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Preface

During the past decades the field of quantum information processing has experi-
enced extremely rapid progress. This book provides an introduction to the main
ideas and techniques of the rapid progressing field of quantum information and
quantum computation using isotope-mixed materials. This book is divided into
four chapters. Chapter 2 presents the introduction to the physics of isotope effect in
solids. My goal here is to give an elementary introduction which is accessible not
only to physics, but also to mathematicians and computer scientists desiring an
initiation into subject. In this chapter isotope low-dimensional structures are very
shortly described. The reader might understand the material presented in this
chapter without the need for consulting other texts. Chapter 3 is devoted to the
description of classical and quantum information. The rest of the chapter has
presented the concepts and models of quantum computers. There are discussed not
only different algorithms of quantum computation but also are presented the dif-
ferent models of quantum computers. The quantum error corrections is very briefly
discussed. We did not attempt to make our small book self-contained by
explaining every concept which is needed only occasionally. We do hope, how-
ever, that we have succeded in explaining the basic concepts from quantum
mechanics and computer science which are used throughout the book and the
whole field of quantum information and quantum computation.

With numerous illustrations this small book will be of great interest to under-
graduate and graduate students taking courses in mesoscopic physics or nano-
electronics as well as quantum information, and academic and industrial
researchers working in this field.

The bibliography at the end of the each chapter includes many of the key papers
in the area and points to other books and survey papers on the subject.

Tallinn Vladimir G. Plekhanov
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Chapter 1
Introduction

Investigation, manufacture, and application of isotopes are highly variable and is
determined by the different areas of science and technique. The range of the appli-
cation of isotopes is exclusively wide: starting with the investigation of universal
principle of the structure matter and common normality evolution of Universe [1–3]
and finished by different biochemical process in living organisms as well as special
technical applications [4]. The presence of isotopes and isotope effect in nature serves
the bright illustration of the mutual connection between simplicity and complexity
in science [5].

The paramount meaning has the role of isotopes in the fundamental natural science
investigations. This includes not only the study of nature’s nuclear interactions and,
in this way, the origin of isotope effect, but also the reconstructions of nucleogenesis
process of the Universe, which could explain the observable in nature relative to
spreading of chemical elements [1–3].

Investigations of the atomic nucleus, and the fundamental forces that determine
nuclear structure, as is well known, offer fascinating insights into the nature of the
physical world. We all well known that the history of the nuclear physics dates
from the latter years of the nineteenth century when Henry Becqeurel in 1896 dis-
covered the radioactivity. He was working with compounds containing the element
uranium. Becqeurel found that photographic plates covered to keep out light became
fogged, or partially exposed, when these uranium compounds were anywhere near the
plates. Two years after Becquerel’s discovery, Pierre and Marie Curie in France and
Rutherford in England succeeded in separating a naturally occurring radioactive
element, radium (Z = 88) from the ore. It was soon revealed that there are three,
distinctly different types of radiation emitted by radioactive substances. They were
called alpha (α ), beta (β) and gamma (γ ) rays—terms which have been retained in
ours days. When a radioactive source was placed in a magnetic field, it was found
that there were three different types of activity, as the trajectories of some of the
rays emitted were deflected to one direction, some to the opposite direction, and
some not affected at all. Subsequently it was found that α-rays consist of positively
charged 4He nuclei, β-rays are made of electrons (positrons) and γ -rays are nothing

V. G. Plekhanov, Isotope-Based Quantum Information, SpringerBriefs in Physics, 1
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2 1 Introduction

but electromagnetic radiation that carries no net charge. The existence of the nucleus
as the small central part of an atom was first proposed by Rutherford in 1911. Ruther-
ford proposed that the atom does consist of a small, heavy positively charged center
surrounded by orbiting electrons which occupy the vast bulk of the atoms volume.
The simplest atom—hydrogen—consisted of a proton and a single orbital electron.
Later, in 1920, the radii of a few heavy nuclei were measured by Chadwick and were
found to be in the order of 10−14 m., much smaller than the order of 10−10 m for
atomic radii (for details, see e.g. [6] and references therein).

The building blocks of nuclei are neutrons and protons, two aspects, or quantum
states, of the same particle, the nucleon. Since a neutron does not carry any net
electric charge and is unstable as an isolated particle (see, below), it was not discov-
ered until 1932 by Chadwick, whose existence has been anticipated by Rutherford
as early as 1920. Since only positive charges (protons) are present in nucleus, the
electromagnetic force inside a nucleus is repulsive and the nucleons cannot be held
together unless there is another source of force that is attractive and stronger than
Coulomb’s.

Studies of the structure of the nucleus have shown that it is composed of protons
and neutrons, and more recently studies (see, e.g. [6]) of very high energy collisions
have shown that these protons and neutrons are themselves composed of elusive
particles called quarks. Particle physics deals with the world of the quarks and all
other particles still thought to be fundamental.

Thus, our present knowledge of physical phenomena suggests that there are four
types of forces between physical objects:

(1) gravitational;
(2) electromagnetic;
(3) strong, and
(4) weak.

Both gravitational and electromagnetic forces are infinite in range and their interac-
tion strength diminish with the square of the distance of separation. Clearly, nuclear
force cannot follow the same radial dependence. Being much stronger, it would have
pulled the nucleons in different nuclei together into a single unit and destroyed all the
atomic structure we are familiar with. In fact, nuclear force has a very short distance.

If in the nuclear physics the meaning of isotope is establishing one then applica-
tion isotope effect in atomic and molecular physics allows to get the results, which
are difficult to overestimate so far as owing to this results it was to construct the
“building” of the science of the twentieth century-the quantum mechanics (see, also
[6]). During the last fifty years the isotope effect is one of the modern and power
methods for investigation of structure and properties of solids. This conclusion sup-
ports the numerous reviews (see, e.g. [7–9]) and first monographs [4, 10] dedicated
to isotope effect of stable isotopes. In the last years the more and more investiga-
tions of solid-state physics are conducted by using radioactive isotopes, which give
evidence of the already comprehensive list of references (see, for instance [11–15]).

This book consists of four part. First one is the traditional introduction of the
subject written. The second part devotes to the short description of the ground of
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nature of isotope effect. With this aim the detailed analysis of the neutron and pro-
ton structure and their mutual transformation in the weak interaction process was
conducted. Note that the main characteristics of isotope effect—the mass of free par-
ticles (proton and neutron) does not conserve in the weak interaction process. This
contradiction is removed although partly if take into account the modern presentation
[16] that the mass of proton (neutron) is created from quark condensate (not from
constituent quarks [17–19]) which is the coherent superposition of the states with
different chirality. Thus the elucidation of the reason of origin of the nucleon mass is
taken down to elucidation of the reason to break down the chiral symmetry in Quan-
tum Chromodynamics [20–27]. In this part of the book the manifestation of isotope
effect in phonon and electron (exciton) states of solids is considered. With compar-
ison to the change of corresponding characteristics (for example: the lines shift in
absorption, scattering, emission spectra) in the isotope effect in atomic physics and
condensed matter physics on two orders more in solid (see, for example [28]). It
is underlined that taking into account only linear part of electron–phonon interac-
tion is not sufficient for the description of the experimental facts on the elementary
excitations of systems consisting of light elements with isotope effect.

The subject of quantum information brings together ideas from quantum physics,
classical information theory, and computer science. This topic is devoted the third
part of book. It is very significant that information can be expressed in different ways
without losing its essential nature, since this leads to the possibility of the automatic
manipulation of information—a machine needs only to be able to manipulate quite
simple things like integers in order to do surprisingly powerful information process-
ing. It is easy to do from document preparation to differential calculus and even to
translating between human languages.

We should recall that quantum mechanics has developed originally as a theory
to explain behavior of large number (ensembles) of microscopic objects, such as
atoms or electrons [29–31]. However, over the last decades, considerable interest
in the application of quantum theory to individual systems—mesoscopic and even
macroscopic systems where a small number of collective degree of freedom show
genuine quantum behavior (see, e.g. [32, 33]). One exciting aspect of this devel-
oping fundamental research is its technological potential. Its results that might be
termed quantum information technology. As we know well, the first deep insight
into quantum information theory came with Bell’s 1964 analysis [34, 35] of the
paradoxical thought experiment by Einstein and co-workers in 1935 [36]. Bell’s
inequality draws attention to the importance of correlations between separated quan-
tum objects which have interacted in the past, but which no longer influence one
another. In essence, his argument shows that the degree of correlation which can be
present in such systems exceeds that which could be predicted on the basis of any
law of physics which describes particles in terms of classical variables rather than
quantum states. The next link between quantum mechanics and information theory
came about when it was realized that simple properties of quantum systems, such as
the unavoidable disturbance involved in measurement, could be put to practical use
in quantum cryptography (see, e.g. review [38] and references therein). Quantum
cryptography covers several ideas, of which the most firmly established is quantum
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key distribution. This is an ingenious method in which transmitted quantum states
are used to perform a very particular communication task. The significant feature is
that the principles of quantum mechanics guarantee a type of conservation of quan-
tum information, so that if the necessary quantum information arrives at the parties
wishing to establish a random key. They can be sure it has not gone elsewhere, such
as to spy. This part of the book considers not only the theory of cryptographybut also
its practical application [38].
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Chapter 2
Introduction to Isotope Effect

2.1 The Nucleons and its Constituents

An atom consists of an extremely small, positively charged nucleus (see Fig. 2.1)
surrounded by a cloud of negatively charged electrons. Although typically the nucleus
is less than one ten-thounsandth the size of the atom, the nucleus contains more than
99.9% of the mass of the atom. Atomic nucleus is the small, central part of an
atom consisting of A-nucleons, Z-protons, and N-neutrons (Fig. 2.2). The atomic
mass of the nucleus, A, is equal to Z + N. A given element can have many different
isotopes, which differ from one another by the number of neutrons contained in
the nuclei [1, 2]. In a neutral atom, the number of electrons orbiting the nucleus
equals the number of protons in the nucleus. As usually nuclear size is measured
in fermis (1 fm = 10−15 m, also called femtometers). The basic properties of the
atomic constituents can be read in Table 2.1.

As we can see from Table 2.1, protons have a positive charge of magnitude e =
1.6022 × 10−19 C (Coulombs) equal and opposite to that of the electron. Neutrons
are uncharged. Thus a neutral atom (A, Z) contains Z electrons and can be written
symbolically as A

Z XN (see also Fig. 2.2). Here X is chemical symbol and N is neutron
number and is equal N = A − Z. The masses of proton and neutron are almost the
same, approximately 1836 and 1839 electron masses (me), respectively. Apart from
electric charge, the proton and neutron have almost the same properties. This is why
there is a common name of them: nucleon. Both the proton and neutron are nucleons.
As we well know the proton is denoted by letter p and the neutron by n. Chemical
properties of an element are determined by the charge of its atomic nucleus, i.e., by
the number protons (electrons). It should be added, that although it is true that the
neutron has zero net charge, it is nonetheless composed of electrically charged quarks
(see below), in the same way that a neutral atom is nonetheless composed of protons
and electrons. As such, the neutron experiences the electromagnetic interaction. The
net charge is zero, so if we are far enough away from the neutron that it appears to
occupy no volume, then the total effect of the electric force will add up to zero. The

V. G. Plekhanov, Isotope-Based Quantum Information, SpringerBriefs in Physics, 7
DOI: 10.1007/978-3-642-28750-3_2, © The Author(s) 2012
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Fig. 2.1 Structure within the atom. If the protons and neutrons in this picture were 10 cm across,
then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about
10 km across (after http://www.lbl.gov/abc/wallchart/)

Fig. 2.2 Atomic
nomenclature

movement of the charges inside the neutrons does not cancel, however, and this is
what gives the neutron its nonzero magnetic moment.

Each of the atomic constituents a spin 1/2 in units of � (= h/2π ) and is an example
of the class of particles of half-integer spin known as fermions. Fermions obey the
exclusion principle of Pauli, which determines the way electrons can occupy atomic
energy states. The same rule applies, as will be shown below, to nucleons in nuclei.
Associated with the spin is a magnetic dipole moment. Compared with the magnetic
moment of electron, nuclear moment is very small. However, they play an important

http://www.lbl.gov/abc/wallchart/
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Table 2.1 The basic properties of the atomic constituents

Particle Charge Mass (u) Spin (�) Magnetic moment (JT−1)

Proton e 1.007276 1/2 1.411×10−26

Neutron 0 1.008665 1/2 −9.66×10−27

Electron −e 0.000549 1/2 9.28×10−24

role in the theory of nuclear structure. It may be surprising that the uncharged neu-
tron has a magnetic moment. This reflects the fact that it has an underlying quark
substructure (see, e.g. [3]), consisting of charged components. Electron scattering off
these basic nuclear constituents (proton and neutron) makes up for the ideal probe to
obtain a detailed view of the internal structure. A very detailed analysis using the best
available data has been carried out recently by Kelly [4]; these data originate from
recoil or target polarizations experiments. In Fig. 2.3 the proton charge and magne-
tization distribution are given. What should be noted is the softer charge distribution
compared to the magnetic one for proton. These resulting densities are quite similar
to Gaussian density distributions that can be expected starting from quark picture
(for details, see below) and, at the same time more realistic than the exponential
density distributions [5–10]. The neutron charge and magnetization are also given
in Fig. 2.3. What is striking is that magnetization distribution resembles very closely
the corresponding proton distribution. Since scattering on neutrons normally carries
the larger error, the neutron charge distribution is not precisely fixed. Nonetheless,
one notices that the interior charge density is balanced by a negative charge density,
situated at the neutron surface region, thereby making up for the integral vanishing
of the total charge of the neutron.

We should recall from atomic physics that the quantity e�/2m is called magneton.
For atomic motion we use the electron mass and obtain the Bohr’s magneton μB =
5.7884×10−5 eV/T. Putting in the proton mass we have the nuclear magneton μN =
3.1525×10−8 eV/T. Note that μN � μB owing to the difference in the masses, thus
under most circumstances atomic magnetism has much larger effects than nuclear
magnetism. Ordinary magnetic interactions of matter (ferromagnetism, for example)
are determined by atomic magnetism.
We can write

μ = gl lμN (2.1)

where gl is the g-factor associated with the orbital angular momentum l. For protons
gl = 1, because neutrons have no electric charge; we can use Eq. (2.1) to describe
the orbital motion of neutrons if we put gl = 0. We have thus been considering only
the orbital motion of nucleons. Protons and neutrons, like electrons, as mentioned
above also have intrinsic or spin magnetic moments, which have no classical analog
but which we write in the same form as Eq. (2.1):

μ = gssμN (2.2)
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Fig. 2.3 Comparison between charge (ρch) and magnetization (ρm ) for the proton (a) and neutron
(b). Both densities are normalized to

∫
drr2ρ(r) = 1 (after [5–7])

where s = 1/2 for protons, neutrons, and electrons (see Table 2.1). The quantity gs
is known as the spin g-factor and is calculated by solving a relativistic quantum
mechanics equation (see, also [8–10]). For free nucleons, the experimental values are
far from the expected value for point particles: proton–gs = 5.5856912±0.0000022
and neutron −gs = 3.8260837 ± 0.0000018.

2.1.1 Mass and Nuclear Binding Energy

Inside a nucleus, neutrons and protons interact with each other and are bound within
the nuclear volume under the competing influences of attractive nuclear and repulsive
electromagnetic forces. This binding energy has a direct effect on the mass of an atom.
It is therefore not possible to separate a discussion of nuclear binding energy; if it
were, then nucleon would have masses given by Zm p + Zmn and the subject would
hardly be of interest.

As is well known, in 1905, Einstein presented the equivalence relationship
between mass and energy: E = mc2. From this formula, we see that the speed
of light c is very large and so even a small mass is equivalent to a large amount
of energy. This is why in nuclear physics it is more convenient to use a much
smaller unit called megaelectronvolt (1 MeV = 1.602 × 10−13 J). On the atomic
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scale, 1 au is equivalent to 931.5 MeV/c2, which is why energy changes in atoms
of a few electron volt cause insignificant changes in the mass of atom. Nuclear
energies, on the other hand, are millions of electron volts and their effects on
atomic mass are easily detectable. For example, the theoretical mass of 35

17Cl is
17×1.00782503+18×1.00866491 = 35.28899389 amu. Its measured (see below)
mass is only 34.96995 amu. Therefore, the mass defect and binding energy of 35

17Cl
are

� = 0.32014389 amu.

EB = 0.32014389 × 931.5

35
= 8.520 MeV/nucleon (2.3)

and in common sense the binding energy is determined by next relation

EB = Zm p + Nmn − B/c2 (2.4)

where B/c2 is the actual nuclear mass.
As we can see, the binding energy of the atoms of most elements have values

ranging from about 7.5 to 8.8 MeV [11]. The binding energy per nucleon rises slightly
with increasing mass number and reaches a maximum value for 62Ni. Thereafter the
binding energies decline slowly with increasing mass number. The binding energies
of the atoms of H, He, Li, and Be are lower than the binding energies of the other
elements (see, also Fig. 2.5 below).

The measurement of nuclear masses occupies an extremely important place in
the development of nuclear physics. Mass spectrometry (see, e.g. [12–15]) was the
first technique of high precision available to the experimenter, since the mass of a
nucleus increases in a regular way with the addition of one proton or neutron. In
mass spectrometers, a flux of identical nuclei (ions), accelerated to a certain energy,
is directed to a screen (photoplate) where it makes a visible mark. Before striking the
screen, this flux passes through magnetic field, which is perpendicular to velocity of
the nuclei. As a result, the flux is deflected to certain angle. The greater the mass, the
smaller the angle. Thus, measuring the displacement of the mark from the center of
the screen, we can find the deflection angle and then calculate the mass. The example
of a mass spectrum of different isotopes of krypton is shown in Fig. 2.4. From the
relative areas of the peaks it can determine the abundance of the stable isotopes of
krypton (for details see [12–15]).

Relative masses of nuclei can also be determined from the results of nuclear
reactions or nuclear decay. For example, if a nucleus is radioactive and emits an
α-particle, we know from energy conservation that its mass must be greater than that
of decay products by the amount of energy released in the decay. Therefore, if we
measure the letter, we can determine either of the initial or the final nuclear masses if
one of them is unknown. An example of this is presented briefly below. At present we
shall illustrate some typical reactions, bridging the gap between “classical” methods
and the more advanced “high-energy” types of experiments [4–7].
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Fig. 2.4 A mass-spectrum analysis of krypton. The ordinates for the peaks at mass positions 78
and 80 should be divided by 10 to show these peaks in their true relation to the others (after [11])

Fig. 2.5 The binding energy per nucleon B/A as a function of the nuclear mass number A
(after [16])

The possible, natural decay processes can also be brought into the class of reaction
processes with the conditions: no incoming light particle α and Q > 0. We list them
in the following sequence:

α-decay:
A
Z XN →A−4

Z−2 YN−2 +4
2He2 (2.5)
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Table 2.2 Masses of electron, nucleons and some nuclei (after [11])

Particle Number of protons Number of neutrons Mass (MeV)

e 0 0 0.511
p 1 0 938.2796
n 0 1 939.5731
2
1H 1 1 1876.14
3
1H 1 2 2808.920
3
2He 2 1 2808.391
4
2He 2 2 3728.44
7
3Li 3 4 6533.832
9
4Be 4 5 8392.748
12
6 C 6 6 11174.860
16
8 O 8 8 14895.077
238
92 U 92 146 221695.831

β-decay:
A
Z XN →A

Z−1YN+1 + e+ + νe (p → n-type) (2.6)

A
Z XN →A

Z+1YN−1 + e− + νe (n → p- type) (2.6′)

A
Z XN+e− + e− →A

Z−1YN+1 + νe (e−-capture) (2.6′′)

Here e−, e+, νe and νe are electron, positron, neutrino and antineutrino.
γ -decay:

A
Z X∗

N →A
ZXN + hν (2.7)

Here X∗ is excited nuclei. Nuclear fission:

A
Z XN →A1

Z1
YN1 +A2

Z2
UN2 + x·n. (2.8)

Since mass and energy are equivalent (see Einstein formula above), in nuclear
physics it is customary to measure masses of all particles in the units of energy
(MeV). Examples of masses of subatomic particles are given in Table 2.2.

As was noted above, nuclear binding energy increases with the total number of
nucleons A and, therefore, it is common to quote the average binding energy per
nucleon (B/A). The variation of B/A with A is shown in Fig. 2.5. Several remarkable
features are immediately apparent. First of all, the curve is relatively constant except
for the very light nuclei. The average binding energy of most nuclei is, to within
10%, about 8 MeV per nucleon. Second, we note that the curve reaches peak near
A = 60, where the nuclei are most tightly bound, light and very heavy nuclei are
containing less bound nucleons. Thus, the source of energy production in fusion of
light nuclei or fusion of very heavy nuclei can be source of energy [16, 17].

The interactions between two nucleons (NN) is one of the central questions in
physics and its importance goes beyond the properties of nuclei. Nucleons can com-
bine to make four different few-nucleon systems, the deuteron (p + n), the triton
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Fig. 2.6 Coulomb potential
used for defining the nuclear
radius R

(p + 2n), the helion (2p + n) and the α-particle (2p + 2n) (see, e.g. [18–21]). These
particles are grouped together because they are stable (excluding from the radioactive
triton which has a half-life of about 12 years and so may be treated as a stable entity
for most practical purpose), have no bound excited states (except the α-particles
which have two excited states at about 20 and 22 MeV), and are frequently used as
projectiles in nuclear investigations. The absence of stable particles of mass of five
provides a natural boundary between few nucleon systems and heavier nuclei [20].
Few nucleon systems provide the simplest systems to study nuclear structure. The
deuteron provides important information about the nucleon–nucleon interaction.
Below we have indicated a few of the properties of the N–N force:

1. At short distances it is stronger than the Coulomb’s force; the nuclear force can
overcome the Coulomb’s repulsion (see also Fig. 2.6) of protons in the nucleus.

2. At long distances, of the order of atomic sizes, the nuclear force is negligibly
feeble. The interaction among nuclei in a molecule can be understood based only
on the Coulomb’s force.

3. Some fundamental particles are immune from the nuclear force. At present time
we have no evidence from atomic structure, for example, that electrons feel the
nuclear force at all.

4. The N–N force seems to be nearly independent of whether the nucleons are neu-
trons or protons. As is well known this property is called charge independence.

5. The N–N force depends on whether the spins of the nucleons are parallel or
antiparallel.

6. The N–N force includes a repulsive term, which keeps the nucleons at a certain
average separation.

7. The N–N force has a noncentral or tensor component. This part of the force does
not conserve orbital angular momentum, which is a constant of the motion under
central forces.
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2.2 Manifestation Isotope Effect in Condensed Matter

Studies of vibrational properties of crystals containing impurities (defects of various
type [22]) were described in detail in a number of excellent review [23, 24]. The
main characteristics of a phonon spectrum are the dispersion relation ω (−→q ) and the
frequency distribution function g(ω) [25]. Both are mainly determined in experiments
on the scattering of thermal neutrons, provided it turns out to be possible to separate
coherent and incoherent scattering [26]. An important role of neutrons in studying
lattice dynamics is related to the fact that the energy of thermal neutrons (kBT ∼
10−1 − 10−2 eV) is of the same order as the energy of phonons. At the same time
their de Broglie wavelength is comparable with the interatomic distance in crystals
[27, 28].

The simplest defects in a crystalline lattice that distort its translational symmetry
are isotopes of the elements forming a crystal. If the impurity concentration (iso-
topes) in a crystal is high enough that the interaction between impurity atoms (ions)
plays an important role, such a system is called a mixed crystal with a various degree
of disorder. There are two types of disordered systems: disordered alloys (isotopic
mixtures) or mixed crystals and glassy substances, which possess a more pronounced
spatial disorder than configurational disorder. The first theoretical dynamic model of
mixed crystals was a linear chain, which represented the development of the virtual
model (Nordheim, 1931; Pant and Joshi, 1969 (see, e.g. [47])). Despite its simplicity,
this model adequately described general features of lattice dynamics of mixed alkali-
halide crystals. This model uses two independent force constants f0 and f′0, which are
obtained, as a rule, from the observed frequencies of LO phonons in pure substances,
according to the expression f = ω2mM/2(m+M), where m and M (M′) are masses
of crystal-forming particles. The dependence of the force constant on concentration
was described by equation F = f0x − ( f ′

0 − f0)x by assuming a linear dependence of
f0

(
f ′
0

)
on concentration x (see, also [22] and references therein). A more complex

concentration dependence of the force constant was considered in detail in com-
prehensive reviews [29–33], where the cluster model and isodisplacement model in
lattice dynamics, based on the Coherent Potential Approximation (CPA) or averaging
of the T-matrix, were also described.

2.2.1 Isotope Effect in Phonon Spectra

a. First-order Raman Spectra

In view of the obvious mass dependence of phonon frequencies, dynamic lattice
properties have been studied intensively, mainly by Raman scattering. In addition
to changes in the average atomic mass, mass fluctuation due to isotopic disorder
as will be shown below also affects phonon frequencies and line-widths. Elemental
semiconductors (C, Si, Ge, α-Sn) with diamon-like structure are an ideal object to
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study the isotopic effects by the method of the Raman scattering. At the present time
the high-quality isotopically enriched indicated crystals are also available. In this
part we describe our understanding of the first-order Raman spectra of the isotope-
mixed elemental and compound semiconductors (CuCl, GaN, GaAs) with zinc-blend
structure.

The materials with diamond structure discussed here have a set of threefold-
degenerate phonons (frequency ω0) at the centre (

−→
k = 0, 
-point) of the Brillouin

zone (BZ) (see, also [26]). These phonons are Raman active but infrared inactive
[34]. Let us consider the case of Ge, with the five isotopes [35–37]. The uninitiated
will ask himself whether one should see five phonons (or more if he knows that there
are two atoms per primitive cell (PC)) corresponding to the five different masses, or
only one corresponding to the average mass. The reason why the Raman spectrum
(see, Fig. 2.7) of natural Ge does not show the local modes of the individual iso-
topes is that the scattering potentials for the phonons due to the mass-defects (mass
fluctuations) are too small to induce bound states (i.e., Anderson localization of the
phonons [38, 39]). Really a three-dimensional crystal fluctuations in the parameters
of the secular equation lead to localization if these fluctuation (measured in units
of frequency, i.e., (�M/M)ω0) are larger than the bandwidth of the corresponding
excitations. For optical phonons in Ge this bandwidth is ∼100 cm−1 (see, e.g. [40])
while (�M/M)ω0 ≤ 0.4×300 = 12 cm−1). Hence no phonon localization (with lines
corresponding to all pairs of masses) is expected, in agreement with the observation
of only line at 304 cm−1 (∼80 K) for natural Ge.

Figure 2.7a demonstrates the dependence of the shape and position of the first-
order line of optical phonons in germanium crystals on the isotope composition at
liquid nitrogen temperatures [36, 37]. The lines in these spectra are fully resolved
instrumentally (the experimental resolution was better than 0.1 cm−1) and their width
is caused by homogeneous broadening. The centroid of the Raman line shifts follow-
ing relation ω0 ∼ M−1/2. This behavior is expected within harmonic approximation.
Additional frequency shifts are observed [41] for the natural and alloy samples which
arise from their isotope mass disorder. This additional shift is 0.34 ± 0.04 cm−1 in
natural Ge and 1.06 ± 0.04 cm−1 (Fig. 2.8) in the 70/76Ge alloy sample, which has
nearly the maximum isotopic disorder possible with natural isotopes.

