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Preface

This book presents proceedings of the NATO Advanced Research Wokshop “Recent
Trends in Energy Security: With Special Emphasis on Low-Dimensional Functional
Materials” held in Tashkent, October 15-19, 2012. The objective of the conference
was to discuss recent advances, problems and prospects in the physics of low-
dimensional nanoscale materials from the viewpoint of their practical application
in energy and resource saving. Currently such materials are being considered to
play key role in the development of contemporary nanotechnology. The workshop
brought together experts working on different issues of nanoscale physics such as
quantum transport, organic photovoltaics, hydrogen storage, carbon nanostructures,
superconductivity and others. Talks presented by the speakers were concentrated on
photovoltaic elements on the basis of low-dimensional materials, graphene, CNT,
fullerene, particle and heat transport in low-dimensional nanoscale systems, ther-
moelectric effect on low-dimensional materials, quantum networks and hydrogen in
low-dimensional materials. Special focus was brought to practical applications of
low-dimensional functional materials in renewable energy, energy conversion and
storage. Total 55 talks were presented by senior and young speakers as 35- and
15-min long and short talks, respectively.

Broad audience of experimental and theoretical physicists was attracted by
extensive panel discussions which were very helpful for deeper understanding of
different issues of the physics of low-dimensional functional materials. Concluding
remarks have been presented to some of the speakers at the end of Workshop.

The Workshop has been efficiently and successfully organized due to the local
organizing committee with members T. Muminov, A.A. Saidov, K. Sharipov,
K. Nakamura, B. Eshchanov, J. Yusupov, D. Otajanov, B. Umrzakov and
B. Oksengendler. A group of young researchers and students from Turin Polytechnic
University in Tashkent and National University of Uzbekistan assisted for several
important organizational matters.

In addition, we would like to thank Jambul Yusupov, Doniyor Babajanov and
Davran Otajanov for their valuable assistance in preparing this proceedings. Also,
our special thanks go to Olga Karpova for her great help with the secretarial duties,
before, during and after the conference.
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Finally, we wish to thank NATO Science for Peace and Security Program for
the financial support, Applied Physics Institute, Physical Society of Uzbekistan and
Turin Polytechnic University in Tashkent for additional funding and organizational
support.

Diisseldorf, Germany Reinhold Egger
Tashkent, Uzbekistan Davron Matrasulov
January, 2013 Khamdam Rakhimov
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Chapter 1
On the Finite-Size Excitonic Instability
in Interacting Graphene Quantum Dots

Tomi Paananen and Reinhold Egger

Abstract Using Hartree-Fock simulations, exact diagonalization and perturbative
calculations, we study ground-state properties of clean circular quantum dots
formed in a graphene monolayer. With chemical potential at the neutrality point, we
study N < 15 interacting particles, where the fine structure constant o parametrizes
the Coulomb interaction. We explore Sucher’s positive projection (“no-pair’)
approach, a more general Hamiltonian conserving both N and the number of addi-
tional electron-hole pairs, and the full QED problem, where only N is conserved.
We find electron-hole pair production for o > 1, where the filled Dirac sea is
reconstructed and a finite-size excitonic instability occurs. We also address the case
of an orbital magnetic field.

1.1 Introduction

Coulomb interaction effects in monolayer graphene [1, 2] are nowadays attracting
much interest, see Ref.[3] for a detailed review, primarily motivated by the
possibility of realizing a strong-coupling version of QED in a readily accessible
two-dimensional (2D) system. In fact, the (bare) fine structure constant is rather
large, a0 = e*/(hikvr) ~ 2.2/ k, with the effective substrate dielectric constant k and
the Fermi velocity v¢ =~ ¢/300 ~ 10° m/s. Retardation effects are irrelevant here,
i.e., we effectively have 2D massless Dirac fermions interacting via the Coulomb
potential. Similar physics can be expected for the surface state in 3D topological

T. Paananen
Faculty of Physics, Universitat Bielefeld, Finanzbuchhaltung, Postfach 101133,
33511 Bielefeld, Germany

R. Egger (b<)
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insulators [4], but interactions are expected to be much weaker due to the large k in
the relevant materials.

In graphene, the situation away from the Dirac point (defined as zero of energy)
can be reasonably well understood in terms of Fermi liquid theory [3, 5] but the
picture is more complicated near the Dirac point. At a critical interaction strength
0., a semimetal-insulator transition is theoretically expected [6] due to electron-
hole proliferation. For & > o, a finite gap corresponding to an excitonic insulator is
formed and the ground state undergoes reconstruction. On the other hand, quantum
critical behavior is expected [7,8] as a precursor of the instability for o0 < ¢.. Recent
lattice quantum Monte Carlo simulations [9] found the critical value o, ~ 1.1
for an infinitely extended (“bulk”) graphene monolayer. Similar values were also
obtained analytically from the dynamical polarization function approach [10] and
under the ladder approximation to the Bethe-Salpeter equation [11]. However, so
far no experimental signature of this excitonic instability has been reported.

It has also been recognized that the excitonic instability for the bulk many-
body problem is related to the simpler “supercritical” instability of the hydrogen
problem in graphene [3], where o corresponds to the (attractive) potential strength
of the nucleus. Above a critical value for o, the nucleus captures an electron to
screen its positive charge below criticality, while at the same time a hole escapes
to infinity in order to maintain charge neutrality. In atomic physics, essentially the
same phenomenon should also take place for superheavy atoms [12]. The creation
of an electron-hole pair thus also accompanies the supercritical instability. In the
presence of an homogeneous orbital magnetic field B, the hole escape process
is disturbed by the formation of closed Landau orbits. For the bulk many-body
problem, the resulting magnetic catalysis phenomenon [13] implies a lowering of
o, with increasing B.

We have recently studied [14] a finite-size version of the excitonic instability
realizable in graphene quantum dots. The present article gives a summary of
(some of) our results. Quantum dots in conventional 2D systems have been studied
extensively [15,16], and experimental results for lithographically prepared graphene
dots were reported recently [17-21]. Within the single-particle picture, theoretical
proposals on how to model such a dot have been reviewed in Ref. [2]. We here
adopt the probably simplest route by imposing the so-called “infinite-mass boundary
condition” [22, 23] where no current is allowed to flow through the circle r = R
defining the dot’s boundary. While disorder limits the quality of the boundary in
existing dots [21], such a boundary condition captures at least their qualitative
physics. Moreover, future experimental progress is likely to yield well-defined
boundaries.

We investigate the ground state of N interacting electrons in a closed circular
graphene dot, where N particles are added on top of the filled Dirac sea, i.e.,
relative to the chemical potential y = 0. This problem has been studied before
within the Hartree-Fock (HF) approach [24-27]. However, when going beyond
effective single-particle theory, one has to deal with the “Brown-Ravenhall disease”
[28, 29], i.e., the possibility to excite electron-hole pairs with small energy by
combining a hole and an electron both very far away from the Fermi surface.
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While such processes are physically suppressed by the finite bandwidth, the
infinitely deep filled Dirac sea present in the Dirac theory renders naive approaches
mathematically ill-defined. For ov < 1 and when a gap separates electron and hole
states, Sucher [29] showed that one can circumvent the Brown-Ravenhall problem
by a suitable projection A} of the basic QED Hamiltonian H to a well-defined
no-pair Hamiltonian Hy = Ay HA, where the filled Dirac sea is effectively treated
as completely inert. The projection operator A eliminates negative-energy (hole)
states from the single-particle Hilbert space.

We here study the validity of the no-pair approach for graphene dots and find
that for o < 1, it is indeed meaningful, see also Ref. [30]. On a quantitative level,
however, it is accurate only for oo < 1. As also discussed by Sucher [29], if one
wishes to go beyond the positive projection scheme, a QED approach is indicated.
The QED Hamiltonian H, see Eq. (1.11) below, does not conserve the number N,;, of
electron-hole pairs. In fact, only the particle number N — defined as the imbalance
of electron and hole numbers — is conserved, and a superposition of states with
different N, determines the ground state for strong interactions. Once electron-hole
pairs proliferate, a reconstruction of the ground state takes place.

We encounter this phenomenon for o > 1 in graphene dots, similar to the
reported critical value [9] for the bulk excitonic instability. However, in our finite-
size system this is a smooth crossover and not a phase transition. We stress that
our “N-particle problem” defines N as the difference of electron and hole numbers,
which allows for the excitation of an arbitrary number N, of electron-hole pairs. For
o — 0, this definition reduces to having N electrons on top of the filled Dirac sea.

The structure of the remainder of this paper is as follows. In Sect. 1.2 we
introduce the model and discuss the various theoretical approaches employed to
find the ground state. An intermediate approach is to generalize the no-pair approach
(where N, = 0) to allow for a fixed but finite number N,;, of electron-hole pairs. The
Hamiltonian Hgy is obtained from H by neglecting all terms that do not conserve
N,,. A sufficient (but not necessary) condition for the breakdown of the no-pair
Hamiltonian H arises when the ground-state energy of Hgy is lowered for some
N, > 0. We assess the validity of the no-pair scheme in Sect. 1.3 by comparing to
results obtained under Hgy and from the QED Hamiltonian H. We perform these
calculations using exact diagonalization (ED) for N = 2 and N = 3 particles in the
dot. In Sect. 1.4, we use H. to carry out detailed HF calculations for up to N = 15
particles and relatively weak interactions, o < 1. We present results for the addition
energy as function of N. Finally, in Sect. 1.5 we provide a discussion of our main
results.

1.2 Model and Theoretical Approaches

In this section, we describe the model employed in our study of the electronic
properties of interacting graphene quantum dots. We will then turn to different
theoretical approaches to obtain the ground-state properties.
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1.2.1 Single-Particle Problem

It is well established that on low energy scales, quasiparticles in graphene are
described by the Dirac Hamiltonian [2]

Ho = vio- (p+§A)+M(r)oZrZ—uBs-B, (1.1)

where p = —ifi(dx,dy)7 and —e is the electronic charge. The Pauli matrices
0 = (0, 0y) and o refer to graphene’s sublattice structure, while the Pauli matrix
T, corresponds to the valley degree of freedom, i.e., to the two K points. A static
vector potential A(r) [with r = (x,y)”] allows for the inclusion of a constant orbital
magnetic field B;, where we choose the symmetric gauge, A = %BZ(—y, x)T. Since
we neglect spin-orbit couplings in Eq. (1.1), spin Pauli matrices s = (s,sy,s;) only
appear in the Zeeman term. With pp denoting Bohr’s magneton and putting the
Landé factor to g, = 2 [21], this term couples to the full (homogeneous) magnetic
field, B = (By,By,B;) with B= |B|.

Switching to polar coordinates (r, ¢), we consider a clean circular quantum dot in
a graphene monolayer modelled by the well-known infinite-mass boundary condi-
tion [22] where the mass M(r) in Eq. (1.1) is zero for r < R but tends to +eo for r > R.
This choice ensures that no current flows through the boundary at » = R. Eigenstates
can be classified by the conserved total angular momentum, J, = —ih8¢ +ho;/2,
with eigenvalue 7ij for half-integer j = m+ 1/2 (with integer m).

While the eigenfunctions can be found in analytical form even in the presence
of the magnetic field [23], the Coulomb interaction matrix elements are readily
available [27] only in the B = 0 basis. We therefore first describe the solution for
B = 0 and later include the homogeneous magnetic field. Note that different valleys
(T = %) are decoupled and spin (s = %) then simply yields a twofold degeneracy.
For given (m, 1,s), we first discuss the E > 0 solutions to Hy®") = E®™) | where
the spinor has the sublattice structure

(+) _ imo [ Wim(r)
o\t (r,¢)_e (iei‘i’y/z,m(r)) . (1.2)

The infinite-mass boundary condition implies [22,23]
Vim(R) = T2 m(R). (1.3)

With the Bessel functions J,, (kr) of the first kind, k = E /fivp, and normalization
constant A, the Dirac equation for r < R is solved by the Ansatz

Wl,m(") ZAJm(kV), l[/z"m :AJmH(kr).
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The quantization condition (1.3) then determines the eigenenergies E, > 0 with
a=(n,m,1,s),

In(Ea/Ao) = Thmi1(Ea/Ao), (1.4)

where Ay = hivp /R is the single-particle level spacing of the dot and n = 1,2,...
labels different solutions for given (m, 7,s). Equation (1.4) is easily solved numeri-
cally and the eigenstates to energy E, > 0 are

(+) _ im¢ Im(kar)
Pa (1 9) = Ace (iei¢1m+1(kar) ’ (-

where k, = E,/hvr and the normalization factor is
A= mUp = Im-tImi1 + gy — Imdmi2)] (1.6)

with J,, = Ju(Eq/Ao)-

Time-reversal invariance implies the Kramers degeneracy relation E, ¢ =
E, _pm—1,—1,—s. Negative-energy (hole) solutions, @af) (r,¢), follow by using the
electron-hole symmetry property of the Hamiltonian, E;, ;, —1s = —Ej ,7,s. We use
the multi-index a(ad) to count states with positive (negative) energy. There is no zero-
energy solution for B = 0, and we have a finite gap around the Dirac point.

Next we add the magnetic field. Expressed in terms of the eigenstates <Dc§+) and

dbé*) , the vector potential part in Hy has a matrix structure diagonal both in the
quantum numbers (m,T,s) and the conduction/valence band index =+, i.e., only
different n states are mixed. By numerical diagonalization, it is straightforward
to obtain the resulting eigenenergies £, > 0 and E; < 0, and the corresponding
eigenstates. The indices n and thus a (@) are redefined to take into account the unitary
transformation diagonalizing H.

Finally, we include the Zeeman term. Choosing the spin quantization axis along
B, where s = 41 corresponds to spin-up or spin-down states, the full eigenenergy

E, > 01is given by'
E, :Ea_SuBBv (17)

and similary for E; < 0. In a slight abuse of notation, E, now denotes the full
eigenenergy and not the solution to Eq. (1.4) anymore. The Zeeman term is generally
quite small [2] but breaks the spin degeneracy of the levels, while the vector
potential breaks the valley degeneracy, see Eq.(1.3). The resulting eigenstates are

denoted by chng)(r, ¢) and (Déi)("v ).

'In the HF calculations, it is sometimes advantageous to include a small mixing term in the
single-particle Hamiltonian, Hpyix = 8k Ty + sy Inclusion of Hpiy in the construction of the eigen-
energies and -states is straightforward. This allows us to probe all spin and valley states in one run,
and by careful extrapolation 8k, d; — 0, we can extract the ground state.
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1.2.2 Many-Body Interactions

We now include the Coulomb interaction among the particles. The noninteracting
reference problem is characterized by a filled Dirac sea (1 = 0), i.e., all E; <0
states are filled. The QED Hamiltonian H describing this problem can be expressed
in terms of electron annhilation operators, c¢,, corresponding to the single-particle
states dbaH), and hole creation operators, d;f, with single-particle states ¢(§7>~ The
full field operator is written as

r)=Y o (r)ca+ Y ) (r)d]. (1.8)

Since the Hamiltonian commutes with 7, and s- B, we can write ¥ (r) = X.;, ¥ (r).
The Hamiltonian is then given by H = H; + Hj, with the kinetic part (note that
E; <0)

Hy =Y Eacic,+ Y |Ealdid, (1.9)
a a
and the interaction term
hvro drdr’
Hy=— - PP () () Wy (X)W (1) 2, (1.10)

T7'ss’

where the colons denote normal ordering.
Inserting the field operator expansion (1.8) into Eq. (1.10),

H=Hi +H'. (1.11)

Hﬁx commutes separately with both the electron and the hole number operator,
N, = Zac c, and N, = ¥, de The full Hamiltonian, however, only commutes
with N = N, — N;,. We thus deﬁne the N-particle problem by having N excess
electrons and N, = N, electron-hole pairs on top of the filled Dirac sea. Only N
is conserved, while N,;, can fluctuate. Under Hgy alone, the number N, of electron-
hole pairs is conserved,

+
Hpx = Hy + Z abb’ ! 5ss’ aba'b’)CTCbe’c /

aba'b!
+ 2 ( abb'a SS,V&b(i/b’)dadbdb/d"'
abd'b’
- 2 (Vai)i)/a’_SW/Vaba/b/)Cldgdi),Ca,. (1.12)

aa' bl
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All terms not commuting with Ne,h are collected in the remaining part, H' = h+h',
with

1
— - i
h= E Z (Vabb/d/—6”/v ba'b’)c de d
abd' b’/
+ 2 S Vasaw i d/d By
aa’bb’
+ Z Vavva — Oss Viav'a ’)C d Cbe/
abb'd
= 2 (Vawa = OVasary) CZd;dg,d;,- (1.13)
ad'bb'

In Eqgs. (1.12) and (1.13), the spin quantum numbers are given by s = s, = s, and
s’ = s, = s;y (when hole states are involved, a — d etc.). These spin selection rules
are encoded in the interaction matrix elements V,,;,, which have been derived
in a form useful for numerical evaluation in Ref. [26]. We quote them for the
convenience of the reader next.

A finite matrix element follows only when the valley selection rule, 7, = 7, and
T, = Ty, and angular momentum conservation, m, + m, = my + myy, are satisfied.
When all selection rules are met,

Vaalblb = (47()2(XA0AaAaIAb/Ab Z Cq’[
1=0

/ drr! o (Ear)Imy, (Epr) + g +1(Ea r)meH(Ebr))
X/o dr' (F)* (D (Bt Vo (B ") + Ty 11 (Bt 7' )y 11 ()

with E, in units of Ay = vp /R and g = [mj, —my|. The coefficient C,; vanishes
when [+ ¢ is odd or when ! < q. For ¢ =1 =0, we have C o = 1/2, while otherwise

=2 1/ n—1-1)
PIESTTIINE S ST Py y)

Cor =

1.2.3 Calculation Approaches

A standard way to proceed is to employ the no-pair approach [27]. With the projector
Ay to the subsector E, > 0 of the single-particle Hilbert space (for each particle),
we thus consider the N-particle problem with respect to the filled Dirac sea. The
projected Hamiltonian H; = AL HA = Ay Hgc A4 is given by
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H. = ZE cie, —|— Z Vapb'a? — Oy aba/b/)cTc}:cb,c ” (1.14)
aba’b’

As detailed in Refs. [26,27], this allows for a straightforward implementation of the
HF approach, and we will report HF results in Sect. 1.4. Given the converged self-
consistent density matrix, one can obtain the ground-state energy E(N) and other
observables of interest.

On a more general level, we allow for a fixed number of electron-hole pairs by
employing the Hamiltonian Hgx (Eq.1.12). The no-pair Hamiltonian H follows
from Hgx with N,;, = 0. When the ground-state energy of Hgy is minimized for some
N, > 0, the no-pair approach breaks down. Interactions are then able to overcome
the gap between valence and conduction band, and one cannot treat the Dirac sea as
inert anymore. Hgy as well as the QED model H are studied by exact diagonalization
and perturbation theory in Sect. 1.3. For given o, ED results can be obtained within
a few minutes on a standard desktop computer.

1.3 Particle-Hole Pair Production and Reconstruction
of the Ground State

We now compare the different theoretical approaches by using ED for N = 2. We
here consider only the simpler spinless single-valley version of graphene; for the
full case, see Ref. [14].

Figure 1.1 shows results for the o-dependence of the ground-state energy for
N =2 using Hgx and H. For @ > 1, we observe that the ground state undergoes

.......

4F ]

[ ———-- N,=0
7 S N,,=1 4

5 Nep=2
S 2F .-l maxN,, =1 By
% maxN::—Z ——————————— ’

Fig. 1.1 ED results for the interaction energy 6E (o) = E(ot) — E(0) (in units of Ag) vs. a for
N =2 and B =0. The curves for N, =0, 1,2 correspond to the Hamiltonian Hgx with N, electron-
hole pairs, i.e., the ground state then has no electron-hole pair for oc < 1.9. However, the full QED
Hamiltonian Eq. (1.11), where we truncate the Hilbert space to at most one or two electron-hole
pairs (max(N,;) = 1,2), has a significantly lower energy already for o > 0.5
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<Ng>/N

Fig. 1.2 Main panel: relative number of electron-hole pairs in the ground state, (N,;,) /N, vs. o for
N =2 and several values of the magnetic field. We take the dot radius R = 30 nm. The results were
obtained using the QED Hamiltonian but with the Hilbert space truncated to at most two electron-
hole pairs. Inset: Interaction correction 8E vs. ¢ for N =2 and B = 1 T. Shown are ED results
using Hy (N, = 0) and for the full H, where the Hilbert space was truncated at max(N,;,) = 2

reconstruction and involves at least one electron-hole pair. The full interaction
correction to the energy is significantly lowered by including H’ and may even
change sign for large «. In these calculations, the Hilbert space was truncated to
contain at most one or two electron-hole pairs. For o < 1.5, this appears to be
sufficient. Similar results were found for N = 3 [14].

The effect of H' can also be evaluated analytically by using second-order
perturbation theory (the first order vanishes identically). Second-order perturbation
theory captures the ED data quite well, especially for oo < 1 [14]. The combination
of ED (or HF) calculations for Hgx supplemented with a perturbative treatment of
H' should in general provide a good approximation of the ground state.

Let us proceed by discussing the case of finite magnetic field, again for N =2
(we have also studied the N = 3 case, again with very similar results).

The main panel of Fig. 1.2 shows the average number of electron-hole pair
excitations in the ground state for several values of the magnetic field. The shown
results are for a dot radius R = 30 nm. A magnetic field of B=1 T corresponds to the
magnetic length Iz = (c/eB)'/?> ~ 26 nm, which is of the same order of magnitude
as the radius. Evidently, in a magnetic field, the proliferation of electron-hole pairs
becomes more important. We interpret this effect as the finite-size analogue of the
magnetic catalysis phenomenon [13].

The interaction correction to the ground-state energy is shown for B=1 T in
the inset of Fig. 1.2. While the result shows qualitatively similar behavior as for
B = 0, the now more significant deviations between the ED data and the no-pair
result are consistent with magnetic catalysis again. We note in passing that for
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(approximately) ¢« > 1.5, the basis size used in our ED calculations is most likely
not sufficient, and probably N,;, > 2 states also contribute to the ground state. The
steplike features in Fig. 1.2 are then presumably smeared out.

We conclude that the no-pair Hamiltonian is quantitatively reliable only for
weak interactions, o« < 0.5, and for not too large magnetic fields. For stronger
interactions and/or fields, the ground state undergoes reconstruction and electron-
hole pair proliferation. Using Hgx (Eq. 1.12) is not sufficient to get more accurate
results, and one has to include H' (Eq. 1.13) which does not conserve the electron
and hole numbers separately. However, for o < 1, quite accurate results for the
ground-state energy are obtained by combining ED (or HF) calculations for the no-
pair Hamiltonian with subsequent second-order perturbation theory in H'.

Here only two or three particles have been addressed, where electron-hole
proliferation takes place around o =~ 1. Since the bulk case, which follows from the
above model by a suitable limiting procedure with N — o and R — oo, has a phase
transition at & = 1.1, the finite-size crossover apparently depends on N only weakly.

1.4 Addition Spectrum and Ground-State Properties

Let us now turn to HF results for the ground state of the N-electron dot with
N < 15 using the no-pair Hamiltonian H (Eq. 1.14). As discussed in Sect. 1.3, this
approximation is reliable only for weak interactions, and we focus on the regime
o < 1 below.

The spin and valley degrees of freedom are fully included in our self-consistent
HF calculations. We note that the spin filling sequence found in our calculations [14]
can be measured experimentally by Coulomb blockade spectroscopy [21]. Both the
spin and valley filling sequences obtained by HF theory have been independently
confirmed by ED of the no-pair Hamiltonian for N < 4.

To estimate the accuracy of the HF approximation for the no-pair model, we have
also determined the relative difference between the HF (Eyg) and the ED (Egp)
energy,

_ EHF(N, 06) —EED(N, OC)
Egp(N, o) — Egp(N,0)

6(N)

In all studied cases (N < 4), 6(N) was found to be rather small. For instance, even
when taking the large value oo = 1.5, we obtain 6(2) = 0.107, §(3) = 0.175 and
6(4) = 0.148. As long as the no-pair approach stays valid, we conclude that HF
theory yields quite accurate results.

Our HF results for the addition energy [16] which follows from the ground-state
energy E(N) using the relation

A(N)=E(N+1)+EN—1)—2E(N), (1.15)

are shown in Fig. 1.3 for B = 0 and several .. Similar HF results were discussed in
Ref. [27].
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Fig. 1.3 Addition energy T T T T

' © leao |
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Peaks in A(N) signify especially stable dot configurations (magic numbers).
While for oc = 0, A(N) shows a four-periodicity due to spin-valley degeneracy [14],
the addition energy peaks become less pronounced with interactions, and the four-
periodicity is not always visible.

Interestingly, while there are magic numbers N = 4,8,12,... related to com-
pletely filled “energy shells” in the noninteracting case, the addition energy curves
A(N) are rather featureless and almost flat for strong interactions. This indicates
that a constant interaction model [31] provides a reasonable description, where the
microscopic Coulomb interaction is replaced by the electrostatic charging energy of
an effective capacitor.

The addition energy A (N) for B # 0 is shown in Fig. 1.4. The in-plane part By of
the magnetic field here acts to increase the spin Zeeman field.
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However, Zeeman effects in graphene are weak [2], and indeed almost the same
results as those in Fig. 1.4 were found for By = 0 and B, = 3 T. As a consequence
of the broken spin degeneracy, only an (approximate) two-periodicity in A(N) is
observed in the magnetic field case.

1.5 Conclusions

In this work, we have studied the ground state properties of N particles in a
disorder-free circular graphene quantum dot, with the filled Dirac sea as the point of
reference. The boundary of the dot has been modelled by the infinite-mass boundary
condition, and the particles interact via the unscreened Coulomb potential whose
prefactor is proportional to the bare dimensionless fine structure constant ¢. In
contrast to atomic physics where o = 1/137 is very small, in graphene (e.g., by the
variation of the substrate dielectric parameter) ¢ may be tuned up to a maximum
value of o ~ 2.2 (reached for freely suspended samples). For instance, a recent
experiment [21] using Coulomb blockade spectroscopy for a graphene dot reported
a~l.

We have studied the N-particle problem in a graphene dot on various levels of
complexity — from the no-pair Hamiltonian to the full QED model — and by a number
of different techniques. Our main results are as follows.

By using exact diagonalization (ED) for N = 2 and 3 particles, we found that the
no-pair Hamiltonian A originally proposed by Sucher [29], where the filled Dirac
sea is assumed to be inert, is quantitatively reliable only for o < 1. While this
represents the standard situation in atomic physics [32], it can easily be violated in
graphene. For ¢« > 0.5, our calculations indicate that electron-hole pair excitations
contribute to the ground state energy. For o > 1, these excitations proliferate and
eventually cause a completely restructured ground state. Technically, the projection
operator A, defining the vacuum should thus be changed to include interaction
effects in a self-consistent manner.

Mittleman [33] has shown that this goal can be achieved by first minimizing the
ground state energy E(N,Ay) for given Ay, followed by the maximization of the
energy over all possible A . The final result for E(N) should then be equivalent to
the QED results obtained numerically by ED (in the limit of infinite basis size).

We here argue that graphene dots realize a finite-size crossover version of the
bulk semimetal-insulator phase transition. We find that the crossover scale is set by
o =~ 1, consistent with the bulk result o, =~ 1.1 [9].

When an orbital magnetic field is applied — the Zeeman field plays no significant
role — electron-hole pair proliferation sets in earlier and implies a lowering of o,
consistent with the magnetic catalysis scenario [13]. Even on a qualitative level,
the no-pair Hamiltonian H. is thus reliable only on the semimetallic side of the
transition (o < 1).

For the regime o < 1, we have reported detailed results using Hartree-Fock
theory for H and N < 15 particles in Sect. 1.4, taking into account the spin and
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valley degrees of freedom. We find a four- (two-)periodicity in the spin filling
sequence in the absence (presence) of a magnetic field, which can be understood
from the single-particle picture and remains unaffected by weak interactions.
However, the valley filling sequence is more intricate, especially when B # 0. This
is related to subtle differences between the intra- and inter-valley scattering matrix
elements of the Coulomb interaction. We have observed a strong tendency towards
valley polarization induced by interactions in this N-body problem. Importantly, our
analysis of the addition energy spectrum reveals that the constant interaction model
can provide a reasonable description.

In a previous HF study of the spinless single-valley no-pair problem [27], we
found that Wigner molecule formation sets in for strong interactions. Since that
regime corresponds precisely to the onset of electron-hole proliferation, o > 1,
where the no-pair model becomes unreliable, we have analyzed the question of
Wigner molecule formation using ED for N = 3 under the full QED model again.
The Wigner molecule is identified from pronounced density correlations, and our
numerical results (not shown here) are very similar to what we reported in Ref. [27].
We thus expect that the Wigner molecule formation is only weakly affected by the
electron-hole pair proliferation reported in this paper.
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Chapter 2
Two-Dimensional Lattice Fermions
with Random Gap

Antonio Hill and Klaus Ziegler

Abstract We calculate the localization lengths for lattice fermions with random
gap in two dimensions. This is done by means of the transfer matrix approach.
Numerical results are analyzed for finite-size scaling and they exhibit a metal-
insulator and a insulator-insulator transition. At these transitions we calculate the
critical exponent of the localization length.

