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Preface

The idea to write this book came to my mind after two advanced lecture courses
which I have read in summer semesters of the year 2010 as Leverhulme visiting
professor in Loughborough University UK and of the year 2011 as a visiting
professor in LTPMS-Orsay (associated with the University Paris-Sud).

The first Chapters of this book had the approbation during 16 years of my
pedagogical work as a Professor on Galitskii chair of Theoretical Nuclear Physics
in Moscow Engineering Physical Institute and during autumn semester of the year
1994 in the University of Amsterdam.

The course is based on the original research work where I actively participated
and contributed as a principal scientist and a group leader in P.L. Kapitza Institute
for Physical Problems in Moscow during 30 years of my scientific career. It
includes the set of eight lectures and eight seminars which cover several important
topics of the modern condensed matter physics, namely:

• Quantum hydrodynamics of fermionic and bosonic superfluids and supersolids;
• BCS-BEC crossover in ultracold quantum gases;
• Non-phonon mechanisms of superconductivity in high-TC materials and other

unconventional superconductors;
• Nanoscale phase separation in CMR-materials, heavy-fermions, and other

strongly correlated electron systems;
• Mesoscopic electron transport in multi-band and phase-separated metallic and

oxide compounds.

I hope the book will be useful for undergraduate students of the senior courses,
postgraduate students, and postdocs specializing in solid-state and low-tempera-
ture physics.

I am very grateful to my teachers, colleagues and pupils, first of all to
A. S. Alexandrov, A. F. Andreev, A. G. Aronov, S. Balibar, M. A. Baranov,
H. Beck, J. G. Bednorz, I. V. Brodsky, P. Brussard, H. W. Capel, H. Capellman,
M. Capezzalli, R. Combescot, A. V. Chubukov, V. N. Devyatko, D. V. Efremov,
M. A. Efremov, I. A. Fomin, R. Fresard, G. Frossati, P. Fulde, B. Halperin,
Yu. A. Izumov, V. V. Kabanov, Yu. Kagan, L. V. Keldysh, A. V. Klaptsov,
Yu. V. Kopaev, K. I. Kugel, D. I. Khomskii, Yu. A. Kosevich, F. V. Kusmartsev,
A.V. Kuznetsov, A. I. Larkin, N. P. Laverov, Yu. E. Lozovik, I. M. Lifshitz,

v



S. Maekawa, M. S. Mar0enko, B. E. Meierovich, A. P. Menushenkov, M. Mezard,
P. Nozieres, S. L. Ogarkov, V. M. Osadchiev, A. V. Ozharovskii, A. Ya. Parshin,
L. P. Pitaevskii, N. M. Plakida, F. Pobell, N. V. Prokof’ev, A. M. M. Pruisken,
A. L. Rakhmanov, T. M. Rice, G. Sawatzky, A. O. Sboychakov, T. Schneider,
G. V. Shlyapnikov, S. Stringari, V. V. Val0kov, C. M. Varma, D. Vollhardt,
G. E. Volovik, J. T. M. Walraven, G. Wendin, Ch. van Weert, P. Wölfle, and Ya.
B. Zeldovich, who encouraged me to start writing this book and greatly improved
its quality during our intensive scientific collaboration, numerous and sometimes
very hot discussions both in Moscow and abroad. I am also very grateful to
my family for their patience during the work on this book and acknowledge
very important technical support from my assistants M. M. Markina and
A. M. Padokhin.

Moscow, November 2013 M. Yu. Kagan
Corresponding Member of Russian Academy of Sciences

Principal scientist in P.L. Kapitza Institute for Physical Problems

and

Professor of Physics in Moscow
State Institute of Electronics and Mathematics,

National Research University
Higher School of Economics
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Introduction

The subjects of superconductivity and magnetism, superfluidity and BCS-BEC
crossover are very dynamically developing fields of condensed matter physics with
very intensive exchange of ideas between them.

The main idea of the present manuscript is to consider these closely related
phenomena in a coherent fashion and to show how the achievements in one of the
fields enrich the other and vice versa. I would also like to demonstrate the results
obtained in these fields both in Moscow and at the West during last 30 years.

The book is based on the results of my group at Theoretical Department of
Kapitza Institute as well as other groups and on advanced lecture courses which I
have read in Moscow Engineering Physical Institute, in the Amsterdam University,
Loughborough University, and LPTMS-Orsay associated with the University Paris
Sud in the period of 1994–2011.

I tried to include in the book space of the most interesting ideas worked out in
the end of twentieth century and very recently and thus bridge different
communities working in solid state and low-temperature physics.

The book consists of 4 Parts and 16 Chapters. In the first part, I describe the
recent developments in superfluid hydrodynamics of quantum fluids and solids
including a very hot subject of possible supersolidity in quantum crystals of 4He.
There are several other interesting topics considered in this part. Among them is
the nature of the roughening transition on the phase-interface between quantum
crystal and a superfluid, as well as a spectrum of weakly damped melting-
crystallization waves, which can exist and were experimentally measured on a
mobile rough phase-interface between solid and superfluid 4He in the conditions of
thermodynamic equilibrium on the phase boundary.

In Chap. 1, we start with general Landau scheme of the conservation laws for
the hydrodynamics of classical liquids and of the superfluids. On the basis of
Landau scheme, we consider the hydrodynamics of rotating superfluids with large
number of quantized vortices. We study different regimes of rotations in the
presence of Feynman-Onsager triangular vortex lattice, which we call hydrody-
namics of slow and fast rotations, respectively. In connection with dilute Bose
gases in rotating magnetic traps, we also consider the situation when the vortex
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lattice is melted or almost melted and we have a transition from a vortex lattice
phase to a phase of vortex liquid.

The subjects of possible supersolidity in quantum crystals and melting-crys-
tallization waves on the mobile phase-interface between quantum crystall and
quantum liquid are presented in Chaps. 2 and 3, respectively. We discuss here also
the Andreev–Lifshitz theory for quantum crystals, which is based on the large
values of Lindemann and de Boer parameters, as well as recent experimental
results of Chan et al., on the possible observation of the non-classical moment of
inertia in rotating experimental cell loaded with solid 4He.

Discussing in these chapters the surface science, we present the ideas of
Nozieres on the Berezinskii–Kosterlitz–Thouless type of roughening transition in
solid 4He as well as Andreev–Parshin ideas of quantum roughening due to delo-
calization of the 2D gas of kinks on the rough interface at low temperatures.

In Chap. 4, we consider a complicated and yet unresolved problem of chiral
anomaly in superfluid 3He-A and present two competing approaches for this
interesting topic. The first one is based on the inclusion of a fermionic goldstone
mode connected with zeroes of superfluid gap in the hydrodynamical scheme in
the framework of the superhydrodynamics. Another one is based on a formal
analogy between Bogoliubov-De Gennes equations for quasiparticles in 3He-A and
Dirac equation in quantum electrodynamics. We invite experimentalists to mea-
sure the spectrum and damping of orbital waves in 3He-A at low temperatures and
in this way to help theorists to improve their understanding of the complicated
subject of orbital hydrodynamics.

The second part of the book also contains the four Chaps. 5–8. In this part, I
review the recent progress in the field of BCS-BEC crossover in quantum Fermi-
Bose gases and mixtures and show the analogy between the mechanism of BCS-
BEC crossover in gases and in underdoped high-TC superconductors.

In Chap. 5, I present the introduction to the subject of Bose–Einstein conden-
sation in ultracold bosonic gases in the restricted geometry of the magnetic traps.
In the second part of the chapter, I discuss the Feshbach effect which yields
experimental possibilities to study BCS-BEC crossover between extended Cooper
pairs and local pairs (or molecules) in ultracold fermionic gases.

In Chap. 6, I study composed fermions and bosons which correspond to the
different bound states (molecules) consisting of two fermions, two bosons, and
fermion and boson in ultracold quantum gases and mixtures. I also elucidate the
exact solutions of the Skorniakov-Ter Martirosian integral equations for the
binding energies of the more sophisticated complexes consisting of three and four
resonantly interacting particles. We determine as well the atom-molecule and the
molecule–molecule scattering amplitudes in the resonance Fermi-gas.

In Chap. 7, I present the basic ideas of Nozieres–Schmitt-Rink and Leggett
theory on BCS-BEC crossover and construct the phase-diagrams for the s-wave
and p-wave resonance Fermi gases in 3D and 2D case. In the last case, we discuss
also the point of the possible topological quantum phase transition which appears
on the phase diagram of p-wave superfluid with the symmetry of A1-phase. I also
illustrate the Bogoliubov-Anderson and Galitskii-Vaks-Larkin schemes for
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studying the spectrum of collective excitations in superfluid resonance Fermi gases
with s-wave and p-wave pairing and determine the spectrums of sound waves and
orbital waves both in BCS and BEC regimes.

In Chap. 8, we study the models with short-range attraction between fermions
and discuss the interesting physics of the pseudogap actual for high-TC super-
conductivity as well as a new interesting phase of a normal bosonic metal which
arises in these models. We also discuss the scenario of Fermi-Bose mixture to
explain superconducting and normal properties in another interesting supercon-
ducting family of plumbates-bismuthates where the local pairing is established due
to the requirements of ‘‘valence skipping’’ in these compounds.

The third part of the manuscript is devoted to non-phonon mechanisms of
superconductivity and first of all to the famous Kohn-Luttinger mechanism
of superconductivity in purely repulsive Fermi-systems. It contains the five
Chaps. 9–13.

In Chap. 9, I present the basic ideas of Kohn-Luttinger. I show that the presence
of Kohn’s anomaly (of the Friedel oscillations) in the effective interaction between
two fermions via the polarization of the fermionic background leads to super-
conductive p-wave pairing in purely repulsive Fermi-gas or Hubbard model at low
electron density both in 3D and 2D cases.

In Chap. 10, we show that the critical temperature of superconductive pairing
can be strongly increased already at low electron density in the presence of the
external magnetic field or in the two-band situation.

In Chaps. 11 and 12, we apply the ideas of Kohn–Luttinger to the problem of
the search of fermionic superfluidity in 3He–4He and 6Li–7Li mixtures, as well as
in the gas of neutral particles (such as fermionic 6Li) in the magnetic traps at low
and ultralow temperatures. We also search for the new phase of superfluid 3He
different from traditional A and B phases in non-polarized and strongly spin-
polarized case.

In Chap. 13, we discuss the ideas of spin-charge separation and spin-charge
confinement in quasi-1D ladder materials and in quasi-2D high-TC superconduc-
tors. We discuss the superconducting phase-diagram of high-TC superconductors
in the framework of the popular nowaday t-J model and show that in the optimally
doped case, we can have d-wave superconducting pairing with a high TC of the
order of 100 K. We also propose a possible scenario of BCS-BEC crossover in the
d-wave channel for pairing of two composite holes (two strings or two spin
polarons) in the underdoped high-TC materials.

Finally in the last part of the manuscript, I search for marginal non-Fermi-liquid
behavior and anomalous temperature dependence of the resistivity in the normal
state of low density superconductors. I reveal here also the tendency toward
nanoscale phase separation in the normal state of cuprates and CMR systems.
Effectively this part serves as a bridge between the physics of strongly correlated
electron systems and magnetism from one hand and the physics of mesoscopic
quantum phenomena and localization from the other. Part 4 contains three
Chaps. 14–16.
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In Chap. 14, I search for marginal non-Fermi liquid behavior in the normal state
of low density Fermi-systems in 3D and 2D case. I also discuss electron polaron
effect and anomalous resistivity in the two band model with one narrow band due
to strong heavy-mass enhancement and localization corrections for scattering of
light particles on the heavy ones.

In Chap. 15, I reveal the similarities between high-TC cuprates and manganites,
which exhibit the phenomenon of colossal magnetoresistance. Both families of
strongly correlated materials have a pronounced tendency to the formation of
inhomogeneous states and in particular to nanoscale phase-separation corre-
sponding to the state with small ferromagnetic or paramagnetic metallic droplets
inside antiferromagnetic or charge-ordered insulating matrices.

Finally in Chap. 16, I discuss anomalous tunneling conductivity, tunneling mag-
netoresistance, and the spectrum of 1/f-noise in the non-metallic phase-separated
state which are connected with the electron tunneling from one metallic cluster (or
droplet) to a neighboring one via an insulating barrier. I present here the experi-
mental results of several groups confirming the proposed tunneling model.

In conclusion, I discuss the interesting unresolved problems which still exist in
the modern condensed matter physics and encourage the young researchers to
continue their careers in this fascinating field.

I hope this book will be useful for undergraduate students of senior courses as
well as for postgraduate students, postdocs, and active researchers specializing in a
solid state and low-temperature physics.
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Part I



Chapter 1
Hydrodynamics of Rotating Superfluids
with Quantized Vortices

While many forthcoming Chapters of the present manuscript deal with the
microscopical models for the description of Quantum Gases, Fluids and Solids, as
well as strongly correlated electron systems, the first four Chapters are devoted to a
purely phenomenological (macroscopic) description of hydrodynamic phenomena
in anisotropic and inhomogeneous superfluids and superconductors.

The presentation in these Chapters is based on Landaus’ ideas. Let us stress that
Landau theory of hydrodynamics [1–5] based on the conservation laws in the
differential form (together with Quantum Mechanics [6] and Statistical Physics
[7]) is one of the masterpieces of Landau-Lifshitz course of the Theoretical
Physics. While the essence of this theory is well known (serves as a mother’s milk)
to Russian researchers from the first steps of their scientific career, in the West
many young physicists, specializing on microscopic models, do not have a deep
background in this subject. A good style meanwhile is to know fluently both
microscopics and phenomenology from our point of view.

That is why from the pedagogical reasons we decided to start the present
Chapter with brief description (in Sect. 1.1) of the Landau theory for hydrody-
namics in classical [1–5] and superfluid [1–5, 8, 9] liquids. We present Landau
scheme of the conservation laws for the description of slowly varying in space and
time Goldstone (gapless) collective modes.

We will discuss Landau [1–5] (or Landau-Tisza [1–5, 10–13], as often referred
to in the West) two-velocity superfluid hydrodynamics for 4He [1–5, 8–13] which
contains normal and superfluid velocities ~vn and ~vs, as well as normal and
superfluid densities qn and qs, thus describing both the normal and superfluid
motion in helium [14–16]. We will derive the spectrum and damping of first and
second sound in superfluid helium (in He-II). We will obtain x = cIk and
x = cIIk (the spectrum is linear for both waves) and compare the velocities cI and
cII of these sound waves. We will stress that while in first sound total mass-current
~j ¼ qs~vs þ qn~vn 6¼ 0, in the second sound wave ~j ¼ 0 but the relative velocity
~W ¼~vn �~vs 6¼ 0.

In Sect. 1.2 we proceed to the hydrodynamics of rotating superfluids with a
large number of quantized vortices. We start this Section with famous
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Andronikashvili experiments (on non-classical moment of inertia in rotating He-II)
[17, 18] and discuss Feynmann-Onsager quantization of the vortex lines in
superfluid helium [19–22]. We introduce the notion of first and second critical
angular velocities of rotation XC1 and XC2 in helium and stress their correspon-
dence with first and second critical magnetic fields HC1 and HC2 in type—II
superconductors [23–26]. Than we will present the scheme of macroscopic aver-
aging [27–30] for a large number of vortices and construct nonlinear elasticity
theory for a 2D (triangular) vortex lattice in helium [31]. The linearization of this
theory yields well-known Tkachenko modes [32–34] (which describe longitudinal
and transverse oscillations of the vortex lattice), as well as Lord Kelvin (Thomson)
bending oscillations of the vortex lines [35, 36]. We include dissipation in the
system and discuss Hall-Vinen friction coefficients b and b0 [37–41] for the
scattering of normal component on the vortex lattice. In the end of Sect. 1.2 we
will construct the complete system of equations (which describe hydrodynamics of
slow rotations [31, 42]) based on the Landau scheme of the conservation laws. We
will discuss briefly another elegant method to derive a system of hydrodynamic
equations based on Poisson brackets [43] and emphasize, nevertheless, the
advantages of Landau method especially in nonlinear regime.

In the Sect. 1.3 we consider the different limit for hydrodynamics of fast
rotating superfluid. In this case due to Umklapp processes [23, 44] the normal
excitations are bound to vortex lattice, and hence the normal and superfluid
velocities perpendicular to the vortex lines coincide~vn? ¼~vs?. In the same time in
the direction parallel to the vortex lines due to translational invariance~vnjj 6¼~vsjj.

Thus we have one-velocity motion in the plane of the vortex lattice~v? ¼~j?=q and
two-velocity motion parallel to the vortex lines. Hence we are in a strongly
anisotropic situation where we have a crystal in the plane of the vortex lattice and a
standard superfluid in the direction perpendicular to the lattice and parallel to the
vortex lines. We will construct the full system of hydrodynamic equations for a
regime of rapid rotations and analyze the spectrum and damping of collective
excitations (first of all of a second sound mode) in this regime. We will get that the
spectrum is linear and sound wave can freely propagate only along the vortex lines
where ~Wk ¼~vnk �~vsk 6¼ 0, while the spectrum is overdamped in the perpendicular
direction. More specifically for k\ = 0 the spectrum reads x2 ¼ c2

IIk
2
z , while for

kz = 0: x ¼ � ij?k2
?

Cp
[31], where j\ is heat conductivity in the direction perpen-

dicular to the vortex lines, Cp is a specific heat and kz, k\ are the components of

the ~k-vector along and perpendicular to the vortex lines, respectively.
In the Sect. 1.4 we consider an opposite case of a single bended line. Here, as

shown by Lord Kelvin, the spectrum for the bending oscillations is almost qua-

dratic x ¼ k2
z

2m ln 1
dkz

[23, 35, 36] (d is a normal vortex core, which in the case of

superfluid 4He is of the order of the interatomic distance). Naive considerations
show that such quasi 1D system (as a bended vortex line) should be completely
destroyed by the thermal fluctuations and experience in analogy with the bio-
physical systems a phase-transition to the state of a globule [23]. We show,
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however, that in fact [31] the bending oscillations correspond to rotation:

~u� _~u 6¼ 0, where ~u and _~u are respectively a local displacement of the bended
vortex from a nondeformed position and its time derivative (local velocity). Thus
the quanta of the bending oscillations in fact have the rotation moment (-�h)
(diamagnetic situation) and hence the gap �hX appears in their spectrum. This gap

stabilizes the fluctuations of this 1D system providing a finite ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~u2h i=R2
p

� 1
of a mean square displacement ~u2

� �

to the radius squared R2 of the rotating vessel
with helium. It is a reason why a regular (triangular) vortex lattice can be directly
visualized (the photograph of the lattice with small vortex displacements can be
obtained) in the experiments of Packard et al. [86–88].

We conclude the Chapter with the discussion in Sect. 1.5 how we can realize
the hydrodynamics of fast rotations at not very high frequencies X � XC2 (note
that the second critical angular velocity XC2 is very high in superfluid 4He). We
propose to use for that regime 4He-3He mixtures, where 4He is superfluid and has a

large number of vortices. In this case according to the Bernoulli law [1–5] lþ v2
s

2 ¼
const all the 3He impurities will be driven by the gradient of the pressure rpð Þ to
the vortex core and organize inside the core the quasi 1D normal component with a
free motion only along the vortex lines. This is just a desirable regime of rapid
rotations which we discuss in Sect. 1.2. Another possibility is to use an isotropic
triplet phase (B-phase) of superfluid 3He [45, 46] where we can make the Umklapp
processes very effective already at moderate rotation frequencies [31]. We stress
that a recent revival of interest to the rotating superfluids with large number of
vortices is connected with the intensive experimental and theoretical studies of
rotating Bose-condensates in the restricted geometry of magnetic traps in ultracold
gases and mixtures [47]. We will discuss the most important results in this field
especially those connected with the possible melting of the vortex lattice [27–30,
47–62] in Sect. 1.2.6.

1.1 The Foundation of Landau Theory for Superfluid
Hydrodynamics

We will start this Section with a brief description of Landau approach to the
hydrodynamics of the classical liquid.

1.1.1 The Essence of the Hydrodynamics. Description
of the Goldstone Modes

Generally speaking, hydrodynamics is a science which describes all slowly-vary-
ing in space and time processes in the liquid (the elasticity theory does the same in
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the solid [63]). For these processes in momentum space a frequency x ? 0 when

the wave-vector ~k! 0. Thus hydrodynamics describes all low-lying gapless
(Goldstone) modes.

Moreover, hydrodynamics assumes local thermodynamic equilibrium (equi-
librium in small volume), so we can adopt reduced description of the system [7]
and introduce finite number of local variables. For ordinary liquid (with one
velocity~v) the canonical variables in Landau scheme are qð~r; tÞ—density;~jð~r; tÞ—
density of linear momentum, and Sð~r; tÞ—entropy of the unit volume.

1.1.2 Landau Scheme of the Conservation Laws. Euler
Equation

According to Landau the system of equations for classical liquid contains an
equation for mass-conservation:

oq
ot
þ ~r �~j ¼ 0; ~j ¼ q~v; ð1:1:1Þ

an equation for linear momentum conservation:

oji
ot
þ o

oxk
Pikð Þ ¼ 0; ð1:1:2Þ

Pik is momentum flux (in ideal dissipationless liquid Pik ¼ qvivk + pdik; p—is
pressure), and an equation for entropy increase:

oS

ot
þ ~r � S~vþ~q

T

� �

¼ R

T
; ð1:1:3Þ

where R C 0 is positively defined dissipative function, ~q is dissipative entropy
flux, T is temperature (in ideal liquid R = 0 and~q ¼ 0). Note that if we take into

account only one source of dissipation connected with the heat flux, then ~q ¼
�j ~rT (j is heat conductivity) and correspondingly the dissipative function

R� j
~rTð Þ2

T [ 0 is quadratic in gradients. In general case in Eqs. (1.1.2) and
(1.1.3) in the expression for Pik and R enter also viscous contributions

pik ¼ Pdis
ik ¼ g ovi

oxk
þ ovk

oxi
� 2

3 dik
~r �~v

� �

þ ndik
~r �~v, where g and n are viscosity

coefficients (n is often called second viscosity) and accordingly R� pik
ovi
oxk

.

The system of 3 equations for oq=ot; oji=ot and oS=ot (1.1.1–1.1.3) are con-
sistent with an equation of total energy conservation:

oE

ot
þ ~r � ~Q ¼ 0: ð1:1:4Þ
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While deriving (1.1.4) we can use the Galilean invariance and introduce the
internal energy E0 in the reference frame K0 (where the liquid is at a rest)
according to:

E ¼ E0 þ q
~v2

2
¼ E0 þ

~j2

2q
: ð1:1:5Þ

In Eq. (1.1.4) ~Q is an energy flux. In an ideal dissipationless liquid:

~Q ¼ W þ q
v2

2

� �

~v; ð1:1:6Þ

where W = E0 ? P is the density of the enthalpy (the enthalpy of the unit vol-

ume). To get (1.1.4) with ~Q from (1.1.6) we should utilize the thermodynamic
identity for internal energy:

dE0 ¼ TdSþ ldq; ð1:1:7Þ

where l is the chemical potential, and use the expression for pressure:

P ¼ TSþ lq� E0 ¼ W � E0: ð1:1:8Þ

From the expression (1.1.8) we get:

dP ¼ SdT þ qdl ð1:1:9Þ

1.1.2.1 Euler Equation

From Eq. (1.1.2) for linear momentum conservation and Eq. (1.1.1) for mass-
conservation we can get for an ideal dissipationless liquid:

o~v

ot
þ ~v � ~r
� �

~vþ 1
q
~rp ¼ 0 : ð1:1:10Þ

It is a famous Euler equation for an ideal classical liquid. At zero temperature
(T = 0) we can rewrite (1.1.10) as:

o~v

ot
þ ~r lþ v2

2

� �

¼~v � ~r� v
� �

; ð1:1:11Þ

1.1.2.2 Potential Irrotational Flows

Note that for ~r�~v ¼ 0 we have so-called potential (irrotational) flows. In this case:

o~v

ot
þ ~r lþ v2

2

� �

¼ 0; ð1:1:12Þ
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Correspondingly we can represent velocity as a gradient of some scalar

potential~v ¼ ~ru.

For stationary potential flows o~v
ot ¼ 0 and ~r lþ v2

2

� �

¼ 0. Thus

lþ v2

2
¼ const; ð1:1:13Þ

This equation is often called Bernoulli equation (see [1–5]).

1.1.3 Sound Waves in Classical Liquid. Damping
of Sound Waves

Linearizing the system of Eqs. (1.1.1–1.1.3) for an ideal (dissipationless) liquid we
get the following set of equations:

odq
ot
þ q0

~r �~v ¼ 0; �� > ð1:1:14Þ

q0
o~v

ot
þ ~rdP ¼ 0; ð1:1:15Þ

odS

ot
þ S0

~r �~v ¼ 0; ð1:1:16Þ

where dq, dP and dS are slowly varying and small (in amplitude) deviations of
density, pressure and entropy from equilibrium values in the sound wave. Thus
qð~r; tÞ ¼ q0 þ dqð~r; tÞ with dqj j � q0 and so on. We also assume that the velocity
~v in the sound wave is small~v ¼ d~vð~r; tÞ. In fact it is a condition v � c, where c is
sound velocity, which is required.

In ideal liquid all the motions are adiabatic. It means that the entropy of unit mass
SM = S/q = const (where S is an entropy of unit volume). Thus dS in Eq. (1.1.16)
yields dS ¼ SMdq and Eq. (1.1.16) for entropy becomes equivalent to Eq. (1.1.14) for
density. Moreover the pressure P ¼ TSþ lq� E0 ¼ TqSM þ lq� E0 (which in
general case is the function of SM and q) for adiabatic sound wave is a function only of

q. Thus for small deviations of pressure from equilibrium values dP ¼ oP
oq

� �

SM

dq,

where by its definition we can introduce the sound velocity squared as:

c2 ¼ oP

oq

� �

SM

and dP ¼ c2dq ð1:1:17Þ

Correspondingly we can rewrite Eq. (1.1.15) as:

q0
o~v

ot
þ c2~rdq ¼ 0 ð1:1:18Þ
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If we take the time derivative (q/qt) from Eq. (1.1.14) for density and space

derivative (~r) from Eq. (1.1.15) for linear momentum, we will get:

o2dq
ot2
þ q0

~r � _~v ¼ 0; ð1:1:19Þ

q0
~r � _~vþ c2Ddq ¼ 0; ð1:1:20Þ

where D is an operator of Laplacian.
Substitution of (1.1.20) into (1.1.19) finally yields:

o2dq
ot2
� c2Ddq ¼ 0: ð1:1:21Þ

If we assume that dq varies in a monochromatic sound wave dq� e�ixtþi~k~r we
will get for the spectrum:

x2 ¼ c2k2: ð1:1:22Þ

Thus the sound spectrum is linear as expected. It corresponds to compressible
liquid where dq = 0 and~j 6¼ 0.

1.1.3.1 Damping of the Sound Waves

The damping of sound in hydrodynamic theory is given by higher gradients
connected with dissipative terms in the system of Eqs. (1.1.1–1.1.3). The spectrum
with an account of damping reads [1–5]:

x ¼ ck þ ic; ð1:1:23Þ

where

c ¼ x2

2qc2

4
3
gþ n

� �

þ j
1

CV
� 1

CP

� �	 


; ð1:1:24Þ

g and n are coefficients of first and second viscosity, j is heat conductivity, CP and
CV are specific heat at constant pressure and constant volume [7]. We can see that
the damping c * x2 and thus it is small for x ? 0. Moreover in hydrodynamics
(collisional) theory we can write c � x2s ¼ c2k2s and

c=x � xs� 1; ð1:1:25Þ

where we introduced a characteristic (scattering) time s. Note that if we consider
the damping due to the presence of the first viscosity g and take into account a

simple estimate from the kinetic theory [64] g� ql�v� q�v2s, than c� x2g
qc2 � �v2

c2 x2s

and indeed c=x� �v2

c2 xs, where s ¼ l=�v is a scattering time, l is a length of the
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mean-free path and �v is the thermal (average) velocity (in Boltzman molecular gas,
for example). Note that in Boltzman gas c2��v2 and hence c�x2s.

We can conclude that hydrodynamic description (with the small damping and
the propagating sound waves) is valid for small frequencies xs � 1 or, corre-
spondingly, for small wave-vectors kl � 1. For larger frequencies xs 	 1 we are
in a ballistic (or Knudsen) regime (see for example Physical Kinetics [64]). In this
regime we should start our theoretical analysis with a good kinetic equation in
classical or degenerate case (see Chap. 16) and derive the dynamic equations in the
collisionless (ballistic) regime.

1.1.3.2 Equation for Heat Conductivity. Overdamped Temperature
Waves

Let us analyze now Eq. (1.1.3) for the entropy increase. In the absence of the drift
velocity (for the liquid at a rest) ~v ¼ 0 and Eq. (1.1.3) reads:

oS

ot
þ ~r � ~q

T

� �

¼ R

T
; ð1:1:26Þ

where~q ¼ �j ~rT is a heat flux, j is heat conductivity, T is temperature, and R is
dissipative function.

If we are interested in small entropy and temperature deviations from the
equilibrium values, having in mind temperature waves, we can linearize (1.1.22).
After linearization we get:

odS

ot
� j

T0
DdT ¼ 0; ð1:1:27Þ

where the entropy S and temperature T are given by: S ¼ S0 þ dSð~r; tÞ and
T ¼ T0 þ dTð~r; tÞ. To find the spectrum of the temperature waves (which will be
overdamped as we will see soon) we should express odS

ot in (1.1.23) via the time

derivative of the temperature odT
ot :

For almost incompressible fluid (which is a legitimate approximation in this
case) dS ¼ qdSM , where SM is an entropy of a unit mass. Assuming that correct
thermodynamic variables for mass entropy SM are p—pressure and T—tempera-
ture, and, moreover that we can put p = const in temperature waves (see Ref. [1],
Sect. 1.3, and Chap. 3), we can represent the time derivative:

odS

ot
� q

odSM

ot
� q

oSM

oT

� �

P

odT

ot
¼ qCP

T0

odT

ot
; ð1:1:28Þ

where Cp ¼ T0
oSM
oT

� �

p is specific heat at constant pressure (see Refs. [1, 7], Sect. 1.3,
and Chap. 3).

Correspondingly Eq. (1.1.23) reads:

qCP

T0

odT

ot
� j

T0
DdT ¼ 0: ð1:1:29Þ
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Equation (1.1.25) is a famous equation for the heat conductivity (or a Fourier
equation as mathematicians often call it). For the monochromatic temperature
wave dT � e�ixtþi~q~r we get:

ix ¼ j
qCP

q2 or x ¼ �i
j

qCP
q2: ð1:1:30Þ

Thus we conclude that the spectrum of the temperature waves in a classical
liquid is overdamped and quadratic in the wave-vector q.

1.1.4 Rotational Fluid. Vorticity Conservation. Inertial Mode

If ~r�~v 6¼ 0 we can take curl from l.h.s and r.h.s. of the Euler equation (1.1.11).
Then we get:

o ~r�~v
� �

ot
¼ ~r� ~v� ~r�~v

� �� �

; or
o~x
ot
¼ ~r� ~v� ~xð Þ; ð1:1:31Þ

where ~x ¼ ~r�~v. This equation is an equation for vorticity conservation. Note

that for solid-state rotation~v ¼ ~X�~r and hence ~x ¼ ~r�~v ¼ 2~X, where ~X is an
angular frequency of rotation.

1.1.4.1 Inertial Mode in Classical Fluid

Let us consider uniformly rotating liquid with an angular velocity ~X and find the

spectrum xðkÞ in rotation frame for small variations of the velocity field ~v ¼
~X�~r þ d~vð~r; tÞ on top of solid-state rotation. Let us consider an incompressible

fluid. Then ~r �~v ¼ ~r � d~vð~r; tÞ ¼ 0. Correspondingly ~r� ~v ¼ 2~Xþ ~r� d~vð~r; tÞ.
The linearization of Euler equation with an account of the thermodynamic identity
1
q
~rP ¼ ~rl reads:

o

ot
þ ~v0 � ~r
� �

� ~Xx

	 


d~vþ 1
q0

~r P� q
~X�~r
� �2

2

0

B

@

1

C

A

þ 2~X� d~v ¼ 0 ð1:1:32Þ

where ~v0 ¼ ~X�~r is a linear velocity of solid-state rotation. Note that in curly
brackets in the l.h.s. of Eq. (1.1.32) stands the operator which transforms the time
derivative of the vector d~v to the rotation frame. Thus

od~v
ot0
þ 1

q0

~r P� q
~X�~r
� �2

2

0

B

@

1

C

A

þ 2~X� d~v ¼ 0; ð1:1:33Þ
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where operator q/qt0 refers to the rotation frame. In Eq. (1.1.33) we recognize a

Coriolis force 2~X� d~v and a centrifugal force ~r
~X�~rð Þ2

2

� �

which are always

present in the rotation frame. We can also introduce an effective pressure

Peff ¼ P� q
~X�~rð Þ2

2 . Then

od~v
ot0
þ 1

q0

~rPeff þ 2~X� d~v ¼ 0 ð1:1:34Þ

Representing Peff ¼ P0 eff þ dP we get:

od~v
ot0
þ 1

q0

~rdPþ 2~X� d~v ¼ 0: ð1:1:35Þ

Applying operator of curl to l.h.s. of (1.1.34) we get:

o
0 ð ~r� d~vÞ þ 2 ~r� ð~X� d~vÞ ¼ 0: ð1:1:36Þ

If ~X ¼ X~ez than for ~r � d~v ¼ 0 we get 2~r� ~X� d~v
� �

¼ �2X od~v
oz and

o

ot0
~r� d~v
� �

� 2X
od~v
oz
¼ 0 ð1:1:37Þ

For the monochromatic wave d~v� e�ixtþi~k~r

�ix ~k � d~v
� �

¼ ikz2Xd~v: ð1:1:38Þ

If we take a vector product with~k of the l.h.s and the r.h.s. of (1.1.38) we get

with an account of incompressibility condition ~k d~v ¼ 0

�ixk2d~v ¼ ikz2X ~k � d~v
� �

: ð1:1:39Þ

Comparing (1.1.38) and (1.1.39) we conclude that �ix ~k � d~v
� �

¼

ikz2X ikz2X
�ixk2

~k � d~v
� �

and correspondingly

x2k2 ¼ k2
z 4X2: ð1:1:40Þ

Finally

x2 ¼ 4X2 k2
z

k2
; or x ¼ 2ð~X~kÞ

k
: ð1:1:41Þ

This is a well-known inertial mode in an uncompressible ideal fluid. Note that it

is a Goldstone mode for kz=k! 0 where k2 ¼ k2
z þ k2

? and~k? ¼ ðkx; kyÞ. Note also
that the spectrum x(k) in (1.1.41) is a spectrum in rotation frame.
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Let us discuss compressible rotating fluid now. According to Sonin [39, 40] the
spectrum in this case reads:

x2 ¼ 4X2 x2 � c2k2
z

x2 � c2k2
: ð1:1:42Þ

The solution of this equation yields two branches for the spectrum:

x2 ¼ 1
2

4X2 þ c2k2
� �

ffi 1
4

4X2 þ c2k2
� �2� 2Xckzð Þ2


 ffl1=2

: ð1:1:43Þ

In a fluid at a rest (for X = 0) x1 = ck and x2 = 0. Thus we see that rotation
adds a second mode with non-zero frequency to the sound mode. The reason for
that according to Sonin is a Coriolis force: rotation makes the fluid rigid in the
direction perpendicular to rotation axis.

We can distinguish two regimes in Eq. (1.1.43): the regime of large k-vectors
k [ 2X

c (or almost incompressible liquid c ? ?) and the regime of small k-

vectors k\ 2X
c .

In the regime of largez k-vectors the solution of (1.1.43) yields x2
1 ¼

4X2k2
z

k2 for
the inertial mode and

x2
2 ¼ c2k2 þ 2Xk?

k

� �2

ð1:1:44Þ

for the modified sound wave.
In the opposite limit of small k-vectors k\ 2X

c (compressible liquid, c is finite):

x2
1 ¼ 4X2 þ c2k2 and x2

2 ¼ c2k2
z : ð1:1:45Þ

Note that usually the space scale c/X in a liquid (like 4He) is extremely large (of
the order of hundreds of meters) and is not relevant to any real laboratory
experiment where typical size of the container with rotating liquid is 0.1 7 1 cm.
Thus the regime of small k-vectors where incompressibility condition fails is very
difficult to realize experimentally.

1.1.5 Two-Velocity Hydrodynamics for Superfluid Helium.
~vn and~vs, qn and qs

Switching our considerations now to the hydrodynamics of a superfluid helium we
should start from the well-known phase diagram of 4He (see [1–5, 8–13, 19, 21,
65, 66, 67] and Fig. 1.1).

According to Kapitza at zero (and small) pressures and temperatures
T & 2.2 K 4He becomes superfluid. It has zero viscosity g = 0 and according to
Landau [1–5] and Tisza [10–13] can be described by two-velocity hydrodynamics.
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Note that for pressures P [ 26 Bar and low temperatures 4He becomes solid [95–
97] and is either in hcp or bcc crystalline phases (see Chap. 2 for more details). At
low pressures and high temperatures we have normal 4He which is in a phase of a
normal bosonic liquid or in a gas phase (see Fig. 1.1).

For temperatures 0 \ T \ TC Landau and Tisza proposed to describe superfluid
4He (or He-II in terminology of Kapitza) in terms of superfluid and normal den-
sities qn and qs, and superfluid and normal velocities~vn and~vs respectively, where

q ¼ qs þ qn ð1:1:46Þ

is a total density, and a total mass current (total density of linear momentum) is
given by:

~j ¼ qs~vs þ qn~vn ¼~j0 þ q~vs: ð1:1:47Þ

In Eq. (1.1.47)

~j0 ¼ qnð~vn �~vsÞ ¼ qn
~W ð1:1:48Þ

(where ~W ¼~vn �~vs is relative velocity) describes the motion of normal compo-
nent in the reference frame where a superfluid component is at a rest ~vs ¼ 0ð Þ.

According to Landau the normal density in 3D case is given by:

qn ¼ �
1
3

Z

onBðe=TÞ
oe

p2 d3~p

ð2pÞ3
; ð1:1:49Þ

where nB e=Tð Þ is bosonic distribution function of the quasiparticles and corre-
spondingly nBðe=TÞ ¼ 1

ee=T�1
. Thus the normal density is closely connected with the

spectrum of elementary excitations [1–5, 19] in superfluid helium (see Fig. 1.2).

Fig. 1.1 Phase diagram of 4He [21]. There is no triple point where the liquid, solid and gas
phases would meet. At P = 0 4He becomes superfluid for T \ 2.2 K (see [1–5]). For pressures
P [ 26 Bar and low temperatures we have solid phase (with hcp and bcc crystalline structures).
There is a shallow minimum on the P–T curve for solid-superfluid phase-boundary at
T * (0.5 - 0.6) K
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There are two main branches of the elementary excitations according to Lan-
dau, Feynman theory—phonons with almost linear spectrum e ¼ cp at small p and

rotons e ¼ Dþ ðp�p0Þ2
2m� . The sound velocity in 4He at zero pressure c = 2.4 �

104 cm/s. The roton spectrum is described by the parameters D = 8.7 K; p0/
�h = 1.9 � 108 cm-1 and m* = 0.16 m of 4He. Correspondingly the phonon con-
tribution to qn reads (see [23]):

qnð Þph¼
2p2T2

45c5
; ð�h ¼ 1Þ ð1:1:50Þ

while the roton contribution ðqnÞr � e�D=T .
The simple estimates show that the phonon contribution to qn is dominant for

low temperatures T B 0.6 K, while for higher temperatures rotons are more
important. Note that the condition qnðT ¼ TCÞð Þr¼ q yields a rough estimate for
TC & 2.2 K in superfluid helium (4He) (see Fig. 1.3).

Fig. 1.2 The spectrum of
elementary excitations in
superfluid 4He [14, 15, 21, 23,
94]. At small wave numbers
the spectrum is almost linear
and corresponds to phonons,
while at larger wave numbers
there is a minimum in
E(k) which corresponds to
rotons

Fig. 1.3 The temperature
dependence of qs/q and qn/q
in superfluid 4He from
Superfluid Hydrodynamics by
S. Putterman [16]. For T = 0
qs/q = 1 and qn/q = 0 while
in the k-point (at TC = 2.2 K)
vice a versa qs/q = 0
and qn/q = 1

1.1 The Foundation of Landau Theory for Superfluid Hydrodynamics 15



Note also that the spectrum of elementary excitations on Fig. 1.2 according to
Landau defines the critical velocity vC = min (e/p) for the destruction of the
superfluid flow.

1.1.5.1 The System of Hydrodynamic Equations

To derive the system of hydrodynamic equations for superfluid 4He we should use
again the Galilean invariance for the total energy:

E ¼ E0 þ~j0~vs þ q
~v2

s

2
; ð1:1:51Þ

where E0 is an internal energy in the reference frame K0 where ~vs ¼ 0;~j ¼
~j0 þ q~vs (see Eq. (1.1.47)). Moreover the internal energy E0 satisfies the thermo-
dynamic identity [1–5, 14, 15]:

dE0 ¼ TdSþ ldqþ ~Wd~j0; ð1:1:52Þ

where~j0 ¼ qn
~W and ~W ¼~vn �~vs is relative velocity.

Applying again Landau scheme of the conservation laws after some simple
algebra we get the following system of equations:

oq
ot
þ ~r �~j ¼ 0; ð1:1:53Þ

o~vs

ot
þ ~r � v2

s

2
þ lþW

� �

¼~vs � ~r�~vs

� �

; ð1:1:54Þ

oS

ot
þ ~r � S~vn þ

~q

T

� �

¼ R

T
; ð1:1:55Þ

oji

ot
þ oPik

oxk
¼ 0: ð1:1:56Þ

The first Eq. (1.1.53) yields the conservation of mass, the second Eq. (1.1.54) is
Euler equation for superfluid velocity ~vs, the third Eq. (1.1.55) is an increase of
entropy due to normal motion only [superfluid component does not carry an
entropy and thus we have S~vn in (1.1.55)]. Finally fourth Eq. (1.1.55) corresponds
to the conservation of total mass current ~j in Eq. (1.1.47). In Eq. (1.1.55) the
momentum flux:

Pik ¼ qnvnivnk þ qsvsivsk þ Pdik þ pik

¼ vsijk þ vnkj0i þ Pdik þ pik
ð1:1:57Þ

is a natural generalization of the expression for ordinary classical fluid, pik is

dissipative momentum flux corresponding to viscous contribution, P ¼ TSþ lqþ
qnð~vn �~vsÞ2 � E0 is the pressure and accordingly:
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dP ¼ SdT þ qdlþ~j0d~W ð1:1:58Þ

These 4 equations (2 of them have 3 Cartesian projections, so in total we have 8
equations) are consistent with the energy-conservation law (see [1–5]):

oE

ot
þ ~r � ~Q ¼ 0; ð1:1:59Þ

where the energy flux

~Q ¼ TS~vn þ lþ v2
s

2

� �

~jþ~vnð~vn~j0Þ þ ~Qdis ð1:1:60Þ

and dissipative part of the energy flux:

Qi
dis ¼ qi þ pikvnk þWðji � qvniÞ: ð1:1:61Þ

Correspondingly the dissipative function R in the equation for entropy increase
(1.1.55) reads:

R ¼ �~q
~rT

T
� pik

ovni

oxk
�W~r � ð~j� q~vnÞ[ 0: ð1:1:62Þ

Note that R should be positively defined, quadratic in gradients function.

1.1.6 First and Second Sound Modes in Superfluid Liquid

Two-fluid hydrodynamics describes not only a standard first sound wave, but also
a second sound wave. First sound mode as usual demands finite compressibility of
the system dq = 0; dP = 0 and is governed by the relation (see Sect. 1.1.3):

x2 ¼ c2
I k2; c2

I ¼
oP

oq

� �

s

ð1:1:63Þ

For the second sound we can consider an incompressible superfluid where

dq = 0. Thus from the continuity equation we get ~r � d~j ¼ 0 and can safely put:

d~j ¼ qsd~vs þ qnd~vn ¼ 0 ð1:1:64Þ

Hence

d~vs ¼ �
qn

qs
d~vn ð1:1:65Þ

in a second sound wave.

From the conservation of linear momentum we have odji
ot þridP ¼ 0 and cor-

respondingly for dji = 0 we get dP = 0. On the other hand we know that
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dP ¼ SdT þ qdl ð1:1:66Þ

Hence if dP = 0 then

dl ¼ �S
dT

q
ð1:1:67Þ

in a second sound wave.
Now we can consider the linearized Euler equation for superfluid motion odvsi

ot þ
ridl ¼ 0 and rewrite it via dvni and dT as follows:

� qn

qs

odvni

ot
� S0

q
ridT ¼ 0 : ð1:1:68Þ

Note that the relative velocity in the second sound wave d~W ¼ d~vn � d~vs ¼
1þ qn

qs

� �

d~vn ¼ q
qs

d~vn. Finally we can use the equation for entropy increase. In the

absence of dissipation it is given by:

odS

ot
þ S0

~r � d~vn ¼ 0 ð1:1:69Þ

Expressing again dS via dT: dS ¼ oS
oT

� �

P
dT ¼ Cp

T0
dT we get

odT

ot
þ S0T

CP

~r � d~vn ¼ 0; ð1:1:70Þ

where CP is specific heat per unit mass at constant pressure, S0 is entropy in
equilibrium. The system of Eqs. (1.1.68) and (1.1.70) allows us to find the spec-
trum of the second sound wave. Differentiation of Eq. (1.1.70) with respect to o=ot
and of Eq. (1.1.68) with respect to o=oxi, and after that the substitution of (1.1.68–
1.1.70) yields:

S0

qn

qs

q
DT � CP

S0T
€T ¼ 0 : ð1:1:71Þ

Thus for the spectrum we get

x2 ¼ c2
IIk

2; ð1:1:72Þ

where

c2
II ¼

TS2qs

CPqnq
ð1:1:73Þ

is a velocity of a second sound squared and we skipped the subscript for the
equlibrium entropy (S = S0). It is a second sound Goldstone mode which distin-
guishes superfluid liquid from a normal one where we only have overdamped
temperature waves. We can say that a second sound is a sound in the subsystem of
thermal normal excitations (phonons and rotons). For low temperatures T B 0.6 K
in superfluid 4He the normal density qn as well as entropy S and specific heat CP
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are mostly governed by phonons with linear spectrum. In this region in 3D system
cII ¼ cI=

ffiffiffi

3
p

(In 2D cII ¼ cI=
ffiffiffi

2
p

) (see Fig. 1.4). At higher temperatures cII is
governed mostly by rotons. For T = TC (k-point) cII = 0 (see Fig. 1.4).

1.1.7 Gross-Pitaevskii Equation for Dilute Bose-Gas.
Connection Between Superfluid Hydrodynamics
and Microscopic Theory

For weakly non-ideal repulsive (Bogoliubov) Bose-gas we can establish the con-
nection between the microscopic equations for superfluid hydrodynamics for

irrotational liquid ~r�~vs ¼ 0
� �

at T = 0 and gradients and time derivatives of

the order parameter:

Wð~r; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nsð~r; tÞ
p

eiuð~r;tÞ ð1:1:74Þ

where qsð~r; tÞ ¼ mnsð~r; tÞ ¼ mjWj2.
To establish this connection we should use Gross-Pitaevskii (GP) equation for

the order parameter W [68–71]:

i�h
oW
ot
¼ � �h2D

2m
þ Vextð~rÞ þ g Wð~r; tÞj j2

� �

Wð~r; tÞ; ð1:1:75Þ

where Vextð~rÞ—is an external potential (confinement potential of a magnetic trap,

for example, see Chap. 4), g ¼ 4p�h2a
m is a coupling constant and a is an s-wave

scattering length. GP equation is valid if the Bose-gas is dilute na3 � 1 and the
number of particles in the trap is much larger than 1. As usual we can introduce

~vs ¼ �h
m
~ru for superfluid velocity and qs ¼ m Wð~r; tÞj j2 for superfluid density.

Substituting (1.1.74) into (1.1.75) and separating real and imaginary parts in

Fig. 1.4 The temperature
dependence of the ratio cII/cI

in superfluid 4He from
Putterman [16]. For
T B 0.5 K cII=cI ! 1=

ffiffiffi

3
p

.
In the k-point (at T = 2.2 K)
cII/cI = 0
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(1.1.75) we obtain 2 equations for superfluid hydrodynamics at T = 0 and in the

absence of vortices ~r�~vs ¼ 0
� �

:

oq
ot
þ ~r � ðq~vsÞ ¼ 0;

o~vs

ot
þ ~r lþ v2

S

2

� �

¼ 0:
ð1:1:76Þ

In (1.1.76) we introduce a chemical potential:

ml ¼ Vextð~rÞ þ gn ð1:1:77Þ

assuming that the phase of the order parameter u in (1.1.74) varies more rapidly in
space and time than Wj j ¼ ffiffiffiffi

ns
p

(quasicalssical or eikonal approximation [6]). Note
that dl ¼ 1

q dP in (1.1.77) and hence the pressure P contains the term gn2/2 [68, 69].

1.2 Hydrodynamics of Rotating Superfluids

In this Section we provide the basic notion for the standard hydrodynamics of a
superfluid liquid with large number of quantized vortices, which includes the
elasticity of the vortex lattice and the scattering of normal excitations on the
vortices [14, 15, 27–31]. We will start the presentation with the short description
of the famous Andronikashvili experiments which measure the ratio of qn/q or,
more precisely, non-classical moment of inertia in slowly rotating superfluid 4He
[17, 18].

1.2.1 Andronikashvili Experiments in Rotating Helium

If we rotate a cylindrical vessel with an ordinary normal (classical) liquid (see
Fig. 1.5), than due to the boundary conditions in the viscous liquid on the con-

tainer wall the tangential component of the velocity~vs ¼ ~Vwall ¼ ~X�~R , where ~X

Fig. 1.5 Cylindrical vessel
with superfluid 4He rotates

with an angular velocity ~X.
R is the radius of the vessel
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is an angular velocity of the rotation, R is the radius of a cylindrical vessel which
contains the liquid. Thus in this case all the liquid participates in solid-state
rotation. In contrast to this in superfluid liquid only normal component follows the

walls of the container~vn ¼ ~X�~R, while frictionless superfluid component stays at
a rest at slow rotations.

As a result at small angular frequencies the response of a superfluid on rotation
is governed not by the total moment of inertia I * MR2 (M—is the total mass of

the liquid in the container), but only by its normal fraction qn
q I � 1� qs

q

� �

I. It is

non-classical moment of inertia. This fact was used in Andronikashvili experi-
ments to measure qn/q [17, 18]. In his first experiments he used a sequence of
parallel disks with small distance (smaller than the viscous penetration length

dg¼ 2g
xqn

� �1=2
see[1–5, 17, 18] and Fig. 1.6) between them. Then he can consider

that all the normal part of the volume of liquid 4He between the rotating disks
participates in rotation.

The scheme of updated experiments on the measurements of non-classical
moment of inertia is presented on Fig. 1.7a. In updated Andronikashvili-type of

Fig. 1.6 First experiments of
Andronikashvili [17, 18] with
a sequence of parallel disks
for measurements of the non-
classical moment of inertia.
The viscous penetration

length dg ¼ 2g
xqn

� �1=2
is

smaller than the distance
between the disks [17]
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experiments torsional oscillator is used. It is an ideal method for measuring of the
non-classical moment of inertia (and thus of a transition to a superfluid state qs/
q = 0) especially in solid 4He (see Chap. 2 and [72, 73]). In these experiments the
time-period s0 for the returning of the rode (of the string) in the initial position is
measured using a torsional oscillator with a resonance frequency m0 = 1/s0. More

specifically experimentalists measure the period s0 ¼ 2p
ffiffiffiffiffiffiffiffi

I=K
p

for the container
with Helium which is attached to a torsional rode. Note that I is the moment of
inertia and K is rotating rigidity of the rode.

This scheme was used in recent experiments of Kim and Chan [72, 73] on the
search of supersolidity [74, 75] in solid crystalline 4He. The typical resonant
period in this type of experiments s0 * 1 ms, stability in s is given:
ds� dK

K s0� 5 � 10�7, and the quality factor Q = m0/Dm * 2 �106 (see Fig. 1.7b),
where m0 = 1/s0 * 1000 Hz is the resonance frequency.

1.2.2 Feynman-Onsager Quantized Vortices. Critical
Angular Velocities XC1 and XC2

The situation with non-classical moment of inertia occurs at low angular velocities
X\ XC1. For X\ XC1 (XC1 is the first critical angular velocity) the first Feyn-
man-Onsager [19, 20] quantized vortex line appears in the center of cylindrical
vessel. According to Feynman and Onsager the velocity field of single quantized
vortex can be found from the quantization of the circulation of a superfluid
velocity:

Fig. 1.7 A qualitative scheme of updated Andronikashvili-type of experiments on torsional
oscillator by Chan et al. [72, 73] for the search of supersolidity in solid 4He. On Fig. 1.7a we
present a sketch of the experimental setup with torsional bob containing helium. On Fig. 1.7b we
show the amplitude of the oscillations and the quality factor of the measurements Q = m0/Dm for
the resonance frequencym0 = 1/s0, where s0 ¼ 2p

ffiffiffiffiffiffiffiffi

I=K
p

is the resonance period, I is the moment
of inertia and K is rotating rigidity of the rode
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Cv ¼
I

C

~vsd~l ¼ 2p
�h

m
; ð1:2:1Þ

where �h is Planck constant, m is the mass of 4He atom.
In fact Cv ¼ Du�h=m where Du ¼ 2p is the phase change on the contour. Note

that in the absence of vortices we can introduce a scalar complex order-parameter
W ¼ ffiffiffiffi

ns
p

eiu which describes a superfluid state of 4He [23]. Correspondingly

Wj j2¼ ns and mns = qs—superfluid density, while ~vs ¼ �h=m ~ru is superfluid
velocity. Thus 2p �h=m is a natural unit to measure the circulation of a superfluid
velocity in (1.2.1). It is often called as a circulation quanta. Note that, in principle,
the vortices with larger amount of circulation quanta Cv ¼ 2pn �h=m ðn [ 1Þcan
be also stabilized in superfluid 4He. When the first vortex appears at~r ¼ 0 (in the
center of cylindrical vessel) the superfluid velocity still can be represented as

~vs ¼ �h=m ~ru for all distances ~r 6¼ 0. Hence it immediately follows that

Cv ¼
H

C
~vsd~l ¼ �h

m Du. In the absence of vortex the phase change Mu ¼ 0. In the

presence of a first quantized vortex Mu ¼ 2p and we get (1.2.1).

Correspondingly from the Gauss theorem
RR

S
~r�~vs

� �

d~s ¼
H

C
~vsd~l ¼ 2p �h

m we

easily obtain that:

~r�~vs ¼
2p�h

m
dð~rÞ~ez ð1:2:2Þ

The solution for~vs which satisfies (1.2.1) [and also (1.2.2)] reads:

~vs ¼
�h

m

~eu

r
; ð1:2:3Þ

where~eu is a tangential unit vector [remind that in cylindrical coordinates ðr; u; zÞ
we have the triade of mutually perpendicular unit vectors~eu;~er;~ez and thus d~l ¼
r du~eu in (1.2.1)].

1.2.2.1 Critical Angular Velocity XC1

The first critical angular velocity XC1 can be found according to [23] from the
minimization of the Free-energy in the rotating frame:

DF ¼ Ev � ð~Mv
~XÞ
 0 for X�XC1; ð1:2:4Þ

where DE = Ev is the kinetic energy of the vortex line

Ev ¼
Z

qs
v2

s

2
dV ¼ qs

2
�h2

m2
lnðR=dÞ; ð1:2:5Þ
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where L is the height of the container and d is the vortex-core, which is normal due to
the violation of Landau criteria of superfluidity (vs ¼ �h

md � cI—exceeds the first
sound velocity for d of the order of interatomic distance). Note that from the spectrum
of quasiparticle excitations in superfluid 4He (see Fig. 1.2) we get vc ¼ minðe=pÞ ¼
cI for the critical velocity of a destruction of the superfluid flow. In superfluid 4He
d * (3 7 4) Å, R * 0.1 cm for a typical radius of the container with helium.

In the same time Mv in (1.2.4) is an angular momentum associated with a vortex
line:

Mv ¼ qs

Z

rvsdV ¼ pqsL
�h

m

R2

2
: ð1:2:6Þ

Correspondingly the first critical angular velocity:

XC1 ¼
Ev

Mv
¼ �h

mR2
ln

R

d
ð1:2:7Þ

can reach 0.1 rotations/s in 4He.

1.2.2.2 Critical Angular Velocity XC2

At very large angular velocities the normal cores of the vortex lines start to
overlap. As a result all the volume of a superfluid helium becomes normal. It is
evident that

XC2 ¼
�h

mpd2
� 1011s�1; ð1:2:8Þ

where S = pd2 is an area of one vortex core. Thus XC2 in dense superfluid helium
is very high and practically unachievable. Note that in dilute weakly non-ideal
Bose-gases in a confined geometry of magnetic traps from the solution of Gross-
Pitaevskii equation [23, 68–71] the vortex core n0 ¼ 1

ffiffiffiffi

na
p , where a is an s-wave

scattering length (see [23, 75, 76] and Chap. 6). Thus in dilute case na3 \ 1:
n0 	 a and the condition XC2 ¼ �h

mpn2
0

is easier to fulfill (note that often a * d in a

dilute repulsive gas).
Of course from the definitions (1.2.7, 1.2.8) we have very direct correspondence

between critical angular velocities XC1 and XC2 in superfluid 4He and critical
magnetic fields in type-II superconductors.

1.2.2.3 Macroscopic Averaging for a Large Number of Vortices

In between XC1 and XC2 we have a system of quantized linear vortices. Their
velocity circulations Cv [see (1.2.1) and Fig. 1.8] cancel each other inside the
vortex region and enhance each other outside the vortex region—thus the vortices
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of the same ‘‘charge’’ (same circulation) mimic solid-state rotation for superfluid
component effectively performing macroscopic averaging (see [14, 15, 27–30])
over an area containing a large number of vortices (but still much smaller than a

container area pR2). We can introduce an averaged vorticity ~x ¼ ~r�~vs � 2~X

(thus an averaged superfluid vorticity ~vs 6¼ �h
m
~ru). The average vorticity is con-

nected with the number of vortices in 1 cm2 (with the 2D vortex density):

nv
�h

m
¼ ~xj j � 2X; ð1:2:9Þ

where nv = 1/pb2 and b is the mean distance between the vortices. The unit vector
~m ¼ ~x

j~xj defines the average orientation of vortex lines. We can say that the mac-

roscopic averaging is valid in the long wavelength-limit �k	 b or equivalently
when kb � 1.

1.2.3 Vortex Lattice. Nonlinear Elasticity Theory. Vorticity
Conservation Law

For XC1 � X � XC2 the developed structure of the vortices form a triangular
lattice similar to Abrikosov lattice in type-II superconductors in a magnetic field
(see [24] and Fig. 1.9). The state of the vortex lattice, whose parameters vary
slowly in space and time, in the non-linear elasticity theory [31] is convenient to
describe by the vectors the~eað~r; tÞ, a = 1, 2 which are equal to the local values of
the vectors of elementary translations of the lattice in the 2D plane perpendicular
to the vortex lines.

We can also define the vectors of the reciprocal lattice: ~ea ¼ � 1
s eab~m�~eb½ �

where s—is the area of elementary cell in real lattice, e12 ¼ �e21 ¼ 1; e11 ¼
e22 ¼ 0; ~m ¼ 1

s ~e1 �~e2½ � is a unit vector parallel to the vortex lines (we will see that

~m ¼ ~x
~xj j ; where ~x ¼ ~r�~vs is vorticity—see Fig. 1.9). Note that ~eaj j 6¼ 1—vectors

Fig. 1.8 a Rotating
superfluid helium with large
number of vortices for
angular velocities
XC1 � X � XC2. b The
vortex circulations cancel
each other inside the vortex
region and enhance each
other outside the vortex
region. Thus the superfluid
component mimics the solid-
state rotation [22]
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of the reciprocal lattice ~e1 and ~e2 are not the unit vectors. There are evident
equalities:

~ea~eb ¼ da
b; eaie

a
k ¼ dik � mimk ð1:2:10Þ

between real and reciprocal lattices, where {i, k} = {x, y, z} are Cartesian coor-
dinates. Nonlinear elasticity is described similar to General Theory of Relativity
by metric tensors [77]:

gab ¼~ea~eb; gab ¼~ea~eb; gacgcb ¼ db
a: ð1:2:11Þ

We can also introduce a local velocity of the vortex lattice ~vL ~r; tð Þ in the
direction perpendicular to the vortex lines. Thus ð~vL~mÞ ¼ 0 by definition. If ~vL is
known and the functions ~ea ~rð Þ at the initial time moment are specified, we can
determine ~ea at the nearby time moment, i.e. the derivative o~ea

ot via ~vLð~r; tÞ. To
establish this connection we express the physically infinitely small differential of
the coordinates d~r (which is large compared with the lattice period, but small
compared with the distance over which the vortex configuration varies) in the form
(see [31] for more details):

d~r ¼~eadNa: ð1:2:12Þ

The quantities dNa for two lattice points separated by a distance d~r are the two
projections of d~r measured in units of the corresponding lattice periods. These
quantities, obviously, are not altered by an arbitrary elastic deformation (in the
absence of dislocations).

From (1.2.12) we get:

dNa ¼~ead~r ¼~ea
0d~r0; ð1:2:13Þ

where ~ea
0 and d~r0 are respectively the period of the reciprocal lattice and the

difference between the coordinates of the undeformed state. From (1.2.13) we see
that:

~ea ¼ ~rNa: ð1:2:14Þ

Fig. 1.9 2D triangular vortex lattice for XC1 � X � XC2 in the plane perpendicular to the

vortex lines (to the unit vector~v ¼ ~x
~xj j, where ~x ¼ ~r�~vs). The lattice is convenient to describe

in terms of the vectors ~e1 ~r; tð Þ;~e2 ~r; tð Þ, which are equal to the local values of the vectors of
elementary translations of the 2D lattice
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Correspondingly

~r�~ea ¼ ~r� ~rNa
� �

¼ 0: ð1:2:15Þ

Thus the specified functions Nað~r; tÞ determine completely the configuration of
the vortex lines. We can say that Nað~r; tÞ defines the number of sites (or nodes) of
the vortex lattice in the direction of an elementary vector ~ea. Moreover if we
consider the vortex lattice without vacancies or dislocations, than each site of the
lattice is singly occupied and the number of sites (or nodes) is conserved. We can
conclude that Na is a topological invariant (see Andreev and Kagan [31]) and we
have a very convenient technique for all the problems of the non-linear theory of
elasticity.

To establish the relation between o~ea

ot and ~vL ~r; tð Þ we note that the unit vector
~n ¼~e1=e1 is the normal to the corresponding crystallographic plane (to the plane
defined by the vectors~e2 and~m) and d = 1/e1 is proportional to the local value of
the interplanar distance. From simple geometric considerations we get:

_~nþ Vð~n � ~rÞ~n ¼ �~rV þ~nð~n � ~rVÞ;
_d þ Vð~n � ~rÞd ¼ dð~n � ~rÞV ;

ð1:2:16Þ

where V ¼ ð~vL~nÞ ¼ ð~vL~e1Þ=e1 is the projection of the velocity normal to the
considered crystallographic plane.

From (1.2.16) we obtain:

_~e1 þ ~rð~e1~vLÞ ¼ V ~n� ~r�~e1
� �� �

: ð1:2:17Þ

A similar relation holds also for~e2:

Taking into account that ~r�~ea ¼ 0 we finally get:

o~ea

ot
þ ~rð~ea~vLÞ ¼ 0: ð1:2:18Þ

Thus comparing (1.2.18) and (1.2.14) we obtain:

~vL ¼ �~eaNa ð1:2:19Þ

Note that the variables analogous to Na were considered for the vortex lattice by
Volovik and Dotsenko [78].

In macroscopic hydrodynamics of a rotating superfluid liquid one introduces an
averaged velocity~vS of the superfluid component, whose curl is determined by the
direction and the density of the vortex lines, as well as the circulation quantum
2p �h=m: Since the unit area s of the real lattice is equal to g1/2, where g is
determinant of the metric tensor gab, we have:

~r�~vs ¼
2p�h

ms
~m ¼ 2p�h

mg
~e1 �~e2ð Þ ¼ 2p�h

m
~e1 �~e2
� �

: ð1:2:20Þ
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By differentiating (1.2.20) with respect to time and using (1.2.18) we obtain the
equation of the vorticity conservation:

_~x ¼ ~r� _~vs ¼ ~r� ~vL � ~xð Þ: ð1:2:21Þ

1.2.4 Hydrodynamics of Slow Rotations. Hall-Vinen Friction
Coefficients b and b0

In accord with the general Landau method of deriving the hydrodynamic equations
from the conservation laws [1–5], we introduce in the case of slow rotations two
velocities ~vs and ~vn and search for the system of equations in the form of the
conservation laws [similar to the system of Eqs. (1.1.53–1.1.56)]:

_qþ ~r �~j ¼ 0;
oji

ot
þ o

oxk
Pik ¼ 0

_Sþ ~r � S~vn þ~q=Tð Þ ¼ R

T
; _~vs ¼~vL � ~r�~vs

� �

þ ~ru;

ð1:2:22Þ

where q, S and~j are the mass, entropy and momentum per unit volume, while Pik,
~q, R [ 0 and u are the quantities to be determined. We must also find the con-
nection between the velocities~vs;~vn and~vL. The criterion is the requirement that
the energy conservation equation should be automatically obtained form the sys-
tem of Eq. (1.2.22).

The Galilean transformation formulas (similar to Eqs. (1.1.51) and (1.1.47)):

E ¼ q
v2

s

2
þ~jo~vs þ E0; ~j ¼~jo þ q~vs ð1:2:23Þ

connect again the energy E per unit volume and the momentum~j with their values
E0 and~j0 in a system where~vs ¼ 0. The energy E0 can be regarded as a function of
q, S,~j0, and the metric tensor gab, so that:

dE0 ¼ TdSþ ldqþ ð~vn �~vs; d~joÞ þ
1
2

habdgab: ð1:2:24Þ

Equations (1.2.22–1.2.24) differ from the corresponding equations of Bekare-
vich, Khalatnikov [14, 15] in that the vortex conservation condition (1.2.21) is
taken into account in (1.2.22) in the equation of the superfluid motion, and also in
that the dependence of the energy of the deformation of the vortex lattice is fully
taken into account in the identity (1.2.24).

Differentiating with respect to time the first equation for energy in (1.2.23) we
obtain by using (1.2.23) and (1.2.24):

_E þ ~r � f~Q0 þ~qþ vnkpik þWð~j� q~vnÞ þ vLkhaiea
i eb

kg ¼
¼ Rþ ~q ~rT

T þ pik
ovni
oxk
þW~r � ð~j� q~vnÞ þ f~vL �~vn; ~x� ~j� q~vn

� �

þ~ea~r � ðhab~ebÞg:

ð1:2:25Þ

28 1 Hydrodynamics of Rotating Superfluids with Quantized Vortices



While deriving Eq. (1.2.25) we used Eq. (1.2.18) for o~e1

ot and o~e2

ot which yield:

ogab

ot
¼ o

ot
ð~ea~ebÞ ¼ � ~eb � ~r

� �

~vL~e
að Þ � ~ea � ~r

� �

~vL~e
b

� �

: ð1:2:26Þ

In (1.2.25)

~Q0 ¼ lþ v2
s

2

� �

~jþ ST~vn þ~vnð~jo~vnÞ;

pik ¼ Pik � Pdik � vsijk � vnkj0i � habea
i eb

k :

W ¼ � lþ v2
s

2
þ u

� �

; P ¼ �E0 þ TSþ lqþ ð~vn �~vs;~joÞ:

ð1:2:27Þ

Note that from (1.2.26) it follows the equality

1
2 hab _gab þ 1

2 vnihab
ogab

oxi

¼ �~r � fhab~eað~vL �~vn;~ebÞg � ovni
oxk
ðhabea

i eb
kÞ þ f~vL �~vn;~ea~r � ðhab~ebÞg

ð1:2:28Þ

The form of (1.2.25, 1.2.27) enables us to determine the energy-flux vector:

~Q ¼ ~Q0 þ~qþ vnkpki þWð~j� q~vnÞ þ vLkhabea
i eb

k ð1:2:29Þ

and the dissipative function:

R ¼ �~q
~rT

T
� pik

ovni

oxk
�Wdivð~j� q~vnÞ

� ~vL �~vn; ~r�~vs

� �

� ~j� q~vn

� �

þ~ea~r � ðhab~e
bÞ

n o

ð1:2:30Þ

From the condition that R is positive it follows that the unknown quantities ~q,
pik, W and~vL �~vs?—(the symbol \ means that we are dealing with the projection
of the corresponding vector on a plane perpendicular to ~m) can be written in the

general case as linear combinations of all conjugated variables ~rT; ovni
oxk

, etc.,

contained in (1.2.30). We shall not write out the unwieldy general formulas and
confine ourselves, as usual, to the mutual friction effects described by the last term
in (1.2.30). We have:

~vL �~vn? ¼ �a ~j? � q~vn? þ mg1=2

2p�h ~ea �~mð Þ~r � ðhab~ebÞ
n o

�

�b ~m� ~j� q~vn

� �

þ mg1=2

2p�h ~e
a~r � ðhab~ebÞ

n o

;
ð1:2:31Þ

where a and b are certain coefficients with b[ 0. Since at T = 0 there is no
normal part, so that~vL should be independent of~vn; it follows that the constant a
should be equal to—1/q. If we put a = -1/qs +b’, the constants b and b’ will
vanish at T ? 0, that coincide with the friction coefficients introduced by
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Bekarevich and Khalatnikov [14, 15] and differ from the constants of Hall and
Vinen [37, 38] by a factor qn/2qqs.

At zero temperature we obtain from (1.2.31):

~vL �~vs? ¼
mg1=2

2p�hq
~ea �~mð Þ ~r � ðhab~e

bÞ; ð1:2:32Þ

which is the generalization of a known relation [48–50, 78] to the case of arbitrary
and not small deformations of the vortex lattice.

1.2.4.1 The Physical Meaning of b, b0 Coefficients. Elementary
Estimates

The coefficient b is a dissipative coefficient, while b0 is a Hall-like dissipationless
coefficient. According to Iordansky [41] to get the feeling about coefficients b-s we
should consider the elementary excitations with momentum ~p and energy e0ð~pÞ
approaching the vortex and thus experiencing the velocity field of the vortex ~vs

(see Fig. 1.10).
According to the requirements of the Galilean invariance eð~pÞ ¼ e0ð~pÞ �~p~vs or

more rigorously

eð~pÞ ¼ e0ð~pÞ �~pð~vs �~vnÞ ð1:2:33Þ

for the spectrum of quasiparticles (if normal excitations have a drift velocity~vn).
Thus according to Iordansky and Sonin [39–41], an effective interaction:

Hint ¼~pð~vn �~vsÞ ð1:2:34Þ

arises in our system. According to the elementary kinetic theory

b� 1
nVrl

� 1
nVrvsU

; ð1:2:35Þ

where v ¼ oe0
op is a group velocity for elementary excitations, r is the cross-section,

nV is the density of vortices, sU is the scattering time due to Umklapp processes
1=sU� bqsX [37, 38]. Note that we need Umklapp processes [64] connected with
the vortex lattice to have the relaxation of the quasiparticle linear momentum. For
a rough estimate we can find an impact parameter a (r = pa2) from the

Fig. 1.10 The scattering of
the normal excitations with
momentum ~p on the vortex
line, which creates the
velocity field~vs (outside the
vortex core n0 * d)
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quasiclassical turning point, that is e0ð~pÞ �~p~vsðaÞ ¼ 0 (for ~vn ¼ 0). For a single

vortex line~vs ¼ �h
mr~eu and if we have, for example, a roton with an energy e0ð~pÞ ¼

D0 þ ðp�p0Þ2
2m�

for p & p0, then D0 ¼ �hp0
ma or

a ¼ �hp0

mD0
�ðn0� dÞ ð1:2:36Þ

for the impact parameter. If a * n0 * d we can say that the normal component
scatters on the vortex cores, which are also normal.

1.2.5 Linearization of the Elasticity Theory. Connection
Between~vs and ~u in Linearized Theory

When we expand the hydrodynamic energy and hydrodynamic equations in
powers of deformation it is convenient to put

Na ¼ Na
0 � ua ð1:2:37Þ

for the number of nodes Na, where Na
0 ¼~ea

o~r and~ea
o is a non-deformed unit vector

of a reciprocal lattice. We can also introduce the displacement

~u ¼~eoaua ð1:2:38Þ

which is a 2D vector perpendicular to the axes of undeformed vortices.

1.2.5.1 Shear, Compression and Bending Elastic Modulus

We represent the elastic energy (the energy of vortex repulsion due to the lattice
rigidity) Eel per unit lattice volume in the form:

Eel ¼ E1 þ E2; ð1:2:39Þ

where

E1 ¼
pqs

2
�h

m

� �2

nV ln
1

nV d2
ð1:2:40Þ

is a compression energy, nV ¼ 1
s ¼ 1

ffiffi

g
p is the density of vortices per unit area, E2 is

shear energy (which depends on the shape of a deformed unit cell) (see Elasticity
theory [63] for the details).

Accordingly

hab ¼
2oEel

ogab
¼ hð1Þab þ hð2Þab : ð1:2:41Þ
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Differentiating E1 with respect to gab with the allowance for the identity
� 1

g dg ¼ gabdgab and linearizing the result with respect to the deviations dgab of

the metric tensor from its value gab(0) in an undeformed triangular lattice, we
obtain:

hð1Þab ¼ qs
�hX
m

ln
b

d
gð0Þab � dgab þ

1
2

gð0Þab dgc
c

� �

� 1
4

gð0Þab dgc
c

	 


; ð1:2:42Þ

where pb2� �h
mX � 1

nV
is the mean distance between the vortex lines, X ¼

ðp�h=mÞg�1=2
o is the angular velocity of the rotation, and

dgab ¼ gð0Þac gð0Þbd dgcd; dgc
c ¼ gð0Þcd dgcd: ð1:2:43Þ

The constant term appears in (1.2.42) because at equilibrium the energy that has
a minimum is the energy in the rotating coordinate frame. We express the shear

part hð2Þab of the full hab in the form:

hð2Þab ¼ ls dgab �
1
2

gð0Þab dgc
c

� �

; ð1:2:44Þ

where ls ¼ qs
�hX
4m is the shear modulus calculated by Tkachenko [32–34] for the

triangular lattice.
The quantities dgab and ~ea can be easily expanded in the displacement ~u by

using Eqs. (1.2.11) and (1.2.14). As a result we get the following expression for the
elastic terms that enter in Eq. (1.2.25) for~vL:

~F ¼~ea~r � ðhab~e
bÞ ¼ 2Xk~r?qs þ qs

�hX
4m

2r?ð~r � ~uÞ � D?~u
� �

� qs2Xk
o2~u

oz2
;

ð1:2:45Þ

where

k ¼ �h

2m
ln

b

d
: ð1:2:46Þ

If according to Tkachenko we introduce the compression modulus lc ¼ �ls ¼
� �hX

4m qs (where ls is the shear modulus), and a bending modulus lb ¼ qs2Xk (see
[35, 36]) we can rewrite Eq. (1.2.35) as:

~F ¼ 2Xkr?qs þ lcr?ð~r �~uÞ � lsD?~u� lb
o2~u

oz2
: ð1:2:47Þ

Note that it is convenient to introduce the longitudinal (cl) and the transverse
sound velocities (ct) in the vortex lattice according to the standard relations of the
Elasticity theory [63]:

lc ¼ 2qsðc2
l � 2c2

t Þ and ls ¼ 2qsc
2
t : ð1:2:48Þ
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In our case

c2
t ¼ c2

l ¼
�hX
8m
¼ ls

2qs
: ð1:2:49Þ

As the result for the elastic terms which enter the system of equations for
hydrodynamics of slow rotations:

~F ¼ 2Xk~r?qs � 2qsc
2
t
~r?ð~r �~uÞ � 2qsc

2
t D?~u� lb

o2~u

oz2
; ð1:2:50Þ

o

oxk
ðhabea

i eb
kÞ ¼ �2qsXk rið ~r �~uÞ þ ~Fi ð1:2:51Þ

Let us emphasize that the first term in the right-hand side of Eq. (1.2.51)

�2qsXk~rð~r �~uÞ can be left out upon the normalization of the pressure in (1.2.38)

P! P� 2qsXkð~r �~uÞ ð1:2:52Þ

and a simultaneous replacement of the chemical potential l in Eq. (1.2.22) for the
superfluid motion (for o~vs=ot) by the chemical potential of the liquid without
allowance for elasticity. Indeed, in the linear approximation we have:

dl ¼ � S
q dT þ 1

q dP� 1
q
~j0dð~vn �~vsÞ þ 1

2q habdgab

¼ � S
q dT � 1

q
~j0dð~vn �~vsÞ þ 1

q dðP� qs2Xkð~r �~uÞÞ:
ð1:2:53Þ

Let us point out that when Eq. (1.2.35) for ~F is substituted in Eq. (1.2.26) for~vL

at T = 0, we get the customary employed equation (see [39, 40, 48–50])

~vL �~vs? ¼
m

2p�hqsnV

~F �~m
� �

� 1
2qsX

~F �~ez

� �

; ð1:2:54Þ

where~ez ¼~mð0Þ is a unit vector in the direction of the undeformed vortex lines and
qs(T = 0) = q.

1.2.5.2 Connection Between ~vs and ~u in Linearized Theory for T 5 0

Let us find first the relation between ~vs and ~u. To get this relation in linearized
theory we use the Eq. (1.2.19) ~vL ¼ �~ea _Na and the Eq. (1.2.27) Na

0 ¼ Na � ua,

where ~u ¼~e0aua . Note also that ~ea
0 ¼ ~rNa

0 ; where ~ea
0 are the vectors of an

undeformed but uniformly rotating lattice. Therefore _~ea
0 ¼ ~X�~ea

0 and

_Na
0 ¼ ~X�~ea

0

� �

~r ¼ �~v0~e
a
0 ð1:2:55Þ
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where~v0 ¼ ~X ~�~r is a linear velocity of a solid state rotation. We should also use
the condition ~vL~m ¼ 0 where ~vL ¼~v0 þ d~vL and ~m ¼~ez þ d~m in linearized theory.
Having in mind that d~m� o~u

oz we finally get:

~vL ¼~v0 þ _~uþ ~v0 � ~r
� �

~u�~ez ~v0
o~u

oz

� �

� ~X�~u: ð1:2:56Þ

Now we can find the relation between~vs and~u using Eq. (1.2.46). To find this
relation it is important to note that in linearized theory ~vs ¼~v0 þ d~vs and corre-
spondingly d~vs? in (1.2.54) reads:

d~vs? ¼ d~vs � dvsz~ez �~ez ~v0
o~u

oz

� �

: ð1:2:57Þ

Substituting (1.2.57) in (1.2.56) we get the cancellation of the term~ez ~v0
o~u
oz

� �

in

the relative velocity~vL �~vs? and moreover:

~vL �~vs? ¼ _~uþ ~v0 � ~r
� �

~u� ~X�~u� ðd~vs � dvsz~ezÞ ¼
1

2qsX
~F �~ez

� �

: ð1:2:58Þ

Introducing the two-dimensional projection of d~vs on the (x,y) plane:

d~vs2D ¼ d~vs � dvsz~ez ð1:2:59Þ

we can rewrite (1.2.63) in the form:

o

ot
þ ~v0 � ~r
� �

� ~X�
	 


~u� d~vs2D ¼
1

2qsX
~F �~ez

� �

: ð1:2:60Þ

Now we can use that in curly brackets in the l.h.s. of (1.2.60) just stands an
operator which is responsible for the transformation of the vector quantity to the
rotation frame. Thus we derive an important relation between the time derivative
of ~u in the rotation frame o~u

ot0 and the two dimensional projection of the superfluid
velocity d~vs2D:

o~u

ot0
¼ d~vs2D þ

1
2qsX

~F �~ez

� �

: ð1:2:61Þ

1.2.5.3 Linearized Euler Equation at T 5 0

Returning back to Euler equation for superfluid velocity ~vs at T = 0 we get in
linearized theory:

o~vs

ot
þ ~r lþ v2

s

2

� �

¼~vL � ~r�~vs

� �

�~vs � ~r�~vs

� �

þ 1
2qX

~F �~ez

� �

� ~r�~vs

� �

ð1:2:62Þ
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In the rotation frame in direct analogy with the situation in an ideal rotating
fluid (see Sect. 1.1.4) we get:

od~vs

ot0
þ ~r dP

q0
þ 2~X� d~vs ¼

1
q0

~F: ð1:2:63Þ

Applying an operator of curl to the l.h.s. and to the r.h.s. of this equation we
finish with:

o

ot0
ð~r� d~vsÞ þ ~r� 2~X� d~vs

� �

X ¼ 1
q0
ð~r�~FÞ: ð1:2:64Þ

This equation together with the relation (1.2.61) (which establishes the con-
nection between d~vs2D and o~u

ot0) and the continuity equation

odq
ot
þ q0

~r � d~vþ ð~v0 � ~rÞdq ¼ odq
ot0
þ q0

~r � d~v ¼ 0 ð1:2:65Þ

(where we used the transformation o
ot! o

ot þ ~v0 � ~r
� �

to the rotation frame for a
scalar) helps us to find the spectrum of collective excitations in a rotating mac-
roscopically averaged superfluid at long wave-vectors kb � 1.

1.2.6 Collective Modes of the Lattice. Tkachenko Waves
and Kelvin Waves. Melting of the Vortex Lattice

According to Sonin in the general case of compressive rotating superfluid with a
triangular vortex lattice the spectrum of collective excitations in the long wave-
length limit reads (see [39, 40]):

x2 ¼ 2Xþ kk2
z

� �

2X
x2 � c2

I k2
z

x2 � c2
I k2
þ kk2

z þ
c2

t k4
?

2X


 ffl

; ð1:2:66Þ

where c2
t ¼

ls
2qs
¼ �hX

8m is Tkachenko sound velocity squared, cI
2 is first sound velocity

squared, k ¼ �h
2m ln b

d and kz and k\ are the projections of the wave-vector ~k ðk2 ¼
k2
? þ k2

z Þ on the undeformed vortex axis (on the z-axis) and on the xy plane per-
pendicular to undeformed vortex axis. For k\ = 0 the spectrum (1.2.66) contains 2
modes—a sound mode with a spectrum x2

1 ¼ c2
I k2

z and Kelvin (Thomson) mode

for bending oscillations of the vortex lines x2
2 ¼ 2Xþ kk2

z

� �2
.

In the same time for kz = 0 (and thus k = k\) there are 2 modes again x2
1 ¼

4X2 þ c2
I k2
? and x2

2 ¼ x2
T �

c2
t c2

I k4
?

4X2þc2
I k2
?

for cI 	 ct. First mode is usually called an

inertial mode. It has a gap. Note that the second mode has a nontrivial dispersion in
the denominator. Moreover, for k?[ 2X

cI
: x2

T ¼ c2
t k2
? and we have a linear

spectrum for Tkachenko mode, while for very small k?\ 2X
cI

: x2
T ¼

c2
t c2

I k4
?

4X2 and
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correspondingly xT ¼ ctcI k2
?

2X —the spectrum of Tkachenko mode becomes
quadratic.

According to Baym [27–30] the quadratic character of the spectrum at very
small k-vectors leads to dramatic consequences for purely 2D flows with kz = 0.
Namely the mean displacement squared of a single vortex line from equilibrium
(due to the excitations of very long wavelength Tkachenko modes) is logarith-
mically divergent:

~u2
� �

b2
� T

X
nv

nL
ln

kmax

kmin

; ð1:2:67Þ

where in dense 4He kmax� 2X
cI
; kmin� 2p

R , n and nv are 3D density of particles and
2D density of vortices, and L is the height of the container (or effective third
dimension of a quasi-2D magnetic trap). Thus nv

nL is dimensionless density ratio.

The linear in T dependence of ~u2
� ��

b2 requires that T 	 xT
max since in this regime

bosonic distribution function for Tkachenko waves nB
xT
T

� �

� T
xT

. From (1.2.67) it

follows that ~u2
� ��

b2 is logarithmically divergent in infrared region of small
k * 1/R. The strong effect of compressibility on the Tkachenko mode in the long

wavelength limit xT ¼ ctcIk2
?

2X was studied by Reato [79].
Note, however, that in practice it is very difficult to fulfill the condition

2p
R

\k?\
2X
cI

ð1:2:68Þ

in dense 4He where the typical size of the container R * 0.1 cm. Usually the
transition to quadratic regime requires unachievably high angular velocities in
dense liquid. In helium, for example, cI * 2.4�104 cm/s, XC1 ¼ �h

mR2 ln R
d � 1 rot/s

and we need to demand X� 107XC1 to get the quadratic regime, which is prac-
tically impossible. We notice again that nL is an effective two-dimensional density
of particles (number of particles per unit area). Thus

nv

nL
¼ Nvortices

Nparticles
¼ 1

p
; ð1:2:69Þ

where p is a dimensionless filling factor. In terms of p Eq. (1.2.67) reads:

~u2
� �

b2
� T

X
1
p

lnðRkmaxÞ; ð1:2:70Þ

where R is the size of the container.
In dense 4He mcI

2 * (20 7 30) K, T * 1 K, �hX=kB * 10-11 K for X * XC1.
Thus mcI

2 	 T 	 X and the requirement for macroscopic averaging k\b � 1 is
automatically fulfilled for k\\ 2X/cI since X/mcI

2 � 1. Correspondingly,
k\\ 2X/cI \ 1/b. The requirement xT

max � T is also fulfilled since for
kmax
? � 2X

cI
: xmax

T � ctkmax
? � ctX

cI
� X� T for ct � cI. Finally in dense 4He
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we always have p 	 1 for the filling factor since only at X = XC2

Nparticles * Nvortices (for X = XC2 the normal cores which in 4He have interatomic
size start to overlap). For X\ XC2: Nparticles 	 Nvortices and thus p 	 1.

In dilute Bose-gases mc2
I ¼ 4pa

m n, where a is the s-wave scattering length. To get
the ‘‘inverse ratio’’ X/mcI

2 	 1 we have to consider very small densities na3 � 1
and very large angular velocities. Note that in this limit k\\ 1/b \ 2X/cI and the
spectrum of Tkachenko mode will be always quadratic in k\. The filling factor m in
dilute Bose-gases in magnetic traps can be also much smaller than in helium since
the vortex cores n0� 1=

ffiffiffiffiffi

na
p

	 d are much larger than in dense 4He [98, 99].
Note also that in real 4He the situation is always three-dimensional kz = 0. The

spectrum still has two branches x1
2(kz, k\) and x2

2(kz, k\). Moreover for Tkachenko

mode according to Williams and Fetter [48] we can use an approximate form x2
T ¼

x2
2 � 4X2 k2

z

k2 þ �hX
4m k2 k4

?
k4 þ 2Xk k2

z

k2 1þ k2
z

k2

� �

; or introducing cos h ¼ kz=k ðsin h ¼
k?=kÞ we get x2

T ¼ 4X2 cos2 hþ �hX
4m k2 sin4 hþ 2Xk cos2 h 1þ cos2 hð Þ; where

k ¼ �h
2m ln b

d :

Than according to Baym [27–30] the mean displacement squared ~u2
� �

¼

T
q

R

0

d3~k
ð2pÞ3

1þcos2 h
x2

T
� T

q

R

1

�1

d cos h
4p2

R

0
k2dk 1þcos2 h

4X2 cos2 hþ�hk2X
4m sin4 hþ2Xk cos2 hð1þcos2 hÞ

becomes finite

in the infrared limit k ? 0 in 3D case. However, even in this case for the quasi
two-dimensional thin film or a slab geometry in z-direction (for the system
restricted by the two planes separated by the distance L in z-direction and with a
discrete set of kz = 2pn/L) Gifford and Baym [27–30] predict the logarithmic
divergence of the correlator of the two displacements:

j~uð~rÞ �~uð~r0Þj2
D E

b2
� T ln R? ð1:2:71Þ

at finite temperatures and very large distances R\
2 	 Lb, where

~R ¼~r �~r0 ¼ ~R?;Rz

� �

:

1.2.6.1 An approach to Collective Modes Based on Gross-Pitaevskii-
Equation

Note that at large filling factors m 	 1 there is another more microscopic (but still
mean-field) approach to study the spectrum and even the damping of collective
modes (see Matvienko et al. [51, 52]). It is based on the mean-field solution for the
GP equation for rotating dilute Bose-gas. Note that for a stationary problem
Wð~r; tÞ ¼ Wð~rÞeilt and GP equation can be written as a nonlinear Schroedinger
equation for the charged particles in strong magnetic field. Namely
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ĤWðrÞ ¼ p̂� e

c
~A

� �2
þVextð~rÞ �

mX2r2

2
þ gjWð~rÞj2

	 


Wð~rÞ ¼ lWð~rÞ; ð1:2:72Þ

where ~A ¼ m ~X�~r ¼ ~B�~r is an effective vector potential in radial (cylindrical)
gauge [7], ~B is a magnetic field.

The chemical potential l in (1.2.72) plays a role of an averaged energy on one
particle E in the standard Schroedinger equation. If an external trapping potential

in (1.2.72) is also quadratic (confinement potential—see Chap. 4) Vextð~rÞ ¼ mx2r2

2 ;

than neglecting the nonlinear term g Wj j2W we can get from (1.2.72) an equation
for Landau levels which is well known from Quantum mechanics. The spectrum of
this equation reads for close values of angular velocity and trapping frequency
X�x (more precisely for X� xj j=X� 1)

En;l ¼ �hx nþ 1
2

� �

þ �hðX� xÞlþ
p2

z

2m
; ð1:2:73Þ

where n = nr ? l is a principal quantum number and l is an orbital momentum (nr

is radial quantum number).
For the lowest Landau level (LLL) n = 0 and for purely 2D motion (pz = 0) we

get:

E0l ¼
�hx
2
þ �hðX� xÞl: ð1:2:74Þ

The corresponding W-function of the LLL

W0l ¼ flðzÞe�
x zj j2

2 ð1:2:75Þ

where z ¼ xþ iy; �z ¼ x� iy; and zj j2¼ z�z.
To have vortices we should demand that fl(z) is analytic function of z, which

does not have any poles. Moreover fl(z = zi) = 0 for the vortex solutions centered
at the points z = zi. In the most simple case according to Matvienko et al. fl should
behave linearly [proportional to (z - zi)] close to each vortex core. Such mean-
field solution corresponding to the triangular lattice can be described by some h-
function of Yakobi (see [51, 52]) similar to Abrikosov solution for type-II
superconductors [24]. Note that we can safely neglect the nonlinear term in
(1.2.72) if gn\jX� xj. The authors of [51, 52] also managed to derive the
spectrum and damping of collective modes in the same type of formalism.

1.2.6.2 Melting of the Vortex Lattice

If ~u2
� ��

b2 exceeds some finite number (which is less that 1), then according to
Lindemann criterion [80, 81] the 2D vortex lattice starts to melt. For finite tem-
peratures we have classical melting while for T = 0 we can still have quantum
melting. The last case is very interesting both for vortex lattices in rotating gases
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and for the search of supersolidity in Quantum crystals (see Chap. 2). The quantum
melting for the 2D lattice requires ~u2

� ��

b2� 0:07 (see Cooper et al. [53–55]).
Note that according to Baym at zero temperature the mean displacement

squared for purely 2D flows (kz : 0) reads:

~u2
� �

b2
� nv

nsL

mc2
I

X

� �1=2

� 1
p

mc2
I

X

� �1=2

; ð1:2:76Þ

where nS is a superfluid particle density. In dense 4He the ratio mc2
I

X

� �1=2
as we

already discussed is very large. For X�XC1� 1 rot=s :
mc2

I
X

� �1=2
� 106. However,

m is also very large and thus at T = 0
~u2h i
b2 � 1 in 4He.

In weakly non-ideal Bogoliubov Bose gas

mc2
I

X

� �1=2

¼ 4pans

mX

� �1=2

� 4

mXn2
0

 !1=2

� b

n0
� XC2

X

� �1=2

; ð1:2:77Þ

where mX ¼ b2 and n0 ¼ 1=
ffiffiffiffiffi

na
p

: Note that for X ¼ XC2 : nv ¼ na and p ¼ nL
nv
¼

L
a : Hence at T = 0 in a dilute Bose gas

~u2
� �

b2
� 1

p

b

n0
: ð1:2:78Þ

Thus if we have small enough p C 1 (for that we should have almost 2D trap
with L C a for z-dimension) we can reach the regime of quantum melting
~u2
� ��

b2� 0:07: In this case according to Cooper et al. [53–55] we will have a
phase transition form a vortex crystal to a strongly correlated phase of a vortex
liquid. The strongly correlated vortex liquid (in contrast with the vortex crystal)
is closely related to incompressible liquid states which according to Laughlin
[82–85] and Haldane et al. [68, 69] arise in the physics of the Fractional Quantum
Hall Effect (FQHE). Note that in practice mC * (5 7 6) for a phase-transition
from vortex crystal to vortex-liquid [53–55] in dilute rotating Bose gases.

Note again that in this Chapter we mostly used Landau scheme of the con-
servation laws to derive the nonlinear hydrodynamics of slow rotations and to get
the spectrum of the collective modes. There are other methods to derive these
equations based on Poisson brackets (PB) [43, 78] or on Gross-Pitaevskii (GP)
equation [51–55]. These methods are also very elegant ones. However they are not
purely phenomenological and use some additional microscopic arguments. The
method of PB, for example, utilizes some additional microscopic equation for
vortex lines. We can say that the other approaches do not provide the nonlinear
fluxes in the system of hydrodynamic equations for slow rotations and do not
describe the nonlinear elasticity theory of the vortex lattice in such a straightfor-
ward and a single-valued fashion as Landau scheme of the conservation laws. Note
that Baym and Chandler [27–30] in their classical paper also considered equations
for slow-rotations but only in a form linearized in the lattice deformations.
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1.3 Hydrodynamics of Fast Rotations

In connection with dilute quantum gases in rotation the researchers usually
understand rapid rotations as a quantum limit when nv

nL ¼
Nvortices
Nparticles

¼ 1
p and we are in

the regime of vortex liquid (the vortex lattice is melted). In this Section we will
always work in a mean-field hydrodynamic regime (classical limit p 	 1) mostly
considering dense superfluid 4He. Thus the vortex lattice is always present in our
considerations. Nevertheless even here we can distinguish between slow and rapid
rotations, having in mind absolutely different regimes and phenomena in com-
parison with dilute quantum gases. Namely we will construct strongly anisotropic
hydrodynamics with two different velocities of normal and superfluid component
~vnk 6¼~vsk in the direction parallel to the vortex lines and with only one velocity

~vn? ¼~vs? ¼~j?=q in the direction perpendicular to the vortex lines. This hydro-
dynamics, describing the crystal in perpendicular to the vortex lines direction and a
free superfluid in a parallel direction, can be realized at large rotation frequencies
with the help of intensive Umklapp processes [64] for the scattering of normal
excitations on the 2D vortex lattice. Throughout this Section we will often use a
term of fast rotations to distinguish this regime from rapid rotations in quantum
gases considered in the end of the Sect. 1.2.

1.3.1 The Foundation of the Hydrodynamics of Fast
Rotations. The Role of Umklapp Processes

According to Andreev and Kagan [31] the two different approaches are possible to
a hydrodynamic description of rotating systems, i.e. to a description in which the
quantities are assumed to vary slowly in space and time and the expansions are in
terms of gradients. In the first one the initial state of the system is assumed to be at
a rest and the expansion is in all the gradients including the components of the
velocity curl connected with the uniform rotation. This is hydrodynamics of slow
rotations (in terminology of Andreev and Kagan considered in the previous
Section).

In the same time since uniform rotation is always in thermodynamic equilib-
rium, another approach is possible in which the velocity curl that corresponds to
uniform rotation is not assumed small, and the expansion is only in terms of
nonequilibrium gradients, in the gradients on top of the uniform rotation. This
expansion corresponds to hydrodynamics of fast rotations in the terminology of
Andreev and Kagan.

Note that hydrodynamics of slow rotations, considered in Sect. 1.2, contains
two independent velocities of normal and superfluid motions. The interaction of
the normal excitations with the vortex lines are taken into account as a mutual
friction force proportional to the difference between normal and superfluid
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velocities. For such a description to be valid it is necessary in any case that the
excitations mean free path time sN which is connected with their scattering on each
other, should be considerably smaller than the analogous time sU connected with
the scattering of normal excitations on the vortex lattice. Note that otherwise an
introduction of the velocity of normal component as an independent thermody-
namic variable is meaningless. But even if the condition sU 	 sN is satisfied, the
usual equations are valid only for not very low angular velocities of rotation.

Let us clarify this situation, considering for simplicity on the basis of usual
equations for hydrodynamics of slow rotations, the temperature oscillations and
the related with them oscillations of the relative velocity ~W? ¼~vn? �~vs? per-
pendicular to the vortex lines. In this case such oscillations are analogous in many
respect to temperature oscillations in crystal under conditions of phonon hydro-
dynamics (see Gurevich [44]). In this case sU and sN play the role of the times of
phonon relaxation due to normal and Umklapp processes respectively. In both
cases there are two oscillation modes, whose frequencies can be expressed as the
functions of the wave vectors in the form:

x1;2 ¼ �icffi c2
IIk

2 � c2
� �1=2

; ð1:3:1Þ

where cII is a second sound velocity and

c ¼ 1=sU þ c2
IIk

2sN : ð1:3:2Þ

In the case of a rotating superfluid liquid we have (see [37, 38] and Sect. 1.2)

1=sU �ðBXÞ; ð1:3:3Þ

where X is an angular frequency of rotation and B ¼ 2qqs
qn

b is one of the two
dimensionless parameters introduced by Hall and Vinen [37, 38] to define the
mutual friction force. From the view-point of a hydrodynamics of slow rotations,
both modes are hydrodynamic, since both frequencies x1,2 tend to zero when k and
X tend simultaneously to zero (for X ? 0 the inverse Umklapp time 1/sU ? 0 and
c also tends to zero for X ? 0 and k ? 0).

In fast rotation hydrodynamics, however, i.e. as k ? 0 and at constant X,
c = 0 and only one (heat-conduction) mode is hydrodynamic (gapless) mode.

The usual equations are thus hydrodynamic in the sense of slow rotations. For
given X, however, their validity is restricted by the condition sU 	 sN. If, how-
ever, this condition is satisfied and the motion frequency x satisfies the inequality
xsU � 1; we can replace the ordinary equations by the much simpler equations of
fast rotations which will be derived in this Section. Note that in the crystals (see
[44]) for sU 	 sN and xsU � 1 we can exactly in the same way replace the
equations of phonon-hydrodynamics by the usual equations of the elasticity
theory [65].

In fast rotation hydrodynamics we introduce for a superfluid liquid with a
vortex lattice only one independent velocity of macroscopic motion in the direc-
tion perpendicular to the vortex lines, i.e. the system behaves for these directions
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as an ordinary crystal. Since the longitudinal total momentum of the excitations
(parallel to the vortex lines) is preserved by the demands of the homogeneity of the
system in the lines direction, we introduce in this direction two velocities and a
system behaves as a standard superfluid liquid. Note that hydrodynamics of fast
rotations is valid for given X at sufficiently low frequencies x � sU

-1 and
x � sN

-1 no matter what is the ratio of sU and sN. At temperatures of the order of
1 K in liquid He-II the dimensionless constant B of Hall and Vinen is of the order
of unity and the validity of fast rotations hydrodynamics is restricted to frequencies
x � (sU

-1 * X) [see (1.3.3)].

1.3.2 The System of the Nonlinear Equations
for the Hydrodynamics of Fast Rotations

In fast rotations hydrodynamics we must introduce one velocity in the direction
perpendicular to the vortices and two independent velocities in the longitudinal
direction. Under these considerations it is not convenient to use as the hydrody-
namic variable the true superfluid velocity which we define as ~Vs in this Section.
Instead of it we introduce a single perpendicular velocity~v? ~v?~m ¼ 0ð Þ defined by
the equality:

~v? ¼
~j?
q
; ð1:3:4Þ

where~j? is the exact value of the perpendicular momentum. The motion in the
longitudinal direction will be described by two velocities vnjj and vsjj; with

vsjj ¼ ~Vs~m. Thus we put:

~vs ¼~v? þ vsjj~m; ~vn ¼~v? þ vnjj~m: ð1:3:5Þ

We emphasize once more that the velocity~vs introduced by us does not coin-
cide, generally speaking, with the true superfluid velocity ~Vs. Nevertheless Eq.
(1.2.23) for Galilean transformation of the energy and the linear momentum, as
well as Eq. (1.2.24) for the differential of an internal energy E0 (in the frame where
~vs ¼ 0) are still valid in terms of new velocities~vn and~vs from (1.3.5). Indeed from
the definition of ~vn and ~vs in (1.3.5) it follows that the relative velocity ~W ¼
~vn �~vs ¼ ðvnjj � vsjjÞ~m and~j0 ¼ ð~j� q~vsÞ ¼~jjj � q~vsjj ¼ j0jj~m have only longitudi-

nal components. Thus the term ~Wd~j0 in dE0 can be written in the form ðvnjj �
vsjjÞdj0jj; which corresponds precisely to the correct expression for a system that is
superfluid only in the longitudinal direction. We emphasize that the one-dimen-
sional densities of the normal (qn) and superfluid components (qs = q - qn),
defined by the formula j0jj ¼ qnðvnjj � vsjjÞ, differ substantially, generally speaking,
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from the corresponding ‘‘microscopic’’ three-dimensional quantities which enter in
the expressions (1.2.42), (1.2.45) and (1.2.48) for the elastic module (for
1
2 hab ¼ oEel

ogab) of a vortex lattice. Note that all the definitions connected with the

kinematics of the vortex lattice, particularly expression (1.2.13) ~vL ¼ �~ea _Na;
remain the same as before. Since the number of the independent velocity com-
ponents is now smaller by two than in slow rotation hydrodynamics, the number of
equations in hydrodynamics of fast rotations should be correspondingly less than
in (1.2.22). Specifically the last equation of the system (1.2.22) (the three com-
ponent equation for the superfluid motion) should be replaced by one component
scalar equation for the fast rotations. We derive it by using the formula:

~vs~m ¼ ~Vs~m ð1:3:6Þ

and the relation (1.2.21) for the vorticity conservation which in the notation of the
present Section can be written in the form:

_~Vs þ ~ru ¼~vL � ~r� ~Vs

� �

; ð1:3:7Þ

where u is a certain scalar.
Differentiating (1.3.6) with respect to time, and taking into account (1.3.7) as

well as the relation~m ¼ ~r�~Vs
~r�~Vsj j ; we obtain:

~m _~vs ¼ �ð~m � ~rÞu� _~m ~Vs �~vs

� �

: ð1:3:8Þ

An expression for _~m can be easily derived from (1.3.7):

_~mþ ð~vL � ~rÞ~m ¼ ð~m � ~rÞ~vL �~mð~m; ð~m � ~rÞ~vLÞ: ð1:3:9Þ

Substituting it in (1.3.8) we obtain after simple transformations:

~m _~vs þ ~r lþ v2
s

2
þW

� �

�~vL � ~r�~vs

� �

� �

¼ 0; ð1:3:10Þ

where

W ¼ u� l� v2
s

2
�~vL ~Vs �~vs

� �

: ð1:3:11Þ

It is convenient to choose Eq. (1.3.10) with yet undetermined scalar W as a
required scalar equation which together with the first three equations of the system
(1.2.22) constitute the complete system of equations for the hydrodynamics of fast
rotations [31].

Differentiating as usual the first equation of (1.2.23) for total energy with
respect to time and using the aforementioned complete system of equations, we
reduce the equation for _E to the form:
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_E ¼� ~r � f~Q0 þ~qþ vnkpik þ vLkhabea
i eb

k þWð~j� q~vnÞg þ Rþ~q
~rT

T
þ pik

ovni

oxk

þW~r � ð~j� q~vnÞ þ f~vL �~v?;~F þ ð~j� q~vn;~mÞ � ð~r�~vsÞ �~mg;
ð1:3:12Þ

where the expressions for ~Q0 and pik formally coincide with those given in Eq.
(1.2.27) of the preceding Section. From (1.3.12) we find the dissipation function:

R ¼ �~q
~rT

T
� pik

ni

oxk
�W~r � ð~j� q~vnÞ

� f~vL �~v?;~F þ ð~j� q~vn;~mÞ � ð~r�~vsÞ �~mg:
ð1:3:13Þ

Confining ourselves, as in the preceding Section, to consideration of only the
last term in (1.3.13), we write down the expression for the relative velocity of the
vortices and of the matter in the following general form:

~vL �~v?ð Þa¼ �B̂abGb; ð1:3:14Þ

where

~G ¼ ~F þ ð~j� q~vn;~mÞ � ð~r�~vsÞ �~m; ð1:3:15Þ

and a and b are two-dimensional spatial indices in a plane perpendicular to~m: The
matrix of the coefficients B̂ab satisfies the Onsager relations [64]:

B̂abð~mÞ ¼ B̂bað�~mÞ: ð1:3:16Þ

Therefore

~vL �~v?ð Þa¼
mg1=2

2pq�h
� B0

� �

~G�~m
� �

a
�B̂abGb; ð1:3:17Þ

where Bab is the symmetric part of B̂ab; BabðT ¼ 0Þ ¼ B0ðT ¼ 0Þ ¼ 0: For an
arbitrary deformed lattice Bab is an arbitrary symmetric tensor. We point out that

the second term in the expression for ~G; in contrast to the analogous term in
the slow-rotation hydrodynamics, is of the second order in the deviations from the
state of the uniform rotation. Therefore Bab has in fast-rotation hydrodynamics the
meaning of the diffusion coefficient of the vortices. The coefficient B’ describes an
effect of the Hall type in the diffusion. In an undeformed triangular lattice the
tensor B reduces to a scalar.

We recall that the complete system of the equations for the hydrodynamics of
fast rotations consists of the first three equations of (1.2.22) for _q; _j and _S; and of
Eq. (1.3.10) for the superfluid motion.
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1.3.3 Linearized System of Equations of Fast Rotations. The
Spectrum and the Damping of the Second Sound Mode

Linearizing the equations for _S; _q; _j and mi _vsi near the uniform rotation we obtain
the following set of the equations that describes the oscillations of the temperature
and the associated oscillations of the relative velocity dWk ¼ dvnk � dvsk along the
vortices (compare with Eqs. (1.1.65) and (1.1.67) for a second sound wave):

d _T þ ~vo � ~r
� �

dT þ TSqs

Cpq
rzdWjj þ

~r �~q
qCp

¼ 0;

d _Wjj þ ~vo � ~r
� �

dWjj þ
S

qn
rzdT ¼ 0;

8

>

>

>

<

>

>

>

:

ð1:3:18Þ

where S and Cp are the entropy and heat capacity per unit mass at a constant
pressure, and the liquid is assumed incompressible

dP ¼ dq ¼ 0; qndvnjj þ qsdvsjj ¼ 0. In (1.3.18) ~v0 ¼ ~X�~r: Equations (1.3.18)
are reduced to the equations with constant coefficients by transforming to a

rotation frame. This corresponds to the substitution o
ot! o

ot0 �~vo � ~r� X� for

vectors and o
ot! o

ot0 �~vo � ~r for scalars (where q/qt’ is the time derivative in the

rotation frame). The heat flux in (1.3.18) can be set equal to~q ¼ �j?~r?T (j\ is
the heat conductivity in the direction perpendicular to the vortex axis), since the
equations contain other considerably larger terms with q/qz. As the result we get:

odT

ot0
þ c2

IIqn

S

odWjj
oz
� j?

qCp
D?dT ¼ 0

odWjj
ot0
þ S

qn

odT

oz
¼ 0;

8

>

>

>

<

>

>

>

:

ð1:3:19Þ

where c2
II ¼

TS2qs
Cpq2qn

is the second sound velocity.
The differentiation of the first equation in (1.3.19) with respect to q/qt’ and of a

second one with respect to q/qz, and after that the substitution of the second
equation in the first one yields:

o2dT

ot02
� c2

II

o2dT

oz2
� j?

qCp
D?

oT

ot0
¼ 0: ð1:3:20Þ

Correspondingly x2 � c2
IIk

2
z þ j?

Cp
k2
?ix ¼ 0 and the spectrum in rotation frame

reads:

x1;2 ¼ �i
j?k2

?
2qCp

ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
IIk

2
z �

j?k2
?

2qCp

� �2
s

ð1:3:21Þ
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For k\ = 0 x1;2 ¼ fficII kzj j; for kz = 0 x1;2 ¼ ið�1ffi 1Þ j?k2
?

2qCp
: It is interesting

to compare this spectrum with the overdamped temperature waves in ordinary

classical liquid with the spectrum x ¼ �i j?k2
?

qCp
considered in Sect. 1.1 [see

Eq. (1.1.30)], and the propagating second sound waves with the spectrum x2 ¼
c2

IIk
2 [see Eq. (1.1.69)] for irrotational superfluid (the same propagating spectrum

of the second sound x2 ¼ c2
IIk

2 we get in the hydrodynamics of slow rotations).
From the spectrum (1.3.21) it follows, that in the hydrodynamics of fast rotations
the oscillations of the temperature propagate in the form of the second sound only
along the axis of the vortices, while in perpendicular direction they are ordinary
damped thermal waves (the second root in Eq. (1.3.21) corresponds at small kz to
dT ? 0 and dW|| = const).

1.3.3.1 Another Collective Modes in the Hydrodynamics of Fast
Rotations

To establish another application of the derived equations we consider the oscil-
lations of the transverse velocity d~v? and of the displacement ~u in a state with
simultaneous uniform rotation and a uniform heat flux Q ¼ TSvnk along the vortex
lines. This problem is of interest because a substantial role in it is played by the

second term of the expression (1.3.15) for ~G: Confining ourselves for simplicity to
the case of low temperatures qn � q and neglecting in (1.3.17) the term with Bab

and B’, we rewrite this equation in the rotation frame in the form:

~u�~v? ¼
1

2Xq
~F �~ez

� �

� ivnkkz~u�
i

2X
vnk kz ~ez � d~v?ð Þ þ ð~ez �~k?Þ

~k?d~v?
kz

( )

;

ð1:3:22Þ

where~F is defined by (1.2.50) and vnk ¼ Q=TS. The second equation that connects~u
with~v? is obtained by projecting on the {xy} plane of the second equation for oji=ot
of the system (1.2.22) and excluding from it the pressure using the incompressibility

condition at low temperatures ~r �~vs ¼ 0: We have in the rotation frame:

d _~v? þ 2~X� d~v? �
~k?
k2

~k? 2~X� d~v?
� �� �

þ 1
q
~F �

~k?
qk2

~k? �~F
� �

¼ 0: ð1:3:23Þ

If ~k is small enough, Eqs. (1.3.22, 1.3.23) describe in the principle approxi-
mation the independent oscillations of d~v? and ~u: The former have a frequency:

x ¼
2 ~X �~k
� �

k
ð1:3:24Þ

and are inertial waves in an ordinary (classical) hydrodynamics of the incom-
pressible rotational fluid considered in Sect. 1.1.
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The second mode constitutes the oscillations of the displacement ~u and are
peculiar to the fast rotations hydrodynamics. The frequency of this mode in the
rotation frame:

x ¼ vnkkz; vnk ¼ Q=TS: ð1:3:25Þ

It must be emphasized that this mode exists only at finite temperature. It
vanishes at T = 0, i.e. in the total absence of the normal component. Here lies an
essential difference between hydrodynamics of slow-rotations and fast-rotations at
finite temperatures.

In the hydrodynamics of slow rotations the velocity~vs and the displacement ~u
are not independent variables, but are connected by the additional condition
(1.2.20) for curl~vs and vectors of elementary translations~ea: In hydrodynamics of
fast-rotations the same takes place at T = 0, when the difference between~vs and ~Vs

vanishes. The presence of the root with x = 0 means here simply compatibility of
hydrodynamic equations with the supplementary condition (1.2.20).

We should also make a remark concerning the spectrum (1.3.24). Although the
mode (1.3.24) has zero gap, its frequency, generally speaking, does not tend to

zero as~k! 0: This highlights the distinction of the fast-rotations hydrodynamics,

for the validity of which the condition ~k! 0 is generally speaking not sufficient
and one more condition is required. To determine this condition we note that the
frequency in a rotating coordinate frame can be regarded as an eigenvalue of the
operator:

i
o

ot
þ ~X�~r

� �

~r
� �

� ~X�
	 


¼ i
o

ot
� XJz; ð1:3:26Þ

where Jz ¼ Sz þ Lz; Lz ¼ �i ~r � ~r?
� �

is the orbital angular momentum and Sz ¼
�iezab is the spin of the vector field d~v?: The derivative qx/qX, as can be seen
from (1.3.26) is equal to - Jzh i: For the frequencies of all the modes in the fast-
rotations hydrodynamics to tend to zero we must satisfy besides the condition
~k! 0 also Jzh i ! 0: The latter is equivalent for the spectrum (1.3.24) to the
condition kz/k ? 0, where k2 ¼ k2

z þ k2
?:

1.4 Opposite Case of a Single Bended Vortex Line
for Extremely Slow Rotations (X ~ XC1)

In the last section of the present chapter we will consider an opposite case of a
single bended vortex line aligned with the axis of a cylindrical vessel of radius
R. It is known that such a state corresponds to the thermodynamic equilibrium at
X�XC1 ¼ �h

mR2 ln R
d : As it was shown by Hall [36, 37], the equation that describes

the bending oscillations of the vortex lines is reduced to the Schroedinger equation
with an effective mass:
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m� ¼ m

lnð�h=pzdÞ
ð1:4:1Þ

(pz is the momentum of the oscillations parallel to the vortex line) by introducing
the wave-function:

W ¼ constðux þ iuyÞ: ð1:4:2Þ

In Eq. (1.4.2)~u is the two-dimensional vector of the displacement of the vortex
line in a plane perpendicular to the rotation axis (see Fig. 1.11). If we choose

const ¼ pqs=mð Þ1=2 in Eq. (1.4.2) the energy of the oscillations also becomes
identical with the energy given by Schroedinger expression:

E ¼ �h2

2m�

Z

oW
oz

�

�

�

�

�

�

�

�

2

dz: ð1:4:3Þ

1.4.1 Stabilization of the Bending Oscillations by Rotation

Note that in our case rotation around z-axis on an angle u is simultaneously the
gauge transformation of the W-function: W! Weiu: The generator of this gauge
transformation is the operator �hN̂; where N̂—is the number of particles operator.
In the second quantization technique the operator of the number of particles N̂ ¼
P

pz

bþpz
bpz commutes with the Hamiltonian Ĥ ¼

P

pz

p2
z

2m� bþpz
bpz of the 1D Bose-gas of

the oscillating quanta carrying the momentum pz:
From the other hand the operator of the z-component of the angular momentum

in our case equals to Ĵz ¼ �hN̂ and hence Ĵz also commutes with the Hamiltonian Ĥ.
Thus the quanta of the vortex line oscillations besides a linear momentum pz

possess also an independent quantum number—an intrinsic angular momentum—�h

Fig. 1.11 The bended vortex
line situated in the center of
the cylindrical vessel.~u is the
2D displacement
perpendicular to the vortex
line. z is the axis of the
vessel, u is rotation angle
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(‘‘diamagnetic situation’’ according to Andreev and Kagan [31]). That is why in
our case the bended vortex line in reality does not vibrate but rotates around z-axis

(we can prove that in second quantization technique ~u� _~u 6¼ 0). Thus the real
thermodynamic equilibrium takes place only in the rotating frame and hence the
spectrum in this frame reads:

eðpzÞ ¼ e0ðpzÞ � X
Jz

N
¼ �hXþ e0ðpzÞ ¼ �hXþ

p2
z

2m
ln

�h

d pz
: ð1:4:4Þ

Thus the spectrum of the bended vortex line acquires a gap �hX: Note that

in the macroscopic hydrodynamics of slow rotations for XC1 � X� XC2 :

�hx ¼ 2�hXþ �h2k2
z

2m ln b
a and we have a gap 2�hX for Lord Kelvin waves (see Sect. 1.2).

The difference between the macroscopic gap 2X and the ‘‘microscopic’’ gap
X = XC1 is connected with the fact that for a single bended vortex line we cannot

introduce a macroscopic superfluid velocity of the solid state rotations~v0 ¼ ~X�~r
and hence the orbital angular momentum L̂z ¼ 0 (see the discussion in the end of
the Sect. 1.3). Correspondingly Ĵz ¼ Ŝz (is purely intrinsic angular momentum)
and qx/qX = �h (and not 2�h).

1.4.1.1 Thermodynamics of a Bended Vortex Line

The presence of the energy gap �hX causes the spectrum (1.3.30) to satisfy the
Landau criterion for superfluidity. The critical velocity is:

vC ¼ min
eðpzÞ

pz
¼ �hX

m
ln

�h

2md2X

� �1=2

; ð1:4:5Þ

where d is the vortex core. For X * XC1 vC � �h
mR.

For the same reason, the divergences at small momenta, which are customary
for one-dimensional systems, are absent in this case. Indeed, let us calculate again
the mean displacement from the equilibrium position of the bended vortex line
squared ~u2

� �

(see Sect. 1.2) assuming that the condition T 	 X (more rigorously

kBT 	 �hX) is satisfied. In this case the bosonic distribution function nB
eðpzÞ

T

� �

�
T

eðpzÞ and

~u2
� �

¼ m

pqs
Wj j2

D E

¼ m

pqs

Z

dpz

2p�h
nB

eðpzÞ
T

� �

¼ mT

p�hqsvC
; ð1:4:6Þ

where the critical velocity vC is given by (1.4.5).
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1.4.2 Visualization of the Vortex Lattice in Rotating
Superfluid. Packard Experiments

The ratio of this quantity to the square of the vessel radius is of the order of

~u2
� �

R2
� d

R

Tmd2

�h2

1

ln �h
2md2X

� d

R

Tmd2

�h2

1
lnðR2=d2Þ ð1:4:7Þ

for X * XC1.

In superfluid 4He for X ¼ XC1 ¼ �h
mR2 ln R

d � 1 rot
s ; d� 3 A

o

and R * 0.1 cm:
~u2h i
R2 � 1: Note that without the gap ~u2

� �

� T
R dpz

p2
z

and we have a strong infrared

divergence at pz ? 0. Hence without the gap 1D bended vortex will form a
globule as in many 1D systems (like in polymers for example). The small value of
~u2
� ��

R2 � 1 can provide an explanation of Packard experiments [86–88]. He
with his colleagues injected electrons in the vortex core, applied the voltage in the
direction parallel to the vortex lines and got the photograph of the vortex lattice in
4He on the screen. In his experiments on visualization of the vortex lattice he
observed small vortex displacements from equilibrium positions in the triangular
lattice (see Fig. 1.12).

Fig. 1.12 Vortex arrays in
superfluid 4He from
Yarmchuk, Gordon, Packard
[86–88] and Vinen [37, 38].
On Figs. a–f the number of
vortices changes from 1 to 6
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Note that in alkali gases in magnetic traps a low-temperature regime of Bose–
Einstein condensation (BEC) was achieved in 1995 (see Chap. 4) [89–91].
Quantum vortices, which are the main signature of the superfluidity, are found in
rotating condensate [58–61, 92] similar to that in liquid helium (see Sect. 1.2). The
snapshot of the vortex lattice in dilute Bose-gases is presented on Fig. 1.13.

Later on the vortex lattice was discovered also in BCS-phase of fermionic gases
[47] (6Li and 40K) in the regime of Feshbach resonance (see Chap. 4). From both
Figures we can see almost regular distribution of vortices forming triangular lattice
both in dense superfluid helium and in dilute gases. Hence the mean displacements
squared of the vortex lines are finite and small in comparison with the intervortex
distance b in both experimental pictures.

1.4.3 Contribution to Normal Density and Specific Heat
from Bended Vortex Lines

Returning back to the thermodynamic contribution from bended vortex lines we
can calculate also the one-dimensional density of the normal component qn (see
Sect. 1.1):

qn ¼ �
Z

p2
z

onBðeðpzÞ=TÞ
oe

dpz

2p�h
¼ 2TX

v3
c

ð1:4:8Þ

With decreasing X the density qn varies proportionally to X-1/2 (note that
anyway X C XC1). We can also write down an expression for the specific heat CX

per unit length of the vortex line at constant angular velocity X:

CX ¼ C0ðTÞ þ
2X
vC
; ð1:4:9Þ

Fig. 1.13 Vortex lattice in
rotating dilute Bose gases of
alkali elements (7Li, 23Na,
87Rb) [58–61, 92]
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where

C0ðTÞ ¼
3nð3=2Þ

4�h

mT

p ln p
mTd2

� �1=2

; ð1:4:10Þ

and n(3/2) is Riemann function.
In contrast to Eq. (1.4.7) for ~u2

� �

and Eq. (1.4.8) for qn, in the case of the
specific heat only the second correction term in (1.4.9) depends on the rotation
frequency for T 	 �hX.

The thermal oscillations delocalize the vortex line. As a result, the average
velocity curl differs from a d-function (compare with Eq. (1.2.2) in Sect. 1.2) and
is determined by the probability distribution of the values of the distance r of the
vortex line from the vessel axis. Since the distribution is obviously Gaussian at
T 	 �hX, we have in accord with (1.4.7):

~r�~vs

D E

¼ 2�h

m ~u2h i exp � r2

~u2h i

	 


¼ 2p�h2qsvC

m2T
exp � r2mT

p�hqsvC

	 


: ð1:4:11Þ

Note that the bending oscillations of the vortex lines as we already mentioned
have an intrinsic angular momentum and thus produce an interesting effect of the
angular-momentum transport by the heat flux in the absence of the matter flux. The
angular momentum flux is:

L ¼ ��h Wj j2vn ¼ �
Tvn

vC
¼ � Q

SvC
; ð1:4:12Þ

where Q = TSvn is the heat flux.
The torque carried by the heat flux between solid surfaces perpendicular to the

rotation axis at vn * vC is of the order of NvT, where Nv is the total number of
vortices. At T * 1 K the torque measured in dyn�cm is of the order of 10-12 X
(s-1) S0 (cm2), where S0 is the area of the solid surface. Although this is a small
quantity, it seems to be experimentally observable.

1.5 Experimental Situation and Discussion. How
to Achieve the Limit of the Fast Rotations at Not Very
High Frequencies in He II- 3He Mixtures
and in Superfluid 3He-B

Concluding the present Chapter let us stress once more that:

1. We present a hydrodynamic description of the two-velocity hydrodynamics of a
superfluid 4He and dilute Bose gases following Landau scheme of the con-
servation laws.
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2. We generalize the hydrodynamic scheme on the presence of the quantized
linear vortices and construct nonlinear hydrodynamics of slow and fast rota-
tions with an account of the vortex lattice and the friction forces between
normal excitations and vortices.

3. We analyze collective modes of the vortex lattice and in particular the shear
(Tkachenko mode) as well as the bending mode of Lord Kelvin. We find out
their contribution to the vortex displacements and to the thermodynamics. We
also analyze the possibility to melt the vortex lattice in quasi two-dimensional
rotating Bose gases due to the contribution of the quadratic in k-vector
Tkachenko modes at very low frequencies.

The last topic which should be considered in this Chapter is how to achieve the
limit of the hydrodynamics of fast rotations at not very high frequencies.

In the end of Sect. 1.3 we mentioned that when the Hall-Vinen coefficient b
becomes of the order of one, the Umklapp relaxation time for the scattering of the
normal excitations on the vortices sU * 1/bX is of the order of 1/X and the
condition xsU � 1 for the validity of the hydrodynamics of fast rotations require
the condition x\ X for the frequencies. With decreasing temperature, however,
the situation changes since the bending oscillations of the vortex lines begin to
produce a substantial contribution to the density of the normal component. This
contribution qnX ¼ 2TX=v3

C exceeds the phonon contribution qph
n ¼ T4=c5

I [see Eq.
(1.1.50)] for T B 0.1 K in a very clean superfluid 4He thus creating the possibility
for the hydrodynamics of rapid rotations for X * XC1. Note that the quasiparticles
which correspond to the quanta of the bended oscillations, are localized on the
vortex lines and can move easily only along them. Correspondingly we have only
one component of the normal velocity vnk and can speak only about highly
anisotropic hydrodynamics of fast rotations.

A similar but even more clearly pronounced situation arises at low temperatures
in the solutions of 3He in He-II (see Chap. 15), owing to the absorption of the
impurities by the vortex cores (see [93]). In other words in the rotating solution all
the 3He-impurities (which serve as the normal excitations in this system) are

localized in the vortex core due to the gradient of Bernoulli integral ~r lþ v2
s

2

� �

[see Eq. (1.1.13)]. Note that~vs increases when we approach the vortex core thus
the pressure gradient causes the localization of the impurities inside the core. From
the other hand they can again move freely along the vortex lines. We again have
only one vnk and can speak only about the hydrodynamics of fast rotations.

Finally in superfluid 3He-B, in which as in He-II, the orbital hydrodynamics is
isotopic the condition sU � sN starts to be satisfied at temperatures T B (TC * 1
mK) for X B 1 s-1 because of the rather large sN for the scattering of (fermionic)
quasiparticles on each other in 3He-B. The higher angular velocities in 3He-B
should be described by the fast-rotations hydrodynamics.

We can repeat once more that for the dilute Bose gases we should distinguish
between the slow rotations with vortex lattice and rapid rotations when the vortex
lattice is melted. In the same time in dense superfluids (He-II, 3He-B, 3He- He-II
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solutions) we should distinguish between the isotropic hydrodynamics of the slow
rotations and the anisotropic hydrodynamic of the fast rotations. However, the
vortex lattice is present in both types of the hydrodynamic descriptions in dense
superfluids.

We should like also to clarify more detaily the similarity between the hydro-
dynamics of rotating superfluids in the presence of the vortex lattice and the
second sound regime in alkali crystals briefly mentioned in the Introduction to the
Sect. 1.3.

Note that in the alkali crystals the second sound as a propagating mode with a

drift velocity~v 6¼ _~u ( _~u is the lattice velocity) exists only in the frequency window
cU ¼ 1

sU
\x\cN ¼ 1

sN
for weak Umklapp processes with cU\cN (see Gurevich

[44] for a review). In the same time for small frequencies x\cU\cN the second
sound is overdamped.

The same estimates distinguish hydrodynamics of slow and fast rotations.

Namely, the total damping of a second sound Imx
x ¼ cU

x þ x
cN

is a sum of the

damping due to Umklapp process and Imx� cU and a standard hydrodynamic

damping Imx�x2sN � x2

cN
[see Eq. (1.1.25)]. For cU\x\cN ;

Imx
x � 1—the

second sound wave is propagating and we have the hydrodynamics of the slow

rotations. In the same time for x\cU\cN ;
Imx

x 	 1 (due to the contribution of
cU=x) and we have an overdamped second sound in the direction perpendicular to
the vortex lines. Thus we restore the hydrodynamics of the fast rotations.
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Chapter 2
Quantum Crystals. The Search
for Supersolidity

The present chapter will consist of the two main parts devoted correspondingly to
bulk and surface phenomena in quantum crystals. In the first part of the chapter we
will discuss a notion of quantum crystals and their distinction from ordinary
classical crystals from the point of view of Lindemann criterion [1, 2] for crystal
melting. We will also use de Boer parameter to describe the quantum crystals.
Note that it measures the degree of quantumness or the ratio of kinetic delocal-
ization energy of zero vibrations to the potential energy [3]. We will discuss
Andreev, Lifshitz theory [4] for the hydrodynamics of superfluid quantum crystals
and the flow of zero vacancies [5–7] as well as recent Andronikashvili type of
rotating experiments of Chan et al. [8–13] on non-classical moment of inertia [14,
15] and the search of supersolidity in the crystals of 4He [16–21]. We will provide
a short review of the important experimental and theoretical articles on this fas-
cinating subject [22–36] published during last several years by several groups in
Moscow and by other groups in the West. We will discuss the overall pessimism of
the community with respect to the possible discovery of supersolidity in [8–12]
and provide the alternative explanations connected with the mass flow of defects
(impurities, dislocations, two-level systems, thermal vacancies and so on) relative
to the crystalline lattice in the non-perfect crystals of solid 4He [36–38]. Very
convincing results belong here to Rittner and Reppy who showed the disappear-
ance of the supersolid fraction in rotating experiments after good annealing of the
quantum crystal [36]. We will start the second part of the present chapter with the
brief discussion of classical [39–42] and quantum roughening [43, 44] for different
crystal surfaces of solid 4He and present the estimates for roughening transition in
the framework of Nozieres [39] theory of Berezinskii-Kosterlitz-Thouless type
[45, 46] as well as mean-field arguments of Andreev and Parshin [47]. We will
also briefly consider the two branches of surface waves on the mobile rough
interface—the melting-crystallization waves (predicted and experimentally dis-
covered in Kapitza Institute in Moscow [47–49]) and the more standard Rayleigh
waves typical for the free surfaces of the crystals [5].
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2.1 Quantum Crystals. Phase-Diagram. The Search
for Supersolidity

In the introduction to the Landau Theory of Superfluidity in Chap. 1 we presented
the phase-diagram of 4He (see Fig. 1.1) and briefly discuss it. The phase-diagram
contains superfluid and normal liquid phases as well as gas and solid phases.
Moreover there is no triple point where the liquid, solid and gas phases would
coexist. For pressures P [ 26 bar 4He becomes solid. On the melting curve at low
temperatures solid 4He has hexagonal (hcp) structure. Between 1.46 and 1.76 K it
has a cubic (bcc) structure. Note that there is a shallow minimum on the pressure
versus temperature (P–T) curve for solid-superfluid phase-boundary at
T * (0.5–0.6) K (see [40] and Fig. 1.1). Close to the melting curve the density of

a solid phase is very close to the density of a superfluid phase and thus Dq
q � 0:1;

where Dq ¼ qS � qLð Þ: It means that the interparticle distance (as well as other
parameters) of solid 4He are very close to superfluid 4He. Moreover close to the
minimum on the P–T curve the latent heat Q corresponding to liquid–solid phase-
transition is small and thus first order phase-transition from superfluid to solid
phase could be considered to be close with some degree of precaution to a second
order phase transition. The only essential difference between liquid and solid
phases is a translational invariance in solid phase connected with the elementary
translations of the crystal lattice and the change of the short range order when we
go from liquid to solid phase. This change is connected with an appearance of
elementary cell in solid 4He and thus with a shape energy a shape energy defined
by a shear modulus (see Chap. 1). This ‘‘proximity’’ effect [50] between solid and
superfluid phases was a main motivation to search for some type of quantumness
in crystalline 4He at low temperatures.

2.1.1 Lindemann and de Boer Parameters

Additional support for these ideas came from the estimates of Lindemann [1, 2]
and de Boer [3] parameters for solid 4He.

2.1.1.1 Lindemann Parameters in Solid 4He

As we already mentioned in Chap. 1, Lindemann parameter [1, 2] is essential for
melting of the crystal. It is the ratio of the root mean square of the displacement of
atoms to the interatomic distance d:

cL�
ffiffiffiffiffiffiffiffiffi

~u2h i
p

d
: ð2:1:1Þ
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The classical solid will melt if the Lindemann’s parameter exceeds the critical
value of the order of 0.1 in 3D. However, the X-ray measurement of Debye-Waller
factor of solid 4He at T * 0.7 K and near melting curve shows this ratio to be
0.262 [51]. Thus, cL in 4He strongly exceeds cL in classical crystal and hence the
solid 4He can be named a Quantum crystal.

According to Andreev, Lifshitz considerations [4] a solid 4He also possesses a
large de Boer parameter.

2.1.1.2 de Boer Parameter for Solid 4He

de Boer parameter K measures the ratio of kinetic delocalization energy and
potential energy of the system:

K ¼ Ekin

Epot

� �1=2

; ð2:1:2Þ

where total energy of the system Etot ¼ Ekin þ Epot: In solid 4He the potential
energy is connected with the standard 6–12 potential with hard-core repulsion and
van der Waals attractive tail:

U rð Þ ¼ 4e
d

r

� �12

� d

r

� �6
" #

; ð2:1:3Þ

where e is a characteristic energy of the two atom interaction and d is the inter-
particle distance. Thus Epot in (2.1.2) is of the order of e close to the minimum (see
Fig. 2.1.) where r * d. Correspondingly kinetic energy or zero-vibrations is given
by:

Ekin�
�h2

m r2h i �
�h2

md2
; ð2:1:4Þ

where m is a mass of 4He atom. Hence:

K� �h

d

1
ffiffiffiffiffiffi

me
p : ð2:1:5Þ

On Fig. 2.1 we present interatomic potential and zero-point energy in solid 4He
as the functions of the distance r between the atoms.

In ordinary crystals de Boer parameter K determined by Eq. (2.1.5) is small. It
becomes larger for inert gases. For instance K = 0.6 for Ne. However, for 4He
K = 2.7 is large (it is even larger for 3He crystals K = 3.1 since the atomic mass m3

is smaller than m4). For K[ 1 it means that the kinetic energy prevails over
potential energy and we have the conditions for the delocalization of the atoms (for
the large zero-vibration energy). In principal the number of atoms in such crystal
should not necessary coincide with the number of the lattice cites. Moreover the
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motion of the atoms (more precisely of the elementary excitations such as vacan-
cions and defectons see [4]) should resemble the motion in ideal liquid i.e. should
be without binding to the equilibrium position of the atom in the lattice. Thus it is
appealing to describe such a system in analogy with liquid 4He by a macroscopic W-
function of Jastrow type (see the papers by Chester and Reatto [17, 18]). The mutual
permutations of the atoms in such a crystal could lead to the delocalization, or in the
other words to the motion of vacancies in crystal (see Yang [19–21]).

2.1.1.3 Formal Theoretical Remark on off Diagonal Long Range Order
(ODLRO) and Superfluidity

Note that Penrose and Onsager [19–21] emphasized that in a perfect solid each
atom is localized at a specific lattice site and only lattice translational symmetry is
present. Thus there is no Bose–Einstein condensation (BEC) [52] at T = 0 (when
the thermal vacancies are absent and thus there is no band motion in the crystal).
Moreover, according to Yang, the Off Diagonal Long Range Order (ODLRO), or
superfluidity, which is directly related to Bose–Einstein condensation [53], may
occur in a solid phase only if the particles are delocalized. In other words to have
superfluidity in Quantum crystals we should have according to Matsuda and
Tsuneto [16] the coexistence of DLRO (diagonal long range order) connected with
translational symmetry and ODLRO, connected with superfluidity in the crystals.

These considerations are often used nowadays especially when the theorists
investigate with respect to superfluidity (or supersolidity) the Bosonic models on
the lattice [27–31]. More specifically they often consider Bose-Hubbard model or
extended Bose-Hubbard model with short-range repulsion between bosons on one
site and additional repulsion between them on the neighboring sites of the lattice
(see Chap. 5 for more details). The main goal here is to find the region of
parameters on the phase-diagram where a new phase with a superstructure (with an
incommensurate density wave) can be stabilized on top of a crystalline lattice. This
additional superstructure or superlattice (or density wave) will just correspond to
ODLRO, while the initial lattice—to a standard translational long range order
(DLRO). Thus such a new phase can be considered with some degree of precaution
as a supersolid phase.

Fig. 2.1 Interatomic
potential U rð Þ and zero-point

energy Ekin ¼ �h2

2md2 in solid
4He as the functions of the
distance r between the atoms
[8–13]
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Note that these arguments are supported by the old idea to increase the pressure
and thus to reduce the roton gap D to zero near the melting curve (see Fig. 1.2 for
the spectrum of elementary excitations in the superfluid 4He) and thus to create a
superstructure or a superlattice with a period proportional to 1/p0 (where e(p0) = D
for roton’s minimum).

Note also that thermodynamics of an incommensurate quantum crystal was
considered recently by Anderson, Brinkman and Huse [22, 23]. The authors of [22,
23] derived an effective Ginzburg–Landau (GL) functional for the incommensu-
rate case when the number of vacancies (Nvac) does not coincide with the number
of the interstitials (Ninterst). The GL-functional is constructed in terms of the
parameter of incommensurability d which measures the difference between the

ratio of Nvac
Nsites

at finite temperature and at temperature zero:d ¼ Nvac Tð Þ
Nsites

� Nvac T¼0ð Þ
Nsites

:

The vacancies and interstitials according to Anderson et al. are in strongly-
correlated state and provide a small contribution to the entropy of the incom-
mensurate crystal DScryst ¼ bT7 [22]. The main contribution to the entropy is still
due to phonons DScryst ¼ bT3: In the next article [23] Anderson also proposed a
model wave-function for a superfluid solid which accounts for the vacancy
component [51] and Gutzwiller constraint [81]. The constraint prohibits the double
occupancy of one site in quantum Bose solid.

2.1.1.4 Quantum Permutations

In the absence of vacancies the permutations between particles are complicated in
the perfect quantum crystal by large short-range Hubbard (or contact) repulsion
between them (see Fig. 2.2).

2.1.2 Flow of Zero Vacancies. Andreev-Lifshitz Theory

However, usually there are vacancies, defects and impurities in the quantum
crystals which make the permutations easier.

Fig. 2.2 Quantum
permutations of two (a), three
(b), and four (c) particles in a
perfect quantum crystal
without defects (from review-
article of Andreev [43])
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2.1.2.1 Vacancions, Defectons and Impuritons

In other words in quantum crystals besides a standard phonon branch of the
elementary excitations should be an additional branch with a band character of
motion. The most difficult logical point here is that the number of atoms can be
different from the number of lattice sites in the quantum crystal. To realize this
idea we need vacancies, dislocations, interstitials or other defects in the crystalline
lattice. Another possibility to realize this scenario is to consider the system of
impurities (3He for example) in the crystalline matrix of 4He. In this case the band
character of impurity atoms (impuritons) leads to the phenomena of quantum
diffusion (Andreev and Lifshitz [4], Y. Kagan and Maksimov [54–57]). Note that
in ordinary crystals the spectrum of vacancions has a large energy gap and so their
number and their contribution to specific heat are exponentially small. Andreev
and Lifshitz assumed that in quantum crystal of 4He the number of vacancions is of
the order of 1 per site that is there are zero vacancies in the system. In definite
conditions then (in particular in the absence of Mott–Hubbard localization—see
Chap. 4, 5, 9 for more details) the vacancies could Bose-condense [52] and all the
crystal will undergo the transition to the superfluid state. On the macroscopical
language this state will be described by the many component superfluid hydro-
dynamics similar to Landau hydrodynamics [58] for superfluid liquid helium
which was detaily considered in Chap. 1. To be more precise the hydrodynamics
of a supersolid is even a bit closer to the hydrodynamics of rotating superfluid in a
presence of the vortex lattice since it also contains three independent velocities.

