related 
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to the attributes of the different transport modes and services (times, costs, service 
reliability, etc.). The vector P denotes the coefficients in the model and will be 
understood as given in what follows. 

These considerations suggest that the mechanisms underlying the formation of 
freight transport demand and its satisfaction by transport services are considerably 
more complex and articulated than those corresponding to passengers. In the case of 
freight, in fact, there is not a single decision-maker (the individual) but rather a 
complex and articulated set of decision makers responsible for production activities, 
logistics (storage and shipping), product distribution and marketing. 

Schematically, it is possible to group the decision-makers who influence the 
level and composition of freight transport demand into three categories. Producers 
of goods and services decide how much and how to produce, and where and at what 
prices to sell; consumers, either intermediate (production companies) or final 
(families, public administration), decide how much and how to consume; and 
shippers (transport companies) decide how to provide transport services. 

Some classification factors of demand models proposed for passengers can be 
extended to freight. 

The models can be dis aggregate or aggregate depending on whether variables 
are measured in disaggregate units such as individual companies or individual 
shipments, or in aggregate units such as all the companies of a certain category 
and/or economic sector. Furthermore, freight demand models can be behavioral or 
descriptive depending on whether they are based on explicit assumptions regarding 
the behavior of market agents or on empirical relationships between freight transport 
demand and causal variables corresponding to the economic and/or transport system. 

Freight transport demand models have been studied and applied to a lesser extent 
than passenger models, mainly because of the complexity of the underlying 
phenomena that influence freight transport. In any case, there is not a consolidated 
paradigm but rather only some examples, which depend on the type of application 
and the data available. 

The most recent and sophisticated systems of models for freight demand 
simulation have resulted from the integration of two classes of models: macro­
economic models which simulate the level (quantity) and spatial distribution of 
goods exchanged between different economic zones (leading to origin-destination 
matrices), and models which simulate mode and route choice. 

Within these common characteristics, two main groups of freight demand models 
have been proposed, as well as different specifications within each group dependent 
on the variables explicitly simulated. Models of the first group, known as Spatial 
Price Equilibrium models (SPE) , simulate the production and consumption of each 
zone and each economic sector through demand and supply curves as functions of 
prices; they also assume deterministic demand behavior in that there is commercial 
exchange of goods between two zones only if the sale price in the origin 
(production) zone plus the transport cost is equal to the sale price in the destination 
(consumption) zone. The problem of equilibrium of prices, quantities exchanged, 
and transport costs can be formulated under certain assumptions as a non-linear 
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programming problem with linear constraints. SPE models can be extended and 
generalized in several directions, though they have received some criticism basically 
concerning the lack of realism of the deterministic assumptions. This leads to 
demand flows that are "polarized" towards few origin-destination pairs and zero 
towards others (contrary to all the experimental evidence), and the use of zonal 
demand and supply functions which do not take into account the interdependence of 
various economic sectors. 

The second group of models originates from an explicit representation of the 
interdependence between the different sectors of economy to simulate the quantity 
of goods produced and exchanged between different zones (intersectorial models). 
Within this group can be placed various models that, as will be seen soon, differ 
from each other with respect to the elements of the economic system that are 
considered rigid or elastic, and with respect to their implicit or explicit simulation of 
the price system. Models of this type are usually coupled with random utility mode 
choice models which can be aggregate or disaggregate according to the attributes in 
their systematic utility functions. Route choice models, at least in the case of road 
networks, are completely analogous to those described for passengers. 

In the following, the general structure of Multi-regional Input-Output 
intersectorial models will be described (section 4.6.1). These models are among the 
most flexible and generalizable formulations for the simulation of freight demand 
level and spatial distribution. Some models for freight transport mode choice will be 
described in section 4.6.2. Examples of both models will be given drawing from the 
integrated system of models used to simulate freight demand in Italy, whose 
structure is represented in Fig. 4.6.1. 

4.6.1. Multiregional Input-Output (MRIO) models 
The application of macro-economic models to freight demand simulation is usually 
conducted in two phases, as illustrated in Fig. 4.6.1. In the first phase, the exchange 
(or trade) between economic sectors and regions is simulated "in value", i.e. in 
monetary terms, while in the second phase monetary exchanges are transformed into 
quantity exchanges (tons). The latter results in the input O-D matrices for 
mode/service and path choice models. 

In the first phase it is possible to use a variable coefficient multi-zonal sectorial 
inter-dependence model, referred to as a Multi-Regional Input-Output (MRIO) 
model. 

It is assumed that the study area is divided in nz zones in accordance with the 
principles for zoning described in Chapter 1. It should be noted that in applications 
of macro-economic models relatively large zones are used; this is due to the 
availability of statistical information needed by the model. Typically zones coincide 
with entire regions, from which the name MRIO derives. The transition to a finer 
zoning system, necessary for the simulation of mode choice and networks 
assignment, can be conducted in the second phase, where values are transformed 
into quantities, e.g. using descriptive demand models. 
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Fig. 4.6.1 Structure of a model system for freight transport demand. 

Economic activities of production and consumption are divided into ns sectors. 
These can be sectors of the economy producing goods (e.g. agriculture and industrial 
sectors) or services (e.g. banking and commerce). The activities within each sector 
are considered to be homogeneous with respect to their economic behavior. A large 
number of sectors would guarantee an accurate description of relevant economic 
phenomena and greater plausibility of the assumption of behavioral homogeneity; on 
the other hand, in applications it is necessary to take into account the aggregation 
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levels of the available data. Fig. 4.6.2 shows the 17 macro-sectors used to represent 
the Italian economy for the above-mentioned system of national models. 

SECTORS 
1 Agriculture, forestry and fisheries 
2 Enerqy products 

c> 3 Ferrous and non-ferrous minerals and metals z 
U)~U) 4 Non metalliferous minerals and products 

ell-a:: 5 Chemical and pharmaceutical products 
oug 6 Metal products and machinery O-tu 

7 Means of transport c>IL.w 
~U) 8 Foodstuffs, drinks and tobacco 

~ 9 Textile products, cloth ina, leather qoods and footwear 
10 Paper, paper products, printina and publishing, other industrial products 
11 Wood , rubber 
12 Buildings and civi l enQineerinQ 

w(/) 13 Commerce, hotels and public utilities ua:: 
-0 14 Transport and communication >1-
C:::U 15 Banking and insurance 
Ww 

16 Other services for-sale (/)(/) 

17 Services not for sale 

FINAL DEMAND COMPONENTS 
Familv consumption 
Public consumpt ion 
Investments 
Stock variations 
Export 

Fig . 4.6.2 Sectors of the economy and components of final demand for the national model. 

As stated, exchanges between sectors and zones (and every other variable 
homogeneous with them) are expressed by their corresponding economic value 
measured in monetary units, usually with reference to a given year. 

The demand for products (goods and/or services) is assumed to be subdivided 
into two parts. They are respectively the intermediate demand, i.e. production used 
as inputs to further production in the same or in other sectors within the study area 
and the final demand, i. e. the production used for final consumption internal or 
external to the study area (export). For example, part of the production of the 
engineering industry (industrial machinery) may be used to produce goods within 
the same sector or used in other industrial sectors (e.g. the textile industry). Another 
part may be used for the production of services (e.g. as office equipment) and yet 
another may be used for final consumption (e .g., washing-machines for family use 
or other machines exported outside the study area) . 

By definition, final demand consists of all uses of sector production which are 
not re-employed for production within the study area; it usually includes several 
uses: families and institutions consumption, stock variations and export. Fig. 4.6.2 
illustrates the elements of final demand taken into account in the national model. 
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To give a formal description of the MRlO model, it is necessary to introduce some 
new variables which are described below. Let: 

f("n 
I 

W";/ 

y 

be the value of the intermediate demand of sector m produced in zone i and 
necessary for the production of (consumed in) sector n in zone j; 
be the value of the intermediate demand of the production in sector m 
necessary for the production of sector n in zone j, with f("nj = ~i Z"n ij; 
be the value of sector m produced in zone i necessary to satisfy the final 
demand in zone j; 
be the value of the final demand in sector m in zone j. From the definitions 
given, it results: Y"j = ~; W" ij; 
be the vector of final demand of dimensions (nz·n",xl) obtained by ordering 
the elements Y"j for each sector and for each region; 
be the value of the total production of sector m in zone i; 
be the vector of the total production of dimensions (nz·n"x 1); 
be the value of imports of sector m in zone i; 

be the vector of imports of dimensions (nz·n"x 1). 

All variables are expressed in monetary flow units (e.g. million EUROS per 
year). 

Since by definition the total supply (production and import) of sector m in zone i 
must be used for production in other sectors or consumed (including export), it must 
be equal to the total demand (intermediate and final) of sector m produced in zone i. 
The latter is given by the sum of the intermediate demand (in any zone and any 
sector) and of the final demand (in any zone): 

(4.6.2) 

The following relationship between the values of production and of intermediate 
demand can be established: 

(4.6.3) 

where the technical coefficients amni represent the value of the product of sector m 
(input) necessary to produce a unit of value of sector n (output) in zone j. These 
coefficients depend on the production "technologies" available in zone j; in general, 
the lower the coefficients amni' the more efficient the production in j since a lesser 
input value is required for an output unit. The elements amj corresponding to a given 
region j can be ordered in a square matrix Aj (n" x nJ known as the matrix of 
technical coefficients of region j. Different regions can have different production 
technologies and technical coefficient matrices. The matrices Aj can be arranged in a 
block diagonal matrix A of dimensions (nz·n", x nz·ns), in which each block relates to 
a zone. Fig. 4.6.3 reports an example of some of the variables introduced, 
corresponding to a 3-region, 2-sector system (market). 
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Note that the relations (4.6.1 )-(4.6.3) do not introduce any modeling hypothesis 
and can be considered a "re-organization" of the data on present economic 
exchanges between sectors and regions. Usually not all of the information related to 
the variables introduced is available, and this data would take on different values in 
the future thus limiting the value of present information. In order to estimate the 
parameters of a model and apply it to scenario forecasts, it is therefore necessary to 
introduce some simplified hypotheses from which different formulations of Sectorial 
Interdependence models derive. The Input-Output model will be shown to be a 
special case. 

MRlO model with constant coefficients. The first simplified hypothesis, 
introduced by Cenery-Moses, is to assume that the acquisition percentages of the 
product of sector m in zone i are independent of the sector n in which this product is 
employed. In other words, it is assumed that we can express the acquisition needs of 
zone i products of sector m for production of sector n in zone j CZnn ij), or for the final 
consumption (W\) as: 

REGION A 

REGION B 

REGIONC 

i"n ij = r ij' K"") 
W" ij = r y' '1") 

Vector of sectorial production X (3·2x 1) 

Sector 1 
REGION A 

X' A 

Sector 2 X2 
A 

Sector 1 X ' 
REGIONB 

B 

Sector 2 X2 
B 

Sector 1 X' 
REGIONC c 

Sector 2 X' c 

Matrix of the technical coefficients A (3·2x3 ·2) 

(4.6.4) 

REGION A REGION B REGIONC 

Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2 

Sector 1 a" A 
0 '2 

A a a a a 
Sector 2 21 a A 0 22 

A a a a a 
Sector 1 a a a" 8 

a 'l 
B a a 

Sector 2 a a a~' a" 8 
0 0 

Sector 1 0 0 a a a" c a" c 
Sector 2 0 0 0 0 0 1 ' c a" c 

Fig. 4.6.3a Variables for a 3-region, 2-sector MRIO model. 
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Matrix of exchange or trade coefficients T (3 ·2x3·2) 

REGION A REGIONB REGIONC 
Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2 

Sector 1 I' a 1~8 a I~c a 
REGION A 

M 

Sector 2 a 12 0 1~8 0 I ! c AA 

Sector 1 I~. 0 118 0 I' 0 
REGIONS 

Be 

Sector 2 0 12 0 1~8 0 I ' 8A Be 

Sector 1 I' a 
REGIONC 

Of I~B 0 I' cc 0 

Sector 2 0 I ' C1 0 I~B 0 / 2 cc 

DID matrix of value exchanges N (3·2x3·2) 

REGION A REGION B REGIONC 
Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2 

Sector 1 N" N'2 N" N'2 N" N' 2 
REGION A M M A8 A8 AC AC 

Sector 2 N21 N 22 N 21 N22 N 21 N22 
M M A. A8 AC AC 

Sector 1 N" N '2 N" N'l N" Nil 
REGION B 

8A 8A 88 88 Be oc 

Sector 2 N21 N22 N 2I N22 N21 N22 
SA BA BB BB oc 8C 

Sector 1 N" N '2 N" 
REGIONC 

C1 C1 CB N12 
CB N" cc N '2 

IT 

Sector 2 N 2I 
Of N22 

C1 N 21 
C8 N22 

CB N 21 cc N '2 cc 

Fig. 4.6.3b Variables for a 3-region, 2-sector MRIO model. 

where rij is the percentage of sector m product used in zone j (for whatever use) 
acquired from production zone i, known as inter-regional exchange or trade 
coefficient. Furthermore, it follows from construction: 

t m = zmn I Kn," = zmn' I K mn' = wm I ym 
I} I) IJ Ij Ij I) J 

~irij= 1 

The trade coefficients can be arranged in a matrix T, known as exchange or trade 
matrix, of dimensions (nz·n"xnz·ns) in which for each pair of regions there is a 
diagonal matrix of dimensions equal to the number of sectors whose elements are 
the trade coefficients between the two regions, for the sector corresponding to the 
row and to the column. Fig. 4.6.3b reports an example of the matrix T for a 3-region, 
2-sector system. Combining equations (4.6.2), (4.6.3) and (4.6.4) yields: 

(4.6.5) 
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which in vector terms can be expressed as: 

X+J= TAX + TY (4.6.6) 

The model (4.6.6) is usually applied for the prediction of regional production for 
each sector, i.e., for the calculation of vector X, starting from scenario hypotheses on 
the vector of final consumption Y and import J. Once the vector X has been 
calculated, it is possible to estimate the O-D freight demand in quantity, as will be 
shown later. 

The Multi-Regional Input-Output model(22) with constant coefficients assumes 
that the elements of matrices A and T are constant and known (equal, for example, 
to the respective present values). In this case, the solution of the linear equation 
system (4.6.6) can be expressed in closed form as: 

X= (J - TAr l • (TY - J) (4.6.7) 

where J is the identity matrix of dimensions (nz·nsxnz·n.,.). 
Fig. 4.6.4 gives a numerical example of the application of model (4.6.7) for a 

case of 3 regions and 2 sectors. Analysis of the results provides some general 
indications on the performances of MRIO models. If the value of the final demand 
of a zone increases, the values of production increase also in other zones. The 
example presents two scenarios. The second scenario assumes an increase in the 
final demand of region A (y2iA> yl iA) which causes an increase in production of the 
different sectors in the same region and in the other regions. Furthermore the 
increase of production in zone B is larger than that in zone C since the former has 
exchange coefficients with zone A larger than the latter, due for example to lower 
transportation costs. It can also be observed that since the increase of final demand 
in zone A is greater for sector 2 (+300) than for sector I (+200) and the production 
technology of sector 2 makes greater use of intermediate products of the same 
sector, the increase of production in sector 2 is greater than that of sector 1 in all 
regions. 

MRIO models with variable coefficients. The application of the MRIO model 
with constant coefficients assumes the independence of exchange and technical 
coefficients from variations of some significant variables, such as level of 
production, relative prices and generalized transportation costs. These hypotheses 
are reasonable only for short-term forecasts. To overcome these shortcomings, 
various extensions of model (4.6.7) have been proposed. These basically consist of 
expressing the exchange coefficients (matrix n and/or the technical production 
coefficients (matrix A) as functions of other transportation and economic variables. 
In this sense, they can be referred to as variable coefficient models. 

In a first specification, known as a MRIO model with elastic trade coefficients, 
the coefficients r ij are obtained with an explicit model that can be descriptive or a 
random utility model simulating the choice of supply zone. It is usually assumed for 
a number of reasons (dishomogeneity of products within the sectors, market 
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mechanisms differing from pure competition, omitted attributes, etc.) that supply 
acquisition is "dispersed" (probabilistic model), i.e. supply does not come 
exclusively from the zone(s) of minimum mean acquisition cost (deterministic 
model). 

Technical coefficient matrix A (3·2x3·2) 

REGION A REGIONS REGIONC 
Sector 1 sector 2 sector 1 sector 2 sector 1 Sector 2 

REGION A 
Sector 1 0 .30 0.10 0.00 0.00 0.00 0.00 
Sector 2 0 .20 0.40 0.00 0.00 0.00 0.00 

REGIONS 
Sector 1 0.00 0.00 0.40 0.20 0.00 0.00 
Sector 2 0 .00 0.00 0.30 0.70 0.00 0.00 

REGIONC 
Sector 1 0.00 0.00 0.00 0.00 0.35 0.20 
Sector 2 0 .00 0.00 0.00 0.00 0.25 0.40 

Matrix of exchange or trade coefficients T (3·2x3·2) 

REGION A REGIONS REGIONC 
Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2 

REGION A 
Sector 1 0.50 0.00 0.30 0.00 0.10 0.00 
Sector 2 0 .00 0.40 0.00 0.35 0.00 0.15 

REGIONB 
Sector 1 0.30 0.00 0.60 0.00 0.20 0.00 
Sector 2 0 .00 0.35 0.00 0.50 0.00 0.25 

REGIONC 
Sector 1 0 .20 0.00 0.10 0.00 0.70 0.00 
Sector 2 0.00 0.25 0.00 0.15 0.00 0.60 

Vectors of import J (3·2x1) and of final 
consumption Y (2 hypotheses) 

Vector of sectorial production X 
(3·2x1) for the 2 hypotheses Y 

Results 

sector J Y1 Y2 sector X1 Xl 

REGION A 
1 20 100 300 
2 30 200 500 

REGION A 
1 453 652 
2 659 969 

REGIONS 
1 10 400 400 
2 10 200 200 

REGION S 
1 725 919 
2 877 1222 

REGIONC 
1 50 300 300 
2 30 300 300 

REGIONC 
1 534 675 
2 689 928 

Fig . 4.6.4 Numerical example of a 3-region, 2-sector MRIO model. 

The systematic utility of acquiring from zone i product m used in zone j, V" ij' is 
usually a function of several variables among which is the total production of sector 
m in zone i, x''';, and the average unit acquisition cost qm ij: 
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(4.6.8) 

In applications, acquisition percentages are usually simulated with a Multinomial 
Logit model: 

(4.6.9) 

In general, therefore, the whole trade matrix is a function of the vector X and of 
the acquisition cost matrix q. 

T= T(V(X, q)) (4.6.1 0) 

The interpretation of the attributes introduced into the specification of 
acquisition percentages requires further comment. The value of the total production 
of sector m in zone i, X";, can be considered a proxy of supply variety. More 
properly, this attribute should be used through its logarithm (In X";) and considered 
as a size function (see section 4.3.2) expressing the unknown number of elementary 
choice alternatives. If there are other attributes, M"kj' correlated to the number of 
production units, the size function would assume the more general expression: 

A non-behavioral interpretation of equations (4.6.8) and (4.6.9) simply assumes 
that the acquisition percentage of a certain zone is greater the lower the acquisition 
cost and the larger its production. This may be due to localization behavior in which 
production units set up near their supply and/or distribution markets. 

In the most general case, the average unit acquisition cost q'" ij can be expressed 
as a function of the average unit price (price index) of products m in i, pm;, and of the 
average unit transport cost of product m from i to j, cm ij: 

q'" m m 
ij=p;+cij (4.6.11) 

The average unit transportation cost can in tum be expressed as a function of the 
generalized transportation costs of the different modes/services available between 
the two zones, either as a weighted average of these costs, or as an inclusive 
(EMPU) variable of a random utility mode/service choice model. For example, in 
the national model described so far, trade coefficients were simulated through a 
Multinomial Logit model, in which the sale prices pm; were assumed to have no 
influence (i.e. equal for all zones). The specification of the systematic utility adopted 
for this model is: 

where: 
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C" ij is the logsum of transport costs derived from the mode choice model; 
Regionij is the dummy variable for the same region, equal to 1 if i =}, 0 otherwise; 
X"j is the total production of the region} in sector m. 

The Multi-Regional Input-Output model with elastic trade coefficients can be 
expressed formally by substituting the expression (4.6.10) in the general equation 
(4.6.6): 

X* +J= T(X*,q)AX* + T(X*,q)Y (4.6.12) 

From the previous equation it follows immediately that the production vector X 
can no longer be obtained as the solution of a system of linear equations (4.6.7), 
since the coefficients are non-linear functions of the unknown vector X through the 
expressions (4.6.10). The calculation of the vector X* can therefore be traced to the 
solution of a fixed-point problem; the theoretical properties and solution algorithms 
of fixed-point problems are briefly described in Appendix A. 

The model described can be further generalized in different ways depending on 
which variables are simulated (predicted) as endogenous variables. A model which 
could be defined MRlO with elastic prices introduces the mechanisms of average 
unit prices formation. Unit sale prices of product m in zone i, pmi depend on the 
average unit production cost of m in i, km

i and on the unit added value (labor, capital, 
profits, etc.) to production emi' The former, in turn, depends on the average unit 
acquisition cost of intermediate goods and services, h, necessary for production of 
m, if hi' In formal terms: 

(4.6.13) 

with: 

Note that in (4.6.13), the technical coefficients ~m are to be interpreted as the 
"quantity" of product h necessary to produce a unit of product m in zone i. The 
average unit acquisition cost of h in i can in tum be expressed as a weighted average 
of the unit acquisition costs from the different zones I "producing" h: 

(4.6.14) 

From expression (4.6.11), (4.6.13) and (4.6.14) it can be deduced that the vector 
of unit acquisition costs depends on itself through prices, and on trade coefficients: 

q* = f[q*, T(X), ... ] 
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In this case an equilibrium configuration, q*, must be found for the vector q. The 
problem (4.6.12) gets further complicated since q in this case also depends on the 
unknown vector X. 

The model can be further extended and generalized along several lines. One 
extension is to introduce productive capacity constraints for the different zones. In 
this case the price pm;, or rather the added value em;, can be expressed as a function 
of the ratio between the production demand x"'; given by (4.6.2) and the production 
capacity in order to take into account mechanisms of rent formation. In other words, 
if the production of a sector required for intermediate and final uses exceeds the 
productive capacity of zone i, a supply-demand re-equilibration mechanism is 
triggered. This causes an increase of the sale prices pm;, therefore reducing the 
acquisition percentages from that zone (see equation (4.6.10)) until an equilibrium 
configuration between demand and production capacity is reached. 

Another line of extension is to express the dependence on prices of other key 
variables, such as technical coefficients, imports and family consumption. For 
example, elements d"n; of matrix A can be replaced by functions d"n;(X';, q;) which 
may depend on the total level of production of sector n in zone i, X'; to take into 
account scale (dis )economies, and on the vector of average unit acquisition costs for 
intermediate factors, to take into account possible substitutions between the factors 
as functions of the relative acquisition costs. For (dis)economies of scale the 
quantity of product m necessary to produce a unit n diminishes (increases) as the 
total production of n increases. For substitution effects, the quantity of a product m 
whose acquisition cost is particularly high, used to produce a unit of n, can be 
reduced by using a greater quantity of another factor. In this type of model, added 
value factors, in particular labor, are usually explicitly included; also, in the vector 
of the final demand, household consumption is usually assumed dependent on the 
available income of families in each zone. 

Value-quantity transformation of trades. Once the vector X of production for 
each sector and region has been calculated with one of the expressions (4.6.7) or 
(4.6.12), it is possible to compute the resulting exchange or trade matrix N whose 
elements !I'm if represent the value of sector n produced in zone i consumed by sector 
m in zone j. The trade matrix N has dimensions (nz·n. x nz'n.) and is obtained by 
ordering blocks of dimensions (n.xn",) representing the monetary value of the 
products of each sector exchanged with each other sector for a given pair of 
production and consumption regions. Fig. 4.6.3 gives an example of the structure of 
the matrix N in the case of three regions and two sectors. Matrix N can be expressed 
as a function of the variables obtained by solving the Input-Output model or one of 
its generalizations such as: 

N = T A Dg(X) + T Dg(Y) (4.6.15) 
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where the matrices Dg(X) and Dg(Y) are obtained by arranging the elements of the 
vectors X and Y respectively along the main diagonal of a square matrix with (nz·n".) 
rows and columns. 

Finally, from matrix N it is possible to obtain the flows !f ij of goods produced in 
sector n (thus excluding service sectors) in zone i and consumed in zone j. These 
flows are expressed in monetary units and can be computed by adding up the values 
corresponding to all consumption sectors: 

The last step is the transformation of the O-D matrices, !fl)' from values into 
physical quantities (tons) by goods typology (market segments). This transformation 
is normally conducted on the basis of coefficients estimated on the present situation, 
and then modified exogenously in forecasting scenarios(23). The goods typologies, 
identified on the basis of shipment size and/or of manufacturing company, are 
closely linked to the structure and to the attributes of the mode choice models which 
will be dealt with in the next section. 

In conclusion, for the prediction of freight transport demand, several models with 
different levels of complexity and different input data requirements are available. 
The most highly-structured formulations of such models(24) aim to simulate the 
entire economy from which goods exchange demand is deduced; such a level of 
generality, however, requires a considerable amount of data which may be 
unnecessary if the aim of the models is limited to the simulation of freight transport 
demand. 

A further consideration concerns the interaction between macro-economic and 
transport models. In the formulations described above, generalized transport costs 
em ij are assumed to be known, and these in tum depend on the production costs of 
carriers such as road and railways haulage companies. These costs depend on 
several different factors including the "objective" level-of-service variables for the 
various modes (travel times, congestion levels, etc.) as well as the carriers 
production structure (production functions). It is therefore possible, at least in 
principle, to introduce further feedback cycles and related equilibrium problems 
between generalized transport costs and goods (and passenger) flow on the various 
modal networks through mode and path choice models. 

4.6.2. Freight mode choice models 
Several formulations have been proposed for models simulating the distribution of 
freight demand between different transport modes and services. These models are 
derived from different approaches (descriptive, micro-economic, inventory, random 
utility). In the following, models based on the random utility paradigm will be 
described, since they are consistent with the general approach to demand modeling 
adopted in this volume, and many of the models proposed following other 
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approaches, can be extended and considered as generalizations of random utility 
models. 

Random utility models applied to simulate freight modal choice can be divided 
into aggregate and dis aggregate, on the basis of the data used for their 
specifications/calibration, and application. Aggregate models are based on data and 
attributes corresponding to aggregate freight flows between different zones with 
available transport modes. These models use mainly level-of-service attributes (e.g. 
average consignment times, average prices, etc.). Aggregate models, although 
simple to apply, have proved to have limited analysis capabilities since many 
important decision factors cannot be taken into account without a greater level of 
disaggregation. 

For these reasons, dis aggregate mode choice models have recently been studied 
more frequently. These typically refer to the random utility paradigm and can be 
divided in two types: consignment models simulating mode choice for individual 
consignments, and logistic models simulating a sequence of logistic choices 
including the size and frequency of consignments, as well as the transportation 
mode. 

Consignment mode choice models are more frequently used in applications. They 
usually have a functional form that belongs to the Logit family, most often of the 
Multinomial Logit type although Hierarchical Logit models have also been proposed 
in several applications. Choice alternatives typically correspond to the transport 
modes available for a given consignment (truck, train, ship, air) and often different 
services are also distinguished (e.g., conventional railway or combined road/railway, 
etc.). The level-of-service attributes normally used are consignment time, cost, 
reliability, etc. Other attributes usually included in specifications correspond to 
characteristics of the consignment (e.g., size, goods typology, frequency) and of the 
firm (e.g. annual invoicing, availability of own trucks or availability of railway 
sidings). Fig. 4.6.5 shows an example of a consignment mode choice model 
calibrated for the national model. 

Logistic mode choice models are newer and so far have found few applications in 
spite of their theoretical interest and their usefulness for evaluating innovative 
supply combinations (logistic + transport services). These models simulate mode 
choice in the context of the logistic decisions of the firm determining the transport 
mode which, depending on the case, may be the selling or purchasing firm. In 
particular, it is assumed that the choice of transport mode depends on the logistic 
cost connected with its use, which in tum is made up of different components such 
as: 

costs associated with orders management; 
costs of transport (prices required for the transport service); 
costs associated with loss and damage; 
costs of capital locked up during transport; 
costs of carrying inventory; 
costs connected with the non-availability or delayed arrival of equipment for 
transport; 
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costs of unreliability (early or delayed arrival and related costs of longer storage 
or locking up of larger supplies). 

Alternatives: Train, Road, Combined Rai/+Road 

V"ain = (JT, T, + (JMe Mc, + (JP>3{)' P > 30+ (JHVG ·HVG + (J"ain' TRAIN 
V",ad = /IT, T, + /lMe Mc, + /lPSH . PSH 
Veombined = (JTe Tc + (JMeMcc + (JCOMB . COMB 

T, 
T, 
Tc 

= "train" travel time 
= "road" travel time 
= "combined" travel time 
= "train" monetary cost 
= "road" monetary cost 
= "combined" monetary cost 

Mc, 
Mc, 
MCe 

p>30 
PSH 
HVG 
TRAIN, 
COMB 

= Dummy variable: 1 if the shipment weights more than 30t, 0 otherwise 
= Dummy variable: 1 if goods carried are perishable, 0 otherwise 
= Dummy variable: 1 for of high value goods, 0 otherwise 
= Alternative Specific Attributes (ASA) 

r, T, Tc Mc p>30 PSH HVG TRAIN COMB 
I -0.06 -0.15 -0.1 2 -1.47 1.20 0.86 -0.64 0.29 -3.34 
I t -1.7 -2.2 -2.0 -3.2 0.6 1. 1 -1.2 0.5 -2.5 

Fig. 4.6.5 Example of freight "consignment" mode choice model. 

Logistic costs depend on several factors such as the total (annual) quantity of 
consignments over a given commercial relation, the average frequency and size of 
the consignments, and the value of the goods. F1lrthermore, they depend on the 
characteristics of the service offered by the different modes such as price, reliability 
of consignment times, and the possibility of theft and damages. Direct information 
on all of the components of the logistic cost is very difficult to obtain, so it is 
assumed that the systematic utility function for each mode j is a combination of 
variables X jk linked to the logistic cost items of a certain commercial relation i and 
that the coefficients fJk are the unknown cost factors. In any case, a great deal of 
information is required to specify and calibrate these models and their use, at the 
time, is mostly limited to the analysis of the factors influencing mode choice rather 
than to large-scale applications. 

Reference Notes 

The literature on transportation demand models is very broad and covers a period 
of more than forty years. 

The first "partial share" demand model systems were formulated in the 50's and 
60's although with time they have undergone a number of developments, both 
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formal and interpretive. A treatment of the "traditional" system, essentially 
descriptive, can be found in the books by Wilson (1974) and Hutchinson (1974). 

Since the mid-70's, several model systems have been proposed for trip 
simulation, inspired by the theory of random utility. Some examples can be found in 
the books by Domencich and McFadden (1975), Richards and Ben Akiva (1975), 
Manheim (1979), Ben Akiva and Lerman (1985), Ortuzar and Willumsen (1994). 
The systems of random utility models proposed in the literature are mainly based on 
the factorialization of Logit and Hierarchical Logit models. The general formulation 
of systems of partial share models based on different random utility models 
integrated through EMPU variables proposed in paragraph 4.2.1 is original. 

International literature proposes several theoretical contributions and 
applications of trip frequency, distribution, mode and path choice models both at 
urban and at extra-urban level. 

Among the first examples of trip emission models of the category analysis type, 
the work of Oi and Shuldinher (1972) should be mentioned; an example of 
behavioral models of trip frequency at the urban level is contained in Biggiero 
(1991), and at the inter-urban level in Cascetta, Nuzzolo and Biggiero (1995). 

Distribution models with size functions were proposed by Richards and Ben 
Akiva (1975), Koppelman and Hauser (1978), Kitamura et al. (1979); a summary 
can be found in Ben Akiva and Lerman (1985). References to descriptive or 
gravitational distribution models can be found in the above-mentioned text by 
Wilson (1974). An example of behavioral destination choice model in urban areas 
with explicit choice set simulation is contained in Cascetta and Papola (2000). 
Modal split models of the Logit or Nested Logit type reported in the literature are 
extremely numerous; many examples are given in the mentioned books by Ben 
Akiva and Lerman (1985) and Willumsen and Ortuzar (1994). 

A systematic analysis of the different hypotheses at the basis of path choice 
models is contained in Cascetta (1995). Path choice models for road networks 
calibrated on empirical data are not numerous, among them the works of Ben Akiva 
et al. (1984), Cascetta, Nuzzolo and Biggiero (1995), Russo and Vitetta (1995) can 
be mentioned. The specification of the Pro bit path choice model is described in 
Sheffi (1985). The C-Logit model is described in Cascetta, Nuzzo 10, Russo and 
Vitetta (1996). 

As for path choice models on public transport networks, the interpretation of pre­
trip/en-route behaviors is described in Cascetta and Nuzzolo (1986), the concept of 
travel strategy is formulated in Spiess and Florian (1989), the representation as 
network hyperpath was proposed by Nguyen and Pallottino (1986). 

The system of interurban travel demand simulation models described in section 
4.3.5 was calibrated for the Italian National Modal System SIMPT and is described 
in Cascetta et al. (1995). 

The literature describes several trip chaining Goumey) demand models; an 
analysis with a bibliographical commentary is in Ben Akiva, Bowman and Gopinath 
(1995). Some trip-chaining models based on the concept of primary destination 
(activity) are described in Antonisse, Daly and Gunn (1986) and Algers, Daly and 
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Widlert (1993). The models system described in section 4.4 is based on the work of 
Cascetta et al. (1994). 

The models relating freight demand to production and consumption in the 
economic system can be divided into two groups: Spatial Price Equilibrium (SPE) 
and Sectorial Interdependences models. A systematic description of the 
contributions relative to the former group is in Friesz et al. (1983) and in the books 
by Harker (1985) and (1987). 

Multiregional Input-Output models with constant coefficients are generalizations 
of the model proposed by Isard (1951) and later developed for freight transport 
demand; see Leontief and Costa (1987) and Costa and Roson (1988). The MRIO 
model with elastic trade coefficients applied for the Italian case is described in 
Cascetta et al. (1996). The generalization which includes in the formulation the 
prices equilibrium mechanism is original. For a classification of Computable 
General Equilibrium (CGE) models reference can be made to Bergman (1990). 

The bibliography on freight modal split models is quite substantial. An analysis 
of the factors influencing the behavior of different operators can be found in the 
volume by Bayliss (1988), an analysis and classification of the different modal split 
models is in Winston (1983), examples of dis aggregate consignment models 
calibrated in Italy are described in Nuzzolo and Russo (1995). For a description of 
the theoretical assumptions of logistic random utility models with some empirical 
results reference can be made to Modenese and Vieira (1992). 

Notes 

(I) Demand models (4.1.1) are typically obtained through the integration of several sub-models. In this 
respect it would be more appropriate to speak of a system of demand models. The definition of demand 
model corresponds to the micro-economic concept of aggregate demand function for transport services. 

(2) Note that the vector T includes individual level of service or performance attributes, while the 
generalized costs are combinations of level of service attributes; the homogenization coefficients are 
among the parameters of demand models. 

(3) All the models described in this chapter depend on coefficients or parameters, which, for the time 
being, will be assumed known. Calibration of the models, i.e the estimation of unknown parameters, will 
be dealt with in detail in Chapter 8. 

(4) From now on reference will be made to passenger transport demand, even though many of the 
concepts introduced can be extended to freight transport demand models, which will be dealt with in 
section 4.6. 

(5) Differences between behavioral and descriptive models are increasingly less important. In fact, more 
and more often functional forms such as Logit and Hierarchical Logit deriving from the theory of random 
utility are used to simulate aspects of demand which have no direct behavioral interpretation in terms of 
the decision-maker's choice. From this point of view it would be more appropriate to classify the models 
on the basis of their functional form, distinguishing between models that can or cannot be derived from 
the theory of random utility. 

(6) It should also be noted that the level of aggregation might be different in the phases of calibration and 
application of the model. In other words it is possible, and even convenient in some cases, to use 
individual information for the specification and calibration, as will be seen in Chapter 8, while in 
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applications average values of zone and users category can be used. This corresponds to the application of 
the aggregation techniques "by average user" or "by category" described in section 3.7. 

(7) A trip is sometimes identified by a single purpose, e.g. work, study, etc. This practice may cause 
confusion; it would be more correct to define the purpose s of a single trip by a pair of purposes, i.e. the 
activities carried out at the origin and at the destination. In this way, the purpose house-to-work (H-W) is 
different from the purpose work-to-work (W-W). Trips for which the purpose "home" appears in origin or 
destination are often indicated as "home-based", others as "secondary". The characterization of a trip with 
a pair of purposes also allows the more precise identification of the variables of the activities system to 
which reference can be made. 

(8) Note that in this case the random residual r*d is not distributed like the normal multivariate r.v. Tm,d 

since the Normal LV. is not stable with respect to maximization (the variable T*d has no known 
probability law). 

(9) It is worth noting that the whole model is still monotone increasing with respect to systematic utilities 
as proved in subsection 5.6. 

(10) From the analysis of the coefficients different indications on the socio-economic factors influencing 
non-systematic mobility (i.e. related to purposes different from commuting and study) in urban areas can 
be deduced. For example, the results reported in Fig. 4.3.1 suggest that the frequency of activities (and 
trips) increases with income level. The accessibility of the residence zone with respect to the location of 
commercial activities increases the trip frequency for shopping, but is not significant for business and 
personal services trips. There is a greater tendency for women and unemployed persons to undertake 
trips; young people tend to have less mobility, in the time period considered, especially for shopping; 
there is an effect of substitution with other members of the family for shopping (positive coefficient for 
the TOF variable), while there is an effect of complementarity (accompanying) for the other purposes 
(negative coefficient of TOF). Carrying out other activities (coefficient of the TOP variable) reduces the 
time available to engage in the activity (trip purpose) considered and so on. Note, also, that the coefficient 
of accessibility corresponds to the parameter <\ in equation (4.2.I2a) and turns out to be included in the 
interval (0, I), coherently with the behavioral interpretation of the model. 

(II) The aggregation technique of sample enumeration, described in section 3.7, should therefore be used 
for more sophisticated specifications of the models. 

(12) Gravitational models derive their name from the formal similarity of their earlier specifications with 
the Newton's law of universal gravitation. Subsequently simply and doubly constrained gravity models 
were derived from Entropy maximization principles. In this approach a measure of the number of possible 
micro-states (i.e. individual trips between each origin-destination pair) is expressed by the entropy 
measure of a given trip distribution; the entropy function is maximized under some constraints expressing 
the total number of trips leaving and/or reaching each zone and the total transportation cost (distance) 
spent in the system. The resulting maximum entropy distribution models are usually referred to as simply 
and doubly constrained gravity models. These model, though still quite popular in applications, do not 
allow the flexibility of the whole set of random utility models, regardless of their behavioral 
interpretation, nor the possibility of introducing other attributes explaining attractiveness and perception 
of alternative destinations. On the other hand it should be said that relatively little research effort has been 
dedicated to the analysis of behaviorally more complex models of destination choice. As a matter of fact, 
the assumption of i.i.d. residuals underlying the Multinomial Logit structure is questionable in the case of 
spatially contiguous traffic zones. In this case Cross-Nested Logit or Probit models should be used. Also 
models or variables explaining different levels of destination perception (choice set modeling) should be 
included. 

(13) Pure pre-trip behavior assumes that users don't modify the route chosen at the beginning of the trip. 
In reality there are situations in which the user modifies hislher route by adapting to conditions 
encountered during the journey even for continuous service modes (e.g. accidents and unexpected jams). 
This type of behavior is even more prevalent when there are information technologies (variable message 
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signs, radio news, on-board computers) providing information on the state of the network or suggest the 
route to take in real time. Path choice models for continuous service networks which take account 
"mixed" behavior, are however still at the research stage and will not be dealt with here. Furthermore 
static assignment models are meant to simulate recurrent congestion, thus path choice models included in 
static assignment can be assumed to be based on such recurrent conditions and thus rule out accidents or 
other exceptional events. 

(14) Another advantage of explicit path enumeration includes the possibility of solving certain algorithmic 
problems in the application of a Monte Carlo algorithm for the calculation of choice probabilities for a 
Multinomial Probit model, as will be seen in Chapter 7. 

(IS) More sophisticated specifications introduce also socio-economic attributes of the driver such gender, 
income etc. 

(16) When the generalized cost depends on a single attribute (such as travel time in urban networks), this 
is multiplied by a coefficient fJ of homogenization in utility terms. 

(17) Path choice for regular, low frequency scheduled services with explicit run representation is usually 
assumed to be completely pre-trip and the models simulating it are analogous to those described for road 
networks. In this case, however, the choice alternatives are the single runs or sequences of runs which can 
be represented as paths on the diachronic network. This point will be dealt with extensively in Chapter 6. 

(18) More complex rules of en-route behavior have been proposed. In these cases the user boards the 
vehicle on its arrival at a stop, or waits for the vehicle of another line, comparing the expected value of 
the cost of the different options on the basis of the information available at that moment. These models of 
en-route behavior require a great deal of information and get close to the micro-simulation of network 
journeys; for these reasons, they are not used for demand assignment to large scale networks. Models of 
this type will be described in Chapter 6 for irregular scheduled services. 

(19) Diversion nodes are those in which the outgoing links represent the connections of the stop with the 
lines serving that stop, as defined in Chapter 2 and represented graphically in Fig. 4.3.1 O. For a formal 
definition of the hyperpath in terms of graph variables, see section 5.5. 

(20) It is assumed that hi is defined such that the probability of undertaking more than one journey for the 
same purpose in the same time period is negligible. 

(21) Note that the definition of a user class as individuals who have the same demand models 
(alternatives, parameters and attributes) is linked to what models, and therefore to what choice 
dimensions, reference is made. In particular, in Chapter 5 the classes will be defined with reference to 
path choice models. Given the reduced number of attributes in these models, it may happen that fewer 
classes are used for assignment than for other choice dimensions; the former can be obtained by 
aggregation of the latter. This is particularly true in the case of models specified at individual level where 
the individuals can be aggregated to obtain O-D trips matrices belonging to a given user class for the 
assignment model. 

(22) Input-Output models are said to be "demand-driven" since, as follows from expression (4.6.7), the 
production vector X is obtained starting from vectors of final demand Y and the imports J. It is thus 
assumed that the supply productive capacity adapts itself to the production levels required by the demand. 

(23) Value/quantity transformation coefficients can differ significantly from unit market prices since they 
should capture the differences between physical goods movements and commercial transactions. For 
example a single commercial transaction may correspond to several good movements due to intermediate 
stockage locations and so on. Given the increasing relevance of freight logistics on transport demand, 
value/quantity transformation coefficients should be explicitly modeled as functions of relevant variables 
of the logistic cycle of the industrial sector they refer to. 

(24) Models of this type are known in the literature as Computable General Equilibrium (CGE) models. 



5 MODELS FOR TRAFFIC 
ASSIGNMENT TO TRANSPORTATION 

NETWORKS(O) 

5.1. Introduction 
Models for traffic assignment to transportation networks simulate how demand and 
supply interact in transportation systems. These models allow the calculation of 
performance measures and user flows for each supply element (network link), 
resulting from origin-destination demand flows, path choice behavior, and the 
reciprocal interactions between supply and demand. Assignment models combine 
the supply and demand models described in the previous chapters; for this reason 
they are also referred to as demand-supply interaction models. In fact, as seen in 
Chapter 4, path choices and flows depend on path generalized costs, futhermore 
demand flows are generally influenced by path costs in choice dimensions such as 
mode and destination. Also, as seen in Chapter 2, link and path performance 
measures and costs may depend on flows due to congestion. There is therefore a 
circular dependence between demand, flows, and costs, which is represented in 
assignment models as can be seen in Fig. 5.1.1. 

Assignment models play a central role in developing a complete model for a 
transportation system since the results of such models describe the state of the 
system, or the "average" state and its variation. Assignment results, in tum, are the 
inputs for the design and/or evaluation of transportation projects. Several classes of 
assignment models have been built on the basis of varying assumptions regarding 
the many components, including demand, supply, and the approach used for 
studying supply and demand interactions. These hypotheses determine some 
classification factors of assignment models, which will be defined in the following 
to introduce a general taxonomy for such models (see fig. 5.1.2 below). 

(0) Giulio Erberto Cantarella is co-author of this Chapter. 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
© Springer Science+Business Media Dordrecht 2001
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DEMAND MODEL 
frequency. distribution. modal choice 

PROBABILITIES 

RIGID DEMAND ASSIGNMENT 

ELASTIC DEMAND ASSIGNMENT 

DEMAND 
FLOWS 

Fig. 5.1.1. - Schematic rappresentation of assignment models. 

Assignment models can be classified with respect to supply characteristics, i.e. 
the type of transportation services available and the dependence of link performance 
variables on link flows (congestion). In particular, transportation services can be 
classified as continuous or scheduled, as introduced in Chapters I and 2. The 
dependence of link performance variables on flows is the other primary 
classification factor with respect to supply. When link and costs are independent of 
flows, i.e. congestion effects are negligible, fixed cost or uncongested networks (UN) 
assignment models result. On the other hand, if link costs depend on flows, variable 
costs or congested network assignment models are obtained. 

Another set of classification factors relates to the travel demand assumptions. 
Assignment models can be distinguished with respect to the hypotheses regarding 
path choice behavior presented in Section 4.2.5. Generally, path choice may result 
from a sequence of decisions made at different times during a trip; in this case, we 
have mixed pre-triplen-route behavior. In the pre-trip choice stage, conducted before 
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starting the journey, single paths or strategies for en-route choice among paths 
(hyperpaths) are considered as alternatives. In the latter case, the path actually 
followed during a particular trip is the result of en-route decisions made during the 
journey in response to unpredictable events. In the case of fully pre-trip behavior, 
single paths are the alternatives considered in the pre-trip choice stage. In both 
cases, pre-trip choice takes into account cost attributes corresponding to network 
characteristics. For users who move between an origin-destination pair, the pre-trip 
path choice model expresses the probability of choosing single paths or hyperpaths. 
Models based on random utility theory are typically used to simulate these choices. 
In particular, deterministic (D) choice models assume that the perceived utility of a 
path is deterministic, and all users choose a maximum average utility (minimum 
average cost) alternative. On the other hand, probabilistic or stochastic (S) choice 
models assume that the perceived utility of a path is a random variable, and that the 
users may choose any alternative, as described in Section 4.2.5. 

A further classification factor related to demand is the dependence of O-D flows 
on path performance measures and costs. Rigid demand assignment models assume 
that demand flows are independent of cost variations due to network congestion. On 
the other hand elastic demand models assume that demand flows depend on 
congestion costs; demand flows are therefore a function of path costs resulting from 
congestion, as well as activity system attributes. Demand can be assumed elastic 
only on some dimensions; for example, the total O-D matrix can be assumed to be 
cost-independent (frequency and destination choices are not influenced by cost 
variations), while mode choice varies with link costs; in this way, multi-mode 
assignment models are obtained. Obviously, from a practical viewpoint, demand 
elasticity is relevant only for congested networks where costs depend on flows. 

With respect to demand segmentation, assignment models are called multi-user 
class if users are subdivided into several classes, and all users in a class share the 
same choice model (attributes, coefficients and functional form). In this way, it is 
possible use different choice models for different trip purposes or user socio­
economic categories (income, etc.). In the case of road systems, it is possible to 
distinguish different vehicle types (motorcycles, cars, commercial vehicles, etc.). 
Single user class assignment is a special case where all users share the same choice 
model and are distinguished by O-D pairs only. 

Transportation systems can be represented under two different assumptions on 
the intra-period variability of variables. Consistent with the hypotheses presented in 
Chapter 1 regarding the definition of a transportation system, variations of demand 
and/or supply within the reference period (e.g. the morning peak-period) are not 
considered in this chapter. The assignment models presented are thus intra-period 
or within-day static. This hypothesis is realistic only if transportation demand and 
supply characteristics can be safely assumed constant over a reference period of 
sufficient length with respect to the journey times of the system. Otherwise, intra­
period (or within-day) dynamic assignment models should be adopted, which require 
extensions of both the demand and, even more so, supply models. Within-day 
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dynamic assignment models can also be distinguished according to all the criteria 
discussed in this section and will be addressed in Chapter 6. 

Another fundamental classification factor for assignment models is the approach 
used for studying supply and demand interactions. In particular, user equilibrium 
ass ignmenl I) models represent equilibrium configurations of the system, i.e. 
configurations in which demand, path, and link flows are mutually consistent with 
the costs that they induce. From a mathematical point of view, equilibrium 
assignment can be defined as the problem of finding a flow vector that reproduces 
itself on the basis of the correspondence defined by the supply and demand models. 
This problem can be formulated with fixed-point models, or with variational 
inequality or optimization models, as will be shown in the following sections. 

The alternative approach leads to inter-periodal (or day-to-day) dynamic 
process assignment models. In this case it is assumed that the system might evolve 
over time (i.e. successive reference periods), through possibly different feasible 
states, due to several causes such as the variability of the number of users 
undertaking trips, path choices, supply performance measures, etc. One of the 
mechanisms of the evolution from one state to another is the flow - cost dependence. 
In fact, if in a reference period the system is in a given state - demand, path and link 
flows and costs - this state may be not internally consistent and may cause a change 
toward a different state in the following reference periods. Dynamic process 
assignment models explicitly simulate the evolution of the system state based on the 
mechanisms underlying path choice and information acquisition, which in tum 
determine user choices in successive reference periods. By analogy, equilibrium 
assignment is also known as day-to-day static assignment. Dynamic process models 
can be further distinguished as deterministic or stochastic depending on whether the 
system state is modeled using deterministic or stochastic (random) variables. 

Figure 5.1.2 reports the different classification factors introduced. Although no 
such complete taxonomy is used in the technical literature, the identification of 
assignment models with the full set of factors in a sequence is a useful exercise, as it 
clearly identifies the assumptions underlying any particular model. 

In the following sections, models obtained by combining the above-described 
elements are presented in increasing order of generality (and complexity). Section 
5.2 reviews the main definitions and hypotheses adopted in the development of 
supply and demand models assuming a single user class, fully pre-trip path choice, 
and rigid demand. 

Then, under these hypotheses, section 5.3 describes uncongested network 
assignment models and Section 5.4 congested network equilibrium assignment 
models. Extensions to mixed pre-trip/en-route path choice behavior are described in 
section 5.5, assignment with elastic demand and/or multi-modal systems is dealt 
with in section 5.6, and assignment with users belonging to different classes (multi­
user class assignment) in section 5.7. Section 5.8 presents some general 
considerations about dynamic process assignment, which is still mainly at a research 
level. Section 5.9 presents some comments related to the application of assignment 
models to real systems. 
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Supply factors 

Type of service 
Continuous 
Scheduled 

Congestion effects 
Un congested Networks 
ConQested Networks 

Demand factors 

Demand Segmentation 
Single User class 
Multiple User classes 

Demand Elasticity 
Rigid Demand 
Elastic Demand 

Path Choice Behavior 
Fully pre-trip 
Pre-trip/en-route 

Path Choice Model 
Deterministic 
Probabilistic 

System approach factors 

Intra-periodal Variability 
Intra-period Static 
Intra-period Dynamic 
User equilibrium 

Demand-supply interaction Deterministic Dynamic Process 
Stochastic Dynamic Process 

Fig. 5.1.2. Classification factors of assignment models. 

Extensions of supply, demand, and demand/supply interaction models to intra­
periodal dynamic systems with continuous scheduled services will be discussed 
extensively in Chapter 6. The algorithms for solving assignment models, that is for 
the calculation of resulting link performance measures and flows, will be considered 
in Chapter 7. 

5.2. Definitions, assumptions, and basic equations 
This section summarizes the definitions and assumptions underlying the demand and 
supply models discussed in Chapters 2 and 4 respectively. A single mode is 
considered (single-mode assignment), and it is assumed that the O-D demand flows 
are known and independent of the congested link costs (rigid demand assignment). 
It follows that path choice is the only choice dimension explicitly simulated. Users 
are considered to be homogeneous, that is they share common behavioral and cost 
characteristics regardless of trip purpose and differ only by origin and destination 
(Single-users class assignment). Also, path choice is considered completely pre-trip 
(as is often the case for road transport systems). 

The symbols and definitions, already introduced in Chapters 2 and 4, are 
repeated below for reader convenience (with reference to a time band h and a mode 
m not explicitly indicated for the sake ofsimplicity).Let 
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o be a node (zone) origin ofa trip; 
d be a node (zone) destination ofa trip; 
od be an origin-destination pair; 
Kod be the set of paths for od pair; a path k is univocally associated with od such 

that k EKod; the set Kod is not empty if at least one path connecting 0 and dis 
available, it is finite if only elementary (say loop less) paths are considered; 

L10d be the link-path incidence matrix for od pair; 
L1 be the overall link-path incidence matrix obtained by placing the blocks 

corresponding to each od pair side-by-side. 

5.2.1. Supply model 
Transportation supply is simulated with a (congested) network model, as described 
in Chapter 2. To each link a a (generalized) cost Co is associated, measured in units 
homogeneous to the utility through appropriate homogenization coefficients. 
Throughout this chapter, it will be assumed that path (dis)utility function are linear 
with respect to path performance attributes. Furthermore, each path k is associated 
with a path cosiZ), gk> consisting of two types of cost attributes: 

- Link-wise additive (or generic) path costs that are obtained by summing up the 
corresponding link costs, independent of the O-D pair and/or of the path; these costs 
may depend on the link flows in the case of congested networks; 

- Link-wise non-additive (or specific) path costs that are specific to the path and/or 
to the O-D pair, since they cannot be defined by summing corresponding generic 
link costs. In the following analysis, these costs are assumed to be independent of 
congestion. Therefore, path costs that are simultaneously non-additive and 
dependent on congestion are not considered. Let: 

g NA 
od 

tVA 

be the link cost vector with entries, co; 
be the vector of additive path costs gkJDD for the users of the odpair, kEKod; 

be the overall vector of additive path costs, consisting of the vectors of 
additive path costs go/DD corresponding to all od pairs; 
be the vector of non additive costs gtA for the users of the odpair, kEKod; 

be the overall vector of non additive path costs consisting of the vectors of 
non additive path costs golA corresponding to all odpairs; 
be the vector of total path costs gk for the users of the od pair, kEKod; 

be the overall vector of the total path costs, consisting of the vectors of the 
total path costs god corresponding to all od pairs. 
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GRAPH PATHS 

I 4 
\//' ~. 

3 3 

3 !~. ~ 
I 4 

G == (N, L) 
I 

N == {(I , 2, 3, 4)} V y' L == {( I ,2), (1,3), (2,3), (2,4), (3 ,4)} 

Origin centroides 3 3 

-- - -- - - - --- - ---- -------------------------------------- - - - - - -- - - - -

LINK-PATH INCIDENCE MATRIX 

0-0 Pairs 1-4 2-4 3-4 

~ 
1 2 3 4 5 6 

Li nks ~ ~ ~ ~ ~ / 

1 / 1 1 0 0 0 0 

2 ~ 0 0 1 0 0 0 

3 t 1 0 0 1 0 0 

4 ~ 0 1 0 0 1 0 

5 / 1 0 1 1 0 1 

Fig. 5.2.1 - Example of a graph and its link path incidence matrix 
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The relationship between link costs and path costs is given for each od by the 
following equations (see Figure 5.2.2): 

g o/DD = iJo/ c Vod 

god = go/DD + gor 4/ c + go/4 Vod (5.2.la) 
g = tDD + g"A = iJT C + g"A (5.2.1b) 

g= Ll,T ·c + gNA 

6 0 1 0 1 0 
2 

4 I 0 0 1 0 0 
1 

2 0 0 0 1 0 
3 +-

0 0 0 0 
2 

0 0 0 0 0 -0 0 0 0 0 

Fig. 5.2.2 Example of the relationship between link costs and path costs (non additive costs are 
null for the sake of simplicity). 

A flow It is associated with each link I. Link flows are measured in units 
homogeneous to demand flows. Let: 

/ be the link flow vector, with entries It. 

In the case of congested networks, as described in Chapter 2, link costs depend 
on link flows through the following cost functions: 

c = c(f) (5.2.2) 

In tum, link flows depend on the flow associated with each path and measured in 
units homogeneous to demand flows, through the Network Flow Propagation model. 
In particular, path flows for each od pair induce the corresponding link flows by od 
pair through the link-path incidence matrix. Furthermore, assuming that the demand 
flow for each O-D pair is expressed in consistent units, the total flow on a link is the 
sum of the flows induced by all O-D pairs. Let: 
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hod be the path flow vector for the users of the od pair, the elements of which are 
the flows hk for any index k in set Kod; 

h be the overall vector of path flows, consisting of the vectors of path flows hod 
corresponding to each od pair; 

fd be the vector of link flows, ffd , corresponding to the od pair trips, measured in 
units consistent with the demand flows. 

The relationship between link flows and path flows is expressed by the following 
equations (Fig. 5.2.3): 

from which 

f= 

335 1 

665 0 0 

494 1 0 

1341 0 1 

1959 0 

f= "Lodfd = "LodAoflod 
f=Ah 

..d h 

90 
0 0 0 0 

245 
1 0 0 0 

0 0 0 .22i. 
404 

0 0 1 0 

0 
!.Q22. 
800 

Fig. 5.2.3 - Example of the relationship between link flows and path flows. 

(5.2.3a) 
(5.2.3b) 

The whole supply model is defined by equations (5.2.1-3), which combined 
together express the relationship between path costs and path flows already 
introduced in Chapter 2: 

god = Ao! c("LodAodhd) + golA Vod 
g = AT c(Ah) + 1I'A 

(5.2.4a) 
(5.2.4b) 

If cost functions are continuous with continuous first derivatives, the supply model 
is a continuous function with continuous first derivatives with respect to path flows. 

5.2.2. Demand model 
As stated earlier, for the time being it is assumed that demand flows are known and 
independent of cost variations; thus the path is the only choice dimension explicitly 
simulated. It is also assumed that the demand flows for different O-D pairs are 
expressed in mutually consistent units. In particular, for individual modes such as 
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car, they are measured in vehicles or drivers per unit of time, while in the case of 
public (scheduled) transport modes they are usually expressed in terms of 
passengers per unit of time. Let 

d 

be the demand flow for the ad pair, defined by the elements of the O-D 
matrix (corresponding to the purpose, the mode, and the time band to be 
analyzed); 
the demand vector, whose components are the demand values dod for each 
O-D pair. 

Path choice behavior is simulated with random utility models, assuming that a 
component of the systematic utility is equal to the opposite of the path generalized 
cost(3): (Section 4.2.5): 

Vod = -god + Jl"od Vad (5.2.5) 
where: 

Vod is a vector with elements consisting of the systematic utilities Vk of paths kE 
Kud for the users of the ad pair; 

Jl"od is a vector with elements consisting of the part of systematic utility depending 
on any other attributes which cannot be included in path costs (such as the 
users' socio-economic attributes), omitted in following sections for simplicity 
of notation. 

Path choice probabilities depend on the systematic utilities of the available paths 
through the path choice model. Let: 

Pod.k = p[klad] be the probability that a user, for a trip from origin a to destination 
d (without explicit indication of purpose, time band, and mode) will 
use the path k; 

pod be the vector of path choice probabilities for users of the ad pair, 
whose elements are the probabilities Pod.k with index k in set Kod' 

As seen in section 4.2.5, a random utility model used to simulate path choice is 
given by: 

Pod.k = p[klad] = Prab[ Vk - fj ~ £j - £k V j E Kod] Vad,k 
Pod = Puj,Yod) Vad 

where £j denotes the random residual corresponding to the perceived utility ofpathj. 
If the random residuals are equal to zero, 11 = 0, i.e. the variance is null, then the 
variance-covariance matrix of the random residuals is null, .E = 0, and the resulting 
choice model is deterministic. On the other hand, if it is assumed that the variance-
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covariance matrix of the random residuals is non-null and non-singular, I I I ::f- 0, the 
model is probabilistic (see section 3.2). 

Combining the path choice model with the systematic utility specification, a 
relation between choice probabilities and path costs for the od pair, known as the 
path choice map, is obtained: 

Pod,k = Pod,k( Vod = -god) '\Iod, k 
Pod = PoJVod = -god) '\Iod 

The above relation can be expressed using matrix notation (Fig. 5.2.4). Let 

P be the path choice probabilities matrix, with a column for each od pair 
and a row for each path k the element k,od is given by p[klod) ifpath k 
connects the od pair, otherwise it is null (P is a block diagonal matrix 
with blocks given by the vectors P~d ). 

Also, from the previous equations it follows that the matrix P depends on the 
path cost vector: 

P=P(V=-g) 

The flow hk on the path k connecting the od pair, kEKod' is given by the product 
of the corresponding demand flow dod and the path choice probability: 

and is measured in demand units. Thus, for each od pair, the relationship 
between path flows, path choice probabilities and demand flows is given by: 

(5.2.6a) 

The relation (5.2.6a) for all O-D pairs can be expressed in aggregate form as: 

h =P(V) d (5.2.6b) 

The whole demand model is defined by the relations (5.2.5-6), which combined 
together describe the relationship between path flows and path costs: 

hod = dodPoJ-god) '\Iod 
h = PC-g) d 

(5.2.7a) 
(5.2.7b) 
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For the usually-adopted probabilistic path choice models (with 11:1 *" 0) (see 
Section 4.2.5), the demand model (5.2.7) is specified by a continuous function of 
path costs with continuous first derivatives. An example is reported in Fig. 5.2.4a. 

In the case of a deterministic path choice model (with I= 0, see Section 3.2) a 
one-to-many map is usually obtained, since if there are several minimum-cost paths 
between an od pair the choice probabilities vector, PDET, od, and therefore the path 
flows vector, hDli7~()d, are not uniquely defined. An example is given in Fig. 5.2.4b. 

gT ==[6 4 2 4 2 1] 
exp( -god k / ()) 

Podk==" . ; 
. L.jEKm { exp( - god'; / ()) 

()==2 

PI4 = [~ :~:~l ; 
0.665 

[ 0.269] 
P24 = 0.731 ; P34 == [1.000] 

PMatrix 

~ 
1-4 2-4 3-4 

Perc or 

I 0.090 0 0 
2 0.245 0 0 
3 0.665 0 0 
4 0 0.269 0 
5 0 0.731 0 
6 0 0 1.000 

h== P d 

90 0.090 0 0 

245 0.245 0 0 

[1000] 665 0.665 0 0 
. 1500 

404 0 0.269 0 
800 

1097 0 0.731 0 

800 0 0 1.000 

Fig. 5.2.4a - Example of demand model with probabilistic path choice. 
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gT = [6 4 2 4 2 I] 

{
E [0,1] se god,k = min }ekod god,} 

Pod ,k 0 . 
= se god,k > mm }ekod god,} 

Lkek,w Pod,k = 1 

P Matrix 

~ 
1-4 2-4 3-4 

Percorsi 

I 0 0 0 
2 0 0 0 
3 1 0 0 

4 0 0 0 
5 0 1 0 

6 0 0 1 

hDET = P d 

0 0 0 0 

0 0 0 0 

[1000] 1000 1 0 0 
. 1500 

0 0 0 0 
800 

1500 0 1 0 

800 0 0 

Fig. 5.2.4b - Example of demand model with deterministic path choice 
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It can be useful to refonnulate the detenninistic demand model (5.2.7) through a 
system of inequalities. This system is obtained by applying to each od pair condition 
(3.5.lla) on the deterministic choice probabilities, PDET.od, described in Section 3.5 
and repeated here for the convenience of the reader: 

\;:fod 

Since Vod = -god, multiplying this inequality by dod ~ 0 \;:f od yields: 

\;:fod (5.2.7c) 

Condition (5.2.7c) underlies the detenninistic assignment models that will be 
described in Sections 5.3.2 and 5.4.2. 

The detenninistic demand model corresponds to a condition where "for each 0-
D pair the cost of the paths actually used is equal, and it is less or equal to the cost of 
each path not used": 

that is 

hDET.k> 0 => gk = min (god) 

gk > min (god) => hDET.k = 0 

ke Kod 

ke Kod 

In the literature, the above condition is known as Wardrop's first principle. 
The above inequalities are equivalent to the definition of the detenninistic path 

choice model reported in Section 4.2.5; thus, the probability Pod,k of a user of the od 
pair choosing path k is strictly positive only if the cost of path k is less than or equal 
to the cost of any other path that connects the od pair. 

5.2.3. Feasible path and link flow sets 
The vectors of non-negative path flows h compatible with the network topology and 
with the demand flows d are said to be feasible. The set Sh of feasible path flows 

contains non-negative vectors, h ~ 0, such that for each od pair the sum of the 
elements of (sub-)vector hod is equal to the demand flow: 

or 

The set Sh of the vectors of feasible path flows therefore can be fonnally 
expressed as: 

(5.2.8) 
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The set Sh is compact since it is closed, and limited because the elements of the path 
flow vectors for each od pair belong to the interval [O,dodl It is also convex since it 
is defined by linear equations and inequalities. Furthermore, it is non-empty if at 
least one path for each od pair is available. Moreover, by defmition, regardless of 
the path costs vector g, the result of the demand model (5.2.7) is still a vector of 
feasible path flows: 

h = P(-g)d E Sh Vg 

As for path flows, a non-negative link flow vector is feasible if it is compatible 
with the network topology and the demand flows d. Thus, a vector of link flows/is 
feasible if, according to the supply model (5.2.3), it corresponds to feasible path 
flows as defined in the demand model. The set Sf of feasible link flows can be 
formally expressed(4) as: 

Sf= if:/= All, Vh E Sh } 

that is Sf(d) = if:/= LodLJodhod, hod? 0, 1 Thod = dod Vod} 

(5.2.9a) 

(5.2.9b) 

Formulation (5.2.9b) shows the role of the demand flows vector, d, in the 
definition of the set of the feasible link flows Sf' The set Sf is (not empty) compact 
and convex since it is obtained through a linear transformation of the set of feasible 
path flow vectors, which has these characteristics (see Appendix A) assuming that 
the set of available paths for each od pair is fmite. 

It should be noted that, in general, there are more paths than links (that is the 
incidence matrix, LJ, has more columns than rows and is therefore non-invertible). 
Therefore, it is likely that several feasible path flow vectors lead to the same feasible 
link flow vector. 

5.2.4. Network performance indicators 
Each pattern of path and link costs and flows can be associated with indicators 
referring to an O-D pair or to the system as a whole, which will be used in the 
following sections. In particular, the total cost of the od pair, TCod, is given by the 
sum of the products between the corresponding path costs and flows: 

to which corresponds an average cost, ACod, obtained by dividing by the demand 
flow: 

The total cost for the whole network, TC, is given by the sum of the total costs 
over all the O-D pairs: 
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to which corresponds an average cost, AC, obtained by weighting the average costs 
of all the O-D pairs by the demand flows, that is by weighting the path costs by the 
path flows: 

A C = (Lud A Cud dod) / (Lud dud) = (Lod LkeKod hk gk ) / (4,d LkeKod hk) = 
= (Lod TCod) / (Loddod) = TC / 4. = gT h / IT h 

where 4. = Lod dod = Lod LkeKod hk = IT h gives the total demand flow. 

With reference to the additive and non-additive path costs, the following also 
holds: 

an expression, which in the case of null non-additive path costs g"'A = 0, reduces to: 

(5.2.10) 

In other words, the sum of the link costs multiplied by the corresponding flows 
coincides with the total network cost in the absence of non-additive costs. 

To each ad pair, dependent on the path choice model adopted, an Expected 
Maximum Perceived Utility (or EMPU), Sod, can be associated (See Section 3.5). 
This expected utility is a function of the systematic utility of the paths (without 
including other attributes, i.e. VOod, for the sake of simplicity): 

(5.2.11) 

Note that (see section 3.5) the EMPU is greater than or equal to the maximum 
systematic utility and therefore the average systematic utility: 

The EMPU is therefore greater than or equal to the negative of the minimum cost 
over all the paths, which in turn is greater than or equal to the negative of the 
average cost: 

The total EMPU, TS, is defined as the sum of the EMPU of each O-D pair 
mUltiplied by the corresponding demand flow: 
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The corresponding average EMPU, AS, is obtained by dividing by the total 
demand flow: 

In conclusion, the total cost is an estimate, carried out without considering the 
effect of dispersion, of the disutility users receive when distributing among paths 
according to path flows h, while the EMPU is the disutility users perceive when 
making path choice leading to path flows h including the effect of dispersion. 

From the preceding considerations, the following relations hold between total or 
average EMPU, and the opposite of the total or average cost respectively: 

TS ~ -TC AS ~-AC 

Examples of the calculation of network indicators are reported in Fig. 5.2.5. 

0-0 Path Cost Flow Total Average -min exp(-CIB) Average EMPU Total 
Pair cost Cost (g) s=Bln(};exp(-CIB), EMPU 

1-4 1 6 90 540 0.00248 

2 4 245 980 0.01832 

3 2 665 1330 0.13534 

Total 1000 2850 0.15613 -1857 

2.85 2.00 -1.85 

2-4 4 4 404 1616 0.01832 

5 2 1096 2192 0.13534 

Total 1500 3808 0.15365 2810 

2.54 2.00 -1.87 

3-4 6 1 800 800 0.36788 

Total 800 800 0.36788 800 

1.00 1.00 -1.00 

Total network values 3300 7458 5467 

Average network 2.26 1.75 -1.66 
values 

Fig. 5.2.5 - Indicators for the network in Fig. 5.2.1. 
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As an example, the preceding relationships are applied to two different path 
choice models for which the EMPU can be calculated in closed form. In particular, a 
Logit path choice model with parameter ~}d gives (see Section 3.5): 

TS = "f,od dad Bod In("f,keKod exp(V!Bod» = "f,od dod Bod In("f,keKod exp(-g!Bod» ~ 

~ -"f,od dod min(god) ~ -"f,od dod "f,keKodgk (hkl dod) = -TC 

In the case of a deterministic path choice model, the EMPU is equal both to the 
maximum systematic utility and the average systematic utility (Section 3.5), thus the 
total EMPU is equal to the negative of total cost: 

since, in this case, the choice probability Pod vector and therefore the path flow 
vector hod may have non-null elements only for minimum cost paths (Section 4.2.5). 

5.3. Models for assignment to Uncongested Networks 
Assignment to uncongested networks is based on the assumptions that flows and 
costs are mutually consistent and costs do not depend on flows(5). In other words, 
path flows, and thus link flows, are obtained from path choice probabilities 
computed on the basis of flow-independent link performance measures and costs. In 
this· sense, flows are consistent with costs and uncongested network assignment 
models follow a user equilibrium approach to demand-supply interaction. In the 
remainder of this chapter, however, the term equilibrium will be used only for 
congested network assignment, following common practice in the literature. 

Uncongested assignment models are used for the analysis of relatively 
uncongested road transportation systems (generally, link cost functions are almost 
flat with respect to flows for flow-capacity ratios up to values of 0,50+0,70). They 
are also used for analyzing public transport systems for which costs may be assumed 
independent of link passenger flows, if the available capacity is sufficient. 
Uncongested network assignment models, furthermore, are a component of 
congested network assignment models, which will be described in the following 
sections. Uncongested Network (UN) assignment models are defined by the demand 
model (5.2.7) expressing path flows as function of path costs and demand flows: 

hUN.ad = hUN,od(gad; dod) = dodPoo(-god) "fgod "fod 
hUN = hUN,(g; d) = P(-g) d "fg 

(5.3.la) 
(5.3.lb) 

It is possible to obtain path costs g from link costs c with equation (5.2.1), while the 
link flows f corresponding to the path flows h are given by equation (5.2.3). Fig. 
5.3.1 depicts these relationships graphically, applying the scenario in Fig. 5.l.l to 
the case of uncongested network assignment. 
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General uncongested network assignment models can be expressed in terms of 
link variables by combining equation (5.3.1) with (5.2.1) and (5.2.3). The result is 
called the uncongested network assignment map. This map associates a link flow 
vector to each demand flow vector and link cost vector, and can be expressed in an 
aggregate or disaggregate way as: 

fNL = fNL(e; d) = 'i.od dod t1od Pol.-t1,j'e - go/A) Ve 
fNL = fNL(e; d) = LIP(-t1Te -g"") d Ve 

(5.3.2a) 
(5.3.2b) 

Note that link flows depend non-linearly on the link costs, but linearly on the 
demand flows, so that the effect of each O-D pair can be evaluated separately. 

In the following sections, probabilistic and deterministic path choice models, 
which lead respectively to stochastic and deterministic uncongested network 
assignment models, will be described separately. 

~--------~ x ~------~ 

UNCONGESTED NETWORK 
ASSIGNMENT MODEL 

Fig. 5.3.1 - Schematic representation of uncongested network assignment models. 
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5.3.1. Models for Stochastic Uncongested Network assignment 
If path choice behavior is simulated through a probabilistic random utility model, 
the resulting assignment model is known as a Stochastic Uncongested Network 
(SUN)(6) assignment. In this case, the resulting link or path flows correspond to a 
situation in which "for each O-D pair the perceived cost of the used paths is less 
than or equal to the cost of every other path". Using the probabilistic path choice 
models studied in Section 4.2.5, recall that each vector of link and path costs 
corresponds to a unique choice probability vector. It follows that the uncongested 
assignment map, usually defined by equations (5.3.2), is given by the stochastic 
uncongested assignment function,/suN(c;d), a one-to-one correspondence associating 
any vector of link costs c with a vector of link flows f belonging to the non-empty, 
compact and convex set of feasible link flows (Fig. 5.3.2): 

(5.3.3) 

Formulations of SUN analogous to (5.3.2b) and (5.3.la,b) in terms of path costs and 
flows are possible, but will not be presented here for the sake of brevity. 

The parameters of the stochastic uncongested assignment function, excluding the 
demand vector, are those of the path choice model (such as coefficients of the 
systematic utility and variance of the random residuals) and those of the supply 
model (such as travel times and generalized costs, as well as the graph topology). 
Under certain assumptions on the path choice function, the function (5.3.3) shows 
some features which will be useful in the analysis of stochastic equilibrium 
assignment models, and for this reason will be described in Section 5.4.1. 

Variance and covariance of link and path flows, considered as random 
variables. Assuming probabilistic choice behavior (with known demand flows dod) 
and independent user path choices, path flows can be considered realizations of 
multinomial random variables Hod. The values, hod, calculated with the stochastic 
uncongested network assignment model, represent the means of Hod, as shown at the 
beginning of Section 4.5 in the most general case of demand models on all choice 
dimensions. Therefore, the mean, variance and covariance of the elements of the 
path flow random vector, H, can be expressed as: 

= hSUN.k = dod Pod,k 
= dod Pod,k (1 - Pod,k) 

={-d(x}P(x}.kPod'i k,jEK(x} 

o otherwise 

'r/ od,k 
'r/ od,k 

'r/od,kJ 

The first equation expresses the elements of the mean vector, hSUN = E[H], ofthe 
random vector H, while the last two equations give the elements of the variance­
covariance matrix, };H. If the path flows vector, h, is considered the realization of a 
random vector, H, the link flows vector, f = L1h, obtained from this with a linear 
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transformation, is a realization of a random vector, F. Thus the mean vector, 
E[F] = LI E[H] = LlhSUN = fSUN, and the variance-covariance matrix, IF = LIT IH LI, of 
the link flows random vector, F, can be expressed in terms of the corresponding 
values of path flows, hSUN = E[H] and I H• 

Link Costs 2 

3 

d1-4 = 1000 

4 

4 

3 

4 

3 
Total Link Flows 

2 

3 

Fig. 5.3.2 - Stochastic Uncongested Network (SUN) assignment with the path choice model of 
Fig. 5.2.4a. 

The link flow vector defined by the stochastic uncongested assignment function 
for a given link cost vector can easily be calculated in the case of path choice models 
based on explicit path enumeration. Alternatively, there are algorithms described in 
Chapter 7 which allow, for some path choice models, the efficient computation of 
link flows without explicit enumeration of paths. 
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5.3.2. Models for Deterministic Uncongested Network 
assignment 

Under the assumption of deterministic path choice behavior, the demand flow of 
each O-D pair is assigned to the minimum cost path or paths (i.e. paths with 
maximum systematic utility), while no flow is assigned to other paths. Therefore, 
Deterministic Uncongested Network (DUN) assignment is also known as All-or­
Nothing assignment(7). In general, as has already been noted, several choice 
probability vectors may correspond to a single vector of link and path costs. It 
follows that the relationship (5.3.2), expressing the general uncongested network 
assignment, is detailed into the deterministic uncongested network assignment map 
hDUN = hDWiJ:; d) E Sh, which is a one-to-many (or point-to-set) map between path 
costs and flows. In other words, since there may be several alternative minimum 
cost paths connecting an origin to a destination, the same path and link costs vector 
may correspond to several vectors of deterministic uncongested networks path and 
link flows. For this reason, the study of the properties of deterministic network 
loading is preferably conducted using indirect formulations, equivalent to (5.3.2), 
based on the specification of the deterministic demand model with a system of 
inequalities (5.2.7c). Summing the inequalities (5.2.7c) over all od pairs yields 
expression (5.3.4): 

(5.3.4) 

The resultant path (or link) flows correspond to the condition expressed by the 
Wardrop principle which states "for each O-D pair, the path cost used is equal, and 
is less than or equal to the cost of each unused path", as described in section 5.2.2. 
Figure 5.3.3 presents an example of the deterministic uncongested network 
assignment model. 

If non-additive path costs are zero, gNA = 0, total path costs coincide with additive 
costs gT = (glDD)T = cT Lt, and it is easy to verify that (5.3.4) is equivalent to: 

(5.3.5) 

On the other hand when there are non-additive path costs, expression (5.3.4) is 
equivalent to: 

(5.3.6a) 

In order to facilitate the analysis and solution (see Section 7.3.1) of model (5.3.6a), 
it can be reformulated without any explicit reference to path flows. Let: 

G VA= (gvAlh be the total non-additive cost corresponding to the generic 
feasible vector of path flows h; 

GVA[)(JN = (gvAl hmlN be .the total non-additive cost corresponding to the 
deterministic uncongested assignment of the path flow vector 
hDUN. 



d1-4 = 1000 

2 

3 

d3-4 = 800 

2 

3 

CHAPTERS 

Link Costs 2 

4 

3 

d2-4 = 1500 

4 

4 

2 

3 

Total Link Flows 

2 

3 

273 

4 

4 

Fig. 5.3.3 Deterministic Uncongested Networks (DUN) assignment, with the path choice model 
in Fig. 5.2.4b. 

In terms of link flows,!DuN, and of total non-additive cost, OV,4DUN, corresponding 
to the deterministic uncongested network assignment(8), the following holds: 

The existence of solutions of the inequality systems (5.3.4,5,6) is assured since they 
are defined over limited feasible sets. Clearly, demand flows affect the solution 
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since they appear in the definition of the feasible sets over which the problems are 
defined. 

Formulation with optimization models. Deterministic Uncongested Network 
assignment can also be formulated with an optimization model, or more precisely 
with a linear programming model. In fact, if the non-additive path costs are zero, it 
is easy to verify that the inequality system (5.3.5) is equivalent to an optimization 
model with linear objective function and a set of linear equality or inequality 
constraints as given below: 

fDUM.C; d) = argmin clj 

fE Sjd) 

(5.3.7) 

where the notation Sjd) highlights the role of the demand flow vector in the 
definition of the feasible link flow set. If there are non-additive path costs, the 
relation (5.3.7) becomes: 

/DuM. c; d), GNA DUN = argmin clj + 1 ·GNA 

f=Nt 
GNA = (g"Alh 

hESh 

(5.3.8) 

These formulations are most easily understood by considering that the 
assignment of each demand flow to a minimum cost path corresponds to the case 
where simultaneously "the cost for each user is minimum" and "the total network 
cost is minimum" (the link costs being independent of flows). 

Regardless of the model adopted, the link flow vector (or rather one of the 
vectors) resulting from deterministic uncongested network assignment can easily be 
calculated when using path choice models based on explicit path enumeration. 
Without explicit path enumeration and when non-additive path costs are equal to 
zero, a link flow vector can easily be obtained with procedures based on algorithms 
for the calculation of minimum cost paths (see Chapter 7), or by directly solving 
optimization models (5.3.7-8)(9). 

5.4. Rigid demand Users Equilibrium assignment models 
In the case of congested networks, link performance measures and costs depend on 
link flows, through the performance and cost functions introduced in Chapter 2. On 
the other hand, link flows depend on link costs through path choice probabilities, as 
described by the uncongested network assignment map. The user equilibrium 
approach to the study of the supply-demand interactions assumes that a 
configuration of path flows h * mutually consistent with the corresponding path costs 
g* is representative of the state assumed by the real-world system(!O). Equilibrium 
path flows and costs are defined by a system of non-linear equations obtained by 
combining the supply model (5.2.4) with the demand model (5.2.7): 
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Equivalent equilibrium assignment models defined with link variables can be 
expressed by the system of non-linear equations obtained by combining the 
uncongested network assignment map (5.3.2) with the flow-dependent cost 
functions (5 .2.2): 

C* = c(j*) 
r = fNL(C*; d) = LIP(_LlT c* - ~A) d 

The above system of equations shows that, in the case of congested networks, 
link flows may depend non-linearly on demand flows (unlike in uncongested 
network assignment). Thus, in this case, the effect of each O-D pair cannot be 
evaluated separately. 

The circular dependence between flows and costs expressed by the equilibrium 
approach is depicted in Fig. 5.4.1. This figure shows the scenario in Fig. 5.1.1 for 
the case of rigid demand dealt with in this section, highlighting the role of the 
uncongested networks assignment model. 

COST-PLOW 
FUNCfION 

LINK 
COSTS 

ASSlGNMENT MODEL 

DEMAND 

FLOWS 

Fig. 5.4.1 - Schematic representation of rigid demand equilibrium assignment models. 
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The actual formulation and the analysis of the theoretical properties (existence 
and uniqueness) of equilibrium flows (and costs) depend on the type of model 
adopted to simulate path choices, probabilistic or deterministic. This selection 
defines respectively stochastic and deterministic equilibrium assignment models, 
separately described in the following sections. 

5.4.1. Stochastic User Equilibrium models 
Stochastic user equilibrium assignment (in the literature, SUE) is obtained by 
applying the equilibrium approach to congested networks under the assumption of 
probabilistic path choice behavior. The resulting path flows h * correspond to the 
condition in which "for each O-D pair the perceived cost of paths used at the 
equilibrium is less than or equal to the perceived cost of every other path". 
Equilibrium path flows can be expressed as the solution of a fixed-point model 
defined on the feasible path flows set Sh, obtained by combining the supply model 
(5.2.4) with the demand model (5.2.7): 

h* = p(-tl c(L1h*) - g"A) d (5.4.1) 

with 

An equivalent fixed-point model using link flow variables f* and therefore 
defined on the feasible link flows set Sf can be obtained by combining the stochastic 
uncongested network assignment function (5.3.3) (expressed in disaggregate form to 
facilitate the analysis) with the flow-dependent cost functions (5.2.2): 

f* = hutvCc(f*» or 

f* = LOd dodL1odPoJC-L1o/ c(f*) _ go/A) (5.4.2) 
with 1* E Sf 

The corresponding equilibrium costs can be obtained with the equations reported in 
section 5.2. Fixed-point models expressed in terms of link or path cost variables are 
also possible to develop. 

An example of stochastic equilibrium using a Logit path choice model for a two­
link/path network is given in Fig. 5.4.2. The stochastic equilibrium pattern is 
obtained at the intersection of the curves representing the supply and (inverse) 
demand equations. Note that the stochastic equilibrium configuration does not 
correspond to equal (systematic) costs on the two paths, which means that the 
intersection point of the two curves does not correspond to the null value of the 
difference gl - g2. In other words, at the stochastic equilibrium, some travelers that 
use higher (systematic) cost paths. This result obviously depends on the assumptions 
made on path choice behavior. The perceived path cost is modeled as a random 
variable and therefore some users may choose higher (systematic) cost paths 
because they perceive them as least cost. 
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The existence and uniqueness of stochastic equilibrium flows and costs are 
guaranteed respectively by the continuity and the monotonicity of the cost functions 
under the rather general assumption that the path choice model guarantees the 
continuity and monotonicity of the stochastic uncongested network assignment 
function (as described below). Note that the conditions for existence and uniqueness 
described are only sufficient; that is, there can be non-continuous and/or non­
monotone cost functions giving rise to a unique equilibrium configuration. In the 
following, existence and uniqueness are explicitly analyzed only for eqUilibrium link 
flows; these conditions ensure the existence and uniqueness of the corresponding 
link costs, c*= c(j*), and of the path costs and flows, g* and h* obtained through 
relations (5.2.1) and (5.2.7) respectively. 

Continuity of the stochastic uncongested network assignment function. If the path 
choice model is defined by a continuous function (with continuous first partial 
derivatives), as is the case for the probabilistic models usually adopted (with 11:1*0), 
the stochastic uncongested network assignment function is continuous (with 
continuous first partial derivatives) with respect to link costs. In other words, a 
"small" variation in link costs induces a "small" variation in link flows. 

Existence of Stochastic User Equilibrium link flows. The fixed-point model 
(5.4.2) has at least one solution if the function of the path choice probabilities, Pod = 
PoJv,,) (which defines the stochastic uncongested network assignment functionf= 
fSUlv(C; d)) and the cost function C = c(j) are continuous. 

In fact, the equilibrium solution/* is a fixed point of the compound function 
Y = fSUl/..C(X)), which under the above assumptions is a continuous function 
defined over the non-empty, compact, and convex set Sf (for a connected 
network) Furthermore, the functiony = fSUlv(C(X)) assumes values only in the 
definition set Sf, thus all of the assumptions of Brouwer's theorem on the 
existence of fixed points are satisfied (see Appendix A). 

The continuity of the cost functions over the feasible flow set (and therefore the 
existence of the equilibrium solution) requires that the cost functions are defined for 
any feasible value of link flows, even if a particular link flow is greater than the 
physical capacity of that link (links flows are bounded above by the demand flows). 
In fact, if explicit capacity constraints are added, the set of feasible flow might be 
empty. In other words, there may be no link flow vector that corresponds to the 
transportation demand and simultaneously does not exceed the capacity of each 
network link. Such a limit case corresponds to an excess of demand with respect to 
the available capacity of the system. 

Monotonicity of the stochastic uncongested network assignment jUnction. If the 
path choice model is defined by a non-decreasing monotone function of systematic 
utility, as in the case of additive probabilistic models (as demonstrated in Section 
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3.5), the stochastic uncongested network assignment function is non-increasing 
monotone with respect to the link costs. Thus, if the cost of one or more of the links 
increases, the flow (or flows) on these links decreases, and vice versa. This property 
is formally expressed as: 

(fsutl,c~-fSUM.c'~l (c' - c'~ ~ 0 Vc', c" 

Given any two link cost vectors c' and c", consider the following notation: 

go/ = "1,,l c' + go/A V,,/ = -go/p,'/ = Pod(Vo/) 
ho/ = d",fJo/f = L.od,,1odho/ 
go/' = ,,1ol c" + golA Vo/' = -go/' Po/' = Pod(Vo/') 
ho/' = do,fJo/' f' = L.od,,1odho/' 

Assuming that the path choice model is additive and the choice map is non­
decreasing monotone (see Section 3.5) yields: 

(p olVod~ - Pod vo/~l (Vo/ - V,,/~ ~ 0 Vod 

and it follows from non-negativity ofthe demand flow dod ~ 0 that: 

donoIVod~-PodVo/~l(vo/- Vo/~~O Vod 

(ho/ - ho/~T (Vo/ - Vo/~ ~ 0 Vod 

L.od(ho/ - ho/f (Vo/ - Vo/~ ~ 0 

Since Vod = -god = -,,1ol c - go/A, the above reduces to: 

-L.od(ho/ - h,,/f (go/ - g,,/~ ~ 0 

L.od(ho/ - ho/f (4l c'+ go/A - ,,1olc" - go/A) ~ 0 

L.od(ho/ - ho/f ,,1ol (c' - c'~ ~ 0 

from which if' -f~T (c' - c'~ ~ 0 follows. 

Note that two different vectors of link costs, c' and c" usually generate two 
different vectors of the additive path costS ,,1od TC' and ,,1od TC", and therefore two 
vectors of systematic utility, Vo/ and Vo/'. Thus, the assumption that the path 
choice model is additive (see Section 3.5) with respect to the path systematic utility 
is equivalent to assuming that for each od pair, the parameters of the distribution of 
the path random residuals &od, (such as the parameter () in a Logit model or the 
variance-covariance matrix L: in a Probit model) do not depend on the additive path 
costs, and therefore on the link costs relevant to congestion. However, they may 
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depend on other reference variables (such as distance, null flow costs, etc.pI). Note 
that under this assumption, the Jacobian of the function hUN = fsuNCe), Jae[fsuNCe)] = 
Lod dOdL1odJaefpoj-L1o/e-go/')]L1j' is symmetric and negative semi-definite, since 
the Jacobian Jaefpoj-L1o/e-go/A)] is symmetric positive semi-definite (see Section 
3.5) 

Uniqueness of Stochastic User Equilibrium link flows. The fixed-point model 
(5.4.2) has at most one solution if the link cost functions e = e(f) are strictly 
increasing(I2) over the set of feasible link flows: 

[e(f)- eif)f if - f') > 0 Vf=l:-f' E Sf 

and the path choice models are additive (and expressed by continuous functions 
Pod = PojVod) with continuous first partial derivatives). 

As previously shown, under this assumption the stochastic uncongested 
network assignment function huNCe) is monotone non-increasing with the 
link costs: 

ifWfNCc,)-huNCc')f (e' - c'')::; 0 Vc', e" 

The proof is then completed by reductio ad absurdum. If two different 

equilibrium link flow vectors existed,fI* =I:- f2*ESj; assuming eI* = eifI*) and 
C2* = Cif2*), the equilibrium definitionfI* = fsuNCct*) and12* = fsuNCc2*) and 
the monotonicity of the stochastic un congested network assignment function 
with e'= et * and c"= e2* yields: 

From the monotonicity of the cost functions, with f = Ji* =I:- f' = 12*, it 
follows that: 

Thus, there is a contradiction between the monotonicity of the cost functions 
and that of the stochastic uncongested network assignment function. 

A sufficient condition for the strict monotonicity of the cost functions is that the 
Jacobian matrix Jac[e(f)] of the cost vector c(f) is positive definite over the set Sf 
(see Appendix A). In the case of separable cost functions, c, = c, (fi), the Jacobian 
matrix is diagonal and the its elements are the derivatives of the cost functions of 
each link with respect to link flow. In the usual case when cost functions are 
increasing with respect to the flow(13), the derivatives are positive, the Jacobian 
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matrix is positive definite, and the equilibrium flow vector.l* is unique. However, 
there are real situations in which the cost functions are not monotone. 

In applications, the non-uniqueness of equilibrium, or the difficulty of 
demonstrating it a priori, gives rise to problems in both computation and 
interpretation. On one hand, it is possible to demonstrate the convergence of the 
solution algorithms only if the solution is unique (see Section 7.4). On the other 
hand, the inability of demonstrating the uniqueness of equilibrium implies that the 
equilibrium flow vector that has been calculated is not necessarily the one with 
which to design/evaluate the transportation system under study. In other words, in 
the context of the functioning of the system, in the latter case the system may attain 
different equilibrium patterns, and each of these should be verified. 

Stochastic equilibrium link flows can be calculated with various algorithms, the 
simplest of which use the stochastic uncongested network assignment function as 
described in Chapter 7. Appendix 5A at the end of this chapter proposes some 
formulations of SUE with rigid demand based on optimization models. These 
models can be used to specify other algorithms derived from general optimization 
techniques. 

5.4.2. Deterministic User Equilibrium models 
Deterministic user equilibrium assignment is obtained by applying the equilibrium 
approach for congested networks under the assumption of deterministic path choice 
behavior. In the literature, this problem is usually denoted by the acronym DUE 
(Deterministic User Equilibrium). Deterministic equilibrium link flows, .1*, path 
flows, h *, and the corresponding costs, c * or g*, can be determined with a fixed­
point model obtained by simultaneously applying the supply model (5.2.4) and the 
demand model (5.2.7), as in the stochastic equilibrium case (an alternative is to 
utilize the deterministic uncongested network assignment map and flow-dependent 
cost functions). In this case, however, there are some mathematical complications 
arising from the fact that the deterministic demand model is expressed (like the 
corresponding deterministic uncongested network assignment map(l4») by a one-to­
many map, as was noted in Section 5.2.2 (and in 5.3.2). 

For this reason, the properties of deterministic eqUilibrium are usually studied 
through indirect formulations. The most general is the variational inequality 
formulation based on the specification of the deterministic demand model with the 
system of inequalities (5.2.7c): 

g(h*l(h-h*)"C. 0 VhESh (5.4.3) 

By combining the demand model obtained by summing (5.2.7c) on all the od pairs 
with the supply model (5.2.4), expression (5.4.3) is obtained. 

In the case of congested networks, therefore, the resultant path (or link) flows 
correspond to the condition expressed by the Wardrop first principle: "for each O-D 
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pair the path equilibrium cost used is equal, and is less than or equal to the 
equilibrium cost of each unused path" (see Section S.2.2). 

Equivalent variational inequality models expressed in terms of link flows are 
based on combining the link cost functions (S.2.2) with the inequality systems 
(S.3.5) or (S.3.6) representing the deterministic uncongested network assignment: 

C(j*)l if -.1*) ;:::: 0 VfES! 

c(j*lif -.1*) + (gvy (h - h*) ;:::: 0 Vf=L1h 'r7hESh 

(S.4.4) 

(S.4.Sa) 

The expressions (S.4.4) and (S.4.Sa) apply respectively to cases with null and 
non-null non-additive path costs. Note that the expressions (S.4.3-S) are different 
from those used for deterministic uncongested assignment in that path and link costs 
depend on flows. In the presence of non-additive path costs, the considerations 
made in Section S.3.2 hold and (S.4.Sa) can be expressed in terms of link flowsJ* 
and of the total non-additive cost 0'1.'* corresponding to deterministic equilibrium: 

(S.4.Sb) 

An example of Deterministic User Equilibrium assignment for a two-link/path 
network is shown in Fig. S.4.3. Note that the deterministic equilibrium flows 
correspond to the intersection point of the supply and demand curves (in this case, 
step curves) and they correspond to costs that are equal for the two paths since both 
are used. 

Conditions ensuring the existence and uniqueness of deterministic equilibrium 
link flows and costs are similar to those described for stochastic equilibrium. In 
particular, the continuity and monotonicity of the cost functions guarantee 
respectively the existence and uniqueness of the solution. It should be noted once 
again that the existence and uniqueness conditions described are only sufficient; i.e. 
there may exist non-monotone cost functions that give rise to a unique equilibrium 
vector. 

Existence of Deterministic User Equilibrium link flows. The variational 
inequalities (S.4.3-S) have at least one solution if the cost functions are continuous 
functions, defined on the non-empty, compact and convex set of the feasible path 
flows, Sh, or link flows, Sf: 

In fact, a general property of variational inequalities is verified, which can be 
proved through the Brouwer's theorem (see Appendix A). 

The considerations regarding the continuity of cost functions made for SUE 
models apply also for DUE models. The existence of equilibrium link flows ensures 
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the existence of the corresponding link costs, c* = c(f*), and of path costs and flows, 
g* and h*, given by the expressions reported in Section 5.2. 

