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Preface

As stated by Sybren de Groot and Peter Mazur! “Non-equilibrium thermodynamics
provides us with a general framework for the macroscopic description of irreversible
processes.” Its basic step is to extend the meaning of all thermodynamic properties
that we typically associate with equilibrium states, so that we can define and thus
apply them locally to systems out of equilibrium. It should be stressed, however,
that a general theory of non-equilibrium thermodynamics can be developed only
when the driving forces and the resulting fluxes (e.g. the temperature gradient and
the induced diffusive heat flux) can be assumed to be linearly related to each other.
This assumption is satisfied when the driving forces are not very strong and when
their time rates of change are not very fast, so that the entire system does not deviate
substantially from its equilibrium state. Although the assumption of linear force-
flux relations seems very limiting, though, in reality it applies very well to most
cases. Think, for example, to the laws of Fick, Fourier and Newton, relating the
diffusive fluxes of mass, heat and momentum to their respective driving forces, i.e.
the gradients of chemical potential, temperature and velocity: these relations appear
to apply very well even to systems far from equilibrium, i.e. when the driving forces
are not small. In any case, we do not have to forget that the general case of far
from equilibrium systems is heavily non-linear and can only be tackled using non-
equilibrium statistical mechanics.

This book is divided into two parts. The first part presents the theory of non-
equilibrium thermodynamics, reviewing its essential features and showing, when
possible, some applications. After describing in Chap. 1 the local equilibrium
assumption and the theory of fluctuations, in Chap. 2 we derive the celebrated
Onsager’s reciprocity relations and the fluctuation-dissipation theorem. Then, in
Chaps. 3 and 4, we describe the most common ways to follow the evolution of
stochastic systems, namely the Langevin and the Fokker-Planck equations. Chap-
ters 5 and 6 are more advanced, as they describe alternative ways to study the tra-
jectories of random systems, namely stochastic integration and path integrals.

IS.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Dover (1962).
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viii Preface

In the second part of this book, we show how the general theory of non-
equilibrium thermodynamics can be applied to model multiphase flows and, in par-
ticular, to determine their constitutive relations. After deriving all balance equations
in Chap. 7, in Chap. 8 we apply the results of non-equilibrium thermodynamics to
derive the constitutive relations. Then, in Chap. 9, we describe the diffuse interface
model of multiphase flows, as it is more fundamental than the classical, sharp in-
terface theory and is therefore more suitable to be coupled to all non-equilibrium
thermodynamics results. Finally, Chaps. 10 and 11 are devoted to determining the
effective constitutive relations and the effective equations of complex fluids and
composite materials. At the end, several appendices deal with some prerequisite
topics in mathematics, statistical thermodynamics, analytical mechanics and trans-
port phenomena.

This book grew out of graduate lectures on non-equilibrium thermodynamics
which I have given at the City College of New York and at the University of Pisa
to students of engineering and material science. No prior knowledge of statistical
mechanics is required; the necessary prerequisites are only the equivalents of an
introductory course on transport phenomena and one on thermodynamics.

Pisa Roberto Mauri
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Chapter 1
Introduction

Conventional thermodynamics is a static theory about systems that are in a state of
stable equilibrium, establishing the relations among the variables that describe these
equilibrium states. Therefore, the dynamic insight comes in two forms: (1) know-
ing the initial and final equilibrium states, one can authoritatively say whether such
transformation can take place spontaneously or not; (2) if the change from an initial
to a final state is so slow that the process can be assumed to be proceeding through
a series of closely spaced equilibrium states, then such a process is called reversible
and the entire path of time evolution of each of the state variables can be obtained
from conventional thermodynamics. On the other hand, almost all the processes that
we experience are irreversible and hence, most of the time, systems are not in a state
of equilibrium as they evolve in time. A very simple and relevant example is that
of thermal conduction, when a heat flux is induced by an imposed temperature dif-
ference, trying to re-establish the condition of thermal equilibrium, with uniform
temperature. Obviously, the word “temperature” here does not indicate exactly a
thermodynamic quantity, as it refers to a system that is out of equilibrium. Accord-
ingly, we must extend the meaning of temperature, defining it locally, i.e. within a
small volume and a short time interval, so that it can be defined in terms its mean
value, neglecting all fluctuations.

In this first chapter, first we illustrate the principle of local equilibrium (Sect. 1.1),
then we see how this assumption allows us to describe the fluctuations of any quan-
tity around its thermodynamic, i.e. average, value, leading naturally to assuming
a linear relation between the thermodynamic forces and their conjugated fluxes
(Sect. 1.2). Finally, the physical meaning of entropy in out-of-equilibrium systems
and a few applications to thermodynamics are illustrated in Sects. 1.3 and 1.4.

1.1 Local Equilibrium

Here we intend to see when a system can be considered, locally, at equilibrium, so
that its thermodynamic quantities, such as temperature and pressure, can be still used

R. Mauri, Non-Equilibrium Thermodynamics in Multiphase Flows, 1
Soft and Biological Matter, DOI 10.1007/978-94-007-5461-4_1,
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2 1 Introduction

and all thermodynamic equalities (e.g. the Gibbs-Duhem relation) are still valid.
This is the condition of local equilibrium, which defines the minimum dimensions
of any subsystem which then plays the role of a “material point”. This size must be
large enough to contain a large number of particles and neglect fluctuations, and yet
small enough to neglect the effect of all macroscopic variations.

First of all, for a system composed of N particles at equilibrium, consider any
extensive thermodynamic quantity A, fluctuating around its constant equilibrium
value A = (A), with time dependent fluctuation SA = A — (A). Clearly,

N N
T (L)
i=1 i=1

where a; and §a; = a; — a are the values of A and §A for the single i-th particle,
with a = (a) =) a;/N. Then,

N
=Y a;=Na. (1.2)
i=1

In addition, let us assume that the fluctuations of the i-th particle are independent of
those of the j-th particle, provided that i # j, i.e.,

(8aida;) = (8a)*s;j, (1.3)

where 8a is the mean value of the single particle fluctuation. Consequently, !

N N N
(64)* =((64)?) ZZ(SaiSa] Z((Sa) = N(8a), (1.4)
i=1 j=I i=1

so that,
SA 1 da
A JNa
showing that for large systems we can neglect fluctuations. In particular, classical
thermodynamics corresponds to having N — oo.

At equilibrium, A is uniform and stationary; so, being at local equilibrium means
that within a properly defined small volume (a) fluctuations are small, and (b) all
macroscopic variations of A can be neglected. That means assuming that we can
subdivide the system into small cells, which are large enough to contain very many
particles, and yet are small enough to neglect the effects of all spatial and temporal
macroscopic variations. Accordingly, these small cells play the role of the material
points appearing in any continuum mechanics theory. So, if 4y, is the size of the
elementary cells, the following conditions must be satisfied.

(1.5)

I'This relation is a particular case of the additive property of cumulants (A.30).
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o )y is large enough that the elementary cell contains a large number of particles,
N > 1, so that A < A; this is the so-called continuum approximation;

o Ay is small enough so that the variations of A across that distance, A f; |W|, due
to the presence of a macroscopic gradient of A, is smaller (or at most equal) than
the fluctuations §A.

This criterion must be supplemented with a condition stating that the characteristic
fluctuation timescale, 7 ;, is much shorter than any macroscopic evolution time, i.e.:

e 74 is small enough so that the variations of A during that time, 7/, A, due to the
presence of a macroscopic temporal variation of A, is smaller (or at most equal)
than the fluctuations §A.

Therefore, the condition of local equilibrium is equivalent to assuming:

Afi Tf  BA 1
T = ~ (1.6)

where T = A/A and . = A/|V A| are typical evolution timescales and lengthscales,
respectively. Basically, the condition of local equilibrium means that within a small
volume of size A ¢; and for short time intervals 7 ; we can assume that A is uniform
and constant, as we can neglect both its fluctuations and its spatial and temporal
macroscopic variations.

For example, consider a gaseous system at ambient conditions, with number den-
sity n >~ pNa /My, ~ 10?0 molecules/cm®, where p ~ 1073 g/cm? is the mass den-
sity, N4 = 6 x 10?3 molecules/mole is the Avogadro number and M,, ~ 10 g/mole
is the molecular mass. Assuming that all quantities must be evaluated with a 0.1 %
precision, i.e. §A /Z = 1073, from (1.6) we see that the elementary volume must
contain at least N = 10° particles, corresponding to a volume of 10~ cm? and
therefore Ay >~ 107> cm = 0.1 um. This lengthscale is of the same magnitude as
the mean free path and so it is reasonable to say that within the local equilibrium
approximation we cannot describe phenomena involving smaller lengthscale. Ap-
plying (1.6) we see that the maximum temperature gradient that can be applied and
yet satisfy the condition of local equilibrium is VT ~ 10737 /A 1 10* K/cm, that
is satisfied in any reasonable case. In addition, as the typical fluctuation velocity is
(see Sect. 1.3) vy &~ (kT /m)'/? ~ 103 cm/s, we find that T ~ A gy /v ~ 10710,
showing that the fluctuation timescale is of the same magnitude as the mean colli-
sion time. So, we see that the typical local equilibrium condition on timescales is
much less stringent than that about lengthscales. For liquid and solid systems, the
condition of local equilibrium is satisfied even more easily, as p is 10° times larger
and therefore A 7 (and 74, as well) is 10 times smaller.
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1.2 Fluctuations

Consider an isolated system, macroscopically at equilibrium, characterized by a
variable A. Although on average A = A, locally (i.e. within a subsystem at local
equilibrium) we measure fluctuations x =84 = A — A.

As it is explained in Appendix B, the probability that the subsystem experiences
a displacement (i.e., a fluctuation) x from its equilibrium state, x = 0, is given by

Einstein’s fluctuation formula (B.17),
1
% (x) = Cexp ES,m )|, 1.7

where C is a normalizing factor, k is the Boltzmann constant, while Sy, (x) is the
entropy of the whole isolated system (i.e. our subsystem plus its surrounding) when
the subsystem is subjected to a fluctuation x.

Since S;or(x) reaches a maximum when x = 0, then (9S;5;/9x)0 = 0 and
(8%8;01/3x%)9 < 0. Consequently, considering that x/A < 1, we obtain at leading
order:

k
Stor (x) = So — ngz; g>0, (1.8)

so that (1.7) reduces to the following Gaussian distribution,

79 (x) = /%exp(—%gx2>, (1.9)

where we have applied the normalizing condition,

o o 2
f m*(x)dx =1, with / e ¥ dx=m. (1.10)
—00 —00
Note that, as shown in Appendix A,
o
(x):/ xI(x)dx =0 (1.11)
—00
and
o 1
(x?) = / X% (x)dx = —, (1.12)
-0 8

so that Eq. (1.9) can be rewritten as:

T (x) =

1 X
— i 1.13
V27 (x2) eXp{ 2<x2>} (19

which coincides with Eq. (B.8).
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When the state of the subsystem is described by a set of n independent vari-
ables A;, where i = 1,2, ..., n, with fluctuations x;, these relations can be easily
generalized as [1]:

k n n
Sior(1) = So=—7 2;gikxixk; llgikll > 0, (1.14)
1= =

so that we obtain the multi-variable Gaussian distribution,
l n n
199 (xi) = /Il gin | 2) ™ exp{ -3 Z} kZI GikXiX } (1.15)
1= =

where || gix| denotes the norm, i.e. the determinant, of g;;. Now define the thermo-
dynamic driving force,

_ 108
- k 8x,~

i

n
== iK%k, (1.16)
k=1

tending to restore the x; = 0 equilibrium state. Considering the inverse relation,

n

1 9S50 1
=- =— o Xk, 1.17
kX, k_lglk k ( )

Xi

where ) i &ij gj_k1 = dj; and &;; denotes the Kronecker delta, the following equali-
ties can be easily proved:

] n n 1 n ] n n _
Sior = So=—5k DY xigwxe= kD xiXi=—2k) Y Xigy! Xes (1.18)
i=1

i=1k=1 i=1 k=1

dX; 1 82800
k=———=—— ; 1.19
Sik Xk k 0x;0xy ( )
dx; 1 3%S
gl = — el o D e (1.20)
0 Xy k 0X;0Xy
Note the following equalities.
(xi Xk) = —Bik, (1.21)
(xixk) = g (1.22)

and

(Xi Xk) = gik- (1.23)
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The first equality can be proved observing that:

L [ 08t o
(i Xp) = - x;j —— IT°4 (x) dx. (1.24)
kJ_oo  0Oxg

But S;,; = So + k1In IT¢4, so that

o 9Ired ad
<x,~xk>=f xi——dx =[x 1] / M9l dx ==, (125)

oo OXk

where we have considered that /7°? goes exponentially to zero as [x| — oo and the
n variables are independent from each other, so that dx; /dxg = 5.
The second and third equalities can be easily proved from that (see Problem 1.2).
Finally, note that the speed with which the system returns to its equilibrium po-
sition depends on the entropy production which can be determined taking the time
derivative of Eq. (1.18), obtaining:

d "
EAS:kaiX,». (1.26)

i=1

1.3 Physical Meaning of the Entropy Changes

As mentioned above, S;,(X) is the entropy of the whole, isolated, system, i.e. our
subsystem at local equilibrium and its surroundings. Referring to the total entropy—
total internal energy S;,; — Uy, phase diagram of Fig. 1.1, the two curves are drawn
at constant x, one corresponding to the equilibrium points, with x = 0, the other
corresponding to non equilibrium points,> removed from equilibrium with a given
fluctuation x;. The two curves are monotonically increasing, with the x =0 curve
having a higher entropy, for a given energy, than the x = xj curve [2, Chap. 20].
Accordingly, in the figure we identify the three following points. Point a: it is the
equilibrium point, with maximum entropy, S;o;(a) = Sp at a fixed, given energy
U,ot(a) = Up; point b: it corresponds to a state where the subsystem has fluctuations
X1, with entropy S;,:(b) = S1 < So and U, (b) = Up (the energy of our isolated
system has to remain constant and therefore equal to Uy, while the entropy is less
then its equilibrium value); point c: it is the equilibrium point of the system having
entropy S;or(c) = S1, whose energy is Uy < Up.

Note that, if our system is isolated, the internal energy must be conserved and
therefore we can only move from a to b; in other words, since Uy (c) < Up, our
system needs an external source of work in order to be brought from a to c. In fact,
Winin = U — U is the minimum work (as it is performed reversibly, i.e. at constant

2Note that, when x = X, the whole system is not at equilibrium, although, locally, the subsystem
is at local equilibrium.
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Fig. 1.1 Diagram S;,; vs S0

x=0
Usor
S, a
A c b/ X1
U, U, Utor

entropy) that an external source has to apply to bring the system out of equilibrium,
from x = 0 to x = Xx;. Therefore we obtain:

0S
—ASior =0 —S) =\ ] Wo—Uy), (1.27)
au ),
i.e.
W .
ASjpp = ——=, (1.28)
Ty

where Ty = (0S;0:/9U;or)0 s the equilibrium temperature of the system.

From a different perspective, we may remember that the isolated system is com-
posed of our subsystem, together with a heat reservoir at temperature 7y and a
work reservoir at pressure Py. Therefore, AS;,; = AS + AS7, where AS is the
entropy change of the subsystem, A St is the entropy change of the heat reservoir
and we have considered that the work reservoir does not change its entropy. Now,
ASt = —Qr /Ty, where Qr = AU + PyAYV is the heat entering the system (and
thus leaving the heat reservoir), where AU and AV are the changes of the inter-
nal energy and the volume of the subsystem. Therefore, since the transformation is
isothermal and isobaric, we can conclude that the total entropy variation is given by:

AG

ASM,:—T, AG =AU —ToAS + PyAV, (1.29)
0

with G =U — TS + PV denoting the Gibbs free energy of the subsystem. This

shows that the minimum work equals the variation of the Gibbs free energy, so that

gik can be determined from the relation

1 n n
Wiin = AG = kTp zggikxixk. (1.30)
1= =

Simple Examples First, consider a particle immersed in a thermal bath at temper-
ature Ty, located at position z and subjected to an elastic force F' = —Az, where A is
the spring constant, which tends to restore its equilibrium configuration, z = 0. The
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system has one degree of freedom, with x = z, while W,,;;;,, = %Az2 is the minimum
work that is required to extend the spring from z = 0 to z, and therefore we see that
g=A/kTy and X = —Az/kTy. Consequently, from Eq. (1.12) we obtain:

2 1 kT

(%)= 2= A (1.31)
In the same way, the minimum work required to accelerate a free particle, at
equilibrium with a thermal bath at temperature T, from its equilibrium velocity
v =0 to a velocity v equals the change in its kinetic energy, i.e. Wi, = %mv2,
where m is the particle mass. As before, the system has one degree of freedom, with
x=v,g=m/kTy and X = —mv/kTy. Consequently, from Eq. (1.12) we obtain

the Maxwell distribution, with:

W= =22,

8 m

(1.32)

These two examples are particular cases of the equipartition theorem, stating
that, at equilibrium, each degree of freedom has the same mean energy, %kT (see
Sect. B.1).

1.4 Application to Thermodynamics

A subsystem, exchanging heat with a heat reservoir at constant temperature 7y and
work with a “work reservoir” at constant pressure Py, will tend to reach a position
of stable equilibrium, where its temperature and pressure coincide with those of the
reservoirs. In general, as we saw in the previous section, the probability that the
subsystem has a certain displacement x from equilibrium is:

A
Hequexp<——G>, (1.33)

kTy
where K is a normalization constant, while AG is the variation of the Gibbs free
energy of the subsystem as it is brought out of equilibrium, from x = 0 to x. As we
saw in (1.29),

AG =AU —ToAS + PyAV, (1.34)

where the subscript “0” indicates the equilibrium state, which is determined by the
external reservoirs.

Now, let us first consider a single-component system, which is defined by fixing
the values of two independent variables, so that [2, Chap. 112]:

AU =(U/08)oAS + (QU/dV)oAV

178%2U 82U 92U
—| —(AS)*+2 ASAV) + ——(AV)? | +---. 1.35
+2[asz< )42 )+ v )]+ (1.35)
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Therefore, considering that (dU/98)¢ = Tp and (dU/90V )¢ = — Py, we obtain:

1 oUu U
AG=—-|ASA| — |+ AVA| — )|, (1.36)
2 0S A%
and from here,
1
AG:E(ASAT—AVAP). (1.37)

Choosing V and T as independent variables, consider the following equalities,

N N ncy oP
AS=|—) AT+|— | AV=—AT+|— | AV, (1.38)
oT )y, ov ), T oT )y
and
P oP oP 1
AP=|— ) AT+|— ) AV=|—) AT ——AYV, (1.39)
oT /)y A oT /)y Vir
where
0S 1 /0V
ncy=T|— ) ; KT =——| — (1.40)
oT /)y V\OP /;

are the specific heat at constant volume and the isothermal compressibility, re-
spectively, n are the number of moles within our subsystem and we have applied
Maxwell’s relation ( %)T = (g—i)v. Finally we obtain:
AG ="V a4+ L (avy (1.41)
2T Vkr ' '

This expression coincides with Eq. (1.30), provided that

= AT; = AV; = v L. =0
xl_ £ x2_ £ gll_kT27 g22_kTVKT’ gl2_ .
(1.42)
Therefore we obtain:
2 KT? 2
(ATAV)=0; ((AT)?) = —; ((AV)?)=kTVkr, (1.43)
ncy

showing that cy > 0 and k7 > 0. Defining

8T = \/((AT)2); 8V =,/((AV)?), (1.44)

these results can be rewritten as

5T k sV [kT
oL | & o M (1.45)
T ncy %4 \%
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and for an ideal gas, where cy = %R and k7 = 1/ P, that yields:

5T 2 sv 1
A SV A S (1.46)
T V3N v VN

where N =nNy is the number of molecules in our subsystem.

Similar results are obtained when we choose other independent variables (see
Problems 1.3 and 1.4). In particular, choosing S and P as independent variables, we
obtain:

(ASAP)=0;  ((AS)?)=kncp; ((AP)Z)z‘]j—Z, (1.47)
N

0S 1 /0V
necp=T|—) ; ks=——| — (1.48)
oT ) p VAOP /¢

are the specific heat at constant pressure and the adiabatic compressibility, respec-
tively.

where

. _1
Note that, as expected, we find that the fluctuations are of x N™2.

Fluctuations in Binary Solutions The previous analysis can be easily generalized
to a two-component system (1 = solvent; 2 = solute), as:

2
AG = %[(AS)(AT) —(AP)(AV) + Z(Au[)(Ani)] >0, (1.49)

i=1

where n; and p; are the number of moles and the molar chemical potential of com-
ponent i. Therefore, we see that density fluctuations are not correlated to tempera-
ture and pressure fluctuations, i.e.,

((AT)(An2))=((AP)(Any))=0. (1.50)
In addition, from Auy = (du2/9n2)r, p(Any), we obtain:

((An2)?) nkT (151)
n) )= —— — .
T Guafaxare

where xo = ny/n is the molar fraction. In particular, for an ideal solution, p, =
ug + RT In x», so that

kT SN 1
nkTxy ny . 2L (152)

Anp)?) = =2 e 22 ,
(Am))= === e 0 N,

where Ny = ny N4 is the number of solute particles and R = N4k is the gas constant,
with N4 denoting the Avogadro number.
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1.5 Problems

Problem 1.1 Show that ((§A)*) =3N2(sa)* =3(8A)*.

Problem 1.2 Prove formulae (1.22) and (1.23).

Problem 1.3 Prove Eq. (1.47).

Problem 1.4 Determine (AT AP) and (AV AP).

References

1. de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984),
Chap. VIL.2
2. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part I. Pergamon, Elmsford (1980)



Chapter 2
Microscopic Reversibility

The Principle of Microscopic Reversibility was formulated by Richard Tolman [14]
who stated that, at equilibrium, “any molecular process and the reverse of that pro-
cess will be taking place on the average at the same rate”. Applying this concept
to macroscopic systems at local equilibrium leads to the rule of detailed balances
(Sect. 2.2) and then, assuming linear relations between thermodynamic forces and
fluxes, to the formulation of the celebrated reciprocity relations (Sect. 2.3) derived
by Lars Onsager in 1931, and the fluctuation-dissipation theorem, (Sect. 2.4) proved
by Herbert Callen and Theodore Welton in 1951. In this chapter, this vast subject
matter is treated with a critical attitude, stressing all the hypotheses and their limi-
tations.

2.1 Probability Distributions

Define:

e The simple probability I7(x, ¢) that the random variable x(¢) has a certain value
X at time 7.

e The joint probability I7(x3, t2; X1, ¢1) that the random variable x(¢) has a certain
value X, = X(#p) at time £, and, also, that it has another value x; = x(¢1) at time ¢;.

e The conditional probability I7(x», 2| X1, t1) that a random variable x has a certain
value xy = x(#;) at time f,, provided that at another (i.e. previous) time ¢ it has a
value x| = x(#1).

By definition, when #, > t1,

I (x2, 15 X1, 1) = [T (x2, 12| X1, 1) TT (X1, 7). 2.D

Here and in the following, we use the same notation, X, to indicate both the random variable and
the value that it can assume. Whenever this might be confusing, different symbols will be used.

R. Mauri, Non-Equilibrium Thermodynamics in Multiphase Flows, 13
Soft and Biological Matter, DOI 10.1007/978-94-007-5461-4_2,
© Springer Science+Business Media Dordrecht 2013
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In a stationary process all probability distributions are invariant under a time
translation t — ¢ + 7. Therefore for stationary processes the three distribution func-
tions simplify as follows.

e [1(x,t) = I1(x) independent of ¢;
o II(x2,12;X1,11) =T1(X2, 7; X1, 0);
o I1(x2, 0] X1, 1) =11(X2, T]X1,0),

where T = t; — f,. In the following, when there is no ambiguity, the time 0 will be
omitted.

If the process is also homogeneous, then all probability distributions are invari-
ant under a space translation X — x + z. Therefore for stationary homogeneous
processes the three distribution functions simplify as follows.

e [1(x) = IT independent of x and ¢;
o [1(x1,7;X0,0) =1I(z,7);
e [1(x1,7|xX0,0) =11(z,7),

where z = X; — Xo. Note that for stationary and homogeneous processes the joint
probability and the conditional probability are equal to each other; in fact, the ratio
between them is given by the simple probability, which in this case is a constant.

Now, let us consider a stationary process. Its probability distribution functions
are normalized as follows:

1 =/H(x)dx://]’[(x,I;XO,O)dxdxo. (2.2)
Consequently,
1= / I1(x, T|xg, 0) dx, (2.3)
showing that, since x = xg at 7 = 0, we have
rli_r)nol'l(x,r|xo,0)=8(x—xo). 2.4)

Based on these definitions, for any functions f(x) and g(x) we can define the
averages,

(fx)= / FXIT(x)dx, (2.5)
and
(f(Xl)g(Xo))=//f(X1)g(XO)17(X1,tuXo,to)dxldXO, (2.6)

where x; = x(#1) and X¢ = X(#9). Obviously, while the first average is a constant, the
second is a function of T = #; — 1g.
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We can also define the conditional average of any functions f(x) of the random
variable x(¢) as the mean value of f(x) at time 7, assuming that x(0) = Xxo, i.e.,

(f(x))fO:/f(x)n[x,ﬂxo,O]dx. 2.7

This conditional average depends on t and on Xp.
Now, substituting (2.1) into (2.6), we obtain the following equality,

(f(X)g(Xo)>=//f(X)g(Xo)U(X,fIXo,O)H(Xo)ddeo, (2.8)

that is:

(f®gx0) = ((f ) gx0)). (2.9)

2.2 Microscopic Reversibility

For a classical N-body system with conservative forces, microscopic reversibility is
a consequence of the invariance of the equations of motion under time reversal and
simply means that for every microscopic motion reversing all particle velocities also
yield a solution. More precisely, the equations of motion of an N particle system are
invariant under the transformation

T— —1; r—r,; V— —V, (2.10)
where r =r" and v = v/ are the positions and the velocities of the N particles.
This leads to the so-called principle of detailed balance, stating that in a stationary
situation each possible transition (f, V) — (r, v) balances with the time reversed
transition (r, —v) — (F, —V), so that,

O[r(z), v(v); #(0), ¥(0)] = A[#(), —¥(x); £(0), —v(O)].  (2.11)

As we saw in Sect. 1.1, this same condition can be applied when we deal with
thermodynamic, coarse grained variables at local equilibrium, i.e. when © < Ty,
where 7 ¢}, is the typical fluctuation time. In fact, for such very short times, forward
motion is indistinguishable from backward motion, as they both are indistinguish-
able from fluctuations.

First, let us consider variables x;(¢) that are invariant under time reversal, e.g.
they are even functions of the particle velocities. In this case, another, perhaps more
intuitive, way to write the principle of detailed balance is to assume that the condi-
tional mean values of a variable at times T and —t are equal to each other, which
means,

(x)30 = (x)X, (2.12)
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or, equivalently,
I1(x, t| X0, 0) = I1(x, —7| X0, 0). (2.13)
Multiplying this last equation by I7(Xp), it can be rewritten as

I (x;, T5 x0k, 0) = IT(x;, —7; X0k, 0) = [T (x;, 0; Xk, T), (2.14)

where we have applied the stationarity condition. As expected, this equation is iden-
tical to (2.11), withx =r.
Now, define the correlation function for a stationary process as:

x) (0 = ) = [ [ a1 v 0 dxasa. - @15)
for T > 0. Applying (2.14), we see that from microscopic reversibility we obtain:
(xixe) (1) = (xXix5) (= 7), (2.16)

that is,

(xi () 2k (0)) = (x; (0) x (7). 2.17)

From this expression, applying Eq. (2.9), we see that another formulation of micro-
scopic reversibility is:

(xor (x1)30) = (xoi (xx)30). (2.18)

Now, consider the general case where x; is an arbitrary variable which, under
time reversal, transforms into the reversed variable according to the rule,

Xi —> € X, (219)

where €; = +1, when the variable is even under time reversal and €; = —1, when it
is 0odd.? At this point, Eq. (2.18) can be generalized as:

(xok (xi)%0) = €;ex(xoi (xx)¥0). (2.20)
In the following, we will denote by x those variables having € = +1, i.e. those

remaining invariant under time reversal, and by y those variables having € = —1,
i.e. those changing sign under time reversal, (e.g. velocity or angular momentum).?

2Note that, since IT(x;) = IT(€;x;), then {x;) = €; (x;), implying that all odd variables have zero
stationary mean.

3In most of the literature, x- and y-variables are generally referred to as o- and B-variables.
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2.3 Onsager’s Reciprocity Relations

Assume the following linear phenomenological relations: (i.e. neglecting fluctua-
tions)

n
X; =ZL,~,~ X, (2.21)

where the dot denotes time derivative, X are referred to as thermodynamic fluxes,
while X are the generalized forces defined in (1.16). That means that this equation
holds when we apply it to its conditional averages,

0= "Ly (X)), (2.22)

The coefficients L;; are generally referred to as Onsager’s, or phenomenological,
coefficients. Now take the time derivative of Eq. (2.18), considering that xq is con-
stant:

ZL,, xok { ZLk, x0i {X)F). (2.23)

Considering that (X ) —o = Xoj and (xg; Xoj) = —&;;, we obtain:
Lix = Ly;. (2.24)

These are the celebrated reciprocity relations, derived by Lars Onsager [12, 13] in
1931.

In the presence of a magnetic field B or when the system rotates with angular ve-
locity €2, the operation of time reversal implies, besides the transformation (2.10),
the reversal of B and 2 as well. Therefore, the Onsager reciprocity relations be-
come:

Lix(B, ) =Ly (—B, —). (2.25)

In the following, we will assume that B = 0 and £ = 0; however, we should keep
in mind that in the presence of magnetic fields or overall rotations, the Onsager
relations can be applied only when B and € are reversed.

A clever way to express the Onsager coefficients L;; can be obtained by multi-
plying Eq. (2.22) by x( and averaging:

{xok (%)% ZL’J xok (X )%0). (2.26)

Now take 7 = 0 and apply Eq. (2.9) to obtain:

Lix=—{Xixe)g (2.27)
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where the superscript “sym” indicates the symmetric part of a tensor, i.e. Af]y "=

%(Ai j + Aj;). This is one of the many forms of the fluctuation-dissipation theorem,
which states that the linear response of a given system to an external perturbation
is expressed in terms of fluctuation properties of the system in thermal equilibrium.
Although it was formulated by Nyquist in 1928 to determine the voltage fluctuations
in electrical impedances [11], the fluctuation-dissipation theorem was first proven
in its general form by Callen and Welton [3] in 1951.

In (2.27), x is the velocity of the random variable as it relaxes to equilib-
rium. Therefore, considering that x tends to 0 for long times, we see that x(0) =
— fooo x(t) dt and therefore the fluctuation-dissipation theorem can also be formu-
lated through the following Green-Kubo relation:*

Lix= / oo(fci 0k ()" dt, (2.28)
0

showing that the Onsager coefficients can be expressed as the time integral of the
correlation function between the velocities of the random variables at two different
times.

Now, consider the opposite process, where the random variable evolves out of its
equilibrium position x = 0. Therefore, applying again Eq. (2.27), but with negative
times, we obtain:

k=5 — (xixe)g (2.29)
showing that the Onsager coefficients can be expressed as the temporal growth of the
mean square displacements of the system variables from their equilibrium values.

These results are easily extended to the case where we have both x and y-
variables, i.e. even and odd variables under time reversal. In this case, the phe-

nomenological equations (2.21) can be generalized as:

ZL(”)X +ZL(”)Y (2.30)
j=1

n n

V=Y LY X+ > Ly, 2.31)
j=1 j=1
where

19AS 19AS

P (2.32)
k axi k 8y,'

are the thermodynamic forces associated with the x and y-variables, respectively.
With the help of these quantities, the reciprocity relations (2.24) were generalized

4The Green-Kubo relation is also called the fluctuation-dissipation theorem of the second kind.
See [7, 8].
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by Casimir in 1945 as [4]:
Ll(}rx) — LEfX)» L(XV) L(yx)’ L(}y) L(}y). (233)

Substituting (2.30), (2.31) and (2.33) into the generalized form (1.26) of the en-
tropy production term,

1dS . o
zz=Zx,-x,-+zy,»y,-, (2.34)
i=1 =1

we obtain:

%EAS ZZL(“)X X; +ZZL(”)YY (2.35)

i=1 j=1 i=1 j=1

This shows that neither the antisymmetric parts of the Onsager coefficients L**)
and LOY) | nor the coupling terms between x and y-variables, L) and L0, give
any contribution to the entropy production rate.

It should be stressed that, when we apply the Onsager-Casimir reciprocity rela-
tions, we must make sure that the n variables (and therefore their time derivatives,
or fluxes, as well) are independent from each other, and similarly for the thermody-
namic forces.’

Comment 2.1 In the course of deriving the reciprocity relations, we have assumed
that the same equations (2.21) govern both the macroscopic evolution of the system
and the relaxation of its spontaneous deviations from equilibrium. This condition is
often referred to as Onsager’s postulate and is the basis of the Langevin equation
(see Chap. 3).% The fluctuation-dissipation theorem, Egs. (2.29) and (2.41), can be
seen as a natural consequence of this postulate.

Comment 2.2 The simplest way to see the meaning of the fluctuation-dissipation
theorem is to consider the free diffusion of Brownian particles (see Sect. 3.1). First,
consider a homogeneous system, follow a single particle as it moves randomly
around’ and define a coefficient of self-diffusion as (one half of) the time deriva-
tive of its mean square displacement. Then, take the system out of equilibrium, and
define the gradient diffusivity as the ratio between the material flux resulting from
an imposed concentration gradient and the concentration gradient itself. As shown
by Einstein in his Ph.D. thesis on Brownian motion [6], when the problem is lin-
ear (i.e. when particle-particle interactions are neglected), these two diffusivities are

5As shown in [10], when fluxes and forces are not independent, but still linearly related to one
another, there is a certain arbitrariness in the choice of the independent variables, so that at the end
the phenomenological coefficients can be chosen to satisfy the Onsager relations.

5Onsager stated that “the average regression of fluctuations will obey the same laws as the corre-
sponding macroscopic irreversible process”. See discussions in [9, 15].

TThis process is sometimes called Knudsen effusion.
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equal to each other, thus establishing perhaps the simplest example of fluctuation-
dissipation theorem. Although we take this result for granted, it is far from obvious,
as it states the equality between two very different quantities: on one hand, the fluc-
tuations of a system when it is macroscopically at equilibrium; on the other hand,
its dissipative properties as it approaches equilibrium.

2.4 Fluctuation-Dissipation Theorem

As we saw in the previous section, the fluctuation-dissipation theorem (FDT) con-
nects the linear response relaxation of a system to its statistical fluctuation properties
at equilibrium and it relies on Onsager’s postulate that the response of a system in
thermodynamic equilibrium to a small applied force is the same as its response to a
spontaneous fluctuation.

First, let us derive the FDT in a very simple and intuitive way, following the
original formulation by Callen and Greene [1, 2]. Assume that a constant thermo-
dynamic force Xo = —F¢/kT is applied to the system for an infinite time # < 0 and
then it is suddenly turned off at + = 0. Therefore, at t = 0 the system will have a
non-zero position of stable equilibrium, X, such that

Fo=VxWyin =kTg- Xo, (2.36)

where Wi, = %kao -g-x9 = Fp - xg is the minimum work that the constant force,
Fy, has to exert to displace the system to position Xg.

Now, in the absence of any external force, i.e. when ¢ > 0, the mean value of the
x-variable relaxes in time following Eq. (2.22), with,

)Xt =—M- (xX)¥(@); ie., (X)¥()=exp(—Mt)-xo, 2.37)

where M =L - g is a constant phenomenological relaxation coefficient. Therefore,
substituting (2.36) into (2.37) we obtain:

X)X (1) = x (1) - Fo (2.38)
kT’ :
where
x(t) =exp(~-Mr) g (2.39)

is a time dependent relaxation coefficient.
On the other hand, the function y is related to the correlation function at equilib-
rium, (xx). In fact, from the definition (2.15), substituting (2.37) we see that:

(xx) (1) = {(x)X*x0) = exp (~M1) - {Xo%o) = exp (~Mr) - g~ (2.40)
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Comparing the last two equations, we conclude:

(xx)(1) = x (1). (2.41)

This relation represents the fluctuation-dissipation theorem.®

Note that, when # = 0, the relation (2.41) is identically satisfied, since (xx)(0) =
g~ !, while x(0) =g~

The fluctuation-dissipation theorem can also be determined assuming a general,
time-dependent driving force, F(¢). In this case, due to the linearity of the process,
we can write:

1 *© / / /!
(x(n))= k—T/_oox(t—t) -F(t")dr’, (2.42)

where k(1) is the generalized susceptibility, with « (1) = 0 for 7 < 0. Denoting by
X(w), ¥(w) and X(w), the Fourier transforms (C.1) of (x(¢)), «(¢) and X(z), respec-
tively, we have:

Y I =~
X(@) = - 7() F). (2.43)

In general, ¥ (w) is a complex function, with © = € 4 ix?), where the superscripts
(r) and (i) indicate the real and imaginary part. Since k (¢) is real, we have:

K(—w) =% (), (2.44)

where the asterisk indicates complex conjugate, showing that € is an even func-
tion, while #¥) is an odd function, i.e.,

() =) V() = -7 (w). (2.43)

Analogous relations exists regarding the correlation function (xx)(¢). In fact,
considering the microscopic reversibility (2.16) and the reality condition, we ob-
tain:

(XX) (@) = (%) () = (XX)* (—w), (2.46)

i.e. the Fourier transform of the correlation function is a real and symmetric matrix.
As shown in Appendix C, using the causality principle, i.e. imposing that « (¢) =

0 for t < 0, we see that the generalized susceptibility is subjected to the Kramers-

Kronig relation (C.17), so that k() can be related to y (¢) as [cf. Eq. (C.30)°

2
X () = —«k(w). (2.47)
L

8The same result can be obtained assuming that the constant thermodynamic force Xy is suddenly
turned on at t = 0, so that for long times the system will have a non-zero position of stable equi-
librium, Xz = —g*l - Xo. In that case, redefining the random variable x as X — X, we find again
Eq. (2.41).

This is a somewhat simplified analysis. For more details, see [5].
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Substituting this result into Eq. (2.41) and considering (2.46), we see that the
fluctuation-dissipation theorem can be written in the following equivalent form:

(%)) () = %[E‘”(w)](”, (2.48)

where the superscripts (s) denotes the symmetric part of the tensor.
Note that, since

00 oo (i)
(Xx)o = / N / @ o, (2.49)
2 T

o0 oo W

using the dispersion equation (C.17) with u = 0, we obtain the obvious relation,
(xx)o =% () =20 =g, (2.50)

where we have used the fact that ¥ (0) is an even function.

This result can be easily extended to cross correlation functions between x- and
y-type variables, considering that (Xy)(w) is an imaginary and antisymmetric ma-
trix, i.e.,

(X3 (@) = —(Xy) " () = — ()" (~o). (2.51)

At the end, the fluctuation-dissipation relation becomes,
: 2
D) = Z[#7(@)] ", (2.52)
w

where the superscripts (a) denotes the antisymmetric part of the tensor.
To better understand the meaning of the fluctuation-dissipation relation, consider
the single variable case, !0

X)) =—M F 2.53
(x)=~— (<x>_gk—T)' (2.53)

Now, Fourier transforming this equation, we obtain (2.43) with,

M 1 g+iowL™!

Ry = = = : 254
k(w) sM—iw) g—ioL ' g2+w?l2 (2.54)
On the other hand, the correlation function (2.40) gives:
[
(x-x>(t) = —€ s (255)
8

10Here, when the applied force F is constant, the equilibrium state will move from (x) = 0 to
(x) = F/(gkT).
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whose Fourier transform yields:

(XX)(w) M 2L (2.56)
XX)(w) = = .
g(M2+w2) g2+a)2L*2
thus showing that the FDT (2.48) is identically satisfied.
Identical results are obtained in the multi-variable case, where we have:
x)=L-[(X)+ ! F (2.57)
x)=L- —F), .
kT
where L =M - g~ ! is the Onsager phenomenological coefficient, while X = —g - x,
obtaining:
t=(g—ioL )" (2.58)

Note that the symmetry of ¥ is a direct consequence of the Onsager reciprocity
relation L =L™T.

Sometimes, it is convenient to consider the fluctuations of x as being caused
by a random fictitious force f, so that the instantaneous value of x (not its mean
value, which is identically zero) is linearly related to f through the same generalized
susceptibility « that governs the relaxation of the system far from equilibrium,'!
ie.,

1 o / / /
X(t):k—T/_OOK(t—t)-f(t)dt. (2.59)
In this case, considering that ¥ (—w) = &*(w), we have:
(X%) (@) = kT) "2%* (@) - () () - B (@); (2.60)
then, we obtain:
() () = (kT)23f-f<i> K(w) = 3(1<T)2Im{[7c‘*]‘1 3 (2.61)
1) 1)

Therefore, when the generalized susceptibility can be expressed as Eq. (2.58), we
obtain:

(D) () =2kT)* L' = 2kT¢, (2.62)

where ¢ = kTL™!. In fact, in this case Eq. (2.57) becomes the Langevin equation
(see next chapter),

X=-M-x+17, (2.63)

' This is clearly equivalent to the Onsager regression hypothesis. Note that here and in the follow-
ing x denotes the fluctuation (x — (x)).
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where J = %L -f is the fluctuating flux, satisfying the following relation:

JOJIm)=2Ls0), (2.64)

where §(¢) is the Dirac delta. This shows that there is no correlation between the
particle position x and the random force f (see Problem 2.2). In fact, it is this lack of
correlation that is at the foundation of the Onsager regression hypothesis, therefore
justifying the Langevin equation, as discussed in the next chapter.

2.5 Problems

Problem 2.1 Consider a small particle of arbitrary shape moving in an otherwise
quiescent Newtonian fluid. In creeping flow conditions, determine the symmetry
relations satisfied by the resistance matrix connecting velocity and angular velocity
with the force and the torque that are applied to the particle.

Problem 2.2 Consider a driven 1D oscillator of mass m at frequency wg, with
damping force ¢ x, with x denoting the displacement from its equilibrium position,
x = 0. Determine the spectrum of the random force.
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Chapter 3
Langevin Equation

The Langevin equation was proposed in 1908 by Paul Langevin [2] to describe
Brownian motion, that is the apparently random movement of a particle immersed in
a fluid, due to its collisions with the much smaller fluid molecules. As the Reynolds
number of this movement is very low, the drag force is proportional to the parti-
cle velocity; this, so called, Stokes law represents a particular case of the linear
phenomenological relations that are assumed to hold in irreversible thermodynam-
ics. In this chapter, after a brief description of Brownian motion (Sect. 3.1), first
we review the original Langevin approach in 1D (Sect. 3.2), then we generalize it
to study the evolution of a set of random variables with linear phenomenological
forces (Sect. 3.3). The most general case, with non-linear phenomenological forces,
represents a non-trivial generalization of the Langevin equation and is studied in
Chap. 5 within the framework of the theory of stochastic differential equations.

3.1 Brownian Motion

The random motion of suspended particles that are sufficiently large to be observed
is termed Brownian motion, after the Scottish botanist Robert Brown, who in 1828
described this phenomenon from microscopic observations he had made of pollen
grains suspended in water.

Let us begin by considering the continuous, one-dimensional translational Brow-
nian motion as represented by a one-dimensional random walk problem. It is well
known (see Appendix A) that the probability [Ty (n) that, in a total of N steps, we
make n steps to the right (and N — n steps to the left) is given by the binomial
distribution,

N! pn qN —n
n!'(N —n)!
where p and g = 1 — p are the probabilities that each individual step is to the right
or to the left, respectively. As shown in Appendix A, the sum of all probabilities is

IIy(n) = , (3.1)
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normalized to one, i.e. ), [Ty (n) = 1, its mean value is (n) =7n = Np and its dis-
persion is ((n — ﬁ)z) = (8n)* = Npgq. Therefore, since én/n 1/\/N, we see that,
as N > 1, the binomial distribution becomes sharper and sharper around its equilib-
rium value 7 = Np. We can reach the same conclusion observing that, from (3.1),
the peak value of §2y increases extremely fast with N, and therefore, as the area
under the I curve is normalized and equal to 1, its width must decrease inversely.

From the above considerations, it is not surprising that, when N > 1, the bino-
mial distribution tends to the following Gaussian distribution (see Appendix A for a
formal proof),

_ 2
w] (3.2)

My (n) = QrNpg)~ /% exp| —
n(n) = (@2nNpq) eXp[ INpq

In particular, when, as in our case, p = ¢ = 1/2, we can also express this result in
terms of the actual displacement variable x = m{, where m =2(n — N/2) and ¢ is
the length of each step. To do that, rewrite Eq. (3.2) as

2 1/2 m2

Now, if we regard x = m¢¥ as a continuous variable, noting that m can only assume
integer values, the range dx contains dx /2¢ possible values of m, all of them occur-
ring with the same probability £2,y (m). Hence, the probability of finding the particle
anywhere between x and x + dx is simply obtained by summing 7y (m) over all
values of m lying within dx. Therefore, defining a continuous probability density,
ITy (x), we can write:

dx
HN(x)dx:HN(m)ﬁ, 3.4)
obtaining,
) =~ exp| -5 (35)
X) = xp| — . .
M= e TP e
In general, for any values of p and ¢, we obtain:
1 (x — )2
I = - 3.6
W) == exp[ 52 ] (3.6)

where

x=N(p—q); o =2,/ Npqt2. 3.7

As we have seen previously,

YZ/OO xI1(x)dx; "2:/00()6 — X (x)dx. 3.8)

—00
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Now, consider that the number of steps is proportional to the time,
N =t/t, (3.9)

where 7 is the mean interval of time between two successive steps (or collisions).
Accordingly, treating time as a continuous variable, Eq. (3.5) can be rewritten as:

1 x2
I(x,t) = — , 3.10
e 2\/71DsteXp[ 4Dst:| (3.10)
where
ZZ
D’ = —, 3.11
7 (3.11)

is the self-diffusion coefficient, showing that
(x*)=2D"t. (3.12)

In the diffusion process of a solute, we expect that the concentration ¢ at any x
and ¢ satisfies the diffusion equation,1

dc 9%c

—=D—, 3.13
Jat ax2 ( )

where D is the gradient diffusion coefficient, i.e. the ratio between material flux
and concentration gradient. Assuming that Ny particles of solute are initially con-
centrated at the origin, this equation admits the following solution [see Eqs. (4.74)—
(4.80) in Sect. 4.6],

c(x, 1) = (3.14)

No x2
il
Comparing Eq. (3.14) with (3.10) we see that they are identical to each other pro-
vided that ¢ = NoIT and D* = D¢, i.e. self-diffusivity equals gradient diffusivity.
This is the fundamental point of the fluctuation-dissipation theorem. Note that the
two diffusivity coefficients have two very different meanings. On one hand, D* de-
scribes the mean square displacement of a tracer particles diffusing in an otherwise
homogeneous system, while, on the other hand, D considers a non-homogeneous
system and measures the ratio between mass flux and concentration gradient. Ac-
cordingly, it is not at all obvious that these two coefficients must be equal to each
other.

Considering that in 3D the motions along the tree directions, x, y and z, are
uncorrelated with each other, with 72 = x2 + y2 + 72, we find that the 3D probability

"Here we assume that ¢ denotes the number of particles per unit volume (or length, in this 1D
case), but it could be mass or moles, instead.
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density function becomes,

1 2
e e T G313
so that,
(r?) = (x?) + (y*) + (z2) = 6Dr. (3.16)

Now, let us evaluate the diffusion coefficient D following Einstein’s thermody-
namic argument [1]. Consider a suspension of particles subjected to a potential field
¥ (r), such as gravity. In general, the particle flux is J = cv — DVc¢, where c is the
concentration, v the particle velocity, and D the gradient diffusivity. At equilibrium,
J =0, i.e., the diffusive flux, — D V¢, balances the convective flux, cv, withv=F/¢,
where F = —V is the applied force and ¢ is the drag coefficient. Therefore, we
obtain:

F Vi
DVCIVCZEC = DVlnc:—T. (3.17)

Note that here we use the steady drag law, F = ¢v, where ¢ is the drag coefficient,?
even if the particle is changing its velocity very rapidly; this is justified because
velocities are so small that fluid and particle inertia can be neglected. Now, consider
that at equilibrium,

c(r)y= Kexp[—m] vv

Vine= -~V 3.18
v | T VT T (3-18)

so that, comparing (3.17) with (3.18) we obtain the Stokes-Einstein relation:

kT

D . 3.19
z (3.19)

This is another manifestation of the fluctuation-dissipation theorem.

3.2 One-Dimensional Langevin Equation

An alternative approach to study Brownian motion is to employ the Langevin equa-
tion. Here, we assume that the force acting on a single particle is a combination of
a mean force, i.e. the frictional drag associated with the fluid response to particle
motion, and a much faster, so called, Brownian force, f(¢), characterizing the very

2For a spherical particle of radius a, the Stokes law states that { = 6w na, where 7 is the fluid
viscosity (see Sect. F.2.2).
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rapid fluctuations, associated with molecular motion time scale (=10~ s for gases;
~10~13 s for liquids),

d’x

"me—

dr?

This equation cannot be used directly, since the mean values of velocity and accel-
eration are zero. Instead, multiplying it by x and rearranging, we obtain:

2.2 2 2
md x —m(dx> _afo 3.21)

%4 fa 3.20
=—{ T/, (3.20)

2 dr? dt
and therefore, averaging all terms of this expression, we obtain:

md*(x%)  ¢d{x?)
2 di? 2 dt

— kT, (3.22)

where we have considered that ((dx/dt)?) = kT /m from equipartition, and that f
fluctuates much more rapidly than x around its zero mean value. Now, solving this
equation when ¢ 3> m/¢, so that the first term on the LHS can be neglected, we
obtain,

(x*)=2D1, (3.23)

where D = kT /¢, in agreement with Eq. (3.19).
Now let us see how to proceed more rigorously. The starting equation is:

P=—£p+f(t), (3.24)
m

where p =mdx/dt is the particle momentum. The Brownian force has the follow-
ing statistical properties:
(rm)*=o, (3.25)

and

(ffa+D)°=205(x), (3.26)

where Q is a constant, indicating that f(¢) fluctuates around its zero mean much
more rapidly than p. In addition, Eq. (3.25) implies the following linear phenomeno-
logical relation,*

£

(P)° =——(p) (3.27)
m

3Here and in the following we denote by x both the position of the Brownian particle and the local
coordinate. When this is confusing, the particle trajectory will be indicated by X (¢).

4Here we see that macroscopic regressions and microscopic fluctuations are governed by the same
linear force, indicating that Onsager’s postulate is automatically satisfied.
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Therefore, since in Eq. (1.32) we have seen that for a free particle undergo-
ing random walk the fluctuating variable is x = p and the generalized force is
X = —p/mkT, then Eq. (3.27) can be rewritten in terms of the Onsager coeffi-
cient L,

(£)0 = L(X)5; L=KT¢. (3.28)

Solving the Langevin equation with initial condition p(0) = pg, we obtain:

t
p(t) = poe”¢'/" + f e~ 8=0Im (Y ar'. (3.29)
0

Taking the average (it is automatically a conditioned average as we have fixed that
p(0) = po) we obtain:

(p)" = poe=/m. (3.30)
Note that
li N =0. 3.31
A POl (3D
Now define
t
Ap=p—(p®)" = / e=SU=Im £ () dy. (3.32)
0

Squaring this expression and taking the average we obtain:

t t
((Ap)2>(.: :/ / e*{(t*t/)/mfg(lfl’/)/(f(t/)f(t//))dt/dt//’ (3'33)
0 JO
that is,
((ap?) = %(1 — e X/my, (3.34)

When 7 >> m /¢, we have Ap = p and (p?) = kTm, so that:

o_QOm
.

lim ((Ap)?) e =kTm, (3.35)

£>m/
and we obtain:
Q=kT¢=L. (3.36)

This is another form of the fluctuation-dissipation theorem, equating (apart from a
constant proportionality term, depending on the heat bath) the intensity of the fluc-
tuating force, Q, to the drag coefficient, and therefore to the Onsager coefficient, L.
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3.3 Generalized Langevin Equation

Generalizing Eq. (3.20) we have:’

n
Xi=— ) Mixi+ Ji (@), (3.37)
k=1

where Mjy is a phenomenological mobility coefficient and J; (¢) is a generalized
Brownian force, i.e. a random noise. If we identify x; with a flux, then J; represents
its fluctuating component, with

(J:())=0 (3.38)
and
(i) it + 1)) =2Qud (1), (3.39)
where Qjr = (f,;ofk,o). Compared to the 1D case, with x; = v, we have:
¢ (f%) kTt
M==; = =" 3.40
m 0 2m? m2 ( )

Note that M is proportional to the Onsager coefficient L;;. In fact, defining
from (2.34) the force thermodynamically conjugated to the flux x;, i.e. kX; =
aS/0x;, from Eq. (2.22),

n n
CY =D L (X% with X == gjin. (3.41)
j=1 k=1
we obtain (remind that L is a symmetric matrix):
n n
My ZZLijgjk i.e. Lk ZZMijgj_kl’ (3.42)
j=1 j=1

and therefore the Langevin equation (3.37) can also be written in the following form,

n
di= ) LuXi+ ;). (3.43)
k=1

Proceeding as in the previous chapter, from (3.37) we obtain:

n
(i) = e Mkl xpp. (3.44)
k=1

SHere we apply again Onsager’s postulate, assuming that the same linear relation (3.37) describe
both microscopic fluctuations and macroscopic regressions, where in the latter the fluctuating term
can be neglected [see (3.41)].
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Then define
Axi =x; — (x;);"; (Ax;)}" =0, (3.45)

obtaining:

((Ax; Axp)) Z Mff’G;;e—Mkﬂ, (3.46)

where Gy is a symmetric matrix (i.e. G;; = Gy; or G = G™) defined through:
n
2Qik=Z[Mi,G;,j +G;j‘Mk,-], ie. Q=[M-G '], (3.47)
j=1
with A" = L(A + A™).
Now, when 7 >> |[M|~!, we have Ax; = x;, with (x;xz) = gi_kl. Therefore, since
(Ax; Axp))}° — Glfkl, we obtain:
G=g, (3.48)

so that
Q=[M g ']"" =L. (3.49)

This is the fluctuation dissipation theorem, equating two quantities, namely Q and
L, that describe fluctuations and dissipation, respectively. Consequently Eq. (3.39)
can be rewritten as:

(Ji ) Jr(t + 1)) = 2Lixd (v). (3.50)

3.4 Problems

Problem 3.1 Derive the Stokes-Einstein relation using the simplified Langevin
equation,

tx=f(@, (3.51)

where the inertial term is neglected.