One of them is~vS—the velocity for the superfluid motion of zero vacancies (or

other zero quantum defects). Another one _~u stands for the lattice velocity. The third
one~vn is governed by the normal motion of elementary excitations such as thermal

vacancies and phonons. Note that the two relative velocities ~w1 ¼~vs � _~u and ~w2 ¼
~vn � _~u are nonzero in our case. Correspondingly besides the standard transverse and
longitudinal sound in the phonon subsystem, we have an additional sound mode in
the subsystem of vacancies (defectons) in a supersolid. The last mode a bit
resembles the second sound in a superfluid liquid 4He but does not exactly coincide
with a second sound since a fraction of vacancies is superfluid. Nevertheless in
analogy with a second sound the phase velocity of this mode depends upon the ratio
qn=qS between the densities of thermal and superfluid vacancies. Note that since at
T = 0 there is a finite difference Dq=q� 0:1 between the densities of solid and
liquid phase we can expect the same amount of spatial disorder (or 10 % of surface
vacancies) on the phase-interface between quantum crystal of 4He and quantum
superfluid He-II (see the next chapter). If we can organize the diffusive flow [80] of
vacancies from the surface to the bulk of the crystal, we can probably create the
sufficient amount of zero vacancies in the bulk solid 4He and thus promote non-
equilibrium superfluidity. If, vice versa, we believe that there is a lot of equilibrium
zero vacancies in the bulk, than we can create the diffusive flow of vacancies in the
opposite direction—from the bulk to the surface and in this way to measure the
spatial distribution of vacancies (or defectons) and the gradients of their density.
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2.1.2.2 Zero Vacancies. Theoretical Background

Andreev and Lifshitz assumed the following bare spectrum of vacancies in solid
4He:

e pð Þ ¼ e0 þ
p2

2M
; ð2:1:6Þ

where e0 \ 0 is negative at low temperatures and M is an effective mass of
vacancion (which in principle can be different from the mass of 4He atom m4). In
solid 4He vacancies are bosons, as well as 4He atoms themselves. In general we
have weakly non-ideal low-density Bogoliubov Bose-gas with repulsive interac-
tion between vacancies [53]. In this case the chemical potential l is negative for
low density of vacancies nV d3 � 1: Indeed in the Hartee-Fock approximation the
chemical potential reads [4, 43]:

l ¼ �je0j þ
4p�h2

M
f0nV\0; ð2:1:7Þ

where f0 [ 0 is repulsive scattering amplitude and 4p�h2

M f0 is pseudo potential for the
vacancies interaction (see Chap. 6). Of course, in this situation the vacancies will

be Bose-condensed at the temperature given by Einstein formula TBEC
C � 3:31 n2=3

V
M

[52]. Moreover after diagonalization of the Bogoliubov Hamiltonian for vacancies
(after Bogoliubov u-v transformation [53]) their transformed spectrum will read:

E pð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2p2 þ p2

2M

� �2
s

: ð2:1:8Þ

It will become linear at small momenta E(p) = cp, where

c2 ¼ 4p�h2

M2
f0nV ð2:1:9Þ

is a sound velocity squared (see Chap. 6 for more details). Thus the Bogoliubov
spectrum of vacancions (2.1.8) will satisfy Landau criterion for superfluidity (see
Chap. 1).

2.1.2.3 Zero Vacancies. Experimental Search

The attempts to find experimentally zero vacancies were based on three main ideas:

1. To perform an analog of Josephson experiment in a ring where a thin peace of
solid 4He serves as a cork to superfluid 4He (see Fig. 2.3) and to find the
manifestation of the macroscopic wave-function W which penetrates in the
solid and connects left and right branches of the superfluid 4He via the small
cork [59] of atomic size.
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2. To measure the low-temperature specific heat in solid 4He [6, 7, 13, 60, 61] and
to subtract a phonon contribution proportional to T3 thus finding (if it exists) the
contribution of zero-vacancies CV � exp e0j j=Tf g: Another possibility is to
measure the temperature dependence of the melting pressure P(T) at low
temperatures and to subtract T4 contribution due to phonons (Parshin et al.
[38]).

3. To perform an analog of Andronikashvili experiment [14] with rotation of solid
4He and to extract a non-zero superfluid fraction 1� qn=qð Þ ¼ qS=q from the
non-classical moment of inertia (Leggett’s idea [15], experiments of Chan et al.
[8–12]) if supersolidity exists.

Unfortunately until now numerous measurements do not confirm the existence
of zero vacancies. Namely in NMR, X-ray and acoustic measurements experi-
mentalists observe only the contribution of thermo-activated vacancies. In the
same time in the measurements of specific heat and heat conductance as well as of
the temperature dependence of the melting pressure all the results can be explained
only by phonon contribution without vacancies at all. If there is some small
vacancy contribution in these experiments, it is connected with bosonic (and not
Boltzman) vacancies with a broad band and a complicated spectrum. Finally in the
experiments on thermal expansion in solid 4He at high temperatures the
researchers observe Anderson’s type of the corrections to the specific heat
dCV � bT7: These corrections can be possibly explained by some degree of
incommensurability according to Anderson et al. [22, 23], but not by the ther-
moactivative vacancies.

Thus the problem of the experimental search of zero vacancies is opened for
future investigations in different quantum solid systems with large Lindemann and
de Boer parameters. Maybe the better conditions for supersolidity can be experi-
mentally achieved in excitonic systems (Balatsky et al. [24–26]) and in ultracold
Bose-gases on optical lattices where it is easier experimentally to tune the
parameters of the system.

Fig. 2.3 The principal
scheme of the gedanken
Josephson-type of experiment
in a ring where a piece of
solid 4He serves as a cork to
superfluid 4He
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2.1.2.4 Leggett’s Idea

The ideal method to detect superflow according to Leggett [15] would be to
subject solid 4He to undergo dc or ac rotation and to look (in similarity with
Andronikashvili experiments in superfluid 4He) for the evidence of Non-Classical
Rotation Inertia (NCRI—see Chap. 1).

Quantum exchange of particles arranged in an annulus under rotation leads to a
measured moment of inertia that is smaller than the classical value (see Fig. 2.4
and [8–13, 61]). Namely the moment of inertia I Tð Þ ¼ Iclassic 1� fs Tð Þð Þ; where
fS Tð Þ ¼ qS=q is the supersolid fraction.

2.1.3 Chan Experiments with Rotating Cryostat. The Search
for Supersolidity in Solid 4He

Recently an attempt to realize the Leggett’s idea was made by the group of Chan
[8–13, 61] in Penn State University, USA (see Fig. 1.7 in Chap. 1 for the principal
scheme of the experimental setup used by Chan’s group). In the first paper Kim and
Chan filled the pores of Vycor glass (of aerogel, see Chap. 3) with solid 4He and
studied the rotation of this solid system. They observed that effective moment of
inertia was smaller than the total one at low temperatures T \ 0.125 K. The authors
interpreted their result as a transition of solid 4He in pores in a superfluid state. This
result produced a huge interest in the low temperature community and casts doubts
connected with the side effect of porous medium. Trying to reduce the skepticism
Kim and Chan published two more articles where they have studied the moment of
inertia of solid 4He in the absence of aerogel and at small concentration of 3He
impurities (clean situation). They worked close to the melting line on the phase
diagram of 4He and carefully studied thermodynamics close to its minimum at
T * (0.5 7 0.6) K where nontrivial quantum effects cannot be excluded in prin-
ciple. They claimed that qS� 0:01 q in these experiments (1 % of superfluid
fraction). However, scientific community again was not convinced even by these
results. Rittner and Reppy [36] challenging Chan’s results showed experimentally
that, when all the defects like grain boundaries, dislocations etc. are carefully

Fig. 2.4 The principal
scheme of the gedanken
Leggett’s type of experiment
to measure the non-classical
rotation inertia in rotating
solid 4He [15]
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annealed and when we have a very pure crystal, the effect of non-classical moment
of inertia disappears. So now the most part of the low temperature community (see
papers by Andreev [33–35], Balatsky et al. [24–26], Prokof’ev et al. [27–31],
Parshin et al. [38], Balibar et al. [32]) does not believe in the real supersolidity but
more in some glassy state with a superflow of defects (grain boundaries etc.)
relative to the lattice [59]. Note that in glasses (like SiO2 for example) the number
of equivalent sites under deformation is larger than the number of atoms. Therefore
two types of motion are possible in a glassy state: oscillations near the equilibrium
positions (analogous to phonon modes in regular solids) and sudden ‘‘jumps’’ of
diffusive types from initial state to the neighboring equivalent positions.

Equivalently upon deformation of a quantum crystal there arises a self-con-
sistent motion of lattice sites and a flow of defectons, accompanied by a transport
of mass. According to the recent discussion of Andreev-Lifshitz theory in Kavli
Institute [62] with some degree of precaution we can speak about possible
‘‘superplasticity’’ of a quantum crystal.

The important recent observation should be mentioned here in this context,
namely the increase of a shear modulus in 4He crystal at low temperatures
T * 0.1 K instead of a decrease typical for superfluid or ‘‘superplastic’’ quantum
crystal. The increase of the shear modulus K can produce a drop in the resonant

period T ¼ 2p
ffiffiffiffiffiffiffiffi

I=K
p

without a decrease of the moment of inertia I [83, 84], and
thus without a real supersolidity. In their recent experiments [83] Kim and Chan
confirmed the increase of the shear modulus at low temperatures due to solidifi-
cation of one 4He layer and the absence of the superfliud fraction. These results
according to Kim and Chan [83] prove the absence of supersolidity in solid helium
in porous vycor glass. Another interesting aspect to be mentioned is an idea of Y.
Kagan [63] about the possibility of the choc-ice model for the explanation of the
rotating experiments of Chan et al. Namely due to a small difference of densities
between solid and liquid phases it could be probably easier to have a surface
melting of the crystal instead of melting in the bulk. Then it is possible to create a
surface layer of superfluid 4He between the crystal and the walls of rotating
experimental container similar to the surface melting of ice-cream in a glass. This
melted surface layer becomes superfluid and can in principle explain the difference
between a measured moment of inertia connected with rotation and a total moment
of inertia of a solid in the absence of aerogel.

2.2 The Surface Physics of Quantum Crystals. Atomically
Smooth and Atomically Rough Surfaces

We proceed now to the second part of the chapter where we will concentrate mainly
on the surface physics for the different phase-interfaces of the solid 4He in contact
with superfluid helium. It is also a subject of a hot debate today especially con-
cerning the problem of quantum and classical roughening and the correlation
between microscopic models of roughening and macroscopic hydrodynamics on
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atomically (or even quantum) rough surfaces where the spectrum of weakly damped
melting-crystallization waves x� k3=2 was measured. These measurements were
performed not only for relatively high (roton) temperatures T * (0.7 7 1.2) K but
also for much lower (phonon) temperatures T * (0.3 7 0.6) K. In this section we
will try to present a now-a-day understanding of the problem and emphasize the
unresolved questions which still, according to our point of view, do nor allow to
construct the coherent microscopic physical picture of a mobile phase-interface
between quantum solid and quantum liquid.

2.2.1 The Concept of the Mobile Rough Interface Between
Solid 4He and Superfluid He-II

As we understood in the Introduction to Sect. 2.1, the 4He atoms in quantum
crystals have large zero-vibration energy of quantum oscillations and can be
considered as delocalized or almost delocalized quasiparticles. The atoms of
superfluid helium are also delocalized and participate (even in the absence of a
drift flow) in a coherent oscillating motion of the Bose-condensate. Thus with
some degree of precaution it is appealing to talk about the joint macroscopic W-
function which connects solid and liquid subsystems via a coherent phase-interface
(see [50]). In fact the situation is more complicated especially at zero temperature
(at T = 0) (see [40]).

In the series of the pioneering papers Castaing and Nozieres [64], Andreev and
Parshin [47], Marchenko and Parshin [65] developed the ideas of delocalized
atomically (or even quantum) rough state of the interface (see Fig. 2.5) and the

Fig. 2.5 The qualitative picture of the surface hydrodynamic waves on the mobile rough
interface between solid and superfluid 4He. At low frequencies these waves are melting-
crystallization waves (see the next section). For these waves we can introduce z ¼ 1þ us for a
total displacement of the surface point from equilibrium position (see explanation below). ~g is
gravitational acceleration, qsol; qL are the densities of solid and liquid phase
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roughening transition (Nozieres [39], Andreev [43]) between atomically rough (or
quantum rough) and atomically smooth states of the interface.

2.2.2 Growth and Melting Shape of a Crystal

On Fig. 2.6 we present growth and melting shapes of 4He crystal following a nice
review-article of Balibar et al. [40]. We can see the rectangular parts on Fig. 2.6
corresponding to atomically smooth surfaces (or facets) and rounded corners cor-
responding to atomically rough surfaces. An important observation is that facets
grow and melt more slowly then atomically rough rounded corners. Thus atomi-
cally rough interfaces are more mobile. Remind that a crystal grows from a liquid
phase when we increase a pressure a little bit (create an overpressure) working near
the melting curve. Note also that the classical crystals at low temperatures always
have characteristic faceting and melting-crystallization processes on them are very
slow (see review-article of Chernov [66] for example). The quantum crystals in
contrast to the classical ones have extended atomically rough regions (see Fig. 2.6)
with rapid melting-crystallization processes on the rough surfaces.

2.2.3 Melting-Crystallization Waves and Phase Equilibrium
on the Mobile Rough Surface

The atomically rough surface state together with the small difference between the
densities of bulk solid and superfluid phases Dq=q� 0:1 and between zero-
vibration energies of liquid and solid phases promote rapid and practically dissi-
pationless character of melting-crystallization processes on the phase boundary. In
fact it is possible to incorporate the atom from the liquid rather rapidly and over a
small potential barrier in the surface atomic row in the crystal. The rapidness and
practically dissipationless character of melting-crystallization waves on the rough
surface [47–49, 76, 77, 82] in macroscopic language can be expressed in the

Fig. 2.6 Growth and melting
shapes of a crystal from [40].
Facets grow and melt more
slowly than atomically rough
rounded corners
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condition of the thermodynamic equilibrium on the boundary l1 ¼ l2 for chemical
potentials of solid and liquid phases (see Fig. 2.5). Together with the standard
boundary condition for the mechanical equilibrium P1 = P2 for the pressures (see
[5]) and thermodynamic identities at T = 0 dP1 ¼ q1dl1 and dP2 ¼ q2dl2 for
small pressure deviations, we can use the equation dl1 ¼ dl2 for the deviations of
the chemical potentials from equilibrium to get:

q1 � q2ð Þdl2 ¼ 0: ð2:2:1Þ

Hence dl2 ¼ 0 and dP2 ¼ 0 for the liquid phase, where dP2 is the difference
between local pressure in the liquid and the equilibrium one P0 = 26 bar. Thus the
atomically rough interface between solid and superfluid 4He becomes equivalent to
the free interface between liquid and vacuum. Note that in more rigorous con-
siderations there are surface (capillary) terms [58] of the Laplace type in the right-
hand side of (2.2.1) (see the next section). As a result the melting-crystallization
waves on the rough surface resemble according to Andreev and Parshin [47] the
standard capillary waves on the free surface of the liquid [58]. These waves are
sometimes called riplons and for liquid-vacuum interface have the spectrum
x2� a=qð Þk3

jj: where a is the surface tension coefficient and kjj is a projection of

the wave-vector parallel to the free surface (see also Chaps. 3 and 15). Corre-
spondingly for the mobile rough interface between solid and superfluid 4He

x2� aq
Dqð Þ2 k3

jj where q= Dqð Þ2 is a specific density factor for this interface. The

spectrum and damping of melting-crystallization waves will be derived more
rigorously from the linearization of the equations of the surface hydrodynamics in
the Chap. 3. Note that for melting-crystallization waves the growth velocity Vb ¼
_1 of the boundary does not coincide with the lattice velocity _uz (see Fig. 2.5). Note
also that more rigorously in the spectrum of melting-crystallization waves instead
of a surface tension coefficient a enters the surface rigidity ~a (see Chap. 3).

2.2.4 Rayleigh Waves on Rough and Smooth Surfaces

Another branch of the surface waves which usually corresponds to higher fre-
quencies on mobile solid—superfluid interface is a more standard one. In this
branch we neglect melting-crystallization processes and get for the rough surface:

dP1 ¼ drzz ¼ 0; drza ¼ 0; q2dl2 ¼ dP2 ¼ 0 ð2:2:2Þ

for the oscillating parts of the pressures P1 and P2 and the stress-tensor components
rzz and rza; a ¼ x; yf g (note that z-axis corresponds to the normal to the surface).

In other words while for melting-crystallization waves the total growth velocity
of the boundary Vb ¼ _1þ _uz � _1 (and correspondingly the lattice velocity _uz � 0),
for Rayleigh waves we have vice a versa Vb � _uz and _1 ¼ 0 for the recrystalli-
zation rate. Hence the rough interface between solid and liquid becomes equivalent
at high frequencies to the interface between solid and vacuum. On this interface
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the standard Rayleigh waves can propagate (see Landau, Lifshitz Elasticity Theory
[5]) in similarity with the surface of the crystal with vacuum. The spectrum of the
Rayleigh waves is linear:

x ¼ gctkjj; ð2:2:3Þ

where ct is transverse sound velocity in solid (see also Chap. 1) and in isotropic
approximation the coefficient g ¼ g ct=clð Þ depends upon the ratio between
transverse (ct) and longitudinal (cl) sound velocities in solid phase. In solid 4He
g � 0:8 � 0:9: Note that as we discussed there are different interfaces of solid
4He. Their character (atomically smooth or atomically rough) depends on their
orientation to the main crystallographic axis of the crystal (we consider mostly
hexagonal hcp structure of the 4He crystal). Some of the interfaces are atomically
rough at low temperatures. They are rapidly growing mobile surfaces. On these
surfaces we have two branches of the surface waves: melting-crystallization waves
at low frequencies and Rayleigh waves at higher frequencies (see the more precise
derivations in the next chapter).

The other interfaces grow much slower. They are atomically smooth and obey
more standard laws of growth. They have characteristic faceting (see Fig. 2.7) and
only Rayleigh waves (more precisely Rayleigh-Stonely waves) propagate on their
surface in the linear regime. The spectrum of melting-crystallization waves on
them is strongly modified and becomes non-linear (amplitude-dependent) see
Parshin and Gusev [67].

2.2.5 Roughening Transition

There are two main competing approaches to the roughening transition in solid
4He which belong to Nozieres [39] and Andreev and Parshin [47] respectively (see
also quantum models of Iordanskii and Korshunov [44]). Note that the roughening
transition takes place, generally speaking, in the 2D gas of steps and kinks on the
surface. Thus, steps and kinks serve as elementary excitations in surface science
which define the kinetics and thermodynamics of surface growth as well as the
roughening transition from atomically smooth to atomically rough state of the
surface. Let us remind that a step is an additional row of atoms which joins already
exciting terrace for a flat part of the surface (see Fig. 2.8). It is important to
emphasize that besides straight ‘‘bare’’ steps there are also steps with kinks, where
the kink is an additional atom (adatom) on a straight ‘‘bare’’ step (see Fig. 2.8).

According to Andreev and Parshin there are surfaces which can be in atomi-
cally (or quantum) rough state till very low temperatures due to delocalization of
quantum kinks on the steps. In this case Andreev and Parshin assume that the
energy of a step with kinks reads (see [47]):

b ¼ b0 þ d �D
2
þ e

� �

; ð2:2:4Þ
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where b0 is an energy of a straight ‘‘bare’’ step without kinks, d is intersite
distance, D is the bandwidth for delocalized kinks and e is the kinks quasiparticle
energy counted from the bottom of the band (from � D

2). For highly delocalized
ensemble of kinks the second term in the r.h.s of (2.2.4) can coincide by the order

of magnitude with the first one D
2 � e
� �

� b0
d :

Fig. 2.7 Faceting of 4He
crystals from Balibar,
Guthmann and Rolley [71].
As temperature goes down,
more and more facets appear
at the surface of 4He crystals.
From top to bottom, the
temperature is successively
1.4, 1, 0.4, and 0.1 K. When
we decrease the temperature
more surfaces become
atomically smooth

Fig. 2.8 A step with kinks
on the growing surface (from
[43])
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It means that the kinks quasiparticle energy coincides by the order of magnitude
with a step energy per unit length. Correspondingly b in (2.2.4) can tend to zero or
even becomes negative for the bottom of the band for zero vacancies. So we can
have a quantum rough state with no steps (or highly delocalized ‘‘zero-point’’
steps) and with only rounded parts of the surface already at low temperatures. At
some finite temperature TR Andreev and Parshin predicted a mean-field (second
order) phase transition from quantum rough state to a classical rough state.
Nozieres [39] has quite different point of view. According to Nozieres [39] (see
also [40] for an extended review) the roughening transition between low tem-
perature atomically smooth phase and high-temperature atomically rough phase
takes place at a finite temperature TR and is governed by Berezinskii—Kosterlitz—
Thouless (BKT)—type [45, 46] of the transition in 2D gas of steps. In the approach
of Nozieres for high temperatures T [ TR the steps are delocalized and highly
fluctuating and thus we can put a step energy b ¼ 0 for T [ TR: In the same time
for T\TR the macroscopically large steps are formed. As a result the typical size
of the terrace on Fig. 2.8 (effectively the coherence length) should diverge and all
the surface becomes flat. Thus, we are in atomically smooth state at T\TR: The
atomically smooth surface is faceted and very slowly growing. Its growth velocity
Vb ! 0: Note that the step energy b in Nozieres theory plays a role of a superfluid
density qs in BKT-theory for 2D 4He-films. Thus, it should be a finite jump in b at
TR: Correspondingly we can estimate the roughening transition temperature TR in
the same way as TBKT for a 2D superfluid film. Namely:

TR� db TRð Þ; ð2:2:5Þ

where bd is a step energy calculated for one atom at T ¼ TR:
In surface science it is convenient to introduce also the angular dependent

surface energy a uð Þ: For the atomically smooth surface with steps of the atomic
height the surface energy reads for small angles u� 1 (see Fig. 2.9):

a uð Þ ¼ a0 þ
b
d
juj þ cjuj3; ð2:2:6Þ

where b
d is a step energy of unit height, c is an interaction energy between the steps.

Note that in solid 4He a0� 0:127 erg
cm2 ;

b
d � 1:3 � 10�2 erg

cm2 ; d * 3 Å. The
coefficient c is a subject of a debate and is different in the estimates of different
groups.

Fig. 2.9 The angular dependence of the surface energy a uð Þ for u� 1 for the surface with steps
of the atomic height, d is interatomic distance
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Note also that according to Landau [42] the derivative oa
o/ has a finite jump 2b

d at

/ ¼ 0 for atomically smooth surfaces.
Another important and widely used quantity is the so-called surface stiffness (or

surface rigidity):

~a ¼ aþ o2a

o/2 : ð2:2:7Þ

For small angles /� 1 on the smooth surface:

~a ¼ a0 þ
b
d
þ 6c

� �

j/j þ cj/j3: ð2:2:8Þ

From (2.2.8) we see that ~a is different from a with respect to the surface

anisotropy o2a
o/2 : For small b; the surface rigidity ~a is governed by the coefficient c

(by the interaction energy between the steps).
If vice versa b is finite and c is small then ~a is governed by b on the smooth

surfaces.
For the rough surfaces with only rounded parts it is difficult to define ~a via the

angles u and usually another definition is used:

~alv ¼ adlv þ
o2a

o1lo1v
; ð2:2:9Þ

where 1l ¼ rl1 is a gradient of the displacement of the surface 1 from the initial
point. Note that precisely this quantity enters into the spectrum of melting-crys-
tallization waves on rough surfaces (see the next chapter).

Correspondingly we can also express TR via the surface rigidity ~a TRð Þ in
Nozieres theory. Namely according to the universal roughening relation (see
Fisher and Weeks [68] and Jayprakash et al. [69]):

kBTR ¼
2~a TRð Þ

p
d2; ð2:2:10Þ

where ~a d2 is a surface rigidity calculated on one atom for T ¼ TR: Note that the
estimates (2.2.5) and (2.2.10) for TR can be obtained also from the minimization of
the Free-energy of the step:

DF ¼ DE � TRDS ¼ 0; ð2:2:11Þ

where DE� bd is an increase of the energy due to the creation of a step at T ¼ TR

and DS is a configurational entropy connected with different ‘‘charges’’ of the steps
which are situated above or below the averaged surface position. Note also that the
exact value of TR and the behavior of b for T\TR in Nozieres approach can be
extracted from the renorm-group (RG) equations. The renorm-group equations are
explicitly derived in [39] and we will not present them here. We just mention that
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close to TR on the smooth side of the transition T � TRð Þ the step-energy b diverges
according to the law:

bðTÞ� exp � p=2 � const
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� T=TR

p

( )

: ð2:2:12Þ

Correspondingly the correlation length 1 Tð Þ; which enters as a scale in RG-
equations, is also exponentially divergent near TR :

1 Tð Þ� kBTR
pb Tð Þ ! 1 signaling the formation of the macroscopically large step or

a flat terrace of the infinite size 1 Tð Þ: Finally for T � TR the surface rigidity

~a Tð Þ� ~a TRð Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� T=TR

q
� �

does not show a critical behavior. Note that the

theory of Nozieres considers the periodic pinning surface potential V zð Þ ¼
V cos 2pz=dð Þ where z(x) is the local height of the surface at the point x. Effectively

his RG-approach is based on the Hamiltonian H ¼
RR

d2~r 1
2 ~a rzð Þ2þV cos 2pz

d

h i

and

is equivalent to the solution of the sine–Gordon equation ~a d2z
dx2 þ 2p

d V sin 2pz
d

� �

¼ 0
in the weak coupling limit V=~a� 1: Close to TR it predicts the formation of the

macroscopic step with atomic height given by the expression: z xð Þ ¼
2d
p arctg exp x

1 Tð Þ

� �

; where 1 Tð Þ is the coherence length. Note that the limiting

values of the height are given by z x ¼ �1ð Þ ¼ 0 and z x ¼ þ1ð Þ ¼ d for this
solution. Thus, Nozieres theory effectively starts from atomically smooth side and
describes the temperature evolution of the system towards the transition to
atomically rough state.

It is interesting to compare the analytical renorm-group approach of Nozieres
with the results of the numerical simulations by Leamy et al. (see [70] and
Fig. 2.10). The roughening transition in these simulations TR� bd � 0:632 corre-

sponds, crudely speaking, to the estimate (2.2.11) TR� bd
DS with configurational

entropy DS approximately equals to ln3 (see [40]. From the other hand numerical
simulations (see Fig. 2.10) are in favor of an important role of kinks or adatoms for
the understanding of the roughening transition. Note that delocalized kinks or
adatoms serve as a cornerstone of Andreev, Parshin scenario of quantum rough-
ening, while in Nozieres theory (which is a more classical one) only linear surface
defects—the steps are introduced and deeply investigated. We have a feeling that a
complete quantum picture of roughening transition is far from understanding and
requires the consideration of 2D gas of steps and kinks on equal grounds. In this
context we should mention the T = 0 predictions of the exactly solvable quantum
models considered by Iordansky and Korshunov [44].

From the experimental side the different groups (Balibar et al. [71], Andreeva
et al. [72, 73], Babkin et al. [74], Wolf et al. [75], Rolley et al. [76–78]) measured
the angular dependence of the surface rigidity ~a uð Þ and linear contribution to ~a uð Þ
for small u (corresponding to the step formation). The experiments were per-
formed at different temperatures and lead to the observation of the roughening

74 2 Quantum Crystals. The Search for Supersolidity



transitions for three particular atomically smooth surfaces at the temperatures
TR1 = 1.28 K, TR2 = 0.9 K and TR3 = 0.35 K correspondingly. They also show
the increase of the faceted area fraction (in comparison with the total area of the
crystal surface) when we decrease the temperature. In the same time many surfaces
remain atomically rough till low temperatures. In particular for some crystallo-
graphic directions (which are described by large Miller indices and can be
obtained by tilting on a small angle of the main crystallographic surface) there are
families of the so-called vicinal surfaces staying in atomically rough state till very
low temperatures. These temperatures are less then typical phonon temperatures
Tph * (0.4 7 0.5) K in liquid He-II.

Thus the very interesting question whether we can have atomically (or quan-
tum) rough surface precisely at T = 0 is still a subject of a debate today.

In the next chapter we will detaily consider the hydrodynamic aspect of this
discussion, namely a spectrum of weakly damped melting-crystallization waves.
The existence of the weakly damped low frequency branch of the spectrum and its
hydrodynamic derivation based on the condition of thermodynamic equilibrium
serve as a good proof of a mobile character of many phase-interfaces till relatively
low temperatures. Experiments of Keshishev et al. and Balibar et al. on melting-
crystallization waves were done until the temperature as low as 0.25 K, which is a

Fig. 2.10 Numerical
simulations by Leamy et al.
[70] illustrating the basic
physics of a roughening
transition. The crystal has a
simple cubic lattice and each
atom is represented by a
cube. At low temperature,
there are very few defects
such as adatoms, surface
vacancies, steps and terraces.
As temperature increases,
steps proliferate and the
crystal surface looses
reference to the lattice. The
temperature is expressed as a
function of the bond energy
J. The roughening transition
occurs at TR� 0:632 J d2

(from Leamy et al. [70],
where J� b=d is the step
energy per unit length)
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direct proof that even at these temperatures many surfaces are still atomically
rough. Moreover the melting-crystallization waves were observed on the surface of
solid 3He even at much lower temperatures in Helsinki [40, 79]. In the last case,
however, the spectrum was not detaily measured. So we cannot say a priori
whether these waves are linear melting-crystallization waves predicted by And-
reev, Parshin for rough surfaces or nonlinear waves (which exist even on smooth
surface) predicted recently by Gusev and Parshin [67].

Concluding this chapter let us emphasize again that in the first part of it we
provide an introduction to the concept of quantum crystals and to the interesting
problem of possible supersolidity in them. In the second part of this chapter we
started to discuss the interesting surface physics on the phase interface between
quantum crystals and quantum liquids. We provided an introduction to the prob-
lem of roughening transition on the crystal surfaces of solid 4He and briefly
considered the spectrum of melting-crystallization waves on rough surface as well
as Rayleigh waves, which exist both on rough and smooth surfaces. The next
chapter will be devoted to the construction of quantum hydrodynamics on the
mobile rough surfaces at low temperatures.
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Chapter 3
Melting-Crystallization Waves
on the Phase-Interface Between Quantum
Crystal and Superfluid

We will start this chapter by providing an introduction to the surface hydrody-
namics of the mobile rough surfaces based on Andreev-Parshin theory [1]. The
most important is a condition of thermodynamic equilibrium or continuity of
chemical potentials l1 ¼ l2 on this surface. We will construct the linear hydro-
dynamics of the rough interface with an account of all important capillary terms,
such as surface tension coefficient a or more rigorously surface anisotropy

~a ¼ aþ o2a
ou2, surface stress kik and surface effective mass Meff [2–9].

From the system of the equations of the surface hydrodynamics we will
determine the spectrum of the melting-crystallization waves as well as Rayleigh
waves on the rough surface (see Ref. [47] in Chap. 2). We will present pioneering
experimental results of Keshishev et al. [10, 11] in Kapitza Institute on the dis-
covery of the melting-crystallization waves on the rough surface of solid 4He. In
the end of the Chapter we will generalize the hydrodynamic equations for the
rough interface on the presence of 3He impurities [18] and for the case of non-zero
temperatures. We will also consider a stationary tangential flow of superfluid
liquid parallel to the surface. The system of hydrodynamic equations will be
compatible again (according to Landau scheme–see Chap. 1 [1, 2]) with the
conservation law for the surface energy. We will consider briefly the surface
dissipative function and define the surface kinetic coefficients such as Kapitza
thermal resistance RK and growth coefficient Kgr [13, 14–16] On the basis of this
analysis we will determine the damping of the melting-crystallization waves and
compare it with the experiment [10, 11]. We will show that tangential flows of
superfluid liquid parallel to the rough surface of solid 4He lead to the positive
(growing) increment Im x [ 0 for the imaginary part of the spectrum of the
melting-crystallization waves. This instability was independently predicted in the
papers of Kagan [17] and Uwaha and Nozieres [19, 20] and experimentally con-
firmed by Tsymbolenko in Kurchatov Institute [21, 22]. It resembles the instability
of tangential flow on the surface between two liquid layers in the classical
hydrodynamics (Kelvin-Helmholtz instability). We also analyze the acoustic
properties of the rough interface and find that the sound transmission from the
superfluid to a quantum crystal is possible only due to the presence of the capillary
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terms in the equations of surface hydrodynamics [6, 7, 17, 18]. We predict the
phenomena of the Cherenkov emissions of second sound quanta by the thermal
surface waves as well as the inverse effect of the resonance excitement of the
surface Rayleigh or Rayleigh-Stonley waves by the bulk second sound [17, 18]
incident on the interface from the liquid over the transcritical angle corresponding
to total internal reflection [13, 23–26] with respect to the normal of the surface.

3.1 The Surface Hydrodynamics for Rough Interface
at Low Temperatures

In the previous sections we argued that the large energy scale of zero-point particle
vibrations at a rough quantum liquid-quantum crystal phase interface as well as the
closeness of the solid- and liquid phase densities, allows us to assume that ther-
modynamic equilibrium can be established in the system over fairly short periods
of time. Consequently the melting-crystallization processes on the rough interface
are nondissipative (or at least weakly dissipative) at low temperatures. The cor-
rectness of this assumption is confirmed by the existence at the rough interface of
weakly damped melting-crystallization waves which were theoretically predicted
by Andreev and Parshin [1] and experimentally observed by Keshishev et al. [10].

The rapid establishment of thermodynamic equilibrium at a mobile quantum
liquid—quantum crystal interface also manifests itself in the effect, discovered by
Castaing et al. [2, 4, 5], of anomalously weak low-frequency sound transmission
across the interface. Indeed if the period of the incident wave is longer than the
time required for the establishment of thermodynamic equilibrium, then, as we
briefly discussed in Chap. 2, besides the normally required continuity of the
pressure across the interface, we must also have equality of the chemical potentials
l1 ¼ l2 at the interface. In this case the variable part of the pressure is equal to
zero, and the incident acoustic wave should be totally reflected from the boundary,
as happens at a boundary with vacuum.

But allowance for the purely surface effects in the boundary conditions gives
rise to a small but finite sound-transmission coefficient D. Correspondingly, we
obtain a finite, though anomalously large, Kapitza thermal resistance RK . As will
be shown below, of greatest importance for the sound-transmission problem is the
allowance for three main types of surface effects in the boundary conditions. The
first type is described by the terms connected with the surface-tension coefficient a

and with the surface anisotropy o2a
ou2 (see Chap. 2). The second type is described by

a term connected with the additional surface kinetic energy. This term was
introduced by Castaing and Puech [4, 5]. It is quadratic in the difference between
solid- and liquid-phase velocities perpendicular to the boundary. This term is
derived in [27] on the basis of model arguments. The effect is due to the fact, that
when the matter flows over from the solid into the liquid phase, its short-range
order must be substantially reconstructed at the phase interface. Finally, the third
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type of effects is described by the terms introduced by Marchenko and Parshin [3].
They are connected with the surface stresses (surface elasticity). Allowance for the
surface stresses leads to a situation in which the surface of a crystal is elastically
deformed even in the state of total thermodynamic equilibrium.

3.1.1 Linear Equations of Surface Hydrodynamics
in the Absence of Stationary Surface Flows

In this subsection we derive linear equations of surface-hydrodynamics (general-
ized boundary conditions) at T = 0 which are consistent with the surface energy
conservation law and take into account simultaneously all the important surface
effects. Using these equations, we will determine the spectrum of the melting-
crystallization waves. We will also establish a general expression for the frequency
and angular dependences of the sound-transmission coefficient in the two opposite
limiting cases of the near-normal incidence and the incidence at glancing angles.

Using two small parameters of the problem, namely qsol�qL
qsol
’ qsol�qL

qL
’ Dq

q � 1 and

kd � 1 (k is the wave-vector) we will show that in both cases the nonvanishing
amplitude of the transmitted wave is largely due to the effects of the reconstruction
of the short-range order at the phase-interface and the effect of the surface tension.
At the same time, when the acoustic waves are incident at the angles close to the
critical angles for total internal reflection, the dominant contribution to the
transmission coefficient is due to the surface stress (surface elasticity).

3.1.1.1 Generalized Boundary Conditions

The surface hydrodynamics represents the generalized boundary conditions and is
governed again by Landau conservation laws together with the requirements of the
Galilean invariance. For T = 0 according to Castaing and Nozieres [2] it reads:

raps
a ¼ jð1Þk � jð2Þk

ffi �

nk � q1 � q2ð ÞVb; ð3:1:1Þ

_ps
a þrbp

s
ab ¼ Pð1Þak �Pð2Þak

ffi �

nk � jð1Þk � jð2Þk

ffi �

Vb; ð3:1:2Þ

_ps
z þrbp

s
zb ¼ Pð1Þzk �Pð2Þzk

ffi �

nk � jð1Þz � jð2Þz

ffi �

Vb; ð3:1:3Þ

where ps
z, ps

a are surface momenta (a ¼ x; y); ps
ab, ps

zb are surface momentum
fluxes, Vb is a velocity of the interface boundary.

In the system of Eqs. (3.1.1), (3.1.2), (3.1.3) jð1Þk and jð2Þk are the bulk momenta

in solid and liquid phases respectively, Pð1Þak and Pð2Þak are the bulk momentum
fluxes,~n is the vector normal to the deformed surface, q1 and q2 are the densities
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of the solid and liquid phases. For undeformed surface~n ¼~ez and ~Vb is parallel to
the z-axis. In general case ~Vb is directed normal to the deformed surface and ~n is
different from~ez (see below). These three Eqs (3.1.1), (3.1.2), (3.1.3) are consistent
with the surface energy conservation law:

_Es þrah
s
a ¼ Qð1Þk � Qð2Þk

ffi �

nk � E1 � E2ð ÞVb; ð3:1:4Þ

where Es is the density of a surface energy, hs
a is the surface energy flux, Qð1Þk and

Qð2Þk are the bulk energy fluxes, E1 and E2 are the bulk energy densities.
Note that in the linear theory Vb ¼ _uz þ _1, where _uz is a z-component of a solid

state velocity _~u, _1 is a velocity (a rate) of recrystalization.

3.1.1.2 The Bulk Fluxes at T 5 0

In the system of Eqs. (3.1.1–3.1.3)

Pð2Þik ¼ q2v2iv2k þ P2dik ð3:1:5Þ

is a bulk momentum flux for superfluid at T = 0. Correspondingly ~v2 ¼~vs is a
superfluid velocity, P2 is a pressure in the liquid phase.

In linear theory

Pð1Þik ¼ q1v1iv1k þ Pdik � r�ik ð3:1:6Þ

is a momentum flux for solid, where

r�ik ¼ rik �
1
3
rlldik ð3:1:7Þ

is a shear part of the stress tensor.
In (3.1.7) as we already discussed in Chap. 1 a stress tensor reads

rik ¼ 2q1c2
t uik þ q1 c2

l � 2c2
t

� �

ulldik; ð3:1:8Þ

where ct and cl are transverse and longitudinal sound velocities in solid, uik is a
deformation tensor.

In the absence of dislocations and disclinations in solid ~v1 ¼ _~u. Note that we
consider solid 4He to be a quantum crystal but not a supersolid. That is why there
is no drift velocity relative to the lattice in it at T = 0. Correspondingly the bulk
momenta in solid and liquid phase read:

j1i ¼ q1v1i and j2i ¼ q2v2i: ð3:1:9Þ

Finally the bulk energy fluxes in (3.1.4) for the surface energy conservation are
given by:
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Qð1Þk ¼ l1 þ
v2

1

2

� �

jð1Þk � rð�Þik v1i;

Qð2Þk ¼ l2 þ
v2

2

2

� �

jð2Þk :

ð3:1:10Þ

In the same time the bulk energy densities in (3.1.4)

E1 ¼ l1q1 � P1ð Þ þ r�ik
uik

2
þ q1

v2
1

2
and E2 ¼ l2q2 � P2ð Þ þ q2

v2
2

2
: ð3:1:11Þ

In the linearized theory for the solid phase

P1 ¼ P0 �
1
3
rll; ð3:1:12Þ

where P0 = 26 bar is an equilibrium melting pressure.
Correspondingly for the chemical potential in the solid phase we have:

l1 ¼ l0 �
rll

3q1
: ð3:1:13Þ

According to the thermodynamic identities at T = 0 the deviations from the
equilibrium of the pressures and chemical potentials are related by:

dP1 ¼ q1dl1 and dP2 ¼ q2dl2: ð3:1:14Þ

Hence momentum flux in the solid phase can be represented as:

Pð1Þik ¼ q1v1iv1k þ P0dik � rik: ð3:1:15Þ

3.1.1.3 The Surface Energy and Surface Fluxes

The total surface energy consists of three terms.

Es ¼ Eel
s þ Einert

s þ Ekin
s ; ð3:1:16Þ

where Eel
s ðut

ik;rx1;ry1Þ is the elastic surface energy, which depends on the gra-
dients of the elastic and crystallization-induced displacements~u and 1 and ut

ik is the
tangential component of the displacement tensor which we will define below.

In (3.1.16) Einert
s ð _1Þ is the energy due to the necessity of the reconstruction of

the short-range order when the matter flows over from phase to phase. It is qua-
dratic in the recrystallization rate _1. Finally Ekin

s is the surface kinetic energy,
which depends on the surface momentum density ~ps ¼ ~ps

a; p
s
z

� �

(a ¼ 1:2) and the

surface mass v, as well as the velocities of the liquid ~v2, crystal ~v1 ¼ _~u and the
phase interface Vb. Let us go over into a reference frame K0 in which, first, the
phase interface is at a rest (Vb = 0) and, second, the velocity of the liquid has no
tangential component (~v2a ¼ 0). Then the Galilean transformation formulas
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~ps
a ¼~ps

0a þ m~v2a; ps
z ¼ ps

0z þ mVb ð3:1:17Þ

Es ¼ Es0 þ ps
0av2a þ ps

0zVb þ
1
2

mV2
b þ

1
2

mv2
2a ð3:1:18Þ

relate the surface energy density Es and the surface momentum density ~ps in the
laboratory reference frame K to the corresponding quantities in the K0 reference
frame. Therefore, taking into account that the kinetic part of the surface energy in
the reference frame K0 can depend only on the Galilean invariant combinations of

the velocities _~u,~v2 and Vb, we have

dEs0 ¼ kikdut
ik þ Fadra1þ dEinert

s þ ðv1a � v2aÞdps
0a þ ðv1z � VbÞdps

0z: ð3:1:19Þ

In (3.1.17)

dEinert
s ¼ _1d Meff _1

� �

; ð3:1:20Þ

where Meff � qd is the coefficient of the proportionality between Einert
s and _12=2,

and has the dimensions of the surface density. In the same time ut
ik in dEs0 is the

tangential displacement (strain) tensor, which is connected with the standard
displacement tensor of the bulk elasticity theory by the relation (see [28]):

ut
ik ¼ KipKklupl; Kip ¼ dip �

ninp

1þ ðrazÞ2
: ð3:1:21Þ

In (3.1.19) z ¼ uz þ 1 is the total displacement of the surface points which is
the sum of the elastic (uz) and the recrystallization induced (1) displacements,
~n ¼ ð1;�razÞ is the normal to the deformed surface which enters in the system of
Eqs. (3.1.1), (3.1.2), (3.1.3). Note that while in undeformed case ~n ¼~ez and

~nj j2¼ 1, in the deformed situation

~nj j2¼ 1þ razð Þ2 6¼ 1: ð3:1:22Þ

The right-hand side of the identity (3.1.19) is a total differential, therefore the
cross derivatives for the elastic part of the surface energy should be equal to each
other:

o2Es0

o1aout
ik

¼ okik

o1a
¼ oFa

out
ik

: ð3:1:23Þ

In the relation (3.1.19) ps
0a ¼ qbðv1a � v2aÞ where qb� qd is the effective

surface density. The expression (3.1.18) is the most general expression for the
surface-energy differential at T = 0. It must be emphasized that the Eqs. (3.1.2),
(3.1.3), expressing the conservation law of the surface momentum, are consistent
with the conservation law of the surface angular momentum (see [29]) if the
following conditions are fulfilled:

pab ¼ pba and paz ¼ pabrbzþ paVb: ð3:1:24Þ
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Furthermore, since the momentum and the mass flux coincide in the nonrela-
tivistic hydrodynamics, Eq. (3.1.1) expresses in fact the equality of the bulk-
momentum components perpendicular to the surface in the reference frame K0 of
the phase interface where Vb = 0. Owing to the continuity of the bulk momentum

density jð1;2Þ0z ¼ qð1;2Þðvð1;2Þz � VbÞ, there is no need to introduce the surface
momentum p0z into the hydrodynamics. Note that there is, generally speaking, no
reason why p0a should also vanish. But in the linear equations of the surface
hydrodynamics the contribution of the terms containing p0a always turns out to be
small.

Note also that while deriving the system of Eqs. (3.1.1–3.1.3) we, as usual,
define the boundary as the place where the surface particle density m, which enters
in (3.1.17), (3.1.18) is equal to zero (see [2]).

Let us remind that kik in (3.1.19) is a surface stress tensor introduced firstly by
Marchenko and Parshin [3]. Physically the surface stress exists even on a free
undeformed solid surface because the surface row of atoms on Fig. 2.5 in Chap. 2
have the neighbors below but does not have the neighbors above. So there are
gradients of the van der Waals potential acting on the surface row of atoms which
correspond to nonzero kik.

3.1.1.4 Lowest in Gradients Expansion of the Surface Energy

In the absence of the external stationary flows (for v1a ¼ v2a and v1z ¼ Vb) we have
ps

0a ¼ 0 and ps
0z ¼ 0. Than for m ¼ 0 the surface energy Es ¼ Es0 and

dEs ¼ dEs0 ¼ kikdut
ik þ Fadra1þ _1d Meff _1

� �

: ð3:1:25Þ

Than, using the relation (3.1.23) for the cross derivatives, we obtain for Es in
the lowest (quadratic) order of the gradients expansion:

Es ¼ a0dlm þ aan
lm

ffi � 1l1m

2
þ k1abc1cuab þMeff

_12

2
; ð3:1:26Þ

where

aan
lm ¼

oFl

o1m
; k1abc ¼

oFc

ouab
¼ okab

o1c
: ð3:1:27Þ

In (3.1.23) a0 is the surface energy density in the absence of the deformation
(the coefficient of the surface tension), aan

lm is the surface-anisotropy coefficient,
k1abc is the coefficient of the off-diagonal term in the expansion of the elastic part
of the surface energy: k1abc ¼ k1bac. In the expression (3.1.23) we have discarded
all the terms of the order of u2=12 � 1 which can be shown to be small at not too

high frequencies x with the help of the small parameters of the problem Dq
q � 1

and kd � 1. From the small terms of the order of u=1 we have retained only one,
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namely, k1abcuab1c, which, as will be shown below, is important for the acoustic
problem when the angle of incidence of the acoustic wave is close to the critical
angle for the total internal reflection.

3.1.1.5 Surface Energy Flux and Surface Momentum Fluxes

Differentiating (3.1.25) with respect to the time, and using the forms (3.1.1–3.1.3)
of the conservation laws of the surface mass and momentum under conditions
when there are no stationary surface flows and m ¼ p0a ¼ p0z ¼ 0, we obtain for
the energy in the quadratic in gradients approximation

_Esþrbh
s
b � Q1k � Q2kð Þnk þ E1 � E2ð ÞVb

¼ �v1zrapza � v1brb pab þ k1abc1c

� �

� _1 q1ðl2 � l1Þ þ P1 � P2 þrb ~alb1l þ k1acbuac
� �

�Meff €1
� 	

;

ð3:1:28Þ

where the surface energy flux reads

hs
b ¼ �~alb1l _1� k1acb _1uac � k1bacv1a1c: ð3:1:29Þ

Let us remind that ~alb ¼ a0dlb þ aan
lb.

We should demand that (3.1.28) has a form of the surface energy conservation
law (3.1.4). Than the following conditions must be fulfilled:

pab ¼ �k1bac1c; paz ¼ 0 ð3:1:30Þ

_1 q1ðl2 � l1Þ þ P1 � P2 þrbð~alb1l þ k1acbuacÞ �Meff €1
� 	

¼ 0: ð3:1:31Þ

Let us emphasize that the expression pabrbzþ paVb ¼ �k1bac1crbzþ paVb is
of the second order in smallness. Therefore, the condition paz ¼ 0 in (3.1.27) is
consistent with the conservation law of the surface angular momentum.

If the melting-crystallization processes occur in the system, then _1 6¼ 0. There-
fore, from (3.1.31) follows: q1ðl2 � l1Þ þ P1 � P2 þrbð~alb1l þ k1acbuacÞ�
Meff €1 ¼ 0. Finally, in the absence of external stationary flows, the linear boundary
conditions have the form:

q2 v2z � Vbð Þ ¼ q1 v1z � Vbð Þ; rza ¼ rb k1bac1c

� �

; rzz þ P2 � P0 ¼ 0

q1 l2 � l1ð Þ þ P1 � P2 þrb ~alb1l þ k1acbuac
� �

�Meff €1 ¼ 0;
ð3:1:32Þ

where P0 = 26 bar is equilibrium pressure.
The first equation in the system (3.1.32) is a matter-balance equation; the

second and third equations constitute the conditions for the mechanical equilib-
rium at the boundary. Finally the last equation constitutes a generalized condition
for the phase equilibrium. This last equation can also be regarded as the equation
of the motion of the boundary relative to the solid. In the zeroth approximation the
system (3.1.32) is consistent with the conditions for total phase equilibrium:
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P01 ¼ P02 ¼ P0; l01 ¼ l02 ¼ l0: ð3:1:33Þ

In the approximation linear in the deviations from the equilibrium and with an
account of the thermodynamic identities dP1 ¼ q1dl1 and dP2 ¼ q2dl2 at T = 0
for the variable parts of the pressures and the chemical potentials we get:

Dqdl2 þrb ~albd1l þ k1acbduac
� �

�Meff d€1 ¼ 0

drza ¼ rb k1bacd1c

� �

; drzz þ qdl2 ¼ 0

qdv1z � qdv2z � Dqd _1 ¼ 0

ð3:1:34Þ

Let us emphasize that in the absence of the stationary surface flows the
velocities, the displacements and the stress-tensor components coincide with their
variable parts, and the symbol d in front of them can be dropped. In (3.1.34)
Dq ¼ q1 � q2; q ’ q1 ’ q2 (Dq=q� 1). In the balance equation, as in the
expression (3.1.26) for the surface energy, we have discarded the small terms of
the order of u=1.

3.1.1.6 The Role of Capillary Terms. Anomalous Transmission
of the Sound Waves

From the system of Eq. (3.1.34) it follows that for the sound wave incident on the
phase-interface, the amplitude of the wave transmitted into the other medium is
nonzero only because of the capillary effects.

Indeed, setting ~alb ¼ k1acb ¼ Meff ¼ 0 in (3.1.34) we get:

dl2 ¼ 0 and drzz ¼ drza ¼ 0: ð3:1:35Þ

Therefore, the liquid and the solid phases become completely decoupled and,
for the acoustic waves incident at the boundary from any one of the media, this
boundary is equivalent to a boundary with vacuum. As a result the sound wave is
not transmitted into the other medium.

3.1.2 The Spectrum of Melting-Crystallization Waves

We briefly discussed the melting-crystallization waves and their spectrum in Chap. 2.
In the present subsection we will present the more detailed derivation of their
spectrum based on the system of the equations for the generalized boundary con-
ditions (3.1.34).

As we mentioned previously at low frequencies the spectrum of melting-
crystallization waves x� k3=2 resembles the spectrum of the capillary waves.
Hence they are more soft (they correspond to lower frequencies) than the spectrum
of the more standard Rayleigh waves x� ctk briefly considered in Chap. 2. That is
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why we can decouple the equations for~u and 1 and put~u ¼ 0 in the equations for
the melting-crystallization waves. Correspondingly the system of the Eq. (3.1.34)
can be reduced to the system of two equations—the balance equation

qdv2z þ Dqd _1 ¼ 0 ð3:1:36Þ

and the equation for the thermodynamic equilibrium

Dqdl2 þ ~albrbd1l ¼ Meff d€1; ð3:1:37Þ

where we can safely neglect the small term with k1acb in (3.1.37).
We can also use the bulk Josephson equation for the superfluid velocity:

d _~v2 þ ~rdl2 ¼ 0 ð3:1:38Þ

and the incompressibility equation

~r � d~v2 ¼ 0: ð3:1:39Þ

The Josephson equation allows us to represent the superfluid velocity as

d~v2 ¼ ~rdu2. Then the incompressibility equation will read Ddu2 ¼ 0, where D is

Laplasian here. For the surface wave du2 ¼ Aei~ka~ra�kzz�ixt, where z is a normal axis
to the undeformed surface. Thus, from Ddu2 ¼ 0 follows that k2

k ¼ k2
z or kz ¼ kk













where kk ¼ ðk2
x þ k2

yÞ
1=2 is a projection of ~k vector on the (x, y)-plane.

Now we can take the time derivatives from the balance equation (3.1.33) and
the rz derivative from the thermodynamic equilibrium equation. Then we will
finish with:

qd _v2z ¼ �Dqd€1 ¼ �qrzdl2 ð3:1:40Þ

Dqrzdl2 þ ~albrzd1lb ¼ Meffrzd€1; ð3:1:41Þ

where d1lb ¼ rlrbd1:
Substituting the first Eq. (3.1.40) to the second one we finally get from (3.1.41):

Dqð Þ2

q
d€1 ¼ rz Meff d€1� ~albd1lb

� �

; ð3:1:42Þ

or correspondingly:

Dqð Þ2

q
x2 þ x2kzMeff

" #

d1 ¼ ~albkzklkbd1: ð3:1:43Þ

Hence using the condition kz ¼ kk










 we obtain for the spectrum:

x2 Dqð Þ2

q
þ kk










Meff

" #

¼ ~albklkb kk










: ð3:1:44Þ
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Let us choose du2 ¼ Aeikxx�kzz�ixt. It means that we choose kx-propagation for
the wave-vector of the melting-crystallization waves. Then we get the following
remarkable spectrum:

x2 ¼ ~axxk2
x kxj j

Dqð Þ2=qþ kxj jMeff

¼ q~axxk2
x kxj j

Dqð Þ2 1þ q kxj jMeff = Dqð Þ2
ffi � ; ð3:1:45Þ

where Meff � qd is an effective surface mass.

At small wave-vectors kd\ Dqð Þ2
q2 (or e ¼ q2

Dqð Þ2 kd\1) we can neglect the second

term in the brackets in the denominator of (3.1.45) and get

x2 ¼ q~axxk2
x kxj j

Dqð Þ2
: ð3:1:46Þ

The spectrum (3.1.46) differs from the spectrum of ordinary capillary waves on

the surface between liquid and vacuum only in the factor Dqð Þ2
.

q2 and in the

difference between the surface tension coefficient a and the surface stiffness

~axx ¼ aþ o2a
o1xo1x

.

At large wave-vectors e� 1 the spectrum (3.1.45) is linear x2 ¼ ~axxk2
x

Meff
.

3.1.2.1 Measurements of Melting-Crystallization Waves

The melting-crystallization waves were measured in Kapitza Institute by Keshi-
shev, Parshin and Babkin in 1979 (see [10]).

The authors of [10] made a series of photographs of the surface growth and
surface melting after the surface was suddenly perturbed by shaking of the cryostat
at the time zero. The photographs (see Fig. 3.1) show the consequence of the states
of the solid–liquid interface.

Keshishev, Parshin and Babkin also plotted the spectrum of the melting-crys-
tallization waves which was well described by x� k3=2 law (see Fig. 3.2). They
also measured the decay rate of the waves which was several seconds for the
temperatures T = 0.5 K. Effectively the rough interface responds in the same way
as a free liquid surface with slowly decaying capillary waves.

3.1.3 The Growth Coefficient: Damping of the Melting-
Crystallization Waves

For T = 0 the melting-crystallization waves are slowly decaying. The simplest
way to get their damping according to Andreev and Knizhnik [30] is to introduce
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Fig. 3.1 a Crystallization waves in 4He. Keshishev et al. [10, 11] discovered crystallization
waves in 1979 by shaking the cryostat: the interface between a 4He crystal and superfluid 4He
moves so easily by growth and melting that it looks like a free liquid surface. From Keshishev
et al. [10, 11]. b Experimental cell used in Moscow [10, 11]

Fig. 3.2 The spectrum of
melting-crystallization waves
x� k3=2 at small wave-
vectors (from Keshishev et al.
[10, 11])
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the growth coefficient in the equation for the thermodynamic equilibrium. Namely
we add in (3.1.41) a term linear in the recrystallization rate d _1. As a result:

Dqdl2 þ ~albrbd1l �Meff d€1 ¼ �qd _1
1

Kgr
; ð3:1:47Þ

where Kgr is the growth coefficient of the crystal connected with the friction of the
phase-interface on the normal excitations of superfluid and solid 4He (phonons and
rotons). Assuming 1

�

Kgr to be a small quantity for a mobile surface (a rapid
growth of the rough surfaces) and solving the system of Eqs. (3.1.33) and (3.1.44)
perturbatively we get for the spectrum:

x ’ x0 �
i

2
q2

Dqð Þ2
kxj j

Kgr
; ð3:1:48Þ

where x0 ¼ q~axxk2
x kxj j

Dqð Þ2 1þqMeff kxj j

Dqð Þ2

h i (see Eq. (3.1.45)).

In the phonon region T B 0.5 K we just get the decay rate of the order of the
several seconds as in the measurements of Keshishev, Parshin, Babkin. Note that
according to Andreev-Knizhnik in the phonon region T B 0.5 K the inverse
growth coefficient 1

�

Kgr � T4. In the roton region 1
�

Kgr � exp � D
T

� �

, where D is

the energy of a roton minimum (eðpÞ ¼ Dþ p�p0ð Þ2
2M� and min e ¼ D). The mea-

surements of the growth coefficient in the roton region by different groups are
presented on Fig. 3.3. The effective damping is small both in the roton and the
phonon region so we can see several oscillations before the amplitude of the wave
becomes small. The profile of melting-crystallization waves is shown on Fig. 3.4
for the particular case of the vicinal surface and temperature T = 0.28 K.

Note that for atomically smooth surface according to the usual theory of the
first-order phase-transition the growth is very slow and has a thermoactivative
behavior:

1
Kgr
� exp � pb2q

3ddl2kbTDq

� �

! 0 for T ! 0; ð3:1:49Þ

where b is a step energy and dl2 is the deviation from the equilibrium of the
chemical potential of the liquid phase. Note that due to the continuity of pressures
q1dl1 ¼ q2dl2 the difference between the chemical potentials of the liquid and

solid phases Dl ¼ l2 � l1 ¼ Dq
q dl2. Note also that according to the theory of

Lifshitz and Y. Kagan [31] due to the possibility of the quantum nucleation even at
T = 0 it can still be a tunneling growth of a smooth surface (see [32]) though it is
even more slow than one given by Eq. (3.1.49). The inverse growth coefficient at
T = 0 is given by:

1
Kgr
� exp � const

Dlð Þ2

 !

: ð3:1:50Þ
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Fig. 3.3 Contribution of rotons to the growth coefficient K�1
gr of solid 4He labeled ðm4KgrÞ�1, as

calculated by Bodensohn et al. [47]. Plus symbol Experiments of Keshishev et al. [10, 11],
Multiplication symbol Experiments of Castaing et al. [46], Circle with center dot, Square,
Diamond Experiments of Bodensohn et al. [47], solid line, best fit with a simple exponential
function. The phonon contribution has been subtracted in the case of Keshishev’s measurements.
From Bodensohn et al. [47]

Fig. 3.4 Profile of melting-crystallization wave propagating at the surface of a 4He crystal, as
measured by Rolley et al. [48, 49]. In this particular case, T = 280 mK, the surface was oriented
3o away from the (0001) plane, and the frequency was 1,946 Hz, so that the wavelength was
0.660 mm. The recorded quantity is the local tilt angle of the crystal surface with respect to the
horizontal plane. From Rolley [48, 49]
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The formulae (3.1.46) and (3.1.47) for the inverse growth coefficients of smooth

surface which are exponential (exp � 1
DlT

ffi �

for the classical theory and exp � 1
Dlð Þ2

ffi �

for the quantum theory) are in sharp distinction with the rough surface where the

inverse growth coefficient is linearly proportional to Dl: Dl� Dq
q dl2� 1

Kgr
_1.

3.1.4 The Instability of Superfluid Tangential Flows
on the Mobile Phase-Interface

In the normal liquid the tangential flows parallel to the phase-interface with solid

are prohibited by the boundary condition~vs ¼ _~us due to the viscous friction on the
surface. However, in superfluid helium we can create a frictionless superfluid
component with the velocity ~vs0 ¼~v0 parallel to the surface. Let us consider the
problem of the development in time of the surface oscillations (of the melting-
crystallization waves) excited in the presence of a uniform ‘‘slipping’’ of a super-
fluid liquid along the mobile surface of initially undeformed stationary crystal.

The derivation of the equations of the surface hydrodynamics in the presence of
a stationary flow of a superfluid liquid parallel to the boundary is carried out on the
basis of the same formulas (3.1.1–3.1.13), (3.1.15–3.1.20), that are used in the
derivation of the equations in the absence of the surface flows. Let us limit our-
selves to the case of the sliding velocities that are small compared with the sound
velocities. Then it is easy to show that we again can ignore in the problem the
dependence of the surface energy (3.1.19) on the surface momentum p0a. We
retain as before only the leading terms in the small parameters Dq/q � 1, kd � 1,
and v0/c � 1, where v0 is the sliding velocity of the liquid and c is the sound
velocity. Note that in helium ct \ cL \ cl for sound velocities in solid phase ct and
cl and sound velocity of liquid phase. We assume that v0 is much less than all the

sound velocities. As a result for not too high frequencies x\ Dq
q

c=d we get the

following linear boundary conditions:

q2 ~v2~n� Vbð Þ ¼ q1 ~v1~n� Vbð Þ;
rb k1bac1c

� �

¼ rza þ q1v2a ~v1~n� Vbð Þ;
rzz þ P2 � P0 ¼ 0;

q1 l2 þ
v2

2

2

�

�v1av2a � l1Þ þ P1 � P2 þrb ~alb1l þ k1acbuac
� �

�Meff €1 ¼ 0

ð3:1:51Þ

The system of Eq. (3.1.51) differs from (3.1.34) by the presence of the terms
quadratic in the velocities in the generalized phase equilibrium equation and in one
of the mechanical equilibrium equations. Let us moreover note that the liquid
velocity component along the normal to the deformed surface,~v2~n, does not even
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in the first approximation in the deviation from equilibrium, coincide with v2z.
Namely ~v2~n ¼ v2z � v0a1a. In the zeroth approximation the system of equations
(3.1.51) yields the relations:

P01 ¼ P02 ¼ P0; l01 ¼ l02 þ
v2

0

2
¼ l0: ð3:1:52Þ

Notice that the chemical potentials of the solid and liquid do not coincide in the
presence of a stationary flow parallel to the surface even in zeroth approximation
(in the absence of small oscillations in the system). In the first approximation in the
deviations of the quantities from their equilibrium values using the thermodynamic
identities dP1 ¼ q1dl1 and dP2 ¼ q2dl2 we obtain:

Dqdl2 þrb ~albd1l þ k1acbduac
� �

�Meff d€1þ qv0a dv2a � dv1að Þ ¼ 0;

drza þ qv0ad_1 ¼ rb k1bacd1c

� �

;

drzz þ qdl2 ¼ 0;

qdv1z � qdv2z þ qv0xd1a � Dqd _1 ¼ 0:

ð3:1:53Þ

Let us analyze the spectrum of the surface oscillations (of the melting-crys-
tallization waves) generated in the presence of the uniform slipping of the liquid

for small vectors k, that is for e ¼ q
Dq

ffi �2
kd � 1. In this case it can be shown that

_~u

















\~v2j j. Therefore, if we are interested only in the low-lying branch of the

spectrum, i.e. in the melting-crystallization waves, then we can discard the two
mechanical-equilibrium equations in the system (3.1.53) and set, as it is done in [1]

~u ¼ _~u ¼ 0 in the phase-equilibrium and balance equations. Then (3.1.53) is
reduced to (see [17, 18, 33])

Dqdl2 þ ~albrbd1l �Meff d€1þ qv0adv2a ¼ 0;
�qdv2z þ qv0ad1a � Dqd _1 ¼ 0:

ð3:1:54Þ

The system (3.1.54) together with the bulk equations for the incompressible

superfluid ~r � d~v2 ¼ 0 and d _~v2 þ ~r dl2 þ v0adv2að Þ ¼ 0 is valid at the temperature
T = 0. In a real experiment T = 0 and it is important for us to determine both the
real and the imaginary parts of the spectrum of the melting-crystallization waves.
Therefore, we should again include the dissipation due to the growth coefficient
1
�

Kgr (connected with the friction of the phase-interface on the normal excitations
of the liquid and the crystal). The solution for the spectrum of the melting-crys-
tallization waves yield now

x ’ x0 �
q

Dq
v0kx

� �

� i

2
q2

Dqð Þ2
kxj j

Kgr

x0 � q
Dq

ffi �

v0kx

ffi �

x0
: ð3:1:55Þ

This result in the presence of the dissipation was firstly obtained by Kagan [17],
Uwaga and Nozieres [19, 20]. For Kgr !1 it coincides with the results of Parshin
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[33]. In deriving (3.1.55), we considered the two-dimensional problem, i.e. ~k ¼
kx; kzð Þ case and assumed the velocity ~v0 to be parallel to x-axis. In (3.1.55)

x2
0 ¼

q~axxk2
x kxj j

Dqð Þ2 1þqMeff kxj j

Dqð Þ2

h i is the spectrum of the melting-crystallization waves in the

absence of a stationary flow. When v0j jkx [ 0 and q=Dqð Þ v0j j kxj j[ x0, we have
Im x [ 0, and, consequently the instability of the tangential flow sets in.

3.1.4.1 The Physical Reasons for the Instability

Physically we should remember that solid state is at a rest. Thus, the corrections
� q=Dqð Þv0kx to Re x is not just a Galilean shift. We can say that this instability is
very similar to the instability of the superfluid flow with respect to the creation of
normal excitations at superfluid velocities higher than the critical velocity vs [ vc.

Let us consider the region e\1. Then x2
0 ’

~axxk2
x kxj jq

Dqð Þ2 and q=Dqð Þ v0j j kxj j[ x0

for v0j j[ ~axx kxj j=qð Þ1=2! 0 if kx ! 0. Hence in this case there is no threshold for
instability (the limitation on v0 is only due to the fact that kxj j[ 2p=L, where L is
the size of the crystal). But when we take the gravity into account (see Fig. 2.6) we
have for the spectrum [17] (in analogy with the capillary waves in the presence of
gravitation):

x2
0 ¼ ~axx

qk2
x kxj j

Dqð Þ2
þ qg kxj j

Dq
: ð3:1:56Þ

As a result a threshold of the instability appears q
Dq v0c ¼ min x0

kxj j

ffi �

and

v0c ¼ 4g~axx
Dq
q2

� �1=4

� 4 cm= sec� c: ð3:1:57Þ

Nevertheless the critical velocity at which the instability sets in is low com-
pared to the sound velocity v0C � c, so the limitations on the incompressibility of
the liquid and the solid phases together with the other assumptions under which we
derived the system of Eq. (3.1.51) are still valid. Note that the predicted instability
resembles a bit the Kelvin-Helmholtz tangential instability on the surface between
two liquid layers in classical hydrodynamics. The theoretical predictions of Kagan
[17], Uwaha and Nozieres [19, 20] were confirmed in the experiments of Tsym-
balenko in Kurchatov Institute in Moscow (see [21, 22] and Fig. 3.5).

In these experiments the behavior of the atomically rough surface of solid
helium was investigated in a jet of fluid for the temperature range 1–1.4 K. After
some critical value of the velocity of a tangential flow is exceeded, the surface
clearly becomes unstable. Below the roughening transition temperature TR the
same surface is stable in a jet of a fluid.
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3.1.5 The Spectrum of the Rayleigh Waves on the Rough
Surface

In this subsection we will analyze a bit more detaily the spectrum of the Rayleigh
waves. This branch of surface oscillations exists both on atomically rough and
atomically smooth surfaces. For mobile atomically rough surface the Rayleigh
waves are important at high frequencies.

As we already discussed in Sect. 2.2.4 for Rayleigh waves the recrystallization
rate _1 ¼ 0 and a velocity of the boundary Vb ¼ _uz. From the balance equation in
the system (3.1.32) we have then: q1 _uz � Vbð Þ ¼ q2 vsz � Vbð Þ ¼ 0 and
vsz ¼ Vb ¼ _uz. In the equations for mechanical and thermodynamic equilibrium in
(3.1.32) we can safely neglect the surface capillary terms (k1abc ¼ Meff ¼ ~alb ¼ 0)
and get:

rzx ¼ 0; rzz þ q2dl2 ¼ 0;

Dqdl2 ¼ 0; _uz ¼ vsz ¼ Vb:
ð3:1:58Þ

Fig. 3.5 The development of the instability above the roughening transition from Tsymbalenko
et al. [21, 22]. At the moment of time t = 0 (a) the emission from the needle points begins. The
field of vision is 5.5 9 4.9 mm2, t = 1.25 s (b), t = 2 s (c) t = 2.3 s (d). The arrows in frame
(b) indicate the recess formed on the growing crystal ‘‘stalagmite’’. On the frame (d) one can see
the development of cylindrical instability. Waists are formed on the surface, which break the
crystal ‘‘stalagmite’’
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Correspondingly on the surface dl2 ¼ 0 and rzx ¼ rzz ¼ 0 [see Eq. (2.2.2)].
The boundary conditions (3.1.58) should be considered together with the bulk

equations

q1€ui ¼ rkrik ð3:1:59Þ

in the solid phase and

€u ¼ c2
I Du ð3:1:60Þ

in the liquid phase for the compressible potential liquid.
Note that in (3.1.60)

~v2 ¼~vs ¼ ~ru; dP2 ¼ q2dl2 ð3:1:61Þ

and from the Josephson equation _~vs þ ~rdl2 ¼ 0 it follows

dl2 ¼ � _u ð3:1:62Þ

for potential u.
In the solid phase in the isotropic approximation as usual in elasticity theory we

should represent a total lattice displacement and lattice velocity

~u ¼~ut þ~ul; _~u ¼ _~ut þ _~ul ð3:1:63Þ

as a sum of transverse and longitudinal parts. In (3.1.63) ~r �~ul ¼ 0 and thus

~ul ¼ ~rU. In the same time ~r �~ut ¼ 0 and ~ut ¼ ~r� ~W. Correspondingly in the
bulk for the two-dimensional situation ~u ¼ ðux; uzÞ; uy ¼ 0; ux ¼ uxðx; zÞ; uz ¼
uzðx; zÞ we can represent ~W ¼ W~ey and get for U and W the equations:

€U ¼ c2
l

o2

ox2
þ o2

oz2

� �

U; ð3:1:64Þ

€W ¼ c2
t

o2

ox2
þ o2

oz2

� �

W; ð3:1:65Þ

where cl and ct are the velocities of the longitudinal and the transverse sounds in
the solid phase.

Note that in this geometry ux ¼ oU
ox � oW

oz and uz ¼ oU
oz þ oW

ox . Correspondingly the
boundary conditions demand

€u ¼ c2
I

o2

ox2
þ o2

oz2

� �

u ð3:1:66Þ

for the liquid potential u.
Using the system of Eq. (3.1.58) for the boundary conditions together with the

bulk Eqs. (3.1.60–3.1.65) we get for the compressible liquid and solid phases:
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x2 � 2c2
t k2

x

� �2�4c4
t k2

x kt
z











 kl
z











 ¼ 0; ð3:1:67Þ

where kt
z













2¼ k2
x � x2

c2
t

and kl
z













2¼ k2
x � x2

c2
l

in compressible case for the surface wave.
Taking into account the numerical values of the sound velocities in liquid and solid
4He (remind that ct \ cI \ cl) we finally get (see [17, 18] for example)

x 	 gct kxj j, where g ct=clð Þ ’ 0:8. For e� q2

Dqð Þ2 kd � 1 the group velocity of the

melting-crystallization waves vM ¼ dx
dk � k1=2 is much smaller then the velocity of

the Rayleigh waves cR� 0:8 ct. The two branches of the spectrum begin to interact
with each other only for e� 1.

3.1.6 The Angles of the Total Internal Reflection: Excitation
of the Surface Wave by the Bulk Second Sound Wave

We have the following hierarchy of different sound velocities v ¼ x
k on the rough

surface:

vM \ cR \ ct \ cI \ cl; ð3:1:68Þ

where ct and cl are transverse and longitudinal sound velocities, cR� 0:8ct is the
velocity of the Rayleigh wave, vM � k1=2 is the phase velocity of the melting-
crystallization waves at small frequencies and cI is the first sound velocity in
superfluid liquid.

At T = 0 we also have a second sound wave in the liquid phase. The second
sound velocity in the phonon region of low temperatures T B (0.5–0.6) K cII ¼ cI

ffiffi

3
p

in 3D case but it becomes smaller in the roton region T C 0.6 K (see Figs. 1.3 and
1.4). Thus, vM \ cII \ cR \ ct \ cI \ cl.

At T = 0 for the first sound incident from the liquid we can introduce the angle
of total internal reflection (or a Brewster angle) for the longitudinal sound in liquid
sin hcr

L ¼ cI
cl

with sin hl ¼ 1 and cos hl ¼ 0. When the first sound is incident from

the liquid at an angle greater than a critical angle h [ hcr
L , only a transverse

acoustic wave is generated in the solid. Note that the phenomenon of the total
internal reflection manifests itself in the sharply nonmonotonic character of the
angular dependence of the sound-transmission coefficient DðhÞ ¼ 1� RðhÞ. Let us
emphasize that at the angle of the incidence which is exactly equal to the Breuster
angle the transmission coefficient is nonzero only because of the allowance for the
surface capillary terms.
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3.1.6.1 The Basic Formalism at T 5 0

Let us consider a first sound plane acoustic wave incident at the rough phase
interface from the liquid at zero temperature. Taking into account (3.1.64),
(3.1.65), (3.1.66) which give for the plane waves the relation between the fre-
quency and wave vectors in longitudinal and transverse sound in solid and first
sound in liquid, we have for the incident, reflected and two (longitudinal and
transverse) transmitted waves the expressions:

u ¼u10 exp �ixt þ i
x
cI

sin h1Lxþ i
x
cI

cos h1Lz


 ffl

þ u20 exp �ixt þ i
x
cI

sin h2Lxþ i
x
cI

cos h2Lz


 ffl

;

U ¼U0 exp �ixt þ i
x
cl

sin hlxþ i
x
cl

cos hlz


 ffl

;

W ¼W0 exp �ixt þ i
x
ct

sin htxþ i
x
ct

cos htz


 ffl

;

ð3:1:69Þ

where we again choose 2D geometry for ~u ¼ ðux; uzÞ; uy ¼ 0; ux ¼ uxðx; zÞ;
uz ¼ uzðx; zÞ.

In (3.1.69) u10 and u20 are the amplitudes of the incident and reflected first
sound waves in the liquid, U0 and W0 are the amplitudes of the longitudinal and
transverse sound waves generated in the solid and h1L, h2L, hl, ht are the angles
between the wave-vectors of the corresponding waves and the normal to the
surface. The problem is homogeneous in the coordinate x. Therefore:

sin ht

ct
¼ sin hl

cl
¼ sin h1L

cI
¼ sin h2L

cI
: ð3:1:70Þ

In particular, we have a priori the obvious equalities (see Fig. 3.6)

sin h1L ¼ sin h2L ¼ sin hL ð3:1:71Þ

Fig. 3.6 The mirror reflection of the first sound wave incident from the liquid. For the angle
smaller than the Brewster angle hL\hcr

L ¼ arcsin cI
cl

there are two transmitted waves for the
longitudinal and transverse sound in the solid phase
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For hL \ hcr
L

DðhÞ ¼ 1� RðhÞ ¼ DlðhÞ þ DtðhÞ ð3:1:72Þ

since we have two transmitted waves in the solid phase. In (3.1.72):

R ¼ u20j j2

u10j j2
ð3:1:73Þ

is the reflection coefficient,

Dl ¼
_~ul



















2
cl cos hl

~v2inj j2cl cos hL

; Dt ¼
_~ut



















2
ct cos ht

~v2inj j2cI cos hL

ð3:1:74Þ

are the transmission coefficients for longitudinal and the transverse sound waves,

~v2in ¼ ~ru1 is the superfluid velocity field in the incident wave of the first sound.
Note that for hL [ hcr

L DlðhÞ ¼ 0 and D ¼ DtðhÞ. In the same time for the normal
incidence hL ¼ 0 we get ht ¼ hL ¼ 0. In this case Dtð0Þ ¼ 0 and D ¼ Dlð0Þ.

The recrystallization displacement 1 for the acoustic problem which we con-
sider is governed by (see [17, 18]):

1 ¼ 10 exp �ix t þ i
x
ct

sin htx


 ffl

: ð3:1:75Þ

The frequency dependence of the transmission coefficient D is governed by the

value of the characteristic dimensionless parameter e ¼ x d
c

q
Dq

ffi �2
of the problem

(here and below in this paragraph we assume that the sound velocities, though are
different, have the same order of magnitude). This parameter can be written also in

the form e ¼ xs, where s ¼ d
c

q
Dq

ffi �2
is the hydrodynamic surface reconstruction

time. For normal incidence according to Castraing and Puech [4, 5]:

D ¼ 1� R ¼ 4e2cI=cl

1þ e2 cIþcl

c2
l

ffi �2 ; ð3:1:76Þ

where to be more specific e ¼ qMeff

Dqð Þ2
x
cI

.
For the small values of the parameter e\1 we have D 	 4e2 cI

cl
�x2s2 � 1—

the transmission coefficient is quadratic in frequency and is nonzero only due to
the account of the effective surface mass Meff = 0.

For e C 1 the transmission coefficient D * 1. We can say that for xs C 1 the
quantum mobile boundary becomes a classical one, and D increases significantly.

The investigation of the transmission coefficient for xs � 1 and at different
angles (smaller and larger than hcr

L ) helps us to establish the connection between
D(h) and different surface coefficients (~a, Meff, k1abc) due to which account D(h) is
nonzero. Note that for all the angles D(h) * x2 for small xs\ 1. For h = 0 D(0)
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is governed by Meff. For the Brewster angle hcr
L ¼ arcsin cI

cl

ffi �

D(h) is governed by

the surface elasticity k1abc. Then from the behavior of D(h) for 0\h\hcr
L we can

also independently extract the value of the surface rigidity ~axx.

3.1.6.2 The Case of Nonzero Temperature T = 0

If we consider nonzero temperatures T = 0 and small frequencies then
vM \ cII \ cR \ ct \ cI \ cl and for the second sound incident from the liquid
there are two critical angles of the total internal reflection. First one is found from
the condition sin hII

cII
¼ sin ht

ct
. If ht ¼ p

2, then hcr
II ¼ arcsin uII

ct
\1. For this angle there is

no transmission of the transverse and the longitudinal sound waves in the bulk and
thus D = Dl ? Dt = 0 for the transmission coefficient. In the same time there is
no reflection of the first sound wave in the superfluid. Hence the total reflection
coefficient R = RI ? RII = RII, where RII is the reflection coefficient of the second
sound wave. Thus, for hII [ hc1

II we have the phenomenon of the total internal
reflection and RII = 1.

However, there is a second critical angle hc2
II already in the region of total internal

reflection (Kagan, Kosevich [13]). Namely hc2
II ¼ arcsin cII

cR

ffi �

[ hc1
II ¼ arcsin cII

ct

ffi �

.

3.1.6.3 The Reflection Coefficient

The second critical angle inside the region of the total internal reflection corre-
sponds to the resonance excitation by the bulk second sound wave (by rotons for
T C 0.6 K) of the surface Rayleigh wave.

If we take the dissipative processes into account, then close to hc2
II the reflection

coefficient RII will have a pronounced minimum. The estimates show (Kagan,

Fig. 3.7 The angular dependence of the reflection coefficient RII for the second sound wave
incident on the mobile surface at the angle close to the second critical angle hc2

II ¼ arcsin cII
cR

. A

large fraction of the energy is transferred to a surface Rayleigh wave at h ¼ hc2
II
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Kosevich [13]) that for T C 0.6 K the fraction of the energy transferred to a
surface wave for h ¼ hc2

II can reach 0.75 (see Fig. 3.7).
Note that if we take into account for example a surface dissipation Rsur [ 0 (see

the expression (3.2.18) for Rsur in the next subsection 3.1.4) than for hII [ hc1
II :

RII 6¼ 1. More specifically: 1� RII ¼ Rsur=qncII cos hII ~vinc
nII













2
, where RII ¼

~vref
nIIj j

2

~vinc
nIIj j

2 is

the reflection coefficient with respect to the second sound. Let us emphasize again
that at high temperatures T * (0.8 7 1) K in the roton region cII \ cR and we can
excite the surface Rayleigh waves by the bulk second sound.

Note also that since cI [ cR on the interface between solid and liquid 4He we
cannot excite the Rayleigh waves by the first sound wave incident from the liquid.
This is in contrast to He-II-metal surface where this phenomenon for the first
sound wave was predicted by Andreev and measured by Zinov’eva in Kapitza
Institute (see [23–25]).

Finally let us mention that when we increase a frequency we can also satisfy the

inequality cII\vM ¼ ~axxqx
Dqð Þ2

ffi �1=3
and get another transcritical angle hM ¼ arcsin

cII=vMð Þ.
Hence in principle it is also possible to excite thermal melting-crystallization

waves by the roton second sound on the mobile (rough) phase-interface between
solid and liquid 4He. However, quite often for T * (0.8 7 1) K the melting-
crystallization waves can be overdamped at these frequencies.

On the atomically smooth interface between solid and liquid 4He the role of the
Rayleigh waves plays the Rayleigh-Stonley surface waves (Kagan and Kosevich
[13]). It is also possible to excite them resonantly by the bulk second sound
incident from the liquid phase.

3.2 Surface Hydrodynamics on the Mobile Interface
at T = 0 and in the Presence of 3He Impurities

Maris and Huber [6, 7], Wolf et al. [9, 50], Puech et al. [34] measured the Kapitza
thermal resistance on the rough interface between solid and superfluid 4He. Graf
et al. [15, 16] were among the first who investigated the influence of a small
amount of 3He impurity on the mobility of the rough interface and on its thermal
resistance RK. Note that Kapitza thermal resistance RK is determined by the energy
transfer from the interface to the quasiparticle gas. The theory for Kapitza resis-
tance on the standard atomically smooth interface of the solid and the superfluid
4He or the superfluid 4He and metal was constructed by Khalatnikov [35] and is
known as ‘‘phonon mismatch theory’’.

In the experiments of Graf, Bowley and Maris [15, 16] the rough surface of
solid 4He was considered being in contact with dilute superfluid solution (with
respect to 3He component) of 3He in 4He.
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Let us remind that from the experiments of Anufriev, Lopatik and Sebedash in
Kapitza Institute [36, 37] as well as from the stratification curves for the solid and
liquid solutions at the pressure P0 & 26 bar [38–40, 51] it can be deduced, that the
equilibrium concentration in the solid solution is negligible compared with the
equilibrium concentration in the liquid solution at the temperatures T \ 0.3 K. Note
that the maximal solubility of 3He in 4He at P = 0 bar and low temperatures is 6.4 %
(see [35]), while for nonzero pressures it can even reach the values of 9.5 % for
P = 10 bar (see also Chap. 15). In the same time the maximal solubility of 3He in the
solid phase at low temperatures is exponentially small for T B 0.3 K (see [36, 37]).
At T * (0.4 7 0.5) K, however, the equilibrium impurity concentrations in the
solid and liquid phases become comparable by the order of magnitude.

In the experiments [15, 16] it was in particular established that at low tem-
peratures and the dimensions L of the crystals larger than the capillary constant
a0 = (2a/g)1/2 = 0.14 cm, the rough interface remains highly mobile up to the
impurity concentrations of the order of 10-3 (0.1 %). This may seem to contradict
the results of Landau et al. [14] who observed visually an increase of the relative
flat surface fraction on small (L * a0) crystals when a low concentration of
impurity (10-4) is added. Qualitative arguments by Castaing et al. [41], however,
attribute this phenomenon to the fact that the absorption of the 3He impurity on the

surface lowers the surface rigidity ~a ¼ aþ o2a
ou2 and thereby also the sizes of the

rounded sections. For large crystals (L ffi a0), however, the role of the surface
energy in the establishment of the equilibrium shape is small compared with that
of the gravity. So when a low concentration of impurity is added, an appreciable
fraction of the boundary remains highly mobile. In [15, 16] the authors have also
proposed for the interaction of 3He with the interface a theoretical model involving
a macroscopical wave function of the impurity being localized close to the
interface. This assumption is in fact equivalent to the neglecting of the equilibrium
‘‘freezing-in’’ (penetration) of the impurity in the solid phase.

Experiments of Anufriev, Lopatik and Sebedach confirm the correctness of this
assumption for T B 0.3 K. From the other hand for higher temperatures we cannot
neglect ‘‘freezing-in’’ of the impurity, since the equilibrium solubility of the
impurity in the solid phase is comparable with that in the liquid phase.

In [17, 18] a complete system of the generalized boundary conditions with an
account of the most important surface dissipative effects as well as with an account
of the finite 3He concentration in both the solid and liquid phases is derived.

3.2.1 Equations of the Surface Hydrodynamics at T = 0
and in the Presence of the Impurities

The system contains four more equations that in the case of the interface of the
pure solid and liquid 4He at T = 0. First one corresponds to the impurity balance
equation:
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jð1Þ3z � q1c1Vb ¼ jð2Þ3z � q2c2Vb; ð3:2:1Þ

where Vb ¼ _uz þ _1 is the velocity of the boundary and the impurity flux in the solid
phase:

~jð1Þ3 ¼ q1c1
_~u� q1D1

~rc1; ð3:2:2Þ

c1 is an equilibrium concentration of impurity in the solid phase, D1 is the diffusion

coefficient for the impurity in the solid phase. In the same time~jð2Þ3 ¼ q2c2~vn is the
impurity flux in the liquid phase, c2 is the equilibrium impurity concentration in the
liquid.

Note that the hydrodynamic description is valid in the liquid phase for the
frequencies lower than all the characteristic reciprocal relaxation times in the
system. In the temperature and the concentration range under consideration we

have the following hierarchy of the relaxation frequencies (c ¼ 1=s) 1
.

sð2Þph�ph �

1
.

sð2Þph�i � 1
.

sð2Þi�i for the phonon–phonon, phonon-impurity and impurity–

impurity relaxation, respectively. At T B 0.5 K and c2 * 10-4 7 10-3 the

hydrodynamics is valid up to quite high frequencies x� 1
.

sð2Þi�i�ð107 � 108Þ s�1.

Note that in the considered region the impurities and their scattering by one
another are of the principal significance for the thermodynamics and the formation
of the second sound waves in the liquid phase (the second sound here is in fact a
thermal wave in the impurity subsystem and c2

II � T).

Note that for xsð2Þi�i� 1 the impurity component has the same drift velocity
~vi ¼~vn as roton and phonon normal excitations in the superfluid solution.

A second equation is an additional equation for the thermal equilibrium with
respect to 3He-component:

lð1Þ3 � lð2Þ3 ¼ jð1Þ3z � q1c1Vb

ffi �

1=K3; ð3:2:3Þ

where the coefficient 1/K3 has the meaning of the inverse growth coefficient with
respect to the 3He-component.

In (3.2.3) according to Anufriev, Sebedach and Lopatik [36]:

lð2Þ3 ¼ Wð2ÞðP; T ¼ 0Þ þ T

m4
ln c2 �

T

m4
ln

2m4

q2

m�T

2p�h2

� �3=2
" #

ð3:2:4Þ

for the liquid phase and

lð1Þ3 ¼ Wð1ÞðP; T ¼ 0Þ þ T

m4
ln c1 ð3:2:5Þ

for the solid phase.
We have neglected here the small contribution to the thermodynamics from the

slow band motion of the impurity in the solid phase (the effective band velocity
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vband � Dd
�h � T=m�ð Þ1=2 for D � T where d is interatomic distance, m* is the

effective mass of 3He atom in the solution, and D is the impurity bandwidth). Note
that a band motion of impurities is absent in the superfluid phase.

The balance equation with respect to 4He component reads again:

jð1Þz � q1Vb ¼ jð2Þz � q2Vb; ð3:2:6Þ

where the mass fluxes in solid and liquid phases yield:

~jð1Þ ¼ q1
_~u; ~jð2Þ ¼ qs~vs þ qn~vn: ð3:2:7Þ

For T * (0.1 7 0.5) K and c2� 10�3 � 10�4, the influence of diffusion,
including heat and mass diffusion, is negligible in the liquid phase compared with
the thermal conductivity and will be neglected. The normal density qn ¼
qph

n þ q2c2
m�

m4
has the phonon and impurity contributions in the hydrodynamic

regime xs � 1. The conditions of the mechanical equilibrium if we neglect the
surface stress k1abc read:

Pð1Þzz ¼ Pð2Þzz ; Pð1Þzb ¼ 0; ð3:2:8Þ

where Pð1Þik ¼ P1dik � r�ik; P1 ¼ P0 � 1
3 rll as for the pure case at T ¼ 0, r�ik ¼

rik � 1
3 dikrll is a shear part of the stress tensor; Pð2Þik ¼ P2dik in linear theory. Thus

again rzz þ P2 � P0 ¼ 0, where P0 = 26 bar is the equilibrium pressure. To
complete the system of equations for T = 0 and in the presence of the impurity we
should add to (3.2.1), (3.2.3), (3.2.6), (3.2.8) the conditions for the thermodynamic
equilibrium at T = 0 and the equation for the surface entropy increase. The first
one

lð1Þ4 � lð2Þ4 þ Meff €1� ~acbrcrb1
� � 1

q1
¼ jð1Þz � q1Vb

ffi � 1
Kgr

ð3:2:9Þ

connects as usual the difference between the chemical potentials of 4He component
with the growth coefficient Kgr (Meff and ~acb are again an effective surface density
and the surface stiffness).

In (3.2.5) the chemical potential with respect to the 4He component in the liquid
phase for a weak nondegenerate solution reads (see [35]):

lð2Þ4 ðP; T ; c2Þ ¼ lð2Þ4 ðP; TÞ �
T

m4
c2; ð3:2:10Þ

where lð2Þ4 ðP; TÞ is the chemical potential of pure liquid 4He. Analogously in the
solid phase

lð1Þ4 ðP; T ; c1Þ ¼ lð1Þ4 ðP; TÞ �
T

m4
c1: ð3:2:11Þ
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The next equation of the complete system is an equation of the increase of the
surface entropy:

f ð1Þz � q1r1Vb � f ð2Þz þ q2r2Vb ¼ Rsur=T0; ð3:2:12Þ

where f ð1Þz and f ð2Þz are the entropy fluxes and S1 ¼ q1r1 and S2 ¼ q2r2 are the
entropy densities of the solid and liquid phases, Rsur is the surface dissipative
function, T0 is equilibrium temperature (see discussion after Eq. (3.2.18)).

In (3.1.63) at low temperatures and the impurity concentrations (see
Khalatnikov [35])

r2 ¼ rph
2 �

c2

m4
ln c2 þ

c2

m4
ln

2m4

q2

m�T

2p�h2

� �3=2
" #

ð3:2:13Þ

for the entropy of the liquid phase, where rph
2 is the phonon contribution to the

entropy of the unit mass r. In the same time for the entropy of the unit mass of the
solid phase

r1 ¼ rph
1 �

c1

m4
ln c1: ð3:2:14Þ

The entropy flux in the liquid phase

~f ð2Þ ¼ q2r2~vn � j2
~rT=T2; ð3:2:15Þ

where j2 is the thermal conductivity of the liquid solution. Correspondingly the
entropy flux in the solid phase

~f ð1Þ ¼ q1r1
_~u� j1

~rT=T1 �
or1

oc1

� �

q1D1
~rc1; ð3:2:16Þ

where r1 is given by (3.2.9) and j1 is the thermal conductivity of the solid
solution. Note that a possibility of a complete thermodynamic description in the
solid phase and particularly the possibility to introduce a single temperature T1 for
the impurity and phonon subsystem, implies the satisfaction of the condition

xsð1Þi�ph\1 (the thermolization condition for impurities). We emphasize that at the
temperatures and concentrations considered the following relation holds between

the respective relaxation frequencies [38, 39, 42, 43]: 1
.

sð1Þi�ph �1
.

sð1Þph�i

� 1
.

sð1ÞUph�ph� 1
.

sN
ph�ph� 1

.

sð1Þi�i for an impurity on phonon, a phonon on impu-

rity, a phonon on phonon with Umklapp (see Chap. 1) and normal scattering of a

phonon by a phonon with an account of anharmonicity. Finally 1
.

sð1Þi�i is an

inverse scattering time of an impurity by an impurity due to the band motion. At

T * 0.5 K we have 1
.

sð1Þi�ph� 102 � 103 s�1 and 1
.

sU
ph�ph� 1

.

sN
ph�ph� 106 s�1.
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When all these relations between the frequency and the relaxation times are sat-
isfied, the bulk fluxes in the solid phase take the form of (3.2.2), (3.2.7), (3.2.16).

3.2.2 The Surface Dissipative Function and Kapitza
Thermal Resistance

To find the surface dissipative function Rsur in (3.2.12) we have to write the
conservation law for the surface energy:

_Es þrbhb � ðQ1z � Q2zÞ þ ðE1 � E2ÞVb ¼ 0; ð3:2:17Þ

where the surface energy flux hb ¼ �~alb1l _1 in linear approximation, E1 ¼
�P1 þ q1r1T1 þ lð1Þ4 q1 þ lð1Þ3 q1c1 þ r�iku�ik=2 is the bulk energy density for the

solid phase, ~Q1 ¼ lð1Þ4
~jð1Þ þ lð1Þ3

~jð1Þ3 þ T1
~f 1 þ r�ik _uk is the bulk energy flux in the

liquid phase.
Correspondingly

E2 ¼ �P2 þ q2T2r2 þ lð2Þ4 q2 þ lð2Þ3 q2c2;
~Q2 ¼ lð2Þ4

~jð2Þ þ lð2Þ3
~jð2Þ3 þ T2

~f2

are the bulk energy density and the bulk energy flux in the liquid phase. From
(3.2.17) it follows that the surface dissipative function

Rsur ¼ lð1Þ4 � lð2Þ4 þ Meff €1� acbrcrb1
� �

1
q1

h i

jð1Þz � q1Vb

� 	

þ

þ lð1Þ3 � lð2Þ3

ffi �

jð1Þ3z � q1c1Vb

ffi �

þ T1 � T2ð Þ f ð1Þz � q1r1Vb

� �

:
ð3:2:18Þ

We have neglected in (3.2.18) the surface fluxes of mass, impurity mass,
momentum and entropy, and have set the surface temperature equal to those in the
interior. Note that in (3.2.12) for the entropy increase T0 is the equilibrium tem-
perature on the melting curve. From the requirement that the surface dissipative
function should be positive Rsur [ 0 follows (3.2.3) and (3.2.9) for the thermo-
dynamic equilibrium with respect to 4He and 3He components. Moreover, the last
term in the r.h.s. of (3.2.18) implies that:

T1 � T2 ¼ RKT0ðf ð1Þz � q1r1VbÞ; ð3:2:19Þ

where RK is the thermal Kapitza resistance, and DT = T1 - T2 is a temperature
jump between the solid and liquid phase.

Thus we derived the complete system of equations for the generalized boundary
conditions at temperatures T = 0 and in the presence of 3He impurities. The
system includes the balance equations with respect to 4He and 3He components
(3.2.1) and (3.2.6), the equations of the mechanical equilibrium (3.2.8), the
equations for the thermodynamic equilibrium with respect to 4He and 3He
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chemical potentials (3.2.3) and (3.2.9), the equation of the surface entropy increase
(3.2.12) and the equation for the temperature jump due to Kapitza thermal resis-
tance (3.2.19). Note that this jump can exist only on the solid-superfluid interface
since superfluid helium has an infinite effective thermal conductivity. Due to this
fact we can speak about almost uniform temperature distribution in the liquid
phase which is established during very short relaxation times.

Note also that when we consider the surface dissipative function (3.2.18) and
the generalized thermal equilibrium conditions (3.2.3), (3.2.9), (3.2.19), which
follow from its positive definiteness, we disregard for simplicity the off-diagonal
elements of the Onsager matrix of the kinetic surface coefficients. In the phe-
nomena under consideration the off-diagonal matrix elements of the kinetic
coefficients are smaller than the diagonal once (since Rsur [ 0) and only renor-
malize the effects connected with the diagonal elements. Thus, they do not lead to
qualitatively new results.

Finally let us emphasize that the total thermal conductivity of the surface
rs ¼ 1=RK is a sum of the two components rsL from the phonons and rS3 from the
impurities. The phonon contribution rsL * T5 is determined at low temperatures
(T B 0.2 K) by the capillary effects, that is by the surface stiffness ~a and the
effective surface mass Meff . It was investigated in [19, 20] and [4, 5]. The impurity
contribution to the heat conductance of the interface will be discussed below.

In (3.2.9) for the thermodynamic equilibrium (for lð1Þ4 � lð2Þ4 ) the coefficient
1/Kgr is a reciprocal crystal-growth coefficient (relative to 4He component). In
quantum crystal it is determined mainly, as we already discussed in Chap. 2, by the
momentum transfer from the quasiparticle gas to the interface. If the drift veloc-
ities of the impurities and of the phonons do not coincide with the interface
velocity (as in the case when the impurity has a finite ability to freeze into the solid
phase), then the coefficient 1/Kgr, just like rs ¼ 1=RK , is a sum of the two con-
tributions—from the impurities and from the phonons. The phonon contribution

1=KðphÞ
gr � qph

n cI=q2� T4 was investigated experimentally by Keshishev, Parshin

and Babkin. The impurity contribution 1=KðiÞgr � qni T=m�ð Þ1=2=q2� c2T1=2 was
estimated in [41].

Lastly, 1/K3 has the meaning of the coefficient of the crystal growth with respect
to 3He component. A similar coefficient was introduced for the growth of a classical
crystal (see for example review-article by Chernov (see Ref. [44] in Chap. 2)).
A possible estimate of its value for mobile (rough) interface will be given below.
When the viscosity of the liquid is taken into account, one more condition should be
met. Namely the tangential component of the velocity of normal excitations should
be equal to the tangential component of the lattice velocity _ub ¼ vnb. In addition,
the equations (3.2.8) and (3.2.18) for mechanical equilibrium and surface dissi-
pative function should acquire the terms connected with the viscous-stress tensors
(see Chap. 1). For the phenomena considered below, however, viscosity is insig-
nificant and will be neglected.

We discuss now the system (3.2.1), (3.2.3), (3.2.6), (3.2.8), (3.2.9), (3.2.12) and
(3.2.19) which consists of eight equations. We have to check whether the number
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of the boundary conditions equals to the number of the independent modes. In the
liquid phase there are first and second sounds, and the purely dissipative heat-
conduction mode having at c2 * 10-3 a spectrum ixIII ¼ 3j2k2=5q2cð2Þ, where
cð2Þ is the heat capacity per unit mass of the liquid. In the third mode the tem-
perature and the concentration oscillate. If we take into account the impurity
diffusion in the liquid phase then the spectrum of this mode would be determined
by the effective thermal conductivity jeff (see Khalatnikov [35]). There is no such
mode in pure He-II, and the heat conduction influences only the damping of a
second sound ImxII ¼ ð1=5Þj2k2=q2cð2Þ. The presence of an independent heat-
conduction mode in the liquid solution is very clearly due to the appearance of an
independent variable – the concentration of impurities c2. The careful analysis
shows that for c2 ? 0 and D2 = 0 xIII ? 0.

Four independent modes exist in the solid phase. These are two first sounds

(longitudinal and transverse), a heat conduction mode ix ¼ j1k2=q1cð1Þph (if

xsU\1—see Chap. 1), and, last, a diffusion mode ix ¼ D1k2.
We emphasize that in view of the relation D1 � j1=q1cð1Þ, the heat-conduction

and the diffusion modes in solid interact very weakly even when the thermal
diffusion is taken into account. Therefore, the stringent impurity-thermolization

condition xsð1Þi�ph\1 is, generally speaking, not mandatory for the hydrodynamic
scheme being considered. Hydrodynamic treatment of the diffusion and the heat-
conduction in a solid is thus actually valid up to the frequencies

x\1=sNð1Þ
ph�ph� 1=sð1Þi�i, i.e., to x� 106 s�1. Note that the eighth independent var-

iable is the additional recrystallization displacement f of the surface. The number
of the independent variables is therefore equal to the number of the boundary
conditions. Note also that at T = 0 and for the pure case (no impurities) the
number of the boundary conditions is 4 [see the system (3.1.32)]. Finally for pure
4He at T = 0 the number of boundary conditions is 6 and we add two equations
for the surface entropy increase and for the temperature jump on the surface to the
system (3.1.32) which is valid at T = 0.

3.2.3 Damping of Melting-Crystallization Waves

The specific property of a mobile interface boundary at T = 0 and in the presence
of impurities is that three surface modes exist on it: melting-crystallization waves
(in which f and~jð2Þ oscillate), Rayleigh waves (in which~u and~jð2Þ oscillate), and
surface second sound, whose velocity is close to cII (to the velocity of the bulk
second sound in the superfluid solution). In the last mode we have coupled
oscillations of temperature and 3He-concentration [52].

Using the derived boundary conditions, let us examine how a low concentration
of 3He impurity influences the damping of the crystallization waves.
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The spectrum of the melting-crystallization waves at low frequencies

(e� x
c d q2

Dqð Þ2 \1) at T = 0 and in the presence of impurities has the form (see

[17, 18] and references therein):

x2 ¼ ~axxk3ðq=DqÞ2

1þ qqn

ðDqÞ2

� ixkq
q

Dq

� �2 1
Kgr
þ c2

1

K3
þ RKTr2

1 þ
T r1 � r2

c1
c2

ffi �

ðj1 þ j2Þk
rph

1 þ
c1

m4
ln

c2

c1

� �

2

4

3

5;

ð3:2:20Þ

where kxj j ¼ kzj j ¼ k is the wave number of the surface wave. Note that the real
part of the spectrum Rex differs from the expression (3.1.46) for the spectrum at
T = 0 only in the presence of the factor qqn

ðDqÞ2 in denominator of (3.2.20). Obviously

for T ? 0 and c2 ? 0 qn ! 0 and the factor qqn

ðDqÞ2 goes to zero restoring the

previous result.
In the same time the imaginary part of the spectrum besides a contribution from

the inverse growth coefficient with respect to 4He component [compare with
(3.1.48)] contains also the contributions from 1/K3, RK and from the bulk thermal
conductivity connected with j1 and j2. At T * (0.4 7 0.5) K the impurity, in
both the liquid and the solid phases, makes a larger contribution to the thermo-
dynamics then the phonons for c * 10-3. The imaginary part of the wave spec-
trum can therefore be written in this case in the form:

Imx ¼ qk

2
q

Dq

� �2 1
Kgr
þ c2

1

K3
þ RKTr2

1 þ
Tc2

2

m2
4kðj1 þ j2Þ

c2
1

c2
2

ln2 c1

c2

� �� �

: ð3:2:21Þ

The first three terms in the right-hand side of (3.2.21) are responsible for the
surface dissipation, and the fourth for the bulk dissipation. The estimates show that
for

klU\ cII=cIð Þ ri
�

rph
� �

c1=c2 ð3:2:22Þ

(where lU is the mean-free path connected with the Umklapp processes, ri is the
impurity part of the entropy) the main contribution to the damping is made by the
bulk dissipation. Note that from the experimental measurements of the damping of
the melting-crystallization waves one can independently extract the impurity
distribution coefficient between liquid and solid phases c1/c2, which is a function
only of temperature and pressure in weak solutions.

We point out that if the impurity concentration is decreased in each of the
phases, the contribution of the heat-conduction to the imaginary part of (3.2.20) at
a fixed temperature T = 0 is determined by the phonons and still is different from
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zero. If, however, the inequality (3.2.22) is reversed, the damping is determined
mainly by the surface dissipation. Note that for T * (0.4 7 0.5) K and starting
with a concentration c2 * 10-3 the imaginary part of the spectrum becomes of the
same order as the real part for the frequencies x B 105 s-1.

Equation (3.2.20) was obtained by Kagan, Kosevich under assumptions:

RK � 1
j1k � 1

j2k

ffi �

; RK � x
kc2

IIqcð1Þ
;

1
K3
ðD1xÞ1=2 � T

qmc1
;

c2
1

K3
� Tc2

2

m2
4kðj1þj2Þ

c2
1

c2
2
ln2 c1

c2

ffi �

:
ð3:2:23Þ

If the first inequality of (3.2.23) is violated, then there is no flow of entropy
through the interface, i.e. f1z � q1r1Vb ¼ f2z � q2r2Vb ¼ 0. We emphasize that in
the case of pure He-II, i.e. for xIII ¼ 0, the dissipative term in the entropy flux of a
liquid phase turns out to be small and we arrive to the ‘‘stringent’’ hydrodynamic
boundary condition vnz ¼ Vb used in [30].

When the third and fourth inequalities in (3.2.23) are violated, there is no
impurity flux through the interface, i.e.

jð1Þ3z � q1c1Vb ¼ jð2Þ3z � q2c2Vb ¼ 0;

which is also equivalent, for the liquid phase, to the condition vnz ¼ Vb. In this case
the imaginary part of the spectrum of the melting-crystallization waves is given
by:

Imx ¼ 1
2

k
q
Dq

� �2

q
1

Kgr
þ Tc1

qm4ðD1xÞ1=2

( )

; ð3:2:24Þ

i.e. it is determined at very low frequency by the diffusion coefficient D1 in the
solid phase (see experiments of Agnolet et al. [40] in Texas). Namely, this con-
tribution vanishes together with the impurity concentration c1 in the solid phase.
For the inverse growth coefficient with respect to the 3He component we can

obtain the estimate 1
K3
� T

qmc1

lð1Þii
D1g
� T

qmc1

1
vbandg

, where the dimensionless parameter

g\1 plays the role of the effective coefficient of the penetration from the solid into
the liquid phase and vband is a band velocity of the impurities in the solid phase.
The penetration coefficient g becomes much less than unity at low temperatures
T \ 0.3 K, when the ability of the impurity to freeze into the solid is low. We
emphasize that the transition to the situation in which there are no entropy and
impurity fluxes through the interface can be described not only kinetically but also

thermodynamically. The transition occurs at: c1 � c2; rph
1 � r2 	 ri

2

� �

:

Estimates show that both inequalities hold at the same temperatures
T * (0.1 7 0.2) K. At these temperatures the solid can be regarded as free of
impurities and phonons, i.e. it can be described by the elasticity theory equations
(see Subsection 3.1.3) for T = 0.

We note that at low temperatures (when the impurity concentration c1 in the
solid phase is vanishingly small) the damping of the crystallization waves is
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determined mainly by the phonon contribution. In this region, as we discussed
already, the inverse growth coefficient 1=Kgr is proportional to T4 and small (see
[30]). In this case a more important role can be played by the corrections (con-
nected with the impurity concentration in the liquid phase) to the real part of the
spectrum, and particularly by the effective decrease of the surface stiffness ~a in
Rex [see (3.2.20)] due to 3He impurity adsorption.

3.2.4 Impurity Contribution to the Kapitza Thermal
Resistance at Low Temperatures

Using the complete system of the boundary conditions in the low-temperature limit

T * (0.1 7 0.2) K (c1 � c2; rph
1 � ri

2; vnz 	 Vb), we can solve the acoustic
problem again and determine the coefficient of the energy transfer for a longitu-
dinal wave incident from solid phase to first- and second-sound waves in liquid.
The solution of this problem helps us to evaluate Kapitza resistance RK on the
mobile interface (see Khalatnikov [35]).

For the simplest case of a normal incidence of a longitudinal wave the total
transmission coefficient is equal to

D ¼ DI þ DII ¼ 4
cI

cl
e2 þ qqncII

Dqð Þ2cl

 !

; ð3:2:25Þ

where as usual e ¼ qMeff

Dqð Þ2
x
cI

; q 	 q1 	 q2; Dq
q ¼

q1�q2
q � 1.

Equation (3.2.25) contains a sum of two contributions. The first DI describes
the energy-flux fraction transferred to the first sound in the liquid, and DII , the
fraction transferred to a second sound in the liquid. In the range of the tempera-
tures and concentrations which we are considering qn, cII and rð2Þ are defined by
the impurities, and thus the second sound velocity (see Chap. 1) reads:

c2
II ¼

Tq2
2 rð2Þ
� �2

qs

Cð2Þp qnq2

	 Tq2
2ðriÞ2

c2qni
� T

m�
; ð3:2:26Þ

where Cð2Þp is specific heat at constant pressure in the liquid phase. Corre-
spondingly the coefficient DII is given by:

DII ¼
4q

Dqð Þ2cl

5
3

m�T

� �1=2qc2

m4
: ð3:2:27Þ

Equation (3.2.27) does not depend on frequency and does not contain the
relaxation time s. The expression for DII can therefore be used to represent (at least
in the order of magnitude) the efficiency with which the thermal phonon �hx� T is
transferred from the solid phase to the impurity subsystem in the liquid solution.
The physical reason is that the Kapitza thermal resistance is determined by the
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energy transfer from the wall to the He-II quasiparticles on the interface itself, so
that RK depends little on the excitations mean free path l (on the relaxation time s).
The mean free path l determines only the distance over which the temperature
jump is formed (is localized), and not the magnitude of this jump. We thus obtain
the following estimate for the impurity contribution to the thermal conductivity rs3

of the interface:

rs3� cð1Þph �ctDII �ðq=DqÞ2c2T7=2; ð3:2:28Þ

where cð1Þph is the phonon part of the heat capacity of the solid (cð1Þph � T3) and �ct is
the average sound velocity in the crystal. We point out that the resulting tem-
perature and concentration dependences of rs3 agree with the result of the model
calculation of Graf, Bowley and Maris [15, 16].

Moreover, it is interesting to note that the energy fraction transferred to the
impurity subsystem, obtained in [16] within the framework of the quantum–
mechanical model (the case l ¼ 1) differs from (3.2.27) by no more than
20–25 %.

We point out that DI in (3.2.25) determines the phonon contribution to the
thermal conductivity of the interface rsL. The latter due to proportionality of DI to

x2 takes the form rsL� q=Dqð Þ4T5. The total thermal conductivity rs ¼ rsL þ
rs3 ¼ 1=RK of the interface is an additive quantity, a fact reflected in (3.2.25). At
the temperatures and concentrations considered, we have rs3 � rsL in view of the

‘‘extra factor’’ q=Dqð Þ2� 102.

3.2.5 Cherenkov Emission of the Second Sound Quanta
by the Thermal Surface Waves

Note also that there is one more mechanism, not accounted for in the theoretical
parts of [15, 16], for heat transfer to the impurity subsystem. This mechanism is
connected with the Cherenkov emission of the second sound quanta by the thermal
crystallization oscillations of the interface and by the thermal Rayleigh waves.
This contribution is similar to the contribution considered by Khalatnikov [35] of
the Rayleigh waves to the thermal resistance on a He-II- metal interface. In the
temperature region considered, the thermal crystallization waves with frequencies
x� T=�h� 1010 s�1 are estimated to have an acoustic spectrum x�~vMk, where

~vM ¼ ð~a=Meff Þ1=2. The contribution of these waves to rs3 therefore has the same
temperature and concentration dependences as the contribution from the bulk

phonons of the solid i.e. rM
s3� c2T7=2 q=Dqð Þ2. The exact expression for this

contribution to rs3 for ~vM ffi cII is:

rM
s3 ¼

p3

4
q

Dq

� �2 3
5

m�T

� �1=2

c2
T

�h~vM

� �3

; ð3:2:29Þ
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which is also of the same order as the results of [15, 16].
We note that rs3 also receives a contribution from Cherenkov emission of the

second sound quanta by the thermal Rayleigh waves. This contribution

rR
s3� c2T7=2 q=Dqð Þ2 has just the same order of magnitude as Cherenkov contri-

bution from the thermal crystallization waves.
Concluding this section let us emphasize again that

1. We derived generalized boundary conditions (the system of equations of the
surface hydrodynamics) for atomically rough mobile phase-interface between
quantum crystal and a superfluid at low temperatures and with an account of a
finite impurity concentration in both solid and liquid phases.

2. We discussed different non-dissipative capillary terms such as surface stiffness,
surface stress tensor, and kinetic surface density as well as dissipative growth
coefficient and Kapitza thermal resistance which play an important role for the
spectrum and damping of melting-crystallization waves and for acoustic (sound
transmission and reflection) coefficients.

3. We analyzed the instability of a tangential flow of a superfluid liquid in the
direction parallel to the rough surface of a quantum crystal and found the
growing increment of melting-crystallization waves which governs the transi-
tion to the non-linear regime of the surface development

4. We predicted a possibility of a resonant excitation of the surface (Rayleigh)
waves by the bulk (second sound) wave incident from the liquid under the
transcritical angle of the total internal reflection. We predicted also an inverse
effect of Cherenkov emission of the second sound quanta by the thermal surface
waves on the rough interface.

Our results suggest that at phonon-temperatures T B (0.4 7 0.5) K and
impurity concentrations c� 10�3 the damping of melting-crystallization waves is
small which is in favor of mobile (atomically rough) character of the surfaces
under consideration. Experimentally this family of mobile surfaces could corre-
spond, for example, to the vicinal surfaces which are close to the surface per-
pendicular to the main axis of the hexagonal 4He crystal.

The equations of the surface hydrodynamics on the slow-growing atomically
smooth surfaces are much more simple and support at T = 0 only one wave of the
surface excitations, namely Rayleigh-Stonley waves. The melting-crystallization
waves on these surfaces, if they exist, have a nonlinear character [45].
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Chapter 4
Quantum Hydrodynamics of the P-Wave
Superfluids with the Symmetry of 3He-A

In the present chapter we derive the equations of orbital hydrodynamics and
analyze the spectrum of collective excitations for bosonic and fermionic p-wave
triplet superfluids with the symmetry of A-phase.

We discuss the spectrum of orbital waves, the paradox of the intrinsic angular
momentum and the complicated problem of chiral anomaly (mass current non-
conservation) in the superfluid hydrodynamics of the fermionic A-phase at T = 0.

We present two different approaches to the chiral anomaly, one based on
supersymmetric hydrodynamics [1–3] and another one on the formal analogy
between Bogoliubov-de Gennes equations for 3He-A [38] and the Dirac equation
in quantum electrodynamics (QED, [4–7, 9, 10, 26–28]). We are motivated by the
experimental discovery of superfluid and superconductive fermionic systems with
nodal (Dirac) points and lines, which exist in the complex order parameter or in the
energy spectrum of the superfluid 3He-A (see Chaps. 9 and 12), organic and heavy-
fermion superconductors, ruthenates (Sr2RuO4) (see Chap. 9) and p-wave Fermi
gases in the regime of Feshbach resonance (see Chap. 7). Note that both com-
peting approaches, which we discuss in this Chapter, are very general. An
approach, connected with the construction of the supersymmetric hydrodynamics,
is based on the inclusion of the fermionic Goldstone mode in the low-frequency
hydrodynamic action [1–3, 11]. It can be useful for all nodal fermionic superfluids
and superconductors with zeroes of the superconductive gap such as 3He-A,
Sr2RuO4, UPt3, UNi2Al3 and U1-xThxBe13 [12]. The second approach is also very
nice and general. It is connected with the appearance of the Dirac-like spectrum of
fermions with a zero mode [4–10], which also arises in many condensed-matter
systems such as 3He-A, chiral superconductor Sr2RuO4, organic conductor
a-(BEDT-TTF)2I3, 2D semiconductors, or recently discovered graphene [12–16].
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4.1 Orbital Hydrodynamics of Bosonic and Fermionic
Superfluids with the Symmetry of A-phase of 3He

In the previous Chapters we considered mostly hydrodynamics of superfluid 4He
[24], which is a hydrodynamics of the isotropic bosonic superfluid. At zero tem-
peratures hydrodynamics of a superfluid 4He is trivial. It is described in terms of
the two equations, first one for superfluid velocity ~vs (or mass current
~js ¼ qsðT ¼ 0Þ~vs, where superfluid density qsðT ¼ 0Þ ¼ q – equals to the total
density) [21–23, 25, 40]. The second equation is a conservation of mass (see
Chap. 1). Note that the order parameter in the superfluid 4He is a scalar complex

function W ¼ ffiffiffiffiffi

qs
p

eiv, where ~vs ¼ �h
m4
~rv and qs ¼ jWj2 (see [20]). The order

parameter in a bosonic or a fermionic superfluid with the symmetry of A-phase
(where the role of the order parameter W plays a superfluid gap D, see Chap. 7) has
a more complicated (tensor) structure. It’s orbital part is characterized by three

mutually perpendicular unit vectors~e1,~e2 and~l, where~l ¼~e1 �~e2 and~l2 ¼~e2
1 ¼

~e2
2 ¼ 1 (see [17, 29, 30, 90] and Chap. 7). In the homogeneous case ~l, ~e1, ~e2

coincide with the Cartesian unit vectors~ez,~ey,~ex. However, in general case they
are slowly varying functions of~r and t. The orbital part of the order parameter in
the A-phase is a complex vector

~D ¼ D0eiv ~e1 þ i~e2ð Þ; ð4:1:1Þ

where D0 is the amplitude of the order parameter (of the superfluid gap in case of

Fermi-liquids and Fermi-gases). Note that ~D in (4.1.1) corresponds to the spherical
function Y11 and thus l ¼ lz ¼ 1 for the orbital momentum and its z-projection in
the A-phase.

The superfluid velocity~vs in case of Fermi-liquid (3He-A) or Fermi gas is given
by [17]:

~vs ¼
�h

2m3
e1i
~re2i þ ~rv

� �

; ð4:1:2Þ

where a factor 2m3 reflects the pairing of two fermions [17, 20] and their sub-
sequent Bose-condensation in superfluid 3He [19]. The additional (with respect to

superfluid 4He) variable ~l corresponds to the quantization axis of the angular
momentum of the p-wave pairs in the superfluid 3He.

Note that in the next chapters we will consider superfluidity (or superconduc-
tivity) in Fermi systems of the two types: strong coupling superfluidity, where we
have tightly bound pairs (or difermionic molecules) well separated from each
other. In this case the pairing takes place in real space. We will often call the
Bose–Einstein condensation of local pairs in this case as a BEC limit of the
superfluidity [31, 32]. Another type of superfluidity in Fermi systems corresponds
to the creation and simultaneous Bose-condensation of the extended Cooper pairs,
which strongly overlap with each other in real space. The phenomenon of pairing
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takes place in momentum space in this limit. This is a standard BCS-type of
superfluidity or superconductivity [20–23]. Thus, when we are speaking about
bosonic superfluid we have in mind either elementary bosons (atoms of 4He), or
composed bosons (molecules of 6Li2 and 40K2 formed in BEC-limit for p-wave
superfluid Fermi-gases, which we will consider in Chap. 6 [33–35]). Corre-
spondingly when we are speaking about fermionic superfluids we have in mind
BCS-type of pairing (as in 3He-A and 3He-B for example).

4.1.1 Orbital Hydrodynamics and Collective Modes
in Bosonic Regime

In this Subsection we will consider bosonic (BEC) regime having in mind first of
all diatomic molecules with p-wave symmetry, which arise in ultracold Fermi-
gases of 6Li and 40K in the regime of Feshbach resonance (see Chap. 6). In BEC
regime at T = 0 we could safely define the density of the orbital momentum of p-

wave molecules (local pairs) as ~L ¼ �h
2m q~l. Correspondingly the total mass-current

at T = 0 reads:

~jB ¼ q~vs þ
�h

2m
~r� q~l

� �

¼ q~vs þ ~r�~L; ð4:1:3Þ

where ~r�~L—term in the r.h.s. of (4.1.3) is analogous to a diamagnetic dis-
placement current well known in the Electrodynamics of Continuous Media [18].
Hydrodynamic energy for molecular A-phase reads:

EB ¼ E0 q;~l; oi
~l

� �

þ q
v2

s

2
; ð4:1:4Þ

where we used Galilean transformation for EB to the coordinate frame where the
superfluid velocity~vs ¼ 0. In this frame bosonic energy is E0. The differential dE0

in general case reads:

dE0 ¼ ldqþ Fikdrilk þMkdLk; ð4:1:5Þ

where

Fik ¼
oE0

orilk
; ð4:1:6Þ

and ~LB ¼ �hq
2m
~l is the density of the orbital momentum.

The internal energy E0 is connected with thermodynamic and liquid crystal like
orbital energy. The term Fikdrilk provides quadratic in gradients contribution to
E0. It corresponds to the energy of the orbital deformation, which is similar to the
deformation energy in the liquid crystals [36, 37]. Finally l in (4.1.5) is a chemical
potential and
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~M ¼ 1
2
~r�~vs: ð4:1:7Þ

The differential of the total energy dEB in (4.1.4) can be rewritten as:

dEB ¼ lþ �h

4m
~l � ð~r�~vsÞ þ

v2
s

2

� �

dqþ Fikdrilk þ
�hq
4m

~r�~vs

� �

k
dlk þ qvskdvsk;

ð4:1:8Þ

where dE0 ¼ lþ �h
4m
~l � ð~r�~vsÞ þ v2

s
2

� �

dqþ Fikdrilk:
We use again Landau approach for the superfluid hydrodynamics (see Chap. 1).

Then collecting all the terms for the time derivative of the energy oEB
ot under the

divergence (collecting ~r � ~Q), we get the energy conservation law in the form:

oEB

ot
þri lþ v2

s

2
þ �h

4m
~l � ð~r�~vsÞ

� �

qvsi � Fik
olk
ot

� �

¼ 0 ð4:1:9Þ

where we can define again an energy flux Qi ¼ lþ v2
s

2 þ �h
4m
~l � ð~r�~vsÞ

� �

si
�Fik

olk
ot .

Thus, oEB
ot þ ~r � ~Q ¼ 0, and the energy conservation law (4.1.9) is consistent with a

system of three hydrodynamic equations for o~l
ot,

o~vs
ot and oq

ot . This system of equations
yields [63]:

oq
ot
þ ~r � ðq~vsÞ ¼ 0; ð4:1:10Þ

ovsi

ot
þri lþ v2

s

2
þ �h

4m
~l � ð~r�~vsÞ

� �

¼ �h

2m
oi
~l ~l� _~l
� �

; ð4:1:11Þ

o~l

ot
þ ~vs � ~r
� �

~lþ~l� 1
2
~r�~vs �

�h

2m
ri~Fi

� �

¼ 0; ð4:1:12Þ

where we introduced ~Fi ¼ oE0

ori
~l

(see 4.1.6).
The first Eq. (4.1.10) in the system (4.1.10–4.1.12) is a standard continuity

equation at T = 0. Note that in (4.1.10) we used that ~r � ~r� q~l
2

� �

¼ 0 and thus

we can also represent it in the form oq
ot þ ~r � ~jB ¼ 0. In other words, the dis-

placement current as usual does not contribute to ~r � ~jB.
Second Eq. (4.1.11) is an equation for superfluid velocity with a non-trivial

right-hand side. It corresponds to the well known (in the physics of 3He-A)

Mermin-Ho [39] identity for ~r�~vs:
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rivsj �rjvsi ¼
�h

2m
~lðoi

~l� oj
~lÞ: ð4:1:13Þ

The condition (4.1.13) is based on the definition (4.1.2) and plays an important
role in the derivation of the system of equations (4.1.10–4.1.12). Note that we can
also define the superfluid velocity in different way. To do that we should introduce
three angles uað~r; tÞ defining the orientation of the trio of the mutually orthogonal

unit vectors~e1,~e2 and~l ¼~e1 �~e2. Let

d~h ¼~kaðuÞdua ð4:1:14Þ

be the Cartan form defining the infinitesimal rotation dh corresponding to two
neighboring points ua and ua þ dua in the group space fuag of the three-
dimensional rotation group. Setting fuag ¼ ~u where the vector ~u is directed along
the rotation axis and its magnitude is tgðh=2Þ (where h is the rotation angle) we get
(see Andreev, Marchenko [50]):

kai ¼
2

1þ u2
dai þ eibau

b
	 


; ð4:1:15Þ

where eiba is the Levi-Civita tensor. We can easily verify that the quantities~ka in
(4.1.15) satisfy the ‘‘flatness’’ conditions:

o~ka

oub
� o~kb

oua
þ ~ka

~kb

h i

¼ 0: ð4:1:16Þ

Since the conditions (4.1.16) are covariant with respect to a change of the
coordinates ua, they retain their form also for any other parameterization of the
rotations.

The superfluid velocity~vs in this approach has the components:

vsi ¼ �
�h

2m
~l

d~h
dxi
¼ � �h

2m
~l~ka

oua

oxi
: ð4:1:17Þ

We can easily check that this definition coincides with the standard definition
(4.1.2) for the superfluid velocity and moreover, the ‘‘flatness’’ condition (4.1.16)
automatically guaranties the fulfillment of the Mermin-Ho identity (4.1.13). The
Mermin-Ho identity yields non zero vorticity in 3He-A even in the absence of
singular vortices (see Chap. 1) and, only with an account of continuous textures of

the~l-vector.

Third Eq. (4.1.12) is an equation for vector ~l or for the density of orbital

momentum ~LB ¼ �hq
2m
~l.

First two equations on oq=ot and o~vs=ot after linearization yield the sound
spectrum x ¼ cIq.

Note that physically the sound Goldstone mode corresponds to the gauge

transformation ~D! ~Deiv of the order parameter (similar to the origin of a sound
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mode in superfluid 4He). On the level of~l-vector it corresponds to the rotation on

angle u around vector~l.

The equation on o~l=ot after linearization yields the spectrum of orbital waves.
In bosonic (molecular) superfluid it is quadratic in q: x� q2=m at small q. We can
say that the A-phase is an orbital ferromagnet [29, 30].

Physically the second (orbital) Goldstone mode is connected with the rotations

of the~l-vector on angle c around the perpendicular (to vector~l) axis (see [41]).
Note that, as usual, the system of hydrodynamic equations (4.1.10–4.1.12) is

compatible not only with the energy conservation (4.1.9) but also with the linear
momentum conservation laws (see Chap. 1):

oji
B

ot
þ o

oxk
Pikð Þ ¼ 0; ð4:1:18Þ

where Pik ¼ qvsivsk þ P� Fmnrmlnð Þdik þ Fkmrilm � eikj _Lj is a momentum ten-

sor and P ¼ �E0 þ lqþ Fikrilk þ 1
2
~Lð~r� ~VsÞ is the pressure.

4.1.2 Orbital Waves: The Paradox of the Intrinsic Angular
Momentum and Anomalous Current in Fermionic
Superfluids

In fermionic (BCS-type) superfluids with a symmetry of A-phase we deal with
extended Cooper pairs. The pairing takes place in momentum space. The fermi-
onic quasiparticle spectrum in momentum space reads (see [17] and Chap. 7):

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m
� l

� �2

þ
~D �~p
�

�

�

�

�

�

2

p2
F

v

u

u

t

; ð4:1:19Þ

where ~D ¼ D0ð~ex þ i~eyÞ is the complex order parameter and D0 is the magnitude of
the superfluid gap.

In fact, ~D �~p
�

�

�

�

�

�

2
¼ D2

0p2 sin2 h ¼ D2
0 ~p�~l
� �2

, where~l ¼~ex �~ey is the unit vector

of the orbital momentum (see Fig. 4.1). We note that Fermi momentum pF is fixed

by the fixed density n ¼ p3
F

3p2. The angle h is between the momentum~p and the axis
~l ¼~ez of the quantization of the orbital momentum.

Note that for a standard s-wave pairing, the quasiparticle spectrum in BCS

fermionic superfluid is given by [19, 21–23] Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m� l
� �2

þD2

r

. It has no

zeroes (no nodes), and therefore the topology of the s-wave superfluid is trivial in
momentum space. But for the triplet A-phase the quasiparticle spectrum in BCS

superconductor (or superfluid) has two nodes for p2

2m ¼ l and h ¼ 0; p. Note that in
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BCS-superfluid l ’ eF and thus for the nodal points p ’ pF . Hence there are
fermionic quasiparticles with practically zero energy in BCS A-phase. They play
the role of a fermionic Goldstone mode (additional to Goldstone bosonic modes
associated with sound and orbital waves). We will include the fermionic Goldstone
mode in the hydrodynamics and construct the supersymmetric hydrodynamic
action in Sect. 4.2, which describes both fermionic and bosonic Goldstone modes
(see [1–3, 11]) on the equal grounds. In this Subsection we would like to stress that
the topological effects, connected with the presence of the nodes in Ep, also are
important for the spectrum of the orbital waves in the BCS domain at low tem-
peratures T ! 0. Their spectrum is different from the spectrum in bosonic A-phase
for small x and~q. Note that for bosonic superfluid (with p-wave molecules or local

pairs) l ’ � Ebj j
2 \ 0 (where Eb is a binding energy of a molecule) and hence the

quasiparticle energy Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2mþ jlj
� �2

þ D2
0p2

p2
F

sin2 h

r

has no nodes. Thus, its

topology in momentum space is trivial just as for the s-wave BCS pairing.
In BCS superfluid A-phase the symmetry requirements also allow us to write an

additional anomalous term in the total mass current at T = 0:

~jtot ¼~jB þ~jan; ð4:1:20Þ

where

~jan ¼ �
�h

4m
C0

~l � ð~r�~lÞ
� �

~l ð4:1:21Þ

is an anomalous current.
In the BEC superfluid the important coefficient C0 = 0, and thus the anomalous

current is absent. Formally it is connected with the integral

N3D 0ð Þ
Z

d1p 1�
1p

1p

�

�

�

�

 !

; ð4:1:22Þ

Fig. 4.1 The topology of the superfluid gap in the BCS A-phase. There are two nodes in the
quasiparticle spectrum corresponding to the south and north poles [2, 3]
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where 1p ¼ p2

2m� l is a quasiparticle spectrum in the normal state. In BEC

superfluid the chemical potential l \ 0, 1p ¼ p2

2mþ lj j[ 0 and thus C0 = 0. (Note
that N3Dð0Þ ¼ mpF

2p2 is the density of states in 3D Fermi gas).
In BCS superfluid l ’ eF [ 0 and the integral in (4.1.18) is nonzero. Moreover,

in naive estimates it defines the total density in the BCS superfluid (C0 & q) at
least in the weak-coupling case D0 � eF .

Thus, it is a difficult question whether C0 = 0 in BCS phase. If C0 = 0 the
spectrum of orbital waves is strongly modified. Moreover, for nonzero C0 we
cannot get rid of anomalous current in (4.1.16) and (4.1.17). That is very
unpleasant since the anomalous current~jan violates the conservation law (4.1.14)
for the total mass current (for the total linear momentum)~jtot. Namely the time
derivative of~jtot cannot be expressed as a divergence of any momentum tensor
Pik(in contrast with a bosonic phase see (4.1.18)):

ojitot

ot
6¼ � o

oxk
Pik: ð4:1:23Þ

Thus, the presence of the anomalous current destroys the superfluid hydrody-
namics of the A-phase as T ? 0. Its contribution to the equation for the total linear

momentum (ojitot
ot ) can be compensated only by adding a term with the relative

normal velocity ~W ¼ ð~vn �~vsÞ and normal density qnðT ¼ 0Þð~vn �~vsÞ to the total
current~jtot already at T = 0 (see [4–7, 9, 10]). We would like to stress that it is
preferable to construct a closed set of the hydrodynamic equations at T = 0 only in
terms of a superfluid density qs and superfluid velocity ~vs by putting, as usual,
qsðT ¼ 0Þ ¼ q. This scenario perfectly works for bosonic A-phase. But it is not
clear whether we can describe fermionic (BCS) A-phase only in terms of the
condensate oscillations.

Note that, as we already mentioned, the presence of the anomalous current
(with C0 = 0) also significantly modifies the spectrum of orbital waves.

In Sect. 4.1.1 we mentioned that x� q2 in bosonic A-phase. More precisely in
BEC A-phase for small x and q,

qx� q
q2

z

m
; ð4:1:24Þ

or equivalently x� q2
z

m, where ~ljj~ez (see Fig. 4.1) is a quantization axis of the
orbital momentum. In the same time we will show in Chap. 7 (see also [2, 3]) that
in fermionic (BCS) A-phase

q� C0ð Þx� q
q2

z

m
ln

D0

vF qzj j
: ð4:1:25Þ

We will also show diagrammatically that C0 & q and hence (q - C0) � q in
(4.1.25) in the weak-coupling case D0 � eF. The most straightforward way to
obtain (4.1.25) is to use the diagrammatic technique of Vaks et al. [41] for the
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spectrum of collective excitations in p-wave and d-wave superfluids. The tech-
nique is based on the solution of the Bethe–Salpeter integral equation in the
superfluid state (see Chaps. 5 and 7). The details of the derivation of (4.1.25) will
be presented in Sect. 7.4. Here we would like to emphasize that the spectrum
(4.1.24) in bosonic A-phase corresponds to the density of angular momentum

~LB ¼
�hq
2m
~l; ð4:1:26Þ

while the spectrum (4.1.25) in the fermionic A-phase corresponds to the density of
intrinsic angular momentum

~LF ¼
�h

2m
q� C0ð Þ~l; ð4:1:27Þ

which is different from (4.1.26) for C0 = 0 and moreover, (q - C0) � q for
C0 & q in the weak-coupling case. We note that there are several competing
evaluations of~LF which are based not on the spectrum of orbital waves, but on the
exact microscopic representation of the static ground-state Hamiltonian of the BCS
A-phase. Here different groups provide conflicting results for ~LF . In [42–48] for
~l ¼ const the evaluation of the intrinsic angular momentum yields ~LF ¼ �hq

2m
~l in

agreement with the bosonic phase, while the inclusion of the inhomogeneous

textures of the~l-vector restores the expression (4.1.27).
We note that according to Leggett [49], the total N-particle microscopic

Hamiltonian Ĥ exactly commutes with the z-projection of the angular momentum

L̂z ¼ �hN̂=2. This fact is in favor of the result ~LF ¼ �hq
2m
~l in the BCS A-phase.

Note that rigorously speaking for 3He-A the question about the existence of the
superfluid hydrodynamics at T = 0 has to some extent a purely academic interest
since on the phase-diagram of superfluid 3He at T = 0 A-phase does not corre-
spond to a global minimum of the Ginzburg-Landau Free-energy [17], and hence
only an isotropic B-phase is realized here (see Fig. 4.2a). To get A-phase as a
global minimum of the Free-energy we should switch on a large magnetic field
Bpar � TC1

lB
, where lB is Bohr magneton (see Chap. 12). In this case B-phase will be

completely paramagnetically suppressed, and the global minima of the Free-
energy will correspond to the A1-phase with Stot

z ¼ 1 (for z-projection of a total
spin Stot ¼ 1 of the Cooper pair) and A2-phase with two Bose-condensates and
correspondingly with two projections Stot

z ¼ �1.
For magnetic fields being smaller than paramagnetic limit B\Bpar, but still

sufficiently large the phase-diagram of a superfluid 3He will be given by Fig. 4.2b,
and we see that the superfluid A2-phase (which is an analog of A-phase in case of
nonzero magnetic field) can exist at T = 0 in some interval of pressures P.

For superfluid p-wave Fermi-gases in the regime of Feshbach resonance (see
Chaps. 5 and 7) usually only one projection of spin (say r ¼") is captured by
magnetic trap and thus we have triplet Cooper pairs only with Stot

z ¼ 1. We can say
that we are dealing with fully-polarized A1-phase here. However, while spin
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sectors of A1 and A2 phases are very different, the orbital (or gauge-orbital sectors
[17]) are very similar with respect to the spectrum of collective excitations (sound
waves and orbital waves), as well as orbital superfluid hydrodynamics. Thus, in
this chapter we will mainly discuss A-phase while in Chap. 7 we will discuss fully
polarized A1-phase. Note that the orbital structure of the order parameter both in
A1 and A2-phases is governed by the spherical function Y11 and thus corresponds
to l ¼ lz ¼ 1 for the relative orbital momentum of a triplet pair and its z-projection.

4.2 Two Approaches to a Complicated Problem
of Anomalous Current in Fermionic (BCS) A-phase

In this Section we will reconsider two different approaches to the complicated
problem of the anomalous current (which is often called the problem of chiral
anomaly–see this Section and Sect. 4.2.4). These approaches (see [1, 4–7, 9, 10])
were worked out in the late 1980-s, but are actively discussed till the present time.

4.2.1 Supersymmetric Hydrodynamics of the A-phase

The main idea of [1] (see also [2, 3]) was to check whether an anomalous current~jan

(more precisely, the term~jan~vs in the total energy) is directly related to the zeroes of
the superfluid gap (see (4.1.5) and Fig. 4.1). Andreev and Kagan assumed in [1] that
in a condensed matter system at low frequencies, the only physical reason for an
anomaly (which can produce an anomalous current) can be related to the infrared
singularity. We note that the ultraviolet singularities are absent in condensed matter
systems [19, 20], in contrast to quantum electrodynamics [26–28]. Strong (critical)

Fig. 4.2 Phase diagram (pressure vs. temperature) in the superfluid 3He in the absence of
magnetic field (a) and in the presence of magnetic field (b), which is sufficient enough but smaller
than a paramagnetic limit B \ Bpar (required for total suppression of B-phase). For zero
temperatures only isotropic B-phase corresponds to a global minima of Ginzburg-Landau
Free-energy [17] at T = 0 on a. However, on b there are regions of pressure where anisotropic
A2-phase corresponds to a global minimum of the Free-energy at T = 0
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fluctuations are also suppressed in three-dimensional systems. The main idea in [1]
was therefore to check the dangerous infrared regions where the gap is practically
zero. For that, the authors of [1] considered the total hydrodynamic action of the
fermionic (BCS) A phase for low frequencies and small q-vectors as a sum of
bosonic and fermionic contributions:

Stot ¼ SB þ SF ; ð4:2:1Þ

where SBðq;~l;~vsÞ is the bosonic action related to the zeroes of the superfluid gap
(see Fig. 4.3).

Generally speaking, the idea in [1] was to use supersymmetric hydrodynamics
to describe all the zero-energy Goldstone modes, including the fermionic Gold-
stone mode that comes from the zeroes of the gap.

The authors of [1] were motivated by the nice paper of Volkov and Akulov
[11], where the massless fermionic neutrino was for the first time included in the
effective infrared Lagrangian for the electroweak interactions.

4.2.1.1 Bosonic Part of the Total Action

Bosonic part of the total action SB in (4.2.1) describes sound waves and orbital
waves in purely bosonic (molecular) limit and does not contain an anomalous term
~jan~vs in the bosonic energy. Formally SB ¼

R

LBd4x, where x ¼ ð~r; tÞ and bosonic
Lagrangian reads

LB ¼~L
d~h
dt
� EB; ð4:2:2Þ

where d~h
dt is a variational derivative, which defines an angular frequency, connected

with the rotation angle h (see Eqs. (4.1.14, 4.1.15, 4.1.16) and [1, 50] for more
details on the parametrization of the three-dimensional rotation group which

governs d~h).
The bosonic Lagrangian LB corresponds to bosonic energy EB in (4.1.4). Thus, a

bosonic part of the total action describes 3 equations (4.10), (4.11), (4.12) for
bosonic hydrodynamics at T = 0. They contain the sound waves x ¼ cIq and the
orbital waves x� aq2.

Fig. 4.3 A qualitative
illustration of the fermionic
(SF) and bosonic (SB)
contributions to the total
hydrodynamic action Stot of
the A phase at T ? 0 [2, 3]
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4.2.1.2 Fermionic Part of the Total Action

A characteristic peculiarity of 3He-A and fermionic (BCS) phase of a triplet
superfluid Fermi gas is the fact that in addition to the usual ground-state degen-
eracy related to the spontaneous breaking of continuous symmetries, there exists
an additional degeneracy related to the vanishing of the quasiparticle energy Ep

[see Figs. 4.1 and 4.3 and Eq. (4.1.15)] at the two points of the Fermi surface. It
turns out that the states

aþ1 0j i and aþ2 0j i; ð4:2:3Þ

(where 0j iis the quasiparticle vacuum, and aþ1 and aþ2 are the creation operators for

quasiparticles with momenta pF
~l and �pF

~l, respectively) have ground state energy.
Similarly to the way in which the usual degeneracy leads in the hydrodynamic
description to the appearance of Bose fields, which vary slowly in space and time,
this additional degeneracy leads to the appearance of the ‘‘Fermionic goldstones’’,
i.e. of the slowly varying anticommuting (Grassman) fields [51–59] a1ðxÞ, a2ðxÞ,
a	1ðxÞ and a	2ðxÞ, where x ¼ ð~r; tÞ. In fact, it is more convenient in this case to make
use of the certain linear combinations of these fields. The reason for this is that in
the systems with Cooper pairing the quantities a1,a2; . . . are the subject to com-
plicated gauge transformation laws. We introduce their linear combinations u1ðxÞ,
u2ðxÞ, u	1ðxÞ, u	2ðxÞ, so that they satisfy the same anticommutation relations:

u	1;u1

� 


¼ u1;u2f g ¼ u	2;u1

� 


¼ � � � ¼ 0 ð4:2:4Þ

as before, but under the gauge transformation ~D! ~Deiv they transform as

u1;2 ! u1;2eiv=2; u	1;2 ! u	1;2e�iv=2: ð4:2:5Þ

We note that on account of the known properties of the mentioned linear
(Bogoliubov or u-v [20–23]) transformations for spatially homogeneous systems,

the subscripts 1, 2 refer, as before, to the states with momenta pF
~l and �pF

~l.
The presence of the additional degeneracy of the ground state and the related

Goldstone character of the fields u is due to the symmetry properties of the A-
phase. We shall convince ourselves below of this independently, by determining
the general form of the fermionic part of a Lagrangian LF satisfying all the nec-
essary symmetry requirements.

