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Preface

The idea to write this book came to my mind after two advanced lecture courses
which I have read in summer semesters of the year 2010 as Leverhulme visiting
professor in Loughborough University UK and of the year 2011 as a visiting
professor in LTPMS-Orsay (associated with the University Paris-Sud).

The first Chapters of this book had the approbation during 16 years of my
pedagogical work as a Professor on Galitskii chair of Theoretical Nuclear Physics
in Moscow Engineering Physical Institute and during autumn semester of the year
1994 in the University of Amsterdam.

The course is based on the original research work where I actively participated
and contributed as a principal scientist and a group leader in P.L. Kapitza Institute
for Physical Problems in Moscow during 30 years of my scientific career. It
includes the set of eight lectures and eight seminars which cover several important
topics of the modern condensed matter physics, namely:

Quantum hydrodynamics of fermionic and bosonic superfluids and supersolids;

e BCS-BEC crossover in ultracold quantum gases;

e Non-phonon mechanisms of superconductivity in high-7¢ materials and other
unconventional superconductors;

e Nanoscale phase separation in CMR-materials, heavy-fermions, and other
strongly correlated electron systems;

e Mesoscopic electron transport in multi-band and phase-separated metallic and

oxide compounds.

I hope the book will be useful for undergraduate students of the senior courses,
postgraduate students, and postdocs specializing in solid-state and low-tempera-
ture physics.

I am very grateful to my teachers, colleagues and pupils, first of all to
A. S. Alexandrov, A. F. Andreev, A. G. Aronov, S. Balibar, M. A. Baranov,
H. Beck, J. G. Bednorz, 1. V. Brodsky, P. Brussard, H. W. Capel, H. Capellman,
M. Capezzalli, R. Combescot, A. V. Chubukov, V. N. Devyatko, D. V. Efremov,
M. A. Efremov, I. A. Fomin, R. Fresard, G. Frossati, P. Fulde, B. Halperin,
Yu. A. Izumov, V. V. Kabanov, Yu. Kagan, L. V. Keldysh, A. V. Klaptsov,
Yu. V. Kopaev, K. I. Kugel, D. I. Khomskii, Yu. A. Kosevich, F. V. Kusmartsev,
A.V. Kuznetsov, A. I. Larkin, N. P. Laverov, Yu. E. Lozovik, I. M. Lifshitz,



vi Preface

Maekawa, M. S. Mar’enko, B. E. Meierovich, A. P. Menushenkov, M. Mezard,
Nozieres, S. L. Ogarkov, V. M. Osadchiev, A. V. Ozharovskii, A. Ya. Parshin,
P. Pitaevskii, N. M. Plakida, F. Pobell, N. V. Prokof’ev, A. M. M. Pruisken,
L. Rakhmanov, T. M. Rice, G. Sawatzky, A. O. Sboychakov, T. Schneider,
V. Shlyapnikov, S. Stringari, V. V. Val'’kov, C. M. Varma, D. Vollhardt,
G. E. Volovik, J. T. M. Walraven, G. Wendin, Ch. van Weert, P. Wolfle, and Ya.
B. Zeldovich, who encouraged me to start writing this book and greatly improved
its quality during our intensive scientific collaboration, numerous and sometimes
very hot discussions both in Moscow and abroad. I am also very grateful to
my family for their patience during the work on this book and acknowledge
very important technical support from my assistants M. M. Markina and
A. M. Padokhin.

S.
P.
L.
A.
G.

Moscow, November 2013 M. Yu. Kagan
Corresponding Member of Russian Academy of Sciences
Principal scientist in P.L. Kapitza Institute for Physical Problems

and

Professor of Physics in Moscow

State Institute of Electronics and Mathematics,
National Research University

Higher School of Economics
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Introduction

The subjects of superconductivity and magnetism, superfluidity and BCS-BEC
crossover are very dynamically developing fields of condensed matter physics with
very intensive exchange of ideas between them.

The main idea of the present manuscript is to consider these closely related
phenomena in a coherent fashion and to show how the achievements in one of the
fields enrich the other and vice versa. I would also like to demonstrate the results
obtained in these fields both in Moscow and at the West during last 30 years.

The book is based on the results of my group at Theoretical Department of
Kapitza Institute as well as other groups and on advanced lecture courses which I
have read in Moscow Engineering Physical Institute, in the Amsterdam University,
Loughborough University, and LPTMS-Orsay associated with the University Paris
Sud in the period of 1994-2011.

I tried to include in the book space of the most interesting ideas worked out in
the end of twentieth century and very recently and thus bridge different
communities working in solid state and low-temperature physics.

The book consists of 4 Parts and 16 Chapters. In the first part, I describe the
recent developments in superfluid hydrodynamics of quantum fluids and solids
including a very hot subject of possible supersolidity in quantum crystals of “He.
There are several other interesting topics considered in this part. Among them is
the nature of the roughening transition on the phase-interface between quantum
crystal and a superfluid, as well as a spectrum of weakly damped melting-
crystallization waves, which can exist and were experimentally measured on a
mobile rough phase-interface between solid and superfluid “He in the conditions of
thermodynamic equilibrium on the phase boundary.

In Chap. 1, we start with general Landau scheme of the conservation laws for
the hydrodynamics of classical liquids and of the superfluids. On the basis of
Landau scheme, we consider the hydrodynamics of rotating superfluids with large
number of quantized vortices. We study different regimes of rotations in the
presence of Feynman-Onsager triangular vortex lattice, which we call hydrody-
namics of slow and fast rotations, respectively. In connection with dilute Bose
gases in rotating magnetic traps, we also consider the situation when the vortex
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lattice is melted or almost melted and we have a transition from a vortex lattice
phase to a phase of vortex liquid.

The subjects of possible supersolidity in quantum crystals and melting-crys-
tallization waves on the mobile phase-interface between quantum crystall and
quantum liquid are presented in Chaps. 2 and 3, respectively. We discuss here also
the Andreev—Lifshitz theory for quantum crystals, which is based on the large
values of Lindemann and de Boer parameters, as well as recent experimental
results of Chan et al., on the possible observation of the non-classical moment of
inertia in rotating experimental cell loaded with solid *He.

Discussing in these chapters the surface science, we present the ideas of
Nozieres on the Berezinskii—Kosterlitz—Thouless type of roughening transition in
solid *He as well as Andreev—Parshin ideas of quantum roughening due to delo-
calization of the 2D gas of kinks on the rough interface at low temperatures.

In Chap. 4, we consider a complicated and yet unresolved problem of chiral
anomaly in superfluid *He-A and present two competing approaches for this
interesting topic. The first one is based on the inclusion of a fermionic goldstone
mode connected with zeroes of superfluid gap in the hydrodynamical scheme in
the framework of the superhydrodynamics. Another one is based on a formal
analogy between Bogoliubov-De Gennes equations for quasiparticles in *He-A and
Dirac equation in quantum electrodynamics. We invite experimentalists to mea-
sure the spectrum and damping of orbital waves in *He-A at low temperatures and
in this way to help theorists to improve their understanding of the complicated
subject of orbital hydrodynamics.

The second part of the book also contains the four Chaps. 5-8. In this part, I
review the recent progress in the field of BCS-BEC crossover in quantum Fermi-
Bose gases and mixtures and show the analogy between the mechanism of BCS-
BEC crossover in gases and in underdoped high-T superconductors.

In Chap. 5, I present the introduction to the subject of Bose—Einstein conden-
sation in ultracold bosonic gases in the restricted geometry of the magnetic traps.
In the second part of the chapter, I discuss the Feshbach effect which yields
experimental possibilities to study BCS-BEC crossover between extended Cooper
pairs and local pairs (or molecules) in ultracold fermionic gases.

In Chap. 6, I study composed fermions and bosons which correspond to the
different bound states (molecules) consisting of two fermions, two bosons, and
fermion and boson in ultracold quantum gases and mixtures. I also elucidate the
exact solutions of the Skorniakov-Ter Martirosian integral equations for the
binding energies of the more sophisticated complexes consisting of three and four
resonantly interacting particles. We determine as well the atom-molecule and the
molecule—molecule scattering amplitudes in the resonance Fermi-gas.

In Chap. 7, I present the basic ideas of Nozieres—Schmitt-Rink and Leggett
theory on BCS-BEC crossover and construct the phase-diagrams for the s-wave
and p-wave resonance Fermi gases in 3D and 2D case. In the last case, we discuss
also the point of the possible topological quantum phase transition which appears
on the phase diagram of p-wave superfluid with the symmetry of Al-phase. I also
illustrate the Bogoliubov-Anderson and Galitskii-Vaks-Larkin schemes for
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studying the spectrum of collective excitations in superfluid resonance Fermi gases
with s-wave and p-wave pairing and determine the spectrums of sound waves and
orbital waves both in BCS and BEC regimes.

In Chap. 8, we study the models with short-range attraction between fermions
and discuss the interesting physics of the pseudogap actual for high-7¢ super-
conductivity as well as a new interesting phase of a normal bosonic metal which
arises in these models. We also discuss the scenario of Fermi-Bose mixture to
explain superconducting and normal properties in another interesting supercon-
ducting family of plumbates-bismuthates where the local pairing is established due
to the requirements of “valence skipping” in these compounds.

The third part of the manuscript is devoted to non-phonon mechanisms of
superconductivity and first of all to the famous Kohn-Luttinger mechanism
of superconductivity in purely repulsive Fermi-systems. It contains the five
Chaps. 9-13.

In Chap. 9, I present the basic ideas of Kohn-Luttinger. I show that the presence
of Kohn’s anomaly (of the Friedel oscillations) in the effective interaction between
two fermions via the polarization of the fermionic background leads to super-
conductive p-wave pairing in purely repulsive Fermi-gas or Hubbard model at low
electron density both in 3D and 2D cases.

In Chap. 10, we show that the critical temperature of superconductive pairing
can be strongly increased already at low electron density in the presence of the
external magnetic field or in the two-band situation.

In Chaps. 11 and 12, we apply the ideas of Kohn-Luttinger to the problem of
the search of fermionic superfluidity in *He—*He and °Li-"Li mixtures, as well as
in the gas of neutral particles (such as fermionic °Li) in the magnetic traps at low
and ultralow temperatures. We also search for the new phase of superfluid *He
different from traditional A and B phases in non-polarized and strongly spin-
polarized case.

In Chap. 13, we discuss the ideas of spin-charge separation and spin-charge
confinement in quasi-1D ladder materials and in quasi-2D high-T superconduc-
tors. We discuss the superconducting phase-diagram of high-7 superconductors
in the framework of the popular nowaday t-J model and show that in the optimally
doped case, we can have d-wave superconducting pairing with a high 7 of the
order of 100 K. We also propose a possible scenario of BCS-BEC crossover in the
d-wave channel for pairing of two composite holes (two strings or two spin
polarons) in the underdoped high-7 materials.

Finally in the last part of the manuscript, I search for marginal non-Fermi-liquid
behavior and anomalous temperature dependence of the resistivity in the normal
state of low density superconductors. I reveal here also the tendency toward
nanoscale phase separation in the normal state of cuprates and CMR systems.
Effectively this part serves as a bridge between the physics of strongly correlated
electron systems and magnetism from one hand and the physics of mesoscopic
quantum phenomena and localization from the other. Part 4 contains three
Chaps. 14-16.
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In Chap. 14, I search for marginal non-Fermi liquid behavior in the normal state
of low density Fermi-systems in 3D and 2D case. I also discuss electron polaron
effect and anomalous resistivity in the two band model with one narrow band due
to strong heavy-mass enhancement and localization corrections for scattering of
light particles on the heavy ones.

In Chap. 15, I reveal the similarities between high-T¢ cuprates and manganites,
which exhibit the phenomenon of colossal magnetoresistance. Both families of
strongly correlated materials have a pronounced tendency to the formation of
inhomogeneous states and in particular to nanoscale phase-separation corre-
sponding to the state with small ferromagnetic or paramagnetic metallic droplets
inside antiferromagnetic or charge-ordered insulating matrices.

Finally in Chap. 16, I discuss anomalous tunneling conductivity, tunneling mag-
netoresistance, and the spectrum of 1/f-noise in the non-metallic phase-separated
state which are connected with the electron tunneling from one metallic cluster (or
droplet) to a neighboring one via an insulating barrier. I present here the experi-
mental results of several groups confirming the proposed tunneling model.

In conclusion, I discuss the interesting unresolved problems which still exist in
the modern condensed matter physics and encourage the young researchers to
continue their careers in this fascinating field.

I hope this book will be useful for undergraduate students of senior courses as
well as for postgraduate students, postdocs, and active researchers specializing in a
solid state and low-temperature physics.
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Chapter 1
Hydrodynamics of Rotating Superfluids
with Quantized Vortices

While many forthcoming Chapters of the present manuscript deal with the
microscopical models for the description of Quantum Gases, Fluids and Solids, as
well as strongly correlated electron systems, the first four Chapters are devoted to a
purely phenomenological (macroscopic) description of hydrodynamic phenomena
in anisotropic and inhomogeneous superfluids and superconductors.

The presentation in these Chapters is based on Landaus’ ideas. Let us stress that
Landau theory of hydrodynamics [1-5] based on the conservation laws in the
differential form (together with Quantum Mechanics [6] and Statistical Physics
[7]) is one of the masterpieces of Landau-Lifshitz course of the Theoretical
Physics. While the essence of this theory is well known (serves as a mother’s milk)
to Russian researchers from the first steps of their scientific career, in the West
many young physicists, specializing on microscopic models, do not have a deep
background in this subject. A good style meanwhile is to know fluently both
microscopics and phenomenology from our point of view.

That is why from the pedagogical reasons we decided to start the present
Chapter with brief description (in Sect. 1.1) of the Landau theory for hydrody-
namics in classical [1-5] and superfluid [1-5, 8, 9] liquids. We present Landau
scheme of the conservation laws for the description of slowly varying in space and
time Goldstone (gapless) collective modes.

We will discuss Landau [1-5] (or Landau-Tisza [1-5, 10-13], as often referred
to in the West) two-velocity superfluid hydrodynamics for “He [1-5, 8—13] which
contains normal and superfluid velocities v, and V;, as well as normal and
superfluid densities p, and p, thus describing both the normal and superfluid
motion in helium [14-16]. We will derive the spectrum and damping of first and
second sound in superfluid helium (in He-II). We will obtain w = cjk and
o = cpk (the spectrum is linear for both waves) and compare the velocities ¢; and
cp; of these sound waves. We will stress that while in first sound total mass-current
j= pVs + p,Vu £ 0, in the second sound wave 7 =0 but the relative velocity
W="¥,—7,#£0.

In Sect. 1.2 we proceed to the hydrodynamics of rotating superfluids with a
large number of quantized vortices. We start this Section with famous

M. Yu. Kagan, Modern Trends in Superconductivity and Superfluidity, 3
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4 1 Hydrodynamics of Rotating Superfluids with Quantized Vortices

Andronikashvili experiments (on non-classical moment of inertia in rotating He-II)
[17, 18] and discuss Feynmann-Onsager quantization of the vortex lines in
superfluid helium [19-22]. We introduce the notion of first and second critical
angular velocities of rotation Qc; and Qc, in helium and stress their correspon-
dence with first and second critical magnetic fields Hcy and Hc, in type—II
superconductors [23-26]. Than we will present the scheme of macroscopic aver-
aging [27-30] for a large number of vortices and construct nonlinear elasticity
theory for a 2D (triangular) vortex lattice in helium [31]. The linearization of this
theory yields well-known Tkachenko modes [32-34] (which describe longitudinal
and transverse oscillations of the vortex lattice), as well as Lord Kelvin (Thomson)
bending oscillations of the vortex lines [35, 36]. We include dissipation in the
system and discuss Hall-Vinen friction coefficients § and ' [37-41] for the
scattering of normal component on the vortex lattice. In the end of Sect. 1.2 we
will construct the complete system of equations (which describe hydrodynamics of
slow rotations [31, 42]) based on the Landau scheme of the conservation laws. We
will discuss briefly another elegant method to derive a system of hydrodynamic
equations based on Poisson brackets [43] and emphasize, nevertheless, the
advantages of Landau method especially in nonlinear regime.

In the Sect. 1.3 we consider the different limit for hydrodynamics of fast
rotating superfluid. In this case due to Umklapp processes [23, 44] the normal
excitations are bound to vortex lattice, and hence the normal and superfluid
velocities perpendicular to the vortex lines coincide V,,; = ¥, . In the same time in
the direction parallel to the vortex lines due to translational invariance V| # V).

Thus we have one-velocity motion in the plane of the vortex lattice ¥, = j| /p and
two-velocity motion parallel to the vortex lines. Hence we are in a strongly
anisotropic situation where we have a crystal in the plane of the vortex lattice and a
standard superfluid in the direction perpendicular to the lattice and parallel to the
vortex lines. We will construct the full system of hydrodynamic equations for a
regime of rapid rotations and analyze the spectrum and damping of collective
excitations (first of all of a second sound mode) in this regime. We will get that the
spectrum is linear and sound wave can freely propagate only along the vortex lines
where V_f/” =V, — Vy # 0, while the spectrum is overdamped in the perpendicular

direction. More specifically for k; = 0 the spectrum reads w? = c%,k?, while for
H 2
k,=0: 0= —”%4 [31], where x is heat conductivity in the direction perpen-
,,
dicular to the vortex lines, C, is a specific heat and k,, k; are the components of
the k-vector along and perpendicular to the vortex lines, respectively.

In the Sect. 1.4 we consider an opposite case of a single bended line. Here, as
shown by Lord Kelvin, the spectrum for the bending oscillations is almost qua-

. 2
dratic o = 5%
m

superfluid “He is of the order of the interatomic distance). Naive considerations
show that such quasi 1D system (as a bended vortex line) should be completely
destroyed by the thermal fluctuations and experience in analogy with the bio-

physical systems a phase-transition to the state of a globule [23]. We show,

lnd% [23, 35, 36] (d is a normal vortex core, which in the case of
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however, that in fact [31] the bending oscillations correspond to rotation:
i X i = 0, where u and i are respectively a local displacement of the bended
vortex from a nondeformed position and its time derivative (local velocity). Thus
the quanta of the bending oscillations in fact have the rotation moment (—h)
(diamagnetic situation) and hence the gap hQ appears in their spectrum. This gap
stabilizes the fluctuations of this 1D system providing a finite ratio 1/ (ii?) /R?> < 1
of a mean square displacement <L72> to the radius squared R of the rotating vessel
with helium. It is a reason why a regular (triangular) vortex lattice can be directly
visualized (the photograph of the lattice with small vortex displacements can be
obtained) in the experiments of Packard et al. [86—88].

We conclude the Chapter with the discussion in Sect. 1.5 how we can realize
the hydrodynamics of fast rotations at not very high frequencies Q < Q¢, (note
that the second critical angular velocity Qc, is very high in superfluid “He). We
propose to use for that regime “He-"He mixtures, where *He is superfluid and has a

large number of vortices. In this case according to the Bernoulli law [1-5] p + ; =
const all the *He impurities will be driven by the gradient of the pressure (Vp) to
the vortex core and organize inside the core the quasi 1D normal component with a
free motion only along the vortex lines. This is just a desirable regime of rapid
rotations which we discuss in Sect. 1.2. Another possibility is to use an isotropic
triplet phase (B-phase) of superfluid *He [45, 46] where we can make the Umklapp
processes very effective already at moderate rotation frequencies [31]. We stress
that a recent revival of interest to the rotating superfluids with large number of
vortices is connected with the intensive experimental and theoretical studies of
rotating Bose-condensates in the restricted geometry of magnetic traps in ultracold
gases and mixtures [47]. We will discuss the most important results in this field
especially those connected with the possible melting of the vortex lattice [27-30,
47-62] in Sect. 1.2.6.

1.1 The Foundation of Landau Theory for Superfluid
Hydrodynamics

We will start this Section with a brief description of Landau approach to the

hydrodynamics of the classical liquid.

1.1.1 The Essence of the Hydrodynamics. Description
of the Goldstone Modes

Generally speaking, hydrodynamics is a science which describes all slowly-vary-
ing in space and time processes in the liquid (the elasticity theory does the same in
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the solid [63]). For these processes in momentum space a frequency w — 0 when

the wave-vector kK — 0. Thus hydrodynamics describes all low-lying gapless
(Goldstone) modes.

Moreover, hydrodynamics assumes local thermodynamic equilibrium (equi-
librium in small volume), so we can adopt reduced description of the system [7]
and introduce finite number of local variables. For ordinary liquid (with one
velocity ¥) the canonical variables in Landau scheme are p(7, r)—density; j(7, 1)—
density of linear momentum, and S(7, f)—entropy of the unit volume.

1.1.2 Landau Scheme of the Conservation Laws. Euler
Equation

According to Landau the system of equations for classical liquid contains an
equation for mass-conservation:

0 o o -
P F=0, f=pv, (1.1.1)
ot
an equation for linear momentum conservation:
9; 0O
—+—(IIx) =0, 1.1.2
ar T, ) (11.2)

IT; is momentum flux (in ideal dissipationless liquid Iy = pv;vy + pdy; p—is
pressure), and an equation for entropy increase:

S - [ 7\ R
= . === 1.1.
6t+v (Sv—i—T) T (1.1.3)

where R > 0 is positively defined dissipative function, ¢ is dissipative entropy
flux, T is temperature (in ideal liquid R = 0 and ¢ = 0). Note that if we take into
account only one source of dissipation connected with the heat flux, then ¢ =
—kVT (x is heat conductivity) and correspondingly the dissipative function

= N2
RNK@ > (0 is quadratic in gradients. In general case in Eqs. (1.1.2) and
(1.1.3) in the expression for Il;; and R enter also viscous contributions

T = H;jk"s = 17(% + % — %5,-1(6 . \7) + féikﬁ -V, where n and ¢ are viscosity
coefficients (¢ is often called second viscosity) and accordingly R ~ 7 gTVk
The system of 3 equations for 0p/0r,0j;/0t and 0S/0r (1.1.1-1.1.3) are con-
sistent with an equation of total energy conservation:
0OE - o

E_FV.Q:O. (1.1.4)
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While deriving (1.1.4) we can use the Galilean invariance and introduce the
internal energy E, in the reference frame K, (where the liquid is at a rest)
according to:

P2 7
E:E()—FPEZE()—FE. (1.1.5)

In Eq. (1.1.4) 0 is an energy flux. In an ideal dissipationless liquid:
- V2
0= (W—i—p;)ﬁ’, (1.1.6)

where W = E; 4 P is the density of the enthalpy (the enthalpy of the unit vol-

ume). To get (1.1.4) with Q from (1.1.6) we should utilize the thermodynamic
identity for internal energy:

dEy = TdS + udp, (1.1.7)
where u is the chemical potential, and use the expression for pressure:
P=TS+up—Ey=W —E. (1.1.8)
From the expression (1.1.8) we get:

dP = SdT + pdu (1.1.9)

1.1.2.1 Euler Equation

From Eq. (1.1.2) for linear momentum conservation and Eq. (1.1.1) for mass-
conservation we can get for an ideal dissipationless liquid:

AN
5+(V-V)v+;Vp—O. (1.1.10)

It is a famous Euler equation for an ideal classical liquid. At zero temperature
(T = 0) we can rewrite (1.1.10) as:

v - V2 . .
5+V(M+E>:v x(va), (1.1.11)

1.1.2.2 Potential Irrotational Flows

Note that for V x ¥ = 0 we have so-called potential (irrotational) flows. In this case:

v o V2
— — 11 =0 1.1.12
at+V(u+2> 7 ( )
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Correspondingly we can represent velocity as a gradient of some scalar
potential V = V.
For stationary potential flows %f =0and V (,u + %) = 0. Thus

2

,u—|—%=const, (1.1.13)

This equation is often called Bernoulli equation (see [1-5]).

1.1.3 Sound Waves in Classical Liquid. Damping
of Sound Waves

Linearizing the system of Eqgs. (1.1.1-1.1.3) for an ideal (dissipationless) liquid we
get the following set of equations:

36 .
Lt VT =0]] > (1.1.14)
7 -
poa—:+ TP =0, (1.1.15)
aa;sts+50§.§:07 (1.1.16)

where Jdp, 0P and JS are slowly varying and small (in amplitude) deviations of
density, pressure and entropy from equilibrium values in the sound wave. Thus
p(F,1) = py + dp(7,t) with [0p| < p, and so on. We also assume that the velocity
¥ in the sound wave is small ¥ = 6V(7, ¢). In fact it is a condition v < ¢, where ¢ is
sound velocity, which is required.

In ideal liquid all the motions are adiabatic. It means that the entropy of unit mass
Sy = S/p = const (where S is an entropy of unit volume). Thus S in Eq. (1.1.16)
yields 6S = Sy 0p and Eq. (1.1.16) for entropy becomes equivalent to Eq. (1.1.14) for
density. Moreover the pressure P = TS 4 up — Ey = TpSy + up — Ep (which in
general case is the function of Sy; and p) for adiabatic sound wave is a function only of

p. Thus for small deviations of pressure from equilibrium values 0P = (g—‘;) op,
Su

where by its definition we can introduce the sound velocity squared as:
oP
= (—) and 6P = ¢*dp (1.1.17)
op/s,
Correspondingly we can rewrite Eq. (1.1.15) as:

v L
poa—:—FCzVép:O (1.1.18)
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If we take the time derivative (0/0f) from Eq. (1.1.14) for density and space
derivative (ﬁ) from Eq. (1.1.15) for linear momentum, we will get:

o%*p -
oV F =0, (1.1.19)
poV -+ 2Adp =0, (1.1.20)

where A is an operator of Laplacian.
Substitution of (1.1.20) into (1.1.19) finally yields:

%
If we assume that dp varies in a monochromatic sound wave dp ~ eI e
will get for the spectrum:
? = k. (1.1.22)

Thus the sound spectrum is linear as expected. It corresponds to compressible
liquid where dp # 0 and j # 0.

1.1.3.1 Damping of the Sound Waves

The damping of sound in hydrodynamic theory is given by higher gradients
connected with dissipative terms in the system of Eqgs. (1.1.1-1.1.3). The spectrum
with an account of damping reads [1-5]:

o = ck + iy, (1.1.23)

w? 4 1 1
=5 1 e) oG- (124

n and ¢ are coefficients of first and second viscosity, x is heat conductivity, Cp and
Cy are specific heat at constant pressure and constant volume [7]. We can see that
the damping y ~ @ and thus it is small for @ — 0. Moreover in hydrodynamics
(collisional) theory we can write y ~ w’t = c’k*t and

where

/o~ ot <1, (1.1.25)

where we introduced a characteristic (scattering) time t. Note that if we consider
the damping due to the presence of the first viscosity n and take into account a

simple estimate from the kinetic theory [64] 5 ~ plv ~ pv?t, than y ~ (;’T? ~ %wzr

and indeed y/w ~ %ﬁwr, where T =1[/v is a scattering time, [ is a length of the
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mean-free path and v is the thermal (average) velocity (in Boltzman molecular gas,
for example). Note that in Boltzman gas c? ~v? and hence y ~ w’1.

We can conclude that hydrodynamic description (with the small damping and
the propagating sound waves) is valid for small frequencies wt < 1 or, corre-
spondingly, for small wave-vectors kI < 1. For larger frequencies wt > 1 we are
in a ballistic (or Knudsen) regime (see for example Physical Kinetics [64]). In this
regime we should start our theoretical analysis with a good kinetic equation in
classical or degenerate case (see Chap. 16) and derive the dynamic equations in the
collisionless (ballistic) regime.

1.1.3.2 Equation for Heat Conductivity. Overdamped Temperature
Waves

Let us analyze now Eq. (1.1.3) for the entropy increase. In the absence of the drift
velocity (for the liquid at a rest) v = 0 and Eq. (1.1.3) reads:

oS = (g R

—+ V-] == 1.1.26

o (T) T’ ( )
where § = —«k VT is a heat flux, « is heat conductivity, T is temperature, and R is

dissipative function.

If we are interested in small entropy and temperature deviations from the
equilibrium values, having in mind temperature waves, we can linearize (1.1.22).
After linearization we get:

655_£

—— — AT = 1.1.27
o 2T =0 ( )

where the entropy S and temperature T are given by: S = Sy + dS(¥,¢) and
T =Ty + 0T (7,t). To find the spectrum of the temperature waves (which will be
overdamped as we will see soon) we should express %S in (1.1.23) via the time
derivative of the temperature %.

For almost incompressible fluid (which is a legitimate approximation in this
case) 0S = pdSy, where Sy is an entropy of a unit mass. Assuming that correct
thermodynamic variables for mass entropy Sy, are p—pressure and 7—tempera-
ture, and, moreover that we can put p = const in temperature waves (see Ref. [1],
Sect. 1.3, and Chap. 3), we can represent the time derivative:

00S 008w _ p(aSM) 00T _ pCp0oT

000 0 pS0M o p (L) COT _Pop 112
o P or ), or T, o’ (1.1.28)

where C, = Ty (aas—;’)p is specific heat at constant pressure (see Refs. [1, 7], Sect. 1.3,
and Chap. 3).
Correspondingly Eq. (1.1.23) reads:

T
PCrOOT K psr =0, (1.1.29)
Ty Ot Ty
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Equation (1.1.25) is a famous equation for the heat conductivity (or a Fourier
equation as mathematicians often call it). For the monochromatic temperature
wave 0T ~ e ™Hid" we get:

. K 5 N
io=—qg°ormw=—I—¢q". 1.1.30
T o ( )

Thus we conclude that the spectrum of the temperature waves in a classical
liquid is overdamped and quadratic in the wave-vector q.

1.1.4 Rotational Fluid. Vorticity Conservation. Inertial Mode

If V x ¥ = 0 we can take curl from Lh.s and r.h.s. of the Euler equation (1.1.11).
Then we get:

@:@X(gx(ﬁxa)),orgzﬁx(vxa), (1.1.31)

where @ = V x V. This equation is an equation for vorticity conservation. Note

that for solid-state rotation ¥ = Q x 7 and hence @& = V x ¥ = 2@, where Q is an
angular frequency of rotation.

1.1.4.1 Inertial Mode in Classical Fluid

Let us consider uniformly rotating liquid with an angular velocity Q and find the
spectrum (k) in rotation frame for small variations of the velocity field vV =
Qx7+ OV(¥,t) on top of solid-state rotation. Let us consider an incompressible
fluid. Then V - ¥ = V - 6%(7, ) = 0. Correspondingly V x ¥ = 2Q + V x &¥(7, 1).
The linearization of Euler equation with an account of the thermodynamic identity
%ﬁP = Vu reads:

N 2
{gﬁ(%.v)ﬁx}awlj@ Pp<Q>2<r) +20x67=0 (1.1.32)
0

where ¥, = Q x 7 is a linear velocity of solid-state rotation. Note that in curly
brackets in the Lh.s. of Eq. (1.1.32) stands the operator which transforms the time
derivative of the vector 6V to the rotation frame. Thus

- 2
WV 1 (Qx?) ,
o+ —V|P—p—rt | +20 x5 =0 1.1.33
o o P +2Qx 0V =0, ( )
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where operator 0/0f refers to the rotation frame. In Eq. (1.1.33) we recognize a
S N\2
Coriolis force 2Q x 6V and a centrifugal force @(@) which are always

present in the rotation frame. We can also introduce an effective pressure

Py =P — p(Qa) Then

ooV

1
av+ Py +20 % 57 =0 (1.1.34)
Representing P,y = Poog + 0P we get:

?+ L Ssp 428 %05 =0 (1.1.35)

Applying operator of curl to Lh.s. of (1.1.34) we get:

0 = o 2 (R s
—(V X 0V) +2V x (Q x 6V) = 0. (1.1.36)

IfQ= Qé, than for V.67 =0 we get 2V x (ﬁ X 517) = —ZQ%V and

0 ooV
6,(V><5v) ~205-=0 (1.1.37)
For the monochromatic wave o ~ e~ +ik7
—iw(z‘é X (w) = ik, 2007, (1.1.38)

If we take a vector product with K of the Lh.s and the r.h.s. of (1.1.38) we get
with an account of incompressibility condition kov =0

k27 = ikzzg(ié X (w). (1.1.39)
Comparing (1.1.38) and (1.1.39) we conclude that —iw(l_c'xé\'f) =

ik, 20 22 (I: X 5v> and correspondingly

Ziok?

W’k = k247, (1.1.40)
Finally
k2 2(Qk
o —4Q2ﬁ,orw—%‘ (1.1.41)

This is a well-known inertial mode in an uncompressible ideal fluid. Note that it
is a Goldstone mode for k. /k — O where k* = k2 + k% and ki = (ks ky). Note also
that the spectrum w(k) in (1.1.41) is a spectrum in rotation frame.
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Let us discuss compressible rotating fluid now. According to Sonin [39, 40] the
spectrum in this case reads:

2 242
2 @ —Ck
The solution of this equation yields two branches for the spectrum:
1 1 2 1/2
o =2 (407 + ) £ |7 (497 + K) —(2Qck,)?| . (1.1.43)

In a fluid at a rest (for Q = 0) w; = ck and w, = 0. Thus we see that rotation
adds a second mode with non-zero frequency to the sound mode. The reason for
that according to Sonin is a Coriolis force: rotation makes the fluid rigid in the
direction perpendicular to rotation axis.

We can distinguish two regimes in Eq. (1.1.43): the regime of large k-vectors
k> % (or almost incompressible liquid ¢ — o0) and the regime of small k-

vectors k< %2

2
In the regime of largez k-vectors the solution of (1.1.43) yields w? = 4?(—2](3 for
the inertial mode and

20k, \*
wgzc2k2+< ki) (1.1.44)

for the modified sound wave.
In the opposite limit of small k-vectors k < % (compressible liquid, c is finite):

o] =40 + Ak and 3 = k2. (1.1.45)

Note that usually the space scale ¢/Q in a liquid (like “He) is extremely large (of
the order of hundreds of meters) and is not relevant to any real laboratory
experiment where typical size of the container with rotating liquid is 0.1 = 1 cm.
Thus the regime of small k-vectors where incompressibility condition fails is very
difficult to realize experimentally.

1.1.5 Two-Velocity Hydrodynamics for Superfluid Helium.
Vv, and vy, p, and p

Switching our considerations now to the hydrodynamics of a superfluid helium we
should start from the well-known phase diagram of “He (see [1-5, 8-13, 19, 21,
65, 66, 67] and Fig. 1.1).

According to Kapitza at zero (and small) pressures and temperatures
T ~ 2.2 K *He becomes superfluid. It has zero viscosity # = 0 and according to
Landau [1-5] and Tisza [10-13] can be described by two-velocity hydrodynamics.
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Fig. 1.1 Phase diagram of “He [21]. There is no triple point where the liquid, solid and gas
phases would meet. At P =0 “He becomes superfluid for 7' < 2.2 K (see [1-5]). For pressures
P > 26 Bar and low temperatures we have solid phase (with hcp and bee crystalline structures).
There is a shallow minimum on the P-T curve for solid-superfluid phase-boundary at
T~ (05-0.6)K

Note that for pressures P > 26 Bar and low temperatures “He becomes solid [95—
97] and is either in hcp or bee crystalline phases (see Chap. 2 for more details). At
low pressures and high temperatures we have normal “He which is in a phase of a
normal bosonic liquid or in a gas phase (see Fig. 1.1).

For temperatures 0 < T < T¢ Landau and Tisza proposed to describe superfluid
“He (or He-II in terminology of Kapitza) in terms of superfluid and normal den-
sities p, and py, and superfluid and normal velocities v, and V; respectively, where

p=ps+ Py (1.1.46)
is a total density, and a total mass current (total density of linear momentum) is
given by:

Jﬁ:pvv—&—p,,vn—jo—i-pvY (1.1.47)
In Eq. (1.1.47)

Jo = pu(¥a —¥y) = p,W (1.1.48)

(where W = ¥, — ¥, is relative velocity) describes the motion of normal compo-
nent in the reference frame where a superfluid component is at a rest (¥, = 0).
According to Landau the normal density in 3D case is given by:

__l ang(e/T) 2 dgﬁ
_ 3/ P (1.1.49)

n

where ng(e/T) is bosonic distribution function of the quasiparticles and corre-
spondingly np(e/T) = - —7—. Thus the normal density is closely connected with the
spectrum of elementary excitations [1-5, 19] in superfluid helium (see Fig. 1.2).


http://dx.doi.org/10.1007/978-94-007-6961-8_2
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Fig. 1.2 The spectrum of Energy (K)

elementary excitations in 30k

superfluid “He [14, 15, 21, 23,

94]. At small wave numbers

the spectrum is almost linear
20 p

and corresponds to phonons,

while at larger wave numbers l

there is a minimum in 1ok 5

E(k) which corresponds to

rotons

Rotons

Phonons

1 1
0 1.0 2.0 3.0
Momentum (wave No in 1&")

There are two main branches of the elementary excitations according to Lan-
dau, Feynman theory—phonons with almost linear spectrum ¢ = cp at small p and

2
rotons ¢ = A + Q’;};’Z o) The sound velocity in “He at zero pressure ¢ = 2.4 -

10* cm/s. The roton spectrum is described by the parameters A = 8.7 K; po/
i=19-10°cm™" and m" = 0.16 m of *He. Correspondingly the phonon con-
tribution to p, reads (see [23]):

2m2T?
(pn)ph: H7 (h = 1) (1150)

while the roton contribution (p,,), ~e /T

The simple estimates show that the phonon contribution to p, is dominant for
low temperatures 7 < 0.6 K, while for higher temperatures rotons are more
important. Note that the condition (p,(T = T¢)),= p yields a rough estimate for
Tc =~ 2.2 K in superfluid helium (*He) (see Fig. 1.3).

Fig. 1.3 The temperature
dependence of py/p and p,/p
in superfluid “He from
Superfluid Hydrodynamics by
S. Putterman [16]. For T = 0
pd/p =1 and p,/p = 0 while
in the A-point (at T¢ = 2.2 K)
vice a versa pJ/p = 0

and p,/p =1 05t
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Note also that the spectrum of elementary excitations on Fig. 1.2 according to
Landau defines the critical velocity vc = min (¢/p) for the destruction of the
superfluid flow.

1.1.5.1 The System of Hydrodynamic Equations

To derive the system of hydrodynamic equations for superfluid “He we should use
again the Galilean invariance for the total energy:

=2

- Vv

where E, is an internal energy in the reference frame K, where v; =0, =

f'o + pV, (see Eq. (1.1.47)). Moreover the internal energy E, satisfies the thermo-
dynamic identity [1-5, 14, 15]:

dEy = TdS + udp + Wdjo, (1.1.52)

where jy = pnv_ff and W = ¥, — ¥, is relative velocity.
Applying again Landau scheme of the conservation laws after some simple
algebra we get the following system of equations:

Fiv.7=0 1.1.53
5 TVi=0 ( )
SRR LS B x(@x*) (1.1.54)
3 5yt H =V Vo), 1.
as .4\ R
Bie (sw?)T, (1.155)
0j; Ol
Ji =0 1.1.56
ot Oxy, ( )

The first Eq. (1.1.53) yields the conservation of mass, the second Eq. (1.1.54) is
Euler equation for superfluid velocity vy, the third Eq. (1.1.55) is an increase of
entropy due to normal motion only [superfluid component does not carry an
entropy and thus we have SV, in (1.1.55)]. Finally fourth Eq. (1.1.55) corresponds

to the conservation of total mass current j in Eq. (1.1.47). In Eq. (1.1.55) the
momentum flux:
i = puvnivak + psVsivsk + Poix + ik

ViV (1.157)
= Vyijik + Vakjoi + Poix + T

is a natural generalization of the expression for ordinary classical fluid, m; is
dissipative momentum flux corresponding to viscous contribution, P = TS + up +
p,(¥n — %)% — Ey is the pressure and accordingly:
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dP = SdT + pdy + jodW (1.1.58)

These 4 equations (2 of them have 3 Cartesian projections, so in total we have 8
equations) are consistent with the energy-conservation law (see [1-5]):

aE = —
—+V-0=0, (1.1.59)
ot
where the energy flux
— _‘ V2 - SR —
Q=TS + (u + i)] + ¥ (Vjo) + Quis (1.1.60)

and dissipative part of the energy flux:

Qzlis =dqi + Tik Vnk + lII(]! - PVm')~ (1161)

Correspondingly the dissipative function R in the equation for entropy increase
(1.1.55) reads:

7676]1 av,,i

R= L
T ik axk

— ¥V . (f—pv,) > 0. (1.1.62)

Note that R should be positively defined, quadratic in gradients function.

1.1.6 First and Second Sound Modes in Superfluid Liquid

Two-fluid hydrodynamics describes not only a standard first sound wave, but also
a second sound wave. First sound mode as usual demands finite compressibility of
the system dp # 0; 0P # 0 and is governed by the relation (see Sect. 1.1.3):

oP
o’ = cik*; cf = <5>S (1.1.63)

For the second sound we can consider an incompressible superfluid where
0p = 0. Thus from the continuity equation we get V- 9j = 0 and can safely put:

0 = p, 0% + p, 0%, = 0 (1.1.64)
Hence
v, = — 2 5, (1.1.65)
Ps

in a second sound wave.
From the conservation of linear momentum we have % + V;0P = 0 and cor-
respondingly for Jj; = 0 we get P = 0. On the other hand we know that
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dP = SdT + pdu (1.1.66)
Hence if 6P = 0 then
dTr
d,uz—S; (1.1.67)

in a second sound wave.
Now we can consider the linearized Euler equation for superfluid motion % +
V;iou = 0 and rewrite it via ov,; and 6T as follows:

B 96T =0. (1.1.68)
toop

Note that the relative velocity in the second sound wave W = &%, — OV, =
(1 + %) oV, = pﬁ ov,. Finally we can use the equation for entropy increase. In the

absence of dissipation it is given by:

00 -
a—tS+SoV~5Vn=0 (1.1.69)

Expressing again 6S via 07T: 6S = (%)P(ST = %5T we get

0T ST =
— 4+ —— V-V, =0, 1.1.70
o + C V- ov ( )
where Cp is specific heat per unit mass at constant pressure, Sy is entropy in
equilibrium. The system of Egs. (1.1.68) and (1.1.70) allows us to find the spec-
trum of the second sound wave. Differentiation of Eq. (1.1.70) with respect to 0/0t
and of Eq. (1.1.68) with respect to 0/0x;, and after that the substitution of (1.1.68—
1.1.70) yields:

S Cp -

NPsAr - Py, (1.1.71)

Pn P S()T

Thus for the spectrum we get

o’ = chk?, (1.1.72)
where
T$?
2 =2Ps (1.1.73)
CPpnp

is a velocity of a second sound squared and we skipped the subscript for the
equlibrium entropy (S = Sp). It is a second sound Goldstone mode which distin-
guishes superfluid liquid from a normal one where we only have overdamped
temperature waves. We can say that a second sound is a sound in the subsystem of
thermal normal excitations (phonons and rotons). For low temperatures 7' < 0.6 K
in superfluid “He the normal density p, as well as entropy S and specific heat Cp
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Fig. 1.4 The temperature c./c
dependence of the ratio cy/cy I 1
in superfluid “He from a1
Putterman [16]. For \/5
T<05Kcy/er — 1//3.

In the Z-point (at T = 2.2 K)

CII/CI =0

are mostly governed by phonons with linear spectrum. In this region in 3D system
cy = c,/\/§ (In 2D ¢y = c,/ﬁ) (see Fig. 1.4). At higher temperatures cyy is
governed mostly by rotons. For T = T¢ (A-point) ¢y = O (see Fig. 1.4).

1.1.7 Gross-Pitaevskii Equation for Dilute Bose-Gas.
Connection Between Superfluid Hydrodynamics
and Microscopic Theory

For weakly non-ideal repulsive (Bogoliubov) Bose-gas we can establish the con-
nection between the microscopic equations for superfluid hydrodynamics for

irrotational liquid (6 X Vg = O) at T = 0 and gradients and time derivatives of

the order parameter:
W(7, 1) = \/ng(F,1)e' ") (1.1.74)

where p,(7,1) = mny(7, 1) = m|\¥|*.

To establish this connection we should use Gross-Pitaevskii (GP) equation for
the order parameter ¥ [68—71]:
O "A . L -
ihs = <_%+ Veu(P) + & ¥ (7, t)|2>'~I’(r, 1), (1.1.75)
where V,,;(¥)—is an external potential (confinement potential of a magnetic trap,
for example, see Chap. 4), g = % is a coupling constant and a is an s-wave
scattering length. GP equation is valid if the Bose-gas is dilute na’ < 1 and the
number of particles in the trap is much larger than 1. As usual we can introduce

¥, =2V for superfluid velocity and p, = m|W(7,1)|* for superfluid density.

Tm

Substituting (1.1.74) into (1.1.75) and separating real and imaginary parts in
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(1.1.75) we obtain 2 equations for superfluid hydrodynamics at 7 = 0 and in the

absence of vortices (6 X Vg = 0):

o =
~ * K} _—0,
t+ V (pv)

6_‘75+@ +v_§ Y (1.1.76)
ot ko) =%
In (1.1.76) we introduce a chemical potential:
mp = Vo (F) + gn (1.1.77)

assuming that the phase of the order parameter ¢ in (1.1.74) varies more rapidly in
space and time than |\W| = /i, (quasicalssical or eikonal approximation [6]). Note
that o = %5P in (1.1.77) and hence the pressure P contains the term gn2/2 [68, 69].

1.2 Hydrodynamics of Rotating Superfluids

In this Section we provide the basic notion for the standard hydrodynamics of a
superfluid liquid with large number of quantized vortices, which includes the
elasticity of the vortex lattice and the scattering of normal excitations on the
vortices [14, 15, 27-31]. We will start the presentation with the short description
of the famous Andronikashvili experiments which measure the ratio of p,/p or,
more precisely, non-classical moment of inertia in slowly rotating superfluid “He
[17, 18].

1.2.1 Andronikashvili Experiments in Rotating Helium

If we rotate a cylindrical vessel with an ordinary normal (classical) liquid (see
Fig. 1.5), than due to the boundary conditions in the viscous liquid on the con-

tainer wall the tangential component of the velocity v, = _‘Wﬂ,, QxR , where Q

Fig. 1.5 Cylindrical vessel
with superfluid “He rotates

with an angular velocity Q.
R is the radius of the vessel
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is an angular velocity of the rotation, R is the radius of a cylindrical vessel which
contains the liquid. Thus in this case all the liquid participates in solid-state
rotation. In contrast to this in superfluid liquid only normal component follows the

walls of the container v,, = Q x R, while frictionless superfluid component stays at
a rest at slow rotations.

As a result at small angular frequencies the response of a superfluid on rotation
is governed not by the total moment of inertia I ~ MR* (M—is the total mass of

the liquid in the container), but only by its normal fraction p—p”[ = (l — %) I. It is

non-classical moment of inertia. This fact was used in Andronikashvili experi-
ments to measure p,/p [17, 18]. In his first experiments he used a sequence of
parallel disks with small distance (smaller than the viscous penetration length
1/2

5,7:(%) see[1-5, 17, 18] and Fig. 1.6) between them. Then he can consider
that all the normal part of the volume of liquid “He between the rotating disks
participates in rotation.

The scheme of updated experiments on the measurements of non-classical
moment of inertia is presented on Fig. 1.7a. In updated Andronikashvili-type of

Fig. 1.6 First experiments of
Andronikashvili [17, 18] with
a sequence of parallel disks
for measurements of the non-
classical moment of inertia.
The viscous penetration
length §, = <$—/’Zn)l/2 is
smaller than the distance
between the disks [17]

y 7|
:
: 7
1
¢ e, e ;
1 - oz
1 1
’ oty 4
] — e 5
] s ’
/ iy [
i . il
] - 1
T Fl
L E 5
> el %
< o




22 1 Hydrodynamics of Rotating Superfluids with Quantized Vortices

(@) [ (b) —r—_—_1|
Be-Cu -
Torsional Rod
E' Av

Torsional Bob <
containing
helium 2

» "

Drive L g
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Fig. 1.7 A qualitative scheme of updated Andronikashvili-type of experiments on torsional
oscillator by Chan et al. [72, 73] for the search of supersolidity in solid “He. On Fig. 1.7a we
present a sketch of the experimental setup with torsional bob containing helium. On Fig. 1.7b we
show the amplitude of the oscillations and the quality factor of the measurements Q = vy/Av for

the resonance frequencyvy = 1/19, where 19 = 271+/I/K is the resonance period, I is the moment
of inertia and K is rotating rigidity of the rode

experiments torsional oscillator is used. It is an ideal method for measuring of the
non-classical moment of inertia (and thus of a transition to a superfluid state py/
p # 0) especially in solid “He (see Chap. 2 and [72, 73]). In these experiments the
time-period 7, for the returning of the rode (of the string) in the initial position is
measured using a torsional oscillator with a resonance frequency vy = 1/ty. More
specifically experimentalists measure the period 19 = 2m+/I/K for the container
with Helium which is attached to a torsional rode. Note that / is the moment of
inertia and K is rotating rigidity of the rode.

This scheme was used in recent experiments of Kim and Chan [72, 73] on the
search of supersolidity [74, 75] in solid crystalline *He. The typical resonant
period in this type of experiments 7y ~ 1 ms, stability in 7 is given:
0T~ ‘57’(10 ~5-1077, and the quality factor Q = vo/Av ~ 2 -10° (see Fig. 1.7b),
where vo = 1/ty ~ 1000 Hz is the resonance frequency.

1.2.2 Feynman-Onsager Quantized Vortices. Critical
Angular Velocities 2¢c; and €2,

The situation with non-classical moment of inertia occurs at low angular velocities
Q < Qcy. For Q < Q¢ (Qc; is the first critical angular velocity) the first Feyn-
man-Onsager [19, 20] quantized vortex line appears in the center of cylindrical
vessel. According to Feynman and Onsager the velocity field of single quantized
vortex can be found from the quantization of the circulation of a superfluid
velocity:
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. h
l"v:?{\_fsdlzzn—, (1.2.1)
m
C

where 7 is Planck constant, m is the mass of “He atom.

In fact I, = Aphi/m where A¢ = 27 is the phase change on the contour. Note
that in the absence of vortices we can introduce a scalar complex order-parameter
Y= \/n—se’” which describes a superfluid state of “He [23]. Correspondingly
|‘I’|2: ng and mng = p—superfluid density, while v, =fi/m 6(/) is superfluid
velocity. Thus 2z /i/m is a natural unit to measure the circulation of a superfluid
velocity in (1.2.1). It is often called as a circulation quanta. Note that, in principle,
the vortices with larger amount of circulation quanta I', = 2znfi/m (n > 1)can
be also stabilized in superfluid “He. When the first vortex appears at 7 = 0 (in the
center of cylindrical vessel) the superfluid velocity still can be represented as

Vs =h/m @(p for all distances 7 # 0. Hence it immediately follows that

r,= jgffsdf': %Ago. In the absence of vortex the phase change A¢ = 0. In the
C

presence of a first quantized vortex Ag = 2n and we get (1.2.1).

Correspondingly from the Gauss theorem [ s(ﬁ X 173> ds= ¢ Vodl = 271% we
c
easily obtain that:

o 2nh
V X ¥, = %5(?)51 (12.2)

The solution for V; which satisfies (1.2.1) [and also (1.2.2)] reads:

v, =% (1.2.3)

mr

where €, is a tangential unit vector [remind that in cylindrical coordinates (r, ¢, z)

we have the triade of mutually perpendicular unit vectors é,, €., €; and thus dl =
rdpé, in (1.2.1)].

1.2.2.1 Critical Angular Velocity Qc¢;

The first critical angular velocity Qc; can be found according to [23] from the
minimization of the Free-energy in the rotating frame:

AF = E, — (M,Q) <0 for Q> Q¢, (1.2.4)
where AE = E, is the kinetic energy of the vortex line

N
E, = /ps Zdv =25 n(R/d), (1.2.5)
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where L is the height of the container and d is the vortex-core, which is normal due to
the violation of Landau criteria of superfluidity (v = led > c;—exceeds the first
sound velocity for d of the order of interatomic distance). Note that from the spectrum
of quasiparticle excitations in superfluid “He (see Fig. 1.2) we get v, = min(e/p) =
¢; for the critical velocity of a destruction of the superfluid flow. In superfluid “He
d ~ 3 = 4)A, R ~ 0.1 cm for a typical radius of the container with helium.

In the same time M, in (1.2.4) is an angular momentum associated with a vortex
line:

2

hR
M, = p, / v dV = mp L——. (1.2.6)
’ S m 2
Correspondingly the first critical angular velocity:
E, h R
Qe =—=—>In— 1.2.7
M, T mR " d (1.2.7)

can reach 0.1 rotations/s in “He.

1.2.2.2 Critical Angular Velocity Q,
At very large angular velocities the normal cores of the vortex lines start to

overlap. As a result all the volume of a superfluid helium becomes normal. It is
evident that

Qe =

11
i 10, (1.2.8)
where S = 7d” is an area of one vortex core. Thus Qc, in dense superfluid helium
is very high and practically unachievable. Note that in dilute weakly non-ideal
Bose-gases in a confined geometry of magnetic traps from the solution of Gross-
Pitaevskii equation [23, 68-71] the vortex core &, = ﬁ, where a is an s-wave

scattering length (see [23, 75, 76] and Chap. 6). Thus in dilute case na® < 1:
&o > a and the condition Q¢ = sz is easier to fulfill (note that often a ~ din a
mng;
dilute repulsive gas).

Of course from the definitions (1.2.7, 1.2.8) we have very direct correspondence
between critical angular velocities Qc; and Q¢, in superfluid “He and critical

magnetic fields in type-1I superconductors.

1.2.2.3 Macroscopic Averaging for a Large Number of Vortices

In between Qc; and Qc, we have a system of quantized linear vortices. Their
velocity circulations I'y [see (1.2.1) and Fig. 1.8] cancel each other inside the
vortex region and enhance each other outside the vortex region—thus the vortices
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Fig. 1.8 a Rotating (a)
superfluid helium with large
number of vortices for
angular velocities O (b)
QC] < QK ch. b The
vortex circulations cancel
each other inside the vortex
region and enhance each
other outside the vortex
region. Thus the superfluid
component mimics the solid-
state rotation [22]

of the same “charge” (same circulation) mimic solid-state rotation for superfluid
component effectively performing macroscopic averaging (see [14, 15, 27-30])
over an area containing a large number of vortices (but still much smaller than a
container area mR”). We can introduce an averaged vorticity @ = V X ¥, & 20
(thus an averaged superfluid vorticity vy #%@(p). The average vorticity is con-
nected with the number of vortices in 1 cm? (with the 2D vortex density):

-
n,— = |d| = 2Q, (1.2.9)
m
where n, = 1/nb? and b is the mean distance between the vortices. The unit vector

V= % defines the average orientation of vortex lines. We can say that the mac-

roscopic averaging is valid in the long wavelength-limit £ > b or equivalently
when kb < 1.

1.2.3 Vortex Lattice. Nonlinear Elasticity Theory. Vorticity
Conservation Law

For Qc; < Q <« Q¢ the developed structure of the vortices form a triangular
lattice similar to Abrikosov lattice in type-II superconductors in a magnetic field
(see [24] and Fig. 1.9). The state of the vortex lattice, whose parameters vary
slowly in space and time, in the non-linear elasticity theory [31] is convenient to
describe by the vectors the &,(7,t), a = 1, 2 which are equal to the local values of
the vectors of elementary translations of the lattice in the 2D plane perpendicular
to the vortex lines.
1 qab

We can also define the vectors of the reciprocal lattice: é* = —<¢

where s—is the area of elementary cell in real lattice, g2 =gl =1,¢, =

W X Eb]

&y =0,V= %[E | X &)] is a unit vector parallel to the vortex lines (we will see that

V= ®7 where & = V x ¥, is vorticity—see Fig. 1.9). Note that || # 1—vectors
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Fig. 1.9 2D triangular vortex lattice for Qc; < Q < Qc; in the plane perpendicular to the
vortex lines (to the unit vector ¥ = ‘% where @ = V x V). The lattice is convenient to describe

in terms of the vectors & (7, t), € (¥,t), which are equal to the local values of the vectors of
elementary translations of the 2D lattice

of the reciprocal lattice ' and & are not the unit vectors. There are evident
equalities:

gagb = 52; eaie‘,j = (3,'1( — ViV (1210)

between real and reciprocal lattices, where {i, k} = {x, y, z} are Cartesian coor-
dinates. Nonlinear elasticity is described similar to General Theory of Relativity
by metric tensors [77]:

@ — gigh,

Sab = 8uy; g N R (1.2.11)

We can also introduce a local velocity of the vortex lattice Vi (7,¢) in the
direction perpendicular to the vortex lines. Thus (V. V) = 0 by definition. If v is
known and the functions &°(F) at the initial time moment are specified, we can
determine ¢ at the nearby time moment, i.e. the derivative % via V(7 1). To
establish this connection we express the physically infinitely small differential of
the coordinates d7 (which is large compared with the lattice period, but small
compared with the distance over which the vortex configuration varies) in the form
(see [31] for more details):

d7 = Z,dN". (1.2.12)

The quantities dN* for two lattice points separated by a distance dF are the two
projections of d7 measured in units of the corresponding lattice periods. These
quantities, obviously, are not altered by an arbitrary elastic deformation (in the
absence of dislocations).

From (1.2.12) we get:

AN = &°dF = &dF, (1.2.13)

where & and d7, are respectively the period of the reciprocal lattice and the
difference between the coordinates of the undeformed state. From (1.2.13) we see
that:

& = VN (1.2.14)
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Correspondingly
Vx & =V x (%N“) — 0. (1.2.15)

Thus the specified functions N*(7,¢) determine completely the configuration of
the vortex lines. We can say that N“(¥, ¢) defines the number of sites (or nodes) of
the vortex lattice in the direction of an elementary vector €”. Moreover if we
consider the vortex lattice without vacancies or dislocations, than each site of the
lattice is singly occupied and the number of sites (or nodes) is conserved. We can
conclude that N* is a topological invariant (see Andreev and Kagan [31]) and we
have a very convenient technique for all the problems of the non-linear theory of
elasticity.

To establish the relation between % and ¥,(F, ) we note that the unit vector
it =¢'/e! is the normal to the corresponding crystallographic plane (to the plane
defined by the vectors &, and V) and d = 1/e' is proportional to the local value of
the interplanar distance. From simple geometric considerations we get:

i+ V(i -V)i=—-VV+ii-VV);
. . . (1.2.16)
d+ V(i -V)d=d@i V)V,

where V = (Vi) = (¥.é')/e' is the projection of the velocity normal to the

considered crystallographic plane.
From (1.2.16) we obtain:

&+ V(@) :V(fix (ﬁxél)). (1.2.17)

A similar relation holds also for €.
Taking into account that V xeé =0we finally get:

%Jr V(@) = 0. (1.2.18)

Thus comparing (1.2.18) and (1.2.14) we obtain:
VL = —&,N* (1.2.19)

Note that the variables analogous to N* were considered for the vortex lattice by
Volovik and Dotsenko [78].