2.1 Introduction

Dirac fermions in two dimensions play a crucial role in graphene and on the
surface of topological insulators. A remarkable observation in graphene is the
robust electronic transport in the vicinity of the two Dirac nodes. At these nodes
two electronic bands touch each other with linear dispersion [1, 2]. The latter is a
direct consequence of the lattice structure of graphene, since the honeycomb lattice
decomposes into two triangular lattices.

It has been claimed from the theoretical side that transport in the presence of
disorder [3] is very sensitive whether inter-node scattering is present or not. This is
in contrast to the experimentally observed robust transport properties. In particular,
the prediction has been made that electronic states are localized in the presence
of inter-node scattering but delocalized in its absence. This has been elucidated
by changing the symmetry class of the underlying Hamiltonian from orthogonal
to symplectic [4, 5]. These statements are based on weak-localization calculations
[3, 5], which predict weak (anti-)localization (with) without inter-node scattering.
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Indeed, we have shown in our previous work [6] that lifting the node degeneracy
has a drastic effect on the localization behavior. Since we have studied a single node
located in the center of the Brillouin zone, it would be interesting to investigate
whether this behavior changes when the node is shifted. For this reason, we apply
the transfer matrix method, originally introduced for calculations of the Schrodinger
Hamiltonian [7, 8], to lattice Dirac fermions in two dimensions with broken node
symmetry.

The aim of this work is to understand the scaling behavior of the localization
length for a single node, away from the center. In the presence of a random gap
in the Dirac spectrum a metal-insulator transition has been observed in graphene
[9-11] recently. If fluctuations of the random gap are weak in comparison to the
average gap the system is insulating, whereas it is metallic when fluctuations are
strong [12,13]. Moreover, we will verify if there is a phase boundary separating two
insulating phases, where a insulator-insulator transition can be observed.

2.2 Model

A tight-binding description of electrons in graphene results in the famous energy
dispersion with two separate nodes (or neutrality points) in the Brillouin zone. In
the vicinity of these nodes the momentum dependence of the spectrum is linear
and the low-energy behavior of quasi particles can well be described by the Dirac
equation Hy(x,y) = Ey(x,y) with the Hamiltonian

H = —ilvp (6-V) +vEmos, 2.1)

where v is the Fermi velocity, o is the vector of Pauli matrices and y = (@1, @) is
the two component spinor wave function. In the following we set / and vF to unity.

For a numerical treatment of the Dirac equation a discretization in space
is required. However, the naive discretization through replacing the differential
operator by a difference operator leads to additional new nodes. This phenomenon
is often called fermion doubling or multiplication [14]. In real space there are two
methods to avoid this problem [4, 15, 16]. One that we will apply in this work goes
back to an idea by Susskind [14]. Discretization of the differential operator in a
symmetric way is given by

9uf ()~ 55 (iva —fia) 2

where A is the lattice constant which we set to unity in the following. The discrete
Dirac equation for m = 0 reads

i i
—501 {Wisin— Wi} — 02 {Wini1 = Vin-1} = EcoWin (2.3)
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Fig. 2.1 Brillouin zone of b
the discrete Dirac equation, X
where circles depict the
location of Dirac cones
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with lattice points given by the coordinates (/,n), where [ and n are integer. Fourier
transformation leads to eigenvalues E = +/sin(ky)? + sin(ky)? which have four
nodal points in the Brillouin zone corresponding to four Dirac fermions. In order to
open a gap at nodes independently, we add a lattice operator [17] which acts on a
wave function as

. 1
Bllll,n = E{llll+17n+llll717n+WZ7n+l+lVl,n71}- (24)

By including the lattice operator B and a random gap term, we get for the discrete
Hamiltonian (Eq. 2.1)

H—H+8(B—2)0o3+my,05. (2.5)

In Fourier representation with uniform gap m our new Hamiltonian reads

[ m+06(cos(ky) + cos(ky) —2) sin(ky) + isin(ky)
= ( sin(ky) — isin(kﬁ —m— 8(cos(ky) + coszky) -2) ) 26)

and the corresponding energy dispersion is given by

E = £ /sin(ky)? + sin(ky)? + (m+ Scos(ky) + Scos(ky) —28)>. 2.7

For m = 20 there is a node at point M and additional nodes form = 0,0 =0 at I"
and X (cf. Fig. 2.1). Nodal degeneracy can be lifted via the parameter 0 using this
model. We consider the node to be located at M for our calculations in the following.
In Fig. 2.2 the dispersion of Eq. (2.7) is shown for the four-fold degeneracy (dashed
line) and for the node at M without gap (solid line) and with gap (thick solid line).
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X r M X

Fig. 2.2 Bandstructure for lattice fermions with preserved node symmetry without gap (dashed
line), for broken node symmetry (6 = 0.5, m = 0.8) with gap (thick solid line) and for m = 1 (thin
solid line). The inset shows the Brillouin zone schematically

The index 7 is absorbed with the help of matrix representation and we write for
the wave function

Vi =H" yi+HP . (2.8)

Each spinor component is now an M-component vector, where M is the strip width
and thus n =1,2,...,M. The matrices HY, H” are written as

HyY, =25"[Ecy+ (26 —m)o3] (2.9)

HY . =S "ics— 03] (2.10)

HY, | =-S'icy+803] 2.11)

HY, = -8 '[io| + §03] (2.12)

with § = —ioy + 803 and where HY has periodic boundary conditions imposed in

the y-direction. The latter allows us to construct a transfer matrix 7; through the

equation [7]
Y gD
()-CE)R) e
Vi 10 Vi1 Vi1

Different random potentials, e.g. random scalar potential, can be introduced
accordingly.
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2.3 Method

2.3.1 Lyapunov Exponents

According to [7, 8] Lyapunov characteristic exponents (LCE) can be calculated
using the transfer matrix 7;, defined in Eq.(2.13). The iteration of Eq.(2.13)
provides yy, by the product matrix

L
My =TT (2.14)
=1

For disordered systems this is a product of random matrices satisfying Oseledec’s
theorem [18]. The latter guarantees the existence of a limiting matrix

I = lim (Mj M)'/?E. (2.15)
L—oo

The eigenvalues of I" can be written as exponential functions exp(7;), where
7% is the LCE. Implementing the numerical algorithm described in Ref. [7], the
whole Lyapunov spectrum can be calculated. Most commonly, the smallest LCE
is identified with the inverse localization length [8] and can be used for scaling
analysis.

2.3.2 Finite-Size Scaling

Let us denote the localization length (i.e. the inverse of the smallest LCE) as A =
1/Ymin- The localization length A increases with the system width M according to a
power law:

A o< M%, (2.16)

where the exponent ¢ determines the present phase. For o0 > 1 (o < 1) the system is
in the regime of extended (localized) states, and & = 1 in the critical regime. If the
system is in the exponentially localized regime, we expect A o const. According to
the one-parameter scaling theory by MacKinnon and Kramer [19], the localization
length normalized by strip width A = A /M obeys the equation

dlnA B

Ty = X(nA), (2.17)

where the scaling function y must be determined numerically, with solutions of the
form

AMW) = f(E(W)/M). (2.18)
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Here, the parameter W characterizes the disorder strength and & is a characteristic
length of the system. The main statement of the one-parameter scaling theory is
that A does not depend on M and W separately. As a consequence, any change
of disorder strength W can be compensated by a change of the system width
M. Moreover, from the behavior of A in the vicinity of a scale-invariant point
it is possible to extract the critical exponent v of the correlation length [7],
corresponding to the localization length of the infinite system. This can be done
by Taylor expansion
N
InA = InA, + Z

A, (|W—WC|M1/")S
1

s

5 i é —s/v
=InA.+ Y A, (-) , (2.19)
s=1 M

with & = |W —W,|~V. Comparing the latter with Eq. (2.18), the scaling function & is
interpreted as the characteristic length scale. If the scaling argument holds, the raw
data should collapse onto a single curve by rescaling the data with M — & /M.

2.4 Metal-Insulator Transition

In our previous work [6] we have discussed the scaling behavior of lattice fermions
with preserved node symmetry (6 = 0) and broken node symmetry (6 = 0.5).
Furthermore, we have chosen parameters such that the single node was located in the
center of the Brillouin zone. In this work we will focus only on lifted degeneracy of
the node structure, but consider the node to be located at the border of the Brillouin
zone (cf. Point M in Fig. 2.1). This can be achieved by setting m = 26. In this case
the Dirac cone at the border has no gap. Setting m = 0.8 opens a gap and corresponds
to m = 0.2 for the node in the center of the Brillouin zone.

In the following we set 7z = 0.8 for the mean value of the random gap (i.e.,
m = (m)) and calculate localization lengths by means of the transfer matrix approach
using Eq. (2.13). This is done for several combinations of strip width M and disorder
strength W. We use for the random gap m a box distribution on the interval [m —
W /2,m+ W /2] and calculations are restricted to the Dirac point (i.e. E = 0).

Considering the disorder dependence of the rescaled localization length A, our
data exhibits two critical points. Below transition point I (W,; ~ 3.047) the system
is insulating, meaning that A decays with increasing system size. Between the first
and the second point (W, ~ 7.727), the rescaled localization length is growing with
system size, indicating metallic behavior. For even stronger disorder the system is
insulating again. Results are shown in Fig. 2.3 on a logarithmic scale.

In order to compute the critical quantities, we have calculated A in vicinity of
transition point I and fitted the data to Eq.(2.19) for S = 5. The finite-size scaling
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Fig. 2.3 Logarithm of the normalized localization length in the vicinity of critical point I for
6 = 0.5 and i = 0.8. Dashed lines are the result of fitting Eq. (2.19) to the data

Table 2.1 Critical values for

Critical point 1 1I
m=0.8 and 6 = 0.5 obtained fiicd’ pon
from fitting the data to Exponent v 1.217+0.017 1.451+0.024
equation W, 3.047+0.004 7.727+0.01
A 0.893+0.013 0.479 +0.007

Disorder range 2.7 <W <3.33 6.6<W <84
System sizes 20<M <80 20< M <80

analysis leads to the critical exponent v, which can be taken from Table 2.1. It
also yields the scaling function &, which we use to rescale the data onto a single
curve. Figure 2.4 shows that all points collapse nicely either on the metallic or the
insulating branch.

The same procedure has been performed in vicinity of critical point II. In Fig. 2.5
it can be seen, that In(A) is growing with system size, left of the transition point. On
the other hand, it is decaying with system size, on the right of the critical point. The
dashed lines in Fig.2.5 are the result of fitting the data to Eq. (2.19) for S = 5 and
the critical quantities can be taken from Table 2.1. The resulting scaling function
could then be used to rescale the raw data onto a single curve, which is shown
Fig. 2.6. Again, the rescaled data has a metallic and an insulating branch. This
clearly demonstrates the appearance of an Anderson transition at critical points I
and II.
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Fig. 2.4 Rescaled data in vicinity of critical point I, symbols are identical to those used in Fig. 2.3.
The dashed line corresponds to A,
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Fig. 2.5 Logarithm of the normalized localization length in the vicinity of critical point II for
6 = 0.5 and i = 0.8. Dashed lines are the result of fitting Eq. (2.19) to the data
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Fig. 2.6 Rescaled data in vicinity of critical point I, symbols are identical to those used in Fig. 2.5.
The dashed line corresponds to A,

2.5 Insulator-Insulator Transition

Let us now consider /1 = 20, in this case the node at the border of the Brillouin
zone is ungapped. We expect that the system behaves critical for disorder strengths
smaller than W,;. This means, that if we change m for fixed disorder, the system
should undergo a insulator-insulator transition. In order to confirm this assumption,
we fix disorder strength to W = 1 and calculate A for different strip widths M
as a function of m. Discussing the inverse of the normalized localization length
Z = MYnin (or normalized Lyapunov exponent) is equivalent to discussing A /M
[20] and numerical results are shown in Fig. 2.7. Indeed, it can be seen that there is
a critical point at 2 = 1. The critical exponent can be obtained by fitting the data to

7= 1—4 ~ze+c (m—m )MV (2.20)
and gives for our data
v=1.006+£0.005 (W=1,m.=1). (2.21)
Using the resulting scaling function
E=|m—m", (2.22)

the raw data, shown in Fig. 2.7, can be rescaled and all points collapse onto a single
curve. In this case only a insulating branch exists as can be seen in Fig 2.8.
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Fig. 2.7 Normalized Lyapunov exponent at the insulator-insulator transition for 6§ = 0.5, m = 1
and W = 1. Dashed lines correspond to the result of fitting Eq. (2.20) to the data
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Fig. 2.8 Rescaled data in vicinity of the insulator-insulator transition, symbols are identical to
those used in Fig. 2.7
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2.6 Discussion

Our results are summarized in the following. The localization length A for
6 = 0.5 always increases with M according to the power law of Eq. (2.16), where
the exponent ¢ depends on the model parameters:

o=0 form=0.8, W < W,

a>1 form=0.8, W, <W < W,
O<oa<1form=0.8 W>Ws, '
a=1 form=1,W<W,

(2.23)

For the single node located at the border of the Brillouin zone, finite-size scaling
of the localization lengths shows a typical Anderson transition at two points. States
are exponentially localized for weak disorder (i.e. W < W,;), since o0 = 0. In the
intermediate phase for W,; < W < W, the exponent is ¢ > 1, indicating metallic
behavior. For stronger disorder states are decaying but not exponentially (i.e. 0 <
o < 1). This indicates two metal-insulator transitions, one from o« =0 to & > 1 and
asecond froma >1to0 < o < 1.

The localization length A for § = 0.5, m = 1 and W < W, is critical, thus
independent of M (i.e. o = 1). Since the model shows insulating behavior for
m = 0.8, it has to undergo a transition from o = 0 to & = 1 when increasing m
to /. = 1. The exact value for W, is not known yet, therefore needs to evaluated by
further calculations. Moreover, it is not clear how a changes for stronger disorder
W >W..

2.7 Conclusion

We have introduced a model for Dirac fermions on a lattice with several nodes which
allows us to perform numerical calculations of the localization length by means of
the transfer matrix formalism. Using the Hamiltonian in Eq. (2.6) it is possible to
break the node symmetry in the Brillouin zone and by an appropriate choice of m
the location of a node can be chosen between three points (I', M, X). In this work we
have set 0 = 0.5 and considered the node to be on the border of the Brillouin zone.

We have calculated localization lengths for several strip widths and for different
strength of the random gap. In all cases the localization length can be described by
A ~ M®. However, the exponent o depends on the model parameters (cf. Eq.2.23).
In particular, our numerical result indicates oo = 0 for non-degenerate nodes, finite
gap and weak disorder. On the other hand, we have a metallic phase (i.e o¢ > 1)
only for intermediate disorder strength. The metallic phase is separated from the
insulating phases by two Anderson transitions. At these transitions one-parameter
scaling holds and we have been able to extract critical exponents.
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In the special case of 7im = 1, where the node is gapless, A shows critical behavior,

at least for weak disorder. The latter represents a phase boundary, separating two
insulating phases, where a insulator-insulator transition occurs. By means of finite-
size scaling we have calculated the critical exponent.
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Chapter 3
Dielectric Constant and Screened Interactions
in AA Stacked Bilayer Graphene

Luis Brey

Abstract AA stacked bilayer graphene has a band structure consisting of two Dirac
cones, bonding and antibonding, displaced in energies. In absence of interaction
between electrons, the system is metallic and the Fermi surface consists of circles
in the bonding and antibonding bands which coincides exactly. In presence of
interaction between electrons the system is unstable to the condensation of bonding-
like electrons and antibonding-like holes. The properties and the critical temperature
of this gapped phase depends strongly on the screening on the interaction between
pairs at large distances. In this work we study the polarizability and the intra and
interlayer screened Coulomb interactions of a AA-stacked bilayer graphene for
different energy gaps in the spectrum. We obtain that the existence of a gap suppress
the screening at small wavevectors. Our results indcates the importance of a self-
consistent treatment of the screening in the study of gapped phases in AA stacked
bilayer graphene.

3.1 Introduction

Graphene is a two-dimensional zero gap semiconductor with exotic electronic
properties [1]. In graphene, carbon atoms arrange in a triangular lattice with two
atoms A and B per unit cell. The unusual properties of monolayer graphene triggered
in the last years the study of bilayer graphene systems. The electronic properties
of bilayer graphene depends strongly on the orientation of the constituent layers.
The more studied [2] and more natural form of the bilayer graphene is the so-
called Bernal or AB stacking for which high quality samples have been obtained.
Few layer graphene films grown by chemical vapor deposition methods, often
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Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid, Spain
e-mail: brey @icmm.csic.es

R. Egger et al. (eds.), Low-Dimensional Functional Materials, NATO Science for Peace 27
and Security Series B: Physics and Biophysics, DOI 10.1007/978-94-007-6618-1_3,
© Springer Science+Business Media Dordrecht 2013


mailto:brey@icmm.csic.es

28 L. Brey

show rotations of successive graphene layers. Therefore exfoliation from these
films produces twisted bilayer graphene [3, 4]. Finally, experimental observations
of bilayers graphene with AA stacking have been reported [5]. This stacking is
less natural than Bernal stacking and there are not many theoretical studies on the
properties of AA-stacking bilayer graphene [6—10].

In the AA bilayer graphene, all carbon atoms of the left layer are tunnel coupled
with the equivalent atoms of the right layer. The band structure of the system con-
sists of two Dirac cones, with the Dirac points separated in energy by 27, being
the interlayer hopping parameter. These two Dirac cones correspond to the bonding
and anti-bonding combination of the Dirac cones of the constituent monolayers. In
undoped systems, the Fermi surface coincides with the region in momentum space
where the bonding and the antibonding Dirac cones crosses, and consists of two
concentric circles of radius k. = #; /livp. Here v is the Fermi velocity of monolayer
graphene. In this case the particle hole symmetry of the Hamiltonian, Eq. (3.1)
ensures perfect nesting between the electron Fermi spheres in the bonding and
antibonding bands, thereby driven the electron-hole condensation [11,12]. Estimates
of the critical temperature of the condensate depends strongly on the model and
approximations used for describing the electron-electron interaction. The long range
character of the unscreened Coulomb interaction produces large gaps in the spectra
and critical temperatures near room temperature [13, 14]. On the opposite limit,
in the metallic AA stacked bilayer graphene the electron hole excitations provide
metallic screening at long distances, and the gap of the condensate obtained using
this screening is extremely small [15-17]. The appearance of an energy gap in
the condensate induces changes in the electron polarizability and can modify the
pairing interaction considerably [18-20]. In this work we study the polarizability
and the intra and interlayer screened Coulomb interactions of a AA-stacked bilayer
graphene for different energy gaps in the spectrum.

3.2 Hamiltonian

Near a Dirac point the one-electron Hamiltonian of the AA stacked bilayer graphene
takes the form

Hy=hvp z (kx—iky)cxikcmk—tl z C;LkCaRk'i‘h.C. (3.1
K,i=L,R K,0=A,B

here the operator c;ik creates an electron in the sublattice o, in the layer i and
with momentum k. #; is the interlayer hopping, that we consider to get a values

t; ~ 0.12¢ [2], being ¢ the first neighbour interlayer hopping, th=\/T§ta and a is the
monolayer graphene lattice parameter. Valley and spin degrees of freedom are not
explicitly treated. The eigenvalues of Hamiltonian Eq. (3.1) are £(k) &-#;, which are
the bonding (—) and antibonding (+) combination of the left and right layer graphene
wavefunctions. The monolayer graphene dispersion is €(k) = shivpk, where s=+1
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indicates the valence and conduction bands of each graphene layer. We create a
gap in the system at the Fermi energy by including a coupling, E, /2, between the
electron-like band of the symmetric Dirac cone band and the hole like band of the
antisymmetric Dirac cone.

Figure 3.1 illustrates the band structure of the AA bilayer as a function of the
momentum near a Dirac point. When the system is undoped, the Fermi surface
corresponds with a circle of radius k. = #; /hvp at which the hole-like antibonding
band spectrum crosses the electron-like bonding band spectrum.

3.3 Dielectric Constant and Effective Interactions

The electron electron Coulomb interactions induce charge screening that modifies
the interaction between particles. In bilayer graphene, charges located in different
layers participate in the screening process. Within the Random Phase Approxima-
tion (RPA) the dielectric function is a 2 X2 matrix of the form,

8067[3 (q,(l)) = 8()50"3 _ZVEXI (q)own;)ﬁ (q,(l)) ; (32)
1

where gy is a background dielectric constant due to the substrate upon which
graphene is deposited. The external Coulomb interactions for intralayers and
interlayers are VY (q)=Vg'z(q)=vq and V% (q)= & (q)=vqe 9 respectively, being
vq7:2717e2 /q the bare Coulomb interaction and d the distance between the graphene
layers. The polarizability matrix takes the form,
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8s8v f(gs‘k) _f(gs"k/) o, ’
I1° o (g, ) = — — IR FYP (kK 33

P (q’ ) S K,s,s’ o+ Ek — 8s/,k/ N ( ) ( )
where k'=k’ +q, g, = 2 and g, = 2 are the spin and valley degeneracy, S is
the sample area and & are the eigenvalues of the band s corresponding to the
wavevector k. In Egs. (3.2) and (3.3), the index o and 3 are the layer indices and
f(E) is the Fermi-Dirac distribution. The couplings F have the form

FoP (kK) =< 5,K|Py|s K >< s/ ,K'|Pg|s,k > (3.4)

s,8"

where Py, is a layer projection operator,

1000 0000
0100 0000

PL=1{ 0000 | *™Px= {0010 (3.5)
0000 0001

These operators are written in the basis LA,LB,RA,RB. In the expression of the
polarizability, Eq. (3.3), both the eigenvalues and eigenvectors depends on the value
of the gap E,. By symmetry 1'[2 L= HI(Q)‘R and HRR = HI(?)‘L. The response function
H& B indicates the electric polariyzation created in léyer a by and electric field acting
on layer 3. The sum

m%(q) =110, + TR g+ IT. g+ TTR (3.6)

plays the role of the effective polarizability of the whole system, and gives and
indication of the screening ability of the AA-stacked bilayer graphene.

In Fig. 3.2 we plot IT° for different values of the energy gap E,. In the gapless
case, the polarization takes the form [21,22],

2
g | 2k 2k, 2k,
IM°g,E,=0)=Dg |1 —O(q—2k.)— | =541 — _ ke
(‘17 g ) 0 (q C>4k€ 7 ( p arccos p

(3.7)

where Dy = 2gsgv#; is the density of states at the Fermi energy of the AA staked

bilayer. The finite value of IT° (q,E; = 0) at zero wavevector indicates the metallic
behaviour of the system at long distances.

When the gap is finite, the polarizability of the system is suppressed at small
wavevectors, indicating that the system is unable to screen long-wavelength pertur-
bations. We observe that as larger is the energy gap larger is the region in reciprocal
space where the screened is suppressed.
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Fig. 3.2 The effective static polarizability of a AA staked bilayer graphene as function of the
wavevector k for different values of the energy gap. The polarizability is plotted in units of the
density of states Dy

From the definition of the RPA dielectric constant, Eq.(3.2) and using the
previous expressions for the polarizabilities, the obtain the intra and interlayer
effective interactions,

<VLL(61) VLR(Q)) _
Vir(q) ViL(q)

LI ()] () e

And from this equation we obtain

) 1+ %H&(g)(l — e~ 2ad)

Vir(q)
o

2 2
O (1 0) + L T (g)e )~ (LT (q) + e T, q))

<
5
N
FERG
~— ~—

) e+ %Z—)HSR(Q) (e7244 1)

& v v _ 2 v v _ 2
O (10 g) + (@) o) (S I () + e 1T}, (g))
(3.9)
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Fig. 3.3 Inter and intralayer interactions as functions of the wavevector ¢ for different values of
the gap E,. In this figure the effective fine-structure factor is § = 1.2

In Fig. 3.3 we plot the effective interactions as function of the wavevector g, for
different values of the gap Eg. In graphene the strength of the Coulomb interaction
with respect the kinetic energy is characterised by an effective fine structure constant
B=e?/eohvr. The results in Fig. 3.3 correspond to B = 1.2, but the conclusions we
get are rather independent of the precise value of this parameter. For large values of
the wavevector g, both intra and interlayer interactions are highly reduced from
the bare Coulomb interaction. That is an indication of the ability of the system
for screening short period perturbations by creating electron hole pairs. However
for values of g below ~ E,/hvp, the interactions VE£(g) and VER(g) are not fully
screened and both of them have a Coulomb like 1/g divergence. The suppression
of the screening of the electron electron interaction at large distances, caused by
the existence of a gap, is going to be crucial for the study of possible excitonic
condensates in AA stacked bilayer graphene. A estimation of the critical temperature
of condensate will require a selfconsistent treatment of the gap, so that the screened

interactions must be computed self-consistently with energies and wave-functions
obtained from the many body Hamiltonian.
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Chapter 4
Graphene Bloch Equations

Torben Winzer, Ermin Mali¢, and Andreas Knorr

Abstract The ultrafast carrier dynamics in graphene has been intensively
investigated in recent years. From the theoretical side the graphene Bloch equations
have been successfully applied to explain linear absorption and various features
observed in optical pump-probe experiments. Here, we present a detailed derivation
of the graphene Bloch equations and discuss different contributions resulting from
the electron-electron and electron-phonon interaction.

4.1 Introduction

Carbon nanostructures, such as graphene and carbon nanotubes, provide unique
optical and electronic properties [1-3]. In recent years, their investigations attract
enormous interest in both theoretical and experimental research. From the theoret-
ical side, the density matrix theory turned out to be an ideal technique to study
the properties of these low-dimensional nanostructures. In particular, this approach
allows the microscopic inclusion of many-particle effects resulting in a realistic
description of the system [4, 5].

Within the density matrix formalism various features of absorption spectra of
carbon structures can be studied, such as Coulomb-induced renormalization of the
band structure, excitonic effects, the formation of phonon-induced sidebands and ul-
trafast carrier scattering [6—12]. Recently also the influence of the functionalization
of carbon nanotubes with spinopyran molecules has been investigated predicting a
high potential of carbon nanotubes as substrate for molecular switches [13].
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For graphene one recent focus of investigations, based on the density matrix
formalism, lies on the ultrafast carrier dynamics. Kinetic equations for electrons
and phonons describe the optical excitation and the Coulomb- and phonon-induced
relaxation processes of photo-excited carries [10, 14, 15]. Within these microscopic
calculations the typical bi-exponential decay measured in differential pump-probe
experiments, can be well described and explained [16, 17]. Here, the strength of the
approach is that the efficiency of each scattering channel can be analyzed separately
to shed light on experimentally observed phenomena from a microscopic point of
view. Processes like momentum [10, 15] and orientational relaxation [10, 18] can
be ascribed to the corresponding responsible scattering mechanism. Therewith, the
role of experimental parameters, such as the pump fluence can be studied in detail
[19], resulting e.g. in a microscopic explanation of the optical saturation behavior
of graphene [20]. Moreover, the microscopic description of the relaxation dynamics
allows to predict various fundamental new phenomena in graphene arising from its
unique band structure:

e It has been demonstrated that depending on the excitation regime, Coulomb-
induced Auger processes give rise to a multiplication of photo-excited carriers,
which may optimize the efficiency of graphene-based photodetectors [12, 21].
Meanwhile, there are several experimental studies revealing the important role
of Auger processes in graphene [22-25].

* A recent pump-probe experiment has observed a transient population inversion in
graphene [26]. Here, microscopic calculations have shown that efficient optical
phonon scattering is the crucial formation mechanism [27]. Furthermore, in
a gain excitation regime Auger-processes are found to be the predominant
recombination mechanism being responsible for the experimentally observed
transience of the population inversion on a 100fs timescale [26,27].

* Another graphene specific phenomenon concerns the relaxation of a current.
In contrast to semiconductors, the decay of current corresponds only to the
orientational relaxation, where Coulomb scattering is a crucial channel at high
carrier densities [28].

In this work,! we present a detailed derivation of the graphene Bloch equations
(GBEs) underlaying all above mentioned investigations. The GBEs describe the
coupled dynamics of carriers, phonons, and microscopic polarization on a consistent
footing based on density matrix theory. The Coulomb and carrier-phonon interaction
are treated within the second-order Born-Markov approximation and the electron-
light interaction is considered within a semi-classical approach [5]. Furthermore, a
derivation of the optical and the Coulomb matrix element is presented.