We emphasize the following important point: hydrodynamics deals with the
slowly varying quantities corresponding to the small statistical volume near the
certain points of the momentum space. For the fermionic variables (in contra-
diction to the bosonic ones) this automatically leads to a small spatial fermionic
density. In the Lagrangian LF (

R

LFd4x ¼ SF in (4.2.1)) we can therefore limit
ourselves to the consideration of the terms which are quadratic in u and u	.

The Lagrangian LF of the Fermi subsystem, which together with LB forms the
total Lagrangian of supersymmetric hydrodynamics, must be hermitian, invariant
to rotations and gauge transformations, as well as with respect to the reflections
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z! �z, t! �t, where the z axis is directed along the vector~l. Moreover, on
account of the momentum conservation, the Lagrangian LF must contain the
products u	1u1, u	2u2, u1u2; . . . but not u	1u2, u	2u1; . . .. The fields u, u	 behave
as scalars under rotations. Under reflections they have the transformation
properties:

uz
1 ¼ u2; uz

2 ¼ u1; uT
1;2 ¼ u	1;2; ðu	1;2Þ

T ¼ u1;2: ð4:2:6Þ

Here the subscripts z and T denote respectively the operations z! �z and
t! �t. The operation T is accompanied, as always, by a reversal of the order of
factors.

There is a unique expression not containing derivatives and satisfying the
abovementioned requirements:

g u	1u1 þ u	2u2

	 


: ð4:2:7Þ

The coefficient g appearing here is in reality a function of the magnitude of the
momentum. This function should vanish at the point p = pF. One may assume that
the term (4.2.7) is absent from the Lagrangian LF, since the equation g(pF) = 0 is
in fact a definition of the excitation momentum pF. The existence of a zero in the
function g(p) is that ‘‘topological’’ property of 3He-A (and other BCS A-phases)

which, together with the vector character of the order parameter ~D, is responsible
for the gapless nature of the fields u.

There exists a unique hermitian invariant involving the time derivatives:

i

2
u	1 _u1 þ u	2 _u2 � _u	1u1 � _u	2u2

	 


: ð4:2:8Þ

In the same time there are two invariants which are linear in the spatial

derivatives. One of them contains the vector~l. Owing to the conditions lz ¼ l,
lT ¼ �l it has the form:

i~l u	1~ru1 � u	2~ru2

� �

� i~l ~ru	1 � u1 � ~ru	2 � u2

� �

: ð4:2:9Þ

The second invariant contains order-parameter ~D and on account of the trans-

formation properties ~Dz ¼ ~D, ~DT ¼ �~D	 it yields:

i~D u	1~ru	2 þ u	2~ru	1

� �

� i~D	 ~ru1 � u2 þ ~ru2 � u1

� �

ð4:2:10Þ

4.2 Two Approaches to a Complicated Problem 129



Thus for LF we get:

LF ¼
i

2
u	1 _u1 þ u	2 _u2 � _u	1u1 � _u	2u2

	 


þ i
vl

2
~l u	1~ru1 � u	2~ru2 � ~ru	1 � u1 þ ~ru	2 � u2

� �

þ i
vt

2

~d
d0

u	1~ru	2 þ u	2~ru	1

� �

� i
vt

2

~d	

d0

~ru1 � u2 þ ~ru2 � u1

� �

;

ð4:2:11Þ

where the longitudinal and the transverse velocities vl and vt are the functions of

the density. In 3He-A, for example, vt� Tc
eF

� �

vl � vl� vFð Þ since Tc
eF
� 10�3.

The Lagrangian (4.2.11) refers to the spatially homogeneous case, when~l ¼
const and ~D ¼ const. To treat the spatially inhomogeneous case it is necessary to

note the following. Since the states 1 and 2 have a finite momentum �pF
~l, the

‘‘genuine’’ fields W1;2 are related to the slowly varying fields u1;2 by the equations:

W1 ¼ u1eipF
~l~r; W2 ¼ u2e�ipF

~l~r; ð4:2:12Þ

and correspondingly for W	1 and W	2.

For ~r� ~l 6¼ 0 the transformations of the form (4.2.12) do not exist. It is
necessary to make use of the fields W and expand not only in terms of gradients,

but in terms of the combinations ~r� ipF
~l. The corresponding Lagrangian LF is

obtained from (4.2.11) by means of the substitution u! W and ~r ! ~r� ipF
~l.

Up to the total derivatives (which appear when the differentiations are trans-
posed either completely to W1 or completely to W	2) we have then:

LF ¼w	1 i
o

ot
þ i

vl

2
~l; ~r� ipF

~l
� �n o

� �

w1 þ w2 i
o

ot
� i

vl

2
~l; ~r� ipF

~l
� �n o

� �

w	2

þ i
vt

2
w	1

~D
D0
; ~r� ipF

~l
� �

( )

w	2 þ w2

~D	

D0
; ~r� ipF

~l
� �

( )

w1

 !

;

ð4:2:13Þ

where the curly brackets stand, as before, for anticommutators.
In addition, it is necessary to add to the Lagrangian independent invariant terms

which contain explicitly the spatial derivatives of D. The time derivatives may be
omitted, since according to the system of Eqs. (4.2.10, 4.2.11, 4.2.12) they are
quadratic in the spatial derivatives.

The invariants which are linear in the spatial derivatives oDi
oxk

and are at the same

time of zero order in the derivatives of the fields W can be of the two types. They
may contain expressions obtained by means of the contractions with dik or eikl, or
the terms of the form

D	l1D
	
l2

. . .
|fflfflfflfflffl{zfflfflfflfflffl}

n

Dm1Dm2 . . .
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n

oDi

oxk
ð4:2:14Þ
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and their complex conjugates, or the terms of the form

D	l1D
	
l2

. . .
|fflfflfflfflffl{zfflfflfflfflffl}

n

Dm1Dm2 . . .
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n�1

oDi

oxk
: ð4:2:15Þ

All the terms of the first type are obviously genuine scalars. They are therefore
invariant with respect to the transformations z! �z and consequently they must
be multiplied by the combinations of the W fields W	1W

	
2 þW	2W

	
1 and

W1W2 þW2W1, which vanish on the account of the anticommutation relations.
There exist only three independent expressions of the second type which are

invariant with respect to the rotation. Namely, these are ~r � ~l,~l � ð~r�~lÞ and~vs �~l.
They are all pseudoscalars, and therefore must be multiplied by ðW	1W1 �W	2W2Þ.
Moreover, only the last two of them are invariant with respect to the transfor-
mation t! �t. Taking all this into account we have:

LF ¼ W	KW; ð4:2:16Þ

where

W ¼
W1

W	2

 !

; W	 ¼ W	1 W2
	 


; ð4:2:17Þ

K ¼ i
o

ot
þ

ivl
~l ~r� ipF

~l
� �

�ivt
~D
D0
~r

ivt
~D	

D0
~r �ivl

~l ~r� ipF
~l

� �

0

B

@

1

C

A

þ
i vl

2
~r �~l i vt

2
~r � ~DD0

i vt
2
~r � ~D	D0

�i vl
2
~r �~l

0

@

1

Aþ a~l � ð~r�~lÞ þ b~vs �~l;

ð4:2:18Þ

and a and b are functions of the density. The function b(q) is determined from the
requirement of the Galilean invariance of the Lagrangian LF. Under a Galilean

transformation ~r ¼~r0 þ ~Vt, we have ~vs ¼ ~v0s þ ~V and according to Quantum
mechanics [60]:

W1;2 ¼ W01;2 exp im~V ~r0 þ
~Vt

2

 !( )

; ð4:2:19Þ

~D ¼ ~D0 exp i2m~V ~r0 þ
~Vt

2

 !( )

: ð4:2:20Þ

From (4.2.19, 4.2.20) it is clear, that, acting on the quantities which transform
like W1;2, the invariant operators are
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i
o

ot
þ i~vs � ~rþ

mv2
s

2
; ~r� im~vs ð4:2:21Þ

and, correspondingly, their complex conjugated operators acting on the quantities
which transform like W	1;2. Since in the adopted approximation one should neglect

the terms involving v2
s , the Galilean-invariant Lagrangian is obtained from the

expression for~vs ¼ 0 by means of the substitution

o

ot
! o

ot
þ~vs � ~r; ~r ! ~rffi im~vs; ð4:2:22Þ

where the upper sign refers to the operators acting on the quantities which
transform like W1;2, and the lower sign—to the quantities transforming like W	1;2.
As a result of this we find that b ¼ mvl � pF . In the weak-coupling approximation
vl ¼ vF and b = 0. In this approximation the Lagrangian LF corresponds to the
well-known (see Volovik et al. [4–8]) Bogoliubov equations [91–93] for the BCS

A-phase, linearized in ~r� ipF
~l.

4.2.1.3 The Effective Bosonic Action

We apply the results obtained above to the calculation of the effective action of the
bosonic subsystem. For this it is necessary to eliminate the fermionic subsystem by
evaluating the functional integral over the fermionic (Grassman) fields. To facil-
itate the calculations we proceed to the Euclidean formulation by substituting � o

os

for i o
ot and setting s ¼ it. The effective action is

Seff ¼ SB þ DSB; ð4:2:23Þ

where SB ¼
R

LBd4x, LB is given by (4.2.2) and x ¼ ð~r; sÞ.
According to general rules (see for example [1] and [56, 57]):

DSB ¼ ln

Z

DWDW	 exp

Z

d4xW	KW

� �

¼ ln DetKK�1
0

	 


¼ Tr ln KK�1
0

	 


¼ Tr F1 �
1
2

F2 þ . . .

� �

;

ð4:2:24Þ

where K is defined by (4.2.18), K0 is a normalizing operator,

F1 ¼ dKK�1
0 ; F2 ¼ dKK�1

0

	 
2
; dK ¼ K� K0: ð4:2:25Þ

The operator K0 is usually chosen equal to the operator K in the unperturbed
equilibrium state. In an accord with the hydrodynamic character of the theory,
which we are developing, we chose K0 in the following manner. In the spatially
homogeneous case the operator K�1 � G is an operator, whose matrix elements
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Gðx1; x2Þ coincide with the fermionic Green’s function. It can be easily determined
by solving the equation KG ¼ dðx1 � x2Þ. Thus, we get for G:

GðxÞ ¼ � eipF
~l~r

2p2vlv2
t

s2 þ v�2
t

~D �~r
�

�

�

�

�

�

2

D2
0

þ v�2
l

~l �~r
� �2

2

6

4

3

7

5

�2

sþ i~l �~rvl

i
vt

~D �~r
D0

i
vt

~D	�~r
D0

s� i~l �~rvl

 !

;

ð4:2:26Þ

where x ¼ x1 � x2.

In the general case, when the quantities ~l, ~D, pFðqÞ; . . . are slowly varying
functions of the coordinates and time, we introduce instead of x1 and x2 the ‘‘center
of mass’’ variable X ¼ x1þx2

2 and relative variable x ¼ x1 � x2. Then we will get the
Green’s function GðX; xÞ of the ‘‘local-equilibrium’’, which is obtained from

(4.2.26) by setting~l ¼~lðXÞ, ~D ¼ ~DðXÞ, pF ¼ pFðXÞ and so on. We consider as a
definition of the operator K0 the requirement that the matrix elements
K�1

0

	 


x1;x2
should be equal to the functions GðX; xÞ.

The product KG of K and any other operator G (defined by its matrix elements
Gðx1; x2Þ) has the matrix elements which are obtained from Gðx1; x2Þ by applying
the operator (4.2.18), where all the differential operators act on the first argument

x1 and the arguments in~lðx1Þ, ~Dðx1Þ, pFðx1Þ etc. contain also x1. The action of the
operator K0 inverse to GðX; xÞ is obviously defined by the first two terms in
(4.2.18), where the differentiations must be fulfilled with respect to x1, while

X must appear in the arguments ~l, ~D, pF etc. Making use of the equalities
x1 ¼ X þ ðx=2Þ, o=ox1 ¼ o=oxþ 1

2 o=oX and expanding in terms of the gradients of
the slowly varying functions, it is easy to calculate the operator dK in (4.2.24) and
(4.2.25). In doing this we should keep in mind that in our theory only the
hydrodynamic asymptotic behavior is meaningful, i.e. the asymptotics for large xj j.
Accordingly one has to retain only the leading terms for xj j ! 1. Moreover, since

the original bosonic action SB contains the density itself, while the quantities ~D and
~l enter in SB only via derivatives, in the action DSB, as well, the zero-order terms in
the derivatives will be absent by definition, and the density may be considered

constant. Thus, in DSB one must take into account only the spatial derivatives of ~D

and~l. (As noted above, the consideration of the time derivatives would lead to the
terms of the higher order of smallness).

We write the formula (4.2.24) for DSB in terms of matrix elements F1ðX; xÞ of
the operator F1 in the ðX; xÞ representation.

DSB ¼
Z

d4X lim
x!0

tr F1ðX; xÞ þ
Z

d4x0F1ðX; x� x0ÞF1ðX; x0Þ þ . . .

� �

; ð4:2:27Þ

where an operator tr (in distinction from Tr) should be understood as a matrix
rather than a complete operator.
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We are interested in the part of DSB which contains the terms of the lowest
(second) order in the spatial derivatives o=oX. Such terms arise from the first term
in the curly brackets in (4.2.27) and in this case they are proportional to 1= xj j. In
addition, the matrix elements F1 contain also terms which are linear in the

derivatives o=oX and are proportional to 1= xj j2. On account of the second term in
(4.2.27), which is given by the integral in the curly brackets, they contribute to the

expression in the brackets proportional to ðo=oXÞ2 and ln k
xj j, i.e. it is exactly these

terms which determine the hydrodynamic asymptotics. Thus, we can restrict our
attention only to the integral term in (4.2.27). The resulting expression for F1,
linear in the derivatives ln k

xj j (in a reference frame in which the coordinate axes for

a given X are respectively along~e1,~e2 and~l) has the form:

F1 ¼ �
pF

4p2vlvt

eipFZ

s2 þ s2
n

	 
2 rTr
i sskxik � eimkskslxmlð Þ; ð4:2:28Þ

where rTr
i are the transposed Pauli matrices, si ¼ x

vt
; y

vt
; z

vl

� �

, Ti ¼ X
vt
; Y

vt
; Z

vl

� �

and

xik ¼
oli
oTk
� olk

oTi

� �

: ð4:2:29Þ

Substituting F1 from (4.2.28) into (4.2.27) we get

DSB ¼ �
Z

d4X
p2

F

32p2v2
l

x2
ik þ

Z

d x0j j
x0j j : ð4:2:30Þ

The logarithmically divergent integral must be cut off in the weak-coupling
case D0\eF at the upper limit (which is the wavelength of the motion k) and at the
lower limit at the mean free-path length lMF (in superfluid Fermi-liquid like 3He-A

lMF � d eF
TC

� �2
, where d is an interatomic distance. We can also represent lMF as

vF=xc, where the hydrodynamic frequencies x are limited by xc). In the chosen
coordinate system, in view of dlz ¼ 0, one can represent x2

ik in the form:

x2
ik ¼ 2v2

l

ola
oZ

� �2

þv2
t

ola
oXb
� olb

oXa

� �2

; ð4:2:31Þ

where a; b ¼ 1; 2.
Therefore (4.2.30) corresponds to the following invariant expression for the

fermionic contribution DLB to the effective Lagrangian Leff ¼ LB þ DLB:

DLB ¼ �
p2

Fvl

16p2
ð~l� ð~r�~lÞÞ2 þ v2

t

v2
l

~l � ð~r�~lÞ
� �2

� �

ln
k

lMF
: ð4:2:32Þ

Thus the elimination of the fermionic degrees of freedom leads to the
appearance in Leff of nonlocal (albeit weakly logarithmically divergent) terms,
similar to the well-known (see [4–8, 61, 62]) terms in the energy of 3He-A in the

region 10� vF
TC

� �

� k� lMF .
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More specifically these terms lead only to a strong renormalization of the liquid
crystal (De Gennes [36, 37]) type coefficients K2 and K3 in E0B [61, 62] (and after
Fourier transform—to a logarithmic renormalization of the spectrum of orbital

waves x� q2
z

m ln D0
vF qzj j).

Let us repeat that if we hope to obtain an anomalous term ~jan ¼

� �h
4m C0

~l � ð~r�~lÞ
� �

~l in total current with a large coefficient C0 * q, we must get

the term~jan~vs in DLB. But due to small fermionic density qF �W	W near the south
and north poles (small statistical weight of the fermionic pockets on Fig. 4.4 in

comparison with the total density q) we have to get C0� dð~p� pF
~lÞ in momentum

space or accordingly C0 ¼ const in real space. That is why in order to obtain an
anomalous term in the current we must find very strong delta-functional infra-red
divergences in DLB. In our approach we found only weak (logarithmic) infra-red
singularities in DLB, but we did not find a strong d-functional singularity when we
accurately evaluated an integral over fermionic (Grassman) variables. Hence even
if anomalous current exists in the BCS A-phase, it is not directly connected with
the dangerous regions of the momentum space near zeroes of the gap (even if the
chiral anomaly exists, in 3He-A it does not have an infra-red character).

4.2.2 A Different Approach Based on the Formal Analogy
with Quantum Electrodynamics

The authors of [4–7, 9, 10] proposed a different, and also rather nice approach
based on a formal analogy between an anomalous current in 3He-A (and other 3D
BCS A-phases) and the chiral anomaly in Quantum Electrodynamics (QED). They
assume that the anomalous current in the fermionic A-phase is not directly related

Fig. 4.4 Level structure of
the Dirac equation in the

magnetic field B ¼
~l � ð ~r�~lÞ
� �

from [2, 3]. All

the levels with nL 6¼ 0 are
doubly degenerate. The
zeroth level is chiral. It
crosses the origin at pzj j ¼ pF

in the BCS (fermionic) A-
phase. We also illustrate the
concept of the spectral flow,
which will be discussed in
Sect. 4.2.5
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to the zeroes of the gap (and hence is not contained even in the supersymmetric
hydrodynamics). They believe that it is related to the global topological consid-
erations, and therefore a topological term should be added to supersymmetric
hydrodynamics. To illustrate this point, they solve the microscopic Bogoliubov- de
Gennes (BdG) [38, 91–93] equations for fermionic quasiparticles in a given

inhomogeneous twisted texture (~l k ~r�~l) of the~l-vector. To be more specific
they consider the case

~l ¼~l0 þ d~l ð4:2:33Þ

with

lz ¼ l0z ¼ ez; ly ¼ dly ¼ Bx; lx ¼ 0; ð4:2:34Þ

where ~ez is the direction of a nonperturbed~l vector. In this case

~l � ð~r�~lÞ ¼ lz
oly

ox
¼ B ¼ const ð4:2:35Þ

and, accordingly,

~jan ¼ �
�h

4m
C0B~ez: ð4:2:36Þ

4.2.2.1 Solution of BdG Equation: Analogy with Dirac Equation
in Magnetic Field

After linearization BdG equations become equivalent to Dirac equation in

homogeneous magnetic field B ¼ ð~l � ð~r�~lÞÞ. Namely after linearization BdG

equations read ĤvF ¼ EvF , where the doublet vF has the form vF ¼

uðxÞ
vðxÞ

� �

expðipzzþ ipyyÞ and for the Hamiltonian we have:

Ĥ ¼ 1ðpzÞr̂3 þ vt r̂1
1
i
ox � r̂2 py � eBx

	 


� �

; ð4:2:37Þ

where r̂1; r̂2; r̂3f g-are Pauli matrices, 1ðpzÞ ¼ p2
z�p2

F
2m , vt ¼ vF

D0
eF

-corresponds to
weak-coupling limit (vt � vF), and near the nodes e ¼ pz

pF
¼ �1 is an electric

charge. The solution of BdG equations yields for the doublet vFðxÞ (see Volovik
et al. [4–8]):

vnL
ðxÞ ¼ hð�eBÞ anL fnLð~xÞ

ibnL
fnL�1ð~xÞ

� �

þ hðeBÞ anL fnL�1ð~xÞ
ibnL

fnLð~xÞ

� �

; ð4:2:38Þ
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where h is a step-function, fnLð~xÞ ¼ fnL x� py

eB

	 


is the ortho-normalized wave-

function of the harmonic oscillator [60], f�1 ¼ 0; anLj j
2¼ EnLþ1ðpzÞ

2EnL
and bnL

�

�

�

�

2¼
EnL�1ðpzÞ

2EnL
are Bogoliubov coefficients ( anLj j

2þ bnL

�

�

�

�

2¼ 1).

Accordingly for the spectrum

EnLðpzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12ðpzÞ þ ~D2
nL

q

; ð4:2:39Þ

where ~D2
nL
¼ 2nLv2

t pF eBj j is a gap squared and nL is a quantum number for the
Landau level [60]. The solution for vnL

ðxÞ in (4.2.38) contains the level
asymmetry.

Namely, for nL 6¼ 0 (see Fig. 4.4) all the levels are gapped ~D2
nL
6¼ 0 and doubly

degenerate with respect to pz ! �pz. Their contribution to the total mass-current
is zero for T ? 0.

4.2.2.2 Zero Mode and Anomalous Current at T 5 0

However, for nL = 0 there is no gap D0 = 0 and we have an asymmetric chiral
branch which exists only for pz \ 0 (only for one sign of eB). The energy spectrum
for nL = 0 yields:

E0 ¼ 1ðpzÞ: ð4:2:40Þ

We can say that there is no gap for zeroth Landau level. Moreover, in BCS
(fermionic) A-phase E0 = 0 for pzj j ¼ pF–the chiral level crosses the origin in
Fig. 4.4, so we have a zero mode.

We note that in the bosonic A-phase the chemical potential l � � Ebj j
2 \ 0 (as

we mentioned already Eb is a molecular binding energy). Thus, E0 ¼ 1ðpzÞ ¼
p2

z

2mþ lj j � lj j; and the zeroth Landau level does not cross the origin. The absence
of a zero mode in molecular A-phase is the physical reason why the coefficient
C0 = 0 there.

The zeroth Landau level gives an anomalous contribution to the total current in
fermionic A-phase:

~jan ~r ¼ 0ð Þ ¼ �~ezð~l � ð~r�~lÞÞ
Z

pz\0

pz

2p2
d1ðpzÞ ¼ �

�hC0

4m
ð~l � ð~r�~lÞÞ~l; ð4:2:41Þ

ð~l � ð~r�~lÞÞpz

2p2pF
¼ eB

2p2
¼
Z

f0j j2
dpy

2p
; ð4:2:42Þ
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and hence

C0�
mp3

F

3p2
� q ð4:2:43Þ

in the fermionic phase (in fully-polarized A1 phase in magnetic traps, which we

will consider in Chap. 7, C0" � q" ¼
mp3

F"
6p2 differs from C0 in (4.2.43) in factor 2).

We note that f0ðx� py eBj jÞ in (4.2.42) is an eigenfunction of a zeroth Landau
level. It is easy to see that the integral for C0 in (4.2.41) and (4.2.42) is governed by
the narrow cylindrical tube inside the Fermi sphere (see Fig. 4.5) with the length pF

parallel to the~l vector and with the radius of the cylinder squared given by:

p2
y

D E

� pF eBj j: ð4:2:44Þ

According to the ideas of [4–8, 29, 30], this tube plays the role of a vortex in the
momentum space, thus providing a normal core and an anomalous current at
T = 0.

We note that a key result in [4–7, 9, 10] related to the absence of the gap for the
energy of the zeroth Landau level [see (4.2.40)] is pretty stable with respect to

small modifications of the texture of the~l-vector in (4.2.33, 4.2.34). Our careful

analysis shows that the account of small bending corrections with ð~l� ð~r�~lÞÞ2 to
the twisted texture (small tilting of the magnetic field with respect to the ðx; yÞ
plane ~B ¼ B0~ez þ B1~ex) as well as an account of small inhomogeneities of a
magnetic field B ¼ B0 þ B1x, which lead to a double-well effective potential, does
not suppress the zero mode in the spectrum of the BdG equations. In other words,

an account of these corrections does not lead to the appearance of a gap ~DnL¼0 for
the zeroth Landau level.

4.2.3 How to Reach the Hydrodynamic Regime xs � 1

Inspite of the zero mode stability, the authors of [1–3] expressed their doubts
regarding the calculation of C0 based on Dirac equation in the homogeneous

magnetic field B ¼ ð~l � ð~r�~lÞÞ. From their standpoint, the calculation of C0 in

Fig. 4.5 The contribution to
the coefficient C0 is governed
by a narrow cylindrical tube
of the length pF and the width

p2
y

D E

¼ pF eBj j inside the

Fermi sphere [2, 3]
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(4.2.41, 4.2.42) is an oversimplification of a complicated many-particle problem.
In particular, they emphasized the role of the finite damping c ¼ 1=s and of the
other residual interactions in destroying the chiral anomaly (which is connected
with the states inside the Fermi sphere on Fig. 4.5). Thus, they hope to restore the
superfluid hydrodynamics at T = 0 without the normal velocity~vn and the normal
density qn. Indeed, if the damping c is larger than the level spacing of the Dirac
equation, we have

x0 ¼ vtpF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~l � ~r�~l
� �

�

�

�

�

�

�

pF

v

u

u

t

ð4:2:45Þ

in the case where 1ðpzÞ ¼ 0, and then the contribution from the zeroth Landau
level should be washed out by the damping (see Fig. 4.6). As a result the
hydrodynamic regime will be established.

The damping c for the chiral fermions (for the fermions living close to the
nodes) in a very clean fermionic (BCS) A-phase without impurities is defined at
T = 0 by the different decay processes (see [20]).

It is natural to assume that the only parameter that determines c at T = 0 for
chiral fermions is the gap D0 hh i ¼ D0 p?h i=pF (where sin h � h close to the
nodes). The leading term in decay processes is given by the emission of an orbital
wave (see Fig. 4.7). It is given by (see [2, 3])

c� D2
0p2
?=p2

F þ v2
F pz � pFð Þ2

eF

" #

: ð4:2:46Þ

For pz ¼ pF (1ðpzÞ ¼ 0), we have

c� D2
0

eF

p2
?

p2
F

: ð4:2:47Þ

We note that for the chiral fermions on the zeroth Landau level, we have

p?h i
pF
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~l � ~r�~l
� �

�

�

�

�

�

�

pF

0

@

1

A

v

u

u

u

t ð4:2:48Þ

and the level spacing for 1ðpzÞ ¼ 0 is

Fig. 4.6 The possible role of
damping in reaching the
hydrodynamic limit for low

frequencies and small ~k
vectors for c [x0

(x0 ¼ E1 � E0 is the level
spacing) [2, 3]
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x0�D0
p?h i
pF

: ð4:2:49Þ

Hence, c=x0 � 1 close to the zero mode for these two decay processes (the
second decay process is a standard three-fermion decay, which also yields
c=x0 � 1). Thus, a ballistic regime is established. It is therefore difficult to wash
out the contribution from the zeroth Landau level by the different decay processes
in superclean 3He-A phase at T = 0. We note that the hydrodynamic regime
xs � 1 could be easily reached in the presence of nonmagnetic impurities or in
the presence of aerogel [64–67] (see Sect. 4.2.5).

4.2.4 The Concept of the Spectral Flow and the Exact
Anomaly Cancellation

If the anomalous current exists in a superclean fermionic A-phase at T = 0 it
should be compensated somehow. According to Volovik et al. [4–8], the deficit in
the equation for the conservation of the total linear momentum due to the presence
of the anomalous current~jan:

oji
an

ot
þ o

oxk
pik ¼ Il ð4:2:50Þ

with a source term

~I ¼ 3�h

4m
C0
~l ð~r�~lÞ � o

~l

ot

 !

ð4:2:51Þ

is exactly compensated by the quasiparticle contribution ~Pquasi:

oPi
quasi

ot
þ oUik

oxk
¼ �Ii; ð4:2:52Þ

where ~Pquasi ¼ qnðT ¼ 0Þð~vn �~vsÞ in the hydrodynamic regime. Correspondingly
the total current in fermionic A-phase

~jtot ¼~jB þ~jan þ~Pquasi ð4:2:53Þ

is still conserved.

Fig. 4.7 Different decay processes for the damping of chiral fermions at T = 0: the standard
three-fermion decay process and the decay process with an emission of the orbital wave [2, 3]
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We note that a normal density qnðT ¼ 0Þ� j~l � ð~r�~lÞj=D0 is a non-analytic
function in 3He-A and is related to the nonzero bending. The arguments in [4–8] in
favor of exact anomaly cancellation are connected with the nonconservation of the
axial current j5 in QED (see [26–28, 97–103]), where the source term~I is com-

pensated via the Schwinger term [94–96] ~E~B� o~l
ot � ð ~r�~lÞ (~E ¼ o~l

ot is an electric

field and ~B ¼ ~r�~l is a magnetic field). Physically, according to [4–8, 68, 69],
this cancellation is due to the spectral flow from the negative to the positive energy
values along the anomalous branch with nL = 0 in Fig. 4.4 and then to the qua-

siparticle bath in the presence of an electric field ~E� o~l
ot (of a time-dependent

texture of the~l vector). Considering the tube, which produces~jan on Fig. 4.5, as a
vortex in the momentum space, Volovik et al. [4–8] and Stone et al. [42–47] use
the analogies between the physics of bulk 3He-A and the physics of the vortex
core. They also consider the role of damping exactly opposite to our consider-
ations. Note that in the physics of a vortex-core in the case of cylindrical symmetry
there is again one anomalous level which crosses the zero energy (see Fig. 4.8).

At T = 0, as a function of the generalized angular momentum Q, it represents
the set of discrete points separated by a minigap x0�D2

0=eF . Therefore, at T = 0
and in the superclean case c ¼ 1=s! 0, the spectral flow from negative to positive
energies is totally suppressed. Thus, in the ballistic regime xs 
 1 according to
Volovik and Stone it is very difficult to transfer momentum to the quasiparticles
and in this way to guarantee the conservation of the total current~jtot in (4.2.53). In
the same time in the hydrodynamic regime xs � 1 it is easy to transfer
momentum along an anomalous branch to quasiparticles and thus to restore a
conservation of the total current.

Fig. 4.8 The level structure in the vortex core of 3He-A [2, 3]. All the branches are even in the
generalized angular momentum Q, but one branch E pz ¼ 0;Qð Þ ¼ �x0Q, which crosses zero
energy at Q = 0, is chiral (odd in Q). It participates in the momentum exchange between the
fermions in the vortex core and the fermions of the heat bath in the hydrodynamic limit xs� 1
according to [29, 30]
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The authors of [1–3] vice versa think that for xs � 1 the coefficient C0 in front
of the anomalous current becomes small C0 (xs � 1) ? 0. Thus,~jan ! 0 and it is
not necessary to add the quasiparticle current in the expression for~jtot in (4.2.53).

In other words, for xs � 1: ~jtot ¼~jB ¼ q~vs þ ~r� �hq~l
2m

� �

- the total current ~jtot

coincides with the bosonic current ~jB. Hence the superfluid hydrodynamics is
restored (without qnðT ¼ 0Þ and~vn) in BCS A-phase at low frequencies and wave-
vectors according to the philosophy of [1]. Note that in the physics of the vortex
core the analogous discussion about an existence of chiral anomaly and it’s pos-
sible contribution to one of the Hall-Vinen friction coefficients (see Chap. 1) was
started in [70] by Thouless (who believes in a Berry phase [89] without an
anomaly) and was thoroughly investigated by Kopnin et al. in [71–74] for different
temperature regimes in clean and dirty limits. The authors of [71–74] derived an
anomalous contribution to the friction coefficients in the dirty limit xs � 1 (large
number of impurities) and at finite temperatures. Returning back to the bulk 3He
A-phase, we can say that an ideology of Volovik and Stone on exact anomalies
cancellation does not work in ballistic (superclean limit) at T = 0 (both in bulk
and for the vortices). Hence the question of how the total current (total linear
momentum) is conserved in this case remains open for an infinite system (without
the walls). We note that at very small but finite temperatures T � TC there is a
finite number of normal quasiparticles in the system. Hence the damping c = 1/
s * Tn becomes finite and the possibility of the spectral flow and the momentum
exchange with the thermal bath restores at low frequencies x\c according to
Volovik and Stone. However, we would like to stress that at T = 0 the relative
normal velocity~vn �~vs ¼ oE0

o~Pquasi
becomes an additional hydrodynamic variable (see

Chap. 1 and [25]) and hence the cancellation of the linear momentum deficit in
(4.2.50, 4.2.52) will occur automatically.

Thus, the problem of the exact anomaly compensation exists only at T = 0. We
think that in this case the exact cancellation between the time derivatives of the
anomalous and quasiparticle currents should be demonstrated explicitly by
deriving and solving the kinetic equations for the nodal quasiparticles both in the
ballistic and the hydrodynamic regime. Note that an approach based on the kinetic
equation for quasiparticles at different temperatures and the impurity concentra-
tions in a vortex core of the s-wave superconductors and the superfluid 3He was
worked out by Kopnin et al. [71–74] in the case of a singular vortex.

In the case of the nonsingular vortex structures in 3He-A (which can be pro-

duced by the textures of~l vector via Mermin-Ho identity, for example) we should
mention also papers [68, 69] where the authors consider the scattering of quasi-
particles on the walls of the container for a finite system to obtain a finite damping
c at T = 0. The importance of the prehistory of the orbital texture for the spectral
flow concept was also stressed by Volovik in these papers.
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4.2.5 Experimental Situation and Discussion

Concluding this Section we would like to emphasize once more that we discuss a
complicated problem of chiral anomaly and mass-current non-conservation in BCS
A-phase at T = 0. We presented two different approaches to this problem—one
based on supersymmetric hydrodynamics, another one—on the formal analogy
with Dirac equation in QED-theory. We evaluate the damping c = 1/s due to
different decay processes in superclean BCS A-phase at T = 0 and find that c is
small in comparison with the level spacing x0 of the BdG-equation. To reach the
hydrodynamic regime xs � 1 we need a sufficient amount of aerogel or non-
magnetic impurities at T = 0. We assume that both in a hydrodynamic and in a
ballistic regime at T = 0 we have to derive a reliable kinetic equation to dem-
onstrate explicitly an exact cancellation between time-derivatives of anomalous

current ~jan ¼ � �h
4m C0 ð~l � ð~r�~lÞÞ~l and quasiparticle contribution ~Pquasi in the

equation for the conservation of the total linear momentum~jtot. Note that for the
full theoretical analysis of the problem the other residual interactions different
from damping are also important for nodal fermions. To check whether a chiral
anomaly has an infra-red manifestation (which was not caught in the approach
based on supersymmetric hydrodynamics of [1]) it will be useful to derive a
complete set of Ward identities (see [20, 26–28]) between self-energies of chiral
fermions

P

and the corresponding vertices C. The idea is to find in this approach
either a strong infra-red singularity or a powerful reexpansion of the quasiparticle
spectrum for x; k! 0.

Note that the importance of the residual Fermi-liquid like interactions for the
analysis of half-integer vortex in 3He-A was recently emphasized by Leggett et al.
[75].

We invite experimentalists to enter this very interesting problem. It will be
important to measure a spectrum and damping of orbital waves in superfluid A-
phase of 3He at low temperatures T � TC. The spectrum is almost quadratic for

low frequencies q� C0ð Þx� q q2
z

m ln D0
vF jqzj and contains a density of intrinsic angular

momentum LF ¼ �h
2m ðq� C0Þ near the linear in frequency term (see Chap. 7 for

more details). Moreover, it is possible to show that in the weak-coupling limit

D0 � eF: ðq�C0Þ
q � D2

0

e2
F
� 1; and thus LF is very small in comparison with a stan-

dard (bosonic) angular momentum LB ¼ �hq
2m. (In 3He-A we are in a weak-coupling

limit D0
eF
� 10�3 and q�C0

q � 10�6). Note that at higher frequencies x [ D2
0=eF the

spectrum of orbital waves is almost linear x2 ln D0
xj j � q2

z v2
F ln D0

vF qzj j, where~ez k~l (see

[41]). Note also that in a strong-coupling case D0� eF: C0 � q and we restore the
hydrodynamics without an anomalous term.

The damping of the orbital waves provides an evaluation of the orbital viscosity
in 3He-A at low temperatures T � TC. Note that even in this case it is an inter-
esting possibility to get an overdamped (diffusive) character of the spectrum at low
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frequencies. This possibility is supported theoretically in [111–113], where Brusov
et al. obtained several overdamped modes in the partially polarized A1-phase via
the functional integral technique in the hydrodynamic limit of small x and ~q.

Basically we propose to extend the measurements of orbital inertia and orbital
viscosity (performed by Bevan et al. [76, 77] in non-singular vortex textures in A-
phase) to low temperatures T � TC. Of course to have this possibility we need to
create a spin-polarization (which according to Fig. 4.1 extends A2-phase to low
temperatures on phase-diagram of a superfluid 3He).

Note that another possibility to get an overdamped diffusive spectrum was
considered in [78, 79] in the impurity diagrammatic technique [80, 81] for the
hydrodynamic regime xs � 1 of spin waves in a frustrated two-dimensional
AFM, which models strongly underdoped cuprates. We note that in the opposite
high-frequency regime, the spectrum of spin waves is linear.

We would like to emphasize that according to the ideology of [1] the over-
damped spectrum could serve as a precursor for anomaly-free (bosonic-like)
spectrum of orbital waves at very low frequencies (where the superfluid hydro-
dynamics might be restored).

We also note that a crossover from the ballistic to the hydrodynamic regime
xs � 1 could occur due to both the aerogel (the nonmagnetic impurities) or at
finite temperature T = 0, which is always present in a real experiment. In the last
case, the damping c * T n is temperature dependent.

In aerogel we can definitely fulfill the inequality x0 \ c (where x0 is the level
spacing in Dirac equation and c is damping) already at T = 0. To fulfill this
inequality we should be in a moderately clean 3He-A phase, that is in the presence
of a sufficient amount of aerogel. Note that aerogel serves like a non-magnetic
impurity for p-wave fermionic superconductor like 3He-A [80, 81]. We can say
that effectively the damping c is an external parameter which depends only upon
the concentration of aerogel x. Moderately clean case means that x0 \ c \ D0,
where x0 is given by (4.2.45). It can be achieved experimentally since it is pos-
sible to have c as large as 0.1TC in A-phase of 3He [64, 65].

Thus a very interesting experimental proposal is to check our conjecture (that

C0ðx0 � cÞ is small) by creating a twisted texture~l k ð~r�~lÞ and varying the
aerogel concentration. Then it is interesting to decrease the aerogel concentration
drastically and to answer experimentally the question whether cðx! 0Þ is larger
or smaller than x0 in superclean 3He-A.

The similar project with the impurities can be also proposed for the magnetic
traps if it will be possible to increase the lifetime of p-wave fermionic A1-phase
(see Chap. 7 for more details). Experimentally both in 3He-A and in magnetic
traps we can measure either the anomalous current directly or the spectrum of
orbital waves, which is usually easier. Anyway, these measurements will allow us
to compare C0 or (q - C0) in moderately clean case and in extremely clean case
and thus to check the conjecture of [1–3] about the destruction of the chiral
anomaly in the hydrodynamic regime.

144 4 Quantum Hydrodynamics of the P-Wave Superfluids with the Symmetry of 3He-A

http://dx.doi.org/10.1007/978-94-007-6961-8_7
http://dx.doi.org/10.1007/978-94-007-6961-8_7


Note that in the presence of the sufficient amount of aerogel the phase-diagram of
superfluid 3He changes considerably. The global minima now are B-like and A-like
phases which differ considerably from B and A-phases in superclean case. Their
precise symmetry is a subject of a hot debate today (see discussion in [64–67]).

4.2.5.1 Anomalous Spin Currents in 2D Axial Phase

Let us also consider briefly the spin and orbital hydrodynamics in the axial phase,
which is the 2D analog of A-phase (see [17]). The quasiparticle energy in the
fermionic 2D phase reads:

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m
� l

� �2

þD2
0p2

p2
F

s

: ð4:2:54Þ

It has only one nodal point Ep ¼ 0 for l ¼ 0 and p = 0 just on the border
between BCS and BEC domains.

Note that in this phase the order parameter is given by ~D ¼ D0ð~ex þ i~eyÞ in

similarity with 3D, but ~D �~p
�

�

�

�

�

�

2
¼ D2

0p2 in two dimensions. An axial phase can be

realized in 2D magnetic traps or in thin films or submonolayers of 3He (see also
Chap. 12). The most interesting effect for the physics of the 3He 2D films [17, 29,
30, 82, 84–86] is connected with the existence of the topological invariant Q,
which comes to the physics of helium from the Quantum Hall Effect (QHE). This
invariant is written as

Q ¼ p
2

eab

Z

d2~p

ð2pÞ2
~n � oa~n� ob~n
	 


; ð4:2:55Þ

where eab ¼ �eba is asymmetric tensor, the components of the unit vector~n in the
momentum space are given by [82, 84–86]:

~n ¼ 1
Ep
�D0px;D0py; 1p

	 


; ð4:2:56Þ

and 1p ¼ p2

2m� l, while Ep is given by (4.2.54). In the theory of Quantum Hall
Effect the topological invariant Q governs the quantization of the Hall conductivity
rxy. It is also important in the 2D space–time continuum (x, s) for Haldane
effective action, which defines an important difference in the spectrum of col-
lective excitations (gapped or gapless) between the spin chains with integer and
half-integer spins S [114, 115].

It is easy to check (see [82, 84–86]) that for 2D axial phase:

Q ¼
Z

K

0

dp2 d

dp2
nsðp2Þ
� �

¼ 1
2

1þ l
lj j

� �

; ð4:2:57Þ
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where nsðp2Þ ¼ 1
2 1� 1p

Ep

� �

is a superfluid density.
Thus Q = 0 in the BEC phase (where the chemical potential is negative

l ¼ � lj j) and Q = 1 in the BCS phase. We can say that the BCS phase has a
nontrivial topology in contrast to the BEC phase (see [82, 84–86]).

Correspondingly for l! þ0 Q = 1 while for l! �0 Q = 0. Thus, there is a
jump in Q (DQ = 1) for a point l ¼ 0. It is reasonable to assume that a point
l ¼ 0 is a singular point at T = 0 [29, 30, 83–86]. In Chap. 7 we will prove that it
is a point of a quantum phase-transition (or even a topological phase-transition).
To measure the nontrivial topological effects in two dimensions, we propose to
perform experiments with a Josephson current (see [2, 3, 20, 116, 117]) between
two thin films of 3He or between two magnetic traps containing superfluid Fermi-
gases: one with a two-dimensional axial BCS phase and the topological charge
Q = 1 and another one with the planar 2D phase with Q = 0 (see [17, 82]). We
hope that it will be possible to measure directly DQ = 1 in this type of
experiments.

We note that in the 2D axial phase, the~l vector~l ¼~ex �~ey ¼~ez is perpen-
dicular to the plane of the 2D film. Hence, the orbital waves, connected, as we

discussed in Sect. 4.1, with the rotation of the~l vector around a perpendicular axis,
are gapped. The sound wave is the only Goldstone mode in the gauge-orbital

sector. Moreover,~l?ð~r� ~lÞ and it is impossible to create a twisted texture in two
dimensions. Therefore, the anomalous current is absent: ~jan ¼ � �h

4m C0

ð~l � ð~r�~lÞÞ~l ¼ 0. Hence there is no problem with the mass current nonconser-
vation at T = 0 in 2D axial phase [2, 3].

Nontrivial topological effects possibly exist in the spin sector [82] in 2D. Here,
the anomalous spin current was predicted by Volovik, Solov’ev and Yakovenko in
the presence of an inhomogeneous magnetic field ~Bð~rÞ for 2D 3He-A film (for the
axial BCS phase). It reads:

jspin
a;i �QeizklzokB?a ; ð4:2:58Þ

where ~B? �~d ¼ 0 and ~d is the spin vector in the 2D 3He film (see [17]).
Another possibility is to measure the contribution of the massless Majorana

fermions (see [26, 29, 30, 104]) for the edge states on the surface of superfluid
3He-B and a rough wall (or on the surface of a vibrating wire in the Lancaster
experiments) [87, 88].

Note that the physics of Majorana fermions [104] is very popular nowadays in
different condensed matter systems including vortex cores of the p-wave super-
conductors [83, 105], superfluid 3He-B [87, 88], ultracold quantum gases with
spin–orbit coupling [106, 107], and hybrid superconductor-semiconductor nano-
wire devices [108–110].
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Part II



Chapter 5
Bose–Einstein Condensation
and Feshbach Resonance in Ultracold
Quantum Gases and Mixtures

In this chapter we will start with a brief description of the phenomena of Bose–
Einstein condensation (BEC) in ultracold Bose-gases of alkali elements 7Li, 23Na
and 87Rb [1–3]. In these systems the experimentalists used evaporative cooling
technique in magneto-optical traps and got the critical temperatures of Bose-
condensation (BEC) of the order of 10-6 K for the densities 1012 7 1014 cm-3

and numbers of particles in the trap (prepared by inhomogeneous dipole or
quadrupole magnetic field) on the level of 109 7 1010. Note that evaporative
cooling technique is based on the release of the potential barrier or sudden lifting
of the trap which leads to the escape of the most energetic particles from the trap
and thus to the decrease of the temperature. Effectively this technique is based on
the ‘‘cutting’’ of Maxwell tails of the most energetic particles in thermal distri-
bution [4, 5].

Soon after the discovery of BEC in Bose systems, the groups of Ketterle and Jin
[6–8] in USA as well as the group of Salomon in France [9] and Grimm in Austria
[10] began to search for fermionic superfluidity in magneto-optical traps or optical
lattices [34].

At first the predictions for the critical temperature were rather pessimistic here,
since TC in the Fermi-systems is usually exponentially smaller than that in bosonic
systems (where TC is of the order of the degeneracy temperature T0). The
experimental progress here was connected with the Feshbach resonance technique
[6, 7, 8, 11, 48–50], which gives the possibility to increase the coupling constant
(or the scattering length a) greatly in diluted Fermi-systems close to the resonance
magnetic field B0. As a result experimentally feasible critical temperatures
(TC * 10-6 K) can arise in ultracold Fermi-gases of 6Li and 40K in magneto-
optical and dipole traps. The Feshbach resonance technique also provides the
possibility for experimental verification of the pioneering ideas of Leggett [12, 13]
and Nozieres-Schmitt-Rink [14] on BCS-BEC crossover in the Fermi-systems with
attractive interaction between particles. Namely, varying magnetic field (and tra-
versing the resonance from left side B \ B0) we can get either tightly bound local
pairs f:f; of two fermionic atoms (composed bosons or molecules or dimers) 6Li2
and 40K2 on the BEC side, or extended Cooper pairs on the BCS side [15, 16].
Correspondingly the scattering length a is repulsive (a [ 0) on the BEC side,
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while it is attractive (a \ 0) on the BCS side. Thus in a two-particle problem in
vacuum close to the resonance we have a shallow bound state on the BEC-side for
a [ 0 and a virtual bound state on the BCS-side for a \ 0.

In this chapter we provide a brief description of the Feshbach resonance with a
special attention on a more sophisticated two-channel description and more simple
one-channel description, corresponding to resonance approximation (which we
will use in the forthcoming chapters). We will also discuss the experiments of Jin’s
and Ketterle’s groups on molecular BEC in Fermi-gases of 6Li and 40K [48–50].

5.1 BEC in Trapped Bose-Gases

Bose–Einstein condensation (BEC) was discovered in ultracold bosonic gases of
alkali elements 7Li, 23Na and 87Rb in confined geometry of magneto-optical traps.
There are excellent review articles on this subject [4, 5]. Here we provide only a
brief sketch of evaporative and laser cooling technique and discuss the basic
designs of magnetic traps. For Bose-gases the parabolic confining potential of the
trap (in the case of strong spin-orbital coupling) reads (see Fig. 5.1):

U rð Þ ¼ lj jB0 þ
mx2

0r2

2
: ð5:1:1Þ

Note that nonzero magnetic field B0 everytime corresponds to the potential
(5.1.1).

Strong spin-orbital coupling means that lj jB0 \ Uhf , where l � lel \ 0 and

Uhf
~S �~I is the hyperfine interaction potential [26] between electron spin ~S and

nuclear spin~I. In this case we are dealing with total spin J ¼ ~Sþ~I
ffi

ffi

ffi

ffi of the atoms.
For bosonic isotope 7Li we have J = 1 (S = I = �), while for fermionic isotope
6Li we have J = 3/2 (S = �, I = 1). Thus usually for lel\ 0 only Jz = 1 com-
ponent of the total spin is trapped in case of bosons (for 7Li see Fig. 5.1), while
Jz = 3/2 component is usually trapped for fermions (for 6Li). The reason for that is
Zeeman splitting DE ¼ B0Jz lj j between different Jz components in the magnetic
field B0 (see Fig. 5.2) and first term in (5.1.1). Magneto-optical traps utilize the
combination of laser and evaporative cooling.

Fig. 5.1 Parabolic confining
potential typical for magneto-
optical traps. In the case of
bosonic isotope 7Li only
Jz = 1 component of the total
spin of the atom is trapped
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5.1.1 Foundation of the Laser Cooling Technique

The progress in laser cooling was very important for the subject of ultracold
quantum gases. Laser cooling is based on the interaction of quasiresonant radiation
pressure with an atom. The principal scheme is the following: we consider an atom
as a two-level system (see Fig. 5.2). The additional gradient field ~Bgrad ¼
B0z~ez B0[ 0ð Þ is switched on. Then different z-components of the total spin Jz are
additionally Zeeman splitted. As a result the total splitting due to the fields ~B0 and
~Bgrad reads DEZeeman ¼ B0zJz lj j þ DE, where DE ¼ B0Jz lj j.

Now we introduce two laser beams: right-moving R and left-moving L with the
frequencies close to but a little bit out of the resonance with the two-level system.
The frequencies of the laser beams read xR ¼ DE � C=2 \DE and xL ¼ DEþ
C=2 [ DE, where C is a natural linewidth (see Fig. 5.3).

At z = 0 the intensities of the beams are adjusted in the way that the force
acting on the atom is zero (see Fig. 5.2).

Consider the atom with trapped Jz = 1 component moving in the right-hand
side. Then for z [ 0: DE will be increased due to the gradient splitting and will be
in a resonance with laser beam L. So the atom will absorb more left-moving
photons and hence will feel a restoring force acting antiparallel to the atom
velocity ~v (see Fig. 5.4). For z \ 0: DEZeeman will be decreased and will be in

Fig. 5.2 Zeeman splitting in
the magnetic field B0 for
different Jz components for
bosons and fermions

Fig. 5.3 Principal scheme of
the laser cooling with left-
moving L and right-moving R
laser beams and Zeeman
splitting of z-components of
the total spin J = 1 by
homogeneous and gradient
fields ~B0 and ~Bgrad

Fig. 5.4 The restoring force
of the laser radiation pressure
acting on the right-moving
atom
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resonance with laser beam R. Thus we again have a restoring force ~F acting
antiparallel to~v (see Fig. 5.5).

The effective force also depends explicitly upon velocity ~v because
DEZeeman for the moving atomð Þ ¼ DE � DxDoppler: If Doppler shift DxDoppler [
C=2 (C is natural linewidth), then the atoms are out of the resonance both with laser
beams R and L and the force becomes smaller. Finally for small z and v = _z the
resulting force includes restoring (string-like) force and friction force and reads:

~F ¼ �kz~ez � a _z~ez: ð5:1:2Þ

Thus we have a damped harmonic oscillator governed by an equation of
motion:

€zþ 2b _zþ x2
0z ¼ 0; ð5:1:3Þ

where x2
0 ¼ k=m; k ¼ dBgrad=dz ¼ B0; b ¼ a=2m:

The most important is that there are limitations on laser cooling, namely it is
difficult to get the temperature in atomic system lower than the recoil energy:

T\Trecoil ¼
x2

2mc2
� 10�6 K ð5:1:4Þ

utilizing this technique only.

5.1.2 Evaporative Cooling Technique

To obtain lower temperatures in ultracold gases we need to load atoms from an
optical trap to a static magnetic trap and to use an additional technique of evap-
orative cooling.

Let us briefly consider this method for a typical example of a static quadrupole
trap. In this geometry (see Fig. 5.6 as an illustration) the inhomogeneous field
~Bgrad reads:

~Bgrad ¼ B0x~ex þ B0y~ey � 2B0z~ez ð5:1:5Þ

Fig. 5.5 The restoring force
acting on the left-moving
atom. Jz = 1 component of
the total spin is trapped

Fig. 5.6 The distribution of
the inhomogeneous field
~Bgrad and the level structure
for different Jz components in
the quadrupole magnetic trap
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This field satisfies Maxwell equations [37] ~r�~Bgrad ¼ ~r �~Bgrad ¼ 0 and the

boundary condition at the trap origin ~Bgrad

ffi

ffi

r¼0
¼ 0.

We apply also an additional biased field ~Bb rotating with the frequency:

~Bb ¼ B0 cos xbtð Þ~ex þ B0 sin xbtð Þ~ey: ð5:1:6Þ

The amplitude of this field is constant B0 [ 0. We add it to suppress so-called
Majorana flops, which constitute the transitions between different Zeeman suble-
vels close to the origin due to the particle motion. Majorana flops are dangerous
since they cause the large decrease of the number of the trapped particles. Then
zero of total field ~Btot ¼ ~Bgrad þ~Bb rotates in the x–y plane with the frequency xb:

Radius of the orbit reads:

R0 ¼ B0=B0: ð5:1:7Þ

We usually choose the following hierarchy of frequencies in the quadrupole
design of the magnetic trap:

x0 ¼
ffiffiffiffiffi

B0

m

r

� xb � XL ¼
B0 lj j

�h
; ð5:1:8Þ

where XL is Larmor frequency corresponding to the biased field.
It means that:

1. Projection of ~l on ~Btot is conserved ðxb � XLÞ;
2. We can average the particle motion over one period of field rotation with the

frequency xb. As a result we get for the potential energy:

U ¼ �~l �~Btot ¼ �lJzBtot ¼ lj j Btotj j ð5:1:9Þ

for trapped component Jz = 1 and l\ 0.
The total field ~Btot in (5.1.9) is given by:

Btot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
x þ B2

y þ B2
z

q

; ð5:1:10Þ

where Bi = Bigrad ? Bib for three Cartesian coordinates i ¼ fx; y; zg. Then the
averaged (over one period) potential energy reads in the cylindrical coordinates:

Ueff ðq; zÞ ¼
xb

2p

Z

2p=xb

0

Udt ¼ lj jB0 þ
lj jðB0Þ2

2B0
ðq2 þ 4z2Þ ð5:1:11Þ

in agreement with (5.1.1). Thus in (5.1.1) x0 ¼
ffiffiffi

B0
m

q

and coincides with x0 in (5.1.8).
The total magnetic field in (5.1.9) yields:

Btotðq; zÞj j ¼ B0 þ
ðB0Þ2

2B0
ðq2 þ 4z2Þ ð5:1:12Þ
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in cylindrical coordinates~q and z. It is minimal at the origin (for q = z = 0). The
distribution of the particles and magnetic field in the magnetic quadrupole trap is
illustrated on Fig. 5.7.

The most important is that evaporative cooling is based on the removal of the
most energetic particles from the potential well. The rest of the particles then
rethermolize again due to elastic collisions at smaller temperature.

In this scheme the atoms which are moving close to field zero can be lost from
the trap due to Majorana flops. The dangerous region corresponds now to small
Btot at z = 0 and q = R0 = B0/B’ [see Fig. 5.7 and (5.1.12)]. We can say that
evaporative cooling is built in this design. Indeed, for z = 0 and q = R0 an

effective radial energy lj j ðB
0Þ2

2B0
ðq2 þ 4z2Þ is B0 lj j

2 . Hence all the rapid atoms with the

effective radial energy higher then B0 lj j
2 will be removed from the trap by rapidly

moving field zero which rotates with the frequency xb 	 x0 (see Fig. 5.7 again).
Thus continuous cooling can be achieved by adiabatic decrease of ~Btot.

5.1.3 Different Designs of the Magnetic Traps

There can be different designs of the magnetic traps. For instance we can add a
bottle-type distribution of the magnetic field:

~Bbottle�type ¼ B0
k2

2
z2 � q2

2

� �

~ez þ B0
k2

2
zq~eq ð5:1:13Þ

to the quadrupole distribution:

~Bquadrupole ¼ B0kqðcos 2u~eq � sin 2u~e/Þ; ð5:1:14Þ

and consider the total field:

~Btot ¼ B0~ez þ~Bbottle�type þ~Bquadrupole: ð5:1:15Þ

Note that in (5.1.15) the constant field B0~ez does not rotate. Then again we get
~r �~Btot ¼ ~r�~Btot ¼ 0 where in cylindrical coordinates (see [18]):

Fig. 5.7 The particle and
magnetic field distribution in
quadrupole magnetic trap.
Zero of magnetic field rapidly
rotates with the frequency
xb 	 x0
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~r �~Btot ¼
1
q

o

oq
ðqBtot qÞ þ tot z

oz
þ 1

q
tot u

ou
: ð5:1:16Þ

The potential energy reads:

U ¼ �~l �~B ¼ �lJzB ¼ lj j Bj j for Jz ¼ 1: ð5:1:17Þ

In cylindrical coordinates:

U ¼ lj jB0 1þ k2

2
z2 þ q2

2

� �� �

ð5:1:18Þ

again in agreement with (5.1.1) and magnetic field is minimal at the origin (for
z = q = 0) again.

In this design evaporative cooling can be reached either by adiabatic decrease
of k or with the help of rf-pumping (which in the resonance case helps to get the
transitions between the Zeeman-splitted levels with different Jz).

Anyway different evaporative cooling technique helps to overcome recoil limit
and achieve the temperatures T * 10-8 K.

Note that in more recent experiments on Feshbach resonance the dipole traps
are also used. Namely the system at first can be evaporatively cooled in the
magnetic traps and than the system is reloaded to a dipole trap. In a dipole trap the
confinement potential reads:

U ¼~d �~E þ mx2r2

2
; ð5:1:19Þ

where ~E is electric field, x2 ¼ ðE
0Þ2

E ðEgrad �E0rÞ and ~d is the dipole moment.
Dipole traps are convenient to switch on than (on top of ~E) constant and

homogeneous magnetic field ~B in the regime of Feshbach resonance. Finally we
can reduce dimensionality of the traps making them highly anisotropic:

U� mx2
x x2

2 þ mx2
y y2

2 þ mx2
z z2

2 .

5.1.4 BEC in Trapped Ultracold Bosonic Gases

BEC in 87Rb, 7Li, 23Na was observed at TC
BEC * 10-6 K indirectly by measuring

density distribution in the trap. Namely the transition to the superfluid state was
measured in [1–3] in the diffraction experiments form the d-functional density
peak of the condensate particles, located in the center of the trap (see Fig. 5.8).
Another way to observe the superfluid state is to lift the trap and to study the
velocity distribution of the particles, leaving the trap region.

For T \ TC we have the bimodal distribution of the leaving particles instead of
the Maxwell one. A normal component is temperature dependent, a superfluid
component is temperature independent. Usually for the last one the condensate
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velocity Vcond * 1/W, where W is half-width of the profile of the condensate
density (see [3]). In the more recent experiments of Feshbach resonance for the
BEC-side of the resonance W * (aNcond)1/5, where a [ 0 is repulsive scattering
length and Ncond is the number of condensate particles. Note that according to

Einstein the BEC temperature in 3D Bose-gas reads TC ¼ 3:31 n2=3

m , where n is the
density of bosons (see [30]) and m is the boson mass. By order of magnitude it
coincides with the degeneracy temperature T0 in an ideal Bose-gas, so the most
important for evaporative cooling is to reach the temperatures lower than the
degeneracy temperature at a given density.

For the BEC-side of the Feshbach resonance TC
BEC � 0:2eF; where eF is Fermi

energy. For T \ TC there is s macroscopical number of particles which occupy the
lowest level in the potential well. For 3D spherically symmetrical well with par-

abolic potential UðrÞ ¼ mx2r2

2 þ U0 the solution for the spectrum of harmonic
oscillator reads [26]:

E � U0 ¼ �hx nx þ ny þ nz þ 3=2

� 	

¼ �hx nþ 3=2

� 	

; ð5:1:20Þ

and thus the lowest level E0 ¼ U0 þ 3=2�hx (see Fig. 5.8). The eigenfunction
W0ðrÞ of the lowest level (n = 0) is given by (see [30]):

W0ðrÞ ¼
N0

p3=2l3
0

� �1=2

e
� r2

2l2
0 ; ð5:1:21Þ

where l0 ¼ �h
mx


 �1=2
is the magnetic length and N0 is the total number of particles in

the condensate. The density of the condensate:

n0ðrÞ ¼ W0ðrÞj j2 ð5:1:22Þ

has a maximum at r = 0: n0 max ¼ n0ð0Þ�N0=l3
0. The W-function for the next level

E1 ¼ ðU0 þ 5=2�hxÞ i.e. W1(r) changes sign and has a node in the origin. In

Fig. 5.8 Column density
n zð Þ ¼

R

dxn x; 0; zð Þ for
noninteracting bosons in a
spherical trap at temperature
T ¼ 0:9 TC

BEC: The central
peak is the condensate
density n0 superimposed in
the broader thermal
distribution with the density
nT from Dalfovo et al. [18].
Distance and density are in
units of l0 and l0

2 respectively,

where l0 ¼ �h
mx


 �1=2
is the

magnetic length

160 5 Bose–Einstein Condensation and Feshbach Resonance



slightly non-ideal Bogoliubov Bose-gas with repulsive interaction between bosons

the scattering length a [ 0 and we can introduce the pseudopotential ~U ¼ 4p�h2

m a
following Lifshitz-Pitaevskii book [27]. Then, as it was shown by Yu. Kagan, G.
Shlyapnikov and Walraven [24] the convenient parameter which measures the

interaction strength is g ¼ n0 ~U
�hx , where �hx is the level spacing in the potential well

(see Fig. 5.9).
For weakly non-ideal Bose-gas in the trap g � 1 and for low temperatures

T � TC almost all the particles occupy the zeroth level. Thus the density in the
center of the trap is strongly increased. Just this increase of the density is measured
in the diffraction experiments to prove the formation of the Bose-condensate in the
trap.

It is interesting that even in strongly-interacting Bose-gas with repulsion (for
g 	 1) as it was shown in [24] the W-function of the zeroth level:

W0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

n0 max

p
1� r2

2l2
0g

� �1=2

¼ l� UðrÞ
~U

� �1=2

; ð5:1:23Þ

and n0ðrÞ ¼ W0ðrÞj j2 is again maximal at r = 0.

5.1.5 Typical Densities and Numbers of Particles in the Trap

Usually the total number of particles in the trap Ntot * (109 7 1010), while the
characteristic densities are n * (1012 7 1014) cm-3. Thus the number of parti-
cles in the Bose-condensate for T � TC

BEC is also of the order of 109. The lowest
characteristic temperatures which we can reach in the evaporative cooling tech-
nique are 10-8 K. For largest possible densities n * 1014 cm-3 the degeneracy
temperatures T0 * n2/3/m are of the order of 10-6 K. Note that the large number
of particles in the trap Ntot 	 1 guarantees the validity of quasiclassical (or
Thomas–Fermi) approximation. Effectively it means that T0 	 �hx where �hx is the
level spacing.

For Bose-gases TC
BEC * T0, while for Fermi-gases TC \ T0 (in the absence of

Feshbach effect or far from Feshbach resonance) especially for extended Cooper

Fig. 5.9 The W-functions
W0(r) and W1(r) of the lowest
ðE0 ¼ U0 þ 3=2�hxÞ and first
ðE1 ¼ U0 þ 5=2�hxÞ levels in
the spherically symmetrical
parabolic potential well

UðrÞ ¼ mx2r2

2 þ U0
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pairs in the BCS-case. Note that for fermions T0 = eF, and due to the Pauli
principle the number of particles in the trap for T � T0 reads in 3D case:

Ntot � eF=�hx

 �3	 1: ð5:1:24Þ

Thus N1=3
tot � eF=�hx is the number of the occupied levels in case of fermions,

while qðeÞ ¼ dNtotðeÞ
de � e2

ð�hxÞ3 is the density of states for a spherical parabolic trap.

The quasiclassical criterion for fermions then reads:

eF 	 �hx ¼ eF

.

N1=3
tot

� 	

ð5:1:25Þ

and coincides with the Migdal criterion [38] well-known in nuclear physics. We
will discuss the fermionic superfluidity in the trap for 6Li and 40K isotopes more
detaily in this chapter and Chap. 12.

Returning back to bosons, we would like to emphasize that for Rb and Na the
scattering length a [ 0—corresponds to repulsion, and BEC goes along the
standard Bogoliubov scenario (hard-core Bose-gas [19, 30]). For 7Li the scattering
length a \ 0—corresponds to attraction, and Bose-condensate exists only for
gj j\1 due to discrete level structure in the trap (in unrestricted geometry we will

have collapse in real space instead of BEC) (see [24]).
Note that for gj j[ 1 levels are effectively smeared by interparticle interactions

and there is no BEC in the system of 7Li atoms.

5.1.6 Recalculation of TC
BEC from the Free Space on the Trap

Geometry in Confinement Potential

It is important to recalculate Einstein formula TC
BEC = 3.31 n2/3/m for an ideal

Bose-gas from the infinite free space to the confined geometry of magnetic trap
using quantum–mechanical solution E � U0 ¼ �hxðnx þ ny þ nz þ 3=2Þ for
spherical harmonic oscillator (or in more general anisotropic case using the
solution E � U0 ¼ �hxxðnx þ 1=2Þ þ �hxyðny þ 1=2Þ þ �hxzðnz þ 1=2Þ:)

To do that according to Dalfovo et al. [18] we should write the total number of
particles in the spherical trap:

N ¼
X

nx;ny;nz

1

exp
�hxðnx þ ny þ nz þ 3=2Þ � lB

kBT

� �

� 1
: ð5:1:26Þ

According to Einstein lB(T = TC) = 0 in free space. For the trap lB ¼ 3
2 �hx

corresponds to the lowest Landau level. Thus for T = TC
BEC:

N ¼
X

nx;ny;nz

1

exp
�hxðnx þ ny þ nzÞ

kBTBEC
C

� �

� 1
: ð5:1:27Þ
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In the quasicalssical approximation for kBT 	 �hx (when the number of trapped
particles is large N 	 1) we can replace the sum by integral in (5.1.27) and get:

N ¼
Z

1

0

dnxdnydnz

exp
�hxðnx þ ny þ nzÞ

kBTBEC
C

� �

� 1
¼ nð3Þ kBTBEC

C

�hx

� �3

; ð5:1:28Þ

where n(3) is the n-function.
Correspondingly

kBTBEC
C ¼ �hx

N

nð3Þ

� �1=3

¼ 0:94 �hx N1=3: ð5:1:29Þ

The proper thermodynamic limit for these systems is obtained by letting N !
1; x! 0 and keeping x3N ¼ const. Note that for bosons TBEC

C � T0 and T0 	
ð�hx� T0=N1=3Þ in similarity with the fermionic case. To get the number of con-
densed particles N0 below TC

BEC we can put again lB ¼ 3�hx=2 and write:

N � N0ðTÞ ¼
X

nx;ny;nz 6¼0

1

exp
�hxðnxþnyþnzÞ

kBT

� 	

� 1
: ð5:1:30Þ

If we introduce the density of states for the spherical trap qðeÞ ¼ 1
2

e2

�hx0ð Þ3, we

obtain:

N � N0ðTÞ ¼
Z

1

0

deqðeÞ 1

exp e
kBT

� 	

� 1
¼ nð3Þ kBT

�hx

� �3

; ð5:1:31Þ

and using TC
BEC from (5.1.29) we finally get: N0

N ¼ 1� T
TBEC

C

� 	3
, or N � N0ðTÞ ¼

N T
TBEC

C

� 	3
for the noninteracting bosons in 3D spherical traps. Of course we can

recalculate TC
BEC on strongly anisotropic case also.

5.1.7 Metastability of Trapped Bose- and Fermi-Gases

It is important to note that the systems like atomic 7Li and 6Li in magnetic traps are
inherently metastable. The most effective channels of decay, which define the
lifetime of these metastable systems, are three-particle recombination and spin-
relaxation processes [23]. The point is that for 6Li–6Li and 7Li–7Li in the two-
particle interaction potential exists a virtual quasiresonance level [39, 40] (see
Fig. 5.10). It means according to Quantum mechanics [30] that if we make
potential well a little bit deeper then a real shallow level appears. Of course there
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are deep vibrational levels in the potential, but they are well-separated from a
shallow one (from the continuum states).

As it was shown by Yu. Kagan, Shlyapnikov and Glukhov [23] due to three-
particle recombination processes the particles leave the shallow quasiresonance
levels in a potential well thus loosing their quantum–mechanical identity (they do
not participate then in the symmetrization of the BEC or BCS condensate wave-
functions). As a result a lifetime of BEC condensate (such as 7Li) for densities
n [ 1012 cm-3 is of the order of 40 s. The lifetime of molecular BEC condensate
of 6Li is of the order of 10 s in the regime of Feshbach resonance, while the
lifetime of the fermionic BCS condensates is much smaller (superfluidity of
Cooper pairs is more fragile).

Note that for densities n C 1014 cm-3 the parameter gj j becomes usually of the
order of 1 and thus in bosonic 7Li with attractive scattering length a \ 0 the
phenomena of BEC disappears. In case of fermionic 6Li in the regime of Feshbach
resonance (on the BCS-side of it—see the next section of this Chapter)
aj j � 2ffi 3ð Þ103 Å and a \ 0. Here the effective gas parameter of Galitskii, which

for fermions reads keff ¼ 2 aj jpF

p (see [28] and Chap. 12, where pF is Fermi-
momentum and eF = pF

2/2m) reaches the values of the order of 1 for densities
n * 1014 cm-3. In this case, as we will show in Chap. 12, the compressibility (or
the sound velocity squared j-1 = c2) of the system becomes negative, and the
system of 6Li atoms becomes unstable with respect to phase-separation on several
hyperfine components.

Thus the densities n * 1014 cm-3 are usually maximal possible densities of the
homogeneous state both for BEC and BCS- condensates in the traps.

5.2 Experiments on Feshbach Resonance in Ultracold
Quantum Gases and Mixtures

Molecules or composed bosons f:f; (6Li2, 40K2) and composed fermions
frb (40K ? 87Rb) were observed in magneto-optical or dipole traps in the exper-
iments on Feshbach resonance by the groups of Jin [6, 7, 48, 49] and Ketterle in
USA [8, 21, 50].

Fig. 5.10 The level-structure
for the interaction potential
acting between two 6Li or two
7Li atoms. There is a shallow
virtual level for this potential
well-separated from deep
vibrational levels [39, 40]
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In Feshbach resonance we use the abrupt change of the sign and the magnitude
of the s-wave scattering length in the external homogeneous magnetic field B:

a ¼ abg 1þ D
B� B0

� �

; ð5:2:1Þ

where abg is the s-wave scattering length of the quasiresonance origin (see
Fig. 5.10 as illustration). For B ? B0 (where B0 is a resonance magnetic field) 1/
a ? 0 and we are in the so-called unitary limit of the infinite interaction. Usually
abg

ffi

ffi

ffi

ffi� 15ffi 20ð Þ Å, moreover for fermionic 6Li abg \ 0 [39, 40]. Thus not very
far from the resonance the typical values of aj j can reach (2000 7 3000) Å.

Physically Feshbach resonance corresponds to the interception of the singlet
and triplet two-particle terms in the resonant magnetic field B0. The singlet term
for 6Li is formed by the one-particle terms J = 3/2, Jz = � and J = 3/2, Jz = -�
and possesses virtual or real shallow bound state (which effectively is a molecule
or a composed boson f:f;), while the triplet term is prepared by two one-particle
terms J = �, Jz = � and J = �, Jz = -� and does not have it [41–47]. We
refer to the singlet term as to a closed channel, while the triplet term corresponds
to an open channel. The behavior of the scattering length a in magnetic field
B according to (5.2.1) is given by Fig. 5.11.

For a [ 0 the tightly bound local pairs are created—this side is usually called
BEC-side of Feshbach resonance (DB \ 0 or B \ B0). For a \ 0 (DB [ 0) there is
only virtual level, which excludes the formation of local bound pairs in real space
and allows only extended weakly-bound pairs in momentum space. This side of
Feshbach resonance corresponds to BCS-side of BEC-BCS crossover. Here only
extended Cooper pairs of two fermionic atoms can be formed.

Fig. 5.11 Feshbach resonance for s-wave pairing describing s-wave scattering length a as a
function of the relative magnetic field DB = B - B0, where B0 is a resonance field. On the inserts
we show the evolution of singlet and triplet terms when we go from BEC side (a [ 0) to BCS
side (a \ 0) of the resonance
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Note that when we speak about an ‘‘open’’ or ‘‘closed channel’’ (or ‘‘singlet’’ or
‘‘triplet’’ terms) [41–47]we effectively use the terminology of the Heitler-London
theory [26] for the molecules of H2, which are formed in singlet channel (for total
electron spin Stot = 0 of two hydrogen atoms). In the same time there is no bound
state of two hydrogen atoms in the triplet channel (for total electron spin Stot = 1
of two hydrogen atoms). Here (for 6Li2 and 40K2) the role of effective spin plays
Jz

tot which is zero both for singlet and triplet channels (Jz = ± � for two one-
particle terms in both channels). We can illustrate the behavior of singlet and
triplet terms in magnetic field in the following way (see Fig. 5.12).

5.2.1 The General Expression for the s-Wave Scattering
Amplitude

Note that according to Landau the general form for the s-wave (l = 0) scattering
amplitude in resonance approximation reads [26]:

f0ðkÞ ¼
1

1
aþ ik þ k2R�

; ð5:2:2Þ

where W ¼ �h2

mR2
�

is the resonance width. In the potential scattering theory R* = r0 is
the range of the potential (kr0 are the corrections to 1/a due to the finite range of

Fig. 5.12 Singlet and triplet terms on Fig. 5.12 do not intercept in the absence of field but
intercept in field B = B0 [42] (see also [43–45])

Fig. 5.13 General a-
decaying potentials with
resonance states E = E0 -

i C/2, which have the finite
lifetime for E0 [ 0 and C[ 0
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the potential). However in the general case (for a-decaying potentials, see
Fig. 5.13 for example) R* is not connected with r0.

In the dilute gas limit kr0 � 1, but, in principle, kR* can be larger or smaller
than 1. If kR* 	 1, then we have narrow resonance (with respect to the width

W ¼ �h2

mR2
�
) [51–53].

5.2.2 Broad Feshbach Resonance

In the opposite limit kR* � 1 we have broad resonance [51–53]. Thus for broad
resonance we can neglect k2R* with respect to ik and get the standard (and with
correct analytical properties) quantum–mechanical formula for potential resonance
scattering:

f ðkÞ ¼ 1
1
aþ ik

: ð5:2:3Þ

This situation is well-described by one-channel resonant approximation with
one parameter-scattering length a. In the unitary limit 1/a ? 0 and f(k) = 1/ik
according to general quantum–mechanical rules.

5.2.3 Resonant Approximation for Broad Feshbach
Resonance

In resonant approximation we change a little bit a depth of potential (see Fig. 5.1).
As a result at first we proceed from deep level Eb * -1/mr0

2 in potential well with

Fig. 5.14 Resonant approximation for typical short-range interatomic potential. a Corresponds to
deep bound state in potential well. b To the shallow bound state for which a 	 r0 and |Eb| = 1/
ma2 � 1/mr0

2. Finally Fig. 5.14c corresponds to virtual state with attractive scattering length a \ 0.
When we continually decrease the depth of the potential, we gradually go from a to b, and than to c
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radius r0 (Fig. 5.14a) to a shallow level with Eb = -1/ma2 and a 	 r0 [ 0
(Fig. 5.14b), and finally to a shallow virtual level with Eb = 1/m|a|2 [ 0 and
|a| [ r0 (Fig. 5.14c). In the last situation a \ 0 corresponds to attraction.

Note that the sequence of states on Fig. 5.14a, b, c precisely correspond to the

behavior of the scattering length a ¼ abg 1þ D
B�B0

� 	

for the closed channel in the

regime of Feshbach resonance. Indeed in closed channel for B \ B0 and abg \ 0
the scattering length a \ 0, and we have bound pairs, as on Fig. 5.14a and b,
which become more and more shallow as we approach a resonance field B0.
Finally for B [ B0 and abg \ 0 the scattering length a changes sign (a \ 0) and we
have virtual pairs in the closed channel. The only thing which we lose in one-
channel (Hubbard-like description [29]) is a possibility to convert molecules in the
closed channel to the pairs of free fermions in the open channel and vice a versa
(atom-molecule oscillations [41, 42]) very close to the resonance field B0. Let us
emphasize that for a [ 0 we can independently measure the binding energy |Eb| for
the real shallow level by the threshold of the absorption x ¼ Ebj j of the soft infra-
red radiofrequency waves [10, 11]. The same technique yields a possibility to
measure a superfluid gap ðx ¼ 2DÞ in the superfluid state of the resonance Fermi-
gas at low temperatures T � TC (see Chap. 7).

5.2.4 Fermi-Gas with Attraction

Note that Fermi-gas with short-range attraction UðrÞ ¼ �Ue�r=r0 (r0 is a range of
the potential) in momentum space is described by the Hamiltonian:

Ĥ ¼
X

pr

epfþprfpr �
X

pp0q
rr0

UðqÞfþprfþp0r0 fp�q r0 fp0þq r; ð5:2:4Þ

where Fourier component of the potential U(q) is given by:

UðqÞ ¼ U0�Ur3
0 for qr0 � 1;

0; otherwise.

�

BCS-domain
The s-wave scattering length in the BCS-domain is given by Lippmann-

Schwinger integral equation for the two-particle T-matrix in vacuum [26, 27]. It
requires the summation of ladder-type diagrams for vacuum Green-functions G0

[19, 27, 28] and reads (see Fig. 5.15):

Tvacðx ¼ 0;~q ¼ 0Þ ¼ 4pa

m
¼ � U0j j

1� U0j jKvacð0; 0Þ
; ð5:2:5Þ

where Kvacð0; 0Þ ¼
R d3~p
ð2pÞ3

dX
2p G0ðX;~pÞG0ð�X;�~pÞ ¼

R d3~p
ð2pÞ3

1
2ep

is a product of the
two Green-functions G0ðx;~pÞ ¼ 1

x�p2

2mþio
in vacuum for zero total frequency x ¼ 0
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and zero total momentum ~q ¼ 0; ep ¼ p2

2m is the free particle spectrum. The scat-
tering length a from (5.2.5) can be represented as:

a ¼ mTvacðx ¼ 0;~q ¼ 0Þ
4p

¼
� m U0j j

4p

1� m U0j j
4p

R

� 1=r0

0

p2dp
p2

� � bj jr0

1� bj j\0; ð5:2:6Þ

where bj j ¼ m U0j jr2
0

4p � m U0j j
4p r0

is the Born parameter [26, 27].
In this case only extended s-wave Cooper pairing is possible (the BCS-domain

[15, 16]).

Note that for the Born parameter close to 1 1� bj j
bj j � 1

� 	

the scattering length

|a| 	 r0 and we have shallow virtual bound state |Eb| = 1/ma2 [ 0 [20, 26].
The critical temperature of s-wave Cooper pairing here is given by Gor’kov,

Melik-Barkhudarov formula [17]:

TBCS
C0 ¼ 0:28 eF exp � p

2 aj jpF

� 


; ð5:2:7Þ

which is just BCS-formula but with different preexponential factor 0.28 eF (instead
of xD in the phonon model).

For |b| = 1 an expression for the scattering length a has a pole. For |b| [ 1 we
are in the BEC-domain and formula (5.2.6) for the s-wave scattering length should
be modified. For the bound state problem (for the negative energies E \ 0) we
should use the s-wave scattering amplitude f0(E) which reads [20]:

f0ðEÞj j ¼ bj jr0

1� bj j þ bj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m Ej jr2
0

p : ð5:2:8Þ

Thus |b| = 1 is a threshold for a bound state of two fermions f:f;. Above the

threshold the energy of the bound state yields [20]: Ebj j � 1
mr2

0

bj j�1
bj j

� 	2
¼ 1

ma2 ;

where the scattering length a ¼ bj jr0

bj j�1 [ 0 corresponds to repulsion for |b| [ 1.

Fig. 5.15 Lippmann-Schwinger integral equation for the vacuum two-particle T-matrix
Tvac x ¼ 0;~q ¼ 0ð Þ ¼ 4pa

m , which requires the summation of ladder-type diagrams for vacuum
Green-functions G0 X; ~pð Þ ¼ 1

X�~p2

2mþio
, p is a four momentum X; ~pf g on the figure
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Here the local pairs (molecules or dimers or composed bosons f:f;) are formed, and
we are in the BEC-domain [12–14]. For |b| = 1 the scattering length diverges 1/

a ? 0. We are in the unitary limit. For bj j�1
bj j � 1 : a	 r0 and we have a shallow

bound state with an energy E = -|Eb|, where |Eb| = 1/ma2 � 1/mr0
2. Note that for

positive energies (E [ 0) the s-wave scattering amplitude reads: f0ðEÞ ¼
bj jr0

1� bj jþi bj j
ffiffiffiffiffiffiffiffi

mEr2
0

p ¼ 1
1=aþi

ffiffiffiffiffi

mE
p and in the unitary limit f0ðEÞ ¼ 1

i
ffiffiffiffiffi

mE
p according to

Quantum mechanics [26] E ¼ k2=m and
ffiffiffiffiffiffiffi

mE
p

¼ k

 �

.
The critical temperature in the BEC-domain according to Einstein reads:

TBEC
C ¼ 3:31

n=2ð Þ2=3

mB
; ð5:2:9Þ

where in the free space the density of composed bosons nB = n/2 and bosonic
mass mB = 2m. If we introduce the Fermi-energy eF = pF

2/2m, then TBEC
C �

0:22 eF in 3D case (where n = pF
3/3p2 is the fermion density). In the dilute bosonic

limit |Eb| = 1/ma2 	 eF (or pFa � 1) the situation at high temperatures is gov-
erned by the dynamical equilibrium between molecules and unbound fermions.
This situation is described by the well-known Saha formula (or the law of mass
action) (see [30]). In three dimensions it reads:

n2
F

nB
¼ 1

2p3=2
ðmTÞ3=2

exp � Ebj j
T

� 


; ð5:2:10Þ

where the total particle density n = nF ? 2nB with nF being the free fermion
density and nB the bosonic molecular density at the temperature T. The crossover
temperature T* is defined from the condition nF(T*) = 2nB(T*) = n/2 and yields:

T� ¼
Ebj j

3=2 ln
Ebj j
eF

; ð5:2:11Þ

where the logarithm in the denominator of (5.2.11) has an entropic character. For
high temperatures T 	 T* one has nF(T) 	 2nB(T) which means that most of the
fermions are unpaired. For lower temperatures T � T* vice a versa
nF(T) � 2nB(T) and most of the fermions are paired. They are Bose-condensed at
the critical temperature TC

BEC \ T* given by (5.2.9). Thus for intermediate tem-
peratures TC

BEC \ T \ T* we have an interesting phase of normal (non-superfliud)
dilute gas of composed bosons (see [14, 31, 32]). In the end of this chapter we will
see that composed bosons repel each other. Thus it is a standard weakly repulsive
Bogoliubov [27] Bose-gas of the composed bosons f:f;.

Dilute gas of composed bosons in 3D
For TC

BEC \ T \ T* the temperature evolution of the attractive Fermi-gas in 3D
is described by the two-particle T-matrix Tðixn;~qÞ in substance (for Matsubara
fermionic frequencies xn ¼ pT 2nþ 1ð Þ; T is temperature):
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Tðixn;~qÞ ¼ �
U0j j

1� U0j jKðixn;~qÞ
; ð5:2:12Þ

where

Kðixn;~qÞ ¼
X

xn

Z

d3~p

ð2pÞ3
GMðiXn;~pÞGMð�iXn þ ixn;�~pþ~qÞ ð5:2:13Þ

is a product of two Matsubara (temperature) Green-functions GM in a Cooper
channel for total momentum ~q and total frequency xn. Sometimes Kðixn;~qÞ is
called a Cooper loop or particle–particle susceptibility. Generally speaking, Green
functions GM in (5.2.13) are dressed Green functions (see description of the T-
matrix approximation in Chaps. 6 and 8), containing non-trivial self-energies RM.
Here, however, we will consider only the simplest approximation (which is often
called first iteration to the self-consistent T-matrix approximation). In this
approximation we can use the bare Matsubara Green functions GMðiXn;~pÞ ¼

1

iXn�~p
2

2mþl
in (5.2.13). Then graphically the Eq. (5.2.12) for the T-matrix can be

represented by Fig. 5.16.
Analytically the Cooper loop Kðixn;~qÞ in this approximation reads:

Kðixn;~qÞ ¼
Z

d3~p

ð2pÞ3
1� nFðnpÞ � nFðnq�pÞ
ixn � nð~pÞ � nð~q�~pÞ; ð5:2:14Þ

where we performed the summation over the Matsubara frequencies Xn with the

help of Watson transformation
P

Xn

!
H

C

dz
2p nFðzÞ [27]. In (5.2.14) nðpÞ ¼ p2

2m� l is

the quasiparticle spectrum and nFðnpÞ ¼ 1
enp=Tþ1

is the Fermi–Dirac distribution

function. For xn ¼~q ¼ 0 we get 1� nFðnpÞ � nFðnq�pÞ ¼ 1� 2nFðnpÞ ¼ th
np

2T

and we restore a standard expression for K(0,0) from the textbooks on BCS-theory

of superconductivity (see [15, 16, 27]): Kð0; 0Þ ¼
R d3~p
ð2pÞ3

thðnp=2TÞ
2np

: In the same time

for small x and ~q the T-matrix in substance (5.2.12) has a simple one-pole
structure in the BEC-domain. Namely, after analytical continuation ixn ! xþ io;

Fig. 5.16 Simplest approximation (first iteration) to the self-consistent T-matrix scheme which
requires the summation of ladder-type diagrams for the bare Matsubara Green functions
GMðiXn;~pÞ ¼ 1

iXn�~p
2

2mþl
, p is a four momentum Xn;~pf g on the figure
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the first iteration to the Cooper loop (5.2.14) reads for the BEC-domain a [ 0 and
temperatures TC

BEC � T � T* (see [33]):

Tð~q;xnÞ ¼
4pa
m 4 lj j

x� q2

2mB
þ lB þ io

� 	 : ð5:2:15Þ

The pole in (5.2.15) corresponds to the spectrum of a molecule (of a composed

boson) and reads: x ¼ q2

2mB
� lB. Note that in (5.2.15) we introduce a bosonic

(molecular) chemical potential [31–33]:

lB ¼ 2lþ Ebj j: ð5:2:16Þ

Note also that for T � T* most of the fermions are paired:

nFðTÞ� exp � Ebj j
2T

n o

� 2nBðTÞ, and hence n & 2nB. The fermionic chemical

potential l acquires a kink and reads for T � T* [33]:

l � � Ebj j
2
� 3

4
T ln

T

TBEC
C

: ð5:2:17Þ

Accordingly bosonic chemical potential reads:

lB � �
3
2

T ln
T

TBEC
C

; ð5:2:18Þ

and lB(TC
BEC) = 0 just in agreement with Einstein’s definition of Bose-conden-

sation critical temperature TC
BEC.

We would like to emphasize that for x ¼~q ¼ 0 the expression for the T-matrix
in BEC-regime is reduced to [33]:

Tð0; 0Þ ¼ 16pan lj j
m

1
lB
; ð5:2:19Þ

and thus for lB(TC
BEC) = 0: the T-matrix T(0,0) = 1/lB ? ? diverges in agree-

ment with Landau-Thouless criterion for the second order phase-transitions [19,
27].

Bethe–Salpeter integral equation
To escape confusion note that the equation for the T-matrix in substance, given

by Fig. 5.16, is very close to the Bethe–Salpeter (BS) integral equation [22, 25] for
the total two-particle vertex C. Bethe–Salpeter equation comes to the condensed
matter physics from quantum electrodynamics and is widely used do describe
superconductive pairing, for example. We will often use it in this book (see this
Chapter and Chaps. 9, 10, 12). In general BS integral equation in the Cooper
channel has the following graphic form (see Fig. 5.17).

Algebraically the BS integral equation reads:
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�Cð~p;~kÞ ¼ �Ueff ð~p;~kÞ

þ T
X

n

Z

Ueff ð~p;~qÞGMðXn;~qÞGMð�Xn;�~qÞ � Cð~q;~kÞ
d3~q

ð2pÞ3
;

ð5:2:20Þ

where C is the total vertex in the Cooper channel, Xtot ¼ Xn1 þ Xn2 ¼ 0; ~ptot ¼
~q1 þ~q2 ¼ 0; GMðXn;~qÞ ¼ iXn � nðqÞ½ ��1—is the Green function in temperature
technique, Xn = pT(2n ? 1) is the Matsubara frequency for fermions, T is the

temperature, n = 0, ±1, ±2 is integer, nðqÞ ¼ q2

2m� l. In the BCS-domain l = eF

and ~pj j ¼ ~k
ffi

ffi

ffi

ffi

ffi

ffi
¼ pF are the incoming and outgoing momenta lying on the Fermi-

surface.
In the free space for infinite Fermi gas the reduction of the BS integral equation

to the algebraic one can be fulfilled with the help of Legendre polynomials

Pl(cosh), where h ¼ \~p~k is the angle between incoming and outgoing momenta~p

and~k, l is the value of the (relative) angular momentum of a pair (l = 0 for s-wave
pairing, l = 1 for p-wave pairing and so on). As a result (see [27]):

Cl ¼ Ul
eff � Ul

eff KCl ð5:2:21Þ

and correspondingly

Cl ¼
Ul

eff

1þ Ul
eff K

; ð5:2:22Þ

where K ¼ T
P

n

R

GMðXn;~qÞGMð�Xn;�~qÞ d3~q
ð2pÞ3—is the Cooper loop. In the BCS-

domain it reads:

K ¼
Z

d3~q

ð2pÞ3
th

nq

2TC

2nq
� N3Dð0Þ ln

2eCeF

pTC
; ð5:2:23Þ

where N3D(0) = mpF/2p2 is the density of states in 3D, C is the Euler constant
[27].

Fig. 5.17 The graphic representation of the Bethe–Salpeter integral equation. C stands for total
two-particle vertex in the Cooper channel, Ueff is irreducible bare vertex with respect to Cooper

channel. p and k are four-momenta p ¼ Xn; ~pf g; k ¼ Xm; ~k
n o
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The pole of Cl in (5.2.22) yields an equation for TC according to Landau-
Thouless criterion:

1þ Ul
eff K ¼ 0: ð5:2:24Þ

Thus the most important is the sigh of Ueff
l for different values of the orbital

momentum l. In this chapter we consider mostly l = 0. However, in Chaps. 9, 10,
11, 12, 13 we will also consider l = 1 (p-wave) and l = 2 (d-wave) pairings.

From Fig. 5.17 we see that the main difference between BS integral equation
and the equation for the T-matrix in substance (Fig. 5.16) is the replacement of the
bare vacuum interaction U(q) by the is irreducible bare vertex Ueff(q). By defi-
nition, Ueff(q) in (Fig. 5.17) is a sum of all irreducible diagrams with respect to
Cooper channel. These diagrams cannot be cut on two parts along the two solid
lines running in the same direction [19, 27].

The difference between irreducible bare vertex (or effective interaction)
Ueff(q) from U(q) gives us a possibility to get a superconductive pairing even in
purely repulsive Fermi-systems (see Chaps. 9, 10, 11, 12). In the BCS-domain of
the 3D attractive Fermi gas this difference also defines preexponential factor 0.28
eF in Gor’kov, Melik-Barkhudarov result for TC0

BCS in (5.2.7). However, many
derived expressions for dilute BEC limit and even for BCS-BEC crossover (see
Chap. 6) can be done neglecting a difference between Ueff(q) and U(q) in reso-
nance Fermi-Bose gases and mixtures. Thus if we neglect the vertex corrections
for Ueff(q), than the T-matrix equation in substance (in its first iteration) coincides
with the Bethe–Salpeter integral equation for the total two-particle vertex C in the
Cooper channel.

5.2.5 Attractive-U Hubbard Model

A detailed investigation of the attractive-U Hubbard model both in 3D and 2D case
will be the subject of Chap. 8. Here we would like to note that many formulas
obtained in Sect. 5.2.4 are valid also for attractive-U 3D Hubbard model on the
lattice:

Ĥ ¼ �t
X

ijh ir
fþir fjr � U

X

i

ni"ni#; ð5:2:25Þ

where t is the hopping matrix element, fir
+ and fir are the creation and annihilation

fermionic operators on the neighboring sites \ij[ of the lattice, ni" ¼ fþi" fi" is on-
site density of fermions with spins ‘‘up’’, U is the Hubbard (short-range) attraction.

After Fourier transform we get in close analogy with (5.2.4):

Ĥ ¼
X

eðpÞ fþprfpr � U
X

pp0q

fþp"f
þ
p0#fp�q#fp0þq"; ð5:2:26Þ
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where eðpÞ ¼ �2tðcos pxd þ cos pyd þ cos pzdÞ is a fermionic spectrum for a
simple cubic lattice in 3D, d is intersite distance.

At low densities nd3 � 1: eðpÞ � �6t þ p2

2m ; and 3D attractive-U Hubbard
model becomes equivalent to 3D Fermi gas model with short-range attraction. The
role of the range of the potential r0 in the Hubbard model plays an intersite
distance d. Correspondingly Fourier component of the potential U(q) for q = 0
reads: U0 * Ud3 in the Hubbard model and the band mass m ¼ 1=2 td2.

Thus practically all the formulas derived in this Subsection for dilute BEC-
domain of the attractive Fermi-gas are valid also for 3D attractive-U Hubbard
model. The only difference is the bosonic mass mB in the expression for TC

BEC

(5.2.9) and in the pole of the total vertex C: x ¼ q2

2mB
� lB. In the absence of the

lattice mB = 2m. On the lattice in the strong-coupling case
U 	 W = 2zt = 12t (W is a bandwidth, z = 6—the number of nearest neighbors
on the simple cubic lattice in 3D) the bosonic mass is additionally enhanced (see
[14] and Chap. 8 for more details):

m�B�mB
Uj j
W
: ð5:2:27Þ

The role of the optical lattices
Note that the optical lattices [34] (usually fabricated in the physics of ultracold

gases by three or two monochromatic laser beams, which create mutually per-
pendicular standing waves with the particles in their minima) give us an excellent
experimental possibility to study 3D and 2D Hubbard models on the lattice (the 1D
optical lattices are also experimentally feasible). Moreover it is possible by
changing the periodicity of lasers ðli ¼ 2pc=xiÞ to fabricate the isotropic or
anisotropic lattices with different intersite distances d and hopping integrals t (or
band masses m = 1/2 td2). It is also possible to vary (with the help of the
amplitudes of the laser beams) the strength of Hubbard interaction U (and thus the
ratio U/W), as well as the particle density (or filling factor ndD). Finally in the case
of repulsive-U Hubbard models, the optical lattices provide us an excellent pos-
sibility to study Mott- Hubbard localization transition [29, 34] for large values of
U [ UC * W (W is a bandwidth) and density ndD = 1 corresponding to one
particle per site (see Chap. 9 for more details). Note that currently both fermionic
and bosonic Hubbard models are intensively studied on the optical lattices is three-
dimensional, two-dimensional and one-dimensional cases.

5.2.6 Narrow Feshbach Resonance

In the opposite limit of narrow Feshbach resonances kR* [ 1 [see Eq. (5.2.2)] one-
channel theory with contact potential (or resonant approximation) is not sufficient,
since it misses an additional possibility to get the quasistationary resonance states
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with the finite lifetime E = E0 - iC/2 (see Fig. 5.13) besides real and virtual
bound states. A nice illustration of the situation for narrow Feshbach resonance we
can find in [36]. On Fig. 5.18 we present the solution for the real part of the pole of
the amplitude f0(E) in terms of the energy E = k2/2m.

For shallow bound states a 	 R* [ 0 the pole in energy Eb = -1/ma2 depends
quadratic on 1/a. If 0 \ a \ R* the dependence of the binding energy from
1/a becomes linear Eb = -1/maR* \ 0. On the other side of the resonance the
scattering length is negative a \ 0 and large by absolute value |a| 	 R*, and thus
we have virtual bound states. However for |a| \ R* we have resonance states with
the finite lifetime E = E0 - iC/2 (E0 [ 0, C[ 0). It is useful also to show the
evolution of the character of the pole of the scattering amplitude f0(E) in a complex
energy plane (see Fig. 5.19).

Thus the conditions to get narrow Feshbach resonance include kR* [ 1 and
|a| \ R*. In degenerate Fermi-gases k * kF and kFR* [ 1 for narrow resonances.
Usually in case of 40K the resonance is broad (here the terms J = 9/2 and J = 7/2
are involved in the formation of singlet and triplet terms). In the same time in case

Fig. 5.18 Dependence of the
real part of the energy ReE,
which defines the dependence
of the pole position of the
s-wave scattering amplitude
(5.2.2) from the inverse
scattering length—1/a [36]

Fig. 5.19 Evolution of the
character of the pole of the
s-wave scattering amplitude
f0(E) in a complex plane [36].
The arrows indicate the
pole’s motion as—1/a is
increased
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of 6Li the resonance is more narrow. Through Chap. 6 we will use one-channel
description of the Feshbach resonance concentrating on real and virtual bound
states in closed channel and assuming that resonance is broad. Additional argu-
ment in favor of one-channel (or resonance approximation) with one parameter
a 	 r0 (as for the short-range contact potential) was formulated in [51, 52].
Namely the authors of these papers paid attention on the fact that both singlet and
triplet channels in terms of effective spin Jz = Sz ? Iz are ‘‘singlet’’ since Jz

tot = 0
in both of them (Jz1 = �, Jz2 = -� both for singlet and triplet). Moreover both
singlet and triplet states have relative angular momentum l = 0. Hence in analogy
with contact interaction (or attractive Hubbard model [14, 29]) in dilute limit
pF|a| \ 1 they can be described only in terms of the s-wave scattering length a.

Note that rigorously speaking, very close to the resonance the two-channel
character of the Feshbach effect [53–55] can be important and manifests itself in
the Feshbach term [53] gðboqfþ~k"f

þ
�~kþ~q" þ h:c:Þ, where bosonic operator with

momentum q namely b0q corresponds to a molecular bound state (|Eb|) in closed
channel, while the bilinear combination of the fermionic operators with total
momentum ~q corresponds to an open (triplet) channel. For B ? B0 the Feshbach
term describes the dissociation of a boson with momentum~q in singlet channel on
two fermions (with total momentum~q) in triplet channel, and the inverse process
of the formation of boson in singlet channel from the two fermions in triplet
channel. Note that the Feshbach term in atomic physics resembles the Ranninger
term in fermion-boson models for high TC superconductivity [35, 56]. Note also
that not very close to the resonance the Feshbach-Ranninger term is not so
important both in gases and in superconductive metals.

5.3 Experiments on Molecular BEC in 6Li and 40K

In the first experiments on Feshbach resonance the Fermi-gas of 6Li and 40K was
cooled in magneto-optical traps by combination of laser and evaporative cooling
till temperatures much lower than the degeneracy temperature T0. After that the
magnetic field B was adiabatically (very slowly) switched on. In the more recent
experiments the Fermi-gas was evaporatively cooled till low temperatures, than
the system was reloaded in dipole trap [with confinement potential described by
(5.1.19)]. After that the homogeneous magnetic field (which is independent of
coordinates) was rapidly switched on. Thus in both experiments T B T0. The
measurements in the first experiments in Ketterle group were performed for
magnetic fields B in the interval between 700 and 900 Gauss (the resonance field
B0 * 830 Gauss). For abg \ 0 and B [ B0 we are in the BCS-domain. For the
fields B \ B0 we are in the BEC-domain. Traversing magnetic field from 900
Gauss to 700 Gauss, we go from virtual bound state at B [ B0 to real bound state
(molecules 6Li2) at B \ B0. Since we change magnetic field adiabatically (slowly),
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the entropy S = const and when the molecules are created, the temperature is
increased only on 40 %. Hence T is still lower than T0 even on BEC-side.

In the fields B \ B0 (a [ 0) for temperatures T* * |Eb| = 1/ma2 * 10-5K the
molecules (composed bosons f:f;) were formed.

They were detected by the threshold of the absorption of the soft infrared
electromagnetic waves �hxthresh ¼ Ebj j [46]. The molecules f:f; were Bose-con-
densed at temperatures TC

BEC * 10-6 K. The transition to the superfliud state was
measured again (as in trapped Bose-gas) in the diffraction experiments form the d-
functional density peak of the condensate particles, located in the center of the
trap. Another way to observe the superfliud state is again to measure at T \ TC

BEC

the bimodal distribution of the leaving particles (when the trap is lifted) with a
temperature independent superfliud component v5

condaNcond. For B = B0:
1/a = Ncond/vC

5 = 0 and thus Ncond = 0. Note that the critical temperature
TC

BEC = 3.31 (n/2)2/3/2m, in the infinite free space for bosonic density nB = n/2
and mB = 2m for bosonic mass. If we introduce n = pF

3/3p2 in 3D Fermi-gas and
eF = pF

2/2m, than TC
BEC & 0.2eF in free space for composed bosons.

In the trap kBTBEC
C ¼ 0:94 x Ntot=2ð Þ1=3 and eF ¼ x 3Ntotð Þ1=3. Thus kBTC

BEC =

(0.06)1/3 eF & 0.2eF. In the same time for the Cooper pairing of two fermions in the

BCS-domain (for |a| \ 0) we will get [17] TBCS
C ¼ 0:28 eF exp � p

2 aj jpF

n o

. Here we

should demand that the size of the Cooper pair n0 ¼ �hvF

TBCS
C

is smaller than the typical

size of the trap Re for e * eF. Thus the validity of quasiclassical approximation

requires that eF 	 kBTC 	 x or eF 	 kBTC 	 e1=3
F =Ntot just in agreement with

Migdal criterion in nuclear physics [38]. Note that in strongly-anisotropic case we

should replace x in formulas for TC and eF on ~x ¼ ðxxxyxzÞ1=3. Note also that if
xz 	 fxx; xyg we have effectively quasi one-dimensional trapped gas while for
fxx; xyg 	 xz the trapped gas is quasi two-dimensional. Thus varying the con-
finement potential we can change the dimensionality of the trapped gases or
mixtures.
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Chapter 6
Composed Particles, Trios and Quartets
in Resonance Quantum Gases
and Mixtures

In the beginning of this chapter we consider two-boson pairing for bosons of the
same (bb) or different (b1b2) sorts. The two-boson pairing was first proposed by
Nozieres and Saint James in their famous paper [1]. Here we consider Bose-gas
with van der Waals interacting potential between particles and the two-band
Hubbard model with attraction between bosons of different sorts [2–4] and
repulsion between bosons of the same sort. We also discuss a competing (to two-
boson pairing) phenomena of phase-separation in one band and two-band [2–7]
bosonic models. In the end of the first section we consider briefly the possibility of
two-holon pairing which arises in the 2D underdoped t-J model if we assume the
scenario of spin-charge separation between spinons and holons advocated by
Anderson [8, 9] and Lee [10].

The second section will be devoted to the model of Fermi-Bose mixture with
attractive interaction between fermions and bosons [11–14] and the possibility to
get composed fermions frb in this model. Note that the attraction between fer-
mions and bosons is opposite to the Fermi-Bose mixtures of 3He and 4He [7, 96,
97] or 6Li and 7Li [15] (which will be considered in more details in Chaps. 11 and
12). In these systems usually the interaction between fermions and bosons is
repulsive. The Feshbach resonance effect helps to change the sign of fermion-
boson interaction [17].

In the next sections we will consider 3 and 4-particle complexes which can appear
in resonance Fermi-Bose-gases and mixtures, where the scattering length a is much
larger than the range of the potential r0. At first we will consider the scattering
amplitude a2-1 for the scattering of elementary fermion fr on the composed boson
f:f;. Here we will present exact solution of Skorniakov-Ter-Martirosian integral
equation for three particles in resonance approximation and get a2-1 = 1.18|a| [ 0
[18], which corresponds to repulsion between fermion and molecule (dimer). We
also consider so-called Efimov effect [16, 90] which predicts a lot of bound states for
three bosons bbb in a 3D case with the energies ranging from |E3| & 1/ma2 for
shallow levels till |E3| & 1/mr0

2 for deep three-particle levels. The number of levels
in the resonance approximation a � r0 is governed by N� 1

p ln a
r0

in 3D [19]. We

will show also that Efimov effect is absent in 2D case [20] and thus the number of
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bound states for three bosons bbb [21] or two bosons and one fermion bbfr is finite.
Moreover all of them have the energies of the order of Ebj j ¼ 1=ma2. Thus all
3-particle levels in 2D case are shallow (or quasiresonance) in origin.

We proceed than to the 4-particle problem. At first we solve Skorniakov-Ter-
Martirosian equations 4 fermions [18, 22] and find the scattering length a2-2

[23–25] for dimer–dimer scattering (for scattering of one molecule f:f; on one the
other). Here in the resonance approximation we get an exact result
a2-2 = 0.6|a| [ 0 which is different from mean-field result a2-2 = 2|a| and from
the result of the ladder approximation of Pieri and Strinati [26] which predicts
a2-2 = 0.75|a| if we neglect the dynamics (the possibility for two molecules to
form virtual states with 3 and 1 particle [23–25]).

We also discuss the shallow bound states for 4 bosons [27], 3 bosons and 1
fermion and 2 bosons and 2 fermions in 2D case where Efimov effect is absent.
Note that all the binding energies of the 4-particle complexes can be expressed in
terms of |Eb| = 1/ma2 only in 2D [20, 28].

In the end of the chapter we discuss the importance of the obtained results for
the phase diagram and life-time of ultracold Fermi-Bose-gases and mixtures. In
particular we use the value of a2-1 to estimate the inelastic scattering time in the
resonant Fermi-gas [29] and 4-particle binding energies E4 to complete phase
diagram of the resonance Fermi-Bose mixture with attraction between fermions
and bosons. Here we pay a special attention on the complexes (f:b, f;b) formed by
two composed fermions frb and stress the analogy between ultracold Fermi-Bose
mixtures in magnetic traps and strongly-interacting mixture of spinons and holons
in underdoped high-TC compounds in the framework of Laughlin ideas [30–32] on
spin-charge confinement. According to Laughlin, the spinons and holons experi-
ence the phenomenon of spin-charge confinement in analogy with the confinement
[33] in quark-gluon plasma (in quark bags) in QCD-physics [32, 33, 35]. We think
[36] that for strongly-correlated quasi-2D (layered) cuprates the philosophy of
Laughlin is more adequate that the philosophy of Anderson and Lee [8–10] on
spin-charge separation, which is based on the analogy with 1D-physics. We
emphasize that due to linear (string-like) confinement potential between spinons fir
and holons bi [37–39], the composite hole hir = firbi is formed on the lattice. It
represents a compact object (a bag or spin-polaron [40]). The Cooper pairs in this
system are formed by the residual (dipole–dipole) interaction [40] between two
composite holes and effectively represent 4-particle complex [6, 18, 23, 25, 41],
consisting of two spinons and two holons. Thus the superconductive gap reads
Dij ¼ hirhj�r

ffi �

¼ firbi; fj�rbj

ffi �

: It is formed by two composite holes on the lattice
with a total spin Stot = 0 of a pair. We will consider these ideas more detaily in
Chap. 13 on the basis of 2D t-J model and advocate the scenario of BCS-BEC
crossover in the d-wave channel for pairing of two composite holes (two strings or
two spin polarons) in underdoped cuprates.

We stress also the importance of dimer–dimer amplitude a2-2 for the phase-
diagram of the BCS-BEC crossover and the spectrum of collective excitations in
resonance Fermi-gas. We will consider these properties in detail in Chap. 7.
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Note that the creation of three and four particle complexes, as well as the
evaluation of different scattering amplitudes, for the two-particle potentials

VðrÞ ¼ ard þ b
rc; 1� d; cf g� 2, which are the sum of confinement and Coulomb

(or dipolar) parts, play an important role in the non-relativistic problem for
baryons [43] and in Quantum Chromodynamics [44], especially when the prob-
lems of inhomogeneous superconductivity are studied in the QCD theory at zero

temperature. Note that the potentials VðrÞ ¼ ar2 þ b
r2 (d ¼ c ¼ 2) allow also for

exact solutions at least on the level of the two-particle problem. The creation of
three and four particle complexes was also predicted for the quark-gluon plasma in
the high-temperature limit. This limit can be realized experimentally in heavy ion
collisions. Here three and four particle complexes can be formed on the way from
a gas to a liquid in the hydrodynamic regime for the quark-gluon plasma (see [101]
and references therein).

6.1 Two-Particles Pairing and Phase-Separation in Bose-
Gas with One or Two Sorts of Bosons

As we already discussed in Chap. 5, in contrast with two-particle Cooper pairing in
Fermi-systems (see Chaps. 9–12), the essence of a superfluidity is Bose-systems is
one-particle Bose–Einstein condensation (BEC). This asymmetry between Fermi
and Bose (two-particle versus one-particle condensation) was challenged in a
pioneering paper by Valatin and Butler [45]. They proposed a BCS-like variational
function for the description of an attractive Bose-gas. The most difficult problem
with the validity of their description is connected with the tendency towards phase
separation which arises in attractive Bose systems. Later on Nozieres and Saint-
James [1] conjectured that in a Bose-system with a short-range, hard-core repul-
sion and a van der Waals attractive tail, in principle, it is possible to create a two-
particle bosonic bound state and to escape collapse. Unfortunately their calcula-
tions in three-dimensional (3D) systems showed that, at least for one sort of
structureless boson, either standard one-particle BEC is more energetically ben-
eficial, or that a phase separation takes place earlier than the two-particle con-
densation. Note that the same result was obtained earlier by Iordanskii [46] for the
case of weak van der Waals attraction.

The important development of the ideas of Nozieres and Saint James belongs to
Rice and Wang [47]. These authors claimed that in two dimensions (where already
an infinitely small attraction leads to the bound state in a symmetrical potential well)
it is possible to realize a two-particle boson pairing. Moreover, this two-particle
pairing results, for small momenta qn0\1 (n0 is a coherence length) in a linear,
soundlike, dispersion law of quasiparticles at T = 0 in an analogy with a standard
one-particle Bose-condensation for weakly repulsive Bogoliubov Bose-gas.

To escape a collapse in a 2D attractive Bose-gas, the authors of [47] introduced
in their model a Hartree–Fock shift of the chemical potential lB * Un, connected
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with the short-range repulsion U. This shift in the case of U [ 2V, where V is the
magnitude of the van der Waals tail, leads to a positive compressibility in the
system j-1 = dlB/dn = U - 2V [ 0.

The main goal of this section is to construct a phase diagram of a 2D dilute Bose-
gas with the van der Waals interaction between particles, by taking into account on
equal grounds the full contribution of a hard-core repulsion U and a van der Waals
tail V (see [2–4]). Throughout the paper we will consider the lattice model, and will
base our results on the exact solution of the two-particle T-matrix problem pre-
sented in [48, 49] in connection with a fermionic t-J model (see Chap. 13). Note that
effectively a lattice model with van der Waals interaction between bosons is a
bosonic analog of a famous fermionic t-J model considered in Chap. 13 for high-TC

systems. We will study the possibility of different two-boson pairings, as well as the
possibility of a total phase separation in the system. We will also consider the two
sorts of structureless bosons described by the two-band bosonic Hubbard model
[50–55] (note that fermionic one-band and two-band Hubbard models [57] are
considered in Chaps. 8, 9, 10). In the case of attraction between bosons of two
different sorts, we will find a possibility of an s-wave two-boson pairing b1b2h i 6¼ 0:

6.1.1 Lattice Model with van der Waals Interaction Between
Bosons

The model under consideration is described by the following Hamiltonian on the
2D square lattice [2–4]:

Ĥ ¼ �t
X

\i j [

bþi bj þ
U

2

X

i

n2
i �

V

2

X

ijh i
ninj; ð6:1:1Þ

where ni = bi
+bi is a 2D boson density on site i. We will work in the limit of strong

hard-core repulsion U � {V; t}, and restrict ourselves mostly to a low-density
limit which in the lattice case yields nBd2 � 1, d being the interatomic distance. In
(6.1.1) t is hopping integral for bosons, ijh i are nearest lattice sites on the square
lattice, V is van der Waals attraction on neighboring sites, U is onsite repulsion, bi

+

and bi are bosonic creation and annihilation operators on site i of the lattice. Note
that in the case of V = 0, the model (6.1.1) is just the Bose-Hubbard model,
extensively studied in the literature for the case of 2D 4He submonolayers, as well
as for the flux lattices and Josephson arrays in the type-II superconductors (see
[50–55]). As we already mentioned in the introduction to this section, a model
(6.1.1) is, to some extent, a Bose analog of the fermionic t-J model considered by
Kagan and Rice in [49]. After Fourier transformation from (6.1.1) we obtain:

Ĥ ¼
X

p

epbþp bp þ
U

2

X

k1k2q

bþk1
bþk2

bk2�qbk1þq �
X

k1k2q

VðqÞbþk1
bk1þqbþk2

bk2�q; ð6:1:2Þ
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where ep = -2t(cos pxd ? cos pyd) is an uncorrelated bosonic spectrum on the
square lattice, and V(q) = V[cos qxd ? cos qyd] is a Fourier transform of the van
der Waals tail. As a result, a total interaction in the momentum space is given by
the formula:

Veff ðqÞ ¼
U

2
� VðqÞ: ð6:1:3Þ

6.1.2 Two-Particle T-Matrix Problem

An instability toward a two-particle boson pairing manifests itself (just as in the
case of Cooper pairing of two fermions in Chaps. 5 and 9) in the appearance of a
pole at a temperature T = TC in the solution of the Bethe–Salpeter equation for the
two-particle vertex C for zero total momentum of the two bosons (~p and �~p) (see
[2–4, 56]). To proceed to the solution of this equation, we must solve at first
the T-matrix problem [58] for the two bosonic particles in vacuum. Here we can
use the results of [49] (for the T-matrix for two fermions), since the solution of the
two-particle problem does not depend upon statistics of colliding particles. For the
T-matrix problem it is convenient to expand Veff(q) in (6.1.3) with the eigen-
functions of the irreducible representation of the lattice symmetry group D4

(see also Chaps. 9 and 13). This yields:

Veff ðextended s� waveÞ ¼ U

2
� V

2
ðcos pxd þ cos pydÞðcos p0xd þ cos p0ydÞ;

Veff ðp� waveÞ ¼ �V

2
ðsin pxd sin p0xd þ sin pyd sin p0ydÞ;

Veff ðd� waveÞ ¼ �V

2
ðcos pxd � cos pydÞðcos p0xd � cos p0ydÞ;

ð6:1:4Þ

where we use the functions uS = (cos pxd ? cos pyd), up = (sin pxd ? isin pyd)
and ud = (cos pxd - cos pyd) respectively for extended s-wave, p-wave and
d-wave channels on the square lattice.

Note that, for spinless bosons, which we formally consider in (6.1.1), the total
spin of the Bose pair is zero (Stot = 0). Hence only s-wave (l = 0 in the absence of
lattice) and d-wave (l = 2 in the absence of lattice) pairings are allowed by the
symmetry of the pair W-function. A p-wave pairing (l = 1 in the absence of
lattice) is allowed only for an odd total spin (Stot = 1, 3 …) of the two bosons (the
total pair W-function which is product of orbital part and spin part is symmetric for
two bosons). Nevertheless we will conserve the results for the p-wave pairing in
our paper because the generalization of (6.1.1) for the case of bosons with internal
degrees of freedom is straightforward. The T-matrix problems for p- and d-wave
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channels are very simple. Solutions of these problems for the two particles with a
total momentum zero and a total energy E yield:

Td;pðEÞ ¼ �
V
2

1þ V
2 Id;p

; ð6:1:5Þ

where

Id;p ¼
Z 2p=d

0

Z 2p=d

0

dpx

2p
dpy

2p

ud;p

�

�

�

�

2

E þ 4tðcos pxd þ cos pydÞ

¼
Z

dx
2p

d2~p

ð2pÞ2
G0ðxþ E;~pÞG0ð�x;�~pÞ ud;p

�

�

�

�

2
;

ð6:1:6Þ

G0ðx;~pÞ ¼ 1
x�eðpÞþio is vacuum Green function and ud,p are the functions for d-

wave and p-wave channels.

6.1.3 Thresholds for Extended S-Wave, P-Wave and D-Wave
Two-Bosons Pairings

Let us find the thresholds for the bound states in the extended s-wave, d-wave and p-
wave channels. The appearance of a bound state means that E = -W ? ~E and ~E\0,
where W = 2zt = 8t is a bandwidth for the 2D square lattice (z = 4 is a number of
nearest neighbors on the square lattice). For the threshold ~E = 0. An exact solution
of (6.1.5) and (6.1.6), which involves the calculation of elliptic integrals of first and
second order (see [2–4, 49]), yields for p-wave and d-wave thresholds:

VC

4t

� �

p�wave

� 1

1� 2
p

� 2:8;

VC

4t

� �

d�wave

� 1
4
p� 1

� 3:7:

ð6:1:7Þ

Note that a threshold for a p-wave pairing is lower. Now let us proceed to an s-
wave channel. Here an ordinary s-wave pairing is suppressed by large hard-core
repulsion U, however an extended s-wave pairing with a symmetry of the order
parameter DS

ex = D0(cos pxd ? cos pyd) is allowed (for ordinary s-wave pairing
DS is just D0 and does not depend upon momentum ~p). In real space this pairing
corresponds to the particles on the neighboring sites. Moreover the pair W-function
is zero in the region of a hard core (r \ r0), and is centered (has a maximum) in the
region of a van der Waals attraction for r0 \ r \ r1 (see Fig. 6.1). On the lattice
r0 * d/2 and r1 * d [2–4].

One can see that the W-function has a region of zero values (for r \ r0). But it has
no nodes because it does not change its sign for all values of r (W C 0). The rigorous
calculation of the threshold for an extended s-wave pairing yields [2–4, 48, 49]:
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VC

4t

� �

s�wave

¼ 1: ð6:1:8Þ

Thus the threshold for s-wave pairing is the lowest (compare with (6.1.7)).
Moreover for V [ VCS = W/2 = 4t an energy of the bound state has the form:

~E
�

�

�

� ¼ ~ES
b

�

�

�

� ¼ 8We
� pV

V�VCSð Þ: ð6:1:9Þ

Of course, in a strong coupling case (for V � W) ~ES
b

�

�

�

� � V . Correspondingly,
the bound states for p-wave and d-wave pairings yield [2–4, 49]:

~Ep
b

�

�

�

� ¼ W
ðV � VCpÞ

V

1

ln V
V�VCpj j

for V [ VCp � 1:4W ;

~Ed
b

�

�

�

� ¼ W
ðV � VCdÞ

V
for V [ VCd � 1:85W :

ð6:1:10Þ

We can see that for V � W: ~ES
b

�

�

�

� � V while ~Ep
b

�

�

�

�� ~Ed
b

�

�

�

��W ; and extended s-
wave bound state correspond to a global minima in agreement with general the-
orems of quantum mechanics

~Es
b

�

�

�

�[ ~Ep
b

�

�

�

�[ ~Ed
b

�

�

�

� for fixed V [ VCd [ VCp [ VCs

� �

:

The T-matrix in an s-wave channel for small and intermediate values of V is
given by [2–4, 49]:

TSðj~EjÞ ¼
Wð1� V=4tÞ

1
p ð1� V=4tÞ ln 8W

~Ej j �
V
4t

: ð6:1:11Þ

The most important is that a strong Hubbard repulsion U acts only as an
excluded volume (for r \ r0 * d/2), and effectively drops out from (6.1.11) at low
energies. It manifests itself only as an additional pole (at very large energies
E & U [ 0) in total analogy with antibound state [59–61] in fermionic Hubbard
model (it will be considered in Chap. 14). For V � 4t the T-matrix:

Fig. 6.1 The W-function of
an extended s-wave pairing.
r0 is the radius of the hard
core repulsion, and r1 is the
radius of the van der Waals
attraction. On the lattice,
r0 * d/2 and r1 * d [2–4]
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TSðj~EjÞ �
pW

ln 8W
~Ej j
; ð6:1:12Þ

corresponds to repulsion and coincides with the T-matrix for the 2D Bose-Hubbard
model at low density. The same T-matrix was obtained by Fukuyama et al., for 2D
fermionic Hubbard model at low density [100]. For V = 4t: TSj~Ej ¼ 0 and there is
no interaction at all. Finally, for V [ 4t, TSðj~EjÞ\; 0 corresponds to an attraction
and reflects the appearance of the bound state [2–4, 49].

6.1.4 Bethe–Salpeter Integral Equation for S-Wave Pairing
of Two Bosons

Let us consider at first the most interesting case of V [ 4t and find the critical
temperature for an extended s-wave pairing of the two bosons. The solution of the
Bethe–Salpeter equation for bosonic systems reads [2–4, 62], (see Ref. [32] in
Chap. 4):

Cs ¼
Ts

1þ Ts

RR dpxdpy

ð2pÞ2
cth

ep�l
2T

2ðep�lÞ

; ð6:1:13Þ

where Ts is a T-matrix for s-wave pairing and Cs is an s-wave harmonic of the total
two-particle vertex C in the Cooper channel (for zero total momentum
~P ¼~p1 þ~p2 ¼ 0 and zero total Matsubara frequency X = X1 ? X2 = 0 of the
two incoming particles—see Chaps. 5 and 9 also for the case of two fermions). For

low density of bosons nBd2 � 1 one has, ep ¼ �W
2 þ

p2

2m ; l ¼ �4t þ ~l; and

np ¼ ep � l ¼ p2

2m� ~l for the uncorrelated quasiparticle spectrum counted from the
chemical potential level.

The most substantial difference of (6.1.13) from an analogous equation for two

fermions is the replacement of th
np

2T by cth
np

2T in its kernel. Moreover, as shown by

Miyake in [63] for the 2D attractive Fermi gas ~l ¼ eF � Ebj j
2 (where |Eb| is an

absolute value of the binding energy of a pair in vacuum). So, in a weak-coupling
case, when eF � |Eb|, the chemical potential ~l � eF [ 0 is positive. In contrast to
this, we shall see below that a bosonic chemical potential ~l is always negative
even in the weak-coupling case, when a binding energy is much smaller than a
degeneracy temperature Ebj j\T0 ¼ 2pn

m .
Another very important point (see also Chaps. 9 and 13) is that the T-matrix,

which enters into the Bethe–Salpeter equation, must be calculated for a total
energy ~E ¼ 2~l by [2–4, 49] of colliding bosons. The chemical potential ~l can be
determined from the requirement of the number of particle conservation. This
requirement yields:
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nB ¼
ZZ

d2~p

ð2pÞ2
1

exp
p2=2m�~l

T

n o

� 1
: ð6:1:14Þ

From (6.1.14) for the temperatures |Eb| \ T \ T0 \ W we obtain:

~l ¼ �T exp
T0

T

� �

\0: ð6:1:15Þ

Note that a standard Hartree–Fock shift nU drops out from the expression for
bosonic quasiparticle spectrum np ¼ ep � l both in the Bethe–Salpeter equation
(6.1.13) and in the equation for the number of particle conservation (6.1.14) in
similarity with a fermionic problem. Now we are ready to solve the Bethe–Salpeter
equation (6.1.14). The critical temperature TC corresponds to the pole in (6.1.13),

1þ md2Tsð2~lÞ
2p

I ¼ 0; ð6:1:16Þ

where

I ¼
Z

�W=TC

0

dy cth yþ ~lj j
2TC

	 


yþ ~lj j
2TC

ð6:1:17Þ

and y ¼ p2

4mTC
.

An analysis of (6.1.17) shows that the main contribution to the integral comes
from the lower limit of integration.

Hence providing ~lj j=TC � 1 we have:

I �
Z

W=TC

0

dy

yþ ~lj j
2TC

	 
2 �
2TC

~lj j : ð6:1:18Þ

As a result (6.1.18) can be represented in the following form:

TC

~lj j ¼ �
p

md2Tsð2~lÞ : ð6:1:19Þ

It is useful now to represent Tsð2~lÞ in terms of the binding energy Eb. Utilizing
(6.1.9) and (6.1.11) we can write:

TSð2~lÞ ¼ � pW

ln
2 ~lj j
Ebj j
¼ � 4p

md2 ln
2 ~lj j
Ebj j
: ð6:1:20Þ

It is important to mention here that ~l\0, and hence the T-matrix in (6.1.20)
does not contain an imaginary part. In the fermionic case ~l � eF [ 0, and the
T-matrix contains an imaginary part corresponding to the resonant scattering. As a
result, from (6.1.20) we obtain:
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4ln
2 ~lj j
Ebj j
¼ ~l

TC
ð6:1:21Þ

Assuming that Ebj j � TC � T0, we get (see also Chap. 8): ~lðTCÞ ¼

�TC exp T0
TC

	 


and j~ljTC
¼ exp � T0

TC

	 


.

Later on we will justify this assumption.
As a result from (6.1.21) we will obtain:

TC ¼
T0

ln 1
4 ln

2 ~lj j
Ebj j

	 
 : ð6:1:22Þ

Recall that in the case of the fermionic s-wave pairing in two dimensions a
critical temperature according to Miyake [63] (see also Chap. 8) reads:

TC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eF Ebj j
p

.

Let us analyze expression (6.1.22). As we already know Ebj j ¼ 8We�
1
k, where

k ¼ V � VCsð Þ
pV

: ð6:1:23Þ

Then a condition Ebj j � T0 means:

k� 1

ln W
T0

� 1: ð6:1:24Þ

Hence ln T0= Ebj jð Þ ¼ 1=k� ln W=T0ð Þ � 1=k, and

TC �
T0

ln 1
4 ln T0

Ebj j

	 
 � T0

ln 1
4k

� � ; ð6:1:25Þ

which is in an agreement with [47]. Note that TC from (6.1.25) satisfies the
conditions Ebj j � TC � T0, so an assumption used for the derivation of TC is
justified.

For T \ TC the spectrum of the quasiparticles acquires a gap:

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m
þ ~lj j

� �2

�D2

s

: ð6:1:26Þ

Note that at low densities of bosons a gap D becomes isotropic in the principal
approximation.

The gap D together with the chemical potential ~l must be defined self-consistently
from the two coupled equations:
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1 ¼ k
4

Z

�W=2T

~lj j=2T

dz cth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � D2=4T2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � D2=4T2
q ; ð6:1:27Þ

and

nB ¼
k
4

Z

�W

~lj j

dn
1

exp

ffiffiffiffiffiffiffiffiffiffi

n2�D2
p

T

� 


� 1
; ð6:1:28Þ

where np ¼ p2

2mþ ~lj j and z = n/2T.
Of course, the solution of the system of Eqs. (6.1.27) and (6.1.28) exists only if

~lj j[ D, or, in other words, only if E2
p ¼ ~lj j2�D2 [ 0. The exact solution of these

equations yields for zero temperature in an agreement with [47]:

~lðT ¼ 0Þj j ¼ D ¼ Ebj j
2
: ð6:1:29Þ

This result is very important. It justifies our scenario, leading to a linear,
soundlike spectrum of the quasiparticles for a small momenta p. Indeed,

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m

� �2

þ p2

m
~lj j

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m

� �2

þ p2

2m
Ebj j

s

: ð6:1:30Þ

From (6.1.30) for the case pn0 � 1, where n0 ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2m Ebj j
p is the coherence length

of the boson pair, we immediately obtain a linear dispersion law:

Ep ¼ cp: ð6:1:31Þ

In (6.1.31) c2 ¼ Ebj j
2m is a sound velocity squared. This means that an inverse

compressibility of the system j-1 * c2 is positive. This fact proves the stability of
a superfluid paired state and excludes the possibility of the collapse of the pairs in
the system. Note also that close to TC one has:

DðTÞ � Dð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TC � T

TC

r

; ð6:1:32Þ

which is similar to the BCS theory. We would like to mention that bosonic pairs in
the limit Ebj j � T0 are extended in full analogy with the BCS theory. That is, the
coherence length in this limit,

n0 �
1
ffiffiffi

n
p � 1 ð6:1:33Þ
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is larger than the mean distance between the bosons. The Bose pairs are strongly
overlapping in this limit. The pairing takes place in the momentum space in an
analogy with the Cooper pairing in the BCS picture of superconductivity.

In the opposite limit Ebj j � T0 the pairs are local and the situation closely
resembles BEC (or bipolaronic) limit for the fermionic systems [64, 65]. That is,
the creation of the bosonic bound pairs is associated with the crossover temper-
ature [2–4]:

T� ¼
Ebj j

ln 1=nd2
: ð6:1:34Þ

The Bose condensation of the pairs occurs at lower temperature [66, 67]:

TC ¼
T0

ln lnð1=nd2Þ : ð6:1:35Þ

Note that this temperature is obtained in Fisher-Hohenberg theory [66] from the
ansatz ~lðTCÞ ¼ �TC expð�T0=TCÞ þ f0T0 ¼ 0, where f0 = 1/ln(1/nd2) is a repul-
sive interaction between the local pairs and f0T0 is a Hartree–Fock contribution to
the chemical potential lB in 2D repulsive Bose-gas. Thus the superfluid transition
takes place only in the case of a residual repulsion between the pairs. Also note
that in a dilute Bose-gas in 2D the Berezinskii-Kosterlitz-Thouless (BKT) con-
tribution of vortices [68, 69] is important only very close to TC, so the mean field
expression (6.1.35) gives a very good estimate for the exact BKT critical tem-
perature: TC�TBKT

TC
� 1

ln lnð1=nd2Þ � 1 [66, 67].

In the case of the local pairs the coherence length is small:

n0 �
1
ffiffiffi

n
p : ð6:1:36Þ

The pairs are compact, and the pairing takes place in the real space.

6.1.5 Possibility of p-Wave and d-Wave Pairing of Two
Bosons

Now let us analyze the solution of the Bethe–Salpeter equation for p- and d-wave
two-boson pairings. Here the critical temperatures should be found from the
conditions (see [2–4, 49]):

1þ Tp;dð2~lÞ~Ip;d ¼ 0; ð6:1:37Þ
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where

~Ip;d ¼
Z

2p=d

0

Z

2p=d

0

dpxdpy

ð2pÞ2
cth e�l

2TC

2ðe� lÞ up;d

�

�

�

�

2
: ð6:1:38Þ

In a low-density limit the u-functions can be approximated by the following
expressions [2–4, 49, 70]:

up ¼ ðpx þ ipyÞd ¼ pdeiu;

ud ¼
1
2
ðp2

x � p2
yÞd2 ¼ 1

2
p2d2 cos 2u:

Hence after an angular integration we obtain:

~Ip ¼
m

2p

Z

p dp
cth np

2TC

2np
p2d2;

~Id ¼
m

16p

Z

p dp
cth np

2TC

2np
p4d4;

ð6:1:39Þ

where again np ¼ p2

2mþ ~lj j.
Additional factors p2d2 and p4d4 in the integral expressions for ~Ip and ~Id reflect

a well-known fact, that for slow 2D particles in vacuum an s-wave harmonics of
the scattering amplitude behaves as f0 * ln(1/p2d2), whereas for a magnetic
number m = 0, the scattering amplitude vanishes for p goes to zero as
fm * (pd)2m (see Quantum mechanics [26] in Chap. 5). The additional factor p4d4

leads to the absence of an infra-red singularity for e ? 0 in ~Id:

~Id �
Z

de 	 e2

e2
� e! 0 e� p2

2m

� �

: ð6:1:40Þ

For the p-wave channel the infra-red singularity becomes logarithmically weak:

~Ip�
Z

de 	 e
e2
� ln e: ð6:1:41Þ

This means that the Bethe–Salpeter equation has no solutions in the p- and d-
wave channels for |V|/t \ 1.

Hence the boson pairing with a large coherence length n0 [ 1
ffiffi

n
p is absent in a p-

wave channel as well as in a d-wave channel. Here only the limit of the local pairs
is possible. For p- and d-wave channels local pairs are created at the crossover
(Saha) temperature T* [2–4] given by (6.1.34), where binding energies |Eb

p| and |Eb
d|

are given by (6.1.10) for V [ VCp and V [ VCd correspondingly. Remember that
for a fixed V [ VCd [ VCp: |Eb

p| [ |Eb
d| and thus Tp

� [ Td
� . Providing that the

interaction between the local pairs is repulsive in p-wave and d-wave channels, the
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mean-field temperature of the Bose condensation of the local pairs should be
determined again from the ansatz for the chemical potential ~lðTCÞj j with an
account of the repulsive Hartree–Fock shifts in p-wave and d-wave channels (see
[66]). In the next section we will show, however, that in the van der Waals model
(6.1.2) there is a competing phenomenon of the total phase separation which takes
place earlier (at smaller values of V/t) than binding in different (s-wave, p-wave,
d-wave channels). Thus it is difficult to get two-boson pairing in the present model.

6.1.6 Total Phase Separation

As we discussed in Sect. 6.1.1, the real collapse is prohibited in our system by
large Hubbard repulsion U. However, the phase separation on the two large
clusters is allowed. The first cluster corresponds to the Mott–Hubbard [57, 71]
Bose solid. In this cluster nbd2 ? 1, that is, each site on the quadratic lattice is
practically occupied by one boson. Such a cluster is localized due to Mott–Hub-
bard consideration for large U � W (where W is a bandwidth). It has no kinetic
energy. However, it has a potential energy of the order of -2V for one particle. A
second cluster has a very small boson density nbd2 ? 0. In this cluster for
V \ 4t the energy per particle is e ¼ �W

2 þ 4p
m f0n, where f0 = 1/ln(1/nd2) in the

absence of a bound state. Rigorously speaking (see also Chaps. 13 and 15), at a
given bosonic density n the phase separation (according to Maxwell construction)
results in the formation of the two clusters with the densities n1 [ n and
n2 \ n ([48, 49]), where n1d2 is close to or identically equal to 1 (one boson per
site). The phase separation for V \ 4t takes place if the energy per particle in the
cluster with the density n1 becomes smaller than the energy per particle in the
cluster with the density n2 [2–4],

�2gV � �W

2
; ð6:1:42Þ

where g is an unknown numerical coefficient of the order of 1. Note that in the
fermionic t-J model, considered in [48, 49] (see Chap. 13), the Mott–Hubbard
cluster with nd2 = 1 has an antiferromagnetic order for electrons with spins
S = � on the square lattice. Hence instead of 2gV in (6.1.42) one should write
1.18 J—the energy per bond on 2D AFM square lattice. As a result (see Chap. 13)
in a fermionic case Jps = 3.8t. In our system Vps & 2t, due to the absence of
kinetic energy and zero point energy in the case of structureless bosons. In the
same time in our case for nd2 ? 0 the phase separation between the Bose solid
(see Chap. 2) and the one-particle BEC takes place. According to Dagotto, Riera
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et al. [72, 73] for nBd2 ? 1, the phase separation takes place already for small
values of |V|/t.

In principle, another scenario of the phase separation connected with the cre-
ation of quartets [74] is also possible in our system. It requires an evaluation of the
four-particle vertex which is often impossible to do analytically (except for the
resonance approximation when the scattering length is much larger than intersite
distance d—see the last part of the chapter). However, we think that our scenario
of total phase separation takes place earlier, for smaller values of V/t than the
quartet formation. This is in agreement with numerical calculations [72, 73] for the
2D fermionic t-J model on the square lattice.

6.1.7 Phase Diagram of the System

In this section we will complete the phase diagram of the system. At first, note that
for V \ Vps (when the T-matrix for an s-wave channel is repulsive) we have at low
density a standard Bogoliubov Bose-gas with a hard-core repulsion. It will be
unstable toward a standard one-particle BEC at a critical temperature given again
by Fisher-Hohenberg type of formula [see (6.1.35)]. For V [ 2t a total phase
separation on two large clusters takes place in our system. One of these clusters
contains a Mott–Hubbard Bose-solid, another one contains a Bose-gas with one-
particle condensation (see Fig. 6.2).

For large densities n = nC B 1 (nC : 1 in [54, 55] for structureless bosons) the
system will undergo a transition to the Mott–Hubbard Bose solid. As a result, on a
qualitative level the phase diagram for our system has the form, presented in
Fig. 6.3. Note that our model could be important for the study of the biexcitonic
pairing in semiconductors [75, 76] (see also the end of the chapter). In this context
we should mention the important results of Lozovik et al. [77]. It could be also
important for the understanding of the physics of the gas of kinks and steps on a
solid interface of 4He (see Chap. 2). Note that if we change the sign of the nearest
neighbors interaction V from attractive in the Hamiltonian (6.1.1) on repulsive, we
will get a bosonic model with on-site and intersite repulsions, which gives a
disproportionation (a density wave) in some range of parameters U, |V|, W and
density nBd2 and can possibly serve as a simple toy model for bosonic

Fig. 6.2 Phase separation on
two large clusters. First one
corresponds to Bose solid
with one boson per site
nBd2 ? 1, the second one to
dilute Bose-gas nBd2 ? 0
with repulsion between
bosons [2–4]
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supersolidity on the lattice (see Chap. 2) in case of moderate values of on-site
repulsion U (when double occupation of the site is not totally prohibited) [78–81].

6.1.8 Two-Band Hubbard Model for Two Sorts of Bosons

Let us consider the two-band Hubbard model for two sorts of structureless bosons.
The Hamiltonian of the system has the form [2–4]:

Ĥ ¼ �t1
X

ijh i
bþ1ib1j � t2

X

ijh i
bþ2ib2j þ

U11

2

X

i

n2
1i þ

U22

2

X

i

n2
2i �

U12

2

X

i

n1in2i;

ð6:1:43Þ

where t1 and t2 and n1 and n2 are, respectively, the hopping matrix elements and
densities for bosons of sorts 1 and 2. For simplicity, we will consider the case
t1 = t2, which corresponds to the equal masses m1 = 1/(2t1d2) = m2 of bosons.
We also assume that the bottoms of the bands coincide. In the Hamiltonian
(6.1.43) U11 and U22 are Hubbard onsite repulsions for bosons of sorts 1 and 2
respectively. Finally U12 is an onsite attraction between bosons of two different
sorts (two-band Hubbard model will be also considered in Chaps. 10, 14 and 15 for
the case of intraband and interband repulsions).

In the present section we will consider the low-density limit of the model
(6.1.43), when both n1d2 � 1 and n2d2 � 1 on the square 2D lattice. In this limit
we must replace the Hubbard interaction U12 by the corresponding T-matrix. The
relevant expression for the T-matrix T12 is given by:

T12ð~EÞ ¼
U12

1� U12
R d2~p
ð2pÞ2

1
p2=2mþj~Ej

; ð6:1:44Þ

where ~E is given again by ~E ¼ E þW . The T-matrix has the pole for the energy:

Fig. 6.3 Qualitative phase
diagram of the 2D Bose-gas
with the van der Waals
interaction on the square
lattice [2–4]
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~E
�

�

�

� ¼ Eb

�

�

�

� ¼ W exp � 4p
md2U12

� �

ð6:1:45Þ

in the intermediate coupling case ( ~Eb

�

�

�

�\W). In the extremely strong coupling case
U12 [ W the pole corresponds to the energy Ej j ¼ Ebj j � U12. The pole in the T-
matrix reflects the appearance of the bound state of the two bosons of different
sorts (b1b2).