In macroscopic hydrodynamics of a rotating superfluid liquid one introduces an
averaged velocity Vg of the superfluid component, whose curl is determined by the
direction and the density of the vortex lines, as well as the circulation quantum
27 ii/m. Since the unit area s of the real lattice is equal to g'%, where g is
determinant of the metric tensor g,,, we have:

2nh . 2nh 2nh

)
=" = . 1.2.20
ms mg <el % 62) m (e e ) ( )

V x Vg
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By differentiating (1.2.20) with respect to time and using (1.2.18) we obtain the
equation of the vorticity conservation:

D=V x¥,=Vx (¥ xd). (1.2.21)

1.2.4 Hydrodynamics of Slow Rotations. Hall-Vinen Friction
Coefficients [ and f'

In accord with the general Landau method of deriving the hydrodynamic equations
from the conservation laws [1-5], we introduce in the case of slow rotations two
velocities V; and V, and search for the system of equations in the form of the
conservation laws [similar to the system of Egs. (1.1.53-1.1.56)]:

. = 2 a.i 0
p-l—V']:O; ai—i-a—l'[,-k:O

! ’I;k (1.2.22)
§+ V- (87, +3/T) = 73 vsvax(ﬁxst%,

where p, S andfare the mass, entropy and momentum per unit volume, while ITj,,
g, R > 0 and ¢ are the quantities to be determined. We must also find the con-
nection between the velocities V,, v, and V. The criterion is the requirement that
the energy conservation equation should be automatically obtained form the sys-
tem of Eq. (1.2.22).

The Galilean transformation formulas (similar to Eqs. (1.1.51) and (1.1.47)):

2
Vs | 72 e -
E:pis +joVs + Eo;  j=Jo+ pVs (1223)

connect again the energy E per unit volume and the momentum j with their values
Eyand fo in a system where V; = 0. The energy E, can be regarded as a function of
0, S, fo, and the metric tensor gab, so that:

|
dEy = TdS + pdp + (¥, — Vs, dj,) + Ehabdg“”. (1.2.24)

Equations (1.2.22-1.2.24) differ from the corresponding equations of Bekare-
vich, Khalatnikov [14, 15] in that the vortex conservation condition (1.2.21) is
taken into account in (1.2.22) in the equation of the superfluid motion, and also in
that the dependence of the energy of the deformation of the vortex lattice is fully
taken into account in the identity (1.2.24).

Differentiating with respect to time the first equation for energy in (1.2.23) we
obtain by using (1.2.23) and (1.2.24):

E+V {00+ G+ viric + P — p¥) + virhaelel} =
=R+ T+ mp Q2+ WV - (= p¥) + {F — 0, @ x (7 — p¥) + 8V - (hap@®)}.
(1.2.25)
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While deriving Eq. (1.2.25) we used Eq. (1.2.18) for a" and ae which yield:

og” 0 2 2 = = I
gt =5, (@) = ~(@-V)@me) - (V)3 (1.2.26)
In (1.2.25)

2
Tk — Hik - Péik - Vsijk — Vnkj0; — habe?ei. (1227)

2
- Vo= — N
Qo = (u + —3>J + STV, + Vi (o),

2 L=
\{I:_<'u_|_?s+(p); P:—E0+TS+MP+(Vn_VSaj0)'

Note that from (1.2.26) it follows the equality
%hahgab + %thab aa:
=~V {hupe' (VL — V,,é")} — aa;"f (hapetel) + {V, — V,, @ @ - (hape?)}
(1.2.28)

The form of (1.2.25, 1.2.27) enables us to determine the energy-flux vector:

0 = Qo + G + v + Y — p¥) + vichapeliel (1.2.29)

and the dissipative function:

_'ﬁT 6 ni rd —
R= —CIT - ””‘aka —Wdiv(j — p¥,)
- {VL =V, (@ X ﬂ) X (= p¥) + &V - (ha )} (1.2.30)

From the condition that R is positive it follows that the unknown quantities ¢,
Ty, P and ¥, — V| —(the symbol L means that we are dealing with the projection
of the corresponding vector on a plane perpendicular to ¥) can be written in the

general case as linear combinations of all conjugated variables VT, %V"', etc.,
contained in (1.2.30). We shall not write out the unwieldy general formulas and
confine ourselves, as usual, to the mutual friction effects described by the last term

in (1.2.30). We have:

s = =a{fi =+ @ X DY (') -
—ﬁ{?x G — p¥) +mg &V - (ha? )}

where o and f are certain coefficients with f# > 0. Since at 7 = 0 there is no
normal part, so that V; should be independent of V,, it follows that the constant o
should be equal to—1/p. If we put o« = —1/ps +f’, the constants  and 8’ will
vanish at 7 — 0, that coincide with the friction coefficients introduced by

(1.2.31)
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Bekarevich and Khalatnikov [14, 15] and differ from the constants of Hall and
Vinen [37, 38] by a factor p,/2pps.
At zero temperature we obtain from (1.2.31):

mg'/?
2nthp

V-V = (@ X V)V - (hg@”), (1.2.32)
which is the generalization of a known relation [48-50, 78] to the case of arbitrary
and not small deformations of the vortex lattice.

1.2.4.1 The Physical Meaning of #, ' Coefficients. Elementary
Estimates

The coefficient f8 is a dissipative coefficient, while f’ is a Hall-like dissipationless
coefficient. According to Iordansky [41] to get the feeling about coefficients 5-s we
should consider the elementary excitations with momentum p and energy &(p)
approaching the vortex and thus experiencing the velocity field of the vortex vy
(see Fig. 1.10).

According to the requirements of the Galilean invariance &(p) = &(p) — pv; or
more rigorously

e(p) = e (P) — P(Vs — V) (1.2.33)

for the spectrum of quasiparticles (if normal excitations have a drift velocity V,,).
Thus according to Iordansky and Sonin [39-41], an effective interaction:

Hine = p(V, — V) (1.2.34)
arises in our system. According to the elementary kinetic theory

1 1

~N —— ~

nyal  nyovty’

(1.2.35)

where v = % is a group velocity for elementary excitations, o is the cross-section,
ny is the density of vortices, 1y is the scattering time due to Umklapp processes
1/ty ~ BpQ [37, 38]. Note that we need Umklapp processes [64] connected with
the vortex lattice to have the relaxation of the quasiparticle linear momentum. For
a rough estimate we can find an impact parameter a (¢ = na®) from the

Fig. 1.10 The scattering of %
the normal excitations with /
momentum P on the vortex P

line, which creates the
velocity field V; (outside the
vortex core &y ~ d)

=
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quasiclassical turning point, that is &(p) — p¥;(a) = 0 (for ¥, = 0). For a single

vortex line vy = %Ew and if we have, for example, a roton with an energy &y(p) =

Ao+ 22  for p ~ p, then Ag =20
0 T, P = po, then Ag = - Or
h
a= mLA(; > (& ~d) (1.2.36)

for the impact parameter. If a ~ &, ~ d we can say that the normal component
scatters on the vortex cores, which are also normal.

1.2.5 Linearization of the Elasticity Theory. Connection
Between V; and i in Linearized Theory

When we expand the hydrodynamic energy and hydrodynamic equations in
powers of deformation it is convenient to put
N =Nj —u" (1.2.37)

for the number of nodes N°, where N = €%7 and € is a non-deformed unit vector
of a reciprocal lattice. We can also introduce the displacement

i = &,qu" (1.2.38)

which is a 2D vector perpendicular to the axes of undeformed vortices.

1.2.5.1 Shear, Compression and Bending Elastic Modulus

We represent the elastic energy (the energy of vortex repulsion due to the lattice
rigidity) E.; per unit lattice volume in the form:

E,=E +E, (1.2.39)

where

np, (h 2 1
E =—23(= In— 1.2.4
T (m> i nnvd2 ( 0

is a compression energy, ny = % = -L is the density of vortices per unit area, E, is
shear energy (which depends on the shape of a deformed unit cell) (see Elasticity
theory [63] for the details).

Accordingly

 20E,

1 2
g = hy) + ). (1.2.41)

hab
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Differentiating E; with respect to g* with the allowance for the identity
— édg = gupdg™ and linearizing the result with respect to the deviations 5g* of
the metric tensor from its value g*(0) in an undeformed triangular lattice, we
obtain:

hQ b 1 1
hi}) = p, . {lna (gfl(;) — 0gap + ngl?,)égﬁ) — 1852)532}7 (1.2.42)

where 7h? ~ % ~ % is the mean distance between the vortex lines, Q =

(nh/m)g;'/? is the angular velocity of the rotation, and
0 c c 0 c
08ap = gfg)gl(,d)ég 4 ogt = gE.d>5g a, (1.2.43)
The constant term appears in (1.2.42) because at equilibrium the energy that has

a minimum is the energy in the rotating coordinate frame. We express the shear
part hfj,) of the full A, in the form:

1 :
Wy = 1, <5gab - Egs;),)égZ), (1.2.44)

where u, = pS% is the shear modulus calculated by Tkachenko [32-34] for the
triangular lattice.

The quantities dg,, and €* can be easily expanded in the displacement # by
using Eqgs. (1.2.11) and (1.2.14). As a result we get the following expression for the
elastic terms that enter in Eq. (1.2.25) for vy:

L e - nQ - R 0%

F =&V (hat") =20 1p, + p. <2VL(V i) — AM) - P20,
(1.2.45)

where
h b

A=-—In-. 1.2.46
2m nd ( )
If according to Tkachenko we introduce the compression modulus u, = —u, =

— % p, (where y is the shear modulus), and a bending modulus u, = p,2Q4 (see
[35, 36]) we can rewrite Eq. (1.2.35) as:

. - 0%
F=200V.p, + 1.V (Vi) — pA i — 'ubﬁ_z;l' (1.2.47)

Note that it is convenient to introduce the longitudinal (c;) and the transverse
sound velocities (c,) in the vortex lattice according to the standard relations of the
Elasticity theory [63]:

pe = 2py(ci — 2¢*) and pi; = 2p,c?. (1.2.48)
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In our case

Qo
2 2 S
= = =—— . 1 .2_4

t ] 8m ng ( 9)

As the result for the elastic terms which enter the system of equations for
hydrodynamics of slow rotations:

%

F=20\V,p, —2p,2V (Vi) — 2p,c2A i — o (1.2.50)

% (hape?el) = —2p, QA Vi(V - ii) + F, (1.2.51)
k

Let us emphasize that the first term in the right-hand side of Eq. (1.2.51)
—ZpsQlﬁ( V- i) can be left out upon the normalization of the pressure in (1.2.38)

P— P—2pQAV -ii) (1.2.52)

and a simultaneous replacement of the chemical potential y in Eq. (1.2.22) for the
superfluid motion (for 0V,/0f) by the chemical potential of the liquid without
allowance for elasticity. Indeed, in the linear approximation we have:

d’u = 7%dT +%dP - %fod(‘_}n - ‘_;Y) +$h“hdgab

i N 1.2.53)
e T e - (
= —2dT — 2 jod(V, — Vs) + ;d(P — p2QA(V - i)).

Let us point out that when Eq. (1.2.35) for F is substituted in Eq. (1.2.26) for v,
at T = 0, we get the customary employed equation (see [39, 40, 48-50])

1
2p,Q

- — m - -,
VL — Vs = m( X V) ~ (F X ez), (1254)

where &, = ¥ is a unit vector in the direction of the undeformed vortex lines and
ps(T' = 0) = p.

1.2.5.2 Connection Between v, and i in Linearized Theory for 7 = 0

Let us find first the relation between V; and . To get this relation in linearized
theory we use the Eq. (1.2.19) ¥, = —&,N* and the Eq. (1.2.27) N§ = N* —u”,
where ii = €y,u’. Note also that & = @Ng, where & are the vectors of an

undeformed but uniformly rotating lattice. Therefore é"é =Q x €; and

N = (G 8)7 = —7o2; (1.2.55)
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where vy = Q X Fis a linear velocity of a solid state rotation. We should also use
the condition ¥,V = 0 where ¥, = ¥y + 0V, and V¥ = &, + JV in linearized theory.
dii

Having in mind that 6V~ & we finally get:

. o oii -
VL—\70+ﬁ+(VO-V>ﬁ—EZ(Van> ~Qxi (1.2.56)

Now we can find the relation between V; and # using Eq. (1.2.46). To find this
relation it is important to note that in linearized theory V; = ¥y + oV, and corre-
spondingly oV, in (1.2.54) reads:

oii
5y, = OF, — Ovy.Z. — 2. (vo ”) (1.2.57)

0z
Substituting (1.2.57) in (1.2.56) we get the cancellation of the term €, (17’0 g—?) in

the relative velocity v, — vy, and moreover:

. _ R 1 N
P — o =+ (VO-V)ﬁ—Qxﬁ—(éﬁy—(Svszéz):—

Introducing the two-dimensional projection of 6V on the (x,y) plane:
5‘7?2D - 5‘_;v - 5Vszgz (1259)
we can rewrite (1.2.63) in the form:

0 I - ). . 1 -
{a-&- (VO'V) —QX}M—(WQD:m(FXQ)- (1.2.60)

Now we can use that in curly brackets in the Lh.s. of (1.2.60) just stands an
operator which is responsible for the transformation of the vector quantity to the
rotation frame. Thus we derive an important relation between the time derivative

of # in the rotation frame % and the two dimensional projection of the superfluid
velocity dVypp:
ou 1

— = 0Vop +——=

= 50 (F x &). (1.2.61)

1.2.5.3 Linearized Euler Equation at 7 = 0

Returning back to Euler equation for superfluid velocity ¥, at T = 0 we get in
linearized theory:

o, = V2 . -
at‘+V(,u+2“) =V X (VXVs)
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In the rotation frame in direct analogy with the situation in an ideal rotating
fluid (see Sect. 1.1.4) we get:

v, _ OP 1 o
0% G 2G o, = LF. (1.2.63)
or Po Po

Applying an operator of curl to the Lh.s. and to the r.h.s. of this equation we
finish with:

—

0 = - ~ 1 "
(V% 0%) + ¥ x (ZQX&_/'S)X:ID—(VXF). (1.2.64)
0
This equation together with the relation (1.2.61) (which establishes the con-
nection between oVp and ar/) and the continuity equation

6(3p
or or
(where we used the transformation % — 5 + (\70 . @) to the rotation frame for a

scalar) helps us to find the spectrum of collective excitations in a rotating mac-
roscopically averaged superfluid at long wave-vectors kb < 1.

+ 0oV 00+ (V- V)Op = ——4 pV -9 =0 (1.2.65)

1.2.6 Collective Modes of the Lattice. Tkachenko Waves
and Kelvin Waves. Melting of the Vortex Lattice

According to Sonin in the general case of compressive rotating superfluid with a
triangular vortex lattice the spectrum of collective excitations in the long wave-
length limit reads (see [39, 40]):

5 2k2 5 Zki
= (2Q + Jk 297 2kZ + 1.2.66
( + z) 2k2 + ZQ ( )
where ¢? 2"5 1s Tkachenko sound velocity squared, cf is first sound velomty
squared, 4 =5 ln and k, and k, are the projections of the wave-vector k (kK> =

K+ kf) on the undeformed vortex axis (on the z-axis) and on the xy plane per-

pendicular to undeformed vortex axis. For k; = 0 the spectrum (1.2.66) contains 2
modes—a sound mode with a spectrum w% = c%k2 and Kelvin (Thomson) mode
for bending oscillations of the vortex lines a)2 (ZQ + /lkz)

2

In the same time for k, = O (and thus k = k) there are 2 modes again w| =

4
407 + ¢33 and 0} = 02 ~ 45 ik e
inertial mode. It has a gap. Note that the second mode has a nontrivial dispersion in

the denominator. Moreover, for ki > 22: o} = ck? and we have a linear

for ¢; > c,. First mode is usually called an

. 2 k4
spectrum for Tkachenko mode, while for very small k, < 22: »2 = ““I°L and
cr T ™ 40
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correspondingly wr = c,;-gi —the spectrum of Tkachenko mode becomes
quadratic.

According to Baym [27-30] the quadratic character of the spectrum at very
small k-vectors leads to dramatic consequences for purely 2D flows with k, = 0.
Namely the mean displacement squared of a single vortex line from equilibrium
(due to the excitations of very long wavelength Tkachenko modes) is logarith-
mically divergent:

<ﬁ2> T n, . kna
Ry | B 1.2.67
B " QnL" koin (1.2.67)
where in dense “He kmax ~ %, Kimin ~ %, n and n, are 3D density of particles and
2D density of vortices, and L is the height of the container (or effective third

dimension of a quasi-2D magnetic trap). Thus 7= is dimensionless density ratio.

The linear in T dependence of (ii?) /b* requires that 7 > T since in this regime

bosonic distribution function for Tkachenko waves ng (‘“77) ~ wlr From (1.2.67) it

follows that (ii?)/b* is logarithmically divergent in infrared region of small
k ~ 1/R. The strong effect of compressibility on the Tkachenko mode in the long

wavelength limit wr = C’ggi was studied by Reato [79].

Note, however, that in practice it is very difficult to fulfill the condition

%n<lq<§ (1.2.68)
in dense “He where the typical size of the container R ~ 0.1 cm. Usually the
transition to quadratic regime requires unachievably high angular velocities in
dense liquid. In helium, for example, ¢; ~ 2.4.10* cm/s, Q¢ = #
and we need to demand Q> 107Qc; to get the quadratic regime, which is prac-
tically impossible. We notice again that nL is an effective two-dimensional density

of particles (number of particles per unit area). Thus

In% ~ 1rot/s

v Nvor ices 1
M _ Dvorices _ 2 (1.2.69)
nL N particles p

where p is a dimensionless filling factor. In terms of p Eq. (1.2.67) reads:

() T1
st Nﬁl;ln(kaax), (1.2.70)

where R is the size of the container.

In dense *He mcf ~ (20 ~ 30)K, T ~ 1 K, iQ/kg ~ 107" KforQ ~ Q¢.
Thus mci > T > Q and the requirement for macroscopic averaging k b < 1 is
automatically fulfilled for k, <2Q/c; since Q/mci < 1. Correspondingly,

max

ki, <2Q/c; < 1/b. The requirement ot < T is also fulfilled since for

I B o o kT~ S Q < T for ¢ < ¢p. Finally in dense “He



1.2 Hydrodynamics of Rotating Superfluids 37

we always have p > 1 for the filling factor since only at Q = Q¢
Nparticles ~ Nyortices (for Q = Q¢ the normal cores which in “He have interatomic
size start to overlap). For Q < Qe Nparticies > Nvortices and thus p > 1.

In dilute Bose-gases mcf = 4”” n, where a is the s-wave scattering length. To get
the “inverse ratio” Q/mei > 1 we have to consider very small densities na®> < 1
and very large angular velocities. Note that in this limit k; < 1/b < 2Q/cy and the
spectrum of Tkachenko mode will be always quadratic in &, . The filling factor v in
dilute Bose-gases in magnetic traps can be also much smaller than in helium since
the vortex cores &y~ 1/y/na > d are much larger than in dense “He [98, 99].

Note also that in real “He the situation is always three-dimensional k, # 0. The
spectrum still has two branches w%(kz, k,)and w%(kz, k ). Moreover for Tkachenko
mode according to Williams and Fetter [48] we can use an approximate form w% =

~ 407 k, + 825 K +2008 & (1 + k2)7 or introducing cosf = k,/k (sinf =
kL/k) we get w2 =4Q%cos? 0 +12k%sin* 0 + 204 cos? O(1 + cos® 0), where
A= %lng.

Than according to Baym [27-30] the mean displacement squared (i#i?) =

1
f d’k 1+cos ~T dcos@kadk 14-cos? 0

becomes finite
~ 4n? Q? cos? ()+% sin 04-2QJ. cos? 0(14cos? 0)

in the 1nfrared 11m1t k — 0 in 3D case. However, even in this case for the quasi
two-dimensional thin film or a slab geometry in z-direction (for the system
restricted by the two planes separated by the distance L in z-direction and with a
discrete set of k, = 2nn/L) Gifford and Baym [27-30] predict the logarithmic
divergence of the correlator of the two displacements:

(fi(7) - a(?)1”)
ey

at finite temperatures and very large distances RI > Lb, where

—

R=7-7={R.,R.}.

~TInR, (1.2.71)

1.2.6.1 An approach to Collective Modes Based on Gross-Pitaevskii-
Equation

Note that at large filling factors v > 1 there is another more microscopic (but still
mean-field) approach to study the spectrum and even the damping of collective
modes (see Matvienko et al. [51, 52]). It is based on the mean-field solution for the
GP equation for rotating dilute Bose-gas. Note that for a stationary problem
W(7,t) = ¥(7)e'™ and GP equation can be written as a nonlinear Schroedinger
equation for the charged particles in strong magnetic field. Namely
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Q2

HWHz{@—?@ﬁ%Mﬂ— +wmm%wm:uwﬂ;uzn)

where A = m Q x ¥ = B x F is an effective vector potential in radial (cylindrical)
gauge [7], Bisa magnetic field.

The chemical potential y in (1.2.72) plays a role of an averaged energy on one
particle E in the standard Schroedinger equation. If an external trapping potential
in (1.2.72) is also quadratic (confinement potential—see Chap. 4) V,,(¥) = %2’2,

than neglecting the nonlinear term g|‘I’|2‘P we can get from (1.2.72) an equation
for Landau levels which is well known from Quantum mechanics. The spectrum of
this equation reads for close values of angular velocity and trapping frequency
Q ~ o (more precisely for |Q — w|/Q < 1)

1 P’
E, =h = h(Q— w)l + ==, 1.2.73
; w@+9+( o)l +5 (1.2.73)
where n = n, 4 [ is a principal quantum number and / is an orbital momentum (n,
is radial quantum number).
For the lowest Landau level (LLL) n = 0 and for purely 2D motion (p, = 0) we
get:

h
Eo = 7“’ +A(Q — w)L. (1.2.74)

The corresponding W-function of the LLL

L2
W = fi(z)e T (1.2.75)
where z = x + iy, z=x—iy, and |z]*=zZ.

To have vortices we should demand that f(z) is analytic function of z, which
does not have any poles. Moreover fi(z = z;) = 0 for the vortex solutions centered
at the points z = z;. In the most simple case according to Matvienko et al. f; should
behave linearly [proportional to (z — z;)] close to each vortex core. Such mean-
field solution corresponding to the triangular lattice can be described by some 6-
function of Yakobi (see [51, 52]) similar to Abrikosov solution for type-II
superconductors [24]. Note that we can safely neglect the nonlinear term in
(1.2.72) if gn<|Q — w|. The authors of [51, 52] also managed to derive the
spectrum and damping of collective modes in the same type of formalism.

1.2.6.2 Melting of the Vortex Lattice

If (i#*) /b* exceeds some finite number (which is less that 1), then according to
Lindemann criterion [80, 81] the 2D vortex lattice starts to melt. For finite tem-
peratures we have classical melting while for 7= 0 we can still have quantum
melting. The last case is very interesting both for vortex lattices in rotating gases
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and for the search of supersolidity in Quantum crystals (see Chap. 2). The quantum
melting for the 2D lattice requires <ﬁ2> / b*>0.07 (see Cooper et al. [53-55]).

Note that according to Baym at zero temperature the mean displacement
squared for purely 2D flows (k, = 0) reads:

s 1/2 1/2
@) n (m_c%> Nl(m_cf> | (1276)

b2 nL \ Q p\ Q

N 1/2
where ng is a superfluid particle density. In dense “He the ratio (%) as we

e\ 1/2
already discussed is very large. For Q > Q¢ ~ 1 rot/s : (%) ~ 10°. However,

2
v is also very large and thus at 7 = 0 <Z—2> < 1 in *He.
In weakly non-ideal Bogoliubov Bose gas

1/2
(mc;>1/2_ (47ran$>l/2w 4\ b (QC2>I/2 (1.2.77)
Q mQ mQE Z Q) > -

where mQ = b* and &, = 1/+/na. Note that for Q = Q¢ : n, = na and p = ?TL =
’;. Hence at 7 = 0 in a dilute Bose gas

)
@ ~ l,ﬂ (1.2.78)
b? P <o

Thus if we have small enough p > 1 (for that we should have almost 2D trap
with L > a for z-dimension) we can reach the regime of quantum melting
(@) /b*>0.07. In this case according to Cooper et al. [53-55] we will have a
phase transition form a vortex crystal to a strongly correlated phase of a vortex
liquid. The strongly correlated vortex liquid (in contrast with the vortex crystal)
is closely related to incompressible liquid states which according to Laughlin
[82-85] and Haldane et al. [68, 69] arise in the physics of the Fractional Quantum
Hall Effect (FQHE). Note that in practice ve ~ (5 <+ 6) for a phase-transition
from vortex crystal to vortex-liquid [53-55] in dilute rotating Bose gases.

Note again that in this Chapter we mostly used Landau scheme of the con-
servation laws to derive the nonlinear hydrodynamics of slow rotations and to get
the spectrum of the collective modes. There are other methods to derive these
equations based on Poisson brackets (PB) [43, 78] or on Gross-Pitaevskii (GP)
equation [51-55]. These methods are also very elegant ones. However they are not
purely phenomenological and use some additional microscopic arguments. The
method of PB, for example, utilizes some additional microscopic equation for
vortex lines. We can say that the other approaches do not provide the nonlinear
fluxes in the system of hydrodynamic equations for slow rotations and do not
describe the nonlinear elasticity theory of the vortex lattice in such a straightfor-
ward and a single-valued fashion as Landau scheme of the conservation laws. Note
that Baym and Chandler [27-30] in their classical paper also considered equations
for slow-rotations but only in a form linearized in the lattice deformations.
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1.3 Hydrodynamics of Fast Rotations

In connection with dilute quantum gases in rotation the researchers usually

understand rapid rotations as a quantum limit when 7> = ,Q'”—f, = ll, and we are in
particles

the regime of vortex liquid (the vortex lattice is melted). In this Section we will
always work in a mean-field hydrodynamic regime (classical limit p > 1) mostly
considering dense superfluid “He. Thus the vortex lattice is always present in our
considerations. Nevertheless even here we can distinguish between slow and rapid
rotations, having in mind absolutely different regimes and phenomena in com-
parison with dilute quantum gases. Namely we will construct strongly anisotropic
hydrodynamics with two different velocities of normal and superfluid component
V| 7 Vy in the direction parallel to the vortex lines and with only one velocity

Vo = Vo :fL /p in the direction perpendicular to the vortex lines. This hydro-
dynamics, describing the crystal in perpendicular to the vortex lines direction and a
free superfluid in a parallel direction, can be realized at large rotation frequencies
with the help of intensive Umklapp processes [64] for the scattering of normal
excitations on the 2D vortex lattice. Throughout this Section we will often use a
term of fast rotations to distinguish this regime from rapid rotations in quantum
gases considered in the end of the Sect. 1.2.

1.3.1 The Foundation of the Hydrodynamics of Fast
Rotations. The Role of Umklapp Processes

According to Andreev and Kagan [31] the two different approaches are possible to
a hydrodynamic description of rotating systems, i.e. to a description in which the
quantities are assumed to vary slowly in space and time and the expansions are in
terms of gradients. In the first one the initial state of the system is assumed to be at
a rest and the expansion is in all the gradients including the components of the
velocity curl connected with the uniform rotation. This is hydrodynamics of slow
rotations (in terminology of Andreev and Kagan considered in the previous
Section).

In the same time since uniform rotation is always in thermodynamic equilib-
rium, another approach is possible in which the velocity curl that corresponds to
uniform rotation is not assumed small, and the expansion is only in terms of
nonequilibrium gradients, in the gradients on top of the uniform rotation. This
expansion corresponds to hydrodynamics of fast rotations in the terminology of
Andreev and Kagan.

Note that hydrodynamics of slow rotations, considered in Sect. 1.2, contains
two independent velocities of normal and superfluid motions. The interaction of
the normal excitations with the vortex lines are taken into account as a mutual
friction force proportional to the difference between normal and superfluid
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velocities. For such a description to be valid it is necessary in any case that the
excitations mean free path time 7 which is connected with their scattering on each
other, should be considerably smaller than the analogous time 7, connected with
the scattering of normal excitations on the vortex lattice. Note that otherwise an
introduction of the velocity of normal component as an independent thermody-
namic variable is meaningless. But even if the condition 7, >> Ty is satisfied, the
usual equations are valid only for not very low angular velocities of rotation.

Let us clarify this situation, considering for simplicity on the basis of usual
equations for hydrodynamics of slow rotations, the temperature oscillations and
the related with them oscillations of the relative velocity W | =V, — Vs per-
pendicular to the vortex lines. In this case such oscillations are analogous in many
respect to temperature oscillations in crystal under conditions of phonon hydro-
dynamics (see Gurevich [44]). In this case 1 and Ty play the role of the times of
phonon relaxation due to normal and Umklapp processes respectively. In both
cases there are two oscillation modes, whose frequencies can be expressed as the
functions of the wave vectors in the form:

w1 = —iy £ (kK — Vz)l/z, (1.3.1)

where cyy is a second sound velocity and
y = 1)ty + ik y. (1.3.2)
In the case of a rotating superfluid liquid we have (see [37, 38] and Sect. 1.2)

1/t ~ (BQ), (1.3.3)

where Q is an angular frequency of rotation and B = M—pﬁ is one of the two

dimensionless parameters introduced by Hall and Vinen [37, 38] to define the
mutual friction force. From the view-point of a hydrodynamics of slow rotations,
both modes are hydrodynamic, since both frequencies ), , tend to zero when k and
Q tend simultaneously to zero (for Q — 0 the inverse Umklapp time 1/t — 0 and
y also tends to zero for Q& — 0 and k — 0).

In fast rotation hydrodynamics, however, i.e. as k — 0 and at constant €,
7 # 0 and only one (heat-conduction) mode is hydrodynamic (gapless) mode.

The usual equations are thus hydrodynamic in the sense of slow rotations. For
given Q, however, their validity is restricted by the condition 7y > 1. If, how-
ever, this condition is satisfied and the motion frequency o satisfies the inequality
wty < 1, we can replace the ordinary equations by the much simpler equations of
fast rotations which will be derived in this Section. Note that in the crystals (see
[44]) for 1y > v and wty < 1 we can exactly in the same way replace the
equations of phonon-hydrodynamics by the usual equations of the elasticity
theory [65].

In fast rotation hydrodynamics we introduce for a superfluid liquid with a
vortex lattice only one independent velocity of macroscopic motion in the direc-
tion perpendicular to the vortex lines, i.e. the system behaves for these directions
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as an ordinary crystal. Since the longitudinal total momentum of the excitations
(parallel to the vortex lines) is preserved by the demands of the homogeneity of the
system in the lines direction, we introduce in this direction two velocities and a
system behaves as a standard superfluid liquid. Note that hydrodynamics of fast
rotations is valid for given Q at sufficiently low frequencies o < 7' and
0 K rﬁl no matter what is the ratio of 7, and ty. At temperatures of the order of
1 K in liquid He-II the dimensionless constant B of Hall and Vinen is of the order
of unity and the validity of fast rotations hydrodynamics is restricted to frequencies
o < (g ~ Q) [see (1.3.3)].

1.3.2 The System of the Nonlinear Equations
Jor the Hydrodynamics of Fast Rotations

In fast rotations hydrodynamics we must introduce one velocity in the direction
perpendicular to the vortices and two independent velocities in the longitudinal
direction. Under these considerations it is not convenient to use as the hydrody-
namic variable the true superfluid velocity which we define as V; in this Section.
Instead of it we introduce a single perpendicular velocity ¥, ( ¥,V = 0) defined by
the equality:

S 1

Vv, = 3 (1.3.4)
where ]1 is the exact value of the perpendicular momentum. The motion in the
longitudinal direction will be described by two velocities v, and vy, with

V|| = V,¥. Thus we put:
Vg =V, +V3HV§ Vi :‘_}l‘i’vn\\‘j (135)

We emphasize once more that the velocity v, introduced by us does not coin-
cide, generally speaking, with the true superfluid velocity V,. Nevertheless Eq.
(1.2.23) for Galilean transformation of the energy and the linear momentum, as
well as Eq. (1.2.24) for the differential of an internal energy E (in the frame where
Vs = 0) are still valid in terms of new velocities ¥, and V; from (1.3.5). Indeed from
the definition of v, and vy in (1.3.5) it follows that the relative velocity W=
Vy — Vs = (v — vy)V and jo= (G — p¥) :f'H — pVy| = jo|V have only longitudi-
nal components. Thus the term Wdj, in dE, can be written in the form (V) —
vy )djo||, which corresponds precisely to the correct expression for a system that is
superfluid only in the longitudinal direction. We emphasize that the one-dimen-
sional densities of the normal (p,) and superfluid components (ps = p — pn),
defined by the formula jo = p,(v,| — vy), differ substantially, generally speaking,
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from the corresponding “microscopic” three-dimensional quantities which enter in

the expressions (1.2.42), (1.2.45) and (1.2.48) for the elastic module (for

%hab = ggf,ﬁ) of a vortex lattice. Note that all the definitions connected with the

kinematics of the vortex lattice, particularly expression (1.2.13) ¥, = —&,N%,
remain the same as before. Since the number of the independent velocity com-
ponents is now smaller by two than in slow rotation hydrodynamics, the number of
equations in hydrodynamics of fast rotations should be correspondingly less than
in (1.2.22). Specifically the last equation of the system (1.2.22) (the three com-
ponent equation for the superfluid motion) should be replaced by one component
scalar equation for the fast rotations. We derive it by using the formula:

V=V (1.3.6)

and the relation (1.2.21) for the vorticity conservation which in the notation of the
present Section can be written in the form:

V,+ Vo =7, x (6 x \7) (13.7)

where ¢ is a certain scalar.
Differentiating (1.3.6) with respect to time, and taking into account (1.3.7) as

well as the relation Vv = |§i\‘;| , we obtain:

An expression for ¥ can be easily derived from (1.3.7):
V(- V)V = (7 V)o, — 3, (V- V)L). (1.3.9)

Substituting it in (1.3.8) we obtain after simple transformations:

. = 2 -
v(vs+v<u+V23+\P> % (vax)) —0, (1.3.10)
where
V2 -
‘I’:go—u—?’—\_z’L(Vv—ﬂ). (1.3.11)

It is convenient to choose Eq. (1.3.10) with yet undetermined scalar ¥ as a
required scalar equation which together with the first three equations of the system
(1.2.22) constitute the complete system of equations for the hydrodynamics of fast
rotations [31].

Differentiating as usual the first equation of (1.2.23) for total energy with
respect to time and using the aforementioned complete system of equations, we
reduce the equation for E to the form:
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. - - GgvT Vi
E=—V {00+ G+ vumy + vichaeler + V(G — pv,)} + R+ qT + ik

axk
FWY - (= i) + (L — Vi, F 4 (= pin, V) - (V x ) x 7},
(1.3.12)

where the expressions for 0o and formally coincide with those given in Eq.
(1.2.27) of the preceding Section. From (1.3.12) we find the dissipation function:

Z]'@T ni
R=-1"—_n
T ik ka

— T =L, F+ (= pv, ) - (V X ¥,) x ¥}

¥V (7_ PVn)

(1.3.13)

Confining ourselves, as in the preceding Section, to consideration of only the
last term in (1.3.13), we write down the expression for the relative velocity of the
vortices and of the matter in the following general form:

(¥, = V1),= —ByGy, (1.3.14)
where
G=F+{—pi,¥) - (Vx¥)x7, (1.3.15)

and o and f§ are two-dimensional spatial indices in a plane perpendicular to V. The
matrix of the coefficients l}xp satisfies the Onsager relations [64]:

B.p(¥) = Bpu(—9). (1.3.16)
Therefore

mg'/?
2nph

(¥, —7.), = ( - B’) (é x v) —B,yGy, (1.3.17)
o

where B, is the symmetric part of B,g, B,s(T = 0) = B'(T = 0) = 0. For an
arbitrary deformed lattice B, is an arbitrary symmetric tensor. We point out that
the second term in the expression for G, in contrast to the analogous term in
the slow-rotation hydrodynamics, is of the second order in the deviations from the
state of the uniform rotation. Therefore B,z has in fast-rotation hydrodynamics the
meaning of the diffusion coefficient of the vortices. The coefficient B* describes an
effect of the Hall type in the diffusion. In an undeformed triangular lattice the
tensor B reduces to a scalar.

We recall that the complete system of the equations for the hydrodynamics of
fast rotations consists of the first three equations of (1.2.22) for p, j and S, and of
Eq. (1.3.10) for the superfluid motion.
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1.3.3 Linearized System of Equations of Fast Rotations. The
Spectrum and the Damping of the Second Sound Mode

Linearizing the equations for S, p, j and v;V; near the uniform rotation we obtain
the following set of the equations that describes the oscillations of the temperature
and the associated oscillations of the relative velocity 6W| = dv, — dvy along the
vortices (compare with Egs. (1.1.65) and (1.1.67) for a second sound wave):
I5p, V15WH + E =0,
Gop rCy

o + (7, ¥ )oT +
(1.3.18)
5WH + (\70 . 6)5WH + ;VZ(ST =0,

where S and C, are the entropy and heat capacity per unit mass at a constant
pressure, and the liquid is assumed incompressible
0P =6p =0, p,0v, + povy =0. In (1.3.18) vy = QxF Equations (1.3.18)
are reduced to the equations with constant coefficients by transforming to a
rotation frame. This corresponds to the substitution %—> % -V, x V — Qx for

vectors and % — % — ¥, x V for scalars (where 0/0¢’ is the time derivative in the

rotation frame). The heat flux in (1.3.18) can be set equal to § = —KlﬁLT (ry is
the heat conductivity in the direction perpendicular to the vortex axis), since the
equations contain other considerably larger terms with 0/0z. As the result we get:

00T chp, 0OW), KL

A —
or' S 0z pG, 19T =0

(1.3.19)
OoW) ST _,
o p, 0z

2 _ TSp :
where ¢j; = ¢ 2, 18 the second sound velocity.

The differentiation of the first equation in (1.3.19) with respect to 0/0t” and of a
second one with respect to 0/0z, and after that the substitution of the second
equation in the first one yields:

*oT  , O%T KL, T

W*C”a—zzfp—(jp ngo (1320)

Correspondingly w? — c,zlkz2 + %kiiw = 0 and the spectrum in rotation frame

2
.KLki ) <KLki>
wip = —i + [ chk2 - 1.3.21
f 2pC, e \2pG, ( )

reads:




46 1 Hydrodynamics of Rotating Superfluids with Quantized Vortices

2
For k| =0 w» = Fcylk,|, for k, =0 w1 =i(—1£1) g;g It is interesting

to compare this spectrum with the overdamped temperature waves in ordinary

2
classical liquid with the spectrum o = —i';%(L considered in Sect. 1.1 [see
»

Eq. (1.1.30)], and the propagating second sound waves with the spectrum > =

ck? [see Eq. (1.1.69)] for irrotational superfluid (the same propagating spectrum
of the second sound w? = c3,k* we get in the hydrodynamics of slow rotations).
From the spectrum (1.3.21) it follows, that in the hydrodynamics of fast rotations
the oscillations of the temperature propagate in the form of the second sound only
along the axis of the vortices, while in perpendicular direction they are ordinary
damped thermal waves (the second root in Eq. (1.3.21) corresponds at small k, to
0T — 0 and oW, = const).

1.3.3.1 Another Collective Modes in the Hydrodynamics of Fast
Rotations

To establish another application of the derived equations we consider the oscil-
lations of the transverse velocity 6V, and of the displacement i in a state with
simultaneous uniform rotation and a uniform heat flux Q = TSv, along the vortex
lines. This problem is of interest because a substantial role in it is played by the

second term of the expression (1.3.15) for G. Confining ourselves for simplicity to
the case of low temperatures p, < p and neglecting in (1.3.17) the term with B,z
and B’, we rewrite this equation in the rotation frame in the form:

T e koY
u—vL:@( xez)—lvn|kzu—mvn{kz(ezxévL)—F(erkL) LkZL}’

(1.3.22)
where F is defined by (1.2.50) and v,y = Q/TS. The second equation that connects i

with ¥, is obtained by projecting on the {xy} plane of the second equation for 0j; /0t
of the system (1.2.22) and excluding from it the pressure using the incompressibility

condition at low temperatures V - %, = 0. We have in the rotation frame:

—

. . ki (~ [ = 1o ki /- =
0%, + 20 x 07, fk%@q(zg X (m)) +;F7—L<kL -F) —0. (13.23)
p

If k is small enough, Egs. (1.3.22, 1.3.23) describe in the principle approxi-
mation the independent oscillations of 0V, and ii. The former have a frequency:

2(Q -k
w:¥ (1.3.24)

and are inertial waves in an ordinary (classical) hydrodynamics of the incom-
pressible rotational fluid considered in Sect. 1.1.
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The second mode constitutes the oscillations of the displacement # and are
peculiar to the fast rotations hydrodynamics. The frequency of this mode in the
rotation frame:

@ = vy k;; vy = Q/TS. (1.3.25)

It must be emphasized that this mode exists only at finite temperature. It
vanishes at T = 0, i.e. in the total absence of the normal component. Here lies an
essential difference between hydrodynamics of slow-rotations and fast-rotations at
finite temperatures.

In the hydrodynamics of slow rotations the velocity v, and the displacement i
are not independent variables, but are connected by the additional condition
(1.2.20) for curl v and vectors of elementary translations é€,. In hydrodynamics of
fast-rotations the same takes place at T = 0, when the difference between v and 175
vanishes. The presence of the root with & = 0 means here simply compatibility of
hydrodynamic equations with the supplementary condition (1.2.20).

We should also make a remark concerning the spectrum (1.3.24). Although the
mode (1.3.24) has zero gap, its frequency, generally speaking, does not tend to
zero as k — 0. This highlights the distinction of the fast-rotations hydrodynamics,
for the validity of which the condition k—0is generally speaking not sufficient
and one more condition is required. To determine this condition we note that the
frequency in a rotating coordinate frame can be regarded as an eigenvalue of the
operator:

i{%+ ((ﬁx?)@) —ﬁx} :i%—QJZ, (1.3.26)
where J, =S, +L,, L, = —i(?’ x V L) is the orbital angular momentum and S, =
—ie,yp is the spin of the vector field 0¥, . The derivative 0w/0Q, as can be seen
from (1.3.26) is equal to —(J,). For the frequencies of all the modes in the fast-
rotations hydrodynamics to tend to zero we must satisfy besides the condition
kK — 0 also (Jz) — 0. The latter is equivalent for the spectrum (1.3.24) to the
condition k,/k — 0, where k* = k2 + k7.

1.4 Opposite Case of a Single Bended Vortex Line
for Extremely Slow Rotations (2 ~ Q¢y)

In the last section of the present chapter we will consider an opposite case of a
single bended vortex line aligned with the axis of a cylindrical vessel of radius
R. Tt is known that such a state corresponds to the thermodynamic equilibrium at
Q~Qc; =5 In% . As it was shown by Hall [36, 37], the equation that describes
the bending oscillations of the vortex lines is reduced to the Schroedinger equation
with an effective mass:
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line situated in the center of
the cylindrical vessel. i is the
2D displacement
perpendicular to the vortex u
line. z is the axis of the >
vessel, ¢ is rotation angle

Fig. 1.11 The bended vortex ZT(/’

ii = (ux’uy)

m
= 1.4.1
" n/pd) (14
(p,, is the momentum of the oscillations parallel to the vortex line) by introducing
the wave-function:

Y = const(u, + iuy). (1.4.2)

In Eq. (1.4.2) ii is the two-dimensional vector of the displacement of the vortex
line in a plane perpendicular to the rotation axis (see Fig. 1.11). If we choose
const = (nps/m)l/ % in Eq. (1.42) the energy of the oscillations also becomes
identical with the energy given by Schroedinger expression:

2 2
-2
2m*

— . 1.4.
o dz (1.4.3)

1.4.1 Stabilization of the Bending Oscillations by Rotation

Note that in our case rotation around z-axis on an angle ¢ is simultaneously the
gauge transformation of the W-function: ¥ — We'@. The generator of this gauge
transformation is the operator N, where N—is the number of particles operator.
In the second quantization technique the operator of the number of particles N =

>_ b, by, commutes with the Hamiltonian H= Z sn by bp. of the 1D Bose-gas of
p:
the oscillating quanta carrying the momentum p,

From the other hand the operator of the z-component of the angular momentum
in our case equals to J. = /iN and hence J. also commutes with the Hamiltonian H.
Thus the quanta of the vortex line oscillations besides a linear momentum p,
possess also an independent quantum number—an intrinsic angular momentum—/
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(“diamagnetic situation” according to Andreev and Kagan [31]). That is why in
our case the bended vortex line in reality does not vibrate but rotates around z-axis
(we can prove that in second quantization technique # X i # 0). Thus the real
thermodynamic equilibrium takes place only in the rotating frame and hence the
spectrum in this frame reads:

o(02) = 0(pr) — OF = KO+ () = hQ+ P (1.4.4)
z) = €0z N 0\Pz) = m sz. Bt

Thus the spectrum of the bended vortex line acquires a gap 7Q. Note that
in the macroscopic hydrodynamics of slow rotations for Q¢ < Q K Q¢; :

ho = 2hQ + h%?lng and we have a gap 2h€ for Lord Kelvin waves (see Sect. 1.2).
The difference between the macroscopic gap 2Q and the “microscopic” gap
Q = Qc, is connected with the fact that for a single bended vortex line we cannot
introduce a macroscopic superfluid velocity of the solid state rotations vy = QOxF
and hence the orbital angular momentum L, = 0 (see the discussion in the end of

the Sect. 1.3). Correspondingly J. = S. (is purely intrinsic angular momentum)
and 0w/0Q = 7 (and not 27).

1.4.1.1 Thermodynamics of a Bended Vortex Line

The presence of the energy gap iQ causes the spectrum (1.3.30) to satisfy the
Landau criterion for superfluidity. The critical velocity is:

1/2
ve = mint®) _ (B BT
Dz m  2md*Q

(1.4.5)

where d is the vortex core. For Q ~ Q¢ ve~ #.

For the same reason, the divergences at small momenta, which are customary
for one-dimensional systems, are absent in this case. Indeed, let us calculate again
the mean displacement from the equilibrium position of the bended vortex line
squared <ﬁ2> (see Sect. 1.2) assuming that the condition 7 > Q (more rigorously

kgT > hQ) is satisfied. In this case the bosonic distribution function np (%) =~

ﬁ and

(@) =— <\‘1’|2>=£/dpZ g (222) = T (1.4.6)
7, np, ) 2mh T nhpve'

where the critical velocity vc is given by (1.4.5).
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1.4.2 Visualization of the Vortex Lattice in Rotating
Superfluid. Packard Experiments

The ratio of this quantity to the square of the vessel radius is of the order of

(#) dTmd* 1 dTmd> 1
R "R R Ihngls R # In(R/d) (147)
for Q ~ Qc,.
In superfluid *He for Q = Q¢ = #ln;—e ~1 rTot’ d~31g and R ~ 0.1 cm:

<;2> < 1. Note that without the gap <ii2> ~T [ ‘;Lz and we have a strong infrared
divergence at p, — 0. Hence without the gap 1D bended vortex will form a
globule as in many 1D systems (like in polymers for example). The small value of
(@) /R* < 1 can provide an explanation of Packard experiments [86-88]. He
with his colleagues injected electrons in the vortex core, applied the voltage in the
direction parallel to the vortex lines and got the photograph of the vortex lattice in
“He on the screen. In his experiments on visualization of the vortex lattice he
observed small vortex displacements from equilibrium positions in the triangular
lattice (see Fig. 1.12).

Fig. 1.12 Vortex arrays in
superfluid “He from
Yarmchuk, Gordon, Packard
[86-88] and Vinen [37, 38].
On Figs. a—f the number of
vortices changes from 1 to 6
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Fig. 1.13 Vortex lattice in
rotating dilute Bose gases of
alkali elements (7Li, 23Na,
87Rb) [58-61, 92]

Note that in alkali gases in magnetic traps a low-temperature regime of Bose—
Einstein condensation (BEC) was achieved in 1995 (see Chap. 4) [89-91].
Quantum vortices, which are the main signature of the superfluidity, are found in
rotating condensate [58—61, 92] similar to that in liquid helium (see Sect. 1.2). The
snapshot of the vortex lattice in dilute Bose-gases is presented on Fig. 1.13.

Later on the vortex lattice was discovered also in BCS-phase of fermionic gases
[47] (6Li and 40K) in the regime of Feshbach resonance (see Chap. 4). From both
Figures we can see almost regular distribution of vortices forming triangular lattice
both in dense superfluid helium and in dilute gases. Hence the mean displacements
squared of the vortex lines are finite and small in comparison with the intervortex
distance b in both experimental pictures.

1.4.3 Contribution to Normal Density and Specific Heat
Jrom Bended Vortex Lines

Returning back to the thermodynamic contribution from bended vortex lines we
can calculate also the one-dimensional density of the normal component p, (see
Sect. 1.1):

0y = — /pz Onp(&(p:)/T) dp: _ 2TQ (1.4.8)

: O¢ 2nh V3

With decreasing Q the density p, varies proportionally to Q™2 (note that
anyway Q > Q¢;). We can also write down an expression for the specific heat Cq
per unit length of the vortex line at constant angular velocity €Q:

2Q
Cq = C()(T) +V—, (149)
C
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where

m 1/2
CO(T)35(3/2)( Tﬂ) , (1.4.10)

4h TCIHW

and £(3/2) is Riemann function.

In contrast to Eq. (1.4.7) for (i#?) and Eq. (1.4.8) for p,, in the case of the
specific heat only the second correction term in (1.4.9) depends on the rotation
frequency for 7 > hQ.

The thermal oscillations delocalize the vortex line. As a result, the average
velocity curl differs from a J-function (compare with Eq. (1.2.2) in Sect. 1.2) and
is determined by the probability distribution of the values of the distance r of the
vortex line from the vessel axis. Since the distribution is obviously Gaussian at
T > hQ, we have in accord with (1.4.7):

= 2h r? 2l pve r*mT
Vs) = —=v ——p = ——— — ) 1.4.11
(97) m<ff2>e"p{ <ﬁ2>} 2T e"p{ hp} (14.11)

Note that the bending oscillations of the vortex lines as we already mentioned
have an intrinsic angular momentum and thus produce an interesting effect of the
angular-momentum transport by the heat flux in the absence of the matter flux. The
angular momentum flux is:

L:—h|\11\2vn=—&:—£, (1.4.12)
Ve SVC
where Q = TSv, is the heat flux.

The torque carried by the heat flux between solid surfaces perpendicular to the
rotation axis at v, ~ vc is of the order of N,T, where N, is the total number of
vortices. At 7 ~ 1 K the torque measured in dyn-cm is of the order of 107'? Q
(sfl) So (cmz), where S is the area of the solid surface. Although this is a small
quantity, it seems to be experimentally observable.

1.5 Experimental Situation and Discussion. How
to Achieve the Limit of the Fast Rotations at Not Very
High Frequencies in He II- *He Mixtures
and in Superfluid *He-B

Concluding the present Chapter let us stress once more that:

1. We present a hydrodynamic description of the two-velocity hydrodynamics of a
superfluid *He and dilute Bose gases following Landau scheme of the con-
servation laws.
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2. We generalize the hydrodynamic scheme on the presence of the quantized
linear vortices and construct nonlinear hydrodynamics of slow and fast rota-
tions with an account of the vortex lattice and the friction forces between
normal excitations and vortices.

3. We analyze collective modes of the vortex lattice and in particular the shear
(Tkachenko mode) as well as the bending mode of Lord Kelvin. We find out
their contribution to the vortex displacements and to the thermodynamics. We
also analyze the possibility to melt the vortex lattice in quasi two-dimensional
rotating Bose gases due to the contribution of the quadratic in k-vector
Tkachenko modes at very low frequencies.

The last topic which should be considered in this Chapter is how to achieve the
limit of the hydrodynamics of fast rotations at not very high frequencies.

In the end of Sect. 1.3 we mentioned that when the Hall-Vinen coefficient f§
becomes of the order of one, the Umklapp relaxation time for the scattering of the
normal excitations on the vortices 7y ~ 1/fQ is of the order of 1/Q and the
condition wty; < 1 for the validity of the hydrodynamics of fast rotations require
the condition w < Q for the frequencies. With decreasing temperature, however,
the situation changes since the bending oscillations of the vortex lines begin to
produce a substantial contribution to the density of the normal component. This
contribution p,q = 2TQ/v}. exceeds the phonon contribution p?* = T*/c7 [see Eq.
(1.1.50)] for T < 0.1 K in a very clean superfluid *He thus creating the possibility
for the hydrodynamics of rapid rotations for Q ~ Qc;. Note that the quasiparticles
which correspond to the quanta of the bended oscillations, are localized on the
vortex lines and can move easily only along them. Correspondingly we have only
one component of the normal velocity v, and can speak only about highly
anisotropic hydrodynamics of fast rotations.

A similar but even more clearly pronounced situation arises at low temperatures
in the solutions of *He in He-II (see Chap. 15), owing to the absorption of the
impurities by the vortex cores (see [93]). In other words in the rotating solution all
the *He-impurities (which serve as the normal excitations in this system) are

localized in the vortex core due to the gradient of Bernoulli integral @(u + V—;)

[see Eq. (1.1.13)]. Note that V; increases when we approach the vortex core thus
the pressure gradient causes the localization of the impurities inside the core. From
the other hand they can again move freely along the vortex lines. We again have
only one v, and can speak only about the hydrodynamics of fast rotations.

Finally in superfluid *He-B, in which as in He-II, the orbital hydrodynamics is
isotopic the condition 7y ~ Ty starts to be satisfied at temperatures T < (T¢c ~ 1
mK) for Q < 1 s~ ! because of the rather large Ty for the scattering of (fermionic)
quasiparticles on each other in *He-B. The higher angular velocities in *He-B
should be described by the fast-rotations hydrodynamics.

We can repeat once more that for the dilute Bose gases we should distinguish
between the slow rotations with vortex lattice and rapid rotations when the vortex
lattice is melted. In the same time in dense superfluids (He-II, He-B, *He- He-II
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solutions) we should distinguish between the isotropic hydrodynamics of the slow
rotations and the anisotropic hydrodynamic of the fast rotations. However, the
vortex lattice is present in both types of the hydrodynamic descriptions in dense
superfluids.

We should like also to clarify more detaily the similarity between the hydro-
dynamics of rotating superfluids in the presence of the vortex lattice and the
second sound regime in alkali crystals briefly mentioned in the Introduction to the
Sect. 1.3.

Note that in the alkali crystals the second sound as a propagating mode with a

drift velocity v # ii (ﬁ is the lattice velocity) exists only in the frequency window

YU = % <w<yy = % for weak Umklapp processes with y,; <y, (see Gurevich

[44] for a review). In the same time for small frequencies o <y, <7yy the second
sound is overdamped.
The same estimates distinguish hydrodynamics of slow and fast rotations.
Namely, the total damping of a second sound ImT‘" =14+ © 45 a sum of the
/N

damping due to Umklapp process and Imw ~ y; and a standard hydrodynamic

damping Imo ~ w*ty ~ % [see Eq. (1.1.25)]. For y, <o <yy, Imo « 1—the

w
second sound wave is propagating and we have the hydrodynamics of the slow

rotations. In the same time for w <yy, <yy, IIB‘” > 1 (due to the contribution of

yy/®) and we have an overdamped second sound in the direction perpendicular to
the vortex lines. Thus we restore the hydrodynamics of the fast rotations.
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Chapter 2
Quantum Crystals. The Search
for Supersolidity

The present chapter will consist of the two main parts devoted correspondingly to
bulk and surface phenomena in quantum crystals. In the first part of the chapter we
will discuss a notion of quantum crystals and their distinction from ordinary
classical crystals from the point of view of Lindemann criterion [1, 2] for crystal
melting. We will also use de Boer parameter to describe the quantum crystals.
Note that it measures the degree of quantumness or the ratio of kinetic delocal-
ization energy of zero vibrations to the potential energy [3]. We will discuss
Andreev, Lifshitz theory [4] for the hydrodynamics of superfluid quantum crystals
and the flow of zero vacancies [5-7] as well as recent Andronikashvili type of
rotating experiments of Chan et al. [8—13] on non-classical moment of inertia [14,
15] and the search of supersolidity in the crystals of “He [16-21]. We will provide
a short review of the important experimental and theoretical articles on this fas-
cinating subject [22—-36] published during last several years by several groups in
Moscow and by other groups in the West. We will discuss the overall pessimism of
the community with respect to the possible discovery of supersolidity in [8-12]
and provide the alternative explanations connected with the mass flow of defects
(impurities, dislocations, two-level systems, thermal vacancies and so on) relative
to the crystalline lattice in the non-perfect crystals of solid *He [36-38]. Very
convincing results belong here to Rittner and Reppy who showed the disappear-
ance of the supersolid fraction in rotating experiments after good annealing of the
quantum crystal [36]. We will start the second part of the present chapter with the
brief discussion of classical [39-42] and quantum roughening [43, 44] for different
crystal surfaces of solid “He and present the estimates for roughening transition in
the framework of Nozieres [39] theory of Berezinskii-Kosterlitz-Thouless type
[45, 46] as well as mean-field arguments of Andreev and Parshin [47]. We will
also briefly consider the two branches of surface waves on the mobile rough
interface—the melting-crystallization waves (predicted and experimentally dis-
covered in Kapitza Institute in Moscow [47-49]) and the more standard Rayleigh
waves typical for the free surfaces of the crystals [5].

M. Yu. Kagan, Modern Trends in Superconductivity and Superfluidity, 57
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© Springer Science+Business Media Dordrecht 2013



58 2 Quantum Crystals. The Search for Supersolidity

2.1 Quantum Crystals. Phase-Diagram. The Search
for Supersolidity

In the introduction to the Landau Theory of Superfluidity in Chap. 1 we presented
the phase-diagram of “He (see Fig. 1.1) and briefly discuss it. The phase-diagram
contains superfluid and normal liquid phases as well as gas and solid phases.
Moreover there is no triple point where the liquid, solid and gas phases would
coexist. For pressures P > 26 bar *He becomes solid. On the melting curve at low
temperatures solid “He has hexagonal (hcp) structure. Between 1.46 and 1.76 K it
has a cubic (bcc) structure. Note that there is a shallow minimum on the pressure
versus temperature (P-7) curve for solid-superfluid phase-boundary at
T ~ (0.5-0.6) K (see [40] and Fig. 1.1). Close to the melting curve the density of
a solid phase is very close to the density of a superfluid phase and thus % ~0.1,

where Ap = (pg — p.). It means that the interparticle distance (as well as other
parameters) of solid “He are very close to superfluid “He. Moreover close to the
minimum on the P-T curve the latent heat Q corresponding to liquid—solid phase-
transition is small and thus first order phase-transition from superfluid to solid
phase could be considered to be close with some degree of precaution to a second
order phase transition. The only essential difference between liquid and solid
phases is a translational invariance in solid phase connected with the elementary
translations of the crystal lattice and the change of the short range order when we
go from liquid to solid phase. This change is connected with an appearance of
elementary cell in solid “He and thus with a shape energy a shape energy defined
by a shear modulus (see Chap. 1). This “proximity” effect [5S0] between solid and
superfluid phases was a main motivation to search for some type of quantumness
in crystalline “He at low temperatures.

2.1.1 Lindemann and de Boer Parameters

Additional support for these ideas came from the estimates of Lindemann [1, 2]
and de Boer [3] parameters for solid “He.

