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Preface

This book is intended for use both as a textbook and as a source for self-study.

As a textbook: My experience teaching courses related to Thermodynamics
and Statistical Mechanics at Temple university has guided its writing. The Ther-
modynamics course is offered to under-graduates in their junior or senior year.
These undergraduates have either a single or a double major in Physics, Biology,
Chemistry, Engineering, Earth Sciences or Mathematics. The course on Statistical
Mechanics is attended by graduate students in their second year. Feeling that a
robust study of statistical thermodynamics appropriately belongs in a senior level
graduate course, only relatively simple aspects of Statistical Mechanics are included
here.

As a source for self study: Years of teaching have taught me a thing or two
about what works for students and what does not. In particular, I have learned that
the more attention a student pays to taking notes, the less he understands of the
subject matter of the lecture being delivered. Further, I have noticed that when,
a few days in advance of the delivery of the lecture, a student is provided with
details of the algebra to be used, solutions to the problems to be discussed, and
some brief information about the physics that is central to the lecture to be given, it
obviates much of the need for note-taking during the delivery of the lecture. Another
important experience that has guided the writing of this textbook is the pedagogical
benefit that accrues from an occasional, quick, recapitulation of the relevant results
that have already been presented in an earlier lecture. All this usually results in a
better comprehension of the subject matter. Both for purposes of elucidation of the
concepts introduced in the text and for providing practical problem solving support,
a large number of solved examples have been included. Many of the solutions
provided include greater detail than would be necessary for presentation in a lecture
itself or needed by teachers or more advanced practitioners. They are there in the
given form to offer encouragement and support both for self-study and indeed also
to allow for fuller understanding of the subject matter. Therefore, it is as important
to read through and understand these solutions as it is to learn the rest of the text.

Part of the vocabulary of thermodynamics are such terms as: A thermodynamic
system; an adiabatic enclosure; an adiabatically isolated and adiabatically enclosed
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system; conducting and diathermal walls; isobaric, isochoric, isothermal, quasi-
static, non-quasi-static, reversible, and irreversible processes. Also, there are the
concepts of thermal and thermodynamic equilibria. These terms and concepts are
commonly used in thermodynamic analyses. Study of thermodynamics is greatly
assisted by standard mathematical techniques. In particular, exact differentials, and
some well known identities of differential calculus, are central to the theoretical
description of the subject. Temperature is not only a word in normal daily use
it also sits at the core of thermodynamics. The Zeroth law brings to fore one of
the multivarious reasons for its relevance to the physics of thermal equilibria. The
foregoing are discussed in Chap. 1.

Arguably, the emphasis on constructing simple models with the hope that they
may pertain to real — and necessarily more complicated — systems of interest is
unique to the discipline of Physics. Usually, these models are uncomplicated and
lacking of the complexity of the real systems. But because they can often be exactly
solved and understood, the hope always is that the predicted results for the model
systems will give insight into the physics of real systems.

A “Perfect Gas” represents an idealized model system. The model was originally
motivated by experimental observation, and constructed to understand the behavior
of real gases. It has had a long and illustrious history and a great deal of success.
We describe and discuss its implications in Chap. 2.

Caloric was thought to be a massless fluid whose increase warmed an object. Just
like a fluid, it was thought to flow from a hot object — where there was more of it —
to a cold one until the amounts of caloric in the two objects equalized. Also, like
fluids, caloric could neither be created nor destroyed. Therefore, the reason a cannon
muzzle got hot when it was being bored is that the chips that were created carried
less caloric so more was left behind for the muzzle. While supervising the boring of
a cannon, the Count Rumford of Bavaria noticed that the duller the boring bits the
hotter the muzzles. In other words, less chips, but more caloric! Rumford came to
the obvious conclusion: Heat energy is not exchanged by the transfer of Caloric but
rather by the expenditure of work that has to be done for the drilling of the cannon.
Thus work was empirically observed to be related to heat energy.

Conservation of energy is a concept as old as Aristotle.! The first law of
thermodynamics recognizes this concept as well as Count Rumford’s observations
that heat energy and work are related. If some work is performed upon adding a
given amount of heat energy to a system, the portion of heat energy that is left
over is called the change in the internal energy of the system. And while both the
amounts of heat energy added to a system and the work done by it depend on the
details of how they were carried out? the first law asserts that their difference, which
is the change in the internal energy, is completely path independent. These issues are
discussed in detail in Chap. 3 and solutions to many helpful problems are provided.

! Approximately 350 BC.
2Meaning they both depend on the physical paths that were taken in executing the two processes.
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Clearly, the hallmark of the first law of thermodynamics is its recognition of the
path independent function: the “internal energy.” Arguably, the second law has even
more to boast about: namely the identification of the state function the “entropy,”
and its familial relationship with Carnot’s ideas about maximum possible efficiency
of heat engines. These ideas and their various aftereffects are discussed and treated
in Chap. 4.

In Chap. 5, we marry the first and the second laws of thermodynamics in a manner
that achieves “a perfect union” of the two: a union that provides great insights into
the workings of thermodynamics.

Many hold to the view that Johannes Diderik Van der Waals’ derivation of
a possible equation of state for imperfect gases was the first ever significant
contribution to predictive statistical thermodynamic. He noted that any interaction
between microscopic constituents of a body must have two distinct features.
Because these constituents congregate to form macroscopic entities, the overall
inter-particle interaction must be attractive. Yet, because matter does condense to
finite densities, at small enough distances the interaction must become strong and
repulsive: meaning it must have a hard core.

He assumed both these interactions to be “short ranged.” It turns out, however,
that his equation of state is somewhat more meaningful for a gas that has both a hard
core — much as he assumed — but, unlike his assumption, has attractive interaction
which is long ranged. These ideas as well as the many physical consequence of the
Van der Waals equation of state are extensively studied and analyzed in Chap. 6.

State variables such as the volume, pressure, and temperature are easy to
measure. In contrast, thermodynamic state functions such as the internal energy
and the enthalpy cannot be measured by straightforward procedures. Generally,
therefore, one needs to follow somewhat circuitous routes for their measurement.

The famous Gay-Lussac—Joule experiment attempted to measure the internal
energy. The experiment was based on determining the amount of heat energy that
is produced by free-expansion of a gas enclosed in vessels submerged in water.
Unfortunately, the heat capacities of the water that needed to be used plus that of
the enclosing core were vastly greater than that of the gas being used. As a result no
reliable measurement could be made.

Joule and Kelvin devised an experiment that overcame this difficulty. The
experiment shifted the focus from the internal energy to the enthalpy. Additionally,
rather than dealing with a fixed amount of gas that is stationary, it used a procedure
that involved “steady-flow.” As a result, reliable measurements could be made. The
related issues and results are presented in Chap. 7.

Chapter 8 deals with: the Euler equation — namely the Complete Fundamental
Equation — and its dependence on the chemical potential; the Gibbs-Duhem relation
in both the energy and the entropy representations; and the three possible equations
of state for the ideal gas, again in both the entropy and the energy representations.

Several important issues are broached in Chap. 9. For instance, we recall that
all spontaneous processes in isolated thermodynamic systems increase their total
entropy and this fact follows from the second law. Of course, spontaneous processes
continue until the system ceases to change: meaning, until it achieves thermal
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equilibrium. Accordingly, subject to the constraints under which the system has
been maintained, and for the given value of its various extensive properties, its
total entropy in thermodynamic equilibrium is the maximum possible. With this
knowledge in hand, coupled with the concept of the fundamental equation, we are
able to more fully examine the nature of the zeroth law.

Entropy extremum also helps explain the direction of thermodynamic motive
forces. Namely: Why heat energy flows from the warm to the cold; why, at constant
temperature and pressure, molecules flow from regions of higher chemical potential
to those of lower chemical potential; and why the fact that if two macroscopic
systems in thermal contact are placed together in an adiabatically isolated chamber,
and if their total volume is constant, their chemical potentials are equal, they are
at the same temperature, and they can freely affect each other’s volume then the
requirement that the total entropy increase in any isothermal spontaneous process
ensures that the side with originally lower pressure will shrink in volume? And, why
if the process is allowed to continue, the shrinking of the side with originally lower
pressure, and the expansion in volume of the side with originally greater pressure,
continues until the two pressures become equal?

Much like the entropy, the system energy also obeys an extremum principle.
For given value of the entropy and the equilibrium values of various extensive
parameters, the energy of a system is a minimum. And it turns out that the energy
extremum leads to the same physical predictions that does the entropy extremum.

These extremum principles make important statements about issues that relate
to intrinsic stability of thermodynamic systems. In particular, they help determine
the requirement that for intrinsic stability the specific heat ¢, and the isothermal
compressibility yr must always be greater than zero.

Also discussed in Chap.9 is the Le Chatelier principle which asserts that
spontaneous processes caused by displacements from equilibrium help restore the
system back to equilibrium.

The analyses presented in Chap.9 were guided by the use of the extremum
principles obeyed by the internal energy and the entropy. An important consequence
of either of these two extremum principles is the occurrence of other extrema that
are related to the Helmholtz potential, the Gibbs free energy, and the enthalpy.
These are identified and some of their consequences predicted in Chap. 10. Legendre
transformations provide an essential tool for these studies. The issue of meta-stable
equlibrium is commented upon. Also Maxwell relations, the Clausius—Clapeyron
and its use in the study of thermodynamic phases, and the Gibbs phase rule are
described in Chap. 10.

Much of what is written in the preceding chapters has been gleaned from standard
procedures which do not attempt to carry out exact numerical calculation of state
functions such as the entropy and the internal energy. Indeed, the focus mainly
has been on understanding the rates of change of state functions and their inter-
relationships. This is because, unlike statistical mechanics, thermodynamics itself
does not have any convenient method for performing these calculations.

Chapter 11 deals with Statistical Thermodynamics. Analyzed first are the
classical monatomic perfect gases with constant numbers of particles. Results of
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their mixing under a variety of ambient circumstances are described. Diatomic
gases are treated next. Statistical mechanics of harmonic and anharmonic simple
oscillators; the Langevin paramagnet; extremely relativistic ideal gas; gases with
interaction; and issues relating to Mayer’s cluster expansion and the Lennard—Jones
potential are analyzed. Studied next are the differences between the thermodynamics
of classical and the quasi-classical quantum systems. Quasi-classical analyses of
diatoms with rigid bonds, and others that admit vibrational motion, are described.
Nernst’s heat theorem, unattainability of zero temperature, the Third Law, and ideed
the concept of negative temperature are described next. Finally, the Richardson
effect, the Fermi—Dirac and Bose—Einstein quantum gases, “Black Body Radiation,”
and the thermodynamics of phonons are presented.

Most users of this textbook should want to read the relevant appendices. The
usefulness of an appendix lies in it containing more detail than is originally provided
in the body of the text. For instance, the notion that thermodynamics refers to
systems that contain very large number of atoms is explained with great simplicity
in appendix A: as also is the rationale for the validity of the Gaussian approximation.
Appendix B is equally helpful. The re-derivation of the perfect gas law is done with
straightforward argumentation: this time by using elementary statistical mechanics.
Appendix C provides details of an important argument that asserts that the Carnot
version of the second law leads to the Clausius version. Other appendices provide
solutions to various problems that are identified in the text.

Unlike a novel, which is often read continuously — and the reading is completed
within a couple of days — this book is likely to be read piecemeal — a chapter or so
a week. At such slow rate of reading, it is often hard to recall the precise form of a
relationship that appeared in a previous chapter or sometimes even in the earlier
part of the same chapter. To help relieve this difficulty, when needed the most
helpful explanation of the issue at hand is repeated briefly and the most relevant
expressions are mentioned by their equation numbers. Throughout the book, for
efficient reading, most equations are numbered in seriatim. When needed, they can
be accessed quickly.

A fact well known to researchers is that when a physics problem is analyzed
in more ways than one, its understanding is often greatly enhanced. Similar
improvement in comprehension is achieved when students are also provided access
to alternate, yet equivalent, explanations of the subject matter relating to important
physical concepts. To this end, effort has been made to provide — wherever possible —
additional, alternate solutions to given problems and also to the derivation of
noteworthy physical results. Occasionally, brief historical references have also been
included in the text.

Most of the current knowledge of thermodynamics is much older than the
students who study it. Numerous books have been written on the subject. While
the current book owes greatly to three well known texts on thermodynamics® and

3Namely: Herbert B. Callen, John Wiley Publishers (1960); D. ter Haar and H. Wergeland,
Addison-Wesley Publishing Company (1966); F. W. Sears and G. L. Salinger, Addison-Wesley
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one on statistical mechanics,* its import is different: it is offered as much for use in
formal lectures as for self-study.-°

Many thanks are due to Dr. Claus Ascheron for suggestion and advice. Finally,
but for the help and support of my colleagues, Robert Intemann and Peter Risebor-
ough, this book could not have been written.

April 2011 R.A. Tahir-Kheli, Philadelphia, Pennsylvania

Publishing Company — Third Edition (1986). Herbert B. Callen, John Wiley Publishers (1960);
D. ter Haar and H. Wergeland, Addison-Wesley Publishing Company (1966); F. W. Sears and
G. L. Salinger, Addison-Wesley Publishing Company — Third Edition (1986).

4Namely: R. K. Pathria, Pergamon Press (1977).
SCallen, Herbert B (1919)-(5/22/1993).
Ster Haar, Dirk (4/22/1919)-(9/3/2002).
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Chapter 1
Introduction and Zeroth Law

Much like other scientific disciplines, thermodynamics also has its own vocabulary.
For instance, while dealing with objects composed of very large numbers of parti-
cles, one might use terms like: thermodynamic system; adiabatically isolating and
adiabatically enclosing walls; adiabatic and non-adiabatic enclosures; conducting
and/or diathermal walls; isothermal, isobaric, isochoric, quasi-static, reversible,
and irreversible processes; state functions and state variables; thermodynamic
equilibrium; and, of course, temperature in its various representations.

Central to the understanding of temperature and its relationship to thermody-
namic equilibrium is the Zeroth Law of thermodynamics.

Just as driving an automobile gets one much farther than walking, thermody-
namics is greatly helped by the use of mathematics. And there are a few simple
mathematical techniques that are particularly useful.

An attempt at treating the foregoing issues is made in the current chapter.
For instance, Sect.1.1 deals with definitions of the terms that are often used;
Sect. 1.2 with the need for large numbers in thermodynamic systems and their
effect on the most probable state; Sect.1.3 with the zeroth law; Sect. 1.4 with
helpful mathematical procedures; Sect. 1.5 deals with the cyclic identity, with exact
and inexact differentials, and their relevance to state variables and state functions;
Sect. 1.6 with the use of simple Jacobian techniques; and finally, Sect. 1.7, with
the re-derivation of the cyclic identity and the introduction of other well known
identities.

1.1 Some Definitions

1.1.1 A Thermodynamic System

A thermodynamic system — sometime also called an “object” — comprises a
collection of very large numbers of atoms and/or electromagnetic field quanta.
In general, in addition to being subject to internal effects, a system may also be

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 1
DOI 10.1007/978-3-642-21481-3_1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction and Zeroth Law

affected from the outside. Further, it may be of liquid, solid, gaseous, or even some
other exotic form.

1.1.2 Adiabatic Enclosure

Generally the walls of an enclosure in which a system is placed allow for the transfer
and exchange of translational momentum, electro-magnetic and gravitational fields,
heat energy, and sometime even molecules, etc. It is, however, possible to build walls
that greatly reduce such transfers and exchanges. Exceptionally, one can imagine the
construction of walls that reduce all of the aforementioned transfers and exchanges
a 100%. These are called “adiabatic” walls.

Built entirely from such adiabatic walls, an enclosure, that completely encloses
a (thermodynamic) system, is called an “adiabatic” enclosure.

1.1.3 Adiabatically Isolated System

An adiabatically isolated system exists within an adiabatic enclosure and it inter-
changes no energy, and no information, with the environment(meaning, the rest of
the universe).

1.1.4 Adiabatically Enclosed System

While an adiabatically enclosed system does not interchange any energy with
the environment, unlike an adiabatically isolated system it may be subject to
interchanging some information with the environment.

1.1.5 Conducting Walls

Walls that are not adiabatic and freely allow for the transfer of momentum, energy,
etc., are called “conducting.” In a word, they are “open.” This open-ness can take
several forms. Particularly relevant to the study of thermodynamics is the open-ness

to the transfer and exchange of “thermal energy,” “mass,” “electromagnetic fields
and charges, etc.,” and momentum.

1.1.6 Diathermal Walls

If a wall allows for the transfer of heat energy, it is called a “diathermal,” or
equivalently, a “heat energy conducting,” or a “thermally open,” wall.
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1.1.7 Isobaric Process

A process that occurs while the pressure remains unchanged is called an “isobaric
process.”

1.1.8 Isochoric Process

An “isochoric process” occurs at constant volume.

1.1.9 Thermal Equilibrium

We all know when we feel “hot” or “cold.” Also that given two objects, one “hot”
and the other “cold,” bringing them into contact generally cools-down the hot object
and warms-up the cold object.

When a thermometer is used to take a reading of the hot object “A,” it registers a
number, Tj, that is higher than that, that is, 7¢, registered for the cold object “c.”

Let identical thermometers be placed in two objects as they are brought into
“thermal contact.” Now let both the objects, with their thermometers, be placed
inside an adiabatic enclosure. Assume that the thermometer readings can be
observed. These readings, 7}, and T¢, begin to move toward an intermediate number.
Indeed, as the contact time increases, the readings move ever closer. Eventually, they
stop changing and attain — what should be — the same reading. When that happens
we say that the thermometers and the systems have reached — both by themselves
and with each-other — a state of “thermal equilibrium.”

1.1.10 Quasi-Static Process

A quasi-static process proceeds extremely — in principle, infinitely — slowly: almost
as if it were static when in fact it is proceeding. Generally, it passes through
a very long — in principle, infinitely long — series of equilibrium states that are
infinitesimally close to each other. In contrast, real processes proceed at finite speeds
and pass through states that depart from the equilibrium.

For instance, during a quasi-static transfer of heat energy, both the relevant
thermodynamic systems — that is, the one delivering the heat energy as well as
the one receiving it — pass through only those states that are in thermodynamic
equilibrium.

In contrast, a real process both proceeds at non-zero speed and the intermediate
states that it passes through may often depart from the equilibrium. Thus a
quasi-static process is an idealization and, in practice, is at best achieved only
approximately. Yet, in thermodynamics, the concept is of great theoretical value.
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1.1.11 Reversible and Irreversible Processes

A reversible process is one that occurs with such little “enthusiasm” that it can be
reversed with merely an infinitesimal amount of effort. A signature example of such
a process would be provided by quasi-static transfer of heat energy from a reservoir
to an object that is almost exactly at the same temperature. In this way, the process
can proceed in either direction with only an infinitesimal change in the temperature.
Note, a reversible process is necessarily quasi-static.

1.2 Thermodynamics: Large Numbers

Thermodynamics deals with macroscopic systems. Any such system comprises very
large number of particles. For instance, one gram of hydrogen has approximately
6 x 10? atoms. Considering that the age of the Universe is thought to be less than
~10"® seconds, 6 x 10> is a very large number.

Owing to inter-particle interaction, theoretical analysis of most such systems
is very complicated and can at best be carried out only approximately. Indeed,
unlike statistical mechanics, thermodynamics itself does not even attempt to per-
form “a priori” theoretical calculations. Rather, it deals with inter-relationships of
observed physical properties of macroscopic systems. In so far as such knowledge
can often help relate easily measurable physical properties to those that are hard to
measure, thermodynamics plays an important role in scientific disciplines.

1.2.1 Remark: Most Probable State

As elucidated in appendix A, large numbers are fundamental to the accuracy of
thermodynamic relationships. Indeed, systems with small numbers of atoms do not
satisfy thermodynamic identities.

Macroscopic systems contain very large number of particles. For large numbers,
the most probable occurrence is overwhelmingly so. As such, the result of any
thermodynamic — that is, a “macroscopic” — measurement is extremely well
described by the configuration that refers to the most probable state. Therefore, quite
appropriately, thermodynamics focuses primarily on the most probable state.

1.3 Zeroth Law of Thermodynamics

Insert identical thermometers into three different objects (that is, systems) called
A, B and C. Place the trio in an adiabatic enclosure.

Bring A into thermal contact separately with B and C. But make sure that the
objects B and C are not placed in direct mutual thermal contact.
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Let the two contacts —namely A — B and A — C - last for an extended period
of time. As noted before, this causes the objects A and B, as well as the duo 4
and C, to reach mutual thermal equilibrium.

The zeroth law now makes a seemingly un-surprising prediction: namely that
the above two equilibrating processes also ensure that B and C — which are not
in direct thermal contact with each other — will also have reached mutual thermal
equilibrium. Considering that elementary rules of algebra require B to be equal to
C whenever A = B and A = C, one might laughingly assert that there is nothing
special about this prediction !

But this assertion is fallacious, because we are not dealing with the rules of
algebra here. For instance, consider two persons, “a” and “b,” who are good friends.
If “a” is also good friends with another person named “c,” then is it always the case
that “b” is good fiends with “c” ? Indeed, if that should be the case, then the trio may
be thought to have some common “chemistry” together!

Below we follow an argument, given by Pippard, to show that the zeroth law
predicts the trio A, B, and C to have a common state variable. The relevant common
state variable is normally called the “temperature.”!-?

1.3.1 Empirical Temperature

A “simple” system is defined such that a given amount — say, a single mole** — can
be’ completely specified by two state variables: pressure p and volume v. Further,
with appropriate effort, the magnitude of either, or indeed both, of these variables
may be changed. Consider three such systems — one mole each — labeled 4, B,
and C. What happens if all three are placed within the same adiabatic enclosure in
such a way that A is separately in thermal contact with B, on one side, and C, on
the other. In this fashion, because B and C themselves remain physically separated
from each other, they are not in direct thermal contact.

Over time, the pressures and volumes settle down at three pairs of values — say,
(p4, va), (pp, vp),and (pc, ve) — that are relevant to the achieved state of mutual
thermal equilibrium of A separately with B and C.

'A. B. Pippard in “Classical Thermodynamics,” pages 7—11, Cambridge University Press, 1957.
2Pippard, Alfred Brian (9/7/1920)—(9/21/2008).

3By international agreement, the relative atomic mass of N, carbon-12 atoms is chosen to be
exactly equal to 12. Note that a carbon-12, that is, 12C, atom has six protons, and six neutrons.
The Avogadro’s number, N, is so chosen that the mass of N carbon-12 atoms is exactly equal to
12 grams. Measured, thus, N, is equal to 6.02214179(30) x 102> mol ™. References to one mole
always specify N4 particles whether they be atoms or molecules.

4 Avogadro, Lorenzo Romano Amadeo Carlo (8/9/1776)—(6/9/1856).

5Note that both carbon and helium molecules are monatomic.
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An interesting result is that now the values (p4,v4), (pB,vB), (Pc,vc)
arbitrarily cannot be adjusted. It is important to note that such an inability did
not exist when 4 and B, and 4 and C, were not in thermal contact. In fact, it is now
found that only three of the four variables of a pair of systems in thermal equilibrium
can be chosen arbitrarily. The fourth variable is then completely specified.

In other words, the two pairs (p4,v4) and (pp,vp) — or similarly, the pairs
(p4,v4) and (pc, ve) — have only three independent variables. The fourth variable
is dependent on the other three.

Mathematically, this fact can be expressed as follows.°

pa= fi(va, pB,vB). (1.1)

Let us treat next the second pair of systems in thermal equilibrium: namely, 4 and C.
Again, noting that of the four variables (p4,v4) and (pc,vc) only three are
independent, we can write’

pa= fa(va, pc,vc). (1.2)

Equating p4 in (1.1) and (1.2) yields

fi(va, pp.v) = fa(va, pc,vc). (1.3)

Let us now remind ourselves of the assertion made by the zeroth law. Because the
objects A and B, as well as A and C, are in mutual thermal equilibrium; therefore,
it is asserted that B and C must also be in mutual thermal equilibrium.

Should the above assertion — namely that B and C are also in mutual thermal
equilibrium — be correct, then much as noted earlier, of the four variables (pp, vp)
and (pc, vc), only three would be independent. Thus, any of these four variables
depends on the other three: for example,

e = f3(vp. pc.vc). (1.4)
Equation (1.4) is more conveniently written as follows:

G(vavBs pc, UC) = fé(vBs pc, UC) — PB
— 0. (1.5)

6 Although we have chosen to represent p4 as a function of (v4, pg.vp), any other of these four
variables could equally well have been chosen as a function of the remaining three.

7It bears noting that f(x, y,z) and f>(x, y,z) are, in all likelihood, not the same functions. This
is especially true if B and C are physically different systems.

8Note f3(x, y,2), a function of the three variables x, y and z, is in all likelihood different from
fi(x,y,2)and f5(x, y, z) encountered in (1.3) above.
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1.3.2 Taking Stock

Let us take stock of what has been achieved so far. Equation (1.3) acknowledges
the fact that the pairs, (A4, B) as well as (4, C), have been brought into mutual
thermal equilibrium while the systems B and C have been kept physically separated.
Consequent to this happenstance, (1.5) records the prediction — which is actually an
assertion — of the zeroth law.

In other words, the zeroth law asserts that (1.5) — which signifies mutual thermal
equilibrium for systems B and C — follows from (1.3).

But how can this be true considering (1.3) is a function of five variables, v 4,
(pB,vp), and (pc,vc), while (1.5) depends only on the four variables (pp,vp)
and (pc,ve)? In order for this to happen, in (1.3), there must occur a complete
self-cancelation of the fifth variable, v4. The most general choice for fj and f, that
satisfies this requirement is the following:

J1(a, pp,vp) = a(va)J(pp.vp) + B(va):
fo(va, pc.ve) = a(va)K(pc.ve) + B(va). (1.6)

It is important to note that the functions J(x, y) and K(x, y) are neither required,
nor are they expected to be the same.
The equality of f1(v4, pp,vp) and f>(v4, pc, v.:), demanded by (1.3), that is,

a(va)J(pp.vp) + B(va) = a(va)K(pc.vc) + B(va), (L.7)

yields
J(pp,ve) = K(pc,vc) = Tp—c(empirical). (1.8)

Equation (1.8) is of central importance. The assertion of the zeroth law that
systems B and C are also in thermal equilibrium demands that both B and C lead to
a common value of a parameter, 75— (empirical), that we shall call their empirical
temperature.’

Analogously, we can conclude that because we started with the knowledge that
A and B are in thermal equilibrium, they too must lead to the existence of a common
empirical temperature. Let us call that 74— (empirical).

Equivalently, the same must be true for the duo A and C who also were stated
to be in thermal equilibrium. As a result we must have an empirical temperature,
T 4—c (empirical), that is common to the two systems A and C.

Therefore, using basic rules of algebra, all of the three systems, 4, B, and C,
have in common the same empirical temperature T (empirical). That is

Such an empirical temperature could be defined by any appropriate thermometric property that
both the systems share.
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T (empirical) = T4—p(empirical)
= Ty—c (empirical)

= Tp—_c (empirical). (1.9)

1.3.3 Isothermal Process

A process that occurs at constant temperature is called an “isothermal process.”

1.3.4 Egquation of State

Relationships of the type given in (1.8), for example,
J(p,v) = T (empirical), (1.10)

where J(p, v) represents a function of the pressure p and the volume v, are often
referred to as equations of state of a simple thermodynamic system.

1.3.5 Remark

The zeroth law leads to a result that equates a function of the pressure and the
volume of a “simple”! thermodynamic system to a single parameter that is the
same for any two systems in thermal equilibrium. This parameter can be labeled
the “empirical temperature.” Note that there are also other important consequences
of the zeroth law. Under the heading: “Zeroth Law Revisited,” these consequences
are discussed in detail in Chap. 9 that in the table of contents is titled “Zeroth Law;
Motive Forces; Stability.”

1.4 Useful, Simple Mathematical Procedures

Readers of this text are likely to be familiar with elementary differential and
integral calculus. Many will also have been introduced to partial differentiation and
possibly also to the use of Jacobians. Experience suggests that at least for some the

107t should be noted that the implications of the zeroth law are not limited to just simple
thermodynamic systems. Systems with an arbitrary number of thermodynamic state variables also
obey the zeroth law equally well.
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knowledge will have become rusty. Therefore, a quick review of the mathematical
procedures, that are most needed for an adequate study of Thermodynamics, is often
helpful. Salient features of such a review are recorded below. In order to keep the
review simple, proofs are not provided and issues of mathematical rigor are not
tackled.

1.5 Exact Differential

Thermodynamics deals with macroscopic systems that can be described in terms of
state variables. For a given amount — such as one mole, for example — of a simple
system, there are three such variables: pressure p, volume v, and temperature 7.
As mentioned above, in general, these three variables are related through an equation
of state of the form

f(p,v,T) =0, (1.11)

making only two of them independent. For notational convenience let us denote the
two independent variables X and Y.
Given Z is a function of X and Y,

Z=2Z(X.Y),

1,11

and dZ is an exact differential,'" then the line integral in the (X, Y) plane,

(X¢,Yp)
/ dZ(X,Y),
(Xi,Y)

depends only on the initial, i = (Xj, Y;), and the final, f = (X¢, Y¢), positions and
thereby is totally independent of the path traversed between i and f.

1.5.1 Exercise I-a

Show that

dZ(X.Y) = (2AXY?>+ BY? +2CXY + D)dX
+ (2AX’Y +2BXY + CX* + E) dY, (1.12)

is an exact differential.

"Note: some authors — for example, D. ter Haar and H. Wergeland, op. cit. — prefer to use the term
total differential.
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Exercise I-a

2 2
4
2 0 12
1.5 7
Y 1 A /
0.5 7
0 Ol
0
0 0.5 1 1.5 2

Fig. 1.1 Paths traveled. The paths traveled are: (First): From the point (0,0) up to (0,2) and then
to (2,2). (Second): Another possibility is to travel directly from (0,0) across to the point (2,2)

1.5.1.1 Solution

Let us try to determine whether the line-integral,

(X2.Y2)
/ dZ(X,Y),
(X1,Y1)

between any two points, (X1, Y1) and (X3, Y>), is path independent. To this end, set
(X1,Y1) = (0,0) and (X,,Y;) = (2,2). A simple check is provided by choosing
two different paths — as in Fig. 1.1 — that use straight-lines. Because, in principle,
there are infinitely many different paths in the (X, Y) plane that can connect the
given two points, the use of only two paths, while being indicative of the result, can
by no means be considered a proof. A convincing proof is provided in Exercise I-b
below.

Route I: First travel from (0, 0) to (0, 2) and then from (0, 2) to (2, 2). According
to (1.12) we get

(0,2) 0,2)
/ dZ(X.Y) =/ (2AXY?>+ BY?>+2C XY + D)dX
(0,0) (0,0)

(0.2)
+ / (2AX?Y +2BXY 4+ C X* 4+ E)dY
(0,0)

2
=0 +/ (E)dY = 2E. (1.13)
0

Note, in the above, X = 0, and also dX = 0.
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Next, we need the integral from (0, 2) to (2, 2), that is,

2,2 (2,2)
/ dZ(X,Y) =/ (2AXY?>+ BY?>+2C XY + D)dX
(0,2) 0,2)

22
+ / (2AX?Y +2BXY + C X* + E)dY
(0.2)

2
=/ (84X + 4B +4C X + D)dX +0
0

= (164 + 8B + 8C + 2D). (1.14)

Note, in the above, Y = 2. Additionally, dY = 0. Thus, the total value of the line
integral along route I is

(2,2) 0.2) (2.2)
/ dZ(X.Y) = / dZ(X,Y) + / dZ(X.Y)
(0,0) (0,0) (0,2)

= (2E + 164 + 8B + 8C + 2D). (1.15)

Route II: Travel directly along the straight line from (0, 0) to (2, 2). In order to
work out the line integral — as always — we need to arrange things so that any of the
integrals used involves only one variable. Because the equation for the relevant path
is X =Y, and also because both X and Y extend from 0 to 2, one gets:

2,2) 2,2)
[ dZ(X.,Y) :/ (2AXY?+ BY*>+2C XY + D)dX
(0,0) (0,0)

2.2
+ / (2AX?Y +2BXY + C X* + E)dY
(0.0)

2
:/ (2QAX* 4+ BX* +2C X? 4 D) dX
0

2
+/ (QAY? +2BY* + C Y?> + E)dY
0
= (164 + 8B 4+ 8C +2D +2E). (1.16)

As expected, this result is identical to that noted in (1.15).

1.5.2 Notation

Because for an exact differential

(Xr,Yr)
/ 4Z(X.Y) = a(X0. Y) — a(X:, Vo),
(Xi,Y1)
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and similarly

(Xi,Yi)
/ dZ(X,Y) = a(X;, V) —a(Xy, Yy),
(X¢,Yp)

therefore, adding the two gives

(X¢,Yp) (Xi.Yi)
/ dZ(X,Y)=/ dZ(X,Y)+/ dZ(X,Y)
i—>f—i (Xi,Y) (Xt,Yr)

= a(Xp, i) —a(X;, ¥)) + a(X;, Vi) —a(X;, 17)
—0. (1.17)

This is valid for all paths of the integration, which lie within the (X, Y) plane, and
form a closed loop. Such a loop starts off at some arbitrary initial location i within
the X, Y plane, travels within the plane to some arbitrary final point f, and at the
end returns to the initial location i.

Accordingly, the usual notation for displaying an exact differential dZ is the
following:

%dZ(X,Y):sﬁdZ:O. (1.18)
In general, such an exact differential can be expressed as
dZ =dZ(X,Y) = NX,Y)dX + M(X,Y)dY, (1.19)

where N(X,Y) and M(X,Y) are functions of X and Y and obey the so called
“integrability” requirement

N(X.Y) = z . M(X.Y) = zy (1.20)
X/, Y )

which holds if the second mixed derivatives of Z are equal. That is:'?

*Z . ON . oM . 02z (121)
avax —\ay J,  \ax J,  axoy ’ '
Thus, the standard representation for an exact differential — in two dimensions — is
0Z 0Z
dZ=—) dX +{— ] dY. (1.22)
X /y Y )y

2Beginners usually benefit by being reminded that the operation (g—)z() y consists in finding a

derivative of Z with respect to X while holding the variable Y constant.
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1.5.3 Exercise I-b

Rigorous method to show that

dZ(X,Y) = 2AXY? + BY? +2CXY + D)dX
+ (2AX?Y +2BXY + CX* + E)dY, (1.23)

is an exact differential.

1.5.3.1 Solution
Calculus tells us that a necessary and sufficient condition for
dZ(x,y) = M(x, y)dx + N(x, y)dy (1.24)

to be an exact differential is the requirement that the following equality hold:

IM(x.y)\ _ (IN(x.y)
(557),= (557),

Thus, for dZ (X, Y) to be an exact differential, we must have

(a (2AXY? + BY? +2CXY + D)

37 ) =4AXY +2BY +2CX,
X

equal to

(a (2AX2Y +2BXY + CX> + E)
X

) =4AXY +2BY 4+ 2CX.
Y

Which is the case.

1.5.4 Inexact Differential

Let us look at the differential

dZ(X,Y) = (BY*+2C XY + D)dX
+ (2AX?Y 42BXY +C X* + E)dY
= N(X.Y)dX + M(X.Y)dY. (1.25)
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Clearly, this differential is inexact because

(aﬁ) = 2BY +2CX
Y )

# (Bﬂ) =4AXY +2BY +2CX. (1.26)
X )y

Of course, information about the inexactness of this differential can also be
obtained by integrating along route I — similar to the way it was done in (1.15) —
and route II — much as was done in (1.16). As behoves an inexact differen-
tial, these two results are not the same. Being equal to (8B + 8C + 2D + 2F)
and (84 + 8B + 8C + 2D + 2E), respectively, they differ by an amount equal
to 8A.

1.5.5 State Function and State Variables

Any thermodynamics function, Z, which admits of an exact differential, dZ, is
vested with the special title: state function.

As mentioned earlier, for a “simple” thermodynamic system, variables X and
Y may represent any of the three pairs p,v; p,t; or v,t. These pairs are called
state variables. An obvious property of these variables is that their differentials
dp=dp(v,t);dv = dv(p,t); ordt = dt(p, v), are also exact.

An essential attribute of a state function Z(X, Y) (for a simple thermodynamic
system), therefore, is that for any thermodynamic equilibrium state, the state
function depends only on the value of the given pair of state variables, X and Y. As
aresult, when a thermodynamic system travels from an initial position specified by a
given initial value of the relevant state variables, namely (Xj, ¥;), to another position
specified by a given final value, say (Xt, Yf), of the same two state variables, the
resultant change in any state function, namely Z (X, Yr) — Z(Xj, V), is independent
of the path taken. Furthermore, as a necessary consequence, any travel that takes the
system completely around a closed loop, leaves the value of the state function, Z,
unchanged.

1.5.6 Cyclic Identity

Much of the work involved in the study of elementary thermodynamics consists in
deriving relationships between quantities that are easy to access experimentally and
others that are less so. This is not an idle exercise. Specific heat, compressibility,
expansivity, etc., are quantities that are readily measurable under most ambient
experimental environments. Their relationships to various derivatives of important
thermodynamic state functions, that may not be so easy to measure, help in the
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evaluation of these functions. Examples of these are the system internal energy,
enthalpy, entropy, etc.

The establishment of such relationships can often be accomplished by the use of
exact differentials of the state functions themselves as well as those of the relevant
state variables. Such procedures involve the use of (1.22).

Noting that dp(v,t) and dv(p,t) are exact differentials, we can use (1.22) and

write
ap ap
dp = — d — dz;
b (%)t”+(M)v’

v Jv
dv={|—) d — dr. 1.27
v (@),p+(m)p’ (127

Eliminating dv between these two equations yields:

() ) Jor=[(2).(3), () o 0

Consider two neighboring equilibrium states of a simple thermodynamic system
at temperature 7. Recall that the thermodynamics of a simple system depends only
on three state variable p,v and 7. The fixing of one of these specifies the inter-
dependence of the other two. For example, given any two neighboring equilibrium
states that are both at the same temperature, that is, d = 0, then according to (1.28),

0 ad
[ (5. () Jr=o
v/, \op/,
And unless the two “neighboring” states are identical — in which case dp, dv are
both vanishing — generally d p and dv are # 0. Therefore, in general, we must have:

-(2))
v/, \dp/,

This, of course, is the un-surprising statement that

ap\ _ 1
(5)_ (a_v)t. (1.29)

dp

Next, consider two neighboring states with the same pressure. Here dp = 0 but
dv and df are in general not equal to zero. Therefore, (1.28), namely

(-GG, () )«
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() (), (@
0= (av)f (az)p+ (ar)v‘ (130

Using (1.29), (1.30) can also be written as

ap v ay\
(@), (&), (&)= asb

Equation (1.31) — or, equivalently (1.30) — will be referred to as the “cyclic
identity.”

leads to the result

1.5.7 Exercise I1-a

(1) Instead of dv, eliminate d p from the two equations in (1.27), and re-derive the
cyclic identity. (2) Also, do the same by eliminating dz.

1.5.7.1 Remark

In the following chapters, we shall make much use of the cyclic identity and the
formula introduced in (1.22). Also, occasionally we shall work with an easy to use
“Jacobian Determinant” — (JD) — procedure.

1.6 Jacobians: A Simple Technique

The (JD) offers an easy, and often-time an efficient, procedure for establishing
thermodynamic inter-relationships. Below we describe its use in treating state
functions A(X,Y) and B(X,Y) of a simple thermodynamic system where X and
Y are any two of the three state variables. The relevant (JD) makes use of a 2 x 2

Jacobian of the general form gz;g; That is:

w11, (2),
R, @G, ),
- (g_;)y (g_ﬁ)x B (3—?)){ (g—i)y- (1.32)
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Clearly, therefore, by exchanging A and B, and/or X and Y, we find the relation-
ships:

d(A.B)  3(B.A) (B, A) _ d(A B)
X, Y) a(X.Y) 9Y.X) 0. X)

(1.33)

In other words, a single reversal in the order of the entries at the top or the bottom
of g&g; causes a (single) change of sign of the Jacobian. Similarly, if the number of
reversals is two it causes (two changes in sign which amounts to) no change in sign.
An important property of the Jacobian determinant, that will be found very useful,

is the following:

9(A, B) _ 9(A. B) 9(C, D)
3(X,Y) 9(C,D) 3(X,Y)

(1.34)

An easy way to remember this is the following: what you add at the bottom here,
you add “next-door” at the top.

It is clear that in a fashion similar to (1.34), we can extend the process further.
That is:

(4. B) 9(C.D) _ d(A, B) 9(C.D) d(E.,F)

3(C.D) 0(X.Y) 93(C.D) 0(E.F) d(X.Y)

3(A,B) 3(C,D) J(E,F) (G, H)
93(C,D) O0(E,F) 4(G.H) 3(X.Y)

= etc., etc. (1.35)

1.6.1 Exercise II-b

Prove the following equality (which is similar to (1.34)).

9 (xi, x2) 30, x2) (i, y2)
0(z1, 22) Ay, y2) 0z, 22)

(1.36)

1.6.1.1 Solution

Here, x; and x, depend on two variables z; and z,, each of which also happens
to depend on two other variables y; and y,. For such a case the “chain rule” of
differential calculus tells us that:!3

13See any text on Differential Calculus, or see M. L. Boas in “Mathematical Methods in the
Physical Sciences,” John Wiley, Publishers.
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(81) :(31) (@) +(ai) (@) , (1.37)
91 /)., v/, \dz /., ay2 /)y, \0z1 /,,
(31) =(@) (%) +(%) (%) (1.38)
022/, i/, \9z22 /, W2/, \ 922/,

where i = 1, or 2. Equations (1.37) and (1.38) prove the desired equality 1.36.'4

and

1.6.2 Jacobian Employed

As noted earlier, partial derivatives of the form (g—)Z()Y play an important role in the

study of thermodynamics. The (JD) provides a convenient representation for such
derivatives. For example, in (1.32), simple notational change A to Z and B to Y

yields
(32) (82)
(Z,7) X Y Y Y

(X, Y)  |[ay Y\ |
(5x), (),

W\ _o (oY) _,
ax ),  \av )y

(1.39)

Because

equation (1.39) gives

e | (57), (57), |2 2
02,1 _\ax ), \ar ), :(Z) , (1.40)
Y

IX.Y) 0 | X

The significance of (1.40) should be emphasized: it connects the typical gartial
derivative, (g—)z()y, that is often used in thermodynamics, with a simple (JD), %,
which is easy to manipulate. An aid to memory:

14Note, in order to convince oneself of the above statement one needs first to write down the two
2 X 2 determinants on the right hand side of (1.36); next to multiply them and write the result
naturally as a 2 X 2 determinant. This resultant determinant consists of the four terms given as
(1.37) and (1.38). It should be identical to the 2 X 2 determinant on the left hand side of (1.36).
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The essential feature of the derivative (g—)z()Y, is that Z is being varied as a

function of X, while Y is being kept constant. Accordingly, in gg_,l;;, Z occurs

at the top left, X at the bottom left, and Y occurs to the right both at the top and the
bottom.

1.7 Useful Identities

Consider variables X,Y and Z where only two are independent. According
to (1.40)

IX Z) _ (3—X) (1.41)
ax,z)y \ax),’ ’

Following the procedure described in (1.34), the left-hand side of (1.41) can be
extended to

(X, Z) (Y. Z) (X, Z)
3Y,Z) 9(X,Z) (X, Z)

X
= (B_X)Z =1. (1.42)

Indeed, we can continue to extend the left hand side and write:

(X, Z) a(Y,Z) d(X,Y)
3Y,Z) 9(X,Y) 0(X,Z)

Now, as explained earlier, if we reverse the order in three of the six factors, the
overall sign will get reversed three times — which is equivalent to a single reversal
of sign, that is,

(X, Z) 9(Z,Y) d(Y.X) _
IY,Z) 0(X.Y) 9(Z, X)

1. (1.43)

1.7.1 Cyclic Identity: Re-Derived

Using the transliteration embodied in (1.40), the above can be represented as

follows:
X 0Z Y —
av ), \ox ), \az),
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The mutual interchange of the last two terms makes this equation easier to

memorize. That is,
X aY 0Z _ (1.44)
aw ), \az), \ox ), ‘

Aid to memory: think of the cyclical order,v

X—>Y—>Z->X->Y)

Often, it is helpful to recast the cyclic identity in the following form:

0X 0X 0Z
(5v),=- (%), (), (4

The cyclic identity given in (1.44) and (1.45) is identical to that given earlier in
(1.31) and (1.30). Recall that this identity represent an important relationship and
will be put to good use in this text.

1.7.2  Simple Identity

Another identity that is worth noting is obtained straight forwardly when Jacobian
representation is employed.

9(4,G) _ 3(4,G) 3(Z,G)
3(B,G) 9(=,G) 4(B,G)

A (04 0% 47
(@)G—(E)G'(@)G‘ (147

We shall call this the simple identity. '3

(1.46)

Equivalently, it reads

1.7.3 Mixed Identity

As stated earlier, all thermodynamic functions that refer to (a given quantity of) a
simple system depend on the variables P,V and T. While only two of these three
variables are linearly independent, occasionally it is useful to work with all three.
For instance, consider a function 4

15Some students may prefer to use (1.47) as a calculus identity and work backwards to (1.46) as a
useful Jacobian identity.
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A=AX.Y, Z).

Treating the pair X and Y as the independent variables we have

04 0A
dA = — dXx — dY. 1.4
(aX)Y * (aY)X (149

Because Y and Z can also, just as well, be treated as the independent pair, X can
be represented in terms of them.

X = X(Y, 2).

Thus,

ax = (%) ay + () 4z
~\ar ), 0z ),

When introduced on the right hand side of (1.48) this gives

w={(5), (), + () Jor + (2), o

Comparing this relationship with one where Y, Z are treated as the independent pair,

that is,
ad= (22 ar o (24 4z,
v ), 0z ),

04\ (04 n 04 0X (1.49)

v ), \av ), \ox ), \ar ), '
By making a cyclic change of the variables — such that, Y goes to Z, Z goes to X,
and X goes to Y — we get two other equivalent relationships:

A (04 A\ (9Y 150
(ﬁ);(ﬁ)ﬁ(ﬁ)z(ﬁ)x’ (150
A\ _ (DA | (04) (3Z s
(%), = (), * (52), (5%), asn

For future reference, these will be called mixed identities.

we get an identity

and



Chapter 2
Perfect Gas

Physics is arguably unique in its emphasis on constructing models that may pertain
to systems of interest. Often, these models are simple and lacks of the complexity
of the real systems. But the payoff of such simplicity is the ability to fully predict
and understand the model system. The hope always is that such understanding will
give insight into the physics of the real system of interest.

“Perfect Gas” is a model of an idealized gas. As is customary, it was constructed
to understand the behavior of real gases. Originally motivated by experimental
observation, the model has had a long and illustrious history, and a great deal of
success. In Sect. 2.1, the model is introduced and using standard thermodynamics
techniques the role of pressure and volume described. A brief introduction to the
statistical techniques is given in Sect.2.2. Back to using the standard procedures,
in Sect. 2.3 the equation of state is derived. Section 2.4 refers to the intensive and
extensive properties. A thermodynamic approach to the concept of temperature is
given in Sect.2.5. Diatoms and diatomic perfect gas are discussed in Sect.?2.6.
Dalton’s law and mixtures of ideal gases is referred to in Sect.2.7. Perfect gas
atmospheres of various varieties are discussed in section in Sect. 2.8 and a perfect
gas of extremely relativistic particle is treated in Sect.2.9. Various solves examples
and exercises are discussed in Sects. 2.10 and 2.11.

2.1 Model of a Perfect Gas

A perfect gas of volume V' consists of a large number of atoms. There is no inter-
atomic coupling; the size of the atoms is vanishingly small; the containing walls
of the vessel are smooth and featureless. All collisions between the atoms and the
walls are perfectly elastic; effects of gravity are absent; also no other external forces
are present. The gas is in thermal equilibrium. Further, all N atoms are in random
motion.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 23
DOI 10.1007/978-3-642-21481-3_2, © Springer-Verlag Berlin Heidelberg 2012
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2.1.1 Pressure

Imagine the gas consists only of atoms that have the same mass, m. It is contained in
a vessel that is shaped as a perfect cube.! For convenience, arrange the sides of the
cube, each of length L, to lie along the x, y, z axes of a Cartesian coordinate system.

Set the origin of the Cartesian coordinates at the bottom left-hand corner of the
cube — that is, at the position (0,0,0) — and the positive direction of the axes along
the three edges. As such, the top corner, diagonally opposite to the origin, is at the
point (L, L, L).

Examine the course of events involved in atomic collisions against the two walls
that are perpendicular to the x-axis. Denote the x-component of the velocity of the
i-thatom-i =1,2,...,N —as v; 4.

Perfect elasticity of collisions requires that upon striking the right-hand wall with
x component of momentum, 71 - v; ., the atom gets perfectly reflected. As aresult, the
x component of its momentum becomes —m - v; ;. Accordingly, the change in the x
component of momentum of the atom after one collision of the right-hand wall is:

final momentum of colliding molecule — its initial momentum
=[-m-vi ] —[m-vi]

= 2m-vj,. (2.1)

Because there are no external forces, the total momentum in any direction is
conserved. Invoking this fact for the x-direction leads to the requirement:

change in total momentum

change in particle momentum + change in momentum of wall
= —2m - v; x + (change in momentum of wall); ,
=0. (2.2)

That is, the ith atom, by a single collision of the wall perpendicular to the x-axis,
causes a change in the x-component of the momentum of the wall equal to

(change in momentum of wall); , = 2m - v; ;. (2.3)

The absence of slowing down mechanisms insures that after traversing across the
cube to the left-hand side wall placed at x = 0 this atom returns for another
collision against the original wall at x = L. Such a round-trip — from the right-hand
side wall to the wall on the left and then back to the wall on the right — is of

!'Gas in a more general shaped vessel is analyzed in appendix B . A beneficial payback of that
analysis is its agreement with Pascal’s law. From Pascal’s law it can be concluded that in the
absence of external, space and direction dependent, forces the pressure of a fluid is constant
throughout the vessel.
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length 2L. Further, it is traversed at constant speed |v; .|. Therefore, the time, ¢,
taken by the atom for the round trip travel is

Distance traveled

Speed of travel
2 L/|vixl. (2.4)

As aresult, the rate of transfer of momentum perpendicular to the wall by a collision
with one atom is the following:

(Change in momentum of wall); . 2m - |v; «|
t { 2L/ |vixl }
my o
=(—=)v2. . 2.5
(7) i @)

Summing this over all the atoms — that is, for i =1 — N — within the cube gives the total
transfer rate of momentum to the right-hand side wall perpendicular to the x-axis.

According to Newton’s second law of motion, such transfer rate of momentum is
equal to the force, F, exerted by the gas on the relevant wall of the cube.

al (Change in momentum of wall); ,
F=y |
t

i=1
ma

- <Z) 3wl (2.6)
i=1

The force F acts normal to the wall under consideration. Accordingly, it exerts

pressure P, defined as the perpendicular force per unit area,

F
P = F/(Area of the wall) = Iz 2.7

Combining this with (2.6) yields
1 /my — my — m
i=1 i=1

Here, V is the volume of the cubic container that encloses the gas —thatis, V' = L3 -
and N <v? > is the average — meaning, the observed — value of the sum: ZIN T
That is

N
N <vl>=) . (2.9)

i=1
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The gas is isotropic. Therefore,

2 a2 a2
<vy >=<vy >=<v; >

W = Q| =

2 2 2
[<vy>+<vy>+<v; > ]
<v?>. (2.10)

In the above, v represents the three dimensional vector
vV=ivy+ juy, + kv,

and the pair of pointed brackets, for example, < ... >, represent an average over
all the N atoms. Equation (2.8) can be re-cast as:

PV =mN <1 > =%N<v2>. @2.11)

Note, with the system being isotropic, all the four quantities — V,m, N, and < v? >
— are independent of the direction x, y or z . It is traditional to specify the quantity
of gas in mole numbers, 7. That is, by measuring the total number of molecules? N
in units of the Avogadro’s number?3, Ny, that is,

N =nNxNx = 6.02214179(30) x 10%mol™". (2.12)

Having derived (2.11), we are confronted with a hurdle that disappoints the users
of thermodynamics. Namely, even if the inter-particle interaction is exactly known,*
standard thermodynamics does not provide tools for calculating the state functions.
And because it does not have, as it were, an appropriate “arrow in its quiver,” one
seeks the assistance of “statistical thermodynamics” to possibly hit the target.

2.2 Temperature: A Statistical Approach

2.2.1 Boltzmann—-Maxwell-Gibbs Distribution: Perfect Gas
with Classical Statistics

Atoms in a perfect gas are all of infinitesimal size and are totally non-interacting.
Physically, this is equivalent to saying that no atom is aware of the presence of the
others.

2The molecule being considered here is monatomic, that is, a single atom constitutes a molecule.

3For values of the physical constants, see http://physics.nist.gov/cuu/Constants. Note that the
numbers in the parenthesis represent the standard uncertainty corresponding to the last digits
shown.

4As is the case here, there is no interaction!
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In three dimensions, the location and momentum of an infinitesimal sized atom
is specified by three position co-ordinates, for example, (¢, ¢,.¢;) = q, and three
components of its momentum vector: p = (px, py, p-). The relevant Boltzmann—
Maxwell-Gibbs (BMG) distribution factor,> f(q,p). for the given atom is the
following:®

exp [-BHo(q, p)]
fq’ fp/ exp[—BHo(q,p)]-dq -dp’

f(q,p) = (2.13)

Here, Ho(q, p) is the Hamiltonian — that is, the functional form of the energy of
the given atom in terms of its six variables q and p — and

po LM

= — = ) 2.14
kT RT 2.14)

The parameter T represents the statistical-thermodynamical temperature — usually
called the Kelvin temperature and labeled as K. N, is a constant, called the
Avogadro number, which has already been defined in (2.12). Additionally, kg,
and therefore R, are also constants. That is,

R
kg

8.3144 72(15)J mol ' K™,
1.38065 04(24) x 1072 JK™L. (2.15)

Note, R is called the “molar gas constant” and kg is known as the Boltzmann
constant.

In accordance with the BMG postulates, in thermodynamic equilibrium the
normalized average (that is, the observed value < 2 >) of any thermodynamic
function, Q(q, p), for the specified single atom is given by the following integral’

Q= [/Q(q,p)'f(q,prdq'dp. 2.16)
qJp

(Note: f(q,p) is as defined in (2.13).) The integrations over the three position
variables, q, occur over the maximum (three dimensional) volume V' available to the
given atom. Each of the three momentum variables p is integrated over the infinite
range from —oco — +o00.

The Hamiltonian Ho(q, p) does not depend on the position vector q. Rather, it
contains just the kinetic energy of the given atom. Therefore, it depends only on its
mass m and the square of its momentum. That is

SMaxwell, J. Clerk (6/13/1831-11/5/1879); Gibbs, Josiah Willard (2/11/1839)—(4/28/1903); Boltz-
mann, Ludwig Eduard (2/20/1844)—(9/5/1906).

%A more complete analysis is given in (11.80)—(11.81).
7Note, normalized average of any constant, say «, is equal to itself, thatis, <o > = a.
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1 2 2 2 p’
H p) = — + + = —. 2.17

Because there are no direction dependent forces® present, the atom behaves
isotropically. As a result we have:

< (p}) >+< (pﬁ) >+<(p?) >

<(p})>=< (pﬁ) >=< (p?) >= ; . (218)

2.2.2 Energy in the Perfect Gas

According to the argument given earlier, and (2.17) and (2.18), the average value
of the energy — to be called the internal energy and denoted as U — of a perfect
gas of N, non-interacting infinitesimal sized atoms each of mass m, is given by the
relationships

<p*> < (p?) >
U=N<Hp>=N-L _ay=m) > (2.19)
2m 2m
According to (2.13) and 2.16, the observed value < ( p%) > is the following:
dq- [, p}-exp[-BHo(q.p)] - dp. - dp, - dp.
<(p})>= Jadd:Jy YT (2.20)

 Jydq - [yexp[—BHo(d )] -dp, -dp} -dp!

Because Ho as well as p2 do not depend on q, the integral fq dq is equal to just
the maximum volume V available for the motion of the molecule. Therefore, the
integral f q dq in the numerator and f ,dq’ in the denominator is, of course, the
same. As a result they cancel out and we are left with the relationship:

[, p2-exp[-BHo(q.p)] -dpx -dp, - dp.
<(p}))>="=2* .
! Jyexp[=BHo(d,p)] -dp), - dp), -dp!

2.21)

The remaining integrals in (2.21) are of a standard form and are worked out in detail
in (A.18)—(A.22). In particular, it is shown that the following is true:

+o00
/ exp (—an’) dn = [
—o00
400
/ n* exp (—an’)dn = %,/%. (2.22)
oo o

8For example, such as gravity.

Q1
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Now let us first look at the denominator in (2.21).

/ exp[—BHo(q,p)] -dpx-dp, -dp;
P

:/oo dpx/Oo dp /oo dp. - exp —ﬁ <p2+p2+p2) . (2.23)
—00 —00 Y —00 2m \"F Y ¢

The three integrals in (2.23) that are being multiplied together are all equal.
Therefore, we have

[ expi-pHo@pl dp.-ap, -ap.
P

L) o

Equation 2.24 is the denominator of the right hand side of (2.21). To deal with the
numerator of (2.21), let us separate out the integral over the variable p,, that is,

o0 2
—Bp
/_ N p2exp (—Zm" dps.

from the rest of the two integrals.

| 92 expl-pHo @ pldps - ap, -dp.
P

(2.25)

Il
RS
N =
9

)
N———"
[S1[%)
N——
|
)
=| 3
S|
1

Equation (2.25) gives the numerator of the right hand side of (2.21). In order to
determine the thermodynamic average < p> >, we need to divide the result obtained
in (2.25) by that found in (2.24).
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3

1 2m\? 2mm

(%) ) [
5 (2 B B
< py>= 5 = — =kgTm. (2.26)
(2m7t ) 2
p

The internal energy U, of the perfect gas consisting of N atoms that are all identical

to the given atom being studied here, is specified by (2.19) and (2.26). Accordingly,
we have

3

=

2 2 3N
<V2>=N[3<px>}= kT, (2.27)

U=mN )
2m 2

2.3 Equation of State

According to (2.11) and (2.27), for a perfect gas the product of the gas pressure P
and volume V is directly related to the parameter 7.

PV = ?N <v?>= NkgT = nRT. (2.28)

Remember, the number of moles of the perfect gas being treated here is .

Let us recall a finding of the zeroth law — see (1.10). For a simple thermodynamic
system, an equation of state can be defined which relates a function of its pressure
and volume to its empirical temperature. In the absence of magnetic and electric
effects, and gravity etc., for simple isotropic systems composed of a fixed number
of moles, only two of the three parameters P, V, and T that occur in (2.28) are
independent. In that spirit, this defines the equation of state of the perfect gas. There
are other equations that also qualify for the title “Equations of State.” More general
discussion of this subject is given in the chapter titled: “Fundamental Equation and
The Equations of State.”

2.4 Intensive and Extensive Properties

The parameters P,V and T that appear in the equation of state (2.28) are examples
of State Variables. Similarly, the function U is an example of a State Function.

2.4.1 Extensive

For a macroscopic system, any quantity that is proportional to the system size is
called extensive.
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2.4.2 Intensive

For a macroscopic system, those thermodynamic properties that are independent of
the system size are called intensive.

To determine whether we are dealing with an extensive or an intensive property,
we need to consider whether it doubles or remains largely unchanged when the
system size — that is, the number of particles in the system — is doubled. Clearly,
all things being equal, a system with twice as many particles will have twice the
volume. Also it will have twice the mass and therefore twice the kinetic energy.

Thus, the volume V' and the internal energy U are extensive.

On the other hand, a consequence of the zeroth-law is that once an iso-
lated macroscopic system has reached thermodynamic equilibrium its temperature
becomes uniform.” Similarly, while in thermodynamic equilibrium, in the absence
of gravity or other external fields, we are assured by Pascal’s law that a fluid at
rest has uniform pressure. The same applies to isotropic solids under “hydrostatic”
pressure.'® Thus, a thought experiment that divides such systems into two parts
would leave both 7" and the pressure P unaffected.

Therefore, the temperature and the pressure are examples of intensive properties.

2.5 Temperature: Thermodynamic Approach

Statistical mechanical considerations helped define a precise quantity 7. Addition-
ally, purely thermodynamic description of the temperature is available from the
work of N. L. Sadi Carnot'' and Lord Kelvin.!?!3

Also, there is substantial historical information that thermodynamics, in different
ways, has played an important role in the identification of the temperature, and
indeed that the temperature so identified is identical to the parameter 7 suggested
by statistical mechanics.

Robert Boyle,'* working with a given amount of gas — that is, keeping the number
of atoms N, or equivalently the mole number 7, constant — at room temperature,
observed that the product of pressure P and the volume V' remained unchanged as
one or the other, or both, were varied.

°Different macroscopic parts of a thermodynamic system are in equilibrium. Therefore, they have
the same temperature. See, for example, the section on the “Zeroth Law, Revisited” in the chapter
titled: “Equilibrium, Motive Forces, and Stability.”

190f course, gravity and other external fields are assumed to be absent.
!1See, for example, (4.2) and the description provided in the following parts of that chapter.

12See the related (7.56) and the associated discussion in the section titled: From Empirical to
Thermodynamic Temperature.

BCarnot, N. L. Sadi (6/1/1796)~(8/24/1832).
14Boyle, Robert (1/25/1627)~(12/31/1691).
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Let us look at the equation of state (2.28) above, and note the fact that
when measurements are made for a given number of moles at some given room
temperature, it is found that the product of the pressure and the volume, that is,
PV, remains unchanged. As a result the parameter T that occurs in (2.28), is
constant. Clearly, the constancy of 7" must then be identified with the constancy
of the room temperature. And the temperature 7 — estimated initially in the classic
work attributed to J.A.C. Charles — was found'® to depend on what — originally
proposed by Anders Celsius — is now known as the Celsius temperature'® .. That is

T:90+T07

where T is a constant.

For air — assumed here to be a perfect gas — kept in a vessel (i.e., at constant
volume) a plot of pressure P versus the Celsius temperature 6, is a straight line
that, on lowering the pressure, heads toward lower temperature. In this spirit,
zero pressure for a gas implied that it had reached “zero temperature:” that is,
T = 0. When experimental results on different low-density gases were extrapolated
far down to zero pressure, they tended to a result for the Celsius temperature
which was ~ —270°. Interpreting Charles’ observations, this would indicate that
~ —270° is the value, of the Celsius temperature, 0., when the true thermodynamic
temperature, T, is equal to zero: that is: 0 ~ —270° + Ty, or equivalently 7 ~
270°. In recent years, by formal international agreement, the value of T; has been
fixed at exactly 273.15°. A schematic description of the process which led to this
determination is as follows:

Because only two parameters are needed to specify a straight line, both the
dictates of the Celsius scale as well as the experiment can be fixed by the satisfaction
of two constraints. These constraints arise because 100° difference on the Celsius
scale is equal to the temperature difference between the so called “ice point”!” and
the “steam point.”'® Accordingly, we proceed as follows:

1. At fixed volume V, let the pressure in a perfect gas, for the ice and the steam
points be P; and Ps, respectively. Then, according to the ideal gas equation of

state p T 100
(_S) — L, (2.29)
P )y To

15Charles, Jacques Alexander César (11/12/1746)—(4/7/1823).

16Celsius, Anders (11/27/1701)—(4/25/1744).

170n the Celsius scale, the temperature of the ice-point 7" is 0°. Note, the ice-point is represented
by the equilibrium state of a mixture of pure water, fully saturated with air at pressure of exactly
one atmosphere, and pure ice.

8The steam-point refers to the equilibrium state of pure water boiling under one atmosphere of
air. On the Celsius scale the temperature of the steam-point is set at 100°.
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or equivalently,
To=—— (2.30)

where Ty is the — perfect gas — temperature at the ice point.

2. Experimentally, measure as accurately as possible the ratio (%)
i)y

The choice Ty = 273.15 corresponds to (%) being equal to 1.3661.
i/y

It is worth mentioning that rather than the ice point — the exact reproducibility
of which is hard to achieve — the triple point'® of pure water is the more reliable
reference point to use.

2.5.1 Attainment of Thermodynamic Equilibrium
by a Perfect Gas

Implicit in the specification of a “temperature,” or the quantity 7" if we prefer, is
the assumption of thermodynamic equilibrium. Given the vanishingly small particle
size and absence of mutual interaction in a perfect gas, one may legitimately ask as
to how such equilibrium can be brought about?

Clearly, inter-particle communication has to be mediated by the walls of the
container with which the particles collide. Because such equilibrating tendency is
proportional to the area of the containing walls, its rate is necessarily very slow. For
instance, if L is a typical dimension of the containing vessel, then its volume V' and
the area A have the following dependence on L:

Vo L3: Ao L2
For any given particle density

V o« N.

Hence,
Ax N3,

Therefore, for large N, such equilibrating processes are much slower than those
involving direct inter-particle communication which are o< N.

19The triple point is where water vapor, pure liquid water, and pure ice all coexist in thermodynamic
equilibrium. At this temperature, defined to be exactly equal to 273.16 K, the sublimation pressure
of pure ice equals the vapor pressure of pure water.



34 2 Perfect Gas

2.6 Diatoms

2.6.1 Monatomic and Diatomic Perfect Gases

2.6.1.1 Monatomic Perfect Gas

Quite clearly, the perfect gas is an idealization. Indeed, it is often called an “Ideal
Gas.”? In practice, gases are “real” and there is enough interaction to obtain thermal
equilibrium fairly quickly. For instance, in the limit of low densities, many gases are
found to behave much like a perfect gas that has achieved thermal equilibrium.

Because there are no external and internal forces, the physical energy — to
be called the internal energy U — consists only of the kinetic energy of the N
monatomic molecules.

1 3 3
U= EmN <v'>= (EnR) T = (EN kB) T =CyT. (2.31)

In the above we have used (2.28). Also we have introduced the notation Cy which
stands for the specific heat at constant volume of n moles of a monatomic ideal gas.
While a more complete description of specific heat is best deferred till later, it is
convenient to refer to a single mole and instead represent the molar specific heat
C, as?!

Cv

C,=—
n

CTRN

R. (2.32)

The number of degrees of freedom of a molecule is denoted as f. As is clear from
(2.31), for a monatomic molecule f = 3. If an atom that constitutes a monatomic
molecule is itself of infinitesimal size — as it is supposed to be in a perfect gas —
by fiat any notion of it rotating around its own center can be dropped. Legitimately,
therefore, it can possess only three translational degrees of freedom. Accordingly,
the motion of such a monatomic molecule is fully described by its momentum vector
which has three components in the three dimensional physical space.

20For this reason, when referring to a gas we shall use the terms “perfect” and “ideal” synony-
mously.

21Usually, thermodynamic quantities for one mole will be denoted by lower case subscripts while
upper case subscripts will refer to systems of general size. Thus, the specific heat Cy is n times
the molar specific heat which in turn is denoted as C,. The same applies to Cp and C,. While we
shall make an effort to follow this rule about the subscripts, often-times, for convenience, C, will
equivalently be denoted as ¢,, and C,, as ¢,. And occasionally — hopefully not often — we may
mistakenly even forget to follow this rule!
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2.6.1.2 Diatomic Perfect Gas

A monatomic molecule in a perfect gas — that is, a single zero-sized atom — by
definition, cannot have any intra-atomic (that is, intra-molecular) vibrational or
rotational motion.

On the other hand, if the gas consisted of diatomic molecules, this would not be
the case. Here, depending on the temperature, both molecular rotation as well as
intra-molecular vibration would occur.

Indeed, owing to the presence of two atoms, each of which has — under the above
assumption — only three degrees of freedom, a diatomic molecule in a perfect, totally
non-interacting gas — with no associated electronic or nuclear dynamics whatever —
can, in principle, have up to six degrees of freedom. Alternatively, one can also
represent six degrees of freedom in terms of three translational degrees of freedom
of the center of mass of the diatom, two mutually perpendicular rotational degrees
of freedom for rotation around the center of mass, and one intra-molecular — that is,
intra-diatomic — vibrational degree of freedom. (See Chap. 11, section titled “Perfect
Gas of Classical Diatoms,” (11.34)—(11.71), for a more complete discussion of this
subject.)

At laboratory temperatures, light diatomic ideal gases generally show only five
degrees of freedom: that is, the five degrees without the intra-diatomic vibration.
This is so because, in practice, contribution of the sixth degree of freedom —
namely the intra-diatomic vibrational degree of freedom — in typical, nearly perfect,
light diatomic gases appears only when the temperature rises well above the room
temperature.

Accordingly, when the intra-molecular vibrational energies for light diatoms are

measured in units of the Boltzmann constant kg = (N%), they correspond to

values of the temperature 7' that are much higher than those normally used in the
laboratory. In contrast, heavy diatoms get their vibrational modes excited at much
lower temperatures.

2.7 Mixture of Perfect Gases: Temperature and Pressure

Let us pose the question: When a quantity of a perfect gas — say, n, moles — is
introduced into a thermally isolated — that is, adiabatic — chamber that already
contains some amount — say, 77 moles — of a different perfect gas, how are the
temperature and pressure affected? For notational convenience, let us denote the
parameters of the original gas with index: 1, for example m,, T, C,(1) etc., and
those referring to the additional gas with index 2.

For a given perfect gas the presence of additional molecules of another perfect
gas gets noticed only through the intermediation of the containing walls. If 75, > T,
the newly added molecules will heat up the walls. And for the same reason, if
T, < T, their net effect will be to cool the walls down. In due course, this process
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will affect the average kinetic energies of both the original and the newly introduced
molecules and when thermal equilibrium is reached there will be a common final
temperature, say 7. Furthermore, because the chamber containing the gases is
thermally isolated and does not permit exchange of energy with the environment,
there will be no net change in the total energy of the two gases contained therein.
Therefore, the final value, Uy, of the internal energy of the mixture will be equal
to the sum of the energies of the components (1) and (2). Thus, according to (2.31)
and (2.32), we have

Uf = nlcv(l)Tl + n2cv(2)T2 = [nlcv(l) + nZCv(z)] T, (2.33)

where the common final temperature 7 is

_ mC,()T, + nzcv(z)Tz
nCy(1) +n2Cy(2)

(2.34)

2.7.1 Dalton’s Law of Partial Pressures

After the temperature has equilibrated to its final value 7', let the volume occupied
by the mixture of the two gases be V. Because the gases are perfect, molecules roam
around, in volume V, independently of each other. As such the pressure exerted
on the enclosing walls is caused by impacts of all individual molecules: that is
pressure P; is caused by N; molecules of variety (1) and P, by N, molecules
of variety (2). These pressures act independently and additively. Thus, the total
pressure, P, experienced by the enclosing walls is the sum, that is,

P =P + P (2.35)
The pressure P; is specified according to the relationship:
PV = (%) N, < Vi >= (%)nlNA < v% >
= NikgT = n | NakgT = nRT. (2.36)
Similarly, the corresponding relationship for the molecules of variety (2) is:
PV = (%) Ny < V% > = (%) nyNp < v% >
= NokgT = nyNaksgT = naRT. (2.37)
Adding the two together gives

(Pi 4+ P,)V = PV = (n, +n)RT. (2.38)
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From (2.35) to (2.38), we have

Pi Py RT P

ni np V Ill—i—nz’

which leads to the useful result:

Plz( il )P; P2:( 2 )P. (2.39)
ny +ny ny+np

To recapitulate: The total pressure, exerted by two different perfect gases when
placed together in a given volume and kept at a given temperature, is the sum of the
partial pressures, P; and P,. These pressures would have been exerted individually
by the two perfect gases if they had separately been placed in the same volume V
and kept at the same temperature 7. Another important feature of the above set of
results is that on the average, the kinetic energy per molecule is the same for the two
gases: that is??

() <= (5) <= (3) () 7= (3) o 0

Finally, we note that the above analysis can readily be extended to the case where
more than two different perfect gases are mixed together. Thus,

(BH) <vi>=(2) <vi>=(5) <vi>
2 2 2

Q-G e

and
P=P +P+P;+---, (2.42)
where
P, =( i )P. (2.43)
n+ny+n3+---

As long as the gases being mixed are perfect, (2.41)—(2.43) hold. This is true
irrespective of the complexity of the molecules, or the differences in their masses.

It is important to note that on the average the translational kinetic energy of all
molecules is equal. To a layman, this result might appear counter-intuitive, or at a
minimum somewhat surprising. This would especially be so if the molecular masses
of the gases being mixed are very different.

22Dalton, John (9/6/1766)—(7/27/1844).
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2.8 Perfect Gas Atmosphere

Treat air in the atmosphere as perfect diatomic gas. The mass of a single molecule
is equal to m.

2.8.1 The Barometric Equation for Isothermal Atmosphere

Assume the air temperature, 7' K, and the acceleration due to gravity, g meters/
(second)?, do not depend on the altitude. With these assumptions, the relationship
between the air pressure at height 4 and the temperature is:

Namgh
RT )

P, =Py exp (— (244)

Here Py and P, are the atmospheric pressures at sea level and at height 4 m,
respectively, and (2.44) is the so-called “barometric equation” for the isothermal
atmosphere.

2.8.1.1 Analysis

Imagine a massless, elementary tablet of base area A placed horizontally at height y
in the atmosphere. The thickness of the tablet is Ay. Although Ay is considered to
be very small, the volume of the tablet, A- Ay, is assumed to be sufficiently large so
that it encloses enough air molecules that their number is large compared to unity.

Assume the density of the gas at this height is p(y). The part of the downward
force provided by the air contained within volume A - Ay is its weight, which is
equal to (density)x(volume)x(acceleration due to gravity): that is, p(y) - AAy - g.

The total downward force, Fyown, on the tablet is, of course, caused by the gas
pressure P acting on the top horizontal surface of area A plus the weight of the air
contained inside the elementary tablet. Consequently,

Faown = PA"'P()’)gAAy (2.45)

The upward force, Fp, is caused only by the gas pressure (P — AP) acting at
the bottom of the tablet, that is,

Fyy= (P — AP)A.

In dynamical equilibrium, the upward force acting at the base of the tablet must
exactly counterbalance the downward force acting at the top of the tablet. That is,

Fup = Faown,
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or equivalently
(P—AP)A= PA+p(y)gd-Ay.

Therefore, upon canceling PA and dividing the remainder by A on both sides, we get
— AP =p(y)g - Ay. (2.46)

Remember that Ay < 1. Therefore, without too much loss of generality we can
replace Ay, and as a result AP, by dy and d P, respectively. That is, we can write,

—dP = p(y)g-dy. (2.47)

Because of the occurrence of dy and d P in the above equation, it is clear that in
order to make any headway towards a solution, one needs to know p(y) as a function
either of y or of P. Fortunately, the ideal gas equation of state allows p(y) to be
expressed in terms of the relevant pressure P. To this end, consider some arbitrary
volume, V(y) at height y. Then according to (2.28)

PV(y) = N(y)ksT, (2.48)

where N(y) is the total number of molecules contained in the chosen volume V(y).
The mass density for this volume is p(y)

mN(y)
p(y) = : (2.49)
V(y)
Using (2.48) we can write this as
() = 22 (2.50)
py) = kT’ .
Thus, from (2.47) we have
wp=r. (254 2.51)
= kT y. .

Now divide both sides by P and set the integration from 0 — 4.

ool es
Py P 0 kBT

Note the pressures at heights 0 and / are denoted as Py and Py, respectively.
Carrying out the above integration, multiplying both sides by —1, that is,

Pyl mgh
2] (22
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and exponentiating both sides, leads to the desired barometric equation:

h Namgh
Py = Poexp (—%) — Pyexp (—%). (2.54)
B

2.8.2 A Related Calculation

Air is composed mostly of diatomic nitrogen and oxygen gases with molar masses of
28 and 32 g, respectively. Therefore, with appropriate ratio of nitrogen and oxygen
present, its molar mass M is ~ 29x 1073 kg. Assume that the average temperature in
the atmosphere is 7. Empirically, we know that 7" decreases with increasing altitude.
An average of the ground temperature, ~300°K, and the temperature ~240K at
height ~10 km, suggests a value for T ~ 270 K.

In terms of the molar mass, M = Nam, (2.54) can be written as

P Namgh Mgh
Ih_exp [ —AMER) _ op (— 25T, (2.55)
P RT RT

and we get®® for = 10km, which is equal to 10* m,

Py [ (29 x 1073) x (9.8) x 10*

=0.28. 2.56
8.3 x 270 } (2-56)

For an ideal gas at temperature 7" we have

(x7) = ()

The volume V contains n moles of air each of mass M. Hence, its density is

_(nM\ _(PM 2.57
p_(V)_(RTs)' 257

Note, in the present problem, (%) is a constant.

As aresult, the pressure P, at any height y is directly proportional to the density
p, at that height. Therefore, we have for the ratio of the densities at heights 10* and

2When mass M is measured in kg, g in meters/second?, and % in meters, then the dimensions of
the numerator of the exponent are: Mgh = kgXx m?/s? = J.

The denominator, that is, R 7T, should be considered to be nRT where the number of moles n
is equal to 1. Accordingly, the denominator translates into the following units: mol for 1, J K™!
mol™! for R, and K for the temperature 7. Thus, the dimensions of the denominator are: mol X
JK 'mol™!'x K=1.
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0 the result
p104/p0 = P104/P0 = 0.28. (258)

(Note: The relevant factor 0.28 is given in (2.56).)

2.8.3 Height Below Which a Specified Percentage of Molecules
are Found

Let us calculate the altitude, /., below which a specified fraction — say, 90% — of the
air molecules in the earth’s atmosphere are found. To this end, we use the notation
described above.

In accord with (2.55) and (2.58), we have the relationship

P M
2B e [__Ré;y } (2.59)

Thus, the total mass of air contained in a cylinder of base area A rising all the way
to infinity is

= * * Mgy
masoo) = [ an = [ oy ady = am | ""p[‘ﬁ}‘“’
0 0 0

= Apo(RT/Myg). (2.60)

Similarly, the mass of the column rising to height /4 is

h h
M
mass(h) = A/ pydy = ApO/ exp [—ﬁ} dy
0 0

RT
= Apo(RT/Mg)[l — exp(—M gh/RT)]
= mass(oco)[1 —exp(—Mgh/RT)]. (2.61)

When
mass(/,.)/mass(co) = 0.90,

equation (2.61) leads to the result:

Mgh
exp (— Rch) — 0.10.

Therefore,

he = (RT/Mg)In(1/0.10)
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8.3 x 270
= "2 _15(10)
29% 103 x 9.8

18 km. (2.62)

2.8.4 Energy of Isothermal Atmosphere

Treat, as before, the atmosphere as an ideal gas and assume that the acceleration
due to gravity, g, is independent of the height /. Then calculate the total energy of
a column of area A and height / of the isothermal atmosphere at temperature 7y K.
To this end, we consider an elementary tablet of gas with base areaA, a tiny
thickness, Ay, and mass density p(y) at altitude y. Its mass, Am, being proportional

to Ay, is also tiny, that is,
Am = Ap(y)Ay, (2.63)

as is its gravitational potential energy,
AUgay = gy - Am = gy - Ap(y)Ay.

In the limit Ay < 1, the sum where y goes from 0 — & is well approximated by
appropriate integrals on both sides of the equation, that is,

Ugray (h) h
/0 dUgray = Ag /0 yp(y)dy,

which leads to

h
Ugrav(h) = Ag/O yp(y)dy- (2.64)

M
p(y) = p(0) exp [— (R—f) y]-

Therefore, setting 7 = Tp, (2.64) can be written as

According to (2.59)

h
Ugrav(h) = Agp(O)/ y eXP(—OlY)dys (2.65)
0
where
Mg (2.66)
o= —. .
RT,

Also, because PyVy = nRT,, we can write

M
PoM = RT, (”7) — RT, p(0).
0
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Thus, the atmospheric density at the ground level is>*
p(0) = (PoM/RTy), (2.67)

where Py is the corresponding pressure.
The integral in (2.65) can be done “by parts” as follows:

. h _ h
Vs ()[4 0)] = (—M )— (W )
0 0
= —exp(a) - 2 4 LR, (2.68)

Let us next look at the internal energy, Uiy, of the same column. For the
elementary tablet of air, of mass Am, the internal energy is A Uiy

AUy = C, Ty An, (2.69)

where An are the number of moles of air contained in the tablet.

Am A
An = =—— = —p(y)Ay. 2.70
n= Mp(y)y (2.70)

Thus, using (2.70), (2.69) and 2.59 we can write

h h h
A
Upne(h) = / dUp = CvTO/ dn = CUTO_p(O)/ dy exp(—ay)
0 0 M 0
AC, Top(0
- (—Op()) [1 — exp(—ah)]. 2.71)
Ma

Before we enter any numerical values it is helpful to organize the expressions for
Ugray(h) and Ujp(h) into simpler form. To this end, introduce the notation «h = w
and write

Ugtav(h) = (AA};);O) R[~wexp(—w) + 1 —exp(—w)] ; 2.72)

Un(h) = (AP °T°) C, [l - exp(-w)]

_f (APOTO

=3 Mg ) R [1 — exp(—w)]. (2.73)

24Compare (2.57).
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Here, f is the number of degrees of freedom of a single molecule. Note, for diatomic
atmosphere at temperature well below 5,000K, f is = 5.

Let us calculate the result for A = 10°m?2, & = 10*m, Ty = 290K and P, is
10°N.m 2. We get

Mgh 29x1073x9.8x10* 9.8
w=ah= = =" =12, (2.74)
RT, 8.3 % 290 8.3

and
APyToR ~ 10° % 10° x 290 x 8.3

Mg — 29x1073x9.8

Using the results of the above equations, namely (2.74) and (2.75), the following
are readily calculated.

=8.5x 10" (2.75)

Ugray(h) = 2.9 x 10" J; Upe(h) = 1.5 x 10° J.

It is interesting to note that if 1 were very large — still assuming that g is constant —
then exp(—ah) < 1 and we would have

AP,T,
Ui(h > 1) ~ ( 0 O)Cv, (2.76)

Mg

and APT
Usan(h > 1) ~ [ 22220 R, 2.77
> 1) = (420 eRe)

2.8.5 Barometric Equation for Atmosphere with Height
Dependent Temperature

Again treat the acceleration due to gravity as being independent of the altitude A.
Ask the question: how does the barometric equation change if the atmospheric
temperature is not constant but varies with the height 7?

Assume the atmospheric temperature 7 is 300 K at the ground level and 240 K at
a height of 10* m. Also, assume that the decrease in 7 is linear with the rise in the
altitude.

Begin with (2.50) but in addition to P also treat T as being dependent on the
altitude y. That is

o(y) = mP(y) _ NamP(y) _ MP(y)
kgT(y)  NaksT(y) RT(y)

(2.78)
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Thus,
Rp()T()
P(y) = ———. 2.79
) i (2.79)
Differentiating with respect to y and using (2.47) gives
dp T(y) p(y)
&= 31 [P0 T + T B2 | = —pie
y
which is readily re-organized as
dT M T d
_dTo) _eM | TQ) dp(y) (2.80)

dy R p(y) dy

According to the description provided, o, the rate of decrease of temperature per
unit increase in the altitude is constant. Thus,

— M = (2.81)
dy
Combining (2.80) and (2.81) yields
—(eM/R)] ——
) do(y) = [a — (gM/R)] T( )
Upon integration we get
p(y) r(0)

If 7(0) = 300 K and 7'(10%) = 240 K,
a=6x10"Km™!

Therefore, we get
! ,0(104) 1 29%x 1073 x 9.8 ‘In 300
n = _— — ],
0(0) 83 x6x1073 240

p(10*)
p(0)
Indeed, at any height above sea level, the current atmosphere is cooler, and
denser, than the isothermal atmosphere.

which yields
=0.35.
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2.9 Perfect Gas of Extremely Relativistic Particles

A crude, approximate treatment of such a gas is presented below.?
According to the special theory of relativity a particle with rest mass m and
velocity v; has energy

m
Ei=mc?=|——]c (2.83)
1 v
2
and momentum
mo
Pi =mi Vi = | ——— | Vi, (2.84)
-

where c is the velocity of light. Combining these equations leads to

E; = y/c2pi? + mict. (2.85)

In the extreme relativistic limit,

epi? > md et (2.86)

Accordingly, in (2.85) we can ignore m%c4 and retain only the much larger term

¢?p;2. This leads to the result:
E; ~ ¢ p;. (2.87)

Consider N such particles, enclosed in a box of volume V. For simplicity, assume
the box to be a cube of side length L. Perpendicular collision of the i th particle with
a wall transfers momentum = 2 p;. Because the particle is moving almost as fast as
¢, it returns for another collision in a time

(7)
T2 —).
c

Thus, the rate of transfer of momentum to the wall per particle moving in the x-
direction, that is,

25For a more complete analysis, which also includes calculation of thermodynamic potentials, see
(11.100)—(11.108).
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T

is equal to the force exerted on the wall that is perpendicular to the x-direction. The
corresponding contribution to the pressure is, therefore,

Pi_Force%(%)=Cpi=ﬂ‘ (2.88)

" Area L? e 1%

Assuming the particles are evenly distributed along the three orthogonal directions,
on the average one-third of the particles would be traveling in any one direction.
Summing P; over (N/3) particles gives the total pressure, P, on the wall perpen-
dicular to the x-axis.

N
3

5 ¥ N
P=Y P =V" Zi:cpi =y! ZE :V—IGZ:E,) (2.89)

i

Of course, in equilibrium this pressure is uniform throughout the gas.
Thus, for an extreme relativistic ideal gas our simple minded analysis leads to
the result:

U

N
1
(P V)extremelyrclativislic = 3 Xl: E; = ? (290)

This result should be contrasted with that for an ordinary monatomic ideal gas for
which the multiplying factor on the right hand side of (2.90) is two-thirds rather
than on-third,?® that s,

2
(P V)non—relalivistic = 5 U. 29 1)

2.10 Examples I-VII

2.10.1 1I: Partial Pressure of Mixtures

At room temperature, ~20°C, and under atmospheric pressure, P, ~ 10° Pascal,
N, and O; may be treated as diatomic ideal gases.

26Compare with (2.31). Indeed, all non-relativistic monatomic ideal gases, whether they be
classical or quantum, obey this two-thirds U relationship.
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(a) Calculate their partial pressures in a mixture containing 56 g of nitrogen and
80 g of oxygen.
(b) What is the volume, V, that the mixture occupies?

2.10.1.1 Solution

The mixture contains 7; moles of nitrogen and n, of oxygen. These are calculated
as follows:

56 80
2; np=— =2.5. (2.92)

nl = — =
28 32

Their partial pressures, P, and P,, are

Pl = ( i ) Po = 0444Pm PZ = ( 2 ) Pa = 0556P{) (293)
ny +no ny+n;

The mixture satisfies the ideal gas equation of state. Therefore, it occupies volume
V given below:

T 273 + 20
V =(n +n) R- (F) = (4.5)-8.31- (1—;) =0.110m>. (2.94)

2.10.2 II: Dissociating Tri-Atomic Ozone

A mass Mo of 0zone gas, which is tri-atomic oxygen, is contained in a chamber of
volume V. The temperature in the chamber is raised to some high temperature Ty.
As a result, some of the tri-atomic ozone dissociates into diatomic and monatomic
oxygen. The mass of one mole of monatomic oxygen is M,. At temperature Ty it
is found that within the chamber the masses of monatomic, diatomic, and tri-atomic
components are My, M, and M3, respectively.

Defining the ratios M;/ My = €;, where i = 1,2, 3, and treating the mixture
as an ideal gas show that

PV = RTy (Mo} (1406, 1 Le
H M, 1tye)

2.10.2.1 Solution

We are told:

3
3 (A;Wl) =Y =1 (2.95)
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If the number of moles of the component i is n;, then

M, M, M;
ny = —=ny = N3 =

— (2.96)
M, 2M, 3M,

Also, if the partial pressure of the i-th component is P;, then the equation of state
of the ith component is

PiV:l’liRTH,i = 1,2,3. (297)
Adding these and using (2.42), (2.95), and (2.96) gives

(P + P+ P)V =PV

= R (’l +n +”)— 3IM +_3 2+M
H 2 3 3M() ! 2 3

= RTy Mow 3¢ +§6 + €
H M, 1 > 2 3

= RTy (Mow ) (| 46, + L e (2.98)
H M, 1Tyl .

QED.”

2.10.3 III: Energy Change in Leaky Container

(a) A leaky container of volume V} is placed in contact with a thermal reservoir
that contains a large amount of air at temperature 7; and pressure Py. After the
pressure and the temperature inside the vessel have equilibrated to those of the
reservoir, what is the internal energy, Uy, of the air inside the vessel? Treat air
as a diatomic ideal gas and assume that each molecule has f = 5 degrees of
freedom.

(Note: part (b) is a slightly different problem.)

(b) Air at pressure Py, and temperature 7y, is enclosed in a container of volume Vj.
All the walls of the container, except one, are made of heat energy non-
conducting material. The remaining wall, which is a conductor of heat energy
and also leaks air — both in and out of the vessel — is brought into contact with
a thermal air reservoir at pressure Py but a lower temperature 7;. . Calculate the
resulting change in the internal energy.

27“Q.E.D.” stands for the Latin: “Quod Erat Demonstrandum,” meaning “Which Was To Be
Proven.”
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2.10.3.1 Solution
(a) The ideal gas equation of state tells us that
P() VO = I’l()RT(). (299)

where 1 is the number of moles initially present inside the vessel. Accordingly,
if the number of degrees of freedom “ f” is = 5, the initial value of the internal
energy is

_f _/f _ 5
Up = SnoRTy = S PoVo = S PV (2.100)

(b) When the heat energy conducting wall is brought into contact with the reservoir
at the lower temperature 7, upon equilibration the temperature of the air inside
the vessel falls to that of the reservoir. That is, it becomes equal to 7. If, as a
result, the number of moles of air inside the vessel changes to n., the equation

of state becomes
PoVy = n.RT.. (2.101)

Note, the volume of the vessel, V), is fixed and because of the leakiness the
pressure inside the vessel equilibrates back to the pressure Py of the air outside
in the reservoir. Thus, despite the cooling, the internal energy

5
U, = %ncRTC = gP()V() = EP()V(), (2.102)

is unchanged and U, is the same as Uy given in (2.100).

2.10.3.2 Remark

To a layman, the above result would appear counter-intuitive. But, on closer
examination, he/she should notice that while the temperature inside the vessel has
fallen, because of its leakiness additional molecules — carrying their kinetic energy
with them — have entered the vessel. As a result, the total kinetic energy, % -ne-RT,
of all the molecules that are now inside has remained constant at its initial value
% -no - RTy. Hence, the result n.T. = noTy, or equivalently U, = U,.

2.10.4 1V: Mixture of Carbon and Oxygen

Burning of 1.20kg of carbon?® in an atmosphere of 1.92 kg of pure oxygen?’ creates
a mixture of n; moles of carbon monoxide and 7, moles of carbon dioxide. In the
process all of the 1.92 kg of oxygen is used up.

280ne mole of the abundant isotope contains exactly 12 g of carbon.
29The mass of one mole of diatomic oxygen is 16 g.
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(a) Calculate n; and n,.
(b) If the total pressure of the mixture is 1 bar, and its volume 3.00 m?>, what is its
temperature?

2.10.4.1 Solution

(a) The mixture, that is, n; moles of carbon monoxide and n, moles of carbon
dioxide contains only 1,200 g — which is equal to n moles — of carbon where n

is given as follows:
1,200 g
n= = 100. (2.103)
12¢

Because carbon is monatomic and all atoms of carbon monoxide and carbon
dioxide contain only one atom each of carbon, the total number of moles of the
mixture of the two gases is equal to the number of moles of their constituent
element carbon. That is,

ny +ny =n = 100. (2.104)

Next, we note that the total mass of the oxygen, that is, 1,920 g, used in the
mixture is made up as follows: n; x 16 g in carbon monoxide and n, x 32 g in
carbon dioxide. Thus,

16n, + 32n, = 1920. (2.105)

Solving (2.104) and (2.105) together readily leads to the result
ny = 80;)’12 = 20.

(b) Treating the mixture as an ideal gas, its pressure, volume, and temperature are
related through the equation of state

PV = (ny +n2)RT = 100RT.

Therefore,
PV 10° x 3.00

T = =
100R 100 x 8.31

=361K. (2.106)

2.10.5 YV :Carbon on Burning

Upon burning 1.44 kg of carbon in an atmosphere of pure oxygen, a mixture of 7,
moles of carbon monoxide and 7, moles of carbon dioxide is created. The total mass
of the mixture is 4.08 kg.

(a) Calculate ny and n,.
(b) If the total pressure of the mixture is 1.5 bar, and its volume 2.00 m?>, what is its
temperature 7'?7
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2.10.5.1 Solution

Using the notation of the preceding example, the total number of moles n; + n, of

carbon is
N 1440 120
n Ny) = —— = .
1 2 B

Also, because the mixture is constituted of 7; moles of carbon monoxide and 7,
moles of carbon dioxide, its total mass can be expressed as follows:

4.08kg =4,080g=rn; x (124 16) g+ ny x (12+32) g.

That is,
28 ny + 34 n, = 4, 080.

Solving the above two linear equations in the variables | and n, readily gives
np = 75; ny = 45

and
- BV ~ (1.5%x10°) x 2

= = = 301K.
120R 120 x 8.31

2.10.6 VI : Pressure, Volume and Temperature

A vertical cylinder with base area 4 = 0.01 m? has a freely moveable piston of
mass m; = 10kg and encloses n = 20 mol of air, which may be treated as a perfect
gas of molal mass M = 29g, at initial volume V; = 0.44 m>. The cylinder and its
contents are thermally isolated. The atmospheric pressure is Py = 10°N/m?.

(a) Calculate the pressure P; and the corresponding temperature 7 of the gas.
(b) What is the root-mean-square velocity, vyys, of the molecules?

2.10.6.1 Solution

(a) Pressure P; is the sum of the pressure created by the weight of the piston and
the atmospheric pressure being exerted on top of the piston.

m
P1:P0+Tlg

10x 9.8

=10° + —/——
+ 0.01

= 1.1 x 10°N/m>. (2.107)
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The corresponding temperature of the enclosed air, that is, 7}, is now readily
found

PV
Tl — 1V1
nR
~ (1.1x10°) x 0.44
N 20 x 8.3

= 29x 10K. (2.108)

(b) We have the relationships:

1 2 M 2
—mMNp <V'>= — <V >
2 2
3 3
= ENAkBTl = ERTI. (2.109)

Since M =29 x 10 kg and R = 8.3Tk 'mol™", (2.109) gives

> 3RTy _ 3x83x290

VT TN T 9% 109
=25 x 10* (m/s)?, (2.110)
and
Ums = V< V2 > =5x10*m/s. (2.111)

2.10.7 VII: Addition to Example VI

After doing (a) and (b) of Example VI, do the part (c) described below:

(c) A mass m, = 150kg, initially at temperature 77, is placed on top of the
piston. The total heat energy capacity of the cylinder, piston, and the mass m;
(excluding the enclosed air) is Cee = 500 J/K. Assuming the piston moves inside
the cylinder without friction, calculate the final volume V, and the temperature 7,
of the enclosed air.

2.10.7.1 Solution

(c) When the mass m is added it increases the pressure felt by the contained air(gas)
from P; to Ps.

150 x 9.8
P2:P1+%=1.1x105+;

_ 5 2
GOl = 26X 10°N/n’. (2.112)
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Under this increased pressure the volume of the enclosed gas decreases fromV; to
V,. Consequently, the piston moves down a distance Ay where

Ay = @. (2.113)
This motion occurs under the influence of the downward force
Faown = P2 A,
and as a result work AW is done on the gas.*
AW = Fyoun - Ay = PyA- Ay = Po(V) = 1,). (2.114)

In turn, AW causes the system temperature to rise from 77 to 75. Here, one part of
AW is used up in increasing the energy of the gas by an amount

(dU)gas = I’lCU(Tz — Tl),

and the other,
(dU)elc = Celc(TZ - Tl)?

in increasing the temperature of the cylinder, piston and the weights. Thus, because
the system is thermally isolated, the work done AW is equal to the sum of the two
increases in the energy. That is,

PZ(VI - VZ) = (dU)gas + (dU)etC
=ncy(Ta = Th) + Cere(To — T1). (2.115)

In the above, the only unknowns are V, and 7,. Another linear relationship
involving these two is available from the equation of state.

P2V2 = IlRTz (2116)
Adding the left- and the right-hand-sides of (2.115) and (2.116) gives
PVi = (nR +ncy + Cee)Th — (ncy 4+ Cer) T

This, in turn, leads to

T, — PyVi+ (ney + Coo)Th
2 n(R + ¢y) + Cec

(2.117)

300r equivalently, work —AW is done by the gas.
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Because ¢, = (5R/2) per mole per degree Kelvin, we have

2.6 x 105 x 0.44 + [20 x (5/2) x 8.3 + 500] x 290
[20 x (7/2) x 8.3 + 500]
35x 10 K. (2.118)

=

Using the above value of T3, V; is calculated in the usual fashion. That is,

V2 = I’lRTz/Pz
=20x8.3x35%x10/(2.6x10°) = 0.22 m®. (2.119)

2.11 Exercises

2.11.1 1I: Where 90% Molecules Are Found in Atmosphere
with Decreasing Temperature

Calculate the effective altitude in the atmosphere below which 90% of the air
molecules are found. Assume that the temperature decreases linearly with the
altitude.

2.11.2 II: Total Energy of a Column in Atmosphere

with Decreasing Temperature

Assuming that the temperature decreases linearly with the altitude, construct an
expression for the total energy of a column of area A and height 4.



Chapter 3
The First Law

That mechanical work generated heat energy was empirically known to the cave-
man who rubbed rough dry kindling against each other to produce fire. Yet an
understanding of what constituted heat energy did not come for aeons.

The so called caloric theory of “heat” held sway until the eighteenth century.
Caloric was thought to be a massless fluid whose increase warmed an object. Just
like a fluid, it was allowed to flow from a hot object — where there was more of
it — to a cold object until the amounts in the two objects equalized. Also, like fluids,
caloric could neither be created nor destroyed. The invisible particles of the Caloric
were self-repellent but were positively attracted by the constituents of the system
to which the Caloric was added. These properties ensured that the Caloric spread
evenly, etc.

All this offered a handy explanation for the empirical fact that two objects in
contact equalize their level of warmth. Yet, for inexplicable reasons, nobody thought
of how the cave-man had created fire! Because Caloric could not be created, when
he rubbed his sticks of dry wood he would clearly have to have been transferring it
from the thinner wood to the thicker one: or perhaps, vice versa!

The chapter begins with a discussion of the heat energy, work, and internal energy
in Sect.3.1. Specific heat is examined in Sect. 3.2, while Sect. 3.3 is devoted to
introducing the notation used in the text. Some applications of the first law — when ¢
and v are the two independent variables — are identified in Sect. 3.4 and solutions to
several related problems are provided in Sect. 3.5. Sections 3.6 and 3.7 are devoted
to discussing the cases when the two independent variables are ¢ and p, and p and v,
respectively. Enthalpy is discussed in Sect. 3.8 and some solved examples are given
in Sect. 3.9 Hess’ rules for chemo-thermal reactions are mentioned in Sect. 3.10,
while Sects. 3.11 and 3.12 contain solved examples that relate to oxidation and latent
heat of vaporization as well as a variety of matters relating to adiabatic processes
in ideal gases and non-conducting cylinders. Ideal gas polytropics are treated in
Sect.3.13 and problems related to inter-relationships between several different
thermodynamic equations are given in Sect.3.14. The derivation of equation of
state from the knowledge of bulk and elastic moduli is analyzed in several solved
examples in Sect. 3.15. Section 3.16 deals with Newton’s law of cooling, and the

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 57
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volume dependence of single particle energy levels is discussed in the concluding
Sect.3.17.

3.1 Heat Energy, Work and Internal Energy

3.1.1 Caloric Theory of Heat

Indeed, it was not until the end of the eighteenth century that an observant military
commander, Count Rumford of Bavaria (Germany),! noticed something badly amiss
with the Caloric theory. While supervising the drilling of cannon muzzles he noticed
that they got hot. The erstwhile explanation of that phenomenon would be that the
small chips — i.e., the shavings — that were bored off the cannon lost their Caloric
to the large remaining part. But not all the boring bits were sharp. And, indeed, the
duller the bits —i.e., the greater effort it took to bore through the muzzle — the hotter
the muzzles got. In other words: less chips, but more caloric!

Rumford’s obvious conclusion: heat energy was not exchanged by the transfer
of the Caloric but rather by the expenditure of the work that had to be done for the
drilling of the cannon.

3.1.2 Later Ideas

It was later, somewhere in the middle of the nineteenth century, that J.P. J. oule? was
able to demonstrate that a given amount of work — electrical and/or mechanical —
could be used to cause a reproducible change in the state of a thermally isolated
system.

Apparently, Joule’s earliest experimentation employed the electric heating effects
of resistors immersed in various quantities of water in an adiabatically isolated
calorimeter. The current was supplied by a generator. Joule estimated the mechan-
ical work needed to operate the electric generator and measured the consequent
rise in the temperature of the contents of the calorimeter. For obvious reasons, such
experimentation was subject to a variety of errors. Thus, it is remarkable that he was
able to estimate approximately 4.6J° — or rather, 4.6 x 107 ergs* — are needed to
generate one calorie® equivalent of heat energy.

'Rumford, Benjamin Thompson, Count of Bavaria (3/26/1753)—(8/21/1814).
2Joule, James Prescott (12/24/1818)—(10/11/1889).

30ne Joule is equal to one Newton.meter, or equivalently, one Watt.second = one kilogram.
(meter/second)?.

4There are 107 ergs in one Joule.

One “thermochemical” calorie is exactly equal to 4.184J.
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Joule’s later experiments utilized purely mechanical means. Known weights were
dropped from measured heights. The decrease in their gravitational potential energy
was converted into kinetic energy of churning paddles placed in given amounts of
water initially at room temperature. The entire system was thermally isolated.

The kinetic energy imparted to the paddles is transferred to water. There it is
dissipated through viscous forces in the body of the water and drag at the surfaces
in contact with the container walls. The process results in raising the temperature of
the system.

The temperature rise was carefully measured. Similar experiments were also
performed in which mercury was substituted for water.

These later experiments were subject to less uncertainty and yielded a result for
the one-gram water/degree calorie equivalent closer to its currently accepted value
of 4.18400017.

Observations made in the foregoing experiments need to be formalized. When a
thermally isolated system in equilibrium is acted upon by externally supplied work,
its internal energy increases an equivalent amount. And this increase is independent
of any intermediate states that the system may have to pass through.

Outwardly, therefore, it would appear that both work and internal energy are
thermodynamic state functions. A closer examination does suggest that internal
energy is indeed a state function. But the same is not true for work.

Consider, a vanishingly small, quasi-static,’ volume expansion dV, that occurs
under pressure P. In the process, the system does an infinitesimal amount of work
equal to’

dW = PdV. 3.1

In order to determine whether W is a state function, we ask the question: Is dW an
exact differential? The reason we ask this question is, that according to (1.18), a
function Z is a state function if and only if dZ is an exact differential.

In “simple” systems being treated here, the variables IV and P can always be
considered as the two independent variables. Thus, if dW were an exact differential,
and it explicitly involved dV and d P, it would have had the following form:

5Quasi-Static processes have already been described in the introductory chapter. They proceed
extremely slowly and result in long series of equilibrium states. In contrast, real processes proceed
at finite speeds and result in states that depart from the equilibrium.

"For example, consider a friction free piston, with base area A, placed on top of some liquid of
volume V' contained in a cylinder. Assume that just under the piston the liquid is under pressure
P and the system is in thermodynamic and mechanical equilibrium. If the pressure of the liquid
should increase by an infinitesimal amount d P, the piston will ever so slowly move upwards, say
by an infinitesimal distance dZ, thereby increasing the volume, say by an infinitesimal amount
dV. Because the pressure is defined as the perpendicular force per unit area, therefore the upward
force on the piston is Fy, = (P + dP)A. Accordingly, the work done in the extension of the
piston upwards is dW = F, xdZ = (P +dP)AxdZ = (P AdZ + AdP dZ). Because
the increase in the volume is dV = A dZ the work done dW = (P dV +dP -dV =~ PdV).
Integrating the two sides leads to the total work done, “by the liquid,” during a finite expansion:
W = [dW = [ P dV. Note the work done ‘on the liquid’ is equal to — [ dW = — [ P dV.
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Accordingly, (3.1) would imply
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therefore, the integrability requirement

rwo W
aPoV — VoP’

which is necessary for an exact differential, would not be satisfied.

Thus, the irrefutable conclusion: dW is not an exact differential. Yet, the
experiments of Joule have demonstrated that for thermally isolated systems, in
proceeding from the initial state, initial, to the final state, final, the work done “on
the system” is equal to the corresponding increase in the internal energy, i.e.,

final final

—/ dw = dU = Ufpa — Unnitial.- (3.3)
initial initial

Consequently,

final initial
—/ dw — dW = Usna — Unitiat + Unnitial — Ufinal = 0
i

nitial final

final initial
_ / aU + / dU = 95 av. (3.4)
initial final

This result appears to be paradoxical. Despite the fact that dW is not an exact
differential, here we have found a relationship of the form

final initial
—/ aw — dw =0, (3.5)
initial final

which is normally satisfied only by an exact differential. But a close consideration
shows that the essential requirement for dIW to be an exact differential is indeed not
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satisfied. For an exact differential, (3.5) is required to be valid for all cyclic paths.
But (3.5) is not so valid. The paths traveled during the round-trip integration of dW
givenin (3.4) and (3.5) are required to be “quasi-static.” Thus, their sum is vanishing
for only a limited group of paths traveled from initial — final and final — initial
states. Because all the required conditions for dIW to be an exact differential, and
consequently for W to be a state function, are not satisfied, we can confidently state
that in general dW is not exact differential. But the given work dW has been done
in the purest of all possible ways: that is, it was done quasi-statically. Therefore,
any non-quasi-static work® done, namely dW’, also cannot possibly be an exact
differential. That is,

sﬁdW’ #0. (3.6)

As usual the prime on dW indicates that the work dW may have been done wholly
or partially non-quasi-statically.

We note that immersion of a hot object into a fluid raises the temperature of the
fluid and this can happen without any application of work. Therefore, it is clear that
in addition to the input of work, the exchange of heat energy must also affect the
change in the internal energy.

To investigate this point further let us add, possibly non-quasi-statically, some
heat energy fo the system and also do some work on the system. Armed with a
conversion factor that relates work to heat energy, this can be displayed in the form
of an equation. To this end, heat energy [ dQ’ is added to the work — fihnal dw’

initial nitial
that has been done on the system.” Assuming conservation of energy, we have

final final final
/ do’ — dW/:/ du.

nitial initial nitial
Thus,
final
/ (dQ"—dW'—dU) = 0.
initial
Because the initial and final positions — called initial and final — are arbitrary, the

above equation can hold only if the integrand itself is vanishing. This leads to the
result:

dQ' —dw’ = dU. (3.7)

It should be noted that because the right hand side of (3.7) contains dU, which is
an exact differential, and the left hand side dW’ which is not, the additional quantity,

8When any given item refers to a fully or partially non-quasi-static process it will be denoted with
a “prime.”
final

9The negative sign in — [, ;. dW’ is needed for indicating that rather than being done BY the

system, which would have carried a positive sign, the work is being done ON the system.
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namely dQ’, on the left hand side cannot be an exact differential. Rather, it is the
difference of the two in-exact differentials — which appear on the left hand side —
that equals an exact differential, which appears on the right hand side.

Equation (3.7) embodies the first law of thermodynamics. It bears repeating: The
first law makes two important statements. It is imperative to recognize that these
two statements are unrelated and have different import. The statements are:

(a) Energy is conserved.'?

(b) There exists a state function U, that is referred to as the system “internal energy.”
The sum of the heat energy dQ’ added to, and the work —dW' done on, the
system equal the increase dU in the internal energy.

Consequently, while both the heat energy added to and the work done on the
system, as it moves from an initial to a final equilibrium state, depend on the details
of the paths taken their sum equals the change in the system internal energy which
has no such dependence. Rather, the change in the internal energy depends only on
the location!! of both the initial and the final states. The important thing to note is
that this remains true regardless of the nature of the intermediate states encountered
&n route.

Much of the understanding of the first law of thermodynamics has been gleaned
from empirical observations of conversion of work into heat energy. The reader
needs to be cautioned that the first law — see (3.7) — does not guarantee that the
reverse — meaning the conversion of “heat energy” into “work™ — can also just as
easily be accomplished. Indeed, there are restrictions on the occurrence of any such
reverse process. After the introduction of the second law, a complete analysis of all
such restrictions will be undertaken.

3.1.3 Perpetual Machines of the First Kind

Because internal energy is a state function, it does not change when a system
undergoes a complete cycle. Therefore, machines that work in complete cycles leave
the total internal energy of the working substance unchanged. While a long tail
hangs by this story, at the very least it can be said that any work done must be paid
for by an input of energy.

190ccasionally, just the conservation of energy is referred to as the first law of thermodynamics. In
fact, the conservation of energy has been known since the ancient Greek times and the real value
of the first law lies in part (b) which identifies an important state function: the internal energy.

“Location” is defined in terms of its coordinates in the space of thermodynamic variables. We
shall learn in a later chapter that for a simple system the most appropriate coordinates for this
representation are the system “volume” and what will be called the “entropy.” For the present
purposes, it suffices to use instead any one of the following three pairs of coordinates: (P,V), (V,T)
or (P,T).
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Consequently, according to the first law — see (3.7) — a cyclic machine that
continually produces useful work must at the very least undergo a continual input of
energy from the outside. A “perpetual machine of the first kind” is an hypothetical
machine that does not follow this rule. If it ever existed, it would produce useful
work without any input of energy.

3.2 Specific Heat Energy

When an amount of heat energy is imparted to an object at temperature 7', generally
its temperature rises. Such rise, AT, is observed to be in direct proportion to the
heat energy input, AQ’, but in inverse proportion to the mass, M, of the object, i.e.,

AQ’
u

AT x

Moreover, it is specific to the physical and chemical nature of the object. In other

words,
AQ’

AT

The proportionality parameter C’, in addition to depending on the chemical and
physical nature of the object is path dependent and is also found to depend on the
system temperature 7. It is usually referred to as the “specific heat””'> Owing to
the fact that heat energy exchange, AQ’, has these dependencies, C’ also displays
the same features. While many different paths can be chosen, frequently C’ is
measured for two types of quasi-static paths: one, at constant volume and the other,
at constant pressure. Moreover, explicit mention of the mass M is often avoided by
particularizing the specific heat to the molar mass.

=C'M. (3.8)

3.3 Notation

Most of the time, an attempt will be made to use notation that follows a simple rule:
namely that when the system size is n moles, and 7 is not necessarily equal to 1,
upper-case letters are employed. That is, unless otherwise helpful, the symbols to
be used for the pressure, volume, the internal energy, the enthalpy, the entropy, etc.,
and the temperature, etc., willbe P, V, U, H, S and T, etc., respectively.

On the other hand, if the system size is exactly equal to a single mole, lower
case symbols would be deemed preferable. Thus when n = 1, the pressure, volume,
the internal energy, and the temperature would be denoted as p,v,u and z. Also

2However, where ever needed, we shall make an attempt — which may not always be successful —
to refer to it as “specific heat energy.”
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sometime, when not occurring as a subscript and not causing confusion, for the sake
of convenience of display, both upper case and lower case symbols may be used
with equivalent meaning.

Thus for the specific heat energy at constant volume and constant pressure we

write:
9 ad
(—aQ)V =Cy=n (—ag)v =nC, = ncy, 3.9)

0N _ oo (%) _,c =
(ﬁ)P =Cp=n (at)p =nC, = nc,. (3.10)

Note that for convenience of display we may use either C, or equivalently c,,.
Similarly, C, = c,. The SI units for these are “Joules per mole per (degree) Kelvin,”
i.e., J/mol K.

and

3.4 Some Applications

When a simple thermodynamic system expands, work is done by the system. In
particular, a single mole, upon quasi-static expansion by an infinitesimal volume
dv, under pressure p, does an infinitesimal amount of work equal to

dw = pdv. @3.11)

For such case the first law given in (3.7) requires that the heat energy, dg, added
to the system and the work, —dw = —pdv, done on the system must equal the
increase, du, in the internal energy of the system. That is

dg —dw =dg — pdv = du. 3.12)

In a simple thermodynamic system, which can be described in terms of the three
state variables p, v and ¢, the internal energy u can be considered to be a function of
any of the three independent pairs — i.e., (¢, v), (¢, p), and (p, v). In the following
we shall treat the three cases separately. We hasten to add, however, that the
inclusion of the dictates of the second law much improves the analysis and often
leads to a more elegant explanation, and a more compact description, of the results
recorded in this chapter. Nevertheless, the analysis appended below should be of
benefit to a beginner who wishes to become conversant with some of the simple
procedures used for establishing inter-relationships between quantities of physical
Interest.
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3.4.1 t and v Independent

Consider a single mole of a simple thermodynamic system where ¢ and v act as the
independent pair of variables. Next, denote the internal energy u as a function of ¢
and v:

u=u(t,v). (3.13)

Physically speaking, du represents the difference in internal energies of two
neighboring equilibrium states. Mathematically speaking, u is differentiable in
terms of the chosen two variables. And because of the physical fact that u(z, v)
can be treated as a state function, du is an exact differential. Accordingly:

du du
du = (g)v dr + (%)t dv. (3.14)

Thus, the first law, i.e., (3.12), becomes

dg = du + pdv
ou ou
=(—) dr — ] d d
(az)v +(av), v
du du
= (E)Udt—i_ |:p+ (%)J dv. (3.15)

Let us work with a process at constant volume: that is, where dv = 0. For such a
process, (3.15) leads to the relationship

u
(dg), = (5) ().

(Note the subscript v under the differentials (dg) and (d¢) denotes the fact that these

differentials are calculated while the volume v is kept constant.) Now divide both
sides of the above relationship by (d?),. Using the definition of ¢, given in (3.9), we

can write!?
(dgq)v dq du
v = = — = — . 1
‘ (de), (8Z v at /), 610

ot

13 An interesting exercise is to show that 0 = ¢, (££) + (2

v

) , - This is readily done by working at

u

constant internal energy where du = 0. Then, according to (3.14), 0 = (¥ )v (dt), + (g—f) , (dv)y.
Dividing both sides by (dv), leads to the desired result.
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For use in (3.15), we have found it helpful14 to introduce the notation

du
A, = ).
“(av),

Therefore, (3.15) can be re-written in the following convenient form
dg = c,dt + Aydv. (3.17)

Physically, A, can be described as follows: Consider an isothermal process — i.e.,
one that occurs at constant temperature. For such a process, df = 0. Therefore,
(3.17) can be written as

(dg); = Ay(dv),.

Next, divide both sides by (dv);.

aq\ B %
(%)t =A, =p+ (av)t. (3.18)

It is interesting to note that owing to the existence of the relationship:

_ (o
A, =t (E)v (3.19)

— whose proof is given in (5.17) in the chapter on the first-second law — we can
relate A, to the constant pressure volume expansion coefficient'® o I’

1 (dv
ap, = ; (g)p s (320)

and the isothermal compressibility'® y,,

X = ! (a_v) . (3.21)
1

14Also, the following is an amusing comment about (3.16): Because the word “heat” is often
imprecisely understood in thermodynamics, it is perhaps wiser to re-phrase the word “specific
heat at constant volume” to read “specific internal-energy at constant volume.” Thus, the symbol

(g—i‘)v looks more appropriate than the usual symbol (%—‘[’)v

15The expansion coefficient ), refers to the rate at which a unit volume expands with rise in the
temperature while the pressure is held constant.

16Similarly, the isothermal compressibility y,, is the rate at which a unit volume gets compressed
with increase in the pressure while the temperature is held constant.
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To see how this may be done, first use the cyclic identity — that was given in (1.30)
and (1.31) — and then the mathematical definition of the parameters o, and y,. In
this fashion, we can write

o=t (1) =), () = (13) ) ()]

= 1(ap) [i} — (m—”) (3.22)
At Xt

Both the parameters, «, and x,, have been measured extensively and the results
tabulated. Moreover, these parameters can also be calculated theoretically from an
appropriate equation of state whenever the latter is available. By replacing A, as
above, a more useful form for (3.17) can now be presented. This is version-I of the
first law.

foap
dg = c,dt + | — | dv. (3.23)
Xt

Another important point to note is that in view of the foregoing we can state that

given one mole of a substance, each of the quantities 3—‘5» Ay, p + g—z, and (I;‘—f)

represents the amount of heat energy absorbed for a unit increase in the volume at
constant temperature.

Let us consider next an isobaric path — i.e., one that is traced while the pressure
remains constant — for inputting heat energy. To indicate the constancy of the
pressure, we label the heat energy input as well as the corresponding temperature
and volume differentials'” with subscript p and use (3.23) to write

dg), = cy(dt), + (tj—p) (dv),. (3.24)

Dividing both sides by (df), and recalling that (a_q)p = c, we get

t

)= cy+ (m—”) (a_v) (3.25)
p — v . .
Xt a/,

As noted in (3.20), ), = % (g—';)p. Therefore, (3.25) becomes

tv af,
Cp—Cy = . (3.26)
Xt

"These differentials represent the physical difference in the corresponding state variables of two
neighboring states.
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This is an important relationship because all quantities on the right hand side can be
measured with relative ease. Also because ¢, is generally easier to measure than ¢,
this provides a convenient route to the measurement of ¢,

We consider next an adiabatic process: that is, where dg = 0. It is convenient
to denote such a process, when it occurs quasi-statically, by using a subscript s. In
other words,

(dq)s =0,

and, therefore, after dividing both sides by (dv)s, (3.12),

(dg)s = 0 = (du)s + p (dv)s,

ou
(%) - (3.27)

In the #, v representation currently under study, the adiabatic process, i.e., dg = 0,
also yields an expression that involves c,. For instance, setting (dg); = 0 in (3.17)
and dividing both sides by (dr); we get

d
cv=—( v) A, = v - Ay
s

leads to the result

a
tvog
_ (ﬂ) (3.28)
Xt
In the above, first we have introduced the notation
1 [/ dv (3.29)
o =—|=1, .
Soov \ 0t ),

and second we have used (3.22) which says, A, = ([;—tp) . Note oy = ((%)‘) is
the isentropic volume expansion co-efficient. [Notice the notational similarity with

@
Gi), ) that is given in (3.20).]

v

the isobaric volume expansion co-efficient o), = (

3.5 Examples

3.5.1 I: Heat Energy Needed for Raising Temperature

The Debye theory predicts that the constant volume specific heat, C,, of solids at
low temperature obeys the following law:
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7\3
C,=D\|=]) .
( Ty )
(a) Calculate the specific heat at 20 K if the Debye coefficient D is equal to 2% 10*]
per kilomole per degree Kelvin and the Debye temperature, 7y, is 350 K.

(b) What is the heat energy input needed for raising the temperature from 10K to
30K at constant volume?

3.5.1.1 Solution

(@)
4 20 \° . —1 =1
C,=2x10"x | — | =3.73Jkilomole™ K.
350

(b) At constant volume, the input of heat energy, dQ, is related to the increase
in temperature d7" : that is, dQ = C,dT. Therefore, the heat energy used for
raising the prescribed temperature is

/dQ =0 = /IZ(;KCUdT.

o () o= (& -

= 93.3 J kilomole™!. (3.30)

3.5.2 II: Work Done and Increase in Internal Energy
Due to Changes in Pressure, Volume, and Temperature

(a) An ideal gas undergoes isothermal compression to one-third its initial volume.
During this process its internal energy increases by AU, and it does work W,,.
Given the quantity of the gas is n = 2 kilomoles, the pressure P is equal to
three atmosphere, and its volume V' is equal to 4 m?, calculate AU, and W,.

(b) Then the same gas undergoes an isochoric process which drops its pressure
down to the original value P. In this process, its internal energy increases by
AU, and it does W, amount of work. Calculate both of these.

(c) Finally, the gas is expanded back to its original volume in an isobaric process.
In this process, the work done by the gas is W, and the increase in its internal
energy is AU,. Calculate them both.

(d) What is the total work done and the total change in the internal energy in the
three processes (a)+ (b)+ (c) ? Could we have anticipated these sums ?
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3.5.2.1 Solution

(a) Work dW = pdv is done by the gas when it expands an infinitesimal amount
dv at pressure p. Therefore, because pv = nRT, the work done by the gas
during the process (a) is:

v

3 Y dv
pdv = —nRT —
Vv v v

3

—nRT In(3) = —PVIn(3)
= —3atm x 4m> x In(3) = —3 x 1.01325 x 10° Nm 2 x 4m® x In(3)
= —3x1.01325x 4 x 10° x In(3)] = —13.358 x 10°J.

W,

The internal energy for the monatomic ideal gas is equal to %nRT. Because the
temperature does not change during the process (a), therefore, there is no change
in the internal energy. That is,

AU, = 0.

(b) Because the volume of the gas stays constant at the value V//3 throughout this
process, p dv = 0 and no work is done. That is,

W, = 0.

3 3
The internal energy on the other hand changes from EnRT to EnR%
Therefore,

3 T 3
AU, = —nRg—EnRT: —nRT = —PV.

2
. . . vV T
(c) Finally, in proceeding from (P, 33
Therefore, the work done by the gas is

e )=

Inserting the numbers in we get

) to (P, V, T), the pressure is constant.

2
W, = (5) x (3x1.01325x 10°Nm™2) x (4m?) = 8.106 x 10°J.

The change in the internal energy is also easily found. The temperature varies
from 7'/3 to T’; therefore, we have

3 T
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(d) The total work done is
Wy + Wy + W, = =5.252 x 10°J,
and the total change in the internal energy is
AU, + AU, + AU, =0—PV+ PV =0.
We note that dU is an exact differential. Therefore, the total change in internal
energy for a complete round trip must be zero. On the other hand, dW is not an

exact differential. Therefore, nothing definite can be predicted for the work that is
done in a complete cycle.

3.5.3 III: Work Done by Expanding Van der Waals Gas

The equation of state for one kilomole of Van der Waals gas is

Ryt a

Here,
Ry = 8.3143 x 10°J(kilomole) 'K~
a = 580 x 10°Jm>(kilomole) 2
b = 0.0319 x m>(kilomole) .

Following an expansion protocol whereby the gas expands quasi-statically from an
initial volume v; = 15m> (kilomole)_l to a final volume v, = 2v1(kilom01e)_l,
how much work would be done by n moles of such a Van der Waals gas?

3.5.3.1 Solution

Let us first calculate the work done by one-kilomole of the gas. We have:

21 2v dv 2v a
W=/ pdv=R0t/ —/ — dv
. w V=D S

(2v1—b)j|+ a a

(vi —b) 20, v

= Rolln[

B N 30 —0.0319
= 83143 x 10°JK™! x 373.15K x In

15—-0.0319
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1 1)\ 1
580x 10°Im® ([ — — — | —
+o80 > 107 Im (30 15) m’

=2.1344 x 10°1J.

Clearly, therefore, n moles of gas, when it follows a similar expansion protocol,

would do work equal to ( ;) 21344 x 10°9 = 1 x 2.1344 x 10%).

3.5.4 IV: Metal Versus Gas: Work Done and Volume Change

Consider an ideal gas of volume V; = 0.1 m® and a block of metal which has twice
that volume. They are both at room temperature, 7" = 300 K, and under atmospheric
pressure, P = 1 atm = 1.01325 x 10° Nm™2.

The pressure is increased quasi-statically to 3 atm.

(a) Calculate the work done on the gas in the expansion.

(b) Given the compressibility y7 = —1 (g—;

= 0.8 x 10" %atm™!, find the work done on the metal.
(c) What is the change in the volume of the metal and the gas ?

) of the metal at that temperature is
T

3.5.4.1 Solution

Assuming there are n moles of the ideal gas present, the work done on the gas in the

above process is
Vi " dv Vi
—/ pdv = —nRT/ — =nRT In (—) .
W nov Vi

Clearly, in order to complete this calculation, we need to determine both n and the

Vi
To this end let us look at the equation of state. Because the temperature is
constant, we have P; V; = P V; = nRT. As a result % = % = :1‘ Z:$ = 3. Next, let
us introduce the rest of the information that has been provided. We have

ratio of the initial and the final volume, i.e., (YL) .

P Vi (1.01325x 10°Nm?) x (0.1 m?)
RT  (8.3143Jmole™ K-!) x (300 K)
= 4.0623 mole. (3.31)

The work done on the ideal gas is:

Vi Vi qu
/ pdv = nRT/ — = nRTIn(3)
Vi % v

= 4.0623 x 8.3143x 300 x In(3) T = 1.1132 x 10*J.  (3.32)
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Work done on the metal when, at the given temperature 7', the pressure increases
from one atm to three atm, is

i P v P
(pdv)r =/ P (a_) dp :/ pl=xrvldp
Py Py P/ T Py

3 atm 9 1
. / pdp = (Ve t7 | = — & | % (atm)?
1 atm 2 2
= (02m%) (0.8 x 107% atm™") x 4 x (atm?)
=0.64 x 107°m? x 1.013 x 10°Nm™2 = 0.065 J. (3.33)

Note, the work done on the metal is a very small fraction of that done on the gas.
Also note that the above integral over p involved the volume v. Therefore, for
perfect accuracy, v also should have been expressed as a function of the pressure.
In practise, however, much like the work done on the metal during the compression,
we can expect the volume of the metal also to change little during the three-fold
increase in the pressure. Therefore, extracting v out of the integral is an acceptable
approximation.

(c) Change in volume of the gas is easily found. We know that V; = 0.1 m? and
Vi = 1 x 0.1 m3. Therefore, the change in the volume is = V; — V; = —0.1 x 2 m?.

Change in the volume of the metal at the given temperature 7 is

final final av final
/ (dV) metar = / |:(3_) :| dp = _/ xrvdp
initial initial P J T Jmetal initial

— X7 Vinew [P — P} = —[0.8 x 10 %atm™"] (0.2 m’) x 2 atm

&

= —0.32 x 107% m?. (3.34)

Clearly, the change in the volume of the metal is only a very small fraction of that of
the ideal gas. This retroactively supports our removing v A Veral Out of the integral
wherever it occurs.

3.5.5 V: Equation of State: Given Pressure and Temperature
Change

Even though dw — which represents an infinitesimal amount of work done — is not an
exact differential itself, for a gas it can be expanded in terms of the exact differentials
involving the pressure and the temperature.

(a) Show how that may be done.

i vy — (R W)y — _ (2 i
(b) Given (E)p = (p) and (3]7)[ = (p), calculate the equation of state of

the gas.
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3.5.5.1 Solution
(a) Under pressure p the work done, dw, by a gas when it undergoes a microscopic

expansion, dv, is dw = p dv. Because dv is an exact differential, for a simple
gas — whose thermodynamics depends only on p, v and # — we have

() o+ (5]

—vdp + Rdr. (3.35)

dw = pdv

(b) The above equation can be re-written as

dr = (%) dp + (%) dv. (3.36)

Now let us integrate at constant volume. That is,

/ dr), = / %(dp)v, which gives,

v
{ = (E) P+ f(v), (3.37)
where f(v) is still to be determined. Now differentiate the above with respect to v
and hold the pressure constant. We get

ot
(_) ~ 24 . (3.38)
v/, R

The statement of the problem tells us that (g—’;)p is equal to R/ p. Upon inversion it

ot

gives (av )p = %. As aresult, (3.38) can be written as

ror=(5) %=

Thus f(v) is a constant, say, equal to 7. Inserting this result into (3.37) gives the
desired equation of state

(3.39)

x|
|
|
I
=]

pv = R(t —1t.). (3.40)

3.5.6 VI: Spreading Gas: among Three Compartments

A thermally isolated cylinder has three evacuated compartments separated by two
massless pistons which move freely without friction. The central compartment has
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volume V;. Both the right and the left hand compartments have identical relaxed
springs extending from the piston to the end walls of the cylinder. Initially, the
pistons are locked in place. The central compartment is now filled with n = 5 moles
of monatomic ideal gas which has molar specific heat ¢,,. When thermal equilibrium
is reached, the gas is at temperature 7; = 300K and pressure P; = 2 atmospheres.
The pistons are now released and the final volume V; of the gas — which is still
in the central compartment — settles at 4V;. Given the heat energy capacity of the
apparatus — excluding the gas — is C, = 4¢, where ¢, = %R is the heat capacity of
the monatomic ideal gas, find the final temperature 7 and the pressure Pr of the gas.
Given:

3
n=>5mol; P, =2atm;7T; = 300K; ¢, = ER;Ca = 4c,; Vi = 4V,

To be determined:
Py T;

3.5.6.1 Solution

Let us first analyze the problem in terms of the symbols 7;, P;, Vj, etc. The numerical
values can be introduced afterwards.

We note that three different sources contribute to the total energy of the system.
There is the internal energy of the gas; the potential energy due to the compression
of the springs; and the internal energy associated with the heat energy content of the
apparatus.

Change in the internal energy of the gas due to the change in its temperature is

(dU)gas =nc,(Ty = Tv), (3.41)

where ¢, = (3/2)R is the molar specific heat of the monatomic ideal gas. Because
of thermal isolation, the total energy of the system is conserved. The increase in the
volume of the central compartment from V; to V; results in corresponding decrease
in the total volume of the side compartments. As a result, both the springs get
compressed by an amount x each. Therefore,

W @KW 3K

Ax ,
2 2 2

(3.42)

where A is the cross sectional area of the cylinders.

Let us assume that the springs are “simple.” As a result, they obey the Hooke’s
law: that is, when compressed a small amount x, a spring pushes back with a force
proportional to x. Further, because the two springs are identical, and are covered by
massless pistons of area A, they both get exerted upon by the same force = Pr A,
where P is the pressure in the gas (in the central compartment) at the time that both
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of the springs have been compressed. As a result, each of the springs experiences the
same compression and thus pushes back with the same compressional force = kx.
Here, k is a constant specific to the springs.