As it is well known, the natural diamond exhibits a single first-order Raman’s
peak at ωLTO (
) = 1332.5 cm−1. Figure 2.7b shows the first-order Stokes Raman
spectra for several samples with different isotope ratios [43]. The Raman energy
is found to increase continuously, but nonlinear, with decreasing x. The energy dif-
ference between the extreme compositions is 52.3 cm−1, which is consistent with
the isotope mass ratio. Analogous structures of first-order light scattering spectra
and their dependence on isotope composition has now been observed many times,
not only in elementary Si [44] and α-Sn [45], but also in compound CuCl and GaN
semiconductors (for more details see reviews [45–47]). Already this short list of
data shows a large dependence (see, also Fig. 2.8) of the structure of first-order light
scattering spectra in diamond as compared to other crystals (Si, Ge).

Figure 2.9 compares the composition of the Raman frequency in the VCA and
CPA according to Hass et al. [48] and Spitzer et al. [49]. The present Raman data
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Fig. 2.7 a First-order Raman
scattering spectra in Ge with
different isotope contents
[36, 37]; b First-order Raman
scattering spectra in isotopi-
cally mixed diamond crystals
12C13

x C1−x . The peaks A, B,
C, D, E, and F correspond to
x = 0.989; 0.90; 0.60; 0.50;
0.30; and 0.001 [43]

in Fig. 2.9 are in excellent agreement with those of Chrenko [50] and Hanzawa
et al. [43]. Both sets of data exhibit a pronounced bowing (nonlinearity) relative
to the VCA that is described very well by CPA. Hass et al. concluded that the
bowing is a direct consequence of the scattering due to isotopic disorder. Similar
nonlinearity are observed in many other properties of alloy systems (e.g., the band
gaps of semiconductor alloys and isotope-mixed crystals [51]. The deviation from
linearity is approximately 5 cm−1near the middle of the composition range. This is
much larger than the experimental uncertainties (about the size of the data points)
and should certainly be considered if the Raman frequency is to be used as a measure
of isotopic composition (for details see [26]).
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Fig. 2.8 Raman frequency
as a function of the average
mass, measured at 10 K,
for isotopically enriched
and disordered Ge samples.
The solid line is a calculation
with ω = 2595,73/

√
M cm−1

(after [41])

The measured Raman linewidth (Fig. 2.9b) is larger near the center of the compo-
sition range than near the end points. The variation is not symmetric in x and (1 − x)
and the maximum width occurs at approximately 70% at 13C. The CPA curves rep-
resent intrinsic contributions to the Raman linewidth due to the disorder-induced
broadening of the zone-center optic mode. The observed widths, according to Hass
et al. [48], contain additional contributions due to instrumental resolution (∼1.8 cm−1)
and anharmonic decay [47, 51]. The anharmonic broadening of the Raman line has
been calculated for diamond by Wang et al. [45] to be on the order of 1 cm−1 at
300 K. Contributions other than disorder thus account well for the observed widths
near x = 0 and 1. Assuming that such contributions are reasonably constant across
the entire composition range, we see that both CPA calculations account very well
for the qualitative trend in the data, including the peak near x = 0.7.

Detail calculations of the self-energy and the first-order Raman lineshape were
performed by Spitzer et al. [49]. They obtained a qualitative agreement with experi-
mental results. Comparing the Raman lineshape of Ge and C, the presence of a large
isotopic broadening for diamond, contrary to the small broadening observed for Ge
should be noted. The reason lies in the fact that

−→
k = 0 is not the highest point

of the phonon dispersion relation in the case of diamond [52]. This maximum lies
somewhat off

−→
k = 0, resulting in a nonvanishing density of states at ω0, consider-

ably larger than that found from relation Nd ∼ Re
(
ω0 − ω + i�ω0

2

)1/2
[46]. This

density of states is strongly asymmetric about ω0, a fact which yields an asymmetric
phonon lineshape [49]. This asymmetry also results in a lopsided dependence of
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Fig. 2.9 a Disorder-induced shift of the Raman phonon of diamond as a function of the 13C
concentration. The open symbols are Raman experimental data , whereas the asterisks correspond
to ab initio calculations. The solid line is a fit with Eq. (2.40) for n = 2, 3 to all experimental
data [60]. The dotted and dot–dashed lines represent the fits to theoretical values obtained from
ab initio and CPA calculations, respectively (after [69]); b Disorder-induced broadening of the
Raman phonon of diamond as a function of the 13C concentration. The filled circles have been
obtained from the Raman data by taking into account the corresponding instrumental resolutions
and substracting the anharmonic broadening 
anh ≈ 2cm−1 (FWHM). The solid line is a fit with
Eq. (2.40) for n = 2, 3 to these points [60]. The dotted and dot–dashed lines are the corresponding
fits to the values obtained from ab initio and CPA calculations, respectively (after [69])

the linewidth versus concentration (Fig. 2.9), which disagrees with the symmetric
dependence expected from the proportionality to mass fluctuation parameter g [22].

Thus, depicted in Figs. 2.7–2.9 experimental results are testified the nonlinear
dependence Raman frequency shift on the isotope concentration.

b. Second-order Raman Spectra

The second-order Raman spectra for a natural and isotope-mixed crystals of diamond
were investigated by Chrenko [50] and Hass and cowokers [48]. Second-order Raman
spectra for the synthetic diamonds are shown in Fig. 2.10 . The second-order spectra
were measured by Hass and cowokers with slightly lower resolution (∼4 cm−1 ) than
the first-order spectra because of the much lower count rate. The results of Hass et al.
for 1.1 at. % 13C agree well with previous measurements for natural diamond [53].
The spectra for 0.07 and 99 at % 13C also look similar, if one ignores the shifts that
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Fig. 2.10 Second-order
Raman spectra for synthetic
diamond with identicated
compositions at room temper-
ature (after [48])

occur as a result of differences in M. More significant differences are observed for
the more heavily mixed crystals: the 34.4 and 65.7 at % 13C results are noticeably
broader and do not appear to exhibit the sharp peak near the high-frequency cutoff. As
was shown above, it is this peak at the top of the second-order spectrum (2667 cm −1

for 1.1. at % 13C) that has been the subject of intense controversy. Chrenko [50] also
examined the second-order spectra of his samples and claims that he was able to see
this peak at all composition except 68 % 13C. His measurements may have been of
somewhat higher resolution than in paper of Hass et al. but it is clear that even in his
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89 at % 13C spectrum (which is the only raw data presented), some broadening of
this peak has occurred.

The IR absorption in mixed crystals can change in two ways, depending on the
concentration: one-mode and two-mode (see, for example, review Elliott et al. [30]).
In the case of one-mode behavior, the spectrum always exhibits a single band whose
maximum gradually shifts from one extreme position to another. The two-mode
behavior corresponds to the presence of two bands in the spectrum, which are char-
acteristic for each of the components of a mixed crystal. As the concentration of
components changes, these bands shift, and their intensities undergo a strong redis-
tribution. In principle, the same system can exhibit different types of behavior at
the opposite ends [29]. This classification is only a qualitative one, and it is sel-
dom realized in its pure form (for details see review [22]). The appearance of the
localized mode in the limit of the isolated defect is considered the most important
necessary condition for the two-mode behavior of phonons (and also for electrons
[32]). In review of Elliott et al. [30], a simple quantitative criterion was suggested for
determining the type of behavior of the IR absorption in a crystal of NaCI type [32].
Because the square of the frequency of the TO (
) phonon is inversely proportional
to the reduced mass of the unit cell M, the shift caused by the defect is equal to

� = ω2
T O(l − M̄/M̄ ′) (2.9)

This shift is compared in paper of Elliott and others with the width of the phonon
optical zone. This width in the parabolic dispersion approximation, neglecting the
acoustic branches, is equal to

W = ω2
T O

ε0 − ε∞
ε0 + ε∞

. (2.10)

The localized or gap mode appears provided |�| > W/2. However, as was noted
by Elliott et al. [30], in order for the two peaks to be retained up to a concentration
of about 0.5, the stricter condition of |�| > W should be satisfied. The substitution
of numerical values into (2.9) and (2.10) shows that the relation

|�| >
1

2
W (2.11)

for LiH (LiD) is always valid, because |�| = 0.44ω2
T O and W = 0.58ω2

T O . This
means that the localized mode should be observed at low concentrations. This con-
clusion agrees with the experimental data described above (Fig. 26 in Ref. [22]).
As for the second theoretical relation |�| > W, as noted above, for LiH (LiD) crys-
tals, the reverse relation W > |�| is always valid [54, 55]. We will consider this ques-
tion in more detail in review [22]. Figure 2.11 shows the second-order Raman spectra
of mixed LiHx D1−x crystals at room temperature [54, 55]. Along with the proper-
ties of Raman spectra at high concentrations discussed in the review of Plekhanov
[56], note also that as the hydrogen concentration further increases (x > 0.15), the
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Fig. 2.11 Second-order Raman spectra of mixed LiHx D1−x crystals excited at λ + 488.0 nm at
room temperature, x = 0.0 (1); x = 0.42 (2); x = 0.76 (3); x = 1 (4). The arrows show the bands
corresponding to LO(
) phonons (after [54, 55])

intensity of the 2LO (
) phonon peak in a LiD crystal decreases, while the inten-
sity of the highest frequency peak in mixed LiHx D1−x crystals increases. The latter
peak is related to the renormalized LO (
) modes in a mixed crystal. Thus, com-
parison of Raman spectra 1 and 2 in Fig. 2.11 shows that in the concentration range
of 0.1 < x < 0.45, the Raman spectrum exhibits LO (
) phonon peaks of a pure
LiD and mixed LiHx D1−x crystal. A further increase in x > 0.45 is accompanied
by two effects observed in the Raman spectra of mixed crystals. The first effect is
manifested in a substantial rearrangement of the acousto-optical part of the spectrum
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Fig. 2.12 Mirror reflection
spectra of crystals: 1-LiH;
2-LiHx D1−x ; 3-LiD at 4,2 K.
Light source without crystals,
curve 4 (after [57])

(spectra 1–3 in Fig. 2.11), and the second one consists in a further blue shift of the
highest frequency LO (
) phonon peak. This peak shifts up to the position of peak 12
in the spectrum of a pure LiH crystal [56]. This is most clearly seen from comparison
of spectra 2 and 4 in Fig. 2.11 ( for details see reviews [22, 56]).

2.2.2 Renormalization of Electron (Exciton) States

In this section we will briefly discuss the variation of the electronic gap (Eg) and
exciton binding energy of insulating and semiconducting crystals with isotope com-
position. As is well known isotopic substitution only affects the wavefunction of
phonons; therefore, the energy values of electron levels in the Schrödinger equation
ought to have remained the same. This, however, is not so, since isotopic substitution
modifies not only the phonon spectrum, but also the constant of electron–phonon
interaction. It is for this reason that the energy values of purely electron transition
in molecules of hydride and deuteride are found to be different. This effect is even
more prominent when we are dealing with a solid [57]. Intercomparison of absorp-
tion spectra for thin films of LiH and LiD at room temperature [58] revealed that the
long-wave maximum (as we know now, the exciton peak) moves 64.5 meV toward
the shorter wavelengths when H is replaced with D.

The mirror reflection spectra of mixed and pure LiD crystals cleaved in liquid
helium are presented in Fig. 2.12. For comparison, on the same diagram we have
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Fig. 2.13 Binding energy of
Wannier–Mott excitons as a
function of reduced mass of
ions. Based on values of the
reduced mass of ions for 6LiH;
6LiD; 7LiH; 7LiD and 7LiT
(after [57])

also plotted the reflection spectrum of LiH crystals with clean surface. All spectra
have been measured with the same apparatus under the same conditions. As the
deuterium concentration increases, the long-wave maximum broadens and shifts
toward the shorter wavelengths. As can clearly be seen in Fig. 2.12, all spectra exhibit
a similar long-wave structure. This circumstance allows us to attribute this structure
to the excitation of the ground (1s) and the first excited (2s) exciton states. The energy
values of exciton maxima for pure and mixed crystals at 2 K are presented in Table 21
of Ref. [51]. The binding energies of excitons Eb, calculated by the hydrogen-like
formula, and the energies of interband transitions Eg are also given in Table 21 of
Ref. [51].

Going back to Fig. 2.12, it is hard to miss the growth of �12 , [57], which in the
hydrogen-like model causes an increase of the exciton Rydberg with the replacement
of isotopes (see Fig. 2.13). When hydrogen is completely replaced with deuterium,
the exciton Rydberg (in the Wannier–Mott model) increases by 20% from 40 to 50
meV, whereas Eg exhibits a 2% increase, and at 2 ÷ 4.2 K is �Eg = 103 meV. This
quantity depends on the temperature, and at room temperature is 73 meV, which
agrees well enough with �Eg = 64.5 meV as found in the paper of Kapustinsky
et al. [58].

The dependence of the exciton binding energy on the isotope mass presents in
Fig. 2.13. From Fig. 2.13 we see that when hydrogen is completely replaced with
deuterium, the binding energy of the exciton exhibits a 20% increase from 42 to
52 meV [51]. It is easy to see that in the model of virtual crystal the binding energy
of the exciton in LiT crystals must be equal to 57 meV (see Fig. 2.13). Hence it
follows that in the linear approximation the isotopic dependence of binding energy
of Wannier–Mott excitons may be expressed as

Eb = Eb(0) (1 + γ ) , (2.12)
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where Eb(0) is purely the coulombic binding energy of the exciton (in the frozen
lattice), which in our case is equal to 31.5 meV, and the angular coefficient is
β = 12.18 meV/M, where M is the reduced mass of ions of lithium and hydro-
gen (deuterium, tritium) ions; γ = βM/Eb (0) (see also Plekhanov [51]). From the
standard equation for the Coulomb’s binding energy of the exciton

Eb = e4μ

�2ε2∞
, (2.13)

we get the dimensionless constant of the Coulomb’s interaction:

η2 = Eb (0)

�ωLO
= 0.47. (2.14)

Comparing the value of η2 = 0.47 and the constant of Fröhlich exciton–phonon
interaction g2 = 0.33 [51] we see that they are close enough. This implies that both
the Fröhlich and the Coulomb interactions between electrons (holes) and LO phonons
in exciton must be treated with equal attention, as has already been emphasized
in Klochikhin’s paper [59]. This paper deals from the start with ‘bare’ electrons
and holes, and all renormalizations are calculated in the two-particle configuration.
Such an approach enables us to avoid the considerable difficulty which arises when
polarons [60] are used as start-up particles. This difficulty is primarily associated
with the fact that the momentum of each particle is conserved when the particles
are treated separately, whereas it is the center-of-mass momentum that is conserved
when a pair moves as a whole. As demonstrated in Klochikhin [59], this approach
also makes it possible to calculate the higher order corrections to the exciton–phonon
interaction. It was also shown that the use of the pole parts of polaron Green functions
in place of complete expressions leads to a situation when the corrections of the order
of η2g2 and g4 to the potential energy are lost because the corrections to the vertex
parts and Green functions cancel out. The quantity lost is of the same order (g2) as
the correction to the residue but has the opposite sign [60]. The approach developed
in Klochikhin [59] allowed the calculation of corrections of the order η2g2 and g4,
the latter is comprised of the correction to the Fröhlich vertex and the correction
to the Green functions in the exciton–phonon loop. It is important that the latter
have opposite sign and cancel out exactly in the limit Eb � �ωLO. As a result,
because of the potential nature of the start-up Coulomb interaction, the correction to
the Coulomb’s vertex of the order η2g2 does not vanish. As a result, the following
expression was obtained in Klochikhin’s paper for the binding energy Eb of Wannier–
Mott exciton when Eb � �ωLO (the spectrum of exciton remains hydrogen like):

Eb = �ωLO

[
η2−g2+η2g2 (c + v)

2

]2

(2.15)
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where c, v = (mc,v/μ)1/2, and mc, mv are the electron and hole masses. Now Eb
depends explicitly on g2 (the Fröhlich constant of exciton–phonon interaction), and
hence depends on the isotopic composition of the lattice, whereas the standard
expression for the binding energy Eb = �ωLO

(
η2−g2

) = e4μ/ε2
0 �

2, which
describes the exciton spectrum of many semiconductors accurately enough, exhibits
no dependence on the isotopic effect. In the case of Eq. (2.15) the exciton spectrum
remains hydrogen like. When the higher order corrections are taken into account,
Eq. (2.15) becomes

Eb = e4μ

2ε0�2

[

1 + g2ε0
mc+mv

ε∞
+g4 ε0

ε∞

(

ζ1+ζ2
1−ε∞

ε0

)

(mc+mv)

]

. (2.16)

The order-of-magnitude evaluation of the coefficients ζ1, ζ2 gives ζ1 ≈ 0.15 and
ζ2 ≈ 0.02; when g2(mc + mv) � 3.3, the correction of the order η2g4 is much
less than the term of the order η2g2 (see, e.g. [51] and references therein). Setting
mv/mc = 3.5 and g2/η2 = I − ε0/ε∞, and (ε∞/ε0) = (ωTO/ωLO) = 1/3.5) , in paper
[59] it was found that Eb (theor) = 48 and 42 meV for LiD and LiH, respectively.
Comparing these results with the experimental values (see Table 21 of Ref. [51]) we
observe good agreement between theory and experiment. Hence follows a natural
conclusion that the isotopic dependence of the exciton binding energy is primarily
due to the Fröhlich interaction mechanism between excitons and phonons.

The single-mode nature of exciton reflection spectra of mixed crystals LiHx D1−x

agrees qualitatively with the results obtained with the virtual crystal model (see
e.g. Elliott et al. [30]; Onodera and Toyozawa [61, 62]), being at the same time its
extreme realization, since the difference between ionization potentials (�ζ ) for this
compound is zero. According to the virtual crystal model, �ζ = 0 implies that �Eg =
0, which is in contradiction with the experimental results for LiHx D1−x crystals. The
change in Eg caused by isotopic substitution has been observed for many broad-gap
and narrow-gap semiconductor compounds.

All of these results are documented in Table 21 of Ref. [51], where the varia-
tion of Eg, Eb, is shown at the isotope effect. We should highlight here that the
most prominent isotope effect is observed in LiH crystals, where the dependence of
Eb = f (CH) is also observed and investigated. To end this section, let us note that
Eg decreases by 97 cm−1 when 7 Li is replaced with 6Li.

Further, we will briefly discuss of the variation of the electronic gap (Eg) of
semiconducting crystals with its isotopic composition. In the last time, the whole row
of semiconducting crystals were grown. These crystals are diamond, copper halides,
germanium, silicon, CdS, and GaAs. All numerated crystals show the dependence
of the electronic gap on the isotope masses (see, reviews [60, 96]).

Before we complete the analysis of these results we should note that before these
investigations, studies were carried out on the isotopic effect on exciton states for
a whole range of crystals by Kreingol’d et al. (see, also [51]). First, the following
are the classic crystals Cu2O [63, 64] with the substitution 16O → 18O and 63Cu
→ 65Cu. Moreover, there have been some detailed investigations of the isotopic
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effect on ZnO crystals , where Eg was seen to increase by 55 cm−1 (16O → 18O) and
12 cm−1 ( at 64Zn → 68Zn) [65, 66]. In [67] it was shown that the substitution of a
heavy 34S isotope for a light 32S isotope in CdS crystals resulted in a decrease in the
exciton Rydberg constant (Eb), which was explained tentatively by the contribution
from the nearest electron energy bands, which however are absent in LiH crystals.

More detailed investigations of the exciton reflectance spectrum in CdS crystals
were done by Zhang et al. [68]. Zhang et al. studied only the effects of Cd substitu-
tions, and were able to explain the observed shifts in the bandgap energies, together
with the overall temperature dependence of the bandgap energies in terms of a two-
oscillator model provided that they interpreted the energy shifts of the bound excitons
and n = 1 polaritons as a function of average S mass reported as was noted above,
earlier by Kreingol’d et al. [67] as shifts in the bandgap energies. However, Krein-
gol’d et al. [67] had interpreted these shifts as resulting from isotopic shifts of the
free exciton binding energies (see, also [51]), and not the band gap energies, based
on their observation of different energy shifts of features which they identified as
the n = 2 free exciton states (for details see [67]). The observations and interpre-
tations, according Meyer at al. [69], presented by Kreingol’d et al. [67] are difficult
to understand, since on the one hand a significant bandgap shift as a function of the
S mass is expected [68], whereas it is difficult to understand the origin of the rela-
tively huge change in the free exciton binding energies which they claimed. Meyer
et al. [69] reexamine the optical spectra of CdS as function of average S mass, using
samples grown with natural Cd and either natural S (∼95% 32S), or highly enriched
(99% 34S). These author observed shifts of the bound excitons and the n = 1 free
exciton edges consistent with those reported by Kreingol’d et al. [67], but, contrary
to their results, Meyer et al. observed essentially identical shifts of the free exciton
excited states, as seen in both reflection and luminescence spectroscopy. The reflec-
tivity and photoluminescence spectra in polarized light (

−→
E ⊥ −→

C ) over the A and B
exciton energy regions for the two samples depicted in Fig. 2.14. For the

−→
E ⊥ −→

C
polarization used in Fig. 2.14 both A and B excitons have allowed transitions, and
therefore reflectivity signatures. Figure 2.14 also reveals both reflectivity signatures
of the n = 2 and 3 states of the A exciton as well as that of the n = 2 state of the B
exciton.

In Table 2.3 Meyer et al. summarized the energy differences �E = E (Cd34S) − E
(CdnatS), of a large number of bound exciton and free exciton transitions, measured
using photoluminescence, absorption, and reflectivity spectroscopy, in CdS made
from natural S (CdnatS, 95% 32S) and from highly isotopically enriched 34S (Cd34S,
99% 34S) [51]. As we can see, all of the observed shifts are consistent with a single
value, 10.8 ± 0.2 cm−1. Several of the donor bound exciton photoluminescence
transitions, in paper [69] can be measured with high accuracy, reveal shifts which
differ from each other by more than the relevant uncertainties, although all agree
with the 10.8 ± 0.2 cm−1 average shift. These small differences in the shift energies
for donor bound exciton transitions may reflect a small isotopic dependence of the
donor binding energy in CdS. This value of 10.8±0.2 cm−1 shift agrees well with the
value of 11.8 cm−1 reported early by Kreingol’d et al. [67] for the Bn=1 transition,
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Fig. 2.14 a Reflection spec-
tra in the A and B excitonic
polaritons region of CdnatS
and Cd34S at 1.3 K with inci-
dent light in the

−→
E ⊥ −→

C . The
broken vertical lines connect-
ing peaks indicate measured
ene rgy shifts reported in
Table 2.3. In this polariza-
tion, the n = 2 and 3 excited
states of the A exciton, and
the n = 2 excited state of the
B exciton, can be observed.
b Polarized photolumines-
cence spectra in the region
of the An=2 and An=3
free exciton recombination
lines of CdnatS and Cd 34S
taken at 1.3 K with the

−→
E

⊥ −→
C . The broken verti-

cal lines connecting peaks
indicate measured energy
shifts reported in Table 2.3
(after [69])

particularly when one takes into account the fact that enriched 32S was used in that
earlier study, whereas Meyer et al. have used natural S in place of an isotopically
enriched Cd32 S (for details see [51, 69]).

Authors [69] conclude that all of the observed shifts arise predominantly from
an isotopic dependence of the band gap energies, and that the contribution from any
isotopic dependence of the free exciton binding energies is much smaller. On the
basis of the observed temperature dependencies of the excitonic transitions energies,
together with a simple two-oscillator model, Zhang et al. [68] earlier calculated such
a difference, predicting a shift with the S isotopic mass of 950 μeV/amu for the A
exciton and 724 μeV/amu for the B exciton. Reflectivity and photoluminescence
study of natCd32S and natCd34S performed by Kreingol’d et al. [67] shows that for
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Table 2.3 The energy shifts of all of the transitions studied in [56] are given in terms of the Cd34S
minus the Cdnat S energy, �E

Transition Method �E (cm−1)

I2 PL 10.6 ± 0.1
Iz
2 PL 11.1 ± 0.1

Ia
2 PL 10.6 ± 0.1

An=1 (
6) A‖ 10.8 ± 0.2
An=1 (
L

5 ) PL 11.0 ± 0.2
An=1 (
L

5 ) R⊥ 10.9 ± 0.2
An=2 PL‖ 11.3 ± 0.4
An=2 PL⊥ 11.1 ± 0.4
An=2 R⊥ 10.2 ± 0.5
An=3 PL‖ 11.8 ± 1.1
An=3 PL⊥ 10.9 ± 0.6
An=3 R⊥ 10.7 ± 0.6
Bn=1 (
1) R‖ 10.9 ± 0.3
Bn=1 (
L

5 + 
T
5 ) R⊥ 10.6 ± 0.4

Bn=2 R‖ 9.4 ± 1.2
Bn=2 R⊥ 9.8 ± 1.2
Cn=1 (
1) R‖ 15 ± 6
Cn=1 (
5) R⊥ 14 ± 5

The methods used were photoluminescence spectroscopy (*PL) and reflection spectroscopy (R).
For measurements made using polarized light, the ‖ or ⊥ specifies the orientation of the E vector
vesus the c axis

anion isotope substitution the ground state (n = 1) energies of both A and B excitons
have a positive energy shifts with rate of ∂E/∂MS = 740 μ eV/amu. Results of Meyer
et al. [69] are consistent with a shift of ∼710μeV/amu for both A and B excitons.
Finally, it is interesting to note that the shift of the exciton energies with Cd mass is
56μeV/amu [68], an order of magnitude less than found for the S mass.

In concluding this part we should note that recent high-resolution spectroscopic
studies of excitonic and impurity transition in high-quality samples of isotopically
enriched Si have discovered the broadening of bound exciton emission (absorption)
lines connected with isotope-induced disorder as well as depend on their binding
energy on the isotope mass [70–75]. The last effect was early observed on the bound
excitons in diamond [56, 51], and earlier on the free excitons [76] in LiHx D1−x

mixed crystals (see, e.g. [77] and references therein).

2.3 Isotope Low-Dimensional Structure

The advances in epitaxial thin film homo and hetero-structures synthesis, which
have been achieved through a variety of epitaxial techniques [78–80], have led
to a vast array of new solid-state structures with many fascinating properties
(see, e.g. [81–83]). Isotope hetero-structures has been studied only in last two
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decades [81–89]. In combination with the well-established neutron transmutation
doping (NTD [90]) technique, isotope hetero-structures appear to represent a family
of solid-state structures, which offer new possibilities and numerous advantages over
the traditional multilayer structures (see above). The formation of a doped isotope
multilayer structure can be broken down into two independent steps: growth of the
structure with isotopically pure or deliberately mixed layers and selective doping
with the NTD process [93–95]. The formation of an isotope multilayer structure
differs from the traditional methods in only that isotopically pure and deliberately
mixed sources must be used, and, the most important, that no dopants are introduced
during the growth process. The absence of any dopants during the growth process
automatically eliminates all dopant-induced effects including autodoping and dopant
interdiffusion between adjacent layers [88]. In principle all the established epitaxial
techniques can be applied to the growth of isotope multilayer structures. The only
requirement is the availability of semiconductor grade pure isotopes. The doping of
an isotope heterostructures is achieved with the NTD [90] techniques after growth
process has been completed. The NTD technique is isotope selective and therefore
it can be used superlatively for the creation of the low-dimensional structure. The
cross-section for thermal neutron capture and the subsequent nuclear processes of
practically every stable isotope of all elements have been measured, studied, and
documented (see also [90] and references therein).