2.1.1.1 Lindemann Parameters in Solid “He

As we already mentioned in Chap. 1, Lindemann parameter [1, 2] is essential for
melting of the crystal. It is the ratio of the root mean square of the displacement of
atoms to the interatomic distance d:

(u?
d

~

(2.1.1)

7L~
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The classical solid will melt if the Lindemann’s parameter exceeds the critical
value of the order of 0.1 in 3D. However, the X-ray measurement of Debye-Waller
factor of solid “He at T ~ 0.7 K and near melting curve shows this ratio to be
0.262 [51]. Thus, 7, in *He strongly exceeds 7, in classical crystal and hence the
solid “He can be named a Quantum crystal.

According to Andreev, Lifshitz considerations [4] a solid “He also possesses a
large de Boer parameter.

2.1.1.2 de Boer Parameter for Solid “He

de Boer parameter A measures the ratio of kinetic delocalization energy and
potential energy of the system:
Ea\ /2
A_< k ) , (2.1.2)

Eput

where total energy of the system E;, = E, + Ep,. In solid “He the potential
energy is connected with the standard 612 potential with hard-core repulsion and
van der Waals attractive tail:

U(r) = 4 [(‘;) v (‘;) 6] , (2.1.3)

where ¢ is a characteristic energy of the two atom interaction and d is the inter-
particle distance. Thus E,,, in (2.1.2) is of the order of ¢ close to the minimum (see
Fig. 2.1.) where r ~ d. Correspondingly kinetic energy or zero-vibrations is given
by:

"2 "2
Eyin ~ 7m<r2> ~ il (2.1.4)
where m is a mass of *He atom. Hence:
o1
A (2.1.5)

NS

On Fig. 2.1 we present interatomic potential and zero-point energy in solid “He
as the functions of the distance r between the atoms.

In ordinary crystals de Boer parameter A determined by Eq. (2.1.5) is small. It
becomes larger for inert gases. For instance A = 0.6 for Ne. However, for “He
A = 2.7 is large (it is even larger for *He crystals A = 3.1 since the atomic mass 713
is smaller than my4). For A > 1 it means that the kinetic energy prevails over
potential energy and we have the conditions for the delocalization of the atoms (for
the large zero-vibration energy). In principal the number of atoms in such crystal
should not necessary coincide with the number of the lattice cites. Moreover the
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Fig. 2.1 Interatomic E(K) T r T r .

potential U(r) and zero-point W (otal energy
2 . . . i
energy Ejin = 51 in solid D zero-point energy T

“He as the functions of the
distance r between the atoms
[8-13]

4 Zero-point energy E

Interatomic potential

T T T T

r(4)

motion of the atoms (more precisely of the elementary excitations such as vacan-
cions and defectons see [4]) should resemble the motion in ideal liquid i.e. should
be without binding to the equilibrium position of the atom in the lattice. Thus it is
appealing to describe such a system in analogy with liquid “He by a macroscopic P-
function of Jastrow type (see the papers by Chester and Reatto [17, 18]). The mutual
permutations of the atoms in such a crystal could lead to the delocalization, or in the
other words to the motion of vacancies in crystal (see Yang [19-21]).

2.1.1.3 Formal Theoretical Remark on off Diagonal Long Range Order
(ODLRO) and Superfluidity

Note that Penrose and Onsager [19-21] emphasized that in a perfect solid each
atom is localized at a specific lattice site and only lattice translational symmetry is
present. Thus there is no Bose—Einstein condensation (BEC) [52] at T = 0 (when
the thermal vacancies are absent and thus there is no band motion in the crystal).
Moreover, according to Yang, the Off Diagonal Long Range Order (ODLRO), or
superfluidity, which is directly related to Bose—Einstein condensation [53], may
occur in a solid phase only if the particles are delocalized. In other words to have
superfluidity in Quantum crystals we should have according to Matsuda and
Tsuneto [16] the coexistence of DLRO (diagonal long range order) connected with
translational symmetry and ODLRO, connected with superfluidity in the crystals.

These considerations are often used nowadays especially when the theorists
investigate with respect to superfluidity (or supersolidity) the Bosonic models on
the lattice [27-31]. More specifically they often consider Bose-Hubbard model or
extended Bose-Hubbard model with short-range repulsion between bosons on one
site and additional repulsion between them on the neighboring sites of the lattice
(see Chap. 5 for more details). The main goal here is to find the region of
parameters on the phase-diagram where a new phase with a superstructure (with an
incommensurate density wave) can be stabilized on top of a crystalline lattice. This
additional superstructure or superlattice (or density wave) will just correspond to
ODLRO, while the initial lattice—to a standard translational long range order
(DLRO). Thus such a new phase can be considered with some degree of precaution
as a supersolid phase.


http://dx.doi.org/10.1007/978-94-007-6961-8_5
http://dx.doi.org/10.1007/978-94-007-6961-8_5

2.1 Quantum Crystals. Phase-Diagram. The Search for Supersolidity 61

Note that these arguments are supported by the old idea to increase the pressure
and thus to reduce the roton gap A to zero near the melting curve (see Fig. 1.2 for
the spectrum of elementary excitations in the superfluid “He) and thus to create a
superstructure or a superlattice with a period proportional to 1/py (where &(pg) = A
for roton’s minimum).

Note also that thermodynamics of an incommensurate quantum crystal was
considered recently by Anderson, Brinkman and Huse [22, 23]. The authors of [22,
23] derived an effective Ginzburg—Landau (GL) functional for the incommensu-
rate case when the number of vacancies (N,,.) does not coincide with the number
of the interstitials (Njpers): The GL-functional is constructed in terms of the
parameter of incommensurability ¢ which measures the difference between the
ratio of % at finite temperature and at temperature zero:d = NN—I(T) - W

The vacancies and interstitials according to Anderson et al. are in strongly-
correlated state and provide a small contribution to the entropy of the incom-
mensurate crystal ASg,yy = ,8T7 [22]. The main contribution to the entropy is still
due to phonons AS.,y, = BT3. In the next article [23] Anderson also proposed a
model wave-function for a superfluid solid which accounts for the vacancy
component [51] and Gutzwiller constraint [81]. The constraint prohibits the double
occupancy of one site in quantum Bose solid.

2.1.1.4 Quantum Permutations
In the absence of vacancies the permutations between particles are complicated in

the perfect quantum crystal by large short-range Hubbard (or contact) repulsion
between them (see Fig. 2.2).

2.1.2 Flow of Zero Vacancies. Andreev-Lifshitz Theory

However, usually there are vacancies, defects and impurities in the quantum
crystals which make the permutations easier.

—

O

Fig. 2.2 Quantum (a) (b) c)
permutations of two (a), three O O Q O
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2.1.2.1 Vacancions, Defectons and Impuritons

In other words in quantum crystals besides a standard phonon branch of the
elementary excitations should be an additional branch with a band character of
motion. The most difficult logical point here is that the number of atoms can be
different from the number of lattice sites in the quantum crystal. To realize this
idea we need vacancies, dislocations, interstitials or other defects in the crystalline
lattice. Another possibility to realize this scenario is to consider the system of
impurities (*He for example) in the crystalline matrix of *He. In this case the band
character of impurity atoms (impuritons) leads to the phenomena of quantum
diffusion (Andreev and Lifshitz [4], Y. Kagan and Maksimov [54-57]). Note that
in ordinary crystals the spectrum of vacancions has a large energy gap and so their
number and their contribution to specific heat are exponentially small. Andreev
and Lifshitz assumed that in quantum crystal of “He the number of vacancions is of
the order of 1 per site that is there are zero vacancies in the system. In definite
conditions then (in particular in the absence of Mott—Hubbard localization—see
Chap. 4, 5, 9 for more details) the vacancies could Bose-condense [52] and all the
crystal will undergo the transition to the superfluid state. On the macroscopical
language this state will be described by the many component superfluid hydro-
dynamics similar to Landau hydrodynamics [58] for superfluid liquid helium
which was detaily considered in Chap. 1. To be more precise the hydrodynamics
of a supersolid is even a bit closer to the hydrodynamics of rotating superfluid in a
presence of the vortex lattice since it also contains three independent velocities.
One of them is Vs—the velocity for the superfluid motion of zero vacancies (or

other zero quantum defects). Another one ii stands for the lattice velocity. The third
one V, is governed by the normal motion of elementary excitations such as thermal

vacancies and phonons. Note that the two relative velocities W = ¥, — ii and W, =
¥, — ii are nonzero in our case. Correspondingly besides the standard transverse and
longitudinal sound in the phonon subsystem, we have an additional sound mode in
the subsystem of vacancies (defectons) in a supersolid. The last mode a bit
resembles the second sound in a superfluid liquid “He but does not exactly coincide
with a second sound since a fraction of vacancies is superfluid. Nevertheless in
analogy with a second sound the phase velocity of this mode depends upon the ratio
0,/ ps between the densities of thermal and superfluid vacancies. Note that since at
T = 0 there is a finite difference Ap/p ~ 0.1 between the densities of solid and
liquid phase we can expect the same amount of spatial disorder (or 10 % of surface
vacancies) on the phase-interface between quantum crystal of “He and quantum
superfluid He-II (see the next chapter). If we can organize the diffusive flow [80] of
vacancies from the surface to the bulk of the crystal, we can probably create the
sufficient amount of zero vacancies in the bulk solid “He and thus promote non-
equilibrium superfluidity. If, vice versa, we believe that there is a lot of equilibrium
zero vacancies in the bulk, than we can create the diffusive flow of vacancies in the
opposite direction—from the bulk to the surface and in this way to measure the
spatial distribution of vacancies (or defectons) and the gradients of their density.
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2.1.2.2 Zero Vacancies. Theoretical Background

Andreev and Lifshitz assumed the following bare spectrum of vacancies in solid
4
He:

»
ep) =¢e +—, 2.1.6

(p) =0+ 2 (2.1.6)
where ¢y < 0 is negative at low temperatures and M is an effective mass of
vacancion (which in principle can be different from the mass of “He atom my). In
solid *He vacancies are bosons, as well as “He atoms themselves. In general we
have weakly non-ideal low-density Bogoliubov Bose-gas with repulsive interac-
tion between vacancies [53]. In this case the chemical potential u is negative for
low density of vacancies nyd®> < 1. Indeed in the Hartee-Fock approximation the
chemical potential reads [4, 43]:

4nii?
= ~leo| +—=fonv <0, (2.1.7)
where fy > 0 is repulsive scattering amplitude and 4“Mﬁz fo is pseudo potential for the
vacancies interaction (see Chap. 6). Of course, in this situation the vacancies will

3.31n3°
M

be Bose-condensed at the temperature given by Einstein formula T25€ ~
[52]. Moreover after diagonalization of the Bogoliubov Hamiltonian for vacancies
(after Bogoliubov u-v transformation [53]) their transformed spectrum will read:

2
E(p) =\[/c?p* + (;;) : (2.1.8)

It will become linear at small momenta E(p) = cp, where

4nh?
— gz fonv (2.1.9)

is a sound velocity squared (see Chap. 6 for more details). Thus the Bogoliubov
spectrum of vacancions (2.1.8) will satisfy Landau criterion for superfluidity (see
Chap. 1).

2.1.2.3 Zero Vacancies. Experimental Search

The attempts to find experimentally zero vacancies were based on three main ideas:

1. To perform an analog of Josephson experiment in a ring where a thin peace of
solid “He serves as a cork to superfluid “He (see Fig. 2.3) and to find the
manifestation of the macroscopic wave-function ¥ which penetrates in the
solid and connects left and right branches of the superfluid “He via the small
cork [59] of atomic size.
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Fig. 2.3 The principal v,

scheme of the gedanken Solid “He
Josephson-type of experiment

in a ring where a piece of W,

solid *He serves as a cork to

superfluid “He Superfluid “He Superfluid *He

2. To measure the low-temperature specific heat in solid “He [6,7, 13, 60, 61] and
to subtract a phonon contribution proportional to 7° thus finding (if it exists) the
contribution of zero-vacancies Cy ~ exp{|e|/T}. Another possibility is to
measure the temperature dependence of the melting pressure P(7) at low
temperatures and to subtract 7% contribution due to phonons (Parshin et al.
[38]).

3. To perform an analog of Andronikashvili experiment [14] with rotation of solid
“He and to extract a non-zero superfluid fraction (1 — p,/p) = pg/p from the
non-classical moment of inertia (Leggett’s idea [15], experiments of Chan et al.
[8—12]) if supersolidity exists.

Unfortunately until now numerous measurements do not confirm the existence
of zero vacancies. Namely in NMR, X-ray and acoustic measurements experi-
mentalists observe only the contribution of thermo-activated vacancies. In the
same time in the measurements of specific heat and heat conductance as well as of
the temperature dependence of the melting pressure all the results can be explained
only by phonon contribution without vacancies at all. If there is some small
vacancy contribution in these experiments, it is connected with bosonic (and not
Boltzman) vacancies with a broad band and a complicated spectrum. Finally in the
experiments on thermal expansion in solid *“He at high temperatures the
researchers observe Anderson’s type of the corrections to the specific heat
6Cy ~bT". These corrections can be possibly explained by some degree of
incommensurability according to Anderson et al. [22, 23], but not by the ther-
moactivative vacancies.

Thus the problem of the experimental search of zero vacancies is opened for
future investigations in different quantum solid systems with large Lindemann and
de Boer parameters. Maybe the better conditions for supersolidity can be experi-
mentally achieved in excitonic systems (Balatsky et al. [24-26]) and in ultracold
Bose-gases on optical lattices where it is easier experimentally to tune the
parameters of the system.
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Fig. 2.4 The principal
scheme of the gedanken
Leggett’s type of experiment
to measure the non-classical
rotation inertia in rotating
solid *He [15]

Solid Helium

2.1.2.4 Leggett’s Idea

The ideal method to detect superflow according to Leggett [15] would be to
subject solid “He to undergo dc or ac rotation and to look (in similarity with
Andronikashvili experiments in superfluid “He) for the evidence of Non-Classical
Rotation Inertia (NCRI—see Chap. 1).

Quantum exchange of particles arranged in an annulus under rotation leads to a
measured moment of inertia that is smaller than the classical value (see Fig. 2.4
and [8-13, 61]). Namely the moment of inertia I(T) = L js5ic(1 — f5(T)), where
fs(T) = pg/p is the supersolid fraction.

2.1.3 Chan Experiments with Rotating Cryostat. The Search
for Supersolidity in Solid *He

Recently an attempt to realize the Leggett’s idea was made by the group of Chan
[8—13, 61] in Penn State University, USA (see Fig. 1.7 in Chap. 1 for the principal
scheme of the experimental setup used by Chan’s group). In the first paper Kim and
Chan filled the pores of Vycor glass (of aerogel, see Chap. 3) with solid “He and
studied the rotation of this solid system. They observed that effective moment of
inertia was smaller than the total one at low temperatures 7' < 0.125 K. The authors
interpreted their result as a transition of solid “He in pores in a superfluid state. This
result produced a huge interest in the low temperature community and casts doubts
connected with the side effect of porous medium. Trying to reduce the skepticism
Kim and Chan published two more articles where they have studied the moment of
inertia of solid “He in the absence of aerogel and at small concentration of *He
impurities (clean situation). They worked close to the melting line on the phase
diagram of *He and carefully studied thermodynamics close to its minimum at
T ~ (0.5 = 0.6) K where nontrivial quantum effects cannot be excluded in prin-
ciple. They claimed that pg<0.01p in these experiments (1 % of superfluid
fraction). However, scientific community again was not convinced even by these
results. Rittner and Reppy [36] challenging Chan’s results showed experimentally
that, when all the defects like grain boundaries, dislocations etc. are carefully
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annealed and when we have a very pure crystal, the effect of non-classical moment
of inertia disappears. So now the most part of the low temperature community (see
papers by Andreev [33-35], Balatsky et al. [24-26], Prokof’ev et al. [27-31],
Parshin et al. [38], Balibar et al. [32]) does not believe in the real supersolidity but
more in some glassy state with a superflow of defects (grain boundaries etc.)
relative to the lattice [59]. Note that in glasses (like SiO, for example) the number
of equivalent sites under deformation is larger than the number of atoms. Therefore
two types of motion are possible in a glassy state: oscillations near the equilibrium
positions (analogous to phonon modes in regular solids) and sudden “jumps” of
diffusive types from initial state to the neighboring equivalent positions.

Equivalently upon deformation of a quantum crystal there arises a self-con-
sistent motion of lattice sites and a flow of defectons, accompanied by a transport
of mass. According to the recent discussion of Andreev-Lifshitz theory in Kavli
Institute [62] with some degree of precaution we can speak about possible
“superplasticity” of a quantum crystal.

The important recent observation should be mentioned here in this context,
namely the increase of a shear modulus in *He crystal at low temperatures
T ~ 0.1 K instead of a decrease typical for superfluid or “superplastic” quantum
crystal. The increase of the shear modulus K can produce a drop in the resonant

period T = 27+/I/K without a decrease of the moment of inertia / [83, 84], and
thus without a real supersolidity. In their recent experiments [83] Kim and Chan
confirmed the increase of the shear modulus at low temperatures due to solidifi-
cation of one *He layer and the absence of the superfliud fraction. These results
according to Kim and Chan [83] prove the absence of supersolidity in solid helium
in porous vycor glass. Another interesting aspect to be mentioned is an idea of Y.
Kagan [63] about the possibility of the choc-ice model for the explanation of the
rotating experiments of Chan et al. Namely due to a small difference of densities
between solid and liquid phases it could be probably easier to have a surface
melting of the crystal instead of melting in the bulk. Then it is possible to create a
surface layer of superfluid “He between the crystal and the walls of rotating
experimental container similar to the surface melting of ice-cream in a glass. This
melted surface layer becomes superfluid and can in principle explain the difference
between a measured moment of inertia connected with rotation and a total moment
of inertia of a solid in the absence of aerogel.

2.2 The Surface Physics of Quantum Crystals. Atomically
Smooth and Atomically Rough Surfaces

We proceed now to the second part of the chapter where we will concentrate mainly
on the surface physics for the different phase-interfaces of the solid “He in contact
with superfluid helium. It is also a subject of a hot debate today especially con-
cerning the problem of quantum and classical roughening and the correlation
between microscopic models of roughening and macroscopic hydrodynamics on
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atomically (or even quantum) rough surfaces where the spectrum of weakly damped
melting-crystallization waves o ~ k2 was measured. These measurements were
performed not only for relatively high (roton) temperatures 7 ~ (0.7 = 1.2) Kbut
also for much lower (phonon) temperatures 7 ~ (0.3 < 0.6) K. In this section we
will try to present a now-a-day understanding of the problem and emphasize the
unresolved questions which still, according to our point of view, do nor allow to
construct the coherent microscopic physical picture of a mobile phase-interface
between quantum solid and quantum liquid.

2.2.1 The Concept of the Mobile Rough Interface Between
Solid *He and Superfluid He-II

As we understood in the Introduction to Sect. 2.1, the “He atoms in quantum
crystals have large zero-vibration energy of quantum oscillations and can be
considered as delocalized or almost delocalized quasiparticles. The atoms of
superfluid helium are also delocalized and participate (even in the absence of a
drift flow) in a coherent oscillating motion of the Bose-condensate. Thus with
some degree of precaution it is appealing to talk about the joint macroscopic W-
function which connects solid and liquid subsystems via a coherent phase-interface
(see [50]). In fact the situation is more complicated especially at zero temperature
(at T = 0) (see [40]).

In the series of the pioneering papers Castaing and Nozieres [64], Andreev and
Parshin [47], Marchenko and Parshin [65] developed the ideas of delocalized
atomically (or even quantum) rough state of the interface (see Fig. 2.5) and the
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Fig. 2.5 The qualitative picture of the surface hydrodynamic waves on the mobile rough
interface between solid and superfluid “He. At low frequencies these waves are melting-
crystallization waves (see the next section). For these waves we can introduce z = ¢ + u, for a
total displacement of the surface point from equilibrium position (see explanation below). g is
gravitational acceleration, p,,;, p; are the densities of solid and liquid phase
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roughening transition (Nozieres [39], Andreev [43]) between atomically rough (or
quantum rough) and atomically smooth states of the interface.

2.2.2 Growth and Melting Shape of a Crystal

On Fig. 2.6 we present growth and melting shapes of “He crystal following a nice
review-article of Balibar et al. [40]. We can see the rectangular parts on Fig. 2.6
corresponding to atomically smooth surfaces (or facets) and rounded corners cor-
responding to atomically rough surfaces. An important observation is that facets
grow and melt more slowly then atomically rough rounded corners. Thus atomi-
cally rough interfaces are more mobile. Remind that a crystal grows from a liquid
phase when we increase a pressure a little bit (create an overpressure) working near
the melting curve. Note also that the classical crystals at low temperatures always
have characteristic faceting and melting-crystallization processes on them are very
slow (see review-article of Chernov [66] for example). The quantum crystals in
contrast to the classical ones have extended atomically rough regions (see Fig. 2.6)
with rapid melting-crystallization processes on the rough surfaces.

2.2.3 Melting-Crystallization Waves and Phase Equilibrium
on the Mobile Rough Surface

The atomically rough surface state together with the small difference between the
densities of bulk solid and superfluid phases Ap/p~0.1 and between zero-
vibration energies of liquid and solid phases promote rapid and practically dissi-
pationless character of melting-crystallization processes on the phase boundary. In
fact it is possible to incorporate the atom from the liquid rather rapidly and over a
small potential barrier in the surface atomic row in the crystal. The rapidness and
practically dissipationless character of melting-crystallization waves on the rough
surface [47-49, 76, 77, 82] in macroscopic language can be expressed in the

Fig. 2.6 Growth and melting growth shape
shapes of a crystal from [40]. r -
Facets grow and melt more '?(/’ melting Shapé\\‘_‘g‘:

atomically rough surface

slowly than atomically rough
rounded corners

atomically smooth surface
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condition of the thermodynamic equilibrium on the boundary p; = u, for chemical
potentials of solid and liquid phases (see Fig. 2.5). Together with the standard
boundary condition for the mechanical equilibrium P, = P, for the pressures (see
[5]) and thermodynamic identities at 7 = 0 6P; = p,dy; and 6P, = p,0u, for
small pressure deviations, we can use the equation dy; = du, for the deviations of
the chemical potentials from equilibrium to get:

(p1 — p2)dpy = 0. (2.2.1)

Hence ou, = 0 and 6P, = O for the liquid phase, where 6P, is the difference
between local pressure in the liquid and the equilibrium one P, = 26 bar. Thus the
atomically rough interface between solid and superfluid “He becomes equivalent to
the free interface between liquid and vacuum. Note that in more rigorous con-
siderations there are surface (capillary) terms [58] of the Laplace type in the right-
hand side of (2.2.1) (see the next section). As a result the melting-crystallization
waves on the rough surface resemble according to Andreev and Parshin [47] the
standard capillary waves on the free surface of the liquid [58]. These waves are
sometimes called riplons and for liquid-vacuum interface have the spectrum
o ~ (o) p)kﬁ. where o is the surface tension coefficient and k| is a projection of

the wave-vector parallel to the free surface (see also Chaps. 3 and 15). Corre-
spondingly for the mobile rough interface between solid and superfluid “He

w?* ~ (Zl’)’)z kﬁ where p/(Ap)® is a specific density factor for this interface. The

spectrum and damping of melting-crystallization waves will be derived more
rigorously from the linearization of the equations of the surface hydrodynamics in
the Chap. 3. Note that for melting-crystallization waves the growth velocity V;, =
¢ of the boundary does not coincide with the lattice velocity i, (see Fig. 2.5). Note
also that more rigorously in the spectrum of melting-crystallization waves instead
of a surface tension coefficient o enters the surface rigidity a (see Chap. 3).

2.2.4 Rayleigh Waves on Rough and Smooth Surfaces

Another branch of the surface waves which usually corresponds to higher fre-
quencies on mobile solid—superfluid interface is a more standard one. In this
branch we neglect melting-crystallization processes and get for the rough surface:

0Py = 00, = 0; 00, = 0; p,ou, = 0P, =0 (2.2.2)

for the oscillating parts of the pressures P and P, and the stress-tensor components
0, and 0,4, o = {x,y} (note that z-axis corresponds to the normal to the surface).

In other words while for melting-crystallization waves the total growth velocity
of the boundary V;, = ¢ + i1, =~ ¢ (and correspondingly the lattice velocity it, ~ 0),
for Rayleigh waves we have vice a versa Vj, ~ i1, and ¢ = 0 for the recrystalli-
zation rate. Hence the rough interface between solid and liquid becomes equivalent
at high frequencies to the interface between solid and vacuum. On this interface
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the standard Rayleigh waves can propagate (see Landau, Lifshitz Elasticity Theory
[5]) in similarity with the surface of the crystal with vacuum. The spectrum of the
Rayleigh waves is linear:

= nek)), (2.2.3)

where ¢, is transverse sound velocity in solid (see also Chap. 1) and in isotropic
approximation the coefficient # = n(c¢;/c;) depends upon the ratio between
transverse (c;) and longitudinal (c;) sound velocities in solid phase. In solid “He
n ~ 0.8 = 0.9. Note that as we discussed there are different interfaces of solid
“He. Their character (atomically smooth or atomically rough) depends on their
orientation to the main crystallographic axis of the crystal (we consider mostly
hexagonal hep structure of the “He crystal). Some of the interfaces are atomically
rough at low temperatures. They are rapidly growing mobile surfaces. On these
surfaces we have two branches of the surface waves: melting-crystallization waves
at low frequencies and Rayleigh waves at higher frequencies (see the more precise
derivations in the next chapter).

The other interfaces grow much slower. They are atomically smooth and obey
more standard laws of growth. They have characteristic faceting (see Fig. 2.7) and
only Rayleigh waves (more precisely Rayleigh-Stonely waves) propagate on their
surface in the linear regime. The spectrum of melting-crystallization waves on
them is strongly modified and becomes non-linear (amplitude-dependent) see
Parshin and Gusev [67].

2.2.5 Roughening Transition

There are two main competing approaches to the roughening transition in solid
“He which belong to Nozieres [39] and Andreev and Parshin [47] respectively (see
also quantum models of Tordanskii and Korshunov [44]). Note that the roughening
transition takes place, generally speaking, in the 2D gas of steps and kinks on the
surface. Thus, steps and kinks serve as elementary excitations in surface science
which define the kinetics and thermodynamics of surface growth as well as the
roughening transition from atomically smooth to atomically rough state of the
surface. Let us remind that a step is an additional row of atoms which joins already
exciting terrace for a flat part of the surface (see Fig. 2.8). It is important to
emphasize that besides straight “bare” steps there are also steps with kinks, where
the kink is an additional atom (adatom) on a straight “bare” step (see Fig. 2.8).

According to Andreev and Parshin there are surfaces which can be in atomi-
cally (or quantum) rough state till very low temperatures due to delocalization of
quantum kinks on the steps. In this case Andreev and Parshin assume that the
energy of a step with kinks reads (see [47]):

p= ﬁo+d(—§+s), (2.2.4)
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Fig. 2.7 Faceting of “He
crystals from Balibar,
Guthmann and Rolley [71].
As temperature goes down,
more and more facets appear
at the surface of “He crystals.
From top to bottom, the
temperature is successively
1.4, 1, 0.4, and 0.1 K. When
we decrease the temperature
more surfaces become
atomically smooth

Fig. 2.8 A step with kinks
on the growing surface (from
[43D)
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where f§;, is an energy of a straight “bare” step without kinks, d is intersite
distance, A is the bandwidth for delocalized kinks and ¢ is the kinks quasiparticle
energy counted from the bottom of the band (from — %). For highly delocalized
ensemble of kinks the second term in the r.h.s of (2.2.4) can coincide by the order

of magnitude with the first one (5 —¢) ~
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It means that the kinks quasiparticle energy coincides by the order of magnitude
with a step energy per unit length. Correspondingly f in (2.2.4) can tend to zero or
even becomes negative for the bottom of the band for zero vacancies. So we can
have a quantum rough state with no steps (or highly delocalized “zero-point”
steps) and with only rounded parts of the surface already at low temperatures. At
some finite temperature Tz Andreev and Parshin predicted a mean-field (second
order) phase transition from quantum rough state to a classical rough state.
Nozieres [39] has quite different point of view. According to Nozieres [39] (see
also [40] for an extended review) the roughening transition between low tem-
perature atomically smooth phase and high-temperature atomically rough phase
takes place at a finite temperature T and is governed by Berezinskii—Kosterlitz—
Thouless (BKT)—type [45, 46] of the transition in 2D gas of steps. In the approach
of Nozieres for high temperatures 7 > Ty the steps are delocalized and highly
fluctuating and thus we can put a step energy § = 0 for 7 > T. In the same time
for T < Tk the macroscopically large steps are formed. As a result the typical size
of the terrace on Fig. 2.8 (effectively the coherence length) should diverge and all
the surface becomes flat. Thus, we are in atomically smooth state at T <Tg. The
atomically smooth surface is faceted and very slowly growing. Its growth velocity
Vi, — 0. Note that the step energy f§ in Nozieres theory plays a role of a superfluid
density p, in BKT-theory for 2D “He-films. Thus, it should be a finite jump in f at
Tg. Correspondingly we can estimate the roughening transition temperature Ty in
the same way as Tggr for a 2D superfluid film. Namely:

Tr ~dB(Ty), (2.2.5)

where fid is a step energy calculated for one atom at T = Tk.

In surface science it is convenient to introduce also the angular dependent
surface energy o(¢). For the atomically smooth surface with steps of the atomic
height the surface energy reads for small angles ¢ < 1 (see Fig. 2.9):

B
#(g) = o0 + ol + 7ol (2.2.6)

where g is a step energy of unit height, 7 is an interaction energy between the steps.

. .4 erg § o erg 2
Note that in solid "He g~ 0.127 o d ~13-10 e d ~ 3 A. The

coefficient y is a subject of a debate and is different in the estimates of different
groups.

a z

of p

Fig. 2.9 The angular dependence of the surface energy o(¢) for ¢ < 1 for the surface with steps
of the atomic height, d is interatomic distance
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Note also that according to Landau [42] the derivative g—g has a finite jump % at
¢ = 0 for atomically smooth surfaces.

Another important and widely used quantity is the so-called surface stiffness (or
surface rigidity):

a=0+—. (2.2.7)
For small angles ¢ < 1 on the smooth surface:

o

a0+ (ﬁw) 161+ 7161 (2238)

From (2.2.8) we see that a is different from o with respect to the surface
anisotropy 2’77% For small f3, the surface rigidity o is governed by the coefficient y

(by the interaction energy between the steps).

If vice versa f is finite and y is small then & is governed by f§ on the smooth
surfaces.

For the rough surfaces with only rounded parts it is difficult to define & via the
angles ¢ and usually another definition is used:

%a

By = 00 +
Y o ag#agv

(2.2.9)
where ¢, = V¢ is a gradient of the displacement of the surface ¢ from the initial
point. Note that precisely this quantity enters into the spectrum of melting-crys-
tallization waves on rough surfaces (see the next chapter).

Correspondingly we can also express Tg via the surface rigidity &(7g) in
Nozieres theory. Namely according to the universal roughening relation (see
Fisher and Weeks [68] and Jayprakash et al. [69]):

2T,
kyTg = yd% (2.2.10)

where & d? is a surface rigidity calculated on one atom for T = Tk. Note that the
estimates (2.2.5) and (2.2.10) for Tk can be obtained also from the minimization of
the Free-energy of the step:

AF = AE — TRAS = 0, (2.2.11)

where AE ~ f3d is an increase of the energy due to the creation of a step at T = Tg
and AS is a configurational entropy connected with different “charges” of the steps
which are situated above or below the averaged surface position. Note also that the
exact value of Tx and the behavior of f§ for T < Ty in Nozieres approach can be
extracted from the renorm-group (RG) equations. The renorm-group equations are
explicitly derived in [39] and we will not present them here. We just mention that
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close to Tk on the smooth side of the transition (T < Tx) the step-energy f diverges
according to the law:

V1 =TTy

Correspondingly the correlation length ¢(7), which enters as a scale in RG-
equations, is also exponentially divergent near Tk :
¢(T) ~ nﬁ(T R) — 00 signaling the formation of the macroscopically large step or

B(T) ~ exp{ - M} (22.12)

a flat terrace of the infinite size ¢(7). Finally for T < Ty the surface rigidity

a(T) ~a(Tg) (1 — /1= T/TR) does not show a critical behavior. Note that the

theory of Nozieres considers the periodic pinning surface potential V(z) =
V cos(2nz/d) where z(x) is the local height of the surface at the point x. Effectively

his RG-approach is based on the Hamiltonian H = || dz"'[l 5(Vz)*+V cos 2“7} and

is equivalent to the solution of the sine-Gordon equation o ¢ Ly 2n 2" V sin (2}) =0
in the weak coupling limit V /& < 1. Close to T it predicts the formatlon of the

macroscopic step with atomic height given by the expression: z(x) =

Earctg (exp G )>, where ¢(T) is the coherence length. Note that the limiting

values of the height are given by z(x = —00) =0 and z(x = +00) = d for this
solution. Thus, Nozieres theory effectively starts from atomically smooth side and
describes the temperature evolution of the system towards the transition to
atomically rough state.

It is interesting to compare the analytical renorm-group approach of Nozieres
with the results of the numerical simulations by Leamy et al. (see [70] and
Fig. 2.10). The roughening transition in these simulations TR ~ fid - 0.632 corre-
sponds, crudely speaking, to the estimate (2.2.11) Tg ~ ba w1th configurational
entropy AS approximately equals to /n3 (see [40]. From the other hand numerical
simulations (see Fig. 2.10) are in favor of an important role of kinks or adatoms for
the understanding of the roughening transition. Note that delocalized kinks or
adatoms serve as a cornerstone of Andreev, Parshin scenario of quantum rough-
ening, while in Nozieres theory (which is a more classical one) only linear surface
defects—the steps are introduced and deeply investigated. We have a feeling that a
complete quantum picture of roughening transition is far from understanding and
requires the consideration of 2D gas of steps and kinks on equal grounds. In this
context we should mention the T = 0 predictions of the exactly solvable quantum
models considered by lordansky and Korshunov [44].

From the experimental side the different groups (Balibar et al. [71], Andreeva
et al. [72, 73], Babkin et al. [74], Wolf et al. [75], Rolley et al. [76—78]) measured
the angular dependence of the surface rigidity &(¢) and linear contribution to &(¢)
for small ¢ (corresponding to the step formation). The experiments were per-
formed at different temperatures and lead to the observation of the roughening
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Fig. 2.10 Numerical
simulations by Leamy et al.
[70] illustrating the basic
physics of a roughening
transition. The crystal has a
simple cubic lattice and each
atom is represented by a
cube. At low temperature,
there are very few defects
such as adatoms, surface
vacancies, steps and terraces.
As temperature increases,
steps proliferate and the
crystal surface looses
reference to the lattice. The
temperature is expressed as a
function of the bond energy
J. The roughening transition
occurs at Tg ~0.632 J d?
(from Leamy et al. [70],
where J ~ f/d is the step
energy per unit length)

transitions for three particular atomically smooth surfaces at the temperatures
TRy = 1.28 K, Try = 0.9 K and Tr3 = 0.35 K correspondingly. They also show
the increase of the faceted area fraction (in comparison with the total area of the
crystal surface) when we decrease the temperature. In the same time many surfaces
remain atomically rough till low temperatures. In particular for some crystallo-
graphic directions (which are described by large Miller indices and can be
obtained by tilting on a small angle of the main crystallographic surface) there are
families of the so-called vicinal surfaces staying in atomically rough state till very
low temperatures. These temperatures are less then typical phonon temperatures
Ton ~ (0.4 + 0.5) K in liquid He-II.

Thus the very interesting question whether we can have atomically (or quan-
tum) rough surface precisely at 7 = 0 is still a subject of a debate today.

In the next chapter we will detaily consider the hydrodynamic aspect of this
discussion, namely a spectrum of weakly damped melting-crystallization waves.
The existence of the weakly damped low frequency branch of the spectrum and its
hydrodynamic derivation based on the condition of thermodynamic equilibrium
serve as a good proof of a mobile character of many phase-interfaces till relatively
low temperatures. Experiments of Keshishev et al. and Balibar et al. on melting-
crystallization waves were done until the temperature as low as 0.25 K, which is a
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direct proof that even at these temperatures many surfaces are still atomically
rough. Moreover the melting-crystallization waves were observed on the surface of
solid *He even at much lower temperatures in Helsinki [40, 79]. In the last case,
however, the spectrum was not detaily measured. So we cannot say a priori
whether these waves are linear melting-crystallization waves predicted by And-
reev, Parshin for rough surfaces or nonlinear waves (which exist even on smooth
surface) predicted recently by Gusev and Parshin [67].

Concluding this chapter let us emphasize again that in the first part of it we
provide an introduction to the concept of quantum crystals and to the interesting
problem of possible supersolidity in them. In the second part of this chapter we
started to discuss the interesting surface physics on the phase interface between
quantum crystals and quantum liquids. We provided an introduction to the prob-
lem of roughening transition on the crystal surfaces of solid “He and briefly
considered the spectrum of melting-crystallization waves on rough surface as well
as Rayleigh waves, which exist both on rough and smooth surfaces. The next
chapter will be devoted to the construction of quantum hydrodynamics on the
mobile rough surfaces at low temperatures.
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Chapter 3

Melting-Crystallization Waves

on the Phase-Interface Between Quantum
Crystal and Superfluid

We will start this chapter by providing an introduction to the surface hydrody-

namics of the mobile rough surfaces based on Andreev-Parshin theory [1]. The

most important is a condition of thermodynamic equilibrium or continuity of

chemical potentials u; = u, on this surface. We will construct the linear hydro-

dynamics of the rough interface with an account of all important capillary terms,

such as surface tension coefficient o or more rigorously surface anisotropy
0

~ 2 .
o=a-+ ’7}_‘, surface stress Ay and surface effective mass My [2-9].

From the system of the equations of the surface hydrodynamics we will
determine the spectrum of the melting-crystallization waves as well as Rayleigh
waves on the rough surface (see Ref. [47] in Chap. 2). We will present pioneering
experimental results of Keshishev et al. [10, 11] in Kapitza Institute on the dis-
covery of the melting-crystallization waves on the rough surface of solid *He. In
the end of the Chapter we will generalize the hydrodynamic equations for the
rough interface on the presence of *He impurities [18] and for the case of non-zero
temperatures. We will also consider a stationary tangential flow of superfluid
liquid parallel to the surface. The system of hydrodynamic equations will be
compatible again (according to Landau scheme—see Chap. 1 [1, 2]) with the
conservation law for the surface energy. We will consider briefly the surface
dissipative function and define the surface kinetic coefficients such as Kapitza
thermal resistance Rg and growth coefficient K, [13, 14-16] On the basis of this
analysis we will determine the damping of the melting-crystallization waves and
compare it with the experiment [10, 11]. We will show that tangential flows of
superfluid liquid parallel to the rough surface of solid “He lead to the positive
(growing) increment Im @ > 0 for the imaginary part of the spectrum of the
melting-crystallization waves. This instability was independently predicted in the
papers of Kagan [17] and Uwaha and Nozieres [19, 20] and experimentally con-
firmed by Tsymbolenko in Kurchatov Institute [21, 22]. It resembles the instability
of tangential flow on the surface between two liquid layers in the classical
hydrodynamics (Kelvin-Helmholtz instability). We also analyze the acoustic
properties of the rough interface and find that the sound transmission from the
superfluid to a quantum crystal is possible only due to the presence of the capillary
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terms in the equations of surface hydrodynamics [6, 7, 17, 18]. We predict the
phenomena of the Cherenkov emissions of second sound quanta by the thermal
surface waves as well as the inverse effect of the resonance excitement of the
surface Rayleigh or Rayleigh-Stonley waves by the bulk second sound [17, 18]
incident on the interface from the liquid over the transcritical angle corresponding
to total internal reflection [13, 23-26] with respect to the normal of the surface.

3.1 The Surface Hydrodynamics for Rough Interface
at Low Temperatures

In the previous sections we argued that the large energy scale of zero-point particle
vibrations at a rough quantum liquid-quantum crystal phase interface as well as the
closeness of the solid- and liquid phase densities, allows us to assume that ther-
modynamic equilibrium can be established in the system over fairly short periods
of time. Consequently the melting-crystallization processes on the rough interface
are nondissipative (or at least weakly dissipative) at low temperatures. The cor-
rectness of this assumption is confirmed by the existence at the rough interface of
weakly damped melting-crystallization waves which were theoretically predicted
by Andreev and Parshin [1] and experimentally observed by Keshishev et al. [10].

The rapid establishment of thermodynamic equilibrium at a mobile quantum
liquid—quantum crystal interface also manifests itself in the effect, discovered by
Castaing et al. [2, 4, 5], of anomalously weak low-frequency sound transmission
across the interface. Indeed if the period of the incident wave is longer than the
time required for the establishment of thermodynamic equilibrium, then, as we
briefly discussed in Chap. 2, besides the normally required continuity of the
pressure across the interface, we must also have equality of the chemical potentials
U; = K, at the interface. In this case the variable part of the pressure is equal to
zero, and the incident acoustic wave should be totally reflected from the boundary,
as happens at a boundary with vacuum.

But allowance for the purely surface effects in the boundary conditions gives
rise to a small but finite sound-transmission coefficient D. Correspondingly, we
obtain a finite, though anomalously large, Kapitza thermal resistance Rg. As will
be shown below, of greatest importance for the sound-transmission problem is the
allowance for three main types of surface effects in the boundary conditions. The
first type is described by the terms connected with the surface-tension coefficient o

and with the surface anisotropy g% (see Chap. 2). The second type is described by

a term connected with the additional surface kinetic energy. This term was
introduced by Castaing and Puech [4, 5]. It is quadratic in the difference between
solid- and liquid-phase velocities perpendicular to the boundary. This term is
derived in [27] on the basis of model arguments. The effect is due to the fact, that
when the matter flows over from the solid into the liquid phase, its short-range
order must be substantially reconstructed at the phase interface. Finally, the third
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type of effects is described by the terms introduced by Marchenko and Parshin [3].
They are connected with the surface stresses (surface elasticity). Allowance for the
surface stresses leads to a situation in which the surface of a crystal is elastically
deformed even in the state of total thermodynamic equilibrium.

3.1.1 Linear Equations of Surface Hydrodynamics
in the Absence of Stationary Surface Flows

In this subsection we derive linear equations of surface-hydrodynamics (general-
ized boundary conditions) at 7 = 0 which are consistent with the surface energy
conservation law and take into account simultaneously all the important surface
effects. Using these equations, we will determine the spectrum of the melting-
crystallization waves. We will also establish a general expression for the frequency
and angular dependences of the sound-transmission coefficient in the two opposite
limiting cases of the near-normal incidence and the incidence at glancing angles.

Using two small parameters of the problem, namely % ~ ”WP—ZPL ~ % < 1 and

kd < 1 (k is the wave-vector) we will show that in both cases the nonvanishing
amplitude of the transmitted wave is largely due to the effects of the reconstruction
of the short-range order at the phase-interface and the effect of the surface tension.
At the same time, when the acoustic waves are incident at the angles close to the
critical angles for total internal reflection, the dominant contribution to the
transmission coefficient is due to the surface stress (surface elasticity).

3.1.1.1 Generalized Boundary Conditions
The surface hydrodynamics represents the generalized boundary conditions and is

governed again by Landau conservation laws together with the requirements of the
Galilean invariance. For T = 0 according to Castaing and Nozieres [2] it reads:

s . (2
Vs = (1 =i )= (o1 = p2) Vi (3.1.1)
P+ Vpmy = (Hiﬁ) - nﬁ))nk - (',ﬁ” - j,(f)) Vi, (3.1.2)
P+ Vpmy = (Hi,? - Hg))nk - (jﬁl) —j§2))Vl,, (3.1.3)

where p}, p; are surface momenta (x = x,y); n;ﬁ, niﬁ are surface momentum

fluxes, V}, is a velocity of the interface boundary.

In the system of Egs. (3.1.1), (3.1.2), (3.1.3) j,(cl) and j,(f) are the bulk momenta
in solid and liquid phases respectively, Hi}g and Hgg are the bulk momentum
fluxes, 7 is the vector normal to the deformed surface, p, and p, are the densities
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of the solid and liquid phases. For undeformed surface 7i = &, and V), is parallel to

the z-axis. In general case V,, is directed normal to the deformed surface and 7 is
different from &, (see below). These three Eqs (3.1.1), (3.1.2), (3.1.3) are consistent
with the surface energy conservation law:

B+ V,0, = (Qi” _ Q,(f))nk — (E) — Ex)V), (3.1.4)

where E; is the density of a surface energy, 0} is the surface energy flux, Q,((1> and

Qf) are the bulk energy fluxes, E; and E, are the bulk energy densities.
Note that in the linear theory V;, = i, + ¢, where i, is a z-component of a solid
state velocity i, ¢ is a velocity (a rate) of recrystalization.

3.1.1.2 The Bulk Fluxes at T = 0

In the system of Egs. (3.1.1-3.1.3)

Hflz) = PyVoiVor + P2k (3.1.5)

is a bulk momentum flux for superfluid at 7 = 0. Correspondingly vV, = V; is a
superfluid velocity, P, is a pressure in the liquid phase.
In linear theory

HE/? = pViivix + Poi — 0, (3.1.6)
is a momentum flux for solid, where

1
ij :Gikfgalléik (317)
is a shear part of the stress tensor.

In (3.1.7) as we already discussed in Chap. 1 a stress tensor reads
Ojx = 2,016'[21,{,‘1( + Py (C12 — 26‘[2)1/{1](3,‘1(, (318)
where ¢, and ¢; are transverse and longitudinal sound velocities in solid, u;, is a

deformation tensor.

In the absence of dislocations and disclinations in solid V; = ii. Note that we
consider solid *He to be a quantum crystal but not a supersolid. That is why there
is no drift velocity relative to the lattice in it at 7 = 0. Correspondingly the bulk
momenta in solid and liquid phase read:

Jri=pvi and  jo = pyva;. (3.1.9)

Finally the bulk energy fluxes in (3.1.4) for the surface energy conservation are
given by:
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2
1 v .(1 *
0 = (ul + é)};ﬁ "o,

2
2 V3.2
0 (H2+22>Jl(c)-

In the same time the bulk energy densities in (3.1.4)

(3.1.10)

vi V3
+p13 and E2:(/12p2—P2)+p23. (3111)

« Uik
E; = (1,0 _Pl)JrGik?l

In the linearized theory for the solid phase

1
P] ZP()—§O'117 (3112)

where Py = 26 bar is an equilibrium melting pressure.
Correspondingly for the chemical potential in the solid phase we have:

aj

— 3.1.13
3p, ( )

M=ty —
According to the thermodynamic identities at 7= O the deviations from the
equilibrium of the pressures and chemical potentials are related by:

dP] = pld,ul and dP2 = pzdﬂz. (3.1.14)

Hence momentum flux in the solid phase can be represented as:

Hgkl) = pvivie + Podik — O (3.1.15)

3.1.1.3 The Surface Energy and Surface Fluxes

The total surface energy consists of three terms.
E,=E! + EM" + EX", (3.1.16)

where E°(u!,, V¢, V,c) is the elastic surface energy, which depends on the gra-
dients of the elastic and crystallization-induced displacements # and ¢ and i}, is the
tangential component of the displacement tensor which we will define below.

In (3.1.16) E™"'(¢) is the energy due to the necessity of the reconstruction of
the short-range order when the matter flows over from phase to phase. It is qua-

dratic in the recrystallization rate ¢. Finally EX" is the surface kinetic energy,
which depends on the surface momentum density p* = (ﬁ;, P;) (¢ = 1.2) and the

surface mass v, as well as the velocities of the liquid V,, crystal ¥} = ii and the
phase interface V;,. Let us go over into a reference frame K in which, first, the
phase interface is at a rest (V}, = 0) and, second, the velocity of the liquid has no
tangential component (v, = 0). Then the Galilean transformation formulas
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Py = Doy + VWaus  pr=po, + Vs (3.1.17)
s s Lo, 15
E, = ESO +P0“Vzm +pOZVh + EVVb —+ EVVZ“ (3118)

relate the surface energy density E; and the surface momentum density j° in the
laboratory reference frame K to the corresponding quantities in the K, reference
frame. Therefore, taking into account that the kinetic part of the surface energy in
the reference frame K, can depend only on the Galilean invariant combinations of

the velocities f;, V5 and V},, we have
dEy = Judully + FydVoc + dE™" + (viy — vay)dpy, + (viz — Viy)dp},. (3.1.19)
In (3.1.17)
dE™" = &d(Myc), (3.1.20)

where M,y ~ pd is the coefficient of the proportionality between E"" and ¢ /2,
and has the dimensions of the surface density. In the same time u}, in dEy is the
tangential displacement (strain) tensor, which is connected with the standard
displacement tensor of the bulk elasticity theory by the relation (see [28]):

n;ny,

s (3.1.21)

Mgk = AipAk/upl; Aip = 5ip

In (3.1.19) z = u; + ¢ is the total displacement of the surface points which is
the sum of the elastic (u;) and the recrystallization induced (g) displacements,
i = (1,—V,z) is the normal to the deformed surface which enters in the system of
Egs. (3.1.1), (3.1.2), (3.1.3). Note that while in undeformed case # = €, and

|ii|*= 1, in the deformed situation

il’= 1+ (V,2)°# 1. (3.1.22)

The right-hand side of the identity (3.1.19) is a total differential, therefore the
cross derivatives for the elastic part of the surface energy should be equal to each
other:

PEy  0lx  OF,
B0 _ 3.1.23
oc,0ul, — 3,  oul, ( )

In the relation (3.1.19) p§, = p,(vix — v2s) Where p,~ pd is the effective
surface density. The expression (3.1.18) is the most general expression for the
surface-energy differential at 7 = 0. It must be emphasized that the Egs. (3.1.2),
(3.1.3), expressing the conservation law of the surface momentum, are consistent
with the conservation law of the surface angular momentum (see [29]) if the
following conditions are fulfilled:

Tup = Ty, and T, = MgV pz + po V. (3.1.24)
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Furthermore, since the momentum and the mass flux coincide in the nonrela-
tivistic hydrodynamics, Eq. (3.1.1) expresses in fact the equality of the bulk-
momentum components perpendicular to the surface in the reference frame K, of
the phase interface where V,, = 0. Owing to the continuity of the bulk momentum

density j(()lz’2

) = Pa1.2) (v{? — V), there is no need to introduce the surface
momentum py, into the hydrodynamics. Note that there is, generally speaking, no
reason why pg, should also vanish. But in the linear equations of the surface
hydrodynamics the contribution of the terms containing py, always turns out to be
small.

Note also that while deriving the system of Egs. (3.1.1-3.1.3) we, as usual,
define the boundary as the place where the surface particle density v, which enters
in (3.1.17), (3.1.18) is equal to zero (see [2]).

Let us remind that Z; in (3.1.19) is a surface stress tensor introduced firstly by
Marchenko and Parshin [3]. Physically the surface stress exists even on a free
undeformed solid surface because the surface row of atoms on Fig. 2.5 in Chap. 2
have the neighbors below but does not have the neighbors above. So there are
gradients of the van der Waals potential acting on the surface row of atoms which
correspond to nonzero Aj.

3.1.1.4 Lowest in Gradients Expansion of the Surface Energy

In the absence of the external stationary flows (for vy, = vy, and v, = V},) we have
Py, = 0 and py. = 0. Than for v = 0 the surface energy Es = Ej and

dE; = dEy = Jpxduly + FudV ¢ + &d (M), (3.1.25)
Than, using the relation (3.1.23) for the cross derivatives, we obtain for E; in
the lowest (quadratic) order of the gradients expansion:
SuSv ¢?
Ey = (2000 + 5 ) 4 Fropyyttp + Meg 5 (3.1.26)

where

an __

w agv ) )“11/3}' =

v

oF, OF,  lup
=—. 3.1.27
6u“ﬁ agh’, ( )

In (3.1.23) g is the surface energy density in the absence of the deformation
(the coefficient of the surface tension), oy is the surface-anisotropy coefficient,

A1apy 18 the coefficient of the off-diagonal term in the expansion of the elastic part
of the surface energy: 41,4, = 41pu,. In the expression (3.1.23) we have discarded
all the terms of the order of u?/c? < 1 which can be shown to be small at not too
high frequencies «w with the help of the small parameters of the problem % <1
and kd < 1. From the small terms of the order of u/¢ we have retained only one,
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namely, AjqpUspG,, Which, as will be shown below, is important for the acoustic
problem when the angle of incidence of the acoustic wave is close to the critical
angle for the total internal reflection.

3.1.1.5 Surface Energy Flux and Surface Momentum Fluxes

Differentiating (3.1.25) with respect to the time, and using the forms (3.1.1-3.1.3)
of the conservation laws of the surface mass and momentum under conditions
when there are no stationary surface flows and v = pg, = po, = 0, we obtain for
the energy in the quadratic in gradients approximation

E+V305 — (Qu — Q)i + (Ey — E2) Vi
= —v1:.Vatty — vigVp(Tap + Aiapys,) (3.1.28)
—&[p1(pa = 1) + Pr = Pot Vg (8py + Aroypitsy) — Megr]
where the surface energy flux reads
0;3 = _&uﬂgﬂé - /lloc"/ﬂéuocy - )vl,[}ayvlocgy- (3129)

Let us remind that o3 = apd,p + o
We should demand that (3.1.28) has a form of the surface energy conservation
law (3.1.4). Than the following conditions must be fulfilled:

Tup = —AMpuySy;  Taz =0 (3.1.30)

E[p1(y — ) 4+ Pr = Py + Vig(3ups, + Aapitsy) — Megd] =0. (3.1.31)

Let us emphasize that the expression m,3Vpz 4 p, Vi = =41 oSy V pZ + PV 18
of the second order in smallness. Therefore, the condition 7n,, = 0 in (3.1.27) is
consistent with the conservation law of the surface angular momentum.

If the melting-crystallization processes occur in the system, then ¢ # 0. There-
fore, from (3.1.31) follows: p;(uy — py) + Py — Po+ V(0upS, + Atoypitey ) —
MyS = 0. Finally, in the absence of external stationary flows, the linear boundary
conditions have the form:

ﬂz(sz - Vb) = pl(Vlz - VI))% Oz = Vﬁ()d/ioq»gy); Oz + Py — Py = 0

3.1.32
Py = ) + P = Py Vi (8upc, + Apitag) — Moy =0, ( )

where Py = 26 bar is equilibrium pressure.

The first equation in the system (3.1.32) is a matter-balance equation; the
second and third equations constitute the conditions for the mechanical equilib-
rium at the boundary. Finally the last equation constitutes a generalized condition
for the phase equilibrium. This last equation can also be regarded as the equation
of the motion of the boundary relative to the solid. In the zeroth approximation the
system (3.1.32) is consistent with the conditions for total phase equilibrium:
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Py = P = Po; Uy = Hoz = Ho- (3.1.33)

In the approximation linear in the deviations from the equilibrium and with an
account of the thermodynamic identities 0P; = p1dyu; and 6P, = pdp, at T =0
for the variable parts of the pressures and the chemical potentials we get:

Ap(S/.LZ + V/} (5(,,[3(3@“ + impéu“,) — Meﬁcéé =0
00, = Vg (/11,;(175@/); 00, + pd, =0 (3.1.34)
POV, — povy, — Apdc =0

Let us emphasize that in the absence of the stationary surface flows the
velocities, the displacements and the stress-tensor components coincide with their
variable parts, and the symbol J in front of them can be dropped. In (3.1.34)
Ap=p,—py; p=p, ~py (Ap/p < 1). In the balance equation, as in the
expression (3.1.26) for the surface energy, we have discarded the small terms of
the order of u/c.

3.1.1.6 The Role of Capillary Terms. Anomalous Transmission
of the Sound Waves

From the system of Eq. (3.1.34) it follows that for the sound wave incident on the
phase-interface, the amplitude of the wave transmitted into the other medium is
nonzero only because of the capillary effects.

Indeed, setting o3 = A1yp = Moy = 0 in (3.1.34) we get:

o, =0 and o, = 0o, =0. (3.1.35)

Therefore, the liquid and the solid phases become completely decoupled and,
for the acoustic waves incident at the boundary from any one of the media, this
boundary is equivalent to a boundary with vacuum. As a result the sound wave is
not transmitted into the other medium.

3.1.2 The Spectrum of Melting-Crystallization Waves

We briefly discussed the melting-crystallization waves and their spectrum in Chap. 2.
In the present subsection we will present the more detailed derivation of their
spectrum based on the system of the equations for the generalized boundary con-
ditions (3.1.34).

As we mentioned previously at low frequencies the spectrum of melting-
crystallization waves o~ k*? resembles the spectrum of the capillary waves.
Hence they are more soft (they correspond to lower frequencies) than the spectrum
of the more standard Rayleigh waves w ~ ¢,k briefly considered in Chap. 2. That is
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why we can decouple the equations for # and ¢ and put ii = 0 in the equations for
the melting-crystallization waves. Correspondingly the system of the Eq. (3.1.34)
can be reduced to the system of two equations—the balance equation

POV, + Apds =0 (3.1.36)
and the equation for the thermodynamic equilibrium
Apou, + &,,/;Vﬁégﬂ = M 405, (3.1.37)

where we can safely neglect the small term with /., in (3.1.37).
We can also use the bulk Josephson equation for the superfluid velocity:

Oy + Vo, =0 (3.1.38)
and the incompressibility equation
V - 8, = 0. (3.1.39)

The Josephson equation allows us to represent the superfluid velocity as
oVp = @5@2. Then the incompressibility equation will read Adp, = 0, where A is
Laplasian here. For the surface wave d¢, = Aeikata—kz—ior , where z is a normal axis
to the undeformed surface. Thus, from Adgp, = 0 follows that kﬁ = k? ork, = |kH |
where k| = (kI + kf,)l/ % is a projection of k vector on the (x, y)-plane.

Now we can take the time derivatives from the balance equation (3.1.33) and

the V, derivative from the thermodynamic equilibrium equation. Then we will
finish with:

POV, = —Apd = —pV,0u, (3.1.40)
ApV 0, + 0,5V 06,5 = My V08, (3.1.41)

where d¢,; =V, Vjdc.
Substituting the first Eq. (3.1.40) to the second one we finally get from (3.1.41):

(4p)* o _ P s s
T&g = Vo (My0% — up0,p), (3.1.42)
or correspondingly:
Ap)?
l% w® + wzkquﬁl 5¢ = gk kgoc. (3.1.43)

Hence using the condition k, = |kH’ we obtain for the spectrum:

w2M+|k|M = aupkkp|k)| 3.1.44
0 [ Meff | = %upRukp|x| |- (3.1.44)
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Let us choose d¢, = Aet*~%<=i®! Tt means that we choose k,-propagation for
the wave-vector of the melting-crystallization waves. Then we get the following
remarkable spectrum:

ek K Gtk [k
0)2: 2OC x| | — 5 pa x‘ | =~ (3145)
(Ap)*/p + kel Moy (Ap) (1 + plke| Mo/ (Ap) )

where M5 ~ pd is an effective surface mass.

(Ap)* (or ¢ = £ kd <1) we can neglect the second
P OTET & ‘

term in the brackets in the denominator of (3.1.45) and get

At small wave-vectors kd <

2 p&xxk§|k)r|
0f=——5—.
(Ap)

The spectrum (3.1.46) differs from the spectrum of ordinary capillary waves on

(3.1.46)

the surface between liquid and vacuum only in the factor (Ap)® / p* and in the

difference between the surface tension coefficient « and the surface stiffness

2
By = O+ aa =
> 2
At large wave-vectors &> 1 the spectrum (3.1.45) is linear w? = Cjw—’;‘

3.1.2.1 Measurements of Melting-Crystallization Waves

The melting-crystallization waves were measured in Kapitza Institute by Keshi-
shev, Parshin and Babkin in 1979 (see [10]).