Now we can solve the two-particle problem in the presence of the bosonic
background. A simple analysis shows that only local bosonic pairs are possible in

our case. They are formed at a high crossover temperature T� ¼ Ebj j
ln W=T0

, where

T0 = min{T01, T02}, and T01 and T02 are degeneracy temperatures for bosons of
the two sorts. Correspondingly the pairs are Bose condensed at lower temperature
TC12 ¼ T0

lnð1=kÞ ; where k ¼ mU12
4p . Our results are valid is the case Ebj j[ fT01; T02g.

In the opposite case of higher densities, when at least one of the temperatures T01

or T02 is larger then Ebj j, we have at first a standard one-particle condensation for
bosons with higher density. As a result the two-particle pairing between bosons of
different sort can take place only as a second superfluid transition inside the
superfluid phase with one-particle BEC.

The obtained results for T* and TC12 in low-density case Ebj j[ fT01; T02g can
be applied for anisotropic magnetic traps [2–4] where one of the oscillator fre-
quencies is large: fxx; xyg � TC\ðT0�xzÞ. Then the system occupies only the
lowest energy level in z-direction and becomes effectively two-dimensional. In this
case formulas for TC are qualitatively correct, because it is possible to make the
coherence length of the Bose-gas n0 smaller than an effective size of the trap R(e)
for e * TC [95]. Another limitation on the two-particle pairing is connected with
the energy release of the order of Q * Ebj j when the pairs are created. Due to this
energy release the most energetic particles can overcome the potential barrier and
evaporate from the trap (a process which is analogous to an evaporative cooling
technique considered in Chap. 5).

Let us now analyze the stability of our system with respect to quartet formation.
For simplicity let us consider first an extremely strong-coupling case {U11, U22,
U12} [ W (remind that m1 = m2 and thus W1 = W2 = W). In this case the local
pairs of two bosons of different sorts have onsite character b1b2h i 6¼ 0 on the
lattice. To escape local quartets ð b1b2b1b2h iÞ creation we must satisfy the
inequality U11 ? U22 - 4U12 [ 0.

The situation is less trivial in the intermediate coupling case when for the
binding energy Ebj j in (6.1.45) we have T0\ ~Eb

�

�

�

�\W . In this case the Bose pairs
b1b2 has the radius a � d (though a\1=

ffiffiffi

n
p

for equal densities n1 = n2 and
masses m1 = m2 when degeneracy temperatures T01 = T02 = T0 = 2pn/m).
Effectively this situation corresponds to the resonance case for shallow bound
states Ebj j ¼ 1

ma2 � 1
mr2

0
(where r0 = d on the lattice) (see Chap. 5).

In Sect. 6.3 we will define the binding energies E3j j of the three-particle b1b2b1

and E4j j of the four-particle b1b2b1b2 complexes in this case. We will also present
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variational calculations for the binding energy and radius of larger bosonic
droplets which contain N [ 4 particles in the intermediate coupling case in 2D.
Note that the phase-diagram of the two-component bosons was also investigated
on the optical lattices by Kuklov, Prokof’ev and Svistunov [82] and by Demler’s
group [83].

Note that the results on two-boson pairing are also important for SU(2)—slave-
boson theories of high-TC superconductivity [10, 84, 85] and Schwinger-boson
theories of 2D magnets [86–88].

6.1.9 Slave-Boson Formulation of the t-J Model. Application
to High-TC Systems

The superconductive pairing in the 2D fermionic t-J model will be considered in
details in Chap. 13. Here we will briefly discuss the problem which arises in the
approaches to the underdoped t-J model based on the scenarios of spin-charge
separation advocated by Anderson et al. and Lee et al. The Hamiltonian of the
canonical 2D t-J model reads:

Ĥ ¼ �t
X

ijh ir
cþirð1� ni�rÞcjrð1� nj�rÞ þ J

X

ijh i

~Si
~Sj �

1
4

ninj

� �

; ð6:1:47Þ

where cir
+ and cjr are creation and annihilation operators for electrons on neigh-

boring ijh ið Þ sites i and j with spin projection r, nir ¼ cþircir is onsite electron

density with spin projection r (ni ¼
P

r
nir), and ~Si ¼ 1

2 cþil~rlmcim is electron spin

(~rlm are Pauli matrices). In slave-boson formulation of the t-J model (based on the
scenario of spin-charge separation) close to half-filling (nd2 ? 1 on the 2D square
lattice) an electron according to Anderson and Lee [8–10, 84, 85] can be repre-
sented as a product of spinon (fermion with charge 0 and spin �) and holon (boson
with charge |e| and spin 0):

cþir ¼ fþir bi: ð6:1:48Þ

A superconductive d-wave gap (for electrons):

Dd ¼ ci"cj# � ci#cj"
ffi �

ð6:1:49Þ

is a direct product

Dd ¼ DspDh ð6:1:50Þ

of a spinon d-wave gap

Dsp ¼ fi"fj# � fi#fj"
ffi �

ð6:1:51Þ
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and a holon s-wave gap

Dh ¼ bibj

ffi �

: ð6:1:52Þ

Then a natural question arises whether bih i 6¼ 0 and, accordingly,
Dh ¼ bih i bj

ffi �

, or bih i ¼ 0 but bibj

ffi �

6¼ 0: In other words, whether a one particle
or two-particle condensation of the holons takes place in our system [10, 89].

This problem is a very difficult one and, surely deserves a very careful analysis.
Our preliminary considerations show, however, that the more beneficial conditions
for the two-particle condensation may arise in the SU(2) formulation of the t-J
model [84], which assumes the appearance of two sorts of holons b1 and b2. Note
that in the standard U(1) formulation of the model [85] with one sort of holons an
effective potential of the two-holon interaction on neighboring sites appearing after
the Hubbard-Stratonovich transformation has a form:

8t2

J
� J

4

� �

X

ijh i
bþi bjbibj: ð6:1:53Þ

and thus corresponds to the repulsion for t [ J (in 2D cuprates usually
J� 1=2ffi 1=3ð Þt\t). This observation excludes the possibility of the two-holon
pairing in the U(1) formulation of the t-J model.

In the SU(2) case it will be desirable to derive conditions when b1h i ¼ b2h i ¼ 0
but b1b2h i 6¼ 0 for two sorts of holons. For such a nondiagonal pairing, as already
discussed above, it is easier to satisfy the stability criteria [2–4]. Note also that the
same situation with two sorts of bosons and a possible attraction between them can
be realized for 2D magnetic systems. The corresponding bosonic Hamiltonian can
be obtained here after a Schwinger transformation of spins [86–88] in extended
Heisenberg models.

Concluding this section we would like to emphasize that we analyzed the
possibility of the formation of boson pairs with s-wave symmetry and an
appearance of total phase separation in a 2D Bose-gas. In addition to that we
considered the case of boson pairs with the symmetries of p- and d-wave type. We
also considered the qualitative phase diagram for the 2D Bose-gas with the van der
Waals interaction between the particles, which, besides a standard one-particle
BEC, contains the regions of the Mott–Hubbard Bose solid and a total phase
separation. We also considered the situation for two sorts of bosons described by
the two-band Hubbard model, and found the conditions for the two-particle pairing
between bosons of different sorts. We discussed the applicability of our results for
the different physical systems ranging from 2D magnetic traps or optical lattices,
submonolayers of 4He and excitons in the semiconductors till Schwinger bosons in
magnetic systems and holons in the slave-boson theories of high-TC

superconductors.
Note that for high-TC systems we considered in this section slave-boson for-

mulation of the t-J model based on the ideas of spin-charge separation. These ideas
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were transferred to high-TC materials from the 1D physics of doped spin chains
[98, 99]. We think, however, that for quasi-2D high-TC systems more suitable are
the ideas of spin-charge confinement, which are based on the formation of the
AFM-string (of the linear trace of the frustrated spins) which accompany the hole
motion on 2D (or 3D) AFM-background of spins �. In the next section of the
present chapter and in Chap. 13 we will consider the scenario of spin-charge
confinement (introduced by Laughlin et al. [31, 32]), more detaily with a special
emphasis on the formation of composite hole there.

6.2 Composed Fermions in the Fermi-Bose Mixture
with Attractive Interaction Between Fermions
and Bosons

In Sect. 5.2 we considered composed bosons f:f; which arise in the Fermi-gas with
attraction or in a broad Feshbach resonance in the framework of the one-channel
resonance approximation.

In Sect. 6.1 of the present chapter we considered the possibility of two-boson
pairing bb or b1b2 in the Bose-gas with one ore two sorts of bosons.

For the sake of completeness (to restore the full ‘‘supersymmetry’’ between
fermions and bosons, treating them on equal grounds) we will analyze in this
section a possibility to form composed fermions frb in the Fermi-Bose mixture
with attractive interaction between fermions and bosons. Note that in an optical
dipole trap it is possible to get an attractive scattering length of the fermion-boson
interaction with the help of Feshbach resonance (see Refs. [49, 50] in Chap. 5).
Note also that even in the absence of Feshbach resonance it is experimentally
possible now to create a Fermi-Bose mixture with attractive interaction between
fermions and bosons. For example in [11, 12] such a mixture of 87Rb (bosons) and
40K (fermions) was experimentally studied. Moreover, the authors of [11, 12]
experimentally observed the collapse of a Fermi gas with the sudden disappear-
ance of fermionic 40K atoms when the system enters into the degenerate regime.
We cannot exclude in principle that it is just a manifestation of the creation of
quartets f:b, f;b in the system [6]. Note that in the regime of a strong attraction
between fermions and bosons, a phenomenon of phase separation with the creation
of larger clusters or droplets is also possible. Note also that for a large mismatch
between fermionic and bosonic densities nF � nB, a much slower collapse in the
Bose subsystem of 87Rb was experimentally observed. Here, after the formation of
composed fermions, a lot of residual (unpaired) bosons are still present. This fact
probably can explain a slow collapse in bosonic subsystem [6].
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6.2.1 The Theoretical Model

The model of a Fermi-Bose mixture has the following form on a lattice [6]:

Ĥ0 ¼ Ĥ0F þ Ĥ0B þ Ĥ0FB;

Ĥ0F ¼ �tF

X

hijir
fþir fjr þ UFF

X

i

nF
i"n

F
i# � lF

X

ir

nF
ir;

Ĥ0B ¼ �tB

X

hiji
bþi bj þ

UBB

2

X

i

nB
i nB

i � lB

X

i

nB
i ;

Ĥ0FB ¼ �UBF

X

ir

nB
i nF

ir:

ð6:2:1Þ

This is a lattice analog of the standard Hamiltonian considered for example by
Efremov and Viverit [15] for the case of repulsive interaction between fermions and
bosons in 7Li-6Li mixture (see Chap. 12). Note that in the Fermi-Bose mixture of
3He and 4He (which will be considered in Chap. 11) the fermion-boson interaction
also corresponds to repulsion (see a classical paper [7] by Bardeen, Baym, Pines).
In the Hamiltonian (6.2.1) tF and tB are fermionic and bosonic hopping amplitudes,
fþir ; fir and bþi ; bi are fermionic and bosonic creation and annihilation operators. The
Hubbard interactions [57] UFF and UBB correspond to hard-core repulsions between
particles of the same sort. The interaction UBF corresponds to the attraction between
fermions and bosons. WF = 8tF and WB = 8tB are the bandwidths in 2D. Finally, lF

and lB are fermionic and bosonic chemical potentials. For the square lattice the
uncorrelated spectra of fermions and bosons after Fourier transformation read:
npr ¼ �2tFðcos pxd þ cos pydÞ � lF for fermions and gp ¼ �2tBðcos pxd þ
cos pydÞ � lB for bosons, where d is a lattice constant.

6.2.2 Intermediate Coupling Case in 2D

In the intermediate coupling case in 2D (see Refs. [31, 32] in Chap. 5 and Chap. 8
for more details) WBF

ln WBF=T0BF
\UBF\WBF the energy of the bound state (for a

formation of a composed fermion firbi) reads [6]:

~Eb

�

�

�

� ¼ 1
2mBFd2

1

exp 2p
mBFUBF

n o

� 1
; ð6:2:2Þ

where ~Eb

�

�

�

� is counted again from the bottom of the band for composed fermions,
~Eb

�

�

�

�mBF ¼ mBmF
mBþmF

is an effective mass, WBF ¼ 4
mBFd2 is an effective bandwidth,

mB ¼ 1
2tBd2 and mF ¼ 1

2tFd2 are the band masses of elementary bosons and fermions.

Finally T0BF ¼ 2pn
mBF

is an effective degeneracy temperature. For simplicity we
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consider the case of equal densities nB = nF = n which is more relevant for the
physics of holons and spinons in underdoped high-TC materials.

Note that in the intermediate coupling case in 2D the binding energy for pairing
between fermions and bosons ~Eb

�

�

�

� is larger than bosonic and fermionic degeneracy
temperatures:

~Eb

�

�

�

�[ T0B ¼
2pnB

mB
; T0F ¼

2pnF

mF
¼ eF

� 


; ð6:2:3Þ

but smaller than the bandwidths ~Eb

�

�

�

�\ WB;WFf g. In this case the pairing of fer-
mions and bosons frbh i takes place earlier (at higher temperatures) than both
Bose–Einstein condensation of bosons or bibosons bh i 6¼ 0 or bbh i 6¼ 0ð Þ and
superconductive pairing of fermions frf�rh i 6¼ 0: Note that a matrix element
crh i ¼ frbh i is nonzero only for the transitions between the states with
NB; NFj i and NB � 1; NF � 1h j; where NB and NF are the numbers of particles of

elementary bosons and fermions, respectively [6]. For superconductive state a
matrix element for a quartet crc�rh i ¼ frb; f�rbh i 6¼ 0 only for the transitions
between the states with NB; NFj i and NB � 2; NF � 2h j: Note also that in the case
of a very strong attraction UBF [ WBF we have a natural result Ebj j � UBF , and the
effective mass m�BF ¼ mBF

UBF
WBF
� mBF is additionally enhanced on the lattice (see

Nozieres, Schmitt-Rink [14] in Chap. 5). Finally let us emphasize that the diagonal
Hubbard interactions UFF and UBB satisfy the inequalities UFF [ WF

ln WF= Ebj jð Þ and

UBB [ WB
ln WB= Ebj jð Þ in the intermediate coupling case. Now let us consider the tem-

perature evolution of the system.

6.2.3 Bethe–Salpeter Integral Equation

The temperature evolution is governed again (as in the case of two-fermion or
two-boson pairing) by the corresponding Bethe–Salpeter (BS) equation. After
analytical continuation ixn ! xþ io [56] the solution of this equation for the
two-particle total vertex C acquires a form:

Cð~q;xÞ ¼ �UBFd2

1� UBFd2
R d2~p
ð2pÞ2

1�nFðnpÞþnBðgq�pÞ
nð~pÞþgð~q�~pÞ�x�io

; ð6:2:4Þ

where nð~pÞ ¼ p2

2mF
� ~lF and gð~q�~pÞ ¼ p2

2mB
� ~lB are spectra of fermions and

bosons at low densities nFd2 � 1 and nBd2 � 1, the chemical potentials
~lF ¼ WF

2 þ lF and ~lB ¼ WB
2 þ lB are counted from the bottoms of the bands. Note

that in the pole of BS equation enters the temperature factor 1� nFðnð~pÞÞ þ
nBðgð~q�~pÞÞ in contrast with the factor 1� nFðnð~pÞÞ � nFðnð~q�~pÞÞ for the
standard two-fermion superconductive pairing and 1þ nBðgð~pÞÞ þ nBðgð~q�~pÞÞ
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for the two-boson pairing (considered in Sect. 6.1). The pole of the Bethe–Salpeter
equation corresponds to the spectrum of the composed fermions:

x ¼ n�~p ¼
p2

2ðmB þ mFÞ
� lcomp: ð6:2:5Þ

Note that in (6.2.5)

~lcomp ¼ ~lB þ ~lF þ ~Eb

�

�

�

� ð6:2:6Þ

is a chemical potential of composed fermions. Similarly to (6.2.6) in Chap. 8 for
two-fermion pairing we will get ~lcomp ¼ 2~lF þ ~Eb

�

�

�

� for a chemical potential (see
Refs. [31, 32] in Chap. 5) of a composed boson (molecule or dimer) frf-r, while

instead of (6.2.5) we will obtain x ¼ p2

4mF
� ~lB for a pole of the fermionic BS-

equation. Note also that composed fermions are well-defined quasiparticles, since
the damping of quasiparticles equals to zero in the case of the bound state ð~Eb\0Þ,
but it becomes nonzero and is proportional to ~Eb in the case of the virtual state
~Eb\0
� �

. The process of a dynamical equilibrium (boson ? fermion$ composed
fermion) is again governed by the standard Saha formula (see Sects. 5.2, 6.1 and
[30–32] in Chap. 5 ).

6.2.4 Crossover (Saha) Temperature

In the 2D case Saha temperature reads [6]:

nBnF

ncomp
¼ mBFT

2p
exp �

~Eb

�

�

�

�

T

( )

: ð6:2:7Þ

The crossover temperature T* is defined, as usual, from the requirement that the
number of composed fermions equals the number of unbound fermions and bo-
sons: ncomp = nB = nF = ntot/4, (where ntot = nB ? nF + 2ncomp is a total den-
sity). This conditions yields:

T� ¼
~Eb

�

�

�

�

lnð ~Eb

�

�

�

�=T0BFÞ
� fT0B; T0Fg: ð6:2:8Þ

Note that in the Boltzmann regime ~Eb

�

�

�

�[ fT0B; T0Fg. In fact we deal here with
the pairing of two Boltzmann particles.

That is why this pairing does not differ drastically from the pairing of two
particles of the same type of statistics. Indeed, if we substitute ~lB þ ~lF in (6.2.6)
on 2~lB or 2~lF we will get the familiar expressions for the chemical potentials of
composed bosons consisting either of two elementary bosons [2–4] or of two
elementary fermions (see Refs. [12–14, 31, 32] in Chap. 5).
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For lower temperatures T0 \ T \ T* (where T0 ¼ 2pn
mBþmF

is the degeneracy

temperature for composed fermions) the numbers of elementary fermions and bosons
(for the case of equal densities nB = nF) are exponentially small. The chemical
potential of composed fermions reads ~lcomp ¼ �T lnðT=T0Þ. Hence ~lcomp

�

�

�

�� ~Eb

�

�

�

�

for T � T*.

6.2.5 Three and Four Particles Bound States
in the Fermi-Bose Mixture

Note that in a general case to complete the phase-diagram of the Fermi-Bose mixture
model with attraction between fermions and bosons we should determine also the
binding energies of trios and quartets |E3| and |E4| for the complexes frb,b and frb,f-
rb (the complex frb,f-r is not formed due to repulsive interaction between a com-
posed fermion frb and elementary fermion f-r). The knowledge of |E3| and |E4| will
help us to find the hierarchy of inequalities between the different Saha temperatures,

Tð2Þ� � ~Eb

�

�

�

�; T ð3Þ� � E3j j; Tð4Þ� � E4j j; ð6:2:9Þ

where E4 and E3 are counted from the bottoms of the bands for the lattice models
T*

(3) and T*
(4) are Saha temperatures for the formation of composed trios and

quartets. If, as we will prove in the next section, Tð4Þ� [ T ð3Þ� [ T ð2Þ�
�

which requires that E4j j[
ffl

E3j j; 2 ~Eb

�

�

�

�

�

to escape decay processes
�

then the
phase-diagram of the Fermi-Bose mixture is trivialized. Namely for high tem-
peratures T [ T*

(4) the elementary fermions and bosons prevail in the system, while
for lower temperatures T \ T*

(4) the quartets f:b,f;b prevail in the system.
The quartets are already composed bosons. They are Bose-condensed below the

temperature governed again by the Fisher-Hohenberg type of the formula [66]:

TC �
T0

16 ln ln a E4j j
T0

	 
 ; ð6:2:10Þ

where for equal masses mB = mF = m and equal densities nB = nF = n T0 = pn/m
and / the coefficient a will be also defined in the next section for scattering of
molecule on molecule in 2D.

6.3 Bound States of Three and Four Resonantly
Interacting Particles

In this section we will complete the phase-diagram of 2D Fermi-Bose mixture with
attraction between fermions and bosons, as well as a phase-diagram of 2D Bose-
gas with one or two sorts of bosons by calculating exactly the bound states
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energies |E3| for the three-particle complexes bbb, b1b2,b1, frb,b and |E4| for the
four-particle complexes bbbb, b1b2b1b2, frbbb and frb,f-rb in the resonance (one-
channel) approximation [24, 25]. We will also present variational calculations of
the binding energy of the larger droplet |EN| with the number of particles in the
droplet N [ 4.

Finally to complete the phase-diagram of the attractive Fermi-gas in the regime
of BCS-BEC crossover we will determine the scattering amplitudes a2-1 for the
scattering of molecules f:f; on elementary fermions (atoms) fr, and a2-2 for the
scattering of molecules f:f; on other molecules f:f; in the resonance approximation
for BEC-domain a � r0 (see Chap. 5). Note that the scattering length a2-1 gov-
erns also the inelastic scattering time or a lifetime of the 3D resonance Fermi-gas
in BEC-domain, where |Eb| = 1/ma2 \ 1/mr0

2, and a [ 0 (we do not distinguish
between Ebj j and ~Eb

�

�

�

� for the gas models in the absence of the lattice).
In the resonance approximation we will get diagrammatically the results for the

binding energies |E3| and |E4| only in terms of the two-particle binding energy |Eb|,
while for the scattering amplitudes we will get a2-1 and a2-2 only in terms of the
two-particle s-wave scattering length a [24, 25].

6.3.1 Atom-Molecule Scattering Length for Three
Resonantly Interacting Fermions in 3D. Skorniakov-
Ter-Martirosian Integral Equation

In this section we will present diagrammatic method [21] to rederive the famous
Skorniakov and Ter-Martirosian result (firstly obtained for scattering of neutrons
on deutrons in nuclear physics) [18] for dimer-fermion (f:f;; f:) scattering length
a2-1 in the case of three resonantly interacting fermions in 3D.

Following Skorniakov and Ter-Martirosian in the presence of the weakly bound
resonance level—|Eb| in a two-particle cross-section, we can limit ourselves to the
zero-range interaction potential (|a| � r0) between fermions. A two-fermion
vertex (two-particle T-matrix in vacuum) can be approximated by a simple one-
pole structure, which reflects the presence of the s-wave resonance level in a spin-
singlet state:

Fig. 6.4 The simplest exchange diagram for the three-particle interaction. The double line
corresponds to dimer, the single lines—to elementary fermions [6]. Intermediate single line
stands for the vacuum Green’s function G(P-p1-p2), where P is the total 4-momentum of dimer
and elementary fermion, P ¼ fE;~Pg
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T2ab;cdðE;~PÞ ¼ T2ðE;~PÞðdacdbd � daddbcÞ ¼ T2ðE;~PÞvða; bÞvðc; dÞ; ð6:3:1Þ

where in the 3D case

T2ðE;~PÞ ¼
4p

m3=2

ffiffiffiffiffiffiffiffi

Ebj j
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~P=4m� E
q

E �~P=4mþ Ebj j
ð6:3:2Þ

is given by the ladder sequence of vacuum diagrams (see Sect. 6.2 and Fig. 5.13).
E is the total energy and ~P is the total momentum of the incoming particles, m is
the fermionic mass, and |Eb| = 1/ma2 is the binding energy (a = aF - is an
s-wave scattering length of two fermions). Indices a, b and c, d denote spin state of
incoming and outgoing particles. The function v(a, b) stands for the spin-singlet
state vða; bÞ ¼ da"db# � da#db". Note that the pole of the vacuum T-matrix (6.3.2)
coincides with the pole of two-particle vertex C obtained for two-fermion pairing
in Sect. 5.2 in the absence of the lattice for lF = 0 (and lB ¼ 2lF þ Ebj j ¼ Ebj j).
The simplest process which contributes to the dimer-fermion interaction is the
exchange of a fermion (Fig. 6.4).

We will denote it as D3 (see [25]). Its analytical expression is:

D3a;bðp1; p2;PÞ ¼ �dabGðP� p1 � p2Þ; ð6:3:3Þ

where we introduce four-momenta P ¼ ðE;~PÞ, p1 and p2. In (6.3.3) GðPÞ ¼
1

x�~P2
2mþio

is a bare fermion Green’s function in vacuum. The minus sign on the right-

hand side of (6.3.3) comes from the permutation of the two fermions and corre-
sponds to the bare repulsive interaction between dimer and fermion. In order to
obtain a full dimer-fermion scattering vertex T3 we need to build a ladder again
from D3 blocks. One can easily verify that the spin projection is conserved in every
order of T3, and thus T3ab = dabT3. An equation for T3 will have the diagrammatic
representation shown in Fig. 6.5, and in analytical form it is written as:

T3ðp1; p2;PÞ ¼ �GðP� p1 � p2Þ
� i
X

q

GðP� p1 � qÞGðqÞT2ðP� qÞT3ðq; p2;PÞ; ð6:3:4Þ

where
P

q¼
R

d3~qdX=ð2pÞ4.
Note that for three resonantly interacting bosons bb,b the sign near the first term

in right-hand side of (6.3.4) should be changed on ‘‘plus’’. This means that we

Fig. 6.5 The graphic representation of the equation for the full dimer-fermion scattering vertex
T3. Intermediate double line corresponds to two-particle scattering vertex T2(p - q) (which
describes the bound state of a dimer). Intermediate single lines stand for the vacuum one-particle
Green-functions G(q) and G(P-p1-q) [25]

206 6 Composed Particles, Trios and Quartets

http://dx.doi.org/10.1007/978-94-007-6961-8_5
http://dx.doi.org/10.1007/978-94-007-6961-8_5


have a bare attraction between a molecule bb and elementary boson b. Corre-
spondingly the bare interaction is also attractive for a molecule frb interacting with
elementary boson b, but it is repulsive (due to Pauli principle) for the interaction of
the molecule frb with an elementary fermion f-r having an opposite spin
projection.

Returning back to three resonantly interacting fermions (f:f; and fr) we can
integrate out the frequency X in (6.3.4) by closing the integration contour in the
lower half-plane, since both T2(P - q) and T3(q, p2; P) are analytical functions in
this region. Moreover, if we are interested in the low-energy s-wave dimer-fermion
scattering length a3 = a2-1, we can safely put P ¼ ðE;~PÞ ¼ ð� Ebj j; 0Þ and
p2 = 0. The full vertex T3 is connected with a3 = a2-1 by the following relation
[24, 25]:

8p
m2a

� �

T3ð0; 0;� Ebj jÞ ¼
3p
m

a2�1: ð6:3:5Þ

Introducing a new function a2-1(k) according to the formula:

8p
m2a

� �

T3
k2

2m
;~k

� 


; 0;� Ebj j
� �

¼ 3p
m

a2�1ðkÞ; ð6:3:6Þ

and substituting it into Eq. (6.3.4), we obtain the Skorniakov-Ter-Martirosian
(STM) equation for the scattering amplitude [18, 24, 25]:

3
4 a2�1ðkÞ

ffiffiffiffiffiffiffiffiffiffiffi

m Ebj j
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k2

4 þ m Ebj j
q ¼ 1

k2 þ m Ebj j
� 4p

Z

a2�1ðqÞ
q2ðk2 þ q2 þ~k~qþ m Ebj jÞ

d3~q

ð2pÞ3

ð6:3:7Þ

Solving this equation numerically one obtains the well-known result for the
dimer-fermion scattering length [18, 29]:

a2�1 ¼ a2�1ð0Þ ¼ 1:18 aj j[ 0: ð6:3:8Þ

This result is quite nice since dimer-fermion scattering length in it depends only
upon numerical coefficient (see Ref. [64] in Chap. 1) and two-particle s-wave
scattering length a.

6.3.2 Three Resonantly Interacting Bosons
in 3D. Efimov Effect

As was first shown by Danilov [90] (see also the paper by Minlos and Fadeev [19])
in the 3D case, the problem of three resonantly interacting bosons cannot be solved
in the resonance approximation. This statement stems from the fact that in the case
of identical bosons (or in the case of the complexes with two bosons and one
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fermion frb,b) the homogeneous part of STM-equation (6.3.7) has a nonzero
solution at any negative energies. The physical meaning of this mathematical
artifact was elucidated by Efimov [16], who showed that a Hamiltonian with only
two-particle interaction leads to the appearance of an attractive 1/r2 interaction in a
three-body system. Since in the attractive 1/r2 potential in 3D a particle falls to the
center, the short-range physics is important and one cannot replace the exact pair
interaction by its resonance approximation. In the excellent review article by
Jensen et al. [20] it was nicely illustrated that Efimov effect is present in the
dimensions 2.3 \ D \ 3.8. In 3D case it creates the attractive (centripetal)
effective potential Veff ðqÞ � � 1:26

q2 (see Fig. 6.6) if we introduce convenient rela-

tive coordinates (m1 = m2 = m3):

~x ¼~r2 �~r3;

~y ¼~r1 �
~r2 þ~r3

2
;

ð6:3:9Þ

which correspond to the relative radius-vector ð~xÞ inside the dimer (2, 3) and the
radius-vector ð~yÞ between the elementary particle 1 (falling on dimer) and the
dimer’s center of mass.

Vectors~x and~y define the plane. In this plane we can introduce a hyperradius q
and angles a1, a2 such as:

xi ¼ q sin ai; i ¼ 1; 2;

yi ¼ q cos ai; i ¼ 1; 2:
ð6:3:10Þ

If we rewrite the three-particle Hamiltonian:

Ĥ ¼
X

3

j¼1

1
2mj
r2

jþ
X

3

j;k¼1

V ~rj �~rk

�

�

�

�

� �

¼ T̂ þ V̂ ð6:3:11Þ

in terms of ~x, ~y and ~Rc:m: ¼ ~r1þ~r2þ~r3
3 (for equal masses m1 = m2 = m3) and then

introduce a hyperradius q and angles ai, then in the new coordinates the kinetic
part of the Hamiltonian T̂ in (6.3.11) will contain the centripetal term according to
[20].

Fig. 6.6 Convenient coordinates ~x ¼~r2 �~r3 and~y ¼~r1 �~r2þ~r3
2 for the description of fermion

(1)-dimer (23) interaction (see Ref. [20]) for the case of equal masses m1 = m2 = m3
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Note that in 2D case Veff ðqÞ � 1:5
q2 [ 0—the potential is repulsive and Efimov

effect is absent. Thus the STM equation in 2D has a finite number of the solutions
for the binding energies E3 of the three-particle complexes bbb and fbb.

In 3D case Efimov effect leads to the appearance of the strongly-bound three-
particle levels with an energy [19]:

E3nj j ¼ 1

mr2
0

exp � 2pn

10

� 


; ð6:3:12Þ

where f0 = 1.006. The total number of levels is

N ¼ 1
p

ln
a

r0
; ð6:3:13Þ

where r0 is the range of the potential.
They lie in the interval:

1
ma2

\jE3nj\
1

mr2
0

: ð6:3:14Þ

Mathematically Efimov’s effect is connected with the properties of the kernel of
the integral STM equation. If we perform analytically the angular integration in

(6.3.7) of the type
R

1

�1

d cos h
aþb cos h ¼ 1

b ln aþb
a�bj j and introduce dimensionless intermediate

and incoming momenta y = qa and x = ka (measured in terms of the scattering

length a) as well as dimensionless three-particle energy W3 ¼ E3j j
Ebj j ¼ ma2 E3j j

(measured in terms of the two-particle binding energies |Eb|) and dimensionless 3-
particle vertex s3 ¼ T3

Ebj j ¼ ma2T3 then in terms of x, y and W3 the homogeneous

part of STM-equation for s3 reads:

s3ðx;W3Þ ¼
2
p

Z

a=r0

0

y2dy

2xy
ln

W3 þ x2 þ y2 þ xy

W3 þ x2 þ y2 � xy

� �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=4y2 þW3

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W3 þ 3=4y2
p

� 1
	 s3ðy;W3Þ;

ð6:3:15Þ

where sign ‘‘plus’’ in front of the integral corresponds for three bosons to the
attractive dimer-monomer interactions (Three-particle binding energies E3 corre-
spond to the poles of s3, and consequently for E = E3 homogeneous part of STM-
equation should have nonzero solutions). It is possible to show that the kernel in
the right-hand side of integral Eq. (6.3.15) is not limited. The integral of the kernel
is of the order of 1 on the upper limit so the solutions with large three-particle

binding energies W3 ¼ E3j j
Ebj j � 1 are possible. These solutions are ‘‘sitting’’ on the

upper limit ymax ¼ a
r0
!1 of the integral in (6.3.15). For them we can get

x� xmax ¼ a
r0
� 1 and W3�W3max ¼ a2

r2
0
� 1. Effectively they describe the
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situation when the three-particle system goes far away from the resonance (when
we add a third particle to resonantly interacting pair of particles). That is why we
have deep three-particle levels [see (6.3.14)] in 3D.

6.3.3 Three Resonantly Interacting Bosons in 2D

As we already mentioned, Efimov effect is absent in 2D. Therefore it is possible to
describe the binding energies |E3| of the three-particle complexes bbb and frb,b in
terms of the two-particle binding energies |Eb| only.

As in the 3D case, the cornerstone in the diagrammatic technique is the two-
particle resonance scattering vertex T2. For two resonantly interacting particles
with total mass 2m (we assume that all the particles under considerations have the
same mass m, which in case of Fermi-Bose mixture means that mB = mF) it can be
written in 2D as:

8p
m2a

� �

T2 Pð Þ ¼ � 4p
m

a

ln
~P

4m� E
	 


Ebj j
	 
 ; ð6:3:16Þ

where P ¼ ðE;~PÞ is 4 momentum and we introduce the factor a = {1, 2} in order
to take into account whether or not two particles are indistinguishable. It is a = 2
for the case of a resonance interaction between identical bosons and a = 1 for the
case of a resonance interaction between fermion and boson or for the case of two
distinguishable bosons. Note that T2(P) contains a typical for 2D systems loga-
rithm in denominator of (6.3.16). We start with a system of three resonantly
interacting identical bosons-bbb in 2D. An equation for the dimer-(elementary)
boson scattering vertex T3 which describes interaction between three bosons has
the same diagrammatic form as shown in Fig. 6.5; however, the rules for its
analytical notation changed. It can be written as:

T3ðp1; p2;PÞ ¼ GðP� p1 � p2Þ þ i
X

q

GðP� p1 � qÞGðqÞT2ðP� qÞT3ðq; p2;PÞ;

ð6:3:17Þ

where
P

q¼
R

d3~qdX=ð2pÞ4, P ¼ ðE; 0Þ and one should put a = 2 for the two-
particle vertex T2 in (6.3.16). As we already mentioned the opposite signs in
(6.3.4) for fermions and (6.3.17) for bosons are due to the permutation properties
of the particles involved: an exchange of fermions results in a minus sign, while an
analogous exchange of bosons brings no extra minus. Finally, we note that the
three-particle s-wave (s-wave channel of a boson-dimer scattering) binding ener-
gies E3 correspond to the poles of T3(0, 0; -|E3|) and, consequently, at energies
E = E3 the homogeneous part of (6.3.17) has a nontrivial solution. Introducing the
same dimensionless variables x, y for initial and intermediate momenta, W3 for
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dimensionless three-particle energy |E3| and s3 for dimensionless three-particle
T-matrix T3 we will get in a 2D case (after the corresponding angular integration
R

2p

0

du
aþb cos u ¼ p

ffiffiffiffiffiffiffiffiffiffiffi

a2 [ b2
p for a2 [ b2

� �

:

s3ðx;W3Þ ¼
2
p

Z

a=r0

0

ydy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W3 þ x2 þ y2ð Þ2�ðxyÞ2
q

1
lnðW3 þ 3=4y2Þ 	 s3ðy;W3Þ:

ð6:3:18Þ

It is possible to show that the kernel in 2D STM-equation is limited (in contrast
to the 3D case). For large y the integral of the kernel behaves as 1

ln y� 1.

Hence (in spite of the fact that the integral in (6.3.18) again (as in a 3D case) is
governed by large y) there are no solutions for which x * pa and W3 are much
larger than 1. Correspondingly deep three-particle levels are absent in the 2D case
and the system does not go far away from the resonance when we add the third
particle to the two resonantly interacting particles.

Numerical solutions of (6.3.18) are obtained by finding the eigenvalues k(E) of
the kernel K̂ of the homogeneous part of the integral equation: T3 ¼ K̂T3. Than
k = 1 is the condition for the appearance of a three-particle bound state. More
precisely: k(E = E3) = 1. The numerical solutions for binding energies of three
identical bosons in 2D are presented on Fig. 6.7. We can see that k(E/|Eb|) crosses

Fig. 6.7 The typical level structure k Ej j= Ebj jð Þ for numerical solution of a homogeneous part of

STM-equation. In the case of three identical bosons in 2D two levels k 1ð Þ Ej j= Ebj jð Þ and

k 2ð Þ Ej j= Ebj jð Þ cross the horizontal line k = 1 correspondingly for three-particle binding energies

Eð1Þ3

�

�

�

�

�

�
¼ 1:27 Ebj j and Eð2Þ3

�

�

�

�

�

�
¼ 16:52 Ebj j, while for the third level k 3ð Þ Ej j= Ebj jð Þ\1 for all

energies Ej j= Ebj j and hence it does not represent the three-particle bound state [24, 25]
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the horizontal line k = 1 for two three-particle levels at Eð1Þ3

�

�

�

�

�

�
¼ 1:27 Ebj j and

Eð2Þ3

�

�

�

�

�

�
¼ 16:52 Ebj j. The third level on Fig. 6.7 for all energies corresponds to k(E/

|Eb|) \ 1, and hence does not represent a bound state. Thus we obtained two s-

wave three-particle bound states Eð1Þ3

�

�

�

�

�

�
� 1:27 Ebj j and Eð2Þ3

�

�

�

�

�

�
� 16:52 Ebj j in

agreement with the results of Bruch and Tjon [41] (see also [20]).

6.3.4 The Three-Particle Complex frb,b in 2D Case

Let us now consider a complex frb,b consisting of one fermion and two bosons. As
noted above we consider bosons and fermions with equal masses
mB = mF = m. In agreement with the results of Sect. 6.2 we assume that an
attractive fermion-boson interaction UFB, characterized by the radius of the
interaction rFB (for the lattice models rFB = d), yields a resonant two-body bound
state with an energy E ¼ � Ebj j, where Ebj j � 1=mr2

FB is a shallow bound state
(note that for the lattice models the requirement Ebj j � 1=mr2

FB is satisfied in the
intermediate coupling case for 2D Fermi-Bose mixture with attraction between
fermions and bosons considered in Sect. 6.2). At the same time a boson–boson
interaction UBB, characterized by the interaction radius rBB, does not yield a
resonance. This condition is also fulfilled in our model for Fermi-Bose mixture,
since both UFF [ 0 and UBB [ 0 correspond to repulsion. Hence, if we are
interested in the low-energy physics, the only relevant interaction is UFB, and we
can ignore the boson–boson interaction UBB (the latter will give only small cor-
rections of the order Ebj jmr2

FB� Ebj jmd2 � 1 at low energies). In order to deter-
mine three-particle bound states one has to find the poles in the composed fermion
frb—elementary boson b scattering vertex T3. Since we neglect the boson–boson
interaction UBB the vertex T3 is described by the same diagrammatic equation [see
Fig. 6.5 and (6.3.17)] as in the problems of three resonantly interacting bosons.
The analytical form of this equation also coincides with (6.3.17) with the minor
correction that the resonance scattering vertex T2 now corresponds to the inter-
action (UFB) between a boson and a fermion, and therefore we should put a = 1 in
Eq. (6.3.17) for T2. Solving the STM-equation for T3 we find that the frb,b
complex has only one s-wave bound state with an energy E3j j � 2:39 Ebj j [24, 25].
The same result holds for the complex b1b2b1 with two bosons of one sort and one
boson of different sort. Note that a complex bff—consisting of a boson and two
spinless identical fermions (or a complex with a boson and spin ‘‘up’’ and spin
‘‘down’’ fermion bf:f;) with resonance interaction UFB does not have any three-
particle bound states in the 2D case.
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6.3.5 Dimer-Dimer Scattering for Four Resonantly
Interacting Fermions in 3D. Exact Integral Equation
for Four-Fermion Problem

Now we can proceed to the problem of dimer–dimer scattering for two molecules
f:f; in 3D case. This problem was firstly solved by Petrov et al. [29] by studying
the Schroedinger equation for a 4-fermion wave function.

Inspired by the work of Petrov et al. [29] we are looking for a special vertex,
which describes an interaction of two fermions constituting a first dimer with a
second dimer (considered as a single object). An obvious candidate for this vertex
would be the sum of all the diagrams with two fermionic and one dimer incoming
line. It would be natural to suppose that these diagrams should have the same set of
outgoing lines—two fermionic and one dimer. However, in this case there will be a
whole set of disconnected diagrams contributing to our sum that describes the
interaction of a dimer with only one fermion. As was pointed out by Weinberg
[22], one can construct a good integral equation of Lippmann–Schwinger type
only for connected class of diagrams. Thus we are forced to give attention to the
asymmetric vertex Uab(q1, q2; p2, P) corresponding to the sum of all diagrams with
one incoming dimer, two incoming fermionic lines and two outgoing dimer lines
(see Fig. 6.8). This vertex Uab(q1, q2; p2, P) is rather straightforwardly related to
the standard dimer–dimer scattering vertex T4(p1, p2; P):

Fig. 6.8 The vertex U
represents the full dimer–
dimer scattering matrix T4

with one dimer line being cut
[24, 25]

Fig. 6.9 The graphic representation of the equation on function U describing dimer–dimer
scattering [24, 25]
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T4ðp1; p2;PÞ ¼
i

2

X

k;a;b

vða; bÞGðPþ p1 � kÞGðkÞUabðPþ p1 � k; k; p2;PÞ:

ð6:3:19Þ

Note that, by definition, in any order of interaction U contains only connected
diagrams.

The spin part of the vertex Uab has the simple form Uab(q1, q2; p2, P) = v(a,
b)U(q1, q2; p2, P). A diagrammatic representation of the equation on U is given in
Fig. 6.9. One can assign some physical meaning to the processes described by
these diagrams. The diagram of Fig. 6.9a represents the simplest exchange process
in a dimer–dimer interaction. The diagram of Fig. 6.9b accounts for a more
complicated nature of a ‘‘bare’’ (irreducible by two dimer lines) dimer–dimer
interaction.

Finally the diagram of Fig. 6.9c allows for a multiple dimer–dimer scattering
via a bare interaction. The last term in Fig. 6.9 means that we should add another
three diagrams analogous to Figs. 6.9a, b and c, but with the two incoming fer-
mions (q1 and q2) exchanged. The analytical equation for the vertex U can be
written as:

Uðq1; q2; p2;PÞ ¼ �GðP� q1 þ p2ÞGðP� q2 � p2Þ
� i
X

k

GðkÞGð2P� q1 � q2 � kÞT2ð2P� q1 � kÞUðq1; k; p2;PÞ

þ 1
2

X

Q;k

GðQ� q1ÞGð2P� Q� q2ÞT2ð2P� QÞT2ðQÞ

GðkÞGðQ� kÞUðk;Q� k; p2;PÞ þ ðq1 $ q2Þ:
ð6:3:20Þ

Since we are looking for an s-wave scattering length we can put p2 = 0 and
P ¼ 0;� Ebj jf g. At this point we have a single closed equation for the vertex U in
momentum representation, which, we believe, is analogous to the equation of
Petrov et al. in coordinate representation. To make this analogy more prominent
we have to exclude frequencies from the Eq. (6.3.19). This exclusion requires
some more mathematical efforts, but we succeeded in doing that in our second
(more extended) article on this subject (see Appendix A in Ref. [24]).

The dimer–dimer scattering length is proportional to the full symmetrized
vertex T4(p1, p2; P):

8p
m2a

� �2

T4ð0; 0;�2 Ebj j; 0Þ ¼
2pð2a2�2Þ

m
: ð6:3:21Þ

In the Born approximation we can consider only the contribution of the first
term (Fig. 6.9a) in U. Then in this approximation (for the simplest exchange
process in dimer–dimer interaction) U * GG and T4 * RGGU * RGGGG (see
Fig. 6.10) where the symbol R stands for the sum in these estimates.
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In the Born approximation a2-2(f:f;,f:f;) = 2|a|. This result is intuitively
transparent since only the interaction between fermions with different spin pro-
jections has a resonance character according to Pauli principle. We will get it in
the mean-field description of the BCS-BEC crossover and the spectrum of col-
lective excitations in Chap. 7 (see also [93]).

If one skips the second term in (6.3.20), i.e., one omits the diagram in Fig. 6.9b,
one arrives at the ladder approximation of Pieri and Strinati [26]. In this
approximation we take into account the multiple scattering of two dimmers on
each other without the loss of their identity. In the ladder approximation we get
a2-2 = 0.78|a| in agreement with the results of Pieri and Strinati. The exact Eq.
(6.3.20) corresponds to the summation of all diagrams. Moreover the diagrams on
the Fig. 6.9b (omitted in [26]) with an account of crossing (q1$ q2) describe two
types of processes:

(1) there are two incoming dimmers in the beginning, than they are virtually
decaying and exchanging one particle with each other;

(2) there are two incoming dimmers in the beginning, than they are virtually
decaying forming a virtual 3-particle complex and one elementary fermion.
After that 2 dimers are again created.

Note that mathematical structure of the second term in (6.3.20) RGGT2U
resembles to some extent a mathematical structure of the integral term in STM
equation for the trios RGGT2T3 (R stands for the sum again). Thus it takes into
account dynamics and moreover allows to write a closed equation on U in (6.3.20)
only in terms of two-particle T-matrix T2 and one-particle Green functions
G (without explicit utilization of the three-particle T-matrix T3). Exact solution of
(6.3.20) with an account of all these terms (Figs. 6.9a, b and c) together with
crossing yields:

a2�2 ¼ 0:6 aj j ð6:3:22Þ

in agreement with Petrov et al. [29].
Note also that our approach allows one to find the dimer–dimer scattering

amplitude in the 2D case also. Here

f2�2ðeÞ ¼
1

lnð1:6 Ebj j=eÞ
ð6:3:23Þ

in agreement with Petrov, Baranov and Shlyapnikov [23]. We will use this result to
find coefficient a in formula (6.2.10) for TC of the Bose condensed quartets
f:b,f;b in the 2D Fermi-Bose mixture with attractive interaction between fermions

Fig. 6.10 Simplest exchange
process which defines the
Born approximation for the
dimer–dimer T-matrix T4
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and bosons. This formula of Fisher-Hohenberg type TC � T0

16 ln ln a
E4j j
T0

	 
 contains in

denominator the coefficient a which describes the scattering of quartet on quartet
(in the repulsive 2D Bose-gas of quartets f:b,f;b). Thus it is easy to show that for
equal masses of fermions and bosons mB = mF a = 4 	 1.6 = 6.4, where 1.6 is a
coefficient under logarithm for scattering of dimer on dimer in 2D in (6.3.23). The
binding energy |E4| for the quartet f:b,f;b we will define in the next section.

Finally we would like to mention that our results allow one to find the dressed
fermionic Green’s function, chemical potential, and sound velocity as a function of
two-particle scattering length a in the case of the dilute superfluid Bose-gas of
weakly interacting dimers f:f; at low temperatures. The problem of dilute super-
fluid Bose-gas of di-fermionic molecules was solved by Popov [91] and later
deeply investigated by Keldysh and Kozlov in connection with the problem of
excitonic (or bi excitonic) superfluidity [92]. These authors managed to reduce the
gas problem to a dimer–dimer scattering problem in vacuum, but were unable to
express the dimer–dimer scattering amplitude in a single two-fermion parameter.
A direct combination of our results with those ones of Popov, Keldysh and Kozlov
allows one to get all the thermodynamic values of a dilute superfluid resonance gas
of composed bosons. This strategy will be fulfilled in Chap. 7.

6.3.6 Four Particles Bound States

In the 3D case a homogeneous part of the four-particle integral Eq. (6.3.20) has a
nontrivial solution for any negative values of the energy for the 4-particle com-
plexes bbbb, f:bf;b and fbbb. Thus Efimov effect manifests itself again in a four-
particle problem. However, for the same complexes in 2D Efimov effect is absent
and the homogeneous part of the four-particles equation has the finite number of
the solutions for the negative energy E \ 0, which can be represented again only
in terms of the two-particle binding energy |Eb|.

First we will consider four identical resonantly interacting bosons bbbb. Any
two bosons would form a stable dimer with binding energy E = -|Eb|. We are

Table 6.1 Bound states of
three and four resonantly
interacting particles in 2D
[24, 25]

System Relativea

interaction
Number of
bound states

Energy (in |EB|)b ac

bbb Ubb 2 1.27, 16.52 2
fbb Ufb 1 2.39 1
fbbb Ufb 1 4.10 1
bf:bf; Ufb 2 2.84, 10.64 1
bbbb Ubb 2 22, 197 2
a Interaction that yields resonance scattering. All other interac-
tions are negligible
b m = mB = mF
c The indistinguishability parameter in (6.3.16)
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going to find a four-particle binding energy of an s-wave bound state of two
dimers. Generally speaking (see Sect. 6.1 for example), a bound state could
emerge in channels with larger orbital moments (see [94]); however, this question
will be considered in the next chapters. To find a binding energy we should
examine the analytical structure of the dimer–dimer scattering vertex T4 and find
its poles. The set of equations for T4 has the same diagrammatic structure as those
shown in Figs. 6.8 and 6.9. The analytical expression for the first equation can be
written as:

T4ðp1; p2;PÞ ¼
i

a

X

k

GðPþ p1 � kÞGðkÞUðPþ p1 � k; k; p2;PÞ; ð6:3:24Þ

and the equation for the vertex U:

Uðq1; q2; p2;PÞ ¼ GðP� q1 þ p2ÞGðP� q2 � p2Þ
þ i
X

k

GðkÞGð2P� q1 � q2 � kÞT2ð2P� q1 � kÞUðq1; k; p2;PÞ

� 1
2a

X

Q;k

GðQ� q1ÞGð2P� Q� q2ÞT2ð2P� QÞT2ðQÞGðkÞ

GðQ� kÞUðk;Q� k; p2;PÞ þ ðq1 $ q2Þ;
ð6:3:25Þ

where two-particle T-matrix T2 in 2D should be taken from (6.3.16) and one
should put a = 2 for the case of identical resonantly interacting bosons. Solving
the above equations for the poles of T4 as a function of the variable P ¼ 0;Ef g, we
found two bound states for the bbbb complex (see Table 6.1). Certainly, for the
validity of our approximation we should have |E4| � 1/mr0

2. For the case of four
bosons bbbb it means that 197|Eb| � 1/mr0

2 for the deepest level and hence
a=r0 �

ffiffiffiffiffiffiffiffi

197
p

. This case can still be realized in the Feshbach resonance scheme.
The case of a four-particles complex f:bf;b, consisting of resonantly interacting

fermions and bosons is described by the same Eqs. (6.3.24, 6.3.25), but with the
parameter a = 1. In this case we found two bound states |E4| & 2.84|Eb| and
|E4| & 10.64|Eb|. They are also listed in Table 6.1. The same result is valid for two
pairs of bosons of different sort b1b2b1b2.

In order to obtain the bound states of the fbbb complex one has to find the
energies P ¼ 0;Ef g corresponding to nontrivial solutions of the following
homogeneous equation:

Uðq1; q2; p2;PÞ ¼ i
X

k

GðkÞGð2P� q1 � q2 � kÞT2ð2P� q1 � kÞUðq1; k; p2;PÞ þ ðq1 $ q2Þ:

ð6:3:26Þ

This equation corresponds to the diagrams of Fig. 6.9b with an account of
crossing (and does not contain the diagrams of Fig. 6.9c). We found a bound state
for the fbbb complex with an energy |E4| & 4.10 |Eb|.
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We summarize the results concerning binding energies of three and four res-
onantly interacting particles in 2D in the Table 6.1. Note that all our calculations
corresponds to the case of particles with equal masses m = mB = mF, though they
can be easily generalized to the case of different masses.

6.3.7 Phase Diagram of the Fermi-Bose Mixture in 2D

In Sect. 6.2.5 we wrote the chain of the Saha crossover temperatures

T ð2Þ� � ~Eb

�

�

�

�; T ð3Þ� � E3j j and Tð4Þ� � E4j j for two-particle (frb), three-particle (frb,b),
and four-particle (f:b,f;b) complexes in the 2D Fermi-Bose mixture on the lattice
with attractive (and resonance in the intermediate coupling case) interaction
between fermions and bosons. The knowledge of the binding energies of three-
particle (|E3|) and four-particle (|E4|) complexes allows us to complete the phase
diagram of a Fermi-Bose mixture. Namely the deepest levels for m = mB = mF

correspond to E3j j � 2:4 ~Eb

�

�

�

� and E4j j � 10:6 ~Eb

�

�

�

� for fbb and f:b, f;b complexes,

respectively. Thus E4j j[
ffl

jE3j; 2j~Ebj
�

and we have the following hierarchy of
Saha temperatures:

Tð4Þ� [ fT ð3Þ� ; T ð2Þ� g: ð6:3:27Þ

Then, as we already assumed in Sect. 6.3.5, the phase diagram becomes rather
simple. Namely: for T [ T*

(4) elementary fermions and bosons prevail in the sys-
tem, while for T \ T*

(4)—the quartets f:b, f;b prevail in the system in case of equal
densities nB = nF. The quartets are Bose-condensed below the temperature:
TC = T0/(16 ln(6.4 |E4|/T0)), where E4j j � 10:64 j~Ebj:

6.3.8 Phase Diagram of 2D Bose-Gas

In the 2D Bose-gas with resonance interaction between bosons or in strongly
disbalanced Fermi-Bose mixture for nB � nF (see [11, 12]) the formation of large
droplets containing N [ 4 particles is possible. The limitation on the number of
particles in the droplet is connected with the repulsive hard-core with the radius r0:

RN [ r0; jEN j\
1

mr2
0

; ð6:3:28Þ

where RN and EN are the radius and the binding energy of the N-particle droplet.
For N [ 4 the exact solution of the STM-equations is practically impossible

(it requires too much of the computer time). Thus we have to restrict ourselves
with the variational calculations of RN and EN (see Hummer, Son [28]). For 2D
case they yield RN * ae-N and EN = 1/mRN

2 * |Eb|e2N under the condition:
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N \ Nmax * 0.9ln(a/r0) ([28, 36]). The large droplets were experimentally observed
in the disbalanced Fermi-Bose mixture of 87Rb (bosons) and 40K (fermions) for
nB [ nF by Modugno et al. [12].

6.3.9 The Role of the Dimer-Fermion and Dimer–Dimer
Scattering Lengths for the Lifetime of the Resonance
Fermi-Gas

In case of the resonance Fermi-gas in 3D the dimer-fermion scattering length
a2-1 = 1.18 |a| [ 0 and the dimer–dimer scattering length a2-2 = 0.6 |a| [ 0
define the relaxation rates of inelastic dimer-fermion and dimer–dimer collisions in
the BEC-domain for a [ 0.

Namely according to Petrov, Salomon and Shlyapnikov [29] the relaxation rates
read:

a2�1 ¼ C1
�hr0
m

r0
a

� �3;33
;

a2�2 ¼ C2
�hr0
m

r0
a

� �2;55 ð6:3:29Þ

for dimer-fermion (a2�1) and dimer–dimer (a2�2) inelastic scatterings. In (6.3.29)
C1 and C2 are numerical coefficients.

Correspondingly the inverse inelastic scattering times 1=s2�1� natoma2�1 and
1=s2�2� nmola2�2 define the molecular transitions from the shallow to deep
vibrational levels in the potential well. In course of this process, according to the
discussion in Chap. 5 the molecules lose their identity and do not participate in the
symmetrization of the dimer wave function. Thus practically 1

sloss
� 1

s2�1
þ 1

s2�2
,

where dnmol
dt � a2�1nmolnatom þ a2�2n2

mol� nmol
sloss

and the inverse time of the losses of

the resonance dimers 1/sloss coincides by order of magnitude with the inverse
lifetime 1/slifetime of the molecular BEC-condensate.

In the regime of Feshbach resonance for B ? B0: 1/a ? 0 and the lifetime of
Bose-condensate strongly increases. Note that if the numbers of atoms and mol-
ecules coincide by the order of magnitude (for natom� nmol) the inverse inelastic

scattering time 1
s2�1
� r0

a

� �3:33T0
�h ðr0pFÞ (where T0 is degeneracy temperature) while

1
s2�2
� r0

a

� �2:55T0
�h ðr0pFÞ and hence for 1/a ? 0 the inverse loss time 1

sloss
� 1

s2�2
is

defined by dimer–dimer inelastic scatterings mostly (see [29]). Note that usually
for the resonance Fermi-gas in BEC-regime slifetime B 10 s.

Concluding this section let us emphasize that in the resonance approximation we
derive and solve exactly the integral equations for trios and quartets in 3D and 2D.

We evaluate exact scattering amplitudes of molecule on atom (a2-1) and
molecule on molecule in the 3D and the 2D resonance Fermi-gas.

We calculate the binding energies of all the possible complexes, consisting of
three bbb, b1b2b1, fbb, and four bbbb, b1b2b1b2, fbbb, and f:bf;b particles as the
functions only of the two-particle binding energy |Eb| in the 2D case.
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We construct the phase-diagram for the resonance Fermi-Bose mixture in 2D
with equal densities of fermions and bosons nB = nF. We discuss also the possi-
bility of the formation of the large droplets containing 5 and more particles in the
2D Bose-gas and in the disbalanced Fermi-Bose mixture for nB [ nF.

Note that a binding energy of a four-particle complex b1b2b1b2 is important to
complete the phase diagram of the two-band Bose-Hubbard model with repulsion
between bosons of one sort and attraction between bosons of different sorts,
considered in Sect. 6.1. In the intermediate coupling case on the lattice
T0\j~Ebj\W in 2D this model as we already mentioned in Sect. 6.1 corresponds
to the resonance interaction between bosons of different sort. Moreover for
|E4| \ W the quartets b1b2b1b2 are extended 1=

ffiffiffi

n
p

[ a� d (not sitting on one site
of the lattice) and thus even strong Hubbard repulsions between bosons of the
same sort U11 [ 0 and U22 [ 0 cannot prevent the formation of the quartets.
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Chapter 7
BCS-BEC Crossover and the Spectrum
of Collective Excitations in s-Wave and
p-Wave Resonance Superfluids

In this chapter, using the knowledge of dimer–dimer scattering length
a2-2 = 0.6|a| [ 0, we complete the phase-diagram of the resonance Fermi-gas in
3D. We present more detaily the scheme of BCS-BEC crossover developed by
Nozieres and Schmitt-Rink (see Ref. [14] in Chap. 5) and construct the phase-
diagram of the resonance Fermi-gas in the self-consistent T-matrix approximation
(see Refs. [18–21, 68). We define the crossover line l(T) = 0 which effectively
separates BEC-domain (for which l\ 0 and a [ 0) from the BCS-domain
(for which vise versa l[ 0 and a \ 0). We discuss the critical temperatures of
extended Cooper pairing TC

BCS and Bose-condensation for local pairing of two
fermions TC

BEC in dilute BCS and BEC limits for aj jpF � 1, where pF is the Fermi-
momentum and a is an s-wave two-particle scattering length. We also provide
qualitative considerations for the phase-diagram in the unitary limit 1/a ? 0 and
close to unitarity (for large values of the gas parameter aj jpF � 1). We observe
that in the substance a unitary limit is effectively inside the BCS-domain. We
extend our results at finite temperatures on 2D resonance Fermi-gas.

In the second part of this Chapter we provide a brief description of the self-
consistent Leggett scheme (see Refs. [12, 13] in Chap. 5) for the BCS-BEC
crossover at zero temperature (T = 0). We solve the Leggett equations and find the
behavior of the superfluid gap D and chemical potential l as the functions of the
gas parameter apF in the dilute BCS and BEC limits, as well as close to unitarity.
The knowledge of the gap D and chemical potential allows us to solve Bogoliubov-
Anderson equations (see Refs. [1, 2]) and determine the spectrum of collective
excitations both in BCS and BEC domains. For small x and q the spectrum is
linear and we can find the behavior of the sound velocity (and Landau critical
hydrodynamic velocity (see Ref. [23])) as a function of apF. Note that the sound
velocity can be defined already from the static Leggett equations (from the
knowledge of compressibility or the chemical potential of the system).

In the third part of this Chapter we will extend our results on BCS-BEC
crossover in p-wave resonance Fermi-gas (see Refs. [3, 4]). We present experi-
mental results on p-wave Feshbach resonance (see Refs. [5, 6]) in BEC-domain for
fully-polarized Fermi-gas where the triplet molecules 40K2 and 6Li2 are created
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with Stot ¼ Sz
tot ¼ l ¼ 1 for total spin of the pair Stot, its z-projection Stot

z and
relative orbital momentum of the pair l. The p-wave superfluid has a symmetry of
triplet A1-phase here.

We will construct the phase-diagram of the BCS-BEC crossover in p-wave res-
onance superfluid and define again a crossover line l(T) = 0 which separates BEC-
domain of the A1-phase from the BCS-domain [66]. We will also solve the self-
consistent Leggett equations at T = 0 and find the behavior of the superfluid gap and
sound velocity. For low temperatures T � TC we will determine also the temperature
behavior of the specific heat Cv(T) and normal density qn(T) both in 3D and 2D triplet
superfluid Fermi-gas. We will show that globally phase-diagram of the BCS-BEC
crossover for p-wave resonance superfluid resembles that of s-wave resonance
superfluid (considered in Sect. 7.1.3). However, in p-wave case there is a special point
on the phase-diagram, namely l(T = 0) = 0 which corresponds to quantum phase-
transition (see Refs. [14, 15, 33]). Close to this point the temperature behavior of the
normal density qn(T) and specific heat Cv(T) is different in classical and quantum

limits jlj ! 0; T ! 0 but either lj j
T ! 0 or vice versa T

lj j ! 0 [12, 13]. Note that the

point l(T = 0) = 0 separates in 3D the BCS state with the nodes in the quasipar-
ticle energy (and zeroes in the superconductive gap for triplet A1-phase) form the
gapped BEC-domain (where the quasiparticle energy has no zeroes) [14, 15, 33].

7.1 Phase-Diagram of the Resonance Fermi-Gas in 3D
and 2D Cases

In Chap. 5 we presented a basic knowledge connected with the Bethe–Salpeter
integral equation (see Refs. [22, 25] in Chap. 5), which describes the temperature
evolution of the 3D resonance Fermi-gas. We also considered the dilute molecular
(BEC) limit at high temperatures T [ TC

BEC: In Chap. 6, from the solution of
Skorniakov-Ter-Martirosian equation, we define mean-field (a2-2 = 2|a|) and
exact (a2-2 = 0.6|a|) dimer–dimer (or molecule–molecule) scattering length
which describes a weak repulsion between the composed bosons f:f; in the dilute
BEC limit and for the temperatures T \ T* (where T* is the crossover Saha
temperature which corresponds to the formation of local pairs or molecules f:f; for
positive scattering length a [ 0). In this Section we will complete the phase-
diagram of the resonance Fermi-gas in 3D and in 2D case.

7.1.1 Self-Consistent T-Matrix Approximation

In Chap. 5 we wrote two equations for the T-matrix in attractive 3D Fermi-gas.
The first one is for the T-matrix (or scattering length) in vacuum (see Eq. (5.2.6)
and Fig. 5.14):
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Tvacðx ¼ 0; q ¼ 0Þ ¼ 4pa

m
¼ � U0j j

1þ U0j jKvacð0; 0Þ
; ð7:1:1Þ

where

Kvacð0; 0Þ ¼
Z

d3~p

ð2pÞ3
dX
ð2pÞGvacðX;~pÞGvacð�X; �~pÞ ¼ �

Z

d3~p

2ep
ð7:1:2Þ

is a Cooper loop in vacuum (a product of two vacuum Green-functions
Gvac X; ~pð Þ ¼ 1

X�p2

2mþio
in the Cooper channel for zero total frequency X = 0 and

total momentum~p ¼ 0) and U0 = -|U0| is Fourier-harmonic of the attractive two-
particle potential, U(q) for q = 0.

The second one (see Eq. (5.2.12) is for the T-matrix in substance:

T ixn; ~qð Þ ¼ � U0j j
1þ U0j jKðixn; ~qÞ

; ð7:1:3Þ

where K ixn; ~qð Þ is a Cooper loop in substance for total Matsubara frequency of
two (incoming in the Cooper channel) particles xn and total momentum ~q. For
fermions xn = p T(2n ? 1). We also emphasized in Chap. 5 that in the T-matrix
approximation (when we neglect the difference between irreducible bare vertex
Ueff(q) and the Fourier-harmonic of the bare vacuum interaction U(q) the Eq.
(7.1.3) for the T-matrix in substance coincides with the solution of the Bethe–
Salpeter integral equation for a total two-particle vertex C in the Cooper channel.

According to general quantum–mechanical prescriptions (see Refs. [19, 26, 27]
in Chap. 5), we should make a renormalization procedure and rewrite (7.1.3) only
in terms of observables. Effectively we should replace U0 in Eq. (7.1.3) by the
scattering amplitude a from Eq. (7.1.1). This yields:

� 1
U0j j
� Kvacð0; 0Þ ¼

m

4pa
ð7:1:4Þ

and correspondingly [66]:

T ixn; ~qð Þ ¼ 1

� 1
U0j j � Kðixn; ~qÞ

¼ 1
m

4pa� Kðixn; ~qÞ þ Kvacð0; 0Þ

¼ 4pa=m

1� 4pa
m Kðixn; ~qÞ � Kvacð0; 0Þð Þ

ð7:1:5Þ

That is precisely a renormalization procedure which comes in condensed matter
physics from quantum electrodynamics [17]. Note that a Cooper loop K ixn; ~qð Þ in
Eq. (7.1.5) reads:

Kðixn; ~qÞ ¼
X

Xn

Z

d3~p

ð2pÞ3
GMðiXn; ~pÞGMð�iXn þ ixn; �~pþ~qÞ ð7:1:6Þ
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In graphical form we sum up in the T-matrix approximation the dressed ladder
diagrams in particle–particle channel presented on Fig. 7.1 [66], (see Refs. [31, 32]
in Chap. 6 and [18–21]).

The Dyson equation for dressed Matsubara Green’s function (which enter in the
expression (7.1.6) for a Cooper loop) yields:

GMðixn; ~qÞ ¼
1

ixn � eð~qÞ þ l� RMðixn; ~qÞ
: ð7:1:7Þ

Finally the Matsubara self-energy RM in the self-consistent T-matrix approxi-
mation reads (see Fig. 7.2):

RMðixn;~qÞ ¼
X

Xn

Z

d3~p

ð2pÞ3
GMðiXn � ixn; ~p�~qÞTðiXn; ~pÞ: ð7:1:8Þ

The dressed one-particle Green’s function should be normalized on total density
for one spin projection ntot/2:

X

xn

Z

d3~q

ð2pÞ3
GMðixn; ~qÞ ¼

X

xn

Z

d3~q

ð2pÞ3
1

G�1
0 ðixn; ~qÞ � RMðixn; ~qÞ

¼ ntot

2

¼ p3
F

6p2
;

ð7:1:9Þ

where

G0ðixn; ~qÞ ¼
1

ixn � eð~qÞ þ l
ð7:1:10Þ

is a bare Matsubara Green’s function.

Fig. 7.1 The dressed ladder diagrams in particle–particle channel for the T-matrix given by Eqs.
(7.1.5) and (7.1.6) (Refs. [31, 32] in Chap. 6)

Fig. 7.2 The self-energy
P

M ixn; ~qð Þ in the self-
consistent T-matrix
approximation. q is a four
momentum xn; ~qf g [3, 32]
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The system of Eqs. (7.1.5)–(7.1.9) constitutes the self-consistent T-matrix
approximation. This approximation is energy and momentum conserving ([66] and
[18–21, 31, 32] in Chap. 6), and is exact in leading order in the gas parameter apF

for dilute Fermi-systems (see for example Galitskii-Bloom results (see Ref. [28] in
Chap. 5), [22] for 3D and 2D repulsive Fermi-gas).

We solve the system of Eqs. (7.1.5)–(7.1.9) perturbatively. As a result in the
first iteration we should calculate the T-matrix in Eq. (7.1.5) with the zeroth order
Matsubara Green’s functions G0ðixn; ~qÞ (see (7.1.10)).

Then the renormalized Cooper loop Kðixn; ~qÞ � Kvacð0; 0Þ [which enters in the
denominator of Eq. (7.1.5)) reads:

Kren ¼ K ixn;~qð Þ � Kvac 0; 0ð Þ ¼
Z

d3~p

2pð Þ3
1� nF np

ffi �

� nF n�pþq

ffi �

ixn � np � n�pþq
þ 1

2ep

� �

:

ð7:1:11Þ

Correspondingly:

T ixn; ~qð Þ ¼ 4pa=m

1� 4pa
m Kren ixn;~qð Þ : ð7:1:12Þ

The pole of the T-matrix in Eq. (7.1.5) for xn ¼~q ¼ 0 determines the equation
for TC:

1� 4pa

m
Kren 0; 0ð Þ ¼ 0: ð7:1:13Þ

The self-energy in the first iteration reads:

R1 ixn;~qð Þ ¼
X

Xn

Z

d3~p

2pð Þ3
T0 iXn; ~pð ÞG0 iXn � ixn; ~p�~qð Þ: ð7:1:14Þ

It enters in the equation of the conservation of the number of particles:

X

xn

Z

d3~q

ð2pÞ3
1

G�1
0 ðixn; ~qÞ � R1ðixn; ~qÞ

¼ ntot

2
¼ p3

F

6p2
: ð7:1:15Þ

7.1.2 Equation for TC

The pole of the T-matrix in the 3D case reads:

1þ 4pa

m

Z th ep�l
2TC

2 ep � l
ffi �� 1

2ep

" #

d3~p

2pð Þ3
¼ 0: ð7:1:16Þ
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As we already discussed in Chap. 5, in the BCS-domain for a \ 0 and aj jpF\1
(dilute Fermi-gas) the chemical potential l & eF [ 0 (eF = pF

2/2m) and the critical

temperature: TBCS
C � eF exp � p

2 aj jpF

n o

:

In the BEC-domain for a [ 0 and apF\1: the fermionic chemical potential
l\ 0 and bosonic chemical potential lBðTCÞ ¼ 2lþ Ebj j ¼ 0 (hence,
lðTCÞ ¼ � Ebj j=2). A temperature of the Bose–Einstein condensation

TBEC
C � 3:31 ntot=2ð Þ2=3

2m � 0:2eF in an ideal Bose-gas of molecules (composed bosons)

with the mass mB = 2 m and density nB ¼ ntot
2 ¼

p3
F

6p2.

7.1.3 Self-Energy in the Dilute BEC Limit

In the BEC-domain in the dilute case (for apF \ 1) there is one more characteristic

temperature (see Chap. 5) namely: T� ¼ Ebj j
3=2 ln

Ebj j
eF

� TBEC
C —Saha temperature,

which describes smooth crossover ( Ebj j ¼ 1=ma2 is a molecular binding energy).
For T = T* the number of molecules nB ¼ nFr ¼ ntot=4ð Þ equals to the number of
unpaired fermions with one spin projection r. For TC \ T � T* we have a slightly
non-ideal Bose-gas of composed molecules in a normal (non-superfliud) state. The
self-energy R1ðixn; ~qÞ in the first iteration to the self-consistent T-matrix
approximation (7.1.14) reads (see [66]):

R1ðixn; ~qÞ ¼
8pa lj j ntot

m
2 lj j
Ebj j

ixn þ q2=2m� lþ lB
: ð7:1:17Þ

Note that R1ðixn; ~qÞ has a ‘‘hole like’’ dispersion ixn þ nq þ lB ðnq ¼ q2=2m�
lÞ in contrast to the ‘‘particle like’’ dispersion nð~qÞ in the Matsubara Green’s
function of the zeroth approximation G0 (see 7.1.10). For TC \ T � T*: ntot &
2nB (number of unpaired fermions is small) and thus:

ntot

2
¼ 1

2p2

Z

1

0

k2dk

exp
k2=4m� Ebj j�2l

T

n o

� 1
; ð7:1:18Þ

where we took into account that lB ¼ 2lþ Ebj j: The same result can be restored
from the form of the dressed Green’s function G�1ðixn; ~qÞ ¼ G�1

0 ðixn; ~qÞ �
R1ðixn; ~qÞ in the first iteration with R1 given by Eq. (7.1.17).

We remind that the T-matrix Tðixn; ~qÞ ¼ 4 lj j 4pa=m
ixn�q2=4mþlB

for small xn and ~q.

Correspondingly the dressed Green’s function can be rewritten as [66]:

G ixn; ~qð Þ � 1

ixn � nq � 8pa lj jntot=m
ixnþnqþlB

¼ 1

ixn � nq � D2
PG

ixnþnqþlB

; ð7:1:19Þ
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where we put 2 lj j= Ebj j � 1 ( lj j � Ebj j=2 for T � T*) and introduced the
pseudogap D2

PG ¼ 8pa lj jntot=m according to [38]. Note that D2
PG� Ebj jeFapF:

Intensive discussion of the pseudogap state we can also find in [62–64]. We will
return to this interesting problem in the next Section.

The spectral function Aðx; ~qÞ ¼ � 1
p ImGðxþ io; ~qÞ reads [66]:

Aðx; ~qÞ � 1� 2pa lj jntot=m

n2
q

 !

dðx� nqÞ þ
2pa lj jntot=m

n2
q

dðxþ nq þ lBÞ:

ð7:1:20Þ

(Effectively in Eq. (7.1.20) we made analytical continuation ixn ? x ? io). For
T � T* the form of Aðx; ~qÞ in Eq. (7.1.20) reflects the existence of two bands (see
Refs. [31, 32] in Chap. 6 and [66]. One is the filled bosonic band. A second one is
separated from the first one by large correlation gap D ¼ Ebj j (D� DPG for dilute
BEC regime). It is almost empty band of unbound fermions. Integrating the
spectral weight it is easy to check that in this regime:

4pa lj j
m

1
2p2

Z

1

0

k2dk

n2
k

¼ ntot

2
� nB; ð7:1:21Þ

where we used that lj j � Ebj j=2 ¼ 1=2ma2 in nk ¼ k2=2mþ lj j. Note that the
specific heat of the system

Cv ¼
oE

oT
¼ o

oT

Z

k2

4m

k2dk

2p2
exp � k2

4mT

� �

exp
lB

T

� 	

� �

� ntot

2
¼ const ð7:1:22Þ

is temperature independent in agreement with general thermodynamic require-
ments [66].

7.1.4 Phase-Diagram of the Resonance Fermi-Gas in 3D

In the first iteration to the self-consistent T-matrix approximation the numerical
calculations yield the following qualitative phase-diagram of the BCS-BEC
crossover (see Fig. 7.3 and [66]).

On Fig. 7.3 we present a critical temperature TC versus inverse gas parameter
1/(pFa). The dashed line l(T) = 0 effectively separates BCS-domain (with l[ 0)
from BEC-domain (with l\ 0). Note that according to [66] l(TC) = 0 for TC &
0.29eF and 1/(pFa) & 0.37. Thus in substance the border between BCS and BEC-
domain effectively lies in the BEC region of positive scattering length a [ 0. In
the same time a unitary limit in vacuum 1/(pFa) = 0 is effectively in the BCS-
domain of positive chemical potential l[ 0. Note that on Fig. 7.3 the region of
dilute Fermi-gas corresponds to the interval [-?, -1] for 1/(pFa), while the
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region of dilute Bose-gas (of composed bosons or molecules) corresponds to the
interval [1, ?]. Close to the unitarity (in the interval [-1, 1]) we have strongly
interacting gas and cannot apply exact diagrammatic expansions of Galitskii [5.28]
and Beliaev [25]. It is interesting to note that while in dilute limit for BEC-domain

according to Gor’kov and Melik-Barkhudarov the critical temperature TBCS
C ¼

0:28 eF exp � p
2 aj jpF

n o

has a preexponential factor 0:28 eF; in dilute limit for BEC-

domain we have very interesting correction to Einstein formula obtained by
Kashurnikov, Prokof’ev and Svistunov [26]:

TBEC
C ¼ 0:2 eF 1þ 1:3a2�2n1=3

tot

h i

: ð7:1:23Þ

These corrections just take into account the repulsive dimer–dimer scattering
length a2-2 = 0.6|a| [ 0 and correspond to 3D weakly non-ideal Bose-gas with
repulsion between composed bosons.

7.1.5 Unitary Limit

In the unitary limit 1/(pFa) = 0 there is only one scale, namely, Fermi-energy eF

both for kinetic and potential energy [30, 68]. Thus in this limit the total energy of
the system reads:

E ¼ 3
5
eFNb: ð7:1:24Þ

It does not depend upon the gas parameter 1/(pFa) and depends only on the
universal coefficient b. This coefficient depends only upon the number of com-
ponents in the Fermi-gas. For the gas with the spin S = � the number of com-
ponents is 2 (Sz = ±�) and b & 0.44 [ 0 [27, 28]. Thus it is a gas phase (E [ 0)
according to Monte Carlo simulations by Astrakharchik et al. [27, 28] and Carlson
et al. [29]. In a gas phase the chemical potential l = dE/dN = beF = 0.44eF at
temperature T = 0.

Fig. 7.3 Phase-diagram of
the BCS-BEC crossover in
the resonance Fermi-gas in
3D (numerical calculations
for TC and l versus 1=pFa for
the first iteration to the self-
consistent T-matrix
approximation) [66]
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For the mixture of protons and neutrons the number of components is 4 and
b\ 0. We have a liquid phase here (E \ 0) according to Heiselberg [30]. To some
extent it is an answer on the question formulated some time ago by Zel’dovich in
Moscow: whether we can get a dilute liquid in the system of resonantly interacting
neutrons? The answer of Heiselberg is negative: without protons we are in the gas-
phase for aj jpF � 1 (see also [40]).

7.1.6 Qualitative Interpretation of the Intermediate Region
of Large Values of aj jpF � 1 (21 < 1/(pFa) < 1)

In the strong coupling limit aj jpF [ 1 for BCS-domain (l[ 0 and a \ 0) nothing
dramatic happens. We can qualitatively represent Gor’kov-Melik-Barkhudarov
result as:

TC ¼ Al exp � p

2 aj j
ffiffiffiffiffiffiffiffiffi

2ml
p

� �

for l[ 0; ð7:1:25Þ

(where we replaced eF by l and pF by
ffiffiffiffiffiffiffiffiffi

2ml
p

).
In the unitary limit 1=a! �0, the chemical potential l [ 0 and TC = Al &

0.15eF according to numerical calculations of Burovski et al. [31]. In the same time
l & 0.44eF according to [27–29] and thus A & 0.35 in Eq. (7.1.25), which is close
to preexponential factor 0.28 (in front of eF) of Gor’kov, Melik-Barkhudarov
result.

The situation is more complicated in the strong-coupling BEC limit. Here for
l\ 0 and 1� apF � 3 (a [ 0) the molecules with the small binding energies

Ebj j � 2eF are formed. In the same time ntota3 ¼ p3
Fa3

3p2 � 1 for apF � 3 and thus local
pairs do not overlap but only touch each other. Hence we have an intermediate
situation between the tightly bound molecules and extended Cooper pairs here and
can speculate about a formation of Fermi-Bose mixture of molecules and unpaired
fermions here (see also Chap. 8). Nevertheless the theory of BCS-BEC crossover
near the unitary limit is still far from being completed.

7.2 Self-Consistent Leggett Theory for T 5 0

In this Section we will derive and solve the system of Leggett equations (see Refs.
[12, 13] in Chap. 5) in 3D resonance Fermi-gas. This system contains the equation
for the chemical potential and the equation of the self-consistency for the super-
fluid gap and describe BCS-BEC crossover in a resonance Fermi-gas at zero
temperatures.
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7.2.1 Leggett Equations for Chemical Potential
and Superfluid Gap

The Leggett’s equation for the superfluid gap is represented as follows (see
Fig. 7.4):

D ¼ U0j j
Z

Fsðx; ~qÞ
d3~q

ð2pÞ3
dx
2p
; ð7:2:1Þ

where

Fsðx; ~qÞ ¼
D

x2 þ E2
q

ð7:2:2Þ

is the anomalous Green’s function (see Refs. [3, 4, 32, 67]) allowing the Wick shift
x ? ix, U0 is the zeroth Fourier component of the two-particle interaction U(q).

Note that in a superfluid state at T = 0 according to Abrikosov et al. (see Ref.
[19] in Chap. 5) we should introduce two Green’s functions: normal Green’s
function Gs of a superfluid state and anomalous Green’s function Fs (instead of one
Green’s function GN in a normal state for T [ TC). In Euclidean form (after the
Wick transformation x ? ix) the Green’s functions of a superfluid state read [19,
67]:

Gsðix; ~qÞ ¼ �
ixþ nq

x2 þ E2
q

; ð7:2:3Þ

Fsðix; ~qÞ ¼ �
D

x2 þ E2
q

; ð7:2:4Þ

Fþs ðix; ~qÞ ¼ �
Dþ

x2 þ E2
q

; ð7:2:5Þ

where E2
q ¼ D2 þ n2

q is uncorrelated spectrum squared of one-particle excitations
in superconductor, nq ¼ q2=2m� l and D is a superfluid gap. Fs

þ and D+ in Eq.
(7.2.5) are hermitian conjugated from F and D. In the graphical form the normal Gs

and anomalous Green’s functions Fs and hermitian conjugated Fs
þ are represented

on Fig. 7.5.

Fig. 7.4 Self-consistent
equation for the gap D. U0 is
the zeroth Fourier component
of the two-particle interaction
U(q). FS p0ð Þ is the anomalous
Green’s function [32]. p and
p0 are four-momenta x; ~pf g
and x0; p!0

n o
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Note that in the absence of an external field, a superfluid gap is real D = D+ and
thus Fþs ðx; ~pÞ ¼ F�s ð�x; �~pÞ ¼ Fsð�x; �~pÞ for anomalous Green’s function
Fs

*.
Returning back to the Eq. (7.2.1) for the superfluid gap we can rewrite it as

follows:

D ¼ U0j j
Z

d3�pdx

ð2pÞ4
D

ðx2 þ E2
pÞ
; ð7:2:6Þ

or for non-zero superfluid gap D 6¼ 0:

1 ¼ U0j j
Z

d3�pdx

ð2pÞ4
1

ðx2 þ E2
pÞ
¼ U0j j

Z

d3�p

ð2pÞ3
1

2Ep
; ð7:2:7Þ

where we made frequency integration on the complex half-plane for x (see
Fig. 7.6). This is a standard self-consistency equation familiar for the BCS-theory

(see Refs. [12,13, 15, 19, 27] in Chap. 5) with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ n2
p

q

for the spectrum.

Taking into account renormalization condition (7.1.4): m
4pa ¼ � 1

U0j j þ
R d3�p
ð2pÞ3

1
2ep

we

can represent (7.2.7) as follows:

1þ 4pa

m

Z

d3�p

ð2pÞ3
1

2Ep
� 1

2ep

� �

¼ 0; ð7:2:8Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðep � lÞ2 þ D2
q

and a is an s-wave scattering length in vacuum.
Equation (7.2.8) is a first Leggett’s equation.

To derive the second Leggett’s equation we should use two facts. The first one
is connected with the definition of a superfluid density ns via the integral of a
normal Green’s function Gs in superconductor:

Fig. 7.5 Graphical
representation for normal
(Gs) and anomalous (Fs and
Fs

+) Green’s functions in the
superconductor at T = 0. p is
four-momentum x; ~pf g

Fig. 7.6 Complex half-plane
for frequency integration in
the first Leggett’s equation
(7.2.7) for a superfluid gap D.
We have one pole x = iEp

inside the closed contour C in
the upper half-plane
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ns ¼
Z

dx
2p

d3�p

ð2pÞ3
GSðx; ~pÞ: ð7:2:9Þ

The second one is connected with the absence of normal excitations in super-
conductor at T = 0. Hence normal density equals to zero and superfluid density

nSðT ¼ 0Þ ¼ ntot
2 ¼

p3
F

6p2 : Correspondingly after frequency integration over the
contour C (see Fig. 7.6) we will get from Eq. (7.2.9):

nSðT ¼ 0Þ ¼
Z

d3�p

ð2pÞ3
Ep � np

2Ep
¼
Z

d3�p

ð2pÞ3
1
2

1�
np

Ep

� �

¼ ntot

2
¼ p3

F

6p2
; ð7:2:10Þ

where np ¼ p2=2m� l. It is a second Leggett’s equation for chemical potential l.
Note that the Eqs. (7.2.8) and (7.2.10) are valid both in BCS (l[ 0 and a \ 0) and
BEC (l\ 0 and a [ 0) domains. They can be also applied to describe unitary
limit 1/(pFa) = 0. Note also that both Nozieres-Schmitt-Rink scheme at T = 0
and Leggett’s scheme at T = 0 provide smooth crossover between BCS and BEC
regions, at least for singlet s-wave pairing. In the next section we will show that for
triplet p-wave pairing (and the symmetry of A1-phase) we can have the point of
quantum phase-transition [12, 13] (or even topological phase-transition [14, 15,
33]) for a special point l(T = 0) = 0 separating BCS and BEC domains at T = 0.

In dilute BCS-limit for aj jpF � 1 the solution of Leggett’s equations yield:
l � eF [ 0 for the chemical potential and

D � 1:75TBCS
C � 1:75 	 0:28 eF exp � p

2 aj jpF

� �

� 0; 5 eF exp � p
2 aj jpF

� �

ð7:2:11Þ

for the superfluid gap.
For dilute BEC-limit apF � 1 the superfluid gap reads:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lB Ebj j
p

; ð7:2:12Þ

where Ebj j ¼ 1=ma2 is a binding energy and lB ¼ 4pa2�2
mB

nB [ 0 is a bosonic
chemical potential for weakly repulsive Bose-gas of molecules (dimers) with the
mass mB = 2m and density nB = ntot/2. In Eq. (7.2.12) the dimer–dimer scattering
length a2-2 [ 0. Note that bosonic chemical potential lB is of Hartree–Fock origin

and l ¼ � Ebj j
2 þ

lB
2 \0 for apF � 1. Of course, lB � Ebj j in dilute BEC-domain.

Thus we have a standard BCS-gap and a standard ratio 2D
TC
� 3:5 in dilute BCS-

limit while in dilute BEC-limit the gap is pretty unconventional [see (7.2.12)].
Physically the gap D in BEC-domain reflects a creation of bound pairs (mole-
cules). To get the filling of D2 ¼ 2lB Ebj j in BEC limit let us consider the normal

Green’s function Gs ix; ~qð Þ ¼ � ixþnq

x2þE2
q
. It can be rewritten as:
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Gs ix; ~qð Þ ¼ �
ixþ nq

x2 þ E2
q

¼ 1

ix� nq � D2

ixþnq

¼ 1

G�1
0 � R

: ð7:2:13Þ

We can see from Eq. (7.2.13) that a normal Green’s function of a superfluid state
has a two-pole structure, where a resonance self-energy R in Eq. (7.2.13) reads:

X

x; ~qð Þ ¼ D2

ixþ nq
: ð7:2:14Þ

It is interesting to note that at T = 0 a superconductive gap D in Eq. (7.2.14)
resembles a pseudogap DPG for a normal state in BEC-domain for T � T* in Eq.
(7.1.19). Moreover if we put lB = 0 in the expression for the self-energy of a normal
state in Eq. (7.1.19) we will recover the pole structure of Gs ix; ~qð Þ in Eq. (7.2.13).

In the same time at T ¼ TC
BEC a superfluid gap D TC

BEC
ffi �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 Ebj jlBðTC
BECÞ

p

¼ 0 since lB TC
BEC

ffi �

¼ 0; while a pseudogap DPG does not drastically changes at
TC and is nonzero. Note that we can rewrite the pseudogap in Eq. (7.1.19) as
D2

PG � 2 Ebj jlBðT ¼ 0Þ; where lBðT ¼ 0Þ ¼ 4pa2�2
mB

nB ¼ pa2�2ntot
m is a Hartree–Fock

contribution to the chemical potential in the repulsive Bose-gas of composed
bosons. Moreover let us stress that on the level of the T-matrix approximation in
the expression for dimer–dimer scattering length a2-2 in Eqs. (7.1.19) and (7.2.12–
7.2.14) enters mean-field result a2-2 = 2|a|, while in a more elaborate approach
beyond the simple T-matrix scheme it should be a2-2 = 0.6|a| [ 0 (see [43]).
Nevertheless the similarity between D(T = 0) and DPG(T = 0) is striking and not
accidental. More careful analysis shows, however, that for non-zero temperatures
0 \ T \ TC inside the superfluid phase, the superfluid gap reads:

D2ðTÞ ¼ 2 Ebj jlBðTÞ, where lBðTÞ ¼
2pa2�2nSðTÞ

m (see Ref. [19] in Chap. 5). Thus in
the superfluid gap squared enters the superfluid density (2ns(T)), while in the
pseudogap enters the total density ntot. This fact clarifies the situation. Indeed, for
T = 0 the superfluid density ns(T = 0) = ntot/2, and hence D(T = 0) = DPG. In
the same time for T = TC

BEC the superfluid density ns(TC
BEC) = 0 and thus

D(TC
BEC) = 0 while DPG(TC

BEC) is still governed by ntot and does not differ much
from DPG(T = 0). At finite temperatures 0 \ T \ TC

BEC the superfluid density
ns(T) \ ntot/2, and correspondingly D(T) \ DPG.

In the unitary limit at T = 0 the superfluid gap D & 0.5eF and the chemical
potential l & 0.44eF [ 0 are found by Carlson et al. [29] in the framework of
Monte Carlo simulations.

Note that in Leggett’s self-consistent scheme l(T = 0) = 0 for the value of the
inverse gas parameter inverse [67]:

1
pFa0

� 0:553; ð7:2:16Þ

where a0 is the value of the scattering length at the point l(T = 0) = 0. Note that in
Feshbach resonance pF is fixed by the requirements of total density conservation,
while the scattering length a varies with magnetic field B.
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Thus the border between BCS-domain (l[ 0) and BEC-domain (l\ 0) lies in the
region of positive values of the scattering length a0 [ 0 (for the values of gas parameter
a0pF & 1.8). The superfluid gap at a0pF is rather large and satisfies the relation:

D
eF

� �2

0

¼ 2
1

pFa0
� 1:106; ð7:2:17Þ

where the index 0 indicates that the relevant physical quantities are taken for
l(T = 0) = 0. Thus from Eq. (7.2.17) we get D0 & 1.05eF for a0pF & 1.8. Both
the chemical potential l and the gap D vary linearly as function of a–a0 near the
point l = 0 and a = a0. Namely (see [67]):

D
eF
¼ D

eF

� �

0

1� p
4

1
pFa0

l
eF

� �

; ð7:2:18Þ

l
eF
¼ 1

pFa0
� 1

pFa

� �

pFa0

p
8

1
pFa0
þ 1

p p2
Fa2

0

� 	 � ða� a0ÞpF
p
8 þ 1

p p3
Fa3

0

ffi � : ð7:2:19Þ

In would be interesting to compare these results with those of Monte Carlo
calculations and with experiments to check how good is the quantitative
description of BCS-BEC crossover at T = 0 by the self-consistent Leggett’s the-
ory. Note that we can represent D2

0 in Eq. (7.2.17) as D2
0 ¼ jEbj0 eFpFa0. Hence D2

0

resembles the pseudogap D2
PG in Eq. (7.2.19).

7.2.2 Sound Velocity in BCS and BEC Limits

Finally note that, as we mentioned in the Introduction, the sound velocity in the
resonance Fermi-gas can be obtained not only from the solution of the dynamical
problem for the spectrum of collective excitations (see the next Section), but also
from the thermodynamic identity for compressibility in a static case at T = 0:

j�1� c2
I ¼

ntot

m

ol
ontot

; ð7:2:20Þ

where ntot is total density and l is chemical potential. In dilute BCS-limit for
aj jpF � 1: the chemical potential l & eF and the superfluid gap D * TC

BCS � l.
Here effectively we can calculate sound velocity neglecting the derivative qD/ql
and putting ntot ¼ p3

F=3p2, while neglecting the small difference between l and eF

connected with the superfluid gap squared: l ¼ eF � a D2

eF
ln eF

D � eF (see the

foundations of the BCS-theory in Ref. [15] of Chap. 5. Thus ol
ontot
¼ 2

3
l

ntot
and

ntot
m

ol
ontot
¼ 2

3
l
m �

p2
F

3m2 : Correspondingly c2
I ¼

v2
F
3 and cBCS

I ¼ vF
ffiffi

3
p (where vF = pF/m is

Fermi velocity). We get the well-known result for Bogoliubov-Anderson sound
velocity in neutral (non-charged) superfluid Fermi-gas. Note that in normal Fermi-
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gas the sound waves will be overdamped (see Ref. [27] in Chap. 5) and only
zero-sound mode will be propagating at T ? 0. The superfluid gap causes the
final damping of the first sound mode at small frequencies: Imx�x2s, where
c ¼ 1=s�D2=eF is an inverse scattering time.

To get the sound velocity in the dilute BEC-limit we should recollect that

l ¼ � Ebj j
2
þ lB

2
and lBðTÞ ¼

4pa2�2nB

mB
¼ pa2�2ntot

m
. Thus

ol
ontot

¼ 1
2

olB

ontot
¼ pa2�2

2m

and
ntot

m

ol
ontot

¼ pa2�2ntot

2m2
¼ lB

mB
. Correspondingly cBEC

I ¼
ffiffiffiffiffi

lB
mB

q

and we recover the

result for Bogoliubov sound velocity in 3D gas of (composed) bosons with weak

repulsion (between bosons): lB ¼ mBðcBEC
I Þ2 [59].

Note that in the dilute limit aj jpF � 1 cBEC
I � cBCS

I . The sound velocities
become equal in the intermediate region for large values of the gas parameter
aj jpF � 1.

In the unitary limit cI & 0.4vF. Note that for l(T = 0) = 0 and a0pF & 1.8 the
sound velocity reads (see [67]):

c2
I ¼

p2
F

3m2

p
2

1
p2

Fa2
0

1þ p2

8
1

p3
Fa3

0

� 	 � 0:132v2
F ð7:2:21Þ

and cI ’ 0:36vF :

7.2.3 BCS-BEC Crossover for the 2D Resonance Fermi-Gas

Let us discuss briefly the BCS-BEC crossover and Leggett’s equations for the 2D
resonance Fermi-gas.

For symmetric attractive potential well in 2D according to Quantum mechanics
we have a bound-state of two-particles even for infinitely small attraction between
them (see Ref. [26] in Chap. 5). This is in contrast with the 3D case where the
bound-state even in symmetric potential well is formed only for deep enough
potentials: Uj j ffi c=mr2

0, where c is numerical coefficient, Uj j is the depth of the
attractive potential and r0 is the width of the well. Thus there is a threshold for a
bound state in 3D. On the level of the two-particle T-matrix in vacuum (see Chap. 5)
it corresponds to |b| = 1 for the value of the Born parameter b. Correspondingly in

3D we have a shallow bound-state Ebj j � 1=mr2
0 for 0\ bj j�1

bj j � 1.

In 2D the threshold for the formation of the bound-state is absent. Thus com-
posed bosons (molecules f:f;) are every time present in 2D attractive Fermi-gas.
However the important parameter, namely the ratio of Ebj j=eF is still present in 2D
Fermi-gas. Namely, for eF [ Ebj j we are still in the BCS-domain according to
Miyake (see Ref. [63] in Chap. 6). Here the crossover temperature T* (which
corresponds to the molecule formation) and the critical temperature TC

BCS coincide
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and are given by the famous Miyake formula: T� ¼ TBCS
C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eF Ebj j
p

(see Chap. 6).
Moreover as it was shown by Beasley et al. [45] the difference between TC

BCS

(obtained in the mean-field theory) and exact (for 2D) Berezinskii-Kosterlitz-
Thouless (BKT) critical temperature (see Refs. [68, 69] in Chap. 6) is small:

TBCS
C � TBKT

C













TBCS
C

� TBCS
C

eF
� 1 for Ebj j � eF : ð7:2:22Þ

Thus the mean-field formula for TC obtained by Miyake is a very good estimate
for a critical temperature, which is very close to the exact TC

BKT.
The Cooper pairs are extended for Ebj j\eF . Thus in the BCS-domain we have

simultaneously collective Cooper pairing in momentum space in substance and the
two-particle pairing in real space in vacuum. In the same time for eF\ Ebj jwe are in
BEC-domain. Here we have two characteristic temperatures instead of one: Saha
crossover temperature T� ¼ Ebj j=ln Ebj j=eFð Þ for the formation of molecules and
critical temperature TC

BEC of the Bose-condensation. Note that for T � T* in 2D
case we have again a slightly non-ideal Bose-gas of composed molecules with
repulsion between them. As we derived in Chap. 6, repulsive interaction between
molecules (dimers) in 2D is described by the coupling constant
f2�2 ¼ 1=lnð1:6 Ebj j=eFÞ. Hence according to Fisher-Hohenberg theory (see Chap. 6
and (see Refs. [67–69] in Chap. 6)) the mean-field critical temperature is given by:

TBEC
C ¼ eF

4 lnð1=f2�2Þ
: ð7:2:23Þ

It is again very close to exact BKT critical temperature since

TBEC
C � TBKT

C













TBEC
C

� f2�2 � 1 ð7:2:24Þ

for Ebj j � eF .

Leggett’s Equations in the 2D Case
The mean-field Leggett’s scheme for BCS-BEC crossover in 2D resonance

Fermi-gas at T = 0 works even better then the mean-field approaches at T = TC

since at low temperatures all the vortex-antivortex pairs are well bound in mole-
cules. Thus Leggett’s equations well describe the density of superfluid component
nS, the velocity of sound cI, the behavior of the superfluid gap D, and the chemical
potential l at T = 0 [32].

The Leggett’s equations in 2D resonance Fermi-gas with s-wave pairing are the
evident generalization of the Leggett’s equations for the 3D case and yield (see
[60, 61]):

ntot

2
¼ p2

F

4p
¼
Z

� 1=r0

0

pdp

4p
1� np

Ep

� �

; ð7:2:25Þ
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m

4p
ln mr2

0 Ebj j
ffi �

¼
Z

� 1=r0

0

pdp

4p
1

Ep
; ð7:2:26Þ

where r0 is the range of the attractive potential UðrÞ ¼ � Uj je�r=r0 ,

np ¼ p2=2m� l, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
p þ D2

q

is the quasiparticle spectrum in the superfluid

state, Eb is the two-particle binding energy and in the l.h.s. of Eq. (7.2.26) we have
a typical 2D logarithm ([60, 61]).

For shallow level the binding energy Ebj j � 1=mr2
0 and is given by

Ebj j ¼
1

mr2
0

exp � 4p
m U0j j

� �

; ð7:2:27Þ

where U0j j � r2
0 Uj j is the zeroth Fourier component (q = 0) of the vacuum

potential U(r). Thus Eq. (7.2.26) for the superfluid gap can be represented in the
familiar form

1� jU0j
Z

� 1=r0

0

pdp

4p
1

Ep
¼ 0: ð7:2:28Þ

We also assume that the Fermi energy eF � 1=mr2
0 or pFr0 � 1—we have dilute

Fermi-gas in 2D. The solution of Leggett’s equations according to Miyake yield:

ln
lj j � lþ D2

2 lj j
Ebj j

¼ 0; ð7:2:29Þ

and

2eF ¼ lj j þ lþ D2

2 lj j : ð7:2:30Þ

In the BCS-case l ¼ lj j[ 0 we get from Eq. (7.2.29)

D2

2 lj j Ebj j
¼ 1: ð7:2:31Þ

Accordingly from Eq. (7.2.30) we obtain

2eF ¼ 2 lj j þ D2

2 lj j : ð7:2:32Þ

If we substitute an expression for D2 in Eq. (7.2.31) into Eq. (7.2.32) we get:

2eF ¼ 2 lj j þ Ebj j or l ¼ lj j ¼ eF �
Ebj j
2

[ 0: ð7:2:33Þ
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Deep in BCS-domain (for eF � Ebj j=2):

l � eF and D2 ¼ 2eF Ebj j: ð7:2:34Þ

We get a famous result of Miyake (see Ref. [63] in Chap. 6) (see also Schmitt-
Rink, Varma et al. [60]) and Randeria et al. [61]).

In the BEC-limit l ¼ � lj j\0. Thus from Eq. (7.2.29) we obtain

D2

2 lj j þ 2 lj j ¼ Ebj j: ð7:2:35Þ

Correspondingly Eq. (7.2.30) reads

2eF ¼
D2

2 lj j or D2 ¼ 4eF lj j: ð7:2:36Þ

Substitution of Eq. (7.2.36) into Eq. (7.2.35) yields: 2eF þ 2 lj j ¼ Ebj j.
Accordingly

lj j ¼ Ebj j
2
� eF or l ¼ � Ebj j

2
þ eF: ð7:2:37Þ

Hence deep in BEC-domain (for Ebj j=2� eF): l � � Ebj j
2 \0, and D2 �

2eF Ebj j again in agreement with Miyake et al. Note that the result of Miyake et al.
are valid not only in deep BCS and BEC regions, but also in the intermediate case,
close to the point l = 0. Here eF � Ebj j=2 and for the gap we get: D � 2eF � Ebj j.

7.2.4 Gap Spectroscopy in 3D

The superfluid gap D was measured from the threshold of the absorption x ¼ 2D
of the radiofrequency waves in the experiments of Grimm’s group [34, 35] (see
also [36, 37, 39]). The gap D varies in a magnetic field. Far from Feshbach

resonance field (for aj jpF\1): DBCS� eF exp � 1
aðBÞj jpF

n o

, where aðBÞ �

abg 1þ D
B�B0

� 	

in dilute BCS-domain.

In dilute BEC-domain D2
BEC ¼ 2lB Ebj j � a2�2

a2 � 1
a for a [ 0 and apF \ 1. Thus

with the help of Feshbach resonance we can measure the gap D for all the values of
the gas parameter apF (for all the values of DB = B-B0) in the BCS and BEC
domains.
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7.3 Anderson-Bogoliubov Theory for Collective
Excitations

In this section we will present the diagrammatic approach for studying the spec-
trum of collective excitations in the BCS-BEC crossover at T = 0. To do that we
will derive a set of the Bethe–Salpeter integral equations for the total vertices
Cð~q; xÞ in the superfluid state of the resonance Fermi-gas at T = 0.

7.3.1 Diagrammatic Approach

In order to obtain a system of Bethe–Salpeter equations (see Refs. [22, 25] in
Chap. 5), we have to introduce two vertices C11 and C12 (see Fig. 7.7) in the
Cooper channel for the superfluid state (instead of one vertex C in the normal state
considered in Chap. 5).

The first one C11 corresponds to the scattering of two atoms with opposite spins
and with two incoming lines and two outgoing ones, while the second one C12 has
four outgoing lines. The second vertex (C12) is nonzero only in the superfluid state,
while C11 exists also in the normal state.

The Bethe–Salpeter integral equation for the vertex C11(q) reads:

C11ðqÞ ¼ Uð~qÞ � Uð~qÞC11ðqÞ
Z

d3�p00

ð2pÞ3
dX00

2p
GS p00 þ q

2

� 	

GS �p00 þ q

2

� 	

� Uð~qÞC12ðqÞ
Z

d3�p00

ð2pÞ3
dX00

2p
FS p00 þ q

2

� 	

FS �p00 þ q

2

� 	

;

ð7:3:1Þ

where we introduced again the normal and anomalous Green’s functions

Gsðix; ~qÞ ¼ � ixþnq

x2þn2
qþD2 ; Fsðix; ~qÞ ¼ � D

x2þn2
qþD2 in the Euclidean formulation

according to Eqs. (7.2.3) and (7.2.4) (see Fig. 7.5). Note that in Eq. (7.3.1) q ¼
ðX; ~qÞ is four-momentum and we assume the superfluid gap D to be real.
Graphically the Bethe–Salpeter equation for C11(q) is presented on Fig. 7.8.

If we would like to perform the normalization procedure and replace the vacuum
interaction Uð~qÞ by the scattering length a (by 4pa/m) (in (7.3.1)), we should
simultaneously replace GSGS in Eq. (7.3.1) by (GSGS - G0G0) where
G0ð~q; xÞ ¼ ðix� eqÞ�1 is the vacuum Green’s function in Euclidian formulation [see
Eqs. (7.1.2) and (7.1.4)]. Analyzing the structure of Eq. (7.3.1), we see that it is

Fig. 7.7 Two vertices
C11(q) and C12(q) in
superconductive state. p ¼
x; ~pð Þ; q ¼ X; ~qð Þ are four-

momenta [67]
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natural to introduce now the elementary response functions vij (see Bogoliubov [1]
and Anderson [2]) corresponding to the various bubbles appearing in Fig. 7.8.
Specifically we define:

�v11ðqÞ ¼
1
g
þ
Z

d4p

ð2pÞ4
GS pþ q

2

� 	

GS �pþ q

2

� 	

� G0ðpÞG0ð�pÞ
h i

;

v12ðqÞ ¼
Z

d4p

ð2pÞ4
FS pþ q

2

� 	

FS �pþ q

2

� 	

;

ð7:3:2Þ

where g = 4pa/m is a coupling constant.
Then Eq. (7.3.1) takes the form:

C12ðqÞv12ðqÞ ¼ 1þ C11ðqÞv11ðqÞ ð7:3:3Þ

Now we have to derive a second Bethe–Salpeter equation for C12(q). Graphi-
cally it has the form shown on Fig. 7.9.

A small difference between Figs. 7.8 and 7.9 is that the anomalous Green’s
functions F+(q) appearing in this equation have their arrows outside (instead of
inside as in Fig. 7.8 for F). However, for real D, they are simply related to the
preceding ones by F+(p) = F(-p). In algebraic form BS-equation for C12 reads:

C12ðqÞ ¼ � Uð~qÞC12ðqÞ
Z

d4p00

ð2pÞ4
GS p00 � q

2

� 	

GS �p00 � q

2

� 	

� Uð~qÞC11ðqÞ
Z

d4p00

ð2pÞ4
FþS p00 þ q

2

� 	

FþS �p00 þ q

2

� 	

:

ð7:3:4Þ

Note the absence of a free term Uð~qÞ in Eq. (7.3.4). Renormalization requires
again the substitution of GSGS by (GSGS - G0G0) and the replacement of Uð~qÞ by
g = 4pa/m. We see that in Eq. (7.3.4) naturally appear the same response-func-
tions v11 and v12 as in Eq. (7.3.3), but for the four-momentum—q. This leads to the
following form of the second BS-equation:

Fig. 7.8 The Bethe–Salpeter equation for the vertex C11(q) I, p, p’, p’’, q are 4-momenta [67]
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C12ðqÞv11ð�qÞ ¼ C11ðqÞv12ð�qÞ: ð7:3:5Þ

From Eqs. (7.3.3) and (7.3.5) the vertices C11 and C12 are immediately
obtained. However, we are only interested in the pole of these vertices, for which
they diverge. This allows us to solve only the homogeneous equations corre-
sponding to Eqs. (7.3.3) and (7.3.5), leading to the following equation for the
collective mode:

v11ðqÞv11ð�qÞ ¼ v2
12ðqÞ; ð7:3:6Þ

where we have used the fact that taking the explicit form of FS(p) in (7.3.2) into
account, one has v12(- q) = v12(q). This result has already been derived in refs.
[41, 42].

In order to obtain a more convenient equation for the collective mode, we can
perform the integration over the frequency variable in Eq. (7.3.2). This is easily
done by closing the contour in the upper half-plane (see Fig. 7.6) where the
quantity to be integrated has two poles, located at x1 = iE+ and x2 = iE-. Here
we have introduced the convenient notation E� ¼ Eð~p�~q=2Þ, and we will use
similarly n� ¼ nð~p�~q=2Þ. The results are:

�v11ðx; ~qÞ ¼
1
2

Z

d3�p

ð2pÞ3
ðEþ þ E�ÞðEþE� þ nþn�Þ þ ixðEþn� þ E�nþÞ

EþE�½ðEþ þ E�Þ2 þ x2�
� 1

Ep

( )

;

ð7:3:7Þ

v12ðx; ~qÞ ¼
1
2

Z

d3�p

ð2pÞ3
D2

EþE�

Eþ þ E�

½ðEþ þ E�Þ2 þ x2�
; ð7:3:8Þ

where in Eq. (7.3.7) we have used the Leggett’s self-consistency equation for the gap

(7.2.8) (which reads: 1
g ¼

R d3�p
ð2pÞ3

1
2ep
� 1

2Ep

� 	

) to get rid of the term 1/g in Eq. (7.3.2).

Fig. 7.9 The Bethe–Salpeter equation for C12(q), p, p’, p’’, q are 4-momenta [67]
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Finally to get the spectrum of collective excitations x = x (q) in the standard form,
we should go back to ordinary frequencies in Eqs. (7.3.7) and (7.3.8) by the inverse
Wick transformation ix ? x.

From Eqs. (7.3.7) and (7.3.8) we can check that v12ðx; ~qÞ ¼ v12ð�x; �~qÞ. In
the same time v11ðx; ~qÞ 6¼ v11ð�x; �~qÞ due to the presence of a linear in fre-
quency anomalous term in Eq. (7.3.7). It is possible to show that this term is small
and can be often neglected in BCS-limit, but it is more substantial in BEC-limit.

7.3.2 The Spectrum of Collective Excitations

The details of the expansions of E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
� þ D2

q

and n� at small~q, as well as the

expansions of the expressions under integrals in Eqs. (7.3.7) and (7.3.8) in small x
are presented in (see [67]). Here we will only give the final result for the spectrum.
For a \ 0 and l & eF (BCS-domain) we get:

x2 ¼ c2
I q2 and cBCS

I ¼ vF
ffiffiffi

3
p ð7:3:9Þ

for Bogoliubov-Anderson sound mode.
In the same time for a [ 0 and l\ 0 (BEC-domain) (see Sect. 7.2.2):

x2 ¼ c2
I q2 þ q2

2mB

� �2

and cBEC
I ¼

ffiffiffiffiffiffi

lB

mB

r

: ð7:3:10Þ

Thus we get the standard Bogoliubov spectrum for slightly non-ideal Bose-gas
with repulsion (see Refs. [19, 27] in Chap. 5 and [25]). The correction to the
Bogoliubov spectrum (7.3.10) due to the composed character of the molecules
(bosons) are important only for large wave-vectors qa � 1 [67].

If we introduce a healing length (or a coherence length) n0 ¼ 1
ffiffiffiffiffiffiffiffiffiffi

nBa2�2
p (see Refs.

[19, 27] in Chap. 5, [44]), where nB = ntot/2 and a2-2 = 0.6a, then there is a small

parameter in the theory a
n0
�ðnBa3Þ1=2 � 1. For q B 1/n0 we get the sound-like

linear regime, for q [ 1/n0 quadratic regime. In the same time the corrections due
to the composed character of the bosons start to be important for q C 1/a � 1/n0

(see Fig. 7.10).
Analytically one obtains in dilute BEC limit in the first order in na3� 1 (see [67]):

x2 � cIq
ffi �216� ðqaÞ2

16þ ðqaÞ2
þ q2

4m

� �2

ð7:3:11Þ
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Note that in a simple version of the theory for the collective mode given by Eqs.
(7.3.7) and (7.3.8), we will get a mean-field result (see Chap. 6) for the dimer–
dimer scattering length a2-2 = 2a and correspondingly for bosonic chemical
potential lB = pntota2-2/m. However in a more rigorous theory constructed by
Leironais and Combescot [43] the exact result for a2-2 = 0.6a in the expression
for lB and sound velocity in BEC-regime can be recovered.

7.3.3 Landau Critical Velocity

We have now basically all the information required to calculate the critical velocity
vC (which corresponds to the destruction of the superfluid flow [23, 24]) in the BCS-
BEC crossover. Indeed, according to Landau criterion (see Chap. 1), it is given by
vC = min[x(q)/q] where x(q) is the energy of the elementary excitation. In our case
we have two types of the excitations. First we have bosonic excitations corre-
sponding to the collective mode. If the dispersion relation has an upward curvature
(as in our case or in superfluid 4He), then the minimum of [x(q)/q] is obtained for
q ? 0, which gives for vC the sound velocity cI. However, we have to take into

account also fermionic single-particle excitations xðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
q þ D2

q

and we have to

find again the minimum of [x(q)/q]. Thus we get according to (see Ref. [67]) that:

vC ¼ min cI ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ l2
p

� l
m

 !1=2
8

<

:

9

=

;

: ð7:3:12Þ

Note that deep inside BCS-region for aj jpF � 1: cI ¼ vF=
ffiffiffi

3
p

, but vC = D/
pF � cI due to the contribution of the one-particle fermionic excitations (due to
the unbinding of the Cooper pairs). The resulting curve for the critical velocity vC

and sound velocity cI as the functions of the inverse gas parameter 1/(pFa) are
presented on Fig. 7.11. The result displays a kink in the maximum for vC,

Fig. 7.10 The spectrum of
collective excitations in dilute
BEC-regime. The solid line is
Bogoliubov spectrum for
pointlike bosons. The dashed
line indicates the deviations
from Bogoliubov spectrum at
large wave-vectors q C 1/
a � 1/n0 [67], where n0 ¼

1
ffiffiffiffiffiffiffiffiffiffi

nBa2�2
p is a healing length [44]
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occurring when one switches from bosonic to fermionic excitations. It occurs very
near unitarity on the BEC-side. It is worth to note also that in terms of critical
velocity, the ‘‘strength’’ of the superfluid is at its highest around unitarity and not
on the BEC-side, as one might naively assume.

7.4 Feshbach Resonance and Phase-Diagram for p-Wave
Superfluid Fermi-Gas

The first experimental results on p-wave Feshbach resonance [5–11] in ultracold
fermionic gases 40K and 6Li make the field of quantum gases closer to the inter-
esting physics of superfluid 3He (see Chap. 11, and Refs. [15, 16]) and the physics
of unconventional superconductors [46], such as Sr2RuO4, for example. In this
context, it is important to bridge the physics of ultracold gases and the low-
temperature physics of quantum liquids and anomalous superconductors, and thus
to enrich both communities with the experience and knowledge accumulated in
each of these fields. In this Section we will describe the transition from the weakly
bound Cooper pairs with p-wave symmetry (with a relative orbital momentum of a
pair l = 1) to strongly bound local p-wave pairs (triplet molecules—see also Chap.
6). We will try to reveal the nontrivial topological effects related to the presence of
the nodes in the superfluid gap of the fully-polarized p-wave A1-phase in three
dimensions. We note that the symmetry of the A1-phase (where we have a pairing
of two fermions with total spin S = 1 and its z-projection Sz = 1) is relevant both
to ultracold Fermi gases in the regime of p-wave Feshbach resonance and to
superfluid 3He in the presence of large spin-polarization (see Chaps. 11, 12).

Fig. 7.11 Critical velocity
vC (full line) and sound
velocity cI (dashed line) as
functions of 1=ðpFaÞ (see
Ref. [67])
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7.4.1 Feshbach Resonance for Fully Polarized p-Wave
Resonance Superfluids

In the first experiments on p-wave Feshbach resonance, experimentalists measured
the molecule formation in the ultracold fermionic gas of 6Li atoms close to the
resonance magnetic field B0 [5–9].

In the last years, analogous experiments on p-wave molecules formation in
spin-polarized fermionic gas of 40K-atoms were started [10, 11]. The lifetime of p-
wave triplet molecules is still rather short [5–11]. Nevertheless the physicists
working in ultracold quantum gases began to study intensively the huge bulk of
experimental and theoretical wisdom accumulated in the physics of superfluid 3He
[16] and anomalous complex superconductors [46].

To understand the essence of p-wave Feshbach resonance, we recall the basic
quantum mechanical formula for the p-wave scattering amplitude in vacuum (see
Ref. [26] in Chap. 5), [47–49]:

fl¼1ðEÞ ¼
p p0

1
Vp
þ 2mE

pr0
þ ið2mEÞ3=2

; ð7:4:1Þ

where l = 1 is the relative orbital momentum for the two-particle problem in the
p-wave channel, E is the two-particle energy, Vp = r0

2 ap is the scattering volume,
ap is the p-wave scattering length, r0 is the interaction range, and p and p0 are
incoming and outgoing momenta for the scattering amplitude fpp0(E). For Feshbach
resonance in the fermionic systems, p * p0 ~ pF and usually pFr0 \ 1. The p-
wave scattering length ap, and hence the scattering volume Vp, diverge in the
resonance magnetic field B0 (see Fig. 7.12 and Chap. 5). Thus 1/Vp = 1/ap = 0 for
B = B0. The imaginary part of the scattering amplitude fp is small and nonzero
only for positive energies E [ 0. Hence the p-wave Feshbach resonance is
intrinsically narrow. We note that for negative energies E \ 0, there is a triplet
molecular bound state:

Fig. 7.12 Sketch of the p-
wave Feshbach resonance.
The scattering volume Vp

diverges at B = B0 [3, 4]
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Ebj j ¼
pr0

2mVp
¼ p

2m r0 ap
: ð7:4:2Þ

In the unitary limit, the molecular binding energy Ebj j ! 0 for triplet p-wave
molecules.

The first theoretical articles on p-wave Feshbach resonance often deal with
mean-field two-channel description of the resonance [47–49] (see also Chap. 5).
However, in this Chapter we will use again an analog of a resonance approxi-
mation and will study the p-wave Feshbach resonance in the framework of one-
channel description, which is more close to the physics of superfluid 3He and
captures the essential physics of the BCS-BEC crossover in p-wave superfluids
rather well.

In magnetic traps (in the absence of the so-called dipolar splitting (see [5–12]))
fully-polarized gas or, more precisely, one hyperfine component of the gas is
usually studied. In the language of 3He the fermionic pairs with
Stot ¼ Stot

z ¼ 1; or ""j �—pairs are considered for p-wave triplet A1-phase in 3D.

7.4.2 The Global Phase Diagram of the BCS-BEC Crossover
in Fully Polarized A1-Phase

A qualitative picture of the global phase-diagram of the BCS-BEC crossover in
fully-polarized A1-phase is presented in Fig. 7.13. In its gross features, it
resembles the phase-diagram of the BCS-BEC crossover for s-wave pairing
described in Sect. 7.1 (see Fig. 7.3). However, there is a very interesting question
about the origin of the point l(T = 0) = 0 for 3D A1-phase. We will show in what
follows that at the point l(T = 0) = 0, we probably deal with a quantum phase-
transition [12, 13] or even topological phase-transition [14, 15, 33].

On the global phase diagram, the BCS-domain with the chemical potential
l[ 0, occupies the region of the negative values of the gas parameter
kp = VppF

3 \ 0 (or the negative values of the p-wave scattering length ap). It also

Fig. 7.13 Qualitative picture
of the BCS-BEC crossover in
the fully-polarized A1-phase
for p-wave superfluid.
kp = Vp pF

3 is the gas
parameter. We indicate the
line where l(T) = 0 and the
point of the quantum phase-
transition l(T = 0) = 0 [3, 4]
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stretches to the small positive values of the inverse gas parameter 1/kp B 1 and is
separated from the BEC-domain (where l\ 0 and the inverse gas parameter is
large and positive 1/kp C 1) by the line l(T) = 0. In the Feshbach resonance
regime, the density of ‘‘up’’ spins n: = pF

3/6p2 is usually fixed. Deep inside the
BCS-domain (for small absolute values of the gas parameter kp











� 1) we have
the standard BCS-like formula for the critical temperature of the A1-phase:

TCp ’ 0:1 eF e
� p

2 kpj j: ð7:4:3Þ

Note that the prefactor in Eq. (7.4.3) for the fully-polarized A1-phase is defined
by the second order diagrams of Gor’kov and Melik-Barkhudarov type (see Ref.
[17] in Chap. 5) and is approximately equal to 0.1eF (see the analysis of Kagan
et al. [50–53]).

Deep in BEC-domain (for kp � 1) the Einstein formula is again applicable in
the leading approximation for Bose-condensation of triplet p-wave molecules with
the density n:/2 and mass 2m yielding for a critical temperature

TCp ¼ 3:31
n"=2
ffi �2=3

2m
: ð7:4:4Þ

Note that the triplet molecules repel each other again. In the unitary limit,
1/kp = 0, and from Eq. (7.4.3) we get that TCp & 0.1eF here, and we are still in the
BCS-regime (as for the case of s-wave pairing considered in Sect. 7.1). In the rest of
this section, we consider low temperatures T � TC, i.e., we will work deep in the
superfluid parts of the phase diagram for the BCS and BEC-domains of the A1-phase.

7.4.3 Quasiparticle Energy and Nodal Points in the A1-
Phase

For l[ 0 (BCS-domain) there are two nodes in the spectrum for p2/2m = l and
for angles h = 0 or p (see the discussion in Chap. 4). For l\ 0 (BEC-domain) p2/
2m - l = p2/2m ? |l| and there are no nodes. The important point l = 0 is a
boundary between the totally gapped BEC-domain and the BCS-domain with two
nodes of the quasiparticle spectrum, which correspond to the south and north poles
in Fig. 4.1. The point l = 0 for T = 0 is often called the point of the topological
quantum phase transition [14, 15, 33, 54, 55].

7.4.4 Leggett Equations for A1-Phase

The Leggett equations for the fully-polarized A1-phase in three dimensions are the
evident generalization of the standard Leggett equations for the s-wave BCS-BEC
crossover, derived in Sect. 7.2. The equation for the chemical potential reads:
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n" ¼
p3

F

6p2
¼
Z

1=r0

0

p2dp

2p2

Z

1

�1

dx

2
1� np

Ep

� �

1
2
; ð7:4:5Þ

where np ¼ p2

2m� l
� 	

, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m� l
� 	2

þ D2
0p2

p2
F

sin2h

r

—is a quasiparticle

spectrum, r0 is the range of the potential and x = cosh. This equation defines the
chemical potential l for a fixed density n". The momentum distribution for the

function 1
2 1� np

Ep

� 	

in Eq. (7.4.5) is depicted in Fig. 7.14 for the different values of

l corresponding to the BCS and BEC domains.
The second self-consistency equation defines the magnitude of the superfluid

gap D0. It is given by:

�pm Re
1

fl¼1ð2lÞ ¼
Z

1

�1

dx

2

Z

1=r0

0

p4dp
1

Ep
� 1

np

� �

; ð7:4:6Þ

where

Re
1

fl¼1ð2lÞ ¼
1

Vp
þ 4ml

p r0

� �

ð7:4:7Þ

is the real part of the inverse scattering amplitude in p-wave channel for total
energy E = 2l of colliding particles [3, 4].

Deep in the BCS-domain, the solution of the Leggett equations yields:

D0� eF e
� p

2 kpj j � TCp; l � eF [ 0: ð7:4:8Þ

In three dimensions the sound velocity coincides with the result for s-wave

pairing and reads: cI ¼ n"
m

dl
dn"

� 	1=2
¼ mF

ffiffi

3
p :

Fig. 7.14 Schematic momentum distribution of the function 1
2 1� np

Ep

� 	

entering Eq. (7.4.5) in

the (px, pz) plane for py = 0, D0 = 1, and eF = pF
2/2m in the BCS-BEC crossover for the 3D

A1 phase. The different values of l correspond to the situation deep in the BCS domain (l = 1),
deep in the BEC domain (l = -1), and in the important region close to l = 0 (l = +0.1 and
l = -0.1). l is measured in terms of eF [3, 4]
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Deep in the BEC-domain the superfluid gap yields: D0 � 2eF
ffiffiffiffiffiffiffiffiffi

pFr0
p � eF for

pFr0 � 1; and the chemical potential l ¼ � Ebj j
2 þ

lB
2 \0, just as in the s-wave case.

Note that the binding energy of a triplet pair (molecule) Ebj j ¼ p
2 m r0 ap

. Accordingly:

lB �
4eF

3
ffiffiffiffiffiffiffiffiffi

pFr0
p ð7:4:9Þ

is a bosonic chemical potential which governs the repulsive interaction between
two p-wave molecules on a mean-field level [3, 4, 66, 67].

The sound velocity deep in the BEC-domain is given by:

cI ¼
nB

2m

dlB

dnB

� �1=2

� mF
ffiffiffi

3
p ffiffiffiffiffiffiffiffiffi

pFr0
p � mF ð7:4:10Þ

for pFr0 � 1; where nB = n:/2 is the bosonic density.
As l ? 0 (more rigorously, for lj j\ D2

0=eF) we have:

D0ðl ¼ 0Þ ¼ 2eF
ffiffiffiffiffiffiffiffiffi

pFr0
p ð7:4:11Þ

for the magnitude of the superfluid gap.
For the gas parameter kp in the point l = 0, we obtain:

kpðl ¼ 0Þ ¼ 3p
4

[ 0: ð7:4:12Þ

Hence, the interesting point l = 0 is effectively in the BEC-domain (in the
domain of the positive p-wave scattering length ap [ 0). Accordingly, for l = 0
the binding energy is:

Ebj j ¼
4
3
eFpFr0: ð7:4:13Þ

The sound velocity squared for l = 0 is given by:

c2
I ¼

m2
F

3
pFr0 ð7:4:14Þ

and coincides with Eq. (7.4.10) obtained deep in the BEC-domain. A careful
analysis of the Leggett equations close to l = 0 shows that the derivative oD=ol
also has no singularities at this point. The second derivative o2n"=ol2 is also
continuous at l = 0, and hence the anomaly appears only in higher derivatives in
qualitative agreement with the numerical calculations [56, 57] in three dimensions.

The Gap and Compressibility Close to l 5 0 in 2D Axial Phase

Let us briefly consider the situation with the gap and compressibility close to
l = 0 in the 2D axial phase. Note that the quasiparticle energy in the 2D case

reads (see Chap. 4 and Refs. [14, 15, 32, 47, 58]): Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m� l
� 	2

þ D2
0p2

p2
F

r

: It has
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only one nodal point Ep = 0 for l = 0 and p = 0. The anomalies in compress-
ibility close to l = 0 in the 2D case are also stronger then in three dimensions. The
careful analysis of the compressibility in two dimensions shows [3, 4, 32] its
continuous behavior, but with a kink, which is developed in on"=ol in fully
polarized axial phase for l = 0. This kink can be obtained both on the level of
analytic [3, 4] and numerical [56, 57] calculations. To be more specific:

on"=ol� 1þ leF

D2
0

1� signl½ �; ð7:4:15Þ

where sign l = 1 for l C 0 and -1 for l\ 0.
Hence from Eq. (7.4.15) we get:

on"=ol� 1 for l! þ0 and on"=ol! 1þ 2leF

D2
0

for l! �0: ð7:4:16Þ

7.4.5 Specific Heat at Low Temperatures T � TC in the A1
phase. Classical and Quantum Limits. Quantum
Critical Point l(T 5 0) 5 0

In this section we study the thermodynamic functions, namely the specific heat Cv

in three-dimensional p-wave superfluids with the A1 symmetry at low tempera-
tures T � TC. Our goal is to find nontrivial contributions to qn and Cv from the
nodal points on the mean-field level.

Specific Heat in the Three-Dimensional A1-Phase

The fermionic (quasiparticle) contribution to Cv at the mean-field level in three
dimensions reads (see Ref. [27, 30] in Chap. 5) for fully-polarized A1-phase:

CF
v ¼

o

oT

Z

nFðEp=TÞEp
d3~p

2pð Þ3
r

3D

ð0Þ
Z

1

�1

dnp

Z

1

�1

dcosh
2

E2
p

T2

eEp=T

eEp=T þ 1
ffi �2; ð7:4:17Þ

where Nr
3Dð0Þ ¼

mpF

4p2 is the density of states at the Fermi surface for one spin-
projection r; nF Ep=T

ffi �

¼ 1
eEp=Tþ1ð Þ is the quasiparticle (Fermi–Dirac) distribution

function, and Ep is the quasiparticle energy given after Eq. (7.4.5). For T � D0 the
fermionic distribution function nF � e�Ep=T . In the same time close to the south
and north poles D = D0|h | and dcosh = |h |d|h |. Correspondingly the results of the
calculations deep in the BCS-domain (for l & eF [ 0) yields (see [16]):

CF
v �Nr

3Dð0Þ
T3

D2
0

: ð7:4:18Þ
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Thus due to the nodal contribution we have a power-law dependence of the
specific heat instead of an exponential one (typical for s-wave pairing) in the BCS
A1-phase.

Deep in the BEC-domain (for l � � Ebj j=2\0) Cv behaves in the exponential
fashion [3, 4]:

CF
v �
ð2mTÞ3=2

4p2

E2
b

4T2
e �

Ebj j
2T ; ð7:4:19Þ

with |Eb| given by Eq. (7.4.2).
Note that bosonic (phonon) contribution from the sound waves yields
[23, 24]:

CB
v �

o

oT

Z

p2dp

2p2
cIp

1
exp cIp=Tf g � 1

� T3

c3
I

1
2p2

ð7:4:20Þ

with a sound velocity cI � vF
ffiffi

3
p deep in BCS-domain and cI � vF

ffiffi

3
p ffiffiffiffiffiffiffiffiffi

pFr0
p

deep in the
BEC-domain. Note that for an important point l = 0 the expression Eq. (7.4.20) is
still valid. Moreover, cI � vF

ffiffi

3
p ffiffiffiffiffiffiffiffiffi

pFr0
p

again.

Specific Heat of Fermionic Quasiparticles in Classical Limit Close to l ? 0

Finally in the interesting region of small l and low temperatures T ? 0,
lj j ! 0, but lj j=T ! 0 in classic limit (according to the terminology of Hertz [12]

and Millis [13]) we have nontrivial temperature dependence for Cv
F (see [3, 4]):

CF
v �

2mTð Þ3=2

2p2

eFT

D2
0

: ð7:4:21Þ

This formula is valid both for l ? -0 (BEC-domain) and for l ? +0 (BCS-
domain). Thus Cv

F * T 5/2 for ( lj j � T � D2
0=eF: Note that for small lj j but

intermediate temperatures lj j � D2
0=eF � T � D0 (when of course we are still in

the classical limit) we get more expected result:

Cv�
2mTð Þ3=2

4p2
: ð7:4:22Þ

The expressions (7.4.21) and (7.4.22) interpolate at T � D2
0

eF
: Note that at low

temperatures lj j � T � D2
0=eF the bosonic contribution Cv

B in Eq. (7.4.20)
becomes dominant [over Cv

F in Eq. (7.4.21)] for the total specific heat
Cv = Cv

F ? Cv
B. Note also that the condition T � D0

2/eF is equivalent to the con-
dition T � mcI

2 when we analyze the bosonic contribution Cv
B to the specific heat.
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Specific Heat of Fermionic Quasiparticles in Quantum Limit

We note that in the opposite quantum limit T � lj j � D2
0=eF (or equivalently

T ? 0, lj j ! 0, but T= lj j ! 0) we get (see [3, 4]):

CF
v �

ffiffiffiffiffiffi

T

lj j

s

eFT

D2
0

2mTð Þ3=2

4p2
for l! þ0 BCS�domainð Þ; ð7:4:23Þ

and

CF
v �

lj j3

T3
e�

lj j
T
eFT

D2
0

2mTð Þ3=2

4p2
for l! �0 BEC�domainð Þ: ð7:4:24Þ

Hence in the quantum limit fermionic contribution Cv
F behaves very differently

for l ? -0 and l ? +0 in contrast with the classical limit. It is important to note
that for lj j=T � 1 results in Eqs. (7.4.23) and (7.4.24) coincide by order of magni-

tude and moreover here CF
v �

ð2mTÞ3=2

4p2
eFT
D2

0
coincides with the classical limit (7.4.21).

Summarizing we see that a power-law fermionic contribution Cv
F * T5/2 at low

temperatures and Cv
F * T3/2 at intermediate temperatures can be separated from

bosonic contribution Cv
B * T3 close to the important point l = 0. We also see very

different behavior of Cv
F in BCS and BEC-domains in the quantum limit T= lj j ! 0.

Note that for T = 0 we are effectively always in the classical limit lj j=T ! 0,
because the chemical potential l is continuous close to l = 0. Hence the real
phase transition occurs only at T = 0 [in the important point l(T = 0) = 0 (see [3,
4, 14, 15, 33, 54, 55])]. That is why the point l(T = 0) = 0 corresponds to the
point of quantum phase transition.

Specific Heat for Fully Polarized Axial Phase in 2D

In the two-dimensional fully-polarized axial phase the fermionic contribution to
the specific heat deep in the BCS-domain (for l & eF [ 0) reads [32]:

CF
v �

m

p

ffiffiffiffiffiffiffiffiffi

D0T
p D0

T

� �2

e�D0=T ; ð7:4:24Þ

and we get the standard exponential behavior of the specific heat similar to the
case of s-wave superconductors.

In the same time deep in the BEC-domain (for l & -|Eb|/2 \ 0) it is given by

CF
v �

mT

p
lj j2

T2
e� lj j=T � mT

p
E2

b

4T2
e �

Ebj j
2T : ð7:4:25Þ

Close to the important point l = 0 in the classical limit
lj j\T\D2

0=eF or lj j=T ! 0ð Þ the fermionic contribution to the specific heat is
given by [32]:
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CF
v �

Z

1

0

pdp

2p

E2
p

T2

eEp=T

eEp=T þ 1
ffi �2: ð7:4:26Þ

The quasiparticle spectrum for lj j\D2
0=eF can be represented as follows:

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m
� l

� �2

þD2
0p2

p2
F

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m

� �2

þD2
0p2

p2
F

s

: ð7:4:27Þ

Formally for small lj j it is similar to Bogoliubov weakly non-ideal Bose-gas
with the sound velocity (cI

2)Bose-gas = D0
2/pF

2. Therefore in the equation of Cv
F in Eq.

(7.4.26) we can utilize the well known method introduced for Bogoliubov Bose-
gas by Hugenholtz and Pines [59]. Namely we can approximate Ep by the linear
spectrum Ep & D0p/pF and simultaneously substitute the upper limit of integration

in Eq. (7.4.26) by pmax = D02m/pF, where for pmax we get p2
max

2m

� 	2
¼ D2

0p2
max

p2
F

in the

expression for Ep. Than Eq. (7.4.26) can be rewritten as:

CF
v �

Z

pmax

0

pdp

2p
D2

0p2

T2p2
F

e
D0
T

p
pF

e
D0
T

p
pF þ 1

� 	2: ð7:4:28Þ

Introducing now the new dimensionless variable y ¼ D0
T

p
pF

and having in mind

that ymax ¼ D0
T

pmax

pF
¼ D2

0
T

2m
p2

F
¼ D2

0
eFT � 1 for T \ D0

2/eF we finally get:

CF
v �

Z

1

0

ydy

2p
y2 ey

ðey þ 1Þ2
T2p2

F

D2
0

� mT

p
TeF

D2
0

: ð7:4:29Þ

At the same time Cv
F behaves very differently in quantum limit

T � lj j � D2
0=eF or T= lj j ! 0ð Þ. Here in the BEC-domain (for l! �0) [3, 4]:

CF
v �

mT

p
eFT

D2
0

lj j3

T3
e� lj j=T : ð7:4:30Þ

In the same time in the BCS-domain (for l! þ0ð Þ) CF
v � mT

p
eFT
D2

0
coincides by

the order of magnitude with the classical limit (see Eq. (7.4.29)). Thus both in 3D
and 2D cases BCS and BEC results (l! þ0 and l! �0) for Cv

F are very different
in quantum limit. In 3D both of them are also different from classical limit. In 2D Cv

F

is different in quantum and classical limits only for BEC-domain l! �0ð Þ:
The fermionic contribution in BEC quantum limit Eq. (7.4.30) interpolates again

for lj j=T � 1 with the classical limit CF
v � mT

p
eFT
D2

0
. Finally for higher temperatures

T �D2
0=eF we have CF

v � mT
p . Note that bosonic (phonon) contribution to the specific

heat CB
v � T2

c2
I

1
2p for low temperatures T � D0

2/eF has the same order of magnitude as
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the fermionic contribution Cv
F in Eq. (7.4.29) close to the point l = 0 both in

quantum and classical limits, since cI
2 * vF

2 C D0
2/pF

2 for D0 B eF (see [3, 4]).

7.4.6 Normal Density in the Three-Dimensional A1-Phase

The fermionic (quasiparticle) contribution to the normal density in the 3D A1-
phase reads (see Ref. [27] in Chap. 5):

qF
n ¼ �

1
3

Z

p2 onFðEp=TÞ
oEp

d3~p

2pð Þ3
: ð7:4:31Þ

Deep in the BCS-domain, the evaluation of qn
F yields [3, 4, 16]:

qF
n � q

T2

D2
0

; ð7:4:32Þ

where q = mn: is a mass-density for up-spins. We note that rigorously speaking,
Eq. (7.4.31) yields longitudinal component of the normal density tensor qnl. There
is a small transverse contribution also qntr * T4 firstly obtained by Volovik in [14,
15, 54, 55].

Deep in the BEC-domain the normal density is exponential [3, 4]:

qF
n �

m

p2
2mTð Þ3=2 e �

Ebj j
2T : ð7:4:33Þ

Bosonic (phonon) contribution from the sound waves is given by [23, 24]:

qB
n �

T4

c5
I

: ð7:4:34Þ

Equation (7.4.33) is valid for BCS and BEC domains, and also close to the
important point l = 0.

Normal Density of Fermionic Quasiparticles in Classical and Quantum Limits

Close to the important point l = 0 at low temperatures lj j � T � D2
0=eF (and

hence in the classical limit lj j=T ! 0) we have [3, 4]:

qF
n �

m

p2

eFT

D2
0

2mTð Þ3=2: ð7:4:35Þ

Equation (7.4.35) is valid both for l ? +0 (BCS-domain) and for l ? -0
(BEC-domain). In the opposite quantum limit T= lj j ! 0 T\ lj j\D2

0=eF

ffi �

Þ we
obtain in the BCS-domain (l ? ? 0) [3, 4]:

256 7 BCS-BEC Crossover and the Spectrum of Collective Excitations

http://dx.doi.org/10.1007/978-94-007-6961-8_5


qF
n �

m

p2

eFT

D2
0

2mT
ffiffiffiffiffiffiffiffiffiffiffiffi

2m lj j
p

: ð7:4:36Þ

In the same time in BEC-domain (l ? -0) [3, 4]:

qF
n �

m

p2

eFT

D2
0

e� lj j=T 2m lj j
ffiffiffiffiffiffiffiffiffi

2mT
p

: ð7:4:37Þ

Therefore the behavior of qn
F is again very different in the BCS and BEC

domains in the quantum limit.
For lj j=T � 1 the results (7.4.36) and (7.4.37) coincide with (7.4.35) by order of

magnitude.
At intermediate temperatures lj j � D2

0=eF � T � D0 the quasiparticle con-
tribution to the normal density yields:

qF
n �

m

p2
2mTð Þ3=2 ð7:4:38Þ

as expected. Note that the bosonic contribution qn
B from Eq. (7.4.34) prevails at

these temperatures. Thus close to l = 0 in the classical limit (for T 6¼ 0) we can
again separate the fermionic (quasiparticle) contribution to qn (qn

F * T 5/2 at low
temperatures and qn

F * T 3/2 at intermediate temperatures) from the bosonic
contribution (qn

B * T4). We also see very different behavior in the BCS and BEC
domains in the quantum limit T= lj j ! 0.

Normal Density in the Two-Dimensional A1 Phase

In fully-polarized axial phase deep in the BCS regime at l * eF [ D0 the
fermionic contribution to the normal density reads [32]:

qF
n �

m

p
mD0e�D0=T : ð7:4:39Þ

Note that here the result for the BCS phase is exponential, since there is no
cusps in the superfluid gap where practically gapless fermionic quasiparticles with
D = D0|h | live in the 3D case.