As we all know breaking the crystal translational symmetry without strongly
influencing its electronic band structure can be done by means of a modification in
the mass of one or more atoms composing the crustal. Without translational symme-
try, the wave vector conservation requirements can be circumvented. Ideal models for
most studies of elementary excitations are represented by isotopically pure crystals.
A new field offering interesting physical studies is opened with the growth of iso-
topically tailor-made single crystals. The translational symmetry operations can be
removed in part by artificial fabricating isotopic superlattice in which layers of two
isotopically enriched materials alternate periodically. MBE of isotopically controlled
germanium has enabled studies of low-dimensional phonons in isotope superlattice
[86–89] and quantum dots [91].

In this paragraph we describe the results of Raman measurements on novel kind of
heterostructures, a series of isotopic superlattice’ of germanium and silicon [86–91].
These samples represent an excellent model system to study the vibrionic properties
of superlattice because the electronic structure should be affected only weakly by
changes in the isotopic mass (see, e.g. reviews [60, 96]).

Since these changes are the only difference between the superlattice’ constituents,
Raman spectroscopy is the only non-destructive method to investigate their structural
properties. Experimental data are compared with the results of planar force-constant
model [86]. Let us consider the case of Ge, with the five isotopes of it [29]. The
readers will ask themselves one should see five phonons (or more if they know that
there are two atoms per primitive cell), corresponding to the five different masses,
or only one corresponding to the average mass. We all know that the latter is true.
The transition from the average mass vibrations to those localized at all possible
pairs is an example of the Anderson localization phenomenon [38, 39], which is
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Fig. 2.15 Schematics of Si
isotope superlattices. Thick-
ness of each isotope layer
are 1.1; 1.6; and 3.2 for
28Si8/30Si8; 28Si12/

30Si12
and 28Si24/

30Si24 samples,
respectively. Low index
denotes the thickness of
each isotope layer in atomic
monolayers, each 0.136 nm
thick (after [92])

observed in Raman experiments on LiHx D1−x system (for details see [47]). In a
three-dimensional crystal, fluctuations in the parameters of the secular equation lead
to localization (measured in units of frequency, i.e. (�M/M)ω0) are larger than the
bandwidth of the corresponding excitations. For optical phonons in Ge this bandwidth
is 100 cm−1 while (�M/M)ω0 � 0.04 × 300 = 12cm−1 (see also above). Hence no
phonon localization (with lines corresponding to all pairs of masses) is expected, in
agreement with the observation of only one line at 304 cm−1 (at 77 K) for natural
Ge (see Fig. 2.7). For comparison we indicate that the bandwidth in the LiHx D1−x

mixed crystal is more than 500 cm−1, therefore, the crystal and localized phonons
are coexist (for details see [47]).

In superlattice composed, for example, of n layers of 70Ge and m layers of
76Ge repeated periodically, one would expect to find optical modes localized or
nearly localized in each of two constituents. Schematics of Si isotope superlattice
are depicted in Fig. 2.15 [92]. Koijma et al. have grown three kinds of silicon iso-
tope superlattice (28Sin/30Sin , with n = 8, 12 and 24) using the solid-source MBE
technique [79, 97]. In this paper n denotes the thickness of each isotope layer in
atomic monolayers, each 0.136 nm thick. The periodicity, i.e., the number 28Si/30Si
pair layers stacked vertically, is 80, 50, and 30 for n = 8, 12, and 24 samples, respec-
tively. The resulting total thickness of the superlattice is 160–200 nm (see, Fig. 2.15).
The source for the 28 Si layer is actually natSi which is composed of 92.2% 28Si. The
source for the 30Si layer is a single Si crystal isotopically enriched to 30Si(∼98.74%
[93–95]). In MBE, individual effusion cells equipped with crucibles made of high
purity tantalum. The crucible are temperature is maintained at 1400◦ C for a growth
rate of ∼0.01 nm/s. The base pressure of the vacuum is 5×10−10 torr and the pressure
during growth is ∼10−9 Torr Fig. 2.15.

As was shown [98], the E versus k dispersion of phonons in the superlattice is zone
folded due to the new periodicity, na, introduced by the (28Si)n–(30Si)n unit where a
is the periodicity of the bulk Si. Because Raman spectroscopy, to first order, probes
phonons situated at k ∼ 0 in the dispersion relation, while only one longitudinal
optical (LO) phonon peak is observed with bulk Si, multiple LO phonon peaks
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Fig. 2.16 Raman spectra of
the 28Sin/30Sin samples with
n = 8, 12 and 24 (after [92])

should appear for isotope superlattice due to the zone folding or phonon localization
(see, e.g. [99]). Figure 2.16 shows the Raman spectra of Si superlattice. As expected,
many peaks are observed on the shoulders of the large nat Si substrate LO peak around
523.5 cm−1. The wave numbers of the identified peaks are indicated in Fig. 2.16 for
comparison with theoretical predictions fulfilled in the planar bond-charge model for
Si (see [100]). As was shown in paper [93–95] theoretical curves are not smooth due
to anticrossings. In general, the agreement between the experimental and theoretical
results is excellent, except for the one detail: while LO1 (28Si) peaks in n = 12 and
24 samples are hidden in the large substrate peak, the LO1 (28Si) peak is observed
experimentally for the n = 8 sample and its position deviates from the calculation
(for details see Fig. 4 in [92]).

Raman spectra of a serial of isotopic 70(Ge)74
n (Ge)n superlattice with 2 ≤ n ≤ 32

(8 ≤ n ≤ 24) was published in papers [87, 88]. Three modes could be observed (see
Fig. 2.17) for the 70(Ge)74

16(Ge)8 “as-grown” superlattice as theoretically predicted
[86]. We should underline that the excellent agreement between results of papers
[87, 88].

In concluding this paragraph we should stressed that isotopic superlattice rep-
resents an excellent model system for the investigation of confinement of optical
phonons. Both frequencies and relative intensities of the measured spectra are in
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Fig. 2.17 a Experimental Raman spectra of a (70Ge)16(74Ge)16 superlattice for different annealing
steps at 500◦C. b Calculated Raman spectra for the same superlattice using the same parameters
(after [88])

good agreement with calculations based on a planar bond-charge model and the
bond-polarizability approach (for details see [93–95].

2.4 Excitons and Biexcitons in Quantum Dots

When a semiconductor (insulator) of direct bandgap Eg is shone with near-bandgap
light, electron-hole pairs are created. If the electron and the hole were noninteracting
only photon energies �ω > Eg would be absorbed and Eg would be the absorption
edge. The Coulombic electron-hole interaction greatly modifies this picture. The
electron-hole attraction gives rise to bound states of the relative motion of the exciton.
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The appearance of intense, narrow absorption lines below the fundamental absorption
edge is the manifestation of these bound states.

In the case of confined systems for electrons and holes, such as quantum wells
(QWs), quantum wires (QWRs) and quantum dots (QDs), the excitonic effects are
much more important than in bulk solids. In effect, as will be shown below, the
binding energy of the electron- hole systems forming an excitons are much higher
in quantum confined systems than in the case of solids, and, therefore, the excitonic
transitions can be observed even at temperatures close to room temperature, as closed
to the bulk case for which low temperatures are needed. This makes the role played
by excitons in many optoelectronic devices of nanoscale very important.

It is perhaps easier to deal with a finite barrier quantum dot (QD) with spherical
rather than cuboid symmetry. The approach is rather similar to that derived earlier
for the circular cross-section quantum wire (QWr). Given the spherical symmetry
of the potential, then the wave function would also be expected to have spherical
symmetry, hence the Schrödinger equation for a constant effective mass could be
written (see, e.g. [101, 103])

− �
2

2m∗ (
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )�(r) + V (r)�(r) = Er�(r), (2.17)

where the index on Er has been added just to indicate that this energy is associated
with the confinement along the radius. In this case:

r =
√

x2+y2+z2. (2.18)

The transition can be made from Cartesian (x, y, z) to spherical polar coordinates,
in effect just r, in the same way above. Using Eq. (93) of Ref. [102], each of the three
Cartesian axes gives an equation of the following form:
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Therefore, the complete ∇2�(r) is given by:

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

�(r)

= 3

r

∂

∂r
�(r) − (x2+y2+z2)

r3

∂

∂r
�(r) + (x2+y2+z2)

r2

∂2

∂r2 �(r). (2.20)

and (
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∂x2 + ∂2

∂y2 + ∂2

∂z2

)

�(r) = 2

r

∂

∂r
�(r) + ∂2

∂r2 �(r). (2.21)

Substituting into the Schrödinger equation then:
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Fig. 2.18 The confinement
energy in a spherical GaAs
quantum dot surrounded by
a Ga0.8Al0.2As barrier (after
[103])

Fig. 2.19 The wave functions
of the three lowest energy
states in the 300 Å spherical
quantum dot (after [103])

− �
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2m∗
(
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)

�(r) + V (r)�(r) = Er�(r). (2.22)

Such spherical symmetric Schrödinger equations have been investigated before
(see, e.g. [8–10]). The last equation, is numerically solved and Fig. 2.18 shows the
results of calculations of the three lowest energy levels of a spherical GaAs QD
surrounded by a finite barrier composed of Ga0.8Al0.2As, with a sharp boundary. In
fact, the formalism above, as that of the circular cross - section QWr, is applicable
for any radial potential profile V(r), e.g., it is also valid for diffused interfaces [103]
Again, the behavior of the energies as a function of the spatial dimension, as shown
in Fig. 2.18, is as expected in confined systems, namely the confinement energy
decreases as the size of the system increases. Figure 2.19 displays the corresponding
radial components of the wave functions. It can be seen that they all have a maximum
at the centre of the potential and that as the principal quantum number n increases,
then the number of nodes increases.
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Fig. 2.20 Spectrally resolved four-wave mixing at τ = 3 ps showing the heavy hole and light hole
biexcitons. Insert shows the four-wave mixing intensity of the heavy hole exciton and biexciton as
a function of delay (after [110])

In 1958, Moskalenko [104] and Lampert [105] suggested that in crystals besides
excitons more complex electronic quasi particles might exist, made up of three or
four carriers. The latter one, consisting of two electrons and two holes, is well known
as biexcitons or excitonic molecules [106]. As the density of excitons is increased,
biexcitons are formed by increasing the light intensity. Biexcitons can be generated
either through ordinary excitation of the crystal or by two-photon absorption each
photon having an energy

hν = Ex − EBxx

2
, (2.23)

where EBxx is the biexciton binding energy and Ex is the exciton energy

Ex = Eg − EBx + �
2k2

2mx
. (2.24)

In the last relation Eg is the bandgap energy, EBx is the exciton binding energy

and �2k2

2mx
is the kinetic energy with which an exciton moves through the crystal (see,

also [107]).
Compared to the bulk material, an increased stability of biexcitons due to the

two-dimensional carrier confinement is observed for typical III–V structures such as
GaAs/AlGaAs QWs [108–110] (see Fig. 2.20) or for wide bandgap II–VI materials
such as CdZnSe/ZnSe [111]. As a consequence of the enhanced biexciton binding
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Fig. 2.21 Left side Excitonic (X) and biexcitonic (X2) emission from two individual CdSe/ZnSe
SQDs for different excitation powers. The PL spectra shown in the lower panel are unpolarized, the
data presented in the upper panel represent linearly polarized PL spectra (πx and πy , respectively).
Right side Energy level scheme for the biexciton–exciton cascade in a QD (after [111])

energy, a variety of optical properties, such as the photoluminescence(PL) spectrum,
the optical gain or the four-wave mixing signal especially in wide bandgap II–VI
QWs are strongly influenced by biexcitons (see [111] and references therein).

Below we briefly review some results obtained from optical spectroscopy on
epitaxially grown single SQDs based on II–VI and II–N compounds. As was indicated
above the biexciton (XX or X2) is a four-particle state. In its lowest energy state
configuration, two electrons and two holes with antiparallel spins occupy the first
quantized state of the conduction and the valence band in the SQDs, respectively
(see, e.g. [112]) We should add that the QDs in the material systems described
here are quite small with diameters in the order of 10 nm and heights of a few nm.
The biexciton state is therefore a singlet state with a total spin of J = 0. Thus,
the exciton state X represents the final state for the biexciton recombination [113].
In II–VI semiconductors, as in III–V materials with a zincblende crystal lattice,
Coulomb interaction leads to positive biexciton binding energies (see Eq. (2.24)),
i.e., the energetic distance between XX (X2) and X smaller than the energy difference
between the first exciton state and the ground state. A typical optical fingeprint for
the X2 is therefore an additional PL line at the low energy side of the exciton emission
X that exhibits a strong (quadratic) dependence on the excitation power [107]. This
behavior is clearly visible in left panel of Fig. 2.21. At low excitation density, the PL
spectrum of CdSe/ZnSe SQDs consists of emission peaks stemming from exciton
recombination of two individual QDs. With rising excitation density additional lines
emerge, red shifted by about 24 meV with respect to the excitonic emission X, and
rapidly increasing in intensity, which can be attributed to biexciton emission X2.
The biexciton binding energy is obviously much larger than in III. As-based QDs
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Fig. 2.22 Left panel Transient PL spectra from a single CdSe/ZnSe QD showing the single exciton
X and the biexciton transition (here denoted by B = X2). Right panel Decay curves for the exciton
and the biexciton PL signal (for details see text) (after [111])

where a typical values of a few meV (∼2 meV [110]) have been determined (see,
also [108, 109, 114]). When having a closer look on the PL spectra presented in
Fig. 2.21, some more information can be extracted. One should have in mind that in
QDs, the light hole level is shifted to higher energies due to strain and confinement
and thus, excitons are formed between electrons and heavy holes. The ground state of
a heavy hole exciton in a SQD is a spin quadruplet, which can be by the z-component
(= component, according [111] in growth direction) of the total exciton spin Jz . If
the z-component of the electron spin, sz = ± 1/2, and the z-component of the total
angular momentum of the heavy hole jz = ± 3/2 are antiparallel, in such case, we
get Jz = sz + jz = ±2 (the dark exciton states [113]).

In II–VI QDs the energy difference �0 between bright and dark exciton states
that is given by the isotropic electron-hole interaction energy, amounts to about
1 meV and more which is nearly an order of magnitude larger than in InAs/GaAs
QDs [101]. As can be seen in Fig. 2.21, the exciton fine structure is reflected both in
the exciton and in the biexciton recombination: SQD1 does not show a significant
splitting of the exciton PL signal, while SQD2 exhibits a doublet with an energy
separation of almost 1 meV indicating a reduced QD symmetry. Exactly the same
behavior is observed in the corresponding biexciton lines. Moreover, the high energy
component of the X emission in SQD2 (πx polarized) corresponds to the low energy
component of the X2 emission and vice versa, in agreement with energy level scheme
(see Fig. 2.20). All these effects are easily accessible in wide bandgap II–VI QDs
because the characteristic energy splitting are significantly enhanced with respect to
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III-As semiconductor QDs. We may expect more significant value of the exchange
splitting for exciton and biexciton states in QD of isotope-mixed crystals (see, also
[60, 93–95]). Thanks to the large biexciton binding energy, II–VI QDs were the first,
where the biexciton–exciton cascade could be traced directly in the time domain
on SQD level [115]. Figure 2.22 depicts transient PL spectra (left) of both emission
lines and the time-dependent intensity of the exciton and the biexciton signal (right
panel). The biexciton emission shows a monoexponential decay with a time constant
of 310 ps. The exciton reveals a more complex behavior: the onset of the exciton line
ids delayed, resulting in “plateau-like” characteristics of the exciton decay curve.
The excitation density according authors of this experiment was set to a value where
an average number of two electron-hole pairs per excitation pulse in the SQD was
generated. Model calculations taking into account the biexciton state, the bright, and
the dark exciton states and the “empty” QD (corresponding to a QD population with 2,
1 and 0 excitons, respectively) confirm that the exciton state is feeded by the biexciton
recombination causing the delayed onset and the “plateau-like” characteristics of the
exciton emission dynamics (for details see [101] and references therein).
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Chapter 3
Classical and Quantum Information

3.1 General Remarks

Before studying the new aspects that quantum mechanics adds to information
theory, we will have a brief look at the basics of classical information theory in
the next section. Information theory is a branch of applied mathematics and electri-
cal engineering [1–3] involving the quantification of information. This theory related
to the mathematical description and estimation of the quality of the transmission,
preservation, extraction, and classification of information. An important feature uni-
fying various branches of science related to information theory is the extensive use of
statistical methods (see, e.g. [4, 5]). This is brought about the fact that the process of
extraction of information is connected with reducing the indefiniteness in the knowl-
edge of some object, and the natural numerical measure of indefiniteness of an event
is its probability. The most important part of information theory in any treatment is
the theory of information transmission [1, 6, 7]. The theory of information trans-
mission is concerned with optimum and near-optimum methods of transmission of
information over a communication channel under the assumption that the methods of
encoding the message into an input signal and of decoding the output into a message
may vary within wide ranges. Problems related to the optimal way of preservation
of information do not differ, in principle, from problems of optimal transmission of
information, since preservation can be regarded as transmission in time rather than
in space.

Information theory was developed by Shannon to find fundamental limits on
signal processing operations such as compressing data and on reliably storing and
communicating data [1]. From the mathematical point of view the output and input
channel are just applications of mathematical statistics, principally of statistics of
stohastic processes. A key measure of information is known as entropy, which is
usually by the average number of bits needed for storage or communication (see,
also [8]). As is usual, the information is encoded in a sequence of bits, i.e., entities
that can be in two distinguishable states, which are conventionally labeled with 0
and 1. A bit is the maximal amount of information we can obtain from a yes/no
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Fig. 3.1 Schematic diagram
of a general communication
system

question. The definition points to classical logic with reference to “yes/no” (or “1/0”
or “true/ false”). Entropy quantifies the uncertainty involved in predicting the value of
a random variable. The concept of entropy in information theory is closely connected
with the concept of entropy in statistical mechanics [3–5].

3.2 Classical Information

The theory of information is based on notions drawn from probability. Therefore,
some people regard information theory as a branch of applied probability. A simple
example on alphabets very bright by characterizes this situation. Possible combina-
tions of the letters a, n, and t are tan, ant, nat. These words may have meaning and
significance for different readers but their impact on individuals will vary, depend-
ing on the readers’ subjective reaction. Subjective information conveyed in this way
is impossible to quantify in general. Therefore, the meaning of groups of symbols
is excluded from the theory of information; each symbol is treated as an entity in
its own right and how any particular grouping is interpreted by an individual is
ignored. Information theory is concerned with how symbols are affected by various
processes but not with information in its most general sense. We should note that
information is always information about something. The description of information
must be distinguished from this ‘something’, just as the words used to describe a dog
are different from the dog. The description in information theory are called codes.

The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. To describe this
situation we introduce a transmitter and a receiver that converts the messages into
some physical signal and vice versa. The general layout of such a communication
system is illustrated in Fig. 3.1. Given a channel and an information source, the basic
problem is to transmit the messages produced by the information source through the
channel as efficiently and as reliably as possible. Efficient means that we can send as
much information as possible per use of the channel, and reliable means that, despite
the disturbance due to the noise added by the channel, the original message is (with
high probability) reproduced by the receiver.

An information source is some device or mechanism which generates elements
from a certain set. Table 3.1 shows a code book related to a source which generates
a vowel of the English alphabet A. The various code words may be taken as a way to
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Table 3.1 Code-book for
vowels in English language

Vowel Code-word Code-word length

a 11 2
e 00 2
i 01 2
o 100 3
u 1010 4
y 1011 4

represent, indeed to code, the vowels. Or we may conceive the code book as a strategy
for obtaining information about the actual vowel from a knowledgeable ‘guru’ via
series of yes/no questions. In this example, the first question will be ‘is the letter one
of a, o, u or y?’ This corresponds to a ‘1’ as the first binary digit—or bit as we shall
say—in the actual code word. Continuing asking questions related to the first bits,
we end up knowing the actual vowel. The number of bits required in order to identify
a vowel is the code word length, i.e., the number of bits in the corresponding code
word. The term ‘bit’ is used in two ways, as a rather loose reference to 0 or 1 and
then, as a more precisely defined unit of information: A bit is the maximal amount
of information we can obtain from yes/no question.

3.2.1 Shannon Entropy

The concept of information is too broad to be captured completely by a single defin-
ition (see, e.g. [3]). But we all know that information may be not only created, elab-
orated, transmitted through space, and preserved or stored throughout time, but may
also be extracted and used for communication. Before introducing some definitions
of information theory, it is desirable to remove one possible cause of misapprehen-
sion. Possible combinations of the letters a, n, and t are tan, ant, nat. These words
may have meaning and significance for readers but their impact on individuals will
vary, depending on the reader’s subjective reaction. Subjective information conveyed
in this way is impossible to quantify in general. Therefore, the meaning of groups
of symbols is excluded from the theory of information; each symbol is treated as an
entity in its own right and how any particular grouping is interpreted by an individual
is ignored. Information theory is concerned with how symbols are affected by various
processes but not with information in its most general sense [2].

According to Shannon [1] we call I0 the information value in bits if state | 0〉 is
seen, and I1 the same for the occurrence of | 1〉. We state that in the case of perfect
symmetry (see Fig. 3.1), i.e., for p0 = p1 = 0.5 we should obtain I0 = I1 = 1b. And
it is reasonable to demand that for pi = 1 (i = 0 or 1) we should get Ii = 0, whereas
for pi −→ 0, Ii −→ ∞. What is between these limits? In general, the function we
are looking for I(p), should be a continuous function (see Fig. 3.1), monotonically
decreasing with p so that Ik > Ii if pk < pi (naturally the value of the information
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gained should be greater for the less probable state. In the above expressions p is
probability [10]. This function fulfilling such conditions was chosen by Shannon
[1] for what is usually called the information content of an outcome that has the
probability pi to occur (see, also [1, 3, 8, 9]):

Ii = −K ln pi . (3.1)

In order to obtain I = 1b for pi = 0.5 we must set K = 1/ ln 2. The negative sign is
needed so that I ≥ 0 (p always ≤ 1). Turning to logarithm of base 2 we can write

Ii = −log2pi . (3.2)

The base of 2 is therefore especially apposite for dealing with binary digits (bits) and
can therefore be expected to be important in application to computing and coding.
Tables of logarithms to base 2 are available but if they are not, hand calculations can
be carried out by observing that

log2x = log10 x

log10 2
= ln x

ln 2
= ln x log2e. (3.3)

In general
logax = ln x/ln a (3.4)

and, since the restriction a > 1 has been imposed above, ln a > 0 so that the logarithms
which arise be always positive multiplies of the natural logarithm.

The most important and useful quantity introduced by Shannon [1] is related to
the next question: Given the probability values for each alternative, can we find an
expression for the amount of information we expect to gain on the average before we
actually determine the outcome? A completely equivalent question is: How much
prior uncertainty do we have about outcome? It is reasonable to choose the weighted
average of I0 and I1 for the mathematical definition of the a priory average informa-
tion gain or uncertainty measure H:

H = p0I0 + p1I1 = −p0log2p0 − p1log2p1 (3.5)

in which as usual p0 + p1 = 1 (for details see [1]). Since H is a quantitative measure
of the uncertainty of the state of a system, Shannon called it the entropy of the source
of information. Since pi may be zero, some term in H could be undetermined in this
definition so, when pi = 0, the value zero is assigned to the corresponding term in
(3.5). Let us set, for our case p = p0; then p1 = 1 − p and:

H = −plog2p − (1 − p)log2(1 − p). (3.5a)

Figure 3.2 shows a plot of H as a function of p (solid line). It reaches the maximum
value of 1b (maximum average information gain in one operation or in one toss
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Fig. 3.2 Shannon’s average information or entropy H as a function of the probability p of one of
the final states of a binary (two state) devices. H is measure of the uncertainty before any final state
occurred and expresses the average amount of information to be gained after the determination of
the outcome. A maximum uncertainty of one bit (or maximum gain information, once the result is
known) exists when the two final states are equiprobable (p = 0.5). The dotted curve represents
(1-H) (see Eq. (3.8)) an objective measure of the “prior knowledge” before operating the device
(after [9])

of a coin) if both probability values are the same (p = 1/2). If p = 1 or 0, we
already know the result before we measure, and the expected gain of information
will be zero—there is no a priory uncertainty. A measure of the average information
available before we actually determine the result would be 1 − H; p = 1 or 0 indeed
gives 1b of “prior knowledge”, and p = 1/2 represents zero prior information (broken
line in Fig. 3.2), that is, maximum uncertainty.

We can generalize the definition (3.1)–(3.5) for any number N of possible final
states, which will then read as:

H = −
N−1∑

i=0

pi log2pi with
∑

i

pi = 1 (3.6)

The function H has an absolute maximum when all pi are equal, i.e., when there
is no a priory bias about the possible outcome. In that case, by definition of the
probability pi , it is easy to verify that (p1 = p2 = · · · = pN = 1/N)

H = log2N. (3.7)

When all the events are equally probabe, the most uncertainty prevails as to which
event will occur. It is therefore satisfactory that the entropy should be a maximum
in such a situation. The fact that H(S) is a maximum when the events are equally
uncertain but zero when there is certainty provides some justification for considering
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entropy as a measure of uncertainty. To finalize this part we should indicate, as seen
from Fig. 3.2, to always fulfill the relation between information and entropy:

I + H(S) = 1. (3.8)

Below, we briefly show the example of the optimum method of coding (see, also
[1, 3, 6, 7]). It can easily be seen from the following example that a message can be
compressed when compared to its naive encoding. Let us suppose that we are using
four different letters (b0, b1, b2, b3), which are encoded in the usual manner using
two bits b0 = 00, b1 = 01, b2 = 10, b3 = 11. A message n letters long will then be
encoded by 2n bits. However, suppose that the letters occur with different probability
b0 with probability 1/2, b1 with probability 1/4 and b2 and b3 with probability 1/8.
We can use the following encoding: b0 = 0, b1 = 10, b2 = 110 and b3 = 111. The
average length of a message n letters long will then be

n

(
1

2
· 1 + 1

4
· 2 + 1

4
· 3

)

= 7

4
n < 2n. (3.9)

According to Shannon [1], this is in fact the best possible compression (see, also
[11]). Let us take a set of letters bx , 0 ≤ x ≤ k, and a sequence {b1, b2, . . ., bn}
of n letters forming a message. Each letter occurs a priory with probability p(bx ),∑

x p(bx ) = 1. We consider a message n letters long n � 1. Is it possible to compress
the message into a shorter sequence containing essentially the same information? The
simplest case is that of two letters, p(b0) = p1, p(b1) = 1−p. The probability of p(q)
that an n-letter message contains q letters b0 is (we neglect the correlation between
letters)

p(q) = Cq
npq(1 − p)n−q. (3.10)

And returning to formulae of Shannon entropy (3.6) we obtain

−
(

1

2
log

1

2
+ 1

4
log

1

4
+ 1

4
log

1

8

)

= 7

4
. (3.11)

The last relation indicates that the proposed encoding is optimal [3].