I This work is part of the dissertation of Torben Winzer.
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4.2 Hamilton Operator

The quantum mechanical properties of graphene’s carrier and phonon system inter-
acting with external electromagnetic fields is described by the Hamilton operator

H:H0+Hcf+Hcc+Hcp7 (41)

accounting for the free energy of carriers and phonons H), the carrier-field coupling
H.y, the carrier-carrier interaction H.. and the carrier-phonon interaction Hp.
Applying electron field operators, a classical electromagnetic field, and quantized
displacements of the ions we transform the Hamilton operator into the represen-
tation of second quantization [5]. All contributions of Eq.(4.1) can be expressed
in terms of creation and annihilation operators, where ag) annihilates (creates)
an electron in the state a = (k,,A,) with the electron wave vector k, in the
band A, = v,c. The corresponding phonon operators bI(,T) acts on the phonon state
n = (qy, j,) with the phonon momentum q in the mode j. Due to their fermionic
nature the electronic operators fulfill the anti-commutator relations

lag,al]; = 8p and  [a)),al’], =0. 4.2)

Consequently, the phonon operators obey the bosonic commutator relations
busblal- = 8am  and b 601 =o0. (4.3)

Therewith, the free Hamiltonian reads
1
Ho =Y gaja, + > hoy, (bj,b,, + E) , (4.4)
a n

where €, denotes graphene’s electronic band structure, discussed in Sect. 4.3.1, and
hy is the phonon dispersion.
Within the radiation gauge [29] the carrier-field coupling is given by

e
Hep = ’h_zMab A(t)azay + zzaa a; (4.5)

with the positive elementary electron charge ey and the free electron mass mg. The
optical matrix element My, = (¥a(r)|Ve|¥(r)) determines the coupling strength
between the electronic system and an external field in terms of its vector potential
A(t), where W(r) denotes the single-particle wave function having energies &,
cf. Eq. (4.4). The optical matrix element of graphene will be discussed in detail in
Sect.4.3.2.
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The Hamilton operator of the Coulomb interaction reads

=3 Z Ve ajanaqde, (4.6)
abcd
and couples to two initial (a, b) and two final electron states (¢, d). The correspond-
ing matrix element is given by V3P = (¥, (r)¥,(r')|V (r — ') |¥a(r') ¥ (r)) with the
Coulomb potential V(r —r’). A more detailed discussion of graphene’s Coulomb
matrix element is presented in Sect. 4.3.3.
The electron-phonon Hamilton operator, describing the interaction between both
systems, reads in second quantization:

MAj Mt A 7L A Mt A
Hp = Z Z [g 14, 1T 2 bj 1 2J* szq klqu 4.7)
MAk jq

The first term describes an electronic transition from k — q to k initiated by the
absorption of a phonon with the momentum q. The second term is the inverse
process induced by the emission of a phonon. The applied matrix elements gk‘l“
are taken from DFT-calculations for the optical phonons [30] and from Ref. [31] for
the acoustic phonons.

4.3 Bandstructure and Matrix Elements

To determine the Hamilton operator explicitly, the band structure and the matrix
elements need to be known. In this section, tight-binding wave functions are applied
to work out graphene’s band structure, the optical as well as the Coulomb matrix
element analytically.

4.3.1 Bandstructure of Graphene

The band structure of graphene is formed by the four valence electrons of both car-
bon atom in the unit cell. Respectively, three electrons configure a sp>-hybridization
being responsible for the extremely strong in-plane binding in graphene [32]. The
corresponding o-bands are energetically separated and therefore not relevant for
phenomena resulting from optical excitations in the infrared and THz regime [33].
Consequently, this work focuses on the fourth electron, which has a 2p,-shaped
orbital. Due to the localization of these orbitals at the atomic positions, the electronic
wave function ¥ (k) can be described in a tight-binding approach [34,35] as a linear
combination of both equivalent sublattices A and B

Y(k,r) =ca(k)@a(k,r) + cp(k)DPp(Kk,T), (4.8)
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where ¢;(Kk) are the tight-binding coefficients and @; (k) the sublattice wave function
with [ = A, B. The latter are the normalized functions

1 .
@ (k,r) = N Y e*Rig(r—Ry), (4.9)
R,

which are periodic on the sublattice R;. N is here the number of unit cells in the
system and ¢(r) is the atomic orbital. With this ansatz the Schrédinger equation

HY(k,r) = g P(k,r) (4.10)

can be solved analytically. To this end Eq.(4.10) is multiplied with @} (k) and
@p(Kk) respectively and integration yields

<HAA — &Saa Hyp — 8kSAB) <CA (k)> —0 @.11)
Hpa — exSpa Hpe — &Sse) \ca(Kk) ’

with H;; = (®;(k)|H|®;j(k)) and S;; = (®;(k)|P;(k)). Taking into account the
symmetry relations H(S)aa = H(S)pp and H(S)ap = H(S)},, arising from the
equivalence of both sublattices, Eq.(4.11) exhibits non-trivial solutions, if the
eigenvalues fulfill

& :—@i\/ez—HjAHHABP, (4.12)
with
R[HapS: 5| — HaunS
o= MHas gB] Al (4.13)
1Saal* — |Sas]
It remains to determine the matrix elements H;; and S;;, e.g.
1 .
Hap = Y e*ReRa)(p(r —Ry)|H|¢(r — Rp)). (4.14)
R4.Rp

Due to the localization of the atomic orbital, H4p can be treated within the next
neighbor approximation, i.e. for each summand R4 only the three adjacent B atoms
at Rp,, Rp,, and Rp, are considered [36]. In particular, one has R, — R4 = b;
and the three tight-binding integrals 9 = (¢(r — R4 )|H|¢(r —Rp,)) are constant
and independent of i, since the 2p,-orbital depends only on distance ¢ (r) = ¢(|r|)
[35]. Common values for 7y are in the range between —2.5 and —3.0eV [35, 37].
Therewith Eq. (4.14) yields:

Hpp = we(k), (4.15)
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with the nearest neighbor sum
e(k) = ™. (4.16)

The other matrix elements can be treated analogously: Hs4 is a constant, which is
chosen to be zero to benchmark the energy scale with respect to the Fermi level. The
normalization of the sublattice wave function Eq. (4.9) directly yields Sy4 = 1, and
Sap is given by Sup = spe(k) with the overlap integral so = (¢ (r)|¢(r —by)), here
common values are between 0.06 and 0.13 [35,38]. Later in this work the overlap in-
tegral will be neglect providing still a good description around the Dirac point. Con-
sidering all matrix elements and with Egs. (4.12) and (4.13) the band structure reads:

a_ —oaple(k)|
P — Y Ll i (4.17)
“ T 1—ousole(k)|
where A = ¢ (A = v) denotes the conduction (valence) band with o, = 1 (0, = —1).

The shape of the band structure is mainly determined by the function:

le(K)| = , | 3+2cos(agky) + 4 cos (@“0 kx> cos (“—z(’ky) , (4.18)

offering a saddle at the M point (M = aj\’kex) and the characteristic linear

band crossing around the K/K' point (K/K' = :I:;‘T’f)ey), where ap = 0.2461 nm
is graphene’s lattice constant [36].

Finally, with Eqgs. (4.17) and (4.11) and with the normalization of the sublattice
wave function, the tight-binding coefficients can be determined:

(k) =

and cA(k)=—0) ; |cB(k). (4.19)

\/_ \/ 1-— G;LS()|e

Therewith, the entire tight-binding wave function is available, which is utilized to
calculate the optical and Coulomb matrix element in Sects.4.3.2 and 4.3.3.

Linear Band Approximation

Close to the Dirac point the band structure from Eq.(4.17) can be approximated
linearly. Therefore, the overlap integral sy is neglected and the nearest neighbor
sum (Eq. 4.16) is expand up to the first order around the Dirac point:

e(k) ~ e(K) + [Vie(k)] | (k—K)= - C’Of (ke+k),  (4.20)
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with K = %ey and k = k — K is the electron wave vector with respect to the Dirac
point. Therewith the band structure reads:

&' = oy vrk, 4.21)
with vy = —yaoV/3 /2 = 0.605eVnm corresponding to a Fermi velocity of
0.92nm/fs.

Density of States
The density of states is defined by
1
D(e) =~ 8(c—¢gl), (4.22)
A sAk

where A is the area of the graphene sheet. For small energies € the linear band
structure Eq. (4.21) can be applied and the k-sum is restricted to the regions around
the K and K’ point. Considering the degeneracy of spin Eq. (4.22) results in a linear
density of states:

8

—el. (4.23)

D(e) = —=—
(€) 3nyyag

In particular, the density of states vanishes at the Dirac point.

4.3.2 Optical Matrix Element

The optical matrix element from Eq.(4.5) determines the strength of coupling
between the electronic system and an external field in terms of its vector potential
A(¢). In second quantization the matrix element is given by [5]:

M = (%" (k1) Ve[ (K T). (4.24)
Applying the tight-binding wave function (Eq.4.8), the optical matrix element can
be treated within the next-neighbor approximation [39,40]. Exploiting the symmetry
properties of the 2p_-orbital yields

My = & 1 Y % le*(k) ie"“"i b: 1 (4.25)
r = Ok K/ —-— |, .
R i €9 ~" bl
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and

M, = i M 4 *(k)i ikb; Di (4.26)
;= / e el — 1, .
KK k 1—2fe(k)P le(k)| = [b;|

for interband and intraband processes, respectively [39,40]. A detailed derivation
and a Cartesian parametrization is found in the Appendix 4.A.1. The Kronecker & y/
allows only direct optical transitions neglecting the quantum mechanical momentum
of the photons.” Note, the optical matrix element is a imaginary number for A = A/,
whereas interband transitions A # A’ are described by a real-valued coupling. Close
to the Dirac point the influence of the overlap sg is small and will be neglect in the
following. Then, the optical matrix element fulfills the symmetry relations MEC =
M;" and My" = —M,“.

Optical Matrix Element Close to the Dirac Point

For excitation energies in the THz and near infrared regime the optical matrix
elements can be further simplified. Regarding the optical elements as a vector field
around the Dirac point, it can be shown that M[‘ is close to a pure rotational
field, whereas the intraband matrix element is approximately a pure radial field.
Therefore, both vector fields are separated in their rotational and radial parts:

M :M(k)ek+M(¢)e¢, 4.27)
with M(;) = M-e;. Neglecting the divergence of the interband matrix element and the

rotation of My, the M(;) can be expanded at the Dirac point by applying I’'Hopital’s
rule. The simplified optical matrix elements read:

3 3
M = EM% and K= izMek. (4.28)
In particular, the intraband matrix element is directly related to the band structure

via M’ o< Vi &. For the interband matrix element the direction of rotation reverses
at the K’ point.

4.3.3 Coulomb Matrix Element

The Coulomb matrix element in second quantization is given by [4]:

Vea = (Fa(x), H()|V (r — 1) [ Ha ('), ¥e(r)). (4.29)

2In the following the optical matrix element will be denoted only with a single electron wave
vector. Nevertheless, it still contains the Kronecker O i
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Applying the tight-binding wave functions (Eq.4.8) and the 2p.-function with
an effective charge number Z ~ 4.6 for the atomic orbitals, the Coulomb matrix
element can be treated analytically within the next-neighbor approximation. The
derivation in Appendix 4.A.2 results in

VA = VoV f(a,) £ (b,d) 8, 1 ky-ks» (4.30)

with ¢ = |k3 — k;|. Here, V, = le % is the Fourier transform of the two-
dimensional Coulomb potential. The modification of the Coulomb potential ¥ =
[(gap/Z)* +1] ~ arises from the integral over the 2p_-orbitals. In the case of large
momentum transfers, ¥, causes an effective decay of the Coulomb potential o g B
[41] . However, for all processes taking place within one Dirac valley it is ¢ < ag/Z
and therewith ¥, ~ 1. The Kronecker 5k1+k27k3+k4 ensures the conservation of
momentum for Coulomb-induced processes. The graphene specific form factor

e’ (ka) e(ke) }
le(ka)] le(ke)]

> (4.31)

1
fla,e) =3 [1 + 02,00
results directly from the tight-binding ansatz. Within the linear approximation for
the nearest neighbor sum (Eq. 4.20) the form factor describes the angle dependence
of each Coulomb process

fla,e)= % [1 + 03,05, )| (4.32)

where @, is here the polar angle of k,. Therewith, the Coulomb matrix element
becomes maximal for parallel processes within a band, whereas it vanishes for anti-
parallel electron wave vectors (backscattering). For interband processes the situation
is reversed.

Screening

The Coulomb potential V, is screened due the presence of other carriers. Throughout
this work the screened Coulomb potential Wy = V,,/€.€(q) is applied considering
the influence of the substrate &, as well as graphene’s intrinsic carriers.

Assuming that the substrate located only on one side of the graphene
monolayer, the corresponding screening can be considered simply by &), =
(gr,sub + 8r,vac)/2 [42].

The intrinsic screening can be derived within the density matrix formalism
resulting in the static limit [43,44]:

2 I [ Rek—q)
€@ = 1=V Y g T e <1 E"[|e<k>||e<k—qo|D' (433
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Within the tight-binding approach the dielectric function £(q) can be evaluated
numerically. For T = 0K and small momentum transfers (within one Dirac valley)
the resulting screening is approximately constant £(q) = 4.66 [10,44].

4.4 Graphene Bloch Equations

With the knowledge about the Hamilton operator, the matrix elements, and the
dispersion of electrons and phonons we have all ingredients to determine the
dynamics of an arbitrary operator quantity (¢). Its temporal evolution is described
by the Heisenberg equation of motion:

d
ih=-0(t) = [0(0). H]. (4.34)

The relevant quantities in the coupled electron-phonon system are the carrier
occupation pk = (afak ), the microscopic polarization px = <alvjaf() which is
a measure for the transition probablhty between both bands, and the phonon
population nq = <b’ Tp q)- In equilibrium pk and nq are given by a Fermi-Dirac and

a Bose-Einstein distribution, respectively.

4.4.1 Free Energy and Carrier-Light Coupling

The optical properties of the free carrier system are described by the Hamilton
operators Hy (Eq.4.4) and H.r (Eq.4.5). The Heisenberg equation (4.34) yields the
Bloch equations:

d d VC*

EPE = —EPﬁ = 23[Q" px], (4.35)
d . i c . Ve v

P =1 [Awx — Q" + Q] px — i€ [Py — il » (4.36)

with Ay = (sﬁ —¢g.)/h and Q&” = l;—%MéélA(t) In the presence of an external
field, the Rabi frequency €2, couples the dynamics of the carrier occupation and py.
The real-numbered optical intraband contribution Qli” as well as the free energy
part gives rise to oscillations of the microscopic polarization.
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4.4.2 Many-Particle Interactions

The treatment of many-particle interactions, such as the carrier-carrier or carrier-
phonon coupling leads to Boltzmann-like scattering equations describing the relax-
ation dynamics after an optical excitation. The derivation of the equations of motion
needs more effort and certain approximations, which are described in the following.

Correlation Expansion

Applying the Heisenberg equation of motion (Eq. 4.34) for a many-particle Hamil-
ton operator, e.g. H.. or H.,, the dynamics of an arbitrary two-operator expectation
value (EV) (2) = (cacp), like pé, Pk, OF n{l, couples to the dynamics of higher order
EVs (n) = (cacp - - - cn) with n > 2. The latter couples again to the next higher order
resulting in an infinite hierarchy of equations, which describes the many-particle
system exactly [45]. However, to obtain an manageable finite set of equations the
correlation expansion is applied allowing a decoupling at a desired order [45]. The
idea is to factorize a n-th order EV into all possible permutation of same- and lower-
order correlations:

(ca) = (ca)*
(cacn) = (cacp)” + (ca) (cp)*
<CaCch> ( 1)Gf (abc) <Ca>c< >C+(_1)cf(cab)<cc>c<cacb>
+H(=1)7 () (ceca) + (ca) (en) {ce)
. (4.37)

(cacpee) =

where o (---) is the number of permutations of fermion operators. Supposing that,
the higher the order the less important is the contribution of the corresponding
correlation, the set of equations can be closed at a certain order n by neglecting (n)¢.
This also corresponds to perturbation theory in the screened interaction Wy. Since
the number of fermions have to be conserved only terms with the same number of
electron creation and annihilation operators contributes.

Markov-Approximation

The Markov approximation is a procedure to approximately solve intermediate
differential equations, emerging in the derivation of the scattering equations. The
structure of these intermediate equations reads [4]:

d .~ .
Ex(t) = (i —7y)x(t) +iQ(z). (4.38)



46 T. Winzer et al.

For x(—eo) = 0 a formal integration yields
x(t) = i/dt’e("d’*Y)"Q(t —1. (4.39)

The idea of the Markov-approximation is that the memory kernel —#' of Q can be
neglected, if Q(r —t') varies slowly compared to the oscillation e~ However, in
this work Q(r — ) typically contains two-operator or more EVs (ajap)(t) having
fast oscillations arising from the free energy, cf. Egs. (4.4) and (4.36). The memory
kernel of this oscillations have to be considered via

(abay) (1 —1') ~ e 7@ (gla (1), (4.40)

resulting in Q(t —t') ~ Q(t)e '®', where ® contains all memory oscillations.
Then, Q(¢) can be taken out of the integral, which can be evaluated analytically
subsequently. Integration yields the Heitler-zeta function [46]:

B ) Y _ Aw
x(t) = Q(r) {Z—Aa)z—i-)ﬂ P <—Aw2+y2)] , (4.41)

with Aw = @ — @ and Z(-) denotes the principal value. In the case of a vanishing
7 the integral in Eq. (4.39) yields:

+(0) = 0(1) [msm ©0)— 7 (ﬁ)] , (4.42)

where the sharp §-function represents the conservation of energy in the considered
scattering processes.

4.4.3 Coulomb Interaction

In this section the Coulomb-induced dynamics is considered up to the second order
in correlation expansion. The obtained equations are responsible for the ultrafast
dephasing of polarization and redistribution of optically excited carriers in graphene.

Starting from the Heisenberg equation (4.34) the Hamiltonian for the Coulomb
interaction yields:

d, s
hdt (aya,)

=y [V <a1a acay) — Vi (al aba a,) (4.43)

Hee abc

Here, the dynamics of an electronic density matrix element couples to four-operators
EVs. Applying the correlation expansion for the four-operator EVs, they can be



4 Graphene Bloch Equations 47

divided into the first-order Hartree-Fock contribution (HF) and the second-order
correlation term (corr) with

. d
i (ajay)| = ) {vﬁ: [(afa,)alac) - (afac) (afay)]
Vi (ke ahac) — {atac) (apas)] } @44)
and
. d
lhE<aIa2> = z {Vfé‘(aia;acab)c — fo(a;a};acaz)c] . (4.45)
corr abc

For reasons of a better readability the notations 012 = <aia2>, oj?= (aﬁfaﬁf> and

A3} = (ajajaza,) are used in following.

Hartree-Fock Contribution

Neglecting the higher-order correlations the Hartree-Fock factorization is a mean-
field approximation. Within this Hartree-Fock approximation

(ajayasay) ~ (ajay)(dyas) — (ajas)(ajay) (4.46)

Coulomb-induced modification of linear absorption spectra can be described [47].

In a spatial homogeneous system only density matrix elements, which are
diagonal with respect to the electronic wave vector, have a non-vanishing EV:
O12 = 0,28k, k,(1 = ky). Therewith the Hartree-Fock contribution (4.44) can be
rewritten as:

d
ih—o,

= -y 3 [ka'ﬂw oL — Yk bk o{;Col‘“}. (4.47)

’ Ky kpy Ay Ac kp ki A Aa
L

For the dynamics of the carrier occupation in the conduction band Eq. (4.47) yields:

d l e 'ce
Spk| = s X vEeu v el i
k/

i [ /
Kkvy JV Kkcv iC
_ﬁz ka/cvpk/+vkk/rrpk/:| pk
K -

i I /CV /(‘(‘
2 | Vavape H Vi pk} Px
K -

I [\ v v 'k cv
— 3 e+ Vi (4.48)
k' -
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The band index combinations of the Coulomb matrix elements in first two lines,
where three indices are equal, denote Auger-like terms. Within the linear band
approximation the corresponding matrix element is antisymmetric with respect
to the Dirac point [41]. Therefore, these terms vanish for an isotropic carrier
distribution. The last two lines are nonlinear in the microscopic polarization, which
are only relevant in the presence of nonlinear optical excitations. Consequently, the
terms in Eq. (4.48) are typically not considered in description of optical properties
in the limit of weak excitations.

The equation of motion for the microscopic polarization within the Hartree-Fock
approximation reads

d kk ch Kk v
E ‘ = _2 |:Vk’k Mpk/ ka"apk/}
lk’

kK ce

_‘2 o VL pi](pE — py)

—-Z bl ok — py)
lk/

——2 (Vi =V e+ (Ve =V ) pulpk. (4.49)
/lk/

The last two lines can be neglected for the same reasons as in Eq. (4.48). Commonly,
the first two lines are treated within the limit of linear optics and Eq. (4.49) can be
simplified to:

ipk’ _len pk——Z[ka”p/—i—ka“p*/} (4.50)
dt HF h hk/ kK ve Pk Kk FK | .

Kk ce kkve

with g/ =3, { kKo Kk “"} . The first term in Eq. (4.50) has the same structure
k/

as the free energy contribution, cf. Eq. (4.36). This Coulomb-induced renormaliza-
tion of the band structure results in a blue-shift of the free energy peak in absorption
spectra [7-11]. The second term represents a renormalization of the Rabi-frequency
resulting in a deformation and a red-shift of the absorption peak, which can be
interpreted as the formation of saddle point excitons [7—11].

Carrier-Carrier Scattering

This section goes beyond the Hartree-Fock level focusing on the second-order
correlation term, cf. Eq. (4.45). As shown below, these terms result in a Boltzmann-
like scattering equation for the carrier occupation and a diagonal as well as a
off-diagonal dephasing for the microscopic polarization.
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To describe the dynamics of 012 beyond the Hartree-Fock level, the temporal
evolution each correlation A3zc Eq. (4.37), needs to be known.? Therefore, again
the correlation expansion is applied

A3F¢ = A3} + 013024 — 014023 (4.51)

and the dynamics of each term is determined using the Heisenberg equation. The
free particle Hamiltonian directly yields

d

A 12¢
dt

i = 12(‘
= —AEA 4.52
. R 34 ( )

with A€ = €1 + & — €3 — &. The Coulomb-induced dynamics of A:,lf couple to six-
operator EVs reading

d
hd A2 =y v [ alal ayacaza,) — AR Sy
t ccC
abc
2 abala azay)
abc

—i-z alaza asa.ay)
abc

—ZVI;'CE' [ aia;aTa:;a a,) — Aclblﬁg,a . (4.53)

abc

To obtain a closed set of equations at this level, the six-operator quantities are
disassembled according to the correlation expansion (4.37). Within the second
order Born-approximation the highest occurring order of correlations is neglect.
Furthermore, some terms are canceled by the second term in Eq. (4.51) given by:

= 2 {Vf‘cb [Aca‘:’ 023 — Aé‘;’ 624}

cc abe

d
hdt (013024 — 014023

+VIR [ AR o1 — A O1a] + Vil [ A o2 — Ao

Sty {Acbom Aclg‘cm”. (4.54)

3Due to the Kronecker Ok, +k, ky+k, in the Coulomb matrix element only the dynamics of
momentum conserving correlations have to be determined. Nevertheless, for a more clear notation
the equation of motion for a general Alzc is derived.
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Finally, the Coulomb-induced dynamics of Alzc is found to be

d
ih— Al2c
dt

_ ab ba oot ot
P Y (Vie —Vad) {Gld02c0b36a4_61d02c6b30a4}
e abed

corr A a2c corr A lac corr* 12¢ corrx A 12¢
—Z[gla A3f" + 8, Ayg Aal" — €4y A3a}
a

b 12
+ ) Vi [ A3g¢ (GldGZc Gldﬁzc) + A (Gb36;4 Gb3Ga4)}
abed

+2 2 { 2ac (GldG;b - Gb3(7d1) +A (Gb4(7§1 — Gdlc}b)
abed

+Aalc (Gmojz 02063b) +A“‘lc (Gzccr}b - Gb4G:2) } . (4.55)

with 7" = ZZVf‘Cbic and 50" = ZZVC%PGbc. Here, we focus on the first line,
b b

since it includesc all terms which are relecvant for two-particle scattering processes.
The second line leads to a many-particle screening of the Coulomb-potential in the
Hartree-Fock equations (4.44), for details see Ref. [44]. The contribution of the last
three lines is supposed to be small and is neglect in following. Since, higher-order
correlations, beyond second-order Born approximation, are also expected to damp
the dynamics of A3142€, these terms can be summarized in a small damping constant
7. Now, Eq. (4.51) can be rewritten as

d 2.
SA = (%As - y) AZ+ - Q( ), (4.56)
with the scattering kernel

(1) =3, (Vic —Vae) [Gldogc0b3oa4 GldGZCGllLSG:L}' (4.57)
abed

At this point, Egs. (4.45) and (4.56) form a closed set of equations. Treating Anc
as an independent variable, the equations can be solved numerically resultmg in
non-Markovian dynamics, as described in Ref. [6] for carbon nanotubes. However,
in a two-dimensional system a non-Markovian treatment numerically extremely
extensive, since Anc depends at least on three two-dimensional vectors. In the
case of graphene, Eq (4.56) will be solved analytically by applying the Markov
approximation, as described in section “Markov-Approximation”:

1 ) A
A34C( ) = EQ([) [lm,);yz 4 (Wa_&)} N (458)
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with Aw = (&g + & — &, — €a)/h = Ag /. Tt can be shown, that the higher-order
correlations v are directly related to Boltzmann scattering rates [48]. In the limit of
second-order Born-Markov approximation Yy — 0 Eq. (4.56) yields:

AH() = 0(r) {in6(A£) - <ﬁ) /h] . (4.59)

The O-function ensures the conservation of energy, whereas a finite y in Eq. (4.58)
leads to Lorentzian-like broadening of the energy conservation. The principal value
ﬂ(ﬁ) in Eq. (4.59) contains renormalization terms and is neglect in the following
[49]. Now, the number of dynamic equations can be drastically reduced by inserting
the analytic solution for A34C( t) into Eq. (4.45) yielding:

d - _
dt 12 He
SAB [t _t i
2 [ 2 Vbe [GIDGaCGBcGAb_GlDGaCGBcGAb} 5(A8)}
abc ABCD
- 2 [ 2 Ve [ ;DGJCGBCGAZ GDGchI;cclz} 5(A8)}7 (4.60)
abc ABCD

with VA8 = VOB — VBA and Ae = ep + ec — e — £a.

Applying spatlal homogeneity (012 = 6,28, k,, 1 = ki) the Boltzmann-like
scattering equation for the carrier occupation can be obtained by collecting all
terms in Eq. (4.60) containing only band-diagonal density matrix elements (71“ =p1
(1 =K1, A1). The result reads:

d in(cc out(cc
Zp=0" = =L 1), 4.61)

with the in- and out-scattering rates:

I” CC = — va 1 — pa] pbpc6(81 + 83 - 8]) - 8(:) (4'62)
abc
and
out co) _ _ZVbca wpall —pu][1—pc] 6(e1+ € — & — &). (4.63)
abc

Overall, the Eqs. (4.61-4.63) describe the Coulomb-induced carrier dynamics in
second-order Born-Markov approximation. The raise of occupation in a specific
state 1 = (k;, A;) is proportional to the product of the corresponding Pauli blocking
term and in-scattering rate, whereas decrease of occupation is given the occupation
and the out-scattering rate. These scattering rates, which are explicitly time and
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momentum dependent, fulfill the energy as well as momentum conservation. The
sum in Egs. (4.62) and (4.63) contains all possible processes to scatter from the 1
into the final state b. The probability therefore is determined by the sum over all
secondary processes a — ¢ matching in energy and momentum.

The Coulomb-induced scattering, described by Egs. (4.61-4.63), is responsible
for an ultrafast equilibration within the first tens of femtoseconds after an optical
excitation [10, 16]. In particular, in graphene Auger-type processes have to be
considered as discussed in Refs. [12,21,27].

For the dynamics of py all terms in Eq. (4.60), which are in first order propor-
tional to a microscopic polarization, are here considered resulting in

d C vc cv *
TiPe= =0 et X[ e+ 3R (4.64
k,

a

where

(cc) _ 1 ince) t(cc)
AEEMUREEEA “69)
is the diagonal dephasing and the second term is the off-diagonal dephasing:

%k)lilfz = %ZZ

be A
x[Ve s ki (oM = plpc+ 1= plp1 — p] ) 8°

viravrses (- el ol - plll - pl) 8 | 6o)

with 6+ = § (8,?l +0y, 8,?" —& £ 8c) and o), = sgn(e?). The dephasing damps the
free energy coherent oscillations of pk after an optical excitation on a femtosecond

timescale. The role of the diagonal and off-diagonal dephasing is discussed in
Ref. [13].

Carrier-Phonon Coupling

Next to carrier-carrier scattering the phonon-induced dynamics is an efficient
relaxation channel. In the following the scattering equations for coupled electron-
phonon system are derived. The treatment is partially analog to derivation of the
carrier-carrier scattering equation and leads to the same structure of electronic
equations in terms of in- and out scattering rates as well as diagonal and off-diagonal
dephasing. Additionally, the equations of motion for the phonon population have to
be derived.
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From the Heisenberg equation and the Hamilton operator for the electron-
phonon interaction (Eq.4.7) the dynamics for a momentum-diagonal* density
matrix element is determined by

d lolajghisi _ Jakii ghiio
— 2 3./ l 3./ 3 1/ 32 ]
o dt H, 22 8k+q, qSk+q,q
A R [
A3y j* 11/13/ M A3 jx A3 Ay
+22 k+qq k+qq gk7q Tk7q ) (4'67)
A3 J4
where
MAj Mt A Jj MArj ) Mt At
Skq = la at ybg) and T = (a ! ai’by’) (4.68)

are the phonon-assisted quantities, which also determine the temporal evolution of
the phonon-occupation, given by

d
ih—ny

o _ z glllzl /11/12/ glllzj*lell./" (4.69)

kg k.q
H(.,, A Aok

Analog to the previous section, the correlation expansion is applied for the two-
particle EVs, which are here the phonon-assisted quantities, e.g.