Deep in the BEC-regime for l � � Ebj j=2\0 [32]:

qF
n �

m

p
mTe �

Ebj j
2T : ð7:4:40Þ

In the same time bosonic (phonon) contribution from the sound waves:

qB
n �

T3

c4
I

; ð7:4:41Þ

and the Eq. (7.4.41) is valid not only in dilute (deep) BCS and BEC regimes, but
also close to the important point l = 0.
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In the classical limit lj j\T\D2
0=eF the fermionic contribution [32]:

qF
n �

m2T

p
TeF

D2
0

 !2

ð7:4:42Þ

coincides again with the bosonic contribution given by Eq. (7.4.40) by order of

magnitude. At higher temperatures T ffiD2
0=eF : qF

n � m2T
p as expected.

In the quantum limit T � lj j � D2
0=eF the fermionic contribution is expo-

nential [32]:

qF
n �

lj j
T

� �2 eFT

D2
0

 !2
m2T

p
e� lj j=T : ð7:4:43Þ

Equation (7.4.43) is valid both in the BEC-domain (for l ? -0) and in the
BCS-domain (for l ? +0). It interpolates with a classical limit for lj j=T � 1.

7.4.7 The Spectrum of Orbital Waves in Three-Dimensional
p-Wave Superfluids with the Symmetry of the A1-Phase

In Chap. 4 we briefly considered the spectrum of orbital waves in the hydrody-
namic (low-frequency regime) of the bosonic (BEC) and fermionic (BCS)
A-phase, having in mind first of all superfluid 3He-A and p-wave superfluid Fermi-
gases in the regime of Feshbach resonance. Note that in the last case we usually
have fully-polarized A1-phase with Cooper pairs having Sz

tot = 1 for z-projection
of total spin, while in 3He-A Sz

tot = ±1 for the triplet Cooper pairs. However with
respect to orbital hydrodynamics and orbital sector of collective excitations (sound
waves and orbital waves), the situation in A-phase and A1-phase is similar.

With this remark we can start our considerations having in mind (see Chap. 4)
that for small x and ~q; q"x� q"q

2
z=m; where q" ¼ mp3

F"=6p2 or equivalently

x� q2
z=m ð7:4:44Þ

for orbital waves in BEC-domain. We will show that in the weak-coupling BCS-
domain

q" � C0"
ffi �

x� q
q2

z

m
ln

D0

vF qzj j
; ð7:4:45Þ

where C0: is the coefficient near anomalous current~jan ¼ � �h
4m C0"ð~l 	 ð~r
~lÞÞ~l in

BCS A1-phase which we carefully discussed in connection with chiral anomaly
and mass-current non-conservation in Chap. 4.

As we already mentioned in Chap. 4, the most straightforward way to get the
spectrum is to use Vaks, Galitskii, Larkin diagrammatic technique for collective
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excitations in p-wave and d-wave superfluids (see Ref. [41] in Chap. 4). The
solution of the Bethe–Salpeter integral equation for the Goldstone spectrum (x ?
0 when q ? 0) of orbital waves in Ref. [41] in Chap. 4) involves the Ward identity
(see Ref. [28] in Chap. 4) between the total vertex C and the self-energy R, which

is based on the generator of rotations of the~l vector around perpendicular axis. In
the general form, for small x and ~q ¼ qz~ez it is given by (see Refs. [3, 14, 15]):

Z

1

�1

d cos h
2

cos2 h
Z

p2dp

2p2

x2

8E3
p

þ
xnp

4E3
p

�
p2

z

m2
q2

z

1
4E3

p

" #

¼ 0 ð7:4:46Þ

Deep in the BCS domain (for l * eF [ 0), we can replace p2dp
2p2 with Nr

3Dð0Þdnp

for fully-polarized A1 phase (where Nr
3Dð0Þ ¼ mp2

F=4p2) and p2
z=m2 with v2

F cos2 h.
This yields:

Nr
3Dð0Þ

Z

1

�1

dcosh
2

cos2 h
Z

dnp
x2

8E3
p

þ
xnp

4E3
p

�
v2

Fcos2h q2
z

4E3
p

" #

¼ 0: ð7:4:47Þ

Using the estimates

Z

1

�eF

dnp

E3
p

¼ 1

D2
0sin2h

ð7:4:48Þ

and

Z

1

�eF

npdnp

E3
p

� 1
eF
; ð7:4:49Þ

we obtain

Nr
3Dð0Þ

x2

D2
0

ln
D0

x
þ x

eF
�

v2
F q2

z

D2
0

ln
D0

vF qzj j

( )

¼ 0: ð7:4:50Þ

More rigorously, the equation for the spectrum is biquadratic due to the rotation

of the~l vector, as it should be for bosonic excitations:

x2

D2
0

ln
D0

x
þ x

eF

 !2

�
v2

F q2
z

D2
0

ln
D0

vF qzj j

 !2

: ð7:4:51Þ

For small frequencies x\ D0
2/eF the spectrum is quadratic:

x
eF
�

v2
F q2

z

D2
0

ln
D0

vF qzj j
; ð7:4:52Þ
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or equivalently,

x
D2

0

e2
F

�
q2

z

m
ln

D0

vF qzj j
: ð7:4:53Þ

Hence, comparing Eqs. (7.4.53) and (7.4.45), we obtain

q" � C0"

q"
� D2

0

e2
F

� 1; ð7:4:54Þ

and therefore C0: & q: deep in BCS domain.
In superfluid 3He-A, for example, D0/eF * TC/eF * 10-3 [16], and hence

q�C0
q � 10�6 as we mentioned already in Chap. 4. Note that in the strong-coupling

case D0 C eF: C0: � q: and disregarding the logarithm in Eq. (7.4.53) we restore
the bosonic spectrum (7.4.44). At the same time, for larger frequencies
D0

2/eF \ x\ D0 the spectrum is almost linear:

x2ln
D0

x
� v2

F q2
z ln

D0

vF qzj j
: ð7:4:55Þ

Deep in the BEC-domain for l & -|Eb|/2 \ 0, it follows from Eq. (7.4.44) that

x2 þ lj jx� lj j
q2

z

m
: ð7:4:56Þ

Of course, the exact equation is again biquadratic due to the rotation:

x2 þ lj jx
ffi �2� lj j

q2
z

m

� �2

: ð7:4:57Þ

Hence, x� q2
z=m for x\ lj j in agreement with (7.4.44). Moreover this means

that
q"�C0"

q"
¼ 1 deep in the BEC-domain, and therefore C0: = 0.

Summarizing Sect. 7.4 we should emphasize, that:

1. Motivated by the recent experiments on p-wave Fechbach resonance in ultra-
cold Fermi-gases, we solve the Leggett equations and construct the phase-
diagram of the BCS-BEC crossover in fully-polarized A1-phase.

2. We evaluate compressibility, low temperature specific heat and normal density
and find the indications of quantum phase transition close to the important point
l(T = 0) = 0. These indications are connected with a cusp in compressibility
as well as with different behavior of Cv and qn in the classical lj j=T ! 0ð Þ and
the quantum T= lj j ! 0ð Þ limits.

Volovik, Green, Read call this point—the point of topological quantum phase
transition. It separates gapless from the gapped regions on the phase diagram.
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3. Deep in BCS and BEC domains the crossover ideas of Leggett and Nozieres-
Schmitt-Rink work pretty well. The phase diagram in these regions resembles
in gross features the phase diagram of BCS-BEC crossover for s-wave pairing
in resonance superfluids considered in Sects. 7.1 and 7.2.

4. We derived the spectrum of collective excitations (including sound waves and
orbital waves) in p-wave superfluids with the symmetry of A1-phase (Fig. 7.14).
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Chapter 8
Phase Diagrams and the Physics
of the Pseudogap in Superconductors
with Attractive Interaction

In this chapter we will analyze basic models with attractive interaction between
particles, namely attractive-U fermionic Hubbard model and Fermi-Bose mixture
model (see Ref. [6] in Chap. 6 and [63]). We will pay the special emphasis on the
physics of pseudogap for its most simple realization, namely for the low density
case. In this case there is Saha crossover temperature T* (see Ref. [30] in Chap. 5)
which corresponds to the formation of local pair (consisting of two fermions [see
Refs. [12–14] in Chap. 5) in fermionic models or two bosons in bosonic models
(See Refs. [1, 2] in Chap. 6) and critical temperature TC of BEC-transition.
However, for intermediate temperatures TC \ T \ T* there is an interesting new
phase, appearing in the system, namely a system of normal bosonic metal (see
Refs. [31, 32] in Chap. 5). In the framework of 2D attractive-U fermionic Hubbard
model we will describe one-particle spectral functions of this phase which cor-
respond to the contribution of two-particle physics in the dressed one-particle
Green-function in the framework of self-consistent T-matrix approximation (see
Refs. [18–21] in Chap. 7). We will also describe temperature dependence of
conductivity and specific heat for the phase of normal bosonic metal. In the last
part of the Chapter, we will present the space-separated Fermi-Bose mixture model
to describe the normal and superconducting properties of an interesting system,
namely of plumbates-bismuthates BaKBiO–BaPbBiO (see Refs. [23, 24, 63])
which in contrast to high-TC materials are in the regime of Varma’s valence
skipping [1]. This fact promotes a possibility to form a local pair (with charge 2e)
inside of the BiO6-cluster (which in plumbates-bismuthates plays the role of
CuO6-cluster in cuprates). We will also slow the correspondence between local
crystalline and electron structures in plumbates-bismuthates revealed in EXAFS-
experiments (see Refs. [23, 24, 63]).

M. Yu. Kagan, Modern Trends in Superconductivity and Superfluidity,
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8.1 Attractive-U Fermionic Hubbard Model

Hamiltonian of the attractive-U fermionic Hubbard model differs from repulsive-
U fermionic Hubbard model which will be considered in Chaps. 9, 10, 11 and 12
only in the sign of on-site interaction U: (see 5.2.26)

Ĥ ¼ �t
X

ijh ir
cþircjr � U

X

i

ni"ni#; ð8:1:1Þ

where nir ¼ cþircjr is onsite density,—U is short-range (onsite) attraction between
fermions. In 3D case the classical results for this type of models belong to Leggett
(see Refs. [12, 13] in Chap. 5) and Nozieres, Schmitt-Rink (see Ref. [14] in Chap. 5).
Note that the microscopic origin of attractive hard-core interaction—U a priori is not
known. Sometimes theorists have in mind short-range electron–phonon attraction.
However, for electron–phonon interaction frequency-dependent retardation effects
are often important (see Ref. [64] in Chap. 6 and [2]). Sometimes in similarity with
physics of glasses so-called negative-U centers are discussed in connection with
attractive-U Hubbard model. We consider here Eq. (8.1.1) just a simple toy-model
which catches the most important features of the physics of the pseudogap.

8.1.1 Two Critical Temperatures TC and T* in 3D Case

In 3D case the phase-diagram of the attractive-U Hubbard model looks like as
follows (see Fig. 8.1).

On Fig. 8.1 T* is a crossover temperature for creation of fermionic pairs
(composed bosons), TC

BEC is a temperature of Bose–Einstein condensation of local
pairs, TC

BCS is a temperature of Cooper pairing (for extended electron pairs). At
weak coupling (U \ W, W is a bandwidth) T* = TC

BCS and thus creation and Bose-
condensation of extended pairs take place at the same temperature. However, at
strong coupling (for U [ W) T* [ TC

BCS so at first the local pairs are formed, and
then at lower temperature they are Bose-condensed. Correspondingly for inter-
mediate temperatures TC

BEC \ T \ T* we have an interesting new phase of a
normal bosonic metal (almost all fermions are paired here but not Bose-
condensed).

Fig. 8.1 Phase-diagram of
the 3D attractive-U Hubbard
model on a simple cubic
lattice
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8.1.2 Weak-Coupling Case

In the weak-coupling case jUj\jUCj �W ¼ 12t (for 3D simple cubic lattice) as
we already mentioned in Chap. 5 the critical temperature TC reads (see Ref. [17] in
Chap. 5) for low density nd3 � 1:

Tc ¼ TBCS
C � 0:28eF exp � p

2jajpF

ffi �

; ð8:1:2Þ

where k ¼ 2jajpF

p is 3D gas parameter. Here we have extended Cooper pairs with
large coherence length n0� �hvF

�

TBCS
C � d, where d is intersite distance.

Accordingly the one-particle chemical potential l & eF [ 0—and the pairing
takes place on the Fermi-surface. Note that the result of Gor’kov, Melik-Barch-
udarov (8.1.2) is similar to famous BCS-formula (see Refs. [15, 16] in Chap. 5) for
superconductive pairing due to electron–phonon attraction, however preexponen-
tial factor 0.28eF is different. In the weak-coupling (Born) case the s-wave scat-
tering length a reads:

jaj ¼ mjUjd3

4p
� d
jUj
W
� d

for the band mass m = 1/(2td2).

8.1.3 Strong-Coupling Case

In the strong-coupling case |U| [ (|UC| * W) in the absence of the lattice we have
a famous Einstein formula (see Ref. [30] in Chap. 5) for critical temperature of
Bose-condensation (see Chaps. 5 and 6),

TBEC
C; gas ¼ 3:31

n2=3
B

mB
¼ 3:31

ðn=2Þ2=3

2m
� 0:2eF :

On the lattice, as it is shown by Nozieres and Schmitt-Rink (see Ref. [14] in
Chap. 5):

TBEC
C; lat �

W

jUj T
BEC
C; gas: ð8:1:3Þ

That is due to a large effective mass in the strong-coupling case on the lattice
(see Fig. 8.2 and Chap. 5).

m� �m
jUj
W

ð8:1:4Þ
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From Fig. 8.2 we note that we should virtually destroy the local pair, and then
create it again, thus we have a second order of perturbation theory for m*.

Crossover temperature T* (which corresponds to the formation of the local pair)
as we discussed in Chap. 5 is given by Saha formula for thermodynamic equi-
librium in the process A ? B $ AB (see Ref. [30] in Chap. 5). It can be deter-
mined from the following relation in 3D case:

n2
F

nB
� 1

2
mT

p

� �3=2

exp � jEbj
T

� �

; ð8:1:5Þ

where Eb is a binding energy of a pair (of a composite boson). For T = T* by
definition nF = 2nB = n/2 (see Ref. [30] in Chap. 5). Thus in total analogy with
2D case considered in Chap. 6:

T� �
jEbj

3
2 ln jEbj=T0ð Þ

; ð8:1:6Þ

where T0 = eF is degeneracy temperature. Note that for |U| � W = 12t: |Eb| �
4/(3p) |U|. For TC

BEC \ T \ T* the one-particle chemical potential l acquires a
kink (see Chap. 5):

l � � jEbj
2
� 3

4
T ln TBEC

C =T
	 


ð8:1:7Þ

At T ¼ TBEC
C bosonic chemical potenrial lBðTBEC

C Þ ¼ 0 and thus l ¼ � Ebj j
2 þ

lB
2

¼ � Ebj j
2 . Note that in strong coupling case Ebj j � Uj j � W , and it is not necessary

to distinguish between Eb and ~Eb, l and ~l (where ~Eb and ~l are counted from the
bottom of the band).

8.2 Attractive Fermions in 2D

Let us now consider 2D case which is more suitable for high-TC materials. In this
case the phase-diagram of 2D attractive-U Hubbard model looks like as follows
(see Fig. 8.3).

On Fig. 8.3 T0 = 2pn/m is degeneracy temperature in 2D, crossover temperature
T* is given by (see Chap. 6):

Fig. 8.2 The origin of a
heavy effective mass for 3D
attractive-U Hubbard model
in the strong-coupling case
Uj j � UCj j �W (see Ref.

[14] in Chap. 5)
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T� ¼
j~Ebj

lnðT0=j~EbjÞ
; ð8:2:1Þ

where Eb ¼ �W þ ~Eb: Finally TC
BKT is Berezinski-Kosterlitz-Thouless critical

temperature (see Refs. [68, 69] in Chap. 6) in the 2D case. We have three regions
in Fig. 8.3.

8.2.1 Weak-Coupling Case

First regime corresponds to weak-coupling case:

Uj j\ W

ln T0= ~Eb

�

�

�

�

	 
 ; ð8:2:2Þ

where the binding energy is given by:

j~Ebj � W exp � 2W

jUj

� �

� T0: ð8:2:3Þ

In this regime T* = TC and the critical temperature on the mean field level
yields (see Ref. [63] in Chap. 6):

TC ¼ TBCS
C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T0j~Ebj
q

This result of Miyake means that in 2D case we have simultaneously a bound
state in two-particle problem in vacuum and collective s-wave pairing in substance
already for infinitely small attraction (in the symmetric well). Note, that Beasley,
Mooji et al. (see Ref. [45] in Chap. 7) on the level of a simple estimate for
superfluid density showed that the mean-field result provides a good estimate for
TC in dilute attractive Fermi-gas or Hubbard model. Namely:

TBKT
C � TBCS

C

TBCS
C

� TBCS
C

T0
� 1 ð8:2:4Þ

and the exact BKT critical temperature is close to a mean-field one.

Fig. 8.3 Phase-diagram of
the attractive-U Hubbard
model in 2D case
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8.2.2 Intermediate-Coupling Case

Second regime describes intermediate coupling case in 2D. In this regime
~Eb

�

�

�

�[ T0 (but still j~Ebj\W) and for Hubbard U:

W

lnð ~Eb

�

�

�

�=T0Þ
\ Uj j\W : ð8:2:5Þ

The Saha crossover temperature T* is still given by (8.2.1) with a binding
energy (see Refs. [31, 32] in Chap. 5):

~Eb

�

�

�

� ¼ 1=md2

exp 4p
md2 Uj j

n o

� 1
� W

exp W
Uj j

n o

� 1
\W : ð8:2:6Þ

The mean field critical temperature as we discussed in Chaps. 5, 6 was deter-
mined by Fisher-Hohenberg (see also Popov, Refs. [66, 67] in Chap. 6) in the
framework of a simple ansatz for 2D dilute Bose-gas of weakly repulsive com-
posed boson (each boson being a local pair of two fermions) (see Chap. 7):

TC ¼
T0

4 ln ln 1:6j~Ebj=T0
	 
\T0;

where T0 ¼ eF ¼ nelW=2 and nel is dimensionless 2D density (nel ¼ 2eF=W).

8.2.3 Strong-Coupling Case

Finally in the strong-coupling case Uj j � W the binding energy in 2D: Ebj j � Uj j
and Tlat

C � W
Uj j T0 as in 3D due to Nozieres-Schmitt-Rink considerations in the

second order of perturbation theory (see Ref. [14] in Chap. 5). In the next Section,
we will mostly concentrate on the most interesting intermediate coupling case with
a special emphasis on the phase of a normal bosonic metal. This phase exists at
intermediate temperatures TC \ T \ T*.

8.3 T-matrix Approximation

To proceed further we need to generalize on the 2D-case the basic equations of the
self-consistent T-matrix approximation. At low densities T-matrix approximation
is very good (see for example Galitskii-Bloom results [see Ref. [28] in Chap. 5 and
[22] in Chap. 7] for 3D and 2D repulsive Fermi-gas). The essence of this
approximation is given by the system of Eqs. (8.3.1)–(8.3.4).

Tð~q; ixnÞ ¼
Ud2

1� Ud2Kð~q; ixnÞ
ð8:3:1Þ
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for the T-matrix, where in 2D case Ud2 is the zeroth Fourier component of the
potential on the lattice,

Kð~q; ixnÞ ¼ T
X

Xn

Z

d2~p

ð2pÞ2
GMð~p; iXnÞGMð�~pþ~q;�iXn þ ixnÞ ð8:3:2Þ

is a 2D Cooper loop (particle–particle susceptibility) in Matsubara technique for
dressed Matsubara Green’s functions GM. The Dyson equation for GM yields

GMð~p; ixnÞ ¼
1

ixn � eðqÞ þ l � RMð~q; ixnÞ
: ð8:3:3Þ

Finally the Matsubara self-energy RM reads:

RMð~q; ixnÞ ¼ T
X

Xn

Z

d2~p

ð2pÞ2
GMð~p � ~q; iXn � ixnÞTð~p; iXnÞ: ð8:3:4Þ

The system of Eqs. (8.3.1)–(8.3.4) should be solved together with the equation
on the conservation of the total density ntot ¼ p2

F=2p in 2D:

X

xn

Z

d2~q

ð2pÞ2
GMðixn; ~qÞ ¼

X

xn

Z

d2~q

ð2pÞ2
1

G�1
0 ðixn; ~qÞ � RMðixn; ~qÞ

¼ ntot

2
¼ p2

F

4p
; ð8:3:5Þ

where

G0 ¼
1

ixn � eðqÞ þ l
ð8:3:6Þ

is a bare Matsubara Green’s function. The system of Eqs. (8.3.1)–(8.3.6) is an
evident generalization of the system of Eqs. (7.1.5)–(7.1.10) on 2D case.

We should solve this system iteratively.
In the first iteration we calculate the T-matrix in (8.3.1) with zeroth order

Green-functions G0ðixn;~qÞ
Then Cooper loop (particle–particle susceptibility) K0ð~q; ixÞ in (8.3.1) reads:

Kð~q; ixÞ ¼
Z

d2~p

ð2pÞ2
1 � nFðep � lÞ � nFðep�q � lÞ

ix � ep � ep�q þ 2l
; ð8:3:7Þ

where we used that ep�q ¼ e�pþq. Introducing variable z ¼ ix we get the fol-
lowing expression for the T-matrix in (8.3.1) for small z ? 0 and q ? 0:

T0ðz;~q! 0Þ �
~Eb

�

�

�

�W

z � q2

4m þ lB

; ð8:3:8Þ

where lB ¼ 2~lþ ~Eb

�

�

�

� ¼ 2lþ Ebj j is bosonic chemical potential for a gas of

composed bosons with mB = 2m (see Chap. 5), j~Ebj given by Eq. (8.2.6) in the
intermediate coupling limit T0\ ~Eb

�

�

�

�\W and l ¼ �W=2þ ~l. In (8.3.8) q2/4m is
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kinetic energy of a local pair with mass mB = 2m. The most important is that
T-matrix in (8.3.1) has a structure of a free bosonic propagator (see Refs. [31, 32]
in Chap. 5) with a simple pole z ¼ q2=4m � lB.

8.3.1 Conditions for TC

Note that a superconductive critical temperature TC is defined for normal Bose-gas
phase from the requirement:

lBðTCÞ ¼ 0: ð8:3:9Þ

for bosonic chemical potential. This requirement immediately follows from the
structure of the T-matrix:

Tðz ¼ 0; ~q ¼ 0Þ ¼ Ebj jW
lB

ð8:3:10Þ

If lB ? 0 than T(0, 0) ? 1 according to Landau-Thouless criterion for the
phase-transition (see Refs. [19, 27] in Chap. 5).

8.3.2 Self-Energy in the First Iteration

In the first iteration to the self-energy R1 reads:

R1ð~q; ixnÞ ¼ T
X

Xn

Z

d2~p

ð2pÞ2
G0ð~p�~q; iXn � ixnÞT0ð~p; iXnÞ ð8:3:11Þ

with T0 and G0 from (8.3.6), (8.3.8).
Note that from (8.3.10), (8.3.11) we just get a condition lB ¼ 2lþ Ebj j.

Dressed Green-function.

Evaluation of R1ðz;~qÞ in (8.3.11) for z = ix and small q ? 0 yields (see Refs.
[31, 32] in Chap. 5):

R1ðz; ~qÞ ¼
2 Ebj jeF

z þ eðqÞ � l þ lB
: ð8:3:12Þ

Accordingly in the first iteration to the self-consistent T-matrix approximation the
dressed Green-function G1 has a two-pole structure (see Refs. [31, 32] in Chap. 5):
G1ðz;~qÞ ¼ GFðz;~qÞ þ GBðz;~qÞ

G1ðz;~qÞ ¼ 1� 2 Ebj jeF

ðeq � lÞ2

 !

1
z� eðqÞ þ lð Þ þ

2 Ebj jeF

ðeq � lÞ2
1

zþ eðqÞ � lþ lBð Þ ; ð8:3:13Þ

where GBðz;~qÞ � G2
0ðz;~qÞR1ðz;~qÞ and we can introduce a pseudogap D2

PG ¼
2 Ebj jeF in similarity with our discussion in Chap. 7.
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To get the density of states from G1 we use the standard formula:

NðxÞ ¼
Z

d2~q

ð2p2Þ ImG1ðxþ io;~qÞ ð8:3:14Þ

where formally in the expression (8.3.13) for G1ðz;~qÞ we use a standard (Wick)
shift ix ! x þ io for ‘‘Matsubara’’ frequency x.

8.3.3 Density of States Correlation Gap

As a result the density of states for TC \ T \ T* in the normal bosonic metal phase
has a form presented on Fig. 8.4.

Summarizing we can say that for intermediate temperatures TC � T � T* we
have two strongly asymmetric contributions to the density of states on Fig. 8.4: a
contribution from occupied bosonic band and a contribution from an empty fer-
mionic band. The fermionic band has a particle-like dispersion nF

q ¼ eq � l. A

bosonic band has a hole-like dispersion nB
q ¼ l� eq � lB (see Fig. 8.5). The

intensity of a bosonic band �N2Dð0Þ eF
Ebj j is smaller than the intensity of a fermi-

onic band �N2Dð0Þ for Ebj j[ eF . The most important is that a correlation gap
Dcor � Ebj j is developed between the bands. This gap is pretty stable at temper-
atures TC � T � T*. Thus in (8.3.13) for a dressed Green’s function and for the
density of states (see Fig. 8.5) we have a large correlation gap Dcor � Ebj j and a
smaller pseudogap (see Chap. 7) D2

PG ¼ 2 Ebj jeF , which appears at the edge of the

occupied states for l� � Ebj j
2 . Moreover for T = 0 the pseudogap coincides with a

superconductive gap found by Miyake for 2D attractive Fermi gas (see Ref. [63] in
Chap. 6). The substantial difference between the pseudogap and superconductive
gap is that D2

SCðT ¼ TCÞ ¼ 0, while D2
PG does not drastically change at TC. Such a

situation with two gaps at T = 0 (one large and one small) resembles a qualitative

Fig. 8.4 The density of states in the normal bosonic metal phase of the attractive-U 2D Hubbard
model in the intermediate coupling case. Dcor ¼ Ebj j is a correlation gap separating occupied
bosonic states from unoccupied fermionic states (see Refs. [31, 32] in Chap. 5)
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Fig. 8.5 Dispersion of

fermionic nF
q


 ffl

and bosonic

nB
q


 ffl

bands

picture of P. Nozieres et al. for superconductivity in semiconductors [3]. The role
of a correlation gap in semiconductors plays a forbidden gap which separates the
valence and conductivity bands.

Let us remind that for T � T* the total number of particles
n ¼ 2nB þ nF � 2nB. We can really say that we have a new type of a metal—the
normal bosonic metal.

8.3.4 Next Iteration in the T-matrix Scheme

The next iterations will not change the gross-features of the density of states on
Fig. 8.4. There will be still a large correlation gap Dcor� Ebj j and a smaller
pseudogap for Ebj j � eF. The correlation gap will be reduced at higher density of
electrons and will finally disappear at apF C 1 (when Ebj j ¼ 1=ma2� eF). In this
case the distance between the local pairs *1/pF becomes of the order of their
radius a. So the local pairs will crush each other. We considered this situation
more detaily in Chap. 7 when we discussed BCS-BEC crossover in 3D case. For
not very large values of the gas-parameter 3 C apF C 1 in 3D we can expect the
coexistence of local pairs and unbound fermions, which is just a Fermi-Bose
mixture (see Ref. [66] in Chap. 7) there. Note that the situation with a pseudogap
for large values of aj jpF [ 1 require the additional investigations both from
numerical and analytical sides (see [4, 5] and references therein). From experi-
mental side the pseudogap in underdoped cuprates can be measured from the
spectral weight suppression in recent ARPES measurements [6].

8.3.5 g-Resonance

To complete the study of the T-matrix in the first iteration, note that on the 2D
square-lattice T-matrix also has a bosonic character but with different sign of

dispersion close to the nesting-vector ~Q ¼ ðp=d; p=dÞ (see Chap. 9 also). Namely

for ~q! ~Q T-matrix reads:
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T0ðz;~q! ~QÞ ¼ � U2

z þ ~q�~Qð Þ2
4m� þ 2l þ Uj j

; ð8:3:15Þ

where m� ¼ m Uj j
t in the strong-coupling limit |U| [ W. This result corresponds to the

so-called g-resonances which play an important role in recent attempts to describe
high-TC materials in the framework of SU-5 grand-unification scheme (see Refs.
[7–9]) which describes in a unified fashion AFM and SC-instabilities in cuprates. It is
also possible starting from (8.3.15) to get Cooper pairs with large total momentum for
repulsive-U Hubbard model (see Belyavsky et al. [10, 11]). There is a question,
however, how stable these pairs are with respect to the impurities (see Chap. 9).

8.4 Experimental Predictions of the Model

In spite of its simplicity, an attractive-U Hubbard model in the intermediate
coupling case in 2D is a very useful toy-model to understand the essential physics
of the pseudogap in underdoped cuprates and related materials. It predicts:

1. maximum in spin-susceptibility v Tð Þ for T ¼ T� � ~Eb

�

�

�

�, which means that the
correlation gap coincides with a spin-gap in this model;

2. a two-band structure of optical conductivity r(x) with a bosonic and a
fermionic band;

3. large values of 2D/TC in similarity with the STM experiments of Fisher’s group
[12] on underdoped bismuth family of high-TC materials (with 2D * ~Eb

�

�

�

�), as
well as asymmetric density of states above TC;

4. universal features of electron tunneling through the interface between normal
fermionic metal and normal bosonic metal. Here the tunneling from fermionic
side closely resembles Andreev reflection e ? h ? 2e in NS (normal metal—
superconductor) structures.

8.4.1 Resistivity in the State of the Normal Bosonic Liquid

For intermediate temperatures TC \ T \ T* the model also predicts interesting
(semiconductive type) behavior of resistivity (see Refs. [31, 32] Chap. 5) for normal
bosonic metal if we consider a clean case (no impurities) and take into account
boson–boson scattering (with Umklapp processes on the lattice—see Chaps. 1, 16).
Here in s-approximation to kinetic equation [13] we get in a 2D case:

qðTÞ�
ffiffiffiffiffiffiffiffiffiffiffi

T=T0

p

for T0 \ T \ T� and

qðTÞ�
ffiffiffiffiffiffiffiffiffiffiffi

T0=T
p

for TC \ T \ T0:
ð8:4:1Þ

The resistivity characteristics of this type can be obtained in degenerate
semiconductors.
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8.4.2 The Fermi-Bose Mixture Model

Our toy-model (attractive-U Hubbard model considered in this Chapter) does not
capture, of course, all the essential physics of high-TC materials such as strong
short-range (Hubbard) repulsion between conductivity electrons on Cu-sites. The
more adequate model is, for instance, a famous t-J model with short-range
repulsion and nearest neighbours (nn) van der Waals attractions. The fermionic
version of the 2D t-J model will be considered in Chap. 13. For strongly un-
derdoped case of the 2D t-J model we can think about a possible scenario of BCS-
BEC crossover (see Ref. [36] in Chap. 6) between local and extended pairs of two
composite holes (two spin-polarons or two AFM-strings) in the d-wave channel
(see Chap. 13).

However, some additional understanding of several interesting superconductive
systems we can get already on the level of a natural extension of attractive-
U Hubbard model, namely on the level of a two-band model for the Fermi-Bose
mixture (or Fermion-boson model of Ranninger et al. Ref. [65] in Chap. 6 and
[14]). As we already mentioned, we can get Fermi-Bose mixture of local pairs and
unbound fermions, for example, considering the intermediate coupling case
|Eb| * eF in the framework of 2D attractive-U Hubbard model (where local pairs
start to touch each other). For this case Ranninger et al. (see Ref. [65] in Chap. 6),
[14] and later on Larkin, Geshkenbein and Ioffe [15] phenomenologically intro-
duced a model of Fermi-Bose mixture. Moreover the authors of [15] showed that
several important experiments in the underdoped high-TC materials can be natu-
rally explained within the proposed form of the Ginzburg–Landau functional for
Fermi-Bose mixture. (The most promising material is bismuth high-TC family
Bi2Sr2Cu2O8+d where pFn0 * 2, n0 being the coherence length of the Cooper
pair). In general the two-band models of the Fermi-Bose mixture can be adequate
for the following systems:

1. two-leg and especially three-lag ladders in the isotropic limit J\ = Jk [16, 17]
(see Chap. 13);

2. PbTe and other degenerate semiconductors. Note that there are 4 families of
superconductive semiconductors (see Chernik et al. [18–20]). In PbTe
TC = 1.4 K. In other families such as: GeTe, SnTe, and TlBiTe2:
TC * 0.1 K—the critical temperature is much lower. The experimentalists
discuss here the important role of the negative-U centers which is in favor of
our model (the fifth family of superconductive semiconductors SrTiO3 is still a
subject of a debate with respect to the mechanism of SC (see [64] and the
references therein));

3. Fermi-Bose mixture of 3He–4He [21, 22], 6Li–7Li and 87Rb–40K (see Refs. [6, 15]
in Chap. 6 and also Chaps. 11 and 12);

4. resonance Fermi-gases in the regime of Feshbach resonance (for the interme-
diate values of the gas parameter apF C 1 where local pairs touch each other)
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(see Chap. 7 on BCS-BEC crossover). Remind that the two-channel Feshbach
model (see Refs. [42, 44, 45] in Chap. 5) widely used for ultracold quantum
gases is very similar to fermion-boson model of Alexandrov, Ranninger (see
Refs. [64, 65] in Chap. 6, and [14]);

5. Fermi-Bose mixture of spinons and holons in underdoped cuprates introduced
by Anderson (see Chap. 13).

8.5 Space-Separated Fermi-Bose Mixture
and Superconductivity in Bismuthates BaKBiO

Another very interesting systems attracting an attention of both theorists and
experimentalists already more than 20 years and probably described by Fermi-
Bose mixture model are plumbates-bismuthates [1, 23, 24, 63] BaKBiO–BaPbBiO
with TC * (30 7 35) K for a typical compound Ba1-xKxBiO3, where x C 0.4 is
K concentration in the superconducting phase.

In these materials an additional resonance peak (an additional band) appears in
the one-particle density of states (compare with Fig. 8.5) inside a correlation gap
signaling an existence of a second component besides a component associated with
normal bosonic metal for TC \ T \ T*. The analysis of local crystalline and
electronic structures by EXAFS-methods [25] shows that these components (these
bands) overlap in energy-space, but are separated in a real space for doping
concentrations x C 0.4 which correspond to a state of superconductive metal. The
scenario of space-separated Fermi-Bose mixture can explain the basic transport
and SC properties of bismuthates.

Note that BaBiO3, which is a parent compound for the bismuthates Ba1-xKxBiO3

and plumbates Ba1-xPbxBiO3 represents a charge-density wave (CDW) insulator
having (in contrast with attractive-U Hubbard model) the two correlation gaps
instead of one for the density of states: an optical gap with Eg = 1.9 eV and an
activation (transport) gap with Ea = 0.24 eV [26]. A partial replacement of Ba by K
in BaKBiO causes the decrease of the gaps, and as a result, the insulator–metal
transition and superconductivity are obtained at the doping level x & 0.37. The
superconductivity remains up to the doping level x & 0.50 corresponding to the
solubility limit of K in BaKBiO, but the maximal critical temperatures TC & 30 K
are achieved for x = 0.4 [27, 28] (see [63]).

8.5.1 Peculiarities of the Local Crystal Structure

A three-dimensional nature of the cubic perovskite-like structure of the bismuth-
ates differs from the two-dimensional one in the high-TC cuprates (see [63]). The
building block in the bismuthates is the BiO6 octahedral complex (the analogue
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of CuOn (n = 4, 5, 6) in high-TC materials). The octahedral complexes are the
most tightly bound items of the structure because of a strong covalence of the
Bi6s–O2pr bonds (see Fig. 8.6). According to the crystallographic data [29],
the crystal structure of a parent BaBiO3 compound represents the alternating
arrangement of the expanded and contracted BiO6 octahedra (referred to as the
‘‘breathing’’ distortion) in the barium lattice. This alternation and the static rotation
of the octahedra around the axis [110] produce a monoclinic distortion of the cubic
lattice. As it is shown in [25, 30, 31] the larger soft octahedron corresponds to the
BiO6 complex with the completely filled Bi6s–O2p orbitals (see Fig. 8.6) and the
smaller rigid octahedron correspond to the BiL2O6 complex. Here L2 denotes
the free level (or the two holes pair) in the antibonding Bi6s–O2pr orbital of the
smaller octahedral complex.

The K doping of BaBiO3 is equivalent to the hole doping and leads to a partial
replacement of the larger soft octahedra BiO6 by the smaller rigid octahedra
BiL2O6 [25]. This causes the decrease and the eventual disappearance of the static
breathing and tilting distortions. The lattice must therefore contract despite the
practically equal ionic radii of K+ and Ba2+. As a result, the average structure
becomes a simple cubic one at the doping level x = 0.37 in accordance with
neutron diffraction data [28]. However, the local EXAFS probes [25, 30, 32]
showed the significant difference of the local crystal structure from the average
one. We found (see [63]) that the oxygen ions belonging to the different BiO6 and
BiL2O6 octahedra vibrate in a double-well potential, while those having an
equivalent of the two equal BiL2O6 octahedra oscillate in a simple harmonic
potential [25, 30]. This very unusual behavior is closely related to the local
electronic structure of BaKBiO.

8.5.2 Local Electronic Structure

The coexistence of the two types of octahedra in BaBiO3 with different Bi–O bond
lengths and strengths reflects the different electronic structure of BiO6 complexes.
The valence band of BaBiO3 is determined by the overlap of the Bi6s and O2pr

Fig. 8.6 The scheme of the
formation of the electron
structure for the different
octahedral BiO6 complexes
from Menushenkov et al. [63]
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orbitals [33, 34], and because of a strong Bi6s–O2pr hybridization, the octahedra
can be considered as quasimolecular complexes [35]. Each complex involves ten
electron levels consisting of four bonding-antibonding Bi6s–O2pr orbitals and six
nonbonding O2pr orbitals. A monoclinic unit cell includes two octahedra and
contains 38 valence electrons (10 from two bismuth ions, 4 from two barium ions
and 24 from six oxygen ions) (see Fig. 8.6). All the Bi–O bond lengths must be
equal and local magnetic moments must be present for the equal electron filling of
the nearest octahedra (BiL1O6–BiL1O6). However, the presence of the two types of
octahedra complexes and the absence of any local magnetic moments were
observed experimentally [26, 36]. A scheme of valence disproportionation 2
BiL1O6 ? BiL2O6 ? BiO6 was then proposed in [25] in which the number of
occupied states are different in the neighboring octahedral complexes: the octa-
hedra BiL2O6 contains 18 electrons and has one free level or a hole pair L2 in the
upper antibonding Bi6s–O2pr* orbital, while in the octahedron BiO6 with 20
electrons the antibonding orbital is filled as shown on Fig. 8.6. It is quite natural
that the BiL2O6 octahedra have stiff quasimolecular Bi–O bonds and a smaller
radius, while the BiO6 octahedra represent unstable molecules with the filled
antibonding orbital and a larger radius.

Thus in BaBiO3, one has an alternating system of the two types of octahedral
complexes filled with local pairs: the hole pairs in BiL2O6 complexes and the
electron pairs in BiO6 complexes. In other words, the parent compound is a system
with the real-space [37] or hard-core [38] bosons (i.e. with at most one boson per
site).

The local pairs formation in BaBiO3 was advocated previously, e.g. in [1, 26,
39–44]. The binding mechanism for the pairs is probably of electron nature [1, 40]
in accordance with Varma’s picture [1] of the pairing due to the skipping of the
valence ‘‘4+’’ by the Bi ion. However, one cannot fully exclude the lattice med-
iated pairing [26, 41], (see Ref. [64] in Chap. 6) in accordance with de Jongh’s
statement [42] that the preference to retain the close-shell structures overcomes the
Coulomb repulsion related to the intrasite bipolaron formation (see Ref. [64] in
Chap. 6).

The local electron structure of BaBiO3, combined with the real-space local
electron structure is presented in Fig. 8.7a.

The optical gap in similarity with the Varma’s suggestion [1] coasts the energy:

Eg ¼ Eb þ 2Ea ¼ 2EðBiL1O6Þ � E BiO6ð Þ � EðBiL2O6Þ ð8:5:1Þ

and is observed experimentally as an optical conductivity peak at the photon
energy hv = 1.9 eV [26] (here Eb is the pair binding energy related to the dis-
sociation of pairs).

In accordance with (8.5.1) the optical excitations must provide a local lattice
deformation via the transformation of the two different octahedra into equivalent

ones: BiL2O6 ? BiO6 !
hm

2 BiL1O6. Consequently this dynamical local lattice
deformation is manifested in the Raman spectra as an abnormally high amplitude
of the breathing-type vibrations of the oxygen octahedra if the resonance
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excitation with hv = Eg is used [35, 43, 45]. The abrupt decrease of the mode
amplitude was observed when the lasers with different wave lengths were used
[45].

It is important to emphasize that there are no free fermions in the system. Only
the excited fermions can be produced by the unpairing, and they do not give any
contribution to the charge transport because of a high value of Eb. The bosonic and
the fermionic subsystems are therefore separated energetically (as in Fig. 8.4 for
the density of states in the normal bosonic metal phase of the attractive-U Hubbard
model) and spatially (this is a specific feature of plumbates-bismuthates). Hence
the Fermi-Bose mixture is absent in the parent compound BaBiO3 (in similarity
with a low density case Ebj j [ eF for attractive-U Hubbard model).

This situation is illustrated on Fig. 8.8a, where we schematically present one-
particle density of states. For x = 0 the filled bosonic band is separated from the
empty fermionic (the excited band F0), by the large optical gap Eg and from the
empty bosonic band B by the smaller transport gap 2Ea. The bosonic band plays
the role of a conduction band for bosonic quasiparticles involved in the activation
transport. In accordance with (see Refs. [31, 32] in Chap. 5) the filled and empty

Fig. 8.7 The scheme of the insulator–metal phase transition for the K-doping of Ba1 - xKxBiO3

in the framework of the relationship between the local crystal and the local electronic structures
from Menushenkov et al. (see [63]). The local crystal structure of the octahedral complexes (at
the top) and the local electronic structure (at the bottom) are shown on the pictures a–d. The
occupied states of the Bi6s–O2p valence band are marked by gray. 2Ea is the activation gap.
Black and white circles with arrows denote, correspondingly, the electrons and the holes with the
opposite spin orientations. a The monoclinic phase of an insulator BaBiO3. b An orthorhombic
phase of a semiconducting BaKBiO at 0 \ x \ 0.37. The splitting of free level L2 at a spatial
overlap of the BiL2O6 octahedra is sketched. c An undistorted cubic phase of a superconducting
metal at x [ 0.37. The formation of a Fermi-liquid state is shown arising due to the overlap of an
unoccupied fermionic band F with an occupied Bi6s–O2p valence band when the percolation
threshold is reached. d An undistorted cubic phase of a nonsuperconducting metal at x = 1.
A Fermi liquid state with Fermi level EF is shown
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bosonic bands have, respectively, the hole-like and electron-like dispersions in the
representation on the one-particle density of states. Because bosons and fermions
are already spatially separated (i.e. belong to different octahedra complexes) we
show their densities of states in the different sides of the pictures on Fig. 8.8.

8.5.3 Formation of the Fermi-Bose Mixture

The substitution of the two K+ ions for the two Ba2+ ones modifies the BiO6

complex to the BiL2O6 one. As a result, the number of the small stiff BiL2O6

octahedra increases as n0 1þ xð Þ=2 and the number of large soft BiO6 octahedra
decreases as n0 1� xð Þ=2, where n0 ¼ 1=d3 is the number of the unit cells and d is
a lattice parameter. Clusters of the BiL2O6 complexes are formed with doping,
which contract the lattice because of small radii and the rigid bonds of the BiL2O6

complexes.

Fig. 8.8 A sketch of the one-particle density of states for Ba1 - xKxBiO3 from Menushenkov
et al. (see [63]). The contributions from the bosons NB(E) and the fermions NF(E) are depicted
separately because the bosonic and fermionic states are spatially separated. The filled (dark gray)
and the unoccupied (transparent) bosonic bands correspond, respectively, to the contributions of
the electron and the hole pairs. The bands are separated by the activation gap 2Ea which is
lowered with a doping level x. An empty fermionic band F0, corresponding to the destruction of
the pairs, is separated from an occupied bosonic band by the optical gap Eg. An empty fermionic
band F is formed due to the splitting of the free level L2, which arises from the spatial overlap of
the BiL2O6 octahedra. The filled fermionic band (gray) represents the Bi6s–O2p valence band.
The band F0 and bosonic bands decrease as the doping increases, because of the decrease of the
number of the electron pairs, while a band F grows due to the increase in the number of free
levels. A Fermi liquid state is formed (c, d) as a result of the overlap between the band F and the
Bi6s-O2p valence band

8.5 Space-Separated Fermi-Bose Mixture 279



The changes in the crystal structure are accompanied by the essential changes in
the local electronic structure. A spatial overlap of the L2 levels leads to their
splitting into an empty fermionic-like band F inside the BiL2O6-… -BiL2O6

Fermi-cluster (see Fig. 8.7b). In the doping range x \ 0.37 this sufficiently narrow
band is still separated from the occupied Bi6s–O2p subband. The number of the
empty electron states in the F band increases with x as n̂F ¼ n0 1þ xð Þ, while the
number of the local electron pairs decreases as nB = n0(1 - x)/2.

The free motion of the pairs is still prevented by the intersite Coulomb
repulsion (Ea = 0), which is screened inside the clusters, however. When the
Fermi-clusters are formed, the conductivity becomes finite because of the motion
of the pairs through the clusters of the different length. The BaKBiO compounds
demonstrate for x \ 0.37 a semiconducting-type conductivity changing from a
simple activation type to Mott’s law with variable-range hopping [46]. At the
doping level x & 0.37 (see Figs. 8.7c and 8.8c), the following cardinal changes
occur.

1. The breathing and the rotational static lattice distortions transform to the
dynamic ones. At the Bose and Fermi cluster borders, where all oxygen ions
belong to both the BiO6 and BiL2O6 octahedra, the local breathing dynamic
distortion is observed as the oxygen ion vibration in a double-well potential
[25, 30].

2. The infinite percolating Fermi cluster is formed from the BiL2O6 octahedra
along the [100]-type directions. The empty fermionic band overlaps with a
filled one, and F therefore becomes a conduction band. Overcoming of the
percolation threshold provides the insulator–metal phase transition and the
formation of the Fermi-liquid state for x C 0.37. The valence electrons previ-
ously localized in the BiL2O6 complexes become itinerant inside the infinite
Fermi cluster.

3. The pair localization energy disappears, Ea = 0, and therefore local electron
pairs originating from the BiO6 complexes can move freely providing a bosonic
contribution to the conductivity. In the metallic phase the two types of carriers
are present: the itinerant electrons from the BiL2O6 complexes (fermions) and
the delocalized electron pairs from the BiO6 complexes (bosons). Although the
normal state conductivity is mainly due to a fermionic subsystem, the contri-
bution from a bosonic subsystem was also observed by Hellman and Hartford
[47] as the two-particle normal state tunneling.

As a result, at doping levels x [ 0.37, we have a new type of a spatially
separated mixture of the bosonic and the fermionic subsystems describing both
metallic and superconducting properties of BaKBiO. We stress that because fer-
mions and bosons belong to the complexes with the different electronic structure,
the Fermi and Bose subsystems are spatially separated at any doping level. The
densities of these subsystems are related by 2nB ? n̂F = 2n0. (which resembles
(8.1.5) for attractive-U Hubbard model). Moreover:
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2nB

n̂F
¼ 1� x

1þ x
: ð8:5:2Þ

The pair destruction is prevented by a sufficiently high value of the binding
energy, which effectively manifests itself as an optical gap Eb ¼ Eg � 0:5 eV [48]
in superconductive compositions. The unpairing is possible only under the optical
excitation to the band F0 (see Fig. 8.8c), which does not play any role in the charge
transport.

At x = 1 all the BiO6 octahedra are transformed into the BiL2O6 ones. The
Bose system disappears (nB = 0) together with the excited fermionic band F0.
Therefore, KBiO3 must be a nonsuperconductive Fermi-liquid metal (see
Figs. 8.8d and 8.9d).

We note that a metallic KBiO3 compound exists only hypothetically because
the potassium solubility limit x & 0.5 is exceeded in BaKBiO. However, BaPbO3,
which can be viewed as an electronic analogue of KBiO3, demonstrates metallic

Fig. 8.9 A sketch of the dynamic exchange BiO6 $ BiL2O6 from Menushenkov et al. (see [63])
is shown in the BiO2 plane of the octahedra. a A breathing mode of the vibrations along [100]-
type direction of the two neighboring octahedra with the different electronic structures. The BiO6

octahedron transforms to the BiL2O6 one and vice versa due to the electron pair tunneling
between the octahedra. An oxygen ion belonging to such octahedra oscillates in a double-well
potential. An oxygen ion belonging to the equivalent neighboring BiL2O6 octahedra oscillates in
a simple parabolic potential. b The double-well potential with the energy levels for the vibration
of the oxygen ion. The following parameters describe the tunneling barrier between the wells in
Ba0.6K0.4BiO3 at low temperatures (see experimental results of Menushenkov et al. [25]): the
tunneling frequency x0 = 200 K, the barrier height U = 500 K, the barrier width d = 0.07 Å.
c The motion of the local electron pair centered on the BiO6 octahedron through the BiL2O6 	 	 	
BiL2O6 Fermi cluster. For detailed explanations, see the text
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but not superconducting properties. Recent attempts to synthesize KBiO3 at a
high pressure have shown that only K1-yBiyBiO3 with a partial replacement of the
K+ ions by the Bi3+ ones is formed [49]. This replacement must lead to the
appearance of the BiO6 octahedra with the local electron pairs, and the compound
K1-yBiyBiO3 must therefore be superconducting in accordance with the above
discussion. Indeed, superconductivity with TC = 10.2 K was experimentally
observed in this compound [49].

Our analysis implies that BaPbO3 must be superconducting at a partial sub-
stitution of the Ba2+ ions for the trivalent ions because this substitution produces
the local electronic pairs as in the case of K1-yBiyBiO3. Thus using the La3+

doping, it is possible to obtain the spatially separated Fermi-Bose mixture in
BaPbO3. The direct experimental proof of this statement was realized by Menu-
shenkov’s group [50]. The authors of [50] successfully produced Ba1-xLaxPbO3

using the high-pressure synthesis technique. Superconductivity at TC = 11 K
observed in this new compound [50] is a direct evidence in favor of the scenario
proposed above.

At the end of this Subsection, we note that our understanding of the insulating
state in the parent KBiO3 compound is very similar to the theoretical model by
Tarapheder et al. [39, 40]. We agree with the authors of [39, 40] on the following
principal positions: (1) the presence of electron-mediated (Varma’s type) pairing
mechanism [1]; (2) the existence of the charge ±2e bosonic bound states that
dominate transport properties of BaBiO3; (3) the explanation of the nature of both
the transport and optical gap.

However, our description of the K-doped systems strongly differs from their
model. Going from insulating BaBiO3 to superconducting BaKBiO (x C 0.37),
Tarapheder et al. were forced to change the nature of the pairing mechanism from
the real-space pairing to the k-space one. Thus their description of the supercon-
ducting state does not differ from the traditional BCS description that has been
discussed for BaKBiO, e.g. in [51–53].

Using the EXAFS results of Menushenkov’s group [25, 30], we consistently
explain the insulating and superconducting states in BaKBiO within a single
approach. In contrast to [39, 40] we showed that the real-space bosons do not
disappear in the metallic region of BaKBiO and that they are responsible for
superconductivity. At the same time, the Fermi-liquid appears in the BaKBiO
system because of the overlapping of the occupied valence band levels and the free
ones when we overcome the percolation threshold at x = 0.37. An interplay of
these Bose and Fermi subsystems explains the main properties of BaKBiO.

8.5.4 Superconductivity in Ba12xKxBiO3

Taking the existence of the double-well potential in Ba1-xKxBiO3 into account,
one can consider superconductivity in this compound in the framework of the
anharmonic models for high-TC materials [54, 55, 65]. As it was shown in these
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models, if the oxygen ions move in a double-well potential, an order-of-magnitude
enhancement of the electron-lattice coupling constant follows automatically from
a consistent treatment of this motion [65].

However, as we discussed briefly in present Subsection, the double-well
potential arises in the bismuthates from different electron fillings of the nearest
octahedra and the tunneling of local pairs between them. The existence of the
double-well potential in the metallic phase of BaKBiO (x C 0.37) therefore
indicates that the real-space bosons do not decay with doping. There are at least
two additional experimental conformations of this fact: (1) the observation of the
optical pseudogap (correlation gap) in superconducting composition [48] and (2)
the existence of two types of charge carriers with heavy and light masses [47, 54].
These experimental facts allow us to consider superconductivity in the bismuthates
as the motion of local electron pairs. This motion is correlated with the oxygen ion
vibrations in the double-well potential and leads to the transformation of the Bose
octahedral complexes to the Fermi ones and vise versa in the dynamic exchange
process BiO6 $ BiL2O6.

Thus taking the existence of the double-well potential in Ba1-xKxBiO3 into
account, one can consider superconductivity in this compound as a long-range
order that is established via the local pairs tunneling from one Bose cluster to a
nearest one over the Fermi cluster along [100]-type direction.

The pair transfer process correlated with the oxygen vibrations (in other words,
the dynamic exchange) is illustrated in Fig. 8.9. The oxygen belonging to the two
neighboring octahedra BiO6 and BiL2O6 vibrates in the double-well potential, and
hence, the electron pair tunneling between the neighboring octahedra occurs when
the ion tunnels through the potential barriers between the wells. Because of this
interconnection between the pair and the oxygen tunneling process, we can esti-
mate the matrix element of the pair tunneling as tB * x0e-D, where x0 is the
tunneling frequency,

D ¼ 1
�h

Z

x1

x0

pj jdx � d

�h

ffiffiffiffiffiffiffiffiffiffiffi

2MU
p

ð8:5:3Þ

is the semiclassical transparency of the barrier in the double-well potential, U and
d are the barrier height and width, and M is the oxygen ion mass. We note that
relatively small tunneling frequency x0 = 200 K (see Fig. 8.9) already incorpo-
rates all the electron–phonon polaronic effects.

Note that rigorously speaking a local pair is transferred from one Bose cluster to
the nearest one over a Fermi-cluster, which, depending on the doping level,
consists of several octahedra. The pairs overcome the Fermi-cluster step by step.
A single step, corresponding to the pair transfer into a neighboring octahedron,
occurs simultaneously with the oxygen ion tunneling in the double-well potential.
The tunneling frequency x0 is therefore the same for each step. Assuming that the
steps are independent events, the probability of overcoming the Fermi-cluster can
be obtained as the product of the probability of each step. The matrix element of
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the pair tunneling through the Fermi-cluster can be estimated as t̂B � x0e�hNiD,
where an average number of steps hNi (which is proportional to a Fermi-cluster
linear size) can be obtained from the ratio of the concentrations of BiL2O6 and
BiO6 octahedra. This gives the average number of steps:

hNi ¼ 1þ x

1� x

� �1=3

: ð8:5:4Þ

A natural assumption (see [63]) is that the critical temperature of the onset of
superconductivity is of the order of the Bose–Einstein condensation temperature

TC � t̂Bd2n2=3
B in the bosonic system with a large effective mass mB� 1=̂tBd2. We

recall that nBd3 = (1 - x)/2 in our case. For the parameters of the double-well
potential obtained in the [25] (see also Fig. 8.9), we estimated TC * 50 K in
Ba0.6K0.4BiO3, which is larger than the measured TC & 30 K.

However, this estimate does not account for the phase coherence arising due to
the relation between the vibrations of oxygen ions and the transfer of pairs. When
the pair is transferred from one octahedron to another one, the lattice has a suf-
ficient time to relax due to the longitudinal stretching phonons, each time forming
a new configuration before the next tunneling event occurs. Taking the breathing
like character of the oxygen ion vibrations in the double-well potential into
account (see Fig. 8.9), it is natural to suppose that the breathing mode of each
octahedron is coordinated with its neighbors to guarantee a resonant tunneling
along [100]-type axes in the system.

From the dispersion of the longitudinal phonon modes studied by the inelastic
neutron scattering [55], it follows that the breathing-type vibrations with the wave
vector qb = (p/d, 0) are energetically favorable in the superconductive composi-
tions of BaKBiO. Hence a long-range correlation of the vibrations must occur at
low temperatures when only the low-energy states are occupied. The bandwidth of
the longitudinal stretching mode is of the order of 100 K, and the temperature
T * TC is sufficiently high to excite the non-breathing-type longitudinal stretching
phonons with the wave vectors shorter than qb. The thermal excitation of these
phonons leads to the destruction of the long-range correlation between the
breathing-type vibrations, and hence destructively affects the long-range phase
coherence of the local pair transfer.

We note that the anomalous dispersion of the longitudinal stretching phonons
observed in [55] reflects the lattice softening with the decrease in the temperature
due to the existence of the double-well potential in the superconducting compo-
sitions of BaKBiO. A similar dispersion was also observed in the optimally doped
high-TC cuprates La1.85Sr0.15CuO4 and YBa2Cu3O7 [56]. The problem of the TC

limitation due to the destruction of the phase coherence is now extensively dis-
cussed (see [57] for a review). It is important to mention here also the experimental
evidence by Müller et al. [58] for the coexistence of the small bosonic and fer-
mionic charge carriers in La2-xSrxCuO4, so the possibility to apply our scenario to
high-TC materials is an interesting open question.
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8.5.5 Discussion and Possible Experimental Test
of the Proposed Model

We briefly summarize the key points of our concept:

1. The parent compound BaBiO3 represents a system with the initially preformed
local electron and hole pairs. Each pair is spatially and energetically localized
inside the octahedron volume. The localization energy of a pair determines the
transport activation gap Ea. The binding energy of a pair is given by
Eb = Eg - 2Ea, where Eg is the optical gap.

2. The spatially separated Fermi-Bose mixture of a new type is possibly realized
in the superconducting compositions of Ba1-xKxBiO3 for x C 0.37. The
bosonic bands are responsible for the two-particle normal state conductivity.
The overlap of the empty fermionic band F with an occupied valence band
Bi6s–O2p provides the insulator–metal phase transition and produces the
Fermi-liquid state. This state strongly shunts the normal state conductivity
arising from the two-particle Bose transport.

3. The fermionic band F0 connected with the destruction of the pair does not play
any role in the transport. The excitation energy is sufficiently high to guarantee
against the destruction of bosons (a pair binding energy for the superconductive
compositions is Eb & 0.5 eV).

4. The localization energy of the pair is absent for x C 0.37 (Ea = 0), and
therefore the bosonic and the fermionic subsystems are separated only spatially.
The interplay between them is due to the dynamic exchange BiL2O6 $ BiO6,
which causes the free motion of the local pairs in the real space.

5. The pairing mechanism in the bismuthates is more likely of the Varma type [1]
(due to the skipping of the valence ‘‘4+’’ by the Bi ion) rather than of phonon-
mediated origin. The existence of the local pairs and their tunneling between
the neighboring octahedra is closely related to the presence of the double-well
potential that describes the vibration of the oxygen ions. The lattice is more
likely involved in the superconductivity by providing the phase coherence for
the motion of local pairs in the real space.

We finally emphasize that the scenario of the Fermi-Bose mixture allows us to
qualitatively describe the insulator–metal phase transition and the superconductive
state in BaKBiO in the framework of the single approach. To some extent, this
scenario explains the contradictions between the results of the local sensitive and
integral experimental methods [25, 26, 30, 32, 45, 55, 59–61]. In addition, as we
already mentioned Menushenkov’s group [50] successfully synthesized a new
superconducting oxide Ba1-xLaxPbO3 that can be considered as the direct evi-
dence in favor of our model.

Nevertheless, the additional experiments are required to make a definite con-
clusion about the nature of superconductivity in these systems.

We propose two direct experiments (see [63] to test our model. (1) To provide
the Raman scattering experiment of the superconducting Ba0.6K0.4BiO3 compound
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using a resonance optical excitation in the range of the optical gap Eg & 0.5 eV.
In this case a sharp increase in the amplitude of some Raman modes due to local
dynamic distortions must be observed at the pair destruction in accordance with
our model. (2) To provide measurements of the inelastic neutron scattering in the
Ba0.5K0.5BiO3 and BaPbO3 samples. We expect that the dispersion of the longi-
tudinal stretching mode should decrease with a change of the K-doping from
x = 0.4 to x = 0.5 and should be absent in the metallic BaPbO3 compound.

Moreover, it is important to carry out the more precise measurements of the
specific heat in the bismuthates for T * TC. Note that in the 3D Bose-gas the

specific heat behaves as CB� T=TCð Þ3=2 for the temperatures T \ TC, and
CB = const for T � TC. As a result, there is a k-point behavior of the specific heat
for T * TC (see Refs. [27, 30] in Chap. 5). However, the Fermi-Bose mixture
gives an additional linear in T contribution from a Fermi-gas CF� cT . This con-
tribution could in principle destroy the k-point behavior of the specific heat in the
Fermi-Bose mixture. We note that the currently available experimental results in
the bismuthates [62] signal a smooth behavior of the specific heat near TC, possibly
because in all the experiments the contributions of the Fermi and Bose gases are
masked by a larger lattice contribution.

References

1. Varma, C.M.: Phys. Rev. Lett. 61, 2713 (1988)
2. Eliashberg G.M.: JETP 16, 780 (1963)
3. Nozieres, P., Pistolesi F.: Eur. Phys. Jour. B 10, 649 (1999)
4. Perali, A.,Palestini, F., Pieri, P., Strinati, G.C.,Stewart, J.T., Gaebler, J.P., Drake, T.E., Jin,

D.S.: Phys. Rev. Lett. 106, 060402 (2011)
5. Gaebler, J.P., Stewart, J.T., Drake, T.E., Jin, D.S., Perali, A., Pieri, P, Strinati, G.C.: Nat.

Phys. 6, 569 (2010)
6. Kondo, T.,Hamaya, Y., Palczewski, A.D.,Takeuchi, T., Wen, J.S., Xu, Z.J., Gu, G.,

Schmalian, J., Kaminski, A.: Nat. Phys. 7, 21 (2011)
7. Zhang, S.-C., Science 275, 1089 (1997)
8. Dorneich, A., Hanke, W., Arrigoni, E., Troyer, M., Zhang, S.-C.: Phys. Rev. Lett 88, 057003

(2002)
9. Demler, E., Hanke, W., Zhang, S.-C.: Rev. Mod. Phys. 76, 909 (2004)

10. Belyavsky, V.I., Kapaev, V.V., Kopaev, Y.V.: Phys. Rev. B 80, 214524 (2009)
11. Belyavsky, V.I., Kopaev, Y.V.:Phys. Rev. B 76, 214506 (2007)
12. Renner, Ch., Revaz, B., Genoud, J.-Y., Kadowaki, K., Fischer, Ø.: Phys. Rev. Lett. 80, 149

(1998)
13. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Butterworth-Heinemann, Oxford (1981)
14. Chakraverty, B.K., Ranninger, J., Feinberg, D.: Phys. Rev. Lett. 81, 433 (1998)
15. Geshkenbein, V.B., Ioffe, L.B., Larkin, A.I.: Phys. Rev. B 55, 3173 (1997)
16. Tsunetsugu, H., Troyer, M., Rice, T.M.: Phys. Rev. B 51, 16456 (1995)
17. Kagan, M.Yu., Haas, S, Rice, T.M.: Physica C 317/318, 185 (1999)
18. Chernik, I.A., Berezin, A.V., Lykov, S.N., Sabo, E.P., Titarenko, Y.D.: JETP Lett. 48, 596

(1988)
19. Chernik, I.A., Berezin, A.V., Zhitinskaya, M.K., Lykov, S.N.: Phys. Solid State 34, 1316

(1992)

286 8 Phase Diagrams and the Physics of the Pseudogap

http://dx.doi.org/10.1007/978-94-007-6961-8_5


20. Chernik, I.A., Berezin, A.V.: Phys.Solid State 37, 948 (1995)
21. Kagan, M.Yu.: Sov. Phys. Uspekhi 37, 69 (1994)
22. Bardeen, J., Baym, G.,Pines, D.: Phys. Rev. 156, 207 (1967)
23. Menushenkov, A.P., Klementev, K.V., Kuznetsov, A.V., Kagan, M.Yu.: Physica B 31, 312

(2002)
24. Menushenkov, A.P., Klementev, K.V., Kuznetsov, A.V., Kagan, M.Yu.: In Physics in Local

Lattice Distortions. In: Oyanagi, H., Bianconi, A. (eds.) AIP Conference Proceedings, vol.
554, 269 (2001)

25. Menushenkov, A.P., Klementev, K.V.: Jour. Phys.: Condens. Matter 12, 3767 (2000)
26. Uchida, S., Kitazawa, K., Tanaka, S.: Phase Transitions 8, 95 (1987)
27. Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R., Rupp Jr, L.W., White, A.E., Short, K.,

Peck, W.F., Kometani, T.: Nature 332, 814 (1988)
28. Pei, S., Jorgensen, J.D., Dabrowski, B., Hinks, D.G., Richards, D.R., Mitchell, A.W.,

Newsam, J.M., Sinha, S.K., Vaknin, D., Jacobson, A.J.: Phys. Rev. B 41, 4126 (1990)
29. Cox, D.E., Sleight, A.W.: Acta Cryst. B 35, 1 (1979)
30. Menushenkov, A.P., Klementev, K.V., Konarev, P.V., Meshkov, A.A.: JETP Lett., 67, 1034

(1998)
31. Menushenkov, A.P.: Nucl. Instr. Meth. Phys. Res. A 405, 365 (1998)
32. Yacoby, Y., Heald, S.M., Stern, E.A.: Solid State Comm. 101, 801 (1997)
33. Mattheiss, L.F., Hamann, D.R.: Phys. Rev. B 28, 4227 (1983)
34. Sleight, A.W., Gillson, J.L., Bierstedt, P.E.: Solid State Comm. 17, 27 (1975)
35. Sugai, S.: Jpn. Jour. Appl. Phys. Suppl. 26, 1123 (1987)
36. Uemura, Y.J., Sternlieb, B.J., Cox, D.E., Brewer, J.H., Kadono, R., Kempton, J.R., Kiefl,

R.F., Kreitzman, S.R., Luke, G.M., Mulhern, P., Riseman, T., Williams, D.L., Kossler, W.J.,
Yu, X.H., Stronach, C.E., Subramanian, M.A., Gopalakrishnan, J., Sleight, A.W.: Nature 335,
151 (1988)

37. Mott, N.F.: Supercond. Sci. Tech. 4, 559 (1991)
38. Meregalli, V., Savrasov, S.Y.: Phys. Rev. B 57, 14453–14469 (1998)
39. Taraphder, A., Krishnamurthy, H.R., Pandit, R., Ramakrishnan, T.V.: Europhys. Lett. 21, 79

(1993)
40. Taraphder, A., Krishnamurthy, H.R., Pandit, R., Ramakrishnan, T.V.: Phys. Rev. B 52, 1368

(1995)
41. Rice, T.M., Sneddon, L.: Phys. Rev. Lett. 47, 689 (1981)
42. de Jongh, L.J.: Physica C (Amsterdam) 152, 171 (1998)
43. Sugai, S.: Solid State Comm., 72, 1187 (1989)
44. Yu, J., Chen, X.Y., Su, W.P.: Phys. Rev. B 41, 344 (1990)
45. Tajima, S., Yoshida, M., Koshizuka, N., Sato, H., Uchida, S.: Phys. Rev. B 46, 1232–1235

(1992)
46. Hellman, E.S., Miller, B., Rosamilia, J.M., Hartford, E.H., Baldwin, K.W.: Phys. Rev. B 44,

9719 (1991)
47. Hellman, E.S., Hartford Jr. E.H.: Phys. Rev. B 52, 6822 (1995)
48. Blanton, S.H., Collins, R.T., Kelleher, K.H., Rotter, L.D., Schlesinger, Z., Hinks, D.G.,

Zheng, Y.: Phys. Rev. B 47, 996 (1993)
49. Khasanova, N.R., Yamamoto, A., Tajima, S., Wu, X.-J., Tanabe, K.: Physica C (Amsterdam)

305, 275 (1998)
50. Menushenkov, A.P., Tsvyashchenko, A.V., Eremenko, D.V., Klementev, K.V., Kuznetsov,

A.V., Trofimov, V.N., Fomichev, L.N.: Sov. Phys. Solid State 43, 613 (2001)
51. Shirai, M., Suzuki, N., Motizuki, K.: Jour. Phys.: Condens. Matter 2, 3553 (1990)
52. Vielsack, G., Weber, W.: Phys. Rev. B 54, 6614 (1996)
53. Marcos, W.J., Degani, M.H., Kalia, R.K., Vashishta, P.: Phys. Rev. B 45, 5535 (1992)
54. Lee, J.H., Char, K., Park, Y.W., Zhao, L.Z., Zhu, D.B., McIntosh, G.C., Kaiser, A.B.: Phys.

Rev. B 61, 14815 (2000)
55. Braden, M., Reichardt, W., Schmidbauer, W., Ivanov, A.S., Rumiantsev, A.Y.: Jour.

Supercond. 8, 595 (1995)

References 287



56. Pintschovius, L., Reichardt, W.: Physical properties of high temperature superconductors. In:
Ginsberg, D.M. (eds.) vol. 4. World Scientific, Singapore (1994)

57. Orenstein, J., Millis, A.J.: Science 288, 468 (2000)
58. Müller, K.A., Zhao, G., Conder, K., Keller, H.: Jour. Phys.: Condens. Matter 10, L291 (1998)
59. Qvarford, M., Nazin, V.G., Zakharov, A.A., Mikheeva, M.N., Andersen, J.N., Johansson,

M.K.-J., Chiaia, G., Rogelet, T., Soderholm, S., Tjernberg, O., Nylen, H., Lindau, I., Nyholm,
R., Karlsson, U.O., Barilo, S.N., Shiryaev, S.V.: Phys. Rev. B 54, 6700 (1996)

60. Anshukova, N.V., Golovashkin, A.I., Gorelik, V.S., Ivanova, L.I., Mitsen, K.V., Rusakov,
A.P., Khashimov, R.N.: Jour. Molec. Struct. 219, 147 (1990)

61. Salem-Sugui Jr., S., Alp, E.E., Mini, S.M., Ramanathan, M., Campuzano, J.C., Jennings, G.,
Faiz, M., Pei, S., Dabrowski, B., Zheng, Y., Richards, D.R., Hinks, D.G.: Phys. Rev. B 43,
5511 (1991)

62. Stupp, S.E., Reeves, M.E., Ginsberg, D.M., Hinks, D.G., Dabrowski, B., Vandervoort, K.G.:
Phys. Rev. B 40, 10878 (1989)

63. Menushenkov, A.P., Kuznetsov, A.V., Klementev, K.V., Kagan, M.Yu.: JETP Lett. 93, 615
(2001)

64. van der Marel, D., van Mechelen, J. L. M., Mazin, I. I.: Phys. Rev. B 84, 205111 (2011)
65. Plakida, N.M., Aksenov, V.L., Drechsler, S.L.: Europhys. Lett. 4, 1309 (1987)

288 8 Phase Diagrams and the Physics of the Pseudogap



Part III



Chapter 9
Superconductivity in the Low-Density
Electron Systems with Repulsion

9.1 Kohn-Luttinger Mechanism of Superconductivity
in Purely Repulsive Fermi-Systems

The modern physics of superconductivity (SC) is a very rapidly progressing field
of condensed-matter physics where the colossal intellectual efforts of the
researchers are concentrated and the new knowledge is accumulated very inten-
sively giving rise to the development of neighboring areas of physics, chemistry,
material science and engineering.

The latest progress in this area during last 25 years of experimental and theo-
retical research in connected with the physics of high-TC superconductivity in
cuprates and other related materials such as plumbates-bismithates, magnesium
diborides, superconductors based on FeAs and so on.

One of the most essential and unresolved question in this area connected with the
mechanism of superconducting pairing is: whether it is of electron–phonon origin
as in standard BCS-like [5–7] superconductors such as Hg, Pb, Nb, Al, or is due to
electron–electron interaction as in new unconventional superconductive systems
such as ruthenates, organic superconductors, heavy-fermion compounds and so on.

In this chapter we will advocate non-phonon mechanism of superconductivity
based on electron–electron interaction. Here according to Prof. Anderson [8] there
are two basic questions:

1. to convert the sign of the Coulomb interaction
2. to understand the properties of the normal state in high-TC materials and other

unconventional SC-systems.

We agree with these statements. We will address them in Galitskii-Bloom [9, 33]
Fermi-gas approach for low density electron systems. We will prove the existence
of SC at low-density limit, in purely repulsive Fermi-systems where we are far from
antiferromagnetic (AFM) and structural instabilities. Moreover in this limit we can
develop a regular perturbation theory.

M. Yu. Kagan, Modern Trends in Superconductivity and Superfluidity,
Lecture Notes in Physics 874, DOI: 10.1007/978-94-007-6961-8_9,
� Springer Science+Business Media Dordrecht 2013
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The small parameter of the problem is the gas-parameter:

aj jpF � 1; �h ¼ 1; ð9:1:1Þ

where a—is the s-wave scattering length, pF—is Fermi-momentum. Critical tem-
peratures (TC-s) which we obtain are not very low. Our theory often ‘‘works’’ even
for rather high densities because of intrinsic nature of SC-instability. Our phi-
losophy throughout this chapter is to solve exactly low-density limit and then go to
higher densities. The basic mechanism which we address here is enhanced Kohn-
Luttinger mechanism of SC [10]. We will also check the normal state of low-
density electron systems with respect to marginality [13].

9.2 Unconventional Superconducting Systems

During last 30 years there is a huge progress in experimental and theoretical
investigation of unconventional (anomalous) superconductive systems. Among the
new materials with anomalous superconductive pairing there are examples of
triplet p-wave (Stot = l = 1) and singlet d-wave (Stot = 0; l = 2) superconductors
as well as multiband s-wave SC-systems (S = l = 0).

The p-wave SC with orbital momenta of the Cooper pair l = 1 and total spin of
the pair Stot = 1 is realized in:

• fermionic isotopes of alkali elements 6Li and 40K in magnetic traps in the regime of
Feshbach resonance at ultralow temperatures TC * (10-6 7 10-7) K [12, 15]

• superfluid A and B phases of 3He at very low critical temperatures TC * 1 mK
[11, 14]

• heavy-fermion superconductors U1-xThxBe13, UNi2Al3, TC * (0.5 7 1) K,
heavy electron mass m* * (100 7 200)me due to strong correlations [18, 19]

• ruthenates Sr2RuO4, TC * 1 K (part of the community assumes d-wave pairing
in these materials) [20, 21]

• multiband degenerate semiconductor SrTiO3 TC * (0.7-1.2) K (see Ref. [64] in
Chap. 8 (note that other mechanisms of SC connected for example with small
polaron formation are also possible here)

• organic superconductor a-(BEDT-TTF)2I3, TC * 5 K [16, 17].

Singlet d-wave pairing is realized in:

• heavy-fermion SC UPt3, TC * 0.5 K, large effective mass m* * 200 me [18, 19]
• high-TC superconductors [22, 25] La2-xSrxCuO4, YBa2Cu3O7-d, Bi2Sr2Ca2Cu3O10,

Tl2Ba2Ca2Cu3O10, HgBa2Ca2Cu3O8.

In all the families of high-TC materials the elementary block CuO is present.
They are called cuprates. TC-s are in the range from 36 K for lanthanum-based
family to 160 K for Hg-based family under pressure (the record established TC in
cuprates for today). Note that part of the community still assumes standard s-wave
pairing in cuprates.
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The highest TC in unconventional SC corresponds to neutron stars which consist
of 98 % of bineutrons and 2 % of biprotons. For bineutrons Stot = l = 1, but there

is a strong spin–orbit coupling. So the total rotating moment J ¼ ~Stot þ~l
ffi

ffi

ffi

ffi

ffi

ffi
¼ 2.

According to theoretical predictions TC * (108 7 1010) K for neutron stars.
Finally in the end of this section we would like to mention several unconven-

tional SC systems of the multiband character with s-wave pairing [97], namely
MgB2 [26] (very promising for technical applications in electronics and energetics),
and recently discovered family on the basis of FeAs such as BaFe2(As1-xPx)2 (with
the coexistence of ferromagnetic fluctuations and SC) [95], [96]. Note that part of
the experimental community still hopes to demonstrate p-wave or d-wave SC in
FeAs-based compounds [95, 96].

9.3 3D and 2D Fermi-Gas with Repulsion. Triplet p-Wave
Pairing

The basic model to study non-phonon mechanism of SC in low density electron
systems is a Fermi-gas model. In Fermi-gas with attraction s-wave scattering
length a \ 0 and we have unconventional s-wave pairing (S = l = 0) with a
critical temperature:

TCO � 0:28 eF e�
p

2 aj jpF : ð9:3:1Þ

This result was obtained by Gor’kov and Melik-Barkhudarov [27] soon after the
appearance of a famous BCS-theory [6, 7] and differs from the BCS-result in
preexponential factor 0.28eF (instead of Debye-frequency xD in the phonon
models typical for conventional SC systems).

9.3.1 3D Fermi-Gas with Repulsion

In Fermi-gas with repulsion a [ 0—repulsive interaction of two particles in
vacuum. We will show that for the effective interaction of two particles in sub-
stance (via polarization of a fermionic background) we can convert the sign of the
interaction in the triplet p-wave channel (for Stot = l = 1) and get:

TC1� eFe
� 1
ðapF Þ2 ; ð9:3:2Þ

where eF = pF
2/2m is Fermi-energy. This highly nontrivial result was obtained by

Fay and Laser [28] and Kagan and Chubukov [29]. The most important is to
understand what is effective interaction Ueff? We will show that in momentum
space in first two orders of the gas-parameter (9.1.1):
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Ueff ð~p;~kÞ ¼
4pa

m
þ 4

m

� �2

Pð~pþ~kÞ; ð9:3:3Þ

where Pð~pþ~kÞ is a static polarization operator. It is given by a standard formula
[31, 35]:

PðqÞ ¼
Z

d3~p

ð2pÞ3
nFðepþq�lÞ � nFðep � lÞ

ðep � epþqÞ
; ð9:3:4Þ

where ep ¼ p2

2m ; epþq ¼ ~pþ~qð Þ2
2m are the energy spectra and nFðep � lÞ ¼ 1

e
ep�l

T þ1
; nFðepþq � lÞ

are Fermi–Dirac distribution functions. At low temperatures T � eF polarization

operator besides a regular part contains a Kohn’s anomaly [32] of the form:

PsingðqÞ� ðq� 2pFÞ ln q� 2pFj j in 3D: ð9:3:5Þ

In real space Kohn’s anomaly leads to Friedel oscillations (RKKY interaction
[34]). For dimensionless product of Ueff and 3D density of states:

N3Dð0Þ ¼
mpF

2p2
ð9:3:6Þ

we have in real space (see Fig. 9.1):

N3Dð0ÞUeff ðrÞ� ðapFÞ2
cosð2pFrÞ
ð2pFrÞ3

: ð9:3:7Þ

Thus we start from pure hard-core repulsion in vacuum and get the competition
between repulsion and attraction in substance.

It is possible to show [28, 29] that a singular part of Ueff ‘‘plays’’ in favor of
attraction for large orbital momenta l � 1, while a regular part of Ueff—in favor of
repulsion. Standard s-wave pairing is suppressed by hard-core repulsion. However,
as it was shown in [28, 29] the Kohn-Luttinger effect can be extended from the
large momenta l � 1 to l = 1 and the attractive contribution is dominant even for
p-wave channel. The exact solution [28, 29] yields for the critical temperature:

TC1� eFe
� 5p2

4ð2 ln 2�1ÞðapF Þ2 ð9:3:8Þ

Fig. 9.1 Friedel oscillations
in the effective interaction of
two particles via polarization
of a fermionic background. n0

is a coherence length of a
Cooper pair
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9.3.2 Triplet p-Wave Pairing

Note that diagrammatically effective interaction Ueff corresponds to the irreducible
bare vertex and is given by the set of diagrams which cannot be separated by two
lines running in the same direction [30, 31] (thus Ueff does not contain the Cooper
loop). Correspondingly the formula (9.3.3) can be represented as:

Ueff ð~p;~kÞ ¼
4pa

m
þ 4pa

m

� �2

Uð~p;~kÞ; ð9:3:9Þ

where Uð~p;~kÞ is given by 4 diagrams of Kohn-Luttinger [10] (see Fig. 9.2).
First three diagrams cancel each other exactly for contact interaction after spin

summation and as a result in accordance with (9.3.3):

Uð~p;~kÞ ¼ Pð~pþ~kÞ ð9:3:10Þ

is given by the fourth diagram on Fig. 9.2. Algebraically Pð~pþ~kÞ is a static

polarization operator (9.3.4) in a ‘‘crossed’’ channel (for ~q ¼
ffi

ffi~pþ~k
ffi

ffi instead of

q ¼
ffi

ffi~p�~k
ffi

ffi). For incoming and outgoing momenta~p and are~k lying on the Fermi-

surface ~pj j ¼
ffi

ffi~k
ffi

ffi ¼ pF the ‘‘crossed’’ momentum:

~q2 ¼ 2p2
Fð1þ cos hÞ; ð9:3:11Þ

where an angle h ¼ \~p~k.
The polarization operator Pð~qÞ is given by static Lindhard function [35]:

Pð~qÞ ¼ N3Dð0Þ
2

1þ 4p2
F � ~q2

4pF~q
ln

2pF þ ~q

2pF � ~qj j

� �

: ð9:3:12Þ

Integration of Pð~qÞwith first Legendre polynomial P1(cosh) = cosh yields the
desired result for p-wave harmonic [28, 29]:

Fig. 9.2 Four diagrams of Kohn-Luttinger [10] which give the contribution to the irreducible
bare vertex for the Cooper channel
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P1 ¼
Z

1

�1

P1ðcos hÞ d cos h
2

Pð~qðcos hÞÞ ¼ N3Dð0Þ
5

1� 2 ln 2ð Þ\0: ð9:3:13Þ

The p-wave critical temperature reads:

TC1�
2eCeF

p
e�

13
k 2 ; ð9:3:14Þ

where k = 2apF/p is effective gas-parameter of Galitskii in 3D [9], C is Euler
constant.

9.3.3 Model-Independent Considerations by P. Nozieres

The model-independent proof of the possibility of the p-wave pairing in Fermi-
systems with repulsion belongs to Professor P. Nozieres [37]. His way of reasoning
is the following: usually for static effective interaction in fermionic substance we
have [36, 38]:

Ueff ðqÞ ¼
U0ðqÞ
eðqÞ ; ð9:3:15Þ

where e(q) = 1 ? U(q)PðqÞ is static dielectric function and PðqÞ is polarization
operator given by (9.3.4). It is known from solid-state physics [31, 36] that PðqÞ is
decreasing function of q which behaves as follows (see Fig. 9.3).

That is why effective interaction Ueff in (9.3.15) decreases in the interval
0 B q B 2 pF which is important for superconductivity (see Fig. 9.4).

Fig. 9.3 Behavior of static
polarization operator P (q) as
a function of q with the
decrease for 0 \ q B 2 pF

[38, 45]

Fig. 9.4 Behavior of
effective interaction Ueff as a
function of q
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Note that Ueff(q) should strongly decrease for q [ 1/r0, where r0 is the range of
the potential. But in the Fermi-gas 1/r0 � 2pF according to (9.3.1) and hence an
interval [0, 2pF] where Ueff(q) increases is an intermediate asymptotics (see
Fig. 9.4).

Finally for first Legendre polynomial (which corresponds to p-wave pairing) we
have:

q2 ¼ 2p2
Fð1� cos hÞ; ð9:3:16Þ

and accordingly

P1ðcos hÞ ¼ cos h ¼ 1� q2

2p2
F

: ð9:3:17Þ

Moreover, cosh = 1 for q = 0 and -1 for q = 2 pF. Thus, Ueff(cosh) and cosh
behave as follows (see Fig. 9.5) as functions of cosh.

As a result the p-wave harmonic of Ueff:

Ul¼1
eff ¼

Z

1

�1

Ueff ðcos hÞ cos h
d cos h

2
\ 0; ð9:3:18Þ

if Ueff(cosh) for cosh [ [-1, 0] is larger than Ueff(cosh) for cosh [ [0, 1] as in
Fig. 9.5. Hence for all effective potentials increasing for q changing from 0 to 2pF

we have p-wave SC in the isotropic case and the Kohn’s anomaly does not play a
decisive role here (in contrast with the case of SC pairing with large orbital
momenta l � 1). Note that in 3D Fermi-gas model Ueff(cosh) is given by (9.3.3)
and decreases on the interval [-1, 1] due to crossing q! ~q [see (9.3.9)].

9.3.4 Two-Dimensional Case

In 2D Fermi-gas with repulsion dimensionless effective interaction in momentum
space reads:

N2Dð0ÞUeff ð~qÞ ¼ f0 þ f 2
0 Pð~qÞ 4p

m
; ð9:3:19Þ

Fig. 9.5 Behavior of
Ueff(cosh) and cosh as
functions of cosh on the
relevant interval [-1, 1]
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where N2Dð0Þ ¼ m
2p is 2D density of states,

f0 ¼
1

2 ln 1=pFr0ð Þ ð9:3:20Þ

is 2D gas-parameter of Bloom [33]. Correspondingly in real space effective
interaction

N2Dð0ÞUeff ðrÞ� f 2
0

cosð2pFrÞ
ð2pFrÞ2

ð9:3:21Þ

contains much more stronger 2D Friedel oscillations [34].
However, the 2D Kohn’s anomaly [32] in polarization operator PðqÞ has one-

sided character

N2Dð0ÞUeffð~qÞ� f 2
0 Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~q� 2pF

p

¼ 0 ð9:3:22Þ

for the important interval for SC 0� ~q� 2pF . Hence strong 2D Kohn’s anomaly is
ineffective for SC in second order of perturbation theory with respect to gas-
parameter f0 (9.3.20). As it was shown by Chubukov [39] SC appears only in the
third order of perturbation theory where the Kohn’s anomaly changes its character
(see first diagram on Fig. 9.6) and reads:

N2Dð0ÞUeffð~qÞ� f 3
0 Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pF � ~q
p

6¼ 0: ð9:3:23Þ

Accordingly critical temperature of the p-wave pairing reads in [39]:

TC1� eF exp � 1

4:1 f 3
0

� 	

ð9:3:24Þ

Note that the first third order diagram on Fig. 9.6 considered in [39] is still
irreducible with respect to Cooper channel.

Fig. 9.6 Third order
diagrams which contribute to
effective interaction and SC
in 2D Fermi-gas according to
[39–41, 91]. First diagram (a)
on this figure was originally
evaluated in [39] by
Chubukov
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Later on the authors of [40] and [41] considered all irreducible skeleton dia-
grams of the third order in f0 on Fig. 9.6 on equal grounds and obtained—6.1 f0

3

(instead of—4.1 f0
3) in the exponent of (9.3.24) for p-wave pairing critical tem-

perature in 2D Fermi-gas.

9.4 Superconductivity in 3D and 2D Hubbard Model
with Repulsion at Low Electron Density

One of the basic models to describe unconventional normal and superconductive
states of strongly correlated electron systems is a famous Hubbard model origi-
nally introduced by Hubbard [1–4] for the explanation of metal–insulator transi-
tion in half-filled narrow band metals. In real space the Hamiltonian of the
Hubbard model reads:

Ĥ0 ¼ Ĥ � lN̂ ¼ �t
X

\ij [r

cþircjr þ U
X

i

ni"ni# � l
X

i

nir; ð9:4:1Þ

where nir ¼ cþircir is electron density with spin-projection r = |:;[ on site i, t—
is hopping integral, U is on site Hubbard repulsion between two electrons with
opposite spin-projections, l is chemical potential.

9.4.1 3D Hubbard Model at Low Density

After Fourier transformation the Hamiltonian (9.4.1) reads:

Ĥ0 ¼
X

~pr

eðpÞ � l½ � cþprcpr þ U
X

~p~p0~q

cþ~p"c
þ
~p0 þ~q#c~pþ~q#c~p0 "; ð9:4:2Þ

where eðpÞ ¼ �2t cos pxd þ cos pyd þ cos pzd

 �

is uncorrelated electron spectrum
on 3D simple cubic lattice, d is intersite distance [1–4, 41–45, 47]. For small
electron densities nd3 \ 1 (where n = pF

3/3p2 is electron density in 3D) the
spectrum reads:

eðpÞ � �W

2
þ tp2d2; ð9:4:3Þ

where W = 12t is a bandwidth in 3D for the simple cubic lattice. If we introduce
the uncorrelated band mass according to [44, 45, 47]:
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m ¼ 1
2td2

; ð9:4:4Þ

then for the spectrum we have:

eðpÞ ¼ �W

2
þ p2

2m
: ð9:4:5Þ

Correspondingly for the chemical potential at low densities:

l ¼ �W

2
þ eF: ð9:4:6Þ

Thus according to [1–4, 43, 44] the 3D Hubbard model at low electron densities
becomes equivalent to 3D Fermi-gas with d-functional (hard-core) repulsive
interaction between particles. The s-wave scattering length a in the renormaliza-
tion scheme of Kanamori for Hubbard interaction [45, 46] reads:

4pa

m
¼ T ¼ Ud3

1� Ud3Kvacð0; 0Þ ; ð9:4:7Þ

where T—is a T-matrix, Kvacð0; 0Þ ¼ �
R d3~p
ð2pÞ3

m
p2—is a Cooper loop for two par-

ticles in vacuum for total frequency X = 0 and total momentum of two particles
~P ¼~p1 þ~p2 ¼ 0.

Diagrammatically Kvac is a product of two vacuum Green-functions, while
Lippmann-Schwinger equation [47, 48] for the T-matrix is illustrated on Fig. 9.7.

In the strong-coupling limit U � W of the Hubbard model and at low density
we have according to [45] (see also [49]):

a� d; ð9:4:8Þ

and thus an effective gas-parameter for the Hubbard model reads[43–45]:

k ¼ 2apF

p
� 2dpF

p
: ð9:4:9Þ

Correspondingly, in analogy with 3D Fermi-gas model, the Hubbard model at
low electron density is unstable towards triplet p-wave pairing below the critical
temperature [43, 44]

Fig. 9.7 Lippmann-Schwinger equation (Bethe–Salpeter equation in vacuum) for the T-matrix
[29, 47] in Kanamori renormalization scheme for Hubbard interaction [1–4]
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TC1� eF exp � 13

k2

� 	

; ð9:4:10Þ

where k is given by (9.4.9). Note that in the absence of the lattice for strong short-
range interaction a * r0, where r0 is the range of the potential.

9.4.2 2D Hubbard Model

The uncorrelated electron spectrum for 2D square lattice reads:

eðpÞ ¼ �2t cos pxd þ cos pyd

 �

: ð9:4:11Þ

Correspondingly, for low electron density nd2 � 1 (where n = pF
2/2p is 2D

electron density) the spectrum yields again [see (9.4.4) and (9.4.5)]:

eðpÞ � �W

2
þ p2

2m
; ð9:4:12Þ

where the band mass is still m ¼ 1
2td2 ; but now W ¼ 8t is a bandwidth for 2D

square lattice. Correspondingly, the chemical potential l � �W
2 þ eF is given

again by (9.4.6).
It is convenient to introduce dimensionless 2D density of electrons:

nel ¼
2eF

W
ð9:4:13Þ

which measures the filling of the band in terms of the half-filled band (nel = 1 for
eF ¼ W

2 in the half-filled case actual for high-TC superconductors).
The gas-parameter of 2D Hubbard model at the strong-coupling limit

U � W and low density was derived in [50] and reads:

f0 ¼
1

ln 4W=eFð Þ ¼
1

ln 8=nelð Þ : ð9:4:14Þ

Correspondingly, in similarity with 2D Fermi-gas model the normal state of 2D
Hubbard model at low density is unstable towards triplet p-wave pairing below the
critical temperature [39–41, 44].

TC1� eF exp � 1

6:1f 3
0

� 	

ð9:4:15Þ

with gas-parameter f0 given by Eq. (9.4.14).
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9.4.3 Qualitative Phase-Diagram at Low Density in 2D

It is interesting to construct qualitative phase-diagram for different SC-instabilities
in the 2D Hubbard model at low electron densities. This project was realized in [43–
45, 51, 54–57, 101, 102]. To do that it is important to note (see [44, 47, 101, 102])
that p-wave pairing with critical temperature given by (9.4.15) is the most ener-
getically beneficial (it corresponds to the highest TC) for U � t and dimensionless
electron density 0\nel ¼ 2eF

W .0:58. In the same time in the weak-coupling case
U B 0.3 t and 0\nel.0:52 the highest TC corresponds to dxy-pairing according to
[51, 57, 101, 102]. For dxy-pairing it is important to take into account the higher
order quadratic corrections to parabolic spectrum:

eðpÞ � l ¼ �2t cos pxd þ cos pyd

 �

� l ¼ p2 � p2
F

2m
�
ðp4

x þ p4
yÞd2

24m
þ
ðp6

x þ p6
yÞd4

720m
ð9:4:16Þ

The critical temperature of dxy-pairing is given by (see [51]):

T
dxy

C � eF exp � 16

f 2
0 n2

el

� 	

ð9:4:17Þ

We should also remember that the superconductive gap for dxy-pairing is given
by [51]:

Ddxy �Dd
0 sinðpxdÞ sinðpydÞ�Dd

0pxpyd2�Dd
0 sin 2u ð9:4:18Þ

for low electron density, where u is the angle between momentum~p and x-axis of
the square lattice. In the same time more traditional dx2�y2 -pairing actual for
optimally doped high-TC materials [52] correspond to the gap [52, 53]:

Ddx2�y2 �Dd
0ðcos pxd � cos pydÞ�Dd

0ðp2
x � p2

yÞd2�Dd
0 cos 2u:�� > ð9:4:19Þ

Fig. 9.8 Qualitative phase-
diagram for SC- pairing in the
2D Hubbard model at low
and moderate electron
densities [45]
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In contrast to p-wave pairing it is described by the second-order (in the gas-
parameter f0) contribution to the effective interaction Ueff. This result [51] for dxy-
pairing was confirmed later on by Zanchi and Schulz [57] in the framework of
renormalization group (RG) approach. We can also mention in this respect the
papers of Hlubina et al. in which the authors get dxy-pairing in weak-coupling case
for nel� 0:62 [54–56]. Finally for larger electron densities nelJ0:6 both in weak-
coupling (U � W) and strong-coupling case dx2�y2 -pairing (which is more con-
ventional for optimally doped high-TC materials) is realized [58–64]. As a result
the qualitative phase-diagram of the repulsive-U Hubbard model at low and
moderate electron densities in 2D case looks like as follows (see Fig. 9.8).

9.4.4 Superconductivity in 2D Hubbard Model at Larger
Electron Densities nel £ 1

At larger densities nel� 1 close to half-filling eF � W
2


 �

the spectrum of electrons
becomes almost hyperbolic [60, 61]:

eðpÞ ¼ 	
ðp2

x � p2
yÞ

2m
ð9:4:20Þ

close to the corner points where the Fermi-surface almost touches the Brillouin
zone (0, p); (0, -p) and (p, 0); (-p, 0) (see Fig. 9.9).

There are here the extended almost flat parts of the Fermi-surface which satisfy
the perfect nesting criteria for exactly half-filled case (nel = 1).

eð~Pþ ~QÞ ¼ �eð~PÞ; ð9:4:21Þ

where ~Q ¼ ðp=d; p=dÞ is a nesting-vector for the 2D square lattice.
As a result the Kohn’s anomaly becomes logarithmically strong here as in 1D-

case (see [32, 60, 61,]). Additional increase for TC is due to Van-Howe singularity

Fig. 9.9 Almost half-filled
situation (nel ? 1) for the 2D
Hubbard model on the square
lattice. At the corner points
(0, p); (0, -p) and (p, 0);
(-p, 0) the Fermi-surface
almost touches the Brillouin
zone. We also show the

nesting-vector Q
!¼ p

d ;
p
d


 �

on
the figure
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in the density of states N2D(0) which is also logarithmically strong [36, 61]. As a
result both polarization operator PðqÞ in (9.3.4) and the Cooper loop (in sub-

stance) Kð0; 0Þ ¼ �
R 1�2nFðepÞ

2ðep�lÞ
d2~p
ð2pÞ2 contains ln2-contribution. Thus, in the weak-

coupling case for the coupling constant

f0 ¼
U

8p t
� 1 ð9:4:22Þ

and in the second order of perturbation theory (in f0) for the effective interaction
we have:

Ueff � f0 þ f 2
0 ln2 l

t
; ð9:4:23Þ

where l � t is a chemical potential close to half-filling and we still assume that
l[ TC

d. Note that in the expansion (9.4.23) an effective parameter of the per-
turbation theory is [60, 61]:

f0 ln2 l
t
: ð9:4:24Þ

Correspondingly as it was shown by Kozlov [60] the equation for the dx2�y2 -
wave critical temperature TC

d reads for almost half-filled case:

f 2
0 ln3 t

l
ln2 l

Td
C

� 1; ð9:4:25Þ

or equivalently

Td
C � l exp � 1

f 2
0 ln3ð t

lÞ

( )

: ð9:4:26Þ

Thus we see that small coupling constant f0 � 1 (9.4.22) is enhanced by large
value of ln3ð t

lÞ � 1 in (9.4.26)—nice result of Kozlov. For the sake of com-

pleteness let us mention here other important articles where dx2�y2 -wave pairing
with rather high TC was obtained by a variety of computational approaches for 2D
Hubbard model at optimal doping nel�ð0:8ffi 0:9Þ [65–73].

9.4.5 Parquet Solution at Weak-Coupling and Close
to Half-Filling

Very close to half-filling when l * TC we have so-called doubly logarithmic
parquet solution of Dzyaloshinskii, Yakovenko [61] with the competition between
SC and SDW-instability in particle–particle (SC) and particle-hole (SDW—spin
density wave) channels. Here for l * TC from (9.4.26) we get:
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f 2
0 ln4 t

l
� f 2

0 ln4 t

Td
C

� 1: ð9:4:27Þ

Hence for the dx2�y2 -wave critical temperature:

Td
C � t exp � const

ffiffiffiffi

f0

p

( )

ð9:4:28Þ

an elegant result of [61]. We should mention here also the results of [72–76]. The
maximal critical temperature in the 2D Hubbard model according to qualitative
considerations of Kivelson et al. [77–79] corresponds to intermediate coupling
case U/W * 1 and optimal concentrations nel�ð0:8ffi 0:9Þ. TC here can reach the
desired values of 102 K realistic for optimally doped cuprates [79, 80, 101, 102].

The border between AFM (or SDW) phase and superconductive phase of the
high-TC superconductor (described by 2D Hubbard model) in weak-coupling case
U � W and very close to half-filling (for doping concentrations x = (1 - nel)
� 1) according to Kivelson [78] at the temperature T ? 0 is given by:

xC ¼ ð1� nelÞ� exp �2p

ffiffiffiffi

t

U

r

� 	

; ð9:4:29Þ

and we have the same expression for 1
ffiffiffi

f0
p �

ffiffiffi

t
U

p

in the exponent of (9.4.29) for xC.

Another interesting observation belongs to Kopaev and Belyavsky [82, 83]
namely that the spectrum (9.4.11) on the square lattice at half-filling satisfies also
‘‘mirror nesting’’ property:

eðPÞ ¼ �eð�Pþ QÞ ð9:4:30Þ

This property is in favor of Cooper pairing with large total moment of a pair ~Q
in a clean case (no impurities).

9.5 Superconductive Transitions in the Jelly Model
for Coulomb Electron Plasma

Very recently in connection with the high-TC physics Alexandrov and Kabanov
[81] raised the very important question of the role of full Coulomb interaction
(which is not reduced to onsite Hubbard repulsion but is extended over several
coordinate spheres) for non-phonon mechanisms of superconductivity. They
claimed that in the 3D jelly model for reasonable electron densities rS B 20, where

rS ¼
1:92
pFaB

ð9:5:1Þ
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is correlative radius and aB ¼ 1
me2 ð�h ¼ 1Þ is Bohr radius for electron, the super-

conductive critical temperatures correspond to the pairing with large orbital
momenta (l � 1) and are very low.

Indeed both the perturbative analysis of Chubukov and Kagan [84] (see also
[44]) as well as numerical calculations of Alexandrov and Kabanov [81] provide
small critical temperatures in 3D dense electron plasma.

9.5.1 Cascade of Superconductive-Transitions in the Dense
Electron Plasma

To be more specific the authors of [44, 84] predicted a cascade of SC-transitions
with orbital moment of the Cooper pair l being dependent upon electron density rS:

l [ lC ¼
ln rSj j
ffiffiffiffi

rS
p 1þ 7

2
ln ln rSj j

ln rSj j þ � � �
� �

: ð9:5:2Þ

The critical temperature of the superconductive transition:

TC1 � eF exp � 1
ke

� 	

; ð9:5:3Þ

where the coupling constant ke� 4pe2

j2 N3Dð0Þ
� 
2

1
l4 and j2 ¼ 6pne2

eF
is Thomas-Fermi

wave-vector squared [44, 84]. (Thus 4pe2

j2 N3Dð0Þ� 1
2 and ke� 1

4l4Þ. Note that TC1

corresponds for given density rS to l = lC(rS) from (9.5.2) and is very low. The
authors of [81] get qualitatively the same result numerically with maximal but still
very low TC corresponding to f-wave pairing (l = 3) for 0 \ rS B 18. We can
honestly say that the 3D jelly model is not very promising for superconductivity
with reasonable high-TC in case of dense Coulomb plasma.

9.5.2 The Dilute Electron Plasma

The possibility of the p-wave SC with critical temperatures TC1 in the range
*(10-3 7 10-2) K for 3D electron plasma of intermediate and small electron
densities (rS � 1) (which are relevant for simple and noble metals like Na, K, Ag,
Au or for semimetals) was predicted in the papers [84–86]. Here
TC1� eF exp �1= k1j jf g, where k1j j ¼ 0:07 in [84] and k1j j ¼ 0:06 in [86].

The most realistic region of densities for p-wave pairing in 3D dilute plasma is
possibly 20 B rS B 35 according to [84, 86]. In the same time some groups [87,
88] believe more in Khodel-Shaginyan [88] type of Fermi-surface reconstruction
(and not in a SC-transition) at these densities or more close to Wigner crystalli-
zation instability [36]. It is a very difficult question in particular in 2D where
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rigorously speaking we should sum up an infinite parquet class of diagrams for the
effective interaction (irreducible bare vertex) Ueff in the Cooper channel.

9.6 Superconductivity and Phase Separation
in Shubin-Vonsovsky Model

The situation for superconductivity with reasonable TC becomes much more
favorable on the lattice if we consider so-called Shubin-Vonsovsky model [89, 90]
with onsite Hubbard repulsion U and additional Coulomb repulsion V on the
neighboring sites [90]. In real space the Hamiltonian of the Shubin-Vonsovsky
model reads:

Ĥ0 ¼ Ĥ � lN̂ ¼ �t
X

\ij [ r

cþircjr þ U
X

i

ni"ni# þ
V

2

X

\ij [
ninj � l

X

ir

nir;

ð9:6:1Þ

where ni ¼
P

r
nir—total density on site i (for both : and ; projection of electron

spin. It is reasonable to assume (see [91]) that in (9.6.1) we have the following

estimates for the parameters of the model:

U� e2

e aB
; V � e2

e d
; W � 1

md2
; ð9:6:2Þ

where W is a bandwidth, e is the effective dielectric permittivity and aB� e
me2 ð�h ¼ 1Þ

is Bohr radius in ionic media. Thus, for e * 1, aB * 0.5 Å and d * (3 7 4) Å
and in the limit aB/d � 1 we come to the following hierarchy of parameters [91]:

U � V � W : ð9:6:3Þ

The effective vacuum interaction in Shubin-Vonsovsky model in real space
behaves as follows (see Fig. 9.10) in the strong-coupling case (9.6.3).

Fig. 9.10 Effective vacuum
interaction in Shubin-
Vonsovsky model in the
strong-coupling case (9.6.3)
(see [91])
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9.6.1 p-Wave Superconductivity in Shubin-Vonsovsky Model
at Low Density

Note that Shubin-Vonsovsky model [89, 90] is the most repulsive and the most
unbeneficial model for SC. In the same time it is useful toy-model to study the
effects of intersite Coulomb repulsion on SC and Mott–Hubbard metal-dielectric
transition [89–92] as well as the physics of the nanoscale phase separation [93, 94].

After Fourier transformation the Hamiltonian of the Shubin-Vonsovsky model
reads:

Ĥ0 ¼
X

~pr

eð~pÞ � l½ � cþ~prc~pr þ U
X

~p~p0~q

cþ~p"c
þ
~p0þ~q#c~pþ~q#c~p0"

þ
X

~p~p0~q
rr0

Vð~p;~p0Þcþ~prcþ~p0þ~qr0c~pþ~qr0c~p0r; ð9:6:4Þ

where in 3D case:

Vð~p;~p0Þ ¼ V cosðpx � p0xÞd þ cosðpy � p0yÞd þ cosðpz � p0zÞd
� 


: ð9:6:5Þ

At the low density pd � 1 the expansion up to quadratic terms gives effective
vacuum interaction in 3D for s-wave and p-wave harmonics respectively:

US
eff vac ¼ U þ 6V þ oðp2d2Þ; ð9:6:6Þ

and

UP
eff vac ¼ 2V~p~p0d2 ð9:6:7Þ

The renormalization of the effective vacuum interaction in the framework of
Kanamori T-matrix approximation [46] yields for s-wave and p-wave scattering
lengths [91] in the strong-coupling U � V � W and low density nd3 \ 1 case:

aS� d; ð9:6:8Þ

and

aP� d; ð9:6:9Þ

where TS ¼ 4paS
m and TP ¼ 4p

m 2aPð~p~p0Þd2 are T-matrices in s-wave and p-wave
channels.

Thus the dimensionless s-wave gas-parameter kS = k = 2dpF/p as in the
repulsive-U Hubbard model [see (9.9.4)], while the dimensionless p-wave gas-
parameter:

kp�ðpFdÞ3 ð9:6:10Þ
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in agreement with general quantum–mechanical consideration for slow particles
(pFd \ 1) in vacuum (see [48]).

Thus in 3D a normal state of the Shubin-Vonsovsky model at strong-coupling
and low densities is again unstable towards triplet p-wave pairing. The irreducible
bare vertex in substance reads:

N3Dð0ÞUl¼1
eff ¼ k2

SPl¼1 þ kP: ð9:6:11Þ

As a result the critical temperature in the main order of the s-wave gas-
parameter is given by (9.4.10) again in similarity with 3D Hubbard model.

The presence of the additional Coulomb repulsion V on the neighboring sites in
the model changes only the preexponential factor in (9.4.10). Thus situation in the
3D Shubin-Vonsovsky model and low electron density is much more favorable for
SC with reasonable TC even in the most repulsive strong-coupling case (in contrast
with the situation in 3D jelly model for dense electron plasma).

Analogously in strong-coupling and low density in 2D case the s-wave
dimensionless gas-parameter is again fS ¼ f0 ¼ 1

ln 4W=eFð Þ ¼
1

ln 8=nelð Þ [see (9.4.14)] as

in the 2D Hubbard model, while the dimensionless p-wave gas-parameter:

fP� p2
Fd2 ð9:6:13Þ

in 2D again in agreement with general quantum–mechanical considerations [48]
for slow particles in vacuum. The irreducible bare vertex in substance reads in 2D:

Ul¼1
eff N2Dð0Þ ¼ �6:1f 3

S þ ap2
Fd2; ð9:6:14Þ

where a is numerical coefficient.
Hence in the main order of 2D s-wave gas-parameter the p-wave critical

temperature is given again by (9.4.15) in exact similarity with 2D Hubbard model.
The presence of the additional Coulomb repulsion V again changes only the
preexponential factor.

Fig. 9.11 Qualitative phase-
diagram of the Shubin-
Vonsovsky model in the
strong-coupling case. At
nel = 1 AFM-state appears in
the model, while at nel ¼ 1=2
we have the checkerboard
CO-state [91]
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9.6.2 Localization and Phase Separation in Shubin-
Vonsovsky Model at Larger Densities

At larger dimensionless densities nel C 0.5 (nel = 0.5 corresponds to quarter-fill-
ing of the band) there are, however, extended regions of phase-separation in
Shubin-Vonsovsky model in the strong-coupling limit U � V � W.

To be more specific in the model [89, 90] there are two types of localization:
Mott–Hubbard localization with an appearance of AFM-state at half-filling
(nel ? 1) [1–4, 89, 90, 92] and Verwey localization with an appearance of
checkerboard charge-ordered (CO) state at quarter-filling (nel ? �) [99, 100].

Close to nel = � and nel = 1 we have extended regions of nanoscale phase-
separation [92–94, 98]. The qualitative phase-diagram of the Shubin-Vonsovsky
model in the strong-coupling case is presented on Fig. 9.11.

If we increase the density from nel ? 0 to nel = � - x, then at the critical
concentrations [93, 94]:

nC ¼ 1=2� xC �
W

V

� �3=5

in 3D; ð9:6:16Þ

and

nC ¼ 1=2� xC �
W

V

� �1=2

in 2D ð9:6:17Þ

the system undergoes the first-order phase-transition into a phase-separated state
with nanoscale metallic clusters inside charge-ordered checkerboard insulating
matrix (see Fig. 9.12). At critical concentration nel = � - xC the metallic clusters
start to touch each other. As a result all the sample volume becomes metallic for
nel \ � - xC. The more detailed analysis of Verwey localization at nel = � and
nanoscale phase-separated state for � - xC \ nel \ � will be a subject of Chap. 15

Thus we can not extend our calculations for TC in homogeneous case to den-
sities larger than nel = � - xC in the strong-coupling limit of Shubin-Vonsovsky
model. However it is interesting to construct SC phase-diagram of the model for
nel\1=2� xC and to find the regions of p-wave, dxy and dx2�y2 -pairing. The work
along these lines is in progress.

Another interesting problem is to consider the opposite weak-coupling Born
case W [ U [ V which can be realized for large Bohr radius aB [ d or corre-
spondingly for large dielectric permittivity e � 1 (note that real high-TC materials

Fig. 9.12 Phase-separated state at the densities 1=2 � xC\nel\ 1=2 with nanoscale metallic
clusters inside CO checkerboard insulating matrix. At critical concentration nel ¼ 1=2 � xC the
metallic clusters start to touch each other and all the volume of the sample becomes metallic [91]
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are in the difficult intermediate coupling regime e C 1 and aB * d). In the weak-
coupling case Verwey localization [99] is absent for nel = � and we can construct
superconductive phase-diagram of the Shubin-Vonsovsky model for p-wave, dxy

and dx2�y2 -pairing for all densities including almost half-filled case [101, 102].
The first numerical results in this respect were obtained in [79], where the

authors found (besides p-wave, dxy and dx2�y2 -pairing) also the regions of extended
s-wave pairing and g-wave pairing for 0 \ nel \ 0.95. These results were
improved in a more elaborate numerical analysis in [101, 102], where the authors
took into account all the second order contributions (* U2, * UV, and * V2) to
effective interaction Ueff in the second order of the weak-coupling Born
approximation.
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Chapter 10
Strong TC Enhancement in Spin-Polarized
Fermi-Gas and in Two-Band
Superconductors

In previous (Chap. 9) we discuss the possible unconventional SC of p-wave and
d-wave character in strongly correlated fermion systems with repulsive interaction
between particles. The basic mechanism of SC which we discussed at low electron
densities was Kohn-Luttinger mechanism (see Ref. [10] in Chap. 9) and its
extension on triplet p-wave pairing by Fay, Laser (see Ref. [28] in Chap. 9) and
Kagan, Chubukov (see Ref. [29] in Chap. 9). However, the critical temperatures of
3D and 2D p-wave pairing given by (9.4.10) and (9.4.15) are usually rather low,
especially in 3D.

The legitimate question then appears whether it is possible to increase TC

already at low density and to get experimentally feasible critical temperatures?
The answer to this question is positive and is connected with 2 possibilities:

1. To apply external magnetic field (or strong spin-polarization) to triplet p-wave
SC [1–4];

2. To consider the two-band situation especially for multiband SC with one nar-
row band [3–6].

In both cases the most important is to separate the channels for the formation of
Cooper pair and for the preparation of the effective interaction [1, 5, 3, 4].

10.1 TC Enhancement in Spin-Polarized Neutral Fermi-
Gas

In magnetic field (or in the presence of the strong spin-polarization) the Cooper
pair according to [1] is formed by two fermions with spins ‘‘up’’, while an effective
interaction is prepared by two fermions with spins ‘‘down’’ (see Fig. 10.1).
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10.1.1 3D Spin-Polarized Fermi-Gas

As a result the Kohn’s anomaly is strongly increased. In the absence of magnetic
field (for H = 0) the Kohn’s anomaly in 3D reads: q� 2pFð Þ ln q� 2pFj j [see
(9.3.5)] where q2 ¼ 2p2

F 1� cos hð Þ. Physically Kohn’s anomaly is important for
q ? 2pF (diameter of Fermi-sphere) or for angles h ? p—backward scattering

between incoming and outgoing momenta ~p and ~k for the Cooper channel

q ¼ ~p�~k
ffi

ffi

ffi

ffi

ffi

ffi
; ~pj j ¼ ~k

ffi

ffi

ffi

ffi

ffi

ffi
¼ pF

� �

: In terms of the angle h between ~p and ~k

h ¼ \~p~k
� �

the Kohn’s anomaly for H = 0 reads:

Psin g qð Þ� q� 2pFð Þ ln q� 2pFj j � p� hð Þ2ln p� hð Þ ð10:1:1Þ

and only second derivative of Psin g hð Þ with respect to (p-h) diverges. In the same
time for H = 0 the Fermi-momenta for the particles with spins ‘‘up’’ and ‘‘down’’
are different (pF: = pF;) and thus:

Psin g hð Þ� q" � 2pF#
� �

ln q" � 2pF#
ffi

ffi

ffi

ffi� h� hCð Þ ln h� hCj j; ð10:1:2Þ

where hC differs from p proportional to (pF:/pF;-1). Correspondingly already first
derivative of Psin g hð Þ with respect to (h-hC) diverges. Unfortunately for H = 0
there is a competing process namely the decrease of the density of states of the
fermions with ‘‘down’’ spins in P## hð Þ on Fig. 10.1:

N3D
# 0ð Þ ¼ mpF#

4p2
: ð10:1:3Þ

As a result of this competition the critical temperature TC
:: (for Cooper pair

formed by two ‘‘up’’ spins) has strongly non-monotonous (reentrant) behavior with
large maximum (see Fig. 10.2).

Fig. 10.1 Separation of the channels for Cooper pairing and effective interaction in triplet
neutral SC. An effective interaction is proportional to polarization operator P## qð Þ for down (with
pF#) spins in the second order of perturbation theory. The Cooper pair is formed by two spins up
(with pF") [1, 2, 6]
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In terms of the polarization degree:

a ¼ n" � n#
n" þ n#

; ð10:1:4Þ

where n" ¼ p3
F"=6p2 and n# ¼ p3

F#=6p2 are the densities of ‘‘up’’ and ‘‘down’’
fermions in 3D, the critical temperature has a pronounced maximum for a = 0.48
(48 % of the polarization). Correspondingly d = pF:/pF; = 1.43 at maximum
(see Ref. [44] in Chap. 9) [1, 3, 4], where in 3D:

a ¼ d3 � 1

d3 þ 1
: ð10:1:5Þ

.
Note that polarization operator P## qð Þ in Fig. 10.1 reads in 3D:

P## q"
� �

¼ N3D
# 0ð Þ 1þ

4p2
F# � q2

"
4pF#q"

ln
2pF# þ q"
2pF# � q"
ffi

ffi

ffi

ffi

" #

: ð10:1:6Þ

Correspondingly in terms of d = pF:/pF; from (10.1.5) and angle h the trans-
ferred momentum squared q2

" ¼ 2p2
F" 1� cos hð Þ the polarization operator is given

by:

P## hð Þ ¼ N3D
# 0ð Þ 1þ

1� d2 sin2 h
2

2d sin h
2

ln
1þ d sin h

2

1� d sin h
2

ffi

ffi

ffi

ffi

" #

: ð10:1:7Þ

The evaluation of p-wave harmonics Pl¼1
## is again elementary and can be done

analytically as in unpolarized case (for d = 1) (see [1]). For us it is important to
represent

T""C1 ¼ TC1 a ¼ 0ð Þ e
f að Þ
k2 ; ð10:1:8Þ

(where k = 2apF/p is 3D gas-parameter) and show that for small a � 1 [1]

f að Þ ¼ 10
9

a
7� 4 ln 2ð Þ
2 ln 2� 1ð Þ2

[ 0 ð10:1:9Þ

Fig. 10.2 Dependence of the
p-wave critical temperature
TC
:: (for pairing of two up

spins) from the degree of
spin-polarization in 3D
polarized Fermi-gas with
repulsion [1, 3, 4]
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is positive and linear in a. Note that for not very strong external magnetic field
lBH \ eF0 (eF0 = pF0

2/2m - Fermi-energy for H = 0) we have the linear relation
between a and H:

a � 3
2
lBH

eF0
� 1 ð10:1:10Þ

in 3D case. Thus TC1
:: increases for a � 1. In the opposite case of practically full

polarization (a ? 1 or 1-a ? 0) we have [1, 3, 4]:

f að Þ ¼ � 9

22=3

1

1� að Þln 2
1�að Þ
! 1: ð10:1:11Þ

Hence TC1
:: ? 0 for a ? 1. The asymptotic behavior of f(a) for a � 1 and

(1-a) � 1 justifies the appearance of the maximum of TC1
:: in between. In maximum:

maxT""C1 ¼ T""C1 a ¼ 0:48ð Þ� eFe�
7
k2 ; ð10:1:12Þ

and we see that in the second order of perturbation theory the expression in the
main exponent for TC increases practically in 2 times (from k2/13 to k2/7) giving a
large TC-enhancement in 3D spin-polarized Fermi-gas [1, 3, 4]. Note that the
behavior of the critical temperature at a ? 1 is not accidental in this approxi-
mation, namely TC1

:: (a = 1) = 0 because of the absence of ‘‘down’’ spins in fully
polarized gas. TC1

:: (a = 1) is non-zero only in the third order of the gas-parameter
k = 2apF/p which is in accordance with Pauli principle for slow particles in
vacuum (see Ref. [48] in Chap. 9) [p-wave harmonic of the scattering amplitude
f1 * (a pF)3].

Note also that while deriving Eqs. (10.1.8), (10.1.9) and (10.1.11) we will
focused on the main exponents for TC1 and TC1

:: neglecting the difference between
eF and eF: in the perexponential factors.

10.1.2 2D Spin-Polarized Fermi-Gas

This effect is even more pronounced in 2D spin-polarized Fermi-gas. Here, as we
discussed in Chap. 9 in unpolarized case the strong Kohn’s anomaly Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� 2pF
p

is
ineffective for SC in the second order of perturbation theory for effective interaction
Ueff(q). However, the situation is dramatically changed in spin-polarized case.

For a = 0 in 2D:

Psin g qð Þ�Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q" � 2pF#
p

6¼ 0; ð10:1:13Þ

and thus 2D Kohn’s anomaly is now ‘‘switched on’’ for SC already in the second
order of the gas-parameter.

The exact calculation of P## qð Þ in 2D yields in p-wave channel (for magnetic
number m = 1):
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N2D
# jUm�1

eff j ¼ 8f 2
0

d� 1ð Þ
d2 ; ð10:1:14Þ

where in 2D

a ¼ d2 � 1

d2 þ 1
: ð10:1:15Þ

Correspondingly the critical temperature for p-wave pairing of two ‘‘up’’ spins
reads in second order of 2D gas-parameter f0:

T""C1� eF exp � d2

8f 2
0 d� 1ð Þ

� 	

; ð10:1:16Þ

From (10.1.16) we see that for d = 1 (unpolarized case) TC1
:: ? 0 and super-

conductive transition arises only in third order of the gas-parameter for the
effective interaction.

For a ? 1 (d ? ?) we again have TC1
:: ? 0 in second order in f0. Thus, we

have a very large maximum in between again. It corresponds to d = pF:/pF; = 2
or, a = 0.6. Hence for TC1

:: in maximum we get:

maxT""C1 ¼ T""C1 a ¼ 0:6ð Þ� eF exp � 1
2f 2

0

� 	

: ð10:1:17Þ

The dependence of TC1
:: from a in 2D spin-polarization Fermi-gas is shown on

Fig. 10.3.
The maximum is very broad in 2D—it stretches form a * 0.1 till a * 0.9.
Note that in this approximation (in second order in gas parameter evaluation of

TC1
:: ) TC1

:: (a = 1) = 0 again due to the absence of ‘‘down’’ spins in 100 % polarized
case.

10.1.3 Spin-Polarized Superfluid 3He

The application of the theory for dilute spin-polarized mixture will be a subject of
the next Chapter (Chap. 11). Here we would like to emphasize that even for dense

Fig. 10.3 Dependence of the
critical temperature TC1

:: for
two up spins from the
polarization degree a in 2D
spin-polarized Fermi-gas
[1, 3, 4]
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superfluid 3He (where k * 1.3) we get reasonable estimates for TC1
::-increase.

These estimates are confirmed by the experiments of Frossati et al. [7–9] in
Kamerlingh-Onnes Laboratory in Leiden. Namely in unpolarized 3He-A:

TC1 a ¼ 0ð Þ ¼ 2:7 mK: ð10:1:18Þ

In the same time for a = 6 % of the polarization (in magnetic fields *15 T)
TC1
:: (a = 6 %) & 3.2 m K and we have 20 % increase of TC.

In maximum for A1-phase of superfluid 3He we predict

maxT""C1 ¼ T""C1 a ¼ 0:6ð Þ ¼ 6:4TC1: ð10:1:19Þ

The similar estimate for reentrant behavior of TC1
:: (a) and for TC1

:: in maximum
was proposed in [10] on the basis of more phenomenological approach based on
Landau Fermi-liquid theory for superfluid 3He.

10.2 TC Enhancement in Quasi-2D Charged SC in Parallel
Magnetic Field

In 2D electron gas in parallel magnetic field: ~H ¼ H~ex (see Fig. 10.4) the vector-
potential

~A ¼ Hz~ey ð10:2:1Þ

does not change the motion of electrons and Cooper pairs in (xy) plane [the W-
function for this problem W ~rð Þ ¼ eipxxþipyy/ zð Þ].

Hence in this geometry diamagnetic Meissner effect [11] (which changes the
motion of the Cooper pair in plane if magnetic field is perpendicular to the plane)
is totally suppressed [12–16]. Hence 2D SC in parallel magnetic field becomes
equivalent to neutral (uncharged) 3He-monolayer and only Pauli paramagnetic
effect is present [2, 14]. According to this effect even if the singlet s-wave pairing
organized by two electrons with spins ‘‘up’’ and ‘‘down’’ was present in SC at
H = 0 it will be totally suppressed in magnetic fields exceeding Pauli paramag-
netic limit [14, 15]

Fig. 10.4 2D electron gas in

parallel magnetic field H
!¼

H e!x: Vector-potential A
!¼

Hz e!y does not change the
motion of electrons and
Cooper pairs in (xy)
plane [2–4]

320 10 Strong TC Enhancement in Spin-Polarized Fermi-Gas



H [ HP ¼
TCO

glB
; ð10:2:2Þ

where lB is Bohr magneton and g is gyromagnetic ratio (or Lande factor) (note
that for TCO * 1 K and g * 1: HP * 1 T). As a result only p-wave pairing with
the symmetry of A1-phase (pairing of two electrons with spins ‘‘up’’) that is with
Stot = Sz

tot = 1 survives in large magnetic fields (the two electrons should lie on
the same Fermi-surface with the radius pF:).

Hence instead of a standard behavior of a critical magnetic field HC versus
temperature [11] presented on Fig. 10.5 we have very unusual (reentrant behavior)
of p-wave critical temperatures in 2D superconductor in parallel magnetic field
(see Fig. 10.6).

The critical temperature of p-wave pairing depends upon polarization degree
according to (10.1.16). At small polarization degrees:

a ¼ glBH

eF0
� 1 ð10:2:3Þ

in 2D case. For low density electron systems with eF * 30 K in high magnetic
fields H * 15 T and g * 1 polarization degree a * 0.5 and we can get
TC1
:: * 0.5 K in accordance with (10.1.16) and (10.1.17) which is quite nice.

It is important to note that the results (10.1.16) and (10.1.17) are valid for 2D
Fermi-gas with short-range repulsion or for 2D Hubbard model. The question is
how these results will change in 2D Coulomb plasma (or 2D electron gas with
screened Coulomb interaction). Here the coupling constant f0 in (10.1.16) and
(10.1.17) can be calculated only within accuracy of Random Phase Approximation
(RPA) for metallic electron densities with correlation radius rS� 1

pFaB
� 1

(aB ¼ e
m�e2 is Bohr radius, m* is effective mass and e is effective dielectric per-

mittivity) [15, 17]. It is shown in [17] that in 2D electron gas (2DEG):

Ueffðqk ¼ 0Þ ¼ 2pe2

j2D
ð10:2:4Þ

is 2D-projection of 3D screened Coulomb interaction. j2D ¼ 4pN2D 0ð Þe2 is
effective 2D Thomas–Fermi wave vector or screening vector [14, 16], qk is

Fig. 10.5 Standard behavior
of a critical magnetic field as
a function of temperature in
3D superconductors, which
are subject of Meissner effect
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projection of vector~q on (xy) plane and N2D(0) = m/2p is a density of states in 2D.
(Note that j2D ¼ 2me2 and thus UeffðqkÞ ¼ p

m.)
Correspondingly the dimensionless coupling constant for screened Coulomb

interaction reads:

f0 ¼ N2D 0ð ÞUeff qk ¼ 0
� �

¼ 1
2

ð10:2:5Þ

—remarkable result which is valid also for 3D plasma where N3D(0) = m pF/2p2

and Ueff q ¼ 0ð Þ ¼ 4p e2

j2 : Thus effective gas-parameter for screened Coulomb
plasma f0 = � does not depend upon density both in 3D and 2D case.

Note that the RPA is exact in 3D and 2D for large densities and small corre-
lation radius rS � 1 (dense electron plasma considered in paragraph Sect. 9.5.1),
but also it is not bad (at least in 3D) for standard metallic densities (2 B rS B 6)
because the effective parameter of expansion in the energy-functional of 3D
electron plasma is actually *rS/6 [15] and (see Refs. [81, 84] in Chap. 9). We can
hope that (10.1.16) and (10.1.17) with f0 * � provides qualitative estimates for
2D dense electron plasma.

Note that the most important experimental limitation to this scenario is con-
nected with the demands on the purity of the sample. In accordance with Ab-
rikosov-Gor’kov results for paramagnetic impurities [18] (more exactly with
Larkin results [19] for non-magnetic impurities in p-wave SC) it means that for
inverse scattering time:

c ¼ 1=s\TC1 �h ¼ kB ¼ 1ð Þ: ð10:2:6Þ

For TC1 * 0.5 K we get then s C 2�10-11 sec for scattering time of electrons
on impurities. Accordingly in 2D case the sheet conductivity for eF * 30 K and
TC1 * 0.5 K:

Fig. 10.6 Suppression of
s-wave pairing and reentrant
behavior of p-wave critical
temperatures in 2D SC in
parallel magnetic field H(T).
p-wave pairing is formed by
two electrons living on larger
Fermi-surface (with pF"),
while effective interaction is
formed by two electrons
with down spins (with pF#)
[2, 3, 4]
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rh [
e2

2p�h

2eF

TC1
� 120

e2

2p�h
: ð10:2:7Þ

Hence plaquette resistance:

Rh\
1

120
2p�h

e2
� 0:2 k X; ð10:2:8Þ

and mobility:

lel ¼
es
m�
¼ 3 � 104 me

m�e


 �

cm2 V�1 s�1: ð10:2:9Þ

Thus for semimetals or degenerate 2D semiconductive layers with light effec-
tive mass m* * 0.1 me (heterostructures, inverse layers):

lel ¼ 105 cm2 V�1 s�1; ð10:2:10Þ

which requires very clean samples.
Note that the highest mobility for GaAs-AlAs heterostructures utilized for the

measurements of Fractional Quantum Hall effect lel * 107 cm2 V-1 s-1. In these
systems eF * 30 K for densities n2D * 1012 cm-2, Bohr radius aB = e/(m*e2)
with effective dielectric permittivity e * 4. Thus, the correlation radius rS * 4,
so we are far from Wigner crystal case (rS * 20 in 2D) [15, 17] and can hope that
RPA theory works quite well also in 2D for these densities. Thus, we can justify
the estimates for TC1

:: with f0 = � (10.1.16) and (10.1.17) for heterostructures.
Note that if we consider 2D organic superconductors like a-(BEDT-TTF)2I3 or

intercalated systems (dichalcogenides) TaS2, TaSe2 then their mobilities are also
very high, but they have Fermi-energies eF * (103 7 104) K which are very
difficult to polarize even with very high magnetic fields (maximal possible sta-
tionary magnetic fields are equal to 30 T, maximal fields in pulsed regime are 100 T
today, hence polarization degree a ¼ glBH

eF0
will be very low and TC-s will be low).

If we start to think about 2D layer of p-wave heavy-fermion SC like UBe13 with
m* * 200 me and eF * (30 7 50) K, than we should realize that it is very dif-
ficult now to grow very thin films of high quality and it is necessary also to take
into account strong spin-orbital coupling and the influence of the crystalline fields
in these substances.

It is a very nice challenge for experimentalists to grow very good quality
2D-samples and to apply very parallel magnetic fields or to change gradually
tilting angle for a field from p/2 to 0 and measure an appearance of p-wave SC at
very small angles (note that already very small perpendicular component of the
magnetic field will destroy SC via diamagnetic Meissner effect).

In the end of this Section let us mention that in principle a reentrant behavior of
TC from magnetic field (similar to the one shown on Fig. 10.6) can be realized
even in 3D superconductors in the so-called superquantum limit [20, 21]. This
limit corresponds to very high magnetic fields and very small Fermi-energies when
Larmor frequency xL * lBH [ eF (note that eF � TC). In this situation we
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should take into account Landau quantization of electron levels in magnetic field
(diamagnetic one-particle effect). Moreover for xL [ eF only one Landau level is

filled, so the spectrum of electrons becomes quasi one-dimensional eðpÞ ¼ �hxL
2 þ

p2
z

2m

and we again have parquet situation with the necessity to sum up an infinite
number of diagrams for effective interaction Ueff in particle–particle and particle-
hole channels. Halperin and Tesanovic [21] showed that as a result a reentrant
behavior takes place (the SC appears again in very high fields).

10.3 Strong TC Enhancement in the Two-Band
Superconductors

Another possibility to enhance the critical temperature of p-wave pairing is to
consider the two-band model with two sorts of fermions. To increase TC we should
again separate the channels: the two particles of sort 1 form the Cooper channel
(for pF1 [ pF2), and the effective interaction is formed by two particles of sort 2
(see Fig. 10.7).

In this case all the results of (Sect. 10.1) are valid with the change of d = pF:/
pF; on d = pF1/pF2. The gas-parameters k and f0 now depend upon the interaction
between the particles of sort 1 and sort 2. In the simplest case it reads U12

2

P

i
n1in2i;

where U12 is interband interaction, n1i and n2i are the densities of the particles with
sort 1 and 2 on site i.

Let us consider the physics which appears in the two-band model for the most
interesting case of very different masses of the two sorts of fermions.

10.3.1 The Two-Band Hubbard Model with One Narrow
Band

On the lattice the most general and simple model which describes this situation is
the two-band Hubbard model with one narrow band. This model is very rich. It
describes adequately mixed valence systems [22, 23] such as uranium based

Fig. 10.7 Effective
interaction for two sorts of
particles with pF1 [ pF2

(see also Fig. 10.1)
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heavy-fermions and also some other novel SC and transition metal systems with
orbital degeneracy such as complex magnetic oxides (CMR systems) in optimally
doped case. Moreover it contains such highly nontrivial effect as electron-polaron
effect [24–26] in the homogeneous case. It also shows the tendency towards phase
separation [27] for a large mismatch between the densities of heavy and light
bands as well as anomalous resistivity characteristics (we will study them in the
next chapters). In addition to that it describes anomalous p-wave SC of enhanced
Kohn-Luttinger type which we will study detaily in this Section. The Hamiltonian
of the two-band Hubbard model in real space reads (see Ref. [47] in Chap. 9 and
[6]):

Ĥ0 ¼ � th
X

ijh ir
aþirajr � tL

X

ijh ir
bþirbjr � e0

X

ir

nr
ih � l

X

ir

nr
iL þ nr

ih

� �

þ Uhh

X

i

n"ihn#ih þ ULL

X

i

n"iLn#iL þ
UhL

2

X

i

niLnih;
ð10:3:1Þ

where th and tL are hopping integrals in heavy and light bands, e0 is the center of
gravity of the heavy band, and the difference D between the bottoms of the bands is
given by:

D ¼ �e0 þ
WL �Wh

2
¼ Eh

min � EL
min; ð10:3:2Þ

Uhh and ULL are intraband Hubbard interactions for heavy and light electrons, UhL

is interband Hubbard interaction for heavy and light electrons, nr
ih ¼ aþirair; nr

iL ¼
bþirbir are the densities of heavy and light electrons on site i with spin-projection r,
l is chemical potential.

After Fourier transformation we obtain:

Ĥ0 ¼
X

~pr

eh pð Þ � l½ 	 aþprapr þ
X

~pr

eL pð Þ � l½ 	 bþprbpr þ Uhh

X

~p~p0~q

aþ~p"a
þ
~p0#a~p�~q#a~p0þ~q"

þ ULL

X

~p~p0~q

bþ~p"b
þ
~p0#b~p�~q#b~p0þ~q" þ

UhL

2

X

~p~p0~q
rr0

aþ~pr bþ~p0r0b~p�~qr0

� �

a~p0þ~qr;

ð10:3:3Þ

where in D dimensions (D = 2, 3) for the hypercubic lattice:

eh pð Þ � l ¼ �2th

X

D

a¼1

cos padð Þ � e0 � l;

eL pð Þ � l ¼ �2tL
X

D

a¼1

cos padð Þ � l;

ð10:3:4Þ

are the uncorrelated quasiparticle energies for heavy and light bands (see
Fig. 10.8) and pa = {px, py, …} are Cartesian projections of the momentum.
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For low densities of heavy and light components ntotd
D = (nh ? nL) dD � 1,

the quasiparticle spectra are:

eh pð Þ � l ¼�Wh

2
þ th p2d2

� �

� e0 � l;

eL pð Þ � l ¼�WL

2
þ tL p2d2

� �

� l;
ð10:3:5Þ

where Wh = 4Dth and WL = 4DtL are the bandwidths of heavy and light electrons
for D—dimensional hypercubic lattice (for D = 3 we have Wh = 12th and
WL = 12tL, for D = 2 the bandwidths read Wh = 8th and WL = 8tL).

Introducing again (as in one-band Hubbard model in Sect. 9.4) the bare masses
of heavy and light components:

mh ¼
1

2thd2
; mL ¼

1
2tLd2

ð10:3:6Þ

and Fermi-energies:

eFh ¼
p2

Fh

2mh
¼ Wh

2
þ lþ e0; eFL ¼

p2
FL

2mL
¼ WL

2
þ l ð10:3:7Þ

we finally obtain uncorrelated quasiparticle spectra (for temperatures T ? 0) as:

eh pð Þ � l ¼ p2

2mh
� eFh; eL pð Þ � l ¼ p2

2mL
� eFL: ð10:3:8Þ

In deriving (10.3.5)–(10.3.8) we implicitly assumed that the difference between
the bottoms of the heavy and light bands D on Fig. 10.8 is not too large, and hence
the parabolic approximation for the spectra of both bands is still valid. We note
that there is no one-particle hybridization in Hamiltonians (10.3.1), (10.3.3) but
there is a strong two particle hybridization UhL

2

P

i nihniL connected with interband
Hubbard interaction U12 = UhL.

Fig. 10.8 Band structure in the two-band model with one narrow band. Wh and WL are the
bandwidths of heavy and light electrons, eFh and eFL are the Fermi-energies, D ¼ �e0 þ WL�Wh

2 ¼
Eh

min � EL
min is the energy difference between the bottoms of the heavy and light bands, with (-e0)

being the center of gravity of the heavy band. The center of gravity of the light band is zero, l is
chemical potential (see Ref. [47] in Chap. 9 and [4])
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We assume that mh � mL and therefore:

Wh=WL ¼ mL=mh � 1 ð10:3:9Þ

We also assume that the strong-coupling situation Uhh * ULL * UhL � WL�Wh

takes place (note that UhL is large because in reality light particles experience strong
scattering on the heavy ones as if on a quasiresonance level).

Finally throughout this chapter we will consider the simplest case where the

densities of the bands are of the same order: nh * nL * n (where in 3D n ¼ p3
F

3p2 ;

and in 2D n ¼ p2
F

2p). In the end of this Section note that the two-band Hubbard model
with one narrow band is natural generalization of the well-known Falikov-Kimball
model with one finite mass and one infinitely large mass [28] but contains much
more rich physics due to a finite width of a heavy band (instead of a localized level
in [28]) which allows an interesting dynamics of the heavy component.