Uniqueness of Deterministic User Equilibrium link flows. The variational 
inequality (5.4.5b), which expresses deterministic equilibrium in terms of link flows, 
has at most one solution if the link cost functions c = c(f) are strictly increasing with 
respect to link flows: 

[c(f) - cif')f if - f') > 0 'ilf;r=f' E Sf 

The same result holds for the variational inequality (5.4.4), which is a special 
case of (5.4.5b) when non-additive costs are zero. 

The proof is by reductio ad absurdum. Assume that there exists two different 
equilibrium link flow vector /1 * "# /2 * E Sf> corresponding to two different 
feasible path flows vectors, hl*"# h2*ESF, and GNA I* = ~Alhl and GNA2* = 

~A)Th2* are the relative values of total non-additive cost. Since /,* is an 
equilibrium flow vector, /,* and GNA * must satisfy (5.4.5b) and therefore 

assuming/= fz* E Sfand GNA = GNA 2* yields: 

Furthermore, /2* and GNA2* also must satisfy (5.4.5b) and therefore 
assuming/= .fI*ESf and GNA = GNA I* yields: 

The sum of the two above relationships yields: 

or 

which contradicts the monotonicity of the cost functions. 

The considerations regarding the monotonicity of the cost functions already 
made for stochastic equilibrium hold also for the deterministic model. Moreover, the 
uniqueness of the equilibrium link flows ensures the uniqueness of the 
corresponding equilibrium link and path costs, c* = c(f*) and g* = LlTc* + ~A.ln 
general, however, uniqueness of link flows, and therefore of link and path costs, 
does not ensure the uniqueness of path flows, since there might exist different path 
flow vectors that induce the same link flows vector, r, and that correspond to the 
equilibrium costs, c* and g*. 
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The non-uniqueness of DUE path flows is not particularly relevant from the 
practical point of view when the main objective of the equilibrium analysisis the 
simulation of link flows. However, in some applications in which knowledge of 
path flows is useful or necessary (such as the estimation of the O-D flows using 
traffic counts described in Chapter 8) this characteristic of deterministic equilibrium 
assignment may give rise to theoretical and/or algorithmic drawbacks. 

Formulation with optimization models. Deterministic equilibrium assignment 
(with rigid demand) can also be formulated through optimization models, under 
some assumptions on the cost functions, as now described. These models allow the 
use of simple and efficient solution algorithms (see Chapter 7). In particular, under 
the assumptions of separable cost functions and absence of non-additive path costs, 
the deterministic equilibrium is given by: 

r = argmin ~,II' ely,) dy, 

IE Sf 

(5.4.6a) 

Figure 5.4.4 is a graphic illustration of the model (5.4.6a) and the diagram of the 
function z(j) = ~,II' ely,) dy, , known as the integral cost (its relation to the total 
cost e(j)J"will be analyzed in Section 5.4.4), for the two-link network introduced in 
Fig. 5.4.3. Note that the point at which the function z(j) has a minimum corresponds 
to the value of the flows for which the path costs are equal, which are the 
deterministic equilibrium flows (since both the paths are used). 

The formulation (5.4.6a) can be extended to the case of non-separable cost 
functions as long as they have a symmetric Jacobian (separable functions, with 
diagonal Jacobian, are clearly a special case): 

r = argminl! e(vl dy 

IE Sf 

(5.4.6b) 

The assumption of cost functions with a symmetric Jacobian is critical for the 
formulation of the model (5.4.6b), since generally the line integral value depends on 
the integration path. However, when the Jacobian Jae[e(.)] of the integrand function 
e(.) is symmetric, the value of the integral does not depend on the integration path 
according to Green's theorem (since the set is convex)(IS). In this case the integral 
depends only on the integration extremes. Thus, since the lower extreme is equal to 
zero, it depends only on link flow. It is worth pointing out that the Jacobian of non­
separable cost functions is rarely symmetric since the way in which the flow on link 
i affects the cost of link j is generally different from the way in which the flow on 
link j affects the cost on link i. 

The relationship between a solution r of the constrained optimization model 
(5.4.6) and an equilibrium vector can be analyzed by verifying the relationship with 
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a solution of the variational inequality (5.4.4), as shown below (the demonstrations 
refer to general features of the variational inequalities; see Appendix A)(16). 
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Fig. 5.4.4 - Example of an optimization model for the DUE flows of Fig. 5.4.3. 

Equivalence of optimization model for DUE. If the cost functions c(f) are 
continuous with continuous first partial derivative and a symmetric Jacobian, a 
vector r solving the optimization model (5.4.6) is an equilibrium vector (but not 
necessarily vice versa). 

The function z(f) 1/ c(y/ dy for link flow is differentiable with a continuous 
gradient, since = 'Vz(f) = c(f), and therefore its minimum points satisfy the 
necessary condition for a minimum (see Appendix A): 
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Since Vz(f*) = c(f*), (S.4.4) holds. Furthermore, the function z(f) is 
differentiable, and therefore continuous, on a compact (and convex) set, and 
therefore has at least one minimum point, consistent with the existence 
conditions of the solutions of (S.4.4). 

287 

If the cost functions c(f) are continuous and with continuous fIrst partial 
derivatives and a symmetric positive semi-defInite Jacobian Jac[c(f)], a vector r 
solving the fIxed optimization model (S.4.6) is an equilibrium vector, and vice versa. 

Under the above assumptions, z(f) is differentiable with a continuous gradient 
and a continuous positive semi-defInite Hessian matrix, since Vz(f) = c(f), 
and Hess[z(f)] = V2z(f) = Jac[c(f)]. Therefore z(f) is convex, and its 
minimum pointsr are defIned by the necessary and sufficient condition (see 
Appendix A): 

Since Vz(f*) = c(f*), (S.4.4) holds. (Furthermore, z(f) is convex on a convex 
set, and therefore has at least one minimum point, consistent with the 
existence conditions of the solutions of (S.4.4)). 

If non-additive path costs differ from zero, the optimization model becomes: 

!*,GNA * = argmin II c(y/ dy + GNA 

f=M 
GNA = cgA/h 

hE Sh 

(S.4.7) 

The model (S.4.7) has properties analogous to those shown above for model 
(S.4.6b). 

When the cost function c(f) has a symmetric positive defInite Jacobian, the 
objective functions of models (S.4.6) and (S.4.7) respectively have a single 
minimum point (unimodal functions). In particular, the objective function of model 
(S.4.6) is strictly convex and therefore has a single minimum point, consistent with 
the uniqueness conditions presented with the variational inequality models, since 
under this assumption the cost functions are strictly increasing. However, the 
objective function of model (S.4.7) is convex with a single minimum point, since it 
is the summation of a function which is strictly convex with respect to the variables 
f and a linear function with respect to the variable GNA • 
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Deterministic user equilibrium link flows can be calculated with various 
algorithms solving the variational inequality or optimization models in the case of 
cost functions with symmetric Jacobian(l7). Some simple algorithms which use 
deterministic network loading assignment are described in Chapter 7. 

5.4.3. Relationship between stochastic and deterministic 
equilibrium flows 
The deterministic path choice model underlying deterministic equilibrium models 
can be considered a special case of a random utility model in which the variance of 
the random residuals is null. For this reason, stochastic equilibrium flows 
approximate deterministic equilibrium flows as the random residual variance goes to 
zero. Figure 5.4.5 shows the curves expressing the demand model for the example 
used in Figures 5.4.2 -.3, for various values of the parameter () proportional to the 
standard deviation of random residuals of the path choice model. The figure clearly 
shows that the probabilistic demand curve progressively approaches the curve 
corresponding to the deterministic model and SUE flows approach DUE flows. 

Deterministic and stochastic models give similar results in the case of very 
congested networks. If link flows are close to capacity, the derivatives of the cost 
functions, representing the cost variations introduced by marginal user, are most 
likely larger than the random residuals. In other words, a flow distribution very 
different from deterministic equilibrium would induce large cost differences 
between the different paths that are likely to be correctly perceived by almost all the 
users. 

This effect is shown in Fig. 5.4.6, where the link cost functions vary in such a 
way that their derivatives increase but their traversing point remains fixed. In other 
words, DUE flows remain unchanged while the system is more congested, and thus 
more sensitive to small flow variations. As the figure shows, as the cost curves vary, 
SUE flows change and approach DUE flows. 

The closeness of deterministic and stochastic equilibrium flows implies that on 
very congested networks it is possible to use DUE assignment as an approximation 
of SUE assignment. This is good for practical problems, since DUE flows are 
easier to compute, as will be shown in Chapter 7. However, it should be noted that 
for different applications (assignment to lightly congested or not uniformly 
congested networks, estimation of the O-D matrix by traffic counts, etc.) the 
deterministic model is not a good substitute for the stochastic one. Furthermore, as 
pointed out in the preceding section, it is not possible to guarantee the uniqueness of 
deterministic equilibrium path flows, nor (as will be seen in Section 5.7) of flows 
per user class in the case of multi-class assignment. 
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Fig. 5.4.5 Relationship between SUE and DUE flows for different values of random residuals 
standard deviation (see Fig. 5.4.2 and Fig. 5.4.3). 
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5.4.4. System optimal assignment models 
System optimal assignment models derive from assumptions which are significantly 
different from those underlying the user equilibrium models. In fact, it is assumed 
that users "cooperate" to minimize total system cost, rather than minimizing 
individual costs as in user equilibrium models. The resulting assignment problem is 
generally different, at least for congested networks; it is equal to deterministic 
assignment for uncongested networks. Note that under the assumptions of system 
optimal assignment, some, users may follow a non-minimum (perceived or 
systematic) cost path. This condition, under which "the total cost on the network is 
minimum" as expressed by the Second principle of Wardrop, is known as System 
Optimum (SO). 

Knowledge of system optimum flows can be useful as a reference element in the 
analysis of congested networks. In fact, although the behavioral assumptions 
underlying SO are not realistic for the simulation of individual decision-maker 
behavior, the system optimum flows and costs correspond to (one of) the system 
"management" objectives to be achieved through available control instruments 
(prices, traffic-light regulation, services frequency, etc.pS). Furthermore, SO 
assignment can be applied for the assignment of demand units without autonomous 
decision capability, such as freight vehicles. 

SO assignment is defined by an optimization model in terms of link flows with 
an objective function consisting of the total cost presented in Section 5.2 (ignoring 
non-additive path costs for the sake of simplicity): 

Iso = argmin c(fl I 
IE Sf 

(5.4.8) 

Note that it is unnecessary to introduce assumptions on the symmetry of the cost 
function Jacobian to formulate system optimum assignment through an optimization 
model (which in this case is the direct formulation, rather than an equivalent indirect 
one as with DUE). The existence and uniqueness of optimum system flows and costs 
are discussed below. 

Existence. The optimization model (5.4.8) has at least one solution if the cost 
functions, c = c(f), are continuous. 

Under these assumptions, the objective function z(f) = c(f)T J, is continuous 
on the non-empty (under the assumption of connected network), and compact 
(as well as convex) set Sf> and therefore has at least one minimum point (see 
Appendix A). 

Existence and uniqueness. The optimization model (5.4.8) has one and only one 
solution if the cost functions, c(f), have continuous first and second partial 
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derivatives, their Jacobian, Jac[c(f)] , is continuous and positive definite (cost 
functions are strictly increasing), and the Hessian matrix, Hess [c,(f)] , of each cost 
function, c, = c,(f), positive semi-definite (each cost function is convex). 

Under these assumptions, the cost functions have continuous first derivatives 
and are therefore differentiable and continuous, a condition guaranteeing the 

existence of the solution. Furthermore, the gradient, "Yz(f), of the function 
z(f) = c(f)T I is given by: 

"Yz(f) = Jac[c(f)]f + c(f) 

and the Hessian matrix, Hess[z(f)], of the function z(f) = c(f)T I is given by: 

Hess[z(f)] = Jac["Yz(f)] = Jac[c(f)f + "i.di Hess[c,(f)] + Jac[c(f)] 

Both z(f) and Hess [z(f)] are continuous, so that the function z(f) = c(f)T I is 
twice differentiable. Finally, the Hessian matrix, Hess[z(f)] , is symmetric 
positive definite since it is the sum of symmetric positive semi-definite 
matrices and of symmetric positive definite matrices. Therefore, the function 
z(f) = c(f)T I, defined over the convex Sf; is strictly convex and has one and 
only one minimum point. 

System optimum flows do not generally coincide with DUE flows, as is shown 
by the example reported in Fig. 5.4.7. The figure shows that, with respect to the 
DUE flows, the shift of some users on a path slightly more expensive but less 
congested reduces significantly the total cost borne by all users. 

However, if link costs are independent of flows, that is Jac[c(f)] = 0, the 
solutions to the two problems coincide. 

Ifr is a minimum point of the function z(f) = c(f)l'l it follows that: 

and since 

"Yz(f"f if-/") ;:::: 0 VIES! 

"Yz(f*) = Jac[c(f)]f + c(f): 

(Jac[c(f)]f + c(f) l if-/,,) ;:::: 0 VIES! 

a condition which in general is different from the variational inequality 
(5.4.6) which expresses the deterministic equilibrium. However if link costs 
are independent of the flows (Jac[c(f)] = 0) the above inequality coincides 
with the variational inequality, the deterministic user equilibrium is reduced 
to the deterministic uncongested network assignment and can be expressed 
by the model (5.3.7) equivalent in this case to the model (5.4.8) expressing 
the system optimum. 
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Of particular interest is the example in Fig. 5.4.8, known in the literature as 
Braess paradox. The paradox refers to a network where the addition of a new link 
causes an increase of the total cost under the deterministic equilibrium assignment, 
while leaving the system optimum total cost unchanged. In the first case, the SO link 
flows minimize the total cost and for this reason the addition of a link cannot 
increase the overall cost of the system because the SO link flow pattern 
corresponding to the null flow on the new link is a feasible solution of the new SO 
problem. Vice versa, in the case of user equilibrium, the objective of each individual 
is to minimize his or her own transport cost and the equilibrium link flow pattern 
corresponding to the introduction of a new link may cause an increase of total cost. 
It should be pointed out, however, that conditions analogous to the Braess paradox 
are not often found in real systems(19). 

The system optimum model (5.4.8) can be reformulated to be formally analogous 
to the DUE optimization model (5.4.6). To do so, consider the vector function b(f) 

of the link flow vector defined by the gradient V z(f) of the function z(f) = c(f)T f 
and called the marginal cost function: 

b(f) = V z(f) = Jac[ c(f)] T f + c(f) (5.4.9) 

The interpretation of the function (5.4.9) is more apparent in the case of 
separable cost functions c(f) where the functions b(f) are also separable. Under this 
assumption, if the first derivative of the link I cost function elf!) is denoted by e'lJi), 
it follows that: 

M!!) = e 'l!!) fi + elJi) 

In the general case, if the cost functions have continuous first and second 
derivatives, the Jacobian Jae[b(f)] of the function b(f) is symmetric and therefore 
the line integral of b(f) between the values 0 and f does not depend on the 
integration path and its value coincides with the total cost: 

If bey? dy = c(f)T f 

If the cost functions, e( G+ I), have continuous first and second derivatives, 
the marginal costs, b(f), have continuous cost derivatives, thus they are 
differentable and continuous. Furthermore, the Jacobian, Jac[b(f)], of the 

gradient function, b(f) = V z(f), coinciding with the Hessian matrix of the 
function, z(f), is symmetric. 
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Fig . 5.4.7 System optimum (SO) flows on the test network of Fig. 5.4.3. 
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System optimum assignment can therefore be formulated with an optimization 
model by using the marginal cost function bey) defined by (5.4.9): 

Iso = argmin z(f) = Ilb(y) dy 

IE Sf 

(5.4.1 0) 

The optimization model (5.4.10) is formally analogous to the optimization model 
(5.4.6) for the (symmetric) DUE and can be solved with the same algorithms 
described in Chapter 7 (see Fig. 5.4.6). 

An operational interpretation of the model (5.4.10) is that if link costs are 
modified in such a way that the link costs perceived by the users' coincide with the 
marginal ones, b(f), individual deterministic path choice with respect to such costs 
would lead to a configuration for the entire system which minimized the total cost 
c(f))T I. A way (but not the only one) of introducing this variation of costs is the 
application of efficiency tolls as a furiction of the link flows given by: 
b(f) - c(f) = Jac[c(f)]f In the case of separable costs, this expression is reduced to: 
c'lJi) ft. This point will be returned to in Chapter 9 in the discussion of supply design 
models. 

Finally, its is possible to deduce that system optimum assignment does not 
generally coincide with stochastic equilibrium through similar arguments. In this 
case, it is also possible to derive equivalence conditions which lead to rather 
unrealistic cost functions. 

5.5. Assignment models with pre-triplen-route path choice 
The previous sections deal with the case in which users, before starting the trip, 
choose between single paths representing routes provided by the transport system. 
The analysis can, however, quite easily be extended to include pre-trip/en-route path 
choice behavior, relevant in public transport systems with high frequency and/or low 
reliability. In this case (as was seen in Section 4.3.4.2) the relevant pre-trip choice 
alternatives are en-route strategies, whose topology is represented by network 
hyperpaths, while en-route choices are made during the trip itself at each diversion 
(waiting) node where different lines are available (Fig. 5.5.1). In any case, the 
approach described in this section can be applied to other transportation systems 
once en-route diversion nodes and the related choice behavior has been specified. 

The main modifications surround the demand model defined in Section 5.2 by 
equation (5.2.7). In particular, the difference between path and hyperpath costs and 
flows is defined by the path choice probabilities within the hyperpaths. Referring to 
notation introduced in Section 4.2.5.2, (see Fig. 5.5.1). Let: 
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Wod,ki be the conditional probability of choosing path k within the hyperpath j for a 
user of the od pair; 

nod be the matrix of conditional path choice probabilities Wod,ki within the 
hyperpaths for the od pair; 

n be the overall matrix of conditional path choice probabilities for all paths, all 
hyperpaths and all od pairs, obtained by placing the blocks nod corresponding 
to each od pair side by side. 

By analogy with the path definitions in Section 5.2, additive and non-additive 
costs are taken into consideration for each hyperpath. Let: 

X ADD 
od 

,X'DD 

Xod 

X 

be the hyperpath additive costs vector for the users of the od pair; 
be the overall vector of the hyperpath additive costs, consisting of the 
hyperpath additive cost vectors xodWD corresponding to each od pair; 
be the hyperpath non-additive costs vector for the users of the od pair; 
be the overall vector of the hyperpath non-additive costs, consisting of the 
hyperpath non-additive cost vectors xo/4 corresponding to each od pair; 
be the vector of the total hyperpath costs for the users of the od pair; 
be the overall vector of the total hyperpath costs, consisting of the vectors of 
the total hyperpath costs vectors Xod corresponding to each od pair. 

As was seen in Section 4.2.5.2, the hyperpath additive costs xodWD are usually 
defined by a linear combination of on-board time Tb, as well as by the access/egress 
times Ta and by the boarding and alighting times Tbr and Tal homogenized with 
suitable coefficients: 

Xod@ = /3h Tb + /3br Tbr + /3al Tal + /3d Td + /3a Ta \:;/ od 

Furthemore, non-additive hyperpath costs, xo/\ usually include performance 
attributes which cannot be computed from generic link costs such as the waiting 
time TWod and the number of transfers, Nod, homogenized with suitable coefficients: 

xod'~ = /3w TWod + /3N Nod V od 

The relationship between the hyperpath costs and the additive path costs is 
expressed by the following: 
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In the following, for simplicity of notation, it is assumed that any non-additive 
path costs g"A have been included in the non-additive hyperpath costs X'A, and 
therefore the path costs g coincide with the additive costs tDD (Fig. 5.5.2) 

n. T + ,v'4 Xod = od god Xod \;fod (5.5.1a) 
x=dg+X'A (5.5.lb) 

X = d • g4DD + X'A 

471 1 0 0 0 

[42'] 
50 

461 0 1 0 0 421 40 
481 0 0 1 0 451 30 
816 0 0 0 1 771 45 
474 0 0.40 0.60 0 35 
667 0 0.44 0 0.56 50 
630 0 0 0.55 0.45 35 
594 0 0.27 0.40 0.33 45 

Fig. 5.5.2 Relationship between path and hyperpath costs for the network of Fig. 5.5.1 

The choice of strategy, i.e. of the hyperpath representing its topology, is 
simulated by a random utility model where the systematic utility of a hyperpath is 
equal to the opposite of the hyperpath systematic cost, analogously to (5.2.5) 
(Section 4.2.5.2): 

\;fod (5.5.2) 

where: 

V;,d is a vector with an element for each hyperpathj, given by the systematic utility 
Vi of the hyperpath j, for the users of the od pair; 

VOod is a vector with elements consisting of the sum of any other attributes which 
cannot be assigned to hyperpath costs (such as socio-economic attributes of 
the users), from now on ignored for simplicity of notation. 

The hyperpath choice probabilities depend on the systematic utilities of the 
hyperpaths, and therefore on the systematic costs. Let(20): 
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qU/od] be the probability that a user, during a trip from the ongm 0 to the 
destination d (with purpose, time band and mode not explicitly indicated), 
uses the hyperpathj; 

qod be the vector of the hyperpath choice probabilities for the users of the od 
pair, whose elements are the probabilities qU/od] with hyperpath index j 
varying within the set of all hyperpaths; this set is assumed non empty (each 
od pair is connected by at least one hyperpath) and finite (only elementary 
hyperpaths are considered). 

As shown in Section 4.2.5.2, hyperpath choice probabilities can be expressed 
through random utility models as: 

q[j/od] = Prob[ rj - Vmj ;:::: Em - Ej V m] Vod,j 

qod= qoJVod) Vod 

where Ej is the random residual corresponding to the perceived utility of 
hyperpathj. 

Combining the hyperpath choice model with the systematic utility specification, 
the relation between hyperpath choice probabilities and costs for the od pair, known 
as the hyperpath choice map, is obtained: 

The above relationship can be expressed in matrix terms. Let: 

Q be the hyperpath choice probabilities matrix with a column for each od pair and a 
row for each hyperpath j, with entries given by q[j/od] if the hyperpath j 
connects the od pair, zero otherwise (the matrix Q is block diagonal with blocks 
given by the vectors qod). 

Therefore 
Q = Q(V= -x) 

The (average) flow Yj on the hyperpathj connecting the od pair is given by the 
product of the corresponding demand flow dod and the corresponding hyperpath 
choice probability: 

and is measured in the demand units. Let 



302 MODELS FOR TRAFFIC ASSIGNMENT TO TRANSPORT ATION NETWORKS 

Yod be the hyperpath flow vector for the ad pair whose elements are the flows Y;, 
with hyperpath index} varying within the set ofhyperpaths. 

Y be the overaII vector of hyperpath flows, consisting of the vectors of the 
hyperpath flows Yod corresponding to each ad pair. 

For each ad pair, the relation between hyperpath choice probabilities and flows 
and demand flows, parallel to (S.2.6), is expressed by: 

Yod = dod qoJ Vod) Vad 
Y = Q(V)d 

(S.S.3a) 
(S.S.3b) 

Each path k which connects the ad pair may belong to several hyperpaths, so that 
the flow hk is given by the sum of the hyperpath flows Yj for the probability OJod.kj 
that the path k is used within the hyperpath} (an example is reported in Fig. S.S.3): 

h = 

[38J U 
244 
283 
214 

hk = Lh OJod.kj Y; 'Ilk 
hod = Dod Yod = dod Dod q.od Vad 

h=Dy=DQd 

D 

0 0 0 0 
o 0 0 J 1 0 0 0.4 0.44 0 0.27 

0 1 0 0.6 o 0.55 0.4 
0 0 1 0 0.56 0.45 0.33 

• Y 

138 
139 
136 
97 
137 
113 
117 
0 

(S.S.4a) 
(S.S.4b) 

Fig. 5.5.3 Relationship between path and hyperpath flows for the network of Fig. 5.5.1. 

The complete demand model in the case of pre-trip/en-route path choice 
behavior is defined by relations (S.S.I-2) specifying the systematic utility and by the 
relations (S.S.3-4) defining the path flows. When combined, these relations lead to a 
relation between path flows and costs which generalizes expression (S.2.7): 

hod = dod Dodq.od( -Do/god -x{)(/") Vad 
h = DQ( -.rig -x") d 

(S.S.Sa) 
(S.5.Sb) 

By combining the demand model (S.S.S) with the supply model (S.2.4), the 
assignment models described in the previous sections can be extended to handle pre­
trip/en-route path choice behavior. In this case, it is useful to express the relation 
between link and hyperpath flows and costs. Let 
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AOd,II be the the probability of traversing link ! within the hyperpathj for the users of 
the odpair; 

Aod be the matrix of the traversing probabilities AOd,li of each link ! within each 
hyperpath j for the users of the od pair; 

A be the overall matrix of the probabilities of traversing the links within each 
hyperpath, consisting of the blocks Aod corresponding to each od pair, 

The relationship between the link traversing probabilities and the path choice 
probabilities within a hyperpath (analogous to the link-path incidence described in 
Chapter 2 and repeated in Section 5,2), is expressed by the following relations (fig. 
5,504): 

Aod,/j = L:k Ood,lk OJ od,kj V!Vod 
Aod = ,dod ilod Vod (5,5.6a) 

A=,dil (5.5,6b) 

A 

(links x hyperpaths) 
1 2 3 4 5 6 7 8 

1-2 1 0 0 0 0 0 0 0 
1-6 0 1 1 1 1 1 1 1 
2-3 1 0 0 0 0 0 0 0 
3-4 1 0 0 0 0 0 0 0 
4-5 1 0 0 0 0 0 0 0 
5-12 0 1 1 1 1 1 1 1 
6-7 0 1 1 1 1 1 1 1 
7-8 0 1 0 0 004 0044 0 0.27 
7-9 0 0 1 0 0,6 0 0.550040 
7-10 0 0 1 0 0,6 0 0,55 0040 
8-11 0 0 1 0 0,6 0 0.55 0040 
9-11 0 0 0 1 0 0,56 0045 0,33 
10-11 0 0 0 1 0 0,56 0045 0.33 
11-12 0 1 1 1 1 1 1 1 

,d • il 

(links x paths) (paths x hyperpaths) 
1 2 3 4 1 2 3 4 5 6 7 8 

1-2 1 0 0 0 1 1 0 0 0 0 0 0 0 
1-6 0 1 1 1 2 0 1 0 0 004 0044 0 0,27 
2-3 1 0 0 0 3 0 0 1 0 0.6 0 0,550040 
3-4 1 0 0 0 4 0 0 0 1 0 0.56 0045 0,33 
4-5 1 0 0 0 
5-12 1 0 0 0 
6-7 0 1 1 1 
7-8 0 1 0 0 
7-9 0 0 1 0 

7-10 0 0 0 1 
8-11 0 1 0 0 
9-11 0 0 1 0 
10-11 0 0 0 1 
11-12 0 1 1 1 

Fig. 5.5.4 Incidence and traversing probability matrices for the network of Fig, 5,5,1 
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The relationship between hyperpath costs, link costs and additive path costs is 
expressed by the following equation, obtained by combining expressions (5.5.1), 
(5.5.6) and (5.2.1) (non-additive path costs t/'A have been included in the non-
additive hyperpath costs xo/A, thus path costs coincide with additive costs: g = tD): 

Xod = Xo/DD + X,,/A = flo/ .£10 / e + Xo/A = Ao/ e + X,,/A '\Iod (5.5.7a) 
x = ~DD + xv.4 = d AT e + 6"-4 = ATe +;x"A (5.5.7b) 

Similarly, the relationship between link and hyperpath flows is expressed by the 
following equation by combining expressions (5.5.4), (5.5.6) and (5.2.3) (Fig. 5.5.5): 

f = Lod Aod hod = Lad Aod flod Yad = L(Jd AodYod (5.5.8a) 
f= Ah = A,ay = Ay (5.5.8b) 

f A • h 

126 1 0 0 0 

[,~J 874 0 1 1 1 254 
126 1 0 0 0 356 
126 1 0 0 0 264 
126 1 0 0 0 
126 1 0 0 0 
874 0 1 1 1 
254 0 1 0 0 
356 0 0 1 0 
264 0 0 0 1 
254 0 1 0 0 
356 0 0 1 0 
264 0 0 0 1 
874 0 1 1 1 

f A • Y 

126 1 0 0 0 0 0 0 0 126 
874 0 1 1 1 1 1 1 1 93 
126 1 0 0 0 0 0 0 0 122 
126 1 0 0 0 0 0 0 0 79 
126 1 0 0 0 0 0 0 0 157 
874 0 1 1 1 1 1 1 1 126 
874 0 1 1 1 1 1 1 1 138 
254 0 1 0 0 0.4 0.44 0 0.27 159 
356 0 0 1 0 0.6 0 0.55 0.40 
356 0 0 1 0 0.6 0 0.55 0.40 
356 0 0 1 0 0.6 0 0.55 0.40 
264 0 0 0 1 0 0.56 0.45 0.33 
264 0 0 0 1 0 0.56 0.45 0.33 
874 0 1 1 1 1 1 1 1 

Fig. 5.5.5 Relationship between link, path and hyperpath flows for the network of Fig. 5.5.1 
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Mixed pre-trip/en-route behavior assignment can therefore be expressed by 
relations (5.5.7-S) and (5.5.3-4), together with the cost functions (5.2.2). It clearly 
follows from this formulation that the pre-trip assignment models expressed by 
relations (5.2.1,3.5.6) are special cases which can be obtained from mixed pre­
trip/en route assignment models by setting.Q = I , from which it follows that LI = A, 
y = h and x = g. In fact, in pre-trip assignment each hyperpath corresponds to a 
single path (simple hyperpath), and en-route choices are not considered. 

The set of feasible hyperpaths and link flows Sy and Sf are defmed, as in Section 
5.2.3, by: 

Sy = {y: Yod~ 0, 1 TYod = dod Vod} 

Sf = if= Ay,yeSy} 

(5.5.9) 

(5.5.10) 

The Uncongested Network assignment .models described in Section 5.3 can 
therefore easily be extended to the case of mixed pre-trip/en-route choice. In 
particular, the uncongested network assignment model in terms of link flows can be 
expressed by an equation similar to (5.3.2): 

(5.5.11) 

Uncongested Network assignment models with mixed pre-trip/en-route behavior 
can be probabilistic or deterministic depending on the hyperpath choice model 
adopted. In the case of probabilistic path choice behavior, the Stochastic 
Uncongested Network (SUN) assignment models can be expressed by a function 
similar to (5.3.3): 

"Ie (5.5.12) 

which retains the properties of continuity and monotonicity discussed in Section 
5.4.1. 

In the case of deterministic path choice behavior, the relationship between 
hyperpath flow and costs can be expressed with a system of inequalities similar to 
(5.3.4): 

(5.5.13) 

If non-additive path costs are not explicitly considered, by substituting equ. 
(5.5.7b) and (5.5.Sb) in (5.5.13) it follows: 

Vf= Ay, VyeSy (5.5.14) 
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Because of the presence of non-additive costs, the considerations made in 
Section 5.3.2 hold and (5.5.14) can be expressed in terms of link flOWS/DUN and total 
non-additive cost XDUN = (JCiY YmfN corresponding to the deterministic assignment: 

Additionally, the rigid demand equilibrium assignment models described in 
Section 5.4 can easily be extended to the case of mixed pre-trip/en-route path 
choice. It is usually assumed, parallel to the case of non-additive path costs, that the 
non-additive hyperpath costs, and in particular waiting times at stops (in the case of 
transit systems), are not affected by congestion; that is, they do not depend on the 
link flOWS(21). Under this hypothesis, by combining the supply model (5.2.4) with the 
demand model (5.5.5), a system of equations in terms of equilibrium path variables, 
namely costs, g*, and flows, h *, is obtained: 

g* = Lf c(Llh*) 
h* = ilQ(-dg* _~A) d 

An analogous formulation in terms of equilibrium hyperpath variables, again 
costs and flows, is also possible: 

x* = ATc(Ay*) + XV.4 

y* = Q(-x*) d 

As in the case of assignment with fully pre-trip path choice behavior, an 
equivalent formulation in terms of link variables can be expressed by the system of 
equations obtained by combining the uncongested network assignment map (5.5.11) 
with the cost functions (5.5.2): 

c* = c(j*) 
r = /uNCc*; d) = A Q( -A1'c* _XVA) d 

In the case of Stochastic User Equilibrium (SUE) a fixed-point model similar to 
model (5.4.2) in link flows is obtained: 

1* = f~uNCc(f'); d) = LOd dodAod q,oi..-(Ao/c(f')+ x o/ A» (5.5.15) 

with 1* E Sf 

Stochastic equilibrium can be also formulated with fixed-point models with path 
or hyperpath flow variables, or with link, path or hyperpath costs variables; these 
formulations are not reported here for the sake of brevity. Under the assumption of 
flow-independent non-additive costs, the conditions of existence and uniqueness 
analyzed in Section 5.4.1 still hold; in particular, the cost-flow functions for on-



CHAPTERS 307 

board, access, boarding and alighting links must be respectively continuous and/or 
strictly increasing(22). The extension of the results described for the case of flow­
dependent non-additive costs (such is waiting costs) is not straightforward and will 
not be pursued here. 

Deterministic User Equilibrium (DUE) assignment can be analyzed with 
variational inequality models. In particular, denoting the hyperpath cost functions 
with xCv) = ATc(Ay) + X'A, models similar to the variational inequality (5.4.3,5) are 
obtained: 

x(Y*l (y - y*) ~ 0 VyESy 

dr/if -f*) + (X'A/(y -y*) ~ 0 Vf= Ay,VyESy 

(5.5.16) 

(5.5.17) 

Non-additive hyperpath costs can be handled as described in Section 5.4.2. The 
above expression can be formulated in terms of link flows f* and total non-additive 
cost X*: 

The optimization models described in the previous sections and in the appendix 
for deterministic or stochastic assignment can also be easily applied in this case, 
within the limits of the assumptions. 

5.6. Elastic demand User Equilibrium assignment models* 
Elastic demand assignment models assume that demand flows depend on 
transportation costs. These models simulate supply-demand interactions when user 
choice behavior other than path (such as mode, destination, etc.) is influenced by 
path cost variations due to variations in congested link costS(23). The dependence of 
demand on cost c is expressed by the demand models described in Chapter 4. 

If demand models are based on random utility theory, the demand flow for each 
O-D pair generally depends on the values of the (systematic) utilities associated with 
the paths available for the various O-D pairs, through the EMPU of path choice. 
This can be seen as an "average" over the systematic utilities (i.e. costs) of the 
available paths. This is described in section 3.5 and in section 4.2 on the general 
structure of demand models. 

For uncongested networks, elastic demand assignment is not meaningful, since 
path costs, EMPUs and thus the demand flows are independent of link flows. Link 
and path flows can then be obtained through the Uncongested Network assignment 
models described in Section 5.3. On the other hand, for congested networks, costs 
depend on flows, and a further mutual dependence between flows and costs is 
introduced through the demand function as shown in Fig. 5.6.1 which distinguishes 
between internal and external approaches. 
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COST-FLOW 
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1- J 

LINK 
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Fig. 5.6.1.a Schematic representation of elastic demand equilibrium assignment models 
(internal approach). 
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For elastic demand equilibrium assignment, it is useful to distinguish between 
two cases. In single-mode assignment, dealt with in section 5.6.1, there is one mode 
for which link costs depend on flows, and either the demand elasticity does not 
depend on modal split at all or link costs for all other modes are not congestion­
dependent. In the second case, level of service attributes of uncongested modes are 
known before the solution of the assignment model and play a role similar to 
demand model parameters for the congested mode. Once the congested mode 
equilibrium assignment has been solved and the cost attributes of this mode have 
been determined, the demand for the other (uncongested) modes can be obtained and 
assigned through uncongested network assignment models, one mode at a time. 

In multi-modal assignment, dealt with in Section 5.6.2, there is more than one 
mode with link costs depending on flows (congested modes). In this case, the cost 
attributes of congested modes cannot be known before the solution of the 
assignment model, and it is necessary to solve the equilibrium assignment problem 
simultaneously (at least for congested modes). Note that congested modes may have 
separate supply (network) and path choice models. 

To clarify the difference between the two types of elastic demand assignment, 
consider the case of choice between two modes, car and bus. If bus travel times are 
independent of the relative link flows, the level-of service attributes of this mode are 
independent of congestion. They can be calculated through the network model and 
then used as attributes of the mode choice model providing demand flows for the car 
mode. The known costs of the bus mode and the cost functions for the car mode 
allow the specification of a single-mode assignment on congested network with 
elastic demand for the car mode. When this model is solved and the car mode 
equilibrium attributes are found, the bus mode demand flows will be determined and 
an uncongested network assignment can be performed. Vice versa, if the costs of 
both modes depend on the flows, it is necessary to assign the demand of both modes 
at the same time in order to find the congested cost pattern for each of them. These 
costs have to be consistent with mode choice, path choices and the network flows of 
the two modes. 
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Fig. 5.6.1 b Schematic representation of elastic demand equilibrium assignment models 
(external approach). 
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5.6.1. Single-mode assignment models 
With reference to a single mode m and to the time band h (not explicitly 

indicated in the following) the demand function for the od pair can be expressed as: 

or in matrix terms: 
d= des) 

where: 

d is the demand flow vector with an element dod for each od pair; 
s is the path choice EMPU vector (for the mode m in the time band h) with an 

element Sod for each od pair. 

The demand function simulates the dependence between demand flows and 
EMPU in a general sense, and will vary depending on the choice dimensions 
considered elastic with respect to congestion costs. For example, if demand 
elasticity is relative to destination choice, the demand flow dod depends only on the 
elements of the vector s for the O-D pairs with origin in the zone 0, dod = do~sodt. ... , 
Sodn,"')' If the demand flow, dod, of the odpair depends only on the EMPU, Sod, of the 
same od pair, we have the special case of separable demand functions, dod = d~Sod); 
this may arise in the case of elastic trip frequency, or emission demand models. 

The EMPU depends in turn on the values of the path systematic utility through 
the relation (5.2.8) given in Section 5.2: 

Note that the EMPU is defined and measured homogeneously with the utility. So 
it is negative in the case of a path choice model since the systematic utility of each 
path is generally negative, being the opposite to the corresponding systematic cost. 
From the systematic utility expression (5.2.5) it follows: 

or in matrix notation: 

d= d(s(V= - g» (5.6.1) 

If destination choice, for example, is simulated with a Logit model (parameter 
0,) and path choice is simulated with a Logit model (parameter ~), an elementary 
specification of the previous expression could be: 
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Sod = ~ In('f.keKod exp( -g';~) V od 

where: 

do. is the total flow leaving from zone 0, assumed constant; 
Ad is the attraction attribute of the destination zone d; 
fJI, are the homogenization coefficients in the systematic utility ~Jd between the . 
/h zones 0 and d. 

In elastic demand assignment models, described below, it is assumed that the 
demand flow, dow for each od pair is non-negative and bounded above by a positive 

value, that is dod E [0, dod.max] , and it is therefore possible to define the set of 
feasible demand flow vectors as: 

Under this hypothesis, the set of feasible path flows Sh, and of feasible link flows 
Sf; described in Section 5.2 are compact and convex (and non-empty if the network 
is connected) as in the case of rigid demand. 

The demand model in the case of elastic demand becomes: 

hod = docAs(-g» Pol-g(Jd) Vod 
h = P(-g) d(s( - g» 

(5.6.2a) 
(5.6.2b) 

Note that expression 5.6.2 is the equivalent of 5.2.7 in the case of rigid demand. On 
the other hand, the supply model remains unchanged as expressed by the relation 
5.2.4. 

The (single-mode) equilibrium approach in the case of elastic demand assumes 
that the state of the system can be represented by a path flow configuration h* which 
is mutually consistent with the corresponding path costs g*, as defined by the supply 
model (5.2.4) and by the demand model (5.6.2): 

g* = Lf c(LIh*) + 11'04 
h* = P(-g *) d(s(-g*) 

The corresponding equilibrium demand flows d* are given by (5.6.1). An 
equivalent formulation of the elastic demand single-mode equilibrium assignment 
model can be expressed in terms of link variables. In this case, the system of 
equations in terms of equilibrium link flows, r, is obtained by combining the cost 
functions (5.2.2) with the equation obtained by combining the uncongested network 
assignment map (5.3.2), the demand function (5.6.1), and the path costs expression 
(5.2.1): 
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c* = c(f*) 
r = !UN-EL(C*; tf) = A P(_AT c* - g"A) d(s(-AT c* - g"A) 

The circular dependence between demand flows and costs can also be expressed 
externally to the equilibrium between (link and path) flows and costs_ At the inner 
level, for a given vector of demand flows, (rigid demand) equilibrium link flows 
and costs are defined by the path choice model and by the cost functions_ At the 
outer level, the equilibrium between the costs resulting from the (rigid demand) 
equilibrium assignment and the demand flows defined by the demand functions is 
defined. Let 

!UE-RIG = !UE-RIG(tf) be the implicit correspondence between the rigid demand 
equilibrium link flows, !UE-RIG, and the demand flows d. This correspondence is 
defined by the solution of one of the models described in Section 5.4. It is a 
function (on-to-one correspondence) if equilibrium flows are unique. 

External elastic demand equilibrium assignment can therefore be formulated 
with a system of non-linear equations: 

d* = d(s(-ATc(f*))) 
j* = fuE-Rlc;(d*) 

Combining the two previous equations, a fixed-point problem (with an implicitly 
defined function) is obtained with respect to the demand flows, d* or link flows,j*. 
Formulations with respect to link cost or EMPU are also possible. The external 
approach can be adopted to define solution procedures, as will be seen in Chapter 7, 
but it is difficult to analyze theoretically. 

The analysis of elastic demand equilibrium assignment can easily be carried out 
for the internal approach through direct extension of the rigid demand equilibrium 
assignment models described in section 5.4(24), distinguishing the cases of stochastic 
and deterministic equilibrium. 

5.6.1.1. Elastic demand single-mode Stochastic User Equilibrium models 

The fixed-point model with respect to path flows (5.4.1) for rigid demand stochastic 
equilibrium can easily be extended to the case of elastic demand by combining the 
supply model (5.2.4) and the demand model (5.6.2): 

with 

h* = P(_AT c(Ah*) - g"4) d(s(-AT c(Ah*) _ g"A)) 

h* E Sh 

(5.6.3) 

Also, the equivalent fixed-point model with respect to link flows (5.4.2) for the 
rigid demand SUE can easily be extended to elastic demand: 
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f' = L,od do,/S(-ii'c(f*) - g'A» iJodPo,/-iJo/ c(f*) - goer) 

f' E Sf 

(5.6.4) 

Equilibrium link costs are given by c* = c(f*), and therefore the corresponding 
demand flows are given by dod* = do,/S(_iJT C* _g'A». 

The analysis of the existence and uniqueness of the solutions is a straightforward 
extension of the results given in Section 5.4.1. It requires explicit assumptions on the 
demand functions sufficient to ensure continuity and monotonicity of the stochastic 
uncongested network assignment function (with elastic demand) given by: 

fSUN.EL(C) = iwlN(c*; d= d(s(-iJTc _ g'.1») = 
= L,od do,/s(-iJT C - gNA») iJodPo,/-iJo/ c - go/A) 

In what follows, existence and uniqueness are analyzed explicitly only for 
equilibrium link flows. These conditions also ensure the existence and uniqueness of 
the corresponding equilibrium link costs, c*= c(f*), path costs and flows, g* and h*, 
obtained with the expressions reported in Section 5.2, as well as demand flows, 
dod*. 

Existence of the elastic demand stochastic user equilibrium. The fixed-point model 
with respect to link flows (5.6.4) has at least one solution if path choice probability 
functions, Pod = Po,/Vod), EMPU functions, Sod = so,/Vod), and demand functions, dod 
= do,/s), composing the SUN function,f= hUN-EL(c), and cost functions, c = c(j), are 
continuous (also assuming that each O-D pair is connected and demand flows are 
limited). 

The proof is similar to that in Section 5.4 .1. for rigid demand. 

Monotonicity of the elastic demand stochastic uncongested network function. If path 
choice models are defined by non-decreasing monotonic functions with respect to 
the systematic utilities, as is the case with probabilistic additive models (with I.E 1*0, 
see section 3.5), and demand functions are non-negative, upper bounded and non­
decreasing with respect to the EMPU: 

[d(s')- d(s'')f(s'- s'') ~ ° \::Is', s" 

the elastic demand stochastic uncongested network assignment function is non­
increasing monotone with respect to link costs. Thus if the cost of one (or more) link 
increases, the flow (or flows) of that (or those) link does not increase. This property 
is expressed formally as: 

(fSUN-EL(C')- fSUN-EL(C'')/ (c'- c''):::; 6 \::Ic', c" 
Under the assumptions made, given the two systematic utility vectors, V,,/ 
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and Vo/', corresponding to the paths which connect the pair od, the 
following relations involving the corresponding path choice probabilities and 
the EMPU hold (see section 3.5): 

PoIYod)T (Vod' - Vo/) ~ soJVod) - soJVo/) 

soJVod) - soJVo/) ~PoJVo/)T (Vo/ - Vo/) 

Letting so/ = soJVod) and so/' = soJVo/), multiplying the first relation by 

doJs) ~ 0 and the second"by dod(s') ~ 0 gives: 

dOd(s)PoJvodf (Vo/ - Vo/) ~ dod(s) (SoJVod~ - soJVo/~) 
dod(S'~ (SoJVod~ - soJVo/~) ~ dod(S'~ pJVo/~T (Vo/ - V o/~ 

from which, summing over all the O-D pairs, it follows that: 

L-od dod(S~PoJVodf (Vo/-Vo/~ ~ L-oddod(S~ (SoJVod~ - soJVo/~) 
L-oddod(S'~ (SoJVod~ - soJVo/~ ~ L-od dod(S'~ PoJVo/~T (Vo/-Vo/~ 

Furthermore, for the monotonicity of the demand functions, it follows that: 

Therefore, the following is expression obtained: 

Given two different link cost vectors, e' and e", let 

,_ A T,+ NA god - LJod e god 
go/' = L101 e" + golA 

Vo/ = -go/ 
Vo/' = -go/' 

Therefore, parallel to the exposition in Section 5.3.1, with 

it is finally obtained: if -f~T (e' - e') ~ 0 

315 
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Note that, under these assumptions, the Jacobian Jac[fsuN-EL(C)] is symmetric 
negative semi-definite since the Jacobian Jacfp"JVod)] is symmetric positive semi­
definite (see section 3.5). 

Uniqueness of elastic demand stochastic user equilibrium. The fixed-point model in 
terms of link flows (5.6.4) has at the most one solution if link cost functions c = c(f) 
are strictly increasing with respect to the feasible link flows: 

[c(f)- cif~f if -f~ > 0 'IIf'# f' E Bj. 

If demand functions are non-negative, bounded above, and non-decreasing with 
respect to the EMPU: 

[d(s~- d(S,~]T (s' - s'~ ~ 0 'lis', s" 

and if path choice models are additive, in the sense defined in section 5.3.1, and 
expressed by continuous functions Pod = PoJVod) with continuous first partial 
derivatives. 

The proof is similar to the one provided for rigid demand in section 5.4.1. In 
fact, under the above assumptions, the elastic demand SUN function, 
fsUN-EL(C), is non-increasing monotone with respect to the link costs. 

The considerations made in section 5.4.1 on the existence and uniqueness of the 
solutions, and on the continuity and monotonicity of the cost functions, can be 
extended directly to elastic demand models. As for the demand functions, their 
monotonicity implies that variations in path cost induce opposite variations in 
EMPU's and therefore in demand flows. In other words, the increase of a link cost, 
and therefore of the cost of the paths including it, cannot induce an increase in the 
demand flows between the O-D pairs connected by these paths. This property is 
always guaranteed if the demand functions are defined through probabilistic choice 
models, such as trip distribution models, which are additive with respect to the 
EMPU of path choice (also deterministic demand models satisfy the monotonicity 
requirement). 

5.6.1.2. Elastic demand single-mode Deterministic User Equilibrium models 

When path choice behavior is simulated with a deterministic model, the EMPU is 
given, as stated in section 3.5, by the maximum systematic utility, or the opposite of 
the minimum path cost: 

where: 
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Zod = -Sod 

Z= -s 
is the minimum cost of the paths connecting the pair od; 
is the vector of the minimum path costs between all the O-D pairs, with 

an element for each O-D pair. 

The demand functions are, in the case of deterministic assignment, usually 
expressed in terms of minimum cost i.e. the opposite of the EMPU (still using 
notation d(.) for demand function): 

or equivalently 
d =d(Z) VZ (5.6.5a) 

As an example, consider the case of a Logit model simulating destination choice 
analogous to the one described previously, . while path choice is simulated with a 
deterministic model. Expression (5.6.5a) becomes: 

where: 

is the total flow leaving zone 0, assumed constant; 
is the attraction attribute of the destination zone d; 
is the Logit parameter; 
are the homogenization coefficients in the systematic utility between zones 0 

and d. 

The indirect formulation of rigid demand deterministic equilibrium through 
variational inequality models, described in paragraph 5.4.2, can be extended to 
elastic demand. For this purpose, it is necessary to assume that the demand functions 
(5.6.5) are invertible(25), i.e. that it is possible to define the (vector) inverse demand 
!unction(26) giving for each demand flow vector, d, the corresponding vector of 
minimum path costs Z. This is the vector of minimum path costs vector that, 
through the demand function, generates the demand vector, d,: 

Z=Z(d) VdESd (5.6.5b) 

The inverse demand function (5.6.5b) has the same properties of continuity and 
monotonicity as the demand function (5.6.5a). In particular, it is strictly decreasing 
if (and only if) the demand function (5.6.5a) is strictly decreasing. Thus for an 
increase of demand flows, the inverse demand function associates a decrease in 
costs. This property is guaranteed if the demand function is defined by additive 
probabilistic choice models with respect to mininum costs (or by deterministic 
models). 
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The variational inequality formulation of elastic demand deterministic 
equilibrium assignment can be achieved by extending the path flows model (S.4.3) 
described in section S.4.2 for rigid demand. In the case of elastic demand, this model 
becomes (excluding non-additive path costs for simplicity of notation): 

(S.6.6) 

In fact, condition (3.S.lla) on deterministic choice probabilities, PDET,od, (as 
introduced in section 3.S) applied to each ad pair yields: 

Given path costs god*, let Zod* = min (god*) be the minimum path cost for 
each ad pair. Assuming Vod* = -god* yields max(Vod*) = -Zod*. Furthermore, 
let dod* be the demand flow corresponding to minimum cost Zod*, that is Z* 
= Z(d*) to be consistent with inverse demand function. Multiplying the 
above equation by the non-negative demand flow d()(/ ~ 0 Vad yields: 

'v'ad (a) 

sInce 

Generally, the following condition also holds (see section 3.S): 

Given the path costs god*, with Vod* = -god* and max(Vod*) = -Zod*, 
multiplying the above equation by any feasible demand flow, dod ~ OVad, 
yields: 

(god* l hod::; Zod* dod 'r/h od : hod;:: 0, JThod = dod 'v'dod ;:: 0 'v'ad 

thus (god* )Tgod:S: Zod* dod Vhod: hESh, Vdod : dESd Vad (b) 

since hod = dod Pod Vad. 

Subtracting equation (a) from (b) yields: 

Summing up the above equation for all the ad pair with Z* = Z(d*), a 
deterministic demand model with elastic demand is obtained: 
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Combining the above demand model (d) with the supply model (5.2.4), say 
g(h*) = Lfe(Llh*) + gvA relation (5.6.6) is obtained .. 
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Expression (5.6.6) can easily be reformulated in terms of link flows, extending 
the model (5.4.4) described in section 5.4.2. Expressing equilibrium path costs in 
terms of link costs according to the supply model, it follows parallel to (5.2.4) that: 

(5.6.7) 

The existence of (link or path) flows and costs and the uniqueness of link flows 
and costs as well as of the demand flows for elastic demand deterministic user 
equilibrium are guaranteed respectively by the continuity and monotonicity of the 
cost functions and of the (inverse) demand functions(27). 

Existence of elastic demand deterministic user equilibrium. Variational inequalities 
(5.5.6,7) have at least one solution if the cost functions, defined over the non-empty, 
compact and convex set of the feasible path or link, flows, and the inverse demand 
functions, defined over the non-empty, closed and limited interval of demand values, 
are continuous. 

The proof is similar to that described for rigid demand in Section 5.4.1. 

Uniqueness of elastic demand deterministic user equilibrium link flows The 
variational inequality (5.6.7) expressed in terms of link flows has at the most one 
solution if the link cost functions, e = e(j), are strictly increasing with respect to the 
link flows: 

[e(f') - e(f')f (f - f') > 0 Vf"* f'ES! 

and the inverse demand functions, Z = Zed), are strictly decreasing(28) with respect 
to the demand flows (Le. the demand functions are strictly decreasing with respect to 
the minimum cost): 

[Zed') - Zed'')] (d' - d'') < 0 Vd'=/:.d"ESd 

The proof, parallel to that described for rigid demand in section 5.4.2, is 
performed by a reductio ad absurdum. If there existed two different 

equilibrium link flow vector 11* "* 12 * eS! corresponding to two feasible 
demand flow vectors d l *, d2 * eSd (not necessarily different), they both would 
satisfy (5.6.7) and therefore, with I = Ji* e Sf e d = d2* eSd , it would 
follow: 
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Furthermore, also!2* e d2* would respect (5.6.7) and therefore, with/= /1* 

E Sf e d = dl*E Sd, we would have: 

Summing of the two above relations gives: 

or 

which contradicts the assumption of the monotonicity of the cost functions, 
and of the inverse demand functions, if d l * '* d2*. Analogously, if two 
different vectors of feasible demand flows existed d l *'* d2 * ESd, to which 
corresponded two vectors of equilibrium link flows /1 *,12 * ESf; this would 
again result in a contradiction. 

Note that, as in the case of rigid demand, the uniqueness of link flows and 
equilibrium demand does not imply the uniqueness of equilibrium path flows. 

Formulation with optimization models. Elastic demand deterministic user 
equilibrium can also be formulated with optimization models. These allow simple 
solution algorithms to be used (see Chapter 7). Equivalent optimization models 
require that cost functions and inverse demand functions have symmetric Jacobians. 
In particular, assuming for the sake of simplicity the absence of non-additive path 
costs, the model (5.4.6) can be extended in the following form: 

(j*,d*) = argmin II c(x/ dx - I/ Z(y)T dy 

/E Sf 

dE Sd 

(5.6.8) 

In general, formulation (5.6.8) is of limited use in practice since it is difficult to 
express the inverse demand function, Z = Zed), in closed form, and therefore to 
prove the symmetry of its Jacobian. 

This condition holds, however, if the demand model is of the Logit type, like the 
one described at the beginning of this section. In this case, the following holds: 
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(5.6.9) 

with 

Analogously, the integral (5.6.9) can explicitly be computed for Logit mode choice 
models demand with attributes independent of congestion for the other 
transportation modes. 

5.6.2. Multi-mode assignment models 
The previous models can be extended to multi-modal assignment in which at least 
mode choice depends on congested costs for more than one mode. Obviously, in 
addition to mode and path choice, demand models can be elastic with respect to 
other choice dimensions, such as frequency and destination. To specify these models 
it is useful to modify the notation used in Section 5.2. introducing a further subscript 
for the mode m. Let: 

g NA 
od,m 
~A 

god,m 

g 

hod•m 

h 

be the link-path incidence matrix for the pair ad and mode m; 
be the overall link-path incidence matrix, obtained by arranging side by 
side the blocks Llod,m corresponding to each pair ad and each mode m; 
be the link cost vector, C, ; 

be the additive path cost vector for the pair ad and mode m; 
be the overall additive path cost vector, composed by the vectors god,':DD 

corresponding to each pair ad and each mode m; 
be the additive path cost vector for the pair ad and the mode m; 
be the overall non-additive path cost vector, composed by vectors god,m NA 

corresponding to each pair ad and each mode m; 
be the total path cost vector for of the pair ad and the mode m; 
be the overall total path cost vector, composed by the vectors god,m 

corresponding to each pair ad and each mode m; 
be the path flow vector for of the pair ad and the mode m; 
be the overall path flow vector, composed by the path flows vectors hod,m 

corresponding to each pair ad and each mode m. 

Generally link cost functions may be non-separable with respect to modes and 
other links. However, a link may be used by several modes(29). Let 
fd,m be the link flow vector, with entries given by the flow on link I, fi od,m , 

corresponding to the pair ad and mode m; 
f be the overall link flow vector; 
c be the link cost vector. 
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In analogy with the results presented in Section 5.2, assuming that link flows for 
each pair ad and each mode m are measured in homogeneous units, the following 
holds: 

(5.6.10) 

The following relationships (analogous to 5.2.1-3) relate the variables 
introduced: 

ADD + NA LI T + NA god.m = god.m god.m = od.m C god.m Vad,m (5.6.11) 

c = c(f) (5.6.12) 

(5.6.13) 

The multi-modal supply model is expressed by the following relationship 
(analogous to (5.2.4): 

(5.6.14) 

Path choice behavior can be simulated with a random utility model, possibly 
different for each mode. For example, a deterministic model can be used for public 
transport modes, while Probit models can be specified for car and truck modes. 
Assuming for simplicity completely pre-trip choice behavior, let 

Vod ,m be the vector of systematic utilities for paths related to the pair ad and 
the mode m; 

p[kladm] be the probability of using path k for a trip from the origin a to the 
destination d with the mode m (with purpose and time band not 
explicitly indicated), 

Pod.m be the vector of path choice probabilities for the pair ad and the mode 
m; 

dod,m be the demand flow of the users between the pair ad with mode m, 
element of the O-D matrix for mode m. 

The following relationships (analogous to 5.2.5-6) hold between the variables 
introduced: 

where: 

Vod,m = -god,m + V"od,m Vad,m 
hod,m = dod.mPod,m(Vod,m) Vad,m 

(5.6.15) 
(5.6.16) 
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V" od,rn is a vector with elements consisting of the systematic utility components 
depending on any other attributes differing from path costs (such as socio­
economic attributes of the users), It will be omitted in the following for 
simplicity of notation. 

The demand flow dod,rn for the pair ad on mode m is generally defined by a 
system of demand models which including a mode choice model, and is therefore a 
function of the path choice EMPU for the various modes (analogous to 5.6.1): 

(5.6.17) 

where: 

s is the vector of the path choice EMPU, with a component sod,rn for each pair ad 
and each mode m. 

Finally, the EMPU depends on the vector of systematic utilities (analogous to 
5.2.8: 

s = s (V) (5.6.18) 

Thus, the whole multi-mode demand model is expressed by the equation 
(analogous to 5.6.2): 

(5.6.19) 

Combining supply and demand models, it is possible to formulate models for 
multi-mode equilibrium assignment analogous to the elastic demand single-mode 
user equilibrium assignment described in the previous sub-section. The fixed-point 
models are more flexible and easy to formulate, while retaining the properties 
described, if the mode choice model within the demand model is specified as a 
random utility model: 

The analysis of existence and uniqueness of the solutions is a simple extension of 
that developed in Section 5.6.1 for single-mode user equilibrium. In particular, for 
existence the mode choice model needs to be specified by continuous functions, 
while for uniqueness it needs to be specified by monotone functions, in the sense 
defined in Section 5.3.1. These conditions hold for additive probabilistic models 
expressed by continuous functions with continuous first partial derivatives. 
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5.7. Multi-class assignment models* 
The assignment models described in the previous sections were developed 

assuming homogeneous users with respect to relevant behavioral models and 
parameters. In the following, these models are extended to deal with the case of 
multi-class assignment, i.e. assuming that users are grouped in classes. Users of the 
same class share all the behavioral characteristics such as specification, parameters 
and attributes of the relevant demand models, including path choice. All these 
features may be different than those of other classes. Users of the same class share 
the category and trip purpose as defined in Chapter 4(30). User classes depend on the 
type of application. For example, in urban systems, classes may be identified on the 
basis of trip purpose, socio-economic category and the activity duration (influencing 
parking duration) because different travel costs (parking tolls) and different time 
values may be associated with these characteristics. In extra-urban systems, classes 
may be defined by vehicle type (auto, light and heavy commercial vehicles), trip 
purpose, and socio-economic characteristics, since motorway tolls, time values and 
path choice models may be different. 

In what follows, for the sake of simplicity, reference is made to rigid demand 
single-mode assignment with fully pre-trip path choice behavior. The results can 
easily be extended to models with pre-trip/en-route choice behavior and/or with 
elastic demand. 

The notation presented in Section 5.2 is still valid, but a further subscript i 
indicating the user class is considered in addition to the subscript od. Some 
straightforward changes in notation are described below. Let 

Ltod,; be the link-path incidence matrix for the pair od and class i (31); 

Lt be the overall link-path incidence matrix obtained by arranging side by side 
the blocks Ltod,; corresponding to each pair od and class i; 

dod,; be the demand flow for the pair od and class i (for a given mode and time 
band); 

d be the demand vector, with elements consisting of the demand flows dod,; . 

It is assumed that demand flows of each user class are measured in common 
units, using homogenization coefficients for users with different effects on 
congestion (see section 2.2). For individual modes, such as car, demand flows are 
expressed in vehicles per unit of time, while in the case of public modes they are 
expressed in passengers per unit of time. 

Transport supply is simulated with a network model analogous to those 
described in Chapter 2. However, the cost of traversing link I can be different for 
users of different classes. To each link I, therefore, a cost and flow for each class can 
be associated. Let 
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be the flow of user class i on link I; 
be the link flow vector for class i with entries J/; 
be the total flow on the link I, sum of the flows corresponding to the 
various classes and measured in units common to the demand; 
be the vector of the total link flow with entriesJ/ 
be the cost on link I for class i; 
be the link cost vector for class i, with entries c/o 

The average cost of a path for users of class i for can be expressed as the sum of 
two terms: additive path costs with respect to class i link costs (possibly dependent 
on congestion), and non-additive path costs, which include all the specific path 
and/or class costs and are assumed to be independent of congestion. Let: 

god,/DD 

god,tA 

god,i 

be the additive path cost vector for the pair ad and class i; 
be the non-additive path cost vectot for the pair ad and class i; 
be the total path cost vector for the pair ad and class i. 

Consistency between link and path costs for each pair ad and each class i, as in 
Chapter 2, is expressed by the following relation (analogous to 5.2.1): 

ADD LI T i 1.-/ d 1.-/' 
god,i = od,i C va vI 

_ ADD + NA_LI TCi+ NA 
god,i - god,; god,i - od,i god,i Vod Vi (5.7.1) 

Congestion phenomena are simulated by assuming that the cost c/ is a function 
of the class flows on the same link I, and possibly, on other links. Thus, a non­
separable cost functions with respect to the classes, as well as with respect to the 
links, are considered. This effect is usually simulated by adopting cost functions 
analogous to those described in Chapter 2, in which the link congested performance 
attributes for each class depend on the total link flows(32): 

(5.7.2) 

For example, the road link travel time for the car users can depend on the total 
flow (appropriately homogenized) of the other vehicle types (motorcycles, trucs, 
etc.). The cost functions of different classes, for example cars and trucks, may be 
different but it is assumed that they both depend on the overall link flow. 

Consistency between link and path flows is expressed by the following relation 
(analogous to 5.2.3): 

(5,7.3) 

The multi-class supply model is thus described by the following equation 
(analogous to 5.2.4) obtained by combining equations (5.7.1-3i33): 
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(5.7.4) 

Path choice behavior for each class i can be simulated through a random utility 
model, with a systematic utility equal to the opposite of the systematic path cost: 

Vod,i = -god,i. + V'od,i Vod Vi (5.7.5) 

where: 

VOd,i is a vector with elements consisting of the systematic utility Vod,i,k of path k 
connecting of the pair od for the class i; 

VOod" is a vector of systematic utility attributes different from those included in path 
costs, for simplicity of notation taken as understood in the following. 

Path choice probabilities depend on the systematic utilities of alternative paths 
through the path choice model. Let 

Pod,,= Pod,lVod,i) be the path choice probabilities vector for pair od and class i; 
hod,i, be the path flow vector for the pair od and class i. 

The path choice model is expressed (analogously to 5.2.6) by: 

The whole demand model is obtained by combining equations (5.2.5-6) : 

(5.7.6) 

(5.7.7) 

If choice behavior on other dimensions, such as mode and destination, depends on 
path costs, elastic demand multi-user assignment models such as those discussed in 
section 5.6 are obtained. Extensions of the models to mixed pre-trip/en-route path 
choice behavior is analogous to those presented in section 5.5. 

Multi-class assignment models can be specified by combining the supply model 
(5.7.4) with the demand model (5.7.7). In the following sections, multi-class 
assignment models will be analyzed separately for the case of congestion functions 
differing for different classes (differentiated congestion), and for the special case 
where congestion functions of each class are a linear transformation of a common 
congestion function (undifferentiated congestion). 
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5.7.1. Differentiated congestion multi-class assignment models 
Differentiated congestion multi-class assignment models can be formulated with 
respect to path or link flows of each class. These must be consistent with the costs 
for each class. In the case of congested network assignment, cost functions are 
generally different for each class, and depend on the aggregate flow of all classes 
(S.7.2). The single-class assignment models described in previous paragraphs can 
easily be extended by considering link flows and costs per class and defining the sets 
of feasible path, Shi, and link, Sj, flow vectors for each class i. 

Differentiated congestion multi-class uncongested network assignment models 
can be expressed in terms of class link flows by combining equations (S. 7.1,3) with 
the demand model (S.7.7): 

The Stochastic Uncongested Network assignment function retains the properties 
of continuity and monotonicity discussed in section S.4.2, which are useful to prove 
existence and uniqueness of equilibrium flows as discussed below. In the case of 
Deterministic Uncongested Network assignment, systems of inequalities analogous 
to those presented in section S.3.2 can be specified. 

Differentiated congestion multi-class equilibrium assignment models are defined 
by combining the supply model (S.7.4) and the demand model (S.7.7). An equivalent 
formulation in terms of link variables can be expressed by combining the UN 
assignment map (S.7.8) with the cost functions (S.7.2). Extension to elastic or multi­
modal demand assignment (section S.6) or to mixed pre-trip/en-route path choice 
behavior (section S.S) is relatively straightforward. 

Stochastic multi-class equilibrium can be formulated with fixed-point models 
analogous to those described in the previous sections, while deterministic multi­
class user equilibrium can also be formulated with variational inequality models. 

Existence conditions of the multi-class equilibrium configurations require the 
continuity of the cost functions, CiO, for each class i, with respect to the flows of the 
various classes, I, ... ,j, ... , . Note that continuity with respect to the total flows,/, 
also ensures the continuity with respect to the class flows, j, and therefore the 
existence of the equilibrium configurations. 

Uniqueness conditions of multi-class equilibrium configurations require the 
monotonicity of the cost functions, ci = ciO, for each class i with respect to the flows 
of the various classes,!, ... ,j, ... , defined by the following condition: 

i/~ . iii T' I ~;[cv , ... ,j, ... )-c(y , ... ,y, ... )] (j-y»O 
V(/, ... ,j, ... )"* (yl, ... ,/, ... ): j,/ E Sj Vi 

or 
~i [d(~;/) - Ci(~y')]T (j - /) > 0 (S.7.9) 

V(/, ... ,j, ... )"* (y', ... ,y\ ... ): j,/ E Sj Vi 
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It should be noted that in general the strict monotonicity of the class cost 
functions with respect to class flows, defined by (5.7.9), and therefore the 
uniqueness of the equilibrium configuration, is not ensured by the strict 
monotonicity of the class cost functions with respect to the total link flows, as 
defined by the following different condition: 

or 

[ci(f) - Ci(X)]T (f-x) > 0 Vi 

Vf=L;/*X=LjX:f,XiES; Vi 

[C'(L;/) - Ci(LjX)]T Lj if-x) > 0 Vi 

VL;!* LjX: /,xi E S; Vi 
(5.7.10) 

In fact, the sum over the index i of inequalities (5.7.10) does not necessarily 
imply the condition (5.7.9P4). 

It should also be noted that the symmetry of the cost function Jacobian necessary 
for the formulation of the deterministic equilibrium with optimization models, 
relates not only to the effect of flow on a link on costs of different links but also of 
flow of a class on the cost of other classes for the same link. Similarly, separability 
of cost functions requires that the cost of class i on link /, c/, depends only on the 
flow on the same link /, fi " of the same class. This second condition is almost never 
satisfied in applications. 

In general, the problem of differentiated congestion multi-class equilibrium 
assignment can be formulated by extending the corresponding single-class models. 
However the (sufficient) uniqueness conditions are seldom satisfied. 

5.7.2. Undifferentiated congestion multi-class assignment 
models 

In undifferentiated congestion multi-class assignment it is assumed that the class 
cost functions can be expressed as a linear transformation of a cost function 
common to all the classes and dependent on total link flows. These costs are called 
reference costs. Therefore, multi-class equilibrium assignment can be formulated in 
terms of total flows and reference link costs. Under the assumptions made, 
expression (5.7.2) for the link cost function becomes: 

, '(I) -(I) , C I = C I = Y; c[ + C 0,1 Vi (5.7.11) 

where: 

CI = c[ (I) is the reference cost function of link I; 

i 
CO.I 

is the ratio (assumed independent of the link) between the link cost for class 
i and the reference cost, if y; = 0 the class i costs are uncongested; 
is the cost of link I specific to classi, assumed to be independent of 
congestion. 
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All costs are assumed to be expressed in units homogeneous with the utility 
(through relevant coefficients). The reference cost function, c, (f) can represent 

disutility related to the average travel time, while Col the disutility connected to 
monetary costs, possibly different for different classes and/or with different 
substitution coefficients. The coefficients Y; can express the ratios between class­
specific and average travel times. 

U sing expression (5.7.11), the consistency between link and path costs is 
expressed for each pair ad and class i by the following relation: 

A T( - i) VA \-I' \-Id 
god,i = LJod,i Y; C + Co + god.;" vi va 

A )'- A T i ,vA \-I' \-I d 
god.i = Y;LJod,; C + LJod,i Co + god,i vi va 

where: 

c is the vector of reference link costs; 
CiO is the vector of class i specific link costs; 
god/A is the vector of non-additive path costs for the pair ad and class i; 
god.i is the total path cost vector for the pair ad and class i, in utility units. 

The average cost of a path between the pair ad for a user of class i therefore 
consists of two components: 

- additive (and generic) costs, the sum of reference link costs, possibly dependent 
on congestion, given by Y; L1od/ c ; 

- congestion-independent path costs consisting of: 

Let 

(additive and) class specific costs, sum of class-specific link costs, given by 
L10d,/ Ci,O; 

non-additive costs, which cannot be expressed as the sum of link costs, 
however defined, given by god,/,A. 

god,/P,vA = y;LIod/CiO + god,r be the vector of specific and/or non-additive path costs 
for the pair ad and class i 

A relationship between link and path costs analogous to (5.7.1) can be formulated: 

A T - SP,vA \-I \-I . 
god,i = Y; LJod,i C + god,; v od v I (5.7.12) 

The undifferentiated congestion multi-class supply model is thus described by 
the following relation obtained by combining eqn. (5.7.3) with equations (5.7.11,12) 
and the reference cost functions given by (5.2.2): 

(5.7.13) 
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Path choice behavior is simulated by a random utility model, expressed by 
(5.7.6), in which the systematic utility of a path is equal to the opposite of the path 
average cost for class i, as expressed in the relation (5.7.5). In the case of a Logit 
path choice model, the parameter Y; cannot be identified separately from the 
parameter (). In the case of a deterministic path choice model, Y; is not relevant, 
since it does not change the maximum systematic utility alternative, i.e. the 
minimum cost path(35). 

Under the given assumptions, undifferentiated congestion multi-class assignment 
models can therefore be defined with respect to total path or link flows, consistent 
with reference link costs and the interaction between classes. The considerations 
made in the previous sections are still valid. In particular, the sets of the feasible 
path SF and link Sf flows are defined as in Section 5.2. 

Undifferented congestion uncongested network multi-class assignment models 
are expressed by: 

/u,./...c;d,y)=Iod,;dod.;4,d,;Pod.;(- Y;Aod,/ C _god,iSPN~ (5.7.14) 

The stochastic uncongested network assignment function retains the properties of 
continuity and monotonicity discussed in Section 5.3.2 if the coefficients Y; are non­
negative. In the case of deterministic assignment, systems of inequalities analogous 
to those presented in Section 5.3.2 can be developed. 

Undifferentiated congestion equilibrium multi-class assignment models are defined 
by the system of equations obtained by combining the supply model (5.7.13) and the 
demand model (5.7.7). An equivalent formulation in terms of total link flows,/, and 
of reference link costs, C, can be expressed by the system of equations obtained by 
combining the UN assignment map (5.7.14) with the reference cost functions given 
by (5.2.2). Stochastic or deterministic user equilibrium assignment can be 
formulated with fixed-point or variational inequality models respectively, analogous 
to the models presented in the previous paragraphs. Continuity and monotonicity of 
the link reference cost functions are required for the existence and the uniqueness of 
the equilibrium solution: 

It can easily be deduced that the parameters Y;, assumed non-negative, do not 
alter the existence and uniqueness conditions of equilibrium solutions. However, 
they influence the value of SUE solution, while, as noted earlier, they have no 
influence in the case of DUE assignment. 

Finally, it must be noted that in stochastic equilibrium, once the equilibrium total 
link flows .r are known, it is possible to compute equilibrium reference costs c * 
and therefore class-specific link, c;, and path, g;, costs. From these costs, c1ass­
specific path flows h; and consequently link flows! can be obtained: 
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I · ""'.. (A T - (j) SPNA) '-',' = '-'odnod,iPod,i -Y;L>od,i C - god,i v 

Existence and uniqueness of stochastic equilibrium total link flows ensure the 
existence and uniqueness of class specific flows. On the other hand, in the case of 
deterministic models, several class specific link flows could be associated with the 
same link cost vector if there were several minimum cost paths. Thus, in the case of 
deterministic multi-class equilibrium, the existence of total equilibrium link flows 
ensures the existence of class flows, but the uniqueness of total link flows does not 
guarantee the uniqueness of class-specific link flows. In this case, to guarantee the 
uniqueness of class link flows, an explicit formulation in terms of class flows is 
necessary as in the case of differentiated congestion assignment. 

5.8. Inter-period Dynamic Process assignment models* 
User equilibrium models define a priori the relevant state of the system as the one in 
which average demand and costs are mutually consistent. 

Alternatively, dynamic process assignment models simulate the evolution of the 
system over a sequence of similar periods, days or their parts(36), and the possible 
convergence of the system to a stable condition. For this reason, dynamic process 
models are also known as "non-equilibrium" models. As was noted in Chapter 1, 
this type of dynamic is known as inter-period or day-to-day dynamics. Dynamic 
process models are based on (non-linear) dynamic systems theory or on stochastic 
processes theory, according to whether the state of the system is described by 
deterministic or random variables. 

Dynamic process models, which are a sector of growing research interest, can be 
seen as a generalization of equilibrium models since they simulate the convergence 
of the supply-demand system towards possibly different equilibrium states and the 
transient states visited due to modifications of supply and/or demand. Furthermore, 
under some rather mild assumptions, equilibrium configurations of the system 
described in previous sections can be modeled as attractors of the system, i.e. states 
in which the evolution of the system stops. Finally, the dynamic approach allows 
analysis of the stability of equilibrium configurations and provides a complete 
statistical description of the system's evolution. 

In general, the specification of a dynamic process model requires a more detailed 
simulation of users' behavior and in particular the explicit modeling of two 
phenomena (Fig. 5.8.1), which are not relevant in the equilibrium approach: 

the users' choice updating behavior, i.e. how present choices are influenced by 
the choice made on previous days, including phenomena such as habit (choice 
updating model); 
the users' learning and forecasting mechanisms, i.e. how experience and the 
transport cost information history influence present choices, including 
phenomena such as memory and information spreading (utility updating model). 
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5.8.1. Definitions, assumptions and basic equations 
This section presents the basic relationships defining a dynamic process assignment 
model. For the sake of clarity, rigid demand single-mode single-class(37) assignment 
is considered. It is also assumed that path choice behavior is probabilistic and fully 
pre-trip. Some of the variables presented in Section S.2 should be redefined in order 
to associate them with the evolution of the system over a sequence of reference 
periods (inter-period or day-to-day dynamics). Let 

be the generic reference period, assumed for the sake of simplicity as the day; 
Llod be the link path incidence matrix for the pair od, assumed to be independent of 

the day; 
LI be the total link path incidence matrix; 
hoJ be the odvector of the path flows on day t; 
h' be the total vector of the path flows on day t; 
/' be the vector of the link flows on day t; 
Tn' be the vector ofn-th link performance attributes on day t; 
c' be the vector of (average) link costs on day t; 
g oj be the od vector of (average) path costs on day t; 
g be the total vector of the (average) path costs on day t. 

5.8.1.1. Supply model 

Supply is simulated by applying the relations (S.2.1-3) to costs and flows on day t. 
Ignoring non-additive path costs for simplicity, go!"4 = 0 , it follows that: 

I' = I.odLiodhoJ 
/' = Llh' 

(S.8.1a) 
(S.8.1b) 

(S.8.2) 

(S.8.3a) 
(S.8.3b) 

Combining equations (5.8.1-3), the following relation between path costs, g', and 
the path flows, hi, on day t is obtained: 

go/ = LIol c(I.odLiodhoJ) \;fod 
g' = LIT c(Llh') 

(S.8.4a) 
(S.8.4b) 

Equations (5.8.4) define the supply model corresponding to day t. It is readily 
apparent that the relation (5.8.4) is analogous to (S.2.4) defining the supply model in 
the static case. 
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5.8.1.2. Demand model 

The simulation of day-to-day dynamic path choice behavior requires extending the 
static demand model relations (S.2.5-7). In particular, the relationships between the 
costs on different days and the attributes influencing the users' choices, as well as 
the choice updating mechanisms on subsequent days, must be made explicit. Let 

d 

be the demand flow for the users of the pair ad, assumed to be independent 
of the day for the sake of simplicity (consistent with the rigid demand 
hypothesis); 
be the demand vector, whose components are the demand values dod for 
the each O-D pair; 
be the vector systematic path utilities forecasted on day t by the users of 
the pair ad; 
be the total vector of systematic path utilities forecast on day t. 

The utility updating model simulates the way in which perceived utilities on day 
t are influenced by utilities and costs on previous days (and possibly by others 
sources of information). In principle, for disaggregate assignment models, the 
updating of individual user utilities can be modelled expressing the dependence of 
perceived utilities for all paths k on day I, U/ I, on previous the perceived utilities on 
previous days and actual costs. This can be expressed symbolically as 

U i .. 1 - U(U i.J-I U i.I-2 1-1 1-2 
od - od od .. , god ,god .... .) 

This model, however, is not applicable to aggregate assignment. Furthermore, it 
would be complex to specify choice models based on random utility theory given 
the serial correlation of the day I random residuals on those of previous days. The 
models proposed in the literature are special cases; they assume that utility updating 
is carried out on average (systematic) utilities through a function known as a filter, 
V O. The filter is a generalization of systematic utility functions defined in the static 
case by the relation (S.2.S): 

V I V (V I-I I-I V 1-2 1-2 )">-1 d 
od = od od, god , od ,god ,... va 

d = V(VI-I I-I VI-2 1-2 ) " ,g, ,g, .,. 

For the sake of simplicity of in the following, it is assumed that expected (or 
predicted) average utilities on day t depend only on the actual costs, gl-I, and on the 
expected utilities, V-I, on the previous day, 1-1: 

(5.8.Sa) 
(5.8_5b) 
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Note that under this assumption, the actual costs, go/2, on the days previous to t-l, 
still influence the choice behavior on day t since they influence the expected utility 
VI-Ion the previous day t-I_ 

A simple example of a utility updating model is defined by an exponential filter 
in which the expected utility on day t is expressed by a convex combination of the 
expected utility on day t-I, v-I, and the opposite of the actual path costs on day t-I, 
-i-I, as defined by the supply model (5.8.4). Relation (5.8.5) becomes: 

Vod (5.8.5c) 
where: 

fJE ]0, 1] is the average weight attributed by the users to the actual costs on day t-l; if 
fJ = 1 the expected utility is equal to the negative actual cost on day t-l, and the 
costs on previous days do not influence users' behavior. This parameter is 
usually assumed to be independent of the day and may be different for different 
classes of users. 

Given the linear relationship between link and (additive) path costs, the 
exponential filter can be applied also to link costs: 

where Xl is the vector of expected link costs on day t. In this case, the expected path 
utilities on day t are given by(38): 

Vol = - .t1ol Xl 

v = _.t1T Xl 

The choices updating model simulates the way in which day t choices are 
influenced by the choices made on previous days. The most general approach can be 
expressed by a square matrix RI, known as a conditional choice matrix, which has a 
number ofrows and columns equal to the number of paths. The elements rk./E[O,l] 
are the conditional path choice fractions, i.e. the fraction of users choosing the path k 
on day t given the pathj chosen on day t-l. Since rk.j= ° if the paths k andj do not 
connect the same pair od, the following holds: r.kElod rk./ = 1 Vj E1od. 

The path flow vector on day t, hI, can therefore be expressed as the product of 
the conditional choice matrix, RI, and the path flow vector on the previous day t-l, 
hI-I: 

h/ = r.jElod rk./ htl VkE10d Vod 
hol = R"l hodl-I Vod 

hl= Rlhl-I 
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Note that the path flow vector on day t is feasible, h/ESh, if the path flow vector on 
the previous day is feasible, hl- I eSh, (i.e. if it is non-negative and satisfies the 
demand conservation constraint). 

The elements of the conditional choice matrix (or rather their average values), RI, 
can be simulated with a random utility model as a function of the expected utilities 
on day t (and possibly of other days and/or of other attributes not expressed here). In 
this way, a generalization of the path choice models adopted in the static case is 
obtained: 

ROdl = RoJ voj) 
RI= R(V) 

Combining the two previous relationships, a generalization of the static-case 
relation (5.2.6) is obtained: 

(5.8.6a) 
(5.8.6b) 

A simple example of a choice updating model for the simulation of the 
conditional choice matrix is the exponential filter model. This model assumes that 
each day some users repeat the choices made the previous day, while the others 
reconsider (though do not necessarily change) their choices with a probability 
independent of the choice made on the previous day: 

where: 

p/E]O,I] 

aE]O,I] 

rk//=ap/+(l-a) 
I I \-I' k . 1 rkj = a Pj vI#- ,je od 

'<:fkelod '<:fod 
'<:fkelod '<:fod 

is the probability that a user reconsidering the choice made the previous 
day, t-l, chooses the path ke lod on day t; 
is the probability that a user reconsiders the choice made the previous 
day, therefore (I-a) is the probability that the previous day's choice is 
repeated; if a= 1 all the users reconsider their previous day choices; this 
parameter is usually assumed to be independent of the day(39) but may 
differ by user class. 

Under this model, it follows that: 

h I '<' I h l- I (1 )h I-I 1,<, h l- I (1 )h I-I \-Ik 1 \-I d k = '--jE/od a Pk 1 + -a k = a Pk '--jE/od '.i + -a k v e od v 0 

Since dod = ~jElodhk. it yields: 
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The path choice probability, Pk/, is usually obtained with one of the path choice 
models described in section 4.2.5, Poi = Po,AV,,J). The relation (5.8.6) therefore 
becomes (cfr. 5.2.6): 

(5.8.6c) 

By combining the two recursive equations (5.8.5) and (5.8.6), we get a 
relationship between the path flows h I on day t and paths costs g I-Ion the day t-1 
which defines the demand model corresponding to day t,: 

h i R I V (V I-I I-I)) h I-I ""'ad od = od\. od od, god od v 
hi = R(V(V- I , l-I) h l- I 

(5.8.7a) 
(5.8.7b) 

This relation is a generalization of the static case (5.2.7). If exponential filters are 
adopted to formulate utility and choice updating models, expression (5.8.7a) 
becomes: 

(5.8.7c) 

5.8.1.3. Approaches to Dynamic Process modeling 

The recursive equations (5.8.7) defining the choice model, combined with the 
recursive equations (5.8.5) for the updating of the expected utilities and the supply 
model (5.8.4) identify a dynamic process model. The state of the system on day t is 
defined by the vectors of predicted systematic utilities, Vi, and by the path flows, hi, 
describing the combined results of the utility and choice updating models as a 
function of the state on the previous day(40): 

V= V(V- I , Ll'c(Llh l- I )) 

hi = R(V) hi-I 
(5.8.8) 
(5.8.9) 

The set of feasible states S, known as state space, is defined by the vectors of 

expected path utilities, V EJ1', and the feasible path flows, hi ESh, or S = Sh X J1'. 
Given an initial state, the recursive equations (5.8.8-9) define a dynamic process 

model (Fig. 5.8.1). If the vectors of path flows, hi, and predicted utilities, V, are 
modeled as deterministic variables, a deterministic process model results, while if 
they are modeled as random variables a stochastic process model is obtained (Fig. 
5.8.2). A deterministic process model can also be interpreted as a process 
approximating the expected values of the corresponding stochastic process. 



DAYt- ) 

DAY t-l 

~:-----+-' 

DAYt- ) 
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LINK 
COSTS 

UNCONGESTED NETWORK 
ASSIGNMENT MODEL 

Fig. 5.8.1 - Schematic representation of Dynamic Process (DP) assignment models. 
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Note that the terms stochastic and deterministic have a different meaning when 
referring to the dynamic process versus the path choice models in assignment. In the 
former case, they relate to the actual representation of the system, i.e. to the 
assumption made by the analyst to represent the state variables. In the second case, 
they relate to the assumptions made in modeling path choices, i.e. the presence of a 
random residual in the utility functions, and therefore the form of path choice 
models. Equilibrium models, either deterministic or stochastic, refer to a 
"deterministic" representation of the system. 
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Fig . 5.8.2 - Graphic representation of deterministic and stochastic process models 
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5.8.2. Deterministic Process models 
Deterministic process models derive from the assumption that the path flows and 
utilities predicted on day t are represented by deterministic variables, i.e. that the 
flows and utilities coincide with their average values. The system evolution over 
time, in terms of path flows and utilities, is defined by the recursive equations 
(5.8.8-9). A model of this type allows the analysis of system convergence and, if this 
is the case, toward which subset of the state space. Recursive equations (5.8.8-9) 
define the transition function If'relating the state on the day t to the state on the 
previous day t-1: 

(5.8.10) 

According to the theory of (non-linear) dynamic systems, any proper subset 
A c S of the state space S ~ K', with a dimension strictly smaller than the dimension 
N of S, (41) is called an attractor if: 

- the system cannot evolve toward a state outside the attractor starting from a state 
inside it; 

- the attractor is properly contained in another subset B ~ S (called the basin of A), 
such that if the initial state is contained in B the final state tends to be contained 
inA; 

- A is minimal in the sense that it does not properly contain other attractors. 

In other words, if the initial state is sufficiently close to the attractor, the system 
evolves towards it and, once reached, does not leave. Note that a system may have 
several attractors, each with its own basin(42). A classification of attractors is given in 
Fig. 5.8.3 (examples are given in Fig. 5.8.4). 

TYPES OF A TTRACTOR A number of dimension of A 
,,-oints in A « N) 

FIXED POINT 
NON CAOTIC the system always occupies the 1 0 

same point 
K-PERIODIC 

Evolutions starting 
the system periodically occupies k k 0 

points 
from near states QUASI-PERIODIC remain close the system moves on a torus 00 integer 

(or a set of tori) 

CAOTIC 
A-PERIODIC non-integer the system moves in a fractal set 00 

Fig. 5.8.3 - Attractors of a deterministic dynamic process 
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Iffvced-point states (h* ,v*) (not necessarily attractors) are reached, the evolution 
of the system stops: 

that is 
(h*,v*) = IfI{h*,v*) 

This condition, combined with (5.8.8-9), leads to: 

JI* = V(JI*, LI'c(Llh*» 
h* = R(JI*) h* 

(5.8.11) 

In general, fixed-point states depend on the utility and choice updating models (and 
are different from equilibrium states). 

An example of a deterministic process is obtained by adopting exponential filter 
specifications for the utility and choice updating models presented in Section 
5.8.l.2. In this case, equation (5.8.5c) can be reformulated for all the pairs od: 

v = - f3 LIT c(LI hI-I) + (I-f3) V-I 
hI = aP(V)d+ (I-a)h l - I 

(5.8.12) 
(5.8.13) 

Similarly, the model can be expressed in terms of link flows and expected costs: 

Xl = f3 C(j"I) + (l_j3)xI-1 

I = afsuNCxl ) + (I-a}/-I 

Fixed-point states of the process defined by (5.8.12-13) are given by: 

g* = LlTc(LIh*) 
h* = P(-g*)d 

(5.8.14) 
(5.8.15) 

(5.8.16) 
(5.8.17) 

and for the process defined by (5.8.14-16) in terms of link flows and costs by: 

c* = c(f*) 
r = fsuNCc*) 

(5.8.18) 
(5.8.19) 

In this case, it can be immediately verified that the formulations in terms of path 
or link variables are equivalent. Furthermore, the fixed-point states coincide with the 
stochastic user equilibrium states defined in section 5.4, and the conditions of 
existence and uniqueness discussed still hold. Note also that the definition, 
existence, and uniqueness of fixed-points do not depend on the &arameters a and 13, 
which specify the choice and utility updating filters respectively 43). 

Examples of the evolution of the transportation system depicted in Fig. 5.4.2 for 
different values of the parameters are given in Fig. 5.8.4. It should be noted that for 
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some values of the parameters, link flows converge to a fixed-point state which 
coincides with the SUE configuration. 

By applying the theory of non-linear dynamic systems, it is possible to define 
conditions ensuring that a fixed-point state is (locally) stable, i.e. it has an attraction 
basin which is (a subset of) the state space S. In particular, if the transition function 
of any deterministic process model (hI, V) = If/Ch l - I, V-I) is continuous and 
differentiable with continuous Jacobian, Jac[lf/Ch l- I , V-I)], a fixed point (h*, JI*) is 
stable if all the eigenvalues(44) of the Jacobian at the fixed-point Jac[ If/Ch*, JI*)] have 
absolute values less than one. The transition function Jacobian, and therefore its 
eigenvalues, depend on the utility and choice updating models, which therefore 
influence the stability of a fixed-point state. 

To facilitate the comparison with equilibrium, the following analysis considers 
the model formulated in terms of link flows and costs (5.8.14-15). Assume also that 
the transition function (j, cl ) = W-I, Cl- I) is continuous and differentiable with a 
continuous Jacobian Jac[W- I , Cl- I)]. In this case, the dynamic system is defined by 
2nL variables where nL is the number of links and the Jacobian has 2n eigenvalues, 
two for each link I, denoted by AI and An+l. Under these assumptions, a fixed-point 
state defined by (5.8.18-19) is stable if all the eigenvalues of the Jacobian calculated 
at the fixed-point Jac[ IfJ(f* ,c*)] have absolute values less than one: 

IAJ*I<1 VI 
I An+I*1 < 1 VI 

This condition constrains the eigenvalues to the interior of a unit-radius circle on 
the complex plane (Argand plane). 

The Jacobian Jac[ IfJif, c)] of the transition function (x, y) = IfJif, c) for the 
model (5.8.14-15) at the point if, c) is given by: 

Jac[ IfJif,c)) = ~:.....c:..<'-=---1f---~---I 

where: 

J c = Jac[c(f)] is the Jacobian of the cost functions at point! if it is definite positive 
the cost functions are strictly increasing; 

Jr = Jac[f~uM:c)] = Li di Lli Jac[p;{-Ll/c)]LI/is the Jacobian of the stochastic 
uncongested network assignment function, it is symmetric and semi-definite 
negative under the assumptions that guarantee the monotonicity of the SUN 
assignment function (see Section 5.3.1). 

The elements of the Jacobian Jac[ IfJif, c)] depend on the parameters a and fl, 
which specify the choice and utility updating filters respectively. Therefore the 
values of these parameters affect the stability of a fixed-point. 
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Fig. 5.8.4 Evolution of a deterministic process model for the system in Fig. 5.4.2. (Parameter B 
has a different value for highlighting the evolution over time). 
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In the special case in which a=/3=l, the Jacobian becomes: 

Jae[ rp(f,e)] = [I[!J 

and the eigenvalues are given by: 

[ill2J 

Aj= Y.i VI 
An+1 = 0 VI 
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where Y.i is one of the nL eigenvalues of the matrix Jpe . 
The elements(45) of the matrix Jpe, and therefore its eigenvalues, depend on the 

parameters of the system such as the demand flows, the link capacities, the random 
residuals variance, etc. 

In the more general case, if a E [0,1] and/or /3E [0,1], for each of the nL 
eigenvalues of the matrix Jpe, two eigenvalues AI and AnL+1 of the Jacobian 
Jae[rp(f, e)] can be defined as a function of the parameters a and /3. The stability 
condition can be rewritten as a function of the nL eigenvalues Yt; it is now 
represented by an ellipse on the complex plane which must contain the eigenvalues 
Yf. In other words, if the system parameters are such that the points representing the 
nL eigenvalues Yt are contained in the ellipse, the fixed-point, or the system's 
equilibrium state, is stable. This ellipse, whose semi-axes depend only on the 
parameters a and /3, is symmetrical with respect to the real axis and intersects it at 
two points (see Fig. 5.8.5). 

In general, an increase in demand flows and/or a decrease in link capacities 
and/or a reduction in the variance of the random residuals tends to move the 
eigenvalues Yt outside the stability region, while an increase in the parameters a and 
/3 tends to reduce the area of the region. Note that whatever the values of a and /3, 
the ellipse is to the left of the point on the real axis with coordinates YR = 1, Yt = O. 
Therefore, if all the eigenvalues Yt have a real part less than one, YR.I < 1, there are 
always sufficiently small values of the parameters a and /3 defining an ellipse 
sufficiently large to include all the eigenvalues Yf. In this case, the stability of the 
fixed-point would be ensured. If the parameters a and /3 do not satisfy this condition, 
the fixed point is not stable even if it is unique, and according to results of the theory 
of non-linear dynamic systems, the system may converge towards quasi-periodic or 
a-periodic attractors. Vice versa, if some eigenvalues have a real part greater than 
one, YR.k;:: 1, the fixed-point is not stable for any values of a and /3; yet there may be 
other (stable) fixed points. 

In the system described in Fig. 5.8.4, for example, (for given path choice and the 
supply models), as the parameters a and /3 increase, the system evolves towards 
attractors other than the fixed point, which becomes unstable. This effect is shown in 
Fig. 5.8.5. 
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Fig. S.B.S - Stability regions of a fixed point state for a=~. 

It is interesting to analyze the relationship between the above considerations and 
the stochastic equilibrium uniqueness conditions described in section 5.4.1. In 
particular, it was shown that, under the assumption that the SUN assignment 
function is monotone with symmetric negative semi-definite Jacobian as described 
in section 5.3.1, if the cost functions have a positive definite Jacobian Jc (strictly 
increasing) the stochastic equilibrium is unique. In this case, it can be shown that the 
eigenvalues n of the matrix Jpc always have a non-positive real part, YR,I S; O. In 
accordance with the previous considerations, this excludes the possibility of mUltiple 
fixed-point states, and therefore of multiple equilibria. Also, it is interesting to note 
that if the Jacobian of cost functions is symmetric, each of the eigenvalues n of the 
matrix Jpc is real (and non-positive). 