The total increase in the compressional potential energy of the two springs is
twice that of either of the springs. That is,

1
(dU ) wo springs — 2. Ekxz = kx’. (3.43)
The compressional force on either of the cylinders is

RT;
P A= (n f) A=kx. (3.44)

Multiplying both sides by x and using (3.42) gives

(dU)springs = (kX)X = I:(nf;Tf) . Aj| X

f
RT, 3 RT, 3
nhle V= nhre i /4
Vi 2 4V; 2

%(nRTf). (3.45)

Finally, the increase in the internal energy of the apparatus is:
(dU)a = Ca(Tf - Tl) (3.46)

Because of thermal isolation, the total increase in the system energy must be zero.
Thus, using (3.41), (3.45), and (3.46) yields

0= (dU)gas + (dU)springs + (dU)a
3
=ncy (Tt —T7) + g(nRTf) + Co(Ty — Th). (3.47)

We are thus led to the result

v Ca
Ty = s T, (3.48)
ney + (3)nR + Cq

Dividing the top and the bottom by ¢, and inserting the relevant numerical values

we get
544
T; = [;} 300 = 263 K.
5+ (5/4) +4
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Now Ps is readily found from the equation of state. Because the amount of gas is
preserved during the experiment we have the relationship

PVe PV
T
Therefore,
Vi\ T 1Y) 263
Pr=P(=)2L =2(-)=2 = 0438 atm. (3.49)
Vi ] T, 4 ) 300
3.6 t and p Independent
That is,
u=u(t,p). (3.50)

We follow a somewhat similar procedure to that used in the preceding section.
Inserting the appropriate representation for the perfect differential du,

u u
du = (—) dr + (—) dp, (3.51)
a ), ap /,
into (3.12) leads to
ou ou
dg=du+pdv=(—) dt+(— ) dp + pdv. (3.52)
at ), op ),

Keeping p constant, that is setting dp = 0, i.e.,
du
(dCI)p = 5 (dt)p + P(dv),m
P

and dividing both sides by (df), gives
aq) (8u) (av) (8u) (8(pv))
( a /, at /), a ), at J, a /,

_ a(u + pv) _ %
(s (o). a5

The last term on the right hand side of (3.53) looks interesting because it identifies
a quantity &, called “enthalpy,” which is of great importance in thermodynamics.

h = (u+ pv). (3.54)
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We notice'® that the temperature derivative of 4 at constant pressure is equal to
the specific heat c,. [Compare with (3.16) that refers to ¢,.] We shall show a little
later that dh is a perfect differential. Hence, the enthalpy #, like the internal energy
u, is a state function. While in this section our primary variables are ¢ and p,
(3.52) involves three differentials: dz,dp, and dv. Therefore, we need to exclude
the presence of dv. To this end let us express v in terms of # and p. That is,

v =u(t, p). (3.55)

d (a”) dt+(av) d (3.56)
v=|— — ] dp. .
ot » op ),

Inserting this expression for dv into (3.52)

we[(3),0(3) Jor () 0 ) Jr

achieves the desired end. That is,

Hence,

dg = c,dt + A,dp, (3.57)

where we have used the expression for ¢, givenin (3.53) and defined a new variable
A, as noted below:

du v d(u + pv) oh
A =|:(—) +p(—):|=(— —v = |—] —v. (358
r op ), op ), ap ; op /),
We shall show in (5.74) in the chapter on the first-second law that, much like A,,
A, can also be expressed in terms of parameters that are both easily measured
experimentally and calculated theoretically from an equation of state, i.e.,
A, = —tva,. (3.59)

Thus, (3.57) can be re-written as

dg = ¢, dt — (tva,)dp. (3.60)

18 As with (3.16), an interesting comment can also be made about (3.53). Because the word “heat” is
often imprecisely understood in thermodynamics, it is perhaps wiser to re-phrase the word “specific
heat at constant pressure” to read “specific enthalpy at constant pressure.” Then the symbol (%)p

would look more natural than the usual symbol (%?) .
P
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This is version-II of the first law. For constant temperature, i.e., df = 0, this leads

to the result
dg )
=) = A
(dp .

= —IUO{p.

(Note: given one mole of a substance, each of the quantities (2—‘3) , Ay, and —tvay,,
t

represents the amount of heat energy absorbed during a unit increase in the pressure
at constant temperature.)

Finally, consider an adiabatic process that proceeds quasi-statically. Because no
exchange of heat energy occurs, the left hand side of (3.57) vanishes.

(dQ)s =0= Cp (dt)s + Ap (dp)s- (3.61)

Separating the right hand side and dividing both sides by (dt), yields

o= ()4 =-(E).(5). >
G.ar>-LE ] g

dp

s tva
- (“—) A, =-— ( v “”), (3.62)
As As

where we have used the value A, = —fva,, givenin (3.59).
The result for ¢, is completely analogous to that for ¢, — given in (3.28) — which,
for reader’s convenience, is again recorded below.

t
Cy = =V - Ay = — (M)7 (3.63)
Xi

Note, oy and y; are, respectively, the “quasi-static, adiabatic” — or equivalently, the
so called “isentropic” — volume expansion coefficient and compressibility.

An interesting check on the above results, i.e., (3.62) and (3.63), is provided by —
also see equation 3.73 in the succeeding sub-section — the confirmation of the well

known relationship:
[C_f’} _ (ﬁ) (3.64)
Cy As
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3.7 p and v Independent

That is,
u=u(p,v). (3.65)
We follow the usual format and insert the appropriate representation for the exact
differential du,
u du
du=|—) dv+|—] dp, (3.66)
v/, op/,
into (3.12) which in turn leads to
d 0
dg = a dp + & + p|dv. (3.67)
ap /, w/p

First, we note that

ou ou ot ot
(&)= (5).(5), == (%), (68
Next, we write
8u) (3(u+pv)) (ah) (8h) (81) (at)
(31} » v » v/, at ), \ov /, P\ ov »

Thus, (3.67) becomes

d apte, () 4 (3.70)
=Cy | — c - V. .
q ¢ ap . 4 P av ,

Remember that these processes are quasi-static. Let us travel along an adiabatic
path. That is, we use the subscript s and write :

ot ot
dg)s =0=cy| = | @Ap)s+cp| | (dv)s. (3.71)
op /, v/,
Dividing both sides by
ot
v | 4§ d )
¢ (81) )p (dv)
gives

(g_]ty)v ap Cp =0 372
@), (%) * (c_) -0 372
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Using the cyclic identity in the form

ot

ap v (81} )

Jt =7 \35, ’
(51) » pJ,
we can write for the ratio, (C—” = vy, the result

= (2)=().&),

_ _(a_;)t / _(g_]u))s :(ﬁ) (3.73)
v v As

where y, is the quasi-static isothermal, and y, the quasi-static adiabatic, compress-
ibility.

First Law Version-II1

Equation (3.70), which represents dg in terms of dp and dv can be re-cast in the
following form:
ot ot
dg = ¢, (—) dp +c¢p (—) dv
op /, v/,

Xt 1
=c|—|dp+c,| — ). (3.74)
ap, va,

Here, we have used the identity
v
(at) _ (81)) (81) _ _(%), R
ap /, ap /), \ov/, (a—?)p o)

3.8 Enthalpy

In (3.54), a quantity (u + pv) was introduced whose derivative with respect to the
temperature, taken at constant pressure, is the specific heat c,. We assert!? that this
quantity, denoted /2 and named the “enthalpy,” is a state function. Of its many uses,

9For proof of this assertion, see below.
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some relate to the heat energy of transformation that accompanies an isothermal—
isobaric — meaning, that occurs at constant temperature and pressure — change
of phase. Similarly, it is often useful in determining the heat energy produced in
chemical reactions. (See, for instance, examples relating to the application of Hess’
rules for chemo-thermal reactions.)

3.8.1 Enthalpy: State Function

For h = u + pv to be a state function, its differential
dH = du + pdv 4+ vdp, (3.75)
must be exact. Such is the case if and only if the integrability requirement for d4, i.e.,

Ph ®h
dp  dpdv’

is satisfied. To check this, du in (3.75) must first be expressed in terms of the
independent differentials dv and dp.

(au) (314)
du=(=) dv+ (=) dp. (3.76)
v ) ap v
Thus,
0 d
dh = [(_”) + p} dv + [(—”) + v} dp. @.77)
v P ap v
Comparison with
oh dh
dh =) dv+ (=) dp. (3.78)
v/, ),

leads to the identification

(%)p B [(%)p * ”]’ (3.79)
(%) - [(g_;) i v}' (3.80)

and
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Differentiating (3.79) with respect to p while holding v constant gives

9%h 0u
= + 1.
apov apdv

(3.81)

Similarly, differentiating (3.80) with respect to v while p is kept constant gives

0%h 0%u
= 1. 3.82
dvdp dvdp + (3.82)

Because u is known to be a state function, du is an exact differential. Therefore, the
following relationship must hold
0%u . %u
dpdv  dudp’

As aresult the right hand sides of (3.81) and (3.82) are identical. Therefore, their left
hand sides are equal. This confirms the satisfaction of the integrability requirement
for dh.

Thus, much like the internal energy u, which plays an important role in
determining the ¢ and v dependent properties,”” the enthalpy / is a state function.
Accordingly, during thermodynamic processes, all changes in enthalpy are deter-
mined entirely by the initial and the final locations and are independent of the routes
taken.

The knowledge of enthalpy is central to the understanding of the p and ¢ depen-
dent behavior of systems in equilibrium. Indeed, aspects of chemical reactions are
often described in relation to their “reaction enthalpies.”

3.8.2 Enthalpy and the First Law

The first law can equally well be expressed in terms of the enthalpy. To this end, let
us introduce (3.75) into (3.12).

dg =du+ pdv =dH —vdp. (3.83)
Consider a quasi-static, adiabatic process, i.e.,

(dg)s = 0 = (dh)s — v(dp);. (3.84)

20That is what we have said here. But strictly speaking, u is best expressed in terms of its natural
variables s and v. This subject is visited in detail later.
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Dividing the above by (dp); leads to a useful relationship.

ah
(5)3 = . (3.85)

Next, let us represent the enthalpy as a function of pressure and temperature.

h = h(p,1). (3.86)

a = (Y ap+ () (3.87)
“\op), P \a ), ‘

As aresult (3.83) becomes

oh oh
dg = (5),7 dr + [ (%)t — v}dp. (3.88)

Keeping the pressure constant, i.e., setting d p = 0, and dividing both sides by (df),

leads to the relationship
dq oh
=) =c,=(—) . 3.89
( ot ) » “r ( ot ) » (3.89)

Of course, this relationship was already inferred in (3.53).
Thus, in terms of the variables p and 7, the first law becomes

Then

oh
dg = cpdt + [ (8_) - v}dp = cpdr + A,dp. (3.90)
P/r

This is the same result that was derived in the preceding section and recorded in
(3.57) and (3.58). As mentioned already, similar to A,, A, — the latter may be
represented as (—fva,) — can also be readily measured. And, if the equation of state
is available, it is easily calculated.

Particularizing the heat energy input to a path traveled at constant volume,

(dg)y = cp(dt)y + Ap(dp)y, (3.91)

and dividing both sides by (d¢), we get

g\ _ ap
(5), =+ o (),
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which is best written as

~ama(G), = o (5), =0 (3), =0 (5) (5)
o= \a ), T\ o), T\ ), T T o ) Ve ,
L 2
= tva, |:—v (a_p) } [( ’)”} - (t”“" ) (3.92)

v /, v Xt

(Note that an earlier derivation of this result — see (3.26) — had traveled a different
rout. Also see Example VII below.)

3.9 Examples
. —e. = — ) — v
3.9.1 VII: Provec, —c, = —A, (3 —Av(at)p
v

3.9.1.1 Solution

To show that the expression for ¢, — ¢, givenin (3.92), i.e.,

0 .
cp—Cy=—A, (a—l;) , )

is identical to that given earlier in (3.25), i.e.,

v
— Gy =Av o s i1
cp—c (GZ)p (ii)

ap\ _ op v\
o), \ow/) \or), x’

—A, = tvap,

2
o
cp—cy=[tvL]).
At

Av =t(a_p) — t()é_],’
at /), X

proceed as follows:
Noting that

and

(i) becomes,

Similarly, noting that
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and

(ii) also yields the same result

2

ta o
c,,—cv=—pvo(p= tv-2L .

Xt Xt

Enthalpy, Heat of Transformation and the Internal Energy

Below we present an example of how the enthalpy may sometimes be used to
actually get an estimate for the internal energy.

3.9.2 VIII: Internal Energy from Latent Heat Energy
of Vaporization

(a) Attemperature 7 = 373 K the latent heat energy of vaporization, L, ,(T"), of
water at atmospheric pressure, P,, is ~ 540 calories/gm. Estimate its internal
energy, U,,(T), at that temperature.

(b) The latent heat energy of vaporization, L—¢(7'), is known to decrease with rise
in temperature and at 453 K it is ~ 479 calories/gm. What is the internal energy
at 453 K 7 Does it too decrease with temperature?

(c) At T = T. ~ 647 K, normally called the critical temperature, distinction
between liquid and vapor phases disappears. How is this case treated within the
framework of (a) and (b) above?

3.9.2.1 Solution

(a) In liquid form, one mole of water at 373 K has volume v,,. Upon conversion
to gaseous state, the relevant volume becomes v,. At temperatures which are
moderately high, but are many degrees below the critical temperature, 7, ~
647K, for water — note, 373 K and 453 K both satisfy this requirement — we
generally have vy (T') > vy (T).

Because the transition occurs at constant pressure, Py, the energy difference
can conveniently be represented as enthalpy difference. To see how this is done,
proceed as follows:
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According to the first law ( see (3.12)) we have

Ouras() = [“aa() = [“aum)+ [ awer)

w

= /gdu(T)—i-/gPdv(T) = /gdu(T)—i—P,, /gdv(T)
= ug(T) — uw(T) + P, [vo(T) — vy(T)]
= hy(T) — hy(T). (3.93)

where hy(T) — hy(T) represents the enthalpy difference between the gaseous
and the water states. Note, in the following let us use the approximation
Ve(T) > vy (T). As aresult

Owoo(T) = ug(T) —uw(T) + Povg(T). (3.94)

Further, as an additional approximation, treat the water vapor, at temperatures
like 373 K or a bit higher, as a di-atomic ideal gas.?! Therefore, write

Povg(T) ~ RT.
Consistent with this rough approximation, the internal energy of the vapor is
u(T) ~ Cy T,

where
C, ~=R.

Thus, from (3.94)
—uw(T) ~ Qwog — "‘g(T) - Povg(T) = Quwog — (Cy + R)T. (3.95)

Therefore, using Qw—¢ ~ 540 calories gm~! or 540 x 18 x 4.18 Jmol ™!,
we get the result

7
—uw(373) ~ 18 x 540 x 4.18 — 3 x 8.31 x 373
= 40,630 — 10,849 ~ 29.8kJmol .
Correctly, the above estimate for the internal energy of water is negative. This

is so because, at the average inter-molecular spacing that obtains in water,
the inter-molecular force is attractive. Accordingly, positive energy has to be

2lwater molecule, H, O, is tri-atomic. Here we assume that at the boiling temperature 373 K,
effectively two such tri-atomic molecules act as a single diatom.



88 3 The First Law

expended to tear apart a molecular pair in the liquid phase. [Note, this is true
both for separating two water molecules apart which are close to each other —
that is what we need here — as well as to tear open a single H, O molecule so
that H, and O are separated! Of course, here we are not talking about the latter
case. |

(b) When, following the same procedure as was described above, an estimate for
the internal energy of water at 453 K is made, i.e.,

7
—uw(453) ~ 18 x 479 x 4.18 — 3 x 8.31 x 453 ~ 22.9kJmol ™",

it is found to have (algebraically) increased with the rise in temperature.

(c) At the critical point any distinction between water and its vapor disappears.
Therefore, the specific volumes of water and gas approach each other. That is,
vw(Te) = vy (T7). Also, the internal energies of the two phases become the same.

uy(Te) = ug(Tc)-

Thus, the latent heat energy of vaporization approaches zero signalling the onset
of a so called “second order” phase transition.

3.10 Hess’ Rules for Chemo-Thermal Reactions

Hess’s rule®? can be obtained by making simple deductions from the first law. Heat
energy produced in a chemical reaction that occurs at constant pressure is given by
the change —i.e., decrease — in the state function called enthalpy. And for a reaction
that occurs at constant volume, the heat energy produced is equal to the change —1i.e.,
decrease — in the state function called internal energy. In other words, because the
enthalpy and the internal energy are both state functions, for both cases the amount
of heat energy produced is dependent only on the initial and the final states.

For a chemical reaction that occurs at constant pressure, say pPeonst, the first law
(see (3.12)) yields

£
(Heat Energy Produced) = —¢added = — / dg
i

f
= —[ [du + dW] = —[(uf —u;) + pconsl(vf - Ui)] = h; — h;. (3.96)

Here the indices “i” and “f” signify the initial and the final states. On the other
hand, if both the pressure and the volume are constant — that is when we also have

22Hess, Germain Henri, (8/7/1802)—(11/30/1850).
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the relationship vy = v; — this equation would give
(Heat Energy Produced) = u; — us. (3.97)

Appended below are two well known examples where Hess’ rules are used to infer
useful relationships between the heat energy that is produced for different but related
chemical reactions.

3.11 Examples

3.11.1 IX-Oxidation of CO to CO,

Complete oxidation of one mole of carbon, C, to form one mole of carbon dioxide,
CO,, is known to produce 393.5 Kilo-Joules of heat energy. On the other hand,
partial oxidation to form carbon monoxide, CO, produces only 110.5 Kilo-Joules
of heat energy. Estimate the heat energy produced by complete oxidation of one
mole of CO to one mole of CO,. Note, all these processes occur at the temperature
Trer = 298 K.

3.11.1.1 Solution

The correct answer is instinctively given. Complete burning of one mole of CO to
CO,, at the specified temperature T;.f, would produce 393.5 — 110.5 = 283 Kilo-
Joules of heat energy. CO and CO,

Still, for pedagogic reasons, it is useful to establish a book-keeping procedure
which can, when necessary, deal with more involved accounting of energy dif-
ferences between the intermediate processes involved in going from the initial
constituents to the final product.

Extensive tables of enthalpy — generally given as a difference between the
enthalpy of a compound and that of its chemical constituents in their pure form
at some specified temperature — are available.?? In order to make use of these tables,
we set the temperature equal to the reference temperature, 7.t = 298 K for which
the necessary tables are available. We then have

hinitial = he +ho, =040,
where the initial pure state of carbon is that of graphite. Also, the tables inform

us that
hfina = hco, = —393.5kJ.mol ",

2See, for instance, CRC: Handbook of Chemistry and Physics, 74th Edition. 1994.
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This information is consistent with the descriptive statement of the current example:
namely, that the heat energy produced by complete combustion of carbon, i.e.,

hinitial — Mfinal = he + ho, — heo,

is = 393.5 kJmol .

Next, we calculate the heat energy produced by incomplete oxidation of pure
carbon when it forms CO. Because of the simplicity of the problem posed, the
answer was instinctively guessed. A formal description of the intermediate steps
is recorded below.

The statement of the example tells us that partial oxidation to form CO results in
the production of 110.5 Kilo-Joules of heat energy. That is,

1
he + Eho2 —hco = 110.5 kI mol .

Subtracting the second equation from the first gives the desired result for the heat
energy produced by oxidation of CO to form one mole of CO;:

1 1
hc +ho, —hco, — he — Eho2 +hco = hco + Eho2 —hco,

= 393.5—110.5 = 283kJmol~!.

3.11.2 X: Latent Heat of Vaporization of Water

At 298 K when one mole of hydrogen and a half mole of oxygen gases combine
to form one mole of water vapor, 241.8 Kilo-Joules of heat energy is released. In
contrast, when the same reaction produces one mole of liquid water at 298 K the
heat energy released is equal to 285.8 Kilo-Joules. Calculate the latent heat energy
of vaporization of water at 298 K.

3.11.2.1 Solution
At 298 K we are told that when measured in molal units
1
th—gas + Ehoz—gas - thO—vapor = 241.8 k.

Similarly,

1
th—gas + EhOz—gas - thO—liquid = 285.8 kl.
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Subtracting the first equation from the second gives
N t,0—vapor — N1, 0—liquia = 285.8 —241.8 = 44 kJ,
which is the latent heat energy of vaporization at 298.15 K.
It is interesting to recast this result in terms of calories per gram — i.e., write
it as 44 x 1,000/(4.186 x 18) = 584 calories/gram — and compare it with the
corresponding value at the higher temperature 373 K. The latter was quoted in an

another example as being equal to 540 calories/gram. Thus, the latent heat energy
of vaporization of water decreases with increase in temperature.

3.12 Adiabatics for the Ideal Gas
For a single mole of an ideal gas with f degrees of freedom per molecule we have

cyt

u= iRt; pv = Rt;
2
h=u+ pvic,t = (c, + R)t.

The first law for a quasi-static process in one mole of an ideal gas can be written in
either of the following two convenient forms:

dg =du+ pdv =c,dr + pdv,

or
dg = dH —vdp = c,dt —vdp.

[Note: In the above we have used the fact that for an ideal gas (3—”) , = Oand

v
o) —
<3t”)t =01
Denoting, as usual, the changes occasioned during a quasi-static, adiabatic

process, i.e., where (dg); = 0, with subscript s and slightly re-arranging the above
we can write

(df), = — (dp), = — L (dv),.
cp Cy

which leads to the equation®*

)4 Cy v

@ _ e @),

2*Note: As always, the subscript s is used only as a reminder that the relevant differential change
in the state variables has occurred under quasi-static adiabatic conditions.
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that is readily integrated
In(p) = —yIn(v) + Ci.

Here, C| is a constant of integration and y = (C—”) (f ;2) is 3 or £ dependmg

Cy

on whether the gas is mon- or di-atomic. We can re-cast the above as
In(p) +yIn(v) = In(pv”) = C\,

and write more conveniently the final result — that is valid only for adiabatic
processes — as
pv” = exp(C)). (3.98)

The constant C; is determined from the initial condition.
Thus, a quasi-static, adiabatic transformation from (pj, v;) to (pr, v¢) obeys the
relationship

Di viy = ps v;'. (3.99)
Because of the quasi-static nature of the transformation process, the gas remains in
equilibrium all along the route from the initial to the final state, therefore its usual
equation of state remains valid. In particular, it is valid at both the initial, (p;, v;),
and the final, (py, v¢), locations. That is,

pivi = Rti; prog = Riy.

Accordingly, (3.99) can be transformed to a (p, ) or a (¢, v) representation to yield
r—l1 y—l1
P )=(2-), (3.100)
2 1

ro) 7 =1l (3.101)

or

Equations (3.99), (3.100), and (3.101) are generally known as the Poisson
Equations. It should be emphasized that these equations hold only for those
adiabatic transformations that are strictly quasi-static — meaning, the adiabatic
transformations must be carried out extremely slowly and in such a manner that
the system stays in thermodynamic equilibrium.
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Fig. 3.1 Temperature vs. Monatomic Ideal Gas
volume 320

300 a
280 .
260 .. adiabatic

240 <
220
200} ceé e b

Temperature

1 1.21.41.61.8 2 2.2
Volume

3.12.1 XI: Work Done in Adiabatic Expansion and Isothermal
Compression of Ideal Gas

At point (a) - see Fig. 3.1- a quantity of monatomic ideal gas at temperature 7, =
300 K and under pressure P, = 5 x 10° Pascals occupies a volume V, = 1073 m?.

In an adiabatic process it is expanded quasi-statically until its temperature drops
to 7, = 200 K. This is point (b).

Next the gas is compressed isothermally to reach a point (c) where V., = V.

Finally, an isochoric compression brings it back to point (a).

[See Fig.3.1 and note y = 3]

Calculate the work done by, the heat energy put into, and the change in the
internal energy of the gas for each of the three legs of its journey.

Given:

V,=107m? T, = 300K; P, = 5 x 10° Pascal;

(a) — (b) adiabatic, quasi-static expansion; 7, = 200K
(b) — (c) isothermal compression, 7. = Tp, V. = V,;
(c) — (a) isochoric compression, V., = V.

3.12.1.1 Solution
At point (a) the equation of state is
PV, =5x%x10°x10"% =500 = nR T, = nR x 300.

Thus, in Joules/Kelvin
5
nR = —.
3

The path from (a) to (b) is quasi-static, adiabatic. Consequently, (3.101) applies and
we have

(2/3)
3) —

T,V ™D =300 x (1073)7=D = 300 x (10~ 3.00 = T, V77V = 200 x V2
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which yields
Vy = 1.84 x 1073 m’.

Because (a) to (b) is an adiabat, there is no exchange of heat energy. Therefore, the
heat energy introduced in going from a — b is zero, i.e.,

Qa—)b =0.

Hence, according to (3.103) the work done by the system is equal to the decrease in
its internal energy. That is,

3 35
Wamsp = Us = Up = ney(Ty = Ty) = n> R(Ty = Ty) = = x 3(300-200) = 2501.

Note, the system does positive work during the expansion.

Next, because temperature is constant from (b) to (c), so is the internal energy.
Therefore, any work done along this path is owed to a transfer of heat energy into
the system.

AtT, =T, = 200K, V. = V,. Thus, from the equation of state

P.V, = P.V, = nRT, = nRT,,

we find T s 20
Po=nR (L) =2 2= =333x10° N/m>
Va 3 1073
Because heat energy introduced along this path is equal to the corresponding work

done by the system

¢ Ve dV V.
Opse = Wpse = PdV = nRT), — =nRT,In| — ).
b v, V Vi

b b

Note that V. = V, is less than V}; therefore, the logarithm on the right hand side is
negative. Thus, we get

5 1 5
Whse = = %200 % In [ — ) = —2 x 200 x In (1.84) = —203 J,
3 1.84 3

making heat energy input Q.. negative.

Clearly, the system discards heat energy as it gets isothermally compressed along
b—c.

Finally, the path from (c) to (a) is isochoric. Therefore, no work is done, i.e.,

WC—)(I = 07
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and the heat energy input is exactly equal to the increase in the internal energy
Qc—)a =U,—U.=n cv(Ta - Tc) =

X

(300 — 200) = 250 J.

W[ W
N W

Thus, as expected, there is no net change in the internal energy at the completion of
the cycle a — b — ¢ — a. Also, the total heat energy input is equal to the total
work done by the system. That is,

Qa—)b—)c—)a = Wasp—sc—sa =250 =203 = 471J.

3.12.2 XII: Non-Quasi-Static free Adiabatic Expansion
of Ideal Gas

Two evacuated vessels of volumes V; and V, are connected across a tube with a
stopcock that is closed. The entire system is adiabatically enclosed and its heat
energy capacity is assumed to be negligible. Vessel 1 is filled with an ideal gas
at temperature 7;. The stopcock is opened and the gas expands to fill both vessels.
Determine the final temperature, 7%, of the gas.

3.12.2.1 Solution

Here, one is sorely tempted to use (3.101) that would readily lead to a value for T
because T; as well as V; = V|, V; = V| + V, are known. Unfortunately, the use
of (3.101) would be erroneous because it applies only to processes that are both
adiabatic and quasi-static.

During the expansion described in the given example the gas passes through
states that are not in thermodynamic equilibrium. As such, the process is not quasi-
static. Therefore, the pre-requisites for (3.101) are not satisfied.

No matter, the first law still applies. Indeed, its general statement — given in
(3.7) — comes to the needed rescue. That is,

dQ —dw = dU.

Because the process occurs in a thermally isolated system, dQ = 0. Also, because
the gas expands into an evacuated vessel, it does so against zero pressure. Thus, it
does no work during the expansion, that is dW = 0. Consequently, dU = 0. Because,
for an ideal gas U depends only on the temperature, therefore the temperature
remains constant leading to the result

Ty =T.
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3.12.3 XIII: Quasi-Static Adiabatic Compression of Ideal Gas

A quantity of ideal gas is quasi-statically compressed in an adiabatic process from a
state (P;, V;) to (P, V5). Calculate the work done, Wi_,¢, on the gas.

3.12.3.1 Solution

f
Wi = —/ pPav.
i
Anywhere en route from i — f we have
PVY =PV = PV = D;

hence, we can write
f
Wit = —D/ V=rdv
i

_ D 1—y 1—y . 1
_1_),[Vi -V ]—1_)/[P11/1—Pfo]. (3.102)

Recalling that the symbol y stands for the ratio (i—f), PV =nRTand R = ¢, — ¢y,
(3.102) can be recast as

T, —T;

Wit = nR =ncy (Tt — T)), (3.103)

demonstrating that the quasi-static, adiabatic work done on the system is equal to
the corresponding increase in the internal energy.

3.12.4 XIV: Isobaric, Isothermal, or Adiabatic Expansion
of Diatomic Ideal Gas

One mole of a diatomic ideal gas has volume v, under pressure py. Upon expansion
to volume 2vy it does work w. Calculate w for the following three processes: (a)
Isobaric. (b) Isothermal. (c) Adiabatic. How would these results differ if the gas
were monatomic?
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3.12.4.1 Solution
Let #y be the initial temperature of the gas, which gives
Povo = Riy.

Thus, at constant pressure

2vg
(W)isobaric = / podv = po(Zvo — U()) = Rty. (3.104)

0

(b) For the isothermal process Pv = RTy. Therefore, at constant temperature

2vg A
(W)isothermal = / pdv = Rl‘o/

Vo vo

d
(—”) — RyIn2 = 0.693 R1y.
v

(3.105)
(c) Work done in an adiabatic expansion is different for the diatomic and the
monatomic gases. Here the process follows the relationship

pv’ = pov .
In a diatomic ideal gas, molecules have five degrees of freedom: three for the
translational motion of the center of mass, and two for rotational motion. Thus,
¢y = 5R/2and ¢, = TR/2. Asaresult ¢,/c, = y = (7/5). When the

gas is monatomic, it only has the three translational degrees of freedom. Thus,
¢y =3R/2andc, = 5R/2,yielding y = (5/3).

2vg 2vg d
(W)s=/ pdv=pov3/ (v—ly))
(P [@ =17 (R \ [@' -1
_(y—l)'[ )T }_(y—l)'[ @y } (3100

Using the appropriate y’s we get

[(dW)s]diatomic = 0-605R[0; [(dW)s]monatomic = 0-555R[0-

It is clear that the larger the number of atoms in the molecule, the closer y is to 1
and therefore the adiabatic process begins more closely to resemble the isothermal
process.
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3.12.5 XV: Conducting and Non-Conducting Cylinders
in Contact

A cylinder is composed of two sections, each of volume V), divided by a freely mov-
ing, non-conducting, diaphragm. One section is composed of diathermal walls that
conduct heat energy from an infinite thermal reservoir at some higher temperature.
The walls of the other section are non-conducting. As such, the gas in that section
is thermally isolated.

One mole of monatomic ideal gas is introduced into each of the two cylinders.
Initially, after introduction, the temperature and pressure of the gas are T and P,
respectively.

After thermal equilibrium has been established, the pressure in each section
is 10 Py.

Calculate the following: (a) The final volume, V', and temperature, 7', of the gas
in the non-conducting section. (b) The temperature, 7y, of the thermal reservoir.
(c) The amount of heat energy, Q, transferred to the conducting section. (d) The
work, W, done in compressing the gas in the non-conducting section.

3.12.5.1 Solution

(a) For monatomic ideal gas the ratio of the specific heats y is equal to 5/3. Because
the compression of the gas in the non-conducting section happens adiabatically,
we have

PV = (10P)V?,
where V is the final volume in this section. Thus
V =0.251V4.
Next, the final temperature in this section is found from the relation
PV = (10Py)(0.251Vp) = 2.51(PoVy) = 2.51RTy = RT,

which yields
T =251T,.

The temperature of the reservoir can be found from the fact that under the final
pressure, 10 Py, the volume of the conducting section of the cylinder is V where

Vi =2Vy—V = Vo(2—0.251) = 1.749 1},

and therefore
10Py(1.749Vy) = RTy = 17.49RTy,
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which gives
Ty = 17.497,.

The heat energy inflow into the conducting section is
3
Q=c,(Ty —Tp) = ER (16.49Ty) = 24.73RT,.

Finally, because the compression occurs adiabatically, work done on the gas in the
non-conducting section is equal to increase in its internal energy. That is,

3
W= eI = Ty) = JRQ2.51 = )Ty = 227RT.

3.13 Ideal Gas Polytropics

In the foregoing, we studied a number of examples involving isothermal and/or
quasi-static adiabatic processes in ideal gases. Their hallmark was either the use
of the equation of state at a given temperature or a transformation that is described
by the Poisson equations

pv? =const.; tv’"' =const.; ¢V p’"! = const. (3.107)

However, these two are not the only types of processes that can obtain. Indeed, there
are a variety of applications where the processes utilized lie somewhere between
the isothermal and the adiabatic. Of course, these two are the extremes represented
by perfect contact with a heat energy reservoir at a given temperature or complete
thermal isolation (Fig. 3.2).

For the in-between processes we need to use a more general index v in place of .
In this manner, the Poisson equations are replaced by the following:

pv” = const.; tv""! = const.; 17V p""! = const. (3.108)

Notice that the process is isothermal when the index v = 1. Similarly, when v = y,
the process is quasi-static adiabatic. (See, for instance, (3.107).) For other values of
v we have a so-called “Polytropic Process.”

To get some feel for the physics of such processes we return to the first law for
quasi-static processes in an ideal gas whereby du is simply represented by c¢,dt and
(3.12) gives dg = ¢, dt 4+ pdv. Using the second of the three forms of (3.108), we
can translate pdv into a term that involves dz. Here

ditv"™) =dtv (v — D' 2dv = 0,
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Ideal Gas Polytropics

Pressure
o
[e0)

Volume

Fig. 3.2 Ideal gas polytropics. Plot for a monatomic ideal gas where y = 5/3. Curve a refers
tov = 3 and curve b to v = 1/3. In between these curves, in seriatim lie curves for: v = 5/3,
referring to the isentropic case and shown here as the full curve nearest to a; v = 1.25, dashed curve
that lies between the two full curves; and v = 1, referring to the isothermal case and shown as a
full curve nearest to b. Note: Specific heat cannot be defined for the cases represented by the full
curves. Also, note that the polytropic specific heat would be negative for all cases represented by
curves that lie in between the two full curves. On the other hand, for all those polytropic processes
that can be represented by curves that lie outside the two full curves, the polytropic specific heat
would be positive

or equivalently

dr
dv:—(—)' 0 .
t v—1

A ey g R
plv =~ ([)_ at (3.109)

As aresult the equation for the first law attains a simple form

Whence

R
(dq)polytropic = (Cv - m) (dt)polytroic‘ (31 10)

We can now define a sort of specific heat for this polytropic process

Cpolytropic = (d_q) =Cy — L (3.111)
dr polytropic (V - 1)

Because R = ¢, — ¢, = ¢,(y — 1), we have

y—1 v—y
Cpolytropic=cv|:1_v_11|=cv|:v_l]- (3.112)
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When v = y, the process proceeds as a reversible-adiabat for which dq is zero.
Hence, a specific heat cannot usefully be defined. Similarly, when v = 1 the process
is isothermal and specific heat is not a meaningful concept.

In between the end-points of the range

y>v>1,

a specific heat can be defined. It turns out that such a polytropic specific heat has
the quaint property of being negative!

On the other hand, when? either v > y, or v < 1, the numerator and the
denominator have the same sign. Consequently, Cpolytropic 18 positive for both such
cases.

3.14 Examples XVI-XXI: Some Inter-Relationships

3.14.1 XVI: Alternate Proof of c, g ) = - 3,,),

3.14.1.1 Solution

Although this relationship has already been derived [see footnote after (3.15)] it
is interesting to derive it by a different procedure. Also, it is instructive to see the
usefulness of the cyclic identity.

Because ¢, = (@)U , therefore the left hand side is (B—M)U (ﬂ)u . Multiplying

at 3 Jv \ow
both sides by the inverse of the right hand side leads to the cyclic identity
(%)v (g—;)u (%)t = —1. which we know is correct.
.D.

3.142 XVII: Showthatc,,("') ( )
3.14.2.1 Solution

(), (0). ().~ (5.

Q.E.D.

ZNote: y is greater than 1.
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3.14.3 XVIII: Show that ¢, (55) , = (5%),

3.14.3.1 Solution

o(w),=(5),&),- (),

Q.E.D.

3.14.4 XIX: Show that ¢, = (§) + pve,,

3.14.4.1 Solution

Consider the relationships h = u + pv, ¢, = (%)p, and note that the difference

in the enthalpies of two neighboring equilibrium states with the same value of
pressure is

(dh), = (du), + d(pv), = (du), + p(dv),.
Dividing both sides by (dz), gives

(Bh) (Bu) n (av) (Bu) n
— | =c, == Pl\=) == pva,.
ot ), at ), a/, at ),

Q.E.D.

3.14.5 XX: Show that (%) =c, +v (j(_p)

3.14.5.1 Solution
In a fashion similar to that of the preceding example, we can write
(dh), = (du)y + d(pv), = (du), + v(dp),.
Dividing both sides by (dt), and using the cyclic identity yields
dh ou ap ap v o,
(@), (G). (&), == @), (5), =+ (%)

Q.E.D.
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3046 XXI: Show that () = (i), (3—”)

3.14.6.1 Solution

From examples X VIII and XVII we have:

(@), @)

dap dp

This is the right hand side of the required result. Next, we need to prove its equality
with the left hand side of the required result. That is, we need to prove the equality

ot
# - (UL) (3.113)
(),

(at) 1 (at) Ve Cp
—] =—, | =) =, and — =y,
v/, va, op), ap Cy

the left hand side of (3.113) is

Noting that

Q.E.D.

3.15 Construction of Equation of State from the Bulk
and Elastic Moduli: Examples XXITI-XXXI

By now we well know that if the equation of state is available, results for certain
moduli can usually be predicted. Unfortunately, while extensive experimental data
for bulk and elastic moduli are often available — and, indeed, occasionally their
dependence on state variables has also been established — detailed knowledge of
the equation of state is often hard to come bye. Therefore, it is important to study
the manner in which information about the moduli can be used to learn about the
equation of state itself.

A few examples of how this may be done in practise are given below. While
solving these problems, an important thing to remember is that it is always helpful
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to arrange things so that the left hand side depends only on the dependent variable
and the right hand side on the independent variables.

3.15.1 XXII: x; and o, and Equation of State

Upon measurement, the isothermal compressibility, y,, and the volume expansion
coefficient, &, of one mole of a certain substance are found to be related to its
volume v and temperature ¢ as follows:

R y;
- , 3114
= —d) S
and
X = Rrv (24 (3.115)
! (v—>b)? 2

where R, b and d are constants. Construct an equation of state for the substance and
indicate the required relationships between the constants.

3.15.1.1 Solution

Because both o, and y, depend only on the two (independent) variables v and ¢,
therefore, we make p the dependent variable and express it as a function of v and ¢:

i.e., p = p(v,t). Then
dp ap
dp=|—) d — | dr. 3.116
P (av),”(ar)v G110

Next, we employ the cyclic identity and express (3.114) in the form

(), =~(2), (), [+(2)] 2]

_ R
=[&01]ap=(v_d). (3.117)
Additionally, we express (3.115) as
ap b 2a Rt
— ) =—==-—=. 3.118
(av)t v v3i (v—b)? ( )

Because dp is an exact differential, therefore
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’p 0’p

ot drdv

Employing (3.117) and (3.118) we get

9
aZP _ 8(‘3_1?)1; _ 8(U§d) _ R .
war v N v r T (v=d)¥’

t

i 2a RT
’Fp 3<£)t B a[v_3_(v—b)2] _ R (3.119)
v ot N aT  (w=b2 T

Because v is arbitrary, the following must hold:
d =b. (3.120)

ar v v
According to (3.116), for a given fixed volume v, dv = 0. Therefore, we have

d
dp), = (3—’j) (d0)..

The integration of the partial derivatives(a—‘”) and (3—]’) needs to be done next.
I

Integrating both sides gives

. ap . R R
pon = [(2) @ = [ E50. = gt + f0). G2

where f(v) is the constant of integration.

A first-order linear differential equation for the still to be determined function
f(v) can now be found by differentiating the above expression for p with respect
to v while ¢ is kept constant. That is,

ap\ _ Rt df(v)
(a—v)f_@—b)z+ dv

(3.122)

Equating this with the prior value for (g—z) , given in (3.118) we get

df(v) 2a

dv v3’

f) = / [%} dv = / (i—‘;) dv=— +. (3.123)

Thus,
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where c is a constant to be determined by the initial condition. Combining (3.121)
and (3.123) and assuming the initial condition refers to p,, v,, t,, we can write the
equation of state as

a Rt a Rt,

PrE "=t T oy

(3.124)

In the chapter on “Imperfect Gases”, we shall learn that the above equation is
strongly suggestive of what is called the the Van der Waals gas but with a subtle
difference. Here, the right hand side of the equation is given as a constant which
can — but is not necessarily required to — be equal to zero. Unfortunately, this is as
far as mathematics can lead us. We need the help of physics to set the constant on
the right hand side equal to zero.

3.15.2 XXIII: Alternate Solution for Example XXII

In solving problems similar to that in Example XXII, it may sometime be preferable
to more directly exploit the exactness of a differential such as dp which allows
one the freedom to use any arbitrary integration path between the beginning and
the ending points, i.e., p,,V,,%, and p,v,t. To this purpose, let us start with
(3.116), (3.117), and (3.118), and integrate the perfect differential

ap ap
dp={(—1) d — | dt
P (av), ”+(at)v

R 2a Rt
- ( )dt + [ :|dv. (3.125)

v—d v (v—b)?

The first issue to deal with is the integrability requirement

Fp  *p

dvar ~ odtdv’
which leads to the result

R R

Cw—d) -b)
Because this is to be true for arbitrary v, the following equality must hold.
d =b. (3.126)

The boundary conditions to use are the initial values for the pressure, volume and
the temperature, namely p,, v,, ,, and their final values p, v, and 7.
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As mentioned earlier, it is always helpful to arrange things so that the left hand
side depends only on the dependent variable — in this case, p — and the right hand
side on the independent ones — in this case, v and ¢. Again this happens already to
be the case here.

For convenience, we choose a path that takes us along the following route: For
the left hand side — which does not depend on v and ¢ — clearly we can go all the
way from (p,, v = v,,t =1,) — (p, v,t) in one fell swoop. That is as

p
/ dp=p—po=U)+UI). (3.127)
p

o

For the right hand side of (3.125), the integration over p is not needed. Therefore,
no contribution is recorded for the initial part of the route (p,, vy, t,) = (P, Vo, 1,),
Accordingly, we start the integration of the right hand side with journey from

(P, Vot =1,) = (p, vt =1,).
The first leg, (I), of the integration on the right hand side is, therefore,
represented as follows:

R PsI=l, PV I=1, 2a R[O
(l):(—)/ dt+/ dv[—_—}
v—b PVo t=lo Do =ty v3 (U — b)Z
U()_2

v__z - _—2} + Rt [0 =b)"" = (v, = b)7]

=afve?—v ]+ Rig[(v—b)"" = (v, —b)"]. (3.128)

PUL=t,
[ e
PVost =1y
is zero because it is supposed to extend only fromt =7, to t = t,.
Similarly, the second leg is represented as follows:

(1) /W B Yar+ /W w2 K
= — ‘U —_—— —————
Pl v — b yZ2RP) U3 (U - b)2
v,t R
= dr 0
/z:,ra [U - b} *

([_to)
v—>b

-2
=0+2a|:

Note the integral

=R

. (3.129)

It is important to note that in the above the integral over v, i.e.,

/"”’”” o 2a Rt
P, v3 (U _b)Z ’
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is vanishing because both the initial and the final values of the integration vari-
able, v, are the same.
The result of the two integrals (/) and (/1) is

p—po=1+11

Loy (! fo (3.130)
= —d —_— — —= - . M
v2 o vl v—b v,—b

Hence, the equation of state is the following:

a Rt . n a Rt,
v2 (v—>b) TP (v, —b)’

o

P+ (3.131)

3.15.3 XXIV

Find the equation of state of a substance that has isothermal compressibility, y;, =

(%) and volume expansion coefficient, &, = (4*).

3.15.3.1 Solution

First, let us organize the above information. We are told that

1 (dv at
o, = — R — = J—
Py \or p v )’

which means

d
(—”) = at. (3.132)
ot »
Also, we are told that
1 Jav B b
=T ), \v
which gives
0
(—”) — b, (3.133)
ap t
Because
9%v v

= = 0’
atap apot
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the integrability requirement is satisfied for arbitrary values of @ and b, as long as
they are both constants.
We are given information about two partial differential coefficients, (g—f)p and

(g—;) . Therefore, we start with
t

v =v(t, p),

so that these two differentials can be utilized. That is, we write

dv = (a_v) dr + (B_U) dp = atdt — bdp, (3.134)
ot » op /,

and integrate both sides along the route (vo, ty, po) — (v, %, po) — (v, ¢, po) —
(v,2, p).

On the left hand side, only the path from (vo, ty, po) — (v, %, po) makes a
contribution, which is equal to v — v,,.

On the right hand side, on the other hand, the path from (v, to, po) — (v, to, po)
makes no contribution.

Next, we look at the contribution, to the right hand side, from the path
(v, 20, po) = (v.1. po). One readily finds this contribution, i.e., §(t* — 13).

Finally, on the right hand side, we proceed along the path (v, t, py) — (v,t, p).
This gives: —b(p — po).

Thus, the desired equation of state is:

a
V-, = 5(’2 —13) = b(p — po). (3.135)

3.154 XXV

Find the equation of state of one mole of a substance that has isothermal com-
pressibility, x, = a/(pt*) and volume expansion coefficient, &, = b/(p?t?). Are
constants ¢ and b related?

3.154.1 Solution

Because information about y, and o, has been provided, we write

v v
dv=\|—+—) dt + || dp = va,dt —vy,dp
ot ), ap /,

bv av
_ (_pzﬁ) dr — (—W) ap. (3.136)
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The integrability requirement,
o

(a(at

ap

(%),

ot ’

),

)f

leads to the equality

—2bv 2av
PP = o ) (3.137)
Thus,
b=—a. (3.138)

It is interesting to note that because thermodynamic stability requires the compress-
ibility, y;, to be positive, the constant a > 0. Therefore, because of the requirement
b = —a for this example, the isobaric volume expansion coefficient, «,, is negative.

At first sight, the above problem, (3.136), appears to be quite complicated. This
is because the right hand side contains all three variables, v, # and p. It turns out that
upon dividing both sides by v, the right hand side no longer involves v and the left
hand side, d;”, still can be expressed as an exact differential, d(In v). Accordingly,
we can write

d—v:dln(v)

v
_ (9In(v) d1n(v)
=(557), 0 (557)

—a

G

2l3

a
pit

342

(3.139)

) dr + ) dp.
The integration of (3.139), between the original location, (v = vy, p = po,t = to),
and the the final location, (v = vy, p = p;,t = t;), can be done along a path of our
choice.

To this end, we integrate both sides along the route (v = vy, p = po,t = ty) —
(v=vi,p=pot=t)—>@V=v,p=p.t=1) > @©=v,p=pt=Hh).

On the left hand side, only the path from (v =vo, p = po.t =t) —
(v =wv1, p = po,t =ty) makes a contribution, which is equal to: In (%) . For
the right hand side, integrals along the entire length of the path are displayed below:

)~
_a/v
_a/v

V=V1,1=10,p=Po

=v0.0=10,p=po

v=v.1=t],p=po

=v1.,l=lo,p=Ppo

v=v.t=t],p=p|

=v1.,l=1,p=Dpo

(
(
(

dr

p2[3
dt
p2[3

dr

213

)=«
)=«
)=«

v=v1,[=lo,p=Ppo

=v0.[=10,p=Ppo

V=U1,I=1L,p=Po

=v1.,l=10,p=Ppo

v=v|.t=t],p=p|

=v1.[=11,p=Dpo

(
(
(

dp
p3t2
dp
p3t2

dp
p3r?

)
)
)

3



3.15 Construction of Equation of State from the Bulk and Elastic Moduli 111

In (2) 0 _ 0
)
/”=”1sf=l‘1~,p=po( dr )
—a a 0
V=V1,I=10,p=Do P(%l‘3
V=V, [=11,p=p] dp
[T (),
V=V1.I=1,p=Po pPh
U1 a s - a . 5
) = ho =t 53 - . (3.140
n(vo) (2[?02)(1 0 )+(2l12) (pl Po ) ( )

Therefore, the desired equation of state is
V1 a a
In{— ) = — . 3.141
n(vo) (21?2 112) (2P02l02) ( )

3.15.5 XXVI: Alternate Solution of XXV

It is instructive to re-travel the above via the differential equation route. To this end
let us begin with (3.139), but for notational convenience set v = v; and t = ;. We

have
dIn(vy) = (_8 ln(vl)) df; + (_8 ln(vl)) dp
oty » 3[7 f

—d —d
:(Egmﬁ(;?ﬁp (3.142)

Now let us integrate it for a given fixed value of p.

dr
/d(lnvl):(forpconstam) _a/ 2_13 (3.143)
Py
We get
a
I =|—= |+ , 3.144
no, (zp%%) () (3.144)

where f(p) is as yet an unknown function.
In order to determine f(p), we differentiate (Inv;) with respect to p while

holding #; constant.
al d
( nvl) - d/(p) (3.145)
)2 Pt dp
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Comparing the values of (31;—])"‘) given in (3.142) and (3.145), we are presented
1

with the equality
(alnvl) _a _  a +df(p)
w ), P pp dp
This equality can be satisfied only if
U _,
dp ’

which requires that f(p) be a constant. With this information, (3.144) leads to the

final result
a
Invi— | —= ) = 4, 3.146
1 (sztlz) ( )

where A is the constant. Note that A can be determined from the initial condition:
v = Vo, 11 = tp and p = py. Therefore,

a
A=1Invy— (—),
2p318

and as a result (3.146) yields the equation of state

In| 2L =( a4 )—( a ) (3.147)
Vo 2p2t} 2psts

The results of the two different procedures — i.e., (3.141) and (3.147) — are
identical.

3.15.6 XXvIl

Find the equation of state of one mole of a certain gas at temperature ¢ for which

(‘j{—f) = (v fb) [1+ 2] exp[ 2] (3.148)

Rt a 1 a
T=_ - ——, 3.149
i v(v—b) |:Rz‘v2 v—bj|eXp[ Rtv] ( )

where as usual R is the molar gas constant, y; the isothermal compressibility and
a, the expansion coefficient.

and
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3.15.6.1 Solution

Note that
(2)=:5), )]
R — | — -l —v —_
he v\adt/, v/,
_ (9 (O
dv ), \at/,
ap
== .1
). o
and
_ ap
1—_ i
Xi = U(av)t- 3.151)

Therefore, we can write
dp = (%)vdt + (gl;)tdv
= (755 [+ e [ o
(55) [r - g e[

= (1) dr + (D) dv. (3.152)

Integrating along the path (po, t9, vo) — (p,t,v0) — (p,t,v9) — (p,t,v)
yields

pP—DPo= /(1) dr + /(II) dv, (3.153)

P-10:v0 pit,vo
/(I)dt:/ (I)dt+/ (I)dt—i—/ (1) dt
P0.10,v0 ,10,V0 W1,V
p.L.vo R
o[ G )l
piowo \V0 — Rtvg
Rt . —a \/ Rt . —a
= X = X
vo—b P Rtvg f0 vo—b P Rtvg
Rty — (3.154)
— (.€ .
vo—>b P Rtyvg ’

where

~Jarvo
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and

/ (1) dv = /,, "y dv + / "y av + / " du

010,00 Pito,vo pit.vo

=0+0

(D) e - o5 e[ e
pive \U—b ) [ Rtv? v—b P Rev
Rt —a\|"
- (v—b)eXp<m) "
Rt —a Rt —a
= — ) = — . 3.155
(v—b)exp<Rtv) (vo—b)eXp(Rtvo) ¢ )

Therefore, according to (3.153), (3.154), and (3.155) the equation of state is as
follows:

Rt —a Rty —a
—po=|— —) - . 3.156
P po (U—b)exp<Rtv) (Uo—b)exp(Rlovo) ( )

3.15.7 XXVvIII

Find the equation of state of a single mole of a fluid whose isothermal susceptibility
X and isobaric volume expansion coefficient &), are well described by the following
equations:

1 /¢
pr=1+1 ()

1/d
Z(Xp=1+; l_2 .

Show that for the sake of consistency, d must be equal to 3 c.

and

3.15.7.1 Solution

As usual we write

dv = (a_v) dr + (B_U) dp = va,dt —vy,dp
a/, op ),

v d cy\ dp
_ (7*73) a-(v+5) L (3.157)
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Next we re-arrange (3.157) so that its left hand side contains a function of only a
single variable and the right hand side only that of the remaining two variables.

d_p=_ dv +l v+t% dt
p v+ S5t vt g
dv  dr dee
d(inp) = — + =4 dt (3.158)

v+S ot (S
We find that the differential d(In p) satisfies the integrability requirement, i.e.,

?(np) _ F(np) A=

01 dv dvot (v + t%)z (v + t%)z’

only if (—2¢) = (¢ — d) or equivalently if d = 3c. When this is the case, d(In p) is
an exact differential and we may choose an integration path of our choice.

The chosen path proceeds from (po,vo,tp) — (p,vo.t0) — (p,v,th) —
(p,v,t). For the left hand side of (3.158), only the portion from (po, vo, %) —
(p, vo, ty) contributes. And the result is In [%] .

For the right hand side, the term with dv contributes only for that portion of the
path that extends from from (p, vo, fo) — (p, v, tp). Similarly, the two terms with d¢
contribute only for the portion of the path that extends from (p, v,t)) — (p,v,t).

Consequently, we get

P dy N
(e [ e
Po pvoudo Y + 2 p.vilo ! p.vilo (U + t_2)
t } [(v + ,%):|
nf—|—In -
to v+ 5
1

. v+ 5o
— —In [(UO - %)t} . (3.159)

I
|
—_
=
—
S| =
+| +
Suls Sule
1
+
—_
—

Transferring the right hand side term to the left and combining them into a single
logarithm we get
a p(v+ {7)1»‘0 _o.
t(vo + 2)Po
which leads to the equation of state

V.2 _ ). R
<U+t_2)'7_(v0+[2) . (3.160)

0 L
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3.15.8 XXIX : Alternate Solution of XXVIII

3.15.8.1 Solution

From (3.158) we have

dlnp 1
=— —, (3.161)
Jv ‘ v+ 2
a1 1{v+%
P = - Ea ) (3.162)
a ), tlvts

For given fixed value of ¢, integrating (3.161) gives

dlnp _ o 1 - ¢
/( . )tdv—ln(p)— /v+£dv— 1n<v+t2)+¢(t). (3.163)

12

The unknown function ¢(¢#) can be determined by performing the operation
indicated in (3.162). This process proceeds by differentiating In(p) given in (3.163)
as follows:

dln p x de (1)
- . 3.164
( at )v vt 5 * dt ( )

ot

(3lnp) 1 U+?—§ d
= — , an
a ), t|lv+g

Next, we compare the value of (alnp ) given in (3.162) and (3.164). That is,

dIn p 5 A
( o )v=v+;_,2+ a0 (3.165)
This gives
dg(r) 1
e
Upon integration we get
¢(t) =1In(t) + C, (3.166)

where C is a constant. Introducing this into the right hand side of (3.163) gives
c
In(p) = —1In (v + [—2) + In(¢) + C.
Exponentiating both sides leads to the desired equation of state

c\ p .
(v + [—2) L= exp C = constant. (3.167)
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Again, as required, this result is the same as that obtained by the direct integration
method. [Compare (3.160) and (3.167).]

3.15.9 XXX

Upon measurement, the isothermal compressibility, y,, and the volume expansion
coefficient, «,, of one mole of a certain substance are found to be related to its
volume v and pressure p as follows: «, = - (p+b) and y; ! = (p + b), where R and
b are constants. Construct an equation of state for the substance. Is any particular
relationship between the constants R and b required ?

3.15.9.1 Solution

We have

(QQ =gg=vuw)=(§)
ant, 5 v )’

(@Q :_J_:_(P+b) (3.168)
v /, VY v

If we should try the relationship

which is

dp=(§)m—(3%£)m, (3.169)

we find that the right hand side contains all the three variables. Things do not
improve much if we work instead with equation

av v
dv = d dz.
! (w),p+(M)

So we look for the third option: namely,

Jt Jt
dt=|—1] d d
: (ap)v P (av) v
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Rather than calculating ab initio the right hand side of the above equation, we
can conveniently use the existing information in (3.169) by multiplying both sides
with (%) . Accordingly, we get

m:(%ﬁp+e%#)m

ot ot
=(=—) dp+ || dv. (3.170)
ap /, v/,
This satisfies the requirement that the terms involving the dependent variable alone
should be on the left hand side while those involving the independent variables —
here they are, p and v — are on the right hand side. We now follow the usual

procedure and begin by writing the above equation for the case where v is constant
and then integrating it. We get

/(df)u = / (%) (dp)y, therefore,
= (%%) P+ f(v), (3.171)

where f(v) is some as yet to be determined function of v. Next, we calculate the
remaining differential (g—i)p . That is, using (3.171) and (3.170) we get:

(), -+
(%)

7w =48~ (2)

1)
which gives

and upon integration we get

f@)z(%)v+c, (3.172)

where C is some unknown constant. Combining this result with (3.171) we get the
desired equation of state

t

v D
(E) p + f(v), which gives

(%ﬂiﬁ)+c (3.173)

t
R
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We may also write the above as

1y = (v(p;b))_(vo(p;rb)) (3.174)

where the subscript O refers to the result at some initial measurement.
Regarding any mandated relationship between b and R we look at the identity

(a(gi)”) = (8(;’2’))”) . We get:
(a*(s—;)p) (=)

ap

v

(L L

(), _ (3(R)) _ ! (3.175)
dv ,

t

The identity is satisfied for all values of R and b. So they are not required to be
inter-dependent.

3.15.10 XXXI: Equation of State for Constant y and o

Find the equation of state of a substance whose isothermal compressibility and
volume expansion coefficient are both constant, equal respectively to y and c.

3.15.10.1 Solution

Because dv is an exact differential, we have

av v
dv=|—) d — 1] d
o= (&), o+ (5) o0

= va,df —vydp
= va df —vydp. (3.176)
Dividing both sides by v gives
dv
— =adt— ydp. 3.177)
v

Also because d(Inv) is an exact differential we have
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P ) = (a(ln “)) dr + (a(ln ”)) dp. (3.178)
v » ap /,

ot

This leads to two relationships. Let us begin with the first one:
( d(Inv) )
= a’
aJ,

Inv =t + f(p), (3.179)

which upon integration gives

where f(p) is as yet an unknown function of the pressure p.
The second relationship given by (3.178) is

(%)=

Using (3.179) we can write the above as

ar _
dp_

3

which leads to
f(p) = —p x + constant.

Therefore, (3.179) becomes
Inv —at 4+ py = constant. (3.180)

The constant can be determined by invoking the position of the beginning point
Do, Vo, to. This readily leads to the relationship

v

P+ X_l In (U ) = po + %(t - to). (3.181)

o

3.16 Newton’s Law of Cooling

A rule of thumb — sometime referred to as Newton’s Law of Cooling?® — suggests
that the rate of loss of heat energy, —AQ/At, from an object at temperature 7'
placed in calm atmosphere at temperature 7 is approximately proportional to the
temperature difference (T' — Tp), i.e.,

26Newton, Isaac,(1/4/1643)—(3/31/1727).
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AQ /At = —A[T(t) — Tp). (3.182)

Here, A is a constant that depends on the physical characteristics of the object.

3.16.1 XXXII: Related to Newton’s Law of Cooling

A small block of mass M kg, with an embedded resistor, has an effective specific
heat Cp measured in the units: J/kg.K. It is hung from the ceiling by electrical
wiring connected to the resistor. Although the electrical wiring will conduct some
heat energy, we shall assume that little of that happens. The air in the room is calm
and its temperature 7 is = 300 K. The resistor is supplied 350 watts of power
for 100 seconds. As a result the temperature of the block rises from 7; = 310
to Ty = 320 K. When the current is switched off, the block cools down to the
initial temperature 310 K. The cooling takes 30 seconds. Give estimates for (a) the
parameter A and (b) the parameter M Cp .

3.16.1.1 Solution

Newton’s heat energy loss law is only moderately accurate. Thus, for temperature
differences that are small, i.e. [(T; + T7)/2 — To] < Tp, and changes that are
small compared to the ambient temperature, i.e., T — T; < Tj, a linear averaging
approximation should be adequate. For instance, given 7y = 300K, 7; = 310, and
Ty = 320, the heat energy lost in time A¢ is approximately as noted below:

At
(AQ)heat energy lost — _/\/ dZ[T(I) - TO]
0

[310 + 320

~ = - 300} At. (3.183)

Note here that we have replaced the time dependent temperature by its average in
the specified narrow interval 7¢ > T'(t) > T;. Therefore, we can write the difference
between the heat energy input, 350 x 100 J, and that lost from the Newton cooling
during the 100 seconds that the system is being heated, )L[ (M) - 300] x 100,
to be equal to the heat energy needed, MCp (320 — 310), to heat the block from 310
to 320 K. That is:

310 4320
350 x 100 — A [;

— 300:| x 100 = MCp (320 — 310). (3.184)
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The above provides one relationship, but in order to determine both A and M Cp,
two relationships are needed.

The second relationship is obtained from the rate of cooling after the power is
turned off. Again, noting that the object cools down according to Newton’s law, the
heat energy lost in 30 s of cooling from 320 K to 310 K is described as follows:

A(315 — 300) x 30 = MCp (320 — 310). (3.185)

These two equations give
A~ 18JK's7!

and
MCp ~ 8.1 x102JK~".

3.17 Internal Energy in Non-Interacting Monatomic
Gases is = %P | 4

Irrespective of whether a non-interacting gas is composed of particles that obey
classical, or quantum — namely, Bose or Fermi — statistics, the product of its pressure
P and volume V is directly related to its internal energy U. The relationship is

3
U= EPV. (3.186)

3.17.1 XXXIII: The Volume Dependence of Single Particle
Energy Levels

3.17.1.1 Solution

Because according to (3.27)

therefore, for the equality

we should have

()= (Gv)

(dU)s _ 2(dV)s
u 3 VvV

Accordingly, we can write

(3.187)
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Upon integration, one gets
2
In(U)s = —3 In(V)s + CONSTANT. (3.188)

Hence, the relationship

W

(U)s = constant x (V)¢ °. (3.189)

Those who are familiar with elementary Quantum Mechanics will recognize a
“connection” here with the result for the single particle energy levels ¢; of a particle
i, of mass M, confined in a cubic box of volume, V = L3,

L2722
€ = W(lz +m? + nz)

V=inlh?
;—;(12 +m?+n?), (3.190)

where [, m, n are integers and 27wk = h is Planck’s constant.?’

Consider a generalized ideal gas composed of atoms that have single particle
energies comprising both the translational motion as well as the atomic levels.
Generally, these composite energy levels depend on adiabatically invariant parame-
ters — such as quantum numbers, e.g. — and can be characterized as having a special
dependence on the system volume, e.g.,

€ = a; VU, (3191)

where i refers to the i-th particle which has energy ¢; and a; is the corresponding
adiabatic invariant. Note, the objective of the current exercise is to calculate o.
By summing ¢; in (3.191) over all the particles we get the total internal energy.

U=3N,6=V"-3N qa. (3.192)

=

Treating the sum
(£l ar)s = Cs.

as an invariant for adiabatic processes, we get

U)s = (V)§ x Cs.

2"Here, we have used the subscript S because the quantum numbers are adiabatic invariants. This
is the case in the sense that if the length L is varied ever so slowly, the quantum numbers remain
unchanged. Note the subscript S signifies a “quasi-static adiabatic” process.
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The following choice for o reproduces the exact result given in (3.189)

o=—=. (3.193)

Thus, the volume dependence of the single particle energy levels has to be the
following:

2

€ = a,»V_ﬁ, (3194)

which is clearly the case — see (3.190) above.



Chapter 4
The Second Law

Much of the formulation of the first law of thermodynamics has been based on
empirical observations of conversion of work into heat energy. But the reader needs
to be cautioned that the insignia of the first law as displayed in (3.7) is not an
ordinary mathematical equation because it does not guarantee that the reverse —i.e.,
the conversion of heat energy into work — can also be fully accomplished. Indeed,
such a reverse process is a vexed undertaking whose analysis lies at the very heart
of thermodynamics.

Not only do Carnot’s ideas about perfect heat engines — and how they produce
work with maximum possible efficiency that is related to the temperatures of
the warm and the cold external heat energy — provide a basis for the sec-
ond law they also help identify an important thermodynamic state function: the
entropy.

These ideas, their relevant subject matter, and many associated issues that
are treated in the form of solved examples, are presented and discussed in this
chapter. In particular, after some introductory remarks about heat engines in
Sect. 4.1, a perfect Carnot engine that runs on ideal gas as its working substance
is described in Sect.4.2. The Kelvin temperature scale and its relationship to the
efficiency of the Carnot cycle are studied by revisiting the perfect gas engine
in Sect.4.3. Carnot version of the second law and the entropy are discussed in
Sects. 4.4 and 4.5. The relationship between the Carnot and the Clausius versions
of the second law is analyzed in Sect.4.6. The fact that entropy increases in all
spontaneous processes is noted and analyzed in Sect. 4.7. Kelvin—Planck statement
about the second law and its prediction that entropy always increases in irreversible-
adiabatic processes is discussed in Sect.4.8. In Sect.4.9, the Clausius inequality
is studied in both the integral and the differential forms. Section 4.10 deals with
many examples relating to thermal contact and the entropy change. Also, Carnot
cycle, its relationship to entropy change and work are analyzed in several solved
examples given in Sect. 4.11. Sections 4.12—4.18 deal with Carnot refrigerators, heat
energy pumps, the Stirling cycle, the diesel, the Otto, and the Joule cycles. Some
cursory remarks are made about negative temperature at the end of the chapter in
Sect. 4.19.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 125
DOI 10.1007/978-3-642-21481-3_4, © Springer-Verlag Berlin Heidelberg 2012
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4.1 Heat Engines: Introductory Remarks

Let us first yield to some musing.

The first law asserts that the difference between the heat energy, AQ’, introduced
into, and the corresponding increase in the internal energy AU of, the system is
equal to the work output — i.e., the work done by the system — which we denote
as AW,

AW’ = AQ' — AU. 4.1)

The use of the prime on AW and AQ indicates that this relationship is true
irrespective of whether these processes proceed quasi-statically or not.

Let us construct a simple machine that uses the ideal gas as the working substance
contained in an expandable enclosure. The engine withdraws heat energy from a
single thermal reservoir, at some temperature 7y, and in the process the gas expands
and does some useful work.

Clearly, for optimal work output, any increase in the internal energy of the
gas should be kept to a minimum. Because for an ideal gas, increase in the
internal energy is directly proportional to its temperature rise, it would be wise
to keep the temperature increase to be as small as possible. Thus, one must
begin with the working substance at a temperature only infinitesimally lower
than that of the reservoir which provides the heat energy. Also, one would need
to minimize the friction. In an idealized scenario, we assume all this to have
happened.

So far, this process appears to have been a great success. It has managed not to
cause any change in the internal energy and thus to convert all of the heat energy
input into work with 100% efficiency. Unfortunately, this is the end of the story.

In order to re-use the above process, the system needs to be brought back to the
condition it was in at the beginning of the cycle. And, even with our best efforts, the
return journey will use up all of the work produced!

Engines are cyclic. They use energy — which has to be purchased — and produce
work that we need to have done. While a well designed electric engine might
produce work that is equal to 99 or higher percent of the electrical energy it
consumes, the situation is quite different for heat engines.

4.1.1 Non-Existence of Perpetual Machines of the Second Kind

Much like the impossibility of construction of a “perpetual machine of the first
kind” — which in violation of the first law would continue to produce useful work
without any input of energy from an outside source — it is also impossible, as is
implicit from the comment made above, to construct a “perpetual machine of the
second kind.” Such a machine would withdraw heat energy at a single temperature
and convert it all into useful work.
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A perpetual machine of the second kind is, in principle, far less restrictive. Unlike
a machine of the first kind,' a perpetual machine of the second kind is allowed to
withdraw heat energy from an outside source. Accordingly, it does not fall afoul of
the first law.

If a perpetual machine of the second kind existed, it could in principle be built in
two alternative ways.

1. A machine that would operate for only part of a cycle. Such a machine would
produce positive amount of work by extracting energy from a single large
heat energy reservoir. Because there is to be no heat energy dump at a lower
temperature, heat energy extracted from the reservoir would be available for
conversion into useful work. In order not to waste energy no rise in internal
energy would be accepted. If ideal gas could be used as the working substance,
this would demand the temperatures of the reservoir and the working substance
to be essentially identical.

Practical considerations rule out the construction of a viable machine of
this variety. Unmanageably large changes in the working substance — e.g.,
increase in its volume, or dangerously high pressure, etc. — would ensue for
any sizeable production of work. Also, because the temperatures of the source
and the working substance would be almost the same, it would take a very
long time to introduce any sizable amount of heat energy into the working
substance.

2. On the other hand, if such a machine were to function in a cyclical fashion, a
noteworthy thing would happen. Because the differential of the internal energy,
i.e., dU, is exact, a complete cycle would leave the internal energy unchanged.
Thus, a perpetual cyclic operation, sustained by continual withdrawal of energy
from a single thermal reservoir, could result in a complete conversion of the
withdrawn energy into useful work. This means that in principle a 100%
efficiency would obtain!

Unfortunately, physics, through the Second Law of Thermodynamics as
its intermediary, proscribes such an happenstance. The proscription follows
directly from the Kelvin—Planck statement and is to be discussed later in this
chapter.

The impossibility of construction of the machines of the first and the second
kind has important consequences. Work producing engines that would contin-
ually withdraw energy from such vast sources of internal energy as described
below cannot be constructed. Some of these sources are: (1) The atmosphere —
this refers to a quiet atmosphere with no wind. (2) The oceans. Of course, this
means oceans without tides and waves, and at temperature no higher than the
atmosphere. (3) The earth itself — assuming, of course, that there is no access to
subterranean heat energy sources that are often at higher temperature than the
atmosphere.

!'A perpetual machine of the first kind was described in the preceding chapter.



128 4 The Second Law
4.2 A Perfect Carnot Engine

Engines that operate on heat energy are generically called Carnot engines. Their
hallmark is the existence of one or more hot temperature sources and one or more
cold temperature dumps. In cyclic operation, heat energy is withdrawn from the
hot sources and transferred to the working substance of the engine. After some of
the heat energy has been converted into work, the remainder is discharged into the
colder dumps. How well any such engine performs is, of course, dependent on its
operational details.?

The most elegant, and also the most efficient, of all such engines is the one called
a Perfect Carnot Engine. Such an engine operates in Perfect Carnot Cycles and,
furthermore, is Perfectly Engineered.

For convenience, a Perfect Carnot Engine will henceforth be referred to just as a
Carnot engine and the Perfect Carnot Cycle will, more simply, be called the Carnot
cycle.

All legs of the Carnot cycle are traversed reversibly.> And, as is to be proven
later, its physical properties are independent of the working substance. Therefore,
for purposes of illustration it suffices to employ the simplest of all working
substances: the ideal gas.

4.2.1 Ideal Gas Carnot Engine

The cycle starts at position “1” and, as indicated by arrows in Fig. 4.1a, proceeds via
positions “2,” “3,” and “4,” back to the starting position.

The leg 1 — 2 describes an isothermal process. It involves a reversible transfer
of heat energy equal to, Q™"(Ty), “out of a reservoir” maintained at temperature
Ty, and ‘into the working substance’ of the engine also at the same temperature.*

2The operational details include such things as the nature of the cycle of operation and the quality
of the engineering, etc.

3As we know from the introductory chapter, a reversible process is necessarily quasi-static. There
are, however, two additional points to note. First, the entropy of the universe remains unchanged
during all reversible processes. This means that any loss in the entropy of the working substance
is exactly counter-balanced by the increase in the entropy of the reservoir, or vice versa. Thus,
globally speaking, a reversible process is isentropic. Second, despite the fact that all reversible
processes are quasi-static, the reverse is not always true. One can imagine a quasi-static process
that is not reversible in the sense that globally it is not isentropic. However, for our purposes in
this book, essentially all of the quasi-static processes — unless otherwise stated — are likely to be
reversible. Therefore, the statement quasi-static may be considered synonymous with the word
reversible.

4Actually, to allow for the exchange of heat energy between the reservoir and the working

substance — even if the exchange rate should be infinitely slow — their temperatures will have
to differ by at least an infinitesimal amount.
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Ideal Gas Carnot Cycle
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Fig. 4.1 (a) Pressure/(5 x 10°)Pascals versus Volume/(10~2m?). Here, Qy = Q""(Ty) and
Oc = Q™ (T¢). Full lines are isotherms and broken lines adiabats. (b) Temperature/(K) versus
Volume/(10~2m?). Here, Q iy = Q™ (Ty) and Q¢ = Q™ (T¢). Full lines are isotherms and bro-
ken lines adiabats. (¢) Temperature/(K) versus Pressure/(5 X 10°)Pascals. Here, Q5 = Q™ (Ty)
and Q¢ = Q"™ (T¢). Full lines are isotherms and broken lines adiabats
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During this isothermal process the gas expands from volume V; — V, while the
pressure drops from P; — P,. (Also see Figs. 4.1b, c.)

The second leg, 2 — 3, is moved quasi-statically and adiabatically — meaning,
very slowly and with no exchange of heat energy. Thus, it is a reversible-adiabatic
expansion® from volume V, — V3, with the temperature drop from Ty to 7¢, and
the pressure drop from P, to Ps. The leg 3 — 4 describes a reversible decrease of
volume, from V3 — Vj, and increase of pressure, from P; — P4. Both of these
occur at constant temperature 7¢c. The process involves a transfer of heat energy,
Q0™ (T¢), between the working substance inside the engine and an external dump
maintained at temperature 7.

Recognize that at temperature T¢, in order to preserve a consistent notation,
we have denoted Q™V(7¢) to be the heat energy transferred reversibly “into the
working substance” and “out of the dump.”® In practice, the opposite is the case.
Therefore, Q™ (T¢) will in general be a negative quantity.

Note that the point 4 is so chosen that a reversible-adiabatic compression from
volume V4 to volume V| returns the system to its starting position 1 —i.e., to pressure
P which implies temperature 7y.

It is helpful to illustrate the above cycle in all three of its available forms. That is,
as plots in the (P, V), (T, V), or (T, P) planes. The essential physics of the cycle
described in all the three Figs. 4.1a—c, is the same.”

As a rule, the Carnot cycle, has the following features:

(a) The cycle consists of a chain of four links: two “isotherms” and two “adiabats.”
The first isotherm — that is, from position 1 — 2 —refers to a reversible trans-
fer of heat energy, out of the very large external thermal reservoir at temperature
Ty, into the working substance at temperature 7. (Note, the temperature Ty of
the external heat energy reservoir is supposed to be infinitesimally higher than
the temperature 7y of the working substance.)
The second isotherm — that is, from position 3 — 4 — again refers to
the reversible transfer of heat energy “into” the working substance (which
is now at temperature 7¢) and “out” of the dump maintained at temperature

3 A reversible-adiabatic expansion occurs quasi-statically and without any exchange of heat energy.
In principle, like all reversible processes, such an expansion can be reversed with just an
infinitesimal amount of effort. Note: All reversible-adiabatic processes are isentropic, meaning
they do not cause any change in the entropy of the system that is adiabatically isolated. Students
should note that this statement is distinct from the previous one which referred, rather than to a
“reversible-adiabatic” process, to a “reversible” process. The latter does not imply local isentropy.
Rather, it implies only global isentropy.

5The similarity between the two notations lies in the fact that both Q™" (Ty) and Q™" (T¢) refer to
the amounts of heat energy transferred “into” the working substance. The latter, occurring at ¢, is
of course negative.

"These figures were drawn for two moles of a monatomic gas. In terms of the displayed units,
(P, Vi, ) = (1, 1, 300.7), (0.5, 2, 300.7), (0.25, 3.031, 227.8) and (0.5, 1.5156, 227.8) for
i =1,2,3,4, respectively.
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infinitesimally different from 7. The two adiabats — that is from 2 — 3 and
4 — 1 — on the other hand, involve no exchange of heat energy.

(b) All the processes — links — in the chain that constitute the cycle are carried out
reversibly.

(c) Anisothermal link is followed by an adiabatic link and vice versa.

(d) Irrespective of the working substance, the ratio of the heat energy exchanged
with the cold dump and that exchanged with the hot reservoir is a function only
of the relevant temperatures.

Indeed, the Carnot statement is quite explicit. It asserts:

Qrev(TC) B E
0 (T~ (TH) | @2

Simple re-arrangement yields ®

QrCV(TH) + QreV(TC) .
Tu Te

0. 4.3)

Equation (4.3), or its equivalent, will often be referred to as the “Carnot Statement”
or the “Carnot Assertion.”

4.3 Kelvin’s Description of the Absolute Temperature Scale

Lord Kelvin® appears to have been the first to observe that if the Carnot statement
embodied in (4.2) or (4.3), is indeed independent of the working substance used
in the Carnot engine, then it — i.e., the Carnot statement — can be used to define
a Universal — or equivalently, an Absolute — Temperature Scale. In honor of
Lord Kelvin, this absolute scale is often called the “Kelvin scale.” Temperatures
measured on the Kelvin scale are denoted by the symbol K, or, occasionally, by the
symbol k.

Because of its ubiquity, we also work with the Celsius scale — often called the
centigrade scale. The centigrade temperature is labeled as °C.

Let us denote the centigrade temperature of the hot reservoir and the cold dump
as(Ty) °C—with X = hot, cold, respectively —and express the Carnot temperatures
as Tx. Then we can write:

TxK = (T)?)OC + Acarnol- (44)

8 As noted earlier, the heat energy, Q™" (T¢), transferred (supposedly) out of the dump and into the
working substance is actually negative!

9Kelvin, Lord: born William Thomson, (6/26/1824)—(12/17/1907).
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By international agreement the constant A, has been chosen to be equal to
273.15°. With this choice for Acme, empirical observation yields (7y) °C, that
is the temperature measured on the centigrade scale. Therefore, the temperature
Ty, of any thermodynamic system on the Kelvin scale, is equal to the sum of its
temperature Ty measured on the centigrade scale and a number equal to 273.15.
Thus, quite generally'”

T K =T°C+ 273.15. (4.5)

4.3.1 Efficiency of a Perfect Carnot Engine

Efficiency of an engine represents the amount of (useful) work done for unit input
of energy. For the Carnot engine described above, the input of heat energy occurs
reversibly. Let us denote this energy as Q™" (7y). When an engine withdraws heat
energy, Q*"(Ty), from a source at temperature 7y, the energy withdrawn has to
be paid for: much like the gasoline that one buys. On the other hand, the discarded
heat energy is energy lost — much like the heat energy contained in the exhaust that
emanates from the back of an automobile. So a proper definition of the efficiency
would have to be the following: the useful work produced, divided by the energy
Q™ (Ty) that we have had to pay for in producing the work. The question then is:
what is the useful work produced?

Because the differential of the internal energy is exact, the internal energy of the
working substance is unchanged when a complete cycle is performed. Therefore,
according to the first law, the work done per cycle is equal to the total input of
energy during the cycle.

To this purpose, in addition to the input of heat energy Q™" (Ty) into the working
substance from the hot external energy reservoir, we must also include the heat
energy input, Q™"(7¢), from the cold dump. The work done during the cycle equals:
[0 (Tw) + Q™ (To)]."!

The working efficiency of a Carnot engine is given by the following relationship:

Total Work Done in the Cycle
Heat Energy Withdrawn from the Hot Source

_ 0™ (Tw) + 0™ (To)] _ . |:Qrev(Tc):|
0™ (Tw) 0¥ (Tn) ]

€carnot =

(4.6)

10Note, the temperature T K is identical to the statistical mechanical temperature T specified in
Eqgs. (2.13) and (2.14).

""Remember: The two adiabatic legs 2 — 3 and 4 — 1 do not entail any heat energy transfer.
Also, do not forget that positive heat energy is actually discarded out of the working substance into
the cold dump. Therefore, Q™" (7¢), as described here, is in fact a negative quantity.
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Using Carnot’s assertion recorded in (4.2), the working efficiency of a Carnot engine
operating between a hot reservoir and a cold dump, at temperatures 7y and 7¢,
respectively, is

o ormol . (Te
€camot = 1 + I:—QICV(TH):| =1 (TH) . 4.7)

4.3.2 Ideal Gas Carnot Engine: Revisited

In order to check the validity of Carnot’s assertion — from which (4.7) follows — let
us revisit the Carnot engine that uses the ideal gas as its working substance.

Begin by examining the first leg — call it leg “I” — of the cycle. Here, the
temperature is kept constant. Because the working substance is an ideal gas —
whose internal energy is directly proportional to its temperature — there is no net
change in the internal energy along this link. Hence, according to the first law, the
heat energy withdrawn from the hot reservoir — that is, the heat energy introduced
into the working substance at temperature 7Ty — is equal to the work done during
the prescribed reversible expansion of the ideal gas that constitutes the working
substance. That is,

0™ (Ty) = W5,. (4.8)

In view of the quasi-static, isothermal nature of the expansion from V; — V, the
work done by n moles of ideal gas in so expanding is

" 2 ay V.
Wi, = /V PdV = nRTH/V ~ = "RTuln (ﬁ) : (4.9)
1 1

Similarly, during the reversible isothermal travel from 3 — 4 — call it leg “III” — the
work done by the gas is

Vi 1% Vi
WiV, = | PAV =nRTe | “— =nRTcln( —). (4.10)
3—>4 v vV Vs

3 3

Again, because the working substance is an ideal gas and the travel is at constant
temperature; therefore, there is no change in the internal energy along the leg
III — that is the route 3 — 4. Accordingly, the work W3_,4 done (by the working
substance) along this path has to be equal to the heat energy Q""(7¢) that has been
introduced by the dump (into the working substance) during the isothermal leg at
temperature 7¢. That is,

V. V.
Wisa = O™ (Tc) = nRTcIn [ — ) = —nRTcIn (= ). @11
A Vs
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[Note, because V3> V,, the heat energy introduced by the dump into, and
therefore the work Ws_,, done by, the working substance are both negative.]
Equations (4.8), (4.10) and (4.11) lead to the following result:

QrL(TC)__(E) (ln(V))_ (4.12)

0 (Ty) Tu) \In( l)

Because the links 2 — 3 and 4 — 1 —i.e., legs “II” and “IV,” respectively — are
quasi-static adiabats, therefore, according to (3.101), we have the relationship

=ls

=I5

Tu(V2)' ™" = Te(V3)' !, (4.13)

Tu(Vi)' ™" = Te(Va)' ™. (4.14)

On dividing (4.13) by (4.14), we get

B\ ! s\ !
(-6

The specific heat, C,, measured at constant pressure, is always greater than C,
measured at constant volume. Thus, y > 1. But more importantly, y # 1. Thus,
the relevant solution of (4.15) is the equality

o\ _ (Vs
(71) = (74)' 10

Qrev(TC) o E
0 (T) — (TH)’ @17

Whence, (4.12) becomes

which is identical to the Carnot assertion recorded in (4.2). As a result, the efficiency
of a perfect Carnot engine that uses the ideal gas as its working substance is the same
as asserted by Carnot. (Compare (4.7).)

Ql’eV(TH) + QICV(TC)

€carnot(ideal gas) — QreV(TH)
QreV(TC)i| ( TC )
=1 = “l=1-(=). 4.18
+ [QreV(TH) TH ( )

In a later section, we shall show that (4.7) also holds true when the working
substance of the Carnot engine is arbitrary.
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4.4 Carnot Version of the Second Law

Carnot’s assertion can be interpreted as a statement of “The Second Law of
Thermodynamics.”
“The efficiency of the Carnot engine is either greater than or equal to the
efficiency of any cyclic engine operating between the same set of temperatures.”
That is,
rev
Q—(TC)} > €, (4.19)

H

where ¢ is the corresponding efficiency of any cyclic engine operating possibly
non-quasi-statically between the same set of temperatures. The equality obtains
if and only if the “any given cyclic engine” referred to here is itself a Carnot
engine.

While the Second Law will be described in its various traditional forms a
little later, we hasten to add that unless we should be dealing with the exotic
phenomenon of “negative temperatures” — sea the succeeding subsection — the
physical implications of (4.19) will be found to be equivalent to those of the
other statements of the Second Law.!? Note, however, that much like the usual
statements of the Second Law, (4.19) also is an assertion. It should be added
that no known violation of (4.19) exists. Indeed, using the techniques of statistical
mechanics it is possible to estimate that the likelihood of its violation in a
thermodynamic system — which generally has an exceedingly large number of
particles — is exceedingly small. Therefore, (4.19), for all intents and purposes, is
exact.

4.4.1 Exercise I1: Work Along the Two Adiabatic Legs

In discussing the ideal gas Carnot engine, we calculated the work output only along
the two isothermal legs I and III (see Fig.4.1a). Why did we ignore doing the same
for the two adiabatic legs Il and IV ?

Because the adiabatic links do not involve any heat energy exchange, therefore,
according to the first law, the work done by the engine in going from 2 — 3 is equal
to the corresponding decrease in the internal energy. That is, for the leg II:

W53 = —(Us = Ua) = Cy(Th — T3).

2Indeed, in my experience, what we have dubbed here as the Carnot version of the Second Law,
is as simple — if not simpler — to comprehend by a beginning student as any of the usual statements
of the Second Law.
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Similarly, the work done in going from 4 — 1 — that is, for leg IV —is
WS =—(U —Us) = Cy(Ty — Th).
We know from Fig. 4.1b that 7y = T3 and 7>, = T;. This makes
Wi = Cy(T3 — Th).

Clearly, the sum of the work output for travel through the two legs IT and IV is equal
to zero. That is

Wzrz3 + W‘{zl =Cy(Th—-T;5) + Cy(T5 —T,) = 0.

4.5 Entropy

4.5.1 Infinitesimal Carnot Cycles

In the foregoing, we did not pay any special attention to the size of the heat energy
exchanges — with either the hot reservoir or the cold dump. In the present section,
we shall work both with finite and infinitesimal Carnot cycles. The latter involve
very small — indeed, infinitesimal — exchanges of heat energy.

To this purpose, we shall use the notation, AQ™(T), for the reversible transfer
of a small amount of heat energy info the working substance at temperature 7. As a
result, (4.3) is recast as

AQ™(Tw) N AQ™(Tc)
Tu Tc B

0. (4.20)

This equation makes explicit reference to only the two isothermal legs, I and III,
in the cycle: namely, those legs that are traversed at temperatures Ty and 7T¢,
respectively. Both these legs involve heat energy transfers between the working
substance and the outside. Of course, there are no heat energy transfers involved
for the other two legs of the cycle — namely legs II and IV — because they are both
adiabats. Therefore, the above equation can equivalently be represented as a sum
over all the four legs, I — IV, of the Carnot cycle. That is,

leg=IV

A rev T
Z (for a single; complete carnot cycle) [QT()} =0. 4.21)
leg=I

It is convenient to work with a very large number of very small — indeed,
infinitesimal — energy transfers and label one of these as the i-th working cycle.
With this change and such labeling, (4.21) gives
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leg=IV

Z (carnotcycle i) [%\m} =0. (4.22)

leg=I1

A smooth curve, that may represent a finite sized reversible cycle of arbitrary
shape, can be approximated to any desired accuracy by putting together a very
large number of tiny sized cycles of the type represented by (4.22). Indeed, the
approximation is perfect — meaning, it is exact — if the cycles are of infinitesimal size
and an infinite number of them are added together in the manner demonstrated in
Fig.4.2. Here, an infinitesimal Carnot cycle i is followed by — that means, in Fig. 4.2
it is placed contiguous to — another infinitesimal Carnot cycle i + 1, and that in turn
is contiguous to another such cycle numbered i + 2, and so on. In this fashion, when
an infinitely large number of infinitesimal sized Carnot cycles are all traversed in the
same rotational order, then as shown in Fig. 4.2, all the adiabatic legs in successive,
contiguous, cycles completely cancel each other out, thus leaving intact only the
smooth outer boundary representing the chosen, finite sized, reversible cycle.

Accordingly, summing (4.22) over the N extremely tiny Carnot cycles, approxi-
mates well the corresponding sum over the chosen finite!? sized reversible cycle of

v

Fig. 4.2 Any arbitrary shaped, finite sized, reversible cycle can be approximated by a very
large number of extremely tiny Carnot cycles. In the figure above, the adiabats in successive
contiguous tiny Carnot cycles are seen approximately to cancel each other out — that is adiabat
IV from cycle “i” cancels the adiabat II in cycle “i+1.” Note, such cancelation becomes perfect —
meaning, exact — when the cycles are infinitesimally small. Furthermore, the jagged structure of
the uncanceled parts smoothes out to the desired arbitrary shaped, finite sized, reversible cycle.
(This sketch is similar to that given in E. W. Sears and G. L. Salinger’s book on: Thermodynamics,
Kinetic Theory, and Statistical Thermodynamics, Addison Wesley, Third Edition, (1975), figure
5-3, p. 128. Drawn by permission.)

3Meaning, very large compared to the very tiny Carnot cycles mentioned above.
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arbitrary shape.

N leg=IV

(carnotcycle i) w =0. (4.23)
T

i=l1 leg=I

When the number of extremely tiny cycles tends to infinity, the above sum can be
replaced by an integral.

56 4om@ _ (4.24)
T

The integral is taken over the whole length of the given, smooth, closed loop — or
loops — representing the original, arbitrary shaped, finite sized, reversible cycle.

Recalling the definition of an exact differential given in (1.18), the integrand
in (4.24) must necessarily be a linear combination of exact differentials. It is
convenient to use a notation which represents such linear combination as a single
exact differential: dS. That is

d rev T
4™ _ 4. (4.25)
T
Equations (1.18), (4.24) and (4.25) dictate
final
[ a5 = Sina— Sisa. (4.26)
initial

Note, in the above the initial and the final equilibrium states are signified by their
relevant suffices. More generally, we can use (4.24), (4.25) and (4.26) together.

That is,
final initial
¢dS = / ds + / ds = 0. (4.27)
initial final

Clearly, therefore, “S” is a state function and as is customary we shall call it the
“entropy.”

4.5.2 Even If the Entropy Change Occurs Via Irreversible
Processes, One Can Use Reversible Paths For Its
Computation

Whereas each extremely tiny bit of heat energy, i.e., dQ;*'(T), described in (4.23)
and (4.25), was reversibly added (to the working substance), the integrals of d.S,
given in (4.26) and (4.27), do not demand reversibility. Indeed, they place no
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requirement on how the path is traversed! Therefore, the most important thing to
note about the integrals in (4.26) and (4.27) is that they are path independent.

This fact has important physical implications. Often, an experiment involves an
irreversible transfer of heat energy — whose exact details are dependent uniquely on
the extremely many non-equilibrium states through which the system passes during
the course of the experiment. Therefore, any direct attempt at their evaluation is
utterly futile. Fortunately, the fact that entropy S is a function of state, and therefore
its change between the initial and the final equilibrium states is independent of the
path the system may take in going from one to the other, provides the needed key
for its calculation.

And, the key is to use a reversible path for the calculation of the integral over
dS. That is, disregard any irreversible processes encountered in the course of the
actual experiment and instead use the good offices of (4.25) and (4.26) for doing the
calculation. For a successful calculation all that is needed is a reversible path that is
both convenient for calculational purposes and connects the specified initial and the
final equilibrium states.

Accordingly, here and in all other cases — involving entropy changes — that
arise in the following set of examples and exercises, we shall use appropriate
reversible paths for the relevant calculations. Additionally, for reversible paths,
whose characteristics can be embedded in the choice of the integrands, the integrals
of heat energy transfer, dQ™¥(T), as well as that of the work done, dW"™, can
generally be treated as ordinary integrals.

[Note: Normally these integrals would be path dependent. But because the path
is specified — that is, it is the chosen reversible path connecting the two specified
end points — dQ"™(T'), and dW™", behave as though they were exact differentials.]

4.5.3 Perfect Carnot Engine with Arbitrary Working Substance

As mentioned earlier, consistent with the Carnot’s assertion, as long as the working
substance allows for a successful traversal of the four legs of the perfect Carnot
cycle, the operating efficiency of the resultant cycle is independent of the physical
properties of the working substance. This assertion is readily tested by analyzing the
cycle in the “Entropy—Temperature” plane.'

The Carnot cycle in the entropy—temperature plane is a rectangle. Recall that the
two legs Il and IV —i.e., the legs 2 — 3 and 4 — 1, respectively — are reversible-
adiabats: meaning, they are both reversible and occur when there is no exchange

14Recall that for the given three state variables, P, V, and T, a simple thermodynamic system is
completely specified by any of the three pairs. Furthermore, we have seen that the entropy S is
also a state variable and thus can be represented by any of the given three pairs of variables. As a
result, any thermodynamic function of a simple system can be represented in terms of S and one
of the above mentioned three variables, say the temperature 7.
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General Carnot Cycle

7 3@--------mm - - 92
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Fig. 4.3 Entropy/(J.K ') versus Temperature/ K. For convenience, entropy is set at 2J/K at
Point 1. Here, QO = Q™"(Ty) and Q¢ = Q™'(T¢). Full lines are isotherms and broken lines
adiabats

of heat energy. Therefore, they are both isentropes — meaning they both represent
states of constant entropy.'> Accordingly, they appear as horizontal straight lines on
the “entropy versus temperature plot.”

The remaining two straight lines I and III — meaning the legs 1 — 2 and 3 — 4
of the rectangle referred to above — are vertical straight lines that represent the
two temperatures, 7y and 7¢, of the hot reservoir and the cold dump, respectively.
Remember that all four legs of such a rectangular cycle are traversed reversibly. (See
Fig.4.3)

Let us start the cycle at point “1” specified by the coordinates (7y, S;). During
isothermal travel, at temperature Ty, from point “1” to point “2,” the working
substance reversibly absorbs heat energy, Q™" (7Ty), that is supplied by a thermal
reservoir maintained at temperature 7y. As a result, the entropy of the working
substance increases from S; to St. That is,

_ o™ (T

St —Si T
H

(4.28)

The coordinates of point “2,” therefore, are (7y, St).

The link 2 — 3 is traversed without any exchange of heat energy. Furthermore,
the process is quasi-static — which, of course, is always the case if it is reversible.
Therefore, the entropy does not change. Accordingly, the entropy of the working
substance stays at S¢. Note, the traversal is performed in such a manner that the
temperature, 7¢, of the working substance at point 3 is lower than Ti.'° The
coordinates of the point 3 are (T¢, Sy).

5Constancy of entropy is ensured if the process occurs adiabatically and quasi-statically.
16This can be arranged by letting the working substance adiabatically perform some work.
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Next, during the traversal of the leg 3 — 4, that occurs at constant temperature
Tc, heat energy Q™" (T¢) is ‘supplied by the dump’ to the working substance. This
is done in such a manner that the entropy of the working substance again becomes
equal to Sj. In other words, the entropy changes from St fo S; as the link III is
traversed from 3 — 4. Thus

QreV(TC) '

Si— 8¢ = T
C

(4.29)
Now, an isentropic traversal from the point “4” — which is at (7¢, Sj) — can be
so arranged that it brings the working system back to the position “1” that is at
(Tw, Si).
Adding (4.28) and (4.29) leads to the perfect Carnot cycle equality

0™ (Tn) n 0™ (Tc)
Ty Te

0. (4.30)

This equality is identical to that asserted by Carnot. (See (4.3).)
In other words, the efficiency of the perfect Carnot cycle is independent of the
working substance and is as given in (4.7).

4.6 Statements of the Second Law

4.6.1 The Carnot Statement

There have been many equivalent enunciations of the Second Law. Owing to the
fact that in their original form these statements can appear somewhat abstruse, we
develop them via — what we have decided to call — the Carnot version of the second
law: namely, that

“The perfect Carnot engine operating between given hot and cold temperatures,
Ty and T¢, is the most efficient.”

That is,

0™ (Tw) + 0™(Tc) _ Tu—Tc
0¥(Twn) Ty
> €. 4.31)

€carnot =

Recall that € is the efficiency of an ordinary engine. In terms of the heat energy,
Q' (Ty), added by the high temperature reservoir, and Q/(TC), added by the low
temperature dump — to the working substance of such an engine — all or part
of which may have been done irreversibly, the efficiency ¢, is specified by the
relationship:
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. [Q (Ti) + Q'(To) 432

Q' (Tw)

[Note: While reversible heat energy transfers and work output/input have been
denoted with the superscript rev, the corresponding irreversible — or, partially
irreversible — processes are denoted with a prime.]

4.6.2 The Clausius Statement

“Without assistance it is impossible to withdraw!” positive amount of heat energy
from a colder object and transfer the same to a warmer object.”

In other words, heat energy does not spontaneously get transferred from a colder
object to a warmer one. Therefore, we need to run a refrigerator to affect such a
transfer, and running a refrigerator costs money!

4.6.3 Second Law: Carnot Version Leads to the Clausius Version

In an appendix — see (C.7)—(C.11) and the related comments — we examine how a
violation of the Carnot version of the second law relates to a violation of the Clausius
version given above. Our findings are summarized as follows. A violation of the
Carnot version of the second law leads to a physically unacceptable conclusion:
namely, that without external assistance a positive amount of heat energy can be
extracted from an object that is colder and all of it transferred to an object that is
warmer. Accordingly, the following is the case:

“A violation of the Carnot version of the second law results in a violation of the
Clausius statement of the second law.”

4.7 Entropy Increase in Spontaneous Processes

An important consequence of the Clausius statement of the second law is that a
spontaneous process, even if it occurs within adiabatic walls, results in increasing
the system entropy.

To see how and why this is the case, consider two thermodynamic systems placed
inside a perfectly enclosed chamber. Assume that at some instant, one system is hot

1Clausius, Rudolf Julius Emanuel, (1/2/1822)—(8/24/1888).
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and the other cold, and their temperatures are 7Ty and T¢, 1respectively.18 Note that
both systems are assumed to be completely isolated from the rest of the universe:
meaning, they are placed together within the same adiabatic walls, are not subject to
effects of external fields, and do not exchange any matter with the universe outside
the walls.

Let the two systems — or equivalently, two macroscopic parts of a single system —
be put in complete physical-thermal contact with each other for an infinitesimal
length of time. As a result, an infinitesimal amount of heat energy will be exchanged
between the two systems/parts. Experience tells us that heat energy spontaneously
gets transferred from the warmer system/part to the colder one and the process
cannot be reversed without external assistance. Despite the fact that overall such
transfer of heat energy will be an irreversible process, we can, in the following
fashion, treat the process as being equivalent to the sum of two separate, reversible
“inputs” of heat energy.

One such “input” would consist of AQ™(Ty) amount of heat energy being
quasi-statically “added” to the warm system/part, occurring exactly at its existing
temperature 7y. This addition would result in an increase in the entropy of the warm
system/part by an amount

AQreV(TH)

A(Ty) = o

(4.33)

Similarly, the second reversible “input” would refer to the quasi-static addition of
heat energy A Q™ (7¢) to the cold system/part at exactly its existing temperature 7¢.
This would result in increasing the entropy of the cold system/part by an amount

AQrev(TC)

AS(Te) = ——
C

(4.34)

Because the two systems/parts lie within an adiabatic enclosure, the total amount of
heat energy thus added to the two must be zero.

AQ™(Ty) + AQ™(T¢c) = 0. (4.35)
Using (4.33)—(4.35), we can write for the total increase in the entropy

AStolall(spomameous) = AS(TH) + AS(TC)

AQTCV(TH) + AQTCV(TC)
Tu Tc

18 Although one might imagine that the following applies only to two separate systems that are in
physical contact, the argument equally well applies to a single thermodynamic system because it
can be “imagined” to have two macroscopic parts.
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1 1

= AQ™(Tn) [T_H - ch| (4.36)
1 1

= AQreV(TC) |:T—C - T—H} . (437)

According to the Clausius enunciation of the second law, positive heat energy
cannot spontaneously be transferred from a colder object to a warmer object.
Therefore, the energy transferred to the warmer object, AQ™ (Ty), cannot be
positive. Furthermore, because in (4.36) the factor multiplying AQ™¥(Ty), i.e.,

1 1
Ty Tcl’

is negative,'® the product

1 1
AQ™(Ty) [T—H - ﬂ ,

cannot be negative. This means that A Siotai(spontancous) cannot be negative, i.e.,
AStolall(spomaneous) 7< 0. (438)

Similarly, looking at (4.37), we can say that because the heat energy added to the
colder system is positive,

AQ™(T¢) > 0,

as is the corresponding multiplying factor in (4.37), i.e., [TLC - TLH], therefore, their
product is positive, i.e.,
1 1
AQ™(Te) | =— — = | > 0. 4.39
0=t | 7~ 7| @39)

As a result of the two inequalities (4.38) and (4.39), we can state with confidence
that

AStolal(sponlaneous) > 0. (440)

For the trivial case Ty = T¢ there is no spontaneous heat energy transfer. Accord-
ingly, there is no change in theentropy.

19This is so because Ty > Tc.
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Hence, the conclusion:
In a single isolated system — or a collection of two systems that are in thermody-
namic contact with each other and are placed together in a completely isolated
adiabatically enclosed chamber — any spontaneous process resulting in internal
exchange of heat energy causes the total entropy to increase. Of course, if the
exchange of energy should be equal to zero the total entropy stays constant.

4.8 Kelvin—-Planck: The Second Law

The following statement is attributed to Kelvin and Planck.?°

“In a cyclic process, it is impossible to extract heat energy from a thermodynamic
system and convert it completely into positive work without simultaneously causing
other changes in the system or its environment.”

Fortunately, to demonstrate the derivation of the above statement from the Carnot
version of the second law, we do not need to expend much effort. Because, rather
than offering a detailed argument as to how a violation of the Carnot version of the
second law would lead to a violation of the Kelvin—Planck version given above, we
can instead show that the Clausius statement of the second law in fact leads to that
of Kelvin—Planck. As a consequence, a violation of the Carnot statement would also
result in a violation of the Kelvin—Planck statement.

Let us assume we have encountered a cyclic process which violates the Kelvin—
Planck version of the second law. The process causes positive amount of heat energy
to be extracted from a body at some arbitrary temperature — which for convenience
we assume is T¢ — and completely converts it to positive work, W, without affecting
any other changes.

The work W so produced can then be used to run a perfect Carnot refrigerator.>!
Indeed, such a refrigerator can be made to extract even more positive amount of
heat energy from the body at the given temperature 7¢. Such extracted energy can
be added to the work W and the sum transferred to a body at a higher temperature.
The upshot of such an exercise would be that positive heat energy is transferred from
a colder body to a warmer one without any outside assistance. Such an happenstance
is forbidden by the Clausius statement.

Thus a violation of the Carnot statement not only causes a violation of the
Clausius version of the second law, it also violates the Kelvin—Planck statement
of the second law.

It needs to be mentioned that, rather than a Carnot refrigerator, if a perfect Carnot
engine were used directly to convert heat energy into work, it would do so while
affecting a simultaneous change in its environment. In other words, the engine
would necessarily discard part of the heat energy it extracted from the hot reservoir,

20Planck, Max (4/23/1858)—(10/4/1947).
2IDiscussion of the perfect Carnot refrigerator is given in a later section.
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to the cold reservoir — unless, of course, the temperature of the cold reservoir should
be zero. But, alas, that cannot be! Why can it not be, one might ask? Indeed, thereby
hangs an important, if not a long, tale and we shall return to it on a later occasion
when we discuss the Third Law of Thermodynamics.

4.8.1 Kelvin—Planck: Entropy Always Increases
in Irreversible-Adiabatic Processes

We know that an adiabatic process involves no heat energy transfer. And if such a
process is completely reversible, it does not cause any change in the entropy.

Such, however, is not the case for an adiabatic process that is even partly
irreversible. Indeed, consistency with the Kelvin—Planck’s version of the second
law ordains a net increase in the entropy of a system that undergoes an adiabatic
process which is not fully reversible.

Consider a system that — except for the possibility of contact with an external
heat energy reservoir — is fully isolated. Let the system undergo a complete cycle of
processes consisting of four traversals that are represented by a schematic plot — see
Fig.4.4 —in the T—S plane.

Before any discussion of the round-trip travel — from point O all the way around
and back to point 0 — is given, it is helpful to note that whenever a complete cycle is
performed, there is zero net change in the internal energy of the working substance.
Accordingly, the total work done by the system while performing the cycle is equal
to the net input of heat energy from the external reservoir.

Let us begin with the system in a state represented by the point “0” whose
coordinates are (7p, Sp). Imagine that an irreversible adiabatic process takes the
system from the point “0” to point “1.” The point “1” is represented by the

Entropy and Irreversible Adiabatic Process

2.2
2 2
————— -+ ----9
1.8
2
5 1.6
St
= 1.4
= 1.2
- --0
1 0
0.8

275 300 325 350 375 400 425 450
Temperature

Fig. 4.4 Entropy/(J.K ") versus Temperature/ K. The scale shown is arbitrary. Broken lines are
reversible adiabats and the full line is a reversible thermostat. The irreversible adiabatic process,
that takes the system from the equilibrium state O to 1, passes through non-equilibrium states that
cannot be displayed in the above plot. Note, S35 = Sy and S, = S;. Also, T3 = T5
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coordinates (77, S1). En route from “0” to “1,” the system passes through non-
equilibrium states that cannot be displayed in Fig. 4.4 because Fig. 4.4 refers only to
equilibrium states. Note, because the travel from “0” to “1” is adiabatic, no exchange
of heat energy has been allowed while traveling from 0 to 1.

The other three traversals refer to equilibrium processes that are reversible.
We shall call these traversals “links.”

Let the first of these links represent a process that takes the system from point
“1” to point “2.” Because this link is both adiabatic and reversible, it occurs along
constant entropy. Thus the coordinates of the point “2” are (73, S» = S;). Note that
again no exchange of heat energy has been allowed during the traversal of this link.

The second link, from point “2” to “3,” is a reversible-isotherm at tempera-
ture 7o = T3. In traversing the 2 — 3 link, let the system “absorb” heat energy,
Q™ (T,) = Q™ (T3), from the external reservoir maintained at temperature 75.
Because this heat energy is being added to the system reversibly at one fixed
temperature T, = T3, we have the equality®”

Q™(Ty) _ 0™(Ty) _

S3—8, =8y— 5. 4.41
T T 3— 8 0— St (4.41)

(Note: starting at point “2,” where the entropy reading is S = S, and ending at the
point “3,” where the entropy reads S3 = S, the increase in the entropy is equal to
S3—8=8—3S1.)

The third link is set to connect point “3” to point “0.” Because the entropy is
to remain constant all along this link, we must arrange this link to be a reversible-
adiabat. Thus, there is no interchange of heat energy during this part of the travel.
Let the total amount of work done during the traversal of the full cycle be W.
Remember: Only the link from the point “2” to “3” involves any heat energy
exchange, and also that this heat energy, Q""(73), is reversibly added to the
system. (See (4.41).)

As mentioned before, because for the full round trip no change in the internal
energy occurs, we can equate the total work done during the cycle to the total amount
of heat energy that has been added to the working substance. That is,

W = QI‘CV(TZ)
= T5(S3 — 82) = T>(So — S1)
= T3(S3 — 82) = T3(So — S1). (4.42)

It is important to understand the significance of this observation. What is observed
here is that heat energy, Q™ (7>), is added to the system and all of it has been

22Note, the entropy at point “3,” i.e., S3, can be arranged to be exactly equal to S, because we are
free to choose the amount of heat energy, Q™ (73), to be added.
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converted into work W. Note that this energy has been reversibly withdrawn from
some very large heat energy reservoir that stays at temperature 7, = T3.

Consequently, in the above cycle, the Kelvin—Planck assertion, that in a cyclic
process heat energy cannot be withdrawn from a source and completely converted
into positive work without simultaneously producing other changes, appears to have
been violated!

Before we get too alarmed by this seemingly momentous occurrence, we should
remember that Kelvin—Planck’s stricture against converting heat energy into work in
the above fashion only refers to positive work. Thus if the Kelvin—Planck statement
is correct, the work W so produced is either equal to zero or is less than zero. That
is, according to Kevin-Planck

O™ (1) =W =T(So— S1) 0. (4.43)
Because 75 is positive this means that
(S1—S0) = 0. (4.44)

If the transit from O to 1 were fully reversible, only the equality would obtain in the
above relationship. Thus, the inequality specified in (4.44) must necessarily refer to
the transit from 0 to 1 being either wholly or partially irreversible.

This fact confirms the Kelvin—Planck assertion that entropy always increases in
irreversible-adiabatic processes.

4.9 Non-Carnot Heat Cycle Clausius Inequality:
The Integral Form

Reversible transfer of heat energy is an idealization that is well nigh impossible to
achieve in “real” as distinct from “gedanken” —that is “thought only” — experiments.
Realistically, energy transfers often occur either wholly or partially non-reversibly.
And according to the Carnot version of the second law, the efficiency, €y, of a
realistic, non-Carnot heat engine is always less or equal to the efficiency €cymor
of a Carnot engine when both are operating between the same two tempera-
tures.

We shall consider here a series of cycles. During the i-th cycle, let an infinitesi-
mal amount of heat energy, dQ/(7w), be added non-quasi-statically to the working
substance at temperature 7y: and heat energy dQ; (7c¢) be similarly added at a lower
temperature 7¢c. Then as shown in (4.31) and (4.32), we have

_Tu—-Tc _ dQ{(Tw) +dQ](Tc)
€camot = — > = €0 = .

= 4.45
Ty dQi(Twn) )
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The relationship (4.45) can readily>® be re-expressed as follows:

o> 40i(T0) | dQi(Ti)

4.46
T Tu (4.46)

Of course, the equality in the relationship (4.46) holds only when the flow of heat
energy is wholly quasi-static. The relationship (4.46) makes explicit reference to
only the two isothermal legs in the cycle. Which, as before, we number I and III.
But here these legs are either wholly or partially traversed non-quasi-statically. And
as usual, legs I and III involve heat energy transfers — at temperatures Ty and 7T¢,
respectively — between the working substance and the two different heat energy
reservoirs. There are no heat energy transfers involved in the other two legs of
the cycle — namely the legs that we number II and IV — because they are both
adiabats. Therefore, the above relationship can equivalently be represented as the
following sum over all the four legs, I — I'V, of the i-th non-Carnot heat cycle.
That is,

leg=IV
. dQ{(T)}
0> carnotcycle i) | ——=|. (4.47)
X camoc [

A smooth curve, that may represent a wholly or partially irreversible finite sized
cycle of arbitrary shape, can be approximated to any desired accuracy by putting
together’* a very large number of tiny sized cycles of the type represented by
(4.47). Indeed, the approximation is perfect — meaning, it is exact — if the cycles
are of infinitesimal size and an infinite number of them are added together in
the manner described as follows: The infinitesimal non-Carnot cycle i is to be
followed by — that means, it is to be placed contiguous to — another infinitesimal
non-Carnot cycle i + 1, and that in turn is to be set contiguous to another such
cycle numbered i + 2, and so on. In this fashion, when an infinitely large number
of infinitesimal sized non-Carnot cycles are all traversed in the same rotational
order, then all the adiabatic legs, such as II and IV, in successive contiguous cycles
completely cancel each other out. As such, this process leaves intact only the smooth
outer boundary representing the chosen, finite sized, partially or wholly irreversible
cycle.

Accordingly, for N > 1, summing (4.47) over i =1 — N extremely tiny non-
Carnot cycles, approximates well the corresponding sum over the chosen finite sized
wholly or partially irreversible cycle of arbitrary shape.

2To check this write it as: 1 — H 1+ %’% Then subtract 1 from both sides, and multiply
Q/

both sides by M to get — Q'T(HT‘—H) > QT(CT’—C). Now transfer —d—f]({‘ﬂ to the right hand side.
24Compare Fig. 4.2. However, note that unlike the first time we used Fig. 4.2 where all heat energy

transfers were reversible, this time we expect the finite cycle external curve to represent energy
transfers which are either wholly or partially irreversible.
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N leg=IV /
doi(T
0> E E (carnotcycle i) [%} . (4.48)
i=1 leg=I

When the number of extremely tiny cycles tends to infinity, the above sum can be
replaced by an integral.

0> 9§ &Tm. (4.49)

The integral is taken over the whole length of the given smooth closed loop — or
loops — representing the original, arbitrary shaped, finite sized, partly or wholly
irreversible cycle.

It is important to pay some attention to the detail of the integrand. Unless the
transfer of heat energy , dQ’, occurs quasi-statically throughout the round trip, say
from position “a” back to the same position “a,” the inequality will hold. It is,
however, convenient to work with a situation in which the heat energy transferred
is wholly or partially irreversible for only a part of the loop, say from “a” — “b,”
while the remaining path in the the loop, extending from “b” — “a,” is traversed
quasi-statically. For this scenario, the above inequality becomes

b dQ/(T) a erev(T)

Because fba w is equal to S, — Sp, upon transferring the second term on the

right hand-side of (4.50) to the left hand-side we get

b I
Sy — S, z/ %(T). 4.51)

Equation (4.51) will be called the integral version of the Clausius inequality.”> We
shall treat this inequality as an important mathematical result of the second law of
thermodynamics.?®

4.9.1 Clausius Inequality: The Differential Form

Imagine a system is brought into contact with a heat energy reservoir that is at
temperature 7. Assume that the reservoir has infinite heat energy capacity. Let an
amount of heat energy equal to Q'(T') flow out of the reservoir. This will change

25As mentioned before, while reversible heat energy transfers and work output/input have been
denoted with the superscript rev, the corresponding irreversible — or, partially irreversible —
processes are denoted with a prime.

26The equality holds only if the path “a” — “b” is traversed quasi-statically.
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the entropy of the reservoir by an amount —%.27 The heat flows into the system
and causes it to transform from its initial state i, with entropy Sj, into its final state
f with entropy St. As a result of this spontaneous flow of heat the total change in
the entropy of the universe — that is, A Sypiverse — Must be positive.

The change in the entropy of the universe is equal to that of the system plus that

of the reservoir. That is,
ASuniverse = (Sf - Sl) - % > 0. (452)

Therefore,

(St —8i) > Q/;T). (4.53)

A better looking representation of this result is to assume Q'(7T') is small and is
equal to dQ’(T). As a result the increase, (St — S;), will also be small and may be
represented as d.S. Then the above result can be written as

T (4.54)

We shall call it the differential form of the Clausius inequality. If we integrate both
sides of this inequality around a closed loop we shall get

9&15:0595@. (4.55)

Clearly, this reproduces the integral inequality that was obtained in (4.49).

4.9.2 Heat Transfer Always Increases Total Entropy

A process in which non-zero, positive heat energy Q' is transferred out from a region
“a” at a fixed temperature, Th;eh, the change in its entropy, AS,,, is negative. That is,

1t is not absolutely necessary that the heat energy must flow out of the reservoir quasi-statically.
Because the reservoir is infinitely large, all heat flows out at exactly the same temperature 7 :
namely the temperature of the reservoir. Therefore, according to an earlier subsection titled “Even
if the Entropy Change Occurs Via Irreversible Processes, One Can Use Reversible Paths For its
Computation,” we can correctly calculate the entropy loss of the reservoir by assuming it occurred
quasi-statically.
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’
AS, = —%. If the same heat energy is transferred into a region “b” at some
ig

lower fixed temperature, Tjoy, it increases its entropy by AS, = % As aresult the
entropy of the universe changes by an amount:

1 1
AS, + AS, = Q' (—— + ) . (4.56)
¢ Q Thigh Tlow
We note that Q' is positive, as is (—ﬁgh + ﬁ) > (. Therefore, we have:
, 1 1
AS, +AS, =0 [——+ > 0. (4.57)
Thigh Tlow

Note that if the regions a and b were of non-infinite size and as a result the
temperatures Thign and Tioy were not fixed, then we could work with quasi-static
infinitesimal heat energy transfer dQ™". As a result the increases d.S, and dSj in the

entropy of regions @ and b would be: dS, = —dZ%: and dS, = dT%rev . This time the
entropy of the universe will increase by
1 1
dS, +dS, =do*™ (—— + ) > 0. (4.58)
Thigh Tlow

This relationship will have to be integrated when the heat energy transfer is finite
sized. Then we shall need the temperature dependence of do - ) for each of the two
regions a and b and be prepared for the fact that they will depend on the peculiarities

of the thermal properties of the two regions.

4.9.3 First-Second Law: The Clausius Version

The first law concludes that heat energy, dQ’, added to an object plus the work, i.e.,
—dW’, “done on it” are equal to the net increase, dU, in the object’s internal energy.

dQ’ —dw’ = dU. (4.59)

Here, dQ’ and dW' may or may not be quasi-static. Combining (4.54) and (4.59)
leads to what we shall call the Clausius version of the first-second law.?® That is:

TdS >dU +dw'. (4.60)

The equality in (4.60) obtains only when the work dW” is performed quasi-statically.
When that is the case, dW' — dW™,

Z8Compare (5.6) in the following chapter.
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4.10 Entropy Change and Thermal Contact: Examples I-II1

4.10.1 1I: An Object and a Reservoir

The reservoir is very large; is maintained at temperature Ty; and put in thermal
contact with n moles of an object initially at temperature 7;qq. Let us assume that
the reservoir and the object are placed in an adiabatically enclosed large chamber —
i.e., a chamber that does not permit any exchange of heat energy with the “universe”
outside.

Heat energy is transferred from the hot reservoir to the cold object. The process
raises the temperature of the object to that of the reservoir itself. Assuming the
specific heat of the object, C,, per mole, is constant, the total amount of heat energy
transferred into the object is

nC)p(final temp of the system — its initial temp) = nC,(Tres — Tcola)-

Clearly, this heat energy is transferred out of the reservoir while its temperature
remains constant at 7i.s. As explained before, because for the reservoir the transfer
process begins, continues, and ends at exactly the same temperature, for the
purpose of computation of the resulting entropy change of the reservoir, this
extraction of heat energy from the reservoir may be treated as though it occurred
reversibly.

Therefore, the change in the entropy of the reservoir , AS., is negative and is
as given below:

heat energy transferred out of the reservoir
7‘;’68

ASres =

_ nCp(Tres - Tcold)

4.61
7‘;’68 ( )

Clearly, on the other hand, the entropy of the object increases as its temperature
rises from Tog to Tres. While this rise in the temperature occurs irreversibly, it can
nevertheless be related to the corresponding increase in the entropy by a reversible
process in the following manner:

The differential of the entropy is exact. Therefore, it can be integrated via any
path that we choose subject only to the requirement that the path must start and end
at the specified initial and final locations.

To this end let us choose a reversible path. Let an infinitesimal amount of heat
energy dQ = nC,dT be added to the object at some temperature 7" where
Ties > T > T.oq. Note, the heat thus added raises the temperature of n moles
of the object by an amount d7". Here, C, is the specific heat energy per mole
when the pressure is kept constant. Therefore the total increase in the entropy of
the object is
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T; T;
res res d
ASsystem = / ds :/ TQ
T T

cold cold

Tes y C, dT Tres
_ / nCp =nc,,1n[—~ } (4.62)
Teold TCOld

Being the sum of the changes in the entropy of the reservoir and the working
substance, the total change in the entropy, A Stotal, iS

ASTotal = ASpes + ASsystem

Tres — Teora T,
ey (B ) encom(72)

T}es Tres - Tcold ):|
=nC,|In - . (4.63)
! [ ( Teold ) ( Tres

Because nC), is positive, in order to show that the total change in the entropy,
i.e., AStoml, is greater than or equal to zero, all we need to demonstrate is the

following:
ln(Tres) > (T}es_Tcold)‘ (464)
Tcold Tres

Let us introduce the notation
y = (Tcold)
Y}CS

Because In(1/y) = —In(y), the inequality (4.64) can be written as

—1In(y) > 1—y. (4.65)

Let us multiply both sides by —1, and note that multiplication by —1 reverses the
direction of the inequality. We get

In(y) <y-—1. (4.66)

Thus, in order to prove that A Sty is indeed greater than or equal to zero, we need

to show that the inequality (4.66) holds. To this purpose, let us compare it with a
well known inequality that is known to be true. For all real values of x,

(1 + x) <exp(x). (4.67)

Therefore, taking natural logarithm of both sides gives

In(1 + x) < x. (4.68)
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Setting

gives
In(y) <y-—1 (4.69)

This proves that the inequality (4.66) and therefore the inequality (4.64) hold.
Accordingly, the positivity of the entropy change, A Stotal, given in (4.63) is assured.

4.10.2 II: Two Finite Masses: Entropy Change

A system consists of two finite masses, mj and m., originally at temperatures 7},
and T, that have specific heats C;, and C,. They are both placed in an adiabatic
chamber. There the masses are brought into contact until thermal equilibrium is
reached. Calculate the change in the entropy of the system and show that when
mCp, = m.C, = M, itis given by the expression

2Mm(n+n).

2Ty T
4.10.2.1 Solution
For convenience, in the following we shall use the notation
my Ch = Mh; me CC = MC.
Upon reaching thermal equilibrium — see Fig. 4.5 — the masses will reach a common

temperature 7y which must satisfy the requirement that no heat energy has been
added to the system during this process,

Mh(Tf - Th) + Mc(Tf - Tc) =0.
This yields

M. T. + M, T,
T = M (4.70)
(Mc + Mh)

It is clear that irreversible processes are involved in the transfer of heat energy
from the hot to the cold body. Because entropy is a function of state, for carrying
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Fig. 4.5 Schematic plot for
Example II. A mass, my,
specific heat Cj, at
temperature 7}, is brought
into contact with a mass, m.,
specific heat C,, at a lower
temperature 7. At
equilibrium the two masses
together reach temperature
Tt. For convenience of
display, m;Cj, and m.C, are
represented as M), and M,

M,+M, T¢

out its calculation, the path followed in going from the initial to the final state is
immaterial. Thus, we can do this calculation using an idealized path between the
initial and final states. Such a path is wholly reversible.

The entropy gains, AS_ and AS,, by the cold and hot masses are

Ttdr Ti
AS. =M, | = =MIn(= 471
T. T Tc
and®
Ttdr T;
AS, = M, = M,in(=). 4.72
. h/Th T h H(Th) (4.72)

The total increase in the entropy of the system is the sum of these two.

Tf M, Tf My,
AS[otal = ASC + ASh =In|— + In{ — . (473)
T, Ty

The proof that A Sy > O for general values of M, and M, is a little involved.
As such it is deferred to an appendix. (See Appendix E.) For the special case where
M; = M. = M, the statement

AStolal >0

can be shown to be true relatively simply. This is what is done below.

2Notice that the entropy gain by the hot object is negative because it cools down from T}, to T.
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When M), = M. = M, (4.70) yields the relationship:

T+ T

Tt 7

Therefore, for this case (4.73) gives

ASio = M |1 It +1 i =Ml Ui
= n|— nl—||= n
total T. T T.Tj,

- Tt \_ (Th + To)
—2M1n(m)—2Mln|:2m] (4.74)

To prove the positivity of A S1, consider the square

(Vi ~ VT) = 0+ T) —2JTiT. 2 0, (4.75)

which leads to the inequality

(Th + To) = 2/ Ty Te.. (4.76)

This assures the positivity of the total entropy gain for the special case
M;, = M. = M . A demonstration of the positivity of the total increase in the entropy
for the general case is given in Appendix E.

4.10.3 III: Reservoir and Mass with Temperature-Dependent
Specific Heat

A body of mass m has temperature dependent specific heat given by the rela-
tionship Cy(T)=A+ BT + DT? + ET? where the coefficients A, B, D, E are
all positive.® The body is initially at temperature T Kelvin before it is brought
into contact with an infinitely large thermal reservoir at a higher temperature 7y
Kelvin. The entire process occurs at constant volume. Calculate the change in the
entropy of the body, the reservoir and the universe composed of the body and the
reservoir.

30 Although our choice of constants A4, B, D, E is arbitrary, in crystalline solids the occurrence of
the ET? term at low temperatures is owed to temperature induced lattice vibrations. Similarly, the
term linear in temperature — BT — is the electronic contribution to the specific heat in metals. In
amorphous solids, the contribution to low temperature specific heat can sometime be quadratic in
form, e.g., DT?2.
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4.10.3.1 Solution

Upon thermal contact the body warms up from its initial temperature T¢ to Ty, the
temperature of the reservoir. As usual we employ a reversible path to calculate the
change in the entropy of the body as it travels from temperature 7¢ to Ty.

T T T
ASpody = m/ dTr CV; ) - m [A In (T_H) + B(Ty — Tc):|
T o

C

2 _ 2 373
+m[D(TH 7o) . E Tc)] 4.77)

2 3

[Note. The rise in temperature — meaning the fact that 7y > 7 — ensures that the

change in the entropy is positive.]

Because the heat capacity of the reservoir is very large, its temperature during the

entire process hardly changes. Therefore, the (negative) heat energy added to the

reservoir can be treated as though it has been added reversibly at temperature Ty.
The resultant entropy increase®! of the reservoir is

AQTSOV
ASreservoir = - (%) 5 (478)
H

where AQyT is the positive amount of heat energy added to the body to raise its
temperature from T¢ to 7y. That is

Tu Ty
AQpoay = m/T dTCy(T) = m/T dT(A+ BT + DT* + ET?)
C

C

T2 _ T2
= mA(Ty — Tc) + mB (%)

T3 - T3 T — T4
+ mD (%) +mE (%) . (4.79)

The total change in the entropy of the universe, A Sypiverse, that is the body plus the
reservoir, is the sum of the two changes, i.e.,

ASuniverse = AS body + ASreservoirv

given in (4.77)—(4.79). Thus, A Syniverse 1 €qual to

3IThis increase is actually negative because the reservoir loses positive amount of heat energy in
the process.
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T Ty — T,
ASuniverse = ASbody + ASieservoir = mA | In 1) - L =
Tc Ty

T3 — T2 T3 -T2 T — T3
e[ (B ) [ omo [ (%575) - (5

3_ 73 4 _ 74
+ mE [(TH 3 TC) - (TH4THTC)} . (4.80)

It is readily checked that for 7y = T¢ the total entropy of the universe remains
unchanged. Somewhat more challenging is the task of showing that, for Ty > T¢,
the increase in the entropy is always positive. After some algebraic manipulation,
contributions to the entropy from terms involving, B, D and E can be re-cast into
the following form:

B

(m) (Tu — Te)*; (%) (T — Te)X(Tw + 2T¢):

E
(IZTH) (Tu — Tc)* (T3 + 2TuTc + 3T¢).

All three of the above are manifestly positive. Recall that the remaining term
proportional to the coefficient A is very similar to an one treated earlier in this
chapter where a detailed argument for its positivity was provided. (Compare (4.64)
and the discussion following it.)

4.11 Carnot Cycles: Entropy and Work. Examples IV-XVI

4.11.1 1V: Changes Along Carnot Paths

Calculate the entropy changes along the four legs of the complete cycle — as
shown in Fig. 4.1a — that is followed by a Carnot engine. Remember, this engine
is operating with perfect gas as its working substance.

4.11.1.1 Solution

The work done by 7 moles of a perfect gas in going from 1 — 2 has been previously
recorded in (4.9).

1%
AW, = nRTy In (72) . 4.81)
1

Owing to the fact that this first leg of the travel occurs at constant temperature Ty,
and we are dealing with a perfect gas whose internal energy depends only on the
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constants 7, R and the temperature, during this leg the internal energy must surely
remain constant. That is,

AU™, = 0.

Therefore, according to the first law, the amount of heat energy reversibly added to
the working substance at temperature Ty is

V.
AQ™(Ty) = AUS, + AW, = nRTyIn (72) . (4.82)
1

Accordingly, the increase in the entropy of the perfect gas used as the working

substance is
AQ™ (T; 1%
AS|y = A0TTW ] _ e (22). (4.83)
Tw "

Because the symbols 1 and 2, and H act as dummy indices referring to two points
on an isothermal route at temperature 7y, without going through any additional
algebra we can use the above relationship to immediately write down the increase
in the entropy of the working substance in going from 3 to 4 at temperature 7¢. In
this manner, we get

AS3 54 = |:AQ+VC(TC)1| =nR In (%) . (4.84)

Each of the two legs, 2 — 3 and 4 — 1, is traveled without any transfer of heat
energy. Also both of these legs are traveled reversibly. Therefore, each of these two
legs involves zero change in the entropy. That is:

ASy3 = AS4—1 =0. (4.85)
Accordingly, the total change in the entropy — that is, A Sy — is:

AStotal = ASl—»Z + AS2—>3 + AS3—>4 + AS4_,1

V Vi
= ASiso+ ASsq=nR [In[ =)+ (2)|. (4.86)
Vi Vi
Equation (4.16) tells us that
|24
ViV

or equivalently that
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Therefore, A Sy = 0. That this is the case, could have been anticipated from the
fact that dS is an exact differential and its integral along any closed loop must be
equal to zero.

4.11.2 V: An Object and a Reservoir

A Carnot engine withdraws heat energy from a finite object that is initially at
temperature 7. The mass of the object is m and its specific heat is C. The Carnot
engine rejects heat energy to a very large reservoir at a lower temperature 7.

(a) Calculate the total work output and therefore the efficiency, &, of this Carnot
engine. In particular, what is ¢ if Ty = 2TR?

(b) Also calculate the efficiency, €, of a Carnot engine that works between two very
large reservoirs, again at temperatures Ty = 27, and Tg.

(c) Describe the changes in entropy for the cases (a) and (b).

4.11.2.1 Solution

We are in fact given both the initial and the final temperature of the finite
object. Therefore we know the total amount of heat energy it must have yielded.
This amount is, of course, equal to the heat energy received by the working
substance.

Because of the use of a perfect Carnot engine, the total change in the entropy
of the universe is vanishingly small. Therefore, all we need to do is calculate the
change in the entropy of the finite object which then tells us what the change in
the entropy of the reservoir is. Once we know that, we can readily calculate the
amount of heat energy rejected by the working substance (and thereby added to the
reservoir).

The Carnot engine operates cyclically. The difference between the heat energy
input into the working substance and the heat energy it rejects to the reservoir, is
equal to the total work done.