Sl = (ap a2 ) (bY) + Spa’ e (4.70)

The first term contains coherent phonons (by), which are known to induce signatures
in differential reflectivity spectra [50]. However, their influence on relaxations dy-
namics plays a minor role and will be neglect in the following. As a consequence the
phonon-assisted quantities are equal to their correlations and a further differentiation
between both is redundant. To close the set of equations on the second order
level, the equation of motions of the phonon-assisted quantities are set up. The
contribution from free particle Hamilton operator is

d
ih— SWL” B (elf‘ —g a ha)q) SWL“ 4.71)
0
d
T = = (el — a2+ hof ) T, (4.72)
0

and the commutation with the electron-phonon Hamiltonian yields

ih— d SAIAZJ
t

: _2 7L37L4j* 1113141217 (473)

A3y

Hcp

“In this derivation the spatial homogeneity applied form the beginning.
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d T)LIAZJ

hdtkq

_ Z )L3)L4j QMMMMJ 4.74)
Hep ey

with the scattering kernel
A 22324 ) A A A3 A A A A3A j
Qk}qz 3A4) (57“112 — le 2) ok3q4 (/1 okl 2 (513714 — ok3q4) (n{l—i— 1) . (4.75)

Thereby, appearing electronic four-operators EVs A;} are treated within the
Hartree-Fock approximation, c.f. Eq.(4.46). Within the Markov approximation
Eqgs. (4.71-4.74) can be solved analytically yielding:

MArj Mg j* A A3 A A

Skl ST QI (e — gl ~nof) 476
kaq H0+Hcp 2 g Q k q q ( )
M2 _ 7L3l4j 131211141 .

S 2 0% 8 ( % +ha)q) 4.77)

With the knowledge about the dynamics of the phonon-assisted quantities the
equations of motion for p]f, Pk, and n{l can be determined.
Electron Dynamics

Inserting Eqgs.(4.76) and (4.77) into Eq.(4.67) the equation of motion for an
electronic density matrix element reads:

d xx MaAzj, Aahs it A AghsAs ] A j
1A 23/45}* 1 4523 5 J
dt - Z Z Qk,q 6( — &~ q_th)
)L3)L4)Ls Jjq
A3 j 7L4lsj* A3A4As5Az
T 2 2 8k+q,98k+q.q Qk+qq 6(8k+q_8k hw‘l)
/'L3)L4/'L§ jq
34 j* 14151 A2z As
T 2 2 8k+q,q 8k+q, qQk+qq 6 (8k+q_8k hw‘l)
7\%1415 jq
A Az jix l Asj AAAA3 A5 ) A A j
+_ 2 2 1 3 4 5 Q 4 A3 A5 6(8](4 8k5q_hwcjl) (4.78)
/1314/15 jq

Analog to section “Carrier-Carrier Scattering” the phonon-induced scattering equa-
tion for the carrier occupation can be obtained:

d in(c, out(c,
Spt| =L -l -1 Ppl (4.79)
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with the in-scattering rate

A .
Iﬁxltl v =5 Z |:| k+qjq| pk+q[nq + 1]6(8k+q —h(l)cjl)
Ajgq
A2 ! i / .
+ew g PPl 8 (e g — &t + 1) (4.80)

and the out-scattering rate

t A4 2 A j
F{m () — 22 2 “ k+qjq Pk+q]”q5(8k+q —ha)é)
/V/q

kg Pl = pi Jing+ 118 (el — & +10d) | @81)

The interpretation of these equation is analogously to the Coulomb-induced Boltz-

mann equation, where here the secondary process is promoted by the emission or

absorption of a phonon. While each scattering process conserves the total energy, an

exchange between the electron and the phonon system takes place. Typically, after

an optical excitation, energy dissipates from the electron to the phonon system being

responsible for the second decay in differential pump-probe spectra [10, 16, 17].
The phonon-induced dynamics of the microscopic polarization reads:

d . fep) (cp)
P, = R (4.82)

where the diagonal dephasing is given by
(cp L m(cp out(cp)
= Z +I70 7 (4.83)
and for the off-diagonal dephasing is
AL A j
2 |gk+(]]q|2[ 1—Pk)(”q+1)+Pk”q} Pk+q5(3k+q —hwé)

2 3 s P [(1 = pit i+ pi (4 1)] g (el — 6y — 1] (4.84)
/Uq

obtained. Recent studies have shown that the phonon-induced dephasing is less
efficient than the Coulomb-induced [19].
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Phonon Dynamics

Applying Markovian dynamics for the phonon-assisted quantities, the equation of
motion for the phonon occupation, cf. Eq. (4.69) directly leads to

d j bs, j
Gl = T 1)~ @85)

with the phonon emission rate

MA A A
Ny =T X Pl e ol el o) @8
142k

and the absorption rate

y M A
17(;[)? ftad Z | l 2] pk ]pk 6(8k _gk q—ha)q) (4.87)
)Ll)lzk

Note, the electron dynamics (Eqgs.4.79 and 4.80) and the phonon dynamics
(Eqs.4.85-4.87) form a consistent set of equations, i.e., for each process
in Eq.(4.79) where an electron scatters to an energetically lower state the
corresponding phonon is generated in Eq. (4.85).

This microscopic treatment of the phonon-electron dynamics, beyond the bath
assumption, plays an important role also for the carrier dynamics, since the absorp-
tion of hot phonons through the electronic system decelerates the relaxation [10, 14].

The microscopic description of the phonon-phonon interaction, being responsi-
ble for the decay of excited phonon populations, is beyond the scope of this work.
The finite phonon lifetime is consider by a coupling to a phonon bath at the ambient
temperature n(’) q

%n{l —Yph [11{)7q — n{l], (4.88)
with the experimentally determined optical phonon lifetime of yl:hl ~ 1.2ps [51].
The lifetime of the LA-mode is taken from Ref. [52].

4.5 Conclusions

Based on the density matrix formalism, we derived the graphene Bloch equations
describing the dynamics of the coupled electron-phonon system under the influence
of an external optical field. In particular, matrix elements as well as many-particle
interactions are treated on a consistent microscopic footing. The obtained equations
offer a microscopic access to the ultrafast non-equilibrium carrier dynamics in
graphene.
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4.A Appendix

4.A.1 Derivation of Optical Matrix Element

In this section the optical matrix element is derived, where the starting point is its
definition in second quantization:

My = (W (k1) Ve [ (K ). (4.89)

The optical matrix element can be determined analytically by applying the tight-
binding wave functions:

| AB ” -
M 4SS 08 (g ) Ve~ Ry). (490
U Ry

For each summand of the first sum R; the next-neighbor approximation is applied
for the evaluation of the second sum consisting of R; itself and the three neighbors
from the other sublattice I’ # /. Since the 2p,-orbital is symmetric in the x-y plane
and antisymmetric in z direction, same-sided integrals vanish (¢ (r — R;)|Vy|¢(r —
R;)) = 0. Therewith, Eq. (4.90) yields:

3
M = B e (0 () 32 or+b0) Vel o)
3
(0 () Y M o mVelg(r+b))]. @91

i=1

It remains to determine the integral I; = (¢ (r +b;)|V¢|¢(r)). Regarding the next
neighbor vectors in polar coordinates b; = (b, ¢y;) the integral reads:

x+bcos oy d/ox
I = <¢ <y+bsin(xi> | <8§8y> |o ( ) >

A rotation of the coordinates system X(x,y,z) by the angle —¢; yields

cos 0y (¥ +b)cosoy —y siney J X' coso; — ' sin
Ii = | singy ¢ (* +b)sine; +y cos o | 37 | Q) X' sina; +y cos .
0 z ox z
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Since the 2p,-orbital depends in the plane just on the modulus, the arguments can
be rotated back by the angle ¢;, finally resulting in

b;

L=M_.
' |bi

(4.92)

The remaining integral M = < | ax|¢ ( )> can be evaluated numerically

by applying 2p,-orbitals with the effectlve charge number Z. Therewith, M as
well as Z are determined by the value of the overlap integral sg, cf. Sect.4.3.1.
With Egs. (4.91) and (4.92) the optical matrix elements can directly be obtained as
denoted in the main text, cf. Egs. (4.25) and (4.26):

1 M 3. b bi
= S R|e" (k)Y kb L 4.93
i = A 1= 2le(k)? e le ( )Zie |b"|] e
and
i M > ikb; Di
Mv,v, _ , S * k lkbi_l , 494
ke = Ok 1= ek 2 [ k)] le | )Zie |b"|] o
with
3
9{[ . ']x — COS(CI()ky) — COS <@kx> CcoS (%k)) y (495)
V3
R[---], = —V3sin (k) sin < AECR ) (4.96)
V3a
[ = 3cos(2ky) sin ( 3 iy ) (4.97)
3[-]y = V3 [sin(aoky) + sin (%Oky) cos <@kx>] (4.98)

4.A.2 Derivation of Coulomb Matrix Element

The starting point for the derivation of the Coulomb matrix element is its description
in second quantization:

Ved = (Fa(r) B ()|V (r — ') [Fa (r) He(r)), (4.99)
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2
The Coulomb potential V(r —r') = Mer—"sgﬁ depends in principle a three-
dimensional potential vectors. Since all electron wave vectors lies in the graphene
plane, a two-dimensional Fourier transform is applied to decouple the integrals in
Eq. (4.99):

iq . et 1
Vaa(r) ZVe | with V“ZKOLZE' (4.100)

Extended into the third dimension the entire Coulomb potential reads

1.
V(r) = zael‘“ with ¢, =0. (4.101)

0
2
2&oL q
Therewith, the decoupling of Eq. (4.99) yields:

Vil = SV he@linla) with Ty(@) = [ AT, @102

The wave function ¥ can be represented by the components of the sublattices, cf.
Eq. (4.8):
= / dr*y e, of (r) e @i (). (4.103)
Ll
Neglecting the hoping integrals between different sublattices and exploiting their
equivalence, Eq. (4.103) reads:

Ly = f.i)1(q) (4.104)
with  I(q) = / dr @Y (r)e T @ (r) (4.105)
N S TS I _e'(kie(k))
and f(l,J) = |:CAC,]4+CB B:| = E |:1+G,Gjm (4106)

With the Bloch functions (Eq. 4.9) and the neglect of overlaps between different unit
cells, the integral in Eq. (4.105) can be simplified to:

IHO B k/dr([) e (r). (4.107)

The remaining integral can be evaluated analytically by applying the 2p_-orbital
with the effect charge Z [53]:

¥, = /dr¢ FTY(r) = [(qas/2)* +1] . (4.108)
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Overall, the Coulomb matrix element reads:

VA =V, ¥ f(a,¢)f(b,d)k, 11, ke, (4.109)

where the Kronecker ensures the conservation of momentum.
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Chapter 5
Transport Through a Coulomb Blockaded
Majorana Nanowire

Alex Zazunov, Reinhold Egger, Alfredo Levy Yeyati, Roland Hiitzen,
and Bernd Braunecker

Abstract In one-dimensional (1D) quantum wires with strong spin-orbit coupling
and a Zeeman field, a superconducting substrate can induce zero-energy Majorana
bound states located near the ends of the wire. We study electronic properties when
such a wire is contacted by normal metallic or superconducting electrodes. A special
attention is devoted to Coulomb blockade effects. We analyze the “Majorana single-
charge transistor” (MSCT), i.e., a floating Majorana wire contacted by normal
metallic source and drain contacts, where charging effects are important. We
describe Coulomb oscillations in this system and predict that Majorana fermions
could be unambiguously detected by the emergence of sideband peaks in the
nonlinear differential conductance. We also study a superconducting variant of the
MSCT setup with s-wave superconducting (instead of normal-conducting) leads.
In the noninteracting case, we derive the exact current-phase relation (CPR) and
find m-periodic behavior with negative critical current for weak tunnel couplings.
Charging effects then cause the anomalous CPR I(¢) = I.cos @, where the parity-
sensitive critical current I, provides a signature for Majorana states.
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5.1 Introduction

Charge transport through topologically nontrivial materials is of great current
interest, offering novel fundamental insights as well as potential applications in
topological quantum computing [1]. The recently discovered topological insulators
as well as topological superconductors (TSs) [7] are predicted to exhibit spectacular
nonlocal transport phenomena and have consequently attracted a lot of attention.
In particular, for 1D TS quantum wires, the crucial role of Majorana bound
states (MBSs) located near the interface to topologically trivial regions has been
emphasized [5, 9]. Majorana fermions are special in that they are their own
antiparticles, i.e., the fermion creation operator is equal to the annihilation operator,
and the condensed-matter setup discussed below could offer experimental signatures
for these elusive and hitherto unobserved particles.

When a grounded TS is weakly contacted by a normal metal, the MBS is
expected to produce a characteristic zero-bias anomaly peak in the tunnel con-
ductance. Very recently, such a feature has been experimentally observed in tunnel
spectroscopy using InSb or InAs nanowires [13], where Majorana fermions are the-
oretically expected due to the interplay of strong spin-orbit coupling, Zeeman field,
and proximity-induced superconducting pairing. We here discuss an interacting
variant of previously studied Majorana wire setups, the floating “Majorana single-
charge transistor” (MSCT) schematically shown in Fig.5.1. A comprehensive
picture of its transport properties in the presence of interactions emerges from
our analysis [8, 16]. Noting that the experimentally observed peak features could
be related to a disorder-induced spectral peak [2, 11], our results should help to
distinguish the Majorana state from alternative explanations in future experiments.

Previous works have studied electron-electron interactions in an isolated TS wire
and found that Majoranas still exist under rather general conditions. As sketched
in Fig. 5.1, here we instead study a generalization of the setup in Ref. [13], where
source and drain metallic electrodes contact the TS wire. We stress that the MSCT
could be realized not only with nanowires but using most other Majorana proposals
as well. In such a geometry, Coulomb blockade effects due to the finite charging
energy E. of the TS can play a decisive role. For instance, one expects Coulomb

Fig. 5.1 Majorana single-charge transistor (MSCT): the TS wire with Majorana end states is
tunnel-coupled (I, Ir) to normal metal electrodes and Josephson coupled (E;) to another bulk
superconductor. Capacitive charging effects are encoded by E, and can be tuned by a gate voltage
parameter ng =< V,
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oscillations of the conductance as a function of a gate voltage parameter n,, with
peaks (valleys) near half-integer (integer) ng, while in the noninteracting (E. = 0)
limit, the MBSs pinned to zero energy cause resonant Andreev reflection (AR)
[3, 10, 14], with ng-independent linear conductance G = 2¢2 /h at temperature
T = 0. Resonant AR also survives for E. < I' = I + I, albeit with reduced
conductance [16]. For E. > I', Coulomb blockade is firmly established, and the
peak conductance approaches the (spinless) resonant tunneling value G = ¢?/h,
which has been pointed out as a signature of electron teleportation [4].

Below we consider Coulomb blockaded charge transport through the MSCT
[8]. We provide an exact expression for the current in this interacting system, and
develop three different approximation schemes to study Coulomb oscillations in
the MSCT both for T = 0 and finite 7. We quantitatively describe the 7 = 0
crossover of the peak conductance from G = 2¢?/h to €? /h as E. /T increases, which
constitutes a characteristic signature of Majoranas. Remarkably, this “halving” of
the peak conductance is universal and found to hold for arbitrary 7. For the valley
conductance, we find that elastic cotunneling dominates while AR is subleading.
We predict finite-voltage sidebands in the nonlinear differential conductance which
are directly related to anomalous tunneling processes where the Majorana state and
the Cooper pair number change simultaneously. The presence of Majoranas can be
unambiguously identified in experiments by the magnetic field dependence of the
sideband location.

We have also studied the Josephson effect for a TS wire with Majorana end
states tunnel-coupled to s-wave BCS superconducting (S) electrodes [15]. We show
that under generic conditions, a supercurrent blockade occurs in S-TS Josephson
junctions. In the S-TS-S junction, this blockade imposes severe restrictions; in
particular, quasiparticle excitations are necessary to have a Josephson effect. For
the noninteracting case, the analytical solution for the current-phase relation (CPR)
has been obtained. It shows that the 47-periodic Josephson effect is absent in S-
TS-S junctions. For weak tunneling, the CPR is w-periodic with a negative critical
current, while a finite charging energy results in the anomalous CPR /(@) = I, cos ¢.
The parity sensitivity of I, could then be used to detect the Majorana states
in supercurrent measurements. We hope that our predictions will soon be tested
experimentally.

5.2 Model and Approaches

The MSCT Hamiltonian, H = H, + H; + H;, contains a piece H, describing the
TS wire, a tunnel Hamiltonian H; connecting the TS to the left (j = L) and
right (j = R) electrode, and a term H; describing the leads (we often use units
with e =% = kg = 1). Topological arguments warrant that the TS wire holds a
single unpaired MBS near each end described by the Majorana operator y; = yj
with anticommutator {7;,y; } = §;7. We introduce the non-local fermion operator

d = (y, +iw)/V?2 such that ¥ = (d +d")/v2 and & = —i(d — d")/\/2. With
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fig = d'd and the number operator N for Cooper pairs in the TS, the instantaneous
charge state of the wire is described by (N,n;), where the integer N and n; = 0,1
are eigenvalues of N and iz, respectively. With the phase y conjugate to N, where
[x,N] =iand e~Z (¢'X) lowers (raises) N by one unit, we have

H. = E.(2N + iy — ng)* — Eycos() — ¢s). (5.1)

The TS wire is assumed sufficiently long to exclude a direct tunnel coupling between
% and Y. However, note that E. introduces a dynamical coupling between the
Majoranas. Proximity-induced pairing correlations are required for MBS formation,
and in Eq.(5.1) we include Cooper pair exchange (with Josephson coupling Ej)
between the TS condensate and another bulk superconductor (with fixed phase ¢).
We focus on the most interesting case of a large proximity gap Ars > max(E,,I",T),
where charge transport involves MBSs and the contribution of quasi-particles above
the gap can be neglected. Next, electrons in lead j correspond to free fermions
with chemical potential ; and (effectively spinless) fermionic operators c;; for
momentum k. Hj is treated within the usual wide-band approximation and the bias
voltage is eV =, — Ug. Taking into account charge conservation and expressing the
Majoranas in terms of the non-local d fermion, the tunnel Hamiltonian reads [16]

1 )
Hy =Y Ajcinj+he, nj=—(d+sje*d"), (5.2)
j ’ \/5
where ¢; = ¥ cjx, s = +1 and sg = —1, and Ar g denotes the respective tunnel

matrix elements. Tunneling from the TS to lead j thus proceeds either by destroying
the d state without changing N (“normal” tunneling) or by occupying the d state and
simultaneously splitting a Cooper pair (“anomalous” tunneling), plus the conjugate
processes. Below we use the hybridization scales I = 27v;|A;|?, where v; is the
density of states in lead j. Experimentally, the I'; (and n,) can be changed via gate
voltages [13].

5.2.1 Exact Expression for Current

Using non-equilibrium Green’s function (GF) techniques, the current /; flowing
from lead j to the TS can be expressed in terms of the Keldysh GF Gy, (t,t") =
—i(Iemj(t)n;(¢')), where J¢ denotes Keldysh time ordering. With the Fourier-
transformed retarded, GI,;J, (&), and Keldysh, Glni, (&), components of Gp;, we obtain
Ij = (eI}/h) [ de[F (€ — p;) ImG} (e) + (i/2)G} (€)], where F(e) = 1-2f =
tanh(g/2T) encodes the Fermi function f(g) in the leads. Next we note that
Gﬁj (lt,t) = 0 as a consequence of n;nj = njn; = 1/2. Hence we find the exact
result
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ro
1= %/ deF (e — 1) InGX (e), (5.3)

stating that the current can be computed from the spectral function o< ImGﬁj. The
well-known expression for interacting quantum dots [12] has thereby been extended
to the interacting Majorana wire, where there are two spectral functions associated to
the currents /; and Ig. Eq. (5.3) should be useful for numerically exact calculations,
e.g., using the numerical or density-matrix renormalization group. For E, = 0, the
pseudo-fermions 1); reduce to Majorana fermions ¥;, and the Lorentzian spectral
function, —ImG% (&) = I3/ (e +I}?), implies resonant AR with G = 2¢>/h.

5.2.2 Approaches

For finite E., we present several complementary approximations in order to
achieve a broad physical understanding of the MSCT transport properties. Current
conservation implies 1, 4 Ig + Is = 0, with the supercurrent Ig flowing through the
interface to the bulk superconductor. Below we define the conductance G = dI/dV
using the symmetrized current I = (I, —Ig)/2.

5.2.2.1 Equation-of-Motion (EOM) Approach

We constructed an EOM approach for Gﬁj to access the linear conductance near a

peak. Within this method, we introduce the Nambu spinors ¥; = (d ,e’ildT)T and
the corresponding retarded GE, GR, = —i@ (1 — ') ({¥,(t), ¥ (')}). The EOM for
GR , generates higher-order GFs, IR, ., = —iO (t — ') ({N"(t) ¥y (1), 'PdT (#)}), which
we truncate at the level m = 2 and solve in a self-consistent way. The resulting
GF ng then yields Gﬁj = %Tr [(1 +5;0%) Gﬁm with Pauli matrix oy. Finally, we
obtain the conductance from Eq. (5.3). This approximation is valid by construction
for E. > I', but the imposed self-consistency allows us to extend it to E, < I", where
the resulting conductance (being determined by truncated fluctuations) gives a lower
bound for the exact result.

5.2.2.2 Zero-Bandwidth Model (ZBWM)

Next we study the ZBWM where each lead is represented by just a single fermion
site and only a finite number of TS Cooper pairs (N < Nmax) is included. The
Hilbert space then has the finite dimension 8 Np,x, which allows us to numerically
calculate the spectral density o< ImGﬁ () via its Lehmann representation, with poles
phenomenologically broadened by I". With this spectral function, Eq. (5.3) yields
the conductance within the ZBWM.
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5.2.2.3 Master Equation and Cotunneling Processes

For T > I', the GF formulation reduces to a master equation description including
sequential tunneling and cotunneling processes (for simplicity, £; = 0 here). The
stationary probability distribution Py for having Q = 2N + ny particles on the TS
then obeys Yoo [Po Wy —s0 — PoWp_,¢'] = 0. All non-vanishing transition rates
Wo—. are specified in terms of rates obtained under a systematic second-order 7 -
matrix expansion in I7 g. With the electrostatic energy Eg = E.(Q — ng)z, sequential
tunneling yields the rate F;(dei)Q 4+ = (I;/2)f(Eg+1 — Eg F u;) for one particle
tunneling into (out of) the TS from (to) lead j = L,R. Next, elastic cotunneling
transfers a particle from lead j to the opposite lead — j with virtual excitation of the
TS states Q £ 1. The elastic cotunneling rate is

I.I;
ry = %/dsf(s—uj)[l—f(s—uq)]
1 1 2
- 5.4
&= (Egr1—Eg)+10 €—(Eg—Eg1)—i0] G4

where the two terms come from the interference of normal and anomalous tunneling.
We note in passing that for large Arg, inelastic cotunneling does not contribute at all,
while the conventional elastic cotunneling rate due to quasi-particle states above the
gap (and without MBSs) would be much smaller, I (EC) o I7.Tk/Ars. To the same
order in I; g, we also have local (and crossed) AR processes, where an electron
and a hole from the same (different) lead(s) are combined to form a Cooper pair,
0 — O+ 2; the reverse process describes Cooper pair splitting, Q — Q —2. Some
algebra yields the AR rates

14+6; _ /FF/
Tio0s = — / de / de’
><f( (E—Nj))f( (¢'—uy))d(e+€ F (Egsa — Eg))

2
1 SijI

X T~ . ]
eF (Egr1 —Eg) +i0 & F(Egs1 —Ep) +i0

(5.5)

where j = j/ (j # j') corresponds to local (crossed) AR. The i0 terms indicate that
regularization of the integrals in Eqs. (5.4) and (5.5) is necessary. Application of the
general regularization scheme then implies that the principal value of these integrals
needs to be taken. Given these rates and the (numerical) solution Py of the master
equation, the currents /; then readily follow.
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5.3 Transport Signatures of Majorana Bound States

We now present results for the conductance G = dI/dV to quantify the effect of
Coulomb interactions on the transport properties in the Majorana-wire setup.

5.3.1 Coulomb Oscillations

Let us first address the ng-dependence of the linear (V — 0) conductance, see
Fig.5.2; we take I} = Iy = I' /2 in all figures. Both the master equation (main
panel, finite 7') and the ZBWM (inset, T = 0) reveal clear conductance oscillations
in the MSCT for E. > I', with peaks (valleys) for half-integer (integer) gate voltage
parameter n,. The main panel shows that the peak (valley) conductance is halved
(strongly suppressed) when going from the noninteracting to the deep Coulomb
blockade limit. For E; =0 and (I', T') < E,, the lineshape of the valley conductance
is obtained in closed form,

eIk 1

Grates(9) =55 (1= a2

(5.6)

E =
-—-E=0 =0

Fig. 5.2 Coulomb oscillations in the MSCT. Main panel: Conductance G vs. n, from master
equation for E; = 0,7 = 2I" and several E.. Inset: Same but from ZBWM for T = 0,E. = 5I"
and several E;
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Fig. 5.3 Peak conductance G vs. E./I" on a semi-logarithmic scale. Main panel: Comparison
of T = 0 results using perturbation theory in E./I" [16] (blue solid curve), the EOM approach
(red dotted-solid curve), and the ZBWM (black dashed curve). The shown EOM results are
quantitatively valid only for E. > I' (solid part) but give a lower bound when E. < I" (dotted
part). Here E; = 0 since G only weakly depends on E; for E; < E.. Inset: Same but from master
equation for several temperatures 7' > I" (color figure online)

where 8 = ny — [n,] with || < 1 is the deviation from a valley center. Equation (5.6)
comes from elastic cotunneling, with constructive interference of the normal and
anomalous tunneling contributions, while AR is strongly suppressed in this limit.
The inset of Fig. 5.2 shows that G increases when the Josephson coupling E; grows.
One can understand this by noting that for E; > E., one ultimately reaches the
resonant AR limit of a grounded TS, with the ng-independent 7 = 0 conductance
G = 2¢*/h. We find that AR yields significant conductance contributions for E; >
E., which are best detected through the non-local conductance dI; /d ug. However,
we will discuss this quantity in detail elsewhere.

5.3.2 Peak Conductance

Results for the peak conductance are shown in Fig.5.3. For 7 = 0 (main panel),
we obtain the full crossover from G = 2¢?/h to G = €% /h as E, /T increases. The
known small-E, behavior [16] is nicely reproduced by the ZBWM calculation.
In the opposite large-E. limit, the EOM method is very accurate and Fig.5.3
suggests that the simple ZBWM already captures the crossover from resonant AR to
electron teleportation [4] surprisingly well. The inset of Fig. 5.3 again demonstrates
the universal halving of the finite-7' peak conductance, see also Fig.5.2. Since
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Fig. 5.4 G=dI/dV vs. voltage V from the master equation for 7 =2I", E; = 0, and several E./I".
The main panel (inset) is for half-integer (integer) ng

experiments so far were conducted in the high-temperature regime 7 > I'" [13],
let us now specify the lineshape near a conductance peak for E. > I'. Using
6 =ng —[ng] —1/2 with |6| < 1 for the deviation from a peak center, truncation of
the master equation to two charge states gives

& nr 1

Grek(0) = 5767 cost? (3E./T)"

(5.7)

We stress that the peak conductance [Gpeak(5 = 0)] is indeed halved compared to
E. = 0. Moreover, it exhibits both a thermal and an interaction-induced reduction.

5.3.3 Finite-Voltage Sidebands

Next we discuss the differential conductance at finite bias voltage V. Master
equation results for 7 = 2I" are shown in Fig.5.4. Starting with the main panel,
we find sideband peaks when eV is equal to an integer multiple of 4E.. For these
voltages, the chemical potentials {; g are resonant with two (almost) degenerate
higher-order charge states, implying additional sequential tunneling contributions
beyond the resonant transition determining the linear conductance peak (Eq.5.7).
Note that the fluctuations in N needed to reach higher-order charge states can
only be achieved through anomalous tunneling processes (see Eq.5.2). Similar
sideband peaks are also found for other ng; the integer-n, valley case is shown
in the inset of Fig.5.4. In Fig.5.5 we show the evolution of the sideband peaks
as E; is changed, determined from the ZBWM at T = 0. For half-integer ng, the
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Fig. 5.5 Same as Fig. 5.4 but from ZBWM for T =0, E. = 5I" and several E;

sideband peak position observed in the main panel of Fig.5.5 is well described
by eV ~4E.\/1+ (E;/2E.)?, which comes from Josephson coupling between the
two relevant charge states. Since E; can be tuned by applying a small magnetic
field parallel to the junction between the TS and the bulk superconductor, an
experimental observation of the sideband peak and its shift with magnetic field
(cf. the expression for the peak position above) would provide clear evidence for
the anomalous tunneling mechanism, and thereby for the presence of MBSs.