A deterministic process model can also be used as an algorithm to find fixed­
point attractors, i.e. stochastic equilibrium states. In this case, the model can be 
defined as a dynamic process algorithm, the parameters a and P have no behavioral 
interpretation and are chosen to guarantee the convergence of the algorithm (Le. the 
stability of the fixed pointi46). 
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5.8.3. Stochastic Process models 
Stochastic process models derive from the assumption that path flows (and predicted 
utilities) on day t, (Vi, h\ are random vectors. These models allow one to obtain a 
statistical description of the system states and to model explicitly some relevant 
phenomena such as the randomness of link and path performance. The state of the 
system on the day t, (Vi, h\ can therefore be interpreted as a realization of random 
vectors, (W, X). Expressions (5.8.8) and (5.8.9) define the expected values of W 
and X as a function of the state (V-I, hi-I) on the previous day t-l and the vector of 
actual path costs expressed by the random vector GI- I : 

v~W 
with E[W] = V(V- I , GI- I ) 

(5.8.20) 

hi ~It 
with E[Jt] = R(V) hi-I 

(5.8.21) 

Equation (5.8.20) expresses the randomness of the average perceived utilities 
across the users on the day t, V. The expected value E[ W] depends on the actual 
value of the average path cost on day t-l. The randomness of path costs GI- I might 
be due to several factors. One of the most important is the randomness of the link 
costs which, for a given value of hi-I, might take on values Cl- I different from the 
average values, c(L1 h I-I). In this case, the link costs Cl- I can be modeled as the 
realization of a random vector C, and path costs are a linear transformation of C: 

Cl-I~C-I 

with E[C-l ] = c(L1h I-I) 
i-I ~ GI-I=L1T c- l 

E[GI-l ] =L1T c(L1h I-I) 

The randomness of the path flow vector, hi, is dependent on the unpredictability 
of the users' path choices, whose average value is expressed by the demand model. 
It is usually assumed that the path flow vector on the day t, HoJ, for each pair od is a 
multinomial random variable; user choices are independent of one another and are 
made with probabilities given by the demand model R(V) as a function of the 
average perceived utilities across users. 

The stochastic process (5.8.20-21) is a discrete time, homogeneous Markov 
process. It is Markovian since the state on the day t depends only on the state on the 
previous day t-l. It is homogeneous since the cost and network assignment functions 
and the cost and choice adjustment parameters are independent of the day. It is 
discrete time since the evolution over time is described by the (integer) index of the 
day. 

Given an initial state (hO, JI'), a model of this kind theoretically allows the 
determination for each day t the probability that the system is in state (hI, VI) 
belonging to the state space. The probability function, ¢/(h, V), is recursively 
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defined as the probability that the system is in state (hi, V) on day t conditional on 
being in state on the previous day t-l, (h'-\ V-I): 

Under the assumptions, path flows, h', are a realization of a discrete random 
vector, while the predicted utilities, V, are generally a realization of a continuous 
random vector. Thus the function ¢'(h,V) must be considered a joint probability 
function with respect to h, and a joint probability density function with respect to V. 
In applications to transportation systems, it is often interesting to know the 
probabilities of path flows (and therefore of link flows). The marginal probability 
function ,,'(h) of the path flows h on day t is given by: 

,,'(h) = Pr[h' = h / h,-I, V-I] = Iv ¢ '(h, V) dV 

According to the theory of stochastic processes, an ergodic set is a minimal 
subset of the state space such that there is a null probability that the system 
transitions to a state outside it starting from a state inside it. An ergodic set is 
minimal in the sense that it does not properly contain ergodic subsets. To each 
ergodic set is associated a probability function expressing the probability that the 
system is in a state belonging to the set as t ~ co, known as stationary probability 
distribution: 

;r*(h) = limHOO ,,'(h) 

Only the states belonging to the ergodic set have a non-null stationary 
probability. A stochastic process is called stationary or ergodic if it has respectively 
one and only one stationary probability distribution ;r*(h). For the specific case 
discussed here, this stationary probability distribution is ;r*(h,10(47). 

A stochastic ergodic process is said to be regular if its probability distribution 
converges towards the unique stationary probability distribution, regardless of the 
initial state (or its distribution). In this case, a unique (stationary) probability 
distribution of the system states can be associated with each system specification 
independently of the initial state. The stationary probabilities ;r*(h), one for each 
vector h belonging to the ergotic set, can be interpreted as the probabilities of 
observing the system in any period of observation t sufficiently far from the initial 
one in the state corresponding to the path flows vector h. All the relevant statistics 
(average, variances, etc.) can be calculated with a single (pseudo-) realization of the 
process, simulated with Monte Carlo techniques. The transient states visited from a 
given initial state toward a new stationary distribution following modifications in 
supply and/or demand can also be analyzed. The probability distribution of each day 
can be estimated by averaging several (pseudo-) realizations of the process for the 
same "transient day" t. 

A special case, often adopted in applications(48), is obtained if the randomness of 
the vector of average predicted utilities is ignored, i.e. V = W. This is equivalent to 
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assuming that the costs realized on day t coincide with the average values given by 
the cost functions: 

(5.8.22) 

h' f-It 
with E[It] = R(V) h'-I 

(5.8.23) 

In this case, the marginal probability ;r/(h), i.e. the probability on day t, of path 
flows h is given by: 

T/(h) = Pr[h' = h / h'-I, V-I] = Pr[h' = h, V= V(Lf c(LI h I-I), V-I) / h'-I, V-I] 

(An example ofthe more complicated case of a stochastic process with random costs 
and thus random expected utilities will be presented in section 6.5.2). 

It can be demonstrated that the regularity of stochastic processes defined by 
equations (5.8.22-23) is ensured given the rather general assumptions that the 
network is connected and that the cost functions and the SUN assignment function 
are continous. In this case, therefore, a unique probability distribution of path and 
link flows can be associated with each demand and supply specification, 
independently of the initial state, and all relevant statistics can be calculated with a 
single (pseudo-) realization of the process, simulated by Monte Carlo techniques. 

According to the law of large numbers, as demand flows increase the evolution 
of the system described by a stochastic process better approximates the evolution of 
the corresponding deterministic process model. In this case, the expected values of 
the path and link flows resulting from a stochastic process model can be 
approximated well by a corresponding deterministic process, simulating the 
evolution of average values (process of the averages). From this point of view, 
stochastic process models seem more suitable for disaggregate, detailed analyses, 
while deterministic processes are best suited for the simulation of average evolution 
at an aggregate level and equilibrium stability analyses. 

An example of a stochastic process can be obtained by applying exponential 
filters for the specification of utility and choice updating models: 

V = -f3L1T c(Llh I-I) + (l-,8)V-1 

h' f- It 
with E[It] = aP(V)d+ (l-a)h,-1 

Similarly, in terms of predicted link flows and costs, we have: 

X' = f3c(/-I) + (l_j3)x,-1 

/f-F 
with E[F] = afsutv(x') + (I-aV-I 

(5.8.24) 
(5.8.25) 

(5.8.26) 
(5.8.27) 
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Another particular stochastic process model is a renewal process. These 
processes are such that the state on day t is a realization of a probability distribution 
independent from previous days. In this case, the Markovian property of the system 
expressed by eqns. 5.8.20 and 5.8.21 does not hold. This condition can be formally 
expressed as: 

¢'(h, V) = Pr[h' = h, V = V / hI-I, V-I] = Pr[h' = h, V = V] 

If the joint probability function ¢'(h, V) is constant for each t, the renewal 
process is stationary. Under these assumptions, renewal process models can simulate 
systems for which the expected (predicted) utilities of users are independent of the 
actual costs incurred on previous days (e.g. based on long-term averages or on 
uncongested values) and there are no habit effects (e.g. a = I in models 5.8.25 and 
5.8.27). An example of a renewal process model in the case of a stochastic supply 
model with random costs can be expressed by the following equations: 

V = W (MVN variable) 
with E[W] = -Le-Co = - go 

hi {-It (multinomial variable) 
with E[It] = P(V)d 

A renewal process model will be specified for simulating within-day dynamic 
irregular transit systems in section 6.5.2. 

Finally, it should be noted that the regularity of a stochastic process is a weaker 
property of the existence, uniqueness and stability of a fixed-point of the 
corresponding deterministic process. In other words, the stability of a system, in the 
engineering sense, requires not only the existence of a unique stationary distribution 
towards which the system state distribution converges, but also that the stationary 
distribution be unimodal, that is closely spread with respect to a central point. 

5.9. Synthesis and application issues of assignment 
models. 
The assignment models described in the previous sections are summarized, using the 
notation introduced in this chapter, in Fig. 5.9.1 where different models for User 
Equilibrium assignment are compared, and in Fig. 5.9.2 where "basic" equilibrium 
models are compared with dynamic process assignment models. 

In general, in the case of uncongested networks and rigid demand the assignment 
model defines a relationship between link flows (output) and link costs and demand 
flows (inputs). This relationship is defined by UN assignment maps. In the case of 
congested networks and/or elastic demand, the assignment relationship includes link 
cost functions and/or demand functions (inputs); this relationship is defined 
implicitly by equilibrium assignment or dynamic process models. Solution 
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algorithms for several models are described in Chapter 7, while the methods for 
estimating the demand flows and the specification and calibration of the demand 
functions are described in Chapter 8. Cost functions described in Chapter 2 can be 
calibrated with simple regression analyses on experimental observations when the 
models reported in the literature are not satisfactory. 

The wide range of assignment models described can be used in several contexts 
and for different classes of application, as will be briefly discussed in the following 
subsections. The reader should recall that all of the models have been formulated 
under the assumption of within-day stationarity and therefore implicitly without 
major over-saturation phenomena that cannot be analyzed in a static context(49}. For 
this reason, if an assignment model predicts link flows above link capacities for 
some links, the results of the model can be used as indicators of the critical points of 
the network, but should no longer be interpreted as estimations of the state of the 
system. In this case, within-day dynamic assignment models described the following 
in Chapter 6 should be adopted. 

Assignment models as estimators of the present state (monitoring) of the 
transportation system. In this application, the assignment model receives as inputs 
the present network and O-D demand flows in order to estimate several quantities 
which a would be too costly and complicated to measure directly. Typically the 
relevant variables are the flows using different supply elements (road sections, 
intersection turning movements, lines of public transport services, motorway 
barriers) represented by links in the network model, the congestion levels of these 
elements (usually expressed by flow/capacity ratios or load factors), the 
performance attributes (travel times, monetary costs etc.) comprising the generalized 
cost of links and paths (used as inputs to demand models), and external impacts 
(emission and concentration of air pollutants, sound noise pressure, fuel 
consumption, traffic revenues, etc). In fact, although costs and impacts have been 
introduced into supply models, in the case of congested networks they depend on 
link flows and therefore cannot be calculated without the application of an 
assignment model and its estimated flows. The results of assignment models can 
complement direct surveys such as flow counts on some links or travel-times 
measure on some paths, since the latter do not usually cover all the elements of the 
system. The network variables listed can be used both in project design 
(identification of critical points, analyses of supply inefficiencies, levels of 
accessibility, etc.) and in monitoring the effects of planned actions, as will be seen in 
Chapter 10. For this type of application, rigid (present) demand assignment models 
can be used. 

Assignment models for simulating the effects of modifications to the transportation 
system. In this application, assignment models are used to estimate the changes in 
relevant network variables due to changes in supply and/or demand. As will be seen 
in Chapter 10, this is the typical application of simulation models as "design tools". 
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The relevant effects of different actions, or projects, are simulated in order to define 
the technical elements of the project (design) and/or compare alternative hypotheses 
(evaluation). In this application, the supply and demand models (or the input 
variables to demand functions) will correspond to the projects and to the future 
demand scenarios (see section 8.8). If the project network is congested, elastic 
demand models should be adopted at least for the demand dimensions affected by 
the planned actions. Different assignment models can be adopted for the design and 
evaluation phases. Computationally efficient models such as DUE are often used for 
design, either through supply design models described in Chapter 9 or, through 
successive trials since several runs are usually required at this stage. Assignment 
models used to provide measures that allow the comparison of alternative projects 
should be able to simulate flows and other indicators as accurately as possible, even 
if at the cost of a greater computation effort. 

Assignment models for the estimation of transportation demand. Assignment models 
are used more and more often for the estimation ofO-D demand flows and/or for the 
calibration of demand models. This type of application, which will be dealt with at 
length in sections 8.5 and 8.6, "inverts" the usual role of assignment models. When 
the assignment models are used in this way, they provide relationships connecting 
present (unknown) O-D flows to the traffic flows measured on some network links, 
rather than predicting traffic flows from known demand flows. For theoretical 
reasons regarding the uniqueness of path choice probabilities and flows, it is 
preferable to use probabilistic (stochastic) assignment models rather than 
deterministic ones for this purpose. 

Interpretation of results and calibration. Regardless of the application, assignment 
models should be seen as a simplified representations of real, complex phenomena. 
Thus, the link flows resulting from any assignment model(50) should be correctly 
indicated with 11M stressing the fact that they are only estimates of the expected 
value of the flows/occurring in the real transportation system. The relation between 
actual flows and the flows resulting from an assignment model can be formally 
expressed as: 

/== 11M + ilM == ~IM d + i IM (5.9.1) 

The matrix rIM represents the path choice factions resulting from the assignment 
model and it generally differs from the matrix P of the "actual" fractions. The vector 
i IM represents the deviations between actual flows and the flows resulting from the 
assignment of the demand d. These residuals derive from the simplifYing 
assumptions adopted in the system definition (delimitation of study area and zoning) 
and in the specification of supply, path choice, and supply-demand interaction 
models as well as in the estimations of the average demand flow d. Different 
assumptions will produce different flows 11M and residuals i IM. This point will be 
dealt with in greater detail in Section 8.5. For now, note that even if the actual 
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average demand flows were assigned to the network, all other error sources would 
produce assignment errors EfIM. 

Assignment models, like all of the mathematical models described in this 
volume, should be calibrated. The specification of the model and its parameters 
should reproduce as closely as possible the available data on the state of the system, 
i.e. minimize the assignment errors EfIM in expression (5.9.1). However assignment 
models are affected by several assumptions and parameters since they include all of 
the assumptions and the parameters of demand and supply models described in this 
volume. For this reason, a calibration procedure formally derived from the theory of 
statistical interference has not been proposed. Some partial procedures aimed at 
selecting assumptions and parameters specific to the assignment model have been 
applied in a limited number of cases. These usually assume that the supply model 
and demand functions or O-D flows have been calibrated separately, and focus on 
the choice of the supply-demand interaction model and the specification and 
calibration of path choice models. 

With respect to the choice of the supply-demand interaction model, some 
experimental evidence indicates that the more realistic the underlying assumptions, 
the smaller the variance of the deviations EfIM. For example, for given network and 
demand flows, both stochastic and deterministic equilibrium models estimate link 
flows closer to the observed ones than those resulting from uncongested network 
assignment models, probabilistic models are more accurate than deterministic ones 
for lightly congested or non-uniformly congested networks, and hyperpath 
assignment models are more precise than path based assignment models for high­
frequency and low-regularity public transport systems. Fig. 5.9.4 reports some 
experimental curves showing the relative standard deviation, Cv, of the assignment 
errors, EfIM, obtained with different assignment models for an urban road network 
against the counted flows. Relative standard deviations were obtained as the ratios 
between the standard deviation of the errors between computed and assigned flows 
in a given range of measured flows and the average flow in the range. Unfortunately, 
despite the very large number of applications to real transportation systems, the 
literature proposes few systematic comparative analyses of different assignment 
models based on large data bases, so that general conclusions on the relative merits 
of the different models in different application contexts cannot be reached. 

Specification and calibration of path choice models can be carried out using 
disaggregate and/or aggregate data. Disaggregate specification and calibration 
consists of the selection of the functional form and the attributes (specification) and 
the statistical estimation of the coefficients (calibration) on the basis of the paths 
chosen by a random sample of users. Methodologies for disaggregate specification 
and calibration of path choice models are completely analogous to those used for 
any random utility model and will be described in Chapter 8. In the case of path 
choice models, however, disaggregate data are not easy to collect and analyze(51). 
Thus aggregate specification and calibration techniques are often adopted. These 
techniques specify and calibrate path choice models by minimizing a measure of 
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distance, usually the quadratic errors, between simulated flows, 11M, and the flows 
counted on some links. Aggregate calibration of path choice models will be 
considered again more formally in section 8.6. 
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S.A. Optimization models for stochastic assignment 
This appendix describes some optimization models for stochastic assignment, which 
are equivalent, under some limited assumptions, to the fixed-point models described 
in the previous sections. Optimization models can also be compared with the 
deterministic assignment optimization models described earlier. Equivalent 
optimization models can be used to specificy mathematical programming algorithms 
for the calculation of stochastic assignment link flows. In some special cases, these 
algorithms can be reduced to the fixed-point algorithms described in Chapter 7 (e.g. 
the MSA-F A for stochastic equilibrium), but more generally they are still an open 
research area. Furthermore, equivalent optimization models for stochastic 
assignment can be included in bi-level optimization formulations of demand 
estimation using traffic counts and supply design models. For simplicity of 
exposition, non-additive path costs are assumed equal to zero. 

5.A.1. Stochastic Uncongested Network assignment 
For the Logit path choice model with parameter () independent of link costs, it can 
be demonstrated that SUN link and path flows are solutions of the following 
optimization model: 

if SUN, hSUN) = argmin I-IClh + ()I-khk(ln hk-I) 
f= LJh, hE Sh 

(5.A.la) 

Note that path flows appear explicitly as variables. In terms of the path flows alone, 
since I-Iclh = I-khkgk, it follows that: 

(hSUN) = argmin I-k hk gk + () I-k hk (In hk -I) 
hE Sh 

(5.A.lb) 

It can easily be recognized that the objective functions in models (5.A.la) and 
(5.A.lb) are convex ifpath flows are non-negative. 

In both models (5.A.la) and (5.A.lb), the second term of the objective function 
goes to zero when the parameter () goes to zero, i.e. when the variance of path choice 
random residuals is small. In this case, the path choice model becomes deterministic 
and both models (5.A.la) and (5.A.lb) coincide with the optimization model 
described in Section 5.3.2 for the DUN assignment. 

5.A.2. Stochastic User Equilibrium assignment 
Similarly to the previous model, for a Logit path choice model with parameter () 
independent of link costs, it is possible to demonstrate that stochastic equilibrium 
link and path flows are solutions of the following optimization model, if cost 
functions have a symmetric Jacobian: 
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(1*, h*) = argmin fl C(y)T dy + ()L.khk(ln hk-I) 

f=.&I, hE Sh 

(5.A.2a) 

Note that path flows appear explicitly as variables. Since f = .&I, model (5.A.2a) can 
be expressed in terms of path flows alone: 

h* = argmin foLlh C(y)T dy + ()L.khk(/nhk-I) 

hE Sh 

(5.A.2b) 

The objective functions of models (5.A.2a) and (5.4.2b) are (strictly) convex if 
the path flows are non-negative and the cost functions are (strictly) increasing. 

Considering the relationship with the corresponding DUE model, the second 
term of (5.A.2a) and (5.A.2b) goes to zero as the parameter () goes to infinity, i.e. as 
the variance of random residuals gets smaller. In this case, the path choice model 
becomes deterministic and model (5.A.2a) coincides with the optimization model 
described in Section 5.4.2 for DUE with symmetric Jacobian cost functions. Fig. 
5.A.I illustrates the equivalent optimization model for SUE Logit assignment for a 
simple two-link network. 

In the case of a general additive path choice model and cost functions with a 
symmetric Jacobian, it can be shown that equilibrium link flows are a solution of the 
following constrained optimization model: 

(5.A.3) 

where Sod = sol) is the path choice EMPU for the pair ad. Unlike the equivalent 

optimization model for DUE assignment network, constraints f E Stare not needed 
since they can be proven to be satisfied by all solutions of the model. 
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Reference Notes 

The assignment problem has been the subject of extensive research for several 
decades. Exhaustive analyses of the state of the art of the models (and the 
algorithms) for uncongested network and user equilibrium assignment are reported 
in the books by Sheffi (1985), Thomas (1991) and Patriksson (1994), the latter being 
mainly devoted to deterministic assignment models. For deterministic assignment 
models, the article by Florian and Hearn (1995) can also be referred to while the 
state of the art for stochastic assignment models is described in Cantarella and 
Cascetta (1998). 

However the approach to assignment models, or more properly to supply­
demand interaction on transportation networks, proposed in this chapter is original. 
This approach allows through a minimal set of hypotheses and equations to specify 
consistently uncongested network assignment models as well as fixed-point models 
and variational inequality models for user equilibrium on congested networks, 
usually obtained independently from each other. Also the proposed classification of 
assignment models is an original contribution of this book. 

Deterministic User Equilibrium models with separable cost functions and 
Systems Optimum models were formulated with optimization models analogous to 
those described in the mid-50s in the pioneering work of Beckman, Mc Guire and 
Winsten (1956), based from the enunciation of Wardrop (1952) principles. But it 
was not until the 1970s, with the increasing availability of computing power, that 
assignment problem received continuous theoretical attention and a number of 
applications. 

The extension of the optimization model to symmetric deterministic equilibrium 
and the formulation of asymmetric deterministic equilibrium with variational 
irrequality models, together with existence and uniqueness conditions, are dealt with 
in the work of Dafermos (1971), (1972), (1980), (1982) and Smith (1979). These 
articles also describe extensions of DUE models to elastic demand and multi-class 
assignment. More complex optimization models proposed by various authors for 
asymmetric deterministic user equilibrium assignment are described and compared 
by Hearn, Lawphongpanich and Nguyen (1984). Bernstein D. and Smith T. E. 
(1994) analysed deterministic equilibrium with lower semi continuous link cost-flow 
functions. 

Extension of deterministic assignment to pre-trip/en-route path choice behavior 
for transit networks has been proposed Nguyen and Pallottino (1986) and Spiess and 
Florian (1989). Extensions of DUE assignment models to transit networks and the 
analysis of its theoretical properties can be found in Nguyen and Pallottino (1988) 
amd Wu, Florian and Marcotte (1994). Recently, Bouzaiene-Ayari B., Gendreau M., 
Nguyen S. (1995) and (1997) analysed several approaches to model user behavior at 
a bus stop within assignment models, including congested waiting times. 

Stochastic User Equilibrium (SUE) models were introduced by Daganzo and 
Sheffi (1977). Optimization models for symmetric SUE were proposed by Fisk 
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(1980) in the case of the Logit path choice and by Daganzo and Sheffi (1982) in the 
general case. Bifulco (1993) proposed some extension to simulate parking policies. 
The extension to pre-trip/en-route path choice behavior for public transportation 
networks with a Logit-type choice model is dealt with by Nguyen, Pallottino and 
Gendreau (1993). 

Fixed-point models for SUE assignment were introduced by Daganzo (1983), 
who also analyzed elastic demand assignment (with the hyper-networks approach 
referred to in Chapter 7) and multi-class assignment. The compact notation and the 
related reformulation of the optimization problem for SUE models was first adopted 
by Cascetta (1987). Cantarella (1997) developed a general treatment with fixed­
point models of multi-modaVmulti-class elastic demand equilibrium assignment also 
for pre-trip/en-route path choice behavior, including stochastic as well as 
deterministic user equilibrium. 

An analysis of stochastic assignment models with different formulations of 
random residuals was developed by Mirchandani and Soroush (1987). Nielsen 
(1997) analysed the advantages and drawbacks of several distributions for link 
perceived costs. Cantarella and Binetti (2000) described and analysed Gammit path 
choice models within stochastic equilibrium assignment. Watling (1999) proposed a 
generalization of SUE models by expressing moments of the distribution of 
multinomially distributed path flows. 

The introduction of capacity constraints in deterministic or stochastic 
equilibrium models, studied by several authors in the context of a static approach, 
has been thoroughly analyzed by Ferrari (1997) for deterministic models. Bell 
(1995) proposed an application for a particular stochastic equilibrium model. 

A further line of research relates to equilibrium models in which an 
(uncongested) cost attribute, such as monetary cost, is distributed among the users, 
for example following the value of time distribution. These models can be 
considered an extension of multi-class assignment models to an infinite number of 
classes in the case of the time value being represented by a continuous random 
variable. Deterministic equilibrium has been specified with extension of variational 
inequality models by Leurent (1993, 1995, 1996) and by Marcotte and Zhu (1996), 
Marcotte et al. (1996), as well as by Dial (1996). The extension of stochastic 
equilibrium fixed-point models has been dealt with by Cantarella and Binetti (1998). 

In recent years dynamic process (non-equilibrium) models for the simulation of 
supply/demand interaction, have received increasing attention from the scientific 
community. Initial contributions (Daganzo and Sheffi, 1977, and Horowitz, 1984) 
analyzed particular models for the study of equilibrium stability; Cascetta (1987, 
1989) proposed stochastic process models to represent supply-demand interactions 
rather than for the analysis of equilibrium configurations. Since then stochastic and 
deterministic process models have been proposed by various authors among whom 
Davis and Nihan (1993) and Watling (1996), (1999). An extensive treatment of 
stochastic and deterministic process models, partily proposed in this chapter, can be 
found in Cantarella and Cascetta (1995). 
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Notes 

(I) The concept of equilibrium in transportation systems can be compared with the supply-demand 
equilibrium in classical economics. The analogy, however, is more formal than substantial. As seen in 
Chapter 2, transportation network cost functions give the cost variation in the use of the system in 
accordance with variations in the number of system users. Alternatively, in the economic sense, the 
supply functions relate the service quantity to be produced to the production cost and the sale price of the 
service. In a given transportation system, and therefore for a given service supply, the equilibrium 
condition defines the congruence between the demand and the functioning of the supply system, while the 
equilibrium in a market defines the congruence between the behavior of two "groups": consumers and 
producers. Furthermore, some special aspects of the transportation system, such as the "network" 
structure of the supply, make the mathematical treatment of the problem more complex. 

(2) In the following sections, the variables corresponding to a path k will usually be identified by the single 
subscript k, since an od pair is uniquely associated with each path k. 

(3) Note that the path cost is measured in units homogeneous with the utility and therefore a change of the 
measurement units of the attributes which contribute to the definition of the cost does not cause a 
variation in the value of the systematic utility. 

(4) The set Sf of feasible link flows can be also defined without explicitly considering the path flows 
through a system of linear equations and inequalities with respect to the flow on link I with destination d, 
say /1. This system expresses the non-negativity of the link flows per destination, the balance between 
entry and exit flows in each node n, and the total flow on each link I as the sum over all the destinations d 
of the flows per destination: 

where 

J!' 
FS(n) 
BS(n) 

fi = 'f.dJ!' VI 

j-dOd if n= 0 

LleBS(n)/!1 - LleF5,n) 1= 2:0 dod if n = d 

o else 

Vn,d 

V/,d 

is the link flow I with destination d; 
is the set of exit links from node n, known as the forward star from node n; 
is the set of entry links into node n, known as the backward star in node n. 

The above equations can also be expressed with respect to the flows with a common origin o. They allow 
one to compare the similarities as well as the differences with the models adopted in other engineering 
branches for hydraulic or electrical networks. 

(5) In the literature these models are sometimes referred to as "network loading" models. In this book that 
term has been used for a component of the supply model as an alternative to "network flow propagation", 
it conveys the idea of users moving on the network and inducing link "load" rather than the full demand­
supply interaction implied by assignment models. The term "network loading" is also well estabilished 
with this meaning in the context of within-day dynamic supply models. 

(6) The dependence of the flows f on link costs c alone is formally mentioned because it is with respect to 
these variables that the theoretical properties of the functionjw!N(.) will be examined. 
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(7) By using a stochastic uncongested network assignment, a positive choice probability can also be 
associated with a non-minimum cost path, equal to the probability that the path has maximum perceived 
utility (or minimum perceived cost). Because of these considerations, stochastic uncongested network 
assignment is sometimes indicated as multi-path assignment as compared to the all-or-nothing assignment 
corresponding to deterministic case. 

(8) The model (S.3.6b) can be made formally similar to the model (S.3.5) by considering a further pseudo­
link I to which is associated a further row within matrix Do given by the vector ltA and a cost 1. 

(9) Note that by using the definition (S.2. I 0) in Section S.2.3, for the feasibility set of link flows Sf an 
optimization problem is obtained which is known in the literature as linear minimum cost multi­
commodity flow. 

(10) This assumption can be justified by considering the equilibrium configuration as a state towards which 
the system evolves (see Section S.9). From this interpretation, it follows that equilibrium analysis is valid 
for the analysis of the recurrent congestion conditions of the system; in other words, for those conditions 
that are systematically brought about by a sequence of periods of reference sufficiently large to guarantee 
that the system will achieve the state of equilibrium (and remain in it for a sufficient length of time). 

(II) If the random residual variance of a path depends on cost, it could happen that as this increases, the 
corresponding increase in the variance could cause an increase in the path choice probability itself. 

(12) In the case of Logit or Probit path choice models, for which a path has a choice probability strictly 
greater than zero independent of cost, it is possible to demonstrate that the uniqueness of the equilibrium 
flows is also ensured in the case of cost functions which are not strictly monotone: 

[c(f)- cif~f if -f~ ~ 0 'Vf.f' E Sf 

(13) The link cost functions reported in Chapter 2 are all increasing with respect to link flows. 

(14) For the deterministic un congested network assignment map, it is possible to demonstrate properties 
analogous to those of the stochastic uncongested network assignment function. In particular, the 
deterministic uncongested network assignment map is semi-continuous, and the set of each link costs 
vector is non-empty, compact and convex. Furthermore, the map is non-increasing monotone with respect 
to link costs. These properties permit analysis of the existence and uniqueness of the deterministic user 
equilibrium flow configurations analogously to the analysis carried out for stochastic user equilibrium 
flows in Section 5.4.1. 

(15) In other words, if and only if the function c(f) has a symmetric Jacobian Jac[c(f)], it can be the 
gradient of a function Vz(f) = c(f), of which Jacobian Jac[c(f)] is the (symmetric) Hessian matrix 
Hess[z(f)]. 

(16) Under the same assumptions, a direct demonstration is also possible, even though more complicated, 
obtained by applying the theory of constrained optimization. Note that the equivalence conditions are 
stricter than those necessary to define the variational inequality models. 

(11) Note that by using the definition (S.2.10) in Section S.2.3, for the feasibility set of link flows Sf an 
optimization problem is obtained which is known in the literature as convex minimum cost multi­
commodity flow. 

(18) Formal models for supply design will be dealt with in section 8.4. 

(19) Results reported in the literature indicate that cost functions characterized by a stronger form of 
monotonicity exclude the occurrence of the Braess' paradox. 
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(20) Analogously to the content of previous sections, it is assumed that the users belong to a single class, or 
that they undertake trips for the same purpose and have equal hyperpath choice models. Generalization to 
multi-class assignment will be dealt with in section 5.7. 

(21) In other words, it is assumed that service congestion affects the perceived cost of on-board time, but 
not waiting time. This excludes the possibility of waiting longer because of congestion since some runs 
are not available because they are too crowded. 

(22) In the case of Logit or Probit path choice models, for which a path has a choice probability strictly 
greater than zero independent of cost, it can be demonstrated that the uniqueness of the equilibrium flows 
is also ensured in the case of cost functions which are not strictly monotone: 

[dj')- c(j'')f (j' -f') ? 0 'iff, f' E Sf 

(23) Rigid demand assignment models also occurs when demand flows are assumed to be dependent on 
path cost attributes independent of congestion, or independent of the flows, as for example null-flow or 
null-distance etc. generalized times or costs. 

(24) It is also possible to adapt rigid demand assignment models to deal with elastic demand, by expanding 
the network model with links which are appropriately defined (hyper-networks). In this way, the choice 
behavior on other dimensions can be simulated like path choice in a modified network. This approach is 
difficult to generalize and is not subject to further analysis (see also section 7.6). 

(25) A strictly monotone function is invertible, and an invertible and continuous function is strictly 
monotone (see Appendix A). 

(26) It should be noted that is is very difficult to get closed-form expressions for the inverse demand 
functions, Z = Zed), even in the case of simple demand models. This characteristic considerably limits the 
application of variational inequality models for elastic demand deterministic equilibrium (but not of 
fixed-point models). In the case of Logit-type demand models, an optimization model can be adopted as 
will be seen below. 

(27) To this end, note that both the models (5.6.6) and (5.6.7) can be expressed as a variational inequality 
defined on the set S of the function q:>(x) with respect to a vector x: q:>(X*)T (x - x*) ? 0, 'ifx E S. In 
particular, in the model (5.6.6) the vector x is defined by the path and demand flows vectors, h and d, the 
set S is defined by the product of the set of feasible path and demand flows, Sh and Sd, and the function 
q:>(x) is defined by the path costs functions and the negative of the inverse demand function, g(h) and 
-Zed). The same holds for the model (5.4.7) expressed in terms of link flows and demand flows. 

(2') Note that strict monotonicity is needed, in contrast to stochastic user equilibrium. 

(29) In the special case in which each link can be used by one mode only, and the cost on a link depends 
only on the flows of the corresponding mode, the entire network is separable into independent modal 
networks. 

(30) At the most, each segment can consist of a single user, and in this way disaggregated assignment 
models are obtained. Models of this type are at present only in the research stage. 

(31) Different classes corresponding to the same od pair may have different incidence matrices if they have 
different available path sets. 

(32) It is also possible to specify cost functions for class i depending only on the flow f; these models, 
however, are seldom adopted as they do not correspond to known congested phenomena. 
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(33) The supply model (S.7.4) can also be interpreted as an application of the general network supply 
model (S.2.4) in which each "physical link" is represented by several "network links", one for each class. 

(14) Note that the two conditions (S.7.9) and (S.7.10) coincide if two flow vectors are considered which 
differ only in terms of class flows. The same circumstance obviously occurs in the case of a single class 
of users. 

(35) More generally, note that the results of deterministic path choice models are not modified even by a 
non-linear relationship between systematic utilities and path cost, as long as this relationship is strictly 
increasing. 

(36) For the sake of simplicity, the generic reference period will be identified as a "day". Note that the 
periods need not be successive. For example, reference can be made only to weekdays or to periods of 
"fictitious" behavior updating if the aim is not to explicitly simulate the development of the system but 
only its convergence properties. 

(36) A dynamic process assignment model can also be multi-class and applied to different levels of 
aggregation by considering for each 0-0 pair homogeneous classes of users, each consisting, in the 
extreme case, of a single user (completely disaggregated assignment). 

(38) Note that the two cost update models, or systematic utility models, correspond to two assumptions 
which differ in terms of the underlying behavioral mechanism. In the case of the model (S.9.Sc), it is 
assumed that the user remembers and averages path costs on successive days while in the case of the 
model (S.9.Sd), it is assumed that memory is relative to the costs of individual links, which are put 
together later to obtain the paths values. Based on the assumptions made, the two formulations are 
equivalent, but they might not be for other costs updating models different from those described and/or in 
the presence of non-additive path costs. 

(39) In some more sophisticated formulations of the choice updating model, it is assumed that the 
parameter is substituted with a model expressing the probability of reconsidering the choices in variables 
of the socio-economic and service-level type (difference between expected values and actual values, 
information, etc.). 

(40) The adoption of different formulations for the cost and choice updating models can lead to a different 
definition of the state of the system. For example, if an average mobile filter on k previous days is 
adopted to specify the cost updating model, the state of the system on day I is defined by the path flows 
together the path costs on k previous days. 

(41) In other words, N is the number of the components of the vector that describes the state of the system. 
In the case of the model (S.9.1O.), we get 2np where np is the number of paths. 

(42) The boundary points between different attractor basins are singular points of behavior (saddle points, 
for example) which can be ignored in a first analysis in that small variations in the initial state move the 
development of the system toward the basin of an attractor. 

(41) This condition, not generally valid, can be extended to a larger class of cost (but not choice) updating 
models. 

(44) An eigenvalue of a square matrix J is a number A respecting the condition: Jm = Am, with m '" O. The 
vector m is known as an eigenvector of the matrix J corresponding to the eigenvalue A. Eigenvalues are 
the solutions of the algebraic equation IJ - A.I I = 0, equal in number to the dimensions of the matrix J. A 
real matrix can have real or complex eigenvalues (and eigenvectors) in conjugate pairs, a symmetric 
matrix can only have real eigenvalues (and eigenvectors). 
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(45) The elements of the matrix Jpc, and therefore its eigenvalues a-dimensional and the stability ofa fixed 
point is therefore not influences by the unit of measurement adopted. 

(46) For this purpose, compare the algorithm MSA-FA, described in Section 7.4.1, with the model 
(5.9.16-17), assuming: ex = lit, ~ = I. 

(47) A stochastic process can be interpreted as a deterministic process in the space (of infinite dimensions) 
of the density functions 7Z(h), whose state on day t is given by !r'Ch). In this interpretation, a, ergodic set 
is a fixed-point state of the deterministic process. The properties of stationarity, ergodicity and regularity 
correspond to the existence, uniqueness and (global) stability of this fixed-point state, which is a 
deterministic process attractor in that it is (globally) stable. 

(48) The proposed formulation could easily be extended also to consider the costs as random variables. 
Note, however, that by adopting a probabilistic path choice model a perceived utility of randomness is 
introduced which can also be attributed implicitly to the randomness of the attributes which appear in the 
systematic utility (in this case, the path costs). 

(49) On the other hand, as was noted in Section 5.4.1, the introduction of capacity constraints in static 
models is not convenient or simple to interpret, and within-day dynamic assignment models are still being 
researched (see Chaper 6). 

(SCI) Completely analogous considerations can be made in relation to the other variables resulting from the 
assignment model such as link costs, path costs and flows, performances, etc. 

(51) In reality, it is often a complex task to determine the path actually followed during a journey. Also, 
even in the case in which there is a path choice model specified and calibrated on dis aggregated data, it is 
useful to carry out an aggregated recalibration which, from a theoretical point of view, can be seen as a 
correction of the parameters to compensate for the errors of the aggregation process of dis aggregated 
models. 



6 INTRA-PERIOD (WITHIN-DAY) 
DYNAMIC MODELS* 

6.1. Introduction 
The mathematical models described in the previous chapters are based on the 
assumptions of intra-period stationariety. This is equivalent to assuming, as stated in 
Chapter 1, that all significant variables are constant, at least on average, over 
successive sub-intervals of a reference period long enough to allow the system to 
reach stationariety condition. This assumption, although acceptable for many 
applications, does not allow for the satisfactory simulation of some transportation 
systems such as heavily congested urban road networks or low frequency scheduled 
services. In the first case, some important phenomena cannot be reproduced by 
traditional intra-period static models, including demand peaks, temporary capacity 
variations, temporary over-saturation of supply elements, and formation and 
dispersion of queues. In the second case, low-frequency services (e.g. two flights per 
day) may call into question the assumption of intra-period uniform supply and 
mixed preventive-adaptive users' choice behavior introduced in the previous 
chapters. To simulate these aspects, different intra-periodal or within-day dynamic 
models have recently been developed; these models are usually referred to in the 
literature as (within-day) Dynamic Traffic Assignment (DTA) models, implying that 
dynamic assignment models require within-day dynamic demand and supply 
models. 

The variables of intra-periodal dynamic transportation systems are indexed by 
time, T, internal to the reference period. Within-day dynamic models, however, 
should not be seen simply as extensions of static models described in the previous 
chapters with the addition of a further index T. In fact, these models require a 
substantial reformulation of demand and, most importantly, supply models. This 
chapter covers extensions of static supply, demand and assignment models to the 
within-day dynamic case. In addition, it will be assumed that demand flows within 
the reference period are known and modeled as described in Chapter 4 on all 
dimensions but route and departure time. 

Intra-period dynamic models have different formulations and levels of 
complexity depending on the type of supply system involved. As seen in Chapter 2, 
transportation services and representative supply models can be divided in two main 
classes: continuous and scheduled. The first case considers services available at any 
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time and accessible from several points, such as the services offered by individual 
road modes (car, bicycle etc.). On the other hand scheduled services are available 
only at certain times and can be accessed only at certain locations (terminals, 
stations, airports etc.). As will be shown more clearly later in this chapter, 
extensions of static models to within-day dynamic models are easier for scheduled 
services since the discrete time framework allows a simpler modeling of supply and 
network flow propagation or network loading. 

In the following of this chapter, section 6.2 discusses within-day dynamic 
supply, section 6.3 within-day dynamic demand and section 6.4 supply-demand 
interaction models for continuous service (road) systems extending the results 
presented in Chapters 2 and 5. Section 6.5 describes within-day dynamic models for 
scheduled services systems. Throughout the remainder of this chapter, to simplify 
notation and analysis, a single user class and rigid origin-destination demand flows 
will be assumed. 

6.2. Supply models for continuous service systems 
Dynamic models for continuous service networks can be categorized by the 
representation of user flows: continuous or discrete (see Appendix 2.A). 

In continuous flow models, users are modeled as "particles" of a mono­
dimensional, partly compressible fluid, moving at different rates through the system. 
On the other hand, discrete flow models assume that users are discrete units; these 
can be packets, e.g. groups of vehicles sharing the same trip, or individual vehicles. 
Flows are defined as the number of user units moving in a time interval. Continuous 
flow models represent the "natural" extensions of static supply, demand and 
assignment models; on the other hand discrete flows are more consistent with the 
reality and with the computational framework. In the following, supply, demand and 
demand-supply interaction models will be described for both continuous and 
discrete flow models. 

Within-day dynamic supply models, like static models, express flows and 
performances of the system (flows on individual links, travel times, generalized 
costs, etc.) as functions of the path flows and the characteristics of the physical 
system. Although the components of a dynamic supply model are the same, the 
relationships between link and path flows and costs are no longer linear as in static 
models (see equations 5.2.3 and 5.2.1). 

Fig. 6.2.1 reproduces the general structure of a transportation supply model 
similar to that introduced in Chapter 2; the only visible difference is the dependence 
of the network flow propagation model on link performances. 
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Fig. 6.2.1 Schematic representation of within-day dynamic supply models. 
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In the first component of the supply model, the different phases of journeys on a 
continuous supply system are represented with a graph model. This model is based 
on a graph representation of relevant phases of a trip (links) and relevant positions in 
space and/or time (nodes) analogous to those introduced in Section 2.2.1. For these 
systems all concepts and notation related to graph models for continuous 
transportation services such as centroids, paths, incidence matrices etc. extend 
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directly to within-day dynamic networks. In applications two types of links are 
typically considered: running links representing movement phases, such as the 
movement along a motorway or an urban road section, and queuing or waiting links 
representing the waiting phenomena at intersections, tollbooths, etc. (see Fig. 6.2.2). 
As in static models, the same physical system can be represented with different 
levels of spatial and/or functional detail. The description of these possibilities is 
outside the scope of this section. 

The formulation of general expressions for the other components of a dynamic 
supply model depends on the basic assumptions on the flow structure, i.e. whether a 
continuous or discrete approach is followed. In analogy with static models, supply 
models will be formulated for the case of continuous-time continuous-flow first; 
successively they will be extended to the discrete case. 

L 

• 
Running link waiting link 

Fig. 6.2.2 Representation of a road intersection with running and waiting links. 

6.2.1. Continuous flow supply models 
Continuous flow models can be further classified by the representation of space. 
Space discrete (link-based) models are closer to static models: the basic variables 
influencing link performances such as densities and speeds are defined with respect 
to links. Space continuous models are, on the contrary, based on variables defined 
for single points in space. This model can be obtained from the macroscopic flow 
models with continuos flow representation, briefly described in section 2.A.I.3. The 
solution of these models however requires a discretization in time and space, as 
noted at the end of this section. The following will focus mainly on link-based 
models. 
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6.2.1.1. Variables and consistency conditions 

Variables of continuous flow link-based dynamic supply models can be classified 
into three groups: topological, flow/occupancy, time/cost variables. 

Topological variables. The topological features of a journey are modeled 
through a graph. Let 

a 
k 

be the index of a link of length La; 
be the index of a path, made up of a sequence of links d\ el2, •..•• a \ where 

eli is the i-th link of path k, nk the number of link of path k; 
be the link following a/ on path k; 
be the link preceding a/ on path k. 

Flow and occupancy variables. For analytical convenience it will be assumed 
that all the flow variables are continuous and continuously differentiable functions 
of time 't ~ O. Let 

d,/ r) be the origin-destination demand flow at time 1; i.e. the flow rate of users 
leaving zone (node) 0 at time rto zone (node) d; 

d( r) be the vector of 0-D flows at time 1; 

Space 
(path k) 

time 

Fig. 6.2.3 Path flow and trajectories in continuous flow models. 
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hk( r) be the path flow of users who start their journey at time r and follow path 
k; under the assumptions made, users are no longer discrete elements but 
fluid particles leaving on path k at a time density given by hk( r), the time­
space trajectories of the particles leaving at each point in time can be 
traced along the links making up the path. The number of users leaving on 
path k in the infinitesimal interval (1; r+dr) is equal to hk( r)dr (see Fig. 
6.2.3); 
be the path flow vector with components given by the flows hkC r) relative 
to each path connecting od pair, k E Kod; 
be the total vector of path flows for all the O-D pairs at time 1;' 

be the user flow following path k and crossing section s of link a at time 
r. Unlike the static case, it is not possible to define a generic link flow 
since flow crossing at the time r the different sections of a link usually is 
not constant over the link (see Fig. 6.2.4). Among the sections of a link, 
entrance (s=O) and exit (s=La) are particularly relevant; 

ukae r)=fka,o( r) be the flow traveling on path k and entering link a at time r (in-jlow), 
uka( r) ~ 0; 

wka( r)=fka,La (r) be the flow traveling on path k leaving link a at time r (out-jlow), 

wka( r) ~ 0; 
faA r), Ua (r), waC r) be the total flow crossing section s, entering and leaving link a, at 

time r, respectively, and relate to the path-specific variables through the 
following relationships: 

s=O 

fa", (r) = Ik fa~" (r) 

U a (r) = Ik u~ (r) 

wa(r)=Ikw~(r) 

: k J oj,) 

s 
Link a 

s=L. 

Fig. 6.2.4 Instantaneous flows on link sections. 

(6.2.la) 

(6.2.1 b) 

(6.2.lc) 

Va( 1;) WaC r) be the cumulative in-flow and out-flow on link a at time r; respectively; 
they express the total number of users who entered and left the link up to 
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a given point in time T. Cumulative flows relate to flow rates through the 
following equations: 

Ua(r)= fUa(t)dt 

Wa(r) = fWa(t)dt 

xU< T) be the number of users on link a at time T or link occupancy; 
ka( T)=Xa( T)/La be the users density on link a at timeT. 

Temporal profiles of flow variables must satisfy conservation equations since 
users flows cannot be created or dispersed at any point of the network except 
centroid nodes. If no flows are generated and/or absorbed at a node i (i.e. the node i 
is not a centroid node) flow conservation conditions require that in-flows, out-flows 
and path flows satisfy the following equations: 

and summing over all paths, equations (6.2.2b) yield: 

LUa(T) = L Wa(T) 
aEFS(i) aEBS(i) 

(6.2.2a) 

(6.2.2b) 

(6.2.2c) 

Equation (6.2.2c) constrains the total out-flow of the links belonging to its 
backward star BS(i) to equal the total in-flow on all the links belonging to its 
forward star FS(i) at any time T for a node i that is not a centroid. Equations (6.2.2) 
can be extended easily for centroid nodes distinguishing between path ending and/or 
starting in node i. 

As shown in chapter 2, the link density at time l' can be expressed as a function 
of (non-negative and integrable) in-flow and out-flow temporal profiles. The 
differential equation expressing flow conservation on a link is: 

(6.2.3) 

which, once integrated, leads to the following result: 
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T T 

X,,(T) = La ·ka(T) = fUa(t)dt- fwa(t)dt = Ua(T)-Wa(T) (6.2.4) 
o 0 

Equation (6.2.4) expresses the relationship among density and cumulative in­
flow and out-flow on a link. The number of users on link a at time T is the difference 
between the cumulated in-flow and out-flow at that time, see Fig. 6.2.5. 

Fig. 6.2.5 Relationship between cumulated in-flow, cumulated out-flow and link occupancy 
(continuous flows). 

Travel time and cost variables. In within-day dynamic supply models the travel 
time has a dual role. It is a performance variable included as an attribute of the 
generalized perceived cost, as in within-day static models. On the other hand, it 
ensures the internal consistency of the relationships between some variables of the 
model. For this reason, travel time is denoted with a specific variable different from 
the other performance variables. Moreover, travel times of links and paths may 
assume different values for different time instants; this may depend on different 
transportation supply and/or congestion conditions. For this reason, a number of new 
variables related to travel time must be introduced. It will be assumed that travel 
times are continuous and continuously differentiable functions of the absolute time 
r. Let 
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be the forward travel time, i.e. the time to cross link a for a flow particle 
entering the link at time T; 
be the backward travel time, i.e. the time to cross the link a for a flow 
particle leaving the link at time T; 

be the leaving-time function, representing the leaving time of a particle 
entering link a at time T,' 

be the inverse travel time function, representing the entrance time of a 
particle leaving link a at time T; 
be the generalized extra cost for crossing link a entering at time T. The 
generalized extra cost expresses the perceived disutility of link a with the 
exception of the travel time. It includes other performance variables, e.g. 
time variable toils, homogenized in disutility terms. 

Space 
(path k) 

l. 
/+1 

k 
a. 

/ 

k 
a. 

/-1 

........... : 

, 

I 
~----~-------T~------r+~-fa-i-(T-)-=-T-'----~~~time 

• • faCT) = f'a. (r+ faCT)) 
I I I 

Fig. 6.2.6 Relationship between backward and forward travel times. 

Temporal consistency of the model requires that the different travel times satisfy 
the following relationships (see Fig. 6.2.6): 

tt (T) == t~(T+tt (T» 

t~ (T) == tt (T - t~ (T» 

t~1 (T) == T - t~ (T) 

(6.2.5a) 

(6.2.5b) 

(6.2.5c) 
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(6.2.5d) 

Travel times themselves must be consistent. In fact, under the assumption of 
partly compressible mono-dimensional fluid, travel time functions must be such that 
a fluid particle entering at time 1" on link a can never reach, or overtake, another 
particle that entered the same link at an earlier time ,.'<1". If this were the case, it 
would imply the fluid left between ,.' and 1" be compressed to a zero space (infinite 
density) or, in the case of overtaking, the mono-dimensionality assumption of the 
fluid (no turbulence along a link) would be violated. This condition is usually 
referred to in the literature as strong First-In-First-Out (FIFO) rule, see also 
Appendix 2.A, and can be stated formally as (see Fig. 6.2.7): 

(6.2.6a) 

similarly for the backward travel time: 

(6.2.6b) 

Weak FIFO rule is obtained when strict inequality is substituted by weak 
inequality within the above conditions. For sake of brevity this topic will not be 
discussed in the following. 

Space • 

Link ai 

I 
I 
I 
I 
I 

Space • 

time 

I 
I 
I 
I 
I Violation of FIFO rule 

................................................................................... 

, I 

--r----r-r 
• r:4I.~ __ ---'-,._" ____ ~.~ time 

tln/T') 
• tI.,(T") • 

Fig. 6.2.7 Representation of FIFO rule on a link. 
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Relationships (6.2.6a) and (6.2.6b) imply that r+lf (r) and r-I!(r) are well­

defined strictly increasing functions of T, i.e. a single value of exit or entrance time 
correspond to each value of T. On the other hand, as said above, without the FIFO 
rule, two particles could cross the same section at the same time. Thus, a single 
value of absolute time may correspond to different values of speed and acceleration 
in the same point in space and the inverse of time function (la would be ill-defined. 

It can be shown easily that a sufficient condition for a FIFO discipline (6.2.6a) is 
the following: 

dlf (T) >-1 
dr 

'\IT 

In fact, equation (6.2.7a) can be also stated as: 

If (r")-t f (r') 
lim a a >-1 

r"-+T' r"-r' 
which yields 

If (-t") _If (-r:') 
au> -I 

1:"-1:' 

thus 

If (T")_l f (T') r"-r' 
a a +-->0 

T" -r' r" -T' 

and 

T"+l f (r") - r'_l f (r') 
a a > 0 '\Ir" > r' 

r"-r' 

which is condition (6.2.6a). 

(6.2.7a) 

Similarly in terms of backward travel time it can be shown that a sufficient 
condition for a FIFO discipline (equations 6.2.6b) is: 

dl b 
_a (r) < +1 '\Ir 
dr 

(6.2.7b) 

The physical interpretation of equations (6.2.7) is that to avoid FIFO rule 
violation, the travel time cannot decrease more rapidly than the absolute time. 

Several equivalent conditions have been proposed to impose a FIFO discipline. 
One of the most intuitive states that a FIFO discipline exists if and only if the total 
number of vehicles entering a generic link a by time r equals the total number of 
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vehicles exiting after a time interval equal to the forward travel time of link a at any 
time r(see Fig. 6.2.8): 

(6.2.8a) 

similarly in terms of backward travel time: 

(6.2.8b) 

By deriving the above relationships it follows that: 

(6.2.9a) 

(6.2.9b) 

Equations (6.2.9) express the relationship between link in-flows and out-flows in 
a dynamic context. From equation (6.2.9a) the in-flow on a link at time r is equal to 
out-flow at the corresponding exit time (i.e. the absolute time after the link forward 
travel time) multiplied by a factor larger than one (i.e. the out-flow is less than the 
in-flow) if the flow on the link is slowing down (dt/dr>O) and vice versa. 

Fig. 6.2.8 Condition for FIFO rule (forward travel time). 
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Similar considerations can be derived analyzing equation (6.2.9b): the out-flow 
on a link at time • is equal to the in-flow at the corresponding entrance time 
multiplied by a factor larger than one (i.e. the out-flow is bigger than the in-flow) if 
the flow on the link is accelerating (dt/dr<O) and vice versa. 

Note that in the static case since link travel times are constant over time, in-flows 
always equal out-flows. Moreover, since a positive in-flow on a link, uQ ( .»0, 
implies a positive out-flow, wQ ( .»0, conditions (6.2.7) for FIFO discipline can be 
derived again from equations (6.2.9). 

Once that the main variables and their consistency relationships have been 
introduced, the other components of the supply model, namely link performance 
functions, path performance functions and network flow propagation model can be 
analyzed. 

6.2.1.2. Link performance and travel time functions 

Fundamental to dynamic supply models are the link travel time functions expressing 
travel time as a function of link flows for congested networks. Most models 
proposed in the literature adopt functions simulating explicitly (i.e. travel time 
functions) or implicitly (i.e. exit functions) the travel time on a link depending on the 
number of users traveling on the link. Implicit exit time functions express directly 
the out-flow of a given link as a function of the link occupancy wa(.) = wa(xi .». 
These functions, however, lead to a number of theoretical inconsistencies and will 
not be considered in the following. 

Travel time functions express the travel time ta(.) of a particle arriving at the 
beginning of the link a at time • as a function of the relevant traffic condition 
variables. Most models proposed in the literature adopt "separable" travel time 
functions, i.e. functions expressing the travel time tf~(.) in terms of the 
instantaneous occupancy on the same link xi .): 

(6.2.10) 

The computation of the backward travel time function, or the inverse travel time 
function, from the forward function require the solution of a fixed-point problem 
whose solution is unique only if the FIFO rule applies. In fact, from equation 
(6.2.5b) it results: 

(6.2.1 I) 

Several functional forms have been proposed for equation (6.2.10), not all of 
which however lead to results consistent with the FIFO rule. One of the proposed 
functions is the linear travel time function: 
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(6.2.12a) 

where Qa is, as usual, the capacity of link a and to. is the free-flow link travel time. It 
can be shown that a linear travel time function imposes the FIFO discipline and the 
consistency of the model. Furthermore the out-flow Wa never exceeds the capacity 
of link a. Fig. 6.2.9 plots out-flow as a function of the number of vehicles on the 
link. 

a 

Fig. 6.2.9 Exit flow curve corresponding to linear travel time function (6.2.12a). 

A similar function derived from deterministic queuing models can be applied for 
queuing links. In fact, all the concepts introduced so far apply to queuing models, 
see section 2.A.2. The only difference is that travel time is not spent moving on the 
link but waiting. In-flow and out-flow are the equivalent of arrival and departure 
flow rates, occupancy is equivalent to the number of queuing users and so on. In this 
case equation (6.2. 12a) can be written as: 

twa(x (,))=_1 +_1 xa(,) (6.2.12b) 
a Qa Qa 

where the "zero occupancy" time is equal to the average service time, i.e. twa=I1Qa. 

6.2.1.3. Path performance and travel time functions 

Specific time variables can also be associated with paths, (see Fig. 6.2.10). Let 
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Titl,(r) [or equivalently Tlir)] be the forward travel time to link aj [a] along path 

k; i.e. the time needed to reach the beginning of link aj [a] following path k 

and leaving at time rfrom the beginning of link a\; 
Tbtl,(r) [or equivalently Tbir)] be the backward travel time necessary to reach the 

beginning of link aj [a] following path k and arriving at time T. 

Space 
(path k) 

k 
a' 1 1+ 

k a 

k 
a '1 I· 

i 
! 

-------------11-----

-----: -r 
I I,.' ' / I '------'------'-----'-----'----.. ·time 

r. .' 
TI (r)=Tb (r) 

tI, tI, 

Fig. 6.2.10 Backward and forward path traveltime. 

Temporal consistency of the model requires that the different travel times satisfy 
the following relationships (see Fig. 6.2.10): 

Tj (r) = T; (r + Tj (r» 
I I I 

T: (r) = T{ (r - T: (r» 
aj OJ aj 

Moreover, let: 

(6.2. 13 a) 

(6.2.13b) 

ITk( r) be the forward total travel time of path k, i.e. the time needed to traverse 
path k starting at time r; 
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be the backward total travel time on path k, i.e. the time needed to traverse 
path k arriving at time T; 

be the path k generalized extra-cost starting at time ,,' 
be the total generalized cost along path k leaving at time To 

As for links, travel times along any path must satisfy FIFO conditions. This 
condition can be stated formally as (see Fig. 6.2.11): 

T'+T{ (T') < T"+T{ (Til) 
OJ aj 

Similarly for the backward travel time: 

Space 
(path k) 

T'-T:k (T') < T"-T:k (Til) , , 

Space 
(path k) 

V T'<T" 

V T'<T" 

Violation of FIFO rule 

Fig. 6.2.11 Representation of the FIFO discipline on a path. 

(6.2.l4a) 

(6.2.14b) 

Relationships (6.2.14) imply that T+T{(T)and T-Tbk(T)are well-defined 
OJ OJ 

functions of T, i.e. a single value corresponds to each value of T. It can be shown 
easily that if all link travel time functions follow a FIFO discipline, the latter is also 
satisfied along a path. 

Path and link travel times are connected through the following equations (see 
Fig. 6.2.12): 

T; (T)=TJ(T)+t:k(T+TJ(T» 
HI I , , 

(6.2.l5a) 
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(6.2.1Sb) 

Fig. 6.2.12 Relationship between path and link travel times (forward travel time functions). 

E~uation (6.2.1Sa) can be applied recursively from the first link ak I to the generic 
link a ; of path k. This results in a "nested" sum of link travel times: 

(6.2.16a) 

Similarly equation (6.2.1Sb) can be applied from link ak; to the first link a\ of 
path k: 

(6.2.16b) 
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Previous equations can be easily extended to express total path travel time, path 
extra-cost (assuming link-wise additive attributes) and generalized cost as functions 
of link travel times: 

ECk(r)=ec k(r)+eC k(r+tfk(r»+ ... +ecfk (r+ ... ) 
al u2 UI ank 

(6.2.17b) 

gk(r)= P/IT! (r)+ ECk (r) (6.2.17c) 

The relationships between the vectors of forward path travel time functions 
rt( r), with one component for each path in the network and the vectors of forward 
link travel time functions I( r), with one component for each link in the network, can 
be expressed as: 

TTf (r) = r(/(r'),r'> r) (6.2.18) 

Equations (6.2.17) are the within-day dynamic equivalent of the link-wise cost 
composition expressed by supply model (2.2.5) and (5.2.1) for static networks. In 
the static case the order in which link performance attributes or costs are summed to 
obtain path costs is irrelevant. This is no longer true for within-day dynamic supply 
models in which link times and costs have to be summed up in their topological 
order along path k to satisfy the temporal succession of crossed links. 

6.2.1.4. Dynamic Network Loading models 

Dynamic Network Loading (DNL), also known as Dynamic Network Flow 
Propagation (DNFP), models simulate how time-varying continuous path flows 
propagate through the network inducing time-varying in-flows, out-flows and link 
occupancies. 

The simplest case is that of a single-link network. The link flow propagation 
model can be expressed formally by combining the different consistency equations 
introduced in the previous section and the travel time function. In fact, the whole 
model expressing the continuous link flow dynamics is specified as a function of a 
single input variable, usually in-flow, since the four variables defining the dynamics 
of the link, namely uaC r), waC r), xac r) and laC r), are connected by three equations: 

dx (r) 
-:;;- = ua(r)-wa(r) 

tt (r) = ta(xaCr» 

and, under the FIFO rule condition, such as: 



CHAPTER 6 385 

The DNL model can be extended to general networks if the FIFO condition is 
satisfied by link and path travel times. In this case the conservation and link 
dynamics equations have to be stated with respect to specific path values: 

u\ (r) = hk (r) '\Ik (6.2.19a) al 

u:f (r) = wof_1 (r) '\I k; '\I i = l...nk_1 (6.2.l9b) 

dxk(r) 
d=u!(r)-w!(r) '\I k; '\I a (6.2.l9c) 

r . 

xa(r) = Lk Oak x! (r) '\Ia (6.2.l9d) 

t{ (r) = ta (xa (r») '\Ia (6.2.lge) 

uk(r) 
w!(r+t{(r» = a f '\Ia (6.2.19f) (I + ~t~;r») 

in addition to the boundary conditions (e.g. u(O)=w(O)=x(O)=O). 
The above equations give an implicit representation of the DNL model; they can 

also be reformulated in such a way to bear a closer resemblance to their static 
counterpart, which can be shown to be a particular case. In fact, by applying 
equation (6.2.9b) to the whole path k, up to link a considered as a single link (see 
Fig. 6.2.13), it follows that: 

(6.2.20) 

Note that in the static case in-flows are constantly equal to out-flows, path flows 
are constantly equal to hk and both link and path travel time are constant overtime: 

ua(r) = wa(r) = ua = Wa = fa 

hk(r) = hk 

t{(r)=t!(r)=ta 

dt{(r) = dt!(r) =0 
dr dr 
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Moreover, the fundamental diagram relations (see appendix 2.A) yields: 

Then the system of equations (6.2.19) becomes the linear system: 

expressing the network flow propagation model for static networks. 

link a 1 
ua(r) i I 

I 

Path k 

............................................................................. 

-----------'-,-----+ time 

hi r-'ft akC r))t •• -------.... 
'I 'ft akC r) 

Fig. 6.2.13 Representation of the Dynamic Network Flow Propagation model. 

On the other hand if path travel times are constant over time (dT:k / dr = 0 ), 

e.g. the network is uncongested and there are no changes in supply, the in-flow 
profile is the summation of the path-flow profiles for the paths including the link, 
shifted by the time needed to reach the link: 

(6.2.21) 
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6.2.1.5. Formalization of the overall supply model 

The equations introduced in the previous sections express the dependence of in­
flows, out-flows occupancies, link and path travel times and costs on path flows 
leaving in previous time instants. The relevant equations defining the overall supply 
model for congested networks respecting FIFO rule, can be expressed symbolically 
as: 

/ = (J)[/(r),h(r)] 

I( r) = ((f( r'), r' ~ r) 

TTf (r) = r(/(r'), r' > r) 

where: 

I( r) is the vector of link travel times at time r; 
T'Jf( r) is the vector of forward path travel times at time r; 

(6.2.22a) 

(6.2.22b) 

(6.2.22c) 

J{ r) denotes the vector of relevant flow or occupancy input variables for travel 
time functions at time r; 

h( r) is the path flow vector at time r; 
r expresses symbolically the relationship between link and path travel times, 

see equations (6.2.16); 
(J) expresses symbolically the Dynamic Network Loading model, see equations 

(6.2.19); 

These equations are the continuous flows within-day dynamic equivalent of the 
static equations: 

/=iJh 
e= e(f) 
g= iJT e 

Note that equations (6.2.22) reflect the fact that for congested networks the time 
to cross each link at a time r depends on the flow on all the links of the network in 
the previous time r', as it depends on the travel time to reach the link along the 
generic path k and, thus, depends on the travel time on links preceding a along each 
path k. 

The solution of the dynamic supply model described is based on time 
discretization of the differential equation defining it. Given the large number of 
differential equations involved, the sequence in which they are processed is also 
relevant. 

Note that this formulation of the supply model assumes that the relevant 
congestion variables influencing travel times are link-related occupancies at the time 
of arrival of a given particle at each link. This assumption, however convenient from 
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the computational point of view and "closer" to the static model, is appropriate only 
for deterministic queuing links and for very short running links. 

Other continuous flow (Le. continuous space models) are based on a direct 
application of differential equations systems derived from continuous space models 
of traffic flows for each link (see section 2.A.2), together with the equations assuring 
flow conservation at each node. The solution of these models, at least in theory, 
allows the definition of variables such as flow, speed, and density at each point sand 
at each instant t'. The solution of such models however requires a discretization in 
space, 11s, hence from the solution point-of-view they can be considered similar to 
discrete space model through a duly definition of link length (Le. I1s = La). 

6.2.2. Discrete flow supply models 
Discrete flow models assume that users are discrete units; they can be either vehicles 
or groups of vehicles moving over the network and experiencing the same trip. In 
the following, discrete units will be referred to as packets including the special case 
of single-vehicle packets. 

Discrete flow models require some form of discretization in time and can be 
based on two different approaches according to the way in which space is treated. 

Mesoscopic models simulate the network performances at an aggregated level; as 
in the discrete-space continuous-flow models, aggregated variables of capacity, 
flows and occupancy are used. The traffic, however, is represented discretely by 
tracing the trips of single packets; each packet is characterized by a departure time 
and by a path up to the destination. It is usually assumed that the packets are 
concentrated at a point (concentrated or piled packets); this assumption is the more 
realistic, the smaller the size of the packets. Mesoscopic models can be applied to 
networks of general form and extended to simulate queue-formation and spill-backs 
with reasonable computing times. On the other hand, they do not allow a detailed 
simulation of traffic phenomena (overtaking, lane-changing, etc.). 

Microscopic models explicitly simulate the time-space trajectory of each 
individual vehicle (speed, acceleration, etc.) and its interactions with nearby vehicles 
(overtaking, lane-changing, etc.) given the departure time from the origin and the 
path followed to the destination, as well as some individual characteristics (such as 
desired speed, driving style, etc.). These models (which in traffic theory literature 
are often referred to as micro-simulation models) can be very accurate. However, 
they do not allow the explicit formulation of the whole assignment model or the 
analysis of its theoretical properties. Moreover, it is very difficult to calibrate all the 
parameters of the model and considerable computational resources are required. 
Furthermore, this kind of models gives results at level of detail unnecessary for 
planning applications. Thus, the following will refer only to mesoscopic discrete 
flow models. 
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Fig. 6.2.14 Path flows and trajectories in discrete time-discrete flow models. 

Most discrete flow models are based on some form of time discretization, i.e. 
divisions of the reference period into intervals U], (in the following intervals are 
assumed to be of equal duration DT for simplicity sake). These models often assume 
that relevant flow variables are averaged over time intervals. It is also assumed that 
users begin their trips at a characteristic time instant, T;, of an interval U]. This may 
be the beginning or mid-point of the interval (see Fig. 6.2.14). In principle the 
duration of departure intervals can differ from the duration of averaging intervals. 
For example, some models use very short departure intervals while averaging the 
variables over longer intervals. In the following to simplify notation, only the single­
interval case will be considered, the generalization to multiple intervals is rather 
straightforward. Furthermore it will be assumed that the representative instant of 
each interval is its final point, i.e. T;=[j]DT 

A general framework for discrete time-discrete flow models is more difficult to 
formalize than for continuous models, since there are several possibilities to 
discretize the relevant variables. The framework proposed in the following is general 
enough to include several models proposed in the literature. 

6.2.2.1. Variables and conSistency conditions 

Like continuous flow models, variables and their "structural" relationships must 
first be defined. 
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Time variables. The discretization of time requires the introduction of other time 
variables in addition to the generic absolute time T. Let 

z(j) be the generic instant of time interval U], z(j) E(U-I]DT, [j] D7); 
'.I be the characteristic instant of time interval U], here assumed to be its end­

point, T;=U] DT. 

Topological variables. Topological variables are the same as in the continuous­
flow continuos-time case and will not be restated. 

Flow and occupancy variables. The flow variables have the same definitions as 
in the continuous case, but in discrete flow models they represent "counts", i.e. 
number of users in a generic interval U], rather than flows, i.e. temporal densities, as 
shown in Fig. 6.2. 14. In the following, however, they will be referred to 
indifferently as units (in a time interval) or flows to simplify the notation and the 
extension of continuous flow results. Let 

kj be the generic quantum or packet identified by the path k followed (and thus 
the O-D pair connected by k) and the departing interval U]; only one packet 
can leave on a given path in each time interval; 

dodU] be the number of users moving between the pair od leaving in the 
representative instant of interval U]; 

hkU] be the number of users starting their trip along path k, k E Kotb , in (the 
representative instant of interval U]; hkU] can be seen as the dimension of the 
packet kj ; 

I' a .. ,U], ukau1, wkaU] be respectively the number of users moving on path k and 
crossing section s of link a, the number of users on path k entering and 
leaving link a during interval U]. 

Ia.,-U], ua[i], waUl be respectively the total, summed over all path, number of users 
crossing section s of link a, the total number of users entering and leaving 
link a during interval U]. Note that they correspond to the variables, 
introduced in section 2.A.l, m(sj '.I-I> '.I) with symbols modified to parallel that 
used for continuous models. 

Equations (6.2.1) expressing the total flows as sum of path flows and (6.2.2) 
expressing flow conservation at nodes hold also in the discrete case. 

Flow variables can be defined also with respect to any sub-interval of interval j 
e.g. the interval ['.I-I ,z(j)] up to time T 0) in this case they will be denoted as 
I' 0.,[ z(j)] and so on. Let 

Xa( '.I), xa( z(j» be the link occupancy respectively in time instants '.I and z(j); 
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Xa [j] be the average occupancy on link a during interval U]' It obviously 

results that: 

mDT 

xa [j] = _1_ fXa (r:(j»dr(j) 
DT 

[j-I)DT 

Ua[;) Ua[ 1{j»), War ;], War 1{j») be respectively the cumulated in-flows and out-flows 
of link a up to the representative instant of interval U] and to a generic 
time instant within that interval respectively. Cumulated in-flows and 
out-flows are related to interval specific values as: 

(6.2.23a) 
}'<} 

WaC-f }) = L wa[j] (6.2.23b) 
}'<} 

In-flows and out-flows are also related to link occupancy through link 
conservation equations analogous to equations (6.2.3) and (6.2.4): 

Xu (r) -Xu (r )-1) = ua[j) - Wa[j) (6.2.24a) 

X a (r ) ) = U a (r ) ) - Wa (r ) ) (6.2.24b) 

Travel time and cost variables. In general, link and path travel times are 
continuous variables related to generic time instant r as in the continuous case; in 
the discrete case, however, not all instants r are meaningful since not all correspond 
to the arrival (or departure) of a packet (see Fig. 6.2.14). In the following time and 
cost variables will be introduced with respect to a generic instant To Let 

la( r), l a( r) be the forward and backward travel time on link a for a packet 
respectively entering or leaving the link at time To Forward and 
backward link travel times are related through mutual consistency 
equations identical to equations (6.2.5) which will be restated for the 
reader's convenience: 



392 INTRA PERIOD (WITHIN-DA Y) DYNAMIC MODELS 

Since in discrete flow models users are identifiable units (packets kj ), it is 
possible to define temporal variables associated to the specific packet. Let: 

t'a[kj ], rVa[kj ] be respectively the entrance and exit times on link a of packet kj . 

Consistency with travel times requires that (see Fig. 6.2.15): 

(6.2.25a) 

(6.2.25b) 

The FIFO discipline also applies to discrete models if it is assumed that packets 
cannot overtake each other, or if no explicit overtaking mechanism is introduced. 
The formal representation of the FIFO rule is identical to that for continuos flow 
models: 

r'+t[ (r') < r"+t[ (r") V r'<r" 

and similarly for the backward travel time: 

V r'<r" 

Alternative conditions for the FIFO rule, analogous to those introduced in 
section 6.2.1.1 for continuous models can be stated. It should be observed, however, 
that, for discrete models, this condition is not so important since a packet is 
identified by the very nature of the model rather than implicitly through the 
trajectory crossing a given point at a given time. 

As for the continuous case, the general discrete dynamic supply model can be 
formalized through link and path performance functions and the network flow 
propagation model. 



Space 
(path k) 

k 
a j+1 

k 
a. 

1 

k 
a . 1 

1-

CHAPTER 6 393 

I 
........................................................................................................... j ..................... . 

• • time 

• • tal (t'a[kj ]) 

Pal [1'] 

Fig. 6.2.15 Relationship between link entrance, exit and travel times of a packet on a link. 

6.2.2.2. Link performance and travel time functions 

The dependence of link travel time on link "flow" variables for congested networks 
can be expressed through a number of models. It is possible to specify separable and 
non-separable cost functions, the latter possibly allowing for spill-back effects from 
downstream links. The simpler separable travel time functions are similar to the 
functions adopted for running and queuing links described in section 6.2.1.2. 

Forward travel time on running link a can be expressed as a linear function of 
arrival time, thus varying for different time instants r(j) within interval): 

(6.2.26) 

Other models express the travel time via the average speed computed as a 
function of link density as in the fundamental diagram of traffic flow described in 
Section 2.A: 

(6.2.27) 
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Given the discrete nature of the models, several assumptions can be made on the 
computation of travel times for packets entering the link in a given interval. 

Some models proposed in the literature assume that the travel times are equal for 
all packets entering the link in a given interval. In this case occupancy variable in 
equations (6.2.26) and (6.2.27) correspond to a representative time of interval j, 
typically its start-point, Tj-J and are constant for all users entering the link during the 
interval. Alternatively travel times can be computed as functions of the average link 
occupancy during the previous interval, Xli [j -1] or the same interval, X a [j] ; in the 

latter case, however, link travel time for users entering the link during the interval 
depends on users entering the link later in the same interval. This may cause 
inconsistencies and counter-intuitive results and should be avoided. Other more 
accurate models compute travel times for each packet, e.g. as a function of the 
instantaneous link occupancy at the entrance time. 

6.2.2.3. Path performance and travel time functions 

The concepts of foreword and backward travel time needed to reach link akj along 
path k leaving or arriving in a given instant can be immediately extended to discrete 
supply models. These variables will be denoted by TaA 1/) and T"a/( r(j)) respectively 
to stress the fact that departures can occur only at the representative time of each 
interval, Tj, while arrivals can be at any time during the interval r(j), see Fig. 6.2.15. 
Equations (6.2.13) expressing the relationships between forward and backward 
travel times apply also to the discrete case. Similarly the forward (backward) total 
travel time on path k for a given departure (arrival) time can be defined also for the 
discrete case, denoting the variables with rPk(Tj)and TT"ir(j)) respectively. 

The FIFO rule for partial and total path travel times can also be extended to 
discrete flow models, see equations (6.2.14). 

Similarly the relationship between link and path travel times is analogous to 
equation (6.2.15) and, when applied recursively, leads to a "nested" structure 
corresponding to equation (6.2.16): 

(6.2.28) 

In the discrete flow case, however, equation (6.2.28) can be expressed more 

straightforwardly by using the arrival times of the generic packet to link a\ r\ [k j ] , 
ai 

as: 
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The same construct applies to total path travel time T'Pk( Tj), and to other path­
additive attributes ECi Tj) and finally to total path cost g (Tj): 

k 

TT! (r) = t~ (rj ) +tl. (r/, (r}kj]) + tl, (r/, [k,o]) + ... 
"I "2 a2 a3 "3 

o .. +t~ (rU
k [kjD = T{ (r)+t~ (rU

k [kjD 
ank ank ank ank ank 

(6.2.30a) 

(6.2.30b) 

gk (r j ) = PITT! (r j ) + ECk (r j ) (6.2.30c) 

Formally the relationship between the vector of total path travel time, J7.f( Tj), for 
a given departure time Tj and travel times on the links making up each path, can be 
expressed symbolically as: 

(6.2.31) 

Equation (6.2.31) is the equivalent of equation (6.2.18) in the continuos-flow 
case. 

6.2.2.4. Dynamic Network Loading models 

Unlike the continuous-flow case, the DNL model for discrete flows can be 
formulated explicitly since packets can be identified while moving over the network. 
In this case the in-flow on link a in the interval U] can be expressed as: 

(6.2.32) 

where the oail,j) are zer%ne variables analogous to the elements of the static link­
path incidence matrix; they are equal to one if the packet k/ (of intensity hk [I]) enters 
link a during intervalj, 0 otherwise: 

Oak [l j] = {I if , 0 
r; [k,] E ([j -1]DT, [j]DT) 

otherwise 

Obviously the oak[l,j] are all equal to zero if link a does not belong to path k 
(compare equation 6.2.30 with equations 6.2.20 and 6.2.21). 
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Equation (6.2.32) can also be formulated using a matrix notation as: 

u[j] = Lt';j LI[I, j] . h[l] (6.2.33) 

which is close to the static counterpart! = LI h. 
Similar equations can be stated for the out-flow, waUl, from the generic link a at 

time intervalj: 

(6.2.34) 

where the 8'ak[l,j] is equal to one if the packet k, (of intensity hk [I]) leaves link a 
during intervalj, 0 otherwise: 

{
I if 

8'uk [I, j] = 0 

and in matrix terms: 

'i; [k,] E ([j -1]DT, [j]DT) 

otherwise 

w[j] = Lt';j LI'[/, j] ·h[l] (6.2.35) 

Note that the elements of dynamic incidence matrices depend on link travel 
times and, for congested networks, on link flows and occupancies. In this respect 
they should be denoted as: 

The overall DNL model relating link flows and occupancies to path flows can be 
expressed combining the previous equations: 

Xa ('i j) -xa ('i j_l) = ua[j]-wa[j] 

ua[j] = L,';j LI[/, j]. h[/] 

Wa[j] = Lt';jLl'[l,j].h[I] 

'i"k [kt ] = 'it + T{ ('i,) 
a aj 

'i w
k [ktl = 'i"k [kt]+t1k ('i"k [ktD 

a a a a 

tt ('i(j») = (La J 
VaXa('ij_I)ILa 

(6.2.36a) 

(6.2.36b) 

(6.2.36c) 

(6.2.36d) 

(6.2.36e) 

(6.2.36f) 
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The above set of equations has been specified under the assumption that link 
travel time functions depend on link occupancy at the beginning of each interval; the 
model can be expressed in a similar form with reference to a generic time instant 
r(j). 

6.2.2.5. Formalization of the overall supply model 

Equations (6.2.36) can be expressed symbolically as non-linear vector functions 
relating link flows (in-flows and out-flows) and occupancies for an intervalj, to the 
vector of path flows leaving in intervals from I to j and the link travel times 
successive to Xi and previous to the end ofintervalj, 1): 

f[j] = lP(h[l], t(r'); I::; j, r' E [r, ,r j]) (6.2.37a) 

Expression (6.2.37a) can be further combined with the equation relating link 
travel times to link occupancies for congested dynamic network loading models: 

f[j] = lP(h[I], t(x(r' )); I::; j, r' E [r, ,r j]) (6.2.37b) 

The global supply model is completed by the symbolic relationships relating path 
travel times to link travel times: 

(6.2.38) 

and path generalized transportation costs to travel times and other link costs vectors: 

(6.2.39) 
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6.3. Demand models for continuous service systems 
Demand models used in dynamic assignment express the relationship between path 
flows and path costs. The "minimal" demand model, i.e. the model included in all 
assignment models, relates to path and departure time choice; it will be described in 
this section. Other models simulating users learning and choice adjustment 
mechanisms needed for dynamic process assignment will be briefly described in the 
next section on demand-supply interaction. 

The flow of users following a path k connecting the O-D pair od and starting at 
time 1; hk( 1') can be represented with elastic demand profile models, simulating in 
addition to path, departure time choice given the desired arrival time at destination, 
1'd, or the desired departure time from the origin 1'0' 

The continuous time-continuous flow model will be discussed first. Let: 

d()~ 1'd) be the flow of trips between the pair od with desired arrival time 1'd; 

Po(H( 1'I1'd) be the choice probability of time l' and path k, given the O-D pair od and 
the desired arrival time 1'd; 

Vl1'l1'd) be the systematic utility of path k and departure time 1', given the desired 
arrival time 1'd; 

V()~ r11'd) be the vector of systematic utilities relative to all the paths connecting the 
pair od, k E Kod, for a given departure time l' and desired arrival time 1'd. 

The demand conservation condition over the whole reference interval [0,1] can 
be formally expressed as: 

(6.2.40) 

Choice probabilities of departure time l' and path k are usuaIly expressed with 
random utility models as a function of the systematic utilities of available path­
departure time alternatives: 

(6.2.4la) 

Such models are usually "single-level" random utility models (e.g. Multinomial 
Logit) with mixed continuous (departure time)/discrete (path) alternatives, or partial 
share models. A sequence, which is sometimes used, is the product of path choice 
given the departure time, and the departure time choice models: 

(6.2.41b) 

Some empirical results related to demand elasticities with respect to changes in 
departure time and path seem to suggest a different sequence: 
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(6.2.41c) 

The specification of a simultaneous Multinomial Logit model for equation 
(6.2.41 a) is: 

Some dynamic assignment models proposed in the literature assume 
deterministic utility departure time and path models. In this case, as for static 
systems, choice probabilities cannot be expressed in closed form as may exist 
several departure time/path alternatives with equal systematic disutilities. Indirect 
expressions similar to the static models described in Chapter 4 can be adopted: 

Deterministic choice models, however, are less realistic than they are in the static 
case when applied to continuous departure times. 

Systematic utility functions proposed for the simulation of the combined path­
departure time choice include, in addition to path attributes, the schedule delay, i.e. 
the penalty for arriving early or late with respect to the desired arrival time (see Fig. 
6.2.19). In case of desired arrival time Td, it results: 

where: 

EAPkr, Td ,TPI..T» is the penalty related to early arrival with respect to Td departing 
in T and following path k. This penalty is usually considered only 
if the early arrival is above a minimum threshold LIe: 

=0 otherwise 

LAPk (T, Td" TP~( T»is the penalty related to a delay with respect to Td departing in T 

and following path k. This penalty is usually considered only if 
the delay is above a minimum threshold LI,: 
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=0 otherwise 

In case of desired departure time from the origin '0' the expression of the 
systematic utility is still a function of path travel time and scheduled delay, but in 
this case the scheduled delay does not depend on the path travel time T"Pk( .): 

where: 

(6.2.42b) 

is the penalty related to early departure with respect to '0 
departing in " usually considered only if the early departure is 
above a minimum threshold LIe: 

if '0- LI. -.>0 

=0 otherwise 

is the penalty related to a delay with respect to '0 departing in " 
usually considered only if the delay is above a minimum 
threshold Ll/: 

=0 otherwise 

All the coefficients P in equations (6.2.42) are negative. Furthermore, the 
schedule delay penalties should have coefficients P. and PI with absolute values 
greater than the travel time coefficient (IPel > IPII, IPII > IPID in order to avoid 
unrealistic user behavior, e.g. large probabilities for alternatives with very high 
early/late arrival penalties but with smaller travel times. Empirical results for work 
related trips show that the disutility of late arrivals is larger than that for early 
arrivals (IPel<IPIi), as shown in Fig. 6.3.l. 

The global within-day dynamic demand model with elastic demand profile is 
expressed by equations (6.2.40), (6.2.41) and (6.2.42) relating path flows to path 
travel times, extra costs and schedule delay penalties for different departure times. 
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Actual arrival 

time rd 

Fig. 6.3.1 Systematic utility function with respect to desired arrival time. 
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In rigid demand profile models, it is assumed that the distribution of demand 
flows over departure times is known and independent from variations in travel 
times, i.e. the probabilities PoJ... r/rd) or PoJ... rlro) are given. It follows that path is the 
only choice dimension considered given a departure time: 

where: 

doJ...r) 
pod,k(r) 
VoJ...r) 

(6.2.43) 

is the demand flow leaving in at time r; 
is the probability of choosing path k for trips starting at time r; 
is the vector of the systematic utilities Vk[ r] of the different paths 
connecting the O-D pair ad, kE Kod. 

In this case path choice models are analogous to those described in Section 4.3.4; 
the systematic utility of the path k can be expressed as a function of the path-related 
attributes introduced previously as: 

(6.2.44) 

The within-day dynamic demand model with a rigid demand profile is expressed 
by the equations (6.2.43) and (6.2.44) connecting path flows to path travel times for 
a given departure time r. 
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The extension of dynamic demand models to the discrete case is rather 
straightforward. The only difference is that alternative departure times are the 
discrete intervals .. U-1], U], U+ 1], or representative instants ... 1j-b 1j, 1j+ J... . 

Simultaneous departure time and path choice probabilities are thus expressed as 
Pod.k[ zy"d]' A multinomial Logit specification can be: 

Alternatively a partial share specification similar to equation (6.2.41b) 
introducing a correlation structure among adjacent departure intervals, e.g. with a 
Cross-Nested Logit model, can be adopted. 

The previous results for choice models and systematic utility specifications apply 
also to the discrete departure time case. Discrete departure time models can be 
adopted for the continuous flows. In fact, some specifications of continuous 
departure time choice model assume that travelers do not choose among an infinite 
number of departure instant, but rather among a finite number of times intervals (e.g. 
5 minutes long), and that actual departure times are uniformly distributed within the 
chosen interval. In this case the probability of leaving at time t(i), within interval), 
and following path k computed with a Multinomial Logit model would be: 

("';)/ ) _ 1 exp(Vk [) /, d ]) 
Pod.k·V 'd - --

DT L L exp(Vk· [j' / 'd ]) 

j' k'eKod 
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6.4. Demand-supply interaction models for continuous 
service systems 
Demand-supply interaction models for within-day dynamic continuous services 
systems are conceptually analogous to those described for the equivalent static 
systems. 

In the following sections some formal results will be given for uncongested 
network assignment as well as for congested network which can be approached 
through equilibrium or dynamic process models. The various models will be 
described making reference to the continuos and discrete flow cases, at least for 
uncongested and users equilibrium assignment models; on the other hand dynamic 
process models, with and without information, will be formulated only for discrete 
flow models. 

Dynamic Traffic Assignment (DT A) models are rather complex and few 
operational formulations have been developed. Furthermore, there are no general 
theoretical results to date for the analysis of existence and uniqueness of the 
resulting flow configurations analogous to those obtained for static models. 

For simplicity, in the following only (within-day dynamic) demand models with 
desired departure time To will be illustrated. The extension to the case of desired 
arrival time is rather straightforward. 

6.4.1. Uncongested Network assignment models 
Dynamic assignment models for uncongested networks can be represented 
schematically as in Fig. 6.4.1. In this case link travel times do not depend on link 
occupancies. 

In the continuous-flow case, they can be specified as: 

(6.4.1 a) 

(6.4.lb) 

6.4.1 d) 
'0 

(6.4. Ie) 

Equations (6.4.lc) and (6.4.1d) represent the within-day dynamic demand 
models. On the other hand, equations (6.4.1a) (6.4.lb) and (6.4.1e) make up the 
supply model representing respectively the link performance model, the path 
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performance model and the dynamic network flow propagation model. The 
uncongested dynamic assignment model (UND) can be deterministic (DUND) or 
stochastic (SUND) depending on the path choice model used in equation (604.l.d). 

The Dynamic Network Loading model (DNL) has been formulated symbolically 
in terms of a characteristic link flow vector,/, since, if FIFO rule holds, the different 
formulations in terms of in-flow, out-flow or link occupancy are equivalent. For 
instance, equation (604. I.e ) can be stated in terms of in-flows as (see 6.2.104): 

where, since the network is uncongested, the backward travel times 'Jb a k are 

independent on flows for each link a, but in general depend on the specific time 1: 

'P a,k ( r) = ]V a,k (fl( r» (604.1 f) 

From equations (604.1) it results that in principle both demand and link travel 
times vary with 1: However, given the absence of congestion, equations' (604. I) can 
be solved sequentially to obtain path performances and link flows. In uncongested 
networks it is usually assumed that link travel times are constant with respect to r, 
i.e. t~/( r)=fla Thus the system of equations (604. I) becomes: 

(604.2a) 

(604.2b) 

604.2d) 

(604.2e) 

Here the only elements varying within-day are the demand flows inducing time­
varying path and link flows. In particular equation (604.2b) becomes: 

or 

TT(r) = LIT . to '\Ir 
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Fig. 6.4.1 Within-day Dynamic Traffic Assignment for uncongested networks. 
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In the discrete-flow case, the uncongested network assignment models can be 
formally specified as: 

(6.4.3a) 

(6.4.3b) 

VOII (.'/.0) = PITT! (.j) + EC(.j) + Pe EDP(. j'. 0)+ PILDP(.j'. 0) (6.4.3c) 

6.4.3d) 

f[)] = $(h(. j)' tJ.; j' <)) (6.4.3e) 

Note that in the above equations time dependency can be expressed equivalently 
as the representative time instant of interval), l' or simply as U]. Note also that in 

the assignment model the packets introduced in the DNL model described in section 
6.2.2.4 are the result of the departure-time/path choice. 

Equations (6.4.3c) and (6.4.3d) represent the within-day dynamic demand 
models while equations (6.4.3a) (6.4.3b) and (6.4.3e) represent respectively the link 
performance model, the path performance model and the dynamic network flow 
propagation model, components of the overall supply model. The DNL can also be 
stated as: 

f[)] = LLI[l,)].h[/] 
ISj 

Note that, if link travel times are constant for all time intervals of the simulation 
period, i.e. (!a( .)=f!a' the matrix LI does not depend on the starting interval I, but only 
on the difference between) and I. 

6.4.2. User Equilibrium assignment models 
For congested networks, dynamic equilibrium assignment can be specified through 
fixed-point models by combining supply and demand models both for rigid and 
elastic demand profiles. For within-day dynamic systems the dependency of travel 
times on link flows (occupancies) introduces two feedback cycles: in addition to the 
path cost and flow cycle (typical of within-day static user-equilibrium models), in 
the dynamic case link flows depend on travel times (see Fig. 6.4.2). 
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In the continuous-flow case, user-equilibrium models can be formally stated as a 
fixed-point problem in travel times, costs and flows derived from the following 
system of non-linear equations: 

tl( r) = tl(/{ r)) (604o4a) 

TTf(r) = JT..tl(r);r'5, r) (6 A o4b) 

(6 A o4e) 

Equation (604o4e) expresses the dependency oflink flow vector at time r,f( r), on 
the path flow vectors h and on link travel time vectors t in all previous time instants 
r'< T. This can be more explicitly stated, for instance, in terms of in-flows on the 
generic link a, as (see section 6.2.104): 

where the dependency oflink flow at r on the travel times of all links of the network 
and in all previous instants r' is embedded in the backward travel time, given by the 
recursive equation (6.2.16b) here restated for readers convenience: 

A formal fixed-point specification in link flows of dynamic user-equilibrium 
continuos-flow models is the following: 

/ • C T) 0 ~ ~ p(p,r(tC/ • C r')) + Ec(t(f • C T')) + p,EDp( T, To) + p,LDp( T, To))' d", 

tf(/*(r'));r'<r) 
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Fig. 6.4.2 Dynamic User Equilibrium Traffic Assignment. 
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Dynamic user equilibrium models can be deterministic or stochastic depending 
on the path-departure time choice model. Existence and uniqueness conditions for 
continuous-flow dynamic user equilibrium models are currently being studied (see 
the bibliographic note of this chapter). 

In the discrete-flow case, the models can be formally formulated as follows: 

(6.4.5a) 

TT/( T) = rw( 1.)],:i '= 1 .. .j] (6.4.5b) 

6.4.5d) 

(6.4.5e) 

Equation (6.4.5e) is the analogous of (6.4.1 e) for the uncongested network case. 
It can be stated more explicitly as: 

f[j] = I LI[/, j]. h[l] 
I~j 

(6.4.5t) 

The difference with respect to the uncongested network is that, in this case, LI is a 
function of links travel times t in all the previous intervals up to intervalj: 

LI[/, j] = LI[l, j]{t l (T;); i = I ... j) (6.4.5g) 

A formal fixed point specification of a dynamic user equilibrium models is the 
following. 

f*[T j ]= I ILI~.j]{tf(J*[i];i=I ... j)). 
To I=J ... j 

P[p,Iitl(J * [i];i = I...j))+ Ec{tl(J *[i];i = / .. .j))+ PeEDJf...T/. To) + PILDJf...TfJ To)]. dTo 

Existence and uniqueness conditions for the fixed-point formulation have not 
been stated; however, in this case it is more difficult to arrive at general conditions, 
if possible at all, given the discreteness of time and packets. 

/ 

./ 
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6.4.3. Dynamic Process assignment models 
Dynamic process models require further demand models simulating learning, or 
utility updating, and choice updating mechanisms as in the static case (see Fig. 
6.4.3). These models can be seen as doubly-dynamic assignment models. 

As in the static case, to formalize a dynamic process model we need to 
distinguish between expected (or anticipated) and actual path performance attributes 
at day t. The former are the attributes (e.g. the travel time on a give path) that users 
expect to encounter on the network ata given day t; the latter are what they actually 
experience. On the other hand, not all the users may reconsider their choices every 
day t due to inertia and/or habit. 

In the discrete-flow case, let us consider for sake of simplicity, that path travel 
time is the only attribute updated from one day to the next and let: 

TT-texi r) be the (forward) travel time leaving at the representative time instant '1 
that users expect to experience at day t; 

TT-tact( lj) be the (forward) travel time leaving at the representative time instant '1 
that users actually experience at day t; 

A Deterministic Dynamic Process model, based on simple exponential filters for 
travel times and choice updating models can be formally stated as follows: 

(6.4.6a) 

TT!.t-1 ( ) - r(tj.·t-/( )., '-1 .) act lj - lj' ,j - ... j (6.4.6b) 

TT!.t (7:.) = f3 TT!.t-1 (7:.) + (1-/3) TT!.t-1 (7:.) exp J act J exp J (6.4.6c) 

(6.4.6e) 

(6.4.6f) 

where J3 and a are respectively the weight given to the experience of the previous 
day I-I and the fraction of users reconsidering their choice (assumed here to be 
constant for each day t). 
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Fig. 6.4.3 Dynamic Process Assignment model (without information). 
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Fig. 6.4.4 Dynamic Process Assignment model (with Pre-trip information). 
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Note that given the mesoscopic nature of the model, individual packets updating 
models can be easily adopted. In this case, for instance, it is possible to update only 
the travel time experienced in the actual "yesterday" trip. 