Problem 3.2 Show that the Stokes-Einstein relation can also be obtained multi-
plying Eq. (3.30) by vg, averaging out over all possible values of vg, and finally
integrating twice over time.

Problem 3.3 Defining §p = p — po, from the general solution of the Langevin
equation, Eq. (3.29), for t < m /¢ obtain the following result:

(8p)" = po[e™¢"/" —1] = —%pot +0(r) (3.52)
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and
(6p)?) = %(1 — "KMy = 2kT L+ O(F). (3.53)

Note that (3.53) is a particular case of the relation (2.29), considering that here
L=kT¢.

Problem 3.4 Consider the Brownian motion of a particle with mass m immersed in
a fluid and attracted to the origin through a linear force,

mZ+i+ Az= f(1), (3.54)

where f(¢) is a random noise. Show that ( f 2) is the same that we have found in the
absence of any external force, i.e., { f(¢) f (¢ + r))? =2kT¢é(7).
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Chapter 4
Fokker-Planck Equation

The time evolution of the probability density function of a set of random variables
is described by the Fokker-Planck equation, named after Adriaan Fokker and Max
Planck. Originally, it was developed to describe the motion of Brownian particles
and later was generalized to follow the evolution of a set of random variables with
linear phenomenological constitutive relations. In this chapter, the Fokker-Planck
equation is derived in the framework of Markov processes (Sects. 4.1 and 4.2),
showing its most general solution (Sect. 4.3) and how the fluctuation-dissipation the-
orem follows from it (Sect. 4.4). Then, in Sect. 4.5, a counter example is illustrated,
where we show that when the applied forces are non-conservative the fluctuation-
dissipation theorem cannot be applied. Finally, in Sect. 4.6, we study the simplest
case of Brownian motion, namely pure diffusion, also referred to as the Wiener pro-
cess, named in honor of Norbert Wiener, stressing how the associated mathematical
inconsistencies can be completely resolved only by applying the theory of stochastic
differential equations (see Chap. 5).

4.1 Markov Processes

As we saw in Sect. 2.1, a stochastic process is described completely by the proba-
bility IT]...,x(t2), x(1), X(fp)] that a time-dependent set of random variables, X(¢),
assumes values Xg, X1, Xp, etc. at times 7y, 1, I, etc. Then, in terms of these, so-
called, joint probability density functions we can define the conditional probability
densities,

H[X(tn)a X(tnfl)v .o ’X(ti+1)a X(ti)a X(tl'fl)v e 7X(t1)a X(tO)]
=I[X(t), ..., XU DX, ... X)) | T[x(1), ..., x(0))], (4.1

wherez‘,,>z‘n,1>~~->t,-+1>z‘i>ti,1>~-~>z‘1>z‘0.l

IThis condition is not required for the validity of Eq. (4.1), but it is essential in the definition of a
Markov process.
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Now, let us define a Markov process. Loosely speaking, it consists of a process
where the future is determined by the knowledge of only the present. Accordingly, it
is required that the conditional probability is determined entirely by the knowledge
of the most recent condition, i.e.,

T[X(00) X (tn—1), X(tg—2) .. X(10)] = T [X (1) X (t—1) . 4.2)

This condition means that we can express any joint probability distribution in terms
of the product of conditional probabilities. In fact, using the definition (4.1),

M [x(12), x(11)|X(t0) = T [x(r2) [x(21), X(t0) | IT[x(11)x(t0)]], (4.3)
and applying (4.2), we obtain:
M [x(12), x(t1)|x(to) | = M [x(t2) [x(t1) [ [T [x(t1) [x(10) ] 4.4)

Now consider the identity:

M[x(t2)[x(t0)] = / M [x(12), x(t1)[x(t0) | dx1, (4.5)

where the integral is taken over all the possible values of x; = x(#1). When the pro-
cess is Markovian, substituting (4.4) we obtain the so-called Chapman-Kolmogorov
equation,

M[x(12)[x(t0)] = f A [x(t) Ix(e) [ [x(t1) Ix(10) ] dxi (4.6)

4.2 Derivation of the Fokker-Planck Equation

Denoting §x = x — X, define:

. C(8x)?
(Fi.0) = lim —== = V. 4.7)
and
Sxidxz)0
}i_r)% M =20ix (4.8)

and neglect higher-order moments, assuming that ({§x))" goes to zero more rapidly
than 7, i.e.,

(S n\t
o (60"
T—0 T

0. 4.9)

Here, V(x) and Q(x) are assumed to be well behaved functions of the random vari-
able x, expressing its phenomenological velocity and diffusivity [in fact, definition
(4.8) is a Stokes-Einstein relation].
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For any given function R(x) that tends to 0 exponentially as |x| — oo, consider
the following integral:>

I = / [x(1)[x0] R(x) dx = lirr%)%/{ﬂ[x(t + 1)Ix0] — I [x(t)|x0]|} R(x) dx,
(4.10)

where,
[x(@ + 1) Ix0] =/17[x(t + D)IX' O] [X' (1) [x0] X’

= / I [x(0)|x' [ [ (1)|x0] dx'. (4.11)

Now, change notation in the integrand of Eq. (4.10) as follows: X' — Xg; Xg — X|
for the first term and x — Xq; Xo — X for the second term:

= hm {//H x(r)|x0] [xo(t)lxl]R(x)dxodx

—/H[xo(t)|x1]R(x0)dxo}. (4.12)
So, expanding:
R(X) = R(x0) +8x - (VR)o + %(5x3x):(vv1e)0 4o (4.13)
we obtain:
= [ dxomxo(ix ][V (VR) + QVYR)] (4.14)
where
V=Tli_%%/dxn[x(f)|x0]8?x; Q= /dxH X(1)[%0] (8’2‘8") (4.15)
Subtracting this expression from (4.10) we obtain:
0= fdx{ [x(1) %0 ] R(X) — T [x(1)[%0][V - VR + Q:VVR]}. (4.16)

Now consider the following equality:

ViVi(I1QixR) = RV;Vi(IT1 Qi) + T Qik ViV R + 2Vi RV (IT1 Qik),  (4.17)
that is,

ViVi(IT1QikR) =2V;(I1 Qik VkR) + RV Vi(I1 Qix) — 1 Qik ViViR.  (4.18)
Substituting it into (4.16) we have:

0= [ dxRITT -+ ViVilT) = ViVe(QuD) + I (4.19)

2This derivation of the Fokker-Planck equation can be found in [1], reprinted in [6]. A rigorous
and more general treatment can be found in Sect. 5.2.
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where
12:/dxv,-{—V,-HR+Vk(HQ,-kR)—ZHQikaR} =0, (4.20)

since R(x) tends exponentially to zero at infinity. Finally, considering that R(x) is
arbitrary, we obtain the Fokker-Planck equation (FPE):3
T = Vi[=ViIT + Vi(QixID)] (4.21)
that is,
n+v-J=0, (4.22)
where J is the probability flux,
J=VII -V .-QI). (4.23)
The FPE must be solved with appropriate boundary conditions (in general, either
homogeneous or periodic) and initial condition,
H(x(t) |x0) =§(xp), (4.24)

where §(x) is Dirac delta function.

In particular, in the vicinity of the equilibrium state, as in our case, the diffusivity
Q can be assumed to be constant, while the mean velocity is a linear function of the
distance x from equilibrium,

V=-M-x (4.25)

Then, the evolution of the random variable x defines the so-called Ornstein-
Uhlenbeck process. For example, in the 1D motion of a free Brownian particle,
when we compare the assumptions (4.7) and (4.8) with the results (3.40) of the 1D
Langevin equation, we obtain (see Problems 1 and 2):

2
kT
oL g UM _ KT
m 2m?  m?
The solution of the FPE is the propagator, or Green function, of a general
convection-diffusion equation,

d
==Vl P =Vp—V-(Qp). (4.27)
with p = p(x, t), subjected to appropriate homogeneous or periodic boundary con-

ditions (see below) and with initial condition,

(4.26)

P(x,0) = po(x). (4.28)
In fact, due to the linearity of the problem, we have:
p(x, 1) =/ T1(x, tx0) po(X) dXg, (4.29)
1%

where IT(x(t)|xg) satisfies the FPE (4.22), with initial conditions (4.24).

3The FPE is also known as the Kolmogorov, or as the Smoluchowski equation, named after Andrey
Nikolaevich Kolmogorov and Marian Ritter von Smolan Smoluchowski, respectively.
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Now, assume that for long times the FPE tends to a stationary solution, /77 (x),
with

J9 =V —v.-(Qr) =0. (4.30)
Then, defining a function /7 T(x, t) by
Ox, 1) =t x) 1" (x,1), (4.31)

where 7 is a characteristic volume, we can see by direct substitution that g (x, t)
satisfies the following equation:
T
% =V.vii'+Q -vv'. (4.32)
This is called the backward Fokker-Planck equation, or backward Kolmogorov equa-
tion, as it can be obtained moving backward in time, using the procedure that has
been illustrated above (see also Sect. 5.2 for a more rigorous derivation).

A particularly simple case arises when D = DI, with D constant, and the general-
ized velocity field is potential, V = —V; then we find: ¢(x) = K exp (—¢¥ (x)/D),
where K is a normalization constant.

Particular care should be taken in defining the boundary conditions. In fact, sup-
pose that the solutions of the forward FPE, I1(x, t) and I7°Y(x), satisfy no-flux, or
reflecting, conditions at the boundary o, of the domain volume , i.e.

n-J=n-J=0 onoy, (4.33)

where n is the unit vector perpendicular to o;. Then, from the definition (4.31) we
see that the solution IT"(x, t) of the backward FPE satisfies the following boundary
condition:

n-D.-VviiT=0 ono;. (4.34)

For absorbing or periodic boundary conditions, that is when /T = I7°? = 0 on o7 or
when IT and [1¢7 are periodic, then the same boundary conditions apply as well to
IT, thatis ITT =0 on o, or IT' periodic, respectively.

4.3 General Solution of the FPE

Let us write the FPE (4.22) as:
IT+ &[] =8(x—x0)8(7), X€T, (4.35)

where IT = I1(x, t|Xq) is the conditional probability distribution, t denotes the do-
main volume, while the operator £ is defined for any function p(x) as,

Llpl=V-J’; J=Vp—V-(Dp). (4.36)

Assume that this problem must be solved with the no-flux, or reflecting, boundary
conditions (4.33),

n-J’=n-[Vp—-V-Dp)]=0 onor, 4.37)
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where o7 is the surface delimiting T and n is a unit vector perpendicular to o;
other cases, with absorbing, or periodic, boundary conditions, are simpler and will
be mentioned later.

This is a classical Sturm-Liouville problem, and its solution reads,

1
I (x, 1]%0) = — D Ajpjxe M, (4.38)
j

where ¢;(x) and A ; are the eigenfunctions and eigenvalues of the operator £,
Ll¢jl=2r;¢; int, withn-[Vp;—V-(Dg¢;)]=0 onos. (4.39)

The coefficients A ; are constants to be determined through the initial condition as,
Aj= f (x, 0|x0)¢j. (x) dx, (4.40)
T
where qu: are the eigenfunctions of the adjoint operator £,
£pi]=nlp] in<. (4.41)
defined such that, for p = p(x,¢) and ¢ = g¢(x, 1),
/ Llplgdx = / p £q1dx. (4.42)
T T

Substituting (4.31) into (4.42), we see that g(x, t) satisfies the backward FPE
(4.32) with boundary conditions (4.34), that is:

£ilgl=-V-V¢g—D:VVq; int; n-D-Vg=0 ono;. (4.43)
Accordingly, we see that:

M= 60 =1IM6] (). (4.44)

Due to the mutual adjointness of £ and £, we know that )Lj equals the complex
conjugate of 4 j, and therefore we conclude that A ; are real. In addition, the sets {¢;}

and {¢ } are orthogonal to each other, i.e. f oF qbk dx =0 when j # k. Since both

¢; and ¢; are defined within an arbitrary constant factor, they can be normalized so
that:

1
- / ¢ dx =80, (4.45)
TJr ’

and

1
;/¢;¢,§ dx=3j;. (4.46)

Accordingly, we find that ¢g (x) =1, ¢po(x) = tI1°9(x) and 19 = 0. Consequently,
Eq. (4.45) with k = 0 yields

1
_/¢j dx= 5. (4.47)
T T
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Using this normalization, imposing that I7(x, 0|x9) = 8(x — Xq), from (4.40) we
find that A ; = ¢>} (x0). Therefore, the solution (4.38) can be written as:

1
TT(x,1%0) = — 3 6 ()9 (Xo)e ™. (4.48)
J

Now, denoting by 1 (x, 7|x0) the Green function of the backward Fokker-Planck
equation, we can repeat the previous analysis, replacing ¢; with ¢;, therefore ob-
taining the following reciprocity relation:

1 (x, t|x0, 0) = 11" (x0, O|x, 7). (4.49)

Thus, as I1(x, t|xp, 0) describes the effect at location x and time ¢ of a point source
initially located at xg, 17 %(xo, 0|x, ¢) describes the inverse effect. Accordingly, the
equality (4.49) is identical to the microscopic reversibility condition (2.13).

Finally, note that in deriving the general solution (4.38) we have used the com-
pleteness of the set {¢;} (and consequently {¢>j.} as well), as that is always true for
Sturm-Liouville problems; in particular, that means that we can apply (4.38) even
when ¢ = 0, obtaining:

1
Jim IT(x, £1%0) = — 3~ 9 (X)9] (%0) = 5(x = X0). (4.50)
J

4.4 Fluctuation-Dissipation Theorem

As t — 00, the system tends to equilibrium, with

1 n n
JT=0;, M=m%=Cexp [—5 Z > giwxixe |- (4.51)
i=1k=1
Substituting these expressions in (4.23), with Q constant and V= —M - x, as we are

in the vicinity of the equilibrium state, we obtain:

n n
0="> (MyxIT + Qi Vi 1), with VT = = " gjix; [T, (4.52)
k=1 j=1

Therefore we conclude:

n
Mij=>" Qigij- (4.53)

k=1
that is:

n
Q=) (Myjg;!)"" =L, Q=M-g )" =L, (454
j=1
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where L;; are the Onsager coefficients. This is the form (3.49) and (2.64) of the
fluctuation-dissipation theorem, equating two quantities, namely Q and L, that de-
scribe fluctuations and dissipation, respectively and is also equivalent to the Kubo
relation (2.29).

The Fokker-Planck equation can be solved exactly as,

1 n n
[x(1)|x0] = Cexp [—5 Z > VikAx; Axk:|, (4.55)
i=1 k=1
where
Axi=x; — (xi)0; (x;)? = xe 0 exp(—Mixt) (4.56)
and

n

n
-1 -1
Vie, = 8ik _Z
i=1¢

where g = (Q~! - M)*»™ from the fluctuation-dissipation theorem.

Note that these results coincide with those obtained using the Langevin equa-
tion, namely (x,-)? is the phenomenological value of Eq. (3.44)], while VIZI is the
variance ((Ax; Axy))? of Eq. (3.46).

As a summary, the Fokker-Planck equation can be written once M and Q are
determined, by following the following steps.

e Mt g e Miet, (4.57)
1

e write the phenomenological equation, (5()? =-M- (x)?.

e Compute: Q = (M -g~1)s™,
Note that, for small time, i.e. t < [M]||~!, (x)? = (I — Mr) - x¢ and Eq. (4.55)
simplifies as:

n

1 n
H[x(t)|x0] = Cexp |:_E Z Z Qi_kl Ax; Axki|, (4.58)

i=1k=1

that is the probability function is a Gaussian distribution with mean (x)? and vari-
ance tensor Qr. That means that the system moves with a systematic drift, whose
characteristic time is ||M||~!, on which a Gaussian fluctuation is superimposed, with
covariant matrix Qt, that is, we can write:

x(1) =x0 — M - xot + q1'/?, (4.59)
where

[a®)=0.  {qa®)=Q. (4.60)
Therefore, we see that

e trajectories are continuous, since x(t) — Xg as t — 0;
e trajectories are nowhere differentiable in time, because of the !/ dependence
occurring in (4.59).

This is a fundamental flaw that has been resolved thanks to stochastic differentiation,
as we will see in Chap. 5.
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4.5 ““Violation” of the FD Theorem

Until now, we have studied the evolution of a system that fluctuates around its equi-
librium position and is subjected to conservative forces. As stated by the equiparti-
tion theorem, which is one of the formulations of the second law of thermodynamics,
each degree of freedom contributes the potential associated with the conservative
force by a fixed amount, equal to %kT. In addition, due to microscopic reversibil-
ity, the dissipating recovering force is related to diffusivity through the fluctuation
dissipation theorem.

When the system is subjected to non-conservative forces, however, there is no po-
tential associated with such forces, so that the motion of the system is irreversible,
even at a fundamental level. Therefore, in that case, neither the equipartition prin-
ciple nor the fluctuation dissipation theorem are valid any more, as the principle of
microscopic reversibility cannot be applied.* To understand this point, consider a
Brownian particle diffusing with diffusion coefficient D = kT, where the drag co-
efficient has been normalized, i.e. { = 1. Assuming that the Brownian particle is

subjected to a linear attracting force, F = —TI - x, which tends to restore the equilib-
rium state x = 0, the probability density satisfies the Fokker-Planck equation [3, 4],
oIl
a—t+V-J=O; J=FIT - kT VII, 4.61)

with appropriate initial and boundary conditions. A typical example is a particle
immersed in a linear shear flow and attached to the origin with a spring, so that T’
is the sum of a velocity gradient tensor 'V, with Tr{I'} = 0, and a spring constant
I'® = KTI. In this case, the force is the sum of a conservative and a non-conservative
components, i.e. F = F© 4+ F"9 with F© = —T® .x and F") = _T®@ . x,
where T and T'“ are the symmetric and antisymmetric part of the I' matrix,
respectively. Naturally, if I' = I'®), the applied force is conservative, i.e. F = —V¢,

with ¢ = %Zl i Fl.;s)x ; and all the results that we have obtained so far can be

applied, with I'®) = kT'g. In particular, in this case the fluctuation-dissipation the-
orem (4.54), with Q;; = kT §;;, is identically satisfied, as well as the equipartition
theorem, 3x; I“l.j.s)xj = 2kT6;;.

As we saw 1n Sect. 3, an alternative approach to study Brownian motion is the
Langevin equation (3.37),

x—F=f, (4.62)

where x represents the particle velocity, while f is the Brownian force. Now, since
J = ITx, from (4.61) we see that f = —kT V log P, so that, integrating by parts we
obtain:

(fixj)=kTsj, (4.63)

4Since the FD theorem simply cannot be applied in this case, the word “violation” has been put
between quotation marks in the title of this section.



44 4 Fokker-Planck Equation

where the bracket denotes the average of any function A of the random variable x,
ie. (A(x)) = f A(x)I1(x) dx. Consequently, multiplying Eq. (4.62) by x and con-
sidering (4.63), we find:

(Tikor))™" = kT §;j, (4.64)
with o;; indicating the correlation tensor, 0;; = (x;x;). Therefore:

Toyj =kT;j = k(T8 + Tl.g.“)), (4.65)

where Tl.;a) is an antisymmetric tensor. Obviously, the same result can be obtained
solving the Fokker-Planck equation (4.61), obtaining at steady state the Gaussian
distribution [2, 5],

X
Px)=C exp(— ka(T) ), (4.66)
where C is a normalization factor, while
kT 4
V= — Xi0y Xj» (4.67)

and o;; is related to I7; through Eq. (4.65).

As we saw in Sect. 2.4, the fluctuation-dissipation theorem [see Eq. (2.41) with
Xij = Fi;l] is valid only when the antisymmetric temperature tensor is identically
zero and the same is true for the equipartition theorem.

Now, consider as an example of application the 2D following form of the I'

matrix:
(a1 —b
Ir= (bl @ ) , (4.68)

where a; and ap are both positive constant, i.e. there must be a recovering force
pushing the particle back towards the origin. Then, we find the following solution
of Eq. (4.64):

- kT <a2a+ +byby  (a1by — aZbl)) (4.69)
ai(ajaz + biby) \(a1by —axb1) ajay +biby .

where ay = aj + a; and by = by + by. In addition, since the susceptibility yx;; is
defined such that |x;| = x;; F;, in our case we obtain,

1 _
x=r'=— " (* by (4.70)
(a1az +biby) \b2  ai
At this point, we can determine the tensorial non equilibrium temperature (4.64),
obtaining:
1 0 0 -1 b1+ b
TZJ_T[(O 1>+K<1 O)} K_a1+az' @70

Therefore, we confirm that 7;; is the sum of a symmetric isotropic tensor T® =
Té;; and an antisymmetric tensor. The fluctuation-dissipation theorem is valid only
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when the antisymmetric temperature tensor is identically zero which, in our case,
requires that by = —by = b, i.e. I is a symmetric tensor, corresponding to the case
of a particle attached to the origin through a spring and immersed in an elongational
flow. In fact, in this case we find:

kTh kT kT
o1 = —= 22 __ Oy = —2 (4.72)

o12= = 5 22 = .
ajar — b? ajar — b?

a 1as — b2’
showing that indeed o;; = kTFl.;1 . Therefore, since T2 = 0, we may conclude that,
as expected, both the fluctuation-dissipation theorem and the equipartition theorem
are satisfied.

Now, let us consider two additional cases.

e by = by = b, corresponding to the case of a particle attached to the origin through
a spring and immersed in a rotational flow. Then, if the spring recovering force is
isotropic, i.e. a; = a» = a, we find: 012 =0 and 01| = 027 = 033 = kT /a, show-
ing that the equipartition theorem is satisfied. On the other hand, T1» = —Tb/a,
showing that fluctuation-dissipation is violated. The fact that the equipartition the-
orem is satisfied is not surprising, as in this case FiEfY)Fiia) =0, i.e. conservative
and non conservative forces are perpendicular to each other.

e b1 =0and by = —b, which corresponds to a particle attached to the origin though
a spring and immersed in a simple shear flow along the x-direction. Again, for
an isotropic spring, with a; = a» = a, we obtain:
kTb 2a2 +b* kT

—W, O'll—kTT, 0'22—7. (473)

Therefore, since 712> = T b/2a, neither the fluctuation-dissipation nor the equipar-

tition theorems are satisfied.

012 =

4.6 Wiener’s Process

The Wiener process takes its name from Norman Wiener, who studied it extensively.
Basically, it corresponds to the simplest Fokker-Planck equation with no drift and
normalized diffusivity, D =1/2, i.e.,
or1  19%1T
ot 202
where IT = I1(x, t]0) is the conditional probability that a random variable X equals

X at time ¢, i.e. X(¢) = x, assuming that X (0) = 0. This equation must be solved
with initial condition,

—00 < X < 00, “4.74)

M(x,0|0) = 8(x), 4.75)

where §(x) is the ngac delta, and we require that I7 — 0 as |x| — $o0.
Now denote by I1(k, t) the Fourier transform of 7 (x, 1), i.e.,

Oo .
Ok, t)= / (x, )™ dx, (4.76)
—00
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where
* o dk
M(x,t)= f Mk, t)e k= (4.77)
_oo 2

R Fourier transforming Eq. (4.74) using the definition (4.76) and considering that
I1(k,0) =1, yields:

(k, 1) =exp <—%k2t>, (4.78)
and anti-transforming through (4.77), we obtain:
I(x,t)= ; exp <—£) 4.79)
2t 2t
This represents a Gaussian distribution,’ with
(xm)=0;  (X*)) =1, (4.80)

indicating that an initially sharp distribution spreads in time, with a linearly grow-
ing variance. The Wiener process is often called simply Brownian motion, since it
describes that process, as we saw in Sect. 3.1.

Again, note that, although the mean value of X (¢) is zero, its mean square di-
verges as t — oo. That means that the trajectories X (¢) are extremely variable. In
fact, it can even be shown [2, Sect. 3.8.1] that they are non-differentiable, as the
speed of a Brownian particle is almost certainly infinite. We can see that heuristi-
cally noting that, as d X « J/dt, then d X /dt o<1/ J/dt and therefore it diverges.

As we saw in Sect. 3.2 [cf. Eq. (3.51], the Wiener process corresponds to the
simple Langevin equation,

X ) (4.81)
7" ’
where
Em)=0;  (E0E())=08(t—1). (4.82)
Since the trajectories are continuous, they must be integrable; therefore, we obtain:
t
X@) = / E(s)ds, (4.83)
0
or
dX () =E&(t)dt. (4.84)

In fact, since X (¢) is continuous, we know that its evolution is described through
a Fokker-Planck equation, where the drift and diffusion terms can be determined
considering that:

(X(n))= /0 (@) ds =0; (4.85)

5Letting t — 0 in (4.78) and considering the initial condition (4.75), we see that the Dirac delta is
a distribution, corresponding to the limit of a series of normalized Gaussian functions as their vari-
ance tends to zero. In that limit, as expected, (4.78) shows that its Fourier transform is a constant.
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X(t) / ds/ ds S(s)é / ds/ dszS s—s =t, (4.86)

so that at the end we obtain a Wiener process, as anticipated.

Thus, the integral of £(¢) is X (¢), which is itself not differentiable, as we have
seen above, showing that, mathematically speaking, the Langevin equation does not
make any sense. The reason why we were able to use it, obtaining correct results, is
that its integral can be interpreted consistently, applying Eq. (4.83). This is the basic
idea of stochastic integration, as described in Chap. 5.

From Eq. (4.84) we see intuitively that, as £(¢) oscillates around its zero mean
much more rapidly than X (r), we have:®

and

dX(1)* =dt. (4.87)
For an n-dimensional Wiener process, this result can be easily generalized as:
dX;()dX;(t) =0;;dt. (4.88)

In practice, this relation simply shows that dX is an infinitesimal of order 1/2.
Accordingly, when random walk is simulated numerically, each increment A X; dur-
ing time Af; can be generated through the expression AX; = & 4/At;, where & are
random variables with (§;) =0 and (Ef} =1.

Comment The Wiener process is the basis of diffusion. One of its most important
properties, due to the fact that the process is Markovian, is the statistical indepen-
dence of any increment, AX; = X (¢;) — X (¢t,—1), where t;_1 < t;, from all other in-
crements, AX ;, with j #i. Accordingly, the joint probability density for the AX;’s
is equal to the product among the conditional probabilities (4.79) of each step:

AX |0)—ﬁ ! AX (4.89)
: _izla/znAzieXp 201 ) '

The independence of the increments A X; from each other is important in the defi-
nition of stochastic integration (see next section).

IH(AX,; AX;—1; ...

4.7 Problems

Problem 4.1 Show that the Brownian motion of a free particle can be described
through the so-called Kramers equation,

. dJ, kT¢ oIT
TR R AU Sy L LA L (4.90)
v m m2 v
where v is the velocity, while IT = IT(v, t|vg). Solve it and show that for long times

IT tends to a Maxwellian distribution.

6 A formal proof of this statement can be found in [2, Sect. 4.2.5].
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Problem 4.2 Show that the phenomenological coefficients M and Q in the Kramers
equation (4.90) can be obtained from Egs. (3.52) and (3.53).

Problem 4.3 Consider the Brownian motion of a particle subjected to a linear ex-

ternal force F' = —Ax. Show that for long timescales, t > m /¢, we can repeat the
same analysis as in Problem 1, obtaining the so-called Smoluchowski equation:
. dJy A kT oI
7T+ =0; Je=——xI1 — ——. (4.91)
ax e ¢ ox

Then, taking the limit when A — 0, obtain the Stokes-Einstein result.
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Chapter 5
Stochastic Differential Calculus

In this chapter, the basic concepts of stochastic integration are explained in a way
that is readily understandable also to a non-mathematician.! The fact that Brownian
motion, i.e. the Wiener process, is non-differentiable, and therefore requires its own
rules of calculus, is explained in Sect. 5.1. In fact, there are two dominating ver-
sions of stochastic calculus, each having advantages and disadvantages, namely the
Ito stochastic calculus (Sect. 5.2), based on a pre-point discretization rule, named
after Kiyoshi Ito, and the Stratonovich stochastic calculus (Sect. 5.3), based on a
mid-point discretization rule, developed simultaneously by Ruslan Stratonovich and
Donald Fisk. Finally, in Sect. 5.4, we illustrate the main features of Stochastic Me-
chanics, showing that, by applying the rules of stochastic integration, the evolution
of a random variable can be described through the Schrédinger equation of quantum
mechanics.

5.1 Introduction

In the previous chapters, we have been concerned only with a very particular type of
random process, namely the Ornstein-Uhlenbeck process, where the drift coefficient
is linear and the diffusivity is constant. As we saw, that corresponds to the case
of a system that has been slightly removed from its equilibrium state, so that it is
subjected to a phenomenological linear force, trying to bring it back to equilibrium
and, in addition, to the same fluctuating force existing at equilibrium. When we try
to generalize these results, though, we run into problems.
Let us consider, for example, the Langevin equation,

dx
i V(x,t) 4+ B(x,1)&(), 5.1

' A more formal, yet still understandable, treatment can be found in [4, Sect. 4.3].
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where V (x,t) is a phenomenological velocity, &£(¢) is the normalized Brownian
force (4.82), and consequently B(x,t) is a sort of square root of the diffusivity.
This equation can be written as:

dx =V[x(t),t]dt + B[x (1), t]dW (1), (5.2)

where we have considered Eq. (4.84), i.e., £(t)dt = dW (t), where W (¢) is a Wiener
process. Now, integrating (5.2) with initial condition x (0) = 0, we obtain:

t

t
x(t):/ V[x(s),s]ds—i—/ B[x(s),s]dW(s). (5.3)
0 0

The first terms on the RHS is well-behaved; the second, however, needs some think-
ing. Basically, since the Wiener process is a succession of jumps of the random
variable x, this equation does not tell us whether we should substitute in B(x) the
value of x just before the jump, or at some other instant of time. In fact, Ito’s in-
terpretation is that the value of x in B(x) should be taken before the jump, while
Stratonovich assumed that it should be taken halfway between its values before and
after the jump.> Obviously, these two interpretations lead to two different Fokker-
Planck equations. Conversely, if we assume that stochastic integration must lead
to a given Fokker-Planck equation, describing a known macroscopic convection-
diffusion process, then the convective term V must be different in the two interpre-
tations. In any case, it is clear that Eq. (5.1) has no meaning if it is not associated
to an integration rule since, as noted by van Kampen [11] “no amount of physical
acumen suffices to justify a meaningless string of symbols.”

5.2 Ito’s Stochastic Calculus

When we discretize the time interval (O—t), such thatt; =i At, withi =0,1,..., N
and t, = t, the differential equation (5.2) can be interpreted, according to Ito, apply-
ing the Cauchy-Euler iterative scheme:

Xiv1 =x; + V(xi, ;) At + B(x;, ;) AW;, (5.4)

where x; = x(t;) and AW; = W(¢tj+1) — W(¢;). Therefore, knowing x;, we can cal-
culate x;4 by adding to a deterministic, drift term, V (x;, #;) At, a stochastic term,
B(x;,t;)AW;. Here, AW; is the increment of the Wiener process during the time
interval (#; —t;+1) and as such, as we saw in Sect. 4.6, it is independent of the value
x; of the random variable at time #;. Therefore, Ito’s iterative solution (5.4) does not
“look into the future”, meaning that x; is independent of AW; for j > i, so that the

2 A third approach to stochastic integration, based on a post-point discretization rule, was proposed
by Peter Hénggi and Yuri Klimontovich to describe relativistic Brownian motion, but it is not
considered here for sake of brevity.
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problem is well posed and the solution can be formally obtained by letting the mesh
size go to zero, i.e. when At — 0. From that, we obtain the following formula,

t n
1/ B[x(s).s]dW(s)= lim > B(x;) AW;, (5.5)
0 n—oo l:0

where the prefix “I” indicates Ifo’s stochastic integration.
These stochastic integrals have special properties called Ito’s isometries, namely:

t
<I/ B[x(s),s]dW(s)>=O; (5.6)
0

<<I /OZB[x(s),s]dW(s)>2>=I‘/(‘)I<Bz[x(s),s])ds. (5.7)

The first Ito’s isometry can be easily demonstrated applying the definition (5.5),
with:

and,

(B(xi, t;) AW;) = (B(xi, 1) (AW;) =0, (5.8)

where we have considered that AW;, i.e. the Wiener increment during the time
interval (t; —t;+1) is independent of B at time ¢;. In similar fashion, the second Ito’s
isometry can be proven considering that (AW; AW;) = §;; At.

Now, we derive an important relation. First, expand an arbitrary function,
flx(2), t], of the random variable x (), satisfying the Langevin equation (5.2), up
to the second order in d W (¢),

52
df[x().t] = Z—fdt+—fd (t)+——fd ?* + (5.9)

where df [x(t),t] = flx(t +dt),t +dt] — f[x(¢),t] and the derivatives are taken
at [x(¢), t]. Then substituting (5.2) and considering (4.87), i.e.,
dx?= B*dW? + o(dt) = B*dt + o(d?), (5.10)

we obtain the so-called Ito’s lemma:

af df 1 _,d*f df
d t) = V— B dt+ B—dWw. 5.11
f(x)(+d+2d2+dx (5.11)
This formula shows that, applying Ito’s stochastic differentiation rules, changing
variables is not given by ordinary calculus. As a simple example of how this can be
deceiving, consider that Ito’s lemma (5.11) withx =W, f = x2,V=0and B=1,
reduces to:

dW? =dt +2W dW, (5.12)
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so that we obtain by integration:

1 1 5
1/ W(s)dW(s) = [We) —1] (5.13)
0

Here, the second term on the RHS would be absent by the rules of standard calculus.
Yet, this term must be present for consistency since, by the first [to’s isometry, the
expectation of the left hand-side is zero, i.e. (W dW) = 0. As we saw, this result
is a direct consequence of Ito’s stochastic integral formula (5.5); in fact, when it
is applied to our case, we obtain: f WdW =3 W;AW;, where W; is evaluated at
time #;, while AW; is the increment during the time interval (#; —#;11) and, as such,
being independent of W;, it has zero mean.

An immediate consequence of Ito’s lemma is the derivation of the Fokker-Planck
equation. In fact, considering the average,

(f[x®]) =/ ) (x,1]0)dx, (5.14)

and taking the time derivative, we obtain:

d [ a1 (x, t]0)
E(f[x(t)])_/_oo fo = dx. (5.15)

On the other hand, averaging Eq. (5.11) and considering that (d W) = 0 we have:

d df 1 _,d*f o0 df 1 ,d*f
dt<f[ (f)]) <Vd_+§Bd2> [_Oo( dx+2Bd2>17(x,t|0)dx.

Integrating by parts, the integral becomes:

2 00 2(p2
[an+ any__fa(B n)] +/ f<_a(vn) MRERC H))dx,
o0 ox 2 ox2

ax ox — —00

where the first term is zero, as I tends exponentially to zero at infinity. Conse-

quently,
o0 vy 132(3217)
dx =0, 5.16
/ f(az+ ax 2 axz )™ (5.16)

and therefore, as f(x) is arbitrary, we obtain the Fokker-Planck equation,3

oI 9(VII) N 92(DI) 5.17)
ar x ax2 ’

where D = 1 B? is the diffusivity.

3This equation is also referred to as the forward Kolmogorov equation.
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For many variable systems, the stochastic differential equation becomes:
dx=V[x(t),t]dt + B[x(t),t] - dW(1), (5.18)

where dW(r) describes an n-dimensional Wiener process (4.88), while the Fokker-
Planck equation is:

ar1

—+V.-J=0, 5.19
5 T J (5.19)
where J is the probability flux,
n
J; =v,-17—ZVj(D,»jn), (5.20)
j=1
where
1 n
= E;B,-k}ekj (5.21)

is the diffusivity tensor. Note that, since we obtain the same Fokker-Planck equation
by replacing B by B - U, where U is a unitary tensor with ), U;;Uj; = §; A we
can assume without loss of generality that B is also symmetric, i.e. B;; = Bj; > and
therefore the diffusivity tensor can be assumed to be symmetric. In fact, from (5.18),
we see that dx; dx; =2D;; dt, with D;; = Dj;.

5.3 Stratonovich’s Stochastic Calculus

The choice of Ito’s stochastic integration is not unique. In fact, Stratonovich defined
the following alternative definition:

t
s/ B[x(s), s]dW(s) = hmz (’“”’“ ,-)AW,», (5.22)
0

where the prefix “S” indicates Stratonovich’s stochastic integration. Obviously, for
well-behaved functions, the two definitions (5.5) and (5.22) would give the same
result in the limit of At — 0. Here, however, this is not so. For example, an obvious
difference between the two stochastic integration rules is that, since in (5.22) B is
not independent of AW, as in Ito’s stochastic integration, Ito’s isometries are not

4U - v describes a rigid rotation of the n-dimensional vector v that keeps its length unchanged. The
transposed tensor, U™, represents a rotation in the opposite direction, so that when we apply both
U and U™, the vector v returns to its original state.

5Actually, we can even find an appropriate unitary transformation so that Z,’m Uit BinUpj =
diag{i1, A2, ..., An}.
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valid anymore when we follow Stratonovich’s integration rules. Also, we should
add that Stratonovich’s approach is far more problematic than Ito’s. In fact, the
discretized equation (5.4) in Stratonovich’s interpretation would become:

Xi + Xit1

xi+1=xi+V(xi,li)At+B< >

,t,')AW,', (5.23)
showing that B depends on the behavior of the Wiener process in the future and
therefore, as it lacks the important property of the Ito integral of not “looking into the
future”, Stratonovich’s integral cannot be used, for example, to predict stock price
evolution in financial mathematics. In physics, however, stochastic differential equa-
tions are not a direct description of physical reality, but are instead coarse-grained
versions of more microscopic models. In that respect, Stratonovich’s interpretation
appears to be the correct way to model such processes.

The connection between Ito’s and Stratonovich’s integrals can be derived ex-
panding (5.22) as follows,

n

' , 1dB
s | B[x(s),s]dW(s) = lim § B(xi, ;) AW; + ——AxAW; ). (5.24)
0 n—00 = 2 dx
Then, considering that at leading order dx = BdW and d W? = dt, we obtain:

' t
S/ B(x,s)dW(s) = I/ B(x,s)dW(s) + lB(x, s)d—B(x, s)ds. (5.25)
0 0 2 dx

Therefore, we see that the Stratonovich stochastic differential equation (SDE)
dx = VSdt + BdW (t) leads to the same Fokker-Planck equation as the Ito SDE,
dx =V dt+ BdW/(t), provided that the convective terms are related as:

vSi=v leB (5.26)
- 27 dx’ ’

For systems with many variables, the Stratonovich SDE is:
dx=V35x,0)dt + B(x,1) - dW (1), (5.27)

where the Stratonovich velocity V* is related to its Ito counterpart through:
1
N
Vi :Vi—EXk:BijjBik, (5.28)
J

and, as we saw in the previous section, we can assume, without loss of generality,
that B is symmetric, i.e. B;; = Bj;.

Using these expressions, the Fokker-Planck equation can be rewritten in terms of
the Stratonovich velocity, obtaining:

o1 o(VSIT)

19 0
= ——|(B—(BI) ), 5.29
ot ax + 2 0x ( E)x( )) (5:29)
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and for many variable systems,

oI
SV =0, (5.30)

where
1 n
JT=vim - 5 Z BixV; (BijIT). (5.31)
j.k=1

Finally, converting Ito’s lemma (5.11), we can show that the rule for a change
of variables in Stratonovich SDE is exactly the same as in ordinary calculus, i.e.
[4, Sect. 4.3.6],

df (x) = %dx - i—{:(x)[VS(x, 1)dt + B(x,1)dW(@)]. (5.32)

Consequently, Stratonovich’s stochastic integrals yield physically meaningful re-
sults. For example, the integral (5.13) gives:

t
s/ W(s)dW(s) = %W%), (5.33)
0

as one would expect.

5.4 Stochastic Mechanics

In this section we follow the derivation of stochastic mechanics by E. Nelson [8].
Consider a Brownian particle, subjected to a conservative force F = —VV, and
diffusing with diffusion coefficient D = kT, where the drag coefficient has been
normalized. As we saw, X(¢) is a smooth diffusion process with,

(dxi (1)) = F; dt, (5.34)
and
dx;(t)dxj(t) =2DS;; dt. (5.35)

Notice that, in agreement with (4.88), in (5.35) there is no conditional expectation.
One way to describe this motion is to apply the forward Langevin equation,

xT—vt=f, (5.36)

where v = (xT) represents the mean forward particle velocity, f is the Brownian
force, while the forward derivative has been defined as:

o D_Jr () = lim X(t + At) — x(t)

(5.37)
Dt At—0 At
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As we saw, another way to describe this process is by defining the probability
density 17, satisfying the forward Fokker-Planck equation,

T + +
W—}—V-J =0; J"=FII-DVII (5.38)

Therefore, we see that the force F coincides with the mean forward velocity (4.7),
ie.vi =F.
Now, let us consider the backward Langevin equation,

X —v =f, (5.39)

where v~ = (X) represents the mean backward particle velocity while the back-
ward derivative has been defined as:

_ D~ . x() —x(t— Ar)
X =—x(t)= lm ———=.
At—0 At

D (5.40)

Clearly, this equation can be obtained from the forward Langevin equation by re-
placing Ar with —A¢. Identical results could be obtained starting from the backward
Fokker-Planck equation,

oIl _
W+v-(v I+ DVIT)=0. (5.41)

Comparing the above relations, we see that v- =F — 2DV logI1.
Now, define the current velocity, v, and the osmotic velocity, u, as,

1
V= §(v++v_); u=_(vF —v7). (5.42)
Clearly, that means:
v=F— DVlogII, u= DVlogIl. (5.43)

Substituting the first of the above equations into the forward Fokker-Plank equa-
tion (5.38), we see that we obtain the continuity equation,

oIl

In Nelson’s notation [7], defining
u=2DVR; ie II=¢Fk, (5.45)

and

v=2DVS, (5.46)
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the continuity equation yields,

oR

= —DV?S—2D(VS) - (VR), (5.47)
that is, taking the gradient,’
ou
o =—DV(V-v)—=V(v-u). (5.48)

Another independent equation was derived by Nelson imposing that F = ma,
where m is the mass of the particle and a its acceleration, i.e. the second time-

derivative of x(7),
z—l DT\ D b7\[D” t 5.49
a<>_§[<ﬁ><ﬁ>+<ﬁ><ﬁ>]x< ). (5.49)

Here, we have considered that acceleration is time-reversible, and we have defined
the mean forward stochastic derivative,

DT\ 9
<E>=E+V+'V+DVZ (5.50)

and the mean backward stochastic derivative,

<D—>=3+V.V—DV2. (5.51)
Dt Jat

Note that, when we apply these operators to the particle position vector x we find
again v = (xT) and v~ = (x ), while when we apply the mean backward stochas-
tic derivative and the mean forward stochastic derivative to the probability density
I1, we obtain the backward Fokker-Planck equation and the forward Fokker-Planck
equation, respectively. So, at the end, we obtain Nelson’s definition of acceleration:

1/D~ ++1 DT\ _ (5.52)
a=—(—Jv —(— )V, .
2\ Dt 2\ Dt
i.e.,
az (2 +v -V —DV? v++1 9 +vT.V4+DV? v (5.53)
2\ 2\ dr ' ’
and finally:
1 ov 2
a=—F=—+4v-Vv—u-Vu—- DV-u (5.54)
m ot

6Note that, since v is a potential vector field, V(V - v) = Viy.
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Now, considering that F = —VV, v-Vv = —Vv andu-Vu= —Vu , (in fact, v and
u are potential vector fields) this equation is equivalent to:

aS 14
— 4+ DVS-VS—DVR-VR—kTV’R=——. (5.55)
at 2Dm
Here comes the interesting part. Assume that the diffusion coefficient has the
following form:
h

D=_". 5.56
m (5.56)

where ii = h /27 and h is the Planck constant. Then, denoting by p = IT the proba-
bility density, define

,(p R+1S \/_elS (557)

and impose that i satisfies the Schrodinger equation,

W _ n_,
ih 5 = o Ve + V. (5.58)
Itis easy to see that R and § satisfy Egs. (5.47) and (5.55) (and, of course, p satisfies
the continuity equation).
This result is equivalent to Bohm’s formulation of quantum mechanics [2], where
Eq. (5.55) can be considered as a Bernoulli (or Hamilton-Jacobi) equation for a
frictionless compressible fluid,

has 1 1
—— 4 2+ V—Up=0, (5.59)
m ot 2
where
U 12+—h s Viinp+ = (V) (5.60)
— fd n .
B= 2M m U= ) P P

is Bohm’s quantum potential energy, equal to the sum of a specific dilatation energy
and a diffusion kinetic energy. In Bohm’s theory, the quantum potential is the origin
of the effect by which the wave function guides the motion of the particle, as was
proposed in de Broglie’s pilot-wave theory. The claim that Nelson’s formulation
provides an alternative to Bohm’s that is realist but without a dualist ontology rests
on the claim that this term arises from the stochastic fluctuations of the particle.

Another way of looking at this problem is to start from Madelung’s hydrody-
namic description of quantum mechanics [10]. Then, IT plays the role of the fluid
number density, IT = p, while v and u are its mean and fluctuating velocity, respec-
tively. So, mass conservation yields the continuity equation (5.44),

3
8_f+v.(vp):o, (5.61)
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while energy conservation imposes that the total mechanical energy of this friction-
less “fluid”, H, is conserved, where,

H= / p(x) H(x)dx, (5.62)
is the Hamiltonian, with

H= %m(vz +u?)+V (5.63)

denoting the energy of a single particle. Here, the (v-u) term has been omitted since
it is not invariant under time reversal.” At this point, imposing that the total energy
is conserved, i.e. { = 0, we obtain again Eq. (5.55). This approach has been clar-
ified mathematically by Guerra and Morato [5, 6], using a stochastic minimization
condition.

We saw that Nelson’s stochastic mechanics leads to predictions that agree with
those of standard quantum mechanics and are confirmed by experiments. The under-
lying fundamental assumption is that the interaction with a background field causes
the system to undergo a diffusion process, with diffusion coefficient //2m. So, “had
the Schrodinger equation been derived from stochastic mechanics, the history and
conceptual foundations of modern physics would have been different.” (Nelson,
1985) Yet, it is not clear whether quantum mechanics and stochastic mechanics
could agree on everything, for example when dealing with the measurement prob-
lem [9], the commutability among operators [3] or if a separate quantization con-
dition, as in the old quantum theory, should be added separately [12]. In fact, since
Nelson’s paper in 1969, many researchers have lost their sleep in trying to under-
stand whether this is all a coincidence or there is something fundamental under-
neath. A review of this subject can be found in the work by Adler [1].

Comment 5.1 In general, when in statistical mechanics we write Eq. (5.62), we
expect that H (x), being the energy of a particle at x, is a property of an individual
trajectory, so that the properties of the ensemble are reflected completely in the
linear explicit dependence of the Hamiltonian on p. This expectation would seem
to rule out H being itself a function of p, while in stochastic mechanics we saw
that H depends on u, which in turn depends on In p. This makes clear that Nelson’s
is not simply a theory of an ensemble of particles undergoing Brownian motion,
as it costs a lot of energy for a particle to be at a point where the gradient of the
probability density—in the ensemble of which it is a member—is large. So, perhaps,
since the same thing happens in the mean field theory, which is a coarse-grained
approximation of a more microscopic physical reality, quantum mechanics could be
interpreted in the same way, assuming that the quantum fluid can interact with itself
non-locally.

"In Nelson’s formulation the condition of time reversal invariance is imposed in the definition
(5.49) of the stochastic acceleration.



60 5 Stochastic Differential Calculus

Comment 5.2 Nelson [8] writes: “Let me remark that I have no evidence for the
background field hypothesis (if I did, I would gladly sacrifice an ox). This hypothesis
is in no way used in the mathematical development of stochastic mechanics, but I
believe it to be essential for a physical understanding of the theory.”

5.5 Problems

Problem 5.1 Show that:
! 3 |1 31 2
I W2 s)dW(s)=-W" (@) — = W<(s)ds. (5.64)
0 4 2 Jo
Problem 5.2 Show that:

/W"(s)dW(s)— — W'l — /W” L(s)ds. (5.65)

+1
Problem 5.3 The price S(¢) of a share of stock grows at a constant rate, r, so that

dS/dt =rS,ordS/S =rdt. Then, to model the volatility of the market, we add a
white noise, so that:

as
?zrdt%—GdW,

where W is a Wiener process. Solve this differential equation by Ito’s rule.
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Chapter 6
Path Integrals

In the previous chapters we saw that stochastic processes can be described using
two equivalent approaches, one Lagrangian, leading to the Langevin equation, the
other Eulerian, exemplified in the Fokker-Planck equation. Both descriptions allow
to determine the stochastic properties of a system, provided that these properties
are known at an earlier time. In addition, though, a third approach exists, where
the evolution of a system in time is formulated by writing down the probability of
observing a trajectory, or “path”, of its macroscopic variables. The first successful
attempt to define path integration is due to Norbert Wiener, who in 1921 replaced
the classical notion of a single, unique trajectory of a Brownian particle with a sum,
or functional integral, over an infinity of possible trajectories, to compute the prob-
ability distribution describing the diffusion process [10]. In a second development,
this concept was applied to quantum mechanics, first by Paul Dirac [2] and then
by Richard Feynman [3], expressing the propagator of the Schrodinger equation in
terms of a complex-valued path integral.

The goal of this chapter is to develop Wiener’s path integral formulation of
stochastic processes, with particular emphasis on its application to non-equilibrium
thermodynamics. After deriving in Sect. 6.1 the path integral for the propagator of a
free Brownian particle, its extension to a particle immersed in a force field is deter-
mined in Sect. 6.2. Then, in Sect. 6.3, we define the minimum path and the quadratic
approximation, while, in Sect. 6.4, a few examples of applications are illustrated.

6.1 Free Brownian Motion

The behavior of a Brownian particle is described in terms of the conditional proba-
bility I7(x, t|Xg) that the particle is located on position x at time ¢, provided that at
time ¢ = 0 it was located at X. In the absence of any external force field or bound-
aries, IT satisfies Wiener’s diffusion equation (4.74),

oIl 2
y—DV IT=686(x—Xq) (1), (6.1)
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where D is the particle diffusivity, V = 3/dr and V> =V - V. The solution of this
problem is the Gaussian distribution (4.79),

6.2)

2
MT(x, t|x0) = (47 Dt) "3/ % exp [_w}

4Dt

Now, the Brownian particle travels from x at time 0 to x at time ¢ through a
series of intermediate steps which define a “path” x(7). So, let us divide the time
interval (0 — ¢) into N + 1 equal interval of length €, separated by time points #; <
ty <---<ty, with tp =0 and fy4 = t. Since the diffusion process is Markovian
(see Sect. 4.1), the joint probability distribution to find a particle (which starts at xq
at time 0) at positions X at time #1, Xy at time f, ..., Xy at time ¢y and x at time ¢,
is equal to the product of the propagators (6.2) for each step, i.e.

TT(x,t; XN, tN; XN—1, EN—1; ... X1, I1|X0)
N+1
= l_[ HH(x;,t; —tj_11xj-1)
j=1
—3(N+1)/2 1R 2
= (47 De) exp [_E ;(x] ) } (6.3)

with xy4+1 = X. Therefore, when N — oo, this represents the probability for the
particle to follow the particular path x(r) from x(0) = x¢ to x(#) = x, which is
specified by the intermediate points x(¢;) =x;, for j = 1,2, ..., N. In that limit, it
is customary to write the exponential in (6.3) in the continuous notation,

1 N+ 1 ! dx 2
. E : 2
Ehrr(l)exp |:——4 ¢ l(Xj —Xjfl) :| =exXp |:——4 A <_‘C> d'L':| (64)

J

Naturally, when we integrate (6.3) over all the possible intermediate coordinates

X1, X2, ..., Xy, we must recover the original conditional probability distribution
(6.2). In this way, we derive the so-called Wiener (path) integral, i.e.,
%t L[ (dx\?
T1(x, t|xg) = € - — | dt |Dx(2), 6.5
s [ [ (& aloso. s

where I1(X, t|Xg) is the Gaussian distribution (6.2). Here, the second member repre-
sents integration over all the possible paths connecting xq at time ¢ = 0 to x at time
t, including multiplication by the normalization factor, that is formally:

X,t
/ Dx(t) = lim (4nDe)*3(N+‘>/2fdx1/dxz.../de. (6.6)
X0,0 N—oo
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A simple generalization of the Wiener integral arises in the case of a dilute chem-
ical species that diffuses in a medium where it undergoes a first-order chemical re-
action. Then the particle concentration c(x, t) satisfies the equation,

3
%€ — DVe—ke, (6.7)
ot

where k = k(x) is the reaction constant, expressing the probability, per unit time,
that the Brownian particle reacts and disappears. Accordingly, the probability that
a Brownian particle will survive, without being reabsorbed, as it moves along an
arbitrary particle path x(t), with x(0) = xg and x(¢) = x, equals

t
exp[—/ k(x(1)) dr]. (6.8)
0

The propagator G(x, t|xg) of Eq. (6.7) is therefore the product of (6.5) and (6.8),
ie.,

X, !

1 t
G(x,t|x9) = / exp |:—— (|)'(|2 — 4Dk) dt:|Dx(t). (6.9)

X0.0 4D Jo
Note that, unlike the propagator of the diffusion equation, which coincides,
within a constant factor, with the conditional probability, the propagator of the

diffusion-reaction equation differs from the related conditional probability, as its
volume integral changes with time [1].