3.2.2 Von Neumann Entropy

The Shannon entropy measures the uncertainty associated with a classical probability
distribution. Quantum states are described in a similar fashion (see, e.g. [8, 10]),
with density operators replacing probability distribution. Von Neumann defined the
entropy of a quantum state −→ρ by the relation:

S(−→ρ ) = −Tr(−→ρ log−→ρ ). (3.12)
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In this formula log are taken to base two, as usual. If λx are the eigenvalues of−→ρ , then von Neumann’s definition can be re-expressed as

S(−→ρ ) = −
∑

λx log λx , (3.13)

where we define 0 log 0 ≡ 0, as for the Shannon entropy.
It is instructive to consider a simple example involving a 2D Hilbert space spanned

by the vectors | α〉 =
(

1
0

)

and | γ 〉 =
(

0
1

)

[8]. Let us define a third vector

| β〉cos� | γ 〉 + sin� | α〉 (3.14)

and the density matrix

−→ρ = p | α〉〈α | +(1 − p) | β〉〈β |
=

(
p + (1 − p)sin2� (1 − p)cos� sin�

(1 − p)cos� sin� (1 − p)cos2�

)

(3.15)

The easiest way to calculate the von Neumann entropy S(−→ρ ) is via the eigenvalues
λi of −→ρ

S(−→ρ ) = −
∑

λi logλi . (3.13a)

The eigenvalues of the above density matrix are

λ = 1

2
±

√
1

4
− p(1 − p)cos2�. (3.16)

For � = 0 the states of | α〉 and | β〉 are distinguishable, the eigenvalues of −→ρ are
λ = p and λ = (1−p) and thus S(−→ρ ) = H(p) (here H(p) is the binary entropy—see
Fig. 3.2), whereas for � 
= 0 | α〉 and | β〉 cannot be distinguished with certainty,
and S(−→ρ ) is strictly smaller than H(p), as seen in Fig. 3.3 (see, also [14]).

The quantum entropy has some non-classical properties, whereas classical random
variables X, Y always fulfill

S(X) ≤ S(X, Y ), (3.17)

that is, the entropy of a subsystem is never greater than that of the total system; this
is possible for a quantum system (see, also [12, 13]). Consider two qubits A, B in
the pure state

| �〉 = 1√
2

(| 00〉+ | 11〉) ; (3.18)

−→ρ AB =| �〉〈� |=⇒ S(−→ρ AB) = 0. (3.19)
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Fig. 3.3 The von Neumann
entropy for a simple 2D
density matrix. Curves are for
� = 0.0; 0.01π ; 0.2π ; 0.3π

and 0.4π respectively (top to
bottom. For curve � = 0.0π

the curve is same as in Fig. 3.2

However, the reduced density matrix of subsystem A is −→ρ A = 1
2
−→
1 = S(−→ρ A)

= 1. Evidently this is related to the entanglement between A and B [14]. In general,
A and B can be considered entangles if and only if

S(−→ρ AB) < S(−→ρ A) (or S(−→ρ B), (3.20)

where, of course, −→ρ A is again the reduced density matrix. The von Neumann
entropy can thus be used to define more general measures of entanglement (see, also
[15–20]). Most theorems, which are relevant to quantum information theory, can be
derived from a few fundamental properties which are discussed, proved, and applied
in [21, 22].

3.2.3 Introduction in Quantum Information and Quantum
Computation

This part is not intended to cover all developments in the quantum information theory
and quantum computation. Our aim is rather to provide the necessary insights for
an understanding of the field so that various non-experts can judge its fundamental
and practical importance. Quantum information theory and quantum computation
are an extremely exciting and rapidly growing field of investigation. Before we dis-
cuss some fundamental concepts of quantum information we should remind some
of the basic quantum physics for the benefits of readers less familiar with the sub-
ject. Classical information theory has been around for ever 7 years and there are
hundreds of well-tested textbooks not only for physics and mathematics students
but also for biologists, engineers, and chemists (see, e.g. [1–3, 10] and references
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therein). In contrast, quantum information (QI) theory is in its infancy and involves
physics concepts (for more details see below) that are not familiar to everybody. The
most fundamental difference between a classical and a quantum system is that the
latter cannot be observed (measured) without being perturbed in a fundamental way
[12, 13]. Expressed in more precise terms, there is no process that can reveal any
information about the state of a quantum system without disturbing it irrevocably.
Thus quantum systems cannot be left undisturbed by measurement, no matter how
ideal the instruments are: there are intrinsic limitations to the accuracy with which
the values of certain magnitudes or observables [23–25] as they are called in quantum
mechanics, can be determined in measurements.

The intrinsic limitation to our potential knowledge of a quantum system is most
concisely expressed in the form of the Heisenberg uncertainty principle. For a single
particle traveling along the x-axis with momentum px , this principle states [23–25]
that

	x	px ≥ �/2 (3.21)

where 	x and 	px are the standard deviations of measured values of position and
momentum, respectively, obtained for a given type of particle in a series of experi-
ments under strictly identical circumstances of preparation (experimental setup and
initial conditions) and measurement (instrumentation and timing). According to the
meaning of standard deviation, 	x and 	px represent the approximate ranges within
which the values of the position and momentum can be expected to be found with
reasonable probability (68% for a Gaussian distribution [3]) if measured under the
specified conditions.

There are many different kinds of experiments that show a fundamental property
of all quantum systems, valid as long as the system is left undisturbed (free from
irreversible interactions with the outside macroscopic world [8]), namely, the pos-
sibility of being in a single state made up of the superposition [26, 27] of two or
more basis states. By superposition we do not mean that the system is sometimes in
one, and sometimes in another state: it is simultaneously in two or more component
states. We should underline that there is no classical equivalent to this situation. The
principle of superposition tells us that a general state of the photon between vertical
and horizontal polarization would be

| 
〉 = cv | �v〉 + ch | �h〉, (3.22)

where cv and ch are two complex numbers [23–25].
In the quantum formalism the values cvc∗

v =| cv |2 and chc∗
h =| ch |2 (the star

indicating complex conjugate) are the probabilities of finding the system respectively
in the state | �v〉 or | �h〉 after measurement was made to find out which polarization
was taken:

pv =| cv |2 and ph =| ch |2 . (3.23)

Since their sum must equal one, we require the normalization condition [23–25]
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| cv |2 + | ch |2= 1 (3.24)

With this normalization, relation (3.24) can also be written in polar form | 
〉 =
cosα | �v〉 + eiϕsinα | �h〉 in which cos2 α = pv and sin2 α = ph . The expression
brings out explicitly the phase difference ϕ. We will come back to this form later.

3.2.4 Information is Physical

As is well known, information is not a disembodied abstract entity: it is always tied to
physical representation (see, e.g. [28, 29]). It is represented by engraving on a stone
tablet, a spin, a charge, a hole in a punched card, a mark on the sheet of paper, or
some other equivalent.1 This ties the handling of information to all the possibilities
and restrictions of our real physical world, its laws of physics and its storehouse of
available parts. This view was implicit in Szilard’s discussion [30, 31] of Maxwell
demon (see, also [32, 33] and references therein). The laws of physics are essentially
algorithms for calculation (see, also [8, 21, 22, 34, 35]).

Thus, information is something that can be encoded in the state of a physical
system, and computation (see also below) is a task that can be performed with a
physically realizable device. Therefore, since the physical world is fundamentally
quantum mechanical, the foundation of information theory and computation science
should be sought in quantum physics. In fact, quantum information has weird proper-
ties that contrast sharply with the familiar properties of classical information. Be that
as it may, information until recently has largely been thought of in classical terms,
with quantum mechanics playing a supporting role in the design of the equipment
to process it, and setting limits on the rate at which it could be sent through certain
channels. Now we know that a fully quantum theory of information and informa-
tion processing offers (for details see [21, 22]), among other benefits, a brand of
cryptography whose security rests on fundamental physics, and a reasonable hope of

1 As is well known [9], in 1961, Landauer had the important insight that there is a fundamental
asymmetry in nature that allows us to process information. Copying classical information can be
done reversibly and without wasting any energy, but when information is erased there is always an
energy cost of kT ln 2 per classical bit to be paid ( for more details see, also [36]). Furthermore,
an amount of heat equal to kT ln 2 is damped in the environment at the end of the erasing process.
Landauer conjectured that this energy/entropy cost cannot be reduced below this limit irrespective
of how the information is encoded and subsequently erased—it is a fundamental limit. Landauer’s
discovery is important both theoretically and practically, as on the one hand, it relates the concept of
information to physical quantities like thermodynamical entropy and free energy, and on the other
hand, it may force the future designers of quantum devices to take into account the heat production
caused by the erasure of information although this effect is tiny and negligible in today’s technology.
At the same time, Landauer’s profound insight has led to the resolution of the problem of Maxwell’s
demon by Bennett [37, 38]. By the way, for the first time the physical relation between entropy and
information was done by Szilard at the investigation of the task of the Maxwell’s demon [30, 31].
On the other hand, mathematical definition of the information was introduced by Hartley in 1928
[11] and more elaboration on this definition was done by Shannon [1].
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constructing quantum computers (see below) could dramatically speed up the solu-
tion of certain mathematical problems (see, e.g. [39, 40]). These benefits depend
on distinctively quantum properties such as uncertainty, interference, and entangle-
ment. Thus quantum information theory generalizes the classical notions of source
and channel, and the related techniques of source and channel coding, as well as
introducing a new resource, entanglement, which interacts with classical and quan-
tum information in a variety of ways that have no classical parallel (for details, see
[37, 38, 41] and references therein).

As was shown for the first time by Schrődinger [26, 27] fundamental properties
of quantum systems, which might be include to information processes are [42–46]:

1. Superposition: a quantum computer can exist in an arbitrary complex linear
combination of classical Boolean states, which evolve in parallel according to a
unitary transformation.

2. Interference: parallel computation paths in the superposition, like paths of a
particle through an interferometer, can reinforce or cancel one another, depending
on their relative phase.

3. Entanglement: some definite states of complete quantum system do not corre-
spond to definite states of its parts.

4. Nonlocality and uncertainty: an unknown quantum state cannot be accurately
copied (cloned) nor can it be observed without being disturbed (see, also
[44, 45].

These four elements are very important in quantum mechanics, and as we will
see below in information processing. All (classical) information can be reduced to
elementary units, what we call bits. Each bit is a yes or a no, which we may represent
as the number 0 or the number 1. Quantum computation and quantum information
are built upon an ananalogous concept, the quantum bit [47], or qubit for short. It is a
two-dimensional quantum system (for example, a spin 1/2, a photon polarization, an
atomic system two relevant states, etc.) with Hilbert space. In mathematical terms,
the state of quantum state (which is usually denoted by | 
〉 [26, 27]) is a vector
in an abstract Hilbert space of possible states for the system. The space for a single
qubit is spanned by a basis consisting of the two possible classical states, denoted,
as above, by | 0〉 and | 1〉. This mean that any state of qubit can be decomposed into
the superposition

| 
〉 = α | 0〉 + β | 1〉 (3.25)

with suitable choices of the complex coefficients a and b. The value of a qubit in
state | 
〉 is uncertain; if we measure such a qubit, we cannot be sure in advance
what result we will get. Quantum mechanics just gives the probabilities, from the
overlaps between | 
〉 and the possible outcomes, rules due originally by Max Born
(see, e.g. [8]). Thus the probability of getting 0 is | 〈0 | 
〉 |2 = | a |2 and
that for 1 is | 〈1 | 
〉 |2 = | b |2. Quantum states are therefore normalized;

〈
 | 
〉 = (b ∗ a∗) ·
(

b
a

)

= 1 (where | 
〉 is represented by the vector

(
b
a

)

)

and the probabilities sum to unity (see, also above). Quantum mechanics also tells
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Fig. 3.4 The Bloch sphere of
the Hilbert space spanned by
|↑z〉 and |↓z〉 (after [9])

us that (assuming the system is not absorbed or totally destroyed by the action of
measurement) the qubit state of Eq. (3.25) suffers a projection to | 0〉 (| 1〉) when we
get the result 0(1). Because | α |2 + | β |2= 1 we may rewrite Eq. (3.25) as (see,
e.g. [48])

| 
〉 = cosθ | 0〉 + eiϕsinθ | 1〉 (3.26)

where θ , ϕ are real numbers. Thus we can apparently encode an arbitrarily large
amount of classical information into the state of just one qubit (by coding the infor-
mation into the sequence of digits of θ and ϕ). However, in contrast to classical
physics, quantum measurement theory places severe limitations on the amount of
information we can obtain about the identity of a given quantum state by performing
any conceivable measurement on it. Thus most of the quantum information is “inac-
cessible” but it is still useful—for example it is necessary in its totality to correctly
predict any future evolution of the state and to carry out the process of quantum
computation.

The numbers θ and ϕ define a point on the unit 3D sphere, as shown in Fig. 3.4.
This sphere is often called the Bloch (Poinkare) sphere [48–50]; it provides a useful
means of visualizing the state of a single qubit. A classical bit can only sit at the north
or the south pole, whereas a qubit is allowed to reside at any point on the surface of
the sphere (for details see [34]).

It is easy to represent integers in terms of qubits in the same manner as for ordinary
bits. Let us suppose that we wish to write an integer between 0 and 7 in a register of
qubits. If this were a classical register, we would need 3 bits (see, also [3, 35]). In a
system of base 2, a number between 0 and 7 can be represented in binary notation as
a sequence of three digits 0 or 1. A classical register will store one of the 8 following
configurations:

0 = {000}, 1 = {001}, 2 = {010}, 3 = {011}, 4 = {100}, 5 = {101}, 6 = {110},
7 = {111}.
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A system of three qubits will also allow a number from 0 to 7 to be stored, for
example, by making these numbers correspond to the following 8 states of three
qubits:

0 : | 000〉, 1 : | 001〉, 2 : | 010〉, 3 : | 011〉, 4 : | 100〉, 5 : | 101〉, 6 : | 110〉, 7 : | 111〉.

Here, we have omitted the tensor product notation; for example, | 101〉 is the
abbreviated notation for | IA ⊗ 0B ⊗ IC 〉, where the qubits A, B, and C have their
state vectors in HA, HB , and HC respectively. Here, we use | x〉, x = 0, . . . , 7, to
denote one of the eight states above relations, for example, | 5〉 =| 101〉. It is not
difficult to generalize to the case of n qubits: representing a number less than N = 2n

requires n qubits, and | x〉 denotes the state vector with 0 ≤ x ≤ 2n − 1. The basis of
the Hilbert space H⊗n formed using orthogonal vectors is called the computational
basis. Since we can construct a linear superposition of the above eight states, it can be
concluded that the state vector of a system of three spin allow to store 23 = 8 numbers
at the same time, while if n spins are used we can store 2n numbers. However, if for
example, spins 1/2 are used for the physical support of the qubits, a measurement of
the three spins along the axis Oz will necessarily give one of the above eight states.
We have at our disposal important virtual information, but when we try to materialize
it in a measurement we can do no better than for a classical system: the measurement
gives one of eight numbers, and not all eight at the same time.

3.2.5 Quantum Computation

The theory of computation has been long considered a completely theoretical field,
detached from physics (see, e.g. [35, 51, 52]). Nevertheless, pioneers such as Turing,
Church, Post, and Gődel were able [8, 9], by intuition alone, to capture the correct
physical picture, but since their work did not refer explicitly to physics, it has been
for a long time falsely assumed that the foundations of the theory of classical com-
putation were self-evident and purely abstract. Only in the last three decades were
questions about the physics of computation asked and consistently answered [53–57].
Subsequently, in the development of the subject of quantum computation—which
represents a hybrid of quantum physics and theoretical computer science—it was
realized that quantum systems could be harnessed to perform useful computations
more efficiently than any classical device.

We should stress that the perspective of information theory also provides further
new insight into the relationship between entanglement (see above) and non-locality
(see, e.g. [58, 59]), beyond the well-studied mediation of non-local correlations
between local measurement outcomes. The theory of computation and computational
complexity [10] is normally as an entirely mathematical theory with no references to
considerations of physics. However, as we know, any actual computation is a physical
process involving the physical evolution of selected properties of a physical system.
Consequently, the issues of “what is computable” and “what is the complexity of a
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computation” must depend essentially on the laws of physics and cannot be char-
acterized by mathematical alone [28, 29]. This fundamental point was emphasized
by Landauer, Deutsch and it is dramatically confirmed by the recent discovers (see,
e.g. [21, 22, 34, 35]) that the formalism of quantum physics allows one to transgress
some of the boundaries of the classical theory of computational complexity, whose
formulation was based on classical intuitions.

As it is well known a fundamental notion of the theory of computational com-
plexity is the distinction between polynomial and exponential use of resources in a
computation (see, also [60]). This will provide a quantitative measure of our essential
distinction between quantum and classical computation. Consider a computational
task as follows: given an integer N, decide whether N is a prime number or not. We
wish to assess the resources required for this task as a function of the size of the input
which is measured by n = log2 N, the numbers of bits needed to store N. If T(n)
denotes the number of steps (on a standard universal computer) needed to solve the
problem, we ask whether T(n) can be bounded by some polynomial function in n or
whether T(n) grows faster than any polynomial (e.g. exponential). More generally it
may consider any language L—a language being a subset of the set of all finite strings
of 0’s and 1’s—and consider the computational task of recognizing the language, i.e.,
given a string σ of length n the computations outputs 0 if σ ∈ L and outputs 1 if σ /∈ L.
The language L is said to be in complexity class P (it is mean “polynomial time”)
if there exists an algorithm which recognizes L and runs in time T(n) bounded by
polynomial function. Otherwise, the recognition of L is said to require exponential
time.

Thus, the standard mathematical theory of computational complexity assesses
the complexity of a computation in terms of the resources of time (number of steps
needed) and space (amount of memory required). In the quantum computation we
have been led to consider the accounting of other physical resources such as energy
and precision (for details see [61, 62]). The algorithm of quantum computation such
as Shor’s algorithm [61, 62] depends critically for efficiency and validity on effects
of increasingly large-scale entanglements with increasing input size (see, also [63]).

Further evidence for the power of quantum powers came in 1995 when Grover
[64, 65] showed that another important problem—the problem of conducting a search
through some unstructured search space—could also be speeded up on a quantum
computer. While Grover’s algorithms did not provide as spectacular a speed up as
Shor’s algorithms, the widespread applicability of search-based methodologies has
excited considerable interest in Grover’s algorithm (for details see also [66]).

3.2.6 Quantum Teleportation

The role of entanglement in quantum information processing is fundamental. Moti-
vated by paper [58] Schrődinger in his famous paper [26, 27] wrote “Maximal knowl-
edge of a total system does not necessary include total knowledge of all its parts,
not even when these are fully separated from each other and at the momentary not
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influencing each other at all” and he coined the term “entanglement of our knowl-
edge” to describe this situation [48].

A composite system is a system which consists of two or more parts and the
simplest one is a system consisting of two qubits (carried by two particles of the
same kind, or other appropriate quantum registers (see [9]). We call the two systems
A (Alice) and B (Bob). Any states of each of the systems can be written as

| 
〉A = α | 0 〉A + β | 1〉A and | �〉B = γ | 0〉B + δ | 1〉B (3.27)

with | α |2 + | β |2= 1 and | γ |2 + | δ |2= 1. The subindices A and B refer to two
physical entities (the qubits) and the vectors | 0〉 and | 1〉 refer to their basis states
(in the case of a pair particles, to some binary internal variable like spin, polarization,
pair of energy levels, etc.). Each pair of coefficients in (3.27) satisfies the normaliza-
tion condition [23–25]. (The composite state of the two systems is then simply the
tensor product (or direct product) of the two states.

|
prod〉 =|
〉A⊗ | �〉B (3.28)

Such a state is called a product state, but product states are not only physically
realizable states. If we let the two systems interact with each other, any superposition
of product states is realizable. Hence a general composite state can be written as

|
〉 =
∑

i, j

αi j |
i 〉A⊗ | � j 〉B (3.29)

where
∑ | αi j |2= 1 and the sets {| 
i 〉} and {| � j 〉} are orthonormal bases for the

two subsystems. Any composite state that is not a product state is called an entangled
state. A composite quantum state consisting of two parts only, is called a bipartite
state [77], as opposed to multipartite states which consist of more than two parts. For
bipartite qubit states, four entangled states play a major role [59], namely the singlet
state

|
−〉 ≡ 1√
2
(| 01〉− | 10〉) (3.30a)

and three triplet states

|
+〉 ≡ 1√
2
(| 01〉+ | 10〉) (3.30b)

|�−〉 ≡ 1√
2
(| 00〉− | 11〉) (3.30c)

|�+〉 ≡ 1√
2
(| 00〉+ | 11〉) (3.30d)
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where we have used | i j〉 as a shorthand notation for | i〉⊗ | j〉. They are called Bell
states [59] or EPR [58] pairs. Together, they form an orthogonal basis for the state
space of two qubits, called the Bell basis. The Bell states are maximally entangled
and one can be converted into another by applying a unitary transform locally on
any one of the subsystems. Note that if we measure the state of one qubit in a Bell
state (that is, measure the Z operator which has eigenvalues ±1), we immediately
know the state of the other particle. In the singlet Bell state, a measurement of qubit
A will yield one of the eigenstates | 0〉 and | 1〉, each with probability of 1/2. These
results leave qubit B in state | 1〉 or | 0〉, respectively. For a single qubit we could
always change to another basis where the outcome of a Z measurement would be
given. For a spin −1/2 particle this means that the spin is always pointing in some
direction, even though the state will show up as a superposition in a basis where the
state is not one of the basis states. If the particle is entangled with another particle,
though, the direction of the spin of that particle alone is not well-defined. Actually,
for particles in one of the Bell states, the probability for measuring the spin of the
particle to “up” (while ignoring the other particle) is 1/2 for any direction (for details
see [66]).

Further, we briefly describe entangled states of two polarized exciton states in a
single dot created and detected optically. As was noted above quantum information,
quantum computation, quantum cryptography, and quantum teleportation intrinsic
quantum mechanical correlations (see [49, 50] and references therein). A fundamen-
tal requirement for the experimental realization of such a proposal is the successful
generation of highly entangled quantum states. In particular, as will be shown below,
coherent evolution of two qubits in an entangled state of the Bell type is fundamen-
tal to both quantum cryptography and quantum teleportation. Maximally entangled
states of three qubits, such as the so-called Greenberger–Horne–Zeilinger (GHZ)
states [67, 68], are not only of intrinsic interest but also of great practical importance
in such proposals [69]. New systems and methods for the preparation and measure-
ment of such maximally entangled states are therefore being sought intensively (see,
e.g. [9, 70–72]). We should add in this connection that recent experimental work
of Gammon et al. (see, e.g. reviews [73, 74] and references therein) suggests that
optically generated excitons in QDs represent ideal candidates for achieving coherent
wavefunction control on the nanometer and femtosecond scales.

When two quantum dots are sufficiently close, there is a resonant energy trans-
fer process originating from the Coulomb interaction whereby an exciton can hop
between dots [75]. The Coulomb exchange interaction in QD molecules give rise
to a non radiative resonant energy transfer (i.e., Főrster process [76]) which corre-
spond to the exchange of a virtual photon, thereby destroying an exciton in a dot and
then recreating it in a close by dot. It is well known that the presence and absence
of an exciton in a dot, for example in isotope-mixed crystals serve as a qubit). The
basic quantum operations can be performed on a sequence of pairs of physically
distinguishable quantum bits and, therefore, can be illustrated by a simple four-level
system shown in Fig. 3.5. In an optically driven system where the | 01〉 and | 10〉
states can be directly excited, direct excitation of the upper | 11〉 level from the
ground state | 00〉 is usually forbidden (see, e.g. [77] and references therein) and
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Fig. 3.5 Model for a single QD. | 11〉, | 01〉, | 10〉 and | 00〉 denote the biexciton, the exciton and
the ground states, respectively. 	E is the biexciton binding energy. The optical rules for various
transition are indicated

Fig. 3.6 An entangled state
involving two polarized exci-
tons confined in a single dot
was created and detected opti-
cally as evidenced by quantum
beats between states | 01〉 and
| 10〉 shown. The quantum
coherence time (� 40 psec.)
between these two states is
directly extracted from the
decay of the envelope (after
[73])

the most efficient alternative is coherent nondegenerate two-photon excitation, using
| 01〉 and | 10〉 as an intermediate states. The temporal evolution of the non-radiative
Raman coherence between states | 01〉 and | 10〉 was directly resolved in quantum
beats measured in differential transmission (DT) geometry as shown in Fig. 3.6. In
order to increase the quantum operations beyond one dot, interdot exciton interac-
tion is required. One proposal is to use an electric field to increase the dipole–dipole
interaction between two excitons in separate dots [9, 75]. The procedure we will
analyze below is called quantum teleportation and can be understood as follows.
The naive idea of teleportation involves a protocol [12, 13, 70] whereby an object
positioned at a place A and time t first “dematerializes” and then reappears at a dis-
tant place B at some later time t + T . Quantum teleportation implies that we wish to
apply this procedure to a quantum object. However, a genuine quantum teleportation
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Fig. 3.7 Quantum teleportation requires quantum entanglement as a resource. In this case, Alice
receives a qubit in an unknown state, and destroys it by performing a Bell measurement on that
qubit and a member of an entangled pair of qubits that she shares with Bob. She sends a two-bit
classical message (her measurement outcome) to Bob, who then performs a unitary transformation
on his member of the pair to reconstruct a perfect replica of the unknown state. We could see one
qubit suffices to carry two classical bits of information

differs from this idea, because we are not teleporting the whole object but just its state
from particle A to particle B. As quantum particles are indistinguishable anyway,
this amounts to ‘real’ teleportation. One way of performing teleportation is first to
learn all the properties of that object (thereby possibly destroying it). We then send
this information as a classical string of data to B where another object with the same
properties is recreated (see Fig. 3.7). One problem with this picture is that, if we
have a single quantum system in an unknown state, we cannot determine its state
completely because of the uncertainty principle [26, 27, 44]. More precisely, we
need an infinite ensemble of identically prepared quantum systems to be able com-
pletely to determine its quantum states. So it would seem that the laws of quantum
mechanics prohibit teleportation of single quantum systems. However, as we can see
above, the very feature of quantum mechanics that leads to the uncertainty principle
(the superposition principle [23–25]) also allow the existence of entangled states
[26, 27]. These entangled states will provide a form of quantum channel to conduct
a teleportation protocol. We should remind once more, after the teleportation is com-
pleted, the original state of the particle at A is destroyed (although the particle itself
remains intact) and it is the entanglement in the quantum channel.