The authors of [10] made a series of photographs of the surface growth and
surface melting after the surface was suddenly perturbed by shaking of the cryostat
at the time zero. The photographs (see Fig. 3.1) show the consequence of the states
of the solid-liquid interface.

Keshishev, Parshin and Babkin also plotted the spectrum of the melting-crys-
tallization waves which was well described by w ~ k*? law (see Fig. 3.2). They
also measured the decay rate of the waves which was several seconds for the
temperatures 7' # 0.5 K. Effectively the rough interface responds in the same way
as a free liquid surface with slowly decaying capillary waves.

3.1.3 The Growth Coefficient: Damping of the Melting-
Crystallization Waves

For T # 0 the melting-crystallization waves are slowly decaying. The simplest
way to get their damping according to Andreev and Knizhnik [30] is to introduce
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Fig. 3.1 a Crystallization waves in “He. Keshishev et al. [10, 11] discovered crystallization
waves in 1979 by shaking the cryostat: the interface between a “He crystal and superfluid “He
moves so easily by growth and melting that it looks like a free liquid surface. From Keshishev
et al. [10, 11]. b Experimental cell used in Moscow [10, 11]
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the growth coefficient in the equation for the thermodynamic equilibrium. Namely
we add in (3.1.41) a term linear in the recrystallization rate dS. As a result:

- . .1
Apdpy + 0,5V 0g, — Myyos = —pégK , (3.1.47)
8r

where K,, is the growth coefficient of the crystal connected with the friction of the
phase-interface on the normal excitations of superfluid and solid “He (phonons and
rotons). Assuming 1 / K, to be a small quantity for a mobile surface (a rapid
growth of the rough surfaces) and solving the system of Eqs. (3.1.33) and (3.1.44)
perturbatively we get for the spectrum:

. 2 k
~wy— P 2"", (3.1.48)
2(Ap)” Ker
where wy = _ phakik] (see Eq. (3.1.45)).

Ap)? | 14 Mefr x|
<’J)[+<An)2

In the phonon region 7 < 0.5 K we just get the decay rate of the order of the
several seconds as in the measurements of Keshishev, Parshin, Babkin. Note that
according to Andreev-Knizhnik in the phonon region 7' < 0.5 K the inverse
growth coefficient 1/K,, ~ T*. In the roton region 1/K,, ~ exp(—%), where A is

the energy of a roton minimum (¢(p) = A —&-(‘”;Tp‘f)z and mine = A). The mea-
surements of the growth coefficient in the roton region by different groups are
presented on Fig. 3.3. The effective damping is small both in the roton and the
phonon region so we can see several oscillations before the amplitude of the wave
becomes small. The profile of melting-crystallization waves is shown on Fig. 3.4
for the particular case of the vicinal surface and temperature 7 = 0.28 K.

Note that for atomically smooth surface according to the usual theory of the
first-order phase-transition the growth is very slow and has a thermoactivative
behavior:

2
nfp
~ ——TF ) 0 for T—0 3.1.49
exP( 3d5uzkﬁTAp) oo TR ( )

8r

where f is a step energy and Ju, is the deviation from the equilibrium of the
chemical potential of the liquid phase. Note that due to the continuity of pressures
P10U; = p,0u, the difference between the chemical potentials of the liquid and
solid phases Ay = p, — u; = %5,%. Note also that according to the theory of
Lifshitz and Y. Kagan [31] due to the possibility of the quantum nucleation even at
T = 0 it can still be a tunneling growth of a smooth surface (see [32]) though it is
even more slow than one given by Eq. (3.1.49). The inverse growth coefficient at

T = 0 is given by:
! exp| — const (3.1.50)
Ko (A7)’ .
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Fig. 3.3 Contribution of rotons to the growth coefficient Kg’rl of solid “He labeled (m4Kg,)7l, as
calculated by Bodensohn et al. [47]. Plus symbol Experiments of Keshishev et al. [10, 11],
Multiplication symbol Experiments of Castaing et al. [46], Circle with center dot, Square,
Diamond Experiments of Bodensohn et al. [47], solid line, best fit with a simple exponential

function. The phonon contribution has been subtracted in the case of Keshishev’s measurements.
From Bodensohn et al. [47]
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Fig. 3.4 Profile of melting-crystallization wave propagating at the surface of a *He crystal, as
measured by Rolley et al. [48, 49]. In this particular case, T = 280 mK, the surface was oriented
3° away from the (0001) plane, and the frequency was 1,946 Hz, so that the wavelength was

0.660 mm. The recorded quantity is the local tilt angle of the crystal surface with respect to the
horizontal plane. From Rolley [48, 49]
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The formulae (3.1.46) and (3.1.47) for the inverse growth coefficients of smooth
surface which are exponential (exp (— ﬁ) for the classical theory and exp (— W)
for the quantum theory) are in sharp distinction with the rough surface where the

Ap

inverse growth coefficient is linearly proportional to Au: Ay~ - Olly ~

1 -
K, >

3.1.4 The Instability of Superfluid Tangential Flows
on the Mobile Phase-Interface

In the normal liquid the tangential flows parallel to the phase-interface with solid

are prohibited by the boundary condition v, = 1'4.} due to the viscous friction on the
surface. However, in superfluid helium we can create a frictionless superfluid
component with the velocity v,y = ¥, parallel to the surface. Let us consider the
problem of the development in time of the surface oscillations (of the melting-
crystallization waves) excited in the presence of a uniform “slipping” of a super-
fluid liquid along the mobile surface of initially undeformed stationary crystal.
The derivation of the equations of the surface hydrodynamics in the presence of
a stationary flow of a superfluid liquid parallel to the boundary is carried out on the
basis of the same formulas (3.1.1-3.1.13), (3.1.15-3.1.20), that are used in the
derivation of the equations in the absence of the surface flows. Let us limit our-
selves to the case of the sliding velocities that are small compared with the sound
velocities. Then it is easy to show that we again can ignore in the problem the
dependence of the surface energy (3.1.19) on the surface momentum pg,. We
retain as before only the leading terms in the small parameters Ap/p < 1, kd < 1,
and vo/c < 1, where v is the sliding velocity of the liquid and c is the sound
velocity. Note that in helium ¢, < ¢, < ¢ for sound velocities in solid phase ¢, and
¢ and sound velocity of liquid phase. We assume that v, is much less than all the

sound velocities. As a result for not too high frequencies < %c/d we get the
following linear boundary conditions:

p2 (Wit — V) = py (V17 — V),
v[)’()vlﬁxygy) =0u+ prZa(‘_;lﬁ - Vb)7
Oz + Py — Py =0,

2

1% ~ .
P1 (/“‘2 + Ez_vlzxvh - :ul) +P— P+ vﬁ (auﬂgﬂ + j~11y[3’/izw/) - Meﬂg =0

(3.1.51)

The system of Eq. (3.1.51) differs from (3.1.34) by the presence of the terms
quadratic in the velocities in the generalized phase equilibrium equation and in one
of the mechanical equilibrium equations. Let us moreover note that the liquid
velocity component along the normal to the deformed surface, V,7i, does not even
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in the first approximation in the deviation from equilibrium, coincide with v,.
Namely V7 = v, — vg,¢,. In the zeroth approximation the system of equations
(3.1.51) yields the relations:

2

v
Py = Py = Po; oy = Moo +§0:Ho- (3.1.52)

Notice that the chemical potentials of the solid and liquid do not coincide in the
presence of a stationary flow parallel to the surface even in zeroth approximation
(in the absence of small oscillations in the system). In the first approximation in the
deviations of the quantities from their equilibrium values using the thermodynamic
identities 0Py = p,du, and 6P, = p,du, we obtain:

Apdp, + Vi (&”ﬁégu + imﬁéuw) — Mg 0S + pvos(0vay — Oviy) =0,
002 + pv0:0 = V(1 d¢, )
00, + popy, =0,
POV, — pOva; + pvoxds, — Apds = 0.

(3.1.53)

Let us analyze the spectrum of the surface oscillations (of the melting-crys-
tallization waves) generated in the presence of the uniform slipping of the liquid

2
for small vectors k, that is for ¢ = (Aﬁp) kd < 1. In this case it can be shown that

‘ﬁ‘ <|V2|. Therefore, if we are interested only in the low-lying branch of the

spectrum, i.e. in the melting-crystallization waves, then we can discard the two
mechanical-equilibrium equations in the system (3.1.53) and set, as it is done in [1]

i =1=0 in the phase-equilibrium and balance equations. Then (3.1.53) is
reduced to (see [17, 18, 33])

Apou, + &Mﬁv,;égﬂ — Ml,ﬁréé + pvo, v, = 0,

—pova; + pvo.0c, — Apds = 0. (3.1.54)

The system (3.1.54) together with the bulk equations for the incompressible
superfluid V - 6% = 0 and 5¥, + 6(5;12 + vox0va,) = 0 is valid at the temperature
T = 0. In a real experiment 7' # 0 and it is important for us to determine both the
real and the imaginary parts of the spectrum of the melting-crystallization waves.
Therefore, we should again include the dissipation due to the growth coefficient
1 / K, (connected with the friction of the phase-interface on the normal excitations
of the liquid and the crystal). The solution for the spectrum of the melting-crys-
tallization waves yield now

. (£

N p i 0l (00— (&) vok)

W~ | wy— —V()kx - = 3 . (3155)
Ap 2 (Ap) Kgr o

This result in the presence of the dissipation was firstly obtained by Kagan [17],
Uwaga and Nozieres [19, 20]. For K, — oo it coincides with the results of Parshin
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[33]. In deriving (3.1.55), we considered the two-dimensional problem, i.e. k=
(kx,k;) case and assumed the velocity Vy to be parallel to x-axis. In (3.1.55)

0y = L‘ﬁ‘w is the spectrum of the melting-crystallization waves in the
(Ap)? [1+” ”ff;}
(Ap)

absence of a stationary flow. When |vglk, > 0 and (p/Ap)|vo||ks| > wo, we have
Im » > 0, and, consequently the instability of the tangential flow sets in.

3.1.4.1 The Physical Reasons for the Instability

Physically we should remember that solid state is at a rest. Thus, the corrections
—(p/Ap)vok, to Re w is not just a Galilean shift. We can say that this instability is
very similar to the instability of the superfluid flow with respect to the creation of
normal excitations at superfluid velocities higher than the critical velocity v; > v,.
Breck |
(8p)?
for |vo| > (Glke|/p)"/?— 0iif k, — 0. Hence in this case there is no threshold for
instability (the limitation on vy is only due to the fact that |k,| > 2n/L, where L is
the size of the crystal). But when we take the gravity into account (see Fig. 2.6) we
have for the spectrum [17] (in analogy with the capillary waves in the presence of
gravitation):

Let us consider the region ¢<1. Then w} ~ and (p/Ap)|vollks| > wo

K2 |k, ky
o — 7, Pl 2' pelkd (3.1.56)
(Ap)"  Ap
As a result a threshold of the instability appears A%,Voc = min (ﬁ) and
Ap\ ! /4
Voo = <4g5cxx 2) ~4 cm/ sec < c. (3.1.57)
P

Nevertheless the critical velocity at which the instability sets in is low com-
pared to the sound velocity voc < ¢, so the limitations on the incompressibility of
the liquid and the solid phases together with the other assumptions under which we
derived the system of Eq. (3.1.51) are still valid. Note that the predicted instability
resembles a bit the Kelvin-Helmholtz tangential instability on the surface between
two liquid layers in classical hydrodynamics. The theoretical predictions of Kagan
[17], Uwaha and Nozieres [19, 20] were confirmed in the experiments of Tsym-
balenko in Kurchatov Institute in Moscow (see [21, 22] and Fig. 3.5).

In these experiments the behavior of the atomically rough surface of solid
helium was investigated in a jet of fluid for the temperature range 1-1.4 K. After
some critical value of the velocity of a tangential flow is exceeded, the surface
clearly becomes unstable. Below the roughening transition temperature Ty the
same surface is stable in a jet of a fluid.


http://dx.doi.org/10.1007/978-94-007-6961-8_2

96 3 Melting-Crystallization Waves on the Phase-Interface

~ ~
(a) ‘ (b) y
e N

() y {(l}

Fig. 3.5 The development of the instability above the roughening transition from Tsymbalenko
et al. [21, 22]. At the moment of time = 0 (a) the emission from the needle points begins. The
field of vision is 5.5 x 49 mm?, t=125s(b), r=2s(¢c) =23 s (d). The arrows in frame
(b) indicate the recess formed on the growing crystal “stalagmite”. On the frame (d) one can see
the development of cylindrical instability. Waists are formed on the surface, which break the
crystal “stalagmite”

3.1.5 The Spectrum of the Rayleigh Waves on the Rough
Surface

In this subsection we will analyze a bit more detaily the spectrum of the Rayleigh
waves. This branch of surface oscillations exists both on atomically rough and
atomically smooth surfaces. For mobile atomically rough surface the Rayleigh
waves are important at high frequencies.

As we already discussed in Sect. 2.2.4 for Rayleigh waves the recrystallization
rate ¢ = 0 and a velocity of the boundary V;, = it,. From the balance equation in
the system (3.1.32) we have then: p,(it; — V) = py(vs; — V) =0 and
vs; = Vi = 1t,. In the equations for mechanical and thermodynamic equilibrium in
(3.1.32) we can safely neglect the surface capillary terms (11,5, = Moy = 0,5 = 0)
and get:

0 =0; 07+ pr0p, =0;

. (3.1.58)
Apdiy, =0; 1w, =vy =V,
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Correspondingly on the surface dy, = 0 and o, = o, = 0 [see Eq. (2.2.2)].
The boundary conditions (3.1.58) should be considered together with the bulk
equations

pll'/i,‘ = va;k (3159)
in the solid phase and
=ciAg (3.1.60)

in the liquid phase for the compressible potential liquid.
Note that in (3.1.60)

¥ =7, = V: 0P, = p,ou, (3.1.61)
and from the Josephson equation v+ @5/42 = 0 it follows
Oy = —@ (3.1.62)

for potential ¢.
In the solid phase in the isotropic approximation as usual in elasticity theory we
should represent a total lattice displacement and lattice velocity

—

i = i + iy i = iy + iy (3.1.63)

as a sum of transverse and longitudinal parts. In (3.1.63) Vil =0 and thus

= V®. In the same time V - i, =0 and i, = V x . Correspondingly in the
bulk for the two-dimensional situation @ = (uy,u;);u, = 0,u, = uy(x,z),u, =

u;(x,z) we can represent Y= Weé, and get for ® and ¥ the equations:

. ) aZ 62
B 62 62
_ 2

where ¢; and ¢, are the velocities of the longitudinal and the transverse sounds in
the solid phase.

Note that in this geometry u, = $2 — & and u. = $ + %, Correspondingly the
boundary conditions demand
N @
P =c <6x2 a—zz) 10) (3.1.66)

for the liquid potential ¢.
Using the system of Eq. (3.1.58) for the boundary conditions together with the
bulk Egs. (3.1.60-3.1.65) we get for the compressible liquid and solid phases:


http://dx.doi.org/10.1007/978-94-007-6961-8_2
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(0 = 2622)° —4c 2Kk = o, (3.1.67)

where |k" =k - ©’ and |k1‘ =k - L2 ' in compressible case for the surface wave.
Taking into account the numerlcal values of the sound velocities in liquid and solid
“He (remind that ¢; <c;y <c¢;) we finally get (see [17, 18] for example)

«|, where n(c;/c;) ~

p?
(Ap)?
melting-crystallization waves vy = 92 ~ k'/? is much smaller then the velocity of
the Rayleigh waves cg ~ 0.8 ¢;. The two branches of the spectrum begin to interact
with each other only for ¢ > 1.

3.1.6 The Angles of the Total Internal Reflection: Excitation
of the Surface Wave by the Bulk Second Sound Wave

We have the following hierarchy of different sound velocities v = ¢ on the rough
surface:

v < cp <c <cr<cy (3.1.68)

where ¢, and ¢; are transverse and longitudinal sound velocities, cg ~ 0.8¢; is the
velocity of the Rayleigh wave, vy ~k'/? is the phase velocity of the melting-
crystallization waves at small frequencies and ¢; is the first sound velocity in
superfluid liquid.

At T # 0 we also have a second sound wave in the liquid phase. The second
sound velocity in the phonon region of low temperatures 7 < (0.5-0.6) K ¢;; = \(7%

in 3D case but it becomes smaller in the roton region 7 > 0.6 K (see Figs. 1.3 and
1.4). Thus, vy < cpp < cr < c¢; <c¢j <cy.

At T = 0 for the first sound incident from the liquid we can introduce the angle
of total internal reflection (or a Brewster angle) for the longitudinal sound in liquid
sin 0] = % with sin0; = 1 and cos §; = 0. When the first sound is incident from

the liquid at an angle greater than a critical angle 6 > 64", only a transverse
acoustic wave is generated in the solid. Note that the phenomenon of the total
internal reflection manifests itself in the sharply nonmonotonic character of the
angular dependence of the sound-transmission coefficient D(0) = 1 — R(0). Let us
emphasize that at the angle of the incidence which is exactly equal to the Breuster
angle the transmission coefficient is nonzero only because of the allowance for the
surface capillary terms.


http://dx.doi.org/10.1007/978-94-007-6961-8_1
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3.1.6.1 The Basic Formalism at 7 = 0

Let us consider a first sound plane acoustic wave incident at the rough phase
interface from the liquid at zero temperature. Taking into account (3.1.64),
(3.1.65), (3.1.66) which give for the plane waves the relation between the fre-
quency and wave vectors in longitudinal and transverse sound in solid and first
sound in liquid, we have for the incident, reflected and two (longitudinal and
transverse) transmitted waves the expressions:

® = @ exp [—zwt +i—sin 0y x +i—cos 91LZ]
Cr cr
+ (@yg €XP {—zwt + lc—sm Orrx + lc—cos 02LZ} ;
! ! (3.1.69)

w . L
O =djexp [—iwt + i—sin0;x + i—cos 0;1] ;
@] @]

Y =W¥,exp [—iwt + igsin 0:x + igcos 04 ,
Ct Ct
where we again choose 2D geometry for u = (uy,u;);u, = 0;u, = u,(x,z),
U, = uy(x,z).

In (3.1.69) ¢, and ¢, are the amplitudes of the incident and reflected first
sound waves in the liquid, ®y and ¥y are the amplitudes of the longitudinal and
transverse sound waves generated in the solid and 0,7, 0,;, 0;, 0, are the angles
between the wave-vectors of the corresponding waves and the normal to the
surface. The problem is homogeneous in the coordinate x. Therefore:

sinf, sin6; sinf;; sin0Oy

(3.1.70)
Cy C| Cr Cr
In particular, we have a priori the obvious equalities (see Fig. 3.6)
sin 07 = sin 07 = sin 0, (3.1.71)

Liquid

surface wave
longitudinal sound wave
Solid

transverse sound wave

t i)

Fig. 3.6 The mirror reflection of the first sound wave incident from the liquid. For the angle
smaller than the Brewster angle 0, <0;" = arcsin{ there are two transmitted waves for the

longitudinal and transverse sound in the solid phase
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For 0, < 0"

D(0) =1—R(0) = D)(0) + D,(0) (3.1.72)
since we have two transmitted waves in the solid phase. In (3.1.72):
2
- “PZO‘Z (3.1.73)
(21
is the reflection coefficient,
.12 L2
;| cjcos 0, ;| c¢;cosb;
; (3.1.74)

Dj=——
|\7‘2,‘n|2C1 COoS HL’

B ‘172,‘,,|2C] COoS QL

are the transmission coefficients for longitudinal and the transverse sound waves,
Voin = ﬁ(pl is the superfluid velocity field in the incident wave of the first sound.
Note that for 0, > 07" D;(0) = 0 and D = D,(0). In the same time for the normal
incidence 6, = 0 we get 6, = 6, = 0. In this case D,(0) = 0 and D = D;(0).

The recrystallization displacement ¢ for the acoustic problem which we con-
sider is governed by (see [17, 18]):

¢ = gpexp {—iwt—kiwsin O,x]. (3.1.75)

Cy

The frequency dependence of the transmission coefficient D is governed by the

2
value of the characteristic dimensionless parameter ¢ = ® % (ﬁ)) of the problem
(here and below in this paragraph we assume that the sound velocities, though are
different, have the same order of magnitude). This parameter can be written also in

2
the form ¢ = wt, where t = % (A%) is the hydrodynamic surface reconstruction

time. For normal incidence according to Castraing and Puech [4, 5]:
4e’c; /¢,

D=1-R= - (3.1.76)
1+ ¢2 (C’C—t”’)
1

. M,
where to be more specific & = £ Ap)@ %

For the small values of the parameter ¢ <1 we have D ~ 432% ~?? L 1—
the transmission coefficient is quadratic in frequency and is nonzero only due to
the account of the effective surface mass M.y # O.

For ¢ > 1 the transmission coefficient D ~ 1. We can say that for wt > 1 the
quantum mobile boundary becomes a classical one, and D increases significantly.

The investigation of the transmission coefficient for wt < 1 and at different
angles (smaller and larger than ;") helps us to establish the connection between
D(0) and different surface coefficients (&, Mcg, A1.p,) due to which account D(0) is
nonzero. Note that for all the angles D(0) ~ w? for small wt < 1. For 8 = 0 D(0)
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is governed by M.g. For the Brewster angle ;" = arcsin (;—;) D(0) is governed by

the surface elasticity Ai,p,. Then from the behavior of D(0) for 0 <0 <0;" we can
also independently extract the value of the surface rigidity a,,.

3.1.6.2 The Case of Nonzero Temperature 7 # 0

If we consider nonzero temperatures 7 # 0 and small frequencies then
v <cp < cg <c¢ <cr <c and for the second sound incident from the liquid
there are two critical angles of the total internal reflection. First one is found from

sin 0y
(&4
no transmission of the transverse and the longitudinal sound waves in the bulk and
thus D = D; + D, = 0 for the transmission coefficient. In the same time there is
no reflection of the first sound wave in the superfluid. Hence the total reflection

coefficient R = Ry + Ry = Ry, where Ry is the reflection coefficient of the second
sound wave. Thus, for 0; > 05 we have the phenomenon of the total internal
reflection and Ry = 1.

the condition = % If 0, = 3, then 0 = arcsin‘? <1. For this angle there is

However, there is a second critical angle 0?12 already in the region of total internal

reflection (Kagan, Kosevich [13]). Namely 0;,2 = arcsin (z—z) > (0?11 = arcsin ”L—"’)

3.1.6.3 The Reflection Coefficient

The second critical angle inside the region of the total internal reflection corre-
sponds to the resonance excitation by the bulk second sound wave (by rotons for
T > 0.6 K) of the surface Rayleigh wave.

If we take the dissipative processes into account, then close to 0<7 the reflection
coefficient Ry will have a pronounced minimum. The estimates show (Kagan,

R A

\./

0.25

>0
Cl C2
911 91] x

Fig. 3.7 The angular dependence of the reflection coefficient Ry for the second sound wave
incident on the mobile surface at the angle close to the second critical angle 05 = arcsin ZA

large fraction of the energy is transferred to a surface Rayleigh wave at 0 = 07,2
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Kosevich [13]) that for 7 > 0.6 K the fraction of the energy transferred to a

surface wave for 0 = 0% can reach 0.75 (see Fig. 3.7).
Note that if we take into account for example a surface dissipation Ry, > 0 (see

the expression (3.2.18) for Ry, in the next subsection 3.1.4) than for 0 > 0;,1:

s

?, where Ry =1"sis
Vi
the reflection coefficient with respect to the second sound. Let us emphasize again
that at high temperatures T ~ (0.8 = 1) Kin the roton region c; < cg and we can
excite the surface Rayleigh waves by the bulk second sound.

Note also that since ¢; > cr on the interface between solid and liquid “He we
cannot excite the Rayleigh waves by the first sound wave incident from the liquid.
This is in contrast to He-II-metal surface where this phenomenon for the first
sound wave was predicted by Andreev and measured by Zinov’eva in Kapitza
Institute (see [23-25]).

Finally let us mention that when we increase a frequency we can also satisfy the

R, # 1. More specifically: 1 — Ry = R,/ p,cir cos 911’\75:51"

N 1/3
inequality cy<vy = (ﬁ) and get another transcritical angle 0 = arcsin

(C 7 / VM) .

Hence in principle it is also possible to excite thermal melting-crystallization
waves by the roton second sound on the mobile (rough) phase-interface between
solid and liquid “He. However, quite often for 7 ~ (0.8 + 1) K the melting-
crystallization waves can be overdamped at these frequencies.

On the atomically smooth interface between solid and liquid “He the role of the
Rayleigh waves plays the Rayleigh-Stonley surface waves (Kagan and Kosevich
[13]). It is also possible to excite them resonantly by the bulk second sound
incident from the liquid phase.

3.2 Surface Hydrodynamics on the Mobile Interface
at T # 0 and in the Presence of *He Impurities

Maris and Huber [6, 7], Wolf et al. [9, 50], Puech et al. [34] measured the Kapitza
thermal resistance on the rough interface between solid and superfluid *He. Graf
et al. [15, 16] were among the first who investigated the influence of a small
amount of *He impurity on the mobility of the rough interface and on its thermal
resistance Ryk. Note that Kapitza thermal resistance R is determined by the energy
transfer from the interface to the quasiparticle gas. The theory for Kapitza resis-
tance on the standard atomically smooth interface of the solid and the superfluid
“He or the superfluid “He and metal was constructed by Khalatnikov [35] and is
known as “phonon mismatch theory”.

In the experiments of Graf, Bowley and Maris [15, 16] the rough surface of
solid “He was considered being in contact with dilute superfluid solution (with
respect to “He component) of *He in “He.



3.2 Surface Hydrodynamics on the Mobile Interface 103

Let us remind that from the experiments of Anufriev, Lopatik and Sebedash in
Kapitza Institute [36, 37] as well as from the stratification curves for the solid and
liquid solutions at the pressure P, ~ 26 bar [38—40, 51] it can be deduced, that the
equilibrium concentration in the solid solution is negligible compared with the
equilibrium concentration in the liquid solution at the temperatures 7 < 0.3 K. Note
that the maximal solubility of *He in “He at P = 0 bar and low temperatures is 6.4 %
(see [35]), while for nonzero pressures it can even reach the values of 9.5 % for
P = 10 bar (see also Chap. 15). In the same time the maximal solubility of *He in the
solid phase at low temperatures is exponentially small for 7 < 0.3 K (see [36, 37]).
At T ~ (0.4 =+ 0.5) K, however, the equilibrium impurity concentrations in the
solid and liquid phases become comparable by the order of magnitude.

In the experiments [15, 16] it was in particular established that at low tem-
peratures and the dimensions L of the crystals larger than the capillary constant
ap = (20/g)""* = 0.14 cm, the rough interface remains highly mobile up to the
impurity concentrations of the order of 107> (0.1 %). This may seem to contradict
the results of Landau et al. [14] who observed visually an increase of the relative
flat surface fraction on small (L ~ ag) crystals when a low concentration of
impurity (10~ is added. Qualitative arguments by Castaing et al. [41], however,
attribute this phenomenon to the fact that the absorption of the *He impurity on the

surface lowers the surface rigidity o = o + gi(;z‘ and thereby also the sizes of the

rounded sections. For large crystals (L > a), however, the role of the surface
energy in the establishment of the equilibrium shape is small compared with that
of the gravity. So when a low concentration of impurity is added, an appreciable
fraction of the boundary remains highly mobile. In [15, 16] the authors have also
proposed for the interaction of *He with the interface a theoretical model involving
a macroscopical wave function of the impurity being localized close to the
interface. This assumption is in fact equivalent to the neglecting of the equilibrium
“freezing-in” (penetration) of the impurity in the solid phase.

Experiments of Anufriev, Lopatik and Sebedach confirm the correctness of this
assumption for T < 0.3 K. From the other hand for higher temperatures we cannot
neglect “freezing-in” of the impurity, since the equilibrium solubility of the
impurity in the solid phase is comparable with that in the liquid phase.

In [17, 18] a complete system of the generalized boundary conditions with an
account of the most important surface dissipative effects as well as with an account
of the finite *He concentration in both the solid and liquid phases is derived.

3.2.1 Equations of the Surface Hydrodynamics at T # 0
and in the Presence of the Impurities

The system contains four more equations that in the case of the interface of the
pure solid and liquid “He at T = 0. First one corresponds to the impurity balance
equation:
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1317) = pic1Ve :J'gi) = P22V, (3.2.1)

where V), = i1, + ¢ is the velocity of the boundary and the impurity flux in the solid
phase:

}*(31) = plclﬁ' — plDlﬁcl, (3.2.2)

¢ is an equilibrium concentration of impurity in the solid phase, D is the diffusion
coefficient for the impurity in the solid phase. In the same time 7(32) = p,yCaVy is the
impurity flux in the liquid phase, ¢, is the equilibrium impurity concentration in the
liquid.

Note that the hydrodynamic description is valid in the liquid phase for the
frequencies lower than all the characteristic reciprocal relaxation times in the

system. In the temperature and the concentration range under consideration we

have the following hierarchy of the relaxation frequencies (y = 1/7) 1 / Tohph <

1 / Ty K1 / 7;~; for the phonon—phonon, phonon-impurity and 1mpurity—
impurity relaxation, respectively. At 7<0.5K and ¢, ~ 107* = 107> ¢
hydrodynamics is valid up to quite high frequencies w ~ 1 / ~ (107 = 108) s~
Note that in the considered region the impurities and their scattering by one
another are of the principal significance for the thermodynamics and the formation
of the second sound waves in the liquid phase (the second sound here is in fact a
thermal wave in the impurity subsystem and c3 ~ T).

Note that for wT,(E), <1 the impurity component has the same drift velocity
V; = ¥, as roton and phonon normal excitations in the superfluid solution.

A second equation is an additional equation for the thermal equilibrium with
respect to 3He—component:

1 2
Wl = (A0 ) /K 323

where the coefficient 1/K3 has the meaning of the inverse growth coefficient with
respect to the *He-component.
In (3.2.3) according to Anufriev, Sebedach and Lopatik [36]:

wp 3/2
2 WP T=0) 1 Ines——1In %(m—T) 3.2.4
J22) ( ) ) my 2 my 0, 27177!2 ( )
for the liquid phase and
T
@) =¥ (P T =0)+—Inc (3.2.5)
my

for the solid phase.
We have neglected here the small contribution to the thermodynamics from the
slow band motion of the impurity in the solid phase (the effective band velocity
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Viand ~ % < (T/m*)l/ 2 for A < T where d is interatomic distance, m* is the
effective mass of *He atom in the solution, and A is the impurity bandwidth). Note
that a band motion of impurities is absent in the superfluid phase.

The balance equation with respect to “He component reads again:

Jél) -0V :j(z) = P2V, (3-2'6)

Z

where the mass fluxes in solid and liquid phases yield:
= pyit; 2 = p s + pvi- (327)

For T ~ (0.1 = 0.5) K and ¢, ~1073 = 107%, the influence of diffusion,
including heat and mass diffusion, is negligible in the liquid phase compared with
the thermal conductivity and will be neglected. The normal density p, =

P+ pzcz% has the phonon and impurity contributions in the hydrodynamic
regime wt < 1. The conditions of the mechanical equilibrium if we neglect the

surface stress A,p, read:

o =n®;m) =o, (3.2.8)

2z )

where Hl(,:) =Py — 0;;P1 =Py — %an as for the pure case at T =0, 0}, =
Oix — %5,7(011 is a shear part of the stress tensor; Hl(,f ) — P50 in linear theory. Thus
again o, + P, — Pp =0, where Py = 26 bar is the equilibrium pressure. To
complete the system of equations for 7 # 0 and in the presence of the impurity we
should add to (3.2.1), (3.2.3), (3.2.6), (3.2.8) the conditions for the thermodynamic
equilibrium at 7 # 0 and the equation for the surface entropy increase. The first

one

.~ 1 . 1
,UE‘I) - ,114(12) + (MgffC — ay/fvyvﬁg) ; = ( S) - P1Vb> X
1

8r

(3.2.9)

connects as usual the difference between the chemical potentials of *He component
with the growth coefficient K, (M.¢ and a5 are again an effective surface density
and the surface stiffness).
In (3.2.5) the chemical potential with respect to the “He component in the liquid
phase for a weak nondegenerate solution reads (see [35]):
WP 1) = i) - o (3.2.10)

where ,uf) (P, T) is the chemical potential of pure liquid “He. Analogously in the

solid phase

T
W (P T,e1) = (P,T) et (3.2.11)
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The next equation of the complete system is an equation of the increase of the
surface entropy:

fz(l) —p101Vp —fz(z) + P02V = Rsur/T07 (3212)

where fz(1> and f;z) are the entropy fluxes and S| = p,0; and S, = p,0, are the
entropy densities of the solid and liquid phases, Ry, is the surface dissipative
function, Ty is equilibrium temperature (see discussion after Eq. (3.2.18)).

In (3.1.63) at low temperatures and the impurity concentrations (see
Khalatnikov [35])

2 n 20 2my (m*T\*? (3.2.13)
02 = - — -\~ L.
2 2 my @ my 02 27h?

for the entropy of the liquid phase, where agh is the phonon contribution to the
entropy of the unit mass o. In the same time for the entropy of the unit mass of the
solid phase

o1 =" — Liney. (3.2.14)
my
The entropy flux in the liquid phase
J® = py02¥, — 12V T/ T, (3:2.15)

where x; is the thermal conductivity of the liquid solution. Correspondingly the
entropy flux in the solid phase

N . o 0o R
f(l) = plalﬁ — K1VT/T1 — <a—cl>p1D1Vc1, (3216)
1
where o, is given by (3.2.9) and x; is the thermal conductivity of the solid
solution. Note that a possibility of a complete thermodynamic description in the
solid phase and particularly the possibility to introduce a single temperature 7' for

the impurity and phonon subsystem, implies the satisfaction of the condition
m
i—p
temperatures and concentrations considered the following relation holds between

the respective relaxation frequencies [38, 39, 42, 43]: 1 / rl(-l)ph <1 / T;}L ;

wrt;_,, <1 (the thermolization condition for impurities). We emphasize that at the

<1 / rl(,;l)z,h <1 / rgh_ph <1 / rl(l)l for an impurity on phonon, a phonon on impu-

rity, a phonon on phonon with Umklapp (see Chap. 1) and normal scattering of a
(1)

phonon by a phonon with an account of anharmonicity. Finally 1 / T;_; 1S an
inverse scattering time of an impurity by an impurity due to the band motion. At

T~ 05Kwehave 1 /o), ~ 102+ 10° s and 1 /24, ~1 /e ~ 100571,
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When all these relations between the frequency and the relaxation times are sat-
isfied, the bulk fluxes in the solid phase take the form of (3.2.2), (3.2.7), (3.2.16).

3.2.2 The Surface Dissipative Function and Kapitza
Thermal Resistance

To find the surface dissipative function Ry, in (3.2.12) we have to write the
conservation law for the surface energy:

E, + Vil — (Q1; — Ox) + (E1 — E2)V,, =0, (3.2.17)

where the surface energy flux 0p = —a,43¢,¢ in linear approximation, Ej =

—Py +pyo T + ugl)pl + ,ug])plcl + ojuj /2 is the bulk energy density for the

solid phase, Q; = uil)f(1> + ,ugl)fgl) + T1f} + 0%y is the bulk energy flux in the
liquid phase.
Correspondingly
Ey = =Py + pyTh05 + Mf)pz + ,U_(Z)PZCL
> 2)~ 2)~2 2
O = .uz(l >J(2> + ﬂg >j(3 )+ Tf>

are the bulk energy density and the bulk energy flux in the liquid phase. From
(3.2.17) it follows that the surface dissipative function

Rsur = |::ué(tl> - :uElZ) + (Meﬁg - a?‘ﬁv"/vﬁg) L:| [JEI) - prb]+

P1

(3.2.18)
+(#gl> - ﬂ?) (gi) - plclvb) + (T =) (fY = pror V).

We have neglected in (3.2.18) the surface fluxes of mass, impurity mass,
momentum and entropy, and have set the surface temperature equal to those in the
interior. Note that in (3.2.12) for the entropy increase 7T is the equilibrium tem-
perature on the melting curve. From the requirement that the surface dissipative
function should be positive Ry, > 0 follows (3.2.3) and (3.2.9) for the thermo-
dynamic equilibrium with respect to “He and *He components. Moreover, the last
term in the r.h.s. of (3.2.18) implies that:

Ti — T> = Ry To(f) — pyo1 V), (3.2.19)

where Rk is the thermal Kapitza resistance, and AT = T; — T is a temperature
jump between the solid and liquid phase.

Thus we derived the complete system of equations for the generalized boundary
conditions at temperatures T # O and in the presence of *He impurities. The
system includes the balance equations with respect to “He and *He components
(3.2.1) and (3.2.6), the equations of the mechanical equilibrium (3.2.8), the
equations for the thermodynamic equilibrium with respect to “He and *He
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chemical potentials (3.2.3) and (3.2.9), the equation of the surface entropy increase
(3.2.12) and the equation for the temperature jump due to Kapitza thermal resis-
tance (3.2.19). Note that this jump can exist only on the solid-superfluid interface
since superfluid helium has an infinite effective thermal conductivity. Due to this
fact we can speak about almost uniform temperature distribution in the liquid
phase which is established during very short relaxation times.

Note also that when we consider the surface dissipative function (3.2.18) and
the generalized thermal equilibrium conditions (3.2.3), (3.2.9), (3.2.19), which
follow from its positive definiteness, we disregard for simplicity the off-diagonal
elements of the Onsager matrix of the kinetic surface coefficients. In the phe-
nomena under consideration the off-diagonal matrix elements of the kinetic
coefficients are smaller than the diagonal once (since Ry, > 0) and only renor-
malize the effects connected with the diagonal elements. Thus, they do not lead to
qualitatively new results.

Finally let us emphasize that the total thermal conductivity of the surface
o, = 1/Rk is a sum of the two components g, from the phonons and g3 from the
impurities. The phonon contribution g,; ~ T° is determined at low temperatures
(T < 0.2 K) by the capillary effects, that is by the surface stiffness « and the
effective surface mass M,y. It was investigated in [19, 20] and [4, 5]. The impurity
contribution to the heat conductance of the interface will be discussed below.

In (3.2.9) for the thermodynamic equilibrium (for ,uftl) - ,u‘@) the coefficient
1/K,, is a reciprocal crystal-growth coefficient (relative to “He component). In
quantum crystal it is determined mainly, as we already discussed in Chap. 2, by the
momentum transfer from the quasiparticle gas to the interface. If the drift veloc-
ities of the impurities and of the phonons do not coincide with the interface
velocity (as in the case when the impurity has a finite ability to freeze into the solid
phase), then the coefficient 1/K,,, just like o, =1 /R, is a sum of the two con-
tributions—from the impurities and from the phonons. The phonon contribution

1/K§‘,”.h) ~ pPhe;/p? ~T* was investigated experimentally by Keshishev, Parshin

and Babkin. The impurity contribution 1/K§(,'r) ~ pmA(T/m*)l/z/p2 ~ e TY? was
estimated in [41].

Lastly, 1/K;5 has the meaning of the coefficient of the crystal growth with respect
to *He component. A similar coefficient was introduced for the growth of a classical
crystal (see for example review-article by Chernov (see Ref. [44] in Chap. 2)).
A possible estimate of its value for mobile (rough) interface will be given below.
When the viscosity of the liquid is taken into account, one more condition should be
met. Namely the tangential component of the velocity of normal excitations should
be equal to the tangential component of the lattice velocity itg = v,g. In addition,
the equations (3.2.8) and (3.2.18) for mechanical equilibrium and surface dissi-
pative function should acquire the terms connected with the viscous-stress tensors
(see Chap. 1). For the phenomena considered below, however, viscosity is insig-
nificant and will be neglected.

We discuss now the system (3.2.1), (3.2.3), (3.2.6), (3.2.8), (3.2.9), (3.2.12) and
(3.2.19) which consists of eight equations. We have to check whether the number
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of the boundary conditions equals to the number of the independent modes. In the
liquid phase there are first and second sounds, and the purely dissipative heat-
conduction mode having at ¢, ~ 102 a spectrum iy = 310,k2 /5p2c(2>, where
¢® is the heat capacity per unit mass of the liquid. In the third mode the tem-
perature and the concentration oscillate. If we take into account the impurity
diffusion in the liquid phase then the spectrum of this mode would be determined
by the effective thermal conductivity x5 (see Khalatnikov [35]). There is no such
mode in pure He-II, and the heat conduction influences only the damping of a
second sound Imay; = (1/5)K2k?/p,c®. The presence of an independent heat-
conduction mode in the liquid solution is very clearly due to the appearance of an
independent variable — the concentration of impurities c,. The careful analysis
shows that for ¢; —» 0 and D, = 0 wyp — O.

Four independent modes exist in the solid phase. These are two first sounds
(longitudinal and transverse), a heat conduction mode im = K k*/ P]C;L) af
w1ty < 1—see Chap. 1), and, last, a diffusion mode iw = D k2.

We emphasize that in view of the relation Dy < x/p; ¢, the heat-conduction
and the diffusion modes in solid interact very weakly even when the thermal

diffusion is taken into account. Therefore, the stringent impurity-thermolization
0
i—p
scheme being considered. Hydrodynamic treatment of the diffusion and the heat-
conduction in a solid is thus actually valid up to the frequencies

w< 1/‘527,1(1;,1 < 1/‘50) i.e., to w~ 10° s~!. Note that the eighth independent var-

condition wt,;_, <1 is, generally speaking, not mandatory for the hydrodynamic

iable is the additional recrystallization displacement ( of the surface. The number
of the independent variables is therefore equal to the number of the boundary
conditions. Note also that at 7= 0 and for the pure case (no impurities) the
number of the boundary conditions is 4 [see the system (3.1.32)]. Finally for pure
“He at T # 0 the number of boundary conditions is 6 and we add two equations
for the surface entropy increase and for the temperature jump on the surface to the
system (3.1.32) which is valid at T = 0.

3.2.3 Damping of Melting-Crystallization Waves

The specific property of a mobile interface boundary at 7 # 0 and in the presence
of impurities is that three surface modes exist on it: melting-crystallization waves
(in which ¢ and j@ oscillate), Rayleigh waves (in which i and j1 oscillate), and
surface second sound, whose velocity is close to ¢y (to the velocity of the bulk
second sound in the superfluid solution). In the last mode we have coupled
oscillations of temperature and 3He-concentration [52].

Using the derived boundary conditions, let us examine how a low concentration
of *He impurity influences the damping of the crystallization waves.
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The spectrum of the melting-crystallization waves at low frequencies

(e~ 2d ( A”;)z <1) at T # 0 and in the presence of impurities has the form (see

[17, 18] and references therein):
) 8k (p/Ap)?
“ =" T o
(Ap)

2 2 Tlo; — o0&

. p 1 1 2 (1 262) S
—iwkp| — — + RxT — (& +—In=
110) p(Ap) Kgr+K3+ xklTo] + (1 + 2k 1 +m4 nc1 )

(3.2.20)

where |k,| = |k;| = k is the wave number of the surface wave. Note that the real
part of the spectrum Rew differs from the expression (3.1.46) for the spectrum at
T = 0 only in the presence of the factor (ZZ ’;2 in denominator of (3.2.20). Obviously

for T - 0 and ¢, - 0 p, — 0 and the factor (Z’;’;Z goes to zero restoring the

previous result.

In the same time the imaginary part of the spectrum besides a contribution from
the inverse growth coefficient with respect to “He component [compare with
(3.1.48)] contains also the contributions from 1/K3, Rg and from the bulk thermal
conductivity connected with x; and x,. At T ~ (0.4 =~ 0.5) K the impurity, in
both the liquid and the solid phases, makes a larger contribution to the thermo-
dynamics then the phonons for ¢ ~ 107>, The imaginary part of the wave spec-
trum can therefore be written in this case in the form:

I o\ A g, T3 dpafa (3.2.21)
mow=—|-— —= o] +———""——=In"(— ] ;. 2.

2 \Ap) K, Ki K4 mak(x1 + K2) ¢3 1)
The first three terms in the right-hand side of (3.2.21) are responsible for the

surface dissipation, and the fourth for the bulk dissipation. The estimates show that
for

klU<(C]]/C]) (O’i/O'ph)C]/Cz (3222)

(where [ is the mean-free path connected with the Umklapp processes, @' is the
impurity part of the entropy) the main contribution to the damping is made by the
bulk dissipation. Note that from the experimental measurements of the damping of
the melting-crystallization waves one can independently extract the impurity
distribution coefficient between liquid and solid phases c¢/c,, which is a function
only of temperature and pressure in weak solutions.

We point out that if the impurity concentration is decreased in each of the
phases, the contribution of the heat-conduction to the imaginary part of (3.2.20) at
a fixed temperature 7 # 0 is determined by the phonons and still is different from
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zero. If, however, the inequality (3.2.22) is reversed, the damping is determined
mainly by the surface dissipation. Note that for 7T ~ (0.4 + 0.5) K and starting
with a concentration ¢, ~ 107 the imaginary part of the spectrum becomes of the
same order as the real part for the frequencies @ < 10% s™'.

Equation (3.2.20) was obtained by Kagan, Kosevich under assumptions:

1 1. [0) .
Ry < (—k ~ —k) Rg 2 am
2 T2 2 )
D) <Ly g o C—‘lnz(‘—‘>.

pmcy Ky — mik(r1+12) 3 &

(3.2.23)

If the first inequality of (3.2.23) is violated, then there is no flow of entropy
through the interface, i.e. fi; — p,01Vy = fo. — p,02V, = 0. We emphasize that in
the case of pure He-II, i.e. for aw;; = 0, the dissipative term in the entropy flux of a
liquid phase turns out to be small and we arrive to the “stringent” hydrodynamic
boundary condition v,, = V}, used in [30].

When the third and fourth inequalities in (3.2.23) are violated, there is no
impurity flux through the interface, i.e.

2

(1 (2
Jéz) —piciVe =j3; — prc2Vp =0,

which is also equivalent, for the liquid phase, to the condition v,, = V. In this case
the imaginary part of the spectrum of the melting-crystallization waves is given

by:
1 /p\ |1 Tc,
Imow =—k(— | p 41 3.2.24
2 (Ap) {Kgr pm4(D1w)1/2} ( )

i.e. it is determined at very low frequency by the diffusion coefficient D; in the
solid phase (see experiments of Agnolet et al. [40] in Texas). Namely, this con-
tribution vanishes together with the impurity concentration c¢; in the solid phase.
For the inverse growth coefficient with respect to the *He component we can
O A
pmey Dy pmey Vpana)’
n <1 plays the role of the effective coefficient of the penetration from the solid into
the liquid phase and v;,; is a band velocity of the impurities in the solid phase.
The penetration coefficient 1 becomes much less than unity at low temperatures
T < 0.3 K, when the ability of the impurity to freeze into the solid is low. We
emphasize that the transition to the situation in which there are no entropy and

impurity fluxes through the interface can be described not only kinetically but also

obtain the estimate K% ~ where the dimensionless parameter

thermodynamically. The transition occurs at: ¢; < ¢3; G'fh < (02 ~ aé).
Estimates show that both inequalities hold at the same temperatures
T ~ (0.1 = 0.2) K. At these temperatures the solid can be regarded as free of
impurities and phonons, i.e. it can be described by the elasticity theory equations
(see Subsection 3.1.3) for T = 0.
We note that at low temperatures (when the impurity concentration c; in the
solid phase is vanishingly small) the damping of the crystallization waves is
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determined mainly by the phonon contribution. In this region, as we discussed
already, the inverse growth coefficient 1/K,, is proportional to 7* and small (see
[30]). In this case a more important role can be played by the corrections (con-
nected with the impurity concentration in the liquid phase) to the real part of the
spectrum, and particularly by the effective decrease of the surface stiffness o in
Rew [see (3.2.20)] due to *He impurity adsorption.

3.2.4 Impurity Contribution to the Kapitza Thermal
Resistance at Low Temperatures

Using the complete system of the boundary conditions in the low-temperature limit
T~ (0.1 =0.2) K (c; € ¢ o’l’h < oé; vuz &= Vp), we can solve the acoustic
problem again and determine the coefficient of the energy transfer for a longitu-
dinal wave incident from solid phase to first- and second-sound waves in liquid.
The solution of this problem helps us to evaluate Kapitza resistance Rx on the
mobile interface (see Khalatnikov [35]).

For the simplest case of a normal incidence of a longitudinal wave the total
transmission coefficient is equal to

Cl 2 PPuClI
D=Dy+Dy =4y PPnn ) 3.2.25
1 I <Cl (Ap)2c1> ( )

where as usual s:%*”zf;p NPy R Po; %:%<< 1.

Equation (3.2.25) contains a sum of two contributions. The first D; describes
the energy-flux fraction transferred to the first sound in the liquid, and Dy, the
fraction transferred to a second sound in the liquid. In the range of the tempera-
tures and concentrations which we are considering p,,, ¢;; and ¢ are defined by

the impurities, and thus the second sound velocity (see Chap. 1) reads:

2 in2
2 - Tp3(c®) b, _ TP3(e')’ T
s cawn

(3.2.26)

where C,(,z) is specific heat at constant pressure in the liquid phase. Corre-
spondingly the coefficient Dy is given by:

4 5 172
Dy=—L—(2mT) P2 (3.2.27)
(Ap)°c; \3 my

Equation (3.2.27) does not depend on frequency and does not contain the
relaxation time 7. The expression for Dj; can therefore be used to represent (at least
in the order of magnitude) the efficiency with which the thermal phonon Aw ~ T is
transferred from the solid phase to the impurity subsystem in the liquid solution.
The physical reason is that the Kapitza thermal resistance is determined by the
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energy transfer from the wall to the He-II quasiparticles on the interface itself, so
that Rx depends little on the excitations mean free path / (on the relaxation time 7).
The mean free path [ determines only the distance over which the temperature
jump is formed (is localized), and not the magnitude of this jump. We thus obtain
the following estimate for the impurity contribution to the thermal conductivity o
of the interface:

o3~ c)e Dy~ (p/Ap)erT'?, (3.2.28)

where c;;l) is the phonon part of the heat capacity of the solid (cﬁ) ~T?) and ¢, is

the average sound velocity in the crystal. We point out that the resulting tem-
perature and concentration dependences of o agree with the result of the model
calculation of Graf, Bowley and Maris [15, 16].

Moreover, it is interesting to note that the energy fraction transferred to the
impurity subsystem, obtained in [16] within the framework of the quantum-—
mechanical model (the case [ = oo) differs from (3.2.27) by no more than
20-25 %.

We point out that D; in (3.2.25) determines the phonon contribution to the
thermal conductivity of the interface o,;. The latter due to proportionality of D; to
o’ takes the form oy ~ (p/ Ap)4T5 . The total thermal conductivity o, = oy +
o3 = 1/Rk of the interface is an additive quantity, a fact reflected in (3.2.25). At
the temperatures and concentrations considered, we have g3 < ay in view of the
“extra factor” (p/Ap)* ~ 102

3.2.5 Cherenkov Emission of the Second Sound Quanta
by the Thermal Surface Waves

Note also that there is one more mechanism, not accounted for in the theoretical
parts of [15, 16], for heat transfer to the impurity subsystem. This mechanism is
connected with the Cherenkov emission of the second sound quanta by the thermal
crystallization oscillations of the interface and by the thermal Rayleigh waves.
This contribution is similar to the contribution considered by Khalatnikov [35] of
the Rayleigh waves to the thermal resistance on a He-II- metal interface. In the
temperature region considered, the thermal crystallization waves with frequencies
o ~T/h~101s7! are estimated to have an acoustic spectrum o ~ ¥k, where

= (& /Meff)l/ 2. The contribution of these waves to a3 therefore has the same
temperature and concentration dependences as the contribution from the bulk

phonons of the solid i.e. ¥ ~c,T7/2(p/Ap)*. The exact expression for this
contribution to o for vy, > ¢y is:

3 2 1/2 3
w T (PN (3 I
o3 =7 (Ap) (Sm T) o) (75171\) , (3.2.29)
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which is also of the same order as the results of [15, 16].
We note that 0,3 also receives a contribution from Cherenkov emission of the
second sound quanta by the thermal Rayleigh waves. This contribution

ok ~c,T72(p/Ap)* has just the same order of magnitude as Cherenkov contri-
bution from the thermal crystallization waves.
Concluding this section let us emphasize again that

1. We derived generalized boundary conditions (the system of equations of the
surface hydrodynamics) for atomically rough mobile phase-interface between
quantum crystal and a superfluid at low temperatures and with an account of a
finite impurity concentration in both solid and liquid phases.

2. We discussed different non-dissipative capillary terms such as surface stiffness,
surface stress tensor, and kinetic surface density as well as dissipative growth
coefficient and Kapitza thermal resistance which play an important role for the
spectrum and damping of melting-crystallization waves and for acoustic (sound
transmission and reflection) coefficients.

3. We analyzed the instability of a tangential flow of a superfluid liquid in the
direction parallel to the rough surface of a quantum crystal and found the
growing increment of melting-crystallization waves which governs the transi-
tion to the non-linear regime of the surface development

4. We predicted a possibility of a resonant excitation of the surface (Rayleigh)
waves by the bulk (second sound) wave incident from the liquid under the
transcritical angle of the total internal reflection. We predicted also an inverse
effect of Cherenkov emission of the second sound quanta by the thermal surface
waves on the rough interface.

Our results suggest that at phonon-temperatures 7 < (0.4 = 0.5) K and
impurity concentrations ¢ < 1073 the damping of melting-crystallization waves is
small which is in favor of mobile (atomically rough) character of the surfaces
under consideration. Experimentally this family of mobile surfaces could corre-
spond, for example, to the vicinal surfaces which are close to the surface per-
pendicular to the main axis of the hexagonal “He crystal.

The equations of the surface hydrodynamics on the slow-growing atomically
smooth surfaces are much more simple and support at 7 = 0 only one wave of the
surface excitations, namely Rayleigh-Stonley waves. The melting-crystallization
waves on these surfaces, if they exist, have a nonlinear character [45].
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Chapter 4
Quantum Hydrodynamics of the P-Wave
Superfluids with the Symmetry of *He-A

In the present chapter we derive the equations of orbital hydrodynamics and
analyze the spectrum of collective excitations for bosonic and fermionic p-wave
triplet superfluids with the symmetry of A-phase.

We discuss the spectrum of orbital waves, the paradox of the intrinsic angular
momentum and the complicated problem of chiral anomaly (mass current non-
conservation) in the superfluid hydrodynamics of the fermionic A-phase at T = 0.

We present two different approaches to the chiral anomaly, one based on
supersymmetric hydrodynamics [1-3] and another one on the formal analogy
between Bogoliubov-de Gennes equations for *He-A [38] and the Dirac equation
in quantum electrodynamics (QED, [4-7, 9, 10, 26-28]). We are motivated by the
experimental discovery of superfluid and superconductive fermionic systems with
nodal (Dirac) points and lines, which exist in the complex order parameter or in the
energy spectrum of the superfluid *He-A (see Chaps. 9 and 12), organic and heavy-
fermion superconductors, ruthenates (Sr,RuQ,) (see Chap. 9) and p-wave Fermi
gases in the regime of Feshbach resonance (see Chap. 7). Note that both com-
peting approaches, which we discuss in this Chapter, are very general. An
approach, connected with the construction of the supersymmetric hydrodynamics,
is based on the inclusion of the fermionic Goldstone mode in the low-frequency
hydrodynamic action [1-3, 11]. It can be useful for all nodal fermionic superfluids
and superconductors with zeroes of the superconductive gap such as *He-A,
Sr,RuO,, UPt;, UNiAl; and U;_,Th,Be;3 [12]. The second approach is also very
nice and general. It is connected with the appearance of the Dirac-like spectrum of
fermions with a zero mode [4-10], which also arises in many condensed-matter
systems such as “He-A, chiral superconductor Sr,RuQ,, organic conductor
o-(BEDT-TTF),I3, 2D semiconductors, or recently discovered graphene [12—16].

M. Yu. Kagan, Modern Trends in Superconductivity and Superfluidity, 117
Lecture Notes in Physics 8§74, DOI: 10.1007/978-94-007-6961-8_4,
© Springer Science+Business Media Dordrecht 2013


http://dx.doi.org/10.1007/978-94-007-6961-8_9
http://dx.doi.org/10.1007/978-94-007-6961-8_12
http://dx.doi.org/10.1007/978-94-007-6961-8_9
http://dx.doi.org/10.1007/978-94-007-6961-8_9
http://dx.doi.org/10.1007/978-94-007-6961-8_7
http://dx.doi.org/10.1007/978-94-007-6961-8_7

118 4  Quantum Hydrodynamics of the P-Wave Superfluids with the Symmetry of *He-A

4.1 Orbital Hydrodynamics of Bosonic and Fermionic
Superfluids with the Symmetry of A-phase of *He

In the previous Chapters we considered mostly hydrodynamics of superfluid “He
[24], which is a hydrodynamics of the isotropic bosonic superfluid. At zero tem-
peratures hydrodynamics of a superfluid “He is trivial. It is described in terms of
the two equations, first one for superfluid velocity Vv, (or mass current
Jo = p,(T = 0)¥%,, where superfluid density p,(T = 0) = p — equals to the total
density) [21-23, 25, 40]. The second equation is a conservation of mass (see
Chap. 1). Note that the order parameter in the superfluid “He is a scalar complex
function ¥ = ,/p,e’”, where v, = m% Vy and p, = |¥|* (see [20]). The order
parameter in a bosonic or a fermionic superfluid with the symmetry of A-phase
(where the role of the order parameter ¥ plays a superfluid gap A, see Chap. 7) has
a more complicated (tensor) structure. It’s orbital part is characterized by three

mutually perpendicular unit vectors €, €, and I, where [ = é1 X &, and =2 =

E% =1 (see [17, 29, 30, 90] and Chap. 7). In the homogeneous case 7, é1, &
coincide with the Cartesian unit vectors €,, é,, €,. However, in general case they
are slowly varying functions of 7 and r. The orbital part of the order parameter in
the A-phase is a complex vector

5 :A()eix(é’l +zé'2), (411)

where Ay is the amplitude of the order parameter (of the superfluid gap in case of

Fermi-liquids and Fermi-gases). Note that Ain (4.1.1) corresponds to the spherical
function Y7; and thus [ = [, = 1 for the orbital momentum and its z-projection in
the A-phase.

The superfluid velocity ¥, in case of Fermi-liquid (*He-A) or Fermi gas is given
by [17]:

h — —
B = (enVen V«), 412
%= (el ex+ Vy (4.12)
where a factor 2mj reflects the pairing of two fermions [17, 20] and their sub-
sequent Bose-condensation in superfluid *He [19]. The additional (with respect to

superfluid “He) variable Tcorresponds to the quantization axis of the angular
momentum of the p-wave pairs in the superfluid *He.