The finite object, initially at temperature Ty, releases heat energy to the working
substance of the Carnot engine. It continues releasing heat, little by little, until
its temperature — as well as that of the working substance — eventually drops
down to the lowest temperature that the working substance can possibly get to.
Clearly, the lowest temperature must be equal to Tk, which is the temperature of
the reservoir. This is so because the working substance gives away its un-used
heat energy to the reservoir. As a result its temperature drops. Indeed, it does not
stop transferring heat energy out until its temperature drops down to that of the
reservoir.
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The “increase”, ASopject, in the entropy of the finite object32 is

TR dT T Ti
ASopject = mC/ (?) =M [T—R} = -MIn [T—“} (4.87)

T H R

where for convenience we have introduced the notation: mC = M.

Next, we need to calculate the heat energy, Hi., that is added to the reservoir at
its constant temperature 7. This is best done by noting that the use of the Carnot
engine ensures the constancy of the total entropy of the two sources of energy
supply. That is,

Ty

ASobjecl + ASpes = —M In |:T

} + ASpes = 0. (4.88)
R

As a result the increase in the entropy of the reservoir A Sy is

Tu
ASies = M In |:—i| . (4.89)
Tr

Because the temperature, Tg, of the reservoir stays constant, therefore the heat

energy, A H.e, added to the reservoir is

T
AHpo = Tg ASwes = M Trln [T—H] . (4.90)
R

The heat energy, A Hy;j, contributed by the object to the working substance when
its temperature falls from 7Ty to Tg is

AHgj = M (Ty — Tk). 4.91)

Therefore, the total work , AW, done by the Carnot engine is
Ty
AWota = AI—Iobj —AHyes = M | (Ty —Tg) —TgIn T_R . (4.92)

The overall efficiency, ¢, of the engine is the ratio of the total work done, AWy,
to the heat energy, A H,;, withdrawn from the object which acts as the hot source.
That is,

e = AI/Vtolal — AI-Iobj - AI—Ires —1_ AI_Ires
A H H A H gy
Tr Tu
=]1———]In(—). 4.93
(TH—TR) n(TR) 9%

320f course, in reality, it is a decrease because the object has yielded heat energy in this process.
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For Ty = 2Tk, this gives
e =1—1In(2) = 0.307, (4.94)

or 30.7%.
Case (b): This case is equivalent to that of a Carnot engine operating between
two fixed temperatures, Ty and 7. (Note, Ty > Tg.) Therefore, its efficiency is

el (T_H) , (4.95)

which for Ty = 27T is 50%.
(c) Because of the use of a Carnot engine, there is no net change in the entropy
of the universe for either of the two cases (a) or (b).

4.11.3 VI: Alternate Solution for V

A more detailed, alternate, solution is given below. This solution should be of benefit
to readers interested in a systematic analysis of example V.

4.11.3.1 Solution

(a) The temperature of the object sometime during the course of this operation is T
such that 7y > T > T. [See schematic plot in Fig. 4.6.]

At this temperature, 7', let the object reversibly contribute an infinitesimal
amount of heat energy, defbg(T), to the working substance of the engine. Similarly,
let dQY be the infinitesimal amount of heat energy reversibly contributed by the

res
reservoir — which is at a lower temperature — to the working substance. Note,
the reservoir is very large. Therefore, its temperature, Tg, remains essentially
unchanged.

As a result of these two infinitesimal additions of heat energy to the working
substance, according to the first law and the general properties of the Carnot cycle,
and because a complete cycle entails no change in the internal energy — meaning
dU = 0 — the work d Wy, done by the engine in one complete cycle is equal to the
total heat energy input — meaning defbg(T) + dQOfY — per cycle into the working
substance. That is,

AWione = dOSN(T) + dO5Y (4.96)

obj res *

According to (4.20), the Carnot requirement for this infinitesimal cycle is

dOai(T)  dowy
=0. 4.97
T + o (4.97)
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Fig. 4.6 Schematic plot for Ty
Examples V and VI. Heat .
energy is being withdrawn

from an object M, initially at \
temperature 7y. As a result,

its temperature decreases,
eventually reaching the
temperature, T, of the large

reservoir. While cooling, it T

passes through an

intermediate temperature 7' \
Tr

Using (4.96) the Carnot requirement for the given infinitesimal cycle becomes:

4= (T) N dWaone — d Q¥ (T) (4.98)
T T

Clearly, the withdrawal of heat energy dQ(r)i‘Jf(T) from the object, causes its

temperature to decrease by an infinitesimal amount d7'.
For simplicity, let us introduce the notation, M = m C. As a result we can write

dQSY(T) = —M dT. (4.99)

Using the above two relationships we get

Wane __ 49T dQuyi(T)
TR T TR

11 dr  dT
=—dogi(T) (7 — T_R) =M (— - —) . (4.100)




4.11 Carnot Cycles: Entropy and Work. Examples [V-XVI 165

Because the path is reversible we can integrate dWopne to calculate the total work
done.

final Tfinal dT Thinal
/ deone = Wdone =M TR/ (_) - M/ dT. (4101)
i

nitial Tinitial Tinitial

Recalling that the variable T denotes the temperature of the object M, Tinitiai = Tu
and Txpa = Tg, the total work done is

T
Waone = M Tg In (—R) — M(Tg — Ty)
Tu

=M [(TH —Tgr)— Trln (%)} . (4.102)

R

The total amount of heat energy withdrawn from the object is
Oobject = M(Ty — Tg). (4.103)

The overall efficiency, €, of the process can now be calculated. It is equal to the ratio
of the total work done to the amount of heat energy withdrawn from the hot source.
That is,

W one W one
g = oo _ d . (4.104)
Qobjecl M(TH - TR)

Using (4.102) and (4.103) we get

1 Te_\p, (I (4.105)
£ = - ny—1J. .
Ty — Tr Tx

For Ty = 2Tk, this gives
e =1—1In(2) = 0.307, (4.106)

or 30.7 %.

(b) This case is equivalent to that of a Carnot engine operating between two fixed
temperatures, Ty and 7. (Note, Ty > Tg.) Therefore, its efficiency is

_ Tr
e = 1—(TH), (4.107)

which for Ty = 27 is 50%.



166 4  The Second Law

(c) Because of the use of a Carnot engine, there is no net change in the entropy of
the universe for either of the two cases, (a) or (b).

Changes in the entropy of the object and the reservoir for case (a) can be
calculated as follows.

Note, all of the heat energy added to the reservoir is added reversibly and at a
fixed temperature Tr. Also that the amount of heat energy, AQ ., that actually gets
added to the reservoir is the difference between the heat energy it receives from the
hot object, i.e., M (Ty — Tg), and the work done Wyqye. That is,

AQ;L = M(TH - TR) - Wdone‘ (4108)

Using the Wyone that is recorded in (4.102), the above equation becomes

, T
AQuy = M (T — Tg) — Wagne = M TgIn (T—‘;) . (4.109)

Therefore, the increase in the entropy of the reservoir A Sy is

AQ™ T
ASpes = T—Rdd =M (T_Z) . (4.110)

Also, the increase in the entropy, ASopject, Of the object is readily calculated.

TR dT T
ASapjet =M | = =MIn (—R) . 4.111)
w1 Tx

Just as one would expect, as a result of the loss in its temperature from Ty to Tk,
the entropy of the object in fact decreases.

It is interesting to check whether the prediction that the Carnot engine conserves
the entropy of the universe is satisfied. Its satisfaction would require A Sypiverse, tO
be equal to zero. We find this is indeed the case. That is

ASuniverse = ASres + ASobject

Ty Tr
=M In| — M In{— ) =0. 4.112
n(T)+ n(T) @.112)

R H

The corresponding analysis for the case (b) is easy. Let Q™" (Ty) and Q*"(Ty) be
the heat energy introduced reversibly into the working substance at temperatures
Ty and Tg. Clearly, these amounts of heat energy have to be extracted from the
corresponding reservoirs. Consequently, the entropies of the reservoirs decrease by
the amounts:

0™(Tw)

ASy =
H T

(4.113)
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and
rev T
ASg = _9" (TR, (4.114)
Tr
But because of the use of the Carnot cycle we have the relationship
0™ (Tw) | 9™ (Tr)
=0; 4.115

Tu * Tr ( )

therefore,
ASp = —ASy. (4.116)

4.11.4 VII: Maximum Work Done and Change in Entropy

Show that the maximum amount of work, Wjope, that can be performed, when heat
energy is extracted from the object (of mass times specific heat = M) and rejected
to the large reservoir as described in the preceding two examples, is given by the
relationship:

Wiaone = Qlotal —Tr (Sinilial - Sﬁnal)- (41 17)

Here, Qo is the total heat energy lost by the object and Sipiia and Sgn, are initial
and final values of its entropy.

4.11.4.1 Solution

The total amount of heat energy lost by the object in cooling from its initial
temperature Ty to its final temperature Tk (equal to that of the reservoir that the
Carnot engine uses for discarding heat energy) is:

Qlotal =M (TH - TR) (4118)

The increase in its entropy is determined in the usual fashion. We have

final Tfinal —dQ(T) TR 4T
/ dS:/ (—) =M/ - (4.119)
initial Tinitial T Tu r
therefore,
T
Stinal — Sinitial = —M In (T—H) . (4.120)
R

[Note: Because the temperature of the mass falls, from Ty to Tk, its entropy
decreases in the process. Thus, Sgna — Sinitial 1S, as expected, negative.]
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Combining (4.117), (4.118), multiplying (4.120) by Tk, etc., reproduces the
earlier result given in (4.102). That is,

T
Waone = Qrotal — TR(Sinitial — Stina) = MT g In (T—R) — M(Tg — Tn)
H
Tu
- M [(TH — Ty)—Tgln (T—)} . (4.121)
R

4.11.5 VIII: Between Two Finite Masses

A system consisting of two finite masses m, and m., of specific heats Cj, and C,, that
are originally at temperatures 7}, and T , is isolated in an adiabatic chamber. These
masses are used as the hot and cold finite sources for a perfect Carnot engine which
is employed to extract maximum amount of work, W, from the system. Calculate
(a) the final equilibrium temperature, 7y, of the masses and (b) the total amount of
work extracted.

4.11.5.1 Solution

It is convenient to utilize some of the results obtained in the preceding example.
Further, we continue to use the notation M}, = m;Cj, and M, = m.C..

Recognize that the temperature, 7t, that was reached by the two masses when
they came into thermal equilibrium, i.e.,

_ (M.T. + MyTy)
! (Mh + Mc) ’

as recorded in (4.70), is not relevant to the present problem. Therefore, let us simply
call the final temperature 7j. Once this is done, we note that the procedure for the
evaluation of the total entropy increase, Ay, that followed (4.70) remains valid
and therefore (4.73), with T replaced by T, still holds. But there is an important
caveat. In the present problem, because of the use of the perfect Carnot engine, the
total increase in the entropy of the universe — that is, the isolated system consisting
of the two masses — is zero. Thus, from (4.73) we get

TO M, TO M,
ASiota =In | — In| — =0. 4.122
total n(Tc) +n(Th) ( )

Adding the logarithms together, i.e.,

T Me+M,
0 —
| Frg | =0
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and noting that the solution of Inx = 0is x = 1 we get

Mc My

To=T." -T," ; p = (M + My). (4.123)

The total work output, W, of the perfect Carnot engine — which, of course, is
the maximum possible work output — is, according to the first law, equal to the
heat energy expended. And, the heat energy so expended is equal to the difference
between the initial and the final heat energy content of the masses. That is,

W = (McTc + MhTh) - (Mc + Mh)TO

M, My

= (M.To+ MyTy) —p T." - T," (4.124)

4.11.6 IX: Alternate Solution for VIII

4.11.6.1 Solution

Another method for solving this problem, which does not use the earlier result
obtained in (4.73), is the following — see Fig.4.7. Consider a situation where
the masses m; and m, are at temperatures, Th’ and TC’ , in-between their initial
temperatures, 7;, and 7¢, and the final equilibrium temperature 7y, i.e.,

Ty>T, > Ty T. < T < T.

Mh Th
M, T, ;W —
M, | T

C C

Fig. 4.7 Schematic plot for Examples VIII and IX. Two masses, mj (specific heat Cj, and at
temperature 73,) and m,. (specific heat C,. and at a lower temperature 7;.) are used as finite heat
energy reservoirs for a Perfect Carnot engine. When maximum work has been performed the two
masses reach a common temperature 7,. Note, this temperature is lower than the 7} that is obtained
when the two masses are put directly into thermal contact.(Compare, 7t shown in Fig. 4.6.) The
heat energy content of the system at temperatures 7t and 7, differs by, W, the work output of a
Perfect Carnot engine. For convenience of display, m;Cj, and m.C, are represented as M), and M,
and their sum (M), + M,) as M,
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Infinitesimal amount of heat energy d Q" is now reversibly extracted at temperature
T} from the mass m, and is introduced at the same temperature 7 into the working
substance of a Carnot engine. Similarly, heat energy dQ:" is extracted from mass
m, at temperature 7,/ and reversibly transferred to the working substance at the same
temperature 7,/. These processes result in the engine performing work dW equal to
the total amount of heat energy added to the working substance. That is

dW =dOoy" +dos. (4.125)
The extraction of heat energy dQ}°" from the mass my causes a decrease dT, in
its temperature. Similarly, extraction of heat energy dQ* from mass m, causes a
decrease d7 in its temperature. Thus (4.125) gives

dW = —M,dT, — M.dT,. (4.126)
Integration,
final To To
W = dw = —Mh/ dTh/ — Mc/ dTC’, 4.127)
initial T T:
yields

W =—-My(To—Typ) — M.(Tp — T¢)
= (M.T. + MyTy)) — (M, + My)Tp. (4.128)
This derivation has reproduced (4.124) whose existence had simply been asserted
earlier.

In order to calculate Ty we invoke the fact that the operation of the Carnot cycle
requires

dQ;eV de:eV _

Therefore, we have
h h/ ¢ c/ = 0. 4.

Integration — similar to that done in (4.127) — gives

To dTy TodT] Ty To
— M, r— M, S =—Myln(—)-M.In|—)=0. (4131
n Ty T T T.

c

This immediately reproduces (4.122).
Q.E.D.
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4.11.7 X: Between Three Finite Masses

Three identical objects, each of mass m = 10mol and specific heat Cp =1001J
mol~! K™!, are contained in an adiabatic chamber maintained at constant pressure.
Initially, the objects are at temperatures 77 = 500K, 7, = 400K, 73 =300 K. Also
available is a Carnot engine. Using these three objects appropriately as finite thermal
sources, calculate: (1) The maximum work performed by the engine. (2) The change
in the entropy of each of the objects.

4.11.7.1 Solution

When the Carnot engine has produced the maximum possible work, the three
objects, 1, 2, and 3, reach a common temperature, 7t. The use of the Carnot engine
ensures that the total increase in the entropy, AS(total), of the three objects is

vanishing. That is

AS(total) = AS; + AS; + AS;

Trdqr Trdr Trdr Ti Ti Ti
:me[/ —+/ —+/ —}zmcp[ln—f—i-ln—f—i-ln—f}
rn T n T s T T T, T3

T3
=mCpl f = 0. 4.132
e n(TszTs) ( )

Thus,

T3
In f =0,
AVAYE

which gives

Tz = T1T>T3 = 391.5 K. (4.133)

The work performed — which we are assured by Carnot is the maximum
possible — is
W (total) = Initial Heat Energy Content
— Final Heat Energy Content
=mCp [(T) + T + T3) — 3T¢]

= mCp (T + 5+ T5) =3 (VITTT5 ) |

= 1,000(1,200 — 1174.46) = 25,540 J. (4.134)
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Further, the increase in the entropy of each of the objects is

T,
AS, = mCpln (Ff) — 244.6JK"!
1

T, T,
AS; =mCpin( =) = 215K AS; =mCpIn{ — ) =266.1 TK™!
T T;

4.11.8 XI: Alternate Solution for X

4.11.8.1 Solution

Carnot engines that involve more than two objects can conveniently be handled by
using a cascade procedure. This procedure consists in ordering the objects according
to descending values of their initial temperatures and then treating first the top two
objects as the hot and the cold energy sources for a Carnot engine.

After the Carnot engine has been run with these top two objects, and the
maximum possible amount of work has been done, the temperatures of the two
objects reaches a common value. For the next process, these two objects together
are used as the single composite energy source and the object that originally was
third on the descending temperature scale now acts as the second energy source for
the Carnot engine.

This procedure can successively be followed until all the objects have been
treated.

Let us calculate the result that follows from the first process, to be denoted with
the index “I.” Here, objects “1” and “2” are the finite thermal sources at initial
temperatures 77 and 75, respectively. Let the resultant temperature, after maximum
possible amount of work has been produced by the Carnot engine, be 7. When this
temperature is reached, the total change, AS(/), in the entropy of the two objects is
calculated to be the following:

AS(I) = ASi(1) + ASx (1)

Trdr Trar T; T;
me|:/ —+/ —:|=me|:1n—+1n—:|
n T n T T T

mC ln( T )—2mC ln( It ) (4.135)
PO\ ) T PNV ) '

Because the total entropy is conserved in each Carnot cycle that is completed,
therefore, AS(/) = 0, and as a result

T; o
In (m) =0=In(1).
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This gives

Ty = T T> = /500 x 400 = 447.2 K. (4.136)

The total work done, W, in the process “I” is equal to the total loss of heat energy
in the two objects “1” and “2.” That is,

Wiy =mCp [(Ty + T2) — 2T¢) = 5,573 J. (4.137)

The next process — i.e., process “II” — treats the composite body of mass 2m
as the hot thermal source, at temperature T¢, and the third object as the cold
thermal source at temperature 73. The Carnot cycle, after doing the maximum
possible amount of work, brings the system to the final temperature TF. Again,
the counterpart of (4.135) is used and the total increase in the entropy in process I/
is found as follows:

ASWI) = AS\(IT) + AS, (1)

Tr qrT Tr qrT T T
:me|:2/ ——i—/ —}szp[2ln—F+ln—Fj|
n T n T T: Ts

Cpl Te’ Cpl Tr’ (4.138)
=m n|——\|=m n . .
r T T; d T'T,Ts

Now, demanding the conservation of entropy in the Carnot process “II”” leads to the
result

3

F
W T, T3

AS(II):meln( ) =0=mCpln(1),

which gives
Ty = YT\ ToT5 = 391.5K. (4.139)
Similarly, much like (4.137), the amount of work done in stage “II” is
Wi = mCp[Ts + 2Tt — 3T%] = 19,966 J. (4.140)

Note that 7 is the final common temperature of all the three objects and Wj; is the
work done during the second stage.
The total work done is the sum of the work done in stages I and II.

W(total) = W; + Wy,
=mCp (T + T7) = 2T¢] + mCp[T5 4+ 2Tt — 3T¥]

=mCp(Ty + Tr + T5 — 3y T1 T, T3) = 25,539 1. (4.141)
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The results for the entropy change are also clearly identical to those recorded in the
first solution.

4.11.9 Exercise II: Re-Do XI for n Objects

4.11.9.1 Solution

Instead of three, let the number of identical objects be “n.” By repeated application
of (4.132), show that the final temperature, 7, reached by all the objects is

Tv = YTiTs--T,.

Also show that the maximum work performed by the Carnot engine is

W=mCp(T'+T,+---T, —nTy).

4.11.10 XII: Carnot Engine and Three Reservoirs

Three heat energy reservoirs, labeled “I,” “II,” and “IIL,” are at constant temperatures
T, =600 K, T, =500 K, and T3 =400 K, respectively. A single Carnot engine
exchanges heat energy with these reservoirs during complete cycles of operation.
In the process it performs a total of 800 J of work. The total amount of heat energy
withdrawn from reservoir I is 1,800 J. Calculate the heat energy withdrawn from
reservoirs II and III. Also calculate the changes in the entropy of the three reservoirs
and the working substance.

4.11.10.1 Solution

Let the working substance of the Carnot engine receive heat energy Q;, O, and Q3
from the three reservoirs I, II, and III, that are at constant temperatures 77 = 600 K,
T, = 500 K and 75 = 400 K, respectively.

Because the derivative of the internal energy is an exact differential, the internal
energy at the end of a — or a set off — complete cycle(s) is the same as it was at
the beginning. Thus, conservation of total energy requires that the work done, i.e.,
800 J, be equal to the total heat energy added to the working substance. That is

800J = Q; + 0>+ 0s. (4.142)

Also, there is the fundamental requirement for a Carnot cycle: that the total gain —
in fact, the total change — in the entropy of the working substance in any complete
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cycle be zero. Further, because all heat energy exchanges with the Carnot engine
occur reversibly, therefore the total entropy loss of the reservoirs is equal to the total
entropy gain of the working substance — which we just stated is equal to zero. As a
result, the total entropy loss of the three reservoirs is zero. That is,

0=-2_ 2 & _ O 0 O (4.143)

The two equations (4.142) and (4.143), appear to have three unknowns, Q, Q>
and Q3. But because we already know from the statement of the problem that heat
energy Q| given away by the reservoir I at temperature 600 K — and added to the
working substance — is

0, = 180017,

there are, in fact, only two unknowns Q; and Q3.
It is convenient to re-write (4.142). That is,

8007 = 1,800 + Q, + Os.
Equivalently,
—1,000) = 0> + O3 (4.144)

Similarly, let us also re-write (4.143) as

0:_(@) g2 O

600 500 400
Equivalently,
3J=—&—&. (4.145)
500 400
Solution of (4.144) and (4.145) is immediately found.
0, =1,000J; Q3= —-2,0001. (4.146)

Because the reservoirs give away heat energy O, Q», and Q3, the change in their
entropy is the following:

0, 1,800 .
AS) = - =———— =_3JK ..
! T, 600
1,000
AS; = _Qa  _LO0O g
T, 500
2,000 _
AS; = Qs _ = (+)5IJK .

400 400
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4.11.11 XIII: Alternate Solution for XI1

4.11.11.1 Solution

First Process:
Let the Carnot engine utilize first the warmer objects, I and II, as the hot and cold
reservoirs.

We have already been told that the heat energy “added” to the working substance
by the first reservoir, at temperature 600 K, is equal to 1,800 J.

Let the heat energy “inserted into the working substance” by the second reservoir
at temperature 500 K be Q3.

Then the relevant Carnot requirement is as follows:

1,800 o4\
(—600 ) + (500) =0. (4.147)

As aresult Q4 is
03 = —1,5001. (4.148)

In other words, at 500 K, by the end of the first process, the second reservoir will
have “lost negative amount” of heat energy. This means that in actuality the second
reservoir at temperature 500 K will have fattened its reserves by a positive amount
of heat energy equal to +1,500 J!
Next Process
At this juncture, we start the second process. We now remove Qf from the second
reservoir and insert it “into” the working substance at temperature 7, = 500 K.
Additionally, we let the third reservoir also “add” Q3 amount of heat energy to
the working substance of the Carnot engine at temperature 75 = 400 K.
The Carnot requirement is:

07 03\
(%) * (m) =0

This leads to the relationship

5

05 + (Z) 03 =0. (4.149)

Recall that we have been told in the statement of the problem that the total work
done by the Carnot engine is W = 800 J.

We have also been told that 1,800 J was extracted from reservoir I at temperature
600 K. As aresult, all of that amount was added to the working substance at the same
temperature.
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Also, we know from (4.148) and (4.149) that first Q;‘ and later Qf were added
to the working substance by the reservoir II. And finally, an amount Q3 was added
to the working substance by the reservoir III. Therefore we have the equality

Total Work Done = Total Heat Energy Added to the Working Substance.
Therefore, the total heat energy added by reservoirs I, II, and Il is:

Total Work Done = 800 J = Heat Energy added to the working
substance by reservoirs I + II + IIT
= (1.8007) + (03 + 0%) + Qs
= (1.800J) + (—=1,5007 + Q%) + 03
=300J+ 0% + Q5. (4.150)

Re-write the above as
0% + 03=15001. (4.151)
Coupled (4.149) and (4.151) in the two unknowns Qf and Q3 are trivial to solve.
0% =2,500J; Q3= —2,0001J. (4.152)

Our next task is to calculate the resultant change in the entropy of each of the
reservoirs. This task is easily accomplished.

Reservoir I “gave away” 1,800 J of heat energy at temperature 600 K. Therefore,
its change in entropy, A Sy, is the following:

1,800

——— =-3JK".
600

ASy =

Reservoir II “gave away” a total of (Q{1 + Qf) amount of heat energy at
temperature 500 K. Therefore, its change in entropy, A Sy, is

A B
+ —1,500 + 2,500 1,000 _
AS”:—(QZ ) __ ha =—|——|=-2JK"
500 500 500
Finally, reservoir III “gave away” Q3 = —2,000 J amount of heat energy at

temperature 400 K. Therefore, its change in entropy is

2,000
S = — —Q3 =" =5JK "
400 400

Note that because S; + Sy + S;y = 0, the Carnot requirement that the total
change in the entropy be zero is satisfied.
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4.11.12 XIV: Two Masses and Reservoir

A Carnot engine operates by exchanging heat energy with two finite objects and
one very large heat energy reservoir. Each of the objects is of mass m and has heat
capacity Cp.

The objects are initially at temperature 7 and 7, respectively. The large
reservoir is at temperature 7p.

Calculate: (1) The maximum amount of work, AWy, performed by this Carnot
engine. (2) Its operating efficiency, €. (3) The change in the entropy of the two
objects, ASopjects, and that of the reservoir, A Sieservoir-

4.11.12.1 Solution

Entropy Increases for the Two Objects

The objects exchange heat energy with the reservoir. In the process their
temperatures change from 7 and 75 to Tp, the temperature of the reservoir. As a
result the total increase in their entropy, A Sopjects, is the following:

Toqr Toar
ASopi :mcp[/ —+/ —}
objects T T T T

T T JT.T
= mCp [m (70) +1n (70)} = —2mCpln (#) . (4.153)

1 2

In addition to the two objects, the Carnot engine also exchanges heat energy with
the reservoir at temperature 7p. A simple method for determining the amount,
A Hieservoir, Of such energy that actually gets added to the reservoir, is to calculate
the change, A Sieservoir, 10 the entropy of the reservoir.

To this purpose, we note two things: First, that the Carnot engine ensures that
the total change, A Sypiverse, in the entropy of the universe is vanishing. The universe
here consists only of the reservoir and the two objects. Thus, we get

ASuniverse = ASreservoir + ASobjecis

VT
= ASreservoir —2m CP In (%) =0. (4154)
0
Therefore,
T
ASieservoir = 2mCp In ( Tl 2) . (4.155)
0

Accordingly, the heat energy, A Heservoir, added to the reservoir at temperature 7y is

VI T,
To ’

A]_Ireservoir = TO ASreservoir =2m CP TO In ( (4156)
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The second thing we note is that, A Hyeservoir, the heat energy added to the reservoir
is equal to the difference between the heat energy, A Hopjects, introduced into the
reservoir by the two objects,

A Hopjeers = mCp (T1 + Tr — 2T) ,
and the total work, AW, done in the process, i.e.,
A Hreservoir = A Hopjects — AWiotal-
Therefore,

A I/Vlotal =A Hobjects -A Hreservoir

JTiT
=mCp (Ty + T> — 2Ty) — 2mCpTyIn (%)
0
JTT
=mCp [(T1 +Ty) — 2Ty — 2Ty In (%)} . (4.157)
0

To calculate the operating efficiency, €, of the engine, we need to divide AWy by
the amount of heat energy withdrawn from the two external sources. That is

VT
€= A Woa =1- e ) ln< m 2) (4.158)
mCp [(Ty + T2) — 2T)) T\ +T,—2Ty |’ ’

4.11.13 XV: Alternate Solution for XIV

4.11.13.1 Solution

The following is possibly more informative.

First Process

Let us treat first the two finite objects as the hot and the cold energy sources for the
Carnot engine.

After the Carnot engine has been run with these two objects, and the Carnot
specified work has been done, the temperatures of the two objects reach a common
value, T,. A convenient procedure for calculating this common temperature, 7, is
via a calculation of the relevant entropy change, AS,, of the two objects.

Teqr Teqr
ASC=AS1+AszzchU _+/ _}
n T n T

2

Crll T°+1 L.
=m n— +1In—
P T
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T2 T,
=mCpl C ) =2mCpl ° . 4.159
e n(Tsz) e n(leTz) ( )

Because the entropy is conserved in each Carnot cycle that is completed, therefore,
AS. = 0. As aresult

T
m( ° ):o:may
V1T,
This gives

T. = VT T (4.160)

The work done, AWy, in the first process is equal to the loss of heat energy in the
“composite body,” which constitutes the two objects “1”” and *“2.” That is,

AWgre = mCp [(Ty + T2) — 2T¢]
:mQ“ﬂ+M—2ﬂB} (4.161)

Second Process
The second process treats the composite body of mass 2m as one thermal source, at
temperature 7., and the reservoir, at temperature 7y, as the other thermal source.

The temperature of the composite body, sometime during the course of this
operation, is 7.

At this temperature, T, let the composite body reversibly contribute an infinites-
imal amount of heat energy, dQ.7 . to the working substance of the engine.
Similarly, let d Q¢! be the infinitesimal amount of heat energy reversibly contributed
by the reservoir to the working substance. Note, because the reservoir is very large,
its temperature, Ty, remains unchanged.

As a result of these two tiny additions of heat energy to the working substance,
the infinitesimal work d Wyecond, done by the Carnot engine in the second process is

equal to the heat energy input into the working substance. That is,
dWiecond = dQ{,%\:jy +d igz . (4.162)
The Carnot requirement for this infinitesimal cycle is

derJi)\:iy erev
— =90. 4.163
i T ( )

Using (4.162) it becomes

d rev dI/I/second _ d rev
%m+{ %W}=o (4.164)

T Ty
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Clearly, the withdrawal of heat energy dQy7 from the composite body, causes its
temperature to decrease by an infinitesimal amount d7'.
For simplicity let us introduce the notation, M = 2m C. As a result we can write

dQ{,f)‘gly =—-M dT. (4.165)
Using (4.163) and (4.164) we can write

dI/Vsecond _ d erai)\:iy + d erai)\:iy

T() N T TO
1 1 dT dT
— —gqoe (LYo (4L 4y 4.166
Qbody (T To) ( T T ) ( )

Because the path is reversible we can integrate d Wsecong to calculate the work done
during the second process.

final Tfinal dT Tinal
/ dWeecond = Wiecona = M TO/ (_) -M dT. (4.167)

nitial Tinitial r Tinitial

Recalling that the variable 7' denotes the temperature of the composite body of
mass 2m, for which M =2mCp, in the above equation Tiyijy = Tc and Thpa =
Temperature of Reservoir = T, the work done is

To rdT To
I/Vsecond =M TO/ (7) -M dar
c T.

T
= MTyIn (70) — M(Ty—T.)

T.
-M [(TC —Ty) — Toln (—)} . (4.168)
Ty

1. The total amount of work, AW, done is the sum of that performed during the
two processes. That is

AWioal = AWirse + AWecond
mCp [(T1 F Ty — 2\/ﬁ] M [(Tc —Ty) = Toln (%)}
— mCp [(T1 + 1) —z\/ﬁ]

+2mCp [(\/ﬁ —Ty) =Ty In ( TlTZ)}

x

oy

TiT.
=mCp [(T1+T2)—2T0—2Toln( Tl 2)} (4.169)
0
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2. To calculate the operating efficiency, €, of the engine, we need to divide
AW,otal by the amount of heat energy withdrawn from the two external sources.
That is,

VT T
AI/Vlotal 2TO ln( T‘l’ 2)
= =1-| —. (4.170)
mCp [(Ty + T>) — 2T)] T+ T, — 2T

3. Let us now calculate the change in the entropy of the reservoir. To this purpose
we need first to calculate the amount of heat energy, A Hieservoir, that actually gets
added to the reservoir at its fixed temperature 7.

Clearly, A Hieservoir> 18 the difference between the total amount of heat energy
added to the reservoir by the two objects and the work done in the process.
That is,

AI—Ireservoir = ch(Tl + T2 - 2T0) - AI/Vtolal

VT T
:2mCPT01n( ! 2). 4.171)
Ty
Therefore, the increase in the entropy of the reservoir is
2mCpToln (L T
AS eservoir = T ( fo ) =2mCpln (%) (4.172)
0 0

Knowing that the objects start off at temperatures 77 and 7, and eventually reach
the temperature Tj of the large reservoir, the increase in the entropy, A Sopjects, Of the
two objects is readily calculated.

Toqr Togqr Ty Ty
ASopiects = mC / —+/ —] =mC |:ln(—) +ln(—):|
bject: P|: . T - T P T, T,

JTT
= 2mCpn (%) . (4.173)
0

Carnot’s requirement that the overall entropy be conserved would demand
A Suniverse to be equal to zero. We find this is indeed the case. That is

ASuniverse = ASreservoir + ASobjects
NI VT T,
T —2mCpln T

0

=2mCp ln( ) =0. (4.174)

0
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4.11.14 XVI: Carnot Engine Operating Between Two Finite
Sources with Temperature Dependent Specific Heat

Two identical objects, each of mass 0.5 mol, contained in an adiabatic enclosure
which is maintained at constant pressure, are known to have molar specific heat

Cy(T)=a+bT;a=1Jmol” ' K™% b =0.002 Jmol ' K72,

in the temperature range 300-400 K. Given initial temperatures 300 K and 400 K,
calculate their final temperature, 7%, after the bodies have been brought into thermal
contact.

If a perfect Carnot engine, which utilizes these objects as finite hot and cold
thermal sources, is available for extracting maximum work, W, calculate W and the
final temperature, T}, achieved by the objects.

4.11.14.1 Solution
Upon thermal contact, the heat energy lost by the warmer object is equal to that

gained by the colder one. Assume each of these objects has mass m moles. Then the
heat energy loss is

400 mb
m / C, dT = ma(400 — Ty) + > [(400)> — (T7)?*].
Tt

Similarly, the heat energy gain is

i mb ) )
m [ C,dT = ma(T;—300) + > [(T})* — (300)*].
300

Equating these two yields a quadratic equation

a(2T; —700) + b [(Tf)2 - M} —0.

2

which is readily solved. For given values of a and b it reduces to
(Tp)* + 1,000T; — 4.75 x (10)° = 0, (4.175)
yielding

Ty = 351.469 K.
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The calculation for the temperature 7} — which is reached by the two bodies
when the Carnot engine has produced the maximum possible work — proceeds
as follows: Consider at some instant the temperatures of the two objects are T}
and T/. Heat energy, dQ;*, is extracted from the warmer body and is reversibly
fed into the perfect Carnot engine at the same temperature 7,. Similarly, heat
energy dQ is extracted from the colder body and reversibly added to the perfect
Carnot engine at the same temperature 7. As always, the use of the perfect Carnot
engine dictates that the total entropy change is vanishing. Consequently, we must

have
T/ d rev Qrev
/ [ y i| dTh / [ ; i| dT/ (4.176)
a0 L Ty 30 L T¢

T Tm(a+bT)7 ., T Tm(a+bT)H] ..,
Joo 2 o [ [ o
400 h 300 c
T/
=m |:a In (400) + b(T{ — 400)]

T/
[a In (300) + b(T} — 300)} = 0. 4.177)

which means

Simple manipulation leads to the expression

T b ,
I —1— ) =(2) 300+ 400 —277), 4.178
n(300x400) (a)( * ) (4.178)

which can be recast as

T/ b
\/ﬁ =exp [(5) (350 — Tf’)] ) (4.179)

Outwardly, this transcendental expression looks quite fierce. But because for any

reasonable choice for Tf’
b li
- 3B50-T)) | < 1,
a

the exponential can be expanded in powers of the exponent. That is, we can
approximate exp(x) as 1 + x + O(x?) when x < 1. This leads to a linear equation
for T{ with the result

17
T! = 100/12 ( ) — 347.879K. 4.180
g 140241 (4-180)
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x2

Consideration of the quadratic term, -, in the expansion of exp(x) gives

T/ = 347.881,

which hardly changes the earlier result. Clearly, inclusion of any additional terms in
the expansion for exp(x) is unnecessary.

In conclusion, we note that as always T > Tf’ . The difference between the heat
energy content of the masses at the two temperatures is equal to the positive work,
W, performed by the Carnot engine. That is,

Tt Ty
W= Zm/ dTCH(T) = 2m/ dT(a + bT)

Ty Ty

=2ma(T;— T}) + mb(T# — T}*) = 6.10 1. (4.181)

It is interesting to also try another method for calculating W. Such a method is
based on the direct integration of the energy conservation relationship.

For some temperature 7', intermediate between 300 K and 400 K, elementary
work done by the engine dW is equal to the difference between the positive amount
of heat energy, dQy, extracted from the warmer body, and the smaller positive
amount of heat energy, dQ., rejected to the colder body. Thus,

W:/dW:/(th—dQc)

/

400 T,
=m / dT'C,(T") —m / dT'C,(T")
/ 300

b
= ma(700 — 2T}) + mT [(300)2 + (400)% — 2Tf’2] L 4182)

A little algebra confirms the earlier result recorded in (4.181).

4.12 Carnot Refrigerators and Air-Conditioners

A refrigerator or an air-conditioner is used for extracting positive amount of heat
energy | Qcoa| from an object, or a room. Let us refer to such an object or a room as
a cold reservoir? at temperature T1q. Let us assume the positive amount of work
required for this extraction is |W|.

Naturally, an efficient refrigerator/air-conditioner, would produce a lot of cooling
for a given amount of effort. That is, the ratio of heat energy extracted, | Qco|, to the

33Note that an object being cooled inside a refrigerator is a finite cold reservoir.
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work, |W|, required for its extraction, should be as large as possible. This ratio is
the refrigerator’s — or equivalently, an air-conditioner’s — coefficient of performance,
COP. That s,

|Qc01d|
Wi

COP = (4.183)

Owing to the principle of conservation of energy enshrined in the statement of the
first law, the total amount of positive heat energy | Opot| rejected to the hot reservoir
at temperature T} is the sum of the corresponding positive amount of heat energy,
| Qcoid|, extracted from the cold reservoir and the externally supplied positive work
input, W. That is,

|Qhol| = |W| + |Qcold|

or
W] = |Ohot| — | Qcoldl-
Thus,
|Qcold|
cCoOp = —=—" | (4.184)
|Qh0t| - |Qc01d|

The foregoing applies to all cyclic refrigerators/air-conditioners. If all the processes
are performed reversibly, we can employ a “Perfect Carnot Refrigerator” to provide
the cooling. Accordingly, the perfect Carnot equality would hold. That is,*

T
|Qcold| — cold. (4186)
I Qholl Thol
Using (4.186) in (4.184) gives
Tcold
(COP)camot = I:—:| . (4.187)
' Thot - Tcold

3*Note that (4.186) below is exactly equivalent to the perfect Carnot equality recorded in (4.2),

namely
rev
2%(Te) =— (E) . (4.185)
0™ (Tn) Ty

The appropriate translation of (4.186) in terms of the notation used in (4.185) is as follows:
Because |Qpo is rejected to the hot reservoir, therefore, equal amount of heat energy is extracted
from the working substance at temperature 7y. Thus, the heat energy reversibly added to the
working substance at temperature Ty is: Q™ (T) = —|Qnot|- On the other hand, because | Qo]
is extracted from the cold object/reservoir it is equal to Q™" (7¢) added to the working substance
at temperature Tc. Thus Q™ (T¢) = +|Qcoldl-
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Note that unlike the efficiency of a work producing perfect Carnot engine —
which is limited to being less than 100% — the coefficient of performance of a
perfect Carnot refrigerator has no such limitation. If 7,q is not too cold and the
difference (Thot — Teoia) is relatively small, its [COP x 100] can be much larger
than 100%.

4.12.1 XVII: Work Needed For Cooling an Object
with Constant Specific Heat

A mass m with specific heat Cp has been in place in a large laboratory room at
temperature Ty.

(a) What is the minimum amount of work needed by a refrigerator to cool this mass
to temperature 7¢ ?
(b) Calculate the overall coefficient of performance of this refrigerator.

[Note the pressure is kept constant during the entire course of this operation and
Cp is assumed to be independent of temperature. ]

4.12.1.1 Solution

(a) The most efficient machine for performing this task is, of course, the perfect
Carnot refrigerator. As before, we consider a situation where the mass m is at
some temperature 7" intermediate between the room temperature 7y and the
desired final low temperature 7¢. An infinitesimal amount of heat energy |d Q|
is extracted from the mass m at this temperature and is introduced into the
working substance of the refrigerator. In order to help transfer this heat energy
to the atmosphere in the room at the higher temperature Ty it is also necessary,
for some outside agency, to perform positive work |[dW|. Such work gets added
into the mix. As a result the heat energy, |dQ»|, actually transferred to the room
is the sum of the two. That is,

|dQ>| = [dW| + [dQ]. (4.188)

The extraction of heat energy |dQ| from the mass m causes a change d7T in its
temperature,
|[dQi| =—m C, dT. (4.189)

Because of the reversible operation of the perfect Carnot machine, total entropy
of the universe — consisting of the mass and the room — remains unchanged.

O\ _ (1dOa]
( T )—( T ) (4.190)
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Using (4.190), |dQ>| is readily eliminated from (4.188). Next, replacing |[dQ |
by the right hand side of (4.189) gives

dT
—mCp Ty (7) = |dW|—m Cp dT. (4.191)

Upon integrating both sides we get

Tc dT Tc Tc
—m CP TH/ (?) = / |dW| —m CP / dT
Ty Ty Tn

—m Cp TyIn(Tc /Ty) = |W|—m Cp(Tc — Ty), (4.192)

where we have used the fact that the initial temperature is 7y and the final
temperature is T¢. This gives

|[W|=mCp [TH In (%) —(Tu — TC):| , (4.193)
C

which is the minimum work needed for reducing the temperature of mass m
from its initial value Ty to its final value Tc.

4.12.2 XVIII: Cooling with Temperature Dependent Specific
Heat: Entropy Change and Work Input

Consider an object of mass m with temperature dependent specific heat Cp(T) =
A+ BT + DT?+ ET?, where A, B, D, E are all positive constants. The object is
initially at temperature 7Ty Kelvin. A perfect Carnot engine, acting as a refrigerator,
is used to cool the object to a lower temperature 7¢ Kelvin. This process occurs
at constant pressure. Calculate: (I) The total energy input |W| into the perfect
Carnot engine for accomplishing this task. (IT) The change of entropy of the working
substance during this process.

4.12.2.1 Solution

Consider a small amount of heat energy |dQ;|, which is extracted quasi-statically
from the object, at some temperature 7" Kelvin intermediate between 7y and 7¢,
and is transferred to the reservoir by the use of a perfect Carnot refrigerator. This
changes the entropy of the object by an amount

d
dSobject = — | ?1 ) (4.194)
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In order to extract this heat energy and eventually to transfer it to the thermal
reservoir at the higher temperature 7y, some external agent has to be called upon to
do |[dW| amount of work — note this work is usually provided by the electric power
that drives the refrigerator. As a result, the total amount of energy equivalent that is
quasi-statically shifted — that is, added — to the reservoir is |d Q5|

|[dQ>| = [dQ1| + [dW]. (4.195)

The resultant change in the entropy of the reservoir, therefore, is

dSreservoir =

|dQ>| _ [dO4| + [dW|
Tu Tu '

(4.196)

Because the perfect Carnot refrigerator operates reversibly the total increase in
the entropy of the universe, composed of the object and the reservoir, is zero.
Therefore,

d dQy| + |[dW
dSObjeCt + dSreservoir = —I Q1] + [dO:| + | I

T Tu
1 1 |[dW|
= d —_——
|- 7]+ T
= 0. (4.197)
Equation (4.197) represents two relationships
d
dSobject = _|_7Q11| and
d
|dW | =—|dQ1|+TH(| %I). (4.198)

The loss of heat energy |d Q| results in decreasing the temperature of the object, i.e.,
|[dQi| = —mCp(T)dT.

Whence, from (4.198),

Cp(T)dT
dSopjert = PV p(7) and
T
dw T
Im—l — Cp(T)dT — TuCp(T) (7) . (4.199)

Integration of both sides between the initial and the final temperatures, i.e.,

Te Te Cp(T)dT
/ dSobjeCt =m / %
Th Tu
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1 Tc Tc Tc dT
— |dW|:/ CP(T)dT—TH/ CP(T)(—), (4.200)
m Jry, Tu Tu T
leads to
Sobjec Ti T2 — T2 Y
—¢:Aln(—H)+B(TH—TC)+D( n=10) Tty
m TC 2 3
W Ti
Wl _ 4 [THln (—H) —(TH—TC)}
m TC
T2 — T2
+B |:TH(TH_TC)_ (%)}
T2 — T2 T3 -T2
DT H c)_(1H C
e[ (H5) - (M5
T3 -T2 T4 — T4
+E|:TH(H3 C)—(H4 C)] (4.201)

It is important to be assured that the increase in the entropy of the object that
has been cooled is negative and the total work input for running the refrigerator
is positive. This assurance is provided by the following facts:

Because Ty > T¢, the terms proportional to the coefficients B, D, and E are either
equal to zero or they are readily seen to be manifestly positive. For the remaining

terms that are proportional to A, clearly In (%) > (. Also, as demonstrated in
(4.64)—(4.69), the following is true:

|:TH In (;—:) — (TH — Tc)i| > 0.

(To check this, use the transliteration: Ties — Ty and Teog — Tc in (4.64)—(4.69).)

4.13 Carnot Heat Energy Pump

A Carnot engine is like the proverbial Robin Hood. It robs the rich — i.e., takes heat
energy out of the hot body — and feeds the poor — i.e., puts part of it into a colder
body. The remainder, of course, helps run the enterprize: i.e., it produces useful
work.

There are, of course, the Anti-Robin Hoods — the Robber Barons — who do the
opposite. Robbing even the poor requires some effort. But we need not shed any
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tears for the Barons because generally their loot is a lot greater than the effort
expended! And that is how it is for a heat energy pump.

The objective of the exercise here is to keep a room warm during the winter.
Normally, when a steady state is reached, the rate of loss of heat energy from the
room through conduction, radiation, air leaks, etc., is equal to the rate at which the
heat energy is being supplied to the room to maintain its temperature at the specified
level.

A heat energy pump — being an air conditioner run in reverse — can be used to
provide this heat energy for great savings in fuel bills. Let us see how this comes
about. For simplicity we employ a perfect Carnot machine.

The two temperature reservoirs are the room at temperature 7y and the outside
atmosphere at temperature 7¢. Let positive amount of heat energy | Q| be extracted
from the atmosphere and the energy used by the heat energy pump in the process
be | E|. Then according to the first law, heat energy |Qy| will be transferred to the
room.

|Qul = [Qc| + |E].

Clearly, the relevant efficiency parameter is the ratio of the heat energy transferred
to the room per unit input of energy. That is,

. _10ul _ 104 :[1_(|QC|)}‘1
pe e B =BT [ 0ul — 1Qc] joul)] -

Therefore, for a perfect Carnot heat energy pump operating on the reversible perfect

Carnot cycle
e\
€Heat Energy Pump—Carnot — I—| = .
Ty

In a temperate climate, during the winter 7¢ ~ 50°F = 283 K. Assuming the pre-
ferred room temperature is Ty ~ 70°F = 294 K the idealized €pcat Energy Pump—Camot
would be ~2,670%!

Of course, this estimate is far too optimistic for realistic systems. Perhaps a
number that is ten times smaller would be more realistic. The downside is the cost
and the wear and tear of the equipment. Both initial and the maintenance costs may
be high. But often the cycle direction of the heat energy pump can be reversed so
that the equipment can also be used as an air conditioner during the summer.

In Philadelphia, winter temperatures can reach ~253 K, and one often
needs room temperature to be ~295 K. Accordingly, even the idealized
€Heat Energy Pump—Camot Would be only ~700%. Realistically, if one could use a
heat energy pump under these conditions its operating efficiency would be about
150—200%. In practice, the very cold temperatures cause problems with the
machinery and heat energy pumps are not a popular choice.
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4.13.1 Exercise IIl

Show that

€Heat Energy Pump = 14+ COP.

4.13.2 XIX: Entropy Increase on Removing Temperature
Gradient

A metal rod of uniform density p, cross section area A, and specific heat C, has
length L. Initially, its two ends are exposed to two very large heat energy reservoirs
maintained at temperatures 77 and 75. (Note that either of these temperatures may be
higher than the other.) The environment surrounding the rod is so arranged that when
steady state is reached the temperature gradient along the rod becomes constant.
At this time the temperature reservoirs are removed and the entire rod is surrounded
by adiabatic walls. In this initial state, the entropy of the rod is equal to Sj.

Calculate the entropy Seq of the rod when equilibrium state is reached. Note that
in the equilibrium state, the temperature along the rod is uniform.

(i1) What is the maximum work that can be extracted from the rod?

4.13.2.1 Solution

1. Assume that the rod is laid along the x-axis and extends from x =0— L.
Further, the temperature initially at x =0 is 7. Therefore, the constancy of the
temperature gradient ensures that initially the temperature at position x is

T,—T,
Tinitia = T1 + (%) X. (4.202)

At position x choose a slice of length Ax. Its mass is
AM = pAAx. (4.203)

Now, reversibly transfer an infinitesimal amount of heat energy |d Q| to the slice.
This process will cause the temperature of the slice to rise by d7'. That is,

|[dQ| = (C - AM)dT. (4.204)
Accordingly, its entropy will increase by an amount dS where

as = 'dQ| = (C- AM) (4.205)
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In reaching equilibrium, the total increase in the entropy of the slice®> (AS)
would therefore be the following:

(AS) = (C - AM) — =(C-AM)In

Tinitial

Inserting the values of Tjpjia from (4.202) and AM from (4.203) into (4.206)
leads to

initial

Tinal dTr Tﬁnal
(—) . (4.206)

Thnal qT

(AS) = (C - pAAXx) T

Tinitial

Tﬁnal
= (C-pAAXx)In [—_} . (4.207)
T ()

In order to calculate the grand total of the entropy increase, Seq — So, we need to
sum, from x = 0 — x = L, both sides of (4.207). That is,

Seq — So ~ ZE_o(AS) ~ TE_,

Tﬁnal
C -pAAX)In | ——————|; -

A more accurate way of calculating the entropy increase, Seq—So, is to work with
very small (AS)’s and convert all of these sums into the corresponding integrals.
For convenience we divide both sides by the factor CpA.

Seq — So L Thnal
—_— = dx In P P
CpA 0 T+ () x

L
L L T — T
= / dx In (Tﬁnal) — / dx In I:T1 + ( 2 1) x]
0 0 L
= LIn(Tgpa) — LInT; — D, (4.208)
where
L
D= / dxIn(1 + Bx), (4.209)
0
and
T, —T,
B=-:"1 (4.210)
LTy

35Note that entropy is an extensive variable. So any increase in entropy is proportional to the system
size. Here, a convenient measure of the size of the slice is its mass A M . Therefore, the increase in
the entropy of the slice (AS) is proportional to the mass AM of the slice.
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It is convenient to change the variable

y =1+ Bx, (4.211)

whereby

d

dx = —y,

B

and
1+BL
i dylny  (yiny—y) [T
B B 1

LT T
_ ( 2 )m (—2) L @212)
T, — T Ti

Inserting the results of (4.212) into (4.208) yields

T, T,
Seq —So =CpAL |1 +1In(Tgpa)) —InT) — [ ——— | In| = . (4.213
a— S P [ +In (Thpa) —In Ty (TZ_TI)H(TI)} ( )

The entropy increase must not be affected by the interchange of the subscripts
1 and 2. This is dictated by the physics of the problem because it matters not
whether at the start the right- or the left-end is at temperature 7, or 7.

Before testing for this subscript-interchange-invariance we need to know Tfipa?
Equilibrium is reached when all the excess heat energy from the warmer parts
of the rod has been transferred to the colder parts. This process continues until
the temperature of the rod becomes uniform. Because of the reflection symmetry
of the rod about its mid-point, the temperature of the mid-point remains constant
during equilibration. And this temperature is equal to the average of the original
temperatures of the two ends, i.e.,

T, + T
Thnal = — 5 = (4.214)

Clearly, Ttna, does satisfy the required invariance. But what about the rest of the
(4.213)?

The subscript interchange invariance becomes more transparent if we re-cast
(4.213) into the following form:

Seq — S T + T T
294700 g (2R Ly 2 _)(nT,—InTy)
CpAL 2 T2 — T1

T, + T 1
—14m( Ry (T'InT, — T2 InTs). (4.215)
2 T,
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Clearly, interchanging subscript “1” with “2” leaves the result unaltered. In addition
to the subscript interchange invariance, the entropy increase must also satisfy the
following requirements:

1. Itis imperative that Seq—So be positive. In other words, the entropy must increase
as a result of the irreversible process described in the problem under study.

2. Moreover, in the limit when 7, tends to 7], the entropy increase must tend to
Zero.

The satisfaction of both the above requirements can be confirmed by looking at
the case

T)T>=[1—¢.

where®®* 1 > ¢ > 0,vis= +1whenT» > Ty and®” v = —1 for T} > T».
A convenient check is provided by forming an expansion in powers of €.

Seq—So € & 1let  13€° p
2720 € L€ L L o). 4216
Coal ~ 247227320 Tago O (4.216)

Requirement (1) is obviously satisfied because when € tends to zero so does Seq—So.
(2) Also, because € > 0 the change in the entropy is positive.

4.13.3 XX: Maximum Work Available in XIX

4.13.3.1 Solution

(See the preceding example for some of the preliminary details.) The use of the
perfect Carnot cycle ensures maximum extraction of work. Moreover, we are
assured that after the extraction of all the available work has been completed the final
temperature of the rod, 7%, will be consistent with zero total change in the entropy
of the universe.*®

Fortunately, (4.213) was derived for an arbitrary value of the final temperature
Tfinal- Therefore, to find the relevant final temperature, 7, all we need to do is set
the increase in the entropy Seq — So equal to zero in (4.213). That is,

0=1+1In(Ty) —In(T)) — (%) In (%) , (4.217)

3The € used here is not to be confused with its earlier usage relating to engine efficiency.

37Note that whether we use +1 or —1, the expansion in powers of ¢ for the entropy change is the
same.

38Note that the universe here consists only of the isolated rod!
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which leads to

e

T\ [1,7(%2)
Tr = (—) [ﬁ] . (4.218)

The total work extracted Wy, is equal to the difference between the initial and final
heat energy content of the rod. That is,

Ti+ T
Winax = CpAL [(%) - Tf] . (4.219)

It is helpful to present these results graphically. See Figs.4.8a, b where the
entropy increase and the maximum available work are plotted as a function of the
temperature ratio R = T,/ T;. For ease of display, both the entropy and work are
divided by CpAL and T; is set equal to 1.

Entropy Increase

0.005
1 1.2 1.4 1.6 1.8 2
R
Maximum Work
0.14 z
7/
0.12 .7
7
/7
0.1 s
-~ //
5 0.08 L
3 s
0.06 e
7
0.04 P
//
0.02 -7
1 1.2 1.4 1.6 1.8 2

Fig. 4.8 (a) Setting CoAL = 1 and T} = 1 the entropy difference, Seq — So, is plotted as a
function of the temperature ratio R = T/ T;. (b) With CpAL set = 1 the total work extracted,
Whax 18 plotted as a function of the temperature ratio R = T/ T). For simplicity, T} is again set
equal to 1
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Fig. 4.9 Temperature versus Perfect Stirling Cycle
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4.13.4 ExerciselV

Give a physical argument as to why 7 must approach 7; when 7, — T;. Also,
prove that this holds true for (4.218).

4.14 Ideal Gas Stirling Cycle

Robert Stirling’s conception of a cyclic gas engine® occurred somewhat contem-

poraneously with that of the Carnot cycle. And, although less well known, in its
idealized version the Stirling cycle has strikingly similar properties to those of a
perfect Carnot engine.

Much as in the perfect Carnot cycle, the legs 1 — 2 and 3 — 4 are reversible
isotherms.(See Fig.4.9.)

But unlike the perfect Carnot cycle, the legs 2 — 3 and 4 — 1 are not adiabats.
Rather, these two legs are traversed isochorically. Therefore, this part of the travel
occurs both reversibly and at constant volume.

In going from 1— 2, positive amount of heat energy |Qy| is withdrawn
reversibly*’ from the hot reservoir maintained at temperature T3. Similarly, in
traversing the link 3 — 4, positive heat energy | Q| is rejected*! to the cold reservoir
maintained at temperature 7c.

As in the perfect Carnot cycle, because of the constancy of the internal energy,
the work done by the gas, W)_,,, in its isothermal expansion from volume V; — V,
is equal to the heat energy withdrawn from the hot reservoir.

3Stirling, Robert (10/25/1790)-(6/6/1878).
40 And is thereby reversibly added to the working substance.
41 After it has reversibly been extracted from the working substance.
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|Qu| = Wisa, (4.220)

where

Vs Va dv I/Z
Wi, = / PdV = nRTH/ — =nRTyln|—|. (4.221)
v v V Vi

Similarly, the work done by the gas in going from 3 — 4 is

Vi qv

Va
Wiy = / PdVv =nRTH/ 7
V3 V3

V, 1%
nRTyln( —) = —nRTyhn( = ). (4.222)
Vs Vi

Therefore, the heat energy discarded to the cold reservoir during this leg is

V-
|Qc| = —Ws—4 =nRTuln (73) . (4.223)
4

As a result, the ratio of the heat energy added to the working substance at 7Ty and
that withdrawn from it at 7¢ is

|Qul _ Tu In (%)
10cl  Tc (m %)) (4.224)

Owing to the fact that the traversal of legs 2 — 3 and 3 — 4 occurs at constant
volume, the working substance does no work along them.

Wrss =0 = Wy

Further, the algebraic value of increases in the internal energy of the working
substance along these legs — equal to nCy(Tc — Tu) and nCy,(Ty — Tc) — cancel
each other out. Thus, according to the first law the sum of heat energy transfers
along these two legs is zero.

Another important consequence of the constancy of volume along these two legs

is the equality
\ (Vs
vi) \w)’

Therefore, (4.224) yields
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The efficiency of the ideal Stirling cycle, can now be calculated.

Estirling =

Total Work Output
Heat Energy Withdrawn from Hot Reservoir
_ Wiso + Wosss + Wiy + Wasy
| Ol
/4 /% — T
ot oo 10100y () gz
| Qul | Qul Ty

Thus, the hallmark of the perfect Carnot cycle is reproduced by the idealized Stirling
cycle.

4.15 Idealized Version of Some Realistic Engines

A wide variety of engine types are used in practice. Below we describe three.
Although mechanical details may differ the essence of these cycles is as given below.

4.16 The Diesel Cycle

A schematic plot of an idealized diesel cycle using a perfect gas as the working
substance is given in Fig. 4.10.

The cycle consists of four links, all traversed reversibly.

Expansion from volume V; — V, occurs at constant pressure P; = P,. The next
link, 2 — 3, represents an adiabatic expansion from V, — Vj. It is followed by an
isochoric pressure decrease, from P; — Pj4. Note that here V3 = Vj. The fourth and
the final link represents an adiabatic compression from Vy — V.

The engine absorbs heat energy |Qn| in going from position 1 to 2. According
to the first law it is equal to the resultant increase in internal energy plus the work
done in the corresponding isobaric compression. Or, equivalently, it is equal to the
corresponding increase in enthalpy. Thus,

Ideal Gas Diesel Cycle
1 2
1} &——e_
\ Qv .
\ N
o 0-8 . .
a \\ S~ ~
g 0.6 A N R S~ ~ \3
£ N
0.4 S~ o
S~ol Qour
0.2 TTteel
4
Fig. 4.10 Diesel cycle using
. . 0.6 0.8 1 1.2 1.4 1.6
ideal gas as the working
substance Volume
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O] = U= Ui + Pi(V2— V1)
=Cv(Ta—T) + (V2= W)
= H, — H,
=Cp(Tr —T). (4.226)
Of course, no heat energy exchange occurs in going from 2 — 3.
The isochoric pressure decrease in going from 3 — 4 results in the discarding

of heat energy Qour. Because of the constancy of volume, no work is done here.
Thus,

|Qour| = —(Us — Us) = Cy(Ts — Ty). (4.227)

Finally, the adiabat 4 — 1 entails no heat energy exchange.

The total work output during the cycle is equal to the difference between heat
energy absorbed and discarded, | Qx| — | Qour|. The efficiency €giesel Of the engine,
therefore, is

o = 1 — |Qourtl
jesel —
| Ol
=1_|:CV(T3—T4)1|=1_1(T3_T4) 4.228)
Cp(T, —-T) y\L—T,

It is sometimes convenient to express the efficiency in terms of only the volumes
instead of the temperatures. This is particularly so because while the cycle requires
four temperature points for complete specification, only three volume points are so
needed. To this purpose, we invoke the ideal gas equation of state. As a result we
can write

T1 _ P1 Vl
T, PV,
But P, = P,. Therefore,
V
T, =T, (—‘) . (4.229)
Vs
Also, because the links 2 — 3 and 4 — 1 are adiabats we have
VZ y—1 V2 y—1
Tr=T— =T[—= , 4.230
3 2 ( Vi ) 2 ( V4) ( )

and

y—1
T, =T (—) . (4.231)
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Using (4.229) and replacing 73 and T} by the expressions given in equations (4.230)

and (4.231), (4.228) gives
o\ Vi !
| —= -T|—=
17 (V4) : (V4)

€diesel = I—-
V
v LT (—1)

Multiplying both the numerator and the denominator of the expression within long
brackets by the factor [V,/(T,V,)] leads to

() -G &)
LAV L1ZVAND ) (4.232)

€y = 1 — —
diesel y VZ Vl

Vo Va

Division of both sides of (4.229) by V, allows the replacement,
nw, "

Ve Vi

As aresult, (4.232) can be recast
Y "y’
€diesel = 1 — l Va Ya
diesel — y E - E
Vy Vy

Because V4 = V3, according to one’s visual preference, in (4.233) volume point V;
may be replaced by V3.

(4.233)

4.16.1 XXI: Diesel Engine

Given an extremely efficient diesel cycle with compression ratio

1%
=05
14
and the cut-off ratio
_,
Vi

calculate its efficiency, €giesel. The working substance, air, may be treated as a
di-atomic ideal gas with y = £ = 1.4,
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4.16.1.1 Solution

To use (4.233) we need
h_hh_2
Vo WMVy 25
and
h_1_1
Vi 25

Then according to (4.233) we have

2 1.4 1 1.4
| () ()
€diesel = 1 — ; 2 1
(3)-()

1—-0.323 =0.677. (4.234)

4.17 Ideal Gas Otto Cycle

In Fig. 4.11 we give a schematic plot of an idealized Otto cycle*” using a perfect gas
as the working substance.

The cycle consists of four links. All traversed reversibly.

Expansion from volume V; — V, occurs adiabatically. The next link, 2 — 3,
represents an isochoric decrease in pressure from P, — P3. It is followed by
an adiabatic compression from volume V3 — Vi. During this process pressure
increases from P3; — P4. The fourth link represents an isochoric pressure increase
from P, — Py.

The travel between 1 and 2 occurs without any exchange of heat energy. Between
2 and 3 the engine discards heat energy, | Q out|. According to the first law it is equal
to the resultant decrease in internal energy of the working substance minus any work
done by it during the travel. But because the volume remains unchanged, no work is
done. Therefore, |Qour]| is equal to the corresponding decrease in internal energy.
That is,

|Qout| = —(Us — Us)

= Cy(T7 — T5). (4.235)

“20tto, Nicolaus (6/14/1832)—(1/26/1891).
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Fig. 4.11 Otto cycle using Ideal Gas Otto Cycle
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Of course, no heat energy exchange occurs in traversing the next link from 3 — 4
because it is an adiabat.

The isochoric pressure increase in going from 4 — 1 requires the adding of heat
energy, | On|- Because of the constancy of volume, no work is done here. Therefore,
| O1n| is equal to the corresponding increase in the internal energy.

O] = Cv(Th — Ty). (4.236)

As usual, the total work output during the cycle is equal to the difference between
the heat energy absorbed and discarded: i.e., it is equal to | Q1n| — |Qour|. And as a
result, the efficiency €.y, of the engine is

|Qour| _ 1 [Cv(Tz - Ts)} - [Tz - T
O] Cv(Ty —Tu) T — Ty

Outwardly, the above result looks simple. But it makes reference to four tempera-
tures. Can it be simplified?

To investigate this matter, we utilize the 7, V' equation for reversible adiabatic
links. That is,

€otto = 1 —

} . (4.237)

T(V)’~! = constant.

For the links 1 — 2 and 3 — 4 we can write

T A
T; = (7?) (4.238)

and

T Vi\' !
Ti - (7‘3‘) . (4.239)
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But V), = Vyand V, = V3. Thus, (4.239) becomes

T i\
.= \n . (4.240)

Equations (4.238)—(4.240) readily lead to the result

Upon insertion into the expression for €4, given in (4.237) we get

i (%)-7
T -1,

GN[Th— T T3
1—-| = =1-{=. (4.241)
T,) | Th— T T,
The €410 looks suspiciously similar to €cymor given in (4.18)! Let us compare the two.
The highest temperature at which the Otto engine withdraws any heat energy is 7.
And the lowest such temperature in the cycle at which any heat energy is discarded

is T3. So, the relevant perfect Carnot cycle would have used heat energy reservoirs
at temperatures 7c = T3 and Ty = T leading to

T3
€camot = 1 — F .
1

But 77 > Tj. Therefore, €4y, is less than the efficiency, €camot, Of a perfect Carnot
engine that could possibly be operated here.

Often, €0 1s expressed in terms of the compression ratio. Here, that is readily
done. Combining (4.240) and (4.241) gives

" y—1 1 y—1
€otto = 1 — (—) =1- ( ) , (4.242)
V2 Rcomp

where Romp 18 the compression ratio.*3

Otto cycle can be mapped on to an idealized version of the familiar internal
combustion gasoline engine used in most automobiles. Because we are dealing with
a cyclic engine, we can describe the process beginning at any of the four points
(nodes) displayed in Fig.4.11.

€otto = 1-

3 Reomp is defined as the ratio of the largest to the smallest volumes achieved during the cycle.
) _ (1B _ (k) _ (¥
Here, that would be equal to (VT) = (ﬁ) = (Vj) = (ﬁ)
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Let us begin, at point 3, with a cylinder full of what is called “the mixture”: i.e.,
air infused with gasoline vapor.** The adiabatic process from 3 — 4, results in the
compression of the mixture to a much smaller volume, V4, equal to (1/Rcomp) of the
total working volume, V3, of the uncompressed cylinder. At this point an electric
spark plug — generally placed at the top or bottom of the compressed mixture,
depending on the direction of compression — is actuated. The progress of the ignition
process is approximately represented by an isochoric travel from 4 — 1. Clearly,
the corresponding heat energy input, Qn, represents the energy generated by the
firing of the mixture.

In actual practice, the volume does not stay totally constant during this leg of the
cycle. Rather, it increases some due to the tremendous rise in temperature. Also that,
unless great care is exercised in the engineering, its combustion is often less than
complete. Both these effects reduce the energy efficiency of the engine.

By the time the ignition phase is completed, the pressure of the gas has increased
to P;. This increased pressure exerts a large force that pushes the piston back,
causing a rapid, nearly adiabatic, expansion from V; — V,. The expansion causes
a crankshaft to turn, resulting in the production of torque that is transferred to the
driving wheels.

As portrayed, the leg 2 — 3 is a relatively crude approximation to what actually
takes place during this phase of the cycle. Here, the gas, now devoid of any — or
almost any — live fuel and oxygen, is vented out through an outward opening valve
in the cylinder while live mixture of gasoline and fresh air containing oxygen is
sucked in from another inward opening valve. Again, the resulting process is not
totally isochoric. The two additional “strokes” that are embedded® in this leg — one
involving the exhausting and the other the sucking in of the mixture — also use up
some energy. Moreover, the exhausted gas is generally very much hotter than the
ambient atmospheric temperature. Thus, the amount of heat energy being discarded
is much greater than would be the case if the exhaust had occurred at the atmospheric
temperature.

In addition to the caveats expressed above, there is also some energy loss due to
friction*® between the piston and the cylinder surfaces.

Let us next turn our attention to the compression ratio. According to (4.242), the
larger the ratio, Reomp, the higher the efficiency. So, why do we not make this ratio
very large? Perhaps this question is better re-phrased as follows: How high is the
compression ratio in practice? A majority of the automobiles in operation today run
on the so-called “regular” gasoline with octane value of 87. The compression ratio
for these automobiles is usually ~9. High performance automobiles, on the other
hand, require premium fuel with octane values of 89-94. As a result, their engines

#This mixture is the working substance and admittedly ideal gas is a rather crude approximation
to it.

4But not shown in the schematic diagram given in Fig. 4.11.
460f course, the frictional loss is somewhat reduced by the presence of engine oil-lubricants.



206 4  The Second Law

can support higher compression ratios*’ ~10.5. So, why the need for high octane
fuel in high performance engines?

A typical automobile has a minimum of four cylinders. The sparking and the
resultant firing of different cylinders occurs in a cleverly arranged sequence such
that during any cycle the power producing stroke in one cylinder occurs as the other
cylinders are progressing with their five non-power producing strokes. The result so
achieved is that for a given rate of fuel injection — controlled by the driver through
the fuel pedal — the torque transmitted to the driving wheels is constant in time. What
puts a spanner — a monkey wrench — in the works is the “pre-ignition.” This means
that the fuel mixture ignites before the compression stroke is fully completed. Such
unscheduled pre-ignition sends shock waves that cause knocking. This both reduces
the power output and causes engine degradation. Increasing the octane value of
the fuel helps avoid pre-ignition by raising the combustion temperature of the fuel
mixture.

4.18 Ideal Gas Joule Cycle

In Fig. 4.12, we give a schematic plot of an idealized Joule cycle using a perfect gas
as the working substance. The cycle consists of four links, all traversed reversibly.

Expansion from volume V|, — V; occurs at constant pressure P; = P,. The next
link, 2 — 3, represents an adiabatic expansion from V, — V;. It is followed by an
isobaric — at pressure P; = P, — compression causing the volume to decrease from
V3 — V4. The fourth and the final link represents an adiabatic compression from
V4 — Vl.

In going from position 1 to 2, the engine absorbs heat energy, | Qn|. According to
the first law it is equal to the resultant increase in internal energy plus the work done
during the isobaric compression. Or, equivalently, it is equal to the corresponding
increase in enthalpy. Thus,

Ow=H,—H =Cp(T, —T). (4.243)

Of course, no heat energy exchange occurs in going from 2 — 3.

The isobaric volume decrease in going from 3 — 4 results in the discarding
of heat energy, |Qout|. Because of the constancy of pressure, it is equal to the
corresponding enthalpy decrease.

|Qour| = —(Hy — H3) = Cp(T3 = Ta). (4.244)

Again, the adiabat 4 — 1 results in no heat energy exchange.

4TMitsubishi, GDI engine, according to the manufacturer, achieves a compression ratio of 11.5.
This requires clever engineering. For instance, part of the fuel is injected during the compression
and in the process the mixture is cooled by the fuel spray.
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As usual, the total work output during the cycle is equal to the difference between

the heat energy absorbed and discarded: that is, Qv — Qour. And as a result, the
efficiency €joy1e Of the engine is

_ |Qour| Cp(T5 —Ty)
6joule—l_— l— | ———

15 — T4]
= 1—]1—]. 4.245
| O] Cp(T» —T) |:T2—T1 ¢ )

This result can be simplified. To this end, we use the T, P equation for adiabatic
links. That is,

r=t
T x(P) 7.

For the links 4 — 1 and 2 — 3, we can write
y=1
i (P77
T, \ P, ’
y—1

T, (P\7
7, \ P ‘

But P; = P, and P; = P,. Thus, the above become

ry=1
i (P)7
T, \ P

()T (4.246)
;s \pPs) ‘

and

and
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This leads to the result

and upon insertion into the expression for €joue given in (4.245) we get

Ts—T (%) 7
Coue = 1 — | ———21 | =1 = (—) . (4.247)
,—-T T,

Outwardly, much like the Otto cycle, the efficiency of the Joule cycle, €joue, also
looks similar to €cymor given in (4.18)! Again, let us, compare the two. The highest
temperature at which the Joule engine draws any heat energy is 7>. And the lowest
temperature in the cycle where any heat energy is rejected is 74. So, the relevant
perfect Carnot cycle would have had Tc = T, and Ty = T, with efficiency

T.
€camot = 1 — (%) .
2

Because T3 > T}, €camor 18 greater than the corresponding €joule.
Often, the efficiency of the Joule cycle is expressed in terms of the pressure ratio.
To do this, combine (4.246) and (4.247).

P y=1 P r=1 P r=1 P y=1
3 Y 4 v 3 v 4 4
oute (Pl) (Pl) (Pz) (Pz)

4.18.1 XXII: Joule Engine

The pressure and temperature in a Joule engine at point 4 are P, = standard atmo-
spheric pressure, 74 =300 K. Also given are P, =3.5x 10°Pa and T, = 500°C.
Calculate €joue and temperature 73.

4.18.1.1 Solution

y—1

y—l1
Py v 1.013 x 10° 7
€joule = 1- (_4) ' =1- (—X) =1-0.702 = 29.8%

P, 3.5 % 10°
T. P\
Y
=T (74) =T x (F“) — Ty x 0702 = 773 x 0.702 = 542.6 K
1 2

and
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Ty 300

Tl == = —
0.702

= 4294K
(%)

4.19 Negative Temperature: Cursory Remark

By relating the average kinetic energy of a perfect gas to its absolute temperature
“T” — see (2.31) — we have “psychologically” committed ourselves to treating T
as a positive quantity. And this feeling has been further reinforced by Carnot’s
statement — see (4.7) — that the efficiency of a perfect Carnot engine, €cymor, is €qual
tol— (%)

One may well ask: How has Carnot added to our distrust of negative temper-
atures? The answer is the following: Under no circumstances, the actual work
produced may be greater than the energy used for its production. This means that the
working efficiency of an engine may never be greater than 100% — if the opposite
were ever true, the world would not have an “energy problem”! And, clearly, a
negative value for 7¢ or Ty would lead to (1004 )% efficiency ! It turns out that
the Kelvin—Planck formulation of the Second Law*® is also uncomfortable with the
concept of negative temperatures. The Clausius formulation* of the Second Law,°
on the other hand, can be retained with qualifications: i.e., it needs to be agreed that
in the negative temperature regime, the “warmer” of the two bodies has the smaller
absolute value for the temperature.®' , This means that just as +3 K is greater than
+2 K, so is —2 K greater than —3 K. There is, however, an important “caveat.” In
increasing order the relevant temperature in integer degrees Kelvin is

+0, +1,+2,...,+00,—00,...,—2,—1,—0.

Therefore, if we must use negative temperatures we must also accept the fact
that: An object at any negative temperature is warmer than one at any positive
temperature!

More seriously, the question to ask is how, using fundamental thermodynamic
principles, must a negative absolute temperature 7' be defined? Following Ramsey’s
suggestion, 7' should be defined from the thermodynamic — see (7.101) above —
identity

48See D. ter Haar and H. Wergeland op. cit.

“9This is true despite the fact — as previously concluded — that “ A violation of the Carnot version
of the second law results in a violation of the Clausius statement of the second law.”

S0Namely: “Without assistance it is impossible to withdraw positive amount of heat energy from
a colder object and transfer the same to a warmer object.” In other words, heat energy does not
spontaneously get transferred from a colder object to a warmer one.

31See, N. F. Ramsey: “Thermodynamics and Statistical Mechanics at Negative Absolute Tempera-
ture,” Phys. Rev. 103,20 (1956); Ramsey, Norman Foster (8/27/1915)—(12/7/1993).
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U
(ﬁ)m T (4.248)

If this equation is used as the definition of the absolute temperature, then if and
when the internal energy can be measured as a function of the entropy — big “if and
when,” considering it is very hard to precisely measure either of these quantities by
any “direct” method — and if the derivative is negative, then we have a confirmed
case of negative temperature! According to ter Haar:>>“For a system to be capable
of negative temperatures, it is necessary for its energy to have an upper bound.”
Energy U is not bounded in normal systems. Rather, as a function of the entropy
S, the energy is monotonically increasing. As a result, the derivative (%—g)v v 18
positive. That, according to (7.102), results in the temperature being positive.

All this would work well unless the entropy is bounded from above. In that case

when S reaches Smaximum, then | (a—g)v v | suddenly changes from +oo to —oo and
the system starts its progress up the negative temperature scale ! As noted above,
the end point of the negative part of the temperature scale is T = —0, which surely

must be just as unattainable as is T = 4-0.

An experiment with precisely these characteristics was first performed by Purcell
and Pound.>® Because the subject matter involves quantum statistical mechanics,
for all relevant details the reader is referred to the chapter titled: “Statistical
Thermodynamics.”

20p. cit.
33E. M. Purcell and R. V. Pound, Phys Rev. 81,279 (1951).



Chapter 5
First and Second Laws Combined

The first law reminds us — see Chap.3 — of the well known fact that energy is
conserved and all of it must be accounted for. Therefore, when heat energy AQ’
is added to a system, and none of it escapes, then all of it must still be there. And if
there should exist a procedure to convert some of this heat energy to work, say AW’,
then after such conversion only AQ” — AW’ of it will still be present in the system.
We call this left over amount the increase, AU, in the system’s internal energy.
Because the amount of heat energy input surely depends on what the temperature
difference between the depositor and the depositee at any given time is, and because
the total deposit of heat may have taken finite length of time, its magnitude will
also depend on how long any particular instance, with some particular difference in
temperature, lasted. etc. Similarly, the work that is done — namely, AW’ — will also
crucially depend on where, what, how, and when the work was carried out. These
facts are generally labeled as path dependencies. Clearly, therefore, the size of both
AQ’ and AW’ must depend on the paths that are taken in carrying out these tasks.

All this is quite obvious. However, the first law also makes a second, less obvious,
statement. Despite the path dependence of the heat input and the work done, their
difference namely the internal energy, AU, is path independent.

The centrality of the aforementioned ideas are recognized by the second law.
Yet, following the ideas of Carnot, the second law makes additional qualifications
to them. For instance, given the temperatures at which heat can be introduced and
discarded, there is a maximum value for the efficiency with which work can be
produced. Additionally, these ideas lead to the identification of a state function of
universal' significance: the entropy.

In the current chapter, we marry the above two laws of thermodynamics in a
manner that achieves “a perfect union” of the two. And this union provides great
insights into the working of thermodynamics.

In Sect.5.1, the first and the second laws are combined together and the
Clausius argument in differential form is re-worked to finally arrive at the Gibbs

IFor instance, as noted by Stephen Hawking with regard to Black Holes.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 211
DOI 10.1007/978-3-642-21481-3_5, © Springer-Verlag Berlin Heidelberg 2012
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relationship —to be called the “first-second” law — which is valid when all the
processes being referred to occur quasi-statically. Keeping variables ¢ and v

independent, the relationship (), = ¢ (g—ft’) — p is derived in Sect.5.2. Section

5.3 deals with the first TdS equation. An alternate proof of the above relationship
is also provided. Mixing of ideal gases is analyzed in four solved examples in
Sect. 5.4. For the case when variables ¢ and p are independent, the relationship

(%)t —v = —t (g—l[’)p is proven in Sect.5.5. The second TdS equation and an

alternate proof of the preceding relationship is provided in Sect.5.6. The first and
the second TdS equations are used together in Sect. 5.7. The case when the two
variables p and v are independent is dealt with in Sect.5.8 and the third TdS
equation is derived in Sect.5.9. Newton’s treatment of the velocity of sound is
described in Sect. 5.10 and a variety of solved examples and exercises are provided
in Sects. 5.11-5.13.

5.1 First and Second Laws

The first law of thermodynamics® makes two distinct statements:

(a) Energy is conserved.’

(b) In thermodynamic equilibrium there exists a state function U — that is referred
to as the “internal energy” — such that the sum of the heat energy Q' that is
added o and the work —W' that is done on the system equal the increase U in
the internal energy.

5.1.1 The Clausius Version: Differential Form

As stated above, the first law concludes that heat energy, dQ’, added to an object
plus the work, i.e., —dW’, “done on it” are equal to the net increase, dU, in the
object’s internal energy. That is,

dQ' —dw’ = dU. (5.1

It is important to note that dQ’ and dW' may or may not be quasi-static.

The work —dW’ “done on” a system means that work +dW’ is “done by” the
system. Combining (4.54) and (5.1) leads to — what we shall call — the Clausius
version of the first-second law*

2See the chapter on the First Law, especially the comments relating to (3.15).

30ccasionally, just the conservation of energy is referred to as the first law of thermodynamics. In
fact, the conservation of energy has been known since the ancient Greek times and the real value
of the first law lies in part (b) which identifies an important state function: the internal energy.

4Compare (4.60).
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TdS > dU + dw'. (5.2)

The equality sign in the statement (5.2) applies only when the work dW’ is done
quasi-statically.

Assume that the transfer of heat energy, and the work done, both happen quasi-
statically. And, an infinitesimal amount of heat energy input causes a single mole
of such a system, originally in thermal equilibrium at temperature #, to move
to a neighboring equilibrium state at temperature ¢ + dz. In the process, its
thermodynamic state-functions®, (u, /, s), and state-variables, (p,v), change to
(u+du,h+dH,s+ds) and (p +dp, v+ dv), respectively. These two neighboring
equilibrium states have very interesting inter-relationships.

As noted in (3.15), for what we call a simple system, when the infinitesimal
work — equal to dw — is done by an infinitesimal, quasi-static expansion equal to dv,
under pressure p, then dw = p dv. Then according to the first law, the quasi-static
increase, du, in the internal energy, and the relevant quasi-static heat energy input
dg, and the work done, p dv, are related as follows:

du = dg — dw = dg — pdv. (5.3)
Equivalently, we can write
dg = du + pdv. 5.4)

In order to fully explore this subject, we need to focus on the fact that in (5.4) all
the relevant processes occur quasi-statically. Thus, dg — dg™", and

(dqtrev) — ds. (5.5)

As aresult, for quasi-static processes, the first-second law becomes

tds = du + pdv. (5.6)

While some authors call (5.6) the Gibbs’ Relationship, here it will be referred to as
the “first-second law”.

5.2 t and v Independent

As before, expressing u = u(t, v), the exact differential du can be represented as
u du
du=|—) dte +— ) dv.
at ), v/,

Recall that u, h, 5, refer, respectively, to the internal energy, the enthalpy and the entropy.
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Thus, the (¢, v) dependent form of the first-second law becomes

tds = @ dt+ | p+ % dv = C,dt + A,dv. 5.7
at ), v/,

This is the basic (¢, v) version of the first-second law. For ease of comparison, (5.7)

is re-cast as
1 Ju Jdu

Given that here we are working in terms of the variables # and v, we can write

as as
dS = (g)vdl =+ (%)t dU. (59)

Further, because ds is an exact differential, we can also use the integrability
relationship.
ds ds
v [ ot ' '
v

5.2.1 Proof of Relationship: (g—:‘)t =t (‘;_1:) —p

We are now equipped to prove an important assertion that was made in (3.22);

namely that
ou ap
— ) =t|=—) =A,. 5.11
re () = (), ey

To this end, we note that

(i) The dependence of the perfect differential ds, on the pair of differentials d¢
and dv, must be the same whether we use (5.8) or (5.9). Equating the factors
proportional to d (in these equations) gives

1 /ou as
. (E)U = (5); 612

Similarly, the factors proportional to dv can be equated. This gives:

1 u as
. [1’ * (a—v)J = (5), 61
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(i) The integrability requirement for the perfect differential ds must also obtain. To
this purpose, differentiate (both the right and the left hand sides) of (5.12) with
respect to v while keeping ¢ constant.

92 9 (2 1 92
s _ (0, _ L] u , (5.14)
dvat Jav . t | dvot

Similarly, differentiate (5.13) with respect to ¢ while keeping v constant.

Ps (%), 1 u 1[(p P u
b ( o ) T [”+ (a_v),} 7 [(E) + 8t8vj|' (5-13)

02 02
S i the left hand sides of (5.14) and (5.15) are equal. Therefore,
dvat atdv

we can equate their right hand sides.

Lfu]_ L[ ()] L) 1] Pu
tLavae | T 2P ), | T o), T e |
2 2

0 0
The terms, % 3vgt on the left hand and } o 8Mv

equal and therefore can be eliminated from the equation. Multiplying the remainder
by ¢? leads to the relationship

du\  (dp
r+ () = (), o1

Upon invoking the cyclic identity, we arrive at the desired result.
u ap v ap
_ =7 — = —f - o —_
e (3), = (3). = {(3), (%)
c (Y op ‘ LA 5.17)
— | = J— - | —v _— = U, — = v .
v\dr/, v /, P

(Compare with (3.18) and (3.22))

Because

on the right hand side, are

5.3 First 7.dS Equation

To recapitulate: The first-second law in the (¢, v) representation can be displayed in
the following equivalent forms:
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u u u ap
tds = (E)Udl + [(%)t + pi| dv = (g)vdl +1t (g)vdv

= Cydt +1 (“—") dv = C,dt + A,dv. (5.18)
Xt

Note that all the processes described in (5.18) are to be carried out quasi-statically.
It is traditional to name (5.18) the First T.dS Equation.
Thus, (5.18) yields

0= Cy(dr)s +1 (‘;’(—”) (dv)s = Cy (d1)s + A, (dv)s. (5.19)
t

Dividing by wv(dt); A, leads to

0= Co L[ (5.20)
CvA, v \at ), '

This proves the equality

aszl(a—”) :—( C“):—(C“Xf). (5.21)
v \ot/, VA, vta,

Analogous to the definition of an isobaric® volume expansion coefficient, i.e., o, =
2 (g—’;)p ,in (5.21) we have defined an isentropic’ volume expansion coefficient
oy = % (g—';)‘ Looking at the first and the last terms in (5.21) it is clear that «, and
o have opposite signs. This fact is ensured by the positivity of v, ¢, the specific heat
C, and the isothermal compressibility ® y,.

At constant pressure, normal systems expand with increase in temperature. This
makes o, positive. When such is the case then «; is negative. The negativity of
o, of course, implies that normal systems cool down during (quasi-static) adiabatic
expansion® — a phenomenon that most of us have observed when air is rapidly let
out of an inflated tyre. As we know well by now, the bizarre behavior of water
below about 4 °C is not normal. Here, at constant pressure, water gets lighter — or
equivalently, the volume per mole increases — with decrease in temperature, i.e.,

1 (dv
oap = ; (g)p < 0. (522)

%Namely, that occurring at constant pressure.

7Namely, one that occurs at constant entropy.

8The positivity of both C, and y; is required for thermodynamic stability of states that are in
thermal equilibrium.

9Equivalently, it can also be stated that the negativity of o, implies that normal systems heat up
during (quasi-static) adiabatic decrease of volume.
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As noted above, according to (5.21), if &, is negative, a; is positive. Therefore,
below 4°C, the temperature of water increases upon (quasi-static) adiabatic expan-
sion — or, stated equivalently, upon (quasi-static) adiabatic decrease in volume, the
temperature of water, below 4 °C, decreases still further!

5.3.1 Dependence of C, on v

At constant volume, whenever the pressure is a linear function of the temperature,
it leads to an important result for the system specific heat C,. To see this, let us:

(i) Write (5.16) as
) _ (%) _
w) ~\ar ),

and differentiate it with respect to ¢ at constant volume v. We get

Pu (3(5), ap Pp dp 8 p
— v — | = | — — | — = _— . 2
FIED ( ot (az)v+ (azz)v (8t)v t(azt)v 62

2

(i1) Look at the second derivative

. That is,
vot

9 u 9 (%) C,
= )l == . 24
dvat ( v ) ( v ), (5:24)

(iii) Invoke the integrability condition and thereby equate the right hand sides of
(5.23) and (5.24). This leads to the relationship

aC, ’p
=t . 5.25
(&), = (50), 529
Now, if at constant volume, the pressure p happens to be a linear function of the
temperature, f, e.g.,

p(v,t) = a()t + b(v), (5.26)

where a(v) and b(v) are not dependent on the temperature ¢, we have

ip\ (p)
(&), =0 (5), =
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Therefore, (5.25) leads to an important result: namely that whenever at constant
volume the system pressure is a linear function of the temperature'® — as is the case
specified in (5.26) — C,, is independent of the volume v for all isothermal processes.

aC, _0
w ),

5.3.2 Alternate Proof: (g—:‘) = t(g_lz) —p
t v

In view of the importance of the relationship given in (5.16), i.e.,

u\ ; ap
aw), ~\ac), " P
below we re-derive it by an alternative procedure.
Construct a state function!! @

D =y5—(u/t).

For neighboring equilibrium states, the difference in the value of ® is

u

d<I>:ds—dt—u+ (5)ar.

(5.27)

According to the dictates of the first-second law, ¢ ds = du + p dv. Therefore,

(ds — dt—”) can be replaced by (%)dv. Hence, we have

4 = (%) dv + (%) dr.

Because d® is an exact differential, the integrability requirement must obtain. That

is,

(%)~ (%)
a ), v ),
p  1(op\ 1 (0u
_t_2+?(5)v_t_2(%)/

10Note that this, e.g., is the case for an ideal gas.

As aresult we have

Note that d® is an exact differential because ds, du and dr are exact differentials. Note also that

®, 5, and u are state functions and ¢ is a state variable.
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Multiplying both sides by ¢ yields the desired identity

u) _, (%) _
aw) ~\ar ),

5.4 Mixing of Ideal Gas: Examples I-1V

5.4.1 I: Isothermal, Different Pressures, Same Number of Atoms

An adiabatically isolated vessel has two chambers, to be referred to as 1 and 2.
The chambers are separated by a massless partition of zero volume. Both chambers
contain the same monatomic ideal gas; are at the same temperature 7'; and the gas
in them initially contains the same number, N, of atoms. However, their volumes,
Vi and V5, and therefore their initial pressures, P; and P, are different. Calculate
any resulting change in the entropy in terms of P; and P, if the partition is removed
and the gas in the two chambers is allowed to mix homogeneously. Prove the change
in the entropy is positive. Also, plot the result to show how the change in the entropy
varies with change in the ratio of the two pressures.

5.4.1.1 Solution

We are told that the same monatomic ideal gas is placed in two different chambers
of volume V| and V5. The initial pressure of the ideal gas in the two chambers is P,
and P,. The temperature of the gas, 7, and initially the number of atoms, N, in each
of these chambers is the same. Therefore, initially the equation of state of the ideal
gas in the two chambers is the following:

PVi =N kgT; P,V,= NkgT.

Once the partition separating the chambers is opened, the gas achieves a joint status
with total volume equal to (V; + V2). Because each portion has the same number
of atoms, is at the same temperature 7', and now is also at the same pressure, it is
convenient, therefore, to treat the process as causing a change in volume of each of
the two portions to a final volume Vjya Which is equal to half of the total volume.
That is, Vina = (V1 + V2) /2.

The thermodynamics of the process is specified by the first-second law in the
form

TdS =dU + P dV.

Because we are dealing with an ideal gas and its temperature, 7, is constant,
dU = 0. Therefore, for either of the two portions, we have
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P

dS = —=dV, (5.28)
T
where PV = Nkg T, or equivalently
P NkgT
=8 (5.29)
T Vv
Inserting this into (5.28) gives
dv
dS =N kg ( % ) (5.30)

We can now calculate the increase in the entropy of each of the two portions as

follows:
final—portion1 ( N+ 2) dv
ASportionl = / ds = NkB/ ( % )
initial—portion 1 141
( Vi+Vs )
= Nkgln | ~—2—2 |; (5.31)
14
final—portion 2 ( Nt 2) dv
ASponionZ = / ds = NkB/ ( )
initial—portion 2 Vs 4

Vi+Vs
=NkBln|:( ; )]. (5.32)

2

The total increase in the entropy, therefore, is equal to

(Vl +V2)
ASiotal = ASportion 1+ ASportionZ = NkB In — . (5.33)
v,

To change over to variables P; and P, we should re-write the above equation in
terms of the pressures. Using (5.29) for both these cases we have:

NkgT
P

;i =1,or,2.

Vi=

Accordingly, we can write:

(s T ()0 G
nv, (NksT)- (4 - 5;)
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Now using (5.33) and (5.34), we get

(P1 + Py’
ASiotal = ASporlionl + ASporlionZ = NkB In [T]Pz . (5.35)
Because
(P1+ P2)’ —4P Py = (P1 = P2)* 20,
or equivalently,
2
(Pr+ P)” 1.
4ppP, -
therefore, we have the following inequality :
(P + Py)°
In| ———— | >0. 5.36
! [ 4P P, |~ (:50)

According to (5.35), (5.36) shows that
AStolall = 0.

The equality, ASi1 = 0, obtains only when P, = P,. Why is this result not
surprising? If we allowed two parts of the same (ideal) gas, at the same temperature
and pressure, to mix together we will have done nothing that makes the gas different
from its unmixed version. For such a mixed gas to be tangibly different, the two parts
have to have had one or more of the following items different: i.e., either different
pressures, or different temperatures, or different number of atoms, or indeed any
combination of these differences.

It is helpful to see this result in a graphical form. In Fig. 5.1 the change in the
entropy is plotted as a function of the ratio, P,/ P — or equivalently, P;/P, — of
the two pressures. Notice that when the two pressures are equal, the change in
the entropy is zero. And as the pressures begin to differ, the change in the entropy
increases.

Entropy Increase

Entropy/ (N kg)

Fig. 5.1 Entropy 0
increase/(N kg) versus the 1 1.2 1.4 1.6 1.8 2
ratio of the two pressures Pressure Ratio
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5.4.2 II: Isothermal, Different Pressures, Different Number
of Atoms

An adiabatically isolated vessel has two chambers to be referred to as 1 and 2.
The chambers are separated by a massless partition of zero volume. Both chambers
contain the same monatomic ideal gas; are at the same temperature 7'; but the gas in
them initially contains different numbers, Ni and N, of atoms. Also, their volumes,
Vi and V5, and therefore their initial pressures, P; and P, are different. Calculate
any resulting change in the entropy in terms of P; and P, when the partition is
removed and the gas in the two chambers is allowed to mix homogeneously.

5.4.2.1 Solution

Two portions of the ideal gas with N; and N, molecules are initially contained in
two different chambers of an adiabatically isolated vessel. These portions are sub-
titled 1 and 2. We are told that initially the pressure of the gas in these chambers is
P, and P,, respectively. Let us assume their volumes are V; and V,. Because both
these chambers are at the same temperature, 7, initially the equation of state of the
ideal gas is the following:

P1 V1 = leBT; P2V2 = NszT. (537)

Once the partition between the chambers is lifted, the gas achieves a joint status
with total volume equal to V; + V5.

While the fraction of the total number of molecules in portion 1 is ( Nll‘\{/‘l Nz) ,in

portion 2 it is equal to ( ) Therefore, it is convenient, to treat the isothermal

ES
process of mixing as causing a change in the volume of the portion 1 from its initial

value V] to its final value (V| + V) ( , iy A ) . And similarly, for the portion 2, from

the initial volume V; to its final volume (V; 4 V5) ( , + A

The thermodynamics of the process is specified by the first-second law in the
form
TdS =dU + PdV.

There is no change in the internal energy of an ideal gas when its temperature, 7', is
constant. Therefore, dU = 0. Accordingly, for either of the two portions i, where
i =1,o0r, 2, we have

P
dS = —=dV, (5.38)
T

where
PV = NkgT,
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or equivalently

P B Nkg (5.39)
T vV’ ‘
Inserting this into (5.38) gives
dv
dS = Nkg (7) . (5.40)

We can now calculate the increase in the entropy of each of the two portions as
follows:

final—portion 1 (% +V2)(ﬁ) v
ASportionl = / ds = Nl kB / (_)
1 Vi

initial—portion 1 1 Vv

M1+ V) (N1+N2)

= Nikg In 7 , (5.41)
and
ASporiion 2 = / T 1S = N / v (i) (ﬂ)
initial—portion 2 1 Vv
= Ny kg In i+ P (N1+N2) (5.42)

V2

The total increase in the entropy, therefore, is equal to

ASioral = ASportion 1+ ASportion 2
Vi+ Vs )(N1+N2) (NI)M (Nz)N2
=kg In|| ——— — — . 5.43
? |:(N1 + N> i Vs 649

Equation (5.43) tells us that if ( ) were equal to ( ) A Siota1 Would be vanishing.

Furthermore, when (gl ) = (V2 ), then P; would be equal to P,. The upshot would

be the mixing of two different amounts of the same gas, at the same temperature and
pressure. Clearly, this process should not affect the total entropy of the gas.
Now using (5.39) for the portions 1 and 2 in the form

Ny N,
Vi =kgT | — d V. kgT R
1 B (P1) an 2 = KB (Pz)
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we can represent the above, in terms of the two pressures P; and P,, as follows:

ASiora = ASportion 1+ ASportion 2

N N\ Vi)
=kp In| | D—L2 PN ()M |. 5.44
BH<N1+N2> (P)™ (P2) (5.44)
Again, when P, = P, the mixing would cause no change in the entropy. It is

convenient here to re-write the above in the following simple form:

ASioa = ASportion 1+ ASportion 2

= kg (N1 + No) - In [(i’:g) (%) 1”}, (5.45)

where we have used the notation

P _ (M)
(7)=r () =" 040

Of course, when % = 1, that is when n = 1, the result given in (5.45) and (5.46),
is identical to that obtained in the preceding example — see (5.35).
To examine analytically how the entropy changes when the pressures P; and P,
are nearly equal, let us work with the case
— P2

_—:1 s
p P, + €

where € < 1. After a bit of algebra, (5.45) yields the following result:

Ao _ (p+n) (l)lin
ke (N1 + No) l+n/)\p

] 2+ 0 (e). (5.47)

p=Il+e

_ [ "
2(14n)?
which shows that the entropy increases whenever the pressure difference between

the two parts changes. Similarly, near the point where one of the two pressures is
extremely small — that is, p < 1 — the entropy increase, i.e., the following quantity,

1

ASlotal ( n ) (1)14_"
— 1 P — , 5.48
kg (N1 + N») n|: l+n/)\p (5.48)

Pkl

is large and positive.
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[Entropy]
0.05

Fig. 5.2 For 1 < (P,/P;) <2and 0 < (N,/N;) < 5, twice the entropy increase/[(N; + N,)kg]
is plotted as a function of (P,/Py) and (N,/Ny). Despite its changed appearance, notice that the
curve for (N,/N;) = 1 is identical to that given in Fig. 5.1

All this is best shown on a three dimensional plot given in Fig. 5.2. Notice that
the entropy change is positive over the entire volume shown.

5.4.3 II: Different Pressure, Different Temperature,
and Different Number of Atoms

An adiabatically isolated vessel has two chambers, to be referred to as 1 and 2.
The chambers are separated by a massless partition of zero volume. Both chambers
contain the same monatomic ideal gas but they are at different temperature 7}
and 7. Also, the gas in these chambers initially contains different numbers, N; and
N, of atoms. Further, their volumes, V; and V>, and therefore their initial pressures,
P, and P, are different. Calculate any resulting change in the entropy in terms of
P, and P, when the partition is removed and the gas in the two chambers is allowed
to mix homogeneously.

5.4.3.1 Solution

Two portions of the same ideal gas with N and N, molecules are initially contained
in two chambers of an adiabatically isolated vessel. The chambers are separated by
a partition of zero weight. For convenience, the two portions of gas are sub-titled
1 and 2. We are told that the number of molecules in these portions is N; and N5.
Also that initially the temperature of the gas in the two chambers is 7| and 7>, its
pressure is P; and P, and we assume its volume is V| and V5, respectively. Initially,
the equation of state of the ideal gas in these chambers is the following:

Pl Vl = Nl kBTl; P2 V2 = Nsz T2. (549)
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Once the partition between the chambers is removed, the gas achieves a joint status.
Because the specific heat of the ideal gas is temperature independent, and the atoms
in the two vessels are identical, the only relevant parameter for calculating the final
temperature is the number of atoms. Accordingly, the final temperature of the gas in
the connected vessel is, Tfp,1, given by the relationship:

Thna = (N1T1 + N2 To)/(Ny + Ny). (5.50)

Clearly, the fraction of the total number of molecules in portion 1 is (ﬁ) ,and

in portion 2 it is equal to N . Therefore, it is convenient, to treat the physical
p q EY phy

process of mixing as causing a change in the volume of the portion 1 from its initial
value V] to its final equivalent value (V| + 13) (ﬁ) , and its initial temperature

T; to the final temperature T§p,. Similarly, for the portion 2, the initial volume V,
Ny
Ni+N,

changes to its final equivalent volume (V; + V5) ( ) , and its initial temperature

T, changes to the final temperature Tfpa.
Assuming that the process is quasi-static, its thermodynamics is specified by the
first-second law in the form

TdS =dU + P dV.

When the temperature of a monatomic ideal gas, with N; atoms, increases by an
amount d7;, its internal energy increases by an amount'?

3
dU; = ENikB dT. (5.51)
Accordingly, for either of the two portions i, where i = 1 or 2, we have

3
TidS; = ENideTi + PdV;, (5.52)

where P; V; = N; kg T;, or equivalently

P Nikg
- = . 5.53
T v (5.53)
Dividing (5.52) by T; and using (5.53) gives
3 dT; dv
dSi==-N: k N;i k . 5.54
sk () + w0 (57) -39

12See (2.31).
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We can now calculate the increase in the entropy of each of the two portions as
follows:

portion! final
ASporlionl = / ds,
P

ortionl initial

3 Tinal ( QT (V1+V2)(A,Nﬁ) dv;
:EleB/ (Tl)—i-leB/ o (71)
Ty 1 Vi 1

i+ 1) (735)

3 Tﬁnal
= — Nikgl Nikgl , (5.55
21Bn(Tl)+an 7 ( )
and
portion2 final
ASportionZ :/ ds;
portion2 initial
3 Tin 7 4T, (V1+V2)(ﬁ) dv,
=-Nk N> k —
22BL (n)+23£§ (%)
Ny
3 na V1 + 1)
= SNakgln Tinst ) N, kg 1n <N‘+N2) . (5.56)
T2 V2

The total increase in the entropy, therefore, is equal to

ASioral = ASponion 1+ ASportion 2

3 Tina \™" ( Tinar |

—kB In final final

2 T Tz
1% V- (N1+N2) N Ny N N>

thy In| (2 il =) 1 65
Nl “+ N2 Vl VZ

Note that when 71 = —Z the second term on the right hand side of (5.57) is
vanishing. But the first term remains non-zero and positive as long as 7 and 7, are
different. However, when the two temperatures are equal, this term is also vanishing.
And then we are mixing the same gas with itself at the same temperature and
pressure.

To change the variables from V; and V, to the pressures Py and P,, we use (5.53)
for the portions 1 and 2. That is, V| = kg ( ) and V>, = kg ( ) Now the

dependence upon V; and V, can be re-cast in terms of the pressures P; and P,.
That is,
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ASioral = ASportion 1+ ASportion 2
E kew In Tﬁnal M . Tﬁnal o
2" T, T
TN TN, \ NitN2 N N
+kgln ﬁ i 1 E ’ (5.58)
N + N, Ty n) | 7

Of course, when 7, = T} = T = Thpal, the result given in (5.58) is identical to that
obtained in the preceding example — see (5.44).

p o, JdC,
544 IV:If(=)=(—)th = 0.
f(t) (Xt) en(av )t

Given

(?) - (‘;‘(—f) (5.59)

(fﬁ) _0 (5.60)
v /,

and show that this problem is much the same as that investigated in the sub-section
above called “Dependence of C, on v.”

prove

5.4.4.1 Solution

Expressing ), and y, in terms of partial derivatives, and using the cyclic identity,

(Olp) _ _%%(

we can write (5.59) as

W

U

2= (5),(2).- (%)
=—|= =)l =(=). (5.61)
g_) (8t » \dv /, at /),

Am

1 1 1 /0
ot (“_P) _ ! (_P) , (5.62)
t p\x/) p\it),
Differentiating with respect to ¢ while keeping v constant, i.e.,

1 17y

1 9| = (—P
i\ (L))

ot ot '

v
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leads to the equality

I L[ T (%

== (7)) 5 ().

Pp\ 1 1 [/ap\7?
(%)f”(‘#?[(w)v])' 669

Now, square each side in (5.62). This gives

N> [1(p\ 7T

t) Lp\ot), |
Inserting the result into the right hand side of (5.63) yields

?p
(%)v =0. (5.64)

Re-cast the above as

Finally, upon invoking the statement recorded in (5.25),i.e.,

’p aC,
()= (), e

we are led to the desired result

v

(BCU) =0. (5.66)
t

To show that this problem is much the same as the one investigated in the sub-
section above called “Dependence of C,, on v,” let us re-examine the implications of

(5.64). That is,
g
2t ), ot S \oe ),

v

Therefore, X does not depend on ¢ and is only a function of v. That is,

Therefore, (5.62), i.e.,

must lead to the result
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p = f)i,

which is much the same as was plresclribed13 in (5.26).

5.5 t and p Independent

In (3.83), through the use of the state function, #, called the “enthalpy,” i.e., h =
u + pv, the first law was expressed as a function of dH and dp. For quasi-static
heat energy transfer, dg, it can be combined with the second law.
tds =dgq = du+ pdv = du + pdv 4+ vdp —vdp
=d(u+ pv) —vdp =dH —vdp. (5.67)

5.5.1 Prove Equation: (%)t - = —t¢ (g—'t’)p

Much as was done for du, the perfect differential d# can be expressed in terms of
the variables 7 and p. That is, one can represent: & = h(t, p). This leads to:

oh oh
dh = (—) dr + (—) dp. (5.68)
at ), ap /,
Inserting this into (5.67) yields
: (ah) : [(ah) }
ds=-(=—) &t +-||=—) —v |dp. (5.69)
t\at), t | \op/,

Again, similar to what was done in the preceding section, we invoke the

integrability requirement for the perfect differential ds in terms of its variables p
d? 9?
andz,i.e., il = il . Note that (5.69) specifies the following:

dpot atap
(Z) - 1(2) 570
a), t\adt),

as 1 oh
(%)t =7 [(%)t B “] 67D

and

13The statement prescribed in (5.26) was as follows: p(v,t) = a(v)t + b(v). Clearly, the term
b(v) can be transferred to the left hand side and included in the general term p(v,?).
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Therefore, the integrability requirement — i.e., the equality of the two mixed mixed
derivatives — yields

o2 (3(%)1)) _ o[: (), _1[32_’7}, (5.72)

apor  \ op ap ~ 7 | apor

and

o (0(8),) 1o L[ en (w 573
arop | o “ e \ap), N T e \ad), |

P

Because the left-hand sides of (5.72) and (5.73) are equal, their right-hand sides
must also be equal.

I[@h ) __A[(ory _ ] 1| & _(dv
t Lapor | 2| \dp), t | dtdp a),|

0%h
The term 1 |: i| on the left-hand side of the above relationship is equal to

"] opot

1
1

0%h
[ 579 :| on the right-hand side. Canceling these and multiplying both sides of
P

the remainder by 2 gives

oh ov
Py oy =t () = —tve, = A, 5.74
(), 0= (&), ==

5.6 Second 7.dS Equation

Inserting the result that has been obtained in (5.74) into (5.69) allows us to display
the first-second law in the (p, t) representation.

td (ah) dt+[(ah) ]d (ah) d t(av) d
S == —_— — p=\= - —_— p
ot » op ), ot » ot »
=C,dt —tva,dp =Cpdt +A,dp. (5.75)
(Compare and contrast with (3.57) and (3.59).)
It is traditional to name (5.75) the Second 7.dS Equation.

Isentropic Process

In order to discuss an isentropic process — i.e., a process in which the entropy of
the system remains unchanged — we set ds = 0.
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0=C,(dt)s + Ap(dp)s = Cp(dt)y — tva,(dp)s.

This gives the pressure expansion coefficient at constant entropy.

L LY R (5.76)
CI A, tva, ) )

Compare and contrast this result with that of (5.17), namely

) _ A _ (o
(@)= 7= ()

Notice that three of the four quantities that appear in (5.76) — namely C,, ¢, and
v —are all > 0. Similarly, in (5.77), thermodynamic stability requires y, also to
be positive. Therefore, the sign of both types of pressure expansion coefficients —

namely, (g—f) and (g—f) — is determined only by «,. Accordingly,
v N

(a) Both (3—1;) and (3—1;) have the same sign. Let us contrast this fact with that
v N

noted earlier:'# namely, that
(b) (%—';)p and () have opposite signs.

For instance, at constant pressure, normal systems expand with increase in
temperature. This makes (g—l[’)p positive. When such is the case then, according to

(5.21), normal systems would shrink in volume with increase in temperature if the

system entropy were held constant. This is so because (%—';)S is negative: a fact that is

insured by the positivity of the specific heat C, and the isothermal compressibility
%+ — both required for the stability of thermal equilibrium.'>

5.6.1 Dependence of C, on p

Much like the dependence of C, on volume, we can also explore the dependence
of C, on pressure. To this end, let us slightly re-arrange (5.75) and write it as the

following:
C 0
ds = =2 dr — (—v) dp.
t ot »

Again, invoking the exact differentiability of ds we have
(8s) Gy (BS) _ (av)
a/, t op ), at ),

14This fact was recorded immediately following (5.21).

15See the chapter titled “Equilibrium, Motive Forces, and Stability” for a discussion of the stability
of thermodynamic systems.
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9%s 9%s

The equality of the mixed second derivatives, —— and ——,
quatity apar - Brap

c
s 3(7”) RV
apor ap St \ap ).

t

ps (0(-(),) =_(82_v)’

dtdp ot 0%t

P

8Cp . %v
(E), = (%)p' G789

If, for constant pressure, the volume of a thermodynamic system can be represented
32

yields the desired result:

. . v . L .
as a linear function of the temperature, ( ) is vanishing. To see this let
P

FE3
v(p,t) =a(p)t + b(p). (5.79)

v 0%v
(&), =« (),

Thus, (5.78) leads to an important result: namely that if for constant pressure, the
volume v is linearly dependent on the temperature'® —e.g., this is the case in (5.79) —
the specific heat C), is independent of the pressure for all isothermal processes.

8Cp %v
(W), = (%)p =0 G50

5.6.2 Alternate Proof: (%)t —v=—t (g—'t’)p

Then

The importance of the relationship given in (5.74),

op), ot p’

warrants an alternate derivation

16Note that this, for instance, is the case for an ideal gas.
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To this purpose, it is helpful to construct a new state function W
Y =s5—(h/1),

whereby!’

dh  h
d¥ =ds — — + —dr.
t 12

The first-second law in the form (ds — ¢)

1) = — () dp allows us to re-write the
above as

dw = — [%] dp + [% dr.

Upon invoking the usual integrability requirement, i.e.,

(A (o1k)
a ), op |~
we are led to the equality

[1-1(5), - [2] (5),

Multiplying both sides by ¢? and transferring v from the left side to the right yields

the desired result 3 o
1 (—v) - v+ (—) . (5.81)
ot » ap /,

5.7 First and Second 7.dS Together

It is instructive to look at the First and Second 7.dS equations together. To this end,
we display, side by side and in seriatim, lines of (5.18) and (5.75) and note that ¢ds
can be represented in any of the following forms:

tds = tds

C,dr + I:(%) + pi| dv = Cpdt + [(%) — v:| dp,
v/, ap /,

7Note: Because ds, dz, and dh are exact differentials, therefore, the same is true for dW.
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ap v
Cydt +1 (g)v dv = C,dt —¢ (g)p dp,

%p
Cydt +1| — ) dv = Cpdt —1tva, dp,

Nt

Cydt + Aydv = Cpdi + A,dp.

Thus, we can write

[ u oh _(op a_v
o= (5], +r]a [ (5), ~]ar =1 (5) v (az)pd”

=t (ot_,,) dv + tva,dp = Aydv — A ,dp. (5.82)
Xt

The difference in specific heats at constant pressure and constant volume is of great
thermodynamic interest. For this reason, we derive it from two different processes.
First, a process at constant pressure: that is, where dp = 0. We get:

(Y LT () (2
aa=[(®), ] (5), = (3).(5),

_o(e) () Za () (%

_t(Xt)(at)p_Av(at)p—ZU(XI). (583)

Second, a process at constant volume: that is, where dv = 0 and (5.82) can be
written in the following form:

DY () () (2
-c=-|(5), -] ().~ (5), (&),
2
= tva, (i—’;) =-A, (3—?) = (i_f) (5.84)

5.8 p and v Independent

For this case, all the hard work has already been done in the chapter on the first
law — see the work leading to (3.67), etc. And what remains is described below in
the section on the third 7.dS equation.
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5.9 Third 7.dS Equation

Using the fact that quasi-static transfer of infinitesimal amount of heat energy, dg,
is equal to tds, (3.67) can be changed to the following:

ot ot
tds =Cy| =] dp+Cp| ) dv
op/, v/,

c
-C, (ﬁ) dp + (—”) dv. (5.85)
o) va,

Traditionally, (5.85) has been called the Third 7.dS Equation.

5.9.1 |Isentropic Processes

As before, an isentropic process can be examined by setting ds = 0. Thus,

ot ot
0= CU (g)v (dp)g‘ + Cp (%)p (dv)s.

Dividing both sides by (d p); yields

ot ot v
o=a(g) o (@), (5)
_c (ﬁ) —c, (L) . (5.86)
C(p C(p

=1 (v

Analogous to the definition of isothermal compressibility y, = = (5) ,
t

xs = =L (22) s called the isentropic, or the adiabatic, compressibility. And we
v S

ap J
see from the above that
Xt Cp)
=|=)=|=) (5.87)
y (Xs) (Cv
Because C, is always larger than C,, x; is always smaller than its isothermal

counterpart y;.
A technical explanation for this behavior can be found by examining (5.76):

that is,
Y _ (S
a ), \tva, )
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Because in a normal system C,, ¢, v and «, are all positive, an adiabatic increase
in pressure is consistent with rise in temperature.'® In turn, because of the positivity

of a,. That is,
1 [ dv > 0
o, =—|— ,
P w o »

this rise in temperature causes some increase in the volume. Clearly, such increase
in the volume counteracts the effect — namely the decrease in volume — that the
original increase in the pressure would normally have had.

Therefore, less decrease in volume obtains than would be the case in a corre-
sponding isothermal compression. The net result is that the adiabatic compressibil-

.

ity, xs = —% ( ap)s , is smaller than the isothermal compressibility y;.

5.10 Velocity of Sound: Newton’s Treatment

There is an interesting historical anecdote, featuring Isaac Newton, with regard to
(5.87). When the measured value of the density p(¢) of air at temperature ¢ was used
in the formula that was originally proposed for calculating the velocity of sound, i.e.,

Coriginal ™~ [p([)xt]—O.S’ (588)

it seemed to underestimate the result.

Newton noticed that typical wave-lengths of ordinary sound are too long — being
of the order of a meter or longer — to allow adequate thermalization during a typical
oscillation time period ~ 3 x 1073 s. Accordingly, he realized that compressions
and rarefactions in the air occur without adequate heat energy exchange. Thus, the
energy transfer is not isothermal. Indeed, it is close to being adiabatic — meaning it
occurs almost without any heat energy exchange.

It was, therefore, suggested that rather than the isothermal compressibility y,, the
formula for the velocity should involve adiabatic compressibility y;. That is,

CNewton = [p(t)Xs]_O.S = coriginal‘/ f (589)

The net result of this interchange — from y, to y; — is that the original low estimate
for the sound velocity given in (5.88) is increased when it is multiplied by the factor
% _,_1
\/){A - CU - y -5
It is amusing to carry out this exercise for a di-atomic ideal gas of atomic weight

29 att = 293 K. This, of course, is an approximation for air at room temperature.
The density of air is

18This is so because when (;—2]7) is > 0, positive (dp), implies positive (dz);.
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M M
o =2 = (%)

where M is the mass of one mole of air and v is its volume.
To calculate y;, let us differentiate with respect to p the equation of state for one
mole, i.e.,
pv = Rt,

(3_0) _
), p

1 (av) 1
Xt = —— _— = —,
v\dp/, p

Accordingly, the original formula (5.88) leads to the result

while 7 is kept constant. We get

and therefore

Rt 0.5 0.5
Coriginal ™~ [p(l)){t]_o's = (_) = ) = 29Oms_1.

8.31 x 293
M

29 x 1073

This should be contrasted with the experimental result Cexperiment = 343 m s~!. When

290 is multiplied by /¥ = /7/5 one gets cNewion = 343 m s~!, which is dead on!
Bravo Newton!

5.11 Examples

5.11.1 V: Gas in Contact with Reservoir: Change in u and s

One mole of a gas which has an equation of state

p(v—>b) = Rt, (5.90)
where b is a constant, is in contact with an infinite thermal reservoir at tempera-
ture 7. In an isothermal quasi-static expansion, the gas increases its volume from v;

to vy and in the process does work equal to dw,. Calculate dw,, the resultant change
in the internal energy du,, the entropy of the gas and the reservoir.

5.11.1.1 Solution

Work done by the gas is

vf vf d
dw, = / pdv = RtC/ —vb = Rt In[(vi — b) /(v —b)].  (5.91)
Vi Vi v
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From (5.17) we have

For the gas under review 3
(—p) = R/(v—b). (5.92)

Therefore,

dv

d Y ot (M) @
= _— v _— .
=\ ), a ),

att = 1., for the given isothermal process, i.e., where dz, = 0, we have

Jdu du du
du, = (3_1)), dv, + (E)U dt. = 0 x (dv.) + (E)U x0=0. (5.94)

For reversible transfer of heat energy dg;* to the gas, the first-second law dictates

(a_”) =—p+Rt/(v—>b)=0. (5.93)

Also, because

dg®" = t. ds, = du, +dw, = 0+ dw, = dw, .
Thus,
ds. = dWc/tc = I ln[(vf - b)/(vl - b)], (5.95)

is the increase in the entropy of the gas. Because of reversible operation, the entropy
of the universe remains unchanged. Therefore, the entropy of the reservoir decreases
by the same amount ds..

5.12 Examples VI-XV
5.12.1 VI: AW,AU,AS for P = (a/2b)T?* + (1/bV)

A substance, which obeys the equation of state
P = (a/2b)T? + (1/bV), (5.96)

where a and b are constants constant, is in contact with an infinite thermal reservoir
at temperature 7,. In an isothermal, quasi-static expansion its volume is increased
from V, to V and in the process it does work AW. Calculate AW, the resultant
change in the internal energy AU, the entropy change of the substance and the
reservoir.
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5.12.1.1 Solution

The work done is

Vv 14 Vv
AW:/VO PdV = (a/2b)T02/VO dV+(1/b)/Vo (1/V)dv

= (a/2D)T;(V = V,) + (1/b) In(V/ V,). (5.97)
From the identity
U aP
— ) =7(Z=) —p .
(&), -7 (), -~ 029
follows the result AU
— = (a/2b)T} — (1/bV).
(57),_, =@awms-amv)
Integration leads to
AU = (a/2D)T}(V = V,) — (1/b) In(V/ V,). (5.99)

The use of the first-second law in the form
AQ =T,AS = AU + AW,
yields
AS =aT,(V-V,)/b. (5.100)

Because the increase in the volume occurs reversibly, the gain in the entropy of the
substance is compensated by an equal loss in the entropy of the reservoir.

5.12.2 VII: AW,AU,AS
Jor pv = Rt(1 + ba/v + b3/v* + -+ + b, /v"+")

One mole of a gas that obeys an equation of state of the form

pv = Rt(1 4 by/v + b3/v* 4 -+ b, Jv" 1), (5.101)

where b, is the so-called n-th virial coefficient which depends on the inter-
molecular force, is in contact with an infinite thermal reservoir at temperature ¢ .
In an isothermal, quasi-static expansion the gas increases its volume from v; to vf
and in the process does work Aw. Calculate Aw, the resultant change in the internal
energy Au, the entropy As of the gas, and the reservoir.
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5.12.2.1 Solution

Work done by the gas is

Aw = /vf pdv = R t{In(ve/vi) + ba(1/v; — 1/ v¢)
+2b3(1/v} = 1/v}) + -+ + nbyp (10" — 1/vf)). (5.102)

Because for constant volume, the equation of state specifies a linear dependence of
p on ¢, for isothermal processes the internal energy u does not change with volume.
Of course, this is also clear from (5.98) which states

du ap
(%)t ‘t(E)f”_O'

Accordingly, internal energy is un-affected by the isothermal volume expansion and
the increase in the entropy of the gas is simply determined by the work done.

Aw

As = .
Ic

Note, due to the process being reversible the entropy of the universe remains
unchanged. Therefore, the entropy of the reservoir is reduced by

5.12.3 VIII: Show (j(f_) =1- (“_n)

g

5.12.3.1 Solution

Recall (3.92) and divide both sides by C,.

2
=G _ (tw'”). (5.103)

Gy
On the left hand side replace ( ) by ( )

Xt
=1+t VO,
As (C Xt) !

From (5.19) we have
Cy(dr); = —t (—”) (dv),,
Xt
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which can be written as

a, \ 1[0t
Coxi)  t\dv),’

Therefore,

(£)=1e [ (2) Joomt=[o(2) Jow=1- (2

Q.E.D.

5.12.4 IX: Show C, (%), =t —a,1?
5.12.4.1 Solution
Begin with

tds =dH —vdp.
For constant enthalpy, dh = 0. Therefore,

1(ds)y = —v (dp)n.

Next, divide both sides by ¢ (dt)y,

B\ _ (o
a), t\ot),’

and invert the result and multiply by C,,

o(3)-o[4(3))

Next, we need to show the following equality:

t (ot
o[ () )=

To this end let us recall that
oh
c, = (_) |
ot »

) . (5.104)

(5.105)
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As such the right hand side of (5.105) is written as

t (0t t ot t oh ot t (oh
Cp —_— R — = — _Cp R — = — | — e R — = — R —
v \dp/, v ap ), v at ), \ap /, v \dp/,
(5.106)
Note that the last term in (5.106) has been obtained by the use of the cyclic identity.

Recall the relationship (5.74)

(%) =V —w,vt
ap /, P

and insert it into the last term of (5.106). This leads to the desired result

ot t (ot t (0h t )
a(5), [5G =5 (5), = s0memm =
(5.107)
Q.E.D.

. v _ f ot k)
5.12.5 X: Show (C—P) - (5) _ (é)h
5.12.5.1 Solution

As in the preceding example, we use the cyclic identity

oh o\ (i ot
()= ), G) =), o

According to (5.74) the left hand side of (5.108) is equal to (v — tva,,). The use
of (5.76) allows us to replace (tva,) by C, (g—;) . As a result the left-hand side of
(5.108) can be re-cast as ’

oh dt
— ) =v—tva,=v—-C, [ —] . (5.109)
(317), ! p(f?p)s

The left-hand sides of (5.108) and (5.109) are identical. As a result, their right
hand sides can also be equated. This leads to the equality

at ot
G (%)h =V (5);
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Slight re-arrangement leads to the desired result
v ot ot )
— == -l . (5.110)

5.12.6 XI: Isothermally Stretched Ideal Rubber

Ideal rubber in the form of a band of length / is found to have the following equation

of state:
I (LY
f=pt l__(T) . (5.111)

Here, f is the tension, /, is the un-stretched length, § is a constant depending on
the properties of given rubber, and ¢ is the temperature.

(a) Show that the internal energy is a function only of the temperature.

(b) Calculate the work w done on, and the heat energy ¢ transferred to, the rubber
band when it is isothermally stretched from /, — [. The temperature here is ¢,.

(c) Given the specific heat at constant length is C;, and the stretching is done
adiabatically, how does the temperature of the band, and the corresponding work
w’ done on it change?

5.12.6.1 Solution

Under tension f, the work dw done on the rubber in a quasi-static extension d/ is
equal to f d/. (Note: the work done by the rubber band is equal to - f d/.) Hence,
the relevant statement of the first-second law is

tds = du— £ di. (5.112)

Clearly, this equation merely replaces p by — f and v by /. Thus, all the previous
results can be readily transferred.

(a) For instance, (5.11) is recast as

du B %
), e

The derivative (%)I is easily found from the equation of state (5.111)

f\ _ ol L (LY _/
(5),=# [z: -(7) } —r e



5.12  Examples VI-XV 245

(b)

(©)

Inserting this into (5.113) yields

Ju
(a_l), =0. (5.115)

Thus, when the temperature is constant, u is not a function of the length /. The
above can also be written as

(3)= (). (3) =
il
al

Further, because of the equation of state (5.111), quite obviously (—) # 0.
t
Hence, the following must be the case:

(%) =0 (5.116)
af,_ . .

In other words, at constant temperature, the internal energy is also not a function
of the tension f.

Accordingly, u is a function only of 7.
When stretched isothermally the work done on the band is

1
Bt (., 2 2 (1 1
= dl =—|(I"-1, tl-| - ——. 117
W /L,f 2zo< )+ﬂ,,l I (5.117)

Noting the heat energy transferred fo the band is ¢, and the fact that during the
isothermal process the internal energy remains constant, the first law dictates

q=—-w.

Because the internal energy depends only on the temperature, the first-second
law in (5.112) can be written as

9
tds = (a—';) dt — fdl = Cydt — fdl. (5.118)
!

At constant entropy, quasi-static stretching of the band by an infinitesimal
amount d/ requires the expenditure of work equal to f (d/),. Setting s constant
in (5.118) gives

2
Ci(de), = f(dr), = Br [li - (’7) } ),. (5.119)
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Thus, total work done on the band during isentropic stretching from /, to [ is

! t
w =/ S, = Cz/ (dr)s = Ci(t —t,). (5.120)
Lo to

Clearly, all we need to do now is find 7.
To this purpose, transfer ¢ to the left hand side in (5.119) and integrate. This
results in separating the variables / and ¢, and we get

C /on (dtf)‘ = C/In (é) = /lo[ % dl), = ﬁ/l: [ll_o - (%)2:| (dl),

P12y + 2 G _ l) . (5.121)

21, lo

The temperature ¢ can readily be found by first dividing both sides by C; and
then exponentiating them.

() () s

5.12.7 XII: Energy and Entropy Change in Van der Waal’s Gas

One mole of a Van der Waal’s gas,

(p + %)(v —b) = Ri,

where a and b are constants, is in contact with an infinite thermal reservoir at
temperature z.. In an isothermal, quasi-static expansion the gas increases its volume
from vj to vr and in the process does work (Aw),.. Calculate (Aw),, and the change
in the internal energy (Au),.. What is the change in the entropy of the gas, and the
reservoir.

5.12.7.1 Solution

At temperature #., when the gas expands from v; — vy, it does work Aw.

o —b 11
(Aw)tc=/ Pdv=thln[Uf }_a(___),
vj Ui_b Vi Ut
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From (5.17) we have

where

Therefore,

(%), =-pt (vlitb) = (%) = (g_:j),

Thus, for the isothermal process at 7., net change in the internal energy is

vf 3u vf a 1 1
(Au), = / (%)rc dv = / (ﬁ) dv = a (v—i - v—f). (5.122)

For quasi-static, reversible transfer of heat energy Agq to the gas, the first and the
second laws dictate

—b
(Ag)i. = teAs = (Au), + (Aw),, = RicIn [zf_ b]

As aresult

As = %:Rln[vf_b]
c Ui—b

is the increase in the entropy of the gas. Because of reversible operation, the entropy
of the universe remains unchanged. Therefore, the entropy of the reservoir decreases
by the same amount As.

This shows that for isothermal processes volume dependence of the internal
energy arises only out of the presence of the constant a : the constant b merely
indicates an effective decrease of the volume. It is commonly assumed that b is an
approximate measure of the volume that the molecules would occupy under strong
compression.

(See the chapter on “Imperfect Gases” for further details.)

5.12.8 XIII: Equation of State of a Metal Rod

A metal rod at temperature T, has length L,, cross sectional area A, and temperature
independent Young’s modulus Y. Construct its equation of state relating length L,
tension ©®, and temperature 7. The coefficient of linear expansion, B, is independent
of the temperature and is small. Also, the extension due to tension is small compared
to the original length of the wire.
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5.12.8.1 Solution
Young’s modulus is defined as the ratio of “stress” and “strain.” That is,
Y =(0/4)/[(AL), /L].

Therefore,
LO

YA’
where (A L), is the extension caused by the tension. Note that the total extension
must also include the contribution, (A L)7 caused by the temperature increase. Thus,

(AL)e =

L:LfHAUT+ML%:LW+LMU¥JD+(%§).(5H$

Collecting L dependent terms on the left hand side and dividing both sides by
L, [1—(s%)] yields

L [iypa-1)] [1+5"
Lo ee T e

- (1 + (AL#)T) [1 + (ALL)Q +0 ((ALL)G)Z}

. (AL)r | (AL), (AL)y\’ (AL)r\ ((AL),
B +0( L )+0[( L, )( L )}

(5.124)

The second order terms are negligibly small and can be ignored. Not all of the
second order terms are explicitly identified in (5.124). Such second order terms as

o

YA) . But they too can be ignored

still remain are implicit in the ratio (%) = (
when A is replaced by 4,.

Thus, consistent with first order accuracy, the equation of state is

(AL)r  (AL),
L, "L }

L=L()[1+ =Lo|:1+ﬁ(T_T0)+

YAO] '

5.12.9 XIV: Entropy Change in Extendable Cord

An extendable cord of length A obeys an equation of state

O=T[a (A=A +b(A-A) +¢ (A—A,,)3],
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where ® is the tension in the cord, T is its temperature, and the constants a, b
and c¢ are all > 0. The cord is in contact with a very large thermal reservoir at
temperature 7.

Calculate the change in the entropy of the cord when its length increases from
A, to A.

5.12.9.1 Solution
As usual, change in the entropy is best calculated by devising an appropriate quasi-

static process that takes the cord from its original length to the final length. Let the
work done by the cord during such an increase in length be AW.

A
AW = —/ OdA
Ao

=_T [a (A_Ao)2 +b(A_Ao)3 +C(A_Ao)4

5 ; ; } (5.125)

The internal energy is un-affected by this process. This can be seen as follows:
Given U = U(T, A), we have

U U
dU(T,AN) =\ — | dT — ] dA 5.126
@ =(57), o7+ (3), 120
Note that 7" is constant, i.e., dI” = 0. Further, in complete analogy with (5.17)
which records the equality, (g—z) , =—p+t (g—‘?) , we can write!”
ou 00
— | =0-T|—=| =0-0=0. 5.127
(5), (57), 120

Because both dT and (g—%) are equal to zero, therefore according to (5.126),

dU(T, A) = 0. Accordingly,

T

A
AU =/ dU(T, A) = 0.
Ao

Thus, the change in the entropy, A S, of the cord is:

AS = (AU + AW)/T = AW/T
— _[a (A_Ao)2 +b (A _Ao)3 +C(A _Ao)4j|.