6.2 Brownian Motion in a Field of Force

When a Brownian particle is subjected to a force F(x), the conditional probability
T1(x, t|xp) satisfies the Fokker-Planck equation (4.22), i.e.,

IT+V-J=8(x—x0)8(t), (6.10)
where J is the probability flux,
J=vVrao-pvha, V=c¢7'F, (6.11)

with ¢ denoting the drag coefficient. The most straightforward way to derive a path
integral for this process is to consider the following transformation,'

1 X, 1
I (x, t|xg) = G (X, t|Xg) exp (ﬁ/ 0V-dx>, (6.12)
X0,

ISee [9, pp. 20-21].
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where the line integral follows a path starting at Xy and ending at x after a time ¢.
Now, let us confine ourselves to the case of conservative forces, so that V can be
written as the gradient of a scalar potential ¢ (x),

V=-V¢. (6.13)

In this case, the line integral in (6.12) reduces to ¢ (X) — ¢ (Xo), i.e. it depends only
on the end points of the line integral and not on the specific form of the path. Then
we see that G (X, t|xq) satisfies the diffusion-reaction equation (6.7), with:

1
k=-—(V?+2DV-V). 6.14
D (V2 + ) (6.14)
Therefore, substituting Egs. (6.9) into (6.12), and considering that along a path dx =
xdt, we obtain:

X, 1 1 t
H(x,t|x0)=/ exp|:——/ (|5(—V|2+2DV-V)dti|Dx(t). (6.15)
X0,0 4D Jo

As shown by Graham [6, and references therein], this expression remain true even
when the external force field is non-potential and can be generalized to the case
when the diffusivity is a position-dependent tensor.

The same result can be obtained [4] from the Langevin equation,

Gij(xj = V) = fi, (6.16)

where ¢;; is the resistance dyadic. Here, the Brownian force f results from the sum of
a large number of collisions of the particle with the surrounding fluid, each occurring
randomly and independently of the others, so that:

(fitn)=0; (i) f(t + 7)) = 2kT ;8 (v). (6.17)

Applying the central limit theorem this result can be generalized, obtaining that
the probability of observing a certain Brownian force function f(z) is the following
Gaussian distribution,

1
HHG) <xexp|:—§ //[f,-(t)B,-j(r)fj(t + T)]dtdl’], (6.18)
where B is a sort of inverse of the variance of the process,
- 1
Bij(0) = (i) [+ = 2t 8. (6.19)

Now, since f(¢) and x(¢) are linearly related through the Langevin equation, the
probability /7[x(¢)] that the particle follows the path x(z) is proportional to IT[f(¢)].
Consequently, substituting Eqgs. (6.16) and (6.19) into (6.18 ), we obtain:

1
Ox(0)] = G(x,1]x0) eXp<_4k—T ()(56,' — Vigij(xj — Vj)dt>, (6.20)
x(r
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where the normalizing term G is a Jacobian, depending only on the end points.
When diffusivity is constant, Graham? showed that Eq. (6.20) must be interpreted
following the Stratonovich rule of stochastic integration (see Sect. 5.3), obtaining:3

t
G(x,t|xo)=exp[—%/0 (V-V)dt:|. (6.21)

Finally, the conditional probability I7 (X, ¢|Xo) that the particle moves from xq at
time r = 0 to x at time ¢ will be equal to the sum of the contributions (6.20) of all
paths connecting the two events, obtaining

_ S[x(7)]
T (x, t|xg) = [exp[ T :|D[x(1:)], (6.22)
where the integral is taken over all paths4 such that x(0) = x¢ and x(¢) = x, with,
t
S[x(n)] = / L[x(1), t]dr, (6.23)
0
and,
Llx(x), 7] =) (i — Vi&ij(kj — V) +2kT Y ViV (6.24)
ij i

Clearly, in the isotropic case, when ¢;; = ¢8;; and D = kT /¢, we find again Eq.
(6.15).

When the last term in (6.24) can be neglected, then L[x(7), t] is the rate of
energy dissipation at time 7 and S[x(#)] coincides with the energy dissipated along
the trajectory x(tv) during the time interval ¢. This is particularly true for linear
velocity fields, when L is referred to as the Onsager-Machlup function and the above
relations lead to a principle of least energy dissipation [7].

6.3 Minimum Path

Among all paths, let us denote by y(zr) the one that minimizes S. According to
the Hamilton-Jacobi formalism of classical mechanics (see Sects. D.3 and D.4), the
momentum p along the minimum path can be defined as

oL .
pi = [a—).cil_yzzgjmyj —V)). (6.25)

2Graham [6] also showed that when diffusivity depends on position, the exponent in Eq. (6.21)
contains two more terms, depending on the gradients of ¢;;.

3Had we followed Ito’s rule of stochastic integration, (see Sect. 5.2), we would find G = 1, which
is not correct.

4The path integral can be defined rigorously even when the paths x(t) are not continuous functions;
see [5].
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Now, defining the “Hamiltonian” H (in reality, 7 has the units of an energy per
unit time) as A =p -y — L, we obtain:

H=> i+ V(G — V) —2kTV-V. (6.26)
ij

The minimum path is determined explicitly through the Hamilton equation,

9
p=_H (6.27)
dy
that is
P+ (VV) - p=2kTV(V-V). (6.28)

This equation could be obtained directly by applying the Euler-Lagrange equation
to (6.23). In the isotropic case, when ¢;; = &;; and D = kT /¢, Eq. (6.28) can be
rewritten in the following simple form,

y=VU +y xB, (6.29)
where
1
U=§V2+DV~V; B=-VxV. (6.30)

Similar results were obtained by Wiegler [9], who studied the motion of Brownian
particles in conservative force fields, where B = 0. So, the minimum path describes
the trajectory of a particle of unit mass and unit electric charge immersed in an
electric field U and a magnetic field B.

It is intriguing that the dissipative motion of a Brownian particle is described in
terms of the conservative motion of this “particle”, whose “energy” H is constant.
In fact, multiplying Eq. (6.29) by y and considering that % =y -V, we can see that
dH/dt =0, i.e. H is constant, along the minimum path.

Now, in general, the domain of integration of the path integral is composed of all
paths whose distance from the minimum path is of order § ~ D/V or less, where
V is a typical value of V. Therefore, expressing any path x(t) as the “sum” of the
minimum path y(z) and a “fluctuating” part X(t),

x(1) =y(1) +X(1), (6.31)

where X(0) =X(¢) = 0, then S[x()] can be expanded formally around y(t) as:

S[x(1)] = Spin + 13&- S + (6.32)
ST 20X 0R ey ’ '
with S,;;» = S[y(¢)], where we have considered that the first order derivative is
identically zero. Accordingly, we see that, if within distances of O(§) from the
minimum path F can be approximated as a linear function, then S is a quadratic
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functional, and therefore the expansion (6.32) terminates after the second derivative,
with the last term being a function of X only, and not of y.> Finally, substituting
(6.32) into (6.22)—(6.24) we obtain:

1

t
H(x,t|xo)=W(t)exp|:—m/0 Emi,,(t)dr], (6.33)

where the normalization function W (¢) depends on ¢ only, and is independent of the
endpoints, while £,,;,, can be obtained from (6.24) with x(7) = y(7), i.e.,

Loin =Y (i = V&ij(3j — V) +2kT YV V. (6.34)
ij i

1

This result shows that under very general conditions the path integral is deter-
mined exclusively by the minimum path (6.28), determining the Boltzmann-like
distribution (6.33). When compatible with the end points, the minimum path is ob-
viously y =V.

In the case of a conservative force field, ¢;;V; = —V;¢, so that y;¢;;V; = —¢
and L,;in(t) = Lyin(—71). Consequently, in this case we obtain:

I1(x, t|xp) = I1(Xp, t|X), (6.35)

showing that the process is time-reversible, thus justifying, for example, the deriva-
tion of the fluctuation-dissipation theorem. In this case, the steady state, equilibrium
probability distribution can be obtained considering the reverse path,y = —V = V¢,
starting from the equilibrium point, xg, with ¢(xg) = 0, and ending at x. Then, we
find L, =4y - V¢ = 4¢, so that at the end we obtain the usual Boltzmann distri-
bution, IT(x) = Wexp[—¢(x)/kT].

6.4 Linear Case

In this section we consider several examples of application of the path integral ap-
proach to the motion of Brownian particles immersed in linear velocity fields, with
drag coefficient ¢;; = ¢§;; and diffusivity D = kT /{. In all these cases, as the ex-
ternal perturbation is linear, the only contribution of the path integral comes from
the minimum path. In addition, as the divergence of the velocity field is a constant
(zero, in most cases), the calculation of the minimum path simplifies considerably.

SFor a detailed proof of this statement, see [8].
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6.4.1 Uniform Flow Field

As a first example, consider the diffusion of a Brownian particle in a uniform ve-
locity field, i.e. V is uniform. Instead of applying directly Eq. (6.33), here we will
perform the calculation explicitly.

As we saw, the conditional probability I7(X, ¢|0) that the particle moves from
the origin, x = 0 at time ¢ = 0 to a position X at time ¢ will be equal to the sum of
the contributions of all paths connecting the two points, obtaining from Egs. (6.22)—
(6.24),

(X, 1]0) = / exp[—gE;{(;)] ]D[X(‘L’)], (6.36)

where the integral is taken over all paths such that x(0) = 0 and x(z) = X, with £
denoting the energy dissipated along the path,

t
E[x(0)] =/0 C(x— V)’ dr. (6.37)

The minimum path y(7) satisfies the Euler-Lagrange equation (6.29), ¥ = 0, with
y(0) = 0 and y(¢r) = X, obtaining: y(zr) = Xt/¢. Thus, denoting x =y + X, Eq.
(6.37) becomes:

t t t
E[xn]= Clx—vnrar+2t [ x—vo) Rdrc [ Rdr. 638)
% Jo tJo 0

Here, the second integral on the RHS is identically zero since X(0) = X(¢) = 0.
Consequently, we see that the path integral is determined only by the contribution
of the minimum path and it reduces to the well-known result,

(X —Vr)?
nX, t|0)=w( -, 6.39
X, 110) ( )exp[ 1D: (6.39)
where W () is a normalization factor, which is independent of the endpoints.
1 4 ) ~
W)= [ exp|—— | X dt |D[X(v)]. (6.40)
4D Jy

6.4.2 Harmonic Oscillator

Consider a typical Ornstein-Uhlenbeck process, where a Brownian particle im-
mersed in a quiescent fluid is subjected to a linear potential force, (i.e. a harmonic
oscillator), attracting the particle towards the origin, with F = ¢V = —¢M - x, where
M;; = M ;. Accordingly, we can choose a reference frame where the axes coincide
with the principal directions of the M matrix, so that M;; = M;4;;, with M; > 0.
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Now, the conditional probability function I7(X, ¢|0) that describes the motion
of this Brownian particle is given by Eqgs. (6.33)—(6.34). Here, the minimum path
equation (6.29) reduces to:

Si = My, (6.41)
which, coupled to the conditions y; (0) = 0 and y; (¥) = X;, yields:
sinh(M; t)

1
Substituting this result into Eq. (6.34), i.e. Ly = (Y — V)2, we obtain:
M?*X? )
Lonin = —Lt t (cosh(M;t) +sinh(M;1))” + C, 6.43
min zZijsmhz(Mit)( (Mi) (M;1)) (6.43)

where C = kT tr(M) is an irrelevant constant. Finally, from Eq. (6.33) we find the
following Gaussian distribution:

M1(X, 1]0) = W (1) exp [—% > Mix[1+ coth(Mit)]i|, (6.44)

where W (¢) is a normalization factor, which is independent of the endpoints. There-
fore, considering that g; = ¢ M; / kT, we obtain again Eqs. (3.44)—(3.46) and (4.55)—
(4.57). In particular, for long times, ¢ > M —1 this solution tends to the equilibrium
distribution,

nX)= Wexp[—% > i X,?]. (6.45)

6.4.3 Simple Shear Flow

Consider a Brownian particle immersed in a simple shear flow field, V| = yx3;
V, = 0. Following the same procedure as before, we see that the minimum path
equation (6.29) reduces to:

Jio2=00 Bt yii—yin=0 (6.46)
which, coupled to the conditions y; (0) = 0; y; () = X;, yields:
() =C1(T = 67) + 0% y(1) =3C1T2 + 207, (6.47)
with T =y 1, where

X2 —2Xy _ (6= Xy +37X,
T T ) T E 1y

(6.48)
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and 7 = yt. Substituting this result into Egs. (6.33) and (6.34), we find the following
Gaussian distribution:

32X, —1X2)* X3
X, t|0) =W _—— — —= |, 6.49
(X, 110) = W( )eXp[ ADI(2+12) 4Dt (649)
Therefore, the variances of this distribution are:
2 1 2. 2, 2
(X7)==2Dr|1+ g(yz) : (X1X3) = Dyt*; (X3)=2Dt.  (6.50)

Here we see that, as expected, the mean free displacement in the flow direction
grows like 3.

Comment It should be stressed that, as we have seen, path integrals give us no
dramatic new results in the study of a single Brownian particle (and of quantum
particles as well). Indeed, most if not all the simple results in quantum or stochas-
tic mechanics which are obtained applying path integration can be derived with
considerably greater ease using the standard formulations, that is by solving the ap-
propriate partial differential equations.® Despite that, however, path integration con-
stitutes a very worthwhile contribution to our understanding of stochastic processes
(and quantum mechanics, as well), as this way of looking at diffusive processes is,
arguably, more intuitive than the usual approaches. Furthermore, the close relation
between statistical mechanics and quantum mechanics, or between statistical field
theory and quantum field theory, is plainly visible via path integration.

6.5 Problems

Problem 6.1 Find the probability distribution function of a Brownian particle im-
mersed in an elongational incompressible flow field, Vi = yx; and V, = yx1, which
is initially located at the origin.

Problem 6.2 Find the probability distribution function of a Brownian particle im-
mersed in an straining incompressible flow field, Vi = yx; and V2 = —yx;, which
is initially located at the origin.
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Chapter 7
Balance Equations

In this chapter (see Sects. 7.1-7.6) we derive the macroscopic conservation laws of
matter, momentum, energy and angular momentum for a multicomponent system
subjected to conservative external forces and in which chemical reactions may oc-
cur. Then, in Sect. 7.7, the time growth of the macroscopic entropy of the system
is derived, showing that it can be expressed as the product between thermodynamic
fluxes and their conjugated thermodynamic forces. It should be noted that, as shown
in Appendix E, these equations are consequences of the fundamental mechanical
laws governing the motions of the constituent particles of the system.

7.1 General Balance Equation

Consider a macroscopic system in a fixed volume V', bounded by a closed surface S.
Define an arbitrary extensive quantity F(¢) as

F(1) :/ p(r, 1) f(r,1)d’r, (7.1)
\%

where f(r, t) represents the density of F () per unit mass and p (r, t) is the mass per
unit volume as a function of position and time. The most general equation describing
the variation of F(t) is:

dF 3
@) =/ _(pf)d%:_?{Jn(F)d?rJr/ o B dr, (7.2)
dt y ot s 1%

where o (F) is the source density, i.e. the amount of F generated per unit volume
and per unit time, while J,EF) is the flux of F leaving the volume, that is the amount
of F crossing the surface S per unit surface and per unit time, having the direction
of the unit vector e, perpendicular to the surface and directed outward. According

to one of the many Cauchy’s theorems, J,1(F> can be written as:
I =3, (73)
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where J¥) is a vector. This statement can be formally proved applying Eq. (7.2) to
a tetrahedron and letting it shrink to zero, as shown in most of the undergraduate
fluid mechanics textbooks. Finally, applying the divergence theorem,

7§en P g = / v 30 i, (7.4)
S v

we obtain the differential equation for the local balance of f,

%(pf) +V-JE =o', (7.5)

Clearly, this equation must be coupled with an expression for the source density
and a constitutive relation relating the flux J*) to f and its gradients. We will do
it for the balance equations for mass, momentum, energy, angular momentum and
entropy, showing that irreversible thermodynamics can determine the structure of
these relations.

7.2 Conservation of Mass

For mass transport, we set F = M in Eq. (7.1), where M is the mass, so that f = 1.
The mass flux can be written as

JM = py, (7.6)

where v is the fluid velocity. Equation (7.6) can be seen as a definition of the mean
velocity, while the mass flux J™) is a momentum density and is therefore a prim-
itive quantity.! So, considering that, as mass is conserved, i.e. ¢ ™ =0, Eq. (7.5)
becomes:

ap

ot
The law of conservation of mass (7.7) can also be written in an alternative form by
defining the substantial (also referred to as material or barycentric) derivative,

+ V- (pv) =0. (7.7)

224y, (7.8)

! Actually, v is the mean velocity of the fluid particles that are contained within the physical point-
like volume defined in (1.6) (that is a volume large enough so as to neglect thermal fluctuations
and yet small enough to neglect the effects of macroscopic gradients). Clearly, when we deal with
a single component fluid, the average can be intended as mass or as molar average, as the two
quantities are the same. As we will see in the next section, though, in multicomponent flows the
two averages are different from each other and we will choose to define v as the mass-averaged
velocity.



7.2 Conservation of Mass 75

indicating the time rate of change measured in a Lagrangian reference frame, that
reflects the point of view of an observer that moves together with the fluid, with
velocity v. So we obtain:

bp v (7.9)
— =—pV v, .
bt °
or,
D¥
0 vy, (7.10)
v Dt

where 7 = p~! is the specific volume.
Before we proceed, consider the following equality:

0 a a
E(pf)=pa—{—fV~(pV)=p3—J:—V~(pr)+pV~Vf, (7.11)
that is:
Df  a(fp)
,OE = ar +V. (,OfV). (7.12)

This is the differential version of the integral Reynolds transport theorem,

d a(fp) 3 Df 5
— (,of)d3r=/ +V-(pfv)d r=/ o——d’, (7.13)
dt Jv, o V() Of V() Dt

where V,, (¢) is a material volume moving together with the fluid. Obviously, when
f =1, this equation reduces to

d

3
il pd’r=0, (7.14)
dt Jy,

indicating that mass is conserved.
Substituting (7.12) into (7.5), we can rewrite the general balance equation in a
Lagrangian frame as follows,

Df  9a(fp) F
Por =0 +V-(ofv=-V-3 +ow, (7.15)
where
I =3P — pfv. (7.16)

This indicates that, when measured in a reference frame moving with the fluid, the
flux J&) (which is defined as the flux observed at a fixed point in space) is reduced
by an amount pfv, i.e. its convective contribution. The remaining part is the flux
that takes place in the absence of convection, and we will refer to it as the diffusive
flux, JL(IF). The two frameworks, i.e. one moving with the fluid and the other fixed in
space, are generally referred to as Lagrangian and Eulerian, respectively.
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7.3 Conservation of Chemical Species

Let us consider a mixture composed of n components, among which r chemical
reactions are possible. Again, we set F = M® in Eq. (7.1), where M® is the mass
of species k, so that f = ¢® = p®/p is the mass fraction, defined as the ratio
between the mass concentration (mass per unit volume) of species k and the density
of the mixture. Clearly, here we have:

n n
S pW=p, Y e®=1 (7.17)
k=1 k=1

The rate of change of the mass of component k can be determined applying Eq.
(7.5), where the mass flux of component k is J® — p(k)v(k), with v(®) denoting
the velocity of species k. In addition, unlike the total mass, M ®) is not conserved,
as in the j-th chemical reaction a mass v&)) 7() of species k is generated per unit
volume and unit time. Here, v%/) divided by the molecular mass of k is proportional
to the stoichiometric coefficient with which k appears in the j-th chemical reaction
(the sign is positive or negative, depending on whether it appears on the right or the
left side of the reaction), while 7/ is the chemical reaction rate of reaction j (mole
per unit time and per unit volume). Finally, we obtain:

8(P¢(k)) )y ®) i) 70
— (0o Zv TP k=1,2,....n). (7.18)

Since mass is conserved in each separate reaction, we have:

n
Zvﬂf/):o (G=1,2,...,r). (7.19)

k=1

Summing Eq. (7.18) over all k’s and considering Eq. (7.19), we obtain the law of
conservation of mass, Eq. (7.7), where p is the total density, while v is the mass-
averaged velocity,

n n
_1 3 p0y = 3 g kyh), (7.20)
p k=1 k=1

v is also referred to as the center of mass, or barycentric, velocity.
The balance equation of chemical species k can also be written in a Lagrangian
frame, applying Eq. (7.15) as follows:

D¢®

,
k) ki) 7Gi
o ="V +Y VTP (k=1.2,....n) (7.21)

j=1

0

where the diffusive mass flux,

JO =30 — pp®y = pp® (v® —v) (7.22)
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is defined in terms of the relative velocity of the species k with respect to the
barycentric velocity.
Note that from (7.20) and (7.22) we see that

n
> aP =o, (7.23)
k=1

which means that only (n — 1) of the n diffusive fluxes are independent. Similarly,
only (n — 1) of the n equations (7.21) or (7.18) are independent. In fact, by summing
Egs. (7.21) over all k, both members vanish identically as a consequence of (7.17),
(7.19) and (7.23). The n-th independent equation describing the change of mass
density within the system is Eq. (7.7) or (7.9).

Comment From thermodynamics, we know that the specific volume of a mixture,
v =p~l, is given by:

V=2 ¢% + ATpin, (7.24)

where Ty is the specific volume of component k alone, i.e. outside the mixture,
while A%y, is the volume of mixing. The latter accounts for the fact that when
two fluids mix they generally loose some volume; so, for example, if we mix 1 liter
of water and 1 liter of ethanol, the resulting mixture occupies approximately only
1.9 liters. In an ideal case, for so-called regular mixtures,? volumes are additive,
so that Av,,;, =0, In no case, however, densities are additive, since assuming p =
> ¢® p, where py is the density of component k alone, is equivalent to introducing
an ad hoc volume of mixing.

7.4 Conservation of Momentum

The momentum balance equation is the equation of motion of continuum mechanics,
which in Lagrangian formulation can be derived from Eq. (7.15) with f = v as

AR S S 7.25
pp, =V P+oF, (7.25)
where P is the momentum diffusive flux, which is generally referred to as the pres-
sure tensor (it is equal to the stress tensor, with opposite sign), while the momentum
source term, pF, expressing the momentum transferred to the fluid per unit time and
per unit volume, is a body force, that is a force per unit volume, with F denoting the
external force per unit mass. In turn, the body force can be written as the sum of the

2Regular mixtures are composed of species that are rather similar to each other, so that they behave
in some extent like mixtures of ideal gases, i.e. volume and enthalpy are additive quantities.
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separate forces exerted on each chemical species, i.e.,

n
pF =Y " p®F®. (7.26)
k=1

Here, we will restrict the discussion to the case of conservative forces, which can be
derived from a potential ¥ ®) (energy per unit mass), independent of time,

31/,(16) _

F® — —Vl/f(k); P 0. (7.27)

Accordingly, we can define a total potential energy density (energy per unit volume),

pv =2 py®. (7.28)

k=1

From a microscopic point of view, i derives from long-range forces, while the
pressure tensor P results from short-range interactions.

The equation of motion can also be written in an Eulerian framework, i.e. Eq.
(1.5),

a(pv)
ot

where pvv is a dyadic, expressing the convective part of the momentum flux.
From the equation of motion it is possible to derive a balance equation for the
kinetic energy. In fact, multiplying Eq. (7.25) by v we obtain:

+ V. (pvw+P) = pF, (7.29)

Dv_ Dy V-P)+ oF 7.30
"1 =P "Ds =-v-(V-P)+pF-v. (7.30)
Now, considering thatv- (V-P) =V - (P-v) — (P:Vv), where A:B = A;; B;;, and
applying Eq. (7.12), we obtain the kinetic energy balance equation,

oV

1.2
%+V~(%pU2V+P~V>:P:VV+,OF-V. (7.31)
So, we see that the kinetic energy flux is the sum of a convective part, % pv2v, and a
diffusive term, P - v, while the sources of kinetic energy involve the power density
(i.e. the work done per unit volume and per unit time) done by the pressure tensor
and by the external force.

Now we will derive an equivalent balance equation for the potential energy, p¥r,
with ¢ =Y ¢® vy ® _ First, apply Eq. (7.12) to obtain:

Dy [, wlv® (k)Dqﬁ(k)}_a(mﬁ) _
th—p;[qb ot = Vo). (73D
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Now, considering that ¥ ® does not depend explicitly on time and applying Eq.
(7.21) we obtain:

(pW) LV (vpyr) = Zp(p(k)v Vw(k) pr(k)v J(k)
k=1 k=1
T Zzpw(k)v(kj)j(j)_ (7.33)
k=1 j=1

The last term vanishes in most cases, as the potential energy remains unchanged in
a chemical reaction, i.e.,
n
>y ®vE <o (7.34)

k=1

In fact, the properties that are responsible for the interactions with the force field
are conserved, as it happens with the mass and the electric charge of the chemically
reacting particles. Equation (7.33) then reduces to:

k=1 k=1

Here, we see that the potential energy flux is the sum of a convective part, vpy, and
a diffusive term, representing the transport of energy due to mass diffusion; in fact,

trivially, if all species had the same energy, i.e. 1/f(k) = 1, this term would vanish,
as the sum of all diffusive fluxes is equal to zero. The source terms of potential
energy involve the works done by the external forces on the mean convective flow
and on the diffusive flows. The first is a sink term and represents the conversion of
potential energy into kinetic energy, as an equal but opposite term appears in the
kinetic energy equation as well; the second term represents instead the conversion
of potential energy into internal energy by diffusion.

Let us add the two equation (7.31) and (7.35) for the rate of change of mechanical
(i.e. kinetic plus potential) energy:

3|:,0<1v2—|—1ﬂ>1|—|—V-[v,o(lvz—i-l/f>~|—Jﬁ}/1Ei|=0ME, (7.36)
at 2 2
where
JIME —p.y 4 ZW’“J“ (7.37)
k=1

is the diffusive mechanical energy flux, while,

n
o ME) :P:VVwLZJ‘(ik) vy ®, (7.38)
k=1
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is the mechanical energy source, showing that mechanical energy is (obviously) not
conserved.

7.5 Conservation of Energy

The total energy per unit volume, pe, of the mixture is the sum of kinetic, potential
and internal energy,

1
pe = Epv2+pw+pu, (7.39)

where u is the thermodynamic internal energy, which includes the energies of ther-
mal agitation and short-range molecular interactions. In general, the internal energy
will also satisfy a balance equation (7.5),

a .
g(pu) +V-JU =4, (7.40)

where J(U) is the internal energy flux, while § = oY) is the internal energy source,
which is generally referred to as heat source. The internal energy flux can be written
as the sum of a convective and a diffusive component, with the latter generally called
the heat flux, J9, i.e.,

JU = puv + J 9, (7.41)

Since the total energy is conserved, it satisfies the balance equation (7.5), with
no energy source, i.e. o (£) =0,

3
S (o) +V JE =, (7.42)

where JB) = JME) 1 J(W) is the energy flux, equal to the sum of the mechanical
energy flux and the internal energy flux, while o &) = ¢ ME) 4§ = 0 is the energy
source, which is identically zero. Therefore, from Eq. (7.38) we obtain:

n
G=-P:vv=3 37 vy, (743)
k=1
showing that the heat source, i.e. the conversion of mechanical energy into heat,

is due to momentum and mass diffusion. In addition, from Eqs. (7.37), (7.40) and
(7.42) we obtain,

n
J(E) = pev +J[(1E), J;E) — J(q) +P-v+ Z w(k)‘]g()’ (7.44)
k=1

showing that the diffusive energy flux is the sum of, respectively, the heat flux, the
work dissipated by viscous forces, and the net potential energy loss. As we saw in
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the previous section, this last term describes the fact that when species k diffuses out
of the material volume, it carries an energy w(k), so that, in general, in a diffusive
process there is a net energy flow even if there is no net mass flow.

Naturally, the heat flux, J @ as well as the pressure tensor, P, and the diffusive
mass fluxes, J, ® | must be expressed in terms of constitutive equations, as we will
see in the next section. Also, note that, since # = u + p/p, the internal energy u
can be replaced by the enthalpy /4 in the energy equation, as the dp/dt term can be
neglected in any low Mach number process.

The internal energy balance can also be formulated in an alternate form substi-
tuting Eq. (7.21) into the last term of the heat source (7.43), obtaining,

n

ZJilk) . Vl//(k) _ XH:V . (Jigk)lﬂ(k)) Zw(k) ZZw(k) (kj)j(])

k=1 k=1 k=1 k=1 j=1

where the last term is identically zero [cf. Eq. (7.34)]. Accordingly, the heat flux and
the heat source can be written as:

n
Do®
/' =—P:Vv— b= 7.4
g vop) v, (7.45)
k=1
and
n
JO = J@ 43y Oy P, (7.46)
k=1

The minus sign on the last term in the RHS of Eq. (7.45) is due to the fact that heat
is drawn to increase the chemical energy of the mixture, i.e. when both ¥*) and
% are positive. In addition, (7.46) shows that the flux of the internal energy for
multi-component mixtures can be written as the sum of a heat diffusive term and a
heat transport term due to each diffusing species.

Finally, it is useful to note that Eq. (7.40) is simply the first law of thermodynam-
ics. In fact, defining the heat per unit mass ¢ so that pDg/Dt +V - J@ =0, we
obtain:

Du Dgqg Dv _~ . k
oF —E—pE—UP:VV—vZJ;)~V¢(k), (7.47)

where 7 = p~! is the specific volume, p is the scalar hydrostatic (i.e. thermody-
namic) pressure, with P = pI + ﬁ, and I denoting the unit tensor. Here, first we
have considered that I: Vv = V - v and then we have applied Eq. (7.10). It should be
stressed that, in general, the pressure tensor can be written as the sum of an isotropic
part and a so-called deviatoric (i.e. trace-free) part,

P=PI+P (7.48)
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where

1
P= EI:P (7.49)
is referred to as the dynamic pressure, which is generally different than the hy-
drostatic pressure_p, while P denotes the deviators part of P (and of P as well).
That means that P is not the deviatoric part of the pressure tensor, that is P is not
divergence-free, as P, not p, is the trace of the pressure tensor. In general, we can
write:

P=p+p, (7.50)

where p’ is a non-thermodynamic pressure-like term that will be determined in
Sect. 8.2 applying Onsager’s relations.

7.6 Conservation of Angular Momentum

The angular momentum per unit mass can be written as an axial, or pseudo, vector g.
Unlike absolute tensors, like momentum (and pressure, velocity and stress tensor as
well), that are unaffected by whether the coordinate system is right or left-handed,
pseudo-vectors change sign if the basis set is changed from one that is right-handed
to one that is left-handed. Familiar examples are the cross products of any two ab-
solute vectors, or the curl of an absolute vector field, such as the vorticity or, in
this case, the angular momentum. Performing a second such operation on a pseudo-
vector, such as taking a curl, will yield an absolute entity. Also, if the cross product
of a pseudovector and an absolute vector is formed, the result with be an absolute
vector.’

Alternatively, we may define the antisymmetric tensor I;; = —1I'j;, with Carte-
sian components 17 = —I»; = g3 (cycl.). Defining Ricci’s third-order antisymmet-
ric tensor €;x as €123 = 1, €321 = —1 (cycl.) and €;;;, =0 otherwise,* that means

I'ij = €ijk gk and, viceversa, g; = %e,-jk Ij. Similarly to Eq. (7.25), the angular mo-
mentum balance yields:
Dg

Py ==V (ExP), (7.51)

that is,

D
= Z O % o P, (7.52)

l,m,n=1 *n

3See discussion in [2].

4Using Ricci’s tensor, the cross product between two vector a and b can be written as: (a x b); =
Zj,k e,-jkajbk. Note that Zm €ijmEmkl = 5ik8j[ — 8,‘]5]'1( and ij €ijk€jkl = 28i1.
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where the RHS represents the torque exerted on a mass element by the pressure
tensor. Now, multiplying both members by ¢;x and considering that Zm €ijk€kim =
8i160km — 5,',,,5/‘[, we obtain:

3
DT —~ 0
th = —kE_l a(xi Prj — xj Py;). (7.53)

The angular momentum g can be split into two parts,
g=g¥+g", qe. T=T94+10, (7.54)

where g© =r x v and T'® is the usual (i.e. external) angular momentum density
due to the fluid motion, with I} = (x;v; — x;v;), while g@ =s (with T =S =
€ -s) is an internal angular momentum (spin) per unit mass, arising as a consequence
of the possible rotational motion of the microstructure. From Eq. (7.25), considering
that, since v; = Dx;/Dt,

DI ¢ Dv; Dy 755
o TP\""Dpr T Dr ) ’
we obtain:
(e)
DI 9
ij
P =T Ek ot (xi Prj — xj Pri) + (Pij — Pji). (7.56)

Subtracting (7.56) from (7.53) we obtain:

DS;; . DS
P =—(Py =P, ie p= —2P@, (7.57)
where Pl.(ja) = %(Pi.,' — Pj;) is the antisymmetric part of the total pressure tensor P.
The same relation holds also between the spin vector s = %EZS and the internal
torque density (i.e. per unit mass) t = %GZP, where we have used Gibbs’ notation:
AB= AijBij,
Ds
D =
From the equations above it is clear that if the system possesses no intrinsic
internal motion, i.e. when S =0, then T' = I'®) and Egs. (7.58) and (7.57) yield:

2t (7.58)

P,'j = le', ie. P(a) = O, t=0. (759)

that is the pressure tensor is symmetric and there is no internal body torque.
In the following, the internal body torque will be assumed to be zero, so that the
pressure tensor is symmetric.
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7.7 Entropy Equation

From thermodynamics we know that at equilibrium the entropy per unit mass, s, is
a known function of the variables that are necessary to define the thermodynamic
state of the mixture. Assuming that we have a single phase, with n reacting chemical
species, we need to define n 4 1 variables, i.e. s = s(u, v, ¢¢). In fact, the Gibbs
relation gives,

n
Tds=du+pdi—Yy u®de®, (7.60)
k=1

where 1 ® is the chemical potential (i.e. the partial specific Gibbs free energy) of
component k. Assuming local equilibrium, as we saw in Sect. 1.1, within a small
mass element we may assume that the entropy of the system, and its variation, has
the same dependence on all thermodynamic variables as in real equilibrium. In par-
ticular, Eq. (7.60) remains valid for a mass element that we follow along its center
of mass:

pPs _Du, Dy _Xn: 1 DY

+
p Dt

—_—= (7.61)
Dt Dt Dt

k=1
Substituting Eqs. (7.47) and (7.21), we obtain:

Ds “ ~ " - ! L
T'OD_I —_V. (J(fi) _ Zink)M(k)) —P:Vv— ZJE)}’C) . V,u(k) _ ZJ(J)A(])’
k=1 k=1 =1

where we have introduced the so called chemical affinities,

n
AU — Z v(kj)u(k)7 (7.62)
k=1
while,
ﬁ(k) — M(k) + 1/f(k) (7.63)

is the total (i.e. chemical plus non-chemical) potential. For example, in the presence
of an electrostatic field, ﬁ(") is the electrochemical potential, with w(") = z<k)¢,
where z® is the charge per unit mass of component k, and ¢ the electrostatic po-
tential.

Rearranging and casting this equation in the form (7.15), we have:

Ds
po Y P =a®), (7.64)
where
19 =1 (3@ XH:J(") B 7.65
d =7 - d M (7.65)
k=1
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is the diffusive entropy flux, while

1 n k) ~ r ] )
To® — _?J«n vr =Y 3P [TV(MT) 4 w‘k)} _Pvv_ Z TD AW,
k=1 j=1
(7.66)
is the entropy production.
Different, albeit equivalent, expressions can also be found [1], considering that

(k) 1 a(u®/T)
H _ L k) H
v<—T ) = T[vu, 1+ <78T >VT, (7.67)

where the subscript “7"” indicates that the derivative must be taken at constant tem-
perature, Then, taking into account that 2% =, ® — 79, % /5T, where h® is the
partial molar enthalpy, we obtain:

© L)
TV|{— ) =|V — —VT. 7.68
( T > [ H ]T T ( )

Finally, we obtain the following alternative expressions for the heat flux and the
entropy production,

n
JO = j@ _ Z JPRr®, (7.69)
k=1

and,

1,y - ~ "o
) — (q) (k) (k) (k) . D AW
Tt =——J¢ VT =337 ([vu®], + vy )—P.vV—ij AV,
k=1 j=1
(7.70)
Still, another form of the entropy production can be obtained using the equality,

(k) (k)
Tv(E_)=vu® L _v7, (71.71)
T T

and the definition (7.65) of the entropy diffusive flux, obtaining,

n r
7o =—3 . vr =3 3 vE® —Pryy -y gD Al (7.72)
k=1 j=1

7.8 Problems

Problem 7.1 Derive the equation of conservation of the electrical charge.
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Problem 7.2 Show that when some of the chemical species are electrically charged
in the entropy equation the following additional term is included:

n
To®) = Zz(k)‘]z(lk) -(E+vxB), (7.73)
k=1

where z®) and Jg() are the charge per unit mass and the diffusive flux of compo-
nent k, respectively, while E and B are the electric and magnetic fields.
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Chapter 8
Constitutive Relations

Assuming linear relations between the thermodynamic fluxes and the thermody-
namic forces derived in Chap. 7, in this chapter we apply Onsager’s reciprocal re-
lations to determine the most general symmetry conditions that are satisfied by the
phenomenological coefficients (Sects. 8.1 and 8.2). Then, in Sect. 8.3, these condi-
tions are applied to particular cases, obtaining the constitutive relations of pure flu-
ids, multicomponent mixtures, metals and non-isotropic media. Finally, in Sect. 8.4,
we see how these same symmetry conditions can be applied to find the cross corre-
lation properties of the fluctuating thermodynamic fluxes.

8.1 Introduction

In the previous chapter, we found that the entropy production rate can be written as
the sum of products between thermodynamic fluxes and forces [cfr. Eq. (7.72)].
Now, using the notation of Sect. 2.3, we should distinguish between x- and y-
variables, these latter being defined as even and odd functions of the particle ve-
locities, respectively, i.e. [cfr. Eq. (2.34)]:

1 1 DAS & n
oot _ ™) y. Oy
0 =D _?_1 J X,+i§_1 JY. (8.1)
Here,
Dx; Dy;
]‘(x): xl, J'(y): Vi (8.2)
! Dt ! Dt

are diffusive fluxes, being the material derivatives of the independent x- and y-
variables, while,

190  19AS 190 193AS
= T T Yi:_—(,):_— (8.3)
kaji k 0x; k3Ji> k Jy;
are the thermodynamic forces defined in (1.16).
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Now we restrict ourselves to the linear regime, near the equilibrium point, and
therefore we assume that fluxes and forces are related through linear relations, !

A ZL(”)X +ZL(’”>Y (8.4)
n n
I =310V X+ > Ly, (8.5)
i ij J ij J* .
j=1 j=1

Under this hypothesis, the phenomenological coefficients L;; satisfy the Onsager-
Casimir reciprocity relations,

(xx) _ 7 (xx). @y) _ 7O, oY) _ 7 O
LY =L;"; L7 =—L3"; L7 =Ly (8.6)

In the following, Eq. (8.6) will be applied to find the constitutive relations of
single- and multi-phase fluids, as well as anisotropic solids. Then, at the end, we
will apply the fluctuation-dissipation theorem to find the fluctuating part of the ther-
modynamic fluxes.

Comment 8.1 A fundamental objection against applying Onsager’s reciprocal re-
lation to any J; X; term in the entropy production expression (8.1) was raised by
Coleman and Truesdell [3], who stated that “merely to exhibit a bilinear form for
the production of entropy and to assume its entries J; and X; linearly related through
(8.4)—(8.5) does not imply that the J; are time derivatives of a thermodynamic vari-
ables x or that the forces X; are determined by Eq. (1.16).”

This objection can be partially answered considering that J; = xv,.(d) = (dx/dt);
and X; « V;x = (35/0x);, indicating that the diffusive flux and the conjugated
force associated with a variable x equal, respectively, the time variation of x and its
associated entropy gradient as we move along the i-direction with diffusive veloc-
ity vl.(d) . So, the Onsager relations should be interpreted as referred to a coordinate
reference system moving with mean velocity.

Comment 8.2 The Onsager relations can be simply obtained applying the linear
phenomenological relations (8.4)—(8.5) to the Betti-Maxwell-Lorentz reciprocity re-
lations, which establish that, for any two non-equilibrium configurations (J;, X/)
and (J, X!), we have: Y, J/ X! =", J" X! (see Sect. F.3.1 in Appendix F).

The complete relations (8. 6) can then be obtamed simply imposing that we can-
not have any X;Y; terms in the expression (8.1), since o must be invariant to ro-
tations [2]. So, it seems that the arguments based on statistical fluctuations and the
principle of microscopic reversibility are not essential in deriving Onsager’s reci-
procity relations and therefore they play no fundamental role in the thermodynamic

IExamples are Fourier’s law of heat transport, Fick’s law of mass transport and Newton’s law of
momentum transport.
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theory of irreversible processes [1]. On the other hand, one could also argue that the
macroscopic balance equations, together with the above reciprocity relations, are
but a reflection of more fundamental microscopic balance relations which, as shown
in Appendix E, have exactly the same structure as their macroscopic counterparts.

8.2 Applying the Reciprocity Relations

First of all, before we can apply Eq. (8.6), we must rewrite Eq. (7.72) in terms of
independent variables. Accordingly, considering that among the n material diffusive
fluxes only n — 1 are independent [cfr. Eq. (7.23)], we have:

-1 r
1 1 1~ 1
) _1y® g N L0 gt _ L1 Bov N L 7D 40
o = TJd vT 1?-1 TJd A TP.VV ?_]Tj AY (8.7)

where i*™ = i®) — 1™ Physically, this stresses that diffusion needs at least two
components, as it consists of the transport of one component into another. Now,
comparing Eq. (8.7) with Eq. (8.1), we could identify JdS, J‘(Jk), P and JD) as fluxes,
and —VT/kT, —Va%*» kT, —Vv/kT and —AY) /kT as the respective thermo-
dynamic forces, the third ones being y-variables (i.e. velocities), while the others
are x-variables. At this point, we assume that near equilibrium forces and fluxes
are related through linear phenomenological equations (8.4) and (8.5), so that any
Cartesian component of a flux can be a linear function of the Cartesian components
of all thermodynamic forces. In reality, however, according to the Curie symmetry
principle, some of these relations cannot exist when the fluxes and their related ther-
modynamic forces do not have the same tensorial character, due to the fact that the
constitutive relations (8.4)—(8.5) must be invariant under reflection and under rota-
tion. In particular, in an isotropic medium, the Curie principle states that fluxes and
forces of different tensorial characters do not couple.? This is particularly relevant
in our case, as in (8.7) some fluxes (and their related forces) are scalar, some are
vectors and one is a second-rank tensor.

Before we proceed, some care must be taken in interpreting Curie’s principle,
because any second-rank tensor A may be decomposed as:

Aij = ASij + eijrar + A, (8.8)

where A is one third of the trace,

1 1
A=§Aij3ij=§(All + Ap + As3), (8.9)

2In certain cases, this fact is trivial. For example, the phenomenological coefficient relating a vec-
torial flux and a second-order tensorial force must be a third-order tensor, and there is no isotropic
third-order tensor. For details, see [5].
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a is an axial vector deriving from the antisymmetric part of A,

1 1
ai = EeijkAﬁ); A§§') =5 (Aij = Aji), (8.10)

while A® is the symmetric, deviatoric (i.e. trace-free) part of A,
O
Aij =§(Aij+Aji)—A5ij. (8.11)

Here, we have used Ricci’s third-order antisymmetric tensor €k, defined in
Sect. 7.6 as €123 = 1, €321 = —1 (cycl.) and €;jx = 0 otherwise. Using Ricci’s ten-
sor, the cross product between two vectors, a and b, can be written as: (a x b); =
Zj,k eijkajbk.3

In our case, when A = i as the deviatoric part of P and that of P coincide
with each other, we see that the axial vector, t, is the internal torque per unit mass,
t= %e:P(“).4 When A = Vv, the trace is the velocity divergence, V - v, while the
axial vector is the angular velocity, €2, i.e. one half of the vorticity, £ = %V X V.
Therefore:

- " 1 .
P=)pT+e t+P¥; Vv=§(v-v)1+e-sz+s, (8.12)

where p’ is the non-thermodynamic pressure-like term defined in (7.50), while the
symmetric and traceless part of the velocity gradient,

S= %(Vv—i—Ver) —~ %(V«V)I. (8.13)

is generally referred to as the shear rate tensor.
Using these results the third term on the RHS of Eq. (8.7) becomes:

P:(Vv)=p'V.-v+P®S, (8.14)

where we have considered that I:'I = 3, the pressure tensor is symmetric (i.e. t = 0)
and that the doubly contracted product of a symmetric and an antisymmetric ten-
sor is identically zero, i.e. A®):B(@) = 0. The fact that in isotropic media without
any internal body torque the angular velocity does not influence the entropy produc-
tion rate is an obvious result since the properties of the system should be rotation
invariant.

Considering all the above relations, the entropy production rate (8.7) can be writ-
ten as the sum of three separate contributions, each containing fluxes and thermo-
dynamic forces of the same tensorial character, as fluxes and forces of different

3Note that Zm €ijm€mkl = 8ikdj1 — 8i18jx and ij €ijk€jkl = 28i1.
4Here we have used Gibbs’ notation: A:B = AijBij.
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tensorial character do not interfere with one another,

1 1 < o
(8) _ ’ () AU).
=——pV.v—— E AV,

(70 Tp \4 T j

j=1

-1
1 15
S N k
‘71( ) = .I(,)-VZ - = E J(,)~V/L(k");

T
k=1

1oy«
GZ(S) = ——PW:§,
T

which are each separately positive definite.

91

(8.15)

(8.16)

(8.17)

At this point, the phenomenological equations relating fluxes and thermodynamic

forces of the same tensorial order are:

1 U
= ) vy N D 4D,
P kr Y JX_; kT

. 1 I B
O v ___y.y_ 16D A,
7 kY Z kT
j=1
n—1

1 1 _
Jg — _L(‘Il])ﬁv’r _ ZL(qk)_TVM(kn);

n—1

. N | |
[ SN vy S L(lk)_v"‘(kﬂ);
Ja kT ;; k"
o 1 .
PY =_-L—8§
kT

and the following reciprocity relations can be established:

g G, ) Z i,

L0 — @, ) pUb,

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)
(8.24)

The first of these relations describes a cross effect between an x- and a y-variable
and therefore has a minus sign, while all the other relations describe cross effects

between x-x or y-y variables.
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8.3 Constitutive Relations

8.3.1 Single-Phase Fluid

First, let us consider the simplest case of a single-phase fluid. In this case, there is
no reaction or diffusion terms, so that Eq. (8.18)—(8.22) reduce to:

p==tV-v; (8.25)
(S .
IO = —vT/T; (8.26)
PO = 218 (8.27)

where ¢ = [V /kT is the bulk viscosity (or second viscosity), k = L9 /k is the
heat conductivity, while n = L/2kT is the shear viscosity. Therefore, considering
the definition (7.65) of diffusive entropy flux, we obtain the following constitutive
equation for the heat flux and the pressure tensor:

J@ = VT, (8.28)
2
PZ[P—C(V-V)]I—n[Vv+Vv+—g(V-v)]. (8.29)

Sometime this last relation is expressed in the following equivalent form:
P=[p—i(V-»]I-n(Vv+Vv?), (8.30)

where A = ¢ — 2n/3.

Another way to obtain this constitutive relation is to consider that the pro-
portionality term between two second-order tensors is a forth-rank tensor., i.e.
P;j = vjjk; Vivy. For isotropic fluids, v;j,; must be an isotropic tensor and there-
fore it must be of the form: v;ji; = n16;x8 1 + 128i16 jx — Ad; 1. Now, imposing
that v;jx = vjix since P is symmetric, we find 11 = 52, therefore obtaining the
constitutive relation (8.30).

8.3.2 Binary Mixtures: Thermo-Diffusion

Let us consider a non-reactive binary mixture. Compared to the single-component
case, here the entropy production rates 0@ and o® remain unchanged, so that, at
the end, we obtain the same constitutive relation (8.29) for the pressure tensor. On
the other hand, o1 has one more term, describing the diffusion of one component
into the other, i.e.

1 1
() M, (12 ) 12
o)) =—— IO -3 ") vr — —J 7 v, (8.31)
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where 112 = uM — 4@ and 712 = g® — 7@ are the differences between the
(chemical and mechanical) potentials of the two components. Note that (8.31) is
invariant to interchanging the two components, as J;z) = —Ji,l).

For purely diffusive processes, it is more convenient to use the expression (7.70)
for the entropy production rate. That means considering that Vu® = [Vu(D]r +
sOVT, and kD = D — s T where the subscript “7” means that the gradient is
taken at constant temperature, while s(1 and 21 are the partial entropy and partial
enthalpy of component 1, respectively. At the end, we obtain:

1 ~
1(S) = (J(q) _ Jy)h(lz)) VT — ?JS) . [Vum)]T, (8.32)

with 102 = (D — k@ where we have assumed that the potential ¥ * is not an
explicit function of the temperature.

At this point, the phenomenological equations relating fluxes and thermodynamic
forces are:

J@ L(qq)k; VT L(ql)%[vﬁ(u)]ﬁ (8.33)
P kl v7 — LD le [VA(?],; (8.34)
where [cf. Eq. (7.69)],
JO = j@ _ inl)h(ﬂ), (8.35)
so that the following reciprocity relations can be established:
LU — @b (8.36)

In particular, assuming that no external forces are present (ie. ¥* =0 and
n%® = 1 ®y and that viscous effects can be neglected, so that pressure is uniform,
then [111?]7 is a function of the composition ¢! only.> Accordingly, applying the
Gibbs-Duhem relation, DV + @ v =0, we obtain:

1 1 (e9)
(9], = (14 5 )9 = v 6

Using these results, the phenomenological equations (8.33) and (8.34) can be
rewritten as:

B
JO = VT — pp T E__ D”v¢“) (8.38)

a¢(l)
I = —ppVp@D'VT — pDVHD. (8.39)

3Clearly, this is always true in liquid systems.
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Here, « is the heat conductivity,

LW
K= T (8.40)
D" is the Dufour coefficient,
., 1@
= —qu(‘)qs(z)sz’ (8.41)
D’ is the thermal diffusion coefficient,
/ 1(4)
= 7p¢(‘)¢(2)kT2’ (8.42)
and D is the diffusion coefficient,
LD 5,M
H (8.43)

D= 0 DKT 3¢

Here, D’ characterizes the thermo-diffusion phenomenon, that is the flow of matter
caused by a temperature gradient, while D” describes the opposite, so-called Dufour
effect, that is a heat flow caused by concentration gradients in isothermal conditions.
According to the Onsager reciprocal relation (8.36), we have,

D' =D, (8.44)

showing that thermo-diffusion and Dufour effects are strictly related.

The thermo-diffusion phenomenon is observed at the scale of one millimeter or
less.® It is labeled “positive” when particles move from a hot to cold region and
“negative” when the reverse is true. Typically the heavier/larger species in a mixture
exhibits positive thermophoretic behavior while the lighter/smaller species exhibit
negative behavior. The phenomenon of thermophoresis in liquid mixtures is gen-
erally called Soret effect, as it differs from that in gas mixtures and is not as well
understood, in general.

Let us see how the thermo-diffusion coefficient could be measured. Consider
a system enclosed in a reservoir, where convection phenomena can be neglected.
Furthermore, assume that our system consists of a binary mixture, whose compo-
nents are liquids of approximately the same density, so that the overall density p is
roughly uniform. For measuring the thermal diffusion coefficient, D’, let us fix the
temperature difference between two walls. At steady state, applying (8.38), where
the heat flux is constant and the Dufour term can be neglected compared to heat

A simple example of thermo-diffusion is when the hot rod of an electric heater is surrounded by
tobacco smoke: as the small particles of air nearest the hot rod are heated, they create a fast flow
away from the rod, down the temperature gradient, thereby carrying with them the slower-moving
particles of the tobacco smoke.
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conducting term, we see that the temperature gradient will be uniform. With this
result, applying (8.39) with inl) = 0, we obtain the so-called Soret coefficient, st,

D’ 1 Ve

Rl o (8.45)

ST =
showing that the thermo-diffusion coefficient D’ can be determined by measur-
ing the resulting concentration gradient.” Experimentally, s7 turns out to be of
the order of 1074~10=2 K~!, both for liquids and gaseous mixtures [6]. Accord-

ingly, for liquids D ~ 10~> cm?/s and D’ = 10~7-10"° cm?/s K, while for gases
D~ 107" cm?/s and D’ = 1073-107° cm?/s K.8

8.3.3 Metals: Thermo-Electricity

A metal can be considered as a binary system, where the first component is formed
by the electrons and the second by the positive ion lattice. Since there is no viscous
dissipation and no chemical reactions, the entropy production rate (7.72) becomes:

2
To® =3 . vr— ZJ;") VR, (8.46)
k=1

where the electrochemical potential,
G0 = p® 4y ® (8.47)

is the sum of the chemical potential, w® and the product ¢ ®) = z® ¢, where z©)
is the charge per unit mass of component k, and ¢ is the electrostatic potential, so
that E = —V¢ is the electric field. Now, when the diffusive fluxes are measured
with respect to the ion lattice, the barycentric velocity is zero, v =0, so that a) ion
diffusion can be neglected; b) the magnetic field appearing in Eq. (7.73) does not
play any role.” Accordingly, Eq. (8.46) becomes:

To® =3 . vT - J© . ve@©, (8.48)
with the superscript “e” indicating the electron phase, where

J©O =) (8.49)

7Care should be paid to implement this experiment, as the final stationary state is reached after a
time L2/ D, which may be very long.

8Sometimes, it is preferred to use the thermal diffusion factor, k7 = ¢(1)¢(2)TD’ /D, with values
laying between 0.01 and 1.