Dynamic process models for within-day dynamic systems can be further 
expanded to include real-time information available by (some) users. This is an 
expanding class of assignment models due to the growing interest in Advanced 
Traveler Information systems (A TIS). It is possible to distinguish two cases: 
information available only before starting the trip (i.e. pre-trip information) and 
information available during the journey (i.e. en-route or while-trip information). 
The former case requires other demand models to express the information acquiring 
process (see Fig. 6.4.4), the latter case requires as well demand models simulating 
compliance with prescriptive information at diversion nodes (see Fig. 6.4.5) 

Dynamic process models can be deterministic or stochastic, as in the case of 
within-day static case, depending on the assumption made on the variables involved 
(average or deterministic variables or random variables). The full specification of 
these models requires assumptions on the type of information given and the 
information strategy, i.e. how information is related to actual system states (see Fig. 
6.4.6). In general, several information strategies are possible: the A TIS can provide, 
for instance, historical information based on network performances in all previous 
time periods with similar characteristic (e.g. time of the day, day of the week, 
weather condition, ... ) or it can provide real-time information on current network 
conditions or it can predict what is going to happen on the network, i.e. predictive 
information. It is worth noting that predictive information is derived from prediction 
of future conditions, but these conditions are themselves affected by how users react 
to information they receive. In other words, there is a circular dependency between 
predictive information and network performance that can be seen again as a fixed­
point problem. Furthermore, with respect to typology of the information provided 
these can be described as descriptive (i.e. travel or congestion phenomena) or 
prescriptive (i.e. route guidance or turning movements). 

Due to the multiplicity of informative contents and the necessity to distinguish 
between users' categories (e.g. informed and non-informed, regular ad non-regular, 
etc ... ) it is not possible to give general formulation for dynamic assignment models 
with A TIS; for these reasons these models will not be described here. 
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Fig . 6.4.5 Dynamic Process Assignment model (with Pre-trip/En-route information). 
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Classification Example 
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En-route (or while-trip) 
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Systems (lVNS) 

Historical 

INFORMATION Real-time 
TIME-DIMENSION (or current) 

Predictive 
(or self-consistent) 

Fig. 6.4.6 - Classification of information types. 
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6.5. Models for scheduled service systems(O) 
Scheduled transportation services, such as those provided by airplanes, trains and 
buses, are considered discrete both in time and space as they can only be accessed at 
certain times and certain locations such as airports, rail stations, and bus stops. In a 
within-day dynamic context, it is possible to model explicitly supply, demand and 
demand-supply interactions for systems with scheduled services starting from the 
timetable. With respect to a given timetable, runs and lines can be defined (see Fig. 
6.5.1). A run, r, represents a connection with a given time schedule (e.g. a given 
train connection), while a line, In, as defined in Chapter 2, may be regarded as a set 
of runs of similar characteristics (e.g. stops, travel times, quality of services, etc.). 
Within-day dynamic models simulate explicitly supply and demand for runs rather 
than for lines, as was the case in static models for scheduled services systems 
described in previous chapters. 

Line 
Service Initial Departure Intermediate Terminal 

run 
type Station Time Stops Station 

1 AA Intercity A 9.30 - D 

2 BB Regional A 9.50 B/C D 

3 AA Intercity A 10.30 - D 

4 CC Intercity A 11.30 D E 

Fig. 6.5.1 Time schedule, runs and lines. 

Dynamic models used to simulate within-day dynamic scheduled services 
systems differ according to a number of factors related to service characteristics. 
The main classification factors affecting dynamic models are frequency, regularity 
and information available to users. 

Service frequency can be related directly to the frequency of the line in the 
reference period, i.e. the number of runs belonging to the line in such a period or, for 
overlapping lines, to the cumulative frequency i.e. the sum of the frequencies of all 
attractive lines connecting the O-D pair ad. 

The service regularity is a measure of how much the schedule is followed. 
Regularity, or rather its opposite, can be measured by several variables depending on 
the analysis purpose. If regularity is used to make assumptions on user behavior in 
line-based systems, such as buses and trains, deviations from the schedule should be 
related to the average headway of runs belonging to the same line. 

(')Agostino Nuzzolo is the co-author of this section. 
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Usually regular services are associated to low frequencies, typical of extra-urban 
systems such as (intercity) rail or air. On the other hand, irregular services generally 
correspond to high frequencies as in urban or metropolitan areas, e.g. bus or 
underground lines. In any case, frequency and regularity are continuous variables 
and their segmentation in "high" and "low" is conventional and somewhat arbitrary. 
In models, they correspond to different hypotheses on users' behavior and to 
different model systems. As such they are at the analyst's discretion. 

Information on services can be available to the user pre-trip (i.e. at home) and/or 
en-route (i.e. at stops). In both cases the information can include waiting times, 
travel times and on-board occupancy. Static information on run schedule is 
traditionally available with timetables: Intelligent Transportation Systems (ITS) 
have expanded significantly the range of information available to the traveler, 
through Advanced Traveler Information Systems (A TIS), and improved the 
performances of transit services, through Advanced Public Transportation Control 
Systems (APTCS). 

Different supply and demand models are used to simulate scheduled services 
systems depending on their different characteristics. In the case of low frequencies 
and regular services, supply is modeled through deterministic dynamic networks 
and users are assumed to have full information before starting their trip. They 
choose a specific run on the basis of the expected performance attributes, with 
models analogous to those assumed for modeling path choice on continuous service 
networks (see section 4.3.4.1). 

On the other hand, supply models for high frequencies and irregular services are 
based on stochastic dynamic networks. Furthermore it is assumed that users may not 
have all information before starting their trip and, as described in section 4.3.4.2, 
they follow a mixed pre-trip/en-route choice behavior. It is commonly assumed that 
en-route choices occur at stops and are relative to the decision to board a particular 
run or to wait for another run of an attractive set. The choice of boarding stops is 
considered to be made before starting the trip, since it is not influenced by unknown 
events. 

As usual, dynamic assignment models to scheduled services can be decomposed 
in supply, demand and supply/demand interaction models. A general scheme of 
intra-period dynamic assignment models to scheduled services is shown in Fig. 
6.5.2. 

In the following the two cases of low-frequency regular services and high­
frequency irregular services will be addressed separately. 

It should be noted that dynamic traffic assignment models for scheduled services 
is a newer and significantly less researched subject than DT A for continuous service 
(road) systems. The models described are thus somewhat less established than in the 
continuous case. 
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Fig. 6.5.2 - Schematic representation of within-day dynamic transit assignment models. 

6.5.1. Models for regular low-frequency services 
For regular low-frequency services, it is assumed that each run follows scheduled 
departure and arrival times, and that users have all relevant information before 
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starting their trips and choose access/egress terminals as well as the runs according 
to their desired arrival or departure times. 

In the following sub-sections the within-day dynamic supply, demand and 
demand-supply interaction models will be discussed. 

6.5.1.1. Supply models 

In general, intra-period dynamic supply models of scheduled services consist of a 
network model (graph plus link performance and cost functions) and the 
relationships connecting path costs to link costs and link flows to path flows 
(network loading or flow propagation model). The main difference with continuous 
service (road) systems is in the graph model, which allows to adopt the convenient 
linear supply models introduced in Chapter 2 for static systems. 

The model used for scheduled services is known as space-time or diachronic 
graph; in this graph some nodes can have an explicit time coordinate and therefore 
represent events taking place at a given instant. Each run can be described by means 
of a sub-graph (Fig. 6.5.3) whose nodes represent the arrival and departure times of 
the vehicles (trains, planes, buses) at the stations and whose links represent the 
travel from one station to another or the dwelling at a given station. Other nodes 
represent the arrival of the user at the station to board or alight from each run. These 
nodes are connected, through boarding and alighting links, to the nodes representing 
the arrival and departure of that run and by links representing the traveler's transfer 
from one run to another at the same stop. This set of nodes and links is usually 
defined as a run sub-graph. 

Other sub-graphs are the temporal centroid graphs representing times and 
location of trips departure/arrival. To simulate the users' choices among different 
runs, or sequences of runs, it is necessary to introduce the desired departure times 
from the origin z;" or the desired arrival times at the destination, rd. Even if desired 
departure or arrival times are continuous variables, in applications discrete time 
intervals (e.g. five minutes long) are used. Possible desired departure or arrival times 
are represented as time centroid nodes having the same spatial coordinate of the 
zone centroids introduced in Chapters 1 and 2 and temporal coordinates given by 
representative time instants of the relative discrete time intervals (e.g. one node 
every five minutes). Nodes of the temporal centroid graph represent also the actual 
departure times from the origin to the boarding terminal or the actual arrival times at 
the destination from the alighting terminal. The links connecting the temporal 
centroid, representing the desired departure time of the generic user, to the temporal 
node representing the actual departure time from the origin to catch a given run 
represent the anticipation or delay of the actual departure with respect to the desired 
one (Fig. 6.5.4). Similarly the anticipation or delay for the actual arrival times with 
respect to the desired ones are represented by links in the temporal centroid graph. 

The graph model for the overall system is usually completed with links 
representing access (egress) from (to) the centroids, with the relative travel times 
and costs. Fig. 6.5.4 shows a diachronic graph for desired departure time; similar 
graphs can be built for a desired arrival time. 
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TIMETABLE 

Terminal A Terminal B Terminal C 

arr. par. arr. par. arr. par. 

08.25 08.30 --- --- 12.00 12.05 

08.55 09.00 10.10 10.15 11.15 11.18 

10.58 11.00 12.35 12.37 14.00 14.02 

Fig. 6.5.3 Diachronic graph representation of scheduled services. 

• space 

Diachronic graphs are very convenient since they exploit the intrinsically 
discrete service structure (the services being available only at certain time instants); 
this allows the use of very efficient network algorithms similar to those described 
for static continuous networks. Other models to represent regular services are based 
explicitly on timetable manipulations. These models are conceptually analogous to 
the graph representation, which is more consistent with the general approach to 
supply modeling followed throughout the book. 

In a diachronic graph such as the one introduced, a trip is represented by a path k 
starting from the desired departure time on the temporal centroid sub-graph and 
ending at the arrival time at destination (see Fig. 6.5.4). Note that, unlike continuous 
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service graphs, desired departure time is uniquely associated to each path. The same 
sequence of runs for a different desired departure time correspond to a different path 
k '. Analogously a path k identifies uniquely the actual departure time (interval) 'to 
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Fig. 6.5.4 Example of diachronic graph for low-frequency services. 

space 

For diachronic network models, performance variables, as well as their 
relationships with flows, are substantially analogous to those described for static 
models. As in Chapter 2, link users' performance or level of service attributes, rn/, 

are variables expressing average values of individual attributes perceived by the 
users and associated to a given link. Examples of link attributes are monetary cost, 
access time, anticipation or delay with respect to scheduled departure, on board 
travel time, number of transfers, egress time, and so on. In the same way the average 
generalized transportation cost, or more synthetically the link cost, is the global 
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disutility associated to each link. The link cost, Ct, is a (dis)utility function, typically 
linear, of link performance attributes, underlying travel related choices and, more in 
particular, path choices: 

Because of congestion, some performance attributes, and thus the average link 
cost, can depend on the number of users on the link and, possibly, on other links of 
the graph. Given the characteristics of the system (low-frequency and regularity, 
place booking, etc.), it is often assumed that link performances and costs are 
independent of flows, and supply is modeled as a non-congested network. In some 
cases, however, it can be appropriate to take into account congestion effects. This 
could be the case for regional buses or rail services, where not all passengers may 
have a seat and in the limit they may have difficulty to board some runs. Referring 
to on-board links (see Fig. 6.5.5), separable cost functions similar to those 
introduced in section 2.3.2.2 may be used to represent discomfort (equation 2.3.20) 
and on-board travel time (equation 2.3.15). Penalty functions can be adopted to 
represent possibility of not being able to board a given run due to overcrowding. 

Note that early or late schedule penalties, EAPtJ.. T, Td) or EDPtJ.. T, To) and LAPk( T, 

Td) or LDPtJ.. T, To) introduced in section 6.3 for continuous service dynamic demand 
models can be obtained as additive link costs related to the links in the temporal 
centroid graph connecting the node corresponding to the desired departure (arrival) 
time with the node corresponding to the actual departure (arrival), see Fig. 6.5.4. 

I 
I 
I 
I 
I 
I 
I 

Stop Axis 

dwelling link 

Fig. 6.5.5 Link classification at stops. 

Performance attributes and generalized transportation cost (disutility) can be 
extended from links to paths. The average generalized transportation cost gk of a 
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generic path k is defined as a scalar quantity homogenizing the different 
performance attributes perceived by the users for the whole trip. As in Chapter 2, the 
path cost in the most general case is made up of two parts: link-wise additive cost, 
g/DD, and non-additive cost, '5kNA, assuming that they are homogeneous: 

(6.5.1) 

or in matrix terms: 

g = LIT C + gNA (6.5.2) 

where LI expresses the link-path incidence matrix. The price structure can be non 
linear with respect to distance (e.g. based on the OlD pair, independently on the run 
or sequence of runs followed), thus requiring the introduction of non-additive costs. 

The average number of users (in a time unit) following path k is called the path 
flow hk• The link flow, iI, represents the average number of travelers using the link. 
Thus flow on a link representing a connection between two successive stops of a 
particular run is the average number of users using that service segment. To adopt a 
terminology and notation consistent with within-day static models, the number of 
users on a link or following a path in the diachronic network has been referred to as 
flow, even though it is conceptually and dimensionally a number rather than a rate 
for time unit. 

In within-day dynamic supply models for scheduled services, link flows can be 
obtained by summing flows on all paths including that link. This leads to a linear 
network loading model as in the within-day static case: 

(6.5.3) 

f =LIh (6.5.4) 

6.5.1.2. Demand models 

Demand models used in dynamic assignment for low-frequency regular scheduled 
service networks are analogous to those described for discrete-time models of 
continuous services and express the relationship between path flows and path costs. 

The users' flow following a path k connecting the O-D pair ad and starting the 
trip in each interval U] can be obtained with elastic demand profile models, also 
simulating the departure interval choice as a function of the desired arrival time, Td, 

or the desired departure time, To. In this case there is no need to model departure 
time choice separately from path choice since the former is implicitly included in 
each path alternative. 
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Path choice models for single class-single service give the probability Pod.i.. 1)/To) 

of choosing path k and related actual departure time 1), given O-D pair od and 
desired departure time 1(, (or alternatively desired arrival time Td). Pre-trip path 
choice models assume that users choose the path minimizing the perceived disutility, 
taking into account several attributes such as access and egress times and costs, 
travel time, number of transfers, monetary cost, comfort and early/late schedule 
delay. These attributes are typically homogenized in the path cost variable 
introduced in the previous section. Other attributes (e.g. socio-economic variables) 
can be included in a term Vok . 

Most models proposed in the literature to simulate path choice also simulate 
choice set following a selective approach, see section 4.3.4. In particular it is 
assumed that only some of the topologically feasible paths belong to the choice set. 
Paths are selected following dominance rules such as: 

- runs leaving before and arriving after with respect to other runs in the choice 
set are not included in the set; 

- paths must satisfy criteria relative to maximum number of transfer, maximum 
time of transfer, maximum travel time and so on. 

The global systematic utility of a given path k can thus be expressed as: 

(6.5.5) 

Note that in equation (6.5.5) the departure time 1) of the first run and the desired 
departure time To, both univocally associated to path k, have been explained in 
analogy with continuous service models. 

A Logit specification of the path choice model for desired departure time To at 
destination is: 

(6.5.6) 

If there are several service types (e.g. intercity or regional) and classes (e.g. 
first/second class) the interdependence of choice dimensions can be accounted for 
by assuming a positive correlation among random residuals of perceived utilities of 
paths sharing service type, class, etc. In this case a multi-level hierarchical Logit 
path choice model could be adopted. 

The average flow hk on path k can thus be expressed as: 

(6.5.7) 

Note that equation (6.5.7) is the equivalent of equation (6.2.40) for continuous­
services continuous-flow models. 
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6.5.1.3. Demand-supply interaction models 

Given the supply and demand models described in the previous sub-sections, within­
day dynamic assignment models to regular low-frequency scheduled service 
networks reduce to within-day static assignment on a diachronic network. Also in 
this case it is possible to distinguish between :Jncongested Network, User 
Equilibrium and Dynamic Process assignment models. 

Since paths correspond to composite choice alternatives including departure 
time/ access-egress terminals/ runs, only random utility models have been adopted 
and calibrated, thus giving rise to stochastic assignment models (SUN, SUE etc.). 

The general theoretical results on existence and uniqueness of solutions 
described in Chapter 5 can be applied to this case and will not be repeated here. 

6.5.2. Models for irregular high-frequency services 
For irregular high-frequency services, the complexity of the real system increases 
considerably with respect to both users' behaviour and performance variables. 
Different within-day dynamic models can be specified for these systems under 
different assumptions. In this section one such models will be described stressing, 
once more, that this area is very little researched and more theoretical developments 
and applications are expected in the future. 

In this model, users are assumed to make their choices at different times during 
their trips. The choice of the first boarding stop and the attractive line set is made 
before the trip begins (pre-trip choice). During the trip users choose the actual runs 
at stops adapting to the actual succession of run arrivals and to information given (if 
any) about waiting times. It is further assumed that because of the high-frequency 
and the irregularity of services, the actual departure time from the origin is equal to 
the desired departure time, so they arrive at stops independent of run departure 
times. Thus if To is the (desired) departure time from the origin and to,,,s the access 
time to stop s, arrives at the stop at the absolute time -Z:w=1(, + ta,os' 

In the following subsections the supply, demand and demand-supply interaction 
models consistent with the above assumptions will be described. 

6.5.2.1. Supply models 

The diachronic network model described in section 6.5.1, with some differences, can 
be adopted also in the case of irregular services. Due to the irregularity of services, 
the actual arrival and departure times of each run at day t can be different from the 
scheduled ones and from those in other days. This can be represented by a vector of 
a random variables b whose elements are the arrival time bar,s and the departure time 
bpr.s of each run r at each stop s. In the following bl indicates a realisation of vector b 
and GI is the relative diachronic graph (see Fig. 6.5.4). The equations (6.5.1), (6.5.2), 
(6.5.3) and (6.5.4), expressing the relationships between path costs and flows with 
link cost and flows can be still used if a link-path incidence matrix LIt relative to 
graph GI, is defined. 
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It is usually assumed that the mean of random variables ba.rs and bpr .• coincide 
with the scheduled arrival and departure times. 

The vector b is related to another vector y whose components, represent the 
running time of run r on running link I, Yrl, and the dwelling time of run r at stop s 
(dwelling link), Yr •. Because of the irregularity of the services also Y can be modelled 
as a vector of random variables. The components of two vectors b and y are related 
through the following recursive equations: 

ba.rs=bp.r(s-/)+Yr,l l=((s-J),s) 

Thus, given the initial departure time of run r, from a given vector y' it is 
possible to generate a vector bt and vice-versa. In applications the random vector y is 
often modelled from empirical observations. One of the model proposed is a 
MultiVariate Normal (MVN) with mean y (scheduled running and dwelling times) 

and a variance-covariance matrix L;, whose elements can take into account, though 
implicitly, several circulation phenomena such as: 

the propagation of delays between successive sections of the same line, 

COV(Yr.I_1> Yrl»O 

the persistence of perturbation factors on a given line section, 

COV(Yr.h Yr+/,I»O 

the reduction in dwelling time due to a longer dwelling time of the previous 
run at the same stop, 

cov(Yr_J .. " y".)<O 

From the algorithmic point of view a configuration G I of the diachronic network 
can be generated by sampling a vector bl or y' from the multivariate distribution 
assumed for b or y. For example, the Monte-Carlo method with a Cholesky 
factorialization of the matrix L;, can be used if y is assumed distributed as a 
MVN(y,L'y). 

In any case the resulting vector y' must be modified to satisfy some feasibility 
rules such as the congruence of generated times with the allowed speeds for transit 
vehicles, the absence of overtaking between successive runs, and so on. 



@ centroid 

.~ 

• actual departure node o origin temporal centroid 

• actual arrival node 
• destination temporal centroid 
o stop arrival node 
o boarding/alighting node 
• run arrival/departure node 

temporal 
centroid 

aXIs 
········sto~".~is A 

stopA 

® 
centrOId 

CHAPTER 6 

-. run/dwell link 

-: boarding/alighting links 

----+ access/egress link 

t transfer link 

,1) (~ ..... \]) example of path 

Configuration of day t 

stopB 

temporal 
centroid 

,!?;ij,~ 

®. 
centroid 

Fig. 6.5.6 Example of diachronic graph for high frequency irregular services. 

6.5.2.2. Demand models 

427 

space 

Generally for the same origin temporal centroid several different boarding stops, s, 
can be reached and many runs are available (see Fig. 6.5.6). Thus path choice on a 
realisation G I of the diachronic network implies choice of access stop and choice of 
the runes) leading the user to the destination. 

Path choice models give the probability poJr,sl1'o] of choosing path including run 
r at boarding stop s, given the O-D pair ad and the origin desired departure time 1'0 

(or the arrival time at stop s, tS.o). Given the different choice behaviour assumed for 
pre-trip choices (stop s) and en-route choices (run r), this probability can be 
expressed as: 

(6.5.8) 
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Fig. 6.5.7 Example of path choice set. 

This is the product of the probability of choosing run r at stop s, given the arrival 
time -Z:"o, by the probability of choosing stop s, given the desired origin departure 
time To. In the following the index od, when not reported, is understood. 

For modelling choice probabilities in equation (6.5.8), given the irregularity of 
services, some further assumptions have to be made on available information and 
the related choice set. 

If information about waiting times is available at stops, the user can consider as 
choice alternatives runs of different lines according to their arrival times in any 
particular day t. Thus for users leaving origin "0" for destination "d' at time To, 

arriving at stop s (where a user information system on run waiting or arrival times 
operates) at a time Ts,o and finding a supply configuration bl, an initial choice set of 
runs K'T Ts,w bl] may be defined. This set is specified by line runs connecting stop s 
directly or indirectly to destination d and satisfying some feasibility rules, such as: 

the set includes the first run of each line leaving after user arrival at stop at 
time Ts,o; 

the runs are not dominated (i.e. there are no runs leaving before and arriving 
after with respect to other runs of the choice set); 
the runs satisfy some criteria as the maximum number of transfers, 
maximum time of transfer, maximum travel time, etc. 

The set K'[ T,',o, bl] depends on user arrival time at the same stop Ts,o, since 
different runs can be accessible to users for different arrival times; it depends also on 
the system configuration b" since for the same arrival time on different days, 
different choice sets maybe available, due to system irregularities. 

Furthermore, in case of oversaturation of arriving runs, the set can be modified 
while the user waits at the stop. When a run of a specific line included in K'[ T •. o, bl] 
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arrives and has no available places, the user can decide to extend the choice set, 
introducing the next run ofthe same line. 

For example, with reference to Fig. 6.5.8, for a configuration b' and a user 
arriving at 'I, the run choice set consists of run 1 of line b, run 2 of line a and run 1 
of line c. This set will differ if the user arrives in '2 or if he arrives in 'I of day t+ 1 
finding a different supply configuration bt+1• In the latter case, if there is congestion 
(e.g. on run b 1) the choice set may be extended to run 2 of line b. 

configuration of day t 

configuration of day t 
aJ bl a2 cJ b2 c2 a3 

configuration of day t+ 1 
aJ 

'1 

Fig. 6.5.8 Dependence of run choice set on configuration bt and arrival time Ts,o • 

The choice set may change while the user waits at the stop, not only because of 
congestion, but also because for each arrival, if not boarded, the corresponding run 
is eliminated from the set. This point will be clarified below. 

A set of arrival times for the runs belonging to K'[ ".,,,,b'] can be associated with 
each choice set K'[ I:,.,(),b']for any arrival time l of run r +. In the following K'[ ,+,b'] 
denotes the generic set available at time ,+> 's,o of arrival of run r t at the stop, with 
respect to which the user makes his/her choice. 

A sequential mechanism can be assumed to simulate run choice. When a run r+ 

of the path choice set K',[ ,+,b'] arrives at time l> I:"o, the user chooses in an 
intelligent adaptive way, to get on r+ if the perceived utility UN is greater than the 

utility U r* of all other runs r* EK''[ l,b'] yet to arrive. In formal terms it follows: 

r+ and r*EKS [,+,i7'] (6.5.9a) 
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As usual perceived utilities can be expressed as the sum of a systematic utility, 
expressed a linear combination of attributes, and a random residual. A possible 
specification is: 

(6.S.9b) 

... + f3I1Nn,.. + Gr' (6.5.9c) 

where: 

CFWr " CFWr • are the boarding comfort (function of on-board crowding at stop); 

Tw r • 

Tbr+ and Tbr• 

Tcr , and Tcr • 

Nnr, and Nnr• 

CFBr+, CFBr• 

is the waiting time (equal to the difference between the arrival time 
of run r + and the arrival time of run r*, provided by information 
systems); 
are on-board times; 
are transfer times; 
are the number oftransfers; 
are the "route" on-board comfort (function of on-board crowding 
degrees in the following links); 
is the time already spent at stop (equal to the difference between 
arrival time of run r+ and the user arrival time 1;, at stop) simulating a 
possible "impatience effect" (j3p>O). 

Note that in this model users cannot make their definitive choice upon arrival at stop 
at time 1;\'0' even if full information about waiting times is available, because 
boarding comfort degrees CFW are not known. Of course, if the user does not 
choose run r +, the choice is reconsidered when the subsequent run arrives and so on 
(sequential run choice behaviour). Other more or less complex choice mechanisms 
can be assumed. 

If it is assumed that random residuals G in equation (6.5.9a) are i.i.d. Gumbel 
distributed, the choice probability pod[r+/s, /] at time r' of the arriving run r+, 

conditional on not choosing previous runs and relative to the choice set K'T r+,bl can 
be expressed by a logit model: 

(6.5.10) 
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The total probability of choosing a given run r, can be expressed as the product 
of the conditional probability (6.5.10) and the probability of not having chosen any 

previous run r belonging to the choice set Ks[ 'f", h']: 

Pod ~/ S, .s.o1 == 0'-=1..'-1 (1- Pod ~-/ s,.- D· p[r / s,.] (6.5.11) 

where each conditional probability depend on the arrival time "'.0 and may be 
computed through equations (6.5.9) and (6.5.10). 

The probability of choosing the boarding stop s, Pod[S/.o], can be specified with a 
different model referring to a choice set of boarding stops, Sod, that can be specified 
following different rules (e.g. by considering all stops within a certain distance from 
the origin). A perceived utility US< '0), can be associated to each stop in the choice 
set: 

(6.5.12) 

where {:f is the vector of the model parameters, Xs is a vector of stop-specific 
attributes (e.g. access time, presence of shops, etc.), and Hs is an "inclusive utility" 
expressing the average utility associated to all runs available at stop s. To model the 
inclusive utility further assumptions have to be made on how travellers acquire and 
process information about the system performances. This model is strictly connected 
to the approach followed to simulate demand-supply interactions. One possible 
specification of Hs is based on the frequencies of the lines available at each stop and 
belonging to a feasible path on the line graph. This model is justified by the 
hypothesis of the lack of regularity (and information) and high frequencies of the 
system. Assuming a logit path choice model among the lines In belonging to a set 
LnS<a,d) of lines available at s given the O-D pair ad, the inclusive utility is 
proportional to the logsum variable Hs: 

with V1n.od depending on average (scheduled) level of service attributes related to the 
line In and given by: 

where the symbols have the same interpretation as in equation (6.5.9) but the 
coefficients are in principle different since they represent different choice 
mechanism. Alternatively the average cost of the minimum hyper-path connecting s 
to the destination d can be associated with each stop s. This model has the advantage 



432 INTRA PERIOD (WITHIN-DA Y) DYNAMIC MODELS 

of exploiting all the theoretical results and the computational algorithms described in 

Chapters 5 and 7. In this case it would result H, ;: x:;" . 
Using a Logit model, the stop choice probability can be expressed as: 

[ / ] _ exp(V, (,,J) 
Pod s '0 - '"' 

~ exp(V,. ('0)) 
(6.5.13) 

Thus the total choice probability of a path k represented by departure time '0' 

boarding stop s and run r (6.5.8) can be obtained through expressions (6.5.10), 
(6.5.11) and (6.5.13). 

Finally, the average path flow hk can be expressed as: 

6.5.2.3. Demand-supply interaction models 

Given the irregularity of the system and the assumptions made on users behaviour, 
especially at stops, demand-supply interactions should be consistently modelled 
through Stochastic Dynamic Process (SDP) model. In fact, service irregularities, 
represented by random vectors band y, are simulated through a stochastic supply 
model. On the other hand user choices at day t can be assumed as independent 
random variables following a multinomial distribution with path choice probabilities 
given by equation (6.5.8). Fig. 6.5.10 shows the number of users on the same section 
of the same run simulated in successive days for a real-size urban transit network 
under severe irregularity conditions. 
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Fig. 6.5.10 Example of loads on the same section of the same run in different days. 
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The type of SDP model depends on a number of assumptions. The first factors 
are the assumptions made about users learning (cost-updating) mechanisms. If it is 
assumed that their pre-trip choices are based on average line attributes, see section 
6.5.2.2, stop choice probabilities Pod[S/,o] do not change over successive days, while 
run choice probabilities are affected by random events occurring at each day t but do 
not depend on previous days. Under these assumptions the stochastic process is a 
renewal process, i.e. joint distribution probabilities of the variables describing the 
system state are independent from the states occupied in previous days. This 
assumption is reasonable for uncongested systems where explicit utility updating 
mechanisms can be ignored and users base their choices on line frequencies due to 
the unreliability of the timetable. 

Matters are further complicated by congestion effects. Given the randomness of 
the system, congestion levels vary over successive days. If users are assumed to 
choose the boarding stop on the basis of uncongested attributes (as it's typical of 
irregular users), congestion plays a role only in run choices at stops and the 
stochastic process is still a renewal one. Otherwise (regular) users base their pre-trip 
choices on expected congestion levels resulting from their previous experience. In 
this case an utility updating filter similar to the ones described in section 5.8 has to 
be introduced and the process becomes a Markovian one. 

Reference Notes 

Although Dynamic Traffic Assignment is a relatively new research subject, a wide 
body of literature has been produced over the last 15 years (and only some of them 
are quoted here). 

The first to propose DT A as a research subject of its own in a form similar to the 
present formulations were Ben Akiva et. al. (1984). The framework adopted in this 
chapter to present supply, demand, and supply interaction models, is original. 

Continuous-flow models were first investigated by the scientific community. 
These models were adopted in the seminal work of Merchant and Nemhauser (1978) 
addressing system-optimal DT A with a single origin. The first to identify the 
Dynamic Network Loading model as a component of any DT A model were Cascetta 
and Cantarella (1991). The continuous-flow supply model described is based on the 
work of Friesz et al. (1989), who introduced the travel time link flow propagation 
model and equivalent conditions for respect of the FIFO rule. Recently more general 
equivalent condition for FIFO have been stated by Chabini and Kachani (1999), who 
have also investigated the properties of uniqueness and existence of the continuous­
flow single-link network DNL problem. Some heuristic algorithms have been 
proposed in the literature for solving the supply model for general networks (Wu et 
al.; 1995, Astarita, 1996; Xu et aI., 1994) 

In the literature there are several papers proposing discrete flow supply models, 
both at the mesoscopic level (Cascetta and Cantarella, 1991; Jayakrishnan and 
Mahamassani., 1994; Ben Akiva et aI., 1997; Cantarella et aI., 1999), and at the 
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microscopic level (Yang and Koutsopoulos, 1996). In general it can be said that 
little or no efforts has been made to propose a general formulation of discrete flow 
models as well as to investigate their theoretical properties as for continuous models. 
Under this respect the proposed general framework for discrete flow models is 
original. 

Demand models of departure-time choice were first proposed by Abkowitz 
(1981) and Small (1982); a joint departure time-path choice model for urban 
networks was proposed by Cascetta , Nuzzolo and Biggiero (1992). More complex 
departure-time and path switching models were proposed by Mahamassani and Liu 
(1999). 

Most models proposed in the literature for demand-supply interactions are User 
Equilibrium models both deterministic and stochastic. 

Papers on continuous flow models usually proposed ways to extend to time­
varying demand and link flows the Deterministic (Wardrop's) User Equilibrium 
equivalent formulations (Le. optimization or variational inequalities). Among these, 
the papers of Boyce et al. (1991), Janson (1989), Vytoulkas (1990), Friesz et al. 
(1993), Wie et al. (1990) and the book by Ran and Boyce (1994) can be referred to. 
Stochastic User Equilibrium has been formulated as a fixed-point problem by 
Daganzo (1983) and Cantarella (1997); however the general formulation of 
continuous and discrete flow within-day dynamic, fixed point models is original. 
Examples of dynamic process models are those proposed by Cascetta and Cantarella 
(1991), Cantarella et al. (1999), Jayakrishnan et al. (1994), Jha et al. (1998). 

Dynamic assignment for transit, or other scheduled, services received 
considerably less attention in the literature. The idea to represent the schedule 
through a diachronic network can be credited to Nuzzolo and Russo. (1996). Some 
examples of dynamic assignment models for low-frequency regular services can be 
found in Cascetta et al. (1996) and Nuzzolo et al. (2000), for multiple-service rail 
networks, and in Cascetta and Papola (2000) for multimodal bus and rail networks. 
Dynamic assignment for irregular scheduled services is a still newer area. The 
papers by Hickman and Wilson (1995), Hickman and Bernstein (1997) and Nuzzolo 
et al. (1999) are among the few studying these models. 



7 ALGORITHMS FOR TRAFFIC 
ASSIGNMENT TO TRANSPORTATION 

NETWORKS(O) 

7.1. Introduction 
In Chapter 5 several (within-day static) assignment models were formulated under 
for various assumptions on users' behavior and network congestion. Computing link 
flows and other relevant variables resulting from assignment is computationally for 
real size networks with thousands of nodes and tens of thousands of links and 
intensive requires efficient algorithms. This chapter describes the theoretical 
foundations and the structure of some of the simplest algorithms for solving (within­
day) static assignment models (algorithms for within-day dynamic assignment 
presented in Chapter 6 are still at a reasearch stage). The main emphasis is on 
presenting simple and effective solution approaches for assignment to large-scale 
networks, rather than providing an exhaustive analysis of the many existing 
algorithms. 

Section 7.2 describes the structure of shortest path algorithms used within many 
assignment algorithms. 

Section 7.3 describes the algorithms for stochastic and deterministic uncongested 
network assignment. These algorithms will also be used as elements of algorithms 
for equilibrium assignment to congested networks. Uncongested network 
assignment algorithms can easily be extended to compute the satisfaction function 
(described in section 3.5) as a function of link costs. The satisfaction function is also 
relevant for elastic demand assignment algorithms (section 7.6) since its value is an 
attribute of the demand functions (specified by the model system described in 
Chapter 4). Furthermore, satisfaction values calculated for link costs corresponding 
to present and future scenarios are used to evaluate the users' benefits (Chapter 10). 

Section 7.4 describes some simple algorithms for stochastic and deterministic 
equilibrium assignment models with rigid demand. Section 7.5 describes algorithms 
for the determination of the shortest hyperpaths and their application to traffic 
assignment with pre-trip/en-route path choice models. Finally, section 7.6 describes 
the extension of the algorithms presented in the previous sections to multi-mode 

(0) Giulio Erberto Cantarella co-author of this chapter. 
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assignment with elastic demand. All presented algorithms can easily be extended for 
multi-user assignment, which will not be explicitly addressed. 

In what follows, it is assumed that the network topology is known and that each 
origin/destination pair is connected. In some cases, apart from the notation adopted 
in Chapter 2, it will be useful to indicate explicitly the end nodes ofa link I =(1;)). 

7.2. Shortest path algorithms 
The identification of the shortest paths between pairs of centroids is used in the 
simulation of path choice behavior within the assignment algorithms. In particular, 
deterministic path choice simulation requires the identification of the shortest path 
(or paths) between each pair of centroids, while in probabilistic path choice the 
shortest paths are sometimes inputs of stochastic uncongested network assignment 
algorithms. Furthermore, most models used for the construction of the set of relevant 
paths, with a selective approach and explicit paths enumeration (described in section 
4.2.4.1), lead to the solution of a shortest path problem. (Such a set can be specified 
shortest path algorithms with respect to different link attributes such as distance, 
monetary cost, travel time, or through the identification of the first k shortest paths). 

Assuming that only elementary paths, i.e. those without loops, are relevant, there 
is a finite number of such paths and they could be enumerated for each O-D pair. 
When the explicit enumeration of all paths is not feasible due to the large number, as 
it is often the case, shortest path algorithms that avoid explicit path enumeration 
have to be adopted as described in this section. 

Applications relative to transportation network assignment do not require the 
determination of the shortest path between all the possible pairs of nodes, only 
between centroids. This section, therefore, describes the basic structure of shortest 
paths algorithms from an origin centroid 0 to all the network nodes (forward 
shortest paths) or from all the network nodes to a destination centroid d (backward 
shortest pathsl I ). 

In what follows it is assumed that shortest paths cannot cross centroids; as such 
each centroid can be represented in the network model by two unconnected nodes, 
the origin, from which links exit, and the destination, into which links enter(2). 
Furthermore, for the sake of simplicity, the variable, assumed non-negative(3), 
assigned to each link will be called cost, since it usually represents the generalized 
transportation cost; however it could be any other performance variable (distance, 
travel time etc.). Let 

c, = Cii :2: 0 
Zi,j:2:0 

be the cost on link 1= (iJ); 
be the cost of the shortest path between the any pair of nodes i 
and); note that in general it may result Z'.i '* Zi.i in (e.g. due to 
one-way streets, different slopes, etc.). 

Shortest path costs satisfy the triangular inequality: 
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Zo,; + Z;,d ~ Zo,d Vi Vod 

In fact, if for an od pair there was a node i for which Zo,; + Z;,d < Zo,d, the cost of 
the path from 0 to d through the node i would be less than Zo,d, against the 
assumption that Zo,d is the cost of the shortest path from 0 to d. 

The triangular inequality implies that link costs and shortest path costs satisfy the 
Bellman principle' which states that a shortest path is made up by shortest paths: 

if the link (i,j) belongs to the shortest path between 0 andj: 
then Zo,; + cij = ZOJ otherwise Zo,; + cij ~ ZoJ 

More in general: 

if the link (i,j) belongs to the shortest path between 0 and d 
then Zo,; + cij + Z;,d = Zo,d otherwise Zo,; + cij + Z;,d ~ Zo,d 

It can easily be seen that the Bellmann principle is equivalent to the first 
Wardrop principle (for a uncongested network), discussed in Section 5.3.2. If there 
is only one shortest path between each pair of nodes, the second condition of each of 
the two formulations of the Bellman principle holds as strict inequalities. 

It should be recognized that if there is only one shortest path between each pair 
of nodes (or if there are several shortest paths, only one is taken into consideration), 
the shortest paths from an origin node 0 to other nodes form a forward trei4), 1'(0), 
with root o. Any forward tree 1'(0) can be described by the link, necessarily unique, 
entering each node j (or from the initial node of this link). Similarly, the shortest 
paths from all the nodes to a destination node 0 form a backward tree, 1'(c/), with root 
d. Any tree 1'( c/) can be described by the link, necessarily unique, exiting from each 
node i (or from the final node of this link). (The use of the same notation for forward 
trees from an origin 0 and backward trees towards a destination d does not generate 
ambiguity if only trees relative to centroids are considered. In this case the type of 
node n, origin or destination, defines the type of tree, forward and backward.) 

Given a forward tree 1'(0) from the origin node 0, let 

XT(o),; ~ 0 be the cost along the only path from the origin node 0 to the node i in the 
tree 1'(0). 

It yields: V(iJ) E 1'(0) 

The tree 1'(0) from the origin node 0 is the tree of shortest paths (or one of such 
trees if there are several shortest paths between some pairs of nodes) if and only if 
the following condition deduced from the Bellman principle, holds (see example in 
Fig.7.2.1a): 

V(iJ) ~ 1'(0) (7.2.1) 
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In this case, the values XT(o),i are the shortest path costs Zo,i' 

Similarly, given a backward tree T(d) from the destination node d, let 

X"T(d) :2: 0 be the cost along the unique path from the node i to the destination d in 
the tree T(d). 

It yields: Cij + J0,T(d) = X;,T(d) V(iJ) E T(d) 

The tree T( d) to the destination node d is the tree of shortest paths (or one of such 
trees if there are several shortest paths between some pairs of nodes) if and only if 
the following condition deduced from the Bellman principle, holds (see example in 
Fig.7.2.1b): 

Cij + J0,T(d) :2: Xi,T(d) V(iJ) ~ T(d) (7.2.1) 

In this case the values X"T(d) are the shortest path costs Zi,d. 

The algorithms used to identify the shortest paths are based on the iterative 
updating of tentative shortest path tree, until condition (7.2.1) or (7.2.2) hold. 
Examples of forward update for the forward tree from the origin 0, and for the 
backward tree towards the destination d, are shown in Fig. 7.2.2a and Fig. 7.2.2b 
respectively. 

The algorithms based on the described updating steps stop when not further 
updates can be performed. The number of steps depends on the node-list 
management strategy i.e. the strategy for the choice of the node used to verify 
whether further updating steps are needed. Note that, under the assumption of non­
negative costs, given a tentative tree T(o) from the origin 0, the cost XT(o),i along the 
unique path from the origin 0 to the node i cannot undergo further updating starting 
from another node j with a higher guess value, XT(o)J > X 7\o),i' Similarly, for a 
tentative tree T(d) towards the destination d. 

Using the above considerations, algorithms with ordering (know also in literature 
as Label-Setting) at each iteration make definitive the node i with the lowest value 
X7'(o)" among those which are not yet definitive. Then updating step are performed 
from this node. The algorithm requires as many updating steps as there are nodes, 
since each step makes the tentative value of a node definitive. Note also that the 
nodes are made definitive in order of increasing shortest path cost. These algorithms 
require carefully designed data structures to handle the ordering of nodes to be 
examined. On the other hand, algorithms without ordering (know also in literature as 
Label-Correcting) generally are simpler to implement, but all tentative values 
become definitive only at the end of the algorithm. In this case the (finite) number of 
updating steps depends on the list management strategy adopted, 

When there are multiple shortest paths, the algorithms described yield a unique 
path depending on the order in which the nodes are examined. The algorithms can 
be modified to give all the possible shortest paths. In this case, however, the set of 
shortest paths from an origin (or towards a destination) is no longer a tree. 
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7.3. Algorithms for Uncongested Network assignment 
Uncongested Network (UN) assignment models simulate systems with link and path 
costs independent of flows. As stated in Chapter 5, this type of assignment is 
adopted for the analysis of moderality congested road and public transportation 
systems. Uncongested network assignment algorithms are also used within 
equilibrium assignment algorithms described in the following sections. 

In the case of explicit path enumeration, path costs can be easily computed from 
link costs through the link-path incidence relationship (5.2.l). Similarly path flows 
can be obtained by applying the demand model (5.2.7) and its extensions, and link 
flows can be computed from path flows using the congruence relationship (5.2.3). It 
is also possible to calculate the EMPU variable, Sod = soJ -Llol c - go/A), related to 
path choice for each od pair. 

However, it should be recalled that for Probit path choice models, it is not 
possible to calculate analytically choice probabilities and therefore the demand 
model (5.2.7) and its extensions. Unbiased estimates of path choice probabilities, 
and of the corresponding path flows, can be obtained by using a Monte Carlo 
sampling technique(5) of paths random residuals. Given a sample of perceived path 
cost vectors, for each path cost vector the demand flow of each O-D pair is assigned 
to the (perceived) shortest path. The average of path flows obtained for the different 
cost vectors in the sample is an unbiased estimate of the Stochastic Uncongested 
Network path flows. It yields: 

where 
II = hSPA(g + d) is the vector of the path flows obtained by assigning the demand 

flow of each O-D pair to the shortest path with respect to path 
costs g + d; 

g is the vector of (systematic) costs vector of the paths; 
If ~MVN(O,L) is the j-th vector of random residuals in a sample of m vectors, If is 

obtained as pseudo-realization of a normal multivariate random 
variable with null mean and variance-covariance matrix L; 

h m is an unbiased estimate of the SUN assignment path flows vector, 
obtained with a sample of m vectors of perceived path costs. 

From a practical point of view, the path flow estimate h-m can be obtained 
through the following recursive equations up to j = m, assuming initially j = 0 and 

hO= 0: 

j = j+l 
d~MVN(O,L) 

II = hSPA(g + d) 
i1 = ((j-l) h,-I + II) / j 
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For each od pair, the average perceived shortest path costs is an unbiased 
estimate of the EMPU variable associated to path choice. Direct use of this approach 
is complex in applications because of the need to generate realizations of a 
Multivariate Normal with non-null covariances, ~ +- MVN(O,£). It is therefore 
convenient to generate perceived path costs from link costs, adopting the same 
approach described in Section 6.3 .2b in the case of implicit paths enumeration. 

It is also possible to calculate UN assignment link flows without explicit path 
enumeration, in the absence of non-additive path costs, using procedures based on 
shortest path algorithms as described below, first for SUN and then for DUN 
assignment. 

7.4.1. Stochastic Uncongested Network assignment without 
explicit paths enumeration 

In Stochastic Uncongested Network (SUN) assignment it is assumed that each user 
associates to each path connecting the O-D pair a perceived utility represented by a 
random variable whose expected value is given by minus the path cost (see Section 
4.5.2><6). Different SUN assignment models can be specified according to the 
specification of path choice model. In the following an algorithm for Logit SUN 
assignment without explicit paths enumeration is described first. Successively an 
algorithm for Probit SUN assignment without explicit paths enumeration is reported. 

7.3.1.1. SUN assignment with Logit path choice model 

For Logit path choice models, it is possible to compute link flows without explicit 
paths enumeration with an algorithm known in the literature as Dial algorithm after 
its author. This algorithm is associated to a particular specification of the Logit path 
choice model, where only effiCient paths with respect to the origins, belong to the set 
of relevant paths; these paths are made up by links l=(i,j) termed effiCient links, such 
that the cost of the shortest path to reach the initial node i from the origin 0 is 
smaller than the cost of the shortest path to reach the final node j, say Zo,; < ZOJ 

Assuming that the link costs are strictly positive, cij > 0, the links of the shortest 
paths tree are efficient by defmition and, therefore, the shortest paths are among the 
efficient paths. Thus the efficiency condition must be tested only for links not 
belonging to the shortest path tree. Analogously, efficient paths with respect to the 
destinations can be defined. It is also possible to define efficient paths with respect 
to both the origin and the destination; in this case, each O-D pair must be analyzed 
separately, with a lower computational efficiency. This definition of the set of 
relevant paths implies that a selective approach is adopted for choice set definition, 
according to the Dial efficiency criterion, classified as topological in section 4.3.4. 
For brevity, only the case of efficient paths with respect to the origins will be 
described. 

Fig. 7.3.1 illustrates some efficient paths from origin 1 to destination 4. Notice 
that with the first configuration only the shortest paths are efficient. This is no 
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longer the case for costs b) and c). The examples show that efficiency does not 
depend on topology only. 

The theoretical analysis of the Dial algorithm is based on an equivalent 
formulation of the Logit model, highlighting the role of link costs in the 
specification of path costs. This formulation allows simultaneous analysis of all the 
O-D pairs with a common origin a. In particular, as was seen in Section 4.3.4.1 the 
Logit probability Pod,k of choosing path k for users traveling from origin a to 
destination d is given by: 

Pod,k = exp(-giB) I 'LjE[od exp(-ghlB) oc exp(-giB) (7.3.1) 

where 

()= (.J61 Jr)a is the parameter of the Logit model, proportional to the standard 
deviation of random residuals; 

gk is the cost on the path k; 
Kod is the set of the (relevant) paths connecting the pair ad. 

If (additive) path costs are expressed as the sum of link costs through the 
congruence relationship (5.2.1), expression (7.3.1) yield: 

Pod,k oc exp( -'L(iJ)ek cyl B) = II(iJ)ek exp( -cijl B) (7.3.2) 

More generally, if each path is considered to be a sequence of nodes, j, and of 
links (iJ), the probability Pod,k can be expressed as the product of the probabilities, 
Pr[(iJ) / j], of choosing each link (i,J) of the path k conditional on the final node j 
(Fig. 7.3.2): 

Pod,k = II(iJ)Ek Pr[(iJ) / j] (7.3.3) 
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Fig. 7.3.2 Path k from the origin 0 to the destination d through the link (iJ). 

The probability Pod,k calculated with (7.3.3) coincides with (7.3.2) if the 
probability Pr[(iJ) I j], of choosing the link (iJ) conditional on the final node j is 
defined with a Logit model of parameter O. In this model, the alternatives are the 
efficient links (iJ) incident to node j (i.e. all the efficient links entering node j) and 
the systematic utility of each alternative V;jIj is the sum of the opposite of the link 
cost cij and of a logsum variable Yi synthetically taking into account the utilities of 
all the efficient paths from the origin 0 to the initial node i of the link: 

where 

Pr[(iJ) Ij] = exp(Vij;/B) I '"i.(mJ)eBSU) exp(Vmj;/B) 
Vijlj = -cij + OY; 

Y; = In('"i.(n,;)eBS(;) exp(Vn;/;!B)) 

(7.3.4) 
(7.3.5) 
(7.3.6) 

BS(j) is the backward star of node j, i.e. the set of links (i. J) incident in the node j; 
Y; is the logsum variable of the utilities of the incident links in the node i. 

The relationships (7.3.4-6) yields: 

with 
Pr[(iJ) I j] = exp«-cij + OY;)IB) I '"i.(mJ)eBS(}) exp«-Cmj + OYm) IB) = wij I »j 

Wij = exp«-cij + OY;)IB) = exp(-cy!B) exp(Y;) = exp(-cy!B)'"i.(n,;)eBS(;) exp(Vn;/;!B) 

»j = '"i.(mJ)eBSU) exp«-Cmj + ()Ym)/ B) = '"i.(mJ)eBSU) wij 

The probability Pr[(iJ) I j] of choosing the link (i. J) conditional on the final node 
j can therefore be expressed as the ratio between a weight wij associated to the link 
(iJ), and a weight »j associated to the node j. Note that the definition of the link 
weights yields: 

Wij = exp(-cy!B)'"i.(n,;)eBS(;) exP(Vn;/;!B) = exp(-cijlB)W; 

Furthermore, a null weight, wij = 0, is associated to non-efficient links i.e. the 
links (iJ), with Zo,;, ~ ZoJ' consistently with the assumption that a link (iJ) belongs to 
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a path if and only if the shortest path to reach its initial node from the origin is less 
than the shortest path to reach its final node. 

From the above considerations, the weights of the links, wlj, of the nodes, W;, 
and the probabilities Pr[(iJY.J'] can be determined by using recursive equations 
equivalent to the relations (7.3.4-6). They are computed for each link, starting from 
the origin 0, with Wo = 1, and continuing with the other nodes i by increasing 
minimum cost Zo,i: 

ifZo,i <ZoJ 
Wlj = 

r exp(-cylO) W; 
~ (7.3.7) 
lo 

W; = 'J:.(mJ)eBSU) Wmj 

Pr[(iJ) / j] = wlj / W; 
(7.3.8) 
(7.3.9) 

Substituting the relationships (7.3.7-9) in '(7.3.3) yields expression (7.3.2). 

In fact, the weights of the path nodes, excluding the origin and the 
destination, are irrelevant since they appear both in the numerator and in 
the denominator, as the final node of a link is the initial node of the next 
link along the path (see Fig. 7.3.3): 

Pod,k = II(iJ)ek Wi exp(-cylO)/W; = 

= II(iJ)ek exp( -cyl 0) W JWd ex: II(iJ)ek exp( -cyl 0) 

Podk = Wo exp(-acoa ) ... x .. !R;exp(-acij) ~ exp(-acjm ) ... x ... y'exp(-aczd ) 

·.,.J¥a )Pj ?m W; 

Fig. 7.3.3 Node and link weights. 
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The Dial algorithm for SUN assignment is based on the iterative calculation of 
the weights of the nodes and links, for each origin 0, using the relationships (7.3.7) 
and (7.3.8). The processing of nodes by increasing minimum cost ensures that it is 
possible to apply the recursive relationships (7.3.7) and (7.3.8), i.e. that when the 
weight wij of a link (iJ), is computed the weight Wi of the initial node i has already 
been determined. When the weights of all the nodes and links are known, the 
demand flow dod from each destination d is assigned backward to the various links 
with link probabilities given by expression (7.3.9). Given an origin 0, for each 
destination d, the EMPU value for path choice is given by the inclusive variable 
relative to the destination d, Sod = Yd. An example is given in Fig. 7.3.4. The 
calculation time is two or three times greater than the time needed for DUN 
assignment. 

The algorithm described can be extended to calculate SUN assignment link flows 
for C-Logit path choice models (described in Section 4.2.5.1) given that one O-D 
pair is examined at a time and an appropriate specification of the commonality 
factor is adopted. 

Observe that the shortest paths used to define efficient paths can be calculated 
with a vector of link cost attributes different from link costs c. For example, it can be 
assumed that efficient paths are defined in terms of their physical length (or another 
attribute), while a cost proportional to the travel time is used to simulate users' 
choice among these paths. In this case the shortest paths and the distances Zo,i are 
calculated with the physical lengths of the links, while link weights wij and node 
weights Wi are calculated using the costs (timesi7) cij. Under this assumption the set 
of efficient paths is independent of link costs. This feature is particularly relevant for 
stochastic equilibrium assignment since for congested networks the SUN function is 
increasing monotone in terms of the (congested) link costs and has a symmetric 
Jacobian (see section 5.3.1). Therefore, the (sufficient) condition for stochastic 
eqUilibrium uniqueness is ensured, as is the convergence of stochastic equilibrium 
algorithms described in Section 7.4.2. 



CHAPTER 7 

2 

4 4 
CI,3= 

3 

INITIALIZA nON SHORTEST PATHS TREE 

[2] 

4 

WEIGHTS AT NODE 2 WEIGHTS AT NODE 3 

(0.37 (0.37 

4 

(0,25 

Cost 
[0] 
[2] 

[3,5] 
[4] 

8=2 

Ord(k) 
1 
2 
3 
4 

WEIGHTS AT NODE 4 

(0,37 

(0,25 

FLOWS AT NODE 4 FLOWS AT NODE 3 FLOWS AT NODE 2 

483 648 648 

447 

1000 1000 1000 

4 

517 517 517 

Fig, 7,3.4 Application of the Dial algorithm for Logit SUN assignment. 



448 ALGORITHMS FOR TRAFFIC ASSIGNMENT TO TRANSPORTA nON NETWORKS 

7.3.1.2. SUN assignment with Probit path choice model 

The Probit path choice model results from the assumption that the random residuals, 
elements of the vector c, are distributed according to a Multivariate Normal, 
MVN(O, L), with null mean and variance-covariance matrix L:. This model can 
account for overlapping paths, introducing a positive covariance between the 
perceived utilities of two paths sharing some links, but it does not allow explicit 
calculation of paths choice probabilities. Unbiased estimates of path choice 
probabilities and their corresponding SUN path and link flows can be obtained by 
using a Monte Carlo technique. 

An algorithm not requiring explicit path enumeration can be specified with a 
particular specification of the path choice model, assuming that each user associates 
to each path a perceived utility represented by a random variable with expected 
value given by the opposite of path cost (see section 4.2.5.1): 

with 

where 
U 

g =-V 

c = U -E[U] 

U = V + c = -g + C 

E[g] = g = -V = -E[U] 
E[c] = 0 

Var[g] = 0 
Var[c] = Var[U] = L: 

(7.3.10) 

is the vector of the perceived path utility, with expected value V = 
E[U], and variance-covariance matrix Var[U] = L:; 
is the path costs vector, given by minus the systematic utility vector, 
V; 
is the vector of random residuals relative to the path utilities. 

The congruence between link and path costs through the link-path incidence matrix, 
.1, and the assumption of purely additive path costs allow to express the relationship 
(7.3.10) in terms oflink utility, costs and random residuals. Let 

U be the vector of link perceived utilities, with expected value v = E[u] 
and variance-covariance matrix Var[ u] = 11; 

C = -v be the vector of the link costs, assumed to be equal to minus the link 
systematic utility c = -v; 

TJ = u -E[ u] be the vector of random residuals relative to link utilities. 

It results: 
U= L1T u (7.3.11) 
g = L1T c (7.3.12) 

C=L1T TJ (7.3.13) 

thus 
u=-c+TJ (7.3.14) 



with 

E[e] = e = -E[u] 
E[1]] = 0 
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Var[e] = 0 
Var[1]] = Var[u] = It 

Since the relationships (7.3.11 - 13) are linear, the variance-covariance matrix of 
paths random residuals, I, depends on the variance-covariance matrix of link 
random residuals, It, through the relationship: 

(7.3.15) 

These results can be interpreted as a specification of the path choice model in 
which users perceive the costs of individual links and the perceived cost of a path is 
given by the sum of perceived link costs. 

By using the above approach, an algorithin can be specified that does not require 
explicit path enumerationbased on the assumption that the choice set consists of all 
the elementary paths, and that the variance-covariance matrix I has the structure 
described in Section 4.2.5.1. Let 

be the cost of path k; 
be the cost on the links shared by the paths k and}; 
be the variance of the random residual of path k, an element of the main 
diagonal of the variance-covariance matrix I; 
be the covariance between the random residuals of paths k and}, element 
of the variance-covariance matrix I; 
be the proportionality coefficient between path costs and elements of the 
variance-covariance matrix (expressed in units coherent with costs and 
utilities). 

Under the quoted assumptions made on the structure of the variance-covariance 
matrix, it yields: 

0'/ = O'kk= qgk 

O'kj = q gkj 

Consistent with the relationship of congruence between link and path costs, it 
results: 

thus 

gk = L., Otk C, = L., Otk2 C, 

gjk = L., O'k alj C, 

O'kk = q L., Otk2 C, 

O'kj = q L., Otk Otj e, 
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Indicated by DIAG(c) the diagonal matrix with elements on the main diagonal given 
by link costs, c, in matrix terms it results: 

I= ~ LIT DIAG(c)LI (7.3.16) 

To achieve the above condition it may be assumed that each link random 
residual, 17/, is independently distributed according to a univariate Normal N(O, a/) 
with null mean and variance a/ = ~ Ct. Therefore the vector 1] is distributed 
according to a multivariate Normal MVN(O, 11) with null mean and diagonal 
variance-covariance matrix defined by: 

11 = ~ DIAG(c) (7.3.17) 

In this case the path random residuals deriving from the linear relationship (7.3.13), 
8 = .LIT 1], are distributed according to a multivariate Normal, MVN(O, 2:), with 
variance-covariance matrix given by the relationship (7.3.15), which combined with 
(7.3.17), provides the relationship (7.3 .16). 

Therefore, a sample of vectors of normally distributed path random residuals, 
8 ~MVN(O, 2:), can be obtained starting from a sample of vectors of links random 
residuals 1], resulting from independently sampling the residual, 17/, of each link I 
from a univariate normal, N(O, a/). 

It should be stressed that the link costs used to define the variance-covariance 
matrix through the relation (7.3 .16) may be different from the actual link costs c, 
expressing the systematic utility of the link, v = -c, and therefore of the path, g = -V. 
For example it can be assumed that the similar perception of two overlapping paths, 
expressed by the covariance of their random residuals, is proportional to the length 
of the links shared, while the systematic link cost is a function of the travel time 
(dependent on flows for congested networks). These assumptions ensure that the 
SUN assignment function is non-increasing monotone with respect to (congested) 
link costs and has symmetric Jacobian (section 5.3.1). The (sufficient) condition for 
the resulting stochastic equilibrium uniqueness is therefore ensured (as described in 
section 5.4.1), as is the convergence of stochastic equilibrium algorithms described 
in section 7.4.2. 

From an algorithmic point of view, in order to calculate SUN assignment flows 
with a Probit path choice model, a sample of perceived link cost vectors has to be 
generated. For each sample of (perceived) link costs, demand flows are assigned to 
the (perceived) shortest paths with a DUN (All or Nothing) assignment algorithm, 
described in the next subsection. The mean of the link flows obtained for the 
different link cost vectors of the sample is an unbiased estimate of Probit SUN link 
flows. The algorithm can be stated formally by introducing the following variables: 
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171 +--- N(O, a/ = ~ c,) the )-th random residual for link I, in a sample of m, obtained 

rl = c, + 171 
r = [rl1t 
Ii = lDU~.I) 

It yields: 

as a pseudo-realization of a normal random variable with zero mean 
and variance a/ = ~ c,; 
the )-th perceived cost for the link I, in a sample of m; 
the)-th vector of perceived link costs, with elements rl; 
the Deterministic Uncongested Network assignment link flow vector 
corresponding to link costs I (computed as described in next 
subsection); 
an unbiased estimate of the vector of Stochastic Uncongested 
Network assignment link flows, obtained with a sample of m vectors 
of perceived link costs. 

From a practical point of view, the link flows estimate, .fm, can be obtained with the 
following recursive equations up to) = m, initially supposing) = 0 and, II! = 0: 

) =)+1 
171 +--- N(O, a/ = ~ c,) V I 
1= [c, + 17/], 

.fm = ((j-I).fm + IDu~/» /) 

For each pair ad, the average of the minimum costs obtained with the different 
shortest paths, zoj, is an unbiased estimate of the opposite of the EMPU variable for 
path choice S-:d m = -~i~l,m 7iod / m. 
This algorithm, also known in the literature as Monte Carlo, unlike other algorithms 
in this chapter, does not yield link flow values, but only a sequence of unbiased 
estimates whose precision increases with the number of iterations. 

In practice, the algorithm continues until a stop criterion is met e.g. a pre­
assigned maximum number of iterations, )max' The algorithm could also terminate 
when the difference between the link flows estimates in two successive iterations is 
below a pre-assigned threshold 0, by using a suitable norm I P - P-'I / I P-'I < 0, or 
on a link basis I P - P-'I / I P-'I < 0. However, this criterion is not very effective 
since as the number of iterations) increases, it tends to be verified in any case, and it 
is in practice the same as supposing a maximum number of iterations. More 
correctly the algorithm should be stopped when the sample estimate of the precision 
of link flows is below a given threshold, maxI [ var( K mpl2) / K m ] :s; O. 
Alternatively, a statistical equality test between two successive averages can be 
used. It can easily be proved that whatever the convergence criterion adopted, the 
calculation time is roughly equal to m times the time needed to carry out a 
Deterministic Uncongested Network assignment (with any of the algorithms 
described in the next subsection). 
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An example of Monte Carlo algorithm is given in Fig. 7.3.6. 
2 

cl.2=2 C2.4 = 2 
2,3 =3 4 4 

CI,3= 1 C3,4= 1 

1~4: d I4=lOOO 
3 

STEP 0 STEP 1 STEP 2 

f4=0 fl=O 

STEP 3 STEP 4 STEPS 

STEP 6 STEP 7 STEP 8 

f.=167 

Fig, 7,3,6 Example of the Monte Carlo algorithm for Probit SUN assignment 

f4=0 
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7.3.2. Deterministic Uncongested Network assignment without 
explicit paths enumeration 

Under the assumption of deterministic path choice behavior, all users traveling 
between each O-D pair choose the shortest path (Section 5.3.2) leading to 
Deterministic Uncongested Network (DUN) assignment. As observed, if there are 
several shortest paths for each O-D pair, path flows, and therefore link flows, are not 
uniquely defined. However, shortest path algorithms provide a unique path between 
each O-D pair. This path depends on the implementation details of the algorithm and 
in particular on the ordering of the nodes. Link flows can therefore be calculated by 
assigning the entire demand flow of each O-D pair to the links of the shortest path 
generated by the algorithm and zero to the links of all the other paths. These 
algorithms are known as All-or-Nothing and can be implemented following two 
different approaches. 

In the sequential approach, once the shortest path tree from an origin 0 has been 
calculated, the demand dod towards each destination d is added to the flows on all the 
path links from 0 to d. An example of sequential algorithm is given in Fig. 7.3.8. 
The procedure is analogous if the shortest path tree towards each destination d is 
calculated. 

Instead of the simple algorithms described above, other algorithms following a 
simultaneous approach can be used. Simultaneous algorithms are computationally 
more efficient and can be extended to DUN assignment models for transit networks 
(shortest hyperpaths) as described in section 7.5. These algorithms are particularly 
efficient if, for each shortest path tree, there is a list of nodes ordered by increasing 
minimum cost from the origin (or to the destination). Such an order can easily be 
obtained by applying shortest path algorithms with ordering. 

Simultaneous algorithms from an origin are based on the calculation of the flow 
entering each node, defined as the sum of the flows on the links entering the node. 
Considering one origin 0 at a time, the demand flow dod is initially assigned as the 
flow entering each destination and a zero tentative flow is assigned as entering flow 
in all other nodes. Once the tree of the shortest paths from the origin 0 has been 
calculated, each node i in decreasing minimum cost order is examined, starting from 
the furthest node from the origin 0 (i.e. the node with to the highest value Zo;) until 
the origin 0 is reached. The flow entering each node i is assigned to the unique 
previous link in the tree, and added to the flow entering the initial node of this link. 
The order adopted is such that when a node i is examined all the furthest nodes have 
already been examined. Therefore there cannot be any node still to be examined 
from which the flow contributes to the flow entering the node l8). For each od pair, 
the EMPU related to deterministic path choice is given by the cost on the shortest 
path, Sod = Zod. 

An example of the application of a simultaneous algorithm is given in Fig. 
7.3.11. The procedure is analogous if shortest path trees towards each destination d 
are calculated. 
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Fig. 7.3.8 Example of sequential forward algorithm for DUN assignment. 
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7.4. Algorithms for rigid demand User Equilibrium 
assignment 
In the case of congested networks, the User Equilibrium (UE) approach is usually 
adopted, which leads to the assignment models described in Chapter 5. This section 
analyzes the algorithms for solving single-class single-mode rigid demand 
equilibrium assignment models; some extensions will be discussed in section 7.6. In 
general, the algorithms for calculating equilibrium flows are based on recursive 
equations which, starting from a feasible solution, fO E Sf; generate a succession of 
feasible link flows vectors: 

Although the solution to the problem is not guaranteed in a finite number of steps, if 
the equilibrium flows vector is generated at any step k, all the remaining elements of 
the sequence are equal to the equilibrium vector: 

Furthermore, if link flow vectors in two successive steps are equal, they are the 
equilibrium vector: 

Under some assumptions on cost functions and on the path choice model, it can be 
demonstrated that the succession defined by the recursive equations converges to the 
equilibrium flows vector,J*, provided that it is unique: 

Below, the particular case of cost functions with symmetric Jacobian is 
distinguished from the general case of asymmetric Jacobian, which is more difficult 
to solve. Recall that the algorithms described, solving the models illustrated in 
Section 5.4, are only those most commonly used and simplest to implement. They 
are essentially based on the calculation of cost functions and on the calculation of 
UN link flows with the algorithms described in the previous section. There are 
several possible variants of the basic algorithms described, or more complex 
algorithms based on different approaches, especially for deterministic equilibrium 
models (see the bibliographical note). Other algorithms for stochastic equilibrium 
(with separable cost functions) can be developed by solving the optimization models 
described in the appendix to Chapter 5; They are, however, still being researched 
and will not be described. 
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7.4.1. Rigid demand Stochastic User Equilibrium 
The calculation of rigid demand stochastic user equilibrium (SUE) link flows is 
based on algorithms solving the fixed-point model (5.4.2) described in section 5.4.1, 
and repeated for ease of reference: 

f* = Isutv<cif*» E Sf (7.4.1) 
where 
fsutv<c) are the Stochastic Uncongested Network (SUN) assignment link flows 

corresponding to link costs c, calculated with the algorithms described in 
Section 7.3.1. 

The fixed-point problem (7.4.1) can be solved with an algorithm that generates a 
succession offeasible link flows vectors,f\ starting from a feasible solution,f°ESf 
Each vector of the succession, f\ is the solution of a SUN assignment with costs 
corresponding to the present solution, fk-I. The solution of the SUN assignment is 
combined with the current solution,fk-I, to generate the next solution,f\ according 
to the Method of Successive Averages (MSA). This algorithm can be described by 
the following system of recursive equations, givenfO E Sf' e k = 0: 

k=k+l 
ck = Cifk-') 

(7.4.3) 
fSUNk = fsutv<ck) 
fk = f k- I + 11k ifsu/ - fk-I) 

(7.4.2) 

(7.4.4) 
(7.4.5) 

The solution at iteration k,fk, is the average ofthe first k SUN assignments; this 
algorithm is therefore called the Flow Averaging (MSA-F A) algorithm. The initial 
solution, fO E Sf> is easily obtained with a SUN assignment, using zero flow costs, 
fO = Isutv<cif= 0». The algorithm stops if the SUN flows are equal to the current 
solution: 

~ k f k- I 0 JSUN - = 

Practically, the algorithm is stopped when the difference between the SUN link 
flows and the current solution at iteration k, fSUNk - f k-I, is below a pre-assigned 
threshold 0, by using a suitable norm, say Ifsu/ _fk-II / jfk-II < 0, or on a link basis, 
say If'WN,1 k - fi k-JI / lfi k-JI < 0. 

The convergence speed of the MSA algorithm close to the solution may be rather 
slow because the step length gets increasingly smaller. Therefore it might be 
convenient after a certain number of iterations to restart the algorithm with the 
current solution as the initial solution. This approach leads to a two-phase algorithm 
that can be generalized with a series of phases, each characterized by an increasing 
maximum number of iterations, for example 5 in the first phase, lOin the second, 15 
in the third, and so on. 
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If the cost functions c = c(f) are continuous and strictly increasing monotone, and 
the SUN assignment function, f= Isutl.c), is continuous and non-increasing 
monotone, the fixed-point problem (704.1) has a unique solution, as shown in section 
504.1. Under these assumptions, by using the outcomes of Blum's theorem (see 
Appendix A), it can be demonstrated that the succession of feasible link flows 
vectors,Jk, generated by the MSA-FA algorithm, converges to the equilibrium link 
flow vector, if the Jacobian of the cost functions is symmetric. An example of 
application of the MSA-FA algorithm is given in Fig. 704.1. 

The monotonicity of the SUN assignment function is ensured if the distribution 
of random residuals of path choice model does not depend on the link congested cost 
attributes. With a Logit path choice model, this condition is ensured if the parameter 
() and the definition of efficient paths are independent of the link costs c (they might 
depend, however, on zero flow costs, or on other cost attributes not dependent on 
congestion). Analogously, with a Probit path choice model this condition is ensured 
if the variance-covariance matrix I is independent of the link costs c (but, it might 
depend on zero flow costs or on other attributes not varying with congestion). 

In the case of Probit path choice model, as was seen in Section 7.3.2.b, only an 
unbiased estimate of SUN flows can be obtained through a Monte Carlo algorithm. 
In this case almost sure convergence of the MSA-FA algorithm is assured. 
Furthermore, the convergence threshold Ii that can be guaranteed depends on the 
number of iterations within the SUN assignment algorithm. To improve the overall 
efficiency of the SUE algorithm, initially a small number of iterations within the 
SUN algorithm (inner iterations) can be adopted (1 - 3) until a solution close to the 
equilibrium solution is obtained. In this first phase, the previous stop criterion 
cannot be adopted because of the small number of inner iterations, thus two 
successive solutions are usually compared, fk = f k-\ to stop the first phase. In the 
second phase a larger number (30 - 60) of inner iterations is adopted depending on 
the convergence threshold. In this second phase, the correct stop criterion can be 
used. Instead of this two-phase approach, a maximum number of inner iterations of 
the SUN algorithm increasing with the outer iteration index of the MSA algorithm 
can be adopted. For example, 2 iterations within the SUN algorithm for the first 10 
iterations of the MSA algorithm, then 4 for the next 10, and so on. 

The MSA algorithm could also be applied for SUE with non-separable cost 
functions; in this case, however, convergence cannot be demonstrated. A different 
stochastic equilibrium algorithm with non-separable cost functions (asymmetric 
Jacobian) can be obtained by applying the method of successive averages to costs 
rather than to link flows. In this case the Cost Averaging (MSA-CA) algorithm is 
obtained, specified by the following system of recursive equations, given fO E Sf; 
CO = cifo), e k = 0 (note that the link flow vector fk at each iteration k is feasible): 

k=k+l 
fk = lsuNCck-I) 
l = Cifk) 
ck = Ck-1 + 11k (yk _ Ck-I ) 

(7.4.6) 
(7.4.7) 
(7.4.8) 
(7.4.9) 
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d l-4 = 1000 d3-4 = 800 

3 3 

PATHS ITERATIONS 

Paths Nodes Iteration Link c{f=0) I/sNL I 
1 1-2-4 1-2 10 675 675 

2 1-2-3-4 
3 1-3-4 

1-3 22 325 325 
0 2-3 131060 1060 

4 2-3-4 2-4 20 11 IS 11 15 

5 2-4 3-4 11 2185 2185 

6 3-4 Iteration 
c(F) / SNL / (k) ~=]/k Link 

PARAMETERS OF COST FUNCTIONS 
1-2 14 480 480 
1-3 22 520 520 

Arco Co a Cap y 1 1.000 2-3 14 1403 1403 
2-4 92 577 577 

1-2 102 10004 3-4 11 2723 2723 
1-3 22 2 10004 1-2 11 668 574 
2-3 132 25004 1-3 25 332 426 

2-4 20 2 10004 2 0.500 2-3 20 1009 1206 

3-4 I I 2 33004 
2-4 20 1159 868 
3-4 11 2141 2432 
1-2 12 617 589 

COST FUNCTION TYPE 1-3 23 383 41 I 
3 0.333 2·3 IS 1098 1170 

2-4 32 1019 919 
3-4 11 2281 2381 
1-2 12 596 591 
1-3 23 404 409 

LOG IT PARAMETER 4 0.250 2-3 15 1133 1)61 

e = 30 
2-4 37 963 930 
3-4 11 2337 2370 

Fig. 7.4.1 a Example of the MSA-FA algorithm for SUE assignment (link variables). 
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d l_4 = 1000 dZ_4 = 1500 d3-4 = 800 

2 2 
2 

'-~4 <P' / ~ 
I~' -V "-

~ 
...... " 

3 

PATHS 

Paths Nodes 
I 1-2-4 
2 1-2-3-4 
3 1-3-4 
4 2-3-4 
5 2-4 
6 3-4 

PARAMETERS OF COST FUNCTIONS 

Areo Co a Cap 

1-2 10 2 1000 

1-3 22 2 1000 

2-3 13 2 2500 

2-4 20 2 1000 

3-4 I I 2 3300 

COST FUNCTION TYPE 

CI = co(l + aL)Y 
Cap 

LOGIT PARAMETER 

e = 30 

y 
4 

4 

4 

4 

4 

3 

Iteration 

a 
Iteration(k) 

1 

2 

3 

4 

3 

FIRST ITERATIONS 

Path C(F=O) pO F OSNL 

1 30 0.360 360 
2 34 0.315 315 
3 33 0.325 325 
4 24 0.467 700 
5 20 0.533 800 
6 11 1.000 800 

~=lIk Path C(P") p' F'SNL 

1 106 0.046 46 
2 39 0.435 435 

1.000 
3 34 0.520 520 
4 25 0.905 1357 
5 92 0.095 143 
6 11 1.000 800 
1 31 0.394 394 
2 42 0.274 274 

0.500 
3 36 0.332 332 
4 31 0.410 615 
5 20 0.590 885 
6 11 1.000 800 
1 44 0.281 281 
2 38 0.336 336 

0.333 
3 35 0.383 383 
4 26 0.545 817 
5 32 0.455 683 
6 11 1.000 800 
1 50 0.352 352 
2 38 0.148 148 

0.250 
3 34 0.500 500 
4 26 0.296 444 
5 37 0.704 1056 
6 11 1.000 800 

Fig . 7.4.1 b Example of the MSA-FA algorithm for SUE assignment (path variables). 
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The algorithm terminates if the SUN flows calculated with costs y* are equal to 
the flows vector Ik: 

In practice, the algorithm terminates when the difference ISUl./,c(jk» -Ik is below a 
pre-assigned threshold 0, by using a suitable norm or on a link basis, as above. Note 
that implementing the termination test is computationally demanding since a further 
SUN assignment has to be performed at each iteration. 

The convergence of the MSA-CA algorithm is, in general, slower than that of the 
MSA-F A algorithm(9). From a practical point of view, it may be convenient to 
perform some iterations using the MSA-F A algorithm in order to approach the 
equilibrium solution and then apply the MSA-CA algorithm using the current 
solution as the initial solution (two-phase algorithm). The considerations made for 
the MSA-F A algorithm with Probit path choice model apply also in this case. 

By using the Blum theorem (see Appendix A), it can be demonstrated that the 
convergence of the MSA-CA algorithm is ensured ifthe conditions for existence and 
uniqueness of the solutions hold and the Jacobian of the SUN function is symmetric. 
Existence and uniqueness conditions require respectively continuous and strictly 
increasing monotone cost functions and continuous and non-decreasing monotone 
SUN function. The last condition is met if the distribution of random residuals in 
path choice model is independent of congestion dependent link cost attributes. In 
this case, moreover, the Jacobian of the SUN function is symmetric (as noted in 
section 5.3.1). 

The stochastic equilibrium with non-separable cost functions can also be solved 
through the inverse cost function algorithm described in the bibliographic note. It 
could also be solved by applying the diagonalization algorithm, as described for 
deterministic equilibrium in next subsection. 

7.4.2. Rigid demand Deterministic User Equilibrium 
The calculation of rigid demand Deterministic User Equilibrium (DUE) link flows 
with symmetric Jacobian cost functions is based on algorithms solving the 
optimization models described in Section 5.4.2. For simplicity of notation, non­
additive path costs will not be considered and the model 5.4.6b, repeated here for 
ease of reference, will be used: 

f* = argmin/esj z(f) = Jrlc(x/ dx (7.4.10) 

The optimization problem (7.4. I 0), with non-linear objective function and linear 
constraints, can be solved with an adaptation of the Frank-Wolfe algorithm (see 
Appendix A). This algorithm generates a succession of feasible link flows vectors, 
1\ starting from a feasible solution to the problem, 1° ESfi through the solution of a 
succession of linear problems approximating problem (7.4.10). The solution of the 
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linear problem, with respect to the current solution,fk.1, identifies a direction along 
which the objective function is minimized to determine the new solution,fk. 

In particular, at a p~int fESj, the objective function z(j) can be approximated 
with a linear function, z(j), using Taylor's formula up to the first term: 

Therefore, the optimization problem (7-4.10) can be approximated by a linear 
programming problem, i.e. a problem with linear objective function, 'i(j), and linear 
constraints,f E Sf 

- --T 
argminjESjz(j) == argminjESj z(j) = argminjESjz( j) + Vz( j) (f - j) 

or argminjESjz(j) == argminjESjVz( llf (7-4.11) 

Note t~atthe gradient, Vz(j), of the objective function, z(j), of problem (7.:..4.10) a!,. a 
point f is equal to the link cost vector calculated at the same point, V z( j) = c( j), 
thus expression (7-4.11) becomes: 

. -r 
argminjESjz(j) == argmmjESj c( j) f (7-4.12) 

The linear optimization problem expressed by (7-4.12) corresponds to the 
optimization model (5.3.7) described in Section 5.3.2 for Deterministic Uncongested 
Network assignment and can therefore be solved with a DUN algorithm as described 
in section 7.3.2, formally expressed by: 

fnu~C) DUN link flows corresponding to a link costs vector c, calculated with one 
of the algorithms described in Section 7.3.2. 

The Frank-Wolfe algorithm for the calculation of DUE link flows with rigid 
demand and cost functions with symmetric Jacobian can therefore be described by 
the following system of recursive equations, givenfO E Sf; k = 0: 

ck = c(fk.l) 
fnuNk = fnu~Ck) 
;l' = argmin}JE[O,I] V;(p) = z(fk.l + f.1 (fDUN k - fk.l)) 
fk = fk.l + ;1 ([DUNk - fk.l) 

(7-4.13) 
(7-4.14) 
(7-4.15) 
(7-4.16) 

The MSA-F A algorithm presented for stochastic equilibrium, equations (7-4.2-5), is 
quite similar to Frank-Wolfe. The main difference is the step, ;1, which depends 
only on the iteration index, 11k, rather being optimized (equation 7-4.15). However, 
the MSA-F A algorithm may show a slower convergence. 

Equation (7-4.15) defines a mono-dimensional non-linear optimization problem 
in the scalar variable f.1 that can be solved through several algorithms such as the 
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bisection algorithm (see Appendix A). The bisection algorithm requires the 
derivative of the function IfI{J.l) = z(Jk-1 + J.l (JDUN k - f k-I», which can easily be 
obtained from link costs: 

dlfl{J.l)ldJ.l = VZ(Jk-1 + J.l (JDUN k - fk-I)/ (JDul-fk-l) = 
= C(Jk-l + J.l (JDUNk - fk-I)/ (JDUNk - fk-I) 

Note that in order to apply the algorithm it is not necessary to compute the value of 
the function If/(p). 

From expression (7.4.16) it can be deduced that the solution at iteration k,f\ is a 
convex combination of the first k DUN assignments, fDUNk, thus it is a feasible 
solution,fk e Sf; given that the initial solution is feasible. The initial solution,f° e 
Sh can easily be obtained, for example, with a DUN algorithm using zero flow costs, 
fO = fDU~C(J= 0». 

The algorithm stops when the product of the objective function gradient and the 
descent direction is greater than or equal to zero (see Appendix A): 

It can easily be deduced that if the algorithm stops, the current solution, f\ is the 
DUE flow vector. In practice, the algorithm terminates when the absolute value of 
the product C(Jk-l/ (JDUN k - f k-1), is below a stop threshold, 0, relative to the total 
cost, to avoid the effects of measurement units: 

Convergence of this algorithm in proximity to the solution may be rather slow 
because it tends to zigzag; thus some modifications in the descent direction, 
fDUNk - f k-I, have been proposed (some of which are referred to in Appendix A). An 
example of application of the Frank-Wolfe algorithm is given in Fig. 7.4.2. 

If the cost functions c = c(f) are continuous with continuous first partial 
derivatives and have symmetric positive definite Jacobian, the function z(f) has only 
one minimum point, f*, as stated in section 5.4.2. In this case also the function 
If/(p) has only one minimum point. Under these assumptions, by using results from 
optimization theory, it can be demonstrated that the succession of (feasible) link 
flows vectors,fk, generated by the Frank-Wolfe algorithm, converges to the vector 
of DUE link flows. 

The calculation of rigid demand DUE link flows for non-separable cost 
functions (including the case of asymmetric Jacobian) is based on algorithms for 
solving the variational inequality model described in Section 5.4.2. For simplicity of 
notation, non-additive path costs are not considered and the model (5.4.4), repeated 
here for convenience, is used: 

c(J*/ (J - f*) ~ 0 VfeSf (7.4.17) 
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d' -4 = 1000 dZ_4 = 1500 

3 3 

PATHS 

Iteration 
Paths Nodes 

1 1-2-4 
2 1·2-3-4 
3 1-3-4 0 
4 2-3-4 
5 2-4 
6 34 -: 

Iteration 
(k) 

PARAMETERS OF COST FUNCTIONS 

Arco Co a Cap 

1-2 10 2 1000 

1-3 22 2 1000 

2-3 13 2 2500 
2-4 20 2 1000 

3-4 11 2 3300 

COST FUNCTION TYPE 

C, = co(l + aL)Y 
Cap 

1 
y 

4 

4 

4 2 
4 

4 
! 

22 

23 

ITERATIONS 

Link dJ=O) 

1·2 
1-3 
2·3 
2-4 
3-4 

f! Link d.{I) 

1·2 810 
1-3 22 

0.69592 2-3 13 
2-4 25920 
3-4 53 
1·2 67 
1-3 720 

0_14868 2·3 147 
2-4 807 
3-4 457 

1 I 
1-2 153 
1-3 369 

0.00006 2·3 216 
2-4 694 
3-4 478 
1·2 153 
1-3 369 
2·3 216 

0.00002 2-4 694 
3-4 478 
2-4 23 
3-4 11 

Fig. 7.4.2 Example of the Frank-Wolfe algorithm for DUE assignment. 
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Variational inequality (704.17) can be solved with the diagonalization algorithm. 
This algorithm generates a succession of feasible link flows vectors, fk, starting 
from a feasible solution to the problem,J° ESj; solving a succession of separable cost 
functions problems that approximate the problem (704.17). In particular, at a solution 
f ESf the ~ost function of link I, elf), can be approximated by a separable cost 
function, elf!), obtained by diagonaJizing the Jacobian: 

e/Ji, ... ,j,-l,jj,j,+h ... ) == el ii, ... , ft-hj" ft+!, ... ) = elf!) \:;II 

Therefore, variational inequality (704.172 can be approximated by a variational 
inequality with separable cost functions, elJi): 

cif *l if - f *) == It e~(fi)(fi - j,*) ~ 0 \:;IfESf (704.18) 

which, in tum, is equivalent to an optimization problem analogous to problem 
(704.10) described for rigid demand DUE assignment with symmetric Jacobian cost 
functions. Thus problem (704.18) can be solved as described previously. Let 

fDUE[C(.)] be the (symmetric) DUE link flows corresponding to the generic link cost 
functions c(.) with symmetric Jacobian;fDuE can be calculated, for example, 
with the Frank-Wolfe algorithm. 

The diagonalization algorithm can be described by the following system of 
recursive equations, givenfO E Sf> k = 0: 

(704.19) 
(704.20) 

This algorithm is therefore equivalent to performing a succession of DUE 
assignments with separable cost functions. These are obtained by defining a new 
cost function for each link where only the corresponding link flow may vary while 
the flows on the other links are equal to the previous equilibrium solution. The 
diagonalization algorithm can also be applied by averaging over the successive DUE 
vectors for separable cost functions, as described by the following system of 
recursive equations, givenfO E Sf> k = 0: 

\:;II 

It can easily be deduced that, in both cases, if the diagonalization converges to a 
solution, this is the DUE assignment with non-separable cost functions. Consistently 
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with the results described in section 5.4.2, if cost functions are continuous and 
differentiable with positive definite Jacobian, variational inequality (7.4.17) has one 
and only one solution. Under this assumption, the succession of link flows vectors, 
f\ generated by the diagonalization algorithm, converges to the equilibrium link 
flows vector under some conditions of the maximum value of an appropriate norm 
of the Jacobian matrix. In practice, to speed up the application of the algorithm, the 
convergence threshold of the Frank-Wolfe algorithm is decreased at each iteration of 
the diagonalization algorithm; alternatively symmetric deterministic equilibrium 
fDUE[.] is heuristically substituted with a deterministic uncongested network 
assignmentfDuM·)· 

7.4.3. Algorithms for System Optimal Assignment 
System optimal assignment, discussed in section 5.4.4, is formulated directly 

through the optimization model (5.4.8) with linear constraints: 

. l' 
ho = argmzn/Es/ z(f) = c(f) f 

The Frank-Wolfe algorithm, described for symmetric deterministic equilibrium 
(subsection 7.4.2), can be adopted also to solve the SO problem. The algorithm is 
described by the following recursive equations system, givenfO E S/ 

l = 'lz(jk-I) = Jac[c(jk-I)]f k-I + C(jk-I) 
(7.4.21) 

fDUNk = fDUNCl) 
;f = argminfJE [o.1J IjI(fJ) = Z(jk-I + fJ (jDUNk - fk-l)) 

(7.4.23) 
fk = f k-1 + ;f (jDUN k _fk-l) 

(7.4.24) 

(7.4.22) 

Note that unlike with deterministic equilibrium, the calculation of the gradient 
of the function z(f), in equation (7.4.21), requires the calculation of the Jacobian of 
the cost functions, a task easy only for separable cost functions. Equation (7.4.23) 
defines the step length, ;f, as a solution to the one-dimensional, non-linear 
optimization problem in the scalar variable /1. This problem can be solved with 
several algorithms such as the golden section algorithm (see Appendix A), which 
avoid the use of the derivative of the function 1jI(p) (depending on the gradient of the 
function z(f) and therefore on the Jacobian of cost functions). 

The algorithm stops if the product between the gradient of the objective function 
and the descent direction is greater than or equal to zero (see Appendix A): 
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In order to avoid calculating the gradient of the function zif), the algorithm can 
terminate when the difference between the values of the function zif), in two 
successive iterations, is below stop threshold, 8: 

The function zif) is strictly convex, and has a unique minimum point, if the 
Jacobian, Jae[eif)], of cost functions, eif), is continuous and positive definite (cost 
functions are strictly increasing) and each link cost function, e/ = c/if), has a Hessian 
matrix, Hess[c/if)] that is continuous and positive semi-definite (each cost function 
is convex). The function IfI{P) is strictly convex if the function zif) is strictly convex. 
Under these assumptions, it can be demonstrated that the succession of (feasible) 
link flows vectors,J\ generated by the Frank-Wolfe algorithm, converges to the SO 
link flow vector. 

7.5. Algorithms for assignment with pre-triplen-route path 
choice 

In this section, the algorithms described in previous sections are extended to pre­
trip/en-route. Explicit reference will be made to a network representing the service 
provided by a public transport system, since although possible in theory, there are no 
examples in the literature of applications of this approach to networks representing 
other transportation systems, such as car or pedestrians. For transit systems, as 
described in sections 4.3.4.2 and 5.5, choice alternatives are travel strategies, which 
may be represented by hyperpaths of the service line-based network (under quite 
mild assumptions) rather than by paths. 

Section 7.5.1 describes an extension of the shortest path algorithms to determine 
the shortest hyperpath without explicit enumeration of all elementary hyperpaths. 
This approach is particularly relevant since the number of possible hyperpaths is 
much larger than the number of paths and therefore explicit enumeration is 
particularly burdensome, if possible at all. Sections 7.5.2 and 7.5.3 describe the 
algorithms for Uncongested Network assignment and for rigid demand User 
Equilibrium assignment respectively. 

7.5.1. Shortest hyperpath algorithms 
The algorithms for the computation of shortest paths described in Section 7.2 can 

be extended to identify shortest hyperpaths, with reference to the pre-trip/en-route 
path choice behavior formally described in sections 4.3.4.2 and 5.5. In the following, 
for the sake of simplicity, it is assumed that all origins and destinations are 
connected, i.e. there is at least one hyperpath from each origin to each node, and 
from each node to each destination. For a transit system, it is assumed that the only 
costs due to en-route choices are waiting times at stops leading to non-additive 
hyperpath costs, as described in sections 5.5. Analogously to the case of shortest 
paths, let 
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C, = (mn ~ 0 be the cost of link I = (m, n), corresponding to travel time 
components such as boarding, on board, alighting, and access/egress 
times. These attributes are associated to the corresponding types of 
links. (The different time components can be multiplied by 
appropriate homogenization coefficients not explicitly indicated here 
for the sake of simplicity.) As stated in Section 5.5 the waiting time 
associated to waiting links is not a network characteristic since it 
depends on the hyperpath under consideration and can be defined by 
the frequency of the lines as described below; 

Zo,d ~ 0 be the cost of the shortest hyperpath between the nodes 0 and d. 

Diversion nodes, where en-route choices are made, correspond to the stops at 
which users choose which line to board (see sections 4.3.4.2 and 5.5). Consistent 
with the transit network model described in section 2.3.1, from each diversion node 
m there are boarding links I = (m,n) connecting the different lines available at the 
stop, while a waiting link connects the a stop node to the diversion node m (Fig. 
7.5.1). Let: 

DN 
pr(m) 

be the set of diversion nodes; 
be the stop node preceding the diversion node m, connected by the 
waiting link (pr(m), m); 
be the frequency of the line accessed through the boarding link I = 
(m, n), this value is associated to each boarding link in addition to the 
boarding time t'm,n assumed constant in the following, t'm,n = t, for 
simplicity's sake. 

2 

5 

8 12 

6 Diversion node 

Fig, 7,5,1 Diversion nodes and adjacent elements, 

The topology of a hyperpath j is identified by a succession of nodes, such that 
from a non-diversion node, n'£DN there may exist at most one link, while from a 
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diversion node, mEDN, several (boarding) links, I = (m,n) may exit. (Examples of 
hyperpaths are given in the figures in Section 4.3.4.2). When the topology of the 
hyperpath is known, a waiting time can be defined for each waiting link as a 
function of the frequencies of the lines belonging to the hyperpath considered. With 
reference to the hyperpathj, let: 

X m.d be the cost, or travel time, from a node m to the node d along the hyperpathj; 
ALm,; be the set of boarding links from the diversion node m in hyperpathj; 
(]'J) m be the sum of the frequencies of the lines belonging to hyperpath j and 

available in the diversion node m; 
tW,} m be the waiting time on the (unique) link (pr(m),m) entering the diversion 

node m, in hyperpathj. 

Under the assumption of random arrivals of the users, the (average) waiting time 
is inversely proportional to the sum of the frequencies of the lines in the hyperpath. 
The parameter () E [0.5, 1.0] depends on the regularity of the service (see section 
2,5,2): 

(]'J) m = (L(m,n)e ALmJ ({Jmn) 

r WJ = () / (L(m,n)e ALm,) ({Jmn) = () / (]'J) m 

(7.5.1) 
(7.5.2) 

The average travel time from a diversion node m to the destination d is the average, 
with respect to the frequencies, of the travel times with the lines accessible from 
node min hyperpathj (as noted in section 5.5): 

(7.5.3) 

The average travel time, Xpr(m),d, to reach the destination d from the stop node pr(m) 
connected to the waiting node m can be defined as the sum of the time from the 
diversion node, X m,d .. and the waiting time, twJ m: 

(7.5.4) 

The relation (7.5.3) allows one to express the average minimum travel time from a 
diversion node m to the destination d, Zm,d, as the average, with respect to the 
frequencies, of the minimum times along the lines from the node m belonging to the 
shortest hyperpathj*: 

The shortest travel time, Zpr(m),d, from the stop node pr(m) connected to the diversion 
node m can be obtained by summing the shortest travel time from the diversion 
node, Zm,d, and the waiting time t J m * : 



470 ALGORITHMS FOR TRAFFIC ASSIGNMENT TO TRANSPORTATION NETWORKS 

(to be compared with the shortest travel time along the access network). All the 
above relations can be used to extend the Bellmann principle to the shortest 
hyperpath problem. 

It should be noted that if the forward shortest hyperpath tree from an origin 0 to 
all the other nodes were searched, it would be necessary to differentiate, at each 
stop, the users by destination, to take account of the different lines available. For 
this reason, it is useful to adopt algorithms based on an extension of the backward 
updating step, previously defined for shortest paths, allowing the determination of 
the tree ofthe shortest hyperpaths from all the nodes towards the destination d, T(fl). 

Now consider a hyperpath j (not necessarily the shortest one) which does not 
include the boarding link (m,n), see Fig. 7.5.l.When examining a line node n the 
backward updating step must be extended to check whether the inclusion of the 
boarding link I = (m, n) in the hyperpath j can ensure a reduction of the average 
travel time from node pr(m}. Let 

([1m, r'} m be the values of the cumulative frequency and the average waiting time 
relative to this hyperpath as defined by (7.5.1) and (7.5.2). 

The average travel times from the waiting node m and the stop node pr(m) in 
hyperpathj are given by (7.5.3), and (7.5.4), respectively, Note that the node pr(m) 
might be connected to the destination d through other paths using the access links. 

Moreover, in what follows it will be assumed that an algorithm with ordering 
will be adopted, for reasons that will become clear below. Thus, let: 

Zn,d be the minimum cost, or travel time, between the line node n and destination d, 
already known when node n is examined. 