As will be shown below, coherent evolution of two qubits in entangled states of
the Bell type [59] is fundamental to both cryptography and teleportation.

Consider a system consisting of two subsystems. Quantum mechanics associates
to each subsystem a Hilbert space. Let HA and HB denote these two Hilbert spaces:
let | i〉A (where i = 1, 2, 3, . . . . . .) represent a complete orthogonal basis for HA,
and | j〉B (where j = 1, 2, 3, . . . . . .) a complete orthogonal basis for HB . Quantum
mechanics associates to the system, i.e. the two subsystems taken together, the Hilbert
space HA⊗ HB , namely the Hilbert space spanned by the states | i〉A⊗ | j〉. Further,
we will drop the tensor product symbol ⊗ and write | i〉A⊗ | j〉 as | i〉A | j〉B and
so on.

Any linear combination of the basis states | i〉A | j〉B is a state of the system, and
any state | 
〉AB of the system can be written as
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| 
〉AB =
∑

i, j

Ci j | i〉A | j〉B, (3.31)

where the Ci j are complex coefficients; below we take | 
〉AB to be normalized,
hence ∑

i, j

| Ci j |2= 1. (3.32)

1. A special case of Eq. (3.31) is a direct product in which | 
〉AB factors into
(a tensor product of) a normalized | 
(A)〉A = ∑

i
C (A)

i | i〉A in HA and a

normalized state

| 
(B)〉B =
∑

j

C(B)
j | j〉B in HB :

| 
〉AB =| 
(A)〉A | 
(B)〉B =
(

∑

i

C (A)
i | i〉A

)

×
⎛

⎝
∑

j

C (B)
j | j〉B

⎞

⎠ . (3.33)

Note every state in HA⊗ HB is a product state. Take, for example, the state
(|1〉A|1〉B+|2〉A|2〉B )√

2
; if we try to write it as a direct product of states of HA and HB ,

we will find that they cannot.
2. If | 
〉AB is not a product state, we say that it is entangled (for details see

[71, 72]).

Quantum teleportation is a method for moving quantum states from one location to
another (Fig. 3.8) which suffers from none of these problems. Suppose Alice and Bob
share a pair of qubits which are initially in the entangled state (| 00〉+ | 11〉) /

√
2. In

addition, Alice has a system which is in some potentially unknown state | 
〉. The
total state of the system is therefore

| 
〉
(

(| 00〉+ | 11〉)√
2

)

. (3.34)

By writing the state | 
〉 as α | 0〉 + β | 1〉 and doing some simple algebra, we see
that the initial state can be rewritten as

(| 00〉+ | 11〉) | 
〉 + (| 00〉− | 11〉) Z | 
〉
+ (| 01〉+ | 10〉) X | 
〉 + (| 01〉− | 10〉) X Z | 
〉. (3.35)

Here, and below we omit normalization factors from the description of quantum
states. Suppose Alice performs a measurement on the two qubits in her possession, in
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Fig. 3.8 Circuit for quantum teleportation. The measurement is in the computational basis, leaving
the measurement result stored in the data and ancila qubits. Ry and R−y denote rotations of 90◦
about the y and −y axes on the Bloch sphere (after [77])

Fig. 3.9 Schematic represen-
tation of a the Hadamard gate,
and b the C-NOT gate

the Bell basis consisting of the four orthogonal vectors: | 00〉+ | 11〉; | 00〉− | 11〉;
| 01〉+ | 10〉; | 01〉− | 10〉, with corresponding measurement outcomes which we
label 00, 01, 10 and 11 [187]. From the previous equation, we see that Bob’s state,
conditioned on the respective measurement outcomes, is given by

00 :| 
〉; 01 : X | 
〉; 10 : Z | 
〉; 11 : X Z | 
〉. (3.36)

Therefore, if Alice transmits the two classical bits of information, she obtains
from the measurement to Bob, it is possible for Bob to recover the original state
| 
〉 by applying unitary operators inverse to the identity X, Z and XZ, respectively.
More explicitly, if Bob receives 00, he knows his state is | 
〉, if he receives 01 then
applying an X gate (see below) will cause him to recover | 
〉, if he receives 10 then
applying a Z gate causes him to recover | 
〉, and if he receives 11 then applying
an X gate followed by a Z gate will enable him to recover | 
〉 (see Fig. 3.9). This
completes the teleportation process.

Further, we describe a practical scheme capable of demonstrating quantum tele-
portation which exploits entangled states of excitons in coupled QDs [75]. As we
saw above, the general scheme of teleportation [26, 27], which is based on EPR pairs
[58] and Bell measurements [59] using classical and purely non-classical correla-
tions, enables the transportation of an arbitrary quantum state from one location to
another without knowledge [45] or movement of the state itself through space. In
order to implement the quantum operations for the description of the teleportation
scheme, we employ two elements: the Hadamard transformation and the quantum
controlled NOT gate (C-NOT gate). In the orthonormal computation basis of single
qubits {| 0〉, | 1〉}, the C-NOT gate acts on two qubits | ϕi 〉 and | ϕ j 〉 simultaneously
as follows C-NOTi j (| ϕi 〉 | ϕ j 〉) −→| ϕi 〉 | ϕi⊕ | ϕ j 〉〉. Here, ⊕ denotes addition
modulo 2. The indices i and j refer to the control bit and the target bit respectively
(see Fig. 3.10). The Hadamard gate UH acts only on single qubits by performing
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Fig. 3.10 Circuit scheme to
teleport unknown quantum
state of exciton from Alice to
Bob using arrangement of 3
qubits (coupled quantum dots)

the rotations UH (| 0〉) −→ 1√
2
(| 0〉+ | 1〉) and UH (| 1〉) −→ 1√

2
(| 0〉− | 1〉). The

above transformation can be written as

UH =
(

1 1
1 −1

)

, C-N OT =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ (3.37)

and represented of quantum circuits as in Fig. 3.10. We also introduce a pure state
|
〉 (see Eq. (3.10)).

As discussed above, |0〉 represents the vacuum state for exciton while |1〉 repre-
sents a single exciton. As usual, we refer to two parties, Alice and Bob. Alice wants
to teleport an arbitrary, unknown qubit state | 
〉 to Bob. Alice prepares two QDs
(b and c) in the state | 0〉 and then gives the state | 
00〉 as input to the system. By
performing the series of transformation, Bob receives as the output of the circuit the
state 1√

2
(| 0〉+ | 1〉)a

1√
2
(| 0〉+ | 1〉)b | 
〉c. Consider a system of three identical

and equispaced QDs containing no net charge, which initially prepared in the state
| 
〉a | 0〉b | 0〉c. Following this initialization, we illuminate QDs b and c with the
radiation pulse ξ(t) = Aexp(−iωt) with defining τ . For a 0 or 2π− pulse, the density
of probability for finding the QDs b and c in the Bell state 1√

2
(| 0〉+ | 1〉) requires

indicated τ (see e.g. [73]). Hence, this time τBell corresponds to the realization of the
first two gates of the circuit in Fig. 3.10, i.e., the Hadamard transformation over QD
b followed by the C-NOT gate between QDs b and c. After this, the information in
qubit c is sent to Bob and Alice keeps in her memory the state of QS b. Next, we need
to perform a C-Not operation between QDs a and b and, following that, a Hadamard
transform over the QD a: this procedure then leaves the system in the state

1√
2
{| 00〉(α | 0〉+ | 1〉)+ | 01〉(β | 0〉 + α | 1〉+ | 10〉(α | 0〉− | 1〉)

+ | 11〉(−β | 0〉+ | 1〉)}. (3.38)

As we can seen from Eq. (3.40), we are proposing the realization of the Bell basis
measurement in two steps: first we have rotated the Bell basis into the computational
basis (| 00〉, | 01〉, | 10〉, | 11〉 by performing the unitary operations shown before the
dashed line in Fig. 3.11. Hence, the second step is to perform a measurement in this
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Fig. 3.11 One example of the
sequence actions for quantum
cryptography using different
polarized states of photons
(after [12, 13])

computational basis. The result of this measurement provides us with two classical
bits of information, conditional the states measured by nanoprobing on QDs a and b.
These classical bits are essential for completing the teleportation process: rewriting
Eq. (3.40) as

1

2
{| 00〉 | 
〉+ | 01〉σx | 
〉+ | 10〉σz | 
〉+ | 11〉(−iσy | 
〉 (3.39)

we see that if, instead of performing the set of operations shown after the dashed
line in Fig. 3.10. Bob performs one of the conditional unitary operations I, σx , σz

or (−iσy) over the QD c, the teleportation process is finished since the excitonic
state | 
〉 has been teleported from dot a to dot c. For this reason only two unitary
exclusive-or transformations are needed in order to teleport the state | 
〉. This
final step can be verified by measuring directly the excitonic luminescence from dot
c, which must correspond to the initial state of dot a. For instance, if the state to
be teleported is | 
〉 ≡| 1〉, the final measurement of the near-field luminescence
spectrum of dot c must give an excitonic emission line of the same wavelength and
intensity as the initial one for dot a.

3.2.7 Quantum Cryptography

Cryptology, the mathematical science of secret communications, has a long and dis-
tinguished history of military and diplomatic uses dating back to the ancient Greeks
(see, e.g. [78–82]). It consists of cryptography, the art of codemaking and crypto-
analysis, the art of code-breaking. With the proliferation of the Internet and elec-
tronic mail, the importance of achieving secrecy in communication by cryptography
[80–83]—the art of using coded messages—is growing each day.

The two main goals of cryptography are for a sender and intended recipient to be
able to communicate in a form that is unintelligible to third parties, and—second—
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for the authentication [79, 84, 85] of messages to prove that they were not altered
in transit. Both these goals can be accomplished with provable security if sender
and recipient are in possession of shared, secret “key” material. Thus key material,
which is trust random number sequence, is a very valuable commodity even though
it conveys no useful information itself. One of the principal problems of cryptog-
raphy is therefore the so-called “key distribution problem”. How do the sender and
intended recipient come into possession of secret key material while being sure that
third parties (“eavesdroppers”) cannot acquire even partial information about it? It
is provably impossible to establish a secret key with conventional communications,
and so key distribution has relied on the establishment of a physically secure channel
or the conditional security of “difficult” mathematical problems (see, e.g. [71, 83])
in public key cryptography. Amazingly, quantum mechanics has now provided the
foundation [72, 80–82] stone to a new approach to cryptography—quantum cryptog-
raphy. Namely, the quantum cryptography (QC) can solve many problems that are
impossible from the perspective of conventional cryptography (for details see [84]).

QC was born in the late 1960s when Wiesner [198] wrote “Conjugate Coding”.
Unfortunately, this highly innovative paper was unpublished at the time and it went
mostly unnoticed. There, Wiesner explained how quantum physics could be used
in principle to produce bank notes that would be impossible to counterfeit and how
to implement what he called a “multiplexing channel” a notion strikingly similar
to what Rabin [87] was to put forward more than 10 years later under the name of
“oblivious transfer” [88].

Later, Bennett and Brassard [89, 90] realized that instead of using single quanta
for information storage they could be used for information transmission. In 1984,
they published the first quantum cryptography protocol now known as “BB84” [89].
A further advance in theoretical quantum cryptography took place in 1991 when
Ekert [91, 92] proposed that EPR [58] entangled two-particle states could be used
to implement a quantum cryptography protocol whose security was based on Bell’s
inequalities [59]. Also in 1991, Bennett and coauthors demonstrated the quantum
key distribution (QKD) was potentially practical by constructing a working prototype
system for the BB84 protocol, using polarized photons [83, 93–95].

In 1992, Bennett published a “minimal” QKD scheme (“B92”) and proposed that
it could be implemented using single-photon interference with photons propagating
for long distances over optical fibers [96]. After that, other QKD protocols have been
published [77] and experiments were done in different countries (for details see [195,
204–207]).

QKD is a method in which quantum states are used to establish a random secret
key for cryptography. The essential ideas are as follows: Alice and Bob are, as usual
widely separated and wish to communicate (see also Fig. 3.11). Alice sends to Bob
2n qubits, each prepared in one of the states | 0〉, | 1〉, | +〉, | −〉, randomly chosen. As
is well known, many other methods are possible (see, e.g. [44, 72, 83]); we consider
here this one merely to illustrate the concept of QC. Bob measures his received
bits, choosing the measurement basis randomly between [| 0〉, | 1〉] and [| +〉, | −〉].
Next, Alice and Bob inform each other publicly (i.e. anyone can listen in) of the base
they used to prepare or measure each qubit. They find out on which occasions they
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Fig. 3.12 Sattelite view of
Lake Geneva with the cities
of Geneva and Nyon and
Lausanne (after [95])

by chance used the same basis, which happens on average half the time, and retain
just those results. In the absence of errors or interference, they now share the same
random string of n classical bits (they agree for example to associate | 0〉 and | +〉
with 0; | 1〉 and | −〉 with 1. This classical bit string is often called the raw quantum
transmission, RQT (for details see [72]).

So far nothing has been gained by using qubits. The important feature is, however,
that it is impossible for anyone to learn Bob’s measurement results by observing the
qubits during performance, without leaving evidence of their presence [83]. The
crudest way for an eavesdropper Eve to attempt to discover the key would be for
her to intercept the qubits and measure them, then pass them on to Bob. On average
half the time Eve guesses Alice’s basis correctly and thus does not disturb the qubit.
However, Eve’s correct guesses do not coincide with Bob’s, so Eve learns the state
of half of the n qubits which Alice and Bob are later to trust, and disturb the other
half, for example sending to Bob | +〉 for Alice’s | 0〉. Half of those disturbances
will be projected by Bob’s measurement back onto the original state sent by Alice,
so overall Eve corrupts n/4 bits of the RQT. Alice and Bob can now detect Eve’s
presence simply by randomly choosing n/2 bits of the RQT and announcing publicly
the values they have. If they agree on all these bits, then they can trust no eavesdropper
was present, since the probability that Eve was present and they happened to choose
n/2 uncorrupted bits is (3/4)n/2 � 10−125 for n = 1000. The n/2 bits form the secret
key. From this picture, we see that Alice and Bob do not use the quantum channel
(Fig. 3.10) to transmit information, but only to transmit a random sequence of bits,
i.e. key. Now if the key is unperturbed, then quantum physics guarantees that no
one has received any information about this key by eavesdropping, i.e., measuring,
the quantum communication channel. In this case, Alice and Bob can safely use
this key to encode messages. In conclusion, we note that the authors of paper [95]
performed successfully quantum key exchange over different installed cables, the
longest connecting the cities of Lausanne and Geneva (see Fig. 3.12).
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Fig. 3.13 Representation of
information in a classical
computer (a) versus quantum
computer (b). The spin 1/2 (b)
is a prototypical example of a
qubit

3.3 Quantum Communication

One of the most active areas of quantum information processing (QIP) is quantum
communication, i.e., the transfer of information encoded in quantum mechanical
degrees of freedom. This is typically done by encoding the information in photons
(electrons, excitons see this chapter). Semiclassically, a photon can carry a bit: it
can be transmitted or not, thus corresponding to a logical 0 or 1 (yes or no). Other
encoding schemes include the polarization of the photon, which may be vertical or
horizontal (see, e.g. [83, 84]).

Quantum communication has evolved into a very active field. Besides its fun-
damental interest, it promises a number of possible applications: taking quantum
mechanics into account may improve the information content of communication
channels. As is known a photon qubit can transmit up to two classical bits of infor-
mation [21, 22]. In addition, it has been shown that communication with individual
photons may be made secure, i.e., it is impossible to tap into such communication
without the users of the communication line noticing it. This is a sequence of no-
cloning theorem [45, 46]: while it is conceivable that an eavesdropper intercepts a
photon, thus detecting that information is being transferred, and that she subsequently
reemits a similar photon to the original receiver, she cannot send an exact copy of the
original photon. This necessarily allows the two partners who are trying to establish a
secure communication to realize that their communication is being monitored—not
for individual photons but from a statistical analysis of the successfully transmitted
photons (for details see [80–83]).

As we saw above the classical information is encoded in a sequence of bits, i.e.,
entities that can be in two distinguishable states, which are conventionally labeled
with 0 and 1. In electronic devices, these states are encoded by voltage (e.g. 0 ∼
low is represented by voltage < 0.8V and 1 ∼ high by voltages > 2.4V) (see, e.g.
[99]). The main difference between quantum mechanical and classical information
is that [100], in the quantum mechanical case, the system is not necessarily in the
states 0 and 1. Instead, it can be in arbitrary superposition (linear combination) of
these states (see [33]). To emphasize this difference between quantum and classical
bits, the term “qubit” (short for quantum bit [47]) has been adopted for the quantum
mechanical unit of information (see, Fig. 3.13).

Like any change in a quantum mechanical system, logical operations are driven
by a suitable Hamiltonian acting on the state than represents the quantum register.
It is in most cases difficult to find a Hamiltonian [54–57] that directly performs the
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Table 3.2 Truth table of
CNOT gate

Control-qubit Target qubit Result

0 0 00
0 1 01
1 0 11
1 1 10

desired transformation, such as the decomposition of an integer into its prime factors.
Instead, the total transformation is usually split into elementary logical operations
that transform a single bit of information or connect two bits by operating on one bit
in a way that depends om the state of the other bit. It turns out that every possible
logical operation can be constructed concatenating elementary gate operations that
belong to one of two groups:

(1) Single qubit operations, corresponding to arbitrary rotations of the spinor rep-
resenting the qubit, and,

(2) One type of two-qubit operations, e.g. the “controlled NOT” or CNOT [101].

As will be shown below, a quantum computer implementation that can per-
form arbitrary calculations must therefore implement these two types of opera-
tions. Particularly critical are the two-qubit operations, since they require interactions
between the qubits. A typical operation is CNOT gate, whose truth table is shown in
Table 3.2: this particular gate has two inputs and two outputs. If the control qubit is
zero, it simply passes both qubits to the output. If the control qubit is one, it passes
the control qubit through unchanged, but inverts the target qubit.

Dense coding is the simplest example of the application of quantum entanglement
[26, 27] to communication. It allows Alice to send two bits of classical information
to Bob by sending only a single qubit. The dense coding protocol works as follows
(see schematic picture in Fig. 3.14 and the quantum circuit implementing the protocol
in Fig. 3.15) (for details see [21, 22]). Consider a source emits an EPR pair of parti-
cles (Fig. 3.14) shared by Alice and Bob. The source is such that particles are emitted
with opposite momenta. The scheme for quantum dense coding utilizes entanglement
[26, 27] between two qubits, each of which individually has two orthogonal states,
| 0〉 and | 1〉. Classically, there are four possible polarizations for a pair of such par-
ticles: 00, 01, 10, and 11 (see, e.g. [52]). Identifying each combination with different
information implies that we can encode two bits of information by manipulating both
particles. Quantum mechanics also allows one to encode the information in super-
positions (linear combinations) of the classical combinations. As we already know
such superpositions of states of two (or more) particles are called entangled states
[26, 27] and a convenient basis in which to represent such states for two particles,
labeled 1 and 2, is formed by the maximally entangled Bell states [3] (see, also [44]):
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Fig. 3.14 A schematic picture of the dense coding protocol. The double lines denote two classical
bits and the single lines a quantum bit. S is source which created the EPR pairs and then sends on
member of the pair to Alice, and the other to Bob

Fig. 3.15 A quantum circuit
implementing the dense cod-
ing protocol. U = I, σx , σz or
iσy are the identity and Pauli
matrix, H is is Hadamard gate

| 
+〉 = 1√
2

(| 0〉1 | 1〉2+ | 1〉1 | 0〉2) , (3.40)

| 
−〉 = 1√
2

(| 0〉1 | 1〉2− | 1〉1 | 0〉2) , (3.41)

| �+〉 = 1√
2

(| 0〉1 | 0〉2+ | 1〉1 | 1〉2) , (3.42)

| �−〉 = 1√
2

(| 0〉1 | 0〉2− | 1〉1 | 1〉2) (3.43)

identifying each Bell state with different information, yet, now by manipulating only
one of the two particles. This is achieved in the following quantum communication
scheme (see, also Fig. 3.15). Initially, Alice and Bob each obtain one particle of an
entangled pair, say, in the state | 
+〉12 given in Eq. (3.40). Bob then performs one
out of possible unitary transformations on his particle (particle 2) alone. The four
such transformations are:

1. Identity operation (not changing the original two-particle state | 
+〉12 .
2. State exchange (| 0〉2 −→| 1〉2 and | 1〉2 −→| 0〉2, changing the two-particle

state to | �+〉12).
3. State exchange and phase shift (see (3.24)) together (giving the state | �−〉12).

Since the four manipulations result in the four orthogonal Bell states (see, also
[44]), four distinguishable messages, i.e., 2 bits of information, can be sent via Bob’s
two-state particle to Alice, who finally reads the encoded information by determing
the Bell state of the two-particle system. This scheme enhances the information
capacity of the transmission channel to two bits compared to the classical maximum
of one bit (for details see [100]).
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Chapter 4
Concepts of Quantum Computers

4.1 Introduction

Information is quantized in classical digital information processing as well as in
quantum information processing. As is well known [1, 2] in analogy to the classical
bit, the elementary quantum information processing is called a qubit [3]. Any two
distinct states of a quantum system can be used as qubit (see Fig. 3.4 in Chap. 3). The
two main concepts in quantum computing are the qubit and the unitary logic gate
(see, also [4]). The main insight into quantum computing is to represent numbers in
a register consisting of a row of cells where each cell, instead of strong a 0 or 1 as in a
classical computer, is represented by a two-level quantum system in a superposition
state. We will see how in this way a quantum register can hold a superposition of all
numbers from 0. . .2n − 1 where n is the number of cells in the register.

A register consisting of n qubits can store numbers from 0 to 2n − 1. To specify
this state requires 2n complex numbers or 2n+1 real numbers. To store them with
a precision of one byte on a classical computer would require the same number of
bytes. So the state of a 50-bit quantum computer would require 251 = 2.25×1015 bits
(∼2 million GB) of memory on a classical computer. Since the evolution of quantum
systems is determined by unitary transformation [1, 2] any set of operations carried
out on a quantum computer will have to be reversible (see, e.g. [5]). That means we
will have to redesign many classical logic gates to perform the logical operations
reversibly. For example a classical AND gate is irreversible (it is in general impossible
to reconstruct the input from the output) so one needs to find a reversible system that
is logically equivalent. What is called a logic gate in quantum computing is just a
series of rotations of the spin 1/2 system representing a qubit [4].
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4.2 Current Status: The Di Vincenzo Criteria

In this part we consider the five criteria of Di Vincenzo [6] checklist, which must all
be satisfied for any physical implementation of a quantum computer:

1. A scalable physical system with well-characterized qubits. That means a well-
defined Hilbert space [1, 2] within which to represent quantum information.

2. Initialization of the qubits to a known (pure) state.
3. Qubit read out. It means a performing arbitrary unitary transformation on the

state of the qubits(typically by implementing arbitrary single-qubit operations
and at least one non-trivial two qubit operation).

4. Long coherence time, in another words, avoiding decoherence for long enough
to compute.

5. Some means of reading out the state of the qubits at the end of the calculation.

1. To start with, a scalable physical system with well-characterized qubits is needed.
In order to build a quantum computer with many qubits, we need some physical
system that:

a. Allows us to implement such qubits, and
b. Accommodates a sufficiently large number of them.

Actually, point (a) is not quite that obvious. After all, we know that quantum com-
puters rely on quantum effects, and in everyday life such effects are almost always
negligible. So we already know that the system we are looking for must allow us to
tap into the quantum world, and that means our candidates for qubits presumably
have to be very small, possibly on the scale of individual particles that obey the rules
of quantum physics, such as photons, electrons, excitons, atoms (ions) and so forth.

As for point (b) we will see that in some cases one can find systems that can very
successfully hold a handful of qubits but cannot be extended to accommodate tens or
even hundreds of them. Scalability is therefore, one of the major obstacles in many
realizations of quantum computation.

2. The second of the Di Vincenzo criteria looks even more obvious, but in
fact is very subtle. Clearly, in order to perform a calculation, we must first
have a “blank state” to write our input on, such as a number we want to
factorize. In classical computers, this simply means flushing the memory
and writing a “0” in each memory element. In the quantum world, however,
things are not quite that simple, and we really have to make sure that each
qubit is in the quantum state |0〉, which can involve rather complicated
manipulations [1].

3. One way to classify the range of systems involved is to consider the range of
time scales available for manipulation of quantum computation, correspond-
ing to the range of excitation energies �E and corresponding time-scales
�/�E. So what exactly is a long decoherence time? Seconds, minutes, or
might millisecond already be enough? The answer is it depends. And what it
depends on is, not surprisingly, the times it takes to complete a calculation,
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or a part of it. Since quantum calculations are made up of lots of quantum
logic gates, it all boils down to a simple equation. If we call tdecoherence the
time in which a quantum state is destroyed due to decoherence and tgate the
time it takes to run the state through a quantum logic gate, then quantum
computation is possible if

tdecoherence > tgate. (4.1)

It is a bit like in a battle: nobody will ever be strong enough to fight forever-it
is enough to last just a little longer than the enemy. As will be shown below
the long decoherence time (of the order of a second) of liquid state NMR
is one of its biggest advantages. However, typical gate times are at least
several milliseconds, so the number of gates that can be applied is limited
to approximately 100 (for details see [1, 2] and below).

4 and 5. The fourth and last of Di Vincenzo’s criteria states that it is necessary to
be able to perform high quantum efficiency, qubit-specific measurements.
“High quantum efficiency” means that when one makes a measurement,
one is very likely to actually get an answer. Similar requirements apply, for
instance, to quantum cryptography (see, above). There, it is necessary to
have photodetectors that register an arriving photon with a high probability.
Likewise, in quantum computing the end result is read out from the qubit by
a quantum measurement, and if such a measurement fails to give a result,
thats bad news. Finally, qubit-specific means that if one has a quantum
computer with, say, ten qubits and one wants to read out the state of qubit
number 5 then one should actually read out the state of that specific qubit
and not of qubit number 4 or 6. Again, this may sound pretty obvious, but
practicing this can be a big obstacle.

According to the modern definition of quantum computer it is a device if it obeys
the following criteria: any quantum computer must consist of a quantum memory,
with an additional structure that

1. Facilitates a controlled quantum evolution of the quantum memory;
2. Includes a method for information theoretic cooling of the memory; and
3. Provides a readout mechanism for subsets of the quantum memory. The criteria

are met when the device is scalable and operates fault tolerantly (for details
see [7]).

4.3 Elementary Gates for Quantum Computation

The evolution of nano- and optoelectronic devices [8] and the associated digitization
of information has relied on improvements in the fabrication of materials that have
led to ever smaller and faster components. Then in size, in particular, has allowed
more components to be packed onto a chip, thus making them more powerful by



80 4 Concepts of Quantum Computers

integrating more functions. Simultaneously, the decrease in size is a prerequisite for
making faster devices, as long as they rely on a fixed, system—wide clock. As early
as 1965, Moore [9] noticed that the number of components that could be placed on
a chip had grown exponentially over many years, while the feature size had shrunk
at a similar rate. This trend continued over the next 40 years and is expected to do
so for the foreseeable future.