9For details, see [4].
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is the total electric current, while

/,L(e)
Z(e)

¢ =0+ (8.50)
is an effective electrostatic potential.!”

Using this expression for the entropy production rate, wee see that the phe-
nomenological equations relating fluxes and thermodynamic forces are:

Jz(zlS) = —LUDyT — L@ye©, (8.51)
J© = Dy _ L(ee)v(j}(e)’ (8.52)

where the following reciprocity relations can be established:
L9 = (D (8.53)

Sometimes, it is more useful to write these equations as:

k
I = —= VT + 7J©; (8.54)
Vp'© = —ngVT — RJ©, (8.55)

where k is the heat conductivity at zero electrical current, R is the isothermal
resistivity of the medium, 7 = L@¢) /L is the Peltier coefficient, while ns =
LD /L is the thermal electricity, or Seebeck, coefficient. Then, the reciprocity
relation (8.53) becomes,

ns=m. (8.56)

These constitutive relations describe the thermo-electric effects, that is the di-
rect conversion of temperature differences into electric voltage and vice-versa. The
former is the Seebeck effect: in the absence of any electrical current, an electric
field can be induced by a temperature gradient. Its most important application is
the thermocouple, that is a device consisting of two wires made of different met-
als, A and B, connecting two heat reservoirs having a AT temperature difference.
In addition, the thermocouple is an open circuit, e.g. it is connected to a balanced
potentiometer, so that there will be no electric current. Therefore, since the Seebeck
coefficient is a function of the nature of the substance (and of temperature, as well),
it is easily seen from (8.55) that, between the capacitor plates, a potential difference
A¢(e) =map AT will be induced, where wop = (4 — 7B).

The opposite phenomena describes the Peltier effect, where a heat flux is induced
by an electric current in isothermal conditions. Therefore, when a unit electric cur-
rent traverses a junction of two different conductors at uniform temperature, a cer-
tain heat must be supplied, or withdrawn, over the Joule heat, to keep the junction at

10Note that, consequently, E' = —V¢© =E — V(9 /z(©) is an effective electric field.
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constant temperature. This is the Peltier heat, which, from (8.54), can be expresses
as J© /3@ = o
d = JLAB-
Therefore, the Onsager relation establishes the so-called second Thomson rela-
tion between the Peltier heat and the Seebeck thermoelectric potential as follows:

d¢(€)
dT

TAB = (8.57)

A third thermo-electric phenomenon is the Thomson effect, that is the heating
or cooling of a current-carrying conductor in the presence of a temperature gradi-
ent.!! In fact, substituting the constitutive relations (8.54)—(8.55) into the entropy
generation term (8.46) and the entropy equation (7.64) we obtain, after rearranging:

Ds 1 1 2
T __Vv. _Vv. (e) _ ()
P =7V (V) =¥ (7J )+TR|J I°, (8.58)

where we have applied the Onsager relation (8.56). Here the first term on the RHS
represents the entropy change due to heat conduction, while the last term is the
Joule heat; the second term is the most interesting, as it is related to both Peltier
and Thomson heats. In fact, considering that V - J© = 0 due to electroneutrality,
we have:

1 9
~V . (7)) = —?J(E) -Vr, with Vo = (V)7 + a—;VT, (8.59)
and so:
© L@ L e
—V - (7)¥) = — I (Vm)r + —0 VT, (8.60)
where,
am
o=-T— (8.61)
aT

is the Thomson coefficient. The first term in (8.60) describes the Peltier heat, which
is induced by changes of the Peltier coefficient at constant temperature, due, for
example, to the non-homogeneity of the system. The second term, on the other hand,
describes the so-called Thomson heat, that is a heat effect due to the combined
action of an electric current and a temperature gradient. Equation (8.61) is known
as Thomson’s first relation.

See the beautiful description in [8].
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8.3.4 Diffusion in Multicomponent Mixtures

Consider isothermal and isobaric diffusion in isotropic, non reactive mixtures in the
absence of external forces. The entropy production rate can be written as:

1 n—1 '
o® = —TZJQ’ - vpkm, (8.62)
k=1
with the following phenomenological equations:

n—1
. | .
R ZL‘”)EV/N”); (8.63)
j=1

where L) = LUD,
First, let us see what happens for binary mixtures. In this case, as we saw in the
previous section, we obtain the following constitutive relation:

I =—pDVeD, (8.64)

where the diffusion coefficient D is related to the Onsager coefficient L'V through
the Eq. (8.43), namely,

LD 5, M

The chemical potential u(l) can be written as [7]:
RT
1 _ (M 1) (1)
0=l + i (F ), (8.66)

w

where M,g,l) is the molecular mass of component 1, f M is the activity coefficient,
which is equal to unity for ideal mixtures, while x is the mole fraction, which is
related to the mass fraction through the following relation,
¢(1) B Ml(ul)x(l)
MPx® 1 yPy@

(8.67)

Accordingly, u(()l) is the chemical potential of a hypothetical one-molar ideal solu-
tion. Therefore, considering that from this last expression we obtain,

ax® (D@

3D~ pgM’ (8.68)
we see that Eq. (8.43) becomes:
N, x(z) alnf(l)
_yanp__ Naxm aln fO
b=t M1 12pH (1 alnx(l))’ (8.69)

where the last factor is missing for ideal mixtures.
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Now, let us consider the general, multicomponent case. As we did in the previous
section, apply the Gibbs-Duhem relation,

n

S p v =0, (8.70)
i=l1
obtaining:
n—1 )
o — kY. X0, 8.71)
k=1
where
%) LS L Gbg, 6. 4GB ¢
Xz:_ﬁZAJ vu®, AU =5jk+m. (8.72)
j=1

Now, express the chemical potential in terms of composition as

n—1
A
) _ k0 7 4 (0). (k) _
vu® =3 " u*ove®: = 340" (8.73)
=1

so that the phenomenological equations can be written as:

n—1
3y == D0, (8.74)
=1

where DO are the diffusion coefficients,

n—1 n—1
. o . 1 .
puo — § LiDGUb.  GgUb = = § AUR gy (8.75)
j=1 k=1

Now, inverting Eq. (8.75), we obtain:
n—1
1) — Z D(ik>[G(kj)]—1. (8.76)
k=1
These results can be simplified considering that GU/) is a symmetric matrix. In
fact, from

n n—1
ldglr.p =) nVd¢? =3 ™ dp®. p W =p®—p™. 877

i=1 i=1
we easily find the Maxwell relation,
aum  gulim
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At this point, if we eliminate ;£ with the help of the Gibbs-Duhem relations (8.70),
these expressions become:

n—1 n—1
Z AR gy — Z A(jk)M(ki)’ (8.79)
k=1 k=1

that is G/ = GUD,
Considering this symmetry result and applying Onsager’s reciprocal relation
LD = LUD to (8.76), we finally obtain:

—1 —1
rlX:D(ik)[G(kj)]_l:}iD(jk)[G(ik)]_l; ie. D-G'=G"'.D", (8.80)
k=1 k=1

or equivalently, multiplying by G in front and in the back on both members,

n—1 n—1
ZG““D“‘”:ZD“”G“‘”; ie. G-D=D".G. (8.81)
k=1 k=1

These are %(n — 1)(n — 2) relations, which reduce the number of (n — 1)? diffu-
sion coefficients in (8.74) to %n(n — 1) independent coefficients.

For ternary mixtures, Eqgs. (8.81) consist of a single relation, which reduces the
independent diffusion coefficients from 4 to 3. Written explicitly, Eq. (8.81) is:

G pi 4 12 p2) _ phG32) 4 [ G2, (8.82)
The simplest case is that of an ideal mixture, where all components have the

same molecular weight, M,,, so that mass and molar fractions are equal to each
other. Then,

0 )
W0 = RT s ppn 00 RT ST (8.83)
Mw a¢(k) Mw ¢)(l)
Therefore:
. Ny (890 1
G = A (2 __ 4 ) (8.84)
My \ @ 5

At the end we obtain:
¢(2)(1 _ <Z,)(2))D(12) _ ¢(l)(1 _ ¢(”)D(21) =¢(1)¢(2) (D(ll) _ D(22)). (8.85)

As you can see, even in this simplest case, the result is rather elaborate!!
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8.3.5 Non Isotropic Media

Consider first the heat conduction in a non isotropic matrix. In the absence of any
mass transport, the entropy production rate can be written simply as

1
c® = _EJ@ VT, (8.86)
with phenomenological equations,
1
J@O = _L@D . mw =—x-VT, (8.87)

where, according to Onsager’s reciprocal relation, ¥ = L99) /kT? is a symmetric
tensor, i.e.

Kij =Kji. (8.88)

This relation was first proposed by Maxwell.
Identical relations exist in the following cases:

e FElectric conduction. Here, as it appears from Eq. (8.55) the flux is the electri-
cal current density, J©©, the thermodynamic force is the gradient of the effective
electrostatic potential, Vd:(e), and the phenomenological coefficient is the inverse
of the resistance tensor, R™!. The symmetry of the resistance tensor can also be
seen as a consequence of Maxwell’s reciprocal theorem (see Sect. F.3.1).

e Flow through porous media. Here the flux is the mean fluid velocity, v, the ther-
modynamic force is the pressure gradient, V p, and the phenomenological coef-
ficient is the Darcy permeability tensor, k (see Sect. 10.3). The symmetry of the
permeability tensor can also be seen as a consequence of the Lorentz reciprocal
theorem of slow viscous flows (see Sect. F.3.1).

e FElasticity. Here the flux is the deformation vector, & the thermodynamic force is
the load, i.e. a force per unit volume F, and the phenomenological coefficient is
the flexibility tensor, f. The symmetry of the flexibility tensor is generally referred
to as the Betti-Maxwell relation.

Similar considerations can also apply to momentum transport, leading to sym-
metry relations of the viscosity forth-rank tensor. In fact, the constitutive relation
(8.27) can be generalized as:

15,»(;) = 20 ke Skes (8.89)

where, by construction, considering that both P®) and S are symmetric and trace-
free, we have:

Nijke = Mjike = Nijks 8ijNijke = NijkeSre = 0. (8.90)
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In addition, the Onsager reciprocal relation gives the additional following symmetry
relation:

Nijke = Nktij- (8.91)

Righi-Leduc Effect In the presence of a magnetic field, the Onsager relation
(8.88) can be written:

kij(B) =«ji(—B). (8.92)

Decomposing « as the sum of a symmetric and an antisymmetric tensor [see Eq.
(8.8)—(8.10)], we obtain:

Kfj B) = Kl‘-‘j(—B); Ki“j B) = —Kl-“j(—B). (8.93)
In addition, applying the decomposition (8.12), we obtain:
k=K'4+¢€-K, (8.94)

where k' = %e:x” is the axial vector that can be obtained from the antisymmetric
part of k. Clearly, k'(B) = —k’(—B), and therefore it is non-zero only in the pres-
ence of a magnetic field. Substituting (8.94) into (8.37), we obtain:

Jy=—K"-VT +K x VT. (8.95)

Let us consider the simplest case of a system that is isotropic in the absence of a
magnetic field. If B is applied along the z-axis, the heat conduction tensor has the
form:

K=| —Kyxy K O (8.96)

where, according to (8.93),
Kxx (B) = kxx (—B); Kz (B) = kz;(—B); kxy B) = _kxy (=B). (8.97)

Note that both the form (8.96) of the heat conductivity and the reciprocity rela-
tions (8.97) could be easily derived imposing that the phenomenological equation
(8.87) is invariant for rotations around the z-axis. As such, the Onsager relations are
already satisfied owing to spatial symmetry.

This phenomenon shows that, in the presence of a magnetic field, heat flow in an
isotropic medium can have a different direction than the temperature gradient. It is
called the Righi-Leduc effect, and is the thermal analogue of the Hall effect, which
arises when electric conduction occurs in a magnetic field.
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8.4 Fluctuations of Thermodynamic Fluxes

In Chap. 3 [cf. Eq. (3.43)] we have~seen that a flux, x;, is the sum of a phenomeno-
logical part and a fluctuation part, J;,

% = LuXy + J;, (8.98)

where X; = k~195/0x; is the thermodynamic force conjugated to the flux x;, while
L;x are phenomenological transport coefficients, which are related to each other!?
through the Onsager reciprocity relation, L;;z = L;. In addition, the fluctuating
fluxes satisfy the relation (3.50):

(Ji (1) Ji(12)) = 2Lix8 (11 — 12), (8.99)

showing that, according to the fluctuation-dissipation theorem, their intensity is pro-
portional to the related transport coefficients at the same time.

Now, let us consider the case of a single isotropic fluid. We saw that the total
entropy production equals:

N =/ o®av=lim Y o® AV, (8.100)
v AV—0
where
1 1 -
S (q)

ol >=—ﬁji"v,-r—?P,-jv1uj (8.101)
is the entropy production per unit volume. Therefore, we see that if we identify
J@ and P as fluxes, the respective thermodynamic forces are —I{%VTAV and
—%VUAV and the Langevin equation can be written as:

@ (aq) 1 7(9)
J =—L; WVTAV +J;, (8.102)

and

~ 1 -
(vv) (v)
Pij = _Lijkik_TvkwAv + Jij ,
where we have taken into account the fact that, according to Curie’s principle, heat
and momentum fluxes cannot be cross correlated, since they have different tensorial
order. Comparing Egs. (8.102) and (8.103) with the constitutive relations (8.28) and
(8.29), we see that

(8.103)

2
(qq) _ KT~

ik AVICS,'J', (8.104)

12Here we assume that the variables are all of the x-type, i.e. they are invariant to time reversal
transformation. Generalization to y-type variables is straightforward.
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and

L&) = k—T[n(5~k5- + 8ie8k) + (g _2 )8~-8 ] (8.105)
ijke AV ik9je i09jk 377 ijoke |- .

Note that in the constitutive equations above the fluxes are taken in the same
location (as well as at the same time) as the forces. That means that there are no
non-local effects, i.e. the response of the system in a certain point (and at a certain
time) depends only on its configuration at the same point. Accordingly, we see that
(a) fluctuations of the shear stress are not correlated with those of the heat flux;
(b) fluctuations of the shear stress in two different volumes AV are not correlated
with each other, and likewise for the heat flux. Accordingly,

(@) Iy (2, 12)) = 0; (8.106)
(T, )P (02, 12)) =0 if ) £ 12, (8.107)
(if;’)(rl I (02, 0)) =0 ifry #ro. (8.108)

On the other hand, when the fluctuating fluxes are evaluated at the same location we
find for the heat flux:

- - 2uckT?
(F9w, 1) (x, 1)) = ot — ). (8.109)
Then, going to the limit AV — 0, we obtain:
(T 1, 01) (02, 12)) = 24k T 288 (11 — )8(x1 — 1), (8.110)

Proceeding in the same way for the shear stresses we obtain:
<jif/F) (ry, tl)fk(g)(l‘z, 1))

2
= 2kT|:77(5ik8j£ +8iedji) + <§ - g’?)&ﬁk@]a(h —1)é(r —r2). (8.111)

The same procedure can be applied to evaluate the fluctuations of the diffusive
mass flux in isothermal binary mixtures. In that case, the Langevin equation be-
comes:

Jz(il) — —pDV(b(]) +j(l), (8.112)

where the diffusion coefficient D is related to the Onsager coefficient L' through
the following equation [cf. Eq. (8.43)],

LD M

D= kT ap™ A

while the fluctuating flux is characterized by:

(T @y, i) IV (02, 1)) = 2L 8381y — 12)8(x1 —12). (8.114)
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In particular, in the dilute limit we find [cf. Eq. (8.69) when x® = ¢® =1 and
f (M =1, since a dilute mixture is always ideal]:

(T @1, ) IV (02, 1)) = 2m3n D D838 (11 — )8 (x1 — 1), (8.115)

where m is the mass of a single particle of the component 1 and n") = p™ /m is
the number density.

8.5 Problems

Problem 8.1 Defining the instantaneous viscosity tensor as 151.(;) = —21jjke S‘k[, find
the symmetry relations satisfied by 7;xe.

Problem 8.2 Show that in the dilute limit Eq. (8.115) reduces to (G.32).
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Chapter 9
Multiphase Flows

In this chapter we derive the equations of motion of multiphase fluids. In the clas-
sical theory of multiphase flow, each phase is associated with its own conservation
equations (of mass, momentum, energy and chemical species), assuming that it is at
local equilibrium and separated from the other phases by zero-thickness interfaces,
with appropriate boundary conditions. Instead, here we describe the so-called dif-
fuse interface, or phase field, model, assuming that interfaces have a non-zero thick-
ness, i.e. they are “diffuse”, as it is more fundamental than the classical, sharp inter-
face theory and is therefore more suitable to be coupled to all non-equilibrium ther-
modynamics results. After describing van der Waals’ theory of coexisting phases
at equilibrium (Sect. 9.2), in Sect. 9.3 we illustrate the main idea of the diffuse in-
terface model, leading to the definition of generalized chemical potentials, where
the non uniformity of the composition field is accounted for. Then, in Sect. 9.4,
the equations of motion are derived by applying the principle of minimum action,
showing that an additional, so called, Korteweg, reversible force appears in the mo-
mentum conservation equation. This force is proportional (with a minus sign) to the
gradient of the generalized chemical potential and therefore tends to restore the equi-
librium conditions (where chemical potentials are uniform). Finally, in Sect. 9.5, we
show that for incompressible and symmetric binary mixtures the governing equa-
tions simplify considerably.

9.1 Introduction

The transport of momentum, heat and mass in two-phase systems occurs frequently
in nature and plays an important role in many areas of science and technology.
Familiar examples include: (a) the flow of suspensions through pipes; (b) heat con-
duction in a composite material; (c) mass transfer from a solid surface to a flowing
suspension; (d) bubbly flows through conduits; (e) the flow of granular materials,
and many, many more. In fact, it is safe to claim that multiphase transport processes
far overshadow the analogous and more commonly investigated single-phase oper-
ations in terms of their significance in practical applications.

R. Mauri, Non-Equilibrium Thermodynamics in Multiphase Flows, 107
Soft and Biological Matter, DOI 10.1007/978-94-007-5461-4_9,
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The theory of multiphase systems was developed at the beginning of the 19th cen-
tury by Young, Laplace and Gauss, assuming that different phases are separated by
an interface, that is a surface of zero thickness. In this approach, physical properties
such as density and concentration, may change discontinuously across the interface
and the magnitude of these jumps can be determined by imposing equilibrium con-
ditions at the interface. For example, imposing that the sum of all forces applied to
an infinitesimal curved interface must vanish leads to the Young-Laplace equation,
stating that the difference in pressure between the two sides of the interface (where
each phase is assumed to be at equilibrium) equals the product of surface tension and
curvature. Later, this approach was generalized by defining surface thermodynami-
cal properties, such as surface energy and entropy, and surface transport quantities,
such as surface viscosity and heat conductivity, thus formulating the thermodynam-
ics and transport phenomena of multiphase systems. At the end of the 19th century,
though, another, so-called, diffuse interface (D.1.) approach was proposed, assum-
ing that interfaces have a non-zero thickness, i.e. they are “diffuse.” Actually, the
basic idea was not new, as it dated back to Maxwell, Poisson and Leibnitz or even
Lucretius, who wrote that “a body is never wholly full nor void.”! Concretely, in a
seminal article published in 1893, van der Waals [30] used his equation of state to
predict the thickness of the interface, showing that it becomes infinite as the criti-
cal point is approached. Later, Korteweg [13] continued this work and proposed an
expression for the capillary stresses, which are generally referred to as Korteweg
stresses, showing that they reduce to surface tension when the region where density
changes from one to the other equilibrium value collapses into a sharp interface.?

In the first half of the 20th century, van der Waals’ D.I. theory of critical phe-
nomena was generalized by Ginzburg and Landau [17], leading to a general, so-
called mean field theory of second-order phase transition, and thereby describing
phenomena such as ferromagnetism, superfluidity and superconductivity. Then, at
mid 1900, Cahn and Hilliard [6] applied van der Waals’ diffuse interface (D.I.)
approach to binary mixtures and then used it to describe nucleation and spinodal
decomposition [4]. This approach was later extended to model phase separation
of polymer blends and alloys [10]. Concomitantly, in the mid 1970s, the D.I. ap-
proach was coupled to hydrodynamics, developing a set of conservation equations,
that were reviewed by Hohenberg and Halperin [11]. Finally, recent developments
in computing technology have stimulated a resurgence of the D.I. approach, above
all in the study of systems with complex morphologies and topological changes.
A detailed discussion about D.I. theory coupled with hydrodynamics can be found
in Antanovskii [2, 3], Lowengrub and Truskinovsky [19], Anderson et al. [1] and,
more recently, in Onuki [25], Thiele et al. [21, 29] and Mauri [22]. In order to better
understand the basic idea underlying the D.I. theory, let us remind briefly the classi-
cal approach to multiphase flow that is used in fluid mechanics. There, the equations

IT.C. Lucretius [20], “Corpus inani distinctum, quoniam nec plenum naviter extat nec porro vac-

”»

uum.

2For a review of the theory of capillarity, see [28].
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of conservation of mass, momentum, energy and chemical species are written sepa-
rately for each phase, assuming that temperature, pressure, density and composition
of each phase are equal to their equilibrium values. Accordingly, these equations are
supplemented by appropriate boundary conditions at the interfaces [9]. For example,
for the momentum transport we have:

Py -n=xon+ (I—nn)- Vo, vy =0, ©.1)

with n denoting the normal at the interface, stating that the jump of the momentum
flux, or pressure, tensor, P, at the interface is related to the curvature «, the sur-
face tension o and its gradient, while velocity v is continuous. Similar boundary
conditions exist also for the transport of heat and mass,

|39 n=0:; IT|5 =0, 9.2)
and
0L m=0 e =k e, O

stating that heat flux, J @), temperature, T, and the flux of any chemical species A,
J@ | are continuous across the interface, while the concentration, ¢4, can undergo
ajump, depending on a partition coefficient K, given by thermodynamics. Naturally,
this results in a free boundary problem, which means that one of the main problems
of this approach is to determine the position of the interface. To that extent, many
interface tracking methods have been developed, which have proved very success-
ful in a wide range of situations. However, interface tracking breaks down whenever
the interface thickness is comparable to the length scale of the phenomenon that
is being studied, such as (a) in near-critical fluids or partially miscible mixtures,
as the interface thickness diverges at the critical point, and the morphology of the
systems presents self-intersecting free boundaries; (b) near the contact line along
a solid surface, in the breakup/coalescence of liquid droplets and, in general, in
microfluidics, as the related physical processes act on length scales that are compa-
rable to the interface thickness. In front of these difficulties, the D.I. method offers
an alternative approach. Quantities that in the free boundary approach are localized
in the interfacial surface, here are assumed to be distributed within the interfacial
volume. For example, surface tension is the result of distributed stresses within the
interfacial region, which are often called capillary, or Korteweg, stresses. In general,
the interphase boundaries are considered as mesoscopic structures, so that any ma-
terial property varies smoothly at macroscopic distances along the interface, while
the gradients in the normal direction are steep. Accordingly, the main characteristic
of the D.I. method is the use of an order parameter, or phase field, which under-
goes a rapid but continuous variation across the interphase boundary, while it varies
smoothly in each bulk phase, where it can even assume constant equilibrium values.
For a single-component system, the phase field is the fluid density p, for a liquid
binary mixture it is the molar (or mass) fraction ¢, while in other cases it can be
any other parameter, not necessarily with any physical meaning, that allows to re-
formulate free boundary problems. In all these cases, the D.I. model must include a



110 9 Multiphase Flows

characteristic interface thickness, over which the phase field changes. In fact, in the
asymptotic limit of vanishing interfacial width, the diffuse interface model reduces
to the classical free boundary problem.

Based on the above considerations, multiphase flows can be readily modeled us-
ing the diffuse interface approach which, being more fundamental than the classical,
sharp-interface model, is also more suitable to be coupled to all the non-equilibrium
thermodynamics results that we have seen in the previous chapters.

9.2 Equilibrium Conditions

9.2.1 Free Energy and van der Waals’ Equation

All thermodynamical properties can be determined from the Helmholtz free energy
(B.29). This, in turn, depends on the intermolecular forces which, in a dense fluid,
are a combination of weak and strong forces. Fortunately, strong interactions nearly
balance each other, so that the net forces acting on each molecule are weak and long-
range. In addition, mean field approximation is assumed to be applicable, meaning
that molecular interactions are smeared out and can be replaced by the action of a
continuous effective medium. Based on these assumptions, the case of dense fluids
can be treated as that of nearly ideal gases described in Appendix B.3, so that, allow-
ing for variable density, the molar Helmholtz free energy at constant temperature 7
can be written as [cf. Eq. (B.54)]

fle®]= fia+ %RTNA /(1 — e VO p(x + 1) dr, (9.4)

where k is Boltzmann’s constant, R = Nk is the gas constant, with N4 the Avo-
gadro number, i is the pair interaction potential, which depends on the distance
r =|r|, p is the molar density, while the factor 1/2 compensates counting twice the
interacting molecules. The first term on the RHS,

fia=RTInp, 9.5)

is the molar free energy of an ideal gas (where molecules do not interact). Now, we
assume that the interaction potential consists of a long-range term, decaying as r~°
(like in the Lennard-Jones potential), while the short-range term is replaced by a
hard-core repulsion, i.e.

)=t/ (> a),
Yr) = . - <d) 9.6)

where d is the nominal hard-core molecular diameter, / is a typical intermolecular
interaction distance, and the non-dimensional constant Uy represents the strength
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of the intermolecular potential. When the density is constant, Eq. (9.4) gives the
thermodynamic free energy, f7;,,

St (T, p) = fia(T, p) + fex (T, p), 9.7
where

Jex(T, p) = RTpB(T), 9.8)

is the excess (i.e. the non ideal part) of the free energy, with
1 o0
B(T)= ENA/ (1—e VO Y amr? dr (9.9)
0

denoting the first virial coefficient. This integral can be solved as

‘1 = Y /00y, 2 c
B(T)=2nNAf r dr+2nNA/ (1= /DN 2dr =y — —,  (9.10)
o g RT
where
2 2
c1 :gnU0N§l6/d3 and 02:§nd3NA 9.11)

are the pressure adding term and the excluded molar volume, respectively. Finally
we obtain:

frn(p, T)= fia+ RTcop —cip~ RTln(1 — Czp) —c1p, 9.12)
that is
c

Jri(p, T)=—RTIn(v —c2) — > (9.13)
where v = p~! is the molar volume. At this point, applying the thermodynamic

equality P = —(df/dv)n,T, we obtain the van der Waals equation of state,

RT
(P n %) - . 9.14)
v vV—C2

This equation of state could be considerably improved if the term RT /(v — ¢3),
which is exact in one dimension, is replaced by a more accurate representation of
the pressure for a hard-sphere fluid in three dimensions [32].

9.2.2 Critical Point

In the P — T diagram, the vapor-liquid equilibrium curve stops at the critical point,
characterized by a critical temperature 7¢ and a critical pressure Pc. At higher
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temperatures, T > T¢, and pressures, P > Pc, the differences between liquid and
vapor phases vanish altogether and we cannot even speak of two different phases.
In particular, as the critical point is approached, the difference between the specific
volume of the vapor phase and that of the liquid phase decreases, until it vanishes at
the critical point. Accordingly, near the critical point, since the specific volumes of
the two phases, v and v + év, are near to each other, we obtain:

P 1/d%P )
P(T,v)=P(T,v+év)=P(T,v)+|— ) Sv+5|{-=) )’ +---,
ov Jr 2\ 0v Jp
where we have considered that the two phases at equilibrium have the same pressure,
in addition to having the same temperature. At this point, dividing by v and letting
dv — 0, we see that at the critical point we have:

oP
<—> =0, thatis, k7 —>ocasT — T¢, (9.15)
o/

where k7 is the isothermal compressibility. Note that this condition is the limit case
of the inequality (0 P/dv)7 < 0, which manifests the internal stability of any single-
phase system. In addition, since near an equilibrium point, § f + P§v > 0, expanding
8f in a power series of v, with constant 7', we obtain:

2 3
5fTh=(af—Th) (8v)+l<8 fTh) (b‘v)zjti(a fTh) Gv) +---.
T 2' T 3' T

v v? av3

Finally, considering that (dfrp/0v)r = —P and that at the critical point
(0% fri/9v?) T = 0, we obtain:

1 /3%P 0 + 1 /3P o) + 0
= — v —| —= v << 0.
31\ 9v? /7. 4\ 803 ) 7.

Since this equality must be valid for any value (albeit small) of §v (both positive
and negative), we obtain:

9P P
a2 ) 7. 3 ) 7.
Therefore, the critical point corresponds to a horizontal inflection point in the P — v
diagram, which means that, since P = —(df75,/0v)T,
9* 9°
Jri) -y, Jrn) - _y, 9.17)
w? ). w3 ).

Imposing that at the critical point the P — v curve has a horizontal inflection point,
we can determine the constant ¢ and c¢; in the van der Waals equation (the same is
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Fig. 9.1 Phase diagram
(P vs.vorpvs. ¢)

»

vor ¢

true for any two-parameter cubic equation of state) in terms of the critical constant
Tc and Pc, ﬁnding:3

9RT 27 (RT¢)? q 1 1 RTc ©.18)
Cl = — Ve = — an )= -V =——". .
P=87 T 6a pe 27378 e

Viceversa, the critical pressure, temperature and volume can be determined as func-
tions of ¢; and ¢, as follows:

1C1 8 C1l

P = ——, = —=—,
T ¢~ 27 Rey

ve = 3c). (9.19)

Using these expressions, the van der Waals equation can be written in terms of the
reduced coordinates as:

3
(Pr+_2>(3vr_1)=8Tr, P,
v

r

T
—, v = —, Tr=T—C. (9.20)

This equation represents a family of isotherms in the P, — v, plane describing the
state of any substance, which is the basis of the law of corresponding states. As
expected, when 7, > 1 the isotherms are monotonically decreasing, in agreement
with the stability condition (3 P/dv)r < 0, while when 7, < 1 each isotherm has a
maximum and a minimum point and between them we have an instability interval,
with (0 P/9v)r > 0, corresponding to the two-phase region (see Fig. 9.1).

Note that, considering that Pcvc = (3/8) RT¢ and substituting the expressions
for ¢; and ¢, in terms of the intermolecular potential, we obtain the following rela-

tion:
<dl>2 23( U )1/3 ©.21)
= A . i

3See [18].
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Fig. 9.2 Typical double-well
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9.2.3 Coexistence and Spinodal Curves

Let us consider a one-component system at equilibrium, whose pressure and tem-
perature are below their critical values, so that it is separated into two coexisting
phases, say « and . According to the Gibbs phase rule, these two phases have the
same pressure and temperature and therefore, defining the Gibbs molar free energy
grh = frn + Pv, with dgry = —sdT + vd P, the corresponding equilibrium, or
saturation, pressure Pg,; at a given temperature can be easily determined from the
equilibrium condition, stating that at equilibrium the Gibbs molar free energies of
the two phases must be equal to each other. So we obtain:

e

e e
g?h—g%hzf dgrn=0 — / vdP:[vP]Z—/ Pdv=0, (9.22)
b b b

where P = P(v) represents an isotherm transformation. From a geometrical point
of view, this relation manifests the equality between the shaded area of Fig. 9.1
(Maxwell’s rule), where the points b and e correspond to the equilibrium, or sat-
uration, points of the liquid and vapor phases at that temperature at equilibrium,
respectively, with specific volumes vy and vf . Conversely, the specific volumes of
the two phases at equilibrium could also be determined from the molar free energy
frh, rewriting Eq. (9.20) in terms of reduced coordinates as

1 9
=—-T,In(ve) =T, In{v, — = )| — —. (9.23)
3 8v,

Sfrn
RT¢

When 7, < 1 a typical curve of the free energy is represented in Fig. 9.2. Now,
keeping T, fixed and considering that the two phases at equilibrium have the same

pressure, using the relation P = —(df7,/dv)r, we obtain:
i \* [ 3frn\’
pr—pb — <ﬂ> =( fT”) , (9.24)
o Jr w Jr

which, in Fig. 9.2, represents the fact that the two equilibrium points have the same

tangent. From this relation we can determine the specific volumes of the two phases

at equilibrium, v$ and vf . This relation can also be obtained considering that the
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Fig. 9.3 Phase diagram T‘
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specific volumes of the two phases at equilibrium minimize the total free energy,
ie.,

Frj = f fru(o) d*x = min, (9.25)
where f = pf is the free energy per unit volume,

frn=pfri= fia+ fex=RT[plnp+p*B(T)]. (9.26)

This minimization is carried out in Sect. 9.3.2. In Fig. 9.3, besides the equilib-
rium curve, we have represented in a T — v diagram the, so called, spinodal curve,
defined as the locus of all points (like ¢ and d) satisfying (9 P/dv)r = 0. All points
lying outside the region encompassing the equilibrium curve are stable and repre-
sent homogeneous, single-phase systems; all points lying inside the region within
the bell-shaped spinodal curve are unstable and represent systems that will separate
into two phases (one liquid and another vapor, in this case); the region sandwiched
between the equilibrium and the spinodal curves represents metastable systems, that
is overheated liquid and undercooled vapor. The spinodal points can be also deter-
mined using the relation (3 P/dv)r = 0, obtaining:

P frn\
( o )T_o, 9.27)

determining the spinodal specific volumes Y and Ef .

9.3 Diffuse Interfaces

9.3.1 Interfacial Regions

Suppose now that the molar density of the system is not constant. Accordingly, when
Up < kT, Eq. (9.4) can be rewritten as

fX = frax) + Afnp (%), (9.28)
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where frj, is the molar free energy (9.5) corresponding to a system with constant
density, while

AfnL(x) = %Ni / UO[px+1 =] & 9.29)
r>

is a non local molar free energy, due to density changes, typical of the diffuse inter-
face model. In fact, when there is an interface separating two phases at equilibrium,
this term corresponds to the interfacial energy. This result is a direct consequence of
the non-locality of the free energy (9.4), that is its value at any given point does not
depend only on the density at that point, but it depends also on the density at neigh-
boring points. As stated by van der Waals, “the error that we commit in assuming a
dependence on the density only at the point considered vanishes completely when
the state of equilibrium is that of a homogeneous distribution of the substance. If,
however, the state of equilibrium is one where there is a change of density through-
out the vessel, as in a substance under the action of gravity, then the error becomes
general, however feeble it may be” [30]. Now, in (9.29) the density can be expanded
as

1
p(x+r)=p(x)+r~Vp+Err:VVp—l—n-. (9.30)

As we have tacitly assumed that the system is isotropic, we see that the contribu-
tion of the linear term vanishes, so that, at leading order, we obtain [26],

AfnL(X) = —%RTKVZ,O(X), (9.31)

with
2w NaUy ° ox Tc 5
_ = — == Nud’, 9.32
3 kT 4 471 ©-32)
where we have substituted Egs. (9.6), (9.11) and (9.19). Note that, defining a non-
dimensional molar density, 5 = N4d?>p, the non local free energy can be rewritten
as

Afnr(X) = —%RTazvzﬁ(x), (9.33)

K o T,
a= | = |7TCy (9.34)
Nad3 4T

is the characteristic length. Therefore, in the bulk, the total free energy is:

. 1
/Vfd3x=/Vp(frh—§RTKv2p) d’x, (9.35)

where

where f: pf is the free energy per unit volume.
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Comment In the previous analysis, we have truncated the expansion (9.30) after
the second-order term, neglecting the next significant (i.e. the forth-order) term.
That means assuming that € = a? /kz « 1, where A denotes the thickness of the
interfacial region. Now, although this assumption is satisfied near the critical point,
where A diverges as T — T¢ [cf. Eq. (9.52)], far from the critical point, € is not too
large. For example, at a water-vapor or an oil-water interface, € ~ 0.1, so that we
expect our results to be correct within a 10 % error.

At the wall, the non local free energy (9.29) has an additional contribution of the
form

f {m(x) [ / U(r)p(x+r) d3r} } d’x = y§ fulp®)d®x,  (9.36)

where the integration is carried out on the surface. Here, p; is the solid density and
fw 1s the wall free energy per unit surface, that we assume to be a function of the
fluid density at the wall only. Now, observing that, integrating by parts,

/p(X)Vzp(X) d’x =?§n- (oVp)d>x — /|V,0(x)|2d3x, (9.37)
we see that the total free energy is the sum of a bulk and a surface free energies, i.e.,
F = Fy+ Fy, (9.38)

where Fj, is the bulk free energy,
Fy= / F(o,Vp, T)d’x = RT / [pfm(p, T)+ %K(T)(vmz} d’x,  (9:39)
where fTh = frn/RT =Inp + pB(T), while F, is the wall free energy,
F, =RT f [—%Kn (pVp) + fw(p)} d?x, (9.40)

where f,, = fu/RT.
At equilibrium, keeping the temperature 7' constant, the total free energy F will
be minimized, subjected to the constraint of mass conservation,

/ pd’x = M = const. (9.41)

Accordingly, introducing a Lagrange multiplier, RT i, the minimization condition
is:

~ 1
5/[p(ffh(p)—ﬂ)+§Klelz} &x

+8¢.[—%RTKn- (,oV,o)~|—fw(,0)] d’x =0, (9.42)
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for any arbitrary variation §p of the density field. Now, consider that, for any func-
tion h(p, Vp), we have:

oh oh
Sh=—§ 3(V; ith §(V;p) = V;(ép), 9.43
o p+a(v 5 (Vip), with §(V;p) =V;(5p) (9.43)
and
oh oh aoh
V; (8p) d*xdt = \Z Spd’x.  (9.44
[, swig o s = fe o [ 9o Jonds o
Applying these two equalities to Eq. (9.42) we obtain:
0 af - 3
— —V; —(RT ) |8pd-
/[ap ’(aw> ( ’”] pax
1 dfw 3
+ 2RTKV,0+ 3pd’x =0, (9.45)
s

where we have considered that §(pVp) = §p Vp + pVSp and assumed that n
Vép =0 at the boundary.

9.3.2 Generalized Chemical Potential

Choosing §p = 0 at the boundary, Eq. (9.45) reduces to minimizing the bulk free
energy. So, predictably, we obtain the Euler-Lagrange equation:

- af of
= [ap Vi (av,p>] 040

that is, substituting (9.39),

_ dpfry)

a= — KV?p. (9.47)
dp

This defines the Lagrange multiplier ft, associated with mass conservation. Now,
by definition, the first term on the RHS is the Gibbs free energy, which, in a one-
component system, coincides with the chemical potential. In fact,

d(pfrn) _r _ Y

RT ity = (9.48)
where dfr),/dv = —P. This (apart from the dimensional constant RT') is the equa-
tion of the straight line represented in Fig. 9.2, stating that two phases at mutual
equilibrium have the same chemical potential. Therefore, Eq. (9.46) can be rewrit-
ten as

fi(p, Vo) = firn(p) — KV?p, (9.49)
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showing that at equilibrium, when p is non-uniform, it is &, and not (i, that re-
mains uniform and so fi can be interpreted as a generalized chemical potential. Note
that the thermodynamic chemical potential, ji7,, can be determined from the solv-
ability condition of Eq. (9.48), that is,

~ paf%h_pﬁffh vaffh_vﬁf%h
firn = =

ot — o R , (9.50)
as it can also be seen geometrically from Fig. 9.2, stating that the chemical potential
equals the intercept of the tangent line on the v = 0 vertical axis. When two phases
are coexisting at equilibrium, separated by a planar interfacial region centered on
7 =0, Eq. (9.46) can be solved once the equilibrium molar free energy f is known,
imposing that, far from the interface region, the density is constant and equal to its
equilibrium value, so that the generalized chemical potential is equal to its thermo-
dynamic value (9.48). In particular, in the vicinity of the critical point, considering
that the chemical potential vanishes and expanding the free energy (9.23) as a power
series of U= (v — v¢)/ve and T=(T —T¢) / Tc, we obtain at leading order the fol-
lowing equation:

——6tv—§v =0, (9.51)

where Z = z/A is based on the characteristic length

[ 1
A= 8(—f)d' (9.52)

Equation (9.51) must be solved imposing that

(Z — +00) =+0, = +2v 1. (9.53)
The solution, due (again!) to van der Waals, is:
v(Z) = V. tanh Z, (9.54)

showing that A is a typical interfacial thickness. As expected, the interfacial thick-
ness diverges like (—7)~!/% as we approach the critical point, while far from the
critical point it is of O(d).

9.3.3 Surface Tension

In Sect. 9.3.1 we have seen that the total free energy is the sum of a thermodynam-
ical, constant density, part, and a non local contribution (9.31). When the system
is composed of two phases at equilibrium, separated by a plane interfacial region,
we may define the surface tension as the energy per unit area stored in this region.
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This quantity can be calculated by integrating the specific free energy (9.31) along
a coordinate z perpendicular to the interface:

1 o g2 1 % /dp\?
a:——RTK/ p—pdzz—RTK/ il W (9.55)
2 oo dZ? 2 oo\ dz

where we have integrated by parts and considered that, outside the interfacial region,
the integrand is identically zero as density is constant. We see that, near the critical
point,

kTe
o ~ RTcK (Ape)?/h ~ d—zc(—t)3/2, (9.56)

where we have considered Eqs. (9.32) and (9.52). In fact, using the density profile
(9.54), Eq. (9.55) yields, for a van der Waals system:

o= zRTC(—aCEP/Z(f) _cMe Ly (9.57)
3 v2 d?

with C = 33/2/(23/21r), where we have used Eq. (9.20). These results show that the

surface tension decreases as we approach criticality, until it vanishes at the critical

point.

Now, following van der Waals, we will show that in a curved interface region
there arises a net force, which is compensated by a pressure term, thus obtaining the
Young-Laplace equation. To see that, let us denote the position of the interface by
z =h(&), where & is the 2D vector in the support plane, and assume that [V¢h| < 1,
where |Veh| is the 2D gradient [26]. Now, the free energy increment due to the
interface curvature can be written as:

AF:G/(,/l—HVghP—1)d2§%%a/|Vgh|2d2§. (9.58)

This increment in the free energy induces an increment in the pressure,
AP =8F/8h=—0V?h = —«o, (9.59)

where k = V?h is the curvature of a weakly curved interface. Applying a rigor-
ous regular perturbation approach to Eq. (9.46), Pismen and Pomeau [27] derived
both the Young-Laplace equation (9.59) and the Gibbs-Thomson law, relating the
equilibrium temperature or pressure to the interfacial curvature.

From a different perspective, one could say that at equilibrium the two coexisting
phases must have the same generalized pressure, defined as

F:_[ﬂ—v,( of )]:p_p2RTKV2p. (9.60)

E)Viv
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9.3.4 Boundary Conditions

As previously noted, the equilibrium state of an unconfined van der Waals fluid can
be determined using the generalized chemical potential in the bulk. In general, how-
ever, for confined systems surface wettability effects are present and must be taken
into account. In our D.I. approach such effects can be accounted for by introducing
the simplest additional surface contribution to the free energy functional, which is
based on the assumption of local equilibrium, so that wettability is a local quantity,
depending on the composition of the mixture at the wall. Accordingly, choosing
8p = 0 in the bulk, Eq. (9.45) reduces to minimizing the surface integral, and so we
obtain the following boundary condition [12],

1 d
L RTkn.vp= o), 9.61)
2 dp

where f,,(¢) is the surface energy at the wall. Assume a linear dependence,

Juw(@) =0Bw + dAoy, (9.62)

where ¢ = (p — pa)/(Pg — Pa), P and pg are the densities of pure phases o and 8,
respectively, while Aoy, = oyg — owe expresses the affinity of the wall to phase 8,
as compared to phase «. Therefore, considering that o = apRT/M,, is the surface
tension between the two fluid phases at equilibrium, this boundary condition can be
rewritten as

can-V¢ =—Aoy, (9.63)

which is generally referred to as the Cahn boundary condition [5]. In the sharp
interface limit, n - V¢ = cos 6, where 6 is the contact angle, and therefore the Cahn
boundary condition reduces to the Young-Laplace formula, cos§ = —Ao,/o. From
here we see that, when o 4,, = 0, or when o4, and op,, are both < o, then § =
7 /2; instead, when o4y >> 0y OF 04y K 0By, then 6 = and 6 = 0, respectively.

9.4 Equations of Motion

9.4.1 Minimum Action Principle

In this section, we confine ourselves to study the reversible motion of a dissipation-
free fluid. Now, if x(#, xg) denotes the trajectory of a material particle which is
located at xg at time ¢t = 0, i.e. with X9 = x(0, Xp), then the fluid velocity field is
v(x, t) = x(t, Xo), where the dot denotes time derivative at constant xo. According
to the Hamilton, minimum action, principle, the motion of any conservative system
minimizes the following action functional:

t
S:/ /c(v,¢,v¢)d3xdt, (9.64)
0 JV
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where
1 ~
L=L(V,p,Vp)= Epvz -, (9.65)

is the Lagrangian of the system, with @ = pu denoting the internal energy per unit
volume. The minimization must be carried over with the constraint of mass conser-
vation which, as we saw in Sect. 9.3.2, results into the appearance of the Lagrange
multiplier fi.

Applying the minimum condition, let us give a virtual displacement §x;, corre-
sponding to an infinitesimal change of the fluid flow. Let us assume that the virtual
displacement is solenoidal, so that no density variation is involved, i.e. §p = 0, and
the constraint of mass conservation is identically satisfied. In addition, consider-
ing that f = u — T's, since we are considering isoentropic variation, we see that
Su= (Sf. Accordingly, minimization of the action S in (9.64) yields:

t
8S = / / [pvidvi —8(f — RT jip)] d*xdt =0, (9.66)
0 JV

where i is given by Eq. (9.46).
Considering that § (dx;) = d(6x;), the first integral term on the RHS of Eq. (9.66)
gives, after integrating by parts:

! ! dx;
//pviévid3xdt:/ fpul-a—’cﬁxdt
0o Jv 0o Jv dt
t d 3
= PviE(‘sxi)d X
t d .
/ [pvidx;12 d°x / / o0 sx d3xdt, (9.67)
0o Jv dt

t
/ / pvidv; d>xdt = / / —8x,d3xdt. (9.68)
0 JV

Here we have considered that the virtual displacement is equal to zero at the begin-
ning and at the end, i.e. when t = #; and ¢ = 1, as well as on the boundary, S, of the
volume V of integration.

The second integral term on the RHS of Eq. (9.66) gives, considering that f:

f(p,Vp):

//S(f RTip)d’xdt = //[(——Rm)awraavf S(V],o)]d3xdt
/

(9.69)

i.e.

Proceeding as in Sect. 9.3.1 we obtain [cf. Eq. (9.45)],

K =[5 - (swi) - arios
(f = RTjip) d°xdt = \/ —(RTR) |8pd’x. (9.70)
3,0 8V,-p
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Now, considering that 6p = (V; p)(8x;), together with the equality,

. a7 af af 0]
IVip 9p Ve IVjp

(9.71)

we obtain:

t t
/t/8614nﬁmd%dh=/Q/VAf—RTﬂm
0 \% 0 \%

af 3
—Vi| ———V;p |ox; d’xdt. 12
’(mvﬂn’p)x’ X O

Concluding, substituting (9.68) and (9.72) into Eq. (9.66) gives:

/ /( dﬁ—v(f RT jip) — Viji>8xid3th=07 9.73)

where

af
i a(Vip) P ©-74)

is the Korteweg stress tensor, first derived by Korteweg [13] in 1901.
Now, considering the arbitrariness of the virtual displacement §x; and applying
Reynolds theorem, we finally obtain the linear momentum equation,

with d /dt denoting the material derivative and where,

P=RTjip - f, (9.76)

is a pressure term. The result could be more easily determined by applying Noether’s
theorem D.35 (see Sect. D.2).
This equation must be coupled to the continuity condition,

dp
= FoVev=0, (9.77)

and the internal energy equation, which, for non-dissipative systems, includes only
the convective term, that is,

du 8(,ou)
dt at

+V - (puv) =0. (9.78)



124 9 Multiphase Flows

9.4.2 Korteweg Stresses

Using the expression (9.39) for the free energy, i.e., f: ofrn(p) + %RTK(Vp)z,
the Korteweg stress tensor PX becomes:

PX=—RTK(Nip)(V,p). (9.79)

Note that the Korteweg stress and force depend only on the non local part of
the free energy, even when, as in Egs. (9.84) and (9.87) below, this is not explicitly
indicated.

In addition, taking into account the expressions (9.46)—(9.48) for the chemical
potential, the pressure term become,

=

—~ 1
:RTﬁp—f:P—RTK|:pV2p—|—E(V,0)2:|, (9.80)
where we have considered that P = p?dfry,/dp is the thermodynamic pressure. So,
finally, the governing equation Eq. (9.75) can be rewritten as:

dv;
pd—;ZVjTj,', (981)

where T;; is the stress tensor (i.e. the opposite of the momentum flux tensor),

1
T;; = |:—P + RTK(,OVz,O + §|VP|2>]5U — RTK(Vip)(V;p). (9.82)

The most important feature of Eq. (9.75) is the appearance of the Korteweg body
force, FX | which can be rewritten as:

of af of . of
FK_v.pKk_—_|v. V; V;V; —V;p——V;p|, (9.83
i itji [ ](3Vj,0> “0+8Vj,0 i ]p+3,0 iP 90 ip | ( )

that is
FX =RTavVp - V7, (9.84)

where [ is the generalized chemical potential (9.46)—(9.47), and therefore the mo-

mentum equation becomes

dv

-+ VP = RTiVp., (9.85)

0

where the pressure term has been redefined as,

-~ d -
P/=P+f=/0%(,0fTh) — RTKpV?p =RTJip. (9.86)
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Alternatively, this equation can also be written as,

dv

— =pF: F=-Vvy, 9.87
P =P ¥ (9.87)

with
v =RT[ (9.88)

denoting a sort of potential energy that takes into account all non-local effects.

Comment 9.1 It should be stressed that the Korteweg body force F is non dissi-
pative, as it arises from the minimum action principle. Its expression in (9.87) is
quite intuitive: being proportional to the gradient of the chemical potential (with a
minus sign), it pushes the system towards thermodynamic equilibrium and is identi-
cally zero at equilibrium. In addition, since this force is reversible, it does not enter
explicitly into the energy dissipation term.

Comment 9.2 The Korteweg body force in Eq. (9.87) has the general form (7.27)
of any potential force, so that we can apply all the results that we have previously
obtained using irreversible thermodynamics. In particular, we can include into i
also the contributions of any other potential force. For example, in the Boussinesq,
quasi-incompressible approximation, the buoyancy force is F; = —pgVz, where g
is the gravity acceleration term and z is the vertical coordinate. Accordingly, gravity
can be accounted for by simply adding the term gz to ¥ in Eq. (9.88).

Comment 9.3 Note that in Eq. (9.87) the pressure term drops out automatically.

9.4.3 Dissipative Terms

When dissipation is taken into account, the equations of motion remains basically
the same as in the non-dissipative case, i.e. Egs. (9.75), (9.77) and (9.78), where a
momentum flux (or pressure) tensor, P, and a heat flux vector, J @ are added to
Egs. (9.75) and (9.78), respectively. At the end, we obtain:

d

d_f +pV.v=0, (9.89)
dav
du .

pz_f_V.J(q):q’ 9.91)

where ¢ = —P:Vv is the heat source term.
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For regular fluids, the heat flux, J @ and the momentum flux (i.e. the pressure
tensor), P, can be expressed through the following constitutive equations:

J,=—«VT; (9.92)
P=[p—MV-V)[I-n(Vv+Vv"), (9.93)

where « and 1 denote thermal conductivity and shear viscosity, respectively, while
A =¢ — 2n/3, with ¢ indicating the bulk viscosity.

Note again that the thermodynamic pressure drops out automatically from the
equation of momentum conservation.

9.5 Multicomponent Systems

For multicomponent systems, Egs. (9.89), (9.90) and (9.93) are still valid, but n and
A are functions of the mixture composition, in addition to temperature and density,
while the Korteweg force F becomes:

F=-Y ¢®Ovy®, (9.94)

k=1
where qb(k) is the mass fraction of component k, while,
v® =RrTp® (9.95)

i.e. the potential of the body force acting on component k is proportional to the
non-dimensional generalized chemical potential of component &, %),

The internal energy equation (9.91) is still valid, but the heat flux and heat gen-
eration terms become [cf. Egs. (7.43) and (7.69)]:

n

Gg=-P:vv—>Y JP . vy®, (9.96)
k=1
and
n
JO = VT + > JP®, (9.97)
k=1

where all coupling terms have been neglected. Here, 41X) is the partial enthalpy

of component k, while Jt(lk) is the diffusive mass flux of component k, which is

determined through the equation of conservation of the chemical species (7.21),

Dg® B

.
*) ki) 7
o ="V +Y gD k=1,2,....n), (9.98)

j=1

0

where the last term expresses the temporal growth of p® due to chemical reactions.
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9.5.1 Incompressible Binary Mixtures

Consider a non reacting binary mixture, composed of two species having the same
density, so that p is constant and the continuity equation (9.89) reduces to

V.v=0. (9.99)

Accordingly, the pressure appearing in the momentum equation has no real phys-
ical meaning, the pressure tensor in (9.90) reduces to:

P=pl— n(Vv—l— VV+), (9.100)
and the Korteweg force becomes:
F=p¢pV(RTR), (9.101)

where ¢ = ¢ is the mass fraction of component 1, while i = iV — 1® is the
non-dimensional generalized chemical potential difference.*
In the internal energy equation (9.91) the heat generation term (9.96) becomes,

g=—-P:Vv—Jy -V(RT), (9.102)

while the heat flux is expressed through the constitutive relation, [cf. Egs. (8.33) and
(8.35)]

J9 = _vT +J¢h(12), (9.103)

where all coupling terms have been neglected. Here, /(1% = (D — 12 is the par-
tial enthalpy difference, while J; = Jfll) is the diffusive mass flux of component 1,
which is determined through the equation of conservation of the chemical species,
d
,0—¢+V-J¢=O (9.104)
dt
where J, = ¢ (v — v) is a diffusive molar flux, with v(!) denoting the mean ve-
locity of species 1, while the chemical reaction term has been omitted. This term is
expressed through the constitutive relation (8.34),

Js = —pD*[Viilr, (9.105)

where D* is an effective diffusivity, it = g — 2® is the generalized non-
dimensional chemical potential difference, while the subscript 7' indicates that
the gradient is taken at constant temperature. Here, it should be stressed that
Ak = p® 4y ® [ef. Eq. (7.63)], that is the generalized chemical potential is
the sum of the thermodynamic chemical potential and any potential exerted on the
k-th chemical species. In our case, that means adding the effect of the non-local part
of the free energy.