Note that in the next chapters we will consider superfluidity (or superconduc-
tivity) in Fermi systems of the two types: strong coupling superfluidity, where we
have tightly bound pairs (or difermionic molecules) well separated from each
other. In this case the pairing takes place in real space. We will often call the
Bose-Einstein condensation of local pairs in this case as a BEC limit of the
superfluidity [31, 32]. Another type of superfluidity in Fermi systems corresponds
to the creation and simultaneous Bose-condensation of the extended Cooper pairs,
which strongly overlap with each other in real space. The phenomenon of pairing
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takes place in momentum space in this limit. This is a standard BCS-type of
superfluidity or superconductivity [20-23]. Thus, when we are speaking about
bosonic superfluid we have in mind either elementary bosons (atoms of “He), or
composed bosons (molecules of ®Li, and *“°K, formed in BEC-limit for p-wave
superfluid Fermi-gases, which we will consider in Chap. 6 [33-35]). Corre-
spondingly when we are speaking about fermionic superfluids we have in mind
BCS-type of pairing (as in *He-A and *He-B for example).

4.1.1 Orbital Hydrodynamics and Collective Modes
in Bosonic Regime

In this Subsection we will consider bosonic (BEC) regime having in mind first of
all diatomic molecules with p-wave symmetry, which arise in ultracold Fermi-
gases of °Li and *“°K in the regime of Feshbach resonance (see Chap. 6). In BEC
regime at T = 0 we could safely define the density of the orbital momentum of p-

wave molecules (local pairs) as L= % pz Correspondingly the total mass-current
at T = 0 reads:

. i 5 L
JB :st—i—%V X (pl) =p¥s+ V XL, (4.1.3)

where V x L—term in the r.h.s. of (4.1.3) is analogous to a diamagnetic dis-
placement current well known in the Electrodynamics of Continuous Media [18].
Hydrodynamic energy for molecular A-phase reads:

2
Es = E (p, I a,-l) n p%, (4.1.4)

where we used Galilean transformation for Eg to the coordinate frame where the
superfluid velocity ¥; = 0. In this frame bosonic energy is Ey. The differential dE,,
in general case reads:

dEy = udp + FydV;ly + M dLy, (415)
where
OE,
Fyp = ——, 4.1.6
$ T Vil (4.1.6)

and Ly = ;’—’fjis the density of the orbital momentum.

The internal energy E is connected with thermodynamic and liquid crystal like
orbital energy. The term FjdV;l; provides quadratic in gradients contribution to
Ey. It corresponds to the energy of the orbital deformation, which is similar to the
deformation energy in the liquid crystals [36, 37]. Finally p in (4.1.5) is a chemical
potential and
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_, 1=
M=V %7, (4.1.7)

The differential of the total energy dEg in (4.1.4) can be rewritten as:

2

fip
+ % )dp + FudVilk + 4 (v X 7 ) dly + pyydvy,

h - =

(4.1.8)

where dEy = (,u +& I (% X V) + V232dp + FudV .
We use again Landau approach for the superfluid hydrodynamics (see Chap. 1).
Then collecting all the terms for the time derivative of the energy aa% under the

divergence (collecting v é), we get the energy conservation law in the form:

aEB V? h- = N alk o
a—‘i‘V{(ﬂ“r?‘i‘El(VXVQ)pVﬂ—FZkE =0 (419)

where we can define again an energy flux Q; = (y + -+ l (@ X \7})> —Fy %‘

Thus, aaif +V- Q = 0, and the energy conservation law (4.1.9) is consistent with a

system of three hydrodynamic equations for gﬁ, aa"[‘ and +. This system of equations

yields [63]:

0
a_ft’+v (p¥y) =0, (4.1.10)
vy V2R e B —fe
= +V< +2+4m1.(vas)) 7%ai1(lxz), (4.1.11)
67 = -\ - - 1 — = h -
—+ (vS-V)l—&—lx (Ev X vs—%ViF,) —0, (4.1.12)
where we introduced F, ;= Dy (see 4.1.6).

The first Eq. (4.1.10) in the system (4.1.10—4.1.12) is a standard continuity
equation at 7 = 0. Note that in (4.1.10) we used that V- (@ X %7) = 0 and thus

we can also represent it in the form %—’;—!— V. fB = 0. In other words, the dis-

placement current as usual does not contribute to V. s
Second Eq. (4.1.11) is an equation for superfluid velocity with a non-trivial
right-hand side. It corresponds to the well known (in the physics of *He-A)

Mermin-Ho [39] identity for V x Ve
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h
2m
The condition (4.1.13) is based on the definition (4.1.2) and plays an important
role in the derivation of the system of equations (4.1.10-4.1.12). Note that we can

also define the superfluid velocity in different way. To do that we should introduce
three angles ¢“(7, ) defining the orientation of the trio of the mutually orthogonal

Vivsj — Vjvsi = 7(6,i>< 6]7) (4113)

unit vectors €;, é; and [ = ¢; X é&,. Let

80 = Jy(@)do® (4.1.14)

be the Cartan form defining the infinitesimal rotation 60 corresponding to two
neighboring points ¢ and ¢“ + d¢“ in the group space {@“} of the three-
dimensional rotation group. Setting {¢“} = @ where the vector @ is directed along
the rotation axis and its magnitude is rg(6/2) (where 6 is the rotation angle) we get
(see Andreev, Marchenko [50]):

2
;Lai:— 5111' siba b 3 4.1.15
1+(P2( +8b ¢ ) ( )

where ¢, is the Levi-Civita tensor. We can easily verify that the quantities Za in
(4.1.15) satisfy the “flatness” conditions:

a Oy 221
30r 3t T aZ| = 0. (4.1.16)

Since the conditions (4.1.16) are covariant with respect to a change of the
coordinates ¢“, they retain their form also for any other parameterization of the
rotations.

The superfluid velocity V; in this approach has the components:

h -00 h - 0¢*
Vs = 2m15xi = Zmlﬂa o (4.1.17)

We can easily check that this definition coincides with the standard definition
(4.1.2) for the superfluid velocity and moreover, the “flatness” condition (4.1.16)
automatically guaranties the fulfillment of the Mermin-Ho identity (4.1.13). The
Mermin-Ho identity yields non zero vorticity in *He-A even in the absence of
singular vortices (see Chap. 1) and, only with an account of continuous textures of
the I-vector.

Third Eq. (4.1.12) is an equation for vector T or for the density of orbital
momentum Ly = %Z

First two equations on 0p/0t and 0V, /0r after linearization yield the sound
spectrum o = c¢yq.

Note that physically the sound Goldstone mode corresponds to the gauge
transformation A — Ae” of the order parameter (similar to the origin of a sound
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mode in superfluid “He). On the level of I-vector it corresponds to the rotation on
angle ¢ around vector I

The equation on 67/ Ot after linearization yields the spectrum of orbital waves.
In bosonic (molecular) superfluid it is quadratic in g: @ ~ ¢*/m at small g. We can
say that the A-phase is an orbital ferromagnet [29, 30].

Physically the second (orbital) Goldstone mode is connected with the rotations
of the I-vector on angle y around the perpendicular (to vector 7) axis (see [41]).

Note that, as usual, the system of hydrodynamic equations (4.1.10-4.1.12) is
compatible not only with the energy conservation (4.1.9) but also with the linear
momentum conservation laws (see Chap. 1):

aé—era%(nik):o, (4.1.18)

where Il = pvgve + (P — FunVondn)Oi + Fin Vil — s,-kij is a momentum ten-
sor and P = —Ey + pp + FuVilp + 52(% X ‘7?) is the pressure.

4.1.2 Orbital Waves: The Paradox of the Intrinsic Angular
Momentum and Anomalous Current in Fermionic
Superfluids

In fermionic (BCS-type) superfluids with a symmetry of A-phase we deal with
extended Cooper pairs. The pairing takes place in momentum space. The fermi-
onic quasiparticle spectrum in momentum space reads (see [17] and Chap. 7):

S 2

p? 2 ’Aﬁ‘
E, = —— + 4.1.19
P <2m ,u) p: ( )

where A = Ao(€, + ié,) is the complex order parameter and Ay is the magnitude of
the superfluid gap.

- 2 32 -
In fact, |A -1’7” = Ajp?sin® 0 = A (ﬁ X l) , where [ = €, x é, is the unit vector

of the orbital momentum (see Fig. 4.1). We note that Fermi momentum pp is fixed
by the fixed density n = % The angle 0 is between the momentum p and the axis
= ¢, of the quantization of the orbital momentum.

Note that for a standard s-wave pairing, the quasiparticle spectrum in BCS

2

fermionic superfluid is given by [19, 21-23] E, = (5’71 - ,u) +A%. It has no
zeroes (no nodes), and therefore the topology of the s-wave superfluid is trivial in
momentum space. But for the triplet A-phase the quasiparticle spectrum in BCS

superconductor (or superfluid) has two nodes for 5’71 = pand 6 = 0, w. Note that in
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Fig. 4.1 The topology of the superfluid gap in the BCS A-phase. There are two nodes in the
quasiparticle spectrum corresponding to the south and north poles [2, 3]

BCS-superfluid u ~ ¢r and thus for the nodal points p ~ pr. Hence there are
fermionic quasiparticles with practically zero energy in BCS A-phase. They play
the role of a fermionic Goldstone mode (additional to Goldstone bosonic modes
associated with sound and orbital waves). We will include the fermionic Goldstone
mode in the hydrodynamics and construct the supersymmetric hydrodynamic
action in Sect. 4.2, which describes both fermionic and bosonic Goldstone modes
(see [1-3, 11]) on the equal grounds. In this Subsection we would like to stress that
the topological effects, connected with the presence of the nodes in E,, also are
important for the spectrum of the orbital waves in the BCS domain at low tem-
peratures T — 0. Their spectrum is different from the spectrum in bosonic A-phase
for small w and g. Note that for bosonic superfluid (with p-wave molecules or local

pairs) p ~ — |E—2" < 0 (where E}, is a binding energy of a molecule) and hence the

2 2
quasiparticle energy E, = \/ <i+ |,u\> +Ap"—pzsin29 has no nodes. Thus, its

2
2m 3

topology in momentum space is trivial just as for the s-wave BCS pairing.
In BCS superfluid A-phase the symmetry requirements also allow us to write an
additional anomalous term in the total mass current at 7 = O:

Jiot = J + Jans (4.1.20)
where
Fon = hc(i (ﬁxi))i (4.1.21)
Jan = 4m 0 .

is an anomalous current.
In the BEC superfluid the important coefficient Cy = 0, and thus the anomalous
current is absent. Formally it is connected with the integral

NSD(O)/dgp <1 - ‘i”‘), (4.1.22)
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]72
2m
superfluid the chemical potential 4 <0, ¢, = % + |#| > 0 and thus Cy = 0. (Note
that N3p(0) = 525 is the density of states in 3D Fermi gas).

In BCS superfluid u ~ ¢r > 0 and the integral in (4.1.18) is nonzero. Moreover,
in naive estimates it defines the total density in the BCS superfluid (Cy ~ p) at
least in the weak-coupling case Ay < &f.

Thus, it is a difficult question whether Cy = 0 in BCS phase. If Cy # O the
spectrum of orbital waves is strongly modified. Moreover, for nonzero C, we
cannot get rid of anomalous current in (4.1.16) and (4.1.17). That is very

where ¢, = 1 is a quasiparticle spectrum in the normal state. In BEC

unpleasant since the anomalous current f[m violates the conservation law (4.1.14)
for the total mass current (for the total linear momentum) ]_",0,. Namely the time
derivative of j,, cannot be expressed as a divergence of any momentum tensor

IT;.(in contrast with a bosonic phase see (4.1.18)):
Vi , 0 .
ot e

(4.1.23)

Thus, the presence of the anomalous current destroys the superfluid hydrody-
namics of the A-phase as T — 0. Its contribution to the equation for the total linear
momentum (%) can be compensated only by adding a term with the relative
normal velocity W = (¥, — ¥;) and normal density p, (T = 0)(¥, — ¥) to the total
current f',m already at T = 0 (see [4-7, 9, 10]). We would like to stress that it is
preferable to construct a closed set of the hydrodynamic equations at 7 = 0 only in
terms of a superfluid density p, and superfluid velocity V; by putting, as usual,
p,(T = 0) = p. This scenario perfectly works for bosonic A-phase. But it is not
clear whether we can describe fermionic (BCS) A-phase only in terms of the
condensate oscillations.

Note that, as we already mentioned, the presence of the anomalous current
(with Cy # 0) also significantly modifies the spectrum of orbital waves.

In Sect. 4.1.1 we mentioned that @ ~ ¢* in bosonic A-phase. More precisely in
BEC A-phase for small @ and g,

7
pw~p-=, (4.1.24)
m

or equivalently w~ q—:l where 7||é'z (see Fig. 4.1) is a quantization axis of the
orbital momentum. In the same time we will show in Chap. 7 (see also [2, 3]) that
in fermionic (BCS) A-phase

Ao
VF|C]Z‘ -

2

(p— Co)w~p L (4.1.25)
m

We will also show diagrammatically that Cy &~ p and hence (p — Cp) < p in

(4.1.25) in the weak-coupling case Ay < &r. The most straightforward way to

obtain (4.1.25) is to use the diagrammatic technique of Vaks et al. [41] for the
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spectrum of collective excitations in p-wave and d-wave superfluids. The tech-
nique is based on the solution of the Bethe—Salpeter integral equation in the
superfluid state (see Chaps. 5 and 7). The details of the derivation of (4.1.25) will
be presented in Sect. 7.4. Here we would like to emphasize that the spectrum
(4.1.24) in bosonic A-phase corresponds to the density of angular momentum

- hp -
Lg=—1 4.1.26

5" om” ( )
while the spectrum (4.1.25) in the fermionic A-phase corresponds to the density of
intrinsic angular momentum

- h -
Lr =—(p— Co)l 4.1.27
r =5 (0= Coll (4.127)

which is different from (4.1.26) for Cy # 0 and moreover, (p — Cp) <K p for
Co = p in the weak-coupling case. We note that there are several competing
evaluations of Ep which are based not on the spectrum of orbital waves, but on the
exact microscopic representation of the static ground-state Hamiltonian of the BCS

A-phase. Here different groups provide conflicting results for Lr. In [42-48] for
I = const the evaluation of the intrinsic angular momentum yields Lp = %7 in
agreement with the bosonic phase, while the inclusion of the inhomogeneous

textures of the I-vector restores the expression (4.1.27).

We note that according to Leggett [49], the total N-particle microscopic
Hamiltonian H exactly commutes with the z-projection of the angular momentum
L= hN/Z. This fact is in favor of the result Ly = g—ZTin the BCS A-phase.

Note that rigorously speaking for *He-A the question about the existence of the
superfluid hydrodynamics at 7 = 0 has to some extent a purely academic interest
since on the phase-diagram of superfluid *He at 7= 0 A-phase does not corre-
spond to a global minimum of the Ginzburg-Landau Free-energy [17], and hence
only an isotropic B-phase is realized here (see Fig. 4.2a). To get A-phase as a
global minimum of the Free-energy we should switch on a large magnetic field
Bpar > %‘, where (5 is Bohr magneton (see Chap. 12). In this case B-phase will be

completely paramagnetically suppressed, and the global minima of the Free-
energy will correspond to the Al-phase with S2* = 1 (for z-projection of a total
spin S;,; = 1 of the Cooper pair) and A2-phase with two Bose-condensates and
correspondingly with two projections S = £1.

For magnetic fields being smaller than paramagnetic limit B <B,,,, but still
sufficiently large the phase-diagram of a superfluid *He will be given by Fig. 4.2b,
and we see that the superfluid A2-phase (which is an analog of A-phase in case of
nonzero magnetic field) can exist at 7 = 0 in some interval of pressures P.

For superfluid p-wave Fermi-gases in the regime of Feshbach resonance (see
Chaps. 5 and 7) usually only one projection of spin (say ¢ =T) is captured by
magnetic trap and thus we have triplet Cooper pairs only with S = 1. We can say
that we are dealing with fully-polarized Al-phase here. However, while spin
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Fig. 4.2 Phase diagram (pressure vs. temperature) in the superfluid *He in the absence of
magnetic field (a) and in the presence of magnetic field (b), which is sufficient enough but smaller
than a paramagnetic limit B < B, (required for total suppression of B-phase). For zero
temperatures only isotropic B-phase corresponds to a global minima of Ginzburg-Landau
Free-energy [17] at T = 0 on a. However, on b there are regions of pressure where anisotropic
A2-phase corresponds to a global minimum of the Free-energy at 7 = 0

sectors of Al and A2 phases are very different, the orbital (or gauge-orbital sectors
[17]) are very similar with respect to the spectrum of collective excitations (sound
waves and orbital waves), as well as orbital superfluid hydrodynamics. Thus, in
this chapter we will mainly discuss A-phase while in Chap. 7 we will discuss fully
polarized Al-phase. Note that the orbital structure of the order parameter both in
Al and A2-phases is governed by the spherical function Y;; and thus corresponds
to [ = I, = 1 for the relative orbital momentum of a triplet pair and its z-projection.

4.2 Two Approaches to a Complicated Problem
of Anomalous Current in Fermionic (BCS) A-phase

In this Section we will reconsider two different approaches to the complicated
problem of the anomalous current (which is often called the problem of chiral
anomaly—see this Section and Sect. 4.2.4). These approaches (see [1, 4-7, 9, 10])
were worked out in the late 1980-s, but are actively discussed till the present time.

4.2.1 Supersymmetric Hydrodynamics of the A-phase

The main idea of [1] (see also [2, 3]) was to check whether an anomalous current j,
(more precisely, the term j,V; in the total energy) is directly related to the zeroes of
the superfluid gap (see (4.1.5) and Fig. 4.1). Andreev and Kagan assumed in [1] that
in a condensed matter system at low frequencies, the only physical reason for an
anomaly (which can produce an anomalous current) can be related to the infrared
singularity. We note that the ultraviolet singularities are absent in condensed matter
systems [19, 20], in contrast to quantum electrodynamics [26-28]. Strong (critical)
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fluctuations are also suppressed in three-dimensional systems. The main idea in [1]
was therefore to check the dangerous infrared regions where the gap is practically
zero. For that, the authors of [1] considered the total hydrodynamic action of the
fermionic (BCS) A phase for low frequencies and small g-vectors as a sum of
bosonic and fermionic contributions:

Stot - SB + SF) (421)

where SB(p,T, Vy) is the bosonic action related to the zeroes of the superfluid gap
(see Fig. 4.3).

Generally speaking, the idea in [1] was to use supersymmetric hydrodynamics
to describe all the zero-energy Goldstone modes, including the fermionic Gold-
stone mode that comes from the zeroes of the gap.

The authors of [1] were motivated by the nice paper of Volkov and Akulov
[11], where the massless fermionic neutrino was for the first time included in the
effective infrared Lagrangian for the electroweak interactions.

4.2.1.1 Bosonic Part of the Total Action

Bosonic part of the total action Sy in (4.2.1) describes sound waves and orbital
waves in purely bosonic (molecular) limit and does not contain an anomalous term
fanﬂ in the bosonic energy. Formally Sp = f Lyd*x, where x = (7, t) and bosonic
Lagrangian reads

Ly = L— — Ep, (42.2)

where % is a variational derivative, which defines an angular frequency, connected

with the rotation angle 0 (see Egs. (4.1.14, 4.1.15, 4.1.16) and [1, 50] for more
details on the parametrization of the three-dimensional rotation group which

governs 56).

The bosonic Lagrangian Lg corresponds to bosonic energy Eg in (4.1.4). Thus, a
bosonic part of the total action describes 3 equations (4.10), (4.11), (4.12) for
bosonic hydrodynamics at 7 = 0. They contain the sound waves @ = c¢;q and the
orbital waves o ~ ag’.

Fig. 4.3 A qualitative
illustration of the fermionic
(Sg) and bosonic (Sg)
contributions to the total
hydrodynamic action Sy, of
the A phase at 7 — 0 [2, 3]
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4.2.1.2 Fermionic Part of the Total Action

A characteristic peculiarity of *He-A and fermionic (BCS) phase of a triplet
superfluid Fermi gas is the fact that in addition to the usual ground-state degen-
eracy related to the spontaneous breaking of continuous symmetries, there exists
an additional degeneracy related to the vanishing of the quasiparticle energy E,
[see Figs. 4.1 and 4.3 and Eq. (4.1.15)] at the two points of the Fermi surface. It
turns out that the states

al|0)and a; |0), (4.2.3)

(where |0)is the quasiparticle vacuum, and a and a; are the creation operators for

quasiparticles with momenta pFT and —ppz respectively) have ground state energy.
Similarly to the way in which the usual degeneracy leads in the hydrodynamic
description to the appearance of Bose fields, which vary slowly in space and time,
this additional degeneracy leads to the appearance of the “Fermionic goldstones”,
i.e. of the slowly varying anticommuting (Grassman) fields [51-59] a; (x), ax(x),
aj(x) and a5 (x), where x = (7, 7). In fact, it is more convenient in this case to make
use of the certain linear combinations of these fields. The reason for this is that in
the systems with Cooper pairing the quantities a;,ay, ... are the subject to com-
plicated gauge transformation laws. We introduce their linear combinations ¢, (x),
©,(x), @i (x), @5(x), so that they satisfy the same anticommutation relations:

{QoTagol}:{§013§02}:{¢;7¢1}:"':0 (424)

as before, but under the gauge transformation A — Ae they transform as
Q12— @127 @y — @l ,e 1 (4.2.5)

We note that on account of the known properties of the mentioned linear
(Bogoliubov or u-v [20-23]) transformations for spatially homogeneous systems,
the subscripts 1, 2 refer, as before, to the states with momenta pFT and —ppz

The presence of the additional degeneracy of the ground state and the related
Goldstone character of the fields ¢ is due to the symmetry properties of the A-
phase. We shall convince ourselves below of this independently, by determining
the general form of the fermionic part of a Lagrangian Lg satisfying all the nec-
essary symmetry requirements.

We emphasize the following important point: hydrodynamics deals with the
slowly varying quantities corresponding to the small statistical volume near the
certain points of the momentum space. For the fermionic variables (in contra-
diction to the bosonic ones) this automatically leads to a small spatial fermionic
density. In the Lagrangian Lg ( f Lrd*x =Sp in (4.2.1)) we can therefore limit
ourselves to the consideration of the terms which are quadratic in ¢ and ¢*.

The Lagrangian L of the Fermi subsystem, which together with Ly forms the
total Lagrangian of supersymmetric hydrodynamics, must be hermitian, invariant
to rotations and gauge transformations, as well as with respect to the reflections
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7 — —z, t — —t, where the z axis is directed along the vector I Moreover, on
account of the momentum conservation, the Lagrangian Lg must contain the
products @7, 5¢0,, @@, ... but not ¢7@,, P5¢;,.... The fields ¢, ¢* behave
as scalars under rotations. Under reflections they have the transformation
properties:

* x \T
P1 =0 93 =05 (P1T,2 =012 (912) =012 (4.2.6)

Here the subscripts z and T denote respectively the operations z — —z and
t — —t. The operation 7T is accompanied, as always, by a reversal of the order of
factors.

There is a unique expression not containing derivatives and satisfying the
abovementioned requirements:

g(@io) + 030,). (42.7)

The coefficient g appearing here is in reality a function of the magnitude of the
momentum. This function should vanish at the point p = pg. One may assume that
the term (4.2.7) is absent from the Lagrangian Lg, since the equation g(pg) = O is
in fact a definition of the excitation momentum pg. The existence of a zero in the
function g(p) is that “topological” property of *He-A (and other BCS A-phases)

which, together with the vector character of the order parameter 5, is responsible
for the gapless nature of the fields ¢.
There exists a unique hermitian invariant involving the time derivatives:
i
2

In the same time there are two invariants which are linear in the spatial

(qffﬁbl + @302 — Py — ¢;¢2)~ (4.2.8)
derivatives. One of them contains the vector L. Owing to the conditions [* =/,
I" = —[ it has the form:

ii((PTﬁ(Pl - wﬁq)z) - if(Wﬁ 01— Vo3 (ﬂz)- (4.2.9)

The second invariant contains order-parameter A and on account of the trans-
formation properties A=A, AT = —A* it yields:

iﬁ((pﬁwé + coﬁqo’f) —iA* (Wﬁ 02+ Vo, - 901) (4.2.10)
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Thus for Ly we get:

- % . % Vizl & * SR S
Ly (<m<m + Q302 — D1 — Pry) + 151(«)1W}1 — @5V, = Vi -9+ Vg - @2>

\S] |

v, g = L= V. S* — —
+is— (fp’[VmZ + @EV(P’I) —is— (W)l P+ Vo, - <p1)7
2 60 2 60

(4.2.11)

where the longitudinal and the transverse velocities v; and v, are the functions of
the density. In *He-A, for example, v; ~ (ST—;) v < (v ~vr) since I 1073,

The Lagrangian (4.2.11) refers to the spatially homogeneous case, when [ =
const and A = const. To treat the spatially inhomogeneous case it is necessary to

note the following. Since the states 1 and 2 have a finite momentum :I:ppi, the
“genuine” fields ¥y , are related to the slowly varying fields ¢, , by the equations:

¥ =0T Py = gy T (4.2.12)

and correspondingly for W] and ¥5.

For V x 775 0 the transformations of the form (4.2.12) do not exist. It is
necessary to make use of the fields ¥ and expand not only in terms of gradients,
but in terms of the combinations V =+ ippz The corresponding Lagrangian Lg is
obtained from (4.2.11) by means of the substitution ¢ — ¥ and V-Vt ipFT.

Up to the total derivatives (which appear when the differentiations are trans-
posed either completely to ¥, or completely to ¥3) we have then:

Le =V (ig_’_lg{z (V“_ iij') })‘lfl +\j/2(l——z‘;l{l (V_'— ipﬂ)})%

i (e (7o) s v (7 ) )

where the curly brackets stand, as before, for anticommutators.

In addition, it is necessary to add to the Lagrangian independent invariant terms
which contain explicitly the spatial derivatives of A. The time derivatives may be
omitted, since according to the system of Egs. (4.2.10, 4.2.11, 4.2.12) they are
quadratic in the spatial derivatives.

The invariants which are linear in the spatial derivatives gi’ and are at the same

(4.2.13)

time of zero order in the derivatives of the fields W can be of the two types. They
may contain expressions obtained by means of the contractions with J;; or g, or
the terms of the form

0A;

— 4.2.14
o ( )

* A K
A A Ay Ay
—_—

n n
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and their complex conjugates, or the terms of the form

o oA,
AA . A Ay
—_—— ——

: 42.1
o (4.2.15)

n n—1

All the terms of the first type are obviously genuine scalars. They are therefore
invariant with respect to the transformations z — —z and consequently they must
be multiplied by the combinations of the ¥ fields W]¥; + ¥;¥] and
Y,¥,; + ¥,Y¥,, which vanish on the account of the anticommutation relations.
There exist only three independent expressions of the second type which are
invariant with respect to the rotation. Namely, these are V- 7,7 (% X 7) and V; 1
They are all pseudoscalars, and therefore must be multiplied by (‘Y7¥; — ¥5¥>).
Moreover, only the last two of them are invariant with respect to the transfor-
mation t+ — —t. Taking all this into account we have:

Ly = W*AY, (4.2.16)

where

¥ = (Tl ); ¥ = (¥ W,), (4.2.17)

¥;
d ivlj(ﬁ - ippf) —iv,AA; v
A=iz+ o o .
iv, A —ivll(V - ippl)
= (4.2.18)
iuv .7 iuv.A o T .
T 1-(Vx1)+b7,-1,
lVZ’V-ﬁ—U i#V-1

and a and b are functions of the density. The function b(p) is determined from the
requirement of the Galilean invariance of the Lagrangian Lg. Under a Galilean

transformation 7 =7 + V¢, we have ¥, =V +V and according to Quantum

mechanics [60]:
, (. W
Wi, =W expsimV|r 5] (4.2.19)

A=A exp{i2m\7 (F/ + %) } (4.2.20)

From (4.2.19, 4.2.20) it is clear, that, acting on the quantities which transform
like Wi 5, the invariant operators are
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0 - my?
T s
1 Py + 1V + )
and, correspondingly, their complex conjugated operators acting on the quantities
which transform like ‘PT2 Since in the adopted approximation one should neglect

V — im¥y (4.2.21)

the terms involving vf, the Galilean-invariant Lagrangian is obtained from the
expression for ¥; = 0 by means of the substitution

0 0
- =
or ot
where the upper sign refers to the operators acting on the quantities which
transform like \V'; », and the lower sign—to the quantities transforming like 7 ,.

+7,-V; V= VFimv,, (4.2.22)

As a result of this we find that b = mv; — pr. In the weak-coupling approximation
v =vr and b = 0. In this approximation the Lagrangian Ly corresponds to the
well-known (see Volovik et al. [4-8]) Bogoliubov equations [91-93] for the BCS

A-phase, linearized in vV + ipFT.

4.2.1.3 The Effective Bosonic Action

We apply the results obtained above to the calculation of the effective action of the
bosonic subsystem. For this it is necessary to eliminate the fermionic subsystem by
evaluating the functional integral over the fermionic (Grassman) fields. To facil-
itate the calculations we proceed to the Euclidean formulation by substituting — %

for i% and setting t = it. The effective action is
Seﬂ' = Sp + ASp, (4223)
where Sz = fLBd4x, Lp is given by (4.2.2) and x = (7, 7).

According to general rules (see for example [1] and [56, 57]):

ASp =1In / DYDY* exp ( / d4x‘I’*A‘P) = In(DetAAy 1)

1 (4.2.24)
= Trln(AAal) = Tr<F1 _EFZ +.. .>,
where A is defined by (4.2.18), Ag is a normalizing operator,
Fi=6AA;", Fo=(0AA)"), SA=A— A, (4.2.25)

The operator Aq is usually chosen equal to the operator A in the unperturbed
equilibrium state. In an accord with the hydrodynamic character of the theory,
which we are developing, we chose A in the following manner. In the spatially

homogeneous case the operator A~' = G is an operator, whose matrix elements



4.2 Two Approaches to a Complicated Problem 133

G(x1,x7) coincide with the fermionic Green’s function. It can be easily determined
by solving the equation AG = d(x; — x,). Thus, we get for G:

-2 -2 R B}
oPrlF A7 N2 t4ilf iAT
Gx)=——— 2 4y 2 +v,2 (l . F) Loh v Ao
2012 t 2 1 P A N
2n vy A; L8 il
(4.2.26)
where x = x; — x».
In the general case, when the quantities T A, pr(p),... are slowly varying

functions of the coordinates and time, we introduce instead of x; and x, the “center
of mass” variable X = ’% and relative variable x = x; — x,. Then we will get the
Green’s function G(X,x) of the “local-equilibrium”, which is obtained from
(4.2.26) by setting I = [(X), A = A(X), pr = pr(X) and so on. We consider as a
definition of the operator A, the requirement that the matrix elements
(Ay l))Cl ,should be equal to the functions G(X, x).

The product AG of A and any other operator G (defined by its matrix elements
G(x1,x7)) has the matrix elements which are obtained from G(x;,x;) by applying
the operator (4.2.18), where all the differential operators act on the first argument

—

x; and the arguments in I(x; ), A(x;), pr(x) etc. contain also x;. The action of the
operator Ay inverse to G(X,x) is obviously defined by the first two terms in
(4.2.18), where the differentiations must be fulfilled with respect to x;, while
X must appear in the arguments 1 A, pr etc. Making use of the equalities
x; =X + (x/2),0/0x; =0/0x + 50/0X and expanding in terms of the gradients of
the slowly varying functions, it is easy to calculate the operator dA in (4.2.24) and
(4.2.25). In doing this we should keep in mind that in our theory only the
hydrodynamic asymptotic behavior is meaningful, i.e. the asymptotics for large |x|.
Accordingly one has to retain only the leading terms for |x| — co. Moreover, since
the original bosonic action Sp contains the density itself, while the quantities A and
T enter in Sp only via derivatives, in the action ASg, as well, the zero-order terms in
the derivatives will be absent by definition, and the density may be considered
constant. Thus, in ASg one must take into account only the spatial derivatives of A
and I, (As noted above, the consideration of the time derivatives would lead to the
terms of the higher order of smallness).

We write the formula (4.2.24) for ASp in terms of matrix elements F(X,x) of
the operator F; in the (X, x) representation.

ASp = /d4X1in(1)tr{F1 (X, x) + /d4x'F1 (X, x —xX)F (X, x) + .. .}, (4.2.27)
X—

where an operator #r (in distinction from 77) should be understood as a matrix
rather than a complete operator.



134 4  Quantum Hydrodynamics of the P-Wave Superfluids with the Symmetry of *He-A

We are interested in the part of ASp which contains the terms of the lowest
(second) order in the spatial derivatives 0/0X. Such terms arise from the first term
in the curly brackets in (4.2.27) and in this case they are proportional to 1/|x|. In
addition, the matrix elements F; contain also terms which are linear in the
derivatives /0X and are proportional to 1/|x|%. On account of the second term in
(4.2.27), which is given by the integral in the curly brackets, they contribute to the
expression in the brackets proportional to (0/0X )2 and In ﬁ, i.e. it is exactly these

terms which determine the hydrodynamic asymptotics. Thus, we can restrict our
attention only to the integral term in (4.2.27). The resulting expression for F|,
linear in the derivatives ln‘%‘ (in a reference frame in which the coordinate axes for
a given X are respectively along €, &, and 1) has the form:

PF ez

Fr=- 5 07 (TTik — Eank TkTIOm1) 4.2.28
! 42y, (12+rﬁ)2 0} (T ik = EimkTKTIOm1) ( )

where ¢!" are the transposed Pauli matrices, 1; = (" Y Z), T, = (5 Y Z) and

i R A

A A
ol;, 0l
i = —— . 4.2.29
- (aTk o ) (42.29)
Substituting F; from (4.2.28) into (4.2.27) we get
2 /
P 2 dlx'|
ASp = — [ d*X £ 7 / . 4.2.30
B / 32727 Vit || ( )

The logarithmically divergent integral must be cut off in the weak-coupling
case Ay < ep at the upper limit (which is the wavelength of the motion 4) and at the
lower limit at the mean free-path length Iy (in superfluid Fermi-liquid like *He-A

2
Iur ~d<;—Fc) , where d is an interatomic distance. We can also represent /yr as

vr/®., where the hydrodynamic frequencies o are limited by w,). In the chosen
coordinate system, in view of dl, = 0, one can represent a)izk in the form:

AN oL, g\’
2 _ 2 Y 2 o Y
Wy = 2v; (62) +v; <6Xﬁ aX“) , (4.2.31)
where a, f =1, 2.

Therefore (4.2.30) corresponds to the following invariant expression for the
fermionic contribution AL to the effective Lagrangian Loy = Lg 4+ ALg:

2 v 4 o 2, L o\2 Y,
_ _Pen 2 V(7. -
ALy = 16n2{(zx (VXD + 5 (7- (v x1) }mlMF. (4.2.32)

Thus the elimination of the fermionic degrees of freedom leads to the
appearance in L. of nonlocal (albeit weakly logarithmically divergent) terms,
similar to the well-known (see [4-8, 61, 62]) terms in the energy of 3He-A in the

region (go ~ ;—’C) K A< lyr.
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More specifically these terms lead only to a strong renormalization of the liquid
crystal (De Gennes [36, 37]) type coefficients K, and K3 in Eyp [61, 62] (and after
Fourier transform—to a logarithmic renormalization of the spectrum of orbital

2
waves @ ~ L& n Lo
m = velg:]

Let us repeat that if we hope to obtain an anomalous term fan =

— & Co (7 (@ X 7))71n total current with a large coefficient Cy ~ p, we must get

the term fa,,fz} in ALg. But due to small fermionic density pr ~¥P*¥ near the south
and north poles (small statistical weight of the fermionic pockets on Fig. 4.4 in

—

comparison with the total density p) we have to get Cy ~ d(P £ prl) in momentum
space or accordingly Cy = const in real space. That is why in order to obtain an
anomalous term in the current we must find very strong delta-functional infra-red
divergences in ALg. In our approach we found only weak (logarithmic) infra-red
singularities in ALg, but we did not find a strong J-functional singularity when we
accurately evaluated an integral over fermionic (Grassman) variables. Hence even
if anomalous current exists in the BCS A-phase, it is not directly connected with
the dangerous regions of the momentum space near zeroes of the gap (even if the
chiral anomaly exists, in 3He-A it does not have an infra-red character).

4.2.2 A Different Approach Based on the Formal Analogy
with Quantum Electrodynamics

The authors of [4-7, 9, 10] proposed a different, and also rather nice approach
based on a formal analogy between an anomalous current in “He-A (and other 3D
BCS A-phases) and the chiral anomaly in Quantum Electrodynamics (QED). They
assume that the anomalous current in the fermionic A-phase is not directly related

Fig. 4.4 Level structure of 4 E

n=2
the Dirac equation in the \———._._____“L___.ﬂ—-————“/ t
magnetic field B = \-—..—__.—-—ﬁf""/ =1
(7~ (V x “)) from [2, 3]. All Foo

't Pad
the levels with n; # 0 are ]

doubly degenerate. The =
zeroth level is chiral. It o( P-')
crosses the origin at |p;| = pr :
in the BCS (fermionic) A- n=0
phase. We also illustrate the s
concept of the spectral flow,

which will be discussed in e[ ey

Sect. 4.2.5 =2
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to the zeroes of the gap (and hence is not contained even in the supersymmetric
hydrodynamics). They believe that it is related to the global topological consid-
erations, and therefore a topological term should be added to supersymmetric
hydrodynamics. To illustrate this point, they solve the microscopic Bogoliubov- de
Gennes (BdG) [38, 91-93] equations for fermionic quasiparticles in a given

inhomogeneous twisted texture ( I V x 1) of the I-vector. To be more specific
they consider the case

I=1y+ 0ol (4.2.33)
with
l.=lp,=e, I, =0l,=Bx, [,=0, (4.2.34)
where ¢, is the direction of a nonperturbed I vector. In this case

—' — — al
I-(VxI) =1, i = B = const (4.2.35)
and, accordingly,
> h -
Jan = — Im CyBe,.

Z

(4.2.36)

4.2.2.1 Solution of BAG Equation: Analogy with Dirac Equation
in Magnetic Field

After linearization BdG equations become equivalent to Dirac equation in
homogeneous magnetic field B = (I- (V x I)). Namely after linearization BdG

equations read Hyp = Eyp, where the doublet y, has the form y, =

(Zgg ) exp(ip.z + ipyy) and for the Hamiltonian we have:

. ) 1 R
H=¢(p.)o3 + v (01 “0i - &2 (py — eBx)), (4.2.37)
where {61, 62,63}-are Pauli matrices, ¢(p;) = p—?;nf ‘2”, V. = VF ?—Fo-corresponds to

weak-coupling limit (v; < vr), and near the nodes e = zlj_; = %1 is an electric

charge. The solution of BdG equations yields for the doublet y,(x) (see Volovik
et al. [4-8]):

T (1) = O(—e )(, ﬁ“}f(l () )) 4 9(63)@%}{,‘](%))’ (4.2.38)
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where 0 is a step-function, f, (X) f,,L( e’) is the ortho-normalized wave-
function of the harmonic oscillator [60], f_; = 0; |<x,lL|27 By eles) !ﬁnL| =

2E,,
E,, —<(p: . . 2
%ip) are Bogoliubov coefficients (|oan|2+|ﬁnL| =1).

Accordingly for the spectrum

Ey (p:) = im, (4.2.39)

where AIZIL = 2n;v?prleB| is a gap squared and n;, is a quantum number for the
Landau level [60]. The solution for y, (x) in (4.2.38) contains the level
asymmetry.

Namely, for n; # 0 (see Fig. 4.4) all the levels are gapped Aﬁ,‘ # 0 and doubly
degenerate with respect to p, — —p,. Their contribution to the total mass-current
is zero for T — 0.

4.2.2.2 Zero Mode and Anomalous Current at T = 0

However, for ny, = 0 there is no gap Ay = 0 and we have an asymmetric chiral
branch which exists only for p, < 0 (only for one sign of eB). The energy spectrum
for np = 0 yields:

Eo = c(p.). (4.2.40)

We can say that there is no gap for zeroth Landau level. Moreover, in BCS
(fermionic) A-phase Ey = O for |p,| = pr—the chiral level crosses the origin in
Fig. 4.4, so we have a zero mode.

We note that in the bosonic A-phase the chemical potential y ~ — @ <0 (as
we mentioned already E, is a molecular binding energy). Thus, Ey = ¢(p;) =

% + |p| > |u|, and the zeroth Landau level does not cross the origin. The absence
of a zero mode in molecular A-phase is the physical reason why the coefficient
Co = 0 there.

The zeroth Landau level gives an anomalous contribution to the total current in
fermionic A-phase:

Gl =0) = —&.(0- (¥ x 1) / 2 delpe) = - Zif( (¥ x D) (42.41)
p.<0
& (zvp’ =2~ [P (242)
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and hence

3
mpy,
Cy~ —E 4.2.43
0T 32 ( )
in the fermionic phase (in fully-polarized Al phase in magnetic traps, which we

3
mpF

will consider in Chap. 7, Co; ~ p; = 6n; differs from Cj in (4.2.43) in factor 2).

We note that f(x — py|eB|) in (4.2.42) is an eigenfunction of a zeroth Landau
level. It is easy to see that the integral for Cy in (4.2.41) and (4.2.42) is governed by
the narrow cylindrical tube inside the Fermi sphere (see Fig. 4.5) with the length pr

parallel to the I vector and with the radius of the cylinder squared given by:

<p§> ~ prleB. (4.2.44)

According to the ideas of [4-8, 29, 30], this tube plays the role of a vortex in the
momentum space, thus providing a normal core and an anomalous current at
T=0.

We note that a key result in [4-7, 9, 10] related to the absence of the gap for the
energy of the zeroth Landau level [see (4.2.40)] is pretty stable with respect to
small modifications of the texture of the I-vector in (4.2.33, 4.2.34). Our careful
analysis shows that the account of small bending corrections with (I x (V x ))* to
the twisted texture (small tilting of the magnetic field with respect to the (x,y)
plane B= Boé, + B1é,) as well as an account of small inhomogeneities of a
magnetic field B = By + Bx, which lead to a double-well effective potential, does
not suppress the zero mode in the spectrum of the BAG equations. In other words,
an account of these corrections does not lead to the appearance of a gap A,,, for
the zeroth Landau level.

nL=0

4.2.3 How to Reach the Hydrodynamic Regime ot < 1

Inspite of the zero mode stability, the authors of [1-3] expressed their doubts
regarding the calculation of C, based on Dirac equation in the homogeneous

magnetic field B = (I- (V x I)). From their standpoint, the calculation of C, in

Fig. 4.5 The contribution to T i
the coefficient Cy is governed <
by a narrow cylindrical tube o

of the length pr and the width
<p)2> = pr|eB| inside the
Fermi sphere [2, 3]

SN
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(4.2.41, 4.2.42) is an oversimplification of a complicated many-particle problem.
In particular, they emphasized the role of the finite damping y = 1/7 and of the
other residual interactions in destroying the chiral anomaly (which is connected
with the states inside the Fermi sphere on Fig. 4.5). Thus, they hope to restore the
superfluid hydrodynamics at 7 = 0 without the normal velocity v, and the normal
density p,. Indeed, if the damping y is larger than the level spacing of the Dirac
equation, we have

(4.2.45)

in the case where ¢(p;) = 0, and then the contribution from the zeroth Landau
level should be washed out by the damping (see Fig. 4.6). As a result the
hydrodynamic regime will be established.

The damping 7y for the chiral fermions (for the fermions living close to the
nodes) in a very clean fermionic (BCS) A-phase without impurities is defined at
T = 0 by the different decay processes (see [20]).

It is natural to assume that the only parameter that determines y at 7 = O for
chiral fermions is the gap A¢(0) = Ao(pL)/pr (where sinf =~ 0 close to the
nodes). The leading term in decay processes is given by the emission of an orbital
wave (see Fig. 4.7). It is given by (see [2, 3])

AZp2 /2 2 (. — p)?
yml i /pk + i —pr)’] (4246
93
For p. = pr (c(p:) = 0), we have
Ay p?
y~ =0PL (4.2.47)
192 pF

We note that for the chiral fermions on the zeroth Landau level, we have

(pJ.> _ )7 (6 ~ 7)‘ (4.2.48)

PF PF

and the level spacing for ¢(p;) = 0 is

Fig. 4.6 The possible role of
damping in reaching the
hydrodynamic limit for low
frequencies and small k
vectors for y > wy

(wg = E| — Ej is the level
spacing) [2, 3]

E,

Eo

W



140 4 Quantum Hydrodynamics of the P-Wave Superfluids with the Symmetry of *He-A

Fig. 4.7 Different decay processes for the damping of chiral fermions at 7 = 0: the standard
three-fermion decay process and the decay process with an emission of the orbital wave [2, 3]

Pr

Hence, 7y/wy < 1 close to the zero mode for these two decay processes (the
second decay process is a standard three-fermion decay, which also yields
y/wo < 1). Thus, a ballistic regime is established. It is therefore difficult to wash
out the contribution from the zeroth Landau level by the different decay processes
in superclean *He-A phase at 7= 0. We note that the hydrodynamic regime
w1 < 1 could be easily reached in the presence of nonmagnetic impurities or in
the presence of aerogel [64—67] (see Sect. 4.2.5).

4.2.4 The Concept of the Spectral Flow and the Exact
Anomaly Cancellation

If the anomalous current exists in a superclean fermionic A-phase at 7= 0 it
should be compensated somehow. According to Volovik et al. [4-8], the deficit in
the equation for the conservation of the total linear momentum due to the presence

of the anomalous current j,:

off 0
=V | 4.2.50
or o k= (42.50)
with a source term
= 3h _of o - 0l
I =—Cyl p— 4.2.51
4mC0 <(V x 1) 6t> ( )

is exactly compensated by the quasiparticle contribution I_qu,s,-:

aP;uasi + a(I)ik o

-1, 42.52
ot Oxy ( )

where ﬁquasi = p,(T = 0)(¥, — V) in the hydrodynamic regime. Correspondingly
the total current in fermionic A-phase

.7mt :fB +jan + f_;quasi (4253)

is still conserved.
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We note that a normal density p,(T = 0)~ |I- (V x [)|/A¢ is a non-analytic
function in *He-A and is related to the nonzero bending. The arguments in [4-8] in
favor of exact anomaly cancellation are connected with the nonconservation of the
axial current j5 in QED (see [26-28, 97-103]), where the source term I is com-
pensated via the Schwinger term [94-96] EB~ g ‘ (ﬁ X 7) (E = %z is an electric
field and B =V x [ is a magnetic field). Physically, according to [4-8, 68, 69],
this cancellation is due to the spectral flow from the negative to the positive energy
values along the anomalous branch with n; = 0 in Fig. 4.4 and then to the qua-
siparticle bath in the presence of an electric field E~ %Z (of a time-dependent
texture of the 7vector). Considering the tube, which produces fan on Fig. 4.5, as a
vortex in the momentum space, Volovik et al. [4-8] and Stone et al. [42—47] use
the analogies between the physics of bulk *He-A and the physics of the vortex
core. They also consider the role of damping exactly opposite to our consider-
ations. Note that in the physics of a vortex-core in the case of cylindrical symmetry
there is again one anomalous level which crosses the zero energy (see Fig. 4.8).

At T = 0, as a function of the generalized angular momentum (), it represents
the set of discrete points separated by a minigap wg ~ A(Z) /ér. Therefore, at T = 0
and in the superclean case y = 1/t — 0, the spectral flow from negative to positive
energies is totally suppressed. Thus, in the ballistic regime wt > 1 according to
Volovik and Stone it is very difficult to transfer momentum to the quasiparticles
and in this way to guarantee the conservation of the total current f,m in (4.2.53). In
the same time in the hydrodynamic regime wt < 1 it is easy to transfer
momentum along an anomalous branch to quasiparticles and thus to restore a
conservation of the total current.

' E(p.=0,0)

0
) >
Chiral branch

— |

Fig. 4.8 The level structure in the vortex core of He-A [2, 3]. All the branches are even in the
generalized angular momentum Q, but one branch E(p, = 0,0Q) = —wyQ, which crosses zero
energy at Q = 0, is chiral (odd in Q). It participates in the momentum exchange between the
fermions in the vortex core and the fermions of the heat bath in the hydrodynamic limit wt < 1
according to [29, 30]
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The authors of [1-3] vice versa think that for wt < 1 the coefficient Cy in front
of the anomalous current becomes small Cy (vt < 1) — 0. Thus,fm — O and itis
not necessary to add the quasiparticle current in the expression for f}o, in (4.2.53).

In other words, for wt < 1: f,,), 273 = pV, + V x (%7)_ the total current f,,,l

coincides with the bosonic current jz. Hence the superfluid hydrodynamics is
restored (without p, (T = 0) and ¥,) in BCS A-phase at low frequencies and wave-
vectors according to the philosophy of [1]. Note that in the physics of the vortex
core the analogous discussion about an existence of chiral anomaly and it’s pos-
sible contribution to one of the Hall-Vinen friction coefficients (see Chap. 1) was
started in [70] by Thouless (who believes in a Berry phase [89] without an
anomaly) and was thoroughly investigated by Kopnin et al. in [71-74] for different
temperature regimes in clean and dirty limits. The authors of [71-74] derived an
anomalous contribution to the friction coefficients in the dirty limit wt < 1 (large
number of impurities) and at finite temperatures. Returning back to the bulk *He
A-phase, we can say that an ideology of Volovik and Stone on exact anomalies
cancellation does not work in ballistic (superclean limit) at 7 = 0 (both in bulk
and for the vortices). Hence the question of how the total current (total linear
momentum) is conserved in this case remains open for an infinite system (without
the walls). We note that at very small but finite temperatures T < T there is a
finite number of normal quasiparticles in the system. Hence the damping y = 1/
7 ~ T" becomes finite and the possibility of the spectral flow and the momentum
exchange with the thermal bath restores at low frequencies w <7y according to

Volovik and Stone. However, we would like to stress that at 7 # 0 the relative

normal velocity ¥, — ¥, = ~2£ becomes an additional hydrodynamic variable (see

quasi

Chap. 1 and [25]) and hence the cancellation of the linear momentum deficit in
(4.2.50, 4.2.52) will occur automatically.

Thus, the problem of the exact anomaly compensation exists only at T = 0. We
think that in this case the exact cancellation between the time derivatives of the
anomalous and quasiparticle currents should be demonstrated explicitly by
deriving and solving the kinetic equations for the nodal quasiparticles both in the
ballistic and the hydrodynamic regime. Note that an approach based on the kinetic
equation for quasiparticles at different temperatures and the impurity concentra-
tions in a vortex core of the s-wave superconductors and the superfluid *He was
worked out by Kopnin et al. [71-74] in the case of a singular vortex.

In the case of the nonsingular vortex structures in *He-A (which can be pro-

duced by the textures of T vector via Mermin-Ho identity, for example) we should
mention also papers [68, 69] where the authors consider the scattering of quasi-
particles on the walls of the container for a finite system to obtain a finite damping
y at T = 0. The importance of the prehistory of the orbital texture for the spectral
flow concept was also stressed by Volovik in these papers.
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4.2.5 Experimental Situation and Discussion

Concluding this Section we would like to emphasize once more that we discuss a
complicated problem of chiral anomaly and mass-current non-conservation in BCS
A-phase at T = 0. We presented two different approaches to this problem—one
based on supersymmetric hydrodynamics, another one—on the formal analogy
with Dirac equation in QED-theory. We evaluate the damping y = 1/t due to
different decay processes in superclean BCS A-phase at 7 = 0 and find that v is
small in comparison with the level spacing w, of the BdG-equation. To reach the
hydrodynamic regime wt < 1 we need a sufficient amount of aerogel or non-
magnetic impurities at 7 = 0. We assume that both in a hydrodynamic and in a
ballistic regime at 7 = 0 we have to derive a reliable kinetic equation to dem-
onstrate explicitly an exact cancellation between time-derivatives of anomalous
current f,m = —&CO (7 (@ X 7))7 and quasiparticle contribution ﬁql,m in the
equation for the conservation of the total linear momentum ftot. Note that for the
full theoretical analysis of the problem the other residual interactions different
from damping are also important for nodal fermions. To check whether a chiral
anomaly has an infra-red manifestation (which was not caught in the approach
based on supersymmetric hydrodynamics of [1]) it will be useful to derive a
complete set of Ward identities (see [20, 26-28]) between self-energies of chiral
fermions . and the corresponding vertices I'. The idea is to find in this approach
either a strong infra-red singularity or a powerful reexpansion of the quasiparticle
spectrum for w,k — 0.

Note that the importance of the residual Fermi-liquid like interactions for the
analysis of half-integer vortex in *He-A was recently emphasized by Leggett et al.
[75].

We invite experimentalists to enter this very interesting problem. It will be
important to measure a spectrum and damping of orbital waves in superfluid A-
phase of *He at low temperatures T < Tc. The spectrum is almost quadratic for

Ao
vrlg:|
momentum Ly = % (p — Cp) near the linear in frequency term (see Chap. 7 for

more details). Moreover, it is possible to show that in the weak-coupling limit

2
low frequencies (p — Co)w ~ p Zn—zln and contains a density of intrinsic angular

2
Ay < ep: @ ~ % < 1, and thus Lg is very small in comparison with a stan-
F

dard (bosonic) angular momentum Lg = ;17’; (In *He-A we are in a weak-coupling

limit f—f ~ 1073 and ”%F” ~107%). Note that at higher frequencies » > Aj/er the
Ao Ao
o] velg:]
[41]). Note also that in a strong-coupling case Ag > er: Cy < p and we restore the
hydrodynamics without an anomalous term.

The damping of the orbital waves provides an evaluation of the orbital viscosity
in *He-A at low temperatures T < Tc. Note that even in this case it is an inter-
esting possibility to get an overdamped (diffusive) character of the spectrum at low

spectrum of orbital waves is almost linear w* In % ~ g?v7In where €, || [ (see
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frequencies. This possibility is supported theoretically in [111-113], where Brusov
et al. obtained several overdamped modes in the partially polarized Al-phase via
the functional integral technique in the hydrodynamic limit of small w and 4.

Basically we propose to extend the measurements of orbital inertia and orbital
viscosity (performed by Bevan et al. [76, 77] in non-singular vortex textures in A-
phase) to low temperatures 7 < T¢. Of course to have this possibility we need to
create a spin-polarization (which according to Fig. 4.1 extends A2-phase to low
temperatures on phase-diagram of a superfluid *He).

Note that another possibility to get an overdamped diffusive spectrum was
considered in [78, 79] in the impurity diagrammatic technique [80, 81] for the
hydrodynamic regime wt < 1 of spin waves in a frustrated two-dimensional
AFM, which models strongly underdoped cuprates. We note that in the opposite
high-frequency regime, the spectrum of spin waves is linear.

We would like to emphasize that according to the ideology of [1] the over-
damped spectrum could serve as a precursor for anomaly-free (bosonic-like)
spectrum of orbital waves at very low frequencies (where the superfluid hydro-
dynamics might be restored).

We also note that a crossover from the ballistic to the hydrodynamic regime
ot < 1 could occur due to both the aerogel (the nonmagnetic impurities) or at
finite temperature 7' # 0, which is always present in a real experiment. In the last
case, the damping y ~ T " is temperature dependent.

In aerogel we can definitely fulfill the inequality wy < y (where wy is the level
spacing in Dirac equation and y is damping) already at 7 = 0. To fulfill this
inequality we should be in a moderately clean *He-A phase, that is in the presence
of a sufficient amount of aerogel. Note that aerogel serves like a non-magnetic
impurity for p-wave fermionic superconductor like *He-A [80, 81]. We can say
that effectively the damping y is an external parameter which depends only upon
the concentration of aerogel x. Moderately clean case means that my <y < Ay,
where g is given by (4.2.45). It can be achieved experimentally since it is pos-
sible to have 7 as large as 0.17¢ in A-phase of *He [64, 65].

Thus a very interesting experimental proposal is to check our conjecture (that
Co(wo < y) is small) by creating a twisted texture [ || (V x [) and varying the
aerogel concentration. Then it is interesting to decrease the aerogel concentration
drastically and to answer experimentally the question whether y(x — 0) is larger
or smaller than @, in superclean *He-A.

The similar project with the impurities can be also proposed for the magnetic
traps if it will be possible to increase the lifetime of p-wave fermionic Al-phase
(see Chap. 7 for more details). Experimentally both in *He-A and in magnetic
traps we can measure either the anomalous current directly or the spectrum of
orbital waves, which is usually easier. Anyway, these measurements will allow us
to compare Cy or (p — Cp) in moderately clean case and in extremely clean case
and thus to check the conjecture of [1-3] about the destruction of the chiral
anomaly in the hydrodynamic regime.
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Note that in the presence of the sufficient amount of aerogel the phase-diagram of
superfluid *He changes considerably. The global minima now are B-like and A-like
phases which differ considerably from B and A-phases in superclean case. Their
precise symmetry is a subject of a hot debate today (see discussion in [64—67]).

4.2.5.1 Anomalous Spin Currents in 2D Axial Phase

Let us also consider briefly the spin and orbital hydrodynamics in the axial phase,
which is the 2D analog of A-phase (see [17]). The quasiparticle energy in the
fermionic 2D phase reads:

2 2
p* Agp?
E — (2 _ . 4.2.54

It has only one nodal point E, =0 for =0 and p = 0 just on the border
between BCS and BEC domains.

Note that in this phase the order parameter is given by A= Ao(€; + ié,) in

-2
similarity with 3D, but ’A . [3" = A(z)p2 in two dimensions. An axial phase can be

realized in 2D magnetic traps or in thin films or submonolayers of *He (see also
Chap. 12). The most interesting effect for the physics of the *He 2D films [17, 29,
30, 82, 84-86] is connected with the existence of the topological invariant Q,
which comes to the physics of helium from the Quantum Hall Effect (QHE). This
invariant is written as

T a’p - -
Q = 230('[)’/(271:)271 . (a“n X a/m), (4255)
where ¢,3 = —&g, is asymmetric tensor, the components of the unit vector 7 in the

momentum space are given by [82, 84-86]:

1

E (_AOpxaAOpy»Qp)a (4256)
14

i
and ¢, = g—m — pt, while E, is given by (4.2.54). In the theory of Quantum Hall
Effect the topological invariant Q governs the quantization of the Hall conductivity
Oxy. It is also important in the 2D space-time continuum (x, 7) for Haldane
effective action, which defines an important difference in the spectrum of col-
lective excitations (gapped or gapless) between the spin chains with integer and
half-integer spins S [114, 115].

It is easy to check (see [82, 84-86]) that for 2D axial phase:

A

0= /dp2% [n:(p?)] %(1 + “), (4.2.57)

||
0
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where ny(p?) =1 ( — 2’12 is a superfluid density.

Thus Q = 0 in the BEC phase (where the chemical potential is negative
u=—|p|) and Q =1 in the BCS phase. We can say that the BCS phase has a
nontrivial topology in contrast to the BEC phase (see [82, 84-86]).