5.128
2 3 4 ( )

9To transliterate (5.17) into (5.127) we need to use the analogy —® — pand A — v. To
understand the transliteration, compare (5.125) and note that p dv is represented by —®dA.
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Surprise! Surprise!

An extended cord has less entropy than an unextended one! Not to worry. All is
well because given half a chance, the extended cord will revert to its original length.
And this “spontaneous process” will, off course, result in increasing its entropy.

5.12.10 XV: A “Trick” Question About the Carnot Engine

Noting the assertion that the efficiency of a Carnot engine is dictated by the second
law without any regard to the working substance, calculate the efficiency of a
Carnot engine slated to work with pure water as its working substance when the
temperatures of the hot and cold reservoirs are set at 14°C and 4°C, respectively.

5.12.10.1 Solution

This is what, in the lingo, is called a trick question. Quite innocently one would
calculate the efficiency, €, as being equal to

Tc 277
€ = 1—|— =1—-— .
Tu 287
Serious difficulties are encountered with the construction of the specified perfect
Carnot cycle. Let us, therefore, examine in detail the four legs of a possible perfect
Carnot cycle.
Proceeding isothermally from 1 — 2 one reversibly withdraws — positive amount
of — heat energy Qg from the reservoir at temperature 7y = 287 K and adds it to

the working substance, which is water. This surely increases the system entropy
from its initial value S| to some higher value that we shall call S,.

On
S, =S =i,
2 1+(287

Next, one proceeds reversibly along the adiabatic path 2 — 3 and hopefully reaches
the lower temperature 277 K. Accordingly, the entropy S3 is equal to S,. Therefore,

e On
S3=8 =5+ (287)'

The third leg extends from 3 — 4 along a reversible path at constant temperature
Tc = 277K. In the process, one hopes to discard positive amount of heat energy
O to the reservoir at the lower temperature 7¢. In this process, one would reduce
the system entropy and want it to become equal to the initial — lower — value ;.
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If all the above traveling does occur successfully, one would hopefully complete
the cycle by returning along the reversible adiabat 4 — 1.

To check whether such a scenario can at all unfold, let us look at the isothermal
trek from 3 — 4 at the lower temperature 4°C. Now, as is well known, fish do
survive in relatively shallow lakes during severely cold weather. Of course, part
of this miracle is owed to the fact that ice is not a very good conductor of “heat
energy”’ — in this case, “heat energy” refers to the “severe cold” above the water.
But the real savior here is the peculiar behavior of the bulk expansion co-efficient of

water v
v =(5r), 1"

It is usually positive for all normal substances. For water, o p, undergoes a crucial

change as it crosses the temperature point ~ 4°C. Above this temperature, water

behaves normally and « p is positive. At & 4°C, ap is zero: and below, it is negative.
Now, according to the second 7.dS equation

TdS = nC,dT + nT (“—P) .
XT

Thus, along the isothermal path 3 — 4, where both d7" and «p are zero, we have
TdS =0,
which makes the entropies S3 and S4 equal. That is
Si=8=8 >S5

Clearly, the final leg of the cycle — the reversible adiabat from 4 — 1 — cannot exist
because it would require S4 to be equal to S;.
Thus, the specified cycle is not a perfect Carnot cycle!

5.13 Exercises: I-VI

5.13.1 Exercisel

Show (g—;) (g—';)s = —v(x,/y) and hence show that the relationship between the

adiabatic compressibility y, and the isothermal compressibility x; is the following

As C

P
4 _ P, 5.129
oo =7 ( )
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5.13.2 Exercise I1

Using the third 7.dS equation show that
ap dv c,
— — | == 5.130
(3).(5), - ¢ o0

5.13.3 Exercise I1I: Exercise II by Jacobians

5.13.3.1 Solution?®

t(a_S) d(s. p)
_ G _tCy N, 3(t, p)
Y=o, T e, T [y (s v)
t(é?)v 3. v)
a(s, p) d(,v)  d(p,s) d(v,t) (dp v
' (),

T Asv) A p)  B(v.s) Ap.r)

).(mm

5.13.4 ExerciselV

Show that the difference between the isothermal and adiabatic compressibility can

be expressed as
o2
Xt — Xs =1V C_i .

5.13.4.1 Solution

As shown in (5.84), the difference between the specific heats at constant pressure
and constant volume can be represented as follows:

az
C,—C,=tv |[-2].
Xt

20Jacobian, Carl Gutav Jacob J., (12/10/1804)—(2/18/1851).
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Let us divide both sides by C),, and multiply them both by y;.

2
Xt [1 — (g—)} =tv (Z—”) . (5.132)
p 4

As proven earlier — see (5.87) —the ratio of the specific heats, at constant volume and
pressure, is equal to the ratio of the isentropic and isothermal susceptibilities, i.e.,

Co  Xs
Cp X
Therefore, (5.132) becomes
t a% (5.133)
Xt Xs - v Cp . .

Q.ED.

5.13.5 ExerciseV
Show that
aN (2
dv s_ VXt 3[7 s.
5.13.5.1 Solution

Using the information givenin (5.131),i.e.,y =

(%), (

ey (B).(5),
(vxt)(ap)s _(a_v) )
JOTORE R

5.13.6 Exercise: VI

Show that



Chapter 6
Van der Waals Theory of Imperfect Gases

The essential difference between molecules that are “real,” and those that are
postulated for the derivation of the ideal gas equation of state, is the following.
Real molecules have finite size and they interact with each other. Ideal molecules
are of zero size and have no interaction.

In 1873, when Johannes Diderik Van der Waals presented his famous equation
of state, little detail was available about inter-particle forces. Both R. Laplace and
C-L. Berthollet suspected such forces to be short ranged.! Also, it was clear that
any interaction between microscopic constituents of a body must have two distinct
features. Because these constituents congregate to form macroscopic entities, the
overall inter-particle potential must be negative. Yet, because matter does condense
to finite densities, at small enough distances the potential must become large and
repulsive. That is, it must have a hard core.

Van der Waals offered separate treatment for the repulsive and the attractive
parts of the inter-particle interaction. The standard thinking — which Van der Waals
shared — was that both these interactions were “short ranged.” It turns out, however,
that his equation of state is somewhat more meaningful for a gas with both a hard
core — much as he assumed — and an attractive interaction which is long ranged.

The equation of state is derived as well as extensive discussion of the conse-
quences that follow therefrom are described in this chapter. Derivation is presented
in Sects. 6.1-6.3. Virial expansion and the critical point are described in Sects. 6.4
and 6.5, respectively. Critical constants P,, V., T, for a large number of gases — that
could possibly be candidates for the Van der Waals equation of state — are recorded
in Table 6.1 in Sect. 6.6. The reduced equation of state is introduced in Sect. 6.7
and the critical region and the behavior below it is described in Sects. 6.8 and 6.9,
respectively. The Maxwell construction, molar specific volumes and densities, the
results at temperature just below the critical point, the Lever rule, smooth transition
from liquid to gas and vice versa are discussed in Sects. 6.10-6.14. The principle

'Van der Waals, Johannes Diderik, (11/23/1837)—(3/18/1923); Laplace, Pierre-Simon, (3/23/1749)
—(3/5/1827); Berthollet, Claude Louis, (12/9/1748)—(11/6/1822).

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 255
DOI 10.1007/978-3-642-21481-3_6, © Springer-Verlag Berlin Heidelberg 2012
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of corresponding states is described in Sect.6.15 and many solved problems are
presented in Sect. 6.16. Finally, in Sect. 6.17, we discuss the Dieterici equation of
state.

6.1 Finite Sized Molecules with Interaction

Accurate analyses of many body systems with short range interaction is extremely
difficult and certainly would have been impossible to carry out in Van der Waals
time. Indeed, even today, exact solutions are available only for special cases. It is,
therefore, a great testimony to Van der Waals genius that he came up with an
approximation, albeit very crude, in which he could treat both the repulsive and
the attractive parts of the interaction.

6.2 Volume Reduction Due to Molecular Hard Core

First, let us describe Van der Waals handling of the hard core repulsive potential.

In postulating an ideal gas we have assumed that the molecules have zero size.
Accordingly, at non-zero temperature, by increasing the pressure appropriately, the
ideal gas volume could be reduced to any desired value.

Real molecules have finite size. Necessarily, therefore, the volume in which they
can roam around must be less than that available in an ideal gas where all molecules
have zero size. Furthermore, any such exclusion of volume (i.e., decrease by an
amount Vycuged in the available volume) will be a function of the total number of
all the other molecules present. Thus, if we are to use the ideal gas equation, we must
replace V' by something like (V' — Vixcludea)- That is, instead of P = (NkgT/ V)
we should use

NkgT

P=——"77"——.
V- Vexcluded

6.1)

It is best to consider Vexcuded @S an ad hoc phenomenological parameter approxi-
mately equal to the volume that would be occupied by the N molecules under large
compression. An estimate for Vixcudeqa may be obtained by treating molecules as
incompressible, spherical hard-balls of radius r,,.

Consider, for instance, a pair of such molecules. The nearest distance that their
centers may get to is 2r,. In other words, the centers of two identical molecules of
radius r, are excluded from lying within a sphere of exclusion whose radius is 2r,.

For graphical representation, draw a sphere of radius 2r, concentric with a
“given” molecule.” Then the center of the nearest “other” molecule is excluded from

2See Fig. 6.1 where for generality we have shown two different types of molecules.
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Fig. 6.1 Hard core sphere of exclusion for homogeneous pairs. For pairs of type (1) molecules —
shown in Fig. 6.1(a), which is the one on the left — the radius of the sphere of exclusion is 2ry.
Similarly, for pairs of type (2) molecules — shown in Fig. 6.1(b), which is the one on the right —
the radius of the sphere of exclusion is 2r,. For simplicity, the graph does not display the excluded
volume for a nearest pair formed by one molecule of type (1) and another of type (2). In the
description provided below we initially treat only single type of molecules with radius of exclusion
equal to 2r,. Later on, the case involving two different types of molecules is also considered. The
shading for both types of molecules is dark and grey. The excluded volume is shaded very light-

8rey

falling within the sphere representing the “given” molecule. Clearly, the same holds
true for all molecules in the system. Accordingly, for each molecule, the equivalent
of half of the spherical volume *(2r,)* is excluded.® In this fashion, the total
excluded volume for N molecules is

Vexcluded = % [4;(2 ro)3:| =4N [4?”(7'0)3] . (6.2)

Note that the total excluded volume is in fact four times the volume of N hard-balls
of radius r,.

6.3 Pressure Change Due to Long Range Attraction

Van der Waals’ treatment of the attractive part of the potential was similarly
simple. According to science historian,* M.J. Klein, Van der Waals argument went
something like the following:

“Effective force on a unit area of the surface due to these attractions comes only
from a thin layer of molecules below the surface, because of the short range of the
forces. The number of interacting pairs is proportional to the square of the density of

3Note that the factor 1/2 is needed to avoid double counting.

4M. J. Klein in The Proceedings of Van der Waals Centennial Conference on Statistical Mechanics,
North Holland Publishing Company (1974).
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the fluid, or inversely proportional to v* where v is the volume per mole. Introducing
the proportionality factor a, the internal pressure Piy becomes just (:‘—2).”

Note, the total pressure to be used in the ideal gas equation of state is thus
P+ P int-

In regard to the above I am reminded of a conversation I had with Professor
Cyril Domb long ago when he was thinking of writing an historical review of
some of Clerk Maxwell’s work.” He told me that like Van der Waals, who had
used suspect argument to produce great science, Maxwell too had had similar
experience with his work on thermal conductivity of gases. The upshot of it all,
according to Professor Domb, is that while a good mathematician’s argument must
be rigorous and fault-free — even if he/she is unable to get very far with it — all a
great Physicist has to do is get the answer about right even if the argument used is
suspect!

Despite the fact that Van der Waals had expressly wished to treat a fluid with
short range inter-particle interaction, his theory is far less satisfactory for systems
with short-range coupling than it is for systems with very long range inter-particle
potentials.®

The questions that come to mind are: So what is suspect about Van der Waals’
argument? Equally important, what part of it has physical validity? But even more
useful would be the knowledge of the following: What are the Van der Waals
predictions for the thermodynamic properties of a non-ideal fluid?

In order to investigate these matters, let us assume the range of interaction to
be practically infinite. Additionally, assume that the strength of such interaction is
independent of the inter-particle separation. As a result the mutual potential energy
of any pair of particles, separated by more than the hard core radius, is independent
of their separation. Therefore, the total potential energy E of the N molecules is
proportional to the total number of distinct pairs.

N(N —1)
B —

E « (6.3)

That is, the overall attractive force resulting from this negative potential energy must
lead to some reduction in the pressure that the gas would exert on its containing
walls. Such reduction would be caused both from the slowing down, as well as some
decrease in the number, of molecules actually hitting the walls. Clearly, therefore,
the resulting reduction in pressure would be a function of the volume V' within the
containing walls and possibly also the pressure P itself and even the temperature.
In other words, the equation of state would get changed to something like the
following:

SMaxwell, J. Clerk (6/13/1831)—(11/5/1879).

6See for example: M. Kac, G.E. Uhlenbeck, P.C. Hemmer, J. Math. Phys. 4, 216, 219 (1963); 5,
60 (1964) et al.; Also, J.L. Lebovitz, In: C. Prins (ed.) Van der Waals Centennial Conference on
Statistical Mechanics. North Holland Publishers (1974).
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NkgT N(N —
P:—B—Z(V,P,T)[ ( )] (6.4)
V— Vexcluded 2

where Vexcluded 1S as given in (6.2) and Z(V, P, T) is a function of V' — and perhaps
to a lesser extent also of P and T — and is positive.

Assume with Van der Waals that Z (1) does not have any compelling dependence
on P and 7. That is,

Z(V,P,T) = Z(V). (6.5)

This assumption reduces the number of phenomenological parameters to only two
as is explained below. Because when N > 1, to an accuracy of one part in N,
N(N—-1) = N2(1 - %) can be replaced by N2 in (6.4) above. Moreover, V being
an extensive state variable, in the large N limit it scales linearly with N. Also, P
is intensive. Therefore, for large N it scales as the zeroth power of N. In other
words, P is independent of N. Clearly, therefore, Vexclugea and Z (V) in (6.4) must
scale as

Vexcluded X Ns (66)

and
Z(V) x —. (6.7)

Accordingly, (6.4) — which may be called the equation of state — can be written as

NkgT N2
P=—1T— ¢

5 6.8
V- Vexcluded V2 ( )

where z is a constant independent of N. Note, both Vixcudeq and z are required to be
positive.
It is usual to work in molal units and also use the notation

N =nN4; zN3=a; Ngkg=R. (6.9)
Thus, the equation of state takes on the convenient form:

nRT n\2
P=—————al(=) . 6.10
V- Vexcluded “ (V) ( )

Traditionally, (6.10) is displayed as

n2
(P+ )(V Vexcluded) = nRT. (6.11)
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Often one works with a single mole. Because P is an intensive state variable,
whenever we choose we may replace P by p where the latter refers to the pressure
for a single mole. Other notation to be used for a single mole is the following:

V=vn;, Viduea =bn; P = P (6.12)

Dividing both sides of (6.11) by n, the Van der Waals equation of state for a single
mole of a fluid becomes

(p + %)(v —b) = Rr. (6.13)

Differences between a and b should be noted. The parameter b relates to the
physical size of the total number of molecules in one mole of the gas (fluid). On
the other hand, a expresses the strength of the inter-particle attractive force for the
N4 molecules that are present in one mole.

6.3.1 Equation of State for a Mixture

While a detailed analysis is deferred to an appendix, it is convenient here to record
the fact that the equation of state for a mixture of Van der Waals gases (fluids)
remains unchanged in form — see, for example, (E.20) and the discussion that leads
to it. In other words, the equation of state can still be represented as:

(p " %)(v by =Rt (6.14)

Despite this similarity, Dalton’s law of partial pressures is not necessarily valid for
mixtures of Van der Waals gases.

Note, a’ and b’ are the effective interaction and hard core size exclusion
parameters of the mixture.

6.3.2 Equation of State in Reduced Form

In the following we shall study the so called reduced form of the equation of
state. (See (6.30) below.) Note that the above result, namely (6.14), which merely
replaces the parameters a and b by a’ and b’, makes the following analysis
for a single Van der Waals gas equally as valid for mixtures of Van der Waals
gases.
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6.4 The Virial Expansion

Introduction of Van der Waals equation of state sparked a frenzy of theoretical and
experimental activity. Kamerlingh Onnes’ laboratory’ in The Netherlands was at the
forefront of this effort. An important analytical tool that they devised for the study
of real gases was the virial expansion. Experimentally observed values of the ratio
(#7) were fitted to a series expansion in powers of (§-). For instance, (6.8) leads
to the expansion

PV 1 zN Vexcluded ?
=1 T Vexcu ed — 7 -~ 0
NksT +V( luded kBT)+ ( v )

PV 1 na Vexcluded 2
WRT =1+ V (Vexcluded - ﬁ) + o (T) P (615)

where 7 is the mole number and a is as defined in (6.9).

Rather than the inverse powers of the actual volume V, a more convenient
notation is arrived at by working with inverse powers of the specific volume, i.e.,
v = % where n is the mole number. In this fashion we can write (6.15) as follows:

pv 1 a ) 2
R = 1y (o = 27) + 0 (=)

Rt
by b

=bi+—+ (6.16)
v v

As defined in (6.12), Vexcluged = “2ud = .

The parameters b; may be called the i-th virial coefficient. In 1937, Mayer
demonstrated how the virial coefficients may be related to the inter-particle poten-
tial. Analytical calculations of b; are usually carried out only for the gaseous phase.
Even so, for realistic inter-particle potential, the difficulty of calculation increases
rapidly as we progress beyond i = 2. Returning to the Van der Waals gas, let us

work out an inverse v expansion. To this end, multiply both sides of (6.13) by

(7= )
pooa v (DY b (b)) 6.17)
Rt = Rtv  (v—5b) v N v v ’ '
and recast it as
p”—1+](b a)+ AW (6.18)
Rt v Rt v ’

7Kamerlingh-Onnes, Heike (9/21/1853)—(2/21/1926).
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Comparison with (6.16) yields b; = 1, b3 = b? and

bZ =b- i = Vexcluded — ¢ (6.19)

Rt Rt
For an ideal gas b} = 1, and @ and b are both zero. As a result all virial coefficients,
higher than 1, are vanishing.

Note that b; is equal to unity also for non-ideal gases. Non-zero values of a
and b;, for i > 1, are reflective of the finite size of molecules and especially of the
presence of interaction.

The b, for a Van der Waals gas, as given in (6.19), is correct in format. Because
the second virial coefficient is straight forward to calculate, one can use realistic
inter-molecular potentials and thus obtain theoretical estimates for the parameters a
and b for the actual gas under study.

An interesting feature of the second virial coefficient is that it changes sign at the
so-called Boyle temperature t,

ty = a/(RD). (6.20)

Below 1y, by is negative; at t =t,, it is zero, and above f, it is positive. It is of
course clear that when the second virial coefficient is vanishing the gas is close to
being ideal. Another contributing factor to the fame of the Boyle temperature is
the prediction that cooling via the Joule—Kelvin effect — to be discussed in a later
chapter — does not occur for a Van der Waals gas at temperatures higher than 2#,.
There is an interesting bit of folk-lore associated with the similarity in the formats
of the Van der Waals result for the second virial coefficient and those that are
obtained by the use of more realistic short-ranged inter-molecular potentials. The
folk-lore asserts — erroneously, of course — that the Van der Waals theory must
indeed obtain for short range inter-molecular potentials because it predicts a correct
format for the second virial coefficient. The difficulty with this argument is that
one can also get similar results from long ranged interactions. And, indeed, all by
themselves, the first and the second virial coefficients do not a theory make.

6.5 The Critical Point

At constant temperature, the pressure p in an ideal gas is inversely proportional to
the volume v. This relationship obtains irrespective of how low the temperature may
become.

Non-ideal gases behave much like the ideal gas at high temperatures. As the tem-
perature is lowered, real gases reach a critical temperature below which a process of
saturation commences. That is, a gradual isothermal increase in pressure, resulting
in slow decrease of volume v, eventually reaches a boundary — at some volume that
we shall label vg — of what turns out to be a two phase region where liquid droplets
begin to form within the vapor phase. Here, infinitesimal increase in pressure causes
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the volume to decrease while the proportion of liquid to vapor increases. This
process continues all the way across to the opposite edge of the boundary, to some
lower volume v;, where all vapor condenses to a liquid. Any further increase in
pressure carries the system into a phase that is all liquid and therefore has much

smaller compressibility and a noticeably steeper isotherm: (g—];) .
t

Let us investigate as to how well the Van der Waals gas mimics experimentally
observed behavior of real gases. To this purpose, it is convenient to re-cast the
equation of state (6.13) in the following manner: Multiply both sides by v?/p, i.e.,
(02 + %)(v —b) =v? R %, and re-write it as follows:

Rt b
v3—(b+—)v2+(3)v—a—=o. 6.21)
p p p

Being a cubic in the variable v, for any p and ¢, it has three roots. For very high
temperatures, there is a real root close to the ideal gas value v ~ (%), while the
other two roots are complex and mutually conjugate.

Let us consider next as to what obtains when the temperature is reduced. On
gradual lowering of the temperature, the imaginary parts of the complex roots
become smaller and when a certain temperature .

= 2 (6.22)
¢ 27TRb’ ‘
is reached, the pressure approaches
S p = — (6.23)
p Pec = 27h2 .
and the volume approaches
v — v. = 3b. (6.24)

When this happens, the imaginary parts of the two complex roots become vanish-
ingly small and all three roots of the resultant equation of state

v} —9hv? +27h%v —27h° =0, (6.25)

become real and indeed equal to v.. The point ., p., v, is called the critical point.
Usually, the parameters a and b are determined from the experimental results for
pe and f.. Indeed, from the expressions given above we readily get

_ 2TRM? p — Ric

; = . (6.26)
64p. 8pe

As an aside we mention that experimental measurement of v. is generally less
accurate than that of p, and #.. Moreover — lest we should become sanguine about
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the validity of the Van der Waals approximation — measured values of v, also do not
fit well with the prediction v, = 3b, when b is determined from the measurements
of p. and t..

Let us look at what is the case below the critical temperature 7., especially when
the temperature and pressure are raised towards the critical point. We find from the
equation of state (6.21) that these roots move closer together. Eventually, as the
temperature and pressure approach t — t., p — p. from below, the equation of
state approaches (6.25) and again the three real roots coalesce into one, v = v,.

Thus, there is something very interesting, indeed unique, about the critical point.
Perhaps, some dramatic increase in the system response to external stimuli occurs
there.

Because the parameters ¢ and b are reflective of the finite size of atoms and any
inter-particle interaction, they are gas specific. One notices that the critical value of
the ratio

pv
N=—, 6.27
R (6.27)
that is
3ab

cvYce 3
R, = PeVe _ 287a_1;:) =z, (6.28)

R (37R5 8

is independent of the gas specific parameters. As such it applies equally well to all
Van der Waals gases. Clearly, if the Van der Waals approximation is valid, the value
of this ratio should be 3/8 = 0.375. In this regard, we notice — see Table 6.1 below —
that the agreement between the Van der Waals value for )i, and the corresponding
experimental results improves somewhat as inter-particle interaction becomes less
dominant. (For instance, see He, Hydrogen and Neon.)

6.6 Critical Constants P., V., T,

As mentioned above, corresponding Van der Waals parameters can be obtained as
follows:

L _2IRTZ R
64P, 8P,

6.7 The Reduced Equation of State

Often, it is the case that algebraic manipulation of the mathematical relations is
simplified by transformation to an appropriately scaled system of variables. When
these relations refer to physical phenomena, a convenient form of scaling is one
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Table 6.1 Critical constants, P., V,, T, for a few real gasses, as quoted in the CRC Handbook,
85th Edition (2004-2005)

Gas T./K P./MPa V./um®> R,

Water, H,O 647.14  22.06 56 0.230
Nitric Oxide, NO 180 6.48 58 0.251
Bromine, Br, 588 10.34 127 0.269
Carbon dioxide, CO, 304.13 7.375 94 0.274
Ethane, C,Hg 305.32 4.872 145.5 0.279
Ethylene, C,H, 282.34 5.041 131 0.281
Chlorine, Cl, 416.9 7.991 123 0.284
Fluorine, Fl, 144.13 5.172 66 0.285
Hydrogen sulfide, H, S 373.2 8.94 99 0.285
Methane, CHy4 190.56 4.599 98.60  0.286
Oxygen, O, 154.59 5.043 73 0.286
Xenon, Xe 289.77 5.841 118 0.286
Krypton, Kr 209.41 5.50 91 0.287
Nitrogen, N, 126.21 3.39 90 0.291
Argon, Ar 150.87 4.898 75 0.293
Carbon monoxide 132.91 3.499 93 0.294
Helium, He 5.19 0.227 57 0.300
Hydrogen, H, 32.97 1.293 65 0.307
Neon, Ne 44.4 2.76 42 0.314

where the variables are dimensionless. This transformation is especially useful if
such scaling can also help eliminate system specific parameters.

To achieve such scaling, let us transform to a set of the so-called reduced
variables p,, , and v,. Setting

(ﬁ) = Po: (L) = lo; (1) = Vo, (6.29)
De I Ve

the equation of state (6.13) readily becomes

3
(po + ﬁ) (31),, - 1) = 8t0- (630)

o

The interesting thing to note about this equation of state is that the variables are
now dimensionless. Furthermore, both gas specific parameters a and b have been
eliminated. As a result, the equation has now become quite general in scope and
should therefore apply to all Van der Waals gases.
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6.8 The Critical Region

At this juncture, the only explicit information we have about the system is contained
in (6.30), which specifies a relationship among the reduced variables p,, v,, and ,.
Therefore, the simplest external stimulus that can be investigated is the isothermal

compression that relates these three variables. Accordingly, we look at the reduced

isothermal compressibility® y, = —vl (g%) . Dramatic increase in y,, is signalled
o o t0

by the magnitude of the inverse compressibility,

ap
-1y _ 0
G = v '(av)

tending to zero. Therefore, we look for the satisfaction of the relation

(ap”) 0. (6.32)
av, ,0

Keeping #, constant, and differentiating the reduced equation of state (6.30) with
respect to v,, the above becomes

ap, 6 24t,
=|l=-——— 0. 6.33
(ava)to I:US (3v, — 1)2i| -~ ( )

Clearly, the choice v, = 1, t, = 1 satisfies the relationship. Thus, the 7, = 1 isotherm
becomes parallel to the volume axis at v, = 1 portraying the explosive increase in
the isothermal volume compressibility.

To better understand the behavior of the isotherm at this point we need also to
examine the second derivative

Pp,\ 1441, 18 634
v, ), Buo—1P3  vd '

, (6.31)

It is easily checked that the second derivative also vanishes at v, =1, 7, = 1. Indeed,
as this critical point is approached from v, > 1 and is passed across toward v, < 1,
the second derivative changes sign. As a result the concavity of the isotherm changes
from downwards to upwards signalling the existence of an inflection point.

The third variable, p,, at the critical point is also equal to unity, as is readily
confirmed by inserting ¢, = 1, v, = 1 into the reduced equation of state (6.30).

Below, we examine the details of the critical region in the neighborhood of the
critical point where the pressure, temperature and volume are close to their critical

8Note that the reduced version of the isothermal compressibility is equal to p. times the usual
isothermal compressibility. That is, y, = (27“7) Xi-
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values — namely, p, — 1,7, — 1 and v, — 1. That is,

va=1+5; Po=1+15§ t()=1+;7 (635)

— Ue ~ — Pe ~ r—1
Ve Pe I

are all very small compared to unity, i.e.,

where®

Tkl pxl ikl (6.37)

Multiplying both sides of equation of state (6.30) by v2, introducing the notation

suggested in (6.35) and (6.36), and doing slight re-arranging leads to the result

=0 4471+ 20 + 1)
75 A
1+ 3 +40% + -

5= (6.38)

6.8.1 Example I: Pressure Versus Volume for the Critical
Isotherm

Calculate the dependence of pressure on the volume for the critical isotherm 7 = ¢..

6.8.1.1 Solution

At the critical temperature, f, = 1. Therefore, 7 = 0. Hence, according to (6.38), the
relationship between the pressure and volume can be expressed as

3 35° 3
pP=== + 0(%),

which, according to (6.36), means
- FPc 3 — Uc 5 — Uc
(—p p'):-- (—” ”') [1-0(—” v)} (6.39)
pC 2 vC vc

§=3. (6.40)

where

Note that like (v,, po.1,), (U, p, 1) are all dimensionless.
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[We have used the traditional notation for the exponent of the leading term on the
right hand side in (6.39).]

Note that rather than the result given by the Van der Waal’s theory, i.e., § = 3,
the experimental data suggest § is ~4.3.

6.8.2 II: Isothermal Compressibility Along the Critical Isochore
Just Above T,

Calculate the isothermal compressibility along the critical isochore,! i.e., for
v, = 1, at just above the critical temperature ..

6.8.2.1 Solution

It is convenient first to represent the inverse isothermal compressibility y;”! in terms
of the reduced variables. That is,

_ ap dPo
1 _ s — _
Xe =V (3v)t PcVo (31)0),0 . (6.41)

Using the expression for ( %) given in (6.33) we can write
o t()

6 245 } . (6.42)

-1 _
Xi = —VoDc I:U_g - —(300 1y
For the critical isochore, v, = 1. Expanding the right hand side of (6.42) a la
(6.35) — that is, setting 7, = 1 + 7 — we readily get

_ 24 (1 +1¢ .
X! :—pc[6—¥i| =6pi. (6.43)
Inverting the above gives
L tc 1 .\’ (6.44)
= 6pcf B 6pc =1 B 6pc I —1i ' )
Clearly,
y =1 (6.45)

10Tsochore means occurring at constant volume. Critical isochore is the constant volume path such
that the volume is equal to that which obtains at the critical point.



6.10 The Maxwell Construction 269

[Again, we have used the traditional notation y for the exponent on the right hand
side of (6.44).]

To recapitulate: For the critical isochore, as the temperature ¢ approaches
the critical temperature 7. from above, the Van der Waal’s theory result for the
isothermal compressibility diverges as ( tﬁ‘tc)y, where y = 1. This result should be
contrasted with the experimental data which suggest y ~ 1.3.

6.9 Behavior Below T,

As mentioned earlier, when ¢ < 7. or equivalently 7, < 1, for each isotherm there is
a region in the p,, v, space where the equation of state (6.30) has three real roots.
Two such isotherms, for 7, = 1 and 0.9, are shown in Fig. 6.2a. While the three roots
coalesce together at the critical point z, = 1, they separate as temperature falls, i.e.,
as t, decreases below 1. The flatness of the 7, = 1 isotherm in the neighborhood of

the critical point v, = 1 is clearly visible in Fig. 6.2a.

6.10 The Maxwell Construction

More interesting is the behavior of the sub-critical, i.e., 7, = 0.9, isotherm, which
we examine in detail below.

6.10.1 (p,,v,) Isotherms

As mentioned earlier, the Van der Waals isotherms are plotted in Fig. 6.2a, b. These
are doubly curved, S-shaped, lines in the V' — P plane as is shown by the route
followed along V,¢ — V,3 — Vou — Vo5 — V,.. However, quite unlike the
prediction of the Van der Waals theory, the experimentally observed isotherms that
span the two phase region are isobars.!! These isothermal-isobars are similar to the
straight horizontal line V,G — V,4 — V, . This straight line is often referred to as
the Maxwell Isobar. According to Maxwell’s prescription, the location of Maxwell
isobar has to be so chosen as to make the algebraic sum of the areas enclosed,
between the Van der Waals’ S-shaped isotherm and Maxwell’s isothermal-isobar,
equal to zero. In other words the magnitude of the area (V,4 — V,3 = V,6 — Vi4)
should be equal to that of (V,, — V,4 — V,5 — V,). Based on the requirement
that the Maxwell isothermal-isobar represent a state of thermal equilibrium, there is
physical justification for following the Maxwell prescription.

sobars are traversed at constant pressure.
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Van der Waals Isotherms

Po
o
[o0)

Isotherm for t,=0.9

Vo3

A% B
oL Voa

Fig. 6.2 (a) (p,, v,) plot of the Van der Waals isotherms for 7, = 1.0 and 0.9. (b) (p,, v,) plot of
the Van der Waals Isotherm

6.10.2 Thermodynamic Justification for the Maxwell
Prescription: First Analysis

It is instructive to provide thermodynamic justification via two different routes. Such
double emphasis is in order because of the physical and historical importance of this
issue.

Consider reversible travel along the closed loop:

Vor, = Vioa = Vo — Vo3 = Vou — Vo5 — V,1). Then integrate, along this
loop, the equation that represents the first law: namely, the equation

du =t ds — p dv. That is,

¢du=¢tds—9§pdv. (6.46)
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Because u is a state function, du is an exact differential. Therefore, the left hand
side — which represents integration over the closed loop — is vanishing. Assume
with Clerk Maxwell that the straight line portion of this path —i.e., the isobar V,¢ —
Voa — V,1 —is the proper isobar for the temperature ¢ — that is the temperature for
which the S shaped Van der Waals isotherm V,g — V,3 — V4 — V,5 — V1, was
drawn. Then the temperature ¢ given in (6.46) is indeed the relevant temperature.
Furthermore, this temperature ¢ is constant along the whole loop. Thus, ¢ can be
extracted out of the first integral on the right hand side and the above equation can

be re-written as follows:
0=t 5£ds—9€pdv. (6.47)

Again, because the entropy s is a state function, the integral ¢ ds is zero. Therefore,
we are led to the relationship

0=- ¢ pdv=—pcv, ¢ Do dv,. (6.48)

For ease of display, it is helpful to break the integral over the full loop up into
several parts. Much like Fig. 6.2a, b, these parts can also be displayed in the form of
an equation.

Voa VoG
0= %po dva = / Po dva + / Po dva
VoL Voa

V03 V04 VoS V,,L
+ / Po dv, + / Po dv, + / Po dv, + / Po dv,. (6.49)
v, v, v, v,

oG 03 04 05

Therefore, the following relationship that represents the physical equality of the
areas at the top and bottom of the Maxwell isothermal-isobar is thermodynamically

valid.
Voa VoG Vos Vou
/ Po dvo + / Po dvo = / Po dvo + / Po dvo
VoL Vou VoL Vos

Vo3 V,,G
+/ Do dvo + / Po dU{;. (650)
Ve V.

04 03

6.10.3 Exercise I: Show that Fig. 6.2b Follows the Maxwell
Prescription

It is convenient to separate the six integrals given in (6.50) into two parts each
consisting of three integrals such that their sums lead to equal areas underneath. This
is done by shifting the second integral on the left hand side, namely [ f J/‘;G Do dv,,],
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to the right hand side and moving the following two integrals, [ f‘Z”LS Po dv, +

IZ‘;“ Do dvo], from the right hand side to the hand left side. We get

Voa Vos Voa
/ Po dv, — / Po dv, — / Ppo dv, = Area A
VaL VaL V()S

Vo VoG VoG
= / Do dva + / Do dv(] — / Po dU,, = Area B. (651)
V, V, V,

04 03 04

Q.ED.

6.10.4 Thermodynamic Justification: Alternate Analysis

An alternate physical argument is the following. In thermal equilibrium, the
differential of the Gibbs'? function can be written as

dg =vdp—sdr. (6.52)
But along an isotherm we have dz = 0. Therefore,
(dg); = (vdp) = vepe(vodpo);. (6.53)

Dividing by v, p., and integrating both sides along the path
(V(JL — V()S — Va4 — Va3 — V()G) giVes

1 Vos Voa Vo VoG
(o) o+ [ o+ [Cawr [ ]
UC pC VoL Vos Voa Vo3

Vos Vo Vo3 VoG
=(/’ (vodpo); + (vodp»f+-/m (vodp»,+-/’ (0o dpo)i. (6.54)
v,

oL Vos Vos Vo3

The integrals on the left hand side are straightforward and we get

1
(p,v,) [(g05 — goL) + (o4 — o5) + (803 — Zoa) + (o6 — £03)]

1
=( )kw—&d
PcVc

Vos Vo Vo3 VoG
=/(%@w+/(mw&+/(%@w+/ (o dpo)i. (655
v,

oL Vos Vos Vo3

12Because the reader has not yet been introduced to the Gibbs free energy, upon first reading this
sub-section may be omitted. Equation (6.52) and the development of (6.55) will become more clear
after the Gibbs free energy has been properly introduced and fully explained. See (10.31)—(10.44).
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In the above, g,; and g, are the “specific” — meaning, for one mole only — Gibbs
function for the Liquid and the Gas phases, respectively. During phase transitions,
thermodynamic stability requires the specific Gibbs function to be the same for all
phases.'3 Thus, g, is necessarily equal to g,;. Accordingly, either of the top two
terms — which of course are equal — in (6.55) are vanishing. The remainder can be
written as:

VoL Voa
/ (va dpa)t - / (va dpa)t = Area A
V, V,

05 05

Vo3 Vo3
= / (vodpo)r — / (vodp,); = Area B. (6.56)
v, v,

04 oG

Because the given drawings — that is, Fig. 6.2a, b — were produced primarily for the
purpose of displaying the Van der Waals results on a p versus v plot, the immediate
feel for the v versus p plot may not be there. To assist those readers who do not
readily sea the equality of the areas A and B in the “volume versus pressure”
picture, we add some additional information below which may be of help in this
regard.

Notice that if we had constructed integrals like | ‘Z”g (Vodpo) ] and | ‘ZZL
(vod pa),], they would both be equal to zero because their paths proceed along a
straight line at constant value of the pressure p, — for which dp, is equal to zero.
Therefore, without affecting any change in value, they can both be added to the right
hand side of (6.55). That is, we can write

Vos Vo Vo3 VoG
0= / (vodpo): + / (Vo dpo): +/ (vodpo); + / (vodpo):
v,

oL Vos Vos Vo3

V()4 VaL
+ / (0o dpo): + / (w0 dpo)r. 657)

VoG Voa

Transferring the first, the sixth and the second terms from the right hand side to the
left gives

VoL Voa Vos
/ (vodpo); + / (vodpo): + / (vodpo): = Area A
V,

05 VoL Vos
Vo3

= (Uo dp())t +/

Voa Vo3

VoG Voa

(vodpy): + / (vodpy), = Area B.  (6.58)

VoG

Equations (6.56) and (6.58) are an equivalent, but an alternate, theoretical form for
the Maxwell construction.[Areas A and B are indicated graphically in Fig. 6.2b.]

3Refer, e.g., to the Extremum Principle for Gibbs Free Energy discussed in (10.39)—(10.40), etc.
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6.10.5 Exercise Il

Show that despite the fact the integral gS(v,, dp,); over the above described loop is
vanishing, (v, dp,); is not an exact differential. This behavior reconfirms the fact
that while the vanishing of the loop integral is necessary, it is not sufficient for a
given differential to be exact.

6.10.6 Comments: Metastable Regions

The Maxwell isobar, represented by the horizontal line V,g — Vo4 — V1, is the
thermodynamically appropriate isotherm within the two phase region.

6.10.7 (po,v,) Isotherms for Van der Waals Gas

On the other hand, as noted before, rather than being an horizontal line, the Van der
Waals isotherm has an S shaped structure in this region. Can one make any sense
of this odd behavior? Perhaps, one could say that the portion V,¢ — V3, along
which the pressure is above the saturation pressure, represents a state of metastable
equilibrium where the vapor is super-saturated and, with scant inducement, would
be ready to condense. Similarly, an argument could be advanced to suggest the
portion V,5 — V,, which lies below the equilibrium isobar, represents a metastable
super-heated liquid, ready to evaporate.

Stranger still is the behavior of the isotherms for even lower values of temper-
ature. In Fig. 6.3, an additional isotherm is included that refers to 7, =0.8. The
negative pressure portion can surely not be related to a fluid state which cannot
exist in a state of outwardly directed internal tension.

Van der Waals Isotherms

Fig. 6.3 (p,,v,) plot of the Van der Waals isotherms for z, = 1.0; 0.9; 0.8
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Could it then represent a state where the system has solidified? Of course, solids
do support stresses that are the functional equivalent of negative pressure.

Despite these musings, no possible excuse can be offered for portions such as
Vo3 = Voa — V,5 in Fig. 6.2a, b, along which the pressure and the volume decrease
simultaneously thus yielding a negative value for the isothermal compressibility, y;.
We shall learn in a later chapter that in order for the system to be thermodynamically
stable, y, must be positive. In other words, the Van der Waals equation has serious
failings in its description of the two phase state.

Yet the very suggestion that the two phase state could/should exist was a major
accomplishment.

6.10.8 The Spinodal Curve: Boundary
of the Metastable-Unstable Regions au Van der Waals

It is nevertheless interesting to outline the boundary between the unstable and what
we have tentatively called the metastable region. This boundary is referred to as the
spinodal curve.

To do this we need to determine the locus of such points as V,3 and V,5 shown in
Fig. 6.2a, b. Fortunately, this is easily done because these are points of local maxima
and minima of the sub-critical isotherms. At both these points the tangents to the
isotherms in the p,, v, plane must be parallel to the v, axis. That is,

(3’7”) —0. (6.59)
av, o

We proceed as was done in (6.33), where p, in the equation of state (6.30)

3
(p() + _2) (31),, - 1) = 81,,
v

o

is differentiated at constant #,. We get

o\ _ 6 241, _, 6.:60)
v, /. Tl Bu 12 '

Eliminating #, from these two equations leads to the desired locus

_ (Bv,—2)

3 (6.61)

o

In Fig. 6.4, the spinodal curve, that is the locus — drawn as a dashed curve — is
super-imposed on a series of isotherms for 7, = 1.1; 1.0; 0.99;...; 0.9. Note, the
region that lies within the spinodal curve is the thermodynamically unstable region.
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Fig. 6.4 The spinodal curve: boundary of the metastable—unstable regions au Van der Waals The
spinodal curve — dashed — is shown against background of (p,, v,) isotherms. These are plotted
fort, = 0.9 — 1.0 in increments of 0.01. Also given at the top is the curve forz, = 1.1

6.11 Molar Specific Volumes and Densities

Below t., the difference in the reduced molar densities of the co-existing liquid
and gaseous phases, i.e., p,. and p,g — which are the inverse of the corresponding
specific volumes — that is p,;, = 1/V,; and p,c = 1/V,s — is of considerable
physical interest. In order to investigate this matter, first the dictates of the Maxwell
rule have to be represented in an analytical form.

To this end, as mentioned earlier, we note that the construction of a Maxwell
isobar, such as V,;, — V,4 — V, shown in Fig. 6.2b, requires the satisfaction of
(6.50), or equivalently (6.55).

Let us denote the reduced pressure along the Maxwell isobar V,;, — Vou — Vi
as Poo-

Because p,, is constant along the path V,;, — V,4 — V,¢, the integral on the
left hand side of (6.50) is easily done.

VoG VoG
/ Po - dv, = poo/ dv, = poo(VoG - VoL)- (662)
V, V,

oL oL

For the remaining four parts of the integrals on the right hand side of (6.50) which
are summed along the path V,;, — V,5 — V,4 — V,3 — V,g, the pressure p, is
determined by the reduced equation of state (6.30) that meanders along the given
path. That is,

8t 3
Po= —— — = (6.63)

3v,—1 w2
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Accordingly, they can be summed as follows:
Yoo (8t 3 8t, 3V, — 1 1 1
/ ( o ——2)dv0=—"1n (L)—3( _ ) (6.64)
VoL 3v,—1 v, 3 3VoL —1 VoL Voa

Equating the right hand sides of (6.62) and (6.64) gives

e LN 4o (e — gy = So g (Hec =1 665
- oo\VoG — VoL) = —(— M|\ -7 |- .
VoL VoG P ¢ L 3 3V0L —1

Our next task is to note that both the specific volumes V,; and V,; lie on the
equation of state — see also, (6.30). Therefore, in addition to (6.65), they must also
satisfy the relationships imposed by the equation of state (6.63). That is,

8, 3 (6.66)
pOO - 31/06 _ 1 VOZG .
and
81, 3
Poo - (6.67)

T3l VY

6.12 Temperature Just Below the Critical Point

Below the critical point, for any given temperature #, there are three unknowns
Doos VoL, and V, that can be determined by the simultaneous solution of
(6.65), (6.66), and (6.67). Except for the immediate neighborhood of the critical
point, where we can utilize series expansions in powers of small parameters,
analytical solution of these equations is not possible. Nevertheless, if we should
so desire, we can work out a numerical solution.

6.12.1 III: Difference in Critical Densities

Calculate the difference in the liquid and gas densities in the coexistence region just
below the critical temperature.

6.12.1.1 Solution

Let us write

th=—=1-—-—“"""2=1-7, (6.68)
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and
Vog =1+ 0. (6.69)

Now what about V,; ? If we use a different expansion variable for V,,; we would be
forced to deal with the three simultaneous equations mentioned above. We note that
the empirical principle of rectilinear diameters implies that when 7 < 1, to a high
degree of experimental accuracy

Voo =1—0. (6.70)

If we assume this principle to be true, we need to solve only two simultaneous
equations, say (6.65) and (6.66), thus greatly simplifying the analysis. Most
importantly, after working out a solution, we can double check it for accuracy by
trying it out on the other pair of (6.65) and (6.67). The analysis given below will
show that the principle of rectilinear diameters is correct to the leading order.

Eliminating p,, from (6.65) and (6.66) and using the expansions suggested in
(6.68)—(6.70), we get the relationship

|8 2+ 30 16v 1 1 6v
(1—7)|=In ) =3 S - —. (6.71)
3 2—37% 2+ 3v I1—v 140 (14 v)?

Small v expansions are readily obtained. For example,

2+ 30 1+ 30 95°  2439°
ln( + ”):m(l 2 )=3ﬁ+i+ Lo (672

2—-3p — 39 4 80
and
16 815°
. +';v — 85 — 120 + 185° — 275" + Tv + 0®@). (6.73)

Using (6.72) and (6.73) the left hand side of (6.71) becomes

=5
(1—1) [1252 —128% 4+ 275 — (16?) ) n 0(56)] . (6.74)

The right hand side is similarly calculated

1 1 60
3 — — = 1292 — 120% 4 249* — 24%° 4+ 0(3°). (6.75
[1—5 1+ﬁ} (pop — 120 712042402404 000 (679)

Dividing both by the factor

16255
[1252 — 1203 + 2704 — ( Sv ) + 0(56)]
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gives
_ vz 993 2194
l—-f=1—— 4+ ——"— 4+ 0(®).
7T 20 20 TO™
That is,
92 99 2194
f=——"— — 0(®). 6.76
720 T 20 @) (6.76)

To check on the consistency of the rectilinear diameters assumption contained
in (6.69) and (6.70) we work next with the alternative pair of (6.65) and (6.67).
Following a procedure similar to that used for deriving (6.76), we now get the result

_ 59 219
f=—+—+

7°). 77
720 T TO™ 6.77)

Clearly, the violation of the principle of rectilinear diameters occurs first in the
third order in v. Thus, we can confidently conclude that correct to the leading order
02 = 41.

The difference in the critical densities can be directly related to the difference in
the corresponding specific volumes. As a result, just below the critical temperature,

1 1 1 1 20
oL — PoG = - = - — — = — =2_+0_3
PoL = PoG = T ST T T i oW

_ s te —t\? te —t\PH!
2~/E+0(z)z=4(t—) +0(; ) , (6.78)

C C

where
B=-. (6.79)

Again, we have used the traditional notation whereby the leading term represent-
ing the difference between the specific densities of the coexisting liquid and gaseous
phases just below the critical point is displayed as (%)ﬁ Rather than being equal
to 1/2, as predicted here by the Van der Waals theory, experimental results for the

exponent f are found to be ~0.3.

6.12.2 1V: The Saturation Pressure

Describe how the pressure of the coexistent liquid—gas phases — sometime called the
saturation pressure — varies just below the critical point
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6.12.2.1 Solution

The behavior of the reduced saturation pressure'* p,, just below the critical
temperature can be examined by using either (6.66) or (6.67). This corresponds
to setting the starting point in the gaseous or the liquid phase. Thus, we can use
either the expansion indicated in (6.69) or (6.70). To the leading order, attesting to
the consistency of the approximation used, both the equations give the same result.
That is,

t.—1
Poo = 1- 4( ) . (6.80)

C

[Additional details of p,, as a function of #, is provided in Fig. 6.8a, b.]

6.12.3 V: Isothermal Compressibility Just Below T,

Calculate the isothermal compressibility in the coexistence region just below the
critical temperature 7.

6.12.3.1 Solution

In order to examine the behavior of the isothermal compressibility just below the
critical point, we need to start at the co-existence curve. We can begin either in the
vapor phase where we set

v, =14, (6.81)
or the liquid phase where, in an equivalent approximation, we can write
vo=1-—0. (6.82)

As before, the above prescription will be valid only if the results, for given value of

temperature, are independent of the starting location on the relevant isotherm in the

coexistence phase. Of course, for the present purposes, we should be satisfied if this
—

is true to the leading order in the smallness parameter (t—f“) Fortunately, as before,

the general expression for y;”! given in (6.42) remains valid.
Thus, depending on whether we begin in the gaseous — upper signs — or the
liquid — lower signs — phase we get

4Note that p,, is defined as the reduced pressure, i.e. (}%)’ that obtains along the Maxwell isobar

in the co-existent region.
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- _ 6 24(1—1)
1
=—(1=x — , 6.83
X ( V) pe |:(1 T 5)3 2+ 31_))2i| ( )
which is readily expanded to yield
-1 - 9, == c=2 =3
Xy = —6t + Ev + 120t + O(tv-,v7). (6.84)

Because > = 41, therefore, in retrospective validation of our approximation, to the
leading order we get the same result for both the starting positions:

Kt =121 (6.85)

Accordingly, the compressibility just below 7. is given as follows:

_ ! Ay (6.86)
= p \=r) '

where
y = 1.

Note that the coefficient (Tlf), obtained for y, below f., is equal to one half that
obtained for y, above f.. [Compare (6.44)] Note also that rather than being equal
to one, as predicted here by the Van der Waals theory, the experimentally observed

value of the exponent y’ is ~1.2.

6.13 The Lever Rule

The validity of the principle of rectilinear diameters mentioned above is limited
to the region in the immediate vicinity below the critical point. With decreasing
temperature, the isothermal-isobar within the two phase region widens as does the
difference in the specific molal volumes, V,s and V,, of the co-existing phases. At
any point in between the two ends of this isobar, the specific molal volume of the
mixture, v,y , 1S on the average given by the relationship15

neVoc +nrVor = vom(ng +np). (6.87)

Because, the isothermal-isobar in question refers to a total of only one mole of the
substance, the following two simultaneous equations determine ng and ny .

15See P. Atkins, J. de Paula, Atkins Physical Chemistry, 7th edition, Oxford University Press;
Fredrick Rhines, Phase Diagrams in Metallurgy. McGraw-Hill book company, New York (1956).
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ng+np—1=0, (6.88)
ngVoc +nrVor —vom = 0. (6.89)
The solution is
VoL — VoM VoG — VoM
ng = ——2M. g =0 M (6.90)
¢ VoL - VoG t VoG - VoL

6.14 Smooth Transition from Liquid to Gas and Vice Versa

Incorrectly, it may appear from the above discussion that any travel from the gaseous
state to the liquid state of necessity has to pass through the co-existent two phase
region. A little reflection indicates that this is not always the case. A system starting
in the gaseous phase can be made to travel above the transition point across to the
other side of the co-existent region into the liquid phase. Also, the same process may
be performed in reverse, whereby liquid state is smoothly converted into gaseous
state without traversing across a two-phase region.

6.14.1 Exercise II1: Question for Skeptics

A sort of an experimental observation made while making coffee is of water boiling
“directly” into steam at 100°C. Additionally, the fact that the boiling point at the
atmospheric pressure is much below the critical temperature which is ~375°C
for H,O, — as noted, for instance, in: Dillio, Charles C. and Nye, Edwin P,
Thermal Physics, International Textbook Company, (1963) — a reader might expect
to “observe” the two phases occurring over a wide pressure—volume region. So an
untutored observer is understandably skeptical about the foregoing description of
the co-existent two phase region. Indeed, as a result he/she may want to be skeptical
about most of the theory presented in this chapter! If the co-existent two phase
region indeed occurs across a wide “region,” why doesn’t the observer notice what
should be a long Maxwell isobar? Should he/she be skeptical?

6.15 The Principle of Corresponding States

The advent of Van der Waals theory led to the expectation that perhaps the reduced
equation of state (6.30) implied the existence of a more general rule called the
Principle of Corresponding States = PCS. This rule conjectures that the true
equation of state of a fluid should possess the form implicit in (6.30). That is, it
should look like the following
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Po = f(Vo.1o). (6.91)

Furthermore, according to this principle, even though the exact form of the function
f(v,,1,) is not known — and is certainly different from the Van der Waals
approximation for it given in (6.30) — it should be the same for all physically similar
fluids.

Clearly, the chemically inert gases such as Neon, Argon, Krypton, and Xenon are
monatomic and physically similar. Therefore, they are the primary candidates for
testing the hypothesis posited by the PCS. We should be aware that for the lighter
inert gases, quantum effects — which are not included in the current discussion — can
hold sway at very low temperatures. This is significantly the case for the lightest
member of the group, Helium. However, Neon, the next heavier, is much less
affected in this regard.

We can also try another group of fluids as possible candidates for testing the
hypothesis. These have weak inter-particle interaction — manifested by relatively
low values for the critical temperature #.. Additionally — except for Hydrogen H,
the very light member of this group — they are not plagued by quantum effects.
Included in this category are Nitrogen N,, Oxygen O,, Carbon Monoxide CO and
Methane CHy, for which a variety of data are available.

6.15.1 X, as Function of p, for Various Fluids

Returning to the PCS, the available data allow us to explore various relationships
that are subsumed under (6.91).

We recall that the ratio X, = (”}QZ‘) is equal to 3/8 for all Van der Waals fluids.
Yet, experimentally observed values of ), for real fluids — see Table 6.1 — are spread
over arange, albeit a narrow one. It turns out that even though the parameter N, itself
is not quite the same for different fluids, when we use it to scale the dimensionless
ratio (‘” jo””) we find a nearly universal behavior — as is demonstrated in Fig. 6.5a
where such a scaled expression, X,, i.e.,

pv PoVo \
X, =— = Ne, 6.92
Ri ( " ) (092

is plotted as a function of p, for a number of fixed values'® of 7,.

16See, G.J. Su, Ind. Eng. Chem. Anal., Edinburgh, 303, 38(1946), as quoted in Stanley, H.E.
“Introduction to Phase Transitions and Critical Phenomena,” Oxford University Press (1971).
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Fig. 6.5 (a) Experimental results for X, as function of p,. For a variety of fluids, X, is plotted
as a function of the reduced pressure. The fluids represented are: carbon di-oxide, ethane,
ethylene, iso-pentane, methane, n-butane, n-heptane, nitrogen, and water. The experimental results
are qualitatively similar to those predicted by the Van der Waals theory. Data fit remarkably
well on to curves that are almost identical for different fluids. To avoid cluttering up the
figure, the curves have not been labeled. Top curve refers to 7, = 2.0. In the descending
order, #, for the next four lower curves is = 1.5; 1.3; 1.2; 1.1; 1.0. [Copied with permission
from H. Eugene Stanley’s book: “Introduction to Phase Transitions and Critical Phenomena”,
figure 5.3, p. 73, Oxford University Press (1971). Data from E. J. Su, Ind. Engng. Chem.
analyt. Edn. 38, 803 (1946)] (b) X, versus p,. Van der Waals Theory Results for X, ver-
sus p,. The curves follow almost the same pattern as the experimental results shown in
Fig.6.5a
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6.15.2 X, as Function of p, for Van der Waals Gas

Corresponding results derived from the Van der Waals theory are also provided —
see Fig. 6.5b. It is noticed that there is qualitative agreement between the Van der
Waals theory and the experiment.

6.15.3 The Reduced Second Virial Coefficient

Experimental data is also available for the second virial coefficient for a number of
real gases.
General form of the virial expansion within the context of the PCS would be

=Ci+ =+t (6.93)

where C}, C;, etc. depend on the reduced temperature #,. In other words:

ovYo b 1
Pov =C1[1+—2+0(§)] (6.94)

Iy Vo 0

where b, = C,/C). Note, that when we work with the Van der Waals equation in
reduced variables — see (6.30) —i.e.,

3
(po + _2) (Bvy — 1) = 81,,
v

the expansion that corresponds to (6.94) is the following:

PoVo 8 1 1 9 1
—_— ==l t+t— == — ol—11. 6.95
t, 3 |: + v, (3 81, + v2 ( )

Hence, the Van der Waals theory counterpart of the reduced —i.e., the PCS — second

virial co-efficient is
1 9
by=-——1]. 6.96
2 (3 8t0) (6.96)

Figure 6.6 shows experimental results for the reduced second virial coefficient b,
obtained for a variety of fluids, as a function of the reduced temperature ¢,. The
corresponding results predicted by the Van der Waals theory are plotted as solid and
dashed curves.



286 6 Van der Waals Theory of Imperfect Gases
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Fig. 6.6 Reduced second Virial coefficient o o, Ar; A A, Kr; &, Xe; O, CH, For ease of display
we have broken the data up into two parts. Experimental data shown on the lower curve refers

t0 0.5 < i < 1.0. The right-hand and lower scales relate to the lower curve. The dashed curve
r

represents the corresponding results of the Van der Waals theory. Data for 1.0 < - < 6.0 is
displayed in the upper curve. The left-hand and upper scales relate to the upper curve. Full curve
records corresponding Van der Waals results [Copied with permission from E. A. Guggenheim’s
book: “THERMODYNAMICS: An advanced treatment for Chemists and Physicists”, figure 3.10,
p. 137, North Holland Publishing Company, Amsterdam (1967).]

We note that while the Van der Waals estimates behave qualitatively similarly
to the experimental results, quantitatively they are quite poor at temperatures well
below the critical point.

For instance, the lower data curve records experimental results below the critical
point. Agreement with the corresponding Van der Waals theory prediction, given
as the dashed curve, is notably poor at r =0.57, but is seen to improve as the
temperature rises towards #.. Indeed, above the critical temperature — compare the
upper data curve with the solid curve — the agreement is much improved.

It needs to be reiterated that Fig. 6.6 displays a parameter free representation of
both the experimental and theoretical results. The story would be a little different —
meaning the fit between theory and experiment would be better than shown in
Fig. 6.6 — if we were to fit the data for a given fluid, by appropriately choosing
the Van der Waals parameters a and b.
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Fig. 6.7 Reduced molar densities in the co-existent regime Experimental data — from E.A.
Guggenheim, J Chem Phys 13, 253 (1945) — for the reduced molar densities p,¢ and p,; —
equal respectively to the inverse of the reduced molal volumes V,s and V,; — is displayed for
a variety of fluids. Note that when p, < 1, the displayed results are for p,i. Similarly, the data
for p,r is displayed in the region where p, > 1. The fluids studied are: argon, neon, krypton,
xenon, nitrogen, oxygen, carbon mono-oxide and methane. The ordinate is the reduced temperature
t, [Copied with permission from H. Eugene Stanley’s book: “Introduction to Phase Transitions
and Critical Phenomena”, figure 1.8, p. 10, op. cit., and also from E. A. Guggenheim’s book:
“THERMODYNAMICS: An advanced treatment for Chemists and Physicists”, figure 3.11, p. 138,

op. cit.]
6.15.4 Molar Densities of the Co-existing Phases and the PCS

As before we use the notation V,; and V,s for the reduced molal volumes of the
mutually co-existing liquid and vapor phases that occur in the condensed region that
obtains below the critical point. According to the dictates of the PCS, both V,; and
Vo should be common functions — that is, common within similar groups of fluids
— of the reduced temperature #,. Accordingly, results for similar fluids should all lie

on the same curve. As is displayed in Fig. 6.7, this prediction is well supported by

the experiment.'”

17See, E. A. Guggenheim, Thermodynamics, North Holland Publishing Company (1967).
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6.16 Examples VI-XI

In these examples, extensive use will be made of (5.18) and (5.25). We also note the

relationships
aC, 3%p
(&)= (%), 69

a= (2 ar+ (24 4
“=\or), o) Y

= C,dt + [z (z—’;) - pi| dv. (6.98)

and

6.16.1 VI: Internal Energy and Volume Dependence of C,

Describe the volume dependence of the specific heat C, of a Van der Waal’s gas.
Assuming the temperature is well above the critical point, give an expression for the
internal energy, u.

6.16.1.1 Solution

For the Van der Waals gas
Rt a
= - —. 6.99
Therefore,
ap R
— ) = , 6.100
().~ () 6100
and
’p
—— | =0. 6.101
(7). (©-100

As such (6.97) gives
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aC, 3’p
= —_£ =0. 102
(av), t(a%)v (0102

Consequently, for fixed temperature, C, is independent of the volume. Indeed,
this would be the case for any thermodynamic system for which the pressure is

2
a linear function of the temperature because (%Tf)v would then be zero. Keeping the
fleN

temperature constant and integrating ( i

) , with respect to v gives

/ (aC“) dv=C, = f(t) = Cy(1), (6.103)

v /,
where f(¢) is a constant independent of v but possibly dependent on ¢.

Thus, C, is independent of the volume. This is true even if we arrange the
pressure so that the volume becomes large — i.e., the density becomes small making
the gas dilute — while the temperature is kept constant. In the very dilute limit, the
behavior of the Van der Waal’s gas must approach that of an ideal gas. Therefore,
its specific heat C,, must equal that for an ideal gas. The latter, of course, is known
to be independent of the temperature.

Combining (6.98) and (6.100) we can write

Rt
du=Cydt + | [ —=) = p|dv = Cpdt + = dv. (6.104)
v—>b v?

Next, we integrate this equation along the path (¢,,v,) — (¢£,v,) — (¢,v). This
readily leads to the result

u—Cyt + (a/v) = u, — Cyt, + (a/v,) = D, (6.105)

where D is a constant.

6.16.2 Reduced Vapor Pressure in the Co-existent Regime
and the PCS

In Fig.6.8a, experimental data for the logarithm of the reduced vapor pressure'8

DPoo Within the co-existing vapor—liquid phases, is plotted as a function of the
inverse reduced temperature, 1/¢,. Again, the dictates of the PCS are seemingly well
followed and the data for a wide variety of fluids appears to lie on the same curve.
Also, it is interesting to note that when plotted against the inverse of the reduced
temperature, the experimental results for the logarithm of p,, seem to suggest a

¥Note, p,, was defined to be the reduced pressure, i.e. (p/p.), that obtains along the Maxwell
isobar in the co-existent region.
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curve which is nearly a straight line. That is,
Poo X [t,]”. (6.106)
with

@ ~173. (6.107)

6.16.3 Reduced Vapor Pressure for a Van der Waals Gas

Just below the critical point, the p,, for a Van der Waals gas can also be fitted
to a similar result with ¢ = 4. Accordingly, the saturation pressure for a Van der
Waals gas — see Fig. 6.8b — falls off less rapidly with decrease in temperature than
is observed in experiment.19 Moreover, for lower temperatures the Van der Waals
result for ¢ falls further below 4. This, of course, means that except possibly in the
neighborhood of the critical point, for the Van der Waals gas the power relationship
with a single ¢ does not obtain.

6.16.4 VII: Temperature Change on Mixing
of Van der Waals Gases

A quantity of Van der Waal’s gas is contained in two thermally isolated vessels, of
volume v; and v,, which are connected across a short tube with a stopcock. Initially,
with the stopcock closed, there are n; and n, moles, at temperatures #; and 7, in the
first and the second vessel, respectively. Calculate the final temperature # of the gas
when, after a quasi-static opening of the stopcock, thermal equilibrium is achieved.
What is the corresponding result for an ideal gas?

6.16.4.1 Solution

Because the system is thermally isolated, the process is adiabatic. Therefore,
according to the first law, the work done by the gas is compensated by an equal
decrease in the internal energy. For the process under study, no work has been done
because the gas can be considered to have performed a free expansion. This is a
subtle point and needs some explanation.

Consider that initially the stopcock is closed and one vessel is empty — meaning
at some earlier time it had been completely evacuated. Therefore, initially all the
gas is in the other vessel.

9Note that ¢ = 4 is consistent with the analytical result derived earlier. [See (6.80)].
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Fig. 6.8 (a) Reduced vapor pressure in the co-existent regime. The fluids studied are: Argon,
Krypton, Xenon, Nitrogen, Oxygen, Carbon Mono-Oxide and Methane. Note that the curve
appears to be a straight line, indicating a linear drop with 1/¢,, which is equivalent to a functional
dependence of the form p,,  t5 with ¢ ~ 7.3. [Copied with permission from E. A. Guggenheim’s
book: “THERMODYNAMICS: An advanced treatment for Chemists and Physicists”, figure 3.12,
p. 139, op. cit.] (b) Reduced vapor pressure in the co-existent regime for a Van der Waals gas
The figure on the left hand side shows Maxwell isobars on a P-V plot. Each such isobar has
a corresponding temperature which is not shown in this figure. The figure on the right hand
side displays the pressure of such isobars against their corresponding temperature, both on the
reduced scale. (This plot is reproduced courtesy of Addison—Wesley—Longman—Pearson from D.V.
Schroeder’s book: An introduction to thermal physics, Fig. 5.23, page 184)
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Upon opening the the stopcock quasi-statically, the gas would slowly enter the
evacuated vessel and push against an imaginary, massless wall that moves without
friction. The pressure on the evacuated side of this imaginary wall is clearly equal
to zero. Hence, no work is being done? as the gas pushes this (imaginary) wall and
expands into the evacuated portion. Clearly, we can push the stopcock in and halt
this process anywhere en route to the final equilibrium state.

Thus, we can treat the process described in the problem as though it is executed
without any change in the internal energy of the gas.

According to (6.105), the initial value of the internal energy in the two vessels is

Uinitial = U1 + Up

2
an

=nmnCyty — -1 + D,
U1

an?
+12Cyty — —2 + Ds. (6.108)
vy

When the stopcock is opened and the equilibrium has been reached, the number of
moles in the two vessels become v, and v, where

n +np
vi=uu|\—»
V1 + vy

vy = v, (M) . (6.109)
v+ U3
Note,
V1 + vy = ny + ns. (6.110)

Therefore, again according to (6.105), the expression for the the total internal energy
after the expansion is

Ufinal = V1 Cv If—a (])12/1)1) + Dy

+ v, Cyty —a (v3/v2) + D. (6.111)

Because there has been no change in the internal energy, therefore, we can equate
the initial and the final value of the internal energy. Using (6.108)—(6.111) we get

20This is ensured by the fact that the valve is opened quasi-statically. As a result the gas enters the
evacuated vessel with little kinetic energy.
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n2 I’lz
C, (nit; +mb) —a (—‘ + —2) +D,+ D,
U1 U2
2

2
= Cyte(ny +n2) —a (”—1 + ”—2) + Dy + Da, (6.112)
()] U2

and

_(mti+nab)  alng +no)

t =
! (n1 +ny) Cy(vy + v2)
¢ [”% v ”%} 6.113)
Co(ni +mn2) Loy v ’

The corresponding result for an ideal gas,

; (nltl +n212)
f= - 9
ny+ny

is obtained by setting a = 0.

6.16.5 VIII: Specific Heats, Enthalpy, n and
Jor Van der Waals Gas

If the internal energy of one mole of a Van der Waal’s gas is as given in (6.105),
calculate:

(a) The difference in the specific heats: C, — C,,

(b) The enthalpy £,

(c) The coefficients n = (§-) and p = (g—]’])h.

(d) What are the corresponding results for an ideal gas?

6.16.5.1 Solution

(a) Here, it is convenient to use (5.83)

ap v
Gmcoi(2) (&) 6119

The derivatives (a—f)v and (g—’;) ,are readily calculated from the equation of state
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(p—i—%)(v—b):Rt.

We have

and

v\ R(v —b)
at ),  Rt—2a(—b)/v’
Thus, (6.114) gives

R
Cp—Cp= — (6.115)

1 — 2a(v—b)2 ]’
Rtv3

It is convenient to re-cast the above expression in terms of the reduced variables

v v
Vo = — = =
Ve 3b
and
P ¢t (21Rb
o te n 8a
We get
R
C,—C, = (6.116)

21

-]

At very high temperatures, and/or very low densities — i.e., #, < 1 and/or v, <,
1 — the predicted difference in the specific heats equals R. This result is, of course,
correct because here the gas closely approximates an ideal gas.

As the temperature and the volume are decreased towards their critical value,
t, = l and v, = 1, the difference between the specific heats increases, eventually
approaching infinity at the critical point. Because above the critical point the specific
heat C, for the Van der Waals gas is finite — in fact, it is equal to that for an ideal
gas —the divergence of C), at the critical point has to be considered a positive feature
of the theory.

(b) Equation (6.105) and the equation of state can also be used to write the
expression for the enthalpy:
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h:u—l—pv:Cvt—E—i-pv—i-D
v

it | B4l ip

= ol — — _—— v

v v—>b V?

= Cyt —2a/v + Rtv/(v —b) + D. (6.117)

(c) Next,?! we calculate n where
ot
= (&),
According to the cyclic identity, the right hand can be represented as
a\  fou\ ()  —(3),
(%)u o (%) (ﬁ) 3,
As such for the Van der Waals gas we get

_ )

Using a procedure similar to that followed above, we can also find the coefficient

(%),

Next, we write
(- ()3
ap ), \ov ap ), ()’
B O)

The partial differentials on the right hand side are easy to calculate. From (6.117)
we find:

2INote, the physical relevance of the coefficients n and u is explained in the chapter on Joule
and Joule—Kelvin effects where we re-derive the relevant expressions by a different procedure.
Compare the results derived there and recorded in (7.9) and (7.19).
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The partial differential (g—‘;) is found directly from the equation of state.
t

vy _ R
), (w—=hb)2 ¥

Thus, for the Van der Waals gas,

(oY 1 2av(v — b)? — bRtv3 6.119)
r= ap), C,L Rtvd —2a(w—b)? |’ '

Corresponding results for an ideal gas can be obtained by settinga =0andb = 0
in the above equations. Accordingly, both 7 and u are equal to zero and

h = Cyt + pv =Cyt + Rt.

6.16.6 IX: Work Done and Change in Internal Energy
and Entropy in Van der Waals Gas

One mole of a Van der Waal’s gas is in contact with an infinite thermal reservoir at
temperature Z.. In an isothermal, reversible expansion the gas increases its volume
from v; to v¢ and in the process does work w. Calculate w, the resultant change in
the internal energy, «’, and the entropy, s’, of the gas and the reservoir.

6.16.6.1 Solution

W= /Uf pdv =Rt . In[(vi—b)/(vi — b)] —a(1l/v; — vy).

Since

p\
(E)v =R/(v-0),

therefore,

(8_u) =—p+Rt/(v—>b)=a/v’.
v/,

Accordingly, for the isothermal process, the net change in the internal energy is

W = /vfdv(a/vz) =a(l/vi—1/vy). (6.120)
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For reversible, isothermal transfer of heat to the gas, the first-second law dictates
s'te = u' +w = Rt.In[(v; — b)/(v; — b)].
Thus,
s’ = Rn[(vs — b)/(v; — b)], (6.121)

is the increase in the entropy of the gas. Because of reversible operation, the entropy
of the universe remains unchanged. Therefore, the entropy of the reservoir decreases
by the same amount.

Note, for isothermal processes volume dependence of the internal energy arises
only out of the presence of inter-particle interaction, parameterized here by the
constant a.

The occurrence of the constant b in the expression for the entropy change given
above is quite interesting. Had we analyzed the statistical basis of entropy, we
would have found that for isothermal processes the change in the entropy involves
logarithmic dependence on the volume. This volume has to be the one that a
molecule can actually roam around in. That means, rather than just v, the reduced
volume v — b must be involved.

6.16.7 Example X: Adiabatic Equation of State for Van der Waals
Gas in the Region Above the Critical Point

Calculate the entropy of one mole of a Van der Waal’s gas above its critical point
and use it to construct an adiabatic equation of state in that region.

6.16.7.1 Solution

Dividing both sides of the first 7.dS equation by ¢ gives

dr ap dr R
=L 4 (2) w=c% dv. 6.122
s t+(3t)v =Gt T (6.122)

Because C, is a constant in the region above the critical point, we can integrate the
above along the path (¢,,v,) — (¢,v,) — (£, v) to get

s—s8, =CyIn(t/t,) + RIn[(v — b)/ (v, — b)]. (6.123)
For an adiabatic process

s—s, =0.
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Consequently, (6.123) becomes
In(¢/1,)¢ + In[(v — b)/ (v, — b)]R = 0.
It can be recast as
In[t% (v — )R] = ln[tocU (v, —b)E].

A convenient form for the adiabatic equation of state is obtained by exponentiating
both sides.

1€ (v — b)® = const. (6.124)

When b = 0 this result reduces to that for an ideal gas.

6.16.8 XI:u,h,s,C, — C,, and Adiabatic Equation of State

One mole of a certain gas has an equation of state
(p +a)v+ (b/v) = Rt.

At a temperature above the point where the specific heat C,, peaks, calculate: (1) the
internal energy u (2) the enthalpy 4 and (3) the entropy s and (4) the difference
in the specific heats C, and C,. Finally, (5) construct its adiabatic equation of
state.

6.16.8.1 Solution

2

0
1. Because a—z‘f = 0 the specific heat C, is independent of volume. Therefore,

much like the Van der Waals gas, C, is independent of the temperature. Using

the identity
u ap
du = (g)v dr + [t (E)u — pldv,

b
du = Cydr + (a + —2) dv.
v

we get
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Integrating along the path (¢,, v,) — (¢, v,) — (f,v) gives

b
u—u, = Cv(t - to) - (é - _) + Cl(l) - Uo)7
v Vo
or
b
u==Cyt +av—|— )+ const. (6.125)
v

2. The enthalpy is now readily evaluated.
b
h=u+ pv=(C,+ R)t —2| — ) + const.
v
3. To evaluate the entropy we use the relationship
ds = e + L

t

Next, we use (6.125) to find du, i.e.,
b
du = C,dr + a+— dv.
v
Thus,
dr dv

ds=C,— + R—.
t v

Integrating along the path used for deriving (6.125), we get

s—s,=CyIn(t/t,) + RIn(v/v,). (6.126)
Whence
TR
s =35, +1In |:T0Cv v§i| . (6.127)

4. As recorded earlier in (6.114)

op v
-G —’(E)U(E)p‘

Here
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ap\ _
(). = #

and
) B (v/t)
an)p |1-2
therefore,
R
C,-C, = (1—%) . (6.128)
~ Riv

As Rtv approaches 2b from above, the specific heat C, becomes large and tends

to co. While the first derivative (g—‘z) approaches zero, the second derivative
t

2
(87) is non-vanishing. As such, there is no critical point.
v
Finally, for an adiabatic process, we set
S = So.

in (6.127). The adiabatic equation of state, therefore, is

vRt¢ = const. (6.129)

6.17 Dieterici’s Equation of State

6.17.1 XII: Behavior of Dieterici Gas

Discuss the behavior of a Dieterici gas with the equation of state:

P(v —b) = Rtexp(—av™'/Rt). (6.130)

6.17.1.1 Solution

Much like the Van der Waals gas, the equation of state of a Dieterici gas employs
two constants, @ and b, that are supposed to represent inter-particle interaction and
molecular size effects. And, it leads to a co-existent region involving gaseous and
liquid phases. Moreover, in the low density limit, both these equations yield identical
results for the leading two virial coefficients.

For large v, expand the exponential in the small parameter (—av™'/RT)



6.17 Dieterici’s Equation of State 301

av™!

Rt

p(v—>b) = Rt (1 — ) + 0.

Next, multiply both sides by [m ]

-1
pv v av N
_— = 1— 0 .
Ri v—b( Ri )+ ™)

and expand the term (+ on the right hand side in inverse powers of v to get
v—>b)

pv/Rt =1+ (by)/v + O(v72).
Hence, identical with the Van der Waals gas, the second virial coefficient is
b, = b—a/(Rt).

Also, in principle, the constants @ and b should be the same for both these equations.
Despite this superficial similarity, we shall see below that the critical constants,
Pes Ve and 1., are quite different.

As noted for the Van der Waals gas, at the critical point two requirements have
to be satisfied. First,

a 1

Rtv?Z v—b>b

(3_1’) = Ri(v —b) " exp(—av™' /Ri) (

o ) =0, (6.131)

and second,
o= (22
v /,

_Rtexp(—av_l/Rt) 2 N av™? 2_2av_3_ 2av™2
N v—b (v —b)? RT RT  Rt(v—»b) |

After some algebra, it is determined that in order to satisfy these two requirements
we must set

v =2b; Rt = %(a/b); pe = a/(2eb)>. (6.132)

In particular, here the dimensionless ratio (p.v./Rt.) is equal to 2/e*> = 0.271.
Compared to the Van der Waals prediction, namely 3/8 = 0.375, this result is seen
to be — see Table 6.1 above — in somewhat better agreement with the experiment.

Using the above values for 7., p., v., the Dieterici equation of state is transformed
to its reduced variables ?,, p,, v,

t,e2 -2
po = =25 eXp( ) (6.133)

21)0 -1 Volo
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Dieterici Isotherms

Po
o
[e)}

Fig. 6.9 Dieterici equation of state isotherms for #, = 1.0,0.9.,0.8,0.7,0.6

Similar to the Van der Waals gas, the reduced derivatives

9po 21,¢ —1 1 -2
= , 6.134
(avo )to (21)0 -1 21),, -1 + tov(% exp Uoto ( )

32[’0 4 3170 462(1 - tovo)
_ BASASELULIZN 6.135
(aZvo),(, (3:57) (avo),(, ) (139

are both vanishing at the critical point#, = 1, p, = 1, v, = 1.

and

6.17.2 Dieterici Isotherms

Shown in Fig.6.9 below are a set of isotherms for Dieterici’s equation of state.
Close to v, = 0.5 the pressure increases rapidly, ultimately diverging at v, = 0.5.
Therefore, much as Van der Waals would have intended, the smallest volume the
Dieterici fluid can occupy is equal to b.



Chapter 7
Internal Energy and Enthalpy: Measurement
and Related Examples

Unlike the state variables the volume, pressure, and the temperature, thermodynamic
state functions such as the internal energy and the enthalpy cannot easily be
measured by a well designed piece of apparatus. Rather, it is necessary to follow
a circuitous route.

Measurement of the internal energy was first attempted in what is called the
Gay-Lussac—Joule (GLJ) experiment. This experiment attempted to determine the
amount of heat energy that is occasioned by a free-expansion of gas enclosed in
vessels submerged in water. Unfortunately, the heat capacities of the water that was
used, plus the enclosing tank, were vastly greater than the heat capacity of the gas
being expanded. The resultant change in energy was immeasurably minuscule and
could not reliably be measured. All that is discussed — and three worked examples
are provided — in Sect. 7.1.

To overcome these difficulties, Joule and Kelvin devised an experiment with two
different foci. One, the experiment shifted the focus from the internal energy to the
enthalpy. Two, rather than dealing with a fixed amount of gas that is stationary, it
used a procedure that involved “steady-flow.” As a result, reliable measurements
could be made. These issues, two worked examples, and the study of upper and
lower inversion temperatures are discussed in Sects. 7.2—7.5. Three more problems
are worked out in Sect. 7.6. The physics of “From the Empirical to Thermodynamic
Temperature Scale” is discussed in some detail in Sect. 7.7, while solutions to seven
additional problems are provided in Sect.7.8. Cursory remarks on the concept of
negative temperature are reported in Sect. 7.9 the concluding section.

7.1 Gay-Lussac-Joule Coefficient

7.1.1 Introductory Remark

To this end, let us first deal with the internal energy, u = u(¢,v). Being a state
function, it allows an exact differential,

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 303
DOI 10.1007/978-3-642-21481-3_7, © Springer-Verlag Berlin Heidelberg 2012
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ou ou ou ot
dbt = (E)Udl + (a_v)t dU = Cv(l)dl — (E)U (%)Mdv

= ¢, (t)dt — ¢, (t)n(¢, v) dv. (7.1)

In the above, use was made of the cyclic identity': namely,

&),--).(&),

Also, the so-called GLJ coefficient, n(z, v) = (%)u , was introduced.?
According to (7.1), in order to fully calculate the internal energy, u(¢, v), detailed
knowledge of the specific heat, ¢,(¢), as well as the GLIJ coefficient, n(z, v), is

desired.?

7.1.2 Measurement

Gay-Lussac, and separately Joule, were the first to attempt to measure 7(¢, v) —i.e.,
(%)M — for a gas by using an apparatus that is displayed schematically in Fig.7.1.
The vessel “A” on the left-hand side is filled with a quantity of gas. It is connected
to an evacuated vessel “B” via a pipe that can be opened and closed by the use of a
stopcock. The vessels are immersed in water whose temperature is measured by an
installed thermometer. The whole assembly is placed in a tank.

The opening of the stopcock causes the gas in the vessel “A” to expand so that
both the vessels are filled by gas at the same pressure. Because originally the vessel
“B” is fully vacant, the expansion is free. As such, the expansion occurs without any
work being done, i.e., dw &~ 0. According to the first law*

dg = dw+ du ~ 0 + du. (7.2)

Therefore, the heat energy, dg, introduced into the gas must be very close to
equalling the increase, du, in its internal energy.

Clearly, the heat energy, dg, that has been added to the gas has come from the
change, dz, in the temperature of the surrounding water. Both Gay—Lussac and Joule
failed to observe any such change of temperature. In other words, they found dz ~ 0
and therefore concluded that dg ~ 0. Using (7.2), this leads to the conclusion that
for the gas under consideration

ISee (1.44) and (1.45) for proof of the cyclic identity.
2Gay-Lussac, Joseph Louis (12/6/1778)—(5/9/1850).

3If, however, we needed to determine u(z, v) at a fixed volume, say vy, then we could set dv = 0
and use only the remainder of (7.1) in the form: du = ¢, (¢) dt.

4See (3.7).
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Fig. 7.1 Schematic view of
the Gay-Lussac—Joule
apparatus [Copied with
permission from F. W. Sears
and G. L. Salinger’s book:
“THERMODYNAMICS,
KINETIC THEORY, AND
STATISTICAL
THERMODYNAMICS”,
Third Edition, figure 4-1,

p. 103, op. cit.]
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dt ~ 0, therefore, dg =~ 0;
dg ~ 0 + du, therefore, du ~ 0. (7.3)

Noting that both dz and du are close to zero, (7.1) yields

du = ¢, (¢)dt — ¢, (t)n(t, v) dv;
0~ —c,(t)n(t,v)dv. (7.4)
In other words, GLJ found experimentally that n(z, v) is “immeasurably” small
at the given temperature. In accord with GLJ, below we show by a theoretical

procedure that in a perfect gas the GLJ coefficient 7(¢, v) is indeed vanishingly
small.

7.1.3 Derivation

The GLIJ coefficient, n(z, v), can be expressed in terms of the specific heat C,,
isothermal compressibility x;, isobaric volume expansion co-efficient «,,, pressure
p, and temperature 7. To this end, recall the relationship (see 5.17)

u ap
— ) =tl=) —p 7.5
(50),~(3), -7 7
Accordingly, one can write

B 9 ~ 9t ou _ _(B_ﬁ)t _ _(%)r
n(t,v) = (%)M - (E)U (%)t B (3_?) - G
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(Here the cyclic identity was used to derive the right hand side of the second line
from that of the first.)
A direct experimental measurement of 7(¢, v) is not straightforward. Yet, if the

usual type of equation of state is available, the quantity (%—‘?) that occurs in (7.6)
v
can readily be calculated.

7.1.4 Example I: For a Perfect Gas

The equation of state for one mole of a perfect gas is
pv = Rt.
Differentiating with respect to the temperature ¢ and holding the volume v constant

gives
dp
—_ V=
ot /),

To calculate the coefficient  we use (7.6).

d
n(z,v)cvz[ —z(a’j)}z[p—Rt/w:[p—p]:o.

Thus, the GLJ coefficient 7(z, v) for a perfect gas is zero.

7.1.5 II: For a Nearly Perfect Gas

If the gas does not greatly depart from being perfect, the addition of the so called
“second virial coefficients,” e.g.,

. 1 By(1)
p—Rt |:E+ :|,

v2

well improves its equation of state.
Again using (7.6) we have

n(t,v) = Civ[p —t (g_f)v] -

Rt%\ (0Bs(1)
v2C, a ),
Because R, C,, and (33 Z(t)) = 4B 2“) are positive,’ the GLJ coefficient (¢, v) for
v

a slightly imperfect gas is non-zero and negative.

3See Statistical Mechanics, by R.K. Pathria, Pergamon Press.
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7.1.6 III: For a Van der Waals Gas

For the Van der Waals gas a derivation of the GLJ coefficient, n(¢,v) = (g—l’))u,
is already available in a previous chapter. (See (6.118) and (6.119).) But the
present derivation is different. It utilizes the more compact expressions for these
coefficients derived in the present chapter and also develops more fully their
physical connotation.

Beginning with the equation of state for one mole of a Van der Waals gas

R a a7
P=0w"p o ‘
the partial derivatives (g—’;) and (g—';)p are readily determined. For instance, one
gets !
ap R
— | = . 7.8
(5),= o 7
Accordingly, (7.6) yields
3
o — () — [—(%),]
TV =\4) = C,
1 Rt _ a (7.9)
“olf T o] T v '

Because both a and C, are positive, similarly to the slightly imperfect gas, the GLJ
coefficient 7(z, v) for a Van der Waals gas is negative.

Let us examine what happens if a Van der Waals gas undergoes a quasi-static, free
expansion, in an adiabatic environment that allows no exchange of heat energy with
the outside. Because the expansion is “free,” the process does not do any work, i.e.,
dw = 0. Further, because the expansion is quasi-static and occurs without exchange
of heat energy, we have ¢ - ds = 0. Accordingly, the first-second law equation,
t-ds = du + dw, leads to the result, 0 = du + 0. This means that the process occurs
at constant u. Hence, (7.9) can be represented as

( ot ) dt a

), dv v2C,°
Thus, the increase in temperature, dz, as a result of the expansion (meaning, as a
result of the increase, dv, in its volume) is negative. That is, volume expansion cools
the gas down. This, of course, is not surprising because the overall inter-molecular
force is attractive. Therefore, upon expansion of the volume, positive work is needed

to overcome the attractive force. And such work has to be provided by the heat
energy that is extracted from the gas. Hence, the cooling.
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7.1.7 Description

Much like the internal energy, the enthalpy is a state function. Its exact differential
can be represented in terms of the state variables ¢ and p.

oh oh oh ot
dh(l,p) = (E)pdl + (5)[(1‘0 = Cp(l)dl - (E)p (%)hdp
= cp(t)dt —c,(H)pu(t, p)dp. (7.10)

In the above use was made of the cyclic identity, namely

(ah) . (ah) (8t)

ap ), at ) ,\aop /),

Further, the equality (%)p = ¢, was noted. Also, the so-called Joule—Kelvin (JK)
coefficient,

ad
uit, p) = (a—t) , (7.11)
P/

was introduced.
In order to fully calculate the enthalpy,i(z,v), (7.10) recommends having
detailed knowledge® of the specific heat, cp(t), as well as the JK coefficient,

wu(t, p).

7.1.8 Constant Enthalpy

Issues relating to the internal energy were the focus of the GLJ experiment. The
attempt to measure an exceedingly small heat energy transfer that is occasioned by
the free-expansion of gas enclosed in vessels submerged in water, is particularly
handicapped by the enormous difference in the heat capacities of the gas and the
surrounding water (including the enclosing tank).

To overcome these difficulties, Joule and Kelvin devised an experiment which
did two things differently. One, it shifted the focus from the internal energy to the
enthalpy. Two, rather than dealing with a fixed amount of gas that is stationary, it
used a procedure that involved “steady-flow.” Such a procedure circumvented the
need to measure extremely small changes in energy which get masked by the very
large heat capacities of the tank and its contents.

%Note, however, that if the pressure is constant, say po, then dp = 0. All we need then is the
knowledge of ¢, (1).
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Fig. 7.2 Schematic view of the Joule-Kelvin apparatus

A schematic diagram of the apparatus used by Joule and Kelvin is displayed in
Fig.7.2. A stream of gas is steadily pushed in — at temperature 77 and pressure P; —
from side 1 across a porous plate constriction. The stream is extracted at temperature
T3, and pressure P,, by a piston on side 2. The flow continues until a steady, dynamic
state is achieved.

After a steady state is reached, the temperature profile of the flowing gas, subject
only to the vagaries of heat energy exchange with the environment across the
insulation, remains essentially constant. To minimize any such exchange the tube is
adiabatically shielded — meaning, it is extremely well insulated. Thus, the exchange
of heat energy with the environment is made essentially equal to zero, i.e., AQ ~ 0.
Moreover, because of the relative slowness of both the incoming and the outgoing
portions of the gas, their kinetic energy is both small and not much different.
Therefore, changes in the kinetic energy can also be assumed to be negligible.

Even though one knows that very little or no heat energy is exchanged with the
environment, i.e., that, AQ =& 0, in order to use the first law, AQ = AU + AW,
one also needs information about the increase in the internal energy, AU, and the
work, AW, done during the expansion. All this, of course, refers to the process in
which from side 1 a volume’ V; of gas at temperature T and pressure Py, is pushed
across to side 2. Side 2 is at temperature 7, and some lower pressure P,, and the
outgoing volume is V,. Therefore, during this traversal, the work done by the gas is

AW = (P,Vs — P V), (7.12)

and the increase in its internal energy is (U, — U;). Then, following the first law,
one has

AQ =AU + AW = Uy —Uy) + (P2Va— P11)) = 0, (7.13)
or equivalently

H =U + PVi =~ U, + P,V, = H,. (7.14)

7A schematic plot of this is given in Fig. 7.2 above.
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This is an important result. During steady flow of a gas in the manner described
above, its enthalpy (per mole) remains essentially unchanged. And with appropriate
planning, this behavior can be utilized for lowering the temperature of the gas.

Let us ask the question: Given that the starting point of the incoming gas is
(P;, T;) what obtains for the outgoing gas?

Because the value of the enthalpy, H; per mole, for the incoming gas is fixed,
the value of the enthalpy of the outgoing gas — which must also be equal to H; per
mole — is both fixed and pre-determined. Now, two state variables completely deter-
mine the thermodynamic state of a simple system. As such, there remains only one
other variable — say, for example, the pressure — of the outgoing gas that is subject to
change. By adjusting the pumping rate, the pressure of the outgoing gas can be made
to achieve a series of decreasing values: say, P;, Py, etc. As aresult, the correspond-
ing temperature® of the outgoing gas takes on the values T, Tk, etc., respectively.

Finally, the pressure P; and the temperature 7; of the incoming, as well as the
series of measured points of the outgoing gas — i.e., the points, (P;, T;), (Px, Tx),
etc. — are all plotted. A smooth curve’ is then drawn through these points, all of
which refer to the same value of the enthalpy.

7.1.9 Constant Enthalpy Curves and Gaseous Cooling

A constant enthalpy curve!® that starts at some appropriately chosen'! incoming

point (Py, T1), is schematically drawn in Fig.7.3a. Initially, the slope (g—;) y of
this curve'? is negative. As a result, the outgoing gas is warmer than the incoming
gas. Continuing in the direction of lower values of the outgoing pressure, the curve
rises toward its maximum, and the magnitude of the (negative) slope decreases.
The position of the maximum, where the slope (g—;)  becomes zero, is called'? the
“inversion point.” Further to the left,'* the slope becomes positive: meaning, here
the outgoing gas cools down. By choosing different starting points and then, as was
done above, performing a series of measurements of the outgoing gas, a family of
such constant enthalpy curves is produced. Each member of such family has an
inversion point — e.g., see Fig. 7.3b. Then, much like the dotted curves in Figs. 7.3b

8Meaning, once the enthalpy and the pressure P; of the outgoing gas have been chosen, its
temperature 7 gets pre-determined.

°Incidentally, this curve represents behavior that is quite likely non-quasi-static. Therefore,
progress from one such point to the next does not necessarily occur through states that are in
thermodynamic equilibrium.

10To be called isenthalpic.
!See below for an explanation of what such appropriate choice should be.

12View Fig.7.3a and also observe the point @ on the curve which is second from the bottom in
Fig.7.3b.

13See point b on the noted curve in Fig. 7.3b.
14As, e.g., is the case at point ¢ on the same curve in Fig. 7.3b.
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Fig. 7.3 (a) Schematic view of the Joule—Kelvin experiment results. Each smooth curve refers
to a constant value of the entropy while the dotted curve in figure (b) represents the locus
of the inversion points [Copied with permission from F. W. Sears and G. L. Salinger’s book:
“THERMODYNAMICS, KINETIC THEORY, AND STATISTICAL THERMODYNAMICS”
Third Edition, figures 4-4(a) and (b), p. 107, op. cit.]

and 7.4, a curve is drawn that passes through all these inversion points. This is
the so-called “inversion curve.” When extended to zero pressure, the inversion
curve meets the temperature coordinate at two points, one higher than the other.
These points are denoted as 7™ and 7 ™", respectively. From the comments in the
present footnote'? it is clear that when an isenthalpic curve starts at a point higher
than (Pypper, Tupper) it passes above the inversion curve — as, for example, does the
top curve in Fig. 7.3b — and no cooling results from it.

Initially, all the isenthalpic curves that start off at appropriately chosen loca-
tions'® warm up as they begin heading toward lower pressure until they reach the
inversion curve. After crossing this curve, they start to cool down.

Long ago gases were thought not to liquefy. The realization that the Joule—
Kelvin process can lead to cooling, motivated its use in the liquefaction of gases.
However, to reach really low temperatures, use is made of the reversible adiabatic
demagnetization of paramagnetic salts — and indeed of nuclei themselves. This
phenomenon will be investigated in a later chapter.

I5When the constant enthalpy curves are extended toward zero pressure, the highest and the lowest
such curves — assume they begin at the points (Pupper » Tupper) and (Piowers Tiower), Tespectively —
touch the temperature coordinate at 7™ and 7™". As shown in Fig. 7.4, in Nitrogen 7™* =~
610K and T™" ~ 100 K. Regarding the magnitude of the starting pressures, Pypper and Pioyer,
note that they are also dependent on the relevant temperatures, Typper and Tiower, respectively.

16 An appropriately chosen location (P, T') is one that sits lower than the point ( Pyppers Tupper) and
higher than the point (Piower, Tiower)- See the preceding footnote for explanation.
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Fig. 7.4 Schematic view of the constant enthalpy curves for nitrogen. The dotted line represents
the inversion curve. The pressure at the critical point should be ~3.5M Pa and the temperature
~125K (Compare M.W. Zemanski and R.H. Dittman, “Heat and Thermodynamics,” McGraw
Hill, 1981.) [Copied with permission.]

7.2 Joule—Kelvin Effect: Derivation

The JK coefficient, u = u(t, p) = (g—;)] , can be expressed in terms of the specific
n

heat C, , isobaric volume expansion co-efficient &, volume v and temperature ¢.
Again, we invoke a relationship that was obtained via the first-second law. (See

(5.74).)
(%) - (a—”) + (7.15)
op), an), ’

Using the cyclic identity we can write

=) (%), () =L

dp oh ) (3), Cp
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Despite the fact that the direct measurement of w(z, p) via the Joule—Kelvin
porous plug experiment is of great physical and historical interest, making this
measurement is a cumbrous procedure. In contrast, looking at the right hand side
of (7.16), we note that C), is easy to measure. Equally important, the measurement

of (g—l[’)p is both straightforward and can be done with much greater experimental

accuracy. Also, there is the possibility that, if an equation of state is known, (3—”)p

At
can be theoretically calculated.

7.2.1 1IV: JK Coefficient For a Perfect Gas

The JK coefficient u is readily found by using (7.16)

B] ]
u(t, p) = (é)h =t (3—1;)]) —v]/C,.

Differentiating the equation of state, pv = R{, with respect to ¢ and keeping p

constant gives
0
(), =+
ot ),

) —v=(Rt/p)—v=v—v=0.
P

which in turn yields

v

t =1
u(t, p)Cp (at

Therefore, for a perfect gas, much like the GLJ coefficient 5(¢, v), the JK coefficient
u(t, p) is also equal to zero.

7.2.2 V: JK Coefficient for a Nearly Perfect Gas

As before, consider the nearly perfect gas with the equation of state

Bz(f)j|'

v

pv:Rt[l—i-

In order to calculate (¢, p), first differentiate the equation of state with respect
to temperature at constant pressure, then divide by pressure p and multiply by
temperature ¢ and from the result subtract the volume v. Finally, multiply by
C, (&) This gives:
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v dBy (1) By(1) d
A ¢ P B Kl G A2
pul, p) = Cp - C (1+Bz(t))
P v
dBy (1)
=== — By(t) B, (t
& —( zv())u(t,p), (7.17)

B
Cp (1+20)

which can be written as

dB:
1450 — By (1)

. (1 . Bsz)Z (7.18)

p(t, p) =

For a perfect gas B,(t) — 0. In this manner, (7.18) again confirms the fact that for
an ideal gas the Joule—Kelvin coefficient © — 0.

7.3 JK Coefficient for a Van der Waals Gas

To determine u(t, p) = (g—;)h, for the Van der Waals gas, first we use (7.16) which

equates (¢, p) to CL,, [l (%—';)p - v] . Next, we carry out direct differentiation of the

equation of state — given in (7.7) above — to determine (‘3—;’)‘” This gives

vy R B R(v —b)
(g)p C[(p+a/v?)—2a(v—b)/v3}]  [Rt —2a(v—b)2/v3]

Accordingly, for the Van der Waals gas, the J-K coefficient is

() -]

IR L B )
Cp | Re— 24052 | A p)

u(t, p)

(7.19)

As noted before, for a perfect gas, the constants “a” and “b” are equal to zero and as
aresult the J-K coefficient, (¢, p), is vanishing.
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7.4 JK Coefficient: Inversion Point for a Van der Waals Gas

In the (r — p) plane, any point at which the slope of the constant enthalpy curve
for a Van der Waals gas is vanishing, will be called an “inversion point.” The

temperature, volume and pressure at which this happens will be denoted as £, v;

and p;. Accordingly, at £, p; the derivative (g—;)h tends to zero. When this happens,

the numerator I'(#, pi), in (7.19) is vanishing. That is

2
Y

L 2
[M _ bRti} 0. (7.20)

We are assured of the accuracy of this statement by the fact that when I' tends
to zero the denominator in (7.19) is in general finite. This is easily demonstrated
by multiplying the denominator by b. In general, b is not equal to v;. As a result,
the coefficient bR?; cannot simultaneously be equal to 2ab(v; — b)?/ vi3 — which
would make the denominator vanish — and 2a(v; — b)?*/ vi2 — which would make the
numerator vanish. Consequently, the numerator and the denominator generally do
not become zero at the same time.

7.4.1 JK Coefficient: Positive and Negative Regions

To investigate the other two possibilities, namely to find when w(z, p) is positive
or negative, we will also need to examine the behavior of the denominator. Let us,
therefore, look again at p(¢, p), which is recorded in (7.19). As is shown in the
equation below, the denominator A is directly proportional'’ to C o/ Xi-

A=Cp-[Rt =2a(v = b)*/v’] = C, - (v = b)*- [_ (g_i)f]

= =02 [0 () [ =€ v a2

Because in stable thermodynamic equilibrium, C,, and y, are both positive, therefore
the denominator A is positive. Hence, the sign of the Joule—Kelvin coefficient
u(t, p) is the same as the sign of the numerator I' , i.e., u > 0 if T" > 0. Similarly,
pn=<0if T <o0.

As we pass through the inversion point the Joule—Kelvin coefficient changes sign.
Of course, as noted above, this means that at the inversion point, the Joule—Kelvin
coefficient is equal to zero. In the (r — v) plane, the inversion temperature is readily

v v3

"To check this fact, use the equation of state (7.8) and determine that [(3—p> = (2—“) - (vf_;;)Z] .
t
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Reduced Inversion Temperature
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Fig. 7.5 Van der Waals reduced inversion temperature vs. inverse of reduced volume

calculated from (7.20).'8

2a bh\?
h=oe (1= ) (7.24)

It is convenient to work in terms of the so called reduced variables in which
p,v,t are divided by p., v., ., respectively. (See (6.22)—(6.24)) That is, we work in
terms of p,, v, I, instead of p, v, 1.

Po =p/p. =p/ (%) Vo = v/vc = v/(3b);
8a
to =t/t. =t/ (m) (7.25)

In Fig. 7.5 above, we have plotted, in the temperature—volume plane, the dimension-
less version of (7.24). Note in this figure 7,; = ;—i, and vy; = % It is important to

18As an aside, we mention a so called maximum inversion temperature. Because the inversion
volume v; > b > 0, such inversion temperature (#;)m.x Would be obtained from (7.24) in the limit

(<1

2a
(t)max = ﬁ = 2f. (7.22)

Therefore, for temperatures higher than twice the Boyle temperature, #,, the throttling process for
the Van der Waals gas does not result in cooling. Note, (f)max is much higher than the critical

temperature 7
@) _ 2a . 27 8a _ 27 . (7.23)
UmaT pR T\ 4 27Rb )~ \ 4 )¢ ‘
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note, however, that rather than the pair # and v, which is used in the above, for the
discussion of the Joule—Kelvin effect, a more relevant pair of variables would have
been ¢ and p.

7.5 Upper and Lower Inversion Temperatures

Having recorded that rather than v and ¢, the relevant state variables for the porous
plug experiment are p and ¢, the equation of state is used to eliminate the variable
v from the expression for the Joule—Kelvin coefficient p given in (7.19). In this
manner, we obtain the desired (p — —t) relationship. Again, this is best done by
using the reduced variables given in (7.25).

The Van der Waals equation of state, that is

- > (7.26)
Po= 301 v’ ’

is already given in terms of the reduced variables — see (6.30). Therefore, only the
Joule—Kelvin coefficient p given in (7.19) needs to be re-expressed in terms of the
reduced variables. Fortunately, as noted before, in order to study the inversion curve
all that needs to be analyzed is the numerator of this equation, i.e., I' — as indeed
was done in (7.20). In terms of the reduced variables, I' is expressed as

2aBvo— 1)1 4 fo
r = RO — 7.27
9 v2 3 (Buo—1)? (7.27)
At the inversion points, (7.26) and (7.27) are written as follows:
o 8t 3 (7.28)
Pl = S =1 2 '
and
2a (3voi — 1)2 1 4 toi
[=——— |55 75| —~0. (7.29)
9 Vi 3 (3voi — 1)2

Next, in order to solve!® the two simultaneous (7.28) and (7.29), we first eliminate
Voi- This leads us to the following quadratic equation in 7.

(—1,080 + 24 poi)toi + 14412 = —729 — 54p,; — p2. (7.30)

We shall call the two solutions of this quadratic equation #ypper and fiower,

19Mathematica functions “Eliminate” and “Solve” have been employed here.
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Van der Waals Inversion Temperature
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Fig. 7.6 Van der Waals reduced inversion temperature vs. reduced pressure

1
loi = lupper = 75 [45 — Poi + 129 — pOi] ’ (7.31)

12

foi = lower = 1_12 [45 — Poi — 124/9— poi:| . (732)
Thus, for a given value of the reduced pressure p,; there are two possible inversion
temperatures, fypper and fower. They are both plotted in Fig. 7.6. Note that at p,; = 9
the upper and the lower inversion temperatures are both equal to 3. (Compare with
the measured values of the upper and the lower inversion temperatures for nitrogen,
shown as the dotted curve in Fig.7.4.)

7.6 Examples VI-VIII

7.6.1 VI: Adiabatic-Free Expansion of Van der Waals Gas

An adiabatically enclosed vessel of negligibly small heat capacity is partitioned into
two evacuated compartments of volume v; and v,. One mole of a Van der Waals gas
at temperature #; = 300K is introduced into the first compartment with volume v;.
Upon removal of the partition, the gas expands into the second compartment. When
thermal equilibrium is achieved, the temperature of the gas is found to be #.

Given v; = 1L, v, = 6L, and the Van der Waals constants for the gas are:
a=037IJm3 b= 43x10°m? C, =25JK~!, calculate #.

7.6.1.1 Solution

The expansion occurs into an evacuated vessel of volume v,. Thus, no work is
done during the expansion. Also, because of thermal isolation, no heat energy
is exchanged with the environment. As a result, the internal energy remains
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unchanged during the expansion. This is the Joule—Gay-Lussac (JGL) process.
Clearly, therefore, the relevant equation to integrate is (7.6), i.e.,

. t_/vl-i-vz ot q _/v1+v2 p—l‘(g—f)v 4 7.33)
f i = . 31)”1)_ . C, V. .

[Note that the final volume of the gas is (v + v3).]
For the Van der Waals gas the integrand in (7.33) is as given in (7.9). Because, we

are told that C, is constant, it can be pulled out of the integral. Further from the Van

der Waals equation of state, namely (p + %) = -2, wereadily find p—¢ (g—f) =

v—=b’

—a v™2. Therefore we have:

a vitv: - a [1 1
A Earhl S ol E TR T
v Jup v 1 1 2

O.37Jm3[ 1 1 }
25JK 1 [1x1073 xm3 6x1073 xmd

(7.34)

Thus, # — t; = —12.3 K. Finally,

r=1—123K=300K—- 123K = 287.7K

7.6.1.2 Back-of-the-Envelope Calculation

It is interesting to also do a “back of the envelope” calculation by assuming with
Van der Waals that the gas is subject to an internal pressure equal to

a
AP = 2

And this pressure resists any further expansion of the gas. As a result, in expanding

from v; to (v; + v2) the gas will have to “internally” do work equal to

v +v2
Aw = —a/ v 2dv.

V1

Because the “external expansion” is free, no external work results from it. Also, the
internal energy is constant. Thus, the internal work done itself is equal to the change
Aw in the heat energy content of the system. Because C, is constant, AW can also
be expressed as

Aw = C, (lf —t).

Equating these two results for Aw leads to the expression given in (7.34) — a result
obtained by the more formal procedure!
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7.6.2 Example VII: For Hydrogen, Estimate of Inversion
Temperature from the Equation of State

Equation of state for describing one mole of Hydrogen in the limit of low pressure
and moderate temperature — f ~ 300K —is

B(t
pv = Rt [1 + ¥:| (7.35)
Assuming
B(t) = const x [3 15—-2.9x eTO] (7.36)

estimate the inversion temperature for hydrogen.

7.6.2.1 Solution
Similar to (7.18), the Joule—Kelvin coefficient  for the equation of state (7.35) is

nit, p)Cy = = (1.37)

(1 + B(”)

At the inversion temperature, t = t;,

p(ti, p) = 0.

Therefore,
B(:)

dB :
[W]t=l‘i

| = (7.38)
Using the expression for B(¢) given in (7.36), after a little algebra the above can be

expressed as
3.15 exp(—z) —2.9(1 +z) =0, (7.39)

where z = (10/4). This equation is readily solved numerically using Mathematica
and we get t; = 239.4 K. Surprisingly, this result is identical to the corresponding
experimental value, 239.4 K!

7.6.3 Alternate Solution of VII

An alternate, more “physical” — but approximate — solution of example VII is given
below:



7.6 Examples VI-VIII 321

First, to get a feel for the size of z we look for the Van der Waals estimate for the
Boyle temperature #,, given in (7.22). An estimate for this can be found by setting ¢
to be very large or equivalently z < 1. Thus we would have

315~29x%xe (142 ~2.9(1 4+ 22). (7.40)
Accordingly,
1 10
7~004310= —=—= )| = —,
23.2 4
which in turn gives
10
ti ~ —— ~ 242 K.
0.0413

7.6.4 VIII: Enthalpy Minimum for a Gas
with Three Virial Coefficients

The equation of a state of one mole of a certain gas is given in terms of three leading
virial coefficients in the form

pv=Rt+p (b — %) + ab (%)2, (7.41)

where a and b are gas specific parameters that are > 0. The gas undergoes an
isothermal compression at temperature ¢. If the temperature ¢ is less than a certain
19, the enthalpy has a minimum value at pressure p such that

R%t
po = ——(to —1). (7.42)
3a

Show that R#y = 2 (%)

7.6.4.1 Solution

The relevant thermodynamic relationship to use is (7.15), which says: (g—";) =
t

—t (g—';)p + v. With its help the equation of state (7.41) readily leads to

on Rt _ @ apP (7.43)
) =y - = - — a .
ap /, R?t2

and

(yh) ab
=2 (7.44)
t
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2

#p),
determining the enthalpy minimum is the following:

(%) =0. (7.45)
op /,

Multiplying (7.43) by p and combining the result with (7.41) and (7.45), and doing
some simple algebra, yields the following result for the pressure p at the point where
the enthalpy minimum occurs.

Clearly, because ab > 0, > 0. Therefore, the remaining condition for

_ZRt R?t?
P= o3y T 3y

(7.46)

The statement of the problem tells us that the enthalpy minimum obtains when the
pressure p is equal to pg.

R?t
Po=—<— (to —1). (7.47)
a

The requirement that the pressure p becomes equal to py — see (7.46) and (7.47) —
yields the desired result

Riy = 2%. (7.48)

7.7 From Empirical to Thermodynamic

Let us assume that an appropriate physical property has been chosen as the basis
for an empirical temperature scale. Then we examine how a relationship may
be established between the empirical temperature 6 and the true thermodynamic
temperature ¢. To this end, we follow a suggestion of Lord Kelvin and choose
thermodynamic relationships that explicitly involve the Kelvin temperature.
Equation (7.5) provides one such relationship. For convenience we re-write it

below. 4 4
Ny _(%2) _
(av), = (at)v ’. (7.49)

In order to proceed further we remind ourselves of the fact that (1 — €camot),
where €.umor 18 the efficiency of a perfect Carnot engine operating with an arbitrary
working substance, is exactly equal to the ratio, (% , of the Kelvin temperatures
of the cold and the hot reservoirs with which the working substance exchanges heat
energy — see (4.2), (4.7), and (4.18). When the temperatures of the hot and the cold
reservoirs are measured in terms of an arbitrary thermometric property, this ratio is
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no longer directly that of the empirical temperatures, ¢ and 6y. Rather, the needed
ratio is that of an appropriate function, f(6), of the relevant empirical temperatures,
Oc and Oy, i.e., the needed ratio is ;Egﬁ; Thus, the Kelvin—Carnot temperature ¢ can
be represented as

t = £(0). (7.50)

Because except for ¢, (7.50) does not depend on any other thermodynamic variables,
say x and y, we can write

(5).-% (3) -5
900 ), do° \ar), dt’ ‘
ay\ _ (9
().~ (2),
) _ (W) (40
(5).- (). (&) 7

Similarly, (7.49) can be written as

du\ (o _ (dp) (d6Y
(%),‘(%)e‘t(ae)v(dz) P (759

Slight re-arrangement of (7.54) yields

() womi(B) 2 (&),
6 v

D 00), dr' 40~ (&) 4 p’
a9
2 dr b2 (@)
== D | e, 7.55
/n : /e @) (7:53)

First, we carry out indefinite integration of the last term in (7.55). Next, we convert
it into definite integration; we follow that by its exponentiation, and finally use the
relationship between ¢ and f(6) that is given in (7.50). All this is indicated below

» i
In(r) = / (3—()3;;11? a0 | + A=n[fO);

and

)
non=ew| [ )| = r@ - @), (50
o \(G)ytr
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In so far as the above procedure allows for an experimental-numerical calculation
of f(0), in principle, it offers a method of determining the Kelvin temperature in
terms of an empirical measurement. It is clear that only the difference between the
two temperatures, 7, and 1, is provided. Therefore, in practise, a reference point is
also needed for such a determination.

7.7.1 Thermodynamic Temperature Scale via JGL Coefficient

Rather than directly choosing a reference point, let us try an alternative procedure
and see how far it takes us.

To this purpose, let us first measure the pressure p, the specific heat C, and the
JGL coefficient, n — all with respect to the empirical temperature scale 6. Next, let
us re-write the second line of (7.55) in the form?°

ap
a (%)

— = /v 7.57
C T 0G0 737

Introducing the symbol

By = . (7.58)

the parameter, (g—g) , in the numerator can be replaced by p ,(0). Dividing the
v

numerator and denominator on the right hand side of (7.57) by p, we get

dr By
e [1 — 2(9)} a9. 7%

where we have introduced the notation

Z(0) =

C.(O)n(®) 760
p

20Even though the temperatures 6 and ¢ are neither assumed to be equal, nor are their rates of
change necessarily equal, when a statement refers to a specific value of ¢ it can legitimately also
be expressed as referring to the appropriate specific value of 8. Therefore, in (7.57), we have used
the following relationships — compare, (7.6) —

30 o fu
2@ = (a_) _ _(35)9 __ &)y

which yields (), = —n(6)C, (6).
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For Helium and Hydrogen, near the ice point, Z(#) is small compared to unity.
Thus, to an accuracy of better than a couple of parts per thousand, we can ignore
Z(0). Accordingly,

to+A dt _ A ﬁp _ A

A
~ / B,do. (7.61)
0

The meaning we have attached to the notation used in (7.61) given above is the
following:

(i) The ice point on the true thermodynamic temperature scale — also called the
absolute temperature scale or, as it is often the case, is called the Kelvin scale —
is denoted as 1.

(i) The empirical scale is set so the ice point is at 0° empirical.

(iii)) The thermodynamic temperature scale is such that any rise in temperature,
A, beyond 0° empirical has the same numerical value on both the true
thermodynamic and the empirical scales.

(iv) Further, for convenience in the present calculation, work with a A such that
A <L 1.

Conditions (ii) and (iii) make the empirical scale identical to the Celsius scale.
Upon integration, (7.61) gives

A
1n[t° i A} ~ / B,d0 = B,A
0

Ty

=In [1 + é} ~ é (7.62)
to Iy

Comparing terms proportional to A leads to the sought after solution for the
estimated value of the temperature, ¢, of the ice-point on the “true thermodynamic
scale.” The appropriate estimate for #, is thus found to be equal to the inverse of the
“constant-volume, pressure expansion coefficient” §,.

1 1 ap) r
o~ —=|— (= . 7.63
0 ﬂ]? |:p (89 v ( )

For Hydrogen the experimental result for 8, is 0.003663. Accordingly, the cor-
responding value for the temperature, ¢, of the ice-point on the true thermodynamic
scale is ~ 273.0K.



326 7 Internal Energy and Enthalpy: Measurement and Related Examples
7.7.2 Thermodynamic Scale via J-K Coefficient

Continuing the study of convenient experimental procedures for relating an empiri-
cal measurement to the true thermodynamic temperature, we try next the use of the
Joule—Kelvin relationship. In practice, this procedure is somewhat more convenient
than those discussed above. And, to this purpose, it is helpful here to reproduce

(7.16). [ ]
ot t(3),—v

ap

(31) B [1(3—5,, %—U]
h

() &- [ (), & -] e
ap J, do [C, (%] '

After multiplying both sides by [C » (9)%], the above is readily re-arranged to give

dr (5),

(5), }
== = do. 7.68
L6 (%) [v +Cp(O)n(9) (7:6%

First, let us look at the isobaric-volume expansion parameter, (g—g)p, in the numera-
tor. Dividing the numerator and the denominator on the right hand side of (7.68) by

2l Another route to deriving the same result is the following: Begin with (7.15). For convenience,

we re-write it as below:
oh Jdv
— ) ==t=) +v. (7.65)
op /, a J,

Following the prescription contained in (7.51)—(7.53), (7.65) can be represented as

(3), - (3), (%), 4+
), \ap), 0/, d

Slight rearrangement leads to the following:

o
dr _ [M} a6 = [—} ae. (7.66)
A EE e R e e)
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v gives
1 (dv
a [+,
— = dé, 7.69
t |: 14+7Y ( )
where
C,0)u(d
y = So@n®) (7.70)
v

Often, the empirical temperature is measured by a gas thermometer which
utilizes the same gas that is also used for the measurement of (%)h. The optimal

gas thermometer, of course, is an ideal gas thermometer. And, of all gases, Helium is
the closest to being an ideal gas. Hydrogen is the next closest, though it is dangerous
to handle. In the following, we shall work with both these gases.

For Helium and Hydrogen, near the ice point, Y is small compared to unity.
Thus, to an accuracy of better than a couple of parts per thousand, we can ignore Y .

Accordingly,
WA 7 dy A1 Qv
— | = | = 1-Y +---)do
[()=] [v(ae)p}( )
to+ A A1 (v
=In %/ - = do. (7.71)
( fo ) o |V (39 )p

We use the same notation described in the preceding example. Thus,

(i) The ice point on the true thermodynamic temperature scale is again denoted as
to.

(i) The empirical scale is set so the ice point is at 0° empirical.

(iii) The thermodynamic temperature scale is such that any rise in temperature,
A, beyond zero degree empirical has the same numerical value on both the
absolute and the empirical scales.

(iv) Further, for convenience in the present calculation, we shall work with a A
such that A < 1.

Conditions (ii) and (iii) make the empirical scale identical to the Celsius
scale.

Expanding the logarithm, (7.71) leads to the following:

2
A l 8_1) ~ In o+ 4 wé+0 é .
v \ d0 » to to Io

Comparing terms proportional to A shows that the temperature of the ice-point
on the true thermodynamic scale is equal to the inverse of the “constant-pressure,
volume expansion co-efficient.” That is,
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N EVEA 172
0~ v(&@)p T a,0) (7.72)

[Note for the student: Quite remarkably this result looks similar to the earlier one

p \ 06
(See (7.63).) These two results merely interchange the variables v and p! Should it
remind one of the equation of state of a nearly perfect gas?]

For Helium and Hydrogen, the measured values of o,(6) are as follows:
0.003659 for Helium, 0.003660 for Hydrogen. Accordingly, the corresponding
values for the temperature, 7y, of the ice-point on the true thermodynamic scale
are 273.3K and 273.2 K, respectively.

—1
that was obtained by following the JGL procedure: namely, 7y ~ [l (a_p) ] .
v

7.7.3 Temperature of the Ice-Point: An Estimate

The average value of the three estimates for 7, the temperature of the ice-point,
given in the two foregoing subsections is

(273.0 + 273.3 4+ 273.2)
3

to(average) ~ ~ 273.17K. (7.73)

In the above, for simplicity, the admittedly small contributions from the quantities Z
and Y, given in ((7.60)—(7.61)) and ((7.70)—(7.71)), respectively, were ignored. Yet,
a serious attempt at evaluating 7o would surely have to include these contributions
and, moreover, work with more accurate measurements of Z and Y.

We conclude with a word of caution. Despite the simplicity and attractiveness of
the methods that we have proposed above, the modern practice is more elaborate
and involved. Indeed, according to the dictates of the 1990 convention on the
“International Temperature Scale,”?* the Kelvin temperature scale is defined by

separate processes that refer to different temperature ranges.

7.7.4 Temperature: The Ideal Gas Thermodynamic Scale

Historically, the most important thermodynamic system for establishing the perfect
temperature scale has been the ideal gas — or the nearest approximation to it. Let us
attempt to do the same below.

According to Joule’s experiments, for an ideal gas or its closest equivalent, we
have the result

22See www.its-90.com, for details.
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Jdu
(a_v)@ =0. (7.74)

Additionally, the Boyle—Charles observations indicate that
pv =al(ty+0), (7.75)

where @ and f, are constants that can be determined by experiment and 6 is the
temperature on the Celsius scale. Equation (7.75) yields the following:

¢ ! a (% ¢ (1.76)
— = ;and, (—) =-—. )
pv o+ 6 00), "

Therefore, from (7.55), (7.74), and (7.76) we get

a (B, @

d9_(g—z)0+p_0+p_to+9’

which is recast as

o df 7.77)

r fo+0° '
Integration and exponentiation lead to the result

t=b(ty+9), (7.78)

where b is a constant. The upshot of it all is that, by combining (7.75) and (7.78),
the Boyle et al. observations can be codified into the relationship

pv = (%)z — Rt (7.79)

Note (a/b) = R is a constant and ¢, the so-called ideal gas temperature, is the true
thermodynamic temperature.

To express the centigrade scale in terms of thermodynamic temperature we
determine the constant R by establishing a reference point. Taking the ice point
of pure water as the reference point and using the Charles’ experiments conducted
in the early nineteenth century we get 7o ~ 272. Note, by definition, the centigrade
temperature for the ice-point is 6; = 0.

Traditionally, it is the triple point of pure water, defined to be exactly at
temperature 73 = 273.16K, that provides a highly reproducible reference point.
To this end, let us for the ideal gas in question experimentally determine pv at the
triple point, namely (pv);. Then
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(pv)3

= , 7.80
273.16 ( )
and as a result
t
p = L2V (7.81)
273.16

7.8 IX-XV: Some Interesting Relationships
7.8.1 IX: Prove (3), — (), = (&)

7.8.1.1 Solution

Using the cyclic identity — see (1.44) and (1.45) — we can write
d
(&)=~ ()., (%),
v/, at J,\dv /, v/,
2 _ _ (%)r
w/, c,
Similarly, according to (7.5)
Y (%P
aw), e ),
[t (%), + 7l
(i) -8 as

Therefore,

As aresult

w) = C,

Accordingly, what we are required to prove is the following relationship:

o1 o\ [ (%), +2 o (0 83
(%)u N (%)s B CU N (%)s B (C_U) ' ( . )

Canceling (Ci) from the last two terms on the right-hand side of (7.83), what still

v

u

remains to be proven is the equality

t op ay\
(a) (a)v * (%)s =0 789
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In order to prove this equality, let us re-visit the first T.dS equation given in (5.18),

i.e.,
ad
tds = Cydr +1 (—”) dv,
at /),
and keep s constant. This gives
ad
0= C,(dr), +1 (3—’;) (dv);.

Now divide both sides by (dv)j.

(£) () 0 (2)

Q.E.D.

. N _ (&) = (2
7.8.2 Example X: Prove ( o )h ( 3P)s = ( C,,)
7.8.2.1 Solution

Using the cyclic identity — see (1.44) and (1.45) — we can write
(ah) (ah) (31) (at)
— | =—\|= — ) =-C,|=—) .
op /), Jt » ap ), opJ,
ah
(ar) -(%),

)y G

Therefore,

Similarly, according to (7.15)
oh\ ; v 4
), a),

Accordingly, what we are required to prove is

(3.~ (3) -2 (3)
wp), \op), Cp ),

As aresult

Il
|

(7.85)

(7.86)
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Canceling (—CL) from the last two terms on the right, what still remains to be
P

t av) ( ot )
—Jl=) - (=) =0. (7.88)
() E),~(&)
In order to prove this equality, let us re-visit the second T.dS equation, given in
(5.75) in the form,

proven is the equality

av
tds =C,dt —t | — | dp,
s r (8Z)p P

and keep s constant,
av

0= C,(dn), —1 (at ),, Ap).

t v ot
(&) (), - (), =0 09

which proves the desired equality given above in (7.88).

Therefore, we have

. VXt (0h —
7.8.3 XI: Prove -2 (37), = C,

In other words, show that
( ) oh C (7.90)
—vy)-|— ) =— . .
Xt ), HCp

7.8.3.1 Solution

Let us look at the left-hand side. We have

oh v\ (oh o
()= () (5), =) o

Next, examine the right hand side.

ot oh oh
R NG TC R

(In the above we have used the cyclic identity given in (1.44) and (1.45).) Q.E.D.
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7.84 XII: Prove ;1 (%) =,
nvx: \9p /,

In other words, show that

n-vxe: v=($) . (7.93)
‘

7.8.4.1 Solution

The left hand of (7.93) is:

@) LG G, -G ELE)]

Q.E.D.

7.8.5 XIII: Prove (3) = C,(1 — poy/x1)

7.8.5.1 Solution

Recalling the identity given in (1.50)

(E)y B (3_z) (E) + (a) (7.95)

and making the substitution

A= hx—>t;y > v;z—>p

we get

oh oh ap oh

— | == — — . 7.

(&), (p),(az)v+(az),, (720
Noting that

(%),
vy

and
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the right hand side of (7.96) can be written as

a(h,t) o\ op [ a(h, 1) 'a(p,h)
AT (x_) =Gt (x) 3(p.h) a(p,n}
_ @\ [ 3er) dh. p)
_C”(x) WrY) a(t,pJ
_ o \[_ () (on
_Cp+( t)_ (ap)h (a[)p}
=C,+ (a—") e Gl (7.97)

Q.E.D.

7.8.6 XIV: Prove (§), = 3(a, — £)~!

In other words, we are required to show that

. h) 1 w1l
7.8.6.1 Solution
a(t, h) d(h,t)
a(t,h) 0@, h) A, v) A, v) d(v, 1) (7.99)
Iv.h) (. v)dw. k) A, h) [ a0 :
a(t, v) a(t, v)
Recasting (7.90) as
ah,t)  pC,
A1) vy
and the combination of (7.96) and (7.97) as
d(h,v) . % . B
a(t,v) - (at)v - CP[l I'L(X])/Xt]v

the right hand side of (7.98) and (7.99) are readily seen to be identical.
Q.E.D.
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. du) _— du) — _
7.8.7 XV:Prove ($) =t and (§£), = —p

7.8.7.1 Solution

Write

ou ou
du(s,v) = (3_s) ds + (%) dv (7.100)

and compare with the first-second law written in the form
du =tds 4 pdv.

Comparing coefficients yields:
Y _ () 2 (7.101)
as ), \ov), b ’

7.9 Negative Temperature: Cursory Remarks

By relating the average kinetic energy of a perfect gas to its absolute temperature
“T” — see (2.31) — we have “psychologically” committed ourselves to treating T
as a positive quantity. And this feeling has been further reinforced by Carnot’s
statement — see (4.7) — that the efficiency of a perfect Carnot engine, €camot, 1 equal

T
tol— (T—;)

One may well ask: How has Carnot added to our distrust of negative temper-
atures? The answer is the following: Under no circumstances, the actual work
produced may be greater than the energy used for its production. This means that the
working efficiency of an engine may never be greater than 100% — if the opposite
were ever true, the world would not have an “energy problem”! And, clearly, a
negative value for T¢ or Ty would lead to ( 100+)% efficiency!

It turns out that the Kelvin-Planck formulation of the Second Law?? is also
uncomfortable with the concept of negative temperatures. The Clausius formula-
tion>* of the Second Law,? on the other hand, can be retained with qualifications:
that is, it needs to be agreed that in the negative temperature regime, the “warmer”

23See D. ter Haar and H. Wergeland, “Elements of Thermodynamics™ op. cit.

24This is true despite the fact — as previously concluded — that: “ A violation of the Carnot version
of the second law results in a violation of the Clausius statement of the second law.”

2 Namely: “Without assistance it is impossible to withdraw positive amount of heat energy from
a colder object and transfer the same to a warmer object.” In other words, heat energy does not
spontaneously get transferred from a colder object to a warmer one.
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of the two bodies has the smaller absolute value for the temperature.® This means
that just as +3 K is greater than 42K, so is —2 K greater than —3 K. There is,
however, an important “caveat.” In increasing order the relevant temperature in
integer degrees Kelvin is:

+0,+1,+2,..., 400, —00,...,—2,—1,—0.

Therefore, if we must use negative temperatures we must also accept the fact
that: An object at any negative temperature is warmer than one at any positive
temperature!

More seriously, the question to ask is how, using fundamental thermodynamic
principles, must a negative absolute temperature 7" be defined? Following Ramsey’s
suggestion, 7" should be defined from the thermodynamic — see (7.101) above —

identity
o =T (7.102)
s )y '

If this equation is used as the definition of the absolute temperature, then if and
when the internal energy can be measured as a function of the entropy — big “if and
when,” considering it is very hard to precisely measure either of these quantities by
any “direct” method — and if the derivative is negative, then we have a confirmed
case of negative temperature!

According to ter Haar?’: “For a system to be capable of negative temperatures,
it is necessary for its energy to have an upper bound.” Energy U is not bounded in
normal systems. Rather, as a function of the entropy S, the energy is monotonically
increasing. As a result, the derivative (%—g) VN is positive. That, according to (7.102),
results in the temperature being positive.

All this would work well unless the entropy is bounded from above. In that case

when S reaches Syaximum, then [(%—g)v N] suddenly changes from +o00 to —oo and

the system starts its progress up the negative temperature scale ! As noted above,
the end point of the negative part of the temperature scale is 7 = —0, which surely
must be just as unattainable as is T = 0.

An experiment with precisely these characteristics was first performed by Purcell
and Pound.?® Because the subject matter involves quantum statistical mechanics,
for all relevant details the reader is referred to the chapter titled: “Statistical
Thermodynamics.”

26See, N.F. Ramsey: “Thermodynamics and Statistical Mechanics at Negative Absolute Tempera-
ture,” Phys. Rev. 103, 20 (1956)

Yop. cit.
28E.M. Purcell and R.V. Pound, Phys. Rev. 81, 279 (1951).



Chapter 8
Fundamental Equation and the Equations
of State

In Chap.5, we noted that in combination the first and the second laws lead to an
important relationship: the difference, dU, in the internal energy of two neighboring
equilibrium states is linearly related to the corresponding difference, dS, in their
entropy. Of course, also included in this relationship is the heat energy quasi-
statically added to the system and the quasi-static work, dWyasi—staic = PdV,
performed by the system when it transitions from a state with extensive variables
(U, S, V) to one with (U +dU, S +dS,V + dV). That is

quuasi—slalic —TdS =dU + dI/unasi—static =dU + pPdV. (8.1)

Mostly, thus far, we have explicitly treated only single phased, closed systems where
the number of moles, 7, is constant. Moreover, in addition to the internal energy'
U, and the entropy S, the only extensive variable treated has been the volume V.