4The extra term that is obtained, pVi®, being the gradient of a scalar, can be absorbed into the
pressure term.



128 9 Multiphase Flows

9.5.2 Symmetric Regular Binary Mixtures

Application of this theory is particularly simple in the case of symmetric regular bi-
nary mixtures. The theory of regular mixtures was developed by van Laar (a student
of van der Waals), who assumed that (a) the two species composing the mixture
are of similar size and energies of interaction, and (b) the van der Waals equation
of state applies to both the pure fluids and the mixture. Consequently, regular mix-
tures have negligible excess volume and excess entropy of mixing, i.e. their volume
and entropy coincide with those of an ideal gas mixture, with s, = 0 and vy = 0.
Therefore, we see that for a regular mixture, since S,y = —(9g.x/37T)p,x =0, then
gex must be independent of 7. In fact, starting from the fundamental expression
(9.4) for the Helmholtz free energy and considering that:

8ex = fex + PUex, (9.106)

applying Egs. (9.8), (9.9) and (9.106) to a system with v, = 0 and constant molar
density p, we obtain: g.» = fox = RTpB, where B is the virial coefficient:

B=x?BM 4 2xx,B1? 4+ x2B??), (9.107)
Here, BU/) characterizes the repulsive interaction between molecule i and molecule

Jj [see Eq. (9.9)],
by _ 1 v )
(j) — = _ — 3
BY) = 2NA/|:1 exp< T )i|d r, (9.108)

where (/) is the pairwise interaction potential between molecules i and j. In par-
ticular, for symmetric solutions, udh =y #* U2 g0 that BAD = B2 #*
B2 Accordingly, denoting x| = ¢, we obtain:

gex(T, P, ¢) = RTW (T, P)p(1 — ), (9.109)
where
w(T, P)=2p(B"? — BUV), (9.110)

is the so called Margules coefficient. In particular, for an ideal mixture, B!V =
BU2 and therefore ¥ = 0. For a mixture composed of van der Waals fluids at
constant pressure, substituting the expression (9.10) for B and assuming that the
characteristic lengths d and [ are the same for the two species, we obtain:

20, an a2y 4w pNII® gy (12)
llfzﬁ(cl —c} )_?RTd3 Uy’ =Uy ™), (9.111)

where Ué”) and Uélz) are the strength of the potential between molecules of the

same species and that of different species, respectively. From this expression it ap-
pears that ¥ oc T, thus confirming that g, is independent of 7. In addition, we
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Fig. 9.4 ‘Fre.e energy g ofa 0 8% B= YR P
symmetric binary mixture as —
a function of composition ¢

8,

see that when the repulsive forces between unlike molecules are weaker than those
between like molecules, i.e. when Uélz) < U(g“), then ¥ > 0; in the opposite case,
¥ < 0. Finally, adding the excess free energy to its ideal part, (which is easily de-
rived generalizing the expression f;; = RT In p, valid for single component fluids)

we obtain:

RT
—[plnp+1—¢)In(1—¢)+¥o(1 —¢)]. (9.112)

grn(T, ) = v

Since chemical stability imposes that d%g/d¢? > 0, we see that ¥ = 2 corre-
sponds to the critical point: when ¥ < 2 the two species are always miscible, while
when ¥ > 2 there is a concentration range where they phase separate. Therefore,
we must have: ¥ = 2T¢ /T, where T¢ is the critical temperature. Now consider a
typical plot of the free energy as a function of concentration, as in Fig. 9.4: con-
sidering that u© = dg/d¢, we obtain the ;1 — ¢ plot of Fig. 9.3. In addition, as for
T < Tc,ie. ¥ > 2, the mixture phase separates, with the equilibrium concentration
of the two coexisting phases satisfying dg/d¢ = 0, we obtain the T — ¢ curve of
Fig. 9.3, where the spinodal curve, satisfying d 2 g/ d¢2 =0, is also indicated. So, we
see that the case of incompressible binary mixtures is an exact mirror of the single
component case, where concentration ¢ and chemical potential u replace density p
and pressure P.

Now, let us determine the constitutive equation for the diffusive mass flux, J;. As
we saw, it must be proportional to the gradient of the generalized non-dimensional
chemical potential difference, [i. Now, the thermodynamic chemical potential dif-
ference, RT iy, is:

_dgrh _ ¢ _
RT'uTh_—d(p _RT[ln (—1_¢)+II/(1 2¢)]. (9.113)
Observing that:
Cdurn,,, 1 d’gmn_ 1
[(Vurnlr = o V¢ = RT dp? Vo = (m — 2‘1’>V¢), (9.114)

and imposing that in the dilute limit the constitutive equation (9.105) must reduce
to Fick’s law, we see that the effective diffusivity must have the following form:
D* = D ¢(1 — ¢) in order to prevent it from diverging as ¢ tends to O or to 1.
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Note that, as the term in parenthesis of Eq. (9.114) is proportional to the diffusiv-
ity of the mixture, we see that, as anticipated, when ¥ < 2 diffusivity is positive at
any composition. Therefore, in this case, diffusion fluxes are directed from regions
of large concentration to regions of low concentration, so that the system tends to
relax back to its stable equilibrium, homogeneous configuration. On the other hand,
when ¥ > 2, there is a concentration range where diffusivity is negative, so that
diffusive fluxes are directed from low concentration to large, thus inducing phase
separation.

Now, let us add the non-local part of the free energy,

_ l 2RT 2
gNL=5a"RTIVO[. (9.115)
where a is a characteristic length, which is approximately equal to the interface
thickness. This expression is generally attributed to Cahn and Hilliard [7, 8]. In the
case of regular mixtures, i.e. when the two fluids are both van der Waals fluids,
proceeding as in Sect. 9.3.1 [see Egs. (9.33) and (9.34)], we obtain the same ex-
pression (9.115), with a « 1/ﬁ, i.e. a = a+/V¥, where a is a characteristic length.
In addition, imposing that at equilibrium the integral of the free energy across the
interface region equals the surface tension, proceeding as in Sect. 9.3.3 we see that
o ~ a(p/My)RT. Considering that the total free energy is the sum of the thermody-
namic and non-local parts, i.e. g = g7, + gn1L, We see that the generalized chemical
potential difference becomes, 1 = §g/8¢ becomes,

oL =purn — RTa’V?¢, (9.116)
and the constitutive equation for the diffusive material flux can be written as:
Js=—D¢(1 —$)[Viily = —RTD{[1 - 20 ¢ (1 — $)|Vp —a’V>Vg}. (9.117)

This is the constitutive equation that has been used in all the works on binary
mixtures by Mauri and coworkers [14-16, 23, 24, 31]. Note that, apart from the
transport coefficients, namely viscosity 7, thermal conductivity k and diffusivity
D, this model contains two parameters, ¥ and a. The former is known from the
equilibrium diagram of the mixture and for regular mixtures ¥ = 27¢ /T, where
Tc is the critical temperature; on the other hand, a is a characteristic length, which
is related to temperature as a = a~/W, where a can be evaluated from the surface
tension, as d ~ (op)/(RT My,). Consequently, the results of the simulations based
on this model can be used as a quantitative predictive tools.

9.6 Problems

Problem 9.1 Determine the equation of state of a single component system near its
critical point, using the following variables:
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- T — T, P — P, —
feno1=f2Te, g PP G, _voie
Tc Pc Ve
9.118)

where T, =T /T¢c, P, = P/Pc and v, = v/vc are the reduced variables, while the
subscript C indicates critical value. Then in the vicinity of the critical point, i.e.
when f « 1, determine the critical exponents «, 8, y and 8, defined as ¢, o %,
A, o (—1)P, K;l o ¥ and p o #%, where ¢, is the specific volume at constant
volume, A, is the difference of the specific volumes of the two coexisting phases,
kr is the isothermal compressibility.

Problem 9.2 Show that the specific heat at constant pressure diverges at the critical
point.

Problem 9.3 Consider an incompressible, regular and symmetric binary mixture,
with initial composition ¢g = 1/2, that at time ¢ = 0 is instantaneously quenched
to a temperature below its critical value. Assuming that the mixture is very viscous,
so that convection can be neglected, and using the equation of motion (9.104) and
(9.117), show that at leading order the evolution of the concentration field is deter-
mined by the equation,

u
— = 2y Vu—Vu,
o7 YV-ou u

where u = 2¢ — 1 < 1 and ¢ = ¥ — 2, while the spatial and temporal variables have
been made non dimensional in terms of @ and 2a”/D. Assuming a periodic pertur-
bation, u = ugexp(ik - r 4+ ot), determine the wave vector k4, that maximizes the
exponential growth o.
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Chapter 10
Effective Transport Properties

In this chapter we study a particular case of multiphase systems, namely two-phase
materials in which one of the phases is randomly dispersed in the other, so that the
composite can be viewed on a macroscale as an effective continuum, with well de-
fined properties. In general, the theoretical determination of the parameter for an
effective medium requires, as a rule, the solution of a corresponding transport prob-
lem at the microscale, which takes into account the morphology of the system and its
evolution. As the mathematical problem is well-posed on a microscale, this can be
accomplished using, for example, the multiple scale approach shown in Chap. 11;
however, the task requires massive computations and is therefore difficult to im-
plement from the practical standpoint. Here, instead, we focus on a deterministic
approach to the problem, where the geometry and spatial configuration of the par-
ticles comprising the included phase are given and the solution to the microscale
problem is therefore sought analytically. As examples, we study the effective ther-
mal conductivity of solid reinforced materials (Sect. 10.1), the effective viscosity of
non-colloidal suspensions (Sect. 10.2), the effective permeability of porous materi-
als (10.3) and the effective self- and gradient diffusivities of colloidal suspensions
(Sect. 10.4). Then, in Sect. 10.5, an alternative dynamic definition of the transport
coefficients is considered, which can also serve as a basis to determine the effective
properties of complex systems.

10.1 Heat Conductivity of Composite Solids

Consider a composite solid composed of spherical inclusions dispersed within a
continuous phase. As usual, the objective is to determine the transport of heat (and
mass as well) on a lengthscale that greatly exceeds that of the microstructure, i.e.
both the particle radius and the spacing between the inclusions. Ultimately, effective
properties depend on the morphology of the system, as the presence of an inclusion
influences the temperature fields of the continuous phase as well as of the surround-
ing inclusions [2]. In the following, though, we will only consider the dilute case,
where particle-particle interactions are neglected, so that we may consider an iso-
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lated sphere of radius a, located in the origin, surrounded by a large volume V of
the continuous phase. Then, heat transport is described through the equation,

= h s
ViJi=0. J=—«VT, i" Kp Whenr=d (10.1)
Kk =ko9 whenr >a,

where k), and kg are the heat conductivity of the inclusions and of the continuous
phase, respectively. The boundary conditions impose a given temperature gradient
at infinity, together with the continuity of temperature and heat flux at the surface of
the sphere, i.e.

T=G;ri atr — o0; (10.2)
T and J; continuous at r = a. (10.3)

The general solution of this problem is [cf. Eq. (F.12)]:
1
T(x)=Giri ()»’—3 + )»”). (10.4)
r

Then, imposing that the boundary conditions are satisfied, we find the outer and
inner solutions,

T(r)= <1+K(;_j)Giri when r > a; (10.5)
and
T(r)y=(1+4K)G;r; whenr <a, (10.6)
where
K=;—Z; Withy:%' (10.7)

At the end, we want to determine the effective Fourier law,
(Ji) = —.*(ViT), (10.8)

where the brackets indicate volume average while «* denotes the effective heat con-
ductivity. As shown in Problem 10.1, calculating explicitly the volume averages of
the general solution, we find,

K*

— =1-3K¢+ 0(¢?). (10.9)

Ko
In particular, when k), = ko, i.e. y =1, we find K =0 and then trivially, x* =
ko. In addition, consider the following particular cases, corresponding to perfectly
insulating and perfectly conducting inclusions:

*

3
—=1—=¢ wheny =0, (10.10)
Ko 2
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and

K*

K—0=1+3¢ when y = oo. (10.11)

This result, obtained by Maxwell in 1873, shows that the leading-order correc-

tion to the conductivity is of O(¢). The extension to less dilute suspensions was
developed by Jeffrey,! who derived the O(¢?) term for a random suspension of
spheres by the addition of two-sphere interactions. In fact, Jeffrey used an approach
that is both easier and more general (and therefore quite ingenious), considering the
average heat flux as

N
_ 1 I 3 / 3
(J)_V/de r= V|:/VOIC0VTd r+§ Vi/c,,VTd r:|, (10.12)

where Vp and V; are the total volumes occupied by the continuous phase and the
i-th inclusion, respectively, with V = V4 >_ V;. This equation can be rewritten as:

N
1 3 3
(J>=_V|:KO/VVTd r—l—(Kp—Ko)i:El/ViVTd r:|,

so that, assuming that the inclusions are all identical, with volume V,, we obtain:
(J) = —K0o(VT) + ¢(J), (10.13)

where ¢ = NV, /V is the volume fraction occupied by the inclusions, while (J*) is
the average of the additional heat flux J* due to the presence of a single inclusion,
ie.,

T =—(kp — Ko)i/ VT dr. (10.14)
Vp Jv,
In the dilute limit and for spherical inclusions, the disturbance of the temperature
field induced by a sphere is independent of the presence of all the other spheres, so
that applying Eq. (10.6)—(10.7) we see that inside a sphere we have VT = (1+ K)G,
where G is the unperturbed temperature gradient (i.e. far from the sphere), which
equals at leading order the mean temperature gradient, i.e. G = (VT) 4+ O(¢). At
the end, we obtain at leading order,

J'=—(kp — ko) (1 + K)$(VT),
so that we obtain the effective Fourier law (10.8), with the following effective con-
ductivity:

K*

1—y 2
— =1+ -+ =1-3——¢=1-— + 10.1
p y =D +K)p 32 y¢ 3K+ 0(¢°),  (10.15)

which coincides with Maxwell’s Eq. (10.9).

ID.J. Jeffrey [8]. The fact that the extension took 100 years to be developed tells us how much
more difficult it is.



136 10 Effective Transport Properties

The Energy Dissipation Approach Consider the energy dissipated per unit vol-
ume, resulting from imposing a given temperature gradient, G, to our system,

) 1 1
E=——/ J,-V,-Td%:——ygnij,»m%, (10.16)
Viv VI s

where we have integrated by parts. Here, S is the surface enclosing the fluid volume,
and therefore it includes both the outer surface, Sp, at infinity, and the inclusion
boundaries, S;. Now, consider the equality,

. 1 1
E=—— ?§ ni ;T d’r — — f ni Ji(T — T?) d’r, (10.17)
Vs Vs

where T(® = G - r define the unperturbed temperature field, i.e. in the absence of
inclusions.

Next, let us apply the reciprocal theorem (F.79), where the primed problem cor-
responds to the unperturbed temperature field, while the double primed problem
corresponds to the case under consideration, i.e. with inclusions and with again a
constant temperature gradient at infinity,

/J<0>.VTd3r=/J.VT<0>d3r, (10.18)
1% \%

with Jo = —koG. Therefore, considering that T = TO at the outer boundary, Eq.
(10.17) becomes:

: 1 ©) () 2, 1 ) 0\ 12
E:—stoni.]i TOg r—VXi: Sin,-[Ji T+ Ji(T = T®)]d’r. (10.19)

The first term on the RHS equals the energy dissipated by the unperturbed temper-
ature field,

Eo=koG -G, (10.20)

while the second term is the extra dissipation due to the presence of the inclusions
which, assuming that they are all identical, with volume V,,, becomes,

_®

Vp Js,

E* = ni[JOT + 5, (T — T@)] dr. (10.21)

Finally, defining the effective conductivity as:

K* E*
o= (10.22)
Ko Ey

we obtain the same results that we have seen before.
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For example, for perfectly conducting inclusions (i.e. K, — 00), in the dilute
case, where T =0 at r = a, the expression above simplifies as:

_¢

= ni J;TO d’r, (10.23)
Vp r=a

E*
and considering that n; J; = 3koG;r;/a at r = a (the unit vector is directed inward),
we obtain: E* = 3¢koG - G, so that at the end we find again Maxwell’s Eq. (10.11),
ie k*/ko=143¢+ 0.

As we have mentioned above, 100 years later, Jeffrey extended Maxwell’s result
by accounting for two-sphere interactions, obtaining, for y = oo:

K*

—=1 +3¢ + K2¢” + 0(¢?), (10.24)
0

where K> depends on the morphology of the composite solid; in particular, K, =
4.51 for a random dispersion of spheres.

10.2 Effective Viscosity of Suspensions

This problem is quite similar to the evaluation of the effective heat conductivity that
was considered in the previous chapter. The following analysis applies to suspen-
sions moving at low Reynolds number, where the fluid is assumed to be Newto-
nian, with viscosity ng and the particles are rigid (i.e. with infinite viscosity), neu-
trally buoyant spheres. In addition, we restrict our analysis to the dilute case, where
particle-particle interactions are neglected, while the more general case is analyzed
in [7]. Then, momentum transport is governed by the equation:

V.T=0; V.v=0, (10.25)
where,
1
Tij = =pdij +2n0Sij:  Sij = 5 (Vivj + Vjvi). (10.26)

The boundary conditions are that the flow field is fixed at infinity, while particles
are force and torque-free.
Proceeding as in the previous chapter, we obtain:

N
1 1
(T):—/Td3r=— / Td3r+§ /Ta’3r,
Vv V1/v i=17Vi

where V and V; are the total volumes occupied by the continuous phase and the i -th
inclusion, respectively, with V = Vj + >_ V;. Substituting the constitutive relation
(10.26) with S = 0 inside the particles, and assuming that the inclusions are all
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identical, with volume V,,, we obtain an equation very similar to (10.13) and (10.14),
ie.,

(T) = —(1 — $)PI+2n0(S) + (T*), (10.27)

where ¢ = NV, /V is the volume fraction occupied by the inclusions, while (T*)
is the average of the additional stress tensor T* due to the presence of a single
inclusion, i.e.,

1 1 1
T = —/ Td’r=— ¢ (n-Trd’r= ——?g n(pr)d’r. (10.28)
Vo Jv, Vo s, Vo Js,

Here we have integrated by parts using the equality 7;; = (Vi Tx;)r;, considering
that T is symmetric and that S = 0 at the surface. In addition, p is the average fluid
pressure, i.e.

p=— | pdr, (10.29)

whose value, though, is uninfluential, as the suspension is incompressible.

In the dilute limit and for spherical inclusions, the disturbance of the flow field
induced by a sphere is independent of the presence of all the other spheres. In that
case, the pressure induced by an isolated sphere, located in the origin and immersed
in a shear flow is given by Eq. (F.46), so that:

rirk
pr=a)= —Sfloa—zGik, (10.30)

where G is the imposed shear rate which, within an O(¢) correction, coincides
with the mean shear rate (S), i.e. G = (S) + O(¢). Finally, substituting (10.30) into
(10.28), and considering that I:G = 0, we obtain:

T* = 5n9(S). (10.31)
Now, defining the effective suspension viscosity, n*, as:
(M) =2n*(S). (10.32)

where the superscript d indicates the deviatoric part, substituting (10.31) into
(10.27) we obtain:
*
5
T 1426+ 0(?). (10.33)
1o 2
This is the celebrated formula obtained by Einstein [6].
Correction to Einstein’s formula was obtained by Batchelor and Green [4] as,
nt_ o) 2 3
n__1+5¢+K2¢ + 0(¢°). (10.34)
0
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where the second-order coefficient K, depends on the pair particle distribution. In
particular, assuming a uniform distribution, we find K> = 5.2, which is in excellent
agreement with experiments [10].

Identical results can be obtained using the energy dissipation approach. In fact,
proceeding as in the previous chapter, we obtain:

r]* E*
— =1+ -, (10.35)
10 Ey
where
Eo =210G:G (10.36)

is the energy dissipated by the unperturbed velocity field, with G (with G = G* and
I:G = 0) denoting the imposed shear rate, while E* is the extra dissipation due to
the presence the inclusions,

9

B =
Vo s,

ni[T0v; + T (v — v1”) ] d?r, (10.37)

where we have assumed that inclusions are all identical, with volume V,,. Here,
v® = G -r is the unperturbed velocity field, while v is the velocity field of the
suspension, with v =0 and S = 0 at the particle surface. Therefore, we obtain:

E*z—gGij¢ n,-prjdzr, (1038)
Vp r=a

which reproduces Eq. (10.28), thus yielding E* = 519¢G:G, so that at the end we
obtain again Einstein’s equation (10.33).

10.3 Permeability of Porous Media

The homogeneous flow of a Newtonian liquid through a porous medium at low
Reynolds number is governed by the Darcy phenomenological law,

(Vp)=nk 'V, (10.39)

where the brackets indicate averaging, V p is the pressure gradient,  is the fluid vis-
cosity, V its mean velocity, while the coefficient k depends only on the morphology
of the material, has the units of an area (i.e, typically, its magnitude is that of the
square of the pore size) and is referred to as the permeability of the porous mate-
rial.? Clearly, (V p) is the mean body force, i.e. the force per unit volume, exerted

2To differentiate it from the “permeability” used in Biophysics, where it denotes the material trans-
fer coefficient (having the units of a velocity), sometimes & is referred to as Darcy’s permeability.
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by the fluid on the solid particles that constitute the matrix of the porous material.
Now, at low Reynolds number the drag force on each particle, Fi, is proportional
to the unperturbed velocity, V through a symmetric translation resistance tensor,
(see Problem 2.1). Therefore, we obtain Eq. (10.39) with,

¢

kK '=—
nvy

(¢), (10.40)
where V), is the mean volume occupied by a single particle, while the averaging is
taken over all possible morphologies, i.e. shape and orientation of the inclusions,
plus the influence of the surrounding particles. In particular, for isotropic media,
we have: (¢) = ¢1, where ¢ = %Ci ;6ij 1s the drag coefficient which, for uniform
spherical inclusions of radius a, in the dilute limit, reduces to ¢y = 6z na, so that,

242
k=k*I, wherek*=—. (10.41)

99
The constitutive relation (10.39) can also be interpreted in an alternative way, if
we refer it to a reference frame moving at constant speed V. Then, the permeability
k can be seen as the mean instantaneous velocity of a suspended particle under the
action of a normalized pressure gradient.> Now, when particle-particle interactions
are taken into account, the drag coefficient ¢ (¢) of a monodisperse macroscopically

uniform and isotropic suspension of spheres can be written as:

t(@) =2o[1+K(@)]. (10.42)

where K (¢) depends on the particle distribution. As shown by Batchelor [1, 3],
in a dilute suspension of rigid spheres with uniform probability of all accessible
configurations, we have:

K(¢) =6.55¢+ 0(¢?). (10.43)

showing that the sedimentation velocity decreases as the particle concentration in-
creases. This is due to the fact that, although particles tend to help each other in
sedimenting, this effect is more than compensated by the return flow of the fluid,
that pulls the particles back up. The derivation of this result is not straightforward,
as a simple summation of the velocity changes due to the hydrodynamic pairwise
interaction between a tagged particle and all the other surrounding particles yields
a non-converging integral. The renormalization procedure was developed by G.K.
Batchelor; in the Appendix F.4, we present a slightly different derivation.
At the end, we obtain,

k=k(®)I, where k(¢) =ko[l —6.55¢ + O(¢?)], (10.44)

3This statement is formally proven in Problem 11.3 using the method of homogenization.
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where kg = k* is the permeability (10.41) at infinite dilution, showing that the hy-
drodynamic hindrance causes permeability to decrease as volume fraction increases,
at least for dilute suspensions.*

10.4 Diffusion in Colloidal Suspensions

Consider a suspension of neutrally buoyant Brownian particles.” As we have men-
tioned in previous chapters, there are two types of diffusivities that one can define,
namely self-diffusivity, D) and gradient diffusivity, D. In the dilute limit, when
particle-particle interactions can be neglected, the Stokes-Einstein relation reveals
that these two diffusivities are equal to each other, in agreement with the fluctuation-
dissipation theorem. However, when particle-particle interactions are taken into ac-
count, the relation between fluxes and forces ceases to be linear, as diffusivities are
themselves functions of the concentration, and therefore most of the results of non-
equilibrium thermodynamics, such as the fluctuation-dissipation theorem, cannot be
applied. In fact, we will see below that self-diffusivity, D*, and gradient diffusivity,
D, are not equal to each other, as at leading order we have: D*(¢) = Do(1 — 6.55¢)
and D(¢) = Do(1+ 1.45¢), where Dy = kT /o is the diffusivity at infinite dilution.
Just as in the case examined in Sect. 4.5, we cannot really speak of a violation of
the FD theorem, but simply of a case where it cannot be applied.

10.4.1 Self Diffusion

Self diffusivity describes the temporal growth of the mean square displacement un-
dergone by the Brownian particles moving randomly in a uniform suspension.® Ac-
cordingly, we may define the self diffusion tensor using (2.29) as:

DS, _! lim i(x-(t)x-(t)) (10.45)
7 2 ¢500dt' ! J ’ ’

where X(7) is the position of the Brownian particle at time ¢, referred to a fixed
laboratory reference frame (i.e. the walls of the vessel containing the suspension),

assuming that X(0) = 0. Denoting by VP (1) the velocity of the Brownian particle
referred to this frame of reference, we have:

t
X(t) = f VP (1)dr, (10.46)
0

4Both experiments and numerical simulations show that permeability continues to decrease almost
linearly with volume fraction, until it becomes zero at the percolation limit.

SThese, so called, colloidal particles are small enough to undergo thermal fluctuations and yet large
enough to present clear phase boundaries; they have diameter from 5 to 200 nanometers.

SThis process is sometimes called Knudsen effusion.
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where the superscript “p” stands for “particle”. Clearly, as in the laboratory ref-
erence frame the total volumetric suspension flux is zero, the volume particle flux
must be counterbalanced by the volume fluid flux (trivially, if the particles sediment
down, the fluid must move up, in the opposite direction), so that V(P) is the particle
velocity relative to the volume-averaged suspension velocity, which we assume to
be zero. As we are dealing with neutrally buoyant suspensions, though, the volume
mean velocity coincides with the mass averaged velocity (7.20), so that VP (1) is
really a diffusive-only velocity. Finally, assuming that V(P)(¢) is a stationary ran-
dom function, so that (V?) (t)V(?) (¢ 4 1)) depends only on 7, substituting (10.46)
into (10.45) we obtain:

1 o0
Dij=5 / (V" v (0)dr, (10.47)
0

which is the Green-Kubo relation (2.28).

Now, referring to the results of Sect. 3.3, when the general stationary random
variable x is identified with V(?), for times ¢ > m /1€, the Langevin equation be-
comes:

¢V =f, (10.48)

where ¢ denotes the translation tensor, || || is its norm, while f is a random force,
with (f;) =0 and (f;(¢) f;(t + 7)) = 2kT¢;;6(). Therefore, substituting (10.48)
into (10.47), we obtain:

DS =kT¢ ™!, (10.49)

which is a simple generalization of the Stokes-Einstein relation. This is the self-
diffusivity tensor at a given time, corresponding to a given morphology of the sus-
pension; accordingly, the inverse translation tensor in (10.49) must be averaged out
over all the system configurations, namely the particle orientation and the position
of all its surrounding particles.

As we saw in the previous section, the translation resistance tensor of a very
dilute suspension of randomly distributed spherical particles of radius a is &;; =
¢(¢)dij, where ¢(¢) is given by Batchelor’s result, Eq. (10.42)-(10.43). So, at the
end, we obtain:

D*(¢) = Do[1 —6.55¢ + 0(¢%)], (10.50)

where Dy = kT /¢ is the diffusivity at infinite dilution, showing that the hydrody-
namic hindrance to particle movement causes self-diffusivity to decrease as volume
fraction increases, at least for dilute suspens.ions.7

7 As for permeability, both experiments and numerical simulations show that self-diffusivity con-
tinues to decrease almost linearly with volume fraction, until it becomes zero at the percolation
limit.
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10.4.2 Gradient Diffusion

Now consider the isothermal and isobaric diffusion of identical spherical particles
down a concentration gradient. The diffusive particle flux is defined through (7.22)
as,

IV = pp(v?? —¥), (10.51)

where p is the constant suspension mass density, ¢ is the particle mass (and volume,
in this case) fraction, v(”) is the mean particle velocity, while ¥ is the mass (and vol-
ume as well) averaged suspension velocity, which here is assumed to be zero.? Now,
considering that, at uniform temperature and pressure, the mean relative particle ve-
locity is equal to the mean force F; exerted on a single particle divided by the drag
coefficient ¢, and that, in turn, F| equals the thermodynamic force —V ,u(p) exerted
on one mole of particles divided by the Avogadro number, N4, we obtain:

op (P
(p) ). P — 0 _

v ;. V V. 10.52
Jy Nt 2 1% 5 o} ( )

Therefore, we see that gradient diffusion is described through the constitutive rela-
tion (8.43), i.e.,

IV =_pDv¢, (10.53)

where D is the gradient diffusivity,

¢ u®
= N—AC T (10.54)
This result is equivalent to (8.63), i.e.,
L
e A (10.55)

where L is the Onsager coefficient, while wPH = — ) i the chemical po-
tential difference, with the superscript ““ f” standing for “fluid”. In fact, applying the
Gibbs-Duhem relation, i.e.,

1
Vﬂ(ﬁf) — —Vﬂ(p)v (10.56)
1—¢
and equating (10.53) and (10.55), we see that,
Top(l —
.= M (10.57)
NsL

8Trivially, v = pv(® + (1 — $)v\/), where v\/) is the mean fluid velocity.
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Now, we turn to evaluating the chemical potential of a suspension of hard
spheres. Although the complete theory is available elsewhere,” here we note that
the particle free energy can be evaluated following the procedure of Sect. 9.2.1,
replacing p with the particle molar concentration ¢”) and assuming that the inter-
action potential 1y (r) between the suspended particles can be expressed through Eq.
(9.6), with Uy =0 and d = 2rp, i.e.

0  (r>2rp),

- < 2m (10.58)

V()=

where r), is the hard-core particle radius. At the end, we obtain the thermodynamic
free energy [see Eq. (9.5)—(9.11) with ¢; = 0],

f(T,c(p))=fo+RT[logc(p) +c(1’)B], (10.59)

where B =4V, is the virial coefficient, with V), indicating the volume occupied by
1 mole of the suspended particles. Accordingly, considering that ¢(P) Vp = P =¢
(we remind that here volume fractions are identically equal to mass fractions), and
applying Eq. (9.48) we obtain:

d(C(p)f)
() — — (p)
wh=—-r = RT[1+1logc'” +8¢], (10.60)
and therefore,
du?
P Z¢ — RT(1 +8¢). (10.61)

Predictably, the 8¢ correction appearing in Eq. (10.61) is the excluded volume. Fi-
nally, substituting (10.61) and (10.42)—(10.43) into (10.54) yields:

D(¢) = Do(1+ 1.45¢ + 0(4%)), (10.62)

showing that the excluded volume effect, which tends to increase diffusion, over-
weighs the hydrodynamic retardation, so that in dilute suspensions gradient diffu-
sivity slightly increases with volume fraction.

Comment Both self-diffusion and gradient diffusion can be interpreted in terms of
an average velocity. However, gradient diffusion describes the collective migration
of particles subjected to a concentration gradient, and so the related mean parti-
cle velocity, v, is a “thermodynamic” quantity. On the other hand, self diffusion
depends on the mean instantaneous velocity, V, of a single particle in a uniform
suspension as we follow it during its motion, and therefore coincides with the mean
velocity of the Darcy law (10.39). To see that, consider that the force acting on a
single particle is F| = —Vu; = —kT V¢ /¢, where 1 = o + kT In¢ is the single

9See [11].
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particle chemical potential.!” So, at the end, considering that F; = ¢ - V, we find
the material flux Jy = V¢ = —D* - V¢, where, as expected, D* = kT;"1 is the self
diffusivity (10.49), while V satisfies Eq. (10.39).

10.5 Dynamic Definition of Transport Coefficients

10.5.1 Heat and Mass Diffusion

We have seen that properties such as mass and heat diffusivities are related to the
dispersion of mass and energy through the fluctuation-dissipation theorem. The pre-
mier example of this class of relations is Einstein’s classical formula (3.23), showing
that the coefficient of molecular diffusion of colloidal particles, D, is proportional
to the time derivative of the mean square displacement of one of those particles as
it diffuses through the system. This result was then generalized through the Kubo
relation (2.29), allowing to define in the same way any Onsager phenomenological
coefficient L.

Let us see this case once again. Assume that a unit mass (or heat) disturbance
is introduced at the origin r = 0 and at time # = 0 in an otherwise homogeneous
medium, where it diffuses with diffusivity D. The governing equation reads,

L.(IT) = 8,11 — DV*IT = 8(r)8(t), (10.63)
with
II(r,t)=0 V<0, (10.64)

stating that the system is initially unperturbed. Here, I1(r, ) is the propagator of the
diffusion equation, i.e. a Wiener process (see Sects. 4.6 and 6.1), denoting, physi-
cally, the probability that a tracer introduced in the origin at time ¢ = 0 is found at
location r at a later time .

Taking the Fourier transforms i (K, w) of [1(r, 1),

Ik, w) = / (r, t)e! ®rD g3y gy, (10.65)
with,
~ : &’k do
I, t)= | Ok, w)e *rten —— “— 10.66
(r,1) / (k, w)e @) 2m ( )
Eq. (10.63) yields:
Ak w)=(ioD™ +12) ", (10.67)

19Note that here no excluded volume effect has been accounted for; it is as if the tagged particle
belongs to a different chemical species than the other suspended particles.
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with k = |K|. Finally, anti-transforming (10.67) we find:

}’2
M(r, 1) = (47 Dt) "% exp (— H) H(1), (10.68)

with H (#) denoting the Heaviside step function. It is easy to see that, since the
propagator decays exponentially fast, its integral converges, with,

0
/ I, t)d’r=1, (10.69)
—00

as one would expect, as a consequence of mass (or energy) conservation.

Dynamic Definition of Diffusivity Now, let us define the central second moment
of the propagator [see Eq. (A.26)],

o
w) = / ri(x, )ry d°r. (10.70)
o0

Since I7 is a Gaussian, we easily find: ,uﬁ) (t) =2Djit, with D jx = Dé i, so that,

Dji= 5 1w (1), (10.71)

This indicates that the diffusivity measures the temporal growth of the second mo-
ment of the probability distribution. Alternately, we can rewrite this equation as,

1 .
Dji = E/rjn(l',t)rkd3r. (10.72)

So, after introducing a Brownian particle in an otherwise homogeneous medium and
subsequently monitoring its temporal stochastic spread, we may define diffusivity
as the temporal growth of the central second moment of the concentration field.
This dynamic definition could be applied as well to evaluate the effective diffusivity
within a complex material, assuming that the timescale t of the measuring process
is much larger than the typical time that is necessary for the tracer to sample all po-
sitions within the microstructure.!! Then, since the molecular diffusivity is a strong
function of position,12 i.e. D = D(r), Eq. (10.72) indicates that the effective diffu-
sivity measures a sort of mean diffusion of a solute particle as it spreads within the
medium. This nontraditional definition of diffusivity has been applied by Brenner
and coworkers [5] to determine the effective diffusivity in spatially periodic complex
materials, obtaining results that are identical to those derived using the traditional
definition, based on coarse-graining averaging procedures (see Sect. 11.3).

For example, if we are considering the diffusive spread of a contaminant in a macroscopically

homogeneous complex material, we must assume that T > L2/ D, where L is the typical dimension
of the microstructure (e.g. the pore size), while D is the molecular diffusivity.

12In particular, in porous material, D = 0 within the inclusions.
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10.5.2 Momentum Diffusion

Now, we intend to see that, in analogy with heat and mass diffusion, the kinematic
viscosity describing the diffusion of momentum can be defined as the temporal
growth of the central second moment of the velocity field generated by an impulsive
perturbation initially introduced in the system [9].

The analogy between energy (and mass) diffusion, which is governed by the heat
equation, and momentum diffusion, which obeys the unsteady Stokes equation, is
not obvious, as there is a fundamental difference between the two processes: the
effect of an impulsive perturbation decays exponentially fast in heat diffusion, and
as r~ in momentum diffusion. Accordingly, while the mass (or energy) initially
introduced in the system is conserved (in the absence of “source” terms) as it spreads
through the system, this seems not to be the case in momentum transport. To see that,
consider the Stokes equations describing the flow field induced by a disturbance F,
that is introduced at the origin r = 0 and at time # = 0 in an otherwise homogeneous
quiescent fluid with unit density and viscosity 7:

Lu(u, p)=du+Vp—nViu=Fsr)s®), (10.73)
V-u=0, (10.74)

with u(r, #) and p(r, ) denoting the fluid velocity and the pressure, respectively.
Since (10.73) and (10.74) are linear equations, their solution can be expressed in
terms of the propagators II(r, 7) and & (r, 7) as

u(r,t) =I(r,1?) -F, pr,t)=mn(r,1t)-F, (10.75)
where IT and & satisfy the following equations:
Loy, ) =18(r) (1), V.-I=0, (10.76)
subjected to the condition,
I(,t)=0 Vt<O, (10.77)

stating that the fluid is initially at rest. Taking the Fourier transforms M(k, ») and
7 (K, ) [see (10.65) and (10.66)] of II(r, t) and 7 (r, t), respectively, (10.76) yields:

7k, ) = —i (10.78)

ﬁa
- kk _
H(k,w) = (1_ k—2>(ia)nl +12)7, (10.79)

with k = |K|. Finally, antitransforming (10.78) and (10.79) we find:

m(r, t):V(%)(S(t), (10.80)
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O(r,t) = O (r, 1) + Ha(r, 1) + M5(r), (10.81)
with r = |r|, where:
,.2
I (r,1) = (4rnt) > exp (- 4—m>H(t)I, (10.82)
I 1) = i \YAY 1 T H(t 10.83
2(r, )——471 [rer0<2ﬁ>] (®, (10.83)
M5(r) = 1 VV<1>H(z), (10.84)
4 r

with H (¢) denoting the Heaviside step function.
The function II; defined in (10.82) is just the fundamental solution of the diffu-
sion equation, i.e.,

Lo(T1,0)= 8,11} — nV2I; =18(r) 8(r). (10.85)

Since IT; is not divergence-free, introducing an impulsive unit source of momentum
results also in the appearance of a steady velocity field, IT3, which is created through
the action of the delta-like pressure field, w. Thus I3 and & are determined by
mass conservation (indeed they are independent of the viscosity 1) and solve the
following equation,

Ly(M3, ) =nVVS(r) H(t). (10.86)
Finally I, describes the decay in time of Il3, and satisfies the equation:
Ly(P2,0)=—nVVE) H(1). (10.87)
From this analysis we see that the time-dependent part of the propagator,
m* =1, + I, =1 — I3, (10.88)
satisfies the diffusion-like equation,

Ly(TT*,0) =18(r) 8(1) — nVVS(r) H(1). (10.89)

Unlike IT, which has a slow rate of spatial decay, namely » 3, IT* decays exponen-
tially fast. In addition, integrating (10.89) we obtain the normalization condition,

/n*d3r=1. (10.90)

stating that the momentum originally introduced is conserved as it spreads through
the system.

Equations (10.89) and (10.90) indicate that the time-dependent propagator IT*
is conserved and satisfies a diffusion-like equation; therefore it is IT*, not II, that
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is the analogous of the propagator of the heat equation. Now, the propagator of
the heat equation can also be interpreted as the conditional probability describing
the random motion of a passive heat tracer as it diffuses through the system. This
simple physical interpretation cannot be easily applied to momentum diffusion, as
some of the components of IT* might be negative, so that IT* does not have any
obvious probabilistic meaning. However, it is tempting to interpret IT* as the result
of a stochastic process describing the transport of momentum, just as for the heat
equation. The first symptom of this analogy is studied below, where we will develop
a dynamical definition of viscosity based upon IT*.

Dynamic Definition of Viscosity Viscosity is in general a forth-order tensor, 1; jk/,
defined as the proportionality term between the deviatoric stress tensor 7;; and the
rate of strain dyadic S;; = (u;,j +u;;)/2,

Tij =2 nijkt Skis (10.91)

where u; ; = du;/dx ;. Due to the symmetry of both T and S, »; jx; must satisfy the
following symmetry relations:

Nijkl = Njikl = Nijlk- (10.92)

In addition, due to Onsager’s reciprocity relation, n;;x; satisfies the additional con-
dition,

Nijkl = Nklij - (10.93)

Considering that both T and S are traceless, »;ji; is defined only up to an arbitrary
tetradic ;jz; such that

aijkl =bdij S, (10.94)

for any arbitrary constant b. In the sequel, whenever we identify a certain tetradic
as the viscosity 7/, it is understood that any tensor «;x; satisfying (10.94) can be
arbitrarily added.

In the case of isotropic fluids we have:

1
Nijkl = 5 n(8ikdji + 8i1d ji). (10.95)

Now consider the following relations, which are easily obtained from (10.82) and
(10.83):

/x,» ) xid =4yt 88, (10.96)

/x,» nﬁ) xpdr= =201 (81 + 8ij).- (10.97)
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Comparing these results with (10.95) we obtain:

Nijki = % %(ijzl)(}k)sym (10.98)
where
wi = / xi [Ty x d°r, (10.99)
and
(Aiji)™™ = % (Aijki + Ajirl + Aijik + Ajitk)- (10.100)

An alternative definition, and a more general one, in fact, is:

1 . sym
Mijkl = 5 (/ xi g x; d3r) . (10.101)

The expression (10.101) shows that viscosity measures the temporal growth of
the second moment of the unsteady Stokes propagator. This equation generalizes
the analogous definition (10.72) of diffusivity in heat (and mass) transport13 and, in
fact, can also be applied to measure the configuration-specific viscosity of complex
fluids, such as suspensions, where viscosity is a strong function of the position, i.e.
n = n(r). In particular, the nontraditional definition (10.101) of viscosity has been
applied by Mauri and Brenner'# to determine the effective viscosity of periodic
suspensions, obtaining results that are identical to those derived using the traditional
definition (10.91).

10.6 Problems
Problem 10.1 Prove Eq. (10.9).
Problem 10.2 Prove Eq. (10.33) by averaging T and S by “brute force”.

Problem 10.3 Derive the dynamical definition of viscosity (10.101) by substituting
the equations of motion (10.76) into the RHS of Eq. (10.101).

131t should be added that in heat and mass diffusion, due to its probabilistic interpretation, the
second moment of the unsteady heat equation coincides with the mean square displacement of a
passive tracer as it diffuses through the system. As noted here, this simple interpretation cannot be
extended to momentum transfer.

14 A summary of this work and its most relevant results can be found in [5, Chap. 11].
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Chapter 11
Multiple Scale Analysis

In Chap. 10, we have assumed to know both the structure of the effective equations
and the micro-scale morphology of the multiphase systems, and thus we focussed
on how to determine the effective properties appearing in the associated constitutive
equations. On the other hand, in this chapter we only assume to know the governing
equations, describing the transport of momentum, energy and mass at the micro-
scale level, and then we intend to average them out, to find the effective equations
at the macro- (or meso-) scale. First, in Sect. 11.1, we show how to perform a di-
rect volume averaging, using a multi-pole expansion technique. Clearly, though,
any averaging procedure must assume a clear separation of scales, that is the typical
length- and time-scales at the micro-level must be much smaller than their macro-
scopic (or mesoscopic) counterparts. Accordingly, the most natural way to move up
from one scale to the other, and thus determine the effective equations of a multi-
phase system, is by using multiple scale analysis. In Sect. 11.2, first we explain the
idea underlying this approach and then show two examples of application to derive
the Smoluchowsky equation and study Taylor dispersion. Finally, in Sect. 11.3, this
approach is generalized, describing the coarse-graining homogenization procedure
and thus show how some results on deterministic chaos can be found. In particular,
we see that the transport of colloidal particles in non-homogeneous random velocity
fields is described through a convection-diffusion equation that can also be derived
from the Stratonovich stochastic process seen in Chap. 5.

11.1 Volume Averaging

In this section we determine the effective equations describing the flow through
porous media by direct volume averaging of the governing equations at the
microscale. Although other approaches have been proposed, such as moment-
matching [3], ensemble averaging [11], and multiple scale perturbation expansion
(see next sections), this is perhaps the simplest of all methods.

Let us consider the steady, slow motion of a viscous fluid of viscosity ng and
unit density through a bed of rigid spheres of radius a, either fixed or neutrally

R. Mauri, Non-Equilibrium Thermodynamics in Multiphase Flows, 153
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buoyant, located at positions ry . For low solid volume fractions the influence of the
spheres can be modeled through singular multipole force distributions centered at
ry, leading to the steady state Stokes equations of motion (F.52),

o
Vp—nViv=F=> Y Fy"’ ()" VVV.. . Vs -1y  V.v=0,
N n=0 n times

(11.1)
where V' = VV ...V (n times), while FX,L) is an n-th order constant tensor express-
ing the strength of the n-th multipole of the N-th sphere. Thus, F(!) is the force
exerted by the sphere on the fluid, F® is the corresponding moment of dipole, F®
the moment of quadrupole, etc. In turn, due to the linearity of the Stokes equation,
these multipole strengths are proportional to the gradients of the unperturbed veloc-
ity at the center of the spheres, that is the velocity field in the absence of the N-th
particle, i.e.,

F;\']’”) — _ ZRE\YIHH)()I’! Vn_lUlr:l‘Na (112)

n

where RE\T”) is a grand resistance matrix of the N-th sphere. In the following we
shall assume that the averaging volume is sufficiently far from the boundaries of
the medium that the grand resistance matrix is the same for each particle, so that
the subscript N can be dropped from Rg\’;m). Now we shall proceed to take the vol-
ume average of the Stokes equations over a domain V, comprising many particles
and in which, at the same time, the unperturbed velocity and pressure fields do not
vary appreciably. This, in essence, requires that a separation of scales exists, that
is, the macroscale over which velocity and pressure gradient vary greatly exceeds
the microscale, e.g. the typical particle-particle distance. The main point is that, if a
large number of particles is located within the averaging volume V, the average, or
macroscale, velocity and pressure fields, (u) and (p), are given by:

(u) = (uy); (p) = (pn), (11.3)

where the bracket denotes volume average over V. Using these definitions, we can
easily show that

3
D (Vs —ryuy) = (-1)’”%%@). (11.4)

N

Finally, taking the average of the Stokes equations (11.1) and (11.2) and using
the above relations (11.3) and (11.4), we find the following generalized Brinkman
equation:

Vi(p) = —nok;;' (u;) = 251V ui) + mijeV, Viue);  Vilui) =0, (11.5)
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where k;;, & i and n;jre are the permeability, coupling and viscosity tensors, re-
spectively, with:

(ol 3¢ pan.

5= e R (11.6)
3¢ a2 @
Sijk = W(Rijk —Rj): (11.7)

3¢ 2 13 31
lijke = Mo(ikdje + 8108 i) + 5 (Rijgy = Rjyy = Rigyy). - (118)
Note that, by construction,

13) _ p(13), @l _ pB3h
Riike = Rigjos Riike = Rjike- (11.9)

Since our averaging procedure implies a separation of scales, we have tacitly as-
sumed that [u| > ¢|Vu|, where £ = V!/3 is the linear dimension of the averaging
volume. Therefore, the three terms at the righthand side of Eq. (11.5) are of decreas-
ing magnitude, thus justifying why we have neglected higher-order velocity gradient
terms.

11.1.1 Onsager’s Reciprocity Relations

The average energy dissipated per unit time and volume, E, is:
E =2no(Vu:Vu) + (F - u). (11.10)

Substituting Eq. (11.1) for the generalized force F into (11.10), and applying the
averaging rule (11.4) we obtain:

3¢

E —2no(Vu:Vu) =
U ) Ind?

Z(—l)mF(m+1)(~)’”+]V’”(u), (11.11)

showing that the (m + 1)-th pole strength F*1 is conjugated with the m-th mean
velocity gradient. Therefore, since these two quantities are linearly related through
Eq. (11.2) the Onsager relations state that the proportionality term, i.e. RO is a
symmetric matrix. To exemplify what that means, let us rewrite Eq. (11.2) as

—F = Rl.(;l)uj + R,.(},f)vjuk + Rf},f;v,vkug; (11.12)
2 21 22

—FP = R ue+ R Viur: (11.13)
3 3

—Fl.(jk) = R}j,j;ug, (11.14)
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where the subscripts N have been dropped from F" and u for simplicity. In these
equations, we have not considered higher velocity gradient terms, since we saw that
they are not required to determine Brinkman’s effective equations. Now, due to the
symmetry of the grand resistance matrix, we find:

(n _ pan. (12) _ (@D, (13) _ pGD), 22) _ p2)
Rij - Rji > Rijk - Rjki ’ Rijk(i - Rjkﬂi’ Rijk( - Rk@{i’l 15)

Applying these symmetry relations to Eq. (11.6)—(11.8), we obtain:
kij =kj; (11.16)
while (11.7) and (11.8) can be rewritten as:

3¢

12 12
ik =55 (Ry; = Riji) = i (11.17)
and
3¢ L0 03 p03)
Nijkt = T]O((Sikaj[ +8i£5jk) + I (Rijk/é — Rjikl — Rléikj) = Nkeij, (11.18)

where we have considered that, by construction »; jx¢ = nixj¢. These relations show
that the permeability and the effective viscosity are identically symmetric tensors,
while the coupling term is antisymmetric.

11.1.2 Brinkman’s Equation

At leading order, we neglect the influence of particle-particle interactions, so that
we may determine the grand resistance matrix by studying the flow field around an
isolated sphere.

First, consider the case of neutrally buoyant suspended particles. Then, F() = 0,
and, as shown in Appendix F [cf. Egs. (F.61)], the antisymmetric component of F(*)
(i.e. the rotlet) is zero, so that:

10
(1) _ p(12) _ p(13) _ o 22) 3
RV =R =Rijn =01 Ry = —mna® Gudje +8udj).  (11.19)

Consequently, we find:
ki;l =& =0; Nijke = 0" (Sixdje + 8iedji), (11.20)

where
N 5
n=1o 1+§¢ (11.21)
is Einstein’s effective viscosity (10.33), and the effective equation (11.5) becomes:

Vilp) ="V u;);  Vi{u;)=0. (11.22)
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Now, let us consider the more interesting case of a fixed bed of spherical particles.
In this case, in Appendix F we see that [cf. Egs. (F.55) and (F.60)]:

RV =6mnasi;;  RUD=0;  RUY =mna’sibj (11.23)
and
16 4
Rl(jzlgg = nna3 <?5ik5j( + §5ig3jk> . (11.24)

Substituting these results into (11.16)—(11.18) we obtain:

P

ij :271281]7 éijk:()’ (1125)

and
5
Nijke =no( 1+ Ed) SikSje +no(1 + @)died ji. (11.26)

This shows that the flow of a Newtonian fluid through a dilute bed of solid spheres
is described by the following, so called, Brinkman equation:

vi<p>+2—2<uj>=n*v2<ui>; Vi{u) =0, (11.27)

with permeability k* = (2a%)/(9¢) and effective viscosity n* = no(1 + %d)). Equa-
tion (11.27) shows that the viscous term in Brinkman’s equation is expressed via the
Einstein effective viscosity (10.33) [6, 13].

Brinkman’s equations can also be written as a momentum conservation equation,
in terms of the mean force density f (i.e. the force per unit volume exerted by the
spheres onto the fluid), the mean body couple density g and the mean stress tensor
T as:

1
f+5VxgtV-T=0  V-(w=0, (11.28)

with the constitutive relations,

_ Mo, . 2a%
f= k*(u), k* = 55" (11.29)
g=—x"(o): x* = 6mo¢; (11.30)
- - 7
T = —(p)I+25(S); n=no<1+z¢> (11.31)

where (S) is the mean rate of strain, (@) = %V X (u) is the mean angular velocity of
the fluid, while x* and 7 denote the effective spin, or rotational, viscosity and the
effective stress viscosity, respectively.
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It is important to note that the effective shear viscosity n* appearing in the
Brinkman equation (11.27) is different from the stress viscosity 7, the latter be-
ing defined as the ratio between the symmetric part of the mean deviatoric stress
tensor and the mean rate of shear. This can be seen rewriting (11.26) as:

~ 1
Nijke =NBik8je + 8iedjx) + gx*(&'kcsje — 8ied k), (11.32)

showing that x*/8 = 3¢ /4 contributes an extra term to the shear viscosity [9], i.e.
n* =11+ x"/8.

The approach described in this section can be generalized to the case of dilute
beds of particles of any shape and even to the non dilute case. In particular, it is im-
portant to note that, whenever the system morphology lacks mirror symmetry (think
of the screwlike particles mentioned in Problem 2.1 of Chap. 2), fluid translational
and angular velocities are coupled to each other, i.e. R%Z) is not identically zero, so
that the coupling term 2&:Vu in the generalized Brinkman equation (11.5) will not
vanish.

11.2 Multiple Scale Analysis

Perhaps the most important among the approximation methods in multiphase rhe-
ology is the multiple scale analysis, a perturbation technique where the effective
governing equations are represented through an asymptotic expansion in terms of a
small parameter that appears naturally in the problem. In particular, when we want
to determine the effective equations of slow, or macro, variables, smearing out the
effects of all the other faster, or micro, variables, the small parameter is the ratio
between the two time- or length-scales. Accordingly, after expanding the governing
equations as regular perturbations of the small parameter €, coefficients of like pow-
ers of € are equated, producing a set of boundary value problems to determine the
effective coefficients appearing in the final, effective equations.