Ifthe boarding link (m,n) is added to the hyperpathj, a further line with frequency 
rpm,n is available at the stop node m. Therefore, there is a further path to reach the 
destination d. The new hyperpath j' induces a reduction of the average travel time 
from the node pr(m) to the destination d, if it results: 

»~r(m),d 5, »pr(m),d (7.5.5) 
To analyze the implications of (7.5.5), note that the hyperpath j' has a larger 

cumulative frequency at node m and a smaller waiting time, obtained by applying 
the relationships (7.5.1) and (7.5.2): 

(fj'm = qj m + rpmn 
tW,J'm = () / qj'm = rJ m [qj m / (qj m + rpmn)] 

(7.5.6) 
(7.5.7) 

The inclusion of the second line causes also a variation of the average travel time 
from the node m to the destination dthat from (7.5.3) becomes: 
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)(I'm,d = X'm,d [qjm / (dim + qJmn)] + (Zn,d + l'mn) [qJmn / (dim + qJmn)] = 
=X'm,d+ (Zn,d+ t'mn -)(Im,d) qJmn / (dim + qJmn) (7.5.8) 

since [ dim / ( dim + qJmn)] = 1 - [qJif / ( dim + qJ!J)]. Thus, the average travel time from 
the waiting node pr(m) to the destination d, through diversion node m, after the 
introduction of the boarding link (m,n), becomes: 

X'" - X' ' + tW ,) . pr(m),d - mod m (7.5.9) 
or 

X' ~r(m).d = X'm,d + (Znod+ t'mn - X'mod) qJmn / (dim + qJmn) + tW
,) m [qj m / (dim + qJmn)] 

The above relationship combined with the condition (7.5.5) becomes: 

since [qJmn / (dim + qJmn)] > O. Therefore it is worth including link I = (m,n) if: 

(7.5.10) 

On the other hand, given the hyperpathj' containing the boarding link 1= (m,n), it is 
not possible to obtain a reduction of the total travel time excluding this link I = (m,n) 
from the hyperpath if condition (7.5.10) is verified, (vice versa if the condition is not 
verified). 

Condition (7.5.10) shows that, to reduce the average travel time and find the 
shortest hyperpath, it is useful to include a new line if the travel time with the new 
line, including boarding time, is less than the travel time, including waiting time, 
without the line. If this is the case, the inclusion of the new line reduces the waiting 
time so that even if the average travel time from the diversion node increases, the 
average travel time from the stop node decreases. 

The shortest hyperpath for a pair (o,d) may not include any waiting links (and 
therefore boarding, line and alighting links). In this case it consists only of access 
links, implying that the shortest path on the access network has a cost lower than any 
paths using a transit line. 

The algorithms for calculating the tree of shortest hyperpaths towards a 
destination d are similar to those described in Section 7.2 for the shortest paths. The 
main difference is the updating step that also includes the updating operations of the 
tentative minimum cost value of a diversion node, using condition (7.5.10) and 
relations (7.5.8) and (7.5.9) to update average travel times. In this way a stop node 
might be connected to the destination d by other paths through the access links 
adjacent to it. The tree of the shortest hyperpaths towards the destination node d, 
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T(d), can be described by the link, necessarily unique, eXltmg from each node, 
except for diversion nodes from which there might be several boarding links, 
identifying the lines included in the shortest hyperpath. 

Note that the node made definitive at each iteration should be the one with the 
minimum tentative cost among non-definitive nodes and the updating step should be 
performed from this node. Therefore, for the identification of the tree of the shortest 
paths towards the destination d, T(d), algorithms with ordering (in the sense defined 
previously for the shortest paths) should be adopted. In addition, consider a further 
boarding link (m,r) not included in the hyperpathj such that Zr,d'5. Zn,d, or Zr,d + t' '5. 

Zn,d + t' if the condition (7.5.10) is verified for link (m,r), and therefore it is 
convenient to include link (m,n) to reduce the average cost, it is also verified for link 
(m,n), and it is even more convenient to include also link (m,r). This consideration 
further supports the adoption of algorithms with ordering, in which the updating of 
the line nodes n connected to a diversion node m through the boarding links (m,n) is 
carried out by increasing values of Zn,d' Otherwise it would be necessary to verify, at 
each new inclusion, if some of the boarding links already included should be 
removed. Algorithms with ordering terminate after as many updating steps as there 
are nodes, since at each step the tentative value of a node is made definitive. Nodes 
are made definitive in order of increasing minimum costs, or travel times, to the 
destination. At the end of the algorithm, the waiting times, specific to the shortest 
hyperpaths, and the set of boarding links for each diversion node, are also 
determined. 

7.5.2. Algorithms for Uncongested Network assignment with 
pre-trip/en-route path choice 

Uncongested Network assignment models with pre-trip/en-route path choice are 
quite often adopted for analyzing public transportation systems assuming, as a first 
approximation, that the costs are not dependent on users flows. Furthermore, 
algorithms for UN assignment are included in equilibrium assignment algorithms as 
described in the following section. In the case of explicit hyperpaths enumeration 
calculation of link flows is straightforward by using the sequence of relations given 
in Section 5.5. In general, however, as already noted, explicit enumeration of the 
hyperpaths is extremely burdensome and algorithms without explicit enumeration 
based on the shortest hyperpaths algorithms previously described are adopted. 

Stochastic Uncongested Network assignment algorithms, with Probit choice 
models can easily be extended to transit networks, provided that All-or-Nothing 
algorithms are extended as described below. They essentially require multiple 
sampling of perceived link costs (and possibly frequencies) as in the Monte Carlo 
algorithm described in section 7.3.l.b. However, very few examples are described in 
the literature. Generalization to the case of Logit hyperpath choice without explicit 
hyperpaths enumeration is still at the research stage (see bibliographical note). 

On the other hand, under the assumption of deterministic choice behavior, all the 
users traveling between each O-D pair choose the shortest hyperpath (Section 5.5). 
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If there are several shortest hyperpaths for some O-D pair, hyperpaths flows, and 
therefore links flows, are not uniquely defined. Also in this case, however, the 
shortest hyperpaths tree algorithm gives a unique hyperpath between each pair. Link 
flows can be calculated by assigning the demand flow for each O-D pair to the links 
of the shortest hyperpath and summing for all O-D pairs. 

The backward simultaneous algorithm discussed for DUN assignment in section 
7.3 .2, can be extended to the case of shortest hyperpaths. Also in this case an 
algorithm with ordering is required for shortest hyperpath trees to each destination. 
Operations performed at a diversion node must be modified. In this case the exit 
flow must be divided among all boarding links included in the hyperpaths tree, 
proportionally to their frequencies. The application of DUN algorithms to shortest 
hyper paths yields the links flows /vUN as a function of the costs of non-waiting 
links, c, and of the frequencies of the lines, 'P. It is also possible to calculate the 
hyperpath total non-additive cost, x!'A DUN, given by the total waiting time, which can 
be determined with shortest hyperpath algorithms without explicit enumeration. 

7.5.3. Algorithms for rigid demand User Equilibrium assignment 
with pre-trip/en-route path choice 

The algorithms described in Section 7.4 for rigid demand stochastic or 
deterministic equilibrium assignment can be extended to pre-trip/en-route path 
choice. The main modification occurs in the calculation of the UN flows with the 
procedure described in the previous section. Furthermore, it is necessary to consider 
explicitly the non-additive hyperpath costs consisting of the waiting times. Let 

;x!'A be vector of non-additive hyperpath costs, consisting of the vectors 
of non-additive hyperpath costs xo/ A for each pair od (assumed to 
be independent of congestion); 

x!'A = (;x!'A/ Y be total non-additive cost, i.e. waiting time, corresponding to the 
generic vector ofhyperpath flowsy. 

In the case of stochastic equilibrium, a fixed-point problem similar to problem 
(7.4.1) in terms of link flows is obtained: 

(7.5.11) 

Model (7.5.11) can be solved with the MSA-FA and MSA-CA algorithms already 
described in section 7.4.1, implementing at each iteration a Stochastic Uncongested 
Network assignment to the hyperpaths. 

In the case of symmetric deterministic equilibrium, the model (7.4.10) becomes: 

if* ,x"'A*) = argmin zif,J() = Jl C(X)T dx + x!'A 

f= Ay, x!'A = (;x!'A/ y, yESy 

(7.5.11) 
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This model can be solved with the Frank-Wolfe algorithm, described in section 7.4.2 
considering as variables the link flows vector,/, and the non-additive hyperpath total 
cost (total waiting time), X"A. The following variables are needed to describe the 
algorithm: 

Vz(f,xvAl = [e(x), I] 
fDUN ESf 

X"A DUN 

gradient of the function z(f,xvA); 
link flows resulting from DUN assignment to 
hyperpaths as function of the total costs on non­
waiting links, e, and the lines frequences, rp; 
total non-additive hyperpath cost equal to the 
waiting time, resulting from the non-additive 
hyperpaths assignment as a function of non-waiting 
link costs e, and of lines frequencies, cp; 
a function givingfmlN and X"A DUN as a function of e, 
and cp. 

Given an initial solution, (f0, X"AO), that can easily be found with a DUN 
assignment algorithm using zero flow costs, (f0, X"AO) = DUN(e(f= 0), rp), the 
Frank-Wolfe algorithm for the solution of the model (7.5.11) can be described by 
the system of following recursive equations: 

ek = e(fk-l) 

(7.5.12) 
(fDU/, X"ADUNk) = DUN(ek , rp) 
;1 = argminJ.lE[O,l] rp{j.t) = 

= z«(fk-l + J1 (fDUN k _ fk-l)), (X"A k-l + j.l (X"ADU/ _ X"A k-lm 
fk =fk-l + ;1 (fDUN k _ fk-l) 

(7.5.15) 
X"A k = X"A k-l + ;1 (X"A DUN k _ X"A k-l) 

(7.5.13) 

(7.5.14) 

(7.5.16) 

Equation (7.5.14) defines a mono-dimensional non-linear optimization problem 
in the scalar variable J1 that can be solved with several algorithms, such as the 
bisection algorithm (see Appendix A). This algorithm uses the derivative of the 
objective function rp(p), which can be easily computed from link costs: 

Note that the algorithm does not require calculation of the function rp{j.t). 
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If cost functions c = c(j) are continuous with continuous first partial derivatives 
and with positive definite symmetric Jacobian, the term // C(V)T dv is a strictly 
convex function of f In this case the function zif, x"'A) has one and only one 
minimum point if* ,x"'A*) as already seen in section 5.5. In this case, the function 
IfI{p) has one and only one minimum point. Under these assumptions, from the 
results of optimization theory, it can be demonstrated that the succession of 
(feasible) link flows vectors, fk , generated by the Frank-Wolfe algorithm, 
converges to the deterministic equilibrium link flow vector, and so the values x"'A.k. 

Deterministic eqUilibrium with non-separable cost functions can be analyzed 
with variational inequality models in terms of link flowsf* and of total non-additive 
cost x"'A *. This problem can be formalized as: 

(7.5.17) 

and solved with the diagonalization algorithm discussed in section 7.4.2. 

7.6. Extensions 
a/gorithms* 

of User Equilibrium assignment 

This section briefly describes extensions of the rigid demand equilibrium 
assignment algorithms presented in section 7.4 to the case of elastic demand 
equilibrium assignment. The algorithms described can easily be adapted to solve 
multi-mode equilibrium assignment, which will not be discussed below in details. 

As seen in section 5.6, elastic demand assignment models assume that O-D 
demand flows depend on congested transportation costs. This assumption implies 
that users' behavior on choice dimensions other than the path (e.g. mode, 
destination) is influenced by variations of path costs due to variations of congestion 
levels. In single-mode assignment, it is assumed that costs of only one mode depend 
on congestion. In this case, the dependence of demand flows on path costs can be 
expressed by demand functions, which depend on the EMPU function relative to the 
path choice model, see section 5.6: 

s=s(V=-g) 
d= des) 

Calculation of link and demand flows for elastic demand (single-mode) equilibrium 
assignment can be performed with three different approaches described below. 

External cycle algorithms solve a formulation of elastic demand equilibrium 
assignment models in which the circular dependence between demand flows and 
costs is expressed externally to the flow-cost equilibrium. As stated in section 5.6, 
this defines a two-level problem. Equilibrium between flows and costs is computed 
at the inner level for given demand. At the outer level equilibrium between costs 
resulting from the equilibrium assignment and demand flows resulting from demand 
functions is computed. Let 
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fUE-R1G = fUE-Rld.tI) be the implicit correspondence, between rigid demand 
equilibrium link flows, fUE-R1G, and demand flows d. This 
correspondence expresses the solution of one of the models 
described in Section 5.4. If the equilibrium link flow vector is 
unique for a given demand vector, the above correspondence is 
a one-to-one function. Its value can be calculated with one of 
the algorithms described in Section 7.4. 

Elastic demand equilibrium assignment can be formulated with a system of non­
linear equations: 

d* = d(s(-L1Tcif*») 
f* = /uE-Rld.d*) 

(7.6.1) 
(7.6.2) 

Combining the two equations (7.6.1) and (7.6.2), a combined fixed-point problem 
(with an implicitly defined function) in the demand flows, d*, or in the link flows, 
f*, is obtained: 

d* = d(s(-L1Tcifue(d*»» 
f* = fUE_Rld.d(s(-L1Tcif*»))) 

(7.6.3) 
(7.6.4) 

The fixed-point problem can also be formulated in link costs or in EMPU values. 
The simplest external cycle algorithms are based on the iterative application of a 

rigid demand equilibrium assignment algorithm, for the calculation of link flows and 
costs with given demand flows and of the demand function for the calculation of 
demand flows with given costs and EMPU's. In particular, an external cycle 
algorithm of this type can be specified by the following system of recursive 
equations, given an initial value of the demand flows, tf E Sd: 

(7.6.5) 
(7.6.6) 
(7.6.7) 
(7.6.8) 

The initial value of the demand flows tf can be obtained with EMPU's 
corresponding zero flow link costs: CO = cif= 0), SO = s(-L1T co), tf = d(so). 

A more sophisticated external cycle algorithm can be specified by applying the 
MSA to the fixed-point problem (7.6.3) in demand flows, d*. The resulting 
algorithm can be described by the following system of recursive equations, given 
tf E Sd, and k = 0: 

k = k-l 
fk = fUE_Rld.ti'·l) 
ck = Cifk) 
i=s(-L1T ck) 

(7.6.9) 
(7.6.10) 
(7.6.11) 
(7.6.12) 
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(7.6.13) 

Analogously, an external cycle algorithm can be specified by applying the MSA 
method to the fixed-point problem (7.6.4) in link flows. This produces an algorithm 
described by the following system of recursive equations, givenfO E Sf> and k = 0: 

k = k-I 
ck = C(j'-l) 

l = s(-Lf ck) 
tI = del) 
fk = f k-l + (Ilk) (fuE-RlaCtf) - fk-l) 

(7.6.14) 
(7.6.15) 
(7.6.16) 
(7.6.17) 
(7.6.18) 

In both cases termination tests should compare the value at the previous iteration, 
(tf- l or fk-l) with the value obtained within the iteration (d(l) or fUE-R1G(d*». 

Other algorithms can be specified by applying the MSA method to the EMPU's, 
to link costs, or to pairs of variables. It is easily deduced that, whatever the case, if 
an external cycle algorithm converges at a solution, this is the equilibrium solution 
sought. The convergence of external algorithms has not yet been completely 
analyzed nor have the conditions on assignment models and on demand functions 
that ensure it. External algorithms are easily implemented, starting from existing 
rigid demand assignment implementations and particularly flexible for variations of 
the demand functions. 

Internal cycle algorithms are based on extension of the algorithms solving rigid 
demand equilibrium assignment problems described in Section 7.4. In the case of 
elastic demand equilibrium, it is rather straightforward to extend the MSA-FA or 
MSA-CA algorithms described for rigid demand stochastic equilibrium (section 
7.4.). At each iteration, these algorithms compute the EMPU's and therefore 
demand flows with costs at the previous iteration, before proceeding to the UN 
assignment of that demand. This approach is simple to apply with or without explicit 
path enumeration. 

In the case of Logit SUN (without explicit paths enumeration), the Dial 
algorithm described in Section 7.3.l.a can easily be extended. In particular, for each 
origin 0, after the calculation of the weights for the nodes, Wi, and for the links, wij' 
in the first phase of the algorithm, the inclusive variable, Yd, is obtained for each 
destination d. This variable is the EMPU, Sod, between the pair od Demand flow, 
dod, can thus be computed and loaded on the network with the Dial algorithm. 

In the case of Probit SUN (without explicit paths enumeration), the Monte Carlo 
algorithm described in Section 7.3.l.b can be extended quite easily. In particular, for 
each pair od the average of the shortest path costs corresponding to the sampled 
perceived costs is an unbiased estimate of the opposite of the EMPU, Sod. From 
these estimates dod flows can be estimated and, from them, link flows: 

Sm_= sm~) 
d= d( s) 



478 ALGORITHMS FOR TRAFFIC ASSIGNMENT TO TRANSPORT A nON NETWORKS 

where 
;m = ;m(c) is a vector of un-biased estimates of the EMPU's for all pairs od, 

obtained with a sample of m perceived link costs with mean c; 

1m = 1m(c, d) is a un-biased estimate of SUN link flows resulting from demand 
flows d and a sample of m vectors of perceived link costs with mean c. 

Note that the direct application of this approach, given a vector c, requires two 
repetitions of the estimation process, first for the EMPU's and then for links flows. 

In the case of deterministic UN assignment (without explicit paths enumeration), 
the algorithms described in Section 7.3.2 can easily be extended. In particular, for 
each origin 0, the algorithm for determining the shortest paths tree for each origin 0 

gives the minimum cost, Zod, between 0 and all destinations d. The opposite of these 
values are the EMPU's, Sod = -Zod, from which demand flows dod can be computed 
and assigned to the links of the shortest path between 0 and d. 

Whatever procedure is adopted for UN assignment, either stochastic or 
deterministic, with or without explicit paths enumeration, the MSA-F A algorithm 
for internal cycle elastic demand equilibrium can be defined by the following system 
of recursive equations, givenfO E Sf; If E Sd, and k = 0: 

where 

k=k+l 
ck = Cifk.I) 

fUNk = fu~c\ d(s(-AT ck))) 
fk = ff-1 + 11k ifu/ _ fk.I) 

(7.6.19) 
(7.6.20) 
(7.6.21) 
(7.6.22) 

fu~c, d) are the link flows resulting from a UN assignment with costs c and demand 
flows d; 

d = d(s(-AT c» are the demand flows corresponding to the EMPUs relative to link 
costs c. 

Note the difference between the external cycle algorithm (eqns. 7.6.9-7.6.13) and 
internal (eqns. 7.6.19-7-6-22). In the first case, at each iteration a rigid demand 
equilibrium assignment is performed, requiring several UN assignments; then 
resulting link flows are averaged. Vice versa, in the internal cycle algorithm at each 
iteration only one UN assignment is performed and resulting link flows are 
averaged. There are no systematic comparisons of the two approaches. From the 
purely computational point of view the relative efficiency is certainly related to the 
relative complexity of computing UN flows and demand flows. 

The internal cycle MSA-F A algorithm can be further extended averaging EMPU 
values as well as the link flows, as described by following system of the recursive 
equations, givenfO E Sf; SO = s(-AT cifo» e k = 0: 



where 

k=k+1 
Ck = Cifk-') 
tI = d(Sk-l) 

(SUN\ (u/) = UN(c\ tI) 
k t-I Ilk ( k k-I) S = S + SUN - S 

fk = f k-I + 11k ifu/ _ fk-I) 
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(7.6.23) 
(7.6.24) 
(7.6.25) 
(7.6.26) 
(7.6.27) 
(7.6.28) 

(SUNJUN) = UN(c, d) are the EMPU and flows resulting from UN assignment with 
link costs c and demand flows d; they can be computed simultaneously with 
one of the procedures described in section 7.3. 

This algorithm, called MSA-FSA, is particularly useful in the case of Probit path 
choice model since it avoids the double Monte Carlo application at each iteration. 

In the case of equilibrium with non-separable cost functions (asymmetric 
Jacobian), the convergence of the MSA-FA and MSA-FSA algorithms has not been 
proved. It is possible to adopt an immediate extension of the MSA-CA algorithm or 
the diagonalization algorithm (described in Section 7.4 for rigid demand 
equilibrium). In particular, the MSA-CA algorithm can be described by the 
following system of recursive equations, givenfO E Sf> CO = cifo), and k = 0: 

k=k+l 
fUNk = fuNCck-' , d(s(-AT Ck.l))) 
cK = Cifk) 
ck = Ck-I + 11k ( cK _ Ck-I) 

Note that the link flows vectorfk = fuNCl- ' ) at the iteration k is feasible. 

(7.6.29) 
(7.6.30) 
(7.6.31) 
(7.6.32) 

In general, it is possible to average both demand flows, and link costs, with an 
algorithm called MSA-CDA, described by the system of following recursive 
equations, givenfO E Sf' cf E Sd, CO = cifo), and k = 0: 

k=k+l 
fk = fUN (Ck-I, tI- l) 
tl = d(s(-AT l» 
? = Cifk) 
tI = tI-1 + 11k ( tl- tI- l ) 

ck = Ck- I + 11k ( ? _ Ck- I ) 

(7.6.33) 
(7.6.34) 
(7.6.35) 
(7.6.36) 
(7.6.37) 
(7.6.38) 

The convergence of the internal cycle algorithms described above has been 
analyzed only for separable demand functions: di = di(Si)' In this case the conditions 
already discussed for the MSA-FA and MSA-CA algorithms for rigid demand 
equilibrium hold, with the further assumptions that the demand functions di = di(Si) 
are continuous, differentiable, non-decreasing monotone and bounded. 
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Among the internal cycle algorithms , the equivalent optimization problem 
(5.6.8) could be solved with the Frank-Wolfe algorithm for elastic demand 
symmetric deterministic equilibrium. However, with this approach it must be 
possible to express the inverse demand function, Zed), between the minimum costs, 
Z, and demand flows, d, and this function must have a symmetric Jacobian. Both 
these conditions are difficult to meet in practice. In any case, the resulting algorithm 
requires some modifications of the DUN algorithm. 

Hyper-network algorithms are based on the application of a rigid demand 
equilibrium assignment algorithm to an expanded network model which includes 
other links simulating choice behaviors on different dimensions as path choice 
behavior. From this point of view, hyper-network algorithms can be considered 
internal cycle algorithms. This approach can be applied only to some demand 
functions, and is briefly described below with reference to deterministic equilibrium. 
For the sake of simplicity, demand is assumed to be elastic only on the frequency 
dimension. Similar considerations can be made for elasticity on other choice 
dimensions, such as destination. 

In particular, for each od pair, a fictitious path consisting of a single link is added 
to the network. For the demand conservation constraint, a flow equal to the excess 
demand flow, h/J = dod,max - dod, is assigned to this path; this flow is equal to the 
potential demand flow not travelling (Fig.7.6.1). Let 

dmax be the maximum demand flows vector; 
hO = dmax - d be the vector of excess path flows; 
fl) = fV be the vector of excess link flows. 

, , , , 
" 

2 

Fig. 7.6.1 Hyper-network approach. 

4 

A fictitious cost function can be associated to each new link, COod = lalJo). This 
function is obtained from the inverse demand function, relating minimum cost to 
demand flows as discussed in section 5.6.1.2: 
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It can easily be verified that the variational inequality model (S.4.3) for rigid 
demand deterministic equilibrium applied to this network is equivalent to the 
variational inequality model (S.6.6) for elastic demand deterministic equilibrium 
applied to the original network. Thus, the elastic demand DUE problem can be 
solved by applying a rigid demand DUE algorithm to the expanded network. 

7.7. Applicative issues of assignment algorithms 
In this chapter some algorithms for within-day static assignment have been 
described, with reference to models presented in Chapter S (whilst algorithms for 
within-day dynamic assignment presented in Chapter 6 are still at a reasearch stage). 

Algorithms for (within-day static) traffic assignment are continually researched, 
exploring both the analysis of convergence conditions and implementation issues 
aimed at improving efficiency. It is therefore very difficult to give a complete 
picture of all algorithms that have been proposed to solve assignment problems, and 
the algorithms that have been described in this chapter are limited to those most 
commonly found in applications and easiest to implement. There are several variants 
to the basic specifications described, as well as more complex algorithms based on 
different approaches. 

As noted throughout this chapter, even though stochastic assignment may seem 
more appealing from a theoretical point of view, solution algorithms are generally 
less efficient than those for deterministic assignment. On the other hand, there are 
very few algorithms for stochastic assignment, and, as noted in the bibliographic 
note, this topic is still worth of active research work. 

Figure 7.7.1 presents, with a few modifications, the classification scheme of 
static assignment models described in Chapter S, indicating for each class of models 
the main algorithms discussed in this chapter for rigid demand assignment. 

TYPE OF NETWORK 

I 
PATH CHOICE MODEL 

Deterministic 
Stochastic 
LogitlProbit 

Uncongested 

I All-or-Nothing Dial I 
Network MonteCarlo 

Symmetric 
Frank-Wolfe MSA-FA 

Congested User Equilibrium 
Network Asymmetric 

Diagonalization MSA-CA 
User Equilibrium 

Fig. 7.7.1 Classification of assignment algorithms 

As a final comment, several commercial packages implementing at least rigid 
demand assignment models are available. Their use now spans over more than a 
decade and most of these packages can be considered reliable and robust. 
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Reference Notes 

A general treatment of (static) assignment algorithms is given by the books by 
Sheffi (1985) and Patriksson (1994). Most of references quoted at the end ofChaper 
5 also address solution algorithms. Some additional references are given below. 

The literature proposes several algorithms for finding the shortest paths tree, 
which are useful for deterministic uncongested network assignment. A coprehensive 
treatment of algorithms for transportation networks and a comparison of their 
performances can be found in Gallo and Pallottino (1988), and in Ahuja, Magnanti 
and Orlin (1993). 

Implementation of Stochastic Uncongested Network assignment algorithms is 
discussed in Sheffi (1985). For the Logit path choice model, the Dial algorithm 
described in section 7.3.la is an original generalization ofthe algorithm described in 
the original work by Dial (1971); see also Van Vliet (1981). An adaptation of Dial's 
algorithm to C-Logit path choice model is described in Russo and Vitetta (1998). 
The Monte Carlo approach to stochastic uncongested network assignment was first 
proposed by Burrell (1968). Its application to Probit SUN assignment is described in 
Sheffi and Powell (1982). Maher and Hughes (1997)have proposed an approach to 
Probit SUN assignment based on Clark's approximation. 

The MSA-FA algorithm for stochastic equilibrium is covered in Sheffi and 
Powell (1982), and its convergence is demonstrated in Powell and Sheffi (1982), as 
an optimization algorithm. Daganzo (1983) described the MSA-F A algorithm as a 
fixed-point algorithm, following Blum (1954), as well as the inverse cost function 
algorithm. The MSA-CA algorithm, and the internal cycle fixed-point algorithms for 
elastic demand assignment are covered in Cantarella (1997). External cycle MSA 
algorithms described in section 7.6 are an original contribution of this book. Other 
algorithms for the solution of Logit SUE symmetric models, based on the 
minimization model proposed by Fisk (1980), are described in Bell, Inaudi, Lam and 
Ploss (1993), Chen and Sule Alfa (1991), Damberg et al. (1996). 

The adaptation of the Frank-Wolfe algorithm to the calculation of deterministic 
equilibrium flows is described in the original works of Le Blanc et al.(1975) and 
Nguyen (1976). As noted, many improvements to this algorithm have been 
proposed, such as the PARTAN, Florian and Spiess (1983), or other variations, 
Fukushima (1984), Lupi (1986). An interpretation of the Frank-Wolfe algorithm as a 
variational inequality algorithm is described in VanVliet (1987). The 
diagonalization algorithm for non-separable cost functions is analyzed in Florian and 
Spiess (1982); other algorithms for non-separable cost functions are described in 
Nguyen and Dupuis (1984), Hearn, Lawphongpanich and Nguyen (1984). 

The algorithm for computing shortest hyperpaths and its applications extension 
to DUE has been proposed by Nguyen and Pallottino (1988), see also Florian and 
Spiess (1989), and Wu, Florian, Marcotte (1994). The extension to stochastic 
assignment has been analyzed by Cantarella (1997) and Cantarella and Vitetta 
(2000). Algorithms for stochastic assignment with Logit hyperpath choice are 
described by Nguyen, Pallottino and Gendreau (1993). A comprehensive review of 
hyperpaths and related topics is in Gallo et al. (1993). 
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Notes 

(I) The two problems are obviously equivalent since it is sufficient to change the directions of all the 
network links to obtain one problem from the other. 

(2) Each centroid could be represented with a single node if the algorithms are appropriately modified to 
avoid a centroid node being crossed by a path. 

(1) Ifsome links have negative costs, loops with totally negative cost would lead to paths of minimum cost 
equal to minus infinite. 

(.) A tree with root n, T(n), is defined as a sub-graph of the whole graph with a single path correcting the 
root to each other mode. For further detail. 

(5) This approach can be adopted for any random residual distribution. 

(6) According to this assumption, a positive probability can be associated to a non- shortest path, given by 
the probability that the path is of maximum perceived utility (perceived shortest path). Given these 
considerations, SUN assignment is sometimes indicated as mUlti-path assignment in contrast with the all­
or-nothing assignment for DUN, described in the next subsection. 

(7) More generally, any set of relevant paths from the origin 0 can be adopted, as long as they form an 
acyclic graph, corresponding to a partial ordering of the nodes. In this case, in fact, a total ordering of the 
nodes can always be found, described by indices that take on the role ofthe distances ZoJ such that when a 
node is examined, all the preceding nodes have been examined. 

(8) Using a simultaneous algorithm, given an origin (or a destination), independent of the tree structure, 
two sums for each link in the shortest paths tree are carried out, i.e. 2(n-l) additions if n is the number of 
nodes. Vice versa, using a sequential algorithm, the number of additions depends on the structure of the 
shortest paths tree. This number ranges between the number of the links of the tree, n-l, in the case that 
the paths within the tree do not overlap at all and the value nd(n-nd-l) + nd= nd(n-nd) (assuming n>nd with 
nd the number of destinations) in the case of maximum overlapping. 

(9) Some computational results suggest that the speed of convergence can be increased by reducing the 
step length by a factor fJ E ]0, 1 [, I = I-I + fJlk if - I-I). 



8 ESTIMATION 0 F TRAVEL DEMAND 
FLOWS 

8.1. Introduction 
Analysis and design of transportation systems require, respectively, the estimation of 
present demand and the forecasting of (hypothetical) future demand. These can be 
obtained by using different sources of information and statistical procedures. 

To estimate the present demand, surveys can be conducted, typically by 
interviewing a sample of users; direct estimates of the demand can be derived using 
results from sampling theory. 

Alternatively, the demand (present or future) can be estimated using models 
similar to those described in Chapter 4. Model estimation requires that the models 
are specified (Le. the functional form and the variables are defined), calibrated (Le. 
the unknown coefficients are estimated) and validated (Le. the ability to reproduce 
the available data is tested). These operations can be performed on the basis of 
disaggregate information relative to a sample of individuals. The type of survey and 
the size of the sample are often different from those used for direct demand 
estimation. Once the models have been specified and calibrated, they can be applied 
to the present configuration of the activity and transportation systems to derive 
estimates of a present demand and/or to hypothetical configurations on the evolution 
ofthese systems (scenarios) to derive hypothetical forecasts of future demand. 

Aggregate data can also be used for direct demand estimation and for the 
specification and calibration of demand models. Flows measured on network links 
are the most sophisticated form of aggregate data and can complement other 
disaggregate data and the relative estimation methods. 

The different types of survey and estimation methodologies will be studied in the 
following sections of this chapter, as follows. Section 8.2 analyzes surveys and 
methods for direct demand estimation. Section 8.3 describes disaggregate 
estimations methods for the specification, calibration and validation of demand 
models based on traditional Revealed Preferences surveys. Section 8.4 describes 
some theoretical and operational aspects of Stated Preferences survey and 
calibration techniques, based on the information elicited from a sample of 
individuals in hypothetical scenarios. Sections 8.5 and 8.6 describe the methods 
using traffic counts to improve to estimate the present demand. Section 8.6 explores 
methods using traffic counts for aggregate calibration of demand models. Section 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
© Springer Science+Business Media Dordrecht 2001
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8.7 extends some of methods in previews section to deal with intra-periodal dynamic 
estimation. Finally, section 8.8 summarizes the methodologies for the estimation of 
the different components of transportation demand and discusses their fields of 
application. The topics listed are discussed for passenger transportation demand; 
extensions to freight demand are relatively straightforward. 

8.2. Direct estimation of present demand 
Transportation demand is the aggregation of individual trips made by the users of a 
given system under study. Full knowledge of the present demand would therefore 
require informations on the characteristics of the trips undertaken by all the users in 
the reference period (e.g. a typical day or part of it). Furthermore, as noted in 
Chapter 1, these informations should extend over several reference periods in order 
to compute average values. This census-like knowledge of transportation demand is 
neither practicable nor necessary. The associated economic and organizational costs, 
would make operation practically unfeasible in most cases. For these reasons, 
present transportation demand is typically estimated through sampling estimators, 
i.e. estimators based on information on a sample of system users. 

In section 8.2.1, sampling surveys often used for direct demand estimation will 
be described; the estimators derived from sampling theory will be covered in section 
8.2.2. 

8.2.1. Sampling surveys 
The basic idea of sampling techniques is to estimate relevant population variables 
on the basis of values observed in a relatively small group of individuals (sample) 
belonging to the population. 

Several types of sample surveys can be used for direct estimation of 
transportation demand; these surveys, sometimes referred to as origin-destination 
surveys, may differ in their statistical characteristics and in the quality of 
information obtained. A comprehensive description of the various surveys is beyond 
the scope ofthis book; some typologies will be briefly described below as examples. 

With "while trip" or "on board" surveys, a sample of users of one or more 
transportation modes are interviewed. The interviews can be conducted roadside for 
car drivers and their passengers, on board or at terminals (stations, airports, etc.) in 
the case of scheduled transportation services. The sample of users is obtained by 
randomly interviewing a predetermined fraction of the users of the mode chosen. In 
the case of "punctual" surveys (road sections, stations, etc.) this requires counting 
the total number of travelers passing the point (count of the universe) and 
interviewing a given number of them selected through a random mechanism. When 
on-board surveys are conducted to estimate exchange and crossing demand, they are 
also referred to as cordon surveys. In general, the information that can be gathered in 
these surveys is relatively "simple" since the interview has to be done in a short 
period of time and usually refers to the trip or journey under way. 



CHAPTER 8 487 

With household surveys, a sample of families or persons living within the study 
area are interviewed. For families the sample is extracted randomly from the set of 
all resident families (simple random sample) or from the set of families living in 
each traffic zone (stratified random sample). The family members in the sample are 
interviewed about the trips taken in a given reference period. The same approach can 
be used for individuals rather than for families. The method of interviewing 
individuals in their homes usually is rather expensive but precise information are 
generally obtained because of the direct interaction between the interviewee and the 
interviewer. Household telephone surveys are becoming more and more popular, 
they have lower costs, although they usually yield less precise interviews. 

There are several other types of sample surveys such as destination surveys in 
which travelers are interviewed at trip destinations (workplaces, schools, shops, etc.) 
and (e)mail surveys in which travelers are interviews by (e)mail. These surveys, 
though less costly than household surveys, may result in a potential bias of the 
estimates because of the systematic lack of information from some market segments. 

The number of persons interviewed depends on the aims of the survey and the 
precision required for the estimates. Surveys aiming at direct estimation of the 
present demand usually require larger samples than those needed to calibrate 
demand models. 

In applications different types of survey are employed to estimate different 
components of transportation demand; cordon surveys, for example, for exchange 
and cross trips and household surveys for internal trips. 

Whatever the type of survey, the statistical design of a sampling survey for 
demand estimation consists of several standard phases: 

definition of the sampling unit (person, family, vehicle, etc.) and of the universe 
counting method (e.g. lists of residents or counts of passing vehicles); 
definition of the sampling strategy, i.e. the method for extracting the sample of 
individuals to be interviewed; 
definition of the estimator, i.e. the functions of the information obtained from 
the survey used to estimate the unknown quantities; 
definition of the number of units in (dimension of) the sample. 

The definition of the sampling unit is largely influenced by practical matters such 
as the type of survey (household, on board, etc.) and the availability of information 
about the universe. For example, if the list of families living in a given area is 
available, but that of individuals is not, the sampling unit will be the family rather 
than the individual. In the case of on-board surveys the sampling unit will be the 
vehicle if the survey is carried out at the roadside or the passenger if the interviews 
are at the terminals. 

For the choice of sampling strategy, almost all surveys make reference to 
probabilistic sampling, i.e. methods of sample extraction that define a priori the 
possible outcomes, assign a probability to each outcome, and extract randomly the 
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elements of the sample with this probability. In applications, the most commonly 
used probabilistic sampling strategies are: 

simple random sampling: all the elements of the population have an equal 
probability of belonging to the sample; 
stratified random sampling: the population is divided into non-overlapping, 
exhaustive groups (strata), subsequently a sample of elements is drawn from 
each stratum and each element of a stratum has an equal probability of 
belonging to the sample; elements in different strata may have different 
probabilities; 
cluster sampling: sampling units (e.g. people) are grouped in clusters (e.g. 
families or the passengers of a vehicle) and clusters are extracted randomly with 
a prefixed probability (simple random cluster sampling) or subdivided into 
strata and sampled with different probabilities (stratified random cluster 
sampling). The cluster sampling offers as a further possibility, the two-stage 
cluster sampling. In other words, a sample of clusters (e.g. a sample of families) 
is first extracted, subsequently a sample of individuals within each cluster is 
extracted. In this case, the probability of a unit belonging to the sample is the 
product of the probability of drawing the cluster to which it belongs and of the 
probability that the individual will then be extracted. 

Choice of the estimator, i.e. the function of sample results, obviously depends on 
the variables to be estimated and on the sampling strategy adopted. In fact it can be 
demonstrated that an estimator that is statistically "efficient" for one strategy might 
not be for another. 

The choice of the estimator and the definition of the sample size contain a 
stronger methodological content, discussed in the next subsection. 

8.2.2. Sampling estimators 
Present transportation demand can be estimated starting from the results of the 
sampling surveys described in the previous section. The problem of estimating 
Origin/Destination demand flows with certain characteristics (e.g. trip purpose and 
transport mode) and their main statistical properties for some sampling strategies 
will be addressed in the following. 

Simple random sampling. In this case, a sample of n elements is drawn at random 
from a universe of N users. For example, in a household survey the sample of n 
families is obtained from the universe of the N families living in the study area. Let 
doJI) be the demand flow between origin 0 and destination d with given 
characteristics and dod the number of these trips undertaken by the i-th element of 
the sample. Estimates of demand flows with given characteristics without 
distinguishing by origin-destination zones can be obtained in exactly the same way. 
Let nod be the total of trips obtained from the sample. It obviously results: 
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L ; 
nod = '_ nod 

I-l, ... n. 
(8.2.1) 

The sample estimate dod of the demand flow for the whole universe can be 

obtained as follows: 

(8.2.2) 

where a=n/N is the sampling rate and nod = n,xJ / n the average number of trips 

with the desired characteristics per element. 

From sampling theory results, that an estimate of the variance(2) of dod can be 

expressed as: 

(8.2.3) 

where ';:2 is the sample estimate of the variance of the random variable n~ : 

(8.2.4) 

In some surveys, a sample element (e.g. a car driver for cordon surveys) at the 
most undertakes one trip with the required characteristics (e.g. for a given purpose 
and/or in a given time band). In other surveys, the required information is whether 
the interviewee has a given characteristic (e.g. belongs to an income class or holds 
the driving license) or not. In both cases niod is either zero or one and -;'od is the 
sampling estimate of the percentage of travelers who have undertaken a trip of a 

certain type or have a given characteristic and will be indicated below by Pod . 

(8.2.5) 

In this case the sampling estimate of the variance of niod given by (7.2.4) can be 
expressed as the variance of a Bernoulli random variable: 

(8.2.6) 

In fact, from (8.2.4), bearing in mind that in this case do} == dod" it results: 
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where the "almost equal" (=) derives from assuming n equal to (n-l). In the case 

under study the estimate of the variance of Pod is given by: 

Var li:id J = Pod (1- Pod )(1-a)/n 

Stratified random sampling. In this case, the total population is divided into K 
groups of users, or strata; the generic stratum k has a population of Nk members and 
nk elements are drawn at random from each stratum. This type of sampling is the 
most widely used in practical demand surveys. In cordon surveys, the strata includes 
users traveling through the different survey sections, while in household surveys the 
strata are often comprised of the families living in each zone (geographical 
stratification). In the first case the sample is "structurally" stratified because the 
users can be reached only in this way; in the second, the stratification is a choice 
made to guarantee a prefixed coverage of each zone. 

If n\d denotes the number of trips with the required characteristics undertaken 
by the i-th element in the sample of stratum k, an estimate of the total number of 
trips can be obtained as follows: 

(8.2.7) 

where nkod is the average number of trips observed in the k-th stratum, and Wk= N/N 
is the weight of the stratum k with respect to the universe. 

The variance of the stratified sampling estimate, dod' can be estimated as 

follows: 

(8.2.8) 

where s; is the sampling estimate of the variance of the variable d kod : 

and ak is the sampling rate in the k-th stratum. 
It can be shown that the sampling estimators of demand (8.2.2), (8.2.5) and 

(8.2.7) are unbiased and consistent estimators of the unknown demand if the 
interviews do not contain systematic distortions of the information provided (e.g. 
under-reporting of trips). The same can be said of the variance estimators (8.2.3) and 

(8.2.8). Variance estimates can be used to calculate the confidence limits of dod. If 

the sample is large enough to apply the central limit theorem, it can be assumed that 
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the estimator dod follows a normal distribution. The upper and lower confidence 

limits of the estimate, L~-r (dod) and L~-r (dod), define the interval which, with 

probability (l-y), includes the true value of dod. On the assumption of a sufficiently 
large sample, these limits can be obtained as: 

and 

where ZI_p2 and zp2 are the l-y!2 and yI2 percentiles of the normal standard variable. 
For y=0.05, these percentiles are 1.96 and - 1.96 and the confidence limits are the 
extremes of the interval which with a probability of 0.95 contains the true value. 

The ratio IR(l-y) between the width of the confidence interval and the value to 
be estimated is called relative confidence interval at (l - y) percent of the estimate 

/\ 

dod: 

(8.2.9) 

Expressions of the estimators and their variances for sampling strategies 
differing from the simple and stratified random sampling are more complex. 
However, the latter can still be used as first approximations. For the exact 
expressions of the estimators and of their variances in more complex sampling 
schemes, specialized texts in sampling theory should be consulted. 

In principle, the sample size could be calculated according to the level of 
precision required by using expression (8.2.9) and substituting tentative values 

obtained from other studies for the variances S2 and s; and for the variable dod. For 

example, in the case of simple random sampling, if a relative IR(l-y) confidence 
interval of the estimate nod is required at a given confidence level and the variation 
coefficient (CV = slnod ) of the variable niod is known, the sample dimension n can 

be obtained by combining expressions (8.2.2), (8.2.3) and (8.2.9) as follows: 

(8.2.10) 

A similar expression can be obtained for a given relative confidence interval of 

the O-D demand flows dt"". 
In practice, the theoretical computation of the sample size is rarely possible 

because several parameters are estimated from the same survey. Furthermore, the 
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sample size required for sufficiently precise estimates of some parameters, and 
especially of the single elements of an O-D matrix, would be too large to be feasible. 
The usual practice is to choose a sample size used with other "successful" surveys, 
verifying that some aggregate estimates (e.g. the level of demand or the number of 
trips in each zone for each purpose) have a satisfactory minimum precision. 

As an example, Fig. 8.2.1 shows the sampling rate(3) for urban household origin­
destination surveys recommended by the U.S. Bureau of Public Roads as a function 
of the resident population. 

Finally, it should be noted that the use of models as estimators of present demand 
is becoming more and more widespread (see section 8.8). This is due to the low 
level of precision that can be achieved by direct estimates and, on the other hand, to 
the effectiveness of specification and calibration techniques of demand models. 

RESIDENT SAMPLING RATE 
POPULATION 

Recommended Minimum 
Less than 50.000 0.200 0.100 

50.000 150.000 0.125 0.050 
150.000 300.000 0.100 0.030 
300.000 500.000 0.067 0.020 
500.000 1.000.000 0.050 0.015 
More than 1.000.000 0.040 0.010 

Fig. 8.2.1 Sampling rates for household surveys in relation to resident population (BPR-USA) 

8.3. Disaggregate estimation of demand models 
Estimation of transportation demand by means of mathematical models, whether 
they are applied to the present situation or to hypothetical scenarios, requires the 
specification, calibration and validation of these models. In other words, it is 
necessary to define the functional form and the variables (attributes) included in the 
model, to estimate the coefficients or parameters, and to verify the "statistical 
quality" of the model. A good demand model is usually the outcome of a process of 
trial and error in which the specification-calibration-validation cycle is repeated 
several times until a satisfactory result is obtained. In this process the modeler's 
judgment and experience playa central role. 

These operations, which will be called synthetically model estimation, can be 
performed starting from information on the travel behavior of a sample of users. 
This approach is called disaggregate estimation(3) of demand models. The surveys 
used to gather elementary information might belong to two different classes: surveys 
relative to the actual travel behavior in a real context (Revealed Preferences or RP 
surveys) or surveys relative to the hypothetical travel behaviors in fictitious 
scenarios (Stated Preference or SP surveys). The traditional method of revealed 
preferences is based on surveys analogous to those described in section 8.2.1. These 
surveys provide information on users' choice relevant for the model to be calibrated 
(e.g. the transportation mode chosen for the calibration of a modal choice model). 
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Survey design therefore consists of the definition of the sample size, the 
questionnaire and the sampling strategy. Stated preferences (SP) surveys differ in 
that they are conceptually equivalent to a laboratory experiment designed with a 
larger number of "degrees of freedom". Given the complexity of the subject, SP 
survey design and their use for the calibration of demand models will be covered in 
the next section. What follows will therefore consider the specification, calibration 
and validation of demand models with reference to a generic RP survey. 

Independent of their interpretation (behavioral or descriptive) and functional 
form, demand models can be seen as mathematical relationships, which give the 
probability that a generic user i, chooses a particular travel option among those 
available. Thus a mode choice model p[mlods] expresses the probability that a user, 
randomly selected from those who undertake a trip for the purposes s between zones 
o and d pair, uses mode m. This section will addresses the problem of building 
demand models, or systems of models, making reference to a generic model 
expressing the probability iU] that a user i, chooses the travel option j among those 
available. 

Section 8.3.1 will discuss some general considerations on model specification. 
Section 8.3.2 will cover calibration methods, and finally section 8.3.3 will describe 
some validation methods. 

8.3.1. Model specification 
The specification of a demand model can be defined as the complete identification 
of its mathematical structure, i.e. the definition of its functional form and of the 
explanatory variables (attributes) used. 

The choice of the model's functional form, e.g. Multinomial Logit or 
Hierarchical Logit, depends on many factors such as its computational tractability, 
the results obtained in similar cases, the a priori expectations on the correlation of 
random residuals. In general the assumptions made can be tested a posteriori on the 
basis of the statistical tests described in section 8.3.3. 

The choice of the explanatory variables clearly depends on the specific type of 
model. However, there are some rules that should be observed to avoid problems in 
the calibration phase. In general variables that are collinear, i.e. linearly dependent 
on each other, should be avoided. In fact, if the systematic utility function is linear 
with respect to collinear attributes, there are infinite combinations of their 
coefficients giving equal values of systematic utilities and of choice probabilities. 
This circumstance makes it impossible to estimate (identify) separately the related 
coefficients in the phase of model calibration. Alternative Specific Attributes in 
additive random utility models are a typical example of linearly dependent, or multi­
collinear, variables and, as was seen in Chapter 3, should be introduced at the most 
for all the alternatives but one. Socio-economic attributes can also be a source of 
multi-collinearity. A socio-economic characteristic, such as income or ca; 
ownership, is constant for all the alternatives and can therefore be introduced, at the 
most, in the systematic utility function of all the alternatives except one. In any case 
socio-economic variables should not be employed as alternative specific attributes. 
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For example, two "high income" dummy variables should not be introduced in the 
systematic utilities of the alternatives car and taxi with different coefficients. A third 
type of collinearity might be introduced when one attribute is obtained from another; 
this would be the case if the travel time was deduced from the distance by assuming 
a constant speed, travel time and distance should not be included in the model 
specification as two distinct variables. 

8.3.2. Model calibration 
Random utility models can be seen as mathematical relationships expressing the 
probability /U](X,P,O) that individual i chooses alternative) as a function of the 
vector X of attributes for all the available alternatives and of the vectors of 
parameters relative to the systematic utility, p, and to the joint probability function 
of the random residuals, (J. Choice probabilities depend on X and p through 
systematic utility functions, usually specified as linear combinations of the attributes 
X (or their transformations) with coefficients given by the parameters p: 

(8.3.1) 

Structural parameters () include all parameters related to the probability 
distribution function of random residuals. Thus, in the case of the Multinomial Logit 
models, () is the only parameter () of the Gumble random variables. In the 
Hierarchical Logit, () consists of parameters (}o and (}r associated to structural nodes. 
In the Probit model, () consists of all the elements of the variance-covariance matrix 
and so on. 

Calibrating the model requires the estimation of the vectors p and () from the 
choices made by a sample of users. It should be observed that in general not all the 
coefficients can be identified, i.e. they can be estimated separately. We shall return 
to this point in greater detail later with reference to specific examples. 

The Maximum Likelihood Method Maximum Likelihood (ML) is the method 
most widely used for estimating model parameters. In Maximum Likelihood 
estimation the values of the unknown parameters are obtained by maximizing the 
probability of observing the choices made by a sample of users. The probability of 
observing these choices, i.e. the likelihood of the sample, depends (in addition to the 
choice model adopted) on the sampling strategy adopted. The cases of simple and 
stratified random sampling will be considered in the following. 

In the simplest case of simple random sampling of n users, the observations are 
statistically independent and the probability of observed choices is the product of the 
probabilities that each user i chooses )(i), i.e. the alternative actually chosen by 
him/her. The probabilities piU(i)](X; p, 0) are computed by the model and therefore 
depend on the coefficients vectors. Thus, the probability L of observing the whole 
sample is a function of the unknown parameters: 
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(8.3.2) 

The Maximum Likelihood estimate [p, ~ML of the vectors of parameters P and 
B is obtained by maximizing (8.3.2) or, more conveniently, its natural logarithm 
(log-likelihood function): 

[P,BlwL = argmax InL(p,B) = argmax L~ In /u(i)lxi ,p,B) (8.3.3) 
I t, ... ,n 

Fig. 8.3.1 shows an elementary example of the Maximum Likelihood 
estimation of a single parameter. 

In the calibration of some models, the n users may be grouped in sets of nj 
users, all choosing the same alternative and having the same attributes. A typical 
example is an aggregate distribution model in which the users travelling between 
the same O-D pair possess the same attributes, namely the trip costs between 
zone pairs and attraction variables of each destination. In this case the likelihood 
function and its logarithm can be expressed as: 

L(P, B) = fIi / U(i)]'" (Xi, P;B) 

In L(P, B) = L ini In pi uU)kXi ;P,B) 

In stratified random sampling, nh users are sampled randomly from the Nh 
members of each stratum (h = 1, ... ,R) with a sampling rate ah = nr/Nh. The 
probability of observing sample choices and therefore the likelihood function, 
depends on the method used to identify the strata. 

If the popUlation is stratified using, either directly or indirectly, the attributes X 
but not the choices to be modeled, the strategy is known as exogenous stratified 
sampling. Typical examples are geographical stratification (level of service 
attributes depend on the zone or the zone pair on which the stratification is carried 
out) and/or income stratification. 



496 ESTIMATION OF TRAVEL DEMAND FLOWS 

n=3 j=A,B 

user 
1 
2 
3 

j(i) 
A 
A 
B 

L(p) = exp(-3·p) exp(-2.p) exp(-3·p) 
exp( - 3 . 13) + exp( - 5 . 13) exp( - 2 . 13) + exp( -1 . 13) . exp( - 3 . 13) + exp( - 4 . 13) 

02 

0.18 
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012 
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;. ·1.85 
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-1,95 
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f3 
0.20 
OAO 
0.60 
0.80 
1.00 
1.20 
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02 
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pl[A] 

0.60 
0.69 
0.77 
0.83 
0.88 
0.92 

0.4 

04 

/[A] 

0.45 
OAO 
035 
0.31 
0.27 
0.23 

06 0.8 1.2 

1 
0.6 08 12 

....,--.,-._ 1 

1 1 
- I- - ._ _ -1 

1 1 
- 1- - - - 1- -- - , - -- -

-I 

p3[B] L(JJ) In(L(JJ)) 

0.55 0.148 -1.91 
0.60 0.165 -1.80 
0.65 0.175 -1.74 
0.69 0.178 -1.73 
0.73 0.173 -1.75 
0.77 0.163 -181 

Fig. 8.3.1 Maximum Likelihood estimation of a single parameter. 

For samples obtained through exogenous stratified sampling it can be 
demonstrated that the log-likelihood function is: 

In L(jJ,O)= Lh=I,,H L'=I"lIh In lU(i)](X'; 13, 0)+ canst. (8.3.4) 
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which, apart from a constant term, coincides with the function (8.3.3) obtained for a 
simple random sample with size n=r.h~/ ...... hnh 

If the stratification is based on the choices made by the users, the sampling 
strategy is knows as choice-based stratified sampling. This is the case, for example, 
if the sample used to calibrate a mode choice model is obtained by randomly 
selecting a sample of users of each transport mode; the population of each stratum is 
comprised of all users choosing each mode. Specify the log-likelihood function in 
closed form exactly is rather complex for this sampling strategy. As an 
approximation, the Maximum Likelihood estimator with exogenous weights can be 
adopted; in this case the function In L(fJ,O) is expressed as: 

(8.3.5) 

which, apart from the weights Whah, coincides with (8.3.4) and therefore with 
(8.3.3). In the previous expression each observation is weighed according to the 
ratio between the weight of the stratum Wk (ratio between the population of the 
stratum and the total population) and the sampling fraction of the stratum itself. 
Thus the observations are corrected so that the elements belonging to under-sampled 
strata receive greater weights than those belonging to over-sampled strata. 
Furthermore, the weighted log-likelihood function (8.3.5) coincides with (8.3.4) if 
the sampling fraction of each stratum is proportional to the weight of the stratum 
(Whah=const.). To apply the Maximum Likelihood estimator with exogenous 
weights to a choice-based stratified sample, it is therefore necessary to have an 
estimate of the weight of each stratum, i.e. of the fraction of the total population 
choosing each alternative. This information can be obtained from official statistics, 
or estimated from another simple random sample smaller in size and/or with less 
detailed qu.estionnaires. 

From the statistical point of view, under some assumptions, Maximum 
Likelihood estimators have many asymptotic properties such as consistency, 
efficiency and normality, independent of the model expressing the probabilities piU]. 
Furthermore, it is possible to obtain approximate estimates of the variances and 
covariances of the components of PML, since its dispersion matrix J: is 
asymptotically equal to minus the inverse of the log-likelihood function Hessian 
calculated at point (fJ, O)ML: 

(8.3.6) 

If the sample is sufficiently large, expression (8.3.6) can be used to estimate 
variances and confidence limits for the coefficients. 
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From the algorithmic point of view, Maximum Likelihood estimation requires 
the solution of an unconstrained maximization problem, expressed by (8.3.3) or 
(8.3.5). This problem can be solved by applying a gradient algorithm of the type 
described in Appendix A. The gradient of the objective function can be calculated 
analytically or numerically depending on the functional form of the model iU(i)] to 
be calibrated. 

Maximum Likelihood Estimators for some random utility models. The explicit 
formulation of the functions In L(jJ,B) in expressions (8.3.3), (8.3.4) and (8.3.5), the 
possibility of estimating the coefficients, as well as the properties of the 
unconstrained optimization problem depend on the type of model used. The cases of 
the Multinomial Logit and the Hierarchical Logit models can be treated analytically 
and are described below. 

If the probabilities piU](X';P,B) are obtained with a Multinomial Logit model 
with a systematic utility linear in the coefficients Pk, the objective function (8.3.3) 
can be expressed analytically: 

or in vector form: 

InL( P,B) = I/~l'H,"[pT Xij(i) / B -In.I exp( pTX; / B)] 
JEll 

(8.3.7) 

In this case the parameters to be estimated are the Nfl coefficients fA, plus a 
single parameter (J. As previously noted, not all parameters can be estimated 
separately since the values of the log-likelihood function (8.3.7) do not depend on 
the Nfl+ I single parameters but on Nfl ratios PIB, It can be immediately verified, in 
fact, that a vector [Ph P2 ... BJ, and a vector [apt, apz, ... ,aBJ, give the same value of 
the function (8.3,7). Thus, it would be impossible to estimate Pk and B separately, 
since there are infinite combinations of them giving the same choice probabilities 
and therefore the same value of the log-likelihood function. If the ratio PIB is 
denoted by Pk ~ the vector P' is: 

P'= P/B = [P/B,fh/B, ... ] 

and expression (8.3.7) becomes(4): 

In L(P') = I/~I.II[p'T Xij(i) -In.IexP(p'T X;)] 
JEll 

(8.3.8) 
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The first partial derivatives of (8.3.8) with respect to the generic parameter fJk' 
can be used to compute the gradient of the objective function and can be expressed 
in closed form: 

or in a more compact notation: 

(8.3.9) 

Also the partial second order derivatives of InL(fJ') can be expressed in closed 
form. 

iJ 2/n L(fJ') = _ '" '" i r :VfJ')' (X.i _ '" Xi i [h]). (Xi _ '" Xi i [h]) 
iJP 'aa ' L..,i=ln L.., P U J.. /k L.., hk P "L.., hi P 

f' k f'1 JEI, hE/, hE!, 

(8.3.10) 

These derivatives can be used in some algorithms to solve the optImIzation 
problem (8.3.3) and to obtain a sample estimate of the variance-covariance matrix 
};ML of the estimator fJUL given by (8.3.6). 

Under rather general assumptions, it can be shown that the Hessian matrix of the 
objective function (8.3.8), whose components are given by the second derivatives 
(8.3.10), is definite negative and thus the function InL(fJ) is strictly concave. 
Therefore there is a unique vector fJUL maximizing the function In L(fJ) and the 
algorithms described in Appendix A converge to this value. 

These results can be extended to the case of functions InL(fJ) given by (8.3.4) 
and (8.3.5) for stratified samples. 

In the case of Hierarchical Logit models, choice probabilities depend on the 
structure of the choice tree. For the sake of simplicity, reference will be made to the 
example in Fig. 8.3.2 in which the parameters e and o relative to structural nodes are 
indicated. The results can be extended to any choice tree structure. 
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Fig. 8.3.2 Choice tree structure for a Nested Hierarchical model. 

In this case we have: 

Substituting the expressions relative to the systematic utilities, it results: 

(8.3.11) 

Choice probabilities, and the log-likelihood function, in addition to the Np 
coefficients fJk' depend on Neparameters Or> one for each intermediate node plus one 
(00 ) for the root. It can also be observed that the structural coefficients always 
appear in (8.3. I I) as ratios. Each coefficient fJkj in the systematic utility of an 
alternative j is divided by the parameter 00(}) relative to the parent node of j, while 
each parameter Or relative to an intermediate node r is divided by the parameter Oa(r) 
relative to the parent node of r which may be an intermediate node or the root. 

For Hierarchical Logit models, the Np+N{TI ratios, rather than the single Np+Ne 
parameters, can be calibrated. In fact, it can be verified immediately that a vector 
[fJi> /h, ... ,fJN[JOi>Bz., ... ,ON~' and a vector [afJi>a/h, ... ,afJN[JaOi>aBz., ... ,a~~ 
substituted in expression (8.3.1 I) give the same value of p[A]. All the parameters 
can therefore be identified but one. The parameters usually identified are the ratios 

. _ _ (5) 
Pkj - fJk!Oa(j) and or- WOa(r) . 
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From the previous expressions it is also deduced that the coefficients /3k of a 
generic attribute appearing in the utilities of alternatives belonging to different nests, 
for example /31tA and /3kC, must satisfy a consistency relationship: 

For these considerations, if the vector of the ratios /3k/BaUl is denoted by /3' and 
the vector of the ratios BlBa(r) by 15, the log-likelihood function becomes InL(fJ~ 0). It 
can be shown that this function is concave with respect to the vector /3~ for a given 
15, while not concave with respect to the vector 15. Fig. 8.3.3 shows the graph of the 
objective function InL(fJ~O) for a simple Hierarchical Logit model as a function of a 
single parameter 15 where the vector /3'is equal to the (unique) value maximizing the 
log-likelihood function for the value of 15 in abscissa. The figure shows the non­
concavity of the function and two local maxima. For this reason, the problem (8.3.3) 
is solved sometimes by using heuristic algorithms which maximize the log 
likelihood function with respect to the vector /3' for a set of fixed values of 15 and 
subsequently search within the limited set of trial vectors 15 (e.g. grid search). Other 
algorithms solve the problem (8.3.3) directly with appropriate definition of the 
ascent direction. 

Another possibility for the calibration of Hierarchical Logit models is the 
sequential estimation of the parameters of Multinomial Logit models corresponding 
to each node of the choice tree associated with the decision process. The calibration 
process is started from the intermediate nodes, which include only elemental 
alternatives. Parameters calibrated at one stage are kept fixed in the following 
stages. This type of calibration is known as sequential or partial information 
estimation, since for each calibration the only information used is relative to users 
who have chosen elemental alternatives (leaves) of the tree and/or compound 
alternatives (structural nodes) connected to the intermediate node under study. There 
are, however, both theoretical and practical problems connected with partial 
information Maximum Likelihood estimation. From the theoretical point of view, 
the method is sub-optimal, i.e. it can produce a value of the objective function which 
is lower than the global maximum. Furthermore, the values of the objective function 
are sometimes lower than those obtained calibrating the Multinomial Logit model 
with equal systematic utilities. This is clearly a contradiction since the latter is a 
special case of the Hierarchical Logit model with all o's equal to one. From the 
practical point of view, in sequential estimation it is very difficult to estimate the 
coefficients of generic attributes with the same coefficient /3", if introduced in the 
systematic utilities of alternatives belonging to different groups. In fact, each group 
is calibrated separately and it is not easy to impose equality constraints between 
parameters common to two or more groups. For these reasons the sequential 
estimation is not to be recommended. 
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Fig. 8.3.3 Log-Likelihood for a Hierarchical Logit model as a function of the parameter t5. 

8.3.3. Model validation 
Once a demand model has been specified and calibrated, it must be validated. In this 
phase the reasonableness and the significance of estimated coefficients are verified, 
as well as the model's capability to reproduce the choices made by a sample of 
users. In addition, the assumptions underlying the functional form assumed by the 
model are tested. All of these activities can be completed with appropriate tests of 
hypotheses for a sample of users. 

lriformal tests on coefficients. These tests are based on the expectations on the signs 
of the coefficients calibrated and on their reciprocal relationships. 

Wrong signs of the coefficients are likely indicators of errors in the attribute 
database in survey results, or of the model mis-specification. For example, in a road 
path choice model, it may happen that paths including toll motorway sections are 
chosen, even though they have approximately the same average travel time and are 
more expensive. If the model specification does not account for the greater driving 
comfort, the calibration procedure may result in a positive cost coefficient to 
increase the systematic utility, and therefore the choice probability, of motorway 
alternatives. A different specification of the model introducing an attribute equal to 
the length of the motorway section of each path should adjust the cost coefficient to 
the expected negative value. 

Other checks can be conducted on the ratios between the coefficients of different 
attributes. As stated in Chapter 4 (see equation (4.2.35», the ratio between time and 
monetary cost coefficients can be interpreted as Value of Time (VaT) and can be 
compared with the results of other calibrations and the expectations about the users' 
willingness to pay. The parameters of attributes corresponding to different 
components of travel time (e.g. waiting and on board time) should have increasing 
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absolute values for less appreciated components and so on. In general, the results 
reported in the scientific and technical literature are very helpful for these analyses. 

As an example, consider the modal choice model described in Fig. 8.3.4; the 
times and cost coefficients are negative, while the availability coefficients (car, 
motorcycle and bicycle) are positive. Furthermore, the perceived time value is about 
5 E/hr. It can also be seen that the disutility associated with time on foot is equal to 
about five times that of time on board and so on. 

VCar 

Vmotorhike 

Vb",. 
Vwcrlking 

Tn Tm, Tb 
TlVlk 
Tacc<lO 

CA 
MAN 
HF 
21-35 

CAR,WLK 

Coefficients 
Estimate 
Siddev. 
T 

iJr' To + iJCA ·CA + iJHF' HF + 
iJr ' Tm + iJMAN . MAN + iJ21-35 ·21- 35 
iJr . Tb + iJroccb<lO . Toccb<lo 
iJ7ivlk . Twlk + iJWLK ·WLK 

travel times of the modes "car", "motorcycle", "bus"; 
walking travel time; 

iJCAR ' CAR 

dummy variable = I if access time to bus is less than ten minutes, 
o otherwise; 

car availability (no. Cars/no. licenses in the household) ; 
dummy variable = I if the user is male, 0 otherwise; 
dummy variable = 1 if the user is head offamily, 0 otherwise; 

dummy variable = I if the user is aged between 21 and 35, 0 
otherwise 
Alternative Specific Attributes (ASA); 

Dr OTwlk BTtaocb<IO I3cA OHF /3.,£4.>. Oll.)$ BrAN OWL!:' 

-0.748 -4.560 1.247 1.758 0.452 0.990 1.684 1.4 11 3.929 
0.338 0.43 1 0.472 0.384 0.225 0.532 0.466 0.560 0.548 
-2 .213 -10.59 2.642 4.573 2.012 1.962 3.6 16 2.519 7.168 

Test H Test statistic 95th percentile 
t student D,=Drw/t 7.53 1.96 
LR(O) 8=0 588.01 16.92 

LR(DASA) D=DAs.. 285.83 14.06 

Goodness of fit test 

p ' I 0.424 

jj ' I 0.411 

Fig. 8.3.4 Parameters and statistics for a modal choice Logit model. 
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Formal tests on coefficients. Under the assumption of sufficiently large samples, 
different assumptions on Maximum Likelihood estimates PWL(6) can be tested using 
asymptotic results. 

t-student tests on particular coefficients 
These tests check the null hypothesis that a coefficient Pk is equal to zero and the 

estimate PkML differs from zero for sampling errors (Ho : Pk = 0) through the statistic: 

(8.3.12) 

Alternatively, the t-student statistic can be used to test that two coefficients Pk 
and A are equal (Ho : Pk = A): 

In both cases, under the null hypothesis the statistic t is distributed according to a 
t-student variable with a number of degrees of freedom equal to the size of the 
sample minus the number of coefficients estimated. Given the typical sample size it 
is usually assumed that the t statistic is distributed as a normal standard variable, 
N(O, I), which is the limit distribution of the t-student variable. Sample estimates of 
variances and covariances can be computed through expression (8.3.6). It is well 
known that the null hypothesis is rejected with a probability a of making a Type I 
error (e.g. rejecting a true assumption) if the value of the t statistic is external to the 
extremes of the interval (Za/2,ZI-a/2) which for a=0.95 are equal to ± 1.96. The 

values of the t-student statistics (8.3.12) for the coefficients of the model reported in 
Fig. 8.3.4 show that all the estimates of the coefficients are significantly different 
from zero with a=0.95. The reader can check the significance of the coefficients of 
the different models described in Chapter 4. 

Chi-square tests on vectors of coeffiCients 
To test for the null hypothesis that the true vector P of the coefficients or one of 

its sub-vector is equal to a given vector p*, (Ho : P = P*), the following statistic can 
be used: 

(8.3.13) 
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If the null hypothesis is true, chi} is asymptotically distributed as a chi-square 
variable with a number of degrees of freedom equal to the number of components of 
p. 

Note that expressions (8.3.12) and (8.3.13) can be used to obtain the confidence 
interval of a single coefficient Pk and the confidence region of a vector of 
coefficients. 

Likelihood Ratio tests on vectors of coefficients. The Likelihood Ratio test is similar 
to the previous one and tests the null hypothesis that the vector p, or one of its sub­
vectors, is equal to a vector p. The vector p may be defined implicitly imposing 
some constraints on p. Constraints can be synthetically represented by a feasibility 
set B defmed by them CP € B). Both in the implicit and the explicit case, p can be 
seen as the vector maximizing the log-likelihood function under the constraints: 

p = arg max In L(fJ) 
PER 

For instance, one can test that P is null, P*=O or that only some of its 
components are null; in the latter case the other components of P* will be estimated 
by solving the constrained maximization problem. 

The null hypothesis Ho:P=P* can be tested using the Likelihood Ratio statistic 
LR: 

LR CP*)= -2 [In LCP*) - In L ([tiL)] (8.3.14) 

which, on the null hypothesis, is asymptotically distributed according to a chi-square 
variable with a number of degrees of freedom equal to the number of constraints 
imposed in estimating p. 

The LR statistic is always greater than zero since the unconstrained maximum 
InL([tIL) of the function InL(fJ) is not smaller than the constrained maximum of the 
same function, In LCP*). Note that the LR test is equivalent, but not equal from the 
numerical point of view, to the chi-square test described above when the constraints 
completely identify the vector p*. For example, in the case P*=O it yields: 

LR(O)= -2[ln L(O) -In L ([tiL)] (8.3.15) 

The null hypothesis P*=O corresponds to assuming a "true" model with all 
coefficients equal to zero and therefore with equiprobable alternatives (~ = 0 V 
j=>pU] = 1/.1). This hypothesis is the less likely the larger the difference between the 
probability of observing the users' choices with the calibrated model (InL([tIL) and 
that with a zero coefficients model (InL(O)). Under the null hypothesis the statistic 
LR(O) will be distributed as a chi-square variable with a number of degrees of 
freedom equal to N p 
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A more challenging specification of the test is obtained by comparing the 
calibrated model with a model whose only parameters are the Alternative Specific 
Attributes fJASA. The vector fJ*=jf1LASA is obtained by maximizing the log-likelihood 
function lnL(fJ) with the constraints that all the other coefficients are equal to zero: 
the number of ASA and their coefficients, NASA, can at the most be equal to the 
number of the alternatives less one, i.e. NASA :s: (1-1). In this case the LR statistic 
becomes: 

(8.3.16) 

Fig. 8.3.4 shows the statistics LR(O) and LR(fJASA) with their respective degrees of 
freedom. These statistics far exceed the 95th percentile of the corresponding chi­
square variables with Np and Np - NASA degrees of freedom and therefore the 
assumptions that the "true" model has null coefficients or has only modal constants 
can be rejected with a very low error probability. 
Statistics and tests on goodness of fit. The model's capability to reproduce the 
choices made by a sample of users(7) can be measured by using the rho-square 
statistic: 

2 _ 1 _ lnL(fJML) 
P - lnL(O) 

(8.3.17) 

This statistic is a normalized measure in the interval [0,1]. It is equal to zero if 
L(tf1L) is equal to L(O), i.e. the model has no explanatory capability; it is equal to 
one if the model gives a probability equal to one of observing the choices actually 
made by each user in the sample, i.e. the model has perfect capability to reproduce 
observed choices. 

Alternatively, it is possible to use an adjusted value of rho-square statistic, 
sometimes named rho-square bar, which substitutes the log-likelihood function lnL 
(tf1L) with its unbiased estimate tnL (tf1L)- Np, where Np is the number of parameters 
estimated in the model: 

-2 _ 1 lnL(pML)_ N p 
P - - lnL(O) 

(8.3.18) 

Expression (8.3.18) attempts to eliminate the effect of the number of parameters 
included in the model's specification to allow the comparison of models with 
different numbers of parameters. 

The adjusted rho-square statistic can be used, in fact, to compare two models 
(model 1 and model 2) which are specified in different ways, i.e. such that the 
vectors fJI and fJ2 can not be obtained as a special case of the other(&). In this case, 
under the null hypothesis that model 1 is "true", the probability that the statistic ;;} 
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of model 2 is for sampling reasons larger by some z than that of model I, is inferior 
to the value of the probability distribution function of a Standard Normal variable, 
N(O;I), computed for the value 

(8.3.19) 

or 

(8.3.20) 

where ¢(z) is the value of the p.d.f. of N(O.I) and N J and N2 are the number of 

parameters in model I and 2 respectively. 
In addition to the statistics p2 and fl, other informal statistics are used to assess 

qualitatively the goodness of fit of a model. One of these statistics (% right) relates 
to the percentage of observations in the sample for which the alternative actually 
chosen is that of maximum probability as predicted by the model. Other synthetic 
statistics are the choice percentage observed and predicted by the model for each 
alternative. The former is given by the ratio between the number of users choosing 
each alternative and the total number of users to whom it is available. The latter is 
obtained as the average of choice probabilities given by the model for the users to 
whom the alternative is available. 

Tests on the functional form. The statistical tests described above are relative to 
different hypotheses on the coefficients (:tiL obtained from the calibration of a 
model, assuming its specification as given. This section describes some statistical 
tests that compare different hypotheses on the functional form of the model. 

Two generic alternative specifications can be compared by using the fl test in 
equation (8.3.20). Alternatively, specific tests related to particular functional forms 
can be used. For example, in Chapter 3 it was shown that the Multinomial Logit 
model is a special case of a single-level Hierarchical Logit if 6=1 (expression 
(3.2.24)), and of the multi-level Hierarchical Logit, if 6,=1 for each intermediate 
node r of the choice tree (section 3.3.3). The hypothesis that the "true" model is a 
Multinomial Logit can be tested by calibrating Hierarchical Logit models and testing 
the null hypothesis that the estimates tfIL are equal to one. These tests can be 
conducted using the statistics described previously for testing hypotheses on single 
or multiple parameters. For the Multinomial Logit model, the Independence of 
Irrelevant Alternatives (lIA) property discussed in section (3.3.1) can be tested 
directly. 

Under the IIA hypothesis, the choice model for any subset I' of alternatives, 
(partial choice set) contained in I, (universal choice set) J'r;;;. I, is still a Multinomial 
Logit model: 
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pi[J I 1']= exp(pT X~ )ILexp fiT X~ (8.3.21) 
hE!' 

where if indicates the sub-vector of coeff~ients included in the systematic utilities 
of the alternatives contained in l' (e.g. fJ will not contain the coefficients of the 
ASA of alternatives not belonging to 1'). The number of these coefficients will be 
N pN p. The Maximum Likelihood estimator j?L" for the model (8.3.21) can be 
obtained on the sub-sample of observations choosing the alternatives in 1'. If the IIA 
hypothesis is true, the vector j?L, of the N p coefficients obtained by calibrating 
the model for all the alternatives over the whole sample and the vector j?LJ' 
described previously must be statistically equivalent. This hypothesis can be tested 
by using the statistic: 

(8.3.22) 

which under the null hypothesis is distributed according to a chi-square variable 

with N Ii degrees of freedom. The matrices Ip and "- are the variance-
I L....PJ' 

covariance matrices of the estimates ~ML and j?L J' of the N Ii common 
components. To test the IIA hypothesis, the test should be carried out on different 
subsets l' of the universal choice set I. 

8.4. Disaggregate estimation of demand models with Stated 
Preferences surveys* 
The information on travel behavior needed to specify and calibrate demand models 
can also be obtained using Stated Preference (SP) surveys. This term refers to a set 
of techniques using the statements made by interviewees about their preferences in 
hypothetical scenarios. SP techniques are based on the possibility of "controlling the 
experiment" by designing the choice context rather than recording choices in a 
given, generally uncontrolled, choice context as in the case with Revealed 
Preference (RP) surveys described in the previews section. SP surveys have several 
advantages over RP surveys, which can be summarized as follows: 

- they allow the introduction of choice alternatives not available at the time of the 
survey (e.g. new modes or services in a mode choice context); 

- they can control the variation of relevant attributes outside the present range to 
obtain better estimates of the relative coefficients. For example, the monetary 
cost in urban areas is usually contained within a limited range; 

- they can introduce new attributes not present in the real choice context (e.g. 
information to the passengers, vehicle air-conditioning, other on-board services); 
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- they can collect more information, i.e. larger samples, per unit cost since each 
interviewee is usually asked about several choice contexts. 

These advantages are obtained at a price of introducing some distortion in the 
results and in the models calibrated. Distortions stem from the possible differences 
between stated and real choice behavior; if the user experienced a real situation, 
his/her behavior might be different from that stated during the SP survey. 
Differences in behavior may be due to several factors. For example, the context 
suggested might be or appear to be unrealistic, some attributes of the suggested 
alternative relevant for the decision maker might be missing, there may be fatigue 
and justification bias effects. The analysis of the possible causes of distortion and of 
the remedies is outside the scope of this book. However, it should be noted that 
some of these problems are structural, or ingrained in SP surveys technique, while 
others can be solved by careful design and execution of the surveys bringing them as 
close as possible to real choice contexts. 

From the above, it is clear that SP surveys, in spite of their considerable 
application potential, should be seen as complementary, rather than alternative, to 
RP techniques. The advantages and disadvantages of the two techniques compensate 
each other and, as will be seen, the techniques can be used jointly to build demand 
models. 

In practice, in the field of SP techniques there are several different approaches 
appropriate for different aims. In the following, reference will be made to the SP 
techniques most widely used for the specification and calibration of travel demand 
models. In particular, section 8.4.1 will introduce some definitions and the main 
types of surveys, section 8.4.2 will describe some aspects ofSP survey design, while 
section 8.4.3 will deal with model calibration methods using the combined results of 
RP and SP surveys. 

8.4.1. Definitions and types of survey 
A Stated Preferences experiment is fully identified by a number of elements: the 
composition of the choice contexts proposed to the decision maker, the selection of 
the choice contexts proposed, the type of preference elicited from the decision 
maker and the way in which the interview is conducted. 

During the interview, the decision-maker is usually presented with different 
scenarios or choice contexts. A scenario is defined by the set of alternative 
optioni9l; each option is accompanied with some attributes or factors defining its 
characteristics. Fig. 8.4.1 shows two choice contexts (scenario A and scenario B), 
each consists of two alternative modes and their attributes. 

In the choice contexts proposed, the attributes vary between a prefixed number 
of values, or levels. These levels can be defined in absolute terms, e.g. travel times 
and costs, or obtained as percentage variations with respect to the values of the 
attributes for a real context experienced or known to the decision maker (e.g. times 
and costs relative to certain origin-destination pairs). 

The decision-maker can be asked about different types of preference: 
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- choice, i.e. an indication of which option he/she would choose in that context; 
- ranking, i.e. a ranking of the available options according to his/her preferences; 
- rating, i.e. the assignment of a vote of preference on a predefined scale for each 

alternative option. 

Note that the three types of preference provide a gradually increasing quantity of 
information but require an increasing involvement of the decision-maker. 
Furthermore, "choice" and "ranking" coincide when the choice context consists of 
only two alternative options. 

The number of possible scenarios depends on the number of combinations of the 
design elements introduced, namely the number of options, the number of attributes 
and the number of levels for each attribute. Since the total number of scenarios 
might be too large and not all the combinations are equally "useful", one of the 
elements in the design of an SP experiment will be the selection of the scenarios to 
be proposed to the decision maker/so 

Modal alternatives 

ICar lC train Plane I High speed train 
Real alternatives Hypotethical alternative 

Scenario A • • Alternatives 
Options 

Car Ie train 

Time [hI 2 1.8 Value of the 
Cost [£] 65000 45000 -. Attributes 
Park. at destin. [£1 3500 
Frequency [runs/hI 1 
Nr. of transfers no 

Scenario B • • Alternati 
Options 

ves 

Plane High-speed train 

Time[h] 2.50 4.0 values of the 
Cost [£1 200000 100000 __ Attribute s 
Park. at destin. 1£) ....... 
Frequency (runs/h] 0.5 1 
Nr. of transfers no no 

Fig. 8.4.1 Hypothetical scenarios for an SP survey 

Finally, the interviews can be conducted using di fferent procedures. In 
traditional methods, the decision-maker is asked to fill in pre-printed paper forms . In 
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more sophisticated computer-aided techniques, the scenarios are generated in real­
time taking into account previous answers. 

8.4.2. Survey design 
Designing an SP survey requires the definition of all the elements described. It must 
be remembered that, in spite of the operational guidelines and the theoretical 
analyses, SP survey design, even more than with traditional surveys, is a synthesis 
based on the analyst's experience and sensitivity. The main operational suggestions 
resulting from many years of research and experimentation are summarized below. 

- Scenario realism: results of SP surveys are significantly better if choice 
scenarios are in the direct experience of the decision-maker. For example, in a 
survey for the calibration of a modal choice model, an RP interview can be 
carried out on an actual journey of a certain type, then SP scenarios obtained 
from that journey by varying the attributes or by introducing a new mode can be 
proposed. In this way the distortion effects described above can be reduced 
considerably. It is obvious that this type of survey requires more preparation; 
portable computers can generate in real time level-of-service attributes for the 
different modes. 
"Choice" rather than "ranking" and "rating". It seems that greater simplicity 
and less ambiguity of preference statements compensate for the smaller amount 
of information produced by this type of experiment. In addition it is possible to 
use results and estimation techniques analogous to those obtained for RP 
surveys. 

- Scenario simplification. It seems that proposing a limited number of alternative 
options defined by a reduced number of attributes gives rise to better results. 

- Limitation of the number of scenarios proposed to each decision-maker in order 
to avoid fatigue effects deteriorating the quality of results. Many experiences 
suggest that each decision-maker should be confronted with no more than nine or 
ten scenarios. 

The latter aspect is strictly connected to the most theoretical phase of survey 
design, namely scenario selection. In most cases the number of scenarios 
theoretically possible is very large; in fact, subdividing the n factors in k groups (i = 

1 ,2, ... ,k) of ni elements taking on mi levels, the total number N of possible scenarios 
will be: 

k 

N =I1m"' 
;=J ' 

The number of factors must be computed taking into account that any single 
attribute present in p alternatives counts for p different factors. 
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A Full Factorial Design considers all possible scenarios. There are many 
techniques(IO) for reducing the number of scenarios in a Full Factorial Design, 
generating a subset of scenarios with same desirable properties. Some results for the 
case of two levels per factor are given below; the case of several levels can be 
reduced by decomposing a multi-level factor into many two-level factors and 
introducing some compatibility constraints on the combinations of levels that the 
new factors can assume. 

Fig. 8.4.2 lists all the possible scenarios, indicating with + and - the two levels of 
each factor for an experiment with three factors and two levels (N=8); factors are 
time and cost for the car (TC and CC) and time for the bus (TB). 

SCENARIO AVERAGE FACTORS INTERACTIONS RESULT 
NR. OF 

CHOICE 
TC CC TB TC,CC TC,TB CC,TB TC,CC,TB 

1 + - - - + + + - VI 
2 + + - - - - + + V2 

3 + - + - - + - + V3 
4 + + + - + - - - V4 

5 + - - + + - - + Us 
6 + + - + - + - - V6 
7 + - + + - - + - V7 

8 + + + + + + + + Us 
Divisor 8 4 4 4 4 4 4 4 

Fig. 8.4.2 Example of Full Factorial Design with levels and main interaction effects. 

It will also be assumed that the experiment associated with the i-th scenario (i-th 
row of the matrix in Fig. 8.4.2) yields an observation of the variable Vi not known a 
priori. In the example this variable could be the difference of the perceived utility 
between the two alternatives (rating), or a binary indicator of the alternative 
preferred by the decision maker (ranking and choice). Furthermore, Ii] indicates the 
level of the jth factor in the ith scenario, or the generic element of the matrix in 
Fig.8.4.2, which under the assumptions made assumes the values + I and -lin 
correspondence with the "high" and "low" level of the factor. The complete 
experiment is defined a "comparison" for the factor j if it results: 

L- lij =0 I-J, ... ,N . 
(8.4. I) 

i.e., if the number of high levels (+) is equal to the number of low levels (-) in the N 
scenarios making up the experiment. Two comparisons relative to the factors j and h 
are said to be "orthogonal" if: 

" "h=O ~i= 1 N Ul 
(8.4.2) 
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i. e., if the numbers of scenarios in which the levels of the two factors are 
concordant (++,--), is equal to the number in which they are discordant (+-, -+). 

The variation (total variance) of the variables Ui can be explained in terms of the 
"main effects" and of "interaction effects" of the factors considered in the 
experiment. 

The main effect of the factor j, PIj), is defined as the difference between the two 

averages fl+ and fl_ of the variable U calculated respectively in correspondence of 

the values (+) and (-) of the factor. If the vector lj is a comparison, it therefore 
results: 

2 
p( .j = - " l.v. } N L.Ji:I ..... N 1/ I 

(8.4.3) 

For the example in Fig. 8.4.2, the main effect of the factor TC is therefore: 

The interaction effect between the factors j and h, IU•h), is defined as the 
difference between the averages of the variable U obtained for the concordant 
values, (+) (+) or (-) (-), and the discordant values, (+) (-) or (+) (-), of the two 
factors. If the two vectors ~ and lh are comparisons, it results: 

2 
I( . hj = - " l1·hU }. N L.Ji:I ..... N !I I I 

(8.4.4) 

For the example of Fig. 8.4.2, the interaction effect TC, CC is therefore: 

Furthermore, from (8.4.4) it is deduced that, analogously to the levels of a factor, 
the level of interaction between two factors (j,h) for the i-th scenario, [iU.h), can be 
defined as ly . lih; the interaction effect between the two factors can therefore be 
expressed as: 

(8.4.5) 

Analogously, the interaction effect of three factors (j, h, k) can be defined as: 
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2 
l( ·hk) = - '" . 1 N11h1k U j. , N L..J 1= ,.... '1 1 1 I 

(8.4.6) 

and the interaction level of three factors can be expressed as /;(j,h,k) , 

Fig, 8.4.2 shows the two-factor interaction levels and the unique three-factors 
interaction level as well as the average column, 1, made up of the variables m; all 
equal to (+ 1). These variables allow the expression of the average of U as: 

- 1 
U=- L:mp; 

N ;~J, .... N 

Under the assumption of orthogonal comparisons, the N values assumed by the 
variable U can be entirely explained as a linear combination with coefficients a; of 
the average, of the main effects and of the interaction effects between the different 
factors, In the case of the example in Fig, 8.4.2, we have: 

U·= I al m; + a2 /;(TC) + a3 /2(CC) + a4 1;(T8) + as /,(TC CC) + 
+ IXt. I;(TC T8) + a7 I;(cc TB) + as I;(TC cc TB) 

Many experiments, however, lead to the conclusion that most of the overall 
variance of the variable U is explained by the main effects (approximately 80%), 
while the two-factor interaction effects explain a limited fraction of the global 
variance (3-6%). Furthermore, the variance explained by the interactions of more 
than two factors is usually negligible. In other words, if the variable U were 
expressed as a linear combination of the average and of the main effects, the 
variance explained by the model would be around 80% of the total variance 
observed for the variable U and so on. Starting from these results, it is possible to 
introduce some partialization techniques of the experiment. Examples are techniques 
to reduce the number (N'< N) of scenarios presented to each decision-maker, while 
retaining the orthogonality of the comparisons and the possibility of evaluating at 
least the main effects of the factors considered. 

The first technique, known as "block decomposition" of the Full Factorial Design 
is based on the principle of subdividing the set of alternative scenarios in groups 
(blocks) to present to different decision-makers, In order to obtain blocks satisfying 
the properties (8.4.1 ) (comparisons) and (8.4.2) (orthogonality between 
comparisons) one or more "block variables" are selected and the scenarios 
corresponding to the same value of the block variable, or concordant (discordant) 
values of many block variables, are grouped together. The block variables normally 
used are high-level interactions since the effects on the variance of the block 
variables and their interactions can be estimated only approximately on the basis of 
the observation of all the interviewees, Fig. 8.4.3 shows two subdivisions into blocks 
of the full design in Fig. 8.4.2. In the first case, the eight scenarios have been 
divided into two blocks of 4 (8/2) scenarios, using the interaction level of the three 
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factors (TC, CC TB) as the block variable. In the second case, 4 blocks (8/2x2) of 
two scenarios each have been obtained using as block variables the interactions level 
of the two factors (TC, CC) and of the two factors (TC, TB). 

Another partialization technique of the Full Factorial Design, known as 
Fractional Factorial Design, eliminates completely some scenarios while retaining 
orthogonal comparisons which allow the estimation of the main effects. If the 
resulting number of scenarios is still too high to be presented to a single decision­
maker, they can be further broken down into blocks by using the method described 
previously. A fractional factorial design can be obtained from the full design 
through a "defining relationship". The simplest case is that in which the level of a 
given factor is obtained from those of all the others resulting from a full design 
which excludes the factor to be obtained. The level of the "derived" factor is 
supposed equal to the level of a higher-level interaction effect. For example, in the 
case of Fig. 8.4.4 it is assumed that the level of the factor TB is equal to that of the 
interaction effect (TC, CC), where the levels of TC and CC are those defined in a 
two-factor full design (N=2 2 ) ; in this case the following "defining relationship" has 
been adopted: 

TB = (TC. CC) i.e. liTH = liTC ' licc (8.4.7) 

SCE. 

NR. 
FACTORS BLOCKVAR. ALTERNATIVES OROANlZATED IN BLOCK SC .. NR. 

TC CC TB TC,CCTB Block TC CC TB 
I - - - - I - - - I 
2 + - - + II + + - 4 
3 + + II 

Block I 
6 - - + - + 

4 + + - - I - + + 7 
S - - + + II + - - 2 
6 + - + - I - + - 3 
7 I 

Block II 
S - + + - - - + 

8 + + + + II + + + 8 

sc. 
FACTORS 

NR 
BLOCKYAR. ALTERNATlVES OROANIZATED IN BLOCK SC.NR 

TC CC TB TC, TC, block TC CC TB CC TB 
I - - - + + IV + - - 2 
2 + I 

Block I + + 7 - - - - -
3 - + - - + II - + - 3 
4 + + + III 

Block II 
6 - - + - + 

5 - - + + - III + + - 4 
6 II 

Block III 
S + - + - + - - + 

7 - + + - - I - - - I 
8 + + + + + IV 

Block IV 
+ + 8 + 

Fig. 8.4.3 Construction of two and four blocks from the Full Factorial Design in Fig. 8.4.2 
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The design in Fig.S.4.4 is thus obtained as follows: 

• development of the full factorial design for the two factors TC and CC; 
• calculation of the interaction effect level (TC, CC); 
• definition of the level of factor TB using the equation (S.4.7). 

SCENARIO FACTORS INTERACTION FACTOR 

NR. TC CC TC,CC TB 
I - - + + 
2 + - - -
3 - + - -
4 + + + + 

Fig. 8.4.4 Example of Fractional Factorial Design for the Full Factorial Design in Fig. 8.4.2. 

With a fractional factorial design the possibility of estimating some interaction 
effects is lost, as these effects get "confused" with the "retained" ones. Confused 
effects can be identified by manipulating the "defining relationship" of the fractional 
factorial design. Thus, recalling that the product of the levels of the same factor is 
equal to the average factor /, for the relationship (S.4.7) it results: 

TB x TB = TB x TC x CC = / 
TC x TB = TC x TC x CC = CC 
CC x TB = CC x CC x TC = TC 

(S.4.S) 

i.e., the three-factor interaction effect (TC, CC, TB) gets confused with the average 
and the two-factor interaction effects (TC, TB) and (CC, TB) get confused with the 
primary effects of the factors CC and TC respectively. Obviously the two-factor 
interaction effect (TC, CC) is confused with the primary effect TB by construction. 

The "length" of the defining relationship, i.e. the number of factors in it, is 
known as the resolution of a fractional factorial design. The resolution of equation 
(S.4.7) is equal to 3. The number of scenarios in a fractional factorial design depends 
on the number of defining relationships; for each defining equation, under the 
assumption of two levels for each factor, the number of scenarios halves. Obviously 
the choice of defining relationships must be based on the analyst's expectations 
concerning the relevant effects which are not to be confused in order to explain the 
observed behaviors. 

To give a more detailed example, suppose there are seven factors generically 
indicated by A, B, C, D, E, F, G with two levels each. The full factorial design has 27 
= 12S scenarios, a fractional factorial design with 27-1 = 64 scenarios can be obtained 
with a single defining relationship. For example: 
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G=(A Be DEF) 

A design with 27-4 = 8 scenarios can be obtained with 4 defining relationships, 
for example: 

D = (A,B); E = (A,C); F = (B,C); G = (A,B,C) 

and so on. 
Note the difference between the two methods described for partializing the full 

factorial design. With the block variables method, the whole full factorial design is 
used, even if it is presented to several decision-makers; with the fractional design, 
on the other hand, some scenarios are completely eliminated. In the former case 
many scenarios are generated but, given the number of decision-makers in the 
sample, less information (preference statements) is obtained for each scenario; with 
the fractional factorial design, the opposite occurs. 

It should be pointed out that SP surveys are often aimed at the calibration of 
random utility models whose systematic utility function usually include the values 
of individual attributes or their functional transformation. This is equivalent to the 
assumption that the interactions between the attributes (or factors) can be 
disregarded in explaining the choice behaviors of decision-makers. Thus, the SP 
survey design should allow at least the evaluation of all the main effects of the 
factors considered. 

8.4.3. Model calibration 
The results of a SP survey can be used to calibrate demand models relative to the 
choice dimensions proposed to the decision-makers. The estimation methods used in 
practice are analogous to those described for Revealed Preferences in section 8.3.2. 
In fact, each scenario i presented to a decision-maker can be seen as an element of a 
sample of observations of choice behaviors. The final size of the SP sample thus is 
equal to: 

where nz is the number of scenarios presented to the zth decision maker and Nsp is 
the number of decision makers contemplated in the SP survey. 

Furthermore, the attributes proposed for the different alternatives and the chosen 
alternative, jU), can be associated to each scenario i. The chosen alternative is the 
alternative explicitly chosen by the decision maker in "choice" surveys, or the one 
with greatest attractiveness in "ranking" or "rating" surveys. Under the approximate 
assumption that the nsp observations are statistically independent(ll), it is possible to 
formulate likelihood and log-likelihood functions for the SP sample formally 
coincident with expressions (8.3.2) and (8.3.3) and all the results described there can 
be extended to the estimation of SP-based models. 
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As stated in the introduction, SP surveys should be considered as complementary 
to traditional RP surveys and the combined use of the two can balance reciprocal 
merits and shortcomings. From the point of view of demand modeling it is therefore 
useful to carry out joint calibrations using RP and SP surveys on the same sample or 
on different samples of users. Random utility models explaining RP and SP choices 
should be specified separately since their attributes, random residuals variances and, 
in principle, even functional forms might be different. Possible specifications of the 
perceived utilities in both models are formalized below: 

RPMODEL: 

where: 

ur;: 
x;: 

pand 1] 

(8.4.9) 

i = 1, ... , nRP 

is the perceived utility associated with alternative j by decision maker i in 
the RP context; 
is the vector of the common attributes relative to the alternative j for 
decision maker i; these attributes appear in the specification of the SP 
model with the same coefficients; 
is the vector of the RP specific attributes relative to alternative j for 
decision maker i; 
is the random residual of alternative j for decision maker i ; 

Is the systematic utility of the RP model associated with alternative j, for 
decision maker i; 
are the vectors of the unknown parameters to be estimated. 

SPMODEL: 

(8.4.10) 

i = 1, ... , nsp 

where: 
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is the perceived utility associated with alternative j in the hypothetical 
scenario i; 
is the vector of the common attributes relative to alternative j for the 
scenario i; 
is the vector of the SP specific attributes relative to alternative j for the 
scenario i; 
is the random residual of alternative j for the scenario i ; 

is the systematic utility of the SP model associated with alternative j for 
scenario i; 
are the vectors of the unknown parameters to be estimated. 