More general systems may possess properties such as magnetization, electric
charge and polarization, surface tension, etc.; be composed of more than one variety
of molecules; may separate into different phases; and sometimes even undergo
chemical decomposition, etc. In order to describe these phenomena, other extensive
variables also need to be included in the expression for dWyuasi—staic. Thus, even
while still considering a single phase system, it is helpful to also include two
additional terms to the quasi-static work that is performed by the system. To this
end we write

14

AWanasisaic = PAV = ppdn; + ) Vid;. (8.2)
j=1 i

'And, of course, the enthalpy H — which is an extensive variable — that has also been considered
before. Here the inclusion of H, however, is subsumed in that of U because the knowledge of the
volume (and its conjugate variable, the pressure) relates U to H.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 337
DOI 10.1007/978-3-642-21481-3_8, © Springer-Verlag Berlin Heidelberg 2012
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The parameters, p , are the intensive variables conjugate to the extensive variables
n;, the latter indicating the number of moles of the jth type of molecules in
the system.” The variable u; is generally called the molar chemical potential
of the jth chemical constituent. We assume here a single phase constituted of £
different chemical constituents. Similarly, &} are the other extensive variables that
may be needed for a complete description of the system. As mentioned earlier,
such variables may represent the magnetization M, the electric polarization P, the
surface area A of a film, etc., etc. The relevant conjugate variables, denoted as ),
would then be the magnetic field #, the electric filed £, the surface tension T, etc.,
etc. Note the product of a variable and its conjugate, for example, P and V, has
dimensions of energy U.

The Euler equation is introduced in Sect. 8.1. Equations of state are introduced
and for a simple perfect gas the three possible equations of state in the energy
representation are identified. Two of these equations are well known. The third
equation of state is introduced and described in Sect. 8.2. Gibbs—Duhem relations
in the energy and the entropy representations are worked out in Sects. 8.3 and 8.4.
The fundamental equation for the ideal gas in the entropy representation and the
three equations of state for a simple ideal gas are described in Sects. 8.5 and 8.6.
The same is done in the energy representation in Sects. 8.7 and 8.8. The concluding
Sect. 8.9, is devoted to making a relevant remark.

8.1 The Euler Equation

Combining (8.1) with (8.2) gives:

b
> wjdn; =dG =dU — TdS + PdV + ) Vidx:. (8.3)

j=I1 i

Here G denotes the Gibbs potential — a thermodynamic potential that is put to much
use later.

8.1.1 Chemical Potential

We are now more informatively able to identify the role that the chemical potential
plays. First, when all other extensive variables — for example, S, V, and X; —are

2 Although, in the chapter on imperfect gases — see Chap.6 — we did describe the co-existence
of liquid—vapor phases, it was done without an explicit treatment of the internal energy, U, and
the entropy S, in the co-existent regime. Therefore, we were able to make do without having to
introduce the concept of varying 7.
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held constant, an addition of a single mole of the jth chemical constituent increases
the internal energy of the given thermodynamic system by an amount j ;. Therefore,
much like the intensive variable pressure, which provides the motive force for
causing change in the extensive variable the volume, the intensive variable chemical
potential provides the motive force for changing the extensive variable related to
chemical composition. In open systems, the chemical potential is related to the rate
at which a given chemical constituent is exchanged with the environment. Equally,
in closed systems, the concept can be utilized for considering such phase transitions
as affect changes of physical properties between co-existing phases, etc.’

It is important to note that when more than one phase is present, chemical
potential of any constituent is not dependent on the magnitude — that is, the size —
of the corresponding phase. Rather, it is a function of the intensive variables: the
temperature, the pressure, the relative composition, and the various );’s.

Having made the point that a complete description of a thermodynamic system
may involve more than one extensive variable of the variety n; and &}, for simplicity
in the following we limit the description to a single chemical component system
that involves only one n. Also, for further simplicity, only one additional extensive
variable, X, is included in the analysis. That is, the analysis is limited to a system
where (8.3) reduces to the following:

dU =TdS — PdV + udn — YdX. (8.5)

Thus in the manner of (8.4) we have

aS Vin,X aV S.n,X

aU aU
i =u—|— = ). 8.6
( an )S,V,X o (aX)S,V,n ®0

Because the internal energy is extensive — meaning its magnitude scales linearly
with the size of the system — its dependence on the extensive variables, such as the
entropy, the number of moles 7, the volume V, and the property &X', must be such
that it constitutes a first-order homogeneous form. What this means is that if each

3Note: According to (8.3), the rate of change of the extensive function U is completely described
in terms of the rates of change of the extensive variables S, V, n;’s and &;’s. Consequently, U
is a function only of these extensive quantities. Moreover, because dU is an exact differential, its
partial differentials with respect to any of the extensive variables are equal to, what we shall call,
their conjugate intensive fields. For instance:

BU) (BU) (BU)
= =T; | — =—P; |[— = 5 ete. 84
(35 Vonj. X v S an S Xi

The subscripts in the above equation that include 7 ; need to be summed over all values of ;. For
notational convenience, the sum is not displayed.
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of these variables is made bigger by a factor* equal to A, then the resultant internal
energy U must also get enlarged by the same factor A. That is

U =0l V.n X)y=1US,V.n, X), (8.7)
where
S =AS:V =avin = A X = Ax. (8.8)

Using the chain rule for partial differentiation of an equation given in parametric
form,’ we have

(dU/) B (BU/) (dS/) N (aU’) (dV/)
dr ) \as’ ), , , \dx av' ], \dxr
V.n' X S, n' X
U’ dn’ au’ dx’
+<an’) o /<dk)+<82(’) , ,,(dx)‘ (8.9)
S, V, X S, V. n

If we look only at the display above, this equation looks fierce! In reality, the
differentials with respect to A, are easy to carry out — see (8.8) — and the result
has a much tamer look:

U’ U’
U—(W) ) /“(W) o
V.n X S, n, X
U’ U’
+(W) o n+ (W) L X. (8.10)
S, V., X S, V. n

While this relationship is good for all finite values of the variable A, it is particularly
transparent for A = 1. That, according to (8.8), means

3S V.nX aV S.n,X

8U) (BU)
+ 1 — n+|-— X. (8.11)
(a” SV.X 90X SV

4Usually, A is called the “scaling parameter.”
SNote: Here A is the parameter.
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%_(.S{)V,n,X ’

representation, the Euler equation®

Introducing the results for ( etc., from (8.6), (8.11) yields, in the energy

U=TS—PV+pun—YX
=TS—PV+G—YX. (8.12)

8.1.2 Multiple-Component Systems

It is clear that if the thermodynamic system under discussion has multiple chemical
constituents, then much like (8.3), instead of the single » in (8.12), molecular
concentration of additional constituents would also need to be specified. This will
result in the replacement of the Gibbs potential that has a single term, that is, (u n),
by a Gibbs potential that is a sum over all the £, different chemical constituents, that
is,

t
G =Y ujnj. (8.13)
j=1

Similarly, additional variables could also be included. As a result, the Euler equation
will take the more general form

U= TS—PV—i—G—Zy,» X;

‘.
=TS—PV+ Y pjnj—Yy V& (8.14)

j=l1 i

This then is the “Complete Euler Equation,” or equivalently, the “Complete
Fundamental Equation” — of the given thermodynamic system, in the energy rep-
resentation. For a complex thermodynamic system, the knowledge of the complete
fundamental equation is the holy grail of thermodynamics: for it — according to
Gibbs — contains all the thermodynamic information (about the given system).

8.1.3 Single-Component Systems

Only a single component system will be treated in what follows in this chapter.

6Qccasionally, the Euler equation is also called the “Complete Fundamental Equation.”
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8.2 Equations of State

8.2.1 Callen’s Remarks

So far the only equation of state we have talked about is
PV = nRT.

In formal terms, however, there are more than one equations of state. In fact, for a
given thermodynamic system the number of equations of state — in the energy or
in the entropy representation — is equal to the number of all the intensive variables
required for the description of thermodynamic states. In this context, Callen refers
to the intensive variables, 7, P and p as follows:

“The temperature, pressure, and the electrochemical potentials are partial deriva-
tives of a function of S, V, Ny,..., N, and consequently are also functions of
S,V,Ni,...,N,. We thus have a set of functional relationships

T =T(S,V.Ny.....N,):
P =P(S,V,Ny,...,N,):
M :,LLJ'(S, V,Nl,...,Nr). (815)

Such relationships, that express intensive parameters in terms of the independent
extensive parameters, are called: “equations of state.”

Callen further writes:

“... knowledge of all the equations of state of a system is equivalent to
knowledge of the fundamental equation and consequently is thermodynamically
complete.”

This statement will be referred to as the Callen rule.

The fact that the fundamental equation of a system is homogeneous first-order
in terms of the extensive variables® has direct implications for the functional
form of the equations of state. It follows immediately that the equations of state
are homogeneous zero-order. That is, multiplication of each of the independent
extensive parameters by a scalar A leaves the function unchanged.

T(AS,AV,AN;) = T(S,V,N));

P(AS,AV,AN;) = P(S,V,N):
WAS, AV, AN;) = (S, V, Ny). (8.16)

7op. cit.
8For instance, multiply S, V, n; and &; each by A and U changes to A U.
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It, therefore, follows that the temperature of a composite system, composed of two
macroscopically sized subsystems, is equal to the temperature of either subsystem.
We shall refer to (8.16) as Callen’s scaling principle.

8.2.2 The Energy Representation

Consider a system with internal energy’
U=U(S,V,n,X).

For such a system, in principle, up to four equations of state may be constructed.
A formal display of these equations (compare (8.6)) could be as follows:

aU aU
TS, V.n,X)= (ﬁ) ;—P(S,V,n,X):(W) ;
Vin,X S.n.X

w(S,Von, X) = (B_U) =V, V,n, X) = (8_U) . (8.17)
an SV.X ind SV

Clearly, for a general system, involving more than one chemical potential x; and
extensive variable ) there would be appropriate additional equations of state.

8.2.3 The Entropy Representation’

Equation (8.12) can readily be re-arranged,

S = (%) U+ (?) V- (%)n + (%) x. (8.18)

As before, the equations of state are found as derivatives with respect to the
extensive variables. That is

1) 1 D .
(T) a [T(U, V,n,X)} - (ﬁ)w’
P\ [PWU.V.n X) EN ‘
(7) - [T(U, V,n,X)} (W)W,X’

“Note that the phrase “energy representation” implies that the derivatives being considered here
are those of the internal energy U.

19Note that the phrase “entropy representation” implies that the derivatives being considered here
are those of the system entropy S.
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(,u) _[w@,Von, X)) as )
) [TW.V.n,X)]  \on)yyx’

Y\ _[YW.V.n,X)] _ ([0S
(7)_[m]_ (3X)U,v,n' (8.19)

8.2.4 Known Equations of State: Two Equations for Ideal Gas

Of all thermodynamic systems, the ideal gases are the easiest to analyze. Indeed, for
a simple ideal gas, with f degrees of freedom and no additional extensive variable
X, we already know!'! two of the possible three'? equations of state in the entropy
representation. That is:

(i) _ [Nk _ fnNiks _ fnR
T

2U 2U 22U

T

= —. (8.20)

P _NkB_I’lNAkB nR
% v

Comparison with (8.19) indicates that these equations of state have been expressed
in the entropy representation.

8.2.5 Where is the Third Equation of State?

Clearly, the missing, third equation of state in the entropy representation has to be —
see (8.19) — of the form

Un,V aS
(E) = [“(—")} - (_) _ (8.21)
T TU,n,V) on Jyy
Because we have not yet worked out the functional details of the entropy, at this

juncture it is not entirely clear how the above calculation is to be carried out.
Therefore, to pursue the matter further, we need to take a different tack.

liGee, e.g., the chapter on the Ideal Gas.

2The possible three equations of state in the entropy representation are specified in the first three
equations in (8.19).
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8.3 Gibbs-Duhem Relation: Energy Representation

In order to derive the Gibbs—Duhem relation in the energy representation, it
is helpful first to examine the difference between the internal energy of two
neighboring equilibrium states for the simple system being treated above, for which
the fundamental, that is, the Euler, equation is given in (8.12). To this end, we write

dU = (TdS 4 SAT) — (PAV + VAP) + (udn + ndp) — (VX + XdY). (8.22)

Next, we compare this result with what would be the corresponding statement of the
first-second law (compare, (8.3)), namely

dU =TdS — PdV + pdn — YdX. (8.23)

Subtracting (8.23) from (8.22) yields the so-called Gibbs—Duhem relationship, for
a simple one-component system, in the energy representation'

0=S8dT —VdP +ndu— Xd)Y. (8.24)

8.4 Gibbs—-Duhem Relation: Entropy Representation

Proceeding in an analogous fashion to that done above, we write first the Euler
equation in a format best suited to the entropy representation. That is

S=U(%)+V(§)—n(%)+)€(¥). (8.25)

Next, we find its derivative.

s =aa(3)+ (oo (D) (o

—nd (%) - (%) dn + Xd (%) + (%) dx. (8.26)

Now we write the first-second law — compare (8.23) — in the form

3Clearly, for the more general system the Gibbs—Duhem equation in the energy representation
would be
0=8dT —VdP + Y nydu; — Y X:dY.
j i



346 8 Fundamental Equation and the Equations of State

e P M Y
ds = (7) U + (T) v — (7) dn + (7) dx., (8.27)

and subtract it from (8.26). The resultant relationship is the Gibbs—Duhem equation
in the entropy representation'*

_ 1 P m Yy
0=Ud (7) +Vd (?) —nd (7) T+ xd (7) . (8.28)

8.5 Fundamental Equation for Ideal Gas

We are now in a position to take a stab at finding the missing third equation of state
in the entropy representation.!® It is convenient to begin this effort by determining
the fundamental equation. Also, for simplicity and convenience, we continue to
consider only the simple ideal gas which does not involve extensive variables of
the form X.

Start by re-arranging (8.28) as follows:

my 1 P
nd (?) —ud (7) +Vd (T) . (8.29)

In order to integrate (8.29), substitute the results of the first and the second equations
of state that were recorded in (8.20). That is

a (7) =va | ("55) 7] +ve | () (7))
~[58] wal(5) 7]+ w4 [(75) 7]
4] () + wva ()

=_[§Rn}# (R )—+(%) Rdn.  (830)

4For the more general system, in the entropy representation, the Gibbs—Duhem equation would be

O—Ud( )+Vd( ) an(“f)+ZXd(y').

I5For instance, look at (8.21) and note how it involves w,T,S,n,U,and V.
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In the top right hand line of this equation, we first multiplied by two different factors
each equal to unity, that is, (nzgr) and (%). We then extracted [%R] from the

left term and R from the right term. Finally in the second term on the right, we
used the fact that PV = nRT. (Note, for monatomic ideal gas there are only three
degrees of freedom for each molecule. That is, f/ = 3. But for a diatomic ideal gas,
at temperatures that are usually available in physics laboratories, f = 5.) Next we
divided both sides of (8.30) by n. Thus, we have found

d (%) - —%R (%) ~R (%) + %R (i—”) (8.31)

Integration is now easy to do and we get

% _— (%) RIn(U)—R In(V) + (%) Rln(n)—Cy,  (8.32)

where Cj is a constant. Using (8.32)'6, (8.25) leads to the following:

=3+ (5)0(2)

- (fgn)ln(UHRn ln(V)—(¥) Rn In(n) +n Co

“(7) v (%)

= (%) In(U)+ RnIn(V) — (%) Rn In(n) +nCy
. (%) R. (8.33)

LR2 and V (£) = R n have again been used

(Note that the relationships (%) =
here.)

While the procedures of statistical mechanics lead to an analytical expression for
the constant Cy — namely

3R 4
Co = (—) In | =2 (8.34)

16Remember, here we are considering the case where, in (8.25), X’ (%) = 0.
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— the discipline of thermodynamics does not lend itself to doing the same. Rather,
the constant Cy can be determined only if the entropy, Sy, for some reference state
is known. At a certain reference state “0”let S = Sy, U = Uy, V = Vyandn = ny.
Then (8.33) gives

n0Co = So — (ﬂZ”O) In (Up) — RnoIn (Vo) + (%) Rno In (no)
- (%) Rno. (8.35)

Multiplying the above by (n"—o> and inserting the result for nCy in (8.33) yields the
fundamental equation for the ideal gas — however, one that is subject to a boundary
condition — in the entropy representation, in the following convenient form:

= () (£)m() ()]
(5 (2)]

8.6 Three Equations of State in Entropy Representation:
Ideal Gas

Having derived the fundamental equation for an ideal gas in the entropy represen-
tation, the relevant three equations of state, that were defined in (8.21), are readily

B-G)-% e
DG
--(2).
(@)
@)@
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Regarding Callen’s scaling principle, note that in all of the three equations of state
given above, multiplication of extensive parameters (U, Uy, V, Vo, n, ng, Sp) by A
leaves the equations unchanged.

8.7 Ideal Gas: Energy Representation

8.7.1 Fundamental Equation

The fundamental equation for the ideal gas given in (8.36) is in the entropy repre-
sentation. But it can readily be transformed into one in the energy representation.
The algebra is straight forward and one gets

G- ()@ ) e

8.8 Three Equations of State in Energy Representation:
Ideal Gas

The relevant equations were noted in (8.17). The first one is

U
T= (>

“G) )T ] e

The second and the third equations in energy representation are

(Y
v s,

G () [ 5] e

P(S,V,n)




350 8 Fundamental Equation and the Equations of State

It is interesting to check whether Callen’s rule, regarding the knowledge of all the
equations of state being equivalent to the knowledge of the complete fundamental
equation itself, is correct. This is especially interesting because an equation of
state generally involves partial differentials whose integration introduces unknown
constants.

In order to check the accuracy of Callen’s rule (in the energy representation), let
us introduce the results of the three equations of state, namely (8.41)—(8.43) into the
relevant version of the Euler (8.14). That is,

U

() () 25
SERENENEY)
() () e[ S-S s

Note the last line on the right in (8.44) follows from (8.40).

8.8.1 Exercisel

With the use of the Euler equation in the entropy representation given in (8.25) —
remember the terms involving the extensive variable X are not being used here —
and the relevant three equations of state given in (8.37), (8.38) and (8.39), show that
Callen’s rule also applies to the entropy representation.

8.8.2 Example I

1 . .
Given the fundamental equation, S = A-(nV U)3 , where A is a constant, determine
the three equations of state in the entropy representation.

8.8.2.1 Solution

We have
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P (3S\ A (nU\'
T \ov/),, 3 \vz)’
po (SN A (UV\?
T \on/)y,, 3 \n2)~

Callen’s scaling clearly applies because whenn — An, U — AU,and V — AV,
all the equations remain unchanged. Similarly, Callen’s rule also applies because

(B (§)r )

1 1 1

A (nV\} A (nU\? AUV}
—u.-Z (22 v S (=) —p 222
3(U2) + 3(1/2) " 3(n2)

= A-(nVU) . (8.45)

8.8.3 Example I1

Re-work Example I, but this time in the energy representation.

8.8.3.1 Solution

In the energy representation, the relevant three equations of state are the following:
T U (1 387\
~\as /)y, 43 \av )’
U 1 S3
WV Jsnu A3 ) \nV?
(9S8 _ 1 s3
= on vo  \43)\n2v )’
Again Callen’s scaling applies because whenn — An, S — AS,and V' — AV, all

the equations remain unchanged.
Similarly, Callen’s rule also applies because

U=TS—PV+pun

_ (%) (%) G-1-1)= (%) (%) (8.46)
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8.9 Remark

Only for special cases can thermodynamic systems be exactly solved and a complete
solution of the fundamental equation obtained. Nevertheless, the foregoing study
of an extremely simple system has not been for nought. It has taught us that
thermodynamics of a system in equilibrium can be formulated in two alternative
but equivalent ways: one based on the representation of the internal energy as a
function of the entropy S and extensive variables such as the volume V, the mole
numbers 7, etc., and the other, on the basis of the entropy as a function of U and
the relevant extensive variables.



Chapter 9
Zeroth Law Revisited; Motive Forces;
Thermodynamic Stability

The Zeroth Law of Thermodynamics asserts that if a given macroscopic system
is in thermal equilibrium simultaneously with two different systems, then those
two (otherwise separate) systems are also in thermal equilibrium with each other.
Further, whenever this happens, there is a property common to all three systems.
This property is identified as the “temperature.”

In the chapter on the Second Law we learned that all spontaneous processes in an
isolated thermodynamic system increase its total entropy. Spontaneous processes,
of course, continue until the system achieves thermal equilibrium. In an isolated
system, the state of thermal equilibrium — at least in theory — remains unchanged
with the passage of time. Accordingly, subject to the constraints under which
the system has been maintained, and for the given value of its various extensive
properties, its total entropy in thermodynamic equilibrium is the maximum possible.

Let us “mentally” — as distinct from “physically” — divide a given isolated
macroscopic system — that has achieved thermodynamic equilibrium — into two sub-
systems: (a) and (b). Clearly, upon such imagined division, two conditions — named
“First” and “Second” — have to be satisfied:

First: The total internal energy U(0), total volume V(0), total number of
moles 7 (0) for each chemical constituent j, and total magnetic moment, electric
polarization, surface area, etc., cannot be affected by just imagining the stated
division.! As a result,

U(0) = ula] 4 ul[b]; V(0) = v(a) + v(b);
n;(0) = nj(a) + n;(b); X (0) = Xi(a) + Xi(b). ©.1)

Second: The following two facts — named (1), given in (9.2), and (2) given in
(9.3), below — must also obtain.

't is important to note that all these quantities are extensive — meaning they change linearly with
the number of (relevant) particles in the system.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 353
DOI 10.1007/978-3-642-21481-3_9, © Springer-Verlag Berlin Heidelberg 2012



354 9 Zeroth Law Revisited; Motive Forces; Thermodynamic Stability

1. If as a result of the “gedanken experiment,” the extensive properties of the
sub-system (a) were to change, say by infinitesimal amounts dula], etc.,
they would be compensated by corresponding changes in sub-system (b), for
example, du[b], etc. Because the total amounts of the extensive properties,
U(0), V(0), n;(0), X;(0), are conserved, their differential is vanishing. In other
words,

dU(0) = dula] + du[b] = 0;dV(0) = dv(a) + dv(b) = 0:
dn;(0) = dn;(a) + dn; (b) = 0;dX;(0) = dX;(a) + dX;(b) = 0. (9.2)

2. Because the system is in thermodynamic equilibrium, its (extensive state function
the) entropy is a maximum. As a result, the entropy is stationary with respect to
any change occasioned by the gedanken experiment. That means, the difference,
AS, between the entropy after- and the entropy-before the gedanken experiment
is vanishing

0=AS = [S(U,V,X,n))]

after gedanken experiment

—[SW.V. X.n))] ©.3)

before gedanken experiment

With the information recorded in (9.1)—(9.3) in hand, coupled with the concept
of the fundamental equation, we are able to more fully examine the nature of the
zeroth law.

The zeroth law is re-visited in Sect.9.1 and the resulting physical insights into
determining the direction of thermodynamic motive forces are discussed at length
in Sect. 9.2. Thermodynamic stability, as well as the Le Chatelier’s principle, are
discussed in Sect. 9.3. Two basic requirements for intrinsic thermodynamic stability
are derived in the concluding Sect. 9.4.

9.1 Zeroth Law Revisited

9.1.1 Sub-Systems in Mutual Equilibrium

Using the Euler equation in the entropy representation (that is recorded in (8.18)),
the entropy before and after the gedanken experiment can be represented as follows:

(S[U.V. 2]}

before gedanken experiment

= {S [a] }before + {S [b]}before

= {7+ [F5 ] e
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p(b)
+%[t<b>] u() [r(bJ (b)}
Yi(a) wj(a)
S v - 2[5 w)

Yi(b) i (b)
+ {Z [W} X (b) - ;[ ' }n;(b)} (94)

and

{S [U’ V’ )(’ My ] }after gedanken experiment
= Blaliatier + 5Bl aper

[ i| {ula] + dula]} + [
[

+ {Z [3;(( ))} [ (@) + 42 (a)] — Z [i’(g)} (@) + d"/(“)]}

p(a)
t(a)

p(b)
t(b)

1
= Jp@+a@l
1

_|_

)
0 )i|{u[b]+d [b]}+[ i|[v(b)+dv(b)]}

Subtract (9.4) from (9.5), and make use of the fact that in equilibrium the entropy is
a maximum. The latter fact is identified by the equality given in (9.3). That is,

[ i [29 20

t(a) 1(b) @) 1(b)
Jila)  Vi(b) pi@ pib)
+ ZI: [ @) — m} d&i(a) — zj: [ t](a) — l‘](b) i| dnj(a). (9.6)

Because the infinitesimal changes du[a],dv(a),dX;(a) and dn;(a) are linearly
independent, the above equation can be satisfied only if each coefficient in the above
equation is equal to zero.” Therefore, to satisfy (9.6) we must have

2This can readily be checked, for example, by setting three of the four quantities du(a),
dv(a),dX;(a),dn(a) equal to zero.
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t(a) = 1(b); p(a) = p(b);
Vi(a) = Yi(D); wj(a) = pj(b). 9.7)

Clearly, rather than just the two sub-systems, a and b, this argument can be extended
to any number of sub-systems —a, b, c, ..., etc.

Similarly, the above discussion can immediately be applied also to real experi-
ments on a macroscopic object composed of two separate thermodynamic systems,
labeled (A) and (B). We arrange for these systems to be in complete thermal contact,
and allow them to freely exchange all extensive properties. Note that jointly (A) and
(B) are to be kept isolated from the rest of the universe.

Fortunately, all the needed work has already been done. It turns out that (9.6)
is rather versatile. Above we used it to analyze two parts — (a) and (b) — of
a single, isolated system in thermodynamic equilibrium where the entropy had
achieved its maximum. Equation (9.6) can similarly be put to use to examine the
adiabatically enclosed duo of two separate macroscopic systems (A) and (B) that
are in thermodynamic contact.

Again, because these two systems will have reached mutual thermodynamic
equilibrium, their total entropy will have attained its maximum value consistent
with the given total value of the extensive properties U, V,n;’s, X;’s. Accordingly,
much like the AS of the previous gedanken experiment, here too the change in
the entropy between the “imagined” initial and the “imagined” final states of the
experiment will be zero. (Compare with (9.3).) Therefore, the result of this process
would be identical to that obtained in (9.7). The two separate systems, (A) and (B),
therefore act as if they were part and parcel of one composite system. [ In other
words, (9.7) now hold with labels (A), (B) exchanged for (@), (b).]

Because merely the exchange in the indices from (a) and (b) to (A) and (B)
recasts the result for the former case into that for the latter, in the following we
shall assume the indices (a) and (b), etc., to be just generic indices. Thus, they
are applicable to all thermodynamic systems and/or their macroscopic parts. The
requirement is that while being contained within adiabatic walls, they be in perfect
physical contact.

9.1.1.1 Remark

Because (9.7) can be extended to an arbitrary number of thermodynamic systems,
and/or to their macroscopic sub-systems, it represents an important corollary of the
zeroth law. It states unequivocally that when a set of systems in perfect physical
contact are in thermodynamic equilibrium, at least theoretically speaking,® their
temperature is the same all across their (macroscopic constituent) parts.

3Note that by saying “theoretically speaking” we are being appreciative of the fact that reality
always militates against perfection. In practice, somewhere a metastable fluctuation from what
was thought to be perfect equilibrium may also appear.
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And, the same is true for the pressure, the chemical potential for any constituent
i, etc.* Remember, however, that allowance for gravity, or other forces that would
cause changes in the pressure across the system, has not been made. If changes
in pressure due to such forces were to be incorporated in this analysis, then their
effect on the volume and some other variables conjugate to the relevant forces — for
example, the chemical potentials, u ;, and other intensive variables such as ), etc. —
would also need to be taken into account.

9.2 Direction of Thermodynamic Motive Forces

9.2.1 The Entropy Extremum

As mentioned earlier, one of the important consequences of the second law is that
any spontaneous process that occurs in an isolated thermodynamic system increases
its total entropy. Therefore, when an isolated system with specified values of the
internal energy u, the volume v, the mole numbers 7 ; and other extensive variables
A, is in thermodynamic equilibrium, its entropy s is the maximum possible.

Entropy, therefore, behaves as if it were, to coin a phrase, a thermodynamic
“motive force” that drives an isolated system towards equilibrium which in the
present context is defined as the state with maximum entropy. The question then
is, how may one leverage this information — both in regard to the two separate
thermodynamic systems, (A) and (B), that are in mutual contact but are otherwise
isolated from the rest of the universe, and — equivalently — also in regard to two
macroscopic sub-systems’ (a) and (b) which comprise a single thermodynamic
system isolated from the universe?

9.2.2 Heat Energy Flow

9.2.2.1 Question

The direction of heat energy flow is always from the warmer to the colder. Why is
that the case? All macroscopic parts of a thermodynamic system in equilibrium are
subject to undergoing spontaneous infinitesimal transformations that obey the stan-
dard conservation rules for the overall value of the property that is spontaneously
being affected. That is, the system must follow the dictates of the first law.
However, in regard to following the second law, the spontaneous transformation
is required to result either in increasing the overall entropy of the system or at

4This, of course, proves Pascal’s principle: Pascal, Blaise (6/19/1623)—(8/19/1662).

3 As mentioned earlier, it is convenient to call two separate thermodynamic systems by the same
pair of indices, (a) and (b), that is used for two sub-systems of a single thermodynamic object.
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best holding it unchanged. Because the entropy in the equilibrium state is the
maximum possible, if the thermodynamic system being considered is not exactly at
equilibrium, but is infinitesimally close to it, then the overall resultant, infinitesimal,
entropy change, (ds)spontancous, caused by the spontaneous transformation must be
positive.

To study this matter, let us again consider macroscopic components (a), (b), etc.,
of a single thermodynamic system. Or equivalently consider different thermody-
namic systems (a), (b), etc., with or without other constituent parts. Again we use
the Euler equation in the entropy representation.®

Often the spontaneous process will cause some infinitesimal change in each of
the three extensive state variables: namely, the internal energy, u, the volume, v,
and/or the number of moles, n;, of the j-th chemical potential.7 However, because
the overall system is assumed to be adiabatically enclosed, the total value of all the
extensive state variables is conserved. Thus, if we consider only two system, (a) and
(b), we have

dula] + du[b] = 0;dv(a) 4 dv(b) = 0;dn;(a) +dn;(b) = 0. (9.8)

The Euler equation tells us that the resultant change in the entropy is as given below.
And the second law requires the corresponding spontaneous change in the entropy
to be either greater than, or at best equal to, zero. Therefore, we can write

[+ [ v - [ o
i e+ [ 57 Jover - 5 Jons
[~ s e+ [ 22 - 28 v
D bl

= (ds)spontaneous Z 0 (99)

Now, in order to answer the question posed regarding the direction of heat energy
flow, let us proceed as follows.

Imagine the isolated composite system, composed of (a) and (b), is infinites-
imally close to achieving equilibrium. Assume that during such a spontaneous
process, the only contact allowed between (@) and (b) is across a fixed®, imper-

Recall that such Euler equation is given in (8.18).
"We work with constant X; so that dX; = 0.
$Meaning the process is isochoric.
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meable, diathermal wall’: meaning, dv(a) = 0 and dn j(a) = 0. Therefore, (a) and
(b) can exchange only the internal energy, that is, du(a).

Of the two options available — namely the spontaneous change in the entropy is
either positive or it is equal to zero — consider first the case where the spontaneous
change in the entropy is positive. Then according to (9.9)

d _ |1 ! d >0 9.10
s)spontaneous = [@ - @} M[a] . (9.10)
As aresult, if #(b) > t(a), meaning if
LI 0 9.11
[r(a)‘r(bJ o G1h

then du(a) > 0.

Note that, if we had used the equality option in (9.9), then nothing much would
have happened. The temperatures on the two sides would be equal, 7(a) = t(b),
and no heat energy would be transferred: namely, du(a) = du(b) = 0.

In words, if the temperature on side () is higher than that on side (a), then heat
energy will flow such that the resultant change in the internal energy'® of the cooler
side — that is, side a — is positive. This means that positive heat energy is transferred
from the warmer side (b) to the cooler side (a).

Simply put, the requirement that in an isolated system entropy must increase in
any isochoric spontaneous process mandates that, across any fixed impermeable
wall, heat energy can flow only from the “hot” side to the “cold.”

9.2.3 Molecular Flow

9.2.3.1 Question

At constant temperature and pressure, molecules tend to flow from regions of higher
chemical potential to those of lower chemical potential. What is the relevant
physics? To this end, let us examine the isothermal—isobaric behavior. Here, #(a)
and ¢ (b) are the same, say each is equal to ¢, and also p(a) = p(b). Further, except
for the exchange of the jth chemical component across an appropriately chosen
membrane between the two systems, disallow the sharing of all remaining chemical

“Note: Being diathermal ensures the flow of internal energy. The requirement that the diathermal
wall be fixed ensures dv(e) = 0. Similarly, the requirement of impermeability ensures that
dn;(a) =0.

107p this case, the increase du(a) in the internal energy is synonymous with the increase in the heat
energy.
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components. Therefore, according to (9.9), the expression for the infinitesimal
increase in the entropy is the following'!

mi@ )

; ; :| dnj(a) > 0. 9.12)

(ds)sponlancous = - |:

Thus, if i (a) > (), then the change, dn; (a), in the jth mole number in system
(a) is negative — or equivalently, the change in the jth mole number in system b is
positive.

Simply put, the requirement that in an isolated system the entropy must increase
in any spontaneous process mandates that at constant temperature and pressure,
molecules always flow from a region of higher chemical potential towards a region
of lower chemical potential.

A myriad common experiences testify to this fact. Those of us with a sweet-tooth
have surely noticed that, when added to a fluid, sweet taste flows away from a sugar
cube to regions of lower sugar concentration. At constant temperature, the chemical
potential for sugar would thus appear to be larger in regions where its density is
higher.

9.2.4 Isothermal Compression

9.2.4.1 Question

If the total volume is kept constant, in thermal contact two macroscopic parts of
a system with a freely moveable but impermeable partition between them, adjust
their volumes in such a way that the part with lower original pressure shrinks in
volume. Why is that the case? With the total volume — that is, the sum of the
volumes of @ and b — kept constant, let the two systems at the same temperature
t be allowed to exchange only the volume'? across a freely moveable diaphragm.
All other exchanges are disallowed. Accordingly, the relevant relationship now is

:| dv(a) > 0.

p(a) pb)
ds)spontancous = | —— — ——
(@5 = | 2 = 21
Clearly, therefore, if the pressure on the side a is greater than the pressure on
side b — that is, p(a) > p(b) — then dv(a) has to be positive. That is, the side a
expands. As a result, the partitioning diaphragm moves towards system b: meaning,

"Because nothing much happens if we use the equality sign, we shall not waste any energy looking
at that option.

2This means that chemical potential of any given type, say of type j, in both the a and the b
systems is the same. That is, u;(a) = u;(b).
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the volume of the system!? @ increases and the system b shrinks in volume.'* In
other words, given two macroscopic systems in thermal contact are placed together
in an adiabatically isolated chamber, if their total volume is constant, their chemical
potentials are equal, they are at the same temperature, but they can freely affect each
other’s volume, then:

The requirement that the total entropy must increase in any isothermal spon-
taneous process, ensures that the side with originally lower pressure will shrink
in volume. And if the process is allowed to continue, shrinking of the side with
originally lower pressure will continue until the two pressures become equal.

Later, we shall formally learn that this is an essential characteristic of thermody-
namic systems in stable equilibrium: the isothermal compressibility in these systems
is positive. Which means, the volume of a system at constant temperature decreases
when it is subjected to increased compression.

9.2.5 The Energy Extremum: Minimum Energy

In the foregoing, the entropy was treated as the all-important thermo-motive force
that drove the flow towards thermodynamic equilibrium. Any role that the other
basic state function, the internal energy, may play in nudging the system towards
equilibrium was not investigated.

It turns out that the extremum principle for the entropy — that thermodynamic
equilibrium requires the entropy of an isolated system to be the maximum consistent
with any existing constraints that determine u,v,n;, etc. — is equivalent15 to a
corresponding extremum principle for the internal energy: namely, that when an
isolated thermodynamic system reaches equilibrium, the internal energy, u, achieves
its minimum value, consistent with the existing constraints which specify the other
extensive quantities s, v, 1, etc.

Exploiting the internal energy extremum — which requires that in equilibrium
energy is the minimum possible — provides an alternative formulation for the flow
towards equilibrium.

The equivalence of the entropy and the energy extremum principles can be
demonstrated by showing that in an isolated system unless the internal energy is
the minimum possible, the entropy cannot be the maximum possible. Thus, for
one to be true, the other must also obtain. Consequently, the two extrema occur
simultaneously.

3Note that the system b is in such contact with a that the “volume” can flow from one to the other.
Also that pressure in system b is lower than the pressure in a.

14 Another way of looking at this is the fact that because dv(a) + dv(b) = 0, therefore, if dv(a) is
positive, dv(b) is negative.

5There are other extremum principles that are also equivalent to that for the entropy and the
internal energy. These refer to the system enthalpy, the Helmholtz free energy and the Gibbs
potential. See the following chapter on “Stable, Meta-Stable and Unstable Equilibria” for details.
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To this end, consider an hypothetical circumstance when thermodynamic
equilibrium is reached — i.e., when the entropy is the maximum possible — without
the internal energy having achieved its lowest possible value. As noted in the chapter
on the second law, internal energy may be extracted out of a system even during
reversible adiabatic processes. Clearly, the entropy of the isolated system under any
such reversible adiabatic process must, by thermodynamic fiat, stay unchanged —
at its maximum permissible value. On the other hand, the extraction of energy
would decrease the system internal energy. Note, under the above hypothesis any
such decrease would be permitted as long as the internal energy remained above its
minimum possible level consistent with the specified entropy. Clearly, this course
of action, would continue decreasing the internal energy of the system. Followed to
its logical conclusion, these actions would lead the system to achieve the minimum
possible internal energy.

Alternatively, and perhaps even more dramatically, another scenario can be
made to unfold. The internal energy extracted as described above can in turn be
transformed into equal amount of work. And, the work so produced converted into
equal amount of heat energy that in turn can be added back into the system. This
round-trip restores the original amount of internal energy. Because even a reversible
introduction of such heat energy must result in increasing the system entropy, we
are left with a situation where the system entropy has been increased from what
was assumed to be its maximum possible value. The only situation in which this
boot-strapping cannot be permitted is when the internal energy is already at its
minimum permissible value.

To recapitulate, as has also been mentioned previously, when an isolated system
with specified values of the internal energy u, the volume v, the mole numbers 7 ;
and other extensive variables &;, is in thermodynamic equilibrium, its entropy s is
the maximum possible. But the matter of interest in this section is the following:

Simultaneously, with the entropy s being a maximum and with values of all other
extensive variables that obtain in the given state in equilibrium, the internal energy
is the minimum possible.

Consequently, two requirements are obeyed in equilibrium. For any given
value of the internal energy, u, and other unconstrained extensive parameters of
a system in thermodynamic equilibrium, the corresponding value of the entropy
is at its maximum. And similarly, for any given value of the entropy s, and other
unconstrained extensive parameters of a system in thermodynamic equilibrium, the
corresponding value of the internal energy, u, is a minimum. We display these
statements as follows:

(ds) =0, (9.13)

(d*s) <0, (9.14)
and

(du) =0, (9.15)

(d*u) > 0. (9.16)

Note: While (9.13) and (9.15) ensure the occurrence of thermodynamic equilibrium,
(9.14) and (9.16) describe the bases for thermodynamic stability.
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As we know from the work that led to (9.1)—(9.7), using the stationarity
requirement for the entropy — a statement that is also embodied in (9.13) — leads
to (“an extended version of ) the zeroth law. Indeed, its implications have also been
exploited to good effect for the study of thermodynamic motive forces — see (9.8)—
(9.13). Therefore, we turn our attention to (9.15), which refers to the stationarity of
the internal energy. We shall find that this equation also leads to the same physical
conclusions as were derived from (9.13). It is instructive to see how this happens.

9.2.6 Reconfirmation of the Zeroth Law

Begin with the statement of the first-second law that is contained in (8.23).
For brevity, again limit the discussion to a simple system with only 7;’s and
v as extensive variables (and, of course, s and u as extensive state functions).
Equation (8.23) thus simplifies to

du(s.v.n;) = 1(ds) — p(dv) + Y p;(dn)). 9.17)
J

First, let us check on the status of the zeroth law. To this end, imagine the isolated
thermodynamic system that has achieved equilibrium, to be divided into two parts:
(a) and (b). The specification that the system is isolated, ensures that the total
amount of the extensive variables, the entropy, the mole numbers, and volume
remain constant. This fact is represented by the following equalities:

(ds) = 0 =ds(a) + ds(b); (dv) = 0 = dv(a) + dv(b);
(dn;) =0=dn;(a) +dn;((®). (9.18)

Also, of course, because the internal energy is stationary, du = 0 = du[a] + du[b].
Let us now write (9.17) so that it refers to the duo («) and (b).

du(s,v,n;) = {dula] 4 du[b]} (s,v,n;) =0
= t(a)ds(a) + t(b)ds(b) — p(a)dv(a) — p(b)dv(D)

+> " {wj(@)dn; () + pj (b)dn; (b))} . (9.19)
J

With the use of (9.18), (9.19) can be written as follows:

0 = [t(a) — t(h)] ds(a) — [p(a) — p(b)]dv(a)
+ 3 [ (@) — j (B)] dnj (@). (9.20)
J
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Because in the energy representation the variables s, n and v are linearly indepen-
dent, therefore in order for (9.20) to hold, each term on the right hand side must
be vanishing. Thus, much like the entropy stationarity principle, the stationarity of
energy also correctly leads to the zeroth law:

1(a) = 1(b); p(a) = p(b): pj(a) = p;(b). 9.21)
9.2.7 Motive Forces: The Energy Formalism

Again, as was done for the entropy extremum analysis, imagine the composite sys-
tem, composed of (a) and (b), to be infinitesimally close to achieving equilibrium.
Further, assume the system undergoes an infinitesimal spontaneous transformation
which actually brings it to thermal equilibrium. Because in equilibrium, for the
given value of total entropy and other extensive variables, the total internal energy
u is to be a minimum, such a spontaneous process must result in reducing the total
internal energy. Accordingly, any change, du, must represent a decrease. That is,

(du)spontaneous = dula] + du[b]
= [t(a) —t(D)]ds(a) — [p(a) — p(b)]dv(a)
+ ) (1 (@) — j (b)ldn (@)
j

< 0. (9.22)

9.2.8 Isobaric Entropy Flow

Consider the case when the pressures p, and p; are equal and all molecular flows
are disallowed. Then the inequality (9.22) simplifies to the following:

(dut)spontancous = dula] + du[b] = [t(a) — t(b)]ds(a) < 0. (9.23)
Let the temperature difference between a and b be positive, that is,
[t(a) —t(D)] > O, (9.24)

then (9.23) demands that ds(a) < 0. In words, while the total entropy in this situation
remains unchanged, positive entropy is transferred out of the warmer side “a” into
the colder side “b.”

Simply put, the requirement that in an isolated thermodynamic system in
equilibrium, with no molecular flows occurring, and a given amount of total entropy,
the energy must decrease in an isobaric spontaneous process mandates that:

The entropy must flow outwards from a region of higher temperature towards a

region of lower temperature.
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9.2.9 Isothermal-Isobaric Molecular Flow

Next, examine the isothermal—isobaric behavior. Here, #(a) and ¢ (b) are the same,
say each is equal to ¢, and also p(a) = p(b).

Further, except for the exchange of the /th chemical component across an
appropriately chosen membrane between the two systems, disallow the sharing of
all remaining extensive properties. Then (9.22) becomes

(du)spomaneous = [wi(a) — pi(b)]dn;(a) < 0. (9.25)

Thus, in order to satisfy the inequality (9.25) for the case when the chemical
potential p;(a) is greater than u;(b), the quantity dn;(a) has to be negative.
Consequently, the number of / type-molecules in system “a” must decrease. This
is equivalent to saying more type / molecules leave system “a” than return to it. In
other words:

Molecules tend to move away from regions with larger chemical potential, and
go to regions with smaller chemical potential.

This behavior is summarized as follows: Assume an isolated system that is in
thermal equilibrium. Its internal energy is the minimum possible for given values
of the entropy and all other extensive variables. In such a system, the internal
energy must decrease in any isothermal—isobaric spontaneous process that results
in the interchange of, say, the [-type molecules. And for this to happen, the /-type
molecules must flow from a region where the relevant chemical potential, u;, is
higher to a region where that particular chemical potential is lower. This is exactly
the result that was derived from the entropy maximum principle — see (9.12).

9.2.10 Isothermal Compression

Let the two systems at the same temperature ¢ be allowed to exchange only
the volume across a freely moveable diaphragm. All other exchanges are to be
disallowed. Accordingly, the relevant relationship now is

(du)spontaneous = —[p(a) — p(b)]dv(a) < 0. (9.26)

Clearly, therefore, if the pressure p(a) is less than the pressure p(b), then
— [p(a) — p(b)] is positive. Therefore, dv(a) has to be negative. This means that
the diaphragm must then move towards system a. As a result, the system a will
shrink in volume and system b will expand an equal amount.

Simply put, when the total volume of the two systems at the same temperature
is constant but they can freely affect each other’s volume, the requirement that total
energy of the two systems must decrease in an isothermal spontaneous process,
mandates that the one with lower pressure shrink in volume.
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This is exactly the same result that was derived from the entropy extremum
principle. (See (9.13).)

9.3 Thermodynamic Stability

9.3.1 Le Chatelier’s Principle

Le Chatelier’s Principle asserts:
“Spontaneous processes caused by displacements from equilibrium help restore the
system back to equilibrium.”

In equilibrium, temperature of an isolated metal rod is uniform. If equilibrium
were disturbed by — let us say, a virtual — fluctuation resulting in the rise of
temperature at one of the ends and a compensating fall in the temperature at the
other, heat energy would spontaneously flow from the hot end to the cold. In other
words, displacement from equilibrium spawns spontaneous processes that help drive
the system back towards equilibrium.

Moreover, as demonstrated in a solved example,'® when this happens the entropy
of the metal rod is higher in the equilibrium state.

Myriad other familiar examples can be cited along these lines. So why does this
happen?

Germane to this issue is the observation noted above: namely, that the entropy
of the equilibrium state is higher than the state displaced from equilibrium. This of
course follows from the Clausius version of the second law: A spontaneous process
causes the entropy of an isolated system to increase. Formally, this statement is
embodied in the inequality (4.40), namely

dSiora1 (spontaneous) > 0. (9.27)

Thus, spontaneous processes induced by displacements away from the equilibrium
result in increasing the entropy. Clearly, this continues until the entropy, for specified
constraints on, and given values of other extensive properties of, the system achieves
its maximum: or in other words, the system achieves thermodynamic equilibrium.

Therefore, according to the above, when an isolated system — with given values
of the internal energy U, volume V, mole numbers 1 ; and other extensive variables
A —is in thermodynamic equilibrium its entropy S is the maximum possible.

Equally importantly, simultaneous with the above, another extremum principle
also obtains. That is, for given amount of the entropy S and other extensive
variables, the internal energy in an isolated system is the minimum possible.
Therefore, according to the dictates of calculus, in such isolated systems, (9.13)—
(9.16) must be satisfied.

16See (4.213) and (4.215).
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The requirement related to only the first order differential — namely those given
in (9.13) and (9.15) — apply to all types of extrema.

For example, in the preceding part of this chapter — see (9.7)—(9.26) — they helped
re-derive the zeroth law — see (9.7) and (9.21) — and, more importantly, they helped
determine the direction of thermodynamic motive forces.

The second set of requirements that use second order differentials specified in
(9.14) and (9.16), also have noteworthy — indeed, fundamental and far-reaching —
physical consequences.

In particular, they are crucial to the understanding of thermodynamic stability: a
topic that is addressed below.

9.4 Stable Thermodynamic Equilibrium

The question that needs to be answered is the following: What are the essential
criteria for a stable thermodynamic equilibrium? This question can refer either to a
single system which is in equilibrium by itself, or to a composite system where its
different sub-systems, in addition to being in equilibrium by themselves, are also
in equilibrium with each other. Because the results obtained are similar in both the
formulations, they can easily be transliterated from one case to the other. Therefore,
in this chapter, we shall treat only issues relating to self-equilibrium.

As was discovered in the preceding sections, the entropy maximum formulation
leads to exactly the same physical conclusions regarding thermodynamic properties
as does the energy minimum formulation. Further, that at the margins, the minimum
energy formulation is easier to work with. Therefore, to simplify and reduce the
amount of work needed, in the following we shall work only with the energy
minimum formulation.

9.4.1 Intrinsic Stability: Cy and x7 > 0

We do two things here.

First: we analyze as simple a system as possible. (To this end, we shall limit
extensive quantities to two state functions, that is, the internal energy U and the
entropy S, and one state variable, that is, the volume!” V.)

Second: we express the internal energy in terms of its characteristic variables, the
entropy S and the volume V that is,

U =U(S.V). (9.28)

According to the first-second law:

7A system with an additional variable, namely the number of moles, requires somewhat more
effort and, therefore, for convenience, is deferred to appendix H.
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TdS =dU + PdV,
or equivalently

U U
dU(S,V)=TdS — PdV = [— ) d =) av. 2
U(S. V) S 14 (as)v S+(av)s V. (9.29)

The stationarity of the energy — expressed in (9.15) — has already been fully
exploited in the preceding work. Therefore, one needs now to examine only the
second requirement — expressed in (9.16) — that comes into play because the energy
is a minimum (for specified values of the extensive variables S and V).

Using (9.29), (9.16) can be written as'®

d2U(S,V) = d[dU(S, V)]

(01dU(S, V)] AU(S. V)]
‘( 0s )VdS+( o )st

U *U
=(—==] @@dS)? ds -dv
(azs)v( 5 +(asav) S

22U U ,
+ (aVaS) dv-ds + (BZ_V)S dav)

> 0. (9.30)

It is convenient to display this inequality in a matrix form:

d’U(S,V) ={dS, dV}-a- { SIS/} > 0, (9.31)
where
(82U) ( *U )
2
s ), \asav ) | 9.32)

A= v P’U
avas 2V )
The right hand side of (9.31), is an homogeneous quadratic form. The inequality
> 0 stipulates that the given homogeneous form be positive definite. For this to be

8Note: According to the usual notation, the mixed derivative (aas_auv) is equivalent to

(£24),
14

s
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true the two principal minors of the determinant a, that is |A;| and |A|, must be
positive definite!. In other words, the following two inequalities must hold:

02U
|A1|=(ﬁ) >0, (9.33)
14
and?”
(82U) (82U)
As| = g v \OSIVJg (9.34)

9.4.1.1 Analysis: First Requirement

First let us analyze the implications of the requirement given in (9.33). Because
(BU)V = T, we have

ES
?*U oT T
All=|l==) == =—=—>0.
02S /), s /), Cy
Because T is positive, the first requirement for thermodynamic stability is

Cy > 0. (9.35)

In words:
For thermodynamic stability, the specific heat at constant volume must be positive.

19See appendix G, (F.10) and (F.11), which state that for the quadratic form to be positive-definite,
the principal minors of the matrix a must be positive definite.

20Note that inequalities (9.34)
(&), (55).- (%)
— ) == - >0
72V ) 02S )y A%
92
(—U) >0,
028 )y

and (9.33)

also imply the following inequality

Indeed, the last inequality would itself have been mandated if, instead of the vector {S, V'}, we had
made an equally allowed choice: work with the vector {V, S}.
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The first requirement has an obvious physical basis: If heat energy is not allowed
to be expended on expanding the volume, all any addition of (positive amount
of) heat energy cane do is increase the system temperature. Of course, one has
complete confidence in this statement only when the given system is intrinsically
stable against phase separation.

9.4.2 Analysis: Second Requirement

Next, let us examine the second requirement which signifies thermodynamic
stability. This is represented by the inequality (9.34). Expanding the determinant
and writing the result in the Jacobian form gives

wi= (), (), - (7o) (osav)
H7\oev ) \es ), \ovas ) \asav
_ ((5)s - (G5)y)

N AV, S)
> 0. (9.36)

Because in thermodynamic equilibrium, (%), = —P and (%), = T we can
write (9.36) given above as follows:

(=P, T) (=P, T)dT,V)

[A] = a(V.s) _ aV.T) a(S,V)
P aT
-~(5), (5s),
(1 T
- () (&)
> 0. (9.37)

And because both V' and T are necessarily positive and according to (9.35), for
thermodynamic stability, Cy is also positive, therefore, yr must be positive. That
means

¥r > 0. (9.38)

In words:
For intrinsic thermodynamic stability, both the specific heat at constant volume, Cy,
and the isothermal compressibility, xr, must be positive.
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The positivity of the isothermal compressibility y7 is testified to by observation.
With the temperature maintained constant, increase in compression shrinks the
volume of the object being compressed. Again, this is necessarily true if the system
is intrinsically stable against phase separation.

9.4.3 Intrinsic Stability: Chemical Potential

The above adequately describes the physics of intrinsic — or, indeed, mutual —
stability in simple thermodynamic systems. Because of the importance of the
chemical potential, the variables used above must be extended to also include the
mole number n. Understandably, such extension adds quite a little bit to the algebra.
Therefore, the details are best deferred to an appendix — see appendix H. It may,
however, be helpful for a student to be apprised of the result.

In order to achieve and maintain intrinsic thermodynamic stability the following
three physical requirements?! must be met:

9
Cy > 0; yr > 0: (—’“‘) > 0. (9.39)
on )y

Much like the first two requirements — already discussed above — the third also has
an obvious physical basis: to maintain thermodynamic equilibrium when the total
entropy and volume are held constant, the addition of a molecule (that is, a tiny
fraction) to an otherwise isolated system in equilibrium must increase its chemical
potential. A hint of this phenomenon has already been noted in (9.12). There, an
observation was made whose implications are similar to those of this requirement —
namely, that the chemical potential must be higher in a region of higher particle
density.?

9.4.4 Intrinsic Stability: Cp and xs > 0

The requirement that for intrinsic stability both Cy and yr must be > 0 implies that
both Cp and yg are also > 0.

To see that Cp is > 0, let us refer to (5.83) and (5.84) where the exactness of the
equality,

21See appendix G, (G.19) for details.

22For instance, compare with the earlier statement: Simply put, the requirement that in an isolated
system the entropy must increase in an isothermal spontaneous process, mandates the molecular
flow, at constant temperature, to occur outwards from a region of higher chemical potential towards
a region of lower chemical potential.
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op
Cp=Cy+TV (—) , (9.40)
XT

was demonstrated. Because 7, V, and the square of the real quantity op are all
necessarily positive and in an intrinsically stable thermodynamic system both Cy
and yr are also > 0, therefore

Cp > CV > 0. (941)

To examine the positivity of ys let us look at (5.87) — which for convenience is
reproduced in an equivalent form below:

xS Cy )
=1=1=. (9.42)
(X T ) (CP
Because y7, Cy, and Cp are all positive,

xr > xs > 0. (9.43)

9.4.5 Exercise

Show the in an intrinsically stable thermodynamic system yr is greater than yg.

9.4.6 Summary

To recapitulate, positivity of the specific heat Cy and the isothermal compressibility,
X1, in each of the two parts of a composite thermodynamic system, ensures both
the intrinsic as well as the mutual thermodynamic stability of the two parts. Further,
when changes in the particle density are also allowed, the rate of change of the
chemical potential with respect to the particle density — for given values of the
entropy and the volume- is also positive.

Clearly, the same must hold true even if the composite system has more than
two parts. For instance, for a system with three parts, we can first lump two (of
the three) parts together into a single system. This process can then be repeated to
accommodate a system with arbitrary number of parts.



Chapter 10
Energy and Entropy Extrema; Legendre
Transformations; Thermodynamic

Potentials; Clausius—Clapeyron Equation;
Gibbs Phase Rule

In the preceding chapter titled, “Zeroth Law Revisited; Motive Forces; Ther-
modynamic Stability,” we examined some issues that pertain to thermodynamic
motive forces. Also, some matters relating to intrinsic thermodynamic stability were
investigated. These analyses were guided by the extremum principles for the internal
energy and the entropy. In Chap. 10, other extremum principles are also identified
and their consequences predicted.

First, in Sect. 10.1, we treat systems constituted of single variety of molecules. In
such systems, when more than one phase is present in thermodynamic equilibrium,
the extremum principle related to the internal energy stipulates — see Sects. 10.1.1
and 10.1.2 — that the specific internal energy be the same in all phases. The same is
also true of the entropy, as is made clear in Sect. 10.2. Legendre transformations,
which provide an essential tool for these studies, are discussed in Sect. 10.3.
Extremum principles obeyed by the Helmholtz free energy, the Gibbs potential, and
enthalpy are analyzed and their consequences predicted in Sects. 10.4-10.6, respec-
tively. Characteristic equations for the four thermodynamic potentials — namely the
internal energy, the Helmholz, and the Gibbs potentials, and the enthalpy — are
studied in Sect. 10.7. Maxwell relations are described in Sect. 10.8. The concept
of meta stable equilibrium is discussed in Sect. 10.9. A detailed account of the
Clausius—Clapeyron differential equation and its use in the study of thermodynamic
phases is given in Sect. 10.10. Finally, in Sect. 10.11, we discuss the Gibbs phase
rule and variance, completing the description by referencing the application of the
Gibbs phase rule to systems with internal chemical reactions.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 373
DOI 10.1007/978-3-642-21481-3_10, © Springer-Verlag Berlin Heidelberg 2012
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10.1 Systems Constituted of Single Variety of Molecules

10.1.1 Minimum Internal Energy in Adiabatically Isolated
Systems

Relative Size of Phases

Assume the given isolated thermodynamic system is constituted of two different
thermodynamic phases. The energy extremum principle requires that the relative
size! of the two phases must adjust itself to such value as minimizes the total internal
energy: meaning, the relative size of the two phases adjusts itself so that the sum of
the internal energy of the two phases is the minimum possible. Accordingly, this
adjustment is such that for an isolated thermodynamic system, at the equilibrium
values of all the relevant extensive variables, including the entropy, the following
holds:

The relative numbers of moles of the two co-existent phases — of an isolated,
macroscopic system in thermodynamic equilibrium — are those that lead to the
lowest value for the total internal energy.

10.1.2 Equality of Specific Internal Energy of Different Phases

Assume two different simultaneously present phases, A and B, constitute a given
isolated thermodynamic system. Further, let their “specific” internal energy —
meaning, internal energy per mole — be u4 and up. For an equilibrium state titled-1
let the numbers of moles for the two phases be 4 ; and np 1, respectively. Then the
value of the internal energy, uai;1, of the isolated thermodynamic system for the
equilibrium state 1 is

Uotal;]l = N4l UA + N 1UB. (10.1)

Now, if there should be another equilibrium state titled 2, then with similar notation
we can write

Uotal;2 = NA2 U4 + NpBoUB. (10.2)
Thermodynamic equilibrium stipulates that the system be in the state with the lowest

value of the internal energy. Therefore, the given isolated thermodynamic system
cannot possibly be equally willing to be in either of the two equilibrium states,

'Note, however, that while the relative size of the two phases does indeed depend upon the
thermodynamic state of the system, their total mass does not, because it is necessarily conserved.
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1 and 2 — unless, of course, the two states should have the same total internal energy,
= u(total). Accordingly, we must have uoa1;1 = Uiora;z = u(total). That is:

NA1UA +NBIUB = Ng2Ug + NBoUp = u(total). (10.3)

Also, let the total number of moles in the system be ny,. Then, because the total
number of particles in a given thermodynamic system — not subject to any leakage
of atoms — is conserved, the total number of moles in either of the two equilibrium
states, 1 or 2, must be the same. That is,

na1+npi =n4n+npr = Nl (10.4)

The only physically acceptable solution of the above two equations, that is, (10.3)
and (10.4), is

ug = up. (105)

To sum up:

When a bi-phase macroscopic system, placed in an adiabatically isolating
chamber; is in stable thermodynamic equilibrium, the specific internal energy of
the two phases is the same.

10.2 Maximum Entropy in Adiabatically Isolated Systems

10.2.1 Comment

The maximum in the entropy, for an adiabatically isolated macroscopic system,
plays a similar role to the minimum in the internal energy. The latter was analyzed
above. Either requirement leads to achieving stable thermodynamic equilibrium.? In
particular the requirement that:

“At the equilibrium value of all the other extensive variables (including the
internal energy), the entropy of an adiabatically isolated thermodynamic system be
a maximum,”’

demands that under the appropriate conditions stated above:

(a) In a completely isolated thermodynamic system, only those spontaneous pro-
cesses occur that increase the total entropy of the system.

(b) And, should an isolated, thermodynamic system exist in two or more states of
stable equilibria, then the specific entropy is the same in each of those states.

2Refer again to the chapter titled “Equilibrium, Motive Forces, and Stability” where issues of
thermodynamic stability were investigated.



376 10 Energy and Entropy Extrema; Legendre Transformations
10.2.2 Relative Size of Phases and Entropy Maximum

Much like the internal energy, the entropy is a state function of fundamental
importance.

Consider a macroscopic system, constituted of two phases, placed within an
adiabatically isolating chamber. The entropy extremum principle demands that in
thermodynamic equilibrium the entropy summed over the two phases has to be
a maximum. Therefore, during any spontaneous process the relative number of
moles of the two phases will undergo appropriate thermodynamic changes so that
in equilibrium the total entropy of the two phases is at its maximum.

Accordingly, given the equilibrium values of all the relevant extensive variables,
including the internal energy, of the given bi-phase macroscopic system in thermo-
dynamic equilibrium that has been placed in an adiabatically isolating chamber, the
following holds true:

In an isolated, single constituent thermodynamic system, the relative number
of moles of the two phases in the final equilibrium state are those that lead to the
largest total entropy.

10.2.3 Equality of Specific Entropy

Let the two different, simultaneously present, phases, A and B, constitute a given
isolated single constituent thermodynamic system. Further, let their “specific”
entropy — meaning, entropy per mole — be s4 and sp. For an equilibrium state
titled- 1 let the numbers of moles for the two phases be 14 ; and np |, respectively.
Then, the total value of the entropy, Sioal;1, of the isolated thermodynamic system
for the equilibrium state 1 is

Stotal;] = N A,154 +1p1Sp. (10.6)

Now, if there should be another equilibrium state titled 2, then with similar notation
we can write

Stotal;2 = NA254 +NpoSp. (10.7)

Thermodynamic equilibrium stipulates that the system be in the state with the largest
value of the total entropy. Therefore, the given isolated thermodynamic system
cannot possibly be in two different equilibrium states — unless, of course, the two
states should have the same amount of total entropy = s(total). Accordingly, we
must have S = Siowr;2 = S(total). That is:

Nng1S4 +Np1Sp = Na254 + npasp = s(total). (10.8)

Also, let the total number of moles in the system be n,. Then, because the mole
number in a given system — not subject to any leakage of atoms — is conserved, the
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total number of moles in either of the two equilibrium states must be the same. That
is,

nga1+npi =ngn+ngr= Nl (10.9)

The only physically acceptable solution of the above two equations, that is, (10.8)
and (10.9), is

sS4 = SB. (10.10)

To sum up:

When a bi-phase, macroscopic system, placed in an adiabatically isolating
chamber; is in stable thermodynamic equilibrium, the specific entropy of the two
phases is the same.

10.2.4 Remark

It turns out that, in addition to the internal energy, u, and the entropy, s, extremum
principles are also obeyed by other thermodynamic potentials. And, much like u
and s, these potentials also play compelling roles in thermal physics.

10.3 Legendre Transformations

As has been mentioned before, direct measurement of the entropy is not possible.
This seriously affects the usefulness of those thermodynamic relationships where
the entropy is an “independent variable.” So one asks the question: is there some
way of transforming out a specific independent variable that is hard, or inconvenient,
to measure? Further, can such transformation be performed cleverly enough so that
no loss of information occurs?

Happily, answers to both these questions are in the affirmative. And the method-
ology to use is that of Legendre Transformations. Below we demonstrate, in the
energy representation,’ how to use Legendre transformations. For this purpose,
let us choose first the most pre-eminent thermodynamic potential:* the internal
energy,” u. In this regard, it is helpful to review the “Euler Equation.” A detailed

3Similar work in the entropy representation is also possible. The relevant potentials are then called
Massieu functions. See appendix I for details.

4What constitutes a “thermodynamic potential” is dealt with later in this chapter.

SRecall that, in the preceding two chapters, the internal energy was shown to play a central role in
the description of thermodynamic equilibrium and stability.
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description of the fundamental equation — namely the Euler equation which is
(8.12) — is given in the chapter titled “Fundamental Equation and The Equations
of State.” For convenience, it — that is, (8.12) — is re-produced in an equivalent form
below:

u=—pv+ts—+ un—YX. (10.11)

This equation describes how the extensive variable of interest, that is, the internal
energy u, is related to other extensive variables: the volume v, the entropy s, the
mole number n and parameters such as X.

Accordingly, the quasi-static increase in the potential energy of two neighboring
equilibrium states is a function of the corresponding increases in the volume, the
entropy, the mole numbers, and X. This fact is represented in the form of the
joint version of the first-second laws.® For convenience, that too is reproduced in
an equivalent form below:

du = —pdv + tds + pudn — YdX. (10.12)

10.3.1 Simple System

The system that we treat first has only constant number of atoms — meaning
dn = 0 — and also does not have any dependence on the term )dX'. For such a
simple system, a convenient appropriate relationship is provided by the statement of
the first-second law.’

du = —pdv + tds
_ (3_) dv+(a_“) ds.
v/ ds /,
therefore,
u = u(v,s). (10.13)

Note: all the changes, that is, du in the internal energy, dv in the volume and
ds in the entropy, refer to extensive variables, are infinitesimal in size, and occur
quasi-statically. Further, note that the “canonical” — that is, the characteristic —
independent variables for the internal energy are the volume v and the entropy s.
And, while the volume is readily measured, precise measurement of the entropy s
is not possible. Therefore, s is not the most desirable independent variable to have.

5Compare (8.5).
"That was first given in (5.6).
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Should we then attempt to transform out of the entropy as an independent variable?
That is, precisely what is achieved by the Helmholtz free energy. (For details, see
the following subsection where the Helmholtz free energy is discussed.)

10.4 Helmholtz Free Energy

10.4.1 System as Function of Volume and Temperature

We often need to consider transformations in systems whose properties are available
as functions of the two most accessible variables: volume and temperature. In
(10.13), one of those two variables of interest — namely v through the occurrence of
dv — is already present. The second variable of interest, namely 7, can be included
by transforming out of the entropy variable s — which occurs here via ds — into d.

In other words, without engendering any loss in information, we need to
transcribe the term (+¢ ds) from (10.13), into a term that would involve d¢. This
can be done by using an appropriate Legendre transformation as follows:

First: Recall that (10.13) represents the internal energy, u, as a function of its
characteristic variables, the volume v and the entropy s. To transcribe (+¢ ds) out
of this equation, we need to add (—¢ s) to the primary® function u. (Note that by
this addition we have introduced an alternate function f — which we shall call the
“Helmholtz Thermodynamic Potential.”)

f=u—{(s). (10.14)
Second: Determine the differential d f.
df =du—tds—sdr. (10.15)
Third: In (10.15), introduce the original expression for (du) that was given in the
starting (10.13).
We get

df = (du) —tds —sdt
= (—pdv+1tds)—tds—sdt

—pdv —sdt

_ (¥ i
= (3v)t dv + (az ) dr. (10.16)

8Reader: Please note the procedure: To transform out of (47 ds) we need to add (—t s) to the
primary function.
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In this fashion, without any loss of information, the original function — that is, the
internal energy u — has been replaced by a new function f. The important thing to
note is that the new function f is a function only of the variables of interest that are
the most convenient for treating the thermodynamics of systems that are maintained
at constant volume and constant temperature. That is,

f = f,0). (10.17)

Clearly, the new independent variable, the temperature ¢, which is conjugate to the
previous independent variable the entropy s, is one of the easiest thermodynamic
parameters to measure.

The newly introduced potential, f (v, t), is called the “Helmholtz Free Energy” —
or equivalently, the “Helmholtz Thermodynamic Potential” — and the variables v
and ¢ are often called its “characteristic, independent, variables.”

10.4.2 Maximum Available Work

As we know from the chapter on the second law, heat engines need a minimum of
two temperatures to successfully operate cyclically: namely, the higher temperature,
ty, of the reservoir that supplies the needed heat energy and the lower temperature,
tc, of the dump into which the unused heat energy is discarded. The maximum work
efficiency, emax, is achieved by a perfect Carnot engine and is a direct function of

the two temperatures, that is, €, = (1 — t% .
Although it cannot operate cyclically — which a good heat energy engine must — a
thermodynamic system in contact with a heat energy source at a single temperature
can still produce work. The questions that arise are: How much work is produced?
And what is its maximum possible value?
To answer these questions let us refer to the differential form of the Clausius

inequality (4.54). For convenience, it is reproduced below:

dSZM.

T (10.18)

For the present purposes, it is helpful to multiply both sides by T and express dQ’
according to the first law. In this fashion, the above inequality can be represented in
the following equivalent form:

1 As > Au+ Aw'. (10.19)
Here, ¢ is the temperature, and As the increase in the entropy of the system. Also,

Au is the increase in the internal energy of, and Aw’ the work done by, the system.
Note the equality holds only when all these processes are fully quasi-static.
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10.4.3 Isothermal Change of State

Consider a system that is maintained at constant temperature ¢ by thermal contact
with a temperature reservoir. Label the initial and the final states: i and j.

Then t As = t(s; — s;). Let the work done “by the system” in transforming
from state i to state j be denoted as Aw’_, j (t) and the relevant increase, Au, in the
internal energy be = (u; — ;). Then, using the inequality (10.19) we can write

t(sj —si) > (uj —w) + Awj_, (1),
or equivalently
t(sj —si) = (uj —w) = fi(t) = f;(t) = Awi_, ; (1) (10.20)

Note: [ fi@t)—f; (t)] is the decrease in the Helmholtz free energy — or, equivalently
stated, the decrease in the Helmholtz potential — when the system, in thermal contact
with a heat energy reservoir at temperature ¢, undergoes a transformation from
an initial equilibrium state 7 to a final equilibrium state j. Then according to the
inequality (10.19), the decrease, [ fit)—f; (t)], in the Hembholtz potential is almost
always greater than — but, exceptionally, equal to — the work Aw/_, j (z) done by the
system in going from i to j.

In other words: Consider an isolated macroscopic system in thermodynamic
equilibrium. The system is in thermal contact with a single heat energy reservoir. In
performing some work it gets transformed from one equilibrium state, i, to another
equilibrium state, j. In such a process,

The maximum possible work that a given system — in thermal contact with a
constant temperature reservoir — can possibly perform is equal to the resulting
decrease in its Helmholtz free energy.

And this maximum can only be achieved if, Aw/_, j (t) = Aw;_;(t). Because
then, (10.20) becomes:

Ji@) = fi (@) = Aw;— (). (10.21)
And this happens only when all the transformation processes occur quasi-statically.

10.4.4 Decrease of Helmholtz Free Energy
Jor Constant Extensive Variables

A general description of the quasi-static infinitesimal work that can be performed by
a macroscopic system in thermodynamic equilibrium at temperature # is recorded in
(8.2). For convenience it is reproduced in an equivalent form below:

AW (t) = pAv — pAn’ + Y AX', (10.22)
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If all the extensive variables, such as the volume v’, the mole numbers n’, and the
properties referred to by the general parameter X”’, remain constant and equal to
their equilibrium values at temperature ¢ then Av’ = An’ = AX’ = 0. Therefore,
according to (10.22), Aw'(t) = 0.2 A consequence of this is that in (10.20),
Awl_, ;(t) = 0. And the decrease in the Helmholtz free energy in any spontaneous
passage from a state i to a state j becomes

fi@) = f;(@) = 0. (10.23)

Or equivalently,

fi(t) = fi (). (10.24)

In words: For a macroscopic system that is in thermodynamic equilibrium, is in
thermal contact with a temperature reservoir, and for which the volume, the mole
numbers and the quantity X’ are maintained constant at their equilibrium value:

The Helmholtz free energy decreases during any spontaneous thermodynamic
process during which the equilibrium values of the volume, the mole numbers,
and other extensive variables such as X remain constant. Only in exceptional
circumstances, when the process involved is fully quasi-static, does the Helmholtz
free energy remain unchanged.

More briefly:

A spontaneous isothermal—isochoric process can proceed only if the Helmholtz
free energy either decreases or holds steady.

10.4.5 Extremum Principle for Helmholtz Free Energy

In systems where the equilibrium values of the volume, the mole numbers, and other
extensive variables such as X remain constant, spontaneous isothermal processes
occur as long as they decrease the Helmholtz free energy. Clearly such processes
continue until the Helmholtz free energy cannot decrease any further. In other
words:

At the equilibrium values of s, and n, and at constant value of the volume
v and temperature ¢ — the latter is maintained constant by thermal contact with
a heat energy reservoir — the inequality (10.24) demands that in thermodynamic
equilibrium the Helmholtz free energy be a minimum.

9Literally, this implies that its integral, or equivalently the sum, Aw’(¢) is constant. Hence, w’ in
both the states i and j is the same.

10Note that Aw’, etc., indicate that the changes being described may have occurred either wholly
or partially non-quasi-statically.
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Briefly stated:

The Helmholtz free energy of a system of given volume, mole numbers and
the property X, whose temperature is maintained by contact with a heat energy
reservoir, is a minimum in thermodynamic equilibrium.

10.4.6 Relative Size of Phases and Helmholtz Potential Minimum

While the relative sizes — that is, the relative number of moles — of the two phases
depend upon the equilibrium state, their total mass is necessarily conserved. In
the foregoing analyses we have learned that for such a system, at the equilibrium
values of all the unconstrained extensive variables and at constant temperature, ?,
the Helmholtz free energy, f, is a minimum.

In order that in equilibrium, the total Helmholtz free energy of such a bi-phase
thermodynamic system be at its minimum, during any spontaneous process the
relative masses — that is, the relative numbers of moles — of the given two phases
will adjust themselves to decrease the Helmholtz free energy by the largest amount
possible. In other word:

For the amounts of all the relevant extensive variables, the relative numbers of
moles of the two phases in the final equilibrium state are those that lead to the lowest
total value for the Helmholtz free energy.

Note: The same ideas can also be extended to multi-phase — that is, more than two
phases — and multi-constituent systems which for brevity are not explicitly treated
here.

10.4.7 Specific Helmholtz Free Energy is Equal
Jor Different Phases

Let the two different simultaneously present phases, A and B, constitute a given
thermodynamic system (at given fixed value of the total volume and given tem-
perature). Further, let the “specific” Helmholtz free energies of the two phases —
meaning, Helmholtz free energy per mole of the two phases that are in mutual
thermodynamic equilibrium — be f4 and f3.

For an equilibrium state titled-1 let the numbers of moles for the two phases be
n4, and n g, respectively. Then the value of the Helmholtz free energy, fiotr:1, of
the given thermodynamic system in state 1 is

Jota;1 =141 fa+np1f5. (10.25)

Now, if there should be another equilibrium state titled 2, then with similar notation
we can write

Jrotal:2 = Naa2 fa+npa2fs. (10.26)
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Thermodynamic equilibrium stipulates that the system must be in the state with
the lowest value of the Helmholtz free energy. Therefore, the given thermodynamic
system cannot possibly be in two different equilibrium states — unless, of course, the
total Helmholtz free energy in each phase, that is, fiowar;1 and fiowr:2, is the same for
both the states 1 and 2. Accordingly, we have

ftolal;l = flotal;Z = f(total), (1027)

where

naifa+ng1 fg = fow; = f(total);
nA,zfA +npgo fB = flotal;Z = f(total). (10.28)

Also, let the total number of moles in the system be 7. Then, because the total
number of moles is conserved, the total number of moles in state 1 is the same as it
is in state 2, that is,

ng1+ N1 = Nou =N42 +Np2. (10.29)

The only physically acceptable solution of the above two equations, that is, (10.28)
and (10.29), is

fa= fs. (10.30)

To sum up:

In a bi-phase thermodynamic system, which is in thermal contact with a heat
energy reservoir at a fixed temperature, the specific Helmholtz free energy of the
two co-existent phases is the same.

10.5 Gibb’s Free Energy

Usually, the study of the Helmholtz free energy is the preferred option for theoretical
calculations. But in experimental work, especially in chemistry, constant pressure is
much easier to maintain than is constant volume. Thus, rather than v and ¢, it is
even better to have the pressure, p and the temperature ¢ as the two independent
variables. To this purpose, in an analogous fashion to that followed before, we need
to use an appropriate Legendre transformation.

Consider (10.16): namely d f = —p dv — s dt. Because, while leaving d¢ alone,
we wish to transform out of the Helmholtz free energy’s dependence on dv, namely
from the form — p dv, into a possible dependence on dp, this process affects only
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the term (—p dv). Therefore, as in (8.12) we define an appropriate state!! function
g by adding (4 p v) to the Helmholtz potential f. That is:

g=pv+ 1. (10.31)

Thendg = pdv +vdp + (df). But (df) is equal to (—pdv — sdz). Therefore, we
can write

dg = +pdv + vdp + (—pdv — sdt) = vdp — sdt. (10.32)

Thus, the characteristic independent variables for the Gibbs’ free energy, g, are the
pressure and the temperature. That is,

g=g(p.1);

g g
de=|—1]d — dr. 10.
g (ap)r ”+(az)p (1039

10.5.1 Maximum Available Work: Isothermal-Isobaric
Change of State

We previously learned that when all the transformation processes occur quasi-
statically, the amount of work any thermodynamic system in contact with a single
heat energy reservoir — which maintains it at a fixed temperature — can possibly
perform is equal to the resulting decrease in its Helmholtz free energy. It is, however,
usually the case that in stable equilibrium the naturally provided reservoir — meaning
the atmosphere around the heat energy engine — not only serves as an energy
reservoir at constant temperature but also maintains its pressure constant. Then the
question that arises is the following. What is the amount of work that can possibly
be done by such an engine if, in addition to the constancy of the temperature, its
pressure, p, were also kept constant?

10.5.1.1 General Analysis

Consider two equilibrium states, i and j, of a given thermodynamic system in
thermal contact with a heat energy reservoir at temperature ¢ — meaning, both the
temperatures, #; and 7;, of the states i and j are equal to ¢. Additionally, let there
also be a volume connection, across a freely movable piston, which ensures the
constancy of pressure between the system and the volume reservoir. The pressures,

1 Again to be called the Gibbs potential, or equivalently, the Gibbs free energy, but note that in this
sub-section the system being treated has both x and ) absent.
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pi and p;, of the two states are therefore equal to the pressure, p, of the volume
reservoir, that is, p; = p; = p. Finally, let the internal energy of the two states be,
u; and u;, their volumes, v; and v;, and their entropy, s; and s, respectively. Then,
let us define the following equalities:

/

Aug—jy = uj —uis Awj, ) = p'(V; —v)) + A(Z{_, )i Asimj) = 5; — i
AZiLp) = Al{pn + Y}, — (-’ + V2] (10.34)

Note A(Z]_, ;) is the non-PdV “work done by the system” in going from the state i

i—j

to state j. As a result the inequality (10.20) becomes
Z(Sj —S,')—(l/tj —Mi) > AW;_)]-(I), (1035)

or, equivalently,
G5y —s0) =y —w) = p' ) —v) = (g — ) = AZ[,). (1036)

Thus, the non-PdV work, A(Z!_, j), “done by the system” in going from the state i
to the state j, is almost always less than the corresponding decrease, (g; — g} ), in the
Gibbs free energy. And only exceptionally is the non-PdV work done by the system
equal to the decrease, (g; — g;). in the Gibbs'? free energy of the system. And
that happens when all extensive thermodynamic variables undergo only quasi-static
changes. If any of the intervening processes are non-quasi-static, then the non-PdV
work done, A(Z]_, ;), is less than the corresponding decrease, (g/—g’;), in the Gibbs
free energy. In other words, assuming that a given system is in thermal contact with
a heat energy reservoir, which maintains its temperature at , and it can also freely
exchange volume with a volume reservoir, so that, in addition to the temperature,
the pressure p is also equalized between the system and the reservoir, then:

The maximum possible non-PdV work that can be extracted from such a
thermodynamic system, when it undergoes a transformation from one equilibrium
state to another, is equal to the corresponding decrease in its Gibbs free energy.
And the relevant maximum can only be achieved if all the transformation processes
occur quasi-statically.

10.5.2 Decrease in Gibbs Free Energy at Constant
Mole-Numbers and Constant X

10.5.2.1 The PdV Work

Here the mole-numbers as well as all A’s are constant. Therefore, in (10.36)

12Note the absence of the prime in the quantity (g; — g;).
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A(Zi/ — j) =0.
This means, the non-PdV work is vanishing. As a result, according to (10.36), the
decrease in the Gibbs free energy in going from any initial equilibrium state i to
any final equilibrium state j — or, equivalently, during any spontaneous process — is
either equal to, or greater than, zero. That is,

gi(p,1) —g;(p,t) =0, (10.37)

or equivalently,

gi(p.t) = gi(p.1). (10.38)

Therefore, in a system where the non-PdV work is vanishing, all isobaric—isothermal
spontaneous processes decrease the Gibbs free energy. More completely stated:

In a system which does only the PdV work, a spontaneous, isothermal—isobaric,
transformation can proceed only if the Gibbs free energy either decreases, or holds
steady. Note, in order for the Gibbs free energy to hold steady, all the processes
involved in the transformation must be quasi-static.

10.5.3 Extremum Principle for Gibbs Free Energy

Clearly, these spontaneous processes continue until the Gibbs free energy cannot
decrease any further. In other words:

The Gibbs free energy is a minimum in stable thermodynamic equilibrium for a
system that does only PdV work and whose temperature and pressure are maintained
constant by contact with external reservoirs.

10.5.4 Relative Size of Phases and Gibbs Potential Minimum

As mentioned before, while the relative number of moles of the two phases depends
upon the equilibrium state, their total mass is conserved. Therefore, in order
that in equilibrium the total value of the Gibbs free energy of such a bi-phase
thermodynamic system be at its minimum, during any spontaneous process the
relative number of moles of the given two phases must adjust itself to decrease
the Gibbs free energy by the largest amount.

Thus, at the equilibrium values of s, v and 7, and at constant temperature — main-
tained by thermal contact with a heat energy reservoir — and at constant pressure —
maintained by contact with a volume reservoir across a freely compressible
piston — a bi-phase, single constituent system in thermodynamic equilibrium
behaves as follows:
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The relative number of moles of the two phases in the final equilibrium state is
such as leads to the lowest total value for the Gibbs free energy.

While the same ideas can also be extended to multi-constituent, multi-phase
systems, for brevity we continue to work with a single chemical constituent with
up-to two phases.

10.5.5 Equality of Specific Gibbs Free Energy
of Different Phases

Let the two different simultaneously present phases, A and B, constitute a given
thermodynamic system (at given fixed value of the pressure and temperature).
Further, let the “specific” Gibbs free energy of the two phases — meaning, Gibbs
free energy per mole — be g4 and gp.

For an equilibrium state titled-1 let the numbers of moles for the two phases be
n4, and np i, respectively. Then the value of the Gibbs free energy, giowl;1, of the
given thermodynamic system in state 1 is

Srotal;yl = 14184 +NB18B. (10.39)

Now, if there should be another equilibrium state titled 2, then with similar notation
we can write

Sotal;2 = NA4284 +NB28B. (10.40)

Thermodynamic equilibrium stipulates that the system be in the state with the
lowest total value of the Gibbs free energy. Therefore, the given thermodynamic
system cannot possibly be in two different equilibrium states — unless, of course,
the total Gibbs free energy, giotwl;1 and giowl;2, 1 the same for both the states 1 and 2.
Accordingly, we have

Ztotal;1 = Srotat;z = g(total), (10.41)
where

n4184 +np1 88 = Guowl;1 = g(total);

N4284 +NB2gB = Gou = g(total). (10.42)
Also, let the total number of moles in the system be ny,. Then, because the total
number of moles is conserved, the number of moles in state 1 is the same as it is in

state 2, that is,

ngl+np1 = Nl = N4 +N1po. (10.43)
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The only physically acceptable solution of the above two equations, that is, (10.42)
and (10.43), is

g4 = &B- (10.44)

To sum up:

At constant pressure, in a bi-phase thermodynamic system that is in thermal
contact with a heat energy reservoir at a fixed temperature, the specific Gibbs free
energy of the two co-existent phases is the same.

Clearly, the above argument is readily extended to three — and indeed to an
arbitrary number of — phases.

It is interesting to recall that a system with two (or, indeed three) possible
thermodynamic phases — vapor-liquid, or (vapor-liquid and vapor—solid) — was first
treated in the chapter titled “Van der Waals Theory of Imperfect Gases.” There — see
the statement presented between (6.55) and (6.56) — it was stated without proof that:
“During phase transitions, thermodynamic stability requires the specific Gibbs free
energy to be the same for all phases.”

10.6 The Enthalpy: Remarks

As noted in (10.13), the characteristic independent variables for the internal energy
u are the volume v and the entropy s. That is, u = u(v, s). The first time we used
the Legendre transformation in this chapter, we exchanged the entropy (that is, the
independent variable s) for the temperature (that is, the independent variable ),
thereby transforming out of the internal energy u = u(v, s) into the Helmholtz free
energy f = f(v,t). The Legendre transformation that was used next, exchanged
volume (that is, the independent variable v) for pressure (that is, the independent
variable p) thereby transforming the Helmholtz free energy f(v,t) into the Gibbs
free energy g = g(p,1).

For the simple thermodynamic system being considered here, there are only four
possible choices for the pairs of independent characteristic variables. These are
(v,5),(v,1),(p,t) and (p, s). So far in this chapter, only three of these have been
utilized: namely, (v, s) in u(v, s), (v,t) in f(v,t) and (p,t) in g(p, t). To make use
of the last of these four possible pairs, namely (p, s), we need to transform the Gibbs
potential g(p,t) into an appropriate Legendre transform that involves the variable
pair (p, s).

Consider (10.32). As stated, we wish to transform out of the the term (—s d¢) in
the equation: dg = v d p—s dr. As such, we need to invent an appropriate potential '3
by adding (+s¢) to g. That is:

h =g +st. (10.45)

BIncidentally, such a potential was first introduced in (3.54) where it was equated to u + p v and
named the Enthalpy.



390 10 Energy and Entropy Extrema; Legendre Transformations

This leads to

dh = (dg) + sdt + tds
= (vdp — sdt) + sdt + tds = vdp + tds. (10.46)

Thus, the independent characteristic variables of the enthalpy & are the pressure p

and the entropy s.
oh oh
dh(p,s)=(—) dp+|—) ds. (10.47)
op ) as /,

Note that despite this fact — namely, that the characteristic independent variables for
h are p and s — the enthalpy / can also be written as

h=g+st=u—ts+ pv+st =u+ pv. (10.48)

Indeed, this is how the enthalpy is usually represented!

A word of caution is in order. To a beginner, the essential identity of (10.48)
and (10.47) — both representing the enthalpy — may seem incongruous. Adding
to any possible such incongruity may also be the fact that previously — meaning
much earlier in this book, as for example in (3.89) — enthalpy was analyzed in
terms of yet other pair of variables: namely p and ¢. Of course, while that analysis
was perfectly legitimate for what was needed there, the more appropriate pair of
variables — namely the characteristic variables — for the enthalpy are indeed p and s.

10.6.1 Heat of Transformation

Liquids, when sufficiently cooled usually solidify. Similarly, solids, when heated
tend to liquify. Also, much as happens to frozen snow, occasionally, solids can
evaporate without liquifying. And, at appropriately high temperatures, liquids
boil, and in part vaporize. A convenient term for these occurrences is: “phase
transformations.”

Enthalpy, is an important state function. Because many issues that either relate
to, or involve, the enthalpy have already been discussed in detail — see, (3.78) and
related text — in what follows we shall only give a brief description of its use in the
treatment of heats of transformation, where the enthalpy plays a central role.

Generally, during a phase transformation the temperature, ¢, remains constant but
the volume changes, say from v; — v¢. There are exceptions to the volume change
rule — as, for example, is the case for, the so called, “second order phase transitions.”
In any event, because the transformation is isothermal, it is usually isobaric — so the
initial, p;, and the final, p¢, values of the pressure are the same, that is, p; = pr = p.
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Assuming the volume increase, Av = (vf—vj), occurs quasi-statically, the work,
Aw, done by the system during the isothermal—isobaric volume change is

Aw = p(ve — vy).

If the heat energy used for the phase transformation — for one mole — is Agpnty),
then according to the first law

Agpnty = Au+ Aw,
where Au = (uy — u;) is the relevant increase in the internal energy. Therefore,

Agpnty = Au+ Aw
= uf— Ui + pVr— puv;
= (ur + pvr) — (ui + pvi)
= hy—h; = li>t. (10.49)

The important fact to note here is the following. In stable thermodynamic equilib-
rium, and at the temperature and pressure at which the given system undergoes a
phase transformation:
The heat energy, li—»t, needed for the phase transformation — from a state i to a
state f — is equal to the corresponding increase, (h¢ — hy) , in the enthalpy.
Incidentally, for the so called second order phase transitions, the heat of
transformation is vanishingly small.

10.7 Thermodynamic Potentials: s, f, g and &

In the foregoing we have studied the following important thermodynamic state
functions: the internal energy u — e.g., as in (10.13); the Helmholtz free energy
f —asin (10.16); the Gibbs free energy g — as in (10.32); and the enthalpy / — as
in (10.46). We notice that, much like the derivatives of electrostatic or mechanical
potentials, the derivatives of these state functions also lead to appropriate “field
functions.” (See (10.50)—(10.53) below.) Therefore, in addition to the phrase
thermodynamic state function, the other phrase to use for u, f, g and A, that suggests
itself here, is “thermodynamic potential.”

For convenience, the relevant equations and their derivatives are represented
below:

ou ou
See (10.13) :du = —pdv+tds = — ) dv+ | — ] ds,
v/ ds /),

0 d
Therefore : ) I —-p amy = t. (10.50)
v/ os /,
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a a
See (10.16) : d f = —pdv — sdt = (—f) dv + (—f) dr,
v/, at /,
Therefore : (%)t =-p; (%)v = —s. (10.51)
See (10.32) : dg = vdp — sdt = (a_g) dp + (a_g) dr,
ap /, a /,
Therefore : (8_g) =v ; (a_g) = —s. (10.52)
ap /, t),
oh oh
See (10.46) :dh =vdp +tds = — ) dp+ [ — ) ds,
ap J s/,
(8h) (8h)
Therefore: | — | =v ; | — | =t (10.53)
op ) s/,

10.7.1 Characteristic Equations

The characteristic variables of two of the four thermodynamic potentials handled
above — namely, the Helmholtz potential f = f(v,?) and the Gibbs potential g =
g(p.t) — are easy to measure.'* If available, knowledge of these potentials — that is,
f and g — also helps determine the other two potentials: namely, the internal energy
u = u(v, s) and the enthalpy i = h(p, s).

10.7.2 Helmholtz Potential Helps Determine Internal Energy

For instance, imagine that the functional form of the Helmholtz potential, f(v,?),
is known. Then, with the help of (10.51) and (10.14), the internal energy # may be
obtained as follows:

af af
- = —s5;u= ts = ) —t | =— . 10.54
(at)v Su=f 415 = f0.0) (at)v (10.54)
Further, because p = — (%) , if we are interested we can also determine the
t

pressure!

14These variables are, of course, (v, ) and (p, t), respectively.
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10.7.3 Gibbs Potential Helps Determine Enthalpy

Similarly, if the functional form of the Gibbs potential, g(p, t), is known, then with
the help of (10.31), (10.32), and (10.52) the enthalpy % can also be determined in
the following manner:

g\ _ ., _ _ (%
(at)p_ h=g+1s=g(p.1) ’(at)p' (10.55)

) .
Because v = (%) , we can even determine the volume here !
t

10.8 The Maxwell Relations

Recall that for an exact differential dZ, where Z = Z(x, y), one has the following

relationships
0Z 0Z
dZ=|—|) dx+[— ) dy, (10.56)
X/, v/

and

(10.57)

12\ vz oz (%),
Ay T 9ydx  Oxdy ax
y

Because differentials of the state functions, u, f, g and & are exact, (10.50)—(10.53),
therefore, lead to the following set of useful relationships.

0 d
See equation (10.50) : ay = -, ) t;
v/, os /,

Theref 0%u ap 0%u ot
erefore, — =—(— ) = =(—) .
" dsdv ds ), dvds v /|

See equation (10.51) : (gf) = —p, (%) = —s:

- P\ *f _ ds
Therefore (3 ) T odvor (av)t.
(%)
= an),

See (10.52) : (

°J|<>q
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9 2
Therefore, § _ a_v = 0’8 = — 3_s )
atdp a ), dpdt op ),
oh oh
See (10.53) : (_) — (_) _ .
ap ) as /),

Theref 0h v 0%h ot (10.58)
erefore, — = — ) = =(—] . .
dsap ds J,  0pds op )

In (10.58), there are four equalities that are preceded by the word: “Therefore,’.
Clearly, to the extent that the second and the third of these equalities, that is,

as ap as v
(5:), = (50) = (5), =~ (5), (1022

describe the rates of change of the entropy in terms of, and with respect to, the
measurable parameters — the pressure, the volume, and the temperature — they are of
great thermodynamic interest. Indeed, one expects these relations to be particularly
useful for the calculation of the entropy.

Outwardly, that appears not to be the case for the relations one and four. That
view, however, changes if we look at the first and the fourth relations when they are
displayed upside-down. That is

as . av as . a_p
() () () -2, o

Because the differentials on the right hand side of (10.60) are taken at constant value
of the entropy they outwardly do not appear to be as easy to handle experimentally
as the two differentials on the right hand side of (10.59), which do not involve the
entropy.

Yet, in practise, keeping the entropy constant is much easier to achieve than
finding the actual value of the entropy. Therefore, the relations given above in
(10.60), where the entropy occurs only as a parameter that remains constant, are
also useful.

For the record, we shall henceforth call the four relations that appear in
(10.59) and (10.60) as the Maxwell Relations for a simple thermodynamic system.
Additional Maxwell Relations for less simple thermodynamic systems, that involve
changes in mole numbers and other extensive variables such as &', can also be
worked out. However, for brevity we shall not include that analysis here.
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10.8.1 Exercises

A motivated student might want to work out the Maxwell Relations for a less simple
thermodynamic system: for example, one with different mole numbers, that is, a
multi-constituent system.

10.9 Meta-Stable Equilibrium

The physical requirements that need to be satisfied for stable thermodynamic
equilibrium have been examined in Chap.9 — see the section titled: “Stable Ther-
modynamic Equilibrium.” Additional aspects of the issue are studied in appendix G.
When those requirements are not met, the equilibrium is unstable. There is, however,
a possible third option.

At least in principle, a stable thermodynamic equilibrium is “almost infinitely
long lived.” This is so for two reasons:

The “Le Chatelier’s Principle” assures us that" infinitesimal spontaneous
processes that move the system out of equilibrium immediately get followed by ones
that bring the system back to equilibrium.

More generally, finite sized spontaneous processes are much less likely to occur.
Why is that the case? The answer is as follows: For given values of all the
constraints, the relevant values of all the unconstrained parameters, and the fixed
values of the temperature and the pressure, the Gibbs free energy is at its minimum
in thermodynamic equilibrium. And any finite sized spontaneous process, if it
should occur, would of necessity want to additionally decrease the Gibbs free energy
by a finite amount. And this decrease would need to happen even though the system
Gibbs free energy is already at its minimum !

However, if some or all of the constraint are loosened, finite sized spontaneous
processes may occur. Furthermore, according to statistical mechanics — see the
following chapter titled: “Statistical Thermodynamics” — when left to its own
devices, a thermodynamic system is subject to “tiny”” spontaneous fluctuations that
move fractional parts of the system away from the equilibrium. Occasionally, and
in appropriate circumstances, these effects are additive and persist for long enough
period of time that the system can no longer be classified as being in a state of
thermodynamic equilibrium. And when that happens, the system is in a state of
“meta-stable” equilibrium.

Consider, for instance, a quantity of vapor, at temperature and pressure such
that under normal circumstances — that is, in the presence of some “condensation
nuclei” — it would be ready to condense into the liquid form. Assume that there are
no condensation nuclei — for example, tiny dust particles or groups of ions — present.

tlS

15See the chapter entitled:“Zeroth Law Revisited; Motive Forces; Thermodynamic Stability.”
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Further, assume that spontaneous processes that cause statistical fluctuations are few
and far between.

Now, very, very slowly start reducing the temperature. Because the system is also
completely free of any mechanical disturbance that might motivate the supercooled
vapor to condense, the usual change to liquid phase does not occur. Indeed, here
the vapor is being “supercooled” and often, this process can continue for a while
until the supercooled vapor undergoes a finite sized, spontaneous condensation
to the thermodynamically stable liquid phase. Note, however, that the finite sized
spontaneous condensation of the super-cooled vapor can occur only if the Gibbs
potential decreases in the process.

Liquids can also be supercooled. Instead of condensing into the solid phase, the
liquid state continues to exist even when the temperature has fallen below the normal
condensation point. Again the supercooled liquid eventually converts to the then
thermodynamically stable solid phase.

Much like supercooling, superheating can also occur. Beginning with a system in
the liquid phase, and while the pressure is kept constant, if the temperature is slowly
and gently increased beyond the point where the liquid normally vaporizes, one can
achieve a meta-stable state of superheating. Again, any small fluctuation here trans-
forms the system out of this meta-stable state into a state of equilibrium involving
the vapor phase. Again, any spontaneous process that brings the super-heated liquid
back to the equilibrium state would decrease the specific Gibbs potential.

Similar thoughts were expressed earlier in reference to the “Maxwell Prescrip-
tion” that was proposed for the Van der Waals isotherm. (See (6.52)—(6.58).) Note,
after an appropriate recommendation — see below '® — physical use of the Gibbs free
energy was made, for the first time, there.

10.10 The Clausius—Clapeyron Differential Equation

In the foregoing we have learned that for the simultaneously present two phases —
say, phases A and B — in a single constituent, bi-phase thermodynamic system
in equilibrium, the specific Gibbs free energy uy is equal to up. Of course, this
equality holds at temperature ¢ and pressure p — both of which are set by contact
with an outside reservoir. The question that we ask here is the following: If
the simultaneously present two phases should stay in equilibrium even when the
reservoirs that control the pressure and the temperature are reset at the values p+dp
and ¢ 4 dz, how would that affect the results ? In particular, would the rate of change
of the pressure with respect to the temperature be relevant?

167t was recommended there that “Because the reader has not yet been introduced to the Gibbs
free energy, upon first reading a beginner might postpone the reading of that section until after the
Gibbs potential had been introduced and fully discussed. Equation (6.52) and the development of
(6.55) will become more clear after the Gibbs free energy has been properly introduced and fully
explained. See (10.31)—(10.44).”
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To this purpose let us recall (10.32) — which describes the relevant increase in the
specific Gibbs free energy — and set it to refer separately to each of the two phases.
That is:

dg4 =v4dp —s4dt,and,dgp = vpdp — spdt, (10.61)

where (g4,54,v4) and (g5, Sp, vp) are the specific — that is, the values per mole —
Gibbs potential, the entropy, and the volume, of the phases A and B, respectively.
Because, as explained earlier, in equilibrium the specific Gibbs potential of the
(two) co-existing phases is necessarily equal, that is, dg4 = dgp, (10.61) leads to
the result

vqdp —s4dt = vpdp — spdt. (10.62)

Or equivalently,

(53 —s4) _dp _ [d_P} _ Hsp—s4) (10.63)
A—>B

(vg —vy) dt de ~ t(vg —vy)’

Recall that under these circumstances, the temperature multiplied by the relevant
increase in the entropy per mole, that is, # (sp — 54), is equal to the corresponding
increase in the enthalpy, that is, (hp — h4). And the latter — according to (10.49)
and the description that follows it — is equal to the heat energy, [ 4—, g, that is needed
for the phase transformation from A to B. (Recall that /4, g was called the latent
heat of transformation from A to B.)

In other words — that is, in the form of an equation — the following obtains:

t(SB—SA)=hB—hA=ZA_>B. (10.64)

On combining (10.63) and (10.64), we are led to the following result for the slope

dr
phases A and B.

[d—p] of the equilibrium curve that obtains — in the p — ¢ plane — between the
A—>B

dpi| la—B
— = — (10.65)
[df asp L (vp—va)

This is the Clausius—Clapeyron differential equation. It describes the phase bound-
ary between phases A and B — or equivalently stated, the slope of the equilibrium
curve between the A and the B phases — that are simultaneously present in a multi-
phase thermodynamic system in equilibrium (at some given temperature'’ ¢ and

pressure'® p.

"The temperature ¢ is maintained by contact with a heat energy reservoir.
18The pressure p is maintained by contact with a so-called volume reservoir.
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Fig. 10.1 Schematic plot of
the Clausius—Clapeyron
equations and the phase
boundaries for real substances
except H,O [Copied with
permission from Sears and

Salinger, op. cit., figure 2-8 T S-L
(a), p. 32] )
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In Fig. 10.1, a schematic plot is drawn of the phase boundaries that normally
obtain for the three different phase-duos. These are

(o): A = liquid and B = gas;

(B): A = solid and B = vapor; (y): A = solid and B = liquid.

Note, while the numerator in (10.65) — that is, the latent heat of phase trans-
formation /4, — can have a strong dependence on the temperature, and some
dependence on the pressure, it is almost always!'® positive for all of the three cases,
o« — y. Similarly, the denominator — that is, ¢ (vg — v4) — clearly depends on ¢,
and usually also on p. Despite this fact, some general comments about the sign of
the denominator can also be made.

With regard to the liquid—gas and the solid—vapor phases, that is, the cases
referred to as o and B, we know that the specific volume of the gaseous — meaning
the gas or the vapor — phases exceeds that of the liquid or the solid phases. Therefore,
the difference (vg — v4) > 0. Also, the latent heat, /4, , for phase transformation
is positive for both the “vapor pressure curve” — that is, the case o — and the

dp

“sublimation pressure curve” — that is, the case . Thus, [3] is positive.
A—>B

Next let us look at the solid-liquid phases, that is, the case y. For substances that
shrink on freezing — which is usually the case — the specific volume v 4 of the solid is
less than v for the liquid. Thus, (vg —v4) > 0. And because — as also stated earlier

— [ 4 p is positive for all the cases referred to in «, § and y, the slope dv is
4 14—>p

also positive for the solid-liquid phases — see Fig. 10.1.

19 An exception, usually cited, is liquid Helium at &~ 0.3 K.
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Fig. 10.2 Schematic plot of
the Clausius—Clapeyron
equations and the phase
boundaries for H,O [Copied
with permission from Sears »~—S-L
and Salinger, op. cit., figure
2-9 (a), p. 33] T
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However, the opposite is the case for H,O — that is, pure water — which expands
when it freezes to ordinary ice, namely Ice I — and (vg — v4) < 0. Therefore, for

the solid-liquid phases, that is, the case y, the slope Ccll—‘t” B is negative for H,O

(see Fig. 10.2.)

Accordingly, while the equilibrium Pressure versus Temperature curves slope
upwards to the “right” for all the three cases «,  and y — as in Fig. 10.1 — for Ice
I the solid-liquid curve — that is, the case y — slopes upwards to the “left” — as in
Fig. 10.2.

10.10.1 Solving Clausius—Clapeyron Differential Equation
Following (S-S — that is, Sears and Salinger)* we describe below an approximate
integration of the Clausius—Clapeyron differential equation that refers to the case
where one of the phases is vapor. Note that this applies to both («) and (8). The
approximations used are the following:

(a) All temperature and pressure dependence of the latent heat [ 4_, 5 is small and
therefore negligible. Thus /4, p is approximately a constant.

(b) Specific volume of the liquid or the solid phases is assumed to be small in com-
parison to the specific volume of the vapor phase. Therefore, vpg —v4 ~ vp.

20See Sears and Salinger, op. cit., pages 194-196.
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(c) Further, the vapor phase may be treated as a perfect gas. Accordingly,

(vp) =~ (&). (10.66)
P

With these approximations, the Clausius—Clapeyron differential (10.65) becomes

|:d_pj| - lA—)B ~ lA—)B (10 67)
dr |4.p t (vp) t (&) ’
P

This is a separable equation and can readily be integrated:
/ d P lissp / dt )
p R 12’

In(p) ~ (ZA_)B) [_le| + In (constant);

R

_lA—>B
p A constant X exp R . (10.68)

Thus, instead of just the derivative of the phase-separation curve — for phases 4 and
B — here we have an approximate representation of the phase separation curve itself
for both of the phase-duos specified in @ and .

10.10.2 Triple and the Ice-Points of Water: Why the Separation?

Again, we follow S-S : this time to study how the Clausius—Clapeyron differential
equation can be used to understand why the temperature of the ice-point — equal to
273.15 K — of pure water is slightly lower than that — that is, 273.16 K — of the triple
point. According to S-S, this fact: “. . . appears puzzling, since at both temperatures
ice and water are in equilibrium.”

At the triple point, which is at temperature 3 = 273.16K, the three phases —
namely: pure-water, that is, the liquid ; pure standard ice, that is, the solid; and water
vapor — are all in equilibrium. Here, the vapor pressure of water, the sublimation
pressure of ice, and the system pressure are all equal to p; where

p3 = 4.58 Torr.
(See the schematic plot of the triple point, and its neighborhood, in Fig. 10.2.)
On the other hand, at the ice point the following holds true: Pure ice, under total
pressure p; of exactly one atm, that is,

pi = 760 Torr,

and at temperature #;, is in thermal equilibrium with air-saturated water.
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Given that the pressures p3 and p; are noticeably different, it is no wonder that
the triple point temperature #3 should differ from the ice point temperature #; . Indeed,
one can estimate the corresponding temperature difference by using the Clausius—
Clapeyron differential equation.

To this end let us first note that the expected difference, t; —#3, in the temperature
is very small. Accordingly, an acceptable approximation to the left hand side of
(10.65) is the following:

dp (pi — p3)
— = — 10.69
I:dt i|A—>B (ti —13) ¢ )

Similarly, in the right hand side of (10.65), to three significant figure, we may use
the approximation:

i+t
A Ul Y e (10.70)

After first inverting (10.65) and then using the approximations indicated in (10.69)
and (10.69), we get

t, —t i —
(imB)  pag e iU
(pi — p3) (lice—>water)
t—t 1.00x 1072 = 1.09 x 1073) m3 kg ™!
~ (6 — &) av,273Kx( x x Jm’ke ,
(1.01 x 10N m—2) 3.34 x 105 kg ™!

(10.71)
which leads to

(1.00 x 1073 = 1.09 x 10~%) Nm
3.34x105]
~ —0.0075K. (10.72)

(t: — 3) ~ (1.01 x 10°N) x 273K x

Thus, the difference in the pressures of the triple point and the equilibrium point
of ice-coupled with pure water lead to a small difference between the triple point
temperature, #3, and the equilibrium temperature, #;, of ice-coupled with pure water.
The triple point is very slightly warmer than the ice point.

In addition to the difference in pressures, the presence of dissolved air in water
also affects the value of (13 —¢;). Dissolved air helps lower the temperature at
which liquid air is in equilibrium with pure ice under atmospheric pressure by about
0.0023 K. Thus, the triple point lies above the ice point by a total of approximately
0.0075 4 0.0023 = 0.0098 K. Because by international agreement the triple point
temperature is exactly 273.16K, by this reckoning the ice point is very close
to 273.15K.
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10.11 Gibbs Phase Rule

10.11.1 Multi-Phase Multi-Constituent Systems

So far in this chapter single phased, uni-constituent thermodynamic systems —
meaning, systems that are in a single phase and are composed of only one type of
molecule — have been treated. Here we extend that analysis to multi-phased, multi-
constituent systems.

Consider a thermodynamic system with £, different phases, each composed of
{. different chemical constituents. Let the i-th constituent in the j-th phase be
characterized by specific chemical potential — that is, chemical potential per mole —
equal to ,uf" ). Assume there are nf’ ) moles of the i-th constituent in the j-th phase
where i = 1,2,...,4.and j = 1,2,...,{,. In accord with the Euler (8.14), as
noted in (8.13), for such multi-phased, multi-constituent systems the total Gibbs
free energy, Giol, should be a weighted sum of the specific chemical potentials
over all of the £. constituents in each of the £, phases.

i=t. j=tp

Gow = Y > u’'nt?). (10.73)

i=1 j=I

Note that of necessity the total number of molecules — or equivalently, total mole
numbers — for each constituent is conserved (compare (10.43)). That is, for any
constituent i we have

j=t j=b
Z n'") = constant. Therefore, Z dn') = 0. (10.74)
j=1 j=1

Earlier in this chapter we learned two facts that are relevant here.

(1) First: The relative number of moles of different phases in the final equilibrium
state of a multi-phased thermodynamic system in thermodynamic equilibrium — at
the equilibrium values of the entropy, the volume, and at constant temperature and
pressure — is such that the total Gibbs free energy, G, is the lowest possible.
Accordingly, a system reaches thermodynamic equilibrium when its total Gibbs
free energy is a minimum. Further, if the temperature and the pressure are kept
constant, the total Gibbs potential remains stationary with respect to infinitesimal
changes in the equilibrium state. Because any such changes leave the specific
chemical potentials unchanged, they result in infinitesimally changing only the mole
numbers, n/ ’s. And, of course, changes in the mole numbers happen subject to the
requirement — described in (10.74) — that the total number of any given type of
molecule is conserved. In addition, the following must also hold:
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i=t. j=tp ) )
dGlotal - /’Ll(j)dnl(j)
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(10.75)

If every one of the {. x £, differentials dn; were independent — in the sense that their
values could be chosen without any regard to the values of the others — then (10.75)
would be satisfied only if all the chemical potentials ,u{ were vanishing. Clearly,
that solution would be un-physical. '

But, as noted in (10.74), the differentials dn{ are not all independent. As a result,
there must exist a more physical solution than the one where all chemical potentials
are vanishing. Indeed, we have already reported such a solution for uni-constituent,
dual phased systems in (10.44).

(2) Second: Extending the previous result — that is, that given in (10.44) —
assert that for any given chemical constituent i, the specific Gibbs free energy /Ll] is
the same for all the £, different phases ;. In other words, we assert that the following
is true.

pV=p® = ni =12,k (10.76)

For each of the £. constituents i, according to (10.76) above, there are a total
of (£, — 1) different equalities that must be satisfied. As a result, for the whole
thermodynamic system, this amounts to a total of £rcjaionships different relationships
where

grelationships = ec(ep - 1) (1077)

10.11.2 Phase Equilibrium Relationships

10.11.2.1 Proof of (10.76)

Remember that the changes, dnf , in the mole numbers are not independent. Rather
they are constrained by the requirement imposed by (10.74).

Write (10.74) and (10.75) in expanded form. Choose a constituent i — meaning,
choose molecules of type i — from the total of £, different constituents. Because the
total number of any given type of molecules is conserved, therefore according to
(10.74), a variation in the number of such molecules in phase 1 affects the number
of the same type of molecules present in other (£, — 1) co-existent phases.



404 10 Energy and Entropy Extrema; Legendre Transformations
2
an = —[dn® 404 an™]. (10.78)

Next, multiply both sides by ,uf-l) and insert the resulting expression into (10.75) on
the right hand side. In this fashion, we readily get

=0

2 1 2 3 1 3 ) 1 ()
S [ = uyan + = pMan® 4 G = pyan ] =o.

= (10.79)

Notice that the constraint for dnl(l) prescribed by (10.78) has now been fully
satisfied in (10.79). Therefore, dnfj ) ’s for j > 2 can be handled independently. For
instance, assume that dnl@) = 0 but dnfj ) — 0forall j > 3. Then (10.79) becomes

i=0,
[(Mf” - Mf”)] dn® = o. (10.80)

i=1
The above equation can be satisfied only if
w =, (10.81)

Clearly, this argument can be repeated to obtain the equalities

(1) (3).
T

M = ) (10.82)

10.11.2.2 The Relationships

As was also noted following (10.76), there are a total of {.({, — 1) different
relationships implicit in (10.81) and (10.82). These relationships are often called
“Phase Equilibrium Relationships.” They generalize the previously derived result?!
for a multi-phased, single constituent thermodynamic system which was in thermal
contact with a heat energy reservoir at a fixed temperature. The result there showed
that chemical potentials in different co-existent phases are all equal.

2See (10.44).
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10.11.3 The Phase Rule

Clearly, if a multi-phased thermodynamic system is not in equilibrium, then chem-
ical potentials — for a given constituent in all the co-existent phases — are not neces-
sarily equal. In an argument that was presented following (9.12) in the chapter titled:
“Zeroth Law Revisited; Motive Forces; Thermodynamic Stability,” it was concluded
that at constant temperature and pressure, molecules always flow out of a region of
higher chemical potential into a region of lower chemical potential. When for any
given constituent, differences in chemical potential exist between different phases, a
motive force is created which causes the relevant molecules to escape from regions
of higher chemical potential to those of lower chemical potential. This escaping
process continues until the relevant chemical potential is the same in all phases.

Consider a homogeneous thermodynamic system in which molecules from £,
constituents are present in £, different phases. Because by definition the sum of
mole fractions of all the constituents in any given phase is equal to unity, only
(€. — 1) mole fractions can be chosen independently in any given phase. Thus in
{, different phases, the total number of possible choices of the mole fractions is
equal to £,({c — 1). The temperature and the pressure are added to this mix making
the total number of available variables, £yaables, €qual to

Lyariables = EP(ZC - 1) + 2. (10.83)

10.11.4 The Variance

Numerical difference between the total number of variables available, £yaaples. and
the number of relationships that need to be satisfied, £ ciationships» 1S often called the
“variance,” Lyaiance- It is equal to the number of variables that can arbitrarily be
chosen.

Evariance = evariables - grelationships
=0l —1)+2—[l(£p —1)]
=4lc—4€,+ 2. (10.84)

This is the “Gibbs Phase Rule” for the so called PdV systems that do not have any
non-PdV interaction.

10.11.4.1 Invariant Systems

When the variance is vanishing, that is, £yyiance = 0, the system is labeled
“invariant.” And if there are no non-PdV forces, we have

by = bc+2. (10.85)
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Of course, being invariant does not guarantee that all the relationships — that is,
the £.(¢, — 1) different equations — can be solved and all the £,({c — 1) + 2
variables — that is, the relative composition of all the phases as well as pressure
and the temperature — determined. What it does say, however, is that no arbitrary
assignment can be made to the result for any of the variables.

As an example of this feature, let us consider the triple point of water. Clearly
there is only one chemical constituent??: namely H,O molecules. So £, is equal to
1. Also, in equilibrium, the system has three phases: liquid, gas and solid. There-
fore, gp = 3; evariable = [Ep(gc - 1) + 2] = 2; grelationships = [ec(gp - 1)] = 2; and
Luariance = Lvariables — Lrelationships = 0. Consequently, the result that is obtained for
the available two variables — meaning, the pressure and the temperature — is what
it is and neither of them can be assigned an arbitrary value. Therefore, at the triple
point, both the pressure and the temperature have fixed values.

10.11.4.2 Mono-Variant Systems

Next, consider two co-existent phases: liquid water and its vapor. Again, there is
only a single chemical constituent, that is, the H, O molecules. Hence, £, = 1. But
now there are two phases: thus £, = 2. As a result the number of variables is equal
to two, that is, £ysrianie = 2. However, there is only a single relationship: meaning,
Lretationships = 1. Clearly, the relationship here must refer to the equality of the two
chemical potentials, that is, fiiquia = vapor-

In addition, now the variance is unity: meaning, £yariance = 2 — 1 = 1. Of the total
of two available variables — clearly the temperature 7 and the pressure P — one can
be assigned an arbitrary value. Everyday experience confirms this fact. Water can
be heated to any desired temperature®® and the vapor-pressure is determined accord-
ingly. If the vapor pressure is increased beyond its appropriate value, the additional
vapor will condense into liquid form, as water. On the other hand, if the vapor pres-
sure is lower than its appropriate value for the temperature, more liquid will evap-
orate until the pressure regains its requisite value. Or indeed, while we do not often
witness this in our daily lives, the vapor pressure can be set at any desired value:
and that will determine the relevant, appropriate value of the system temperature.

10.11.5 Phase Rule for Systems with Chemical Reactions

In the above, all £, constituents were assumed to mix without any inter-reaction. If
this should not be the case, and there should be a total of r different, independent,
reversible chemical reactions that take place after the . constituents have been
placed within the system, then the total number of independent equations is r more

22Therefore, the relative composition in all the phases is exactly known. Tt is exactly one!

23Physics for treating the boiling of water has not been included here. So this statement is valid
only as long as the temperature is above the freezing point but below the boiling point of water.
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than was previously the case. In other words, now {reiaionships = €c(€p — 1) + 7.
However, the number of variables is still the same, that is, {yariables = £p(€c —1) +2.

Therefore,

Evariance = Eva.riables - Erelationships
=Lle—1)+2—-[l(lp—1)+ 7]
=le—Lly+2—r (10.86)



Chapter 11
Statistical Thermodynamics: Third Law

So far, no effort has been made to carry out exact numerical calculation of
state functions such as the entropy and the internal energy.! Indeed, analyses of
thermodynamic state functions have focused mainly on their rates of change and
inter-relationships. This has happened for a reason. Without considerable help from
experimental observation, thermodynamics itself does not have any convenient
method to precisely calculate the entropy or even the internal energy. Often,
therefore, the good offices of statistical mechanics are needed for doing the same.

Using statistical mechanics is not unlike working with automobiles. There
are important issues that relate to the physics and engineering of automobiles.
While these issues are fundamental for, and integral to, achieving a full, proper,
and complete understanding of automobiles, most of us get by without knowing
anything about them. For an automobile to be any use to us, we must learn to drive
it — and hopefully do that safely and well.

With a view to describing how statistical thermodynamics calculations are carried
out, in the following we give first a brief and elementary description of the “standard
route” that is often traversed for the calculation of state functions for a classical
thermodynamic system which is in touch with a heat energy reservoir at some
temperature 7 and where the number of particles is constant. Much as is the case
for an automobile, there are important theoretical arguments in support of how and
why the standard procedure leads us to where we want to go. But discussing them
here would take us far afield. Therefore, we opt instead to learn only to drive!

To carry out a statistical mechanical calculation one needs to decide on the
type of ensemble to use. Next, one works out the relevant partition function.
In Sects.11.1 and 11.2, we provide a partition function for use in a Canonical
ensemble. The thermodynamic system being analyzed here is a classical monatomic
perfect gas. The relationship of the partition function to thermodynamic potentials

'Excepting, of course, for the one attempt that was made by making rudimentary use of statistical
mechanics in the calculation of the internal energy u — see (2.13)—(2.27). But the calculation of the
entropy, and some other thermodynamic potentials, requires a more serious effort.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 409
DOI 10.1007/978-3-642-21481-3_11, © Springer-Verlag Berlin Heidelberg 2012
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is also described. Using the statistical mechanical procedure, thermodynamics of
mixed perfect gases in a variety of physical situations is studied in Sects. 11.3 and
11.4. Perfect gas of classical diatoms is analyzed in Sect. 11.5. Thermodynamics of
harmonic and anharmonic simple oscillators, classical dipole pairs, and Langevin
paramagnetism is discussed in Sects. 11.6—11.8. Extremely relativistic monatomic
ideal gas is treated in Sect.11.9. The case of a classical gas with inter-particle
interaction is studied in Sect. 11.10. Next, a study of quantum systems is begun.
First treated are quasi-classical quantum systems. Also, quasi-classical quantum —
sometimes called “classical-co-quantum” — and quantum statistics are compared
and contrasted in Sect. 11.11. While rigid quantum and hetero-nuclear diatoms
are treated in Sects. 11.12 and 11.13, Sects. 11.14 and 11.15, respectively, deal
with homo-nuclear diatoms and diatoms with vibrational motion. Nernst’s heat
theorem and the third law are analyzed in Sect. 11.16. Section 11.17 is devoted
to dealing with the concept of negative temperatures. Use of grand Canonical
ensemble — first for classical and then for quantum systems —is begun in Sects. 11.18
and 11.19, respectively. Non-interacting Bose—Einstein and Fermi—Dirac gases are
introduced in Sect. 11.21. Section 11.22 deals with perfect Fermi—Dirac gas and
Pauli paramagnetism. Landau diamagnetism is also discussed here. The Richardson
effect is described in Sect. 11.23. Detailed discussion of the Bose—Einstein gas
is provided in Sects. 11.24 and 11.25. Black body radiation and phonons are
treated in Sects. 11.26 and 11.27, respectively. A table of Debye temperatures and
thermodynamic potentials is provided in the concluding section Sect. 11.28.

11.1 Partition Function: Classical Systems in §-Dimensions

11.1.1 The Canonical Ensemble

Assume the temperature 7' of the given thermodynamic system, with a specified
number of particles, is maintained at a fixed value by contact with a heat energy
reservoir.

(a): Find a functional form for the system Hamiltonian. The Hamiltonian, H =
H(Q, p), is the sum of kinetic and potential energies of the N particles that
constitute the thermodynamic system. Variables that are needed for specifying
the Hamiltonian can often be expressed in terms of the number N and
mutually conjugate variables, say Q, and p. For instance, 0 may represent
the N §-dimensional position vectors for the N particles: or equivalently, their
N§ position variables = (q1, g2, - - . ,gns)- Similarly, p may stand for the N§-
dimensional momentum vectors for the N particles: or equivalently, their
N§ momentum variables = (pi, p2, ..., pys)- Here, § stands for the spatial
dimensionality of the system; and if all of the N particles are identical, each
will be assumed to have mass m.
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(b): Calculate the so-called partition function, E(N,V,T), that is defined as
follows:

E(N,V.T) = (N!)~* h—N‘S/_ /_ dQ -dp-exp[-BH(Q. p)]. (11.1)

The notation used here? — see also (2.13)—(2.27) — is the following: N is the
total number of particles, each of mass m, V the volume, and T the “statistical-
mechanical” temperature — called the “Kelvin” temperature (usually labeled as T K
but occasionally also as T k.). If all the N particles® are “in-distinguishable,” which
is often the case, then § = 1; otherwise — that is, if they all are distinguishable —
& = 0. Additionally, the following notation is used:

dQ =dqidg>...dgns;
dp =dpidp>...dpnws;

_ L (M _ (N,
()G o

n and Np refer to the number of moles and the Avogadro’s number, respectively;
R is called the “molar gas constant: kg is the Boltzmann constant: / is the Planck
constant. In addition, the velocity of light, ¢, in vacuum is a useful number to have:*

Na = 6.02214179(30) x 10* mol™!

R = 8.314472(15) Jmol ' K™!
kg = 1.38065 04(24) x 10”2 JK™!
h = 6.62606896(33) x 10734 T s
¢ =2.99792458 x 108 m s (11.3)

In (11.1), the integrations over the Q variables are carried out over the maximum
volume available to each of the N particles. The integration over the momentum
variables is over the — in principle — infinite range available to the momenta from
—00 to +00.

ZNote: There are situations where the appropriate variables to use are different than Q and P. Such
is often the case for systems involving angular motion. See, e.g., (11.45)—(11.55).

3Be careful when dealing with mixtures: see, e.g., (11.22) and compare with (11.29)—(11.33) and
the argument following (11.29).

4Also, see (2.12) — and the statement that follows it — for details.
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It is helpful to deal directly with the factorial of N that occurs in (11.1). Because
N is a very large number, one may use the Stirling asymptotic expansion: namely>

N!= Q2nN)'/? N " 1+ — ! + — ! -0 1 (11.4)
N e 12N~ 288N? N3 )| ‘

This looks fierce ! It turns out, however, that statistical mechanics generally works
with the natural logarithm of N ! Therefore (11.4) can be simplified.

wfm(2) ofon ()]

= Lo (%) o ()

() [ oo ()

=ln(§)N [1+0(11[):| ~ In (]Z)N. (11.5)

Thus, to the leading order, we can use the approximation

N
(N) ~ (g) . (11.6)

Because N, the number of particles, is > 1, the above equality is almost exact.

In(N!)

(c): Following Boltzmann—Maxwell’s ideas — as extended by Gibbs® — the partition
function, E(N, V,T), determines the Helmholtz free energy F. Once F is
known, other thermodynamic potentials — as well as the pressure — are readily
evaluated. For convenience these relationships are listed below:

F(N.V,T) = —kgT InE(N, V., T);

oF
P(N, V, T) = — W
N.T

5See: Abramowitz, M. and Stegun, 1. (2002), Handbook of Mathematical Functions; Paris, R. B.
and Kaminsky, D. (2001), Asymptotics and the Mellin-Barnes Integrals, New York: Cambridge
University Press; Whittaker, E. T. and Watson, G. N. (1996), A Course in Modern Analysis (4th
ed.), New York: Cambridge University Press.

%To be referred to as BMG.
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oF
N,V

oF
G(N,V,T)=N|— =nu=F+PV;
N ).,
dINE(N,V,T
U(N,V,T):—(M) = F +TS;
ap NV
H(N,V,T)=U + PV. (11.7)

We have used the standard notation here. That is, F' is the Helmholtz free energy;
P is the pressure; S is the entropy; G is the Gibbs Potential and p is the chemical
potential per mole; n is the number of moles; U is the internal energy; and H is the
enthalpy.

11.2 Non-Interacting Classical Systems: Monatomic Perfect
Gas in Three-Dimensions

The Hamiltonian H(Q, p) for a perfect gas is assumed not to include the effects
of any external forces. Therefore, (11.1) is isotropic — which implies that both the
Hamiltonian and all its physical consequences are the same in all directions. Also,
because inter-atomic coupling is completely absent, and there are no single-body
potentials, the system Hamiltonian has no potential energy terms — which would
normally be position dependent. Therefore, H(Q, p) is independent of the position
vectors Q. Indeed, although an atom has finite mass, here we shall assume that
it is so tiny that it does not rotate around its own center. With these assumptions,
the Hamiltonian is just the total translational kinetic energy of the N atoms.
Accordingly, the Hamiltonian depends only on the sum of the squares of the 3-N

components (pi, pa, ..., pay) of the N, three-dimensional, momentum vectors.
3N p2
H(Q,p)=H = —- . 11.8
©p=-n=Y (4 (118)

i=1

Recall that all atoms have the same mass m.

11.2.1 The Partition Function

We are now in a position to calculate the thermodynamics of N non-interacting
classical single-atoms in three dimensions. While the subject of indistinguishability
will be treated later when we get to study quantum many-body systems, we assume
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that these atoms are “indistinguishable for the present purposes.” In the partition
function

E(N,V,T)=(N!)~! h—3N/QdQ /_oo /_oo dpexp[-BH]. (11.9)

the integral over Q is trivial because (here) exp [—BH] does not depend on Q. Also,
each of the N atoms contributes a factor V' that is equal to the maximum volume

available to it. Therefore,
[/ / / in,dei,dei,z] =V, (11.10)

and as a result, (11.9) becomes

i=N

foo-1]

i=l1

E(N,V.T) = (N)™! h_3N/QdQ/_:.../_:dpexp[—,BH]

1 /v \N oo 00 3N P2
— | = dpy...d - el
N!(h3) /_oo /_Oo P1 P3N€XP( ﬂ;z;n

(11.11)

The remaining integrals in (11.11) are of a standard form and are worked out in
detail in (A.18)—(A.22). Therefore, only a brief description is provided below.

/ / exp( 'BZ’ lpl)dpldpz...dpyv

3N o g2 3N 1 W
[ oo (o] i) - (35) o
i=1L77% i=1

Inserting the result of (11.12) into (11.11) leads to the partition function for the

perfect gas:
(v 2mr\ T
ST = (hs) [(T) ]

174 N
~ (Jffh3) [@emky ) ¥ | = 2. V. T) 6. (11.13)

Because the partition function for the perfect gas — sometime called the “ideal gas” —
will be needed again later, it is helpful to introduce a convenient notation, e.g.,
B(N,V,T), forit. [Note that the subscript /G stands for “ideal gas.”]
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11.2.2 Monatomic Perfect Gas: Thermodynamic Potentials

Once the partition function, E (N, V, T'; m),s, has been calculated, then with the use
of (11.7) the Helmholtz free energy,

% :
Fi6(N,V,T) = —NkgT In [(#) (27rkaT);i| : (11.14)

the pressure, Pig, and thermodynamic potentials — such as the entropy, Sig, the
Gibbs potential Gyg, the internal energy Ujg, and the enthalpy, Hig — are readily
found. Note that the suffix /G is specific to the monatomic ideal — i.e., perfect —
gas.

Using (11.7) and (11.14) we find

dFG NkgT
Po(N,V,T) = —| — = , 11.15
16( ) ( % )N,T 7 ( )
aF
SiG(NV.T) = — [ =
T )y
14 3 2amkgT 5
and
Gig(N,V,T) = F;g(N,V,T)+ PV=nu
V 3
= —kgTN In % (W) (2nkaT)2} . (11.17)
Next, the internal energy can be evaluated from (11.14) and (11.16).
UI,G(N, V, T) = FI,G(N, V, T;m) + TSI,G(N, V, T)
d(ln E 3
- —( (In )) - (—) NkgT. (11.18)
B v 2
Because in an ideal gas, at temperature 7, each degree of freedom contributes

to the free energy an amount equal to (kBZT) per-particle, the above proves that

the number of degrees of freedom is equal to three. Also, since PV = Nkg T the
enthalpy H; ¢ (N, V,T), being equal to [U; (N, V,T) + PV], is (% Nkg T) .
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11.3 Monatomic Perfect Gases: Changes Due to Mixing

11.3.1 Example I: Isothermal Mixing of Ideal Gas: Different
Pressures but Same Gas and Same Number of Atoms

An adiabatically isolated vessel has two chambers, to be referred to as 1 and 2. The
chambers are separated by a massless, friction free, partition of zero volume. Both
chambers contain the same ideal gas; are maintained at the same temperature 7';
and the gas in them initially contains the same number, N, of atoms. However, the
volumes — V| and V, — and, therefore, the initial pressures — P; and P, — of the gas
in the two chambers are different. Calculate the resulting change in thermodynamic
potentials if the partition is removed and the gas in the two chambers is allowed to
mix homogeneously?

11.3.1.1 Solution

We are told that two portions of the ideal gas — to be labeled 1 and 2 — are placed
in two different chambers of volume V; and V,. The initial pressure of the ideal gas
in the two chambers is P; and P,. The temperature of the gas, T, and initially the
number of particles, N, in each of these chambers is the same. Once the partition
separating the chambers is removed, the gas from the two sides mixes together and
achieves a total volume equal to V; + V5.

The resulting change in thermodynamic potential was evaluated in an earlier
chapter — see (5.33) and (5.35) where use was made of only the standard thermo-
dynamic techniques. Furthermore, the earlier calculation for change was limited to
only one thermodynamic potential — namely the entropy. In the following we use
statistical mechanics instead. It enables us to determine change in all the relevant
thermodynamic potentials. Let us begin first with the entropy.