5.4 Josephson Junctions with a Majorana Wire

When two TS wires are contacted, one expects the fractional Josephson effect with
4r-periodic CPR, I(¢), due to parity conservation [1]. If the junction also contains
a topologically trivial superconductor (TS-S-TS), additional periodicities may occur
[6]. Here we discuss the ground-state supercurrent flowing through the S-TS and S-
TS-S junctions schematically shown in Fig. 5.6. The left/right (j = L/R) electrodes
correspond to standard s-wave BCS superconductors with (for simplicity identical)
gap A and fixed phase ¢;. The 1D Majorana wire contains a pair of decoupled
MBSs at its ends. We consider a finite proximity-induced TS gap A,, and take
into account the (p-wave type) TS quasiparticles. For the S-TS-S junction with
a floating (not grounded) Majorana wire, we also include a capacitive Coulomb
interaction via the charging energy E.. In practice, depending on the experimental
realization, there can also be a parallel channel for Cooper pair transfer involving
only the superconducting substrate, and we here focus only on the Josephson current
involving the TS wire. Our main results are as follows.
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a
b S TS S

A
[

Fig. 5.6 Schematic Josephson junction setups involving a Majorana wire (TS) with proximity-
induced gap A, and phase ). Bold dots stand for MBSs. The electrodes are s-wave BCS
superconductors (S) with gap A and fixed phase ¢@;—r ;. Tunneling processes between an S
electrode and the respective MBS and/or TS quasiparticle states are indicated by dashed arrows.
() S-TS junction. (b) S-TS-S junction with charging energy E. = ¢?/(2C)

5.4.1 S-TS Junction

For the S-TS junction (see Fig.5.6(a)), the supercurrent is completely blocked for
large A,, and/or for pointlike tunneling contacts. This has far-reaching consequences
for the Josephson current through a Majorana wire whenever s-wave superconduct-
ing electrodes are involved. Below we provide a general condition explaining the
supercurrent blockade.

The S-TS contact is modeled by the general tunneling Hamiltonian

H=7 /dxc£76%,66/(x)y/0/(x)+H.c.

k,c0’

with the field operator yg(,) for electrons with spin projection ¢ =1, in the TS
wire. Note that the tunnel matrix elements encoded in the kernel . ¢/ (x) may also
describe spin-flip scattering at the interface. Expanding Yy, in terms of the TS
quasiparticle operators fo and the Majorana fermions 7;, we obtain

H; = ZC;G%{@ +Hec., Yio= lk,GYL + ztk,cr;afoc- (5.8)
ko o

The complex-valued tunnel couplings Ax ¢ and f .o noW encapsulate the overlap
integrals of the kernel . 54/ (x) with the Majorana and quasiparticle wavefunctions
in the TS wire, respectively.
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The exact CPR, I(¢) = (2¢/h)dyF (@), can be obtained from the partition
function, Z(¢) = Tre B = ¢=BF  with inverse temperature 8 and phase difference
¢ = @r — x. After integration over the S electrons, the ¢-dependent part of the free
energy comes from the action piece

B
ﬁys :,/0 dTldTZZ(p]Z(Tl)Gk(Tl —Tz)(pk(fz), (5.9)
k

where @, = (‘kav‘l’jk‘ ¢)T with Eq. (5.8). The (Fourier-transformed) anomalous
#ngeiwz. Using Gi(1) = Gi(—7) and
Gy ~ Oy, we find .#; = 0 whenever the time-reversed partners Vit and W_g |
in Eq. (5.8) are collinear,

Green’s function is Gy(w) =

Vok,| = CkWits (5.10)

with some complex parameter (. This is a sufficient (but not necessary) condition
for supercurrent blockade in an S-TS junction. In simple terms, the S-TS Josephson
effect will be strongly suppressed unless noncollinear time-reversed states are
available in the TS wire. To give some examples, consider the limit A,, — oo, where
no TS quasiparticles are accessible. In that case, Eq. (5.8) yields Yk o = Ak o7,
which always satisfies Eq. (5.10). In the absence of quasiparticles, an S-TS junction
thus never carries a supercurrent. Similarly, Eq. (5.10) trivially holds for a spin-
polarized TS wire, where {x = 0. However, for a point-like tunneling contact with

;Lk,c — Ao, Ix,6:0 — o, (5.11)

Equation (5.10) is generally not satisfied. Nonetheless, the supercurrent also van-
ishes in this limit [15].

5.4.2 S-TS-S Junction

In S-TS-S junctions (see Fig. 5.6(b)), as follows from Sect. 5.4.1, a finite supercur-
rent is only possible when quasiparticles (or other fermion excitations, e.g., a subgap
impurity level) on the Majorana wire are accessible, at least for virtual transitions.
In our work [15], the wire Hamiltonian H,, describes bulk TS quasiparticles f, and
is supplemented by the Coulomb interaction term (cf. Eq.5.1),

. 2
Hy = 3 EaflfotEe (29 + g+ A9 )" (5.12)
o

where A(97) = S f(};fa describes the occupation of TS quasiparticle states.
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Fig. 5.7 Anomalous current /. in Eq. (5.14) vs. § = 2N — n, in the cotunneling regime of an S-TS-
S junction. .. is computed for A,,/A = 4 and several E./A. Note that § can be changed by varying
a backgate, see Fig.5.6(b). I.(8) is periodic; we show one fundamental interval only

For the noninteracting (E, = 0) S-TS-S junction, the analytical solution for the
CPR can be obtained. Some algebra reveals the periodicity I(¢ + nr) = I(p), with
n =2 or even 1. In particular, the S-TS-S junction does not allow for the fractional
4m-periodic Josephson effect omnipresent in TS-TS junctions. For a symmetric
Junction with I;_;/r = 27V; 3 Glj,gtj*.’fc = I', expanding the free energy to
lowest nontrivial order in the tunnel couplings yields:

1(g) = —% |2V 2/ A 9 (A, ) A) sin(20) (5.13)

with ¢ (x) = x(2 4+ x)/[4(1 + x)?] and the density of states v,, = L/(27vr) in a
wire of length L. Equation (5.13) describes a m-periodic CPR with negative critical
current, I. ~ —|I"/A,|*. It is worth mentioning that I, is suppressed by the factor
IT"/A,,|* compared to the usual cotunneling limit. This suppression can be traced
back to the destructive interference of different contributions of order I'2.

For finite E, # 0, this cancellation is incomplete and we recover I, ~ |I"/A,,|?
[15]. Moreover, we find the anomalous CPR

I(p) =1.cos @, (5.14)

with the critical current I. shown in Fig.5.7 as a function of § = 2N — ng. For
half-integer 8, two charge states become degenerate and |I.| shows resonance
enhancement. While for small E,, we find a small positive and §-independent I,
these resonances become very narrow for large E,, with I close to zero unless 0 is
nearly half-integer. The parity-sensitivity of /., i.e., the sign change of /. between
0~ —1/2and & ~ 1/2 (mod 2), see Fig. 5.7, may then provide an experimentally
detectable signature for MBSs.
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Chapter 6
On the Electron-Phonon Interactions
in Graphene

Bekir Kandemir

Abstract Chiral polaron formation arising from the electron-E;, phonon coupling
and the mini band gap formation due to electron-A;, phonon coupling are in-
vestigated in pristine graphene. We present an analytical method to calculate the
ground-state of the electron-phonon system within the framework of the Lee-Low-
Pines theory. We show that the degenerate band structure of the graphene promotes
the chiral polaron formation. Within our theoretical analysis, we also show that the
interaction of charge carriers with the highest frequency zone-boundary phonon
mode with Aj,-symmetry induces a mini band gap at the corners of the two-
dimensional Brillouin zone of the graphene.

6.1 Introduction

Since the discovery of graphene [34,35] the investigation of its electronic properties
have become one of the active areas in condensed matter physics both experimen-
tally and theoretically, in past few years. From the theoretical point of view, in the
low-energy limit, charge carries of graphene have linear dispersion relation around
so-called Dirac points [43] having Fermi velocity [49] vF ~ 100 m/s, and Dirac-
Weyl equation can be safely used within the framework of continuum description of
the electronic band structure of the graphene [36]. Moreover, it is a well-known
fact that both in-plane and out-of-plane phonon modes play an important role
in charge carriers dynamics of the graphene [4-10, 13-15, 19, 22, 23, 25-27, 30—
32,37,39,40,44-46,50].

On the one hand, even though the interaction of electron with doubly degenerate
optical phonon modes of E», symmetry near the zone center I" does not open a
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gap [11,22], they contribute significantly to intravalley-intraband and intravalley-
interband scattering [41]. On the other hand, though the electron-highest frequency
zone-boundary (K) phonon interaction, i.e., Kekulé-type distortion of the graphene
lattice is one of the possible mechanisms among the gap generations. This first
theoretical prediction of dynamical mini band gap formation in graphene due to
the highest frequency phonon mode with Ag-symmetry is reported by Samsonidze
et al. [42]. The Kekulé structure consists of a network of hexagons with the
alternating short and long bonds like in the classical benzene molecule. This pattern
was studied for 1D simple model, finite size carbon nanotubes [17,18]. Investigation
of the gap formation, in particular, its control, in both graphene and graphene based
nanostructures is itself one of the hot topics of the current research in graphene, and
such a gap generation can be created by strain [12,28,33] or by substrate induced
effects [9,51,52].

In this talk, firstly, I present a theoretical model to investigate the effect of
chirality dependent electron-E>, phonon interactions on electronic spectrum of the
pristine graphene, based on Lee-Low and Pines (LLP) theory [29]. Therefore, I
address the question whether polaron formation is possible in graphene. Secondly,
I will use the same procedure to investigate the effect of interaction of graphene
charge carriers with the highest frequency optical phonon mode of A, symmetry
near the zone boundary K (K’). The carrier-phonon interaction is described through
a Kekulé-type distortion giving rise to inter-valley scattering between K and K’
points in graphene [1-3,47,48].

6.2 Interaction with E,, Phonon

I will first construct the continuum Frohlich type model to treat the interaction
of electron with long wavelength Epg-phonon [22]. A diagonalization procedure
based on LLP like transformations to investigate the properties of both valence and
conduction band polarons in graphene is introduced. Within the framework of low-
energy continuum model of graphene, the Hamiltonian of an electron interacting
with optical I'-phonon can be written as

H =+ Y, > hoy (Q)bhbay + Hep, (6.1)
uoq

where %) = vr o.p is the unperturbed bare Hamiltonian, whose spectrum describes
cone like behavior with eigenvalues &, = A&, wherein &, = hvpk and A = = is the
chirality index, together with the corresponding bare eigenkets

1 l ik.r
(r[kA) = AL (eie(k))ek :
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In Eq. (6.1), 7%, is the electron-optical phonon interaction Hamiltonian [20], and
can be described by the Hamiltonian

= — ﬁ—zg[cxuu ol

together with the relative displacement of two sublattice atoms A and B of the
graphene

h i i iq.r
uy (I‘) = % {W} (quJ + b,q“) 8” (q) e s (6.2)

where bfw (bqu) is the optical phonon creation (annihilation) operator with lon-
gitudinal and transverse optical phonon branch index pu =1 (LO) and 2 (TO),
respectively. Their dispersion have the form wy (q) = @r (0) Ry (ga) with dimen-

sionless part Ry (qa) = [1 —ry(qa)] 1/2, and with hior (0) = 0.196 eV, where r;
and r, are given by 0.1138 and 0.01979, respectively [45].

In Eq. (6.2), N is the number of unit cells, M¢ is the mass of a carbon atom, a is
the equilibrium bond length, and 8 = —dInJy/dIna, v = (3a/2)Jy. Here, Jy is the
resonance integral between nearest neighbor carbon atoms, and is of order of 2.7 eV.
The polarization vectors of the relevant phonon modes in Eq.(6.2) are given by
€1 (q) =i(qx,qy) /q and & (q) = i(—qgy,qx) /g, respectively. To solve Eq. (6.1), we
propose a diagonalization procedure based on the LLP method, which includes two
successive unitary transformations. Eventually, to be compatible with this gapless
band structure of the graphene, I will make an ansatz for the chiral polaron ground-
state vector

@ ,,{,;—Zaz kA") @ U1UFY 10) (6.3)

such that ji”|(1)) =E, |d))pol In Eq.(6.3), while |0) ,, stands for the phonon
vacuum, Oc)L |k?L) corresponds to electronic state vector defined through the

pol —

appropriate fractional amplitudes, oc%/, due to the fact that polaronic wave function
must be the linear combination of |k+) and |k—), respectively. The first unitary
transformation [29] we apply to Eq. (6.1)

U, =exp l—ir.Zqufmbqu]
©oaq

eliminates the electron coordinates, since the transformed operators are given
by the relations, by = bquexp[—iq.r] and p=p— 3, ¥, hqbd,bgy. Hence, the
transformed form of Eq. (6.1) under U; takes the form
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H = vro. <p—h22qbfwbq”>
Hoq
+2 > hoy (Q)bjwam -2 [ME (q)bgu +H.c]. (©.4)
uoq b oq

Equations (6.4) still needs to be diagonalized in phonon coordinates. To do this, I
will apply the second unitary LLP transformation [29]

UM = exp {% [M;u (a) (kA'| M, (q) [K2 ) b}, — H.c.} }

which is the displaced oscillator transformation with amplitude Mou (q) =
MI: (q)/hwy(q). It just shifts the phonon coordinates, since it generates the
coherent states for the phonon subsystem such that optical phonon operators
transform according to the rule bqy = bgy +M(*>u (q) (kA |ML (q) |[kA). Finally,
two simultaneous equations for o] and oy which can be rewritten in the following
matrix equation:

Ey —hvpk+hvpZi 4 (K)+ 20 (k) ivp X (k) +2X9_ (k) of ] 0

hvpX_y (k) +22°, (k) Ey +hvpk+hvp X (K)+X° (k)| [ oL
where 244, X1, Z%I’ and Zgﬂ are the relevant matrix elements. The above
equation can be solved analytically as a function of & in closed form,

E. =+ {(thk)2 +4 [Zj%;(k)}z}l/z 7|22, (). 6.5)

In Eq. (6.5), while the last term is due to the intraband transitions, second one in
the parenthesis is contribution due to the coupling between valence and conduction
bands, i.e. it corresponds to interband transitions. Taking the integrals in the
associated matrix elements, one obtains k-dependent contributions as

3V3

4mry

2;?1’ (k) =2

u

1
Jooo(0O)In | ———= |, (6.6)
’ ()nll—ru(y‘o)z]

where I have defined o (0) = }M}z /4Johor(0) and new dimensionless wave
vector, k, = ka. a(0) is of order of 0.054(0.089) depending on the choice of
qgo=2(2.5) A"

It is convenient to rewrite Eq. (6.5) for small k’s, which corresponds to neglect
phonon dispersions, i.e., it results with polaron dispersion independent on ry;. To do
this, we first expand the logarithm in Eq. (6.6), in power series of k, and then replace
the resultant back into Eq. (6.6) so that Eq. (6.5) reduces to the simple form
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1/2

4f 4/3

2
EL=+4k{1+4 (O)EO] o (0) ke, 6.7)

where E = aFE4 /hvg is the dimensionless energy. The existence of the inter-
chirality band term, second term in the square root in Eq. (6.7), is the main difference
from the standard electron self energy calculations taking into account only the
intra-chirality transitions through the degenerate optical phonon modes with Ep,
symmetry. Since Eq. (6.7) can easily be rearranged into the form E; = Ahiix (ko) ko,
we can thus define the renormalized Fermi velocity as

7r (ko) = vr [ 14402 (ko) — a (%o)} ;

wherein, in analogy with quantum chromodynamics [16], we also define a new
coupling constant, running coupling constant, as a function of k, i.e., energy,

& (ko) = %moﬁo.

It is easy to show that, from the size of the renormalization of the Fermi velocity,
i.e., from depending on the energy, for ky = 0.05 and ko = 0.1, respectively. In
the graphene literature, except a few theoretical calculations and an experimental
study, there are no works devoted to the investigation of the velocity renormalization
through many-body techniques or to its direct/indirect experimental observations.
While in Ref. [37] it was found to be reduced by 4-8 % depending for an electron
doping 4 x 10'3cm~2, in Ref. [24] for a plasmoronic band it was estimated around
1-3% depending on electron concentrations. The discrepancy between our results
and that of Ref. [27] is due to the fact that, while ky = 0.05 (0.1) corresponds to
200 meV (400 meV), for an electron doping 4 x 10'3cm~2 corresponding the Fermi
level is 600 meV. This energy region lies out of the range of validity of our results,
since our calculations based on the LLP theory are valid only below the phonon
resonance, i.e. E < hoor (0) = 196 meV.

6.3 Interaction with A, Phonon

In the long-wave length regime, the Hamiltonian of the graphene electron (hole)
interacting with Ag-phonon mode can be written as

H =+ Y, D hoy(Q)b} gbuq+ Hop (6.8)
u#v 4

where J%) = vra.p is the unperturbed part of the Hamiltonian. I have labeled the
well-known K and K’ points of graphene in Eq. (6.8) by the valley index p. Here,
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o are the four component Dirac matrices. Thus, the corresponding eigenfunctions
of the unperturbed part %) can easily be constructed in terms of four component
pseudospinor

A
exp(ik.r) | 0K
KAk) = ——=
Rl
0
0
exp(ik.r) 0
<}’|K/lk> = \/iL e[g(k) ’
A

In Eq.(6.8), the last term represents the electron-phonon couplings [47], and is
given by

a

_ By 0 o 'Ap(r)o,
Hep =273 (a)AK(r)Zy 0 6.9)

where fx = —dInJy/dIna, oy is the 2 x 2 Pauli matrix. In Eq. (6.9), the amplitude
of distortions at K and K’ points are defined by

h .
A = - b bT , iq.r
k) %‘ 2NMcax(q) (et bia)e

h

A (l‘) - z 2NMca)K(q)

(bK/’q n b},,q) elar, (6.10)
q

respectively. In Eq. (6.10), bk g (b’ o) and b;q (b;, q) are again the phonon creation
and annihilation operators but at points K (K') with phonon wave vector q and
frequency wg(q). The corresponding highest zone-boundary phonon energy is
hok (0) = 161.2 meV. Therefore, the electron-phonon interaction Hamiltonian given
by Eq. (6.9) can be rewritten in the following form:

Hp=—3" [Muy (q) by qe®" +h.c.]. (6.11)
u#v 9

where have defined My (q) as MoM_,y (q) such that

Mgy (@) = % (Zoy 3)7

Mgk (q) = wTI\; <320)>,
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together with My = 3agqoJo. Here, ag = (h/2Mcwk (0))"/?, and qo = (9Jo/da) /o
is predicted [21,38] around 2.0 and 2.5 Al

To diagonalize the phonon subsystem of Egs. (6.11) through (6.10) we employ a
similar unitary transformation scheme, as in the previous section. But now, It should
be considered that the zone boundary phonon gives rise to inter-valley scattering
between K and K'. Therefore, to be compatible with this property of the problem,
we make an ansatz for the ground-state of the whole system

= Za K )@UUs | 0)pn (6.12)

u'AV A
such that ¢ | @) = E. | @). Here, | 0),, stands for the phonon vacuum, and
ot ! | 1’ AK) corresponds to electronic state vector defined through the appropriate

/
fractlonal amplitudes, 05i , due to the fact that total wave function of the system
must be the linear combmatlon of | ' +K) and | u’ — k), respectively.
On the one hand, the first unitary transformation

U; = exp l—ir.ququu,q]
q

eliminates electron coordinates from Eq.(6.11), since the transformed operators
are given by the relations, by q = by qexp[—iq.r] and p=p—3 3 hgb} qbyq-
q u#v '

Therefore, the transformed Hamiltonian takes the form,

f%z = VFrO. <p—hz 2 qu,qbuﬁl)

q u#v

+3 3 hoxb) gbug— 2, Y, (Muvbuq+h.c.). (6.13)
q p#v qa p#v

On the other hand, second unitary transformation

U, = exp lzmom’x’k M,y (q) | V'AK)Db), — h.c.]
q

is the well-known displaced oscillator transformation which shifts phonon coordi-
nates by an amount of the interaction amplitude, My =My /hwk (0). It just shifts
the phonon coordinates, since it generates the coherent states for the phonon
subsystem such that optical phonon operators transform according to the rule
buq=buq+ Mo(u'A'k | MLV (q) | V'AK). As a result, under the transformation
U, Eq.(6.13) can then be rewritten as 7 = #° + 4. By using the ansatz given

by Eq. (6.12) , one first applies Eq. (6.13) to the term oci | £’ A’K), and then sums
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over A’ to construct the eigenvalue equation 7 | @)*V* = E. | ®)“V* | Finally,
by taking inner products to compare the related coefficients of the states| u'A'k) we
arrive four simultaneous equations for o’ * and ocfi which can be rewritten in the
following matrix equation:

E.+ ZﬁroJ)rKK 2&1}1{1{ ZSer)rKK’ Z(2)KK’ Ofiﬂ
ZﬂKK E, 1 xOKK ZQKK’ ( ) ok | .
Zger)rK’K 2(+22K'K Ei-f—zﬁ SEK’K’ ocf* -
52 )KK SKK ZSFIJ)FK’K’ Ei+2£lK’K' ocf*
where Z(O) Zm and 2( KK aIe relevant matrix elements. This show that
FF FF 0 AL/

only inter-valley scattering having different chiralities are allowed due to the
conservation of the chiral symmetry. After converting the associated sums into

)KK' (0 )KK

integrals over q, except for 2(2 and 2(2) terms, all the terms with 2,

Zg% and their corresponding K’ partners vanish. The non-vanishing terms can
easily be calculated as

KK' _ S(K'K _ 3\/_

2(2) F+ -]OO(O

where we have defined that o = |M0| / 4Joth(0) which takes values 0.305 or
0.477 depending on whether g is 2.0 A vor25A ! respectively [21,38]. We must
introduce an upper cut-off frequency g, = g.a, while taking the relevant integrals,
since they diverge at upper limit of the integrations. By solving the determinant of
the above matrix the eigenvalues E1 can be solved analytically in the following
form:

N2 1/2
EL—+ [(thk) (Z(Z)KK ) } ,

which is modified electronic band dispersion of the pristine graphene due to the
Kekulé-type distortion of the lattice. As is seen above, Kekulé-type distortion
preserves the chirality of the sublattice, i.e., the valley degeneracy is not lifted. wg,
we can choose g, = wg/vp = 0.027 A~ such that g, = qca = 0.039. This suggest
that the magnitude of the half-band gap is of order of 2.12 meV (g = 2.0 A Yor
3.34 meV (qgo =2.5 A1), so that the induced gap, of 4.24 meV or 6.68 meV. This
is smaller than that those previously found in the literature [42], where a mini band
gap occurs 10 meV in their room temperature calculations.
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6.4 Conclusion

In conclusion, a new type of polaronic formation in pristine graphene with respect
to electron-E», phonon interactions and mini band gap opening at zero temperature
with related to electron (hole) interacting with A,-phonon interaction is predicted.
We show that chiral polaron band dispersions consist of k dependent terms besides
the free undressed one. In addition to free undressed ones, both intraband and
interband interactions coexist in a one polaron dispersion. Secondly, we investigate
the first theoretical justification of a mini band gap formation in pristine graphene
at absolute zero temperature, due to the interaction of electron (hole) with highest
frequency optical phonon mode with A, symmetry near the zone boundary yielding
Kekulé type distortion. We have shown that such an interaction opens a gap without
breaking the chiral symmetry of the lattice.
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Chapter 7
Tunneling Conductance in Correlated
Graphenes

Jongbae Hong

Abstract Line shape of tunneling conductance observed for a correlated graphene
is studied theoretically. We focus on the line shape of scanning tunneling spec-
troscopy (STS) for a doped graphene flake. We obtain the STS line shape in terms
of elastic tunneling of a Kondo singlet through the coherent tunneling levels that are
formed due to two reservoirs within coherent regime. The resonant tunneling of a
singlet through this coherent tunneling level causes the abrupt increase in tunneling
conductance at a finite bias. The shifted position of Dirac point from the Fermi level
is responsible for making the line shape of tunneling conductance asymmetric.

A number of tunneling experiments have been carried out to study their basic
transport properties [1-6]. Among them, we focus our interest on the doped single-
layer graphene [1, 2] because its peculiar line shape of differential conductance,
dl/dV vs. V, where I and V denote the current and the bias voltage, respectively,
is not fully understood. We conjecture that the peculiar dI/dV line shapes are
attributable to the strongly correlated feature of the system [7]. Doping electrons
or holes results in a nonvanishing density of states at the Fermi level. As a result,
the 7 electrons of the graphene have a strong on-site Coulomb repulsion [7, 8].
Interestingly, the line shape of scanning tunneling spectroscopy (STS) for a doped
graphene flake [1, 2] shows suppression at zero bias and an abrupt increase at a
finite bias. The purpose of this study is to reveal the origin of the abrupt increase
and the reason of suppression at zero-bias in the dI/dV line shapes. To understand
the peculiar dI/dV line shapes observed for the doped graphene flake, we employ
elastic resonant tunneling of a singlet through the coherent tunneling levels that are
formed in a two-reservoir quantum impurity system with strong electron correlation.
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The position of Dirac point is attributable to the asymmetric form of the line
shape [1]. A notable point is that the Dirac point is shifted from the Fermi level
even at zero gate voltage if the sample is not intrinsic [1].

The characteristic features of the dI/dV line shapes of the doped graphene
flake, i.e. abrupt increase at a finite bias and the suppression at zero bias, may not
be explained by inelastic tunneling via quasiparticle excitations. According to the
studies by Ohta et al. [9], Calandra and Mauri [10], and Park et al. [11], phonons
may not play a role in low-energy tunneling in a graphene. In addition, both electron-
plasmon interaction and electron-hole pair creation may contribute to the inelastic
tunneling at a comparatively high bias [12, 13].

The graphene system under consideration comprises scanning tunneling micro-
scope (STM) tip, graphene sample, and the metallic lead. At low energy, electrons
cannot enter the graphene sample because of strong on-site Coulomb repulsion
at the mediating atom. It can enter the sample by forming an entangled Kondo
singlet connecting tip and sample. Under steady-state, coming one electron into
sample requires going one electron out. Therefore, considering the process of
electron entering sample is enough to study the tunneling conductance. Hence, the
Hamiltonian is written as

H = G + A5+ Y EnChono +Unuimy + %, (ViuChaCho + Vi CipCno);
o k,o,v=t,s (71)

where jﬁf’s = Ykol& — ,ut’s)c}zccka, and o, &, &, Vim, U, and u indicate the
electron spin, the kinetic energy, the energy level of the mediating atom, the
hybridization strength, on-site Coulomb repulsion, and the chemical potential,
respectively. The superscripts s and ¢ denote the sample and tip, respectively. In
this study, the sample is characterized only by its density of states.

Considering resonant tunneling from the tip to the sample gives the formula of

tunneling conductance at zero temperature as
d1/dv = (e/R)T (®)py (@) ho=ev, (7.2)

where I'(@) = I'(0)(0)/["(0) + T'(®)], and pi(®) is the steady-state
LDOS at the mediating atom. The coupling function is given by I'')(w) =
2n Yy |V,;(:)|25(a) — ). We use a constant for I'' (). Both I'*(®) and I'' () ap-
pear in the self-energy part of p;> (®). Equation (7.2) is derived from the well-known
Meir-Wingreen current formula [14, 15] with proportionate coupling function [16],
I''(w) o« I'*(w), and the bias-independence condition, dp;s(®)/dV = 0. The
proportionate relation can be used for elastic resonant tunneling, which gives the
condition I(w) =I' (w) = —I*(®), and the bias-independence condition results from
the effect of bias in coherent tunneling. Therefore, Eq. (7.2) is valid in this study.
In a Kondo system, one Kondo impurity has one Kondo singlet. The Hamiltonian
in Eq. (7.1) has one Kondo impurity and two reservoirs. Therefore, the left and right
Kondo singlets coupled by the mediating atom to the tip and sample, respectively,
can be formed. The equilibrium ground state is an entangled Kondo singlet that
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Singlet dl/av
s ——
........... —
8,” "-..._-‘T‘

sam —|

Fig. 7.1 Singlet tunneling under bias: resonant tunneling of a singlet via the coherent tunneling
level (dotted line) yields a side peak. The down-spin at g, indicates the real spin that forms a
singlet with the up-spin at the tip. The side peak of tunneling conductance curve (d1/dV) on the
right-hand side matches the coherent tunneling level

is represented by a linear combination of the left and right Kondo singlets. The
dynamical description of the entangled Kondo singlet is back and forth movements
of a Kondo singlet along with exchange and singlet partner change. However, when
a bias is applied, only unidirectional movement of Kondo singlet along the reverse
direction of the electric field, as shown in Fig. 7.1. Backward movement of a singlet
is prohibited no matter how small the bias. Therefore, p3f(w) indicating the prob-
ability of coherent dynamics is bias-independent until the quasiparticle excitations
created by bias are involved in tunneling. Neglecting dp;f(w)/dV has been adopted
in studying the dynamics of Kondo-involved mesoscopic systems [17-19]. Previous
studies [20-23] on the two-reservoir Anderson impurity model obtained bias-
dependent spectral functions. They encounter difficulties in explaining the exper-
imental dI/dV line shapes observed for mesoscopic Kondo systems. We understand
that one of the reasons for having bias-dependent spectral functions is attributable
to not taking the unidirectional motion of the entangled Kondo singlet under bias.
We have obtained a complete set of basis vectors spanning the Liouville
space of the two-reservoir Anderson impurity model at equilibrium [24, 25] in
which the basis vectors describing multiple back and forth tunnelings are in-
cluded. However, when a bias is applied, these basis vectors do not play a
role and the degrees of freedom is significantly reduced. Hence, the LDOS
Pr(®) is given by a 5 x 5 matrix such as p) (o) = (1/m)Re[(ML, 5) ]33,
where
—i® Vit _th-— Vs Yi

Y —i0 =Ul ¥ s
Ls=| U Uj’.i —io’ Uj‘?i Ujf , (7.3)

—Y%s =Y —Uj —i0" —Yy

—Yi —Ys —U;, Yos —i@
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o = o — &, —U(ny), and (n, ) denotes the average number of down-spin
electrons occupying the mediating atom [24]. All the matrix elements, except
UJt’i‘Y, have additional self-energy terms iX,, = B [iX)(®) + iXj(®)], where
Z(t)(s)(a)) denotes the self-energy of f%’g(s). Hence, i%,, is written as iX,, =
Re[Byn](I"(®)), where (I'(w)) = [I'" + I'*(w)]/2. We discuss the coefficients
Binn below.