In this section, this method is described by solving two problems. In the first we
see how the Kramers equations, that is the Fokker-Planck equation in phase space,
reduces naturally to the Smoluchowsky equation in the configuration space only,
when the effect of the faster momentum variable is averaged out. The second ex-
ample analyzes Taylor dispersion, occurring when two miscible liquids are pumped
in a capillary, resulting in an enhanced effective diffusivity, due to the non uniform
velocity field. Finally, this technique is applied to study heat and mass transport
through porous media.

11.2.1 Smoluchowsky’s Equation

As we saw in Chap. 3, when we describe the motion of a free Brownian particle
as a function of its position r and velocity v using the Langevin equation, we see
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that thermal fluctuations directly affect the velocity field, which in turn, at longer
timescales, causes diffusion in the physical space. This can be seen even more
clearly using the Fokker-Planck equation in the (r, v) phase space, which is often
referred to as Kramers’ equation [cf. Egs. (4.90) and (4.91)], i.e.,

8H+8 J+a Jy=0 (11.33)
ar or T 9y VT '
where,
z kT¢ oIl
IT1=1II(r,v,1); J, =vII; Jy=—=>vIl — — (11.34)
m m= 0v

This equation can be easily obtained by applying the rules of Sect. 4.4, con-
sidering the phenomenological equations ¥ = v and vV = —{v/m, together with the
Maxwellian distribution, leading to g,, = m/kT (no such equilibrium distribution
exists in the configuration space, so that g,, = g, =0).

Now define a slow and a fast non-dimensional variable, X =r/L andy=v/V,
respectively, where L is a characteristic linear dimension, while V = /kT /m is
a typical thermal fluctuation speed. The characteristic lengthscales associated with
these variables are T, = L/V and 1y =m/{, with

_b_mV o (11.35)
T LC ' '

Scaling time in terms of a longer, 7, /€, timescale, Kramers’ equation in non-

dimensional form becomes:

ofr 1. 1

with 7= tVe/L, Vg = 3/3%X and Vy = /37, to be solved assuming that I7 — 0
exponentially as [§] — oo.
Now we expand the probability distribution as a power series of €,

oo
NEyH=) " MmE5.D. (11.37)
n=0

At leading order we obtain:

0(e7%): Vy-FMo+ VyIIp) = 0; lim My~e™. (11.38)

[yl—o00
This problem can be easily solved obtaining,
yX,y, D) =X NHIT,(3), (11.39)

where

m,§) = Ce 712, (11.40)
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is the Maxwellian distribution, with C denoting a normalization constant. Since at
the end we want to be able to describe the motion of the Brownian particle in con-
figurational space in terms of the leading-order term, I7, (X, 7), by taking advantage
of the fact that the higher-order terms in (11.37) are defined within an arbitrary
constant, without lack of generality we can impose the following condition,

(MX.3.0)=TX7) where <A>=/oo A®Y)dy. (11.41)

Consequently, we find C = 712 50 that (IT,) = 1, while (IT,) = ﬁ(Sn,o.
At the next order, we find:

O(™): §-Vsllo=Vy G +VyM);  lim M~e ™. (1142

[yl—o00

This problem is well posed; in fact, its solvability condition, imposing that the inte-
gral of the LHS and the RHS are equal to each other, is here satisfied identically. At
the end, Eq. (11.42) can be solved by imposing:

ME&5. 7D =-B®E - Vs, (11.43)
where the so-called B-field satisfies the following problem:
¥- V3B - VIB =7, (11.44)
with the additional constraint that (I7;) =0, i.e.:
(B(y)nv(y))zc/ BG)e Y 2dy =0. (11.45)
—00
So, at the end, we obtain:
ﬁ(y) =Y. (11.46)

At the next order, we obtain:

oy - . >
0(1): W+y-V§H1=Vy-(§H2+VyH2); ~|1rn Ihh~e . (11.47)

|y]— o0
Now we impose that this problem is well posed, that is the solvability condition

is satisfied. Accordingly, integrating the above equation over ¥ and considering that
(ITy) = I1, we find:

oIl ~
& = Ve D Vi, (11.48)
where
D 1foo§'y*y2/2dy I (11.49)
e (4 = 1. B
VT ) o
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Finally, going back to dimensional variables, we obtain the well-known Smolu-
chowsky equation,

oIT — ~ kT
5 =DVill: D=Devi=—. (11.50)

where D is the usual molecular diffusivity.

11.2.2 Taylor Dispersion

Consider the transport of a colloidal solute in a channel of half-width Y, con-
vected by a solvent, flowing with velocity v(y) in the longitudinal z-direction, where
—Y <y <Y denotes the transversal coordinate. As the solute particles diffuse in the
y-direction, they will experience different velocities, so that what initially is a con-
centrated spot of solute particles will subsequently spread longitudinally, exhibiting
a so-called Taylor dispersion, named after G.I. Taylor [21-23]. From an elementary
dimensional analysis, we see that the Taylor dispersion coefficient is D* o< V27,
where V is the mean longitudinal velocity, while t is the characteristic time that
is necessary for the solute to sample all positions in the cross section, i.e. in the
y-direction. Therefore, since T = Y2 /D, where D is the molecular diffusivity, we
easily obtain for the effective diffusivity:

D* < D N3,, (11.51)

where Np, = VY/D is the Peclet number.

As we want to describe the dispersion process at the macroscale L > Y, it is
natural to choose € = Y /L as our small parameter. In fact, the timescale in the slow
z-variable is t, = L/V, as longitudinal transport is convection-driven, while for
the y-variable we have 7, = Y2/D, as the solute particles move transversally by
diffusion only. So at the end we have: 1,/1, = € Np,; accordingly, imposing that
Ty < 75, that means that e K N ;(}.

The transport of a dilute solute having concentration ¢ = c¢(y, z, t) is described
through the convection-diffusion equation,

ac ac d%c 5
—+V(y)—=D|— + Vic|, 11.52
ar T (y)az <822 * yc> ( )

where Vyzc = 82c/ d yz, while V(y) is the velocity field of the solvent, with V de-

noting its mean value. This governing equation is to be solved with given initial
conditions and no-flux boundary conditions at the walls,

9
n-Vycza—czo aty = +Y. (11.53)
y
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Scaling time, as in the previous subsection, in terms of a longer timescale 7, /e,
and referring the longitudinal coordinate z to a moving reference frame, define the
following scaling,

~ 2=Vt ~ ~ - V-V
X=——5 V=33 1= 5= V) = ——F——

- . (1154
L Y L?/D 1% (11.54)

where V. is a characteristic velocity to be determined using the solvability condition.
Then, the governing equation becomes:

dc 1 _dc 3% o2,

—+—-N — Vic 11.55
3t+€ PeVax T o2 +62 y¢ ( )
Now, let us expand the concentration field as a power series,
o
) =Z "en (X, 5, 1). (11.56)
At leading order, we find:
2 . 36() ~
v;c():o; with B.C.: EZO aty ==+1, (11.57)

showing that ¢y = ¢ (X, 7). Note that here the solvability condition is satisfied iden-
tically.

Since at the end we want to be able to describe the transport of the solute in terms
of the leading-order term, by taking advantage of the fact that the higher-order terms
in (11.56) are defined within an arbitrary constant, without lack of generality we can
impose the following condition,

1
(c®.5. D)= co®.T) where (A):% / AG)d5, (11.58)
—1

so that (c,) = cobn,0-
At the next order we find:

~dco 2 . dcy ~
Np,v— =Vicy; withB.C.:. — =0 aty=41. (11.59)
0x Y ay

The solvability condition (i.e. the integral of the LHS over the y-variable must equal
that of the RHS) here imposes that (v) = 0, which shows that V. =V, i.e. the char-
acteristic velocity equals the mean solvent velocity.

Now, defining Brenner’s function,! B (y), as,

c1(x, )’at)—NPeB(N) (x 1), (11.60)

I'The B-function is named after H. Brenner, who wrote many fundamental papers on generalized
Taylor dispersion. See [2, 4].



11.2  Multiple Scale Analysis 163

substituting (11.60) into (11.59), we see that it satisfies the following problem:

2% dB -
ViB=v; withB.C.. —=0 aty==I. (11.61)
y dy

Clearly, Brenner’s function is determined within an arbitrary (and, it turns out, ir-
rfgevant) constant, which nevertheless can be determined imposing (c1) =0, i.e.,
(B)=0.
Finally, proceeding to the next order we find:
aco acy 82c0

. dco ~
— 2. . _ —
s + Np.v AT + V;cz, with B.C.: 05 =0 aty==£1. (11.62)

Applying the solvability condition and substituting (11.60) we obtain:

dcp ~
—=D—, 11.63
ot 9x2 ( )
where D is a non-dimensional effective diffusivity,

D=1+aN%,; a=—(UB). (11.64)

Substituting (11.61) into (11.64), integrating by parts and considering the no-flux
boundary conditions, we see that & can be written in the following equivalent form:

dB7?
ot=<[d—3;:| > (11.65)

Therefore, going back to dimensional variables, we see that the effective equation
reads:

gc _dc a%c

— — =D*—, 11.66
at + 0z 972 ( )

where the effective, Taylor diffusivity D* is:
D*=D(1+aN3,). (11.67)

(A) Poiseuille Flow in a Channel In this case, V(y) = 2V (1 — y2/Y?). There-

fore, substituting v = % - %}Q into (11.61), we easily find:

dB | ~3 ~ 7 1~2 1~4
T (= d B=——+4 -5 — =57, 11.68
0 ;(F=5) an oty Y (11.68)

where the constant in the expression of B (y) has been determined imposing that
(B) = 0. Substituting (11.68) into (11.64) or (11.65) we easily find: « = 2/105.
Therefore, we obtain the effective equation (11.66), with:

2 y2y?

D*=D+ —
+105 D

(11.69)
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(B) Poiseuille Flow in a Pipe Since all the results that we have seen so far can
be applied to any one-directional flow field, consider a Poiseuille flow in a circular
conduit of radius R, V (r) =2V (1 —72), with 7= r/R, where V denotes the mean
solvent velocity. Then, Eq. (11.61) becomes, in radial coordinates:

o~ 1d (.dB\ . | dB -
ViB=z—|r— )=v; withB.C: — =0 atr=1, (11.70)
rdr\ dr dr
which is easily solved obtaining:
dB 1, 4 ~ 1 1, 1y
— ==(r— d B=——+-F" —-F". 11.71
g7 =2 =7) an 2 7% (70

Then, we find:

_([4B7 —2[1 dB 2~d~—1 (11.72)
N\ ") \F) T T :

so that the effective diffusivity D* becomes:

1 VZR?
48 D

D*=D+ (11.73)

11.2.3 More on Taylor Dispersion

L. Velocity Covariance

The solution of Eq. (11.61) (in its dimensional form) can also be expressed as:

00 Y
B(y)=—/0 dt/y dyo[I1(y, tIyo)v(yo)], (11.74)

where v(y) = V(y) — V, while I1(y, t|yg) is the propagator (or Green function)
of the diffusion equation along the y direction. I7(y, t|yo) is defined through the
equation,

oIl 5 . oIl

T DVyI'[ =8(y —yo9)8(t); withB.C.: E =0 aty=4Y; (11.75)
and thus it represents the probability that a tracer particle initially located at position
yo diffuses and is found at position y at time ¢. Accordingly, the B-field, B(y),
represents the mean axial displacement (referred to its V¢ mean) at long times of a
Brownian particle located at y within the pipe cross section, assuming that its initial
locations yq are all equally probable. At the end, we find the following expression
for the effective diffusivity:

o0
D*:D+/ C(1)dt, (11.76)
0
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where

1 Y Y
Ct)= ﬁ/ dy/ dyo[v() I (y. t]y0)v(y0)] (11.77)
-y -y

is the average covariance of the fluid velocity at the points occupied by a Brownian
tracer at times ¢ = 0 and ¢, assuming that its initial positions are all equally proba-
ble.? In fact, since the joint probability that the Brownian particle is located at yg at
timet =0andat y attime ¢ is I1(y, t; yo) = I1(y, t|yo) I (yo), with IT(yg) = 1/2Y,
Eq. (11.77) can be written as:

C(t) =(v(t) v(0)). (11.78)

This expression shows clearly that the enhanced diffusivity results from the non-
homogeneity of the velocity field, thus justifying the scaling proposed at the begin-
ning of this section. In fact, Taylor dispersion is perhaps the simplest case where the
stretching induced by convection can be described in terms of an effective diffusiv-

ity.

II. Lagrangian Approach

The result (11.76) can be interpreted also using a Lagrangian approach where, for
sake of convenience, we adopt a reference frame moving at constant velocity, V.
In fact, consider the Langevin equation, stating that the instantaneous axial velocity
of a Brownian tracer is the sum of two uncorrelated processes, namely a zero-mean
convection drift, v, and a Wiener diffusion w(z),

d
d—f=u+w, (11.79)

with x(¢) = z(r) — Vt and v(y) = V(y) — V, while,
(wn)=0;  (w()w("))=2Ds(t" —1"). (11.80)

Assuming a uniform initial particle distribution,> we obtain:

dx dx / dx " _ [—— [——r
<E(t)>=o, <E(t)5(t )>_2D8(t ")+ C(f'=1"),  (11.81)

2Since the Brownian particles sample all positions in the cross section with the same probability,
irrespectively of their initial location, the same value of the effective diffusivity is obtained for any
initial probability distribution; see [8].

3In general, Eq. (11.79) should be coupled to a free diffusion equation along the y-direction, which
for long times, t < Y2/ D determine a uniform probability distribution in the transverse direction.
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with C (¢ —t") denoting the velocity autocorrelation (11.78). Integrating this equa-
tion in time, with x(0) = 0, and averaging, we obtain:

t t
(x@)=0; (xz(t))=2Dt+/ dt’/ dt"c(t' —1"). (11.82)
0 0

At the end, considering that,

o0
11m—/ dt/ dr"c(t' —1") = 2/ dtC(7),
t—00 dt

we see that Eq. (11.76) is equivalent to:

w1 d

D* = =3 lhm o (x2(@)). (11.83)
This shows that D* is the coefficient of self-diffusivity, as it equals (one half of)
the growth rate of the mean square displacement of a tracer particle immersed in a
uniform concentration field. Therefore, since D* describes both self-diffusion and
gradient diffusion (as it also describes the ratio between mass flux and concentration
gradient), we see that the fluctuation-dissipation theorem is satisfied, as one would
expect, since in this case the constitutive equation for the mass flux is linear (i.e. D*
is independent of the composition).

III. Eigenvalue Expansion

Consider the eigenvalue problem associated with Eq. (11.75), i.e.,

>y .
D——— 42 + Any, =0, with B.C.:

d
Pn =0 aty==Y, (11.84)
dy

where A, > 0 are the eigenvalues, while ¢, (y) are the orthonormalized eigenfunc-
tions, 1.€.

(B (MNPa () = / G (V) Pn(y)dy = S n- (11.85)
Clearly, in our case, we have:
2
b (y) = /2 cos (nn%); An=0(%> . (11.86)

4The eigenfunctions are orthogonal to each other because the operator V2 is self-adjoint; see, for
example, [5].
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Considering that {¢, } is a complete set of eigenfunctions, we have:

5(y' ") ZYZm Y)en ("), (11.87)

n=0

so that it is easy to verify that the solution of Eq. (11.75) can be written as:
_)“)l
oy, y") =5 2(:)% ¢ (11.88)
n

This result is a particular case of Eq. (4.48) with ¢Z = ¢,, considering that Eq.
(11.75) coincides with (4.35), with £ = —Dd 2/ dy>.

Now, expand v(y) in Fourier series, considering that its mean value (i.e. its
zeroth-order expansion term) is identically zero:

V() =Y vathu(y). (11.89)

n=1

Substituting (11.88) and (11.89) into (11.77) we obtain:
o
C(t) = Z vie Mt (11.90)
Finally, from (11.76) we obtain:

(11.91)

>J‘|=N

-pey

The solution (11.91) is valid for any unidirectional flow field, in particular for
Poiseuille and Couette flow fields.

(A) Poiseuille Flow in a Channel In this case, when V(y) = 2V (1 — y2/Y?),
with —Y <y <Y, we can expand the propagator and the velocity field in cosine
Fourier series (11.86), obtaining,

3f (- 1)n+1
Un = ﬂz 2z
Therefore, considering that Y {°n —6 = 776 /945, substituting this result into (11.91)
we obtain:
2 Viy?
D*=D+ — , 11.92
+ 105 D ( )

which coincides with (11.69).

5See [7].
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(B) Poiseuille Flow in a Pipe The eigenvalue problem associated with Eq. (11.75)
is,

1d [ do, . doy
D——|r + Angp, =0, with B.C.: =0 atr==R, (11.93)
rdr dr r
whose solution is
Jo(yur/R) » D
= - =V —, 11.94
Ou(r) To(r) n="y R2 ( )

where y,, are the solution of the transcendental equation J;(y,,) = 0, with Jy(x) and
J1(x) denoting the Bessel functions of zeroth and first order, respectively.® Accord-
ingly, we can expand the velocity field through (11.89), with v, =8V/ )/,12, so that,
considering that } 7 yn_6 =1/3072 [20], Eq. (11.91) yields:

n=1

VIRZ X 1 1 V2R?
D* =D + 64 Z —

=D
y0 +48 D

, (11.95)

n=1

which coincides with (11.73).

11.3 Method of Homogenization

The method of homogenization is the study of partial differential equations with
rapidly oscillating coefficients [1, 19]. Therefore, it is the natural application of the
multiple scale method to derive coarse grained effective equations. Clearly, that re-
quires the problem being characterized by two lengthscales ¢ and L, indicating typ-
ical linear dimensions of the microscale and of the macroscale, respectively, with
€ ={/L < 1 denoting the small parameter of the perturbation analysis that follows.
In fact, as it is customary in these cases, our primary interest is not the detailed
knowledge of the microscale process, but rather its description on a coarse scale,
where we expect that it is described through an effective-medium equation and con-
stitutive relation in terms of effective parameters (such as the effective heat and mass
diffusivities), which depend on the global characteristics of the microscale velocity
field.

The homogenization procedure can be summarized as a three-stage recipe. In
the first stage, each physical quantity is assumed to be representable by a locally
random function, that is to depend separately on the macroscopic position vector

5The Bessel eigenfunctions are orthonormal since

/1 Jo(Ymx)Jo(Yux)
0

2xdx =68, ,.
Jo(yn)Jo(vn)
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r = Lx, with |x| = O(1), and on the stretched coordinate, £y, with |y| = O(1), in
such a way that any function f(y) is stationary random. In the second stage, all
quantities, as well as their space derivatives, are expanded as regular perturbations
of the small parameter €. Finally, in the third stage, coefficients of like powers of €
are equated, producing a set of boundary value problems to determine the effective
coefficients appearing in the final, effective equations.

In the following, we will consider the transport of a Brownian tracer through
a random, infinitely extended flow field v. Applications can be found in the mass
(and heat as well) transport in packed beds or in turbulent mixers, where the ran-
domness of the velocity field is due, in the first case, to the random distribution
of the bed particles and, in the second case, to the turbulent nature of the flow.
First, we will assume that the system is statistically homogeneous (i.e. v depends
on r only), determining a constant effective diffusivity that corresponds to the well
known turbulent diffusion; then, we will show that, when the statistical properties of
the system change over the macroscale (i.e. v depends both on r and on R), then a
drift velocity appears in the macroscale effective constitutive equation, thus obtain-
ing the Fokker-Planck equation that was obtained in Sect. 5.3 using Stratonovich’s
approach to stochastic integration.

11.3.1 Transport in Homogeneous Random Velocity Fields

Consider the convection of Brownian tracers in a random incompressible velocity
field V(r, r), which is statistically homogeneous and infinitely extended. Neglecting
inertia and all interactions among the particles, the tracer molar concentration c(r, )
at location r and time ¢ satisfies the following convection-diffusion equation:

ac

> +V-(Ve) = DV?c =0, (11.96)

where D is the tracer molecular diffusivity, to be solved with a given initial condi-
tion,

c(r, 0) = co(r). (11.97)

Boundary conditions are implicitly included in the statistical properties of the ve-
locity field. In alternative, we can add periodic or no-flux boundary conditions, de-
pending on whether the randomness of the velocity field is due to turbulence or the
random distribution of the bed particles, respectively.

Clearly, this problem, in principle, could be solved exactly, provided that the
velocity field were known. In reality, we are not interested in the detailed knowledge
of the microscale process, but rather in its description on a coarse scale and, in
addition, the velocity field is known only statistically. In fact, V(r, ¢) is solenoidal
(i.e. the fluid is incompressible), with a constant mean value, V,

V-V=0;  (V(r,0),=V, (11.98)
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and with a known Lagrangian velocity autocorrelation function, referred to the mean
velocity,

(v(r,))v(r+ Ar, 1+ Ap)), = C(r, Ap), (11.99)

with v(r,t) = V(r, 1) — V, where the brackets indicate ensemble averaging, while
r + Ar is the position, at time ¢ + At¢, of the fluid particle which, time #, is located
at r. Equations (11.98) and (11.99) indicate that the velocity field is stationary in
time and homogeneous in space. Clearly, although the Lagrangian velocity auto-
correlation can be extracted from numerical simulations of fluid flows in turbulent
mixers or in packed beds, a direct experimental measurement of this function is not
feasible, in general. However, it should be remarked that, since the Eulerian and La-
grangian probability distribution functions of the velocity fluctuations are related to
one another [18], it is possible to determine the Lagrangian velocity autocorrelation
function from its Eulerian counterpart, which is more easily measurable.

From an elementary dimensional analysis, we see that the effective dispersion
coefficient is D* oc V2 /7, where V is the mean longitudinal velocity, while  is the
characteristic time that is necessary for the solute to sample all velocities. Therefore,
for large Peclet number, i.e. when Np, = V£/D > 1, since the different positions
within the microstructure are sampled by convection, so that Tt = £/V, we easily
obtain:

D* x D Np,. (11.100)

Therefore, compared to the Taylor dispersion case, now we have a quite different
scaling.”

As mentioned above, the main idea of the homogenization procedure is that the
effective equation is expected to arise naturally from Eq. (11.96) through a regular
perturbation analysis in terms of the small parameter € = £/L, expressing the ratio
between micro- and macro-scale variables. Accordingly, as a first step, we define
the following non-dimensional quantities:

~ r ~ r ~ t
:—; X:—; ‘[:—;
Y=1 L 12/D

~ t ~
t=——; V= 11.101
L/V ( )

<l <

Now, we assume that each quantity can be represented separately in terms of the
macroscale variables X and T and their microscale counterparts, ¥ and 7. so that:

c=c,%y,7.D; V=VGED. (11.102)

Note that, since v represents a stationary random field, it depends on ¥ and 7 only,
as it does not vary over the macroscale.

7As noted in [3], for periodic porous materials, when the incoming fluid velocity has the same
direction as one of the principle axes of the microstructure, tracers sample the positions within
the unit cell by diffusion, and therefore the same scaling as in Taylor dispersion is obtained, with
D* x DN3,.
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In the second stage of the homogenization, the gradient operator V can be ex-
panded in terms of € as:

1
LV =V, +-V,, (11.103)
-V

where V, = 9/8X and V, = 9/9y. In the same way, the time derivative operator can
be expanded as:

L28818

il N 11.104
Dot o1 Pedt ( )

It can be shown [14] that expanding the time derivative in terms of € is equivalent to
referring the problem to a moving reference frame, as we did in the Taylor dispersion
case [see Eq. (11.54)].

Then, the governing equation (11.96) becomes:

dc 1. dc 1. « 1 1_\*
—+-Npe=+-Np,V-|Vi+ -V, Jc=|V,+ -V, ) c, (11.105)
T € Jat € € €
where Np, = £V,./Dy is the microscale Peclet number. In the following, we will
assume that Np, = O(1), which means that convection and diffusion balance
each other at the microscale and therefore convection dominates diffusion at the
macroscale, as Pey, = LV./Dg = O(1/€). Now, let us expand the concentration
field as a uniformly valid power series,

‘<2
Rl
!

o
c(e,X,5,7.7 =Z (11.106)

where each term ¢, in this expansion is assumed to be locally ergodic, that is ex-
pressible as the product of an ergodic, y-dependent function by an X-dependent part.
In addition, the ¢, functions, with n > 0, are defined within an arbitrary additive
constant, which here we choose so that the macroscopic behavior of the system is
described in terms of ¢, i.e. {cg) = {¢) = ¢, which means:

(cn) =¢bp 0- (11.107)
At leading order, we find:
NpeV - Vyeo = Vico, (11.108)

yielding: co = ¢o(X, T, 1), so that ¢y =¢.
At the next order, considering that V, - Vy ¢y = 0, we obtain:

9 -
Npe acf +Vy - (NpeVer — Vyer) = —NpeV - Veco. (11.109)
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Now, imposing that the ensemble average of the LHS equals that of the RHS, i.e.
applying the solvability conditions, we see that the above equation requires:

ac _
="l Vi, (11.110)

where 1, = (V) is a unit vector along the mean velocity. Now, substituting,

~

a®¥. T D =BG V.e& 7D, (1L.111)
into (11.109), we see that the Brenner’s B-field® satisfies the following problem:
V-V,B-N,!VIB=-7, (11.112)

where V=V — (\~7>. Here, the B-field is defined within an arbitrary constant, which
can be determined applying (11.107) withn =1, i.e.

(B)=0. (11.113)
At O(1) we obtain:
dco acy ~ S 2
— +Npe—= +Vy - (Np. Ve — Vyc2) = —=Np.V - Vic) +2V, - Vycr + Vicp.
o o ' ' ' (11.114)

Applying the solvability condition and considering that ¢y, ¢» and B, with their y-
gradients, are zero-average locally ergodic functions, we obtain:

3T~ _
F=DVVe (11.115)

where D is a non-dimensional effective diffusivity,
D=1-Np,(VB). (11.116)
In dimensional variables, applying (11.104), we have:
ac

—+V-J=0, 11.117
5, tVd ( )

where the material flux J satisfies the following constitutive equation,
J=Vc-D". Ve, (11.118)

with D* = DD denoting the effective diffusivity.

8Note that, unlike in the Taylor dispersion case, here the B-field is defined without Peclet number.
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11.3.2 Dispersion in Nonhomogeneous Random Fields

Consider the case where the velocity field is not homogeneous, but it varies along
its macroscopic coordinate, so that V= V(i, ¥, 7, 7). In addition, let us assume that
the fluid is quasi incompressible, which means that the velocity field is solenoidal
at the microscale, i.e.,

v, -V=0. (11.119)

Proceeding as in the previous section, we see that at leading order, we find again
Eq. (11.108), yielding: co = co(X, T, 1), so that ¢y =c.
At the next order, Eq. (11.109) becomes:

dco ~ ~
Npe? +Vy - (NpeVe1 — Vyer) = =NpeVy - (Vep). (11.120)

Now, applying the solvability conditions, we see that the above equation requires:

ac o
a—7=—vx-(<v>c), (11.121)

~

where the mean non-dimensional velocity (V) depends on the macrovariables, while
in the case of random homogeneous fields it is a constant.
Now, substituting,

&Y, 7D =V [BER YR T,D], (11.122)

into (11.120), we see that the B-field satisfies the following problem:

~

-V,B—N,!VZB=-¥, (11.123)

<@

where V=V — (V). Again, the B-field is defined within an arbitrary constant, so

~

(B) =0. (11.124)
At O(1) we obtain:

% + NPe% + Vy “(NpeVer — VyCZ) =—Np,Vy-(Vci) +2Vy - Vycl + V)%CO-
(11.125)
Applying the solvability condition and considering that ¢y, ¢» and B, with their y-
gradients, are zero-average locally ergodic functions, we obtain:
ac 2 < ~
P Vic — NpV, - (VV, - (Bo)), (11.126)
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that is:”
ac ~
—+ V- J=0. (11.127)
at
Here, the macroscale material flux Jis given by the following constitutive relation:
J=V,c-D. V., (11.128)
where D is the effective diffusivity,
D=I— Np,(VB), (11.129)
while Vy is a drift velocity,

Vi=Np.(VV, -B). (11.130)

In dimensional variables, applying (11.104), we obtain:

-
X iv.y=o, (11.131)
ot

with,

J=Vgc-D*. Ve, (11.132)

where Vi = (V) + Vy is the mean particle velocity, Vg = Vvd is the drift velocity
and D* = DD is the effective diffusivity.

Since the effective diffusivity has the same expression as in the case of homoge-
neous random fields, we obtain again Eq. (11.138), i.e.,

o0
D*:DI—l—/ (v(0)v(n))dt, (11.133)
0
so that the drift velocity becomes:
o
Vy= —/ (v(0) V- v(1))dt. (11.134)
0

We may conclude that the flux of passive tracers can be expressed through a
Fickian constitutive relation, characterized by an effective diffusivity and an Eule-
rian mean tracer velocity, the latter being equal to the sum of the mean fluid velocity,
the ballistic tracer velocity (see below) and the particle drift velocity. In particular,
the drift velocity takes into account the coupling between the non-solenoidal char-
acter of the flow field and its non-homogeneity at the macroscale, so that it vanishes
whenever the flow field is homogeneous at the macroscale. Finally, we should note
that the non solenoidal character of the flow field is not necessarily due to the fluid

9Dccomposing V= (V) +V, we see that (\~7) gives no contributions to Eq. (11.126).
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compressibility. In fact, particle-particle interactions and particle inertial forces can
cause the particle velocity to differ from the local fluid velocity, so that the particle
velocity field can be non-solenoidal even when the fluid is incompressible [15].

Comment When the assumption of quasi incompressibility is removed, the result is
very similar [16], the only difference being that all averaging must include a weight-
ing factor, which is equal to the leading order concentration field. Consequently, the
mean tracer velocity (V) does not coincide with the mean fluid velocity any more,
as it includes a so-called ballistic tracer velocity, accounting for the fact that tracer
particles tend to concentrate more in the regions where the fluid velocity divergence
is negative [24].

11.3.3 Lagrangian Approach

L. Velocity Covariance

The solution of Eq. (11.112) and (11.123) (in its dimensional form) can also be
expressed as:

ﬁ(r)zfoo dt/H(r,tlro)V(ro)dro, (11.135)
0 r

where v(r,?) = V(r,t) — V. Here, I1(r, t|rp) is the propagator (or Green function)
of the convection-diffusion equation,

W—FV-VH—DV IT = §(r —rp)s(1); (11.136)
it represents the probability that a tracer particle initially located at position ry is
found at position r at time 7. At the end, proceeding as in the Taylor dispersion case,
we find the following expression for the effective diffusivity [10, 14, 17]:

o0
D* = DI—i—/ C@t)dt, (11.137)
0

where
C@) =(v(t) V(O)) (11.138)

is the average covariance of the fluid velocity at the points occupied by a Brownian
tracer at times ¢ = 0 and 7, assuming that its initial positions are all equally probable.

Note that, since the process is locally ergodic, proceeding as in Sect. 2.3 we can
show that (v(#) v(0)) = (v(0) v(¢)), so that the effective diffusivity is a symmetric
dyadic. In particular, when the inclusions within the porous material can be modeled
as a dilute suspension of spheres, the effective diffusivity describing the flow of a
solute is D = 3 Va, where V is the mean solvent velocity and a is the radius of the
inclusions [10].
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I1. Homogeneous Random Velocity Fields

The result (11.137) can be interpreted also using a Lagrangian approach. First, as-
suming that the random velocity field is homogeneous, consider the Langevin equa-
tion, stating that the instantaneous velocity of a Brownian tracer is the sum of two
uncorrelated processes, namely a zero-mean convection drift, v(r, 1) = V(r, 1) — V,
and a Wiener diffusion process, w(z),

9y (11.139)
— =V+W, .
dt
where z(t) = Z(t) — Vt is the position of the tracer particle, referred to a frame
moving with constant velocity V, while,

(wn))=0;  (w(")Ww(t"))=2DI5(:" —1"). (11.140)

Assuming a uniform initial particle distribution, and proceeding as in the Taylor
dispersion case [cf. Eqs. (11.82)—(11.83)], we obtain:

dz dz /dz M\ [ [
<E(t)>:0’ <E(I)E(t )>—2D18(t ")+ C(' —1"),  (11.141)

with C(t' —t”) = (v(r') v(r")) denoting the velocity autocorrelation (11.138), where
r’ and r” are the locations of a Brownian particle at time ¢’ and ¢, respectively. At
the end, we see that Eq. (11.137) is equivalent to:

D* _1 lim i(z(z)z(r)), (11.142)
2 t—o0 dt

confirming that the effective diffusivity tensor is symmetric. This shows that D* is
the coefficient of self-diffusivity, as it equals (one half of) the growth rate of the
mean square displacement of a tracer particle immersed in a uniform concentration
field. Therefore, as for the Taylor dispersion case, since D* describes both self-
diffusion and gradient diffusion (as it also describes the ratio between mass flux and
concentration gradient), we may conclude that the fluctuation-dissipation theorem
is satisfied, as one would expect, since in this case the constitutive equation for the
mass flux is linear (i.e. D* is independent of the composition).

II1. Non-homogeneous Random Velocity Fields

Here we intend to show that the same convection-diffusion equation (11.131)—
(11.132) could be obtained, assuming that the trajectory Z(z) of any tracer parti-
cle is a random variable satisfying the following generalized non-linear Langevin
equation,

dZ —
Z(r,t):V(r, 1)+ v(r,t), (11.143)
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Here V(r, t) is a smoothly varying mean tracer velocity, while v(r, 7) is its random
component, including both the random velocity field and the Wiener process, as
examined above (in other words, now v can be identified with dz/dt, as defined in
(11.139)). Unlike the homogeneous case, however, now v depends explicitly on its
position r and so it is described through the following white stochastic process:

{v(r,n), =0, (11.144)
(v v(ra, t + AD)y =2D7 (ry, 12, HS(AD), (11.145)

with the angular brackets indicating ensemble averaging and D(ry, 2, ¢) denoting,
by definition, the time integral of the Lagrangian velocity cross correlation dyadic.
In fact, integrating Eq. (11.143) for a short time interval Az, we obtain:

_ t+At
Ar = V(r, 1) At +/ v[r(), n]dn +o(A1), (11.146)
t

where Ar =r(¢ + At) — r(r) and we have considered that V changes in time much
slower than v. Now expand!®

v[r(t), n]=v[r@),n]+ Ar; - %v[r(r), 1]+ o(An), (11.147)
where
t
Ar; =r(t)) —r(?) =/ 1 v[r(), 2] dn. (11.148)
t

Consequently, we can define the mean Lagrangian particle velocity, V, and the
particle self diffusivity D as,

Ar , 1 Ar)?
Vo= im T PEo=g i SIS ai)
obtaining:
Vi(r,t)=V(r, 1)+ [Bir] -D(ry,r, t)ll_r (11.150)
and
D’(r,t) =D(r,1,1). (11.151)

These quantities constitute the convective and diffusive part of the particle flux ap-
pearing in the Fokker-Planck equation (4.22), with

J=V,c-V. (D), (11.152)

10This expansion is equivalent to Stratonovich stochastic integration as seen in Sect. 5.3. See [12].
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which is equivalent to Eq. (11.132) when D® = D*, as the Lagrangian mean particle
velocity is related to its Eulerian counterpart, Vg through the relation:

V.=V +V-D' (11.153)

Therefore, we may conclude that the convection-diffusion equation (11.131)—
(11.132) is equivalent to the non-linear stochastic process (11.143)—(11.145). In
particular, that means that (a) the smoothly varying mean tracer velocity V appear-
ing in the random process is the microscale mean tracer velocity (which in turn is
the sum of the mean fluid velocity and the ballistic tracer velocity); (b) the effective
diffusivity D® appearing in the Fokker-Planck equation is a self-diffusion dyadic, as
it equals the time derivative of the Lagrangian velocity autocorrelation function. An
identical conclusion was reached for the constitutive relations of the volumetric flux
of a suspension of rigid particles immersed in a viscous fluid [15].

11.4 Problems

Problem 11.1 Determine the mean velocity and the Taylor dispersivity of small
spherical solute particles of radius a immersed in a Poiseuille flow in a microchannel
of width 2Y.

Problem 11.2 Study the Taylor dispersion in a Couette flow, using (a) Eulerian
approach; (b) Lagrangian approach.

Problem 11.3 Determine the permeability of a porous material using the method
of homogenization.
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Appendix A
Review of Probability Distribution

In this appendix we review some fundamental concepts of probability theory. After
deriving in Sect. A.1 the binomial probability distribution, in Sect. A.2 we show that
for systems described by a large number of random variables this distribution tends
to a Gaussian function. Finally, in Sect. A.3 we define moments and cumulants of a
generic probability distribution, showing how the central limit theorem can be easily
derived.

A.1 Binomial Distribution

Consider an ideal gas at equilibrium, composed of N particles, contained in a box
of volume V. Isolating within V' a subsystem of volume v, as the gas is macroscop-
ically homogeneous, the probability to find a particle within v equals p =v/V,
while the probability to find it in a volume V — v is ¢ = 1 — p. Accordingly, the
probability to find any one given configuration (i.e. assuming that particles could all
be distinguished from each other), with n molecules in v and the remaining (N — n)
within (V — v), would be equal to p" ¢ ~", i.e. the product of the respective prob-
abilities.! However, as the particles are identical to each other, we have to multiply
this probability by the Tartaglia pre-factor, that us the number of possibilities of

"Here, we assume that finding a particle within v is not correlated with finding another, which
is true in ideal gases, that are composed of point-like molecules. In real fluids, however, since
molecules do occupy an effective volume, we should consider an excluded volume effect.
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choosing n particles within a total of N identical particles, obtaining:?

N N! noy —p\N "
HN(n):(n)pnqN_nzn!(N—n)!(%> ( Vv) ' (A1)

This is the binomial distribution, expressing the probability to find n particles in the
volume v and the remaining (N — n) within (V — v).
Normalization of the Binomial Distribution Recall the binomial theorem:

N

N __ N! n_N-—n
P+ —ginw_n)!pq : (A2)

This shows that, as p + g = 1, the binomial distribution is normalized,

N
> Oy =1. (A3)
n=0
Calculation of the Mean Value From
N N N
n = — e on N-n
n—ZnHN(n)—Zn!(N_n)!p q n, (A4)
n=0 n=0
considering that
ad
"=p—(p"), A5
' =py (r") (A5)
we obtain:
N
— d N! n_ N—n
=p— T E— . A.6
"= Zn!(N—n)!pq (A.6)
n=0
Then considering (A.2), we obtain:
_ a _
n=p%(p+q)N=pN<p+q>N ! (A7)

2The number of ways with which N distinguishable objects can fill N slots is equal to N!. In
fact, if we imagine to fill the slots one by one, the first particle will have N free slots to choose
from, the second particle will have (N — 1), the third (N — 2), etc., until the last particle will find
only one free slot. Now, suppose that of the N objects, n are, say, white and indistinguishable
(this is equivalent, in our case, to having them located within v), while the remaining (N — n) are
black, i.e. they are located within (V — v). That means that we must divide N! by the number of
permutations among the n white particles and by the number of permutations among the (N — n)
black particles, to account for the fact that if any white (or black) particles exchange their places
we find a configuration that is indistinguishable from the previous one. So, at the end, we find
the factor N|/n!(N — n)!, which correspond to the Tartaglia prefactors, appearing in the Tartaglia
triangle.
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and finally, as p + g = 1, we conclude:
n=Np. (A.8)
Calculation of the Variance Considering that,
(Am?=(n—m?=n> -7, (A9)

we see that we need to compute n_z, defined as

_ N N NI
2 _ 2 _ N n N—n 2
ns = E n“Ilyn) = E n!(N—n)!p q n-. (A.10)
n=0 n=0
Considering that
3 3\°
2. n n n
— = p— , A.ll
np n<pap)(p ) <p8p> p (A.11)
we obtain:
— N N 9 \2
7_ L pngNn | = p— N A.12
n <pap) [}:OM(N_n)!p q } <pap) P+a)7, (A.12)

where we have considered (A.2) and (A.7). Then, we obtain:

— 0
n?= pg[pN(p +)" N =pN[(p+ VT + p(N = D(p+ V], (A13)

and finally, as p + g = 1, we conclude:
n2=Np(l+ Np—p) =(Np)*+ Npq. (A.14)

so that:
(An)?2 = Npgq. (A.15)

As expected, defining the mean root square dispersion, we find as expected:

sno 1 —
" —\/Z where 81 =/ (An)2. (A.16)
p

7 JN

In particular, when p = g = 1/2, we have: n/n=1/./n.
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A.2 Poisson and Gaussian Distribution

Let us consider the case when v < V,ie.n < N. Then N! = (N — n)!N" and the
binomial distribution becomes:

i 7\V
HN(n)=;<1—N> , (A.17)

where 7 = Np. Now, letting N — oo and considering that

X
lim (1 - f) —e, (A.18)
X—00 X
we obtain the so-called Poisson distribution,’
ﬁne—ﬁ
n!

(n) = (A.19)

It is easy to see that, predictably, the Poisson distribution gives the same results
as the binomial distribution in terms of normalization condition, mean value and
dispersion, i.e.

Zﬂ(n) =1; Znﬂ(n) =, Z(n —m)*(n) =7. (A.20)
n=0 n=0 n=0

When fluctuations are small and n >> 1, the Poisson distribution can be simplified
applying Stirling’s formula, n! = +/2wnn"e™", valid when n > 1, obtaining:

I(n)= ! @) B, (A.21)
2mn \n

where An =n — n. Now, considering that

O R R C R

we see that at leading order it reduces to the following Gaussian distribution:

(n —n)*
exp [_T} (A.23)

I1(n) =

1
V2mn

Often, instead of a discrete probability distribution 7 (n), it is convenient to de-
fine a continuous distribution, I7(x), defined so that I7(x) dx is the probability that

3Consider that in this case we keep Np =7 fixed as we let N — oo, so that g = 1.
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x assumes values between x and x 4 dx. In our case, this can be done considering
the limit of x =n/N as N — oo,

d
Tx)dx = lim Tm<E, (A.24)
N—o00 N

where dn =1 and dx = limy_, o (1/N). Predictably, I1(x) is again a Gaussian
distribution,

I(x) =

)
exp[—%} (A.25)

1
V2o

where o = dx.

A.3 Moments and Cumulants

The rth central moment, or moment about the mean, of a random variable X with
probability density I7(x) is defined as the mean value of (x — u)", i.e.,

= — )= /(x —w)'I(x)dx, r=0,1,..., (A.26)

where 1 = [xIT(x)dx is the mean value, provided that the integrals converge.*
Note that 19 = 1 because of the normalization condition, while ©(! =0 by def-
inition. An easy way to combine all of the moments into a single expression is to
consider the following Fourier transform of the probability density,

k) = / M T (x) dx = (), (A.27)

which is generally referred to as the characteristic (or moment generating) function.
Now, since T coincides with the mean value of ex—/) , expanding it in a Taylor
series about the origin, we easily find:

7 ; 1 . - 1 r) 21\
k) =1+ (6 = )k + 5 = 0> + - = go SUOGRY. (A28

Therefore, we see that the r-th moment is the r-th derivative of the characteristic
function with respect to (ik) at k =0.

Sometimes it is more convenient to consider the logarithm of the probability
density. In that case, proceeding as before, we can define the cumulant generating
function,

1
®(k)y=InIT(k) =Y  —«k (k) (A.29)
= r!

“In general, the rth moment of a random variable is defined as the mean values of x” .
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where k") are called cumulants, with obviously k© = k™ = 0. The first three
cumulants are equal to the respective central moments, that is k") = V) is the
mean value,® k@ = u(z) is the variance, and x® = ,u(3) is the skewness, measuring
the lopsidedness of the distribution. Instead, higher order moments and cumulants
are different from each other. For example, x® = u® — 3(u?)?, where the forth
central moment is a measure of whether the distribution is tall and skinny or short
and squat, compared to the normal distribution of the same variance.’

When the random variable x is the sum of many mutually independent random
variables x;, we know that the global probability is the product of the probabilities
of the individual variables, and therefore the cumulant generating function (A.29) is
the sum of the individual functions, i.e. @ (k) = Y, ®; (k). Therefore, from (A.29)
we see that,

k0 =3k (A.30)
i

This is the additive property of cumulants, stating that the cumulants of a sum of
random variables equals the sum of the individual cumulants.

For a binomial distribution, when the independent variable is rescaled as x =
n/N, we found: k@ = o% = p(1 — p)/N and k) = O(N~"t1), so that, when
N > 1, the expansion (A.29) becomes at leading order:

1 N
Pk =50k, e, Aty =e 2%, (A31)

Antitransforming, as in Eq. (4.78)—(4.79), we find the Gaussian distribution (A.25).
Clearly, this shows that the Gaussian distribution has the property that all cumulants
of higher order than 2 vanish identically.

This is basically the central limit theorem, stating that the mean of a sufficiently
large number of independent random variables (each with finite mean and variance)
will be approximately normally distributed.

S5This equality is true even when we consider moments referred to the origin, instead of moments
referred to the mean.

SThis characteristic is measured through a non-dimensional parameter, called kurtosis, or “peaked-
ness” in Greek, which is defined as the ratio between the fourth cumulant and the square of the
second cumulant.



Appendix B
Review of Statistical Thermodynamics

In this appendix a brief review of statistical thermodynamics is presented. First,
starting from some intuitive postulates at the microscale, in Sect. B.1 we derive
Boltzmann’s fundamental definition of entropy, showing from that how to define
some basic macroscopic quantities, such as temperature and pressure. Then, in
Sect. B.2, we see the connection between thermodynamics and statistical mechanics
on a deeper level, showing the equivalence between free energy and partition func-
tion. Finally, in Sect. B.3, we derive an expression for the free energy of a fluid that
is used in Chap. 9 within the context of the diffuse interface model.

B.1 Introduction

The basic postulate of statistical mechanics is that at equilibrium an isolated system
is equally likely to be found in any of its accessible states. Accordingly, the proba-
bility I7¢7(C) that at equilibrium an isolated system is found in a given configuration
C equals the ratio between the number of accessible states associated with C, §2(C),
and the total number of accessible states, £2;.;, i.€.,

)
C T Qu

(B.1)

As an example, consider a system composed of four spheres, indicated as a, b, ¢
and d, which are to be placed in two containers, indicated as A and B. Then, the
accessible states associated with having two spheres in A and two in B correspond
to having in A the spheres ab, ac, ad, bc, bd or cd, so that £2 = 6, while §2;,; =
2% = 16, yielding IT :q (2) = 3/8. Generalizing this result to N spheres, we find:

N w (N N1
Q(C)=<N/2)’ Quor =2 ”Nq(3>:(N/2)2_N’ (B2
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(N) N!
= (B.3)
n n!(N —n)!

is the Tartaglia prefactor (see Appendix A).

Now, consider an ideal gas at equilibrium, composed of N molecules and con-
tained in a box of volume V. Isolating within V a subsystem of volume v, since
at equilibrium the gas is homogeneous, the probability to find a particle within the
volume v equals p = v/V, while the probability to find it in a volume V — v is
g =1 — p. If the particles cannot be distinguished from each other, the probability
to find n molecules in the volume v and the remaining (N — n) within (V — v) is
equal to the binomial distribution (see Appendix A)

. N\ . New N! v\ (V—=v\NT"
HNq(”):<n>p @ :n!uv—n)!(V)( v ) - By

In Appendix A we show that the binomial distribution is normalized, with the fol-
lowing values of the mean and dispersion values of n,

where

N

Zn;,q (n)=1, (B.5)
n=0

N
n=Y nlly(n)=Np; (B.6)
n=0
- N
(6n)? = (An)? = Z(An)"‘n;,’f (n) = Npq, (B.7)

n=0

where An=n —n.

When we plot 17;,(’ as a function of n/N for a given value of v/V, we see that,
as N increases, the binomial distribution p becomes sharper an sharper around its
mean, equilibrium value, n/N = p, as én/N = /pq/N, thus confirming what
we saw in Sect. 1.1. In addition, letting N — oo, with p = x = limy_, o n/N
denoting a continuous density function, we can define a continuous distribution
1°9(x) dx = limy_,o0 5 [Ty (n), seeing that the binomial curve tends to a Gaus-
sian distribution, centered around X = /N and having a dispersion, or variance,

equal to 02 = (Ax)2 = (8x)*> = pq/N, [see Eqgs. (A.24)—(A.25)]

. 1 (x =x)2
% (x) = NP exp|:—20—2:|. (B.8)

In general, we may conclude that for any thermodynamic quantity x, there is a
probability I7°7(x) that A will be equal to a certain value, x, defined as the ratio
between the number of times that we measure x = X and the total number of mea-
surements, as this latter goes to infinity. This probability is maximum when X coin-
cides with the equilibrium value, x = X, while it decays rapidly as we move away
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from it. In fact, I7°7(X) is a sharp function whose width tends to zero as N — oo,
i.e. for classical thermodynamics, where we assume that all the variables describing
the state of a system are constant.

Now, in isolated systems, the number of accessible states £2 (and the equilibrium
probability distribution as well) depends on its state variables, but it cannot depend
on a particular reference frame. Accordingly, £2 may depend only on the invariants
of the system, namely its energy, £, momentum, Q, and angular momentum, M.
To understand which type of relations we expect to exist among these quantities,
let us suppose that our system is composed of two separate subsystems, 1 and 2 [3,
Chaps. 4 and 9]. Then, the accessible states £2142(x] + X») associated with subsys-
tem 1 having a given configuration x| and subsystem 2 another given configuration
X2, equals the product of the accessible states §21(x1) and £22(x2) of the single sub-
systems, i.e. £2142(X1 + X2) = £21(X1) X £22(x2). On the other hand, £, Q and M
are extensive variables, so that E = E1 + E2, Q =Q; + Q2 and M = M + M. So,
we may conclude:

In2=a+BE+C;-Q+Cy-M, (B.9)

where «, 8, C and C; are characteristics of the system. Therefore, when our system
is isotropic, C; = C, = 0, so that the probability that the system is in a state k is:

Q2 = 2(Ey) = CePEr, (B.10)

where Ej is the energy of the state k and C a constant, showing that £2(E) is a very
rapidly increasing function of E, compatible with all the other constraints that the
system must satisfy.

Let us consider an isolated macroscopic system with constant volume, divided
into two parts through a fixed, thermally conducting partition, therefore assuming
that the two subsystems are free to exchange heat, but not work. Accordingly, al-
though the total energy, E;,; = E1 + E», will remain constant, the energy of subsys-
tem 1 and 2, E and E», will fluctuate around their equilibrium value, due to the heat
8Q =dEj, that is exchanged between the two subsystems. As we saw, the number
of accessible states £2; available to subsystem 1 is an exponentially increasing func-
tion of its energy E1, the same happening to subsystem 2. Accordingly, just as we
saw in the case of an ideal gas contained in two subsystems [cf. Eq. (B.§) at x =X
when N > 1], the total number of accessible states §2 = £2; £2, (and therefore its
logarithm as well) will exhibit an extremely sharp maximum when E| = E1, which
is the equilibrium value of the energy of subsystem 1, (obviously, the equilibrium
value of subsystem 2 is given by Ey=E;, — fl) [4, Chap. 3.3]. Therefore,

dlnSZ_dln.{21+dln.{22_ din$2y dln$2,

0, ie. = , (B.11)
dE;| dE| dE; dE;| dE>
where we have considered that d E1 = —d E3. So, defining

’B_dln.Q
~ dE

, (B.12)
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we obtain:

B1= P2, (B.13)

indicating that at thermal equilibrium the property S of the two subsystems are
equal to each other. In fact, as 8 has the units of an inverse energy and is obviously
connected with the thermodynamic temperature, it is convenient to define it so that
it agrees with all previous definition of temperature as

1
=—, B.14
B T (B.14)
where k is Boltzmann constant, k = 1.38 x 10~23 J/K.
Therefore, considering that from thermodynamics,
1 aS
—=|—= , (B.15)
T oE J
we may conclude that:
S=king$2. (B.16)

This is Boltzmann’s fundamental definition of entropy, which allows to connect
microscopic statistical mechanics with macroscopic thermodynamics. In fact, as we
indicate below, this result will lead directly to the thermodynamic second law, as
stated in Eq. (B.22). In addition, considering that, according to the postulate (B.1),
the number of accessible states is proportional to the probability at local equilibrium,
Eq. (B.16) can be rewritten as,

I7¢9 (x) =Cexp|:%S,0,(x):|, (B.17)

which is generally referred to as Einstein’s fluctuation formula [1].

Generalizing this analysis, subdividing the system in as many subsystems as pos-
sible, we see that at equilibrium the energy of a system tends to distribute equally
among all its degrees of freedom, with each degree of freedom having an average
energy equal to %kT. This is the so-called equipartition principle, and is equiva-
lent to the second law of thermodynamics [2]. In fact, with this assumption, the
definition of temperature of classical thermodynamics can be obtained as follows.
Consider one mole of a very dilute gas' contained in a volume V. From elementary
considerations of kinetic theory, we see that the N4 gas particles exert on the wall a
force per unit surface (i.e. a pressure P) equal to % %m (v?), where m is the mass of

each particle. Then, considering that from the equipartition principle m (v?) = 3kT
(as each particle has three degrees of freedom), we obtain the well known ideal

IRemind that in 1 mole of an ideal gas there are N4 molecules, where N4 = 6.022 x 10?3 mole™!
is the Avogadro number.
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gas law, PV = RT, where R = N4k is the gas constant. This coincides with the
definition of temperature in classical thermodynamics, i.e.

PV
T = lim —. (B.18)

Naturally, we could carry over the same analysis assuming that the two subsys-
tems are separated by a moving, thermally insulating, partition, so that they can
exchange mechanical work, but not heat. In that case, imposing that the equilibrium
volume V; will maximize the total number of accessible states §2, we can derive the
condition of mechanical equilibrium, as

dan_danl+dln522_ din2; dIn$2,

0, ie. = , (B.19)
A% dvi A% dV A%

where we have considered that dV; = —dV,. Therefore, we obtain the condition
that at equilibrium the two pressures are equal, defining

1din®
=5 av

(B.20)

Clearly, when our system is not at equilibrium, with the two subsystems having
different temperatures, 77 and 7> and pressures Py and P», then a heat Q and a work
W will be exchanged between the two subsystems (from higher to lower tempera-
ture and pressure) in order to equilibrate their temperature and their pressure, thus
maximizing the total entropy S + S>.