11.3.1.2 Change in the Entropy

The expression for the entropy, both before the mixing of portions 1 and 2 — namely,
S| and S, — and after their mixing, namely — S|4, — is available in (11.16) in the
form Sig(N, V,T). All we need to do here is transcribe the appropriate variables.

Thus we have’

St = Sic(NV, 1, T)

V1 3 ZﬂkaT 5 .
=NkBln N +§Nk31n T + E NkB,

"Note: After the mixing there are 2N particles and their volume is V; + V5.
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Sy = Sig(N, V2, T)

Vs 3 2amkgT 5
= Nkgln [ 22 ) + SNkgIn  ZZEBL 2 Nkg:
NB“(N)+2 B“( 2 )+(2)NB’

Sit2 = Sic@N,. Vi + 1, T)

Vi + V- 2mkyT
=2NkBln( ‘;;V 2) + 3NkgIn (M—B)+5Nk3. (11.19)

h2
Therefore,
Vi + V- v 1%
Si4r— S — S, = 2Nkg ln( 12N 2) — Nkgln (ﬁl) — Nkgln (ﬁz)
(Vi + Vo)’
= Nkgln | ——— |. 11.20
B n|: AR ( )

The result presented in (11.20) is identical to that obtained by employing standard
thermodynamics procedures(see (5.33)). Using the simple equation of state for the
ideal gas in its initial state, thatis P; V; = N kg T for i=1, and 2, (11.20) can also
readily be expressed in terms of the pressures P; and P,. That is:

(11.21)

P+ P’
S1+2—S1—S2 = NkBll’l |:(1+—2):|

4P P

Again, the result given in (11.21) is identical — as it ought to be — to that found
earlier — see (5.35).

11.3.2 Exercisel

Using the above procedure, calculate the following differences: Fi4+, — Fi — F», in
the Helmbholtz potential; G|+> — G| — G, in the Gibbs potential; U4, — U} — Us,
in the internal energy; and H,4, — H; — H>, in the enthalpy. The subscripts 1 and 2
refer to the portions of the gas labeled 1 and 2, respectively, while the subscript 1 42
describes their mixture.

11.3.3 II: Isothermal Mixing of Monatomic Ideal Gas:
Different Pressures and Different Number of Atoms

Two different vessels are placed together in an isolating chamber. Both the vessels
contain the same ideal gas, at the same temperature 7, but their volumes, V)
and V5, are different. Initially, these vessels have different numbers, N; and N,,
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of particles and have different pressures P; and P, respectively. Calculate any
resulting changes in thermodynamic potentials if the vessels are connected and the
gas in the two vessels is allowed to mix homogeneously?

11.3.3.1 Solution

By using standard thermodynamics techniques, the resulting change in the entropy
was evaluated in an earlier chapter — see (5.43) and (5.44). However, by employing
statistical mechanics the entropy before the mixing — namely, S; and S, — and after
the mixing — namely, S142 — can be determined directly from (11.16). As was done
in the preceding subsection, all we need to do is transliterate (11.16) to the variables
relevant to the present case. We get:

S1 = SN, V1, T)
V1 3 ZﬂkaT 5
= NikgIn| — —Nikgln|{ ————— — | Nikg;
1BH(N1)+2113H( 2 )+(2) 1KB
Sy = Sig(N2, 2, T)
V2 3 ZﬂkaT 5
= NokgIn| — —NokgIn| ————— — | Nokg;
2BH(N2)+2213H( 2 )+(2) 2KB
Si42 = SNy + No, Vi + 13, T)

i+ Vs 3 2nemkgT
= (N kgln| ——= ) + = No)kgln [ =—2—
( 1+N2)BH(N1+N2)+2(N1+ z)Bn( 2 )
5
+ (5) (N1 + N») k. (11.22)

[Note that after the mixing there are (N; + N,) particles —thatis N — (N; + N3) —
and their volume is (V} 4+ V3) —thatis V — (V] + V3).] Therefore,

Vi+ Vs
S - 5-5=(N N)kgln | ———
142 =81 =8 = (N + 2)BH(N1+N2)
14 Vs
—NikgIn| — ) — NokgIn | — ). 11.23
1BH(N1) 2BH(N2) ( )

This result is, of course, identical to that obtained by using standard thermodynamics
procedures(see (5.43)). Utilizing the equation of state: P;V; = N; kgT fori =
1, or, 2 we can re-write the result given in (11.23) as follows:

N N
(3 +%)

(N1 + Ny M+t

(N1+N2)

Sit2— S =8 = kg In S (PM (P | (11.24)
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Again this result is the same as previously obtained for the mixing of identical
perfect gases that are at the same temperature but have different pressure and number
of atoms — see (5.44).

11.3.4 Exercise I1

Using the above procedure, calculate the following differences: Fi4+, — F1 — F», in
the Helmholtz potential; G4, — G| — G, in the Gibbs potential; U, — U; — Us, in
the internal energy; and H;4, — Hy — H>, in the enthalpy. As before, the subscripts
1 and 2 refer to the portions of the gas labeled 1 and 2, respectively, while the
subscript 1 4 2 describes their mixture.

11.3.5 III: Mixing of Ideal Gas with Different Temperature,
Pressure, and Number of Atoms

Two different vessels are placed together in an isolating chamber. While both the
vessels contain the same ideal gas, their volumes, V| and V5, and their initial
temperatures, 7] and 73, are different. Also, initially these vessels have different
numbers, N and N,, of particles and have different pressures P, and P,, respec-
tively. Calculate any resulting changes in thermodynamic potentials if the vessels
are connected and the gas in the two vessels is allowed to mix homogeneously?

11.3.5.1 Solution

We need to remind ourselves of two things: First: Before mixing, the equation of
state of each of the two parts of the ideal gasis P; V; = N; kg T; wherei = 1, or, 2.
Second: While before mixing, the temperatures of the two parts of the given ideal
gas are T and 7>, after mixing the joint system has only one temperature. We shall
call it Thpa.

Thnat = (N1T1 + N2 T2) /(N1 + Na). (11.25)

The entropy before the mixing — namely, S| and S, — and after the mixing — namely,
S142 — can be determined?® directly from (11.16).

S = Sic(N1, V1, Th)

Vl 3 27kaBT1 5
= Nikgln| — —Nikgln| ———— — | Nikg;
1BH(N1)+213H( 2 )+(2) 1KB

8Note: After the mixing there are (N, + N,) particles, their volume is (V; + V5) and their
temperature is Tiyq)-
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S = Si6(N2, V2, T2)

Vs 3 2amkgT, 5
= NokgIn| — —NokgIn| ———— — | Nokg;
2BH(N2)+2213H( 2 )+(2) 2KB

S142 = Sic(N1 + No, Vi + Vs, Thnal)

Vi+ Vs

= (N1 + Np)kgln | ———
(N1 + Z)Bn(Nl—i-Nz

3 2 k T‘na
) £+ Nk (w)

h2

+ (;) (N1 + N») kg. (11.26)

Therefore, we have

3 Tﬁnal M Tﬁnal N2
Si42—=8S1— S =-kpl — ==
142 1 2 2 B n|:( T, ) T

1% V- (N1+N2) N Ni N N>
tkg n | (2 2O (22) g
N1+ N, Vi 12)

Now using (5.53) for the portions 1 and 2,

W N T, N
Vlsz( IPI) and VZZkB( ;2)’

1 2

the dependence upon V; and V, can be re-cast in terms of the pressures P; and P;.
That is,

3 Tﬁnal M Tﬁnal M
S —S1—8=-kpl —_— N\ —
1+2 1 2 ) B 1N ( T, ) T

TNy DN, \ M1tM2 N; N
LN 4 DY P 1P\ M
thpln | (TP (_) (_) (1128
B ( N1+ N, Ty T, ¢ )

Of course, when 75 = T = Tfpnal, the result given in (11.28) is identical to that
obtained in (5.58).

11.3.6 Exercise I11

Using the above procedure, calculate the following differences: Fi4+, — F1 — F», in
the Helmholtz potential ; G|+, — G| — G», in the Gibbs potential ; U4, — U} — U,
in the internal energy; and H,4+, — H; — H>, in the enthalpy. As in the above, the
subscripts 1 and 2 refer to the portions of the gas labeled 1 and 2, respectively, while
the subscript 1 + 2 describes their mixture.
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11.4 Different Monatomic Ideal Gases Mixed

Assume that two different monatomic ideal gases are both at the same tempera-
ture 7. They consist of N| and N, atoms of mass® m; and m», and are placed in two
different chambers of an adiabatically isolated vessel. The volume of these chambers
is V; and V5, respectively. When there is gas present, it can be exchanged via an
interconnecting stop-cock of zero heat capacity. Initially, the gas in these chambers
is at pressures P; and P, respectively.

Two things need to be noted.

First: Before mixing, the equation of state of the ideal gas in either of the two
chambersis P; V; = N; kg T wherei =1, or, 2.

Second: While before mixing, the different monatomic ideal gases occupy
different volumes, V| and V5, after mixing both the gases occupy the same joint
volume (V| + V).

We shall begin by calculating the various thermodynamic potentials of the gas
initially present in each of the two vessels. To this end we need their partition
functions.

Clearly, either of the ideal gases in their single, un-mixed state, can be repre-
sented by the partition function recorded earlier. All that needs to be done here is to
make appropriate changes in the variables N, V' and m. Thus, (11.13) specifies the
following partition functions for the unmixed, monatomic but different ideal gases
I and 2:

- ) el M B
EWNL, VLT my) g = (W) [(27Tm1kBT) 2 ],

Ny
= eV EIV)
E(Ny, Vo, Tima)g = [ —2 [(2nmszT) 2 ] (11.29)
Ny 13

Regarding the mixture of “different” ideal gases, the partition function is the
product of their individual partition functions. It is, however, not the product of
exactly the partition functions as given in (11.29) above. The reason is that any
atom in either of the gases in their combined status has access to the full volume
(V1 + V2). Therefore, as anticipated from (11.13), the partition function of the
mixture of the two different ideal gases is the following:

E (mixture) = E(Ni, (Vi + V2), T;my)ig X E(Na, (Vi + V2), T ma) g

M 3N
= (—e (11/\1[1_23V2)) [(mekBT)f]

e(Vi + )\ ™ ny
x (W) [(anszT) > ] (11.30)

“Examples of such mixing could be the mixing of Helium and Neon, or Argon, etc. Or indeed,
3He, and *He,.
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11.4.1 Thermodynamic Potentials

As before, we first work out the Helmholtz potential energy.

Fi = Fig(Ni, Vi, T;my) = —kgT In E(N1, Vi, T;m1)1g:
F, = Fig(N2, V2, T;m2) = —kgT In E(N», Vo, T;m2)G:
Fi4y, = —kgT In{E (mixture)} . (11.31)

The entropy is calculated next. We have § = — (a—F

5T ) N Accordingly,

S1 = Sic(N1, Vi, T;my);
Sy = Si6(N2, Va, T';my);

Sit2 = Sic(NL, Vi + Vo, Timy) + Sig(No, Vi + Vo, T;ms). (11.32)

Therefore, the increase in the entropy as a result of the mixing of two different ideal
gases at the same temperature 7 is equal to

i+ V; i+ V;
Si142—81—S; = Nikgln Saslé: + NokgIn 1+ V2
Ny N,

Vi Vs
—Nikgln|{ — )| — MakgIn | —
1BH(N1) ZBH(NZ)

Vi + V. Vi + V-
— Nksln [ 22 4 Nk (22
V1 V2

P P
=kgln| ——22 _ (p)M (P)V |. 11.33
g In N ()" (P)™ (P2) ( )

Ni1+N.
(&4—&) 1+N2

11.4.2 Gibbs Paradox

G.W. Gibbs was arguably the most important contributor to what may be called
early-modern thermodynamics. Not having the space — or the time — to dwell on
the details of his multifaceted contributions, here we shall refer only to his work on
Thermodynamics of Mixtures — and, in particular to what is known as the Gibbs
Paradox. Indeed, in the following we discuss only an intimately related but more
accessible version of the Gibbs Paradox.

The increase in the entropy caused by the mixing of two different gases'” is
recorded in (11.29)—(11.33). Although the masses of the atoms in the two different

10See the comments following (11.29).
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gases discussed there are defined to be m; and m, and are not necessarily equal,
the final result for S;4, — S| — S, does not show any presence of that information!
Outwardly, therefore, this result could just as well have applied to the mixing of
identical gases for which m is necessarily equal to m,. These thoughts are clearly
disconcerting, and might possibly imply that our analysis given in the foregoing is
not quite right!

Gibbs noticed this conundrum and managed to explain why both (11.24)
and (11.33) should in fact be correct. He argued that even though the increase in the
entropy for the mixing of identical gases — as recorded in (11.24 — and that for the
similar mixing of different gases — as in (11.33) — are both seemingly independent
of the two masses m | and m,, they are in fact quite different in detail (for instance,
compare the denominators within the logarithm). And the reason for the difference
is the following:

The partition function, for a mixture of two identical gases with total number of
particles equal to (N; + N,), should be divided by (N; + N;)! (Notice that we have
followed the Gibbs suggestion in our work here — see, for instance, (11.22)—(11.24)
and the statement that follows (11.22).

In contrast, when the gases being mixed are different, irrespective of whether
their atomic masses are the same, the partition functions of the type 1 and type 2
atoms should be dealt with separately. This way, the relevant dividing factor would
equal (N,!) for type 1 atoms and (N,!) for type 2 atoms. Of course, then the total
partition function will be the product of these two partition functions. And, indeed,
this is exactly what we have done here.

11.4.3 Exercise IV

Extending the above work and that presented in (11.29)—(11.33), calculate ther-
modynamic potentials for a mixture of different ideal gases with different initial
volume, different number of particles, different initial temperature and of course
particles with different masses. However, rather than calculating the actual value of
the final temperature — which in addition to the masses and the initial temperatures
of the two gases will also involve their specific heats — for simplicity, assume that
the final temperature of the mixture is defined just by the symbol Tfpy;.

11.5 Perfect Gas of Classical Diatoms

11.5.1 Free Interatomic Bond

As mentioned in Chap. 2, a “monatomic molecule” —i.e., a single, zero-sized atom —
by definition, cannot have any vibrational or rotational motion of its own. Therefore,
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it has only three translational degrees of freedom. A diatomic molecule with
zero inter-atomic interaction — and no associated electronic or nuclear dynamics
whatever - consists of two completely free monatoms with no inter-atom interaction.
Each such molecule, of course, has six translational degrees of freedom. It is easy
to predict the thermodynamics of a perfect gas of such “completely open, free
diatomic molecules” by using the results obtained for a perfect gas of monatomic
molecules.'!

11.5.2 Non-Interacting Atoms in Free Diatoms

Denote the time as “¢#” and the two non-interacting atoms, that make up a single
diatom, by suffices “1” and “2.” In three dimensions, at time #, the position of
the i-th atom — i =1, or 2 — can be described by its three Cartesian co-ordinates
xi(t), yi(t) and z (). Because an atom is assumed to be of size zero so that
any notion of it rotating around its own center is meaningless, and interatomic
interaction is also assumed to be absent, the Hamiltonian, # (one free diatom),
contains only the sum of the kinetic energy of the two single atoms. That is

2 2 2
‘H (one free diatom) = m (8x1(1)) 4 (8y1(1)) " (321(1))

2 ot Jt Jt
my | (000N (20 | (920))
+7(az )+( 8t)+( 8t)
pi.() p?,y(t) pi.(0)
_;< T o + o ) (11.34)

where m; denotes the mass and p; ,(¢) the x component of the momentum vector
of the i-th atom at time 7.

11.5.3 Thermodynamics of N,; Free-Diatoms

Given the fact that the Hamiltonian for one classical free-diatom is the same as that
for two non-interacting free classical monatoms, the thermodynamics of N, such
free-diatoms is identical to that of N; non-interacting free monatoms of mass m1;
plus another N, non-interacting free monatoms of mass m,. And, as per (11.14)—
(11.18), this means that each of the free-diatoms contributes to the internal energy

For example, see the preceding section.
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the amount provided by two single free monatoms, one of mass m2; and the other of
mass m;. That is, at temperature 7" the contribution to the internal energy per dipole
is=2 (%) kg T. Accordingly, a single free-diatom has six degrees of freedom.

Also, using (11.14)—(11.18), at temperature 7" and volume V;, we can predict
that such a system would exert pressure

2 NgkgT
p= 4B (11.35)
Va
and would have internal energy
U(N;4 non — interacting free — diatoms) = Ny (3kgT), (11.36)

which would lead to specific heat equal to 3kg per (diatomic) molecule. This is
equivalent to ¢, being equal to 3 R per (diatomic) mole.

11.5.4 Experimental Observation

But the specific heat, ¢, of real diatomic gases at low temperatures is observed to
be % per (diatomic) mole, or equivalently % per diatom. Experimental result,
therefore, is only half of that predicted for a non-interacting free diatomic gas.
Why is that the case? It is clearly not a result of diatoms dissociating into two
monatoms because the dissociation energies are of the order of electron volts. And
that translates into ~ 10* — 10° K: namely, temperatures that are much, much
higher than where laboratory experiments are done.

In a real diatomic molecule, the two constituent atoms are coupled by attractive
interaction causing the two to get bound together. And at low temperature a “bound”
diatom acts much like a single particle of mass (m; + m;). Because the specific
heat per free particle — of whatever mass — is %TB, therefore the experimental result
is entirely as expected.

As the temperature rises, in addition to the translational motion, a bound diatom
also begins to experience molecular rotation around its center of mass. Such rotation
has two components that are mutually transverse and are transverse to the line
joining the two atoms. Thus, the rotational motion adds two degrees of freedom
to the system thermodynamics.

With further rise in the temperature, other physical features of the bound diatom
also become relevant. For example, depending on the molecular weight of the
diatom, at appropriately high temperature a diatomic molecule may experience — in
addition to translational motion of the center of mass and the two rotational motions
around it — intra-diatom vibration.!?

2Indeed, in principle, at even higher temperatures, electronic and nuclear excitations may also
obtain.
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To study these behaviors, in addition to doing purely algebraic manipulation, it is
helpful also to be aware of the experimental results over a wide range of temperature.
In particular, the fact that while at low temperatures the specific heat ¢, of most
light-diatomic gases starts off being equal to that of non-interacting monatomic
gases — that is, it is equal to % per-mole '3 — at higher temperatures the specific heat
increases to become % per-mole. And it generally stays at that level for a range of
temperature — the range itself depending on the particularity of the diatom. But with
even further increase in the temperature, the bond stiffness begins to weaken. The
specific heat breaks through the rotational threshold of % per-mole, and starts to
rise toward a value equal to % per-mole.
Let us work through the algebraic manipulation first.

11.5.5 Motion of and About Center of Mass

The total kinetic energy of a system composed of N particles has two parts that
are mutually independent. First part consists of the kinetic energy of the center of
mass. This is equivalent to the motion of a single particle moving with the velocity
of the center of mass. The mass of such a single particle is equal to that of all the N
particles of the system. The second part represents motion with respect to the center
of mass of all the N particles.

When measured from the center of mass, let the velocity of the i-th atom be
denoted as V, Also, let the velocity of the center of mass itself — as measured
from the origin of the Cartesian coordinates — be V,. Then, clearly, the Cartesian
representation of the velocity, V;, of the i-th particle is the vectorial sum of the
velocity of the center of mass and the velocity measured with respect to the center
of mass. That is,

V=V, + V. (11.37)

1 1 N2
EZ(miXI/i)=§ miX<Va+Vi)

i=1 i=

i= i=

N

1V, x Z(mV) (11.38)

=

13See Fig. 11.1, e.g., where the experimental values of % for (diatomic) Hydrogen are plotted as a
function of the temperature.
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Fig. 11.1 Schematic plot of ‘;{ versus temperature for H,. (Compare Sears and Salinger, figure
12-16, page 379. op. cit.) [Copied with permission.] For diatomic Hydrogen, some experimental
results for the specific heat ¢,, in units of R, are schematically shown as a function of the
temperature. The temperature scale used is logarithmic

The second row contains the kinetic energy of the center of mass and the kinetic
energy of the N particles due to their motion relative to the center of mass. The last
term in the above equation — i.e., in (11.38) — can be demonstrated to be equal to
zero. To this end, we proceed as follows: First, look at

N ) N dF;
() =2 (m < )

1 i=1

1

=——= 11.39
” ( )
where 7; is the (time-dependent) position vector of the i-th atom with respect
. . . YL Gmi )
to the center of mass. Next, notice that an expression like % would
i=1n;

represent the position vector of the center of mass when measured from the center
of mass itself. In other words, it would be vanishing by definition. Because the
denominator of such an expression equals the total mass of the system, it is
necessarily positive. Therefore, only the numerator would be vanishing. But the
differential of the numerator of such an expression — being equivalent to differential
of zero — represents the right hand side of (11.39). Therefore, as initially stated, the
left hand side of (11.39) — or equivalently, the last term in (11.38) — is equal to
zero. Therefore we have
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- el 1 e
Kinetic Energy of N Particles = > Z(m,) + 3 Z(mi x V7). (11.40)

i=1 i=1

Thus, the total kinetic energy of the system indeed consists only of two separate
parts: (a) and (b). The part (a) represents motion much like that of a single particle —
whose mass is equal to the total mass of the system that is translating at the velocity,
V,, of the center of mass. We shall call it the “kinetic energy of the center of mass.”
And part (b) is the kinetic energy of motion (of all the given N particles) with
respect to the center of mass. We shall call it the motion “about the center of mass.”
The important thing to note is that the variables for these two motions — namely their
respective velocities V, and V, for i=1,..., N — are completely unrelated. Therefore
whether one wishes to calculate the partition function, or determine the degrees of
freedom, parts («) and (b) can be treated independently.

11.5.6 Translational Motion of Center of Mass

The treatment of the translational motion of the center of mass of a given diatom is
identical to that of the translational motion of the perfect gas monatoms discussed
in the preceding section. Indeed, all the previous results can be transferred here
with the following trivial caveat: the number N — which was the number of free
monatoms — is now to be changed to N; — which is the number of diatoms. Also,
wherever the mass m of a single monatom occurs in (11.13)—(11.18), it has to be
changed to (m; + m5) which is the mass of a single diatom. In particular, following
(11.13), the partition function for the translational motion of the center of mass
coordinates for N; diatoms is

E (center of mass motion of N, diatoms)

3N,

1 v\ M 2(my + my)w 2
-5 () ()

3N,

(Va \Y (20 4 myx\
() () o

where V; is the maximum volume in which a single diatom may roam around.

Next, by using (11.14)—(11.18), the contribution to the system thermodynamics
from the center of mass motion is readily determined. The relevant Helmholtz
potential is

3
eV, 2(mq1 + mo)mw\ 2
F(c.of.m)=_NdkBT1n|:(NdZ3)( ( lﬂ 2 ) } (11.42)
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Therefore, the pressure, P(cofm), and thermodynamic potentials — such as the
entropy, S(c.ot.m), the Gibbs potential G of.m), the internal energy U(c of.m), and the
enthalpy, H ¢ or.m) — are as follows:

NaksgT

Pcotm) = s

(c.of.m) 7

Va 3 2(my + my)m 5

Stcotm) = Ngkgln| — —Ngkpln| ————— — | Naks,

(c.of.m) dBn(Nd)+2dBn( B + > dKB

3
Vi 2(my + my)w\?

Gcotm) = —kgT Nyl — | — ,

(cotm = BT “[(Nd)( pi2

d(In E (center of mass motion of Ny diatoms))
U(c.of.m) = - 9
B Nq.Va
3
== |Naks T,
(3) Moo
5
H(c.of.m) = U(c.of.m) + P(c.of.m) Vd = E NdkBT- (1143)
According to the equipartition theorem, each degree of freedom contributes to the
internal energy, U, an amount equal to (/‘BTT) per-particle. Therefore, the number

of degrees of freedom for the center of mass translational motion is equal to three.

11.5.7 Motion About Center of Mass

11.5.7.1 Transformation to Spherical Coordinates: Classical Diatom
with Stationary Center of Mass

Consider a classical diatom whose center of mass is stationary. Let its two
monatoms — both of which are of infinitesimal size — be separated from each other by
distance |r,|. Using the notation: r, = |r,|, r; = |r1|, r» = |r2|, the center of mass
of the diatom is at distance r; from the monatom of mass m; so that r; +r, = r,
and mr; = myr,. Accordingly,

myr, . mir,
rn=——rn=—. (11.44)
my + my my + my

It is convenient to transform the Cartesian representation — with variables (x;, y;, z;)
that were used in (11.34) — to one using spherical coordinates whose variables
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are r;, 6; and ¢;. Thatis,

xi (t) = ri(t) sin(6;) cos(¢i);
yi(t) = ri(t) sin(6;) sin(¢:);
Zi(l) = r,-(t) COS(@,‘). (11.45)

For additional convenience, the origin of both the spherical and the Cartesian
coordinate systems is set at the position of the center of mass so that it remains

I7ExL)

stationary. The index “i” stands for one of the two monatoms—i.e.,i = lori = 2—
that make up the diatom; r; (¢) represents the distance of the i -th monatom from the
center of mass. Both 6; and ¢, are also time-dependent. And, as usual, “¢” represents
the time. To avoid cluttering, in the above we have not explicitly displayed the time
dependence of 6; and ¢, . For the diatom described above, the angles 6, and 6, — and
similarly, ¢ and ¢, — are related to each other. That is,

92:7'[—91; ¢)2:¢)1—7T. (1146)

Making use of this identity helps transform the angles for atom 2, i.e., 6,,¢,, into
angles for atom 1, i.e., 6 and ¢;. Because

sin(r — 6y) = sin(61); cos(w — 61) = —cos(0y);

sin(¢py — ) = —sin(¢p1); cos(py — ) = —cos(¢y), (11.47)

(11.45) can be written as

x1(t) = ri(r) sin(0y)cos(¢1):

yi(t) = ri(1) sin(01)sin(¢);

21(t) = ri(t)cos(61):

x2(t) = —ra(t)sin(01)cos(¢);

y2(t) = —ra(t)sin(0y)sin(¢1);

22(t) = —ra(t)cos(6y). (11.48)
In order to calculate the kinetic energy, we need the time derivative of the six terms

givenin (11.48) above. Now that all angles carry the suffix 1, no confusion is caused

if in what follows we use the notation: 8 = 6;, ¢ = ¢,. Further, to avoid writing

something like (g—‘;) many times, we shall use the simpler notation a° = (g—‘;)

xj = risin(0)cos(¢) + r1[0 cos(0)cos(p) — ¢ sin(8)sin(¢)];

yi = risin(0)sin(¢) + r1[0-cos(0) sin(¢p) + ¢ sin(0)cos(P)]:
7y = ricos(0) —ry 0'sin(0);
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x; = —rysin(0)cos(@) — r2[0 cos(0)cos(p) — ¢ sin(0)sin($)]:
vy = —rysin(0)sin(¢) — ra [0 cos(0)sin($p) + ¢ sin(0) cos(p)];
zy = —r;ycos(¢) + ry 0 sin(0). (11.49)

It should be noted that none of our diatoms is assumed to have any intra-diatom
potential energy. Furthermore, the system of diatoms being treated here is also
considered not to have any inter-diatom coupling. This means that the total potential
energy of the system is equal to zero and the Hamiltonian consists only of the sum
of the kinetic energy of N, diatoms. Accordingly, the Hamiltonian for one diatom'*
is:

Hone aiwom = 5 [ (61)° + (1) + (@) + 52 [ () + (09)° + ()]
= % [ml (ri)2 + my (rj)z]
M 2 2 2
+5 (07 + @) sin’@)]. (11.50)

where!?

14Remember that here we have assumed that the center of mass of the diatom is stationary. So the
kinetic energy refers only to motion with respect to — that is, “to and from” and “around” — the
center of mass.

ISWhile the algebra needed for deriving the result given in (11.50) is trivial, it is a hassle doing it by
hand. Therefore, we recommend using Mathematica, which of course is both easy to use and takes
much less time. Also, it should be mentioned that a more elegant, but more abstruse, alternative
description of the above result is available on page 34, (1.100) of the text titled: “Classical
Dynamics of Particles and Systems,” 4th edition (Saunders College Publishing, Harcourt Bruce and
Co., 1995) by Jerry B. Marion and Stephen T. Thornton. The authors show that setting the origin
of the spherical coordinates at the “center of mass” of the diatom, the relevant transformation for
an infinitesimal increase, ds, in the position s of a particle is:

ds = dre, + rdfeéy + rsin(@)d¢e_;,, (11.51)

where ¢, €y, and ¢, are unit vectors along the direction of 7, and angles 6 and ¢, respectively.
These vectors are orthogonal. Accordingly, the velocity vector v and its square are

= ié, + rbéy + rsin(0)¢ €43

<l
|

3.0 = 02 =2 4 r26% + risin(6)2¢>. (11.52)
M 1is the moment of inertia of the diatom.

M = (mir} +myrd) . (11.53)
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11.5.8 Single Classical Diatom with Stiff Bond:
Rotational Kinetic Energy

At room temperature, in light diatomic ideal gases, the intra-diatom bond is
quite “stiff.” This effectively stops all intra-diatomic vibration at such ordinary
temperatures. As a result, the distance separating the two monatoms in a given light
diatom remains essentially constant — meaning, it does not depend on time. So, for
such a stiff-diatom:

ri(t) =ri;r; = 0. (11.54)

Using (11.54) we can write (11.50) as follows:

M
Hrotation one stiff diatom = 7 [(9)2 + (¢)2 Slnz(e)] ’ (1155)

In order to find the contribution that the rotational motion of the stiff diatom
makes to the partition function, we need first to find the momenta that are conjugate
to the two rotational angles 6 and ¢. To this purpose, we need its Lagrangian, T'.
Now, I is equal to the difference between the kinetic and the potential energies.
The given diatom has a stiff bond, its center of mass is stationary, and it does not
have any intra-diatom potential energy. Therefore, the I" here is equal just to its
rotational kinetic energy. That is

1
I = EM [(6)* + (¢)’sin*(0)], (11.56)
where, as noted in (11.53), M is the moment of inertia. According to the theory of

Lagrange, the momenta Lg and L, that are conjugate to the angles 6 and ¢, are
calculated as follows:

ar or
Ly = (_) — MO: Ly = (_) = Msin*(0)¢.  (11.57)
89 9¢ ¢ ¢ a¢ 9’¢‘9.

Therefore,

1 Lo\’ Ly \’
r= 2 M [(ﬁ) + (Msin(@)) ]

_ (Lp)? (Ly)?

T 2M  2Msin2(9)°

(11.58)

We can now set up the expression for the rotational contribution to the partition
function for one classical — homo-nuclear or hetero-nuclear — diatom with stiff-bond
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E (rotation one stiff diatom)

- Pmax
= ( ) do / dLg / dL, exp( ) / dg
ks T
é o . (Ly)?
_ 'max 2M sin2(6)
= ( )/ d@/ dLg exp( T )/_ dLy exp —kBT

(Ly)?
(¢mﬁx) 0 dLe exp( k2M )[szn(@)\/2anB ]
- (ZHZSZMXMI(BT) /: do [sin(9)] = (M) (11.59)

where ¢max = 27 for hetero-nuclear diatoms. For homo-nuclear diatoms, on the
other hand, because the azimuthal angles ¢ and ¢ +  differ only in the interchange
of two identical nuclei, they correspond to only one distinct state of the system.
Therefore, for the calculation of the classical partition function for homo-nuclear
diatoms, the relevant range for the angle ¢ is just 0 — m rather than 0 — 2.
Accordingly, for homo-nuclear diatoms ¢, = 7.

Because the inter-diatom interaction is absent, each diatom operates inde-
pendently. Therefore, the total partition function is the product of N, partition
functions, each referring to a single diatom.

Now the thermodynamics of rotational motion is readily evaluated. We have

E (rotation of Ny stiff diatoms) = [m%na;—szBT} " ;
Froaion = —kpT In [W}M :
Protation = 0;
Sin = Ny n| TP 4y
Urotation = Hrotation = NakpT. (11.60)

Clearly, the internal energy is the same for both homo- and hetero-nuclear classical
diatoms. This, of course, is not strictly true for quantum diatoms except at very
high temperature(See section titled: “Quasi-Classical Statistical Thermodynamics
of Rigid Quantum Diatoms”).
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11.5.9 Statistical Thermodynamics of N, Classical Diatoms
with Stiff Bonds

We are now in a position to calculate the thermodynamics of N, classical diatoms
each with stiff intra-diatom bond.

Because the contribution to the partition function from different parts of the
Hamiltonian is multiplicative, therefore the total value of the thermodynamic
potentials is the sum of that obtained for the motion of the center of mass — that
is, the result given in (11.43) — and the rotational motion of the diatoms — i.e., that
givenin (11.60). In particular, we have for the pressure, the entropy, and the internal
energy the result

NaksT

P(Ny diatoms with stiff —bond) = Pcof.m) + Protation = v,
d

S(Ny diatoms with stiff — bond) = Sc.of.m) + Srotation
Vi 3 s 7
= NgkgIn || ——= | 47¢max M 27t (m1 + my)]? (kgT)2 | + | = ) Naks;
Nyhs 2
U(N,4 diatoms with stiff — bond) = Uc.orm) + Urotation

= (%) Ny kg T, (11.61)

This means that each of the N; diatoms with a stiff-bond contributes an amount
equal to (% kg T) to the internal energy. Therefore, for classical diatoms with stiff
intra-diatom bonds, the number of available degrees of freedom is equal to 5.

11.5.10 Free Bonds

If the intra-diatom bond is completely free, then at all times (11.45) can be reversed
back to (11.34). As a result, each diatom becomes identical to two free monatoms
and the thermodynamics of N, diatoms is identical to that of 2N, free monatoms.

11.5.11 Remark

So far diatoms have been treated classically. Also, nowhere has it been necessary to
introduce the fallacious notion: namely, that the sixth degree of freedom consists of
the self-rotation of the infinitesimally sized two atoms — each around its own center.
However, in order fully to appreciate the temperature dependence of the system
thermodynamics, it is helpful to also use some quantum mechanical ideas. (See, for
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instance, (11.144)—(11.151).) At very low temperature only the translational motion
is excited. But soon thereafter, rotational motion begins getting tweaked. As a result
the internal energy per diatom starts to increase from its initial value of (% kg T).
And, at the temperature where the rotational motion has become fully available,
but intra-diatom bond still remains essentially stiff, the internal energy per diatom
becomes (% kg T). In other words, a diatom with stiff intra-diatom bond will, with
appropriate rise in the temperature,'® access up to five degrees of freedom. And
when this process is completed, the specific heat ¢, per mole of such diatoms would
have risen to become %R. In a “real” diatomic gas — as distinct from an “ideal”
diatomic gas — when the system temperature continues to rise beyond this point, the
sixth —i.e., the vibrational degree of freedom — and the seventh degrees of freedom'”
would also get excited. Note, the seventh degree is a theoretical construct. It arises
because of the occurrence of the two-body, intra-diatom, potential.

It is instructive to examine experimental results — over a wide range of
temperature — for the specific heat of diatomic gases. Here the relevant quantities
are the Characteristic Temperatures for Rotation and Vibration of Diatomic
Molecules. '

For Hydrogen (i.e., H;) the “characteristic rotational” temperature — which is
85.5 K — is almost as low as the temperature of liquid air (i.e., ~ 77 K). The
rotational degrees of freedom become fully excited long before the “characteristic
vibrational” temperature is reached. This is so because generally for the light
diatomic molecules the characteristic vibrational temperature is much higher than
the rotational temperature. Figure 11.1, indicates that in diatomic Hydrogen, while
the bond stiffness very slowly begins to relax as early as ~ 750 K it persists until a
fantastically high temperature ~ 6140 K.

The next diatom listed in the given table is the heteronuclear OH. Here the
relevant two numbers are 27.5 K for the rotational motion and 5,360 K for the
vibrational motion. Again, the intra-diatom bond appears mostly to remain stiff at
laboratory temperatures. HCI, CH and CO appear to behave in similar fashion.

Like H,, one of the other homonuclear diatoms listed in the table is Potassium
(K7). Here, the rotational motion occurs at very low temperature: indeed, not
far above absolute zero. And, in contrast with the light, heavy diatoms allow
vibrations to set in much sooner. For instance, here bond stiffness begins decreasing

16 Accessing the five degrees of freedom at this stage is true both in the classical and the quantum
pictures.

7We have ignored electronic and nuclear excitations, and also rotation of single atoms around
their center. These excitations may in principle occur and thereby add to the number of degrees of
freedom. However, in practice, for small diatoms these excitations are often irrelevant because the
temperatures needed for them are inordinately high.

18See the attached table for characteristic temperatures at which diatomic-rotations and intra-
diatomic vibration in various diatoms begin to take effect. Note: the characteristic temperature
for rotation is defined as the temperature where, in addition to the three translational degrees of
freedom of the center of mass, two degrees of freedom for rotation also begin to be excited — and
clearly where the bond is still effectively “stiff.”
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at relatively low temperatures and the vibrational modes are fully available at
temperature as low as ~ 140 K.

To recapitulate: It is clear that the bond-stiffness in most “light” diatoms — which
one would normally apply the ideal gas theory to — is a real, genuine, physical
phenomenon. This stiffness holds-back both the sixth and, of course, the seventh
degrees of freedom. Often in light diatoms, while the rotational degrees of freedom
are available at moderate temperatures, substantial increase in temperature is needed
to overcome the bond stiffness and excite vibrational motion. (For instance, see
Fig.11.1.)

11.5.12 Characteristic Temperatures for Rotation
and Vibration of Diatoms

As noted on page 378 of “Thermodynamics, Kinetic Theory, and Statistical
Thermodynamics,” by Sears and Salinger.
Room temperature Tioom is ~ 310 K.

Diatom Trotation Tvibration
H, 855K 6140K
OH 27.5 5,360
HCI 15.3 4,300
CH 20.7 4,100

Cco 277 3,120
NO 247 2,740
0, 2.09 2,260
Ch 0.347 810
Br, 0.117 470
Nas 0.224 230
K> 0.081 140

11.5.13 Classical Diatoms: High Temperature

With rise in temperature beyond the region where the bond stiffness holds sway,
interaction between the two atoms in the diatomic molecule leads to simple
harmonic like vibration of the two atoms. As a result, the bond length begins to
vibrate at a rate specified by the interaction (see Sect. 11.5.14). When this behavior
is fully established, it adds two more degrees of freedom to the diatom. Therefore,
eventually, the specific heat per mole achieves a value equal to (% kg T) . Clearly
with even further rise in temperature the interatomic bond vibration will become
more and more enharmonic. Also eventually other issues such as electronic and
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nuclear excitations — and even possibly self rotation of the single atoms around the
line joining them — will begin to contribute. And last, and perhaps the most, the
present treatment — that employs classical statistics — will need to be revamped with
the use of quantum statistics.

11.5.14 End of Stiffness: Bond Length Vibration

For a diatom, in addition to the Hamiltonia that have already been considered —
meaning, that referring to the translational motion of the center of mass, and that
given in (11.55): namely, Hotation one stiff diatom — there remains the part that refers
to the intra-diatom potential energy, and the part that refers to the kinetic energy
of the two atoms when the bond un-stiffens. Let us deal first with the intra-diatom
potential energy.

Assume that when the bond un-stiffens, the Hooke’s like force of attraction
between the two atoms — in a given classical diatom — will cause the atoms to start
vibrating in a simple Harmonic like motion. Because the diatom is not subject to
any external forces, its total momentum is conserved. Assuming it starts with zero
total momentum, its momentum will stay zero throughout.

The Hooke’s law equations of motion of the two atoms are

d?ri(t)
m dzlz = —Kr,(t),
dzrz(l)
my i = —Kr,(t);
ro(t) = ri(t) 4+ ra(t). (11.62)

r,(t) is the bond length at time ¢; r1(¢) and r,(¢) are distances from the center of
mass to atoms 1 and 2, respectively. Rather than focusing on ri(¢) and rp(¢), it
is convenient instead to study the time dependence of r,(¢). This can be done by
adding the two equations as follows:

&ri) | P dn@ ( K, 5) rot) = —ro(1), (11.63)

dr? dr? dr? my | m,
where
K = ('”1—'”2) o2, (11.64)
my + my

and o is the angular frequency of the simple Harmonic motion. Clearly the part

of the Hamiltonian that contains the intra-diatom coupling which gives rise to the

potential energy — and describes the Hooke’s law given above — is §r3
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Next, we look at the kinetic energy part of the Hamiltonian. This kinetic energy —
namely 1 [m 1 (ri)2 + my (ré)z] — represents the motion of the two atoms after
the diatomic bond has un-stiffened. Such kinetic energy was, of course, present in
(11.50). But it was then dropped from that equation because of the effect of bond
stiffness which is described in (11.54).

Therefore, the total (remaining part of the) Hamiltonian for a single diatom — to
be called H (vibration single diatom) — is the following:

K 1
H (vibration single diatom) = > —ri4 = > [ ( 1)2 + my (ri)z]

K P1 P%
- P2 11.65
P (2m1 tom (11.65)

Clearly, because there are no external forces present, the total momentum is
conserved and the momenta of the two atoms must add up to zero. That is,

pit) = —pa2(); p1(1)* = pa(1)* = pP(0). (11.66)

This fact and the use of (11.64) help write the remaining Hamiltonian in terms of
only two variables.
2
H (vibration single diatom) = (M) rl 4 ZM

. (11.67
2(my + my) 2mim; ( )

Note that this Hamiltonian is identical to that for one dimensional Harmonic
oscillator.

The contribution to the partition function from the vibrational motion of a single
diatom is now readily calculated.

2
E (vibration single diatom) = h™ / exp|: ( mima® ) 2j|dr0
2(}’)’!1 + I1’I2)

X /_oo exp[ B (—(n;;:mn?)) pz}dp
o (27t(m1 +m2))% § ( 270 (mims) )5
Bmimyw? B(m; + my)

2
= (m) . (11.68)

The resultant vibrational partition function for N, diatoms is simply the N,-th
power of the above. The vibrational motion of N, diatoms adds to the Helmholtz
potential the amount,
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Fvibraiony = —ksT Ny In E (vibration single diatom)
Bhw

= Nygkg T In (—) . (11.69)
2

Because the Helmholtz potential is independent of the (one-dimensional) volume,
the corresponding change in the pressure is vanishing. Contribution to other
thermodynamic potentials — due to the vibrational motion — are the following:

OF (vibrati 2wk T
S(vibration) = - (%)N = NdkB |:1 + ln( ]Tha]j ):| s
d

oF vibration ho
G(Vibration) = Nd (ﬁ) = NdkBTln( ) ;
T

ONy 27k T
U(Vibration) = F (vibration) +T S(vibration) =N, d kBT;
H (vibration) = U(vibration) . (1 1.70)

Adding Uyibration) 10 U(c.ot.m) and Urgraiion leads to the result
3 7
Uotal = 3 NakgT + NgkgT + NykgT = 3 Nykg T. (11.71)

This means that a diatom, when raised to an appropriately high temperature,
in addition to undergoing translational and rotational motion, also experiences
vibrational motion of its intra-diatom bond. And when that happens, it contributes
an amount equal to (% kg T) to the internal energy, making the number of degrees of
freedom equal to 7. (A quantum statistical treatment of these issues is provided in the
section titled: “Quasi-Classical Statistical Mechanics of Rigid Quantum Diatoms”;
see (11.144)—(11.166).

11.6 Anharmonic Simple Oscillators

Elementary theoretical physics owes much to the idea of simple harmonic oscil-
lators. Indeed, the bond length vibration studied in the previous section — see
(11.67)—(11.70)— was treated as simple Harmonic motion. In real systems, however,
such simple oscillators must often be assumed to possess some anharmonicity.

Consider a collection of N, distinguishable, one-dimensional simple oscillators
each with a tiny bit of anharmonic potential. Assume that each oscillator is
independent of the other because there is no interaction between different oscillator.
Further assume that at time ¢ the i-th such oscillator has momentum p;(¢) and
separation length equal to g; (¢) : and its Hamiltonian #,; (¢) is

p; 2 (47 3 4
/Hi(t)=ﬁ+mw o T4 —bgi" |, (11.72)
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where b ~ O(a?) and a < 1. Then the partition function is

ZHkBT N
hw

2 N
x [ (3b + 125 2) (ZB—Q)TZ) +0 (b2 (ZB—QZ;) )] (11.73)

(Note: To see the algebra that takes us from (11.72)—(11.73) refer to the long
footnote below)."®
Therefore, we have

E(N,V.T) :(

F=—kgTIn E(N,V.T)

27thT
@

= —NkBTln(

19We need to work out the following:

v~ {(%)N/Z.../del,,.deeXp( ﬁ; )}
YN

Xexpg ﬂme (——aq, bq;4)§

- ()]
S

Xexpg Zma) (——aq, bq,~4)§. (11.74)
i=1
To this purpose, we introduce the simplifying notation: o = B mzw LA = Bmo

Ay = Bm w? b, and make a Taylor expansion of the exponential in powers of the small quantities
A1 and A,. That is,

2a, and

2
exp { —ﬁmw2 (q? — aq3 — bq4)} = exp (—otq2 + A q3 + A2q4)

A2 22
= exp (—ag?) [1 + A g+ Aagt + ?lcf + A1 hq" + 72 @ +0 (A?qg)} (11.75)

Now using (A.22) and (A.23) we can write
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15 kgT 15 \? [ ksT\?>
—NksT | (36 + =2 ) [ 2= ) -0 36+ =a?) (=25 ;
2 mw? 2 mw?
g_ (%
AT )y
Nkg [1 +In (2”kBT)}
hw
kT 15 15 \? [ kgT >
12Nkg [ 2= ) (3b+ =a®) -0 [ Nkg (30 + —=a2) (2= )
maw? 2 2 maw?

keT 15
U=F+TS=NkBT[1+( Bz)(3b+—a2):|;
maw

2

(U B kT 15
C, = (aT)V,N = Nkg [1 +2 (mwz) (3b+ Sa )} (11.77)

The results in (11.77) are recorded to the same accuracy as in (11.76).

11.6.1 ExerciseV

Assume spatial symmetry and work out the foregoing problem in three dimensions.

11.7 Classical Dipole Pairs: Average Energy
and Average Force

A thermodynamic system, consisting of N pairs of — magnetic or electrostatic —
classical dipoles of zero mass, is at temperature 7. The intra-pair separation ( of
each pair of dipoles) is R. Interaction between different pairs of dipoles — namely
the inter-pair interaction — is assumed to be zero.

o0
/ dg exp (—aq* + 1i1¢° + 2aq?)

—0o0

o 2 3 4 Me® 7 _A%qg
= dg exp (—aq®) |14+ 11g° + Aag +T+’11’12q + 2 +o
—o0
B T i ,f 15 5 ( 105
- (a)[1+/12(4a2)+l1(16a3)+kz(32a4)}
1 2
(TN 4 (34 B22) (52T 4 o (12 (KT _ (11.76)
mw? 2 mw? mw?
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The potential energy of the i-th pair of dipoles, AH,;, is

AH, = C [mm— 3,Uviz;l,Uviz;2i|

R3

_c [ Mix:1 Pix;2 + Miysi Piy:2 — 2 iz ,U«iz;zj| ' (11.78)

R3
Here, 1;;1 and 1, are the vector moments of the i -th pair of dipoles. Because there
is no inter-pair interaction, the dipoles do not translate spatially, and are assumed to
be of zero mass, the sum of (only) the potential energies of all the N pairs of dipoles
is the system Hamiltonian #. That is

N
H=> AH,. (11.79)
i=1

The notation used in (11.78) is such that p;x;1, fiy;1, and ;1 are the x, y and the
z-components of the dipole moment vector, f;;;. For convenience, the z-direction
is chosen to be along the line joining the centers of the two dipoles. Let us first
calculate the observed — i.e., the thermodynamic average — value of the energy.

11.7.1 Distribution Factor and Thermal Average

Whenever we have available the system Hamiltonian, H(®, @), then following
(2.13), the BMG distribution factor f(®, ®) can be written as

exp[-pH(O, P)]

J(0.9) = 16 aboxp [BH(©, D))

(11.80)

Accordingly, the observed value of the total energy — namely, the thermal average
of the total Hamiltonian H(®, ®) — is the following:

. [dO - dP[H(O, ®)]exp [-BH(O, D)]

_/
<[H(©®.,?)] > = [.[dO-d®exp[-fH(O, D)

(11.81)
Using (11.79) we can write the above as
N
U=<H>=<) AH;>
j=l1
[.[de-do [Z;V:l AH ,»] exp (—BH)
= (11.82)

[.[d®-ddexp(—BH)
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The differentials d® and d® are defined in (11.84) below.

For the problem in hand, (11.82) can be greatly simplified(compare with (2.16)—
(2.21)). While any given pair of dipoles do have angular interaction with each other,
they remain unaware of the presence of the other (N — 1) dipole-pairs. Also, the
temperature 7' experienced by any given pair of dipoles is that established by the
very large number, N > 1, of dipole pairs present. Further, because of spherical
symmetry, rather than Cartesian, spherical are the best coordinates to use. To this
end, we chose the angular orientations of the i-th pair of dipole to be (6;;, ¢;1) and
(02, ¢i2).

In light of the above, all N — 1 terms for which the subscript j is different from
some given subscript i are the same in both the numerator and the denominator of
(11.82). Therefore, they cancel each other out. As a result (11.82) simplifies to the
following:

=< AH; >= ffdel -dg; (AH;)exp(—p AH!)

11.83
[ . [ d6; -dg; exp(—BAH,) ( )
The differentials in (11.83) and (11.82) are denoted as given below:
df; - d¢; = sin 6;1d0;; sin 0;2d0;2di1 dia;
i=N
and, d®-dd = l—[ [dO; - do]. (11.84)

i=1

In the spherical representation, the dipole vectors that occurin AH; —see (11.78)—
are the following:

Mix;1 = M1 Sin(eil) COS(¢:’1)§
Miy;t = jpsin(0;1) sin(gi1): iz = g cos(B;r). (11.85)

The corresponding vectors for the second dipole of the i-th pair — namely, number
2 — are similarly expressed. (Just change 1 to 2!)

Because all N pairs of dipoles are identical, the observed value of the potential
energy u; of the i -th pair of dipoles must be the same as the observed corresponding
value for any one of the other N — 1 dipole pairs. Therefore, the thermodynamic
average uj, = < (AH;) > = u, is independent of the index i. Considerable
notational simplification is achieved by ignoring any future mention of this index.
Indeed, we can represent (11.78) more simply as follows:

C
AH; = — (_R3) [2 Mz Hoz — fixHax — MlyMZy]
Cpy o ; i
= (% [2cos 0 cos 6, — sin 6 sin 6, cos (¢1 — ¢2)]

F(1,2), (11.86)
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and (11.83) as:

uy=u= <F(,2)>

[7sin(00)d6; [Z7dey [T sin(02)d6s [T Ao F (1,2) exp [—BF (1.2)] 1187
[7sin(61) d6; [T dgy [T sin(62) d6s [T dg exp[-B F (1,2)]

where
exp[-B F (1,2)] = 1 — BF (1,2) + % [BF (1,2))* +---  (11.88)

The integral (11.87) above can only be done by numerical methods. If the system is
at high enough temperature such that % <« T, the exponential can be expanded in
powers of the exponent. The resultant integrals are straight forward, but somewhat
tedious to do. Therefore, it is convenient to append the relevant details in an
appendix. (See (I.1)—(1.20)).

The average value, U, of the energy of N dipole pairs is N times the average
energy, u, of a single dipole pair. Note u is the ratio of the results given in (1.17)
and (I.16). That is,

_NBA
U=N<AH; >=Nu= pAs e
(47)2 [1 +£ (—C ’23“2) :|

2 (Cpipa B> (Cripa
= _NB=Z -2

ﬂ3( R ) 3\ R

2/(C 2
av,—N,Bg( ’23“2) (11.89)

11.7.2 Average Force Between a Pair

The force A between any pair of dipoles can be determined by differentiating their
intra-pair potential energy AH; that was specified in (11.86).

AH;
Ao (3_H) _ (3) A, (11.90)
OR ) pnbr00grr \R

Similar to the average energy, < A#,; >, of a pair — see (11.83) and (11.84) — we
can also represent the average value of the intra-dipolar force, A, as < A > .

_(3 o (B \u = _pk (Crma)’
<A>_(R)<A’H,>—(RN)U— 'BR( e ) (11.91)
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(Note, U is as given in (I.18).) Clearly, the thermodynamic average of the force
between any single pair of dipoles is attractive.

11.8 Langevin Paramagnetism: Classical Picture

Magnetic dipoles arise as a result of the presence of electronic and/or nuclear
angular momenta. Consider a uniform, constant magnetic field B applied to a
system of N such — assumed to be classical — non-interacting magnetic dipoles.
We further assume that the spatial location of all dipoles as well as the size, ., of
their dipole moments is fixed. Yet every dipole is assumed to be free to rotate around
its midpoint. The Hamiltonian consists only of the potential energy

N N
H=—B- Zﬁl = —B, i, Zcos(@i), (11.92)

i=1 i=1

where 6; is the angle between the dipole moment vector i; and the applied magnetic
field B. (For convenience the z-axis is chosen parallel to the applied field. The
z—components of the applied field and the dipole moment vectors are B, and .,
respectively.

11.8.1 Statistical Average

Because there is no inter-dipole interaction, all thermodynamic averages — e.g.,
<B- i > — for a given dipole i are independent of their location indices i. efc.
Much as in (11.83)—(11.85), the spherical coordinate representation of the statistical
average of the magnetic moment — which will, of course, equal its thermodynamic
average — M, can be written as follows:

<§-i> <H > -U

Bo Bo BO

[7[cos(8,)] - sin(6;) exp [BBo e cos(6,)]d6; 2 de;
ST sin(0:) exp [BBojue cos(0))] do; [77 dg;

) =Npe < [COS(Q,-)] >

=N p, (11.93)

To do the integral in the numerator of the last term on the right hand side, we employ
standard integration techniques. Namely,

(1) Introduce the substitution:

a = BByuc; y = cos(6;). (11.94)
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(2) Integrate the numerator by parts.
T 2
| cost@ exp B cost@nlsin(@at - [ ap,
—1 1
= [ vew@nan-en = en [ epanrds

1
= o) { 220, - e - exp(—a)]}
-1

= (27) |:exp(oz) (é — aiz) + exp(—a) (é + %)} . (11.95)

Using the same notation, the integral in the denominator of (11.93) is:

1
(2m) /_1 exp(ay)dy = (%r) [exp(c) — exp(—a)] . (11.96)

The ratio of the numerator given in (11.95), and the denominator given in (11.96),
yields < cos(6;) > . And as noted in (11.93), < cos(6;) > leads to both the total
energy < H > and the statistical average of the magnetic moment M.

U=<H>=—-NB,u. <cos(ty) >=—-B,M

= —NB, e |:(2 ) [eXP(O;) (é - alz) + exp(—a) (é + a%)]:|
(%) lexp(@) — exp(—a)]

= —NB, . [coth(a) — éj| =—NB,ju.L (). (11.97)

11.8.2 High Temperature

In the limit of high temperature —i.e., when « is small — we can expand the Langevin
function L (c) in powers of «.. Recall that «, i.e., BB, 4., is the ratio of the magnetic
potential energy (per dipole) — which is B, . — and the thermal kinetic energy (per
dipole) — which is &~ kg T . We get

3

L(x) =coth(oe)—é = [%_%4_...}

_ B,,,LLC (ﬁBoﬂ(r)z .
()i
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M IL ()
64)} v'—1'1=( ) =N,u( )
angevin—classica aB() - Cc aB{] -
N Nﬂcz 1 — l Bojic ’ .
3kgT 5\ kgT ’
aU
[Cspeciﬁc heal]langevin—classical = (a_T)N,B,,
_ NkB B()M(? 2 1 1 B(]MC 2 (11 98)
3\ kgT 5\ kgT o

Note: The above results have been obtained by the use of classical statistics and

are applicable at high temperatures. Here, (gTMo)T is the magnetic susceptibility

of the Langevin paramagnet. It will be referred to as ())iangevin—classical. At What we
have called high temperature, it varies as the inverse power of the temperature. This

. . . . AN
result is known as Curie’s law of paramagnetism. The quantity, (A;’,:; ) , is called

the Curie constant for a system consisting of N Langevin classical paramagnetic
dipoles.

In paramagnetic salts, such as gadolinium ethylsulphate, the high temperature
Curie’s law is found to hold down to about 10 K. However, the high temperature law
for the Langevin susceptibility must surely break down — and the system undergo
a phase transition — at some finite low temperature because in its present form —
compare (11.98) — the law can predict an un-physically large alignment of dipoles
that exceeds even 100%!

Note that at high temperature, the specific heat decreases as the square of the

; ; ) 1
inverse power of the temperature, i.e., [CspmﬁC heat]langevin—classical X =

11.8.3 Low Temperature

On the other hand, at low temperature where o >> 1, the Langevin factor L(«) can
be approximated as:*’

[coth(a) — é:| = (1 — é) + O {exp(—4a)} . (11.99)

Therefore, according to (11.97), at very low temperature < cos(6;) > is equal to
unity and all the Langevin classical dipoles are completely aligned with the applied
field; and quite understandably, the magnetic susceptibility is extremely small.

20See Fig.11.2 for a plot of the Langevin function and a demonstration of its low and high
temperature behavior.
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Langevin Function

Fig. 11.2 The Langevin Function L(«) Recall that the average energy, U, of a Langevin

paramagnet is related to L(c«). That is, U = —NB,u.L(x). Plotted above is L(a) versus
o = (i—“%) The thinly dashed curve represents the high temperature approximation, i.e.,
B

L(a) ~ %, thatis valid for @ < 1. The curve with wider dashes represents the low temperature
approximation valid for o« > 1: thatis, L(a) &~ 1 — i

11.9 Extremely Relativistic Monatomic Ideal Gas

As noted in (2.83), special theory of relativity predicts that particles with rest mass
my and velocity v; have energy

Ei=mic*=| —— | ¢ (11.100)

and momentum

Pi = m;Vi = —2 Vi, (11101)
-3

where c is the velocity of light. Combining these equations leads to

E; = y/c2pit + mict. (11.102)

In the extreme relativistic limit,
cpi > mict. (11.103)
Accordingly, in (11.102) we can use the approximation

E; ~ cp;. (11.104)
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Note that here p; = /pi2.
Consider N such indistinguishable particles. The Hamiltonian #, the partition

function E (N, V, T'), and the Helmholtz potential F are then

N
H=H(Q.P)=) (cp):

i=1

E(N,V,.T)=(N)! h—3N/QdQ /Ow.../ooodp exp [—BH]

1 1% N (o) N
:ﬁ(ﬁ) [/0 eXP(—ﬁ6p)4np2dp}

() L]
N Be)*l
F = —kgTInE(N,V,T)

ot | (Y sam (BT . (11.105)
N hce

Other thermodynamic potentials and the pressure can now readily be determined
from the Helmholtz potential,

b _(F _ NksT
NV )y VT

oF 8meV kgT
s=—(Z) =Nl 3In (22 3k N:
(ar)w " [( N )+ “(hc”+ v

U=F+TS=3NkgT. (11.106)

Equation (11.106) shows that

U
(P V)relutivistic = NkBT = (?) . (11.107)

This extreme-relativistic result contrasts with that for non-relativistic, monatomic
ideal gases recorded in (2.31). Indeed, all non-relativistic monatomic ideal gases
in three dimensions, whether they be classical or quantum, obey the following
relationship: i.e.,

2U
(P V)non—relativislic classical or quantum ideal gas in 3 dim = (T) . (11108)
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11.10 Gas with Interaction

Non-interacting classical gases considered in the preceding sub-sections of this
chapter have been easy to treat. Treatment of systems with interactions, however,
is more involved.

11.10.1 The Hamiltonian

Hamiltonian for a gas of N particles, with no ability for self-rotation but with the
presence of two-body inter-particle potential, can be written as follows:

N _, N  N-1
Pi
H:H(Q,P)ZZ%-‘F Z ‘ ZUi,j. (11.109)
i=1 (j=2;j>i) i=1
Note that by definition the two-body potential U;; = U;; = 0 and by symmetry
Uij = U;; = U(|r; — rj|) where r; and r; are the three-dimensional position

vectors of the i-th and the j -th particles.?! Note also that p; is the three dimensional
momentum vector of the i -th particle and the form of the summation over the pairs
(i, j) ensures that the total number of pairs summed is equal to il (A;_l) and that as
a result no double counting occurs.??

11.10.2 Partition Function: Mayer’s Cluster Expansion

Using the Hamiltonian specified in (11.109), the partition function for fixed number
of particles —i.e., equal to N —is:

E(N,V.T) = (N))"! h_3N/OO.../OO dP/oo.../oonexp[—,B’H]
VN /1\N _:: _Ooﬁpz - 3N—oo
() [Loew ()]

2 Here, |r; — rj| = r is the separation between the i-th and the j-th atoms.

22 A beginner might benefit from a numerical example. For simplicity let us consider N = 3. Then
the summation of ) j=i Uij will consist of the following possible choices: Start with/ = 1. Asa
result, j can be either 2 or 3. These two possible choices lead to two possible potentials: U} , and
U, 3. Next, we choose i = 2. Then j can only be equal to 3 leading to the third possible choice
for the two-body potential: namely, U, 3. Note i = 2 was the maximum possible allowed value
fori:thatisi = N —1 = 3 — 1 = 2. Therefore, the total of the three choices for the U’s, that

have already been made, exhausts the possibility of making any further choices. And of course
3= NN=D _ 3x2 _ 3
2 2 :
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XV_N/ / [ Jexp (-BU,) dO

i<j
VN 27rkaT _
[ () | L T e
_ [ (mmkaT\ T 11110
=l w777 exp{A}. (11.110)

In (11.110) we have made use of Mayer’s notation for his two-particle function
Jfi.j- Also, introduced a new notation: exp {A} That is,

exp(—BU:;) = 1+ fi:

/ / VNI (0 + fj) dO = exp {4} (11.111)
i<j
In ideal gases there is no inter-particle interaction, i.e., U; ; = 0. As a result

exp (—,B U,-,j) = 1 and therefore — see (11.111)— f; ; is also equal to zero.

Similarly, when either the system is weakly interacting, i.e., U; ; is very small,
or the temperature is high, i.e. BU; ; < 1, we have an equally simple result because
then

fij =exp(—BUi;)—1=—BU;; + O (ﬁU,-,,-)2 < 1. (11.112)

Thus, f;; is a small number compared to unity for: (a) the weekly interacting
systems; (b) at high temperatures; and (c) when both (a) and (b) are true.

The integral on the right hand side of (11.110) is extraordinarily difficult to work
out. Indeed, it cannot be done exactly for any but the most trivial cases. Therefore,
approximations have to be made. Central to these approximations is the fact that
fi.j is small.?

Because the needed integrals increase in complexity very rapidly as the number
of f-functions being multiplied increases, we need to look for a power expansion
of the product integrals in exp{A} that occur in the second line of (11.111).
Note that because eventually we shall need the logarithm of the partition function,
it is convenient to express the product integrals as an exponential. There is also
another important benefit that this form of expression shares with other studies that
involve interacting many-body systems. The relevant series expansion for exp {4}
is restricted only to a class of multiply-connected f -functions. In fact we get:

ZFor more details, see “Statistical Mechanics,” by R. K. Pathria, pages 255278, Pergamon
Press, (1977). Also see, J. E. Mayer and M. G. Mayer, in “Statistical Mechanics,” John Wiley,
New York, (1940).
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(A} =V? / / Zf drid’r

l<]

+y / / / o fii fikfeidrdn &g | + -

<)<k

[ [ )
+V_3N(N LR 2)(/ / / Fos Foafoadird rjd@*rk)

+... (11.113)

In(11.113), we have recognized that in an N particle system in toto there are W

pairs and N(N+),(N_2) — multiply connected — triplets available. Also, that each
particle can be represented by any dummy position index i, j or k. And further that
the volume available to each particle is equal to V.

As is well known, for two identical particles i and j, d*rid®rj can be represented
as d°Rdr where R is the position vector of the center of mass, ie., R =
(rj + i) /2, and r is their vector separation: that is, r = (r; —r;). Because
fii=1 (|ri — rjl) = f(r), we can write (for dummy indices i, j)

/_: /_Z fijdPrid’rj = /d3R /OOO ) = V/OOO Fanrdr

Therefore, the Helmholtz potential — calculated from the partition function specified
in (11.110) and (11.113) becomes:

F = —kgTIn[E(N.V.T)] = —kgT In{E(N, V, )5}

— kgT (2N—;) /oo f(r)dmridr
et (6V3)(/ [ [t tna "st“‘)

_ (11.114)

(Note: E(N,V,T),s is as defined in (11.13). Also note that in the above we have
used an approximation that is valid for large N :i.e., N(N — 1) = N2 (1 — %) ~
N2and N(N — 1)(N —2) ~ N3.)

The third term on the right hand side of (11.114), involves three- and higher-body
integrals. Even the simplest of these — namely the three-body integral with only the
hard-core potential — requires considerable effort to evaluate. However, because in
the limit of weak-interaction and/or high temperature, the physical contribution of
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these terms is much smaller than that of the second term, in the following we shall
work with an approximation where they can be ignored.
With this approximation the Helmholtz potential energy is

2 00
F ~ —kgTIn{E(N,V, T)IG}—kBT(iv—V)/ F(r)dmridr. (11.115)
0

Therefore the pressure, P, is as follows:

b (aF) _ NksT (NZkBT) /°° Fr)Amridr 4 -
T 0

v Vv 212
_ NksT N\ [® )
= |:1 (2V)/0 f(r)dmradr + :| (11.116)

Clearly, therefore, the second virial coefficient, b,, defined in (6.16), is the
following:

by = — (%) [ " franriar. (11.117)
0

In the following we shall attempt to evaluate it.

11.10.3 Hard Core Interaction

For simplicity, we consider first a dilute classical gas where the inter-particle
interaction is of the “hard-core” variety.

In a hard-core gas, each particle offers infinite repulsion to any other particle that
attempts to come closer than a specified distance. If the hard-core radius is r, then
the nearest the centers of any two particles can get to is = 2r,. Therefore, once
the centers of the given two particles are separated by a distance greater than 2 r,,
interaction between them vanishes. In other words:

U(r) = oo, forr < 2r,

= 0, otherwise. (11.118)
Thus,

f(r)=—1, forr <2r,
= 0, otherwise. (11.119)
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Accordingly,

[ee] 2rp
— (%) /0 f(r)dnridr = — (é) ; (=Ddmridr

161Tr(,3 1 %4 Vexcluded
== )= _anN]| =} = —. 11.120
(55) = v len [T =55 (120

The notation Vixcjuged 1S the same as first introduced in (6.2). Inserting the result
givenin (11.120)into (11.116) yields

P

NkgT Ve
_ B [1+ excluded+"'j| (11121)

14 14

It is convenient — as was done in (6.16) — to re-express (11.121) in terms of the
inverse powers of the specific volume v = % We get

Pv Vexcluded b
I T T I [ i 11.122
Rt [ + v + ] [ + v + } ( )

As is apparent from (6.19), when the (long-range) inter-particle interaction is
absent, i.e., when a = 0, the first two terms of the virial expansion recorded above
in (11.122) are identical to those obtained for the Van der Waals gas.

11.10.4 Exercise VI

Using (11.115) and (11.120) work out thermodynamic potentials for the hard-core
gas.

11.10.5 Lennard—Jones Potential

The total electric charge of an atom is zero. Yet, because of the presence of
a (quantum-mechanical) cloud of negatively charged electrons, a pair of atoms
experiences interaction. Lennard—Jones, in 1924, proposed what appears to have
been a formalization of the classical Van der Waals ideas of a weak attractive inter-
atomic force in the limit of large separation and a strong repulsive force for short
separation. The interatomic potential U(r) expressed below is phenomenologically
similar to the original version of the Lennard—Jones (L-J) potential, yet is somewhat
more convenient for computational purposes.

Ur) = U, [(2—")12—2(%)6] (11.123)
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The parameters U, and r, can be fitted to reproduce experimental data or results of
accurate quantum chemistry calculations.

11.10.5.1 The Attractive Potential

The attractive long-range interatomic potential is related to (what is known as) the
“London?* Dispersion Interaction.”

Clearly, there exists non-zero probability that the dynamic behavior of electron
occupancy (variables) will result in temporary occurrences of (electric) dipoles
in each of the given pair of atoms. To see how this might come about, consider
one of the atoms — to be labeled as the first atom — spontaneously achieving an
instantaneous asymmetry of charge distribution. Such asymmetry results in the first
atom developing a temporary electric dipole. This dipole then induces an oppositely
directed charge distribution in the second atom: which amounts to the development
of a dipole in the second atom.

The above “bootstrap” process, spontaneously results in the temporary occur-
rence of two dipoles. As a result, a temporary attractive force is produced. We know
from classical electrostatics that the potential (between two dipoles) falls off as the
third power of their separation r.

Quantum mechanical calculations of the resultant energy require the use of
perturbation theory. Because of symmetry, first order perturbation is vanishing. The
second order perturbation clearly must depend on the square of the inter-particle

potential. Therefore, the overall result for the energy falls off as o (})6 .

Amusingly, as noted in the preceding section, the thermodynamics of classical
L . . . . 116
electric dipoles also ordains an inter-particle potential that falls off as ( ) .

The L-J potential is a relatively good approximation and due to its sin;plicity is
often used to describe the properties of gases, and to model dispersion and overlap
interactions in molecular models. It is particularly accurate for noble gas atoms and
is a good approximation at long and short distances for neutral atoms and molecules.

At very long distances the inter-particle potential U(r) approaches zero from
below. As the inter-particle separation decreases, U(r) also (slowly) decreases. U(r)
approaches its minimum at r = r,. For shorter distances it starts to increase rapidly.
Indeed, when r is only about 0.705 r,, U(r) has risen?® more than fifty times as

high as the lowest value it attained at r = r,.

11.10.6 The Repulsive Potential

Clearly, the Lennard—Jones potential (also referred to as the L-J potential; 612
potential; or, less commonly, 12—6 potential) is an approximation. The exponent, 12,

*London, F.,Z. Physik 60,245(1930); Z.Physik Chemie B11, 222 (1930).
23See Fig. 11.3.
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Fig. 11.3 The ) L-J Potential
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continues to be chosen because it is equal to the square of the more reliable attractive
potential of power 6. This is done largely for the resultant ease in computation.
Indeed, the precise form of the repulsive term has scant theoretical justification.
Given that its physical origin is quite possibly related to the Pauli principle —
meaning, when the electronic clouds surrounding the atoms start to overlap, the
energy of the system increases appropriately. Therefore, one might have expected
the repulsive force to have had an exotic dependence on the inter-particle separation.
Still, as long as the repulsion is steep, the precise nature of the repulsion is not
critical to the physics of the problem.

11.11 Quasi-Classical Quantum Systems

11.11.1 Quantum Mechanics: Cursory Remarks

Most undergraduates reading physics take one or two courses in quantum mechan-
ics. Therefore, a long winded introduction is not necessary. And, we limit ourselves
to a few cursory remarks.

After the Hamiltonian, H, is assembled as a function of ¢ — which represents
translational and other relevant variables — the so called Schrodinger equation, i.e.,

/H(Q)Wn(g) = En‘ﬁn(@)v (11.124)

is put together. Any function of ¢ that satisfies the above equation, ¥, (0), is known
as an eigenfunction and the corresponding E, as the eigenvalue.

The Hamiltonian is always Hermitian. Therefore, its eigenvalues are real.
Physically, they represent the observable value of energy that the system is allowed
to have. It turns out, in stark contrast with classical physics, that the system is
allowed to have only “quantized levels” of energy. These levels may be “discrete”
or “continuous.”

Often it is convenient to use Dirac’s notation. The square-integrable version of
wave-function v, (0) is represented as an eigenvector in the form of a “ket™: i.e., as
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|ny >. If needed, in addition to n; other indices, say n,, etc., that identify the wave-
function ¥, »,(0) may also be added to ny, e.g., |n;;n, >. The complex conjugate
of ¥,,.n, (0) is written as a “bra” eigenvector, i.e., as < n2;n;|. Then the following
notation applies:

<nhinilniing, > = /I/f,f;;n;(g)wl;nz(g)dg

=8, &

n.ni n%,nz;
< n/z;n/1|V|n1;n2 > = /1//;1’,1;(9) V(0) ¥uyimy(0)do

=V, (11.125)

11.11.2 Canonical Partition Function

Newton’s laws that describe classical mechanics do not demand quantization of
energy, angular momentum, or indeed of any observable quantity. The rules of
quantum mechanics, on the other hand, specify quantization. As noted above, such
quantization may lead to discrete, or continuous values.

Equally important, in quantum mechanics the Hamiltonian and other “operators”
for observable quantities, are required to be Hermitian. The eigenvalues of such
operators represent physically allowed — and therefore, measurable — values. Being
eigenvalues of Hermitian operators, these values are necessarily “Real.”

Let us indicate the eigenvectors and eigenvalues by energy and other relevant
indices, for instance y and v. In accord with the BMG theories, a convenient
partition function is the following:

E =Trlexp (—8H)] = Z [<v, ylexp(—=BH) |y, v >], (11.126)

yov

where |y; v > is the y — v th eigenvector of the Hamiltonian and “Tr” stands for the
“trace.” Also, we have the BMG distribution factor, f(H),

exp (—fH)

SH) = (11.127)

A

which can be used to determine the thermal average, < O >, of any observable
whose operator is O.

Tr[é exp (—ﬁ”H)]
Tr [exp (—BH)]
=Z[< v, Y10 FH)y. v >]. (11.128)

v,V
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Note, that by definition, and common sense, < 1 >= 1.
The thermodynamic potentials are related to the partition function in the usual
manner:

oOF OF
F=—kBT1n{E};P=—(W) ;s=—(ﬁ) .G = F 1PV
T Vv
3In{E
U:F+TS:—( I;; }) . H=U+PV. (11.129)
|4

Again, standard notation has been used. That is, F is the Helmholtz potential; P is
the pressure; S is the entropy; G is the Gibbs Potential; U is the internal energy;
and H is the enthalpy.

11.11.3 Quantum Particle

Let us imagine a gas of non-interacting — i.e., ideal — quantum particles, each of
mass m. This sounds much-like a quantum perfect gas!

On second thoughts, we have to, alas, admit that we are not yet ready to reliably
study a truly quantum, many body thermodynamic system. This is in particular true
of a system consisting of light particles (such as electrons) and especially if the
system is gaseous or is in liquid state. Reliable study of these can be done only after
the grand Canonical ensemble has been introduced. And then, we shall need also to
treat the effects of fundamental symmetry rules that the particles that make up such
a many-body system have to follow.

So while we wait to possibly sketch how to do some of that, we shall amuse
ourselves by playing around with a single quantum particle. The simplest example
is a particle without any external field that is free to move within a cuboid of lengths,
11, 12, and 13.

11.11.3.1 Motion in One Dimension

To begin with, let us consider motion only in one dimension: say, from x = 0 — [.
Let us assume the end points of this range are infinitely thick so the particle cannot
cross out of them.

In quantum mechanics, the space and the momentum variables, x and py, are
transformed into Hermitian operators X and Py, respectively. These operators are
inter-related.

[}2, ﬁx] —XP, - P.X =in. (11.130)
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The Hamiltonian H, dependent only on the kinetic energy of the single particle, is:

2y — - Lo (11.131)

The Schrodinger expression is a differential equation,
Hn (X) = Ep ¥, (X)

_ Y, (X)
- 2m( o ) (11.132)

which is readily solved. Its solutions are the eigen-functions:

2 2 o (mnX
Y, (X) = 7 sin ; . (11.133)
The relevant eigen-values are:
e = (7 (”‘”)2 (11.134)
"\ 2m 1/ '
Here n, is a positive integer 1,2, . ... Notice that the eigen-functions, v, (X), are

orthonormal, i.e.,

2 : L maX\ . [(nynX
7 sin ; sin 7 dX = 8,,.,- (11.135)

The choice of the solution given in (11.133) has been motivated by the Dirichlet
boundary condition whereby v, (X) is required to be zero at the hard-core
boundaries: X = 0and X = /.

11.11.3.2 Partition Function

For a free quantum particle moving in one dimension, between x = 0 — [, the
partition function is

[e.]

E(I,T) = Trlexp(=H)] = Y [< ni|exp(—BE,,) n1 >]

n1=l

> thl’ll
Z <mifexp(— - kT Iny > |. (11.136)



460 11 Statistical Thermodynamics: Third Law

For a hydrogen atom

2hH2
(2mk ) ~23x107% m? K. (11.137)
B

. 2422
For distance [ > 10~®m, and temperature 7 > 1 K, the exponent (__277 hn 2)
m kB TI

changes slowly with change in n. Therefore — much as in a later equation (11.142) —
the discrete sum in (11.136) may be approximated by an integral, i.e.,

o0 Nzhznz 00 ﬂzhznz
D(l, T) = /1 exXp (—ﬂm) dn = /0 exp (—,BW) dn
1 2h2 2
_/ exp( B———— T ) dn
2nkaT / w2h’n? d
ex n
e P\ 2m 2 keT

~1 2nemkgT
~ — (11.138)

Note, at moderate to high temperature, in the fourth row on the right hand side, the
first part is much larger than the integral over dn — the latter being < 1. Therefore,
the integral has been ignored in the last row.

11.11.3.3 Motion in Three Dimensions

Briefly, the relevant Schrodinger equation is

HY = EV = e rv + PV + rv 11.139)
N 2m [\ 9%x 92y 2z )| (L

whose solution — appropriate to the Dirichlet boundary condition — is as follows:

1
23 N\NZ . (mmax\ . (namwx\ . (n3mx
=— , 11.140
(11 L 13) sin ( I ) sin ( 2 ) sin ( A ) ( )

where n,n, and n3 are positive integers, 1,2,3,... Accordingly, the allowed
energy levels, E = E(ny, ny,n3), are quantized: namely,

2h? ni 2 ny 2 n3 2
E(ny,ny,n3) = ( Zm) (f) +(Z) +(E) . (11.141)
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Therefore, the partition function for a single quantum particle in three dimensions
is the following:

E(V,T) = Trlexp (—8H)]

= Z exp{—BE(n,ny,n3)}

(nyna,n3)=1

3 3
2nmkgT 2nmkgT \ 2
wlllzlg( TB) = V(TB) . (11.142)

where V' = (/,1313) is the available volume. Note that here we have made use of the
results of the integration described in (11.138).

As is clear from (11.13), the above result — i.e., (11.142) for a free quantum
particle at moderate to high temperature — is identical to the corresponding result
for a classical single particle.

11.11.4 Classical-co-Quantum Gas

Having now studied the partition function of a single quantum particle with only
translational degrees of freedom, the temptation is to make a simple extension to a
system of similar many-particles. We shall succumb to this temptation but be honest
in admitting that the resultant gas is not a quantum ideal gas but rather an one that —
when described most euphemistically — is a “classical-co-quantum” gas.

The partition function of N “classical-co-quantum” particles — assumed here to
be distinguishable — of the type analyzed above is equal simply to the N -th power
of the single particle partition function given in (11.142). That is

3 N
E(N,V,T)=[E(V,T)1N=[V (”’Z#)] L L143)

It is no surprise that this result, and therefore all thermodynamic potentials that
follow from it, are identical to those that can be found from (11.13) for a classical
ideal gas of N distinguishable particles.

11.11.5 Non-Interacting Particles: “Classical-co-Quantum” vs.
Quantum Statistics

Whether labeled distinguishable or indistinguishable, any given group of non-
interacting “classical-co-quantum” particles behaves as though it is a collection of
distinct particles. Each particle in the group is “physically” recognizable as a distinct
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individual and two particles cannot be interchanged without the interchange being
noticeable. In addition, there are no fundamental symmetry rules that the (quantum
mechanical) wave-functions of such particles have to obey.

In contrast, any two indistinguishable quantum particles can be interchanged
without the interchange being physically noticeable. Indeed, in a system consisting
of identical quantum particles, a single quantum particle can no longer be considered
as occupying only one single-particle constituent state . Rather, each particle may be
considered as occupying different fractions of all single particle constituent states.
Yet for those indistinguishable quantum particles that are called fermions, no single-
particle state may have more than (2 S + 1) particles present. Note, for electrons
the spin S is equal to (%), so (2S5 + 1) = 2. Thus, any single particle state may
have either one electron with spin pointing in any given direction, or two electrons
with spins pointing in mutually opposite directions. Therefore, for electrons at any
specific time each state can accommodate a maximum of only two particles.

On the other hand, if we should be dealing with quantum particles that are called
bosons, there is no limit to the occupancy level of any single-particle state. Both
for fermions and bosons, the relevant occupancy prescriptions are a product of
the fundamental symmetry rules that these indistinguishable quantum particles are
required to obey.

In view of the supremacy of the single particle state occupancy rules, a system
of indistinguishable non-interacting quantum particles is often most conveniently
treated in terms of the properties of single particle state functions.

‘We shall have occasion to study these phenomena later in this chapter.

11.12 Quasi-Classical Statistical Thermodynamics
of Rigid Quantum Diatoms

Statistical treatment of a classical gas of Np diatoms with stiff bonds and no inter-
diatom coupling was given in (11.34)—(11.71). The Hamiltonian of such a gas was
the sum of Np Hamiltonia of single diatoms. And the dynamics of any diatom
could be described in terms of the translational motion of its center of mass and
the rotational motion of the two monatoms around it. These motions were shown to
be uncorrelated. Moreover, the center of mass motion was identical to that of free
monatoms of equivalent mass. Classical thermodynamics of free monatoms was
extensively studied earlier in this chapter. Thus, the interesting part of the motion
that needed to be treated was the rotational motion of the rigid-diatom.

Earlier, in this chapter, when classical diatoms were analyzed it was noted that for
molecular dissociation the temperatures needed were far higher than those available
in the laboratory. Mostly, the same is true for achieving — by thermal excitation —
quantum states that are higher than the ground state. Therefore, for calculating
thermodynamics at usual laboratory temperature, only the lowest electronic state
of the diatom — which is usually non-degenerate — needs to be considered.
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At temperatures lower than those where rotation sets in, we can consider a diatom
as a single particle in its ground atomic state. Its motion then is much like that
of a classical free particle — with mass equal to that of the two atoms — moving
at the velocity of the center of mass. Such motion has already been treated in an
early part of this chapter (see section titled: “Translational Motion of Center of
Mass” and (11.41)—(11.43)). Therefore, we consider first the quantum statistics at
slightly higher temperature where rotational motion begins to occur. We assume
that the neighboring diatoms are sufficiently far apart so that only intra-diatom —
and not inter-diatom — quantum rules of symmetry are relevant. Such diatoms will
be called “quasi-classical.” And using quasi-classical version of quantum statistical
mechanics, their rotational motion is analyzed below.

While the effects of mutual interaction between the nuclear and the rotational
states can be relevant for homo-nuclear diatoms, they are much less important for
hetero-nuclear diatoms. Therefore, for convenience, we treat first the latter case.

11.13 Hetero-Nuclear Diatoms: Rotational Motion

At temperatures lower than those where the bond stiffness weakens and vibrational
modes get excited, the dipoles have stiff bonds. And when rotational modes get
excited, these dipoles behave as rigid rotators, each with moment of inertia equal
to M. The classical Hamiltonian for the rotational motion of a rigid-diatom is the
quantity labeled I' that was given in (11.56) and (11.58). For quantum use, the
same Hamiltonian for the i -th diatom with angular momentum L is, say, H;. Then
the Schrddinger equation, its eigenfunctions, (6, ¢), and eigenvalues, E, are as

follows: 20
- L2\ | (& 1 9 1 2\ |
"= \am ) T |\ @0 +(M)(£)+(—smz<e>) 79 ) |
L0 + 1)A2
Hive(0.9) = Ecvi(0.9) = (%) V0.9
Vi, ¢) = Y[ (8, 9), (11.144)

where L is an operator that represents the angular momentum vector of a rigid-

"2
diatom and, as before, M is its moment of inertia>’ — equal to (Zinﬁ;{; ) , where

26See “Quantum Mechanics,” by Claude Cohen-Tannoudji, Bernard Diu and Frank Laloé, Wiley-
Interscience (1977); or, “Quantum Mechanic,” by Eugen Merzbacher, John Wiley and Sons, second
edition, pages 178-190 (1970).

YSee (11.53).
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mj and m, are the masses of the two monatoms that comprise the diatom and r, is
the length of the stiff-bond separating the two. Also, £ = 0, 1,2, ..., c0. Because
all diatoms being considered are alike, therefore, £ is independent of whichever of
the N, diatoms — such as the i-th — it may refer to. The relevant eigenfunctions
are the well known spherical harmonics, Ygﬁ (8, @), where m can take on a total of
(2¢ + 1) different values, e.g., £,£ —1,...,—€ 4+ 1, —£. An important point to note
is that as a result, the eigenvalue E; is (2€ + 1) fold degenerate. This has significant
consequences for the partition function.

11.13.1 Quantum Partition Function

In a previous calculation — see (11.136) — each state being treated was only singly
degenerate. That, however, is not the case here. Therefore, the diagonal matrix
elements, e.g., < £|exp(—BH;)|{ >, to be summed for calculating the partition
function must also include their degeneracy factor, which is equal to (2¢ + 1).
Accordingly, the partition function of the i-th rigid diatom is:

(Ei)quantum rotation — Z(ze + 1) < el exp(_ﬂHl)lg >
{=0

2(26 + 1) exp{—BE}

£=0

> R0
=@+ exp%—ﬂ(%)}

=0

[e.e]

Y SO =)@+ Dexpi—ol(t+ 1)},
=0

£=0

B2 h?
h —(PE) (), 11.145
whete @ (ZM 872 MkyT ( )

and the degeneracy factor, (2/ + 1), identifies the number of times the particular
state with eigenvalue £, may occur.

11.13.2 Analytical Treatment

Numerically, (11.145) is straight forward to compute. Its analytical evaluation,
however, can adequately be done only for very low or very high temperature.
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For low temperature, i.e., where ¢ > 1 and as a result exp(—g) < 1, the
successive terms in (11.145) rapidly decrease in value. Therefore, only the first
few terms of the expansion suffice.

[(Ef)quantum rotation](lOWT) ~ 1+3exp(—20) + 5exp(—60) +---. (11.146)

For high temperature, where ¢ < 1, many, many terms contribute to the sum
in (11.145). Therefore, much as was done in (11.138), we might conveniently
approximate the convergent sum by an integral.® In this fashion, by using the Euler—

Maclauren formula for lim p < 1 — that is, given >
)
(8 quantum rotation = ), S (©). we can write : [(E1)guantum rottion g
(=0
* 1 | |
= it [ S04 O3/ O 5 1 O
_ 1 1. e 4 (11.147)

Here
f) =20+ 1) exp{—ol({ + 1)}, and

/oo f(x)dx = /oo 2x + 1) exp{—ox(x + 1)} dx
x=0 x=0

o 1 1\’
= exp (%) /x=02 (x + E) exp{—g(x + E) dx
o0
1
= exp (%) /zl 2y exp {—oy*}dy = o (11.148)

We observe that at very high temperature, quantum-statistical partition function for
the rotational motion of an hetero-nuclear rigid-diatom with stiff-bond is identical
to its classical counterpart that was recorded in (11.59). That is:

[(E i )quantum rotation](highT) - [E (rotation one stiff diatom)]classical

1
— (11.149)
0

A beginner might benefit by noting that for large N the leading term in the sum,
[Z?;O(Z L4+ 1)=(N2+2 N)} ,is = N2, which is also the case for the corresponding integral:
namely [ DN (2 x 4+ 1)dx. The integral approximation for (11.145) is even more satisfactory because
successive terms, after £ has become large, begin to decrease in value and go rapidly to zero.
*Euler, Leonhard (4/15/1707-9/18/1783); Maclaurin, Colin (2/1698-6/14/1746).
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11.13.3 Low and High Temperature: Thermodynamic Potentials

11.13.3.1 Low Temperature

First let us examine the quantum results at low temperature where o > 1. The
Helmbholtz free energy, the entropy, the internal energy, and the specific heat energy,
are as follows:

— N,
Flowtrot = —kpT log {[(‘-H‘i)quantum rotation](lOWT)} !

= —3kg T Nqexp(—20) [1 - % exp(—20) + O (exp (—4 Q))} :

3
StlowTrot = 3k Ny exp(—20) |:1 -3 exp(—20) + O (exp (—4 Q))]

+60 kg Na exp(=20) [1 — 3exp(—20) + O (exp (—40))];

Uiowtror = 6@ ks T'Ny exp(—20) [I — 3exp(—20) + O (exp (—40))]:
Ciowtrot = 12kp Na0® exp (—20) [1 — O (exp (—20))]. (11.150)
Note that while the classical specific heat for the rotational motion of a stiff-bonded
diatom is constant at all temperature, and is equal to that provided by the two
rotational degrees of freedom, at low temperature the quantum specific heat for
rotational motion is exponentially small. Thus, according to the quantum picture,
for the specific heat, only the translational motion of the center of mass with its

three degrees of freedom is relevant at low temperatures. And that is exactly what
the experiment observes. (See Fig. 11.1.)

11.13.3.2 High Temperature

For one diatom at high temperature, the quantum partition function is given in
(11.149). Helmholtz potential for a system of N, diatoms is the following:

= Na
FhighTrot = —kgT In {[(C‘i)quantum rotation](highT)}

1 2 ged
—kBTNd[ln(E)+g+Q—+ @ +] (11.151)

390 2835

By using (11.7), the quantum statistical results for thermodynamic potential in the
limit of very high temperature can be found from the Helmholtz potential given in
(11.151) above. In particular, the high temperature quantum result for the specific
heat for rotational motion is
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2 16 3
@ 0 } (11.152)

ChiohTiot = Ngkp |1+ — 4+ ——
highTrot dB[+45+945+

Again, in the limit of very large temperature, this approaches the classical result.

11.14 Homo-Nuclear Diatoms: Rotational Motion

At very high temperatures, the specific heat of homo- and hetero-nuclear diatoms
is the same, approaching as it does their classical value. (See (11.60).) At lower
temperatures, the use of quantum statistics results in important difference between
the two types of diatoms. When the two atoms in a diatom are identical, respectively
depending on whether they obey the Bose® or Fermi®! statistics, the total wave
function is symmetric or anti-symmetric with respect to their interchange. Equally
important is the symmetry characteristic of the rotational state, which is symmetric
or anti-symmetric depending on whether the quantum number £ is even or odd.*?
As for the nuclear wave-function, it consists of an appropriate linear combination
of the spin functions of the two nuclei. Given that the nuclear spin is S, there are
a total of (25 + 1)? different combinations, out of which (S + 1)(2S + 1) are
symmetric with respect to the nuclear interchange, and S(2S + 1) are antisymmetric.
For instance, in H, where the nuclei are Fermions with S = %, three® nuclear states
are symmetric and one’ state is antisymmetric. We can figuratively represent the

symmetric states as: (up x up), (down x down), \/ %(up x down 4 down X up)

and the antisymmetric state as \/ % (up x down — down x up). Note, both (up) and

(down) states are normalized.

‘When the two nuclei in a diatom are Fermions, or Bosons, the total wave function
is required to be antisymmetric, or symmetric, respectively. The total wave function,
of course, represents the product of the rotational and the nuclear states. According
to Dennison,* as noted by Pathria,* rather than working directly with the partition
function, the correct procedure is to use the appropriate fraction of the contribution
to the internal energy that arises from the antisymmetric and the symmetric states.
In other words, the Dennison suggestion is that one should proceed as follows:

30Boson spins are equal to 0, 1,2, .. ., etc.
3l Eermions have half-odd-integral spin, namely %, %, ..., etc.

32Note: in contrast, in hetero-nuclear diatoms, £ takes on both even and odd values — see,
e.g., (11.145).

BNote: 3 + D2 x 1 +1)=3.

34 Againnote: 12 x 3 4+ 1) = 1.

33Dennison, D. M., Proc. Roy. Soc. (London), A115, 483 (1927).
36Pathria, op. cit. page 167.
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Consider a single spin state. Then, by using (11.145), calculate [(E,-)
for both odd and even values of £. That is,

quantum rotation]

[(“l )quantum rOtdthH odd Z f(e)

{=135,..

[(“' )quantum rotatlon even Z f(ﬁ) (11.153)

£=0.24,..

Next, by using (11.129), calculate the corresponding value for the internal energy
for a single spin state,

dln (El) uantum rotation |,
[U(T)]odd=_< [ qa; - ]dd) ;
M
dln g, uantum rotation
[U(T)]even = ‘( = atﬂ - ]) ' e
M

Finally, multiply the above by the corresponding ratio of the odd and even spin states
so that while the total result for a diatom with Fermion-like atoms is antisymmetric,
for Boson-like atoms it is symmetric. This gives

S2S +1) (S +1)(2S + 1)

[U(T)]Fermi = (2S + 1)2 [U(T)]even (2S + 1)2 [U(T)]odd;
_S@S+1) (S +1D@2S + 1)
[U(T)]gose = st iR [U(T)]oaa + TSt [U(T)]even -

(11.155)

11.14.1 Very High Temperature

As is clear from (11.153), at very high temperature only the very large values

of £ contribute significantly to the partition functions [(E i) quantum mtation]o 4 and

[(Ei)quantum romﬁon]even. Therefore, either of these partition functions for a single
spin state approaches the limiting value equal to [% Yoco f (E)], which according

to (11.151),1is ~ (i) . Multiplying this result by the total number of spin states

yields the high temperature limiting value for the partition function.

The high temperature partition function — and therefore the internal energy —
is independent of the total number of spin states and the result for the internal
energy approaches the classical result — see (11.60) —namely, Urotation = Hrotation =
NykgT.
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11.14.2 Very Low Temperature

Because the exponential decreases rapidly in value, only the leading term is relevant
here. Indeed we can write:

[(Ei)quantum rolation]odd A 3exp (_2 Q)’

[(Ei)quantum rolation]even ~ 1. (1 1156)
Accordingly, only the odd term, namely

S+1H@2s+1D
[U(T)]permi ~ T as+E [U(T)]oga - (11.157)
contributes to the internal energy (and therefore the specific heat). For H, — which
is the Fermi case with S = % — the spin dependent factor, % is equal to %.
In any case, the specific heat at very low temperature decreases extremely rapidly,
i.e., exponentially, as it tends to zero when 7" — 0.

11.14.3 Intermediate Temperature

Here, the [U(T)]eyen and [U(T)],qq. that appear in (11.155), are best calculated
numerically. According to Pathria, the calculated result for the temperature deriva-
tive of [U(T)]gepmi» for S = %, agrees well with the experimental result for the
specific heat of diatomic Hydrogen.

11.15 Diatoms with Vibrational Motion

As mentioned earlier, vibrational states of diatoms — particularly those with small
masses — come into play at temperatures much higher than the rotational states.
The temperature range where vibrations begin contributing to the system thermo-
dynamics is of the order 10® K. And, it is estimated that the classical equipartition
predictions would begin holding only at temperatures of the order 10* K or higher.

The Hamiltonian that describes the vibrational motion of a single diatom — let us
say the i-th such diatom — has been given in (11.67). It is convenient to change the
earlier notation, namely

2
[H (vibration single diatom)] = (M) rg ZW—M
2(my + my) 2mimy

to the following:

1 2
vibration single 1atom)| — i| = tmw g, + —, .
[H (vibration single diatom)] — [#,] 5 2q;* 2’” (11.158)
m
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where we have set: r, — ¢;; p — p; and m’?i”nfz — m. Clearly this Hamiltonian

is identical to that for a classical one-dimensional Harmonic oscillator. So when we
are focusing exclusively on the thermodynamics of vibrational modes of diatoms, it
is convenient to refer to it as “The Thermodynamics of One-Dimensional Harmonic
Oscillators.”

For quantum mechanical use of the Hamiltonian, both ¢; and p; are to be treated
as operators — denoted as ¢; and p; — that obey the relationship: ¢; p; — p;g; = ih.
However, instead of ¢; and p;, the diagonal nature of the above Hamiltonian is best
utilized by working with the operator d; and its Hermitian conjugate d; *. That is:

N LN P p

di = 2h i lma) ’

A mo (DY,

ai = 2h (ql lma))’

. 1

H; = ho (&+& + E) . (11.159)

11.15.1 Quasi-Classical Quantum Statistical Treatment

Assume that the system can be described by a quasi-classical quantum picture
whereby individual Harmonic oscillators — that is, diatoms — are treated quantum
mechanically but the collection of N oscillators is not required to obey the quantum
many-body symmetry rules. The Schrodinger equation and the matrix elements of
the quantum Hamiltonian, H;, for the i-th Harmonic oscillator can be expressed in
very compact form. That is,

1
Hilv > = ho v+§ v >;
, 1
<Vv|H;|V >=ho|v+ 3 8y, (11.160)
where vand v’ are =0, 1,2,3,..., co. Equation (11.160), readily leads to

< vlexp(=pH,)[v >= eXp{—ﬁhw (v + %)} = exp%—)f (v + %)} :

where, for convenience, we have used the notation: y = fhw.
The quantum partition function for the i -th simple harmonic oscillator is

o0 o0 1
8, = < v|exp(—=BH;)|v >= exp|—y(v+ =
; lexp(—BH,)| ; p[ V( 2)}
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=ew(-3) > exp (o) = [—e"p D) }

1 —exp(—y)
= [Zsinh(%)]_l, where y = (Bhw). (11.161)

Because there is no inter-harmonic-oscillator potential, any given oscillator is
independent of the other (N — 1) oscillators. Further, because the total partition
function of a quasi-classical composite system is the product of the partition
functions of its components, the partition function of N quasi-classical quantum
simple harmonic oscillators is as follows:

EWN.T) =[] & = [2 sinh (%)]_N . (11.162)

Using (11.129) and (11.162) we get

F(N.T) = Nk T In[2sinh (£ )]

UN,T) =— (—8 {In Ea’(BN’ T)}) = NTha) coth (g) ;
NV
S(N.T) = U(N,T) ; F(N,T)

- (]Z_hT‘“) coth (%) — NkgIn [2 sinh (%)] . (11.163)

Because (N, T') does not involve V and P, therefore H(N,T) = U(N,T). As a
result

exp (y)

_ S 11.164
[exp () — 1] ( )

U
ar =CU=C =C=Nk 2
(aT)N,p,v g by

11.15.2 High Temperature

Let us refer to temperature 7' as being “high” when (%%) is of the order of,

or larger than, 2. At high temperatures, it is instructive to compare the quantum
results — see (11.163) and (11.164) — with classical ones — see (11.72)—(11.77) and
seta=b=0.

hw 1

As noted, the parameter y = (kB_T) is < 3 at such “high” temperature.

Therefore, we have
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Energy: Harmonic Oscillators
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Fig. 11.4 Energy of a quantum and a classical simple harmonic oscillator. The solid curve
represents the average energy of a quantum simple harmonic oscillator as a function of the

dimensionless variable y~! = (%) . The dashed curve represents the corresponding result
for a classical simple harmonic oscillator

Specific Heat of Harmonic Oscillators
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Fig. 11.5 Specific heat of a Quantum and a Classical Simple Harmonic Oscillator The solid curve

represents ( ¢ ) of a quantum simple harmonic oscillator as a function of the dimensionless

Nke
variable y~! = (%{%) . The dashed curve represents the corresponding result for a classical

simple harmonic oscillator. Remember C, = C, = C

)/2
U = Udassical [1 +—=—.. i| )

12
2
4
C = Cuagsical | 1 = = A I
lassical |: B + i|
5 (11
S = Sclassical"'NkBy ] - (11.165)
24
In Figs. 11.4-11.6, the energy, U, the specific heat, C = (?3_[7{),”,1} , and the entropy

S are plotted for both the classical and the quantum one-dimensional harmonic
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Entropy: Harmonic Oscillators
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Fig. 11.6 Entropy of a Quantum and a Classical Simple Harmonic Oscillator The solid curve
represents the entropy of a quantum simple harmonic oscillator as a function of the dimensionless

variable y~! = (%) . The entropy is given in units of kg. The dashed curve represents the
corresponding result for a classical simple harmonic oscillator

oscillators. With rise in temperature, all these quantities are seen to approach their
classical value. Indeed, as is evident from Figs. 11.3-11.5, by the time (%) has
risen to & 2, the quantum and classical statistics lead to essentially the same result.

11.15.3 Low Temperature

With the lowering of temperature, the specific heat decreases rapidly. In the limit
of very low temperature, when y has risen to ~ 10, meaning (?—5) has fallen to

~ 0.1, exp(—y) — indeed, even y? exp(—y) — is very small. Then we have

U= N(hz—w) [1+2exp(=y) +---]:

C = Nkgy>exp(=y) [1 + 2exp (—y) +---]:
S = Nkg (y + 1)exp (=y). (11.166)

These results — meaning results given by quasi-classical quantum statistic —

are qualitatively different from those predicted by classical statistics. Note, the

quantum, zero point energy — equal to (%’”) per oscillator — is clearly visible in

Fig. 11.4. As is demonstrated in Fig. 11.5, in the neighborhood of zero temperature,
both the (quasi-classical quantum statistical) value of the specific heat, as well as
its rate of change with temperature are vanishingly small. Another fact to note from
these figures is that not only does the difference between the classical and quantum
results become large as the temperature falls below (about) %, even the qualitative
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behavior of the classical results begins to be suspect — for instance, see the classical
result that the system entropy becomes negative as the temperature heads further

below ~ 0.4 (2—“) .
B

11.15.4 Langevin Paramagnet: Quasi-Classical Quantum
Statistical Picture

The quantum mechanical version of the classical Hamiltonian that was given in
(11.92) — for a Langevin paramagnetic salt in the presence of applied field B which
in the z-direction is B, — is the following:

N

H:ﬁ:% =Z<—§'ﬁi>=—gﬂBzN:(§‘ji)

i=1 i=1 i=1

N
—guBBy Y Jiz. (11.167)

i=1

The vector parameter, [i;, represents the magnetic moment of the i-th dipole.
Quantum mechanics stipulates that ji; be related to its quantized angular momentum
vector variable J;. That is,

fi = gupdii < vy >=v 8. (11.168)

Here, g is the Landé g-factor, and pup is the Bohr magneton. Note that a Bohr
magneton is the magnetic dipole moment of an electron. In CGS units it is equal
to

h
Up = (;—) = 9.27400915(23) x 10~2'Erg Oe ™!, (11.169)
mc

[3ee]

where “e” is charge of an electron, “m” is its rest mass and “c” is the speed of light
in vacuum.

The eigenvalues of J; ; are denoted as v such that v can take on — indeed, it may
take on only — the values:

v=J,J—-1,....,—J +1,—J. (11.170)
Clearly, the total number of allowed eigenvalues of J;. is equal to (2J + 1).

However, depending on the paramagnetic salt being studied, the value of J may
be integral or half-odd integral. That is,
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J =0,orl,or2,...,etc.

or

L. ., Ete. (11.171)

11.15.5 Partition Function and Helmholtz Potential

Much like the collection of quasi-classical quantum simple harmonic oscillators,
the Hamiltonian here is completely separable. Therefore, following the procedure
outlined in (11.126)—(11.163), we can write the relevant single-particle partition
function as follows:

+J
8, =Trlexp (—BH)] = Z <vlexp(—BH;) v >
v=—J

+J +J
= Y <vlexp(BBogus Ji)|[v>= ) exp(BB,gunv)

v=—J v=—J
- +J vy 1 . -
= V;Jexp (7) = exp (—x)[ + exp (7> +-e exp( 7)]
_ I—exp{7(2J + D}] [ sinh{x(1 + 5;)}
= exp(—x)[ —op(®) } = [ Sinh(2) } (11.172)

In the above and henceforth x = (%) . For convenience, the applied magnetic

field has been chosen to be along the z-axis and the z-component of B is B,. The
full partition function, E(N, T, B,), and the Helmholtz free energy are

"'(NTB)—ﬁ" _ sinh{x(1+#)} N.
BT S sinh (55) ’

i=1

F = —kBTln [E(N, T7 B())]

- L
= _NksTIn Smh{,x (+37)} | (11.173)
smh(%)
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11.15.6 Entropy

As noted in (11.129), the entropy can now be determined from the temperature
derivative of the Helmholtz free energy F' givenin (11.173).

IF sinh {x (1+ 55)}
S:_(a_T)NJ:NkBln[ sinh(ﬁ) :|

1 1 1 X
—xNkg % (1 T ﬁ) coth [x (1 T ﬁ)} - (E) coth (ﬁ)} (11.174)

For given N and J, the entropy S is a function only of x. But because x =

(%) , the relevant variable in x is the ratio (%) . Therefore, for constant S,
(%) is constant. That is,
B,
— | = constant. (11.175)
T

11.15.6.1 High Temperature

At high temperatures, that is when x < 1, the system entropy S approaches the
limit*” N kgIn(2J + 1),

S J+1
—— =InQRJ +1)— | —— | x*
Ny @/ +D (6] )x

(2J3 +4J243J +1

4 6

0 . 11.176
s ) HHoah. (1176
This result is in agreement with the Boltzmann prescription which gives the high
temperature limiting value as being equal to S = NkgIn(2) where Q is the
multiplicity per magnetic dipole equal to (2J + 1). Indeed, even when (%) is
%) — it is noticed — see
Fig. 11.7 — that NLkB has already approached a value close to its limiting values of
In(2J +1).

only as large as 5 — this means, when x is only as small as (

3In particular, when J = % the small x, high temperature expansion of the entropy yields
2 4

(Bt s=t =@ — 5 + 5 — 5 + 0(:%).
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Fig. 11.7 Entropy of a Quasi-Classical Quantum Langevin Paramagnet as a Function of % =

(B—];%) . The solid curve refers to J = %; the short-dashed curve relates to J = % and the

curve with sightly longer dashes is for J = 2. Notice that at high end of the temperature scale, the
curves are clearly heading toward their limiting value of In(2 J +1). The plots are in dimensionless
units

11.15.6.2 Low Temperature

As the temperature is lowered and x becomes > 1, the entropy begins to decrease
rapidly. Indeed, according to (11.174), the entropy reduces exponentially at low
temperatures. That is,

S = Nkg(2x + 1) exp(—2x) + O[x exp(—4x)]. (11.177)

Thus, the entropy is vanishingly small at zero temperature (where x — o0). Again
this fact is visible in Fig. 11.7.

11.15.7 The Internal Energy

Asnoted in (11.164), the internal energy U, is equal to the negative of the derivative
with respect to B of the logarithm of the partition function.

d(In E))
U =
( ap N.V.B,

— B, NgusJ [(1 n %) coth [(1 n %) x} . (%) coth (%)}

= B, NgugJ [B,(x)] = B,MgBy(x) = B,M, (11.178)
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where

M BogﬂBJ
Mg = N J; B = ; =—-]. 11.179
sat ghB 7(x) ( Msat) x ( ™ ) ( )

In (11.179), M is the — temperature and the magnetic field dependent — quasi-
classical quantum statistical average of the magnetic moment of the paramagnetic
salt. And My, is its saturation value. B;(x), which is often called The Brillouin
Function’® of Order J ’, is equal to the ratio of the two. Also note that the internal
energy U in terms of x — the latter being related to the ratio of two state variables

B, and T — represents an equation of state.

The ratio (%) is plotted in Fig.11.8 as a function of (B”ki—"f]) for four
135

different values of J: namely, J = 3515 and J — oo. Note that for specified
values of N and B,, the ratio (Min) is a function only of x: or more particularly, of

the ratio (%) . Therefore, for constant M we have

B
(—0) = constant. (11.180)
T )y

Magnetic Moment
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Fig. 11.8 The Ratio (%) is Plotted as a Function of (%) . Here M represents the quasi-

classical quantum statistical average of the system magnetic moment and Mg, its saturation

value. The temperature is 7 and the magnetic field is B,. The solid curve refers to J = %;

the thinnest, dashed curve is for J = %; the next lower curve refers to J = g; while the

lowest curve — with long dashes — represents the classical limit, i.e., / — oo. Notice that
B, BJ

the solid curve has nearly reached its maximum possible value of unity when (—“kiTL) ~ 3.

Fora J = % system, this means that the magnetic moment is close to reaching saturation
when kgT falls below (B,ug)/3 : or equivalently, when the ratio (%) rises above the value

3kp | _ 3x8.617343(15)x10~° —1 -1\ 1
(75) = 5.7883817555(79) <10 (eV.K /eV.T ) ~ 4.4662TK

38Brillouin, Léon Nicolas,(8/27/1889)—(10/4/1969).
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Fig. 11.9 Temperature dependence of the internal energy of the paramagnetic salt is plotted in
dimensionless units. The solid curve refers to J = %; the thinnest, dashed curve is for J = %;
the next higher curve refers to J = %; while the highest curve — with long dashes — represents the
classical limit, i.e., J — 00

An interesting consequence of (11.180) and (11.175) is that for given B, and 7, in
those reversible processes where the entropy, S, is constant, the magnetization, M,
is also constant.

In Fig. 11.9, the internal energy U — as described by (11.178) — is displayed

as a function of the temperature. When plotted as dimensionless variables, namely

u kgT =1 =3
(—N Bogii J) Versus ( Boginy ), the curves for J = 5 and J = 3 are well separated

from each other. In contrast, the separation between the curves for J = % and J = %
is much smaller. This fact plays a role in the relative spacing between the location

of the Schottky anomaly.

11.15.7.1 High Temperature

For high temperatures, where the energy spacing between different allowed energy
levels — i.e., the different eigenvalues of the Hamiltonian — is small compared with
kg T, all the levels are amply occupied. For such cases, the specific heat — as to
be shown in (11.186) — is inversely proportional to the square of the temperature.
Because of copious occupation of the energy levels, this result also holds for the
relevant classical system. Also, here § is small and x is < 1. Then

J+1
[B](x)]high[emp - ( 3] )x- (11181)

Therefore, according to (11.178) and (11.181), the internal energy and the magneti-
zation at high temperatures are
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- Uhighlemp = B()Mhighlemp = ByMy [BJ (x)]hightemp

J+1 203+ 477 437 + 1
:Bﬂm{(—i—)x—( R L s )ﬁ+0u%]

3J 90.J3
(Bogig)? 273 +4J2+37 + 1)\ , .
=NJ(J+1)—=2220 | — 10} .
VD=7 TV E VS A
(11.182)

11.15.8 Low Temperature

At low temperatures, where the energy spacing between different allowed energy
levels — i.e., the different eigenvalues of the Hamiltonian — is large compared with
kg T, the specific heat has a very different character. As noted in (11.187), the
specific heat decreases exponentially as the temperature is lowered toward zero —
see Fig. 11.10.

An interesting feature of the heat capacity in the paramagnetic salts (with applied
magnetic field) is the “bump” in the specific heat recorded in Fig. 11.9. This is
known as the Schottky anomaly.

The occurrence of a bump is anomalous because in solids the heat capacity
generally shows steady change with temperature. It usually increases, or stays
constant. Schottky anomaly signifies the presence of a limited number of energy

Specific Heat

(5o s

BogugJ

Fig. 11.10 Specific heat of paramagnetic salt at constant applied field, B,, is plotted as function
of the temperature. The Plot is in Dimensionless Units. The solid curve refers to J = %; the
short-dashed curve relates to J = %, while the curve with slightly longer dashes represents the
case J = % Notice that even though the difference in the J values is half as large, the separation

between the bumps for J and J = % is noticeably greater than the corresponding separation
between the bumps for J =

[STENINYI

andJ=%
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states — e.g., the system being treated here has (2J + 1) states — and because its
location shifts rapidly for small J values — see the graphical representation of the
change between J = % and J = % — and quite slowly for large J values, it can be
helpful in determining the relevant J value and therefore the number of available
energy levels.

At low temperatures f is large and, when the magnetic field B, is not too week,
x > 1 for all allowed values®® of J. And for large x the internal energy, U, and the

magnetization, M)owiemp, are as given below in (1 1.183).40

1 —X
- Ulowtemp = BoMlowtemp = By Mgy [1 - 7 exXp (7)i| . (11.183)

Under these conditions magnetic saturation begins to be reached: that is,
Migwtemp — M. And essentially all the magnetic dipoles in the paramagnet begin
to get aligned in the same direction. Here, the magnetic susceptibility for the
paramagnet is as given below.

IMowtem (g,LLB)z —X
[X]lowtemp quasi—classical — (#) =N exXp (—) . (11184)
T

9B, kg T J

11.15.9 Specific Heat

At general temperature the specific heat, i.e.,
Cp, 1 ou _(—B, oM
Nkg  \Nkg)\oT )y v \Nks)\OT )y
Cel() Lt
2J ) sinh(57)

2
2 Ay v
x {(1+2J)sinh[(l+#)x]§ ’ (11.185)

is plotted in Fig. 11.10.

At high-temperatures — that is for x < 1 — and constant applied field — that is
when B, is constant — the specific heat and the magnetic susceptibility are readily
found.

¥ Note: this means J is not allowed to be equal to zero.
40Exercise for the student: Show that for J = %, B, (x) = tanh(x).
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C _ 0 Uhi ghtemp - _B oM, hightemp
[ By ]highlemp quasi—classical oT — Do 9 T_
N.B, By ,N

Nk , 203 44724 3) + 1
:—BJ(J—i-l)( g“B) [1—( ral +)x2+0(x4)};

ke T 1072(J + 1)

[X] _ ( aAlhighlemp )
hightemp quasi—classical —
g pq 9 Bo T

=NJ(J +1)

(gup)? [1 B (2J3 +4J2+3J +1

2 4
3kgT 10J2(J + 1) )x + O(x )] (11.186)

Similarly, for week but constant applied field, the low-temperature — that is when
x > 1 — the specific heat for the paramagnet is:

0 Ulowlemp oM lowtemp
[CB”]IOWtemP quasi—classical — (T =-B, T
N.B, B,.N

B Bogus\’ _ [—x
— Nkg (kB—T) exp (7) (11.187)

o

Notice that at low temperatures the specific heat, and therefore also (8T ) BN

decrease with temperature at an extremely rapid rate.

11.15.9.1 Classical Limit

Recall that the dipole moment — expressed as (g g J) in the quantum version given
above where up denotes a Bohr magneton — is represented as p. in the classical
version of the Hamiltonian. Consequently, we can relate x that appears in the
quantum mechanical version — see its description immediately following (11.172)
above — to the « that was defined in (11.94) and used in the classical version. That is,

X o
gupd = ( ) = U = ( ) . (11.188)
:3 B 0/ quantum version ‘ IB B 0 / classical version

In fact, the quantum mechanical result that actually corresponds to (j.)? is not
(J g up)? :instead, it is J(J + 1)(g ug)?. This behavior results from the fact that
the eigenvalues of (J J ) are not (J?). Rather, they are J(J + 1). The classical limit
is achieved when( ) < 1.Then J(J +1) = J2(1+ 1)y~ J? and B, (x) ~ L().

By(x) ~ — (2{1) [(2J) +0 (J) } + coth(x) [1 +0 G)}
— coth(x) — (%) +0 G) =L(x)+0 G) . (11.189)
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That is,

[BJ (x)]quasi—classical quantum - [L (a)]classical . (1 L. 190)

Using the aforementioned procedure, the quasi-classical quantum results for the
specific heat and the magnetic susceptibility, that are given in (11.186), are exactly
transformed into the corresponding results for the classical Langevin paramagnet.
The latter were recorded in (11.98).

11.15.10 Production of Very Low Temperatures: Adiabatic
Demagnetization of Paramagnets

Long ago no satisfactory method existed for reducing the temperature much below
the freezing point of water. It was, of course, understood that if there were to be any
hope of liquefying gases (other than water vapor), temperature must be lowered a
great deal below zero degree centigrade.

The realization that the Joule—Kelvin process could lead to cooling, motivated
its use in liquefaction of gases. But to liquefy some of the rare gases, temperatures
of the order of a few degrees Kelvin would be needed. And such low temperatures
were well beyond the Joule—Kelvin reach.

In order to achieve really low temperatures, use must be made of isothermal
magnetization of paramagnetic salts followed by reversible adiabatic decrease of the
applied magnetic field.*! One such process is schematically displayed in Fig. 11.10
where the entropy of the salt is plotted against its temperature for two very different
strengths of the applied magnetic field.

The upper curve relates to the paramagnetic salt being under the influence of a
weak applied magnetic field. For the lower curve, in contrast, the applied magnetic
field is stronger than that for the upper curve. Notice that, as per (11.174), at any
finite, fixed temperature, the entropy decreases with increase in the applied field.
Accordingly, at constant temperature the derivative of the entropy with respect to

the applied field — that is, (BBTS) — is negative. ** (See also Fig. 11.12.)
(2 T

41 And indeed, for attaining even lower temperatures, reversible adiabatic demagnetization of nuclei
themselves is needed.

“2When, at any fixed finite temperature 7, the derivative of the entropy is expanded in powers of
the strength of the applied field B, we get

3 2
(B_S) Z(NglLBJ)[_(J+1)x+(2J + 47 .+3J+1)x3_0(x5)]’
aBo T T 3J 30]3

gusJ
kT

) B,. In particular, for J = % we have:

where x = (
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Before the experiment is begun, the temperature of the paramagnetic salt is
reduced to the lowest value achievable*’ and the salt is subjected to a weak applied
magnetic field. At this instant the entropy versus temperature graph of the salt is
represented by the upper curve in Fig. 11.10 and the salt is assumed to be positioned
at the point a.

Next, reversibly and isothermally,** the applied magnetic field B, is increased —
meaning the salt is magnetized. In accordance with the prediction that isothermal
reversible increase in the strength of the applied field must decrease the entropy of
the salt, an isothermal reversible increase in the applied field is shown in Fig. 11.10
as transferring the system from the upper curve to the lower one. In particular, if
the system starts at the point a then the given isothermal increase in the applied
field will drop the system down to the point b in the lower curve. This exchange
of locations — i.e., the process of isothermal magnetization — results in the system
having lower energy. Accordingly, during the travel from a to b, the system releases
positive amount of heat energy to the liquid helium reservoir.

The salt is now at position b. Its temperature still has its original value. It is
magnetized and has less energy. This is so because it is under the influence of a
larger magnetic field than was originally the case. Also, because of the increase in
the applied field, it has less disorder. Therefore, it has lower entropy.

At this juncture, contact with liquid helium reservoir is broken and the system is
thermally isolated.

Next, a reversible, adiabatic reduction of the applied field* to its original low
value is engineered. In order to be reversible, the reduction occurs very slowly. And
being adiabatic, no heat energy is transferred to, or out of, the system.

Because reversible adiabatic processes ensure constancy of the entropy, this part
of the travel is isentropic. It takes the system smoothly from point b on the lower
curve, to point ¢ on the upper curve. Additionally, any energy needed for the work
to be done by the system during its travel from b to ¢ necessarily comes out of its
own internal energy.

The final temperature — at the position ¢ — can be seen to be much lower than the
original temperature at points a and b.

In principle the above two-step process may be repeated and the system taken
from the position ¢, via a point d, to a position e, which would be at even lower
temperature than point c. In practice, however, this additional two-step process
requires the use of a new cold-temperature bath at temperature defined by the new

a_S _ NgMBJ _ 3_2 5 7
(330)T—(—T )[ X+ x 3x +0x")|.

“Typically, this would involve making contact with liquid helium.

4Meaning the system stays in contact with the liquid helium bath which is maintained at constant
temperature.

45This part of the process is often incorrectly called: “reversible, adiabatic demagnetization” of the
paramagnetic salt.
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starting point c¢. Clearly, therefore, to reach ever closer to absolute zero we would
need cold temperature reservoirs at ever lower temperatures.

11.16 Nernst’s Heat Theorem: Third Law

Results of experiments on heats of reaction in chemical processes conducted by
Pierre Eugene Marcellin Berthelot and H. Julius Thomsen, and W. H. Nernst’s
experiments with galvanic cells, indicated that with decreasing temperature, changes
in the Gibbs function become ever closer to the corresponding changes in the
enthalpy. Let us denote these changes as (AG) and (A H), respectively, and start
with the set of equations numbered (11.7). That is

G=F+PV;U=F+TS; H=U+PV. (11.191)

As usual, F, G, and H are the Helmholtz Potential, the Gibbs Potential, and
the Enthalpy. The first two relationships in (11.191) give G = U — TS + PV.
Combining that with the third relationship yields H = G + T S. And using the
identity given in (10.52) leads to the expression:

3G
H=G+TS=G—T(—) . (11.192)
T ),

Thus, in any experiment, changes in the Gibbs function can be related to the
enthalpy. Assuming the initial and the final values of the enthalpy and the Gibbs
potential are H;, G; and Hy, Gz, we can write (11.192) as follows:

(Hy — Hy) = (Gr—Gi)+T(St—Sj)

a(Gf—G,»))

= (Gf—G,')—T( T

or equivalently,

(AH) = (AG) +T(AS)
_ I(AG)
= (AG)—T( i )V. (11.193)

The results of the experiments mentioned above indicate that not only do (AH)
and (AG) become ever closer as the temperature is reduced even at relatively
high temperatures, but the rate at which their equality is achieved is faster than

the first power of the temperature. Equation (11.193), therefore, suggests that A S,

A(AG)
aT

(See Fig. 11.13, which is a schematic drawing of the experimental results.)

or equivalently the differential ( ) , is also decreasing as T heads toward zero.
14
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These observations led Nernst to postulate*® that in thermodynamic equilibrium
the change (A H) in the enthalpy and the corresponding change (AG) in the Gibbs
potential must achieve equality at absolute zero. Additionally, the upshot of the
equality:

lim [— (M) = AS} =0, (11.194)
T—0 oT P

in this limit is the Nernst’s Heat Theorem, which can be expressed as follows:

“As absolute zero is approached, all chemical and/or physical transformations in
thermodynamic systems — that are in internal equilibrium — occur with zero change
in entropy.”

Following the enunciation of the Nernst’s heat theorem, Max Planck hypothe-
sized that:

“The entropy of all thermodynamic systems in equilibrium is vanishing at
absolute zero.”

The above is often called the Max Planck hypothesis of a “Third Law of
Thermodynamics.” Unfortunately, while this hypothesis has physical validity much
of the time, unlike the Zeroth, the First, and the Second laws of thermodynamics, it
is not always true. In particular, for some non-crystalline, geometrically frustrated
systems, the entropy approaches a set of nonzero minima. *’ Therefore, a revamped
version of the hypothesis would be the following:

“The entropy of all perfectly crystalline thermodynamic systems in equilibrium
is vanishing at absolute zero.”

Thatis,as T — 0,

ST (11.195)

11.16.1 Third Law: Unattainability of Zero Temperature

What is always true is, that for finite sized thermodynamic systems, the entropy
is non-infinite. For such systems the entropy at temperature 7' can be expressed
as an integral involving the specific heat. Assume that the latter, say C,(7T), is
specific heat energy at temperature 7' at constant value of some thermodynamic
state variable y. Then the following must hold:

46This postulate is well supported by experiment: see for example, Nernst, Walter (1926). “The
New Heat Theorem.” Dover (1969); Denbigh, K. (1971). “The Principles of Chemical Equilibrium,
Cambridge University Press.

47 An interesting read on the subject is: Goldstein, M. and Inge, F.(1993). “The Refrigerator and
the Universe,” Harvard University Press, Cambridge, MA.



11.16 Nernst’s Heat Theorem: Third Law 487
T T
dQ dTr
sn= [ F=[ amF
o o
# 00

An important implication — see below — of the Planck hypothesis is that absolute
zero cannot be reached with finite number of (any type of temperature lowering)
operations. In other words, reaching absolute zero temperature will require infinite
amount of effort.

The most efficient procedure for cooling a system is to thermally isolate it at
the lowest temperature available and adiabatically conduct the system through a
process where it does positive work. As demanded by the first law and because the
process proceeds adiabatically, such work will necessarily have to be done at the
expense of the system’s own internal energy. And reduction in the internal energy
will lower its temperature.

In a “gedanken” experiment, the given system is reversibly taken along two dif-
ferent paths. One which stretches from absolute zero to some point i at temperature
T; K; and the other, starting at absolute zero but stretching to a different point j at
some other temperature 7;. These two travels occur while certain thermodynamic
properties remain at their fixed values. Let these properties be y; and y; for the two
paths. Then according to the first-second law, we may calculate the entropy at the
two end points as follows:

(11.196)

I c,,
(1)
T

Si(Ti, yi) =/ T,

o

TGy, (T)
Sj(Tj.yp) = | —5—dT. (11.197)

o

Let us assume that during this gedanken experiment, through superhuman effort
totally committed to attaining absolute zero, the temperature 7; that we have reached
is finite but is very, very close to absolute zero. Then, hopefully an appropriate
reversible adiabatic process would be available which will help us travel from point
i to point j — the latter being at temperature 7; exactly equal to absolute zero.
Clearly, this will be the last leg of a very, very long journey!

Because the travel from 7 to the end point j — the latter being exactly at absolute
zero — is reversible and adiabatic, the entropy is the same at points i and j.*® This
means, S;(7;, y;) would be equal to S;(7; =0, y;). That s,

¢, (T T C, (T
/ L)dT=T~=0/]L)dT
T = J T

o

0C, (T
=/ #dT =0. (11.198)

“8For instance, compare j with point e and i with point d in Fig. 11.11.
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Magnetization and Demagnetization

a
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Fig. 11.11 Shown above are instances of a paramagnetic crystal under isothermal increase in the
applied field followed by reversible adiabatic decrease of the same. This is a schematic plot and
arbitrary scale is used for both the entropy S and the temperature 7. While the upper curve refers
to the system being under a week applied field, the magnetic field for the lower curve is relatively
strong. The journey from point a to b represents isothermal magnetization of the paramagnetic
salt. Here heat energy is released by the salt to the helium reservoir. During the final part of the
journey, which takes the system from b to ¢, the magnetic field is reduced back to its original
strength. This travel occurs reversibly and adiabatically. Hence it is isentropic. A consequence
of (11.180) and (11.175) is that in any of the given processes, when the entropy, S, is constant,
the magnetization, M, is also constant. Therefore, during the travel from b to ¢, the system
magnetization also remains constant. Accordingly, in addition to being isentropic, this process
is also “isomagnetic.”” Clearly, calling it “adiabatic demagnetization” is a misnomer ! More
importantly, the process from b to ¢ lowers the system temperature from that of the liquid helium
reservoir’” to that of point ¢. If another reservoir at the lower temperature represented by the point
¢ were also available, then a similar two-step process could be repeated. In this fashion, the system
would move from ¢ to a point shown as d and then onto a point e at an even lower temperature

Fig. 11.12° As per (11.174), Field Derivative of Entropy
at some arbitrary, finite 0
temperature 7 that is held B~
constant, the derivative Qg’ ’
35S . o —0.2
r ). 1s plotted as a <
T y L -0.3
function of (g-}gB—T) B,. Here, Y 0.4
r= L
NgugJ 0 1 2 3 4 5
( gug J )B
kgT 770

Therefore, according to the above equation — namely (11.198) — the following must
be true:

T C, (T
/ MdT:O. (11.199)
) T

And this happens while the temperature 7;, albeit very, very low, is still finite and
non-zero.
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Fig. 11.13 Schematic -
: imi AH
drawing — drawn similar to =
that given in Sears and £
Salinger, op. cit., Fig. 7-5, g
copied with permission, =
page 197 —of (AH) and I
(AG) versus (very low) g
Temperature S AG
2]
Q
=
(O]
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Recall that according to Max Planck at this very low temperature the specific
heat Cy, (T') depends on temperature as < 7% where « > 0 —see (11.195). In other
words, we must have

T; T
/ T¢74T =+~ =0, (11.200)
0 07

with a > 0. But this cannot be unless 7; itself is equal to zero!

Thus, we are informed by the Max Planck hypothesis of a possible Third Law:
That is,

“Never-Never Land, Zero Temperature Can Easily Be Reached — But Only After
It Has Already Been Reached!”

11.17 Negative Temperatures

Negative temperatures were cursorily referred to in an earlier chapter titled “Internal
Energy and Enthalpy.”>! In this regard, it is helpful to remind ourselves of some
features of the experiment that first led to the idea of negative temperature.

A quantum spin-a-half particle, in the presence of applied magnetic field, can
present itself in two possible modes: either it is aligned in parallel, or it is anti-
parallel, to the field. Let the two modes differ in energy by an amount +hAw.
According to the BMG prescription,® in a thermodynamically large system, the
ratio of the number, Npigpn, of the high-energy modes and, Njoy, of the low-energy
modes that occur is as follows: % = exp(—p hw). Thus a majority of spins are at
the lower energy level (and are oriented parallel to the field).

Purcell and Pound>® were able — through experimental trickery — to reverse the
relative orientation of the applied field and the spins. This is equivalent to arranging

a majority of spins, in a thermodynamically large system, to be at the higher energy

S1See the last section in Chap. 4. Also, see the discussion associated with (11.201)—(11.204).
52See (2.13) and (11.80)—(11.82).
S3E.M. Purcell and R.V. Pound, Phys Rev. 81,279 (1951).
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level — an occurrence that the BMG prescription would ascribe to a state of negative
temperature!

Regarding the negative temperature, following ter Haar, it was mentioned in
Chap. 7 that

Firstly: We must consider the increasing order of the temperature — in integer
degrees Kelvin — to be the following:

+0, +1,+2,...,+00,—00,...,—2,—1,—0.

Therefore, an object at any negative temperature — even as low as —oco — must be
treated as being warmer than one at any positive temperature — including +oo!

Secondly: Following Ramsey’s suggestion, the temperature 7' should be treated
as though it is specified by the thermodynamic identity given in (7.101). That is

(a—U) =T (11.201)
s ),y

Thirdly: “For a system to be capable of having negative temperature, it is
necessary for its energy to possess an upper bound.” The system treated by Purcell
and Pound had precisely this characteristic.

In order to simplify both the notation and the algebra, while still preserving the
essentials of the physics, let us proceed as follows:

In complete accord with the J = 1/2 magnetic spin case studied earlier, and the
N, spin-% nuclear spins in a magnetized crystal referred to above, we assume these
spins to be non-interacting. Further, for notational simplicity, we assume that when
a spin is aligned parallel with the applied field it has energy equal to zero. And we
again assume that when the spin is anti-parallel to the field its energy is (% @). Thus,
there are only two states.