10.3.2 The Kanamori T-Matrix Approximation

In (Sect. 9.4) when we discussed SC in 3D and 2D one-band Hubbard model at
low density we already acquainted ourselves with Kanamori T-matrix approxi-
mation (see Ref. [46] in Chap. 9). Let us apply the same scheme for a two-band
Hubbard model. In the 3D case the solution of the corresponding Lippmann-
Schwinger equations (see Ref. [47–49] in Chap. 9) yield (see Fig. 10.9):

Thh ¼
Uhhd3

1� Uhhd3Kvac
hh ð0; 0Þ

� � � Uhhd3

1þ Uhh
8p th

� � ;

ThL �
UhLd3

1þ UhL
8p t�hL

� � ; TLL ¼
ULLd3

1þ ULL
8p tL

� � ;
ð10:3:10Þ

where Kvac
hh 0; 0ð Þ ¼ �

R

� 1=d

0

d3~p
2pð Þ3

mh
p2 is a Cooper loop for heavy particles in vacuum,

the effective hopping integrals

t�hL ¼
1

2d2m�hL

and m�hL ¼
1

2t�hLd2
¼ mhmL

mh þ mLð Þ � mL ð10:3:11Þ

is an effective mass for T-matrix ThL for mh � mL (note that T-matrix ThL

describes the scattering of heavy electrons on the light ones).
Accordingly thL* * tL is an effective hopping integral for this T-matrix. The

quantities Uhhd3, UhLd3 and ULLd3 play the role of the zeroth Fourier components
for the intraband and interband Hubbard interactions Uhh, ULL and UhL in 3D. As a
result in the strong-coupling case for Uhh * ULL * UhL � WL � Wh we have:
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Thh � 8p thd3; ThL � TLL � 8p tLd3: ð10:3:12Þ

The s-wave scattering lengths for the two-band Hubbard model a ¼ mT
4p ¼ T

8p td2

then read in the strong-coupling case:

ahh ¼ ahL ¼ aLL � d: ð10:3:13Þ

Correspondingly, the gas-parameter of Galitskii k = 2apF/p in the case of equal
densities of heavy and light bands nh = nL is given by:

k ¼ kL �
2dpFL

p


 �

¼ kh �
2dpFh

p


 �

¼ 2dpF

p
: ð10:3:14Þ

In the 2D case for strong Hubbard interactions and low densities the vacuum
T-matrices for nh = nL with logarithmic accuracy are given by (see Ref. [47] in
Chap. 9 and [6]):

Thh �
Uhhd2

1þ Uhhd2

8pth

R

� 1=d2

� p2
F

dp2

p2

0

@

1

A

� Uhhd2

1þ Uhh
8p th

ln 1
p2

Fd2

;

TLL �
ULLd2

1þ ULL
8p tL

ln 1
p2

Fd2

; ThL �
UhLd2

1þ UhL
8p t�hL

ln 1
p2

Fd2

;

ð10:3:15Þ

where Ud2 plays the role of zeroth Fourier component of the Hubbard potential in
2D. As a result, in the strong-coupling case, the 2D gas-parameter of Bloom (see
Ref. [33] in Chap. 9) for equal densities nh = nL reads:

f0 ¼ f0L ¼ f0h �
1

2 ln 1
pFd

: ð10:3:16Þ

Fig. 10.9 Lippmann-
Schwinger equations for
T-matrices Thh, TLL and ThL

for the two-band model with
heavy (h) and light
(l) electrons, Uhh and ULL are
the intraband Hubbard
interactions, UhL is the
interband Hubbard
interaction between heavy
and light particles (see Ref.
[47] in Chap. 9 and [6])
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10.3.3 Evaluation of the Self-Energies of Heavy and Light
Bands

Let us now evaluate the self-energies of heavy and light bands. In the two-band
model the self-energies of heavy and light particles read (see Fig. 10.10):

Rh ¼ Rhh þ RhL and RL ¼ RLL þ RLh: ð10:3:17Þ

In 3D case the full T-matrices Thh in substance which enter in the first diagram
for Rh in Fig. 10.10 has the form:

Thh X;~pð Þ ¼ Uhhd3

1� Uhhd3Khh X;~pð Þð Þ ; ð10:3:18Þ

where according to [6] and Ref. [47] in Chap. 9:

KhhðX;~pÞ ¼
Z

d3~p0

ð2pÞ3
ð1� nF

h ðep0þp � lÞ � nF
h ðe�p0 � lÞÞ

ðX� ehðp0 þ pÞ � ehð�p0Þ þ 2lþ i0Þ ð10:3:19Þ

is a Cooper loop in substance (the product of the two Green’s functions in the
Cooper (particle–particle) channel), nh

F(e-l) is the Fermi–Dirac distribution func-
tion for heavy particles, and similarly for the full T-matrices ThL, TLh and TLL and
Cooper loops KhL, KLh and KLL.

If we expand the T-matrix for heavy particles in first two orders in the gas-
parameter, than according to Galitskii (see Ref. [9] in Chap. 9) we obtain:

Thh X;~pð Þ ¼ 4pah

mh
þ 4pah

mh


 �2

Khh � Kvac
hh

� �

þ o
4pah

mh


 �3

Khh � Kvac
hh

� �2

" #

;

ð10:3:20Þ

Fig. 10.10 The self-energies
of heavy and light particles in
the T-matrix approximation.
Thh, TLL, TLh, and ThL are full
T-matrices of heavy and light
particles in substance (see
Ref. [47] in Chap. 9 and [6])
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where

4pah

mh
� Uhhd3

1� Uhhd3Kvac
hh

� � ð10:3:21Þ

coincides with the Kanamori approximation for the vacuum T-matrix and

Kvac
hh X;~pð Þ ¼

Z

d3~p0= 2pð Þ3

X� ~p0þ~pð Þ2
2mh
� p02

2mh

� � ð10:3:22Þ

is the Cooper loop in vacuum (rigorously speaking the scattering length is defined
by Kvac

hh 0; 0ð Þ; but the difference between Kvac
hh X;~pð Þ and Kvac

hh 0; 0ð Þ is proportional
to the gas-parameter ahpFh and is small). Khh in (10.3.20) is the full Cooper loop
(cooperon) in substance for heavy particles given by (10.3.19). If we consider the
low densities and the energies close to eF we can show that the terms neglected in
Thh are small with respect to the gas-parameter

4pah

mh
Khh � Kvac

hh

� �

� ahpFh: ð10:3:23Þ

The self-energy of heavy particles Rhh in the first two orders of the gas-
parameter is given by:

Rhh pð Þ ¼
X

k

Thh k þ pð ÞGh kð Þ � 4pah

mh

X

k

Gh kð Þ

� 4pah

mh


 �2
X

k

Khh � Kvac
hh

� �

Gh kð Þ þ o ahpFhð Þ3:
ð10:3:24Þ

The first term becomes 4pah
mh

nh which is just the Hartree-Fock contribution (see

Refs. [9, 30] in Chap. 9). In the second term we can make an analytic continuation
ix ? x ? io for bosonic propagator Khh and fermionic propagator Gh [29–31].

As a result (bearing in mind that ImKvac
hh ¼ 0) we obtain the imaginary part of R 2ð Þ

hh

as:

ImR 2ð Þ
hh e;~pð Þ¼ 4pah

mh


 �2
X

k

ImKhh ekþe�l;~kþ~p
� �

nB ekþe�lð ÞþnF ek�lð Þ½ 	

¼� 4pah

mh


 �2

p
Z

d3~k

2pð Þ3
Z

d3~p0

2pð Þ3
1�nF

h ~pþ~p0 þ~k
� �

�nF
h �~p0ð Þ

h i

ffi nB ekþe�lð ÞþnF ek�lð Þ½ 	 �d eþeh
~k
� �

�eh ~pþ~p0 þ~k
� �

�eh �~p0ð Þþl
h i

;

ð10:3:25Þ
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and similarly for the real part of R 2ð Þ
hh :

ReR 2ð Þ
hh e;~pð Þ¼ 4pah

mh


 �2
X

k

ReKhh ekþe�l;~kþ~p
� �

�ReKvac
hh ekþep�2l;~kþ~p
� �h i

� nB ekþe�lð ÞþnF ek�lð Þ½ 	;
ð10:3:26Þ

where for the real part of a Cooper loop in vacuum we have:

ReKvac
hh ek þ ep;~k þ~p
� �

¼
Z

d3~p0

2pð Þ3
P

2mh

~k2 þ~p2 � ~p0 þ~k þ~p
� �2

�~p02
: ð10:3:27Þ

Thus ReKvac
hh is calculated in resonance for X ¼ ek þ ep (or for e = ep - l),

where P is the principal value. In (10.3.25) and (10.3.26) nB Xð Þ ¼ 1
eX=T�1ð Þ and

nF Xð Þ ¼ 1
eX=Tþ1ð Þ are the bosonic and fermionic distribution functions and hence:

nB ek þ e� lð Þ þ nF ek � lð Þ ¼ 1
2

cth
ek þ eð Þ � l

2T
þ th

ek � l
2T

� 


: ð10:3:28Þ

The real part of a Cooper loop in substance for heavy particles is given by:

ReKhh ek þ e� l;~k þ~p
� �

¼
Z

d3~p0

2pð Þ3
1� nF

h ~pþ ~p0 þ~k
� �

� nF
h �~p0
� �h i

eþ eh
~k
� �

� eh ~pþ ~p0 þ~k
� �

� eh �~p0
� �

þ l
h i :

ð10:3:29Þ

The analytic continuation for R 2ð Þ
hh in a 2D case is similar to the one in the 3D

case.
We note that for T ? 0, the bosonic distribution function nB(X) ? 0 and the

fermionic distribution function nF(X) ? h(X)—to the step-function. Hence at low
temperatures ImRhh and ReRhh acquire the standard form (see Refs. [9, 30, 31] in
Chap. 9). We will analyze their behavior at finite temperatures more detaily in
Chap. 14.

Fig. 10.11 An exchange—type diagram for the self-energy Rr
hh which contains the matrix

element aþr aþr arar and thus is absent in the Hubbard model (see Ref. [47] in Chap. 9)
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Note that for higher temperatures we should keep in mind that nB(X) ? T/X for
T � X. The fermionic distribution function is ‘‘washed out’’ by temperature.
Accordingly, nF Xð Þ ¼ 1

2 1� X
2T

� �

: These approximations are important when we
evaluate ImR for higher temperatures T [ Wh in Chap. 14 (see Ref. [47] in
Chap. 9 and [6]).

We note that in contrast with the model of slightly non-ideal Fermi-gas (see
Refs. [9, 30, 31] in Chap. 9) the Hubbard model does not contain an exchange-type
diagram for Rhh (see Fig. 10.11) because the T-matrix in this diagram corresponds
to incoming and outgoing heavy particles with the same spin-projection aþr aþr arar;

while the Hubbard model contains only the matrix elements aþ" aþ# a#a" with dif-
ferent spin-projections.

We also note that when we expand the T-matrix up to the second order in the
gas-parameter, we implicitly assume that the T-matrix itself does not have a simple
pole structure of the type of a bosonic propagator. This is a case for a partially
filled heavy band nhdD � 1 and the low energy sector where 0 \ e\ Wh � Uhh.
Effectively we neglect the lattice in this expansion.

However if we take the lattice into account, then in case of repulsive Hubbard
interaction Uhh we will get two poles for the full (unexpanded) T-matrix of heavy
particles in (10.3.18). The first one is connected with the so-called antibound state
predicted by Hubbard (see Refs. [1–4] in Chap. 9) and Anderson [32–34] and
corresponds to large positive energy:

e� Uhh [ 0: ð10:3:30Þ

Physically it describes an antibound pair of two heavy particles with the energy
of Uhh on the same lattice site. It therefore reflects the presence of the upper
Hubbard band already at low densities nhdD � 1 [35]. But we will show that the
intensity of the upper Hubbard band (UHB) is small at low densities and for low
energy sector. The more detailed discussion of the antibound state will be a subject
of Chap. 14.

A second pole in the full T-matrix found by [36–38] corresponds to negative
energy and in the 2D case yields:

e � �2eFh �
2e2

Fh

Wh
\0: ð10:3:31Þ

It describes the bound state of the two holes below the bottom of the heavy band
(e\ -2eFh). Therefore, it has zero imaginary part and does not contribute to

ImT. (This mode produces nonanalytic corrections to ReRhh� ej j5=2 in 2D). We
will also consider this mode more detaily in Chap. 14. In the forthcoming Sections
we can neglect both these two contributions to the T-matrices and self-energies.
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10.3.4 Electron Polaron Effect

For temperatures T ? 0 the one-particle Green’s functions for heavy and light
electrons are given by (see Refs. [30, 31] in Chap. 9):

Gh x;~qð Þ ¼ 1
x� eh qð Þ þ l� Rh x;~qð Þð Þ �

Zh

x� e�h qð Þ þ lþ io
� � ; ð10:3:32Þ

and respectively

GL x;~qð Þ � ZL

x� e�L qð Þ þ lþ ioð Þ ; ð10:3:33Þ

where according to Galitskii (see Ref. [9] in Chap. 9):

e�h qð Þ � l ¼
q2 � p2

Fh

� �

2m�h
and e�L qð Þ � l ¼

q2 � p2
FL

� �

2m�L
ð10:3:34Þ

are renormalized quasiparticle spectra, and

Z�1
h ¼ 1� oReR 2ð Þ

h x;~qð Þ
ox

ffi

ffi

ffi

ffi

ffix!0
q!pFh

0

@

1

A; Z�1
L ¼ 1� oReR 2ð Þ

L x;~qð Þ
ox

ffi

ffi

ffi

ffi

ffix!0
q!pFL

0

@

1

A

ð10:3:35Þ

are inverse Z-factors (see Ref. [30, 31] in Chap. 9), [39, 40] of heavy and light

electrons. The leading contribution to ImR 2ð Þ
h in (10.3.35) comes from the sub-

stitution of ReR 2ð Þ
hL x;~qð Þ to Z�1

h ; which is described by a formula similar to
(10.3.26), and yields:

1� Z�1
h ¼ lim

x!0
q!pFh

oReR 2ð Þ
hL x;~qð Þ
ox

� � 4p ahL

m�hL


 �2ZZ dD~p

2pð ÞD
dD~p0

2pð ÞD

�
1� nF

L ~p
0 þ~pð Þ � nF

h �~p0ð Þ
ffl �

nF
L ~p�~qð Þ

eL ~p�~qð Þ � eL ~p0 þ~pð Þ � eh �~p0ð Þ þ l½ 	2
;

ð10:3:36Þ

where nB(X) ? 0, nF(X) is a step function for X/T � 1; ahL & d in 3D is con-
nected with the vacuum T-matrix ThL, and mhL

* & mL. Replacing in (10.3.36)
dD~p
ð2pÞD

dD~p0

ð2pÞD by N2
L 0ð ÞdnL ~pð ÞdnL ~p0ð Þ (where nL pð Þ ¼ eL pð Þ � l; NL(0) is a density of

states of light particles, D = 2, 3), and taking into account that in (10.3.36)
eL ~p�~qð Þ � l\0 while eL ~p0 þ~pð Þ � l[ 0 we can easily verify that for mh � mL

or equivalently for eFL � eFh this expression contains a large logarithm both in 3D
and 2D cases (see [24, 25]). Hence, the Z-factor of the heavy particles in 3D in the
leading approximation in the gas-parameter k = 2dpFL/p is given by:
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Z�1
h � 1þ 2k2 ln

mh

mL
: ð10:3:37Þ

Correspondingly, in 2D:

Z�1
h ¼ 1þ 2f 2

0 ln
mh

mL
; ð10:3:38Þ

where f0 ¼ 1
2 ln 1=pFLdð Þ is 2D gas-parameter of Bloom.

We note that the contribution to Zh
-1 from ReRhh

(2) does not contain a large
logarithm and thus is smaller than the contribution from ReRhL

(2) at low electron
density. The analogous calculation for ZL with ReRLL

(2) and ReRLh
(2) yields only

Z�1
L � 1þ k2 in 3D and Z�1

L � 1þ f 2
0 in 2D (does not contain a large logarithm).

Correspondingly for the effective mass of a heavy particle according to (see
Ref. [31] in Chap. 9), [39, 40] we have:

mh

m�h
¼ Zh 1þ oReR 2ð Þ

hL eh ~qð Þ � l;~qð Þ
onh ~qð Þ

ffi

ffi

ffi

ffi

ffi

eh qð Þ!l

0

@

1

A; ð10:3:39Þ

where the second term in brackets corresponds to the momentum dependence of
the self-energy RhL, and nh ~pð Þ ¼ eh ~pð Þ � l.

Note that as usual the Z-factor contributes to the enhancement of a heavy mass:

m�h
mh
� Z�1

h � 1þ 2k2 ln
mh

mL


 �

in 3D: ð10:3:40Þ

Analogous calculations for Z-factor contribution to the light mass yields only
(as we discussed already)

m�L
mL
� Z�1

L � 1þ k2 in 3D ð10:3:41Þ

If the effective parameter 2k2ln(mh/mL) [ 1 we are in the situation of strong
electron polaron effect (strong EPE). To obtain the correct polaron exponent in this
region of parameters diagrammatically, we should sum up at least the so-called
maximally crossed diagrams for ReRhL [41]. But this exponent can be also eval-
uated in a different manner, based on the non-adiabatic part of the many particle
wave-function [24, 25] which describes the heavy particle dressed in a cloud of
virtual electron—hole pairs of light particles. This yields:

m�h
mh
� Z�1

h ¼
mh

mL


 � b
1�bð Þ

; ð10:3:42Þ

where b = 2k2 in 3D and b ¼ 2f 2
0 in 2D.
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For b = � or equivalently for k = � in 3D or f0 = � in 2D (as for the
coupling constant for screened Coulomb interaction in 3D and 2D electron plasma
in the RPA-theory—see preceding Sect. 10.2 of this chapter), we are in the so-
called unitary limit. In this limit according to [24, 25] the polaron exponent:

b

1� bð Þ ¼ 1; ð10:3:43Þ

and hence:

m�h
mh
¼ mh

mL
; ð10:3:44Þ

or equivalently:

m�h
mL
¼ mh

mL


 �2

: ð10:3:45Þ

Thus starting from the ratio between the bare masses mh/mL * 10 (obtained,
for instance, in LDA-approximation [42]) we finish in the unitary limit with
mh

*/mLh * 100 (due to many-body electron-polaron effect), which is a typical ratio
for uranium-based heavy-fermion systems [43–47].

10.3.5 Other Mechanisms of Heavy Mass Enhancement

We note that rigorously speaking [see (10.3.39)] the momentum dependence of

ReR 2ð Þ
hL eh ~qð Þ � l;~qð Þ is also very important for the evaluation of the effective mass.

Preliminary estimates of Prokof’ev, Kagan (see [6, 48] and Ref. [47] in Chap. 9)
show that in the zeroth approximation in mL/mh in 3D case close to the Fermi-
surface (for eh ~qð Þ � l ¼ q2 � p2

Fh

� �

=2mh ! 0 and q ? pFh):

ReR 2ð Þ
hL eh ~qð Þ � l;~qð Þ � 2

4p ahL

mL


 �2Z d3~p

2pð Þ3
PLL 0;~pð ÞnF

h ~p�~qð Þ; ð10:3:46Þ

where [see also (9.3.4)]

PLLð0;~pÞ ¼
Z

d3~p0

ð2pÞ3
½nF

L ðep0þp � lÞ � nF
L ðep0 � lÞ	

eLð~p0Þ � eLð~p0 þ~pÞ
ð10:3:47Þ

is a static polarization operator for light particles. Having in mind that
~p�~qj j\pFh and q & pFh we can see that~p! 0 and use the asymptotic form for
PLL 0;~pð Þ at small p � pFL (if the densities of heavy and light bands are not very
different and pFL * pFh):
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lim
p!0

PLL 0;~pð Þ ¼ N3D
L 0ð Þ 1� p2

12p2
FL

� 


; ð10:3:48Þ

where N3D
L 0ð Þ ¼ mLpFL=2p2 is the density of states for light electrons in 3D. The

substitution of lim
p!0

PLL 0;~pð Þ from (10.3.48) to (10.3.46) yields:

ReR 2ð Þ
hL eh ~qð Þ � l;~qð Þ � ReR 2ð Þ

hL 0; pFhð Þ �
q2 � p2

Fh

� �

2mh

k2

9
mhnh

mLnL
; ð10:3:49Þ

where k = 2dpFL/p is a 3D gas parameter, nh ¼ p3
Fh=3p2; nL ¼ p3

FL=3p2 are the
densities of heavy and light bands.

The first term in (10.3.49) describes ReR 2ð Þ
hL eh ~qð Þ � l;~qð Þ on the Fermi-surface

(for eh(q)-l = 0 and q = pFh). It reads:

ReR 2ð Þ
hL 0; pFð Þ � 4k2

3
nh

nL
eFL 1� 2p2

Fh

15p2
FL


 �

[ 0 for pFL� pFh: ð10:3:50Þ

It is renormalization of the effective chemical potential of the heavy band in the
second order of the gas parameter due to the interaction of light and heavy
particles.

We note that according to Refs. [30, 31] in Chap. 9 the renormalized heavy-
particle spectrum is given by:

e�h qð Þ � l ¼ q2

2mh
� leff

h


 �

þ 2p
mL

nL lð ÞahL þ ReR 2ð Þ
hL eh ~qð Þ � l;~qð Þ ¼

q2 � p2
Fh

� �

2m�h
;

ð10:3:51Þ

where the scattering length ahL & d, an effective chemical potential leff
h ¼

lh þWh=2þ e0 is counted from the bottom of a heavy band, and the Hartree-Fock
term 2p

mL
nL lð ÞahL represents the contribution to the self-energy ReRhL

(1) in the first-

order in the gas parameter. From (10.3.51) collecting the terms proportional to
eh ~qð Þ � l ¼ q2 � p2

Fh

� �

=2mh we obtain:

q2 � p2
Fh

� �

2m�h
¼ eh qð Þ � l½ 	 1� k2

9
mhnh

mLnL


 �

: ð10:3:52Þ

Correspondingly, the effective mass of a heavy particle is given by:

mh

mh�
¼ 1þ oReR 2ð Þ

hL eh qð Þ � l; qð Þ
o eh qð Þ � lð Þ

ffi

ffi

ffi

ffi

ffi

eh qð Þ!l

¼ 1� k2

9
mhnh

mLnL
: ð10:3:53Þ

As a result we obtain much more dramatic (linear in mh/mL) enhancement of mh
*

than in EPE (which yields only logarithmic in mh/mL enhancement mh/mh* *
1 - 2k2ln(mh/mL) due to the Z-factor of a heavy particle). For mh/mL * 10 the
contribution to mh

* in (10.3.53) becomes larger than the contribution to Z-factor in
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(10.3.40) for a large density mismatch nh C 5nL between the heavy and light
bands. In general in the second order of the gas parameter in 3D:

mh�
mh
¼ 1þ k2

9
mhnh

mLnL
þ 2k2 ln

mh

mL
: ð10:3:54Þ

We note that the contribution to mh
*/mh from ReR 2ð Þ

hh eh qð Þ � l;~qð Þ associated
with the ‘‘heavy–heavy’’ interaction is small in comparison with the contribution
to mh

* from ReRhL
(2) (which is associated with ‘‘heavy-light’’ interaction) due to the

smallness of the ratio between the bare masses: mL/mh � 1. We can now collect
the terms which do not depend upon eh(q) - l in (10.3.51). This gives the
effective chemical potential of heavy electrons:

leff
h ¼

p2
Fh

2mh
þ 2p

mL
nL lð ÞahL þ ReR 2ð Þ

hL 0; pFhð Þ: ð10:3:55Þ

We note that the contributions to lh
eff from the Hartree-Fock term 2p

mL
nL lð ÞahL of

heavy electrons and from ReRhh
(2)(0, pFh) (which is connected with ‘‘heavy–heavy’’

interaction) are small in comparison with ‘‘heavy-light’’ contributions due to the
smallness of the ratio between the bare masses: mL/mh � 1.

2D situation.
In 2D the static polarization operator for light particles is [6, 49], and (see Ref.

[47] in Chap. 9):

PLL 0;~pð Þ ¼ mL

2p
1� Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
FL

p2

s

2

4

3

5; ð10:3:56Þ

and hence for p \ 2pFL: PLL 0;~pð Þ ¼ mL
2p—does not contain any dependence on p2

in contrast to the 3D case. Thus, EPE in 2D is a dominant mechanism of the heavy
mass enhancement and in general in the second order of the gas parameter mh�

mh
¼

1þ 2f 2
0 ln mh

mL
; mL�

mL
� 1þ f 2

0 in 2D.

In the end of this Subsection we would like to note that the important role of the
interband (‘‘heavy’’-‘‘light’’) Hubbard repulsion UhL for the formation of a heavy
mass m* * 100 me in a two-band Hubbard model was also emphasized in [50] for
the LiV2O4 HF compound.

The tendency towards phase-separation.
We also note that for large density mismatch nh � nL we could have a ten-

dency towards phase-separation in a two-band model [6] in 3D. Namely if we
evaluate the partial compressibility of the heavy component (the sound velocity of
heavy particles squared):

j�1
hh � c2

h ¼
nh

mh

oleff
h

onh

 !

ð10:3:57Þ
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we already see the tendency towards phase-separation j�1
hh \0 (towards negative

compressibility) in the strong coupling limit and low densities k2 mhpFh

mLpFL
� 1 in

qualitative agreement with a more phenomenological (mean-field type) variational
approach [27].

The tendency towards phase-separation at low electron fillings also manifests
itself for the asymmetric Hubbard model (where only interband Hubbard repulsion
UhL between heavy and light electrons is present and intraband Hubbard repulsions
Uhh and ULL are absent) in the limit of strong asymmetry th � tL [51] between
heavy and light bandwidths.

In the end of this Section we emphasize that the physics of EPE and evaluation
of Zh in [24, 25] are to some extent connected with the well-known results of
Nozieres et al. [26, 52] on infrared divergences in the description of the Brownian
motion of a heavy particle in a Fermi-liquid [53, 54] and on the infrared diver-
gences for the problem of X-ray photoemission from the deep electron levels, as
well as with the famous results of Anderson [55, 56] on the orthogonality catas-
trophe for the 1D chain of N electrons under the addition of one impurity to the
system.

Finally we mention a competing mechanism [57–60] proposed by Fulde for the
explanation of the effective mass in praseodymium (Pr) and in some uranium-
based molecules like U(C8H8)2. Later on Fulde et al. [58–60] generalized this
mechanism on some other uranium-based heavy-fermion (HF) compounds with
localized and delocalized orbitals. This mechanism has a quantum-chemical nature
and is based on the scattering of conductive electrons on localized orbitals as if on
the two-level systems. The mass-enhancement is here governed by non-diagonal
matrix elements of the Coulomb interaction which are not contained in the simple
version of a two-band model (10.3.1). In this context we also mention [61] where
the authors considered the mass-enhancement of conductivity electrons due to
their scattering on local f-levels splitted by the crystalline field.

We note that de Haas van Alphen (dHvA) experiments [62–65] together with
ARPES (angle-resolved photoemission spectroscopy) experiments [66, 67] and
thermodynamic measurements [44, 45, 68] are the main instruments to reconstruct
the Fermi-surface for HF-compounds and to determine the effective mass (thus
verifying the predictions of different theories regarding the mass enhancement in
uranium-based HF-compounds).

10.3.6 Anomalous Superconductivity in the Two-Band
Model with One Narrow Band

For the sake of completeness let us consider briefly superconductivity problem in
the same type of models [5] and namely in the two-band model with narrow band
[6]. Let us concentrate on a 2D case where critical temperatures are higher already
at low densities and consider the most typical case (see Fig. 10.8) mh [ mL and
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pFh [ pFL. We assume however, that still the mismatch between the densities is
not large enough to produce phase-separation. Note that in 2D case where only
EPE is present the restrictions on a homogeneous state could be more mild than in
a 3D case. At low densities nLd2 \ nhd2 � 1 the maximal TC corresponds to p-
wave pairing and is governed by the enhanced Kohn-Luttinger mechanism of SC
(see Ref. [10] in Chap. 9), [1, 5]. The general expression for the effective inter-
action Ueff of the heavy particles (for the irreducible bare vertex for the Cooper
channel) in the first two orders in the gas-parameter reads:

Ueff ~ph;~p
0
h

� �

¼ Thh þ T2
hhPhh 0; ~~qh ¼~ph þ~p0h

� �

� 2T2
hLPLL 0;~qh ¼~ph �~p0h

� �

;

ð10:3:58Þ

where~ph and~p0h are incoming and outgoing momenta for the heavy particles in the
Cooper channel, ~phj j ¼ ~p0h

ffi

ffi

ffi

ffi ¼ pFh and:

q2
h ¼ 2p2

Fh 1� cos uð Þ; ~q2
h ¼ 2p2

Fh 1þ cos uð Þ ð10:3:59Þ

are transferred momentum squared (for qh
2) and transferred momentum with an

account of crossing squared (for ~q2
h). These formulas are exactly analogous to

(9.3.11), (9.3.16) but correspond to 2D case, u is an angle between~ph and~p0h: Note
that, as we discussed in Chap. 9, both transferred momenta qh B 2pFh and
~qh� 2pFh for superconductivity problem. The second term in (10.3.58) is con-
nected with an exchange diagram [see Fig. 9.2 and (9.3.10)] for heavy electrons
while the third term with is a static polarization operator (10.3.47) for light
electrons.

In (10.3.58) for Phh and PLL we get:

Phh 0; ~~qh

� �

¼Z2
h

m�h
2p

1� Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
Fh

~q2
h

s

" #

;

PLL 0;~qhð Þ ¼Z2
L

m�L
2p

1� Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
FL

q2
h

s

" #

;

ð10:3:60Þ

where Zh and mh
* are the Z-factor and the effective mass of heavy particles, ZL and

mL
* are the Z-factor and the effective mass of light particles, pFh and pFL—are

Fermi-momenta for heavy and light particles. Having in mind that ZL * mL/
mL

* * (1 - f0
2), we can put ZL * 1 and mL

* * mL in all the forthcoming esti-
mates. Finally in (10.3.58) for pFh [ pFL the Kanamori T-matrices read in the
strong coupling case in 2D:

Thh ¼
4p
m�h

1

ln 1
p2

Fhd2

� � [ 0; ThL ¼
4p
m�L

1

ln 1
p2

Fhd2

� � [ 0: ð10:3:61Þ
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Having in mind that ~qh� 2pFh we get that: Phh 0; ~~qh

� �

¼ Z2
h m�h=2p and does

not contain any dependence upon transferred momentum with crossing ~qh:
In the same time PLL 0;~qhð Þ contains nontrivial dependence upon qh for

pFh [ pFL. We can say [1, 5, 6] that large 2D Kohn’s anomaly becomes effective
for SC—problem already in the second order of the gas-parameter and we have the
pairing of heavy electrons via polarization of light electrons (see Fig. 10.12).

Note that a standard s-wave pairing is suppressed in a two-band Hubbard model
by short-range Hubbard repulsion which yields Thh [ 0 in the first-order contri-
bution to Ueff in (10.3.58).

According to Landau-Thouless criterion (see Ref. [30] in Chap. 9) the maximal
critical temperature in our model corresponds to triplet p-wave pairing (to pairing
with magnetic quantum number m = 1 in 2D) and reads:

�Um¼1
eff Nh �

2D 0ð ÞZ2
h ln

e�Fh

TC1
¼ 1; ð10:3:62Þ

where Nh�
2D 0ð Þ ¼ m�h=2p is an effective 2D density of states for heavy electrons

with effective heavy mass mh
*; eFh

* = pFh
2/2mh

*—is renormalized Fermi-energy
for heavy electrons; Ueff

m = 1 is a p-wave harmonic of the effective interaction. It is
given by:

Fig. 10.13 Dependence of
the critical temperature TC1

from the relative filling of
heavy and light bands nh/nL

in the two-band model with
one narrow band. The
maximum for TC1

corresponds to nh/nL = 4 in
2D [3–6]

Fig. 10.12 The leading
contribution to the effective
interaction Ueff for the p-wave
pairing of heavy particles via
polarization of light particles.
The open circles stand for the
vacuum T-matrix ThL [5, 6]
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Um¼1
eff ¼

Z

2p

0

Ueff q cos uð Þ½ 	 cos u
du
2p

ð10:3:63Þ

It is shown in [1, 5, 6] that Ueff
m = 1 depends upon relative occupation of the

two bands pFh/pFL and yields:

Um¼1
eff ¼ NL�

2D 0ð Þ pFh=pFL � 1ð Þ
p2

Fh=p2
FL

� � T2
hL �2ð Þ\0; ð10:3:64Þ

where m = 1 is magnetic quantum number in 2D.
Moreover it corresponds to attraction. In (10.3.64) NL�

2Dð0Þ ¼ m�L=2p is effective
2D density of states for light electrons. We can see that Ueff

m = 1 ? 0 for
pFh/pFL ? 1 and pFh/pFL ? ?. It is easy to show that Ueff

m = 1 has rather large
and broad maximum [1, 5, 6] for pFh = 2pFL or equivalently for nh = 4nL (see
Fig. 10.13). In maximum an effective interaction reads:

Um¼1
eff ¼ �

1
2

NL�
2D 0ð Þ 4p

m�L ln 1=p2
Fhd2

� �

 !2

: ð10:3:65Þ

Correspondingly Landau-Thouless criterion for superconducting temperature
TC1 yields:

m�h
m�L

Z2
h 2f 2

0 ln
e�Fh

TC1
¼ 1; ð10:3:66Þ

where f0 ¼ 1
ln 1=p2

Fhd2ð Þ is a 2D gas parameter. For f 2
0 ln mh

mL
� 1 EPE is weak and

m�h � mh: Thus, Zh � 1; e�Fh � eFh and Landau-Thouless criterion reads:
mh
mL

� �

2f 2
0 ln eFh

Tc1
¼ 1: An effective gas-parameter which enters the formula for TC1 for

weak EPE is thus f0
mh
mL

� �1=2
: In the weak-coupling Born approximation for

Uhh * UhL * ULL \ Wh \ WL the critical temperature TC1� eFh exp � 1
2~f 2

0

n o

;

where ~f0 ¼
ffiffiffiffiffiffiffiffi

mLmh
p

UhL

4p is connected with interband Hubbard interaction UhL and
proportional to geometric average of heavy and light masses

ffiffiffiffiffiffiffiffiffiffiffi

mLmh
p

(see Ref. [45]
in Chap. 9, [5]). In the opposite strong-coupling case UhL [ Wh [ WL and weak

EPE the critical temperature TC1� eFh exp � 1
2~f 2

0

n o

with an effective gas-parameter:

~f0 ¼
ffiffiffiffiffiffi

mh

mL

r

1

ln 1
p2

Fhd2

� � : ð10:3:67Þ
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It is interesting to emphasize that in the unitary limit f0 ? � the strong EPE
yields for the heavy-mass enhancement mh

*/mL * (mh/mL)2 and for Z-factor of
heavy particle Zh * mh/mh* * mL/mh.

If we assume that still mL
* & mL even in the unitary limit (for f 2

0 ¼ 1=4) then
we get for the combination mh�

mL�Z2
h in (10.3.66):

mh�
mL�

Z2
h �

mh�
mL

mh

mh�


 �2

� m2
h

m2
L

m2
L

m2
h

� 1: ð10:3:68Þ

Thus for the critical temperature TC1 in the unitary limit f0 ? 1/2 we can get:

TC1� e�Fh exp � 1

2f 2
0

� 	

� e�Fhe�2: ð10:3:69Þ

It means that for typical (for uranium-based HF compounds) values of
eFh

* * (30 7 50) K the critical temperatures are in the range of 5 K already at low
density which is quite reasonable.

Note that in a phase-separated state we have the droplets (clusters) with the
density-ratio nh/nL larger or smaller than the density ratio in a homogeneous state
[6]. For example in a fully phase-separated state we have two large clusters (1, 2)
with nh1 [ nh [ nh2 (that is so-called Maxwell construction [69] typical for phase-
separated systems and first-order phase transitions). Thus, the expression (10.3.64)
for the critical temperature TC1 as a function of relative occupation is valid for both
clusters, but with local values of (pFh/pFL)1 and (pFh/pFL)2. Correspondingly the
critical temperatures will be different for these two clusters at least in zeroth
approximation when we neglect the Josephson coupling or proximity effect
[11, 29–31] between the neighboring clusters or droplets.

To finish the consideration of SC in the two-band model let us discuss briefly an
effective interaction (irreducible bare vertex) for light electrons in the Cooper
channel. It reads:

Ueff ~pL;~p
0
L

� �

¼ TLL þ T2
LLPLL 0; ~~qL ¼~pL þ~p0L

� �

� 2T2
hLPhhð 0;~qL ¼~pL �~p0L

� �

;

ð10:3:70Þ

where incoming and outgoing momenta ~pLj j ¼ ~p0L
ffi

ffi

ffi

ffi ¼ pFL and both transferred
momenta ~qL� 2pFL; qL� 2pFL for SC-problem. The Kanamori T-matrix for light
electrons TLL in the strong coupling case reads TLL ¼ 4p

m�L

1
ln 1=p2

FLd2ð Þ [ 0: Using the

expressions for GLL and Ghh:

PLL 0; ~~qL

� �

¼Z2
L

m�L
2p

1� Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
FL

~q2
L

s

" #

;

Phh 0;~qLð Þ ¼Z2
h

m�h
2p

1� Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
Fh

q2
L

s

" #

;

ð10:3:70Þ
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and having in mind that pFh [ pFL we get:

Ueff ~pL;~p
0
L

� �

� TLL þ T2
LL

m�LZ2
L

2p
� 2

m�h
2p

Z2
h ; ð10:3:71Þ

where we can put ZL * mL/mL* * 1.
Thus an effective interaction for light electrons does not contain any nontrivial

dependence from ~qL and ~~qL; and hence anomalous superconductivity with mag-
netic quantum number m = 0 is absent for light electrons in this approximation.
Note that the standard s-wave pairing for light electrons is also suppressed by first
order repulsive term TLL [ 0 in Ueff (10.3.71). However, an inclusion of Mos-
kalenko-Suhl-Geilikman term [70–73], which describes rescattering of a Cooper
pair between two bands and is given by:

K
X

pp0
ðaþp aþ�pbp0b�p0 þ h:c:Þ ð10:3:72Þ

in the Hamiltonian of the two-band model (10.3.3) already in the case of infinitely
small K makes the light band superconductive at the same temperature as the
heavy one. This interesting fact was illustrated for standard s-wave pairing in [70]
and for p-wave pairing in [74]. Thus, TC1 in (10.3.62) is a mutual SC temperature
in the two-band model with one narrow band [74]. Of course superconductive gaps
for heavy and light bands open simultaneously at T = TC1, but then ‘‘live their
separate lives’’ for T \ TC1 (see [70]).

To conclude this Section let us note that we discuss briefly the SC-instability
which arises in the two-band model at low electron density. The leading instability
of the enhanced Kohn-Luttinger type (see Ref. [10] in Chap. 9, [1, 3, 4, 5])
corresponds to triplet p-wave pairing of heavy electrons via polarization of light
electrons. In 2D or quasi-2D case TC can reach experimentally realistic values
already at low densities for layered dichalcogenides CuS2, CuSe2 and semimetallic
superlattices InAs-GaSb, PbTe-SnTe with geometrically separated bands belong-
ing to neighboring layers (see [5], and Ref. [44] in Chap. 9). Note that p-wave SC
is widely discussed in 3D heavy-fermion systems like U1-xThxBe13 (see Refs. [18,
19] in Chap. 9) and in layered ruthenates Sr2RuO4 (see Refs. [20, 21] in Chap. 9,
[75]) with several pockets (bands) for conducting electrons [76]. Note also that
when we increase the density of a heavy-band and go closer to half-filling
(nh ? 1) the d-wave superconductive pairing (as in UPt3) becomes more benefi-
cial in the framework of the spin-fluctuation theory in the heavy band (see Refs.
[58, 59] in Chap. 9). Different mechanisms of SC in HF-compounds including
odd-frequency pairing introduced by Coleman, Miranda, Tsvelik are discussed in
[77–79].

Note also that the multiband physics is important for some superconductive
systems with conventional s-wave pairing including Nb [11]. MgB2 (see Ref. [26]
in Chap. 9) and new superconductors based on FeAs-compounds like
BaFe2(As1-xPx)2 (see Refs. [95–97] in Chap. 9). For these compounds
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superconductive gaps in different bands are also open simultaneously at the same
critical temperature due to Suhl-Moskalenko-Geilikman theory. All of them are
very important for technical applications in electronics and energetics.

Note that the two-band Hubbard model discussed in this Section is applicable
also for degenerate case when there are two orbitals belonging to the same atom
(in this case one atom is a source of electrons of two sorts). We have then the two-
band degenerate Hubbard model. In this model U = Uhh = ULL = UhL ? 2JH

(where JH is Hund’s coupling) [80]. Close to half-filling this model becomes
equivalent to the t-J orbital model [81] and contains for J \ t and at optimal
doping the SC d-wave pairing [82] governed by superexchange interaction
between the different orbitals of AFM-type (J [ 0) with J * t2/U * 300 K for
not very different values of th and tL [80, 81]. The physics of the t-J model will be
described in detail in Chap. 13.
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Chapter 11
Fermionic Superfluidity in Three-
and Two-Dimensional Solutions of 3He
in 4He

In this chapter, we will discuss fermionic superfluidity in the Fermi-Bose mixture
(in the solution) of 3He in 4He both in three- and in two-dimensional case. We will
present the foundations of the classical Bardeen-Baym-Pines theory [1], as well as
Bashkin and Meyerovich [2] results for fermionic s-wave pairing in unpolarized
3He–4He mixtures in 3D case, as well as in 2D case for 3He submonolayers on
Andreev levels [3] (which are formed on the free surface of superfluid 4He with
vacuum) and on grafoil substrates [4, 5]. We also present the Fermi-gas approach
to the p-wave fermionic superfluidity in 3He-subsystem based on Kohn and
Luttinger [6–11] mechanism for the pairing of two 3He quasiparticles via polari-
zation of the fermionic background.

We will illustrate that the critical temperatures of the p-wave pairing can be
strongly increased in a spin-polarized case both for 3D and especially for 2D
situation [7] and discuss the possible experimental test of the proposed theory.

11.1 Bardeen-Baym-Pines Theory for the Solutions of 3He
in 4He. Direct and Exchange Interactions

One of the most interesting and still experimentally unresolved problems in low-
temperature physics is the search for fermionic superfluidity in three-dimensional
and particularly in two-dimensional (thin films, submonolayers) [7] solutions of
3He in 4He. In this subsection, we will concentrate on new experimental approa-
ches and theoretical results that have been published on this topic. We will stress
particularly the role of thin 3He films and submonolayers as ideal two-dimensional
systems for experimental verification of various theories actual in connection with
the problem of high-TC superconductivity.

Note that a solution of 3He in 4He is the simplest low-density Fermi-system of
3He atoms in an inert superfluid 4He condensate, which makes a solution of this
kind an ideal object for the development and testing of methods belonging to the
realm of Fermi-liquid theory. These methods have been used successfully in
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describing the normal properties of the solutions (thermodynamic characteristics,
transport coefficients) [2] and in the prediction of possible superfluidity of the 3He
subsystem in such solutions [1, 12, 13]. The first classical theory of superfluidity of
three-dimensional solutions was proposed by Bardeen, Baym and Pines (BBP) in
1967 [1]. They established an elegant analogy between pairing of two 3He atoms
in a solution via the polarization of the 4He background (exchange of virtual
phonons) and the electron–phonon interaction in the Bardeen, Cooper and Schri-
effer (BCS) theory of superconductivity (Fig. 11.1). In accordance with the ideas
of Bardeen, Baym and Pines, the total interaction between two 3He particles in a
solution consists of two components, direct and exchange:

VðrÞ ¼ VdirðrÞ þ VexchðrÞ: ð11:1:1Þ

The direct interaction includes the contribution of hard-core repulsion at short
distances (V1) and of the van der Waals attraction (V2) at large distances:

VdirðrÞ ¼ V1ðrÞ þ V2ðrÞ: ð11:1:2Þ

The exchange interaction Vexch(r) represents the interaction of two 3He atoms
via a local change in the density of 4He. This is an analogue of the deformation
potential in the BCS theory.

The corresponding expression in the momentum space is:

VðqÞ ¼ VdirðqÞ þ VexchðqÞ; ð11:1:3Þ

where Vexch(q) is due to the exchange of a virtual phonon in the three-dimensional
case and the exchange of a quantum of third sound in the two-dimensional situ-
ation [14, 15].

At low temperatures and concentrations the subsystem of 3He atoms is a low-
density Fermi-liquid, i.e. it is effectively a Fermi-gas. Therefore, the superfluid
transition in this liquid is described by the BCS theory and it depends decisively on
the amplitude and the sign of the total interaction V(q) on the Fermi surface. More

rigorously, we have ~q ¼~p� ~p0, where~p and ~p0 are the momenta of the incoming

and outgoing particles in the Cooper channel, j~pj ¼ j~p0j ¼ pF , and q2 ¼
2p2

Fð1� cos hÞ, h ¼ ^ ~p~p 0ð Þ. Thus the only quantity which must be determined

Fig. 11.1 Interaction of two
3He atoms via the
polarization of the superfluid
4He background [7]
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when we deal with the Cooper problem is the value of the s-wave harmonic of the
potential V(q) on the Fermi surface:

Vl¼0 ¼
Z

1

�1

Vðqðcos hÞÞ d cos h
2

: ð11:1:4Þ

11.1.1 Three-Dimensional Case. Spin Diffusion
Measurements

The deformation potential has the following form in the momentum space:

VexchðqÞ ¼ g2
q

2xq

ðep � ep�qÞ2 � x2
q

; ð11:1:5Þ

where gq is the coupling constant and xq is the frequency of the phonon spectrum
of 4He. If jepþq � epj\xq\xD (where xD is Debye frequency), we find that

VexchðqÞ ¼ �
2g2

q

xq
\0.

In complete analogy with the BCS theory we have g2
q� q, xq = cIq, where cI is

the first sound velocity in 4He, so that the final result is Vexchðq! 0Þ ¼ const. In

the case of the solutions, this constant is �ð1þ aÞ2 m4cI
2

n4
\0, where a � 0:28 is the

relative increase in the volume of the solution owing to the replacement of a 4He
atom with a 3He atom; n4 and m4 are the density and mass, respectively, of 4He.
We should note that in the low-density case (for small concentration of 3He in the
solution) we have xD [ eF and the whole volume of the Fermi sphere (and not
only the Debye shell) participates in the superconductive pairing in contrast with
the standard BCS theory.

The direct interaction of 3He atoms in the momentum space is found from the
thermodynamic identity describing the derivative of the chemical potential with
respect to the density and has the following form:

Vdirðq ¼ 0Þ ¼
ol3"
on3#

¼ ð1 þ 2aÞm4cI
2

n4
[ 0; ð11:1:6Þ

where l3" and n3# represent, respectively, the chemical potential of 3He atoms with
‘‘up’’ spin and the density of 3He atoms with ‘‘down’’ spin. The result is:

Vðq ¼ 0Þ � Vl¼0 ¼ Vexchðq ¼ 0Þ þ Vdirðq ¼ 0Þ ¼ �a2 m4cI
2

n4
\0: ð11:1:7Þ
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We can therefore conclude that at very low 3He concentrations (when pF ? 0
and, consequently, q ? 0) the total interaction is attractive and we can expect the
spherically symmetric singlet s-wave pairing which is standard in the BCS theory.

However, spin diffusion experiments show that the situation is far from trivial
(see [12] and the references therein). In these experiments the dependence of DT2

(D is the spin diffusion coefficient and T is the temperature) of the 3He concen-
tration was determined. The experimental curves in [12] are strongly non-mono-
tonic and exhibit a maximum at a certain concentration x0 approximately equal to
4 % (see Fig. 11.2). They are approximately described by the expression:

DT2 / x2=3

V2
l¼0 � 2

3 Vl¼0Vl¼1 þ 11
35 V2

l¼1

: ð11:1:8Þ

A theoretical analysis of these experimental curves shows that the absolute
value of the s-wave harmonic of the total potential Vl = 0 decreases with an
increase in the concentration x, than vanishes at x = x0, and at higher concen-
trations becomes repulsive. On the other hand, for x C x0 the p-wave harmonic of
the total potential Vl = 1 is significant and attractive (although smaller than Vl = 0

at x = 0). These circumstances lead to the two possible approaches to the
fermionic superfluidity in the solution.

11.1.2 Two Possible Approaches to the Fermionic
Superfluidity in the Solutions

In the first approach it is assumed that the total interaction of two 3He atoms
described by V(q) exhibits significant momentum dependence and, moreover, its
sign is reversed at the values of the vector q of the order of the Fermi momentum
when the concentration is x0, i.e. when it is pF(x0). This hypothesis leads to the
model potential of the BBP theory [1]:

VðqÞ ¼ Vðq ¼ 0Þ cos
q

ks
; ks � pFðx0Þ: ð11:1:9Þ

Fig. 11.2 Approximate
experimental dependence of
the product DT2, representing
the spin diffusion in a
solution, on the concentration
x of 3He [7, 12]
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The BBP model potential was improved in 1989 by van de Haar et al. [12].
They introduced the concentration dependence of the amplitude of the potential
V(q = 0):

Vðq ¼ 0Þ ¼ �m4cI
2

n4
a2ð1 þ c

x

xmax

Þ; ð11:1:10Þ

where xmax is the solubility limit of 4He at a given pressure P and c(P) is a fitting
parameter. In both theories [1] and [12] the s-wave harmonic of the total inter-
action is maximal and attractive at low concentrations and then it begins to
decrease in absolute value, changing sign to become a repulsive one at concen-
trations corresponding to pF * ks. At higher concentrations the p-wave harmonic
of V(q) becomes attractive. Therefore, van de Haar, Frossati and Bedell predict
singlet s-wave pairing in a solution at low concentrations of 3He and triplet p-wave
pairing at high concentrations. It should be pointed out that the two fitting
parameters ks = ks(p) and c(P), extracted from the experiments on spin diffusion
and magnetostriction, are used in the improved model potential of van de Haar,
Frossati and Bedell [12].

The second approach, adopted by us and by others [2, 7, 13], does not rely on
any model potential. In this approach the only microscopic parameter of the
system is the s-wave scattering length a ¼ m

4p Vl¼0, which is dependent on the
pressure and concentration. It is assumed that its sign is reversed at a concentration
corresponding to the maximum of the DT2 curve (see Fig. 11.3).

It should be pointed out that the higher harmonics Vl¼1;Vl¼2; . . .ð Þ appear in the
second order of the perturbation theory but not because of the momentum
dependence of the total interaction V(q): they originate from the scattering length
a because of the effective interaction of two 3He particles via the fermionic
background of their own 3He subsystem.

The relationship between these two approaches is approximately the following.
Let us assume, for the sake of simplicity, that the direct interaction of two 3He
particles in a solution is described by:

VdirðrÞ ¼
V1; r \ r1;

�V2; r1 \ r \ r2;

(

ð11:1:11Þ

Fig. 11.3 Qualitative
dependence of the scattering
length in a solution from the
concentration of 3He. At
x = 100 % the value of
a(x) tends to the scattering
length of pure 3He and is
approximately equal to 2/pF0

at zero pressure [7] (here pF0

is the Fermi momentum of
pure 3He)
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where the first term is responsible for the hard-core repulsion at short distances and
the second term is due to the van der Waals attraction at long distances (see
Fig. 11.4 and Fig. 6.1).

At low 3He concentrations in a solution, i.e. in the case when pFr1 � pFr2 � 1,
the s-wave harmonic of the direct interaction is Vl¼0

dir ¼ Vl¼0
1 � Vl¼0

2 . Then, if

Vl¼0
1 � Vl¼0

2 � Vl¼0
exch\0; ð11:1:12Þ

but

Vl¼0
1 � Vl¼0

exch [ 0; ð11:1:13Þ

we have the low-density Fermi-gas with the gas parameter pFr1 � 1 and with a
scattering length which changes its sign at pF * 1/r2. Naturally, this approach
ignores the p-wave harmonic of the van der Waals interaction, which need not be
small in the transition region pFr2 * 1. It should be pointed out that at high
concentrations when pFr2 � 1 we find that Vl¼1

2 is small and of the same order as
Vl¼0

2 . In this chapter the second (Fermi-gas) approach to the problem of super-
fluidity in the solutions will be mainly used.

11.1.3 Three-Dimensional Fermi-Gas with Attraction

The expression for the temperature of the superfluid transition in a Fermi-gas with
attraction was first obtained by Gor’kov and Melik-Barkhudarov in 1961 [16],
soon after the creation of the BCS-theory. Bashkin and Meyerovich [2] used this
expression to describe the superfluidity of the solutions at very low concentrations
of 3He. For the concentrations in the range x \ x0 and an attractive s-wave scat-
tering length a \ 0 the expression for the s-wave critical temperature reads:

TC0 ¼ 0:28eF0x2=3 exp � p

2jajpF0x1=3

ffi �

; ð11:1:14Þ

Fig. 11.4 Model
representation of the direct
interaction of two particles in
a solution as a function of the
distance r between them [7]
(see also Fig. 6.1 in Chap. 6)
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where eF0 and pF0 are the Fermi energy and momentum of pure 3He. It is worth
noting that the preexponential factor in this expression is proportional to eF and not
xD, as in the case of the phonon model.

According to the estimates of Østgaard and Bashkin [17], the maximum value
of TC0 is TC0(1 %) * 10-4 K. Frossati and his colleagues [12] proposed a lower
critical temperature with maximal TC0 = TC0(2 %) * (4�10-6 7 10-5) K. In
their estimates they obtained the larger value of TC0 of the order of 10-5 K by
extracting the fitting parameters from the magnetostriction experiments, and
4�10-6 K from the spin diffusion experiments. At a given concentration x the gas
parameter of the theory is apF0x1/3, and it depends weakly on the pressure.

11.1.4 Three-Dimensional Fermi-Gas with Repulsion

At higher concentrations (x [ x0) the scattering length changes its sign a [ 0, and
s-wave pairing becomes impossible. Nevertheless, even in this case the subsystem
of 3He atoms in a solution may become a superfluid, but this is now due to an
instability with respect to triplet p-wave pairing. As we already discussed in Chap.
9, the mechanism for the realization of p-wave pairing was first considered by Fay
and Layzer [10] and Kagan, Chubukov [7] following pioneering ideas of Kohn and
Luttinger [6]. It is related to the presence of Kohn’s anomaly (of the Friedel
oscillations [18]) in the effective interaction of Fermi particles via the polarization
of the Fermionic background. As a result the purely repulsive short-range potential
between two particles in vacuum gives rise to an effective interaction in substance
with the competition between attraction and repulsion in it. A rigorous calculation
[7, 10] shows that for all the harmonics of the effective potential (except the s-
wave harmonic) the attraction wins in this competition and the p-wave harmonic is
the most attractive. Consequently, a three-dimensional Fermi-gas with repulsion is
unstable with respect to the superfluid transition with the triplet p-wave pairing
below the critical temperature:

TC1 � eF0x2=3 exp � 5p2

4ð2 ln 2 � 1Þa2p2
F0x2=3

� �

; ð11:1:15Þ

where maximal TC1 corresponds to the pressures P = 10 bar, when we have the
maximal solubility of 3He xmax = 9.5 %. In this case it equals to (10-10–10-9) K.
The triplet pairing temperature of this order of magnitude was predicted also by
Bardeen et al. [1]. Frossati and others [12] give a more optimistic estimate for the
triplet pairing case. At the maximal concentration xmax = 9.5 % the value of TC1

lies between 10-6 and 10-4 K. The lower temperature of the p-wave pairing
(10-6 K) is obtained in [12] when the fitting parameters are extracted from
transport experiments and the higher temperature (10-4 K) follows from magne-
tostriction experiments. Note that at zero pressure the maximal solubility of 3He in
the solution is only 6.4 % [1, 2].
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11.2 Two-Dimensional Case. 3He-Submonolayers

A solution of 3He in 4He is also very interesting because it can be made purely
two-dimensional. In superconducting electron systems a film is regarded as a two-
dimensional if its thickness L is much less than the coherence length
f0 * 1000 Å. In 3He films on grafoil (exfoliated graphite) and in monolayers and
submonolayers the radius of the localization of 3He atoms in the third dimension
(which is the film thickness) is indeed of the order of the distance between the
atoms d. Therefore, by analogy with inversed layers in heterostructures, we are
also dealing here with a purely two-dimensional system, and, moreover, our
system is free of impurities. In this sense a two-dimensional solution of 3He in 4He
can be regarded as a bridge between superfluidity and superconductivity, partic-
ularly high-temperature superconductivity. In fact, the majority of modern theories
of high-TC superconductivity rely on the two-dimensional or quasi-two-dimen-
sional behavior (see this chapter, Chaps. 12, 13 and 14) for the unusual normal
properties (resistivity, susceptibility, small Z-factor) of these materials, as well as
to account for the high temperature of their superconducting transition. Two-
dimensional helium films and particularly monolayers and submonolayers with a
low two-dimensional 3He density are ideal objects for experimental verification of
the different fashionable theories of high-TC superconductivity, such as the theory
of a marginal Fermi-liquid (see Chap. 14) proposed by Varma et al. [19] or a
somewhat similar theory of the Luttinger liquid proposed by Anderson [20]. These
topics will be discussed again at the end of this subsection. At this stage we will
provide a brief review of the history of the experimental discovery and theoretical
prediction of the existence of a two-dimensional solution.

11.2.1 Surface Andreev Levels

The first experiments were carried out by Esel’son and Bereznyak [21] and by
Atkins and Narahara [22]. These experiments revealed a nontrivial temperature
dependence of the surface tension (in fact, the surface free energy) of a weak
solution of 3He in 4He. The experiments were interpreted by Andreev [3] who
postulated the existence of surface 3He-impurity levels on the free surface of
superfluid 4He with vacuum (which are similar to some extent to Tamm’s surface
levels in metals). This idea was subsequently confirmed by detailed experiments of
Zinov’eva and Boldarev [23] and of Edwards et al. [24] as well as by the varia-
tional calculations (cf. the review of Edwards and Saam [25] and the literature
cited there). The correct interpretation of the experimental results yields the fol-

lowing parameters representing the surface state: e ¼ �D � e0 þ
p2
jj

2m	, where
D = 2.8 K is the binding energy of a 3He quasiparticle in the bulk (Andreev [3],
Bashkin and Meyerovich [2]), e0 = 2.2 K is the difference between the binding
energies of a 3He quasiparticle in the bulk and on the surface; m* = 1.5 m3 is the
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hydrodynamic effective mass governing the motion of 3He quasiparticles along the
surface. It should be pointed out that, according to the variational calculations of
Lekner [26] and Saam [27], the appearance of the Andreev levels is due to a
combination of the effects associated with the van der Waals interaction between
3He and the 4He density profile (which varies when we approach the free surface)
and with the difference between the energies of the zero-point motion of 3He and
4He. Such effects lead to the localization of 3He atoms near the free surface. In the
same time 3He atoms can move freely along the surface of 4He, which is almost
equipotential because the hydrodynamic condition l4 = const (see Chap. 1) is
satisfied on this surface. The wave function of the Andreev state is W ¼
WðzÞ expði~pjj~rjjÞ with WðzÞ� expð�z=dÞ, where d is the radius of localization
along the normal to the surface.

11.2.2 Superfluid Thin 4He-Films

The first experiments on thin 4He films (film thickness is less than 25 Å) of the
same kind as the experiments of Zinov’eva and Boldarev [23] and of Edwards et al.
[24], were carried out by Gasparini et al. [28]. Gasparini and others determined the
contribution of the surface states of 3He to the specific heat of the thin films. They
also proposed the first theoretical interpretation of the results [29]. Subsequently
several experimental papers were published by Hallock et al. [4, 30–32], who
measured the magnetization and the spin–lattice relaxation time of 3He sub-
monolayers formed on the surface of thin 4He films.

The theoretical interpretation of the experiments of Hallock et al. proposed by
Dalfovo and Stringari [33], Pavloff and Treiner [34], Krotscheck et al. [35] require
the assumption that not one but two Andreev levels exist on the surface of a thin
4He film. The energy of the first Andreev layer, E1 ¼ �D � e1 þ

p2
jj

2m1
, is practi-

cally identical with the energy of the Andreev level (e1 ffi e0) on a bulk surface,
differing only in respect of the effective mass m1 & 1.35 m3. The energy of the
second Andreev level is still lower than the energy of 3He in the bulk and is given

by the expression E2 ¼ �D � e2 þ
p2
jj

2m2
, where in the limit of zero concentration

of 3He and not too thin films we have m2 & 1.6 m3 and e2 & 0.4 K; consequently,
e2 - e1 = 1.8 K.

The wavefunction of the first Andreev level is localized mainly near the free
surface and has a significant tail (*3 Å) above the surface. At the same time the
wavefunction of the second Andreev level penetrates partly into the film. Two
Andreev levels (instead of one) appear according to [33–35] because of the com-
petition between the size effect (vanishing of the W-function of 3He near the sub-

strate and consequent increase of the kinetic energy Ekin � ðrzWÞ2 � 1=L2 of 3He)
and the van der Waals attraction by the substrate (which is proportional to
1/L3 and tends to reduce the energy). In the case of thin and moderately thick
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films the van der Waals attraction is stronger than the size-effect repulsion and,
therefore, the energy of the second Andreev level is still lower than the energy of
3He in the bulk.

In the case of very thick films the van der Waals attraction of the substrate
(proportional to 1/L3) may become unimportant compared with the kinetic energy,
and the energy of the second Andreev level may prove to be higher than the energy
of 3He in the bulk. In this case the second level evidently vanishes by merging with
the bulk levels. At a fixed film thickness, the van der Waals attraction of the
substrate depends on whether the substrate is ‘‘strong’’ or ‘‘weak’’. On a weak
substrate (Cs, Rb, K, Na, Li, Mg, H2) it is found that 4He is in the liquid phase. On
a strong substrate (Ag, Au, Cu, Al) one or two solid 4He layers are formed on it,
and 4He is in a liquid phase only starting from the third and following layers. The
presence of one or two solid layers reduces the van der Waals attraction of the
substrate and increases the kinetic energy, leading to a possible disappearance of
the second Andreev level at lower thicknesses of the film.

We would like to emphasize that the topic of surface levels in the films is not
fully understood yet. There is an alternative point of view according to which the
second Andreev level can exist not only in thin films, but also in the bulk.

It is thus clear that in the case of not very thin and not very thick films there are
definitely two Andreev levels whose energies differ by e2 - e1 = 1.8 K. Their
existence is manifested in Hallock experiments by the presence of a step in the
dependence of the magnetization on the surface density of 3He. This step appears
when the density of 3He is equal to 0.85 of a monolayer. At lower densities the
second Andreev level is not important, and we are dealing with a purely two-

dimensional one-level system whose spectrum is E ¼ �D � e1 þ
p2
jj

2m1
and the

wave-function is W ¼ WðzÞ expði~pjj~rjjÞ.

11.2.3 Spin Susceptibility of 3He-Submonolayers

Another important result reported by Hallock et al. is an analysis of the temper-
ature dependence of the susceptibility. At low temperatures (T � TF) the sus-
ceptibility depends weakly on temperature, and for surface densities from 0.03 to
0.3 of a monolayer it is well described by an expression for a two-dimensional
Fermi-gas with weak repulsive interaction (with coupling constant f0) between the
particles [36, 37]:

v ¼ v0

1 þ 1
2 Fs

1

1 þ Fa
0

� v0ð1 þ f0Þ; ð11:2:1Þ

where v0 is susceptibility of the non-interacting 2D Fermi-gas, Fs
1 � f 2

0 and
Fa

0 � f0 are two-dimensional harmonics of the Landau quasiparticle interaction
function, f0 � 1

2 ln 1= pFr0ð Þ is a two-dimensional coupling constant (introduced in this

chapter) and r0 is the range of the potential.
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At the surface densities from 0.005 to 0.03 we have v\ v0, which supports the
attractive sign of the coupling constant (this is also true for the gas-parameter
a(x)pF0x1/3 in the case of three-dimensional solutions). Note that the exact surface
densities at which the 2D coupling constant changes its sign can be determined
from the measurements at lower temperatures T \ TF, since TF * TF0x is small
and the transition from the Fermi-gas behavior of the susceptibility to the Curie
law occurs very early.

Concluding this subsection we must mention that there is also another purely
two-dimensional system, namely 3He on the surface of grafoil which has very
similar properties at a low surface density of 3He (cf. experiments carried out by
Saunders group [5, 38]). The rest of our discussion of fermionic superfluidity in
purely two-dimensional low-density systems can be also applied to 3He on grafoil,
subject only to small modifications.

11.2.4 Possibility of the Superfluid Transition in the Two-
Dimensional Solutions

We shall now consider the possibility of the superfluid transition in a two-
dimensional 3He submonolayers on the surface of 4He.

By analogy with the tree-dimensional case, the total interaction between two
3He particles on the surface is given by the expression:

Vð~r; zÞ ¼ Vdirð~r; zÞ þ Vexchð~r; zÞ; ð11:2:2Þ

where the exchange interaction Vexchð~r; zÞ is governed by the sum of the residual
parts (which are not used to form Andreev level) of the deformation potential of
the interaction between two 3He particles via the polarization of 4He, and of the
van der Waals attraction of the substrate. These residual parts of the exchange
interaction are related primarily with the interaction of 3He particles with the
curved surface of superfluid 4He in the field of surface waves of a third sound. The
spectrum of third sound waves is of the form x2 ¼ a

q ðj2 þ q2Þq � thðqLÞ [39, 40],

where the first term in the parentheses describes the contribution of the van der
Waals potential of the substrate and the second one represents the local surface
change in the density of 4He. In the case of thin films the contribution of the first
term predominates, i.e. the dynamic part of the van der Waals potential of the
substrate is more important than ‘‘surface phonons’’ (which are called riplons).
Consequently, a reduction in the film thickness changes the spectrum from the
purely riplon type x2 ¼ a

q q3, where a is the surface tension [41] to an acoustic

spectrum with a linear dispersion law [39] x2 ¼ aj2

q q2L, where j is the capillary

constant of the van der Waals potential and L is the film thickness qL � 1.
In the two-dimensional problem it is important, as always, to determine the

two-dimensional projection of the three-dimensional potential Vð~r; zÞ. In close
analogy with the two-dimensional projection of the Coulomb interaction (briefly
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considered in Chap. 10 in the momentum space), in the real space it is given by the
expression:

Vð~r1 �~r2Þ ¼
ZZ

Vð~r1 � ~r2; z1 � z2Þ Wðz1Þj j2 Wðz2Þj j2dz1dz2; ð11:2:3Þ

where WðzÞ is the wave function of Andreev level. The two-dimensional projection
of the total interaction can be represented in the form:

VðrÞ ¼ VdirðrÞ þ VexchðrÞ; ð11:2:4Þ

and correspondingly in the momentum space

VðqjjÞ ¼ VdirðqjjÞ þ VexchðqjjÞ: ð11:2:5Þ

In (11.2.5) VexchðqjjÞ is due to the exchange of a virtual quantum of the third
sound. Note that in the case of thin films qL � 1: Vexchðqjj ¼ 0Þ is given by
Vexchðqjj ¼ 0Þ ¼ �m4c2

III [14, 15], where cIII is the velocity of the third sound. It is
given by:

c2
III ¼

3Vsubh4

m4n4ðd þ h4Þ4
ð11:2:6Þ

In (11.2.6) Vsub is the amplitude of the van der Waals potential of the substrate,
d and h4 are the thicknesses of the solid (d) and the superfluid (h4) layers, so
L = d ? h4 is a total film thickness (We recall that in the case of well-wetted
substrate, such as Au, Ag, Cu, etc., the first 4He layer on the substrate solidifies).

It should be pointed out that, as in the three-dimensional problem, the limiting
frequency of surface waves xD�m4c2

III is much higher than the Fermi energy eF.
Therefore, we are again dealing with an antiadiabatic situation, when the whole
volume of the two-dimensional Fermi sphere (and not only its Debye shell) is
important in the problem of the possibility of a superfluid transition.

We shall now consider the direct part of the total interaction. By analogy with
the three-dimensional case, we have:

Vdirðqjj ¼ 0Þ ¼ V1ðqjj ¼ 0Þ þ V2ðqjj ¼ 0Þ; ð11:2:7Þ

where V1 is determined by the hard-core repulsion between two 3He particles at
short distances, whereas V2 is due to the attractive interaction of two 3He particles
at large distances (see Fig. 11.4).

As pointed out at the end of the preceding subsection, the experiments of
Hallock et al. [4, 30–32] on the dependence of the magnetization of a submono-
layer on the surface density of 3He demonstrate that the total interaction of two
3He particles on the surface of a thin film is attractive when the 3He concentration
is small (x \ 3 %), and repulsive when the concentration is higher. Therefore, the
direct part of the total interaction can be represented again in a model form shown
in Fig. 11.4, i.e.:
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VdirðrÞ ¼
V1; r \ r1

�V2; r1 \ r \ r2

(

; ð11:2:8Þ

where 1=r2 � pFðx ¼ 3%Þ. If the submonolayer density is such that p2
F\ 1

r2
1

(pFr1\1), we can try to use the Fermi-gas approach again. It should be pointed
out, that the experiments of Hallock et al. demonstrate, that at 3He densities less
than 0.3 of a monolayer (x \30 %) we are indeed dealing with a weakly inter-
acting low-density two-dimensional Fermi-gas.

11.2.5 Two-Dimensional Fermi-Gas with Attraction

A special feature of the two-dimensional case is that for purely attractive potential
(without hard-core repulsion part) even if the attraction is infinitely weak, we are
dealing with the coexistence of two phenomena [42–44]: the pairing of two par-
ticles in vacuum in the coordinate space and the Cooper pairing of two particles in
substance in the momentum space in the presence of a filled Fermi sphere. In the
case of a purely attractive potential the energy of a bound state in vacuum in weak-
coupling case reads:

Eb ¼ �
1

mr2
0

exp � 4p
mjU0j

ffi �

; ð11:2:9Þ

where U0 is the s-wave harmonic of the potential and r0 is the range of the

potential. In the weak-coupling case jf0j ¼ mjU0j
4p � 1 for the 2D gas-parameter f0.

The s-wave critical temperature according to Miyake is TC0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eFjEbj
p

for eF �
jEbj (see Chaps. 7 and 8).

The situation is more complicated in the case of the potential with a repulsive
core and an attractive tail (see Fig. 11.4). Here as it was shown in [45] in the case

of strong hard-core repulsion V1 � jV2j; 1
mr2

1

n o

we have a threshold for s-wave

two-particle pairing. The first solution for the bound state for k ¼
ffiffiffiffiffiffiffiffiffiffiffi

mjEbj
p

! 0

appears when jr1 C 0.4 and jr2 C 1.6, where j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðjV2j � jEbjÞ
p

. It means that
an attractive tail must be at least four times more extended than a hard-core region
(r2 C 4r1). The coordinate part of the W-function in this case monotonously
increases in the interval between r1 and r2 (in close analogy with a solution for the
bound-state of the extended s-wave pairing in the low-density 2D t-J model with
released constraint which will be considered in Chap. 13 or with a lattice gas with
van der Waals potential considered in Chap. 6). Thus we can say, that r2 is the
mean distance between the two particles. The threshold condition can be repre-
sented as mjV2Cjr2

2 � 2:6. Note that mr2
2 corresponds to 1/2t = md2 in a lattice

model (where the role of r1 plays d/2 and the role of r2 plays d-the intersite
distance). It means that a threshold in a continuous model is larger than in a lattice
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model (see Chap. 6). Note that the coordinate part of the two-particle W-function
does not depend upon the statistics of two particles—it is the same for two fer-
mions with spins ‘‘up’’ and ‘‘down’’ in singlet (Stot = 0) state which will be
considered in Chap. 13 and for two spinless and structureless bosons considered in
Chap. 6. Hence the situation in continuous van der Waals model remains quali-
tatively the same as in the lattice model (see Figs. 6.1, 11.4 and [45]).

The equation for the energy spectrum reads (see [45]):

jðY0ðjr1ÞJ1ðjr2Þ � J0ðjr1ÞY1ðjr2ÞÞ
Y0ðjr1ÞJ0ðjr2Þ � J0ðjr1ÞY0ðjr2Þ

¼ kK1ðkr2Þ
K0ðkr2Þ

; ð11:2:10Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffi

mjEbj
p

and j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðjV2j � jEbjÞ
p

, J0, Y0 and J1, Y1 are the Bessel
functions of zeroth and first orders, K0 and K1 are the Macdonald functions of
zeroth and first order.

For shallow bound state jEbj � 1
mr2

2
close to the threshold jV2j�jV2C j

jV2j � 1 we have

(see [46]):

jEbj �
1

mr2
2

exp � 1
k

� �

; ð11:2:11Þ

where k ¼ jV2j�jV2C j
pjV2j . When the amplitude of the van der Waals attraction strongly

exceeds jV2Cj � 2:6
mr2

2
, the binding energy jEbj � 1

mr2
2
. Note that the famous Miyake

formula is still valid for the potential with the hard-core repulsion and the van der
Waals attractive tail in the weak coupling case jEbj � eF . In this case
jEbj � TC0 � eF . In the opposite strong-coupling (or very diluted) case when
jEbj � eF , as we discussed in Chaps. 7 and 8, we have two characteristic tem-
peratures: the bound pairs are formed at the crossover Saha temperature [47]

T	 � jEbj
ln
jEb j
eF

, while the pairs are Bose-condensed at Fisher-Holenberg s-wave critical

temperature [48] TC0 ¼ eF

2 ln ln
jEb j
eF

.

We note that even in the strong-coupling case TC0 B eF, where eF = eF0x and
x is the 2D 3He concentration. We shall conclude this subsection with a rough
estimate for the s-wave temperature of the superfluid transition in 2D. According
to Bashkin, Kurihara and Miyake we can expect TC0 of the order of 1 mK or less
when the surface density of 3He is of the order of 0.01 of a monolayer.

11.2.6 Two-Dimensional Fermi-Gas with Repulsion

When the 3He surface density exceeds 0.03 of a monolayer, the total interaction
between 3He particles changes sign and the s-wave pairing becomes impossible.
However, even in this case 3He subsystem will become unstable towards triplet

p-wave pairing [36, 37] below the critical temperature TC1 � eF exp � 1
6:1f 3

0

n o

in
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the third order in f0 for the effective interaction Ueff(q) (see Chap. 9), where
eF = eF0x and f0 ¼ 1

ln 1
p2

F0
xr2

1

is 2D coupling constant, r1 is the range of the hard-core

part of the potential [36, 37]. An estimate of the superfluid transition temperature
obtained by Chubukov [36] is TC1 * 10-4 K for densities *0.3 of a monolayer
corresponding to the limit of the validity of the Fermi-gas description.

It should be pointed out that the allowance for quatric corrections to the

spectrum of 3He quasiparticles eðpÞ ¼ p2

2m ð1� c p2

p2
C
Þ, results in the appearance of the

p-wave pairing already in a second order of the perturbation theory for effective

interaction. This yields TC1 � eF exp � 1
c f 2

0

n o

as demonstrated by Baranov and

Kagan [49]. However, the superfluid transition temperature now depends expo-
nentially on the small constant c representing the quartic corrections to the qua-
dratic spectrum of quasiparticles and, therefore, TC1 is very small.

11.3 Superfluidity in Polarized Solutions

We shall now consider briefly the situation in strongly (spin) polarized solutions.
It is well known that the singlet s-wave pairing in a strongly polarized solution

is suppressed by a paramagnetic effect. This means that in magnetic fields larger
than the paramagnetic limit H [ TC0

lB
(see Chap. 10), where lB is the nuclear Bohr

magneton for 3He, the singlet s-wave superfluid state is destroyed. The influence of
an external magnetic field (or of the spin polarization) on the triplet p-wave pairing
temperature is less trivial.

11.3.1 Three-Dimensional Polarized Solutions

Chubukov and Kagan [9] showed that the p-wave pairing temperature of a three-
dimensional polarized gas with repulsion depends strongly and nomonotonically
on the degree of polarization a (see Chap. 10 and Fig. 10.2): it rises strongly at low
and intermediate polarization (for Stot ¼ Sz

tot ¼ 1), passes through a maximum
when the polarization is 48 %, and falls on further increase of polarization. At a
pressure of 10 bar the maximal possible concentration of 3He is x = 9.5 % and the
temperature in the maximum corresponds to 10-6 - 10-5 K [7], which is much
higher than TC1 * 10-10 7 10-9 K corresponding in [7] to the case when a = 0.
An account of preexponential factors for TC1 further increases the critical tem-
perature especially in magnetic field [50]. A qualitatively similar dependence of
TC1 on a with a maximum at a = 32 % was also predicted by van de Haar, Frossati
and Bedell [12]. The temperature at the maximum predicted by these authors for
the same values of pressure and concentration is somewhat higher and amounts to
10-5 - 10-4 K.
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The hope for experimental creation of strongly polarized solutions is based
primarily on the elegant idea of Castraing and Nozieres [51]. In their classical
paper they proposed to create a strong polarization in a liquid solution by fast
melting of a solid solution. The idea is that a solid solution (and pure crystalline
3He) does not have a kinetic energy of the degeneracy of 3He atoms associated
with the Pauli principle. Therefore, the application of a magnetic field of the order
of the Curie temperature:

lBH� TC � T � 1 mK and H � 1 T ð11:2:12Þ

leads to an almost full polarization of the solid solution. It should be pointed out
that a significant brute force polarization in a liquid solution can be achieved only
by applying very high external magnetic fields lBH� eF � 0:1 K and H * 100 T.
These fields is difficult to reach experimentally.

In the same time fast melting of a strongly polarized (a * 90 %) solid solution
should, according to the estimates of Castraing and Nozieres [51], produce a liquid
solution with a * 30 % which is close to the maximum of TC in the theory of van
de Haar, Frossati and Bedell. Naturally, this polarization is of a nonequilibrium
nature, but its lifetime is very long (*30 min) because of the long relaxation time
in the liquid phase.

Another very important idea for the increase of the critical temperature is the
suggestion of Meyerovich et al. [52, 53] according to which the maximal solubility
of a strongly polarized solution may be 3–4 times higher than the maximal sol-
ubility in the absence of polarization (xmax(a) * 30 % instead of
xmax(a = 0) * 9.5 %). A combination of the ideas of Castraing, Nozieres and
Meyerovich may produce an even greater increase (to 10-4 - 10-3 K) in the
superfluid transition temperature of a strongly polarized solution.

11.3.2 Two-Dimensional Polarized Solutions

The situation in two-dimensional polarized submonolayers at 3He densities from
0.03 to 0.3 of a monolayer is even more favorable from the point of view of the
superfluid transition temperature. As it was shown in Chap. 10, the competition
between a strong 2D Kohn’s anomaly and a reduction of the density of states of the
‘‘down’’ spins (antiparallel to the field) again gives rise to a nonmonotonic depen-
dence of triplet p-wave temperature TC1 on the degree of polarization a, with a very
strong maximum at a = 60 % (see Fig. 10.3 and [7, 9, 54]). It should be pointed out
that the maximum is very broad and extends from 10 to 90 % of the polarization.

Estimates in [7] indicate that the critical temperature is fairly high now in
experimentally achievable fields H * 15 T. In fact, for the two-dimensional
solution with surface density n3 * 0.05 of a monolayer and the Fermi-energy
eF * 0.13 K, the application of such a magnetic field produces a polarization
degree a ¼ lBH

eF
� 10%. In this case the triplet p-wave pairing temperature (for

Stot ¼ Sz
tot ¼ 1) can reach a value T""C1 * 1 mK, which is quite nice and promising.
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11.4 Experimental Situation and Limitations
on the Existing Theories

In the introduction to the Sect. 11.1 we pointed out that the search for fermionic
superfluidity of 3He in three-dimensional and two-dimensional solutions has not
resulted in experimental success yet. The published experimental results demon-
strating the absence of superfluidity at certain pressures and concentrations impose
some limits on the various theoretical estimates of the superfluid transition tem-
perature. They are forcing both theorists and experimentalists to concentrate on
those ranges of the parameters where the experiments have not been carried out
yet. The review of Østgaard and Bashkin [17] contains the experimental results
obtained by the groups of Pobell [55] and Ogawa [56] (we must also mention here
more recent experimental results of Saunders group for the 2D case [57–59]). They
demonstrate the absence of the superfluid transition in the three-dimensional
solutions right down to 0.2 mK for 3He concentrations of 1, 5 and 6.4 %. They
show that the temperature both of the singlet s-wave pairing and the temperature of
the triplet p-wave pairing (we recall that the s-wave pairing is suppressed for the
3He concentrations exceeding 4 % in 3D) most probably lie below 0.2 mK.

The estimates of Østgaard and Bashkin concerning s-wave pairing in 3D case
show that the most promising way is to seek the singlet superfluidity at 3He
concentrations amounting to *0.5–1 %. van de Haar, Frossati and Bedell [12]
assume that the optimal concentration lies in the interval 1.5–2.5 %. The corre-
sponding temperature TC0 is of the order of 0.1 mK for the results of the both
groups. According to the estimates of Frossati, Bedell, Meyerovich and Kagan, the
triplet superfluidity is most likely to occur at the maximal possible concentration
of 3He xmax & 9.5 % which corresponds to the pressure 10 bar, under strong
polarization conditions (in strong effective magnetic fields). As pointed out above,
when the polarization is very strong, it may be possible to reach 3He concentra-
tions even exceeding 9.5 %. The most realistic estimates once again (similar to the
estimates for an s-wave temperature TC0) predict a triplet pairing temperature TC1

only of the order of 0.1 mK or lower. Therefore, we obviously can expect that both
the singlet and the polarization-enhanced triplet pairing temperatures cannot
exceed the value of the order of 0.1 mK.

It seems that the situation in the two-dimensional solutions is more favorable
with respect to TC from the experimental point of view. The most important
experimental results, imposing limits on the theoretical estimates were obtained
for 2D 3He submonolayers on the surface of thin 4He films by Pobell [55, 60] and
on the surface of grafoil by Saunders et al. [58, 59]. The authors of [55] performed
the measurements of the viscous penetration length with the aid of torsional
oscillations. The scheme of their experiment is shown on Fig. 11.5.

Pobell reached temperatures of 0.85 mK and did not observe the superfluid
transition in the range of surface concentrations from 0.1 to 1 monolayer. Even
more severe restrictions on TC impose the experiments of Saunders group [58, 59]
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who did not find the fermionic superfluid transition up to the temperatures 0.1 mK
for 3He surface coverages from 0.05 till 1 monolayer on the grafoil substrate.

These experimental data suggest that the fermionic superfluidity in two-
dimensional solution should be searched either at lower 3He densities (n3 \ 0.03
of a monolayer, when the total interaction corresponds to the attraction) or at a
little bit higher densities n3 * 0.05 7 1 of a monolayer (for repulsive total
interaction) when we apply a strong magnetic field H * 15 7 30 T. In both cases
we can probably expect the singlet superfluidity in the absence of a magnetic field
(for concentrations n3 \ 0.03 of a monolayer) and the field-enhanced triplet
superfluidity (for n3 * 0.05 7 1 of a monolayer) at temperatures of the order of
1 mK or less. These temperatures are ten times higher than in 3D case and in
principle can be achieved experimentally.

11.5 Two-Dimensional Monolayers as a Bridge Between
Superfluidity and High-TC Superconductivity

In conclusion of this chapter let us stress again that the two-dimensional 3He sub-
monolayers on the surface of thin 4He films and on grafoil are ideal two-dimensional
systems for experimental verification of many currently popular theories of the
normal and superconducting state of quasi-two-dimensional high-TC supercon-
ductors, including marginal Fermi-liquid theory of Varma et al. [19] and Luttinger
liquid theory of Anderson [20]. The most valuable experimental information which
can impose limitations on different theories of high-TC SC is connected with the

measurements of a magnetic susceptibility v ¼ v0
1þ1

2Fs
1

1þFa
0

at low temperatures T \ TF

and small densities. The knowledge of Landau harmonics Fa
0, Fs

1, which enter in the
expression for v [61, 62], will help us to answer the question whether Landau Fermi-
liquid theory exists in a 2D case even at low densities, and, if it exists, what are the
non-trivial corrections to Landau expansion for measurable quantities such as
effective mass or zero-sound velocity, which are missing in a standard 3D situation.
We will address this topic more detaily in Chap. 14, when we will study the sin-

gularity in Landau quasiparticle interaction function f ð~p; ~p0Þ for almost parallel

momenta~pjj~p0 and small transfered momentum~q ¼~p� ~p0 ! 0 [63, 64] in 2D and

Fig. 11.5 The principal
scheme of Pobell experiments
[7, 55, 60] on the search of
fermionic superfluidity in the
submonolayers of 3He on the
surface of very thin film of
superfluid 4He
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consider detaily the doubts of Anderson [20] on the validity of Landau Fermi-liquid
description due to the existence of this singularity. We will show in Chap. 14 that in
the framework of perturbation theory [63, 64] the singularity is much weaker

f ð~p; ~p0Þ � 1
ffiffi

q
p then Anderson’s prediction f ð~p; ~p0Þ � 1

q. Moreover, it exists only for a

narrow angle region u * q3/2 close to the angle u = 0, thus not destroying Landau
Fermi-liquid completely but leading only to nontrivial temperature corrections to
the effective mass ðm	=m� 1Þ � 1=2ð ÞFs

1 � f 2
0 T=eF and other observables. It will

be very interesting to check experimentally the predictions of the perturbation
theory of Prokof’ev, Stamp [63], Baranov et al. [64] on the 3He submonolayers at
low temperatures and surface densities. To do that it is important to expand the
susceptibility measurements of Hallock and Godfrin [65] groups for 3He sub-
monolayers on the surface of thin film of superfluid 4He and Saunders group for 3He
submonolayers on grafoil on lower temperatures and surface densities where we are
in degenerate (Pauli) situation. Note that earlier experiments [4, 5, 30–32, 38] have
been carried out primarily at intermediate and high temperatures (at which there is a
transition to Curie law).
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Chapter 12
Triplet Pairing and Superfluid Phase-
Diagram in Fermi Gas of Neutral
Particles and in Superfluid 3He

In this chapter we will discuss s-wave and p-wave superfluidity in a Fermi-gas of
neutral particles at ultracold temperatures in the restricted geometry of the
magnetic traps.

We will show that in the case of exactly equal densities of the trapped com-
ponents with different projections of the nuclear spin Jz the Fermi-gas will be
unstable towards singlet s-wave pairing predicted by Stoof et al. [1].

We also show that in the case of the density disbalance between the trapped
components with different Jz the s-wave pairing is suppressed due to Landau
criterion of superfluidity [2]. However, in this case the system will be also unstable
towards p-wave superfluid pairing at ultralow temperatures [3, 4]. We discuss the
possibility to increase TC of the p-wave pairing for optimal relative densities (ni/nj)
of the trapped hyperfine components. We discuss the metastability of the system
and possible phase-separation at higher densities. We present the estimates for TC

in disbalanced fermionic 6Li with an account of preexponential factors [3, 4]. We
also present a simple estimate for the pair size in the trap which helps to extend the
estimate for TC in the infinite free space to a trap of a finite dimension.

We briefly discuss the dilute Fermi-Bose mixture of 6Li-7Li in the trap and the
possibility to enhance p-wave fermionic TC1 via the polarization of a bosonic
component [5] which is described by the density–density correlation function.

In the end of the chapter we construct Ginzburg–Landau (GL) [6, 7] functional
for p-wave superfluid Fermi-gas and calculate the coefficients b1. . .b5 (near
quartic terms) in Ginzburg–Landau expansion with an account of the Rainer and
Serene [8, 9] strong-coupling corrections.

On the level of the exact knowledge of TC1 (with an account for preexponential
factors) [4] and of the GL-functional we construct the phase-diagram (find all the
global minima of GL-functional) for the superfluid state of the p-wave Fermi-gas
both in 3D and 2D case. We indicate the regions of B- and A-phases [10–15] of the
triplet p-wave Fermi-gas [9, 16] in the absence of magnetic field, as well as A1 and
A2-phases [17–19] in strong magnetic field. We do not find the trace of exotic
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(third) phase of p-wave superfluid (different from A and B phases in 3D or axial
phase in 2D) on the level of our calculations in the absence of a magnetic field. We
note that a hope to get a third exotic phase in 3D can be possibly connected with
weak magnetic fields H\Hp ¼ TC1

lB
and intermediate values of coupling constant

k ¼ 2apF=p� 1 [20].

12.1 Fermionic Superfluidity of 6Li in the Magnetic Traps
at Ultracold Temperatures

As we already mentioned in the introduction to Chap. 5, one of the most important
events of the past years in condensed-matter physics was the discovery of Bose–
Einstein condensation in gases of alkali elements 87Rb [21], 7Li [22] and 23Na [23]
in the confined geometry of magneto-optical traps.

In this section we consider the fundamental possibility of achieving a superfluid
instability of a different type—with respect to Cooper pair formation in a nonideal
atomic Fermi gas with a scattering length of large absolute value. For 6Li we shall
consider the case of an attractive scattering length a \ 0, though formally our
results for p-wave pairing will be proportional to a2 and thus will not depend upon
the sign of a.

Note that as we discussed in Chaps. 5 and 6, the quasiresonance scattering
length could be further dramatically increased by absolute value in adiabatically
switched magnetic field if we work close to Feshbach resonance [24–26, 27, 28]
(we remind that this field is additional to the inhomogeneous field which forms the

trap itself). Namely, a ¼ abg 1þ D
B�Bres

ffi �

, where Bres * 830 Gs is a resonance

field for 6Li. For virtual level (as we have for 6Li) abg \ 0 [29] and |abg| * (15 7
20) Å. Thus, as we discussed in Chap. 5, for B C Bres: a \ 0 while for B \ Bres:
a [ 0. Moreover, close to the resonance field Bres the absolute values of the
scattering length |a| could reach (2–3) 103 Å in 6Li. Throughout this section we
will work in the BCS-limit of Feshbach resonance a \ 0 (B C Bres), where we
have virtual level and assume very large absolute value of the scattering length.
Note that in the opposite situation (B \ Bres)a [ 0—there is a real level in the
potential well and we are in the BEC-limit of strongly bound 6Li2—molecules (or
dimers) [24–26, 27, 28] which are formed at some higher (Saha) temperatures
T* * |Eb| [30]—the binding energy of the molecule, and Bose-condensed at a

critical temperature TC � 3:31 ðn=2Þ2=3

2m � 0:2eF governed by Einstein formula.
This situation is realized in the experiments of Grimm, Ketterle and Jin groups

and is discussed in detail in Chap. 5.
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12.1.1 s-Wave Pairing in Trapped Fermi-Gas with Exactly
Equal Densities of Different Components

The case of an attractive scattering length a \ 0 for trapped Fermi-gas was first
considered by Stoof et al. [1]. As it was shown by Gor’kov and Melik-Barkhu-
darov [31], in this case s-wave pairing is possible in the system with a critical

temperature TC0 � 0:28eF exp � 1
k

� �

; where k ¼ 2jajpF

p is the gas parameter. For 6Li
with n * 1014 cm-3 and |a| * (2 7 3) 103 Å we have TC0 * 10-6 K according
to the estimates of Stoof et al. [1].

We note that s-wave pairing in the presence of a nuclear spin I must be
understood as a pairing in which the orbital angular momentum of the pair l = 0,
and the total spin of the pair is even. The total spin of the pair is formed from the

total spins~J ¼~I þ~S of the two atoms. The structure of the levels is determined by

the hyperfine interaction Uhf
~S~I; where~S is electron spin and~I is nuclear spin. In

practice, however, experimental realization of the s-wave pairing in Fermi-gasses
of alkali elements requires several important conditions to be satisfied. First of all,
in the case of an attractive scattering length a substantial limitation on the density
of the system, namely k\ 1, arises in Fermi gasses due to the fact that the
compressibility of the gas must be positive. Even for k\ 1, however, s-wave
pairing is suppressed on an account of the presence of a very weak magnetic field
~B in the system, which often is a case in a magnetic trap. Indeed, effective
decoupling of the nuclear and electron spins occurs in the fields B [ Hhf ¼
Uhf=jlel

B j � 10�2 T (lel
B —electron Bohr magneton). As a result, s-wave pairing

becomes possible only for atoms with different z-projections of the nuclear spin Iz.
However, in magnetic fields B * Hhf the Zeeman splitting DE� lnucl

B

Hhf Iz� 10�5 K of the components with different z-projections of a nuclear spin Iz

(lnucl
B —nuclear Bohr magneton) is much greater than the realistic values of

TC0 * 10-6 K (and even of eF), and thus s-wave pairing is completely suppressed.
It is important to note that even in the absence of a magnetic field the s-wave
pairing of the atoms with different hyperfine components is possible only if the

densities of the components are very close to each other: jeF1�eF2j
eF1

� TC0
eF1
� 1. In the

disbalanced Fermi-gas with jeF1 � eF2j � TCO an s-wave pairing is suppressed due
to Landau criterion of superfluidity (the Cooper pairs will have large total linear

momentum j~Pj exceeding TC0/vF). We note also that in the case of a repulsive
scattering length, s-wave pairing is impossible even if the components have
identical densities and magnetic field is strictly zero.

12.1.2 Triplet p-Wave Pairing in the Disbalanced Case

The realistic hope to achieve superfluidity in disbalanced Fermi-gas of alkali
elements lies in the unconventional triplet p-wave pairing, which is an analog of
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the A1-phase [6] of superfluid 3He with Stot ¼ Stot
z ¼ 1. This type of pairing takes

place between the atoms of the same component and is not destroyed by a mag-
netic field. As we already discussed in Chaps. 10 and 11, the hope to obtain triplet
p-wave pairing with reasonable TC is connected with the presence of Kohn
anomaly (Friedel oscillations) in the effective interaction of two Fermi-particles
via polarization of a fermionic background [32–34, 35]. The critical temperature of

the p-wave pairing TC1� eF exp � 13
k2

n o

describes the pairing of the atoms of the

same component (with Sz = � in case of 3He) via the excitation of the particle-
hole pairs of the other component (with Sz = -� for 3He) and does not depend on
the sign of the scattering length. Curiously, this simple formula for TC1 works
rather well as an extrapolation for intermediate values k * 1, giving the reason-
able estimate TC1 * 10-3 eF * 10-3 K for the dense 3He (with k = 1.3 7 1.4).
Another important point (see Ref. [7] in Chap. 11 and Refs. [3, 4] in Chap. 10) is
that we can substantially increase the critical temperature TC1 already at low
density considering a partially spin-polarized or multi component situation.

In our case the number of components equals m = 2I ? 1. It is obvious that a
magnetic field interacts mainly with the electron spin. Therefore, in the fields
B [ Hhf � eF=jlel

B j our problem actually becomes practically equivalent to the
problem of a multicomponent fully polarized (with respect to electron spin) Fermi
system with identical masses of the components. As we discussed in Chap. 10 the
effective interaction determining the critical temperature of the superfluid transition
is given in the second order of the gas parameter by the loop diagrams presented on
Fig. 12.1 [3]. The effective interaction Ueff(qj) is represented in algebraic form as:

Ueff ðqjÞ ¼
4pa

m

� �2
X

i6¼j

Piið~qjÞ; ð12:1:1Þ

where

Piið~qjÞ ¼
Z

d3~p

ð2pÞ3
nFi~p� nFið~p� ~qjÞ
eið~p� ~qjÞ � ei~p

ð12:1:2Þ

Fig. 12.1 Loop diagrams determining in the second order of the gas parameter the effective
interaction of the two atoms of the same component via the excitation of virtual particle-hole
pairs of the other components [3]. The term with i = j is omitted in the sum
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is polarization operator for the i-th component and ~qj ¼ ~pj � ~pj
0 is the difference

between the momenta of the particles of the type j entering and leaving the Cooper
channel.

After integration of Ueff(qj) with the first Legendre polynomial cos h ¼ 1� q2
j

2p2
Fj

we get the following critical temperature in the case when the densities of the m
components are all the same n1 ¼ n2 ¼ . . . ¼ nm [3]:

TC1� eF exp � 13

ðm� 1Þk2

� 	

: ð12:1:3Þ

We note that the critical temperature is the same for each component and in
(12.1.3) eF and k depend upon the density of the individual component. We note
also that for m = 2 we restore the result [32, 33] for 3He. Finally we understand
that TC1 in (12.1.3) does not depend upon the sign of the scattering length. To
increase TC1 further we use the result of Ref. [3] and Ref. [7] Chap. 11 where it is
shown that the dependence of TC1 from the relative density ratio of the different
components is strongly nonmonotonic and has a pronounced and extended max-
imum for nj/ni * 3 (pFj/pFi * 1.4). In the optimal situation nj * 3ni (for all
i = j) the critical temperature for the j-th component reads:

TC1� eFj exp � 7

ðm� 1Þk2
eff

( )

; ð12:1:4Þ

where k2
eff ¼ 2a

p


 �2
pFipFj.

Note that while deriving (12.1.4) we in fact considered the Hamiltonian:

Ĥ ¼ Ĥ0 þ Ĥint ¼
X

m

i¼1

X

~p

eið~pÞaþ~pia~pi þ
2pa

mVs

X

i 6¼j

X

~p~p0~q

aþ~pia
þ
~p0ja~p0�~qja~pþ~qi; ð12:1:5Þ

where i designates the projections of the nuclear spin, i.e., the number of the
components, and we have dropped the electron spin index, since we are working
with a completely polarized spin system of electrons.

On the basis of the Hamiltonian (12.1.5) only (without an allowance of the term
considered in Chap. 10 which rescatters the Cooper pairs between different bands
or different components) we can say that the components with the density less than
nj become superfluid at lower temperature than (12.1.4).

We should note also the following circumstance. In the case of large and
repulsive scattering length the formulas (12.1.3) and (12.1.4) must hold, at least as
an extrapolation, right up to the values of the gas parameter k * 1, resulting in
experimentally achievable values for TC. In the case of an attractive scattering
length, for the optimal situation nj * 3ni, the limits imposed on the system density
by the stability conditions are also not too stringent and once again give keff B 1.
As a result for disbalanced 6Li with m = 3 components and densities
n * 1014 cm-3 we have TC1 * 10-8 K on the basis of (12.1.3) and (12.1.4).
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12.1.3 Stability of the System Towards Phase Separation

Stability of the system towards phase separation is governed, as usual, by the

condition of positive compressibility v-1 * c2 [ 0, where c2 ¼ N
m

ol
oN ¼ N

m
o2E
oN2 is

sound velocity squared. In our case N ¼
P

i Ni is the total number of particles in
all the components, and

E ¼ 3
5

X

m

i¼1

eFiNi �
4pa

m

X

i6¼j

NiNj ð12:1:6Þ

is the total energy of the system. Remind that a is s-wave (l = 0) scattering length
for two fully polarized in electron spin 6Li particles with different z-projections of
the nuclear spin Iz (see Fig. 12.2). Note that according to Pauli principle only
particles from different components scatter on each other in the case of short-range
interaction. The stability criterion for compressibility of the system c2 [ 0 toge-

ther with c2
i ¼ Ni

m
oli
oNi

[ 0 (for partial compressibility of i-th component) yields

keff ¼
2jaj
p
ðpFipFjÞ1=2

.1 ð12:1:7Þ

12.1.4 Metastability of the System

We also note that, as we already discussed in Chap. 5, both bosonic (BEC) and
fermionic (BCS-condensates) are inherently metastable due to three-particle
recombination [37–40] and spin-relaxation [41, 29] processes. We emphasized in
Chap. 5 that while typical lifetime of Bose-condensates is of the order of 10s, the
BCS-condensates are much more fragile and their lifetime is much shorter.

12.1.5 The Cooper Problem for s-Wave and p-Wave Pairing
in Confined Geometry of the Traps

We note that in this section we evaluate TC0 and TC1 in free and infinite space. In
principle we should recalculate the critical temperatures for the confined geometry
of magnetic traps. However, we can write the simple estimates which allow us to
expand our results on a confined geometry. Namely, we should guarantee, as we
already mentioned in Chap. 5, that

1. eF � �hx—a lot of particles in the trap. This inequality is satisfied because the
usual number of particles in the trap is 109–1010.

2. 10 � Re’eF —a size of a Cooper pair (a correlation length) is smaller than the
size of the confining potential at the Fermi-level. We know that 10 ¼ �hvF=TC.
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From the other hand for the confining potential UðrÞ ¼ mx2R2ðe’eFÞ
2 ¼ eF , and

correspondingly Re’eF ¼ pF

mx : Thus, from 10 � Re’eF we get TC [ eF
pFR :Note that

pFR * N1/3, where N is a total number of particles, and hence TC [ eF/N1/3.
Note also that in spherically-symmetric (3D) parabolic trap the level spectrum

reads [42] E ¼ �hxðnx þ ny þ nz þ 3=2Þ and the density of states qðeÞ ¼ e2

ð�hxÞ3 : It

means that N ¼ eF
�hx


 �3
and N1=3 ¼ eF

�hx is a number of levels in the trap. As a result
TC [ �hx, and quasiclassical criterion for TC reads:

eF � TC � ðeF=N1=3 ¼ �hxÞ ð12:1:8Þ

Note that in arbitrary potential well criterion (12.1.8) coincides with Migdal
criterion [43] well known in nuclear physics for the validity of quasiclassical
approximation in spherically-symmetric nuclei.

12.2 p-Wave Pairing in the Fermi-Bose Mixture of 6Li-7Li
with Repulsive Interaction Between the Different
Isotopes

The further increase of p-wave critical temperature can be obtained in the dilute
Fermi-Bose mixture of alkali isotopes 6Li and 7Li [5] (or 6Li and bosonic 87Rb).
For this system, as it was shown by Efremov and Viverit [5], TC1 is governed not
only by Kohn-Luttinger mechanism [3, 32, 33] considered in previous section, but
also by the interaction of two fermions via polarization of bosonic media. The
bosonic media is described by the density–density correlation function, and
effective interaction Ueff ðqÞ ¼ UFFF

eff ðqÞ þ UFBF
eff ðqÞ; where UFFF

eff ðqÞ corresponds to
the interaction of two fermions via polarization of fermionic background [see
Fig. 12.1 and (12.1.1)], while UFBF

eff ðqÞ describes the interaction of two fermions
via polarization of bosonic background. Note that the Hamiltonian of the Fermi-
Bose mixture in [5] reads:

Ĥ0 ¼ ĤF þ ĤB þ ĤFB; ð12:2:1Þ

where fermionic part of (12.2.1)

ĤF ¼
X

~pa

n~paaþ~paa~pa þ
UFF

2

X

~p~p0~q
ab

aþ~p�~qaaþ~p0þ~qba~p0ba~pa; ð12:2:2Þ

bosonic part for T \ TC
BEC (in 7Li-subsystem):

ĤB ¼
X

~p

e~pbþ~p b~p þ
UBB

2

X

~p~p0~q

bþ~p�~qbþ~p0þ~qb~p0b~p; ð12:2:3Þ
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and finally Fermi-Bose interaction

ĤFB ¼ UBF

X

~p~p0~q

aþ~p�~qabþ~p0þ~qb~p0a~pa: ð12:2:4Þ

In (12.2.1) npa ¼ p2

2ma
� eFa is the fermionic spectum, UFF ¼ 4paFF

mF
is the fermion–

fermion interaction, a corresponds to the components with different Iz (fully
polarized in electron spin) and m1 = … ma = … mF the masses of different fer-
mionic components coincide. We work at T \ {TC

BEC; eFa} and assume that
TC1 \ {TC

BEC; eFa}. Than in zeroth approximation bosonic chemical potential
lbos ? 0 (it is non-zero only in the next order of the gas-parameter due to boson–

boson interaction lbos ¼ 4paBB
mB

nB), and ep � p2

2mB
is the bosonic spectrum. The boson–

boson interaction UBB ¼ 4paBB
mB

[ 0 corresponds to repulsion and stabilizes Bose-

condensation in 7Li-subsystem. Finally, in this chapter, in contrast to Chap. 6
we consider following Efremov, Viverit repulsive fermion-boson interaction
UBF ¼ 4paBF

mBF
and mBF ¼ mBmF

mBþmF
[5].

The effective interaction of Fermi atoms via polarization of bosonic media
reads in the second order of perturbation theory in UBF:

UFBFð~qÞ ¼ U2
BFvð~q; 0Þ; ð12:2:5Þ

where boson–boson correlation function v ~qxð Þ reads:

vð~q;xÞ ¼ nBq2

mB

1
x2 � eqðeq þ 2nBUBBÞ

: ð12:2:6Þ

In (12.2.6) eq ¼ q2

2mB
, and thus E2

q ¼ eqðeq þ 2nBUBBÞ is Bogoliubov quasipar-

ticle spectrum for slightly non-ideal Bose-gas [2]. Hence

vð~q; 0Þ ¼ � nBq2

mB

1
eqðeq þ 2nBUBBÞ

¼ � 4nBmB

ðq2 þ 4mBnBUBBÞ
: ð12:2:7Þ

Introducing the sound velocity cB ¼ nBUBB
mB

ffi �1=2
; Efremov and Viverit finally get:

UFBFð~q; 0Þ ¼ �
U2

BF

UBB

1

1þ q
2mBcB

ffi �2
� � : ð12:2:8Þ

The attractive p-wave harmonic of UFBF further increases TC1 for the pairing of
two 7Li atoms in the Fermi-Bose mixture. Note that Efremov-Viverit mechanism
connected with static boson–boson correlation function is effective for dilute
bosonic subsystem. If the superfluid bosonic subsystem is dense (as in the case of
superfluid 4He in 3He-4He solutions) and vF � cB then the Bardeen, Baym, Pines
mechanism of frequency-dependent phonon exchange becomes dominant [44, 45].
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12.3 Ginzburg–Landau Functional for Triplet Superfluid
Fermi Gas and for Superfluid 3He

In the last section of this chapter we will construct Ginzburg–Landau functional
for p-wave superfluid Fermi gas [6, 7] with an account of strong-coupling cor-
rections for the coefficients b1. . .b5 near quartic terms [8]. On the basis of the
knowledge of Ginzburg–Landau functional we will find all the global minima of
the GL-Free energy and thus complete the superfluid phase diagram of p-wave
Fermi gas. We will consider 3D and 2D case both in the absence of magnetic field
and in the presence of strong magnetic field (or strong polarization). We will find
that in the absence of magnetic field the global minima of the GL-functional
correspond to triplet B- and A-phases well known in the physics of superfluid 3He
[10, 11]. In strong magnetic fields H [ Hp = TC1/lnucl

B isotropic B-phase is totally
suppressed, and the global minima of the phase diagram correspond to triplet A1

and A2 phases. In 2D case the global minima of the GL-functional corresponds to
planar or axial phases [19]. In this section we will mostly consider two-component
repulsive Fermi gas with k ¼ 2apF

p [ 0 having in mind dilute and dense 3He in 3D
(or 3He submonolayers in 2D with the gas-parameter f0 ¼ 1

2 ln 1=pFr0ð Þ [ 0). Note

that for dense 3He repulsive gas-parameter k * (1.3 7 1.4) [ 1 in 3D, and rig-
orously speaking, the perturbation theory does not work both for effective inter-
action (for TC1) and for b1. . .b5 with an account of strong-coupling corrections.
However, even in dense 3He TC1/eF * 10-3 � 1, and thus our naive estimates for
TC1 and b-s (especially for their combinations which enter in observables) could be
useful as a starting point for a more rigorous analysis in the case of a dense system.

12.3.1 Global Phase Diagram of a Superfluid Fermi Gas
with Repulsion and of a Superfluid 3He

The search for the microscopic nature of the mechanisms which stabilize the
superfluid phases of 3He other than isotropic B-phase (or more generally, of a
triplet superfluid Fermi system) has continued to hold interest for many years now.
A classic result in this field was obtained by Anderson, Brinkman and Morel [11,
12], who proposed a spin-fluctuation mechanism for stabilizing the anisotropic A-
phase of 3He back in early 1970s. A more rigorous mathematical framework was
constructed for that mechanism by Brinkman et al. [13]. Later papers by Bartoon
and Moore [14], Jones [15], Volovik and Mineev [46], Mermin and Stare [7],
Bruder and Vollhardt [47], and Marchenko [48] constituted a comprehensive
group-theory analysis of all possible phases of a superfluid triplet Fermi system.
Conditions on the coefficients b1. . .b5 in front of quartic (in order parameter Dab or
in three by three matrix Aik) terms in the Ginzburg–Landau free energy [6] which
would be required for the stabilization of a local minimum of each of the 18
possible phases were also described in these papers.
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Superfluid 3He is of course the topic of primary interest in research on triplet
superfluidity. Until now, numerous pieces of experimental evidence give rise to the
belief that only two superfluid phases—the isotropic B-phase and the anisotropic
A-phase could exist in the 3D case. However, some experimental studies, in
particular by Pecola et al. [49] (on the zero sound experiments in the distorted B-
phase and in the transition region (phase boundary) between B and A phases at low
pressure); Frossati et al. [50] (on reentrant superfluidity of liquid 3He in high
magnetic fields), and Gould et al. [51, 52] (on the magnetic suppression of the B-
phase), as well as some theoretical papers (for example by Capel et al. [53–55]) on
the phase diagram of a superfluid 3He in the presence of Hubbard interaction) hint
at a possible realization of some exotic superfluid phases (different from A and B)
in 3He. We are talking about bulk (3D) 3He. In thin films the possibility of the
realization of planar and axial phases is generally acknowledged. The torsional
oscillation experiments to measure triplet superfluidity in these films were per-
formed by Saunders group [56], but did not reveal the presence of the exotic phase
to our best knowledge. Note that currently one of the most popular candidates for
the role of a third phase in the bulk is the so-called axiplanar noninert phase of
Mermin and Stare [7], whose parameters are close to those of the A-phase.

In the present section we concentrate our efforts to analyze from the first prin-
ciple calculations the possible existence of various superfluid phases in a triplet
Fermi system. For this purpose we select a very simple and exactly solvable model
of a triplet Fermi gas with a short-range repulsion. It can be shown in this model that
both the temperature of the triplet superfluid transition [see [4] and (12.1.3),
(12.1.4)] and the values of the coefficients b1. . .b5 in the Ginzburg–Landau free
energy depend only on a single microscopic parameter k ¼ 2apF

p [9, 16–18].

12.3.2 GL-Functional in the Weak-Coupling Case

For p-wave superfluids the tensor structure of an order parameter (of a superfluid
gap) reads (see Vollhardt, Wölfle [6]):

Dab ¼ DðTÞiðr2riÞabAiknk; ð12:3:1Þ

where Dab is (2 9 2) matrix in spin space, {r2; ri} are the Pauli matrices, ~n ¼
~p=pF is a unit vector in momentum space, D(T) is a magnitude of the superfluid
gap. Finally Aik is (3 9 3) matrix of an order parameter in triplet p-wave fermionic
superfluid (or triplet superconductor) with Stot = l = 1. Accordingly in terms of
Aik the GL-functional reads:

DFGL ¼ aSpðAAþÞ þ b1 SpðAATÞ
�

�

�

�

2þb2 Sp AAþð Þ2þb3Sp ðAATÞðAATÞ�

 �

þ b4Sp ðAAþÞ2
ffi �

þ b5Sp ðAAþÞðAAþÞ�ð Þ;

ð12:3:2Þ
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where symbols (+) and (*) stand for hermitian and complex conjugation, respec-
tively. Of course, A+ = (AT)* and correspondingly SpðAATÞ ¼

P

ij
AijAji:

Hence GL-functional contains five different quartic invariants proportional to
A4 and five different b-s. In the weak-coupling case bi

W.C. are connected with each
other by the following relation (both in dense superfluid 3He [6] and in dilute
superfluid Fermi gas with repulsion [36, 57]):

�bW :C:
5 ¼ bW :C:

4 ¼ bW:C:
3 ¼ bW :C:

2 ¼ �2bW:C:
1 : ð12:3:3Þ

The skeleton diagram for bi
W.C. in the weak-coupling case is presented on

Fig. 12.2.
Analytically:

bW :C:
1 ¼ � 2

15

X

xn

Z

d3~p

ð2pÞ3
G2

Mð~p;xnÞG2
Mð�~p;�xnÞ 	 D4ðTÞ

¼ N3Dð0Þ
2T2

C1

7nð3Þ
120p2

D4ðTÞ; ð12:3:4Þ

where xn = pT(2n ? 1) is Matsubara fermionic frequency, n(x) is Riemann dzeta
function, and n(3) & 1.204, N3Dð0Þ ¼ mpF

2p2 is 3D density of states. The coefficient a
in front of quadratic in Aik term in (12.3.1) is given by the ladder series of
diagrams [36] (see Fig. 12.3) and reads:

a�
1þ Ul¼1

eff KðTÞ

Ul¼1
eff

ffi �2
KðTÞ

D2ðTÞ; ð12:3:5Þ

Fig. 12.2 The skeleton
diagram for bi

W.C. in the
weak-coupling case (see
[36]). GM p!;x


 �

stands for
the Matsubara Green-
function of the normal state,
while D and D+ stand for the
superfluid gap
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where K(T) * N3D(0)ln(eF/T) is a Cooper loop, 1 ¼ �Ul¼1
eff KðTC1Þ is Landau-

Thouless condition for TC1, and Ul¼1
eff is attractive p-wave harmonic of the effective

interaction.
Algebraically (see [6]):

a ¼ 2
3

N3Dð0Þ ln
T

TC
	 D2ðTÞ: ð12:3:6Þ

The absolute minimum of the GL-functional in the weak-coupling approxi-
mation (with the values of a and b-s given by (12.3.3), (12.3.4) and (12.3.6))
corresponds to isotropic B-phase for T ? TC1 both for superfluid Fermi gas with
repulsion and superfluid 3He [6, 9, 16–18, 36, 57]. It is important to note that for
T ? 0 the triplet superfluid B-phase also corresponds to the minimum of the
thermodynamic potential X. Namely, as it was shown in [36] at T = 0 for
superfluid Fermi gas with repulsion:

XS � XN ¼ �
N3Dð0ÞD2

12
: ð12:3:7Þ

12.3.3 Exact Evaluation of TC1 in Repulsive Fermi Gas
Allowing for Higher Orders of Perturbation Theory

Before proceeding to strong-coupling corrections, it is important to get the exact
expression for TC1 with the preexponential factor, which arises due to an account
of the higher orders (*k3 and *k4) of the perturbation theory for effective
interaction [4], as well as due to an account of the retardation effects [4, 58]. The
diagrams of third and fourth order in k for effective interaction are presented on
Fig. 12.4 (see [4]).

The accurate calculation yields in repulsive case for effective interaction [4]:

N3Dð0ÞUl¼1
eff ¼ �0:077k2 � 0:33k3 � 0:26k4; ð12:3:8Þ

Fig. 12.3 Ladder approximation for the coefficient 1/a in GL-functional for T ? TC (see [36]).
Ul¼1

eff stands for attractive p-wave harmonic of the effective interaction
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and thus the critical temperature reads:

TC1 ¼
2
p

eCeF exp � 1

0:077k2 þ 0:33k3 þ 0:26k4
 �

( )

; ð12:3:9Þ

where C is Euler constant.
Note that the evaluation of the preexponential factor in (12.3.8) and (12.3.9) was

performed for two-component repulsive Fermi gas (such as 3He) with k ¼ 2apF

p [4].
It is interesting that the third and fourth order in k contributions to TC1 also

correspond to attraction (as the second order contribution). For k ? 0 we can get
the following asymptotic formula from (12.3.8):

TC1 �
2
p

eCeF exp � 13:0

k2 þ
42:0
k
� 190

� 	

: ð12:3:10Þ

In practice this formula works till k.1=4: For higher values of k we should use
(12.3.9) or some other extrapolation formula (see [4]). Hence superfluid critical
temperature is enhanced by higher order diagrams but it is difficult to evaluate TC

exactly for k C 1 (a remark of Rainer [59]).

Fig. 12.4 Third (a) and
fourth (b) order diagrams (in
gas parameter k) for effective
interaction Ueff [4] (see also
Fig. 9.8)
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Nevertheless the estimates for disbalanced 6Li, which combine the increase of
TC due to optimal density ratio of different components with an evaluation of the
preexponential factors, increase TC1 up to (10-7 7 10-6) K [4]. The effect is even
more prominent in two-component repulsive Fermi gas and in 3He (where k C 1)
[4]. Here according to (12.3.9) the dependence of TC1/eF on the gas parameter k is
presented on Fig. 12.5. We see the strong increase in TC1/eF ratio when k increases
from 0.4 to 1.0.

12.3.4 Strong-Coupling Corrections in a Superfluid Fermi
Gas with Repulsion

Strong-coupling corrections make the situation with global phase diagram of a
triplet superfluid Fermi gas with repulsion less trivial. We will show that incor-
porating strong-coupling (in TC1/eF) corrections, analogous to those discussed by
Rainer and Serene [8], we can also stabilize the anisotropic A-phase. Note that in
this approximation other likely candidates for the role of a third phase (axiplanar,
planar and polar phases) either lie above the B and A phases on the energy scale or
are not even local minima of the GL-functional in repulsive Fermi gas.

The strong-coupling corrections to the coefficients bi which we found in [9]
reads:

Dbi ¼ bW:C:
i

�

�

�

�

TC1

eF
cik

2 þ dik
3
 ffl

; ð12:3:11Þ

where TC1 ¼ 2
p eCeF exp � 1

0:077k2þ0:33k3þ0:26k4ð Þ

� 	

; according to (12.3.9), and ci, di

are numerical coefficients.
On Fig. 12.6 we show the diagrams of the next order in TC1/eF for the free-

energy (GL functional), which violate the weak-coupling relations (12.3.3)
between b-s in (12.3.11), according to Rainer and Serene [8] and yield the con-
tribution of the order of ðTC1=eFÞ bW:C:

i

�

�

�

� to coefficients bi (see (12.3.11)).

Fig. 12.5 The dependence of
TC1/eF on the gas parameter k
in the two-component Fermi
gas (Sz = ± 1/2) with
repulsion [4]
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It is not difficult to show that at the order of TC1/eF the contribution of all four
diagrams to the coefficients bi are given by the expression:

� T3

2

X

n1n2n3

Z

d3~p1d3~p2d3~p3

ð2pÞ9
Cð~pi;xiÞj j2Qð~p1;x1ÞQð~p3;x3Þ

GMð~p2;x2ÞGMð~p1 þ~p2 �~p3;x1 þ x2 � x3Þ	

� T3

4

X

n1n2n3

Z

d3~p1d3~p2d3~p3

ð2pÞ9
Cð~pi;xiÞj j2Qð~p1;x1ÞQð~p3;x3Þ

GMð~p2;x2ÞGMð�~p1 �~p2 �~p3;�x1 � x2 � x3Þ	

þT3
X

n1n2n3

Z

d3~p1d3~p2d3~p3

ð2pÞ9
Cð~pi;xiÞj j2Fð~p3;x3ÞQð~p1;x1Þ

GMð~p2;x2ÞFþð~p1 þ~p2 �~p3;x1 þ x2 � x3Þ	

� T3

8

X

n1n2n3

Z

d3~p1d3~p2d3~p3

ð2pÞ9
Cð~pi;xiÞj j2Fð~p1;x1ÞFþð~p2;x2Þ

Fð~p3;x3ÞFþð~p1 þ~p2 þ~p3;x1 þ x2 þ x3Þ:

ð12:3:12Þ

Fig. 12.6 Feynman diagrams making the contribution of the order of TC1=eFð Þ bW :C:
i

�

�

�

� to the
coefficients bi which violate weak-coupling relations (12.3.3) between these coefficients [9]
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where GMð~p;xÞ ¼ ðix� npÞ�1 is the Matsubara Green’s function,

xn = pT(2n ? 1) is the Matsubara fermionic frequency, np ¼
p2�p2

F
2m is the quasi-

particle spectrum, Qð~p;xÞ ¼ G2
Mð�~p;�xÞGMð~p;xÞ D̂

�

�

�

�

�

�

2
;

Fð~p;xÞ ¼ GMð~p;xÞD̂GMð�~p;�xÞ;

and correspondingly for Fþð~p;xÞ;
D̂ab ¼ DðTÞiðr2riÞabAiknk; is a triplet superfluid gap, ri are the Pauli matrices.

Finally,
P

xn

! T
P

n
for the summation over Matsubara frequencies.

The wavy lines in Fig. 12.6 correspond to the total two-particle vertex C (the
total antisymmetrized vertex). In first two orders of the gas-parameter it can be
calculated at vanishing frequencies on the Fermi-surface Cð~pi;xiÞ ! CðpF~ni; 0Þ.

In the case of a Fermi gas it is given by

Cab;cdð~p1;~p2;~p3;~p1 þ~p2 �~p3Þ ¼ Csdacdbd þ Ca~rac~rbd; ð12:3:13Þ

where ~aac; ~abd are the Pauli matrices.
In (12.3.13) symmetric part of the two-particle vertex

CS ¼
g

2
þ 2g2Pð~p2 �~p3Þ þ g2Kð~p1 þ~p2Þ � g2Pð~p1 �~p3Þ; ð12:3:14Þ

where P and K stand for 3D polarization operator: PðqÞ ¼
mpF

4p2 1þ 4p2
F�q2

4pFq ln 2pFþq
2pF�qj j

h i

; and the Cooper loop (see [9]):

KðpÞ ¼ mpF

2p2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2=4p2
F

p

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2=4p2
F

p

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2=4p2
F

p

þ 1

" #

ð12:3:15Þ

respectively. Note that K(p) in (12.3.15) is regularized at large momenta and
g = 4pa/m [ 0.

The asymmetric part of C reads:

Ca ¼ �
g

2
þ g2Kð~p1 þ~p2Þ þ g2Pð~p1 �~p3Þ

h i

: ð12:3:16Þ

Note that in Eq. (12.3.12) ~p1 ¼ ~p3 and thus we are dealing with Csð~p1; ~p2; ~p1~p2Þ
and Cað~p1; ~p2; ~p1~p2Þ:

Hence effectively in (12.3.12)–(12.3.14), (12.3.16) Cs ¼ g
2þ 2g2Pð~p2 � ~p1Þ þ

g2Kð~p1 þ ~p2Þ � g2Pð0Þ; Ca ¼ � g
2þ g2Kð~p1 þ ~p2Þ þ g2Pð0Þ

 ffl

:

Some rather involved transformations of the integrals in (12.3.1) show that, as
in [8], the strong-coupling corrections for the coefficients bi are determined by
bilinear combinations of spherical harmonics of the total vertex, evaluated for
~p1 ¼~p3. In other words we have (see [9, 60, 61]):

382 12 Triplet Pairing and Superfluid Phase-Diagram in Fermi Gas of Neutral Particles



Dbi ¼ bW:C:
i

�

�

�

�

TC1

2eF
r1iðCosÞ2 þ r2iðCoaÞ2 þ r3iðCosCoaÞ þ . . .
h i

; ð12:3:17Þ

where r1i, r2i, r3i,… are numerical factors, and

Cos ¼
Z

Csð~p1~p2;~p1~p2Þ
d cos h

2
¼ g

2
þ gk

2 ln 2þ 1
6

� �

; h ¼ \~p1~p2;

Coa ¼�
g

2
� gk

5� 2 ln 2
6

� �

; C1s ¼ gk
7 ln 2� 1

5

� �

; C1a ¼ �gk
2þ ln 2

5

� �

;

ð12:3:18Þ

where k ¼ 2apF

p is an effective gas parameter in 3D.
All the other harmonics (C2, C3, etc.) are much smaller that C1j j. A direct

calculation of the numerical factors ri leads to the following final result for the
coefficients bi [9, 60, 61]:

b1 ¼ bW :c:
1

�

�

�

� �1þ TC1

2eF
ð�75:4k2 þ 0:2k3Þ

� 	

;

b2 ¼ bW :c:
1

�

�

�

� 2þ TC1

2eF
ð�7:0k2 þ 29:4k3Þ

� 	

;

b3 ¼ bW :c:
1

�

�

�

� 2þ TC1

2eF
ð�6:4k2 � 13:3k3Þ

� 	

;

b4 ¼ bW :c:
1

�

�

�

� 2þ TC1

2eF
ð�48:3k2 � 108:8k3Þ

� 	

;

b5 ¼ bW :c:
1

�

�

�

� �2þ TC1

2eF
ð�108:9k2 � 183:2k3Þ

� 	

:

ð12:3:19Þ

Note that for k ? 0 TC1=eF ¼ 2
p eC exp 42:0

k

� �

exp �190f g exp � 13:0
k2

n o

(see [4]).

Thus, the preexponential factor is 2eC

p exp �190f g exp 42:0
k

� �

; while the main

exponent is exp � 13:0
k2

n o

(see [4]). Note also that in principle, expression (12.3.19)

can be used to calculate and compare the free energies of all 18 possible phases of
superfluid Fermi gas with repulsion. In this subsection we will restrict ourselves
with a look at the phases which are cited most commonly in the literature: the B-
phase, the A-phase, the polar phase, the planar phase, and the axiplanar phase. In
our approximation it is rather simple to show that the polar, planar and the axi-
planar phases either lie above the B-phase on the energy scale or completely fail to
qualify as even local minima of the free energy. The situation regarding the A-
phase is less trivial. According to [6], the conditions for the stabilization of the A-
phase are:

b4 þ b5 � 2b1 � b3\�
1
2
ðb1 þ b3Þ\ 0: ð12:3:20Þ
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At the order of k2 we find b4 þ b5 � 2b1 � b3 ¼ 0 from (12.3.19), and the A-
phase is not yet stabilized. It s possible to show that this result corresponds to a
certain sum-rule [60]. In the next order, k3, we find:

b4 þ b5 � 2b1 � b3 ¼ �
TC1

2eF
	 558:3 k3 \ 0; ð12:3:21Þ

and inequalities (12.3.20) can be written as:

TC1

2eF
81:8 k2 þ 13:1 k3
 ffl

\1;

TC1

2eF
81:8 k2 þ 571:3 k3
 ffl

[ 1:
ð12:3:22Þ

In real 3He TC1/eF * 10-3. Nevertheless, because of the very large numerical
coefficients (*600) in front of (TC1/2eF)	k3 in the second inequality in (12.3.22),
the conditions for the realization of the A-phase can in principle be satisfied for
k[ 1. At zero pressure in real 3He we will have k * 1.3. With increasing pres-
sure, k increases, making it easier to satisfy inequalities (12.3.22). Note that the
increase of k is limited by melting line on the phase diagram of 3He for pressure
P = 35 bar. Let us compare our results with the results of some previous studies.
The total vertex of the Anderson-Brinkman-Morel spin-fluctuation theory is given

by the expression CðqÞ ¼ g=2
ð1�PðqÞg=2Þ ; where the polarization operator PðqÞ �

mpF

2p2 1� q2

12p2
F

h i

is expanded in series (in q/pF) near the ferromagnetic instability

corresponding to small values q ? 0. Expressions (12.3.14), (12.3.16) which we
have derived for Cs and Ca, contain, in addition to the polarization operator, also a
Cooper loop. The calculations of Cs and Ca are not based on the assumption of the
proximity to the ferromagnetic instability in (12.3.18) and (12.3.16) g

2 Pð0Þ91.
Thus, the strong-coupling corrections to the coefficients bi which we have found
differ considerably both in sign and in absolute value from the Anderson-Brink-
man-Morel [11, 12] corrections.

It can be shown that our strong-coupling corrections are analogous to the strong-
coupling corrections discussed by Rainer and Serene in [8]. The Fermi gas approach
has the advantages that (first) we know the microscopic mechanism for stabilization
of triplet pairing in a Fermi gas with repulsion, and second we can derive an explicit
expression for the total two-particle vertex in the gas approximation, and thereby
pursue the expressions for the coefficients bi to the point of numbers.

12.3.5 The Global Minima of the GL-Functional in Spin-
Polarized Superfluid Fermi Gas

As we already discussed in Chap. 10 at small magnetic fields
H\Hp ¼ TC1

lnucl
B
�ð2ffi 3ÞT (lnucl

B —nuclear Bohr magneton) there are three superfluid
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transitions in triplet superfluid Fermi gas (and real superfluid 3He). They are

governed by critical temperatures T""C1; T"#C1 and T##C1 (see Fig 12.7). These tem-
peratures correspond respectively to the pairing with Sz

tot = 1 (A1-phase), Sz
tot = 0

(B-phase), and Sz
tot = -1 (A2-phase). In magnetic fields larger than the para-

magnetic limit H [ Hp the Sz
tot = 0 projection of a triplet Cooper pair is totally

suppressed. As a result for H [ Hp the phase diagram contains only A1 and A2
phases even in the weak-coupling approximation. The strong-coupling corrections
do not change the situation qualitatively.

Accordingly, our hope for finding new phases in triplet superfluid Fermi gas
with repulsion can be connected only with weak magnetic fields (H \ Hp). The
possible existence of a third phase in weak magnetic fields was pointed out in
theoretical papers by Capel et al. [53–55].

12.3.6 Critical Temperatures for the Superfluid Transitions
to A1, A2 and B Phases in Spin-Polarized Fermi Gas

Note that in weak magnetic fields according to [18, 63] we get for the triplet
superfluid Fermi gas the following critical temperatures (see Fig. 12.7):

T""C1 ¼ TA1
C � TC1 1þ Aa

k2 þ
~Ba2

k2

� �

;

T##C1 ¼ TA2
C ðbareÞ � TC1 1� Aa

k2 þ
~Ba2

k2

� �

;

T"#C1 ¼ TB
CðbareÞ ¼ TC1 1� g

l2
BH2

T2
C1

� �

;

ð12:3:23Þ

where (see Chap. 10 and [18, 63])

Fig. 12.7 The dependence of

the critical temperatures T""C1;

T"#C1 and T##C1 on the degree of
polarization a in triplet
superfluid Fermi gas [62]
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A ¼ 10ð7� 4 ln 2Þ
9ð2 ln 2� 1Þ2

� 31:5; ~B ¼ Bþ 1
2

A2

k2 ;

B � 37:2 ln
1
a
� 2:9

� �

;

ð12:3:24Þ

g is numerical coefficient (of the order of 1), a ¼ 3
2

lnucl
B H
eF

is polarization degree. We

will show in the next subsection that T""C1 and T##C1 really correspond to A1 and A2

phases. Note also that the general formula for T""C1 in repulsive Fermi gas (derived

for the main exponent of TC1 in Chap. 10) reads: T""C1 ¼ TC1 exp
UðaÞ
k2

n o

; where

UðaÞ ¼ Aaþ Ba2 þ �oða3Þ for small a � 1. It is important to emphasize that in

triplet superfluid Fermi gas the coefficient B in front of a2 in T""C1 contains a
logarithmic contribution *ln(1/a) (see (12.3.24) and [63]). This nonanalyticity
a2ln(1/a) is present in dilute Fermi gas but is absent in Fermi-liquid theories for
dense superfluids [64, 65].

If we include higher order corrections for T""C1 into account, than the full

dependence of T""C1 from polarization degree a (which includes polarization
dependence of the corrections to the main exponent) for different values of the gas-
parameter k is given by Fig. 12.8.

Analytically we can represent T""C1 as follows: T""C1=eF" ¼

A exp � 1
k2f1ðaÞþk3f2ðaÞþk4f3ðaÞ

n o

; where at zero polarization the functions f1(a), f2(a),

and f3(a) reads: f1(a = 0) & 0.077, f2(a = 0) & 0.33, and f3(a = 0) & 0.26.
Moreover, f1(a) and U(a) are connected by the relation U(a) = 13-1/f1(a) and
thus U(a = 0) = 0. Correspondingly for fully polarized gas: f1(a = 1) = 0. Thus,

with an account of the main exponent only T""C1=eF" ¼ A exp � 1
k2f1ðaÞ

n o

we get

Fig. 12.8 Dependence of

T""C1=e
"
F on the degree of

polarization a for various k in
spin-polarized Fermi gas [4]
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T""C1 ¼ 0 for a = 1. However, an account of the corrections to this result connected

with k3f2(a) and k4f3(a) terms in the effective interaction Uðl¼1Þ
eff makes T""C1 almost

zero already for a smaller than 1 at small values of k B 0.5 (see Fig. 12.8). At

larger values of k the critical temperature T""C1 is almost zero only for a = 1. The

maximum for T""C1 corresponds to a & 0.48 for small k B 0.4 and shifts to smaller
a & 0.4 (in qualitative agreement with the predictions of the Fermi-liquid theory

[64, 65]) for larger k C 0.6. The maximum in T""C1 also becomes a little bit more
shallow with the increase of k (see Fig. 12.8 and [4]). Finally, at small spin-
polarizations the width of A1-phase is almost linear in a [18, 29, 66]:

T""C1 � T##C1ðbareÞ
TC1

� 2Aa

k2 ; ð12:3:25Þ

where A & 31.5 according to (12.3.24) and correspondingly T""C1 � TC1 1þ Aa
k2

ffi �

;

while bare T##C1 � TC1 1� Aa
k2

ffi �

.

We should stress that in (12.3.25), (12.3.23) TA2
C is a bare critical temperature

for the transition to A2-phase (where not only two spins ‘‘up’’, but also two spins
‘‘down’’ form the triplet Cooper pairs). We will show in the next subsection that
TA2

C will be renormalized by strong-coupling corrections to GL-functional.
If we extrapolate our results on dense superfluid 3He and choose k & 1.4

(which is the case for pressures P = 35 bar close to the melting line on 3He phase-
diagram), than we get from (12.3.23) (with an account of A & 31.5 from (12.3.24)

and a ¼ 3
2

lnucl
B H
eF

):

T""C1 � T##C1

TC1
¼ cH; ð12:3:26Þ

where c & 3.6 9 10-3 (1/kGs) [18, 60, 63, 66].
This result not only qualitatively but also quantitatively is very close to

experimentally measured width of the A1-phase by Frossati group [50, 67, 68] in
Kamerling Onnes Laboratory in Leiden. Note that the authors of [50, 67, 68]
measured viscosity of superfluid 3He in large magnetic fields up to 15 T (till
polarization degrees of a = 0.07). Note also that in moderate magnetic fields (up
to 6 T) very similar results for the width of the A1-phase were experimentally
obtained in classical papers [69, 70]. For highest (available in the lab) stationary

magnetic fields H = 15 T Frossati et al., got T""C ¼ TA1
C ¼ 3:14 mK, which is 20 %

larger than TC1 = 2.5 mK in the absence of field. The authors call their result—
‘‘high-temperature superfluidity’’. Note that the Fermi-gas theory predicts very
similar results here, namely TA1

C � 3:2 mK for k * 1.4 and a = 0.06 [18, 63, 66].
Finally, both Fermi-gas theory and metamagnetic model of the Fermi-liquid type
[64, 65] (which is based on the so-called s-p approximation [65]) predict reentrant

superfluid behavior for T""C1 (see Fig. 12.8) with a pronounced maximum,
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correspondingly, at a = 0.48 or smaller in [18, 63, 66] and a = 0.35 in [64, 65].

T""C1 in maximum is 6.4 TC1 in Fermi-gas theory (for k * 1.4) and 5.6 TC1 in
Fermi-liquid theory. Note that the possibility to get so high polarization degrees is
connected with the elegant idea of Castraing, Nozieres [71]. According to it (as we
already discussed in Chap. 11) to get very strong (non-equilibrium but long-living)
polarization in liquid 3He we should rapidly melt spin-polarized paramagnetic 3He
crystal. If we apply magnetic field H * 15 T, we could practically fully polarize
the crystal and, after rapid melting, get more than 30 %-polarized liquid 3He with
a lifetime (a magnetic relaxation time) of the order of 30 min [72]. Note again that
brute force (thermodynamically equilibrium) polarization by an external magnetic
field (H B 20 T) can produce only polarization degree a B 0.08. This polarization
is still much higher than polarization degree a * 0.011 (corresponding to para-

magnetic limit Hp * 2 7 3 T) at which the temperature T"#C ¼ TB
C (governing the

transition to B-phase in (12.3.23)) tends to zero. Note that for H [ Hp the results

for T""C1 and T##C1 in Fermi-gas approach do not depend upon the sign of the scat-
tering length a.

12.3.7 Strong-Coupling Corrections in Superfluid Spin-
Polarized Fermi Gas

In this subsection we generalize the evaluation of the strong-coupling corrections
on the case of strong magnetic fields H [ Hp, where B-phase (the Sz

tot = 0 pro-
jection of the total spin Stot = 1 of the triplet Cooper pair) is totally suppressed. In
other words, D:; component of 2 9 2 order parameter matrix Dab in (12.3.1) is

zero, and there are only two critical temperatures T""C1 and T##C1 corresponding to

Sz = 1 (D::) and Sz = -1 (D;;). Exact analytical expressions for T""C1 and T##C1 as a

function of the gas parameter k and magnetic field (or spin-polarization a ¼ N"�N#
N"þN#

)

were obtained in [63] and [4]. The results (see also Figs. 12.7, 12.8) show strongly

nonmonotonic behavior of T""C1 with a large and broad maximum at a = 0.48. In

the same time T##C1 is monotonically decreasing function of a. We will show that

T""C1 and T##C1 really correspond to A1 and A2 phases. The Ginzburg–Landau free
energy functional in strong magnetic field can be rewritten in the following con-
venient form [17, 61, 73]:

DFGL ¼FS � FN ¼ a"D
2
0""Mþ þ b"D

4
0"" 2M2

þ þ Nþ
�

�

�

�

2
ffi �

þ a#D
2
0##M� þ b#D

4
0## 2M2

� þ N�
�

�

�

�

2
ffi �

þ D2
0""D

2
0## 	 ðdMþM� þ b Rj j2þc Pj j2Þ;

ð12:3:27Þ

where Mþ ¼ A�þkAþk;M� ¼ A��kA�k;Nþ ¼ AþkAþk;N� ¼ A�kA�k;R ¼ AþkA�k;
P ¼ AþkA��k and symbol (*) corresponds to complex conjugation.
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In (12.3.27):

Aþk ¼ iA2k � A1k; A�k ¼ iA2k þ A1k; ð12:3:28Þ

a" ¼
1
3

N3Dð0Þ ln
T

T""C1

; a# ¼
1
3

N3Dð0Þ ln
T

T##C1

; ð12:3:29Þ

b" ¼ b# ¼ g
N3Dð0Þ
15T2

1þ ��o k2 T

eF

� �� �

; ð12:3:30Þ

where g is numerical coefficient.
In (12.3.27):

d ¼ 2b2 þ 2b5; b ¼ 4b1 þ 2b3; c ¼ 2b4 þ 2b5 ð12:3:31Þ

are the coefficients in front of the strong-coupling invariants with the structure
D2

0""D
2
0##. Note that Dab ¼ D0abðTÞiðr2riÞabAiknk and A3k = 0 for H [ Hp.

Let us consider first the case of weak-coupling. In this case d = b = c = 0 and
GL-functional is reduced to the two independent superfluids with Sz

tot = 1 (D::)
and Sz

tot = -1 (D;;). The direct minimization of the free energy oDFGL
oA� k

¼ oDFGL
oA �� k

¼ 0

yields four minima of DFGL [61].

For T \ T##C1 \ T""C1 the first one corresponds to:

D2
0""Mþ ¼ �

a"
4b"

; D2
0##M� ¼ �

a#
4b#

; Nþ ¼ N� ¼ 0; ð12:3:32Þ

the second one corresponds to:

D2
0""Mþ ¼ �

a"
6b"

; D2
0##M� ¼ �

a#
6b#

; Nþ
�

�

�

� ¼ Mþ and N�
�

�

�

� ¼ M�:

ð12:3:33Þ

For the third one and the fourth one correspondingly D2
0""Mþ ¼ �

a"
6b"
; D2

0##M� ¼
� a#

4b#
ðjNþj ¼ Mþ; jN�j ¼ 0Þ, and D2

0""Mþ ¼ �
a"

4b"
; D2

0##M� ¼ �
a#

6b#
ðjN�j ¼ M�;

jNþj ¼ 0Þ.
The GL free energy on the first extremum is given by:

DFGL ¼ �
a2
"

8b"
�

a2
#

8b#
; ð12:3:34Þ

on the second one we have:

DFGL ¼ �
a2
"

12b"
�

a2
#

12b#
; ð12:3:35Þ

Correspondingly on the third and on the fourth one DFGL ¼ �
a2
"

12b"
� a2

#
8b#
; and

DFGL ¼ �
a2
"

8b"
� a2

#
12b#

:
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Expressions (12.3.34) and (12.3.35) show that the global minima corresponds to

the first case with Nþ ¼ N� ¼ 0. For T##C1 \ T \ T""C1 the global extremum con-
ditions are satisfied for three degenerate phases:

A1 ¼ 1
2

1 i 0
i �1 0
0 0 0

0

@

1

A; E ¼ 1
ffiffiffi

2
p

1 0 0
0 1 0
0 0 0

0

@

1

A; r3 ¼
1
ffiffiffi

2
p

1 0 0
0 �1 0
0 0 0

0

@

1

A:

ð12:3:36Þ

(Note that E phase coincides with the well-known planar phase [6]).

For T \ T##C1 the global extremum corresponds again to E and r3 phases toge-
ther with the A2 phase. The last one has the form:

A2 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� e2Þ
p

1 i 0
ie �e 0
0 0 0

0

@

1

A; e ¼ D0"" � D0##
D0"" þ D0##

: ð12:3:37Þ

Of course for D0"" ¼ D0## (in the absence of magnetic field) e = 0. The

appearance of the strong-coupling term proportional to D2
0""D

2
0## mixes Sz = 1 and

Sz = -1 superfluids below the critical temperature T##C1. There are two conse-

quences of this fact; the first one is an increase of T##C1 (in comparison with a bare
value) due to the interaction between up–up and down–down Bose-condensates.