The definition of the choice probabilities p:u, u] e p~Aj] obviously depends on 

the assumptions on the distribution of the random vectors tfP and If? Assuming sf; 
and s; as Li.d. Gumbel variables of parameters ()s? and ()R? respectively, the 

probability of choosing alternative j in the observation (decision maker or scenario) i 
assumes the form of a Multinomial Logit model for both the RP and the SP models: 

(S.4.11) 

Specific attributes of the SP model may include qualitative attributes, such as on­
board comfort, services contemplated in the SP surveyor ASA for alternatives non­
available in the RP context (e.g. new transport modes or services). 

State dependence or state inertia is one of the SP specific attributes often 
included in the specification (S.4.10). This attribute represents the conditioning of 
the generic SP decision-maker with respect to the alternative actually chosen (RP 
context). Inertia is usually modeled as a dummy variable equal to one if the user i 
chooses alternative j in the RP context, zero otherwise. Its coefficient is usually 
statistically significant and positive to indicate, given the values of other attributes, a 
larger perceived utility and choice probability for the alternative chosen in the real 
context. Obviously the state dependence attribute can be used only if the RP and SP 
surveys relate to the same sample of decision-makers. 

Specific attributes of the RP model may be relative to variables not included 
among the SP factors. 

A scale factor taking into account the possibility that the variances of the vectors 
t? and tI? might be different is usually introduced for joint calibration. In fact, as 
stated in section S.3., for models belonging to the Logit family it is not possible to 
estimate the parameter () separately from the coefficients Pk and the estimates 

/J';'L are in reality ratios Pk'=P/fJ. To take into account the possible difference of the 
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variances of the residuals tfP and IP, a scale factor f-l, equal to the ratio between the 
parameters Oofthe two random vectors, is introduced: 

i.e. (8.4.12) 

The log-likelihood function for the RP and SP samples can therefore be 
expressed including the parameter ORP in all the other coefficients: 

InLRP (P' ,.,,') = I In PRP[}(i)](X jRP ,WjRP ,p,,.,,,) (8.4.13) 
i=J.···."RP 

lnI!Pep,y',Jl)= IlnpspU(z)\XfP,z~'P,p,yl,Jl) (8.4.14) 
i=I,····,IIsp 

where the probabilities p[j(i)] are obtained by using the following systematic 
utilities: 

V. sP = IIp,T X~P +y,T Z~P 
lj ~ lj lj 

p' = P / 0 RP .,,' = ." / 0 RP 

y' = Y / 0 SP f-lp' = P /0 SP 

The combined estimate of the parameters (p', .,,', y', f-l) can therefore be obtained 
by maximizing the log-likelihood function of the joint sample which is the sum of 
expressions (S.4.13) and (8.4.14) on the assutnption that the RP and SP samples are 
independent: 

(P' ,.,,' ,y' ,f-l') = arg max~n L RP+SP (pi,.,,' ,y' ,f-l)] = 

= arg max~nLRP (P' ,.,,') +In LSP (P' ,y',f-l)] 
(8.4.15) 

Note also that under the hypothesis that the two choice models PRP[j(i)] and 
Psp[j(i)] are Multinomial Logit such as (8.4.11), the global log-likelihood function 
(8.4.15) is concave in the parameters P', .,,' and y', but not in the scale factor f-l as it is 
the case with the Hierarchical Logit model. This implies that for the maximization of 
(8.4.15), it is not possible to use the same gradient algorithms described in section 
S.3.2 for the Multinomial Logit model. A possible solution is to use the gradient 
algorithms to maximize the function InL(p',O',y',;/) for a predefined value ;/ of the 
scale factor, associated with a mono-dimensional optimization algorithm that 
explores different values of f-l (see Appendix A). 

Experimental evidence indicates that the combined use of RP and SP data for 
estimating the parameters usually results in an improvement in statistical precision 
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and in more reasonable parameter values. Furthermore, it is not possible to define a 
priori whether the scale factor Ji must be greater or less than one. In fact, there are 
reasons both for a larger variance of RP random residuals (Jess precise attributes 
used for calibration, omitted attributes, etc.) and for the opposite (Jess realism of the 
choice context, fatigue effect, etc.). As an example, Fig. 8.4.5 reports the results of 
the calibrations of a Multinomial Logit mode choice model using RP and SP data 
separately and jointly. 

PARAMl'TERS (ATTRffiUTES) RPMODEL SPMODEL RPISPMODEL 
P, (travel time) 
/h (cost) 
V.OT 
f3J (access time) 
p, (waiting time) 

'P5 (Nr of motorbikes) 
p" (Nr. of cars) 
j3, (chain) 

Til (AS A Car RP) 
T7,(ASA Motorbike RP) 
YI (ASA car SP) 
Y2(ASA Motorbikes SP) 
Yl (Inertia) 
Scale factor J.J 

In L(O) 
LnL(fJ) 
LR 
RH02 

RP model 

~p Motorbike 

JIlP Bu .• ' 

S? model 
VSPcor 

~p Motorbike 

VPBu., 

Attributes 
Tb 
Me 
Nm,Ne 
Ta 
Tw 
CH 

Car, Motorbike 
IN 

-3 .277 (-2.2) -2.585 (-3.9) 
-2.863 (-35) -1.336 (-5.9) 
1144 £Ih 1934 £Jh 
-6.606 (- 1.2) -3.176 (-3.5) 
-10.40 (-2.3) -19.62 (-4. 1 ) 
5.391 (3.9) 2.831 (3.6) 
3.175 (2.5) 1.933 (4.4) 
-1.399 (- 1.2) -1.730 (-2.3) 
-1.370 (- 1.2) 
-4.492 (-3.3) 

-9748 (-1.8) 
-1.499 (-2.3) 

STATISTICS 
-105.4668 -408.6838 
-55.4268 -210.4182 
100.08 396.53 
.4745 .4851 

PITb +/hMe +pc,NefJ,CH+l]1CAItP 
p,Tb +fJ,Me +P5Nm +T72MOTORBIKERP 
p,Tb +fJ,Me + P1Ta +p,Tw 

P, Tb +fJ,Me +fl<,Ne p, CH+rICAI?~P +Y3IN 
P, Tb +fJ,Me +P5Nm +Y2MOTORBIK£"P +y,IN 
P, Tb + fJ,Me +f3JTa +P.Tw +YlIN 

Travel time on board [h] 
Monetary Cost [£·1 O'J 
Nr. of motorbikes and cars in household 
Access time [hJ 
Waiting time[h] 

-2.82 (-3.9) 
-1.371 (-2.4) 
2056 £Jh 
-4.776 (-4.8) 
-20.86 (-4.0) 
2.848 (5.5) 
1.528 (3.9) 
-.4545 (-1.7) 
-4.271 (-4.9) 
-6.076 (-6.8) 
-1.923 (-3.1) 
-2.480 (-3.4) 
2.603 (4.4) 
0.786 (4.0) 

-514.1506 
-282.2376 
463.826 
.6612 

Dummy variable (011) , I if the trip belongs to a chain (sequence of more 
than 2 trips) 
Alternative Specific Attributes (ASA) 
Inertia Variable (011), I if mode was chosen in the RP survey 

Fig. 8.4.5 Separate and joint RP/SP calibrations of a Multinomial Logit mode choice model 
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The joint calibration on RP and SP data of more complex random utility models 
is further complicated by the parameters defining the joint density function of the 
vectors tfP and i P which are generally more than one. If the two models PRPU] and 
PspU] were two Hierarchical Logit models with the same tree structure (the same 
vector of parameters 0), it would still be possible to introduce a scale factor Jl 
relative to the variances of the two random vectors. For different correlation 
structures or other functional forms it would be more complicated to synthesize the 
different structure of the variance-covariance matrices of tfP and I1~P with few 
parameters. 

B.5. Estimation of O-D demand flows using traffic counts 
This section covers the methods aimed at improving the estimates of present origin­
destination demand flows by combining direct and/or indirect (model) estimators 
with other aggregate information related to O-D demand flows. In the following the 
aggregate information will be identified with traffic counts, i.e. counts of user flows, 
on some elements (links) of the transportation supply system (networkiI2). The 
problem of estimating O-D flows by combining traffic counts with all the other 
available information in the literature is sometimes referred to as origin-destination 
Count Based Estimation (ODCBE) problem. 

From a certain point of view, the problem of estimating O-D flows by using 
traffic counts can be considered as the inverse assignment problem. The latter in 
Chapter 5 was stated as that of calculating link flows starting from O-D flows, 
network and path choice model. Vice-versa, the problem under study is that of 
calculating the O-D flows starting from the measured link flows, using network and 
path choice model (see Fig. 8.5.1). 

Estimation of O-D matrices using traffic counts has received considerable 
attention in recent years both from the theoretical and the empirical point of view. 
This can be easily explained given the cost and complexity of sampling surveys, as 
well as the lack of precision related to both direct and model estimators of O-D 
flows. On the other hand, users' flows on some network links (traffic counts) are 
cheap and easily obtainable, often automatically. Furthermore, in many 
transportation-engineering applications, O-D flows estimates are essentially aimed 
at predicting traffic flows deriving from changes in the supply system (network). 
The focus is on estimating and predicting "aggregate" values of the O-D matrix, i.e. 
the traffic flows, rather than individual O-D flows and it is expected that a matrix 
capable of reproducing some of such aggregates with sufficient precision will give 
"better" predictions also following network changes. 

Before solving the aggregate O-D estimation problem, it is necessary to express 
formally the relationship between the vector of observed flows and the unknown 0-
D demand flows, by reformulating some relationships presented in the previous 
chapters. As stated in Chapters 2 and 5, the flow ii, in the reference period, can be 
expressed as the sum of flows on the paths including link I: 
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Fig. 8.5.1 Relationship between estimation of O-D flows with traffic counts and 
traffic assignment 

Ii =~k btk hk 
Path flows, can be expressed as the product of the O-D demand flow by the 

percentage (fraction) of users following each path: 

(8.5.1 ) 

where btk is the element of the link-path incidence matrix LI andpki is the fraction of 
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the flow dP3) between the i-th O-D pair using path k. Note that in the previous 
expression the variables (link flows, O-D flows, path flows and path fractions) 
indicate the "true" values relative to the system and to the reference period under 
study. 

Equation (8.5.1) can be expressed differently as 

fi = ~; d; ~k ~kPk; = ~; m/i d; (8.5.2) 

or 
fi =m/ d 

where m/i = ~k ~kPk; is the assignment fraction, i.e. the fraction of the flow d; using 
the link I and m/ is the column vector obtained by ordering these fractions(I4). Using 
a matrix notation, expression (8.5.2) becomes 

f= All =APd=Md (8.5.3) 

All the variables introduced refer to the links for which traffic counts are 
available (n/ being their number), to the paths using them and to the O-D- flows 
using those paths (nOD being their number). Thus, the matrix M, or assignment 
matrix, has dimensions (n/ x nOD). The relationship (8.5.3) between link flows and 
O-D demand flows is known as assignment relationship or map; Fig. 8.5.2 shows an 
example of the assignment map for an elementary network. 

When several paths are available between each O-D pair, the elements of the 
assignment relationship, m/i, are not uniquely defined and therefore must be 
estimated. Path choice and network assignment models described in Chapters 4 and 
5 provide methods for obtaining estimates Ai of the fraction Pki and estimates m/i of 

the fractions m/i. 
In the case of pre-trip, deterministic or probabilistic path choice models, 

fractions Pk; can be expressed as probabilities of choosing each path k connecting 

the i-th O-D-pair as a function of the path costs vector g (see section 4.3.4.1): 

Pk; = p[kli](g) (8.5.4) 

In the case of mixed pre-trip/en-route path choice models, usually adopted for 
high-frequency public transport networks, path probabilities can be obtained from 
hyperpathj choice probabilities qUli], depending on the vector ofhyperpath costs x, 
and from the probabilities OJkj of following path k within hyperpath j (see section 
4.3.4.2): 

(8.5.5) 
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To underline the dependence of assignment matrix estimates ml; on the path 

choice model, and through this, on link costs c, the matrix if can be formally 
expressed as: 

M=LlP(c) 

M= LlQQ (c) 

8 
un erstoo leaving as d d hi ' h' b t e re atlOns Ip etween a dd' . Itlve pat 

O-D pair Path k 

1-3 1) 1 4 6 7 9 3 
2) I 4 5 7 9 3 
3) I 4 5 7 9 8 
4) 1 4 6 7 9 8 

2-3 5) 2 5 7 9 3 
6) 2 5 7 9 8 3 

N = 2 (link 9-3 and link 8-3 ) 

• p 

1-3 2-3 
1 0.3 

2 3 4 5 6 2 0.3 
3 0.2 
4 0.2 1

9-3 
8-3 

• 
5 0.7 
6 0.3 

(8.5.6) 

(8 .5.7) 

cos an m h ts d r k costs. 

PM 
0.30 
0.30 

3 0.20 
3 0.20 

0.70 
0.30 

M 

1-3 2-3 

[9-3 
8-3 

0.6 0.7 
0.4 0.3 

Fig. 8.5.2 Assignment map for an elementary network. 
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If link and path costs are known(15), an estimate M of the "true" assignment 
matrix M can be calculated through path choice models (8.5.4) and (8.5.5). It is to be 

expected that M diverge from the true assignment matrix M because of the 
approximations implicit in any assignment model (network extraction, cost 
functions, path choice model, etc.). Thus, a vector IIM(16) of assignment related 

errors should be added when substituting M to M in equation (8.5.3): 

(8.5.8) 

where FIM is the matrix of deviations between the true assignment matrix and that 
obtained with the assignment model and lIM is the vector of deviations, or 
assignment errors, between the flows resulting from the assignment of "true" 
demand and "true" flows. In other words, if the "true" vector of demand flows ti17) 
were known, its assignment to the network would produce a flows vector v: 

v= Md=v(d) (8.5.9) 

different from the "true" link flows vector f These deviations are the components of 
the vector 11M: 

f=v+ lIM 

A further error source is related to flow counts. Like all measures, traffic counts 
are affected by errors depending, among other things, on the technique used 
(manual, automatic, etc.). Furthermore, the counts are usually conducted over 
several days, sometimes different for different network links, while the "true" 
demand vector d represents the average O-D flows in periods with similar 

characteristics (e.g. peak hour of the average weekday). Thus, if j is the vector of 

measured flows, it will differ from the "true" vector f by a vector tPBS of 
measurement errors: 

j = f+ tPBS (8.5.10) 

By combining the equation (8.5.8) and (8.5.10), it is possible to express the 

relationship between the vector of counts j, the assignment matrix M and the 

"true" O-D demand flows vector d as: 

j = M d + lIM + tPBS = v(d) + E (8.5.11) 
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where the vector E is the algebraic sum of the vectors 11M and £OBS. It is usually 
assumed that the assignment model and the counts are unbiased estimators of the 
"true" flows, i.e. that the vector £ is a zero mean random vector £(£)=0. Empirical 
evidence seems to support this assumption. 

Usually information on O-D flows contained in traffic counts, represented by the 
system of stochastic equations (8.5.11), is not sufficient to estimate the vector d. In 
fact, even assuming that £ is null, the independent equations in the linear system 
(8.5.3) are usually much less than the unknown O-D flows to be estimated. The 
example in Fig. 8.5.3 shows that even for an elementary network with a single path 
for each O-D pair, there are many O-D matrices which, once assigned to the 
network, can exactly reproduce the flows observed on the links. 

d 

3 4 
j""i27 

2 b 2 

3 4 

d1 I rfIf 2 5 0 

3 4 

d2 IrrT 2 3 2 

3 4 

d3 lrrT 2 3 2 

1 

2 
];,5 = 15 156 = 20 

Distance Measures 

66 

26 

I;(d; _ dJ 2 

d; 

8.702 

2.286 

Fig. 8.5.3 0-0 matrices corresponding to the same link flows vector. 

3 

4 
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Furthermore, since in general the vector B differs from zero, the system of linear 

equations f = Md may not have a solution. In conclusion, the information 

contained in the counts must be combined with that from other sources to estimate 
the unknown O-D demand flows. 

The additional information can be of two types: sampling or experimental 
information derived from demand surveys, and non-experimental information 
representing the a priori knowledge of the analyst. In the former case, reference can 
be made to the classic theory of statistical interference, while in the latter Bayesian 
estimators should be used. The two methods, whose statistical foundations will be 
described in the following sections, give rise to several estimators, some of them 
having similar formal representations(18). 

In fact, if d is the vector representing the initial information, i.e. the information 
on O-D-demand not given by the flows, the ODCBE problem can be expressed in a 
general form as: 

(8.5.12) 

, , 
where x is the unknown demand vector. The two functions ZI(X, d) and ziv(x), f) 

can be considered respectively as "distance" measures of the unknown demand x 

from the a priori estimate d and of the flows obtained by assigning x to the 

network, vex), from the traffic counts f. In an intuitive interpretation of the 

problem (8.5.12) is that of searching the v~ctor d* that is closest to the a priori 

estimate d , and, once it is assigned to the network, produces the flows v(d*) closest 

to the counts f . 
In general, the functional form of the two terms Zl (.) and Z2 (.), depends on the 

type of information available (experimental or non-experimental) and on the 
probability laws associated with such information. The statistical bases of the 
various estimators and their resulting functional forms will be described in the 
following sections. 

8.5.1. Maximum Likelihood and GLS estimators* 
Classic estimators of d can be specified following Maximum Likelihood theory or 
Generalized Least Squares (GLS) theory, depending on whether explicit assumptions 
on the probability distribution of random residuals 11M and BOBS are made. 

Maximum Likelihood (ML) estimators tf1L are obtained by maximizing the 
probability of observing sampling surveys results and counted flows. Under the 
usually acceptable assumption that these two probabilities are independent, the 
Maximum Likelihood estimator can be expressed as: 



where: 

x 

n 

I 
InL(nlx) 

InL(1 Ix) 

s 
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d ML = argmax ~nL(n I x) + InL(J / x)] 
XES 

(8.5.13) 

is the "unknown" demand vector of dimensions (nOD xl) whose 
components Xod are the trip flows between the 0-D pair (0, d), from now 
on denoted with the double index; 
is the vector of demand counts with dimensions (nOD x 1). The generic 
component of n, nod, is the number of trips between the O-D pair (o,d) 
observed in the sample; 
is the vector of observed flows, or traffic counts, with dimension (n, x 
1 ). 
is the log-likelihood function of demand counts, i.e. the logarithm of 
the probability of observing the sampling vector n if x is the (true) 
demand vector; 

is the log-likelihood function of the traffic counts, i.e. the logarithm of 

the probability of observing the vector of the counts J if x is the (true) 

demand vector; 
is the feasibility set of the (true) demand vector, usually coincident with 
the non-negative ortant, i.e. S = {x : x ~ O}. 

Maximum Likelihood estimators can be obtained therefore by solving the 
constrained maximization problem expressed by (8.5.13) once the log-likelihood 

functions InL(nlx) and InL( I Ix) have been specified. This requires the formulation 

of hypotheses on the probability laws of demand counts n and of traffic count I , 
conditional to the demand vector x. 

It is usually assumed that traffic counts are random variables with means given 
by the flows vex) obtained by assigning the demand x. This by (8.5.11) implies that 
the vector ESIM has a zero mean. The most widely used probability laws are Poisson 
and the multivariate normal. If it is assumed that the traffic counts on each link I are 
independently distributed as Poisson random variables with mean equal to vlx), i.e.: 

E[ J, ] = v,(x) = mix (8.5.14) 

the probability of observing I is given by the product of the probability of 

observing its individual components: 
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(8.5.15) 

and the log-likelihood function becomes(19): 

InL(] Ix) == L (J,ln v,(x)-v,(x»+const. 
r",I .. nL 

(8.5.16) 

where the constant indicates other terms not depending on the unknown demand 
vector x and therefore irrelevant for the maximization problem (8.5.14). 

If the traffic counts are jointly distributed according to a Multivariate Normal 
random variable with a mean vector equal to vex) and a variance-covariance matrix 

W the probability function of observing the vector f is proportional to: 

" 1 " " 
L(f Ix) IX. exp[-- (f -v(x)/ W'(f -vex»~] 

2 

and the log-likelihood function becomes: 

InL(] Ix) =-.!. (] _V(X»T Wl(] -vex»~ + const. 
2 

(8.5.17) 

(8.5.18) 

The log-likelihood function of demand counts depends on the type of sampling 
adopted (see section 8.2). In the simplest case of stratified random sampling by zone 
of origin, a simple random sample of no trips is extracted from the do. trips 
originating from each zone 0 (e.g. sampling at the entrances of a motorway network 
or at the cordon sections of the study area). Here it can be assumed that the number 
of trips sampled from each origin to all the destinations is distributed as a 
multinomial random variable. Further it can be assumed that the probability of 
observing the whole vector n is the product of the probability functions of these 
variables extended to all origins: 

(8.5.19) 

where Xod I Xo is the unknown probability of observing a trip with destination d. 
From (8.5.19) the log-likelihood function can be obtained: 

InL (nix) = 'f.od nod In Xod + const. (8.5.20) 
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with the further constraint that the trips generated in each zone a are equal to those 
counted do, or: 

S={x: 'idxod = do.; x 2: O} 

If the number of trips sampled at each origin is sufficiently large (a few dozen), 
the multinomial variable can be closely approximated by the product of independent 
Poisson variables (one for each O-D pair), with parameters equal to the means aoXod, 
where ao is the sampling rate in origin a: 

In this case the functions L(n/x) and InL(n/x) given by (8.5.19) and (8.5.20) can 
be approximated by: 

and 

L(n/x) = IIod exp( -aoxod )(aoxod )"Od 
nod! 

In L(n/x) = 'iod (nod In( a,,xod) - aoXod) + canst. 

(8.5.21) 

(8.5.22) 

Analogous expressions can be obtained for more complex sampling methods; in 
applications, however, expressions (8.5.20) and (8.5.22) are often used as reasonable 
approximations. 

In conclusion, the Maximum Likelihood estimator tfIL is obtained by 
substituting expression (8.5. I 6), or (8.5.18) for the log-likelihood function of traffic 
counts and expression (8.5.20) or (8.5.22) for demand counts in the general 
expression (8.5.13) (see fig. 8.5.4). 

Generalized Least Squares (GLS) is the other estimator derived within the classic 
theory of statistical inference. The GLS estimator provides the estimate of an 
unknown vector, in this case the demand flows vector, starting from a system of 
linear stochastic equations. The latter can be obtained by combining the information 
on demand contained in the traffic counts, expressed by the equation (8.5. I I), and in 

the direct estimate d, obtained from demand counts: 

f = M x + & E(&) = 0 Var[&] = W 

d = x + TJ E(TJ) = 0 Var[TJ] = Z (8.5.23) 
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~ . 
where d is the O-D demand vector whose components d,,,, are the sample estimates, 

obtained with the methods described in section 8.2. For example, in the case of 
simple random sampling with rate a, these estimates will be: 

The vector 17 in expression (8.5.23) is the vector of sampling errors whose 
components are the deviations between the true unknown demand x and the sample 

estimates d . If the estimator adopted is unbiased the vector 17 has zero mean. The 
elements of the variance-covariance matrix Z can be estimated by using the relevant 
expressions for variances and covariances of sample estimates. 

The GLS estimator of the demand vector can therefore be expressed as: 

d GLS = arg min[(d - xl Z-I (d - x) + (j - if xl w-1 (j - ifx)] 
xeS 

(8.5.24) 

Expression (8.5.24) is often applied, assuming that the matrices Z and Ware 
diagonal, i.e. ignoring the covariances between the components of vectors JIM and 
17, both because these are difficult to express and memory occupation and computing 
times should be reduced. Under this simplified assumption, expression (8.5.24) 
becomes: 

(8.5.25) 

The intuitive interpretation given for (8.5.12) can be extended to (8.5.25): the 
demand vector estimated using the counted flows, ~LS, minimizes the sum of 
quadratic deviations compared to the initial sampling estimate and of assigned flows 
with the counted flows. Furthermore, the quadratic deviations have weights 
inversely proportional to the variances of their respective errors. In other words, 

deviation from a component dod will weigh less the "worse" is the estimate, i.e. the 

greater is the Var [17r.l'] and the same is true for the flows. 
Note also the role of information on the vector d contained in traffic counts. If 

this information did not exist, the second term of equations (8.5.24) and (8.5.25) 

would disappear and the estimate of tfiLS would coincide with d since the latter 
minimizes the quadratic objective function setting it to zero. Similar considerations 
can be made for the Maximum Likelihood estimators. 
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From the formal point of view, the GLS estimator coincides with the Maximum 
Likelihood estimators if both the demand estimates and traffic counts are assumed to 
be distributed as multivariate normal random variables with mean equal to x and 
if x and dispersion matrices Z and W respectively. 

8.5.2. Bayesian estimators* 
Bayesian methods estimate unknown parameters by combining experimental, or 
sampling, information with non-experimental, or "subjective", information(20). In the 
particular case of O-D demand estimation, experimental information is relative to 
traffic counts, while non-experimental information may be relative to old O-D 
estimates to be updated, to estimates obtained with demand models or simply to the 

analyst "expectations". In each case, d will indicate the demand vector composed of 
non-experimental estimates. Bayesian estimators are obtained from the a posteriori 

probability function h(xl j ,d) of the unknown demand vector x conditional on a 

priori information d and on experimental information j. According to Bayes 

theorem, the a posteriori probability is proportional to the product of the a priori 

probability function g(xl d), expressing the distribution of subjective probability 

attributed to the unknown vector given the a priori estimate d, and the probability, 

or Likelihood, function L( j Ix) expressing the probability of observing the traffic 

counts j conditional to the unknown demand vector x: 

"A " " 

h(xlf , d ) oc L( / Ix) g(xl d ) (8.5.26) 

A family of Bayesian estimators for demand flows, £1, can be obtained by 
maximizing(21) the a posteriori probability (8.5.26) or its natural logarithm: 

dB = argmax[ln g(xl d) + InL(f; X)] 
XES 

(8.5.27) 

The specification of Bayesian estimators depends on the assumptions made for 
A A A 

the probability functions L( / Ix) and g(xl d ). With respect to the function L( / Ix), 

equations (8.5.l6) and (8.5.18), corresponding to the assumptions of independent 
Poisson and multivariate normal random variables respectively, can be used. 

The a priori probability function, g(x/ d ), can be specified in different ways; the 
formulations proposed in literature are described below. 

If it is assumed that the unknown demand vector is a multinomial random 
variable resulting from the distribution of total demand d. among all possible O-D 

pairs, with probabilities 1tod given by the matrix d : 
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dod 
!rod = -A-

d .. 

the function g(x! d ) can be written as: 

(8.5.28) 

Using the Stirling approximation (In x! == x In x-x ), the logarithm of (8.5.28) can 
be expressed as: 

(8.5.29) 

Furthermore, if the total number of trips (Iod Xod = d.) is assumed to be known, 

expression (8.5.29) is further simplified in: 

(8.5.30) 

The opposite of function (8.5.30) is known in literature as the entropy function of 
the unknown vector x. 

Alternatively, it can be assumed that the components Xud are independently 

distributed as Poisson random variables, with mean (parameter) equal to dod. In this 

case the function g(x! d ) becomes: 

(8.5.31 ) 

The latter, using Stirling's approximation, can be expressed as: 

(8.5.32) 

The opposite of function (8.5.32) is also known in the literature as information 
function of the unknown vector x. 

Finally, it can be assumed that the vector x is distributed according to a 

Multivariate Normal random variable of mean d and variance-covariance matrix 
Zs; in this case the probability function is proportional to: 
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g(xIJ) oc exp[-~(x-JrZ~I(x-J)] 
and its logarithm becomes: 

(8.5.33) 

If the a priori probability function g(xl d) and the traffic counts probability 

function L( f Ix) are both assumed to be multivariate normal variables, expressions 

(8.5.18) and (8.5.33) are substituted in the general expression (8.5.27) and the 
resulting Bayesian estimator is formally analogous to the Generalized Least Squares 
estimator £PLS. However, the similarity between the two estimators is only formal, 

since the vector d and the variance-covariance matrices Z and Zs have different 

interpretations. In the GLS estimator, the vector J is a direct demand estimate from 
sampling surveys and the matrix Z includes its sampling variances and covariances. 

In Bayesian estimators d is an a priori estimate of the O-D demand vector and ZB is 
made up of variances and covariances summarizing the analyst confidence in such 
estimate. 

The formal analogy of the two estimators should; however, be considered an 
advantage since it allows the use of the same model and algorithm in very different 
estimation situations. This generality of GLS estimator has contributed to its 
widespread use in applications. 

8.5.3. Applicative issues 

We stated that different estimators combining traffic counts f and other 

information d can be expressed in a general form as the vector d* solving a 
constrained minimization problem(22): 

(8.5.34) 

Fig. 8.5.4 summarizes the functional forms of zl) and Z20 previously described 
and the corresponding assumptions. 

The application of these methods in practice poses several problems briefly 
addressed below. 
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GENERAL ESTIMATION MODEL 

d* = arg min [ZI (x,d)+ Z2 (v (x ),j)] 
XES 

Distance from the initial estimate Distance from flow counts 

zl(x,d) z2(v(x),h 

Generalized Least Squares (GLS) Generalized Least Squares (GLS) 

(d -x/Z-1(d - x) (j - v(x)/ W -I (j - vex»~ 

or or 

I '2 od(XOd - d,x/) / Var[1]od] I (l[ -V[(X»2 / Var[etl 
[EM 

Maximum Likelihood (ML) Maximum Likelihood (ML) 

Poisson Poisson 

-Iud (n'Jd In(aodsxod) - aodxod ) -I (};lnv[(x)-v[(x» 
[EM 

MVN 

Multinomial (j -v(x)/ W- I (j -vex»~ 
-I nud lnxod or ,Jd 

I (};-v[(x»2/Var[e[] 
[EM 

Bayes Bayes 

Poisson Poisson 

I Xod1n[(xod / d,x/) -I] ,Jd -I (};lnv[(x)-v[(x» 
[EM 

MVN MVN 

(d-x)TZ-I(d-x) (j - v(x)/ W -I (j - vex»~ 

or or 

I (Xod -dod )2 /Var[1],Jd] 
,xl 

I (}; -V[(X»2 / Var[e[] 
[EM 

Multinomial 

I Xod In(x,x/ / d,x/) od 

Fig. 8.5.4 Functional forms of the terms of Z10 and Z20. 



CHAPTER 8 537 

The choice of functional form from among the various possibilities obviously 
depends on the type of available information about the O-D flows and therefore on 
the estimation context (classic or Bayesian). The Generalized Least Squares 
estimator is "robust" since it can be adopted in both cases and, as a classic estimator, 
does not require explicit assumptions on the probability, or likelihood, law of traffic 
and demand counts. Obviously this "robustness" is paid for in terms of statistical 
properties which are less satisfactory than those of other estimators if probability 
distributions are known for traffic and demand counts. 

The literature presents a number of simulation studies comparing the statistical 
performances of various estimators. Statistical performances can be measured by the 
"divergence" between the estimates d* obtained for different specifications of the 
model (8.5.34) and the true demand vector d used in the simulation. The Mean 
Square Error between the two demand vectors, MSE(d*,d), is one of the most 
popular divergence measures: 

where nOD is the number of O-D pairs. 
Alternatively, the ratio between the square root of the Mmean Square Error and 

the average demand, analogous to the coefficient of variation of a random variable, 
can be adopted: 

RMSE% = MSE(d*,dY'2 
d .. /noD 

Obviously, the estimator d* is the better the lower the MSE and RMSE% are. 
Numerical results seem to confirm the theoretical indications and suggest that the 
GLS estimator gives more stable results compared with other estimators under a 

wide range of hypotheses on the information contained in d and j . 
The use of GLS estimators requires the definition of variance-covariance 

matrices Z and W. This issue arises only in the case of GLS estimators and should be 
seen as a further degree of freedom since variances and covariances are implicitly 
defined by the distributions underlying the other functional forms of zl) and Z20. 

For example, expression (8.5.16) for Z2(V(X), j ) implies the assumption that traffic 

counts are independent Poisson variables, their deviations from the mean vex) are 
independent (COV(E/Em)=O) and their variance is equal to the mean (Var[Ed=v/(x». 

In applications, covariances among the components of & and 7J are usually 

ignored, i.e. matrices Z and Ware assumed to be diagonal. If d is a sample estimate 
the variance of sampling error 7Jod depends on the sampling strategy and can be 
computed, e.g. by using the formulae (8.2.3) and (8.2.8). In Bayesian estimation 
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variances are a measure of the analyst "confidence" in the a priori estimates and 
therefore cannot be univocally defined. The variances of residuals &PBS can be 
obtained through empirical relationships expressing the coefficient of variation CV 
of assignment errors for different assignment models as a function of measured 
flows. An example of this type of results was shown in Fig. 5.8.2 of Chapter 5. 

8.5.4. Solution methods 
The main computational problem in solving the ODCBE models is the calculation of 

the assignment map v(x), i.e. the assignment matrix M expressed by (8.5.6) and 
(8.5.7). The elements m Ii, depend on path choice probabilities, (8.5.4) and (8.5.5), 
which in turn are functions of path (or hyperpath) costs and, thus, of link costs as 
formally expressed by equations (8.5.6) and (8.5.7). 

In general, given the path or hyperpath choice model, computation of the 
assignment matrix for given costs c can be conducted with relatively straightforward 
modifications to the network loading algorithms described in section 7.3. 
Furthermore, in the case of congested networks, link costs depend on the link flows 
vector! Solution of the ODCBE problem has two levels of complexity according to 
whether the link costs vector is known or not. 

Link costs known. Let us assume that an estimate c of link cost is available. This is 
the case if the network is uncongested, or moderately congested, and link costs can 
be estimated independently of the flows. Alternatively, link costs can be estimated 
for congested networks either directly through network (travel times) surveys or 

indirectly through cost functions and flow counts on congested links (:, = c,(ft). 

Direct network surveys can be carried out automatically with surveillance systems 
based on vehicle location and remote transmission through TLC technologies. 

If link costs are known, it is possible to estimate the assignment matrix M(c) 
independently of the demand vector; thus d* can be estimated by applying the model 
(8.5.34): 

d* = argmin [z, (x, d) + z2(M(c)x,h] 
XES 

(8.5.35) 

Model (8.5.35) is a constrained minimization problem that can be solved with 
different algorithms, depending on the constraints defining the set S. Often the 
feasibility set S is defined by non-negativity constraints for the demand flows (Xi~O 
V i). The projected gradient algorithm, described in Appendix A, can be used in this 
case. It is usually possible to formulate explicitly the gradient of the objective 
function. For the GLS estimator, under the assumption that the matrices Z and Ware 
diagonal, the i-th component of the gradient can be expressed as: 
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Fig. 8.5.5 reports the main variables of an application of the projected gradient 
algorithm for the calculation of £ilLS on a test network. 

Link costs unknown. Estimates of link costs might not be available for all links. This 
is typically the case with congested networks, when the information described above 
is not available. In this case a problem of circular dependence arises, since it is 
possible to estimate link flows v(d*), and therefore link costs c(v(d*», by assigning 
the demand d*, solution to the problem (8.5.35), which in its turn is estimated from 
link flows and costs. The estimation problem can be formalized as a fixed-point 
problem as described below. 

Let d=8,1~f) be the solution of the estimation problem (8.5.35) for a given 

assignment matrix M: 

d = O(M)= arg min[zJ (x,d) + z2(MX,j)] 
XES 

If the above problem has only one solution, the relationship d = t5l: M) can be 

considered to be a function associating to each assignment matrix M an estimate of 

the demand vector d. The assignment matrix M can be expressed as a function of 
demand flows. In fact, if we combine the relationship connecting the assignment 

matrix to link costs, M = M(c), with the cost functions c = c(j), ~nd introduce the 

relationship between link and demand flows through the assignment model,f= v(d), 
we get: 

M = M (c(v(d)) 

Thus the ODCBE problem can be expressed through a fixed-point model 
, " 

obtained by combining the two functions d=t5l: M) and M = M (c(v(d)): 

d*=t5l:M (d*» 

or 

d* = argmin [zJ (x,d) + z2(M(c(v(d*»)x, h] 
XES 

(8.5.36) 
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TRUE OlD MATRIX 

- 25 25 25 
25 - 25 25 
25 25 - 25 
25 25 25 -

1 (1 ) 5 (1 ) 2 

= ~) = 
(1) 

= 
(1) 

F' ... 

3 (1 ) 6 (1 ) 4 
C.) link costs (;, 

TRUE DEMAND VECTOR 

dT = [25 25 25 25 25 25 25 25 25 25 25 25] 
INITIAL DEMAND VECTOR 

itT = [0 50 0 0 50 50 50 0 50 0 100 0] 
COUNTED FLOWS 

jT = [49 49 33 33 49 49] 

PATH CHOICE MODEL 

• exp(-C;) 
Pk; = L ( ) exp -Ck 

k 

ASSIGNMENT MATRIX M 
OlD pairs 2 3 4 5 6 7 8 9 10 11 12 

links 1-2 1-3 1-4 2-1 2-3 2-4 3-1 3-2 3-4 4-1 4-2 4-3 
1 1-3 20 86 33 33 2 20 
2 3-1 20 86 33 20 33 2 
3 5-6 10 12 33 10 33 12 10 10 
4 6-5 10 10 12 33 10 33 12 10 
5 2-4 2 33 20 33 86 20 
6 4-2 20 2 33 33 86 20 

ASSIGNED FLOWS 

Fig. 8.5.6a Application of the projected gradient algorithm for the computation of dGLS (input 
data). 
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t Ihl 2 5 6 7 9 10 11 12 
425 3.658 0 50 0 0 50 50 50 0 50 0 100 0 

-v -0.905 -1.195 -1.089 -0.254 -1.089 -1.352 -0.081 -0.823 -0.254 -0.823 -2.978 -0.905 
h 0 -1.195 0 0 -1.089 -1.352 -0.084 0 -0.254 0 -2.978 0 

92 1.347 d 0 35 0 0 36 33 49 0 47 0 63 0 
-v 0.194 0.340 0.502 0.379 0.517 0.347 0.248 0.444 0.383 0.444 -0.487 0.194 

h 0.194 0.340 0.502 0.379 0.517 0.347 0.248 0.444 0.383 0.444 -0.487 0.194 

62 0.817 d 2 38 5 4 41 36 51 4 50 4 58 2 
-v -0.078 -0.282 -0.215 -0.018 -0.201 -0.329 -0.281 0.036 -0.015 0.056 -0.544 -0.078 

h -0.078 -0.282 -0.215 -0.018 -0.201 -0.329 -0.281 0.056 -0.015 0.056 -0.544 -0.078 

47 0.647 d 1 35 2 3 39 33 48 5 50 5 53 1 
-V 0.145 0.108 0.182 0.162 0.206 0.072 -0.077 0.314 0.166 0.314 -0.151 0.145 

h 0.145 0.108 0.182 0.162 0.206 0.072 -0.077 0.314 0.166 0.314 -0.151 0.145 

9.92 0.159 d 5 33 4 9 43 29 33 19 56 19 37 5 
-V -0.025 -0.049 -0.054 -0.020 -0.042 -0.053 -0.082 -0.020 -0.017 -0.020 -0.078 -0.025 

h -0.025 -0.049 -0.054 -0.020 -0.042 -0.053 -0.082 -0.020 -0.017 -0.020 -0.078 -0.025 

9.45 0.099 d 5 32 4 8 42 29 33 18 56 18 36 5 
10 -V 0.019 0.021 0.021 0.025 0.033 0.018 0.008 0.052 0.028 0.052 -0.005 0.019 

h 0.019 0.021 0.021 0.025 0.033 0.018 0.008 0.052 0.028 0.052 -0.005 0.019 

1 2 3 4 5 6 7 8 9 10 11 12 
True DID vector 25 25 25 25 25 25 25 25 25 25 25 25 
Initial DID vector 0 50 0 0 50 50 50 0 50 0 100 0 

Estimated DID vector 5 32 4 8 42 29 33 18 56 18 36 5 

STATISTICS 
MSE (true - estimate) 3120.894 
MSE (true - initial) 12500.0 
Percentage reduction ofMSE 0.7503 

Fig. S.5.6b Application of the projected gradient algorithm for the computation of dGLS (main 
variables and comparison statistics). 

Alternatively, the ODCBE problem for congested networks can be stated as a bi-
level optimization problem. This is the case when the equilibrium assignment map is 
expressed through an optimization model, as described in section 5.4 and 5.A for 
DUE and SUE respectively. In this case the problem can be stated formally as: 

d* = argmin [z](x,d) + z2(v(x),h] 
XES 

v(x) = argminz(f) 
/ESf{x) 

(8.5.37) 

where z(·) is the objective function corresponding to the DUE or SUE equivalent 
optimization problem and the dependence of the link flows feasibility set on the 
demand vector has been stated explicitly. Obviously the bi-Ievel optimization 
approach requires that the assignment problem can be expressed by an optimization 
model, i.e. it satisfies the mathematical properties stated in Chapter 5, such as 
continuous cost functions with symmetric Jacobian. If this is the case, the two 
formulations (8.5.36) and (8.5.37) are equivalent. 
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Problems (8.5.36) and (8.5.37) are computationally more complex than problem 
(8.5.35) since it is necessary to simultaneously solve the constrained optimization 
problem (8.5.35) given the demand estimate, and the equilibrium assignment 
problem yielding the link flows and costS(23). The fixed-point problem (8.5.36) can 
be solved by using fixed-point iterative algorithms, which alternately solve the 
demand estimation and assignment problems by averaging out the results until 
convergence. For example, the MSA algorithm described in Appendix A and 
applied in Chapter 7 to calculate SUE equilibrium flows can be adopted. The 
structure of the algorithm can be represented for the generic iteration k, assuming 
that a current estimate d'-I is available from the previous iteration. The main steps 
are as follows: 

• Calculation of assignment matrix Mk corresponding to demand d'-I 

Assignment of demand d'-I to the network and computation of the 
corresponding flows 

Estimation of link costs and assignment matrix with the obtained flows 

ek=e(/) 

Mk = M(ek) 

• Estimation of demand support vector / 

• Updating the demand estimate with a "weighted average" of d'-I and/: 

d k k -1 d k - 1 1 k 
=-- +-y 

k k 

This procedure is repeated until a suitable termination test (yk == d'-I) is satisfied. 
The MSA algorithm could be applied to other variables such as link costs or 
assignment fractions. 

8.6. Aggregate calibration of demand models using traffic 
counts 
The aggregate information on transportation demand contained in traffic counts(24) 
can also be used to estimate the parameters (calibration) of demand models. As 
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stated in Chapter 4, demand models can be seen as functions relating the demand 
flows to variables of the activities system, SE, and of the transport system, T, 
through a vector of unknown parameters p25). 

d = d(SE, T; fJ) (8.6.1 ) 

For a given specification of the model and given values of SE and T, expression 
(8.6.1) can be considered to be a relationship between demand flows and the 
unknown vector p. This section discusses the problem of combining traffic counts 
with other information (experimental or not) to estimate unknown parameters p. As 
in the case ofO-D- flow estimation, the problem can be formulated following classic 
and Bayesian approaches. 

The first case arises when other experimental information is available, typically 

RP or SP sampling surveys, for the calibration of demand models. The estimates p 
resulting from the methods described in sections 8.3 and 8.4 can be seen as 

determinations of random variables; thus the estimate of the generic component, p;, 
diverges from the "real" value by an unknown quantity 0;: 

(8.6.2) 

If p; is a Maximum Likelihood estimate, the variance of 0; can be calculated by 

the inverse of the Hessian matrix of the Log-Likelihood function, see equation 
(8.3.6). Furthermore if the estimator is (asymptotically) unbiased E(o;)~O. 

Alternatively, in a Bayesian approach, p can include a priori expectations on 

the parameters, e.g. values obtained in a similar study area. In this case, expression 
(8.6.2) can be seen as a relationship between the "true" parameter and an initial 
value and the variance of 0; is a measure of the analyst's "confidence" in the initial 
estimate. The two approaches coincide if the a priori estimates are obtained from 
sampling surveys. 

To use traffic counts for estimating p, it is necessary to express the relationship 
linking these to the unknown parameters of a demand model. In general, to calibrate 
complete demand models, e.g. the sequence generation!distribution! mode choice, it 

is necessary to have counts on the different modal networks. Let j m be the vector 

of flows (measured) on the mode m network and f be the vector obtained by 

ordering sequentially all the vectors f m. The relationship between the traffic counts 

f m and the "true" demand vector relative to mode m, dm, is basically analogous to 

(8.5.11) which now becomes: 
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j m = M m d m + EmSIM + Em OBS (8.6.3) 

The vector of O-D flows with mode m obtained through the demand model can 
be expressed as dm(fJ), where, for simplicity sake, the vectors SE and T are 
understood(26). Even if the "true" parameters vector p were known, the demand 
obtained from the model would diverge from the "true" demand by a vector of errors 

EmMOD 

(8.6.4) 

and by substituting (8.6.4) in (8.6.3) it results: 

j m = M m d m (fJ) + Em (8.6.5) 

where the vector Em is the sum of all the error components: 

Em = EmSIM + EmOBS + M m EmMOD 

and has zero mean if the vectors EmSIM, Em OBS, Em MOD have zero mean. 
The relationship (8.6.5) can be extended to the set of counting links belonging to 

different modal networks: 

j = Md(fJ)+E (8.6.6) 

where the vectors j , d(fJ) and E are obtained by sequentially ordering the vectors of 

the different modes for which traffic counts are available. Similarly the assignment 

matrix M is obtained by sequentially ordering modal assignment matrices. 
The two information sources on p, expressed respectively by equation (8.6.2) 

and (8.6.6), can be combined in different ways, obtaining different estimators of p, 
in relation to the classic or Bayesian interpretation of the initial estimate jJ and to 

the assumptions of the probability distribution of vectors (J" and E. It is possible to 
specify Maximum Likelihood, Generalized Least Squares and Bayesian estimators 
of p analogous to those described in sections 8.5.1 and 8.5.2. Most estimators can be 
expressed in the general form: 

P* = argmin[ZI (b,P)+ Z2(Md(b),])] 
beSs 

(8.6.7) 
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Note that the unknown parameters vector b has significantly less components 
than the O-D demand vector x, (dozens of components instead of hundreds or 
thousand). Thus the problem (8.6.7) has a smaller dimensionality with respect to the 
ODCBE problem (8.5.12). Conversely, the optimization problem (8.6.7) is "more 
non-linear" than in the direct demand estimation case, since the non-linearity of 
demand models as function of unknown parameters is added to the non-linearity of 
functions zl) and z20.The feasibility set SB may be coincident with the entire 
Euclidean space, as in the case of the Maximum Likelihood estimation dealt with in 
section 8.3, or constraints can be imposed on the "expected" signs of the coefficients 
(e.g. negative cost coefficients.) 

Model (8.6.7) can also be specified when only aggregate information traffic 
counts or other sources is available. In this case the aggregate estimator results from 
the minimization of the "distance" zi") between the observed traffic counts and the 
link flows obtained by assigning O-D flows generated by demand models. Unlike 
the ODCBE problem, it is possible to use only traffic counts since the number of 
independent counts is in general much larger than the number of unknown model 
parameters. 

/3* = argmin z2(Md(b),f) 
bESB 

The Non-Linear Generalized Least Squares (NLGLS), is one of the most widely 
used specification of problem (8.6.7). This, in its simplified form, becomes: 

(8.6.8) 

Problem (8.6.8), can be solved by a gradient or a projected gradient algorithm 
similar to those described in Appendix A, according to whether constraints on the 
components of b have been specified or not. The k-th component of the gradient for 
objective function (8.6.8) can be expressed as: 

(8.6.9) 
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The calculation of partial derivative of the demand function on the ith O-D pair 
with respect to the generic parameter p obviously depends on the specification 
adopted for the demand models being calibrated. Analytical calculation of these 
derivatives can be very cumbersome, or even impossible (e.g. for Probit models); in 
these cases recourse is made to numerical derivation methods. 

The methods described have been applied to rather simple aggregate demand 
models, such as traditional four level models(27). The results obtained are generally 
satisfactory. Fig. 8.6.1 shows an application of estimator (8.6.8) to the coefficients 
of a four-level demand model for the city of Reggio Calabria starting from two 
different vectors of initial parameters. In the literature there are no systematic 
comparisons of alternative specifications for z\(.) and Z2(.). 

From the statistical point of view model (8.6.7) can be considered as a two-stage 
mixed estimator (dis aggregate/aggregate) of parameters p if it uses disaggregate 

information (choices of a users sample) to estimate p, and aggregate information, 

traffic counts j, for the correction of this initial estimate. It is also possible to 

formulate a "simultaneous" mixed estimator, such as a Maximum Likelihood 
estimator maximizing the probability of observing the choices J(i) of a sample of 

users and the traffic counts ;;. In this case, assuming that the observations are 

independent and that users' choices J(i) are obtained with a simple random sample, 
the estimate tf1L can be obtained by combining the log-likelihood function (8.3.3) 
with one of the functions Z20 described in Fig. 8.5.4, expressing the log-likelihood 
of observing the counts as a function of the assignment matrix and of the parameters 
vector p: 

The literature neither reports experiments with the simultaneous mixed estimator 
nor compares results with the sequential estimator. 
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Model Purpose Attributes 
fJI fJ* /32 fJ* 

fJI Gener. H-WPL Workers 0.46 0.604 0.230 0.602 

!h. Gener. H-SC Students 0.86 0.902 1.015 0.900 

!h. Distrib. H-WPL Distance 1.02 0.346 1.l03 0.347 

fJ4 Distrib. H-WPL Workplaces 0.70 0.570 1.008 0.550 

fJs Distrib. H-SC Distances 0.93 0.900 0.335 0.908 

fk, Distrib. H-SC School places 0.35 0.272 0.346 0.269 

/h Mod. ch. H-WPL Walking Time 1.19 1.424 1.848 1.649 

fls Mod. ch. H-WPL On-board Time 0.54 0.628 0.466 0.559 

/39 Mod. ch. H-WPL Cost carlbus 1.80 0.100 1.541 0.100 

fJlO Mod. ch. H-WPL ASACar 2.54 2.543 3.536 3.352 

fJll Mod. ch. H-WPL ASABus 2.29 2.330 2.116 3.179 

fJ12 Mod. ch. H-SC Walking time 2.18 2.207 3.436 2.737 

fJu Mod. ch. H-SC On-board Time 0.39 0.506 0.349 0.642 

fJI4 Mod. ch. H-SC Cost Bus 1.58 1.713 1.315 1.980 

fJIS Mod. ch. H-SC ASABus 1.53 1.544 0.796 2.632 

Demand model 

exp[Vm1oo ] doom (H - WPL) = fJI Worko expfp31ndistoo + fJ41n WPLd ] 

Ld' expfp 3 In dist 00' + fJ 4 In WPL d' ] Lm' exp[V m'!(>d ] 

Mode choice models 
H-WPL Vwa1k = fhTw Number of counts 

H-SC 

= fJsTc+{Jr;Mc+fJIOCar 
= fJgTb+{Jr;Mc+fJllBus 

= fJl2 Tw 

= fJ\3 Tb+fJI,.Mc+fJIsBus 

Road 
Public transport 
Pedestrians 

Fig. 8.6.1 Example of demand model calibration with traffic counts. 

: 30 
:6 
: 26 

A final consideration relates to path choice parameters. In all previous analyses, 
it has been assumed that the path choice model providing the elements Pki of matrix 

P, and therefore the matrix if, was given i.e. that the parameters {lATH in the 
systematic utility and in the random residuals distribution are known. These 
parameters were consequently not included in the vector fJ to be estimated. It is 
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possible to specify the estimation problem in order to improve an initial estimate 

pPATH of these parameters by using traffic counts. In this case, the general 

expression of the model (8.6.7) becomes: 

P* = arg min [ZI (b, p) + Z2 (it(b) d(b),])] 
bES. 

(8.6.10) 

where the vector {lATH has been included in the general parameters vector P and in 
the variables vector b. Comparing expressions (8.6.7) and (8.6.10), the latter is even 
more non-linear because the elements of the assignment matrix depend on unknown 
parameters. 

A similar approach can be followed for the specification of joint estimators of 
O-D demand flows and path choice parameters. In this case the following 
formulation results: 

P*,d* = arg min [ZI (x,d) + Z2 (b,P) + z)(it(b)x,])] 
hES" 
XES,} 

(8.6.11) 

where the vector P coincides with {lATH. Problem (8.6.11) simultaneously gives the 
estimates of path choice model parameters and demand flows minimizing the 
"distances" from their respective initial estimates and from the traffic counts 
observed. 

Several other combined estimators of model parameters and/or demand flows 
can be specified along the lines described so far. It should be observed that the 
statistical properties and computational issues are at a very early research stage. 

8.7. Estimation of intra-period dynamic demand flow using 
traffic counts 
The O-D flows estimators discussed in section 8.5 were specified under the usual 
assumption of a within-day static system, i.e. that on average all relevant variables 
are constant within the reference period. In this section the statistical framework 
proposed for the static problem is generalized and extended to the dynamic O-D 
estimation case. This problem can be formally stated as that of combining time­
varying traffic counts with other available information to estimate time-varying O-D 
flows. The problem is conceptually analogous to that discussed in section 8.5. The 
main difference is in the further complexity introduced by the within-day dynamic 
framework as discussed in Chapter 6. In this section some models developed for 
solving the Dynamic O-D Count Based Estimation (DODCBE) problem will be 
presented starting with the formal relationships between traffic counts and O-D 
flows. The DODCBE problem has been recently formulated in conjunction with the 
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inverse problem of Dynamic Traffic Assignment models (see Chapter 6), and it is by 
far less studied than its static counterpart. 

Relationships between demand and counts. 
Relationships between link flows and O-D flows will be expressed in the case of 
discrete time intervals that enable flows to be counted in practice. 

Let the total study period Jbe divided into nj intervals}=!, ... , nj, of equal length 
T, so that J=nJT. Let dodU] represent the number of users moving between O-D pair 
o,d and leaving the origin during the interval}, dU] the column vector obtained by 

arranging O-D flows. Let doA}] denote a priori information, or an initial estimate of 

the true demand doN] ,and J[j] the corresponding vector. 

For each interval} a link flow JiU] can be associated to each link I of the 
network(28l, or more precisely to each section of a link, as the number of users 
crossing the section in that interval. In general, link counts over an interval are 

affected by measurement errors C?BS[}]. The measured flow .l;[j] is therefore only 

an estimate of the actual flow flUl In vector form: 

(8.7.1) 

the link flow,flU] is comprised ofO-D flows leaving during the same interval or in 
previous ones and reaching link I in interval j. This can be formally expressed by 

defining the quantity m'(l E [0,1] as the fraction of O-D flow dod[t] contributing to 

the flow on link I in interval}, resulting in: 

(8.7.2) 

Equation (8.7.2) can be expressed in matrix form by introducing the (n, x nod) 
assignment fraction matrices M[tJ], analogous to the within-day static counterpart 
defined in equation (8.6.3): 

f[j] = :t M[t, }]d[t] 
1=1 

This equation assumes that demands flows and counts before the first interval are 
negligible. This assumption introduces a positive bias in O-D estimates for the first 
interval; it can be easily relaxed if an estimate of O-D demand leaving before the 
study period is available. 

Let hkU] be the path flow, i.e. the average number of travelers per time unit 
following path k between O-D pair o,d and leaving during period}. Path flows can 
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also be expressed as the product of the O-D demand dod[t] and the probability 
(average fraction) p[klt] of choosing path k given the departing interval t: 

(8.7.3) 

In order to express assignment fractions mljf.t in terms of path choice 

probabilities, the formal dependence of link flows on path flows must be introduced: 

(8.7.4) 

where the summation is extended to all paths belonging to the set Kod of paths 
connecting O-D pair G,d. 

In the above expression b~1 is the crossing fraction, i.e. the fraction of path flow 

hk[t] crossing a section of link 1 at interval j; the above fractions depend on how link 
flows are defined, when each path flow reaches link I, and how it moves on it. 

By combining equation (8.7.3) and (8.7.4), and comparing with equation (8.7.2), 
it results: 

mlj",,1 = ~)~'p[klt] (8.7.5) 
kEKod 

Equation 8.7.4 can be expressed in matrix form: 

j 

fU]= LB[t,j]h[t] 
1=1 

where B[t,j] is the crossing fraction matrix B[t, j] = {b~' } . 
In practice, only estimates p[ kit] and b~' of the true values p[ kit] and bl' can 

be obtained through path choice and Dynamic Network Loading (DNL) models, see 
Chapter 6. Estimates of assignment fractions can thus be formally expressed as: 

m1,1 = "b{.'p[klt] 
Y L.t .I 

(8.7.6) 
keJoti 

Crossing fractions are included in the interval [0, I] if path flows hkU] are 
modeled as space-continuous packets. In the most frequent models of space-discrete 
packets, crossing fractions are either 0 or 1 depending on whether packet [k,j] 
crosses the counting sections on link 1 during interval t. 
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Fig. 8.7.1 shows an elementary example of the relationship between within-day 
dynamic traffic counts and O-D demand flows, both in case of space-continuous 
path flows and space-discrete path flows. 

A 

A 

B 
0 .............. 

............... 0,70 0,30 I 
~I-,-'-----'-I __ I _ . .1.--. ----l0 

0 ----- '-----------' Counting C 
section 

o 

Beginning of interval j -flows spatial positions 

dBCj_1 

dBC,j 

0,40 0,60 

End of interval j -flows spatial positions 

m ACj-1 = 0.60 
lj 

mBCj-1 = 0.70 
lj 

mACj = 0 mBCJ = 0.20 
lj lj 

I, [1] = 0.60 d . + 0.70d . + 0.20d . 
AC,]-i BC.]-i BC,] 

Fig, 8,7,1 a Relationship between within-day dynamic traffic counts and 0-0 flows - continuous 
path flows representation, 
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B d BCJ-/ 

O~ I I 0 

O~ Counting section C 
dAC,j_/ 

Beginning of interval j - packets spatial positions 

B dBCJ dBC,}_/ 

o~ 
~I--'--~ ___ I--r----'----O 

0------ Counting C 
dAc,i section dACJ-/ 

End ofintervalj - packets spatial positions 

mAC.j-] = 1 
lj 

mAC.j = 0 
lj 

~[j]= 

mBC.j-] = 1 
lj 

mBC,j = 0 
lj 

d +d 
ACJ-] BC,i-] 

Fig. B.7.1b Relationship between within-day dynamic traffic counts and 0-0 flows - discrete 
path flows representation. 

The estimated values of crossing fraction b~l, path choice probabilities p [kit] and, 

consequently, assignment fractions mtl are expected to be different from the true 

ones. This implies, as already seen in the static context, that even if the true demand 
vector d[t] were known and assigned to the network substituting m instead of m in 
equation (8.7.2), the resulting link flows would differ from the actual ones by a 

random error term c S/M (modeling error): 
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(8.7.7) 

or in matrix form: 

fli] = ~)l[t, j ]d[t] + eSIM (8.7.8) 
1=1 

Equation (8.7.1) and (8.7.8) can be combined into: 

Jli]= tM~,j]d~]+e (8.7.9) 
1=1 

where the random vector E is the sum of the two (independent) vectors eOBS and 

eSIM • 

Dynamic estimation ofO-D demandflows. 
In section 8.5, it has been demonstrated that most O-D demand static estimators can 
be obtained by solving a constrained optimization problem of the form: 

d* = arg minlzi (x,d)+ Z2 {v (x ),j)l 
XES 

(8.7.10) 

In this section the estimators previously proposed for the static context will be 
extended to the two dynamic estimation cases. 

The problem here is to estimate O-D demand flows for each interval, d[t], by 

using counts Jli]. Two alternative approaches are possible. The first, referred to as 

simultaneous, looks for an estimator giving, in a single step, the whole O-D demand 
pattern (d[I], ... , d[nD by using simultaneously counts over all intervals. The second 
approach, referred to as sequential, produces at each step the O-D demand vector for 
one period, using counts relative to that period and to the previous one and, possibly, 
O-D estimates relative to previous periods. In the following subsections the two 
estimators will be described separately. 

8.7.1. Simultaneous Estimators 
Static estimators can be extended in a straightforward manner to the simultaneous 
estimation framework. In this case, however, the single unknown demand vector has 
to be replaced by the nj vectors (x[l], ... , xU], ... , x[njD. Likewise, the counted flow 
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vector is replaced by (J[ll .. .j[jl .. .j[nJ. The general form of the estimators then 

becomes: 

d*[l]. .. d*[nj] = argmin [ZI (X[l], ... , x[ nj ];d[l], ... , d[ n j ])+ Z2 (X[l], ... , x[nj ];f[l], ... ,j[nj ])] 
x[lj>o, ... ,xk12o 

(8.7.11) 

All specifications of objective functions ZjO and zl,) reported in sections 8.5.1 
and 8.5.2 can be extended and substituted in equation (8.7.11) thus obtaining ML, 
GLS, or Bayesian estimators depending on the distribution assumptions made on the 
random residuals ej. For example, in the case ofGLS estimator, they become: 

j=1 

8.7.2. Sequential Estimators 
In this context, an O-D demand vector is estimated for a single interval j at each 
time interval. There are two advantages to this approach. The first is the reduction of 
computational complexity by decomposing a large optimization problem into a 
number of smaller and more manageable ones; the second is that estimates obtained 
for an interval can be used as initial estimates in subsequent estimations. 

The main idea in this approach is to express counts of a period j as a linear 
(stochastic) function of the unknown demand of the same period only. This is 
achieved by equating the demand relative to previous periods to the already 

computed estimates d* [t]: 

J[)]= I M[t, j}1* [t) + M[j,j]x[j]+ e[j] (8.7.12) 
1=1 

The general formulation of the static estimation problem can be adapted to this 
context, leading to: 

d*[j] = arg min [ZI (x[j],d[j])+ Z2 (X[j]ld* [11 ... ,d*[j -1];j[j])] (8.7.13) 
X(jJ20 

where J[j] is given by 8.7.12 .. 

In the case of GLS estimator, the objective functions Z I and Z2 become: 
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ZI = (X[;]-ti[j]r z-I[;lx[j]-ti[j]) 

Z2 = (~M[t,j]d'[t]+ M[;,j]x[;]- J[j]f W- 1( ~ M[t,j]d'[t]+ M[j,j]x[;]- J[J]) 

B.B. Applications of demand estimation methods 
The methods described in this chapter can be used to estimate present demand flows 
or demand flows corresponding to hypothetical scenarios for the transportation 
system and/or for the activity system. These estimates can in tum be used to 
simulate link flows and performances with an assignment model and/or to analyze 
the structure of the transportation demand in a given area. Obviously, different 
techniques, or combinations of techniques, can be used for different applications and 
for different components of the demand. In the following the main areas of 
application and the relative demand estimation methodologies will be described, 
summarizing the results of the previous sections (see Fig. 8.8.1) 

Area of Estimation 
Input data 

Complementary 
application method tecnlques 

Direct 
Sampling surveys Estimation of est imation 

Estimation of 
Models parameters 0 -0 matrices 

present demand Model • with traffic 
estimation • Attributes of the activity systems sF' 

counts 
• Attributes of the transport system f' 

Estimation of • Models parameters 

demand Model • Attributes of the activity systems Pivoting on the 
variations estimation (Scenarios) sF!' 

present demand 
(forecast) • Attributes of the transport system 

(Projects) T' 

Fig. 8.8.1 Application of demand estimation methods. 

8.8.1 . Estimation of present demand 
The estimation of average demand flows in the reference period can be performed 
using sampling surveys and direct estimation methods, or by applying a system of 
demand models to the present configuration of the system. 

In the former case, the sampling methods described in section 8.2 are used. From 
the practical point of view, it should be noted that different types of sampling 
surveys are often used for the estimation of different components of the demand. In 
particular, on-board or en-route surveys are often used to estimate exchange and 
crossing flows while household surveys are used to estimate internal demand flows. 

Demand models can be used as estimators of present demand by applying them 
with present values of the attributes of the activities system, SEP, and of the 
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transportation supply system, T'. Model estimation of present demand can be 
formally expressed as: 

Ap P P A 
dMOD = d(SE ,T ;p) (8.8.1) 

where ,8 indicates the estimate of the parameters vector. Expression (8.8.1) can be 

applied to estimate demand flows with different levels of aggregation, e.g. by origin, 
destination and mode. 

Model-based estimation of present demand deserves a few comments. 

- The rationale of the method is that, for a given sample size, estimates of the 

parameters ,8 are significantly more precise than direct sampling estimates of 

d. The underlying assumption of the method is that deviations between true 
demand flows and model-based estimates are less dispersed than the deviations 
between direct estimates and the true demand flows. This assumption has 
received some, though limited, empirical validation. 

- The application of demand models requires the aggregation of the results. The 
different aggregation techniques described in section 3.7 can be used to obtain 

estimates d of the trips flows between the different origin-destinations pairs. 
Aggregation by categories (aggregate models) and sample enumeration 
(disaggregate models) are the most common options. 

- The models used for present demand estimation might be different and less 
sophisticated than those used to predict demand variations. In the former case, in 
fact, the model should be seen as "estimator" with the exclusive function of 
reproducing, descriptively, the observed phenomenon. On the other hand it is 
reasonable to assume that a model with interpretative capabilities should be a 
better "predictor". Again, models of various levels of complexity can be used to 
estimate different components of present demand. In particular, exchange 
demand can be estimated with simpler models requiring less information than 
those used to estimate demand flows within the study area. 

- Model specification, calibration and validation can be conducted using the 
dis aggregate methodologies described in sections 8.3 and 8.4, possibly integrated 
with the mixed aggregate/disaggregate estimation method using traffic counts 
described in section 8.6. 

The two methods (direct estimation and model-based estimation) are generally 
used to estimate different components of present demand. For example, it is quite 
common to use direct estimation for exchange and crossing demand (for which it is 
at the same time easier to conduct direct cordon surveys and more complicated to 
formulate demand models) and model-based estimation for internal demand. Finally, 
present demand can be estimated by combining direct estimation and/or 
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model-based estimation with aggregate information on traffic counts using the 
methods described in section 8.5. 

8.8.2. Estimation of demand variations (forecasting) 
The classic use of demand models is to simulate demand variations following 
modifications of the activity system and/or of the transportation supply system. 
There is obviously a close interdependence between the characteristics of demand 
models and the project under study, since the model must be "elastic" with respect 
to variables describing the changes whose effects are to be evaluated. For example, 
for the circulation plan of an urban road network, it is sometimes assumed that the 
transportation demand, with all its characteristics, remains unchanged except for the 
users' path choices. This implies that the present O-D demand matrix for the "car" 
mode can be used to simulate the consequences of alternative projects and that the 
only demand model necessary for this purpose 'is the path choice used for rigid 
demand assignment. On the other hand, if the same plan is included in a wider 
project aimed at modifying the modal split of present demand, e.g. by introducing 
park pricing, it will be necessary to use modal choice and path choice models, which 
can be applied to present O-D matrices. 

In general, in the case of short-term projects, it is assumed that the socio­
economic variables of the activity system remain unvaried while the transportation 
performance variables are modified by the project. These variations may impact 
travel choices on several dimensions (path, mode, destination, frequency). In this 
case, the application of the demand models can be formally expressed as: 

AF P F A 
dMOD = d(SE ,T ;P) (8.8.2) 

where d~OD indicates the vector of the model-based estimates of "future" demand 
flows and T' indicates the vector of level-of-service attributes corresponding to the 
project. 

Medium-long term projects, usually require the simulation of their effects over a 
sufficiently long period. In this case it is it is necessary to forecast the evolution of 
these variables. In general it is very difficult to forecast the evolution of the main 
variables of the activity system such as resident population, incomes levels, 
economic production organization and life styles of families, location of 
manufacturing and services activities. These are significant factors that are difficult 
to forecast reliably in the medium-long term. Even if some variables of the activity 
system can be considered endogenous in the models system, particularly in the case 
of transport-land use interaction models, the evolution of several other exogenous 
variables still has to be forecasted. In practice, for long-term applications, different 
scenarios(29) for the evolution of the variables sF! are used. Demand models are 
applied to each scenario and variation ranges of the key variables can be used for the 
design and the evolution of alternative projects as will be seen in Chapter 10. The 
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estimation of demand flows over long periods can therefore be formally expressed 
as: 

'F F F ' dMOD = d(SE ,T ; P) (8.8.3) 

The comments on model calibration and aggregation techniques can be extended 
to both the applications (8.8.2) and (8.8.3). 

Recently, forecasting techniques alternative to those expressed by (8.8.2) and 
(8.8.3) are sometimes used. These techniques are based on the "pivoting" method in 
which models are used to estimate the variations with respect to present demand, 
rather than directly future demand. This approach assumes that it is possible to 

obtain estimates, d P, of the present demand "better" than those obtained by using 
only demand models. This may be the case if other information sources on present 
demand are available, so that direct or model-based estimates of present demand are 
improved with that information (e.g. traffic counts). In this case, modeling errors can 
be reduced by using the models as simulators of demand variations and, therefore, 
obtaining "future" demand estimates as: 

F F' 
JF = Jp . d,x/(SE ,T ;P) 

od od d (SE F TP :p') 
od " 

(8.8.4) 

The general form (8.8.4) must be specialized for the demand dimensions to 
which it is applied. For example, by applying the method to modal O-D matrices and 
leaving to the network assignment the definition of future path choice probability 
and the resulting flows (see Fig. 8.8.2), the expression (8.8.4) becomes: 

F F' 
d:':[shm] = J':[shm]. dod[shm](SE ,T ;~) 

dod [shm](SE P ,TP ;P) 
(8.8.5) 

The application of the pivoting method in the form of (8.8.4) requires a double 
application of the model to present (SEP, 'F) and future (SEF, 1") scenarios. 
Furthermore, the method must be adapted for practical applications; for example, 
equation (8.8.5) would not allow the estimation of demand associated with the 
introduction of a new mode of transport for which no present demand exists. These 
distortions can be corrected in various ways, for example by applying the pivoting 
method partially to simulate variations of the present demand only on some 
dimensions and then applying directly the models to the other dimensions. 
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ODPair 
'p 'p dP(MOD) d:J;:~~) dF(MOD) d:J;:~~) 

'F 'F 
dod Cor dod Train odenr odCar dod Car dod Tram 

1,2 100 30 92 31 85 40 92.4 38.7 
1,3 30 15 26 11 22 25 25.4 34.1 
1,4 70 25 73 22 60 31 57.5 35.2 
2,1 120 46 116 47 103 53 106.6 51.9 
2,3 50 22 47 19 49 29 52.1 33.6 
2,4 60 18 55 20 53 31 57.8 27.9 
3,1 85 32 88 27 76 39 73.4 46.2 
3,2 70 27 71 30 68 46 67.0 41.4 
3,4 23 5 20 6 18 11 20.7 9.2 
4,1 58 24 56 22 52 30 53.9 32.7 
4,2 65 26 66 24 60 35 59.1 37.9 
4,3 90 32 87 33 70 48 72.4 46.5 

Fig. 8.8.2 Application of the pivoting method. 

Reference Notes 

Direct demand estimation is based on the application of sampling surveys and 
estimators. A description of "classical" travel demand surveys can be found in 
manuals such as the one from RRL (1965) and DOT, EPA (1996). For statistical 
sampling theory, refer to the texts by Cochran (1963) and Yates (1981). 
Applications to transportation demand estimation are covered in several articles, 
such as those of Smith (1979) and Brog and Ampt (1982) as well as in the volume 
by Ortuzar and Willumsen (1994) 

The literature on specification, calibration and validation of demand models is 
quite substantial. The books by Domenicich and McFadden (1975) and Ortuzar and 
Willumsen (1994), as well as the articles by Horowitz (1981), (1982), Manski and 
McFadden (1981) address various statistical aspects of the calibration of 
disaggregate models. A review of the field at the date is contained in Gunn and 
Bates (1982). The work of Manski and Lerman (1977) studies model calibration 
based on non-random samples. A detailed and systematic discussion of the subjects 
in section 8.3 is contained in the volume by Ben Akiva and Lerman (1985) and the 
reader is referred to the latter's comprehensive bibliography. 

Stated Preferences survey techniques have been the object of growing interest 
over the last 10-15 years and are an area in continuous evolution both from the 
theoretical and from the application point of view. A discussion of the theoretical 
aspects of SP techniques can be found in the works of Hensher et al. (1988), 
Louviere (1988), and Ortuzar (1992), while practical aspects are covered in Pearmin 
et al. (1991). The statistical bases of factorial analysis are described in greater detail 
in the texts on experimental design such as Box and Hunter (1978). The combined 
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calibration of demand models on the basis of SP-RP surveys is dealt with in Ben 
Akiva and Morikawa (1990) and Bradley and Daly (1992). An application to mode 
choice modeling is described in Biggiero and Postorino (1994), the example in fig. 
8.4.5 is reported there. 

The estimation of demand flows using traffic counts is a subject intensely 
researched over the last two decades. An updated state of the art and literature 
review can be found in Cascetta and Improta (1999). The general statistical bases are 
addressed in Cascetta and Nguyen (1986). For estimation of O-D demand flows 
using traffic counts, there are several papers on particular estimators or specific 
applications. The papers by Van Zuylen and L.G. Willumsen (1980) on Maximum 
Entropy estimator, Maher (1983) on Bayesian estimators, Cascetta (1984) proposing 
the GLS estimator, Bell (199\) on applications of the GLS method, Di Gangi (1988) 
on numerical comparison of the statistical "performances" of different estimators 
can be quoted. 

The problem of estimating O-D flows using traffic counts in congested networks 
is relatively more recent; it has been studied by a number of authors, typically as a 
bi-level programming problem for DUE assignment, see Chen and Florian (1995), 
Yang (1995). The fixed-point formulation and the MSA algorithm described in 
section 8.5 with some variants, are described in Cascetta and Postorino (2000). 

Estimation of model parameters using traffic counts and other sources is a well 
established heuristic practice, but has received relatively limited attention from the 
theoretical point of view. Among the first papers proposing methods for aggregate 
estimation of coefficients using traffic counts, can be quoted those by Cascetta 
(1986) proposing GLS estimators and by Willumsen and Tamin (1989) describing 
an estimator for gravity type models. The paper by Cascetta and Russo (1997) 
describes the general statistical framework discussed in section 8.6. The combined 
estimation (both aggregate and disaggregate) of model parameters and O-D flows 
using traffic count is original. 

In the literature, many authors have proposed different methods to estimate time­
varying O-D flows using traffic counts. Among others, Cremer and Keller (1987) 
propose sequential estimators in the case of a simple network using traffic counts 
only. Cascetta, Inaudi and Marquis (1993) propose dynamic estimators obtained by 
optimizing a two-term objective function as described in section 8.7. Nguyen, 
Morello and Pallottino (1986) proposed different simultaneous estimators on a 
general transit network. Okutani and Stephanades (1984) use a standard Kalman 
Filtering approach in order to obtain sequential estimators, while Ashok and Ben­
Akiva (1993) prove that the same approach can be used to obtain GLS simultaneous 
estimators on deviations. 
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Notes 

(I) For simplicity of notation in the following, relevant characteristics of demand flows, e.g. s h m and 
the users category, are understood. 

(2) The coefficient (I-a), known as the finite population correction coefficient, accounts for the fact that 
the population has a finite number of members; therefore, if a census, a=1, were conducted, the estimate 
would be the "true" value with a zero variance. The weight of the correction coefficient, however, is 
negligible for the sampling rates used in practice for direct demand estimation. 

(1) A different method, which can be referred to as aggregate calibration, uses aggregate and indirect 
information on users' travel behavior, usually traffic counts, to specifY and calibrate demand models. 
There are also mixed methods which use disaggregate and aggregate information simultaneously. 
Aggregate and mixed estimators of demand models parameters will be covered in section S.6 

«) Note that terms of the summations in equations (S.3.7) and (S.3.S) are the difference between the 
systematic utility for the chosen alternative, V;(i) (X, .PJ, and the satisfaction associated with all the 
available alternatives: 

In L(fJ)=I,~Ln[V;(i)()(, PJ - seX, PJl 
and this difference, as can be seen from section 3.5, is always less than zero. 

(5) Note that the estimates of a given coefficient fJk obtained with different specifications of the random 
utility model (Multinomial Logit, Hierarchical Logit, Probit) are usually different since they contain 
different scale coefficients. 

(6) For simplicity of notation in what follows, no distinction will be made between the vector fJ of the 
coefficients in the utility function and the vector Bofthe structural coefficients, or more properly between 
the vectors fJ' and 0' of the identifiable parameters. The vector fJ is to be understood as the set of all the 
coefficients to be estimated. 

(7) In theory, the model's goodness of fit should be tested on a sample of observations different from the 
sample used for the calibration (hold-out sample). In practice, this procedure is not always followed to 
make the best use of all the available information, given the limited size of many available samples. 

(S) This type of assumption is known as "non-nested". 

(9) Choice alternatives in any scenario depend on the functional form of the model to be calibrated. With 
Multinomial Logit models, due to the IIA property, estimates of the systematic utility coefficients do not 
depend on the number of alternatives proposed, so that the scenario might include any subset of the 
alternatives included in the model. In the case of models for which the IIA is not valid, e.g. Hierarchical 
Logit and Probit, scenarios must be designed to account for the structure of the model explicitly. For 
example, alternatives belonging to different groups, as well as multiple alternatives for the same group, 
must be included in some scenarios for Hierarchical Logit models. 

(10) These techniques are derived from multivariate statistical analysis and, in particular, from 
experimental design techniques. They are designed to allow the analysis of direct and indirect effects of 
relevant variables by means of linear models and therefore do not correspond exactly to the case of 
demand models, which are typically non-linear with respect to explicative variables (attributes). 

(I I) In practice, it would be more correct to assume the existence of a correlation between the 
observations relative to the choices of each individual. In this case, however, the expression of the log­
likelihood function would be considerably more complicated; for this reason the correlation effects are 
usually ignored in applications. 
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(12) This is, at the same time, the most frequent and most complex case. Other aggregate information 
sources can be easily represented as particular cases of link counts by properly specifying the 
"assignment equation" (8.5.2). Total generated and/or attracted flows, average trip length, distribution of 
trip lengths, and total flows crossing internal cordons are examples of other aggregate information on 0-
D flows which can be seen as special cases. In the following it will also be assumed that flow-counting 
locations are given, i.e. the links are given as input to the problem of O-D demand estimation. Although 
this is sometimes the case, counts location should be designed with respect to their information content. 
The problem of optimal counting locations can be formulated as a network design problem similar to 
those described in Chapter 9. 

(11) For simplicity of notation in this section, the generic element of the demand vector will be denoted as 
d" i. e., using a single index for the 0-0 pair as in Chapter 5, instead of the double index dod used 
previously. 

(I~) Note that values of Pk" and therefore mh, are the "true" values, i.e. the true fractions of users who use 
a given path or a given link in the reference period. 

(15) The calculation of the assignment matrix if in the case of congested networks for which the link 
costs are not known will be covered in section 8.5.4 relative to computational aspects. 

(16) Note that expressions (8.5.6) and (8.5.7) correspond to the relationships defining road networks 
assignment models and public transport assignment models respectively. The main difference lies in the 
explication of the approximations connected to the assignment model in the vector ,P". Also, to highlight 
this difference, in this section, v will indicate the vector of the link flows resulting from the assignment of 
the "true" demand vector d while in Chapter 5 this vector is indicated by f 

(17) It should be remembered that the components of the "true" vectors d and f are the flows between 
each 0-0 pair and each link average over different observation periods. 

(18) This can be seen as a confirmation of the essentially interpretative nature of the difference between 
the objective and subjective approaches in probability theory and statistical inference. 

(19) The equation (8.5.16) is obtained from (8.5.15) by using the Stirling approximation: In(x') ~x In x-x. 

(20) Bayesian estimators coincide with "classic" estimators under the assumption that subjective estimates 
are also obtained from sampling surveys. This indicates that "classic" estimators can be obtained as 
special cases in the context of Bayesian statistics. 

(21) In theory, it is possible to derive different Bayesian estimators corresponding to the parameters ofthe 
a posteriori probability function. The estimator given by (8.5.27) corresponds to the mode of the a 
posteriori probability function (8.5.26). Another estimator could be obtained as the expected a posteriori 
vector: 

dB = E[x;j; Ii j= iXEs xh(x j;d)dx 

In practice, however, the calculation of this estimator would be very complex since it is not usually 
possible to solve analytically the multiple integral defining it. 

(22) The problem (8.5.34) can be easily applied to maximization problems by changing the sign of the 
objective function. 

(21) In the literature, the fixed-point formulation has been proposed mainly for SUE assignment, where 
the equilibrium assignment map is defined uniquely, and the bi-level formulation has been proposed with 
reference to OUE assignment. 
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(24) The methods described in this section, although presented with reference to traffic counts, can easily 
be extended to mixed (aggregate/dis aggregate) or purely aggregate calibration, using other aggregate 

data. For example, the parameters can be estimated on the basis of estimates dod of demand flows derived 

from different sources (data from transport companies or sampling estimates). In this case the assignment 

matrix if relating the aggregate counts to the demand vector is the identity matrix. Other aggregate data 
can complement or substitute traffic counts. 

(25) The vector P denotes all the identifiable parameters of the specific demand models system, including 
those relative to the random residuals probability density function. It will include, for example, the 
coefficients P~ of a Multinomial Logit model and the coefficients f3~ and 0 of a Hierarchical Logit model. 

(26) Note that the 0-0 demand on a given mode m usually depends on the level of service attributes for 
all the competing modes. For this reason the vector dm has been expressed as a function of the vector T 
including the attributes of all transport modes. Furthermore, since it is assumed that the assignment 

matrix if is known, the vector of the unknown parameters P does not include those relative to path 
choice. This assumption will be relaxed in what follows. 

(27) In the case of disaggregate demand models, and sample enumeration aggregation techniques, all the 
previous expressions still hold. However, each calculation of the demand flows vector requires the 
application of the entire aggregation procedure, which might be quite burdensome. 

(28) In Chapter 6 it was stated that in a within-day dynamic system user's flows may vary for different 
cross-sections of the same link. The generic flow at section s of link 1 was denoted by Ji.s[O]. In the 
following it will be assumed that only one counting section is associated to a counted link, the link flow is 
thus relative to that counting section. Furthermore, to be consistent with the notation of the static case, 
unlike in Chapter 6, the generic link will be denoted by I. 

(29) A scenario can be defined as a set of internally consistent assumptions on the exogenous variables of 
a models system. In some applications scenarios are obtained with other macro-economic models 
requiring less input variables (e.g. population and economic growth rates), scenario models generate 
consistent sets of dis aggregate input variables for transportation demand models. 



9 TRANSPORTA TION SUPPLY 
DESIGN MODELS 

9.1. Introduction 
This chapter outlines a wide range of methods and mathematical models which 
may assist the transportation systems engineer in designing projects or 
interventions. It should be stated at the outset that supply design models(l) are not 
meant to "automate" the complex task of design, especially when the proposed 
actions can alter significantly the performances of the transportation system. In 
this case, as we have seen, the project may have structural effects ranging from 
changes in land use to modifications in the level and structure of travel demand. 
On the other hand, the elements of the transportation supply to be designed may 
assume a very large number of possible configurations; circulation directions in an 
urban road network or the lines and frequencies of a transit system are two cases in 
point. In these cases it is practically impossible to explore and compare all the 
feasible configurations to identify the optimum with respect to a given set of 
objectives and constraints. 

From the modeling perspective, supply design models belong to a different 
class than the models described so far and, in some respect, can be considered as 
extensions or generalizations of these models. The mathematical models described 
in the previous chapters, in fact, aim at simulating the relevant aspects of a 
transportation system under the assumption that supply (facilities, services and 
prices) and activity systems are exogenously given. These models can be used as 
"design tools" by simulating the main effects of exogenously specified projects, 
verifying their technical compatibility and evaluating their "convenience" as will 
be seen in Chapter 10. This approach is known as "what if'. On the other hand, 
supply design models provide "what to" indications, i.e., how to alter supply in 
order to optimize given objectives while satisfying given constraints (see Fig. 
9.1.1). Clearly, in order to identify solutions for the design problem, it is necessary 
to evaluate the system responses (demand, flows and performances) to the possible 
actions; therefore the simulation model is a component of the design model. The 
cost of this generalization is not only the simplification of the real design problem, 
but also the simplification of the simulation models, now sub-models of a wider 
model. 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
© Springer Science+Business Media Dordrecht 2001
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Fig. 9.1.1 Two approaches to the design of transportation supply. 

An interesting interpretation of the differences between simulation and design 
models can be given in terms of game theory. The design problem can be seen as a 
"Stackelberg game". One of the two players (or groups of players), called the 
leader, knows in advance the reactions of the other player (or group of players), 
called the follower, to his/her actions. In this case, the leader is the designer (or 
manager) of the supply system and the followers are the users of the transportation 
system. The designer is able to anticipate the reactions of the users and exploits 
this information to achieve his/her objectives(2). In this context, the simulation 
models represent the tools to predict users' reactions, while supply design models 
provide the leader with the "winning" strategy. On the other hand, within the 
context of the game theory, the simulation model can be interpreted as a 
description of a "Nash game", in which the generic player (say users) ignores the 
possible reactions of the other players. 

Supply design models typically simplifY the actual design problem, accounting 
for only some control variables and simulating the relationships between these 
variables and the system through simplified models. In general, the design problem 
is expressed as the problem of optimizing an objective function under certain 
constraints; the solution, or solutions, of this problem are then used as starting 
points for successive extensions and comparative evaluation described in 
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Chapter 10. Obviously, the more "elementary" the intervention to be designed, the 
closer the formulation of the supply design model is to the real problem. Thus, the 
problem of designing traffic-signal control parameters at an isolated intersection 
can be expressed by an optimization model which, among all the possible values, 
searches for those minimizing the total delay, or maximizing the total capacity of 
the intersection. The resulting optimal control parameters can be used directly in 
the real world. On the other hand, if the problem is to design the transportation 
system of a region it is practically impossible to represent the complexity of the 
objectives and constraints. In this case, one or more simplified design models can 
be formulated, for example, to define the road network, the public transport 
network and the pricing structure, which jointly or separately minimize the total 
generalized user costs under budget, technical and environmental constraints. In 
any case the solution, or the solutions, of the partial problems will only be the 
starting point for the further phases of design, evaluation and negotiation, which 
will lead eventually to collective choices. A classification of the design models 
proposed in the literature and most often used in applications can be made on the 
basis of some elements described below and summarized in Fig. 9.1.2. 

Network topology 
Design (control) variables Performances 

Prices andfares 

Objectives 
Social 
Operator's 
External 

Constraints Technical 
Demandlflowlcost consistency 

Simulation Model Assignment model 

Fig. 9.1.2 Classification of supply design models. 

Design (control) variables. Design problems can be divided into three groups with 
respect to control variables: network topology, or layout, (e.g. road network or 
public transport lines), performances of supply elements (e.g. transit line 
frequencies or traffic-signal control parameters) and pricing (e.g. air, railway, 
parking or motorway fares). The design variables may be discrete (topology and 
performances) or continuous (prices and performances) according to the specific 
problem. Obviously a model can, and often does, aim at defining the optimal 
combination of different types of variables. 

Objectives. The design can be developed from different perspectives, i.e. the 
design model can be defined to optimize (maximizing or minimizing) different 
objective functions. Design models can account for social objectives, e.g. the 
minimization of total generalized user costs, and/or operator's objectives, e.g. the 
minimization of investment and/or management costs or the maximization of net 
traffic revenues. The social objectives underlying larger projects are significantly 
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simplified. The objective function may be mixed, i.e. a combination of social and 
operator's objectives as in Benefits-Costs analysis described in section 10.5.1. 
Other objective functions correspond to multi-attribute utility functions in multi­
objective analysis described in section 10.5.2. 

Constraints. Most supply design models can be formulated as constrained 
optimization problems and, as it is often the case in modeling, some objectives can 
be introduced as constraints (and vice-versa), for computational convenience. 
These constraints can be defined external, e.g. the maximum available budget, the 
maximum levels of pollutant concentration. In the former case the implicit 
objective is to minimize the cost; in the latter, it is to reduce air pollution. 
Technical constraints relate to aspects of the system such as maximum flow­
capacity ratios, minimum and maximum frequencies of bus lines, etc. Some 
specifications of the design model use a third category of constraints representing 
the consistency between demand, flows, design variables and system 
performances. These constraints represent the system simulation model and will be 
considered in the next section. 

Simulation model. The simulation model which is usually most relevant to design 
problems is the assignment (or demand-supply interaction) model. As shown in 
previous chapters, such models can be based on within-day static or dynamic 
system representation, on deterministic or stochastic path choice models and may 
or may not account for congestion effects. Furthermore, the assignment model may 
assume rigid or elastic demand according to whether demand flows are considered 
constant with respect to the values of the design variables or not. 

Although transportation supply design models received considerable scientific 
and professional attention, they have not reached a level of theoretical 
completeness and/or number of applications comparable to those described in 
previous chapters for simulation models. Further, design problems have also not 
been studied at the same level of detail. It is difficult to present general results for 
all supply models, as they are specific to the design problem and to a number of 
assumptions that can be made in connection with each of them. A systematic 
review of all the supply models presented in the literature and of their 
transportation engineering implications would require a book on its own. Rather, 
this chapter will briefly analyze this wide and still open area of application. A 
general formulation of the supply design models will be described first in section 
9.2; some specialization of the general model to the most common design 
problems will be introduced in section 9.3 without analyzing either the specific 
models proposed or the implications of related results. Finally section 9.4 
describes some algorithms which can be applied to solve various design problems. 
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9.2. General formulations of the Supply Design Problem 
The supply design problem (SDP) can be formulated through a constrained 
optimization model, maximizing or minimizing an objective function w(.), 
dependent on design variables, y, and link flows, f The representation of the 
system and its variables can be within-day static or dynamic. Although some SDP 
models for dynamic systems are covered in the literature, most of the 
specifications refer to static systems and assignment models. This is not surprising, 
given both the recent development and computational complexity of dynamic 
models, which should be used repeatedly in a SDP. For these reasons, the 
following will deal with static models. As stated in Chapter 5, link flows resulting 
from a static assignment model can be expressed as a function of O-D demand 
flows (vector tI), of the network topology (link-path incidence matrix ...1) and on 
path choice probabilities (matrix P). In general, both the network topology and 
path choice probabilities depend on the supply configuration, either directly or 
through link costs and cost functions. Demand flows are constant if the assignment 
model assumes rigid demand, and dependent on supply performances if demand is 
elastic. The general supply design model can be formulated as: 

y* = argmax{min) w{y,J *) (9.2.1a) 
y 

subject to the constraints: 

r = L1(y) P[y, g(f',y)] d[g(f',y)] (9.2.1b) 

y,rEE (9.2. 1. c) 

y,r E T (9.2. 1. d) 

where y* is the optimal solution of supply design problem andr the equilibrium 
flow vector; equation (9 .2.1 b) expresses the consistency constraint between supply 
performances, demand and flows (Le. the equilibrium assignment); equation 
(9.2.lc) identifies the set of supply parameters satisfying the external constraints 
and equation (9.2.1d) expresses the system of technical constraints. Furthermore, 
the notation L1(y) indicates that, in the case of design variables influencing the 
network topology, both the paths and the link-path incidence matrix depend on the 
values of the design variables; the same is true for path choice probabilities as 
expressed by P(y, g), where g is the path cost vector. 

The formulation (9.2.1) is based on the explicit representation of the 
assignment model with a fixed-point model. As was seen in Chapter 5, this 
formulation presents some mathematical problems for deterministic user 
equilibrium (DUE) assignment. In this case, the consistency constraint (9.2.lb) is 
usually replaced by the variational inequality, which for rigid demand becomes 
(see section 5.4.2): 
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c(j*,y/ if - 1*) ~ 0 V fE S(y, d) (9.2.1 e) 

Expression (9.2.1e) makes explicit the dependence of the link flows feasibility 
set, S, on demand and design parameters. For elastic demand, reference can be 
made to the analogous expression given in section 5.6.1.2. 

The design model can be formulated differently if assignment can be 
formulated through optimization problems. In this case, model (9.2.1) can be 
expressed as a bi-Ievel optimization model where the value of the first-level 
objective function, w(.), depends on the solution of a second-level optimization 
problem, usually with a different objective function, z(.): 

y* = arg opt w{y, f{y)) (9.2.2a) 
J' 

YEE 

YET 

f{y) = arg min z(f,y,d) (9.2.2b) 
JESj 

The specific form of the objective function z(.) in (9.2.2b) depends on the 
specific assignment model (see Chapter 5 for DUE and the SUE specifications). 
For an uncongested network assignment model, the link costs vector depends 
exclusively on the design variables, c = c(y), simplifying the specification and the 
solution of the design model. 

The actual specification of the supply design model, whether in the form 
(9.2.1) or in (9.2.2), comes from the particular design problem and the 
assumptions. Examples of specifications wiIl be given in the next section. As 
mentioned earlier, the design variables can be divided into three typologies: 
topological or network layout variables, usually discrete, denoted in the following 
with the vector lTOP; supply performance variables, continuous or discrete, 
denoted with /E ; and price variables, usually continuous, indicated with yPRI. 
The vector y of the design variables can therefore, in the most general of cases, be 
decomposed in the three sub-vectors: 

(9.2.3) 

The objective function can assume different forms dependent on the goal of the 
project. Social objective functions, WI(.), usually correspond to the network 
indicators described in section 5.2. The most common specification is relative to 
the total actual cost which, in the absence of non-additive path costs, can be 
expressed as: 
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(9.2.4) 

The total Expected Maximum Perceived Utility with respect to path (and 
possibly mode) choiCe is seldom adopted as objective function(3) because of its 
computational complexity, even if it would be a more correct measure of the users' 
surplus, as will be seen in section 10.4.3: 

(9.2.5) 

Operator objective junctions, W2(.), may express the total investment and 
maintenance cost which depend on design parameters, y, or on their functional 
transformations: 

(9.2.6) 

where bj is the unitary cost related to each design variable, Yj. For example, if the 
design variables are zer%ne topological variables expressing whether to include 
or not the connection j, bj is the investment and/or maintenance cost for that 
connection. Another type of operators objective function includes the traffic 
revenues, dependent on the design price variables, which can be either associated 
with individual links, vector y/RJ, or the O-D pairs, vector YODPRJ: 

(y PRJ j) - ~ PRJfi 
W2 L , - '-'IYI I (9.2.7) 

(y PRJ d) - ~ PRJ d 
W2 OD , - '-'odYod od (9.2.8) 

In the case of multi-objective optimization, objective functions are usually 
expressed as linear combinations of two or more of the above functions. For 
example, the total cost for the user and for the operator is usually obtained by 
adding (9.2.4) and (9.2.6) with coefficients representing the relative weight of the 
two objectives. Furthermore, expression (9.2.6) can also be used to specify an 
overall (external) budget constraint: 

(9.2.9) 

where B represents the maximum available budget. 
Little can be said on the mathematical properties of supply design models in 

general, and on the existence and uniqueness of the solutiony* in particular, since 
the solution depends on the particular specification adopted. In most cases neither 
the objective function nor the constraints have convexity properties sufficient for 
the uniqueness of the solution. In fact, many models have shown multiple 
solutions, or local optima, corresponding to similar values of the objective 
function. This may have significant practical implications since nearly equivalent 
solutions can be generated, among which the best solution can be chosen on the 
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basis of a wider set of objectives and criteria. Similar considerations can be made 
for the existence of the solution y*, which obviously depends on the definition of 
the constraints; erroneous or incompatible specifications could lead to problems 
without any feasible solution. 