The matrix M, in Eq.(7.3) consists of two 3 x 3 blocks that share the central
element representing the localized spin and two 2 X 2 blocks at the corners. The three
off-diagonal elements of the 3 x 3 block represent the degrees of singlet coupling
(%1(ss)) and incoherent double occupancy parameters (U ) Singlet tunneling is
described by 2 x 2 corner blocks. Operator expressions of Y are given by [24]

(Zki(VipuCir + VkkaT) t [Jmi( >’Jm¢( )]>

(37,2 (B 112
(B Vin + Vioni) i)
(TP

Yir(ss) =

3

Yis =
and y; = vi%s where

(Ski(VinChor + Vi ena i 71
(i) (@EiH 72

¥ =

where J’J';L = Zk(Vkmcjwcw + VkinCZLCmi)’ Jr;\L = iZk(VkmCLLCkL — Vljmclt¢cm¢)’ and
6j=j—{j) [24]. Yss(r) Tepresents the degree of exchange process between the
mediating atom and the electron in sample (tip). ¥, and 7y; represent symmetric
and antisymmetric combinations of left and rightward tunnelings, respectively, i.e.,
(—) £ («). Hence, in equilibrium, y; = 0. As discussed in Fig. 7.1, the tunneling
of Kondo singlet is unidirectional under bias. This fact gives ¥, = ¥;, which is the
condition of steady-state nonequilibrium. Two different conditions for y certify that
Pt (@)ly—0 # p;%(w). In addition, probability one for moving toward a specific
direction implies the bias-independence of p, (®).

The 5 x 5 matrix M, of Eq.(7.3) gives three coherent and two incoherent poles.
The three coherent poles provide two different types of coherent tunneling channels:
one at the Fermi level and the other at +-/iw,,,. The subscript rt¢ denotes the resonant
tunneling level. Hence, a singlet performs resonant tunneling and the tunneling
current abruptly increases When the bias voltage reaches fi@,;¢ /e. The simple atomic
limit analysis for the same U"? s gives hwyy ~ y,% + yszs )/2] 1/2 for large U. The
zero-bias peak is formed by coherent tunneling through the Fermi level. However,
the zero-bias peak is suppressed in the STS measurement for a doped graphene
because of imbalance in Kondo coupling strength between tip and sample, i.e.
Y+ < 7¥ss and active double occupancy at the mediating atom. In summary, Eq. (7.3)
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Table 7.1 Matrix elements for Fig. 7.2

T % % ¥ ReUj ReUj ReU” [ImUY|
DS 0002 0.15 035 035 283 713 2.1/3 0.028
ImU3. >0, ImU}- <0, ImU;f<O

with bias-independent matrix elements and the 7y relations is suitable for describing
coherent tunneling under bias in a mesoscopic quantum impurity system.

Now, we obtain the dI/dV line shape of the doped single-layer graphene. We
first determine the matrix elements of Eq. (7.3). The STS setup requires the relation
Y < ¥ss and we use the steady-state condition J;; = ¥; discussed above. The double-
occupancy parameters are given by Refs. [24,25]

UL = (U/2) D) +i(1 2 DIGE WG 4

where <D:*;’NY> = a*{(1 — 21 )n,) )", which indicates the probability of double

occupancy described by the operators j;rw or j, on the tip or sample side.
We assume the same relative fluctuations {((& ]i”) V2 /(5 i”> in steady-state
nonequilibrium. The factor a* denotes the parameter correcting decoupling mean-

field approximation. In a left-right symmetric system such as a quantum dot
single-electron transistor [26], the roles of symmetric (j ) and antisymmetric (j,, D,

operators are the same, which gives (D%D = (Df;;j) ie. Re[U = Re[U *], and
yields a prominent zero-bias peak. However, in such a heterogeneous junction like

a tip and sample system, (D;;D (Dm ¢> This imbalance also causes suppression
of the zero-bias peak. In the STS setup for a doped graphene, we consider (D*% $>
(D;% ¢> based on the stronger particle activity on the sample side than on tip side

and <Dr;% 1) = (D,,,) based on the steady current. Hence, we adopt the relations
Re[U.] > Re[U},] > Re[U;_] = Re[U]_]. We construct Table 7.1 based on these
relations and the condition J;; = ;. In Table 7.1, DS means doped single-layer
graphene. On the other hand, doping causes deviation from the charge neutrality
point and nonvanishing of the imaginary part of UJti which minutely controls the
relative heights and the positions of the two side peaks. We allocate small values
of Im[U *] for the doped graphene The absolute values of Im[U Ji] are given in

Table 1. The sign of Im[ ] depends on the signs of { ]ZY) and 1 —2(n,,), as
shown in Eq. (7.4).

Next, we determine the coupling function on the sample side, I'*(®). We write
I'(®) = ¢ + 2A|® + wp| representing a shifted linear graphene density of states,
where ¢p results from defects, A is constant, and wp is the Dirac point. Then,
(I'w)) = ¢ +Alw+ wp|, where ¢ = (¢o + I'")/2. The values of ¢, A, and
wp are determined phenomenologically. Finally, we decide the coefficients B.
Considering the same relative fluctuations gives vanishing Im[f,,,] because they
are given by the difference of relative fluctuations [24]. In contrast, the real parts
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Fig. 7.2 (a) Comparison of the theoretical dI/dV line shape with the experimental data (red) for
a doped graphene at the gate voltage V, =20 V given in Ref. [2]. We choose ¢ = 1.149, A = 0.43,
wp = 1.02A¢, and I'" = 0.18Ay. The green arrows indicate the positions of Dirac point. (b) Plot of
(I'(w)) (color figure online)

Re[By] are symmetric and have the following mutual relations due to (j,|) =
— <Jr;£> and the same relative fluctuations: Re[f1>] = Re[B14] = Re[B15] < Re[f11] =

Re[B2] = Re[Bas] = Re[Bss] = Re[Bos] = Re[fas] = Re[fss| and Re[fs3] = 1.
For example, Re[fs] is given by Re[B25] = {( (1 - 2an)><er;i(1 —2n,1)) +

(=20 )G it }/\/ (85 \/ 8j,1)?) [24]. To obtain the line shapes
given in Fig. 7.2 (a), we choose Re[ﬁlz] 0.245 and Re[f;] = 0.255 based on the
standard value Re[f,,] = 0.25 that is obtained at the atomic limit [24] and use the
values of Table 7.1 along with (I"(®)) in Fig.7.2 (b). Satisfying the inequalities of
Re[Bn] is crucial to obtain the well-fitting line shapes.

We superimpose our theoretical results on data panels presented by Brar et al. [2]
for a doped graphene in Fig. 7.2 (a), and energy units are chosen as Ay = 210 meV.
The fit shown in Fig.7.2 (a) are remarkable in the low-bias region including the
two abrupt increases. The difference in the high-bias region of Fig.7.2 (a) could
be explained by inelastic tunneling processes such as electron-phonon interactions
[10-12], electron-hole pair creation [12], and electron-plasmon interactions [13].
These inelastic tunneling mechanisms operate at energies higher than 200 meV. One
can revive the zero-bias peak by choosing Re[U’ i *] ~Re[U" S] The dI/dV line shape
is changed into a mirror symmetric one for the axis of zero b1as if electron doping is
changed to hole doping, i.e. negative gate voltage [1]. This is achieved by changing
the signs of wp.

In conclusion, we clarified that the characteristic structures of the dI/dV line
shapes observed for the doped single-layer. The elastic resonant tunneling of a
singlet through the coherent tunneling level results in abrupt increases in dI/dV
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and the asymmetry of the line shape shown in Fig. 7.2 (a) is attributed to the shifted
Dirac point. Further, the zero-bias peak is suppressed in this system, which results
from both strong asymmetry in the degrees of Kondo coupling to tip and sample
sides and the different contributions of the operators j,\; and j,, describing the
double occupancy at the mediating atom.
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Chapter 8
Landau Levels and Edge States in Graphene
with Strong Spin-Orbit Coupling

Alessandro De Martino, Artur Hiitten, and Reinhold Egger

Abstract We investigate the electronic properties of graphene in a magnetic
and a strain-induced pseudo-magnetic field in the presence of strong spin-orbit
interactions (SOI). For a homogeneous field we provide analytical results for the
Landau level eigenstates for arbitrary intrinsic and Rashba SOI, including also the
effect of a Zeeman field. We then study the edge states in a semi-infinite geometry
in the absence of the Rashba term. We find that, for a critical value of the magnetic
field, a quantum phase transition occurs, which separates two phases both with spin-
filtered helical edge states but with opposite direction of the spin current. Finally,we
discuss magnetic waveguides with inhomogeneous field profiles that allow for
chiral snake orbits. Such waveguides are practically immune to disorder-induced
backscattering, and the SOI provides non-trivial spin texture to these modes.

8.1 Introduction

The physics of graphene continues to attract a great deal of attention and to provide
a rich source of interesting phenomena [1-3]. By studying the effects of the spin-
orbit interaction (SOI) in a graphene monolayer, where symmetry allows for an
“intrinsic” (A) and a “Rashba” (4) term in the SOI, Kane and Mele [4] made a
remarkable discovery that sparked the exciting field of topological insulators [5]:
For A > A /2, the system presents a bulk gap with topologically protected edge
states near the boundary of the sample. This is similar to the quantum Hall (QH)
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effect but happens in a time-reversal invariant system. The resulting “quantum spin
Hall” (QSH) edge states form a one-dimensional (1D) helical liquid, where right-
and left-movers have opposite spin polarization, and spin-independent impurity
backscattering is strongly suppressed. The QSH state has been observed in HgTe
quantum wells [6], but several works [7-9] showed that A is probably too small
to allow for the experimental verification of this novel phase of matter in pristine
graphene. Consequently, other material classes have been employed to demonstrate
that topologically insulating behavior is indeed possible [5].

Recent graphene experiments, however, have demonstrated that the Rashba
coupling A can be increased significantly by depositing graphene on Ni surfaces
[10, 11]. Moreover, very recent theoretical predictions [12] suggest that already
moderate indium or thallium adatom deposition will dramatically enhance A by
several orders of magnitude. By using suitable adatoms, it is then expected that in
the near future both SOI parameters A and A can be varied over a wide range of
values in experimentally accessible setups.

In view of these developments, in this paper we study the electronic properties
of a graphene monolayer with strong SOI. Besides the SOI, we include piecewise
constant electrostatic potentials, orbital and Zeeman magnetic fields, and strain-
induced vector potentials. The latter cause pseudo-magnetic fields but do not violate
time reversal invariance. (See Ref. [13] for a review.) While the interplay of the
Rashba term A with (pseudo-)magnetic fields in graphene has been studied in
several theory works before [14—16], the effects of the intrinsic SOI A did not
receive much attention so far (apart from recent investigations of the transmission
properties of graphene’s Dirac-Weyl (DW) quasiparticles through barriers with
arbitrary SOI but without (pseudo-)magnetic fields [17, 18].)

The present contribution reports results obtained by the authors in [19]. The
structure is as follows. In Sect. 8.2 we formulate the model and construct the general
solution for piecewise constant fields, where we allow for orbital magnetic field,
arbitrary SOI parameters A and A, and Zeeman energy b. The homogeneous case is
addressed in Sect. 8.3, where we determine the Landau level states for this problem
in closed and explicit form. In particular, the fate of the zero modes residing at the
Dirac point (energy E = 0) is discussed in the presence of the SOI. Our results
also apply to the case of a strain-induced homogeneous pseudo-magnetic field [20].
Next, in Sect. 8.4, we study the edge states near the boundary of a semi-infinite
sample for vanishing Rashba coupling, A = 0. For weak magnetic fields, one expects
to have helical (spin-filtered) QSH edge states. Interestingly, upon increasing the
magnetic field we find that a quantum phase transition takes place between the
QSH phase and a second QSH-like phase with spin-filtered edge states, considered
previously in [21], where the spin current direction is reversed. This spin current
reversal should allow for an experimental detection of the transition, on top of the
obvious consequences for QH quantization rules [21-24]. In Sect. 8.5, we turn to a
waveguide geometry, defined by a suitable inhomogeneous magnetic field [25-34].
We show that the SOIs give rise to interesting spin textures of the chiral states
propagating in the waveguides. Finally, we conclude in Sect. 8.6.
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8.2 Model and General Solution

In this section we introduce the model for graphene with SOI in the presence of a
magnetic field, and obtain the general form of the eigenstates for piecewise constant
couplings.

8.2.1 Model

The low-energy electronic properties of graphene are well captured by two
copies of a DW Hamiltonian supplemented with various terms describing SOI,
(pseudo-)magnetic fields, and electrostatic potentials [3]. The wavefunction is a
eight component spinor

Fark k'
. K / Y, /

W(x,y) = ket ( (0 /()’) )7 oK — | Torkx | @.1)
&) o5 () Wik k'
ik k'

The Pauli matrices 0;—y,, below act in sublattice space corresponding to the two
carbon atoms (A/B) in the basis of the honeycomb lattice, while Pauli matrices
s; act in physical spin (1,J) space. Finally, the valley degree of freedom (K,K’)
corresponds to the two K points [3] and Pauli matrices 7; refer to that space. Here we
consider models where the mentioned extra terms in the Hamiltonian are piecewise
constant along the y-direction and uniform along the x-axis. Consequently, the
momentum p, is conserved, and we have an effectively 1D problem in terms of the
four-spinors ¢*X-X' (y). The orbital magnetic field B. = £B (with € = + and B > 0) is
expressed in terms of the vector potential A(x,y), where we choose the gauge

Ay=—€B(y—cp), A,=0. (8.2)

Inclusion of the constant ¢y is necessary when connecting regions with different
magnetic fields in order to make A, continuous. With the magnetic field perpen-
dicular to the graphene sheet, the Zeeman effect determines the coupling constant
b = gsupB/2, where g; = 2 is the Landé factor and pp denotes the Bohr magneton.
The full Hamiltonian then reads [3] (¢ > 0)

e . e
H=vr {oxrz (px-l- - (Ax+ rz,;zfx)) +0 (py + ;Tz%r)}

A
+V +€bs, + E(styrz — 0ysy) + AC:S T, (8.3)
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In Eq. (8.3) py = fik, is the conserved momentum in the x-direction, while p, =
—ihd,. The constant ¢q in Eq. (8.2) can be included by shifting py, and we suppose
that this shift has been carried out in the remainder of this section. The Fermi
velocity is vp ~ 10° m/s, while the SOI couplings A and A (both are assumed
non-negative) correspond to the intrinsic and Rashba terms, respectively. A constant
electrostatic potential, V, has been included in Eq. (8.3). Strain-induced forces [13]
lead to a renormalization of V' as well as to the appearance of an effective vector

potential,
Y —x Uxx — Uyy
oy 2ty )

expressed in terms of the in-plane strain tensor u;;, see Ref. [35]. The constant x can
be found in Refs. [13,36]. As discussed in Ref. [37] in many cases it is sufficient
to consider a piecewise constant strain configuration. Assuming that the x-axis is
oriented along the zig-zag direction, strain causes only a finite but constant .o7, while
&7, = 0. This can be taken into account by simply shifting p, in this region. Below
we suppose that also this shift has already been done. Estimates for .7 in terms of
physical quantities can be found in Refs. [13,37]. The resulting pseudo-magnetic
field then consists of d-barriers at the interfaces between regions of different strain.
An alternative situation captured by our model is given by a constant pseudo-
magnetic field, whose practical realization has been described recently [20]. In
that case, 7 is formally identical to A, in Eq.(8.2). Unless specified explicitly,
we consider the case of constant 27, below.

8.2.2 Symmetries

Let us briefly comment on the symmetries of this Hamiltonian. For H in Eq. (8.3)
with € = sgn(B;), the time reversal symmetry implies the relation

THe(ke) T~ = H ¢(—ky), (8.4)

where .7 = 1,(—is,)% is an antiunitary operator' with complex conjugation oper-
ator €. Since H is diagonal in valley space, Eq. (8.4) implies that the Hamiltonian
HX' near the K’ point is related to HX by the relation

HE (ko) = sy [HE (k)]'sy. (85)
By solving the eigenvalue problem at the K point, we could thus obtain the

eigenstates at K’ via Eq.(8.5). A simpler way to achieve this goal is sketched at
the end of this subsection.

1A different representation for .7 has been given in Ref. [2] because of a different arrangement of
the sublattice components in the spinor (Eq. 8.1).
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From now on we switch to dimensionless quantities by measuring all energies in
units of the cyclotron energy /®,, where we define w, = vr /{p. The magnetic length
(= (hc/2eB)'/? sets the unit of length. A field of 1 T corresponds to i, =~ 36 meV
and /g ~ 18 nm. Measuring B in units of Tesla, we get for the Zeeman coupling
b = (gsupB/2)/hw, ~ 1.6 x 10~3,/B[T]. With the dimensionless coordinate

N =y—2¢ek (8.6)
and the auxiliary quantities
Ur=E—-V+bEtA, vi=E-V—-bEA, 8.7)
we find the representation
v; a 0 0
E_H.f:ﬂ = C:) —v;m :ﬁr 2 )
0 0 da u_
U —a" 0 0
E-HE | = _0" f;L "i _(;T (8.8)
0 0 —a v_

where we have introduced the standard ladder operators

n
2

a=

+an, aT:g—(?n, la,a"] = 1. (8.9)

According to the above discussion, eigenstates at the K’ point for € = +1 could be
obtained from the corresponding solutions at the K point with € = F-1. Alternatively,
there is a simpler way to obtain the K’ states as follows. The 1D Hamiltonians HX K
(for given €) can be written in dimensionless notation as

£ A
oK — —THGX —i0ydn + A0;s; + E(sty — OySx) + 24Oy + €bs,

, A
HK = %Gx — iG);an — AGZSZ + E(_sty - Gysx) + 'Q{)CGX + 8sz'

Both Hamiltonians are therefore related by the transformation

HY (o) = 0, HX (—t}) 0, (8.10)
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without the need to invert the real magnetic field, since this is not a time reversal
. . !

transformation. As a consequence, the 1D eigenstates ¢X (1) follow from the

corresponding ¢* by multiplying with —ioy and inverting the sign of .27,

o' (n, o) = —icy0* (n,—4). @.11)

8.2.3 General Solution

We now determine the spinors ¢ solving the DW equation for energy E,
(E—H")p(n) =0, (8.12)

with E — HX in Eq. (8.8). We construct the solution to Eq. (8.12) within a spatial
region where all parameters (magnetic fields, strain, SOI, etc.) are constant but
arbitrary. This general solution will be employed in later sections, where specific
geometries are considered by matching wavefunctions in adjacent parts. Equa-
tion (8.12) is a system of four first-order linear differential equations that admits
four linearly independent solutions. For energy E and positive magnetic field we
find two states:

pDp-1(=1) —iD_p(=in)
o | v-Du(=m) v B v_D_,1(=in)
e=+1,p I(VZP)D])(_TI) ) e=+1,p l(v;P)Dfpfl(—l.n) ’
i(v— — 1 .
(;‘fuf)DpH(—n) —%Dq)*z(—m)
(8.13)
for each of the two values of the parameter p given by
1
pzz[u+v—li\/(u+v—l)2+4lzuv , (8.14)
where we define (cf. Eq. 8.7)
f=pu =(E-V+b)’—A%
v=v,v.=(E-V—b)*—A% (8.15)

and D, is the parabolic cylinder function of order p [38,39]. For details about the
solutions and the solutions for a negative magnetic field (i.e., € = —1), see Ref. [19].
Next, we analyze the spatially uniform case.
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8.3 The Uniform Field Case

In this section we study an unstrained infinitely extended graphene monolayer where
the magnetic field B; = B (i.e., we assume € = +1) and the SOI parameters A and
A are constant everywhere. (The electrostatic potential V just shifts all states and is
set to zero here.) We are thus concerned with the relativistic Landau level structure
for graphene in the presence of arbitrary SOI parameters, including also the Zeeman
field b. This problem was solved for the special case A = b = 0 by Rashba [16], see
also Ref.[15], and below we reproduce and generalize this solution. We focus on
the K point only, since the spectrum and the eigenstates at the K’ point follow from
Egs. (8.5) and (8.11). We also allow for a constant pseudo-magnetic field. When
only an orbital or a strain-induced pseudo-magnetic field is present but not both,
each energy level below has an additional twofold valley degeneracy.

In the homogeneous case, the spinors ¢, in Eq. (8.13) are normalizable only if the
order p is constrained to integer values p = —1,0,1,2,..., while the spinors y,, in
Eq. (8.13) are not normalizable. Solutions for the homogeneous problem thus have
to be constructed using ¢, only. Expressing the energy E (we remind the reader that
here all energy scales are measured in units of w®,) in terms of p (Eq. 8.14), the
sought (valley-degenerate) Landau levels follow as the roots of the quartic equation

[(E+b)>—(p+1+AD)] [(E-b)*—(p+A%)] =A*[(E—A)*—b*]. (8.16)

For b = A = A = 0 this recovers the standard relativistic spin-degenerate Landau
levels [3], E+, = ++/n forn=1,2,3,... (with n = p for spin up and n = p + 1
for spin down states), plus a spin-degenerate zero mode Ey = 0 (for p =0, —1). We
notice from Eq. (8.16) that for b = 0, the combination of A and A breaks particle-
hole symmetry, while the two couplings separately do not. Furthermore, zero-energy
solutions are generally not possible except for special fine-tuned parameters. The
¢,(n) thus represent Landau level states in the presence of SOI and Zeeman
coupling. The normalization constant 1/ \/J_V , entering as a prefactor in Eq. (8.13),
can be computed analytically since D,(z) can be expressed in terms of Hermite
functions for integer p [39], see Ref. [19].

Remarkably, for p = —1, we find the exact normalized state,
0
1 0
_ = 8.17
Do(—n)
with the eigenvalue

E,— 1 =A—b. (8.18)
This unique admissible eigenstate for p = —1 is endowed with full spin polarization

in the | direction. For p = 0, the secular Eq. (8.16) becomes effectively a cubic
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equation: the solution E = A +b (i.e., v— = 0) does not correspond to any admissible
eigenstate. The three allowed states are described by

0
L | Au-v-Doy(-n)
bp=0(N) = ) (8.19)
p=o(11) VA | iu-vDo(—=n)
ivDy(—n)
This includes a “zero-mode” partner of the p = —1 state, plus a pair of states

obtained by mixing the spin-up n = 0 and spin-down n = 1 Landau orbitals via
the Rashba SOI.

8.3.1 Rashba SOI Only

For A = b = 0 but finite Rashba SOI parameter A, Eq. (8.16) admits a simple solu-
tion, previously given in Ref.[16] and briefly summarized here for completeness.

For p = —1 we have the solution (8.17), which now is a zero mode, while for
p=0,1,2,..., the eigenenergies are given by
1/2
1+12 1+22 0\’
Epop = 06[ 5 +pﬁ\/< s—tp) —plptl)| . (820)
with o, B = £. According to our discussion above, here Eg+ — = 0 should be

counted only once, with eigenstate @] _ o< (0,Do(—n),0,—iAD;(—n)), while
Ey+ + = £V 1+ A? correspond to a particle/hole pair of first Landau levels modi-
fied by the Rashba SOI, with eigenstates ¢0T,i,+ o< (0,ADo(—n), iV 1+ A%Do(—1n),
iD;(—n)). We thus get precisely two zero-energy states.

For small A, we find the expansion

Episy =+(142%/2)/p+ 0%,
Eps =+(1-2%/2)\/p+O(AY),

which shows that the states E, + 1 and E,; 1+ —, which form a degenerate Landau
level for A = 0, are split by a finite 7.

8.3.2 Intrinsic SOI Only

Let us next consider the case A = 0, where one has a QSH phase [4] for B =0 and
A # 0. Now the Hamiltonian is block diagonal in spin space and the eigenstates
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become quite simple even for finite Zeeman coupling, since we can effectively
work with the bi-spinors q)TKLK (y) for spin s =1 / = 4. We easily obtain the
(unnormalized) eigenstates with p € Ny in the form?

o= ("5

oK. () = ( ~Dp(=m) n)>, (8.21)

VptsDp-1(—

where the eigenenergies follow from Eq. (8.16),

Epsy=sb++/p+A2L (8.22)

We employ the notation

Vpt.s EEp,i,s_EOfs,s: :E\/p—I—AZ—SA. (8.23)

For p = 0, the second index in ¢, + ¢ and E,, + ; should be replaced by —s, i.e.,
there is only one solution for given spin (and valley). Note that Eq | in the present
notation corresponds® to the solution (8.17). When b = 0, interestingly enough, A
does not lift the spin degeneracy of the Landau levels except for the zero mode
(p = 0).* A Zeeman term with b = A restores a true doubly-degenerate zero-energy
state for p = 0 again. In Sect. 8.4 we show that this implies a quantum phase
transition.

8.3.3 General Case

Although the quartic Eq. (8.16) can be solved analytically when both SOI couplings
are finite, the resulting expressions are not illuminating and too lengthy to be quoted
here. Only the p = —1 state in Eq. (8.17) remains exact for arbitrary parameters. We
here specify the leading perturbative corrections around the special cases above, and
then show the generic behavior in two figures.

2For notational convenience, we shift p+ 1 — p for s =| in the discussion of the purely intrinsic
SOL

3See footnote 2.

4We note that we made a wrong statement in Ref. [32] in that direction: For the case j < 0 on
page 3 therein, we stated that for «’ = 0 there are two normalizable states with E = £|M| which
for M — 0 coalesce into a single zero-energy Landau level. However, only the state E = —|M| is
allowed, and the other one is not normalizable.
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Expanding around the Rashba limit of Sect. 8.3.1, which is justified for b,A < 1,
we get the lowest-order perturbative correction to the finite-energy (i.e., p # 0,—1)
Landau levels (Eq. 8.20) in the form

(A%A +b)
(1+22)2+4pA%

OEp+=—0E,+ = (8.24)

Expanding instead around the intrinsic SOI limit of Sect.8.3.2, we find the
following small-A corrections to the Landau levels in Eq.(8.22): For p = 0, the
state Eo ; | corresponding to the exact solution (8.17) is not changed by A to any
order, while Eq _ 1 gets the lowest-order correction

2(A —b)A?

Ey_4=—— 20
S04 4b(b—A)+1

The corresponding eigenstate is, however, not a spin-7 state anymore. For p > 0, the
eigenenergy E, 1  (Eq. 8.22) acquires the perturbative correction

sA? p+2(A—sb)(AqZ\/p+A2).
2/p+A42 1+4b(sbj: p+A2)

We now consider two different SOI parameter sets consistent with the estimates
in Ref. [12], and show the complete evolution of the Landau levels from the weak-
to the strong-field limit. In Fig. 8.1, numerical results for the few lowest-energy
Landau levels are depicted for A > A /2, corresponding to a QSH phase for B = 0.
The (valley-degenerate) spin-split levels corresponding to the A = A = b =0 zero
mode exhibit a zero-energy crossing at B~ 11 T for the chosen SOI parameters. This
crossing signals a quantum phase transition from the QSH phase, which survives
for sufficiently small B and A > 4 /2, to a peculiar QH phase for large B. As we
discuss in Sect. 8.4, one then again has helical edge states [21] but with reversed spin
current. Similar crossings can occur for higher Landau states as well, as is shown
in Fig. 8.2 for a parameter set with A < A /2 where no QSH physics is expected.
For even larger B, not displayed in Fig. 8.2, we find an E = 0 crossing where the
Rashba-dominated small-B phase turns into the helical QH phase.

0E,+ == (8.25)

8.3.4 Spin Polarization

Given the Landau level eigenstates, it is straightforward to compute the spin-
polarization densities S;(y) = W' $¥ (i = x,y,2). We find S(y) = 0, while

5See footnote 2.
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Fig. 8.1 Low-lying Landau
level energies (in units of the
cyclotron energy 7.) vs.
magnetic field B (in Tesla) for
the SOI parameters

A =0.65 meV and

A =0.15 meV. For small B,
this corresponds to the QSH
phase, A > A /2. For better
visibility, the deviation from
the respective A =A =b =0
level has been magnified by a
factor 10 for each curve

Fig. 8.2 Same as in
Fig. 8.1 but for A = 1.5 meV 1
and A = 6.5 meV
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A=1.5 meV

A=6.5 meV |

5 10 15 20
BIT]
v_
Sy()’)* A”/V <pr 1D]J+_D Dp+1>
1 212 (V—P)2 , (v— P)
Sz(Y):z—% p°D; 1+( - DP—WD,,H, (8.26)

where D, = D,(—n). In the absence of the Rashba term (A = 0), the in-plane
component S, vanishes identically, since then the eigenstates are simultaneously
eigenstates of s,. For finite A, integration over y yields a vanishing expectation
value for the overall in-plane polarization, but the Rashba coupling still induces
local in-plane spin polarization. The case A = b = 0 has been discussed in detail by

Rashba [16].