Accordingly, the relevant partition function for a single pair of spins is:

E(1,T) = Trlexp(—BH)]
- [ ()
where
hw
o = (E) (11.202)

And for N pairs we have:
B(N.T) = {Tr[exp (=R}

— {1 +exp (?)}N (11.203)
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As described in (11.129), the partition function is related to various thermodynamic
potentials.

F= —NkBTln[l +exp (?)]
s 1 [OF
- NkB (ﬁ)N,s

- (%) exp (=7
In |1+ exp (7)] + [HTE((‘W;]

=
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I
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U=Fi+Ts=_Nk@
1+ exp (%)
U ™ \2 exp (%)
c= () =Nk (Z) | 2240 (11204
(aT)N ? (T) |:{l+exp(%)}2i| ( )

For such a two state nuclear paramagnet, in Fig. 11.14 we have plotted (ﬁ)

Versus (%) . At T = (40) the energy U is seen to be equal to zero — which is its
minimum value. The energy rises with the increase in temperature and levels off
at + ( NkTBw) , a value that is attained at T — (400). As the temperature moves
infinitesimally “upwards” beyond 7" = (4+00) to T = (—00), the energy remains
constant at (N—kfﬂ) . However, during the final leg of the travel, as the temperature
increases from (—oo) to its “highest” value (—0), the energy slowly rises beyond

+ (—N szw) to its maximum value of +(Nkpw).

As a function of the temperature, (%) the entropy, (NikB) is plotted in

Fig. 11.15. In contrast with the behavior of the energy, the entropy, however, is
symmetric with respect to the temperature: that is, S(+7) = S(=T). It is equal
to zero — which is its minimum — at 7 = (40) : it rises with the increase in
temperature and, as the temperature heads to T — (+00), it seems to level off at its
maximum value of Nkg In{2(3) + 1} = Nkg In{2}.

Beyond T = +oco — see the left half of the figure — as the temperature rises
toward> T = (—0), the entropy begins returning to its erstwhile minimum value of
zero.

34Note, all negative temperatures are supposed to be higher than +(00).



492 11 Statistical Thermodynamics: Third Law

Energy versus Temperature
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Fig. 11.14 Energy U, in units of N kg, as a function of temperature 7, in units of =, for a two
state nuclear paramagnet. Notice that the energy is equal to zero — which is its minimum value — at

T = (+0). It rises with the increase in temperature and levels off at (N—k‘Z&) as the temperature

heads upward in the direction of T — (400). Just beyond T = (4+00) is T = (—00). (Note,
in theory, all negative temperatures are higher than +o00. )From here, as the temperature moves

“upwards” toward T = (—0), the energy slowly rises above (N—klzﬂ) and reaches its maximum
value of (N kgw) at the end of its journey at T = (—0)

Entropy versus Temperature
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Fig. 11.15 Entropy S, in units of N kg, as a function of the temperature 7', in units of @, for a two
state nuclear paramagnet. Notice that the entropy is equal to zero — which is its minimum here — at
T = +0. It rises with the increase in temperature and, as the temperature heads to 7 — (+00),
it seems to level off at its maximum value of Nkg ln{2(%) + 1} = NkgIn{2}. Also notice that
the entropy is symmetric with respect to the temperature: that is, S(4+7) = S(—T)

The entropy (as in the expression ) (NikB) is plotted in Fig. 11.16 as a function of

a -S5—
the energy (in the form) (ﬁ) . Note that its derivative ((N+)
Nig @

) is equal to
NV

(%) — and its positivity from the point U = 0 to (m) = 0.5 indicates positive
values for the temperature while its negativity in the range (m) =05—>1

indicates negative values for the temperature.
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Entropy versus Energy
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Fig. 11.16 Entropy S, in units of N kg, as a function of the Energy U, in units of N kg @, for a two
state nuclear paramagnet. The shown value of the entropy is equal to zero at both the minimum
value of the energy — i.e., at U = 0 — and the maximum value — i.e., at U = Nkg w. The
entropy rises with the increase in temperature and seems to level off at its maximum value of
Nkg In{2( %) + 1} = Nkg In{2}. Recall that S(T') is symmetric with respect to the temperature:
that is, S(+7) = S(=T). At the position marked by a small empty space in the otherwise
continuous looking curve, the derivative (g—f,)v v changes its value from (40) to (—0), which
indicates that at this point the temperature instantly changes from (4-00) to (—o0). Note that

U T

i v
the derivative (9 (( My ))) is equal to (E) — and its positivity from the position U = 0 to
NV

Nkp @
(ﬁ) = 0.5 indicates positive values of the temperature while its negativity in the range
( Nkzw) = 0.5 — 1 indicates negative values for the temperature. From left to write the

temperature increases according to (77 = 0 — 400, —00 — —0)

Reader’s attention is recommended to the point marked by a small empty spacing
3s

in the continuous curve. Here, the derivative (W) VN alters its course from a positive
value to a negative one. Indeed, immediately to the left of this point, the derivative
is equal to (40) and it is equal to (—0) immediately to its right. The inverse of
this derivative is of course the temperature, which therefore instantly changes from
(400) to (—o0). The reason for this behavior is that while the energy continues
increasing, at this point the entropy starts to decrease. Beyond this point to the right,
the temperature continues to ‘increase’ until it reaches (—0). And at this “highest”

temperature, the entropy is vanishing but the energy is at its maximum value of

(vit7) = 1

The specific heat is plotted in Fig. 11.17. At T = (+0) the specific heat, as also
noted in Fig. 11.10, is equal to zero — which is its minimum value. It rises rapidly
with the increase in temperature and, as expected, undergoes a Schottky anomaly
before trailing off toward its minimum value of zero as the temperature heads toward
(400). Its behavior, however, is symmetrical with respect to the interchange of
temperature: thatis C(+7) = C(-T).
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Specific Heat versus Temperature
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Fig. 11.17 The specific heat of the two-state nuclear paramagnet. At T = (+0) the specific heat,
as also shown in Fig. 11.10, is equal to zero — which is its minimum value. It rises — first slowly and
then rapidly — with the increase in temperature and, as expected, undergoes a Schottky anomaly
before trailing off toward its minimum value of zero as the temperature heads toward (4-00). Note
that C(T') is symmetric with respect to the interchange of temperature: thatis C(4+7) = C(—=T)

11.18 Grand Canonical Ensemble

11.18.1 Classical Systems

The Canonical partition function for a thermodynamic system that obeys classical
statistics and is at temperature 7, has volume V, and a fixed number, N, of particles
was described in (11.1). Its relationship to the various thermodynamic potentials
was recorded in (11.7).

By freely exchanging the heat energy back and forth, the system temperature
could be maintained at a constant value equal to that of the outside reservoir. The
result, however, was that the system energy was not conserved. Indeed it is the
rules of thermodynamics that actually established the observed, average value of
the system energy.

The thermodynamic systems being treated were assumed to be “closed” in that
they consisted of fixed numbers of particles. In practice, however, this assumption is
not well founded. With the particle numbers in trillion-trillions, there is no practical
way of ensuring that they do not leak back and forth. And, of course, there is no
possible way of measuring their exact number.

Therefore, an appropriate thermodynamic format is one where the system is in
contact with an outside, heat energy and particle, reservoir: a reservoir with which
it can freely exchange both particles and the heat energy. The result is that both the
temperature — which is conjugate to the energy — and the chemical potential — which
is conjugate to the particle number — are conserved. As a result of firm contact
between the system and the reservoir, the values of temperature and the chemical
potential are the same in both systems.
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Yet, even though the particle number is not conserved, its statistical average
must be consistent with the measured value of its thermodynamic average N . Thus
appropriate changes in the formulation of the Canonical ensemble are needed.

Accordingly, our basic task in the construction of grand Canonical ensemble is
to ensure that in addition to it obeying the usual requirements of thermodynamics —
which are assured by it having the Boltzmann—-Maxwell-Gibbs(BMG) form — its
temperature and the chemical potential must be equal to that of the reservoir with
which it is in “energy and number contact.” In addition, the statical average of the
particle number must be equal to its measured value N .

A convenient procedure to achieve these objectives is to introduce a Lagrange
multiplier, say w, and use Calculus. This is done as follows:

1. Replace the Hamiltonian, H,, by its Lagrange version Hy,. That is
Hin = Hy — pun. (11.205)
This changes Tr [exp (—8H,)] to Tr[exp (—BHr,)] - Then we can write:

Trlexp (—BHL)] = Z"Trlexp(—BHa)],
where

z = exp(Bup. (11.206)

(Note: Here n stands for the number of moles.)
The grand Canonical partition function, to be denoted as W(z, V, T'), can now be
defined.

W(. V.T) =Y Trlexp (—pHra)]. (11.207)

n=0

Note that the logarithm of the grand Canonical partition function is often needed.
We shall call it the ‘grand potential’ and denote it as Q(z, V, T, etc.).

Q@ V.T) =In[¥( V.T)] =In Y Trlexp{—B(H, — un)}]

n=0

=1In) 2" Trlexp{—pHa}]. (11.208)

n=0

We are required to choose the Lagrange multiplier 1 to be equal to the chemical
potential such that the calculated value of the total number of moles, < 7 >, is
equal to their measured average, 71.
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The BMG relationship that determines < 71 > and < Hyp,, > is the following:

A
N
V
Il
Nl

|:Z:O=o 7 -n - Trexp (—BHn)] ]
W(z, V,T)

(8Q(Z, v, T))
= z| —————=
32 V.T

_ kBT(aQ(z,V,T)) ;
I V.T

Ui, V,T) = <Huy>=<{H,—pnn}>

_ (aQ(z, V. T))
3,3 zV

_ , (002, V. T)
— kgT (—aT )WV. (11.209)

In addition to (11.209), there is a fundamental relationship that is also needed
for successful use of the grand Canonical partition function. According to Pathria,
this relationship “represents the essential link between the thermodynamics of the
given system and the grand Canonical ensemble.” Much as was done before, this
relationship is recorded below without proof.>

VP, V,T)

wT = 0@ V.T). (11.210)

11.18.1.1 Use of Grand Canonical Partition Function

Because the grand Canonical partition function appears to require’® knowledge
of the Canonical partition function, Tr [exp (—f7H)], it is redundant for studying
systems where the particle number is fully conserved. Quite obviously, therefore,
one would rather use just the Canonical partition function there. Still it may
be helpful for a beginner to see how the grand Canonical partition function
Weassical (2, V, T') actually works. To this end, for convenience, we treat only a very
simple system: namely, the monatomic perfect gas — see (11.8).

The partition function, worked outin (11.13) for the perfect gas, can be written as

3N
2

H 1 (VY (2mn 1 vV

55The relevant proof is available in R. K. Pathria, “Statistical Mechanics,” Pergamon Press, (1980),
Oxford, U.K.

6See (11.207).
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(If we were working with only with the Canonical partition function we would not
need any further analysis.)

Reminiscent of the de Broglie length in quantum mechanics, A in (11.211) above
is the quantum statistical, temperature dependent unit of length, i.e.,

1
2aemkpT \ ™ 2
A= (T) . (11.212)

The grand Canonical partition function is the following:
0, n
IV 7V
W, V,T) = ZO o (F) = exp (F) . (11.213)
n=

According to (11.210)

PV zV
A V.T)=InV(EV.T) = ~— 11.214
o7 = Q@ VD) =hn¥EV.T) (p), ( )

which gives

_ ZkBT

P="0 (11.215)

Additionally, following (11.209) and (11.214), we have

4
N=kBT(3Q(z,V,T)) =kBT<a(M))
oy v.T VT

_ YN (2R _ Vg2
_kBT(l3)(aM )V’T—kBT(A3),BZ— A3' (11216)

By combining (11.215) and (11.216), we can find the equation of state for the ideal
gas. That is,

2P
Z - kBT ’
XN
Z - V b
therefore
PV =  NkgT. (11.217)

The Gibbs and Helmholtz potentials are also readily found,
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G=Nu=%m@=ﬁhﬂﬂmﬁ)
= —NkgT1 "\ rmisT
-7 | (75) comiar

F=G-PV

—N@Tm{ﬁégme@T)}—N@T (11.218)

To arrive at (11.218) we first used (11.206) to connect p to In(z); then, according
to (11.217), P was replaced by (NkgT)/ V and finally the logarithm was inverted.
Notice that (11.218) exactly reproduce the corresponding results that were
derived earlier (see (11.14), (11.16), and (11.17)).
The internal energy U is evaluated next. According to (11.209), (11.213)

and (11.214) we have
V.1 o [(3(5)
(T = kBT ZV aT
zV oV

2V
(T) (11.219)

As derived in (11.217), )TI; = N. Therefore, the above leads to the well known
result

<Hp > =kBT2

NIUJ

3 _
U= ENkBT. (11.220)

The entropy, S, is now easily found. And the result is identical with that found
earlier — see (11.16).

U-F V 3 2emkpgT 5

hZ

11.18.1.2 Remark

While for systems with conserved numbers of particles both the Canonical and
the grand Canonical partition functions give the same result, the former is clearly
much more convenient to use. Therefore, in practice, the latter — i.e., the grand
Canonical partition function — is used for systems where particle exchanges are a
normal occurrence, as e.g. is the case in chemical processes.

The need for employing grand Canonical procedures is even more acute in
quantum statistical systems. Except for relatively trivial cases, the number of
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elementary excitations in these systems is not conserved. Rather, it is determined
by the thermodynamic state of the system.

11.19 Statistics of Quantum States

While a formulation based on grand Canonical statistical mechanics of indistin-
guishable, non-interacting, quantum particles is best deferred to an appendix — see
(J.1)—(J.9) —itis convenient to present here a less demanding, alternate formulation.
We consider, rather than the particles themselves, only their possible single-particle
energy states.

Consider one such state with momentum p, energy &,, and eigenvalue { for
the spin operator S. When singly occupied, we shall assume its contribution to the

Hamiltonian to be just its kinetic energy, ¢, equal to % (Note: we are assuming no
spin dependence of the energy levels.) On the other hand, if the occupation number
of this state were n,, its contribution to the Hamiltonian would be H,,, = n, ¢,.
However, with a view to ensuring that the actual particle number of the given
state is equal to its statistical average, we need — as explained in (11.205) — to
work with, rather than H, ,, the Lagrange multiplier version of the Hamiltonian:
namely Hy,, = H,, — n, (. Therefore, in analogy with the BMG prescription,’’
an appropriate choice for the grand probability distribution factor, f(n,), and the
partition function, E b—10)> for this state is the following:

exp[—B (Hin,)] __exp [=B (Hu, — pny)]

flny) = —- = .
S(ep—1) S(ep—p)
_ &xp [—Bnp (ep — 11)]
& (Ep_#) ,
where
ey = Y _exp[—Bn, (g — )] (11.222)
p

Reminder: The extent of the summation over 1, is yet to be decided —see (11.223)
below — and the Lagrange multiplier Lagrange Multiplier must be so chosen that
the statistical average of the relevant particle number is equal to its observed (i.e.,
thermal) average.

STVersions of the BMG prescription have been used in this chapter — see (11.80)—(11.82) and
(11.126)—(11.128) — as well as in an earlier chapter in equation numbered (2.13).
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11.20 Non-Interacting Fermi-Dirac System

11.20.1 Partition Function for a Single State

Electrons have spin § = % As such, a system of electrons is described by wave
functions which are anti-symmetric with regard to the interchange of any given
pair of particles. The system, therefore, is required — by the dictates of quantum
mechanics — to obey the Pauli principle. Accordingly, at any given time, no more
than one electron may be in any one quantum state. In other words, for the spin
vector component equal to, say, +% and time 7, a given state with kinetic energy ¢,
has only two options. It is either empty at that moment — meaning it is un-occupied
andn,(¢) = 0—orithas only one electronin it, i.e., n,(t) = 1. Of course, the same
requirement applies to the state with energy ¢, when it has spin vector component
equal to —%.

Therefore, according to the definition given in (11.222), the partition function
for this state — either with spin-up or with spin-down — is:

np=1
Be,—w) = Z exp [_:3 np(ep— M)]
np=0
=1+exp[-B (¢p — )]
=1+zexp(—Be,). (11.223)

where z = exp(Bu).

11.20.2 Partition Function: for Fermi—Dirac System

Because partition functions for different parts of a system are multiplicative, in
order to calculate the Fermi—Dirac partition function, Vy_p(z, V, T'), for the whole
system, we need to multiply &,—,) over all the possible single-particle states.
(Remember that if our particles have spin S, there would be a total of (25 + 1) spin
vector components. And because the system Hamiltonian does not depend on S,
each of these components would contribute overall the same amount to the partition
function. Also, remember that different contributions affect the partition function
multiplicatively.)
Thus, for spin S particles, we would have:

V(@ V. T) = [][Ee-w] T
V4

= [T[1 +zexp(-Be,)] . (11.224)
P
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It is convenient to introduce a spin-degeneracy factor, Ar_p = (25 + 1), and also
record the grand potential [Q(z, V., T')] _, which we recall is equal to the logarithm
of the F-D partition function.

[Q@ V. D)lp—p = Wrp( V.T)

=App Y In[l+zexp(—Be,)]. (11225
p

For electrons, S = % Therefore, the spin-degeneracy factor Ap_p = 2 (%) +1=2.
The grand potential [Q(z, V, T)] r_p will be put to important use in analyses to
be presented later.

11.21 Non-Interacting Bose-Einstein System

11.21.1 Partition Function for a Single State

Here, all choices are allowed for possible occupancy of any given single-particle
state. We describe this by saying that the state with energy ¢, is occupied n , number
of times where, unlike for the /' — D partition function, n,, can range between zero
and oo. Therefore, the partition function for this state is

np=00
Eep—p) = Z exp{Bn, (—&p + 1)}
I’Lp=
I’LI,=OO I’LI,=OO
= > [zexp(-Bep)]" = D [, (11.226)
np=0 np,=0
where
z=-exp(Bp), and, o =zexp(—f¢,). (11.227)

11.21.2 For Perfect B-E System The Chemical Potential
is Always Negative

Both B and ¢, are necessarily non-negative. Therefore

1 >exp (—,B sp) > 0. (11.228)
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The limits unity, or zero, are reached when the temperature is very high, i.e., is
infinity, or is exceedingly low, i.e., is zero. Also, of course, the same effect can be
brought about by ¢, being either zero, or infinity.

The infinite series — see (11.226) — representing the partition function is
divergent®® if |a| > 1. Again, this contrasts with a perfect-gas of spin § = %,
F-D quantum particles, because there — see (11.223) — the corresponding partition
function consisted of only two finite terms: therefore, the series there was absolutely
convergent.

Consequently, in order for the partition function, for any given single state of a
non-interacting B—E gas to remain finite, the magnitude of @ must be less than unity.
In other words, the following inequality must hold:

lo| = [z exp(—Bep)| < 1. (11.229)

Given the two inequalities (11.228) and (11.229), the following inequality also must
hold:

2| < 1. (11.230)

We are reminded, however, that 7 is equal to exp(Bu), and 8 can range between 0
and oo. Clearly, therefore, the molar chemical potentia i — which is an important
thermodynamic function — cannot take on any positive value. That is:

0>pu>—oo0. (11.231)

In other words, for a perfect B-E gas, the chemical potential is always negative
or at best it approaches zero. This contrasts with the perfect F-D gas where the
chemical potential can have either sign.

11.21.3 Partition Function: for Bose-Einstein System

Because — as stated above — partition functions for different parts of a system
are multiplicative, in order to calculate the Bose—FEinstein partition function,
Wg_g(z, V,T), for the whole system, we need to multiply E(Sp_#) over all the
possible single-particle states. That is

\IIB—E(Z’ V? T) = l—[ [E(Sp_#)]
p

=[][1—zexp(-Bey)] - (11.232)
P

38This is obviously the case if @ > 1. But even if the same series has alternating signs and o < —1,
the series is divergent. See, for example, Boas, M.L., John Wiley (1966).
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We introduce a spin-degeneracy factor, Ag_g = 1, and as before also define the
grand potential [Q(z, V, T)]z_p that is equal to the logarithm of the B-E partition
function given above.

[Q(Zs Vv T)]B—E = AB—E In ‘I’B—E(Zv Vs T)
= Ap_g Zln [1—zexp (—,3810)]_l

p

=-Ap Y In[l—zexp(—Be,)].  (11.233)
p

While traditionally the spin degeneracy weight factor for the Bose—Einstein system
is equal to unity, the case of Bosons with spin degeneracy factor >1 is now of at
least formal interest in connection with ultracold Bose gases such as® Rbgy. It s,
therefore, helpful for future work to have it included as A p_g. The grand potential
[Q(z,V,T)]_k , like the one for the F — D system, will be used in analyses to be
presented later.

11.21.4 Fermi-Dirac and Bose-Einstein Systems

Following a suggestion by Pathria, we can combine (11.225) and (11.233) and thus
describe in a single equation both the quantum non-interacting Bose—Einstein and
the Fermi—Dirac systems. Also, and while we do not necessarily need it, such
description simultaneously contains the corresponding representation for a non-
interacting classical gas.

Let us write (11.225) and (11.233) as follows:

A
0@ V.T) = ;Zln[l +azexp(—Be,)].

p

where
a = +1, for F — D system
= —1, for B — E system
— 0, for classical system,
and
A = (28 + 1), for F — D system
= 1, otherwise. (11.234)

(Note for electrons, S = %.)

9See, for example: Cornell, Eric; Wieman, Karl; Ketterle, Wolfgang — Nobel Lectures (2001).
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11.21.5 Pressure, Internal Energy, and Chemical Potential

Having determined the grand potential Q(z, V, T') for the perfect ¥ — D and B — E
gases — see (11.234) — we can use (11.209) to calculate their internal energy,
U(z,V,T). Also, we can find the necessary relationship that the chemical potential
w has to obey so that the statistical average of the number operator N is equal to its
actual value N. Finally, we can use (11.210) to calculate the pressure, P(z, V, T).

To this end we replace, in (11.234), the energy ¢, by (%) = (g’;) which is
the free particle translational energy for momentum p, and replace the sum, ) »
by an integral over the relevant volume V' and the momentum p: that is, Y ) =
2 [dX [dp...where [dX =V and [dp... = [(47pP)dp...

As noted before, an important requirement of the grand Canonical ensemble

is the following relationship between the grand potential Q(z, V, T') and the ratio
VEEVD) Thatis,5
ke T

V P V,T)

A
Wl 0(z, V,T):;szln[l—i-azexp(—ﬁep)]

A(VY [ B P’ 2
=—\|—= In(1+azexp| ——=— || 4npdp. (11.235)
a \ h)J, 2m

Also, we have

vev.n = - (2E1D)
.V

ap

A -1 _—1 -1

S e (Bey) + 1]
p

0o 2 !
(G () s

- (8Q(Z, v, T))
=\ —
3Z V.T

_Z ~Lexp ﬂsp)+l] b= ZNP

P
A(VY [® B> B
= (F)/ |:a_lz_lexp (%) + 1] dmpidp.  (11.237)

0As in (11.235)~(11.237), we shall use the notation: Y_,[0(p)] = (45) [, [O(p)] 47 p*dp.

and

=
|




11.22  Perfect F-D System 505

In (11.236) and (11.237), the quantity N, stands for the mean occupation number
of the state with energy ¢,/. That is,

1 (00(@,V,T)
Ny = _B ( agp’ )vT

= % [a™'z exp (Bep) + 1] (11.238)

It is convenient to integrate (11.235) by parts. We get

VPEV.T) (V4m){ ln|:1+a o (_/3_192)]}""
kT \aid )| 3 P\ ),
VARBAY [ -
+( 3’17;53 )/0 p4 [z_l exp ('Bp )—i—a} dp

_ V47l'ﬂA o© 4 _q ,BPZ —1
_0+( 3mh3 )/0 P[ eXP(Z +a| dp.(11.239)

11.21.5.1 Remark
Whether they be quantum or classical, the above four equations — namely, (11.236)—

(11.239) — along with the prescription given in (11.234), can be used to study
perfect gases.

11.22 Perfect F-D System

For a perfect Fermi—Dirac system, with spin S = %, (11.236)—(11.239) are to be
used with A =2 anda = +1.
: : . _ B 2 _ mdx
Let us introduce a variable: (x) = (ﬁ) Then, (pdp) = ( ) And

according to (11.237) we have

N = (Vh—?) /ooo |:z_lexp (ﬂp )+ 1] 4 pPdp
~(wz) )

VA
- (F) £, (11.240)

[z_l exp (x) + 1]_1 dx

=
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where

f(2) = et exp(x) + 1] d. (11.241)

I'(n)

(Note, z is to be chosen such that N = N.)
Similarly, we can also write (11.236) as

0o -1
U V,T) = (Vh—?)/ (4;—’5;4) [a_lz_l exp('Bp ) + 11| dp

2VA kgT © _
—(B) [ H e 1] e

3VAksT
_( o )f;(z)- (11.242)

It is convenient to eliminate % from (11.242) and (11.240). This can be done by
dividing the two equations. We get

U@ V. 1) _3, . /5@
N2\ he)

(11.243)

Finally, we deal with (11.239). It can be written as:

oo 2 -1
P@V.T) = (%)/0 p* [z‘l exp (%) + 1} dp.
= (AkB )fs() (11.244)

Note that in (11.240)—(11.244) we have needed I" (n). It is available from the
relationship

I'n+1)=nl({n)=n! Therefore :
5 3 3 3 3 1 3 1
'i=z)==T(=)=[=2')=l=z])l=z!')=(=])I|= . (11.245
(3)-27()-(3)-()G)- () ) ve @
Dividing (11.244) by (11.242) leads to the well known relationship

PV = (%) U. (11.246)

This result, namely PV = % U, applies to all non-relativistic ideal gases in three
dimensions whether they be classical — see, for example, (11.108) — or quantum.
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And it contrasts with the corresponding result for extremely relativistic ideal gases,
which according to (11.107)is: PV = (1) U.
Finally, we write the mean occupation number, N, for a single particle state with

energy &, = (%) . To this end we use (11.238)andset A =2anda = 1.

Ny =2 exp (pe,) 4]

= 2[exp{Ble, — )} +] . (11.247)

It is important to note that (11.247) includes both spin states: namely, those
with — what may be called — spin-up and others with spin-down. As the temperature
is lowered, the electrons in the system begin to place themselves in those states that
lower the total energy. At zero temperature Kelvin, the system energy is the lowest
possible — subject, of course, to the dictates of the Pauli principle, which demands
that for a prescribed value of the spin component and at a given time no more than
a single electron may occupy any given state.®!

Because the Hamiltonian does not involve electron spin, any single particle state
with energy £, can accommodate a total of two electrons with the same energy:
one with spin-up and the other with spin-down. Accordingly, at zero temperature,
the electrons are packed, two — that have the higher energy — on top of other two
that have the lower energy. This packing continues up the energy chain to some
maximum value Eg which is such that all N electrons have been accommodated.

Therefore, at zero temperature, all single particle states at energy ¢, less than or
equal to u = pu, = EF are occupied. (In what follows we shall use the notation u,
for the chemical potential j at zero temperature — see also (11.275).

11.22.1 Low Density and High Temperature: Weakly
Degenerate F-D System

For low particle density and high temperature, F-D system is in a state of weak
degeneracy. Here, z is less than unity. Therefore, (11.241) can be expanded as
follows:

1

Ja(2) = o)

*° -1
/ x" Tz lexp(x) + 1] dx
o

1
I'(n)

/oo X! Z:(—l)l_1 [zexp(—x)]' dx
0 I=1

%INote: Single particle states for non-interacting electrons are identified by their kinetic energy as
well as the direction of their spins.
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e

! [ele)
(—l)l_lﬁ/ x"Vexp(—I x) dx

~
—_

e

! o n—1
2| S T exp(=n)dn
T [ T(n) ]

!
(—1)’—1lz—n. (11.248)

~
—_

e

~

1

Indeed, for a highly non-degenerate Fermi gas, z is very small and only a few terms
in power expansion for the function f,,(z) suffice. Therefore, (11.248) gives:

2 A y
Ja(2) =z—2—n+3—n—0(z ). (11.249)
By using (11.249), (11.240), (11.242), and (11.244) are readily represented in
terms of the leading three powers of z. However, rather than z, we are interested in
expressing the results in terms of the temperature. To this end we need to invert the
series in powers of z that is implicit in (11.240). Such inversions are commonplace
and are easily done using mathematical software. It may, however, be of interest to
a beginner to see how this inversion might be done analytically.
Let us re-write the equation to be inverted as follows:

NA?
p= (7) =31

=7z—

[\S]
%)

\S] | N
LS 19}
[USTRIFNY
ol

+

—0(zY, (11.250)

The first step is to notice that for small z we get z ~ p. An appropriate trial
representation to work with is of the form

z=p+ap’+ap’+ 0 (p'), (11.251)
where self-consistently z, and p, can both be expected to be < 1. The second step

is to use the defining (11.250), then plug (11.251) into it, and work exactly to the
second order. We get:

1
=p+ p (az — 2—3) + 0 (pY). (11.252)
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Comparing similar terms on the left and the right hand sides leads to the result

(11.253)

).

ay =

\9}
Ll | ™

|~

And continuing this procedure to the third order readily yields a; = (% —
Therefore, (11.251) becomes

k)|

3

1 11
z=p+(7)p?+(———)pﬁ+0@ﬂ. (11.254)
23 4 3

3
2

11.22.1.1 Internal Energy and Pressure

As shown in (11.242) and (11.244), both U and P depend on f’ 5 (z) which — with
the use of (11.254) — becomes

2 Z 4
@&)=2—5§+§§—0&)

+=+0(*

2 33 ()
1y , L2 5 4

=p+|= )+ —= )0 +0(" (11.255)
22 8 32

Therefore, using (11.244) and (11.255), we can construct a kind of virial expan-
sion®? for the non-interacting perfect F-D gas. Such an expansion relates the ratio

% to a power expansion in p (or equivalently, an inverse power of the temperature
B

T). We have:
2kgT
W:V(;)@@
- 2ksT 1Y 1 2, 4
(5 e ()7 (5-5) 7 0]
- 1 1 2 ) 3
=kgTN {1+ 2—§ p+ §—3—§ -+ O0(p); . (11.256)

%2The classical virial expansion of course is in inverse powers of 7" rather than in inverse powers
of T3/2 as is the case here.
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Here, asin (11.250),p = A{,—f = (11\’,—23) (2nkaT)%3, with A = 2. Therefore, the
above equation approaches the corresponding result for a perfect classical gas when
the temperature is high and p small. Comparing this result with that of a classical gas
with non-zero inter-particle interaction, the above equation appears to represent the
behavior of a gas with “repulsive” inter-particle force. Notice that the “appearance”
of non-zero repulsive interaction is being produced by a completely non-interacting
gas ! But of course the gas is made of quantum particles. Perhaps it should also be
mentioned that if the quantum particles had obeyed, rather than the Fermi-Dirac,
the Bose—Einstein statistics, the apparent inter-particle interaction would have been
“attractive.” (See, for instance, the corresponding result for the B-E gas. Refer to
(11.360).)

The internal energy, the specific heat, the Gibbs potential, and the Helmholtz free
energy are given below.

3kBTN 1 1 2 2 3 3
2 { +(2§)p+(8 3§)p+0(p)} 2
U 3 1 41
) I 7T S —— =)+ 00
(aT)N,V 2 { (2;)“(3% 4)" i (")}
G = Nu =kgTN In(z)
_ 1 1 1
=kBTN1n|:,O%1+(—3)P+(—__3) P2+0(:03)}:|§
235 4 33
F=G—PV=G—( )U
- 1 11 2 3
=kgTNIn|pil+ (= )p+|=—=) 0+ 0()
23 4 33

_ 1 2
—kgTN {1 + (—5 p+ (— - —5) 0% — 0(,03)} . (11.257)
22 8 33

o

Notice that unless the temperature is truly infinite, the specific heat for the F-D gas
is less than that for a corresponding classical ideal gas. Indeed, unlike the classical
ideal gas — for which the specific heat is constant — we shall learn in the following
that the specific heat for the F-D gas continues to decrease monotonically (all the
way to zero) when the temperature decreases.

Finally, let us look at the entropy.

U-F 5\ - 1 1 2
S = =(Z)Nkg {1+ | — - — =)0’
o= ()l e (557

—NkglIn |:p{1 + (Zi})er G — 3%) 0+ 0(p3)}:| . (11.258)
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11.22.2 Remark

The Canonical ensembles are sometime hard put to treat quantum systems. Such
is the case as much due to the intrinsic quantum character of these systems as it
is due to their particle indistinguishability. To relieve these difficulties, the grand
Canonical ensemble is used.

An important feature of its predictions is that even when the quantum particles
are totally no-interacting — except in the limit of very low density and very high
temperature — their thermodynamics is qualitatively different from that of similar
classical particles.

For instance, a low density non-interacting quantum system at very high temper-
ature is essentially classical and has little or no spatial correlation.

In contrast, at high particle density and low temperature, spatial correlation
exists even in a non-interacting quantum system. This is especially true for particle
densities and temperature such that the mean thermal wave-length, A, is comparable
to or longer than the average inter-particle separation.

Numerically, the above statements can be summarized in terms of the following

1
rule: Given N, V, A and A = (L) i

2nmkgT
) 3
h 2
N (ankBT)

VA > 1, thermodynamics is quantum, but if

p < 1, thermodynamics is classical. (11.259)

The above rule is physically significant and p — which is known as the degeneracy
discriminant — acts as a useful expansion parameter. The rule reads:

When the system is relatively dense, is at low temperature, and p is of the order
of unity or larger, the system begins to be degenerate and displays truly quantum
effects.

On the other hand, in the limit when the particle number density, (%) , 1s very
low and the temperature, 7, is very high — that is, when p is <« 1 — the system
tends toward complete non-degeneracy, and all physical quantities approach their
classical limit.

11.22.3 Exercise VII

Confirm the above statement by observing that if in all expressions with the
appearance {1 + terms of order (p)} — that occur in (11.256)—(11.258) — terms of
order p are ignored compared with 1, then the results reduce to those obtained for a
classical non-interacting gas. This affirms the fact that in the limit of extreme non-
degeneracy, a quantum gas approaches its classical limit.
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11.22.4 Highly or Partially Degenerate F-D Gas

In the above we have learned that at high temperatures and low density, the
parameters p, and therefore z, are both very small compared to unity. At very
low temperatures, in complete contrast to what the case is at high temperatures,
z becomes exponentially large (and indeed tends to oo at zero temperature.) Such
is the case because even at room temperature in a typical system of conduction
electrons, (kBLT) is of order 25 — 150. Accordingly, z = exp (kBLT) > 1.

Thus, at low to normal temperatures, (In z) is large compared to unity and (Inz) ™!
is correspondingly small compared to 1.

Therefore, in order to proceed further, we need to determine an expansion for the
function f;(z) —note that f,(z) was defined in (11.241). Such an expansion should
be appropriate for both the partially or completely degenerate cases. Recall that the
expansion for f,(z) that was given earlier in (11.248) is appropriate only for the
highly non-degenerate case.

11.22.4.1 f,(z) for Partially or Completely Degenerate System

For notational convenience, in order to evaluate the integral f,(z), we introduce a
related integral A4, (z) which is given below:

Let B,(¢) = "1 then

I By ()
An(Z) - /{: |:Z_1 eXp—(kBLT) T 1:| de
N By ()
N /,; [exp(;—#) + 1:| de
= (kgT)" /oo X"z exp (x) + 1]_1 dx.
= T'(n) ks T)" £, (2). (11.260)

In order to calculate A, (z), let us begin by introducing the substitution

€=
—.

T=kgT: x = (11.261)

Then € = p + vx and de = v dx. And
/°° B.(n+1x)
T — | dx
_ exp(x) + 1

= Bu(p—7y) [ Ba(pt7x)
a T/O |:6Xp(—y) + 1i| dy + T/() |: exp(x)_|_1 ] dx. (11262)

4,(2)

AR A=
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To arrive at the second row we separated the integral in the first row into two parts:
one ranging from (—%) — 0 and the other from 0 — oo. Then we introduced the
substitution y = —x into the first part.

Noting the fact that [exp(—y) + 1]7" = 1 — [exp(y) + 117! and introducing a
new substitution (x = 7 y), which gives (dx = tdy), into the first term in the
second row in (11.262), gives

g YTB,(u—

[ Bu(n+ 7x)

The first integral on the right hand side looks better if we introduce yet another
change in the variables. To do that, set (u — 7 y) = x. Thendy = (_?1) dx and we

can write
Iz & B,(u —
A,(z) = / B, (x)dx — ‘L’/ [ﬁ} dx

[ Balp +7x)

Note that, in order to improve its looks, surreptitiously we also changed the dummy
variable y to another dummy variable x in the second term in (11.264).

We have now reached a point beyond which approximations are necessary.
Fortunately, however, for a typical electron gas — for example the conduction

electrons in sodium — at room temperature, (%) is of order (100), or higher. At
these values — namely x ~ (%) — the presence of the exponential in the denominator

makes the integrand become essentially equal to zero. Therefore the upper limit in
the last two integrals in (11.264) can safely be extended beyond (%) to co. That is,

~ " o B, (M -7 X)
An(Z) ~ /(; Bn(X)dX — 'C/o [m} dx

B, (1 + )

The presence of the exponential in the denominator also has another salutary effect.
The bulk of the integral necessarily comes from those values of x for which exp(x)
is not large compared to unity. Also, for essentially all laboratory temperatures, tx

is < . Accordingly we can expand B(u &£ t x) in powers of (%) . That is,
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(zx)’

2
(tx) B”(/L):b N

B, (£ tx) = B(u) = (tx) B, (1) + 51 B

B Go) + -

B,(u+ tx) — By(n — tx) = 2(tx) B, (1) + 2( 3) B (n) + -+ (11.266)

Therefore,

An(Z) = / B (X) dx =+ (ZTZ)B ([,L) [m] dx

2t4\ o0 x3

The integrals in (11.267) are well known. That is

fOO r X 7 7.[2

— |dx = —

o Lexp(x)+ 1| 12
or x3 T Tt
/ |
o Lexp(x)+ 1, 120

oo 5 7 31 6
/ Y ax =2 e (11.268)
o Lexp(x)+1 ] 252

Students of mathematics will recognize that these integrals are related to the well
known — and extensively available — Riemann “zeta function” ¢(n). That is:

/ooo [W] Z( n'= 1[/ ”[exp(—x)]’dx}
=T+ 1)%(—1)’—1 [G)H}

=1

=F(n+1)|:l—L+;—...:|

on+l 3n+1

=T(n+1) [(1 - 2i) c(n + 1)] (11.269)

And, of course, ¢(2) = %2, c(4) = g—g, c(6) = ;’Tﬁs, etc.
Having thus calculated A4,(z) — see (11.267)—(11.269) — we in effect have an

2
expansion, in ascending powers of the variable (ﬁ) = {72, for the functions f; (z).
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(In this regard, see (11.260) which specifies a direct relationship between A4, (z) and
fn(z). Also see (11.241) for the definition of f,(z).) We get:

éz Tt —6
f3 (z) = |:1 + é' mé‘ + 0™ ] , (11.270)

3f
and
8¢3 522, Tnt .
= 1+ —¢ " ——¢ o™ , 11.271
16 = 15z |14+ e o | aam
where®
kgT
O '=(nz)" = (1) = (B_) < 1, (11.272)
M M
Now let us combine (11.240) and (11.270). We get
N 2
v = ng(z)

_ 8;% ]T2 0 77T4 —4 —6
- (3ﬁk3> [1+§§ + gt o )] (11.273)

Similarly, combine (11.270) and (11.271). Then (11.243) yields:

ks TN\ /3()
vern = (3 2 ) 70
Sn2 p=2 It p—d
- (3kBSTN§) [(H o s )+ 0(;‘6)}
L+ 502+ g ¢t
_ (3kBSTNé) |:1+%2§—2 Lt W s o 6)} (11274)

While we should have liked to have had both % and U given in terms of just
the temperature, the above two equations involve { which, in addition to the
temperature, also depends on the chemical potential ;. So we still have some work
to do! (See (11.283)—(11.295).)

93t is important to distinguish the n-th power of this variable, namely ¢”, from the somewhat
similar looking Riemann zeta function ¢ (n).
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11.22.5 Zero Temperature: Complete Degeneracy

11.22.5.1 Simple Analysis

As stated earlier, at zero degrees absolute the chemical potential p is denoted as p,,.
Similarly, at zero temperature we shall denote the occupation number N, of the
state with momentum p, as (N,),. Of course, at this temperature, 8 = kBLT — 0.

Then, (11.247),i.e., N, = 2 [exp{B(&, — 1o)} + 1]_1 , readily leads to:

Ny =71=0 (Np)o = oo 2, ife, is < o
= 0, ife, is > u,,

and exceptionally, (N,), = 1, ifg,is = . (11.275)

Electrons in the system occupy states with momentum p — which ranges from zero
to (the so called) “Fermi Momentum” pg. Note that pg is the maximum allowed
value of momentum that any single-electron (in the non-interacting system of N
electrons ) can possibly have at zero temperature. Also note that pr is defined by
the relationship: (pr)?/2m = Egr = ji,. The energy Ep is known as the “Fermi
Energy.”

Recall that, N, denotes the total number of electrons in the system.Thatis, N =
Zp N, = ZiLO(Np),,. Therefore, using the value of (N,), as given in (11.275),
at zero temperature we can write the sum, Zp N, = (%) fooo (Np) 4mp3dp, as
follows:

PE 1% PE
N=) (No= [+ 2]47pd
I;( ») (h3)/0 2l4rp*dp

PF 87thp3)
= v(p)dp = | —22 ). (11.276)
/0 (p)dp ( e

The notation v(p) dp indicates the number of single particles associated with states

that lie in momentum between p and p 4+ dp. It is often convenient to replace
v(p)dp by f(e) de such that p> = 2me and dp = V/ 5¢ de. As aresult we have:

2V
v(p)dp = F(Mpz)dp

Vo [e (8tm)\?
[E\/;( sz) ]de: f(e)de. (11.277)

Like v(p)dp, f(e)de is equal to the number of single particles associated with
single particle states with energy between ¢ and ¢ + de. Therefore f(e) can
legitimately be called the density of states because it is equal to the number of single
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particles per unit of energy — or, equivalently, because the spin can be up- or down —
twice the number of single particle states that have energy between ¢ and ¢ + de.
We shall use the following notation to express the result of (11.276)

3N \3
PF = (2m,uo)% = (_8 V) h, and
T

2
(pr)? 3N \? [ h?
Ev =, — (2N () 11.278
== o sz ) \om ( )

For conduction electrons in sodium, the Fermi energy Ef is & 3.15 electron volts. In
terms of the standard thermal energy unit divided by kg, i.e., the temperature 7', the
sodium Fermi energy is equivalent to approximately 37 thousand degrees Kelvin — a
temperature much higher than even the boiling-evaporation temperature of sodium!

Similarly, by using (11.236), we can calculate the total energy U, of the system
at zero temperature. Note, U, is the so called “zero point,” or the “ground state,”
energy.

P=pF
U= &Ny iU = > er(Np)o = Uy
P p=0
|74 P p? ) AV PF
= (ﬁ)/o (%) [2]47p-dp = (_m h3) (?) (11.279)

Equation (11.278) allows us to replace pf: by its equivalent, (ﬂ) h3, and represent

8V
the above result in the following better-known form:

[ AnV PE? 3 [4nV PE? 3N 3
U= (W) (T) (pr)” = (mm) (7) (W) "

3 2\ 3 3
°N (p—F) — 2N, = 2NEs

5 2m 5 5
SAVERSTAYZAL
=== — = - (11.280)
2 8w 5m 14
The average, quantum statistical energy per particle is (%) = %EF Considering

that a reasonable approximation to such a particle is a conduction electron in a low
alkali metal, this energy would appear to be much larger than the typical thermal
energy at room temperature. So why do these electrons, with all this “fantastic,
hot” energy “in their pocket,” still stay around within these metals ? The answer is
two-fold:

An appropriate description of the first part of the answer has to await the
discussion — see a few paragraphs below — of the results given in (11.282).
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The second part of the answer is the following: Figuratively speaking, at zero
temperature — all the electrons are sunk within the so-called Fermi see. The two elec-
trons at the bottom have little momentum. The next higher two have slightly more.
The process continues until all the N electrons are placed atop each other so that the
final N-th electron is placed with momentum pgr. However, when the temperature
rises above zero by say an amount A7, then some electrons from the top of the Fermi
see increase their energy by an amount kg AT. As a result, while normally their
momentum is close to pg, the added bit of thermal energy raises their momentum a
bit and as a result they begin to evaporate out. We shall have occasion to amplify on
this statement when we examine the Richardson effect which describes the number
of electrons that leave the metal surface as a result of the increase in temperature.

Let us next deal with the pressure. The so called ground state, degeneracy
pressure, P,, is clearly related to U, through the usual relationship

W, 2(N 3\3 [ h2\ (N\}
P, = (D) Eee=(2) (=) (2) . (11.281)
3V 5\V 8 5m 14

The bulk modulus, — P, (%) can now be calculated. We get
N.T

2 2 3
Ly (8Po) _5 (i) (h_) (ﬁ) _2 (ﬂ) Er. (11.282)
W )yr 3\8x 5m)\V 3V

(In (11.280) and (11.281) we have used (11.278). This was to equate Ef to
()" (%)

The bulk modulus in sodium is approximately equal to 7 x 10 N m™2. This is of
the same order of magnitude as the number predicted by the above relationship.

Notice that the pressure P, in (11.281) is non-zero even though the system is
at zero temperature. Indeed, the Fermi—Dirac degeneracy pressure P, is in fact very
large, being typically of the order of a hundred thousand times the atmospheric
pressure. With all this pressure wanting to expand the electrons in a metal, why do
they not fly off? Typically the attractive electrostatic interaction — i.e., the Coulomb
force — between the positive metal ions and the free electrons is sufficient to hold the
electrons back. While the number of free electrons in metals is large compared to the
number of atoms in a similar volume of free air, the chemical potential in a “white
dwarf” is even larger than that in metals. That causes an enormous degeneracy
pressure to build up within the dwarf which holds the gravitational pull of many of
the average sized dwarfs in check and stops them from collapsing into “black holes.”

Further notice the fact that the pressure increases rapidly with decrease in
volume. While for classical systems this behavior would indicate the presence of
inter-particle interaction, the given system is completely non-interacting. All it
has are the laws of quantum mechanics: whereby even a non-interacting, single
Fermi-Dirac particle expresses its distaste for being confined to a finite volume:
additionally, the electrons follow the laws of ‘natural philosophy’ which demand
that they obey the Fermi—Dirac symmetry rules.
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11.22.5.2 Remark

When kgT — 0, by classical description all thermal activity ceases. This should
make both the pressure and the kinetic energy of the system go to zero. Yet (11.280)
and (11.281) indicate otherwise. Why is that the case, one might ask.

Clearly, it is a quantum effect, unknown in classical mechanics. Yet, as we shall
discover when we consider the Bose—Einstein statistics — where, at zero temperature,
all the Bose quantum particles may gather together in a single energy state — the
details of the given results are crucially dependent upon the statistics of the quantum
states being treated here.

In stark contrast with Bosons, a maximum of only two spin a-half Fermions, i.e.,
electrons — one with spin-up and the other with spin-down — are allowed to settle
down in one single (spin-less) state. So, the best they can do is to follow the general
dictates of thermodynamics, which enjoin that at zero temperature only the lowest
available energy state has a finite probability of being occupied. Accordingly, as
the particles are accommodated two by two, the lowest momentum state is occupied
first. Higher momentum states get occupied at the rate of two particles each until the
N — th particle is settled in at momentum pg. At this momentum, its — spin-less —

single particle kinetic energy is 127_;12 = W, = Ep.
11.22.5.3 Formal Treatment

If we were at low temperature, then inverse powers of ¢ — such as, {™2 and ¢~ —
would be very small. Indeed, they would be equal to zero if T — 0. [See (11.272)

which states (¢)7! = (%) -]

Let us now set the temperature equal to zero and re-write (11.273) as,

3 3JT AN
£2 =, (—8V ) (11.283)
and convert it to the following more convenient form:
2
3JT AN
kT ¢ =p =, _ksT \/_— = Mo
8V
3N \3 (K2
=— — | = Eg. 11.284
(snv) (2m) F ( )
Similarly, (11.274) can be written as
3kpTN 3
U=,_, ( Bs é“) U, = (g) NEF. (11.285)

Why is the average value of the energy — namely, U, — not equal to %, but instead
it is %-th, of the maximum value Eg? This has to do with the fact that the number



520 11 Statistical Thermodynamics: Third Law

of states per unit volume of the momentum space increase with rise in momentum —
meaning, v(p) increases as p>. So a larger number of states are found in the upper
half than the lower half and as a result the average energy is higher than one-half,

because the latter assumes uniform spacing.
1

In (11.284), we have used the equality, A = (2”’2#) : , that was recorded
in (11.212). Also we have continued the use of the notation Er which is equal
to the chemical potential u, at zero temperature. Recall that Ef is best known as
the system “Fermi Energy.” Also, and once again, because (11.246) tells us that
the equality PV = %U holds at all temperatures and applies to all non-interacting
systems whether they be quantum or classical. Therefore we can relate the system

pressure, P,, at zero temperature to Er or U,,.

P—2 U\ _ P—2 Uo) = (2N E (11.286)
“3\y) e 3\v ) T sy ) TR ‘

All the above results for zero temperature, which show that for given N, m and
V the internal energy U, is a constant, are the same as those previously obtained
through the use of a simpler physical procedure — compare (11.280) and (11.281).

11.22.6 Finite but Low Temperature: Partial Degeneracy

It is of interest to know how the internal energy changes with T for finite but low
temperature. To this end we need to look at higher order approximations to (11.273)

and (11.274) than the zeroth order approximation used in (11.284)—(11.286).
Therefore, let us first notice that according to (11.284), (=g — (ﬁ’%) . Second,
re-arrange (11.273) in the following form:

A= (3ﬁA3N

7o, Int —6 B
S )[1+—§ + gt T oU )} . (11.287)

8

and raise both sides to the power % This gives

_ 3ﬁk3N% ., Izt _, e |
5—(7) [14—?5 tept to¢ )}

Wi

_ (L na T -6
_(kB_T)[l‘ﬁf top ¢ tod )] (11.288)

As indicated before, the above relationship would be fine except that we need to
know ¢ as a function of the temperature. To this end we proceed as follows:
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First: Replace ¢ on the right hand side of the last row —in (11.288) — by its zeroth
order value (kg—FT) . As aresult, (11.288) becomes

EF 7'[2 kBT 2 kBT 4
=\—=]l1—-——=|— O\ — . 11.289
‘ (kBT)[ 2 ( ) TR (1289
The second correction can now be made by inserting the result of ¢ — given in
(11.289) above —into (11.288). This gives

EF 7'[2 kBT 2 7'[4 kBT 4 kBT 6
— = 2= ) (=) (2= —_— . (112
¢ kBT[ 12(Ep) (80)(EF)+O(EF) (1290

11.22.7 Thermodynamic Potentials

We are now able to determine the various thermodynamic potentials. First, let us
find the temperature dependence of the Gibbs potential G.

G =Nu=NkgT¢
]T2 kBT 2 ]T4 kBT 4 kBT 6
=NEg|l-—(— ) — | — —_— —_— . (11.291
F|: 12(EF) (80)(EF)+O(EF) (1290

Similarly, using the value of ¢ given in (11.290), and a little bit of algebra, the
internal energy according to (11.274) is found to be the following:

3 522 (kgT\> 7% (ksT\* kpT\®
U=>NEp |14 225 (BL) 7 (51) 4 oL

5 12 \ Ef 16 \ Er Er
3

= JPV. (11.292)

[Note, the last row above is a statement of the well known fact that for a three
dimensional, non-relativistic, ideal system, whether it be classical or quantum, the
pressure P = (39)].

Because both the Gibbs free energy G and the internal energy U are now known,

we can calculate the Helmholtz free energy F as follows:

2
F=G-PV=G-3U

3 5 (kgTn\> 1 (ksTm\* kpTm\°®
= NE(2)|1-= — 0 . (11.293
F(5)|: 12(EF)+48(EF)+ (EF) ( )
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Finally, we deal with the entropy S. We have

G_U-F
T
Nkpr (kT 1 (kgTm\>? kT \*
= BT I o (2B 10) . (11.294
2(EF) 10(EF)+ Er (11259

The specific heat C, is also readily found,

104
€= (ﬁ)w

2 (kgT\  37* (ksT)\? keT )’
=Nk | ()2 (BBL) Lo (2BL) | (11.205)
2 Er 20 Er Er

11.22.7.1 Remark

Notice that for the electron gas the specific heat tends toward zero linearly with
temperature (See Fig. 11.18). This fact is in dramatic contrast with the classical
result which asserts that the specific heat is (both large and) constant at all
temperatures. Indeed, thereby hangs a long tale!

20

o
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T )ﬂfeﬂfﬂ,&
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Fig. 11.18 <+ for Sodium versus T?2. Following the work of Roberts, Lois M. [Proc. Phys. Soc.
70B, 744 (1957)], the specific heat, C,, of Na divided by the temperature, 7, is plotted as a function
of T2. Notice that the plot has an intercept at T — 0 indicating that at very low temperature C, has
a linear dependence on T . For slightly higher temperature, the specific heat is seen to follow the T3
law which is a result of the lattice vibrations. (See Fig. 11.19 and the related text for details of the
lattice contribution) [Copied with permission from M. D. Sturge’s book: Statistical and Thermal
Physics, Fundamentals and Applications, figure 12-3, p. 237, publishers A. K. Peters, Ltd (2003)]
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Drude and Lorentz’ theory,** based on the BMG — that is, the Boltzmann—
Maxwell-Gibbs — classical statistics, predicted that the free conduction electrons
would add to the specific heat, C,,, an amount equal to %kB per electron. Experimen-
tally, however, it was observed that — except for very low temperatures where the
specific heat seemed to vary linearly with the temperature — the cubic temperature
dependence of the lattice vibrations provided a satisfactory description of the system
specific heat. So what happened to the effect of classical motion of the conduction
electrons? Why and where did that disappear?

A similar such occurrence also afflicted the quasi-classical Langevin prediction
for the electronic paramagnetic susceptibility. For electrons, J = %, and the Lande
g-factor is (very close to) = 2. Therefore, at high temperature and for weak
magnetic field, the quasi-classical value for the magnetic susceptibility for one
dipole should be

(gus)’ 1 (1 (2u)?
= J(J 1 55 +1
(X)qudm—cldsslcdl ( + ) 3kBT e 2 2 + 3kBT

*2
[~
= (kBT). (11.296)

Note, ux — (%) is the intrinsic magnetic moment. Also, that depending on
the object being considered, g may be different from 2 and as a result p* may
be different from one Bohr magneton up.

At low temperature, the quasi-classical Langevin theory predicted that the system
will approach magnetic saturation. The experimental results, in contrast, told a
different story. At low temperatures the susceptibility, although dependent on the
density, became independent of the temperature and tended towards a small but
constant value.

Wolfgang Pauli® was the first to recognize that the system constituted a highly
degenerate electron gas that should be treated by using Fermi—Dirac statistics. His
results for paramagnetism are often referred to as ‘Pauli Paramagnetism’.

11.22.8 Pauli Paramagnetism

For a system of N quantum particles with spin S, where all spin directions are
symmetrical, the spin degeneracy factor, A, is (25 + 1). This is equal to the total
number of spin states available to each particle. The fact that each electron has spin

%Drude, Paul Karl Ludwig,(7/12/1863)—(7/5/1906);  Lorentz, Hendrik Antoon,(7/18/1863)—
(2/4/1928).

65Pauli, Wolfgang (4/25/1900)—(12/15/1958).
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S = % means that A = 2 and an electron can lie either parallel or anti-parallel to
any chosen direction. And unless an external field is applied — which would break
the symmetry between the up- and the down-directions — roughly a half of a large
number N of electrons, in a system which is in thermodynamic equilibrium, would

on the average point either up or down. More precisely, each direction would have

approximately % [1 + O(ﬁ)] electrons.

With the application of an external magnetic field E(], at least three new things
happen. First: the energy of a given electron changes — that is, it increases, if it is
anti-parallel to the field. Or the energy decreases, if the electron is parallel to the
field. In other words, the applied field causes a change in the energy by an amount
equal to —E,,. s = =£B,us. (Recall that up is the Bohr magneton.) Second: the
symmetry is broken and the number of electrons pointing in the up- or the down-
direction is no longer the same. Third: the spin degeneracy factor for each of the
(28 + 1) = 2 directions — namely, either up or down — is now equal to just 1.

An important principle of thermodynamics — see (10.44) — is that: “At constant
pressure, in a bi-phase thermodynamic system that is in thermal contact with a heat
energy reservoir at a fixed temperature, the specific Gibbs free energy of the two
co-existent phases is the same.”

Here, the two co-existent phases are the up- and the down-spin parts of the
electron gas and the equality of the specific Gibbs function translates into the
chemical potential u being the same for both the up- and the down-spin parts. Be
warned, however, that the equality of the chemical potential does not mean that the
number of electrons with different spins have to be the same. Indeed, as we shall see
shortly, they are different.

Armed with this information, we can use (11.247) to write

Nj = [ewlpcer - +1]
-1
Ny = [exp {ﬂ(g; - u)} + 1] , (11.297)

where e;r and &, are the energies of single electron states with momentum p that
refer to an electron pointing “up” — meaning, parallel to the applied magnetic field —
or down, respectively. In view of the description given two paragraphs above, we
have
2 2
4 . - _ P
Sp = %—BO,LLB, 817 —%—FBO,LLB. (11298)

Similar to the statements made for (11.247), N p+ and N , are the mean occupation
. + —_ .
numbers for a state with energy & or €, respectively.
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11.22.8.1 Simple Treatment: Zero Temperature

At zero temperature, B — oo and © — Eg. With these changes, (11.297) tells
us that the positive spin electrons have occupancy N p+ equal to unity for all those
momenta for which (s;r) < Eg. Similarly, the negative spin electrons are occupied,
i.e., Np_ = 1, for those momenta for which (s;) < Ef.

For (¢7) > Er and (¢,) > Eg, both N,f and N, are zero. Therefore, there is
no occupancy of the electrons parallel to the field beyond the momentum pi =

v2m(Eg + Boup). Similarly electrons anti-parallel to the field are unoccupied

beyond the momentum pf = \/2m(Er — B,us).

This means that for spins that are parallel to the field, the momentum ranges
1

between 0 and pi where the occupancy, [exp {,3 (8;_ — u,,)} + 1]_ , stays equal
to 1. And similarly for spins that are anti-parallel to the field, the momentum ranges

~1
between 0 and pf where the occupancy, [exp {,3(8; — /,Lo)} + 1] , stays equal

to 1.
As aresult, by using (11.276), and noting the u, = EF, the number of electrons
with spins +% and —% is the following:

F

V. [P+
Ny = ﬁ/ [N, l4xp*dp

|4 rh n -1 )

e [exp {,3(8,, - Ma)} + 1] 4rp*dp
Vo[t

=3 | [4zp’dp
V 4n 3 47V 5

=33 (Ph) = (W) (2m(Er + Bopg)}?,  (11.299)

and

F

[N, J4mp*dp

=
[
<
S~
N

F

"~ |:[exp {,B(s; — /1,,)} + 1]_l :|47Tp2 dp

I
<
—

F

v orE
= ﬁ/ [1]47p*dp

V an 3 AnV N
=53 (PD) = (W) 2m(Ep— Bougp)} . (11.300)
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Without the applied field the number of up and down spins is the same: that is, for
B, =0, Ny = N_ = % So there is no net magnetic moment of the electron
gas. However, in the presence of an applied field, the magnetic moment, N M, of the
system is non-zero. Therefore, its small field magnetic susceptibility per electron at
temperature T, i.e., (¥(T"))paui, is also non-zero.

NM = pug(Ny — N-);

M
(X(T))pauti = B,—0 (B—) . (11.301)

Because the Fermi energy is so much larger than the usual size of the magnetic field
factor B, g, we can write

NM

4 3 3
T—0MB ( Ve ) (2m)?2 [(EF + usBy)? — (Ef — MBBo)i]

2
- BV (4”“3 )(z )3 \/_[1— (%) } (11.302)

F

The small field, single electron, Pauli susceptibility at zero temperature — to be called
(Xo)pauti — therefore, is

M
lim (X(T))pauli = (B_) = (Xo)pauli;

(By—0;T—0)

(Xo)pauli = (4 VNMB ) (2m) \/_

Nh3

3
(ZEF) e (11.303)

[Note: The result for (y,)paui given above is exact. To derive the third row from the

second, make the change suggested in the last part of (11.278)— that is, from (2m)%

o (57) (ZZF) ]

11.22.8.2 Finite Temperature

At finite temperature the occupancy of electrons extends beyond the Fermi surface.
Therefore, the integration over the momentum — in contrast to that specified in
both (11.299) and (11.300) — needs to be extended beyond the Fermi sea to some
appropriate, higher value. However, because the integrand falls off very rapidly

with the rise in momentum — indeed as fast as exp(— ) — the integration may
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be extended, without any noticeable amount of error, to co. This gives:

Ny = h_{/;/ooo :exp {,3(8;r —,u)} + 1]_1 4rpdp

174 oo rr pZ -1 5

= ﬁ/ eXP{ﬂ(%—BauB—M)} +1} 4p”dp
V o0

= ﬁ ;

_ 5 —1
(z4)”" eXp{ﬂ(p—)} + 1] 4rp*dp
L 2m
1
= /i), (11.304)

and

N_ = % 000 :exp {ﬁ(s; — ,u)} + 1]_1 4rp*dp

174 oI pZ -1
=3 eXP{ﬂ(— + Bojis — u)} + 1} 4rp*dp
o L 2m

Vv

oo 2 -1
=i [ eren ol 1] ama

14
= 5h@). (11.305)

where we have introduced the notation

z+ = exp{B(u = Boup)} = exp(Bu+) = exp({+). (11.306)

It is important here to notice that (11.240) can immediately be transformed into
(11.304) by making the following trivial changes: The degeneracy factor 2 changes
to 1 and z changes to z4. The same transformation with z — z_ reproduces
(11.305).

As a result of this transformation, (11.270)-(11.273), (11.272), (11.290),
and (11.291), are readily generalized to accommodate changes from N to N and
N_, from z to z4+ and z—, from u to p4 and p—, and, from ¢ to {4 and {_. Recall
that because the up- and the down-spins are being treated separately, here the spin
degeneracy factor is = 1 for each of them. We get

3
v aver 2, It o1
e = e s3ten) = | 5 | |14 T 650+ gt + 00 |
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V
ng (z2)

(e 2 .
B ENCZE [H?@— +640§ + 0@ )} (11307)

where

w+ = kgTly = (Er £ Boug)

2 keT \° 4 keT \*
sl (2B ) () (—2B ) — .|, (1.308)
12 EF + B,,,LLB 80 EF + B,,,LLB

T W =E Byup
e = Iz (kBT) ( kgT ) <

and

B()
w = % < 1. (11.309)

In order to determine the Pauli paramagnetic susceptibility, we need to calculate
(N4 — N-) as a function of B,up and the temperature 7. This requires combining
(11.307) and (11.308), with help from (11.309). We get

14 Vv
Ny —N_ = Ff%(z+) - Ff%(z—)
4y 3 7l -+, 3
= () [+ st + s }

(o) [ 5+ G

+0 ad ¢ K (11.310)
3 f =) | .
We need next to expand {1 = (“ikf#) as a power expansion in terms of the

variable = Z/B which is exceedingly small for most available magnetic fields.

Indeed, because we are interested in only the small field magnetic susceptibility, we
shall retain only the leading term in w, i.e.,

é_n — 12 + B(),LLB "
* kT

= (kBLT) [l £no + 0(?)]. (11.311)
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Accordingly, (11.310) leads to the following:

% (si-2)+ % (@ﬁ—;_‘)

EWVZZE

L R B -3
() ol

% kg kg
(3w)[1—g(u) 384(#)]
o [(lﬂ)2 (HBBo); w2j|_ (11.312)
u M

Reverting the notation @ back to its original form, ( %) , (11.312) is re-arranged

as follows:

(Ny — N_) (kg T)?
(3«/>/13) (3B(uu“B\/E_F)

C(w\' 7 (keT\?[Er)? keT\' (Er)?
_(EF) 24(EF)(M) 384( F)(“)
% 2
‘o |:(kBT) (BmU«B); (BoMB) } (11.313)
I 1 #

Our next task is to replace p by its temperature dependent value givenin (11.291)—
or, equivalently, in (11.308). For the reader’s convenience we reproduce it below:

(2)-[- 5 CE) -G () o (5] v
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Therefore, we have
m\_ [, 7 (kT dlrt ) (keT\' ) (ksT\]
Er) 24 \ Eg 180 x 32 Ep Er
2 8 EF
Ep\? ke T \>
(—F) =[1+0 (B—) ] (11.315)
j i Er

Inserting (11.315) into (11.313) we finally get to the desired result:

o=

w
|
(3]
—
m‘%‘
CHAS
N——
(3]
|
S

(Ny = N_) (ksT)? [ vy = No)]
(3fl3)(33”“3*/E—F) (3fp)(3BoMBx/E_F) (kgT) 7 ( )

=5 0 |:(X(T))pau111|
— Do
(Xo)pauli exact

_ 7 (kT Uxt (kTN (keT
T 12\ Er 360 \ Er Ee )

(11.316)

Note that in the above we have used the definition of the Pauli susceptibility
(x(T))pauti, and the corresponding zero temperature susceptibility ()o)paui. as they
were specified in (11.301)—(11.303).

11.22.8.3 Very High Temperature

Rather than directly solving (11.299), (11.305), and (11.306), we can take
advantage of the fact that the behavior of the quantum electrons at very high
temperatures is essentially the same as that of quasi-classical electrons. Therefore,
to the leading order we can expect the result for the Pauli susceptibility, (¥co)pauti,
at very high temperature to be very much the same as that given by the quasi-
classical Langevin theory for what we have called the “high temperature magnetic
susceptibility for paramagnetic salts.” (For the case J = 1/2, that result is for
convenience reproduced in (11.317) below.)

[ ( ) ] (g MB)
X quasi—classical | 4¢ very high temp 4kB T

~ (X oo)pauli- (11.317)
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11.22.8.4 Remark

Apropos of an earlier issue, we recall that the result for Langevin paramagnetic
susceptibility at high temperature — reproduced in (11.317) above —is generally also
quite accurate for temperatures as low as &~ 100 K — 20 K. At these temperatures
the “zero temperature” result for the magnetic susceptibility of quantum electrons
is also applicable because here the neglected higher order temperature dependent
terms are very small. Because these two different results are valid at roughly
the same range of moderate temperatures, it is interesting to compare the proper
statistical result for the magnetic susceptibility of a system of non-interacting

quantum electrons, as given in (11.303) — i.e., (Xo)paui = (;’?:) — with the

corresponding quasi-classical result, (X)quasi—classical » [0 Paramagnetic salts that is
reproduced in (11.317) above. The essential difference between these two results
lies in their denominators. Because Er > kT the magnetic susceptibility per
particle, ()o)pauii, of the quantum gas is much smaller than ())guasi—classicat ©F the
paramagnetic salts. Why should that be the case?

In a paramagnetic salt — or equivalently, in the non-interacting, quantum electron
gas at very, very high temperature — essentially all the spins participate in the
magnetization process. In contrast, at temperature below the Fermi temperature, the
Fermi-Dirac spins are forced to settle down in the Fermi sea. And the imposition of
the magnetic field can affect the energy of only a small fraction of such spins that lie
near the top. In the following, this effect is analyzed by a hand-waving-quantitative
procedure.

11.22.9 Hand-Waving Argument: The Specific Heat

The low temperature specific heat, calculated by a formal quantum statistical
procedure — see (11.295) — tended toward zero linearly with the temperature and
was noted to be rather small. That result is in dramatic contrast with one given by
classical theories that predict the specific heat — to be both quite large and — to
remain constant at all temperatures.

In the following we attempt to understand the quantum statistical result through
the use of simple-minded physical arguments.

As outlined in (11.247), the mean occupation number N, — for a state with
momentum p, energy &,, in a spin § perfect F-D gas that is at temperature 7 =

(ﬂ;kB) and has chemical potential  — is

N, = (@2S + ) [exp{fle, — )} + 1] (11.318)

When the temperature tends to zero, & — i, = Ef, and f§ — oo. Accordingly,
N, is equal to (25 + 1) for all values of ¢, that range between zero and the top of
the Fermi sea which is at energy Ep. [As stated before, (25 + 1) different quantum
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particles — with, say, the z—component of spin ranging between —S and 45 — may
occupy any given single particle state. For electrons, however, § = % Therefore, the

plot of N, versus (Z—pF) would be a rectangle of height (2S5 + 1) = 2 and width 1.]

As the temperature is increased slightly from O to 7, the electrons begin to rise
in energy — meaning, they begin to spread out of the extreme right hand side of the
rectangle. The electrons so “moved” are clearly those that are seated near the top of
the Fermi sea with energy close to Er. Indeed, thermodynamics suggests that such
electrons are mostly those that lie within energy levels that range approximately
between Ep—kgT and Er+kpT. This represents a width in energy of approximately
2 kgT out of the total width which is &~ Ep. Accordingly, the number of electrons
that are likely to move out of the sea due to the rise in temperature is approximately
(8N )iemp rise- This number should be of order

(11.319)

2kpgT
(SN)lemp rise ~ ( B ) N

Er

Approximately, each of these (SN )emp rise €lectrons is shifted up in energy by

an amount equal to (kgT'). Therefore, our estimate for the increase, (§E)gimate » 111
energy of N electrons due to the rise in temperature is the following:
2NkgT
(SE)eslimate ~ (SN)lemp rise(kB T) = ( EB ) (kB T)
2N (ksT)*
_ 2N GeT)” (11.320)
Er
The estimated total specific heat is therefore equal to:
9 (6F ) gtima N (kg)*T
CU estimate ~ — =4 —-. 11.321
(C)estimat ( 5T ) £ ( )

The above estimate for the total specific heat compares well with the leading term
of the exact result given in (11.295) (which, for convenience, is reproduced below).

72 (N (kg)*T 3t ksT\?
v)exat = ~— | — | — | = k — . 11.322
e (25T} ()Y

11.22.10 Hand-Waving Argument: The Pauli Paramagnetism
at Zero Temperature

Upon application of the magnetic field B, the energies of the down- and the up-spin
electrons are shifted by £ B, up. At zero temperature the energy shift is (2B, ir).
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Asin (11.319), we estimate that the electrons that are affected most are those that
reside at the top of the Fermi sea. This amounts to a fraction ( ZBE—F“F) of the total

number of electrons. Therefore, we estimate — much as was done above in (11.319) -
their number to be approximately the following:

2B,
(SN ) magnetic field ( E“ F) N. (11.323)
F

From (8N )magnetic field, We can generate an estimate for, (M )ecsimate, the magnetic
moment per electron

2B, 112
OMF). (11.324)

(M)eslimate X UF ((SN)magnetic ﬁeld/N = ( E
F

Therefore, an estimate for the single electron, zero temperature zero-field magnetic

susceptibility is

(M)eslimate ,LLF2
o)estimate ~ — 5 — 21— 11.325
(Xo0)estimat B, E: ( )

Qualitatively, the above estimate is similar to the corresponding exact result given
in (11.303): namely,

3 [
o0)exact = oJpauli — =\ /= |- 11.326
(Xo)exact = (Xo)paut 2(EF) ( )

11.22.11 Hand-Waving Argument: The Pauli Paramagnetism
at Finite Temperature

At zero temperature, the relevant Pauli paramagnetic electrons sit contiguously to
the top of the Fermi surface. As was shown in (11.323), their number is

(ON) magnetic field = 2B, (%) N. (11.327)
F

With slight increase in temperature, each of these electrons is shifted up in energy
from approximately (Er) to (Er + AFE). According to (11.320), the increase

2
in energy, AE, per electron is of order z(kEB—T) Therefore, their total number

should shift from its value (8N )magnetic field — tﬁat is given in (11.327) above — to
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approximately the following value:

(5N )magnetic field and finite temperature

~2B, () ~ 28, | —FC
Er+ AE Er + 2(kBT)
2(ksT)?
~ 2B, (%) N [1 - %} . (11.328)
F F

The estimate for the temperature dependent susceptibility is therefore the following:

( X ) temperature dependent estimate

~ (M )magnetic field at finite temperature

B,

HF
~ ( B (8N )mdgneuc field at finite temperature / N
4

2 2
) )]
Ho Er
ksT\*
= (Xo)estimate | 1 —2 (E_F) . (11.329)

The above estimate for the single particle temperature dependent susceptibility at
low temperatures is also qualitatively similar to the corresponding exact result that
was given in (11.316): namely,

kgT
(X)exact = (X(T))Pauli = (Xa)exact |:1 - ( Z, ) :| . (11330)
F

11.22.12 Landau Diamagnetism

In addition to the paramagnetism studied above, conduction electrons are also
subject to a sort of negative paramagnetism whereby the effect of applied field
in a given direction produces a magnetic moment in the opposite direction. Such
behavior, resulting in negative magnetic susceptibility, is termed: “diamagnetic.”
So far in our study of the conduction electrons, we have not considered any
effects of the orbital motion. In the presence of an applied magnetic field — say, B,
along the z-axis — an electron follows a helical path around the z-axis. The rotational
motion is caused by the so called Lorentz force. Its projection on the x-y plane is
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completely circular. While a single rotating electron may be diamagnetic, when a
large number N of electrons are present, and they are subject to reflection from the
enclosing walls, classical statistics predicts that there is “complete” — i.e., to the
leading order in N — cancelation of diamagnetic effect. Therefore, as first noted by
Bohr, van Leeuwen, and others, classical statistical description of this motion cannot
lead to diamagnetism.

Unlike classical statistics, L.D. Landau®® has shown that quantum statistics
do lead to non-zero diamagnetism. The details of Landau’s work are somewhat
involved but a relatively simple general comment can still be made. Due to reflection
from the bounding walls, the quantum electrons near the boundary — unlike the
classical, Maxwell-Boltzmann electrons — have on the average different quantized
velocities from the electrons that have not been reflected. Therefore, complete
compensation of the diamagnetic effect that occurs for perfectly reflecting classical
electrons does not take place for quantum electrons.

As described in an appendix — see (K.1)—(K.13) — at relatively high temperature,
the thermodynamic average of (M )jangau, the diamagnetic moment per particle, and
the resultant Landau susceptibility, ())iandau, are as follows:

B, i}
(M )i = — (31«3;) + Olyus (BBis)’):
M andau 2
(tandau = (% = - (3:BT) ) (11.331)
0 B

where, as usual, up stands for a Bohr magneton.

For a quantum gas of free electrons at very high temperature, in addition to
Landau diamagnetism there is also the Pauli paramagnetism — i.e., (Xoo)pauli» giVen
in (11.317). Adding these two contributions together yields

Xelectron gas at high temeperature = (X (T))pauli + (X )landau

(gms) (1
~ (Xoo)pauli + (landau ~ Ak T - 3klfT , (11.332)

Observe that we have not used the obvious simplification — namely, if we set g = 2

23
3kgT

the source of the free electrons being considered, g may not be exactly equal to 2.
Indeed, because the Pauli and the Landau processes have quite different roots,
the effective mass and therefore the up that occurs in the two terms in the above
equation may also be slightly different.

the last row would equal ( ) . We have not done this because depending upon

%6Landau, Lev Davidovich (1/22/1908)—(4/1/1968).
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11.23 The Richardson Effect: Thermionic Emission

At normal temperature, few if any electrons are observed to escape from metals.®’
Clearly, while electrons are known to roam around within the so called “free-
electron metals,” most of them do not spontaneously stray outside. The metallic
ions provide an attractive force for the electrons within the metal. Therefore, in
order to escape the metal, they need more kinetic energy than they normally have
at such temperatures. Schematically we can express this behavior by bestowing the
electrons with negative potential energy, whereby they can be thought to be moving
around at the bottom of a potential well of some depth, say, W.

If the temperature of the system should rise, there will result an increase in
the number of electrons whose kinetic energy exceeds the depth W. Accordingly,
some electrons will begin to escape the well and flow out of the surface of the
metal. Unless the temperature is very large, the number of electrons flowing out
will be a very small fraction of the total number of “free electrons” in the metal.
Therefore, to a very good approximation we can still use equations valid for the
original total number of electrons. Thus, (11.318) can be used for estimating the
number of escaping electrons (per unit time, per unit area of the metal surface). For
instance, in the z-direction, the expression for the number, dg, of such escaping
electrons whose x- and y-components of the momenta lie between (p., p,) and
(px +dpx, py +dp,) is readily seen to be the following:

2 [ . dp.d
dpy = —3/ (&) ap.—PP— (11.333)
h* Jp.= yamwy \m exp(7) + 1
2 2 2
Here ¢, = W, the spin S has been set at %, and p as usual is the chemical

potential.
The integrations over the two variables p, and p, is more easily done by
transforming to the cylindrical coordinates whereby (p3 + p}) = p;7, and

+o00 o0 o0
/ / ...dpydp, = 27r/ .. prdpy.
x="00 J py=—00 pr=0

Thus, the total rate of emission for the Fermi—Dirac gas, i.e., or—p is

$F—D

4 0 )2 00 prdp,.
T (5 ) a2 -
pz=~/2mW) pr=0 (%)_M

expy %7 —( T !

67Richardson, Owen Willans (4/26/1879)—(2/15/1959).
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( p2+r? ?+
- 2m H
exp prdp,/(mkgT)

dwmkgT [* o0 o
JTTMKB Pz
= —3/ (_Z)de/ 2, 2
h pe=/@mW) \ M pr=0 —(”Z;,C/”)w
exXp kB—T +1
r p+p? *°
dremkgT [ —(“z—m)ﬂt
:”m_3B/ (Z) dpein | exp | —— 224 11
h p.= /MWy M kgT .
L o=
4 k T [*® I L
= I / L) dp.tn [ exp T TEU L (1334
P=+2 W) kgT

Let us set % = €. Then (%) dp. = € and the limits on the relevant integral are
€ = W and € = oo. In this fashion (11.334) can be written as

damkgT [ —+
PF—D = T/W In |:exp{ koT } + 1i| de. (11.335)

—W4+n
kT

temperatures and below, u is essentially equal to p1, = Eg. Also the measured value
of W is generally a few electron-volts higher than the Fermi energy Er.%® Therefore,
in practice in (11.335),

Note, the exponent in this equation varies between

} and —oo. At laboratory

_€+ 0
CXP{TTM} < 1.

As such, we can expand the logarithm and to a good approximation write:

4amkgT /°°e —€ + o de
DR ——— Xp{ ———
§F-D K w p keT

_ 47rm(kBT)2 —W + Eg
L w TP ke |

(11.336)

It is convenient to define the so called work function @ as the difference between
the potential depth and the Fermi energy. Therefore, the Fermi—Dirac thermionic
current density, Jr_p, may be represented as follows:

@ = (W — Ep);

%8For instance, the experimental value of the work function @ for nickel is &~ 5 eV and for tungsten
itis &~ 4.5eV.
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4rm(kg)? ) —0
Jr—p =e¢ P F—D = € [T T exp kB_T . (11.337)

As before, e stands for the electron charge.

The above prediction agrees with the experiment in the sense that at low
temperature there is practically no spontaneous emission of electrons. An external
stimulus that adds to, or subtracts from, the work function @ — as for example is the
case with an applied field — would affect the rate of thermionic emission. Similarly,

with rise in temperature, both T2 and exp {k;—g} would increase. In this fashion,

increase in temperature would result in increasing, what then would properly be
called, thermionic emission.

11.23.1 Quasi-Classical Statistics: Richardson Effect

Equations (11.336) and (11.337) refer to a system of Fermi—Dirac free electrons. For
quasi-classical free electrons the concept of Fermi-energy has no relevance. As such,

exp (kBLT) can no longer be replaced by exp (,i—l;) Rather, it must be replaced
by the relevant quasi-classical expression described earlier — as, for example, in

(11.217),ie.,
e ) R N
X — —_—.
P\ kT %

Note, N is the number of non-interacting, quasi-classical electrons, V' is the system
volume and A is as given in (11.212): that is

5= (ZﬂkaT)_

=

h2
Accordingly, the quasi-classical version of the Richardson thermionic emission,

Jquasi—classical. 1S obtained by replacing, in (11.336) and (11.337), exp (kBLT) by 1;—%,3,

and the subscript F' — D by quasi-classical. In this fashion we get:

demks)* (NAY -w
Jquasi—classical = € [ 3 v T~ exp kB_T

2eg N W
e —5 T%exp%—}. (11.338)
gV (2nmkg)? ksT

11.23.1.1 Remark

As noted above, the physics leading to (11.337) and (11.338) is completely
different. Therefore, it would not be surprising if the corresponding results for
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thermionic current density should also turn out to be substantially different. On
close examination one finds that the most striking difference lies in their different
dependence upon the temperature. However, it is not so much the fact that the two
results have different power dependence on 7 — namely, one proportional to 7% and
the other proportional to Tz. Rather, the major part of this difference is rooted in

the exponents. Indeed, as noted by Pathria, whether we plot In (JF—ZD) Versus (%) ,
T2

or plot In (W) against () , in each case we get a fairly good straight-line.

Therefore, this information by itself does not help much in choosing between the
two results.

But, it turns out, that the numerical value of the slope — rather than just the
requirement that for each of the results the slope should essentially be constant
for different values of (%) — gives information as to whether the experiment favors
—@ or just —W. Because the value of W can be determined independently — as,
for instance, was done by Davisson and Germer® — and with that information, the
essential superiority of the F' — D version of the result given in (11.337) can be
established.

11.24 Bose-Einstein Gas

In the preceding sections it was found that in a system with large number of particles
that obey the Fermi—Dirac (F-D) statistics, the quantum statistical effects are greatly
diminished at very high temperatures. This is especially true when the gas density is
relatively low and/or the particle mass is relatively large. It turns out that under the
same conditions, a quantum Bose—FEinstein (B-E) gas also behaves in some-what
similar manner. And the system approaches the status of a classical ideal gas.

Yet, despite this apparent similarity of behavior at high temperature, there are
fundamental and significant differences in the thermodynamics of the F — D and
the B — E quantum gases at low temperatures.

11.24.1 The Grand Potential

As explained earlier, (11.234)7° with A = 1 and a = —1, may be used to calculate
the grand potential Q(z, V, T') for the B-E system. And the knowledge of Q(z, V, T')
provides information about other thermodynamic functions. For instance, (11.235)

%Clinton Joseph Davisson and Lester Halbert Germer studied — see, Nature 119, 558 (1927) —
electron diffraction from a number of metals with various values of the initial kinetic energy. In
this manner they were able to estimate the relevant values of W.

"Note, (11.234) leads to (11.235), .., (11.237).
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may be written as:

VP@EV.T)

kol = Q(zV,T)

= In[1-zexp(-Be,)]. (11.339)
p

Similarly, we can write (11.237) and (11.236) as follows:

0 :Z(BQ(Z, V,T))
Vv.T

0z
1
= —Z exp ,Bsp) + 1] , (11.340)
V P(z,V,T)
900 V.T) (1]
U V,.T) = — (—) =kgT? | ———
F) aT
:3 .V v
- _ng “Lexp(Be,) + 1] (11.341)

11.24.2 Perfect B—E Gas in Three Dimensions

Because for large N the single particle states are essentially continuous, for an ideal
B-E gas, the sum ) , may be replaced by an integral over the relevant volume V'
and the momentum p. That is: (Zp =% fd)_c'fdﬁ) = (V [(4mpHdp...).
Further, we can write &,, which is the free particle translational energy for
momentum p, as (%) = (%) As a result we have p?dp = m,/2me, de,
and (11.340) may be written as:

V= e (o) 411

p

o) () [ e

3 1
2mkpgT \2 [ 2
=2nV(mh2B ) / _de, if z #1,

w0 7 exp(x) — 1

2mksT\? [®  (x)? .
=N, +2nV ——dx, if z=1. (11.342)
h? x>0 exp(x) —1
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Here we have arranged the sum over p so that a possible contribution from
momentum p exactly equal to zero’' is separated from the rest of the sum over
“non-zero” values of momentum p. Also, two other things have been done: First, a

. 2 . o
variablex = B¢, = (%) has been introduced. Second, for z = 1 the contribution

from the zero momentum term has been denoted as N,. When N, is non-zero, there
is macroscopic occupancy of the zero energy state.

As shown in (11.230) and (11.231), for the B-E system being considered here,
the physically acceptable values of z and w lie within the ranges 1 > z > 0 and
0 > u > —oo0, respectively. And because the behavior of the number of particles in
the system is quite different for the cases z — 1 and 0 < z < 1, it is best to separate
(11.342) into two parts. For instance, setting z — 1 leads to the result for Nexcited
which — being the number of particles in the non-condensed excited states — is equal
to (N — N,).

3
2nmkgT \?
N — Ny = Nexcited =V (TB) g%(l) (11343)

Similarly, for general z — meaning when 0 < z < 1 — (11.342) gives a relationship
between z and the total number of particles N.

2nmkgT 3

The relevant value of z for any given temperature 7" can be calculated from (11.344).

Differences between (11.343) and (11.344) suggest that some important mile-
stone is being reached at the “point” z = 1. Let us call the temperature at this
transition point, 7.. In the limit when z is infinitesimally close to 1 — without
actually being exactly equal to 1 — the temperature is infinitesimally close to 7.
Equation (11.344) still applies here and we get

2nmkgT, 3
N=V —m g%(l). (11.345)

This relationship determines the temperature 7,

: :
T, = ( h ) N3 . (11.346)
2nmkg Ve (5)

(Note, for any n, g,(1) = ¢(n).)

L -1\ .
71CIearly, any such zero momentum contribution, denoted as N, ~ O (— [—z_l + 1] ) ,isa
function of the temperature, 7, and is significant only when z = 1.
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Equation (11.346) specifies how the temperature 7 is a function of both the
particle mass m and the number density %

11.24.3 Occurrence of Bose—Einstein Condensation:
Temperature T < T,

Subtract (11.343) from (11.345) and divide the result by (11.345). We get:

N—(N—N,,) _ V(%)%g%(l)_(v(hmh#)%g%(l))

! v (55 50

-(3)-[-()]

In other words, in order for N, to be non-zero and positive — which means, in order
for the Bose—Einstein condensation to occur — the system temperature has to be
lower than 7.

Below 7. the system is a mixture of two apparent phases: one consisting of
Nexcitea “‘€xcited-particles” with momentum — or equivalently, the kinetic energy —
greater than zero and the other comprised of N, “condensed particles” that are all in
the single, zero-momentum — equivalent to zero kinetic energy — quantum state.

ol

11.24.4 Pressure and the Internal Energy

To determine the pressure and the internal energy we need to re-express (11.339)
and (11.341) in a form suitable for calculation. We get:

PEBD — () [T mli—cem (-pen)l4nar

kT w)),—
3
2mkgT \2 [
=—271( mth ) / ln[l—zexp(—x)]x%dx
x>0
3
N In(N, + )] 2nmkpT \ 2
(7)o [P mme (TRT) - arw

(Because (37) O [W] <« 1, it has been ignored in the final result above.)
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90(. V. T) o[~
e = (E8D) (L]
z,V
z,V
3
_ (5) PV (11.349)

The last expression, namely U = (%) PV, applies to all three dimensional, non-
relativistic ideal gases whether they be classical — see, for example, (11.108) —
or quantum (see (11.246) and (11.292)). As noted earlier, it contrasts with the
corresponding result for extremely relativistic three dimensional ideal gases who,
according to (11.107), give: U = 3PV.

11.244.1 g,(z): Comment

In (11.344), and what follows, g,(z) signifies:

_; % i 11!
gn(z)—r(n)/a X"z exp(x) — 1] dx. (11.350)

As described in (11.230) and (11.231), for the B-E gas under consideration, the
physically acceptable values of z lie within the range 1 > z > 0. Therefore we can
appropriately expand g, (z) in powers of z.”> Using (11.350) we have:”

= zexp (—x)
TTAR 1[1—zexp< x)]dx
F(n)/ x"~ ldxlz;[z exp(— X))
"L

For small z, g, (z) tends to z. But as z approaches unity, g, (z) becomes equal to the
well known “Riemann zeta function” ¢(n).

gn(2) =

2 3

—z+—+3—n+0(z4) (11.351)

NlN

For I'(n), see (11.245). In particular, I‘(%) = F( )= §£

73Compare and contrast g, (z) with £, (z) : the latter was used tor the F — D gas and was defined
in (11.241). Especially, contrast the small z expansions for g,(z) — given in (11.351) above — and
fu(z) that was given in (11.249). All terms in the g,(z) and f,(z) expansions look similar except
that those with even powers of z in the f, (z) expansion have negative sign.
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Throughout the range 1 > z > 0, g,(z) increases monotonically.”* In other
words, the maximum value of g,(z), that is appropriate to the present physical
system’ occurs forz = 1.

gn(2) < gn(1) =c(n) = Z ( ! ) . (11.352)

"
=1

Later on in this chapter, we shall need to know if, and where, ¢(n) diverges.
This question is readily answered by using the so called integral test. That is, by
examining the convergence of the integral: [*° (4). Forn # 1 we have

® (dx xi-n
/ (_) _ ( )|°°, (11.353)
X" 1—n

which diverges for n < 1. For n exactly equal to 1 the integral

® rd
/ (_x):m(x)|°°, (11.354)
X
also diverges.

In other words, ¢(n) diverges forn < 1.

11.24.5 Degenerate ldeal B-E Gas

At temperatures lower than 7, the B-E gas is “degenerate.” Its physical properties
are starkly different from those of a classical non-interacting gas. In particular, in
defiance of the traditional classical Boltzmann—Maxwell-Gibbs prescription, even
as the temperature rises above zero the macroscopic occupancy of the zero energy
state persists. For instance, let us begin with the equality (11.347). Because T% is
positive, the largest value of N, — which is the number of particles in the degenerate
state — consists of all the N particles and it occurs at zero temperature. As the
temperature is raised above zero, the number of degenerate particles decreases until
it reaches zero at 7 = T.. This behavior is the opposite of that of particles in the
excited states. Nexciea = (N — N,), is vanishing at zero temperature and reaches its

maximum, N, at the critical temperature.

74Next let us look at the chemical potential 1. Recalling (11.231), we note that because z =
exp(Bu), the physically acceptable values of p are negative and they range between minus-zero
and minus-infinity.

"SHere we shall need gi() = s(2) and gs() = () which are ~ 2.61238 and 1.34149,
respectively.
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11.24.6 Specific Heat in the Degenerate Regime

As mentioned before, throughout the degenerate regime, z is infinitesimally close
to being equal to unity. Therefore, the pressure and the internal energy in the
degenerate regime are readily found from (11.348) and (11.349) by setting z = 1.
We get

3
5 2rmksT \?
P :g(z) kT (”’Z—ZB) . (11.355)

Note the pressure in the degenerate state is independent of the system volume.
Could it be the result of the macroscopic presence of the B-E condensed state in
which all particles have zero momentum and thus do not contribute to the pressure ?

According to (11.349), the internal energy within the degenerate regime is, as
usual, directly proportional to P V.

()< ()’
Gy

(The expression for the critical temperature 7; that was used in (11.356) above is
recorded in (11.346).)
The specific heat, C,,, within the degenerate regime is

() -G

Notice that as T approaches T; from below, the specific heat approaches the value

Co(To) = () H ﬂ Nkg = 1.92567 Nkg. This is precisely the value of the

specific heat when T is approached from above (see (11.367)). Therefore, the
specific heat is continuous at all temperatures.
Next examine the derivative of the specific heat. We have:

3
aC 45 3) | Nks (T2
) (B[S | MR (T (11.358)
or Jy \8J[c(3)] T \L
Clearly, at low temperature, the slope of the “specific heat- versus- the temperature”

curve keeps rising at the rate Tz. When the temperature 7' reaches 7. from

5
below, the slope of the specific heat curve reaches the value: (ﬁ) I:s(z):| Nkg _

U

S ®
2.88851 2k8.
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11.24.7 State Functions in the Degenerate Regime

Recalling that in the degenerate regime z = 1, or equivalently the chemical potential
1 = 0, other state functions are readily found.

G =npu =0;

o= (o=-[sf] e ()

H=U+PV = (g) U= (g) |:5§_ g):|NkBT (%)% (11.359)

The notation used is as in (11.7). That is: n is the number of moles; pu is the
chemical potential per mole; G is Gibbs potential; F' is Helmholtz free energy;
S is the entropy and H is the enthalpy.

11.25 Non-Degenerate B-E Gas

11.25.1 Egquation of State

As explained above, in the degenerate regime z is unity and N,, the number
of particles in the condensed state, is non-zero. In contrast, in a state of non-
degeneracy, the number of particles in the condensed state is vanishing and z ranges
between zero and a value that approaches unity from below. Yet, much like the
F-D gas studied earlier, rather than z, we are interested in results in terms of the
temperature. To this end we need to invert the series expansion implicit in (11.348)
and (11.349). The needed inversion will change powers of z into powers of p. The
inversion procedure is almost identical to that followed for the F-D gas.

The relevant difference in the grand potential for the F-D and the B-E systems
lies in the different values of the parameters A and a. (This difference is demon-
strated in (11.234).) In particular, A = 2 and a = 1 for the § = % F-D gas while
A = 1and a = —1 for the S = 0 B-E system. Therefore, the high temperature,
small z, results can immediately be transformed from one system to the other. For

example, both ( If;—‘;) and the internal energy U, givenin (11.256) and (11.257), are

readily re-expressed as the corresponding results for the B-E gas by changing the
signs of the terms with odd powers of p.
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We get

2
PV :kBTN%l—(is)er (1——5) p2—0(p3)}
22 8 332

where ,as per (11.250),

N

NA o
p=Jx = (—) QrmksT) = . (11.360)

VA

(Note that in the above equation, and in the following, A = 1.) Comparing with
a classical gas, the above equation appears to represent the behavior of a gas with
“attractive” inter-particle force. Notice that this apparent attractive force is being
produced by a completely non-interacting quantum gas ! We recall that if the
quantum particles obey, rather than the B-E, the F-D statistics, the apparent inter-
particle interaction is “repulsive.” (See (11.256).)

As usual, the internal energy is found from (11.360) by using the identity U =
%P V. We get:

2
y = kTN { {— (LS)H (l _ _5) 02— O(p3)} . (11.361)
2 23 & 33

9, _ 3p . . .
Because (B—)N , = (ﬁ) , the system specific heat is:

oUu 3kgN 1 4 1 5 3
b= [ — — 1 — PR . (11.362
¢ (aT)N,V 2 % +(2;)p+(3§ 4),0 + 0l )} (11362)

For a B-E gas at very high temperature the specific heat, C,,, approaches its classical
limit, 1.5kgN. But as the temperature is lowered below oo to a finite value, the
specific heat starts to rise’® above its classical value. However, such increase in the
specific heat with decreasing temperature cannot continue all the way down to zero
temperature. This is the case because for all thermodynamically stable systems the
specific heat is vanishing at absolute zero. Therefore, at some finite temperature
the increase in the specific heat C, must stop and a process of decrease must
begin. (Because of such dramatic change in thermodynamic behavior we expect
this temperature to be 7¢.) Indeed, coming from the opposite direction — as was
shown earlier in (11.357) — the specific heat approaches the value C,(7;) =
GIEs

s(3)
Clearly, therefore, it is important to determine what happens as the temperature
approaches T, from above. We study that matter below.

:| Nkg =~ 1.92567 Nkg as the temperature approaches 7. from below.

76This means the slope of the specific heat versus the temperature curve is negative here.
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11.25.2 Non-Degenerate B-E Gas: Specific Heat

At zero temperature essentially all the particles are in the condensed state. As
the temperature begins to rise, the number of condensed particles begins to
decrease. Their number approaches zero as the temperature reaches 7,. And, as the
temperature rises beyond T¢, the value of the parameter z starts to decrease below
unity. To make use of this information let us start with (11.344) and (11.348) both
of which referto 7 > T..

g%(z). 85(2)
N=V=5= P=keT 5. (11.363)

On combining the two relationships given above we get:

P_NkBT g5(2) (11.364)
v g:@ | '

And, of course, we also have the usual relationship between the internal energy and
the product of the pressure and the volume. In three dimensions we have:

3 3 85(2)
U=>PV =-NkgT . (11.365)
2 2 23 (2)

(Compare and contrast this with the corresponding result for the F-D ideal gas —

_ ; 15
thatis, U = s NkgT ﬁ )
2

Given the internal energy, the calculation of the specific heat (g—?)v = Cy(T)
for temperatures 7 > T is straight forward, but requires a little bit of algebra. The
relevant algebra and the final result are given in an appendix — see the argument that
leads to (L.6). For convenience that result is re-stated below:

1585\ 9 (80
C,(T) = Nkpg | — | =2 e b . (11.366)
4 \g:0) 4\81(d
In the limit that the temperature approaches 7. (from above), z — 1, and g 1 (1) —
00, the specific heat reaches the value given below:

s(1) 5
Cy(T) = r—1.4+0Nkg |:% (jj(l))} = Nkg |:% (i%;
3 2

1.92567 Nkg. (11.367)

%
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This result and that given in (11.357) indicate that as the temperature is lowered
from oo — where the specific heat is at its classical limit %N kg — down to T,
the specific heat increases monotonically with decrease in temperature. It reaches
the value 1.92567 Nkg at T = T.. On the other hand, as also noted before,
at zero temperature the specific heat is vanishing. But it increases monotonically
with increase in temperature. And as the temperature approaches 7, from below,
Cy,(T — T.) reaches precisely the same value as reached from above: that is
1.92567 Nkg — see (11.357). Thus the specific heat is continuous and its highest
value is reached at T = T..

However, while the specific heat itself is continuous throughout, it turns out
that the same is not true for its slope. As shown in (11.358), as the tem-
perature rises above zero, the slope begins to increase slowly with increase in

temperature. And when 7 reaches T¢, the slope has achieved the value (ﬁ)

8
sG) | vk _ Ny
[g(%):| 7. = 2.88851 £,

This is to be contrasted with what happens as the temperature increases from

T. — 0 across to 7, + 0. Upon crossing 7. the slope immediately changes to

3 2 .
{(%) [iggﬂ - % [{' (%)] } NTIEB = —0.77807 and stays negative beyond T
until it reaches the limiting value of —0 at 7 = oo. Thus, the slope has a

discontinuity”” at T = T.. The difference between the rising and the falling slopes

is {126—77r [¢ (;)]2} Nin — 366658 Mhn,

11.25.3 Bose—Einstein Condensation in §-Dimensions

As stated before, for large N the single particle states for an ideal B-E gas are
essentially continuous. Therefore, the sum ) , may be replaced by an integral.
Following the procedure employed for treating a three dimensional system — see
(11.342) — first we determine the integration factor. In § dimensions the integration

factor’® is:
1 . . vl nt 1
P 27"

where v? is the §-dimensional volume. The energy & p for momentum p is the free

. . 2
particle translational energy equal to (é”_m) .

7TPathria, op cit. page 183, equation (7.1.38).
T8For its calculation, see Pathria, op. cit.
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The number of particles are given by the equality

V==Y [texp(pe,) + 1] = 0 ([ +1]7)

P

Ve 71’% p=oc —1 —
+(7)5[W]/ [ exp(Bey) —1]7 P dp.
0. 8 7 g oo %G
= v+ (5 [ W] s l)? [/ TTow( -1 ‘”‘}

vi. 8 P s §
=N, + (W) . [@] @2mkgT)> |:g(82)(Z) r (E)i| , (11.369)

where N, is the number of particles in the zero momentum condensed state.
In the above, the contribution from momentum p exactly equal to zero — i.e.,

o (— [—Z_l + 1]_1) = N, — is separated from the rest of the sum over “non-

2
zero” values of the momentum p. Also, a variable x = B¢, = (gim) has been

introduced. Above T = T, N, = 0 but it becomes non-zero below 7.

As the critical temperature is approached from above 7¢, and while N, is still
zero, the parameter z tends to unity. That is, at T = (T, + zero), N, = 0 and
z = (1 — zero). Therefore, (11.369) predicts that the total number of particles is
given by the relationship

v8 8 7'[% g 8 8
(5 e () (0)

where ¢ (%) and T (%) respectively are the Riemann zeta, and the Gamma, functions
of argument % The requirement that the number of particles, N, is finite places
constraints on (11.370). In this regard, the only component of this equation that
needs double-checking is ¢ (%) r (%) .

To this purpose we recall the results of (11.353) and (11.354) where it was shown
that ¢(n) diverges whenever n < 1. Therefore the Riemann zeta function g(%), and
the predicted result for &, tend to co when (§) < 2. Clearly such a result for N
would be completely un-physical.

Hence, there can be no Bose—Einstein condensation in non-interacting Bose
gases with dimensionality less than or equal to two.

11.25.3.1 The Critical Temperature

The critical temperature 7;. can be found by re-arranging and inverting (11.370).
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5 173
v § w2 s ) 8

Decreasing the temperature below 7, brings about Bose—Einstein condensation.

11.25.3.2 Temperature Dependence of B-E Condensate

_s
Now that T, has been calculated, we introduce 7, * into (11.369) — where z must

now be set equal to 1 — and after a little algebra arrive at the following relationship
for the number N, of particles in the B-E condensate.

N, =N |1 T : 11.372
o — _(TC) ( . )

Outwardly, the above relationship is in disagreement with the previous result that
predicts that B-E condensation cannot occur if § is less than or equal to 2. In other
words, it appears to disavow the need for § to be greater than two. That appearance,
however, is in the nature of an optical mirage. When § < 2, then according to
(11.371) the so called critical temperature, 7., goes to zero and (11.372) truly and,
indeed visibly, fails to have any meaning.

11.25.3.3 Pressure and the Internal Energy
In order that (11.339) may be transformed to apply to § dimensions, we set
z = 1 and follow the procedure used, in the preceding section, for deriving the

corresponding results for three dimensions. In this fashion, we get the following
expression for the system pressure at temperature 7.

P ) 2 s[ [ (s

) 3 e T )

The internal energy, U, and the specific heat, Cy(T), are also readily found.

z.08

$ 4 s s
4 et () () o
3)!
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)
) () () o
X |:g (g + 1) r (g + 1)] . (11.375)

Because in order for the B-E condensation to occur § has to be greater than 2,
therefore the specific heat always goes to zero faster than the first power of the
temperature.

and

Cv(T)

11.26 Black Body Radiation

The preceding treatment referred to Boson systems that have a given number, N,
of particles. Any possibility that some particles may be “destroyed” or additional
particles “created” was not considered. In other words, in the preceding analyses,
the particle number was conserved.

In contrast, there exist Boson quasi-particles — such as “photons” in electro-
magnetic radiation, “phonons” produced by atomic vibrational motion in solids,
spin-waves in magnetic systems, etc. — whose number is variable, dependent on the
temperature and other relevant parameters.

Consider a macroscopic collection of photons. In order for these photons to reach
equilibrium, assume them to be enclosed in an opaque container of volume V' that
is constructed of diathermal walls which are in thermal contact with a heat energy
reservoir at a fixed temperature 7. The container also has a microscopic opening
which allows a small amount of electromagnetic radiation to escape every second.

The containing walls absorb and re-emit radiation. Generally, in the process,
photons experience multiple reflections from the walls, and a state of dynamic
equilibrium — to which a temperature may be assigned — is achieved thereby. Clearly,
the number of such photons must be linearly proportional to the volume V' and must
depend on the system temperature. Note the system temperature is the same as the
temperature 7" of the heat energy reservoir.

11.26.1 Thermodynamic Consideration

Let Y stand for the internal energy, per unit volume, at temperature 7, for
frequencies that lie in the narrow range between v and v + dv. Clearly, T is a
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function only of the temperature 7 and the frequency v. That is: ¥ = Y(7,v).
Summing it over all the possible frequencies yields the internal energy density, u,
which is dependent only on the temperature.

w(T) = /Oo (T, v) dv. (11.376)
0

The total internal energy, U, is equal to the volume V' multiplied by the internal
energy density u(7).

U=UTV)=VxuT). (11.377)

Maxwell’s theory predicts that the pressure, P, exerted by electromagnetic
radiation, is directly related to the internal energy density u.

P = (%) u(T). (11.378)

In an earlier chapter, we proved — see (5.16) — the identity:

JoP iU
T — =P+—) .
aT ), v )
Here, it translates into

1\ du(T) 1 4
d (5) ar (5) u(T) +u(T) = (5) u(T), (11.379)

which gives
1\ du(T) 1 4 )

— = 44— 11.380
T ( )

Integrating the above yields the so called Stefan-Boltzmann 7% — Law:”

In (u) = 4 In(T) + constant;
u=oT* (11.381)

7Stefan, Josef (3/24/1835)—(1/7/1893).
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Here o is the integration constant.
In the years since the experimental observation of this result by Josef Stefan, it
has received ample re-confirmation. The Stefan constat o has been found to be®’

o~ 7561 %107 m3 K™, (11.382)

The pressure and the total internal energy are also readily found from (11.378)
and (11.377).

P = %UT“; U=VaoT* (11.383)
(It is important to note that unlike all no-relativistic classical or quantum perfect
gases, here U # %P V. Rather, U = 3 P V. This result is consistent with that of a
completely relativistic perfect gas. Compare, for example, (11.107).)
Calculation of entropy is also straightforward. Recall that the first-second law —
see (5.6) —states: T dS = dU + P dV. At constant volume it becomes: T (dS)y =
(dU)y . Division by T and integration leads to:

at T=T
/ @S)y = S|I=T = 5
al

t T=0
T=T dU T=T
:/ ( )V:VU/ 4T3dT
T=0 T T=0

4 3
Vo (5) T3, (11.384)

Now, using (11.7), the Helmholtz free energy, F, the Gibbs potential, G and the
enthalpy, H, can also be found:

1
F=U—TS=—V0(§)T4;

1 4 1 4
G=F+PV=—Vo 3 T +Vo 3 T = 0:

4
H=U+PV=Vo (5) T (11.385)

80See Sears and Salinger, op. cit., page 227.
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11.26.2 Quantum Statistical Treatment

11.26.2.1 Chemical Potential Is Zero

As noted above, photons experience multiple reflections from the containing walls,
resulting in absorption and re-emission. This means that a photon ideal-gas is
fundamentally different from an ideal gas composed of ordinary particles because
the total number of ordinary particles is a constant. Here the number of moles n of
the given quasi-particles — namely the photons — is not fixed. Rather, » is a variable,
dependent upon the temperature and the volume. The determining factor, of course,
must be the requirement that the Helmholtz free energy, F, is a minimum for given
fixed values of the volume V, and the temperature 7. That means the differential
dF,

oF oF JoF
dF = | — dV + | — d7 + | — dn, (11.386)
WV ) T )y, an .V

must be vanishing when V' and 7' are constants equal to the given values of the
volume and the temperature. In other words, when in (11.386) both dV and dT are
equal to zero, the following equality must hold:

oF
dF = (—) dn =0. (11.387)
on )y

This means that for a photon gas in thermodynamic equilibrium we have

(B_F) =0. (11.388)
on TV

As we recall from (11.7), the chemical potential, i — for one mole of a given
o . Therefore, it follows that the chemical potential for

system — is defined as (55) .,
a photon gas in thermal equilibrium is equal to zero.

11.26.3 Calculation of Energy and Pressure

Following Bose®! and Einstein,®” the electromagnetic radiation is treated as a gas of
non-interacting, quasi-particles called photons. In quantum mechanical description,

81Bose, S.N., Z. Physik 26, 178 (1924).
82Finstein, A., Berliner Ber. 22, 261 (1924); Berliner Ber. 1, 3 (1925).
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the energy of a photon of momentum p is €, = cp = hw, where c is the velocity
of light in vacuum and w is the rotational frequency of the photon.

Because an extensive analysis of the B—E gas already exists in the preceding part
of this chapter, we can simply make use of it here. In particular, for calculating the
system pressure, the relevant equation to use is (11.235). Similarly, the internal
energy U(z, V, T) is available from (11.236).

11.26.3.1 The Pressure

For convenience we reproduce (11.235) below.

VP V. T)

A
KT =Q(V.T) = ;Xp:ln[l+azexp(—ﬂsp)]

A(VY [® Bp’ 2
=—|—= In|{1+azexp|—=— ) [4np-dp. (11.389)
a \h*)J, 2m

For a system of non-interacting photons being considered here, we need to introduce
appropriate changes: namely, set z = 1, &, = ¢ p, and because photons follow
Bose—Einstein statistics, set @ = —1. Orthogonal to the electromagnetic radiation —
meaning, normal to the direction of the velocity ¢ — photons have two mutually
perpendicular polarizations. Therefore, A has to be set equal to 2. Accordingly,
(11.389) can be written as:

2kgT o
PV =-V ( hB3 )/ In[1 —exp (—Bcp)] 4 p3dp

=-V [M} /ooln[l —exp (—x)] x?dx

(he)?
. 8m(kgT)*7 [ —1 ©  x3dx
B _V[ (hey ] ()] s
_ 81 4 1 4

where the Stefan constant o, referred to in (11.381)—(11.383), is:

[ 8’ .
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11.26.3.2 The Internal Energy

Similarly,®* we can use (11.236) for the internal energy — which is also, for
convenience, re-produced below:

BQ(Z,V,T))
Uz V,T)=—- ———
(z ) ( 0B o
A _
A () 1T = X e,
V4 V4

A 14 [} 2 2 -1
2= / P\ texp (P22 1| amprdp. (11392)
a\h)J, \2m 2m

Again, in order to convert this equation to apply to a gas of non-interacting Bosons,
weneedtosetz=1,¢, =c p, a=—1and A = 2. This gives

V oo
U=- (2h_3) / (cp) [=exp (B p) + 117" 4xp’dp

/00 [—exp (x) + 1] x3dx

o

_ 8w (kgT)* [ x3dx
_V[ (hey N xp(0) — 1

_ 87 (kgT)*7 (7" _ .

8w (ksT)*
‘_V[ oy ]

(Again, we note that the equality U = 3 PV is consistent with that yielded by an
extremely relativistic monatomic ideal gas. Compare for example (11.107).)

11.26.3.3 Other Thermodynamic Potentials

All other thermodynamic potentials can now be related to P V. For example, we
have already learned that the chemical potential p is equal to 0. Accordingly, the
Gibbs free energy must also be vanishing. This tells us that the Helmholtz free
energy F is:

F=G-PV=npu —PV=0-PV

_ 81 4_ 1\ ..,
— v [45(}10)3} (ksT)* = —Vo (5) T (11.394)

. . . 3 4
83The integral above is well known: that is fgoo exg(g"_ ;= %
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But Fis = U — TS, and U = 3 PV. Therefore the entropy, S, is:

_(PVY [320°(sT)’, 4\, s
S=4 (?) —y [W} ke = Vo (5) T3, (11.395)

Finally, the enthalpy H.

4
H=G+TS=0+TS=Vo (5) T (11.396)

11.27 Phonons

At finite temperature, atoms vibrate in the vicinity of stable mechanical equilibrium.
These vibrations emit sound waves. At sufficiently low temperature, sound waves
have low frequencies and long wave-lengths.

11.27.1 Phonons in a Continuum

If the wave-length is long compared to the lattice spacing, the lattice may be
approximated as a continuum. Such continuum would have (continuous) vibrational
modes. These modes — much like those of the electromagnetic field that gives rise to
photons — would give rise to elementary excitations that are called “phonons.” While
one might imagine the frequencies of such elementary excitations to extend all the
way from zero to infinity, in fact, because the lattice spacing is not zero, the phonon
wave-length and the phonon frequency must have finite limits. Such limits would
depend on the inter-atomic spacing of the solid — or equivalently on the number of
atoms per unit volume.?* But, as shown below, at low enough temperatures, where
the continuum approximation is valid, the actual magnitude, vp,x, of the maximum
value of the phonon frequency has little effect on the physics of the phonon system.

A simple model of phonons assumes they are non-interacting Bosons whose
number — much like that of the “photons,” which were studied in the preceding
section — depends on the system volume and the temperature. Therefore — as was
also the case for photons — the number of phonons is not conserved. Another
important assumption about the phonon gas is that — again, like the photon gas —
it is not subject to quantum condensation. Indeed, it is clear that all the preceding
calculations for the photon gas can readily be transplanted to apply to the phonon

84 An estimate of the maximum value of the phonon frequency can be obtained from (11.417)—
(11.422).
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gas. Therefore, in the following we shall look for the key that helps transplant one
set of results into the other.

For low frequencies and long wavelengths, phonons have — also see the succeed-
ing sub-section — the following dispersion relation:

cok h
gp =vh =ho = (2n)h—co (X)_CO‘D' (11.397)

Here v is the frequency, @ the angular frequency, and k is the magnitude of the
wave-vector. The wave-length is A, and ¢, is the velocity of sound — assumed here
to be independent of the temperature as well as the direction. Also, as in quantum
mechanics, it is convenient to define a momentum p: that is, p = ik = (%) .

In (11.393) that refers to the photon gas, £, was equivalent to ¢ p where c is
the velocity of light in vacuum. Therefore, for transforming the photon results into
those for phonons we need to replace the velocity of light, wherever it occurs, by
the velocity of sound: that is ¢ — ¢,.

Additionally the photons have two mutually perpendicular polarizations orthogo-
nal to their direction of motion. In equations for the internal energy and the pressure,
that fact requires the choice A = 2 . In contrast, phonons have three modes: one
longitudinal and two transverse. Thus A has to be equal to 3 here.

Finally, while the integration limit for the photon frequency is correctly set at
0o, for phonons the limit should necessarily be finite. Still it is expected that the
limit would be high enough that the additional contribution to the relevant integrals
would be very small. (This is ensured by the integrand decreasing exponentially
with increase in the momentum.)

With these changes, the thermodynamics of phonons that are produced by a
continuum of atoms, can be obtained directly from that of photons. The two trivial
numerical changes needed are ¢ — ¢, and A = 2 — A = 3. As a result, for
instance, we multiply the right hand side of (11.393) by (%) and change ¢ to ¢,.
This gives

U=- (g) (Zh—Z) / "™ (G0 p) mexp (Bey p) + 117 dmpPdp

3\ [87 (kgT)*] [mo _
=V (5) [ﬁ} /0 [—exp(x) + 117" x*dx

N 3\ [8n(kgT)*] [ x’dx
~v (E) |: (l’lC,,)3 :|/g eXp(X) —1

4 4
)

where

Xmax = ﬂhvmax = ﬁ ha)max = ,B Co Pmax- (11399)
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At low to moderate temperatures, Xm,x should be > 1.
The specific heat of phonons in the continuum approximation is

aU 127 kg* 4 ;3
v)continuum = | T+ ~ V|——— — |4T
@i = (7). [ wc»3} (%)

127* Nk T\
_ 127 B(@ ) (11.400)

5 continuum

where

1
he, 3N \?
®con inuum — - . 11.401

o = () (227) (11400

11.27.2 Exercise VIII

By following the procedure used for the calculation of the internal energy U, or
otherwise, calculate all the remaining thermodynamic potentials for phonons in the
continuum approximation.

11.27.3 Phonons in Lattices

Consider N classical atoms. Denote their three dimensional Cartesian position
vectors as Z,N= (X1, Xi2, x;i3). Assume that at low temperature these atoms form a
solid. As an effect of the temperature, their positions undergo small vibrations in the
vicinity of stable mechanical equilibrium. Let the equilibrium value of the position
vectors be Zf\;l (Xi.1,Xi2,X;3). Denote the displacement from the equilibrium of
the 7-th atom in the « direction — note, « = 1,2, or, 3 — as ¢; 4. In other words, set

Qi = Xia _fi,a- (11.402)

The kinetic energy of the i-th atom, of mass m;, is % 23=1 m,»(x{,,,)z. Because
(x/«) = (gi ), the total kinetic energy, E, of the N atoms,

E =

=

N 3
oY milxia) (11.403)
i=1a=1

can be written as

N 3
E = %Z > mi(gia) (11.404)

i=1a=1
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Let us denote the potential energy of the system of (N atoms) as

N 3
Vo= V(szw). (11.405)

i=1a=l1

Because displacements from the equilibrium are small, V can be expanded in Taylor
series.

> () o

o a9, S Yia 9jn

=1 axi’aaxjn (Xi@=XiasXjn=Xjy)

L. (11.406)

Here, V, is the potential energy when the system is in equilibrium at rest. And
because the potential energy is at its minimum when x; , = X; 4, therefore, its first

derivative (;’YV ) is vanishing. Accordingly, to the leading — meaning, to the
) Xia=Xia

second — order in the small variables g; o, g, etc., the system Hamiltonian H can
be written as

H=E+YV

N 3
~ Va + Z Z Yia;jn (qi,ot quI)
i,j=lan=1

N 3
+ % DO mi(gia) (11.407)

i=1a=l1

where we have used the notation

() ()
Yies;jn =\ 7 . a.
" 2 axi‘u axj’n (Xia=Xia3 Xj.n=fj,77)

= Vinia- (11.408)

Clearly the given Hamiltonian, , is an homogeneous, symmetric quadratic form
in 3 N variables like ¢; 4, etc. As shown in (F.1)—(F.12), a change of variable can
always be devised to reduce an homogeneous, symmetric quadratic form into a sum
of squares — in this case, 3 N different squares. Indeed, the reduction to a sum of
squares may be done in many different ways.®> An appropriate change of variables

8See, e.g.: H. and B. S. Jeffreys, op. cit.
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here would be the so-called “normal coordinates” & where i = 1,2,3,...,3N,
whereby the Hamiltonian given in (11.407) would get transformed into

3N 1 .
M= Vot Y omi[6) +0? 8]

i=1

3N
=Vo+ ) Hi. (11.409)

i=1

Here the w; — all 3N of them — are the®® “characteristic angular frequencies” of the
so-called “normal modes” of the system.

The above Hamiltonian looks similar to that in a problem studied earlier:
namely, one that related to a collection of N, quasi-classical, distinguishable,
mutually non-interacting, one-dimensional simple- harmonic-oscillators — compare
(11.72)—(11.77) where one sets a = b = 0. There is, however, a fundamental
difference between the distinguishable oscillators studied earlier and the system of
indistinguishable phonons that obey Bose statistics. Regarding the earlier case, we
note a statement by Pathria: these oscillators are assumed to be “distinguishable”
because they are merely a (classical) representation of the (quantum) distinguishable
energy levels available in the system. Simple-harmonic-oscillators themselves are
not particles, or even so called “quasi-particles” such as photons or phonons that
have to be treated as being indistinguishable.

The Hamiltonian H; — where i =1,2,3,...,3N — has (quantum) eigenvalues of

the form,%’
1 .
<n1|7'[,|n] > =h(,(),' np +§ 8)11,)1/'3
1
< nllexp(_ﬁHl)ln] > = exp _ﬂhwl n; + E 8)11,}1!'7
where
n=0,1,2,...,00. (11.410)

The subscript i ranges over the normal modes, of which there are 3 N. Also, each
of these normal modes has an integral number — ranging between 0 and co — of
phonons. Thus, while the number of phonon energy levels is fixed at 3 N, the number
of phonons is not conserved.3® And similarly to (11.126)—(11.129), for all statistical

86Clearly, these frequencies depend on the system potential energy, which itself — in view of what
N(N—1)
2

has been assumed above — would depend on the [ ] two-body inter-atomic potentials.

87Compare (11.160)—(11.161).

88Rather, the total number of phonons depends upon the system temperature as well as its volume,
etc.
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analyses, the convenient partition function to use is the Canonical partition function.
Following the procedure for calculating Canonical partition function, &, for quasi-
classical quantum systems — see (11.126) — we can write the partition function as

E = Trlexp (—H)]

3N 00
=exp(—BV)[]| D2 <milexp(—pH) |m >

i=1| n;=0
3N oo
=exp(—BE)[]| D exp(—Bhosn)
i=1| n;=0
3N
= exp(—B E,) [ [ [1 —exp (— phon)] ™", (11.411)
i=1
where
YN
E, = (Vo + %) (11.412)

is the energy of the system at zero temperature. Notice that it includes both the
sum of the zero-point energies of the 3 N normal modes and the total inter-particle
potential V,. Because E, represents the binding energy of the lattice (at zero
temperature), it is necessarily negative.

Once the partition function is known, various thermodynamic potentials can be
calculated.®® To this purpose we need first the logarithm of the partition function.

3N
In{E} = —BE,— Y _In[l —exp (- Bhay)]. (11.413)

i=1

The system internal energy, U, and the specific heat, ¢, (T’), are readily found.

81n{E}) N haoy
U=-— —E,+y — 11.414
( ® ) 2 o pron -1 (14

2
oU () exp (Bhen)

i=1

89Compare (11.129) and the description that followed.
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11.27.4 The Einstein Approximation

Einstein, who was the first to apply quantum mechanical description to the specific
heat of solids, suggested an approximation whereby the angular frequencies of the
3 N normal modes are treated as though they are all equal, say = wg. Then (11.415)
gives

(ZBL‘})Z exp ( Bhwg)

[CU(T)]Einstein =3N kB [exp (ﬁhwE) _ 1]2 ’

(11.416)

At high temperature, where (ZB—“’%) < 1, (11.416) yields the well known classical

result of Dulong and Petit, namely ¢, (7)) &~ 3 N kg.

The result is unsatisfactory at very low temperatures. Unlike the experiment,
which suggests a T behavior, the Einstein approximation leads to a very rapid,
exponential fall off with decreasing temperature.

11.27.5 The Debye Approximation

While the high temperature limit is trivial, in order to actually calculate the
thermodynamics of the system at intermediate temperatures, knowledge of the
normal modes spectrum is needed. This requires either theoretically solving an
often time laborious, quantum mechanical problem with inter-particle coupling or
physically doing the relevant experiments.

The angular frequencies, w;, of the 3 N normal modes are generally closely
spaced. Therefore, it is often convenient to define a frequency spectrum, g(w),
where g(w) dw is equal to the number of normal modes whose angular frequencies
lie between w and w+dw. In other words, rather than working directly with different
normal modes, we work with their frequency spectrum.

p
/ g(w)dw = 3N, (11.417)
0

The upper limit of the angular frequency,”’ wp, is so chosen that the total number
of normal modes is equal to the actual number 3 N.

As is implicit in the definition of the partition function, the area of quantum
statistical phase space per normal mode is equal to 4. Phonon modes occur in
triplicate: one longitudinal and two transverse. Therefore, the number of normal
modes in a given volume, (V dp,.dp,.dp.), of the phase space is the following:

“Debye, Peter Joseph William, (3/24/1984)-(11/2/1966).
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V -dpy.dp,.dp, V

vV o(3\ ,

In the last term”' much like (11.397), the magnitude of the momentum has been
expressed as being equal to the ratio of # w and the velocity of sound.

p= (h_w) (11.419)

C()

Furthermore, in (11.418) and (11.419) the velocity of sound, ¢,, has been assumed
to be isotropic so that it is the same for the longitudinal as well as the transverse
modes. In practise, this is not a good approximation. The two velocities — ¢, for the
longitudinal and, cr, for the transverse modes — are generally different. This means

that in (11.418) the factor, (%) , that represents all three modes having the same

C{l
velocity ¢,, should be replaced by the corresponding expression [(%) + (%)] .
CL (,‘T
The latter expression properly sets the velocity ¢y, for the longitudinal mode and cr

for the two transverse modes.®” In order to do this, (11.418) must be re-expressed
in the proper Debye form:

g(w)dw:L 1 + 2\ | o2 do. (11.420)
272 |\ ¢} 3

Integrating both sides of (11.420) — over the physically allowed limits @ = 0 and
w = wp — gives

I -V 2,2
3N = / g@)do = — [(ci) + (c%)} ), (11.421)

which determines wp.
N 1 2\1"
3 =18 2(—) [(—) + (—)} . 11.422
w7} T\ 5 3 a ( )

91Using the fact that in a three dimensional lattice with N atoms the total number of normal modes
is equal to 3 N, from (11.418) we can determine the value of v, that is relevant to the case
where the lattice is treated as a continuum — see the reference to vy, in (11.399). In other words,

Wmax 612N

1
the requirement that the integral fo g(w)dw be equal to 3 N gives Wmax = ¢, ( % ) * . Note:

Wmax = 2w Vmax -

QZOnly if ¢; = cr = ¢,, is the last expressions the same as (%) .

0
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Eliminating the factor [(C%) + (C%)] from (11.422) and (11.420), leads to the
T

L
second, alternate expression for the Debye frequency spectrum. For 0 < v < wp,

the two equivalent expressions for g(w) dw are:

g(w)dow = Vz [(%) + (%)} w’dw = (9—N3) w’dw. (11.423)
2 cy cr wp

Either form of (11.423) may be used for calculating the various thermodynamic
potentials for the Debye system of phonons.

Let us begin with (11.414) for the internal energy. Because 3 N, the number of
normal modes, is large and the modes are generally closely spaced, the discrete sum
Z?ivl in (11.413)—(11.415), may, with reasonable approximation, be replaced by
an integral. Furthermore, we shall make the assumption that the upper limit for the
integral is large enough that it can be approximated as being of order co. Then,

Xp x3 e’} x3
e RN o

and
R A e e L
=5+ () [(5) 2 (] [snchmor=i]
=2t () [() 2 ()] (59) L [ o
< (M50 [(5) 2 ()]
where
xp = phowp = %;

XD x3 oo i i
G PO R
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Therefore, we can write
l 8_U =cv(T)= 16V7r5k§ i ) i 72
T\dT }, T 15h3 cz c%
_ (96NkgxT\ (1 3T2
5h3 wp

12N kgt [ 1)°
- TB”(@_) T2. (11.425)
D

If the speeds ¢, and cr were the same, say equal to ¢,, then Op, in (11.424)—
(11.425), would be equal to Ocopinuum defined in  (11.401). Consequently, for
isotropic velocity, the above result for ¢, (7') is identical to the (¢y)continuum that was
obtained for a lattice approximated as a continuum — see (11.400).

While in many cases the Debye theory does fairly well in representing the
temperature dependence of the specific heat over a wide range of temperatures,
at very low temperature — which in practise means 7' being of order 0.02 ®p or
lower — the phonon specific heat is indeed observed — e.g., see Fig. 11.19 —to closely
follow the T3 law.”*%* In fact, the low temperature measurements are often used to
estimate the magnitude of Op.

Fig. 11.19 As reported in Phys. Rev. 91, 1354 (1953), the plot presents the ratio % for KClI as
a function of T2. Measurements are from Keesom, P. H., and Pearlman, N. Notice that there is
no intercept. This indicates that at very low temperature, the specific heat varies as T rather than
as T'. [The drawing is copied with permission from F. Reif’s book: Fundamentals of Statistical and
Thermal Physics, figure 10.2.3, p. 417, Waveland Press, Inc. (2009)]

9 This is certainly the case in non-metallic solids. As shown in (11.295), in metals free electrons
contribute specific heat that is proportional to the first power of the temperature. Clearly, at very
low temperatures, 7'! wins over 7°3.

94Reif, F., Fundamentals of Statistical and Thermal Physics, Waveland Press, Inc. (2009)
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Table 11.1 The Debye temperature for a number of crystals as quoted in R. K. Pathria, “Statistical
Mechanics,” Pergamon Press (1972) pp. 198

Crystal ~ ®p from Specific Heat  ®pfrom wp

Pb 88 73
Ag 215 214
Zn 308 305
Cu 345 332
Al 398 402
C ~1850 -
NaCl 308 320
KCI 233 240
MgO ~850 ~950

An alternate route to estimating ®p is through first calculating wp — as in
(11.422) — and next relating it to ®p — as per (11.424). If the parameters ¢y, cr,

and the ratio (%) are available — or, are measured — then (11.422) determines wp.
Next, (11.424) — that is, the relationship ®p = (%) —readily leads to Op.

The fact that the two different routes to estimating ®p lead to essentially the
same result — see Table 11.1 below — provides convincing physical support for the

Debye ideas.

11.28 Debye Temperature Oy

The Debye temperature is shown in Table 11.1.

11.28.1 Thermodynamic Potentials

In order to calculate other thermodynamic functions of interest, begin with (11.413)
which represents the logarithm of the relevant partition function {E}. Much like
what was done to get to (11.424), approximate the sum by an integral: meaning,
employ the approximation

3N ©p
> flo) ~ /0 f(w)g(w)dw. (11.426)

i=1

Next, use the expression for g(w) dw given in (11.420). In this manner, write

@b %4 1 2
In{E} = —pE, —/0 In[1 — exp(—phw)] 72 [(g) + (g)} w?dw
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= —pe,— [ -0l 75 (5) + (5] (/%)3)(2 ix
= —BE, + % [(%) + (c%)} (k‘; ) (Z—;) . (11.427)

As in (11.424) the approximation implicit in the derivation of the final result in
(11.427) is the assumption that the upper limit, wp, in the integral may be replaced
by co. Meaning:

/wb In[l —exp(—x)] x?dx ~ /OO In [l —exp(—x)] x>dx
0 0

= /oox3 BT R N 11.428
=), ?(expm—l) * = ‘5(@)‘ (1:428)

Knowing In {E} —see (11.427) — thermodynamic potentials are readily determined.

~ 1 2 475k \ g
F = —kgT In{E }—E()—V[(—z) (;)}(45;13 )T ’
O (OF\ 2\ (47°Kkg s

p=-(w), = (G)+ ()] Cat)
(R 2\ [ 16kin"Y s

= (85), = [(3)+ () ()

G=F+PV=E,;

1 2 167° k3
H=U+PV=V||= = B ) 74, 11.429
* [()+()]( 5 ) (1429

where F is the Helmholtz potential, P is the pressure, S is the entropy, G is the
Gibbs Potential, and H is the enthalpy.




Appendix A
Thermodynamics, Large Numbers
and the Most Probable State

Thermodynamics deals with systems with very large number of atoms. For instance,
four grams of Helium have approximately 6 x 10>* molecules.! Considering that the
age of the Universe is only about 5 x 10'” s, this is a very large number.

Inter-particle interactions make exact analysis of most thermodynamic systems
well nigh impossible. Indeed, when theoretical formulation is used — as, for
example, is done within the framework of Statistical Mechanics — approximations
are often needed for its evaluation. Therefore, rather than getting involved with
“a priori” calculations, thermodynamics generally deals with inter-relationships of
physical properties of macroscopic systems. Because such knowledge can often help
relate easily measurable properties to those that are hard to measure, thermodynamic
plays an important role in scientific disciplines.