Correspondingly for 4 — 40 Q = 1 while for 4 — —0 Q = 0. Thus, there is a
jump in Q (AQ = 1) for a point p = 0. It is reasonable to assume that a point
u = 01is a singular point at 7 = 0 [29, 30, 83-86]. In Chap. 7 we will prove that it
is a point of a quantum phase-transition (or even a topological phase-transition).
To measure the nontrivial topological effects in two dimensions, we propose to
perform experiments with a Josephson current (see [2, 3, 20, 116, 117]) between
two thin films of *He or between two magnetic traps containing superfluid Fermi-
gases: one with a two-dimensional axial BCS phase and the topological charge
QO = 1 and another one with the planar 2D phase with Q = 0 (see [17, 82]). We
hope that it will be possible to measure directly AQ = 1 in this type of
experiments.

We note that in the 2D axial phase, the I vector [ = &, x €, = ¢, is perpen-
dicular to the plane of the 2D film. Hence, the orbital waves, connected, as we
discussed in Sect. 4.1, with the rotation of the I vector around a perpendicular axis,
are gapped. The sound wave is the only Goldstone mode in the gauge-orbital

sector. Moreover, TL(ﬁ X 7) and it is impossible to create a twisted texture in two
dimensions. Therefore, the anomalous current is absent: fan = — &Co

(I- (V x 1)) = 0. Hence there is no problem with the mass current nonconser-
vation at 7 = 0 in 2D axial phase [2, 3].

Nontrivial topological effects possibly exist in the spin sector [82] in 2D. Here,
the anomalous spin current was predicted by Volovik, Solov’ev and Yakovenko in
the presence of an inhomogeneous magnetic field B (7) for 2D *He-A film (for the
axial BCS phase). It reads:

J;le NQgizklzakBaly (4258)

where B'L -d=0and d is the spin vector in the 2D He film (see [17)).

Another possibility is to measure the contribution of the massless Majorana
fermions (see [26, 29, 30, 104]) for the edge states on the surface of superfluid
*He-B and a rough wall (or on the surface of a vibrating wire in the Lancaster
experiments) [87, 88].

Note that the physics of Majorana fermions [104] is very popular nowadays in
different condensed matter systems including vortex cores of the p-wave super-
conductors [83, 105], superfluid *He-B [87, 88], ultracold quantum gases with
spin—orbit coupling [106, 107], and hybrid superconductor-semiconductor nano-
wire devices [108-110].
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Chapter 5

Bose-Einstein Condensation

and Feshbach Resonance in Ultracold
Quantum Gases and Mixtures

In this chapter we will start with a brief description of the phenomena of Bose—
Einstein condensation (BEC) in ultracold Bose-gases of alkali elements "Li, #Na
and ¥'Rb [1-3]. In these systems the experimentalists used evaporative cooling
technique in magneto-optical traps and got the critical temperatures of Bose-
condensation (BEC) of the order of 107¢ K for the densities 10'*> =~ 10'* cm™
and numbers of particles in the trap (prepared by inhomogeneous dipole or
quadrupole magnetic field) on the level of 10° =+ 10'°. Note that evaporative
cooling technique is based on the release of the potential barrier or sudden lifting
of the trap which leads to the escape of the most energetic particles from the trap
and thus to the decrease of the temperature. Effectively this technique is based on
the “cutting” of Maxwell tails of the most energetic particles in thermal distri-
bution [4, 5].

Soon after the discovery of BEC in Bose systems, the groups of Ketterle and Jin
[6-8] in USA as well as the group of Salomon in France [9] and Grimm in Austria
[10] began to search for fermionic superfluidity in magneto-optical traps or optical
lattices [34].

At first the predictions for the critical temperature were rather pessimistic here,
since T in the Fermi-systems is usually exponentially smaller than that in bosonic
systems (where Tc is of the order of the degeneracy temperature 7,). The
experimental progress here was connected with the Feshbach resonance technique
[6, 7, 8, 11, 48-50], which gives the possibility to increase the coupling constant
(or the scattering length @) greatly in diluted Fermi-systems close to the resonance
magnetic field By. As a result experimentally feasible critical temperatures
(Tc ~ 107° K) can arise in ultracold Fermi-gases of °Li and *°K in magneto-
optical and dipole traps. The Feshbach resonance technique also provides the
possibility for experimental verification of the pioneering ideas of Leggett [12, 13]
and Nozieres-Schmitt-Rink [14] on BCS-BEC crossover in the Fermi-systems with
attractive interaction between particles. Namely, varying magnetic field (and tra-
versing the resonance from left side B < Bj) we can get either tightly bound local
pairs f3f| of two fermionic atoms (composed bosons or molecules or dimers) °Li,
and 40K2 on the BEC side, or extended Cooper pairs on the BCS side [15, 16].
Correspondingly the scattering length a is repulsive (a > 0) on the BEC side,

M. Yu. Kagan, Modern Trends in Superconductivity and Superfluidity, 153
Lecture Notes in Physics 8§74, DOI: 10.1007/978-94-007-6961-8_5,
© Springer Science+Business Media Dordrecht 2013



154 5 Bose-Einstein Condensation and Feshbach Resonance

while it is attractive (@ < 0) on the BCS side. Thus in a two-particle problem in
vacuum close to the resonance we have a shallow bound state on the BEC-side for
a > 0 and a virtual bound state on the BCS-side for a < 0.

In this chapter we provide a brief description of the Feshbach resonance with a
special attention on a more sophisticated two-channel description and more simple
one-channel description, corresponding to resonance approximation (which we
will use in the forthcoming chapters). We will also discuss the experiments of Jin’s
and Ketterle’s groups on molecular BEC in Fermi-gases of °Li and *°K [48-50].

5.1 BEC in Trapped Bose-Gases

Bose-Einstein condensation (BEC) was discovered in ultracold bosonic gases of
alkali elements "Li, **Na and ®’Rb in confined geometry of magneto-optical traps.
There are excellent review articles on this subject [4, 5]. Here we provide only a
brief sketch of evaporative and laser cooling technique and discuss the basic
designs of magnetic traps. For Bose-gases the parabolic confining potential of the
trap (in the case of strong spin-orbital coupling) reads (see Fig. 5.1):

2.2
mayr

2
Note that nonzero magnetic field B, everytime corresponds to the potential

(5.1.1).
Strong spin-orbital coupling means that |u|By < Uys, where p~ u,; < 0 and

U(r) = |ulBo + (5.1.1)

Uhf§ -1 is the hyperfine interaction potential [26] between electron spin S and
nuclear spin 1. In this case we are dealing with total spin J = ‘3: +1 ’ of the atoms.
For bosonic isotope 'Li we have J = 1 (S = I = Y), while for fermionic isotope
°Li we have J = 3/2 (S = %, I = 1). Thus usually for u,; < 0 only J, = 1 com-
ponent of the total spin is trapped in case of bosons (for 'Li see Fig. 5.1), while
J, = 3/2 component is usually trapped for fermions (for °Li). The reason for that is
Zeeman splitting AE = ByJ|u| between different J, components in the magnetic
field By (see Fig. 5.2) and first term in (5.1.1). Magneto-optical traps utilize the
combination of laser and evaporative cooling.

Fig. 5.1 Parabolic confining U
potential typical for magneto-
optical traps. In the case of
bosonic isotope Li only

J, = 1 component of the total
spin of the atom is trapped r
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Fig. 5.2 Zeeman splitting in ~ Bosons Fermions
the magnetic field B, for J=1 J,=3/2
different J, components for z
bosons and fermions AE AE
— J,=0 J,=1/2

5.1.1 Foundation of the Laser Cooling Technique

The progress in laser cooling was very important for the subject of ultracold
quantum gases. Laser cooling is based on the interaction of quasiresonant radiation
pressure with an atom. The principal scheme is the following: we consider an atom
as a two-level system (see Fig. 5.2). The additional gradient field Egmd =
B'zé,(B’' > 0) is switched on. Then different z-components of the total spin J, are
additionally Zeeman splitted. As a result the total splitting due to the fields By and
f?gmd reads AEzeoman = B'zJ;|u| + AE, where AE = ByJ,|p|.

Now we introduce two laser beams: right-moving R and left-moving L with the
frequencies close to but a little bit out of the resonance with the two-level system.
The frequencies of the laser beams read w® = AE —T'/2 <AE and o' = AE+
I'/2 > AE, where T is a natural linewidth (see Fig. 5.3).

At z = 0O the intensities of the beams are adjusted in the way that the force
acting on the atom is zero (see Fig. 5.2).

Consider the atom with trapped J, = 1 component moving in the right-hand
side. Then for z > 0: AE will be increased due to the gradient splitting and will be
in a resonance with laser beam L. So the atom will absorb more left-moving
photons and hence will feel a restoring force acting antiparallel to the atom
velocity V (see Fig. 5.4). For z < 0: AEzceman Will be decreased and will be in

Fig. 5.3 Principal scheme of E

the laser cooling with left- =1
moving L and right-moving R
laser beams and Zeeman
splitting of z-components of
the total spin J = 1 by
homogeneous and gradient
fields Eo and Egmd

V/Am

Fig. 5.4 The restoring force
of the laser radiation pressure
acting on the right-moving |

atom 7Z=0 VA
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Fig. 5.5 The restoring force

acting on the left-moving v O F
atom. J, = 1 component of {
the total spin is trapped 7=0 VA

resonance with laser beam R. Thus we again have a restoring force F acting
antiparallel to V (see Fig. 5.5).

The effective force also depends explicitly upon velocity V because
AE7¢eman (for the moving atom) = AE %+ Awpgppler. If Doppler shift Awpoppler >
I'/2 (T is natural linewidth), then the atoms are out of the resonance both with laser
beams R and L and the force becomes smaller. Finally for small z and v = Z the
resulting force includes restoring (string-like) force and friction force and reads:

F = —kzé, — a72.. (5.1.2)

Thus we have a damped harmonic oscillator governed by an equation of
motion:

i+ 2Bz + wiz =0, (5.13)

where o3 = k/m; k = dBgaa/dz = B'; B = o/2m.
The most important is that there are limitations on laser cooling, namely it is
difficult to get the temperature in atomic system lower than the recoil energy:

2

@ -6
——= ~10°K (5.1.4)

T< Trecoil =
2mc

utilizing this technique only.

5.1.2 Evaporative Cooling Technique

To obtain lower temperatures in ultracold gases we need to load atoms from an
optical trap to a static magnetic trap and to use an additional technique of evap-
orative cooling.

Let us briefly consider this method for a typical example of a static quadrupole
trap. In this geometry (see Fig. 5.6 as an illustration) the inhomogeneous field

—

Bgqq reads:

By = B'xé, + B'yé, — 2B'z2, (5.1.5)

Fig. 5.6 The distribution of
the inhomogeneous field
Egmd and the level structure
for different J, components in

the quadrupole magnetic trap
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This field satisfies Maxwell equations [37] V x Eg,ad =V -Eg,ad = 0 and the
boundary condition at the trap origin Egrad|r:0 = 0.

We apply also an additional biased field B, rotating with the frequency:
By, = By cos(wpt) €x + By sin(wpt) &y. (5.1.6)

The amplitude of this field is constant By > 0. We add it to suppress so-called
Majorana flops, which constitute the transitions between different Zeeman suble-
vels close to the origin due to the particle motion. Majorana flops are dangerous
since they cause the large decrease of the number of the trapped particles. Then
zero of total field B,,, = Eg,ad + B, rotates in the x—y plane with the frequency wy,.
Radius of the orbit reads:

= By/B. (5.1.7)

We usually choose the following hierarchy of frequencies in the quadrupole
design of the magnetic trap:

B B
W=/ — < wp K Q= °|“|, (5.1.8)
m h

where Q; is Larmor frequency corresponding to the biased field.
It means that:

1. Projection of ji on B, is conserved (wp < Qr);
2. We can average the particle motion over one period of field rotation with the
frequency m,. As a result we get for the potential energy:

U= —ji- Etoi = —uJ By = |,u||Btot| (5~1~9)

for trapped component J, = 1 and p < 0.
The total field B, in (5.1.9) is given by:

By = \/B2+ B + B2, (5.1.10)

where B; = Bjgraqa + Bip for three Cartesian coordinates i = {x,y,z}. Then the
averaged (over one period) potential energy reads in the cylindrical coordinates:

21/ wp
w
Uejj‘(/%Z):z—;/ Udt = |u |Bo+|“|( )’ (p* + 42%) (5.1.11)
0

in agreement with (5.1.1). Thusin (5.1.1) wg = \/% and coincides with wg in (5.1.8).
The total magnetic field in (5.1.9) yields:

(B
2B,

Biot(p,2)| = Bo + (p* +42°) (5.1.12)
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in cylindrical coordinates g and z. It is minimal at the origin (for p = z = 0). The
distribution of the particles and magnetic field in the magnetic quadrupole trap is
illustrated on Fig. 5.7.

The most important is that evaporative cooling is based on the removal of the
most energetic particles from the potential well. The rest of the particles then
rethermolize again due to elastic collisions at smaller temperature.

In this scheme the atoms which are moving close to field zero can be lost from
the trap due to Majorana flops. The dangerous region corresponds now to small
B at z=0 and p = Ry = By/B’ [see Fig. 5.7 and (5.1.12)]. We can say that
evaporative cooling is built in this design. Indeed, for z =0 and p = Ry an

Bg|u

effective radial energy | ,u| 230 (p +47%) is | Hence all the rapid atoms with the

effective radial energy higher then BO‘”‘ will be removed from the trap by rapidly

moving field zero which rotates with the frequency w, > wg (see Fig. 5.7 again).
Thus continuous cooling can be achieved by adiabatic decrease of E,,,,.

5.1.3 Different Designs of the Magnetic Traps

There can be different designs of the magnetic traps. For instance we can add a
bottle-type distribution of the magnetic field:

Bpottte—rype = B,< <z2 - p2> é. + Boﬁzp Z, (5.1.13)
2 2 2
to the quadrupole distribution:
Bouadrupote = Bokp(cos 20 €, —sin2¢ &), (5.1.14)
and consider the total field:
Bior = BoZ. + Bhoute—pe + Buadrupole- (5.1.15)

Note that in (5.1.15) the constant field Byé, does not rotate. Then again we get
V- f?,ot =V x f?,m = 0 where in cylindrical coordinates (see [18]):

Fig. 5.7 The particle and
magnetic field distribution in 1
quadrupole magnetic trap. L
Zero of magnetic field rapidly e e ,4_,,
rotates with the frequency
wp > g

4 Particle cloud

T*--.- Zero of magnetic field
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R 10 iz | Liotg
V  Bii = —— (pBiotp) + — 4+ — . 5.1.16
tot pap(p fl‘p) az paqo ( )

The potential energy reads:
U= —ji-B=—ul.B=|y|B| for J.=1. (5.1.17)

In cylindrical coordinates:

k2 pZ
U:|uBo{l+E<z2+?>} (5.1.18)

again in agreement with (5.1.1) and magnetic field is minimal at the origin (for
z = p = 0) again.

In this design evaporative cooling can be reached either by adiabatic decrease
of k or with the help of rf-pumping (which in the resonance case helps to get the
transitions between the Zeeman-splitted levels with different J,).

Anyway different evaporative cooling technique helps to overcome recoil limit
and achieve the temperatures 7 ~ 107° K.

Note that in more recent experiments on Feshbach resonance the dipole traps
are also used. Namely the system at first can be evaporatively cooled in the
magnetic traps and than the system is reloaded to a dipole trap. In a dipole trap the
confinement potential reads:

(5.1.19)
()
E =

Dipole traps are convenient to switch on than (on top of E) constant and
homogeneous magnetic field B in the regime of Feshbach resonance. Finally we
can reduce dimensionality of the traps making them highly anisotropic:

me?x mo2y* | mos?

U~=SH=+—5+=

where E is electric field, o? = (Egrqa ~ E'r) and d is the dipole moment.

5.1.4 BEC in Trapped Ultracold Bosonic Gases

BEC in ®Rb, "Li, »Na was observed at Te°C ~ 10 ° K indirectly by measuring
density distribution in the trap. Namely the transition to the superfluid state was
measured in [1-3] in the diffraction experiments form the J-functional density
peak of the condensate particles, located in the center of the trap (see Fig. 5.8).
Another way to observe the superfluid state is to lift the trap and to study the
velocity distribution of the particles, leaving the trap region.

For T < T we have the bimodal distribution of the leaving particles instead of
the Maxwell one. A normal component is temperature dependent, a superfluid
component is temperature independent. Usually for the last one the condensate
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Fig. 5.8 Column density 500 T T T T T T T
n(z) = [dxn(x, 0, z) for
noninteracting bosons in a
spherical trap at temperature 400 - 7
T = 0.9 T-PE€. The central
peak is the condensate
density ny superimposed in
the broader thermal
distribution with the density
nr from Dalfovo et al. [18].
Distance and density are in
units of I, and I respectively,

where [y = (i)l/ % is the
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magnetic length
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velocity V.,.a ~ 1/W, where W is half-width of the profile of the condensate
density (see [3]). In the more recent experiments of Feshbach resonance for the
BEC-side of the resonance W ~ (aNcond)l/ 3, where a > 0 is repulsive scattering
length and N.q,q is the number of condensate particles. Note that according to
Einstein the BEC temperature in 3D Bose-gas reads T¢ = 3.31 %, where n is the
density of bosons (see [30]) and m is the boson mass. By order of magnitude it
coincides with the degeneracy temperature Ty in an ideal Bose-gas, so the most
important for evaporative cooling is to reach the temperatures lower than the
degeneracy temperature at a given density.

For the BEC-side of the Feshbach resonance T¢52€ ~ 0.2¢p, where ¢ is Fermi
energy. For T < T¢ there is s macroscopical number of particles which occupy the
lowest level in the potential well. For 3D spherically symmetrical well with par-
abolic potential U(r) = %2’24— Uy the solution for the spectrum of harmonic
oscillator reads [26]:

EfUO:hw<nx+ny+nz+3/2) :hw(n+3/2>, (5.1.20)

and thus the lowest level Ey = Uy + 3/2hw (see Fig. 5.8). The eigenfunction
Wy (r) of the lowest level (n = 0) is given by (see [30]):

No \'? -5
Wo(r) = (WZ@) e (5.1.21)

where Iy = (ﬁ) 2 is the magnetic length and N, is the total number of particles in

the condensate. The density of the condensate:
no(r) = [Po(r)? (5.1.22)

has a maximum at 7 = 0: ngmax = 10(0) ~ No/I3. The W-function for the next level
E, = (Up + 5/2hw) ie. ¥((r) changes sign and has a node in the origin. In



5.1 BEC in Trapped Bose-Gases 161

slightly non-ideal Bogoliubov Bose-gas with repulsive interaction between bosons
the scattering length @ > 0 and we can introduce the pseudopotential U = %a
following Lifshitz-Pitaevskii book [27]. Then, as it was shown by Yu. Kagan, G.

Shlyapnikov and Walraven [24] the convenient parameter which measures the
interaction strength is 7 = Y, where % is the level spacing in the potential well

hw?

(see Fig. 5.9).

For weakly non-ideal Bose-gas in the trap # < 1 and for low temperatures
T < T almost all the particles occupy the zeroth level. Thus the density in the
center of the trap is strongly increased. Just this increase of the density is measured
in the diffraction experiments to prove the formation of the Bose-condensate in the
trap.

It is interesting that even in strongly-interacting Bose-gas with repulsion (for
n > 1) as it was shown in [24] the W-function of the zeroth level:

Wo(r) = /Mom <1 - 2;;1) " (“_OU(’))I/Z, (5.1.23)

and ny(r) = |Wo(r)|* is again maximal at r = 0.

5.1.5 Typical Densities and Numbers of Particles in the Trap

Usually the total number of particles in the trap Ny, ~ (10° = 10'%), while the
characteristic densities are n ~ (1012 = 1014) cm . Thus the number of parti-
cles in the Bose-condensate for 7 < YgEC is also of the order of 10°. The lowest
characteristic temperatures which we can reach in the evaporative cooling tech-
nique are 10~® K. For largest possible densities n ~ 10'* cm™> the degeneracy
temperatures Ty ~ n*/m are of the order of 10~® K. Note that the large number
of particles in the trap N, > | guarantees the validity of quasiclassical (or
Thomas—Fermi) approximation. Effectively it means that Ty > hw where hw is the
level spacing.

For Bose-gases TEEC < T,, while for Fermi-gases Tc < T, (in the absence of
Feshbach effect or far from Feshbach resonance) especially for extended Cooper

Fig. 5.9 The Y-functions AE
Wo(r) and W,(r) of the lowest
(Eo = Uy +3/2hw) and first

= i 5
(E U0.+ 5/2hw) lev§ls in ¥, E =2ho+U,
the spherically symmetrical 2
parabolic ;Z(itentlal well \Pﬂ 3
U(r):mzz)z“r“+U0 Eu—?ﬁ@“{-Un

Uy

v
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pairs in the BCS-case. Note that for fermions 7y = ¢g, and due to the Pauli
principle the number of particles in the trap for T < Tj reads in 3D case:

Niot ~ () > 1. (5.1.24)
Thus Ntlo/f ~ &p /fiw is the number of the occupied levels in case of fermions,
while p(g) = ‘W;l;;m ~ (hi 7 is the density of states for a spherical parabolic trap.

The quasiclassical criterion for fermions then reads:

e > ho = (8F Nzlo/t3) (5.1.25)
and coincides with the Migdal criterion [38] well-known in nuclear physics. We
will discuss the fermionic superfluidity in the trap for °Li and “°K isotopes more
detaily in this chapter and Chap. 12.

Returning back to bosons, we would like to emphasize that for Rb and Na the
scattering length a > O—corresponds to repulsion, and BEC goes along the
standard Bogoliubov scenario (hard-core Bose-gas [19, 30]). For Li the scattering
length a < 0—corresponds to attraction, and Bose-condensate exists only for
|n| <1 due to discrete level structure in the trap (in unrestricted geometry we will
have collapse in real space instead of BEC) (see [24]).

Note that for || > 1 levels are effectively smeared by interparticle interactions
and there is no BEC in the system of 'Li atoms.

5.1.6 Recalculation of T¢EC from the Free Space on the Trap
Geometry in Confinement Potential

It is important to recalculate Einstein formula TeFC = 3.31 n**/m for an ideal
Bose-gas from the infinite free space to the confined geometry of magnetic trap
using quantum-mechanical solution E — Uy = how(ny +ny, +n,+3/2) for
spherical harmonic oscillator (or in more general anisotropic case using the
solution E — Uy = hwy(n, + 1/2) + hwy(ny + 1/2) + ho,(n, + 1/2).)

To do that according to Dalfovo et al. [18] we should write the total number of
particles in the spherical trap:

1
N = . 5.1.26
n;l hw(nx + ny +n; + 3/2) — Hp ( )
I @X o —1

According to Einstein ug(T = T¢) = 0 in free space. For the trap pz = %ha)
corresponds to the lowest Landau level. Thus for T = Te-C:

N= Y (hw(nx —l—ln}.—i—nz)) — (5.1.27)

Nyl N
T eXp BEC
ksT?
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In the quasicalssical approximation for kg7 >> i (when the number of trapped
particles is large N > 1) we can replace the sum by integral in (5.1.27) and get:

dn.dn,d kpTBECN
N = / ey =3y (), (5.1.28)
ho(n, +ny +n;) fiw
eXp kg TBEC -1
where £(3) is the E-function.
Correspondingly

N\ 3

kpTEEC = ho (@) =0.947iwN'/3. (5.1.29)

The proper thermodynamic limit for these systems is obtained by letting N —
oo;m — 0 and keeping ®’N = const. Note that for bosons TEEC ~ Ty and Ty >
(hew ~ Ty /N'/3) in similarity with the fermionic case. To get the number of con-
densed particles N, below TeC we can put again gz = 3hiw/2 and write:

1
N—Ny(T) = . (5.1.30)
ny,ny,n, 70 €XP (%) —1
If we introduce the density of states for the spherical trap p(e) = % (h;z 7 we
0
obtain:
r ksT\>
N — No(T dep(e) =:3)—| , (5.1.31)
exp|( ¢ ) 1 ho
0
3
and usmg T&" from (5.1.29) we finally get: 2o =1 — (T,;Tb() or N — No(T) =

N (TBTEL) for the noninteracting bosons in 3D spherical traps. Of course we can
C

recalculate Te5C on strongly anisotropic case also.

5.1.7 Metastability of Trapped Bose- and Fermi-Gases

It is important to note that the systems like atomic “Li and °Li in magnetic traps are
inherently metastable. The most effective channels of decay, which define the
lifetime of these metastable systems, are three-particle recombination and spin-
relaxation processes [23]. The point is that for °Li—°Li and “Li-"Li in the two-
particle interaction potential exists a virtual quasiresonance level [39, 40] (see
Fig. 5.10). It means according to Quantum mechanics [30] that if we make
potential well a little bit deeper then a real shallow level appears. Of course there



164 5 Bose-Einstein Condensation and Feshbach Resonance

Fig. 5.10 The level-structure Ua
for the interaction potential
acting between two °Li or two P .
"Li atoms. There is a shallow \ Li-"Li potential
virtual level for this potential

well-separated from deep

vibrational levels [39, 40]

are deep vibrational levels in the potential, but they are well-separated from a
shallow one (from the continuum states).

As it was shown by Yu. Kagan, Shlyapnikov and Glukhov [23] due to three-
particle recombination processes the particles leave the shallow quasiresonance
levels in a potential well thus loosing their quantum—mechanical identity (they do
not participate then in the symmetrization of the BEC or BCS condensate wave-
functions). As a result a lifetime of BEC condensate (such as 7Li) for densities
n > 10" cm ™ is of the order of 40 s. The lifetime of molecular BEC condensate
of °Li is of the order of 10 s in the regime of Feshbach resonance, while the
lifetime of the fermionic BCS condensates is much smaller (superfluidity of
Cooper pairs is more fragile).

Note that for densities n > 10'* cm ™ the parameter || becomes usually of the
order of 1 and thus in bosonic 'Li with attractive scattering length a < 0 the
phenomena of BEC disappears. In case of fermionic °Li in the regime of Feshbach
resonance (on the BCS-side of it—see the next section of this Chapter)
la| ~ (2 +3)10° A and a < 0. Here the effective gas parameter of Galitskii, which

for fermions reads A, = @ (see [28] and Chap. 12, where pg is Fermi-
momentum and &g = pf:/Zm) reaches the values of the order of 1 for densities
n ~ 10 ecm™. In this case, as we will show in Chap. 12, the compressibility (or
the sound velocity squared k' = ¢?) of the system becomes negative, and the
system of °Li atoms becomes unstable with respect to phase-separation on several
hyperfine components.

Thus the densities n ~ 10" cm™? are usually maximal possible densities of the
homogeneous state both for BEC and BCS- condensates in the traps.

5.2 Experiments on Feshbach Resonance in Ultracold
Quantum Gases and Mixtures

Molecules or composed bosons fif] (GLiZ, 40K2) and composed fermions
f.b (*°K 4 ®Rb) were observed in magneto-optical or dipole traps in the exper-
iments on Feshbach resonance by the groups of Jin [6, 7, 48, 49] and Ketterle in
USA [8, 21, 50].
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In Feshbach resonance we use the abrupt change of the sign and the magnitude
of the s-wave scattering length in the external homogeneous magnetic field B:

A
a:abg(l—i—B_—BO), (5.2.1)
where ap, is the s-wave scattering length of the quasiresonance origin (see
Fig. 5.10 as illustration). For B — B, (where B is a resonance magnetic field) 1/
a — 0 and we are in the so-called unitary limit of the infinite interaction. Usually
|abg| ~ (15 +20) A, moreover for fermionic °Li apg < 0 [39, 40]. Thus not very
far from the resonance the typical values of |a| can reach (2000 - 3000) A.

Physically Feshbach resonance corresponds to the interception of the singlet
and triplet two-particle terms in the resonant magnetic field By. The singlet term
for °Li is formed by the one-particle terms J = 3/2,J, = Yaand J = 3/2,J, = =%
and possesses virtual or real shallow bound state (which effectively is a molecule
or a composed boson fif|), while the triplet term is prepared by two one-particle
terms J = Y2, J, = Y% and J = Y, J, = —Y% and does not have it [41-47]. We
refer to the singlet term as to a closed channel, while the triplet term corresponds
to an open channel. The behavior of the scattering length a in magnetic field
B according to (5.2.1) is given by Fig. 5.11.

For a > 0 the tightly bound local pairs are created—this side is usually called
BEC-side of Feshbach resonance (AB < 0 or B < By). For a < 0 (AB > 0) there is
only virtual level, which excludes the formation of local bound pairs in real space
and allows only extended weakly-bound pairs in momentum space. This side of
Feshbach resonance corresponds to BCS-side of BEC-BCS crossover. Here only
extended Cooper pairs of two fermionic atoms can be formed.

a SR
Ap(B-Bo)
S
q a>0
closed channel = AB =B-Bo
(singlet)
Ap(B-Bo) > I
a<0
open channel ; )’
(triplet)

Fig. 5.11 Feshbach resonance for s-wave pairing describing s-wave scattering length a as a
function of the relative magnetic field AB = B — By, where By is a resonance field. On the inserts
we show the evolution of singlet and triplet terms when we go from BEC side (a > 0) to BCS
side (a < 0) of the resonance
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Note that when we speak about an “open” or “closed channel” (or “singlet” or
“triplet” terms) [41-47]we effectively use the terminology of the Heitler-London
theory [26] for the molecules of H,, which are formed in singlet channel (for total
electron spin S, = 0 of two hydrogen atoms). In the same time there is no bound
state of two hydrogen atoms in the triplet channel (for total electron spin S, = 1
of two hydrogen atoms). Here (for 6Li2 and 40K2) the role of effective spin plays
J" which is zero both for singlet and triplet channels (J, = £ % for two one-
particle terms in both channels). We can illustrate the behavior of singlet and
triplet terms in magnetic field in the following way (see Fig. 5.12).

5.2.1 The General Expression for the s-Wave Scattering
Amplitude

Note that according to Landau the general form for the s-wave (I = 0) scattering
amplitude in resonance approximation reads [26]:

1

k)=7—F—75— 522
O = R (522)

where W = nf; is the resonance width. In the potential scattering theory R« = rq is

the range of the potential (kr are the corrections to 1/a due to the finite range of

U
B=0
.
1Y
\
\
A Y
A
\\
AN Vi
~---- R
\_/_VS

Fig. 5.12 Singlet and triplet terms on Fig. 5.12 do not intercept in the absence of field but
intercept in field B = By [42] (see also [43-45])

Fig. 5.13 General - U
decaying potentials with

resonance states £ = Ey —

i I'/2, which have the finite

lifetime for E) > Oand I" > 0
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the potential). However in the general case (for o-decaying potentials, see
Fig. 5.13 for example) R~ is not connected with ry.

In the dilute gas limit kry < 1, but, in principle, KR+ can be larger or smaller
than 1. If kR« > 1, then we have narrow resonance (with respect to the width

W= mﬁ—;z) [51-53].

5.2.2 Broad Feshbach Resonance

In the opposite limit kR~ < 1 we have broad resonance [51-53]. Thus for broad
resonance we can neglect K*R. with respect to ik and get the standard (and with
correct analytical properties) quantum—mechanical formula for potential resonance
scattering:

1

k) =+——. 523
10 = (5:23)
This situation is well-described by one-channel resonant approximation with
one parameter-scattering length a. In the unitary limit 1/a — 0 and f(k) = l/ik

according to general quantum—mechanical rules.
5.2.3 Resonant Approximation for Broad Feshbach
Resonance

In resonant approximation we change a little bit a depth of potential (see Fig. 5.1).
As a result at first we proceed from deep level E, ~ —1/mrg in potential well with

(a) (b), (c)
» U 4 U 4 U
Vo r r
|E,|
a>0
\E,| ~1/mr 2 |E,|= 1/ma? <<I/mr}
deep level \ shallow level virtual level

Fig. 5.14 Resonant approximation for typical short-range interatomic potential. a Corresponds to
deep bound state in potential well. b To the shallow bound state for which a > ry and IE,| = 1/
ma* < 1/mr. Finally Fig. 5.14c corresponds to virtual state with attractive scattering lengtha < 0.
When we continually decrease the depth of the potential, we gradually go from a to b, and than to ¢
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radius ry (Fig. 5.14a) to a shallow level with E, = —1/md® and a > ro>0
(Fig. 5.14b), and finally to a shallow virtual level with E, = 1/mlal* > 0 and
lal > ry (Fig. 5.14c). In the last situation a < 0 corresponds to attraction.

Note that the sequence of states on Fig. 5.14a, b, ¢ precisely correspond to the

behavior of the scattering length a = ay, (1 + B%Bo) for the closed channel in the

regime of Feshbach resonance. Indeed in closed channel for B < By and a,, < 0
the scattering length a < 0, and we have bound pairs, as on Fig. 5.14a and b,
which become more and more shallow as we approach a resonance field B.
Finally for B > By and ap, < 0 the scattering length a changes sign (¢ < 0) and we
have virtual pairs in the closed channel. The only thing which we lose in one-
channel (Hubbard-like description [29]) is a possibility to convert molecules in the
closed channel to the pairs of free fermions in the open channel and vice a versa
(atom-molecule oscillations [41, 42]) very close to the resonance field By. Let us
emphasize that for a > 0 we can independently measure the binding energy |E,| for
the real shallow level by the threshold of the absorption w = |Ey| of the soft infra-
red radiofrequency waves [10, 11]. The same technique yields a possibility to
measure a superfluid gap (w = 2A) in the superfluid state of the resonance Fermi-
gas at low temperatures 7 << T¢ (see Chap. 7).

5.2.4 Fermi-Gas with Attraction

Note that Fermi-gas with short-range attraction U(r) = —Ue™"/" (ry is a range of
the potential) in momentum space is described by the Hamiltonian:
H=D oy = D Ulayelyoloocty+ar (5:24)
po pr'q

aa’

where Fourier component of the potential U(g) is given by:

o UONUrg forgro < 1,
Ule) = {O, otherwise.

BCS-domain

The s-wave scattering length in the BCS-domain is given by Lippmann-
Schwinger integral equation for the two-particle T-matrix in vacuum [26, 27]. It
requires the summation of ladder-type diagrams for vacuum Green-functions G
[19, 27, 28] and reads (see Fig. 5.15):

4na |Uo|
Tvac :07_‘:0 = = ’
(@=0,G=0)=—=] 1 — [Uo|Kyae(0,0)

(5.2.5)

where K,,(0,0) = [ dSIZ%G()(Q,ﬁ)GQ(—Q, —p) = é;’;iﬁ is a product of the
i

2n
two Green-functions éo 8&), P) = —— in vacuum for zero total frequency @ = 0
+io

T 2m
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p 4 p_p b G PP A
T | = UDS  +UQSU@S + SUDIUDSUG =
-p -t -p Pt -p Gy - -p -0
o o pop' Gy p
= U(q)g + U(Q)g I vac
0 -p R =P G -p

Fig. 5.15 Lippmann-Schwinger integral equation for the vacuum two-particle T-matrix
Tyac(®w =0, =0) = %, which requires the summation of ladder-type diagrams for vacuum

Green-functions Go(Q, p) = , p is a four momentum {Q; p} on the figure

)
L
Q-L-tio

and zero total momentum ¢ = 0, ¢, = % is the free particle spectrum. The scat-
tering length a from (5.2.5) can be represented as:

m|Uo|

T, c = 0’ qd = 0 — _
a=""e <“’4 7=0) _ e |ﬁ|2) <0, (5.2.6)
T 1 — m|Uo| 0[7_02/p | |
47 0 P
where || = m‘U‘Jl'“ ~ 'Z‘U‘)‘ is the Born parameter [26, 27].

In this case only extended s-wave Cooper pairing is possible (the BCS-domain
[15, 16]).

Note that for the Born parameter close to 1 (1 I ﬁl‘ﬂ <« 1) the scattering length

lal > ry and we have shallow virtual bound state |1E,| = 1/ma® > 0 [20, 26].
The critical temperature of s-wave Cooper pairing here is given by Gor’kov,
Melik-Barkhudarov formula [17]:

T
TESS = 0.28 ¢r exp{—2|a|pF}, (5.2.7)
which is just BCS-formula but with different preexponential factor 0.28 ¢ (instead
of wp in the phonon model).

For Il = 1 an expression for the scattering length a has a pole. For Il > 1 we
are in the BEC-domain and formula (5.2.6) for the s-wave scattering length should
be modified. For the bound state problem (for the negative energies E < 0) we
should use the s-wave scattering amplitude f,(E) which reads [20]:

|Blro
L= 1Bl + Bly/mlElrg
Thus Il = 1 is a threshold for a bound state of two fermions f;f;. Above the
threshold the energy of the bound state yields [20]: |Ejp| N# (‘[;“T_ll)z: L.
where the scattering length a = ‘Iﬁ“r" > 0 corresponds to repulsion for 1§l > 1.

fo(E)| =

(5.2.8)
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Here the local pairs (molecules or dimers or composed bosons f;f) are formed, and
we are in the BEC-domain [12-14]. For Ifl = 1 the scattering length diverges 1/
a — 0. We are in the unitary limit. For WI‘TT < 1: a> ry and we have a shallow
bound state with an energy E = —|Eyl, where |Ey| = l/ma* < 1/mrj. Note that for

positive energies (E > 0) the s-wave scattering amplitude reads: fy(E) =

|Blro _ 1 . . .. 1 .
B JariveE and in the unitary limit fy(FE) =75 according to

Quantum mechanics [26] (E = k*/m and VmE = k).
The critical temperature in the BEC-domain according to Einstein reads:

2/3

TEEC =3.31 M, (5.2.9)

mpg
where in the free space the density of composed bosons ng = n/2 and bosonic
mass mg = 2m. If we introduce the Fermi-energy e = pi/2m, then TEEC ~
0.22 &r in 3D case (where n = p?:/37r2 is the fermion density). In the dilute bosonic
limit |Ey| = 1/ma® > & (or pra < 1) the situation at high temperatures is gov-
erned by the dynamical equilibrium between molecules and unbound fermions.
This situation is described by the well-known Saha formula (or the law of mass

action) (see [30]). In three dimensions it reads:

(mT)*? exp{—@}, (5.2.10)

2
g _

np o 27'[3/2

where the total particle density n = ng 4 2ng with ng being the free fermion
density and ng the bosonic molecular density at the temperature 7. The crossover
temperature 7= is defined from the condition ng(7+) = 2ng(T+) = n/2 and yields:

|Eb|

=l 52.11
3/21n 2l ( )

where the logarithm in the denominator of (5.2.11) has an entropic character. For
high temperatures T >> T+ one has ng(T) > 2ng(T) which means that most of the
fermions are unpaired. For lower temperatures 7 < T» vice a versa
ng(T) < 2ng(T) and most of the fermions are paired. They are Bose-condensed at
the critical temperature Te-C < T« given by (5.2.9). Thus for intermediate tem-
peratures TeC < T < T. we have an interesting phase of normal (non-superfliud)
dilute gas of composed bosons (see [14, 31, 32]). In the end of this chapter we will
see that composed bosons repel each other. Thus it is a standard weakly repulsive
Bogoliubov [27] Bose-gas of the composed bosons fif|.

Dilute gas of composed bosons in 3D

For TE€ < T < T the temperature evolution of the attractive Fermi-gas in 3D
is described by the two-particle T-matrix T(iw,,q) in substance (for Matsubara
fermionic frequencies w, = nT(2n + 1), T is temperature):
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o U
T(ion, q) = — —, 52.12
L S AT (52.12)
where
K(iw,, ) Z/ (i@, B) G (—iQ + i, —F+3)  (5.2.13)

Dy

is a product of two Matsubara (temperature) Green-functions Gy in a Cooper
channel for total momentum § and total frequency w,. Sometimes K (iw,, §) is
called a Cooper loop or particle—particle susceptibility. Generally speaking, Green
functions Gy in (5.2.13) are dressed Green functions (see description of the T-
matrix approximation in Chaps. 6 and 8), containing non-trivial self-energies Xy;.
Here, however, we will consider only the simplest approximation (which is often
called first iteration to the self-consistent T-matrix approximation). In this
approximation we can use the bare Matsubara Green functions Gy (iQ,,p) =

ez in (5.2.13). Then graphically the Eq. (5.2.12) for the T-matrix can be

Q5+
represented by Fig. 5.16.
Analytically the Cooper loop K (iw,, ) in this approximation reads:

. i d3_’ 17nF(£p)*nF(£q p)
K(zwn,q)/( 2)} i — 2(5) — &G - F) (5.2.14)

where we performed the summation over the Matsubara frequencies €2, with the

help of Watson transformation ) — f r(2) [27]. In (5.2.14) &(p) = % —pis
Q

the quasiparticle spectrum and np(ép) =

m is the Fermi—Dirac distribution

function. For w, =g =0we get 1 —ng(E,) —np(é,_p) =1-2np(,) = thf—;
and we restore a standard expression for K(0,0) from the textbooks on BCS-theory

of superconductivity (see [15, 16, 27]): K(0,0) = [ %% In the same time
for small w and ¢ the T-matrix in substance (5.2.12) has a simple one-pole

structure in the BEC-domain. Namely, after analytical continuation iw,, — w + io,

p p’ p_ o P Gu &
T = Suw + Suw[T
-P*q -pHq -prq -pHG -prg Gy -p4g

Fig. 5.16 Simplest approximation (first iteration) to the self-consistent T-matrix scheme which
requires the summation of ladder-type diagrams for the bare Matsubara Green functions
Gu(iQ,p) = P is a four momentum {Q,;p} on the figure

”7 1111
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the first iteration to the Cooper loop (5.2.14) reads for the BEC-domain @ > 0 and
temperatures TgEC < T < T= (see [33]):

4na

o 4wl
4 -\
~ 2mp + ug + lo)

T(G, wp) = ( (5.2.15)

The pole in (5.2.15) corresponds to the spectrum of a molecule (of a composed

2
boson) and reads: w = 5——
mp

(molecular) chemical potential [31-33]:

up. Note that in (5.2.15) we introduce a bosonic

ug =24+ |Ep). (5.2.16)
Note also that for 7 < T+ most of the fermions are paired:
np(T) ~ exp{—%} < 2np(T), and hence n =~ 2np. The fermionic chemical

potential u acquires a kink and reads for T < T [33]:

|Ep| 3 T
Accordingly bosonic chemical potential reads:
3

and uB(TgEC) = 0 just in agreement with Einstein’s definition of Bose-conden-
sation critical temperature Terc.

We would like to emphasize that for @ = g = 0 the expression for the T-matrix
in BEC-regime is reduced to [33]:

7(0,0) = Mi, (5.2.19)
m - Ug

and thus for ,uB(TgEC) = 0: the T-matrix 7(0,0) = 1/ug — oo diverges in agree-
ment with Landau-Thouless criterion for the second order phase-transitions [19,
217].

Bethe—Salpeter integral equation

To escape confusion note that the equation for the T-matrix in substance, given
by Fig. 5.16, is very close to the Bethe—Salpeter (BS) integral equation [22, 25] for
the total two-particle vertex I'. Bethe—Salpeter equation comes to the condensed
matter physics from quantum electrodynamics and is widely used do describe
superconductive pairing, for example. We will often use it in this book (see this
Chapter and Chaps. 9, 10, 12). In general BS integral equation in the Cooper
channel has the following graphic form (see Fig. 5.17).

Algebraically the BS integral equation reads:
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Fig. 5.17 The graphic representation of the Bethe—Salpeter integral equation. I" stands for total
two-particle vertex in the Cooper channel, U,y is irreducible bare vertex with respect to Cooper

channel. p and k are four-momenta p = {Q,; p}; k = {Qm; E}

—T(5,k) = —Uey (P, k) .
- ~ ~ L o d°q
+TZ/ Uey (B, @) Gm (1, )Gy (—Qu, —4) - T'(G, k) ﬁ,
(5.2.20)

where T is the total vertex in the Cooper channel, Q,,, = Q,; + Q,, =0, Py =
G1+¢ =0, Gy (Q,,q) = [iQ, — é(q)]fl—is the Green function in temperature
technique, Q, = n7(2n + 1) is the Matsubara frequency for fermions, 7T is the
temperature, n = 0, =1, £2 is integer, &(q) = % — . In the BCS-domain u = ¢g
and |j| = ‘I}" = pr are the incoming and outgoing momenta lying on the Fermi-

surface.

In the free space for infinite Fermi gas the reduction of the BS integral equation
to the algebraic one can be fulfilled with the help of Legendre polynomials
P (cos0), where 0 = /pk is the angle between incoming and outgoing momenta j
and l: [ is the value of the (relative) angular momentum of a pair (! = 0 for s-wave
pairing, [ = 1 for p-wave pairing and so on). As a result (see [27]):

I'=Ul, — U,KT' (5.2.21)
and correspondingly
Ul
=94 (5.2.22)
1+ UK

(ZZ" is the Cooper loop. In the BCS-

where K =T [ Gy (@, §)Gu(—Qn, —§)
domain it read$:

<

d’q thyy 2eCep
K= €~ N3p(0)1 5.2.23
[ st = N0 (5223

where N3p(0) = mpp/Zn2 is the density of states in 3D, C is the Euler constant
[27].
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The pole of I in (5.2.22) yields an equation for T¢ according to Landau-
Thouless criterion:

14 UzK = 0. (5.2.24)

Thus the most important is the sigh of Uéff for different values of the orbital
momentum /. In this chapter we consider mostly / = 0. However, in Chaps. 9, 10,
11, 12, 13 we will also consider / = 1 (p-wave) and [ = 2 (d-wave) pairings.

From Fig. 5.17 we see that the main difference between BS integral equation
and the equation for the T-matrix in substance (Fig. 5.16) is the replacement of the
bare vacuum interaction U(g) by the is irreducible bare vertex U.u(q). By defi-
nition, Ueg(g) in (Fig. 5.17) is a sum of all irreducible diagrams with respect to
Cooper channel. These diagrams cannot be cut on two parts along the two solid
lines running in the same direction [19, 27].

The difference between irreducible bare vertex (or effective interaction)
U.s(q) from U(q) gives us a possibility to get a superconductive pairing even in
purely repulsive Fermi-systems (see Chaps. 9, 10, 11, 12). In the BCS-domain of
the 3D attractive Fermi gas this difference also defines preexponential factor 0.28
¢r in Gor’kov, Melik-Barkhudarov result for 755> in (5.2.7). However, many
derived expressions for dilute BEC limit and even for BCS-BEC crossover (see
Chap. 6) can be done neglecting a difference between U.x(g) and U(g) in reso-
nance Fermi-Bose gases and mixtures. Thus if we neglect the vertex corrections
for U.(q), than the T-matrix equation in substance (in its first iteration) coincides
with the Bethe—Salpeter integral equation for the total two-particle vertex I' in the
Cooper channel.

5.2.5 Attractive-U Hubbard Model

A detailed investigation of the attractive-U Hubbard model both in 3D and 2D case
will be the subject of Chap. 8. Here we would like to note that many formulas
obtained in Sect. 5.2.4 are valid also for attractive-U 3D Hubbard model on the
lattice:

H=—tY fif, U niny, (5.2.25)
(i i

where t is the hopping matrix element, fi;, and f,, are the creation and annihilation
fermionic operators on the neighboring sites <ij> of the lattice, n;; :fl?fn is on-

site density of fermions with spins “up”, U is the Hubbard (short-range) attraction.
After Fourier transform we get in close analogy with (5.2.4):

H=Y ep)fifoe = UD Lo aifysars (5.2.26)

rr'q
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where &(p) = —2t(cos pyd + cospyd + cosp,d) is a fermionic spectrum for a
simple cubic lattice in 3D, d is intersite distance.

At low densities nd® < 1: &(p) ~ —6t+%, and 3D attractive-U Hubbard
model becomes equivalent to 3D Fermi gas model with short-range attraction. The
role of the range of the potential ry in the Hubbard model plays an intersite
distance d. Correspondingly Fourier component of the potential U(g) for g = 0
reads: Uy ~ Ud® in the Hubbard model and the band mass m = 1/2 td>.

Thus practically all the formulas derived in this Subsection for dilute BEC-
domain of the attractive Fermi-gas are valid also for 3D attractive-U Hubbard

model. The only difference is the bosonic mass mg in the expression for TgEC
(5.2.9) and in the pole of the total vertex I': @ = % — ug. In the absence of the

lattice mp =2m. On the lattice in the strong-coupling case
U > W =2zt = 12t (W is a bandwidth, z = 6—the number of nearest neighbors
on the simple cubic lattice in 3D) the bosonic mass is additionally enhanced (see
[14] and Chap. 8 for more details):

My~ mg = (5.2.27)

The role of the optical lattices

Note that the optical lattices [34] (usually fabricated in the physics of ultracold
gases by three or two monochromatic laser beams, which create mutually per-
pendicular standing waves with the particles in their minima) give us an excellent
experimental possibility to study 3D and 2D Hubbard models on the lattice (the 1D
optical lattices are also experimentally feasible). Moreover it is possible by
changing the periodicity of lasers (I; = 27mc/w;) to fabricate the isotropic or
anisotropic lattices with different intersite distances d and hopping integrals ¢ (or
band masses m = 1/2 td*). It is also possible to vary (with the help of the
amplitudes of the laser beams) the strength of Hubbard interaction U (and thus the
ratio U/W), as well as the particle density (or filling factor nd). Finally in the case
of repulsive-U Hubbard models, the optical lattices provide us an excellent pos-
sibility to study Mott- Hubbard localization transition [29, 34] for large values of
U> Uz ~ W (W is a bandwidth) and density nd” = 1 corresponding to one
particle per site (see Chap. 9 for more details). Note that currently both fermionic
and bosonic Hubbard models are intensively studied on the optical lattices is three-
dimensional, two-dimensional and one-dimensional cases.

5.2.6 Narrow Feshbach Resonance

In the opposite limit of narrow Feshbach resonances kR« > 1 [see Eq. (5.2.2)] one-
channel theory with contact potential (or resonant approximation) is not sufficient,
since it misses an additional possibility to get the quasistationary resonance states
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Fig. 5.18 Dependence of the - Re F
real part of the energy ReE,
which defines the dependence

of the pole position of the resonance
s-wave scattering amplitude \
(5.2.2) from the inverse Ji

scattering length—1/a [36]

bound state - 7R
]\ .

\

virtual
bound state

with the finite lifetime E = Ey, — iI/2 (see Fig. 5.13) besides real and virtual
bound states. A nice illustration of the situation for narrow Feshbach resonance we
can find in [36]. On Fig. 5.18 we present the solution for the real part of the pole of
the amplitude f,(E) in terms of the energy E = K*/2m.

For shallow bound states a >> R« > 0 the pole in energy E, = —1/ma” depends
quadratic on 1/a. If 0 <a < R« the dependence of the binding energy from
1/a becomes linear Ey, = —1/maR+ < 0. On the other side of the resonance the
scattering length is negative a < 0 and large by absolute value lal > R+, and thus
we have virtual bound states. However for lal < R+ we have resonance states with
the finite lifetime E = Ey — il /2 (Eg > 0, I' > 0). It is useful also to show the
evolution of the character of the pole of the scattering amplitude f,(E) in a complex
energy plane (see Fig. 5.19).

Thus the conditions to get narrow Feshbach resonance include kR« > 1 and
lal < R+. In degenerate Fermi-gases k ~ kg and kgR+ > 1 for narrow resonances.
Usually in case of *°K the resonance is broad (here the terms J = 9/2 and J = 7/2
are involved in the formation of singlet and triplet terms). In the same time in case

Fig. 5.19 Evolution of the { ImE
character of the pole of the
s-wave scattering amplitude
fo(E) in a complex plane [36].
The arrows indicate the bound state
pole’s motion as—1/a is \ a": 0
increased 5 5 ,-\ o ReE
a=2R« N virtual
bound state
B o
/
a =Rx |
resonance
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of °Li the resonance is more narrow. Through Chap. 6 we will use one-channel
description of the Feshbach resonance concentrating on real and virtual bound
states in closed channel and assuming that resonance is broad. Additional argu-
ment in favor of one-channel (or resonance approximation) with one parameter
a > ry (as for the short-range contact potential) was formulated in [51, 52].
Namely the authors of these papers paid attention on the fact that both singlet and
triplet channels in terms of effective spin J, = S, + I, are “singlet” since J&' = 0
in both of them (J,; = Y2, J,, = —'2 both for singlet and triplet). Moreover both
singlet and triplet states have relative angular momentum / = 0. Hence in analogy
with contact interaction (or attractive Hubbard model [14, 29]) in dilute limit
prlal < 1 they can be described only in terms of the s-wave scattering length a.
Note that rigorously speaking, very close to the resonance the two-channel
character of the Feshbach effect [5S3-55] can be important and manifests itself in
the Feshbach term [53] g(b(,qf]?+ 1f—+l?+f?T + h.c.), where bosonic operator with

momentum ¢ namely by, corresponds to a molecular bound state (IE|) in closed
channel, while the bilinear combination of the fermionic operators with total
momentum ¢ corresponds to an open (triplet) channel. For B — B, the Feshbach
term describes the dissociation of a boson with momentum ¢ in singlet channel on
two fermions (with total momentum §) in triplet channel, and the inverse process
of the formation of boson in singlet channel from the two fermions in triplet
channel. Note that the Feshbach term in atomic physics resembles the Ranninger
term in fermion-boson models for high 7 superconductivity [35, 56]. Note also
that not very close to the resonance the Feshbach-Ranninger term is not so
important both in gases and in superconductive metals.

5.3 Experiments on Molecular BEC in °Li and *°K

In the first experiments on Feshbach resonance the Fermi-gas of °Li and *°K was
cooled in magneto-optical traps by combination of laser and evaporative cooling
till temperatures much lower than the degeneracy temperature 7,. After that the
magnetic field B was adiabatically (very slowly) switched on. In the more recent
experiments the Fermi-gas was evaporatively cooled till low temperatures, than
the system was reloaded in dipole trap [with confinement potential described by
(5.1.19)]. After that the homogeneous magnetic field (which is independent of
coordinates) was rapidly switched on. Thus in both experiments 7 < T,. The
measurements in the first experiments in Ketterle group were performed for
magnetic fields B in the interval between 700 and 900 Gauss (the resonance field
By ~ 830 Gauss). For aps <0 and B > B, we are in the BCS-domain. For the
fields B < By we are in the BEC-domain. Traversing magnetic field from 900
Gauss to 700 Gauss, we go from virtual bound state at B > By to real bound state
(molecules 6Li2) at B < By. Since we change magnetic field adiabatically (slowly),
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the entropy S = const and when the molecules are created, the temperature is
increased only on 40 %. Hence T is still lower than T, even on BEC-side.

In the fields B < Bg (a > 0) for temperatures 7= ~ |E,| = l/ma* ~ 107K the
molecules (composed bosons fif|) were formed.

They were detected by the threshold of the absorption of the soft infrared
electromagnetic waves fimyesn = |Ep| [46]. The molecules fif, were Bose-con-
densed at temperatures Te-C ~ 10~® K. The transition to the superfliud state was
measured again (as in trapped Bose-gas) in the diffraction experiments form the -
functional density peak of the condensate particles, located in the center of the
trap. Another way to observe the superfliud state is again to measure at 7 < Te-C
the bimodal distribution of the leaving particles (when the trap is lifted) with a
temperature independent superfliud component V> aNeona. For B = By:
1/a = Neopa/ve = 0 and thus N,gng = 0. Note that the critical temperature
T](B;EC = 3.31 (n/2)2/ 3/2m, in the infinite free space for bosonic density ng = n/2
and mp = 2m for bosonic mass. If we introduce n = p/37* in 3D Fermi-gas and
&g = p12:/2m, than T8E€ ~ 0.2¢g in free space for composed bosons.

In the trap kgTEEC = 0.94 co(Nmt/Z)l/3 and e = w(SNmt)m. Thus kgT72E€ =
(0.06)” 3 er & 0.2¢g. In the same time for the Cooper pairing of two fermions in the

BCS-domain (for lal < 0) we will get [17] T2 = 0.28 ¢p exp{ } Here we

a 2‘“T|[PF

should demand that the size of the Cooper pair &, = % is smaller than the typical
C

size of the trap R, for ¢ ~ ¢g. Thus the validity of quasiclassical approximation

requires that er > kgTc > worep > kgTc > 8};/ 3/Nmt just in agreement with
Migdal criterion in nuclear physics [38]. Note that in strongly-anisotropic case we

should replace  in formulas for 7¢ and ¢ on @ = (wxwywz)l/ 3. Note also that if
w, > {wx, oy} we have effectively quasi one-dimensional trapped gas while for
{oy, oy} > o, the trapped gas is quasi two-dimensional. Thus varying the con-
finement potential we can change the dimensionality of the trapped gases or
mixtures.
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Chapter 6

Composed Particles, Trios and Quartets
in Resonance Quantum Gases

and Mixtures

In the beginning of this chapter we consider two-boson pairing for bosons of the
same (bb) or different (bb,) sorts. The two-boson pairing was first proposed by
Nozieres and Saint James in their famous paper [1]. Here we consider Bose-gas
with van der Waals interacting potential between particles and the two-band
Hubbard model with attraction between bosons of different sorts [2—4] and
repulsion between bosons of the same sort. We also discuss a competing (to two-
boson pairing) phenomena of phase-separation in one band and two-band [2-7]
bosonic models. In the end of the first section we consider briefly the possibility of
two-holon pairing which arises in the 2D underdoped t-J model if we assume the
scenario of spin-charge separation between spinons and holons advocated by
Anderson [8, 9] and Lee [10].

The second section will be devoted to the model of Fermi-Bose mixture with
attractive interaction between fermions and bosons [11-14] and the possibility to
get composed fermions f,b in this model. Note that the attraction between fer-
mions and bosons is opposite to the Fermi-Bose mixtures of *He and “He [7, 96,
97] or Li and "Li [15] (which will be considered in more details in Chaps. 11 and
12). In these systems usually the interaction between fermions and bosons is
repulsive. The Feshbach resonance effect helps to change the sign of fermion-
boson interaction [17].

In the next sections we will consider 3 and 4-particle complexes which can appear
in resonance Fermi-Bose-gases and mixtures, where the scattering length a is much
larger than the range of the potential ry. At first we will consider the scattering
amplitude a,_ for the scattering of elementary fermion f, on the composed boson
fif|- Here we will present exact solution of Skorniakov-Ter-Martirosian integral
equation for three particles in resonance approximation and get a, ; = 1.18lal > 0
[18], which corresponds to repulsion between fermion and molecule (dimer). We
also consider so-called Efimov effect [ 16, 90] which predicts a lot of bound states for
three bosons bbb in a 3D case with the energies ranging from |E;l ~ 1/ma® for
shallow levels till IE5l & 1/mrf for deep three-particle levels. The number of levels
in the resonance approximation a > ry is governed by N ~ %ln% in 3D [19]. We

will show also that Efimov effect is absent in 2D case [20] and thus the number of
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bound states for three bosons bbb [21] or two bosons and one fermion bbf is finite.
Moreover all of them have the energies of the order of |E,| = 1/ma®. Thus all
3-particle levels in 2D case are shallow (or quasiresonance) in origin.

We proceed than to the 4-particle problem. At first we solve Skorniakov-Ter-
Martirosian equations 4 fermions [18, 22] and find the scattering length a,_»
[23-25] for dimer—dimer scattering (for scattering of one molecule ff| on one the
other). Here in the resonance approximation we get an exact result
a>_» = 0.6lal > 0 which is different from mean-field result a,_, = 2lal and from
the result of the ladder approximation of Pieri and Strinati [26] which predicts
a,_, = 0.75lal if we neglect the dynamics (the possibility for two molecules to
form virtual states with 3 and 1 particle [23-25]).