108 A. De Martino et al.
8.4 QH Edge States for Intrinsic SOI

In this section, we consider the edge states corresponding to the relativistic Landau
level problem in Sect. 8.3 when a boundary at y = 0 is present. We focus on the case
of purely intrinsic SOI, A = 0, but the physics should be qualitatively unchanged for
A < A. In the region y < 0 we then have a homogeneous magnetic field B, = +B,
i.e., € = +1. (For a pseudo-magnetic field, this holds at the K point while at the K’
point, B, - —B;.)

Since the problem of edge states in graphene has been studied extensively before,
some remarks are in order at this point. In fact, putting A = b = A = 0, our results
are consistent with those of Refs. [23,24,40-42] reporting chiral QH edge states in
graphene. On the other hand, the B = 0 model is equivalent to the continuum limit of
the Kane—Mele model [4] and thus exhibits helical QSH edge states [6]. (The helical
state has a pair of counterpropagating 1D modes with opposite spin polarization.)
The Kane-Mele model with (A,b) # 0 but without orbital magnetic field has
recently been studied [43], and a quantum phase transition from a (generalized)
QSH phase for b < A to a quantum anomalous Hall (QAH) phase for b > A has
been predicted. It is worthwhile to stress that the QSH effect survives even when
time-reversal symmetry is broken. In the QAH phase, one has chiral edge states
moving in the same direction for both spin polarizations [44]. The valley analogue
of this quantum phase transition has also been studied [45]. Furthermore, for the 2D
topological insulator realized in HgTe quantum well structures, a related transition
has been predicted [46] by including the orbital field but omitting the Zeeman term.

However, the Zeeman term is crucial in graphene near the Dirac point: for A =0
and b # 0, spin-filtered helical edge states (similar to the QSH case) emerge again
[21,47]. Our results below show that this QSH-like phase is separated from the
“true” QSH phase by a quantum phase transition at b = A. Albeit both phases have
spin-filtered edge states, they differ in the direction of the spin current. This feature
should allow to experimentally distinguish both phases and to identify the quantum
phase transition separating them. In practice, one may reach this transition simply
by changing the magnetic field.

Normalizability of the wavefunctions for y — —co implies [38] that the only
allowed solutions follow from the ¢, spinors in Eq. (8.13), while the v, solutions
in Eq. (8.13) have to be discarded. Since we do not have to impose normalizability
at y — oo, the order p is not constrained to integer values and can now take any real
value consistent with suitable boundary conditions at y = 0. For given conserved
momentum k, and spin s, the solutions for p yield the edge state spectrum, E; (k).
Note that for finite magnetic field and k, < 0, the distance from the boundary is set
by |ky|. Putting A = 0, possible solutions q),lff; (y) must be of the form in Eq. (8.21),
with energy E, 1 ; given by Eq. (8.22). While p € Ny in Sect. 8.3.2, we now consider
arbitrary real p. To make progress, we have to specify boundary conditions at y = 0.
We investigate two widely used boundary conditions, namely the zig-zag edge and
the armchair edge [3,21,48,49].
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8.4.1 Zig-Zag Edge

For a zig-zag edge with the last row of carbon atoms residing on, say, sublattice
A, the microscopic wavefunction must vanish on the next row outside the sample,
belonging to sublattice B. In the continuum limit, since the x-axis here points in the
zig-zag direction, the lower component of the spinor ¢]IJ<,i,s (Eq.8.21) has to vanish
at y =0 [21,23]. For both spin directions s = =+, this yields the condition

D,(2k) =0, (8.27)

which has to be solved for the energy, expressed in terms of p as E; = sb++/p + AZ.
At the other Dirac point, the lower component of the spinor q)fis should vanish at
y =0, where Eq. (8.11) implies the condition

Vp+sDp_1(2k) =0, (8.28)

with v, 4 ¢ in Eq.(8.23). It is not possible to find simultaneous solutions to
both Egs. (8.27) and (8.28). Possible states are thus confined to a single valley:
the boundary condition does not mix the valleys but lifts the KK’ degeneracy.
Remarkably, for s = + and arbitrary ky, Eq. (8.28) is satisfied by the K’ solution
for p = 0 in Sect. 8.3.2, with Es(ky) = s(b— A), i.e., we find a pair of “flat” states.
For all other states, Eq. (8.28) simplifies to condition (8.27) with p — p — 1 (and
K — K’). We mention in passing that for A = 0 this condition reduces to Eq.9
in Ref.[42]. Equation (8.27) can be solved in closed form for k, — —co using
asymptotic properties of the parabolic cylinder function. To exponential accuracy,
with n € Ny we find

|2kx|2n+1 672k%

V2rn!

Numerical analysis of the above equations recovers the expected spin-filtered helical
edge states [21] for b > A, but the continuum approach used in this paper fails to give
clear evidence for the helical QSH edge states for b < A. As pointed out in Ref. [47],
under the zig-zag boundary condition one needs a more microscopic description in
order to capture these states. The “flat” states above are remnants of the sought
QSH edge states, but the continuum model is not sufficient to describe their proper
dispersion relation. We therefore turn to the armchair boundary condition.

8.4.2 Armchair Edge

Under the armchair boundary condition, we instead impose ‘IQ‘K + 'PAK/ =0and ‘I’é( +

‘Pé(/ = 0 at the boundary, with ¥ in Eq.(8.1). This boundary condition mixes the
valleys and involves both sublattices. Since in our coordinate system the x-axis is
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Fig. 8.3 Dispersion relation E; + (k) of a semi-infinite graphene sheet with an armchair edge at
y = 0, obtained numerically from Eq.(8.30). We use A =0, B=15T, A = 6 meV, and the +
(—) sign is for the symmetric (antisymmetric) valley combination in Eq. (8.30). Inset: Same for
A =0.3meV

parallel to the zig-zag direction, we first rotate the system by 7 /2 and then impose
the boundary condition at y = 0. Written in the original coordinates, we find (for
each spin direction s)

Vp+,sDp—1(2ky) = Dp(2k,) = 0. (8.30)

We note that the relative phase between the K and K’ components is not fixed by the
Dirac equation, which is diagonal in valley space. However, the only relative phase
compatible with the boundary condition imposed simultaneously on both sublattices
is 1. Each of the two conditions in Eq. (8.30) may thus be imposed separately. We
have checked that the numerical solution of Eq. (8.30) for A = 0 recovers the known
results for the QH edge state spectrum [21,42]. In addition, for B = 0, the armchair
edge is known [48, 50] to yield QSH edge states.

Our numerical results for the dispersion relation E; + (k) for the armchair edge
are shown in Fig. 8.3, where & corresponds to the symmetric or antisymmetric linear
combination in Eq. (8.30) and the magnetic field is B = 15 T. The main panel shows
results for A = 6 meV. Then A > b, and we have the (generalized) QSH phase.
Indeed, for E = 0 we find the helical edge state, where the right- (left-)mover has
spin s =1 (s =J.). The inset of Fig.8.3 is for A = 0.3 meV, where A < b and the
spin-filtered helical QH phase [21] is found. Here we have spin s =| (s =1) for the
right- (left-)mover. Hence the spin current differs in sign for A > b and A < b, with
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a quantum phase transition at A = b separating both phases. This feature should
allow for an experimentally observable signature of the transition.

8.5 Spin Structure in Magnetic Waveguides

In this section, we consider a spatially inhomogeneous situation, where a magnetic
waveguide [27-29] along the x-direction can be realized. Since the problem remains
homogeneous along the x-direction, p, = #ik, is still conserved. For the physics
described below, the Zeeman coupling b gives only tiny corrections [29] and will
be neglected. Moreover, there are no valley-mixing terms, thus we can focus on a
single valley.

We distinguish a central strip of width 2L (the “waveguide”), —L < y < L, and
two outer regions y < —L and y > L. In the central strip, we shall allow for arbitrary
SOI parameters A and A. In addition, strain may cause a constant contribution to the
vector potential, .27, and a scalar potential, V. The magnetic field in the central strip
is denoted by B.. For |y| > L, we assume that all strain- or SOI-related effects can be
neglected, A = A = o, =V =0. In principle, by lithographic deposition of adatoms,
one may realize this configuration experimentally. For y < —L, the magnetic field is
B, =B >0, while fory > L, we set B, = €B, where € = 1 (¢ = —1) corresponds to
the parallel (antiparallel) field orientation on both sides. For € = —1, we take B, =0,
while for € = +1, we set B, = —B.

The setup with € = —1 could be realized by using a “folded” geometry [51,52],
cf. recent experimental studies [53]. Note that when the magnetic field changes
sign, one encounters “snake orbits,” which have been experimentally observed in
graphene pn junctions [54]. For the € = —1 configuration, we have uni-directional
snake orbits mainly localized along the waveguide, while for € = +1, we get two
counterpropagating snake states centered near y=+L. For A =A = &, =V =0,
both cases (¢ = 1) have been studied in detail in Ref.[28]. Technically, one
determines the eigenstates and the spectrum, E (k,), by matching the wavefunctions
in the three different regions, which results in an energy quantization condition. This
method can be straightforwardly extended to the more complex situation studied
here by employing the general solution in Sect. 8.2 for the central strip.

Before turning to results, we briefly summarize the parameter values chosen in
numerical calculations. We take a magnetic field value B = 0.2 T, and the waveguide
width is 2L = v/8(5 =~ 40 nm. The strain-induced parameters in the central strip are
taken as ., = —16um~! and V = —20 meV. These values have been estimated for
a folded setup [52], where V comes from the deformation potential. We consider
two different parameter choices for the SOI couplings: Set (A) has A = 13 meV and
A =3 meV, corresponding to the QSH phase. For set (B), we exchange both values,
ie,A=3meVand A =13 meV.
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Fig. 8.4 Dispersion relation of the lowest few energy branches for a strained magnetic waveguide
with € = —1 and SOI in the central strip of width 2L. Energies are given in units of /ivg /L. The
main panel is for parameter set (B). The stars refer to the states further studied in Fig. 8.5. Inset:
Same for set (A) (See main text for details)

8.5.1 Antiparallel Case: Snake Orbit

Let us first discuss the € = —1 configuration, where the magnetic field B, differs
in sign in the regions y < —L and y > L. The dispersion relation of typical low-
energy 1D waveguide modes is shown in Fig. 8.4. For k, — —oo the centers of the
quantum states are located deep in the left and right magnetic regions, far from the
waveguide. Thus one has doubly-degenerate dispersionless “bulk” Landau states.
With increasing k. these states are seen to split up. The dominant splitting, which
is already present for A = A = 0, comes from the splitting of symmetric and anti-
symmetric linear combinations of the Landau states for y < —L and y > L with
increasing overlap in the waveguide region [28]. Asymptotically, the dispersion
relation of all positive-energy snake states is E(ky — +o0) =~ hvpk, [28]. For
intermediate k, and (A, 1) # 0, however, we get spin-split snake states out of the
previously spin-degenerate states. The spin splitting is mainly caused by the Rashba
coupling A and disappears for A — 0, cf. the inset of Fig. 8.4.

The zero-energy bulk Landau state (for ki, — —eco) shows rich and interesting
behavior in this setup. While for k, — 4-c0, we expect one pair of snake states with
positive slope and one pair with negative slope, for the studied parameter set and
range of kL, there is just one state with negative slope while three branches first
move down and then have a positive slope. Accordingly, at the Dirac point (E = 0),
Fig. 8.4 shows that there are three right-movers with different Fermi momenta and
different spin texture. Two of those states are indicated by stars (*) in the main
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Fig. 8.5 Spin density profile S, (in arbitrary units) vs. y/L for the two E = 0 right-moving states
indicated by stars in the main panel of Fig. 8.4. The left star corresponds to kL = 1.745, the right
star to kL = 2.629. Inset: Particle density, p, and current density, Jy (which is the only non-
vanishing component), in arbitrary units vs. y/L. We show the result only for k,L = 1.745, since
kL = 2.629 yields practically the same (color figure online)

panel of Fig. 8.4 and their local spin texture is shown in Fig. 8.5. Evidently, they are
mainly localized inside the waveguide and have antiparallel spin polarization. We
find spin densities with S, = O for both states. For the Rashba-dominated situation
in Fig. 8.5, spin is polarized perpendicular to the current direction and has a rather
complex spatial profile.

8.5.2 Parallel Configuration

Next we come to the € = 41 configuration, where the magnetic field is +B for
ly| > L and —B for |y| < L. One therefore expects two counterpropagating snake
states in the x-direction localized around y = L. The corresponding spectrum
is shown in Fig.8.6. We focus on parameter set (B), since for set (A), the spin
splitting is minimal and less interesting. The spectrum consists of two qualitatively
different states, namely states of bulk Landau character for large |k.|L, and a set
of propagating waveguide modes [28]. The spectral asymmetry seen in Fig. 8.6
for all propagating modes, E(—k,) # E(ky), is caused by the strain ()-induced
shift of k. Such a spectral asymmetry may give rise to interesting chirality and
magnetoasymmetry effects [55]. The spin texture is shown in Fig.8.7 for a pair
of right- and left-moving states with £ = 1.2Avp /L, cf.the stars in Fig.8.6. We
observe from the main panel in Fig. 8.7 that the spin polarization of both states is
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Fig. 8.6 Same as Fig. 8.4 but for the setup with € = +1 and parameter set (B). Solid and dashed
curves are for better visibility only. The two states indicated by stars are studied in Fig. 8.7

Sy- (au.)

y/L

Fig. 8.7 Spin density S, . (in arbitrary units) vs. y/L for the two states indicated by stars in Fig. 8.6.
The left (right) star corresponds to a left- (right-)mover with kL = —1.46 (kL = 2.83). Note that
the spin polarizations of both states are approximately antiparallel. Inset: Particle current profile
Jy (in arbitrary units) vs. y/L for both states. Black solid curve: k.L = 2.83. Dashed red curve:
kyL = —1.46 (color figure online)

approximately antiparallel. Because of their spatial separation and the opposite spin
direction, elastic disorder backscattering between these counterpropagating snake
modes should be very strongly suppressed. The inset of Fig. 8.7 shows the current
density profile across the waveguide. Although the profile is quite complex, we
observe that the current has opposite sign for both modes.
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8.6 Concluding Remarks

In this work, we have studied the magnetoelectronic properties of graphene in the
presence of strong intrinsic and Rashba-type spin-orbit couplings. According to a
recent proposal [12], large intrinsic couplings may be realized by suitable adatom
deposition on graphene. We have presented an exact solution for the Landau level
states for arbitrary SOI parameters. When the intrinsic SOI dominates, by increasing
the magnetic field, we predict a quantum phase transition from the quantum spin
Hall phase to a helical quantum Hall phase at the Dirac point. In both phases, one has
spin-filtered edge states but with opposite spin current direction. Thus the transition
could be detected by measuring the spin current either in a transport experiment
(e.g., along the lines of Ref. [56]) or via a magneto-optical experiment.

In inhomogeneous magnetic fields, especially when also strain-induced pseudo-
magnetic fields are present, interesting waveguides can be envisioned. Such setups
allow for snake states, where spin-orbit couplings result in a spin splitting. In a
double-snake setup, there is a pair of counterpropagating snake states that carry
(approximately) opposite spin polarization. This implies that scattering by elastic
impurities is drastically suppressed. The resulting spin textures can in principle be
detected by spin resolved ARPES (see, e.g., Refs. [10] and [57]) or spin-polarized
STM measurements.

Acknowledgements We acknowledge financial support by the DFG programs SPP 1459 and SFB
TR 12.
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Chapter 9
Wave Packet Propagation Through Randomly
Distributed Scattering Centers in Graphene

Khamdam Yu. Rakhimov, Andrey Chaves, and Gil de Aquino Farias

Abstract We numerically investigate the wave packet propagation in graphene in
the presence of randomly distributed circular potential steps. The calculations are
performed within the continuum model, and the time propagation is made by a
simple computational technique, based on the split-operator method. Our results
show that, despite the Klein tunnelling effect, the presence of these potential steps
significantly reduces the transmission probabilities, specially for higher concentra-
tion of scatterers and higher potential heights.

9.1 Introduction

In monolayer graphene, the energy spectrum is gapless in two inequivalent points
of the first Brillouin zone, which are usually named as K and K’. In the vicinity of
these points, low energy electrons exhibit a linear energy dispersion, so that, within
a continuum model, they can be described as massless Dirac particles [1]. This has
interesting consequences — for instance, such particles exhibit perfect transmission
through potential barriers, due to the Klein tunnelling effect. Although this is quite
interesting from the scientific point of view, since it allows one to use electrons in
graphene to probe the Klein tunnelling effect in a lab, this is may be a problem for
future technological applications of graphene, since it makes much harder to confine
and manipulate electrons by electrostatic gates in these systems [2].
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Fig. 9.1 Color map of the random potential landscape for the three sample cases investigated in
this work: Sy, with 40 dots of radius R = 5 nm (D, = 0.618), S;, with 20 dots of radius R = 5 nm
(D5 =0.309), and S3, with 20 dots of radius R = 7 nm (D = 0.606) (color figure online)

Recent studies have demonstrated the existence of charged regions, like electron-
rich and hole-rich puddles, due to the inevitable disorder in graphene samples [3,4].
It is then interesting to understand how such a disorder affects the transmission of
electrons through the graphene sheet.

In this work, we numerically solve the time-dependent Dirac equation for
electrons in graphene, in order to investigate the propagation of a wave packet
through a set of randomly distributed circular step potential barriers.! We assume
that such a set of barriers might mimic the existence of electron and hole puddles
in a real graphene sample, where these puddles appear with equal probability for
electrons and holes [3]. Therefore, we assumed scattering centers that alternate
between positive (+Vp) and negative (—Vj) potentials, representing that, locally,
the electrons (holes) density is higher in negative (positive) potential regions, but
the overall average potential in the whole scattering region is zero. This potential
landscape is illustrated by the color maps in Fig. 9.1, for the three sample cases we
will investigate in this work: S (S>) where 40 (20) scattering centers of radius R =5
nm are considered, and S3, with 20 scattering dots of radius R = 7 nm. Defining the
density of scattering centers as Dy = N,R? /A =0.610, where Nj is the number of
circular scattering centers of (uniform) radius R, and A is the area of the scattering
region, one obtains Dy = 0.618,0.309 and 0.606 for Sy, S, and S3, respectively. By
comparing S| to Sy, we intend to analyze the effect of the density of scattering
centers in the propagation behavior, whereas comparing S; to S3, one observes only
the effect of the reduction in the number of particles, since S3 has a lower number
of particles but with practically the same density D; as Sj.

'A similar problem was studied recently by Palpacelli et al [5] arXiv:1202.6217, but with a
different focus.
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9.2 Theoretical Framework

As initial wave packet, we consider a Gaussian wave front, namely, a wave packet
that is constant the x-direction, but which has a width a, in the y-direction,
multiplied by a pseudo-spinor (1 /)" and by a plane wave

<

iky—
¥ (x,,0) —N(%)e ] ©.1)

l

where N is a normalization constant and k is the wave vector, which, in graphene, is
related to the wave packet energy E by k = E / hvr, where vp is the Fermi velocity.
The choice of the pseudo-spinor is made so that (o,) = 1 and (o,) = (0;) =0, which
guarantees a wave packet propagation towards the up direction [6]. Moreover, we
choose to work with a wave front, instead of a circularly symmetric wave packet, in
order to avoid zitterbewegung (a trembling motion of the wave packet) [6, 7] along
the x-direction. All the results in the remainder of this paper are obtained for a wave
packet with energy £ = 100 meV and width a, = 20 nm.

The propagation of the wave packet is performed by applying the time-evolution
operator on the initial wave packet

W(x,y,t+A) = e iHAP(x y,0) 9.2)

where the Hamiltonian H, assumed to be time-independent, is the one for low energy
electrons in graphene [1]

H=vro- (p)-l—V(x,y)I, 9.3)

where o is the usual Pauli vector, I'is the 2 x 2 identity matrix and the wave functions
are written as pseudo-spinors ¥ = (¥4, ¥3)”, where ¥y (¥3) is the probability of
finding the electron in the sub-lattice A (B) of graphene. We separate the potential
and kinetic energy terms of the time-evolution operator through the split-operator
technique [8, 9],

i i i i
exp {—£HAt} = exp {—EV(x,y)IAt} exp [—?)pp . GAI] exp [—ﬁV(x,y)IAt} ,
9.4)

where terms of order higher than O(A#?) are neglected as an approximation. The
advantage of such separation is that it allows us to perform multiplications in real
and reciprocal spaces separately, so that we avoid writing the momentum operator
as a derivative just by making a Fourier transform of the functions and writing p =
7ik. Furthermore, the exponentials of Pauli matrices terms can be re-written exactly
as matrices [10], which simplifies even more the calculations. We perform wave
packet propagations with a time step as small as At = 0.1 fs and keep track of
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the probabilities of finding the electron before (P;), inside (P), and after (P3) the
scattering region. The probability P; can also be seen as a transmission probability
through the scattering region.

Notice that performing a Fourier transform while solving Eq. (9.4) necessarily
imposes a periodic boundary condition to our system. Thus, in order to avoid
spurious reduction (enhancement) of the transmission (reflection) probability P; (P;)
when the wave packet reaches the upper edge of the numerical grid, we consider
a very long grid in the propagation direction, with an area 1,28 nm x 1024 nm,
whereas the scattering centers are distributed within an area of A = 128 nm x 40
nm around the y = 0 axis.

9.3 Results and Discussion

As a test case, we initially study the wave packet propagation in the absence of any
potential, i.e. Vy = 0. The results are shown in Fig. 9.2, where we see that the wave
packet reaches the region 3 after ~ 200 fs, when the probability P; saturates as 1.
In the presence of non-zero scattering potentials, the probability of finding the
electron after the scattering region decreases significantly as the potential barrier
enhances, as shown in Fig. 9.3, for a density of scattering centers Dy = 0.618 (S1).
This is a consequence of the non-normal incidence of a large part of the packet on
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Fig. 9.2 Probabilities of finding the electron before (P;), inside (P»), and after (P3) the scattering
region, as a function of time, for a £ = 100 meV wave packet propagating in a test case, where
V=0
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Fig. 9.3 Probability of finding the electron after the scattering region (P3) as a function of time,
for E = 100 meV and several values of barrier height Vj

the circular scattering potentials, so that the Klein tunnelling is not perfect in this
case [2].

In Fig.9.3, it can also be clearly observed that P; saturates faster for lower
values of potential height Vj, which suggests that the dwell time of the wave packet
inside the scattering region becomes longer as the potential height increases. This is
indeed confirmed by the results in Fig. 9.4, which show the probability of finding the
electron inside the scattering region (P) as a function of time, for different values
of potential height V. We consider, for each value of V and each sample S;, a set of
eight realizations of random distributions of scattering centers, so that we can take
the average of the results and obtain the smooth curves shown in Fig. 9.4. The results
for the three sample cases considered in this work are qualitatively the same: as the
potential height increases, the decay of P, becomes much slower, which retards the
saturation of the transmission probability Ps.

Notice that the saturation values of P; in Fig. 9.3 decrease with increasing Vj until
they reach a minimum for Vy = 140 meYV, as slightly larger transmission probabilities
are observed for Vp = 170 and 200 meV. This can be better visualized in Fig.9.5,
which shows the saturation values of P; as a function of the potential barrier Vj,
for the three sample cases considered in this work. As in Fig.9.4, the results in
Fig. 9.5 were also obtained by taking the average of eight realizations. The standard
deviations are shown as vertical bars in the figure. In all three cases, the transmission
probabilities monotonically decrease with increasing the potential height until Vj ~
100 meV, where the Klein tunneling of non-normal incident parts of the packet
is minimal, since this value of Vj is close to the wave packet energy E = 100
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Fig. 9.4 Probability of finding the electron inside the scattering region (P;) as a function of time,
for several values of barrier height V} in the three sample cases considered in this work

meV [2, 10]. After this value, the transmission probabilities oscillate from ~ 0.4
to =~ 0.6. The S| and S3 samples, which have similar scattering densities Dy, exhibit
also similar oscillations of P3, whereas S,, with lower scattering density, exhibits a
smoother reduction of the transmission probability as Vj increases.

9.4 Conclusions

In summary, we have investigated the transmission of a wave packet through a set
of randomly distributed circular potential steps. Our results demonstrate that the
dwell time of the wave packet inside the scattering region is significantly enhanced
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Fig. 9.5 Saturation values of the probabilities of finding the electron after the scattering region
(P3) for the three different sample cases considered in this work

by the presence of the scattering centers. Numerical results also show that the
transmission probability decreases as the step barriers height increases, but only
until a critical value is reached. After this critical value of potential height, the
transmission probability starts to oscillate around ~0.5. It is also demonstrated that,
for lower densities of potential barriers, both the oscillations and the decay of the
transmission probabilities with the potential height are smoother.
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Chapter 10
Are Scattering Properties of Networks Uniquely
Connected to Their Shapes?

Oleh Hul, Michal L.awniczak, Szymon Bauch, Adam Sawicki,
Marek Kus, and Leszek Sirko

Abstract Are scattering properties of networks uniquely connected to their shapes?
This is a modification of the famous question of Mark Kac “Can one hear the
shape of a drum?” which can be asked in the case of scattering systems such as
quantum graphs and microwave networks. We present the experimental approach to
this problem (Hul et al., Phys Rev Lett 109:040402, 2012). Our experimental results
indicate a negative answer to the above question. To demonstrate this we constructed
a pair of isospectral microwave networks consisting of vertices connected by
microwave coaxial cables and extended them to scattering systems by connecting
leads to infinity to form isoscattering networks. We show that the amplitudes and
phases of the determinants of the scattering matrices of such networks are the
same within the experimental uncertainties. Additionally, we demonstrate that the
scattering matrices of the networks are conjugated by the transplantation relation.
The experimental results are in perfect agreement with the theoretical predictions.

In 1966 Marc Kac posed a famous question “Can one hear the shape of a drum?”
[2]. It addressed the issue of uniqueness of the spectrum of the Laplace operator
on the planar domain with Dirichlet boundary conditions. The answer was found
in 1992 when Gordon, Webb, and Wolpert [3, 4] using the Sunada’s theorem [5]
found a way to construct pairs of isospectral domains in R?. An experimental
confirmation that the shape of a drum can not be heard was presented by Sridhar
and Kudrolli [6] and Dhar et al. [7] for a pair of isospectral microwave cavities.
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It is worth noting that basing on numerical simulations Okada et al. [8]
conjectured that isospectral domains constructed by Gordon, Webb and Wolpert can
be in fact discriminated in scattering experiments looking at poles of the scattering
matrices.

Gutkin and Smilansky [9] extended the problem of isospectrality for quantum
graphs. They proved that one can recover a graph from its spectrum if the lengths of
its bonds are incommensurate. The method of construction of isospectral graphs [10,
11] uses the extended well known Sunada’s approach. It is based on the elements of
representation theory and its direct corollary ensures the existence of transplantation
between isospectral graphs. In the process of transplantation one graph is divided
into smaller building blocks which are then reassembled to form the second one of
a different shape. The method provides also correct boundary conditions at vertices
of the new graph. As a result of transplantation to every eigenfunction on the first
graph an eigenfunction with the same eigenvalue on the second one is assigned. The
procedure is reminiscent of the one used in designing isospectral planar domains
where the ‘drum’ is cut into subdomains which are then rearranged into a new one
with the same spectrum. Following the conjecture of Okada et al. [8] one can ask
whether the geometry of a graph can be determined in scattering experiments.

The negative answer to the above question was given by Band, Sawicki and
Smilansky [12,13]. They extended the theory of isospectrality to scattering systems
by considering isospectral quantum graphs with attached infinite leads and devel-
oped a method of constructing isoscattering pairs of graphs. According to the above
authors two graphs are, by definition, isoscattering if their scattering matrices have
the same poles — such graphs are called isopolar, or the amplitudes and phases of
the determinants of their scattering matrices are equal — in this case the graphs are
called isophasal. In this paper we will use the latter definition. They showed that any
pair of isospectral quantum graphs obtained by the method described in [10, 11] is
isoscattering if the infinite leads are attached in a way preserving the symmetry of
the isospectral construction [12, 13].

Quantum graphs can be considered as idealizations of physical networks in the
limit where the diameter of the wires are much smaller than their lengths. They
were successfully applied to model variety of physical problems, see, e.g., [14]
and references cited therein. They can also be realized experimentally. Recent
developments in various epitaxy techniques allowed also for the fabrication and
design of quantum nanowire networks [15, 16].

In 2004 Hul et al. [17] showed how quantum graphs could be successfully
simulated by microwave networks. The experimental confirmation of the existence
of isoscattering networks simulating isoscattering graphs was demonstrated in a
recent paper by Hul et al. [1].

A general microwave network consists of n vertices connected by B bonds e.g.,
coaxial cables. The n x n connectivity matrix C;; of a network takes the value 1 if
the vertices i and j are connected and O otherwise. Each vertex i of a network is
connected to the other vertices by v; bonds, v; is called the valency of the vertex i.

In this paper we consider networks with two most typical physical vertex
boundary conditions, the Neumann and Dirichlet ones. The first one imposes the
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continuity of waves propagating in bonds meeting at i and vanishing of the sum
of their derivatives calculated at the vertex i. The latter demands vanishing of the
waves at the vertex.

A coaxial cable consists of an inner conductor of radius r; surrounded by a
concentric conductor of inner radius r,. The space between the inner and the outer
conductors is filled with a homogeneous material having the dielectric constant €.