Of course D0"" is also renormalized below T##C1. The second one is lifting of the
degeneracy between the phases which correspond to the global minima. Indeed,
for A2 phase we have [17]:

Nþ ¼ N� ¼ 0; R ¼ 0; Pj j2¼ MþM�; ð12:3:38Þ

and the Ginzburg–Landau free energy on this extremum is given by:

DFGLðA2 phaseÞ ¼ �
a2
"

8b"
�

a2
#

8b#
þ dþ cð Þ a"a#

16b"b#
: ð12:3:39Þ

At the same time for the planar (E) and r3 phases:

Nþ ¼ N� ¼ 0; P ¼ 0; Rj j2¼ MþM�; ð12:3:40Þ

and, accordingly, the Ginzburg–Landau free energy reads:

DFGLðE; r3 phasesÞ ¼ �
a2
"

8b"
�

a2
#

8b#
þ dþ bð Þ a"a#

16b"b#
: ð12:3:41Þ

Formulae (12.3.39) and (12.3.40) show that to answer the question which phase
has a lower energy we need to calculate the combinations (d ? b) and (d ? c) of
the strong-coupling coefficients. These calculations can be performed in the same
way as in the absence of magnetic field (see [8, 9] and previous subsection). The
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analytical results in nonzero magnetic fields can be restored here only in the
leading order in the parameter k2 TC1

2eF
bW :C:

1

�

�

�

� (see [17] for more details):

dð2Þ � 126:2
TC1

2eF
k2 bW :C:

1

�

�

�

�

2m3

1þ m3

� �1=3

�0:18� 1:68m2

 ffl

;

bð2Þ � 126:2
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2eF
k2 bW :C:
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�

�

�

�

2m3
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�1:0� 1:51m2

 ffl

;

cð2Þ � 126:2
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2eF
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�
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�

�
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>

>

>

>

>

>

>
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>
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>

>

>

>

>

>

:

ð12:3:42Þ

For the maximal stationary magnetic field H * 20 T (a = 0.08 and

m ¼ pF#
pF"
¼ 1�a

1þa

ffi �1=3
¼ 0:95) which we can create by brute force d, b and c differ

only on 10 % from their zero-field values. Coefficients b and c identically coincide
in this order even in nonzero magnetic field. That is why the A2 phase, planar
phase and r3 phase are still degenerate. To lift the degeneracy we need to calculate
d, b and c in the next order. In zero magnetic field we have from b values in
(12.3.19):

dð3Þ � �302:9 TC1
2eF

k3 bW :C:
1

�

�

�

�;

bð3Þ � 1114 TC1
2eF

k3 bW :C:
1

�

�

�

�;

cð3Þ � �1021 TC1
2eF

k3 bW:C:
1

�

�

�

�\bð3Þ

8

>

<

>

:

ð12:3:43Þ

These values show that A2 phase is energetically more favorable. The
numerical results for complete magnetic field dependence of d, b and c in third
order in k ¼ 2apF

p is presented on Fig. 12.9.
At small spin-polarizations a & 3/2 (1-m) all the coefficients d, b and c behave

linearly in a. For H = 20 T they again differ only on 10 % from their zero-field
values.

Fig. 12.9 Magnetic field
dependence of strong-
coupling coefficients d, b and
c in third order in gas
parameter k ¼ 2apF

p (in units

k3 TC1
2eF

bW :C:
1

�

�

�

� obtained
numerically in [17])
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However, for spin-polarization a = 0.3 (m = 0.8), which can be created by a
rapid melting of 3He crystal by Castaing, Nozieres method [71], this difference
becomes rather significant. Moreover, d and b have nonmonotonic dependence
from m with pronounced minimum, while c is monotonically decreasing function.
For m ? 0 (a ? 1) there are no down spins in the system and that is why d, b and
c saturate to the same zero value. The most important thing is that c is smaller than
b for all magnetic fields. Hence A2 phase is global extremum of the free energy.

Concluding this subsection, we would like to stress that we have calculated the
strong-coupling corrections to the free energy of a triplet superfluid Fermi gas in
high magnetic fields and found that the phase diagram of the system contains only
A1 and A2 phases. Note again that in pure (dense) 3He k * 1 and our results can
be used only as a qualitative estimate. Nevertheless, due to the intrinsic character
of a superfluid transition in spin-polarized Fermi gas, our philosophy is the fol-
lowing: if there are no exotic phases at low densities, there is a small chance to
obtain them at higher densities. Hence we consider the present calculations as a
strong argument against the possibility of a new phase of 3He [49–52, 68] in a high
magnetic field. Having in mind the results of the previous subsection in zero
magnetic field (no new phase either), we consider any novelty in a phase diagram
of superfluid 3He to be very unlikely (at least in three dimensions). The only hope
here can be connected with the region of finite magnetic fields smaller than
paramagnetic limit Hp * (2 7 3) T of the destruction of the B phase [20].

12.4 GL-Functional and Global Phase-Diagram of the 2D
Superfluid Fermi Gas with Repulsion

The situation in the two-dimensional case differs from the three-dimensional sit-
uation with respect to the matrix of the order parameter Aik. Namely, the orbital
space now has one degree of freedom less. In the same time a spin space is still
three-dimensional. That is why now the matrix of the order parameter has a row of
zeroes in contrast with the bulk 3He. It is interesting to note that if we change spin
variables on orbital ones, than this situation will be similar to the 3D situation in
strong magnetic fields H [ Hp considered in the end of the previous section [17,
19, 74]. In the last 3D case A3k = 0. Thus, in 2D superfluid Fermi gas with
repulsion Ak3 = 0. It is convenient here again to introduce the new variables
Ak+ = iAk2 – Ak1 and Ak- = iAk2 ? Ak1 similarly to [17].

Than the GL-functional will have a form [19, 74]:

DFGL ¼ FS � FN ¼aD2
0ðMþ þM�Þ þ bD4

0 M2
þ þM2

�

 �

þ cD4
0 Nþ
�

�

�

�

2þ N�
�

�

�

�

2
ffi �

þ D4
0ðdMþM� þ b Rj j2þc Pj j2Þ;

ð12:3:44Þ

392 12 Triplet Pairing and Superfluid Phase-Diagram in Fermi Gas of Neutral Particles



where Mþ ¼ A�kþAkþ;M� ¼ A�k�Ak�;Nþ ¼ AkþAkþ;N� ¼ Ak�Ak�;R ¼ AkþAk�;
P ¼ AkþA�k� similarly to (12.3.27, 12.3.28) with a substitution of A±k by Ak±. The

coefficients in (12.3.44) read: b ¼ b2þb4
2 ; c ¼ b3

2 ; d ¼ b2 þ b5; b ¼ 2b1 þ
b3; c ¼ b4 þ b5; D0(T) is still an amplitude of the gap. The extrema of GL free
energy are again governed by the conditions oDFGL

oAk�
¼ oDFGL

oA�k�
¼ 0; which are reduced

to the system of eight equations for the variables M+, M-, N+, N-, R, P, and the gap
D0(T).

The solution of these equations define eight different phases of 2D superfluid
Fermi gas with repulsion. In the weak-coupling approximation the GL-functional
has the local minima corresponding to the two 2D phases, namely to the axial
phase (A) and planar phase (E):

A ¼
ffiffiffi

1
2

r 1 0 0
i 0 0
0 0 0

0

@

1

A; E ¼ 1
ffiffiffi

2
p

1 0 0
0 1 0
0 0 0

0

@

1

A ð12:3:45Þ

The matrices E and A are similar to E and A2 in (12.3.36), (12.3.37) for e = 0
(D0"" ¼ D0##) in case of zero magnetic field. The five other phases: polar and
bipolar, axiplanar, k and g correspond to the saddle point while b-phase corre-
spond to the local maximum of the GL-functional.

The strong-coupling corrections lift the degeneracy between planar and axial
phases in favor of an axial phase [19]:

Faxial � Fplanar � �
N2Dð0Þ

T2
C1

TC1

eF

Z

du
2p

sin uj j Cað~p1;~p2; ~p1;~p2Þj j2\0; ð12:3:46Þ

where spin-asymmetric part of quasiparticle scattering amplitude Ca should be
calculated on the Fermi-surface ð~p1 ¼ pF~n1; ~p2 ¼ pF~n2Þ; and u is an angle
between~p1 and~p2. Expression (12.3.46) is negative independently of the character
of the interaction in the system. Thus, the axial phase corresponds to global
minima of the GL-functional in 2D superfluid Fermi gas with repulsion at least for
temperatures T close to TC1 (where GL-expansion is valid).

Concluding this section, we can say, that again (as in 3D case) we did not find
any local minima of the GL-functional corresponding to exotic phases in 2D triplet
superfluid Fermi gas.

Thus B-phase at low pressures and A-phase at high pressures in the bulk as well
as an axial phase in 2D case are the only global minima of the GL-functional for
triplet superfluid Fermi gas in the absence of magnetic field, while A1 and A2-
phases are the global minima of the GL-functional in strong magnetic fields
exceeding the paramagnetic limit (H [ Hp) in the bulk. The hopes to find a new
exotic phase, as we mentioned already, can be connected only with the region of
small and moderate magnetic fields H \ Hp * (2 7 3) T. Note also that in real
3He the crossover from 3D to purely 2D case via reduction of the 3He film
thickness or cell thickness in slab geometry is rather smooth. Namely, in a con-
fined (slab) geometry the effect of the boundaries is in favor of the formation of the
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3D A-phase. The typical cell thickness in these systems is of the order of 2000 7
3000 Å, which is much larger than the zero-temperatures coherence length n0

(according to [75] the coherence length in 3He varies from 90 Å to 404 Å as the
pressure drops from 34.2 bar to 0 bar). It follows from [76] that in a slab geometry
at temperatures close to TC the A-phase can exist at pressures lower than in the
purely 3D situation.

Therefore the superfluid phase diagram in zero magnetic field contains in real
3He an additional narrow stripe of A-phase between the region corresponding to
the B-phase and the normal state (see [6]). The region of the phase diagram
occupied by the A-phase grows as one decreases the cell thickness.

On the other hand in a purely 2D case an axial phase (analog of the A-phase)
exists in a wide range of densities, at least in the regime where the Ginzburg-
Landau approach is legitimate. From this point of view the crossover from the 3D
case to the 2D case is consistent both in 3He and in triplet superfluid Fermi gas
with repulsion.
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Chapter 13
Spin-Charge Separation and Confinement
in Ladder Systems and in High-TC

Superconductors

13.1 Introduction

In the present Chapter on the level of 2D isotropic t-J model [1–3] and strongly
anisotropic (quasi-1D) t-J model [4–6] we will describe the superconductive phase
diagram of layered cuprates and quasi-1D ladder materials [5, 7, 8, 113]. We
present the basic ideas of the physics of spin-charge separation [2, 9–14] and spin-
charge confinement [15, 16]. Note that spin-charge separation is actual for 1D
AFM spin-chains [9–12, 17–19] and for extended regions of the phase diagrams of
ladder systems with odd number of ‘‘legs’’ (odd number of coupled spin-chains
such as three-leg ladders [20, 21], five-leg ladders and so on). Note also that in
terminology used for ladder systems (see [5] for a review) each spin-chain, is
called the ‘‘leg’’, while interchain AFM-coupling and hopping (in doped case) are
described in terms of ‘‘rungs’’ (see Fig. 13.1).

The system with spin-charge separation are usually described in terms of
Luttinger Fermi-liquid (LL) [9–12]. For LL the group velocities of spinons vS (spin
excitations) and holons vC (charge excitations) are different [14], so the charge
transfer (charge-density waves CDW) and spin transfer (spin-density waves SDW)
are also described by different group velocities vS = vC. This phenomena can be
better understood if we use electroneutrality considerations. They are important for
charge transfer, and so the crystalline lattice (the ions) also participate in the
process. However, we can neglect the ions for spin transfer. Thus we can under-
stand the difference between the group velocities of CDW and SDW in 1D sys-
tems. Correspondingly in LL spin excitations (spin waves) are gapless Goldstone
modes while charge excitations can be gapped or gapless depending upon the
model (the finite mass can be generated for charge excitations in analogy with
plasmons in metals). This leads to slow (power-law) decay of spin–spin correla-
tions, while charge–charge correlations can be even rapidly exponentially
decaying in 1D. If we, vice a versa, consider the ladders with even number of legs
(characteristic example of two-leg ladder [22, 23] is presented on Fig. 13.1), then
we will fall in another universality class as people call it. Namely the two-leg
ladder will be described by quite different Luther-Emery (LE) liquid [11, 24, 25].
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In LE liquid we have opposite situation: the spin–spin correlations are exponen-
tially decaying while density–density (and SC gaps) correlations are slowly
decaying. In LL the dominant instability is towards SDW-formation, while in LE
liquid it is towards CDW-formation and strong SC-fluctuations which favor SC if
we include small interaction between ladders (see [22, 23, 26]). In the limit of
strong-coupling along the rungs J\ � {J||, t||, t\} we will show (see Fig. 13.2) that
for two holes it is energetically beneficial to occupy the same rung, thus forming a
rung-boson (or biholon or local Cooper pair) with charge 2e.

In the same time in this limit the spins on the rung also form local Kondo-
singlets with the W-function WSj i ¼ 1

ffiffi

2
p "# � #"j i and with an energy Es ¼ � 3

4 J?.

We can say that the rung-boson (or biholon or a local Cooper pair) moves in this
limit in the surrounding of local (rung) Kondo-singlets [22, 23]. Kondo-singlets
play the pole of holes in effective 1D-model for the rungs. The effective 1D-model
for this case is equivalent to 1D Bose-Hubbard model for rung-bosons [27]. In
general we can say that LE-liquid is equivalent to 1D repulsive Bose-gas of
composite (rung) bosons, while LL is equivalent (for the three-leg ladder for
example) to 1D repulsive Fermi-gas or repulsive 1D Hubbard model of composite
(rung) fermions [26, 28]. When we increase the number of legs (starting with
three-leg ladders) the phase diagrams become more sophisticated. They contain
both regions of LL and LE-liquid depending upon the relation between the
parameters J?; t?f g and Jk; tk

� �

describing AFM-coupling and hopping along the
rungs and legs, respectively [20, 21]. The difference between even- and odd-
numbers of legs becomes less pronounced when we increase the number of legs,

Fig. 13.1 A typical example of the two-leg ladder (a coupled system of two spin-chains). The
interchain AFM-coupling and hopping (if at least one leg is doped) J?; t? are described in terms
of rungs. Jk; tk are AFM-coupling and hopping along the legs

Fig. 13.2 The bound state of two holes on one rung in the strong-coupling limit of the
anisotropic t-J model for the two-leg ladder J\ � {J||, t||, t\}. In this limit the spins on the rung
form local Kondo-singlets (see Fig. 13.11)
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but still there is no smooth transition to the limit when N (number of legs) ? ?.
However, in the isotropic limit of the model J ¼ J? ¼ Jk, t ¼ t? ¼ tk and
J=t� 1=2� 1=3 (typical for 2D high-TC materials) there is a tendency towards the
coexistence of LL and LE-liquids. Thus there is a motive of the Fermi-Bose
mixture of effective (rung) fermions and bosons in the isotropic limit [29]. Cor-
respondingly we can consider underdoped limit of 2D high-TC materials in the
framework of a strongly interacting Fermi-Bose mixture of spinons and holons
[30]. Note that the strong interaction between spinons and holons in the underd-
oped cuprates can be connected with linear (confinement) potential describing
Bulaevskii-Nagaev-Khomskii [1] Brinkman-Rice [31] AFM-string [32]. It is easier
however, to proceed at first to more simple overdoped limit of 2D isotropic t-J
model (see the beginning of Sect. 13.4).

In the second part of the Chapter we consider isotropic 2D t-J model [1–3]. At
first we analyze superconductive phase diagram of this model in strongly over-
doped case (for small and intermediate electron densities where Landau Fermi-
liquid picture is valid). We find the regions of extended s-wave, p-wave and dx2�y2 -
wave pairings as well as the tendency towards phase separation at large values of
J/t and low density [33–35]. We present then the simple estimates for d-wave
critical temperature in the optimally doped case [34] and get reasonable
TC * 100 K typical for cuprates here [36–39]. Then we return back to the difficult
corner of the phase diagram of the t-J model for which nel = 1 - x ? 1 (x � 1—
underdoped case) and J/t * (1/2 7 1/3). Here in agreement with Fermi-Bose
mixture ideas [29] introduced in the first part of the Chapter, we propose a scenario
of the BCS-BEC crossover for pairing of two composite holes [15, 16] (two strings
[32], or two spin-polarons [40, 41]) in the d-wave channel [30]. Note that each
composite hole (each string or spin polaron) contains spinon and holon interacting
via confinement potential. Here we are inspired by the ideas of Laughlin on spin-
charge confinement [15, 16] and the analogies between composite holes in
underdoped state of the 2D t-J model and quark-gluon physics (physics of quark
bags) in quantum chromodynamics (QCD) [42–48]. [Note that alternative slave-
boson [49–53] spin-charge separation scenario was considered briefly (see also
[54]) in connection with 2D underdoped t-J model in Chap. 6].

In the end of the Chapter, we briefly discuss the possible BCS-BEC crossover
scenario for high-TC materials.

13.2 Spin-Charge Separation and Luttinger Liquid
in Doped Spin-Chains

We start the present Section with a brief enumeration of the powerful analytical
methods developed in 1D physics (usually they are not so effective for higher
dimensionalities).
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They include Bethe-ansatz (Bethe [17]) for a 1D chain of spins S = �, exact
solutions in 1D Hubbard model for arbitrary density n and coupling strength U/t
(Lieb, Wu [18], see also Mattias, Lieb [116]), nonlinear sigma model with the
topological term for halfinteger and integer spins, and methods of conformal field
theory in 1 space ? 1 time dimensions (Haldane [9, 10], Belavin et al. [55],
Itzykson et al. [56], Pruisken [57], Frahm, Korepin [58, 59], Hawakami, Yang
[60]) as well as bosonization methods (Tonomaga [14], Luttinger [61]). While the
exact solutions (see also Kawakami et al. [60, 62]) are very useful to describe the
ground state of 1D Hubbard model or 1D interacting Fermi-gas at different
coupling strengths, the bosonization methods help to represent the energy of the
low-lying excited states of the 1D interacting Fermi-systems as a sum of the
energies of the independent bosonic oscillators.

We can say that to some extent bosonization method is ideologically similar to
the hydrodynamical method presented in the first part of the manuscript. Effec-
tively it is based on the introduction of the collective bosonic variables describing
charge and spin-density fluctuations. However, bosonization methods could give
slightly more than hydrodynamics since in some models (such as Tomonaga-
Luttinger model for example) they describe not only oscillations with small fre-
quencies and k-vectors, but also help to restore density–density and spin–spin
correlations at large k-vectors of the order of 2pF related to giant 1D Kohn’s
anomaly (see also Chap. 9 for more details).

For the introduction to the bosonization method we can recommend an
excellent review-article of Brazovskii and Kirova [63], pioneering articles [64–68]
on abelian and nonabelian bosonization and textbooks [46–48, 69] of Fradkin,
Tsvelik et al., and Gimarchi.

We are much more modest in the present Section and will study mostly a 1D
doped spin-chain with AFM-interaction between nearest neighbor spins S = � in
the framework of the 1D t-J model.

13.2.1 1D t-J Model for Doped Spin-Chains

Let us consider 1D t-J model for doped spin-chains with AFM interaction (J [ 0)
between spins S = �. In the absence of doping the Hamiltonian is of the Hei-
senberg type and reads:

Ĥ ¼ J
X

i jh i

~Si
~Sj: ð13:1:1Þ

It is well known that in 1D spin-fluctuations destroy long-range AFM ordering.
Spin excitations are gapless. Spin correlations decay in a power fashion in this
model:
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~S xð Þ~S 0ð Þ
D E

� cosð2pFxÞ
x1þb

; ð13:1:2Þ

where b is model-dependent parameter. For small J the parameter b = � and
1 ? b = 3/2. Note also that exact solution for 1D spin-chain is available for
S = �: E = -JNln2, where N is the number of sites (see Bethe [17]). At low
doping n = 1 - x (x � 1) the system is described by the 1D t-J model [18, 19]:

Ĥ ¼ �t
X

i jh i
cþi rcj r þ J

X

i jh i

~Si
~Sj: ð13:1:3Þ

It is shown in [70] that for J \ 2t the 1D t-J model [18, 71] belongs to the
universality class of Luttinger liquid (LL). The same universality class as we
mentioned already describes 1D repulsive Hubbard model and 1D Fermi-gas with
repulsion. The basic instability in 1D t-J model for J \ 2t is with respect to spin-
density wave (SDW).

13.2.2 Spin-Charge Separation in Doped 1D Spin-Chains

As we already mentioned, one of the most important features of LL is a phe-
nomenon of spin-charge separation. Let us illustrate this phenomenon for a doped
spin-chain, described by 1D t-J model, following Fulde (see Fig. 13.3 and [13]).

Qualitatively we can describe Fig. 13.3 in the following manner: in the initial
moment t0 spinon and holon are nearby. The holon starts to move on the left hand
side. As a result the domain wall of two frustrated spins (in Ising limit) is created
at t = t1 [46–48]. Finally in the moment t = t3 the holon is separated from the
domain wall by a regular structure of non-frustrated spins (in Ising limit). The
distance between spinon and holon is R = (vS - vC)Dt (Dt = t3-t0). Note that, as
we discussed in the Introduction to this Chapter, spinon and holon possess the

Fig. 13.3 Illustration of
spin-charge separation in 1D
according to Fulde (in
‘‘Strong correlations in
molecules and Solids’’ [13]).
If in the initial moment t = t0
spinon and holon are nearby,
than in the final moment
t = t3 there is a final distance
R = (vS - vC)Dt between
them (Dt = t3 - t0)
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different group velocities vS = vC due to the fact that in the charge transfer
(charge-density wave or CDW) participate both electrons and ions because of
electroneutrality. In the same time in the spin transfer (SDW) participate only
electrons. Of course, a presented picture of spin-charge separation is oversimpli-
fied. When we are speaking about domain wall, for example, we should understand
what approximation is better: slave-boson [53, 73] (according to which a spinon is
fermion fir with charge 0 and spin � while a holon is boson bi with charge e and
spin 0), or slave-fermion [73–75] where vice a versa holon is a spinless fermion hi,
while spinon is an S = 1 boson Si

+ (Si
-) (a bit similar to magnon). It seems that

slave-fermion approximation is more reliable here [76] since a domain-wall cor-
responds with some degree of precaution to a localized magnon.

13.2.3 The Dressed Green-Function in 1D Luttinger Liquid

The dressed Green-function in standard Landau Fermi-liquid has a simple one-
pole structure close to the Fermi-surface (for p ? pF). Correspondingly we get in

3D or 2D Fermi-gas [72]: Gðx;~pÞ ¼ Z
x�npþid, where np ¼

p2�p2
F

2m� is uncorrelated

quasiparticle spectrum, and Z is quasiparticle residue or Z-factor. However, in 1D
systems, which are described by Luttinger liquid and are subject of spin-charge
separation, the situation is drastically changed. The dressed Green-function does
not have a simple one-pole structure close to the Fermi-surface. Instead of that it
often has a brunch-cut in momentum space for p e [-pF, pF]. In the most simple
Tomonaga model for 1D spinless fermions, for example, according to Dzyalo-
shinskii, Larkin [77, 78]:

Gðx; pÞ� ZðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� vFð pj j � pFÞ½ � x� uð pj j � pFÞ½ �
p ; ð13:1:4Þ

where Z-factor is vanishing on the Fermi-surface:

ZðxÞ�xa ! 0 for x! 0 (or for pj j ! pFÞ; ð13:1:5Þ

and the power a[ 0 depends upon the model.
Let us emphasize that the Green-function has a typical square-root in denom-

inator of (13.1.4) and moreover the velocity u = vF. If we include spin degrees of
freedom, the expression for the dressed one-particle Green-function
G(x, p) becomes rather cumbersome in momentum space (see Ren, Anderson [79]
and Medden, Schonhammer [39]) containing a hypergeometric function [114].

However is real space it has a typical for spin-charge separation square-root
again (see [46, 47, 80–82]). If we make the Wick transformation t ? is and
introduce conformal variables z ¼ sþ ix

v and �z ¼ s� ix
v , then the Green-function

G(x, s) in Tonomaga-Luttinger model reads in the weak-coupling case [46]:
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Gðx; sÞ ¼ a2

v2
s s

2 þ x2

� �

a
2 expðikFxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvss� ixÞðvcs� ixÞ
p þ expð�ikFxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvssþ ixÞðvcsþ ixÞ
p

" #

;

where 0 \ a\ 1/8 is model-dependent parameter and a = 1/8 in strong-coupling
limit (of the Hubbard model). Of course the velocities vC and vs are different. In
weak-coupling limit of Tonomaga-Luttinger or 1D Hubbard model vC = v - g/2p
and vs = = v ? g/2p, where g = U/4t \ 1 is a coupling constant. In strong-cou-
pling limit of 1D Hubbard model vC/vs * 1/g � 1 [46]. Thus for short-range
repulsive interactions in 1D both spinons and holons are gapless. The charge
excitations could be gapped in LL in case of long-range repulsive interactions.
Finally let us repeat that if we have for example a two-leg ladder (a coupled system
of the two spin chains), then the system falls in another universality class of
Luther-Emery (LE) liquid. As we already mentioned LE liquid is equivalent to 1D
Fermi-gas with strong attraction or to 1D Bose-gas with repulsion. In LE liquid we
always have a gapless (Bogoliubov) spectrum for charge excitations. In fact in this
case we have a sound wave in 1D Bogoliubov Bose-gas. The spectrum for spin
excitations is gapped. We can say that while in LL the basic instability is towards
spin-density wave (SDW) formation, in LE liquid the basic instability is towards
charge-density wave (CDW) formation and strong superconductive (SC) fluctua-
tions. LL describes spin-chains with half-integer spins and extended regions of
phase-diagrams of odd-leg ladders (see the discussion of three-leg ladders in the
next Sections). LE liquid describes spin-chains with integer spins (see Haldane [9,
10]) and extended regions of phase-diagrams of even-leg ladders. It is seductive to
describe 2D high-TC materials as a Fermi-Bose mixture of strongly interacting LL
and LE liquids (see the next Section).

13.2.4 The Distribution Function for Interacting Particles
in Luttinger Liquid

The interacting particles (not quasiparticles) distribution function NintðpÞ ¼
R

dx
2p Gðx; pÞ with G(x, p) being a dressed one-particle Green-function from

(13.1.4) does not have a finite jump on the Fermi-surface [7, 9–12, 83, 84]: Z ? 0
for x ? 0 [see (13.1.5) for Luttinger liquid (LL)]. Instead of the jump
Nint(p) possesses the power-law singularity close to pF which reads (see Lieb,
Mattias [84], Fulde [13] and Fig. 13.4):

Fig. 13.4 Interacting
particles distribution function
in LL. There is no jump at
p = pF. Instead of it there is
power-law singularity (see
[13])
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NintðpÞ ¼
1
2
� const p� pFj jasignðp� pFÞ: ð13:1:6Þ

The exponent a depends upon the model. In strong-coupling limit of 1D
Hubbard model U � t (which close to half-filling is practically equivalent to t-J

model with J ¼ 4t2

U [ 0 yielding the same energy E = -JNln2 as for a 1D spin-
chain exactly at half-filling) this constant a = 1/8.

For comparison on Fig. 13.5 we present the interacting particles distribution
function for Landau Fermi-liquid (LFL) with a finite jump (Z = 0) for p = pF

[72, 117].
Note also that the imaginary part of the dressed (by interactions) one-particle

Green-function in Landau Fermi-liquid has a sharp quasiparticle d-functional peak
for x = np = e(p) - l and a broad incoherent background (see Fig. 13.6).

In contrast to the situation on Fig. 13.6 in Luttinger liquid a quasiparticle
d-functional peak is absent (Z = 0) and we have only noncoherent background in
imaginary part of the dressed one-particle Green-function. Note that in spite of
these substantial differences both LFL and LL conserve the volume of the Fermi-
sphere due to the Luttinger theorem [61, 72], which means that the number of

Fig. 13.5 Interacting
particles distribution function
in Landau Fermi-liquid with a
finite jump (Z = 0) at p = pF

(see [72, 117])

Fig. 13.6 Imaginary part of the dressed one-particle Green-function in Landau Fermi-liquid
theory. There is a sharp d-functional quasiparticle peak and a broad incoherent background on top
of it
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interacting particles (Nint) equals to the number of free fermions in them
(n = pF

3/6p2 in 3D case, n = pF
2/4p in 2D, and n = pF/p in 1D for spinless

particles).
It is interesting to stress that (as we will see later on) in the case of spin-charge

confinement (typical for 2D high-TC compounds) the dressed one-particle Green-
function (see Lee et al. [49–52]) reads:

Gðx;~pÞ� ZðxÞ
x� nðpÞ þ io

þ Gincohðx;~pÞ; ð13:1:7Þ

where n(p) = E(p) - l is a spectrum of a 2D AFM-string, E(p) = E0 ? Jp2 is a
string energy (see Sect. 13.4.8) [32]. Thus, the dressed one-particle Green-function
for a composite hole (for a string) has a simple (one-pole) structure close to the
Fermi-energy [for small n(p)] in the case of spin-charge confinement and corre-
sponds to Landau Fermi-liquid.

13.3 Two-Leg Ladder Systems. Spin-Charge Confinement.
Luther-Emery Liquid

In the introduction to this Chapter we already illustrated the structure of the two-
leg ladders on Figs. 13.1 and 13.2. Let us present several experimentally available
examples of the two-leg ladder materials (VO)2P2O7, LaCuO2.5, SrCu2O3, and
NaV2O5 [5]. There is also one example of the ladder material SrxCa14-xCu24O41

[7, 8] where superconductivity was observed with critical temperatures
TC * (9 - 12) K for pressures P * (3 7 4) GPa. Note that in NaV2O5 a
strongly anisotropic case J\ * 4 J|| is realized. On Fig. 13.7 we present a typical
in-plane situation for the two-leg ladder materials. It is instructive also to present a
crystalline structure of a typical two-leg ladder material SrCu2O3 (see Fig. 13.8).

Note that in contrast to stripes in high-TC materials [33, 85] the ladders are
stable (strong) defects of the crystalline lattice which are not fluctuating and exist
even in the absence of doping. According to the Goodenough rules [86, 87] for the
chemical bond we have strong coupling (AFM superexchange) inside the ladder
corresponding to the Cu–O-Cu bond angle p (see Fig. 13.9), and weak coupling
FM-type of the bond (with Cu–O-Cu angle p/2) between the ladders.

It is important that for two-leg ladder a spin susceptibility acquires a gap (see
[5] and Fig. 13.10):

Fig. 13.7 In-plane situation
for two-leg ladder materials
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v Tð Þ� 1
ffiffiffiffi

T
p e�D=T ð13:2:1Þ

From Fig. 13.10. We see that D * Tmax, and moreover for T � Tmax:
v(T) ? 0.

13.3.1 Anisotropic t-J Model

In the absence of doping the two-leg ladders are described by anisotropic Hei-
senberg Hamiltonian:

Ĥ ¼ Jjj
X

i a

~Sia
~Siþ1a þ J?

X

i a

~Sia
~Siaþ1; ð13:2:2Þ

Fig. 13.8 Crystalline
structure of a typical two-leg
ladder material SrCu2O3. In
the center of each elementary
CuO4 plaquette there is Cu
atom (red circle), while in the
corners of the plaquette there
are four O-atoms (see [5])

Fig. 13.9 Strong coupling
AFM superexchange with an
angle p for Cu–O-Cu bond
and weak coupling FM Cu–
O-Cu bond (with an angle
p/2) between the ladders

Fig. 13.10 Spin
susceptibility for two-leg
ladder materials
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where Jk is AFM-exchange along the legs and J\—along the rungs (see Fig. 13.2),
the index i is a rung index and index a = 1, 2 corresponds to the leg 1 and leg 2.
For J\ � Jk the spin-singlets are formed on the each rung (see Fig. 13.11). The
ground state for Jk = 0 corresponds to dimerized spin-liquid with Stot = 0. The
total energy in this case Es ¼ � 3

4 J?Nrung and the W-function Ws ¼
Q

i
Wsij i, where

Wsij i ¼ 1
ffiffi

2
p "# � #"j i (see Introduction to this Chapter).

Spin-gap D in the magnetic susceptibility is in fact the difference between
singlet and triplet energies: D = Et - ES. For J\ � Jk: D * exp{-1/J\} (see
[22, 23]). For J\ = Jk (isotopic point): D = 0.5J\. Finally for J\ � Jk: D ? J\.
The last result is evident since for J\ � Jk: Et = (1/4)J\, while ES = -(3/4)J\.
Note that the spin-gap opens already at J\ ? 0 (see Fig. 13.12 and [22, 23]). Thus
J\ = 0 is a singular point.

Spin correlator acquires an exponential form:

~S rð Þ~S 0ð Þ
D E

[ � exp � r

n

� �

; ð13:2:3Þ

where the correlation length n ¼ vs
D. In the limit of low-doping two-leg ladder is

described by the anisotropic t-J model (see Fig. 13.2):

Ĥ ¼ �tjj
X

i ar

cþiarciþ1ar � t?
X

i ar

cþiarciaþ1rþ Jjj
X

i a

~Sia
~Siþ1a þ J?

X

i a

~Sia
~Siaþ1

ð13:2:4Þ

where tk and t\ are the hoppings along the legs and along the rungs, respectively, ciar
+

corresponds to the creation of electron on rung i and leg a with spin-projection r.

Fig. 13.11 Local Kondo-
singlets in the strong coupling
limit J\ � Jk of the
anisotropic Heisenberg model
for two-leg ladders in the
absence of doping

Fig. 13.12 Spin-gap in
anisotropic Heisenberg model
(see [6])
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In the strong coupling limit J\ � {Jk, tk, t\} it is more energetically beneficial for
two holes to create a bound state on the rung [biholon or local Cooper pair (see
Fig. 13.2)]. Biholon moves in the surrounding of spin-singlets. Its effective mass
reads:

meff �
1

tjjd2

� �

J?
tjj
� 1

tjjd2
: ð13:2:5Þ

We have 1D Bose-gas with repulsion for bosons (biholons) on the rungs. It
belongs to the universality—class of Luther-Emery (LE) liquid. In this type of
model there are strong SC fluctuations:

D rð ÞD 0ð Þh i� 1
r1þc

: ð13:2:6Þ

Note that according to Efetov, Larkin [27] already a small interaction between
the ladders (see Figs. 13.7 and 13.8) stabilizes a finite TC in the system.

13.3.2 Resistivity in Two-Leg Ladders Materials

For the material La1-xSrxCuO2.5 with two-led ladders resistivity behaves as follows
(see Fig. 13.13).

From Fig. 13.13 we can see that for x C 0.15 resistivity R(T) behaves in a
metallic fashion in analogy with high-TC materials. At small doping x B 0.10 the
resistivity behaves in a semiconductor fashion.

13.3.3 Superconductivity in Ladder Materials

Superconductivity was experimentally observed in SrxCa14-xCu24O41 (see [7, 8]).
In this compound in analogy with high-TC material YBaCuO there are chains and
planes. We have two-leg ladders in planes (see Fig. 13.14).

Fig. 13.13 Resistivity
characteristic R(T) in the
two-leg ladders material La1-

xSrxCuO2.5 for different
doping levels (see [5])
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For x = 0.4 and pressures P \ 3 GPa the holes mostly occupy the chains.
Resistivity has a semiconductive character (see Fig. 13.15). For x = 0.4 and
pressures 3 GPa \ P \ 4.5 GPa the holes mostly occupy the ladders. Resistivity
behaves in a metallic fashion q * q0 ? ATa with 1 \ a\ 2. Here at T \ TC

(TC = 12 K for P = 3 GPa and TC = 9 K for P = 4.5 GPa) SC arises in the
system [5].

Intermediate conclusions for SC in SrxCa14-xCu24O41.
Let us emphasize once more that:

1. for x = 0.4 and P [ 3 GPa the lattice is compressed and hence the holes mostly
occupy the planes which contain two-leg ladders. This fact leads to metallic
behavior of resistivity. As a result SC arises in the system.

2. For further increase of hole-concentration x we will have an additional transfer
of hole states from chains to planes.

Fig. 13.14 The crystalline
‘‘sandwich’’ structure of
superconductive material
SrxCa14-xCu24O41. There are
two-leg ladders in two
adjacent CuO planes and
CuO chains in between (see
[7, 8])

Fig. 13.15 Resistivity
characteristics R(T) in the
material SrxCa14-xCu24O41.
For P = 3 GPa we observe
the SC-transition at
TC = 12 K see [7, 8])
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3. For the first time SC was observed in SrxCa14-xCu24O41 for x = 0.2. In these
materials SC arises for P [ 2.6 GPa. The critical temperature is TC = 5 K. In
this case the hole concentration corresponds to hole density of 0.2 holes per
Cu-atom of the ladder.

13.4 Three-Leg Ladders. Anisotropic t-J Model
for Strong-Coupling Along the Rungs

The typical examples of three-leg ladder materials are Sr2Cu3O5 and CsCuCl3 (see
Fig. 13.16 and [20, 26]).

In the limit of not very strong exchange J\ along the rungs the spin-gap in
susceptibility v(T) is absent (see Fig. 13.17).

For low temperatures T ? 0 we can see from Fig. 13.17 that v(T) ? const and
the spin-gap is absent. In the limit {J\, t\} � {J||, t||}—we have strong coupling
along the rungs [21]. In this limit the phase-diagram of three-leg ladders at low
temperatures T ? 0 has extended regions of LL and for large J\/t\-ratio also the
region of LE-liquid (see [21] and Fig. 13.18).

Fig. 13.16 Doped three-leg
ladder

Fig. 13.17 Spin-
susceptibility v(T) for three-
leg ladders. v(T) ? const for
T ? 0 and the spin-gap is
absent

Fig. 13.18 Phase-diagram of
three-leg ladders at strong
coupling along the rungs
{J\, t\} � {J||, t||}. There
are extended regions of LL
and LE-liquid on the phase-
diagram [21]
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13.4.1 Exact Diagonalization of One Rung Problem

To construct more precisely the phase-diagram of three-leg ladder at strong
coupling along the rungs {J\, t\} � {J||, t||}, we first should diagonalize (solve
exactly) the one rung problem. Here in the limit J|| = t|| = 0 the W-function of 3
spins (and zero holes) on the rung (see Fig. 13.19) reads:

W0 ¼
1
ffiffiffi

6
p ""#j i � 2 "#"j i þ #""j i½ �: ð13:3:1Þ

The W-function W0 describes a spinon f ir
+ [2] with an energy E0 ¼ � 3

2 J?, a
rung spin Stot = � and projection of the rung spin Stot

z = ± �.
The W-function of 2 spins and 1 hole on the rung (see Fig. 13.20) corresponds

to a holon bi
+ and reads (see [21]):

W1 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 2a2
p "# 0j i � #" 0j i½ þ a " 0 #j i � a # 0 "j i þ 0 "#j i � 0 #"j i�:

ð13:3:2Þ

The energy of this configuration is given by:

E1 ¼ �
4t2
?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2
? þ 8t2

?
p

� J?
¼ � 2t?

a
: ð13:3:3Þ

The total spin for this configuration Stot = 0.
For 1 spin and 2 holes on the rung the W-function reads:

W2 ¼
1
2
" 00j i þ

ffiffiffi

2
p

0 " 0j i þ 00 "j i
h i

¼ 1
2

cþi1" þ
ffiffiffi

2
p

cþi2" þ cþi3"

h i

000j i: ð13:3:4Þ

The energy of this configuration E2 ¼ �
ffiffiffi

2
p

t?. It corresponds to a spinon hþir
(Fig. 13.21) with Stot = � and SZ

tot ¼ 	1=2:
Finally for three holes on the rung the W-function is trivial W3 ¼ 000ij and

total energy E3 = 0. It corresponds to a holon ai
+ with Stot = 0 (Fig. 13.22).

Fig. 13.19 Spinon fir for
three spins on the rung
described by W-function
(13.3.1). It corresponds to the
rung spin Stot ¼
1=2 and SZ

tot ¼ 	1=2 [21]
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13.4.2 Qualitative Phase-Diagram

Now if we switch on small (but non-zero) J|| and t|| we get the following phase-
diagram of three-leg ladder systems (see Fig. 13.23). On Fig. 13.23 LL I corre-
sponds to the admixture of the rungs with 2 spins and 3 spins, LL II—to the
admixture of the rungs with 2 spins and 1 spin, LL III—to the admixture of the
empty rungs and the rungs with 1 spin. In the same time LE-liquid corresponds to
an admixture of the empty rungs and the rungs with 2 spins [21]. It is realized for
doping x [ 1/3 (see [21]) and:

J?
t?

[
J?
t?

� �

crit

¼ 3
ffiffiffi

2
p : ð13:3:5Þ

Let us consider the phase-diagram on Fig. 13.23 more detaily. In the case of LL I
when we include t|| = 0 the hopping takes place due to an exchange between a rung
with 3 spins and a rung with 2 spins (with a hole) (see Fig. 13.24).

In this situation a composite fermion

gþir ¼ firbþi ð13:3:6Þ

Fig. 13.21 Spinon hþir for
1 spin and 2 holes on the
rung. The total spin for this
configuration Stot ¼
1=2 and SZ

tot ¼ 	1=2 [21]

Fig. 13.22 Holon ai
+ for

three holes on the rung. The
total spin of this trivial
configuration Stot = 0 [21]

Fig. 13.20 Holon bi
+ for the

rung with 2 spins and 1 hole.
The total spin for this
configuration Stot = 0 [21]
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arises in the problem. In the limit {J\, t\} � {J||, t||} a composite fermion satisfies
the standard fermionic anticommutational relations:

gþir; gir

� �

¼ gþirgir þ gir gþir ¼ 1: ð13:3:7Þ

Hence LL I corresponds to repulsive 1D Hubbard model for composite fer-
mions gir described by the Hamiltonian:

Ĥ ¼ �teff

X

i jh ir
gþirgjr þ U1

X

i

ni;rni;�r; ð13:3:8Þ

where U? is infinitely strong Hubbard repulsion on site i between composite
fermions. In the similar way we can understand LL II and LL III. The situation
changes, however, for LE-liquid. Here the hopping (for t|| = 0) takes place due to
an exchange between an empty rung and the rung with 2 spins (see Fig. 13.25).

It is easy to see that a composite boson

dþi ¼ aib
þ
i ð13:3:9Þ

Fig. 13.23 Phase-diagram of three-leg ladder systems at strong coupling along the rungs. There
are three different regions of LL: LL I, LL II, and LL III (depending upon doping x = 1 - nel)
and a region of LE-liquid for larger values of J?=t? and x [ 1=3

Fig. 13.24 The hopping between a rung with 3 spins and a rung with 2 spins (with a hole) in case
when t|| = 0 [21]

Fig. 13.25 The hopping (for
t|| = 0) between an empty
rung and the rung with 2
spins [21]
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arises in the problem. Thus LE liquid corresponds to 1D Bose-gas with repulsion
between composite bosons described by the Hamiltonian:

Ĥ ¼ �teff

X

i jh i
dþi dj þ

1
2

U1
X

i

n2
i : ð13:3:10Þ

It is interesting to note that in contrast with (13.3.8) (where teff * t) in

(13.3.10) teff � t2
jj

.

J?—appears only in the second order of perturbation theory.

13.4.3 N-leg Ladders

When we increase the number of legs the difference between the ladders with even
and odd numbers of legs becomes less pronounced. For N ? ? the spin-gap in the
ladders with even number of legs decreases exponentially. In strong coupling limit:

D2N �
D2

2N
� J?

2N
! 0: ð13:3:11Þ

Hence for N ? ? the spin excitations in the ladders with even number of legs
are practically gapless (as in LL). Note that for N ? ? we proceed to two-
dimensional anisotropic t-J model, and for {J\, t\} � {J||, t||} - to 1D t\-J\
model [21]. The universality class of this model corresponds to LL with spin-
charge separation. This limit, however, is not realistic for 2D high-TC compounds.

13.4.4 The Gap in the Energy Spectrum for Three-Leg
Ladders in Anisotropic Limit

Returning back to three-leg ladders and their phase-diagram, we see that for
doping x [ 1=3 and J?[ 3t?

ffiffi

2
p there is an energy gap for t?[ tk. By the order of

magnitude it reads:

D ¼ ELE � ELL

Nrung
� t? � tll: ð13:3:12Þ

This gap separates LE and LL in energetic space.

Fig. 13.26 The coexistence
of Fermi-gas (LL) and Bose-
gas (LE) in the isotropic limit
in the energy space
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13.4.5 Coexistence of Bosonic Luther-Emery Liquid
and Fermionic Luttinger Liquid in Isotopic Limit

The real high-TC materials correspond, however, to the difficult isotropic limit

J? ¼ Jjj ¼ J; t? ¼ tjj ¼ t; J� 0:3t ð13:3:13Þ

In this case the numerical calculations [20] show the tendency to a coexistence
of Bose-gas (LE) and Fermi-gas (LL) in the energy space (see Fig. 13.26). In this
case the energy gap

D ¼ ELE � ELL

Nrung
! 0 ð13:3:14Þ

vanishes due to isotropic condition (t\ = t||) for hopping integrals. Hence in the
isotropic limit we have Fermi-Bose mixture of LL and LE-liquids (see Gesh-
kenbein, Ioffe, Larkin [29]).

13.4.6 Strongly Interacting Mixture of Spinons and Holons
in High-TC Superconductors

We already mentioned briefly a Fermi-Bose mixture of spinons and holons in
Chap. 6. Our project for underdoped high-TC superconductors reads: starting with
a strongly interacting Fermi-Bose mixture of spinons fir

+ and holons bi to derive an
effective one-band model for the weakly interacting composite holes (or spin-
polarons)

hir ¼ fir bi: ð13:3:15Þ

We will qualitatively consider this scenario in the last part of this Chapter on
the basis of Bulaevskii-Nagaev-Khomskii [1], Brinkman-Rice [31] ideas on the
formation of AFM-string [1]. But at first we will understand the more simple
overdoped limit of the isotropic t-J model in 2D case [33, 34], where Landau
Fermi-liquid picture is valid and where we will have different SC instabilities,
including d-wave pairing actual for real cuprates.

13.5 Superconductivity in Isotropic 2D t-J Model

In this Section we will consider different superconductive pairings (s-wave,
d-wave, p-wave) which arise in isotropic 2D t-J model in overdoped case, as well
as a possible scenario of BCS-BEC crossover (or of a bosonic motive) which arises
in an underdoped case of the t-J model.
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13.5.1 Superconductive Pairing in Overdoped 2D t-J Model

In connection with high-TC superconductivity in the overdoped case we consider
isotropic t-J model [1, 2] with released constraint [34]. The Hamiltonian of the
model reads:

Ĥ ¼ �t
X

i jh ir
cþircjr þ U

X

i

ni"ni# þ J
X

i jh i

~Si
~Sj �

1
4

ninj

� �

; ð13:4:1Þ

where nir ¼ cþircir is onsite electron density for spin projection r,~Si ¼ 1
2 cþil~rlmcim is

an operator of electron spin on site i, ~r ¼ r1; r2; r3f g—are Pauli matrices. We
assume that U � {J; t}. Note that by setting U ? ? we recover the standard
canonical t-J model for n ? 1 (which we briefly considered in Chap. 6 with
respect to the possibility of biholon pairing in the slave-boson formulation of the
model in the underdoped case):

Ĥ ¼ �t
X

i jh ir
~cþir~cjr þ ~J

X

i jh i

~Si
~Sj �

1
4

ninj

� �

; ð13:4:2Þ

with ~cir ¼ cirð1� ni�rÞ and ~J ¼ J þ 4t2

U ð¼ J for U !1Þ. Note also that the t-J
model was derived many years ago by Bulaevskii and coworkers [1] to describe
the strong-coupling limit of the single-band Hubbard model. The study of this
model has become very active in 1990-ties due to Anderson’s proposal [2] that is
was the appropriate model to describe the doped CuO2 planes that are the key
ingredients of the high-TC cuprates. Later on Zhang and Rice [3] elucidated the
relationship of the t-J model to a multiband Hubbard description with Cu 3dx2�y2

and O 2pr orbitals. The careful numerical investigation of Hybersten and
coworkers [88] established the parameter values in the mapping of the multiband
Hubbard model for the CuO2 planes into a one-band t-J model, namely
J * 0.3t. In the single-band Hubbard model the mapping to a t-J model is valid
only in the strong-coupling limit which leads to the values J � t. In a more
general model other values of J/t can occur. A lot of work has been done to clarify
analytically the relationship between the t-J and multiband Hubbard models, see
e.g. [89] and reference therein. In this Section we will treat the ratio J/t simply as a
parameter to be varied arbitrarily.

Finally let us emphasize that in the canonical form of the t-J model it is

convenient to add � 1
4 ninj to the Heisenberg term ~Si

~Sj in (13.4.1) and (13.4.2).
In fact the Hamiltonian (13.4.1) of the t-J model with released constraint cor-

responds to a model with strong onsite repulsion U and small AFM attrac-
tion * J on the neighboring sites. Effectively we have the van der Waals
interaction potential in this model (see Fig. 13.27 and [34]). The bosonic version
of the model with van der Waals interaction was considered in Chap. 6 with
respect to the possibility of the two-boson pairing.
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13.5.2 Superconductive phase-diagram of the 2D overdoped
t-J model

For small and intermediate electron densities 0 \ nel B 0.75 (overdoped case
x B 0.25 for a hole doping) the SC phase-diagram of the 2D t-J model with
released constraint has the regions of extended s-wave pairing for J [ 2t and
phase-separation for J [ 3.8t and nel ? 0. For small values of J/t \ 1 it has the
regions of p-wave and dx2�y2 SC pairing (see [33, 34] and Fig. 13.28).

13.5.3 Extended s-Wave Pairing for J > t and Low Electron
Densities

At low electron densities and J [ JCO = 2t an extended s-wave pairing arises in
the 2D t-J model at low electron density (see [33]). The superconductive gap for
extended s-wave pairing on the 2D square lattice reads (see also Chap. 6):

DS ¼ DS
0ðcos pxd þ cos pydÞ: ð13:4:3Þ

The pair W-function is zero for r B d/2—in the region of strong Hubbard
interaction U � {J, t} and thus UW = 0 in the effective Schrödinger equation. It
has a maximum for r * d (see Figs. 6.1 and 13.29) which is centered on the
neighboring sites. Thus the pair W-function has a region of zero values but does
not change its sign. For J [ JCO = 2t there is a bound state of two electrons with
the binding energy Eb ¼ �W þ ~Eb, where:

~Eb

�

�

�

� ¼ 8We
� pJ

J�JCOð Þ: ð13:4:4Þ

for moderately large J C JCO [34]. For large J [[ W [33]

Eb ¼ �J � 20t2

J
: ð13:4:5Þ

Fig. 13.27 Effective vacuum
interaction of the van der
Waals type in the 2D
isotropic t-J model with
released constraint (see also
Fig. 6.1)
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In the BCS-case for ~Eb

�

�

�

�\eF and extended Cooper pairing the mean-field
superconductive critical temperature is given by famous Miyake formula [90] (see
Chaps. 6 and 8):

TCS�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eF ~Eb

�

�

�

�

q

; ð13:4:6Þ

where ~Eb

�

�

�

� is determined by (13.4.4).
In the BEC-case for ~Eb

�

�

�

�[ eF and local pairing we have two characteristic
temperatures:

T� �
~Eb

�

�

�

�

ln ~Eb

�

�

�

�=eF

� 	� ð13:4:7Þ

Saha crossover temperature [91] which describes creation of local pairs
(dimers) and superconductive critical temperature:

TCS ¼
eF

4 ln lnð ~Eb

�

�

�

�




eFÞ
ð13:4:8Þ

given by Fisher, Hohenberg formula [92] for slightly non-ideal 2D Bose-gas with
repulsion between local pairs (dimers) (see also Popov [93]). The more detailed
discussion of the BCS-BEC crossover [94–97] in 2D attractive Fermi-gas is pre-
sented in Chaps. 6 and 8.

Fig. 13.29 Pair W-function
squared for the extended s-
wave pairing in the 2D t-J
model (see also Fig. 6.1)

Fig. 13.28 Superconductive
phase-diagram of the 2D t-J
model in the overdoped case
(for small and intermediate
electron densities) [34]
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13.5.4 Phase-Separation at Large J/t and Low Electron
Density

The energy of BEC-phase becomes negative at larger J/t (where ~Eb

�

�

�

�[ [ eF)we
have here a liquid of local pairs (dimers) with an energy:

EBEC � EN ffi �N
~Eb

�

�

�

�

2
\0; ð13:4:9Þ

where N is a number of particles.
If we further increase the J/t-ratio at low electron densities, than the formation

of quartets [30, 34, 98] or larger complexes will become energetically beneficial
on the 2D square lattice. But as it was shown by Emery, Kivelson and Lin [33], the
liquid phase (which is formed earlier then the threshold for quartet formation)
becomes unstable towards total phase-separation (see also Chaps. 9 and 15) on two
large clusters for J [ JP.S = 3.8t: PM-cluster with electron density nel ? 0 and
AFM-cluster with nel ? 1. The threshold value for the total phase-separation
JP.S = 3.8t can be defined from a simple estimate (see also numerical calculations
of Dagotto et al. [99]):

EAFM � EN

N
¼ � 1:18J

2
� EBEC � EN

N
¼ �

~Eb

�

�

�

�

2
; ð13:4:10Þ

where 1.18J is an AFM-energy per bond for the 2D square lattice.

13.5.5 p-Wave Pairing for J < t and Low Electron Densities

For small values of J/t and low electron densities the triplet p-wave pairing,
governed by Kohn-Luttinger mechanism [35, 100, 101] corresponds to a leading
SC-instability in the system below the critical temperature:

TCp� eFe
� 1

6:1f 3
0 ð13:4:11Þ

(see Chap. 9 for more details). The p-wave SC gap for the 2D square lattice reads:

Dp ¼ D0pðsin pxd þ i sin pydÞ: ð13:4:12Þ

In the case of 2D t-J model with released constraint the coupling constant f0 for
J \ JCO = 2t and low density in (13.4.11) is given by [34]:

f0 ¼
mTsð~E ¼ 2eFÞ

4p
¼ 1

ln 4W
eF
þ p J

J�JCO
þ ip

: ð13:4:13Þ
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Note that Tsð~E ¼ 2eFÞ in (13.4.13) is the T-matrix in the s-wave channel rel-
evant for the Cooper problem (where ~E ¼ 2eF [ 0). Thus for J/t ? 0 and eF \\

W the coupling constant f0 ffi ln 4W
eF

� ��1
as in the 2D Hubbard model [102]. It is

possible to demonstrate by direct comparison of the critical temperatures in dif-
ferent channels (see Fig. 13.28) that p-wave pairing is dominant for J \ t and low
electron densities nel = 2eF/W � 1.

13.5.6 d-Wave Pairing in the Overdoped 2D t-J Model

For nel C (0.6 - 0.7) and not very small ratio of J/t * (1/2 7 1/3), which are
just the typical values for high-TC materials, d-wave pairing becomes dominant
over p-wave pairing in the 2D t-J model with released constraint. The equation for
the critical temperature in the dx2�y2 -channel reads (see [34]) in the weak-coupling
case J/t \ 1:

1 ¼ Jd2
Z Z

dpx

2p
dpy

2p
/2

d

th ep�l
2TCd

� �

2ðep � lÞ; ð13:4:14Þ

where J is just AFM attractive interaction, /d ¼ ðcos pxd � cos pydÞ is an eigen-
function for dx2�y2 -pairing on the 2D square lattice, ep - l = -2t(cos pxd ? cos
pyd) - l is the uncorrelated quasiparticle spectrum in 2D.

As a result we get for d-wave pairing [34, 38]:

TCd � eFe
� p t

2Jn2
el : ð13:4:15Þ

Extrapolation of these results on J=t� ð1=2� 1=3Þ and nel * 0.85
(x * 0.15—optimal doping) yields the rough estimate TCd � eFe�5� 102 K for
eF� 104 which is quite reasonable for cuprates [34, 38].

13.5.7 d-Wave Pairing at Small Hole Densities
x 5 (1 2 nel) � 1

In the opposite case of small hole densities x = (1 - nel) � 1 the similar to
(13.4.14) equation for TC with the spin-polaronic spectrum e(p) was derived by
Plakida’s group [36, 37] using diagrammatic technique for the Hubbard operators
[103, 104]. In the weak-coupling BCS-case for TC \ EF(x) the critical temperature
in the paramagnetic region reads [36, 37]:

Td
C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WEFðxÞ
p

e�
1
k; ð13:4:16Þ
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where k * JN0(x) * 0.3 is a coupling constant, EF(x) is Fermi-energy, N0(x) is
an averaged density of states. TC is maximal at optimal doping x * xopt * 0.15,
where EF(xopt) * W/2 and where we effectively have a crossover from a small
hole-like Fermi-surface to a large electronic one.

In maximum again Td
C � 102 K. Note that Plakida et al., also considered gen-

eralized one-band 2D t-J model derived from multiband Hubbard model [105, 106]
(or two-band Emery model [115]) when we neglect the interband Hubbard
repulsion between d- and p-orbitals (Udp = 0). In this case the local constraint [see
(13.4.2)] is also not very important (as in the Kagan and Rice approach [34]) and
we can neglect also the kinematical interaction of Zaitsev et al. [107–109].

13.5.8 Possible Bosonic Region of the Phase-Diagram
of the 2D t-J Model in the Underdoped Case

In the extreme underdoped case very close to half-filling for x � xopt we have the
physics of pseudogap at TC B T B T* (see also Chap. 8) and a bosonic-type
Uemura plot for TC (TC(x) * x) [111]. If we assume the bosonic character of the
pseudogap (connected with SC-fluctuations of preformed pairs, and not with
AFM-fluctuations), then we could expect the formation of local pairs consisting of
two spin-polarons at some higher temperatures T� � ~Eb

�

�

�

� (their binding energy)
and BEC of local pairs at lower temperatures TC B EF(x) B T*. Note that in this
region of the phase-diagram we have small hole Fermi-surface with EF(x) * Jx
according to Lee et al. [52]. In this limiting case our philosophy, however, is more
close to the ideas of Laughlin et al. [15, 16] on spin-charge confinement than to the
philosophy of Anderson [2] and Lee [49–51] on spin-charge separation in the 2D
t-J model (see also Chen et al. [110] on spin-charge binding in the t-J model). Note
that there is a crucial difference between spin-charge binding and spin-charge
confinement. While in the first case we have spin-charge binding at low temper-
atures and spin-charge separation at high temperatures, in the second case we have
spin-charge confinement everytime (at arbitrary high temperatures). Let us stress
that Laughlin [15, 16] assumed the spin-charge confinement in the strongly
interacting Fermi-Bose mixture of spinons and holons at small hole density in
analogy with the confinement in quark-gluon plasma in QCD [42–48]. As we
already mentioned in the introduction to this Chapter, the spin-charge confinement
leads to the creation of composite holes [15, 16] (or spin-polarons [40, 41] or
strings [1, 31, 32]). The basic results here are connected with the ideas of
Bulaevskii, Nagaev, Khomskii [1] and Brinkman-Rice [31] on the formation
of AFM-string for a hole motion in 2D AFM-background of spins S = �.
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13.5.9 String-Like Solution for a Composite Hole

The illustration of the formation of the confinement potential (of the linear trace of
frustrated spins which accompany a hole motion in 2D AFM-background of spins
S = �) is presented on Fig. 13.30.

In a simple picture the W-function of a string is a solution of a Schrödinger

equation with linear potential VðrÞ ¼ zJS2

2 r for a spinon-holon interaction (z is the
number of nearest neighbors (z = 4) on the square lattice):

� �h2

2m
DWþ z JS2

2
rW ¼ E W; ð13:4:17Þ

where D corresponds to Laplace operator. The solution of this expression is given
by [1, 13, 31, 113] W * Ai(r) for Airy function. The effective radius of a string-
oscillator [1] does not depend upon dimensionality for D = 2 and 3 and yields:

r0�
t

z JS2

� �1=3

: ð13:4:18Þ

As a result the energy of a string:

E0� � z
ffiffiffiffiffiffiffiffiffiffiffi

z� 1
p þ z JS2

� 	2=3
t1=3; ð13:4:19Þ

where the bottom of the band also changes for a string motion [13].
An account of the quantum fluctuations connected with the term JðSþi S�j þ

S�i Sþj Þ in the 2D t-J model leads to the dispersion of composite hole with a
spectrum (see [13])

EhðqÞ ¼ E0 þ Jðcos qxd þ cos qydÞ2 ð13:4:20Þ

(here we neglect the difficulties connected with the so-called Trugman paths [83]
which could destroy a string after several traversing of elementary plaquette
assuming as usual that their statistical weight is small [13, 83]).

Fig. 13.30 Formation of the string for a motion of a hole in 2D AFM-background of spins
S = � on the square lattice (see [13])
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The Green-function of a composite hole has a simple one-pole structure of the
type (see Eq. (13.1.7) and also Lee et al. [49–52]):

Gðx;~qÞ� J=t

x� E0 � Jq2 þ lþ io
þ Gincohðx;~qÞ:

13.5.10 The Two-Particle Problem for Composite Holes.
Possibility of BCS-BEC Crossover in the d-Wave
Channel

Residual interaction of the two composite holes for a small hole concentration
x � 1 has a dipole–dipole character according to hydrodynamic approach of
Shraiman, Siggia [32]:

VðrÞ� k
r2
: ð13:4:21Þ

It was shown by Belinicher group [40, 41] that this interaction can lead to a
shallow bound state of the two composite holes (two spin-polarons) in the dx2�y2 -
wave channel. It is quite appealing to consider TC versus x dependence for strongly
underdoped high-TC superconductors as the BCS-BEC crossover for the pairing of
two composite holes (two spin-polarons) in the d-wave channel [30].

Note that if we solve the two-particle problem for composite holes (two string-
oscillators) interacting via dipole–dipole potential we will find according to Be-
linicher et al. [40, 41] the binding energy for dx2�y2 -pairing (counted from the
bottom of the band):

~Eb

�

�

�

�� 0:02 t� T�: ð13:4:22Þ

In the same time the BEC critical temperature for small hole concentration
reads:

TBEC
C � J x\T�; ð13:4:23Þ

where J * (0.3 7 0.5) t and effective mass of a pair m* * 1/(Jd2).
In the opposite limit of larger hole concentration, as we already mentioned, we

have BCS-type dx2�y2 -pairing described by Kagan, Rice [34] and Plakida [36, 37].
Concluding this Chapter, note once more that while spin-chains and three-leg

ladders are grossly described by the physics of spin-charge separation, the two-leg
ladders and possibly underdoped high-TC materials are more close to the ideas of
the physics of spin-charge confinement. In the same time strongly overdoped 2D
cuprates are well described by more standard Landau Fermi-liquid picture and
show the tendency towards superconductive instabilities for p-wave and dx2�y2 -
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wave pairing at small J/t-values as well as towards extended s-wave pairing and
total phase-separation at larger J/t-values and low electron densities.

The rough extrapolation of the low electron density results on optimal doping
yields for parameter values typical for cuprates J/t * (1/2 7 1/3) and nel * 0.85
the reasonable temperatures for d-wave pairing (TCd * 102 K).

The physics of the strongly underdoped t-J model could be possibly described
by the scenario of the BCS-BEC crossover for the pairing of two composite holes
(two spin-polarons or two AFM strings) in the dx2�y2 -wave channel.
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Part IV



Chapter 14
The Search for Non-Fermi Liquid
Behavior in the Normal State of Low
Density Fermion Systems

In this chapter we consider the normal state of the basic one-band and two-band
models (in particular Fermi-gas [1, 5–7] and Hubbard models [13]) in 3D and 2D
case at low electron densities. We will check these models with respect to Lutt-
inger [2, 3] or marginal Fermi-liquid behavior [4]. Note that both in marginal
Fermi-liquid (MFL) and Luttinger liquid (LL) there is no jump in the interacting
particles distribution function on the Fermi-surface (Z = 0). Moreover the
quasiparticles are strongly damped. In marginal Fermi-liquid, for example,
c� Ime� T for the imaginary part of the quasiparticle energy which defines their
lifetime c� 1=s. This behavior according to [4] can explain linear resistivity
R * T typical for optimally doped or slightly overdoped high-TC systems. We will
show that at low electron densities both in 3D and 2D cases there are non-trivial
corrections to the Galitskii-Bloom Fermi-gas expansions [5, 6], but globally
Landau Fermi-liquid picture [1, 7] is not destroyed at low temperatures both in
one-band and two-band models.

Note that some authors propose more drastic violations of the Fermi-liquid
picture (for instance Khodel, Shaginyan theory of the fermionic condensate [8] with
two jumps in the particle distribution function instead of one for the finite-range or
long-range potentials). We will not discuss these proposals in the present chapter,
concentrating only on short-range repulsive potentials in 3D and 2D systems.

14.1 The Search for Non-fermi Liquid Behavior in 2D
Systems at Low Density

It is well known that Fermi-liquid description [1, 7] is valid for 3D systems at low
densities of excitations. In the same time 1D systems are described by Luttinger
liquid [2, 3, 9] with vanishing Z-factor (Z = 0), and thus with the absence of a
quasiparticle peak in the spectral functions. In the 2D case common wisdom also
assumes the applicability of Landau Fermi-liquid description for low-density
systems. It is based on Galitskii-Bloom [5, 6] Fermi-gas expansion in terms of the
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Lecture Notes in Physics 874, DOI: 10.1007/978-94-007-6961-8_14,
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gas parameter which in the 2D case for the lattice models reads f0 ¼ 1
ln 1

nd2
, where

n is the density and d is the intersite distance (in the absence of the lattice
d ? r0—the range of the potential). Anderson in his papers [10–12] doubts the
validity of the Fermi-liquid description in 2D systems already at low electron
densities and assumes that, in analogy with 1D case, they are described by Lutt-
inger liquid with vanishing Z-factor (Z = 0). His doubts about the applicability of
the Galitskii-Bloom approach are connected with three main points:

1) The presence of the upper Hubbard band in 2D (and 3D) lattice models
already at low electron density [13–15], which according to Anderson should
strongly violate the Fermi-gas expansion in the 2D case [10–12, 15].

2) The singularity which according to Anderson arises in the Landau f-function
in a 2D repulsive Fermi-gas even in the absence of the lattice [16, 17], and which
violates Landau Fermi-liquid description of the observables (effective mass,

compressibility, spin susceptibility) in terms of Landau harmonics f ðs;aÞ0 , f ðs;aÞ1 and
so on [17].

3) The related problem of a finite phase-shift d0, which according to Anderson,
enters in the singular (‘‘forward-scattering’’) term in the quasiparticle-interaction
function. In similarity with the physics of the orthogonality catastrophe [18], the
finite phase-shift should lead to the Luttinger liquid behavior with Z = 0 in 2D
low-density systems.

In the forthcoming debate [10–12, 15–17, 19–24] it has become clear that both
the authors who agree with Anderson and those who disagree (who adhere to
Fermi-gas ideas) have some fairly strong arguments. The debate actually centers
on the choice of the correct state to serve as the basis for constructing the regular
procedure of successive approximations in the interactions (more precisely, in only
that part of the interactions which is ignored in the choice of the ground state).

We are among the supporters of the Fermi-liquid ideas. Using these ideas as a
framework, we attempt in this section to analyze the first two points of the debate
and show that there are non-trivial corrections to Galitskii-Bloom Fermi-gas
expansion due to the singularity in the 2D Landau f-function [17] or due to the
presence of the upper Hubbard band already at low densities [15, 22, 23], but
overall Fermi-liquid picture is not destroyed in the 2D case for the lattice models
and in the absence of a lattice.

Note that the third point of the debate, connected with the finite phase-shift, was
resolved by Prokof’ev and Stamp in favor of the Fermi-liquid picture in 2D in [16]. In
a detailed and transparently written review-article [16] it was shown that the relevant
phase-shift (which enters in the expression for the observables) should be averaged
in 2D low-density systems over an angle u, which is equivalent to the evaluation of
d0 with Pauli-restricted density of states. Than globally d0 = 0, restoring the Fermi-
liquid picture with non vanishing Z-factor Z = 0. We recommend to our readers the
review-article of Stamp [16] as a good basis for further thoughts on this interesting
topic. In the present chapter we will not detaily discuss it. We only mention that
effectively it is rather difficult to separate the evaluation of the averaged phase-shift
from the evaluation of Landau harmonics presented in the next subsection.
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14.1.1 Singularity in Landau f-function in 2D Low-Density
Fermion Systems

In this subsection we analyze in more details the second point of the debate,
concerning the existence of a singularity in the Landau quasiparticle interaction
function f ð~p;~p0Þ. This point has not previously received much attention and was
detaily considered first in [17]. We show that singularities which arise in the f-
function even in the second order of the perturbation theory lead to non-trivial
corrections to the Fermi liquid parameters, but they do not disrupt the overall
Fermi liquid picture.

According to the classical results of Landau‘s Fermi liquid theory [1, 7], the f-
function is given by the following expression in the second order of the pertur-
bation theory:

fþ�ð~p;~p0Þ ¼fs � fa ¼
o2E

onþð~pÞon�ð~p0Þ
¼ f0 �

4mf 2
0

ð2pÞ2
Z

d2~p1d2~p2hðp2
F � p2

1Þ
dð~pþ~p0 �~p1 �~p2Þ
p2 þ p02 � p2

1 � p2
2

ffi

þ 1
4

dð~pþ~p1 �~p0 �~p2Þ
p2 þ p2

1 � p02 � p2
2

þ 1
4

dð~p0 þ~p1 �~p�~p2Þ
p02 þ p2

1 � p2 � p2
2

�

;

ð14:1:1Þ

fþþð~p;~p0Þ ¼ fs þ fa ¼
o2E

onþð~pÞonþð~p0Þ

¼ � 2mf 2
0

ð2pÞ2
1
4

Z

d2~p1d2~p2hðp2
F � p2

1Þ
dð~pþ~p1 �~p0 �~p2Þ
p2 þ p2

1 � p02 � p2
2

þ dð~p0 þ~p1 �~p�~p2Þ
p02 þ p2

1 � p2 � p2
2

� �

;

ð14:1:2Þ

where h(x) is a step function and the 2D coupling constant f0 is given by [6]:

f0 ¼
mU0=4p

1þ mU0=4p ln 1
p2

Fr2
0

� � ; ð14:1:3Þ

which is a standard formula for the 2D case. Here pF is the Fermi momentum, and
U0 and r0 are the zeroth Fourier component and the range of the potential. For a
non-Born (strong) repulsive potential and low density f0 ¼ 1

2 lnð1=pFr0Þ.

The notation f++ and f+- refers to the spin. Usually f ð~p;~p0Þ is calculated on the
Fermi surface (p = p0 = pF). In 3D case it takes the familiar form found by
Abrikosov and Khalatnikov [1, 7, 52]. Taking a careful look at the expression for
f+- we see that it is of the following form:

fþ�ð~p;~p0Þ ¼ f0 þ f 2
0 K þ f 2

0 P; ð14:1:4Þ
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where

K ¼
Z

1� hðp2
F � p2

1Þ � hðp2
F � ð~pþ~p0 �~p1Þ2Þ

p2 þ p02 � p2
1 � ð~pþ~p1 �~p1Þ2

d2~p1

ð2pÞ2
; ð14:1:5Þ

is the expression for the Cooper loop for T ? 0 in 2D. In complete analogy with
the 3D case, this expression yields (for p = p0 = pF):

K ¼ m

4p
ln

4p2
F � k2

k2
; ð14:1:6Þ

where ~k ¼~pþ~p0 is the momentum of the center of mass.
Expression (14.1.5) contains a standard logarithmic singularity when the angle

between ~p and ~p0 is equal to p (and thus~k ¼ 0). This situation leads to a Cooper
pairing in the case of an attractive potential. That case is of no further interest for
our purposes here. In the present section we consider repulsive Fermi-gas at high
temperatures T [ TC (but T � eF, so we can effectively take a limit T ? 0 in
(14.1.1)–(14.1.5).

The third and fourth terms in f+- [see (14.1.1)] correspond to a diagram of an
exchange nature. For a short-range potential, this diagram is equivalent to a
polarization operator at a nonzero frequency:

Pð�X;~qÞ ¼
Z

h ðeF � epÞ � h ðeF � e~pþ~qÞ
ep � epþq � X

d2~p

ð2pÞ2
; ð14:1:7Þ

where the role of the frequency X is played by the energy difference between the
scattering particles. (p2 - p02)/2m and ~q ¼~p�~p0 is exactly equal to the
momentum transfer. If, as usual, we restrict the discussion to an evaluation of the f-
function on the Fermi surface, then we have p = p0 = pF and X = 0. According to
Yu. Kagan and Afanas’ev [25], the polarization operator in this case is:

Pð0;~qÞ ¼ m

2p
1� Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
F

q2

s

2

4

3

5: ð14:1:8Þ

For p = p0 = pF the transferred momentum~q ¼ ~p�~p0j j � 2pF and Pð0;~qÞ ¼ m
2p

does not contain any singularities.
The situation changes radically if we allow a deviation from the Fermi surface

in terms of the momenta~p and~p0. In this case, according to Stern et al. [36] and a
later discussion by Fukuyama et al. [22, 23], we have:

PðX;~qÞ ¼ m

2p
1þ sign

mXþ q2

2pFq

	 


pF

q
Re
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2

�1

s

� sign
mX� q2
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q
Re
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mX� q2

2pFq

	 
2

�1

s

2

4

3

5;

ð14:1:9Þ
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where X ¼ ~p2�ð~p0Þ2
2m and~q ¼~p�~p0. For~p and~p0 quasiparallel and close to each

other in absolute value X & vFq. But in 2D PðX;~qÞ has a narrow antiscreening
region with a minimum corresponding just to X ¼ vFq (see Fig. 14.1). The
magnitude in minimum is proportional to 1=

ffiffiffi

q
p

. The antiscreening region where
PðX;~qÞ\0 leads to the gapless charge-density excitations or plasmons in 2D.
Note that in 3D case P vFq; qð Þ� lnq—singularity is weaker than in 2D.

We introduce now small deviations from the Fermi surface, e ¼ p�pF

pF
and e0 ¼

p0�pF

pF
for the amplitudes of the vectors ~p and ~p0. If we also introduce the angle

between these vectors u ¼ \~p~p0 (see Fig. 14.2), we can reduce the polarization
operator for nearly parallel vectors near the Fermi surface (e, e0, u ? 0) to the
following form through a simple straightforward calculation:

2p
m

PðX;~qÞ � 1� signðe� e0Þ
ðe� e0Þ2 þ u2

Reu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eðe� e0Þ2 � u2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e0ðe� e0Þ2 � u2

q

� �

:

ð14:1:10Þ

It can be seen from this expression that, as we move upward from the Fermi
surface in terms of the magnitude of the momenta (e.g. e [ 0, e0 = 0), there exists
a small angular interval u * e3/2 near an almost parallel orientation of~p and~p0 in
which polarization operator and thus the Landau f-function acquire a square-root
singularity:

f ðe [ 0; e0 ¼ 0Þ � f 2
0
ffiffi

e
p for u \ e3=2: ð14:1:11Þ

If we remove away from the Fermi surface upward in terms of the magnitude of
both momenta (e[ 0, e0[ 0) the singularity in the f-function is of the form
f 2
0 =ð

ffiffi

e
p
þ

ffiffiffi

e0
p
Þ.

The singular part of the f-function in a 2D Fermi-gas was originally calculated
by Prokof’ev (see the review by Stamp [16]). It was later found independently by
Baranov, Kagan, Mar’enko [17]. In Anderson’s papers [10–12] it is assumed, by

Fig. 14.1 The frequency
dependence of polarization
operator P X; q!

� �

with an
antiscreening region in 2D
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analogy with the situation in 1D Fermi systems [2, 3, 9], that the f-function has a
more singular form:

fþ� � 1=q � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðe� e0Þ2 þ u2

q

for q ¼ ~p�~p0j j ! 0 ð14:1:12Þ

in our notations.
If the perturbation theory results would indeed confirm Anderson’s hypothesis,

this would mean a complete failure of Landau’s Fermi liquid theory in the 2D case,
since the Landau harmonics f0, f1,… would become logarithmically divergent. For
e = e0 = 0, we see that according to (14.1.12) f+- * 1/u for the f-function and,
for example,

f0 ¼
Z

f ðuÞdu �
Z

du
u
� ln u as u! 0: ð14:1:13Þ

Actually the singularity found in the second order perturbation theory (14.1.9),
(14.1.10) is far weaker fþ� � 1=

ffiffi

e
p

, not 1/e. In addition, it exists in a very narrow
angular interval u * e3/2.

Here we also see a distinction between the 2D and 1D cases, since the presence
of one more integration variable, u renders the divergences weaker. Note that a
more rigorous and sophisticated theory for the f-function and weak anomalies in it
was constructed later on by Chubukov, Maslov [26–28].

14.1.2 Temperature Corrections to the Thermodynamic
Variables in 2D Fermi-Gas

To find the temperature corrections to some thermodynamic properties—the
compressibility, susceptibility, and the effective mass—we use equations which
generalize the standard Fermi liquid expressions for these properties to the case in
which quasiparticles deviate from the Fermi surface. In this case we find for
effective mass m*, magnetic susceptibility v(T), and sound velocity squared c1

2(T):

Fig. 14.2 The angle u
between quasiparallel and
close in absolute value
momenta ~p and ~p0. The
deviations of~p and~p0 from pF

are measured in terms of e ¼
p�pF

pF
and e0 ¼ p0�pF

pF
[16, 17]
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m�
m
¼ 1þ m

2p

Z

fsðe; e0;uÞ cos /
on

oe
n0

oe0
de de0

du
2p
þ o

T2

e2
F

	 


;

vðTÞ ¼ v0
m�
m

1þ m

2p

Z

faðe; e0;uÞ
on

oe
on0

oe0
de de0

du
2p

	 
�1

þo
T2

e2
F

	 


;

c2
1ðTÞ ¼

N

m

ol
oN

	 


T

¼ v2
F

2
1þ m

2p

Z

fsðe; e0;uÞ
on

oe
on0

oe0
de de0

du
2p

	 


þ o
T2

e2
F

	 


;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð14:1:14�14:1:16Þ

After substitution of the singular part of the f-function into (14.1.14–14.1.16),
we find the following expression (the singular part contributes to only fs ¼ fþ� þfþþ

2

and not to fa ¼ fþþ� fþ�
2 ) according to (14.1.1) and (14.1.2) for m*, v(T), and c1

2(T):

m�ðTÞ � m�ð0Þ
m�ð0Þ � v ðTÞ � v ð0Þ

v ð0Þ � c2
1ðTÞ � c2

1ð0Þ
c2

1ð0Þ
� f 2

0
T

eF
: ð14:1:17Þ

Correspondingly, the corrections to the specific heat and the entropy are pro-
portional to f 2

0 T2=eF . The correction terms in the thermodynamic potential are
evidently of the order of DX� f 2

0 T3=e2
F in the 2D case. Note that the summation of

ladder diagrams does not strengthen the singularity. Corrections of the same type
to the specific heat were found in [29] through the analysis of the corrections to the
self-energy. The temperature dependence of these corrections are the same as the
standard paramagnon corrections *-T 2lnT in the 2D case.

On the other hand, the corrections to the susceptibility in (14.1.15), (14.1.17) are
much larger than the paramagnon corrections at low temperatures (we should stress,
however that there are no paramagnons at all in our case of a low density 2D Fermi
gas). Calculations of the susceptibility are notified by the experiments of Hallock’s
group and Saunders group [30–32] and also by the experiments of Godfrin’s group
[33]. These experiments are based on utilization of NMR-technique to measure the
temperature dependence of v in submonolayers of 3He on graphite and on the free
surface (on the surface Andreev’s levels) of a thin film of superfluid 4He. At low
temperatures, the corrections, which we have found, will determine the temperature
dependence of the susceptibility. So far, reliable experimental data correspond
mainly to intermediate and high temperatures (at which there is a transition from the
primarily Pauli susceptibility of degenerate Fermi gas to the Curie law).

As we have already mentioned, f ð~p;~p0Þ acquire a singular part because of a

singularity in the 2D polarization operator PðX;~qÞ for ~q ¼ ~p�~p0j j ! 0; X ¼
p2�p02

2m ! 0 and X=vFq! 1. In a sense, this singularity is an exchange analog of a
zero-sound mode (a collective mode in normal Fermi liquid) in a pole of the vertex
function. The solution of the Bethe–Salpeter equation in the zero-sound channel
(which is equivalent to the solution of a collisionless kinetic equation [34]) leads to
the following corrections to the velocity of the 2D zero-sound:
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c0ðTÞ � c0ð0Þ
c0ð0Þ

� f 2
0

T

eF
at

T

eF
\ f 2

0 : ð14:1:18Þ

Note that at T = 0, the 2D zero-sound velocity is c0ð0Þ � vFð1þ f 2
0 Þ. Attempts

of the parquet enhancement of the zero-sound singularity (involving mutual
insertions of polarization loops singular in terms of the variables~q ¼ ~p�~p0j j ! 0
and t ¼ ~pþ~p0j j � 2pF ! 0) do not result in an amplification of the anomaly.

In summary of this subsection, it can be concluded that the singularity we have
found does not lead to a total collapse of the Fermi liquid picture in the 2D Fermi
gas in contrast with the assumption of Anderson [10–12]. It leads only to nontrivial
temperature corrections to Landau harmonics and thus to the thermodynamic
properties of the low-density 2D systems.

14.2 Antibound State on the Lattice: Manifestation
of the Upper Hubbard Band at Low Density

In this section we will consider the first point of Anderson’s doubts [10–12]
connected with an existence of the antibound state in 2D and 3D models (such as
Hubbard model) on the lattice. We will show that an antibound state leads to a

two-pole structure of the dressed one-particle Green-function Gðx;~kÞ in the self-
consistent T-matrix approximation [15]. Moreover the second pole in the Green-
function will correspond to the manifestation of the upper Hubbard band already at
low density. However again we will get only non-trivial corrections to the
Galitskii-Bloom Fermi-gas expansions [5, 6] in 3D and 2D case, but globally
Landau Fermi-liquid picture will not be completely destroyed in 3D and 2D low
density models on the lattice. Note that at low electron density (ndD � 1—
practically empty band) and in the strong-coupling case U 	 W the effective
vacuum interaction in the 3D and 2D Hubbard model [13, 14] can be described by
the Kanamori T-matrix approximation. We will now mostly concentrate on a 2D
case. In the low energy sector e B eF and in the framework of this description the
2D Hubbard model (as we discussed in Chap. 9) becomes equivalent to a 2D
Fermi-gas model with quadratic spectrum and short-range repulsion [15, 22, 23].
Thus it can be characterized by the 2D gas-parameter of Bloom [6]:

ep � l ¼ p2

2m
� eF ð14:2:1Þ

where n = pF
2/2p is the electron density in 2D (for both spin projections, taking

into account that nr = n-r = n/2 in the unpolarized case), pF is the Fermi-
momentum, d is the intersite distance. Accordingly many properties of the 2D
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Hubbard model at low electron density, and in particular the quasiparticle damping
near the Fermi-surface:

c � ImRðep;~pÞ � f 2
0
ðep � lÞ2

e2
F

ln
eF

ep � l

























; ð14:2:2Þ

(where ImR is an imaginary part of the self-energy) have Landau Fermi-liquid
character (amended with the specific 2D logarithm [22, 23, 53]). In (14.2.2)

ep � l � p2

2m� eF is a quasiparticle spectrum in the low energy sector e B eF and f0
is given by (14.2.1). Correspondingly, the averaging of ImRðep;~pÞ with fermionic
distribution function nFðep=TÞ produces the familiar result
cðTÞ � ImRðTÞ � T2 ln T in 2D. Accordingly the Z-factor (the quasiparticle

residue) Z � 1� oReR
ox

� ��1
is non vanishing for x ? 0. However, as it first

mentioned by Hubbard [13, 14] and Anderson [10–12], for U 	 W the presence of
a band of a finite width in the lattice problem produces at high energies an
additional pole in the two-particle T-matrix, well separated from all other poles
with the energy (see Fig. 14.3):

e � U [ 0: ð14:2:3Þ

This pole is usually called the antibound state (the T-matrix on Fig. 14.3 has
one more non-trivial pole first found by Engelbrecht and Randeria [19–21], which
we will briefly analyze in the end of this section). Already in the first iteration of
the self-consistent T-matrix approximation the pole connected with an antibound
state yields a non-trivial contribution to the self-energy Rðe;~pÞ. As a result the
dressed one-particle Green-function acquires a two pole structure, very similar to
the Hubbard-I approximation [13, 14].

Fig. 14.3 The pole structure of the T-matrix in the 2D repulsive Hubbard model at low density.
There are two poles of the T-matrix for the lattice problem—the antibound state of Hubbard-
Anderson (x1) which lies above the upper edge of the band and Engelbrecht-Randeria mode (x2)
which lies below the bottom of the band [10–15, 19–21]
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14.2.1 The Theoretical Model

We again (as in the Chap. 9) consider the simplest 2D Hubbard model on the
square lattice [15]:

Ĥ0 ¼ Ĥ � lN̂ ¼ �t
X

\i j [ r

cþircjr þ U
X

i

ni"ni# � l
X

ir

nir; ð14:2:4Þ

where nir ¼ cþircir is the density operator of electrons on site i with spin-projection
r, U is Hubbard repulsion, t—is hopping integral, l is chemical potential. The
bandwidth W = 8t on the square lattice. After Fourier transformation we get:

Ĥ0 ¼
X

~pr

ep � l
ffl �

cþprcpr þ U
X

~p~p0~q

cþ~p"c
þ
~p0#c~p�~q#c~p0þ~q"; ð14:2:5Þ

where ep � l ¼ �2t cos pxd þ cos pyd
� �

� l is the quasiparticle spectrum of the
uncorrelated problem. For low electron density pFd � 1 we can often use the
quadratic approximation for the spectrum:

ep � l � p2 � p2
F

2m
; ð14:2:6Þ

where m ¼ 1
2td2 is the band mass, l � �W

2 þ eF is the chemical potential and

ep ¼ �2t cos pxd þ cos pyd
� �

� �W
2 þ tp2d2 ¼ �W

2 þ
p2

2m. We will mostly consider
the physically more transparent strong-coupling case U 	 W at low electron
density nd2 � 1.

14.2.2 T-Matrix Approximation

We start with the standard definition of the T-matrix in 2D [5, 6] in the singlet
channel:

Tðx;~qÞ ¼ Ud2

1� Ud2
R d2~p
ð2pÞ2

1�nFrðep�lÞ�nF�rðeq�p�lÞ
ðx�ep�eq�pþ2lþioÞ

: ð14:2:7Þ

The poles of the T-matrix are governed by the condition:

1 ¼ Ud2
Z

d2~p

ð2pÞ2
1� nFrðep � lÞ � nF�rðeq�p � lÞ
ðx� ep � eq�p þ 2lþ ioÞ : ð14:2:8Þ
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For the antibound state for which x * U we can expand (14.2.8) and get (see
also [15, 35]):

1 � Ud2
Z

d2~p

ð2pÞ2
1� nFrðep � lÞ � nF�rðeq�p � lÞ

xþ 2l
1þ ep þ ep�q � 2l

xþ 2l

� �

;

ð14:2:9Þ

where ep-q = eq-p and it is convenient to leave x + 2l in denominator.
Equivalently we can write (introducing ~x ¼ xþ 2l):

1 �Ud2

~x

Z

d2~p

ð2pÞ2
1� nFrðep � lÞ � nF�rðep�q � lÞ
ffl �

þ Ud2

~x2

Z

d2~p

ð2pÞ2
1� nFrðep � lÞ � nF�rðep�q � lÞ
ffl �

ðep þ ep�qÞ
ð14:2:10Þ

and we use that
R d2~p
ð2pÞ2 ðep þ ep�qÞ ¼ 0 when we integrate over the Brillouin zone.

Thus:

1 �U
~x
ð1� nd2Þ � Ud2

~x2

Z

d2~p

ð2pÞ2
nFrðep � lÞ þ nF�rðep�q � lÞ
ffl �

ðep þ ep�qÞ;

ð14:2:11Þ

where we used that in unpolarized case nr = n-r = n/2

¼
R d2~p
ð2pÞ2 nFrðep � lÞ ¼

R d2~p
ð2pÞ2 nF�rðep�q � lÞ:

Note that

1 ¼ d2
Z

BZ

d2~p

ð2pÞ2
¼ d2

Z

p=d

�p=d

dpx

2p

Z

p=d

�p=d

dpy

2p
ð14:2:12Þ

for the integration over the Brillouin zone. Hence:

1 ¼ U
~x
ð1� nd2Þ � Ud2

~x2

Z

d2~p

ð2pÞ2
nFrðep � lÞ þ nF�rðep�q � lÞ
ffl �

ðep þ ep�qÞ:

ð14:2:13Þ

In the second term of the r.h.s of (14.2.13) the integration is restricted by Fermi-

factors, and hence we can use quadratic approximation for the spectrum ep �
�W

2 þ
p2

2m and correspondingly for np ¼ ep � l ¼ p2

2m� eF . Then for the second term
we get:
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� Ud2

~x2
N2Dð0Þ 2

Z

0

�eF

npdnp þ
Z

0

�eF

dnp

Z

p

0

du
p

p2 þ q2 � 2pq cos u
2m

� eF

	 


2

4

þ
Z

0

�eF

dnp

Z

p

0

du
p

p2 þ q2 þ 2pq cos u
u

u� eF

	 


3

5� Ud2

~x2
2ln;

ð14:2:14Þ

where N2D(0) = m/2p is the 2D density of states for the quadratic spectrum. After
simple calculations (14.2.14) can be represented by:

�Ud2

~x2
N2Dð0Þ 4

Z

0

�eF

npdnp þ 2
Z

0

�eF

q2

2m
dnp

2

4

3

5� Ud2

~x2
2ln: ð14:2:15Þ

Thus the second term in r.h.s of (14.2.13) finally reads:

Ud2

~x2
N2Dð0Þ2eF eF �

q2

2m

	 


� Ud2

~x2
2ln; ð14:2:16Þ

where we used that
R

nF�rðep�q � lÞðep � lÞ d2~p
ð2pÞ2 ¼

R

nF�rðep � lÞðepþq � lÞ d2~p
ð2pÞ2. Hence the Eq.

(14.2.13) for the antibound state yields:

1 � U
~x
ð1� nd2Þ � Ud2

~x2

meF

p
q2

2m
� eF

� �

� Ud2

~x2
2ln: ð14:2:17Þ

Accordingly for the antibound state (using that meF
p ¼

p2
F

2p ¼ n):

~xab � Uð1� nd2Þ � 2lnd2

ð1� nd2Þ þ
nd2

ð1� nd2Þ eF �
q2

2m

	 


¼ Uð1� nd2Þ þ nd2

ð1� nd2Þ ðeF � 2lÞ � nd2

1� nd2

q2

2m
:

ð14:2:18Þ

Hence xab ¼ �2lþ Uð1� nd2Þ þ nd2

1�nd2ðeF � 2lÞ � nd2

ð1�nd2Þ
q2

2m :
In analogy with attractive-U Hubbard model (see [37–39] and Chap. 9) we can

introduce ‘‘bosonic’’ chemical potential:

lB ¼ 2l� Ebj j � 2eF � ~Eb











; ð14:2:19Þ

where j ~Ebj ¼ W þ Ebj j is counted again from the bottom of the band. In
(14.2.19):

Ebj j ¼ Uð1� nd2Þ þ nd2

ð1� nd2Þ ðeF � 2lÞ � Uð1� nd2Þ þ nd2W ð14:2:20Þ
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is a ‘‘binding’’ energy of an antibound pair. In the same time—(q2/4m*) in
(14.2.18) stands for the spectrum of the antibound pair. The effective mass of the
antibound pair reads:

m� ¼ m
1� nd2

2nd2
	 m for nd2 � 1: ð14:2:21Þ

Then we can represent xab for the antibound state as:

xab ¼ Ebj j � 2l� q2

4m�
¼ � q2

4m�
� lB; ð14:2:22Þ

which is quite nice. The spectrum (14.2.22) closely resembles the pole of the
attractive-U Hubbard model for ~Eb











[ eF in [37–39]. The important difference is,
however, in the relative sign between 2l and jEbj. In the attractive-U Hubbard
model lB = 2l ? jEbj and the real pairs are created below the bottom of the band.
Thus l & -jEbj/2 and lB ? 0 at low temperatures. In the repulsive-U Hubbard
model for low electron density nd2 � 1: l & -W/2 ? eF for low temperatures—
lies inside the band, and lB � � ~Eb











� � U for U 	 W : Only in the case of half-
filled band nd2 = 1 (one electron per site) the chemical potential l & U/2
‘‘jumps’’ in the middle of the Mott–Hubbard gap DMH = U. This situation
resembles that for the semiconductors: the chemical potential for nd2 = 1 lies in
the middle of the forbidden band. Another important difference is connected with
the hole-like dispersion in (14.2.21) that is with the sigh minus in front of q2/4m*.
The T-matrix close to the pole reads [15]:

Tðx;~qÞ ¼ Ux

xþ q2

4m� þ lB þ io
� � : ð14:2:23Þ

14.2.3 Imaginary Part of the Self-Energy

In the first iteration to the self-consistent T-matrix approximation [15, 40–42] the

imaginary part of the self-energy ImRðx;~kÞ reads:

ImRðx;~kÞ ¼
Z

d2~p

ð2pÞ2
ImTðxþ ep � l;~pþ~kÞ nFðep � lÞ þ nBðep � lþ xÞ

ffl �

¼ p
Z

d2~p

ð2pÞ2
U xþ ep � l
� �

dðxþ ep � lþ lB þ
ð~pþ~kÞ2

4m�
Þ nFðep � lÞ þ nB �

ð~pþ~kÞ2

4m�
� lB

 !" #

;

ð14:2:24Þ

where nFðep � lÞis a fermionic distribution function (for one spin projection),

nB � ð~pþ
~kÞ2

4m� � lB

� �

is a bosonic distribution function. Having in mind that

lB = 2l - jEbj * -U we get for U 	 T [15]:
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nB �
ð~pþ~kÞ2

4m�
� lB

 !

¼ 1

exp � ð~pþ~kÞ
2

4m�T

� �

exp � lB
T

� �

� 1
! 0: ð14:2:25Þ

Thus:

ImRðx;~kÞ ¼ pU

Z

d2~p

ð2pÞ2
�ð~pþ

~kÞ2

4m�
� lB

" #

d xþ ep � lþ lB þ
ð~pþ~kÞ2

4m�

 !

ffi nFðep � lÞ :

ð14:2:26Þ

Here again we have the important difference with attractive-U Hubbard model
where at low temperatures T ? 0: 2nB = n, while nF = 0. In repulsive-U Hub-
bard model we have vice versa situation: nB = 0 and nF-r = nFr = n/2 for T ? 0.

Having in mind that m*/m 	 1 for nd2 � 1 we can neglect ð~pþ~kÞ2=4m� in
(14.2.26). Thus we get [15]:

ImRðx;~kÞ ¼ �pN2Dð0ÞUlB

Z

0

�eF

dnpd xþ np þ lB

� �

¼ �pN2Dð0ÞUlB hðxþ lBÞ � hðxþ lB � eFÞ½ �; ð14:2:27Þ

where we again used notation np ¼ ep � l.

14.2.4 Real Part of the Self-Energy

Correspondingly the real part of the self-energy ReRðx;~kÞ yields (see [15, 40–42]):

ReRðx;~kÞ ¼
Z

d2~p

ð2pÞ2
ReTðxþ ep � l;~pþ~kÞ nFðep � lÞ þ nBðxþ ep � lÞ

ffl �

;

ð14:2:28Þ

and again neglecting nB(x+ep-l) for low temperatures U 	 T we get:

ReRðx;~kÞ ¼ UN2Dð0Þ
Z

nFðnpÞdnp
xþ np

xþ np þ lB þ
ð~pþ~kÞ2

4m�

: ð14:2:29Þ

For m*/m 	 1: ð~pþ~kÞ2=4m� is small again and thus:

ReRðx;~kÞ ¼ UN2Dð0Þ
Z

0

�eF

dnp
xþ np

xþ np þ lB

¼ UN2Dð0Þ eF � lB ln
xþ lBj j

xþ lB � eFj j

� �

: ð14:2:30Þ
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Assuming that jx ? lBj[ eF and expanding the logarithm in the second term
of (14.2.30) we get:

ReRðx;~kÞ ¼ UN2Dð0Þ
eFx

xþ lB
¼ U

nd2

2
x

xþ lB
: ð14:2:31Þ

Thus the pole of the dressed one-particle Green-function [7, 15] G�1ðx;~kÞ ¼
G�1

0 ðx;~kÞ � Rðx;~kÞ reads:

x� ek þ l� U
nd2

2
x

xþ lB
¼ 0: ð14:2:32Þ

Correspondingly:

x2 þ lB � ek þ l� U
nd2

2

	 


x� ðek � lÞlB ¼ 0; ð14:2:33Þ

and again introducing nk ¼ ek � l we get:

xþ
lB � nk � U nd2

2

2

 !2

�
lB � nk � U nd2

2

2

 !2

�nklB ¼ 0: ð14:2:34Þ

As a result:

x1;2 ¼ �
lB � nk � U nd2

2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lB � nk � U nd2

2

2

 !2

þnklB

v

u

u

t : ð14:2:35Þ

Having in mind that lB * -U we can expand the square root in (14.2.35).
Then:

x1;2 ¼ �
lB � nk � U nd2

2

2
�

lB � nk � U nd2

2

2































þ nklB

lB � nk � U nd2

2













 !

: ð14:2:36Þ

We know that lB\ 0 and lBj j 	 fnk;Und2=2g. That is why:

lB � nk � U nd2

2

2































¼ �
lB � nk � U nd2

2

2
; ð14:2:37Þ

and hence:

x1;2 ¼ �
lB � nk � U nd2

2

2
�

lB � nk � U nd2

2

2
þ nklB

lB � nk � U nd2

2

 !

: ð14:2:38Þ
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Finally:

x1 ¼ � lB � nk � U nd2

2

� �

� nklB

lB�nk�Und2
2

x2 ¼ nklB

lB�nk�Und2
2

:

8

<

:

; ð14:2:39Þ

14.2.5 The Dressed Green-Function. Comparison
with Hubbard-I Approximation

Now we are ready to calculate the dressed Green-function Gðx;~kÞ. It reads:

Gðx;~kÞ ¼ xþ lB

ðx� x1Þðx� x2Þ
¼ xþ lB

ðx1 � x2Þ
1

ðx� x1Þ
� 1
ðx� x2Þ

� �

¼ x1 þ lB

ðx1 � x2Þ
1

ðx� x1Þ
� x2 þ lB

ðx1 � x2Þ
1

ðx� x2Þ
:

ð14:2:40Þ

Let us check the poles structure:

x� x1 ¼ xþ lB � nk � U nd2

2

� �

þ nklB

lB�nk�Und2
2

;

x� x2 ¼ x� nklB

lB�nk�Und2
2

:

8

<

:

ð14:2:41Þ

But lB = 2l - jEbj & -jEbj & -U (1 - nd2), and

lB �
Und2

2
� �U 1� nd2

2

	 


ð14:2:42Þ

Of course lB � Und2

2


















	 nk. Hence:

x� x1 ¼ x� nk � U 1� nd2

2

� �

þ nkð1�nd2Þ
1�nd2

2

� x� U 1� nd2

2

� �

� nd2

2 nk;

x� x2 ¼ x� nkð1�nd2Þ
1�nd2

2

� x� nk 1� nd2

2

� �

:

8

>

<

>

:

ð14:2:43Þ

Correspondingly, the first term in (14.2.40) yields:

x1 þ lB

ðx1 � x2Þ
1

ðx� x1Þ
¼ 1
ðx� x1Þ

ð1� nd2=2Þ � ð1� nd2Þ
ð1� nd2=2Þ � nd2

2ðx� x1Þ
:

ð14:2:44Þ
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The second term in (14.2.40) reads:

x2 þ lB

ðx1 � x2Þ
1

ðx� x2Þ
¼ � 1
ðx� x2Þ

ð1� nd2Þ
ð1� nd2=2Þ � �

1
ðx� x2Þ

1� nd2

2

	 


:

ð14:2:45Þ

Thus for the dressed Green-function we have:

Gðx;~kÞ ¼ nd2=2

x� U 1� nd2

2

� �

� nd2

2 ðek � lÞ
þ 1� nd2=2

x� ðek � lÞ 1� nd2

2

� � : ð14:2:46Þ

This result is very elegant one since via a simple calculation we completely
recover the Hubbard-I approximation [13, 43]. The first pole in (14.2.46) corre-
sponds to the upper Hubbard band (UHB). Thus ZUHB = nd2/2. The second pole
corresponds to the lower Hubbard band (LHB) with the Z-factor ZLHB = 1 - nd2/2.

Of course, ZUHB ? ZLHB = 1. We can rewrite Gðx;~kÞ as:

Gðx;~kÞ ¼ ZLHB

x� ðek � lÞZLHB þ io
þ ZUHB

x� U 1� nd2

2

� �

� ZUHBðek � lÞ þ io
:

ð14:2:47Þ

14.2.6 Hartree–Fock Contribution to the Thermodynamic
Potential

Note that the second iteration to the self-consistent T-matrix approximation does
not change the gross features of (14.2.47). Thus the antibound state yields non-
trivial corrections to Landau Fermi-liquid picture already at low electron density,
but does not destroy it in 2D. The simplest Hartree–Fock contribution to the
thermodynamic potential X from the upper Hubbard band (see Fig. 14.4) yields:

DX ¼
Z Z

Rðx;~pÞG0ðx;~pÞ
d2~p

ð2pÞ2
dx
2p

ð14:2:48Þ

Fig. 14.4 The simplest
Hartree–Fock contribution to
the thermodynamic potential
X from the upper Hubbard
band
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with G0ðx;~kÞ ¼ 1
x�ekþlþio; and Rðx;~kÞ given by (14.2.31). Thus

DX * ZUHBn eF * n3 [ 0 [15].

14.2.7 Engelbrecht–Randeria Mode

For the sake of completeness let us discuss as well the Engelbrecht–Randeria mode
[19–21] which we briefly mentioned in the beginning of this section (see
Fig. 14.4). It also corresponds to the pole of the T-matrix for U 	 W and
nd2 � 1. According to [19–21] it has a spectrum for q \ 2pF:

xER � xq � exp � 1
f0

ffi �

x2
q

2eF
; ð14:2:49Þ

where xq ¼ q2

4m� 2eF and exp � 1
f0

n o

¼ nd2 in agreement with (14.2.1). Note that
for q = 0:

xER ¼ �2eF � 2eFnd2 \ 0: ð14:2:50Þ

Note also that while antibound state exists both in 2D and 3D physics, the
Engelbrecht-Randeria mode is specific for the 2D Hubbard model and it has a
collective character. The collective character of Engelbrecht-Randeria mode is
connected with the fact that in the absence of the fermionic background (for
eF = 0) xER = 0 in (14.2.50). Moreover xER \ -2eF. Hence this mode lies
below the bottom of the band (see Fig. 14.4). Recall that the antibound state lies
above the upper edge of the band on Fig. 14.4. In terms of ‘‘bosonic’’ chemical
potential lB:

xER �
q2

4m
� lB; ð14:2:51Þ

where lB = 2l ? jEbj, fermionic chemical potential l & -W/2 ? eF and the
binding energy for Engelbrecht-Randeria mode jEbj & W ? 2eF nd2.

14.2.8 Discussion: The Possible Bridge Between Fermi-Gas
and Gutzwiler Type of Expansions for Partially Filled
Bands

In this section we considered the excitation spectrum of the repulsive-U Hubbard
model at low electron density, where a small parameter (gas parameter) allows a
controlled diagrammatic expansion. On the level of the first iteration to the self-
consistent T-matrix approximation we found the contribution of the T-matrix pole
corresponding to the antibound state to the self-energy R. As a result we got a two
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pole structure of the dressed one-particle Green-function which closely resembles
the Hubbard-I approximation.

It would be interesting to find the possible contribution of the upper Hubbard
band to the ground-state energy and compressibility and to build the bridge
between the Galitskii-Bloom [5, 6] Fermi-gas expansions for the ground-state
energy (or compressibility) and the Gutzwiler type of expansion [44–46] for
partially filled band when the electron density is increased.

For the sake of completeness we also analyzed the Engelbrecht-Randeria mode
which corresponds to the pairing of two holes below the bottom of the band.
According to [19–21] this mode, when keeping the full q-dependence for

0 B q B 2pF, gives nonanalytic corrections � xj j5=2 to the imaginary part of the
self-energy ImR(x) in 2D. It also contributes to the thermodynamics at T = 0 in
the same order in density as the contribution of the antibound state
DX *eFnnd2 * n3 [ 0 amounting to an increase of the thermodynamic potential
X [19–21]. Thus the Engelbrecht-Randeria mode as well as the Hubbard-Anderson
mode corresponding to the antibound state yield interesting corrections to the
Landau Fermi-liquid picture in 2D already at low electron density, but do not
destroy it in contrast to the 1D case, where we have the Luttinger liquid state
[2, 3, 9] and a vanishing Z-factor (quasiparticle residue) Z ? 0 for x ? 0.

14.3 The Search for Marginal Fermi Liquid Behavior
in the Two-Band Models

In this section we will search for marginal Fermi liquid behavior in the two-band
mixed valence systems. We will analyze inverse scattering times c = 1/s in
different temperature regimes, as well as anomalous resistivity characteristics and
weak-localization effects [40–42, 47, 48] in the homogeneous state of the
two-band Hubbard model with one narrow band. This model can adequately
describe uranium-based heavy-fermion compounds and possibly CMR-systems
(manganites for example) in optimally doped regime (phase-separated low-doped
manganites will be considered detaily in Chaps. 15 and 16). We will show that
resistivity characteristics in 3D case of this model are typical for many uranium-
based heavy-fermion compounds (such as e.g. UNi2Al3).

Resistivity characteristics in the 2D case are typical for many optimally doped
layered manganites in the homogeneous state.

At low temperatures T \ Wh* (Wh* is an effective width of the heavy band)
Landau Fermi-liquid description is valid both for c(T) and resistivity R(T), how-
ever there are interesting temperature dependences of R(T) for higher temperatures
T [ Wh* in 3D and 2D systems, when the heavy component is marginal.
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14.3.1 Resistivity in the Two-Band Model
with One Narrow Band

In Chap. 10 we discussed electron-polaron effect and enhanced Kohn-Luttinger
mechanism of SC in the two-band model with one narrow band. In this section on
the basis of the same formalism (namely self-consistent T-matrix approximation
for the self-energies of heavy and light bands) we will discuss anomalous resis-
tivity characteristics which appear in the homogeneous state of the two-band
systems especially in high-temperature regime T [ Wh* of a destroyed heavy band
and in the 2D case [40–42, 49]. We remind that we consider a clean case (no real
impurities in the system) and only the processes of electron–electron scattering.
Nevertheless we will show that in the regime of a destroyed heavy band the heavy
particles are moving diffusively in the surrounding of light particles, and thus the
heavy component becomes marginal. In the same time light electrons scatter on the
heavy ones in this regime as if on almost immobile static impurities. The resistivity
in 3D systems goes on saturation at high temperatures as in the case of uranium-
based HF compounds like UNi2Al3. In the 2D case we should take into account
weak localization corrections of Altshuler-Aronov type [40–42, 48, 49] to classical
(Drude) results for conductivity of a light band at high temperatures already in the
clean case (when real impurities are absent). We will show that these corrections
lead to the additional localization of the light band [40–42, 49, 54]. Moreover at
high temperatures T C Wh* the additional localization of the light band and the
additional narrowing of the heavy band (due to Electron-polaron effect) are gov-
erned by the same parameter f 2

0 ln mh
mL

[ 1 (considered in Chap. 10 for the Z-factor

of heavy particles). As a result the resistivity in 2D will have a maximum and then
the localization tail at higher temperatures. Such resistivity characteristics are
typical for layered CMR materials in the regime of optimal doping as well as for
some layered intermetallic alloys (like Gd5Ge4 [51]).

14.3.2 Evaluation of the Self-Energies at Low Temperatures
in the Two-Band Model

We start with the evaluation of the inverse scattering times c = 1/s via imaginary
parts of the self-energies of heavy and light particles calculated in (10.3.25) of
Chap. 10. In the homogeneous case we should average the second order contri-

butions to the self-energies Rð2ÞðeðqÞ � l;~qÞ in (10.3.25, 10.3.26) with the fer-

mionic distribution function nF
eðqÞ�l

T

� �

. We obtain than the following expressions

for the imaginary parts ImRð2ÞðTÞ of heavy and light electrons at low temperatures
T \ Wh and for equal densities nh = nL in the heavy and light bands in 3D:
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ImRð2ÞLL ðTÞ ¼ k2 T2

eFL
;

ImRð2ÞLh ðTÞ ¼ k2 T2

eFh

mh

mL
;

ð14:3:1Þ

and correspondingly

ImRð2Þhh ðTÞ ¼ k2 T2

eFh
;

ImRð2ÞhL ðTÞ ¼ k2 T2

eFh
:

ð14:3:2Þ

In the 2D case we get exactly the same results with the change of k2 on f0
2,

where k ¼ 2pFd
p and f0 ¼ 1

2 ln 1
pF d

are 3D and 2D gas-parameters of Galitskii and

Bloom (in a more rigorous consideration the inverse scattering times contain
specific 2D logarithms c = 1/s * ImR(2)(T) * T 2lnT [22, 23]). We will ignore
them for our rough estimates. From (14.3.1) and (14.3.2) we can see that all
imaginary parts of the self-energies ImR(2)(T) and thus all the inverse scattering

times c ¼ 1=s ¼ Im
Pð2ÞðTÞ behave in a standard Landau Fermi-liquid fashion

c * T 2 for low temperatures T \ Wh. Moreover, ImRð2ÞLh ðTÞ 	 ImRð2ÞLL and hence

ImRð2ÞL ðTÞ ¼ ImRð2ÞLh ðTÞ þ ImRð2ÞLL ðTÞ � ImRð2ÞLh ðTÞ: ð14:3:3Þ

14.3.3 Classical (Drude) Results for Resistivity at Low
Temperatures

We can now estimate the Drude conductivity [34, 40–42] for the light band:

rL ¼
nLe2sL

mL
;

where a naive estimate for sL yields:

cL ¼ 1=sL ¼ ImRð2ÞL ðTÞ � ImRð2ÞLh ðTÞ: ð14:3:4Þ

Thus 1/sL & 1/sLh. Correspondingly we obtain for the conductivity of light
electrons in the 3D case:

rL � rLh ¼
nLe2sLh

mL
¼ nLe2

k2T2

eFhmL

mhmL
¼ nLe2

k2p2
Fh

eFh

T

� �2
: ð14:3:5Þ
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In 2D we should replace again k2 by f0
2 in (14.3.5). Introducing the minimal

Mott-Regel conductivities [34, 40–42, 47, 48, 55, 56]:

rmin ¼
e2

�h

	 


pF in 3D;

and rmin ¼
e2

�h
in 2D

ð14:3:6Þ

and working in the units where �h = 1, in the case of equal densities of heavy and
light bands nh = nL we obtain in 3D:

rL � rLh ¼
rmin

k2

eFh

T

� �2
: ð14:3:7Þ

In 2D we replace k2 on f0
2 in (14.3.7).

14.3.4 The Role of Umklapp Processes

We note that, strictly speaking, the nondiagonal conductivity rLh (which is defined
by the scattering of light electrons on the heavy ones) is finite only due to an
account of Umklapp processes [34, 40–42, 50]:

~p1L þ~p2h ¼~p3L þ~p4h þ ~K; ð14:3:8Þ

where K * p/d is the wave-vector of the reciprocal lattice. We would like to
remind that due to Umklapp processes the momentum is transferred from electron
subsystem to the lattice thus forming the finite conductivity [34, 40–42, 50].
Returning back to (14.3.8) note that for pFh * pFL the Umklapp processes are
effective for not very small densities in the heavy and light bands (otherwise the
conductivity rLh would be exponentially small). Hence, within the accuracy of our
estimates:

rLh ¼
rmin

k2

Wh

T

	 
2

; ð14:3:9Þ

where we replace eFh in (14.3.7) by Wh. The situation with the conductivity of the
heavy band is slightly more tricky since ImRhh

(2)(T) * ImRhL
(2)(T) and hence

rhh * rhL. However, for a crude estimate, we can again consider only the non-
diagonal part of the conductivity rhL and take Umklapp processes (14.3.8) into
account. Then:

rhL� rLh ¼
rmin

k2

Wh

T

	 
2

ð14:3:10Þ
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in the 3D case. We note that the estimates (14.3.9, 14.3.10) can be verified by the
exact solution of coupled kinetic equations for heavy and light particles with an
account of Umklapp processes [54].

The total resistivity in 3D is given by:

R ¼ 1
rh þ rL

� k2

rmin

T

Wh

	 
2

: ð14:3:11Þ

(In 2D k2 is replaced by f0
2 in (14.3.10) and (14.3.11)). It behaves in Landau

Fermi-liquid manner R(T) * T 2 for low temperatures T \ Wh. In case of large
heavy-mass enhancement mh* 	 mh we can replace Wh by Wh* in (14.3.10) and
(14.3.11).

14.3.5 The Regime of a Destroyed Heavy Band at High
Temperatures T > Wh*

For higher temperatures T [ Wh* the heavy band is totally destroyed (more
precisely it is destroyed for k2T = Wh* in 3D and f0

2T = Wh* in 2D as we will see
shortly). To be accurate we first calculate the effective chemical potential
lh

eff = l ? Wh/2 ? e0 (introduced in Chap. 10) in this situation.

14.3.5.1 The Chemical Potential at Higher Temperatures T > Wh*

Generally speaking, nh ? nL = ntot = const, i.e. only the total density is con-
served. In our case, however, for large difference between the bare masses
mh 	 mL each density of the band is conserved practically independently
nh & const and nL & const. For heavy particles all the states in the band are
uniformly occupied at these temperatures. For T [ Wh (assuming mh*/mh * 1)
the effective chemical potential of the heavy particles is given by:

leff
h ¼ lþWh

2
þ e0� � T ln

1
nhdD

	 


; ð14:3:12Þ

where Wh is a heavy bandwidth, -e0 is the center of gravity of a heavy band.
Hence we have the Boltzman behavior of lh

eff [40–42]. The Fermi–Dirac
distribution function for heavy particles is:

nhðe� lÞ ¼ 1

e
p2=2mh�leff

h
T þ 1

� 1

ð1þ p2=ð2mhTÞÞe�leff
h
=T þ 1

� eleff
h =T

1þ ðp2=2mhTÞ

� eleff
h =T ¼ const:

ð14:3:13Þ
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For light particles for the temperatures Wh � T � WL (since mh 	 mL) the
effective chemical potential has approximately the same position as for T = 0.
Indeed for lL

eff = l ? WL/2 (introduced in Chap. 10) we have:

nLðe� lÞ ¼ 1

e
p2=2mL�leff

L
T þ 1

� 1

e
p2�p2

FL
2mLT þ 1

� h � p2

2mL
þ eFL

	 


: ð14:3:14Þ

Thus nLðe� lÞ is given by the step function for T � eFL and hence the
effective chemical potential of light particles:

leff
L � eFL: ð14:3:15Þ

14.3.6 Evaluation of the Imaginary Parts of the Self-
Energies at Higher Temperatures Wh* < T < WL

For light particles the imaginary part of the self-energy ImRLL
(2)(T) = k2T 2/WL in

3D (and f0
2T 2/WL in 2D) does not change.

In the same time:

ImRð2ÞLh ðTÞ ¼ k2Wh
mh

mL
	 ImRð2ÞLL ðTÞ ð14:3:16Þ

in the 3D case for Wh* \ T \ WL (for T \ WL. we have T 2/WL \ Wh mh/mL). The
same inequality holds in 2D. Note that ImRLh

(2)(T) in (14.3.16) describes almost
elastic scattering of light electrons on the heavy ones as if on immobile (static)
impurities in the zeroth order in Wh/WL � 1. We note that Wh mh = Wh*mh*. For
heavy electrons we should take into account the bosonic contribution nB(X) & T/
X and the fermionic contribution nFðXÞ � 1

2 1� X
2T

� �

for X/T � 1 to ImR(2) and
thus to scattering times. This yields:

ImRð2Þhh ðTÞ ¼ k2Wh in 3D and f 2
0 Wh in 2D, ð14:3:17Þ

which describes the scattering of heavy electrons on each other in the situation
when they uniformly occupy the heavy band and can transfer to each other only an
energy * Wh [57, 58]. Since mh* 	 mh we can replace Wh by Wh* in (14.3.17).
At the same time, for the scattering of heavy particles on the light ones we have in
3D [40, 42]:

ImRð2ÞhL ðTÞ ¼ k2T 	 ImRð2Þhh ðTÞ; ð14:3:18Þ

and analogous linear in T (f0
2T) behavior in 2D. Thus (14.3.18) describes the

marginal Fermi liquid behavior [4] for diffusive motion of heavy electrons in the
surrounding of light electrons.
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We note that to derive (14.3.18) for WL [ T [ Wh and in the zeroth order in the

mass ratio mL/mh � 1, we should rewrite expression for ImRð2ÞhL ðehðpÞ � l;~pÞ
derived in Chap. 10 in the form (using the notation nhðpÞ ¼ ehðpÞ � l;
nLðpÞ ¼ eLðpÞ � l):

ImRð2ÞhL ðehðpÞ � l;~pÞ ¼ �p
4PahL

mL

	 
2

NL3D
2ð0Þ

Z Z

dnLp0dnLkdðnLp0 � nLkÞ

nFðnLkÞ 1� nFðnLp0 Þ
ffl �

ð14:3:19Þ

After the d-function integration this yields:

ImRð2ÞhL ðehðpÞ � l;~pÞ � �pk2 R dnLknFðnLkÞ 1� nFðnLkÞ½ �

� pk2 R
þ1

�1
de ee=T

1þee=Tð Þ2
� k2T in 3D and � f 2

0 T in 2D:
ð14:3:20Þ

14.3.7 Resistivity for T > Wh* in the 3D Case

From the previous section we have for the scattering times of heavy and light
particles for T [ Wh*:

1
sL
� 1

sLh
¼ k2Wh

mh

mL
: ð14:3:21Þ

We note that k2Wh mh/mL = k2Wh*mh*/mL * k2WL in (14.3.21). In the same
time:

1
sh
� 1

shL
¼ k2T ; ð14:3:22Þ

and hence the heavy component is marginal, but the light one is not. The con-
ductivity of the light band is given by:

rL ¼
nLe2sL

mL
� nLe2sLh

mL
¼ rmin

k2 : ð14:3:23Þ

For the heavy band the Drude formula must be modified by the Einstein relation
[34] qnh/qT * Wh*/T since T [ Wh*. We then immediately obtain:

rh ¼
rmin

k2

Wh�
T

	 
2

: ð14:3:24Þ

As a result, the resistivity is:
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R ¼ 1
rh þ rL

¼ k2

rmin

ðT=W�h Þ
2

1þ ðT=W�h Þ
2 ¼

k2

rmin

1

1þ ðW�h=TÞ2
: ð14:3:25Þ

For T [ Wh* the resistivity R� k2=rmin saturates. We thus obtain a residual
resistivity at high temperatures due to the conductivity of the light band. This is a
very nontrivial result of [40–42, 49, 59].

14.3.8 Discussion

When Wh* \ 1/sh or, equivalently, k2T [ Wh*, the coherent motion in the heavy
band is totally destroyed. The heavy particles begin to move diffusively in the
surrounding of light particles. In this regime, rigorously speaking, the diagram-
matic technique can be used only for light particles and not for the heavy ones.

But the exact solution of the density matrix equation obtained in [57, 58] shows
that RhL is qualitatively the same for k2T [ Wh* as in our estimates, and the
inverse scattering time 1/shL is also qualitatively the same due to its physical
meaning (scattering of light electrons on heavy ones as if on immobile impurities).
That is why rh and rL and hence R(T) behave smoothly for k2T C Wh*.

14.3.8.1 The Idea of a Hidden Heavy Band for High-TC Systems

The resistivity R(T) in 3D acquires the form (see Fig. 14.5) that is frequently
obtained in uranium-based HF (for example in UNi2Al3).

We note that R(T) on Fig. 14.5 mimics a linear behavior in a crossover region
of intermediate temperatures T * Wh* between T 2 at low temperatures T � Wh*
and const (for the saturation of the resistivity) at T 	 Wh*. The same holds for
magnetoresistance in the well-known experiments of P.L. Kapitza:

RðHÞ � Rð0Þ
Rð0Þ � XCsð Þ2

1þ XCsð Þ2
� XCsð Þ2 for XCs\1;

const for XCs[ 1;

ffi

ð14:3:26Þ

Fig. 14.5 The resistivity
R(T) in the two-band model
with one narrow band in 3D
[40–42, 54, 59]
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where XC is the cyclotron frequency. In the crossover region XCs * 1 (usually s
is the scattering time of electrons on impurities) the magnetoresistance mimics
linear behavior in XC. It then follows that for T [ Wh*, heavy electrons are
marginal but light electrons are not. The natural question arises whether it is
possible to make light electrons also marginal and as a result to obtain the resis-
tivity characteristics for which R(T) * T is marginal for T [ Wh*, but R(T) * T 2

for T \ Wh*. Such resistivity characteristics could serve as an alternative scenario
for the explanation of the normal properties in optimally doped or slightly
overdoped high-TC materials if we assume the existence of a hidden heavy band
with a bandwidth smaller than superconducting critical temperature TC: Wh* \ TC

(see Fig. 14.6).
To obtain the Fermi-liquid behavior R(T) * T 2 at low temperatures we should

then suppress SC by a large magnetic field H to low critical temperatures
TC(H) \ Wh*.

14.4 Weak-Localization Corrections in the 2D Case

The tendency towards marginalization of the light component manifests itself in
the 2D case. We know that logarithmic corrections [47, 48] to the classical Drude
formula for conductivity occur in 2D due to weak localization effects (connected
with quantum–mechanical backward scattering of electrons on impurities
ensemble). But according to our ideology heavy particles play the role of impu-
rities for scattering of light particles on them. That is why the correct expression
for the conductivity of the light band rL in the absence of spin-orbital coupling is
given by:

rloc
L ¼

rmin

f 2
0

1� f 2
0 ln

su

s

h i

; ð14:4:1Þ

where, according to the weak-localization theory in 2D, s is the elastic time and su

is the inelastic (decoherence) time connected with the W-function phase-memory
breaking. In our case:

s ¼ sei ¼ sLh; while su ¼ see ¼ sLL; and sLL;	 sLh; ð14:4:2Þ

Fig. 14.6 Possible resistivity
characteristics R(T) in
superconductive materials
with a hidden heavy band for
Wh* \ TC (Wh* is an
effective width of a heavy
band) [40–42, 54]
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where sei and see are the times associated with the scattering of electrons on
impurities and other electrons, respectively. Hence, between two scatterings of a
light particle on another light one, it many times scatters on heavy particles (see
Fig. 14.7).

14.4.1 Altshuler-Aronov Effect

As a result, the motion of light particles becomes much slower (also of the dif-
fusive type) and two characteristic lengths appear in the theory: the elastic length

l ¼ vFLsLh; ð14:4:3Þ

and the diffusive length:

Lu ¼
ffiffiffiffiffiffiffiffiffiffiffi

DLsu

p

; ð14:4:4Þ

where DL is the diffusion coefficient and vFL is the Fermi-velocity for light elec-
trons. That is why in a more rigorous theory according to [48, 49, 54] we should
replace the inverse scattering time 1=sLL in 2D:

1
sLLðeÞ

� f 2
0

mL

Z

e

0

dx
Z

x

0

de0
Z

1

0

q dq

vFLqð Þ2
¼ f 2

0
e2

WL
ln

WL

e
ð14:4:5Þ

by the renormalized quantity 1=~sLL:

1
~sLLðeÞ

� f 2
0

mL

Z

e

0

dx
Z

x

0

de0
Z

1

0

q dq

ie0 þ DLq2ð Þ2
; ð14:4:6Þ

where f0 is the 2D gas-parameter. In fact we replace vFLq with the pole of the
diffusive type ie0 ? DL q2. Hence the characteristic wave-vectors in the evaluation

Fig. 14.7 Multiple scatterings of a light particle on heavy ones in the time interval between the
scattering of a light particle on another light particle. Lu is the diffusive length, l is the elastic
length, DL and vFL are the diffusion coefficient and the Fermi-velocity for light electrons, and sLh

and su are the elastic time for the scattering of light electrons on heavy ones and the inelastic
(decoherence) time [40–42, 49, 54, 59]
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of ~sLL are q�
ffiffiffiffiffiffiffiffiffiffiffi

e0=DL

p

in (14.4.6), where e0 is an energy variable. Thus Altshuler-
Aronov effect (originally proposed for electron–electron scattering in dirty metal)
yields in 2D [48, 49]:

1
~sLLðeÞ

¼ f 2
0

e

N2D
L ð0ÞDL

; ð14:4:7Þ

where NL
2D(0) = mL/2p is the 2D density of states for light electrons. For the

diffusion coefficient we can use the estimate:

DL ¼ v2
FLsLh: ð14:4:8Þ

Hence, having in mind that according to (14.3.21) the inverse scattering time is
1

sLhðeÞ ¼ f 2
0 Wh

mh
mL
� f 2

0 WL (where we replaced k2 in (14.3.9) by f0
2) we obtain:

1
~sLLðeÞ

� f 2
0 f 2

0 WLe
mLv2

FL=p
� f 4

0 e: ð14:4:9Þ

Therefore 1=~sLL also becomes marginal for e * T. For logarithmic corrections
to the conductivity of the light band we have:

su

s
¼ ~sLL

sLh
¼ WL

f 2
0 T
	 1; ð14:4:10Þ

and thus

rloc
L ¼

rmin

f 2
0

1� f 2
0 ln

WL

f 2
0 T

� �

: ð14:4:11Þ

For f0
2T * Wh we get ln WL

f 2
0 T
� ln WL

Wh
and

Zh�
rloc

L

rL
¼ 1� f 2

0 ln
WL

Wh
: ð14:4:12Þ

Therefore, for f0
2T * Wh an enhancement of the Z-factor of the heavy particle due

to Electron-polaron effect and the additional localization of light particles due to
Altshuler-Aronov effect are governed by unique parameter f0

2ln(mh/mL) in 2D
[40–42, 49, 59].

14.4.2 Justification of the Expression for Localization
Corrections in 2D with an Account of the Recoil
Energy

In principle the impurities (heavy particles) are mobile and have some recoil

energy. That is why the formula rloc
L
rL
¼ 1� f 2

0 ln WL

f 2
0 T

should be justified (at least
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regarding the temperature exponent under logarithm T or Ta). For the justification
of this expression we need to estimate the loss of energy by one light particle
before it collides with another light particle. The number of collisions with heavy
particles between the scattering of a light particle on another light one is Lu/l. The

maximal loss of energy in one collision is Wh*. The total loss is W�h
L/

l ¼ W�h
ffiffiffiffiffiffi

WL

f 2
0 T

q

.

The energy of light particle itself is T. It means that for W�h

ffiffiffiffiffi

WL
T

q

\ T or equiva-

lently for

T [ W�h
WL

f 2
0 W�h

	 
1=3

ð14:4:13Þ

the loss of energy is small and heavy particles can be regarded as immobile
impurities. Hence the exponent a in Ta under logarithm is 1.

14.4.3 Resistivity in the 2D Case: Maximum
and Localization Tail

Qualitatively the resistivity behaves in 2D as:

R ¼ f 2
0

rmin

1

1� f 2
0 ln WL

f 2
0 T
þ W�h

T

� �2 : ð14:4:14Þ

It has a maximum at Tmax * Wh*/f0 and a localization tail at higher temperatures
(see Fig 14.8 and [40–42, 49, 59]).

It would be very interesting to find the magnetoresistance in the 2D or layered
case in a two-band model with one narrow band for a strong quantizing magnetic
field H oriented perpendicular to the layers [40–42]. Note that such behavior of
resistivity (with a maximum and then with a localization tail) could be relevant
for some mixed valence systems possibly including optimally doped layered
CMR-systems (layered manganites for example). A similar behavior with a
metallic low temperature dependence of the resistivity for T \ 130 K and the

Fig. 14.8 Resistivity R(T) in
the 2D case for the two-band
model with one narrow band.
The resistivity exhibits a
maximum and localization
tail at higher temperatures
T [ Wh*[40–42, 49, 59]
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insulating high-temperature dependence was also observed in layered intermetallic
alloys Gd5Ge4, where the authors of [51] assume the existence of a strongly
correlated narrow band at low temperatures.

Concluding this chapter, note that we search for non-Fermi liquid behavior in
basic one-band and two-band models in 3D and 2D case. We found very inter-
esting corrections to the Galitskii-Bloom [5, 6] Fermi-gas expansions both on the
lattice and without it, at T ? 0 and at higher temperatures. But globally Landau
Fermi-liquid picture is not destroyed at low electron densities and low tempera-
tures in one-band and two-band 3D and 2D models.
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Chapter 15
Nanoscale Phase Separation in Complex
Magnetic Oxides

Nanoscale phase-separation together with the anomalous (marginal) behavior of
resistivity are among the most interesting normal properties of many strongly-
correlated electron systems.

In this chapter we will consider another very interesting family of strongly-
correlated electron systems, which is called manganites [1–3] or the systems with
colossal magnetoresistance (CMR-systems) [4]. These systems have a lot of
striking similarities with high-TC superconductors (or cuprates) with respect to
their crystalline and electronic structure especially in a layered class of manga-
nites. They also exhibit rich phase-diagrams [5–12] with extended regions of
nanoscale phase separation. In these regions we get ferromagnetic metallic
droplets of the size of 10–1000 Å embedded into the insulating matrices of anti-
ferromagnetic or paramagnetic type in close similarity with the physics of stripes
in high-TC superconductors [13–17]. The CMR-family is very promising for
applications in magnetorecording technologies due to their anomalous transport
properties and first of all due to the phenomena of colossal negative magnetore-
sistance (colossal up to 102–103 times decrease of resistivity in moderately strong
magnetic fields 2–6 T).

15.1 Inhomogeneous States and Nanoscale Phase
Separation in Complex Magnetic oxides. Similarities
with Cuprates

Manganites, the Mn-based magnetic oxide materials typified by LaMnO3, have been
under investigation for more than 50 years [1–3] but attracted particular attention
after the discovery in 1994 of the colossal magnetoresistance (CMR) effect first
obtained for Ca-doped LaMnO3 film [4]. There is currently considerable review
literature on these materials (see e.g., [5–12]) and it is worthwhile noting that in [11] a
bibliography of more than 600 references is given. This large body of the original and
review literature is due to in part to the potential technological applications of

M. Yu. Kagan, Modern Trends in Superconductivity and Superfluidity,
Lecture Notes in Physics 874, DOI: 10.1007/978-94-007-6961-8_15,
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colossal magnetoresistance, but also reflects the manganites suitability for studying
the physics of strongly-correlated systems. In particular, the interaction of spin,
charge and orbital degrees of freedom in these materials as well as their phase
diagrams are of interest. On the other hand, the possibility of various types of
inhomogeneous charge and spin states in manganites-lattice and magnetic polarons,
droplets and stripes structures etc.,—is currently receiving special attention.

Similar phenomena occur in many strongly correlated systems where the
potential energy of the interaction of electrons exceeds their kinetic energy. In
particular (as we mentioned in the introduction), such phenomena are being widely
discussed in connection with high-TC superconductors [13–17]. Of earlier exam-
ples, ferromagnetic (FM) droplets (ferrons) in antiferromagnetic (AFM) state at
low doping levels [18–21] and ferromagnetic spin-polarons in a paramagnet (PM)
[22, 23] are particularly notable. A string (linear track of frustrated spins) created
by a hole passing through an AFM insulator [24, 25] as well as paramagnetic
polarons (spin-bags [26]) should also be mentioned in connection with mecha-
nisms of SC in underdoped cuprates [27–29] and Chap. 13. All these phenomena
are examples of the so-called electron nanoscale phase separation effect, which
results from individual charge carriers changing their local electron environment
(it is favorable for such regions to be as far apart as possible to minimize the
Coulomb energy). Along with this small-scale (nanoscale) phase separation,
manganites, as many other materials showing first-order transitions (between the
AFM and FM-phases, for example), display yet another type of phase separation,
related to the fact that there is a large region of coexistence for various phases in
the material. One example of such large-scale separation is the formation of rel-
atively large FM-droplets (100–1000 Å in size) in an AFM-matrix [30, 31].

A noteworthy feature of manganites is the strong interaction between the
electronic and lattice subsystems due to the fact that Mn3+ is a Jahn–Teller ion [32]
and therefore any phase-separation gives rise to elastic lattice distortions which
can be detected experimentally. Another characteristic feature is charge ordering
(CO), i.e., a regular (often checkerboard) arrangement of Mn3+ and Mn4+ ions,
when the material in fact obtains an additional lattice period and hence acquires a
superstructure. Note that charge ordering usually appears at quarter-filling that is at
densities close to �. Along with a superstructure, nontrivial spin and orbital
ordering may result from charge ordering. An example is the well-known zigzag
magnetic structure (referred to usually as CE) in compounds of the type
Pr0.5Ca0.5MnO3 [33, 34], in which charge ordering is accompanied by the for-
mation of zigzag magnetic chains. The interaction of spin, charge, and orbital
degrees of freedom can also lead to stripe [35] (rather than droplet) structures at
high concentrations of an alkaline-earth element (Ca, Ba, Sr). Because of the
strong interaction with the lattice, it turns out that in manganites (as opposed to
HTSC systems) such structures are not dynamic but static and are observable with
electron diffraction and X-ray small-angle scattering techniques.

In this chapter, we will focus on the small-scale phase separation, in which the
microscopic nature of charge redistribution manifests itself most clearly. We will
consider free [36] and bound [37, 38] FM-polarons inside AFM, PM and CO-
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matrices [39] (including FM-polarons on frustrated AFM-lattices [40]) as well as
so-called orbital ferrons [41] inside orbitally ordered matrix [42]. The basic
models which we use for free and bound FM-polarons is ferromagnetic Kondo
lattice model or double exchange model of de Gennes [43] (with or without
Coulomb interactions). While for orbital ferrons we use the degenerate two-band
Hubbard model (considered with respect to KL-superconductivity and anomalous
resistivity in Chaps.10 and 14) which is reduced to the orbital t–J model [44].

Note that the effects of phase-separation on the transport properties are con-
sidered in Chap. 16.

15.2 Crystal Structure: Electronic and Transport
Properties of Manganites

In this section we will study crystal structure, phase diagram and basic electronic
and transport properties of manganites including the CMR-effect in this family of
materials.

Ideal crystal structure of 3D manganites Ln1-xAxMnO3 (Ln = La, Pr, Nd, Sm;
A = Ca, Sr, Ba) corresponds to cubic cell (perovskite structure) see Fig. 15.1. Real
structure is slightly orthorombically distorted due to Jahn–Teller (JT) effect [32].

15.2.1 Overall Phase-Diagram of Manganites

Overall phase-diagram of typical manganites (La1-xCaxMnO3) is presented on
Fig. 15.2. At low doping levels 0.02 \ x \ 0.16 and low temperatures we have
phase-separation (PS) on metallic FM droplets inside AFM insulating matrix [8, 18–
21, 36]. At optimal doping concentration xopt = 0.25 we have FM-metal for
T \ TC—Curie temperature, which exhibits phenomena of colossal negative mag-
netoresistance (CMR). For these concentrations we have two-band mixed-valence

Fig. 15.1 Crystal structure
of ideal 3D manganites
Ln1-xAxMnO3 (Ln = La, Pr,
Nd, Sm; A = Ca, Sr, Ba)
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situation (see Chap. 16). At x = 0.5 (quarter-filling) and low temperatures we have
checkerboard charge ordering (CO). Around x = 0.5 we have extended region of PS
II on metallic FM droplets inside CO insulating matrix [39]. For x B xC = 0.16 we
have also the beautiful physics of orbital ordering [42], described by degenerate two-
band Hubbard model with metallic orbital polarons inside insulating AFM orbital
matrix [41]. Finally at very small doping levels x * (1–2) % and low temperatures
we have magnetic polarons bound by Coulomb interaction on Ca accepting centers
with extended coat of slowly decreasing tails of spin-distortions. These bound
magnetic polarons were first predicted by de Gennes [43] and obtained in a simple
model in [37]. Effectively they behave as a magnetic impurity.

For x = 0 and x = 1 we have ideal AFM ordering for spins S ? � and spins
S (S = 3/2), respectively. Close to x = 1 we have again PS on FM droplets inside
AFM insulating matrix at low temperatures. At high temperatures and low doping
levels (x � 1 and T [ TN—Neel temperature) and at x * xopt and T [ TC tem-
perature ferrons (FM-droplets) inside insulating PM matrix [22, 23] are formed.

15.2.2 Resistivity at Optimal Concentrations

At optimal concentration xopt = 0.25 and TC = 250 K we have simultaneously
FM ? PM transition coinciding with metal–insulator transition (see Fig. 15.3.).

For low temperatures T \ TC:

q� q0 þ ATb; ð15:2:1Þ

where b * 2.5, and dq
dT [ 0 corresponds to metallic behavior.

For high temperatures T [ TC:

q �Be A=T ; ð15:2:2Þ

and dq
dT \0 corresponds to insulating thermoactivative behavior.

Fig. 15.2 Overall phase-
diagram of typical 3D
perovskite manganite
La1-xCaxMnO3, x is a hole
concentration
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This curve can be explained in two ways: by electron tunneling from one FM-
cluster (droplet) to a neighboring one via insulating barrier (see Chap. 16) or
possibly in the framework of the two-band model, especially for layered quasi 2D
manganites (see Chap. 14).

15.2.3 Colossal Magnetoresistance

At optimal concentration xopt = 0.25 we have phenomena of colossal magneto-
resistance [4], namely resistivity strongly decreases in the presence of moderately
strong magnetic fields H * (2–4) T (see Fig. 15.4).

Magnetoresistance is defined as (see [8] for example):

ðMRÞ ¼ DR

RðHÞ ¼
RðHÞ � Rð0Þ

RðHÞ � � Rð0Þ
RðHÞ � � ð102 � 103Þ ð15:2:3Þ

(colossal negative magnetoresistance).
It is interesting that for optimal concentration xopt = 0.25 magnetization

behaves as follows (see Fig. 15.5).

15.2.4 Electronic Structure of Manganites

Essential for electronic structure of manganites are 5 d-orbitals of Mn-ions splitted
by the crystalline field on 3 localized t2g-orbitals dxy, dxz, dyz and 2 conductive eg-

Fig. 15.3 Resistivity at
optimal doping
concentrations. At maximum
(for TC = 250 K) resistivity
q(TC) * 100 mX � cm

Fig. 15.4 Strong decrease of
resistivity in the presence of
magnetic field in optimally
doped manganites. Solid line
corresponds to the absence of
magnetic field (H = 0),
dashed line for H = 2 T and
dashed-dotted line for
H = 4 T
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orbitals d3z2�r2 ; dx2�y2 . On localized t2g-orbitals according to Hund’s rule a local
spin Sloc = 3/2 is formed.

Manganites are in a mixed valence situation, so Mn3+ and Mn4+-ions are
present. For Mn4+ ion both conductive orbitals eg are empty (see Fig. 15.6).

In the same time for Mn3+ ion one conductive eg-orbital is filled and one is
empty (see Fig. 15.7). Note that eg-conductive orbitals are additionally splitted by
Jahn–Teller effect in Mn3+ ion.

This splitting is due to the different distortion of dx2�y2 -octahedra in xy-plane
and d3z2�r2 -octahedra along z-axis (see Fig. 15.8). As a result Jahn–Teller gap

Fig. 15.5 Temperature
dependence of magnetization
in manganites at optimal
concentration xopt = 0.25

Fig. 15.6 Electronic
structure of d-orbitals for
Mn4+ ion

Fig. 15.7 Electronic
structure of Jahn–Teller Mn3+

ion

Fig. 15.8 Different
distortion of dx2�y2 -octahedra
in xy-plane and d3z2�r2 -
octahedra along z-axis
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(EJT) appears. We assume that EJT is large, so for low doping concentration
x � xC = 0.16 only one conduction band is occupied. Note that close to
xC = 0.16 we have two occupied conductive bands and the beautiful physics of
orbital ordering. Note also that for low doping a spin of conductivity electron~r is
coupled ferromagnetically (oriented parallel) to the local spin Sloc = 3/2.