We also discuss the shallow bound states for 4 bosons [27], 3 bosons and 1
fermion and 2 bosons and 2 fermions in 2D case where Efimov effect is absent.
Note that all the binding energies of the 4-particle complexes can be expressed in
terms of |Ey| = V/ma® only in 2D [20, 28].

In the end of the chapter we discuss the importance of the obtained results for
the phase diagram and life-time of ultracold Fermi-Bose-gases and mixtures. In
particular we use the value of a,_; to estimate the inelastic scattering time in the
resonant Fermi-gas [29] and 4-particle binding energies E, to complete phase
diagram of the resonance Fermi-Bose mixture with attraction between fermions
and bosons. Here we pay a special attention on the complexes (f;b, f|b) formed by
two composed fermions f;b and stress the analogy between ultracold Fermi-Bose
mixtures in magnetic traps and strongly-interacting mixture of spinons and holons
in underdoped high-7- compounds in the framework of Laughlin ideas [30-32] on
spin-charge confinement. According to Laughlin, the spinons and holons experi-
ence the phenomenon of spin-charge confinement in analogy with the confinement
[33] in quark-gluon plasma (in quark bags) in QCD-physics [32, 33, 35]. We think
[36] that for strongly-correlated quasi-2D (layered) cuprates the philosophy of
Laughlin is more adequate that the philosophy of Anderson and Lee [8—10] on
spin-charge separation, which is based on the analogy with 1D-physics. We
emphasize that due to linear (string-like) confinement potential between spinons f;,
and holons b; [37-39], the composite hole h;, = f;,b; is formed on the lattice. It
represents a compact object (a bag or spin-polaron [40]). The Cooper pairs in this
system are formed by the residual (dipole—dipole) interaction [40] between two
composite holes and effectively represent 4-particle complex [6, 18, 23, 25, 41],
consisting of two spinons and two holons. Thus the superconductive gap reads
Ay = <hwhj,a> = <figbi, fj,abj>. It is formed by two composite holes on the lattice
with a total spin S, = 0 of a pair. We will consider these ideas more detaily in
Chap. 13 on the basis of 2D t-J model and advocate the scenario of BCS-BEC
crossover in the d-wave channel for pairing of two composite holes (two strings or
two spin polarons) in underdoped cuprates.

We stress also the importance of dimer—dimer amplitude a, , for the phase-
diagram of the BCS-BEC crossover and the spectrum of collective excitations in
resonance Fermi-gas. We will consider these properties in detail in Chap. 7.
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Note that the creation of three and four particle complexes, as well as the
evaluation of different scattering amplitudes, for the two-particle potentials
V(r) = ar’ + rﬁ, 1 <{d,7} <2, which are the sum of confinement and Coulomb
(or dipolar) parts, play an important role in the non-relativistic problem for
baryons [43] and in Quantum Chromodynamics [44], especially when the prob-
lems of inhomogeneous superconductivity are studied in the QCD theory at zero
temperature. Note that the potentials V(r) = ar? —l—rﬁz (6 =y =2) allow also for
exact solutions at least on the level of the two-particle problem. The creation of
three and four particle complexes was also predicted for the quark-gluon plasma in
the high-temperature limit. This limit can be realized experimentally in heavy ion
collisions. Here three and four particle complexes can be formed on the way from
a gas to a liquid in the hydrodynamic regime for the quark-gluon plasma (see [101]
and references therein).

6.1 Two-Particles Pairing and Phase-Separation in Bose-
Gas with One or Two Sorts of Bosons

As we already discussed in Chap. 5, in contrast with two-particle Cooper pairing in
Fermi-systems (see Chaps. 9-12), the essence of a superfluidity is Bose-systems is
one-particle Bose—Einstein condensation (BEC). This asymmetry between Fermi
and Bose (two-particle versus one-particle condensation) was challenged in a
pioneering paper by Valatin and Butler [45]. They proposed a BCS-like variational
function for the description of an attractive Bose-gas. The most difficult problem
with the validity of their description is connected with the tendency towards phase
separation which arises in attractive Bose systems. Later on Nozieres and Saint-
James [1] conjectured that in a Bose-system with a short-range, hard-core repul-
sion and a van der Waals attractive tail, in principle, it is possible to create a two-
particle bosonic bound state and to escape collapse. Unfortunately their calcula-
tions in three-dimensional (3D) systems showed that, at least for one sort of
structureless boson, either standard one-particle BEC is more energetically ben-
eficial, or that a phase separation takes place earlier than the two-particle con-
densation. Note that the same result was obtained earlier by Iordanskii [46] for the
case of weak van der Waals attraction.

The important development of the ideas of Nozieres and Saint James belongs to
Rice and Wang [47]. These authors claimed that in two dimensions (where already
an infinitely small attraction leads to the bound state in a symmetrical potential well)
it is possible to realize a two-particle boson pairing. Moreover, this two-particle
pairing results, for small momenta g, <1 (&, is a coherence length) in a linear,
soundlike, dispersion law of quasiparticles at 7 = 0 in an analogy with a standard
one-particle Bose-condensation for weakly repulsive Bogoliubov Bose-gas.

To escape a collapse in a 2D attractive Bose-gas, the authors of [47] introduced
in their model a Hartree—Fock shift of the chemical potential ug ~ Un, connected
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with the short-range repulsion U. This shift in the case of U > 2V, where V is the
magnitude of the van der Waals tail, leads to a positive compressibility in the
system k' = dug/dn = U — 2V > 0.

The main goal of this section is to construct a phase diagram of a 2D dilute Bose-
gas with the van der Waals interaction between particles, by taking into account on
equal grounds the full contribution of a hard-core repulsion U and a van der Waals
tail V (see [2—4]). Throughout the paper we will consider the lattice model, and will
base our results on the exact solution of the two-particle T-matrix problem pre-
sented in [48, 49] in connection with a fermionic t-J model (see Chap. 13). Note that
effectively a lattice model with van der Waals interaction between bosons is a
bosonic analog of a famous fermionic t-J model considered in Chap. 13 for high-T¢
systems. We will study the possibility of different two-boson pairings, as well as the
possibility of a total phase separation in the system. We will also consider the two
sorts of structureless bosons described by the two-band bosonic Hubbard model
[50-55] (note that fermionic one-band and two-band Hubbard models [57] are
considered in Chaps. 8, 9, 10). In the case of attraction between bosons of two
different sorts, we will find a possibility of an s-wave two-boson pairing (b;b,) # 0.

6.1.1 Lattice Model with van der Waals Interaction Between
Bosons

The model under consideration is described by the following Hamiltonian on the
2D square lattice [2—4]:

H = —t Z bfbj—ﬁ-%Zn? —aninh (611)

<> @)

where n; = b'b; is a 2D boson density on site i. We will work in the limit of strong
hard-core repulsion U > {V; ¢}, and restrict ourselves mostly to a low-density
limit which in the lattice case yields an2 < 1, d being the interatomic distance. In
(6.1.1) ¢ is hopping integral for bosons, (ij) are nearest lattice sites on the square
lattice, V is van der Waals attraction on neighboring sites, U is onsite repulsion, b;
and b; are bosonic creation and annihilation operators on site i of the lattice. Note
that in the case of V = 0, the model (6.1.1) is just the Bose-Hubbard model,
extensively studied in the literature for the case of 2D “He submonolayers, as well
as for the flux lattices and Josephson arrays in the type-II superconductors (see
[50-55]). As we already mentioned in the introduction to this section, a model
(6.1.1) is, to some extent, a Bose analog of the fermionic t-J model considered by
Kagan and Rice in [49]. After Fourier transformation from (6.1.1) we obtain:

. U
H = E Spb;bp + 5 E b]-:l bz;bszqbkﬁrq - E V(C])bl_(‘_l bk1+qb/:—2bk27qa (612)
P kikaq kikag
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where ¢, = —2t(cos pyd + cos pyd) is an uncorrelated bosonic spectrum on the
square lattice, and V(g) = V[cos g,d + cos g,d] is a Fourier transform of the van
der Waals tail. As a result, a total interaction in the momentum space is given by
the formula:

Vegr(q) = % = V(q). (6.1.3)

6.1.2 Two-Particle T-Matrix Problem

An instability toward a two-particle boson pairing manifests itself (just as in the
case of Cooper pairing of two fermions in Chaps. 5 and 9) in the appearance of a
pole at a temperature 7 = T in the solution of the Bethe—Salpeter equation for the
two-particle vertex I' for zero total momentum of the two bosons (p and —p) (see
[2—4, 56]). To proceed to the solution of this equation, we must solve at first
the T-matrix problem [58] for the two bosonic particles in vacuum. Here we can
use the results of [49] (for the T-matrix for two fermions), since the solution of the
two-particle problem does not depend upon statistics of colliding particles. For the
T-matrix problem it is convenient to expand V.x(g) in (6.1.3) with the eigen-
functions of the irreducible representation of the lattice symmetry group D,
(see also Chaps. 9 and 13). This yields:

u v
Ve (extended s — wave) = 3773 (cos pud +- cos pyd) (cos pd + cos pld);

\%4
Ve (p — wave) = — 5 (sinp.dsinp.d + sinp,dsinpd);

Ve (d — wave) = ——(cos p,d — cos pyd)(cos p\d — cos pid),

| <

(6.1.4)

where we use the functions ¢@g = (cos pyd + cos pyd), @, = (sin pyd + isin pyd)
and @4 = (cos pyd — cos pyd) respectively for extended s-wave, p-wave and
d-wave channels on the square lattice.

Note that, for spinless bosons, which we formally consider in (6.1.1), the total
spin of the Bose pair is zero (S;,; = 0). Hence only s-wave (I = 0 in the absence of
lattice) and d-wave (I = 2 in the absence of lattice) pairings are allowed by the
symmetry of the pair W-function. A p-wave pairing (/ = 1 in the absence of
lattice) is allowed only for an odd total spin (S,,; = 1, 3 ...) of the two bosons (the
total pair W-function which is product of orbital part and spin part is symmetric for
two bosons). Nevertheless we will conserve the results for the p-wave pairing in
our paper because the generalization of (6.1.1) for the case of bosons with internal
degrees of freedom is straightforward. The T-matrix problems for p- and d-wave


http://dx.doi.org/10.1007/978-94-007-6961-8_5
http://dx.doi.org/10.1007/978-94-007-6961-8_9
http://dx.doi.org/10.1007/978-94-007-6961-8_9
http://dx.doi.org/10.1007/978-94-007-6961-8_13

186 6 Composed Particles, Trios and Quartets

channels are very simple. Solutions of these problems for the two particles with a
total momentum zero and a total energy E yield:

v
Td,p(E) = —@a (615)
where
L /2n/d /2n/d dp; dpy |¢’d,p‘2
W= )y )y 2m 21 E+ 41(cos p.d + cos pyd) (6.1.6)

do d’p 2
= | ———=6G E.p)Go(—w, —p
/27'C (27‘[)2 0(0)+ 7p> 0( , p)|(pd,p| )
Go(w,p) = m is vacuum Green function and ¢q, are the functions for d-
wave and p-wave channels.

6.1.3 Thresholds for Extended S-Wave, P-Wave and D-Wave
Two-Bosons Pairings

Let us find the thresholds for the bound states in the extended s-wave, d-wave and p-
wave channels. The appearance of a bound state means that E = —W + Eand E <0,
where W = 2zt = 8¢ is a bandwidth for the 2D square lattice (z = 4 is a number of
nearest neighbors on the square lattice). For the threshold E = 0. An exact solution
of (6.1.5) and (6.1.6), which involves the calculation of elliptic integrals of first and
second order (see [2—4, 49]), yields for p-wave and d-wave thresholds:

Vi 1
(4—C> R 5~ 2.8,
! p—wave 1 - T

Ve 1
— ~ ~3.7.
(4t ) d—wave % -1

Note that a threshold for a p-wave pairing is lower. Now let us proceed to an s-
wave channel. Here an ordinary s-wave pairing is suppressed by large hard-core
repulsion U, however an extended s-wave pairing with a symmetry of the order
parameter AS* = A(cos pxd + cos pyd) is allowed (for ordinary s-wave pairing
Ag is just Ay and does not depend upon momentum p). In real space this pairing
corresponds to the particles on the neighboring sites. Moreover the pair W-function
is zero in the region of a hard core (r < r), and is centered (has a maximum) in the
region of a van der Waals attraction for ro < r < r; (see Fig. 6.1). On the lattice
ro ~ dl2and r; ~ d [2-4].

One can see that the W-function has a region of zero values (for r < ry). Butit has
no nodes because it does not change its sign for all values of r (¥ > 0). The rigorous
calculation of the threshold for an extended s-wave pairing yields [2—4, 48, 49]:

(6.1.7)
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Fig. 6.1 The Y-function of

an extended s-wave pairing. Y
ro is the radius of the hard

core repulsion, and rq is the e mm—e

radius of the van der Waals e
attraction. On the lattice, ,
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Thus the threshold for s-wave pairing is the lowest (compare with (6.1.7)).
Moreover for V > Vg = W/2 = 4t an energy of the bound state has the form:

| = |ES| = swe Tves). (6.1.9)

Of course, in a strong coupling case (for V > W) |Ei} ~ V. Correspondingly,
the bound states for p-wave and d-wave pairings yield [2—4, 49]:

- V-V 1
|EZ|:W( > Cp)ln . for V > Vg, = 1.4W;
[V—va (6.1.10)
- V-V
B = w=Ved qvs v, ~ 185w

We can see that for V> W: ’Eﬂ =~ V while ‘E’;’ ~ |EZ| ~ W, and extended s-
wave bound state correspond to a global minima in agreement with general the-
orems of quantum mechanics
(|Ej| > |E| > |E{| forfixed V > Vg > Vi, > Vey).

The T-matrix in an s-wave channel for small and intermediate values of V is
given by [2-4, 49]:

To(|E|) = W(l —V/4r)

11— V/4t)ln%74—vt'

(6.1.11)

The most important is that a strong Hubbard repulsion U acts only as an
excluded volume (for » < ry ~ d/2), and effectively drops out from (6.1.11) at low
energies. It manifests itself only as an additional pole (at very large energies
E =~ U > 0) in total analogy with antibound state [59-61] in fermionic Hubbard
model (it will be considered in Chap. 14). For V < 4t the T-matrix:
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=

Ts(|E|) ~ —

, (6.1.12)

£

In

=t

corresponds to repulsion and coincides with the T-matrix for the 2D Bose-Hubbard
model at low density. The same T-matrix was obtained by Fukuyama et al., for 2D
fermionic Hubbard model at low density [100]. For V = 4t: TS\E | = 0 and there is
no interaction at all. Finally, for V > 4t, Tg(|E|) <;0 corresponds to an attraction
and reflects the appearance of the bound state [2—4, 49].

6.1.4 Bethe-Salpeter Integral Equation for S-Wave Pairing
of Two Bosons

Let us consider at first the most interesting case of V > 4¢ and find the critical
temperature for an extended s-wave pairing of the two bosons. The solution of the
Bethe—Salpeter equation for bosonic systems reads [2—4, 62], (see Ref. [32] in
Chap. 4):

T,
T, = : (6.1.13)

dpdpy cth ,T
1+T«-’f (2n)* 2(5—n)

where T is a T-matrix for s-wave pairing and I' is an s-wave harmonic of the total
two-particle vertex I' in the Cooper channel (for zero total momentum
P =P, + P> =0 and zero total Matsubara frequency Q = Q; + Q, = 0 of the
two incoming particles—see Chaps. 5 and 9 also for the case of two fermions). For
low density of bosons npd® < 1 one has, g = —W—|—2m7 uw=—4t+ [, and

=g —pn= % — [t for the uncorrelated quasiparticle spectrum counted from the
chemical potential level.
The most substantial difference of (6.1. 13) from an analogous equation for two

fermions is the replacement of th L by cth % in its kernel. Moreover, as shown by

Miyake in [63] for the 2D attractive Ferml gas [l =¢p —‘E—z”‘ (where |Ey| is an
absolute value of the binding energy of a pair in vacuum). So, in a weak-coupling
case, when ¢g > |E|, the chemical potential i =~ ¢r > 0 is positive. In contrast to
this, we shall see below that a bosonic chemical potential ji is always negative
even in the weak-coupling case, when a binding energy is much smaller than a
degeneracy temperature |E,| <Ty = 22

Another very important point (see also Chaps. 9 and 13) is that the T-matrix,
which enters into the Bethe—Salpeter equation, must be calculated for a total
energy E = 2Ji by [2—4, 49] of colliding bosons. The chemical potential i can be
determined from the requirement of the number of particle conservation. This
requirement yields:
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From (6.1.14) for the temperatures |E,| < T < Ty < W we obtain:

Ty
ﬁTexp<T><O (6.1.15)

Note that a standard Hartree—Fock shift nU drops out from the expression for
bosonic quasiparticle spectrum ¢, = ¢, — p both in the Bethe—Salpeter equation
(6.1.13) and in the equation for the number of particle conservation (6.1.14) in
similarity with a fermionic problem. Now we are ready to solve the Bethe—Salpeter
equation (6.1.14). The critical temperature 7¢ corresponds to the pole in (6.1.13),

md’T;(2]2)
1+—2"1=0 6.1.16
e : (6.1.16)
where
~w Cdycth(erz‘?‘()
1= # (6.1.17)
y+ar
2
and y = ;27

mTe

An analy51s of (6.1.17) shows that the main contribution to the integral comes
from the lower limit of integration.

Hence providing |fi|/T¢c < 1 we have:

W/Te
d 2T
I~ | —2 _xZ¢ (6.1.18)

(+dgy
As a result (6.1.18) can be represented in the following form:

TC Y

A — 6.1.19
@l md*Ts(2i) ( )

It is useful now to represent T, (2ft) in terms of the binding energy Ey,. Utilizing
(6.1.9) and (6.1.11) we can write:

- W 4n
TS(Z#) == zm

2lg
In& md? In 24
[Ep| 1Es]

(6.1.20)

It is important to mention here that 1 <0, and hence the T-matrix in (6.1.20)
does not contain an imaginary part. In the fermionic case it =~ ¢z > 0, and the
T-matrix contains an imaginary part corresponding to the resonant scattering. As a
result, from (6.1.20) we obtain:
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2l
4ln—— = — 6.1.21
5= (6.1.21)

Assuming that |Ep| < Te < Ty, we get (see also Chap. 8): [(T¢) =

—Tc exp(%) and ‘T—"Cl = exp(— ;—g)
Later on we will justify this assumption.
As a result from (6.1.21) we will obtain:

Te—__T0
2
ln ZIHW

Recall that in the case of the fermionic s-wave pairing in two dimensions a
critical temperature according to Miyake [63] (see also Chap. 8) reads:

TC =4/ 2‘C\F|Eb|

Let us analyze expression (6.1.22). As we already know |E,| = 8We ™, where

(6.1.22)

V — Ve
sV =Ve) (6.1.23)
nV
Then a condition |Ep| < T means:
h€ < 1L (6.1.24)
IHT—O
Hence In(Ty/|Ep|) = 1/2 —In(W/Ty) ~ 1/, and
T T
Te ~ 0 0 (6.1.25)

In Glnlg_(;:\) - In(g;)’

which is in an agreement with [47]. Note that Tc from (6.1.25) satisfies the
conditions |E,| < Te < Tp, so an assumption used for the derivation of Tc is
justified.

For T < T¢ the spectrum of the quasiparticles acquires a gap:

E,= ﬁ+|~\ 2—A2 (6.1.26)
p = m n . 1.

Note that at low densities of bosons a gap A becomes isotropic in the principal
approximation.

The gap A together with the chemical potential ft must be defined self-consistently
from the two coupled equations:
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Jl U g cthy/ 22 — A? JAT?
| = / : (6.1.27)

Yl A2 AT

and

(6.1.28)

where ¢, = % + |ft| and z = &/2T.

Of course, the solution of the system of Eqgs. (6.1.27) and (6.1.28) exists only if
|ii| > A, or, in other words, only if Ez = |i|*—A? > 0. The exact solution of these
equations yields for zero temperature in an agreement with [47]:

|Eb|

(T =0)| =A=21, (6.1.29)

This result is very important. It justifies our scenario, leading to a linear,
soundlike spectrum of the quasiparticles for a small momenta p. Indeed,

P\, P P\, P
E, = — —|u| = — —|Ep. 6.1.30
v (2m> +m|'u| <2m> +2m| b ( )

From (6.1.30) for the case p&, < 1, where &, = \/#E‘ is the coherence length
m|Lkp

of the boson pair, we immediately obtain a linear dispersion law:

E, =cp. (6.1.31)

|

2m
compressibility of the system k' ~ ¢ is positive. This fact proves the stability of
a superfluid paired state and excludes the possibility of the collapse of the pairs in
the system. Note also that close to 7 one has:

In (6.1.31) ¢* = Bl is a sound velocity squared. This means that an inverse

Te—T
Tc

A(T) = A(0) (6.1.32)
which is similar to the BCS theory. We would like to mention that bosonic pairs in
the limit |Ej,| < T are extended in full analogy with the BCS theory. That is, the
coherence length in this limit,

1
&> N 1 (6.1.33)
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is larger than the mean distance between the bosons. The Bose pairs are strongly
overlapping in this limit. The pairing takes place in the momentum space in an
analogy with the Cooper pairing in the BCS picture of superconductivity.

In the opposite limit |Ep| > Ty the pairs are local and the situation closely
resembles BEC (or bipolaronic) limit for the fermionic systems [64, 65]. That is,
the creation of the bosonic bound pairs is associated with the crossover temper-
ature [2—4]:

|Eb|

T = (6.1.34)

The Bose condensation of the pairs occurs at lower temperature [66, 67]:

T

Te = it ud)” (6.1.35)

Note that this temperature is obtained in Fisher-Hohenberg theory [66] from the
ansatz Ji(T¢) = —Tcexp(—To/T¢) + foTo = 0, where fo = 1/In(1/nd?) is a repul-
sive interaction between the local pairs and f,T} is a Hartree—Fock contribution to
the chemical potential ug in 2D repulsive Bose-gas. Thus the superfluid transition
takes place only in the case of a residual repulsion between the pairs. Also note
that in a dilute Bose-gas in 2D the Berezinskii-Kosterlitz-Thouless (BKT) con-
tribution of vortices [68, 69] is important only very close to T, so the mean field
expression (6.1.35) gives a very good estimate for the exact BKT critical tem-
perature: TC%ZB"T ~ W < 1 [66, 67].

In the case of the local pairs the coherence length is small:

& < % (6.1.36)

The pairs are compact, and the pairing takes place in the real space.

6.1.5 Possibility of p-Wave and d-Wave Pairing of Two
Bosons

Now let us analyze the solution of the Bethe—Salpeter equation for p- and d-wave
two-boson pairings. Here the critical temperatures should be found from the
conditions (see [2—4, 49]):

1+ Tpa(2i)pa =0, (6.1.37)
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where

ddePy Cth&zr?
(27)* 2(e —

| Ppal (6.1.38)

o~
a
I
o\g
Ny
o\iw
Ny

In a low-density limit the ¢-functions can be approximated by the following
expressions [2—4, 49, 70]:

@, = (px + ipy)d = pde'’;
1 1
=5 (? —p_%)al2 = §p2d2 cos2¢.
Hence after an angular integration we obtain:

C,,

~ m C
IP:E pdp ZCZTC 2d2
g (6.1.39)
~ m CchT
1 d c 4d4
“Ten) PP 2z,

where again ¢, = % + |1

Additional factors p°d” and p*d”* in the integral expressions for jp and I, reflect
a well-known fact, that for slow 2D particles in vacuum an s-wave harmonics of
the scattering amplitude behaves as fy ~ In(1/p°d”), whereas for a magnetic
number m # 0, the scattering amplitude vanishes for p goes to zero as
fm ~ (pd)*™ (see Quantum mechanics [26] in Chap. 5). The additional factor ptd*

leads to the absence of an infra-red singularity for ¢ — 0 in I;:

~ de - & 2
Idw/ e 0 <s~§—m) (6.1.40)
For the p-wave channel the infra-red singularity becomes logarithmically weak:
5 de-¢
I,~ / o Ine. (6.1.41)

This means that the Bethe—Salpeter equation has no solutions in the p- and d-
wave channels for IVI/f < 1.

Hence the boson pairing with a large coherence length &, > \/iﬁ is absent in a p-

wave channel as well as in a d-wave channel. Here only the limit of the local pairs
is possible. For p- and d-wave channels local pairs are created at the crossover
(Saha) temperature T [2—4] given by (6.1.34), where binding energies |Efl and IE?,I
are given by (6.1.10) for V > V¢, and V > V(4 correspondingly. Remember that
for a fixed V> Veg > Vi [ERl > IEY and thus TP > T¢. Providing that the
interaction between the local pairs is repulsive in p-wave and d-wave channels, the
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mean-field temperature of the Bose condensation of the local pairs should be
determined again from the ansatz for the chemical potential |fi(T¢)| with an
account of the repulsive Hartree—Fock shifts in p-wave and d-wave channels (see
[66]). In the next section we will show, however, that in the van der Waals model
(6.1.2) there is a competing phenomenon of the total phase separation which takes
place earlier (at smaller values of V/f) than binding in different (s-wave, p-wave,
d-wave channels). Thus it is difficult to get two-boson pairing in the present model.

6.1.6 Total Phase Separation

As we discussed in Sect. 6.1.1, the real collapse is prohibited in our system by
large Hubbard repulsion U. However, the phase separation on the two large
clusters is allowed. The first cluster corresponds to the Mott—Hubbard [57, 71]
Bose solid. In this cluster nbd2 — 1, that is, each site on the quadratic lattice is
practically occupied by one boson. Such a cluster is localized due to Mott—Hub-
bard consideration for large U > W (where W is a bandwidth). It has no kinetic
energy. However, it has a potential energy of the order of —2V for one particle. A
second cluster has a very small boson density nyd®> — 0. In this cluster for
V < 4t the energy per particle is ¢ = — % + %fom where fy = 1/In(1/nd”) in the
absence of a bound state. Rigorously speaking (see also Chaps. 13 and 15), at a
given bosonic density n the phase separation (according to Maxwell construction)
results in the formation of the two clusters with the densities n; > n and
ny, < n ([48, 49]), where nla'2 is close to or identically equal to 1 (one boson per
site). The phase separation for V < 4t takes place if the energy per particle in the
cluster with the density n; becomes smaller than the energy per particle in the
cluster with the density n, [2-4],

w
2 )
where # is an unknown numerical coefficient of the order of 1. Note that in the
fermionic t-J model, considered in [48, 49] (see Chap. 13), the Mott—Hubbard
cluster with nd®> = 1 has an antiferromagnetic order for electrons with spins
S = % on the square lattice. Hence instead of 21V in (6.1.42) one should write
1.18 J—the energy per bond on 2D AFM square lattice. As a result (see Chap. 13)
in a fermionic case J,s = 3.8¢. In our system V,s ~ 2t, due to the absence of
kinetic energy and zero point energy in the case of structureless bosons. In the
same time in our case for nd> — 0 the phase separation between the Bose solid
(see Chap. 2) and the one-particle BEC takes place. According to Dagotto, Riera

—mV< — (6.1.42)
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et al. [72, 73] for an2 — 1, the phase separation takes place already for small
values of IVI/z.

In principle, another scenario of the phase separation connected with the cre-
ation of quartets [74] is also possible in our system. It requires an evaluation of the
four-particle vertex which is often impossible to do analytically (except for the
resonance approximation when the scattering length is much larger than intersite
distance d—see the last part of the chapter). However, we think that our scenario
of total phase separation takes place earlier, for smaller values of V/¢ than the
quartet formation. This is in agreement with numerical calculations [72, 73] for the
2D fermionic t-J model on the square lattice.

6.1.7 Phase Diagram of the System

In this section we will complete the phase diagram of the system. At first, note that
for V < Vs (when the T-matrix for an s-wave channel is repulsive) we have at low
density a standard Bogoliubov Bose-gas with a hard-core repulsion. It will be
unstable toward a standard one-particle BEC at a critical temperature given again
by Fisher-Hohenberg type of formula [see (6.1.35)]. For V > 2¢ a total phase
separation on two large clusters takes place in our system. One of these clusters
contains a Mott—Hubbard Bose-solid, another one contains a Bose-gas with one-
particle condensation (see Fig. 6.2).

For large densities n = nc < 1 (nc = 1 in [54, 55] for structureless bosons) the
system will undergo a transition to the Mott—Hubbard Bose solid. As a result, on a
qualitative level the phase diagram for our system has the form, presented in
Fig. 6.3. Note that our model could be important for the study of the biexcitonic
pairing in semiconductors [75, 76] (see also the end of the chapter). In this context
we should mention the important results of Lozovik et al. [77]. It could be also
important for the understanding of the physics of the gas of kinks and steps on a
solid interface of “He (see Chap. 2). Note that if we change the sign of the nearest
neighbors interaction V from attractive in the Hamiltonian (6.1.1) on repulsive, we
will get a bosonic model with on-site and intersite repulsions, which gives a
disproportionation (a density wave) in some range of parameters U, |V, W and
density ngd® and can possibly serve as a simple toy model for bosonic

Fig. 6.2 Phase separation on

two large clusters. First one

corresponds to Bose solid \

with one boson per site o
an2 — 1, the second one to

dilute Bose-gas ngd> — 0 /

with repulsion between

bosons [2-4] Bose solid Bose gas

ngd?—1 ngd?—0
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Fig. 6.3 Qualitative phase ng |
diagram of the 2D Bose-gas
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supersolidity on the lattice (see Chap. 2) in case of moderate values of on-site
repulsion U (when double occupation of the site is not totally prohibited) [78—-81].

6.1.8 Two-Band Hubbard Model for Two Sorts of Bosons

Let us consider the two-band Hubbard model for two sorts of structureless bosons.
The Hamiltonian of the system has the form [2—4]:

" U U U
H=—17 bib,~ t2zb2+ib2j+% ni; JF% m; *7122"11'”21'7
(@) (i) i i i

(6.1.43)

where 7, and 7, and n; and n, are, respectively, the hopping matrix elements and
densities for bosons of sorts 1 and 2. For simplicity, we will consider the case
t, = t,, which corresponds to the equal masses m; = 1/(2t,d*) = m, of bosons.
We also assume that the bottoms of the bands coincide. In the Hamiltonian
(6.1.43) U,; and U,, are Hubbard onsite repulsions for bosons of sorts 1 and 2
respectively. Finally Uj, is an onsite attraction between bosons of two different
sorts (two-band Hubbard model will be also considered in Chaps. 10, 14 and 15 for
the case of intraband and interband repulsions).

In the present section we will consider the low-density limit of the model
(6.1.43), when both n]d2 < 1 and n2d2 < 1 on the square 2D lattice. In this limit
we must replace the Hubbard interaction U, by the corresponding T-matrix. The
relevant expression for the T-matrix T, is given by:

S Uiz
TIZ(E) - 1—-U f d*p 1 ’
12 (2n) p/2m+|E|

(6.1.44)

where E is given again by E = E + W. The T-matrix has the pole for the energy:
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- 47
|E| = |E,| = Wexp (— m) (6.1.45)
in the intermediate coupling case (|Eb| < W). In the extremely strong coupling case
Uy, > W the pole corresponds to the energy |E| = |Ej| &~ Uj,. The pole in the T-
matrix reflects the appearance of the bound state of the two bosons of different
sorts (bb,).

Now we can solve the two-particle problem in the presence of the bosonic
background. A simple analysis shows that only local bosonic pairs are possible in

our case. They are formed at a high crossover temperature 7. = ; nlvffb/‘Tg’
To = min{Ty, To>}, and Ty; and Ty, are degeneracy temperatures for bosons of
the two sorts. Correspondingly the pairs are Bose condensed at lower temperature
Tcir = m(ﬁ%’ where 4 = %. Our results are valid is the case |E,| > {To1, Toz }-
In the opposite case of higher densities, when at least one of the temperatures T,
or Ty, is larger then |Ep|, we have at first a standard one-particle condensation for
bosons with higher density. As a result the two-particle pairing between bosons of
different sort can take place only as a second superfluid transition inside the
superfluid phase with one-particle BEC.

The obtained results for T and T, in low-density case |E,| > {To1, Top } can
be applied for anisotropic magnetic traps [2—4] where one of the oscillator fre-
quencies is large: {wy; w,} < Te <(Ty ~ ;). Then the system occupies only the
lowest energy level in z-direction and becomes effectively two-dimensional. In this
case formulas for T¢ are qualitatively correct, because it is possible to make the
coherence length of the Bose-gas &y smaller than an effective size of the trap R(e)
for ¢ ~ Tc [95]. Another limitation on the two-particle pairing is connected with
the energy release of the order of O ~ |E}| when the pairs are created. Due to this
energy release the most energetic particles can overcome the potential barrier and
evaporate from the trap (a process which is analogous to an evaporative cooling
technique considered in Chap. 5).

Let us now analyze the stability of our system with respect to quartet formation.
For simplicity let us consider first an extremely strong-coupling case {U;, Uj,,
Uiy} > W (remind that m; = m, and thus W; = W, = W). In this case the local
pairs of two bosons of different sorts have onsite character (b;b,) # 0 on the
lattice. To escape local quartets ((b1bob1b;)) creation we must satisfy the
inequality Uy, + Uy, — 4U», > 0.

The situation is less trivial in the intermediate coupling case when for the
binding energy |Ej| in (6.1.45) we have Tj < |Eb| < W. In this case the Bose pairs

bb, has the radius a > d (though a<1/y/n for equal densities n, = n, and
masses m; = m, when degeneracy temperatures To; = Ty, = To = 2nn/m).
Effectively this situation corresponds to the resonance case for shallow bound
states |Ep| = ﬁ < mL (where ro = d on the lattice) (see Chap. 5).

2
7o

where

In Sect. 6.3 we will define the binding energies |Es| of the three-particle b;b,b,
and |E,| of the four-particle bbb b, complexes in this case. We will also present
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variational calculations for the binding energy and radius of larger bosonic
droplets which contain N > 4 particles in the intermediate coupling case in 2D.
Note that the phase-diagram of the two-component bosons was also investigated
on the optical lattices by Kuklov, Prokof’ev and Svistunov [82] and by Demler’s
group [83].

Note that the results on two-boson pairing are also important for SU(2)—slave-
boson theories of high-T¢ superconductivity [10, 84, 85] and Schwinger-boson
theories of 2D magnets [86—88].

6.1.9 Slave-Boson Formulation of the t-J Model. Application
to High-T Systems

The superconductive pairing in the 2D fermionic t-J model will be considered in
details in Chap. 13. Here we will briefly discuss the problem which arises in the
approaches to the underdoped t-J model based on the scenarios of spin-charge
separation advocated by Anderson et al. and Lee et al. The Hamiltonian of the
canonical 2D t-J model reads:

:—thm —nig)e,(1—njy) +JZ<SS ) (6.1.47)
(ij)

where ¢, and cj, are creation and annihilation operators for electrons on neigh-
boring ({ij)) sites i and j with spin projection @, n;; = cj c;, is onsite electron
density with spin projection ¢ (n; = Enm) and S = 2 Wamciv is electron spin

(G, are Pauli matrices). In slave-boson formulation of the t-J model (based on the
scenario of spin-charge separation) close to half-filling (nd> — 1 on the 2D square
lattice) an electron according to Anderson and Lee [8-10, 84, 85] can be repre-
sented as a product of spinon (fermion with charge 0 and spin ’2) and holon (boson
with charge lel and spin 0):

Cip = figbi. (6.1.48)
A superconductive d-wave gap (for electrons):
Aq = (circj — cicpr) (6.1.49)
is a direct product
Ag = Ay (6.1.50)

of a spinon d-wave gap
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and a holon s-wave gap
Ap = <b,-bj>. (6.1.52)

Then a natural question arises whether (b)) #0 and, accordingly,
Ay = (b;){b;), or (bj) = 0 but (bbj) # 0. In other words, whether a one particle
or two-particle condensation of the holons takes place in our system [10, 89].

This problem is a very difficult one and, surely deserves a very careful analysis.
Our preliminary considerations show, however, that the more beneficial conditions
for the two-particle condensation may arise in the SU(2) formulation of the t-J
model [84], which assumes the appearance of two sorts of holons b, and b,. Note
that in the standard U(1) formulation of the model [85] with one sort of holons an
effective potential of the two-holon interaction on neighboring sites appearing after
the Hubbard-Stratonovich transformation has a form:

8* J N

(7 — Z) > b bibib;. (6.1.53)
(i)

and thus corresponds to the repulsion for 7#>J (in 2D cuprates usually

J~ (1 +14)t<t). This observation excludes the possibility of the two-holon

pairing in the U(1) formulation of the t-J model.

In the SU(2) case it will be desirable to derive conditions when (b;) = (b;) =0
but (b1b,y) # 0 for two sorts of holons. For such a nondiagonal pairing, as already
discussed above, it is easier to satisfy the stability criteria [2—4]. Note also that the
same situation with two sorts of bosons and a possible attraction between them can
be realized for 2D magnetic systems. The corresponding bosonic Hamiltonian can
be obtained here after a Schwinger transformation of spins [86—88] in extended
Heisenberg models.

Concluding this section we would like to emphasize that we analyzed the
possibility of the formation of boson pairs with s-wave symmetry and an
appearance of total phase separation in a 2D Bose-gas. In addition to that we
considered the case of boson pairs with the symmetries of p- and d-wave type. We
also considered the qualitative phase diagram for the 2D Bose-gas with the van der
Waals interaction between the particles, which, besides a standard one-particle
BEC, contains the regions of the Mott—-Hubbard Bose solid and a total phase
separation. We also considered the situation for two sorts of bosons described by
the two-band Hubbard model, and found the conditions for the two-particle pairing
between bosons of different sorts. We discussed the applicability of our results for
the different physical systems ranging from 2D magnetic traps or optical lattices,
submonolayers of “He and excitons in the semiconductors till Schwinger bosons in
magnetic systems and holons in the slave-boson theories of high-T¢
superconductors.

Note that for high-T- systems we considered in this section slave-boson for-
mulation of the t-J model based on the ideas of spin-charge separation. These ideas
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were transferred to high-7- materials from the 1D physics of doped spin chains
[98, 99]. We think, however, that for quasi-2D high-T systems more suitable are
the ideas of spin-charge confinement, which are based on the formation of the
AFM-string (of the linear trace of the frustrated spins) which accompany the hole
motion on 2D (or 3D) AFM-background of spins ’2. In the next section of the
present chapter and in Chap. 13 we will consider the scenario of spin-charge
confinement (introduced by Laughlin et al. [31, 32]), more detaily with a special
emphasis on the formation of composite hole there.

6.2 Composed Fermions in the Fermi-Bose Mixture
with Attractive Interaction Between Fermions
and Bosons

In Sect. 5.2 we considered composed bosons fif| which arise in the Fermi-gas with
attraction or in a broad Feshbach resonance in the framework of the one-channel
resonance approximation.

In Sect. 6.1 of the present chapter we considered the possibility of two-boson
pairing bb or bb, in the Bose-gas with one ore two sorts of bosons.

For the sake of completeness (to restore the full “supersymmetry” between
fermions and bosons, treating them on equal grounds) we will analyze in this
section a possibility to form composed fermions f,b in the Fermi-Bose mixture
with attractive interaction between fermions and bosons. Note that in an optical
dipole trap it is possible to get an attractive scattering length of the fermion-boson
interaction with the help of Feshbach resonance (see Refs. [49, 50] in Chap. 5).
Note also that even in the absence of Feshbach resonance it is experimentally
possible now to create a Fermi-Bose mixture with attractive interaction between
fermions and bosons. For example in [11, 12] such a mixture of 87Rb (bosons) and
4o (fermions) was experimentally studied. Moreover, the authors of [11, 12]
experimentally observed the collapse of a Fermi gas with the sudden disappear-
ance of fermionic “°K atoms when the system enters into the degenerate regime.
We cannot exclude in principle that it is just a manifestation of the creation of
quartets f1b, f|b in the system [6]. Note that in the regime of a strong attraction
between fermions and bosons, a phenomenon of phase separation with the creation
of larger clusters or droplets is also possible. Note also that for a large mismatch
between fermionic and bosonic densities ng < ng, a much slower collapse in the
Bose subsystem of ®*’Rb was experimentally observed. Here, after the formation of
composed fermions, a lot of residual (unpaired) bosons are still present. This fact
probably can explain a slow collapse in bosonic subsystem [6].
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6.2.1 The Theoretical Model

The model of a Fermi-Bose mixture has the following form on a lattice [6]:
H = H, + Hy + Hp,
H), = —tr Zfli};o + Urr annﬁ — Up Znﬁ;,
. U 6.2.1
RO WIEE S VAR WA

(i)

[A{;;B = _UBFZn I’l

This is a lattice analog of the standard Hamiltonian considered for example by
Efremov and Viverit [15] for the case of repulsive interaction between fermions and
bosons in "Li-°Li mixture (see Chap. 12). Note that in the Fermi-Bose mixture of
3He and “He (which will be considered in Chap. 11) the fermion-boson interaction
also corresponds to repulsion (see a classical paper [7] by Bardeen, Baym, Pines).
In the Hamiltonian (6.2.1) tg and #g are fermionic and bosonic hopping amplitudes,
fif, firand b;", b; are fermionic and bosonic creation and annihilation operators. The
Hubbard interactions [57] Ugg and Ugg correspond to hard-core repulsions between
particles of the same sort. The interaction Ugg corresponds to the attraction between
fermions and bosons. Wg = 8tz and Wy = 81p are the bandwidths in 2D. Finally, pg
and pug are fermionic and bosonic chemical potentials. For the square lattice the
uncorrelated spectra of fermions and bosons after Fourier transformation read:
époe = —2tp(cospyd + cospyd) — pp  for fermions and #, = —2tp(cosp.d +
cos pyd) — up for bosons, where d is a lattice constant.

6.2.2 Intermediate Coupling Case in 2D

In the intermediate coupling case in 2D (see Refs. [31, 32] in Chap. 5 and Chap. 8

for more details) mv&%

formation of a composed fermion f,b;) reads [6]:

< Upr <Wgp the energy of the bound state (for a

~ 1 1
|Es| = (6.2.2)
2mprd? 2 ’
X e f
where ‘E;,’ is counted again from the bottom of the band for composed fermions,
‘E},|mBF = m’Z’j:"ngF is an effective mass, Wgr = ﬁ is an effective bandwidth,

mp = ﬁ and mp = 21:7 are the band masses of elementary bosons and fermions.

Finally Topr = fn—z is an effective degeneracy temperature. For simplicity we
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consider the case of equal densities ng = ng = n which is more relevant for the
physics of holons and spinons in underdoped high-7T- materials.

Note that in the intermediate coupling case in 2D the binding energy for pairing
between fermions and bosons |1::b| is larger than bosonic and fermionic degeneracy
temperatures:

(6.2.3)

2nng 2anp .
F
mr ’

|Ey| > {TOB = i Tor = =
mp

but smaller than the bandwidths |E,| <{Ws, Wr}. In this case the pairing of fer-
mions and bosons (f,b) takes place earlier (at higher temperatures) than both
Bose—Einstein condensation of bosons or bibosons ({b) # Qor (bb) # 0) and
superconductive pairing of fermions (f,f_,) # 0. Note that a matrix element
(cs) = {fsb) is nonzero only for the transitions between the states with
|Ng; Ng)and (Ng — 1; Ng — 1|, where Ng and N are the numbers of particles of
elementary bosons and fermions, respectively [6]. For superconductive state a
matrix element for a quartet (c,c_,) = {fzb, f-sb) # 0 only for the transitions
between the states with |[Ng; Np) and (Ng — 2; Ng — 2|. Note also that in the case
of a very strong attraction Ugr > Wgg we have a natural result |E,| = Upr, and the
effective mass my, = mBF‘ﬁ’%; > mpy is additionally enhanced on the lattice (see
Nozieres, Schmitt-Rink [14] in Chap. 5). Finally let us emphasize that the diagonal
Hubbard interactions Ugr and Ugp satisfy the inequalities Upp > M(VI/‘;VW and

Upg > WZW in the intermediate coupling case. Now let us consider the tem-

perature evolution of the system.

6.2.3 Bethe-Salpeter Integral Equation

The temperature evolution is governed again (as in the case of two-fermion or
two-boson pairing) by the corresponding Bethe—Salpeter (BS) equation. After
analytical continuation iw, — @ + io [56] the solution of this equation for the
two-particle total vertex I" acquires a form:

—Uprd®

- &5 ne(&)tnslng )’
V= Usrd® [ 35 oo

(g, »)

(6.2.4)

2

where ¢(P) = 2”’1—1r —pip and 5(g—p) = % — i are spectra of fermions and
bosons at low densities npd2 < 1 and an2 < 1, the chemical potentials
Uy = % + pp and fp = % + pp are counted from the bottoms of the bands. Note
that in the pole of BS equation enters the temperature factor 1 — ng(&(P)) +
ng(n(g — P)) in contrast with the factor 1 —np(E(P)) —np(E(G—p)) for the
standard two-fermion superconductive pairing and 1+ ng(n(p)) + ns(n(g — P))
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for the two-boson pairing (considered in Sect. 6.1). The pole of the Bethe—Salpeter
equation corresponds to the spectrum of the composed fermions:

2

o p
=f=—*= . 6.2.5
w €p 2(}"’!3 + mF) :ucomp ( )
Note that in (6.2.5)
ﬂcomp = :aB + laF =+ ‘Eh| (626)

is a chemical potential of composed fermions. Similarly to (6.2.6) in Chap. 8 for
two-fermion pairing we will get fi.,,,, = 2iip + ’E;,‘ for a chemical potential (see
Refs. [31, 32] in Chap. 5) of a composed boson (molecule or dimer) f.f_,, while
instead of (6.2.5) we will obtain w = % — [ip for a pole of the fermionic BS-
equation. Note also that composed fermions are well-defined quasiparticles, since
the damping of quasiparticles equals to zero in the case of the bound state (£, <0),
but it becomes nonzero and is proportional to Ej in the case of the virtual state
(Eb <O). The process of a dynamical equilibrium (boson + fermion < composed

fermion) is again governed by the standard Saha formula (see Sects. 5.2, 6.1 and
[30-32] in Chap. 5).

6.2.4 Crossover (Saha) Temperature

In the 2D case Saha temperature reads [6]:

T E
% :miexp{_M}. (6.2.7)
Neomp 2n T

The crossover temperature T is defined, as usual, from the requirement that the
number of composed fermions equals the number of unbound fermions and bo-
SONS: Reomp = N = Nf = Nio/4, (Where nyo = ng + ng + 2ngomp is a total den-
sity). This conditions yields:

|E|
In(|Ep|/Tosr)

Note that in the Boltzmann regime ‘Eb’ > {Tog, Tor }. In fact we deal here with
the pairing of two Boltzmann particles.

That is why this pairing does not differ drastically from the pairing of two
particles of the same type of statistics. Indeed, if we substitute jiz + iy in (6.2.6)
on 2jip or 2ji we will get the familiar expressions for the chemical potentials of
composed bosons consisting either of two elementary bosons [2-4] or of two
elementary fermions (see Refs. [12—14, 31, 32] in Chap. 5).


http://dx.doi.org/10.1007/978-94-007-6961-8_8
http://dx.doi.org/10.1007/978-94-007-6961-8_5
http://dx.doi.org/10.1007/978-94-007-6961-8_5
http://dx.doi.org/10.1007/978-94-007-6961-8_5
http://dx.doi.org/10.1007/978-94-007-6961-8_5

204 6 Composed Particles, Trios and Quartets

For lower temperatures 7o < T < T« (where Ty = mgﬁ% — is the degeneracy
temperature for composed fermions) the numbers of elementary fermions and bosons
(for the case of equal densities ng = ng) are exponentially small. The chemical
potential of composed fermions reads fi,,,,, = —T In(T/Ty). Hence | Ticomp| < |Ey|

for T < T.

6.2.5 Three and Four Particles Bound States
in the Fermi-Bose Mixture

Note that in a general case to complete the phase-diagram of the Fermi-Bose mixture
model with attraction between fermions and bosons we should determine also the
binding energies of trios and quartets |E3l and |1E4l for the complexes f,b,b and f,b,f_
+b (the complex f,b,f_, is not formed due to repulsive interaction between a com-
posed fermion f;b and elementary fermion f_,). The knowledge of |E;| and |E4| will
help us to find the hierarchy of inequalities between the different Saha temperatures,

1O ~|By], TO ~ o, T ~ |4, (629)

*

where E, and E5 are counted from the bottoms of the bands for the lattice models
7 and T8 are Saha temperatures for the formation of composed trios and
quartets. If, as we will prove in the next section, T£4> > T,E3) > T*(z)
(which requires that |[E4| > {|E3]; 2‘Eb’}t0 escape decay processes) then the
phase-diagram of the Fermi-Bose mixture is trivialized. Namely for high tem-
peratures 7 > T¢" the elementary fermions and bosons prevail in the system, while
for lower temperatures T < T¢" the quartets fib.f\b prevail in the system.

The quartets are already composed bosons. They are Bose-condensed below the
temperature governed again by the Fisher-Hohenberg type of the formula [66]:

L
161n1n(oc‘E ‘)’

1=4]
Ty

Te~ (6.2.10)

where for equal masses mg = mg = m and equal densities ng = ng = n Ty = 7n/m
and ¢ the coefficient oo will be also defined in the next section for scattering of
molecule on molecule in 2D.

6.3 Bound States of Three and Four Resonantly
Interacting Particles

In this section we will complete the phase-diagram of 2D Fermi-Bose mixture with
attraction between fermions and bosons, as well as a phase-diagram of 2D Bose-
gas with one or two sorts of bosons by calculating exactly the bound states
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energies |E5| for the three-particle complexes bbb, bib,,by, f,b,b and |E,| for the
four-particle complexes bbbb, b1b,bb,, f,bbb and f,b,f_ ;b in the resonance (one-
channel) approximation [24, 25]. We will also present variational calculations of
the binding energy of the larger droplet |[Enl with the number of particles in the
droplet N > 4.

Finally to complete the phase-diagram of the attractive Fermi-gas in the regime
of BCS-BEC crossover we will determine the scattering amplitudes a,_; for the
scattering of molecules fif| on elementary fermions (atoms) f;, and a,_, for the
scattering of molecules f}f] on other molecules f;f] in the resonance approximation
for BEC-domain a > r( (see Chap. 5). Note that the scattering length a, | gov-
erns also the inelastic scattering time or a lifetime of the 3D resonance Fermi-gas
in BEC-domain, where |Ey| = 1/ma* < 1/mr§, and a > 0 (we do not distinguish
between |Ep| and |Eb| for the gas models in the absence of the lattice).

In the resonance approximation we will get diagrammatically the results for the
binding energies |E5| and |E4| only in terms of the two-particle binding energy |E,|,
while for the scattering amplitudes we will get a,_; and a,_, only in terms of the
two-particle s-wave scattering length a [24, 25].

6.3.1 Atom-Molecule Scattering Length for Three
Resonantly Interacting Fermions in 3D. Skorniakov-
Ter-Martirosian Integral Equation

In this section we will present diagrammatic method [21] to rederive the famous
Skorniakov and Ter-Martirosian result (firstly obtained for scattering of neutrons
on deutrons in nuclear physics) [18] for dimer-fermion (fif|; f;) scattering length
a,_ in the case of three resonantly interacting fermions in 3D.

Following Skorniakov and Ter-Martirosian in the presence of the weakly bound
resonance level—|Ey| in a two-particle cross-section, we can limit ourselves to the
zero-range interaction potential (lal > ry) between fermions. A two-fermion
vertex (two-particle T-matrix in vacuum) can be approximated by a simple one-
pole structure, which reflects the presence of the s-wave resonance level in a spin-
singlet state:

2 D2

P-p, P-p-p, P-p,

Fig. 6.4 The simplest exchange diagram for the three-particle interaction. The double line
corresponds to dimer, the single lines—to elementary fermions [6]. Intermediate single line
stands for the vacuum Green’s function G(P-p,-p,), where P is the total 4-momentum of dimer
and elementary fermion, P = {E, f’}


http://dx.doi.org/10.1007/978-94-007-6961-8_5

206 6 Composed Particles, Trios and Quartets

Taupys(E, P) = To(E, P) (8,045 — 0200p,) = To(E, P)y(at, B)x(7,0),  (6.3.1)

where in the 3D case

o(E, B) = T VIE + P/ — E (6.3.2)

- w3 E—Pl/4m+ |E)|

is given by the ladder sequence of vacuum diagrams (see Sect. 6.2 and Fig. 5.13).
E is the total energy and P is the total momentum of the incoming particles, m is
the fermionic mass, and |Ey| = 1/ma”® is the binding energy (a = ap — is an
s-wave scattering length of two fermions). Indices o, ff and 7, é denote spin state of
incoming and outgoing particles. The function y(a, ff) stands for the spin-singlet
state y(o, ) = 94105, — 94, 0p1. Note that the pole of the vacuum T-matrix (6.3.2)
coincides with the pole of two-particle vertex I" obtained for two-fermion pairing
in Sect. 5.2 in the absence of the lattice for ug = 0 (and pz = 2up + |Ep| = |Ep)).
The simplest process which contributes to the dimer-fermion interaction is the
exchange of a fermion (Fig. 6.4).
We will denote it as A (see [25]). Its analytical expression is:

Az (1, p2,P) = —0.4G(P — p1 — p2), (6.3.3)

where we introduce four-momenta P = (E,P), p, and p,. In (6.3.3) G(P) =

—L— is a bare fermion Green’s function in vacuum. The minus sign on the right-
2m

hand side of (6.3.3) comes from the permutation of the two fermions and corre-

sponds to the bare repulsive interaction between dimer and fermion. In order to

obtain a full dimer-fermion scattering vertex 75 we need to build a ladder again

from Aj; blocks. One can easily verify that the spin projection is conserved in every

order of T3, and thus 75,3 = 0,4T3. An equation for 75 will have the diagrammatic

representation shown in Fig. 6.5, and in analytical form it is written as:

T5(p1,p2, P) = =G(P — p1 — p2)
—iY G(P—pi—q)G(@)T2(P - q)Ts(¢,p2,P),  (6.34)

where 3° = [ d®gdQ/(2n)*.
Note that for three resonantly interacting bosons bb,b the sign near the first term
in right-hand side of (6.3.4) should be changed on “plus”. This means that we

B [ B q
= T v o T
T P'Pl P'pl P'pl P-q

P |

=

©
1

B

o

-,

Fig. 6.5 The graphic representation of the equation for the full dimer-fermion scattering vertex
T5. Intermediate double line corresponds to two-particle scattering vertex 7>(p — ¢g) (which
describes the bound state of a dimer). Intermediate single lines stand for the vacuum one-particle
Green-functions G(q) and G(P-p;-q) [25]


http://dx.doi.org/10.1007/978-94-007-6961-8_5
http://dx.doi.org/10.1007/978-94-007-6961-8_5

6.3 Bound States of Three and Four Resonantly Interacting Particles 207

have a bare attraction between a molecule bb and elementary boson b. Corre-
spondingly the bare interaction is also attractive for a molecule f,;b interacting with
elementary boson b, but it is repulsive (due to Pauli principle) for the interaction of
the molecule f,b with an elementary fermion f_, having an opposite spin
projection.

Returning back to three resonantly interacting fermions (fif| and f,) we can
integrate out the frequency Q in (6.3.4) by closing the integration contour in the
lower half-plane, since both T,(P — g) and T5(g, p»; P) are analytical functions in
this region. Moreover, if we are interested in the low-energy s-wave dimer-fermion
scattering length a3 = a,_,, we can safely put P = (E,P) = (—|E|,0) and
p> = 0. The full vertex T3 is connected with a3 = a,_; by the following relation
[24, 25]:

87w 3n
< >T3(ana_|E}7|) :ZQZ—I- (635)

m2a

Introducing a new function a,_ (k) according to the formula:

8n K oo 3n
(@) T3<{%,k},07Eh|) = Zazfl(k), (6.3.6)

and substituting it into Eq. (6.3.4), we obtain the Skorniakov-Ter-Martirosian
(STM) equation for the scattering amplitude [18, 24, 25]:

jar-1(k) 1 _4n/ ar-1(q) &g
B+ mlg,| KB @ + ¢ + kG + m|Es]) (2m)°

Solving this equation numerically one obtains the well-known result for the
dimer-fermion scattering length [18, 29]:

(6.3.7)

ar_|1 = Clzfl(O) = 118|a\ > 0. (638)

This result is quite nice since dimer-fermion scattering length in it depends only
upon numerical coefficient (see Ref. [64] in Chap. 1) and two-particle s-wave
scattering length a.

6.3.2 Three Resonantly Interacting Bosons
in 3D. Efimov Effect

As was first shown by Danilov [90] (see also the paper by Minlos and Fadeev [19])
in the 3D case, the problem of three resonantly interacting bosons cannot be solved
in the resonance approximation. This statement stems from the fact that in the case
of identical bosons (or in the case of the complexes with two bosons and one
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X

),

-

1

Fig. 6.6 Convenient coordinates X =7, — rsandy =7 — '2;” for the description of fermion

(1)-dimer (23) interaction (see Ref. [20]) for the case of equal masses m; = m, = mj3

fermion f,b,b) the homogeneous part of STM-equation (6.3.7) has a nonzero
solution at any negative energies. The physical meaning of this mathematical
artifact was elucidated by Efimov [16], who showed that a Hamiltonian with only
two-particle interaction leads to the appearance of an attractive 1//* interaction in a
three-body system. Since in the attractive 1/7% potential in 3D a particle falls to the
center, the short-range physics is important and one cannot replace the exact pair
interaction by its resonance approximation. In the excellent review article by
Jensen et al. [20] it was nicely illustrated that Efimov effect is present in the
dimensions 2.3 <D < 3.8. In 3D case it creates the attractive (centripetal)

effective potential Vy(p) ~ — ]b26 (see Fig. 6.6) if we introduce convenient rela-

tive coordinates (m; = m, = ms):

)_C':?Z _?37
L . hH+h (6.3.9)
y=r — ) )

which correspond to the relative radius-vector (¥) inside the dimer (2, 3) and the
radius-vector (¥) between the elementary particle 1 (falling on dimer) and the
dimer’s center of mass.

Vectors X and y define the plane. In this plane we can introduce a hyperradius p
and angles o, o, such as:

x;=psino; i=1,2,

. (6.3.10)
yi=pcosoy; i=1.2
If we rewrite the three-particle Hamiltonian:
N P L
H=3 Vit V([i-7l)=T+V (6.3.11)
=1 = Jk=1
in terms of X, ¥ and Rep = W (for equal masses m; = m, = mj3) and then

introduce a hyperradius p and angles o;, then in the new coordinates the kinetic

part of the Hamiltonian 7 in (6.3.11) will contain the centripetal term according to
[20].
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Note that in 2D case V,5(p) ~ '/)—25 > (0—the potential is repulsive and Efimov

effect is absent. Thus the STM equation in 2D has a finite number of the solutions
for the binding energies E; of the three-particle complexes bbb and fbb.