In general, considering that,

01ln 2 d0ln 2
dE +
oE 1%

dln§2 =

dv, (B.21)

and substituting (B.15), (B.16) and (B.20), we obtain the well known following
expression:

dE=TdS — PdV, (B.22)

where both the first and the second laws of thermodynamics are manifested.

B.2 Connection with Thermodynamics

Consider again an isolated system, with total energy E, composed of two subsys-
tems in thermal interaction with one another, assuming that one of them, say A, is
much smaller than the other, say R, which we will therefore call a heat reservoir,
having temperature 7. If A is in one definite state k, with energy Ej, the number
of states accessible to the whole system is just the number of states accessible to R,
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say 2r(Eo — Ey). However, considering that E; < Eg, we can write:2

31n Qg
IE

ln.QR(Eo—Ek)zanR(Eo)—< ) Ex+--~a—BE,, (B.23)
0

where o = In 2g(Ep) is a constant independent of k, while 8 = 1/kT. Accord-
ingly, since the probability of A being in a state k is proportional to the number of
accessible states under these conditions, we obtain:

1
M =% (Ey) = Ee*ﬂEk. (B.24)

Here Z is a normalization constant, which can be evaluated imposing that the sum
of all probabilities taken over all the accessible states, irrespective of their energy,
must be equal to 1,

Y ImE) =1, (B.25)
k
obtaining:
z=Y e P (B.26)
k

Z is called “partition function” and is a fundamental quantity in statistical mechan-
ics.?

Now we intend to show that all physical quantities can be expressed in terms of
the partition function, Z, defined in (B.26). So, for example, the mean energy of a
subsystem in thermal contact with a heat reservoir can be calculated as follows:*

_ Eke—ﬂEk
E :E: Enqu—Zk B27
(E) ij I = S (B.27)
Accordingly, we find:
— 10Z 0lnZ o(F/T
F__10Z_ 9z L,3F/T) (B.28)
Z 3B aB oT
where
F=—kTInZ=—kTln) ex _En (B.29)
B B n P kT .

2See [4, pp. 202-206].
3The letter Z is used because the German name is Zustandsumme.

“In general, the mean energy of a system is identified with its internal energy, provided that the
contribution of the overall kinetic and potential energies can be neglected.
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is the Helmbholtz free energy. This equality can be easily seen considering that, as
S=—0F/dT, Eq. (B.28) leads to the free energy definition,

F=E-TS (B.30)

and, conversely,

E
S=—+kInZ. (B.31)

This is another way to express the connection between mechanics (i.e. the energy
of the states of the system) and thermodynamics. In particular, substituting (B.29)
into (B.24), we obtain:

kTInIT;? = F — Ey. (B.32)

This last relation is important, as it allows us to express Boltzmann’s fundamental
definition of entropy, Eq. (B.16), in an equivalent form. In fact, considering that,

_1= _ ! —
S_?(E—F)_T;(Ek Fyrme, (B.33)

where we have applied (B.27), together with the normalization condition (B.25),
and substituting (B.32), we obtain:

S=—kY M T, (B.34)
k

where, we remind, /7,7 = IT°/(Ey) is the probability (B.24) that the system has
energy Ej. Therefore, considering that In /7°7 (E) is a linear function of E, this last
relation can also be written as,

S=—k(Inr1*(E)) = —kIn 1/ (E). (B.35)

Note that in this derivation the system is assumed to have 7 and V constant.
Therefore, the partition function and the free energy are defined as a function of
T and V,ie., F = F(T,V). Then, once we know F, all other thermodynamic
functions can be determined from it, such as P = (dF/dV)r, S = —@F/0T)y
and G=F + PV.

Proceeding in the same way, we find:

IE aE,, B _
P=—<W> BEn /Ze BEn (B.36)

that is:
1 dlnZ
B AV

(B.37)
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Therefore, considering that

dInZ dInZ
dnZ = dv dB, B.38
n av VT g B (B.38)

substituting (B.28) and (B.37), we find:
dinZ =BPdV — Edg, d(nZ+ BE)=BBW +dE)=p60, (B.39)

where E denotes the mean energy E. Here SW = — PdV is the work done by (and
therefore exiting) the system, and we have used the definition (i.e. the first law of
thermodynamics) 6 Q = dE + W of the heat Q entering the system. Finally, sub-
stituting (B.31) into (B.39), we obtain the second law of thermodynamics in the
form,

§Q=TdS, (B.40)

showing that although §Q is not an exact differential, an exact differential results
when it is divided by T'.

B.3 Free Energy of Fluids

Let us consider a fluid composed of N identical molecules® enclosed in a container
of volume V and having a temperature 7. The starting point is the expression (B.29)
for the free energy,

E
F = —lenZexp(—k—;>, (B.41)
n

where the sum is taken over all the possible states of the system. In general, as the
total energy E is the sum of the energies of each of the N molecules,i.e. E =), &
and considering that the molecules are indistinguishable from each other, we have:

ZCXP< kT) ]\1,, [ZeXp(—;—;ﬂN, (B.42)

where N! indicates the number of permutations of the N molecules, while k repre-
sents the states of the molecules. Therefore, we obtain the following expression for
the free energy:

F=kTInN!— NlenZexp( ;;) (B.43)

5See [3, Chap. 74].
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Since N > 1, applying Sterling’s approximation formula, InN!=NInN — N, we

write:
F=—NkTIn| =3 exp( - % (B.44)
= N P ) | '

In general, the energy of a molecule is the sum of a kinetic and a potential part,

p?
=P Ly (B.43)
2m

where p is the momentum and i the potential energy.
First, let us consider the case of an ideal gas, where ¥ = 0, i.e. the molecules do
not interact with each other. Converting the summation into an integral we apply the

following rule,
1 400 3 3
)zh_3f / (..)d°pd’r, (B.46)
VJ—oco

where the volume integral is taken over the volume occupied by the fluid (in this
case, it is the molar volume), while the momentum integral is taken over all the
possible momenta, i.e. from —oo to +00. Here /4 is a normalization constant, rep-
resenting the volume, in phase space, occupied by a single state® having the units
of an action, which, as we will see, has no importance for our purposes. In order to
determine it, though, we must apply quantum mechanics, finding that it coincides
with Planck’s constant. Then we find:

= —NkT1 pd? B.4
Nk n // ( . kT)dpdr, (B.47)

that is,

2nmkT

3/2
= > = —NkT InV + funct(T). (B.48)

v
Fiy = —Nlene—<
N

Clearly, from here we obtain the equation state of an ideal gas,

afi NkT
p——(Yia) _NET (B.49)
av Vv
For real gases, adding the contribution of the potential energy, ¥ = ¥ (ry, ..., ry)

and denoting by N4 the Avogadro number, we obtain:

F:F,-d—len{CNj{/ / eWkT,o(rl)d3r1...p(rN)d3rN}, (B.50)
\%4 \%4

SIn case of degeneracy, we simply multiply the result by a constant.
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where p is the molar density, so that N4 p(r)d 3r is the number of molecules in the
volume d>r, while C is an appropriate constant that avoids to count twice the same
molecule. Now, adding and subtracting 1, and assuming pairwise interactions, i.e.
the potential energy v depends only on the distance r between two molecules, we
obtain:

NZ
F=F,~d—kT1n{7A//[eWW‘T—1]p(r1)p(r2)dr1dr2+1}, (B.51)
vJV

where 7 = [ry, —r2|, while N3/2 >~ Na(Na — 1)/2 is the number of ways we can
choose a couple within a sample of N4 molecules. At this point, assuming that the
integral is much smaller than 1, since In(1 4 €) =~ €, we obtain:

kTN%
2

F=Fyq4+ //[1—e_'/f(r)/kT]p(rl)p(rz)drldrg. (B.52)
VJV

Finally, denoting x =r; and r =, — ry, and defining the local molar free energy f
as

F = / f(x)d’x, (B.53)
we obtain: )
fX) = fia(x) + %RTNA /V[l — e VO p(x + 1) dPr, (B.54)
where
fia(x) = RT In p(x) + funct(T). (B.55)

The expression (B.54) is the starting point to derive the diffuse interface model
of multiphase flows.
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Appendix C
Principle of Causality

The causality principle states that an effect may never precede in time its cause. In
this appendix, we see how this trivial statement leads us to derive a general relation
(i.e. the Kramers-Kronig relations) that must be satisfied by any susceptibility.

C.1 Correlation Functions

Denote by 67" (w) the Fourier transform of the correlation function o7}* (¢), defined
in (2.15), i.e.,

o
T () = / o (e dt, (C.1)
—0o0
where
*© AXX —iw dw
o ()= <x,- (t)xk(0)> = / a7 (w)e t2—. (C.2)
oo T

From the definition (C.1) and considering that o7} (¢) is real, we see that
G (w) =0 (0) =5 (—w). (C.3)

where the asterisk denotes complex conjugate. In addition, from the condition (2.16)
of microscopic reversibility, i.e. 07" (t) = o7} (—t), we obtain the following rela-
tion:

G5 () =61 (). (C.4)

Now, from Egs. (C.3)—(C.4) we see that '&;;{x (w) is areal and even (i.e. its imaginary
and odd parts are zero), symmetric tensor, i.e.,

6—‘[?;;‘ (w) = Al);{x*(w) = Aﬁ(x (—w) = ’U\Ifix (w). (C5)
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Accordingly,
o0
~ d
o (1) =2 / 555 () cos(wT) —. (C.6)
0 2

In particular,

xx —1 ooAxx dw
o (0) = {xjxp) = kgl.k =2 o (a))z—. (C.7)
0 JT

C.2 Kramers-Kronig Relations

As we saw in the previous chapter, near equilibrium generalized forces, X and gen-
eralized displacements x are linearly related. For time-dependent processes, this
relation can be generalized as the following convolution integral:

x(=>y_ / Oo/qk(t — )Xk (') adr', (C.8)
k=170

where ki (¢) is a time dependent generalized susceptibility. Since the effect may not
precede in time its cause, we have:

kix(t) =0 fort <0. (C.9)

Now, when we consider the Fourier transform of x and X, the convolution integral
(C.8) becomes the simple relation,

n
Ti(@) =) Rik(@) Xi(). (C.10)
k=1
At steady state, we know that [cf. Eq. (1.17)]
Kik(0) = —g;;. (C.11)

Let us see what effect the causality condition (C.9) has on the susceptibility matrix.
For this purpose, we extend the definition of Fourier transform (C.1) to complex
values w = 0" 4 iw® of the argument. Since «;x(r) vanishes for negative times,
the Fourier integral (C.1) can be rewritten between 0 and oo as:

o ; o0 o @
/cl-k(a))=/ Icik(t)e”"'dtzf Kip(D)e'@ T gy (C.12)
0 0

For positive values of @®, this integral exists and is finite, and it tends to zero as
o — oo. Therefore, the statement equivalent to the causality condition (C.9) is:
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The function & (w), with w = o) + iw, has no poles (i.e. no singular points)
in the upper half of the complex plane and tends to zero in the limit as »¥) — oco.

Now we apply Cauchy’s theorem, stating that, given a closed contour in the com-
plex plane, any function f(w) having no poles inside that contour satisfies the rela-
tion:

ff(w)dw=0, (C.13)

where the integral is taken along the contour (e.g. in counter clockwise direction).
We shall apply this theorem to the function,

flo) =222 (C.14)
-

where u is real. The contour we choose include the whole upper half of the complex
plane (in the lower half there might be poles). It extends along the whole real axis,
avoiding the point w = u (which is a pole of the function f (w)) with a semi-circle of
radius r in the upper half of the complex plane and is closed by a semi-infinite semi-
circle, also in the upper half of the complex plane. Inside this contour, the function
f (w) has no poles and therefore we can apply Cauchy’s theorem,

u—r = 00 = =
/ K”‘—(a))dw/ ik (@) dw+/ K@) =0, (C.15)
u+r r

oo W—U w—u w—u

where C, is the small semicircle with radius r around the pole w = u, passed in
clock-wise direction, and we have considered that the line integral along the infinite
semicircle vanishes, since Xjx(w) tends exponentially to zero as ) — oo. In the
limit as r — 0, the first two integrals together reduce to the so-called principal part
of the integral from —oo to co. The last integral can be easily evaluated considering
that @ = u + re'? (here 6 denotes the angle between the radius of the circle and the
positive side of the real axis) as follows,

-~ 0 .
/ K@) 4 — tim f Rk +re'®)i do = —inku (w). (C.16)
Cc, w—Uu r—0J;
Therefore we obtain:
1 [®%
Tn(u) = ,—P/ K@) . (C.17)
i1 J_ oo w—u

where the symbol P denotes the principal value integral. Equation (C.17) is referred
to as the Kramers-Kronig relation, which can be considered as a direct consequence
of the causality condition (C.9).

Applying again Cauchy’s theorem to the function,

flo)=—"", (C.18)
o —
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we obtain the similar relation:

ool (@)
—dw

: 1
MRk (u) = ;IP’/ (C.19)
l

o W—U

Fort =0, (C.19) reduces to (C.17). In particular, when u = 0, this relation becomes:

1 00 Liw|t|,
B0 = P f %dw. (C.20)
—0Q

Now, let us see what happens when a constant driving force F; is applied at times
t <0, while it is lifted at t = 0, i.e. when,

X;(t) = F;H(~1), (C.21)

where H (¢) is Heaviside’s step function, i.e.

1 whent>0
H@) = {O when t < 0} ’ (€22)
From the definition of the Fourier integral, we obtain:
- 1
Xi(w)= Fi[nﬁ(w)—i—IP’,—] (C.23)
iw
Now substitute these results into
1o dw
w0 =) [ R R, (C.24)
k=177 e
and obtain:
| « 1 © . K
xi(t) == Z[Ek(o) + ,—]P’/ e_”‘”K'k—(w) dw} Fy. (C.25)
2 P it J_oso w
Now, for negative times, applying (C.20), this relation becomes:
n
xi(0) =) T F (t<0). (C.26)

k=1

This is a trivial result, indicating that for ¢ < 0 the constant driving force induces
a constant response. On the other hand, for positive times, substituting (C.20) into
(C.24) we find:

o0
o0 w

X () = % P f cos@) 2 yur 1> 0). (C.27)
k=1
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Therefore, in this case, we can define a generalized time-dependent susceptibility,
Xik (t), such that

n
xi(1) =) xik(®)F, (C.28)
k=1
with
Xik(t) = {7(\1""(0)00 i, < O}. (C.29)
—P [7 cos(w)*E2dw ift >0

Formally, that means that for practical purposes we can write:

- 2
Xik = —Kik(@). (C.30)
Lw



Appendix D
Review of Analytical Mechanics

Analytical mechanics was developed in the 19th century as an elegant generaliza-
tion of Newton’s mechanics. In Sects. D.1, D.3 and D.4 of this appendix, we see
that in both Lagrangian and Hamiltonian approaches energy, instead of force, is the
fundamental quantity. This allows to see clearly the connection between invariance
with respect to a certain variable and the conservation of the associated momentum
(Sect. D.2). Finally, in Sect. D.5, we present a generalization to non conservative
systems.

D.1 Lagrangian Approach

Consider an isolated, conservative system composed of N point particles. The mo-
tion of any particle i can be described through Newton’s equation,

Fi :mi‘i, (Dl)

where r; is the position vector of point i, referred to a fixed reference frame,
¥; = d*r; /a’t2 is the acceleration, while F; = —dV/0r; is the force, which here
is expressed as the gradient of a position-dependent potential energy V(r). New-
ton’s equations consist of second-order ordinary differential equations, which can
be integrated by knowing two conditions. Therefore if, at any instant of time, for
each particle we know the position and the velocity, then we can determine their
trajectories in the future and in the past.

Now, multiply Eq. (D.1) by any, so called, virtual displacement ér; of the system,
describing a movement that is consistent with all the constraints.! Therefore, we

IA virtual displacement is an infinitesimal change of the system coordinates occurring while time
is held constant; it is called virtual rather than real since no actual displacement can take place
without the passage of time.
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obtain the so-called d’Alembert’s principle of virtual works:>

N N
ZFi o1 = —(SV:Zmii‘i .81, (D.2)

where the negative change of potential energy, —§V, equals the virtual work of all
active forces.

When the system is subjected to time independent constraints (e.g. the distance
between two particles is constant), we will have only n < 3N degrees of freedom,
corresponding to n independent generalized coordinates, g;, with j =1,2,...,n,
and we can write

ar;
r=ri(g.q2....qn);  Or= Z ﬁéqj (D.3)
j=1""

Therefore, substituting (D.3) into (D.2) we have:

n

—8V=—Z%8q, ZZm,r,- aq,, (D.4)

j=1 i=1 j=1

and considering that the virtual generalized displacements ¢ are arbitrary, we ob-
tain:

o 9V
§ :m,r, oL +-—=o. D.5)
qj qj

The first term on the LHS of the above equation can be rewritten as,

T T
Zmlr, aq., [dt< )——] (D.6)

g g,

where 7 is the kinetic energy of the system,
| N
— 52’"1"“'2' (D.7)

The proof of this statement can be broken down in three steps. First, substituting
(D.3), we have:

g

N .
a .
= iy - oot (D.8)
8q] i=1

2When applied to non-conservative systems with time-dependent constraints, d’ Alembert principle
is not as trivial as it is in this case.
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Then, considering that the operators of virtual variation, §, and that of time differ-

entiation, d/dt, are commutable, as they are independent from each other, we can
write:

) d d [ 9r; or;
ari=58ri—zdt< ) ,+Z 250 (D.9)

and therefore:

or; d [ or; or; ar;
_4 : i (D.10)
aq, g dq;  0q,

Finally, substituting this last relation into (D.8) and time differentiating, we obtain:

N .
or;. ) ¥

E m;¥; + E mir; - —, (D.11)
(3611> Cag; =T dg;

i=1

where we have considered that the operators d/dt and 9/9g; commute with each
other, as seen in (D.10). At the end, substituting the equality

LU o L (D.12)

into Eq. (D.11), we obtain Eq. (D.6).
The previous findings, Egs. (D.4) and (D.6), can be reinterpreted defining a new
function, L, called Lagrangian, as

£(q,9)=T(q, 9 -V, (D.13)
obtaining:
4 <£> _ oL =0. (D.14)
dt\dq;) 9q;

These are the equations of Lagrange. They constitute a system of n second-
order differential equations and are expressed in terms of the coordinates g; (j =
1,2, ...,n). Although Lagrange’s equation is equivalent to Newton’s equation of
motion, in many problems it is more useful, as it is easier to write down an ex-
pression for the energy of a system instead of recognizing all the various forces (see
Comment D.3 below).

Comment D.1 The Lagrangian is defined within the time derivative of an arbitrary
function of time and position, f(q, ¢). This can be easily seen, considering that

i(ﬂ>_ﬂ_i(i)_ﬂ_o (D.15)
dt\3g; dq;  dt\dgq; dq; '

where Eq. (D.10) has been applied.

3Trivially, with no constrains, when q = r, applying (D.14) we obtain again (D.1).
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Comment D.2 When we express the “old” coordinates in terms of the generalized
coordinates, applying Eq. (D.3) we see that the kinetic energy becomes:

1 " ad 81‘,‘ al'i
TQq.q = ajr(Qqjqr;  aj(Q =) mj — - —.
2 ,/'%::1 zz:; dq;  dqi

(D.16)

This shows that, while the potential energy is only a function of the generalized co-
ordinates, the kinetic energy (a) is a quadratic function of the generalized velocities;
(b) depends on the generalized coordinates as well.

Comment D.3 As an example, consider the 2D motion of a single point particle in
radial coordinates (r, ¢). We see that || = 72 + r2¢2. Therefore, denoting g =r
and g = ¢, we obtain the expression (D.16) for the kinetic energy, with aj; = m,
ajp = az; =0 and ax = mr?2. Now, if the particle has mass m and is immersed in a
Coulomb force field, with V(r) = —K /r, where K is a constant, the Lagrangian is:

L= %(i2+r2q32) + § (D.17)

Therefore, Lagrange’s equations (D.14) give:

d (0L oL d . ., K
5(5)—8—”—0 = E(mr)—mr — 3 (D.18)
and
d (0L oL 0 = d ( 2¢) 0 (D.19)
— | — —_ — = —\mr = VU. .
dt \ 3¢ 1) dt

This latter equation shows that mr2¢, denoting angular momentum, is a conserved
quantity.

Clearly, if we try to derive (D.18) and (D.19) from Newton’s equation of motion,
we would have a much more difficult time.

D.2 Conservation Laws

In general, integration of the Lagrange’s equations of motion require 2n constants.
Expressing them in terms of q and q at any time, we see that during the evolu-
tion of our system there are 2n quantities that are conserved. Among them, though,
energy and momentum conservation are particularly important as they derive from
symmetry considerations.

Conservation of Energy The conservation of energy derives from the homogene-
ity of time.
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Imposing that the Lagrangian does not change if time ¢ is shifted by a constant
amount a = §t, i.e.

oL oL
3L=—a=0 — =0, D.20
T - ot ( )
wee see that £ cannot depend explicitly on time. Accordingly, considering that
dl oL oL oL
== g+ =4, D.21
dr 9t +;<3qu]+36}qu) (b:2D

and substituting (D.20), together with Lagrange’s equations (D.14), we obtain:

dl d oL oL d oL
= _ ; i = —g;—). D.22
di ;( Tdiag; +q’aq,> ;dt<q’aq,> 0.22)
Therefore,
dH
— =0 D.23
- ( )
where?

H= Z(q j— — .c) (D.24)

revealing that H is conserved, i.e. it remains invariant during the evolution of the
system.

The function H is called Hamiltonian and coincides with the total energy of the
system. In fact, considering that the kinetic energy is a quadratic function of the
generalized velocities [cf. Eq. (D.16)], we obtain:?

Zq] Zq] =27, (D.25)

and therefore we see that

H=T+V, (D.26)
i.e. the Hamiltonian is the sum of the kinetic and potential energy.
Conservation of Momentum and Angular Momentum The conservation of

momentum and angular momentum derive from the homogeneity and isotropy of
space.

4With the symbol 7 here we indicate also the Hamiltonian of the system (see next section) which
coincides with this function, but it is expressed in terms of generalized coordinates and momenta
(instead of velocities).

5This can be seen as a result of Euler’s theorem.
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Imposing that, as a consequence of space homogeneity, the Lagrangian does not
change if the origin of our reference frame is shifted by a constant amount a = Jr,
we obtain:

Noar N oac
ga— = Za——. (D.27)

Considering that 0.L/0r; = —3)V/dr; = F; represents the force acting on the i-th
particle, the expression (D.27) indicates that the sum of all the forces acting on the
particles of an isolated system must vanish, i.e.,

> Fi=0. (D.28)

N

d oL oL

- = =0. D.29
Z dt or; T dr P 8rl ( )

In our case, though, d.L/0¥; = m;¥; is the momentum p; of the i-th particle. There-
fore, (D.29) can be rewritten as:

dP oL
0; E pi; Pi=——, (D.30)
8I‘i

indicating that the total momentum of the system is conserved. This relation also
reveals that momentum is an additive quantity, as the total momentum is the sum of
the momenta of each particle.

The same procedure can be applied imposing that, as a consequence of space
isotropy, the Lagrangian does not change if our reference frame is rotated by a con-
stant angle 8¢, so that each point i is shifted by an amount ér; =r; x §¢. At the
end, in place of (D.28), we obtain:

Zr,:o; Ii=r; xF;, (D.31)

indicating that the sum of all the torques acting on the particles of an isolated system
must vanish. Also, considering that d.L/d¢; = r; x m;¥; is the angular momentum
m,; of the i-th particle, in place of Eq. (D.30) we obtain:

N
aM oL
yr E m;; m 2%, ( )

indicating that the total angular momentum of the system is conserved.
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Conservation of a Generalized Momentum When the system is described in
terms of generalized coordinates g, we can define the generalized momentum p,

oL
J 34,
and the generalized force F;,
oL
Fj=_—. (D.34)
g,

Accordingly, Lagrange’s equations (D.14) can be rewritten as:
pj=F;. (D.35)

Therefore, when the Lagrangian does not depend explicitly on a coordinate gy,
i.e. F, = dL/dqr =0, then we see that dpy/dt = 0, that is the conjugated momen-
tum py is conserved. Conservation of energy, momentum and angular momentum
can be considered as particular cases of this statement. This property is generally
referred to as Noether’s theorem.

In general, from (D.16) we see that, although the generalized momentum p;
is a linear function of the generalized velocities ¢, it does not always reduce to
a simple product of a mass by a velocity. In fact, as generalized coordinates and
momenta can be transformed through canonical transformations [2], denoting g; as
coordinate and p; as momentum is only a question of nomenclature.

D.3 Hamiltonian Approach

When the Lagrangian £ is not an explicit function of time, we obtain:

dL = Z( “dq; + ; dq,> (D.36)

that is, applying (D.33)—(D.35),

dL=Y (pjdq;+ p;dg,). (D.37)
j

Now, consider the definition (D.24) of the total energy of a system,

H=> pjq— L. (D.38)

where we have applied the definition (D.33) of momentum. The function H is called
the Hamiltonian of a system and is expressed in terms of coordinates and momenta,
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i.e. H ="H(q;, p;). Differentiating (D.38) and substituting (D.37) we obtain:

dH = (=pjdg;+q;dp;). (D.39)
J

From this expression we derive Hamilton’s equations,

. oM

oH
qj =

= = (D.40)
dpi PI= "%

Hamilton’s equations are expressed in terms 2n variables, g; and p; (j =
1,2,...,n) and constitute a system of 2n first-order differential equations. From
a practical point of view, in most cases they are not as convenient to implement as
Lagrange’s equations which, as we saw, constitute a set of n second-order differ-
ential equations. However, due to their symmetry and elegance, they provide a very
important insight into the intrinsic laws of mechanics. For that reason, they are often
called canonical equations.

In the most general case where H = H(q;, p;,t) and L = L(q;,q;,t) depend
explicitly on time, we have,

dH oH oH oH
at _or i+t p D.41
a7 o7 +;(8qu11+8pj171>7 ( )

and applying the canonical equations (D.40) we obtain:

dn _ (D.42)
dt ot

In addition, in the expression (D.37) we would have the additional term, (0 L/dt)dt,
which would be subtracted from (D.39), so that at the end we obtain:

() (%) .
Jat a.p Jat @4

Here, we have stressed that the time derivative on the LHS must be performed with
g; and p; constant, while that on the RHS have ¢; and ¢; constant.
The procedure above can be generalized to any function F(g;, p;,t), i.e.,

dF _OF  S~(OF, | OF D4
TERTIAE 0g; 7 T ap; ) '

and applying the canonical equations (D.40) we obtain:

aF_OF oy (D.45)
dr ot e ’
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where

OH IF M IF
=Y (- ") D.46
7. 7] ;(fipj dqj  9q; ap,-) (D40

This is called Poisson’s parenthesis between H and F. Therefore, we wee that a dy-
namical variable ' = F(q;, p;) that does not depend explicitly on time is an inte-
gral of motion, i.e. d F/dt =0, only when {H, F} =0, i.e. its Poisson’s parenthesis
with the Hamiltonian is zero. In addition, from the definition (D.46) we obtain:

{gi,qr} = 0; {pi, Pk} =0; {4i, px} = di, (D.47)

whose quantum mechanical interpretation leads to the Heisenberg uncertainty prin-
ciple.

A particularly important application of this theory is the theorem of Liouville,
where we consider systems composed of a very large number of degrees of free-
dom, N. In this case, as solving the system of 2N differential canonical equations
is impossible,’ we study the evolution of the probability density ITy (g j»Pj,t)in
the phase space (g, p;). Since Iy is conserved, it must remain constant during the
evolution of the system, i.e.,

dIly
— =0, (D.48)
dt
so that, applying (D.45), we obtain Liouville’s equation,
oIl
= M ) =0, (D.49)

In particular, at steady state, when 011y /9t = 0, we reach an equilibrium condition,
with [Ty = H;q, so that:
{#, 1} =0, (D.50)

that is H]f,q must be an integral of motion. In particular, Eq. (D.50) is satisfied when
H]e;,q is an arbitrary function of the total energy E = H, although this is by no means
the only solution.

D.4 Principle of Minimum Action

In the cases that are of interest here, i.e. systems subjected to conservative forces
and with ideal (i.e. non dissipative) constraints, Lagrange’s equation can be derived
from a very general and beautiful principle. The idea is to study the evolution of a

5The main reason of this impossibility is that we do not know the initial conditions for all the N
degrees of freedom.

This statement is proven formally in Appendix E; see Eqs. (E.1)—(E.5).
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system, composed of particles having positions r;(¢), from an initial configuration
r; (¢1) attime 71 to a final configuration r; (#2) at time #, by perturbing the trajectories
r; (t) by virtual (i.e. compatible with all constraints) displacements §r; (), where, by
definition,

dri(n) = éri(r2) =0. (D.51)
First, take the time integral of Eq. (D.2):

N

5]
/ SV+ Y myk - 6r; | dt =0. (D.52)
g i=1

Integrating by parts the second term on the LHS we obtain:

/ Zml o1 dt = Z[m,rl Ak / Zmlr, SE;. (D.53)
1 141

i=1 i=1 i=1

Therefore applying (D.51), observing that the last term above is the variation of the
kinetic energy (D.7), 87, and considering that the operator of virtual variation, 8,
and that of time integration, [ dr (just like time differentiation, d/dt) are indepen-
dent from each other and therefore are commutable, we obtain:

8S =0, (D.54)

where S, called action, is the time integral of the Lagrangian, £ =T — V.,
5]
S:/ Ldt. (D.55)
131

Equation (D.54) is the principle of minimum action and reveals that a system evolves
in such a way to minimize the action.’

As mentioned in the previous section, when the system is subjected to time in-
dependent constraints we will have only n independent generalized coordinates, g,
with j =1,2,...,n,and we can write £L(q, q) = 7 (q, Q) — V(q). Accordingly, from
Eq. (D.54) we can obtain again Lagrange’s equation. In fact, we have:

L
8L = Z—sq,+2 Sq], (D.56)
j=1 j=1

8Being a scalar that depends on a function, i.e. the trajectory of the system, the action S is a
functional.

9C1early, Eq. (D.54) could also mean that the action is maximized. This is, however, impossible,
as one could always find a path with a larger action by slowing up the movement of the system for
most of the time (keeping the same trajectory) and then accelerating it at the end.
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and therefore, since 8G; = d(3q;)/dt, Eq. (D.54) becomes:

f Z[BE 4 ;) + oL aq,}dtzo. (D.57)
g

Integrating by parts the first term and considering that g; =0 att =¢ and t =1,

we finally obtain:
DSN[d (L) AL
/Z[—(—) ]Sq]dt 0. (D.58)
noio dt \ 9q; aq;

Now, since the virtual displacements dq; are arbitrary and since this equality must
hold for any #; and #,, we conclude that the integrand must be zero, yielding La-
grange’s equation (D.14), i.e.,

d (dL\ oL
—(—=)-—=0. (D.59)
dt\dq;) 9q;

According to the principle of minimum action, only one of the different trajecto-
ries connecting initial and final configurations refers to the real motion of the system,
and that corresponds to the trajectories that minimizes the S. Now, instead of keep-
ing the lower and upper limit of (D.55) fixed, let us compare the different values of
S corresponding to trajectories having the same initial configuration, but with vari-
able final configurations, i.e. when dr;(¢1) = 0 and 8r;(#2) = ér;. In this case, the
first term on the RHS of Eq. (D.53) does not vanish, yielding ) _, m;¥; - 8r;, so that
at the end, instead of (D.54), we obtain, in generalized coordinates:

88=> p;éq;. (D.60)
J
Therefore, expressing S is a function of the final configuration, g, we have:

o5

=pi. (D.61)
ag; 7

In the same way, the action can be seen as a function the time, i.e. we consider
the trajectories starting from the same initial configuration and ending at the same
final configuration, but at a different time, o = 7. From its definition (D.55), we see
that the total derivative of S is:

dS
dt

Therefore, considering that the action (D.55) is a function of both coordinates
and time of the upper limit, S = S(g;, 1), we find:

ds 93§ S . a8 .
==t 4= T ) pids (D.63)
J J

(D.62)

dt 0t aq;
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thus obtaining the equation of Hamilton-Jacobi,'®

S S
22 ) =0, D.64
ot H<q] 9q; t) ( )

where H =) j Pjq; — L is the Hamiltonian and the momenta have been expressed
as gradient of the action through (D.61). The equation of Hamilton-Jacobi, together
with Lagrange’s equations and the canonical equations, can be considered as one of
the governing equations of motion. Being a first-order partial differential equation,
however, solving the Hamilton-Jacobi equation is in general more complicated than
solving a system of ordinary differential equations, unless we can identify one or
more integral of motion [1].

D.5 Dissipative Terms

In general, forces can be conservative (i.e. potential) and non conservative. Near
local equilibrium, non conservative forces are linearly related to velocities (i.e. they
are viscous forces), leading to the phenomenological equations (2.21),

n n
qi :ZLIJQ], i.e., Ql‘ ZZLI_]]L]], (D65)
i=1 i=1

where Q; = k13s /0g; is a generalized force, while the coefficients L;; satisfy the
Onsager reciprocity relations, L;; = L j;. Accordingly, the entropy production rate
is determined as [see Egs. (2.34) and (2.35)],

n

n
e NS, )
kp'S=kg' Za_q,-q" =" 0idi. (D.66)
i=l1 i=1
obtaining:
n o n n n
—1¢ 1. -
kg'S=Y">"Lij0iQ; =) Y Li'qdj. (D.67)
i=1j=l1 i=1 j=1

Now, defining the drag coefficients, ¢;; = kTL;l, this last relation can be more
conveniently written defining the following dissipation function (an energy per unit
time), first defined by Rayleigh,

| PR NN
f:ETszii;X}gijqiqj. (D.68)
=1 j=

19t was discovered by Hamilton, but Jacobi pointed out its importance in determining solutions of
the canonical equations.
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Accordingly, the total forces (both conservative and non conservative) can be written
as:

0 d
Fi= 9L _ —]: (D.69)
dgi  9q;

so that the Lagrange equations (D.59) can be rewritten as:
d (dL oL oF
_(_> - == (D.70)
dt\ 9q; g, 9qi

Obviously, when T = %x -mx, V= %X -A-xand F = %x - ¢ - X, the equation of
motion becomes:

m-X+¢-%x+A-x=0. (D.71)
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Appendix E
Microscopic Balance Equations

In this appendix, the thermodynamic expression of the entropy production rate is
derived from the basic equation of statistical mechanics; in particular, in Sect. E.1
Boltzmann’s H theorem is derived, explaining the apparent paradox between micro-
scopic reversibility and macroscopic irreversibility. Then, in Sect. E.2, we see that
the balance equations that we have derived in Sect. 7 can also be obtained by coarse
graining the fundamental equations of classical mechanics, describing the motion
of all the particles that constitute our system.

E.1 H theorem

Let us consider a classical N-body system and define the ensemble probability func-
tion [Ty (X1, X2, ...,XN, ), Where X; = (r;, p;) are the six-dimensional vectors con-
sisting of the space coordinates r; and momentum p;. [Ty (X, )dX is the fraction of
the ensemble of replicates of the system to be found at time # in the volume element
dX about the point X = (X1, X2, ..., Xy) in the 6 N-dimensional space. Therefore,
ITy is normalized as:

/HN(X)dXz 1. (E.1)
X

The trajectories of the N particles can be determined through Hamilton’s equa-
tion of motion (D.40):

I, =VpHn; Pi=—VrHny, (E.2)

where Vi, = 9/0r; and Vp, = d/dp;, the dot indicates time derivative and Hy is
the Hamiltonian of the system.

Since particles are neither created nor destroyed, Iy is a density in the X-space,
so that it obeys the continuity equation,

Iy + Vx - (Xy) =0. (E.3)
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Now, considering that, applying (E.2),

N N 2 2
: . . 0“Hy 0 HN)
Vx-X= Vi, - ¥+ Vp, - Pi = ( — =0, (E4)
; il Ve ; orip;  Opir;
we obtain the Liouville equation (D.49),
Iy +X - VxIy =0, (E.5)
ie.,
N
olly . .
T—FZri-VnHNiji-VpiHN =0. (E.6)

i=1

The entropy of the system is given by Eq. (B.34),
SNz—k/ IyInIydX =—k{{Inlly)), (E. 7
X

where we have defined the overall average ((A)) = f Ally dX. Taking the time
derivative and considering the normalization (E.1) we obtain:

ds | dm drn d
_k—ld_th«n_ dl”>>=/ dtN dXZE/ MydX=0,  (ES8)
N X X

showing that, when the motion of all particles is monitored exactly, with unlimited
precision, any process is iso-entropic, or reversible. In fact, entropy increase is a
consequence of a loss of information, which may be caused by coarse-graining or
particle indistinguishability.

Now, as the time derivative of the position is the velocity and the time derivative
of the momentum is the force, assuming that the particles interact via a two-body
potential we obtain:

N
ti=pi/m=vi; pi=F+) fj, (B.9)
Jj=1

where F;(r;) is the external force exerted on particle i, which depends only on
the position of particle i, while f;; = Vy,;; is the interparticle force, with ¥;; =
Y (Ir; —r;|) denoting a potential, that depends only on the interparticle distance.
Here we have assumed that particles are indistinguishable, having, in particular, the
same mass m. For multicomponent systems, we can repeat this treatment for each
chemical species.

Now let us keep one particle (anyone of them, as they are identical) fixed, and
average the continuity equation (E.3) over positions and momenta of all the other
N — 1 particles, defining,

H](X],I):/ Iy (X1,X2,...,XN,0)dXo, ..., XN. (E.10)
X
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Applying the equations of motion (E.2) and considering that, since [Ty is normal-
ized it must vanish very rapidly at infinity, we obtain:

oIl DclIl
?+v~Vr1'[+F-VpH=—N/flzvpﬂzdrgdpzz7, (E.11)
where the index 1 has been dropped for convenience. This is basically the Boltz-
mann equation, where its RHS indicates a loss of coherence and it needs some as-
sumptions on I1, to be solved. In fact, as D¢ IT represents the difference between
the probability distribution before and after a particle-particle interaction, Boltz-
mann proposed his celebrated assumption of molecular chaos (Stosszahl Ansatz) to
estimate it. The role of this term is further clarified as we can easily show that

ds

—>0; S=—-k{InlT)), (E.12)

dt
showing that the loss of coherence is the cause of the entropy monotonic increase
predicted by the second law of thermodynamics. This is generally referred to as
the H theorem, since S, apart from the minus sign, is also referred to as the H-
function.!

Comment Equation (E.11) is the first of a series of coupled equations describing
the evolution of [Ty (X1, X2, ..., Xk, ), with k = 1,2, ..., N, which is generally re-
ferred to as the BBGKY hierarchy, after the work by Bogolyubov, Born, Green,
Kirkwood and Yvon. In general, these equations have the form:

DII;

W=F(17k+1); Hk=/17Nka+1.~.dXN,

that is, in order to calculate T, we need to know IT;. Therefore, we need a clo-
sure to truncate the series, and that is generally done by approximating, or ignoring,
the second- or higher-order correlation function.

E.2 Balance Equations

Let us define the momentum average of any quantity f(r, p) as:

[ f@,pM,p,)dp N
[O@,p,tydp  n(r1)

where n is the number density, i.e. the ratio between mass density and the mass of a
single particle,

(f)(r, 1) =

/f(r,p)H(r,p,t)dp, (E.13)

n(r,t) = %p(r, 1) = N/H(r, p.t)dp. (E.14)

I'Therefore, d H/dt < 0. See [3, Chap. 40].
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From the Boltzmann equation (E.11) we obtain:

/ 7 D, I1
Dt
where D;/Dt =9/0t + v - Vy + F - V), is a material derivative. Considering the

physical meaning of the RHS of this equation, we see that it is identically zero
when f is a conserved quantity. In that case we find:

Dell
dp= | r=5= dp, (E.15)
Dt

/f(r,p)(%+v~Vr+F-Vp)17(r,p,t)dp=0. (E.16)

Now, consider the equalities:

V-V Il =V - (vVfIT) =V -V, f; SE-VplI =V, - FfM)—IF-Vyf
(E.17)
where we have taken into account the fact that v is an independent variable, while F
does not depend on p. Substituting (E.17) into (E.16) and applying the divergence
theorem, considering that I7 decays exponentially fast as [p — oo|, we obtain:

9
E/fﬂdp—i—vro/VfHdp—/‘HVoVrfdp—/HF~fodp:O, (E.18)

where we have considered that f is not an explicit function of 7. Finally we can
rewrite the general balance equation for any conserved quantity f in the following
form,2

0

5(n<f)) + Ve (n(vf)) =n(v-Vef)+nF - (Vpf), (E.19)

where (nf) =n(f) because n is independent of p.

Assume that the system is composed of monatomic molecules. Then, the in-
dependent conserved quantities are mass, momentum and energy (we could also
include the electric charge, but this extension is trivial). Accordingly, we set succes-
sively, f = m (mass), f =muv;, withi = 1,2, 3 (momentum) and f = %m|v —ul?
(thermal energy), where u(r, ) = (v) is the mean velocity.

Mass Balance For f =m, since mn = p is the mass density [see Eq. (E.14)], we
find immediately:
0
a_f LV, (pu) =0, (E.20)

which coincides with (7.7).

2 A more complete treatment can be found, for example, in [1], and [2].
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Momentum Balance For f = p; = mv;, we obtain:

3
37 (Vi) + Ve (puiv) =pF], (E21)

where F' = F/m is the force per unit mass. Now, applying the obvious identity
(vivj) =uju; + (v;0;), where v; = v; — u;, with (;) = 0, and substituting (E.20),
we obtain:

3
p(a—‘; +u-Vu> —pF —V.P, (E.22)

where,
Pij =p<l~)il7j>, (E.23)

is the symmetric pressure tensor, that is the diffusive momentum flux tensor. This
equation coincides with (7.25).

Energy Balance For f = %m 32, we obtain:
a1l 1 . 1 -
5<§pv2> + V- <§pvv2) = Ep(v . Vrv2>. (E.24)
Now, define the temperature, T,
[
kT = gm(v ), (E.25)

and the diffusive heat flux vector, J@,

1
14 = 2 p(0%%). (E.26)
At the end, we obtain:
(q)
3 [(3(pT) aJ; ou;j
2k L Ve (pTw) )= -2 _pyp 2 E.27
> ( Py + Ve (p l.l)) or; mrij ar; ( )

where P is the pressure tensor. Finally, substituting the continuity equation (E.20)
and dividing by m we obtain:

oT @)
pc 5_|_u.VrT =—V,;-J9 —P:Vu, (E.28)

where ¢ = 3k/2m is the specific heat per unit mass of monatomic molecules. The
last term expresses the viscous heat dissipation; as P is symmetric, only the sym-
metric part of the velocity gradient contributes to this term.

Therefore, starting from first principles, conservation equations can be derived
exactly. In particular, note that the diffusive momentum and heat fluxes, P and J @,
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depend on the velocity fluctuations and arise from coarse graining of the fluctuating
part of the total fluxes. Identical considerations lead to defining Taylor dispersivity
(see Sect. 11.2.2) and turbulent fluxes (see Sect. 11.3.3).

Comment If particles do not interact with each other, the fluctuating part of the
particle velocities satisfies the Maxwellian distribution, so that the pressure tensor,
P, results to be isotropic (i.e. there is pressure but not shear stresses) and the diffu-
sive heat flux J@ is identically zero.? So, as expected, dissipation can be accounted
for only when particle collision is considered.
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Appendix F
Some Results of Transport Phenomena

In this appendix we review some fundamental results of transport phenomena that
we utilize in Chaps. 10 and 11. First, in Sect. F.1, we express the solution of the
Laplace equation in terms of vector harmonics, namely the fundamental harmonic
functions and all their gradients. Then, in Sect. F.2, these results are generalized to
determine the general solution of the Stokes equation, in particular the stokeslet,
rotlet and stresslet. These results are applied in Sect. F.3 to derive the reciprocal
theorems of transport phenomena and Faxen’s laws. Finally, in Sect. F.4, the sed-
imentation velocity of dilute suspensions is determined as an example of George
Batchelor’s renormalization procedure.

F.1 Laplace Equation and Spherical Harmonics

Consider the temperature field 7 (r) in a homogeneous medium, at steady state and
in the absence of convection, where r is the position vector. As we know, 7'(r) is a
harmonic function, i.e. it satisfies the Laplace equation,

V2T =0, (E.1)

with appropriate boundary conditions. Harmonic functions can be expressed as
linear combinations of the fundamental solutions of the Laplace equation, i.e. 1
and 1/|r|, together with all their gradients. These are tensorial harmonic functions
named vector harmonics, that can be written in invariant notation, i.e. in a form that
is independent of the coordinate system and involves only the position vector, r, and
its length, » = |r|. Vector harmonics can be growing or decaying, i.e. they approach
0 asr — 0 and as r — oo, respectively.
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F.1.1 Decaying Harmonics

Among the decaying harmonic functions, the first to be considered is 1/, which is
often referred to as a monopole and represents the Green function, or propagator,
of the Laplace equation, i.e. it is the solution of the equation: V2T = 8(r). The
monopole is the temperature field generated by an energy impulse, Q, placed at the
origin, that is a point source which radiates equally well in all directions. In fact,
since at steady state the energy that crosses per unit time any closed surface that
includes the origin is constant and equal to Q, for a sphere of radius a we have,

) =f n.Jud’rs: Ju=—kVT, (F2)

where rg is a position vector located on the sphere surface, n = rg/a is the outer
unit vector, k is the heat conductivity, while Jy is the heat flux, so we easily find
that a temperature distribution 7 = 1/r induces a heat flux Q = 4xk. Accordingly,
the monopole temperature distribution is often indicated as:
Moz g 2

TV (r;a) = —oa=a—n (E.3)
showing that the strength of the monopole, «, is directly related to the total heat
flux.

Due to the linearity of the Laplace equation, all the gradients of the singular fun-
damental solution, r~ !, will be (singular) solutions as well. So, for example, vrl,
which is often referred to as a dipole distribution, is the solution of the equation
V2VT = V§(r), and therefore represents the temperature field generated by two
monopole sources of infinitely large, equal, and opposite strengths, separated by an
infinitesimal distance d, located at the origin;! therefore, as one monopole gener-
ates the same energy that is absorbed by the other, the dipole has no net energy
release. In the same way, we can define a quadrupole, as two opposing dipoles, an
octupole, as two opposing quadrupole, and so on, so that, in general, we see that any
decaying temperature field is determined as a linear combination of decaying vector
harmonics, which are defined (after multiplication by convenient constants) by the
following n-th order tensorial functions,

1) 1
H- D) = (=1 vvv...v(-), (F.4)
I x3x5x---x2n—1)———\r
n times
forn=1,2,...;in particular,
1 r: rir: 8
- _ __. (=2 _ i, =3 _ Nty %,
" o H; oy oS 33’

In fact, the dipole strength is the product of the strength of the two opposite impulses by their
distance.
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g=H _ ik xi8jk + Xj8ik + Xk 0ij
ik T, 5r5 '
Concretely, we have:
o
T(r)=)_ C,()"H" ), (F5)
n=0

where C,, are n-th order constant tensors, representing the strength of the monopole,
dipole, quadrupole, etc., to be determined by satisfying the boundary conditions.
Formally, this temperature distribution solves the following Laplace equation:

o0
(="
vr=>y "C, ()" VVV...V§(r). E6
;) " A X x - x @n = ) Y. (RO)
= n times

To understand the meaning of all these singular terms, consider the temperature
field disturbance due to the presence of a particle. Clearly, each infinitesimal sur-
face element dS = d’rg located at position rg on the particle surface will act as a
point impulse of strength das = fsd S, where fs has to be determined, inducing a
temperature disturbance dag|r — rg| ™! at position r. At the end, superimposing the
effects of all surface elements, we obtain the following boundary integral equation:

T(r) =7§S fs(rs)r —rs|'d?rs, (E7)

where the impulse strength fs(rg) is determined by satisfying the boundary condi-
tions, e.g. imposing a given temperature or flux distribution on the surface.

When we are far from the particle, i.e. when |r| > |rg|, we can expand the Green
function, obtaining:

(=D"

n!

1
r—rg| '=rt—rg.vri 14 STSTs ! vvrlp 4 1~’§(~)”V"r_1 +---,

where r" =rr---r (n times), and similarly for V”* and (-)". Substituting this ex-
pression into (F.7) we obtain the multipole expansion (F.5).

F.1.2 General Solution

Growing harmonics, in contrast, grow with distance from the origin. They are com-
posed of the fundamental uniform solution, H ©) — 1, and of all its inverse gradients,
that are harmonic tensorial functions whose gradients are equal to 1. For example,

1 1 . lo—1 1 r2
Vi 1=§ri, Vi Vj IZE rirj—?S,-j
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Multiplying them by appropriate constants, the growing harmonics can be obtained
from the decaying harmonics as:

H(n)(l‘) — 2+l H[*(’Hrl)](r)’ (E8)

and, in particular,

2
’
HO =1; Hi(l)zr,-; Hl.(jz):r,-rj —?b‘ijg

2
3 r
HG) = rirjry — 5 (idjk & Xj0ik + i i)

In general, the solution of the Laplace equation can be written as a linear combi-
nation of all spherical harmonics,

o0

T =Y [Ci()'H”®]=) [(C,+r>'C))()HEDm)], (F9)
n=0

n=—oo

where C), and C]] are n-th order constant tensors, to be determined imposing that
the boundary conditions be satisfied. In particular,

1 r rr I

T(r)=(C} +rC8); +(Cy+r3C)) - 5+ (Cy+r°Ch): <r_5 - 3?) 4

We will find these sets of harmonic tensorial functions very useful in constructing
solutions that take advantage of the symmetry of the problem under consideration.
In fact, there are only a limited number of ways in which the boundary conditions
can be combined with the set of decaying or growing harmonics to generate tensors
that constitute the desired solutions in invariant form.

For example, suppose that we want to determine the temperature distribution
around a sphere induced by an imposed AT,i.e. T =Tpatr - oo and T =0 at
the surface r = a of the sphere. Then, the temperature field must be the product of
the scalar driving force, AT = Tp, and a linear combination of the scalar harmonic
functions, H® and HV. Therefore, T'(r) = To(X'/r + 1), where A’ and A" are
scalar constants to be determined through the boundary conditions, finding at the
end the obvious solution:?

T(r)=To(l —a/r) =Ty — T (r; a), (F.10)

where o = aTy. This shows that the temperature distribution around a sphere in-
duced by an imposed AT is determined uniquely by a monopole at the center of the

2In this case, we could simply say that the temperature field must be spherically symmetric, i.e.
only a function of r.
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sphere. Accordingly, applying Eq. (F.3), we can easily determine the total heat flux
leaving the sphere,

O =4rnkaAT, (E11)

where AT = —Tj is the temperature difference between the sphere and infinity.

A more complex case is when we impose a constant temperature gradient, G;,
at infinity, i.e. T (r) = G;r; at r — oo, while, as before, T = 0 at the surface of the
sphere r = a.> Then, the temperature field is the product of the driving force, i.e.

the vector G;, by a linear combination of the vectorial harmonic functions, Hl.(l) and
Hi(fz), obtaining:

T j— . /1 " — . a3
) =Giri (X5 +2" ) =Giri(1- 3 ). (F.12)

where the constants A" and 1" have been determined by imposing that the boundary
conditions are satisfied. So, as expected, we have obtained the temperature distribu-
tion due to a dipole located at the center of the sphere and, therefore, no net heat
flux is released, or absorbed.

In the most general case, if we impose a temperature distribution at infinity (and
yet satisfying the Laplace equation),

o0
T(r)=)_ Cy()"H"(r) asr— oo, (F.13)
n=0
while 7' = 0 at the surface r = a of a sphere, from (F.8) and (F.9) we obtain:
o0
T(r)=) C,()"(r** —aH+ (), (F.14)
n=0

thus generalizing the two temperature distributions (F.10) and (F.12).

F.2 Stokes Equation
A similar procedure can be applied to find solutions of the Stokes equations,
Vp=nViv; V.v=0, (E.15)

where p and v are the pressure and the velocity fields, satisfying appropriate bound-
ary conditions, while 7 is the fluid viscosity.

3Note that r = H!) and so the imposed temperature at infinity satisfies, as it must, the Laplace
equation.
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Taking the divergence of the Stokes equation and considering that the velocity
field is solenoidal, we see that the pressure field is harmonic, i.e. it satisfies the
Laplace equation,

V2p=0. (E.16)
In addition, it is easy to verify that the velocity field can be written as
1
v=—rp+u, (F.17)
2n
where u is a harmonic vectorial function,

Viu=0. (F.18)

Obviously, only three of the four harmonic functions deining p and v are inde-
pendent, as the condition that the velocity field must be divergence free must be
implemented, obtaining:

1
Vou=——-Gp+r-Vp)=0. (F.19)
n

So, the important idea here is that we are looking for solutions of the Laplace
equation in one case for a scalar field (pressure) and in the other for a vector field
(homogeneous solution for the velocity).