9.3. Some applications of Supply Design models 
Supply design models have been studied in greater detail for some classes of 
"partial" problems, which will be described below. For more complex projects, the 
actions to be jointly designed may relate to many elements of the supply system 
and to many modes. In the case of tactical urban transportation planning, for 
example, actions may include the directions and traffic-signal control of the road 
network, the availability of parking areas on and off-street, the structure and 
frequency of the transit lines, parking and transit pricing, and so on. Similarly, for 
a railway system program, design variables may include the structure of the lines, 
the timetables of individual runs and the fare structure. Design problems of this 
complexity are usually solved by formulating separate design models for one or 
more individual components following a sequence related to the (implicit) 
hierarchy of the objectives. 

9.3.1. Models for road network layout design 
Design problems in this class identify the road connections to be built or the 
optimal circulation scheme for a given network of facilities. The design variables 
for these models are discrete topological variables represented by the vector yTOP 
with a component for each possible road connection. These variables are a subset 
of the expanded road network links that include the existing connections as well as 
the possible connections to be designed. 

Typically in the optimal infrastructure layout problem, roads are assumed to be 
bi-directional and the design variables are usually binary variables YiTOP = Oil, 
indicating that the linkj is to be excluded (zero) or included (one) in the solution. 
Fig. 9.3.1 shows an example of the initial configuration and some possible 
alternative configurations with the relative values of the design variables for a 
small test network. This SDP has been often associated with extra-urban road 
networks. 

Usually, the objective function is specified as a linear combination of the total 
transportation cost (9.2.4) and the total construction and maintenance cost (9.2.6) 
where bly/oP) is the cost to build and operate the road connection represented by 
link j. To ensure comparability of the two terms, transportation and 
construction/operation costs should be expressed in monetary units and cover the 
same period, e.g. a generic average year. This can be accomplished by 
"projecting" into a given year (typically the first year of operation) the values of 
O-D flows and the user annual transportation costs. Similarly, the operator cost 
will be the equivalent yearly amount of the total investment cost and the yearly 
maintenance cost. 
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External constraints usually include a budget constraint (9.2.9) and, in some 
cases, constraints on the total level of pollutants emitted. Some specifications may 
include the so-called "network constraints" ensuring the connection of all Origin­
Destination pairs, the node conservation of flows, etc., as described in section 5.2. 
It should be noted, however, that network constraints are necessary only if the 
assignment model is deterministic (DUN or DUE) and is expressed by a 
variational inequality or an optimization model in terms of link variables. In fact, 
in stochastic assignment models, these constraints are implicit in the relationships 
between demand and link flows as expressed by eqn. (9 .2.1 b). Many specifications 
of this model consider rigid demand, using the modal 0-0 matrices forecasted for 
the reference year. 

A simplified specification of the design problem is: 

(9.3.1) 

subject to the constraints: 

The optimal functional layout problem considers the optimal circulation 
scheme, i.e. the optimal configuration of traffic directions for a road network, 
typically an urban network. The need for optimal circulation schemes arises for 
two conflicting reasons. The single-direction use of a road increases the available 
width for this direction and, in turn, the saturation flow at the final intersection. 
This reduces the waiting time for a given flow. On the other hand, two-way roads 
generally reduce the distance between an 0-0 pair and increase the conflict points 
at the intersections. The design variables are still discrete variables, yTOP, 
associated with each link and can assume different values (e.g. 0, 1,2) according 
to whether the link is used in both directions or in each of the two ways (see Fig. 
9.3.2). 

The cost functions of each link j depend on the variable Yj; furthermore, the 
objective function usually includes only the user generalized cost (9.2.4), the 
construction cost of existing roads being null and the difference in operation costs 
being negligible. The link constraints are analogous to those described for the 
infrastructures layout problem and the same considerations hold. 

The model is sometimes specified by introducing external constraints, limiting, 
in particular, flow/capacity ratios for relevant links. This constraint expresses the 
need for both technical functionality (flows near capacity induce instability 
phenomena and possible spill-backs at intersections) and pollution reduction 
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(emissions are higher for low commercial or average speeds). Another type of 
external constraint requires that the distance between each O-D pair on the shortest 
path not exceed the "shortest" feasible distance, i.e. the minimum distance on a 
fully bi-directional road configuration, by more than a prefixed amount. In this 
case the implicit "equity" objective is to distribute penalties among users. 

3 5 

y/ = [0,0,0,0,0,0,0,0,0,0,0,0] 

8 

11 12 

y/ = [1,1,1,0,2,2,2,2,0,1,1,1] 

y/ = [0,0,0,1,0,2,2,0,1,0,0,0] 

Fig. 9.3.2 Design variables for an optimal functional layout problem. 

The optimal urban road network layout problem, discussed below, is usually 
associated with the control of intersections that determine road link capacity. As 
was seen in section 2.3 .1.2., the capacity of a signalized road access is given by the 
product of the saturation flow by effective green to cycle length ratio. 
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9.3.2. Models for road network capacity design 
Capacity design models optimize the capacity of links in a road network of given 
topology. The design variables are generally continuous, expressed by a vector 
yPER whose components are link capacities. The problem may assume two different 
forms, typical of extra-urban and urban road networks. 

For extra-urban road network capacity design, the decision variables are the 
link capacities, usually constrained by pre-set minimum and maximum values. The 
formulation of the model is substantially similar to that described for the optimal 
network layout problem; the objective function can be expressed as a sum of the 
user costs and the construction costs. Budget and congestion-level constraints 
(maximum value of the flow/capacity ratios) are also typically included. 

The capacity of an extra-urban road depends on first approximation on its 
transversal section (number of carriageways and their width, lateral distances, etc.) 
and does not assume all the possible values, but only some discrete values 
corresponding to the different section typologies. From this point of view, the 
design variables should be discrete even though, in the literature, they are often 
approximates as continuous variables. In the other case (discrete capacity), the 
problem would be analogous to the one described in the previous section, with the 
difference that the design variables can assume several discrete values 
corresponding to the different section typologies. 

The urban road network capacity design often addresses the problem of 
finding optimal traffic-signal control parameters for a subset of intersections 
(traffic signal setting problem). In the most simplified formulations, it is usually 
assumed that intersections are "isolated", i.e. the traffic-signal coordination 
between adjacent intersections has no effect. This assumption implies that offsets 
between the green times of different intersections are not relevant control 
variables. It can also be assumed that for each intersection the overall duration of 
the cycle and the structure of the traffic-signal phases are known. This implies that 
for each node (or group of nodes), n, representative of a signalized intersection, the 
set I n of the phases in and the set of links IVn) corresponding to flows receiving 
green in the same phase is known. In this case, the design variables /ER can be 
identified as the effective green to cycle length ratios, the latter deducted of the 
lost times for each phase. The design variables are therefore continuous over the 
interval 0, I (see Fig. 9.3.3). 

Note the difference between capacity design of signalized intersections for the 
entire network and for a single intersection. In the first case, as the green/cycle 
ratios vary, capacities vary, and because of the effect of assignment constraints 
(9.2.1b), link flows vary. In the case of a single intersection, it is assumed that 
flows are known and invariant with respect to capacity parameters. 

The specification usually adopted for the design model is analogous to that 
described for the road network lay-out problem. The objective function to be 
minimized is the total generalized cost (usually time) spent on the network. 
Construction costs are not taken into consideration and the external constraints 
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might include maximum levels of congestion and pollution. Technical constraints 
set the maximum and minimum duration of each phase and require that the 
summation of green/cycle ratios over all phases is equal to one for each 
intersection. 

Two different approaches can be followed to optimize the traffic-signal control 
parameters: local and global. In the global approach the control parameters of all 
intersections are jointly optimized to minimize the total travel time on the network. 
In the local approach, each signalized intersection is optimized to minimize the 
total user delay at the intersection. In this case, a circular dependence between 
flows, costs and control parameters arises and the resulting problem can be seen as 
a fixed-point problem. This problem can be modeled as an asymmetric user 
assignment problem. 

A possible simplified formulation of the global optimal signal setting problem 
is: 

subject to: 

L PER = I '\In 
Yjn 

jllEJn 

PER T T ""' Yjn c n 2 min V n 

(9.3.2) 

where Tc n is the duration of the cycle at intersection nand Tmm is the minimum 
value for a green time interval. 

More complex traffic-signal control problems introduce other design variables 
and in particular off-sets between green times in nearby intersections, cycle length 
for each intersection and sequence and number of phases. In the first case link 
delay models described in Chapter 2 must account for the effects of platoon 
dispersion between coordinated intersections. 

9.3.3. Models for transit network design 
It is usually assumed that the relevant supply variables for high frequency urban 
transit systems are service frequencies rather than actual timetables (see section 
2.5). Under this assumption the design problem identifies the optimal layout for 
the lines and their service frequencies in the reference period (e.g. rush hour). In 
this case the design model simultaneously identifies the topological configuration 
and the optimal performances of a supply system. 
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A 

Intersection A Phase plan 
Cycle TcA 
Total lost time LTA o-+- --..-0 C? 
Phases JA = {lA, 2A, 3A} lA 2A 3A + 
Variables /ERIA = GIA/(TcA - LTA) 

/ER 2A = G2A /(TeA - LTA) 
/ ER3A = G3A/(TcA - LTA) 

Constraint on total cycle length 
GIA + G2A + G3A = TcA - LTA 

Intersection B 
Cycle TeB Phase plan 
Total lost time LTB • Phases JB = {IB' 2B} 

~ Variables yPER IB = GIB/(TeB - LTB) IB -.-O-+-PER Y 2B = G2B/(Tc B - LTB) 
t 2B 

Constraint on total cycle length 
G IB + G2B = TeB - LTB 

Vector a/variables 
/ER _ [yPER PER PER /'ER PER f - IA,y 2A,y 3A, IB,y 2B 

Constraints 
PER + PER + PER - 1 Y IA Y 2A Y 3A-
PER + PER - I Y IB Y 2B-

Fig. 9.3.3 Design variables and constraints for an optimal signal setting problem. 
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The design variables are the discrete layout variables, yTOPIn. equal to one if the 
physical link I, e.g. road or railway section, belongs to the line n, and zero 
otherwise), and the continuous performance variables, yERn' representing the 
service frequency of each line n, see Fig. 9.3.4. The lay-out variables are 
equivalent to the duplication of physical links in line links i.e. to the implicit 
construction of the line network model described in Chapter 2. For this reason, the 
link variables of this model will be expressed with the double index. 

The objective function usually includes the user generalized cost and the 
operator cost, appropriately homogenized. For urban transit systems the functions 
WtO expressing user costs is different from (9.2.4) given the usual assumptions on 
mixed preventive/adaptive path choice behavior. In this case alternative travel 
strategies are represented by hyperpaths on the lines, and average path costs 
include a non-additive component associated with waiting times at stops (see 
section 4.3.4). 

Formally, the objective function WtO can be expressed as: 

(9.3.3) 
~ ~ twk ( .. TOP yPER)lik{ .. TOP • .PER) 

leJw k I V', I V' ,Y 

where Cln is the generic additive cost associated with the link I and with line n (e.g. 
on-board or access travel times); Jw is the set of waiting links, k the generic 
hyperpath and twkl the waiting time (cost) associated, with the link 1 and with the 
hyperpath k,lin is the users' flow on on-board link 1 belonging to line n andlik is 
the flow on waiting link 1 belonging to hyperpath k, see section 4.3.4. 

The overall operator cost W2(') is usually expressed using the unit running cost 
CEn for each journey (bus, train, etc.) of the line n, expressed in monetary units per 
distance or time unit: 

( .. TOP yPER) = ~ '<' yTOP CE L ..PER 
W2V', n'-'I In n InY n (9.3.4) 

where Lin is the length (or round time) of the link 1 for the line n. 
The assignment constraints can be expressed using the formulation introduced 

in Chapter 5, as: 

where it is implicitly assumed that the network is not congested and that the link 
crossing probability matrix A, and the non-additive hlJ;lerpath costs, ;('A, both 
depend on the topological configuration of the lines (y p) and on the respective 
frequencies (yPER). 
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Base graph E Lines I,m,n 

line I 
A 

line m 

line n 

/? 
o 

B 

/ £RI = 6 bus/h 
/ £R m = 3 bus/h 
yP£R n = 10 bus/h 

J---l"---{ ·}-- .. --QD 

rB 
-oD 

c 

Fig. 9.3.4 Design variables for an optimal line layout and frequency problem. 

The technical constraints of the problem usually restrict the flow fin on each line 
link I to the capacity of the line n, which can be expressed as the product of the 
capacity Capn of each vehicle and the frequency of the line n: 

fi < C PER 
In - apnY n VI 

Furthermore, the frequencies must be non-negative, equal to zero if the line is 
not active and below a maximum technically feasible value /ER max: 
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Another possible technical constraint is a budget constraint on the vehicle 
stock. This constraint can be expressed as a function of the travel time of each line 
link, tl, since the number of journeys necessary for a line of frequency yERn is 
equal to the product of the frequency for the total travel time of the line: 

'<' .PER. TOP 
~n £..1 tl Y n Y In ::s; N max (9.3.6) 

with Nmax equal to the maximum number of available vehicles. 
Finally, a technical constraint sometimes introduced, though not easily 

expressed in formal terms, requires that lines must have their terminals in a given 
set of nodes. 

A simplified version of the transit design problem assumes the topological 
configuration of all the lines, components of the vector yTOP, as given. In this case 
the design problem is reduced to the calculation of optimal service frequencies, i.e. 
the components of the vector yER, with a significant reduction in the number of 
variables and in computational complexity. A minimal service frequency may be 
added to the technical constraints. 

For extra-urban services (low frequency, high regularity) the supply design 
problem is quite different, as are the models used to simulate these services. As 
was seen in Chapter 6, the diachronic network models used to simulate regular low 
frequency services are based on the explicit representation of the service-schedule. 
Optimal scheduling design models define departing and arrival times of each run 
of a pre-defined set of lines. Furthermore, in the most general case, they jointly 
determine the lines and their departure and arrival times, under a set of technical 
constraints. The latter are the feasible range of travel times (feasible commercial 
speeds), the available vehicle stock, the range of acceptable connection times 
between different lines at intermediate stops, etc. The problem of optimal service 
scheduling has not been covered extensively in the literature. 

9.3.4. Models for pricing design 
Pricing design models can be applied to different contexts. Prices, generally 
represented as continuous variables yPRI, may be related to the different 
transportation supply elements: road tolls, parking, air and railway fares, etc. The 
specification of the design variables yPRI will depend on the assumed "pricing 
structure", i.e. on how the prices are computed and applied. If constant access 
prices are assumed, e.g. constant road tolls at motorway entrance/exit points or 
constant parking fares, the components yRlj of the vector can be associated with 
the network links, j, representative of the toll points or of the parking facilities. If 
the price is proportional to the distance covered, e.g. road tolls or railway fares 
proportional to the journey length, the price parameter yRiI can be associated to 
each link, I, corresponding to a section with a physical length. 

The objectives of pricing design might also be different. If the pricing policy is 
meant to improve the efficiency of the transportation system, for example by 
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reducing the overall generalized cost of the system and/or the overall pollution 
level, the resulting pricing is known as efficiency pricing. A typical example of 
efficiency pricing design is road pricing, i.e. the application of a price to roads to 
minimize the non-renewable total cost, typically the total travel time. In this case 
the social objective function(4) is WI(yPRI)= L" c, (Ii) fi. The efficiency road pricing 
design problem whit rigid demand can therefore be formalized as: 

y*PRI = argmin L" clJ*) fi* (9.3.7) 
yPRI 

subject to the constraints: 

yl'R1 20 

In the special case of DUE assignment with separable cost functions, the 
problem (9.3.7) is equivalent to the system optimal (SO) assignment problem 
described in section 5.4.4. This problem is a single-level optimization problem and 
the optimum price yt*PRI can be calculated as: 

VI (9.3.8) 

where c'lji) is the first derivative of the cost function. 
However, it should be noted that the prices vector y*PRI given by (9.3.8), is not 

the unique solution to the problem (9.3.7) in general. Under deterministic path 
choice, there may be other vector solutions to the general problem (9.3.7) with 
different operational impacts (e.g. less expense to the users or the possibility of 
applying the price only to certain network links). 

The formulation (9.3.7) of the road pricing problem assumes that O-D demand 
d is rigid. The resulting prices tend to reduce the total travel time by modifying 
path choices; this is achieved by increasing generalized link costs proportionally to 
their congestion levels. However, many empirical results indicate that the most 
significant congestion reductions can be obtained by focusing on demand flows. 
To address this problem it is necessary to consider the O-D demand for the car 
mode, cF, as elastic. For example, it may be assumed that demand is elastic with 
respect to modal choice and that road is the only congested system, i.e. that only 
road costs are dependent on link flow f and design prices y*PRJ. It may be 
appropriate to impose further constraints to the problem (9.3.7), for example 
requiring that the road link flows are below a predetermined fraction of the 
corresponding capacities. 

Under these assumptions the efficiency road-pricing problem with elastic 
demand model can be reformulated as: 
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(9.3.8) 

subject to: 

where sC(.) and SB are (nod x 1) vectors of EMPU variables related to path choice 
for car and bus modes. 

The pricing design model has a different form when maximizing traffic 
revenues or net profits (revenues minus costs). In this case, assuming a single 
operator in the market, the operator's objective function W2(.) is the total revenue, 
and the problem can be formulated as: 

Y*PRl = argmax '<' yPRl fi* ~I I I (9.3.9) 
yPRJ 

subject to: 

where the O-D demand flows relative to mode is considered price elastic for non­
marginal variations of the latter. 

Pricing design models for other transport infrastructures (e.g. rail lines or 
airport slots) and services (e.g. train or air connections) can be formulated in a 
similar way. Typically optimal infrastructure use prices are computed with respect 
to social objectives (efficiency pricing) while service prices are computed with 
respect to operators objectives. Limited applications of these models are described 
in the literature. 

9.3.5. Models for mixed design 
Complex projects involving an area-wide transportation system or several aspects 
of the services provided by a company would require design models integrating 
two or more of the models described earlier. For example, a regional transportation 
plan usually includes the optimal design of road and rail infrastructures, rail and 
bus services, road and transit pricing and so on. Similarly the definition of a road 
project-financing scheme includes the optimal design of new infrastructures and 
pricing systems. Clearly the computational complexity of these problems increases 
exponentially and the (few) examples published in the literature are based on a 
number of ad hoc simplifying hypotheses specific to the individual problem. 
Solution algorithms generally are based on the sequential solution of separate 
design problems corresponding to separate design variables. 
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9.4. Some algorithms for Supply Design Models 
Using mathematical programming terminology, supply design models can be 
specified as discrete, continuous or mixed optimization problems; such models are 
generally non-linear with non-linear constraints, or bi-level optimization models 
with ill-defined mathematical properties. For most of these problems, there are not 
optimal algorithms, i.e. algorithms, which can be proven to converge towards 
global or local optimal solutions. 

For these reasons, heuristic algorithms have been used in applications, which in 
many cases provide satisfactory results. This is especially relevant considering that 
the goal is to define actions about the physical system with the help of design 
models rather than to solve a mathematical problem per se. In what follows, some 
examples of heuristic algorithms will briefly be presented for discrete and 
continuous problems. These algorithms are applicable to a wide range of design 
models. A comprehensive review is beyond the scope of this book. 

9.4.1. Algorithms for the discrete SOP 
Several algorithms have been proposed for solving discrete SDP; most solve 
specific network design problems. It is possible to classify these algorithms in two 
groups: 

Exact algorithms that yield optimal solutions (global optimum), such as total 
enumeration and "branch and bound" algorithms. 
Heuristic algorithms that yield sub-optimal solutions (local optimum or near 
optimal solution), such as add-and-delete algorithms, neighborhood search 
algorithms, genetic algorithms, simulated annealing algorithms. 

In general, exact algorithms can be applied only to small networks, while 
heuristic algorithms can be applied to relatively large networks. For comparison 
sake, algorithms will be applied to the small network of Fig. 9.4.1, for the 
uncongested road layout design problem with deterministic route choice model. 
The algorithms can be extended easily to other discrete design problems (e.g. 
optimal transit lines layout). 

Add-and-delete algorithms. They perform a sequence of insertion and deletion 
routines starting from an initial solution. The insertion routine adds design links 
sequentially to generate new solutions. For each possible addition, the objective 
function value is calculated and the link with the largest objective function 
improvement is added to the current configuration. The routine continues to add 
links until no link insertion improves the objective function. The deletion routine 
deletes links from the current configuration, calculating the objective function with 
each deletion. The link with the largest improvement of objective function is 
deleted from the current configuration. The routine continues to delete links until 
no link deletion improves the objective function. If at least one link is deleted, the 



CHAPTER 9 585 

algorithm repeats the insertion; otherwise the algorithm stops. In the last generated 
network configuration no link insertion or deletion could improve the objective 
function value. 

The vector of design variables at iteration it, including or excluding link I is 
denoted YiJOP. The results of an application of the add-and-delete algorithm to the 
test network of Fig. 9.4.1 are summarized in Fig. 9.4.2. 

In order to accelerate calculations, sequentially inserted links can be saved as 
long as they improve the objective function . Similarly the delete routine may 
process each link from a list eliminating a link each time the objective function 
improves. 

6 3 

5 
5 

................ 

3 4 

0 .. 1 2 

--- existing link Objective function: 

.................. design link 
w = cT .f(yTOP, d) + f3 bT yTOP 

f3 = 5 time units/cost unit 

Link number Link Travel time (c) Buildinf{ cost (b) 
Desif{n links 

1 1-2 8 800 
2 2-7 12 1000 
3 6-7 15 1500 
4 1-6 10 600 
5 4-5 20 500 

Existinf{ links 
1-3 10 -
2-4 10 -
3-4 15 -
3-5 10 -
3-6 10 -
4-7 10 -

I Demand OD (d1-7) 1000 

Fig. 9.4.1 Test network (starting configuration). 
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Solution User Construction Objective 
costs costs function value 

Starting solution 

YoTOP = [0,0,0,0,0) 35000 0 35000 

Insertion routine 

First insertion 

y , . , TOP = [1 ,0,0,0,0) 28000 4000 32000 

Y,.2TOP = [0,1,0,0,0) 35000 5000 40000 

Y,.3TOP = [0,0,1,0,0) 35000 7500 42500 

y ,./oP = [0,0,0,1,0) 35000 3000 38000 

YI.5TOP = [0,0,0,0,1) 35000 2500 37500 

Best inserted link 

y , TOP = [1,0 ,0,0,0) 28000 4000 32000 

Second insertion 

Y2.2 OP = [1,1,0,0,0) 20000 9000 29000 

Y2.3TOP = [1,0,1,0,0) 28000 11500 39500 

Y2/oP = [1 ,0,0,1,0] 28000 7000 35000 

Y2.5TOP = [1,0,0,0,1] 28000 6500 34500 

Best inserted link 

Y2 TOP = [1 ,1,0,0,0] 20000 9000 29000 

Th ird insertion 

Y3.3 TOP = [1,1 ,1,0,0] 20000 16500 36500 

Y3/0P = [1 ,1,0,1,0] 20000 12000 32000 

Y3.5TOP = [1,1 ,0,0,1] 20000 11500 31500 

No inserted link improves objective function 

Deletion routine 

First deletion 

Y3.1 TOP = [0,1,0,0,0] 35000 5000 40000 

Yl.2TOP = [1 ,0,0,0,0) 28000 4000 32000 

No deleted link improves objective function 

Optimal solution 

YOpl TOP = [1,1,0,0,0) 20000 9000 29000 

Fig. 9.4.2 Add and delete algorithm applied to the test network of Fig. 9.4.1. 

Neighborhood search algorithms. These algorithms, starting with an initial 
solution, generate the set of solutions, which can be reached directly from the 
current solution by an elementary operation, called move. This solution is named a 
neighbor of the current solution and the set of all neighbors is named 
Neighborhood. Among all neighbors the next solution is chosen, selecting either 
the optimal solution (descent/ascent method) or a random solution (Monte Carlo 
method). The algorithm ends when no neighbor for the current solution improves 
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the objective function in the descent method, and when the objective function does 
not significantly improve over the last m iterations in the Monte Carlo method. 
The results of an application of the neighborhood search algorithm to the test 
network of Fig. 9.4.1, using the descent method, are summarized in Fig. 9.4.3. 

Solution User Construction Objective 
costs costs function 

Starting solution 

YoTOP = [0,0,0,0,0) 35000 0 35000 
Neighborhood generation 

Y1.1 TOP = [1 ,0,0,0,0) 28000 4000 32000 
y ,/o P = [0,1,0,0,0] 35000 5000 40000 
y ,}OP = [0,0,1,0,0] 35000 7500 42500 
y ,./OP = [0,0,0,1,0) 35000 3000 38000 
Y, .STOP = [0,0,0,0,1) 35000 2500 37500 
Next solution 

y , TOP = [1,0,0,0,0) 28000 4000 32000 
Neighborhood generation 

Y2.1 TOP = [0,0,0,0,0) 35000 0 35000 
Y2/0P = [1,1,0,0,0) 20000 9000 29000 
Y2.3TOP = [1,0,1,0,0) 28000 11500 39500 
Y2/0P = [1,0,0,1,0) 28000 7000 35000 
Y2.STOP = [1,0,0,0,1) 28000 6500 34500 
Next solution 

Y2 TOP = [1 ,1,0,0,0] 20000 9000 29000 
Neighborhood generation 

Y3., TOP = [0,1,0,0,0) 35000 5000 40000 
Y3'/OP = [1,0,0,0,0) 28000 4000 32000 
Y3.3TOP = [1,1,1,0,0] 20000 16500 36500 
Y3,4TOP = [1,1,0,1,0) 20000 12000 32000 
Y3.STOP = [1,1,0,0,1) 20000 11500 31500 
No neighbor improves objective function 

Optimal solution 

YOrA TOP = [1,1 ,0,0,0) 20000 9000 29000 

Fig. 9.4.3. Neighborhood search algorithm applied to the test network of Fig. 9.4.1. 

The neighborhood search algorithm is similar to the add-and-delete algorithm 
described previously; the main difference is the sequence in which insertions and 
deletions are performed. In add-and-delete algorithms a link can be added to the 
current solution only in insertion routines and can be deleted only in deletion 
routines. In the neighborhood search, at each step all the links can be added or 
deleted. However, some applications show that neighborhood search algorithms 
are better suited to find local optima close to the starting solution and, thus, should 
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be used as second-step algorithms coupled with other algorithms spanning the 
whole feasible set. 

Genetic algorithms. These algorithms, used for combinatorial problems, mimic the 
mechanics of genetic and natural selection. These heuristic algorithms, starting 
with a population (set of initial feasible solutions), iteratively generate a new 
population with a higher probability of containing the optimal (or sub-optimal) 
solution. Each feasible solution is an element (named chromosome) of the 
population, composed of genes. A gene is a group of variables satisfying "local" 
constraints such as the number of lanes to be allocated in each direction for an 
urban road network design problem. Future populations are generated with three 
routines: reproduction, crossover and mutation. 

The reproduction routine generates a new population randomly so that the 
solutions with higher values of the objective function have higher probability to 
survive; in this way only the fitter solutions will be submitted to crossover and 
mutation routines. Survival probabilities are defined by the fitness function, a 
monotone increasing (decreasing) function of the objective function for 
maximization (minimization) problems. One possible specification of the fitness 
function is: 

ff(i) = exp(-awi) 

where i is the generic element of the current population (a feasible solution), a is a 
parameter and Wi is the corresponding value of the objective function. 
Reproduction probabilities can be computed as: 

p (i) = ff(i) = exp(-awi) 
r "Lff(j) "Lexp(-awj ) 

j J 

where the summation is extended to all the elements of the current population. The 
crossover routine generates a new population by randomly exchanging parts 
(genes) between the feasible solutions (chromosomes). The mutation routine 
generates a new population by randomly "mutating" a gene (variable) of a 
"chromosome" (solution). The algorithm stops when the objective function no 
longer improves with new solutions, e.g. in their average or minimax values, over 
the last iterations. 

One of the differences of genetic algorithms with respect to the previous ones 
is that the outcome of the former is a population of feasible solutions, with similar 
values of the mono-dimensional objective function. Comparisons can be made 
among these values on the basis of the individual components of the objective 
function as well as of other variables. Vice versa, optimization algorithms are 
intended to give a single "best" solution. 
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The algorithm can be adjusted by setting the parameters of the fitness 
functions, as well as the number of crossover and mutation routines, at each 
iteration. An example of a cycle of reproduction - crossover - mutation is reported 
in Fig. 9.4.4 for a road network design problem to determine the number of lanes 
in each direction. In this case each gene represents the configuration of a given 
road and has two components, one for each direction. 

6 D=7 

4 
........... ~ ........ . 

4 

0=1 2 

--- existing link Objective function: 

.................. design link 
w == cT flyTOP, d) + f3 bTyTOP 

f3 == 5 time units/cost unit 

Chromosome (feasible solution) 

N. oflanes allocated in direction I 

N. of lanes allocated in direction 2 

(1,1) 

Fig. 9.4.4a Genetic algorithm for a discrete road network design problem: test network. 
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Parameters of the algorithm 
Number of design links 5 
Design variables lanes in each direction 
Lanes in each design link 2 
Population 3 elements 
Fitness Function exp(-0.0001 Wi) 

Number of Crossover 1 
Number of Mutation 1 

Starting Population Objective function 
Solution 1 : Present configuration y, = [0,0; 0,0; 0,0; 0,0; 0,0] 35000 
Solution 2: Random configuration 1 Y2 = [1,1 ; 1,1; 1,1; 0,0; 0,0] 44000 
Solution 3: Random configuration 2 Y3 = io,o; 0,0; 1,1 ; 1,1; 1,1 i 46500 
Reproduction 
Reproduction Probability (RP) exp(-0.0001 w;)fLJ exp(-0.0001 wi) 
RP1 = 58.8 % range [0; 0.588) 
RP2 = 23.5 % range [0.588; 0.823) 
RP3 = 17.7 % range [0.823; 1] 
Random number extraction New population 
0.456 ~ Solution 1 y, = [0,0; 0,0; 0,0; 0,0; 0,0] 35000 
0.672 ~ Solution 3 Y2= [0,0; 0,0; 1,1; 1,1; 1,1) 46500 
0.089 ~ Solution 1 Y3 = [0.0; 0,0; 0,0; 0,0; 0,0) 35000 
Crossover 
Random solution selection 
Solution 1 y, = [ 0,0; 0.0; 0,0; 0,0; 0,0) 
Solution 2 Y2 = [0,0; 0,0; 1,1; 1,1; 1,1 ] 
Random cut points selection 
Point 1 ~ 2 [x.x; x.x; 1 X,x; X,x; x,x] 
Point 2 ~ 4 [x.x; x.x; X,x; X,x; 1 x,x) 
New population 
Solution 1 (crossed) y, = [0,0; 0.0; 11 .1; 1,1; 1 0,0) 44000 
Solution 2 (crossed) Y2 = [0.0; 0,0; 1 0.0; 0,0; 11 ,1 ) 37500 
Solution 3 Y3 = io.o; 0,0; 0,0; 0,0; 0,0] 35000 
Mutation 
Random solution selection 
Solution 3 Y3 = [0,0; 0,0; 0,0; 0,0; 0,0] 
Random mutation link Link 1 ~ [x.x; x.x; x,x; x,x; x,x] 
New random link configuration Y3 = [2,0; 0.0; 0,0; 0,0; 0,0] 32000 
New population 
Solution 1 Y, = [0,0; 0,0; 1.1; 1,1; 0,0] 44000 
Solution 2 Y2 = [0,0; 0,0; 0,0; 0,0; 1,1] 37500 

. Solution 3 (Mutated) Y3 = [2,0; 0,0; 0,0; 0,0; o,oj 32000 

Fig. 9.4.4b Genetic algorithm for the discrete road network design problem of Fig. 9.4.4a. 
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9.4.2. Algorithms for the continuous SOP 
The algorithms for continuous supply design problems are based on the principles 
of nonlinear optimization (see Appendix A). The optimal solution can be 
expressed in a closed form only for few simple problems (e.g. transit frequency 
optimization for a single line or cycle length, and green/cycle ratios for an isolated 
intersection with fixed flows). In general it is necessary to implement algorithms to 
perform a local search along a feasible direction, i.e. a direction moving towards a 
local optimum. The solution reached will be the global optimum only if the 
objective function is convex. However it is impossible to demonstrate convexity of 
the objective function for most network design problems. The general scheme of a 
feasible direction nonlinear optimization algorithm is presented in Fig. 9.4.5. 

Movement direction. 1+-------. 

Movement along 
the direction 

Fig. 9.4.5. General scheme of feasible direction algorithms for continuous SOP. 

Different algorithms can be specified according to movement directions. If the 
movement direction can be shown to be an ascent or descent direction (e.g. the 
gradient or its opposite) the algorithm is exact, otherwise it is heuristic. The 
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movement along the direction can be performed by a linear search or by a fixed or 
variable step length according to the computational difficulty. Two examples of 
gradient algorithm applied to continuous network design problems (signal setting 
and transit line frequency optimization) are reported in the following. 

An algorithm for optimal signal setting. A first example of continuous SDP is the 
global optimization of traffic signal settings for urban networks. Under the 
assumption that each intersection (node n) has only two phases (a and b) the 
control variables are the effective green time - cycle length ratios, one for each 
intersection: 

V intersection n 

where: 

G/ is the effective green time for phase a at intersection n; 
G/ is the effective green time for phase b at intersection n; 
T, n is the cycle length for the intersection n. 

For such a problem the number of variables is equal to the number of 
signalized intersections since there is only one decisional variable for each of 
them. The social objective function to be minimized can be the total user cost on 
the network given by equation (9.3.2). 

To solve this problem a projected gradient algorithm with numerical 
calculation of derivatives and variable step length can be used; the algorithm 
follows the general framework reported in Fig. 9.4.5 and computes the descent 
direction as the opposite of the numerical gradient. The descent direction is 
projected (i.e. some components set to zero) if next solution violates a constraint. 
In order to find the step length, the descent direction can be normalized by 
dividing its components by the maximum absolute value. 

The algorithm proceeds with a fixed step length each time the new value of the 
objective function is improved and the constraints on the variables are satisfied. 
The step length will be reduced each time the objective function value worsens at 
an iteration and the algorithm ends when the step length is less than a fixed value. 
A numerical example of the optimal signal setting problem was performed for the 
small network with two controlled intersections described in Fig. 9.4.6a. The 
assignment model used in the example is Stochastic User Equilibrium with 
Multinomial Logit path choice and an MSA algorithm to compute the equilibrium 
flows (see Chapter 7). The main variables generated by the projected gradient 
algorithm are presented in Fig. 9.4.6b. 
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Fig. 9.4.6a Projected gradient algorithm for the optimal signal setting problem: test network. 
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Iteration 1 2 3 4 5 6 7 8 9 
y,. 0.500 OAoe 0.300 0.30e 0.300 0.27~ 0.275 0.275 0.26E 
y,. 0.500 0.401 0.306 0.30€ 0.306 0.28~ 0.285 0.285 0.287 

1',. 1'3 292 30~ 32 32 32 33e 330 330 32€ 
1'" 1'. 408 391 37 37 37 37( 370 370 374 
w (Y.) 138,719 91 ,3H 74,771 74,771 74,771 74,011 74,011 74,011 74,00 

Step size 0.100 0.1 0e 0.100 0.05e 0.025 0.02~ 0.013 O.ooe o.ooe 
{ffl/i)y, 378.527 94,661 35,000 35,00( 35,000 4,00( 4,000 4,00C - 1.000 
{ffl/i)y2 373 ,340 88,501 29,000 29,00e 29,000 - 1,00e - 1,000 - 1,00C - 2,000 

max I (ffl/OVn I 378,527 94,661 35,000 35,OO( 35,00C 4,OO( 4,000 4,00C 2,000 
tJ.y , - 0.100 -0.10e - 0.100 - 0.05e - 0.025 - 0. 02~ - 0.013 - O.ooe - 0.006 

tJ.Y2 - 0.099 - 0.09€ - 0.08 -0.041 - 0.021 + o.ooe + 0.003 + 0.00 - 0.003 
y,I1t .. 1 00400 0.30e 0.200 0.25( 0.275 0.25e 0.262 0.265 0.263 
v,.., 0.401 0.30€ 0.22 0. 26~ 0.285 0.291 0.288 0.28 0.284 

w(v •• ,) 91 ,315 74,771 84,864 74,864 74,011 74.15( 74,030 74.00 74,053 
Step size red. NO NO YES YES NO YES YES NO YES 

Stop test NO NO NO NO NO NO NO NO YES 

I VALID Steps I OPTIMAL Solution 

0 .55F==~==S== 

0.5 r---.....L._ 

0.45 

0.4 

0.3 

0.25 0 ~6 0.45 0.50 0.55 

Fig. 9.4.6b - Projected gradient algorithm for the optimal signal setting problem of Fig . 9.4.6a. 



CHAPTER 9 595 

An algorithm for optimal transit frequencies. Another example of continuous 
network design problem is the optimization of transit frequencies . 

0 1 

Q-+D:/ 
1 ". 

O2 

2 
6~ 

.0 
Smin ~O4 10min 

.' 

.,." 

..... 

line 1 
L, = 3 km 
tr, = 40 min 

3 line 2 
L, = 4 km 

10min trz=50 min 

5 

7~ 

Demand: 
dO' .D = 300 pass/h 
d0 2.D = 200 pass/h 
d0 3.D = 100 pass/h 
Max bus number: 
Nmax = 10 
Constraints: 
1 s y/ER S 10 
1 s y/ER S 10 
Int(TI1Yl)+lnt(TI2 Y2) s Nmax 

Values of time: 
Waiting: Cw = 3000 units/h 
On board: Cb = 1000 units/h 
Kilometric costs: 
CEn = SOOO units/h 

10min 

8 

~O" " 10 

"'p-+ D 

cf/ 

Fig. 9.4.7a Projected gradient algorithm for the optimal transit frequency problem: test 
network. 
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NUMERICAL RESULTS 
ITERATIONS -t 1 2 3 4 5 

Yu 3 5 7 7 8 
Ya 3 3,92 4,78 4,78 4,41 
f2., 150 168 178 178 193 
f,.s 350 368 378 378 393 
f3.5 150 132 122 122 107 
f>9 250 232 222 222 207 
Operator cost 105.000 153.387 200.506 200.506 208.268 
Users cost 587.700 433.621 360.288 360.288 349.536 
Total costs (w") 692.700 587.008 560.794 560.794 557.805 
Bus number 6 8 9 9 10 

Slep size 2 2 2 1 
fJwfiJi, -78.500 -21.492 -4.580 -4.580 

fJwfiJi2 -36.084 -9.1 98 1.657 1.657 

Max IfJwfiJi ;1 78.500 21.492 4.580 4.580 
l:J.y, ;\ 2 2 2 1 

I:J.YB 0,92 0,86 -0,72 -0,36 
y, ~+, 5 7 9 8 
Y2 it+ 1 3,92 4,78 4,05 4,41 
Total costs (w~+,) 587.008 560.794 558.624 557.805 
Bus Number 8 9 11 10 
Step size red. NO NO YES NO 
StOfl test NO NO NO YES 

Fig . 9.4.7b Projected gradient algorithm for the optimal transit frequencies problem of Fig . 
9.4.7a. 

This problem looks for the optimal frequencies /ERj for a transit network, with 
given transit lines. The objective function is the sum of user and operator costs 
expressed by (9.3.3) and (9.3.4) respectively taking into account only frequency 
control variables y PER. The constraints included in this model are the assignment 
constraints (9.3.5), the minimum and maximum frequency constraints and the 
vehicle budget constraint (9.3 .6). 

In Fig. 9.4.7 numerical results of an application of the projected gradient 
algorithm on a test network are shown. The step length can be reduced if the 
objective function increases, and/or if the budget constraint is violated. 

Reference Notes 

There is large body of literature on network (supply) design models. For partial 
overviews, see Oppenheim (1994), Friesz (1985) and Magnanti and Wong (1984) 
for discrete variables problems. The general formulation proposed in this chapter 
is original. Fisk (1984) proposes the interpretation of the supply design problem in 
the context of game theory. 

For each application area mentioned there are several articles. See Magnanti 
and Wong (1984) for networks topology design problems, Marcotte (1 983), 
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Cantarella, Improta and Sforza (1991) and Cascetta, Gallo and Montella (1998, 
1999) for the optimal capacity design in signalized urban networks, Davis (1994) 
for the optimal capacity design in extra-urban road networks, Le Blanc (1988), 
Nuzzolo and Russo (1997), Montella, Gallo and Amirante (1998) for the design of 
transit lines and frequencies, Cascetta and Rostirolla (1989) for the design of 
optimal social fares of railway services, Hearn (1997) for the design of efficiency 
prices with rigid demand for road network, and Ferrari (1995) for the design of 
efficiency prices of urban parking systems with elastic demand with respect to 
modal choice. 

The works of Cantarella, Viola and Vitetta (1994) and Montella and Gallo 
(1998) are examples of applications of design techniques for complex sets of 
projects (topology of the road network, parking, public transport) in urban areas. 
Most of the referenced papers propose heuristic algorithms to solve the related 
problem. A general review of some algorithms for discrete variable problems is 
given in Magnanti and Wong (1984). Other examples of algorithms for the discrete 
network design problem can be found in the papers of Billheimer and Gray (1973), 
Poorzahedy and Turnquist (1982) and Boyce and Janson (1980). The papers ofLe 
Blanc (1975), Foulds (1981) and Chen and Alfa (1991) are examples of exact 
branch and bound algorithms. 

Algorithms for continuous network design problems can be found in Abdulaal 
and Le Blanc (1979), Marcotte (1983) and Le Blanc and Boyce (1986) for the 
topological design, and Sheffi and Powell (1983), Heydecker and Khoo (1990), 
Yang and Yagar (1995) and Cascetta, Gallo and Montella (1998, 1999) for the 
signal settings design problem. 

Notes 

(I) In the literature, supply design problems and the relative models are often denominated network 
design problems (NDP). This definition, as will be seen, is appropriate only for a wide subset of supply 
design problems, which refer to the definition of network elements. 

(2) The model described corresponds to a monopoly market. In reality, the situation is often more 
complex. For example, in the transportation market there might be many operators (e.g. air service, 
railway and road managers) each with his/her own objectives and constraints and the ability to forecast 
the demand reactions to his/her own actions and to those of the competitors. The supply design models 
available are not yet capable of simulating this type of market defined as an oligopoly. 

(3) The two objective functions (9.2.4) and (9.2.5) coincide only in the case of deterministic path choice 
model. 

(4) The economic interpretation of this objective function, differing from the total generalized cost, is 
that the monetary cost can be considered a transfer from users to system operators which, in principle, 
can return it to the users in another form (see section 10.5.1 on Benefit-Cost analysis). 



10 TRANSPORTA TION SYSTEMS 
ENGINEERING FOR PLANNING AND 

EVALUATION 

10.1. Introduction 
Transportation systems engineering can be defined as a discipline aimed at the 
functional design of physical and/or organizational actions on transportation 
systems. Each set of coordinated, internally consistent actions is referred to as a 
project or plan. The transportation system engineer must also evaluate the main 
potential effects of the project(s) to test their technical suitability and to support 
intermediate and final decision-makers. 

The scope of transportation system projects might be very different, as are the 
various points of view from which their consequences can be evaluated. Projects 
might relate to transportation facilities, control systems, services and fares. Each can 
be designed and evaluated from the perspective of the community served by the 
transportation system under analysis, or from the perspective of the service and/or 
facility operators. Design and decision-making are two interdependent activities. 
Decision-making for transportation systems is usually more complex than for many 
systems analyzed and designed by other sectors of engineering. This is especially 
true when the decision-maker must, either directly or indirectly, consider the effects 
of proposed actions on the collectivity. Projects concerning decisions and/or points 
of view typical of the operator, such as the organization of freight distribution or the 
design of a traffic light control system, usually undergo a relatively simpler and 
more straightforward decision process. Often, also company projects, such as the 
reorganization of transit lines, lead to impacts "external" to the company which may 
influence the final decisions. For this reason, this chapter will refer mainly to 
complex projects with a wide range of impacts. 

The following sections will first describe the role of transportation system 
engineering in the context of the widest decision-making (planning) process (section 
10.2) as well as some fields of application (section 10.3). Then reference will be 
made to the activities relating to project evaluation and, in particular, to the phases 
of identification of the relevant impacts and their quantification using the models 
and methodologies described in the previous chapters (section 10.4). Finally, in 
section 10.5, some elements of the techniques most frequently used for the 

E. Cascetta, Transportation Systems Engineering: Theory and Methods
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comparison of alternative projects (Cost-Benefit and Multi-Criteria analyses) will 
be discussed. 

10.2. Transportation systems engineering and the decision­
making process 
In Chapter I, it was stated that changes in transportation systems may affect a 
community and its members in several ways. Building a new facility, for example, 
may not only change service performances for network users, but also produce 
economic, financial, social and environmental effects for many groups or individuals 
who are not system users. These non-users may be single individuals as well as 
entrepreneurs, landowners, operators and institutions responsible for the 
transportation system and the area in which it operates. 

Project decisions can be made in many different ways. The "rational" approach 
to decision-making is based on the evaluation of the various effects of the different 
possible projects on the different parties involved. This approach, which is 
commonly adopted in the case of "private" decisions, is even more necessary when 
the decisions are made on behalf of a community. The natural dynamics of society, 
economic cycles, changes in individual's and decision-makers' attitudes, the 
occurrence of particular events, the availability of resources are such that decisions 
and their implementation evolve over time. This has resulted in changes over the 
years in the very concept of planning. Planning is no longer seen as the draft of a 
single plan, or as a "closed" activity defining projects to be implemented over a 
sufficiently long period of time. A planning process is a sequence of decisions 
(plans or projects) taken at different, not necessarily predefined, moments in time 
accounting for the effects of previous decisions. In this framework the role of 
quantitative methods for the definition and the evaluation of alternative projects is 
even more relevant as they ensure a sort of "dynamic rationality" to the whole 
process. 

The theoretical analyses that have produced a "planning theory" as a theory of 
collective decision-making are beyond the scope of this book. However the 
identification of the role and the limits of transportation systems analysis and 
engineering within the wider decision process is extremely relevant. To this end it is 
useful to consider schematically the different macro-activities of the decision 
process, see Fig. 10.1.1. The right side of the figure shows the decision process, 
while the left side shows the phases of analysis and modeling functional to these 
activities. 

In the phase of objectives and constraints identification, the objectives of the 
decision-maker (or decision-makers) and the relevant constraints for the project are 
defined. Objectives and constraints may be explicit or, at least partly, implicit. They 
depend on the perspective of the decision-maker and, in one way or another, define 
the type of actions that can be included in the project (e.g. new facilities over the 
long term or the reorganization of the existing facilities in the short term). 
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In Chapter 9 it was shown that modifications to the transportation system can be 
designed from different points of view. Among the typical objectives of an operator 
there should be the maximization of net profit. Constraints might include the 
existing regulations, the available budget, service and/or fare obligations, the 
technical limits on the production capacity of the factors employed, etc. In the case 
of public decision-makers, the project objectives are many, often not clearly defined 
and conflicting with each other, as are the interests of a "complex" society. A public 
decision-maker may be interested in increasing safety, reducing the generalized 
transportation cost borne by the users, increasing equity in the distribution of 
transport benefits, improving accessibility to economic and social activities, 
fostering new territorial developments, protecting environmental values, and 
reducing the public deficit. Objectives and constraints, explicit or implicit, 
synthesize the values and attitudes of the firm or of society. The increasing 
relevance of energy consumption and environment preservation in recent decades 
are clear examples of this point. 

Both objectives and constraints influence the successive phases of the process 
and in particular the analysis of the present situation and the actions that can be 
included in alternative projects. From the modeling perspective, these factors impact 
the definition of the system of analysis, i.e. the identification of the elements and 
their relationships included in the representation of the system in order to evaluate 
correctly the effects of planned actions. 

In the phase of analysis of the present situation, data on the transportation and 
activity systems are collected. Data are used for the analysis of the present state of 
the system and for the identification of its main inadequacies or "critical points" 
with respect to the objectives and the constraints of the project. In a problem-solving 
approach, the critical aspects should be corrected or alleviated by the planned 
actions. This phase is also linked to the building of a mathematical model of the 
present system, since it provides the input data for the models (supply, demand, 
land-use). Furthermore it usually receives from the models estimates of some system 
performance indicators (e.g. flows, saturation levels, generalized transport costs by 
O-D pair) impossible or too costly to measure directly. 

The next step is the formulation of system projects (or plans), i.e. sets of 
complementary and/or integrative actions which are internally consistent and 
technically feasible(l). The strict interdependence among the elements of a 
transportation system generally requires a project be designed taking into account 
the various components that may be significantly influenced by it. A new subway 
line, for example, requires a reorganization of the surface transit lines to increase the 
catchment area of the stations (complementary action). Restricting the access of cars 
to parts of an urban area requires the design of appropriate parking areas, transit 
lines, pricing policies and so on (integrative actions). Systems design is usually 
limited to the definition of the functional characteristics of the elements composing 
the system; their physical design, if necessary, pertains to other branches of 
engineering. 
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Fig. 1 0.1.1 -Transportation systems design and the planning process. 

In general, several alternative projects can be proposed in response to predefined 
objectives. One alternative is the non-intervention (do-nothing) option, i.e. the 
possibility to keep the system in its present state or, more realistically, to follow the 
decisions already taken. For more complex projects requiring several actions, which 
cannot be implemented simultaneously, alternative time sequences can be generated 
and each sequence can be considered as an alternative project. In fact, the effects, 
and the "convenience", of a project may be significantly influenced by the specific 
sequence of actions implemented. 

Assessment and evaluation of alternative projects require the simulation of the 
relevant effects (impacts) of their realization. Most of the impacts can be simulated 
quantitatively using the mathematical models described in previous chapters. Supply 
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design models described in Chapter 9 can also be used as tools to generate 
alternative configurations to be compared and evaluated, especially for simpler 
design cases. If the evaluation of a project requires the simulation of its main 
impacts on a sufficiently long time horizon, assumptions on the "future" structure of 
the activity system, or rather on the values of the variables exogenous with respect 
to the model adopted, are needed. A set of consistent assumptions on the activity 
system is usually known as a socio-economic scenario. The evolution of exogenous 
variables over long time periods depends on complex phenomena related to the 
demographic, social and economic evolution of the area and on the related external 
environment. It is very difficult, if possible at all, to forecast these phenomena with 
sufficient precision. Thus the usual practice is to consider different scenarios to 
estimate the range of variation of the simulated effects and to check the robustness 
of the alternative projects with respect to the possible future scenarios. 

The technical assessment of the projects concludes the system design phase. This 
activity verifies that the elements of the supply system are "functional" within their 
ranges of economic validity and technical feasibility (e.g. that the forecasted users' 
flows are not too low or too high with respect to their technical capacity). Moreover 
the technical feasibility of supply performances assumed and their consistency with 
the simulated system state are checked. Technical assessment is performed on the 
basis of simulated impacts of the projects. Simulations can (and often do) have 
feedbacks on the formulation of projects as it is usually the case with the design of 
engineering systems(2). 

The activities related to the analysis of the present situation, the formulation of 
alternative projects, the simulation of relevant effects and the technical assessment 
can be collectively defined as the system design phase. 

The effects of alternative projects can be further processed to facilitate their 
comparison. There are many techniques for the analysis and comparison of 
alternative projects with different levels of aggregation, such as Cost-Benefit and 
Multi-Criteria analyses. However, it should be stressed that these techniques cannot 
and should not replace the actual decision-making process, which is based on 
compromises among conflicting interests and objectives; rather they should be 
considered as tools to support actual decision-making. 

After a project is implemented, one can compare forecasted and actual effects, 
observe the occurrence of unexpected developments and new problems, and 
evaluate social consent and/or dissent. These may modify some elements of the 
project or alter its future development. The monitoring(3) of a project is the 
systematic checking of the main "state variables" of the transportation system and 
use of these checks for the identification of new problems and the a posteriori 
evaluation of project impacts. In practice, monitoring transportation systems and 
projects is often neglected or carried out non-systematically, although it should play 
a much more important role in the planning process. 

The complexity of the decision-making processes for transportation systems is 
clear from what has been said so far. The analyst has a technical role in the phases of 
analysis, design and simulation of the interventions. It should also be recognized that 
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in general the transportation systems engineer does not have the technical skills 
required for all the tasks involved. Interactions with specialists from other 
disciplines such as the other branches of engineering, economics, urban and regional 
planning as well as social sciences are needed, particularly if the projects imply 
significant effects on external systems. On the other hand understanding the 
"functioning" of transportation systems and therefore their design and quantitative 
simulation are the core of the disciplinary competence of transportation systems 
engineers. 

10.3. Some areas of application 
The decision-making process described follows the "rational" model, a model that is 
often considered to be a gross simplification of public decision-making processes in 
the real world. In spite of this criticism it should be seen as a reference paradigm 
which, with necessary adaptations, can theoretically be applied to very different 
problems and decisional contexts. Some examples of applications for transportation 
system engineering will be discussed below together with their implications on the 
mathematical models. 

Strategic transportation planning 
Strategic or investment planning involves decisions on long-term (10-20 years) 

capital investment programs for the realization of new infrastructures (e.g. roads, 
railways, ports) and/or the acquisition of vehicles and technologies (e.g. rolling 
stock and control systems). In this case, projects usually include transportation 
services, pricing policies and, in some cases, travel demand management policies 
(e.g. access or parking restrictions). Public projects result in urban, regional, national 
or transnational transportation plans, depending on the extent of the area, while 
company-oriented projects result in a strategic company development (or business) 
plans. 

For strategic plans, the whole transportation system is usually considered to be 
the study system because substantial changes, even for a single mode, may influence 
the structure of the whole system. Returning to the example of an urban 
transportation plan for a new subway line, the design elements will also include the 
surface transit lines, the parking policy, the fares policy, etc. The evaluation of its 
effects cannot be limited to the public transportation system since it is very likely 
that the modal split of demand will change with significant effects on road 
congestion, parking availability and so on. The temporal horizon for this level of 
design requires the forecasting of scenarios for the activity system. Furthermore, the 
inverse interaction between the transportation system designed and the activity 
system should be considered as well. Continuing with the same example, it is 
reasonable to expect that the construction of a new subway may change, at least to 
some extent, the land use pattern and therefore transportation demand. This wider 
view of the design system usually is associated with a less detailed representation. In 
fact, it is irrelevant to simulate extremely detailed effects such as turning maneuvers 
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at intersections or flows on minor roads since they are not significant for the 
evaluation of the project under study. 

Feasibility studies o/transportation projects 
These applications fall within the context of "programming by projects" based 

on the formulation of a reference scheme identifying the relevant connections and 
the subsequent evaluation of the projects related to individual connections in order 
to assess their technical feasibility, economic convenience, priority level and mode 
of realization. 

Technical and economic feasibility studies of transportation facilities usually 
require the formulation of alternative system projects defining the performances and 
functional characteristics of the connection (such as layout, connections, capacity, 
service performances, type and characteristics of vehicles and technologies, prices). 
Alternative projects, including the do-nothing or reference solution, are then 
evaluated from the functional, economic and'financial point of view in the context of 
different transportation and activity systems scenarios. Also in this case the temporal 
horizon is usually long-term; the scale varies from urban to regional or national 
according to the kind of project to be assessed. The system under analysis can be 
analyzed and modeled with spatial and functional levels of detail differing according 
to the intensity of the interrelations with the connection under study. For example, a 
denser zoning system can be adopted around the alignment of a new railway. 
Whatever the case, the system must be simulated with reference to the travel 
demand and the supply of all transportation modes. 

There are several examples of feasibility studies, both urban and extra-urban. 
Some of the studies are aimed at assessing the convenience of private capital 
investments in facilities and/or transportation services (project financing). In this 
case forecasts of travel demand, users' flows and revenues are of special interest, as 
well as the "external" conditions under which expected demand and profits can be 
obtained. 

Tactical planning 
Short/medium term tactical planning is concerned with decisions on projects 

requiring limited resources, usually assuming minor or no changes in the 
infrastructures. Urban traffic plans or public transport plans are examples of tactical 
plans under the public point of view. The design of scheduling and/or pricing 
policies for air or rail services are examples of tactical plans from the operators' 
point of view. 

In this context, the evaluation of the technical and functional effects of the 
project, as well as the financial analysis in terms of operating costs and traffic 
revenues are of primary interest. These analyses might be accompanied by an 
economic evaluation, though often simplified. For these applications, the socio­
economic scenario is usually assumed to be given. In practice, it is also assumed that 
the level and spatial distribution of travel demand are unaffected by the projects, 
while variations in modal split and assignment to the networks, representing the 
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transportation services involved, are explicitly simulated. In some cases a single 
transport mode is examined in the context of the overall system, therefore taking 
into consideration the effects of "modal competition" only through the level of 
demand of the mode considered (elasticity analysis), without an explicit 
representation of the supply of competing modes. 

Operations management programs 
Short-term operations management programs generally define particular aspects 

of individual mode operations, optimizing the use of the available resources usually 
from a company point of view. Traffic-signal control plans, design of transit 
timetables, and organization of factors necessary for producing transportation 
services (e.g. the assignment of vehicles to lines and travel staff to work shifts) are 
examples of operations management programs. 

In this case the study system is usually limited to a single mode assuming that 
the modal demand is fixed. For example, only the road sub-system (network and 
demand) is considered in designing a traffic-signal control scheme. If necessary, 
network and assignment models described in previous chapters can be integrated 
with detailed micro-simulation models. Furthermore, the design phase can be carried 
out with the support of supply design models similar to those described in Chapter 9. 

10.4. Evaluation of transportation system projects 
Project evaluation can be defined as the assessment and comparison of the available 
alternatives on the basis of their effects with respect to the objectives and the 
constraints of the decision-maker. As stated previously, evaluation is (or should be) 
a technical activity carried out by the analyst interacting with the parties involved 
with the ultimate aim of supporting decisions. On the other hand, choice is 
essentially an activity of synthesis and mediation among conflicting interests. 
Choices are made by one or more decision-makers, both formal and informal, 
interacting in a complex institutional context. For the sake of description, it is useful 
to maintain the conceptual division between evaluation and decision-making, though 
in reality there are inter-relationships, often close, between the two phases. Better 
awareness of the consequences can, for example, modify the objectives or, more 
generally, the attitude of the decision-makers. 

As an activity supporting decisions, evaluation depends on the decision-maker's 
perspective. A classic example is the difference between the financial and economic 
analysis of a project. Financial analysis attempts to maximize profit under 
constraints such as regulations, service obligations, concessions, etc. In this case 
"benefits" and "costs" can be expressed in monetary terms; the former come from 
the revenues from service sales and subsidies, if any, the latter from the financial 
costs of service production such as construction, maintenance and running costs, 
tolls, taxes, etc. Economic analysis is traditionally associated with a public decision­
maker(4). Alternative projects are evaluated taking into account positive and negative 
impacts (benefits and costs) with respect to the objectives of the collectivity, or 
rather of the different groups homogenous in terms of their socio-economic 
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characteristics and of the impact received. Some transportation system users may in 
fact benefit from a particular project (reduction of travel times and costs, increased 
accessibility, etc.) while others may have lesser advantages or even disadvantages 
(increased travel times and costs, etc.) This might occur, for example, in an urban 
area as a result of the migration of congestion from one zone to another due to traffic 
signal control strategies, reserved lanes for public transport, limited access traffic 
zones, etc. The contrast is even more evident if the benefits to system users are 
compared with the costs borne by some non-users, for example the increase in noise 
and air pollution for residents in zones close to a new motorway or a new airport. 

Many techniques have been proposed for the evaluation of transportation system 
projects. In general, the evaluation can be decomposed into three logically 
successive phases: 

a) identification of the effects, or impacts, relevant to the formal and informal 
actors in the decision-making process and related to alternative system 
projects; 

b) identification of the quantitative and qualitative variables (impact indicators) 
representing the impacts and estimation of their variations included by each 
project; 

c) comparison of alternative projects on the basis of their respective impacts. 
Quantitative evaluation techniques of public transportation projects have been the 
object of many theoretical studies and practical applications over the decades. From 
the end of the '50s, when they were applied to motorway projects, this discipline 
rapidly evolved both from the theoretical and practical point of view. In recent years 
the aim and scope of project evaluation have grown following some major changes 
in the transportation arena. These include changes in values and participation of 
different interest groups, deregulation of some sectors of the transportation market, 
the involvement of private capital in financing infrastructure construction and/or 
service operations. The systematic analysis of the results achieved in this field is 
well beyond the scope of this book. The following sections will consider the three 
phases listed above only in order to identify the role of quantitative methods in the 
overall activity of projects evaluation. 

10.4.1. Identification of relevant impacts 
Impacts of a transportation system project can be defined as the consequences of the 
project relevant for some of the actors involved (i.e. groups of individuals 
homogeneous with respect to the issue under consideration). Thus the definition of 
the relevant impacts is the main indicator of the approach followed and the breadth 
of the evaluation activity. The spectrum of the effects considered has widened with 
the passing of time in concert with improvements in models and computing power 
and with the expansion and classification of the different and often contrasting 
objectives and goals of actors and decision-makers. The same figure of the 
"decision-maker" has been defined and differentiated in step with variations in the 
financing and management of transportation systems. The generic and 
undifferentiated "public operator", typically imagined as a state or local agency 
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reconciling general public and operators objectives, has led to a separation of the 
different roles, in particular those of public institutions, main interest groups and 
transportation services operators independently of their "public" or "private" nature. 

The first generation of quantitative evaluation exercises initiated in relation to 
investment in motorways and later extended to transport system project in the 
broader sense. They took into account only the monetary and monetarily 
quantifiable effects (benefits and costs) for the users of the plannedfacilities and for 
building and operating these facilities and services. The former included the 
variations(5) in level-of-service attributes such as travel time, monetary cost of tolls 
and vehicle operation; variations in the expected number of accidents were 
sometimes included in the evaluation. The monetary cost for service and/or 
infrastructures operators included the construction costs, investment costs in 
vehicles and technologies, variations of maintenance and running costs as well as 
the variations in revenues from service sales. The effects for the operator sometimes 
included variations in transfers with other higher-level public authorities (e.g., 
reimbursements for service obligations, duties and taxes on gasoline and on 
premises, etc.) 

With better understanding and modeling of the mechanisms underlying 
transportation systems, the range of effects considered for the users of the 
transportation system gradually increased. The impacts are considered for all users, 
both present and project-induced, calculating the variations in generalized costs, 
perceived and not perceived, for the different transportation modes. Often the 
impacts are differentiated for the different classes of users (or market segments), i.e. 
for groups of users homogeneous in terms of trip purpose, socio-economic 
characteristics and level-of-service attributes. As for the effects on operators, 
construction, maintenance and running costs calculated on the basis of market prices 
have been decomposed gradually by the resources employed (manpower, materials, 
capital) since market prices do not always reflect the actual social "value" of the 
resources. 

A further widening of the prospective as well as of the spectrum of the effects 
considered in the evaluation of a transportation project relates to the "external 
effects" of the project. These effects relate to those members of the society not 
directly involved in the use of the transportation system. Some examples of the 
impacts on non-users will be given below subdividing the external effects into 
economic, territorial, social and environmental. It should be noted that the 
classification of some impacts can be somewhat arbitrary and there is no generalized 
consensus among the analysts. 

Economic impacts can be defined as changes in the state of the economic system 
brought about by the project. Variations of residential and commercial property 
values and in economic production following variations of accessibility; variations 
of the economic impacts of accident directly and indirectly connected to the project 
can be listed in this group. Economic externalities are directly measurable in 
monetary units, or at least can easily be translated into such units. 
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Territorial impacts are related to land use and its quality. Examples of territorial 
impacts are variations in the use of property (e.g. from residential to commercial) or 
more generally the relocation of housing and economic activities brought about by 
accessibility differentials. Within this class are changes in the geographical structure 
of a region or in the urban quality of certain neighborhoods. 

Social impacts can be defined as impacts on social values and variations in the 
relationships among people and social institutions such as the family, local 
communities, education, government bodies, etc., brought about by the project. In 
this case too there are effects of different types: social effects of accidents, variations 
in accessibility to social activities (schools, public offices, parks, etc.), changes in 
cohesion and stability of local communities, impacts on historic and cultural sites. 
Variations in equity, e.g. changes in the distribution of travel related opportunities 
with respect to space (zone) and socio-economic status (income class or age) can 
also be considered as social impacts. 

Finally, environmental impacts can be defmed as the effects of the project on the 
physical environment. These can be classified as effects on the ecosystem, on noise 
and air pollution, and on visual perception. Transportation system projects, 
especially in the case of new infrastructures in rural areas, can alter the ecological 
equilibrium of vegetation and animal populations. Furthermore, any transportation 
system generates noise and air pollution. The project may significantly change the 
intensity and the distribution of pollution. Visual impacts, lastly, are direct effects of 
infrastructures and vehicles dependent on their "visibility" and on their "contrast" 
with the surrounding background. 

Figure 1004.1 synthesizes some of the effects of a transportation system project 
for the different groups involved. It is obvious that not all the impacts listed are 
relevant to the evaluation of all projects. In certain cases, some effects might be 
absent or their variations can be considered negligible; in other cases some impacts 
may be present but irrelevant to the particular point of view of the analysis. 

10.4.2. Identification and estimation of impact indicators 
The effects of a transportation system project are usually represented by a set of 
variables known as impact indicators or measures of effectiveness (MOE). Since, in 
general, there are several elemental impacts, and it is impractical to handle all the 
related variables, it is common practice to use for further analyses a reduced number 
of performance indicators obtained as aggregate variables, or "intermediate 
constructs" . 

Some impact indicators are quantitative variables such as travel time or CO tons 
of gas emissions; others are "structurally" qualitative and can, at most, be expressed 
by descriptive variables (adverbs such as 'little', 'much', etc.) or on an arbitrary 
scale (such as from A to F). 
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• Users (bv class) 
- Differences of net utility (surplus) perceived by the users 
- Differences of costs non-perceived by the users 

• Administrations and operators (for each subject invo/vec/) 
- Differences in resources (manpower, materials, capital) 

and in costs needed for building transport infrastructures, 
vehicles and control systems (investments) 

- Differences in resources and costs for maintenance of the 
infrastructures and technologies 

- Differences in resources and costs for the operation 
of transportation services 

- Expropriation and re-allocation costs 
- Differences in traffic revenues 
- Variations in taxes paid by users (fuels, etc.) and non-users (property, etc.) 
- Differences in transfers between administrations 

• Non-users of the transportation system (for each homogenous group) 
Economic Impacts 
- Differences in the production of different economic sectors 
- Differences in the economic impacts of accidents 
- Differences in property values 
Territoria/lmpacts 
- Differences in the location of households and economic activities 
- Differences in urban structure and "quality" 
- Impacts on the preservation of historic and cultural sites 
Social Impacts 
- Difference in accessibility to social activities (school, social and 

relig ious centers, recreational activities, etc.) 
- Modifications in the structure and cohesion of local 

communities 
- Variations in the social effects of accidents 
- Variations in the distribution of users'surplus by zone and 

and socio-economic group (impact on equity) 
- Variations in visual and aesthetic impacts 
Environmental Impacts 
- Changes in the ecosystem 
- Variations in noise and air pollution 

Fig. 10.4.1 - Classification of impacts for the evaluation of transportation system projects. 

The effects of a project are usually evaluated in differential terms, i.e. as 
variations or differences of the variables representing them, between the project (P) 
and non-project (NP) states. The latter, sometimes known as "reference solution", is 
defined as the option to maintain the present state of the system, or to go along with 
the projects already decided which are not subject to the evaluation. 

The time dimension is an important factor in estimating impacts. The impacts of 
a project occur in time following different profiles. For example construction and 
investment costs are spent in a relatively short period of time' while maintenance and 
operation costs continue throughout the entire life of the project. Furthermore, with 
the passing of time some effects change in intensity or even in direction: the travel 
cost perceived by the users may increase during the construction phase of a given 
facility due to capacity reductions, and other disturbances, while they decrease when 
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the infrastructure is operating. Conventionally the economic life (6) of the project is 
decomposed into stationary reference sub-periods, for example, different periods of 
the year and different time bands of typical days for congested systems, both during 
construction and representative operation years. As was seen in Chapter 1, impact 
indicators are typically computed for a subset of simulation or reference periods and 
then extrapolated to larger time periods. Many impacts can be simulated by using 
the models described in previous chapters as shown in Fig. 10.4.2. The estimation of 
these impacts requires the simulation of the system in the project (P) and non­
project (NP) states and the calculation of differences (variations) between the 
variables measuring quantifiable impacts. As stated in section 10.2, for long-term 
projects, each simulation will require a set of coherent assumptions on the evolution 
of the exogenous variables (scenarios). 

Resources needed for construction, maintenance and operation and their relative 
costs can be estimated analytically from the actual design of facilities and services 
or, synthetically, using statistical relationships known in the economic literature as 
production jimctions. The latter estimate the resources needed to build and equip a 
unit length of typical infrastructure, produce vehicles and technologies with given 
characteristics, maintain infrastructures and operate a transportation service of a 
given type. Alternatively, construction, maintenance and operation cost functions 
estimate directly related costs in monetary terms. 

Traffic revenues can be calculated by multiplying the number of users in the 
simulation for tolled infrastructures and/or for transportation services for the relative 
prices. 

Several other impacts can be calculated from the models described. For example, 
the probability of accidents and their consequences, fuel consumption, noise and air 
pollution can be evaluated through the relevant link impact functions described in 
section 2.2.5. The ease of access to different services can be measured through 
accessibility variables deriving from destination choice models, see 4.3.2 or in other 
forms proposed in the literature. In any case generalized costs or level-of-service 
attributes playa key role in the measurement of accessibility. 

The calculation of the effects perceived by the users of the transportation system 
requires a further elaboration of the concepts and the demand models described in 
previous chapters and will be covered in the following section. 

10.4.3. Computation of impacts perceived by the users 
The impacts perceived by the users can be calculated as a variation of net perceived 
utility (or surplus) associated to travel choices made in the project (P) and non­
project (NP) states or scenarios. The calculation can be carried out following two 
different approaches depending on the assumptions underlying the demand model 
used, i.e. whether they are behavioral random utility models or descriptive, non­
behavioral models. In the following the two approaches will be analyzed and 
compared. 
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Fig. 10.4.2 - Main components of an impact assessment process. 

a) Random utility demand models 
Random utility demand models are based on explicit assumptions on choice 

behavior of the generic decision-maker/user i. These assumptions can be used to 
estimate variations in average perceived utilities for relevant choice dimensions. As 
an example, consider the classic choice sequence on the dimensions "making x trips 
for purpose s/ to destination d/ with mode m/ following path k". In this case, the 
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utility Up i perceived by user i in zone 0 for the sequence that would be chosen in the 
state P of the system can be expressed as: 

(1004.1) 

where j(i) indicates the specific sequence (x 0 d m k) chosen and the vector of 
attributes XPj(l) include level-of-service (times, costs, etc.) and other variables 
corresponding to j(i) in the project P. Since some attributes Xkj(i) have positive 
coefficients (i.e. they represent utilities) while others have negative coefficients 
( costs), expression (10 04.1) represents the perceived net utility (utility minus cost) or 
surplus. An elementary specification of the systematic utility Vxodmk in the case of 
shopping trips might be: 

(1004.2) 

where x assumes the values zero and one, NOTRIP is a specific variable of the 
alternative not to make a trip, (x=O), SHP d is the number of shops in zone d, todmk and 
mCodmk are respectively the travel time and monetary cost to go to d with mode m 

departing from the origin 0 and following the path k. The linear combination of 
travel time and monetary cost can be denoted as generalized path cost, godmk = fJ3 

todmk + fJ4 mCodmk· 

In random utility models, the perceived utility (1004.1) is a random variable and 
maximizing its value; the alternative chosen and its utility are unknown to the 
analyst and therefore represented as random variables. Impacts on transportation 
system users can be expressed by the variation of the expected value of the surplus 
perceived by all the decision-makers of equal characteristics. This value corresponds 
to the mean of the net utility (surplus) perceived for the alternative chosen, which is 
that of maximum utility. The mean value of the perceived surplus thus coincides 
with the mean value of the maximum perceived utility among all the available 
alternatives, i.e. with the Expected Maximum Perceived Utility (EMPU) variable. 

Since the specification of the models, the attributes considered and the 
coefficients fJk in systematic utilities (1004.1) usually depend on the trip purpose and 
the socio-economic characteristics of the decision-maker, the EMPU variable s is 
calculated separately for the generic user of the class i (7) in zone 0: 

s p (0, i) = E[max U~ (xdmk)] 
xdmk 

(1004.3) 

As shown in Chapter 3, if residuals 8xodmkare Li.d. Gumbel variables of parameter 
()= 1, the EMPU (1004.3) can be expressed in closed form as a logsum variable: 

s p (0, i) = In Lxdmk exp~:dmk (X:)] (100404) 
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Similar closed form expressions can be obtained for other models belonging to 
the Logit family. The total net utility of the users of class i in zone ° in the project 
state, Sp(o, i), can be estimated as: 

S p (0, i) = N: (i) s p (0, i) (1004.5) 

where ~(}(i) is the number of users of class i in zone 0. Notice that NPo(i) includes 
both actual and potential, i.e. those choosing not to travel in the NP state, users. The 
variation of perceived surplus for the users of class i in zone 0 can be expressed as: 

DS P (0, i) = S P (0, i)- S NP (0, i) (1004.6) 

where SNP (0, i) is the total perceived surplus in the non-project state. 
The monotonicity of the EMPU variable, discussed in section 3.5, ensures that 

the net utility variation may be positive or negative according to whether the 
systematic utility of each alternative increases or decreases passing from the non­
project to the project state. Reductions in cost attributes and/or increases in utility 
attributes, will lead to increases in the total surplus and vice-versa. For the same 
property the total surplus will increase if the number of available alternatives 
increases; this may be the case if the project includes new transportation modes or 
services. Figure 1004.3 exemplifies the calculation of perceived surplus for a Logit 
choice model over the sequence (xdmk) for shopping trips. 

Users of different classes, in different traffic zones, can be aggregated in various 
ways, assuming interpersonal summability of utilities. The perceived impact of 
project P for the aggregate of all users is therefore given by: 

(1004.7) 

It should be noted, however, that in many applications perceived surplus 
variations should be analyzed for disaggregate user groups in order to highlight the 
distribution of project benefits among the different groups or zones in the study area. 

Average perceived surplus sp(o,i) and total utility variations calculated by 
equations (1004.6) and (1004.7) are expressed in dimensionless measurement units, 
sometimes denominated uti!. In order to compare them with other effects of the 
project P, these values can be expressed in monetary units by dividing them by the 
coefficient of the monetary cost coefficient Pc, with dimension monetary units· l . 
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Total users = 100 

d2 (SHP d2=200) 

Vxdmk = fJ,NOTRIP + fJzSHPd + fJ3 Todk 

S(O) = 100 I n[ exp(fJINOTRIP)+exp(pzSHPd, + fJ3Todlkl)+ 

+ exp(pzSHPdl + fJ3 T odlk2)+ 

+ exp(PZSHPd2 + fJ3TOd2k3 )+ exp(PZSHPd2 + fJ3 T od2k4 )] 

/31=1 
/32=0.015 
/h=-0.2 

Non- project Project 
YIP mllkl= 6 g'P odlkl =1,2 "F'odlkl = 5 g mllkl = 1,0 
YlPodlk2 = 7 g'P odlk2 =1,4 "F'odlk2 = 5 g odlk2 =1,0 
TVPod2k3= 10 g'P od2k3=2,0 "F'"d2k3 = 6 g ml2k3 =1,2 

YIP ml2k4 = 10 g'P ml2k4 =2,0 "F'od2k4 = 7 g od2k4=1,4 

SNP(O) = 236.2 Sp(0)=283.4 LIS(o) = 47.2 

Fig. 10.4.3 - Calculation of surplus variation with a behavioral model. 
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If perceived utility variations from the project do not influence trip frequencies, 
and therefore the demand level for each class of users remains constant (assumption 
of rigid demand level), the surplus of non-travelers does not change and the total 
perceived surplus can be expressed as: 

S p (0, i) = do (i)E fmax U i (dmk / os)]=do.(i) . sp(o,i) 
. ~dmk (lOA.8) 

where do (i) is the number of trips with origin 0 undertaken by users of class i in the 
reference period. Similar simplified expressions can be derived for the cases of rigid 
origin-destination demand flows. 

b) Descriptive demand models 
A different methodology is adopted to evaluate the impacts for the users in the 

case of descriptive demand models. In this case the model can be interpreted as a 
"demand function" relating the number of users undertaking trips with given 
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characteristics to the average generalized trip cost and other explanatory variables. 
This cost is defined, in analogy with Chapter 2, as a (linear) combination of the 
resources spent by the user on a trip (time, money, stress, etc.) with weights 
reflecting user's travel behavior. The cost parameters (weights) may vary according 
to trip purpose and socio-economic category, i.e. user class, and are calibrated 
together with the demand model, for example in the context of path and mode 
choice models. 

In the following the generalized cost of a trip undertaken between 0 and d with 
mode m and following path k by the users of class i will be indicated by godmk(i). 
This is equivalent to the cost gk on path k in mode m network; for uniformity of 
notation, the zone pair connected by the path and the mode (or mode combination) 
have been kept explicit. 

A simplified specification of the generalized cost analogous to that implicit in 
the expression (10.4.2) is: 

(10.4.9) 

where t and me are respectively the travel time and the monetary cost. The 
coefficients here have been explicitly denoted by users class i. Also in this case the 
generalized cost can be expressed in monetary units by dividing it by the cost 
coefficient !32(i). 

To introduce the calculation method of perceived surplus variations for 
descriptive demand models, the elementary system consisting of a single O-D pair 
connected by a single mode and a single path as shown in Fig. 10.4.4 is considered 
first. Furthermore, it is assumed that all the users belong to one class, i.e. that they 
have the same behavioral parameters. 

In this case the demand model can be formally written as dod = dohod) which 
gives the average number of users undertaking a trip for each value of the 
generalized average cost in the reference period. 

o----I~~----i0 

o d 

i dod 
Fig. 10.4.4 - Demand curve of a single 010 pair, mode and path system. 

The relationship doJgod) can be represented in the plane and usually has a 
diagram similar to that described in Fig. 10.4.4. The demand curve, in its traditional 
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neo-classic interpretation, represents the ordering of individual journeys (or system 
users) on the basis of the generalized cost they are willing to pay to undertake the 
journey. In other words, the marginal journey (or user) corresponding to each 
abscissa has a total trip utility (or willingness to pay) equal to the value of the 
generalized cost (on the vertical axis). An increase in the cost would discourage this 
marginal user from making the trip and therefore reduce the value of the demand dod. 

Let g:: be the generalized cost and d,Ag::) the number of users traveling in 

the non-project state. For all journeys undertaken, except the marginal one, there is a 
net utility, or surplus, given by the difference between the amount they would be 
willing to pay and the cost that is actually paid (see Fig. 10.4.4). If as a result of 
project P the generalized cost is reduced to g~, the number of users traveling 

increases to do,,(g~), as described in Fig. 10.4.5. 

To calculate the total surplus variation resulting from project P, a distinction 
should be made between journeys undertaken in the state NP and those undertaken 
only as a consequence of cost reduction Gourney generated by the projecti8). For the 
generic journey/user i of the fIrst group, the variation in surplus will be given by: 

(10.4.10) 

i.e. by the difference in the generalized cost in the states NP and P. The total surplus 
variation DS~ for all the journeys/users of this group is therefore: 

(10.4.11) 

and is represented by the area A in Fig. 10.4.5. 

Fig. 10.4.5 - Surplus variations between project (P) and non-project (NP) states: case of cost 
reduction. 

The generic journey i generated by the cost reduction in project P will have a 
surplus U - god, as opposed to a null surplus in the state NP. The total surplus 
variation for the journeys generated by the project, d*od = doJJ!od) - doJ.. g::), will 

therefore be given by the area B in Fig. 10.4.5. Typically it is assumed that all 
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generated journeys d*od have the same utility given by the average value of the 
interval [g,~:, g:d]' i.e. U = (g:: + g:d )/2, and therefore the total surplus for the 
generated demand can be calculated as: 

DS* =d* god god _ P - _ d* NP _ P [
NP+P ]1 

P ad 2 god - 2 od (g ud god) (10.4.12) 

The total surplus variation will be given by the sum of the terms (10.4.11) and 
(10.4.12) : 

(10.4.13) 

Expression (10.4.13) can be interpreted as the product of the "average" demand 
between the states P and NP for the variation in the corresponding generalized cost. 

The exact expression of the surplus variation can be obtained by calculating the 
hatched area in Fig. 10.4.5 as the integral of the demand function d(g): 

(10.4.14) 

The results described still hold if the project increases the generalized cost (g:d > 

g::), as described in Fig. 10.4.6. In this case, clearly there will be a reduction of 

surplus and a decrease in the number of trips; the surplus variation can also be 
obtained through the algebraic sum of (10.4.11) and (10.4.12), in this case both 
negative. 

Fig. 10.4.6 - Surplus variations between project (P) and non-project (NP) states: case of cost 
increase. 

The concept of surplus variation and expressions (10.4.13) and (10.4.14) can be 
generalized to the case in which there are mUltiple cost "dimensions" (e.g. multiple 
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destinations and/or modes and/or paths). However this generalization is neither 
straightforward not universal. Consider, in fact, a slightly more complex case with 
two possible alternatives, for example two paths with costs gl and g2, (see Fig. 
10.4.7); the two demand curves can be defined as d1(g1 g2) and d2(g1 g2). The 
demand, i.e. the number of trips, on each path depends on the cost of both paths with 
a diagram similar to that described in Fig. 10.4.7. The demand function can be 
obtained, for example, combining emission and path choice models. In this case the 
integral (10.4.14) can be substituted with: 

DS - J(g{,gf) '" d ( )d d 
- - NP NP £.., ; g 1 ' g 2 gig 2 

(g, .g2 ) ;=1.2 
(10.4.15) 

whose calculation usually depends on the integration path followed.(9) 
For the calculation of the surplus variation, two heuristic approaches can be 

followed, corresponding to two approximate methods for the calculation of integral 
(10.4.15). 

The first approach, which can be defined as average demand, calculates the 
surplus variation as: 

(10.4.16) 

g"2 > g2 

'---------~ d1 

2 

Fig. 10.4.7 - Demand curves for a system with two paths. 

where d/ and dtP are respectively equal to d;(g/, g/) and d;(gtP, gtP). The 
expression (10.4.16) can be interpreted as the summation extended to all the 
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dimensions taken into consideration (in this case, the two paths) of the product of 
the average demand between the states P and NP, and the cost variation relative to 
that dimension. Expression (10.4.16) corresponds to the sum of the two hatched 
areas in Fig. 10.4.S. 

gtP 
d (g NP gNP) gtP _ I I , 2 

gt dl (gl P,g/) g/ 

dlNPdt dl d/dtP d2 

Fig. 10.4.8 - Calculation of the surplus variation with the average demand method. 

The alternative approach, which can be defined as average cost, reduces the 
problem to the case of a single choice dimension considering an average trip cost 
g given by the weighted average of the costs relative to each dimension: 

(10.4.17) 

where PI and P2 are the demand shares of each dimension, p;=dl(dl+d2). In this 
approach the demand curve represents the diagram of the total demand dT = dl + d2 

as the average cost g varies (see Fig. 10.4.9). The surplus variation can therefore be 
calculated by using the expression (10.4.13): 

(10.4.IS) 

The surplus variation expressed by (10.4. IS) can be interpreted intuitively as the 
product of the average of the total demand between the states P and NP and the 
variation of average cost between the two states. Comparing expressions (10.4.16) 
and (10.4.IS), it can be deduced immediately that the two approaches give different 
results as can be verified from Fig. 10.4.10. 

In the general case, the partial share demand model can be expressed 
conveniently as the product of the demand level and the fraction of trips with given 
characteristics: 

(10.4.19) 
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where d~. is the number of trips from the zone 0 undertaken by users of the segment 

i and /dmklo is the fraction of these trips with the characteristics (dmk). 

g 

Fig. 10.4.9 - Total demand curve as a function of the average trip cost. 

As stated in Chapters 4 and 5, both do and /dmklo depend on a vector of socio­
economic and activity system attributes, SE, as well as on a vector of level-of­
service attributes, expressed by the perceived generalized costs for all destinations, 
with all modes and all paths gi. For simplicity of notation, the dependence on the 
variables SE will be implied. The surplus variation corresponding to the passage 
from state NP with costs tlPi to state P with costs gi for users' class i, can be 
calculated by extending the two previous approximate expressions to the general 
case. The average demand method, expressed by (10.4.l6), therefore yields: 

DS ( .) 1 '" [di (NPi ) di (Pi)~ (NPi Pi) 
P 0, I ="2 L...dmk odmk g + odmk g l' godmk - godmk 

On the other hand, the average cost method, expressed by (10.4.18) yields: 

with 

gi = 'idmkpidmklocgi )giodmk 
and 

-NPi i f ..,NPi ..,NPi 
g = 'idmk P dmkloV; )'" odmk 

(10.4.20) 

(10.4.21) 

Expressions (10.4.20) and (10.4.21) are the equivalent of expression (10.4.6) in 
the case of descriptive demand models. The calculation of the surplus variations for 
all system users can be carried out by adding expressions (10.4.20) or (10.4.21) for 
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all classes, all zones, all trips purposes and all user classes. An example of the 
calculation of DSp for the users of a single market segment with two alternative 
destinations and two modes/paths for each destination is described in Fig. 10.4.10. 
However, since surplus variations brought about by project P may be positive for 
some classes of users, zones or phases of the project and negative for others, it 
should be recommended to differentiate these values as for behavioral demand 
models. 

c) Comparison between calculation methods 
Variation of perceived net utility (surplus) for system users can be calculated 

either following the behavioral interpretation of random utility models or treating 
the model as a descriptive demand function. In the second case, the exact calculation 
poses some definition problems and two different simplified approaches have been 
proposed. The behavioral approach is certainly more consistent and elegant since it 
is based on an explicit theory of behavior. It also has two further application 
advantages(lOl. 

The first advantage stems from the possibility of taking into account surplus 
variations from variations of attributes, traditionally not considered as components 
of the generalized cost. In this way surplus variations from increases in the 
availability of transportation services (e.g. new connections), in travel comfort, or 
from the provision of information to users, can be evaluated. This obviously requires 
that these variables are included as explicit or implicit attributes (e.g. alternative 
specific constants) in systematic utility functions. 

On the other hand these effects could not be assessed with the descriptive 
method since they do not correspond to a reduction in the generalized cost (usually 
made up of "negative" attributes such as time, monetary cost, etc.). Some 
paradoxical results could be obtained when increased demand for a mode of superior 
"quality", but of greater generalized cost, yields a negative surplus variation, i.e. a 
disbenefit for the users. 

The other advantage arises from the possibility of computing surplus variations 
corresponding to the introduction of alternatives not available in the non-project 
state, avoiding obvious paradoxes. This point can be clarified with the example in 
Fig. 10.4.11. The system in the NP state offers a single alternative (e.g. a single 
path) for the single pair (0, d). In the P state a second path with an higher 
"generalized cost" is added; the total demand is assumed to be constant and the 
distribution between the two paths is obtained with the Binomial Logit model 
described in the figure. The surplus variation with the behavioral method can be 
calculated substituting the logsum variable (10.4.4) into total average surplus 
(10.4.6). Since the Expected Maximum Perceived Utility function is monotone 
increasing with respect to the number of available alternatives (see section 3.5), the 
surplus of users in the state P increases with respect to the state NP. Vice-versa, 
calculation of surplus variation with descriptive methods poses some problems. 
First, the average demand method corresponding to the expression (10.4.20) cannot 
be used since it is not possible to define a cost gz NP for the new path. The average 
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cost method corresponding to the expression (1004.21) can be used since it requires 
only the total demand d"P and d and the weighted average of path costs for the 
states P and NP can be computed. However, because of the increase in the average 
cost, the method gives a negative surplus variation, i.e. a reduction in the net utility 
for the system's users. This outcome is clearly paradoxical since an increase in 
supply should correspond to an increase in users' surplus if some users are using the 
new path. The explanation is to be found in the difference between the assumptions 
underlying the demand model and the calculation of the surplus. 

The Logit model, beyond its behavioral interpretation, assigns a positive 
probability to alternatives with greater generalized cost, implying that the cost 
perceived by the users is different from the average. Vice-versa the average cost 
method associates to the users the "objective" average cost of the alternative chosen. 

The two methods would give the same outcome only in the case of deterministic 
utility choice model. In this case, in fact, the whole demand would choose path 1 
also in the state P, the average cost would be equal to gl and the surplus variation 
would be equal to zero. 

This result can be generalized since, as discussed in section 3.5, the EMPU 
variable for deterministic choice coincides with the maximum utility (minimum 
cost) value. However, if the demand model were a deterministic utility one, it would 
be a behavioral model and the previous behavioral case would apply. 

The surplus variation can also be calculated by using a mixed approach in which 
the "average cost" descriptive method (1004.21) is applied by substituting the 
average costs i? and gNP with the corresponding EMPU values sP and SNP 

calculated on the choice dimensions for which a behavioral model is used. 
For example in the case of Multinomial Logit model on three dimensions d m k 

and parameter () = I it would result: 

s P (0) = in 'Ld'm'k' exp [Vd'm'k'] = Yo. 

which is the accessibility from zone 0 to all destinations with all the available modes 
and paths. 
In this case, the curve expressing the demand level doCs) as a function of the EMPU 
variable on the choice dimensions d m k can be interpreted as the ordering of the 
trips (journeys) with respect to the corresponding average perceived net utility. The 
number of users undertaking a trip increases with s. The diagram of the demand 
function with respect to the inclusive utility and the area corresponding to the 
surplus variation for an increase in the EMPU s is shown in Fig. 1004.12(11). Also in 
this case a linear approximation can be used for the calculation of surplus variation: 

bearing in mind that EMPU and cost have opposite signs. 
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Non project t"f'Odh = 1,2 dOdlkl 

(NP) t"Podh = 1,4 dOdlk2 

t"POd2k3 = 2,0 dOd2k3 

gNPOdi4 = 2,0 dOd2k4 

Project (P) god1k l = 1,0 dOdlkl 

gPodlk2 = 1,0 dOdlk2 

gPodzk3 = 1,2 dOd2k3 
P d g odzk4 = 1,4 odzk4 

A verage demand method 

Vxdmk 

p(xdmk) = i eVxdmk 

xdmk 

egNP) = 100'pNPodlkl=36 

egNP) = 100· pNPodh=30 

egNP) = 100. pNPod2k3 = 17 

egNP) = 100· pNPodi4=17 

(ff) = 100.pPodh= 29 

(ff) = 1 00/od1k2 = 29 

(ff) = 100pPod2k3= 23 

egP) = 100'pPod2k4= 19 

DS P (0) = ~ Ldmk [dodmk (gNP)+ dodmk (gp)J (g!'k - g:dmk)= 

do (ff)= 100 

= 0.5· [(36+ 29)· 0.20+(30+29). 0.4+(17 +23).0.8+(17 + 19).0.6]= 45.1 

A verage cost method 

DSp(o)= ~ [do (gp)+ do (gNP )]'(gNP - gp)= 

= 0.5· (100 + 100). [(1.2.0.36 + 1.4·0.30 + 2.0 ·0.17 + 2.0.0.17)+ 

-(1.0.0.29+ 1.0·0.29+ 1.2·0.23 + 1.4·0.19)]= 41.0 

Fig. 10.4.10 -Calculation of surplus variation with the average demand and average cost 
methods for the system of Fig. 10.4.3. 
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NO DESIGN 

0----1·..-----0 

DESCRIPTIVE APPROACH 

DS = 100.[10-(0.73 .10+0.27 .15)]= -135 
BEHAVIORAL APPROACH 

Vk = -0.2· gk 

SNP = 100 In [exp (- 0.2 .10)] = -200 

DESIGN 

sP = 100In[exp(- 0.2 ·10 )+exp(- 0.2 ·15)] = -169 

DS = 51 - S"P = 31 

Fig. 10.4.11 - Calculation of the surplus variation following descriptive and behavioral 
approaches. 
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From the previous discussion it follows that surplus variation, as far as is 
possible, should be computed on the basis of Expected Maximum Perceived Utility 
variables, especially when the project increases the number of available 
alternatives(12) or at least with a mixed approach using EMPU variables on the 
choice dimensions more closely connected to the changes on the transportation 
system, such as mode and path choice. 

10.5. Methods for the comparison of alternative projects 
There are several methods for comparing alternative projects of transportation 
systems. This section will shortly present the quantitative methods which are most 
used in applications for economic evaluation, namely the traditional Benefit-Cost 
analysis and some Multi-Criteria analysis methods. The reader is referred to the vast 
literature on the subject for further information. 
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s 

d( s) 

Fig. 10.4.12 - Demand function with respect to EMPU values. 

10.5.1. Benefit-Cost analysis 
Benefit-Cost (BIC) analysis compares alternative projects considering their effects 
expressed in monetary units. A single economic aggregate is formed in which 
different impacts are algebraically summed, considering with positive sign 
(Benefits) "income" items and with negative sign (Costs) "disbenefit" items. 
Benefits and costs are obviously related to the subject for whom the analysis is 
performed. 

Applications of the BIC method from the viewpoint of a single public decision­
maker (typically a governmental agency) can consider for each year t of the 
economic life of project "P;" all or some of the following effects: 

CC 

CVT 

CMO 

REV 

difference between the construction cost of the project and the 
construction and extra-ordinary maintenance costs of non-project, ifany. It 
should be remembered that investment already decided could be included 
in the NP state. In some applications, a negative construction cost CC (i.e. 
a benefit) is assumed for the final year; this corresponds to the residual 
value of the project at the end of the analysis period. In this way it is 
possible to reduce the unavoidable arbitrariness in the definition of the 
technical life of the project. 
difference between investment costs in vehicles and technologies for the 
project and non-project states. Also in this case the NP state might require 
investment in means of production. 
difference between maintenance and operation cost for project and non­
project states. 
difference between direct (sale of transportation services) and indirect 



CHAPTER 10 627 

(commercial activities) revenues in the project and non-project states. 
TR difference between taxes and duties revenues in the project and non­

project states. 
DS variation of surplus perceived by the users of the transportation system in 

the project and non-project states expressed in monetary units. This is 
obtained by adding up the variations of perceived surplus, for different 
user classes. 

UNPB variations in benefits not perceived by the users between the project and 
non-project states. These benefits might include variations of costs due to 
accidents, vehicle consumption (lubricants, tires, etc.) and other non out­
of-pocket costs not perceived by the users in their travel-related choices. 
All these benefits are expressed in monetary units; the variable has a 
positive sign if there is a reduction in these costs. 

NUl variation of the impacts for non-users between the project and non-project 
states. Impacts on the environment (e.g. reduction of pollutants emission 
appropriately expressed in monetary terms) and on the economical and 
territorial system, as described previously, can be included in this variable. 
The variable is sometimes indicated as indirect benefits and is positive if 
these benefits increase. 