15.3 The Minimal Theoretical Model for Manganites

The basic theoretical model for manganites is FM Kondo-lattice model or double-
exchange model firstly introduced by de Gennes in 1960 [43]. The Hamiltonian of
the double-exchange model reads:

Ĥ ¼ �JH

X

i

~Si~ri � t
X

hijir
cþir cjr þ J

X

hiji

~Si
~Sj; ð15:3:1Þ

where JH is large Hund’s type (FM) interaction between local spin ~S and spin of
conductivity electron ~r on site i, t—is hopping integral for conductivity electron
and J is AFM (Heisenberg) exchange between local spins, cþir; cjr—are creation
and annihilation operators for conductivity electron with spin-projection r on sites
i and j, respectively. For one conductive band we have the following hierarchy of
parameters:

JHS� t� JS2: ð15:3:2Þ

For real manganites the typical values of the parameters: JHS & 1 eV;
t & 0.3 eV (the bandwidth is narrowed by electron–phonon polaron effect);
JS2 & 0.001 eV. Double occupancy is prohibited in (15.3.1) by large Hund’s
term, so it is not necessary to add Hubbard repulsion term U

P

i
ni"ni# to Hamil-

tonian (15.3.1). In fact we can insert projection operators in the kinetic term in
(15.3.1) and write �t

P

\ij [ r
PcþircjrP .

15.3.1 Homogeneous Canting for Small Densities

In classical physics conductivity electron can hop freely in FM surrounding of
local spins, but cannot hop in AFM surrounding. Thus the only possibility for
conductivity electron is to cant the local spins (belonging to different sublattices)
when it hops from one site to a neighboring one (see Fig. 15.9).

Note that for large Hund’s coupling JH [ W (W is a bandwidth for conductivity

electrons) the term �JH
P

i

~Si~ri corresponds to a minimal energy for ~Si ~rk i. Cor-

respondingly the total spin on site i, ~Stot

ffi

ffi

ffi

ffi ¼ Sþ 1=2.
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An important point is that W-function of conduction electrons has a spinor
character. That is why electron hopping results in an effective rotation of the
components of the W-function on the angle h/2 (where h is the canting angle
between sublattices). Thus an effective hopping integral for the electron in the
surrounding of canted local spins reads [43, 45]:

teff ¼ t cos h=2ð Þ: ð15:3:3Þ

15.3.2 Canted State Instability

An energy of a classical canted state of de Gennes reads:

E ¼ �zt cos h=2ð Þ nþ zJS2

2
cos h ð15:3:4Þ

where z is the number of nearest-neighbors, n is a concentration of conductivity
electrons (for La1-xCaxMnO3: n = 1 - x, where x is hole doping). In (15.3.4) first
term describes the decrease of kinetic energy and second one the increase in the
interaction energy between the local spins. If we minimize this energy with respect
to cos h=2ð Þ we get:

dE

d cos h=2ð Þ ¼ 0; and cos h=2ð Þ ¼ t

2JS2
n; ð15:3:5Þ

thus an optimal cos h=2ð Þ depends linearly upon electron density. Correspondingly
an optimal energy of a homogeneous canted state:

E ¼ � zt2n2

4JS2
� zJS2

2
ð15:3:6Þ

Fig. 15.9 Ideal AFM-lattice of local spins. a With local spins S
!

i and S
!

iþ1 on neighboring sites
belonging to different sublattices. b The canted structure with the angle h between neighboring

local spins S
!

i and S
!

iþ1, which is created by conductivity electron hopping from site i, to a
neighboring site i ? 1
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However it is easy to note that a canted state has a negative compressibility
[36]:

j�1 ¼ d2E

dn2
¼ � zt2

2JS2
\0: ð15:3:7Þ

Negative compressibility reflects an instability of a homogeneous canted state
towards phase-separation.

15.3.3 Small FM-Polarons Inside AFM-Matrix

The most energetically beneficial type of phase-separation corresponds to the
creation of small FM-polarons (ferrons) inside AFM-matrix [18–21]. The energy
of this phase-separated state reads for spherical magnetic polaron in 3D:

Epol ¼ �tnðz� p2d2

R2
Þ þ zJS2

2
4
3

p
R

d

� �3

n� zJS2

2
1� 4

3
p

R

d

� �3

n

" #

; ð15:3:8Þ

where X ¼ 4
3 p R

d

� �3
is a volume of a spherical polaron (spherical FM-droplet) in

isotropic 3D case,—tzn is a bottom of the band in an infinite FM-cluster (where

electron can hop freely), tn p2d2

R2 is a delocalization kinetic energy of conductivity
electron in a spherical potential well of the radius R (see Fig. 15.10).

It can be obtained from boundary condition W(r = R) = 0 for the W-function
W * sin(kr) which corresponds to the deepest bound state of a conductivity
electron in a spherical potential well of the width R (self-trapping of conductivity
electron in FM-droplet with a radius R).

The second term in (15.3.8) corresponds to the loss in AFM exchange inter-
action energy of local spins inside the ferrons, while the third term describes AFM
exchange interaction energy between the local spins in the region which are free
from FM-polarons (see Fig. 15.11).

Minimization of a polaron energy (15.3.8) with respect to the polaronic radius
R yields in the 3D case:

Fig. 15.10 The spatial
extension of the conductivity
electron W-function
corresponding to the deepest
bound state in a spherical
potential well with a width
equal to the radius of the
polaron R
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dEpol

dR
¼ 0 and

Rpol

d
¼ pt

2zJS2

� �1=5

: ð15:3:9Þ

Correspondingly the optimal polaronic energy reads:

Epol ¼ �tznþ 5
3

p zn p tð Þ3=5 2zJS2
� �2=5� zJS2

2
: ð15:3:10Þ

The canting angle h = 0 inside the ferron (FM-region) and h = p (AFM-
region) outside the ferron. The boundary of Mott-Nagaev-Kasuya ferrons [18–21]
is rigid: an angle h changes from 0 to p on a distance of the order of d. Note that
for typical values of t * 0.3 eV and JS2 * 0.001 eV the polaron radius
R * (2 7 3)d * 10 Å (has nanoscale dimensions), and the number of local

spins inside the ferrons is 4
3 p R

d

� �3� 4 � ð23 � 33Þ� ð30� 100Þ: Thus a FM-polaron
is a bound state of one conductivity electron and (30 7 100) local spins. Such an
object is very difficult to describe diagrammatically, so the only possible
description is a variational one presented in this chapter.

Note also that we described nanoscale phase-separation at small electron
density n � 1. In the opposite case of large electron density n ? 1, or corre-
spondingly small hole doping x = 1 - n � 1, we have again the same nanoscale
phase-separation on FM-droplets inside AFM-insulating matrix, but now the role
of conductivity electron plays a hole. Thus effectively inside the ferrons we have
one local spin S = 3/2 surrounding by total spins Stot ¼ Sþ1=2 oriented ferro-
magnetically, while outside the ferron we have antiferromagnetically oriented total
spins Stot ¼ Sþ1=2 (see Fig. 15.12). This structure is totally equivalent to that in
the t–J model [72] where local Kondo-singlets or Zhang-Rice singlets are formed

Fig. 15.11 Self-trapping of conductivity electron in a spherical droplet of radius R for small
density n of conductivity electrons. The local spins S = 3/2 inside the droplets are oriented
ferromagnetically. Outside the droplets there are no conductivity electrons (charge carriers) while
the local spins S = 3/2 are oriented antiferromagnetically [8, 19–21]

Fig. 15.12 Structure of the
phase-separated state at the
electron densities n ? 1 (at
the small doping level
x = 1 - n � 1) [8]
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by AFM Kondo-interaction JK between spin of conductivity electron r ¼ 1=2 and
local spin S ¼1=2. Here we have FM interaction JH between local spin S ¼3=2 and
conduction electron spin r ¼1=2, which leads to the formation of Stot ¼ 2 in the
strong-coupling case. Note that on the overall phase-diagram of hole-doped
manganites La1-xCaxMnO3 on Fig. 15.2 the horizontal axis corresponds to hole
doping x, and thus the PS I in the left corner of the phase-diagram (for x ? 0)
correspond to the situation described by Fig. 15.12, while Fig. 15.11 correspond to
the phase separation in the right corner of the phase-diagram for x ? 1 ( n ? 0).

15.3.4 Quantum Canting

In Sect. 15.3.2 we considered classical canted state of de Gennes and proved its
instability with respect to nanoscale phase-separation on small FM-polarons inside
AFM-matrix (Sect. 15.3.3).

In a more sophisticated quantum canting approach [18, 19, 36] there are two
bands, instead of one, corresponding respectively to Stot ¼ Sþ1=2, but
Sz

tot ¼ S	1=2ffiffi >.
Their spectra read (see Nagaev [18, 19]):

t	 hð Þ ¼ t

2Sþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Sþ 1þ S2 cos2
h
2

r

	 S cos
h
2

" #

; ð15:3:10Þ

where t+ (h) corresponds to Sz
tot ¼ S	1=2 and t- (h)—to Sz

tot ¼ S�1=2.
For h ? 0 (FM-case) tþ ¼ t; t� ¼ t

2Sþ1. For h ? p (AFM-case)
tþ ¼ t� ¼ t

ffiffiffiffiffiffiffiffi

2Sþ1
p . That is an interesting result. While in classical picture a

conductivity electron cannot hop in AFM-background, in quantum approach its
effective hopping integral is proportional to t

ffiffi

S
p . Moreover for h = p there is a

‘‘string’’-type of motion for conductivity electron between the two bands: on site i it
forms Stot ¼ Sz

tot ¼ Sþ1=2 with local spin S, while on neighboring site i ? 1: Stot ¼
ffi

ffiSþ1=2
ffi

ffi but Sz
tot ¼ S�1=2 and so on with alternating values of Sz

tot [47, 48]. Note
that the classical one band canting of de Gennes corresponds for S � 1 to the region
of small angles where S2 cos2ðh=2Þ � 2Sþ 1 and tþ � t cosðh=2Þ; while t- ? 0.

15.3.5 Compromise Between Quantum Canting
and Formation of FM-Polarons

An energy functional with the normalization condition for the W-function of a po-
laronic state in the case of quantum canting reads for continuum model [46, 49, 50]:
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F ¼ �
Z

dV t hð Þ z Wj j2 þW�DW
� �

� zJS2 cos2 h
2
� b Wj j2

� 	

ð15:3:11Þ

with t(h) given by (15.3.10) and b is Legendre multiplier
R

dV Wj j2 ¼ 1
� �

, D is the
Laplace operator, z is the number of the nearest neighbors. The minimization of
F with respect to W* yields:

dF

dW�
¼ 0 : t hð Þ 2zWþ DWð Þ þ D t hð ÞW½ ffi � 2b W ¼ 0: ð15:3:12Þ

In the same time the minimization of F with respect to canting angle h reads:

dF

dh
¼ 0 : z Wj j2 þW�DW

� � d t hð Þ
d cos h=2

�
�

2zJS2 cos
h
2

	

sin
h
2
¼ 0: ð15:3:13Þ

15.3.5.1 Electronic Wave Function and the Dependence of the Canting
Angle from the Radius

The normalized electronic wave function W(r) and the dependence of the canting
angle from the radius r (function h(r)) were calculated in [49, 50] by the same
numerical method which was proposed originally in [46] for 1D ferrons. The
numerical results are presented on Fig. 15.13 for parameter a = t/JS2 = 100. Note
that as we showed in Sect. 15.3.3 the polaronic radius Rpol given by (15.3.9) can be

expressed in terms of a as Rpol ¼ d p a
2z


 �1
�

5
in 3D.

We see from Fig. 15.13 that a canting angle is essentially h = 0 for r \ 0.5Rpol

and then rather rapidly goes to p on the interval 0.5Rpol 7 1.5Rpol.

Fig. 15.13 Dependence of
the electronic W-function and
the canting angle h from
dimensionless variable r/Rpol

for a = t/JS2 = 100. Solid
line for W(r) corresponds to
quantum two-band canting,
while the dashed line to
classical one band canting
[49, 50]
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The W-function is zero outside ferrons (for r [ Rpol) in the case of classical
one-band canting. In quantum two-band canting it has rather rapidly decreasing
tail for r [ Rpol.

15.3.5.2 Comparison of Nagaev-Mott and exact solution

According to (15.3.10) the optimal polaronic energy in terms of parameter a reads
for Nagaev-Mott FM-polarons:

EN�M

t
¼ �zþ 5

3
zp2 2z

pa

� �2=5

� z

2a
: ð15:3:14Þ

In the same time the energy of AFM-string:

EAFM

t
¼ � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Sþ 1
p : ð15:3:15Þ

On Fig. 15.14 we present the comparison for the energy of Nagaev-Mott and
exact numerical solution as functions of the parameter a.

From Fig. 15.14 we see that the self-trapped FM-polaron state is beneficial for
a[ aC & 75 (for S = 3/2). A bound state disappears and conductivity electron
moves freely (a string type of motion) through AFM-media for a\ aC. Here the
energy does not depend upon a in agreement with (15.3.15). Note that for most
manganite families a[ aC, and FM-polarons are essentially beneficial even in a
picture of the two-band quantum canting.

Note that in cuprates t/J * 3 and S = �, so the parameter a � aC. Hence the
FM-polarons are usually not stabilized in high-TC compounds. Instead of them we
have AFM-string (string-oscillators) of Bulaevskii, Nagaev, Khomskii, Brinkman,

Fig. 15.14 Comparison of
Nagaev-Mott solution for the
FM-polarons and exact
numerical solution for the
reduced energy E/t as
functions of the parameter
a = t/JS2. Thick solid line
corresponds to Nagaev-Mott
solution, while thin solid line
to exact numerical solution
[49, 50]
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Rice [24, 25]. They represent the linear trace of frustrated spins which accompany
the hole when it moves in AFM-background. Thus in cuprates we have a physics
of spin-charge confinement considered in Chap. 13 analogous to the confinement
physics in quark-gluon plasma in quantum chromodynamics (QCD) [51–53].

15.4 Temperature Ferrons: FM-Polarons in a Layered
Case

In this section we will consider two more types of FM-polarons, namely tem-
perature ferrons and ferrons in a layered case.

15.4.1 Temperature Ferrons

At optimal concentration x * xopt and low temperatures T \ TC (TC is Curie
temperature), as we already mentioned, we have a homogeneous state of FM-
metal. However even in this range of concentrations at high temperatures T [ TC

there is again a phase-separation on FM-droplets, but now inside paramagnetic
(PM) insulating matrix.

The radius of the droplet for the hierarchy of the parameters zJS2 B

TC \ T \ t can be defined from the minimization of the free-energy [22, 23]:

DF ¼ �tn z� p2d2

R2

� �

þ T lnð2Sþ 1Þ 4
3

p
R

d

� �3

n; ð15:4:1Þ

where the second term describes the reduction of the spin-entropy inside the
ferron.

As a result after minimization of DF with respect to polaron radius R we get
again in the 3D case [22, 23]:

RT
pol� d

pt

2T lnð2Sþ 1Þ

� �1=5

: ð15:4:2Þ

Note that effectively polaronic radius of temperature ferrons is given by the
same expression as the radius of Nagaev-Mott-Kasuya FM-polaron at T = 0 with
the substitution of zJS2 by T ln(2S ? 1).

15.4.2 Polarons in a Layered Case

Besides cubic (perovskite type) of manganites such as Ln1-xCaxMnO3 there is
another family which is typified as layered manganites with the general chemical
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formula (La, Ca)n+1MnnO3n+1 (n C 1, for n = 1: La2-xCaxMnO4). The layered
manganites strongly resemble high-TC compounds. Electronic transport in them
takes place in conductive MnO-layers which are separated by insulating LaO(-
CaO)-layers (layers of charge reservoir) see Fig. 15.15.

In the layered case we again have the tendency towards nanoscale phase-
separation on FM-polarons inside AFM-matrix. The most favorable in a layered
case is an ellipsoidal shape of a ferron elongated in the direction parallel to
conductive layers (see Fig. 15.16 and [8]).

The volume of the ellipsoidal ferron is given by [8]:

X ¼ 4p
3

Rk
d

� �2R?
d
: ð15:4:3Þ

Note that in the most general case of 3D anisotropic AFM—lattice the most
beneficial shape of the ferrons again corresponds to the ellipsoid of rotation.
Moreover its volume reads [40]:

X ¼ 4p
3

p teff

4JS2

� �3=5

; ð15:4:4Þ

where effective hopping integral teff is given by geometrical average of the hop-
ping integrals along the main axis:

teff ¼ ðtx � ty � tzÞ1=3: ð15:4:5Þ

Fig. 15.15 The crystal and magnetic structure of layered manganites. There are conductive
MnO-layers separated by insulating LaO(CaO)-layers in this family of manganites. Conductive
layers are ferromagnetic but FM-moments of neighboring MnO layers are antiparallel (A1
magnetic structure) [8]

Fig. 15.16 FM-droplet of an
ellipsoidal shape which is the
most energetically beneficial
in layered manganites. The
droplet is elongated in the
direction parallel to
conductive FM layers of
MnO (Rk[ R\) [8]
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In the same time an effective AFM exchange integral J is given by the algebraic
average (by the sum) of Heisenberg exchanges along the main axis:

�J ¼ ðJx þ Jy þ JzÞ: ð15:4:6Þ

15.4.3 FM-Polarons on a Square-Lattice

On a square lattice in 2D the optimal shape of a ferron is a circle X = p (R/d)2

with a radius [38, 40]:

Rpol

d
� t a2

o

8p JS2

� �1=4

; ð15:4:7Þ

where a0 & 3p/4 is a first zero of the Bessel function, J0(kR) = 0 for kR0 = a0.
Note that in 2D Rpol/d * (t/JS2)1/4 instead of (t/JS2)1/5 in the 3D-case [8].

For 2D anisotropic AFM-lattice the optimal shape of a ferron is an ellipse [40]
with a volume:

X ¼ p
teff a2

0

4p �JS2

� �1=2

; ð15:4:8Þ

where teff ¼ ðtx � tyÞ1=2 and �J ¼ ðJx þ JyÞ.
Note that this type of nanoscale phase-separation is typical for a variety of

quasi-2D (layered) cobaltites with low spin (a hole) in the center of a ferron
surrounded (in analogy with the situation presented on Fig. 15.12) by high spin in
case of a hole-doping.

15.4.4 FM-Polarons on a Triangular Lattice in 2D

Finally in the end of this Section let us consider frustrated lattices with AFM-
interaction between neighboring local spins. On a frustrated triangular lattice for
planar (2D) spin configuration the most beneficial shape of a ferron corresponds
again to the circle with a volume [38]:

Xtriangle

Xsquare
¼ 4

3

� �1=2

¼ mtriangle

msquare

� �1=2

; ð15:4:9Þ

measured in terms of the volume of a circular ferron on a square lattice. It is
possible to show [38] that the ratio of volumes is connected with the square-root of
the effective mass ratio on triangular and square lattices in (15.4.9).

478 15 Nanoscale Phase Separation in Complex Magnetic Oxides



15.5 Free and Bound Magnetic Polarons

For very small doping concentration conductivity electrons are bound to Ca (Sr)
impurity centers. Hence ferrons are also localized in this case [37]. An appearance
of the conductivity in Mn–O subsystem and delocalization transition in the system
of ferrons correspond to generalized Mott criterion [21, 49]. Having in mind that at
low temperatures the system becomes metallic for xmet * 16 % (at this concen-
tration the FM-droplets start to overlap organizing an infinite metallic cluster), we
conclude that ferrons are delocalized for xMott \ x \ xmet. For x \ xMott we have
bound magnetic polarons [37]. We will show that, in contrast with free magnetic
polarons, the bound polarons have a large intermediate region where a canting
angle is changed gradually from almost 0 to almost p.

The existence of such ferrons (behaving effectively as magnetic impurities) was
first assumed by de Gennes in 1960 in a seminal paper on the double exchange
[43]. We can get them explicitly in a following simple model.

15.5.1 The Minimal Model for the Bound Magnetic Polarons

The bound magnetic polarons with extended coat of spin-distortions for x � xMott

are described by the Hamiltonian [37]:

Ĥ ¼ �JH

X

i

~Si~ri � t
X

hn;mir
cþnrcmr þ J

X

hn;mi
½~Sn
~SmþS2ffi

� Vimp

X

nr

cþnrcnr

j~n�~n0j
� K

X

n

½ Snxð Þ� S2ffi ð15:5:1Þ

where for convenience we added the term * JS2 in the Heisenberg exchange
interaction. It is a double exchange model with Coulomb interaction between
conductivity electrons and nonmagnetic Ca (Sr) donor impurity, as well as with
one-site anisotropy. Ca (Sr) impurity is situated in the middle of some elementary
lattice cells of the crystal (see Fig 15.17).

In Hamiltonian (15.5.1) we assume the following hierarchy of parameters [37]:

ðJHS � VimpÞ � t � J S2 � K; ð15:5:2Þ

where Vimp is an amplitude of Coulomb attraction between impurity and con-

ductivity electron, K—is a constant of one-site anisotropy, ~Sn ¼ S~en is a classical

Fig. 15.17 Nonmagnetic Ca
(Sr) impurity is situated in the
middle of some elementary
cells of the crystal
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local spin,~n is a unit vector, ~r ¼ 1=2 cþnl~rlmcnm is a spin of conductivity electron,

~r ¼ rx; ry; rz


 ffl

are Pauli matrices,~n0 is a unit vector in the direction of impurity,
x is an easy magnetic axis.

15.5.2 The Variational Procedure

The variational procedure is detaily described in [37, 38]. Here we present a brief
sketch of the method. First of all note that:

~Sn ¼ Sðsin hn cos un; sin un sin hn; cos hnÞ� ð15:5:3Þ

is parametrization of a classical spin (S � 1) in 3D. In 2D case all hn = p/2.
The W-function of the conductivity electron in 3D reads:

Wj i ¼
X

n

Wn cos
hn

2
cþn" þ sin

hn

2
expð�iunÞcþn#

� �

0j i; ð15:5:4Þ

where
P

n
Wnj j2¼ 1 is normalization condition.

The variational parameters of the problem are Wn, hn, un. In the beginning we
solve an electron problem (we minimize the energy of the system with respect to
Wn). The W-function of the system in our approximation coincides with the W-
function of conductivity electron. Moreover HM Wj i ¼ EM Wj i, where EM is mag-
netic energy: EM ¼ JS2

P

hnmi
ð1� cos mnmÞ � KS2

P

n
½sin2 hn cos2 un � 1ffi and mnm is

an angle between local spins~Sn and~Sm on the neighboring sites (see Fig 15.18).
Let us average the Hamiltonian (15.5.1) over W-function Wj i. Then we get:

Wh jH Wj i ¼ Wh jHel Wj i þ Wh jHm Wj i ¼ Wh jHel Wj i þ EM ; ð15:5:5Þ

where

Wh jHel Wj i ¼ �t
X

\nm [
ðTnmW�nWm þ c:c:Þ � JHS

2
� Vimp

X

n

Wnj j2

~n�~n0j j; ð15:5:6Þ

Fig. 15.18 The angle mnm is
an angle between local spins

S
!

n and S
!

m on the
neighboring sites
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and

Tnm ¼ cos
mnm

2
e�ixnm ð15:5:7Þ

is classical de Gennes type canted state.
Note that in general Tnm in (15.5.7) contains a phase-factor xnm [54] which is

often called in the literature the topological Berry-phase [55]. However in our
simple approach we will get the solutions with trivial topology both in the 3D and
the 2D case.

Formally

cos mnm ¼ cos hn cos hm þ sin hn sin hm cosðun � umÞ; ð15:5:8Þ

and

xnm ¼ arg cos
hn

2
cos

hm

2
þ sin

hn

2
sin

hm

2
eiðun�umÞ

� 	

: ð15:5:9Þ

In the 2D case xnm = mnm/2. At low doping the electron is bound by the impurity
electrostatic potential. In the limit of strong electron-impurity coupling
Vimp ? ?, the electron wave-function Wn will be nonzero only on sites nearest to
the impurity. Let us focus first on the 2D case. (The three-dimensional case can be
considered in the similar way). Supposing that Wn = 0 only for~n1 ¼ ð1; 1Þ; ~n2 ¼
ð1; 0Þ; ~n3 ¼ ð0; 0Þ and ~n4 ¼ ð0; 1Þ for 2D square lattice (in total analogy it is
nonzero only on 8 closest to impurity sites on 3D simple cubic lattice and on 3
closest to impurity sites on 2D frustrated triangular lattice). After minimization of
Wh jH Wj i or equivalently of Wh jHel Wj i we will get the system of 8 equations for

3D simple cubic lattice, 4 equations for 2D square lattice and 3 equations for 2D
triangular lattice. From these equations it is possible to determine the energy of
conductivity electron Eel. The most simple expression for Eel we will have for 2D
square lattice which reads:

Eel ¼ �
JHS

2
� Vimp

ffiffiffi

2
p
� teðcijÞ; ð15:5:10Þ

where

eðcijÞ ¼
1
ffiffiffi

2
p c2

12 þ c2
23 þ c2

34 þ c2
41 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc12 � c34Þ2 þ ðc23 þ c41Þ2

 �

ðc12 þ c34Þ2 þ ðc23 � c41Þ2

 �

r

� �1=2

ð15:5:11Þ

and we use the notation:

cij ¼ cos
mninj

2
ð15:5:12Þ
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Note that in (15.5.11) we consider topologically trivial solution with
Dx = x12 ? x23 ? x34 ? x41 = 0 [37] (For the nontrivial Berry-phase
Dx = 0).

The electron energy Eel in (15.5.10) has a minimum when all spins ~Sn are
parallel to each other. Thus, we have a bound magnetic polaron state: a ferro-
magnetic core embedded in the antiferromagnetic matrix.

15.5.3 Magnetic Structure of a Bound Ferron

To find magnetic structure of a bound ferron it is convenient to perform the
transformation of the variational angles un ? un ? p, hn ? p - hn for one of the
sublattices of cubic (quadratic) lattice. As a result, an AFM order becomes FM,
and vice versa. Such a transformation allows us to work with continuously
changing orientation of spins outside the ferron core. The total energy
E = Eel ? EM then reads (both in 3D cubic and 2D square lattices):

E ¼ Eel þ JS2
X

\nm [
ð1� cos mnmÞ � KS2

X

n

ðsin2 hn cos2 un � 1Þ: ð15:5:13Þ

Here EM = 0 for the state without a ferron.
If we minimize the total energy over the angles un and hn we get two types of

the solutions. The first one corresponds to ‘‘bare’’ magnetic polaron. It is a bound
magnetic polaron with completely polarized spins embedded in purely AFM-
background. The total magnetic moment of such polaron is parallel to the easy
axis. The ferron energy reads:

E0
p ¼ �2t þ 16JS2 for 2D square lattice; ð15:5:14Þ

and

E0
p ¼ �3t þ 48JS2 for 3D simple cubic lattice: ð15:5:15Þ

The bound magnetic polaron (15.5.14), (15.5.15) corresponds to the trivial
solution of the problem. However, there is also another solution corresponding to
the magnetic polaron state with magnetic moment perpendicular to the easy axis.
We call it a ‘‘coated’’ magnetic polaron. It creates long-range spin-distortions of
AFM-matrix outside the region of electron localization. When such ‘‘coated’’
polaron is formed, we lose in gradient energy and in the energy of magnetic
anisotropy, but we win in surface energy and in the magnetic exchange energy.
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15.5.4 ‘‘Coated’’ Ferrons on the 2D Square Lattice

The easiest way to understand the structure of a ‘‘coated’’ ferron is to consider 2D
square lattice. Here for planar configuration all the local spins lie in xy-plane (all
hn = p/2). The spin symmetry inside the ferron (after the lattice transformation)
reads (see Fig. 15.19):

u1 ¼ u3 ¼ u0; u2 ¼ u4 ¼ �u0; 0\u0\p=2: ð15:5:16Þ

After minimization of the total energy with respect to unðmnm ¼ un � umÞ we
get the following set of nonlinear equations:

X

~D

sinðum � unÞ �
j0

2
sinð2unÞ ¼

t

2JS2

X

i

dn nið�1Þi cos2 uni
; ð15:5:17Þ

where j0 = 2 K/J dnm is the Kronecker symbol, and j~Dj ¼ ~n� ~mj j is the distance

between neighboring sites on the square lattice. Thus ~D equals to (±1, 0) and
(0, ± 1).

The system of Eq. (15.5.17) with the boundary conditions (15.5.16) were solved
numerically in [37] for the square cluster containing 40 9 40 sites. The further
growth of the number of sites in the cluster does not change the obtained results.
The initial angle u0 is also found. The calculated magnetic structure is presented
on Fig. 15.20. The magnetization of the ferron core is smaller than the magneti-
zation of the FM-saturation (u0\p=2) for this solution. The coat of the ferrons has
a magnetic moment which is antiparallel to the magnetic moment of the core. In
the same time both magnetic moments of the coat and of the core are perpendicular
to the easy axis x. The angle u0 is close (but still smaller) than p/2. Note that on
the left figure the core is almost ferromagnetic (ferrimagnetic) while the matrix
corresponds to inhomogeneously distorted AFM-structure. In the same time on the
right Fig. 15.20 we have a vice—a versa situation: the core is almost AFM, while
the coat is inhomogeneous and ferromagnetic.

Fig. 15.19 The spin
symmetry inside the ferron
after the lattice
transformation [37]

15.5 Free and Bound Magnetic Polarons 483



15.5.5 ‘‘Coated’’ Ferrons in the Continuum Limit

In order to get analytical estimations for the spatial distribution of the spin dis-
tortions, we find an approximate solution to (15.5.17) in the continuum limit.
Namely, angles for 2D square lattice un are treated as values of continuous
function uð~rÞ at points ~r ¼~n�~n0 (further on in our calculations we sometimes
put interatomic distance d = 1 but restore it in final expressions). Assuming that

outside the magnetic polaron the following condition is met u~nþ~D � u~n

ffi

ffi

ffi

ffi

ffi

ffi
� 1, we

can expand uð~r þ~DÞ in the Taylor series up to the second order in D:

uð~r þ~DÞ � uð~rÞ þ Daoauð~rÞ þ
1
2

DaDboaobuð~rÞ þ � � � ð15:5:18Þ

Substituting this expansion into (15.5.17), we find that function uð~rÞ outside the
magnetic polaron should satisfy the 2D sine–Gordon equation [37]:

Du� j0

2
sin 2u ¼ 0; ð15:5:19Þ

In the range of parameters under study, j � J, that is, j0 � 1, we can linearize
this equation. As a result, we obtain:

Du� j0u ¼ 0: ð15:5:20Þ

15.5.6 The Boundary Conditions in the Continuum Limit

This equation should be solved with the boundary conditions, which at infinity
reads: uð~rÞ ! 0 for r ? ?, and with some boundary conditions at the surface of

Fig. 15.20 ‘‘Coated’’ magnetic polaron before (left figure) and after (right figure) transformation
of angles in one sublattice. The magnetic structure is calculated by solving (15.5.17) at
t/JS2 = 50 and j0 = 5 9 10-3. At these values of parameters, u0 & 85�. x is an easy axis [37]
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the magnetic polaron. We model the magnetic polaron by a circle of radius Rpol ¼
d
�
ffiffiffi

2
p

(see Fig. 15.21) and choose the Dirichlet boundary conditions as:

uð~rÞjr¼Rpol
¼ ~uðnÞ; ð15:5:21Þ

where we introduce polar coordinates (r, n) in the xy-plane. The function ~uðnÞ can
be found in the following way. Note, that ~uðnÞ should satisfy the symmetry
conditions (15.5.16) at points ni ¼ pð2i� 1Þ=4:

~uðniÞ ¼ u0; i ¼ 1; 2; 3; 4: ð15:5:22Þ

Since the function ~uðnÞ is a periodic one, it can be expanded in the Fourier
series:

~uðnÞ ¼
X

1

m¼0

ðam cos mnþ bm sin mnÞ: ð15:5:23Þ

In (15.5.23) we neglect the terms with m [ 2 which allows us to keep the
minimum number of terms to satisfy the conditions (15.5.22). It follows from
(15.5.22) that a0 = a1 = a2 = b1 = 0. Finally (having in mind that for m = 0 sin
m = 0) we obtain:

~uðnÞ ¼ u0 sin 2n:

The solution to (15.5.20) with boundary condition (15.5.21) is:

uð~rÞ ¼ u0

K2ðRpol=r0Þ
K2ðr=r0Þ sin 2n; ð15:5:24Þ

where r0 ¼ d
�

ffiffiffiffiffi

j0
p

and K2(x) is the Macdonald function [56]. In fact r0 ¼
d
.

ffiffiffiffiffiffiffiffiffiffiffi

J=2K
p

� d plays the role of the ‘‘coat’’ radius (the role of the relaxation

length of spin distortions). Indeed, within the range ~rj j\r0 (more exactly for
Rpol\~rj j\r0) uð~rÞ behaves as R2

pol=r2, whereas at large distances, it decreases
exponentially uð~rÞ� expð�r=r0Þ. The function uð~rÞ at n = p/4 and the numerical
results for un,n on the 2D square lattice are plotted on Fig. 15.22.

We see that for t/JS2 = 50 and j0 = 5 9 10-2 an effective ‘‘coat’’ radius
which separates slow power-law decrease of uð~rÞ from a rapid exponential one is
given by r0 = 4.5 d.

Fig. 15.21 The Dirichlet
boundary condition on the
surface of the magnetic
polaron. We model the
magnetic polaron by a circle
of radius Rpol ¼ d=

ffiffiffi

2
p
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15.5.7 Energy of a ‘‘Coated’’ Ferron on a Square Lattice

If we substitute the numerical solution of the discrete Eq. (15.5.17) into the total
energy given by (15.5.10–15.5.12) and take into account that for planar spins
configuration on 2D square lattice mnm = un � um—than we get an exact
numerical estimate for an energy of a ‘‘coated’’ magnetic polaron. However it is
more simple to get an analytical estimate for the total energy in the continuum
limit. In this limit E = Eel ? EM and correspondingly Eel and EM are given by:

Eel ¼ �
JHS

2
� Vimp

ffiffiffi

2
p
� 2t sin u0; ð15:5:25Þ

and

EM ¼ 8JS2 1þ j0

4


 �

sin2 u0 þ
JS2

2

Z

r�Rpol

d2~r ð ~ruÞ2 þ j0u
2

h i

: ð15:5:26Þ

Substituting uð~rÞ from (15.5.24) to (15.5.25) and performing the integration we
get:

EM ¼ 8JS2 1þ j0

4


 �

sin2 u0 þ
JS2u2

0

2
I

Rpol

r0

� �

; ð15:5:27Þ

Fig. 15.22 A decrease with distance of an angle u r!
� �

between distorted spin and easy axis (x-
axis) for ‘‘coated’’ magnetic polaron on 2D square lattice. The circles correspond to exact
numerical solution of the discrete problem on 40 9 40 square cluster at t/JS2 = 50,
j0 = 5 9 10-2 (r0 = 4.5 d). The solid curve corresponds to analytical solution (15.5.24) in
the continuum limit. At small distances u r!

� �

decreases proportionally to 1/r2 while at large
distances r � r0 it decreases exponentially [37]
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where

IðxÞ ¼ 2p 1þ xK1ðxÞ
2K2ðxÞ

� �

: ð15:5:28Þ

Since Rpol � r0, the value of the function I(x) for x = Rpol/r0 � 1 is close to
2p.

The optimal angle u0 is determined by the minimization of the ferron energy
(15.5.25) and (15.5.27):

cos u0 �
4JS2

t
1þ j0

4


 �

sinð2u0Þ �
JS2u0

2t
I

Rpol

r0

� �

¼ 0: ð15:5:29Þ

For Rpol � r0 from (15.5.29) it follows that:

u0 ¼
p
2

1� o
JS2

t

� �� 	

: ð15:5:30Þ

We can compare now the energies of ‘‘bare’’ and ‘‘coated’’ magnetic polarons

(see Fig. 15.23). We see that the energy difference DE ¼ Epol � EðoÞpol between
‘‘coated’’ and ‘‘bare’’ magnetic polarons is negative at small values of anisotropy
(j0 � 1) thus stabilizing the ‘‘coated’’ ferron.

We see that in exact numerical solution the ‘‘coated’’ ferron is more energet-
ically beneficial than a ‘‘bare’’ one till larger anisotropy (j0 * 0.7 for t/JS2 = 50)
in exact solution than in approximate analytical solution in the continuum limit.

To conclude this Section note that absolutely the same variational procedure for
3D simple cubic lattice yields in continuum approximation for uð~rÞ:

uðrÞ�
R4

pol

r4
for Rpol\r\r0; ð15:5:31Þ

and

Fig. 15.23 The energy
difference DE between
‘‘coated’’ and ‘‘bare’’ ferrons
versus j0 = 2 K/J at
t/JS2 = 50. Solid curve
corresponds to exact
numerical solution, whereas
dashed curve is calculated
analytically in the continuum
limit [37]

15.5 Free and Bound Magnetic Polarons 487



uðrÞ� expð�r=r0Þ for r [ r0: ð15:5:32Þ

Finally for 2D frustrated triangular lattice we have very slowly decaying coat of
spin-distortions [38]:

uðrÞ� Rpol

r
for Rpol\r\r0; ð15:5:33Þ

and

uðrÞ� expð�r=r0Þ for r [ r0: ð15:5:34Þ

15.5.8 Generalized Mott Criterion

We consider that xMott which governs the transition from bound to free magnetic
polarons can be qualitatively defined via the radius r0 of the coat-extension for
bound magnetic polaron [38]. In 3D the coats overlap at:

xMott �
3

4p
d

r0

� �3

: ð15:5:35Þ

So xMott * (0.1 7 0.2) % for typical r0 * (5 7 6)d.
Note that for free magnetic polarons Rpol * 2d in 3D cubic lattice. However,

the structures of free and bound magnetic polarons are quite different. A free
polaron has a saturated FM core of the size of Rpol and very rapidly (exponentially)
decaying spin-distortions outside it [18–21]. In the same time ‘‘coated’’ magnetic
polaron bound by nonmagnetic donor impurity has a small and an almost saturated
FM core of the radius *d and extended coat of slowly-decaying spin-distortions
at intermediate distances d \ r \ r0. Their radius r0 � d. For x � xMott the coats
of the bound polarons do not overlap and we are effectively in an insulator (Mott
limit) for strong Coulomb attraction Vimp [ Vc. Note that if Vimp \ VC (where
VC * 2t see [38]), then according to the preliminary estimates the FM core of the
bound magnetic polaron starts to grow and could reach the typical value of the
core of the free magnetic polaron. So, the free and bound magnetic polarons are
very similar for Vimp \ VC. Note that in real manganites Vimp * VC.

Finally for 2D square lattice:

xMott �
1
p

d

r0

� �2

�ð0:5� 1Þ % ð15:5:36Þ
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15.6 Phase Separation in Charge-Ordered Manganites

In this Section we will consider the nanoscale phase separation and formation of
small metallic droplets (polarons) in manganites and other systems with charge-
ordering. Note that the problem of charge-ordering in magnetic oxides has
attracted the attention of theorists since the discovery of the Verwey transition in
magnetite Fe3O4 in the end of the 1930s [57, 58]. An early theoretical description
of this phenomenon was given, e.g., in [59]. This problem was reexamined later in
the numbers of papers in connection with the colossal magnetoresistance in
manganites [34, 60, 61]. The mechanisms stabilizing the charge ordered state can
be different: the Coulomb repulsion of charge carriers (the energy minimization
requires keeping the carriers as far away as possible, similarly to Wigner crys-
tallization) or the electron-lattice interaction leading to the effective repulsion of
electrons at the nearest-neighbor sites. In all the cases, charge ordering can arise in
mixed-valence systems if the electron bandwidth is sufficiently small. In the
opposite case, the large electron kinetic energy stabilizes the homogeneous
metallic state. In real materials, in contrast to the Wigner crystallization, the
underlying lattice periodicity determines the preferential types of charge ordering
(CO). Thus, in the simplest bipartite lattice, to which belongs the colossal mag-
netoresistance manganites of the type of Ln1-xAxMnO3 (where Ln = La, Pr and
A = Ca, Sr) or layered manganites Ln2-xAxMnO4, Ln2-2xA1+2xMn2O7, the
optimum conditions for the formation of the charge ordered state exist for the
doping x = � (n = 1 - x = �—quarter filling). At this value of x the concen-
tration of Mn3+ and Mn4+ are equal and the simple checkerboard arrangement is
possible (see Fig. 15.24). The most remarkable fact here is that even at x = � (in
the underdoped manganites with x \ �), only the simplest version of charge
ordering is experimentally observed with the alternated checkerboard structure of
the occupied and empty sites in the basal plane [62]. In other words, this structure
corresponds to the doubling of the unit cell, whereas more complicated structures
with a longer period (or even incommensurate structures) do not actually appear in
this case.

A natural question then arises as to how the extra or missing electrons can be
redistributed for an arbitrary doping level such that the superstructure remains the
same for x = �? To answer this question, the experimentalists introduced the
concept of the incipient CO-state corresponding to the distortion of a long-range

Fig. 15.24 Verwey charge ordering at x = � with a checkerboard distribution of Mn3+ (crosses)
and Mn4+ (empty circles) ions, which on the figure play the role of electrons and holes
respectively
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charge ordering by microscopic metallic clusters [35, 63]. In fact the existence of
this state implies a kind of nanoscale phase separation [39] discussed in this
chapter. There is a growing evidence nowadays suggesting that an interplay
between the charge ordering and the tendency toward phase separation plays the
essential role in the CMR-materials [7, 8, 33, 66, 67].

In this Section we consider a simple model allowing us to clarify the situation at
an arbitrary doping. The model includes both the Coulomb repulsion of electrons
on the neighboring sites and the magnetic interaction responsible for the magnetic
ordering in manganites (in fact it is FM Kondo-lattice model with nn Coulomb
repulsion). After demonstrating the instability of the system toward phase sepa-
ration in certain doping ranges, we consider the simplest form of the phase sep-
aration, namely, the formation of nanoscale metallic droplets in the insulating CO-
matrix [39]. We estimate parameters of such droplets and complete the phase
diagram of manganites illustrating the interplay between charge ordering, mag-
netic ordering and phase separation. We note that the CO mechanism considered
below (Coulomb repulsion) is not the only one. The electron-lattice interaction can
also play an important role (see e.g., [64]). In application to manganites, one must
also take the orbital interactions into account [61, 64, 65]. Nanoscale phase sep-
aration in orbitally ordered matrix [41] will be considered in the next Section. The
orbital interactions explain the zigzag structures [61] and may be also important in
explaining the fact that the CO in half-doped perovskite manganites is a check-
erboard one only in the basal plane, but it is ‘‘in-phase’’ along the c-direction.
However the nature of this CO state is not clear yet. We also emphasize that the
CO is often observed in manganites at higher temperatures then the magnetic
ordering, and thus one must seek a model that does not heavily rely on magnetic
interactions. In contrast to magnetic interactions, the Coulomb interaction is one of
the important factors that is always present in the systems under consideration.
Moreover it has a universal nature and does not critically depend on specific
features of the particular system. Consequently, our treatment can be also applied
to other CO systems such as magnetite Fe3O4 [57, 58], cobaltites [68], nickelates
[69] etc.

15.6.1 The Simplest Model for Charge Ordering

As the starting point, we consider a simple lattice model for CO-state:

Ĥ ¼ �t
X

\i;j [

cþi cj þ V
X

\i;j [

ninj � l
X

i

ni; ð15:6:1Þ

where t is the hopping integral, V is the nearest-neighbor Coulomb interaction
(a similar nn repulsion can be also obtained via the interaction with the breathing-
type optical phonons), l is the chemical potential, and cþi and cj—are one-electron
creation and annihilation operators, ni ¼ cþi ci is the one site density. The
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symbol h i, j i denotes the summation over the nearest-neighbor sites. We omit the
spin and orbital indices for simplicity in (15.6.1). As mentioned in the introduction
to this Section the spin and orbital effects play the important role in the formation
of the real structure in specific compounds; in this Section, however, we emphasize
the most robust effects related to the nearest-neighbor Coulomb repulsion. The
magnetic effects are discussed in the following Subsections of the Sect. 15.6. We
also assume that the double occupancy does not occur in this model because of the
strong onsite repulsion between electrons and thus we can insert projection
operators in the kinetic term in (15.6.1). Effectively we consider extended Hubbard
model with additional Coulomb repulsion on the neighboring sites under the
condition that onsite Hubbard repulsion U � {V, W—the bandwidth}. This model
is sometimes called Verwey model [57, 58] or Shubin-Vonsovsky model [70].
Shubin-Vonsovsky model was considered in Chap. 9 with respect to supercon-
ductivity. Note that for the models where we conserve the spin of fermions we
often write V/2 instead of V in the second term in Eq. (15.6.1) - see Chap. 9 for
example. Originally it was introduced for better description (in comparison with
simple Hubbard model) of Mott’s metal-dielectric transition. Note that: while the
Mott–Hubbard localization (Mott–Hubbard dielectric state) corresponds to the
density n = 1 (x = 0), Verwey localization (Verwey CO insulating state) corre-
sponds to n = � (x = �). Hamiltonian (15.6.1) explicitly accounts for the cor-
relation effect that is most important for the formation of CO-state, namely, the
electron repulsion on neighboring sites. The long-range part of the Coulomb
interaction only leads to the renormalization of the bandwidth W and does not
significantly affect the properties of the uniform CO-state. However, it can produce
a qualitative effect on the structure of phase-separated state (see the discussion in
the beginning of the Sect. 15.6.4).

The models of the type (15.6.1) with the nn repulsion responsible for the charge
ordering are the most popular in describing this phenomenon, see e.g., [59, 60, 62,
71] and reference therein. Hamiltonian (15.6.1) captures the main physical effects.
We will add some extra terms to it in the Sect. 15.6.4 (where we will consider FM
Kondo-lattice model with additional nn Coulomb repulsion).

In the main part of this section, we always speak about electrons. However, in
application to real manganites we mostly have in mind less than half-doped
(underdoped) systems of the type Ln1-xAxMnO3 with x \ �. For real system one
must therefore substitute holes for our electrons. All the theoretical treatment in
terms of hole density x or electron density n = (1 - x) remains qualitatively the
same. There are some important differences, however, for the nanoscale phase-
separated state for electron densities n [ � and n \ � connected e.g., with
possible stripe formation. We will discuss these differences in the next subsections
where we will study the nanoscale phase-separation in details. Note also that in
principle there are hole-doped and electron-doped families of manganites in
similarity with high-TC materials, but the properties of electron-doped manganites
are not so well understood yet.

In what follows, we consider the simplest case of square (2D) or cubic (3D)
lattices, where the simple two-sublattice ordering occurs for n = �. As mentioned
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in the introduction to this Section, this is the case in layered manganites, whereas
in 3D perovskite manganites, this ordering occurs only in the basal plane (the
ordering is ‘‘in-phase’’ along the c-direction). A more complicated model is
apparently needed to account for this behavior (see [39] and discussion therein).

For n = � a model (15.6.1) was analyzed in many papers; we follow the
treatment of Khomskii in [59]. As mentioned above, the Coulomb repulsion (the
second term in (15.6.1)) stabilizes the CO-state in the form of a checkerboard
arrangement of the occupied and empty sites, whereas the first term (band energy)
opposes this tendency. At arbitrary values of the electron density n we first con-
sider a homogeneous charge ordered solution and use the same ansatz as in [59],
namely

ni ¼ n 1þ ð�1Þis
� �

: ð15:6:2Þ

This expression implies the doubling of the lattice periodicity with the local
densities:

n1 ¼ nð1þ sÞ; n2 ¼ nð1� sÞ ð15:6:3Þ

at the neighboring sites. We note that at n = � for a general form of the electron
dispersion without nesting, the charge ordered state exists only for a sufficiently
strong repulsion V [ VC = 2t [59] (or zV [ 2zt = W). The order parameter is
s\ 1 for finite V/2t, and the ordering is not complete in general, i.e., an average
electron density ni differs from zero or one even at T = 0. (The ideal CO-state
described by Fig. 15.24 with filled and empty sites is realized in the strong-
coupling case V � VC). Thus for Verwey localization (for insulating checkerboard
CO-state) we need a hierarchy of parameters U � V � W in Verwey (Shubin-
Vonsovsky) model.

We use the coupled Green function approach as in [59] and [39], which yields:

ðE þ lÞG1 � tkG2 � zVnð1� sÞG1 ¼
1

2p
;

ðE þ lÞG2 � tkG1 � zVnð1þ sÞG2 ¼ 0;

8

<

:

ð15:6:4Þ

where G1 and G2 are the Fourier transforms of the normal lattice Green functions
Gil ¼� cic

þ
l � for the sites i and l belonging respectively, to the same sublattice

or to the different sublattices, z is the number of nearest neighbors, and tk is the
Fourier transform of the hopping matrix element. In deriving (15.6.4), we per-
formed a mean-field decoupling and replaced the averages hcþi cii by the onsite
densities ni in (15.6.4). The solution of (15.6.4) leads to the following spectrum:

E þ l ¼ Vnz	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVns zÞ2 þ t2
k

q

¼ Vnz	 xk: ð15:6:5Þ

The spectrum defined by (15.6.5) resembles the spectrum of superconductor
(SC) and, hence, the first term under the square root is analogous to the super-
conducting gap squared. In other words, we can introduce the CO-gap by the
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formula: D = Vnsz. It depends upon the density not only explicitly, but also via
the density dependence of s. We thus obtain:

xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ t2
k

q

: ð15:6:6Þ

We note a substantial difference between the spectrum of CO-state (15.6.6) and
SC-state, namely the chemical potential l does not enter under the square root in
(15.6.6) for n = �, which is in contrast to the spectrum of SC, where

xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ ðtk � lÞ2
q

. We can then find the Green functions G1 and G2:

G1 ¼
Ak

E þ l� Vnz� xk þ io
þ Bk

E þ l� Vnzþ xk þ io

G2 ¼
tk

2xk

1
E þ l� Vnz� xk þ io

þ 1
E þ l� Vnzþ xk þ io

� 	

8

>

>

<

>

>

:

; ð15:6:7Þ

where

Ak ¼
1

4p
1� D

xk

� �

; Bk ¼
1

4p
1þ D

xk

� �

: ð15:6:8Þ

They have the two-pole structure, corresponding to the lower and upper Verwey
bands. After the standard Wick transformation E ? io ? iE in the expression for
G1 we find the densities in the following form:

n1 ¼ nð1þ sÞ ¼
Z

1� D
xk

� �

nFðxk � lþ VnzÞ þ 1þ D
xk

� �

nFð�xk � lþ VnzÞ
� 	

dD~k

2XBZ

n2 ¼ nð1� sÞ ¼
Z

1þ D
xk

� �

nFðxk � lþ VnzÞ þ 1� D
xk

� �

nFð�xk þ lþ VnzÞ
� 	

dD~k

2XBZ
;

ð15:6:9Þ

where D = 3 or 2, nFðyÞ ¼ 1
ðey=Tþ1Þ is the Fermi–Dirac distribution function and

XBZ is the volume of the first Brillouin zone.
Adding and subtracting the two equations for n1 and n2 we obtain the resulting

systems of equations for n and l:

1 ¼ Vz

Z

1
xk

nFð�xk � lþ VnzÞ � nFðxk � lþ VnzÞ½ ffi dD~k

2XBZ
;

n ¼
Z

nFð�xk � lþ VnzÞ þ nFðxk � lþ VnzÞ½ ffi dD~k

2XBZ
:

ð15:6:10Þ

For low temperatures (T ? 0) and n B �, it is reasonable to assume that l -

Vnz is negative. Therefore nFðxk � lþ VnzÞ ¼ 0 and nFð�xk � lþ VnzÞ ¼
hð�xk � lþ VnzÞ is the step function.

It is easy to see that for n = � the system of Eq. (15.6.10) yields identical
results for all
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�D
 l� Vnz
D: ð15:6:11Þ

From this point of view n = � is the indifferent equilibrium point. For infi-
nitely small deviation from n = �, that is, for densities n = � - 0, the chemical
potential must be defined as:

l ¼ �Dþ Vz

2
¼ Vz

2
ð1� sÞ: ð15:6:12Þ

If we consider the strong coupling case V � 2t (zV � W) and assume a
constant density of states inside the band, we have:

s ¼ 1� 2W2

3V2z2
ð15:6:13Þ

for a simple cubic lattice and, therefore:

l ¼ W2

3Vz
: ð15:6:14Þ

We note that for the density n = � the CO-gap D appears for an arbitrary
interaction strength V. This is due to the existence of nesting in our simple model.

In the weak coupling case V � 2t and with perfect nesting, we have:

D�W exp �W

Vz

� �

; ð15:6:15Þ

and s is exponentially small. For zV � W or, accordingly, for V � 2t, it follows
that D & Vz/2 and s ? 1. As mentioned above, for a general form of the electron
dispersion without nesting, the CO exists only if the interaction strength V exceeds
a certain critical value of the order of the bandwidth (see [59]). In what follows, we
restrict ourselves to the physically more instructive strong-coupling case V � 2t.

For the constant density of states (flat band) the integrals in (15.6.10) can be
taken explicitly and the system of Eq. (15.6.10) can be easily solved for arbitrary
n. We note, however, that in the strong coupling case V � 2t and the small density
deviations from � (d � 1), the results are not very sensitive to the form of the
electron dispersion. That is why we do not need to solve the system of equations
(15.6.10) exactly.

We now consider the case where electron density n = � - d with d � 1 being
the density deviation from �. In this case l = l(d, s) and we have two coupled
equations for l and s. As a result:

lðdÞ � Vnzð1� sÞ � 4W2

Vz
d2 � W2

3Vz
þ 4W2

3Vz
dþ oðd2Þ: ð15:6:16Þ

494 15 Nanoscale Phase Separation in Complex Magnetic Oxides



The energy of the CO-state (counted from the energy of a homogeneous
metallic state EN = 0) is therefore given by:

ECOðdÞ ¼ ECOð0Þ �
W2

3Vz
d� 2W2

3Vz
d2 þ oðd3Þ; ð15:6:17Þ

where

ECO ¼ �
W2

6Vz
ð15:6:18Þ

is the energy precisely corresponding to the density n = � and |ECO(0)| � W for
V � 2t. At the same time, the CO-gap D is given by:

D � Vz

2
1� 2d� 2W2

3V2z2
ð1þ 4dÞ

� 	

: ð15:6:19Þ

The dependence of the chemical potential l and the total energy E on d in
(15.6.16) and (15.6.17) actually stems from this linear decrease of the energy gap
D with the deviation from half-filling.

For n [ �, the energy of the CO-state starts to increase rapidly due to a large
contribution of the Coulomb interaction (the upper Verwey band is partially filled
for n [ �—that is the difference between n [ � and n \ � on the level of the
Green functions in (15.6.7)). In other words, for n [ �, contrary to the case where
n \ �, each extra electron put into the checkerboard CO-state, necessarily has
occupied nearest-neighboring sites, increasing the total energy by Vz|d|. For
|d| = n - � [ 0, we then have:

ECOðdÞ ¼ ECOð0Þ þ Vz� W2

3Vz

� �

dj j � 2W2

3Vz
d2 þ oðd3Þ: ð15:6:20Þ

Accordingly, the chemical potential is given by:

lðdÞ ¼ Vz� W2

3Vz
� 4W2

3Vz
dj j þ oðd2Þ: ð15:6:21Þ

It undergoes a jump equal to Vz as s ? 1. We note that the CO-gap D is
symmetric for n [ � and n \ � and is given by:

D � Vz

2
1� 2 dj j � 2W2

3V2z2
ð1þ 4 dj jÞ

� 	

: ð15:6:22Þ

We could make the entire picture symmetric with respect to n = � by shifting
all the one-electron energy levels and the chemical potential by Hartree–Fock type
shift Vz/2, i.e., defining:

l0 ¼ l� Vz

2
: ð15:6:23Þ
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In terms of l0 expressions (15.6.16) and (15.6.21) can be written as:

l0 ¼ �Vz

2
þ W2

3Vz
þ 4W2

3Vz
d; n\1=2;

l0 ¼ Vz

2
� W2

3Vz
� 4W2

3Vz
dj j; n [ 1=2:

8

>

>

<

>

>

:

ð15:6:24Þ

Similarly to the situation in semiconductors, we have l0 = 0 precisely at the
point n = �, which means that the chemical potential lies in the middle of the gap
between lower and upper Verwey bands (see Fig. 15.25). At densities n = � - 0,
the chemical potential l0 = - Vz/2 coincides with the upper edge of the filled
(lower) Verwey band.

15.6.2 The Instability of the CO-State with Respect to Phase
Separation

We now check the stability of the CO-state. At the densities close to n = �, the
dependence of its energy on the charge density has the form illustrated in
Fig. 15.26. The figure clearly indicates a possible instability of the CO-state (the
energy has a kink for n ? �).

Indeed, the most remarkable implication of (15.6.16–15.6.22) is that the
compressibility j of the homogeneous CO system is negative for the densities
different from �,

j�1� dl
dn
¼ � dl

dd
¼ d2E

dd2 ¼ �
4W2

3Vz
\0; ð15:6:25Þ

where d = � - n. This is a manifestation of the tendency toward the phase
separation characteristic of the CO system with d = 0. The presence of a kink in

Fig. 15.25 Band structure of
the Verwey (Shubin-
Vonsovsky) model (15.6.1) at
n = �. The lower Verwey
band is completely filled. The
upper Verwey band is empty.
The chemical potential l0= 0
lies in the middle of the gap
with the width 2D [8, 39]
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ECO(d) (cf. (15.6.17) and (15.6.20)) implies that one of the states into which the
system might separate would correspond to the checkerboard CO-state with
n = �, whereas the other would have a certain density n’ smaller or larger then �.
This conclusion of [39] resembles that in [61] (see also [66] and [36]), although the
detailed physical mechanism is different. The possibility of phase separation in
Verwey model (15.6.1) away from n = � was also reported earlier in [67] for the
infinite-dimensional case. In what follows, we focus our attention on the situation
with n \ � (underdoped manganites); the case where n [ � apparently has cer-
tain special properties—the existence of stripe phases, etc. [35], the detailed origin
of which is not yet clear. Let us remind once more that for hole-doped manganites
La1-xCaxMnO3 we should think in terms of holes. So underdoped La1-xCaxMnO3

corresponds to x \1=2, while stripe-formation takes place for x [1=2 in it.
It is easy to understand the physics of the phase separation in our case. As

follows from (15.6.22), the CO-gap decreases linearly with the density deviation
from n = �. Correspondingly, the energy of the homogeneous CO-state rapidly
increases, and it is more favorable to ‘‘extract’’ extra holes from the CO-state,
putting them into one part of the sample (for n \ �), while creating the ‘‘pure’’
checkerboard CO-state in the other part. The energy loss due to this redistribution
of holes is overcompensated by the gain provided by a better charge order.

However the hole-rich regions would not be completely ‘‘empty’’, similarly to
pores (clusters of vacancies) in crystals: we can gain extra energy by ‘‘dissolving’’
a certain amount of electrons there. In doing this, we decrease the band energy of
the electrons due to their delocalization. Thus, this second phase would be a
metallic one. The simplest state of this kind is a homogeneous metal with the
electron concentration nm. This concentration, as well as the relative volume of the
metallic and CO-phases, can be easily calculated by minimizing the total energy of
the system, the energy of the metallic part of the sample Em in 3D case is given by:

Fig. 15.27 Complete phase-separation into two large clusters (metallic and charge-ordered). Vm

and VCO are the volumes of the two clusters [8]

Fig. 15.26 The energy of the
CO-state versus charge
density for n ? �. The
energy has a kink for n ? �
[39]
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Em ¼ �tznm þ c1tðnmÞ5=3 þ VðnmÞ2; ð15:6:26Þ

where c1 is a constant.
Minimizing of (15.6.26) with respect to nm, we find the equilibrium electron

density in the metallic phase. For the strong coupling case V [ zt, we obtain
(neglecting a relatively small correction provided by the term with (nm)5/3):

nm0 �
tz

2V
: ð15:6:27Þ

In accordance with this simple treatment, the system with nm0 \ n \ � would
therefore undergo the phase transition into the CO-phase with n = � and the
metallic phase with n = nm0. For arbitrary n, the relative volumes Vm and VCO of
these phases can be found from the Maxwell construction (see also Fig. 15.27):

Vm

VCO
¼ 1=2� n

n� nm0
ð15:6:28Þ

This implies that the metallic phase occupies the part Vm of the total sample
volume VS given by:

Vm

VS
¼ 1=2� n

1=2� nm0
: ð15:6:29Þ

The metallic phase would occupy the entire sample when the total density n is
less or equal to nm0.

15.6.3 Nanoscale Phase Separation with Metallic Droplets
Inside CO-Matrix

As argued above, the system with a short-range repulsion described by (15.6.1) is
unstable with respect to the phase separation for n close but different from �. The
long-range Coulomb forces would, however, prevent the full phase separation into
large regions, containing all extra holes, and the pure n = � CO-region. We can
avoid this energy loss by formation (instead of one big metallic phase with many
electrons) of the finite metallic clusters with smaller number of electrons. The
limiting case would be a set of spherical droplets, each containing one electron.
This state is similar to magnetic polarons (‘‘ferrons’’) considered in the previous
Sections of this chapter.

Let us now estimate the characteristic parameters of these droplets. The main
purpose of this treatment is to demonstrate that the energy of the state constructed
in this way is lower then the energy of the homogeneous state, even if we treat
these droplets rather crudely and do not optimize all their properties. In particular,
we make the simplest assumption that the droplets have sharp boundaries and that
the CO-state existing outside these droplets is not modified in their vicinity. This
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state can be treated as a variational one: optimizing the structure of the droplets
boundary can only decrease its energy.

The energy (per unit volume) of the droplet state with the concentration of
droplets nd can be written in total analogy with the ferron energy in the double-
exchange model [see Sect. 15.3 and Eq. (15.3.8)]. This yields in 3D case:

Edrop ¼ �tnd z� p2d2

R2

� �

� W2

6Vz
1� nd

4
3

p
R

d

� �3
" #

; ð15:6:30Þ

where ECOð0Þ ¼ � W2

6Vz is the energy of the CO-state for n = � (Edrop = ECO(0) for
nd = 0), d—is the lattice constant and R is the droplet (polaron) radius. The first
term in (15.6.30) corresponds to the kinetic energy gain of the electron delocal-
ization inside the metallic droplets and the second term describes the CO-energy in
the remaining, insulating part of the sample. Minimization of the energy in
(15.6.30) with respect to R yields for the optimal polaron radius:

Rpol

d
� V

t

� �1=5

: ð15:6:31Þ

The optimal polaronic energy reads:

Epol ¼ �
W2

6Vz
� tndz 1� C2

t

V


 �2=5
� �

; ð15:6:32Þ

where C2 is numerical constant.
The critical concentration ndc corresponds to the configuration where metallic

droplets start to overlap, i.e., where the volume of the CO-phase (the second term
in (15.6.30)) tends to zero. Hence,

ndc ¼
3

4p
d

Rpol

� �3

� t

V


 �3=5
ð15:6:33Þ

Correspondingly in the 2D case ndc� t
V

� �1=2
and Rpol

d � V
t

� �1=4
(we already used

this formula for simple estimates in connection with phase separation in 2D
Shubin-Vonsovsky (Verwey) model in Chap. 9).

Actually, one should include the surface energy contribution to the total energy
of the droplet. The surface energy in 3D case should be of the order of W 2R 2/
V. For large droplets, this contribution is small compared to the term *R3 in
(15.6.30), it would also be reduced for a ‘‘soft’’ droplet boundary. It is easy to
show that even in the worst case of a small droplet (for the order of several lattice
constants) with a sharp boundary, R/d acquires the factor 1 - 0.2 (t/2V)1/5 related
to the surface contribution. Thus, the corrections related to the surface would not
exceed about 20 % of the bulk value. That is why we ignore this term below.

Comparing (15.6.17) and (15.6.32) for one-electron droplets we see that for the
deviations from half-filling (0 \ d B dC = �-ndc) the energy of the phase sepa-
rated state (15.6.32) is always lower that the energy of the homogeneous CO-state
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(for nd = 0 and d = 0 the energies (15.6.32) and (15.6.17) coincide). The energy
of a droplet state (15.6.32) is also lower than the energy of the fully separated state
(15.6.26) obtained by the Maxwell construction from the homogeneous metallic
state. Correspondingly, the critical concentration ndc in (15.6.33) is larger then nmo

in (15.6.27). There is no contradiction here: in the droplet (polaronic) state which
we constructed the electrons are confined within the spheres of the radius R in 3D
and even when these droplets start to overlap at n = ndc, occupying the entire
sample, the electrons by construction, are still confined within their own spheres
and avoid each other. In other words, a certain degree of CO-correlations is still
present in our droplet state, decreasing the repulsion, and hence the total energy.

Thus the energy of the phase separated state with nanoscale metallic droplets
inside insulating CO-matrix corresponds to the global minima of the energy for all
0 \ d B dc. This justifies our conclusion about the phase separation into CO-state
with n = � and a metallic state with small spherical droplets (see Fig.9.12).

Note that along with one-electron metallic droplets a nanoscale phase separa-
tion scenario of the kind shown on Fig. 15.28 can be also organized. Here a
metallic droplet is formed by replacing one electron with a hole at the center of a
droplet.

Note, however, that the energy of such undermelted CO-state (a ‘‘resonance-
valence-bond’’—RVB-state [75] for the Verwey model) is much more difficult to
calculate than that for a one-electron metallic droplet, and this problem will not be
considered in this chapter. The nanoscale phase separation with one-electron
droplet encountered here resembles that of a strongly interacting Hubbard model
close to half-filling (for electron densities n = 1 - d). The CO-state corresponds
to AFM-state in the Hubbard model and the role of nn Coulomb repulsion V plays
onsite Hubbard repulsion U. At n = 1 in the Hubbard model we have AFM-
dielectric (insulating state) due to Mott- Hubbard localization scenario for
U � W (we discussed it briefly in Chap. 9). Close to half-filling in the limit of
U � W we have phase separation on small metallic FM-droplets (containing one-
hole) inside AFM insulating matrix [73] due to Nagaoka theorem (which predicts
FM-transition in the Hubbard model after an addition of one hole to the half-filled
AFM-structure in the limit U ? ?) [74].

We would like to emphasize also that for electron density n [ �, the com-

pressibility of the CO-state is again negative j�1 ¼ � 4W2

6Vz \0; and has the same
value as for n \ �. As a result it is again more favorable to create a phase-
separated state for these densities. However, as already mentioned, the nature of

Fig. 15.28 Nanoscale phase separation scenario with an undermelted CO-state within a metallic
droplet [8]
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the second phase with n [ � is not quite clear at present, and therefore, we do not
consider this case here.

15.6.4 Phase Separation in the Extended Double Exchange
Model (with nn Coulomb Interaction)

In the beginning of the Sect. 15.3 we introduced FM Kondo lattice model (or
double exchange model) as a minimal model to describe FM-polarons inside
AFM-matrix at small densities n � 1 (Fig. 15.11) and in almost half-filled case
for x = 1 - n � 1 (Fig. 15.12). To capture an additional possibility of the for-
mation of metallic polarons (we will show that they are actually ferromagnetic
also) inside CO-matrix in manganites we should add nn Coulomb repulsion
between conductivity electrons to the double exchange model. Then the corre-
sponding Hamiltonian of the extended model reads:

Ĥ ¼ �t
X

\i;j [ r

cþir cjr þ V
X

\i;j [
ninj � JH

X

i

~Si~ri þ J
X

\i;j [

~Si
~Sj; ð15:6:34Þ

where we conserved the coefficient V (and not V/2) in the second term in
(15.6.34) in similarity with (15.6.1). The discussion in Sect. 15.3 shows that we are
working in the strong-coupling limit of FM Kondo lattice model JHS [ W [ JS2.
In the same time as we discussed in Sect. 15.6 we are working in the strong-
coupling limit of Verwey model. Thus it is reasonable to consider the following
hierarchy of parameters in the extended model:

JHS [ V [ W [ JS2: ð15:6:35Þ

We emphasize here once more that in manganites, strictly speaking, a correlative
radius rsJ4 due to large dielectric polarization e * (10 7 20), so we are really on
the border between weak-coupling perturbative approach (RPA-scheme with
V/t [ 1 which is valid for rs.1) and non-perturbative tight-binding case (for which
rs � 1 and it is reasonable to assume that V [ t). In our view, however, the tight
binding (strong-coupling) approximation V [ t is more preferable since it allows to
consider all major phenomena in manganites on a simple qualitative level.

For small electron densities n � 1 the radius of FM-polaron embedded in the
AFM-matrix in the absence of nn Coulomb interaction is given by

Rpol

�

d� t
�

JS2
� �1=5

and hence for densities which are far from the percolation

threshold n� nc� JS2
�

t
� �3=5

we have the following chain of inequalities (see
Fig. 15.29):

d=n1=3 � Rpol [ d: ð15:6:36Þ
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This chain of inequalities implies that the mean distance between the con-
duction electrons far exceeds the polaron radius, which in turn is larger than the
intersite distance d. (In this Section we will again mostly speak about electrons).

Thus, for FM polarons (ferrons) with one conduction electron per ferron, even
the allowance for the strong Coulomb interaction between electrons on neigh-
boring sites does not lead to a charge redistribution. Therefore, upon including the
Coulomb interaction, both the energy of the phase-separated state with FM po-
larons inside AFM matrix and that of a homogeneous state acquire only a Hartree–
Fock correction term proportional to (z/2)Vn2, so that the energy difference Epol -

Ehom between the polaron and the homogeneous state remains unchanged, and the
global minimum for the energy of the system again corresponds to the phase
separated FM polaron/AFM matrix state. The most important point to reemphasize
here is that there is only one conduction electron in each ferron. Here lies the main
difference between the small-scale phase separation and the large-scale phase
separation with a large number of conduction electrons per FM cluster (droplet).
Note, however, that within the simplest model (15.6.34) and in the case of large-
scale phase separation, the electric charge within an AFM droplet may be made
rarefied enough to avoid strong increase in the Coulomb interaction energy. This is
likely to be a qualitative explanation of the experiments [30, 35] showing FM
droplets, 100–1000 Å across, with a large number of conduction electrons. Note
also that the analysis of the large-scale phase separation probably requires con-
sidering the elastic energy of the lattice distortions caused by the formation of an
inhomogeneous state. Such distortions may make it easier to change the electron
density without violating the electroneutrality.

15.6.4.1 Phase Separation for Densities Close to �

The energy of FM metallic droplet inside CO-matrix (which should be also AFM)
for densities close to � is given by the combination of the terms typical to
FM-polarons inside AFM-matrix (15.3.8) and to metallic polarons inside CO-
matrix (15.6.30):

E ¼ �tnd z� p2d2

R2

� �

þ zJS2

2
4
3

p
R

d

� �3

nd �
zJS2

2
1� 4

3
p

R

d

� �3

nd

" #

� W2

6Vz
1� 4

3
p

R

d

� �3

nd

 !

; ð15:6:37Þ

Fig. 15.29 Distribution of
conduction electrons in a
phase-separated state with
FM polarons inside AFM
matrix [8]
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where nd is a droplet density. The first three terms in (15.6.37) are identical to the
magnetic polaron energy in the double exchange model (15.3.8) but with the
electron density n replaced by the droplet density nd. At the same time the last term
in (15.6.37) is identical to the second term in (15.6.30) corresponding to the energy
of a homogeneous CO Verwey state. Minimization of the droplet energy (15.6.37)
with respect to radius R yields in the 3D case:

Rpol

d
� 1

t=V þ JS2=tð Þ1=5
: ð15:6:38Þ

Note that for t/V � JS2/t, we obtain R=d� t=JS2ð Þ1=5
, and the double exchange

result (15.3.9) is reproduced for the metallic droplet radius. In the opposite case t/

V � JS2/t, we have R=d� V=tð Þ1=5, and we arrive to the Verwey model result
(15.6.31). Accordingly, the critical concentration for the overlap of metallic
droplets is:

ndc�
t

V
þ JS2

t

� �3=5

: ð15:6:39Þ

Physically, minimization of the total energy (15.6.37) with respect to the
droplet radius implies that there is only one conduction electron inside the metallic
droplet and that this electron is surrounded by FM-ordered local spins. At the same
time, outside the droplets we have a CO (checkerboard) arrangement of conduc-
tion electrons surrounded by AFM-ordered local spins (Fig. 15.30).

This last result illustrates the main difference between the phase-separated
states that are obtained in the extended model (15.6.34) at electron densities n ? 0
and n ? �. At low densities (n � 1), the conduction electron density outside FM
polarons is zero and the entire electric charge is contained within metallic droplets.
At the same time, at densities close to �, most conduction electrons are localized
in CO-regions outside the metallic droplets.

Finally, the phase diagram of the extended FM Kondo-lattice model with nn
Coulomb interaction includes the following regions for n \1=2:

1) For 0\n ~\ðJS2=tÞ3=5the system separates into FM metallic droplets within an
AFM insulating matrix.

Recollecting the results of Sect. 15.5 we should have in mind that if we include
in the model (15.6.34) additional Coulomb attraction between a conduction
electron and Ca(Sr) donor impurity Vimp (see (15.5.1)) than the first interval

Fig. 15.30 Formation of
metallic FM droplets of small
radius within a charge-
ordered AFM matrix [8]
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0 \ n [ (JS2/t)3/5, actually is splitted in two: for 0 \ n \ nMott we have bound
magnetic polarons of de Gennes with extended coats of spin-distortions and for
nMott \ n [ (JS2/t)3/5 we have free FM-polarons (Nagaev-Mott-Kasuya ferrons
with rigid boundary) inside AFM-matrix.

2) For (JS2/t)3/5
[ n [ (t/V ? JS2/t)3/5 \ � the system is a FM metal. Of

course, we must have a certain ‘‘window’’ of parameters to satisfy this
inequality. As we already discussed in real manganites we have t=V � 1=2�
1=3 and JS2/t * 0.1.

Therefore, the inequality (JS2/t)3/5 \ (t/V ? JS2/t)3/5 is not necessarily met.
Experimental evidence indicates that the desired parameter range exists for
La1-xCaxMnO3, but definitely not for Pr1-xCaxMnO3.

3) Finally, for (t/V ? JS2/t)3/5
[ n \ � we have phase separation into metallic

FM droplets within an AFM charge-ordered matrix. Note that large Hund-rule

exchange JH between a local spin~S and~r can suppress an ideal AFM-structure
of local spins inside CO-matrix and promote ferrimagnetism inside it (for total
spins Stot = S ? �).

Let us repeat again that in connection to the overall phase-diagram of hole-
doped manganites La1-xCaxMnO3, presented on Fig. 15.2, we should think in terms
of holes describing the regions of PS I, FM-metal, and PS II in the underdoped
case (x \1=2).

15.7 Orbital Ferrons

In fact a two-band character of conducting eg-orbitals (see Figs. 15.6 and 15.7) is
important for conductivity electrons in manganites especially close to percolation
threshold x * 0.16. Here the full model, which describes the manganites, is a very
complicated Kondo-Hubbard model [76]. The beautiful physics of the phase
separation and orbital ordering can be described, however, on the language of a
reduced two-band Hubbard model, which neglects double exchange interactions
and describes only the essential interactions inside the subspace of two conducting
eg-orbitals.

15.7.1 Two-Band Degenerate Hubbard Model

The two-band model in a most general case was considered in Chap. 10. In
manganites we deal with two-band degenerate Hubbard model describing by the
Hamiltonian:
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Ĥ0 ¼
P

hn mi abr
tab
n m cþn a r cm b r þ e

P

mr
nm br � l

P

mbr
nm brþ ð15:7:1Þ

where l is the chemical potential, e is the energy-shift between the centers of the
bands. In our case e = EJT is connected with Jahn–Teller gap. {a, b}—are the two
eg-subbands, \ n, m [ are the neighboring sites, {r, r ’} are spin projections.
Without loss of generality in the degenerate model we can assume
U1 = U2 = U’ ? 2JH = U, where strong on-site Hubbard repulsion
U * 10 eV � JHS * 1 eV � t. The total number of electrons (in both bands)
per site ntot = 1 - x, where we are interested in x [ xC = 0.16. In magnetic
oxides t1 * t2. However in other materials such as uranium based HF-compounds
(considered in Chaps. 10, 14) and possibly in overdoped cuprates they are different
t1 � t2.

15.7.2 Heisenberg-Like Orbital Interaction

The detailed analysis of the two-band degenerate Hubbard model is given in [76,
77]. Here we present a brief sketch of the derivation of the effective model which
allows us to get an orbital ferron state. In the strong-coupling case for U � t and
x [ 0.16 we get on 2D square lattice with eg-electrons on |x2 - y2 [ and |3z2 -

r2 [ -orbitals (see Figs. 15.7 and 15.8) the following effective Hamiltonian:

Ĥeff ¼ �
X

n ;m
a ;b; r

ta b
n mPþn a r cþn a r cm br Pm b r þ J

X

\n;m [
~sn~sm: ð15:7:2Þ

It is an orbital t-J model. The effective model (15.7.2) is derived from the two-
band Hubbard model in [77] by the canonical transformation similar to derivation
of the standard t-J model from the one-band Hubbard model in [24]. Pseudospin
operators in (15.7.2)~sn ¼ sx

n; s
z
n


 ffl

, sx;z
n ¼ 1

2

P

a; b; r
cþn a rðr

x;z
a bÞcn br describe an orbital

state, rab
x,z are Pauli matrices, quadrupole interaction J * t2/U * (300 7 400) K

is analogous to superexchange interaction of AFM-type (J [ 0) between two
orbitals, Pmrb are projection operators, excluding double occupation of sites. The
Hamiltonian (15.7.2) was firstly proposed by Kugel, Khomskii [42] to describe the
orbital ordering in Jahn–Teller systems for n = 1. The hopping integrals tnm

ab are
described by (2 9 2) matrix (see [41] for more detailed analysis) and read:
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ta b
nm ¼

t0

4
3 �

ffiffiffi

3
p

�
ffiffiffi

3
p

1

� �

; ð15:7:2Þ

where minus (plus) sign corresponds to n-m bond parallel to x (y) axis in [41].

15.7.3 Orbital Ferrons in the Orbital t–J model

In the phase separated sate of the two-band Hubbard model (more precisely of the
orbital t-J model) we deal with metallic orbital ferrons inside AFM orbital matrix.
The derivation of the optimal radius of metallic orbital ferrons in [41] is exactly
equivalent to the derivation of a FM-polaron inside AFM-matrix in 2D square
lattice (see Sect. 15.4.3 and Eq. (15.4.7)). Characteristic radius of the droplet:

Rpol

d
¼ c3

t0a2
0

pJS2

� �1=4

, where a0 & 3p/4 in the first zero of the Bessel function,

(see Fig. 15.31), and c3 is numerical coefficient connected with the spectrum in
Eq. (15.7.2). We can see that inside the circular ferrons we have the same orbitals
(say dx2 - y2), while outside the ferrons we have alternating order of dx2 - y2 and
d3z2 – r2 orbitals.

Concluding this Section we can say that we considered free and bound mag-
netic polarons inside AFM and CO-matrices in 3D and layered manganites and
other complex magnetic oxides (cobaltites, nickelates) as well as more exotic (but
very beautiful) orbital ferrons inside AFM orbital matrix (inside the matrix with
alternating eg-orbitals in real space) (see the discussion of the overall phase-
diagram on the Fig. 15.2 in Sect. 15.2.1).

Fig. 15.31 Formation of
metallic orbital ferrons inside
AFM orbital matrix [41]
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15.8 Experimental Confirmation of the Overall Phase-
Diagram and Phase Separation in Manganites

The phase diagram of manganites discussed in this chapter is in good qualitative
agreement both with experiments on nanoscale phase separation in manganites
[78–83] and with numerical calculations by Dagotto et al. [64]. Note that real
manganites are usually hole-doped, so that experimentally x = 1 - n means the
hole concentration. This does not matter much, however, because of the re-entrant
character of the phase diagram for n ? 0 and x = 1 - n ? 0. Nevertheless, the
phase diagram of real manganites differs considerably depending on whether it is
electron- or hole-doped. The mechanisms of this asymmetry are not yet completely
understood. In particular, the asymmetry can be related to the specific features of
orbital ordering in manganites and on possible formation, as we have mentioned
above, of inhomogeneous states other than droplet structure discussed here,
charge- and orbital stripes, for example. To include all these aspects, however, a
theory that goes beyond the content of this chapter is needed.

15.8.1 Experimental Confirmation of Nanoscale Phase
Separation

Turning now to the experimental confirmation of our results, the beautiful nuclear
magnetic resonance (NMR) experiments on La1-xCaxMnO3 [78] should be
mentioned first. These experiments which employed 55Mn nuclei, provided for the
existence of two NMR frequencies in the sample (instead of only one as is typical
for a homogeneous state), whose frequencies are naturally attributed to the FM and
AFM-domains resulting from the phase separation in manganites. NMR mea-
surements at La nuclei in La-Pr manganites led to the similar conclusion [79].

Further experimental confirmation of phase separation in manganites comes
from recent neutron scattering experiments [80, 83]. They showed that in the case
of inelastic scattering there are two spin-wave modes, one of which has a quadratic
dispersion and corresponds to FM magnons, whereas the other has a linear dis-
persion and corresponds to magnons in AFM phase.

Note that in elastic neutron scattering experiments the peak intensity I(q) has a
Lorentzian shape. The half-width of the peak at low densities n * 0.05 corre-
sponds to the characteristic polaron radius Rpol * 1/q0 * 10 Å [80]. At densities
n close to �, the line half-width again corresponds to small-scale phase separation
with a characteristic polaron size Rpol * (10 7 20) Å.

Note that similar measurements of the spin wave spectrum in a magnetic field
using the AFM resonance technique are interpreted in [84] as favoring some
nontrivial compromise between magnetic polaron formation and inhomogeneous
spin canting. Probably these experimental results could be explained within a
concept of bound magnetic polarons with extended coat of spin-distortions con-
sidered in Sect. 15.5.
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The further experimental evidence in favor of the polaron picture was obtained
by Babushkina et al. [81] who discovered a strongly non-linear current–voltage
characteristic in La-Pr manganites close to the phase boundary between the FM
and CO-states. This provides indirect evidence for percolative charge transfer [86,
87] naturally activated by the phase separation process. The critical density for the
overlap of polarons actually appears as the percolation threshold picture [86].

Finally, the experiments of Voloshin et al. [82] showed a shifted magnetization
hysteresis in manganites with the center of the hysteresis loop shifting from the
magnetic field H = 0 to H * 4–6 T in the low-density state. The shift appears
quite naturally within the polaron picture. To see this note that in a magnetic field
the effective Heisenberg exchange is Jeff S

2 ¼ JS2 � glel
B HS, where g is the gyro-

magnetic ratio and lel
B is the electron Bohr magneton. Therefore the polaron

radius R
d ¼ t

Jeff S2


 �1=5
increases with the result that in strong magnetic fields the

FM-polarons start to overlap at lower densities nc(H) \ nc(0) & 0.16.

15.8.2 Experiments on Large Scale Phase Separation:
Formation of Stripes

Note that, recently, more direct experiments supporting the phase separation
scenario have been carried out [30, 85]. In [85] metallic regions inside the insu-
lating matrix were visualized via scanning tunneling microscopy in hole-doped
manganites (STM experiments of Mydosh group with ‘‘catching’’ of FM metallic
polaron by a needle of ST microscope for x * 0.16). In [30] experiments on
electron-diffraction performed by Cheong’s group confirmed checkerboard CO-
structure at x = 0.5 and also showed the coexistence of metallic FM domains and
the insulating CO matrix in underdoped case for x = 0.4 in the experiments on
dark image electron microscopy. However, both [85] and [30] actually report large
scale phase separation, with metallic domains measuring L * (100 7 200) Å in
size. Thus, the experiments reported in [85] and [30] neither contradict nor
decisively verify the nanoscale polaron picture.

Finally, for x [ 0.5 Mori et al. [35] showed the formation of stripes in exper-
iments on electron diffraction in overdoped manganites (Fig. 15.32).

Fig. 15.32 Stripe structure
measured by Mori et al. [35]
in experiments on electron
diffraction in overdoped
manganites (x [ 0.5)

508 15 Nanoscale Phase Separation in Complex Magnetic Oxides



They reported incommensurate charge ordering with the distance between two
stripes L1 & 3 L2, where L2 is a stripe width. Note that the stripes are static in
manganites due to Jahn–Teller effects in contrast with strongly fluctuating stripes
in high-TC compounds.
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Chapter 16
Mesoscopic Transport Properties
in the Phase-Separated Manganites

The physics of mesoscopic transport phenomena [1–9] is a very rapidly developing
field in the modern condensed-matter physics which is very promising for the
applications in small (nano-size) electron devices [5, 12, 13] and very interesting for
studying of the quantum interference effects [6, 9, 10, 15] and the quantum effects of
localization in dirty or narrow-band (strongly-correlated) metals [11, 16, 17] as
well as classical percolation effects in doped semiconductors [14].

16.1 Mesoscopic Transport Properties in Strongly-
Correlated Electron Systems

In this chapter we would like to build a bridge between the physics of strongly-
correlated electrons [11, 16–18] and the physics of mesoscopic transport phe-
nomena [1–9] studying the transport properties of the CMR-systems. Namely for
the CMR-family of materials we will present the simple theory for the tunneling
conductivity, magnetoresistance (MR) and 1/f-noise spectrum [22–28] in the low-
doping case [19–24]. In this case as it was shown in Chap. 15, the CMR-systems
are in the nano-scale phase-separated state. We will compare the theoretical pre-
dictions for transport properties of non-metallic phase-separated manganites with
experimental observations in several families of 3D and layered CMR-materials
[29–37].

16.1.1 Transport Properties in Non-Metallic Phase-
Separated Manganites

In Chap. 15 we considered the formation of nano-scale phase-separated state in
different CMR-systems. In particular we studied the formation of small FM-
polarons (FM droplets or ferrons) inside AFM, PM or CO-matrices. It is interesting
to understand the nature of electron transport in the phase-separated state having in
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mind that small FM-polarons are metallic, while they are embedded in the insu-
lating AFM, PM or CO-matrices. We will consider here the transport mechanism
connected with the electron tunneling from one FM-polaron to a neighboring one.

16.1.2 Tunneling Conductivity in the Phase-Separated
Manganites

Let us consider an insulating antiferromagnetic sample of volume Vs in electric
field E. The total number of magnetic polarons in the volume is N, and thus their
spatial density is n = N/Vs. As mentioned in Chap. 15, the number of polarons is
assumed to be equal to the number of charge carriers introduced by doping.
Neglecting the conductivity of the insulating phase, we assume that charge carriers
are only located within the droplets. The charge transfer can thus occurs either due
to the motion of the droplets or due to electron tunneling. The former mechanism
is less effective: indeed, the motion of a droplet is accompanied by a considerable
rearrangement of the local magnetic structure, which results in the large effective
mass of magnetic polarons. In addition, the droplets are expected to be easily
pinned by crystal lattice defects. Thus, it is realistic to assume that the charge
transport is essentially due to electron transitions between the droplets.

A magnetic polaron in the ground state contains one electron. As a result of the
tunneling process, droplets with more than one electron are created, and some
droplets become empty (the lifetime of such excitations is discussed in the end of
this section). If the energy of an empty droplet E(0) is taken to be zero, then the
energy of a droplet with one electron can be estimated as E(1) * t d2/R2

pol (where
Rpol is the ferron radius). This is essentially the kinetic energy of an electron
localized in the sphere of radius R. In the same way, the energy of a two-electron
magnetic polaron E(2) * 2E(1) ? U, with U the interaction energy of the two
electrons. In all these estimates, we disregarded the surface energy, which as
shown in Chap. 15 is expected to be small. Thus, E(2) ? E(0) [ 2E(1), and the
creation of two-electron droplets is associated with the energy barrier of the order
of A : E(2)-2E(1) * U. It is clear that the interaction energy U of two electrons
in one droplet is determined mainly by the Coulomb repulsion of these electrons;
hence A * e2/eRpol, where e is the static dielectric constant, which in real man-
ganites can be rather large (e * 20). We assume below that the mean distance
between the droplets is n-1/3 � Rpol (the droplets do not overlap and we are in
non-metallic state far from the percolation threshold [19]). Then, A is larger than
the average Coulomb energy e2n1/3/e. Since the characteristic value of the droplet
radius R is of the order of 10 Å, we have A/kB * 1000 K and A [ kBT in the case
under study. In the following, we assume that the temperature is low, A � kBT,
and we do not consider a possibility of the formation of the droplets with three or
more electrons. Even in the case when these excitations are stable, it can be shown
that far from the percolation threshold the strong Coulomb interaction suppresses
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their contribution to the conductivity giving rise only to the next-order terms with
respect to exp(-A/kBT).

Let us denote the numbers of single-electron, two-electron, and empty droplets
as N1, N2, and N0, respectively. According to our model, N2 = N0 (number of
empty and two-electron droplets coincide), N = N1 ? 2N2, and N is constant.
Before turning to conductivity, we evaluate the thermal averages of N1 and N2. To
this end, we note that the number PN

m of possible states with m two-electron
droplets and m empty droplets equals CN

mCN–m
m , with CN

m being the binomial
coefficients. Since the created pairs of droplets are independent, we write the
partition function [38] in the form:

Z ¼
X

N=2

m¼0

Pm
N expð�mbÞ; b ¼ A

kBT
: ð16:1:1Þ

Though the sum can be evaluated exactly and expressed in terms of the
Legendre polynomials for arbitrary N, it is more convenient to use the Stirling
formula for the factorials [39] and the condition that the sample is macroscopic,
N � 1. Approximating the sum by an integral,

Z ¼
Z

N=2

0

dm exp �mb� N ln 1� 2m

N

ffi �

þ 2m ln
N

m
� 2

ffi �� �

; ð16:1:2Þ

calculating it in the saddle-point approximation, and subsequently evaluating in
the same way the statistical average of N2,

�N2 ¼ Z�1
X

N=2

m¼0

Pm
N expð�mbÞ ¼ � o

ob
ln Z; ð16:1:3Þ

we easily obtain:

�N2 ¼ N exp � A

2kBT

ffi �

; ð16:1:4Þ

�N1 ¼ N � 2�N2 ¼ N 1 � 2 exp � A
2kBT

� �h i

¼ �N1r þ �N1�r, where r is spin-

projection of conductivity electron inside the ferron.
Now we calculate the conductivity. Within the framework of the proposed

model the electron tunneling occurs via one of the four following processes
illustrated in Fig. 16.1.

1. In the initial state we have two droplets in the ground state (with spin-pro-
jections of the conductivity electrons r1 and r2 in them correspondingly), and
after tunneling in the final state we have an empty droplet and a droplet with
two electrons.
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2. An empty droplet and a two-electron droplet in the initial state transform into
two droplets in the ground state (two droplets with one electron, in the first one
spin-projection of electron is r1, in the second one—r2).

3. A two-electron droplet and a single-electron droplet exchange their positions by
transferring an electron from one droplet to the other.

4. An empty droplet and a single-electron droplet exchange their positions by
transferring an electron from one droplet to the other.

Note that in the last two cases (3) and (4) r1, generally speaking, is not equal to
r2. In the linear regime, all these processes contribute to the current density
j independently, j = j1 ? j2 ? j3 ? j4. The contributions of the first two processes
read:

j1;2 ¼ en1;2

X

i

vi
1;2

* +

; ð16:1:5Þ

where n1,2 = N1,2/Vs are the densities of the single- and two-electron droplets, and
h _ i stands for statistical and time averages. The appearance of the factors
n1,2 reflects the fact that the electron tunnels from a single-electron droplet process
(1) or two-electron (2) droplet. The summation in (16.1.5) is performed over all
magnetic polarons the electron can tunnel to—one-electron droplets for process (1)
and empty droplets for process (2). Finally, the components of the average electron
velocity h vi

1, 2 i along the direction of the electric field are obviously found as [40]:

X

i

vi
1;2

* +

¼
X

i

ri cos hi

s1;2ðri; hiÞ

* +

; ð16:1:6Þ

where ri and hi are the electron tunneling length (the distance between the droplets)
and the angle between the electric field and the direction of motion, respectively,
and s1,2(ri, hi) are characteristic times associated with the tunneling processes. The
relation between s1(r, h) and s2(r, h) can be found from the following consider-
ations. Near the equilibrium, the number of two-electron droplets, excited per unit
time, equals to the number of the decaying two-electron droplets. We thus have the
detailed balance relation,

Fig. 16.1 Elementary
tunneling processes [22, 23]
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�N2
1

s1ðr; hÞ
¼

�N2
2

s2ðr; hÞ
; ð16:1:7Þ

where we have taken into account that the probability of the formation of a two-
electron droplet is proportional to the total number N1 of the single-electron states
multiplied by the number of available hopping destinations, which also equals N1.
Similarly, the probability of decay of a two-electron droplet is proportional to
N2N0 = N2

2. Equation (16.1.7) implies s2(r, h) = s1(r, h) exp (-A/kBT). We write
then the conventional expression for the tunneling times [40] in the following
form:

s1;2ðr; hÞ ¼ x�1
0 exp

r

l
� A

2kBT
� eEr cos h

kBT

� �

; ð16:1:8Þ

where l and x0 are the characteristic tunneling length and magnon frequency, and
we have taken into account the contribution of the external electric field to the
tunneling probability.

To perform the averaging, we assume that the centers of the magnetic polarons
are randomly positioned in space and the average distance n-1/3 between them is
much larger than the droplet radius R. Both assumptions seem to be perfectly
justified far below the percolation threshold. Then the averaged sum in (16.1.5) is
essentially the space average of v, multiplied by the number of droplets available
for hopping [N1 for the process (1) and N2 for process (2)]. Expanding in eEl/
kBT � 1, we obtain:

X

i

vi
1;2

* +

¼ eEx0

kBT
N1;2 exp � A

2kBT

� �

r2ðcos2 hÞe�r=l
D E

V
; ð16:1:9Þ

where

� � �h iV ¼
1
Vs

Z

. . .d3 r!: ð16:1:10Þ

In (16.1.9) the electric field is outside the averaging. Rigorously speaking, this
means that the characteristic hopping length l is larger than the inter droplet
distance n-1/3 and our approach is valid only when the droplet concentration is not
too small. Substituting (16.1.9) into (16.1.5) and performing the integration, we
find:

j1;2 ¼
32p e2Ex0 l5n2

1;2

kBT
exp � A

2kBT

� �

: ð16:1:11Þ

In processes (3) and (4) the free energy of the system is not changed after the
tunneling, and we write the characteristic times as:

s3;4ðr; hÞ ¼ x�1
0 exp

r

l
� eEr cos h

kBT

� �

: ð16:1:12Þ
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The contribution of these two processes to the current is calculated similarly to
that of (1) and (2). For process (3) the number of magnetic polarons from which
the electron may tunnel is N2, whereas the number of accepting droplets is N1. In
the same way, for process (4) these numbers are N1 and N0 = N2, respectively.
Consequently, the factors n2

1, 2 in (16.1.11) are replaced by n1, n2,

j3;4 ¼
32p e2Ex0 l5n1n2

kBT
: ð16:1:13Þ

From (16.1.11) and (16.1.13) we now obtain the dc conductivity r = j/E:

r ¼ 32p e2x0 l5

kBT
2n1n2 þ n2

1e�A=2kBT þ n2
2eA=2kBT

� 	

: ð16:1:14Þ

In this subsection we are only interested in the average conductivity; fluctua-
tions lead to the appearance of noise and are considered in Sect. 16.2. Using
(16.1.4), we find that all four processes illustrated in Fig. 16.1 give identical
contributions to the conductivity; for A � kBT the average conductivity (for which
we retain the notation r) reads:

r ¼ 128p e2n2x0 l5

kBT
e�

A
2kBT : ð16:1:15Þ

We see that the conductivity increases with temperature as r (T) * T-1 e�
A

2kBT ,
which is typical for tunneling systems (see, e.g., [40]).

At this point, let us discuss the applicability range of our model. The essence of
our picture is the existence of different types of droplets. Only single-electron
droplets are stable. Obviously, an empty droplet decays during the time of the
order of 1/x0. On the other hand, following the above discussion, the empty
droplet should acquire an electron from neighboring one-electron or two-electron
droplets during the characteristic time s0, which can be easily calculated based on
the following considerations. The probability P per unit time for an empty droplet
to acquire one electron can be written as:

P ¼ 4px0

Z

1

0

e�r=l n1 þ n2 exp A=kBTð Þ½ �r2dr; ð16:1:16Þ

where the terms with n1 and n2 correspond to the electron transfer from single- and
two-electron droplets, respectively. Performing integration in (16.1.16) and using
(16.1.4), we find

s0 ¼
1
P
¼ exp �A=2kBTð Þ

8px0 l3n
: ð16:1:17Þ

Just the same estimate can be obtained for the characteristic time of electrons
leaving two-electron droplets. For our picture with empty and two-electron
droplets to be valid, the following condition must be met: s0 � x0

-1. Thus, our
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approach is valid at sufficiently low temperatures, kBT � A, and for a not too
small droplet density n.

The applicability of our approach also implies that l [ Rpol, n-1/3. It is of
interest to consider also the case of l * Rpol and/or low droplet concentrations. In
this situation, in usual hopping systems, the conductivity strongly depends on the
geometry of current paths [19]. This causes an exponential dependence of con-
ductivity on the carrier concentration. However, our system turns out to be more
complicated than those commonly invoked for hopping conductivity. It involves
different types of hopping centers giving rise to an unusual geometry of current
paths. Therefore, the conventional approaches used for hopping cannot be applied
straightforwardly to the analysis of our model at low droplet concentration or
at l * Rpol. Despite these complications, we believe that the expression for
the conductivity in the case l B n-1/3 includes the percolation-related factor
exp {- c/(n1/3 Rpol)}, with c of the order one [19], though currently we have no
rigorous proof of this statement.

The results below for magnetoresistance and noise are insensitive to this factor,
and therefore we expect them to be valid in a general case.

16.1.3 Tunneling Magnetoresistance in the Phase-Separated
Manganites

As we already discussed, below the percolation threshold when the volume frac-
tion of droplets n \ nC, a typical value of A/kB is mainly determined by Coulomb
interaction between two electrons inside the droplet A * e2/e Rpol and has a
typical value of 1000 K. Now we can use this estimate to analyze the magneto-
resistance in non-metallic phase-separated manganites. To do that, we use the
expression for the radius of the magnetic polaron, obtained in the Chap. 15
Rpol * d(t/JS2)1/5. Recall once more that here J * 10 K is an AFM Heisenberg
exchange between the local spins S = 3/2. It is natural to conclude that in the
magnetic field the Heisenberg exchange integral J decreases according to the
formula J(H)S2 = J(0)S02-glel

B HS, where lel
B and g are the electron Bohr mag-

neton and the gyromagnetic ratio, respectively. Consequently, the value of A is
decreasing linearly in the experimentally accessible range of magnetic fields, and
for the excitation energy we obtain

AðHÞ ¼ Að0Þ 1 � bH½ �; b ¼ 1
5

glel
B

Jð0ÞS : ð16:1:18Þ

It follows now from (16.1.15) that the magnetoresistance is negative and for
temperatures T \ A/kB in absolute value reads:

MRj j ¼ qð0Þ � qðHÞ
qðHÞ ¼ exp

Að0Þ � AðHÞ
2kBT

ffi �

� 1 ¼ exp
bHA

2kBT

ffi �

� 1:

ð16:1:19Þ
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For low magnetic fields and not very small temperatures the absolute value of
the magnetoresistance (MR) is small, |MR| & bHA/2kBT �1. In higher fields (but
still bH � 1) the absolute value of magnetoresistance eventually exceeds 1 and
behaves in exponential fashion, |MR| & exp{bHA/2kBT}. Note that for tempera-
tures T \ A/kB and for typical gyromagnetic ratios g * 2 the magnetoresistance in
our region of doping becomes larger than 1 by absolute value only in relatively
high magnetic fields H C 10 T.

To describe the actual experimental situation (especially at lower fields) in
more detail, we need to take into account other important physical mechanisms, in
particular, spin-dependent tunneling [22–28].

Effects of spin-assistant tunneling yields nontrivial preexponential factor for the
magnetoresistance. The details of the calculations which are rather straightforward
you can find in [22]. Here we present the brief sketch of the evaluation of MR (see
[27]). The most important is that probability of tunneling depends on the mutual
orientation of the electron spin and the magnetic moment of the droplet
(see Fig. 16.2). Orientation of the ferromagnetically correlated regions in the
external magnetic field H leads to an increase in the transition probability and,
hence, to a decrease in resistance with increasing field strength—in agreement
with experiment. The conductivity of the system can be represented as
r(H) = r(0) h

P

(H) i, where
P

(H) is the ‘‘spin’’ contribution to the probability
of electron tunneling. For this definition, MR = h

P

(H) i -1.
Denoting the effective magnetic moment of the droplet by M = lB gNeff S (Neff

is a number of local spins in the droplet) and assuming the interaction between the
droplets to be negligibly small, we write the Free-energy of the droplet in magnetic
field in the following form [41, 42]:

UðHÞ ¼ Uð0Þ � MðH cos h þ Ha cos2 wÞ; ð16:1:20Þ

where h is the angle between the applied field H
!

and the magnetic moment M
!

, Ha

is the anisotropy field, and w is the angle between the anisotropy axis and the
direction of the magnetic moment (for the sake of simplicity we consider the case

of uniaxial anisotropy). Let H
!

be parallel to z-axis, and let the anisotropy axis lie

in the (xz) plane and make the angle b with vector H
!

. In this configuration (see
Fig. 16.3):

cos w ¼ sin h sin b cos u þ cos h cos b; ð16:1:21Þ

Fig. 16.2 Spin-assistant tunneling of electron between two FM-droplets with large magnetic

moments M1

!

and M2

!

. Angle m is between M1

!

and M2

!
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where u is the angle between the x-axis and the projection of M
!

into (xy) plane
(see Fig. 16.3).

In the classical limit, a given orientation of vector M
!

corresponds to the
probability [38, 42]:

PðH; h;uÞ ¼ CðHÞ exp
M H cos h þ Ha cos2 wðh;uÞð Þ

kBT

� �

; ð16:1:22Þ

where C(H) is the normalization factor. The eigenstates of an electron correspond
to conservation of the spin-projection r = ± � onto the effective field direction in
a ferromagnetically correlated region. Let an electron interact with Z magnetic
moments of local spins S in the droplet. The energy of this interaction is Er = –
JFMSZr (where JFM is an effective ferromagnetic exchange interaction). It
describes the magnetic interaction between a conduction electron and an effective
molecular field generated by ferromagnetically correlated spins in droplet. Since
the product JFMSZ is of the order of the Curie temperature (TC * 100 K see Sect.
16.3.3), Er is much greater than the energy of interaction between the electron spin
and the magnetic field, provided that H � 100 T. In this case, the effective field

direction coincides with the direction of vector M
!

and the probability for the
electron spin projection to be r can be written as:

Pr ¼
exp �Er=kBTð Þ
2ch Er=kBTð Þ : ð16:1:23Þ

Upon transfer from droplet 1 to droplet 2, an electron occurs in an effective field
making an angle m (see Fig. 16.2) with that in the initial state, for which:

cos m ¼ cos h1 cos h2 þ sin h1 sin h2 cos u1 � u1ð Þ ð16:1:24Þ

Fig. 16.3 The mutual orientation of the magnetic field H
!

, anisotropy field H
!

a and magnetic

moment of a droplet M
!

. Angle h is between H
!

and M
!

, angle w is between M
!

and Ha

!

, angle b is

between H
!

and Ha

!

, angle u is between x-axis and projection of M
!

on (xy) plane. Magnetic field

H
!

is parallel to z-axis. Anisotropy field H
!

a lies in the (xz) plane (see [27])
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(indices 1 and 2 refer to the droplet number). Then, the work performed for the
electron transfer from droplet 1 to droplet 2 is DEr = Er(1-cosv). Accordingly,
the probability of this transfer is proportional to exp(-DEr/kBT). Taking into
account all the probability factors introduced above, the final expression can be
written as:

RðHÞh i ¼
Z

2p

0

du1

Z

2p

0

du2

Z

p

0

sin h1dh1

Z

p

0

sin h2dh2Pðh1u1ÞPðh2u2Þ
X

r¼�1=2

Pr exp �DEr

kBT

ffi �

ð16:1:25Þ

In the high-temperature range, where kBT is much greater compared to the
Zeeman energy lel

B gSNeffH (Neff is a number of local spins in the droplet) and
the magnetic anisotropy energy lel

B gSNeffHa, relations (16.1.22–16.1.25) yield in
the strongly anisotropic case and low fields (H � 10 T) [22–25, 27, 28]:

MRj j 	 H2Ha

T5
; ð16:1:26Þ

and in the absence of anisotropy (for Ha = 0):

MRj j 	 H2

T2
ð16:1:27Þ

.
At higher fields magnetoresistance behaves as:

MRj j 	 H2

T
ð16:1:28Þ

then goes on a plateau.
Thus for H [ 10 T an absolute value of magnetoresistance behaves quadratic

in field but temperature dependence of MRj j 	 H2=Tn (n running from 1 to 5) is
highly nontrivial. Finally in high fields H Z 10 T it grows in exponential fashion
with field (see Fig. 16.4) and (16.1.19).

Fig. 16.4 Absolute value of magnetoresistance |MR| in magnetic fields. The different regions I,
II, III correspond to quadratic in field behavior |MR| * H2/Tn with n = 2 or 5 in region I, n = 1
in region II, n = 0 (plateau) in region III. In region IV |MR| grows in exponential fashion with
field [22–25, 27, 28]
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The low-field regime I for |MR| (see (16.1.26) and Fig. 16.4) is confirmed by
experimental observations of several groups for 6 families of 3D (cubic) and
layered manganites [30, 32, 33, 35]. We will discuss these results more detaily in
the Sect. 16.3.

16.2 1/f-Noise Power Spectrum

Almost ten years ago Podzorov et al. [37] reported the observation of giant 1/f-
noise in perovskite manganites in the phase-separated regime. Generally, systems
with distributed hopping lengths are standard objects that exhibit 1/f-noise (for
review, see [19, 20]). The purpose of this section is to study low-frequency noise
within the framework of the model used to calculate the conductivity in subsection
16.1.3 and show that it has, indeed, 1/f-form.

Starting from the Ohm’s law U = IL/rS [1, 41] (where L and S are the sample
length and the cross-section, respectively) and assuming that the measuring circuit
is stabilized (I = const), we can present the voltage noise at the frequency
x, h dU2 ix, in the following way:

dU2

 ffl

x¼ U2
dc

dr2

 ffl

x

r2
; ð16:2:1Þ

where Udc is the time-averaged voltage and hdr 2i x is the noise spectrum of the
fluctuations of the conductivity.

If we disregard possible fluctuations of temperature in the system, the only
source of the fluctuations in our model is those of the occupation numbers n1 and
n2. Using the conservation law n1 ? 2n2 = n, we find from (16.1.14):

dr ¼ r
d n2

�n2
1 � 2 exp �A=2kBTð Þ½ �: ð16:2:2Þ

We thus need to find the fluctuation spectrum hdn2
2 ix. Following the general

prescription (see [43]), we recollect that the two-electron droplets decay via
process (2) on Fig. 16.1 and the relaxation equation has the form:

d _n2 ¼ �
d n2

sðrÞ ; sðrÞ ¼ x�1
0 exp r=l � A=2kBTð Þ; ð16:2:3Þ

, where we have neglected the effect of the electric field. The fluctuation spectrum
then reads [43]:

d n2
2


 ffl

x¼ d n2
2


 ffl

T

X

i

2sðriÞ
1þ x2s2ðriÞ

* +

; ð16:2:4Þ

where hdn2
2 iT is the thermal average of the variation of n2 squared, and the

summation is performed over the ‘‘empty droplet—two-electron droplet’’ pairs,
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with ri being the distance between the sites in a pair. Since all such pairs contribute
to the noise, the average in (16.2.4) is essentially a spatial integral, with the main
contribution coming from short distances,

d n2
2


 ffl

x¼ 8p �n2 d n2
2


 ffl

T

Z

1

0

sðrÞ
1 þ x2s2ðrÞr

2dr: ð16:2:5Þ

Note that (16.2.5) is valid for an arbitrary relation between l and Rpol, not
necessarily for Rpol � l.

We are interested below in the frequency range

ex0 exp �Ls=lð Þ � x� ex0 ; ex0 ¼ x0 exp A=2kBTð Þ; ð16:2:6Þ

where Ls is the smallest of the sample sizes. In this case, with the logarithmic
accuracy we obtain for A � kBT,

dU2

 ffl

x¼ U2
dc

d n2
2


 ffl

T

�n2

4p2 l3

x
ln2 ex0

x
: ð16:2:7Þ

Thus, in the wide range of sufficiently low frequencies (16.2.6), the noise power
spectrum for our system has almost a 1/f-form.

The variation d n2
2


 ffl

T
¼ V�2

s N
2
2 � N2

� 	2
� �

is easily found in the same way as

(16.1.4),

d n2
2


 ffl

T
¼ �n2

2Vs

: ð16:2:8Þ

Combining this with (16.2.7) we write the final expression for the spectral
density of noise for A � kBT in the form [22]:

dU2

 ffl

x¼ U2
dc

2p2 l3

Vsx
ln2 x0eA=2kBT

x

ffi �

: ð16:2:9Þ

16.2.1 Discussion Comparison with Experiments

For the further discussion, it is convenient to rewrite (16.2.9) in the form:

aH ¼
dU2

 ffl

xVsx

U2
dc

¼ 2p2 l3 ln2 ~x0

x

ffi �

; ð16:2:10Þ

where aH is a Hooge constant [19, 20, 43, 44].
It is remarkable that the noise spectrum in our model has a 1/f-form up to very

low frequencies. This is due to fluctuations in occupation numbers of droplets,
associated with the creation and annihilation of extra electron–hole pairs.

524 16 Mesoscopic Transport Properties in the Phase-Separated Manganites



This mechanism of 1/f-noise is specific for our model and is not present in standard
hopping conduction.

Let us estimate the numerical value of the parameter aH, which is the standard
measure of the strength of 1/f-noise. This parameter is proportional to the third
power of l. Simple estimates (analogous to that presented in the Chap. 15 for
ferron radius Rpol) reveal that, in general, l is of the order or larger than Rpol.
Assuming again that the excitation energy is of the order of the Coulomb energy
A * e2/eRpol, taking x0 to be of the order of the Fermi-energy inside the droplets
(which means �hx0 *300 K for n \ nc), and estimating the tunneling length l as
being l C 2 Rpol = 20 Å, we arrive at the conclusion that the parameter aH is of
the order aH * (10-17 7 10-16) cm3 for T \ A/kB (T * 100 7 200 K) and
x * 1 Hz 7 1 MHz. This value of aH is by several orders of magnitude higher
than that in the usual semiconducting materials [27]. Such a large magnitude of the
noise can be attributed to the relatively low height of the potential barrier A and to
the relatively large tunneling length l. Formally, it is also related to the large value
of the logarithm squared in (16.2.10).

According to (16.2.9) and (16.2.10), the noise power and the noise parameter
(a Hooge constant) aH are independent of the volume fraction occupied by the
droplets. This result is valid in the intermediate range of n, when the droplet
density is not too high and not too low. First, we assumed that the droplets are
isolated point objects and that the tunneling between the two droplets is not
affected by a third polaron. This is only valid provided the droplet density is far
from the percolation threshold, n � nc. On the other hand, the droplet density
must not be too low since the conditions N, N1, N2 � 1 are assumed to be met.
Moreover, we neglected the possibilities of the disappearance of a droplet without
an electron, the formation of a new droplet due to the electron tunneling, and the
decay of two-electron droplets. Thus, the characteristic times of these processes
should be longer than the characteristic tunneling time, and the average tunneling
distance cannot be too high (see (16.1.17) and the discussion below it).

The above speculations imply that the following set of inequalities should be
met, Rpol � n-1/3 � l, for formula (16.1.15) for the conductivity to be valid. In
general, the tunneling length should not be much larger than the droplet radius
since just the same physical parameters determine these two characteristic dis-
tances. So, these inequalities could not be valid for real physical systems, and it is
of interest to consider the situation where Rpol, l � n-1/3, which is beyond the
scope of our model. However, some definite conclusions concerning the magne-
toresistance and the noise power can be made at present.

First, the factor exp(A/2kBT) in the temperature dependence of the conductivity
is related to the number of carriers and appears due to the strong Coulomb
repulsion of electrons in the droplet. It seems rather obvious that such a factor
appears in the formula for the conductivity below the percolation threshold for an
arbitrary relation between Rpol and l. On the other hand, in contrast to common
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hopping systems, a strong 1/f-noise in our model results from fluctuations of state
occupation numbers. Actually, our result for parameter aH (16.2.10), only relies on
the fact that dr=r� dn2=�n2. As we have mentioned previously (16.2.5), which
determines the spectral density of fluctuations of n2, applies for an arbitrary
relationship between Rpol and l. It follows then that the value of the parameter aH

for 1/f-noise remains approximately the same under the (experimentally relevant)
conditions Rpol*l.

Another important point is that we disregard the direct Coulomb interaction
between the droplets in comparison with the energy A. This is justified if the gas of
the droplets is diluted, n1=3 � Rpol. In this respect, we recollect that in standard
hopping conduction systems (doped semiconductors) the main mechanism of low-
frequency noise is an exchange of electrons between the infinite cluster and nearby
finite clusters. In the absence of interactions it leads to the noise power propor-
tional to x-d, with the exponent d being considerably below 1 [44] To explain 1/f-
noise in these systems, models involving Coulomb interactions were proposed [45,
46]. These sources of low-frequency noise are thus beyond our discussion. We also
did not consider sources of noise different from resistance fluctuations. At least
two other types of noise are inevitably present in the system: Nyquist-Johnson
(thermal) noise [5], which is a consequence of fluctuation–dissipation theorem, and
shot noise due to the discrete nature of electron charge (see [6] and [47] for
review). Both these noises are frequency independent (white) at low frequencies.
The magnitudes of Nyquist-Johnson, shot, and 1/f-noises are governed by abso-
lutely different parameters, and we do not attempt to compare them here, noting
only that at low frequencies 1/f-noise must dominate.

In our model, we assumed that the number of droplets N is fixed and strictly
equal to the number of extra electrons. In actual systems, N can also fluctuate, and
this can be an additional source of noise and of 1/f-noise, in particular. However,
this contribution depends critically on the heights of corresponding energy barriers
and can vary for different systems.

As we have already mentioned, the main motivation of our work was the
experimental study [37], which observed high 1/f-noise power at high temperatures
far from the metal–insulator transition. In the same experiment, the noise dropped
to much lower levels at low temperatures in the metallic phase. This behavior of
the noise power is consistent with the present model since in the metallic phase the
electron tunneling contribution to the total conductivity is negligible. In the
vicinity of the percolation transition the noise power increases drastically [37]. In
this Chapter we do not attempt to describe the system of magnetic polarons close
to the percolation threshold. However, we argue that the amplitude of 1/f-noise is
already large in the phase-separated regime even far from the percolation
threshold.
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16.3 Experimental Confirmation of the Theoretical
Predictions for Tunneling Conductivity

In Sect. 16.1.3 we present a simple model for tunneling conductivity. We consider
droplets containing one or two electrons together with empty droplets. The direct
generalization of (16.1.15) for the case of the droplets with k, k ? 1 and k - 1
carriers [28] yields for the resistivity:

q ¼ kBT exp A=2kBTð Þ
128p e2 x0l5kn2

; ð16:3:1Þ

where n is the concentration of ferromagnetic droplets. Electrical resistivity
(16.3.1) exhibits a thermoactivative behavior where the activation energy is equal
to one half of Coulomb energy A. Expression (16.3.1) provides a fairly good
description for the temperature dependence of the electrical resistivity for various
manganites. As an illustration, in Figs. 16.5, 16.6, 16.7, 16.8 we present experi-
mental q(T) curves for six different materials. Experimental data are plotted for
samples reported in [29] by Babushkina et al. in [30] by Fisher et al. in [31] by
Zhao et al. in [32] by Wagner et al. The authors of these papers kindly provided us
by the detailed numerical data on their measurements. As it could be seen from the
figures and their captions, the examined samples differ in their chemical compo-
sition, type of crystal structure, magnitude of electrical resistivity (at fixed tem-
perature, the latter varies for different samples by more than two orders of
magnitude), and also by their low temperature behavior (which is metallic for
some samples and insulating for the others). On the other hand, in the high-
temperature range (above the point of ferromagnetic phase transition),
q(T) exhibits a similar behavior for all the samples, which is well fitted by the
relationship q(T) * T exp(A/2kBT) (solid lines in the Figs. 16.5, 16.6, 16.7, 16.8).

Fig. 16.5 Temperature
dependence of the resistivity
for (La1-yPry)0.7Ca0.3MnO3

samples [29]. Squares,
triangles, and circles
correspond to y = 1 (with
16O ? 18O isotope
substitution), y = 0.75 (with
16O ? 18O isotope
substitution), and y = 0.75
(with 16O), respectively. Solid
line is the fit based on
(16.3.1)
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Fig. 16.6 Temperature
dependence of the resistivity
for Pr0.71Ca0.29MnO3 sample
[30]: experimental data
(circles) and theoretical curve
(solid line) based on (16.3.1)

Fig. 16.7 Temperature
dependence of the resistivity
for a layered manganite
(La0.4Pr0.6)1.2Sr1.8Mn2O7

[32]: experimental data
(circles) and theoretical curve
(solid line) based on (16.3.1)

Fig. 16.8 Temperature
dependence of the resistivity
for La0.8Mg0.2MnO3 sample
[31]: experimental data
(circles) and theoretical curve
(solid line) based on (16.3.1)
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Based on (16.3.1) and experimental data, one can deduce some quantitative
characteristics of the phase-separated state. In particular, the analysis carried out in
[32] demonstrated that an accurate estimate for the value of Coulomb energy A can
be found by fitting experimental data and using (16.3.1). The data represented in
Figs. 16.5, 16.6, 16.7, 16.8 suggest that the Coulomb barrier A can be determined
with an accuracy of 2–3 % and its value lies in the narrow range from 3500 to
3700 K (see Table 16.1). As it was mentioned in [22, 32] the characteristic fre-
quency x0 in (1) can also vary in a restricted range of 10137 1014 Hz. This
estimate might be derived, for example, from the uncertainty principle:
�hx0	 �h2=2mRpol2 , where Rpol is a characteristic droplet size, and m is the electron
mass. Assuming Rpol * 1–2 nm [51, 52] one obtains the latter estimate. Note also
that these values of a droplet size allow us to find an estimate for the barrier energy
A, which is accurate within the order of magnitude. This energy is of the order of
e2/eRpol, and substituting permittivity e *10, we get a value of A consistent with
the experimental data.

It is rather difficult to estimate the tunneling length l. However, we can say that
in the domain of the applicability of relationship (16.3.1), the length l cannot be
much smaller than an interdroplet spacing [22]. In another situation, the behavior
of the resistivity would be different. In the quasiclassical approximation, the
tunneling length is of the order of the characteristic size for the wave function
provided the barrier height is comparable with the depth of the potential well. In
our case, the size of the electron wave function is of the order of a ferron size,
while the height of the barrier practically coincides with the depth of the potential
well. The latter naturally follows from the model of ferron formation considered in
Chap. 15. Therefore, it seems reasonable to assume the tunneling length to be of
the same order as a ferron size (few nanometers), though, generally speaking, it
can differ substantially from Rpol.

It is rather nontrivial task to estimate the concentration n of ferrons. In fact,
following [32] concentration n could be determined by the dopant concentration
x as n & x/d3. Yet this approach would bring at least two contradictions. First,
even under the moderate concentration of divalent element x = 0.1–0.2 the
droplets should overlap giving rise to the continuous metallic and ferromagnetic
cluster. However, the material could be insulating even at larger concentrations
(x = 0.570.6) [33], at least, in a high-temperature range. Second, as it can be seen

Table 16.1 The coulomb barrier A can be determined with an accuracy of 2–3% and its value
lies in the narrow range from 3500 to 3700 K

Samples A, K q (200 K),
X�cm

l5n2k,
cm-1

Data source

(La1-yPry)0.7Ca0.3MnO3
* 3650 1.25 2 9 105 Fig. 16.5 (Babushkina et al., 2003)

Pr0.71Ca0.29MnO3 3500 0.57 3 9 105 Fig. 16.6 (Fisher et al., 2003)
(La0.4Pr0.6)1.2Sr1.8Mn2O7 3600 1.5 1.5 9 105 Fig. 16.7 (Wagner et al., 2002)
La0.8Mg0.2MnO3 3700 283 19103 Fig. 16.8 (Zhao et al., 2001)

* The chemical formula for this composition can be written as (La0.4Pr0.6)2-2xSr1+2xMn2O7
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from the experimental data, the relation between a dopant concentration and the
conductivity of manganites is relatively complicated—for some materials chang-
ing x by a factor of two can change resistivity by two orders of magnitude [32], for
other materials q(x) exhibits even a nonmonotonic behavior in certain concen-
tration ranges. Note that these discrepancies are essential not only for our model of
phase-separation but also for other models dealing with the properties of man-
ganites (e.g., polaronic models [47, 48]). Unfortunately, the authors of [32] do not
take into account these considerations when analyzing their results from the
standpoint of the existing theories of the conductivity in manganites. The natural
conclusion is that the number of carriers, which contributes to the charge transfer
processes does not coincide with the concentration of the divalent dopant x. This is
particularly obvious in the case of charge ordering when some part of the carriers
introduced by doping becomes localized and forms a regular structure [51].

Therefore, using expression (16.3.1) and experimental data, we are able to
obtain also the value of the combination l5n2k. In Table 16.1, the values of the
Coulomb energy A, resistivity q at 200 K and, combination l5n2k are presented. All
estimations were made based on (16.3.1) and the experimental data of Figs. 16.5,
16.6, 16.7, 16.8. Note that whereas the accuracy of the estimate for A is
about ±50 K, the combination l5n2k could be estimated only by the order of
magnitude (at least, due to the uncertainty in the values of frequency x0).

16.3.1 Experiments on Tunneling Magnetoresistance

In [22–25, 27, 28] it was demonstrated that the model of phase separation con-
sidered here results in a rather specific dependence of the magnetoresistance MR on
temperature and magnetic field. At relatively high temperatures and not very strong
magnetic fields, the expression for the magnetoresistance reads [23–25, 27, 28]
(see also 16.1.26 and Fig. 16.4):

jMRj ffi 5 � 10�3 lel
B

� 	3
S5N3

eff Z
2g3J2

FM

HaH2

ðkBTÞ5
; ð16:3:2Þ

where lel
B is electron the Bohr magneton, S is the average spin of a manganese ion,

Neff is the number of manganese atoms in a droplet, Z is the number of nearest
neighbors of a manganese ion, g is the Lande factor, JFM is an effective exchange
integral of the ferromagnetic interaction, and Ha is the effective field of magnetic
anisotropy of a droplet. The |MR| * H 2/T 5 dependence was observed in the
experiments for a number of manganites in the region of their non-metallic
behavior (see [29–31]). The same high-temperature behavior of the magnetore-
sistance can be obtained by processing the experimental data reported in [32, 35]
(see Figs. 16.9, 16.10, 16.11, 16.12).

The value of S depends on the relative content of a trivalent and a tetravalent
manganese ions and ranges from 3/2 to 2. Below it is assumed that S = 2 for all
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Fig. 16.9 Temperature
dependence of MRj j=H2 ratio
for (La1–yPry)0.7Ca0.3MnO3

samples [29]. Squares,
triangles, circles, diamonds,
and asterisks correspond to
y = 0.75, y = 0.75 (with
30 % of 18O), y = 0.75 (with
16O ? 18O isotope
substitution), y = 1, and
y = 1 (with 16O ? 18O
isotope substitution),
respectively. Solid line is the
fit based on (16.3.2)
( MRj j 	 1=T5)

Fig. 16.10 Temperature
dependence of the
magnetoresistance for
Pr0.71Ca0.29MnO3 sample at
H = 2 T: experimental data
(triangles) [30] and
theoretical curve (solid line)
based on (16.3.2)

Fig. 16.11 Temperature
dependence of the
magnetoresistance for
(La0.4Pr0.6)1.2Sr1.8Mn2O7

sample (layered manganite)
at H = 1 T: experimental
data (triangles) [32] and
theoretical curve (solid line)
based on (16.3.2)
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the estimations. Parameter Z in (16.1.30) is, in fact, the number of manganese ions
interacting with a conduction electron placed in a droplet. It is reasonable to
assume that Z is of the order of the number of nearest-neighbor sites around a
manganese ion, i.e. Z & 6. The Lande factor g is determined from the experi-
mental data. For manganese, g is usually assumed to be close to its spin value 2.
The exchange integral JFM characterizes the magnetic interaction between a
conduction electron and the molecular field generated by ferromagnetically cor-
related spins in a droplet. It is this molecular field that produces a ferromagnetic
state at low temperatures. Therefore, we can use a well-known relationship
S(S + 1)ZJFM/3 = kBTC of the molecular field theory [42] to evaluate the exchange
integral (here TC is the Curie temperature). The value of TC is determined from the
experiment (based on neutron diffraction or magnetization measurements). For
example, in La-Pr–Ca manganites, it is about 100–120 K [49].

The magnetic anisotropy of manganites related to crystal structure of these
compounds is usually not too high. This implies that the main contribution to the
effective field of a magnetic anisotropy Ha stems from the shape anisotropy of a
droplet and can be evaluated as Ha ¼ p 1 � 3�Nð ÞMS, where �N is the demagne-
tization factor [42] of the droplet (along the main axis), MS is the magnetic
moment per unit volume (MS = M/VS) of the droplet. Below we assume a droplet
to be sufficiently elongated �N � 1ð Þ and MS = Sglel

B /d3. Then Ha & 2 kOe.
The value of Neff is determined by the size of a droplet and it could be found

from the neutron diffraction experiments. However, we are unaware of such
measurements performed for the systems under discussion in a wide temperature
range. Therefore, Neff is treated here as a fitting parameter. Hence, using (16.1.30)
and the above estimates, we can determine the value of Neff from the experimental
data on the magnetoresistance (in the range of parameters corresponding to
|MR| * H 2/T 5). The results are summarized in Table 16.2. In Figs. 16.9, 16.10,
16.11, 16.12, solid curves correspond to the fitting procedure based on (16.3.2).
The value of TC was chosen to be equal to 120 K.

Fig. 16.12 Temperature
dependence of the
magnetoresistance for
La0.8Mg0.2MnO3 sample at
H = 1.5 T: experimental data
(triangles) [31] and
theoretical curve (solid line)
based on (16.3.2)
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As a result, the size of the ferromagnetically correlated regions turns out to be
nearly the same at temperatures about 200–300 K for all the compositions under
discussion. The volume of these regions is approximately equal to that of a ball
with 7–8 lattice constants in diameter. It is natural to assume that within a droplet
the number of charge carriers contributing to tunneling processes equals to the
number of dopant atoms. Hence, we can write that entering in (16.3.1) k = Neff x,
where x is the atomic percentage of dopants. The values of x and k are presented in
Table 16.2.

16.3.2 Magnetic Susceptibility

The concentration of droplets can be evaluated based on the magnetic suscepti-
bility data, if we assume that the dominant contribution to the susceptibility comes
from the ferromagnetically correlated regions. At high temperatures
(kBT � lel

B gSNeffH, lel
B gSNeffHa), susceptibility v(T) can be written as [27, 28]

vðTÞ ¼
n lel

B gSNeff

� 	2

3kB T � hð Þ ; ð16:3:3Þ

where h is the Curie–Weiss constant [42, 43]. The results of the processing of the
experimental data [29–32] are presented in Table 16.3. In Figs. 16.13, 16.14,
16.15, 16.16, the solid curves correspond to the fitting procedure based on (16.3.3).
Using these results, we can also estimate the concentration of ferromagnetic phase
as p = nNeffd

3. For all the samples, the value of the lattice constant d was taken to
be equal to 3.9 Å. Based on the data of Tables 16.1–16.3, it is also possible to find
an estimate for the tunneling length l.

Table 16.2 The summarized results for important parameters which determine magnetoresis-
tance in (16.3.2)

Samples Neff x k Data source

(La1-yPry)0.7Ca0.3MnO3 250 0.3 75 Fig. 16.9 (Babushkina et al., 2003)
Pr0.71Ca0.29MnO3 200 0.29 58 Fig. 16.10 (Fisher et al., 2003)
(La0.4Pr0.6)1.2Sr1.8Mn2O7 250 0.4 100 Fig. 16.11 (Wagner et al., 2002)
La0.8Mg0.2MnO3 265 0.2 53 Fig. 16.12 (Zhao et al., 2001)

Table 16.3 The results of the processing of the experimental data which determine magnetic
susceptibility in (16.3.3)

Samples h, K n, cm-3 p l, Å Data source

(La1-yPry)0.7Ca0.3MnO3 55 1.8 9 1018 0.03 24 Fig. 16.13 (Babushkina et al., 2003)
Pr0.71Ca0.29MnO3 105 6.0 9 1018 0.07 17 Fig. 16.14 (Fisher et al., 2003)
(La0.4Pr0.6)1.2Sr1.8Mn2O7 255 2.5 9 1018 0.04 19 Fig. 16.15 (Wagner et al., 2002)
La0.8Mg0.2MnO3 150 0.6 9 1018 0.01 14 Fig. 16.16 (Zhao et al., 2001)
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Fig. 16.13 Temperature
dependence of the inverse
magnetic susceptibility for
(La1-yPry)0.7Ca0.3MnO3

sample at y = 1:
experimental data (triangles)
[29] and theoretical curve
(solid line) based on (16.3.3).
For the other samples of this
group, the behavior of v(T) at
high temperatures is rather
similar to that illustrated in
this figure (see [29])

Fig. 16.14 Temperature
dependence of the inverse
magnetic susceptibility for
Pr0.71Ca0.29MnO3 sample:
experimental data (triangles)
[30] and theoretical curve
(solid line) based on (16.3.3).
The sample was porous, its
density was assumed to differ
by a factor of 0.7 from the
theoretical value

Fig. 16.15 Temperature
dependence of the inverse
magnetic susceptibility for
the sample of
(La0.4Pr0.6)1.2Sr1.8Mn2O7

layered manganite:
experimental data (triangles)
[32] and theoretical curve
(solid line) based on (16.3.3)
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16.3.3 Discussion. The Triple Point in Manganites.
Unresolved Questions

To sum up, the analysis performed in the previous sections demonstrates that a
simple model of the electron tunneling between the ferromagnetically correlated
regions (FM droplets) provides a possibility to describe the conductivity and the
magnetoresistance data for a wide class of manganites. The comparison of the
theoretical predictions with the experimental data on the temperature dependence
of the resistivity, magnetoresistance, and magnetic susceptibility enables us to
reveal various characteristics of the phase-separated state such as the size of FM
droplets, their density, the number of electrons in a droplet and also to estimate the
characteristic tunneling length of the charge carriers. The determined values of
parameters appear to be rather reasonable. Indeed, the characteristic tunneling
length turns out to be of the order of FM droplet size, the concentration of the
ferromagnetic phase in the high-temperature range is substantially smaller than the
percolation threshold and varies from about 1 to 7 %.

Note also that the droplets contain 50–100 charge carriers, whereas parameter
A deduced from the experimental data is equal by the order of magnitude to the
energy of Coulomb repulsion in a metallic ball of (7 – 8)d in diameter. The
obtained numerical values for the droplet parameters (characteristic tunneling
barrier, size, and tunneling length) are close for manganites with drastically dif-
ferent transport properties.

The large magnitude of the 1/f-noise in the temperature range corresponding to
the insulating state is another characteristic feature of the phase-separated man-
ganites (see experimental results obtained in [37]. In the framework of the model
of phase-separation discussed here we get the large value for the Hooge constant
aH in (16.2.10). At temperatures 100–200 K and frequencies 1–1000 s-1 we get
aH = 10-16 cm3. This value of aH is by 3–5 orders of magnitude higher than the
corresponding value for semiconductors.

Fig. 16.16 Temperature
dependence of the inverse
magnetic susceptibility for
La0.8Mg0.2MnO3 sample:
experimental data (triangles)
[31] and theoretical curve
(solid line) based on (16.3.3)
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Thus, we have a rather consistent scheme describing the transport properties of
manganites under condition that the ferromagnetically correlated regions do not
form a percolation cluster. Moreover, the presented approach proves to be valid for
a fairly wide range of the dopant concentrations. However, as it was mentioned
above, the relation between the concentration of ferromagnetic droplets and the
doping level is far from being well understood. If the picture of the phase sepa-
ration is believed to be applicable, it becomes obvious that not all electrons or
holes introduced by doping participate in the transport processes. Below we try to
present some qualitative arguments illustrating the possible difference in the
effective concentration of charge carriers below and above the transition from
paramagnetic to magnetically ordered state.

In the phase diagram of a typical manganite (see [50, 51] and Chap. 15 for a
review), one would have the AFM state with FM-phase inclusions in the low-
temperature range and at a low doping level. The transition from AFM to FM
phase occurs upon doping. At high temperatures, manganites are in the para-
magnetic (PM) state. When the temperature decreases, we observe the transition
from PM to AFM or FM state depending on the doping level.

Let us consider the behavior of such a system in the vicinity of a triple point. In
the AFM phase, radius Rpol of a region which one electron converts into FM state
can be estimated as Rpol * d(pt/2JS2Z)1/5 (see [51, 52] and Chap. 15), where J is
an AFM exchange interaction between the local spins. For high-temperature PM
phase, a radius Rpol

T of a region that one electron converts into FM state corre-
sponds to the size of the so-called temperature ferron (see Chap. 15) and equals to
Rpol

T * d(pt/2kBTln(2S ? 1))1/5. The critical concentration xC & 0.15 of the
overlapping of low-temperature ferrons can be derived from the estimate xC * 3/
4p (d/Rpol)

3, while for the high-temperature ferrons it follows from the estimate
dC * 3/4p (d/Rpol

T)3. Substituting the expressions for the radii of the high- and
the low-temperature ferrons to the ratio xC/dC, we obtain the following estimate for
this ratio in the vicinity of the triple point corresponding to the coexistence of FM,
AFM, and PM phases:

xC

dC
	 T ln 2S þ 1ð Þ

zJS2

� �3=5

	 TC ln 2S þ 1ð Þ
TN

� �3=5

; ð16:3:4Þ

where TC and TN are the Curie and the Neel temperatures [41, 42], respectively.
For the manganites under discussion, we have TC * TN * (120 – 150) K and
ln(2S ? 1) * 1.6 for S = 2, hence dC [ xC. The sign of this inequality is in
agreement with experimental data which imply d * (1 – 7) %. Thus, we do not
have a clear explanation of the charge disbalance in paramagnetic region in spite
of the fact that the trend is correctly caught by our simple estimates. Probably, at
x [ xC (in real experiments the concentration x can be as high as 50 %), the
residual charge is localized in the paramagnetic matrix outside the temperature
ferrons. The detailed study of this problem will be a subject of the future
investigations.
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Conclusions

As I already mentioned in the Introduction, the main target of the present book is
to bridge a gap between different communities working in condensed-matter
physics and first of all between the low-temperature community and solid-state
community. I would like to stress that though the field of condensed-matter
physics is not a modern one (it was effectively started in 1950-s, 1960-s) it is far
from being complete. It is permanently enriched by the flow of ideas coming from
different fields stretching from high-energy physics, atomic physics and quantum
optics to biophysics, quantum chemistry and material science. Moreover, there are
a lot of unresolved interesting problems in the field.

Let us mention some of them which are the bit close to the content of my book:

1. The search for supersolidity in quantum crystals and the nature of roughening
transition on the phase-interface between quantum crystal and superfluid.

2. The problem of quantum melting of the vortex lattice in rapidly rotating Bose-
condensates and the possible analogies with the physics of Quantum Hall
Effect.

3. The formation of three-particle and four-particle complexes in rotating
superfluids and in anion physics.

4. BCS-BEC crossover close to unitarity and the search of Bose-condensation in
new materials such as magnons, excitons, polaritons and so on.

5. The search for fermionic and bosonic superfluidity in new systems including
2D and 3D 3He–4He mixtures, new phases of 3He in aerogel, p-wave quantum
gases and so on.

6. The problem of chiral anomaly in superfluid 3He-A and the nature of
topological phase-transition in unconventional (anomalous) superconductors
and superfluids with Dirac nodal points or lines in the superconductive gap,
including topological insulators and recently discovered graphene.

7. The nature of superconductivity in high-TC materials and the nature of
anomalous normal state especially in a pseudogap regime. I would say that the
powerful support of quantum field theorists is required here.
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8. Mesoscopic effects in strongly-correlated electron systems including the
nature of the heavy mass, anomalous transport properties and nanoscale
phase-separation in mixed valence compounds.

9. Different experimental realization of quantum qubits and investigation of
quantum noises. Interplay between localization and interaction in the low-
dimensional systems.

10. The nature of low-lying magnetic excitations in the low-dimensional magnetic
systems on frustrated lattices including spin ice.

There are a lot of other interesting unresolved problems especially on the border
between condensed matter and quantum field theory, in mesoscopic physics and
localization theory, in quantum turbulence and soft condensed matter, in the
physics of amorphous solids and alloys and so on. There are also a lot of important
topics which are more close to applications such as nanocomposites and
metamaterials, photonics and plasmonics, physics of polymers, and physics of
small electron devices.

Thus I would like to encourage the young researches who started their careers
in condensed-matter physics to stay in the field and to establish their leadership.
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Negative compressibility, 338, 471
Negative-U centers, 264, 274
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O
Occupation

double occupation, 196, 505
single occupation

Octahedron
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Ohm’s law, 523
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Orbital
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bonding orbital, 277
nonbonding orbital, 277

Orthogonality catastrophe, 338, 432
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P
Pairing
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Phase-transition
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539
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Physics
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Plane
basal plane, 489, 490, 492
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a-decaying potential, 166
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Projection operator (P), 469, 491, 505
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Quantum

quantum chromodynamics (QCD), 183,
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quantum electrodynamics (QED), 117,
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quantum liquids, 76, 246
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ballistic (Knudsen) regime, 10, 140, 141,
143

hydrodynamic regime, 40, 105, 138–141,
143, 144, 183

regime of Varma’s valence skipping, 263
Reflection

Andreev reflection, 273
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Solution
Abrikosov solution, 38
parquet solution, 304

Spectrum
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electron spin (S), 154, 166, 198, 307, 369-

372, 374, 416, 473, 520, 521
nuclear spin (I), 154, 367, 369, 371, 372
total spin (J),,125, 154- 156, 182, 185, 224,

246, 258, 292, 369, 388, 412, 469, 472,
504

Spin bags, 464
Spin ice, 540
Spinon, 181, 182, 198, 201, 275, 379, 399,

401- 403, 411, 412, 415, 416, 422
Splitting

dipolar splitting, 248
gradient splitting, 155
Zeeman splitting, 154, 155, 369

State
antibound state, 187, 332, 438, 439, 441-
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submonolayer of 3He, 145, 354, 356, 357,
364, 375, 437

2D 4He submonolayer, 184
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Susceptibility
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Pauli susceptibility, 437
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Temperature
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Tkachenko modes, 4, 53
Topological charge (Q), 146
Topological invariant, 27, 145
Transformation
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Transition
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metal-insulator transition, 299, 466, 526
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Tunneling probability, 517
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Uemura plot, 421
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l-vector, 121, 122, 125, 136, 138
nesting vector, 272, 303

Velocity
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Vertex
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225, 295, 307, 309, 339, 342
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Verwey charge ordering, 489
Verwey localization, 310, 491, 492
Vicinal surfaces, 75, 114
Viscosity

first and second viscosity coefficients
orbital viscosity, 143, 144
viscous stress tensor, 108

Vortex
singular vortex, 142, 144

Vortex lattice

triangular vortex lattice in superfluid 4He,
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398, 402, 403
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