In 3D case Efimov effect leads to the appearance of the strongly-bound three-
particle levels with an energy [19]:

1 2nn
|E3n] =m—réexp{— - }, (6.3.12)

where (o = 1.006. The total number of levels is

1
N=-InZ, (6.3.13)
Y ro
where rg is the range of the potential.
They lie in the interval:
1 <|Esn| < 1 (6.3.14)
ma? n mrj’ o

Mathematically Efimov’s effect is connected with the properties of the kernel of
the integral STM equation. If we perform analytically the angular integration in
1

(6.3.7) of the type ai;‘;ﬁﬁ 5= 1ln IZ+2\ and introduce dimensionless intermediate

and incoming momenta y = ga and x = ka (measured in terms of the scattering
length a) as well as dimensionless three-particle energy W3 = i?‘ = ma?|E;|
(measured in terms of the two-particle binding energies |E,|) and dimensionless 3-
particle vertex 73 = ‘g—fl = ma*T; then in terms of x, y and W5 the homogeneous

part of STM-equation for 75 reads:

a/ro
y2d Wi + x> +y2 +xy\ 1 ++/3/4y2 + W.
(X W3) / yl ( > 2 y y) /y 3 3(yaW3)7
n) 2xy \Wi+x2+y*—xy) /W;+3/4y2 -1

(6.3.15)

where sign “plus” in front of the integral corresponds for three bosons to the
attractive dimer-monomer interactions (Three-particle binding energies E3 corre-
spond to the poles of 73, and consequently for E = E; homogeneous part of STM-
equation should have nonzero solutions). It is possible to show that the kernel in
the right-hand side of integral Eq. (6.3.15) is not limited. The integral of the kernel
is of the order of 1 on the upper limit so the solutions with large three-particle

_ |Es|
|Ey |

upper limit ypax :% — oo of the integral in (6.3.15). For them we can get

binding energies W > 1 are possible. These solutions are “sitting” on the

X~ Xmax = f—o >1 and Wi~ Wipx = % > 1. Effectively they describe the
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situation when the three-particle system goes far away from the resonance (when
we add a third particle to resonantly interacting pair of particles). That is why we
have deep three-particle levels [see (6.3.14)] in 3D.

6.3.3 Three Resonantly Interacting Bosons in 2D

As we already mentioned, Efimov effect is absent in 2D. Therefore it is possible to
describe the binding energies |E;| of the three-particle complexes bbb and f,;b,b in
terms of the two-particle binding energies |E| only.

As in the 3D case, the cornerstone in the diagrammatic technique is the two-
particle resonance scattering vertex 7,. For two resonantly interacting particles
with total mass 2m (we assume that all the particles under considerations have the
same mass m, which in case of Fermi-Bose mixture means that mg = my) it can be

written in 2D as:
8 4
(f) np)= - (63.16)
i " in((4 - E)iEa])

where P = (E, f’) is 4 momentum and we introduce the factor o = {1, 2} in order
to take into account whether or not two particles are indistinguishable. It is o = 2
for the case of a resonance interaction between identical bosons and « = 1 for the
case of a resonance interaction between fermion and boson or for the case of two
distinguishable bosons. Note that 75(P) contains a typical for 2D systems loga-
rithm in denominator of (6.3.16). We start with a system of three resonantly
interacting identical bosons-bbb in 2D. An equation for the dimer-(elementary)
boson scattering vertex T3 which describes interaction between three bosons has
the same diagrammatic form as shown in Fig. 6.5; however, the rules for its
analytical notation changed. It can be written as:

Ty(p1,p2,P) = G(P = p1 —p2) +i Y G(P —p1 — 9)G(q)T2(P — 9)T5(q,p2, P),

(6.3.17)

where = fd321’dQ/(2n)4, P = (E,0) and one should put « = 2 for the two-
particle vertex 7, in (6.3.16). As we already mentioned the opposite signs in
(6.3.4) for fermions and (6.3.17) for bosons are due to the permutation properties
of the particles involved: an exchange of fermions results in a minus sign, while an
analogous exchange of bosons brings no extra minus. Finally, we note that the
three-particle s-wave (s-wave channel of a boson-dimer scattering) binding ener-
gies E3 correspond to the poles of 73(0, 0; —IE5l) and, consequently, at energies
E = E; the homogeneous part of (6.3.17) has a nontrivial solution. Introducing the
same dimensionless variables x, y for initial and intermediate momenta, W3 for
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Fig. 6.7 The typical level structure A(|E|/|Ej|) for numerical solution of a homogeneous part of
STM-equation. In the case of three identical bosons in 2D two levels AV (|E|/|E,|) and
o (|E|/|Ep|) cross the horizontal line 2 = 1 correspondingly for three-particle binding energies

\Eg”) = 127|E,| and ]Eg2> = 16.52|E,|, while for the third level 23 (|E|/|Ey|)<1 for all
energies |E|/|Ep| and hence it does not represent the three-particle bound state [24, 25]

dimensionless three-particle energy |E3l and 75 for dimensionless three-particle
T-matrix 75 we will get in a 2D case (after the corresponding angular integration

2n
dp n 2 2.
<Ofa+bcow_ ~~—fora® > b )

alro

13(x, W3) 2/ ydy ! 3(y, W3)
34y 3) —— 2'3 ) 3)
T2 I )

(6.3.18)

It is possible to show that the kernel in 2D STM-equation is limited (in contrast
to the 3D case). For large y the integral of the kernel behaves as ﬁ < 1.

Hence (in spite of the fact that the integral in (6.3.18) again (as in a 3D case) is
governed by large y) there are no solutions for which x ~ pa and W5 are much
larger than 1. Correspondingly deep three-particle levels are absent in the 2D case
and the system does not go far away from the resonance when we add the third
particle to the two resonantly interacting particles.

Numerical solutions of (6.3.18) are obtained by finding the eigenvalues A(E) of
the kernel K of the homogeneous part of the integral equation: 75 = KT3. Than
A =1 is the condition for the appearance of a three-particle bound state. More
precisely: A(E = E3) = 1. The numerical solutions for binding energies of three
identical bosons in 2D are presented on Fig. 6.7. We can see that A(E/IEy|) crosses
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the horizontal line 4 = 1 for two three-particle levels at ‘Eg”‘ = 1.27|E,| and

‘Eg”‘ = 16.52|E}|. The third level on Fig. 6.7 for all energies corresponds to A(E/
IEpl) < 1, and hence does not represent a bound state. Thus we obtained two s-
wave three-particle bound states ‘Egl)‘ ~ 1.27|Ep| and ‘Egz)‘ ~ 16.52|Ep| in
agreement with the results of Bruch and Tjon [41] (see also [20]).

6.3.4 The Three-Particle Complex f.b,b in 2D Case

Let us now consider a complex f,b,b consisting of one fermion and two bosons. As
noted above we consider bosons and fermions with equal masses
mg = mg = m. In agreement with the results of Sect. 6.2 we assume that an
attractive fermion-boson interaction Ugg, characterized by the radius of the
interaction rgg (for the lattice models rgg = d), yields a resonant two-body bound
state with an energy E = —|E}|, where |Ey| < 1/mr3, is a shallow bound state
(note that for the lattice models the requirement |Ej| < 1/mr2, is satisfied in the
intermediate coupling case for 2D Fermi-Bose mixture with attraction between
fermions and bosons considered in Sect. 6.2). At the same time a boson-boson
interaction Upgp, characterized by the interaction radius rgg, does not yield a
resonance. This condition is also fulfilled in our model for Fermi-Bose mixture,
since both Ugr > 0 and Ugg > 0 correspond to repulsion. Hence, if we are
interested in the low-energy physics, the only relevant interaction is Ugg, and we
can ignore the boson—boson interaction Ugg (the latter will give only small cor-
rections of the order |Ej|mr2, ~|Ep|md®> < 1 at low energies). In order to deter-
mine three-particle bound states one has to find the poles in the composed fermion
f-b—=elementary boson b scattering vertex 73. Since we neglect the boson—boson
interaction Ugg the vertex T3 is described by the same diagrammatic equation [see
Fig. 6.5 and (6.3.17)] as in the problems of three resonantly interacting bosons.
The analytical form of this equation also coincides with (6.3.17) with the minor
correction that the resonance scattering vertex 7, now corresponds to the inter-
action (Ugp) between a boson and a fermion, and therefore we should put o = 1 in
Eq. (6.3.17) for T,. Solving the STM-equation for 7; we find that the f,b,b
complex has only one s-wave bound state with an energy |E3| = 2.39|E;| [24, 25].
The same result holds for the complex bbb, with two bosons of one sort and one
boson of different sort. Note that a complex bff—consisting of a boson and two
spinless identical fermions (or a complex with a boson and spin “up” and spin
“down” fermion bf;f|) with resonance interaction Urg does not have any three-
particle bound states in the 2D case.
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Fig. 6.8 The vertex ® kB

represents the full dimer— P +E E+ . Pip (I) :p +p;
dimer scattering matrix 7y ] B _ PHH kD

with one dimer line being cut — T4 L - i
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6.3.5 Dimer-Dimer Scattering for Four Resonantly
Interacting Fermions in 3D. Exact Integral Equation
Jor Four-Fermion Problem

Now we can proceed to the problem of dimer—dimer scattering for two molecules
f4f| in 3D case. This problem was firstly solved by Petrov et al. [29] by studying
the Schroedinger equation for a 4-fermion wave function.

Inspired by the work of Petrov et al. [29] we are looking for a special vertex,
which describes an interaction of two fermions constituting a first dimer with a
second dimer (considered as a single object). An obvious candidate for this vertex
would be the sum of all the diagrams with two fermionic and one dimer incoming
line. It would be natural to suppose that these diagrams should have the same set of
outgoing lines—two fermionic and one dimer. However, in this case there will be a
whole set of disconnected diagrams contributing to our sum that describes the
interaction of a dimer with only one fermion. As was pointed out by Weinberg
[22], one can construct a good integral equation of Lippmann—Schwinger type
only for connected class of diagrams. Thus we are forced to give attention to the
asymmetric vertex ®,5(q1, g2; p2, P) corresponding to the sum of all diagrams with
one incoming dimer, two incoming fermionic lines and two outgoing dimer lines
(see Fig. 6.8). This vertex ®,g(q1, g2; p», P) is rather straightforwardly related to
the standard dimer—dimer scattering vertex T4(py, po; P):

P+p, q, P+p, q P+p,

P - - " ()

2P_q1_q2 —P: P_pz P_pz
(a) (b)
q; Q _P-+p,_
q)
=t @ + (q; < q)
P—q,—q; 2P-Q P—p,

(c)

Fig. 6.9 The graphic representation of the equation on function ® describing dimer—dimer
scattering [24, 25]
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i
T4(P17P2ap) = EZX(“?ﬁ)G(P+p1 —k)G(k)(I)zﬁ(P+p1 - kak;p%P)'
ko,

(6.3.19)

Note that, by definition, in any order of interaction @ contains only connected
diagrams.

The spin part of the vertex @,z has the simple form ®,5(q;, g2; p2, P) = y(«,
PD(q1, g2; P2, P). A diagrammatic representation of the equation on @ is given in
Fig. 6.9. One can assign some physical meaning to the processes described by
these diagrams. The diagram of Fig. 6.9a represents the simplest exchange process
in a dimer—dimer interaction. The diagram of Fig. 6.9b accounts for a more
complicated nature of a “bare” (irreducible by two dimer lines) dimer—dimer
interaction.

Finally the diagram of Fig. 6.9c allows for a multiple dimer—dimer scattering
via a bare interaction. The last term in Fig. 6.9 means that we should add another
three diagrams analogous to Figs. 6.9a, b and c, but with the two incoming fer-
mions (q; and ¢,) exchanged. The analytical equation for the vertex ® can be
written as:

®(q1,q2;p2, P) = —G(P — q1 +p2)G(P — q2 — p2)
- iz G(k)G(2P — q1 — q2 — k)T2(2P — q1 — k)®(q1,k; p2, P)
k

+%§ G(Q — 01)G(2P — Q — ) T>(2P — Q)T>(Q)

G(k)G(Q — k)D(k, Q — k;p2, P) + (q1 < q2).
(6.3.20)

Since we are looking for an s-wave scattering length we can put p, = 0 and
P = {0, —|E,|}. At this point we have a single closed equation for the vertex @ in
momentum representation, which, we believe, is analogous to the equation of
Petrov et al. in coordinate representation. To make this analogy more prominent
we have to exclude frequencies from the Eq. (6.3.19). This exclusion requires
some more mathematical efforts, but we succeeded in doing that in our second
(more extended) article on this subject (see Appendix A in Ref. [24]).

The dimer—dimer scattering length is proportional to the full symmetrized
vertex T4(p1, po; P):

2
27(2a;-
(%) 74(0,0, =2|E|, 0) =%. (6.3.21)

In the Born approximation we can consider only the contribution of the first
term (Fig. 6.9a) in ®. Then in this approximation (for the simplest exchange
process in dimer—dimer interaction) ® ~ GG and T, ~ XGG® ~ XGGGG (see
Fig. 6.10) where the symbol X stands for the sum in these estimates.
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Fig. 6.10 Simplest exchange
process which defines the
Born approximation for the

dimer—dimer T-matrix 7,

In the Born approximation a,_»(fif}.fif|) = 2lal. This result is intuitively
transparent since only the interaction between fermions with different spin pro-
jections has a resonance character according to Pauli principle. We will get it in
the mean-field description of the BCS-BEC crossover and the spectrum of col-
lective excitations in Chap. 7 (see also [93]).

If one skips the second term in (6.3.20), i.e., one omits the diagram in Fig. 6.9b,
one arrives at the ladder approximation of Pieri and Strinati [26]. In this
approximation we take into account the multiple scattering of two dimmers on
each other without the loss of their identity. In the ladder approximation we get
a,_» = 0.78lal in agreement with the results of Pieri and Strinati. The exact Eq.
(6.3.20) corresponds to the summation of all diagrams. Moreover the diagrams on
the Fig. 6.9b (omitted in [26]) with an account of crossing (g, < ¢,) describe two
types of processes:

(1) there are two incoming dimmers in the beginning, than they are virtually
decaying and exchanging one particle with each other;

(2) there are two incoming dimmers in the beginning, than they are virtually
decaying forming a virtual 3-particle complex and one elementary fermion.
After that 2 dimers are again created.

Note that mathematical structure of the second term in (6.3.20) XGGT,®
resembles to some extent a mathematical structure of the integral term in STM
equation for the trios XGGT,T5 (X stands for the sum again). Thus it takes into
account dynamics and moreover allows to write a closed equation on @ in (6.3.20)
only in terms of two-particle T-matrix 7, and one-particle Green functions
G (without explicit utilization of the three-particle T-matrix 75). Exact solution of
(6.3.20) with an account of all these terms (Figs. 6.9a, b and c) together with
crossing yields:

ar_o = 06|Cl| (6322)

in agreement with Petrov et al. [29].
Note also that our approach allows one to find the dimer—dimer scattering
amplitude in the 2D case also. Here

1

frale) = W

(6.3.23)
in agreement with Petrov, Baranov and Shlyapnikov [23]. We will use this result to
find coefficient « in formula (6.2.10) for T of the Bose condensed quartets
f1b.f\b in the 2D Fermi-Bose mixture with attractive interaction between fermions
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Ty
16InIn (al%‘

denominator the coefficient « which describes the scattering of quartet on quartet
(in the repulsive 2D Bose-gas of quartets f;b,fb). Thus it is easy to show that for
equal masses of fermions and bosons mg = mg o = 4 - 1.6 = 6.4, where 1.6 is a
coefficient under logarithm for scattering of dimer on dimer in 2D in (6.3.23). The
binding energy |E,l for the quartet f;b.f|b we will define in the next section.

Finally we would like to mention that our results allow one to find the dressed
fermionic Green’s function, chemical potential, and sound velocity as a function of
two-particle scattering length a in the case of the dilute superfluid Bose-gas of
weakly interacting dimers ff| at low temperatures. The problem of dilute super-
fluid Bose-gas of di-fermionic molecules was solved by Popov [91] and later
deeply investigated by Keldysh and Kozlov in connection with the problem of
excitonic (or bi excitonic) superfluidity [92]. These authors managed to reduce the
gas problem to a dimer—dimer scattering problem in vacuum, but were unable to
express the dimer—dimer scattering amplitude in a single two-fermion parameter.
A direct combination of our results with those ones of Popov, Keldysh and Kozlov
allows one to get all the thermodynamic values of a dilute superfluid resonance gas
of composed bosons. This strategy will be fulfilled in Chap. 7.

and bosons. This formula of Fisher-Hohenberg type T¢ ~ ) contains in

6.3.6 Four Particles Bound States

In the 3D case a homogeneous part of the four-particle integral Eq. (6.3.20) has a
nontrivial solution for any negative values of the energy for the 4-particle com-
plexes bbbb, fibf\b and fbbb. Thus Efimov effect manifests itself again in a four-
particle problem. However, for the same complexes in 2D Efimov effect is absent
and the homogeneous part of the four-particles equation has the finite number of
the solutions for the negative energy E < 0, which can be represented again only
in terms of the two-particle binding energy |Ey|.

First we will consider four identical resonantly interacting bosons bbbb. Any
two bosons would form a stable dimer with binding energy E = —IE,l. We are

Table 6.1 Bound states of
three and four resonantly
interacting particles in 2D

C

System  Relative® Number of Energy (in |Eg))® o
interaction  bound states

[24, 25] bbb Upp 2 1.27, 16.52 2
fbb Uy, 1 2.39 1
Jbbb Up 1 4.10 1
bf:bf, Uy, 2 2.84, 10.64 1
bbbb Upp 2 22,197 2

 Interaction that yields resonance scattering. All other interac-
tions are negligible

b m = mg = Mg

¢ The indistinguishability parameter in (6.3.16)
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going to find a four-particle binding energy of an s-wave bound state of two
dimers. Generally speaking (see Sect. 6.1 for example), a bound state could
emerge in channels with larger orbital moments (see [94]); however, this question
will be considered in the next chapters. To find a binding energy we should
examine the analytical structure of the dimer—dimer scattering vertex T, and find
its poles. The set of equations for 7, has the same diagrammatic structure as those
shown in Figs. 6.8 and 6.9. The analytical expression for the first equation can be
written as:

i
Ty(p1,pa, P) = &Z G(P +p1 —k)G(k)®(P +p1 — k,k;p2, P),  (6.3.24)
k

and the equation for the vertex ®:

®(q1,92;p2,P) = G(P — q1 +p2)G(P — g2 — p2)
+ iz G(k)G(2P — q1 — ¢ — k)T2(2P — q1 — k)®(q1,k; p2, P)
k

- Y G0 4GP~ 0~ )Ta(2P ~ OT(0)G(K)
0k

G(Q — k)®(k,Q — k; p2, P) + (q1 < q2),
(6.3.25)

where two-particle T-matrix 75 in 2D should be taken from (6.3.16) and one
should put « = 2 for the case of identical resonantly interacting bosons. Solving
the above equations for the poles of T, as a function of the variable P = {0, E}, we
found two bound states for the bbbb complex (see Table 6.1). Certainly, for the
validity of our approximation we should have |E4| < 1/mr. For the case of four
bosons bbbb it means that 197IE,| < 1/mrg for the deepest level and hence
a/ro > \/197. This case can still be realized in the Feshbach resonance scheme.

The case of a four-particles complex f;bf| b, consisting of resonantly interacting
fermions and bosons is described by the same Eqs. (6.3.24, 6.3.25), but with the
parameter oo = 1. In this case we found two bound states |E;l ~ 2.84|E| and
IE4l =~ 10.64|El. They are also listed in Table 6.1. The same result is valid for two
pairs of bosons of different sort b1b,bb,.

In order to obtain the bound states of the fbbb complex one has to find the
energies P = {0,E} corresponding to nontrivial solutions of the following
homogeneous equation:

®(q1,q2:p2,P) = i Y_ G)G(2P — q1 — g2 — K)T2(2P — g1 — k)®(q1, ki pa, P) + (g1 < q2).
k
(6.3.26)

This equation corresponds to the diagrams of Fig. 6.9b with an account of
crossing (and does not contain the diagrams of Fig. 6.9¢c). We found a bound state
for the fbbb complex with an energy |E4l =~ 4.10 |E|.
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We summarize the results concerning binding energies of three and four res-
onantly interacting particles in 2D in the Table 6.1. Note that all our calculations
corresponds to the case of particles with equal masses m = mg = mg, though they
can be easily generalized to the case of different masses.

6.3.7 Phase Diagram of the Fermi-Bose Mixture in 2D

In Sect. 6.2.5 we wrote the chain of the Saha crossover temperatures
7% ~ ’Eh , T,£3) ~ |E3| and T,E4) ~ |E4| for two-particle (f,b), three-particle (f,b,b),
and four-particle (f;b,f|b) complexes in the 2D Fermi-Bose mixture on the lattice
with attractive (and resonance in the intermediate coupling case) interaction
between fermions and bosons. The knowledge of the binding energies of three-
particle (IE5l) and four-particle (IE4l) complexes allows us to complete the phase
diagram of a Fermi-Bose mixture. Namely the deepest levels for m = mg = mg
correspond to |Es| ~ 2.4|E,| and |E4| &~ 10.6|E,| for fbb and f;b, f|b complexes,
respectively. Thus |Ey| > {|E3|,2|E|} and we have the following hierarchy of
Saha temperatures:

TW > {10, 7@}, (6.3.27)

Then, as we already assumed in Sect. 6.3.5, the phase diagram becomes rather
simple. Namely: for T > 7" elementary fermions and bosons prevail in the sys-
tem, while for T < T¢"—the quartets fib, f1b prevail in the system in case of equal
densities ng = ng. The quartets are Bose-condensed below the temperature:
Tc = To/(16 In(6.4 |E4/Ty)), where |E4| ~ 10.64 |Ep|.

6.3.8 Phase Diagram of 2D Bose-Gas

In the 2D Bose-gas with resonance interaction between bosons or in strongly
disbalanced Fermi-Bose mixture for ng > ng (see [11, 12]) the formation of large
droplets containing N > 4 particles is possible. The limitation on the number of
particles in the droplet is connected with the repulsive hard-core with the radius ry:

Ry > 1y, |EN| < LZ’ (6328)

mr
where Ry and Ey are the radius and the binding energy of the N-particle droplet.
For N > 4 the exact solution of the STM-equations is practically impossible
(it requires too much of the computer time). Thus we have to restrict ourselves
with the variational calculations of Ry and Ey (see Hummer, Son [28]). For 2D
case they yield Ry ~ ae™™ and Ex = 1/mR% ~ |Eyle®" under the condition:
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N < Npax ~ 0.91In(a/rg) ([28, 36]). The large droplets were experimentally observed
in the disbalanced Fermi-Bose mixture of 8’Rb (bosons) and 40K (fermions) for
ng > ng by Modugno et al. [12].

6.3.9 The Role of the Dimer-Fermion and Dimer-Dimer
Scattering Lengths for the Lifetime of the Resonance
Fermi-Gas

In case of the resonance Fermi-gas in 3D the dimer-fermion scattering length
ay_; = 1.18 lal > 0 and the dimer—dimer scattering length a,_, = 0.6 lal > 0
define the relaxation rates of inelastic dimer-fermion and dimer—dimer collisions in
the BEC-domain for a > 0.

Namely according to Petrov, Salomon and Shlyapnikov [29] the relaxation rates
read:

ao = Cln (2_0)3’33,
wy_p = Gy (r_0)2,55 (6.3.29)

for dimer-fermion (o;—1) and dimer—dimer (o;_5) inelastic scatterings. In (6.3.29)
C; and C, are numerical coefficients.

Correspondingly the inverse inelastic scattering times 1/73_1 ~ Rgomtz—1 and
1/t2-2 ~ N1tz define the molecular transitions from the shallow to deep
vibrational levels in the potential well. In course of this process, according to the
discussion in Chap. 5 the molecules lose their identity and do not participate in the
symmetrization of the dimer wave function. Thus practically ;- ~ -4 1,

dnuol
dt

the resonance dimers 1/tj,¢; coincides by order of magnitude with the inverse
lifetime 1/7jiteme Of the molecular BEC-condensate.

In the regime of Feshbach resonance for B — By: 1/a — 0 and the lifetime of
Bose-condensate strongly increases. Note that if the numbers of atoms and mol-
ecules coincide by the order of magnitude (for ny.,; ~ nme) the inverse inelastic

~ O 1 Mot Matom + 02 —2 M) ~ % and the inverse time of the losses of

where

L 333 . .
scattering time —1- ~ (’—0) % (ropr) (where T is degeneracy temperature) while

Tt a
1 i) 255& . . o 1
=~ (%)™ (ropr) and hence for 1/a — 0 the inverse loss time e

defined by dimer—dimer inelastic scatterings mostly (see [29]). Note that usually
for the resonance Fermi-gas in BEC-regime Tjjfeime < 10 s.

Concluding this section let us emphasize that in the resonance approximation we
derive and solve exactly the integral equations for trios and quartets in 3D and 2D.

We evaluate exact scattering amplitudes of molecule on atom (a,_;) and
molecule on molecule in the 3D and the 2D resonance Fermi-gas.

We calculate the binding energies of all the possible complexes, consisting of
three bbb, bib,by, fbb, and four bbbb, bib,bb,, fbbb, and f;bf b particles as the
functions only of the two-particle binding energy |E,| in the 2D case.

1 1
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We construct the phase-diagram for the resonance Fermi-Bose mixture in 2D
with equal densities of fermions and bosons ng = ng. We discuss also the possi-
bility of the formation of the large droplets containing 5 and more particles in the
2D Bose-gas and in the disbalanced Fermi-Bose mixture for ng > np.

Note that a binding energy of a four-particle complex b,b,b,b, is important to
complete the phase diagram of the two-band Bose-Hubbard model with repulsion
between bosons of one sort and attraction between bosons of different sorts,
considered in Sect. 6.1. In the intermediate coupling case on the lattice
Ty <|Ep| <W in 2D this model as we already mentioned in Sect. 6.1 corresponds
to the resonance interaction between bosons of different sort. Moreover for
|E4l < W the quartets b b,b,b, are extended 1/y/n > a > d (not sitting on one site
of the lattice) and thus even strong Hubbard repulsions between bosons of the
same sort U;; > 0 and U,, > 0 cannot prevent the formation of the quartets.
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Chapter 7

BCS-BEC Crossover and the Spectrum
of Collective Excitations in s-Wave and
p-Wave Resonance Superfluids

In this chapter, using the knowledge of dimer—dimer scattering length
a,_, = 0.6lal > 0, we complete the phase-diagram of the resonance Fermi-gas in
3D. We present more detaily the scheme of BCS-BEC crossover developed by
Nozieres and Schmitt-Rink (see Ref. [14] in Chap. 5) and construct the phase-
diagram of the resonance Fermi-gas in the self-consistent T-matrix approximation
(see Refs. [18-21, 68). We define the crossover line u(T) = 0 which effectively
separates BEC-domain (for which ¢ <0 and a > 0) from the BCS-domain
(for which vise versa u > 0 and a < 0). We discuss the critical temperatures of
extended Cooper pairing 72> and Bose-condensation for local pairing of two
fermions T&=C in dilute BCS and BEC limits for |a|pr < 1, where pg is the Fermi-
momentum and a is an s-wave two-particle scattering length. We also provide
qualitative considerations for the phase-diagram in the unitary limit 1/a — 0 and
close to unitarity (for large values of the gas parameter |a|pr > 1). We observe
that in the substance a unitary limit is effectively inside the BCS-domain. We
extend our results at finite temperatures on 2D resonance Fermi-gas.

In the second part of this Chapter we provide a brief description of the self-
consistent Leggett scheme (see Refs. [12, 13] in Chap. 5) for the BCS-BEC
crossover at zero temperature (7' = 0). We solve the Leggett equations and find the
behavior of the superfluid gap A and chemical potential u as the functions of the
gas parameter apg in the dilute BCS and BEC limits, as well as close to unitarity.
The knowledge of the gap A and chemical potential allows us to solve Bogoliubov-
Anderson equations (see Refs. [1, 2]) and determine the spectrum of collective
excitations both in BCS and BEC domains. For small w and g the spectrum is
linear and we can find the behavior of the sound velocity (and Landau critical
hydrodynamic velocity (see Ref. [23])) as a function of apg. Note that the sound
velocity can be defined already from the static Leggett equations (from the
knowledge of compressibility or the chemical potential of the system).

In the third part of this Chapter we will extend our results on BCS-BEC
crossover in p-wave resonance Fermi-gas (see Refs. [3, 4]). We present experi-
mental results on p-wave Feshbach resonance (see Refs. [5, 6]) in BEC-domain for
fully-polarized Fermi-gas where the triplet molecules 40K, and °Li, are created
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with St = SZ, =1 =1 for total spin of the pair S, its z-projection Sy* and
relative orbital momentum of the pair /. The p-wave superfluid has a symmetry of
triplet Al-phase here.

We will construct the phase-diagram of the BCS-BEC crossover in p-wave res-
onance superfluid and define again a crossover line u(7) = 0 which separates BEC-
domain of the Al-phase from the BCS-domain [66]. We will also solve the self-
consistent Leggett equations at 7 = 0 and find the behavior of the superfluid gap and
sound velocity. For low temperatures T < T we will determine also the temperature
behavior of the specific heat C,(T) and normal density p,(7) both in 3D and 2D triplet
superfluid Fermi-gas. We will show that globally phase-diagram of the BCS-BEC
crossover for p-wave resonance superfluid resembles that of s-wave resonance
superfluid (considered in Sect. 7.1.3). However, in p-wave case there is a special point
on the phase-diagram, namely u(7T = 0) = 0 which corresponds to quantum phase-
transition (see Refs. [14, 15, 33]). Close to this point the temperature behavior of the
normal density p,(7) and specific heat C,(7) is different in classical and quantum

limits |u| — 0, T — Obut either@ — 0 or vice versa‘—z‘ — 0[12, 13]. Note that the

point u(T = 0) = 0 separates in 3D the BCS state with the nodes in the quasipar-
ticle energy (and zeroes in the superconductive gap for triplet Al-phase) form the
gapped BEC-domain (where the quasiparticle energy has no zeroes) [14, 15, 33].

7.1 Phase-Diagram of the Resonance Fermi-Gas in 3D
and 2D Cases

In Chap. 5 we presented a basic knowledge connected with the Bethe—Salpeter
integral equation (see Refs. [22, 25] in Chap. 5), which describes the temperature
evolution of the 3D resonance Fermi-gas. We also considered the dilute molecular
(BEC) limit at high temperatures T > T¢5EC. In Chap. 6, from the solution of
Skorniakov-Ter-Martirosian equation, we define mean-field (a,_, = 2lal) and
exact (a,_, = 0.6lal) dimer—dimer (or molecule-molecule) scattering length
which describes a weak repulsion between the composed bosons f3f| in the dilute
BEC limit and for the temperatures 7 < T: (where T- is the crossover Saha
temperature which corresponds to the formation of local pairs or molecules ff| for
positive scattering length a > 0). In this Section we will complete the phase-
diagram of the resonance Fermi-gas in 3D and in 2D case.

7.1.1 Self-Consistent T-Matrix Approximation

In Chap. 5 we wrote two equations for the T-matrix in attractive 3D Fermi-gas.
The first one is for the T-matrix (or scattering length) in vacuum (see Eq. (5.2.6)
and Fig. 5.14):
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4na |U()|

Tyoelw=0,g=0)=—=— , 7.1.1
(©=0.4=0 = = L 00K (0,0) (7.L.1)
where

K (OO)—/dSﬁ dQG (Q,P)Grac(—Q, —p) = P (7.1.2)

vac k) (27‘[)3 (27'[) vac ’p vac ) p 28p <A

is a Cooper loop in vacuum (a product of two vacuum Green-functions
Gyac(Q, P) = p‘z — in the Cooper channel for zero total frequency Q2 = 0 and
total momentum}'a’ = 0) and Uy = —IUyl is Fourier-harmonic of the attractive two-

particle potential, U(g) for g = 0.
The second one (see Eq. (5.2.12) is for the T-matrix in substance:
|Uo|
1+ |Uo|K (ivy, G)°

T(iw,, §) = — (7.1.3)
where K(iw,, §) is a Cooper loop in substance for total Matsubara frequency of
two (incoming in the Cooper channel) particles w, and total momentum ¢. For
fermions w, = © T(2n + 1). We also emphasized in Chap. 5 that in the T-matrix
approximation (when we neglect the difference between irreducible bare vertex
U.i(q) and the Fourier-harmonic of the bare vacuum interaction U(g) the Eq.
(7.1.3) for the T-matrix in substance coincides with the solution of the Bethe—
Salpeter integral equation for a total two-particle vertex I' in the Cooper channel.

According to general quantum—mechanical prescriptions (see Refs. [19, 26, 27]
in Chap. 5), we should make a renormalization procedure and rewrite (7.1.3) only
in terms of observables. Effectively we should replace U, in Eq. (7.1.3) by the
scattering amplitude a from Eq. (7.1.1). This yields:

= |;0‘ Ky (0,0) = 4’; (7.1.4)
and correspondingly [66]:
Tlioon, ) =~ =
— T — K(io, §) 7~ —K(iw,, §) + Kyac(0,0)
= 4ma/m (7.1.5)

1- L:f(K(icon, 4) — Kac(0,0))

That is precisely a renormalization procedure which comes in condensed matter
physics from quantum electrodynamics [17]. Note that a Cooper loop K (iw,, §) in
Eq. (7.1.5) reads:

K(icon, g Z/ M (iQu, P)Gu(—iQy + i, —p +§) (7.1.6)
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S

Fig. 7.1 The dressed ladder diagrams in particle—particle channel for the T-matrix given by Eqgs.
(7.1.5) and (7.1.6) (Refs. [31, 32] in Chap. 6)

Fig. 7.2 The self-energy Gy
>y iy, §) in the self-

consistent T-matrix

approximation. g is a four 2=
momentum {w,, g} [3, 32]

In graphical form we sum up in the T-matrix approximation the dressed ladder
diagrams in particle—particle channel presented on Fig. 7.1 [66], (see Refs. [31, 32]
in Chap. 6 and [18-21]).

The Dyson equation for dressed Matsubara Green’s function (which enter in the
expression (7.1.6) for a Cooper loop) yields:

1
iw, — &(q) + p — Zy(io,, §)°

GM(iwm Ei) = (7.1.7)

Finally the Matsubara self-energy 2y in the self-consistent T-matrix approxi-
mation reads (see Fig. 7.2):

3=
m(ioon, 4 Z/ d’p — iwy, P —§)T(iQ, P). (7.1.8)

The dressed one-particle Green’s function should be normalized on total density
for one spin projection n/2:

&g 1 ot
Z/ lU)na Z/ 27‘[ 3G lU)n, q)_ZM(lwm Ei) _7

67r2 ’

(7.1.9)
where

1
Goliow,, §) = ———=—— 7.1.10
0(160 Q) lwn_s(q)+ﬂ ( )

is a bare Matsubara Green’s function.


http://dx.doi.org/10.1007/978-94-007-6961-8_6
http://dx.doi.org/10.1007/978-94-007-6961-8_6

7.1 Phase-Diagram of the Resonance Fermi-Gas in 3D and 2D Cases 227

The system of Egs. (7.1.5)—(7.1.9) constitutes the self-consistent T-matrix
approximation. This approximation is energy and momentum conserving ([66] and
[18-21, 31, 32] in Chap. 6), and is exact in leading order in the gas parameter apg
for dilute Fermi-systems (see for example Galitskii-Bloom results (see Ref. [28] in
Chap. 5), [22] for 3D and 2D repulsive Fermi-gas).

We solve the system of Egs. (7.1.5)—(7.1.9) perturbatively. As a result in the
first iteration we should calculate the T-matrix in Eq. (7.1.5) with the zeroth order
Matsubara Green’s functions Gy (iw,, g) (see (7.1.10)).

Then the renormalized Cooper loop K (iw,, §) — Kya-(0,0) [which enters in the
denominator of Eq. (7.1.5)) reads:

&’p [1 — (&) = ne(Epig) n 1

Kien = K(iwmq) - Kvac(ov O) = / (

27‘[)3 iwn - ép - §7p+q 2817 .
(7.1.11)
Correspondingly:
4
T(ion, §) = na/m (7.1.12)

1 - 4%I(ren(ia)n; Ei) i

The pole of the T-matrix in Eq. (7.1.5) for w, = ¢ = 0 determines the equation
for Tc:
4
|- g (0,0) = 0. (7.1.13)
m

The self-energy in the first iteration reads:
1(iwn, G Z/ To(iQu, P)Go(iQy — iwy, P — G). (7.1.14)

It enters in the equation of the conservation of the number of particles:

a*q 1 Y 3
Z/ ; - e Pr (7.1.15)
o 21)’ Gy (iwn, §) — Zi(iw,, G) 2 6m

7.1.2 Equation for T¢

The pole of the T-matrix in the 3D case reads:

4 th %z~ 1| &
1+ﬂ/ Mo | TP (7.1.16)
m 2(ep— 1) 28| (
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As we already discussed in Chap. 5, in the BCS-domain for a < 0 and |a|pr < 1
(dilute Fermi-gas) the chemical potential 4 =~ ¢g > 0 (¢p = p12:/2m) and the critical

. TBCS __m
temperature: 75" ~ ep exp{ 2|a\pp}'

In the BEC-domain for a > 0 and apr <1: the fermionic chemical potential
u <0 and bosonic chemical potential pgz(Tc) =2+ |Ep] =0 (hence,
w(Tc) = —|Ep|/2). A temperature of the Bose-Einstein condensation

TgEC 3.31 <"’”’2/, i) ~ 0.2¢F in an ideal Bose-gas of molecules (composed bosons)

3
with the mass mg = 2 m and density ng = % = é%‘

7.1.3 Self-Energy in the Dilute BEC Limit

In the BEC-domain in the dilute case (for apg < 1) there is one more characteristic

temperature (see Chap. 5) namely: T, = Lim > TBEC__Saha temperature,
3/2Int 2
F

which describes smooth crossover (|Ej| = 1/ma? is a molecular binding energy).
For T = T the number of molecules (ng = nr, = ny,/4) equals to the number of
unpaired fermions with one spin projection . For Tc < T < T we have a slightly
non-ideal Bose-gas of composed molecules in a normal (non-superfliud) state. The
self-energy X (iw,, ¢§) in the first iteration to the self-consistent T-matrix
approximation (7.1.14) reads (see [66]):

Mo 2111

m_|Ep|
iwn""qz/zm_ﬂ—’—uB.

8ralu

—

21 (iwnv q) =

(7.1.17)

Note that X (iw,, §) has a “hole like” dispersion iw, + &, + g (&, = ¢*/2m —
W) in contrast to the “particle like” dispersion ¢(§) in the Matsubara Green’s
function of the zeroth approximation Gy (see 7.1.10). For Tc < T < T+ nyy =
2ng (number of unpaired fermions is small) and thus:

rar _ 17 12dk
_2/ N RN (7.1.18)
0

where we took into account that uz = 2p + |Ej|. The same result can be restored
from the form of the dressed Green’s function G~!(iw,, §) = Gy'(iw,, §) —
% (iwy, §) in the first iteration with £; given by Eq. (7.1.17).

We remind that the T-matrix T (iw,, §) = %

Correspondingly the dressed Green’s function can be rewritten as [66]:

1 1

_é _ 8malp|me/m —é . A%
T o SRR

for small w, and 4.

Giwy, §) = - , (7.1.19)
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where we put 2|u|/|Ep| = 1 (|u| = |Ep|/2 for T < Tx) and introduced the
pseudogap A = 8malu|n,;/m according to [38]. Note that A2, ~ |Ep|erapr.
Intensive discussion of the pseudogap state we can also find in [62-64]. We will
return to this interesting problem in the next Section.

The spectral function A(w, §) = —1ImG(w + io, §) reads [66]:

2 0
Ao, §) ~ (1 —W)é(w .

q

2na| p|hg /m

5 dw+ &+ up).
<

(7.1.20)

(Effectively in Eq. (7.1.20) we made analytical continuation iw, — ® + io). For
T < T« the form of A(w, §) in Eq. (7.1.20) reflects the existence of two bands (see
Refs. [31, 32] in Chap. 6 and [66]. One is the filled bosonic band. A second one is
separated from the first one by large correlation gap A = |Ej| (A > Apg for dilute
BEC regime). It is almost empty band of unbound fermions. Integrating the
spectral weight it is easy to check that in this regime:

4ralp| 1 [ Kdk Rior
— = —" = ng, (7.1.21)
m  2n? ) & 2

where we used that |u| ~ |Ep|/2 = 1/2ma® in & = k*/2m + |u|. Note that the
specific heat of the system

oE 0 k2 kK*dk K2 Up Nyor
c, =L _ O [ MK o[- Ke) | Mot _ 7.1.22
or — or [ / 4m 22 exP( 4mT> eXp( T)} y —const (7.1.22)

is temperature independent in agreement with general thermodynamic require-
ments [66].

7.1.4 Phase-Diagram of the Resonance Fermi-Gas in 3D

In the first iteration to the self-consistent T-matrix approximation the numerical
calculations yield the following qualitative phase-diagram of the BCS-BEC
crossover (see Fig. 7.3 and [66]).

On Fig. 7.3 we present a critical temperature T¢ versus inverse gas parameter
1/(pra). The dashed line u(7T) = 0 effectively separates BCS-domain (with u > 0)
from BEC-domain (with i < 0). Note that according to [66] u(7Tc) = O for T¢ =~
0.29¢r and 1/(pra) =~ 0.37. Thus in substance the border between BCS and BEC-
domain effectively lies in the BEC region of positive scattering length a > 0. In
the same time a unitary limit in vacuum 1/(pra) = 0 is effectively in the BCS-
domain of positive chemical potential u > 0. Note that on Fig. 7.3 the region of
dilute Fermi-gas corresponds to the interval [—oo, —1] for 1/(pga), while the
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Fig. 7.3 Phase-diagram of
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region of dilute Bose-gas (of composed bosons or molecules) corresponds to the
interval [1, oo]. Close to the unitarity (in the interval [—1, 1]) we have strongly
interacting gas and cannot apply exact diagrammatic expansions of Galitskii [5.28]
and Beliaev [25]. It is interesting to note that while in dilute limit for BEC-domain

according to Gor’kov and Melik-Barkhudarov the critical temperature 755 =

0.28 & exp {— ﬁ} has a preexponential factor 0.28 &g, in dilute limit for BEC-

domain we have very interesting correction to Einstein formula obtained by
Kashurnikov, Prokof’ev and Svistunov [26]:

TBEC = 0.2 gF[l n 1.3a2,2n}0/,3] (7.1.23)

These corrections just take into account the repulsive dimer—dimer scattering
length a, , = 0.6lal > 0 and correspond to 3D weakly non-ideal Bose-gas with
repulsion between composed bosons.

7.1.5 Unitary Limit

In the unitary limit 1/(pga) = O there is only one scale, namely, Fermi-energy &g
both for kinetic and potential energy [30, 68]. Thus in this limit the total energy of
the system reads:

E= ggpNﬁ. (7.1.24)

It does not depend upon the gas parameter 1/(pra) and depends only on the
universal coefficient f. This coefficient depends only upon the number of com-
ponents in the Fermi-gas. For the gas with the spin S = %2 the number of com-
ponents is 2 (S, = +%) and f ~ 0.44 > 0 [27, 28]. Thus it is a gas phase (E > 0)
according to Monte Carlo simulations by Astrakharchik et al. [27, 28] and Carlson
et al. [29]. In a gas phase the chemical potential yu = dE/dN = feg = 0.44¢x at
temperature 7 = 0.
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For the mixture of protons and neutrons the number of components is 4 and
f < 0. We have a liquid phase here (E < 0) according to Heiselberg [30]. To some
extent it is an answer on the question formulated some time ago by Zel’dovich in
Moscow: whether we can get a dilute liquid in the system of resonantly interacting
neutrons? The answer of Heiselberg is negative: without protons we are in the gas-
phase for |a|pr > 1 (see also [40]).

7.1.6 Qualitative Interpretation of the Intermediate Region
of Large Values of |alpr > 1 (—1 < 1/(pra) < 1)

In the strong coupling limit |a|pF > 1 for BCS-domain (¢ > 0 and a < 0) nothing
dramatic happens. We can qualitatively represent Gor’kov-Melik-Barkhudarov
result as:

Tec = Au exp { } for u > 0, (7.1.25)

T
* 2lal\/2mp

(where we replaced e by u and pg by /2mp).

In the unitary limit 1/a — —O0, the chemical potential g > 0 and Tc = Ap ~
0.15¢g according to numerical calculations of Burovski et al. [31]. In the same time
U = 0.44¢g according to [27-29] and thus A =~ 0.35 in Eq. (7.1.25), which is close
to preexponential factor 0.28 (in front of ¢r) of Gor’kov, Melik-Barkhudarov
result.

The situation is more complicated in the strong-coupling BEC limit. Here for
w <0 and 1 <apr<3 (a>0) the molecules with the small binding energies

|Ey| < 2¢ are formed. In the same time n,,,a*> = ’% <1 for apr < 3 and thus local
pairs do not overlap but only touch each other. Hence we have an intermediate
situation between the tightly bound molecules and extended Cooper pairs here and
can speculate about a formation of Fermi-Bose mixture of molecules and unpaired
fermions here (see also Chap. 8). Nevertheless the theory of BCS-BEC crossover
near the unitary limit is still far from being completed.

7.2 Self-Consistent Leggett Theory for T = 0

In this Section we will derive and solve the system of Leggett equations (see Refs.
[12, 13] in Chap. 5) in 3D resonance Fermi-gas. This system contains the equation
for the chemical potential and the equation of the self-consistency for the super-
fluid gap and describe BCS-BEC crossover in a resonance Fermi-gas at zero
temperatures.
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Fig. 7.4 Self-consistent F @)
equation for the gap A. Uy is
the zeroth Fourier component
of the two-particle interaction p P
U(g). Fs(p') is the anomalous
Green’s function [32]. p and U,
p’ are four-momenta {w, p} > >

and {w’, 7 } p P

7.2.1 Leggett Equations for Chemical Potential
and Superfluid Gap

The Leggett’s equation for the superfluid gap is represented as follows (see
Fig. 7.4):

d’G do
A=U| | Fylw, g —L.22 7.2.1
ol [ R 3) 3 555 (721)
where
A
Fyw, §) =——— 7.2.2
© 9= (122)

is the anomalous Green’s function (see Refs. [3, 4, 32, 67]) allowing the Wick shift
o — iw, Uy is the zeroth Fourier component of the two-particle interaction U(g).

Note that in a superfluid state at 7 = 0 according to Abrikosov et al. (see Ref.
[19] in Chap. 5) we should introduce two Green’s functions: normal Green’s
function G of a superfluid state and anomalous Green’s function Fj (instead of one
Green’s function Gy in a normal state for 7 > T¢). In Euclidean form (after the
Wick transformation @ — iw) the Green’s functions of a superfluid state read [19,
67]:

L o+ ¢
G,(iw, §) = _WE(IZ’ (7.2.3)
q
L A
Fs(l(l), q) = —m, (724)
q
A+
Fj(l(l), ﬁ) = - ) —|—E2, (725)
q

where ES = A+ 53 is uncorrelated spectrum squared of one-particle excitations
in superconductor, ¢, = q*/2m — p and A is a superfluid gap. F;* and A* in Eq.
(7.2.5) are hermitian conjugated from F and A. In the graphical form the normal G
and anomalous Green’s functions F and hermitian conjugated F* are represented
on Fig. 7.5.
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Fig. 7.5 Graphical —> Gy (®,p)
representation for normal

(Gy) and anomalous (F and -
F?) Green’s functions in the P - Fy(®, )
superconductor at 7 = 0. p is

+ -
four-momentum {w, p} ‘ > Fy (@,p)

P

Fig. 7.6 Complex half-plane Imw
for frequency integration in
the first Leggett’s equation C
(7.2.7) for a superfluid gap A. iEp
We have one pole = iE,
inside the closed contour C in
the upper half-plane

Rew

-ikp

Note that in the absence of an external field, a superfluid gap is real A = A™ and
thus F (w, p) = Fi(—w, —p) = F{(—w, —p) for anomalous Green’s function
F.

Returning back to the Eq. (7.2.1) for the superfluid gap we can rewrite it as
follows:

d*pdw A
— U / il 726
[Uol 2n)" (@ + E2) (7.2.6)

or for non-zero superfluid gap A # 0:

a3 da) 1 43 1
1—|uo\/ P 0|/ P (7.2.7)

co2—|—E2 32E

where we made frequency integration on the complex half-plane for w (see
Fig. 7.6). This is a standard self-consistency equation familiar for the BCS-theory

(see Refs. [12,13, 15, 19, 27] in Chap. 5) with E, = 1/A2 + 52 for the spectrum.

Taking into account renormalization condition (7.1.4): /- = \Uol + f 22 2e we

can represent (7.2.7) as follows:

dna [ d°p 1 1
i ) -o, 7.2.8
o (e 3) (728

where E, = 4/ (¢, — ,u)2 + A% and a is an s-wave scattering length in vacuum.
Equation (7.2.8) is a first Leggett’s equation.

To derive the second Leggett’s equation we should use two facts. The first one
is connected with the definition of a superfluid density ng via the integral of a
normal Green’s function G in superconductor:
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do dp
ny= | ——L_Gg(w, p). 729
o= [ e s Oste 7 (129)

The second one is connected with the absence of normal excitations in super-
conductor at T = 0. Hence normal density equals to zero and superfluid density

3
nsg(T =0) ="t = 6’%. Correspondingly after frequency integration over the

contour C (see Fig. 7.6) we will get from Eq. (7.2.9):

dS[_’ Ep —¢ d31_7 1 ¢ ot P3
ns(l=0) / (2n) 2E, / o2\ 7E) "2 e (210

where ¢, = p?/2m — . Itis a second Leggett’s equation for chemical potential .
Note that the Eqgs. (7.2.8) and (7.2.10) are valid both in BCS (¢ > 0 and a < 0) and
BEC (1 < 0 and a > 0) domains. They can be also applied to describe unitary
limit 1/(pra) = 0. Note also that both Nozieres-Schmitt-Rink scheme at T # 0
and Leggett’s scheme at T = 0 provide smooth crossover between BCS and BEC
regions, at least for singlet s-wave pairing. In the next section we will show that for
triplet p-wave pairing (and the symmetry of Al-phase) we can have the point of
quantum phase-transition [12, 13] (or even topological phase-transition [14, 15,
33]) for a special point u(T = 0) = 0 separating BCS and BEC domains at 7 = 0.

In dilute BCS-limit for |a|pr < 1 the solution of Leggett’s equations yield:
1~ er > 0 for the chemical potential and

A~ 1.75TES ~ 175 - 0.28 ¢ exp {—ﬁ} ~ 0,5 exp {— 2|a”pp}

(7.2.11)

for the superfluid gap.
For dilute BEC-limit apg < 1 the superfluid gap reads:

A = \/213|Ey], (7.2.12)

where |E,| = 1/ma* is a binding energy and py :4’;‘;#;13 > 0 is a bosonic
chemical potential for weakly repulsive Bose-gas of molecules (dimers) with the
mass mg = 2m and density ng = n/2. In Eq. (7.2.12) the dimer—dimer scattering
length a,_, > 0. Note that bosonic chemical potential ug is of Hartree—Fock origin

and u = — @ + 2 <0 for apr < 1. Of course, g < |Ejp| in dilute BEC-domain.

Thus we have a standard BCS-gap and a standard ratio % ~ 3.5 in dilute BCS-

limit while in dilute BEC-limit the gap is pretty unconventional [see (7.2.12)].
Physically the gap A in BEC-domain reflects a creation of bound pairs (mole-

cules). To get the filling of A? = 2,|E,| in BEC limit let us consider the normal
in+g,
W +E

Green’s function G,(iow, §) = — It can be rewritten as:
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i+ &, 1 1

) 2 T T Al .
w’*+E _E N G -X
+ q 1w é‘l i(;)-&-éq 0

(7.2.13)

We can see from Eq. (7.2.13) that a normal Green’s function of a superfluid state
has a two-pole structure, where a resonance self-energy X in Eq. (7.2.13) reads:

AZ
®, §) = - . 7.2.14
Yo d) = (12.14)
It is interesting to note that at 7 = 0 a superconductive gap A in Eq. (7.2.14)
resembles a pseudogap Apg for a normal state in BEC-domain for T < T* in Eq.
(7.1.19). Moreover if we put ug = 0 in the expression for the self-energy of a normal
state in Eq. (7.1.19) we will recover the pole structure of G,(iw, §) in Eq. (7.2.13).

In the same time at T = T¢P#€ a superfluid gap A(TcP5C) = \/2|E, | up(TcPEC)
= 0 since g (TCBEC) = 0, while a pseudogap Apg does not drastically changes at
Tc and is nonzero. Note that we can rewrite the pseudogap in Eq. (7.1.19) as
Apg = 2|Ep|ug(T = 0), where (T = 0) = %2 p5 — T2t s a Hartree—Fock

contribution to the chemical potential in the repulsive Bose-gas of composed
bosons. Moreover let us stress that on the level of the T-matrix approximation in
the expression for dimer—dimer scattering length a,_, in Egs. (7.1.19) and (7.2.12—
7.2.14) enters mean-field result a,_, = 2lal, while in a more elaborate approach
beyond the simple T-matrix scheme it should be a,_, = 0.6lal > 0 (see [43]).
Nevertheless the similarity between A(T = 0) and Apg(T = 0) is striking and not
accidental. More careful analysis shows, however, that for non-zero temperatures
0<T<Tc inside the superfluid phase, the superfluid gap reads:

A*(T) = 2|Ep|ug(T), where pug(T) = m”Tﬂ”m (see Ref. [19] in Chap. 5). Thus in
the superfluid gap squared enters the superfluid density (2ny(7)), while in the
pseudogap enters the total density n,. This fact clarifies the situation. Indeed, for
T = 0 the superfluid density ny(T = 0) = n,,/2, and hence A(T = 0) = Apg. In
the same time for T = TCBEC the superfluid density nS(TCBEC) = 0 and thus
A(TPEC) = 0 while Apg(TPEC) is still governed by 7,0, and does not differ much
from Apg(T = 0). At finite temperatures 0 < 7 < TPEC the superfluid density
ny(T) < ny/2, and correspondingly A(T) < Apg.

In the unitary limit at 7 = O the superfluid gap A &~ 0.5¢g and the chemical
potential u =~ 0.44eg > 0 are found by Carlson et al. [29] in the framework of
Monte Carlo simulations.

Note that in Leggett’s self-consistent scheme u(7 = 0) = O for the value of the
inverse gas parameter inverse [67]:

~ 0.553, (7.2.16)
Prao

where ay is the value of the scattering length at the point u(7'= 0) = 0. Note that in

Feshbach resonance pg is fixed by the requirements of total density conservation,

while the scattering length a varies with magnetic field B.
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Thus the border between BCS-domain (¢ > 0) and BEC-domain (¢ < 0) lies in the
region of positive values of the scattering length ag > 0 (for the values of gas parameter
appr = 1.8). The superfluid gap at aopr is rather large and satisfies the relation:

A\ 1
(—) =2 ~ 1.106, (7.2.17)
EF/ o PFrao

where the index O indicates that the relevant physical quantities are taken for
W(T = 0) = 0. Thus from Eq. (7.2.17) we get Ag &~ 1.05¢g for appr ~ 1.8. Both
the chemical potential ¢ and the gap A vary linearly as function of a—ag near the
point ¢ = 0 and a = ao. Namely (see [67]):

A_ (A> {1—”1“}; (7.2.18)
er er /) 4 prag er

1 1 —
B (p) ( Prao . a laog)Pf ' (7.2.19)

ér Fao Fa n_1 1,22 Ty 1533
P 8pra; T 2PF% (5 +2prad)

In would be interesting to compare these results with those of Monte Carlo
calculations and with experiments to check how good is the quantitative
description of BCS-BEC crossover at T = 0 by the self-consistent Leggett’s the-
ory. Note that we can represent A(Z) in Eq. (7.2.17) as AS = |Es|, erprao. Hence A%
resembles the pseudogap A’pg in Eq. (7.2.19).

7.2.2 Sound Velocity in BCS and BEC Limits

Finally note that, as we mentioned in the Introduction, the sound velocity in the
resonance Fermi-gas can be obtained not only from the solution of the dynamical
problem for the spectrum of collective excitations (see the next Section), but also
from the thermodynamic identity for compressibility in a static case at T = 0:

1 2 Mot ou
K ~ep=— )
m Ongy

(7.2.20)

where ny, is total density and u is chemical potential. In dilute BCS-limit for
|a|pr < 1: the chemical potential 4 ~ &g and the superfluid gap A ~ eSS < .
Here effectively we can calculate sound velocity neglecting the derivative 0A/Ou
and putting n,,, = p3./37%, while neglecting the small difference between p and &g

connected with the superfluid gap squared: u = ep — oc§ In % =~ er (see the
foundations of the BCS-theory in Ref. [15] of Chap. 5. Thus - =24 and

Onior 3 Myoy
2 2
Mo 00 __ 24 PF : 2 _ Vg BCS __ Vp _ :
e = N Correspondingly ¢; = and ¢;*> = 7 (where vg = pg/m is

Fermi velocity). We get the well-known result for Bogoliubov-Anderson sound
velocity in neutral (non-charged) superfluid Fermi-gas. Note that in normal Fermi-
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gas the sound waves will be overdamped (see Ref. [27] in Chap. 5) and only
zero-sound mode will be propagating at T — 0. The superfluid gap causes the
final damping of the first sound mode at small frequencies: Imw ~ w?t, where

y = 1/t~ A%/ep is an inverse scattering time.
To get the sound velocity in the dilute BEC-limit we should recollect that
|Ep|  ug _A4may ong  may Ny Op 10y max o

=——+4+—and T . Thus == =
n=—rg oy and () O 20my  2m
0 .
and foor OR_ T2-2hor _ 'u—B. Correspondingly ¢?E€ =, /2 and we recover the
m Ongy, 2m? mp i

result for Bogoliubov sound velocity in 3D gas of (composed) bosons with weak
repulsion (between bosons): w1, = mg(cBEC)* [59].

Note that in the dilute limit |alpr < 1 F5€ < P, The sound velocities
become equal in the intermediate region for large values of the gas parameter
lalpr > 1.

In the unitary limit ¢; & 0.4vg. Note that for (T = 0) = 0 and aopr = 1.8 the
sound velocity reads (see [67]):

2 I
= %“7 ~0.132/2 (7.2.21)
" (1 +%P'}103)

and ¢; ~ 0.36vp.

7.2.3 BCS-BEC Crossover for the 2D Resonance Fermi-Gas

Let us discuss briefly the BCS-BEC crossover and Leggett’s equations for the 2D
resonance Fermi-gas.

For symmetric attractive potential well in 2D according to Quantum mechanics
we have a bound-state of two-particles even for infinitely small attraction between
them (see Ref. [26] in Chap. 5). This is in contrast with the 3D case where the
bound-state even in symmetric potential well is formed only for deep enough
potentials: |U| > y/mr, where 7y is numerical coefficient, |U]| is the depth of the
attractive potential and ry is the width of the well. Thus there is a threshold for a
bound state in 3D. On the level of the two-particle T-matrix in vacuum (see Chap. 5)
it corresponds to |5l = 1 for the value of the Born parameter /3. Correspondingly in

3D we have a shallow bound-state |E,| < 1/mrj for 0< lﬂ\lTT < 1.

In 2D the threshold for the formation of the bound-state is absent. Thus com-
posed bosons (molecules f3f|) are every time present in 2D attractive Fermi-gas.
However the