Figure 4.1 shows the current expectation: it represents the projections that the
semiconducting industry association makes for the coming decade. As shown in Fig.
4.1 the feature size of electronic devices is now less than 100 nm and decreasing at
a rate of some 12% per year [8]. This trend could in principle continue for another
40 years before the ultimate limit is reached, which corresponds to the size of the
atom. Much before this ultimate limit, however, the feature size will become smaller
than some less well-defined limit, where the electrons that do the work in the modern
devices, will start to show that their behavior is governed by quantum mechanics,
rather than the classical physical laws that are currently to describe their behavior
(see, also [10]).

In quantum mechanics there are some basic principles, such as the correspondence
principle, Heisenberg’s uncertainty principle, or Pauli’s principle, that encode the
fundamentals of that theory. The knowledge of those principles provides us with the
essential understanding of a quantum mechanics at a glance, without going into the
complete formalism of that subject (see, e.g. [11]). A similar thing happens in other
areas in physics. Incomputer science there are guiding principles for the architecture
of a computer (hardware) and the programs to be run (software) [1, 2]. Likewise,
in quantum computing we have seen that there are basic principles associated with
the ideas of quantum parallelism (superposition principle) and quantum program-
ming (constructive interference). By principles of quantum computation we mean
those rules that are specific to the act of computing according to the laws of quan-
tum mechanics. As mentioned above, the quantum version of parallelism is realized
through the superposition principle of quantum mechanical amplitudes, likewise the
act of programming a quantum computer should be closely related to a constructive
interference of those amplitudes involved in the superposition of quantum states in
the register of the computer (for details see [1, 2]).

A key step towards the realization of the practical quantum computer is to decom-
pose its functioning into the simplest possible primitive operations or gates (see, also
[12, 13]). A universal gate such as NAND (in classical computers) operates locally
on a very reduced number of bits (actually two). However, by combining NAND
gates in the appropriate number a sequence we can carry out arbitrary computations
on arbitrary many bits. This was very useful in practice for it allowed device, leaving
the rest to the circuit designer. The same rationale applies to quantum circuits. When
a quantum computer is working it is a unitary evolution operator that is effecting a
predetermined action on a series of qubits. These qubits form the memory register
of the machine, or a quantum register. A quantum register is a string of qubits with a
predetermined finite length. The space of all the possible register states makes up the
Hilbert space of states associates with the quantum computer. A quantum memory
register can store multiple sequences of classical bits in superposition. This is a
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Fig. 4.1 Prospective evolu-
tion of feature size in micro-
electronic (nanoelectronic)
circuits (after international
semiconductor association
roadmap)

manifestation of quantum parallelism. A quantum logic gate is a unitary operator
acting on the states of a certain set of qubits (see, also Fig. 4.2a). If the number of
such qubits is n, the quantum gate is represented by a 2n × 2n matrix in the unitary
group U(2n). It is thus a reversible gate: we can reverse the action, thereby receiving
the initial quantum state from final one. One-qubits are the simplest possible gates
because they take one input qubit and transform it into one output qubit. The quantum
NOT gate is a one-qubit gate (Fig. 4.2a). Its unitary evolution operator UNOT is [14]

UNOT =
[

0 1
1 0

]

. (4.2)

The action of a unitary operator UNOT on a quantum state |�〉 = a|0〉 + b|1〉 or

written in matrix notation as |�〉 =
[

a
b

]

(see, also [15])

|�〉final = U |�〉initial (4.3)

can be calculated by standard matrix multiplication. For example, the output state

obtained after applying UNOT to |�〉 =
[

a
b

]

is

UNOT|�〉 =
[

0 1
1 0

]

×
[

a
b

]

=
[

b
a

]

, (4.4)

which is state vector corresponding to the state a|1〉 + b|0〉 (for details see [15]).
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Fig. 4.2 a Example of a
unitary gate. b Quantum
binary gates. a CNOT gate.
b CPHASE gate, c SWAP gate
(after [4])

Another one-qubit gate without analog in classical circuity and heavily used in
quantum computers is the so-called Hadamard (H) gate [12–14]. This gate is defined
as:

UH = 1√
2

[
1 1
1 −1

]

. (4.5)

This gate transforms the computational basis states into the equal superposition
states, and back

|0〉 ↔H ↔ |0〉 + |1〉√
2

and|1〉 ↔H ↔ |0〉 − |1〉√
2

(4.5a)

The Hadamard gate corresponds to a rotation over 180◦ about an axis halfway
between the x̂ and the ẑ axes. The NOT corresponds to a 180◦ rotation about the x̂
axis, up to an overall phase factor, which is irrelevant (see, also Figs. 4.3, 4.4, 4.5,
4.6, 4.7, 4.8).
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Fig. 4.3 The truth table and
circuit representation for the
identity gate

Fig. 4.4 The truth table and
circuit representation for the
NOT gate

Fig. 4.5 The truth table and
circuit representation for the
AND gate

Fig. 4.6 The truth table and
circuit representation for the
OR gate

The XOR (exclusive-OR), or CNOT (controlled-NOT) gate is an example of a
quantum logic gate on two qubits (see, also [16–21]). It is instructive to give the
unitary action U XOR, CNOT of this gate in several forms [22]. Its action on the two-
qubit basis states is

UCNOT|00〉 = |00〉; UCNOT|10〉 = |11〉
UCNOT|01〉 = |01〉; UCNOT|11〉 = |10〉 (4.6)

From this definition we can see that the name of this gate is quite apparent, as it
means that it executes a NOT operation on the second qubit conditioned to have the
first qubit in the state |1〉. Its matrix representation is
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Fig. 4.7 The truth table and
circuit representation for the
XOR gate

Fig. 4.8 The truth table and circuit representation for the NAND gate

UCNOT = UXOR =

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

I 0
0 σx

∣
∣
∣
∣ . (4.7)

The action of the CNOT operator (4.6) immediately translates into a corresponding
truth table. The diagrammatic representation of the CNOT gate is shown in Fig. 4.2b.
We shall see how this quantum CNOT gate plays a paramount role in both the theory
and experimental realization of quantum computers. It allows the implementation
of conditional logic at a quantum level. The generalization of the CNOT gate is the
control—U (CU) gate, where the Pauli matrix σx is replaced by a 2 × 2 unitary
matrix U :

CU =
∣
∣
∣
∣

I 0
0 U

∣
∣
∣
∣ . (4.8)

The CU gate leaves the target bit unchanged if x = 0 and modify it as |y〉 −→ |y〉
if x = 1. The CU gate can be constructed starting from the CNOT gate. It is necessary
to find three unitary operators A, B, and C such that

CBA = I, Cσx Bσx A = U. (4.9)

In quantum physics, the Toffoli gate may be constructed from CU gates and CNOT
gates (with U = √

σx ) and the equation
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√
σx = 1

1 + i

∣
∣
∣
∣
1 i
i 1

∣
∣
∣
∣ , (4.10)

which is not possible in classical physics where the operation
√

σx does not exist. In
contrast to the classical case, it is not necessary to introduce the Toffoli gate explicitly
to construct the ensemble of reversible logic circuit (for details see [1, 2, 24, 25]).

Unlike the CNOT gate, their two-qubit gates are with no classical analog (see,
also [23]). One example is the controlled-phase gate or CPHASE:

UCPHASE =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei�

⎤

⎥
⎥
⎦ . (4.11)

It implements a conditional phase shift on the second qubit [14]. Other interesting
two-qubit gates are the SWAP gate, which interchanges the states of the two-qubits,
and the

√
SWAP gate, whose matrix representations are

USWAP =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , (4.12)

U√
SW AP =

⎡

⎢
⎢
⎣

1 0 0 0
0 1+i

2
1−i

2 0
0 1−i

2
1+i

2 0
0 0 0 0

⎤

⎥
⎥
⎦ . (4.13)

An immediate extension of the CNOT construction to three qubits yields the
CCNOT gate (or C2 NOT—controlled-controlled-not gate) which is also called Tof-
foli gate [24, 25] (see, also [26]). The Deutsch gate D(θ) is also an important three-
qubit gate [27]. It is a controlled- -controlled-S or C2S operation, where

UD(θ) = ie− θσx
2 = icos

θ

2
+ σx sin

θ

2
(4.14)

is a unitary operation that rotates a qubit about the X axis by an angle θ and then
multiplies it by a factor i and σx . Here σx is the Pauli matrix

σx =
[

0 1
1 0

]

. (4.15)

and other Pauli matrixes are
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σy =
[

0 −i
i 0

]

, σz =
[

1 0
0 −1

]

, (4.16)

which obey the relations

σxσy = iσz, σxσz = −iσy, σyσz = iσx (4.17)

σ 2
x = σ 2

y = σ 2
z = σI , (4.18)

where

σI =
[

1 0
0 1

]

. (4.19)

The rest of the discussion of one-qubit gates expands on the following notion: any
one-qubit unitary operation can be written in the form (see, e.g. [1, 2])

U = eiα Rn̂ (θ) , (4.20)

where Rn̂ (θ) corresponds to a rotation in the Bloch sphere (see, Chap. 3, Fig. 3.14)
about the n̂ = (nx , ny, nz) axis and over an angle θ . With −→σ = (σx , σy, σz) we can
construct Rn̂ (θ) by exponentiating the Pauli operators as follows:

Rn̂ (θ) ≡ exp

(

−i
θ n̂−→σ

2

)

= cos (θ/2) σI − isin (θ/2)
[
nxσx + nyσy + nzσz

]
.

(4.21)
Rotations about x̂ , ŷ and ẑ axis respectively, are thus given by

Rx (θ) = exp

(−iθσx

2

)

= cos (θ/2) σI − isin (θ/2) σx =
[

cos θ
2 −isin θ

2−i sin θ
2 cos θ

2

]

,

(4.22)

Ry (θ) = exp

(−iθσy

2

)

= cos (θ/2) σI − isin (θ/2) σy =
[

cos θ
2 −sin θ

2− sin θ
2 cos θ

2

]

,

(4.23)

Rz (θ) = exp

(−iθσz

2

)

= cos (θ/2) σI − isin (θ/2) σz =
[

e−iθ/2 0
0 −iθ/2

]

,

(4.24)

Examples of multi-qubit gates can be found in the references [22–27].

http://dx.doi.org/10.1007/978-3-642-28750-3_3
http://dx.doi.org/10.1007/978-3-642-28750-3_3
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4.4 Spintronics

Portable communication systems demand the miniaturization and integration of low-
power electronic devices. At the same time, faster devices are needed to process
information [32–39]. Moore’s Law [9], the prediction that the number of transis-
tors per square inch on integrated circuits will be double every 18 months, has
been held remarkably accurate in the electronics industry since the 1970s (see, also
[9–15]). Now the scientific community faces great challenges as the scale of elec-
tronic devices has been reduced to the level where quantum effects become signifi-
cant factors in device operations (see, also above). Electron spin (and more generally
nuclear) is one such effect that offers the opportunity to continue the gains predicted
by Moore’s Law (see Fig. 4.1), by taking advantage of the confluence of magnetics
and semiconductor electronics in the newly emerging discipline of spin electronics
(spintronics). From a fundamental view point [40, 41] spin-polarization transport in
a material occurs when there is an imbalance of spin populations at the Fermi energy
(see Fig. 4.9). In ferromagnetic metals this imbalance results from a shift in the
energy states available to spin up and spin down electrons.1 In practical applica-
tions, a ferromagnetic metal may be used as a source of spin-polarized electronics
to be injected into semiconductor, a superconductor or a normal metal, or to tunnel
through an insulating barrier. Then, depending on the magnetization direction of a
material, relative to the spin polarization of the electrons, a material can function
either as a conductor or an insulator for electrons of a specific polarization. The use
of both charge and spin degrees of freedom in semiconductors is expected to enable
a revolutionary class of electronics whose functionality will surpass that of the exist-
ing semiconductor technology. Spin electronics combines semiconductor microelec-
tronics with spin-dependent effects that arise from the interaction between electrons
and a magnetic field. Since the characteristic length of spin-dependent effects is of
the order of 1 nm compared to 10 nm for semiconductor electronics, spin-electronic
devices have the potential to achieve much higher integration densities. Conventional
electronics are based on the number of charges and their energies, and device per-
formance is limited in speed due to energy dissipation, whereas spintronics is based
on the direction of spin and spin coupling, and is capable of much higher speeds at
low power consumption. The advantages of spin-electronic devices would include

1 Spin-polarizable transport will occur naturally in any material for which there is an imbalance of
the spin populations at the Fermi level. This imbalance commonly occurs in ferromagnetic metals
because the density of states available to spin-up and spin-down electrons is often nearly identical,
but the states are shifted in energy with respect to each other (see Fig. 4.9). This shift results in
an unequal filling of the energy bands, which is the source of the net magnetic moment for the
materials, but it can also cause the spin-up and spin-down carriers at the Fermi level to be unequal
in number, character, and mobility. This inequality can produce a net spin polarization in a transport
measurement, but the sign and magnitude of that polarization depends on the specific measurement
being made. For example, a ferromagnetic metal may be used as a source of spin-polarized carriers
injected into a semiconductor, a superconductor, or a normal metal or can be used to tunnel through
an insulating barrier. The nature of the specific spin-polarized carriers and the electronic energy
states associated with each material must be identified in each case (for details see [33–35, 38, 39,
41–43]).
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Fig. 4.9 A schematic rep-
resentation of density of
electronic states that are avail-
able to electrons in a normal
metal and in a ferromagnetic
metal whose majority spin
states are completely filled.
E is the electron energy, EF
is theFermi level and N(E) is a
density of states

non-volatility permitting data retention in non-powered conditions, increased inte-
gration densities, higher data processing speeds, low electrical energy demands, and
fabrication process compatible with those currently used in semiconductor micro-
electronics. There is strong evidence that the technology shift taking place from semi-
conductor electronics to spin-dependent devices will help to meet the sensing and
storage demands of information technology in the twenty-first century (for details see
[33–35, 38, 39, 41].

The next part discusses the basic approach of spintronics technology. We begin
by describing the operation of an integrated magnetoelectronic device cell [33–35,
38–40]. The device cell is composed of a paramagnetic metal film P sandwiched
between two ferromagnetic films F1 and F2 (Fig. 4.10a). Each ferromagnetic film
is a single domain, and the axis of magnetization of each film, M̂1 and M̂2, lies in
the plane of film. For simplicity, we consider the case in which M̂1 points down and
M̂2 points either down or up. A battery is connected with one terminal to F1 and the
other to the bottom of P. When the switch is closed, a current flows through F1 into
P and is drained from back to the battery. A third wire is attached to F2 and leads to
a gedanken voltmeter, which can read the voltage VF2 of F2 with a single input and
does not aground (Fig. 4.10b). The details of the current transport and of the effect of
current transport on VF2 can be understood with the use of a microscopic model and
density-of-state diagrams (Fig. 4.10c). For the sake of simplicity, this model neglects
the resistance of the films and of the interface between the films and assumes there is
no spin scattering at the interface itself (see, also [44–46]). The diagrams have been
drawn out of proportion to demonstrate the nonequilibrium effects. In reality [33–35],
typical Fermi energies, EF , are 5–10 V, the nonequilibrium effects, EF,F2 − EF,0,
are less than millivolt, and thermal smearing (neglected in Fig. 4.10) is order 10 mV.
The ferromagnets are depicted in a band model in which the majority-spin subband
(that of downspins and that which determines the direction of M̂1) lies entirely below
the Fermi level. This would be appropriate, though, oversimplified, for the 3d band
or a hybridized sd band of transition ferromagnets, like Ni, Fe, Co, or an alloy,
such as permalloy Nix Fe1−x . The paramagnet is represented with a free-electron
model. With the switch open (Fig. 4.10c, shadow diagrams), the Fermi levels of
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Fig. 4.10 a Scheme model of three-terminal device in cross-section. Arrows in the ferromagnetic
films F1 and F2, which sandwich the paramagnetic film P, refer to magnetization orientation as
determined by majority-spin subband. b Geometry of s spin switch device. N-nonmagnetic metal
counter electrode. c Diagrams of the densities of state N(E), as function of energy, of the F1–F2
system depicted in a (after [33–35]

the contiguous metals align with value EF,0. When the switch is closed, an electric
current, Ie, is driven from F1 to P. However, current transport involves only electrons
of energy within a thermal range EF ± kB T , where kB is Boltzmann’s constant T
is temperature. Because the down spin subband is well below EF, only the up spin
subband is available to carry the current. Thus, the electric current is also a current
of magnetic dipole; it is a spin-polarized electric current of magnetization [38, 39]

IM = gβ Ie/e, (4.25)

where β, the Bohr magneton, is the magnetic moment of each electron and e is the
electron charge. Here, g is a phenomenological parameter,

g = J↑ − J↓
J↑ + J↓

, (4.26)

where J↑,↓ are the current densities of each subband, which describes the efficiency
of spin transport. In the simplified model of Fig. 4.10c, g = 1, but more generally the
magnitude of g is diminished by current contributions from the other spin subband,
and |g| ≤ 1. Conceptually, F1 acts as a spin polarizer in a manner loosely analogous to
a polarizing film for light but with the important difference that conduction electrons
move diffusively, in contrast to photons (for details see [40, 41]).

While there are clear advantages for introducing semiconductors in novel spin-
tronics applications, many basic questions pertaining to combining semiconductors
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with other materials to produce a viable spintronics technology remain open [43]. For
example, whether placing a semiconductor in contact with another material would
impede spin transport across the interface is far from well-understood. In addition
to the near-term studies of various spin transistors and spin transport properties of
semiconductors, a long-term and ambitious subfield of spintronics is the applica-
tion of electron and nuclear spins to quantum information processing and quantum
computation (see, e.g. [41, 47, 48] and references therein). Obviously, the spins of
electrons and spin-1/2 nuclei provide as was shown above perfect candidates for
quantum bits (qubits) as their Hilbert spaces are generally well-defined and their
decoherence relatively slow [36, 38, 39, 42].

The first scheme for a spintronics device based on a field effect transistor (FET)-
like geometry is the Datta and Das [32] high mobility by field effect spin transistor
shown in Fig. 4.11a. The heterostructures (here InAlAs/InGaAs) provide an inversion
layer channel for 2D electron transport between two ferromagnetic electrodes. One
acts as an emitter, the other is a collector. The emitters emit electrons with their spins
oriented along the direction of the electrode’s magnetization (along the transport
direction in Fig. 4.11a), while the collector (with the same electrode magnetization)
acts as a spin filter and accepts electrons with the same spin only. In the absence of
spin relaxation and spin-dependent processes during transport, every emitted electron
enters the collector. Depending on the amount of the electron spin (when entering
into the collector) in the direction of the collector magnetization, the electron current
is modulated: an electron passes through if its spin is parallel and does not if it is
antiparallel to the magnetization [37, 42].

The Johnson spin transistor [33] is a trilayer structure consisting of a nonmag-
netic metallic layer sandwiched between two ferromagnets (see also [49, 50]). It is
an all-metal transistor using the same philosophy as giant-magnetoresistive (GMR)
devices [38, 39]: the current flowing through the structure is modified by the rel-
ative orientation of the magnetic layers, which, in turn, can be controlled by an
applied magnetic field. In this scheme, demonstrated in Fig. 4.11b, the battery is
applied in the control circuit (emitter-base), while the direction of the current in the
working circuit (base-collector) is effectively switched by changing the magnetiza-
tion of the collector. The current is drained from the base in order to allow for the
working current to flow under the “reverse” base-collector bias (antiparallel magne-
tization). Neither current nor voltage is amplified, but the device acts as an effective
switch or spin valve to sense changes in an external magnetic field (for details see
[36, 51, 52]).

One application of Das Sarma et al. proposed that spin-polarized p–n junction
is the spin-polarized sole cell (see [41] and references therein), described in Fig.
4.11c. As in ordinary solar cell batteries, light illuminates the depletion layer of a
semiconductor (like GaAs), generating electron-hole pairs. The huge built-in electric
field in the layer (typically 104 V/cm [41]) swiftly sweeps electrons into the n and
holes into the p regions. If a wire connects the edges of the junction, a current flows.
If the light is circularly polarized (filtered solar photons), the generated electrons are
spin polarized. As the spin-polarized electrons created in the depletion layer pump
the spin into n region, the resulting current is spin polarized.
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Fig. 4.11 Schemes of selected spintronics devices. a The Datta and Das [32] spin transistor. Elec-
trons travel in the 2D inverted region channel (filled region) between two ferromagnetic electrodes.
Electron spins pieces in the Rashba field which can be controlled by the gate voltage, modulating the
current. b The Johnson spin transistor [33–35]. Depending on the orientation of the magnetizations
in the two ferromagnetic layers, the current in the collector circuit flows either from the base into the
emitter (left) or from the emitter into the base (right). c Spin-polarized solar battery. Filtered solar
light (circularly polarized) generates electron-hole pairs in the depletion region. The polarization
is carried only by electrons if the semiconductor is IIIi-V, like GaAs. The resulting current flowing
in an external circuit that connects the n and p regions is spin-polarized. d Magnetic field effect
transistor (MFET). Magnetic field B is applied along the p–n junction. The current in the circuit
connecting the junction in the transverse direction depends critically on the size of the depletion
layer (it is small for a larger layer and large for a smaller layer). If the g-factors of the electrons or
holes are large, a change in B can lead to a large change in the width of the depletion layer and in
the magnitude of the transverse current (after [37])
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Finally, Fig. 4.11d shows recent proposal by Das Sarma and coauthors [37] of a
magnetic field effect transistor (MFET). Electrodes of an external circuit are placed
perpendicular to the p–n junction. The current is determined by the amount of avail-
able electrons in the region of the junction around the electrodes. If the depletion
layer is wider than the electrodes, no (or very small) current flows. As the width
decreases, more and more electrons come into contact with the electrodes and the
current rapidly increases. As was shown in [41] such device could find use in mag-
netic sensor technology like magnetic read heads or magnetic memory cells.

One of the most ambitious spintronics devices (see, also above) is the spin-based
quantum computer in solid-state structures (see, e.g. [15]). Using electron (or nuclear)
spin for quantum computer purposes is a manifestly obvious idea since a fermion
with spin 1/2 is a natural and intrinsic qubit [36, 51]. Quantum computation, as
we know, requires both long quantum coherence time and precise external control
[4]. Thus, one needs to be able to precisely manipulate the dynamics of spins, in
particular, to rotate single spins and entangle two and more spins (for details see
below).

4.5 An Introduction to Quantum Algorithms

4.5.1 Background

In the same scientific paper in which Deutsch introduced the notion of the univer-
sal quantum computer, he also presented the first quantum algorithm [53, 54]. We
should note, however, that quantum Turing machines were first considered by Benioff
[55, 56] and developed by Deutsch in [53]. The problem that this algorithm addresses,
later referred to as Deutsch’s problem, is a very simple one. Yet the Deutsch algo-
rithm already exemplifies the advantages of a quantum computer through skillfully
exploiting quantum parallelism. Like the Deutsch algorithm, all other elementary
quantum algorithms in this part amount to deciding which black box out of finitely
many alternatives one has at hand. Such a black box is often also referred to as oracle.
An input may be given to the oracle, one may read out or use the outcome in later
steps of the quantum algorithm, and the objective is to find out the functioning of the
black box. It is assumed that this oracle operation can be implemented with some
sequence of quantum logic gates. The complexity of the quantum algorithm is then
quantified in terms of the number of queries to the oracle.

4.5.2 The Deutsch–Jozsa Algorithm

In 1992, Deutsch and Jozsa [57] invented the first ever quantum algorithm. The
Deutsch–Jozsa algorithm achieves an exponential advantage over classical
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Fig. 4.12 Quantum circuit for
the Deutsch–Jozsa algorithm

algorithms in solving Deutsch’s problem [53, 54] with certainty. Deutsch’s prob-
lem may be solved as follows: you are given a black box or oracle f which takes n
input bits and returns one output bit. Furthermore, you are told that the black box
either outputs the same value (0 or 1) for all possible input strings x, or outputs 0
for exactly half the possible input values and 1 for the other input values. Deutsch’s
problem is a thus a promise problem, and the promise is that f is either constant or
balanced.

How many oracle queries do you need classically to solve Deutsch’s problem with
certainty? As soon as you find the oracle returns 0 for some inputs and 1 for other
inputs, you know for certain that f is balanced. However, if the output is still the same
after trying 2n/2 different input values, the function f might still be balanced, even
though most likely it is constant. Only when 2n/2 +1 input values produce the same
output, you can be sure the function is really constant. Thus, in the worst case, you
need 2n/2 + 1 queries.

Using a quantum computer, the input of the oracle can be put in a superposition
of all possible input values, and a single oracle query suffices to determine with
certainty whether f is constant or balanced. We note that rather to compute individual
f (x), which we know a quantum computer cannot do in fewer steps than a classical
computer, the task is to determine a global property of the function, namely whether
f constant or balanced. This is a type of problem for which quantum computers may
offer an advantage.

The procedure of the Deutsch–Jozsa algorithm, as improved by Cleve et al. [58]
are outlined in Fig. 4.12. The initial state is

|�0〉 = |0〉⊗n|1〉 (4.27)

where ⊗n indicates that the first register, the input register, is of size n (below we
will often leave this implicit). The second register, the output register, contains only
onequbit. First we apply a Hadamard gate on each of the n + 1 qubits, resulting in
the state

|�1〉 =
2n−1∑

x=0

|x〉√
2n

[ |0〉 − |1〉√
2

]

. (4.28)

The input register is now in an equal superposition of all possible x. The reason

why the output register is placed in |0〉−|1〉√
2

will become clear below. Next, we query

the oracle f which effects the unitary transformation
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U f = |x〉|y〉 −→ f −→ |x〉|y ⊕ f (x)〉, (4.29)

where ⊕ stands for addition modulo 2. The oracle thus transforms |�1〉 into

|�2〉 =
∑

x

|x〉√
2n

[ |0 ⊕ f (x)〉 − |1 ⊕ f (x)〉√
2

]

. (4.30)

This is an instance of quantum parallelism. Now, we see that whenever
f(x) = 0, the output register does not change, and whenever f(x) = 1, the output
register is changed to |1〉−|0〉√

2
= −|0〉−|1〉√

2
. Thus the oracle query has no net effect

other than a sign flip whenever f (x) = 1 and we can rewrite |�2〉 as

|�2〉 =
∑

x

(−1) f (x) |x〉√
2n

[ |0〉 − |1〉√
2

]

. (4.31)

The value of f (x) is thus encoded in the coefficient of |x〉, by virtue of initializing
the output qubit to |0〉−|1〉√

2
. Since the state of the output qubit never changes, we could

in fact leave this qubit out altogether and implement f via the unitary transformation
|�〉 −→ f −→ (−1) f (x) |x〉 [58].