In this appendix, we show how large numbers, that are central to the validity of
thermodynamic relationships, possess some simplifying properties. This fact is best
demonstrated by analyzing an idealized model. Frequency moments of the exact
distribution function as well as those of the relevant Gaussian approximation are
worked out and the impressive validity of the Gaussian approximation is pointed
out. Also, the helpful use of binomial expansion is noted. It is demonstrated that in
a macroscopically large system, the most probable configuration is overwhelmingly
so. Therefore, the result of any “macroscopic” measurement is well described by an
accurate calculation of the most probable state.

A.1 Model

Random number generators are available in most mathematical software packages.
When a “perfect random number generator” (PRNG) is set to return values within
a “specified range” that extends, let us say, from 0 — 1, it does so with equal

'Note, one He atom is a molecule.

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 571
DOI 10.1007/978-3-642-21481-3, © Springer-Verlag Berlin Heidelberg 2012
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probability for all values that lie within the range. And, if the PRNG were called an
infinite number of times, the number density of returned values per unit microscopic
length would be identically the same throughout the specified range 0 — 1.

Therefore, let us consider the following scenario. Some person wishes to use a
PRNG to fill a group of N locations — to be called N “sites” — with a total of exactly
N “occupied” sites? and N (1 — p) “unoccupied” sites.> A person might imagine
that all that he/she needs to do is the following:

Catalogue every call returned by the PRNG into one of two possible statements:
“occupied” or “unoccupied.”

Record that the i-th site is “occupied” if the i-th call returns a value somewhere
between 0 and . Denote this fact by setting an occupancy variable o; = 1.

Otherwise, if the i-th call returns a value that lies between p and 1, the i-th
site is to be considered “unoccupied.” And this fact is to be denoted by setting the
occupancy variable o; = 0.

For extreme simplicity, let us deal first with a trivial case. Assume that the total
number of sites N = 2 and u = 0.5. So the number of occupied sites is equal to the
number of un-occupied sites: both being equal to 1. Assume that we want to save
effort and decide to make only 2 PRNG calls in the belief that the number of calls
need not be much larger than the number of sites available. We ask the question:
What is wrong with a person’s belief that the proposed arrangement, based on only
two PRNG calls, will successfully result in fitting the two sites with exactly Ny = 1
occupied, and N(1 — ) = 1 unoccupied, sites.

An incorrect answer would claim that, inasmuch as the statements about the
PRNG returning calls between 0, %, and 1 do not specify what happens exactly at
0, % and 1, the proposal given to the computer — that runs the PRNG - is vague.
Hence, the difficulty!

The correct answer is that, unlike in a thermodynamic system, the number of calls
is not “large.” Therefore, the fluctuations in the result are significant. And, hence
there is a sizeable probability that the PRNG result for the number of occupied sites
will turn out to equal 2 or 0, both very different from the actual number that is equal
to 1.

A.2 Binomial Expansion

Determining the results of a large number of calls of the PRNG requires some effort.
Fortunately, a little help from the binomial expansion does the trick. The binomial
equality given below holds for finite values of the two given variables  and (.

2Important Notice: The symbol 1, which is mostly used for denoting the chemical potential, is
temporarily being appropriated for use as the relative concentration of occupied sites.

3The present formulation also applies to a group of N, non-interacting, spins. Out of such a group,

N spins are supposed to be pointing up so that each can be said to have a spin s = 41, and
N(1 — p) spins are pointing down so that each of their spins s = —1.
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(ot )N‘i[ N!
AR T L (v = p)!

]uﬂuffﬂ”; p=012...,N (A.1)
The above equality can conveniently be used to study the case where the total
number of sites — and also the total number of the PRNG calls — is equal to N.
To do this:

Set the variables p and p, to represent the desired concentrations of the occupied
and the un-occupied sites.* Further, denote 100% concentration as equalling 1. Then
we have

O=sp=L0=p,=Lip+tu=1. (A2)

As a result, the left hand side of (A.1) is equal to unity. Therefore, [m] nr

(1 — )N~ represents the probability that out of N sites, a number (p) will be
found to be occupied and (N-p) will be found unoccupied. Note that according
to (A.1) and (A.2), the sum of all such probabilities, i.e., where the number p of
occupied sites ranges from 0 to N, is equal to unity: that is, it is a 100%.

A.2.1 Two Sites: A Trivial Example

As mentioned before, it is helpful to treat first the rather trivial case where the
total number of sites, i.e., N, is very small: that is, N = 2. The two sites can
be occupied in four different ways: meaning, four different combinations of the
occupancy variables o) and o, are possible. For example, we can have:

00=0, 0o =0; o1=1, 0o =1;

or=1, 00 =0; 00=0, 0o =1. (A.3)

For simplicity, let us choose the desired value of the concentration, w, of the
occupied sites to be equal to 0.5.

According to (A.1) the probability that two calls to the PRNG will actually lead
to zero number of occupied sites —i.e., p = 0—1is

N e N_,,:[ 21 } voen_ 1
[(P)!(N—p)!}”(l a O | 0907 = 5.

4Remember: We can immediately apply the present formulation and its results to the field-free,
non-interacting, up-down spin problem. All that needs to be done is to replace the “occupied sites”
by “up-spins” and the “un-occupied” sites by “down-spins.”

SWhen this is the case, these four combinations are all equally likely to occur. As such, they can
be referred to as the four possible “micro-states” of the system. Note, the system consists of only
two sites.
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Similarly, if we set p = 1, we get the probability that the two calls to the PRNG
will lead to only a single occupied site:

N!
[(p)!(zv = p)!} pr =t = [(nv(l)'

And finally, the probability that the two calls to the PRNG will lead to exactly two
occupied sites is found by setting p = 2.

w00 =G 05705 -

By the way, in order to get the relevant number of states, the above results for the
probabilities need to be multiplied by N2 = 4.°

We notice that in the small system being studied above, that has only N = 2 sites,
and 2" = 4 states, the results given by the PRNG do not correspond well with our
expressed desire. We had wanted the PRNG to return exactly 50% occupancy. This
would have happened only if all the four states had contained exactly one occupied,
and one un-occupied, site. Instead, what really happened is that out of four possible
states, only two are of the desired variety. Of the other two states, the first contains
no occupied sites: while the second, has both sites occupied. Accordingly, there is
only a half-chance that, in practise, our expressed desire will actually be realized.

A physically more instructive description of the above happenstance is the
following: The desired result is the most likely result.” For a system that is not
“large,”® the desired result is still not overwhelmingly probable.” One expects that
things will improve if the number of calls, N, is “large.” Hopefully then the desired
result will be overwhelmingly probable.!? This matter is investigated below.

} 0.5)'(0.5)! =

A.3 Large Number of Calls

Let us, for the moment, continue to treat the simple case where the desired
concentration, u, of the occupied sites equals that of the un-occupied sights, 1 — .
Thatis, u = %

Consider a system with a very large number of sites, i.e., N > 1. As per the
described procedure, this entails making a large number of calls — equal to N. To
deal with this situation — see (A.1) — we need factorials of large numbers.

SCompare this prediction with the demonstration of the four possible states shown in (A.3).

"Note: While two states corresponded to the desired result, only one each referred to the un-desired,
others.

8 A system with only two sites is a “small” system.
°An event that has only half a chance of occurring is not considered to be a highly probable event.

10Tn other words, then the actual value returned by the PRNG will correspond much more closely
to that which was desired.
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When N is very large compared to unity, according to Stirling’s zeroth-order
approximation, the factorial of N can be approximated as follows:

N!~ (N/e)". (A.4)

Insert this value of N! into (A.1) and (A.2) and study the case where the actual
number of occupied, p, and the unoccupied, N — p, sites is exactly equal to that
suggested by the desired concentration of the occupied and the un-occupied sites:
thatis, p = uN and N — p = (1 — ) N. Then, because p has been chosen to be %
here, the probability of such occupancy is:

N TN
[ |70 = [ 0/ 0/
[ (N/e)"
- _(N/2e)N/2(N/2e)N/2:| (1/2)N2(1/2)N?
e
B _((N//zee))Nl /% = 1. (A.5)

What a fantastic outcome! The result is exactly as was desired. Its probability of
occurrence is a 100% and it occurs exactly at the desired place: namely, where
the number of occupied and unoccupied sites is equal, i.e., they are both N/2.
Accordingly, an infinitely narrow region must contain all the 2V states of the model!

Is this really true? Or has the crudeness of the approximation for N! — given in
(A.4) — deceived us?

To investigate this matter further, it is necessary first to use a more accurate
version of the Stirling asymptotic series. That is

1 1 1
_ 1/2 N
N!= (27N)"2(N/e) [1 + v T osene T O (—N3)]. (A.6)

Inserting the above approximation for N'! into the right hand side of (A.5), readily
yields the following result

[W} (/Y212 = J@JaNI + O(1/N)]. (A7)

A.3.1 Exercise: 1

Derive (A.7).
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A.3.2 Large Number of Calls: Continued

Unlike the fantastic statement made by (A.5), (A.7) is quite sensible. All the states
do not reside, exactly as desired, at p = N/2. Rather, in order to collect most of
them, one would need to sum over a range of p values — i.e., the occupied sites —
that are narrowly spread around the desired occupancy number Nu = N/2. As a
rough guess, as the above equation indicates, the width of such a region should be
approximately equal to /(7w N/2). A more precise estimate of the size of the width
is discussed below.

A.3.3 Remark: A Gaussian Distribution

An adequate estimate of the width of the distribution can be had by making a simple
assumption that around the most probable location, i.e., at the desired value of the
occupancy, the distribution of states has roughly a Gaussian shape.

As a physical test, for general value of the desired concentration w, we carry out
an exact calculation of several frequency moments of the distribution function. We
find that these moments are well represented by a Gaussian approximation for the
exact distribution function.

Moreover, as indicated below, the functional form of the density of states — for
n= % and very large N — also yields a result that is close to a Gaussian.

A.3.4 Gaussian Approximation for Region Around
Half-Concentration

In order to calculate the probability that the occupancy closely ranges around the
desired value, one needs to employ (A.1), or equivalently, the left-hand side of (A.5).
Next, one sets N >> 1, and chooses the desired concentration, u, of the occupied
sites. For instance, here we have chosen © = 1 — u = 0.5. In order to examine
the region that lies immediately around the relevant occupancy number —i.e. = %
here — one needs to set p = (% +n)and N —p = (% —n) and remember to choose
n < N.

Then, according to (A.1), the result for the probability distribution function is

T € e a5
& +miE—mr\2 2) '

Notice that the distribution is symmetric for the interchange +n — Fn. Moreover,
when (%2) <« 1 the above can be expanded in powers of (%2). That is,
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N! 1 (X +n) 1 (X —n)
A+ miE —n)! (5) (5)
VG o
2 2
A (ﬁ) - exp (_ﬁ nz) . (A9)

A.3.5 Exercise: I1

Derive the relationships implicit in (A.9).

A.3.6 Gaussian Approximation: Continued

There were three good reasons why the expansion on the right-hand side of (A.9)
was approximated by the exponential exp (—% nz) . First: Two leading terms agree.
Second: The quadratic dependence on # is consistent with the symmetry, n+ —
n7F, of the left-hand side of (A.9). Three: The requirement

U R N! N (1\"7?
G+3) ~Xlew () G) rmorzn

=0

P
=1, (A.10)

when translated by setting p = % + n —asin (A.11) below —

N 1\ & G
Z Z =1
(5 +m(5 —n)! (2) (2)

n==3
2 [tE 2
N ‘/ﬁ./NZ exp (‘N n2) dn. (A11)
-7

is valid when N > 1. (Compare (A.1) and (A.9).) Note, when the above width

N
n = Wyian = £ > (A.12)

n=+

oz
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the exponential falls off to exp(—1) & 0.37 of its maximum value. ( The maximum
occurs when n = 0.) Henceforth, we shall call W4 the half-width of the
distribution function.

To an untutored eye, the estimated size of the half-width, i.e.,/(N/2), would
seem to be inordinately large. To alleviate such concerns all we need to remember is
that the full distribution, in principle, can extend from p = 0 all the way to p = N.
(Recall that N is extremely large. Indeed, it is “almost infinite,” loosely speaking!)
Therefore, a more meaningful measure of the width is the “relative width,” which
we shall denote by the symbol ... Here

Twice the half width
Full range over which the distribution could extend

. 1/2
_ (%) _ (%) ‘ (A.13)

For example, when N ~ 10?4, the width ~ 10'? appears to be very large. Yet, the
relative width, e ~ 107'2, is extremely small.

Despite the finding that the distribution is not infinitely peaked at the desired
concentration'! but has a finite width, the above discussion shows that for large N
the desired state is overwhelmingly probable.

Wrel =

A.3.7 Plot of the Gaussian Distribution

Because a picture is worth many words, appended above is a plot of the normalized
Gaussian distribution, F), as a function of the variable y (Fig. A.1).

y:n\/%. (A.14)

That is, ,

exp(—y~)
F,=———. A.15
Yy ﬁ ( )

Note, the full area of the curve is normalized to unity, i.e.,
+o0 +o0 exp(—yz)
F,dy = / ———=dy = 1. (A.16)
/—oo ! o AT

The two dark vertical lines, and the thick dark area of the curve, enclose that part of
the distribution which lies within what we have called the width of the distribution.

"'Note: Here the desired concentration would have led to the mid-point p = %
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Fig. A.1 Gaussian Gaussian Distribution
Distribution Function 1

0.8

0.6

Fy
0.4
0.2
-2-101 2
y

In terms of the abscissa y, these lines fall at positions y = =£1. It is interesting
to note that this narrow region — consisting only of the width of the distribution —
covers ~84.3% of the total weight of the distribution, i.e.,

+1
/ F,dy = 0.84271. (A.17)
-1

Indeed, if we extend this region to twice the width, that is y = £2, we recover
almost all, that is 99.53%, of the full weight of the distribution.

A.4 Moments of the Distribution Function: Remarks

Moments of appropriate distribution functions can often yield valuable information
about thermodynamic states. To make use of this fact, in the following the so
called normalized moments of the Gaussian distribution function are calculated.
Next, the exact second normalized moment is calculated and is set to agree
with the corresponding result of the Gaussian distribution function for general
concentration.!2 Tt is interesting to note that for half-concentration, the Gaussian
approximation — without any trying! — yields exact results for the second normalized
moment.

12Recall that general concentration refers to the occupancy departing from the mid-point. This
means that the probability that the i-th call on the PRNG returns an occupied site, i.e., 0; = 1, is
not necessarily equal to that which returns o; = 0.
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A.5 Moments of the Gaussian Distribution Function

A.5.1 Un-Normalized Moments

The first several un-normalized moments of the Gaussian distribution function are
calculated below. That is

N/2
I(a,n) = |:/N/2 dx exp(—axz)x”dx] in=0—>6 for N> 1 (A.18)

A.5.1.1 Solution

It is clear that because of symmetry, /(a, n) is zero for all odd values of n. To carry
out the integrals for even n, consider doing the following:

N/2 N/2
I(a,0)-I(a,0) = / dx exp(— axz)/ dy exp(—ay?), N > 1

N2 N2
/ / dxdyexp[—a(x* + y)].N > 1. (A.19)
N2 J=N)2

Changing over to polar coordinates, r, 0

x =rcosfy =rsinf,

(8x) (3x)
drdy = | 9700 N9 )1 440 = rdrde,

&), ),

the double integral over a square of size N x N in the Cartesian plane is transformed
into one over a circular, planar disk of radius N /2.

and noting that

27 N/2
[I(a,0) = / do / drexp(—ar®)r,N > 1
0 0

~an () [oe ] (3) ] 1]

~ r/a. (A.20)
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Regarding the limits, we note that even though the square and the circle do not
exactly fit over each other, for N/2 > 1 the discrepant region is so very far
away from the origin that the exponential in the integral makes the discrepancy
vanishingly small. Therefore, as long as a is positive, without any loss in accuracy,
integrals I (a, n) an be evaluated by replacing N by co. Consequently the following

result is close to being exact.
[(a.0)= /= (A21)
a

For n > 0, the n-th moment /(a,n) can be evaluated by repeated differentiation
with respect to a. For instance, the second and the fourth moments of the Gaussian
distribution, exp(—ax?), are:

d/(a,0 o 1
I(a,2) = — Eiaa’ ) =/ dx exp(—ax?)x* = 5113—3. (A.22)

dl(a,2 o0 1 3
I(a.4) = — (a )=/ dx exp(—ax?)x* = > r.

da oo 2 a®’
dl(a,4 &
I(a,6) = — Ez’a’ ) =/ dx exp(—ax?)x®
a —00
135 [x a2
222 Vd ‘

A.5.2 Normalized Moments of the Gaussian Distribution
Function

Let us define the j-th normalized Gaussian moment for general choice of the
parameter a as follows:

I(a,j)
1(a,0)

A?(a) = (A.24)

Clearly, by definition, the 0-th normalized moment, AS(a), is unity. And the other
normalized Gaussian moments are:

1 3 15
AS(a) = (5) ;Af(a) = (@) P A (a) = (@) (A.25)
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A.5.2.1 Normalized Moments of the Gaussian Distribution Function
for Half Occupancy

It is interesting to record the normalized moments for the Gaussian distribution that
obtain in the region around half-concentration. The relevant equation —i.e., (A.11) —
tells us that, for half-concentration, in (A.25) the parameter a has to be replaced by
%. As a result one has:

2
a=ayay = (N)’ (A.26)
N |
G = —_ = _—
o) =(2)= ()
2
3 N2 3
G _ _
AS (a%) = ( = )_ | (A.28)
2
15 N3 15
G _ _
AC (a%) _( - )_ s | (A.29)
2

Note: As indicated in (A.40) below, for general concentration, thatis for 1 > p > 0,

the appropriate choice for the variable a,, is: a, = [m] .

A.5.3 Normalized Moments of the Exact Distribution Function
Jor General Occupancy

The overall average value of the occupancy variable o;, written as < o0; >, is equal
to the concentration p of the occupied sites for which o; = 1. Note the unoccupied
sites, for which o; = 0 and whose concentration is (1 — ), contribute nothing to
< 0g; > . Thus,

<o >=ux1l+1—-pn)x0=pu, (A.30)

where
1>pu=>0. (A.31)

The present notation for w is the same as originally used in (A.2).
For the exact distribution, a convenient formal representation for the n-th
normalized moment, AS**“*(1), is the following:

A’elxacl(u) —< [El(\;l(o-i _ M)]n > . (A.32)
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As shown below, the zeroth order normalized moment, Ai’“‘c‘(,u), is unity.
Similarly, because of the requirement that the thermodynamic average of o; — to
be denoted as < 0; > — be equal to the density wu of the occupied sites, the first

moment A{“(n) is equal to zero.

A () = < [EN (0 — )] ™" >

=<1>=1;

exac =1
AT ) = <[EN @ -w] >
=<3No;>—<Nu>

=3V <0;>-Nu=3"u—-Nu =0.

1

A.5.4 Exact, Second Normalized Moment

In order to calculate
2
AS () =< [Z) (0 = W] >,
expand the square, and note that i is a dummy index. Therefore

Agxacl (/'L)

<=M —p) -2V (0 —p) >
= <35 (0i0)) >
—Nu[Z) <o > +2) <0; >+ N*p2

Because
N _ N _vN,, _
Y <oi>=%; <o0;>=X;u=Nu,

the only term that remains to be evaluated is:

Yy = < E,Nijoioj >
=32l <aio; > +[2) <0i0; > (j =1)]
=32l <aio; > +[2) < (0)7].

Because o; can take on only the two possible values 1 and 0, therefore,

(0:)* = 0.

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
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This property will be invoked and also use will be made of the fact that any two
independent calls to the perfect random number are completely uncorrelated. In
other words,

<0i0; >=<0; ><0; >= w? forj #i.

Therefore, (A.37) becomes
Yy = ZINZ?;,. <0, ><0j > +EIN < (07) >
NN 2 N
=3 Ej;éi J 7 DY T}
= N(N — D>+ Npu. (A.38)

Equations (A.38), (A.37), (A.36) and (A.32) lead to the following exact result for
the second order normalized frequency moment:

A () = yo — Nu(Np + Np) + N2 p?
= Npu—Nu? = Nu(l — ). (A.39)
Note, for half-concentration AS*(u = %), as confirmed by the right hand side
of (A.39), is equal to N/4. This result is identical to that given by the Gaussian

approximation: Ag’(a 1 ). [ See (A.27).] Clearly, therefore, for general concentration,

M, (A.39) suggests that, in view of (A.27), the dependence of the variable a, on
should be as follows:

1
(2_) = AS¥Y () = Np(1 — p). (A.40)
ap

Consequently, the Gaussian approximation yields exact result for the second order

normalized moment. This holds true not only for half-concentration, u = % but
also for general (concentration) p. That is
AS(ay) = AS(w). (A41)

Indeed, as will be shown later, with a,, = ( , the Gaussian approximation

1
2Np(—=4) )
yields results for the normalized moments that are exact to the leading order in (%) .

A.5.5 Exact, Third — Sixth Normalized Moments

For brevity, only the essential steps will be given below.
The third order normalized moment is:

Agxact(u) —< [EIN(O_I _ /’L)]S >=7y; — SMNVZ =+ Z(MN)37 (A42)
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where y; is as given in (A.37) and

y3 = EINE?IE,]CV <0;0;0; >
= N(N —1)(N =2)p® + 3N(N — 1) + Np. (A.43)

Thus the exact result for the third order normalized moment for the general
concentration is the following:

AN () = Np(1 = 3p + 2p%). (A.44)

Note, when the concentration u of occupied sites is % —i.e., the half concentration

case — the third moment, like all the odd-order moments, is equal to zero.

A.5.6 Exercise: 111

Using the procedure described for calculating y,, derive (A.43).
(See (A.37) and (A.38)) Indeed, a sufficiently motivated student may even want to
derive (A.45), (A.47) and (A.48) that are given below.

A.5.7 The Fourth Moment

In addition to y, and y3, the evaluation of the fourth moment also requires the
knowledge of y4.

Yy = Z‘INZ‘?’E,}{VZ‘fV < 0;0;0,0] >
= N(N — 1)(N —2)(N = 3)u* + 6N(N — 1)(N —2)u*
+7N(N — Hu? + Np. (A.45)

Combination of this with the results of the averages of the two- and three-site sums,
y» and Y3, leads to the following exact result for the fourth moment.

A1) = ys — AuNys + 6u*N?yy — 3u* N*
=3N2u2(1 —pw)> + Nu(1 =T + 12p% —61%).  (A.46)

While the procedure for calculating the higher order moments is similar, the effort
involved rapidly increases with the rise of the order.
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A.5.8 Calculation of the Fifth and the Sixth Normalized
Moments

With somewhat more than the usual amount of effort one finds:

Y5 = EZNE?’EIICVE;VE,IZ < 0;0;0,0[0p >
= N(N = )(N =2)(N =3)(N — 4’
+10N(N — 1)(N —2)(N —3)u*
+25N(N — 1) (N —2)p® + 15N(N — D) + N (A.47)

and

Y6 = Efv Ejy ZﬁEfVEZEff < 0;0;0k00,,0, >
= N(N —1)(N —2)(N —3)(N —4)(N —5)u®
+15N(N — 1)(N = 2)(N = 3)(N —4)°
+65N(N — 1)(N —2)(N = 3)p* + 90N(N — 1)(N —2)u°
+3IN(N — )u? + Npu. (A.48)

The rest of the task is easy. We have

A () = (ys — SNuys + 10N?1%ys)
— (10N iy + 4N° 1)
= 10N> (1 — 4p + 5u% —21°)
+Nu(l =150 + 50p* — 60> + 24pu*) (A.49)

and

A () = (v — 6Nuys + 15N? p?ys)
— (20N 1Pys + 15N uty, — SNOuS)
= 15°N3(1 = 3p + 3u* — 1)
+5N2pu2(5 — 36 + 837 — 781 + 261ut)
+Nu(l =31 + 1801 — 390u> + 360" — 12014°). (A.50)
For the normalized moments, it is instructive to compare the exact results with those
given by the corresponding Gaussian approximation. Remember that the appropriate

choice for the parameter a, — that is to be used instead of a in the Gaussian
expansion valid for general concentration of occupied sites — is as recorded in
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(A.40). Consequently, one has

_ 1
AS(a,)]  [AS™ (W] _ (m)
N2/2 N2/2 - N2/2
(2
Af(au) _ (4(1}21) =3 2(1 _ )2
N4/2 - N4/2 =Su )™
A ()] T A () p(l =T+ 12p% — 6%)
N4/2 | - i N4/2 N

N6/2

[Ag(au)' (&)

N6/2

= 15°(1 — )’
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= p(l —p):;

AL ()] [ A8 (ay) 5u%(5 — 36 + 83u% — 7813 + 26u*)
N6/2 | - | NO2 N
¥ (%) [1-31 0+ 18012—39013+360u* — 1201.°] . (A.51)
A¢@]
N3/2 -
AT )] _[AS @) [0 =342
NEE A EE N2 ’
Ag(aﬂ)_ — 0
N3/2 -
[A?‘“‘(u)' _ [A?(au)} L1022 [(1 —4u+5u2—2u3)]
N5/2 N3/2 N1/2

(1 =150 4+ 50u> — 601> + 24pu%)

|: N3/2

(Note: For u = %, odd-order moments are vanishing.)
As mentioned before, while the second moment is exactly given by the Gaussian
approximation, the third, fourth, fifth and the sixth moments are “exact” only to
the leading order in the large N limit. Because in thermodynamic systems N is
extraordinarily large, the Gaussian approximation is impressively accurate.

(A.52)

]
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A.5.9 Concluding Remark

For i = 1 or 0, all exact, normalized, moments are vanishing. Also, despite the fact
that the Gaussian approximation — which is symmetric — cannot be expected to be
accurate over the whole concentration range, in the immediate vicinity of the most
probable state the exact distribution function appears to be very nearly symmetric
and is close to being a Gaussian. This is testified to by the following facts:

1.

2.

The Gaussian approximation exactly reproduces the — zeroth and the — second
moment of the distribution.

The approximation predicts that the ratio of the fourth normalized moment to the
square of the second normalized moment is equal to 3 for general values of .
That is,

A?(au)

. S A (A.53)
[Ag(au)]z

The same is also true, to the leading order in N, for the exact moments: that is,

ACX&C[ 1
: (M)z =3 (N_l)[

2
[Aexacl( )] m} [1 —Tu + 12,&2 - 6:““3] (A.59)
2 K

. The Gaussian approximation predicts that the ratio of the sixth normalized

moment to the cube of the second normalized moment is equal to 15 for general
values of w. That is,

G
L"")?ﬁ — 15. (A.55)
[Af(a)]

The same is also true, to the leading order in N, for the exact moments: i.e.,

Acxact
[Aeiacl(%)]3 = (N_l) |:
2

5u%(5 — 36 + 83u> — 78> + 26,u4)i|
w1 —p)?

+0 (N7?). (A.56)

. While the Gaussian distribution is symmetric and thus leads to vanishing odd-

order normalized moments, the exact distribution is asymmetric and its odd-order
normalized moments are non-vanishing. Such asymmetry is very small in the
neighborhood of the most probable state. This is demonstrated by the size of
the normalized third- and fifth-order moments for very large N. Here, instead of
AS*() and A$*'(1) having the usual, canonical size, namely

[A% ()] — O(N')n=2.3,... (A.57)
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their size is actually much smaller, i.,e.,
[Ag (0] — O(N '), (A.58)

and
(A2 ()] = o). (A.59)

Thus, as long as a is chosen to be equal to a, = the line-shape,

1
2Nu(—p)
exp (—a Mzz), retains its physical validity for large N. Another feature to note is

the size of the relative fluctuation'? as a function of the concentration .

Wl = 205N (w)/(Np) = v2(1 — )/ (Np). (A.60)

Not unexpectedly when p approaches unity, almost all the calls to the random
number generator return the value 1. And, additionally the total number of occupied
sites becomes large, approaching N. Thus the relative width of the distribution
narrows still further. Opposite is the case when p approaches zero because now
there may be some calls to the generator that actually return the value unity while
the average of the total number of occupied sites, Ny, has become very small. This
fact merely re-states the obvious: the relative fluctuation in a small sample is large.

A.5.10 Summary

In a macroscopically large system, the most probable configuration is overwhelm-
ingly so. Therefore, the result of any “macroscopic” measurement is well described
by an accurate calculation of the most probable state.

13Compare (A.13).



Appendix B
Perfect Gas Revisited

As mentioned before, a perfect gas consists of N identical molecules, each of the
same mass. The number of molecules is very large: that is, N > 1. The gas is
enclosed in a vessel of arbitrary shape. The volume of the vessel is V. There are
no intermolecular interactions, the size of the molecules is vanishingly small, the
containing walls of the vessel are smooth and featureless. All collisions between the
molecules and the walls are perfectly elastic; effects of gravity are absent; no other
external forces are present. Further, the molecules are in a state of random motion.

Here, in this appendix, we first revisit the standard thermodynamics treatment
for a qualitative derivation of the equation of state. This time, somewhat greater
detail is provided than was done previously. Next we use an elementary statistical
mechanical procedure, that employs Boltzmann—-Maxwell-Gibbs distribution, to
precisely and quantitatively derive the equation of state.

B.1 Monatomic Perfect Gas

All the molecules are monatomic and each has mass m. The molecules — meaning
the atoms — are all of zero size and in three dimensions each has only three possible
degrees of freedom related to its translational motion. The atomic size being zero
forbids any meaningful possibility of self rotation. Furthermore, zero interatomic
interaction disallows any interparticle coupling.

B.1.1 Pressure

Consider a vessel of arbitrary shape. The walls of the vessel are smooth and their
shape can be represented in terms of non-singular equations. Consider a small but
finite volume of gas inside the vessel. For simplicity, assume that the small volume

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 591
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is shaped as a parallelepiped whose three, mutually perpendicular, imaginary—walls'
lie along the x, y, z axes of a Cartesian coordinate system and are of length Ax, Ay,
and Az. Assume the number of molecules, Npp, within such a parallelepiped is large
compared with unity, i.e., N > Ny, > 1.

Set the origin of the Cartesian coordinates at the bottom left-hand corner of the
parallelepiped and the positive direction of the axes along the three edges. As such,
the top corner diagonally opposite to the origin is at the point (Ax, Ay, Az).

Examine the course of events involved in molecular collisions against the two
walls of the parallelepiped that are perpendicular to the x-axis. Denote the x-
component of the velocity of the i-th molecule —7 = 1,2,..., Nypp —as v; .

Perfect elasticity of collisions requires that upon striking the right-hand side
wall —at x = (4+Ax) — with x component of momentum m - v; , the molecule gets
reflected and the x component of its momentum becomes —m - v; . Accordingly,
the change in x component of momentum of the molecule after one collision is:

final momentum of colliding molecule — its initial momentum
=[-m-viy]—[m-viy] = —2m-v;,. (B.1)
Because there are no external forces, the total momentum in any direction is
conserved. Invoking this fact for the x-direction leads to the requirement:
change in total momentum
= change in particle momentum + change in momentum of wall
= —2m - v; » + 6(mom wall); , = 0. (B.2)

That is, a single collision of the wall perpendicular to the x-axis causes an increase
in the x-component of the momentum of the wall equal to

A(mom wall); y = 2m - v; . (B.3)

The absence of slowing down mechanisms insures that after traversing across the
parallelepiped to the left-hand side wall placed at x = 0 this molecule returns for
another collision against the original wall at x = +Ax. Such a round-trip — from
the right-hand side wall to the wall on the left and then back to the wall on the
right — is of length 2 Ax. Further, it is traversed at constant speed |v; . |. Therefore,

! Although we have called the walls imaginary, we do not treat them as representing an open
boundary. Indeed, it is not unreasonable to impose boundary conditions on these “imaginary” walls
which are more restrictive than the conditions for an open boundary. For instance, the passage of
a sufficiently long interval of time ensures that equal number of particles with roughly the same
energy have been incident from opposite directions on a given “imaginary wall.” This behavior is
not unlike that which results from specular boundary conditions and results in collisions that can
be treated as being perfectly elastic.
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the time, Af , taken by the molecule for the round trip travel is

Distance Traveled 2 Ax
At =

= . (B.4)
Speed of Travel Vi x|

As a result, the rate of transfer of momentum by one molecule to this wall,
[momentum transferred in one collsion/time taken between the collisions ],

can be written as

A(mom wall); 2m - |v; x| m )
- 1 - (_) V2. (B.5)
At {2Ax/|vi x|} Ax/
Summing this over all the molecules— that is for i = 1 — Ny, — within the

parallelepiped gives us the total transfer rate of momentum to the right hand side
wall. According to Newton’s second law of motion, this is equal to the force, Fpp,
exerted by the gas on the relevant wall of the parallelepiped.

Nop ) Nop
=y Aol _ )R 6

i=1 i=1

The force Fp, acts normal to the wall under examination. Accordingly, it exerts
pressure Py,, which is defined as the perpendicular force on the wall per unit area,

F,
Py = Fyp/(Area of the Wall) = F”ZZ. (B.7)

Combining this with (B.6) yields

NPP
Pp=(—— )3 02
Pp AXAyAZ - i.x
NPP

m m
_ (V_) Y02, = (V_) Nop < 0% >pp (B.8)
pp pp

i

Here, V,, = (AxAyAz) is the volume of the elementary?. parallelepiped under
consideration and the pointed brackets with suffix pp, i.e., < v2 >pp signify an
average, of vi »-overall—ie., fori =1,..., Ny, —molecules in the parallelepiped.

N,
Zi ” viz,x

2 _
<V Zpp= N
pp

(B.9)

2Yet macroscopic, because Ny, > 1.
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The gas is isotropic. Therefore,

1
<UL Sp=< V) Sp=< V] >p = 3 [< UVl S+ <) >pp F < U2 >pp]
1,
=3<V>m (B.10)
Thus, (B.8) can be re-cast as
PopVip = MmNy < 0% >pp= = Ny < v2
ppVpp = MNpp < Uy Zpp= ZNpp < V" >pp - (B.11)

In the above equation all the three quantities V,,, Np, and < v? >pp are independent
of the direction x, y or z. Therefore, the pressure P, is also independent of the
direction.

Now sum the above equation over all the parallelepipeds designated by the index
pp— or equivalently, over all the molecules — in the vessel.

3 PopVip = (%) 3 Ny < V2 >pp= (%) N<v>. (B.12)
all pp all pp

In the above, the pointed brackets without any suffix,e.g., < v2

average over all the N molecules. That is

>, represent an

Npp < V2 >

2 pp pp

<vi> = Yy o P (B.13)
allpp N

Define the pressure P inside the vessel from the relationship

> PypVip = PV. (B.14)
all pp

Given that the surface enclosing the container does not possess pathological
singularities, the sum Zallpp over a very large number of appropriately small
parallelepipeds of volumes V},, reproduces the actual volume V' that encloses the

container. That is,
all pp

Multiplying both sides by the constant P gives

Py Vip= Y PVy=PV. (B.15)
all pp all pp
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Subtraction of (B.14) from (B.15) leads to the equality:

> (P = Py)Vyp = 0. (B.16)
all pp

The above sum is over an arbitrary number of different parallelepipeds whose
volumes sum to the total volume V. Because these volumes, V,p, are all arbitrary—
other than each being very small but still containing a moderate number of
molecules — therefore, the above equation can be satisfied only if

Py =P (B.17)

for all parallelepipeds. This result is in agreement with that implicit in Pascal’s law,
which asserts that the pressure is constant throughout the vessel. Note also that
(B.12) and (B.14) lead to an important relationship

PV:(%)N<V2>. (B.18)

B.1.2 Classical Statistics: Boltzmann—-Maxwell-Gibbs
Distribution

Consider a three-dimensional system of N atoms whose total volume is equal
to V. The location and momentum of an infinitesimal sized atom “i,” is specified
by 3 position co-ordinates, €.g., ¢i.qiy,¢qiz, and 3 vector-components, €.g.,
Dix» Diy» Piz» of the momentum pi. Denote the 3-N position co-ordinates of the
N atoms as = Q, the 3-N components of the momentum vectors divided by 43"

as = P, and use the notation

dQ = dq1xdq1,ydq1; ... dgnxdgN,ydgn .,
dP =dpidpiydpi:...dpycdpyydpy./(HPY). (B.19)

Next, define the BMG distribution factor f(Q, P).

exp (—pH)
. [pexp(=pH)-dQ -dP"

f(Q.P)= (B.20)
Jo

Here

_ L (N _ (N
e ()= ow
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‘H is the Hamiltonian — i.e., the functional form of the system energy in terms of the
6 N variables Q and P — and T represents the statistical-mechanical temperature —
usually called the Kelvin temperature and labeled as K. Constants n and N have
already been defined in (2.12). Additionally, kg, and therefore R, are also constants.
That is,

R
kg

8.3144 72(15) I mol 'K !,
1.38065 04(24) x 10723 JK~'. (B.22)

R is called the “molar gas constant” and kg is known as the Boltzmann constant.

In accordance with the Boltzmann—Maxwell-Gibbs (BMG) postulates in ther-
modynamic equilibrium the normalized average (i.e., the observed value < 2 >) of
any thermodynamic function, Q(Q, P), is given by the following integral®

<Q >:/Q.../P[Q(Q,P)]-f(Q,P)-dQ-dP. (B.23)

Note, f(Q, P) here is the same as defined in (B.20). Further, that the integrations
over the 3N position variables, Q, occur over the maximum (three dimensional)
volume V' available to each and all of the N atoms. The integration over the 3-N
momentum variables is over the infinite range from —oo — +o00.

The denominator that appears in (B.20), i.e.,

L...Lexp(—ﬂ?{)~dQ-dP, (B.24)

is of great importance. (Remember f = ﬁ.) Except for a multiplying constant,
this denominator is proportional to the so-called “Partition Function,” 2(N, V, T),
which will be described in detail later. The partition function is fundamental to the
use of statistical mechanics. We shall have occasion to expand on this statement in
the chapter titled “Statistical-Thermodynamics.”

Because for a perfect gas inter-atomic interaction is assumed to be completely
absent, the Hamiltonian # in (B.20), (B.23), and (B.24) contains only the kinetic

energy and depends on just the momenta of the N monatoms,” i.e.,
1 N
M=o 2 (Pfx + Pt Pix) : (B.25)
Jj=1

3Note that normalized average of any constant, say o, is equal to itself: that is, < o > =a.
“4Diatomic Perfect Gas is treated in Chap. 11.
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B.1.3 Energy in a Monatomic Perfect Gas

According to (B.25), the average value of the energy — here to be called the internal
energy and denoted as U — in a monatomic perfect gas of N, non-interacting
infinitesimal sized atoms each of mass m, is given by the relation

<H>= ﬁZN: [< (pix) >4 < (p?yy) >4 < (p?yz) >]. (B.26)

j=1

Because there are no direction dependent forces® present, the gas is isotropic.
Therefore, the above can be written as

N N<pj2>

<H>= ﬁz [3<(r)>]=2 S (B.27)

Jj=1 Jj=1

Let us now use the BMG procedure, given in (B.20), (B.23), and (B.24), and
calculate the thermodynamic average < ( p%x) > for any arbitrary atom 7.

fQ...fP...[pﬁx]~exp(—ﬁH)~dQ~dP
fQ...fP...exp(—,BH)'dQ'dP

<(py)>=
(B.28)

In the above equation, the integral over Q is trivial because H as well as p?, do
not depend on any of the 3N position coordinates: Q = ....,¢ix.qiy.qiz - -- Jetc.
Therefore, each of the N atoms simply contributes a factor V' equal to the maximum
volume available to it. That is, for any atom j, we have

/Q...dgz[/q [ ]

j.x Jjz

N
dqj,xdqj,ydq;,z] =V,

Jy
and as a result we get

VN T[] exp (<BH) - dP
) _ P ix
<(piy)>= VN . [, ...exp(—pH)-dP

(B.29)

The remaining integrals in (B.29) are of a standard form and are worked out in detail
in (A.18)— (A.22), which, in particular, say

SFor example, such as the gravity.
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+o00 5 T
/ exp (—ap?)dp = ,/;,
—0o0
+o00 ) 5 1 T
/ p* exp(—ap®)dp = E,/—3. (B.30)
oo o

Therefore, in the following only a brief description is provided. First, let us look at
the denominator in (B.28) and (B.29). Although we need to calculate only a part of
this integral for the present purposes — see below — with a view to using it later, is
worked out in toto here.

The denominator of the right hand side of (B.29) is the following:

1% N 00 00
(ﬁ) / / dpixdp1ydpiz... dpyadpy,ydpn,
—o00 —o0

—BUPE A+ PP A PR A DY+ DY, + PR
xexp< - = = = = Y2 ) B31)

2m

The 3N seemingly different integrals in (B.31) that are being multiplied together
are all equal. Therefore, their product can be written very simply as follows:
3

) Tl -G ()

To deal with the numerator of (B.29), let us separate the integral that is taken over

the variable p; i, i.e.,
o0 - 2
[ e (32 .
oo m

from the rest of the (3N-1) integrals. We get:

(%)N /Q/P [p7.] - exp(—pH) -dP
- (h_Z)N ' (/_: [p7]exp (%’f’*})dpi,x) .
oo ()]

N‘Z
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@ ()l

GBN—1)

N =

2m

) T e

Equation (B.33) gives the numerator of the right hand side of (B.29). As is clear
from (B.29), to determine the thermodynamic average < plzx >, we need to divide
the result obtained in (B.33) by that found in (B.31) and (B.32). Further, because
the system is isotropic, we get:

) <p§x>+<pﬁy>+<pﬁz> <p}>
< o> = - =
pl,X

()b () (3)

% — kgTm. (B.34)

We notice that < pi2 > is independent of the position i of the i-th particle. Thus we
can write

3< plzx > =< p12 > =< p2 >. (B.35)

Therefore, according to (B.27) and (B.34), the internal energy of a perfect gas
consisting of N atoms is equal to:

<p*> 3N
U=<H>=N = 2 T, (B.36)
2m 2




Appendix C
Second Law: Carnot Version Leads to Clausius
Version

Carnot’s ideas revolutionized the physics of heat engines. The formulation of the
necessary ingredients for achieving maximum efficiency, inspired Lord Kelvin to
attempt to understand the true meaning of “temperature.” Indeed, some would say
that “Absolute Temperature” and the relevant “Kelvin Scale” were owed directly to
this understanding.

Another milestone in the history of thermodynamics is the Second Law. It turns
out, however, that the Carnot law, the absolute temperature scale, and the second
law are all closely related. And the Carnot statement in fact leads to the second law.

To analyze these issues we consider two engines in tandem: one a perfect Carnot
engine and the other an engine of ordinary variety. In this fashion we prove that
violation of the Carnot version of the second law leads to a physically unacceptable
conclusion: namely, that without external assistance a positive amount of heat
energy can be extracted from a cold dump and all of it transferred to a hot reservoir.
Clearly, therefore, a violation of the Carnot version of the second law necessarily
results in a violation of the Clausius version of the second law.

C.1 A Carnot and an Ordinary Engine in Tandem

Let Ty and 7¢ be the temperatures of the hot reservoir and the cold dump,
respectively.

Consider an “ordinary” cyclic engine. As usual, each cycle comprises four legs.
But, unlike a perfect Carnot engine, here at least one — but possibly all — of the four
legs, are traversed either wholly or partially irreversibly.

Arrange the ordinary engine so that it withdraws heat energy Q' (Ty) from the
hot reservoir at temperature 7y, and Q/(TC) from the cold dump at the lower
temperature 7¢. As usual, set this engine up so that it works in the forward direction,
and does positive amount of work, W' . The work done per cycle is equal to the
total heat energy input into the working substance during the two isothermal legs.
Therefore,

R. Tahir-Kheli, General and Statistical Thermodynamics, Graduate Texts in Physics, 601
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w' = 0'(Tw) + 0'(To). (C.1)

Also, get hold of a perfect Carnot engine but arrange it to work “backwards”!
Realize that a perfect Carnot engine, much like any other engine, can be run
forwards or backwards.

A backward running perfect Carnot engine withdraws negative amount of heat
energy equal to —Q"™(7Ty), from the hot reservoir during the isothermal leg
at temperatures Ty. Similarly, it withdraws a negative amount of heat energy
—Q™(T¢), from the cold dump during the isothermal leg at temperature 7c.
Arrange things so that as a result of withdrawing negative amount of heat energy
during both the isothermal legs, the work W™ done, per cycle, by the perfect Carnot
engine, i.e.,

wrev = _— QreV(TH) _ Qrev(TC),

is equal to the negative of the work, W', done per cycle by the ordinary engine
described in (C.1) above.' That is

7

W = W' (C.2)

Using (C.1), we can represent the efficiency , €', of the ordinary engine as follows:

’

€ = v
- 0(Tw)

Similarly, (C.2) leads to the following expression for the efficiency, €cymot, Of the
perfect Carnot engine:

(C.3)

’

) _[ we ]_ e W (C4
carnot — _QreV(TH) - QreV(TH) N QreV(TH)‘ .

Now, if the following inequality were ever true,
€ > €camot, (C.5)
it would violate the Carnot version of the second law. Using (C.3) and (C.4), the

disallowed inequality (C.5) can also be represented as

’ ’

w - w
O'(Tw) = QO™ (Tw)

(C.6)

'In general, it is always possible to arrange for this to happen. For instance, according to
(4.9), (4.10) and (4.16), when the working substance is ideal gas, for prescribed values of Ty
and T¢, V) and V; determine the values of the heat energy exchanges and therefore the amount of
work done.
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Multiplying both sides by Q™'(Ty) - Q' (Ty), the inequality (C.6) becomes

0™ (Tw) — Q' (Ty) > 0. (C.7)

(Although different looking, in fact the inequality (C.7) is a re-statement of the
inequality (C.5).) Thus, if the inequality (C.7) were ever true, the Carnot version of
the second law would be violated.

We recall that the two sums

[0 + 0'(Te) .

and

[0™(Tw) + Q™'(T0)].,
have been set — see (C.1) and (C.2) —to be equal, i.e.,
0'(Tw) + Q' (To) = Q™(Tw) + Q™"(Tc).

Let us represent this fact in the following form:

0'(Te) — 0™(Tc) = 0™ (Tw) — O (Tw). (C.8)

Using (C.8), the inequality given in (C.7) also leads to the following inequality:

0'(Te) — 0™(Tc) > 0. (C.9)

The inequalities (C.7) and (C.9) are of fundamental interest and are needed in the
discussion that follow later.

Let us now enclose the two engines inside an isolating, adiabatic chamber and
run the two in tandem. Remember, the two engines consist of, one ordinary engine —
described by (C.1) — that is working in the forward direction, and one perfect Carnot
engine working backwards as described by (C.2).

The tandem mode of operation is described by the sum of (C.1) and (C.2). It is
important to note that the two engines working in tandem in the manner described,
manage to do no work at all ! That is

[Q'(Ti + 0'(To)] = [0™ (T + 0™ (T = W =W =0 (C.10)

Re-arranging (C.10) — or, equivalently, (C.8) — gives

[0'(To) - 0=(Te)| = = [ 0'(Ti - 0™(Tw)|. 1

Let us pause to consider the message contained in (C.11) with some care.
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The left hand side represents the heat energy isothermally “added by the dump” —
which is at temperature 7c — “into the working substance of the two engines
operating in tandem.”” And, if the inequality (C.9) holds — meaning, if the Carnot
statement of the second law is violated — then this heat energy is positive. So where
did this positive amount of heat energy go? Because no work has been done, and
the fact that the tandem engine is operating within an adiabatic enclosure, all of
this positive amount of heat energy, supplied by the low temperature dump, must
have been “transferred to the hot reservoir maintained at the higher temperature
Ty And this is exactly what is demonstrated by the right hand side of (C.11). (To
double-check on this last statement, see the inequality (C.7).) The above findings
may be summarized as follows:

Violation of the Carnot version of the second law leads to a physically unaccept-
able conclusion: namely, that without external assistance a positive amount of heat
energy can be extracted from a cold dump and all of it transferred to a hot reservoir.
Thus, a violation of the Carnot version of the second law necessarily results in a
violation of the Clausius version of the second law.

2Do not forget that the tandem operation consists of a forwards working ordinary engine and a
backwards operating Carnot engine.



Appendix D
Positivity of the Entropy Increase: (4.73)

According to (4.73), in order to demonstrate the positivity of the total increase of
the entropy for general values of My and Mg one needs to show that the following
is true:

Tt Me T M
ASioal = AS; + AS, =In| — +In| —
T. Ty

T; M. T; M,
=In|[ = x| — > 0. D.1)
T, Ty,
Equivalently, the validity of the following inequality needs to be proven.
™ T\
) o« (£ > 1. (D.2)
T, I

In what follows in the present appendix, we prove the validity of the
inequality (D.2).

D.1 Analysis

Transferring 7. and 7} to the right hand side, we get a convenient form for this
inequality.

Mc My
Ty = [(TC)M‘+Mh X (T11)M‘+,Mh] (D.3)

In order to demonstrate the validity of the above inequality it is helpful to introduce
some notational changes. For convenience, we shall use the following notation:

M, T; M,
Mc Tc Mc + Mh 1+ :8
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[Note, that z given above lies within the range 1 > z > 0. Also, that because both
M), and M, are positive, so is their ratio f.]
Using the notation introduced above in (D.4), (4.70) can be written as

MhTh
(1= T MT) o ((1 MCT)) Tc(l +ﬁa)
(M. + My) M. + My, 1+p

—T[(lj_ﬁ)—i-za]:Tc(l—z—i-za). (D.5)

Similarly,
_ M My
[(Tc)M“*Mh x (Th)M”+Mh}
can be re-cast as

1 . T, \ 8
T <1 =T, (—”) = T (D.6)

We can now re-state the positivity requirement for A Sy, last represented in (D.3),
in a very compact form as follows:

1—z+za >0af

or equivalently as'
fla,z) =1—z4+z200 —a* > 0. (D.7)

We notice that when o = 1, the equality obtains and there is no change in the total
entropy. This, of course, is the trivial case where T, is equal to T.. Similarly trivial
are the cases for z = 0 and z — 1 which arise when either the mass or the specific
heat is zero in the expressions M}, or M.. Another fact to remember is that when
z = 0.5 the general inequality reduces to the one already treated above in (4.76).

To begin the demonstration of the validity of the general inequality given in (D.7)
let us consider first the case where @« = 1 4 € with € < 1. Then for all values of z
lying within its allowed domain the inequality must hold because

2
f(1+€,Z)=z(1—z)%>0. (D.8)

Next we look at the rate of change of f(«, z) with respect to «.. That is

df(e.2) _ - L

» - (D.9)

ITo see this, first replace the left hand side of (D.3) by the right hand side of (D.5). Next, replace
the right hand side of (D.3) by the right hand side of (D.6). Finally, cancel the multiplying factor
T. from both sides.
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Now, because @ > 1 and 1 — z is positive
a7t >, (D.10)

within the specified domains for « and z. This fact insures the positivity of the slope
%. And beginning with @ = 1+4¢, where f(«, ) is positive, the positivity of the
slope insure the positivity of f(«,z) itself. That is, of course, within the specified
domain for « and z: namely,« > 1 and 1 > z > 0.



Appendix E
Mixture of Van der Waals Gases

Because of the great historical importance of the Van der Waals theory of imperfect
gases, and the impetus it provided to the development of thermodynamics, it is in
order to ask how would the equation of state change for a mixture of different Van
der Waals gases. In particular, would the mixture preserve the Dalton’s law of partial
pressures?

In this appendix, we show that the equation of state for a mixture of Van
der Waals gases remains unchanged in form. However, despite its similarity to
the equation of state of an unmixed Van der Waals fluid, Dalton’s law of partial
pressures is not necessarily valid for a mixture of dissimilar gases.

E.1 Analysis

If the gases being mixed have no inter-molecular interaction, the equation of state
for the mixture is simply found.

PV = (N + Nyp)kpT = (n1 + n2)RT, (E.1)

where N, N,, or ny, n, represent the number of molecules, or the number of moles,
in the two gases. As for a single gas, when interactions are taken into account au
Van der Waals, we expect both the pressure P and the volume V' to get modified.

Let us treat first the attractive part of the potential. As for a single type of
molecular pair, we assume the range of interaction to be practically infinite for
all molecular pairs. Thus, the mutual potential energy of any pair of molecules,
separated by more than the hard core radius, is independent of their separation.
Accordingly, the total mutual potential energy, E1;, of the N; molecules of the first
Van der Waals gas is proportional to the number of distinct pairs of the first type of
molecules. That is

Ni(Ny—1
E o — g (E.2)
2
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610 E Mixture of Van der Waals Gases

As noted earlier, this negative potential energy results in an attractive force between
molecules that leads to a reduction in the pressure which in the limit N; > 1 can
be expressed as

Zu(V)N;?/2, (E3)

where N 12 /2 is the number of distinct molecular pairs of the first type of molecules
and Z;; (V) is a function of V' and positive.

Of course, the mutual potential energy of the second type of molecules would
also cause a correspondingly similar reduction in pressure, namely

Z»n(V)N3/2, (E4)

where Z» (V) is a function of V' and positive. Also, we have made the approxima-
tion N, > 1.

Similarly, the attractive interaction between the two different type of molecules
would be proportional to the number of distinct pairs that can be formed. Note that
this number is N; x N,. The corresponding reduction in pressure would therefore
be

Z12(V)N1 N, (E.5)

Because P is an intensive state variable, in the limit (N; + N;) > 1t is
independent of N; 4+ N,. Similarly, V' is an extensive state variable, therefore in
this limit it scales linearly with Ny + N,. Clearly, therefore, all three Z(V')’s must
scale as

1
Z(V) x 72 (E.0)
leading to the following expression for the change in pressure

8P = —Zu(V)NE/2—=Zn(V) N3 /2= Z1o(V)NI N,

le N22 NN,
=2y Ty T 2Z12?, (E.7)
where we introduced the notation
A4 Z»n(V Z1n(V
u() oz ZnlV) o ZnlV) oz ES)

2 vr 2 vy o2 T y?

Similar to the case where all molecules were identical, the phenomenological
constants 711, 222, 212 are all positive.

As before, it is convenient to work in molal units, and use the notation that
includes the Avogadro’s number Nj.

Ni = niNa; Ny = nyNy
N2 _ . N2 _
211Ny = ay1s 2220V, = A

22NZ = ap; V = (n + na)v. (E.9)
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Therefore, in complete analogy with the Van der Waals gas for only one type of
molecules with interaction parameter a, for the mixed gas we can also define an —
effective — interaction parameter a’,

AP = —= (E.10)

where

ayn®+anpn:+2apnn
a’:( uny +ann; N 2). E1D)

(ny + ny)?

The hard core part of the potential can also be treated in an analogous manner. As
before, the two types of molecules are assumed incompressible, spherical hard-balls
of radii r; and r,.

Consider a pair of type 1 molecules. The nearest distance that their centers can
get to is 2r;. Accordingly, for each molecule, the equivalent of half of the spherical

volume — that is = % . 47”(2r1)3 — is excluded. Therefore, the contribution to the
total excluded volume due to short range repulsion only between type 1 molecules
is given by
1 4 N
M= x Zen)y [ x [——) . (E.12)
2 3 N1+ N,

Note that when there are only a single type of molecules present, i.e., N, = 0, we
retrieve the earlier result. When the second type of molecules are also there, we do

need the weighting factor described by the second term, namely (ﬁ), which

determines the probability for a chosen molecule to actually be of type 1.
Following the same argument, the contribution to the total excluded volume due
to the short range repulsion only between type 2 molecules is given by

1 4 3 N2

The excluded volume due to the avoidance of hard cores overlap for a type 1-type 2
pair is found as follows. The diameter of the excluded sphere is now r; + r;. Also,
as mentioned above, rather than being N 12 /2 or N22 /2, for this case the number of
distinct pairs is a function of both N; and N,. Thus, we may represent this part of
the excluded volume as

a(N1, N>) x B x %”(n + r2)3i| . (E.14)

The constant «(N;, N;) can be determined either by careful argument or a dimen-
sional approach. Below we pursue the latter course because it is both shorter and
easier to understand.
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Adding the three contributions to the excluded volume we get
1 4 N
N1 - X —T[(2r1)3 X -
2 3 N1+ N,
1 4 N2
Ny | = x —(2nr)? ECa—
+ 2|:2X3(r2)j|X(N1+N2)
1 4=m 3
+0[(N1,N2)X EXT(rl—i-I‘z) . (EIS)

Clearly, when r; = r, = r,, the distinction between the two types of molecules

disappears. Accordingly, this entire expression should reduce to that obtained earlier

for molecules of a single type which number N = N; + N,. This requirement is
satisfied if

NE + N3

( N1+ N,

Thus, we are immediately led to the result

)—i—Ol(Nl,Nz):Nl-‘er. (E.16)

(E.17)

v = (2%

Ni+ N

Therefore, to correct for hard core repulsion, the volume V' in the ideal gas
equation of state has to be changed to (V' — AV') where

AV = (n1 +ny)b';

b (bnn% +byn3 +2bin; nz)
(n1 4 ny)?

(E.18)

and
27 27 27
b = NAT(2VI)3§’I722 = NAT(2r2)3;b12 = NAT(VI + 1)’ (E.19)

[See Figs. E.1a—d above.]
To sum up: The equation of state for a mixture of Van der Waals fluids remains
unchanged in form. That is, it can still be represented as:

(P + a—;)(v —b')y = RT, (E.20)
v

where a’ and b’ are the effective interaction and hard core exclusion parameters of
the mixture. It is easy to check that despite this similarity, unless a;; = a2 = ax
and by; = byp = byy Dalton’s law of partial pressures is not necessarily valid. for
the mixture.
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Fig. E.1 Hard Core Sphere of Exclusion for Homogeneous Pairs. (a) In a mixed gas composed
of molecules with radii r| and r,, the size of the sphere of exclusion depends on the nature of the
neighboring pairs. For pairs of type (1) molecules the sphere of exclusion has radius 2r;. Similarly,
for pairs of type (2) molecules, the radius of the sphere of exclusion is 2r;. (b) The shading for
the molecules is either dark or grey. The excluded volume is shaded very light-grey. (c) In a mixed
gas composed of molecules with radii r; and r,, the size of the sphere of exclusion depends on the
nature of the neighboring pair. When the pair consists of different types of molecules, the excluded
volume is a sphere of radius r; + r,. (d) Such a sphere — shaded very light-grey — can equivalently
be considered to reside on either of the two molecules



Appendix F
Positive-Definite Homogeneous Quadratic Form

A change of variable can always be devised to reduce an homogeneous, symmetric
quadratic form Q, of the type

Qn :f(ﬁX:inai,ij. (Fl)

to a sum of squares.l In (F.1), x;’s are assumed to be real and a;; = a ;.

F.1 Analysis

To see how this may be done, let us introduce a variable &

a a
Sl:xl+a_12x2+.”+aﬁxn' (F2)
11 11

Now, subtract a; & 12 from Q,. This eliminates all terms that involve x;. In a similar
fashion, a second variable &, can then be introduced to eliminate all terms containing
x». Following this process, eventually one obtains

'Note that by using a linear transformation the vector X can be transformed to another set of
variables. Thus, the reduction to sum of squares can be done in innumerable ways. This does
not affect the substance of the requirement for positive-definiteness as long as the transformation
is non-singular. Indeed, irrespective of the choice of variables, the number of positive, zero, or
negative coefficients does not change. Note, the objective of the current exercise is to affect a
transformation that reduces the quadratic form to a sum of squares. For positivity of the form, every
one of the coefficients multiplying the square terms must therefore be positive. See, for instance,
Harold and B. S. Jeffreys, Methods of Mathematical Physics, page 137, Cambridge University
Press (1957) and references cited there.
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616 F Positive-Definite Homogeneous Quadratic Form

Qn = an€l + bt + -+ + by1&2 | + byx2, (E3)

where &; contains terms that involve x;’s for i > j.

F.2 Positive Definiteness of 3 x 3 Quadratic Form

It is helpful to demonstrate in detail the procedure described above. To this end, we
append below the case for n = 3.
Let® us look at Q3.

3
03 = inai,jxj
i.j
= [an x12 + 2a12 x1 X2 + 2 a3 X1 x3] + 2ar3xox3 + azzxg + a33x32.

To eliminate x; from the above equation, define

2a 2a
& =x1 + 12 Xy + B X3. (F4)

2ay; 2ay;

Next, calculate aj; 512 and subtract it from Q3. This leads to the following, where x;
has been eliminated.

2
anan —a andxs — ana
(ayaxn 12)x§+( 11423 — A12413) 2% x3}

apn apn

03 —anél = [

2
ay azs —a
+Mx§‘ (E5)

ar
Next, we need to eliminate x,. To this end, much like what we did earlier, we choose:

2 dajl dp3—dj2 dj3
ar

2

ajy axp—a

2(11 22 2
apl

&L =x+

X3. (F.6)

(a11 an—dly) 5-2
2

Then, much as was done before, we calculate and write

2Note, square brackets will be inserted here to assist the reader in recognizing the pattern used for
introducing the variables §&;.
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(anaxn —al,)
airi

0; = anéf + &

2 2 2
n (ar1anass — apazs — aj;axn — anay; + 2012013a23)x2

3.
(anazn —al,)

Note that in addition to x; we have now also excluded x,. There is no need to bother
about excluding x3 because it occurs only as a square which is exactly the form we
are looking for. Note that the last variable — which is x3 here — will always occur in
the squared format.
For Q3 to be positive definite, the coefficients of the square terms have to be
positive definite. That is
ap > 0, (F7)

2
(ar1axn —ay,) -
ar

0, (E.8)

and

2 2 2
(an1axas3 — ay,ass — aj;axn — ayay; + 2a12 a3 as) -

0.  (F9)
(anaxn —ai,)

Note, the denominators of (F.8) and (F.9) are positive because of the preceding
inequalities given in (F.7) and (F.8), respectively.

All the three inequalities (F.7), (F.8) and (F.9) can more conveniently be
displayed as determinants.

|A1] = ay; >0, (F.10)
Ay| = [0 9121 5 , (E11)
az an
and
ajp a2 a3
|A3| = | a1 axn ax| > 0. (F.12)
asy as ass

Note that |Aq|,|Az|, and |A3| are principal minors of 4. Indeed, it turns out® that
positive definiteness of such a quadratic form for general n is assured if all the
principal minors of the determinant — of the 7 X n matrix of the quadratic form — are
positive-definite.

F.2.1 A Helpful Surprise

In the following appendix — i.e., appendix G — we study a thermodynamic system
that generates a 3 x 3 homogeneous, symmetric quadratic form. For this system,

3See footnote 1.
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the substance of the inequalities (F.10) and (F.11) — that involve differentiation
with respect to only the two variables x; and x, — is readily unraveled and we
are led to two eminently simple physical dictates for thermodynamic stability:
namely that the specific heat Cy and the isothermal compressibility y7 must both
be positive definite. On the other hand, the analysis of the rather fierce looking
inequality (F.12) — which involves nine terms — is much more involved. It is,
however, noted that:

1. The given quadratic form can just as easily be represented as

X3

03 ={x3. 2. x1}-b-{ x, t >0, (F.13)
X1
where
A asz asp asj
b=\ axanay|. (F.14)
ajz apz dii

According to this representation, positive definiteness of Q3 is assured if

|By| = as; > 0, (E.15)
IBy| = |4 421> g, (F.16)
azs axp
and
asz asy dsjg
B3| = |ax axn a» | =|As| > 0. (F.17)
aijz app a

2. Note that the corresponding terms equivalent to the current inequality (F.15)
appear to irreducibly involve only the third linearly independent variable x;.
Thus, a complete description of the positive definiteness of Q3 is provided by
the already disentangled two inequalities (F.10) and (F.11), and the simple third
inequality given in (F.15). (See (G.18) for details.)



Appendix G
Thermodynamic Stability: Three Extensive
Variables

In an earlier analysis — see (9.38) — the requirement that under appropriate conditions
the system energy is a minimum was used to predict the stability criteria of a simple
system. We found that for intrinsic thermodynamic stability, both the specific heat
at constant volume and the isothermal compressibility must be positive. That is the
following must hold:

C, > 0; 3 > 0. (G.1)

The first requirement, namely, C,, > 0, has an obvious physical basis: When heat
energy is not allowed to be used for expanding the volume, all that any addition of
heat energy cane do is increase the system temperature.

The positivity of the isothermal compressibility y; is testified to by observation.
When the temperature is held constant, increase in compression shrinks the volume
of the object being compressed.

In this appendix, we consider an isolated system composed of a single chem-
ical constituent with variable mole number. The variability of the mole number
introduces n as an additional extensive variable. Accordingly, as shown below, the
conditions for intrinsic stability also include a third requirement: namely,

(a—“) > 0. (G.2)
on S

Much like the first two requirements, the third requirement also has an obvi-
ous physical basis. In order to maintain thermodynamic equilibrium, addition of
molecules, to an otherwise isolated system in equilibrium, must increase their
chemical potential. A hint of this phenomenon was already noted in the chapter
on ‘“Zeroth Law; Motive Forces; Stability” — See (9.12) — where we observed that
the chemical potential is higher in a region of higher particle density.
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G.1 Energy Minimum Procedure: Intrinsic Stability

To satisfy the energy minimum extremum, the following two requirements must be
satisfied:
(dU)s,yn =0, (G.3)

(d*U)sya > 0. (G.4)
Note, now the internal energy U is considered to be a function of three independent
variables S, V and n. That is:

U=U(S.V.n). (G.5)

According to the first-second law:

U U 104
d V. =|— d —_— d —_ d
Vs, v.m) (aS)V,n S+(8V)s,n V+(a”)v,s "

= TdS — PdV + pdn. (G.6)

The first requirement, given in (G.3), has already been fully explored and
exploited in the chapter titled “Equilibrium, Motive Forces, and Stability.” In order
to analyze the second requirement for the energy to be a minimum — see (G.4) — it
is convenient to utilize a matrix procedure and introduce compact notation. To this
end, define the matrix

. Uss Usy Usn
J=| Uys Uy Uy, |, (G.7)
UnS UnV Unn

where

Then write
ds

d>U(S,V,n) = {dS.dV,dn}-J-4dV } > 0. (G.9)
dn
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For this inequality to hold, the principal minors of the determinant |j | have to be
positive definite. Accordingly,

[J1| = Uss > 0, (G.10)
Uss Usy
J2| = >0, (G.11
[J2] ‘Uvs Uny )
and
A Uss Ugsy Us,
33l = [3] = | Uvs Uy U | > 0. (G.12)
UnS UnV Unn
Now,

[J1]

39S ~\os

0((59),.,) ( ar )
. Van
(). ()
au )y, \9S )y,
Again, much like the entropy maximum principle, the energy minimum principle

requires the positivity of the specific heat Cy.
Next, let us for convenience use the Jacobian form for the inequality (G.11).

1
(Cv) T>0. (G.13)

(YY) (&
|J2|:|: ((353)(2 IE)W)S)} > 0. (G.14)
Because U
el =T,
(aS)V,n
and

aU __p
W),
we can write

b = [1T=P) A(P.—T)
2l = [msm} [Mw&]n

dP,~T) 3(V.T)] _[a(=P,T) &T.V)
[a(v T) AV, 3)} ‘[ V. T) 'a(S,V)L

S (EAREANREANES
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Noting the already established requirement that Cy be > 0, this inequality is
satisfied only if y7 is also > 0.

Thus, the physical requirements for intrinsic stability in a simple isolated system
are the same irrespective of whether we use the principle of entropy maximum or
energy minimum.

G.1.1 Third Requirement for Intrinsic Stability

The foregoing analysis of the positivity of |J;| and |J2| has not been hard work. It
appears, however, that the same may not be true for analyzing the positivity of the
determinant |J3| which has nine terms, each of which is a multiple of three different
double derivatives. Therefore, in order to sail this route, we take a different tack.

As noted in Appendix G, a quadratic form of the type found in d>U(S, V, n) that
is given in (G.9) can just as well be represented as follows:

dn
d*U(S,V.n) = {dn,dV,dS}-K-{av } >0, (G.16)
ds
where
R Unn UnV UnS
K= UVn UVV UVS > 0. (G17)
Usn Usy Uss

As a result, its positivity requires that the principal minors |K;|, |Kz|, and |K3| be
positive definite. Here

Ky| = Upp = (E)ZU) _ (3(%_(;{)&&/)
1| — nn — T - - 4.
’n )gy on v

= (a—'u) > 0. (G.18)
on )y

Because for given S and V/, the above requirement involves only the rate of change
of the chemical potential with respect to the occupancy n (of the relevant molecule),
and the earlier two requirements explicitly depended only on the rates of change of
the other two extensive parameters, S and V, therefore this must be the third linearly
independent requirement for intrinsic stability.

A clear display of the important results is given below.

For intrinsic thermodynamic stability the following three physical requirements
must be satisfied:



G.2 Examples 623

CV > 0,
and
xr > 0,

and

(8_/1) > 0. (G.19)
on)gy

Much like the first two requirements noted above, the third requirement also has
an obvious physical basis: to maintain thermodynamic equilibrium, addition of
molecules, to an otherwise isolated system in equilibrium, must increase their
chemical potential. A hint of this phenomenon has already been noted in the chapter
on ‘“Zeroth Law; Motive Forces; Stability” — See (9.12) — where we observed the
equivalent of the fact that the chemical potential is higher in a region of higher
particle density."

G.2 Examples

G.2.1 Examplel

Represent a row-vector of intensive variables, {d7, —dP, du}, in terms of its
conjugate column-vector. In other words, find the matrix M that is defined by the
following relationship:

ds
{dT,—dP, du}y =M-{ dV }. (G.20)
dn

G.2.1.1 Solution

Begin with the first intensive variable on the left hand side and represent it as a
function of all the extensive variables. That is,

T =T(S.V.n). (G.21)

!For instance, compare with that statement: Simply put, the requirement that in an isolated system
the entropy must increase in an isothermal spontaneous process, mandates the molecular flow, at
constant temperature, to occur away from a region of higher chemical potential towards a region
of lower chemical potential.
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Exploit the fact that d7 is an exact differential.

aT aT T
dT (S, V,n) = (5)v s + (W)s,,, av + (a_n)w dn. (G.22)

Now invoke the first-second law
TdS =dU + PdV — u dn, (G.23)
and note that for constant V' and n

TdS)v, = ([dU)y, . (G.24)

T = (aU) . (G.25)
Vo

Therefore,

as
Introduce this expression for 7" in the three terms on the right hand side of (G.22) to
get

dns,v,n):(M) ds+< <as>v,n) dH( <3S>W) N
Vo S.n A%

aS v on

= UssdS + UsydV + Us,dn. (G.26)

We follow the same procedure for the remaining two intensive variables — P and p —
on the left of hand side of (G.20). Without comment, salient steps of this exercise
are recorded below.

P =P(S,V, n);

dP = 8—P ds + B_P dVv + 8_P dn;
S /v, WV Jsn n )sy

U
P=—(=—=) ;
(aV)S,n’

—dP = Ugde + Uyy dV + U,y dn. (G.27)

w=pu(S,V,n);

o o o
du =|— ds — dv — dn;
o (aS)V,n +(3V)S,n +(3”)S,V !

_ (YUY .
K= \on Sy

du = U,sdS 4+ U,y dV + Uy, dn. (G.28)
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Equations (G.26)—(G.28) are readily seen to be represented by (G.20) where

A Uss Usy Us,
M= | Usy Uy Uy |. (G.29)
UnS UnV Unn
G.2.2 Example I1
Find matrix H where
ds
{dT,—dV,du} =H-{ —dP ;. (G.30)
dn
G.2.2.1 Solution
T =T(S,P, n);

oT aT oT
dT = | — d — dpP — dn;
(aS)P,n S+(3P)s,n +(a”)s,P "

TdS =dH — VdP — udn;

oH
T=—) :
(aS)P,n’

V = V(S. P, n):

14 aV aV
dV = | — ds — dpP — dn;
(aS)P,n * (3P)S,n * (an)S,P "

(2,
P ),

dV = HSP ds + HPP dP + an dn. (G32)
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p = u(S, P.n);

e m i
du= (=) d ) dr+ (=) dn
. (aS)Pn S+(8P)Sn +(8n S, P "
_ (Y .
=\ SV

du = Hs,dS + Hp, dP + H,,dn.

Thus
A Hss Hps Hys
H=| Hsp Hpp Hup
HSn HPn Hnn

(G.33)

(G.34)



Appendix H
Massieu Transforms: The Entropy
Representation

To determine the Massieu transforms,! one needs to use the entropy representation.”

In this representation, the entropy s acts as the central thermodynamic potential.?

H.1 Massieu Potential: M{v, u}

Let us consider, in the entropy representation, the fundamental equation for a simple
thermodynamic system that is recorded in (8.18). For convenience, it is re-produced
in an equivalent form below:

s = (?) v+ (;) u— (%)n i (%) X. (H.1)

This equation describes how the extensive variable, the entropy s, depends on other
extensive variables: the volume v, the internal energy u, the mole numbers 7, and
extensive parameters such as X'. The simple system being treated here has constant
number of atoms and does not have any dependence on the term () X’). For
such a system, a convenient appropriate relationship is provided by the statement
of the first-second law. That statement was originally given in (5.6). Again, for
convenience, we reproduce it below. ( Also, compare (10.13))

ds = (?) dv + (%) du. (H2)

"Massieu, M. F.
2Corresponding work in the energy representation — called the Legendre transformations — is
discussed in the chapter on Thermodynamic Potentials.

3For example, recall that, in the chapter titled “Equilibrium, Motive Forces, and Stability,” the
entropy was shown to play a central role in determining thermodynamic equilibrium and stability.
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Clearly, for the entropy s, the “canonical” — i.e., the characteristic — independent
variables are the volume v and the internal energy u: that is,

s = s(v,u). (H.3)

The entropy s(v,u), therefore, is itself the Massieu potential M {v,u}. That is:
s(v,u) = M{v,u}.

H.1.1 Massieu Potential: M {v,1}

Rather than the internal energy u — as is the case in (H.2) above — the inverse
temperature, (%), is greatly preferred as an independent variable. Therefore, in
(H.2), the variable of interest — that we should transform out of — is the internal
energy u# which occurs in the form —i—(%) du. In order to eliminate du, we transcribe

+(%) du as follows.
Add —(%) u to the primary potential s. This introduces an alternate Massieu
potential M {v, % .

M%v,;} =s—(;)u=—i. (H.4)

(Note: —¢. M {v, 1} is equal to the Helmholtz free energy f. Thus M {v, %} is really
a close relative of an old, but important, thermodynamic potential.) Differentiate

1 1 1
dM{v, ;} = (ds) — (;) du — ud(;). (H.5)

And, cancel — (%) du by inserting the original relationship for ds given in (H.2).

o i} = (oo (7) = (7 Joua(])
= (7)av- ”d(;)- (H.6)

The inverse temperature (%) is the new independent variable that is conjugate to the

previous independent variable the internal energy u. Note, both the characteristic

independent variables here, v and %, are easy to measure.
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H.1.2 Remark

The simple thermodynamic system being considered here provides only four
possible choices for the pairs of independent characteristic variables. These are:
1 1 . . . .
(v, u), (v, 1), (%, 7) and (%, u). So far in this appendix, only two of these four pairs
have been utilized: namely, (v, «) in M {v,u}; (v, 1) in M{v, %} To make use of the
last two pairs, namely (£, 1

T ;) and (% u) , we need to proceed, in the usual fashion,
as follows:

H.1.3 Massieu Potential: M{Z,u}

The appropriate new thermodynamic potential is:

M{?,u} =s—(§) v. (H.7)

Take its derivative,

d(M{%u}) :ds—(§)dv—vd(§). (H.8)

Now, following (H.2), replace ds by (£) dv + () du. This yields the following
relationship.

_ (;) au-va(2). (H.9)

Note: The Massieu potential, M {? u}, whose independent characteristic variables
are % and u, is not a “close relative” of previous thermodynamic potentials. Rather,
it is a new thermodynamic potential.

H.1.4 Massieu Potential: M{2, 1

Tt

Choose the following Massieu potential:
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s (}) i (L)yv=-£ (H.10)

(Note: —t. M{Z, %} is equal to the Gibbs free energy g. Thus M{Z, %} is not a
new function. Rather, it is a close relative of an old, but important, thermodynamic
potential: the Gibbs free energy.) Then differentiate both sides.

d(M%?, ;}) - d(M{v, ;}) — (?) - dv —v~d(§). (H.11)

Now, using (H.6), replace dM {v, %} by (%) dv — ud(%). This yields the desired

relationship.
a(mZ ) = —vea () —uea(2 (H.12)
t't t t) '

As mentioned above, the Massieu potential M {%, %} is not new. Rather, it is closely
related to the Gibbs free energy g.



Appendix I
Integral (11.83)

We need to calculate the following:

ui =u

[T sin(00)d0; [T dgy [T sin(62)d0, [T dgo F (1,2) exp[—p F (1,2)]
[7 sin(61)d6, [ dy [T sin(62)d6, [7T dgnexp [ F (1,2)]

(LD

where

C
F(1,2)=—- ( 'L;g'uz) [2 cos 6) cos B, — sin 6 sin 6, cos (¢p; — ¢p2)] . (1.2)

Normally the needed integrals would be done by numerical methods. However, if

. . C .
the system is at high enough temperature such that (kli‘—T‘%%) <« 1, the exponential

can be expanded in powers of the exponent, i.e,

exp[—BF (1,2)] = 1 — BF (1,2) + % [BF (1,2)]* + -+, (L3)

and the resultant integrals done by standard analytical methods.
Let us look first at the denominator of (I.1). We have:

k4 2w k4 2w
/ sin(@l)delf d¢1/ sin(@z)dGZ/ dg, exp [-BF (1,2)]

o

b g 2 b g 2
=/ sin(@l)delf d¢1/ sin(@z)dQZ/ d¢2

k4 2 k4 2w
—,3/ sin(@l)dQI/ d¢1/ sin(@z)dQZ/ d¢2F(1,2)
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2 b4 27 . .
—l—%/o sin(91)d91/0 d¢>1/0 sin(@z).dezfo dghs [F (1,2) + ---

:Al_ﬁAH%Aﬁ... 1.4)
Then
A = / ! sin(6,) d6; / i dg, / nsin(Qz) do, / : d¢y:
= [~ cos(d1)]; (27) [~ cos()]] (27)
=2(27)2(2n) = (4n)? (15)
and

b4 2 b4 2
A, = / sin(6;) d6; / dey / sin(6,) 6, / dg F (1,2)

T 2 /4 2
_ _(C‘zfz) / sin(6;) 6, / doy / sin(6y) d6> / do

X [2 cos 6y cos b, — sin B sin 6, cos (p; — ¢o)] = 0. (L.6)

To convince ourselves that A, = 0, all we need to notice is that the following two
integrals are vanishing. That is,

2/ sin(6;) cos(6;)d6;

- /ﬂ sin(20,)d6, = — [@} - _ [12;1] —0 17)
0 0

and

2
/ cos(¢1 — ¢2)dey

o

2 2
= cos(¢2)/ cos(¢y)de; + sin(¢2)/ sin(¢y) depy

= cos(¢) [sin(¢1)]g" — sin(¢) [cos(d1)]s”
= cos(¢2) [0 — 0] —sin(¢2) [l — 1] = 0. 1.8)

The calculation of A3 requires a little more effort. We have
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A b4 2 T 2 F(1.2
’ = / sin(6) do; / dey / sin(6,) d6, / de» Fa2

()] -5
_ / " sin(6y) dy / " i / " Sin(6)d6; / " g,

x [2 cos 6 cos B, — sin 6 sin 6, cos (¢ — ¢»)]°

= Part; + Party, (1.9)

where

b4 2 b4 2
Part, =/ sin(@l)delf d¢1/ sin(@z)dGQ/ do»

X [4 cos 07 cos 07 + sin 67 sin 67 cos (¢ — ¢2)2] ;

b4 2 b4 2
Part, =/ sin(@l)d91/ d¢1/ sin(@z) d@z/ do»

X [—4 cos 6y cos B, - sin ) sin O, cos (¢ — ¢2)]

=0. (1.10)

We have asserted in the above that Part, is vanishing. This is assured by the fact

that one of its multiplying factors is the integral foh cos(¢; — ¢») d¢; . That integral
was shown, in (I.8), to be equal to zero.

Regarding Part,, it is convenient to separate it into two subsidiary parts. That
is,

Part; = Part; (/) + Part; (/1) 1.11)

where

b4 2 b4 2
Part,(I) :/ sin(@l)dQI/ d¢>1/ sin(6,) d92/ dep [4 cos 6 cos 67 ]

o

cos(f1)=—1 2w
=4 / cos 07 {—d 003(91)}/ d¢,

os(01)=1

cos(br)=—1 27
x/ cos 922 {—d cos(@z)}/ do»

0s(6r)=1

1 1 A7 2
:4/ n*dn (27t)x/ yidy (2n)=4(?) , (1.12)
-1 -1
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and

/4 2 /4 2
Part; (II) =/ sin(@l)dGI/ d¢1/ sin(@z)dezf d¢,

o

X [Sin 912 sin 922 cos (¢ — ¢2)2]

:/ sin(91)3d91/ sin(6,)* d6,

2 2
x/d@/d@mm—m? (L13)

Relevant integrals in (I.13) are done as follows:

/” sin(61)* doy = /” sin(6,)’ d6, = /” [3 sin(9y) — sin(3 91):| de,

o [ [ 4
3 1[1+1] 4
=-[1+1]—-- =|-);
4[ 1 4 3 (3)

2 2
[ ao [ o coson - g°
2 2
= / dg, / depy [cos(1)” cos()” + sin(¢1)” sin(¢2)’]

2

2T
+d’mmmwasMMm@w}ma

The integrals in the last row in (I.14) are clearly both equal to zero. And the relevant
integrals in the row before are of the form:

2 2
/ d¢; cos(¢y)? =/ [H+S(2¢1)i| d¢) = (27”)

2 2w _
[ aprsiniorr = [ F—3§@Q%m=(%).

2 2
/d@/dmm@—wz

As aresult

2 2
= / d¢, / d¢, [cos(¢1)2 cos(¢p2)? + sin(¢p;)? sin(¢2)2]
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2

2w
12 / sin(1) cos()dy / sin(g2) cos(@2)dps

21\? 27\? 5
=5 + > +2x0x0=27" (L15)

Combining (I.13)—(I.15) gives

Part; (II) = (g) x (g) x (27%).

Having calculated Part, (1) and Part, (I 1) and recalling that Part, is vanishing —
see (I.10) — we are now able to write the complete result for (I.4), namely the
denominator of (I.1). Note this denominator is needed for the calculation of, u, the
average energy per mole.

b4 2 k4 2w
/ sin(@l)dGI/ d¢1/ sin(@z)dGZ/ dg, exp [-BF (1,2)]

2
=A1—ﬂA2+@A +-

= (4n)* +0+ %[(

=t (L) o () + (2) (£)or 0]+

— 4n) [1 LB (Cﬂlﬂz) ]+ (L16)

Cpr o
R

2
)j| [Part; (I) + Part, (I) + Part,] + - - -

3 R3

Having thus calculated the denominator on the right hand side of (I.10, we deal next
with the numerator. Expanding the exponential as given in (I1.3), the numerator of
(I.1) is the following:

k4 2w k4 2w
/ sin(@l)dQI/ d¢)1/ Sil’l(@z)d@z/ dd)zF (1,2) exp [—ﬂF (1,2)]
k4 2w k4 2w
:/ sin(@l)d91/ d¢)1/ sin(92)d92/ dd)zF (1,2)

T 2 b g 2
_5/ sin(91)d91/ d¢>1/ sin(@z)dé’g/ dg [F (1,2)) + -+

= 0 — pA;

= 42 [T

1.17)
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Here, we have made use of the following information: As was demonstrated earlier —
see (I1.6) and the discussion that followed — we have

b4 2 b4 2
/ sin(6;) d6; / de, / sin(6,) d6, / dg F (1,2) = 0.

Also, the last integral in (I.17) has already been evaluated as A3 — see (1.4)—(1.16).

The average value, U, of the energy of N dipole pairs is N times the average
energy, u, of a single dipole pair. Note that u is the ratio of the results given in (I.17)
and (I.16). That is,

~NB 4
U= Nu= P 4s =
2
(47)2 |:1+ﬂ?(C;;13uz)j|

2 2 2
- () -5 () ]

2(C 2
—Nﬁg( /’;3“2) , (L18)

&

1.0.5 Average Force Between a Pair

The force A between any pair of dipoles can be determined by differentiating their
intra-pair potential energy F'(1,2) that was specified in (I.2). That is,

F(1,2) = — (%) [2 cos 61 cos 6, — sin 6y sin 6, cos (¢ — ¢o)],

A (8F(1,2)

‘)
=(=)FQ,2). (L.19)
oR )MI,M2,81,92,¢1,¢2 (R

Similar to the average energy of a pair, < F(1,2) > —see (11.83) and (11.84) — we
can also represent the average value of the intra-dipolar force, A, as < A > . Very
conveniently, in this case they are related!

(i) < F(1,2) >= (i) U
R RN

2 (Cpipa\’
_ﬂi( o ) (1.20)

<A >

(Note, U is as given in (1.18).)
Clearly, the thermodynamic average of the force between any single pair of
dipoles is attractive.



Appendix J
Indistinguishable, Non-Interacting Quantum
Particles

For a gas of n non-interacting free particles with mass m and momenta p, the
Hamiltonian H,, is

Ho =) npep. (J.1)
p

where 7, is the number of free quantum particles with momentum p.

pZ
n= an; ep =75 (J.2)
V4

Therefore, the partition function, given in (11.207), can be written as

V(, V. T) =) Trlexp{—p(H, — un)}]

= :i:)Tr |:exp § -B (Xp:(sp - u)np)}]
_ é Z ]:[ [exp {—= (e, — s, ] 13)

where the primed sum overn,, i.e., Z;p , includes only those values of n, for which
do,np =n.

Note: in deference to the physical requirements of the grand Canonical ensemble,
the double summation in the last row of (J.3) must occur in the following manner:

First: we must sum over 1, in such a way that the total number of atoms are kept
equal to n : that is, Zp n, =n.

Second: the next summation is over n, which must include all physically allowed
values.
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An important mathematical result is that such double summation — in which the
summation over n occurs after the 7, summation —is in fact equivalent to a product
of independent, single sums over all values of the numbers 7, — and not just those
that satisfy the sum-rule:' >° pNp = n.Asaresult we can re-express the last row
of (J.3) as follows:

Nmax

W V. T) = ) [exp{—Bleo — wino}]

n,=0
<3 [exp{—Bler—nl] x . [exp{—Bles — poyma}] x -+ (14)
n1=0 n2=0

For the Bose—Einstein gas, nmax can be as large as co. On the other hand, for a
Fermi-Dirac gas, the occupancy of each state is limited to two. Therefore, for an
FD gas, n,,n1,n,, ..., etc., may take on only two values: 0 and 1.

J.1 Quantum Statistics: Grand Canonical Partition Function

The so called Bose—Einstein (BE) particles obey the Bose statistics in which there
is no restriction on the occupation number of any state: so it can range between zero
and infinity. Therefore, ny,x = oo and any of the sums in (J.4) — e.g., the i —th —
can be written as follows:

Nmax =00 1
> lewi-pe -l = (1o ) 09

n; =0
As aresult, (J.4) becomes

W, V,T)]g_p = V(= V,T)

- n(l—exp{—lﬁ(ei —u)});

[0 V. D) = Ap—pIn[¥(z, V. )5
=—Ap_g Zln [1 —exp{—B(ei — w)jl

=—Ap_p Y In[l—zexp(—Be)]. (J.6)

'A motivated student would want to test this assertion by working through the sum over n from
n=0— 2.
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Recall that z = exp(fu). Also that Ag_g is the spin degeneracy weight factor
which is equal to unity for the BE gas. Both ¢; and the sum ), are explained in
J.9).

In contrast with Bose statistics, for Fermi particles with spin %, the sum over
n; is restricted to only two cases: n; = 0 andl. This limits np,x to the number 1.
Therefore, for the so called Fermi—Dirac(FD) gas, any of the sums in (J.4) — say, the
i-th — can be written as:

Nmax=1

Y [exp{=Blei —pmi}]l = 1+ exp{—Blei — 1)} a7

n;j=0
As aresult (J.4) becomes
WG V.Dlpp =¥ V.T)
=[] 0 +exp{-Bei — )}

(G V. Dlp—p = Ar-p ¥ V. T)]rp
= AppY_In[l +exp{—B(e — n)}]

=Arp Y In[l+zexp(—Be)]. (1.8)

where the spin-degeneracy factor Ap_p = 2.

Following a suggestion by Pathria, we can combine (J.6) and (J.8) and thus
describe in a single equation the quantum non-interacting particles of both the
BE and the FD varieties. While we do not necessarily need it, such description
also simultaneously contains the corresponding representation for a classical non-
interacting gas.

0@ V.T) = %Zln[l +azexp(—Bei)],

where
a = —1,for BE gas
= +1, for FD gas
— 0, for classical gas,

and
1
A = (2S5 + 1) =2, for spin 3 FD gas

= 1, otherwise. J.9)



Appendix K
Landau Diamagnetism

In addition to usual paramagnetism, conduction electrons are also subject to a sort
of negative paramagnetism whereby the effect of applied field in a given direction
produces a magnetic moment that faces in the opposite direction. Such behavior,
resulting in negative susceptibility, is called: “diamagnetic.”

So far in our study of the conduction electrons, we have not considered any
effects of the orbital motion. In the presence of applied magnetic field B, — say,
along the z-axis — an electron follows a helical path around the z-axis. The rotational
motion is caused by the so called Lorentz force. Its projection on the x—y plane is
completely circular. While a single rotating electron may be diamagnetic, when a
large number N of electrons are present, and they are subject to reflection from the
enclosing walls, classical statistics predicts that there is “complete” — i.e., to the
leading order in N — cancelation of diamagnetic effect. Therefore, as first noted by
Bohr, van Leeuwen, and others, classical statistical description of this motion cannot
lead to diamagnetism.

Unlike classical statistics, L. D. Landau has shown that quantum statistics do
lead to non-zero diamagnetism. While the details of Landau’s work are somewhat
involved, a relatively simple general comment can still be made. Due to reflection
from the bounding walls, the quantum electrons near the boundary — unlike the
classical, Maxwell-Boltzmann electrons — have on the average different quantized
velocities from the electrons that have not been reflected. Therefore, complete
compensation of the diamagnetic effect that occurs for perfectly reflecting classical
electrons does not take place for quantum electrons.

K.1 Analysis

For the electrons being studied, we assume there is no inter-particle interaction.
Therefore, we can work with a collection of separate single particles.

A particle’s circular motion — say, with angular velocity w — is quantized so
that the relevant rotational energy levels are not continuous but are equal, say, to
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[£+ (3)] (hw). where £=0,1.23,...(Here » = (%) , e is the electronic charge,

m its mass, and c is the velocity of light in vacuum.) While the energy for the
2

longitudinal motion, i.e., (;—m) , is also quantized, due to the large size of the system

the levels lie very close together. As a result, quantization along the z—direction can
be ignored and p, can be treated as a continuous variable. Therefore, the energy
spectrum to treat is:

2 2 2 2
Px p}’ pz 1 pz
¢ |:2m Tom T 2m:| [ +(2)]( w)+[2m}

1 heB, 2 . 2
e (G)(Z2)+ | ==t + | 22, &)
2 mc 2m 2m
Much as was done in (11.234), we work out the grand potential
Q@ V.T.B,) = Y In{l + zexp(—Be)} . (K.2)

Then the total magnetic moment, M, is

1 (8Q(Z, V. T, Bo)) | K3)
V.T

N
M:Z<M[>_ﬂ 3B()
=0

Also, as noted in (11.237), the observed value of the number of particles N is

N=z (—aQ(Z’ W1, B”)) . (K4)
0z B, V.T

K.1.1 Multiplicity Factor

We consider separately the contribution due to the rotational and the translational
states. The first part of the integral then leads to the “multiplicity factor.”

The quantized, rotational energy levels of a particle, that refer to the x — y
space, are necessarily degenerate due to the “coalescing together” of the almost
continuous set of zero-field levels. As a result, essentially all those levels, that lie
between any nearest two eigenvalues of the x — y component of the Hamiltonian,
coalesce together into a single level that may be characterized by the quantum
index £. The difference in energy between any nearest pair of levels is therefore
independent of their quantum index £. The number of these levels is the “multiplicity
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factor.” According to Pathria' this factor is the: “quantum-mechanical measure of
the freedom available to the particle for the center of its orbit to be ‘located’ in
the total area XY of the physical space.” (In the present notation, the x- and the
y-components of the total physical space are denoted as X and Y, respectively.)
Pathria tells us that the multiplicity factor may be found to be the following:

XY .
o x qrelevantarea : [ dpy | dpy

- (ﬂ) 27 (mho) = XY (eB”) . (K.5)

h? he

As a result the grand potential-see, (K.1) and (K.2) —is:

Q@ V.T,B,) = ) In{l + zexp(—fe)}

00 400
_xy (eth) ;/_w (%) dp.In {1 + zexp(—fe)}

()5
xln%l + zexp [—ﬁ ([Z + (%)} (%) " [;;D]} ’

(K.6)
where we have replaced (X Y Z) by the system volume V. At general temperatures,

the integral above is best done numerically. However, in the limit of high and low
temperature, it readily yields to analytical evaluation.

K.1.1.1 High Temperature
Here z and therefore [z exp (—B¢)] are small compared to unity. Therefore

In{1 4 zexp (—Be)} = zexp (—Be) + O [zexp (—Pe)]*. (K.7)
Accordingly, at high temperatures, (K.6), (K.4) and (K.3) lead to the following

results for the grand potential, average number of particles, and the total diamagnetic
moment.

ISee Pathria’s equation (8.2.29). op. cit.
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+o0 2
0@V, T,By) ~ (6;;130) z/_ exp (—'iii ) dp.
X Zexp % —B |:€ + (%)j| (ha))}
=0

-1
— (ZEVBO)(znnakBT)%{snﬂl(ﬁ;eBo)} . (K.8)

2h2c mc

In (K.8) above, use was made of the following identity:
oo | exp {-B(%3)]
2 ex 1o ()] oof =\ —ow o
%2 sinh (,BhTa))}_l (K.9)
Also, w was replaced by its value (%)

In order to determine the diamagnetic susceptibility per particle, we need to find
the total magnetization as a function of the applied field and the measured value N —
namely, the thermodynamic average — of the number of particles present. The latter,
according to (K.4), involves differentiation with respect to z and then multiplication
by z. Similarly, the high temperature result for the Landau diamagnetic moment,
(M )1andau, can be found from (K.3) and (K.8). In this manner, we readily find:

e Z(aQ(z, V.T.B,)
0z

1 00z, V, T, B,)
Oy = - (P2ELT50)
fnd N:B aBU V.T

= () | (G ) oo (G )|
- (52 ) [com (222 ) - (e )]

= s L(Y), (K.10)

) =0V, T, B,);
V.T.B,

where ug = (%) is the Bohr magneton and

T (ﬂzheBo) — (BBojtn):
mc

L(T) = [coth(Y) — (1/7)]. (K.11)




K.1 Analysis 645

At high temperatures, unless the applied field, B,, is exceptionally large, T < 1.
As a result L(Y) = (Y/3) — O[(Y)?]. and the thermodynamic average of the
diamagnetic moment per particle and the resultant Landau susceptibility, ())iandau,
are as follows:

B() 2
(M angan = — (ﬁ) 4 Olyus (BBoiun)’):
_ (M)landau _ “]23
(tandau = 5~ it/ (K.12)

Except for the negative sign, other features of this result are reminiscent of those
of Langevin’s classical theory result for paramagnetism ! [ For example, compare
(11.98) where we found: ())iangevin classical = ,uf /(3kgT). Recall that . was the
magnetic moment of a single, classical Langevin-particle.] We hasten to add,
however, that this is merely an happenstance and has no fundamental significance
(that, at least the current author is aware of).

At such high temperature, the Pauli result for the paramagnetic susceptibility of
a gas of free, quantum electrons appears to be equal to the corresponding quasi-
classical estimate given in (11.296). The equality holds only when the Lande g
factor is equal to 2. Then we can legitimately replace the “intrinsic magnetic
moment per electron,”’ ( %) , by the Bohr magneton up.

Adding that result to Landau diamagnetism yields

Xelectron at high temeperature — (X)quasi—classical + (X)landau
2 2
KB Ky
=|—]- , K.13
(kB r ) ( 3ksT ) (1

2
Observe that we have not used the obvious simplification — namely, (32,{’; BT) — for

the sum of the above two terms. The reason is that depending upon the source of
the free electrons being considered, up occurring in the two terms in the above
equation may be slightly different. This is because of its dependence on the effective
electronic mass and/or the Lande g-factor, which are not necessarily the same for
the two processes being represented.




Appendix L
Specific Heat for the BE Gas

g5
Knowing the internal energy in the form of (11.365), thatis U = %NkBT [%} ,
3

the objective of the present appendix is to derive the general expression for the
specific heat that is given in (11.366).

L.1 Analysis

Briefly we proceed as follows: First, we determine the derivative of g,(z).

) (aggz(Z))V =) /,,OO exp(x)x" " [exp (x) — 2] d

_ z xn—l o
= T [_exp(x)—z'(’ }

+ Z(l’z(;)l) [/UOO X" exp (x) — 2] dx:|

_ 1 * n—=27[_—1 _ =1
=0+ —F(n - /{) X [z exp (x) 1] dx
= gn—1(2). (L.1)

(Note that here V' is just a dummy index.) Then we write:

C(T) 1 (U) _3[80
Nky ‘N_ks(ﬁ)v‘i g3
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648 L Specific Heat for the BE Gas

3T dgs(2) g3 (2) 9z
agm [0 (5), =0 (%) ),

(L2)

Next, we need to determine (—;) . To this purpose we begin with (11.363): namely

0= (3)%

where, as always,

=

2nmkgT \
A= (TB) . (L.3)

Then

(ag;@)
aT
14

which leads to

(agsﬁ)v(s—;x:[ga@}@—;x

“3NY L, (3

0z 3z 83 ()
(ﬁ)v T (ﬁ) 212 L

Now we insert ( BT) given above into (L.2). This finally leads to the specific heat
C,(T) that is valid for temperatures 7 > T.

T = NE g5(2) 9 (8:() L6
! ’ 0] 4\a@/] ‘
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Equation of state, 8
a definition, 30
Dieterici, 300
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third,
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energy representation, 349
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meta-stable, 395
of different macroscopic
parts, 31
thermal, 3
Equivalence
energy and entropy
extremum principles, 361
Erg, 58
Ethane, 265
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Exact differential, 9
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I, chapter VIII, 350
I, chapter VIII, 351
VI chap VII,
¢y, internal energy and volume
dependence, 288
Example |
appendix G, 623
Example 11
appendix G, 625
Examples, 85
Examples Chapter 11
1, partial pressure of mixtures, 47
2, dissociating tri-atomic ozone, 48

3, energy change in leaky container, 49

4, mixture of carbon and oxygen, 50
5, carbon on burning, 51

6, pressure, volume and temperature, 52

7, addition to example 6, 53
Examples Chapter 111
1, heat energy needed for raising
temperature, 68
10, latent heat of
vaporization of water, 90
11, perfect gas adiabatic

expansion then isothermal compression:

work done, 92
12, non-quasi-static

free adiabatic expansion of ideal gas,

95
13, quasi-static adiabatic
compression of ideal gas, 96
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or adiabatic expansion of diatomic ideal

gas, 96
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20, proof of:
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29, alternate solution
of example 28, 116
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gas, 71
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117
31, equation of state from
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32, related to Newton’s law
of cooling, 121
33, volume dependence of
single particle energy levels, 122
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and temperature, 73
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latent heat of vaporization, 86
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to CO,, 89
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1, an object
and a reservoir, 153
10, between three
finite masses, 171
11, alternate solution
of example 10, 172
12, Carnot engine
and three reservoirs, 174
13, alternate solution
of example 12, 176
14, two masses
and reservoir, 178
15, alternate solution
of example 14, 179
16, Carnot engine
two finite sources with temperature
dependent specific heat, 183
17, work needed for cooling
object with constant specific heat,
187
18, temperature dependent
cooling, entropy change and work
input, 188
19, entropy increase
on removing temperature gradient,
192
2, two finite masses
entropy change, 155
20, maximum work
available in example 19, 195
21, diesel engine, 201
22, Joule engine, 208
3, reservoir and mass
temperature-dependent, 157
4, changes along
Carnot paths, 159
5, an object
and reservoir, 161
6, alternate solution
of example 5, 163
7, maximum work
and entropy change, 167
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finite masses, 168
9, alternate solution
of example 8, 169
Examples Chapter V
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10, () = (%), = (%),.203
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246
13, equation of state
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15, Carnot Engine
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number of atoms, entropy change,
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4,if (2) = (%)

Xt

then (%) = 0,228
5, gas and reservoir

change in u and s, 238
6and 7,

AW, AU, AS

calculations, 239

8, (L) =1-(%),241
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Examples Chapter VI

1, pressure versus volume
for critical isotherm Van der Waals, 267
10, Van der Waals gases:
adiabatic equation of state above critical
point, 297
11, adiabatic state equation
and u, h,s,c, — c,, for given gas, 298
12, behavior of
Dieterici gas, 300
2, isothermal compressibility
along critical isochore just above T,
268
3, difference in
critical densities, 277
4, saturation pressure, 279
5, isothermal compressibility
just below T¢, 280
6109, 288
6, internal energy and
volume dependence of ¢,, 288
7, Van der Waals gases:
temperature change on mixing, 290
8, Van der Waals gases:
specific heats, enthalpy, n and pu,
293
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9, Van der Waals gases:
work done, internal energy and entropy
change, 296
Examples Chapter VII
1, Gay-Lussac-Joule
coefficient for perfect gas, 306
at _ [ o
10, Prove (31’)}1 (al’>s
=—(&).31

11, Prove (—ﬁ—) U)
=c,,332
1

12, Prove (%)
nvx \dp ),
=¢,, 333

13, Prove (%’Z)

=cp(1— uap/x,), 333
14, Prove (3’ )h
= (e, — L)1, 334
15, Prove (%)v =t
and() = —p,335
2, Gay-Lussac-Joule
coefficient for nearly perfect gas,
306
3, Gay-Lussac-Joule
coefficient for Van der Waals
gas, 307
4, Joule-Kelvin coefficient
for perfect gas, 313
5, Joule-Kelvin coefficient
for nearly perfect gas, 313
6, Van der Waals Gas
adiabatic-free expansion, 318
7, hydrogen gas
estimated inversion pressure from state
equation, 320
8, enthalpy minimum
for gas with known three virial
coefficients, 321
9, Prove (££) — (£5),

v
= (£).330
alternate solution
of example 7, 320
Examples Chapter VIII
1, for fundamental equation:

given S =AnVU )% , find three state
equations, 350
2, re-work example 1:
in energy representation, 351
Examples Chapter XI
1, ideal gas: isothermal mixing;
different pressures but same number of
atoms, 416
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2, ideal gas: isothermal mixing;
different pressures and number of
atoms, 417
3, ideal gas: mixed with different
temperature, pressure and number of
atoms, 419
4, different ideal gases
isothermal mixing, 421
Examples VI-VIII
chapter VII, 318
Exercise
I, chapter VIII, 350
Exercise II-b, 17
Exercises Appendices
A:1, derive (A.7), 575
A:2, derive relation implicit
in (A.9), 577
A:3, derive equations:
A.37 and (A.38), 585
Exercises Chapter I
la,9
1b, 13
2a, 16
2b, 17
Exercises Chapter 11
1, where 90 % molecules are in atmosphere
with decreasing temperature, 55
2, total energy of column in atmosphere
with decreasing temperature, 55
Exercises Chapter IV
1, work along
two adiabatic links, 135
2, re-do example 11
for n objects, 174
3, show: €Heat Energy Pump
=1+ COP, 192
4, show why Tt
must approach 7} when T, — Tj, 197
Exercises Chapter V
1to 6,251

1, prove: (g;,) ((31;)5
—v(x:/y). 251
2, prove: (%{f)\ (g_;)t -

(%5),252

3, re-do exercise 2
by using Jacobians, 252
4, prove: (x; — xs) =

0[Z
tv (Eﬁ) 252
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6, prove: ¢, =
_1 (M) 253
w\op ),
Exercises Chapter VI
1, show that figure 2b
agrees with the Maxwell prescription,
271
2, for exact differential

necessary that loop integral be vanishing

but not sufficient, 273
3, question for skeptics, 282
Exercises Chapter VIII
1, show Callen rule
also applies to
entropy representation, 350
Exercises Chapter X
Maxwell relations
for multi-constituent systems, 395
Exercises Chapter XI
1, Pot(1+2)-Pot(1)-Pot(2)
calculate, 417
2, Pot(1+2)-Pot(1)-Pot(2)
calculate for given systems, 419
3, Pot(1+2)-Pot(1)-Pot(2)
calculate for specified systems, 420
4, Pot(1+2)-Pot(1)-Pot(2)
calculate for different ideal gases, 423
5, do above in 3-D, 441
6, calculate thermodynamic
potentials for hard-core, 454
7, confirm above statement, 511
8, calculate thermodynamic
potentials for phonons, 560
calclate: Pot(14-2)-Pot(1)-Pot(2)
3, for systems specified, 420
4, for general systems, 423
calclate: Pot(1+2)-Pot(1)-Pot(2)
2, for given systems, 419
thermodynamic potentials
3-dimensional
harmonic oscillators, 441
Exotic form, 2
Expansion
virial Van der Waals gas, 260
Experiment
gedanken, 148
Experimental Observation
specific heat of diatoms, 425
Extensive, 30
and intensive parameters, 30
quantity, 30
Extrema
all types, 367
energy minimum, 361
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entropy and energy
occur simultaneously, 361
entropy maximum, 357
Helmbholtz potential, 382
Extremely Relativistic
monatomic ideal gas, 448
ideal gas, xi
Extremum
energy, 361
entropy, 357
Gibbs potential
minimum at constant 7 and P, 387
Helmholtz potential
minimum at constant V and 7, 382
priciple
Gibbs free energy, 273
Extremum Priciples, x
Extremum Principle
for Gibbs potential, 387

Fermi Energy Ef
2/
=) (%) 520
Fermi-Dirac
Perfect Gas
weakly degenerate, 507
and Bose-Einstein
quantum gases., Xi
thermionic current density, 537
Fermi—Dirac and
Bose-Einstein, perfect gas
together, 503
together: P, U and pu, 504
Fermi-Dirac Perfect Gas
analysis, 505
completely degenerate
zero temperature simple analysis, 516
Zero temperature
formal analysis, 519
highly or partially
degenerate, 512
partially degenerate
formal analysis, 520
thermodynamic potentials, 521
partition function, 500
partition function for single state, 500
weakly degenerate
U, P, G, H; specific heat, 509
entropy, 510
Fifth and Sixth Moments, 586
Figure
Ia chap IV, pressure versus volume,
128
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Figure 1
Chapter I, 10
Figure 9: Dieterici isotherms, 302
Figures Appendices
A:1, Gaussian Distribution, 579
E:la and 1b, Gaussian Distribution, 612
E:lc and 1d, Gaussian Distribution, 611
Figures Chapter I
1, paths traveled, 10
Figures Chapter 111
1, temperature versus volume
ideal gas expansions: adiabatic,
isothermal and isochoric, 93
2, ideal gas polytropics, 100
Figures Chapter IV
10, diesel cycle with
ideal gas as working substance, 199
11, Otto cycle with
ideal gas working substance, 202
12, Joule cycle with
ideal gas working substance, 206
la, pressure
versus volume, 128
1b, temperature
versus volume, 128
1c, temperature
versus pressure, 128
2, infinitesimal cycles
added, 137
3, Carnot Cycle
arbitrary working substance, 140
4, irreversible adiabatic
process: entropy versus temperature,
146
5, schematic plot
for example 2, 155
6, schematic plots for
examples 5 and 6, 163
7, schematic plots for
examples VIII and IX, 169
8a, entropy difference
versus 75/ Ty, 195
8b, total work
versus T/ Ty, 195
9, thermostats
and isochores 7" versus V', 197
Figures Chapter V
1, entropy increase
versus ratio pressures, 221
2, entropy increase versus
(P»/Py) and (N2/N1), 224
Figures Chapter VI
la and 1b, hard core
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homogeneous pairs sphere of exclusion,
256
2a, (po, v,) plot of the
Van der Waals isotherms for £, = 1.0
and 0.9, 269
2b, (po, Vo) plot of the
Van der Waals isotherm for 7, = 0.9,
269
3, (po, V,) Van der Waals
isotherms for 7, = 1.0;0.9; 0.8, 274
4, Van der Waals
boundary of the metastable-unstable
regions, 275
5a, X, as function of p,
for various fluids, 283
5b, X, as function of p,,
Van der Waals gas, 283
6, reduced second virial
coefficient, 285
7, reduced molar densities,
co-existent regime, 287
8a, reduced vapor pressure
in the co-existent regime and the PCS,
290
8b, reduced vapor pressure
in the co-existent regime, Van der Waals
gas, 290
9, Dieterici state equation
isotherms for 7, =
1.0,0.9.,0.8,0.7,0.6, 302

Figures Chapter VII

1, schematic view of
Gay-Lussac-Joule
apparatus, 304
2, schematic view of
Joule-Kelvin
apparatus, 308
3, schematic view of
Joule-Kelvin’s
experiment results, 311
4, constant enthalpy
curves for nitrogen, 311
5, Van der Waals
reduced inversion temperature
versus (reduced volume)™!,
317
6, Van der Waals
reduced inversion temperature versus
reduced pressure, 318

Figures Chapter X

1, phase boundaries
clausius—Clapeyron equation for non
H,O cases, 398
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2, phase boundaries
Clausius—Clapeyron equation for H,O,

399
Figures Chapter XI
1,

versus temperature in hydrogen, 427
13, (AH) and (AG)

versus ‘low’ temperature, 488
18, specific heat for Sodium, 522
19, specific heat for KCI, 567
2, Langevin function

L(w), 447
3, Lennard-Joans

Interatomic Potential, 455
nuclear paramagnet:

14, U versus T, 491

15, S versus T, 491

16, S versus U, 491

17, specific heat, 493
Langevin Paramagnet

10, specific heat, 480

11, S versus T', 488

7, entropy, 475

8,magnetic moment, 478

9, internal energy, 479
Langevin Paramagnet:

12, r (B—S)T versus (g“B]) B,,

0B, kgT
488
Simple Harmonic Oscillator
4, internal energy, 471
5, specific heat, 471
6, entropy, 471
Finite sized
interacting molecules, 256
First
law for quasi-static process, 213
First 7.dS Equation, 215
First and Second 7.dS Equations
together, 234
First and Second Laws, 212
First Law, 212
for quasi-static process
tds = du + pdv, 213
is more than just
energy conservation, 212
use of, 64
First law, 152
First Requirement
intrinsic stability
Cy > 0,369
First-Second Law
Clausius version
Differential Form, 212
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First-second law
Clausius version, 152
Flow
heat energy, 357
molecular, 359
isobaric-isothermal, 365
Fluctuation
metastable, 356
Fluoride, 265
Fourth Moment, 585
Free Energy
Helmholtz, 361
Free energy
Gibbs
extremum principle, 273
Frequency Moment
exact 4th, 585
exact 5th and 6th, 586
Frequency Moments
exact, second
normalized, 583
exact, third to sixth
normalized, 584
of distribution functions, 579
of Gaussian distribution
normalized, 582
un-normalized, 579
Frequency Spectrum
Debye, 566
Fundamental Equation
and the equations
of state, 337
for ideal gas
energy representation, 349
for ideal gas, I, 346
the complete, ix

Gadolinium Ethylsulphate, 447
Gas
perfect : model of, 23
nearly perfect, 306
reservoir in contact
change in u and s, 238
with interaction but
no self-rotation Hamiltonian,
450
Gas with Interaction, 450
Gaussian Approximation
continued, 577
for half-concentration, 576
Gaussian Distribution, 576
Normalized Moments, 581
Un-Normalized Moments, 580
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Gay-Lussac, Joseph Louis
(12/6/1778)
-5/9/1850), 303
Gay-Lussac—Joule
experiment, ix
Gay-Lussac-Joule (GLJ) coefficient,
304
Gay-Lussac-Joule Coefficient
derivation, 305
description, 303
measurement, 304
perfect gas, 306
Gedanken experiment, 148
gedanken experiment, 353
Germer, Lester Halbert
(10/10/1896)
-(10/3/1971), 539
Gibb’s Free Energy, 384
Gibbs
-Duhem relation
energy representation, 345
entropy representation, 345
free energy, 384
phase rule, 402
equation, 152
free energy
extremum principle, 273
Josiah Willard,(2/11/1839)
-(4/28/1903), 422
paradox, 422
potential, 338, 341
potential and relative
size of phases in single constituent
system, 387
relationship
= first-second law, 213
specific potential: equal
in coexistent phases, 388
Gibbs potential, 420
Gibbs Free Energy
decrease in
constant mole-numbers,
386
equality of specific
different phases, 388
Gibbs phase rule, x
Gibbs Potential, 413
extremum principle, 387
helps determine
enthalpy, 393
Gibbs Potential Minimum
relative phase sizes, 387
Gibbs, Josiah Willard
(2/11/1839)—(4/28/1903), 26

Gibbs-Duhem, ix
relation:
energy representation, 345
entropy representation, 345
Goldstein, M. and Inge, F
Refrigerator and Universe
Cambrige, MA(1993), 486
Grand Canonical
Ensemble classical systems, 494
partition function, 496
quantum statistics
partition function, 638
Grand Potential, 495
Bose-Einstein gas, 539
Guggenheim, E. A
‘thermodynamics’
North Holland Publishing
Company(1967), 287
Guggenheim, E.A.
J. chem Phys
13, 253 (1945), 287

h, Planck constant:
6.62606896(33)
x10734Js, 411
Hamiltonian, 27
Lagrange version, 495
non-ideal gas, 450
Hand-Waving Argument
the specific heat, 531
Pauli paramagnetism
at finite temperature, 533
at zero temperature, 532
Hard Core
volume excluded,
Vexcludeda 257
volume reduction
Van der Waals gas, 256
Hard Core Interaction
Mayer, J. E.
cluster expansion, 453
Harmonic Oscillators
quasi-classical quantum
statistical treatment, 470
high temperature, 471
low temperature, 473
Hawking, Stephen, 211
Heat
caloric theory, 58
energy, work and internal energy,
58
Heat Energy
specific, 63
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Heat Energy Flow
always from hot to cold:
why?, 357
diathermic case, 357
Heat Engines
introductory remarks, 126
Heat Of
transformation, 390
Heat Theorem
Nernst, 485
Heat transfer
always increases entropy, 151
Helium, 264
liquid at 0.3 K, 398
Helmholtz potential, 420
Helmholtz Free Energy, 361
characteristic, independent
variables: V and T', 380
decrease in, 385
decreases during
spontaneous isothermal-isochoric
processes, 382
equality of specific
for different phases, 383
thermodynamics at
constant V and 7', 379
Helmholtz Free energy, 381
Helmbholtz Potential, 413, 422
helps determine
internal energy, 392
partition function
quasi-classical quantum Langevin
paramagnetism, 475
Helmholtz potential
the Gibbs free energy
and the enthalpy, x
Helmbholtz Potential Minimum
relative size of phases, 383
Helmbholtz Thermodynamic Potential, 379, 380
Hemmer, P. C.
with Kac, M.
and Uhlenbeck, G.E., 258
Hess
rules for chemo-thermal reactions, 88
Hess’ rules for chemo-thermal reactions, 57
Hess, Germain Henri
(8/7/1802)
-(11/30/1850), 88
Hetero-Nuclear Diatoms, 432
rotational motion, 463
Highly, or Partially, Degenerate
Fermi-Dirac
perfect gas, 512
Homo-Nuclear Diatoms, 432
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Homonuclear Diatoms
H,,(K3), 435
Hydrogen
atom, 460
bond-stiffness, 435
characteristic rotational temperature, 435
estimate inversion temperature, 320
number of atoms
in one gram, 4
sulfide, 264

Ice
I, 399
Ice Point, 400
Ice-Point
estimate of temperature, 328
Ideal Gas
monatomic
extremely relativistic, 448
Ideal Gas = Perfect Gas, 34
Ideal Gases
isothermal mixing, 416
entropy change, 418
of different gases, 421
pressure and number of atoms different,
417
non-isothermal mixing
pressure and number of atoms different,
419
Identity
cyclic, 14
cyclic re-derived, 19
mixed, 20
simple, 20
useful, 19
Independent
p and v, 235
t and v, 213
t and p, 230
Independent Variables
p and v; u(p,v), 80
t and p; u(t,p), 77
t and v; u(t,v), 65
Indistinguishable
non-interacting
quantum particles, 637
Inert gases
Neon; Argon;
Krypton;Xenon, 283
Inexact differential, 13
Infinitesimal Carnot Cycles, 136
Integrability Requirement, 12, 60
Integral (11.83), 631
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Intemann, Robert, xii
Intensive, 31

and extensive properties, 30

property, 31
Inter-Particle

communication, 33
Interacting

finite sized

molecules, 256

Interaction

gas with, 450

inter-particle, 4
Interatomic Bond

free, 423
Interesting Relationships, 330
Internal Energy

in non-interacting monatomic gases is

=ipv, 122
state function, 78
Langevin paramagnetism
quasi-classical quantum
partition function, 477
perfect gas
see equation 2.27, 28
state function, 212
Internal energy
and volume dependence
of C,, 288
Internal Energy and Enthalpy
measurement and related
examples, 303
Internal Energy Minimum
and relative size
of phases, 374
Internal Energy Minimum:
specific internal energy, 374
Intra-molecular
vibrational rotational
motion, 35
Intrinsic Stability
also, ¢, and yg > 0, 371
energy minimum
procedure, 620
third requirement, 622
Intrinsic Thermodynamic Stability

. )
also requires (ﬂ>s > 0,
v

n
371

requires ¢, and y7 > 0, 367
Introduction

and Zeroth law, 1
Introductory Remark

chapter VII, 303
Invariant Systems, 405

Inversion Temperature

upper and lower, 317
Irreversible process, 4
Isenthalpic

curves of constant enthalpy, 311

Joule-Kelvin, 310
Isentropic Processes, 236
Isobaric

entropy flow, 364
Isobaric Process, 3
Isobaric-Isothermal

molecular flow, 365
Isochoric process, 3, 69
Isolated

adiabatically, 2
Isothermal

Compression, 360

process, 8
Isothermal compressibility

along critical isochore

just above T, 268

just below T, 280
Isothermal Compression

upon contact, part with
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lower pressure always shrinks: why?

from entropy max, 360

lower pressure always shrinks: why?

use energy min., 365

volume exchange, 365
Isothermal-Isobaric

molecular flow, 365
Isothermal-Isochoric

change of state, 381
Isothermally Stretched

ideal rubber, 244
Isotherms

(Pos vo)

Van der Waals, 269

Jacobian, 8
employed, 18

Jacobian, Carl Gutav Jacob J.
(12/10/1804)

-(2/18/1851), 252
Jacobians: simple technique, 16
Jeffreys, Harold

(4/22/1891)

-(3/18/1989), 615
Johannes Diderik Van der Waals, ix
Joule

cycle, ideal gas engine, 206

Gay-Lussac coefficient
description, 303
measurement, 304
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Joule, James Prescott
(12/24/1818)—(10/11/1889), 58
Joule, the unit, 58
Joule-Gay-Lussac Coefficient
to the thermodynamic
temperature scale, 324
Joule-Kelvin
coefficient
for nearly perfect gas:calculation, 313
for perfect gas: calculation, 313
for Van der Waals gas:calculation, 314
for Van der Waals gas:inversion point,
315
positive and negative regions, 315
coefficient:
constant enthalpy, 308
description, 308
effect: derivation, 312
Joule-Kelvin Coefficient
constant enthalpy, 308
description, 308
for nearly perfect gas:
calculation, 313
for perfect gas:
calculation, 313
for Van der Waals gas:
calculation, 314
inversion point, 315
positive and negative regions, 315
to the thermodynamic
temperature scale, 326

Kac, Mark
(8/3/1914-10/26/1984), 258
Kamerlingh-Onnes, Heike
(9/21/1853-2/21/1926), 260
Kelvin, 31
temperature scale
Carnot temp scale, 131
Kelvin, Lord:
born William Thomson
(6/26/1824)-(12/17/1907), 131
Kelvin-Planck
entropy always increases
in irreversible-adiabatic process, 146
Ketterle, Wolfgang
Rubidium 87, 503
Kindling, 57
Klein, M. J.
Van der Waals
centennial conference (1974), 257
Krypton, 264, 283
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Lagrange Multiplier, 499
Lagrange, Joseph-Louis
(1/25/1736)
-(4/10/1813),theory of, 432
Lalo¢
Frank, 463
Landé g-Factor, 474
Landé, Alfred
(12/13/1888)
-(10/30/1976) , 474
Landau Diamagnetism, 641
Landau, Lev Davidovich
(1/22/1908)
-(4/1/1968), 534
diamagnetism, 534, 641
Langevin
susceptibility, 447
Langevin Factor L(w), 447
Langevin paramagnet, xi
Langevin Paramagnetism
quasi-classical quantum
statistical picture, 474
classical limit, 482
partition function and entropy, 475
partition function and entropy at low
temperature, 477
partition function and Helmholtz
potential, 475
partition function and Schottky
anomaly, at low temperature, 480
partition function and specific heat,
481
partition function and
internal energy, 477
quasi-classical quantum
partition function and internal energy at
high temperature, 479
quasi-classical quantum:
partition function and
entropy
at high temperature, 476
Langevin Paramagnetism:
classical picture, 445
statistical average, 445
statistical average low temperature,
447
statistical average
high temperature, 446
Langevin Susceptibility, 447
Laplace, Pierre-Simon
(3/23/1749)—(3/5/1827), 255
Large Number of Calls, 574
Large Numbers
most probable state, 571
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Large numbers
most probable state,
thermodynamics, 4
Latent Heat
of vaporization of water, 90
Law
second, Carnot version, 141
second, Clausius version, 142
second, Kelvin-Planck, 145
zeroth
re-confirmation, 363
Laws
first and second, 212
Laws of Thermodynamics
second, 62
first, 62
zeroth, revisited, 354
Laws of thermodynamics
Carnot leads to Clausius, 142
second, Carnot version, 135, 141
second, Clausius version, 142
second, Kelvin-Planck, 145
zeroth, 4
Le Chatelier principle, x
Le Chatelier’s Principle, 366
Lebovitz, Joel L.
Rutgers University, 258
Leeuwen, van
and Bohr, 535
Legendre Transformation, 377, 379
Legendre Transformations
Clausius—Clapeyron
Gibbs phase rule, 373
Legendre transformations, x
Legendre Transforms
in energy representation
correspond with Massieu transforms in
entropy representation, 627
Length
de Broglie, 497
Lennard-Jones Potential, 454
compare Van der Waals, 454
long-range attractive, 455
short-range repulsive, 455
Lennard-Jones,
John Edward
(10/27/1894)-(11/1/1954), 454
Lever rule, 281
Liquid, 2
Liquid to gas
transition
and vice versa, 282
Location
of internal energy, 62
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London Dispersion Interaction, 455
London, Fritz
(3/7/1900)
-(3,30,1954), 455
Lorentz, Hendrik Antoon
(7/18/1863)
-(2/4/1928), 522

Maclaurin, Colin (2/ 1698-6/14/1746), 465
Macroscopic
systems, 4
Magneton, Bohr: pp = (£2)
=9.27400915(23)
X107 Erg.0e™!, 474
Marion
Jerry B., 431
Mass of carbon-12 atom, 5
Massieu Functions, 377
Massieu Potential
M{Z, 1}, 629
M{‘?, u}, 629
M{v, 1}, 628
M{v, u}, 627
Massieu Transforms
entropy representation
appendix H, 627
Massieu, M. E., 627
Mathematical procedures, 8
Max Planck
hypothesis
third law, 489
Maximum
available work, 380
Maximum Available Work, 380
equals, resulting decrease
in Helmholtz potential, 381
isothermal-isobaric
change of state, 385
non-PdV variety
equals corresponding decrease of Gibbs
potential, 386
Maximum Entropy
in adiabatically isolated
systems: general statement, 375
Maxwell
relations, 393
construction, 269
prescription, thermodynamic justification,
269
prescription: alternate justification, 272
Maxwell prescription
alternate justification, 272



668

Maxwell’s Theory, 553
Maxwell, Clerk
relations, 393
Maxwell, J. Clerk
(6/13/1831)
-(11/5/1879), 258
(6/13/1831-11/5/1879), 26
Mayer’s Cluster
expansion, Xi
Mayer’s Cluster Expansion, 450
Mayer, Joseph Edward
(2/5/1904-10/15/1983) virial expansion,
261
and Mayer, M. G.
see Pathria, R. K, 451
Cluster Expansion
hard core interaction, 453
cluster expansion, 450
Measurement
chapter VII, 304
Merzbacher
Eugen, 463
Meta-Stable
equilibrium, 395
Meta-Stable Equlibrium, x
Metal Rod
equation of state, 247
Metastable Fluctuation, 356
Metastable-unstable regions
Van der Waals, 275
Methane, 265
Minimum Internal Energy
in adiabatically
isolated systems, 374
Mitsubishi, GDI engine, 205
Mixed identity, 20
Mixing Ideal Gas

different temperature, pressure and number

of atoms
entropy change, 225
isothermal, different pressures
same number atoms, 219

isothermal, different pressures and number

of atoms
entropy change, 222
Mixture of Perfect Gases
temperature and pressure, 35
Model
perfect gas, 23
Moduli
bulk and elastic, 103
Molar
specific volumes
and densities, 276

Molar densities
of co-existing phases, 287
reduced, 287
Mole
numbers, 26
one mole has N4 particles, 69
Molecular Flow
at constant 7 and P,

always from higher chemical potential

to lower: why?, 359
isothermal-isobaric
away from regions with larger, to
regions with smaller chemical
potential, 365
Molecule
finite sized
and interacting, 256
Monatomic, 92
Monatomic Perfect Gases
changes due to mixing, 416
Mono-Variant Systems, 406
Most probable
occurrence, 4
state; thermodynamics,
large numbers, 4
Most Probable State
large numbers, 571
Motive Forces, 353
direction of, 357
energy formalism, 364
entropy formalism, 357
Multi-Phase
multi-constituent systems, 402
Multiple-Component Systems,
341

Negative Temperature, 489
cursory remarks, 335
Negative temperature
cursory remarks, 209
Neon, 264, 283
Nernst
W.H, 485
Nernst’s Heat Theorem
third law, 485
Nernst, Walther Hermann
(6/25/1864)
-(11/18/1941), 485
Newton
bravo, 238
velocity of sound, 237
Newton’s Law Of Cooling, 120
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Newton, Isaac
(1/4/1643)
-(3/31/1727), 120
Nickel, 537
Nitric oxide, 265
Nitrogen, 264
Non-Carnot heat cycle, 148
Non-Degenerate
Bose-Einstein perfect gas
specific heat, 548
state equation, 546
Non-Ideal Gas
the Hamiltonian with
no self-rotation, 450
Normalized Average, 27
Normalized Moments
exact distribution, 582
Gaussian distribution, 581
Notation
description, 63
Notation: Chapter I, 11
Nuclear Paramagnet, 491
Nye, Edwin P,, 282
and Dillio, Charles C, 282

Object, 1
Otto cycle, 202
Otto, Nicolaus
(6/14/1832)
-(1/26/1891), 202
Oxidation
C to CO
to CO», 89
Oxygen, 264
Ozone
dissociating, 48

Paddles, Churning, 59
Paradox
Gibbs, 422
Parallelepipeds, 594
Paramagnet
nuclear, 491
Paramagnetism
Pauli, 523
Paramagnetism, Langevin:
classical picture, 445
statistical average, 445
statistical average high temperature, 446
statistical average low temperature, 447
Paris, R. B. and
Kaminsky, D. (2001), 412
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Partial Pressure
of mixtures,
example I, chap II, 47
Partial Pressures
dalton’s law, 36
Partially Degenerate
FD gas
finite but low temperature, 520
Partially or Completely
degenerate Fermi—Dirac gas
Ju(2), for, 512
Partially or Highly
degenerate Fermi—Dirac
perfect gas, 512
Particle Indistinguishability
remark, 511
Partition Function
Canonical, 457
Canonical and grand-Canonical, 498
Classical Systems
in §-dimensions, 410
determines, F,
P;S;G;U and H, 458
determines, F;
P;S;G;U and H, 412
for single state
BE system, 501
FD system, 500
grand Canonical
quantum statistics, 638
use of, 496
quasi-classical quantum
Langevin paramagnetism Helmholtz
potential, 475
Pascal
principle, 356
Pascal’s Law, 24, 31
Pascal, Blaise
(6/19/1623)
-(8/19/1662), 356
Pathria, R. K., xii, 496
‘Statistical Mechanics’,
Pergamon Press, (1980), Oxford,
496
as noted by, 539
op. cit
page 183, 549
statistical mechanics
Pergamon Press (1977), 451
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thermodynamic potentials high
temperature, 466
thermodynamic potentials
low temperature, 466
Quantum States
statistics of, 499
Quantum Statistical Treatment
black body radiation, 555
Quantum Statistics
grand Canonical
partition function, 638
Quantum Systems
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internal energy minimum:
in isolated systems, 374
relative size of phases
are those that yield lowest Helmholtz
potential, 383
Single-Component Systems, 341



674

Solid, 2
Solutions, important to read, vii
Some definitions, 1
Sound
velocity, Newton’s treatment, 237
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isothermal-isochoric

occurs with decrease in Helmholtz

potential, 382
Spontaneous process
increases total entropy, 145
Stability
intrinsic
energy minimum procedure, 620
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critical constants, 264

Temperature

T K =T°C+273.15,132
a statistical approach, 26
celsius, 32
empirical, 5, 7
from empirical

to thermodynamic, 322
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state, 9
Variance
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Newton’s treatment, 237
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production of
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Vibrational rotational motion
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Violation
of Carnot version leads
to Clausius version, 142
Virial coefficient
reduced second, 285
second, changes sign at Boyle temperature,
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second, changes sign at Boyle temperature,
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Virial Expansion
absent long range interaction
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