The above variables are usually calculated with market prices, when available, 
possibly reduced by the transfers internal to the Public Administration (V A T, 
income and fuel taxes, etc,). For example, construction, maintenance, and operation 
costs can be computed by evaluating the resources employed at market prices minus 
VAT and other taxes. In some applications, market prices are replaced by shadow 
prices, or opportunity costs, which reflect the value of a particular resource to the 
community. Shadow prices can be assigned when there is no market price or when 
this is modified to take into account objectives or constraints of social interest not 
reflected by market mechanisms. The opportunity cost of labor, for example, might 
be lower than the market price of manpower when there is a high level of 
unemployment, and its reduction is one of the objectives of the project. In this case, 
the opportunity cost could be obtained as the difference between net market price 
and the unemployment subsidy for each category of workers. 

It is important to stress that the variables considered and the way they are 
computed both depend on the viewpoint from which B/C analysis is performed. 
Also in the case of a public operator (public sector analysis) there may be different 
viewpoints. For example construction costs may be reduced by non-reimbursable 
government grants for Local Administrations. 

Whatever the point of view of the evaluation, double counts of the same effect 
with the same sign in several variables must be avoided. Some effects may be 
present with different signs in two or more variables; for example the fares paid by 
the users can be counted in traffic revenues with a positive sign (benefit) and in the 
perceived surplus variation with a negative sign (cost). The same occurs with 
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gasoline taxes, and other variables. Effects of this kind could even be excluded from 
the BIC analysis, as proposed by some analysts for traffic revenues. Their exclusion, 
however, is acceptable only in the special case in which the effects count linearly in 
all terms. In the previous example, this is the case if the monetary cost appears 
linearly in generalized user costs and if surplus variation is computed through 
descriptive methods (10.4.20) and (10.4.21) with rigid demand. However, if this 
variable appears non-linearly in different terms, for example the monetary cost is 
used in the EMPU variable (10.4.4) and (10.4.6) for the evaluation of user's surplus 
variation, and/or there are variations in the level of demand, it must necessarily be 
accounted for twice. Fig. 10.5.1 shows graphically the difference between surplus 
and revenues variations in the case of generalized cost coinciding with monetary 
cost; the two variations would coincide in absolute value only in the special case of 
rigid demand (areas Band C equal to zero). 

d' 

.1re\' =dp ·me? -dNP ·me NP =(B+D)-(A+D)=B-A 

.1.wrplus' = A + C 

I .1 rev. I oF I .1.wrpl us I 

Fig. 10.5.1 - Difference between surplus and revenues variations 

d 

An example of potential double counting is given by the case of increased 
accessibility (reduction of the generalized transportation cost) of one zone compared 
with others. This effect usually leads to an increase in the real estate values in the 
zone as a consequence of residents' and/or firms' willingness to pay for the greater 
accessibility. If the surplus variations for the users and the variations in real estate 
values were both counted as benefits, the accessibility effect of the project would be 
accounted for twice and, in this particular case, the overall benefits would be 
overestimated. In this example the variation of real estate values should not be 
considered, or it should be accounted for with opposite signs for those who benefit 
from them (i.e. the landlords) and those who incur penalties (i.e. renters or buyers). 
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It is clear that these effects will be very different for the different categories and 
their distribution within the society as a whole cannot be considered irrelevant. 

Once the relevant effects have been defined and measured in monetary units, 
different alternative projects are compared using synthetic indicators or aggregate 
variables. Benefits and costs relative to different years are compared by means of the 
interest or discount rate r. This is defined as the relative increase of the sum M after 
one year: 

r= 

The value M, of a sum Mo available. today after t years can therefore be 
calculated as: 

from which it follows that the present value Mo of a sum M spent or gained after t 
years is: 

(10.5.1) 

Several synthetic indicators have been proposed for the comparison between 
benefit and cost flows for the different projects Pi. The Net Present Value (NPV) 
brings to the present the effects calculated for a period of T years assuming a 
constant discount rate r: 

T (DS' +UNPB' +NUI~ +TR' +REV' -cC -cvrl -CMO') 
NPV;(r)=L I I I I " I I I (10.5.2) 

~ O+~ 

The Internal Return Rate (JRR) is defined as the value of the discount rate ro such 
that the N P V calculated over a period of T years is equal to zero: 

(10.5.3) 

Using the first indicator, the generic project Pi is preferable to non-project NP if 
its NPVis positive; the project Pi is preferable to the project Pj if NPV; > NPV; . The 
superiority of a project Pi over Pj may depend significantly on the discount rate r 
used for the calculation of NPV, as shown in Fig. 10.5.2. Projects with lower 
investment costs and fewer benefits usually are positively affected by higher values 
of r (project PB in fig. 10.5.2), while low discount rates "favor" more costly projects 
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with greater future benefits (project PA in fig. 10.5.2). Higher discount rates, in fact, 
reduce the present value of project benefits, usually obtained some years after the 
investment is made; on the contrary, project investment costs, borne in the early 
years, are less sensitive to discount rates. 

A project Pi is preferable to the non-project NP in terms of Internal Return Rate 
if its IRR is above the "social" discount rate and is preferable to the project Pj if IRRi 
> IRRj . The discount rate used to compute NPV or to compare the IRR can be 
selected in several different ways. One possibility is the interest rate prevailing in 
the economic system of analysis. Other more complex methods adopt the social 
opportunity cost of the capital based on the returns potentially achieved with 
alternative uses, the social marginal utility of consumption or measure of risk 
connected to the project. This subject has been discussed at length in the economic 
literature to which the interested reader is referred. Here it is only worth mentioning 
that the discount rate has important implications of value for present consumption 
compared with future effects; these should be explicitly stated and may depend on 
the point of view of the analysis. 

NPV 

Project A 

--. -----._--------_. 

IRR(8) IRR(A) 

Fig. 10.5.2 - Net Present Value as a function of the discount rate. 

Benefit-Cost analysis has undergone some criticism both in terms of the ways it 
is used and its theoretical foundations. 

Some objections of the first type can be summarized as follows. 
i) The use of market prices as indicators of the "social" value of resources is 

theoretically correct only under the critical assumptions of socially optimal income 
distribution and of perfectly competitive markets. In reality, both assumptions are 
almost always far from the truth and the use of market prices implies judgements on 
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income distribution and is inconsistent with the results of the welfare economy 
inspiring it. In alternative, as indicated, shadow prices can be used, if "social" 
objectives or constraints are pursued through the project. For example, objectives 
such as reduction of unemployment, reduction of air pollution or energy 
consumption can be reflected in shadow prices of labor and fuel. The rigorous 
calculation of shadow prices is extremely complex, and in practice rough estimates 
are often used. 

ii) The evaluation of the effects for users and non-users of the system may be 
incomplete or inexact. In some applications, impacts are computed only for the users 
of the planned facilities, ignoring the effects on the remaining part of the 
transportation system. While this approximation may be acceptable in some cases, in 
others it may significantly distort the results of the analysis. It is quite common, in 
fact, that because of the interdependencies in a transportation system, the effects on 
the travelers not using the new facilities or services directly are comparable to those 
on direct users. This and other similar criticisms can be overcome by analyzing the 
transportation system as described in previous sections. 

The "structural" criticisms of Benefit-Cost analysis relate to aspects that cannot 
be eliminated by a proper application of the procedure. 

i) The aggregation of the effects on different groups, once again implies value 
judgements on the "optimality" of the present income distribution and on the 
indifference with respect to the income redistribution that may be caused by the 
project. For example, it is assumed that an increase in generalized cost for some 
users is compensated by a reduction of the same magnitude of the cost to other 
users. Furthermore, the perceived cost depends on the user's income, thus variations 
in travel time of the same amount produce larger perceived surplus variations for 
higher-income groups and so on. 

ii) If the individuals receiving benefits from the project would pay for such 
benefits in monetary terms and this sum exceeded that necessary to compensate 
those receiving negative effects, the project would result in a net increase in public 
"welfare". In reality, compensations are often only hypothetical. On the other hand, 
in the BIC analysis a project is considered socially preferable to another if the 
potential willingness to pay of those who benefit is superior to the amount needed to 
compensate those receiving a damage, regardless of the actual occurrence of these 
transactions. 

iii) The Benefit/Cost analysis is limited to effects that are, or can be, expressed in 
monetary units, ignoring a number of effects which cannot be significantly measured 
in monetary units as discussed in section 10.2. This implicitly privileges the 
objective of economic efficiency over other social and environmental objectives. 

On the basis of these considerations, many economists agree on assigning to the 
BIC analysis, from the point of view of the public decision-maker, a role that is 
essentially normative and/or conventional. In the former case the main elements of 
the analysis, i.e. effects, prices, discount rates, etc. are fixed by the agencies funding 
public projects in order to receive comparable and homogenous proposals to be 
compared. In the latter, the parameters of BIC analysis are consolidated from 
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practical applications in specific sectors. Alternatively, BIC analysis should not be 
considered as a comprehensive evaluation method, but rather as an evaluation of 
economic impacts for some actors of the decisional process, taking into account only 
monetary or monetarily quantifiable "costs" and "benefits". In this interpretation 
BIC analysis can be considered as a synthetic way for evaluating the impact on 
economic efficiency for the several possible actors interested. Thus several BIC 
indicators could be computed representing different actors such as users, service 
operators, public agencies; these indicators can be used together with others in the 
context ofa wider Multi-Criteria analysis discussed below. 

10.5.2. Multi-Criteria analysis 
As stated in the previous sections, transportation system projects may induce effects 
of different types and decision-makers generally have multiple goals, which may 
conflict with each other. Each effect described in section 10.2 corresponds to an 
impact on one or several actors and, as such, can be transformed into an objective. 
Thus, increasing user surplus, reducing expenditure, increasing revenues, increasing 
social equity and accessiblity, increasing the efficiency ofthe transportation system, 
reducing environmental impacts, and increasing the economic efficiency of the 
system are all possible objectives for the same decision-maker and/or for the actors 
involved in the decision process. As stated these objectives often conflict with each 
other; the maximization of user surplus might, for example, conflict with the 
reduction of noise and air pollution and with the minimization of capital 
investments. 

Multi-Criteria (MC) or Multi-Objective (MO) analysis aims at supporting the 
decision-makers to reach a feasible compromise between the different objectives. 
Applications of Multi-Criteria analysis to public choices, and therefore to the 
evaluation of transportation projects, has increased significantly in recent years, also 
in connection with the increase awareness of the limitations of Benefit-Cost 
analysis. Multi-Criteria analysis is a general term including several techniques 
differing in theoretical basis, calculation methodologies and fields of application. 
Only some of these techniques will be outlined in the following to give the reader an 
idea of this approach. 

The different objectives of the decision-makers are first transformed into 
evaluation criteria or performance indicators, i.e. quantitative and qualitative 
variables measuring the level of achievement of the generic objective. For example, 
the performance indicator corresponding to the objective of increasing users' utility 
might be the difference between the total surplus of the users. Values of NPV and 
IRR may correspond to the objective of increasing the economic efficiency, the 
indicator corresponding to the objective of reducing air pollution might be the 
variation of total pollutant emissions and so on. Criteria expressed qualitatively (e.g. 
with adverbs such as little, much, etc.) can be transformed into quantitative variables 
by indirect quantitative determination techniques. The following, therefore, refers 
exclusively to quantitative criteria. The identification of the objectives and their 
relative evaluation criteria is a crucial phase of any Multi-Criteria evaluation. As a 
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matter of fact objectives and criteria should be specified with similar levels of detail 
to avoid distortions in the results of the analysis. The practical rule is to use a 
balanced number of criteria for the different macro-objectives of the project under 
study. 

A weight Wm ::::: 0 can be attributed to each criterion m, measuring the importance 
of the objective corresponding to the criterion m compared with the other objectives 
for the decision-maker. Obviously, in the definition of weights decision-makers are 
asked to express value judgements. In principle different sets of weights can be 
associated to the same set of objectives and their indicators expressing the point of 
view of different actors in the decision process. 

Many methods have been proposed to estimate the unknown weights for each 
decision-maker as well as to reach a compromise among several decision-makers. 
The most direct approach, known as the DELFI method, consists of having each 
decision-maker express separately and explicitly the weight relative to each macro­
objective or criterion. Subsequently the interviews are repeated, telling each 
interviewee the weights stated by the other decision-makers until a compromise is 
reached. When the weights cannot be obtained directly from decision-makers, other 
procedures can be used. For example, it is possible to estimate the weights, which 
would justify the choices made in similar contexts for projects of the same type and 
size. Following a different approach the decision-maker is asked to express 
preferences between pairs of alternative hypothetical projects with trade-offs 
between the different objectives; the implicit set of weights can be estimated as to 
reproduce as closely as possible the stated choices.<'3) 

In many Multi-Criteria techniques, performance indicators are first processed to 
allow their comparison. Suppose that M evaluation criteria corresponding to the 
objectives of the project have been identified and that the value of the moth 
performance indicator for the j-th project is expressed through the variable Xmj. 

Variables Xmj are usually expressed on a scale increasing with the level of 
satisfaction. When Xmj measures a "negative" effect, e.g. the quantity of emitted 
pollutants, it can be substituted with the reduction with respect to the maximum 
value assumed by the indicator: 

In order to avoid distortions deriving from the use of different scale factors for 
different indicators the values of the indicators are sometimes substituted by 
normalized values Imj, included in the interval [0,1]. Several forms of normalization 
are possible. Some normalization equations are linear in the indicator xm/ 

X mi -min xmk 
I . k 
mj =' 

max x mk - min xmk 
k k 
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(10.5.4) 

In some applications indicators are normalized through non-linear, monotone 
increasing functions, usually denominated utility functions. With utility functions, 
one can account for the decreasing marginal utility of increasing levels of a given 
criterion (see Fig. 10.5.3); in this case performance indicators are known as utility 
indicators and denoted by Umj. 

o I_---.-J'--____ -!-_~ 

Fig. 10.5 .. 3 - Utility function for a generic performance indicator. 

The evaluation matrix or impact tableau consists of the evaluation indicators 
(xmj , x'mj. 1m! or Umj)' This matrix has a number of rows equal to the number of 
evaluation criteria and a number of columns equal to the number of alternative 
projects. An example of such a matrix is described in Fig. 10.5.4. 

The project} is dominated if there exists at least one project h satisfying all the 
objectives, better than, or at least equal to, project}: 

xm; ~Xmh Vm= I, ... M (10.5.5) 

with at least one of the inequalities (10.5.5) holding as a strict inequality(I4l . 

A non-dominated project is also called efficient. The set of non-dominated 
projects satisfying the constraints (e.g. budget constraints) is called the project 
efficiency boundary. 
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Pro ect 
Evaluation 1 2 1 J Weights 

criteria 
1 XH X12 x li X1 J Wl 

2 X2l X22 x 2J X2J W2 

m Xml Xm2 Xmj XmJ Wm 

Fig. 10.5.4 - Evaluation matrix of J alternative projects with respect to M criteria. 

It can be shown that all the points of this boundary are potentially optimal 
solutions to the decision problem for an appropriate set of weights for the different 
objectives/criteria. 

Multi-Criteria analysis techniques proposed in the literature generate a set of 
non-dominated solutions (projects) and assist the decision-maker in selecting a 
reasonable compromise between contrasting objectives. Some of these techniques 
will be described below using the performance indicators Xmj, these can be 
substituted by Imj or urn) . 

Some techniques generate a "continuous" set of non-dominated projects defined 
by continuous decision variables with explicit relationships, preferably linear, 
between these variables and their effects(15}. In the case of transportation system 
projects, these conditions are rarely met because of the discrete nature of many 
projects (new infrastructures, for example), the intrinsic non-linearity of the system 
(cost functions and demand models) and the complexity of the relationships between 
control variables and effects (e.g. variations of equilibrium flows and costs 
following a transportation network project). For these reasons, and to simplify the 
treatment of the subject, in what follows, reference will be made to the case of a 
discrete set of J alternatives (projects). Furthermore, alternative projects are assumed 
to be non-dominated since dominated ones on the assumption of monotonicity of 
preferences, could never be optimal choices under any set of weights . 

The role of the analyst and the decision-maker varies greatly with the different 
techniques proposed. According to some authors, the analyst's task should end after 
presenting the decision-maker with the list of non-dominated projects together with 
the available information, processed in such a way to facilitate their understanding 
to non-specialists. Other methods assume a certain amount of data processing and 
interaction with the decision-maker. 

One approach, known as the distance method, identifies the best compromise 
solution as the project) minimizing the "distance" from the ideal solution. The latter 
can be defined as the hypothetical project satisfying all the objectives at the 
maximum level; the ideal solution is not among the available options, which would 
otherwise all be dominated. Denoting by x* m the highest level of the performance 
indicator for criterion m, the vector x* = (x*" X*2, "X*M)T represents the effects of 
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the ideal project. The distance is measured as the weighted p-norm, Lp, of the 
difference between the two vectors Xj and x* : 

(10.5.6) 

The definition of a norm Lp(xj, x*) in the space of the performance indicators is 
equivalent to defining a multi-attribute utility function allowing the substitution of 
satisfaction levels of the different objectives. As p varies, different measures of 
distance between the vectors Xj and x* are obtained, in particular for p equal to twice 
the weighted distance in the Euclidean space is obtained: 

(10.5.7) 

if the weights were equal for all criteria, (10.5.7) would be reduced to the 
Euclidean distance between the two vectors Xj and x .... As p tends to infinity, the Lp 
norm distance is defined exclusively by the distance from the ideal to the most 
distant indicator: 

(10.5.8) 

Figure 10.5.5 illustrates the distance functions from the ideal of three projects as 
the parameter p varies. It can be observed that for low values of p the project with 
the largest performance indicator for the greatest number of criteria is preferable, 
while as p increases, the project minimizing the maximum deviation from the ideal 
project becomes preferable. 

Another approach is based on the pairwise comparisons of alternative projects. 
Methods of the ELECTRE family are among the most popular examples of this 
approach. The most recent version, ELECTRE IV, defines the index of concordance 
cij of the project i compared with project} as a standardized measure of prevalence, 
or preferability, of i compared with}, the index is equal to one if the project i 
dominates project}: 

(10.5.9) 

where Sij == {m : Imi ;:;: Imj} is the set of criteria for which the project i is superior, or 
not inferior to} and Imj is the normalized performance indicator defmed by (10.5.4). 
Obviously, the index Cij will be the closest to one, i.e. project i will be more 
preferable to project}, the greater the weights Wm of the criteria for which i is 
superior to j. 

The discordance index dij of project i compared to project} is a standardized 
measure of the "inferiority" of i compared to j. It is equal to one if the maximum 
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weighted deviation in favor of j among all the criteria for whiCh j is superior, 
coincides with the maximum absolute weighted deviation between i and j for all the 
criteria. In formal terms, it results: 

max [wm (lmj -Imi )] 
d .. = _m_EI..:..ij ____ _ 

Ij 

m~x [wnl/lli -Injl] 
(10.5.10) 

where Iij == {m: Imi < Imj}is the set of criteria indices which the project i is inferior to 
j. 

Concordance and discordance indices can be used differently to compare 
available alternatives. The mobile threshold method calculates the concordance and 
discordance indices for all the ordered pairs of alternative projects. Alternatives can 

be ordered by fixing two thresholds, C and d, with c ~ {j and rejecting all the 
project pairs (i,j) such that cij is less than c (i.e. pairs for which i is not significantly 

superior to j) and/or dij is greater than {j (i.e. i is clearly inferior to j). For the pairs 
of alternative projects satisfying both requirements it results: 

These pairs are considered to give a significant indication of superiority of 
alternative i over alternative j. If the residual pairs still do not lead to a unique 
ordering -(for example i is preferable to j,j is preferable to k but k is preferable to i), 

the values of the thresholds c and {j are modified by increasing the former and 
reducing the latter until a set of project pairs expressing a unique preference is 
obtained (see Fig.l0.5.6). A different method is based on the calculation of a 
synthetic indicator of preference or superiority index Si of alternative i as follows: 

Zij =1 
(10.5.11) 

Zij = 0 otherwise 

The superiority index is equal to the number of projects significantly inferior to i 
minus the number of projects significantly superior to i. The ordering of the 
alternatives can be carried out on the basis of the values of the indicator Si, projects 
with higher values will be preferred. 
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Evaluation Project Weights Ideal 

criteria 1 2 3 project 

1 8 7 10 1 10 

2 4 6 6 1 6 

3 4 6 6 1 6 

4 5 7 7 1 7 

5 6 8 4 1 8 

6 5 4 7 1 7 

14 - ----
Lp 

12 

10 

8 

6 

4 

2 

o 
o 2 3 4 5 6 

p 

Fig. 10.5.5 - Distance Lp from the ideal project for varying values of the norm p. 
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Alternatives A,B,C,D 

C =0.30 d = 0.70 

Pairs of alternatives Concordance indices Discordance indices 
A-B 0.40 0.20 
A-C 0.70 0.50 
B-A 0.60 0.50 
B-C 0.65 0.30 
C-B 0.35 0.60 
C-D 0.35 0.40 

C =0.45 d = 0.50 

Pairs of alternatives I Concordance indices Discordance index 
A-C 0.70 0.50 
B-A 0.60 0.50 
B-C 0.65 0.30 

Ordering B > A > C 

Fig. 10.5.6 - Example of application of the ELECTRE IV mobile threshold method. 

In Multi-Criteria analysis, whatever the comparison technique, the phase of 
sensitivity analysis is of considerable importance. Sensitivity analysis explores how 
sensitive the outcome obtained, i.e. the ordering of the alternatives, is to the 
assumptions on the parameters used. In other words, it attempts to establish whether 
the solution obtained is stable with respect to variations in the parameters, which, as 
has been said, are intrinsically arbitrary. As an example, such a technique analyzes 
the vector of weights Wm in the function (10.5.6) looking for the limits of the values 
that would not change the ordering of projects. The larger the differences with the 
adopted weights, the more reliable is the ordering of projects. Sensitivity analyses 
can be carried out by different methods with different levels of sophistication, the 
description of these methods, can be found in the specialized literature. 
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Reference Notes 

A clear and concise description of the different approaches to the general 
problem of planning and public decision making, with special reference to town 
planning, is given in Alexander (1997) which contains a vast bibliography. Many 
textbooks deal with the process of transportation planning from different viewpoints. 
References representing differing, and somehow contrasting positions, are 
Hutchinson (1974), Manheim (1979) and Meyer and Miller (1984). Wachs (1985), 
Bianco (1986) and Meyer and Miller (1984) contain a commented bibliography of 
the theoretical developments of the concept of transportation systems planning. A 
classification of the different levels of planning is described in Florian, Gaudry and 
Lardinois (1988). 

The economic literature relevant to the welfare theory applied to the analysis of 
investments is quite substantial and a systematic analysis is well beyond the scope of 
this book. Among the many texts on the subject reference can be made to the classic 
book of Mishan (1974). 
There is also a vast literature on Multi-Criteria analysis. The fundamentals of these 
techniques can be found in Chankong and Haimes (1983), Voogd (1983), Haimes 
and Chankong (1985), Nijkamp et aI, (1990). The Electre method is described in 
Voogd (1983). 

Applications relative to the evaluation of transportation system projects are to be 
found in almost all books on transportation planning. The traditional approach of 
Benefit-Cost analysis is covered in Wohl and Martin (1967), Hutchinson (1974), and 
Stopher and Meybourg (1976). Alternative approaches such as cost-effectiveness 
analysis are described in Stopher and Meybourg (1976) and Meyer and Miller 
(1984). 

The method proposed for the calculation of surplus variations for transportation 
system users is original; it extends the "classical" results for aggregate models and 
those in Williams (1977) for behavioral models. The paper by Jara-Diaz and Friesz 
(1982) deals with the evaluation of users surplus variations with descriptive demand 
functions and several dimensions. 

Notes 

(I) Complementary projects reciprocally increase their positive effects (e.g. park and ride facilities and 
railways lines), while integrative projects aim at reducing the reciprocal negative effects (e.g. park 
pricing and upgrading public transport). 

(2) This assumes that mathematical models are used to simulate the relevant effects of hypothetical 
projects exogenously specified. This approach is the most commonly used in applications. However, 
mathematical models can also been used as supply design tools, as discussed in Chapter 9. As 
stressed in that chapter supply design models are generally relative to certain types of project (e.g. 
traffic-signal control or transit lines frequencies) included in wider system projects. In most cases 
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SDM should be seen as generators of alternative supply states rather than as tools to get the 
"optimal" solution. For these reasons supply design models can be included, at least conceptually, in 
the overall system of mathematical models. 

(J) Monitoring has a conceptual function analogous to feedback in "closed loop" control systems, which 
usually prove to be more efficient than open loop systems. 

(4) In reality, companies operating transportation services also have several objectives and/or must take 
into account the impacts of their decisions on different subjects. Economic analysis, in the broad 
sense, should be extended to all the main decision-makers who operate in a transportation system, 
though with different objectives and constraints. 

(5) As will be seen more clearly in the following, effects for the users are measured as variations induced 
in their choices. 

(6) The "economic life" of a project can be defined conventionally as the period of validity of the 
project. In the case of infrastructure, this is period for which no major extraordinary maintenance 
works are necessary. The arbitrariness of this definition is partly compensated for by the possibility 
of a residual value ofthe project at the end of the period under consideration. 

(7) As stated in Chapter 5, the class is a group of users sharing the same behavioral parameters relevant 
to the specific application. A user class is usually defined by the pair: socio-economic category, trip 
purpose. In the limiting case of completely dis aggregate models, the class i may coincide with a 
single individual. 

(8) Extra trips undertaken because of the effect of the generalized cost reduction are sometimes indicated 
as the demand generated by the project P. This term should be better qualified since in some 
applications trips diverted from other destinations, modes or even paths are referred to as generated 
demand. To be consistent with the general system approach followed in this book, these trips should 
be seen as diverted trips or demand, while generated trips are those which wouldn't be made at all in 
the NP state. 

(9) The integral (10.4.15) depends only on the extremes of integration if the Jacobian of demand 
functions is symmetrical with respect to generalized path costs: 

This condition is seldom, if ever, met by usual demand models. 

(Ill) In spite of the advantages of the behavioral approach to the calculation of surplus variation, in 
applications descriptive models are often adopted, even when demand models have Logit or other 
random utility specifications. This can be explained, at least partly, by the persistence of tradition. 

(11) Notice that Expected Maximum Perceived Utility can increase both for a reduction in transportation 
costs and for an increase in the attractiveness of same zones. 

(12) The descriptive approach was introduced to deal with the case in which the project results in the 
reduction of generalized transportation costs, particularly for road systems. Furthermore, the implicit 
demand models were often deterministic and this, as it has been shown, implies that there will be no 
paradoxical results. These conditions, however, are not necessarily met by all the applications of the 
method. 
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(11) Notice that this approach is equivalent to the calibration of implicit utility functions of the decision­
maker on the basis of revealed and/or stated preferences. It is conceptually analogous to the 
calibration of demand models with utility functions for transportation related choices and can be 
solved by using the parameters estimation techniques described in Chapter 8. 

(I") For the monotonicity of the transformations used, equation (10.5.5) would hold if In" or Umj were used 
instead of Xn'!. 

(15) This would be the case for continuous variables supply design problem discussed in Chapter 9. The 
main difference with the problems described in Chapter 9, though, is that there are several objective 
functions (indicators) rather than a single objective function. 



A REVIEW OF NU M ERICAL 
ANALYSIS 

This appendix contains an overview of the main results of numerical analysis used 
for the formulation, analysis and solution of the mathematical models described in 
the text. 

A.1. Sets and functions 

A. 1.1. Elements of set topology 
In this section some properties of numerical sets are outlined, with reference to the 
n-dimensional Euclidean space E". Numerical sets are made up of points in E", i.e. 
vectors (assumed to be column vectors) with n real components xT = (x" ... , xn), 

among which the Euclidean norm (or module) Ilxll=(L; X/)1I2 = (XTX)ll2 and the 
corresponding Euclidean distance are defined. 

The sphere of radius 0 and center x is defined a neighborhood, Nl...x), of radius 
oofthe point x E E": 

Nl...x) = {y: IIY-x II < b} 

A point x E E" is said to be interior to the set S ~ E", if there is at least a 
neighborhood of finite radius 0 entirely contained in S. A point x E E" is at the 
boundary of the set S if all the neighborhoods of x, however small the radius 0, 
contain points belonging and points not belonging to S. A nonempty set S is said to 
be open if all the points belonging to S are interior points, i.e. if no boundary point 
belongs to the set; S is closed if all the boundary points belong to the set. A set S is 
said to be limited if (for all the points belonging to it) a neighborhood of finite 
radius including all the points of the set can be found: 

'ilXES 30> 0, 0 finite: S ~ N I...x) 

A closed and limited subset of E" is compact (and vice versa). 
For example, the set S = {(x" X2) : X21 + X2 2 ~ I} of the points belonging to the 

circle with unitary radius and center in the origin is a closed and limited set, the set 
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S1 = {(X], X2) : X21 + X22 < I} also called intS, is an open and limited set. The 
boundary of Sand S1 consists of the set S2 = {(x], X2) : X21 + X22 = I }. 

Given two points X1 and X2, the set of points x defined by: 

{X:X=fiXI +(1-fi)Xz, fiE [O,I]) 

is called a segment of extremes Xl and X2' 

A nonempty set S is said to be convex if all the points of the segment joining 
any two points belonging to the set, belong to the set itself (Fig. A.I.I). In formal 
terms, it yields: 

X = fi X I + (1 - fi) X2 E S V fi E [0,1], V X]'X2 E S (A.l.1) 

CONVEX SET NON-CONVEX SET 

Fig. A.1.1 Illustration of convex and non-convex sets. 

The intersection of convex sets is a convex set. Sets defined by a system of 
linear equalities and/or inequalities, also known as polyhedral sets, are convex 
sets. 

In fact, given S = {x: A x :-::; b }ifxI and X2 belong to S, we obtain: 

Any point x belonging to the segment with extremes Xl and X2 belongs to S. An 
analogous demonstration can be repeated for the set S == {x : A x = b}. 

Given a point x*, for each non-null vector (direction) h "* 0, the set of points 
lying on the half-line of origin x* and direction defined by the vector h is a ray 
emanating from x* along direction h. This set is formally defined by: 

{x : x = x* + fi h, fi ~ O} 

A vector h is a feasible direction at the point x* for the set S, if it is possible to 
move along the direction of a finite quantity from the point x* and remain within 
the set S: 
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:lf1* > 0 : x = X* + f1 h E S V f1 < f1* ,f1 ~ 0 

Given a set S, the set D(x*) of the feasible directions at a point x* belonging to S 
(Fig. A.l .2) is formally defined as: 

D(x*) = {h ;to 0 : :lf1* > 0 : x = x* + f1 h E S V f1 < f1*, f1 ~ O} 

Fig. A.1.2 Illustration of feasible directions. 

For a convex set S, the set of feasible directions at point x* can also be defined as: 

{h = (x - x*) : XES} 

A.1.2. Differentiable functions 
A scalar-valued function of a vector y = j(x), with values in EI and defined on an 
open set S ~ It' is said to be continuous at point x* E S if small variations of the 
variables x induce small variations of the variable y. Formally, the function y = 

j(x) is said to be continuous at point x* if for any neighborhood N Jy*) of the point 
y*=j(x*), however small, there is a neighborhood NJ..,x*) of the point x* such that 
the points x belonging to them have values y = j(x) in the neighborhood ofy*: 

V Ii> 0, :l c > 0 : y = j(x) E NJy* = j(x*» VXE NJ..,x*) 

A scalar function of vector j(x) with values in EI and defined on a closed set 
S <;;; En is said to be differentiable at the point x* E S if there is a vector, known as 
gradient of the function in the point and denoted by Vj(x*), such that the 
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difference between the value of the function at any point XES and its linear 
approximation in x* along Vj{x*) , given by j{x*) + Vj{X*)T (x - x*), is an 
infinitesimal of superior order with respect to the norm of the vector (x - x*): 

lim f(x) - f(x*) - Vf(x*l (x - x*) = 0 

x -->x' /Ix - x*11 
(A.I.2) 

The components of the vector Vj{x*) are the partial derivatives of the function : 

(A. 1.3) 

A function with first continuous partial derivatives is differentiable, and also 
continuous. 

The gradient of a function can be represented in the space E' with the same 
dimensionality of the definition set S. In the same space can be defined the level 
curves of the function (loci of the points x to which the same value of j{x) 
corresponds). The gradient in each point x* is a vector perpendicular to the tangent 
at the level curve j{x*) and, as will be seen, points towards increasing values of the 
function (see Fig. A.I.3). 

~_--L..--1 ___ "' .. -----'_ .• J ___ ~ 

Xz 

1. 

1. 

0, 

o. 

·0 . 

. 1. 

-----.--.~ 
-1 . ------ ... -

-2 . .. ~- f -·- r - .. r ~ - - 1- - - .~ I - - ~ . " . - - , - • 

·2,00 ·1.50 ·1 .00 .0.50 0.00 0.50 1.00 1,50 

Fig, A.1 ,3 Level curves and gradient. 



APPENDIX A 647 

Given a scalar functionj{x), defined in S, a point x* E S and a direction vector 
h such that x* + J.l h E S for values of J.lless than J.l*, the directional derivative of 
the function in x* along the direction h can be defined as the limit: 

J'(x*,h) = lim J(x*+J.lh)- J(x*) 
p~O J.l 

(A. 1.4) 

If j{x) is differentiable in x*, it is easy to demonstrate that the directional 
derivative can be expressed in terms of the gradient: 

f' (x*, h) = Vj{X*)T h (A.I.5) 

A direction h along which it is possible to move by a finite quantity starting 
from x*, increasing the value of the function, at least in a neighborhood of x*, is 
known as an ascent direction. In other words, a direction h is an ascent direction if 
a positive scalar (}If. can be found such that for each 0 < ()< (}If. it results: 

j{x* + ()h) > j{x*) (A.I.6) 

It can be demonstrated (by using the property of the directional derivative 
(A.1.5) and the theorem of sign permanence) that a direction h is an ascent 
direction if and only if the directional derivative of j{x) at the point x* along the 
direction h is positive: 

f'(x*, h) = vj{x*l h > 0 (A. 1.7) 

Similarly, the directions along which it is possible to move starting from x*, 
causing a decrease of the function value are known as descent directions, and have 
negative directional derivative at vj{x*l h < O. 

The gradient of a differentiable function, at whatever point it is different from 
zero, is an ascent direction. In fact, under the assumptions made, it results: 

f' (x*, Vj{x*» = vj{x*llJ{x*) = 1 1 Vj{x*) 1 12 > 0 (A.I.8) 

Vice versa, the direction opposite to the gradient -Vj{x*), if different from 
zero, is a descent direction ofj{x) in x*. 
A scalar function j{x) is said to be doubly or twice differentiable in x if there is a 
vector Vj{x*) and a symmetrical matrix Hf(x*) of dimensions (n x n) such that: 

. J(x)- J(x*)-VJ(x*l(x-x*)-1/2(x-x*l Hj(x*)(x-x*) 
hm = 0 \;/x E S 

X4X' Ilx-x*112 

(A. 1.9) 



648 REVIEW OF NUMERICAL ANALYSIS 

Equation (AI.9) expresses the condition that the difference between the value 
of the function and its quadratic approximation is an infinitesimal of superior order 
with respect to the square norm of the vector (x - x*). The matrix H;(x*) is called 
the Hessian matrix of j{x) at x* and its components are the second order partial 
derivatives ofj{x) at x*: 

02f(x*) 02f(x*) 

ax2 
I ox10xn 

H [(x*) = (Al.lO) 

02f(x*) 02 f(x*) 

ox10xn ax,: 

A function is doubly differentiable if it has continuous second partial 
derivatives. In this case the first partial derivatives are differentiable (because they 
have continuous partial derivatives), the function is differentiable and therefore 
continuous. Furthermore the second partial derivatives are not dependent on the 
order of derivation and the Hessian matrix is symmetric. 
Taylor's formulae of the first and second order relative to the scalar functionj{x) 
around the point x* are respectively: 

3 XO E(X*, x) :j{x) = j{x*) + vj{xol (x - x*) 'rIx E S (A.l.lI) 

3 XOE(X*, x) :j{x) = j{x*) + vj{x*l (x - x*) + 1I2(x - x*l H;(xO) (x - x*) 'rIXES 
(A1.l2) 

where XO is a point within to the segment (x - x*). 
Equations (Al.lI) and (A.1.I2) obviously require j{x) to be differentiable of 

the first and second order respectively. 
An m-vectorial function g(x) associates a vector of m components, i.e. a point 

of F!", to an n dimensional vector, i.e. a point of E!'; i.e., it is a vector in m 
functions: 

which associates to each n-dimensional vector XES an m-dimensional vector g(x). 
The function g(x) is said to be differentiable at the point x* if all its component 
functions are differentiable. The Jacobian matrix of g(x) is a matrix of dimensions 
(m x n) which has the gradients of the component functions gi (x) as its rows: 



APPENDlXA 649 

ag](X*) ag](X*) 

ax] ax" 

Jac[g(x*)] = (A l. l3) 

agm(x*) agm(x*)1 
ax] ax" 

An n-vectorial function of vector g(x) (in this case m = n) defined in a set 
S c;;;;; Ell is strictly increasing monotone if for each pair of different points Xl =F- X2 E 

S it results: 

(A1.l4) 

The function is said to be non-decreasing monotone if weak inequality holds 
(~O). Similarly, functions can be denoted as strictly decreasing or non-increasing 
monotone if the reversed inequalities hold. If the two points Xl =F- X2 E S, differ 
only in the i-th component, i.e. XI,i ;c X2,i, with Xlj = X2j 'if j =F- i, from inequality 
(Al.14) it follows: 

hence all the component functions are increasing monotone functions of every 
component of the vector X for given values of all other components (scalar 
functions of scalar). 
If the Jacobian matrix Jac[g(x)] of the function g(x), assumed to be differentiable, 
is positive (negative) semi-definite over the whole set of definition S, the function 
g(x) is non-decreasing (non-increasing monotone). If the Jacobian is positive 
(negative) definite, the function is monotone strictly increasing (decreasing). 

A.1.3. Convex functions 
A scalar function of vector fix) defined in the convex set S c;;;;; Ell is denoted convex 
if for any pair of points Xl and Xz belonging to S the following relationship holds: 

(A1.l5) 

The geometrical interpretation of (A.1.l5) is that the value of the function 
calculated at whatever point of the segment joining XI and Xz is not greater than the 
linear combination of the values calculated at the endpoints, see Fig. A.l.4. 
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It can be demonstrated that a differentiable function is convex if and only if it 
satisfies the following condition: 

(A.l.l6) 

i.e., if the value of the function in X2 is not lower than the value of its linear 
extrapolation starting from x see Fig. A.l.S. By inverting points XI and X2, in 
(A.I.I6) and summing the two expressions we also get: 

(A.l.l7) 

i.e., the gradient of a convex differentiable function is a monotone non-decreasing 
vectorial function of the vector x. 

It can also be shown that the necessary and sufficient condition that a doubly 
differentiable function is convex is that its Hessian matrix is positive semi-definite 
over the whole set of definition S: 

Xl H(x*) X :s: 0 V X, x* E S (A.l.lS) 

If the inequalities (A.l.lS), (A.l.l6) and (A.l.l7) and (A.l.lS) hold with the 
sign of strict inequality, the function is said to be strictly convex. 
A function fix) given by a linear combination with positive coefficients of convex 
functionsf'(x) is convex: 

It is also strictly convex if at least one of the component functions is strictly 
convex. 

The functionj(x) is said to be (strictly) concave if -j(x) is (strictly) convex. In 
this case j(x) verifies (A. l.l S), (A. 1.16), (A. l.l 7) and (A.l.lS) with the 
inequalities inverted. A linear function is both convex and concave since (A.l.IS) 
holds with the sign of equality. 
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A.2. Solution algorithms 
A mathematical problem with a solution given by a vector x* E S is said solvable 
in closed form if there is a relationship allowing the calculation of the solution (or 
solutions) of the problem as a function of the parameters ofthe problem itself. 

Consider, for example, the problem of searching for the null points of a 
functionj(x) in the sets, i.e. the problem of solving the equation j(x) = 0, with the 
condition that the solutions belong to the set S. In the case of a second-order 
polynomial function, a X2 + b x + c, the null points are a solution to the equation: 
a X2 + b x + c = O. As is known, the equation has two solutions XI and X2 (real or 
conjugate complex) which can be calculated in closed form by means of the 
formula: XI,2 = (-b ± (b2 - 4 a c)II2)/(2 a). 

More in general, when a closed-form solution cannot be found, recursive 
equations generating a succession of points {Xl, ... , J!<, J!<+l , ... } are adopted, i.e: 

(A.2.1) 

The equation (A.2.l) defines an algorithm solving the problem, if the recursive 
equation stops in the solution being soughtx*: 

x* = cp(x*) 

and vice versa if it is found that the point at which the equation stops x* = cp(x*), is 
the solution sought. 

An algorithm is said to be feasible if all the elements of the succession belong 
to the set of feasible solutions, Xk E S. An algorithm is convergent in a finite 
number of steps if it can be demonstrated that there is a finite number n such that 
X' = x*; a closed form solution therefore is an algorithm convergent in one step. A 
resolutive algorithm is said to be asymptotically convergent if it can be 
demonstrated that the succession of points converges to the solution sought: i.e., 
limk~oo J!< = x*. If no form of convergence can be demonstrated, the algorithm is 
said to be heuristic. 

A.3. Fixed point problems 
Let rp(x) be a n-vectorial function of a vector x defined in a set S ~ F:', with values 
in the set T = rp(S) = {rp(x) : XES} ~ F:'; the point x* E S is denoted fixed point 
if the function has a value equal to the argument (see Fig. A.3.I): 

x* = rp(x*) x* E S (A.3.I) 
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Note that specifying a solution algorithm for any mathematical problem based 
on the recursive equation (A.2.1) is equivalent to defining a function tp(x) having 
as its fixed point the solution of the mathematical problem under study. 

Fixed point problems, found in various branches of engineering and 
economics, can easily be related to nonlinear systems of equations (and vice 
versa): 

x* - \fJ(x*) = 0 x* E S 

A particularly interesting case of fixed point problem, called the compound 
fixed point problem, is identified in the search for equilibrium configurations 
between two vectors, x E Sx ~ E!' and Y E Sy ~ E'" (also with n :t= m) which 
reciprocally influence each other (see Fig. A.3 .1 b), i.e: 

{
y* = 1](x*) 

x* = p(y*) 

VJ(x) 

X*ESx Y*ESy 

Y*ESy X*ES x 

VJ(x *) r--+--~ .... ----

x* s 
a) Simple fixedpoint 

x 

(A.3.2) 

Y 
x = rJ.y) 

y * I--+--'::IL. 
--- y = 7]{x) 

J-....... ------I~ x· S x 

b) Compound fixed point 

Fig. A.3.1 Simple and compound fixed points. 

In fact, by combining the previous relationships, a compound fixed point problem 
in the variable x is obtained: 

X* = p( 1](x*» (A.3.3a) 

with 1](Sx) ~ Sy and P(1](Sx» ~ Sx' Similarly, an equivalent(l) fixed point problem in 
the variable y can be defined: 

y* = 1]W*» y* E Sy (A.3.3b) 
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with ;:i..Sy) S;;;; Sx and 17(ri..Sy» S;;;; Sy. 
The properties of the nonlinear equations system (A.3.2) or of each of the two 

compound fixed point problems (A.3.3a-b) depend on the characteristics of the 
two functions involved, y = 17(X) and x = p,y), and on the sets of definition of the 
variables, Sx and Sy. 

A.3.1. Properties of fixed points 
Sufficient conditions for the existence and uniqueness of the solution of a fixed 
point problem are given by Banach's theorem(2) which also allows the 
specification of an asymptotically convergent resolutive algorithm. Only a 
restricted class of functions, however, satisfies these conditions. What follows, 
therefore, describes some of the weaker conditions (some of these conditions can 
be extended with some mathematical complications). Sufficient conditions for the 
existence of at least one solution of the fixed point problem (A.3.1), i.e. for the 
existence of at least one fixed point of a function, are given by Brouwer's theorem 
stated below. 

Brouwer's theorem. The fixed point problem (A.3.1) has at least one solution, i.e. 
the function If.I{x) defined in the set S S;;;; E" with values in the set T = 1f.I{S) S;;;; E" has 
at least one fixed point if: 

Tis a subset of S, TS;;;; S, i.e. If.I{x) E S "ix E S; 
S is a compact and convex non empty set; 
If.I{x) is a continuous function. 

The application of Brouwer's theorem to compound fixed point problems, such 
as the one defined by (A.3.3.a), requires both the functions 17(X) and p,y) to be 
continuous, the definition set to be a nonempty, compact and convex set, and Sx S;;;; 

;:i..17(Sx», i.e. ;:i..1](x» E Sx "ix E Sx. 
A graphic illustration of the relevance of some of the assumptions of 

Brouwer's theorem is given in Fig. A.3.2. 
Sufficient conditions for the uniqueness of the solution of the fixed point 

problem (A.3.1), i.e. for the existence of at most one fixed point of a function are 
given by the simple theorem described below. 

Theorem. The fixed point problem (A.3.1) has at most one solution, i.e. the 
function defined in the set If.I{x) with values in the set S S;;;; E" has at most one fixed 
point, if T= If.I{x) S;;;; E". 

If.I{x) is a monotone non-increasing(3) function, over the whole set S: 

(If.I{x~ - If.I{x,~)T (x' - x'~ :5: 0 "ix', x" E S 
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Fig. A.3.2 Illustration of the assumptions of Brouwer's theorem. 
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In fact, if there existed two different fixed point vectors, XI* *- X2* E S, being 
XI* = IjJ(XI*)' for the monotonicity of the function IjJ(x) it would follow: 

In contradiction to the condition II(xl * - x2*)112 > 0 for any XI * *- X2*' 
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Uniqueness conditions can be extended to compound fixed point problems, 
such as that defined by (A.3.3.a), in the case of two monotone functions in the 
opposite direction (and at least one of the two strictly monotone), as shown in the 
theorem described below. 

Theorem. The compound fixed point problem (A.3.3a) has at the most one 
solution, i.e. the compound function lj)(x) = ri..r7Cx» defined in the set Sx ~ F!' with 
1](Sx) ~ Sy and rJ...1](Sx» ~ Sx, has at most one fixed point if the two functions rJ....) 
and 1](.) are monotone in the opposite direction. For example: 

y = 1](x) is a strictly increasing/unction, i.e: 

(1JCx,) -1JCx'')l (x' - x'') > 0 Vx' -:I: x" E Sx 

x = P(Y) is a non-increasing/unction, i.e.: 

(P(Y') - p(y'')l (v' - y'') ~ 0 Vy', y" E 1](Sx) 

In fact, if there existed two different fixed point vectors, x,* -:I: X2* E S, i.e. 
x,* = rJ...1JCx,*» and X2* = rJ...1JCX2*», denotedy,* = (1](x,*) andY2* = rJ...X2*), from 
which x,* = p(y,*) and X2* = P (v2*), for the monotonicity of the function P(Y) it 
would follow: 

In contradiction to the monotonicity of the function 1](x), for x,* -:l:X2*: 

A.3.2. Solution algorithms for fixed point problems 
In general, solution algorithms for solving fixed point problems are more recent 
and less developed than those for optimization problems, to be described in the 
next section. 

Algorithms for fixed point problems (A.3.I) are usually based on the explicit 
calculation of the Jacobian of the function lj)(x), and eventually on the calculation 
of its eigenvalues, or an estimate of them. This approach is generally difficult to 
apply to large-scale problems; for this reason what follows will describe some 
solution algorithms whose application requires only the calculation of the function 
\f/ (x). In particular, given a sequence {,ud k > 0 satisfying the condition: 

(A.3.4) 
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an algorithm for the solution of a fixed point problem can be specified by the 
following recursive equation: 

(A.3.5) 

with Xl E S. 

By using Blum's theorem (not reported here because of its complexity), it can 
be demonstrated that if the function !fJ(x) has a unique fixed point x* = TJCx*), the 
relationship (A.3.5) defines a sequence convergent(4) to the fixed point x*, i.e. 
limk->oo ~ = x*, if the function !fJ(x) is continuous and monotone non-increasing 
and the set S is nonempty, compact and convex (as required by the sufficient 
conditions of existence and uniqueness). From a practical point of view, the 
algorithm is stopped when ~ == !fJ(~), e.g. when a norm value of the vector of 
components (~i - Ij/;(Xk)) / x\ is lower th~m an pre-assigned threshold. Stop tests 
based on the distance between values of the vector x, between successive 
iterations, i.e. Xk+1 == Xk, are to be avoided since this difference tends to zero 
because of the structure of the algorithm, regardless of the proximity to the 
solution of the fixed point problem. 

If the sequence {,udk>O also satisfies the condition 

,uk E (0,1) (A.3.6) 

the elements of the sequence generated by the relationship (A.3.5) belong to the set 
S, Xk E S, S being convex. This property is especially useful from a practical point 
of view because it provides a feasible solution of the problem at whatever iteration 
the algorithm stops. 

The sequence with the largest elements satisfying both the conditions (A.3.4) 
and (A. 3 .6) is given by {,uk = 11k h > o. In this case the relationship (A.3 .5) leads to 
the so-called Method of Successive Averages or MSA: 

i.e. 

with Xl E S. 

Xk+1 = ~ + (11k) [!fJ(xk) - Xk] E S 

Xk+1 = ((k - 1) Xk + !fJ(xk))/k 
(A.3.7) 

The above observations can also be applied to the compound fixed point 
problem (A.3.3a). In this case the relationship (A.3.5) becomes: 

(A.3.8) 

with Xl E Sx. 
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By using Blum's theorem, it can be demonstrated that if the compound 
function ri.J7(x)) has a unique fixed point x* = A1J(x*)), the relationship (A.3.8) 
defines a sequence convergent to the fixed point x*, if the function x = P(Y) is 
continuous and monotone non-increasing, the function y = 1J(x) is continuous and 
strictly monotone increasing, the set S is nonempty, compact and convex (as 
required by the sufficient conditions of existence and uniqueness), and if the 
functiony = 1J(x) has a symmetrical and continuous Jacobian. 

A.4. Optimization problems 
Optimal points x* of a scalar function of a vector, j(x), are the points 
corresponding to minimum or maximum values of the function. For simplicity, 
what follows will make reference only to minimum points(5). Formally, letj(x) be a 
scalar function defined in a set S <:;;; E"; the point x* is called a local minimum 
point of the function if there is a neighborhood N I..x*) of radius 8 such that the 
following condition holds: 

j(x)~j(x*) Vx:t:x*,xENl..x*) 

If this condition holds for all the points of S, the point x* is called a global 
minimum point of the function j(x) over S. In general, a continuous function j(x) 
over a compact set S always has at least one global minimum point. A function 
with a unique minimum point is defined unimodal; an example of this kind of 
function is given by the strictly convex functions defined previously. 
The problem of the search for the minimum points x* of a function is defined 
minimum or minimization problem,j(x) is defined objective function, S feasibility 
set. The minimization problem is formally expressed as: 

x* = argminj(x) (AA.l) 

XES 

Minimization problems and fixed point problems are related to each other. In fact 
the fixed point problem (A.3.1) defined by the function IjJ(x) is equivalent to a 
minimum problem defined by the objective function with non-negative values 
j(x) = (ljJ(x) - xf( 1jJ(x) - x) beingfix) = 0 if and only if IjJ(x) - x = O. 

The definition of local and global minimum points cannot be used in the search 
for such points since it would require the calculation of fix) over all the points in S 
and comparison of their values. It is therefore essential to find necessary and/or 
sufficient conditions for the minimum points expressed in terms of "local" 
properties of the function. The necessary and sufficient conditions will be reported 
in the following by differentiating the case in which the minimum point is interior 
to an open set and that in which it may be on the boundary of a closed set. 



APPENDIX A 659 

A.4.1. Properties of minimum points 

A.4.1.1. Properties of minimum points on open sets 

The necessary condition for which the point x* is the local minimum for the 
differentiable function j(x) defined in an open set S is that it is a point of 
stationariety ofthe objective function, i.e. is that in x* we have Vj(x*) = O. 

In fact, if x* is a point interior to S, any direction is feasible. Furthermore, 
since x* is a local minimum point, the directional derivative calculated in x* must 
be non-negative for any direction: 

Vj(x*/ h ~ 0 Vh (A.4.2) 

Since -Vj(x*) is a feasible direction, the condition (A.4.2) holds only if the 
gradient is null. Note that the nullity of the gradient in x* is only a necessary 
condition for x* to be a local minimum point. In particular, local maximum points 
also satisfy the same condition. 

If x* is a point of stationariety of the continuous and second order 
differentiable function j(x), with continuous first and second derivatives, the 
sufficient condition for x* to be a local minimum is that the Hessian matrix in x* 
is positive semi-definite. 

In fact, applying Taylor's second-order formula (A.1.l2), it follows: 

j(x) = j(x*) + 1I2(x - x*/ H.t(XO) (x - x*) (A.4.3) 

where XO is a point of the segment (x, x*). 
If HI-x) is positive definite for the sign permanence theorem, a neighborhood 

of x*, Nl.x*), can be found such that HI-x) is positive definite at all points within 
this neighborhood. If x belongs to this neighborhood, all the points of the segment 
(x, x*) belong to it and so does xO. From this it follows that: 

112 (x - x*/ Hl-xO) (x - x*) ~ 0 => j(x) ~j(x*) Vx E N J..x) (A.4.4) 

If the functionj(x) is convex, the Hessian matrix is positive semi-definite in all 
S and from (A.4.4) it follows that the nullity of the gradient is a necessary and 
sufficient condition for x* being a global minimum point. The minimum points of 
a convex function make up a convex set. Furthermore, if the function is strictly 
convex, a point of stationariety is also the unique global minimum point. 

A.4.1.2. Properties of minimum pOints on closed sets 

In general, the closed set S is defined by equality and/or inequality relationships, 
known as constraints. In what follows, the case of m inequalities constraints will 
be discussed, equality constraints can be reduced to two inequalities (g;(r)=O is 
equivalent to g;(x) $; 0 and - g;(x) $; 0): 
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S={x:glx):SO i=I,2, ... ,m} 

Using the m-vectorial function of vector g(x), the constraints can be expressed as: 

g(x):S 0 

With this notation the optimization problem can formally be expressed as: 

minj(x) 

g(x):S 0 

Unlike the previous case, the minimum point might lie on the boundary of the 
set S. In this case, not all directions are feasible; in particular, the gradient may not 
be a feasible direction and the stationariety of the function in x* hasn't to be 
verified by a minimum point. 

Denoting D(x*), the set of feasible directions at the minimum point x*, because 
of the results (A. I. 7) and (A.I.8) on directional derivatives, the function must have 
non-negative directional derivatives in x* for all the feasible directions: 

vfCx*l h ~ 0 Vh E D(x*) (A.4.5a) 

If the set S is convex and x is a point belonging to S, the direction (x - x*) is 
feasible by definition and (AA.5a) becomes: 

Vj(x*/ (x -x*) ~ 0 Vx E S (A.4.5b) 

The points satisfying (AA.5a) or (A.4.5b) are also denoted as virtual minimum 
points since in general the two conditions are only necessary for the point x* to be 
the minimum. They are also sufficient if the objective functionj(x) is convex. Also 
in this case the minimum points of a convex function make up a convex set. In the 
case of a strictly convex function, there is a unique minimum point. 

A.4.2. Solution algorithms for optimization problems 
This section will describe some solution algorithms for particular optimization 
problems, which have been mentioned in previous chapters. 

A.4.2.1. Mono-dimensional optimization algorithms 

These algorithms solve the problem of finding the minimum of a functionj( B) of a 
scalar variable (). If the value () of minimizing j( B)in the interval «()min, ()maJ is 
indicated with ()*, the mono-dimensional optimization problem can be expressed 
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as follows: 

B* = argmin feB) (A.4.6) 
8min S858max 

In practice, the problem (A.4.6) is rarely solved as such. However, It IS an 
element common to many solution algorithms for more complex problems since as 
will be seen, it allows to obtain the minimum of a vector function along a direction 
h starting from a point x*. In this case, in fact, the points of the straight line 
passing from x* oriented as the vector h are expressed as x* + B h and as B varies, 
the points of the whole straight-line (-00 < B < +(0) or of the half-line concordant 
with h (B > 0) are described (see section AU ). 

The most straightforward algorithm solving the problem (A.4.6) is the 
"uniform search". The interval Bmin, Bmw;, is subdivided into subintervals of equal 
widths 0 with extremes at the "grid poirits" Bl = Bmin> ~, ... , Bn = Bmax; the 
objective function is evaluated in each of the n points Bk and {}* is the point 
corresponding to the lower value of the function (Fig. A.4.1). If the function is 
convex, the actual minimum point is included in the interval {}* ± 0. 

------+----+---t-------\-------+- ----f---- --1- -+------+-~ 

Bmin B-o B ()+ t5 Bmax 

Fig. A.4.1 Uniform search algorithm. 

More efficient algorithms for convex functions are based on the principle of 
"reduction of the uncertainty interval". At each iteration, an interval of extremes 
(ak' bk) is obtained which includes the minimum of the function, called the interval 
of uncertainty. The width of this interval is reduced at each iteration. In the 
following, the main steps of one such algorithms, known as the "method of the 
golden section" will be described. The name derives from its use of the property of 
the golden section of a segment to re-compute the value of the j(0) only once at 
each iteration see Fig. A4.2. The algorithm is asymptotically convergent ifj(.) is a 
convex function (even in a weaker sense than that described in section AI.3) 



662 REVIEW OF NUMERICAL ANALYSIS 

- +------f--------+ 

Case 1 • • 
ak+l b ttl 

Case 2 
. -- -~ . ~ ---....-- -.- - - - -*-- --- -_.-

Fig. AA.2 Illustration of the golden section algorithm. 

Golden section algorithm 

Step 0 Initialization. The maximum width £, allowed for the uncertainty interval 
is chosen. The extremes of the initial interval are set 

This gives the points: 

The values of the function j( al) and f{fJI) are calculated_ The counter of 
the iterations k is set to one. 

Step 1 Stop test. If (bk - ak) < £ stop and the solution of the problem is 

Step 2 

()* = ak +bk 

2 

Otherwise, ifj(ak) is greater thanf{fJk) go to step 2 (Case 2 in Fig. AA.2). 
If it is less, go to step 3 (Case 1 in Fig. AA.2). 

By definition of the golden section, we have 

Computef{fJk+J) and go to step 4. 
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Step 3 

Furthermore, it results 

Computej{ak+l) and go to step 4. 

Step 4 Update the counter k = k + 1 and repeat from step 1. 

As an example, Fig. A.4.3 reports the relevant variables of the golden section 
method for the following problem: 

min( ()2 + 2()) (A.4.7) 
-3~9s5 

with stop threshold c= 0.2. 

k ak bk ak Pk f(aJJ f(PJJ Ii 

1 -3.00 5.00 -0.104 2.104 -0.197184 8.634816 8.00 

2 -3.00 2.10 -1.152 -0.104 -0.976789 -0.197184 5.10 

3 -3.00 -0.10 -1.952 -1.152 -0.094366 -0.976789 2.90 

4 -1.95 -0.10 -1.152 -0.773 -0.976789 -0.948402 1.85 

5 -1.95 -0.77 -1.525 -1.152 -0.724456 -0.976789 1.18 

6 -1.52 -0.77 -1.152 -1.045 -0.976789 -0.997966 0.75 

7 -1.15 -0.77 -1.045 -0.910 -0.997966 -0.991941 0.38 

8 -1.15 -0.91 -1.065 -1.045 -0.995813 -0.997966 0.24 

9 -1.06 -0.91 -1.045 -0.966 -0.997966 -0.998854 0.15 

10 -1.05 -0.91 -0.966 -0.959 -0.998854 -0.998323 0.13 

11 -1.05 -0.96 -1.014 -0.966 -0.999805 -0.998854 0.09 

12 -1.05 -0.97 -1.017 -1.014 -0.999727 -0.999805 0.08 

13 -1.02 -0.97 -1.014 -0.984 -0.999805 -0.999756 0.05 

14 -1.02 -0.98 -1.005 -1.014 -0.999976 -0.999805 0.03 

15 -1.02 -1.01 -1.016 -1.005 -0.999757 -0.999976 0.00 

Fig. A.4.3 Relevant variables of the golden section algorithm. 

The algorithms discussed so far are based exclusively on evaluations of the 
objective function in different points without using derivatives. If the function is 
differentiable, and especially if its derivative f( ()) is easily calculated, algorithms 
exploiting the "information" contained in the derivative can be used to solve the 
problem (A.4.7). The main steps of the bisection algorithm which halves the 
uncertainty interval at each iteration on the basis of the value assumed by the 
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derivative at the mid point of the current uncertainty interval are described in the 
following. The algorithm is asymptotically convergent if the function j( B) is 
convex (also in a weaker sense than that introduced in section A.I.3). 

Bisection algorithm 

Step 0 Initialization. The maximum width, [;, of the final interval of uncertainty 
is chosen. If the function is convex, the condition f( Bmin) ~ 0 implies that 
Bmm is a minimum point, analogously f( Bmax) ::; 0 implies that Bmax is a 
minimum point. Otherwise set the extremes of the initial interval al 

Bmim b l = Bmax and the counter at k = 1. 

Step 1 The derivative f( Bk) is calculated at the mid-point of the uncertainty 
interval Bk = 1I2(ak + bk). Iff(Bk) = 0, the solution is (}' = Bk• Iff(Bk) > 0 
go to step 2, iff(Bk) < 0, to step 3. 

Step 2 Let ak+1 = ak, bk+1 = Bk and go to step 4. 

Step 3 Let ak+I = Bk, bk+1 = bk and go to step 4. 

Step 4 Stop test. If bk+ i - ak+i < [; stop and the solution of the problem is: 

Otherwise increase the counter, k=k+ 1, and repeat from step I. 

Fig. A.4.4 illustrates the bisection algorithm for the problem (A.4.7). 

A.4.2.2. Unconstrained multi-dimensional optimization algorithms 

The unconstrained multi-dimensional optimization problem: 

min/ex) 
xeEn 

(A.4.8) 

can be solved by using different algorithms, some of which are based exclusively 
on the calculation of the values of the objective function, others on the use of first 
and second order derivatives. 
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a k Ok b k 

Case I 1(0.»0 
a k+ 1 Ok+ 1 b k+ 1 

Case 2 ICo.)<O 
a k+ 1 Ok+1 bk+1 

k 8 . b. 0. «0.) r (0.) & 

1 -3.00 5.00 1.00 3.00 4.00 8.00 

2 -3.00 1.00 -1.00 -1.00 0.00 4.00 

3 -1.00 1.00 0.0a- 0.00 2.00 2.00 

4 -1.00 0.00 -0.50 -0.75 1.00 1.00 

5 -1.00 -0.50 -0.75 -0.94 0.50 0.50 

6 -1.00 -0.75 -0.88 -0.98 0.25 0.25 

7 -1.00 -0.88 -0.94 -1.00 0.13 0.13 

8 -1.00 -0.94 -0.97 -1.00 0.06 0.06 

9 -1.00 -0.97 -0.98 -1 .00 0.03 0.03 

10 -1.00 -0.98 -0.99 -1.00 0.02 0.02 

11 -1.00 -0.99 -1.00 -1.00 0.01 0.01 

Fig. A.4.4 Illustration of the bisection algorithm. 

A brief description of some descent direction algorithms follows. These 
algorithms make use of the results described in section A.I, and, at each iteration 
k, search for the minimum of the function j(x) along a direction of negative 
directional derivative hk (linear minimization). The algorithms converge towards a 
null gradient point (stationariety point) of the function j(x); they converge towards 
a global minimum point if the objective function is convex. The simplest of such 
algorithms, known as gradient algorithm, assumes the opposite of the gradient as 
descent direction. The main steps of the algorithm are given below. 
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Gradient algorithm 

Step 0 Initialization. The stop parameter /:: is fixed. This can be either the 
maximum gradient module or the maximum deviation between the values 
ofj{x) in two successive iterations. An initial point Xl is chosen and the 
counter of the iteration k is set to one. 

Step 1 Calculation of the search direction 

Step 2 Line search. The value of the parameter e minimizing the function of a 
single variable j{Xk + e hk) is sought 

ek = argmin f(x k + e hk) 
O$(J$!J' 

where ()* is a prefixed, large enough value. The line search can be carried 
out by using one of the algorithms described in the previous section. 

Step 3 Calculation of the next point as 

Step 4 Stop test. If the module of the function gradient in Xk+I is less than the 
stop threshold: 

or if the relative difference of two successive values of the objective 
function is less than the stop threshold: 

stop, otherwise increase the counter (k = k + 1) and repeat from step 1. 

Fig. AA.5 describes an application of the gradient algorihm to the minimization of 
the function: 

(AA.9) 

with stop parameter /::= 0.10. 
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3 

2 

0 2 3 

k Xk Vj(Xk) IIVj(xk)1I hk=-Vj(Xk) rJ Xk+1 
flXk) 

(0.00,3.00) (-44.00,24.00) 50.12 (44.00,-24.00) 0.062 (2.70,1.51) 
52.00 

2 (2.70,1.51) (0.73,1.28) 1.47 (-0.73,~1.28) 0.24 (2.52,1.20) 
0.34 

3 (2.52,1.20) (0.80,-0.48) 0.93 (-0.80,0.48) 0.11 (2.43,1.25) 
0.09 

4 (2.43,1.25) (0.18,0.28) 0.33 (-0.18,-0.28) 0.31 (2.37,1.16) 
0.04 

5 (2.37,1.16) (0.30,-0.20) 0.36 (-0.30,0.20) 0.12 (2.33,1.18) 
0.02 

6 (2.33,1.18) (0.08,0.12) 0.14 (-0.08,-0.12) 0.36 (2.30,1.14) 
0.01 

7 (2.30,1.14) (0.15,-0.08) 0.17 (-0.15,0.08) 0.13 (2.28,1.15) 
0.009 

8 (2.28,1.15) (0.05,0.08) 0.09 
0.007 

Fig. A.4.5 Graphic representation and relevant variables for an application of the gradient 
algorithm. 
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This figure shows a typical characteristic of the gradient algorithm: in the first 
iterations a rapid decrease in the objective function is observed, while successive 
iterations show smaller reductions and zigzagging towards the optimum value. The 
problem (A,4.8) can be solved with other algorithms whose structure is 
substantially similar to that described above, apart from the calculation of the 
descent direction hk. These algorithms, in order to accelerate convergence, use 
directions obtained by "deflecting" the gradient and for this reason they are 
denoted "deflected gradient" algorithms. 

Fletcher and Reevers' conjugate gradient algorithm deflects the opposite 
gradient at each iteration, adding a positive multiple of the direction used in the 
previous iteration. In the case of quadratic objective function (f(X)=XT H x), this 
algorithm generates a series of conjugate directions (from which it derives its 
name) with respect to the matrix H, and converges at the optimum point in a finite 
number of iterations equal to the number of components of x. In the general case, 
it usually converges more quickly than the gradient algorithm, and in particular 
solves the zigzagging problems in proximity of the minimum point typical of the 
gradient. 

The description of the conjugate gradient algorithm is basically similar to that 
of the gradient algorithm. The only difference is in the calculation of the descent 
direction (Step 1) which is substituted as follows. 

Conjugate gradient algorithm 

Step 1 Calculation of the search direction 

A.4.2.3. Bounded variables mUlti-dimensional optimization algorithms 

The problem of minimizing the objective function, imposing constraints on the 
lower and/or upper bounds of the components of the vector x is slightly more 
complex than that of unconstrained optimization (AA.8). In this case the constraint 
glx) can be written as: 

Xi ~ Ci and/or Xi::;; Ci 

The variables Xi can be easily modified so that the constraints are always 
expressed in the form Xi ~ 0, therefore the problem of optimization with inequality 
constraints can be formally expressed as: 
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min/ex) 
x~o 

(A.4.1O) 

The problem (A.4.10) can be solved by using a feasible directions algorithm 
similar to those described previously. The main difference is that the descent 
direction used for the unconstrained problem (A.4.8), e.g. the opposite gradient, is 
not necessarily a feasible direction with respect to the feasibility set defined by the 
constraints of the problem. To solve this inconvenience when it occurs, the descent 
direction can be "projected" over the feasibility set as in the projected gradient 
algorithm described below. 

Projected gradient algorithm 

Step 0 Initialization. The stop parameter G is fixed, a feasible initial point XI is 
chosen (e.g. XI = 0), the value of the objective functionj(xl) is calculated 
and the iterations counter k set to one. 

Step 1 Calculation of the search direction. The components of the direction hk 
are equal to the components of the gradient with changed sign if these 
components are feasible (Le., if the x\ is positive and/or the gradient 
component is negative). Vice versa if the j-th component of the gradient 
changed of sign is not feasible, the corresponding component of hk; is set 
to zero; this corresponds to the projection of -'Vj(~) over the hyperplane 
perpendicular to the j-th axis. 

hk =_ 8fk) 
, ox; 

h: =0 otherwise 

Step 2 Mono-dimensional search. The minimum of the function j(~ + () hk) is 
searched for in the interval [0, 0"] where 0" is the maximum value 
allowing non-exit from the feasibility set (Le. ensuring the non-negativity 
of all the components of Xk+ \ 

k 

with fI' = max ~ for i : hk, < 0, otherwise 0" = 00 , _hk , 
(Note that for h/ < 0 it must result Xk; > 0 because of step 1) 
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Step 3 Calculation of the next point 

Step 4 Stop test. This can be carried out on the projected gradient module 

verifying the impossibility any further move along the projected gradient 
or heuristically, on the percentage decrease of the objective function in 
the last two iterations: 

Otherwise increase the counter, k = k+ 1, and repeat from step 1. 

A.4.2.4. Linearly constrained multi-dimensional optimization algorithms 

The problem of minimizing the objective function over a closed set defined by 
linear inequality and/or equality constraints can be stated formally as: 

minj{x) 

Ax:5:a 
Bx=b 

(A.4.11) 

This problem can be solved with different algorithms which differ in the way they 
generate the "feasible descent direction" hk' i.e. a direction along which it is 
possible to move while reducing the objective functionj{x) and remaining within 
the set S defined by the constraints. A description of the Frank-Wolfe algorithm 
follows which at each iteration generates the direction hk, minimizing a linear 
approximation ofj{x). 

Frank-Wolfe algorithm 

Step 0 Initialization. The stop parameter Ei is fixed; a feasible initial point Xl is 
chosen and the iteration counter k is set to one. 
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Step 1 Generation of the feasible direction. The linear programming problem is 
solved: 

l = argmin Vj(x"/ y 
Ay=a 
By~b 

(A.4.12) 

The problem is equivalent to the minimization of the linear approximation 
ofj(x) at the point x" given by: 

once the constant terms are eliminated. Problem (A.4.12) can be solved 
with the simplex algorithm or one of its variants(6). The descent direction 
is hk = l-x" 

Step 2 Line search. The linear minimum of the function j(x" + () hk) is searched 
for: 

()k = argminj(xk +()hk) 
0$8$1 

for () included in the interval [0,1]. The points Xk and l correspond to the 
extreme values of (); since both are feasible by construction and the set S 
is convex, all the points of the segment that joining them are feasible. 

Step 3 Calculation of the next point: 

Step 4 Stop test. If Vj(x"/(fl - Xk) > -£ or, more simply (but less 
effectively), If{x'') - j(x"+I)1 / j(x") < £ stop; otherwise increase the counter, 
k = k + I, and repeat from step I. 

Also in this case it is possible to demonstrate that ifj(x) is a convex function, the 
algorithm converges to the solution of the problem (A.4.II). 

Fig. A.4.6 illustrates the application of the Frank-Wolfe algorithm to the 
following optimum problem: 

minx21 +2X22-2xIX2-IOX2 

o ~XI ~ 4 
o ~X2 ~ 6 

with stop parameter £ = 0.10. 
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6 +---___,;;-----o~---o--___,,___--r_--____:_ly, 

Unconslrluncd solution 

5 • 1(5.0,5.0)=-25.0 

Solullon 

f(4.0,4.5)=-24.5 

4 

f=-22.5 

3 f=-20 

f=-15 
2 

f=-10 

f=-5 

y, 

x, 2 3 4 

k \lj(J') l EI J'+l j(J'+I) j(J')_j(J'+I) 
0 0,000 

0,000 
0,000 (4,6) 0,750 3,000 -22,500 22,500 

-10,000 4,500 
2 -3,000 (4,0) 0,119 3,119 -23,213 0,713 

2,000 3,969 
3 -1.700 (4,6) 0.206 3,301 -23.446 0,233 

-0,362 4,385 
4 -2,168 (4,0) 0,063 3.344 -23,622 0,176 

0.938 4,111 
5 -1.534 (4,6) 0.144 3.439 -23,728 0,106 

-0.244 4,383 
6 -1,888 (4,0) 0.045 3.464 -23,816 0.089 

0.654 4,186 

Fig, A.4.6 Graphic representation and significant variables for an application of the Frank-
Wolfe algorithm. 
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A.S. Variational inequality problems 
Let ({I...x) be a vectorial function of a vector defined in a convex set S s:;;; It', with 
values in the set T = ({I...S) = {({I...x) : x E S}s:;;; F!'; the mathematical problem, called 
variational inequality, with solution in the point x* E S is defined as: 

({I...x*l(x-x*)~O 'dXES (A.S.I) 

In other words, the problem of the variational inequality of a vectorial function 
of a vector consists of the search for point x* at which the vector function ({I...x*) 
has a non-negative scalar product (i.e. angles::; n12) with all the vectors joining the 
point x* with every other point x of the set of definition S. 

Variational inequality problems can be considered a generalization of 
minimization problems, in particular of the conditions of virtual minimum 
(AA.Sb), since the vectorial function of vector ((I...x) is not required to be the 
gradient of a scalar function of vector fix). To show this, let consider the generic 
minimization problem: 

x* = argmin fix) 
XES 

(A.S.2) 

If the functionj(x) is differentiable, its gradient Vj(x) is a vectorial function of 
vector, and the virtual minimum conditions are given by: 

vj(x*l (x - x*) ~ 0 'dXE S (A.S.3) 

It then results that the variational inequality (A.S.I) in the function 
((I...x) = Vj(x) coincides with the expression of the virtual minimum conditions of 
the minimization problem (A.S.2). Furthermore, if the gradient Vj(x) exists, the 
minimization problem (A.S.2) can be reformulated as: 

x* = argmin z(x) = J/ Vj(t)T dt 
XES 

(A.S.4) 

On the other hand, given a vectorial function of vector ((I...x) with symmetrical 
Jacobian Jac[({I...x)], a minimization problem can be defined: 

x* = argminj(x) = J/ ({I...t)T dt 
XES 

(A.S.5) 

In general, the value of the curvilinear integral appearing in (A.S.4) depends on 
the integration path; however, if the Jacobian Jac[({I...x)] of the integrating function 
({I...x) is symmetric, the value of the integral is independent of the integration path, 
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being the set of definition convex (Green's theorem). In other words, if and only if 
the integrating function cp(x) has symmetrical Jacobian, the former can be the 
gradient of a function j{x), i.e. Vj{x) = cp(x), of which Jac[ cp(x)) is the 
(symmetrical) Hessian matrix. In the equivalent minimization problem (A.S.5) is 
correctly defined, the necessary conditions of virtual minimum are given by: 

i.e. 
vj{x*l (x - x*) :2: 0 VXE S 

cp(X*)T (x - x*) :2: 0 VXE S 
(A.S.6) 

It can immediately be seen that the condition (A.S.6) is formally coincident 
with the variational inequality (A.S.I). 

If the function cp(x) is continuous and differentiable with symmetrical and 
semi-definite positive Jacobian Jac[cp(x)), a vector x* solving the constrained 
optimization model (A.S.S) solves the corresponding variational inequality (A.5.I) 
and vice versa. 

In this case, in fact, the objective function of the problem (A.S.S) j{x) is 
differentiable with continuous gradient and continuous positive semi-definite 
Hessian matrix, since Vj{x) = cp(x), and Hess[f{x)) = Jac[cp(x)), therefore j{x) is 
convex, and so the conditions of virtual minimum (A.S.6) are necessary and 
sufficient. 

A.5.1. Properties of variational inequalities 
Sufficient conditions for the existence of at least one solution of the variational 
inequality (A.S.I) can be obtained by applying Brouwer's theorem, as follows. 

Theorem. The variational inequality problem (A.S.I) has at least one solution if: 

S is a nonempty, compact and convex set; 
cp(x) is a continuous function. 

Sufficient conditions for the uniqueness of the variational inequality solution 
are given by the following theorem. 

Theorem. The variational inequality (A.S.I) has at most one solution if: 

cp(x) is a strictly monotone increasing function, i.e.: 

(cp(x) - <p(x')l (x' - x') > 0 VX',X"E S 

In fact, if there existed two different vectors solving the variational inequality, 
XI* :;f=X2* E S, we would have: 
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q.(xl*l(x-Xl*)2:0 VXESx 

q.(x2*l (X - X2*) 2: 0 VXESx 

From (A5.7a) for x = X2*: 

Furthermore, from (A5.7a) for x = Xl*' it results: 

Le. 

Adding (A.5.8a) and (A5.8b), it would follow: 

i.e. 
(q.(X\*) - tp(x2*)l (X2* - Xl *) 2: 0 

(q.(X2*) - q.(xl*)l(X2* -Xl*) ~ 0 

which contradicts the monotonicity assumption. 
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(A.5.7a) 
(A5.7b) 

(A5.8a) 

(A5.8b) 

A.5.2. Solution algorithms for variational inequality problems 
Solution algorithms for variational inequality problem (A5.I), in the case of the 
function q.(x) with symmetrical Jacobian, are based on algorithms solving the 
equivalent minimization problem (A5.5) described in section A4.2. Note that in 
this case the gradient, Vj{x), of the objective function of the minimization 
problem, used by the algorithm, is given by the function q.(x) defining the 
variational inequality. 
In the general case of a function q.(x) with non-symmetrical Jacobian, various 
solution algorithms can be adopted; even though their convergence analysis 
usually requires conditions that are not easily verifiable. One of the simplest, 
called diagonalization algorithm, generates a succession of vectors, J!' , starting 
from a feasible point, XO ES, solving a succession of variational inequalities defined 
by functions with diagonal Jacobians approximating the problem (A5.l). In 
particular, at a point x* E S, the i-th component function CPi(X) of the vectorial 
function q.(x), can be approximated by a function CJ'*i(Xi) obtained by fixing all the 
other component of X to their values xl (Le. diagonalizing the Jacobian): 

CPi(Xh ... , Xi-h Xi, Xi+l, ... ) == CP*i(X*h ... ,x*i-h Xi, X*i+h ... ) = CP*i(Xi) Vi 

Thus the variational inequalilty (A5.l) can be approximated by a variational 
inequality defined by a function of cp*(x) with diagonal Jacobian: 
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rAX*)T (X - X*) == L,;rp* ;(X;) (X; - X;*) ;::: 0 V X E Sx (A.5.9) 

The solution of the approximate variational inequality (A.5.9) can be obtained 
by solving the equivalent minimization problem (A.5.5), with one of the 
algorithms described in section AA.2. 

Notes 

(II Two mathematical problem are said to be equivalent if the solutions of one problem are also 
solutions of the other and vice versa. In this case the analysis of the theoretical properties of the 
solutions such as their existence and uniqueness, and the convergence analysis of resolutive 
algorithms can be carried out for only one of the two problems. 

(2) Banach's theorem requires the function if(x), defined over S with values in T <:; S, to be a 
contraction (a stricter property than that of monotonicity) over a complete set (a weaker property 
than that of compactness), or that the function if(x) is a quasi-contraction (implying monotonicity) 
over a compact set. Note that in both cases the function is continuous. 

(3) 

(') 

More in general it is sufficient to have: 

(if(x') - if(x',)/ (x' - x'') < (x' - x'f (x' - x") \/x' oF x" E S 

If the function if(x) is the realization of a random variable, and an unbiased estimate of its value is 
available, the convergence is almost certain. (This is the most general of the cases originally 
analysed in Blum's theorem). 

(5) The results reported and the algorithms described can easily be extended to maximum points, 
bearing in mind that the maximum points of a function correspond to the minimum points of the 
opposite function - j(x). 

(6) The solution of the problem A.4.12 is generally one of the vertices of the set defined by the linear 
equations and inequalities. Therefore the Frank-Wolf algorithm can move only along directions 
pointing to the vertices and presents zigzagging problems in proximity of the minimum similar to 
those described for the gradient algorithm. 
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link 58 

Partial share model 179 
Path(s) 25 

-

cost 30 
cost vector 30 
choice see Path choice 
flow 33 
flow vector 33 

additive cost vector 30 

INDEX 

backward shortest 436 
efficient 441 
explicit _ enumeration 440 
feasible 264 -
forward shortest 436 
link-wise additive costs 256 
link-wise non-additive costs 

256 
non additive cost vector 31 
shortest _ algorithms 436 

Path choice 
_ exhaustive approach 198, 213 

model see Path choice model 
_ selective approach 198,213 
explicit path enumeration 198 
implicit path enumeration 198 

Path choice model 179,197,219 
_ for road systems 197 
_ for transit systems 207 
shortest hyperpath algorithms 

468 
shortest path algorithms 436 

Performance 
_ attribute see Attribute(s) 

indicators 632 
_ variable(s) 26,28 

vector 28 
additive path _ variables 28 
supply _ variables 570 

Planning process 599 
Point elasticity see Elasticity 
Pre trip 

choice 197 
choice behavior 209 

len route mixed choice 197 
Price variables 567,570 
Primary activity destination 221 
Priority intersection 57 
Probability function 97, 127 
l'robit model(s) 128,203 

Factor-Analytic _ 130 
Random Coefficients 13 1 

Project state 611 



Queuing 
_ delay 83 
_link 65, 78, 370 
_ theory 85 
deterministic models 88 
expected queue length 86 
models for queuing links 78 
stationary _ system 81 
queue discipline 85 
server 78 

Random residuals 96, 260 
Random utility model(s) 95,215 

_ for partial share 181 
additive _ 97, 143 
aggregation methods for _ 151 
factorialization of 181 -
mathematical properties of _ 142 

Reciprocal substitution 
coefficients 100 
rates 193 -

Renewal process 348 
Revealed Preference (RP) 492, 

508 
Rigid demand 253,275 

_ Deterministic User Equilibrium 
461 

_ Stochastic User Equilibrium 
457 

Route choice model see Path 
choice model 

Running time 48 

Sample enumeration see 
Aggregation methodes) 

Sampling 
estimate 489 -

_ estimator(s) see Estimator(s) 
rate 489 -

_ strategy 487 
_ surveys see Survey(s) 

unit 487 -
cluster 488 -
simple random _ 488, 494 

INDEX 

stratified random 488, 490, 
495 

Saturation flow 50, 88 
Schedule delay 399 

early arrival penalty 399 
early departure penalty 400 
late arrival penalty 399 
late departure penalty 400 

Scheduled service(s) 
_ system 58 
_ with irregular high frequency 

425 
_ with regular low frequency 

418 
Selective approach 198, 213 
Server see Queuing 
Service line 58 
Service pattern 85 
Shadow prices 627 
Shippers 231 
Shortest 

_ hyperpath algorithms 467 
_ path algorithms 436 

Signalized intersection(s) 49, 87 
delay for _ see Delay 
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effective green/cycle ratio 50, 87 
effective green time 50, 87 
effective red time 87 
traffic-ligth cycle 50, 87 

Signal setting optimization see 
Supply Design Problem(s) 
(SDP) 

Simulation model 568 
Size 

-

function 190 
variable 190 

Social objective function 570 
Socio-economic attributes see 

Attribute( s) 
Space continuous models 77 
Space discrete models 76 
Space mean speed 66 
Spatial Price Equilibrium (SPE) 

models 231 
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Specification 
of demand models 493 -

Specific attributes see Attribute(s) 
Stackelberg game see Game 

theory 
Stated Preferences (SP) 492, 508 
Stationary flow conservation 

equation 69 
Stationary models 68 
Stationary probability distribution 

346 
Sta tistic( s) 

_ and test on goodness of fit 506 
Rho-square _ 506 

Stochastic process 336, 348 
models 345 -

Strategic planning 604 
Study area 6 
Supply Design model(s) see 

Supply Design Problem(s) 
(SDP) 

Supply Design Problem(s) (SDP) 
565 

constraints 568 
_ objectives 567 
_ variables 567,570 
extra-urban road network capacity 

design 576 
general supply design model 569 
objective function 569 
operator objective functions 571 
optimal functional layout problem 

574 
optimal infrastructure layout 

problem 572 
road network capacity design 

576 
road network layout design 572 
traffic signal setting problem 

576 
transit network design 577 
urban road network capacity 

design 576 
Supply model 23, 36, 256 

INDEX 

Supply performance variables 570 
Surplus 613,618 
Survey(s) 

_ design 493, 511 
cordon 486 
destination 487 
household 487 
mail 487 -
on-board 486 
Revealed Preference (RP) _ 492, 

508 
sampling _ 486, 556 
Stated Preference (SP) _ 492, 

508 
statistical design of sampling _ 

487 
while trip _ 486 

Synchronic networks 25 
System design phase 603 
System Optimal assignment 291 
System projects 601 

Tactical planning 605 
Target variable method see 

Aggregation methodes) 
Technical coefficients 235 
Temporal centroid 419 
Temporal variations of 

Transportation Demand 
cyclic variations 14 
estimation of demand variations 

(forecasting) 557 
long term variations (trends) 13 
inter-period variations 14 

Territorial impacts 609 
Test(s) 

on the functional form 507 
Chi-square _ 504 
formal on coefficients 503 
informal on coefficient 502 
Likelihood Ratio 505 
T-student 504 -

Time mean speed 66 
Time period choice model 179 



Toll-barrier link 46 
Topological variables 570 
Total delay see Delay(s) 
Trade 

-

coefficients 237 
matrix 237 

Traffic assignment models see 
Assignment models 

Traffic counts 
aggregate calibration of demand 

models using _ 542 
estimation of intra-periodal 

dynamic demand flows 
using _ 548 

estimation of O-D demand flows 
using_ 522 

Traffic flow(s) see also Flow(s) 
_ theory 65 
macroscopic _ models 75 
mesoscopic _ models 75, 388 
microscopic _ models 75,388 

Traffic-Iigth see Signalized 
intersection( s) 

Traffic signal setting problem see 
Supply Design Problem(s) 
SDP 

Traffic zones 6 
Transit line 

attractive 62, 209 
Transportation demand 

level 179 -
_ model(s) see Transportation 

demand model(s) 
temporal variations of _ see 

Temporal variations of 
Transportation Demand 

Transportation demand model(s) 
175,215,259,555 

activity participation _ 177 
aggregate _ 177 
aggregation procedure 220 
behavioral models 177, 184, 

188,231 
calibration of see Calibration 

INDEX 703 

descriptive _ 177, 185, 231 
deterministic utility model 202 
disaggregate _ 177, 231, 244 
elasticity of _ see Elasticity 
emission model(s) see 

Emission model(s) 
estimation of see Estimation 
four-level (or four-stage) model 

179 
gravitational model 192 
interpretative models see 

behavioral models 
mobility _ 176 
non interpretative models see 

descriptive models 
parking choice model 179, 195 
specification of _ see 

Specification 
time period choice model 179 
trip chaining models 176, 220 
trip emission model see trip 

frequency model 
trip frequency model 179, 184, 

217 
validation of see Validation 

Transportation supply 3, 23 
Transportation systems 1 
Travel demand flow(s) 10 
Travel models 176 
Travel strategy 209 
Tree Logit model see Logit 

model(s) 
Triangolar inequality 436 
Trip chaining models see 

Transportation demand 
model(s) 

Trip demand model system see 
Transportation demand 
model(s) 

Trip emission model see Emission 
model(s) 

Trip frequency model see 
Emission model(s) 
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Under-saturation 81 
Urban road 

link 48 -
_ network capacity 576 

User categories 178 
User flows see Flow(s) 
Uti! 100 
Utility 

_ updating model 333 
perceived _ 96, 100 
systematic _ 96, 98 

Validation 
of demand models 502 

Value Of Time (VOT) 194,502 
Variance-Covariance matrix 

of random residuals 98 -
_ of the Cross-Nested Logit 

model 122, 125 
_ of the Factor Analytic Probit 

model 131 
_ of the Hybrid Logit-Probit 

model 136 
_ of the Logit model 102 

INDEX 

of the Multi-Level Hierarchical 
Logit model 117 

of the Probit model 129, 130 
of the Random Coefficient 

Probit model 132 
_ of the Single-Level Hierarchical 

Logit model 110 
Variational inequality 281 

_ problems 673 
Vehicle flows see Flow(s) 
Vertice(s) see Node(s) 

Waiting 
link see Link(s) 

_ time 49,61 see also Delay 
Wardrop's 

_ first principle 264, 272, 282 
_ second principle 291 

Webster formula 51,91 
Within-day 253 

Zone centroids 6 
Zoning 6 



Main Variables 

ALm 
ALm} 
h, 
c 
c(f) 
Ci 

d, 
c, 
c,(f) 
d 
dod 
dod,m 
dod[smkh] 

e 
e(f) 
elf) 
fi 
f 
fi' 
I 
I'd 
fDUN 

/..~UN 

set of attractive lines at diversion node m 
set of attractive lines ofhyperpathj at diversion node m 
vector of physical and functional characteristics of link I 
vector of link costs 
vector of link cost functions 
vector of link costs for class i 
generalized transportation cost of link I for user class i 
generalized transportation cost of link I 
cost function for link I 
vector of demand flows 
demand flow for the ad pair 
demand flow of the users between the pair ad with mode m 
ad demand flow for purpose s using mode m and path k during period 
h 
vector of impact variables 
vector of impact functions 
impact function for link I 
total flow on the link I 
vector of link flows 
flow of user class i on link I 
vector of link flows for class i with entries f/ 
vector of link flows ffd 
vector of link flows in the deterministic uncongested network 
assignement 
vector of link flows in the stochastic uncongested network 
assignement 
vector of link flows in the uncongested network assignment 
generalized transportation cost of path k 
vector of total path costs 
vector of path cost functions 
additive cost of path k 
vector of additive path costs 
non additive cost of path k 
vector of non additive path costs 
vector of total costs for paths connecting the ad pair 
vector of additive costs g/DD for paths connecting the ad pair 
vector of non additive costs gtA for paths connecting the ad pair 
vector of total path costs for the pair ad and the mode m 
vector of additive path costs for the pair ad and the mode m 
vector of non additive path costs for the pair ad and the mode m 
flow on path k 
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hSUN 

hod 

hod'; 

hod,m 

t 
(iJ) 
j 
Jac[ ... ] 
lod 

lod,m 

k 
Kod 

I 
me 
Pk or Pod,k 

Pod 

Pod,i 

Pod",,,! 
p~JM 

Q 
Q 
QI 
qj or qod,j 

q or qod 
rnl 
rnl(f; bnl, YnJ 
rn 
S 

s 
S 
So 
SE 
Taj 
Talj 
Tbj 

Tbrj 
T~ 
TWj 

MAIN VARIABLES 

vector of path flows 
vector of path flows in the deterministic uncongested network 
assignment 
vector of path flows in the stochastic uncongested network 
assignment 
vector path flows of the users on the od pair 
vector path flows for the pair od and the class i 
vector path flows for the pair od and the mode m 
choice set for decision maker i 
oriented link between nodes i andj 
hyperpaths index 
jacobian 
set ofhyperpaths connecting the o,d pair 
set ofhyperpaths connecting the o,dpair on the network of the transit 
modem 
path index 
set of feasible routes connecting the centroid pair o,d 
link index 
monetary cost 
probability of choosing path k 
vector of path choice probabilities for the od pair 
vector of path choice probabilities for the od pair and the class i 
vector of path choice probabilities for the pair od and the mode m 
matrix of the path choice fractions resulting from the assignment 
model 
matrix ofhyperpath choice probabilities 
capacity 
capacity of link I 
probability of choosing hyperpathj 
vector of probabilities for all hyperpaths between the same o,d pair 
performance attribute n for link I 
performance attribute function n for link I 
vector of performance attributes rnl 
Expected Maximum Perceived Utility (EMPU) 
vector of path choice EMPUs 
saturation flow 
ideal saturation flow per lane 
vector of socio-economic variables 
total access/egress time in hyperpathj 
total alighting time in hyperpathj 
total on board time in hyperpath j 
total boarding time in hyperpathj 
total dwelling time in hyperpathj 
total waiting time in hyperpathj 



tal 
tal, 
tb, 
tbr, 
td, 
twl] 
I, 

tr, 
tw, 

U 
VJ 

v, 
V' 
Vi 
Vod 

Vod,i 

Vod,m 

Xj 

X 
XADD 

~DD 
x NA 

}vA 
Xod 

XodNA 

X ADD 
od 

Yi 
Y 
Yod 

Znk 

~DDnk 
NA 

Z nk 

Zod 

Z 
Pk 
P 
~k 
LI 

Llod 

Llod" 

Llod,m 

5r 

171] 

MAIN VARIABLES 

access/egress time on link I 
alighting time on link I 
on board time on link I 
boarding time on link I 
dwelling time on link I 
waiting time on diversion link I for hyperpathj 
total travel time for link I 
running time for link I 
average delay (at intersection) for link I 
vector of perceived utilities for user i 
perceived utility of alternative j for user i 
average speed on link I 
vector of systematic utilities for user i 
systematic utility of alternative j for user i 
vector of the systematic utilities Vk of the ad pair 
vector of the systematic utilities of the ad pair for the class i 
vector of systematic utilities for paths related to the ad pair and the 
modem 
cost ofhyperpathj 
vector of total hyperpath costs 
additive cost ofhyperpathj 
vector ofhyperpath additive costs 
non additive cost ofhyperpathj 
vector ofhyperpath non-additive costs 
vector of total hyperpath costs for the users of the ad pair 
vector of hyperpath non-additive costs for the users of the ad pair 
vector of hyperpath additive costs for the users of the ad pair 
flow on hyperpath j 
vector of hyperpath flows 
vector of hyperpath flows for the ad pair 
path performance variable n for path k 
additive path performance variable n for path k 
non-additive path performance variable n for path k 
minimum (shortest path) cost between pairs a and d 
vector of the minimum path costs between all the od pairs 
coefficient of the kth attribute in systematic utility 
vector of coefficients in systematic utility 
link-path incidence element 
link-path incidence matrix 
link-path incidence matrix for od pair 
link-path incidence matrix for the ad pair and the class i 
link-path incidence matrix for the od pair and the mode m 
hierarchical logit coefficient associated to intermediate node r 
diversion probability on link I within hyperpathj 
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I 

'71 
()r 

() 

AIj 
Aod,1j 

A 

MAIN VARIABLES 

component random residuals of alternative j for user i 
generic coefficient of the Gumbel random variable 
vector of coefficients of Gumbel random variables 
probability of crossing link I within hyperpath j 
probability of traversing link I within the hyperpathj for the users of 
the odpair 
matrix of the probabilities of traversing the links within each 
hyperpath 
matrix of the traversing probabilities Aod,1j of each link I within each 
hyperpath j for the users of the od pair 
variance-covariance (or dispersion) matrix of the vector of random 
variable x 
frequency of transit line accessed through link I (m,n) 
cumulated frequency at diversion node m 
cumulated frequency of the lines accessible at diversion mode m in 
the hyperpathj 
probability of path k within the hyperpathj 
probability of choosing path k within the hyperpathj for a user of the 
odpair 
path-hyperpath probability matrix 
matrix of the path choice probabilities OJod,kj within the hyperpaths for 
the odpair 
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