We already see that if f is constant, the phase factor (−1) f (x) is constant as well,
so it becomes a physically irrelevant overall phase (see, also [4]). In this case, the
subsequent H⊗n operation restores the first register to the state |0〉. For the case of
balanced f, let us first calculate H |xi 〉 and then H⊗n|x〉. From (4.5a), we see that

H |xi 〉 = |0〉 + (−1)xi |1〉√
2

∑

z=0,1

(−1)xi z |z〉√
2

(4.32)

Therefore,

H⊗n|x1, . . ., xn〉 =

∑

z1,...zn

(−1)x1z1+···+xn zn |z1. . .zn〉
√

2n
=

∑

z
(−1)x ·z |z〉
√

2n
, (4.33)

where x × z is the bitwise inner product of x and z, modulo 2. Using this result, we
find that

|�3〉 = H⊗n|�2〉 =
∑

z

∑

x

(−1)x·z+f(x) |z〉√
2n

[ |0〉 − |1〉√
2

]

. (4.34)

We now measure the first register. For constant f, the amplitude of the |0〉⊗n term,∑

x
(−1) f (x), is either +1 or −1, depending on the constant value f takes. Given the

normalization condition of Eq. (4.34)
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∑

k

|ck |2 = 1 (4.35)

the amplitude of the remaining terms must thus be zero, as we anticipated. For
balanced f, we always have that

∑

x
(−1) f (x) = 0 as there are as many positive and

negative f (x). The amplitude of the |0〉⊗n term is thus zero in this case. In summary,
if the measurement of the first register gives all 0’s we know f is constant, and
otherwise f is balanced.

Thus, we have shown that theDeutsch–Jozsa algorithm solves Deutsch’s problem
exponentially faster than any classical machine. While this is truly remarkable in
itself, the practical importance of this algorithm is limited. First, Deutsch’s problem
is an artificial mathematical problem which has no known applications. Second,
classical computers can solve this problem quickly and with high probability of
success by asking the oracle what f (x) is for a few random x: the probability for
obtaining k times the same answer (either 0 or 1) is f balanced decreases as (1/2)k−1.
Only if absolute certainty is required, exponentially many oracle queries may be
required classically. The significance of this algorithm therefore lies mostly in that
it inspired later, more useful algorithms, is relatively easily understood, and can be
used as a simple test for implementations of quantum computer.

4.5.3 Simon’s Algorithm

Simon’s problem is an instance of an oracle problem which is classically hard, even
for probabilistic algorithms, but tractable for quantum computers [59, 60]. The task
is to find period p of a certain function f : {0, 1}N −→ {0, 1}N , which is promised to
be 2-to-1 with f (x) = f (y) if and only if y = x ⊕ p. Here, x and y denote binary
words of length N , where ⊕ now means bitwise addition modulo 2. The problem
can be stated as a decision problem as well and the goal would then be to decide
whether or not there is a period, i.e. whether f is 2-to-1 or 1-to-1.

Classically, the problem is hard, since the probability of having found two identical
elements x and y after 2N/4 queries is still less than 2−N/2. Simon’s quantum solution
is now the following: start with a state vector (H|0〉)⊗N |0〉⊗N and run the oracle once
yielding the state vector 2−N/2 ∑

x
|x〉| f (x)〉. Then measure the second register. If

the measurement outcome is ( f0), then the state vector of the first register will be

1√
2

(|x0〉 + |x0 ⊕ p〉) . (4.36)

Applying a Hadamard gate to each of the N remaining qubits leads to
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1

2(N−1)/2

∑

y

((−1)x0 × y + (−1)(x0⊕p)×y)|y〉 = 1

2(N−1)/2

∑

p×y=0

(−1)x0×y |y〉.
(4.37)

If we finally measure the first register in computational basis, we obtain a value
y which is such that y × p = 0 modulo 2. Repeating this procedure in order to
get N − 1 linearly independent vectors y1, . . ., yN−1 we can determine p from the
set of equations

[
yi×p = 0

]
. To this end we have to query the oracle O(N) times.

Hence, we get an exponential speed up compared to any classical algorithm. And
in contrast to the Deutsch–Jozsa algorithm this exponential gap remains if we allow
for probabilistic classical algorithms. Simon’s algorithm has much in common with
Shor’s algorithm [61–64]: they both try to find the period of function, both yield an
exponential speed-up, and both make use of classical algorithms in a post processing
step (for detail see [1, 2, 65].

4.5.4 Grover’s Algorithm

In 1996, Lov Grover invented a quantum algorithm for unstructured searches
[66–68]. An example of a structured search is finding the phone number match-
ing with a certain name using a phone book with N alphabetically listed names. An
example of an unstructured search is to find the name matching with a certain phone
number using the same phone book. The time this takes goes up linearly with N: on
average you will have to try [N (N + 1) /2 − 1] N ≈ N/2 different names before
you find the one with the desired number. In contrast, using Grover’s algorithm, such
a search can be accomplished in

√
N attempts.

Mathematically, we can describe this as the following promise problem. Given
an oracle which returns f (x) = 0 for all values of x except for a unique entry x
= x0 for which f (x) = 1 (there is a unique name x0 in the phone book which has
the desired phone number), find the special element x0 in the least number of oracle
queries. As in the Deutsch–Jozsa algorithm, the oracle query takes the form of the
transformation (see, also [1, 2])

U f = |x〉|y〉 −→ f −→ |x〉|y ⊕ f (x)〉, (4.38)

where we will initialize the state of the output qubit |y〉 to |0〉−|1〉√
2

. As we have seen

early, the content of the output register in fact does not change, and f (x) is encoded
in the sign of |x〉. We will therefore leave out the second register and from now on
only consider the effect of the oracle call on |x〉.

The steps in Grover’s algorithm for search space of size N = 2n are:

a. Initialize to |0〉⊗n .

b. Apply H⊗n to obtain 1√
N

N−1∑

x=0
|x〉.
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c. Repeat the following subroutine, known as the Grover iteration,
[
π

√
N/4

]

times:

1. Query the oracle U f : |x〉 −→ f −→ (−1) f (x) |x〉. This flips the phase of
the |x〉 term.

2. Apply H⊗n .
3. Flip the phase of all terms except the |0〉 term. Thus: |x〉 −→ -|x〉;

|0〉 −→ |0〉.
4. Apply H⊗n .

Steps 2, 3, and 4 together are often referred to as inversion about the average,
because their combined effect is to invert the amplitude of each term |x〉 about the
average amplitude of all 2n terms.

Figure 4.13 graphically illustrates the operation of Grover’s algorithm. The ampli-
tude of all terms |x〉 are equal after step b in the algorithm. The amplitude of |x0〉
builds up after each Grover iteration, at the expense of the amplitude of the remaining
terms, until it reaches a maximum and decreases again. For increasing numbers of
Grover iterations, the amplitude of the special element |x0〉 oscillates sinusoidally.
The first maximum occurs after [π

√
N /4] iterations. If we measure the n qubits at

this point, the measurement result will be x0 with high probability and the search far
succeeded. And after that we can ask: How does the number of elementary operations
required for a Grover search scale with the size N of the search space? Steps b and d
take n = log2N Hadamard gates each. Step c, the conditional phase flip, can be done
in O(n) = O(log2N) operations, as noted early (see, also [1, 2]). The cost of the
oracle depends on f and we will come back to it shortly, but in any case the oracle is
called only once per iteration. The Grover iteration must be repeated (O

√
N) times,

so the entire algorithm requires (O
√

Nlog2 N ) operations and O(
√

N) oracle calls,
as opposed to over classical search algorithms (for details see [1, 2, 66–69]).

4.5.5 Shor’s Factorization Algorithm

Shor’s algorithm [61–64] is without doubt not only one of the cornerstones of quan-
tum information theory but also one of the most surprising advances in the theory of
computation itself: a problem, which is widely believed to be hard becomes tractable
by referring to (quantum) physics—an approach completely atypical for the theory
of computation, which usually abstracts away from any physical realization. The
problem of Shor’s algorithm deals with factorization, a typical NP problem [70–75].
In other words, currently one of the most important quantum algorithm is that of
finding the period of function. Below we are following very close to above cited
papers.

We suppose a function f (x) is periodic with period r , i.e., f (x) = f (x + r).
Further, we suppose that f (x) can be efficient computed from x , and all we know
initially is that N/2 < r < N for some N . Assuming there is no analytic technique to
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Fig. 4.13 Illustration of
amplitude amplification
in Grover’s algorithm for
N = 8(n = 3) and
|x0〉 = |101〉. The diagram
shows the (real) amplitude of
the eight terms |000〉 through
|111〉. The starting point is
an equal superposition of
all terms. After each Grover
iteration (an oracle call fol-
lowed by inversion about the
average), the amplitude of the
special element is amplified.
For the case N = 8, the ampli-
tude of the |x0〉 reaches almost
1 after two Grover iterations

deduce the period of f (x), the best we can do on a classical computer is to calculate
f (x) of order N/2 values of x , and find out when the function repeats itself (for well-
behaved functions only O(

√
N) values may be needed on average. This is inefficient

since the number of operations is exponential in the input size logN (for details see
[73, 76, 77]).

The indicated task can be solved efficiently on a quantum computer by the elegant
method shown in Fig. 4.14, due to Shor [61–64], building on Simon [59, 60, 75].
The quantum computer requires 2n qubits, plus a further 0(n) for workspace, where
n = �2logN�, where the notation �x� means the nearest integer greater than x . These
are divided into two registers, each of n qubits. These registers will be referred to as
the x and y registers: both are initially prepared in the state | 0 〉 [1, 2, 75]. Next, the
Hadamard gate H is applied to each qubit in the x register, making the total state

1√
w

w−1∑

x=0

|x〉|0〉, (4.39)
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Fig. 4.14 Quantum network for Shor’s period finding algorithm. Here, each horizontal line is a
quantum register rather than a single qubit. The circles on the left represent the preparation of the
input state |0〉. The encircled FT represents the Fourier transform, and the box connecting the two
register represents a network to perform unitary transformation U f (for details see text)

where w = 2n . This operation is referred to as a Fourier transform (see also [1, 2,
76, 77]) in Fig. 4.14. The notation | x 〉 means a state as |0011010〉, where 0011010 is
the integer x in binary notation. In this context the basis {|0〉, |1〉} is referred to as the
computational basis. It is convenient to use this basis when describing the computer
[71, 72].

Next, a network of logic gates is applied to both x and y registers, to perform the
transformation U f |x〉|0〉 = |x〉| f (x)〉. Note that this transformation can be unitary
because the input state |x〉| 0〉 is in one-to-one correspondence with the output state
|x〉|f(x)〉, so the process is reversible. Further, applying U f to the state given in
Eq. (4.38), we obtain

1√
w

w−1∑

x=0

|x〉|f(x)〉. (4.40)

This state is presented in Fig. 4.15a. At this point something rather wonderful
has taken place: the value of f(x) has been calculated for w = 2n values of x , all
in one go. This feature is referred to as quantum parallelism and represents a huge
parallelism because of the exponential dependence on n (imaging having 2100, i.e.,
a million times Avogadro’s number, of classical processors [74]).

Although the 2n evaluations of f(x) are in some sense present in the quantum
state in Eq. (4.39), unfortunately we cannot gain direct access to them [73, 75].
A measurement of the y register, which is the next step in the algorithm, will only
reveal one value of f (x) (see, also [65]). Further, we suppose the value obtained is
f (x) = u. The y register state collapses [5] onto |u〉, and the total state becomes

1√
M

M−1∑

j=0

|du + jr〉|u〉, (4.41)

where du + jr, for j = 0, 1, 2, . . .M−1, are all the values of x for which f (x) = u. In
other words the periodicity of f (x) means that the x register remains in superposition
of M � w/r states, at values of x separated by the period r . Note that the offset du

of the set of x values depends on the value u obtained in the measurement of the y
register.

Now it remains to extract the periodicity of the state in the x register. This is done
by applying a Fourier transform (for details see e.g. [73]), and then measuring the
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Fig. 4.15 Evolution of the
quantum state in Shor’s algo-
rithm. The quantum state
is indicated schematically
by identifying the non-zero
contributions to the superpo-
sition. Thus a general state∑

cx , y|x〉|y〉 is indicated by
placing a filled square at all
those coordinates (x, y) on
the diagram for which a Eq.
(4.39), b Eq. (4.42) (after [74])

state. The discrete Fourier transform (FT) employed is the following unitary process

UFT|x〉 = 1√
w

w−1∑

x=0

e2π ikx/w|k〉. (4.42)

We note that Eq. (4.38) is an example of this, operating on the initial state |0〉. The
quantum network to apply UFT is based on the fast FT algorithm (see, e.g. [78]). The
quantum version was worked out by Coppersmith [79] and Deutsch [57] and a clear
presentation may also be found in [70, 73] (for details see, also [74]).

Further analysis shows that the y register no longer concerns us, so we will just
consider the x state from Eq. (4.40):

UFT
1√
w/r

w/r−1∑

j=0

|du + jr〉 = 1√
r

∑

k

f̃ (k)|k〉, (4.43)

where
∣
∣ f̃ (k)

∣
∣ =

{
1, if k is a multple of w/r
0 otherwise

}

. (4.44)
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This state is illustrated in Fig. 4.15b. The final state of the x register is now
measured, and we see that the value obtained must be a multiple of w/r. It remains to
deduce r from last conclusion. We have x = λw/r , where λ is an unknown parameter.
If λ and r have no common factors, then we cancel x/w down to an irreducible fraction
and thus obtain λ and r . If λ and r have common factors, which is unlikely for larger
r, then the algorithm fails. In this case, the whole algorithm must be repeated from
the start. After a number of repetitions no greater than ∼log r, and usually much less
than this, the probability of success can be shown to be arbitrary close to unity (see,
also [45]).

To conclude, examining Fig. 4.15 and Eqs. (4.39–4.42) we would say that the
most important features are contained in Eq. (4.39). They are not only the quantum
parallelism already mentioned, but also quantum entanglement, and finally, quantum
interference (for details see [61–64, 71]).

The search for new quantum algorithm is undoubtedly one of the most impor-
tant challenges in quantum computer today. Following Shor’s [61–64] discovery of
quantum algorithms for factoring and discrete log in 1994 and Grover’s [66–68]
quantum search algorithm in 1995, there was a period of over 5 years with no sub-
stantially new quantum algorithms. During this period, the mathematical structure
of Shor’s algorithm was clarified via the formalism of the hidden subgroup problem
(HSP) polynomial-time quantum algorithms were known for every finitely generated
abelian group. Over the last couple of years, we are starting to see some progress
toward the discovery of new algorithms. In 2002, Hallgren [80] gave polynomial-time
quantum algorithms for Pell’s equation and the class group problem, thus breaking
the Buchman–Williams cryptosystem. This extended the framework to nonfinitely
generated abelian groups. The two most important open questions in quantum algo-
rithms are graph isomorphism and the (gap) shortest-lattice vector problem. The first
of these corresponds to the HSP in the symmetric group, and Regev [81] showed
that the second can be reduced to the HSP in the dihedral group. The dihedral group
is a particularly simple nonabelian group, because it has a cyclic subgroup of index
two. The standard quantum algorithm for abelian HSP can be generalized in a nat-
ural way to nonabelian groups. It was shown by Gridni and coauthors [82] that for
sufficiently nonabelian groups the standard algorithm yields only an exponentially
small amount of information about the hidden subgroup. On the other hand, authors
[83] showed that the quantum query complexity of the problem is polynomial. This
suggests that novel algorithmic ideas are necessary to tackle the nonabelian HSP.
Recently, Kuperberg [84] gave an O(2

√
n) algorithm for the dihedral HSP. The algo-

rithm was an interesting modification of the standard algorithm. Other computational
problems that are potential targets for quantum algorithms are the nonsolvable group
membership, McElise cryptosystem, and the learning Adiabatic computation AC
circuits.

A different approach to designing quantum optimization algorithms via adia-
batic evolution was proposed by Farhi et al., [85]. Initial efforts in this direction
concentrated on the question about whether adiabatic optimization could solve NP-
complete problems such as variants on SAT in polynomial time. Surprisingly, query
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lower bounds do not rule out this possibility [86]. However, van Dam and Vazirani
[87] and more recently Reichardt [88] gave classes of SAT instances for which the
spectral gap is exponentially small. Nevertheless, Farhi et al., [85] showed that adia-
batic quantum optimization algorithms can tunnel through local optima and give an
exponential speedup over local search. Aharonov and Ta-Shma [89] suggested that
rather than optimization problems,adiabatic algorithms might be better suited for
quantum-state generation. They also showed that every problem in the complexity
class statistical zero knowledge (SZK) can be reduced to the problem of generating
an appropriate quantum state. Aharonov et al., [90, 91] showed that a slightly more
general formulation of adiabatic algorithms, when used for quantum-state genera-
tion, is in fact universal for quantum computer. Designing quantum algorithms via
quantum-state generation is a novel and potentially important direction, because it
ties into classical algorithm-design techniques using Markov chains and techniques
such as bounds on conductance and spectral gaps. As a first step, it would be interest-
ing to even give such an algorithm for solved problems such as quadratic residuosity
or discrete logarithms (for details see also [1, 2, 92]).

4.6 A Physical Models for a Quantum Computer

4.6.1 Liquid State NMR Quantum Computer

In the field of nuclear magnetic resonance (NMR) over the last few decades sophis-
ticated techniques have been developed to manipulate and detect nuclear spin states
using both static and oscillating magnetic fields simultaneously. These techniques
have been used, for instance to study structural properties of molecules and even bio-
logical samples [93–96]. The qubits in NMR quantum computing are given by the
spins of suitable atomic nuclei [99], placed in a static magnetic field

−→
B 0. Therefore,

we shall here be exclusively interested in spin—1/2 nuclei, such as 1H, 13C, 15N,
19F as well as 31P, as they have two discrete eigenstates (see, Fig. 4.16). Spin—0
nuclei, for example 12C and 16O, are not magnetic and therefore not detectable with
NMR. Nuclei with spin quantum number greater than 1/2, such as 2H, 14N, 35Cl,
79Br, do not make for good qubits, either, mapping the larger number of states (e.g.
the spin quantum number of a spin—3/2 particle can be −3/2, −1/2, 1/2 or 3/2)
onto qubit states, and performing quantum logic gates on them, introduces additional
complications. More significantly, nuclear spins with spin >1/2 tend to have very
short coherence time.

The Hamiltonian of a spin—1/2 particle in a magnetic field of strength B0 along
the −→z axis is [93, 94]

H0 = −�γ B0 Iz = −�ω0 Iz =
[−�ω0/2 0

0 �ω0/2

]

, (4.45)
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Fig. 4.16 Energy diagram for
a single spin—1/2

Fig. 4.17 Precession of a
spin about the axis of a static
magnetic field

where γ is the gyromagnetic ratio of the nucleus and ω0/2π is the Larmor frequency
of the spin (often call ω0 simply the Larmor frequency). Iz is the angular momentum
operator in the −→z direction, which relates to the well known Pauli matrix as 2Iz = σz

(2Ix = σx and 2Iy = σy). The interpretation of Eq. 4.16 is that the energy of the |0〉 or
| ↑〉 state (given by 〈0|H|0〉 the upper left element of H) is lower than the energy of |1〉
or | ↓〉 (〈1|H|1〉) by an amount �ω0, as illustrated in the energy diagram of Fig. 4.16.
The energy splitting is known as the Zeeman splitting. The time evolution e−i Ht/� of
the spin state under the Hamiltonian of Eq. 4.16 corresponds to a precession motion
in the Bloch sphere (see above) about the axis of the static magnetic field, similar to
the precession of a spinning top about the ais of gravitation, as shown in Fig. 4.17.
The B0 field is typically of the order of 10 Tesla, resulting in precession frequencies
ω0 of a few hundred MHz, which is in the radio-frequency range.

The magnetic signal of a single nuclear spin is too weak to be directly detected..
Therefore, NMR experiments are done using a large ensemble of identical molecules,
typically of the order of 1018, dissolved in a liquid solvent. The same operations are
applied to all the molecules in the ensemble, so the final state of the spins is the same
in all molecules (for details see [76, 77])

NMR quantum computation is based on the same principle as used in magnetic
resonance imaging for medical diagnosis (see above). As the name suggests, this
technique involves atomic nuclei, or more precisely, their spins. Nuclear spins give
rise to magnetic moment (see Eq. 4.16), meaning that the nuclei behave like little
compass needles when exposed to magnetic fields. Spins are quantized and can only
take on specific values (contrary to compass needles, which can point in any direction,
i.e., take any desired value. One can switch between these values (see Fig. 4.16)
by irradiating the nucleus with microwave at a particular frequency, the so-called
resonance frequency of thenuclear spin. Since inside a molecule a particular atomic
nucleus has a couple of neighbors that slightly change the resonance frequency of its
spin, one can address a specific nucleus by tuning to its precise resonance frequency.
The switching between spin states and the coupling between neighboring nuclear
spins are good starting points for quantum computation. The spins can act as qubits,
and the coupling makes it possible to realize two-qubit gates [72]. In 1998, Chuang
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and his colleagues managed [97, 98] to run Deutsch’s algorithm on a chloroform
molecule (see, also [1, 2]). By sending carefully tailored microwave pulses to the
molecules, they could perform the quantum logic gates necessary to implement the
algorithm and read out the final answer. In 2001, a more complex molecule was used
to realize Shor’s algorithm [100] on the number 15.

That NMR quantum computation will one day lead to a commercially available
quantum computer is rather unlikely. Although the demonstration of Shor’s algo-
rithm using NMR was an important step and stimulated research efforts in quantum
computation, there are obvious reasons why this approach is not the way in the future.
The most obvious of those reasons is the lack of scalability. In Chuang’s experiment,
Shor’s algorithm was essentially carried out on billions of identical copies of the
same computer, a molecule containing a handful of atoms. Therefore, the power of
an NMR quantum computer is fundamentally limited by what a single molecule can
do. That, in turn, will depend on the number and kind of atoms the molecule contains,
how they are arranged in the molecule, and so forth.

4.6.2 Trapped Ions and Atoms

On the experimental side, implementing quantum processors is a formidable task,
and no realistic scalable design presently exists. The activity have been focused on
the operation of simple systems, with at most a few qubits [101]. First, microscopic
quantum systems like atoms [101–103] and ions [104] has been considered (see, also
[105]). Their main advantage is their excellent quantumness, but their scalability is
questionable. The most advanced qubit implementation is based on ions in linear
traps, coupled to their longitudinal motion [104] and addressed optically. Although
the trend is to develop atom-chips, these implementations based on microscopic
quantum objects still lack the flexibility of microfabricated electronic circuits, which
constitute the second main road investigated. Here, quantumness is limited by the
complexity of the circuits that always involve a macroscopic number of atoms and
electrons.

The ion trap method is illustrated in Fig. 4.18, and described in detail in the
literature [104, 105]. A string of ions is confined by a combination of oscillating
and static electric fields in a linear “Paul trap” [61–64] in high vacuum (10−8 Pa).
A single laser beam is split by beam splitters and acousto-optic modulators into many
beam pairs, one pair illuminating each ion. Each ion has two long-lived states, for
example different levels of the ground state hyperfine structure (the lifetime of such
states against spontaneous decay can exceed thousands of years). Following [105] let
us refer to these two states as |g〉 and |e〉; they are orthogonal and so together represent
onequbit. Each laser beam pair can drive coherent Raman transitions between the
internal states of the relevant ion. This allows any single-qubit quantum gate to be
applied to any ion, but not two-qubit gates. The latter requires an interaction between
ions, and this is provided by their Coulomb repulsion. However, exactly how to use
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Fig. 4.18 Ion trap quantum information processor. A string of singly charged atoms is stored in a
linear ion trap. The ions are separated by ∼ 20μm by their mutual repulsion. Each ion is addressed by
a pair of laser beams which coherently drive both Raman transitions in the ions, and also transitions
in the state of motion of the string. The motional degree of freedom serves as a single-qubit “bus”
to transport quantum information among the ions. State preparation is by optical pumping and laser
cooling; readout is by electron shelving and resonance fluorescence, which enables the state of each
ion to be measured with high signal to noise ratio

this interaction is far from obvious; it required the important insight by the authors
of the ion trap quantum processor [106, 107].

Light carries not only energy but also momentum, so whenever a laser beam
pair interacts with an ion, it exchanges momentum with the ion. In fact, the mutual
repulsion of the ions means that the whole string of ions moves en masse when the
motion is quantized (analog Mössbauer effect) [76, 77]. The motion of the ion string
is quantized because the ion string is confined in the potential provided by the Paul
trap [1, 2]. The quantum states of motion correspond to the different degrees of
excitation (phonons) of the normal modes of vibration of the string. In particular we
focus on the ground state of motion |n = 0〉 and the lowest excited state |n = 1〉 of
the fundamental mode. To achieve, for example, CNOT between ion x and ion y, we
start with the motion in the ground state |n = 0〉. A pulse of the laser beams on ion
x drives the transitions |n = 0〉|g〉x −→ |n = 0〉|g〉x, |n = 0〉|e〉x −→ |n = 1〉|g〉x,
so the ion finishes in the ground state, and the motion finishes in the initial state of
the ion: this is a SWAP operation. Next, a pulse of the laser beams on ion y drives
the transitions

|n = 0〉|g〉y −→ |n = 0〉|g〉y

|n = 0〉|e〉y −→ |n = 0〉|e〉y

|n = 1〉|g〉y −→ |n = 1〉|g〉y

|n = 1〉|e〉y −→ −|n = 1〉|e〉y. (4.46)

Finally, we repeat the initial pulse on ion x. The overall effect of three pulses is
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|n = 0〉|g〉x |g〉y −→ |n = 0〉|g〉x |g〉y

|n = 0〉|g〉x |e〉y −→ |n = 0〉|g〉x |e〉y

|n = 0〉|e〉x |g〉y −→ |n = 0〉|e〉x |g〉y

|n = 0〉|e〉x |e〉y −→ −|n = 0〉|e〉x |e〉y, (4.47)

which is exactly a CNOT between x and y. Each laser pulse must have a precisely
controlled frequency and duration (see, e.g. [76, 77]). The CNOT gate and the single-
qubit gates together provide a universal set, so we can perform arbitrary transforma-
tions of the joint state of all the ions. To complete the description of this method, we
must be able to prepare the initial state and measure the final states. The first is possi-
ble through the methods of optical pumping and laser cooling, the second through the
quantum jump or electron shelving measurement technique. All these are powerful
techniques developed in the atomic physics community over the last three decades. To
conclude, the basic requirements for a general-purpose quantum computing device
with trapped ions have been demonstrated and no fundamental road block is in sight.
However, building such a device is extremely challenging. Especially, the stringet
requirements for fault tolerance and for scalability to many thousands of qubits pose
huge difficulties (for details see [105] and references therein).

4.6.3 Solid State Quantum Computers

At first sight it might appear crazy for solid-state physicists to enter the field of
quantum information processing. After all, the entities with which they deal are typ-
ically much more strongly interacting than the atomic components used in atom-trap
or ion-trap approaches (see, also [108]), and this would seem to make them much
less suitable for the coherent manipulation of quantum information. But this has
not prevented the appearance of a number of very imaginative proposals for using
the numerous excitations in condensed matter for quantum information process-
ing. At the moment these are just proposals. But very significant progress is being
made toward surmounting the technological challenges required to turn the propos-
als into reality. Our brief consideration will by no means be comprehensive, but
it will serve to illustrate something of the tremendous range of possible condensed
-matter approaches to quantum information processing including isotope-mixed crys-
tals processors.