F.2.1 Stokeslet

The simplest application of these procedure arises when we calculate the propagator,
or Green function, of the Stokes equation, that is the velocity and pressure fields
induced in an unbounded and otherwise quiescent fluid by a point body force located
at the origin, f(r) = Fé(r), where F is a force. Then, both p and u are decaying
harmonic function proportional to F, i.e.,

p=F%, (E.20)
r

Fi |, 0ik o TiTk  Oik
= — A —+A —— . F.21
i 27 [ r + rd 3r3 (F21)

Now, since A” has the units of a square length, considering that there is no charac-
teristic dimension in this problem, it must be A” = 0. Consequently, imposing that
V;v; =0, we see that A’ = A, so that we obtain:

v = _k)\<l_k n r’?). (F22)
2n r r

and
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The value of A can be determined imposing that the total force applied to the
fluid located outside a sphere of radius ¢ must equal to F, i.e.,

jﬁ niTyjd*r = F;, (F.23)
r=a

where n; = —r;/a is the normal unit vector, perpendicular to the surface of the
sphere and directed inward, while T}; is the stress tensor,

ri r] rk
T;j = —pdij + n(Vivj + Vjv;) = —=31F (F.24)
Now, considering that
Py
miTij = 3AFLf a3
and using the identity,*
2 44
r,'}’kd r=—-ma 3[1(, (F.25)
r=a 3

we finally obtain: A = 1/4m. Therefore, the Stokeslet has the following pressure and
velocity fields:>

L rg
w%m=&%%vfmo—r? (F.26)
WWEPH=FVY®: VO ( '”rk), (F27)
with the associated stress tensor field as well,
) 3 rirjrg
T3 = 5 F. (F28)

The multiplier V© is called the Oseen tensor, and describes the disturbance to an
unperturbed flow due to a point force.

This result could also be obtained taking the Fourier transform of the Stokes
equations,

Vp —nViv=F5s); V.v=0, (F.29)

defining the Fourier transform f(k) of any function f(r),

ﬂm=fwvﬂ=/fmé“fn (F30)

It is evident that when i 5 k this integral must be zero. Then, multiplying both member by 8;; and
considering that 8;x6;x = 3, we easily verify the identity.

>Sometimes the strength of the Stokeslet is indicated as « = F /8.
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and its corresponding antitransform,

) =F{rm} —/ f (k) ke K (E31)
f=F o} = | Floe " . .
Now, considering that F{§(r)} =1 and F{V f(r)} = —i kf(k), we obtain:
~ kj
pk) =i pF,-, (F.32)
and
N 1 kik;
v; (k) = W(&‘j — 7>F] (F.33)

Finally, antitransforming Eqs. (F.32) and (F.33), we find again Egs. (F.26) and (F.27).

F.2.2 Uniform Flow Past a Sphere; Potential Doublet

In this case, the unperturbed velocity field is uniform, with v(r) = U as r — oo,
while a sphere is kept fixed at the origin, i.e. v(r) = 0 at r = a. Then, proceeding as
before, we obtain the same expressions (F.20)—(F.21),

Tk
p=anUir—, (F.34)
r

aUk rirk Bik ” rirj Sik
i=Ui+—| A +—)+A —— 11 E.35
Vi ' 2 |: ( r3 r ) r5 33 (£35)

where the divergence-free condition, V;v; = 0, is satisfied identically (with A = 1").
Note that now A” # 0, since we have a characteristic dimension a.

Imposing that v(r) = 0 at r = a we find: A = —1”/a®> = —3/2. So, at the end,
we find:

and

3 Tk
PZ—EGUUkr—y (F.36)
and
3 rirg . ik 2 Titk  Sik
Vv = Ul' - ZaUk[( r3 + T) —da rS — 37 . (F37)

At large r, the flow perceives only a point force Fj, so that the pressure and
the velocity fields must reduce to the Stokeslet (F.26)—(F.27). Therefore, Fy/4m =
%anUk, 1.€.,

F = 67nal. (E.38)
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This is the Stokes law, establishing the drag force exerted on a sphere by a uniform
fluid flow.

The last term in the expression (F.35) can be expressed in terms of the following
singular solution of the Stokes equation,

1
O mH =V @ H =RV m:  pPwmF) =0 (39
where,
) 1 rirk 1 1 (=3)
V. = — — =ik | =—H; . F.40
(1) 8y ( ) 3 lk) 871 () ( )

This term is the harmonic tensorial function (F.4) with n = 2, and therefore it is
referred to as a potential doublet, since it is identical to a doublet in potential flow.
Consequently, according to the d’ Alambert paradox, the drag force exerted by the
potential doublet (as well as by any potential flow) is equal zero.

Comparing the expression (F.27) and (F.40) with the solution (F.37) of the creep-
ing flow past a sphere we see that the Stokes flow past a sphere is the sum of a
Stokeslet and a potential doublet, i.e.,

V@) =U-F - [VO(r) - a?V@D ()], (F41)
where F = 67 naU, that is,
a2
v(ir)=U- [I —6mna (1 + EVZ)V(S)(r)}, (F.42)
while p(r) = —F - P®)(r). When r = 0, Eq. (F.42) becomes a particular case of

Faxen’s law (see Sect. F.3.2).

F.2.3 Shear Flow Past a Sphere

In this case, the unperturbed velocity field is a constant shear flow, U(r) = G* - r
as r — oo, with I:G* = 0 and Gf = Gj.l. is a symmetric tensor, while a sphere of
radius a is kept fixed at the origin, i.e. v(r) = 0 at r = a. Then, proceeding as before,
we obtain,

3w, (T 18
p=a UG,'J')\< 5 373) (F43)

and

(F.44)

u; :aSG‘;k)L’(rirjrk _ 5,’krj +3,’jrk +3jkr,->.

r’ 5rd
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Considering that G‘l?i = 0, we see that the last term in (F.43) and the last term in
(F.44) are identically zero. Then, substituting these results in (F.17) we obtain:

2 ad Filjri 2 a?
vi = Giire 1—5)\ —i—ij %5 )»+2)»— (F45)

Imposing that v(r) = 0 at r = a we find: L = —5 and A’ = 5/2, so that at the end we
obtain:

p=—35a"G}, L, (E46)
V
and
35 2
a 5 rirjry 5 a
u=cin(1-55) =St (1-5) we

F.2.4 Rotation Flow Past a Sphere

In this case, the unperturbed velocity field is a constant rigid body rotation, with
v(r) =G -r as r — oo, with G{, = —G‘]‘.i is an antisymmetric tensor, while a
sphere of radius a is kept fixed at the origin, i.e. v(r) = 0 at r = a. Then, since
p = 0 out of symmetry, the velocity must be a harmonic function and we easily
find:

a3
vi = Gk <1 - r—3>, p=0, (F.48)

where G -r=Q xr and = %e : Vv is the angular velocity of the unperturbed
flow. In this case, the torque experienced by the sphere can be easily determined,
obtaining:

I =8nna’Q. (F.49)

F.2.5 Stokes Multipole Expansion

As for the Laplace equation, the disturbance of the flow field due to the presence of
a submerged object can be generally expressed using a multipole expansion in terms
of the gradients of the Stokeslet, as in (F.5), obtaining,

oo
p(r) — ZF(H+1) (.)n—&-l VnP(S), (FSO)
n=0
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and,

o
V(r) — ZF(VH—I) (.)ﬂ+1 an(s)’ (F51)
n=0

where V" = VVV ...V (n times), while F™ is an n-th order constant tensor ex-
pressing the strength of the n-th multipole, to be determined by satisfying the bound-
ary conditions. Formally, in fact, this flow field distribution solves the following
Stokes equation, as in (F.0),

00
_ 2., (n+1) (\n . . LV —
Vp—nV V—ZF ()" VVV...Vé(r); V.v=0, (F.52)
n=0 n times

thus generalizing the Stokeslet definition (F.29). Thus, F(!) is the force exerted by
the object on the fluid, F® is the corresponding moment of dipole, F® the moment
of quadrupole, etc. In turn, due to the linearity of the Stokes equation, these multi-
pole strengths are proportional to the gradients of the unperturbed velocity U at the
origin, that is the velocity field in the absence of the particle, i.e.,

Fm — _ ZR(M)(.)" V" 'Ul,m0, (E.53)

n

where R is a grand resistance matrix.
In particular, for an isolated sphere of radius a fixed at the origin and immersed
in an arbitrary flow U(r), Faxen’s law (F.88) yields:

a2
F = 67wn|:1 + F}U“:"’ (E.54)
so that
11 12 13
RV =6mnasy: R =00 R =mna’8iudp.  (F55)
As for the dipole strength, F®, its contribution to (F.51) can be written as:

(2 (s) (91 (s) (s) (R) 1 (s) (s)
vi=Fj; VVS =Fj; 5 (Vi Vs+Vijis)+F/k 2(V VS —V;V,i’). (F56)
where F®) and F® are the symmetric and antisymmetric components of F®), re-
spectively, while the superscript S and R stand for stresslet and rotlet (see next
section). Now, consider that the gradient of the Stokeslet is:

1
(s)
VkV./'l'S (r) = 87l |:< jk — 3—)71 + Gijre — 8zkrj):|, (E57)

and

1 (i Firk
Vi PO (r) = e (7 - 3;—5> (F.58)
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Comparing (F.57) and (F.58) with (F.46)-(F.48) for r <« a, and considering that
I:G* = 0, we obtain 3/(87n)F) = —5/243G* and 2/ (87 n)F®) = —a3G*, so that
at the end we find:

20 1 1
F? = —"mna’ [— (VU+ VU*)} —4mna’ [—(VU — vu*)] (F.59)
3 2 l‘=0 2 l‘=0
and therefore,
16 4
Rl(flfg = 7'[7]613 <?5ik5j/é + §5ig3jk> . (F.60)

Obviously, if the suspended sphere is neutrally buoyant, then F() = F®) =0, so
that the only contribution that is left is the stresslet, yielding at the end:

10
ke = 70’ Gid e + Bied ). (F61)

F.2.6 Stresslet and Rotlet

As we saw in the previous section, the disturbance of the flow field due to the pres-
ence of a submerged object can be calculated using a multi-pole expansion, i.e.
expanding the propagator, or Stokeslet, in a Taylor series,

par-r9)=pY® - pP @+ VOr—r)=vO@) —vP )+,
where the first correction terms,
PPm =rs - VpOm; WP =rs Vo). (E62)

constitute the Stokes dipole, or doublet [3, 4]. The latter is obtained by superim-
posing two Stokeslets of infinitely large, equal, and opposite strengths, separated
by an infinitesimal distance d, such that the separation is normal to the force direc-
tion. Accordingly, considering the gradient of the Stokeslet, (F.57) and (F.58), and
denoting
F
o0=—] B=-rs, (F.63)
8

we see that the Stokes doublet can be written as:

o (r e, B) = Bi Vi (0)an. (F.64)
and

PP, p)=piPL O, (F.65)
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where
V) (py = (8, — 371K '+5ijrk_8jkri (E66)
ljk r ik 2 rj 3 , .
and
1 it
D k
PP (r) = 20— (a,-k - 3;—2> (F.67)

Since the Stokes flow is not irrotational, the velocity gradient tensor resulting
from the Stokes dipole has both a symmetric (strain) and an antisymmetric (rotation)
component, with [see (8.12)] Vv=1¢€: 2 + S, where = %e : Vv is the angular
velocity, while S is the shear rate tensor. Then, we see that the Stokes doublet can
be written as the sum of two terms, i.e. v(©?) = v(® £ v and p®P = p(B® 4 R

where,

Yy Xr
Wy =5 PPy =0 (F.68)

with y = B x «, is the rotlet,® while,

v (r;a, B) = %I: B — 3%} (F.69)
p O, f) = 4{ ﬁ—ﬂﬁ%giﬂ} (F70)

is the stresslet.

The rotlet can be regarded as the flow field generated by a singular point torque
at the origin, as it coincides with the velocity field generated by a sphere of radius
a rotating with angular velocity @ = y /a> and subjected to a torque I'g = 87 na’w.
Since the flow field is potential, it exerts zero force on the fluid, just like the potential
doublet.

These statements can be proved considering that, for any closed surface S con-
taining the rotlet, we have:

F0=—¢‘rox (n-T(R))d2r=—/ ro X (V~T(R))d3r
S \%4

where TR = — p(®T 4 218 is the rotlet stress tensor.” Now, define f &) as the
singular forcing function that generates the rotlet, i.e.,

VTR = vp® — yv2v® = ¢B — 477V x [ysm)].

6 Also called couplet by [1].

"The minus sign comes from the fact that the unit vector n here is directed inward.
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Consequently,
| =f ro x f® &’r =8xny. (F71)
v

This confirms that if a torque I'g is exerted on a sphere of radius a immersed
in an otherwise quiescent fluid, the sphere will rotate with angular velocity @ =
To/8mna’.

The stresslet represents straining motion of the fluid symmetric about the of8
plane, with the principle axes of strain lying in the &« 4+ 8, & — 8 and & x B directions.
In virtue of these symmetries, the stresslet exerts zero force and zero torque on the
fluid. Sometimes it is more convenient to rewrite the stresslet as:

v (e, B) = BV s V) = =3V 0, (F.72)
pPPaa By =P M P x)=—6nvi (), (F73)

where V@ is the potential doublet (F.40). Therefore, we obtain,

v (r; e, B) = zirp@ (r;a, B). (E.74)
n

Consequently, referring to the fundamental solution (F.17) of Stokes flow, we see
that the Stokes doublet can be written as

1
v = 2-rp<5> +v®, (E75)
n

where we have considered that v*®) is a harmonic function, so that p®) = pS),

The Stokes quadruple distribution, VVv®) is more complicated; however, one
component is particular useful, namely the potential doublet V>v(®), as we have
seen in Eq. (F.39).

F.3 Further Topics

F.3.1 Reciprocal Theorems

Consider the smooth velocity and stress fields, (v'; T') and (v"; T”), with
T=—pl+n(Vv+Vv'); V.-T=0 and V.v=0,

corresponding to any two flows of the same fluid in the volume V outside a closed
surface S. Clearly we have:

[ T:VV d°r = / T:VV d°r. (E.76)
\%4 \%4
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Now, consider the following general vector identity:
V(T = Tiju;) = VT = VT TV = TV 6
where the first two terms on the RHS are identically zero. Therefore, taking the
volume integral and integrating by parts, we obtain:

%n T -vV'd*r= ?g n-T v d°r. (F.78)
S s
This is the famous reciprocal theorem, obtained in 1892 by Lorentz, who general-
ized the analogous Maxwell-Betti theorem.

Identical results can be obtained in heat and mass transport. In fact, consider-

ing the temperature (or concentration) and heat (or mass) flux fields, (6’; J') and
©@":; )", with J = —kV# and V - J = 0, we obtain:

/ Y -vo'dr= / Y-V dr, (E79)
\% \%4
that is,
f n-Jo"d*r = ?§ n-J'0'd’r. (F.80)
S N

F.3.2 Faxen’s Law

As a first application of the reciprocal theorem, let us apply Eq. (F.80) to calculate
the net heat flux Q released by a perfectly conducting body (i.e. one with a very large
heat conductivity) immersed in an arbitrary undisturbed temperature field, 7°°(r).
In fact, let us denote: (0'; J) = (T°; J*°), while (8”; J”) denotes the temperature
field induced by a constant temperature difference Ty between the body surface and
infinity. Accordingly, Eq. (F.80) gives:

ToO = 7§ n-J'7T%dr. (E81)
S

In particular, when the body is a sphere of radius a and centered in the origin,
n-J’ =kTy/a, so that we obtain:
o k 00 2
Q=—- T()d"r. (F.82)
a Jr=a

Now, expanding 7°°(r) in a Taylor expansion in terms of the values of 7°° and all
its gradients at the origin, we can write:

T =T®0) +r- (VT™),+ %rr:(VVTOO)O +oe (F.83)
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Therefore, considering that V2T = 0, as well as all the other higher-order even
gradients, we obtain:

0 = —47akT™>(0). (F.84)

This shows that if we introduce a perfectly conducting sphere with known temper-
ature 7 in an undisturbed temperature distribution 7°°(r), then the net heat flux
released by the sphere can be calculated directly, without actually solving the heat
transfer problem, and it depends only on the undisturbed temperature at the center
of the sphere. This law is equivalent to saying that this net heat flux is determined
only by a monopole located at the center of the sphere, as one would expect, since
all the higher-order multi-poles release no net fluxes.

In the previous analysis we have assumed that the temperature vanishes at infinity
or, equivalently, that it is kept equal to zero at the surface of the sphere (remind
that the temperature is uniform, as the sphere is perfectly conducting). In general,
denoting by T the temperature of the sphere, Eq. (F.84) can be rewritten as:

00 1 o
T=T*0)+ —0. (E.85)

Here we see that, when Q =0, i.e. in the absence of any flux release, we find T =
T°°(0), revealing that the temperature of the sphere is equal to the unperturbed
temperature at the center.

A similar result can be obtained applying the reciprocal theorem (F.78) to calcu-
late the hydrodynamic force on a rigid body (i.e. one with a very large viscosity),
which is kept fixed in an arbitrary undisturbed flow field, v*°(r). Proceeding like
before, we obtain:

Vo -F= y{ n-T'v®dr, (F.86)
S

where T” is the stress tensor induced by the uniform translation of the body, with
velocity V. In particular, when the body is a sphere of radius a, centered in the
origin, Eq. (F.37) yields: n - T” = (3/2a)nVy, so that we obtain:

3
F=2" 7§ v(r) d°r. (F.87)
2a Ji=q
Now, expanding v*°(r) in a Taylor expansion as in (F.83), applying the identity

(F.25), and considering that V4y*> = 0, as well as all the other higher-order even
gradients, we finally obtain:

2
F=6nan<1 + %v2>v°°(0). (F.88)

This result is generally referred to as Faxen’s law, stating that the force exerted on
a rigid sphere by a known unperturbed flow field can be calculated directly, with-
out actually solving the flow field problem, and it depends only on the undisturbed
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temperature at the center of the sphere and its Laplacian. This law is equivalent to
saying that this net force is determined only by a monopole and a potential doublet
located at the center of the sphere, as one would expect, since all the other Stokes
multi-poles exert zero force.

In the previous analysis we have assumed that the flow field vanishes at infinity
or, equivalently, that the velocity of the sphere is zero. In general, denoting by V the
velocity of a sphere centered in the origin, Eq. (F.88) can be rewritten as:

2
1
V= (1 + “—v2)v°°(0) +—F (F.89)
6 6ran

Here we see that, when F = 0, i.e. for a neutrally buoyant sphere, we find V =
[1+ %VZ]VOO (0). Consequently, if a sphere is immersed in a linear flow field, its
velocity coincides with the unperturbed velocity at its center. However, this is not
true in general. For example, the velocity of a sphere immersed in a Poiseuille flow
is slower than the unperturbed fluid velocity at its center.

Using the same procedure, the angular velocity £ of a sphere centered in the
origin can be determined, obtaining,

Q IV 0) + ! r (F.90)
= — XV —F 1, .
2 8mwadn

where I is the torque exerted on the sphere, while V x v is the vorticity (i.e.
twice the angular velocity) of the fluid flow the origin, that is at the center of the
sphere. Here we see that, when I' = 0, i.e. for a neutrally buoyant sphere, we find
Q= %V x v*°(0), that is the sphere rotates with the same angular velocity as that
of the unperturbed fluid flow at the center of the sphere. When a torque is exerted
on the sphere, conversely, it will increment its angular velocity, with respect to its
unperturbed rotation, by an amount I'/ 8ma’y. Equation (F.90) is identical to (F.85),
since the vorticity, like the temperature, satisfies the Laplace equation.

F.4 Sedimentation Velocity in Dilute Suspensions

In a dilute suspension of identical rigid spheres, particles fall through the liquid due
to gravity. Under the assumption of negligible inertia and Brownian motion effects,
the average velocity of the particles in a well-mixed suspension can be expressed,
to leading order in the particle number density ng, as:

V=V, +no/ [V(xolxo +1) — Vo] d°r, (F.91)

r>2

where Vj is the Stokes terminal velocity of an isolated sphere and V(x¢|x¢ + r) is
the velocity of a test sphere located at X¢ in an unbounded fluid when another sphere
is located at x¢ +r.
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As is well known, the integral in the expression given above is divergent since
V — Vj decays as 1/r as r — oco. Therefore, since the average sedimentation ve-
locity is finite, a proper renormalization of the integral is required. Although such a
renormalization was given by Batchelor [2], here we present an alternate derivation
which, perhaps, might be of interest in a wider context.

The velocity of the test sphere in the presence of another sphere can be deter-
mined reminding that the disturbance v(xg|xg + r) of the fluid velocity at xy due to
the motion of sphere at (xo + r), can be determined by replacing the second sphere
with a Stokeslet and a potential doublet at (xo + r), i.e., [cf. Eq. (F.37)]

olxo+1) = Vo — + —— ) 4ri Yo (3 _ 3 (F.92)
V(XX = —_ - , X
0170 Nar 43 r2 \4r 4r3

where, without loss of generality, the radius of the particles has been set equal to
unity. At this point, applying Faxen’s law (see Sect. F.3.2), we obtain:

1
V =V + v(xglxo +1) + gvzv(X0|X0 +1) + W(Xg|Xg + 1), (F.93)

where w(xg|Xg + r) is the difference between the exact value and Faxen’s law ap-
proximation, which decays exponentially as » ~*. In fact, Faxen’s law applies only to
an unbounded fluid and therefore cannot account for the fact that the second sphere
has a non zero size.

Substituting (F.93) into (F.91) yields

V=Vo+Vi+Vy+V3, (F.94)
where
Vi=no / v(xo|xo + 1) d°r, (F.95)
r>2
1
Va=ng / EVZV(XMXQ +r)d°r, (E.96)
r>2
and
o
V3 =ny / w(xo|Xo + 1) d°r. (E97)
r=2

Since v is of order 1/r and V2v is of order 1/r3, the integrals V| and V, are
divergent, while V3 converges, since w decays as r .
Clearly, in a dilute suspension, V| equals the average velocity of a fluid point

when a sphere is located in the infinite domain r > 2, i.e. outside the exclusion
region. Hence, the average fluid velocity within the suspension, V(f), is given by

v

9
v =v, +n0/ v(Xg|Xo + 1) d°r =V + =¢ Vo, (F.98)
l<r<2 2

with ¢ = 4T”no being the volume fraction occupied by the spheres in the suspension.
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Thus, the divergent integral V; represents physically the average velocity of the
fluid outside the exclusion regions of the spheres in a very dilute suspension, and is
related to the average fluid velocity within the suspension by (F.98). Now, we know
that the bulk velocity of the suspension on a macroscopic scale is zero relative to the
container, so that,

1=V 1 ov? =0, (F.99)
where V(p) is the average velocity of the particles. Up to O (¢), (F.99) gives

VY = —guy + 0(¢?). (F.100)

Thus, the divergent integral V| must be renormalized such that the above constraint
is satisfied. Therefore, by (F.98) and (F.100),
11

Vi =—?¢)U0. (F.101)

This is identical to Batchelor’s equation (5.3) and in fact the whole derivation
parallels his.

The integral V3, can be renormalized in a similar way by noting that, in the fluid
phase, this term is related to the dynamic pressure® disturbance p due to a single
sphere by the Stokes equation V2v = 1V p. Therefore, aside from the factor 1/67,
V, equals the average pressure gradient of the fluid at the point Xq in the infinite
domain r > 2, outside the exclusion region. Consequently, the average pressure gra-
dient over the whole domain occupied by the fluid phase in the dilute suspension,

V_p(f), is given by

V' =6nVa+no f Vp(xolxo +1)d’r = 6L, (F.102)

1<r<2
where the integral is evaluated using

r-Vy
24

Thus, the integral V> is closely related to the average pressure gradient in the fluid
phase, which naturally leads to the examination of the bulk pressure gradient in the
suspension. On a macroscopic scale, however, the suspension as a whole is akin to a
static effective fluid with total pressure gradient ¢ (p?) — p(/))g, in addition to that
of the stagnant pure fluid, where p(”) and p(/) are the mass densities of the particles
and of the fluid, respectively, and g is the gravitational acceleration. Thus, we have
the constraint,

p(xo +rlx0) =37 (F.103)

_ _ 9
(1 =) Vp" + ¢V =¢(p@ — pN)g = 291V, (F.104)

8The dynamic pressure is defined as the difference between the total pressure and the static pressure
of a pure fluid.
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where V—p(‘n ) is the average pressure gradient inside the spheres,

) _

Vp =
37T Jr<l

V p(xXo|Xo + 1) d°r. (E.105)

The above can be converted into an integral over the volume inside a fixed sphere.
Noting that V p(x¢|x¢ +r) depends only on the position of the sphere relative to that
of the sample point and is independent of their absolute positions, we obtain

/ vp(x0|x0+r)d3r=/ Vp(xo—r|x0)d3r=/ V p(xo + r|xg) d°r,
r=l r=l r<l

=

where account has been taken of the symmetry of the domain of integration.

To evaluate the last integral, which refers to the integral over the position of the
sample point X¢ + r within the sphere located at x¢, we make use of the divergence
theorem and the fact that, on the surface of an isolated sphere translating with ve-
locity Uy, the fluid pressure is given by (F.103). Hence,

/ 1vp(xo|x0+r)d3r=27mV0, (F.106)
r=
and therefore,
v = %nvo. (E.107)
From (F.104) and (F.107), we obtain the constraint
V' =3¢nVo + 0(¢?), (F.108)
so that, on account of (F.102),
Vo= %¢Vo. (F.109)

Although this is identical to Batchelor’s equation (5.4), its derivation here is
slightly different.

Finally, the last integral (F.97) was evaluated numerically by Batchelor [2], ob-
taining:

V3 =—1.55¢Vj. (F.110)
At the end, by substituting (F.101), (F.109) and (F.110) into (F.94), we obtain:

V= Vo[l -6.55¢ + 0(¢?)]. (F.111)

In conclusion, Batchelor showed that, imposing two constraints on the volumetric
flux and the pressure gradient, the expression for the average sedimentation velocity
of a monodisperse suspension of spheres can be renormalized, thus obtaining the
analytical result (F.111), exact up to O (¢?)-terms.
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Appendix G
Solutions of the Problems

G.1 Chapter 1

Problem 1.1

N N
(5A) Z (8a;dajdardag) = Z (5a)4(5ij5k£ +0ik8j¢ +8iedjk). (G.1)
i,j,k,l=1 i,j,k,t=1
Therefore:
(6A)*) =3N?(sa)*. (G.2)

Problem 1.2 Multiplying Eq. (1.21) by —g~!, and considering that x = —g~! - X,
we obtain:

(xi xx) = —gy; Mo X ) =g5 (G.3)

where we have considered that g is a symmetric matrix.
In the same way:

(Xi Xi) = —gij{xj Xp) = gik- (G4)

Problem 1.3 Choosing S and P as independent variables, consider the following

equalities,
oT aT T aT
AT=—) AS+|—=) AP=—AS+ AP, (G.5)
aS /) p oP ) ncp 9P
and
aVv aVv aT
AV=|—| AS+ AP: — ) AS—VksAP, (G.6)
as P oP )
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where we have applied Maxwell’s relation ( )S = ( ) p. Finally we obtain:

AG =~ [L(AS)Z + VKS(AP)Z}, (G.7)
2| nep

from which it is easy to obtain the final result, confirming that cp > 0 and x5 > 0.

Problem 1.4 Choosing 7 and P as independent variables, for ((A 7)%) and
((A P)z) we will obtain the results (1.43) and (1.47) that we have already derived.
The cross term can be found as follows:

dP dP kT?
(AT AP) =((AT)2><—> + (ATAV)(—) _ v (G.8)
oT )y oV /)r  cvkr
Here, we have considered that (AT AV) = 0, while ((AT)?) = ey and we have

substituted the thermodynamic equality:

@)L, e
aT )y v ) \oT ), k1

where we have defined the thermal expansion coefficient ap = %(8 V/oT)p.

In the same way, choosing V and P as independent variables, for ((AV)?) and
((AP)?) we will obtain the results (1.43) and (1.47) that we have already derived,
while the cross term can be found as follows:

(AVAP):((AV)2)<£) +(ATAV)<8P> =—kT. (G.10)
ov ) r oT

Note that this variance is always negative, as to an increase in pressure must
correspond a decrease in volume.

In alternative, it is instructive to obtain the first of these results using a brute force
approach. Consider the following equalities,

AS 05 AT+ 05 AP TAT VapAP (G.11)
=— = — —Va , .
oT P ncp P
and
VvV aV
AV = (—) T+ <—> AP =VapAT —Vkr AP, (G.12)
oT / p oP J

where we have applied Maxwell’s relation —(S—ISJ)T = (g_‘r/) p. Finally we obtain:

1[ ncp 2 2
AG:2 —(AT)" =2VapAT AP+ Vkr(AP)"|. (G.13)
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Comparing this relation with (1.30), with x; = AT and x, = AP, we see that:

nce Vkr Vap

= = : =gy =—— G.14
81 =173 82 = "= 812 =821 T (G.14)
or,
Vo[ e _gp
=—| TV . G.15
& kT (—OéP KT ) ¢ )
Therefore, calculating the inverse of the g-matrix, we obtain:
—1 sz KT ap
g = nep (G.16)
ncykr \9p Ty
where we have considered the thermodynamic identity,
nkr(cp —cy)=V TO(%—,.
This relation shows that,
kT? kT kT?
(AT)Y) = —; ((aP)?) = : (AT AP)= =22 (G.17)
ncy Vs CVKT

where we have considered that k7 /ks =cp/cy.

G.2 Chapter 2

Problem 2.1 Denoting by F and T the force and the torque exerted by the fluid
on the particle and by V and  its velocity and angular velocity, respectively,' in
creeping flow regime the entropy production rate is

To® =F.-V+T-Q. (G.18)
Therefore, the general phenomenological equations relating forces and fluxes is:

F=-¢".v_¢i.q (G.19)
r=-¢".v—¢im.q, (G.20)
where ¢ (1) is the translation resistance tensor, Iy (") is the rotation resistance tensor,

while ¢ and ¢" are coupling resistance tensors. This shows that, in general,
an applied force induces in the body both a velocity and an angular velocity, and

In general, V is the difference between the particle velocity and the local fluid velocity, and
analogously for €2.
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likewise for an applied torque (think, for example, of a body with a corkscrew ge-
ometry).”

Now, in order to apply the Onsager reciprocity relations, let us define the follow-
ing sixth-order generalized forces velocity vectors as:

Fi=(Fy, Fp, F3,T1, 12, T3); Vi = (V1, V2, V3, §21, §22, §23). (G.21)

So, the entropy production rate is expressed as:

6
To® =Y "FV,. (G.22)
i=1

with the phenomenological equations and the Onsager reciprocity relations becom-
ing:

6
Fi= Z GijVis Cij = &ji- (G.23)
i=1

Considering for sake of simplicity a 2D case. The phenomenological equations be-
come:

(tt) (t1) (tr) (tr)

N (S | (1
Fi| _|%1" %2 & Vs (G.24)
r | (rt) (rt) (rr) (rr) 21 ’
i Sz St i
I ¢ LG L) () )
1 S» tint i
Therefore, the Onsager reciprocity relations can be written as:
(tt) _ (1) (rr) _ . (rr) (tr) _ .(rt)
Gij =&’ Gij =8 Gi =& (G.25)
that is,
;(tl) — C(tt)+7 C(rr) — C(rr)+’ ;(lr) — C(rt)+. (G.26)

The first two equalities indicate that the translation and rotation resistance tensors
are symmetric; so, for example, the ratio between the force applied along x1, F and
the resulting velocity along x3, V3, is equal to the ratio between F; and V;. The last
equality is very interesting, as it relates the rotation induced by an applied linear
force with the translation induced by an applied torque.

Problem 2.2 The equation of motion is

mi + ¢ +mwgx = f, (G.27)

2 A beautiful study of these effects, with all the involved symmetry properties, can be found in [6].
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or, in frequency domain,

T(w) = %?(w)f (), (G.28)
where
K(w) = k—T (G.29)
m(w} — w?) — it
Therefore,
(Ff) () = (kT)zglm{ —} =2kT¢. (G.30)
w K*(w)

So, as expected, the random force is delta-correlated.

G.3 Chapter 3

Problem 3.1 When 7 > m/¢, the inertial term of the Langevin equation can be
neglected and therefore the Langevin equation reduces to:

tx = f(), (G.31)

where f(¢) satisfies the relations (3.25) and (3.26). Squaring this equation and tak-
ing its average we obtain:

(ki (1)) = f(t)cf(t D _ops(i—1); D= %T (G32)
where we have substituted Eq. (3.26). Now,
t
x(t) =/ fc(t’) dr’, (G.33)
0

with x(0) = xo = 0, and therefore

(x2)? / / Vi ", (G.34)

obtaining again Stokes-Einstein relation,

kT
(Y’ =2D1; D= o (G.35)
Problem 3.2 The Stokes-Einstein relation can be obtained also in the following
way.
oo (o)) = [2)e—¢t/m — KT y—g/m
<v0v(r)> —(vo(v)T )— (v())e = e , (G.36)

m
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where we have applied Eqs. (2.18) and (3.30). Therefore,

kT (! t—t'
/ / dt dr’ = / dr’ / dre=CITl/m — (G.37)
0 -t

(x )0—2]‘% [1—%(1—eff/m)}. (G.38)

For ¢t > m /¢, we find again the Stokes-Einstein relation.

that is

Problem 3.3 Defining dp = p — po, from the general solution of the Langevin
equation, Eq. (3.29), for = t¢/m < 1, we have:

) = pole " — 1] == por + 0(72), (G.39)

and

t t
(0p2 = [ [ eSO @) (v + 0, (G0
that is,

(Gp*) = %(1 —e M) =2kTrt 4 0(7?). (G.41)

Problem 3.4 Consider the Brownian motion of a particle with mass m immersed in
a fluid and attracted to the origin through a linear force,

mZ+z+ Az= f(1), (G.42)

where f(¢) is a random noise. The question is whether ( f 2) is the same that we
have found in the absence of any external force, that is defined through Egs. (3.25)
and (3.26). Equation (3.54) can be written as:

z=v, (G.43)
mv=—¢v— Az+ f(1), (G.44)

that is Eq. (3.37) with:
x=(z,mv); M= (g ;Z_:) J=(0, ). (G.45)

At equilibrium we have the Boltzmann distribution,

mv?:  Ax2
Heq—Cexp< T m), (G.46)
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so that:
1 /A 0
g_ﬁ<0 m_l)' (G.47)
Finally we obtain:
i —1\sym _ 0 —m™! A~ o\
Q=(M-g) _kTKA 2% 9 (G48)
that is
0o -1\ 0 0
Q=kT (1 ¢ ) =kT¢ (0 1) . (G.49)
Therefore, we find again the usual relation,
0
(fO)f@+1), =2kT¢5(2). (G.50)
G.4 Chapter 4
Problem 4.1
e M can be determined from the phenomenological relation (1'))? =-M (v)?, with
M=¢/m;

1

e (O can be determined from the fluctuation-dissipation theorem, Q = Mg~", with

g=m/kT,sothat Q =kT¢/m?.
Then, the Fokker-Planck equation for I1(v, t|vg) (note that v is the independent
random variable) becomes the Kramers equation:

aJ kT¢ oIl
Y=0; J, LS A S L (G.51)
v m m?2 Jv

T+

At equilibrium, J, = 0 and dI1/I1 = —(m/kT)dv, so that we obtain the
Maxwell distribution,

2
mv
m“w)==C e G.52
(v) eXP( 2kT> (G.52)
The general solution (4.55) in this case becomes:
1 2
M[v()vg] = Cexp —EV(AU) , (G.53)
where
Av=v— (1)) =v —voe /™, (G.54)

vyl = ((Av)z)? = %T[l — e~ %1/m]. (G.55)



252 G Solutions of the Problems

Problem 4.2 Considering Eqgs. (3.52) and (3.53), from the definitions (4.7) and
(4.8) we obtain, as t — 0,

(30);° = — S-vp1 = — My, (G.56)
m
and
2kT
((v)?)" = ft =201, (G.57)
m
with,
kT
M:i; Q:—f. (G.58)
m m
Problem 4.3 In the presence of a linear external force F' = —Ax and for long

timescales, ¢t >> m /¢, we can repeat the same analysis as in Problem 4.1, as the
Langevin equation becomes:

(X + Ax = f. (G.59)

Again, the coefficient M in the Fokker-Planck equation can be easily determined
from the phenomenological relation ()'c)? =-M (x)?, with M = A/¢, while Q
can be determined from the fluctuation-dissipation theorem, Q = Mg~', with
g=A/kT, so that Q = kT /¢ = D, where D is the diffusivity. So we obtain the
Smoluchowski equation:

. aJ. A kT oI
H+—==0; Jy=——x1———, (G.60)
ax e ¢ ox
and we may conclude:
0 kT _
((Ax)?) =v~'= 7[1 — e AL, (G.61)

where Ax = x(t) — xoe’ZA’/g. In particular, when A = 0, there is no equilibrium
configuration and this procedure seems invalid. However, taking the limit when
A — 0, Eq. (G.61) becomes:

t

([x@) = xo]) =2%Tz —2D1, (G.62)

i.e. the “usual” Stokes-Einstein result.

G.5 Chapter 5

Problem 5.1 Ito’s lemma (5.11) with x = W, f = x*, V =0and B =1, reduces
to:

dW* =6W?dt +4W3dw, (G.63)
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so that we obtain by integration:

g | — 3 (7 2
I/ W (s)dW(s)=-W"(t) — —/ W=(s)ds. (G.64)
0 4 2 Jo

Again, the second term on the RHS would be absent by the rules of standard calcu-
lus.

Problem 5.2 Ito’s lemma (5.11) withx =W, f = x"t1 v =0and B = 1, reduces
to:

]
P D it gy W aw, (G.65)

de-‘rl —
so that we obtain by integration:

t 1 n t
I/ W"(s)dW(s) = —— W™ () — —/ W (s) ds. (G.66)
0 n+1 2 0

Again, the second term on the RHS would be absent by the rules of standard calcu-
lus.

Problem 5.3 The stochastic differential equation
dS=rSdt+oSdW (G.67)

can be solved applying Ito’s lemma (5.11) withx =S, f =InS, V=rS and B =
o S, obtaining:

1
dlnS = (r — 502>dt +odW. (G.68)

Integrating, with S(0) = Sy, we obtain:

S(t 1
In % = <r - 502>’ +oW(), (G.69)
0
that is,
S(t) = Spel 20+ W D), (G.70)

This is called the log-normal, or Black-Scholes model, of the market for a particular
stock.

Note that the basic assumption of the Black-Scholes model is that when o = 0,
i.e. in the absence of fluctuations, the system is well behaved, which contradicts all
experimental data. This is particularly alarming, as most of the predictions of the
financial analysts are based on this model.
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G.6 Chapter 6

Problem 6.1 Consider a Brownian particle immersed in an elongational incom-
pressible flow field, V| = yx, and V, = yxy. Then, the minimum path obeys the
same Eq. (6.41), with M; = y, obtaining again Eq. (6.42). Substituting this result
into Eq. (6.34), i.e. Lyin = £(y — V)2, we obtain:

Lin = ¢y?[ (X7 + X3)[coth? (y7) + 1] — 4X; X2 coth (y7)], (G.71)
and finally leading to the Gaussian distribution [9]:

4

(X, t10) = W) exp[—E [coth(yr)(XT + X3) — 2X1X2]]. (G.72)

The same result can be obtained [5] by solving directly the Fokker-Planck equation.
The variances of this distribution read:

(x})=(x3)= gsinh(Zyt); (X1X5) = 27D sinh?(y1). (G.73)

Clearly, up to O (yt)-term, we find: (X?) = (X3) = 2Dt and (X X2) =0.

Problem 6.2 Changing coordinate system along the principle axis of the elonga-
tional flow of Problem 6.1, with X| = X» (stretching) and X; = —X» (squeezing),
define Y1 = (X + Xg)/\/i and Y, = (X — X2)7\/§, so that we obtain the straining
flow, Vy, =Y and Vy, = —Y>. Then, the distribution (G.72) becomes [8]:

(Y1, Y2, 110) = W(t - [e7 'Y} +e"'YS] |, G.74
(Y1,Y2,1]0) ()exp[ 4Dsinh(yt)[e i +er3] (G.74)
with the following variances:
D D
(ri)= ;(627” —1); (Y] = ;(1 —e ), (nY)=0.  (G.79)

Here, too, for short times, at leading order, we find: (le) = (Y22) = 2Dt and
(Y1Y2) =0.

G.7 Chapter 7

Problem 7.1 As we saw in Eq. (7.21), for non reactive mixtures the law of mass
conservation of a chemical species & is:

Dd)(k) ®
= —V ° J )
Y d
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where p® and p = > p® are the mass density (i.e. mass per unit volume) of
component k and the total mass density, respectively, & = p® /p is the mass
fraction of component k, while Jt(ik) = p¢(k) (V(k) —v) is its diffusive flux, with vk
denoting the mean velocity of component k and v the barycentric velocity, v =
Zq&“‘)v("). If the chemical species k carries a charge per unit mass, zX), then the
total electric current flux (i.e. the electric charge crossing per unit time a unit surface
cross section) I can be written as the sum of a convective and a diffusive component,

n
I= Z p®PzOvE = oy 4,
k=1

where,

n

1 n
2= 30 = 3 g0 0
k=1

k=1

is the total charge per unit mass, while

n
=3 0y
k=1

is the diffusive electric flux, due to as electric conduction.
Finally, multiplying the equation of mass conservation of a chemical species by
2% and summing over k we obtain:

Dz v.i
— =-V i,
]

showing that the law of conservation of electric charge follows directly, without any
further assumptions, from the law of mass conservation.

Problem 7.2 Consider a non-reactive charged mixture immersed in an electric and
magnetic fields, E and B, respectively.® The momentum balance equation is again
given by Eqgs. (7.25)-(7.26), where

F® = ;@ (E +v® % B)

is the Lorentz force acting on component k per unit mass.*

3Here we neglect all polarization phenomena, so that the electric and magnetic fields coincide with
their respective displacement vectors, D and H.

4The speed of light, that sometimes appears in the Maxwell equations, and therefore in the Lorentz
force as well, here is incorporated within the magnetic field.
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Now, the entropy production expression (7.72) will include an additional term,

i.e. the product of this force by the diffusive flux J&, i.e.,

n
) _ k) p(k
k=1

This expression can be simplified considering that by definition

1
*) _ (k)
v —V+—p¢(k)']d )

(k)
d

Therefore, since Jg{) -Jy7 x B =0, the additional term becomes:

n
TO’(S) — ZZ(Z)ijk) . (E + vV X B)
k=1
Note that, expressing the electric field in terms of an electric potential ¢, defined as
E = —V¢, its contribution can be included in Eq. (7.72) directly, considering the

electrochemical potential i®) as the sum of the chemical potential, £, and the
electrostatic contribution, w(k) = z(k)¢>.

G.8 Chapter 8

Problem 8.1 Considering the symmetry of 151.(;) and Sy¢, we see that
Nijke = Njike = Mijek-
In addition, since 131.(;) and S‘kg are traceless by definition, we have:
8ij Mijke = Njike Ske = 0.

Finally, since from (8.7) and (8.14) we see that the entropy production rate includes
aterm Tos = 131.(;)5} j» the Onsager reciprocity relations yield:

Nijke = Nekji -

Problem 8.2 Considering that the very dilute case consists of the diffusion of a
single Brownian particle that moves along a trajectory T(r), we have:

JO = mnM5, (G.76)
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with nV (r, 1) = 8[r — T(r)], while ¥(¢) is the velocity of the Brownian particle.’
Therefore, we may conclude:

(0 (11)Vk(12)) = 2D 8 (11 — 1), (G.77)

which coincides with Eq. (G.32).

G.9 Chapter 9

Problem 9.1 At the end of a tedious, but elementary power expansion in terms
of the reduced variables, we see that the Van der Waals equation reads, neglecting
higher order terms,’

o 34
p=4i - 5i0 — 20, (G.78)

Note that we cannot have any term proportional to ¥ or 9%, in agreement with the
conditions (3P /7)1, = (8*P/39%)7. = 0, while the coefficient of the 7°-term
must be negative, as (83P / 8133)TC < 0. When 7 > 0, all states of the system are
stable, that is there is no phase separation and the system remains homogeneous.
That means that, when ¢ > 0, it must be (9 P /00)1. < 0, and therefore the coeffi-
cient of the 7i-term must be negative. Finally, note that the 75> and 72-terms have
been neglected because they are much smaller than 7o, while the 70-term must be
kept, despite being much smaller than 7, for reasons that will be made clear below.

At the critical point, where 7 = 0 , from (G.78) we obtain: p o 7%, where § =3
is a critical exponent.

Consider an isotherms below the critical point, with = —a?, where the Sys-
tem is unstable and separates into two coexisting phases. The spinodal volumes can

be determined imposing that (3p/00)7 = 0, obtaining: vy = —175 = ,/—%f, ie.
=127

SHere, J is a diffusive flux, since the solvent is quiescent and therefore the average velocity of
the mixture is zero.

5This expression can be generalized as p = b.f — 2a.iv — 4B.9°, which is the basis of Landau’s
mean field theory [7, Chaps. 146, 148].

TThis critical property can also be determined from the free energy frj. In fact, integrating
(dfrn)T = —Pdv and substituting (G.78), we see that in the vicinity of the critical point the free
energy has the following expression:

Ffrn@,T) = Pcve [h(f) + (1 +4T)o +3T9* + %a“}, (G.79)

where h(f) = (1 + ) In[3/(2vc)] — 9/8. From this expression we can determine v,, finding again

g=1/2.
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From the definition of the isothermal compressibility coefficient, we obtain:

P

ap -
/(;l =—U(—> =—Pc( +5)<—1~]> =2a.Pct, (G.80)
o/ v )

showing that y = 1.
Finally, considering that the molar internal energy u 7, remains finite at the criti-
cal point, we find o = 0.8

Problem 9.2 This problem continues the previous one. From,

ap\> /(9P
e (5)./ (); o

we see that, since (813/8?)520’,720 = b, and (0p/3V);_¢ 5o = 0, the specific heat
¢p diverges. In fact, we find:

1 1
Cp X 0 = = =
(3p/0D);  —2a.i — 12B.0

1
o = (G.83)

where we have considered that on the equilibrium curve, v Vi.

Problem 9.3 Substituting u =2¢ — 1 and ¢y =¥ — 2 into (9.104) and (9.117) and
imposing that # < 1, we easily obtain at leading order:

ou

— =2y V3 — V4u,

ot v

where the spatial and temporal variables have been made non dimensional in terms
of a and 2a?/D. Assuming a periodic perturbation u = ugexp (ik - r + ot) we find:

o =k 2y — k%),

where k = |k|. Therefore, we conclude that the homogeneous state ¢ = ¢ is unsta-
ble when k < /2. Among the infinite unstable modes, the one that grows fastest
will eventually prevail. That corresponds to the wave vector that maximizes the ex-
ponential growth o, which is given by k0 = /¥ [1, 2].

8From ur), = frn+Ts= frn —T@frn/9T),, we obtain from Eq. (G.79)

sar _ Pcvc dfrn

g T—C[s - fra®) — 7(())]. G81)

sat

Therefore, we see that ¢} remains finite at the critical point.
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Problem 10.1 Considering that J; = Vi (r; Ji), together with the continuity of T
and J;, integrating by parts we obtain:

1 1
(Ji) = —/ Vi (ri Jy) dr = —yg ngri Jy d*r, (G.84)
14 Vv V Ji=r
and
1 3 1 2
<ViT>=— V[Td r=— n,-Td r, (G85)
14 % 14 r=R
where the volume V has been assumed to be a sphere of radius R > a, and

nx = Ry /R is the unit vector perpendicular to the sphere of radius R. At this point,
substituting into these expressions the outer solution (10.5), we find,

(Ji) =—ko

Ri Ry
R2

7§ Ry R; [(1 + Kp)dre —3K¢ }Gz d°R,
R

47 R4
and

R R.(1+ K¢)d*R,

where ¢ = a3/R> is the volume fraction of the inclusions. Considering that
fr Ri Ryd*R = %7{ R*, we obtain:

(Ji) = —koG;(1 — 2K ¢), (G.86)

and
(ViT)=G;(1+ K¢). (G.87)

Therefore, considering the definition (10.8) of the effective conductivity, i.e. (J;) =
—Kk*(V;T), we obtain:
k* 1-2K¢

o oo e 1 2
= TTKe =1-3K¢+ 0(¢°). (G.88)

Problem 10.2 Proceeding as in Problem 10.1, considering the continuity of S and T
at the interfaces, together with the equality T;; = Vi (r; Tx;) [cf. Eq. (10.25)], we
obtain:

1 1
(8i)) =7y, /V(v,-vj +V,v)d’r = T ﬁ(nivj +njv;)d’r,

and

1 3. 1 2
(Y}j)zv/‘;nid‘rzvﬁnknﬂcjd r.
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The shear flow past a sphere is given by Eq. (F.47). At large distances, i.e. when
R > a, at leading order it reduces to:

rirjrk
r5 ’

5 3
vi — Gixre = —Ea* Gk

T/, = _§n0a3er|:Virk5j€ +rjredie +riredje +rjredic 1Orirjrkre}
2 5 7

where Tl/j =T;j + pédij — 2n0G;; is the perturbation of the shear stress due to the
presence of the particle.
Therefore,

3 5 ririrKre
(8i) = Gij =~ 3z ﬁ 290G g,

and considering that
2 4 6
rirjreredr = EJTR (3ijOke + Sikdje + 8i¢djk),
R

with G;; =0, we obtain:
(Sij) =Gij(1 = ).
This shows that the mean shear rate decreases, due to the presence of rigid parti-

cles, as one should expect.
In the same way, we find:

3 5 rirlie +riredk Titjrkre
T/ = ——— ¢ Znoa’Gre[ 22 L L d’r,
( l]) 4nR4ﬁ2n0a M( r3 r
ie.,
3 5 r,-rjrkrg 2
(75) = ‘WE”WG”?&(”%@ rinedje =8 )d -

and therefore,

, 15 4 4 4 4
(Tij) = — g a 09 Gie| 37 R Gixje + 8ie8 1) = 8 x 7o R (Bindje + 8ied ) |,
that is,
13 8 64\ a4
(ij>——WU0¢Gij 377K = ¢n0Gij.

Consequently, we conclude:

3
(Tij + péij) =2n0Gij <1 + §¢>-
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So, finally, defining the effective viscosity n* as
(Tij + pdij) = 20" (Si)),

we obtain the celebrated Einstein’s result:”

‘=14 29
n =Tno 2?)

where O (¢?) terms have been neglected.

Problem 10.3 Substituting the equations of motion (10.76) into the RHS of Eq.
(10.101), we obtain,

’71(]221 /xi ﬁjk xdr= /xi (7Tk,j - anij)xl d’r, (G.89)

where 7; ; = 0m; /dx ;. Now, considering (10.85)—(10.87), we find:
i = / i(—nV2Pj)x dr. (G.90)
Finally, integrating by parts, applying the normalization condition (10.90) and con-

sidering the exponential decay of P*, we rederive the dynamical definition of vis-
cosity (10.101).

G.11 Chapter 11

Problem 11.1 Here the Brownian particle can sample only transversal position
—(Y —a) <y < (Y —a). Accordingly, as the mean particle velocity V), is calculated
over all the accessible values of V (y) we have:

y2
V. 1—-=]dy,
P= 2(Y—a>/<y ) ( Y2> Y

3V N PN
Vp—74(1_€)[(1 o -3 6)},

so that at leading order we obtain: V), = V(1 + €). This shows that the suspended
particle has a mean velocity that is larger than that of the fluid.

ie.,

9In his first calculation of the effective viscosity [3], Einstein neglected to take into account the
variation of the mean shear rate, so that he obtained a factor 3/2, which only later [4] he corrected
into 5/2. The fact that even Him made a mistake has always been a source of great consolation to
all of us.
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Similar calculations show that the Taylor diffusivity decreases as € increases,
since by “cutting out” the wall region, where the velocity gradient is larger, we
keep only the central part of the velocity profile, which is rather flat and does not
influence diffusion too much (in the limit case of an ideal plug flow, Taylor diffusion
is identically zero).

Problem 11.2 (a) Eulerian approach.

Repeat the analysis of Sect. 11.2.2, assuming that the Brownian particles are
convected by a linear Couette flow, V(y) =2Vy/Y, with0 <y < Y .19 In this case,
as =25 — 1, we find d B/dy = 32 — 5 and « = 1/30. Therefore, we finally obtain:

1 v2y?
D*=D+ — GJI1
+ 30 D ( )
(b) Lagrangian approach.
In this case, when V(y) =2Vy/Y,with0 <y <Y, we find,
42V
1%:—%;7 forn=2m+1; v, =0 forn=2m. (G.92)
T°n

Finally, considering that Y .~ ,(2m + 1)~* = 7*/960, substituting this result into
(11.91) we obtain:
1 v2y?

D*=D+ — ,
+30 D

(G.93)

which coincides with (G.91).

Problem 11.3 Creeping flow of a Newtonian fluid of viscosity 1 past a random
array of fixed particles is governed by the Stokes equations,

Vp:r)VZV; V.v=0,
subjected to the no-slip boundary condition at the particle surface s,
v=0 ats,.
Consider the following non dimensional quantities,

~ T ~ pL ~ Vv
r=—; P=—=; V= —,
nVv Vv

™~

where L is a characteristic macroscopic length, V a characteristic velocity, while the
tilde indicates non dimensionality. At this point, assume that all quantities depend
separately on macroscopic and microscopic length, x and y, respectively, defined in

100bviously, in this case the no-flux boundary condition is applied at y =0 and y = Y.
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(11.101), where € = £/ L, with £ denoting the micro, or pore, scale. Now impose the
following scaling [10]:

P=poX,y) +epi(x,y) +---,
and

?:ezvo(x,y)+e3V1(X,Y)+"' )

together with the expansion (11.103):

V=V, +-V,
€
At leading order we find:
Po = po(X).
At the next order we obtain:
Vypi—Vivo=—Vipo:  V,-vo=0; withB.C. vo=0 ats).
Define:
vo(X,y) = —W(y) - Vi po,
and,

p1(x,y) = —P(y) - Vipo.
Here, W and P satisfy the following cell problem:
VVP-ViW=L  V,-W=0; withB.C. W=0 ats,,.
Averaging we obtain:
(vo) = —k- Vi po,
where K is the non-dimensional permeability,
K= (W).

Clearly, this shows that permeability is the mean velocity induced by a normalized
pressure gradient.
Going back to dimensional variables, we find the Darcy law,

—n{Vp)=Kk-(V),

where k = ¢2k = ¢2 (W), thus confirming that permeability has the typical dimen-
sion of the square of the pore size.
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