4.6.3.1 Superconducting Qubits

In two preceding examples the qubits were carried by individual quantum objects,
nuclear spins in the NMR case and ions (atoms) in the case of trapped ions. We now
turn to a system where the qubits are carried by a macroscopic degree of freedom,
the current in a superconducting circuit containing one or several Josephson junction
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(Fig. 4.19). As we all know, low temperatures of the order of tens of millikelvins are
required for these circuits to exhibit quantum behavior. These circuits are small by
everyday standards (a few micrometers), but very large compared to atomic sizes.
Still more remarkable is the fact that the parameters of these quantum systems are
fixed by fabrication, and not by Nature as is the case for individual quantum system
like electrons or ions. (see, also [109]). They are engineered quantities which can
be modified by changing the dimensions of the circuits, and in this sense they are
unambiguously macroscopic quantities. It has been known for about a century that at
low temperatures the electrical resistance of most metals and alloys drops abruptly
to zero below a transition temperature TC of order 1K, and the metal becomes a
superconductor. Superconductors also exhibit a remarkable feature called Meissner
effect: magnetic fields are expelled from the bulk of a superconductor: they cannot
penetrate deeper than a distance known as the London penetration length, which is
of order of 0.1 μm (for details, see, e.g. [110]).

Although the currents that flow in superconductors consist of millions of electrons,
they can be viewed as a single huge quantum state. Consequently, it is also possible
for the current to exist in a superposition of two or more quantum states; for example,
in a superposition of flowing at the same time clockwise and counterclockwise inside
a metal ring. Also, a current swinging back and forth in an oscillator circuit can exist
in a superposition of several harmonic oscillator states (which are very familiar to
those of ions oscillating in a trap). It is tempting, therefore, to use such states of
superconductors as qubits for quantum computation [111].

There are several advantages of such an approach compared to ion traps and
optical lattices. First, superconducting circuits are man-made objects, and hence it
is possible to adjust the properties of the circuit (almost) at will. Ions and atoms,
by contrast are provided by Nature and can only be taken as they come. Second,
superconducting circuits can be fabricated using the well-known techniques that are
also used for making integrated circuits and microchips. And finally, we know a lot
about controlling currents and electrons in circuits, so it will be easy to control qubits
in superconductors.

In spite of these advantages, using superconductors for quantum computation is
not quite as straighforward as it may seem at first sight. One fundamental reason for
why one cannot simply use the quantized states of a superconducting oscillator circuit
is that these quantum states are all at the same distance from each other. This makes
it impossible to single out exactly two states that will be |0〉 and|1〉 of potential qubit.
But there is a remedy, the so-called Josephson-junction. Such a junction consists,
basically, of a tiny slab of insulating material between two superconductor wires
(see Fig. 4.19). Classically, no current flow through an insulator, but in quantum
mechanics the Cooper pairs in the superconductors can bridge the gap by tunneling.
In a Josephson-junction, it is possible to single out two quantized states that can
be used as |0〉 and|1〉 states of a qubit [11]. The first realization of CNOT gate in
superconductor was recently described in [112].
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Fig. 4.19 Schematic depic-
tion of a Josephon junction:
a thin insulating layer is
sandwiched between two
superconducting (SC) wires

4.6.3.2 Kane’s Model

The development of efficient quantum algorithms for classically hard problems has
generated interest in the construction of a quantum computer. A quantum com-
puter uses superpositions of all possible input states. By exploiting thisquantum
parallelism, certain algorithms allow one to factorize [61–64] large integers with
astounding speed, and rapidly search through large databases [66–68], and efficiently
simulate quantum systems [55, 56, 113]. In the nearer term such devices could facil-
itate secure communication and distributed computing. In any physical system, bit
errors will occur during the computation. In quantum computing this is particularly
catastrophic, because the errors cause decoherence [4] and can destroy the delicate
superposition that needs to be preserved throughout the computation. With the dis-
covery of quantum error correction [61–64, 114] and fualt-tolerant computing, in
which these errors are continuously corrected without destroying the quantum infor-
mation, the construction of a real computer has become a distinct possibility. The
tasks that lie ahead to create an actual quantum computer are formidable: Preskill
[115] has estimated that a quantum computer operating on 106 qubits with a 10−6

probability of error in each operation would exceed the capabilities of contemporary
conventional computers on the prime factorization problem. To make use of error-
correcting codes, logical operations and measurement must be able to proceed in
parallel on qubits throughout the computer.

Phosphorous donors in silicon present a unique opportunity for solid - state quan-
tum computation [116–118]. Electrons spins on isolated Si:P donors have very long
decoherence times of ∼ 60 ms in isotopically purified 28Si at 7 K [119]. By contrast,
electron spin dephasing times in GaAs (for example) are orders of magnitude shorter
due spin-orbit interaction; and the background nuclear spins of the III–V host lattice
cannot be eliminated by isotope selection. Finally, the Si:P donor is a self-confined,
perfectly uniform single-electron quantum dot with a non-degenerate ground state.
A strong Coulomb potential breaks the 6-valley degeneracy of the silicon conduc-
tion band near donor site, yielding a substantial energy gap of ∼ 15 meV to the
lowest excited [120] as needed for quantum computation. As we all know, the Si:31P
system was exhaustively studied more than 40 years ago in the first electron-nuclear
double-resonance experiments. At sufficiently low 31P concentrations at temperature
T = 1.5 K, the electron spin relaxation time is thousands of seconds and the 31P
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nuclear spin relaxation time exceeds 10 hours. It is likely that at millikelvin temper-
atures the phonon limited 31P relaxation time is of the order of 1018 seconds [121],
making, as we said above, this system ideal for quantum computation.

Kane’s original proposal [116–118] envisions encoding quantum information
onto the nuclear spin 1/2 states of 31P qubits in a spinless I = 0 28Si lattice. The
Kane architecture employs an array of top-gates (see Fig. 4.20). to manipulate the
ground state wavefunctions of the spin-polarized electrons at each donor site in a
high magnetic field B ∼ 2 T, at very low temperature (T � 100 mK). “A -gates” above
each donor turn single-qubit NMR rotations via the contact hyperfine interaction; and
“J-gates” between them induce an indirect two-qubit nuclear exchange interaction
via overlap of the spin-polarized electron wavefunctions (see, also [122]). In other
words, spin—1/2 31P donor nuclei are qubits, while donor electrons together with
external A-gates provide single-qubit (using external magnetic field) and two-qubit
operations (using hyperfine and electron exchange interactions). Specifically, the
single. donor nuclear spin splitting is given by [116–118]

�ωA = 2gnμnB + 2A + 2A2

μBB
, (4.48)

where gn is the nuclear spin g-factor (= 1.13 for 31P [115]), μn is the nuclear mag-
neton, A is the strength of the hyperfine coupling between the 31P nucleus and the
donor electron spin, and B is the applied magnetic field. It is clear that by chang-
ing A one can effectively change the nuclear spin splitting, and thus allow resonant
manipulations of individual nuclear spins (Fig. 4.21). If the donor electrons of two
nearby donors are allowed to overlap, the interaction part of the spin Hamiltonian
for the two electrons and the two nuclei include electron–nuclear hyperfine coupling
and electron–electron exchange coupling [116–118] (see also [123, 124])

H = HZeeman + Hint = HZeeman + A1
−→
S1 ·−→I1 + A2

−→
S2 ·−→I2 + J

−→
S1

−→
S2 , (4.49)

where
−→
S1 and

−→
S2 represent the two electron spins,

−→
I1 and

−→
I2 are the two nuclear

spins, A1 and A2 represent the hyperfine coupling strength at the two donor sites,
and J is the exchange coupling strength between the two donor electrons, which is
determined by the overlap of the donor electron wavefunctions. The lowest order
perturbation calculation (assuming A1 = A2 = A and J is much smaller than the
electron Zeeman splitting) results in an effective exchange coupling between the two
nuclei and the coupling strength is (see [116–118])

Jnn = 4A2J

μBB (μBB − 2J)
. (4.50)

Now the two donor electrons essentially shuttle different nuclear spin qubits and
are controlled by external gate voltages. The final measurement is done by first trans-
ferring nuclear spin information into electron spins using hyperfine interaction, then
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Fig. 4.20 Illustration of two
cells in a 1D array containing
31P donors and electrons in
a Si host, separated by a
barrier from metal gates on
the surface. “A gates” control
the resonance frequency of the
nuclear spin qubits; “J gates”
control the electron-mediated
coupling between adjacent
nuclear spins. The ledge over
which the gates cross localizes
the gate electric field in the
vicinity of the donors (after
[116–118])

Fig. 4.21 Dependence of the
hyperfine coupling constant
on the gate voltage (after
[116–118])

converting electron spin information into charge states such as charge locations [123].
A significant advantage of silicon is that its most abundant isotope 28 Si is spinless,
thus providing a “quiet” environment for the donor nuclear spin qubits. In addition,
Si has also smaller intrinsic spin-orbit coupling than other popular semiconductors
such as GaAs. In general, nuclear spins have very long coherence times because
they do not strongly couple with their environment, and are thus good candidates for
qubits (see, also [15, 121, 124]).

Although the nuclear spin offers unlimited decoherence times for quantum infor-
mation processing, the technical problems of dealing with nuclear spins through
the electrons are exceedingly difficult. A modified versions of the Kane architec-
ture was soon proposed using the spin of the donor electron as the qubit [125–128].
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Fig. 4.22 Schematics of the proposed device. After NTD, 31P donors appear only inside the 30Si-
spots and underlying 74Ge strips will be heavily doped with 75As donors. All sizes are shown in
nm (after [126–128])

In the first scheme [125], A-gates would modulate the electron g-factor by polar-
izing its ground state into Ge-rich regions of a SiGe heterostructure for selective
ESR rotations, while two-qubit electron exchange is induced through wavefunction
overlap. In the studies of Shlimak et al. [126–128] was used the new technology to
growth of SIGE heterostructures. Recent achievements in Si/Ge technology allow
one to obtain high quality heterojunctions with a mobility of about (1–5) × 105

cm2V−1s−1 [126–128]. Using Si/Ge heterostructures has several advantages con-
cerning semiconductor-based nuclear spin quantum computers (S-NSQCs). First,
the concentration of nuclear spins in Ge and Si crystals is much lower, because only
one isotope (73 Ge and 29 Si [130]) has a nuclear spin, and the natural abundance of
this isotope is small (see, also [131]). Second, the variation of isotopic composition
for Ge and Si will lead to the creation of a material with a controlled concentration of
nuclear spin, and even without nuclear spins. Utilization of isotopically engineered
Ge and Si elements in the growth of the active Si/Ge layers could help realize an
almost zero nuclear spin layer that is coplanar with the 2DEG. Then, one might
deliberately vary the isotopic composition to produce layers, wires, and dots that
could serve as nuclear spin qubits with a controlled number of nuclear spins (see
also [15]).

The key point of a novel technology is the growth of the central Si and barrier
Si0.85Ge0.15 layers from different isotopes: the Si0.85Ge0.15 layers from isotope 28Si
and 72Ge and the central Si layer from isotope 28Si with 30Si spots introduced by
means of the nano-litography (see Fig. 4.22) [132]. the formation of quasi-1D Si
wires will be achieved in a subsequent operation by the etching of Si layer between
wires and the filling of the resulting gaps by the Si0.85Ge0.15 barrier composed from
isotopes 28Si and 72Ge. Because different isotopes of Si and Ge are chemically
identical, this technology guarantees the high quality of the grown structures [133].
After preparation, these structures will be irradiated with a neutron flux in a nuclear
reactor by the fast annealing of radiation damage (see [15] and references cited
therein).
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Fig. 4.23 Schematics of a
28Si nanovire L with an array
of 30Si spots (qubits and
non-qubits after NTD). Each
spot is supplied by overlying
A-gate, underlying source-
drain-channel and lateral
N-gate. This device archi-
tecture allows to realize an
indirect coupling between any
distant qubits (for details see
text) (after [126–128])

As was shown by Di Vincenzo [134, 135] two-bit gates applied to a pair of
electron or nuclear spins are universal for the verification of all principles of quantum
computation. Because direct overlap of wavefunctions for electrons localized on
P donors is negligible for distant pairs, the authors of paper [126–128] proposed
another principle of coupling based on the placement of qubits at fixed positions in
a quasi 1D Si nanowire and using the indirect interaction of 31P nuclear spins with
spins of electrons localized in the nanowire which they called as “1D-electrons”.
This interaction depends on the amplitude of the wavefunction of the “1D-electron”
estimated at the position of the given donor nucleus �n(ri) and can be controlled by
the change in the number of “1D-electrons” N in the wire. At N = 0, the interqubit
coupling is totally suppressed, each 31P nuclear spin interact only with its own
donor electron. This situation is analogous to that suggested in the Kane proposal
[124, 125] and therefore all single-qubit operations and estimates of the decoherence
time are valid also in the model by Shlimak et al. [126–128].

Below, we briefly analyze the schematics of the device architecture which satisfy
the scalability requirements of the quantum computer suggested in paper [125].
Figure 4.23 shows schematics of the device architecture which allows one to vary l
(length of quantum wire) and N. The device consists of a 28Si nanowire with an array
of 30Si spots. Each spot is supplied by the overlying A-gate, the underlying source-
drain-channel, and the lateral N-gate. After NTD, P donors will appear in most of the
spots (which transforms these spots into qubits) and not appear in other spots (non-
qubits). In Fig. 4.23 it is assumed that the spots 3 and 4 are non-qubits (0-spots) and
one needs to provide coupling between qubits 2 and 5. For this purpose, it is necessary
to connect the gates N2, N3, N4, and N5. The negative voltage applied between other
N-gates and the wire contact L will lead to pressing-out “1D electrons” from all
corresponding areas and formation of the nanowire with l = 800 nm between the
sites 2 and 5 only (shown in grey in Fig. 4.23). The coupling between qubits 2 and
5 will be realized via injection in the wire of the necessary number of electrons N,
using the positive voltage applied to the gates N2 − N5. According [126–128], the
maximal coupling will be realized at N = 7, while at N = 0, the coupling will be
totally suppressed.
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All the charged-based schemes mentioned so far use single charged semiconduc-
tor quantum dot. The associated strong Coulomb interaction provides a convenient
means for fast qubit manipulation, but can also lead to fast decoherence. One way
to alleviate this problem is to use neutral excitations such as excitons as qubits,
where there is the added benefit that excitons can be precisely controlled optically
(see, e.g. [136]. Indeed , uncharged quantum dots have been proposed as possible
candidates for quantum information processing [137, 138] and many experiments
have been done to demonstrate exciton coherence and control in single quantum dot
[139, 140]. Here single excitons are optically excited in individual quantum dots and
can be coherently manipulated optically. The presence and absence of an exciton in
a quantum dot provide two states of a qubit. Again, entanglement between different
qubits is based on Coulomb renormalization of the energy levels. The exciton-based
quantum computer in isotope-mixed crystals [141] proposals clearly illustrate the
dichotomy faced by all quantum computer architectures: excitons are neutral, there-
fore are more insulated from their environment and decohere more slowly than the
single charge-based schemes. However, the charge neutrality also strongly reduces
the interaction between spatially separated excitons, thus rendering it more difficult
to preform entangling operation. We should add that an optically controlled exciton
transfer process was shown to lead to the generation of Bell and Greenberg–Horne–
Zeilinger state in systems comprising two and three couple dots, respectively [142].

4.6.3.3 Color Centers Processor

The authors of [143] have proposed a new approach to constructing gates for quantum
information processing, exploiting the properties of deep impurities in silicon (color
centers). Localized spins in solids have properties suitable for representing quan-
tum information. Quantum gates require mutual coherent evolution of such states,
necessitating interactions between them. Indicated schemes (see above) to control
interactions required gate electrodes positioned near to specific highly polarizable
defects which would be readily ionized except at low temperatures. The formidable
fabrication (see Fig. 4.20) requirements may introduce further significant sources of
decoherence. Novel control, proposed in [143] avoids electrodes. According to the
results of this paper interactions are controlled by electronic excitations [130]. One
implementation embodies qubits in electron spins of deep donors (A, B), not ionized
at working temperature. Typical A, B spacings should be large enough for ground-
state interactions between donor spins to be small, perhaps 7–10 nm for a deep donor
like Si:Bi [143]. Controlled optical excitation of a charge-transfer transition [144]
from a nearby control impurity C, possibly Er, promotes a control electron from C
into a molecular state of A and B, analogous to the hydrogen molecular ion H−

2 . In
this excited state, there is an effective exchange interaction between the qubit spins.
Qubit–qubit interactions are switched on by optical excitation and off by stimulated
de-excitation of the control electron (see Fig. 4.24). The sup [posed approach has
two key features. Clearly, the spins encoding the quantum information must have
an acceptable time. Further, there must be an electronic excited state in which the
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Fig. 4.24 A schematic diagram of the quantum gate. The qubit spins are on deep donors A and B
(©) with wavefunctions WA and WB. The control atom, C(+) is the source of a control electron. In
the ground state, the control electron is in the state WCG, whose wavefunction and potential well ar
shown schematically. In the excited state, the control electron is in a charge-transfer, molecular-like
, state, WCE, which overlaps both qubit electrons. Neither the qubits nor the control electron interact
significantly in the ground state, but interact causing entanglement in the excited state (after [143])

entanglement is changed significantly. This scheme has two major advantages. First,
ground-state quantum information storage is largely separated from excited-state
informational control. Second, no small energy scale is involved in the gate opera-
tion: it might operate at liquid nitrogen temperatures or even near room temperature.
The cited authors indicate that processors following their approach might be made
in near-future semiconductor fabrication plants.

4.7 Quantum Error Corrections

Quantum error correction (QEC) aims at protecting thecoherence of quantum states
in a quantum computation against noise. This noise is due to some physical interac-
tion of the quantum systems forming the quantum computer with their environment,
an interaction which can never be entirely avoided [144–148]. It turns out that reli-
able quantum computation is indeed possible in the presence of noise, which was
one of genuinely remarkable insights in this research field. The general idea of QEC
is to encode logical qubits into a number of physical qubits. The whole quantum
computation is hence performed in a subspace of a larger dimensional Hilbert space,
called the error correcting code subspace. Any deviation from this subspace guides
into an orthogonal error subspace, and can hence be detected and corrected without
losing the coherence of the actual encoded states [146]. Quantum error correcting
codes have the ability to correct a certain finite dimensional subspace of error syn-
dromes. These error syndromes could for example correspond to bit - flip error on
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a single qubit. Such bit-flip errors are, however, by no means the only type of error
that can occur to a single qubit. In a phase flip error the relative phase of |0〉 and
|1〉 is interchanged. Quantum error correcting codes can be constructed that cor-
rect for such bit-flip and phase errors or both. In a quantum computing context, this
error correction capability is still not sufficient. It is a beauty of the theory of quan-
tum error correcting codes that indeed, codes can be constructed that have ability to
correct for a general error on a single qubit.

The simplest possible encoding that protects at least against a very restricted set
of errors is the following: Given a pure state of a single qubit with state vector
|�〉 = α|0〉 + β|1〉. This state can be protected against bit-flip errors of single qubits
by means of the repetition encoding |0〉 −→ |0, 0, 0〉 and |1〉 −→ |1, 1, 1〉, such that
|�〉 is encoded as

|�〉 = α|0〉 + β|1〉 −→ α|0, 0, 0〉 + β|1, 1, 1〉. (4.51)

This encoding, the idea of which dates back to work as early as 1985 [149] (see,
also [150]), can be achieved by means of two sequential CNOT gates to qubit systems
initially prepared in |0〉. Note that it does not amount to a copying of the input state,
which would be impossible anyway [151, 152]. If an error occurs that manifests
itself in a single bit-flip operation to any of three qubits, one can easily verify that one
obtains one out of four mutually orthogonal states: These states correspond to no error
at all, and a single bit-flip error to any of the three qubits. This encoding, while not
yet being a quantum error correcting code in the actual sense, already exemplifies an
aspect of the theory: With a subsequent measurement that indicates the kind of error
that has occurred, no information can be inferred about the values of the coefficients
α and β. A measurement may hence enquire about the error without learning about
the data. While already incorporating a key idea, it is nevertheless not a particularly
good encoding to protect against errors, if a different error than a bit-flip occurs,
then the measurement followed by an error correction cannot Ṁoreover, and maybe
more seriously, the state cannot be disentangled from the environment, if the error is
due to some physical interaction entangling the state with its environment. Further,
we consider the map involving the qubit undergoing the error and the environment,
modeled as a system starting with state vector |�0〉, according to

|0, �0〉 −→ |1, �0〉, and|1, �0〉 −→ |0, �0〉, (4.52)

such that the environment becomes correlated with the qubit undergoing the error.
This is a process typically referred to as decoherence. The above encoding cannot cor-
rect for such an error and recover the original state. Such an entangling error, however
corresponds rather to the generic situation happening in realistic errors. According
to Preskill. The manifesto of quantum error correction is to fight entanglement with
entanglement [146]. What is meant is that the unwanted but unavoidable entangle-
ment of the system with its environment should be avoided by means of skillfully
entangling the systems in a quantum error correcting code, followed by appropriate
correction.
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There are, notably error correcting codes that can correct for any error inflicted
on a single qubit of the code block. that such quantum error correcting codes exist
was first noted by Steane [114] and Shor [153, 154] in independent seminal work
in 1995 and 1996 (see, also reviews [145–147]). Shor’s 9 qubit code is related to
the above repetition code by encoding again each of the qubits of the code words
into three other qubits, according to |0〉 −→ (|0, 0, 0〉 + 1, 1, 1〉)/√2 and |1〉 −→
(|0, 0, 0〉 − |1, 1, 1〉)/√2. In effect, in the total encoding each logical qubit is encoded
in the state of 9 physical qubits, the codewords being given by

|0〉 −→ (|0, 0, 0〉 + |1, 1, 1〉) (|0, 0, 0〉 + |1, 1, 1〉) (|0, 0, 0〉 + |1, 1, 1〉) √
8,

(4.53)

|1〉 −→ (|0, 0, 0〉 − |1, 1, 1〉) (|0, 0, 0〉 − |1, 1, 1〉) (|0, 0, 0〉 − |1, 1, 1〉) √
8.

(4.54)
In a sense, the additional encoding of the repetition code mends the weaknesses of

the repetition code itself. Such an encoding of the encoding is called a concatenation
of codes, which plays an important role in QEC. What errors can it now correct? If
the environment is initially again in in a pure state associated with state vector |�0〉,
then the most general error model leads to the joint state vector

(α|0〉 + β|1〉) |�0〉 = (α|0〉 + β|1〉) |�0〉 + (α|1〉 + β|0〉) |�1〉
+ (α|0〉 − β|1〉) |�2〉 + (α|1〉 − β|0〉) |�3〉, (4.55)

where no assumption is made concerning the state vectors |�0〉, |�1〉, |�2〉 and |�3〉.
One particular instance of this map is the one where

|�0〉 = |�2〉 = |0〉, |�1〉 = |1〉, |�3〉 = −|1〉. (4.56)

One can convince oneself that when disregarding the state of the environment
(reflected by the partial trace), that this error is quite a radical one: in effect, it is
as if the qubit is discarded right away and replaced by a new one, prepared in |0〉.
The key point now is that the Shor code has the ability to correct for any such error
if applied to only one qubit of the codeword, and completely disentangle the state
again from the environment. This includes the complete loss of a qubit as in the
previous example. In a sense, one might say that the continuum of possible errors is
discretized leading to orthogonal error syndromes that can be reliably distinguished
with measurements, and then reliably corrected for. But then, one might say, typical
errors not only affect one cubit in such a strong manner, but rather, all qubits of the
codeword are exposed to errors.

Stean’s seven qubit quantum error correcting code is a good example of how the
techniques and the intuition from classical error correction can serve as a guideline
to construct good quantum error correcting codes [145, 147]. It Is closely related to
a well known classical code, the [4, 5, 8]—Hamming code [155]. The starting point
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is the parity check matrix of the [4, 5, 8]—Hamming code given by

h =
⎡

⎣
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤

⎦ . (4.57)

Codewords of the classical Hamming code are all binary words v of length 7
that satisfy hvT = 0, which is meant as addition in Z2. It is straighforward exercise
to verify that there are in total 16 legitimate codewords (the cernel of h is four
dimensional). In the classical setting, if at most a single unknown bit-flip error occurs
to a word v, leading to the word v′, it can be easily detected: if the error happens
on the ith bit, then, from the very construction of h, hv′T is nothing but a binary
representation of i, indicating the position of the error. If hv′T = 0, one can conclude
that v′ = v, and no error has occurred.

The 7 qubit Steane code draws from this observation. It is now defined as follows:
for the logical |0〉, the quantum codeword is the superposition of the eight codewords
of the classical Hamming code with odd number of 0s, represented in terms of
state vectors. The latter term means that the binary word x1, . . .x7 is represented as|
x1, . . .x7〉. The logical |1〉 is encoded in a similar state vector corresponding to the
even number of 0s. That is,

|0〉 −→ (|0, 0, 0, 0, 0, 0, 0〉 + |0, 0, 0, 1, 1, 1, 1〉 +
|0, 1, 1, 0, 0, 1, 1〉 + |0, 1, 1, 1, 1, 0, 0〉 +
|1, 0, 1, 0, 1, 0, 1〉 + |1, 0, 1, 1, 0, 1, 0〉 +

|1, 1, 0, 0, 1, 1, 0〉 + |1, 1, 0, 1, 0, 0, 1〉)/√8, (4.58)

|1〉 −→ (|0, 0, 1, 0, 1, 1, 0〉 + |0, 0, 1, 1, 0, 0, 1〉 + (4.59)

|0, 1, 0, 0, 1, 0, 1〉 + |0, 1, 0, 1, 0, 1, 0〉 + (4.60)

|1, 0, 0, 0, 0, 1, 1, 〉 + |1, 0, 0, 1, 1, 0, 0〉 + (4.61)

|1, 1, 1, 0, 0, 0, 0〉 + |1, 1, 1, 1, 1, 1, 1〉√8. (4.62)

The central idea is now that in the quantum situation one can make use of the idea
of how the syndrome is computed in the classical case. When appending a system
consisting of three qubits, the transformation

|v′〉|0, 0, 0〉 −→ | v′〉|hv′〉 can be realized in a unitary manner, and the measure-
ment of the state of the additional qubits reveals the syndrome. But this procedure,
one might be tempted to think, is merely sufficient to correct for bit-flip errors, from
the construction of the [4, 5, 8] Hamming code. This is not so, a rotation of each
qubit of the quantum codewords with a Hadamard gate H as described early will
yield again a superposition of binary words. In fact, it is again a superposition of
Hamming codeword, and bit-flip errors in this rotated basis correspond to phase flips
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Fig. 4.25 The encoding
circuits of the Shor 1 and
Steane 2 quantum codes. To
the left of the dotted line, the
depicted circuit corresponds
to the repetition code. The first
line corresponds to the input
qubit. H is Hadamard gate

in the original basis. So applying the same method again will in fact detect all errors.
The encoding of the Shor and Steane code are shown in Fig. 4.25. The error correc-
tion methods briefly described here are not only type possible (for more details see
reviews [145–148]).
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