Below the onset of the next TE;; mode [18], inside a coaxial cable can propagate
only the fundamental TEM mode, in the literature often called a Lecher wave.

We use the continuity equation for the charge and the current to find the
propagation of a Lecher wave inside the coaxial cable joining the i—th and the j—th
vertex of the microwave network [17, 19]

deij(x,t) - dJ,'j(x,t)

dt dx '’

(10.1)

where ¢;;(x,¢) and J;;(x,t) are the charge and the current per unit length on the
surface of the inner conductor of a coaxial cable.
The potential difference U;;j(x,) between the conductors is given by

eij(x,t)

Uyj(x,t) = V3 (n0) =V (1) = =12

(10.2)
where V{j (x,) and Vzij (x,1) are the potentials of the inner and the outer conductors

of a coaxial cable and % is the capacitance per unit length of a cable.
The spatial derivative of (10.2) gives [19]

d
anj(x,t):—f'fJij(x,t), (10.3)

where % is the impedance per unit length. Calculation of the second spatial
derivative of U;;(x,t) leads to the equation

2

d
WUU(X,I)-FQFEJU(X,I):O. (10.4)

Using Eqgs. (10.1) and (10.2) the Eq. (10.4) can be transformed to
dZ

WU[j(x,l)—g%%U[j(x,l)zo. (10.5)
For a monochromatic wave propagating along the cable e;;(x,) and U;j(x,r) are
given by: e;;(x,1) = e ®e¢;;(x) and Ujj(x,t) = e "®'U;;(x), where the angular
frequency @ = 27v and v is the microwave frequency. The impedance per unit
length is then 2 = % — ”‘;—zf [19], where & and .Z denote the resistance and the
inductance per unit length, respectively, and ¢ stands here for the speed of light in a
vacuum.
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For an ideal lossless coaxial cable with the resistance % = 0 the Eq. (10.5) leads
to the telegraph equation on the microwave network
d? w’e
where € = ZC [20].
The continuity equation for the potential difference requires that for every
i=1,...,N

Uij(¥)|x=0 = @i,  Uij(¥)|e=r,; = @j, i<j, Cij#0. (10.7)

The current conservation condition imposing the Neumann vertex boundary
condition may be written in the form

d d
— E Cij—Uji =L;; Cij—-Uij =0 =0, 10.8
)y iU ()] L”+,Z>i iy () [x=0 ( )
where
dU;;(x)
—;[jx = —Qp.lij(x). (109)

L;; represents the length of the bond joining the i—th and the j—th vertex of the
network.

Assuming the correspondence: ¥;(x) < U;j(x) and k* < “’7225, Eq. (10.6) is
formally equivalent to the one—dimensional Schrédinger equation (with i =2m = 1)
on the graph possessing time reversal symmetry [21]

d2

—5 W) +k2%¥;(x) = 0. (10.10)

Moreover, the Eqs. (10.7) and (10.8) are equivalent to the equations derived in
[21] (see Eq.10.3) for quantum graphs with Neumann boundary conditions and
vanishing magnetic vector potential A;; = Aj; = 0.

Various spectral and scattering properties of microwave networks simulating
quantum graphs have been studied so far [17,22-26]. The introduction of one-
dimensional microwave networks simulating quantum graphs extended substantially
the number of systems which are used to verify wave effects predicted on the
basis of quantum physics [27-33]. To other systems used for this purpose one
can include two-dimensional and three-dimensional microwave chaotic billiards
and experiments with highly excited hydrogen and helium atoms. Experiments
for two-dimensional microwave systems were pioneered by [34] and further de-
veloped by [35-47]. In the case of two dimensions the Schrodinger equation for
quantum billiards is equivalent to the Helmholtz equation for microwave cavities
of corresponding shape. Three-dimensional chaotic billiards have been also studied
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Fig. 10.1 A pair of isoscattering quantum graphs and the pictures of two isoscattering microwave
networks are shown in the panels (a, b) and (¢, d), respectively. Using the two isospectral graphs,
(a) with n = 4 vertices and (b) with n = 6 vertices, isoscattering quantum graphs are formed by
attaching the two infinite leads LT and L3 (dashed lines). The vertices with Neumann boundary
conditions are denoted by full circles while the vertices with Dirichlet boundary conditions by
the open ones. The two isoscattering microwave networks with n = 4 and n = 6 vertices which
simulate quantum graphs (a, b), respectively, are shown in the panels (c, d). The vertices of the
both networks are numbered. To connect microwave networks to the Vector Network Analyzer
(VNA) the two microwave coaxial cables were used. The connection of the VNA to a microwave
network is equivalent to attaching of two infinite leads to quantum graphs

experimentally in the microwave frequency domain [48-51] but for these systems
there is no direct analogy between the vectorial Helmholtz equation and the
Schrodinger equation.

In order to verify experimentally a negative answer to the modified Mark Kac’s
question we consider the two microwave networks which simulate [17] the two
isoscattering graphs shown in Fig. 10.1a, b. The isoscattering graphs are obtained
from the two isospectral ones by attaching two infinite leads L7 and L7. Using
microwave coaxial cables we constructed the two microwave isoscattering networks
shown in Fig. 10.1c¢, d. In order to preserve the same approximate size of the graphs
in Fig. 10.1a, b and the networks in Fig. 10.1c, d, respectively, the lengths of the
graphs were rescalled down to the physical lengths of the networks, which differ
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from the optical ones by the factor /€, where € ~ 2.08 is the dielectric constant of
a homogeneous material used in the coaxial cables.

The graph in Fig. 10.1a consists of n = 4 vertices connected by B = 4 bonds.
The valency of the vertices 1 and 2 including leads is v; » = 4 while for the other
ones v; = 1. The vertices with the numbers 1,2 and 3 satisfy the Neumann vertex
conditions while for the vertex 4, the Dirichlet condition is imposed. The second
graph (see Fig. 10.1b) consists of n = 6 vertices connected by B = 5 bonds. The
vertices with numbers 1,2,3 and 5, satisfy the Neumann vertex conditions, while
for the vertices 4 and 6 we have the Dirichlet ones.

Each system is described in terms of 2 x 2 scattering matrix S(v)

_ [ S1a(v) S12(v)
S(v) = (Sz,l(V) Sz,z(V)) . (10.11)

The scattering matrix S(v) relates the amplitudes of the incoming and outgoing
waves of frequency Vv in both leads.

It was shown in [12] that the graphs presented in Fig. 10.1a, b are isoscattering.
As a consequence of this property the phases of the determinants of the scattering
matrices of the graphs should be equal for all values of v

Im [log (det(S(I> (v)))} =Im {log (det(S(”> (v)))} . (10.12)

In order to measure the two-port scattering matrix S(v) we connected the vector
network analyzer (VNA) Agilent E8364B to the vertices 1 and 2 of the microwave
networks shown in Fig. 10.1c, d and performed measurements in the frequency
range v = 0.01-1.5 GHz. he connection of the VNA to a microwave network
is equivalent to attaching of two infinite leads to quantum graphs. Therefore,
Fig. 10.1a, b apply to our experiment as well.

The optical lengths of the bonds of the microwave networks had the following
values:

a=0.0985£0.0005m, 2a=0.1970+£0.0005m
b=0.1847+£0.0005m, 2b=0.3694+0.0005m
¢=0.2420£0.0005m, 2c=0.4840+£0.0005m

The uncertainties in the bonds’ lengths of the networks are due to the preparation
of Neumann v » = 4 and Dirichlet vertices. In the case of the first ones the internal
leads of the cables were soldered together while the Dirichlet vertices were prepared
by closing the cables with brass caps to which the internal and external conductors
of the coaxial cables were soldered.

In the case of the microwave networks, where one deals with losses in the mi-

crowave cables [17], not only the phase of the determinant ¢ = Im {log (det(S (v)) )}

but the amplitude |det(S(v))| as well gives the insight into the resonant structure
of the system. The amplitudes and the phases of the determinants of the scattering
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Fig. 10.2 (a) The amplitude of the determinant of the scattering matrix obtained for the microwave
networks with n = 4 (dashed line) and n = 6 (solid line) vertices. (b) The phase of the determinant
of the scattering matrix obtained for the microwave networks with n = 4 (dashed line) and n = 6
(solid line) vertices. The results are presented in the frequency range 0.01-1.5 GHz

matrices of the experimentally studied networks are shown in Fig. 10.2. Figure 10.2
shows that especially for lower frequencies 0.01-1.0 GHz there is an excellent
agreement between the results obtained for the both networks. The amplitudes of
the determinants are so close to each other that the differences between them are
hardly resolved in Fig. 10.2a. The phases of the determinants are in very good
agreement in the full range of the investigated frequency v = 0.01-1.5 GHz.
Therefore, our experimental results strongly suggest that it is not possible to listen
to the shape of a network.

Some small differences between the amplitudes appearing for v > 1 GHz are due
to different lengths of the networks. As it was discussed earlier the bonds’ lengths
are known only with a certain accuracy. In order to check the influence of different
bonds’ lengths on obtained results we performed numerical calculations which took
into account also the internal absorption of microwave cables [17]. We found that at
certain realizations of the networks lengths the results, not shown here, mimic the
same behavior visible in Fig. 10.2a.

The networkss considered in this paper have an additional important property,
namely the scattering matrices of the networks are conjugated to each other by the
following transplantation relation

sy =115 T, (10.13)
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Fig. 10.3 (a) The real and (b) imaginary parts of the matrix element 5‘21} (v) of the transformed
scattering matrix (dashed line) for the system with n = 4 vertices. The obtained results are
compared to the scattering matrix elements S 51?(v) of the graph with n = 6 vertices (solid line).
(c) The real and (d) imaginary parts of the matrix element S'g} (v) of the transformed scattering
matrix (dashed line) for the system with n = 4 vertices. The results are compared to the scattering
matrix element Sgll) (v) of the graph with n = 6 vertices (solid line). The results are presented in
the frequency range 0.01-1.5 GHz
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1 —
11
frequency and the Eq. (10.13) is valid for all values of v.

To check the transplantation relation expressed by Eq.(10.13) we transformed
experimentally measured scattering matrix of the first network S )(v) =
T-'SO(V)T and compared it to the scattering matrix of the second network
st )(v). In Fig. 10.3 we present the results for the real and imaginary parts of Sy ;
and S | elements, respectively.

Figure 10.3 clearly shows that the transplantation relation for the real and
imaginary parts of S;;(v) and S 1(v) elements works very well. Some small
differences seen for v > 1 GHz are caused, as previously, by small differences in
the cables’ lengths.

Summarizing, we investigated experimentally scattering properties of two
microwave networks and demonstrated that they are isoscattering, i.e., the phases
and amplitudes of the determinant of the two-port scattering matrices are the
same, within the experimental errors, for all the frequencies considered. We
also investigated the validity of the transplantation relation between the two-port
scattering matrices of the two isoscattering microwave networks. It was shown
that using this relation it is possible to reconstruct the scattering matrix of each
investigated network using the scattering matrix of the other one. Results presented
in this paper clearly demonstrate that our experimental setup can be successfully
used to investigate properties of any quantum graph, also with highly complicated
topology, see, e.g., [17,23,26, 52] showing a great research potential of quantum
simulations based on microwave networks.

This work was partially supported by the Ministry of Science and Higher
Education grant No. N N202 130239.

where T = ( ! > It is worth noting that the matrix 7 does not depend on the
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Chapter 11
Particle Dynamics in Kicked Quantum Networks

Valijon Eshniyozov, Jambul Yusupov, Davron Matrasulov,
and Inomjon Ibragimov

Abstract Particle dynamics in a periodically driven quantum network is studied
by considering delta-kicked quantum star graph is studied. Quantum dynamics is
treated by solving Schrodinger equation with time-dependent boundary conditions
given on graphs. Time-dependence of the average kinetic energy is analyzed. Space-
time evolution of the Gaussian wave packet is treated.

11.1 Introduction

Particle dynamics confined to networks and discrete structures is of importance in
many topics of nanoscale physics. Such systems can be effectively described by one
dimensional Schrodinger equation with the boundary conditions given on graphs
[1-3], i.e. quantum graphs.

Graphs are the systems consisting of bonds which are connected at the vertices.
The bonds are connected according to a rule which is called topology of a graph.
Topology of a graph is given in terms of adjacency matrix [1,2]:

1 ifiand j are connected

Cii=Ci= J ,j=1,2,...,V.
/ / {O otherwise hJ
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Earlier, quantum graphs were extensively studied in the context of quantum chaos
theory [1-3]. Strict mathematical formulation of the boundary conditions was given
by Kostrykin and Schrader [4]. Inverse problems on quantum graphs have been
studied in Refs. [5-7]. An experimental realization of quantum graphs on (optical)
microwave waveguide networks is discussed in the Ref. [8].

Despite that fact that different issues of quantum graphs and their applications
have been discussed in the literature, the problem of driven graphs has not yet been
treated. In this paper we study particle dynamics in periodically driven graphs by
considering, as a perturbation, delta-kicking potential. Quantum dynamics of delta-
kicked systems was extensive topic in the context of quantum chaos and related
issues [9—13]. Remarkable feature of kicked quantum system is so-called quantum
localization which implies suppression of diffusive growth of the average kinetic
energy as a function of time [10]. For classical kicked systems energy grows linearly
as a function of time [9, 10]. Such phenomenon can be considered as an analog
of Anderson localization [10]. We consider delta-kicked particle dynamics in most
simplest graph topology, so-called star graph. In particular, we study wave-packet
evolution in such system and time-dependence of the average kinetic energy.

11.2 Schrodinger Equation on Graphs

Quantum particle dynamics on a graph is described by one-dimensional multi-
component equation Schrodinger equation [1,2] (in the units 7 = 2m = 1):

(%)

T5 = RHE), b=(i)), (11.1)

—i

where b denotes a bond connecting ith and jth vertices, and for each bond b, the
component ¥, of the total wave function ‘¥, is a solution of Eq. (11.1). In Eq. (11.1)
components are related through the boundary conditions, providing continuity and
current conservation [1]:

e Continuity,

¥ jli=0 = @i, ¥ijls=1,; = @; forall i<j and G;;#0

e Current conservation, (11.2)
Y<iCij(iAji— %r) le-,i(x)‘x:Lw

+ 351Gy (iAi — 4) ¥ ()] g = Aigr

Here the parameters A; are free parameters which determine the type of boundary
conditions. In particular, the special case of zero A; corresponds to Neumann
boundary conditions. Dirichlet boundary conditions correspond to the case when
all the A; = . Solution of Eq. (11.1) obeying the above boundary conditions can be
written as
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Cii . .
¥ = m (@isink(L; j — x) + @; sinkx),

where the quantities ¢; are the solutions of the following algebraic system following
from continuity conditions:

kCi

;‘i sin kL,"j

(—@icoskL; j+ @;) = Lio.

The eigenvalues of Eq. (11.1) can be found from the spectral equation

det (h,"j (k)) =0

where
-2 Ci,m COtkLi,m - %u i=j
hw’(k) = m#i
Cij sin”! kL; ;, i#j

In special case of star graph the boundary conditions can be written as [14]

O1ly=0 = P2ly=0 = ... = ¢n|y=0,
Oyt = Galy=ip =+ = Ol =0, (11.3)

by £0ily=0=0.
J=

The eigenvalues of star graph can be found from the following spectral equation
[14]

N
Y tan! (kul;) =0.
j=1

Corresponding eigenfunctions are given as [14]

where

Lj+sin(2kyl;)
sin? (knl )

11.3 Kicked Star Graph

Consider quantum particle on primary star graph in the presence of an external
time-periodic potential. Such system is described by the following time-dependent
Schrodinger equation:
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= [~ —ecosx8 (1)|¥(x,1), b=1,...,N. (11.4)

where

=Y 8(t—IT)
|=—oo
with T being the kicking period.
Equation (11.4) can be analytically integrated over a single kicking period. To do
this we note that the solution of Eq. (11.4) can be expanded in terms of complete set
of solutions of Eq. (11.1) as

ZA )0 (x) (11.5)

Integrating Eq. (11.4) over the single period, T using the same prescription as in the
case of kicked rotor [9, 10] for time evolution of A, (¢) during one kicking period we
have

n(t+T) ZA 1) Ve EnT (11.6)

where E,, is the eigenvalues of unperturbed star graph.

Nl .
Vin =3, [ 6}, (0091, ()dx
J

Using Eq.(11.6) we can compute wave function for arbitrary number of kicks
and average kinetic energy as

2 N
Z/‘P* L“)d - —%2|A,,(t)|2E,,. (11.7)
J

In Fig. 11.1 < E(t) > is plotted as a function of time for the values of the kicking
strength.

As is seen from these plots, the average energy is a periodic function of time
with the period much longer than that of kicking period. This behavior is completely
different than that in the case of kicked rotor [10] and kicked one dimensional box
[12]. Such a periodicity may be caused by more complicated structure of the graph
which implies different (than those for kicked rotor or box) boundary conditions in
the Schrodinger equation.

Furthermore, we consider wave packet evolution in kicked star graph by taking
the wave function at t = 0 (for the first bond) as the following Gaussian wave packet:

Y (x,0) = ®(x) = e ., (11.8)
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Fig. 11.1 Average kinetic energy as a function of time for the values of the kicking strength:
e = 0.3 (dotted), € = 0.2 (dashed) and € = 0.1 (solid) at the kicking period, T = 0.001

with o being the width of the packet. For other bonds initial wave function is
assumed to be zero, i.e. ¥ (x,0) = ¥5(x,0) = 0. Then for the initial values of the
functions @) (y,r) in Eq. (11.5) we have

L(OL(O) 2

9;(3,0) = L(0)e TV d(y).

Correspondingly, the expansion coefficients at # = 0 can be written as
vy /" (n*
GOy =3 | 9i(:0)9," ).
T

Figure 11.2 presents the time evolution of the Gaussian wave packet on kicked
star graph for kicking parameters € = 0.1 and T = 0.01 at time moments ¢ =
1007, 3007 and 5007. As shows these plots, complete dispersion of the wave
packet is not possible even for high number of kicks due to the confined nature
of the system. Also, wave packet revival can be observed in such system.

In this work we have studied quantum dynamics of a delta kicked particle in a
star graph by considering time-dependence of the average kinetic energy and wave
packet evolution. Obtained preliminary results show that unlike the case of delta-
kicked rotor, average kinetic energy of a kicked particle in star graph is a periodic
function of time. Absence of complete dispersion of the wave packet in such system
is also shown. Forthcoming studies should be focused on the existence of resonances
and wave packet revivals in the above system.
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t=100T
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Fig. 11.2 Time evolution of the Gaussian wave packet in kicked quantum star graph for kicking
parameters € = 0.1, 7 = 0.001
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Chapter 12
Breathing Star Graph

Davron Matrasulov, Jambul Yusupov, Karimjon Sabirov, and Zarif Sabirov

Abstract In this paper we study quantum star graphs with time-dependent bond
lengths. Quantum dynamics is treated by solving Schrodinger equation with time-
dependent boundary conditions given on graphs. Time-dependence of the average
kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is
treated for harmonically breathing star graph.

Quantum graphs are convenient models for describing particle dynamics a graph
driven by time-dependent forces.

As the physical systems quantum graphs were considered by Kottos and
Smilansky as a toy model for quantum chaos [1].

Initially, the idea for studying of a system confined to a graph dates back to
the Ref. [2] where using the graphs for modeling free electron motion in organic
molecules was suggested. By now quantum graphs found numerous applications
in modeling different discrete structures and networks in nanoscale physics (e.g.,
see reviews [1, 3,4] and references therein). Strict formulation of the boundary
conditions for the Schrodinger equation on graphs can be found in the Ref. [5].

An important problem which is still is remaining as less-studied is the particle
dynamics driven graphs. A kind of such system is the case when driven force is
caused by time-dependent boundary conditions, i.e. time-dependent bond length.
In this work we treat the problem of particle dynamics in a star graph with
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time-dependent length of the bonds assuming that only one edge of the each bond
of moving. Such system may arise in different nanoscale and discrete structures,
where the boundaries of confinement are not static. Also, particle dynamics in
time-dependent graphs is of importance from the viewpoint of quantum Fermi
acceleration in networks and discrete quantum systems.

Treatment of such system requires solving the Schrédinger equation with time-
dependent boundary conditions. Detailed study of such problem for time-dependent
box can be found in series of papers by Makowski and co-authors [6—8] and in more
recent paper by Glasser et al. [9].

Graphs are the systems consisting of bonds which are connected at the vertices.
The bonds are connected according to a rule which is called topology of a graph.
Topology of a graph is given in terms of adjacency matrix [1,3]:

1 if i and j are connected

Ci=Ciy= ] ,j=1,2,...,V.
J / {0 otherwise b

Quantum dynamics of a particle on a graph is described by one-dimensional

Schrodinger equation [1, 3] (in the units 7z = 2m = 1):

P9
—i
dx?

=P (x), b=(i,)), (12.1)

where b denotes a bond connecting ith and jth vertices, and for each bond b, the
component ¥}, of the total wavefunction ‘¥, is a solution of the Eq. (12.1).
In particular, for quantum start graph the boundary conditions can be written
as [10]:
d1ly=0 = P2ly=0 = ... = ¢n|y=0,
o1 |y:11 = ¢2|y:12 =...= ¢N|y:lzv =0, (12.2)

N
'21 550il=0=0.
=

The eigenvalues can be found by solving the following equation [10]
N
D tan~! (k,l;) = 0
Jj=1

where corresponding eigenfunctions are given as [10]

m _ _ Bn -
¢j - sm(k,,lj)sm(k"(lj y))

2

Y. Lj+-sin(2knl;)
I sin? (kal )
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For time-dependent graph the bonds are time-varying, i.e., L; is a function of
time. In this case particle dynamics in graph is described by the following time-
dependent Schrodinger equation:

2

. d d .
ZE%(X’I) = —W‘Pj(x,t), 0<x<Lj(t), j=1,...,N, (12.3)

with N being the number of bonds.
Furthermore, we will consider the boundary conditions given by

Wi |i=0 = Polx=0 = ... = v|x—o0,
Yileer,() = Polimro() = - = Wli=ry() = 0,
N

by L W[ 0 =0.
J=

These boundary conditions imply that only those edges which are not connected are
moving while center (branching point) is fixed. We assume that L;(r) is given as
Lj(t) =1;L(t), where L(t) is a continuous function and /; are the positive constants.
Then using the coordinate transformation

Eq. (12.3) can be rewritten as
. d 1 92 L 9 )
lEq{/‘(yat):_Ea_yzlpj(yvt)"’_lzya_yq{f(yat)v O0<y<l j=1,...,N. (12.4)

It is clear that the Schrédinger operator in the right hand side of Eq. (12.4) is not
Hermitian due to the presence of second term. Therefore using the transformation

1 i
le(yvt) =—=e'47 (pj(yvt)v

§|

we can make it Hermitian as

) 1 9? LL , ,
lE(PJ(yvt) = _ﬁa_yz@j(yvt)"i_jy (Pj(yvt)u 0 <y< lju J= 17"'7N' (125)

We note that the above transformations of the wave function remain the boundary
conditions unchanged.

In this paper we consider harmonically breathing graph, i.e. the case when time-
dependence of L(r) is given as

L(t) =b+acoswt
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with 0 = 27” being oscillation frequency and 7 is the oscillation period. It is clear
that in this case time and coordinate variables in Eq.(12.5) cannot be separated.
Expanding ¢(y,7) in Eq.(12.5) in terms of the complete set of static graphs wave
functions as

9;(31) = ;cn(tm}”) ), (12.6)
and inserting this expansion into Eq. (12.5) we have
Cnl1) = ZanCn (t)
n
where
-
Mon =it~ % O/ 0" 0" dy

The quantity we are interested to compute is the average kinetic energy which is
defined as

19
N oW 2
£ =iy = 3 [ |45 127)

In Fig. 12.1 the time dependence of the average kinetic energy of the harmoni-
cally breathing star graph is presented for different values of the breathing frequency
and amplitude. As it can be seen from these plots, < E(r) > is almost periodic for
® = 0.5 and a = 1, while for ® = 10 and a = 1 such a periodicity is completely
broken and energy grows in time. For @ = 10 and a = 20 the behavior of < E(¢) >
demonstrates “quasiperiodic behavior”. Appearing of periodic behaviorin < E(¢) >
can be explained by synchronization of the motion of particle with the frequency.
The lack of such synchronization causes breaking of the periodicity of the average
energy in time.

Furthermore, we consider wave packet evolution in harmonically breathing star
graph by taking the wave function at t = O (for the first bond) as the following
Gaussian wave packet:

Y (x,0)=P(x) = ——e 20, (12.8)

with o being the width of the packet. For other bonds initial wave function is
assumed to be zero, i.e. ¥ (x,0) = ¥5(x,0) = 0. Then for the initial values of the
functions @/)(y,r) in Eq. (12.6) we have

L(OL(O) 2

@ (3,0) =L(0)e "1 @(y).
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Fig. 12.1 Time-dependence of the average kinetic energy for harmonically oscillating primary
star graph. Time is presented in the units of oscillation period 7" = % (a) @ =10 and a = 20;
b)w=10anda=1;(c)w=05anda=1

Correspondingly, the expansion coefficients at # = 0 can be written as
v /" (n*
GO =2 | 9i(»0)¢;" ().
J

In calculation of the wave packet evolution we choose the initial condition as the
Gaussian wave packet being on the first bond only, while for other two bonds
the wave functions at t+ = O are taken as zero. In Fig. 12.2 the time evolution of
the wave packet is plotted for harmonically breathing primary star graph whose
bonds oscillate according to the law L(¢) = 40+ acos wz. The oscillation parameters
(frequency and amplitude) are chosen as follows: (a) w = 10, a =20; (b) @ = 10,
a=1; (¢) ®= 0.5, a=1. Figure12.2a presents wave packet evolution in
static(time-independent) star graph. At ¢ = 0 a Gaussian packet of the width o and
velocity v is assumed being in the first bond. As it can be seen from these plots, for
higher frequencies dispersion of the packet and its transition to other bonds occur
more faster compared to that for smaller frequencies. Again, an important role plays
here possible synchronization between the bond edge and wave packets motions.
Existence or absence of such synchronization defines how the collision of the packet
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Fig. 12.2 Time evolution of the Gaussian wave packet given by Eq. (12.8) for the parameters:
(a) Wave packet evolution in static star graph; (b) @ =0.5, a=1

with the bond edges will occur and how extensively it gains or loses its energy.
Therefore more detailed treatment of the wave packet dynamics in harmonically
breathing graphs should be based on the analysis of the role of synchronization and
its criterions.

Thus we have treated time-dependent quantum star graph by considering har-
monically breathing bonds. Time-dependence of the average kinetic energy and
space-time evolution of the Gaussian wave packet are studied by solving the
Schrodinger equation with time-dependent boundary conditions. It is found that
for certain frequencies energy is a periodic function of time, while for others it
can be non-monotonically growing function of time. Such a feature can be caused
by possible synchronization of of the particles motion and the motions of the
moving edges of graph bonds. Similar feature can be seen also from the analysis
of the wave packet evolution. The above study can be useful for the treatment of
particle transport in different discrete structures, such as molecular and quantum
wire networks, networks of carbon nanotubes, crystal lattices, and others nanoscale
systems that can be modeled by quantum graphs.
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Fig. 12.3 Time evolution of the Gaussian wave packet given by Eq. (12.8) for the parameters:
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Chapter 13
Time-Independent Nonlinear Schrodinger
Equation on Simplest Networks

Karimjon Sabirov, Zarif Sabirov, Donyor Babajanov, and Davron Matrasulov

Abstract We treat the time-independent (cubic) nonlinear Schrodinger equation
(NLSE) on simplest networks. In particular, the solutions are obtained for star
and tree graphs with the boundary conditions providing vertex matching and flux
conservation. It is shown that the method can be extended to the case of arbitrary
number of bonds in star graphs and for other simplest topologies.

13.1 Introduction

The nonlinear evolution equations were the topic of extensive research during the
last half century. Special attention among others has attracted nonlinear Schrodinger
equation whose detailed treatment started in the pioneering studies by Zakharov and
Shabat in early seventies of the last century [1-3]. Such an interest is mainly caused
by the possibility for obtaining soliton solution of NLSE and its various practical
applications in different branches of physics. Initially, the applications of NLSE and
other nonlinear evolution equations having soliton solutions were mainly focussed
in optics, acoustics, particle physics, hydrodynamics and biophysics. However,
special attention NLSE and its soliton solutions have attracted because of the recent
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progress made in the physics and Bose-Einstein condensates (BEC). Namely, due
to the fact that the dynamics of BEC is governed by Gross-Pitaevski equation
which is NLSE with cubic nonlinearity, finding the soliton solution of NLSE with
different confining potentials and boundary conditions is of importance for this area
of physics.

During the last few decades NLSE and its soliton solutions have been treated in
the context of fiber optics, photonic crystals, acoustics BEC and other topics (see
books [4-8] and references therein). Both, stationary and time-dependent NLSE
were extensively studied for different trapping potentials in the context of BEC. In
particular, the stationary NLSE was studied for box boundary conditions [9, 10] and
the square well potential [11-14].

In this work we explore the time-independent NLSE on networks by modeling
the latter by graphs. Graphs are the systems consisting of bonds which are connected
at the vertices [15]. The bonds are connected according to a rule that is called
topology of a graph. Topology of a graph is given in terms of so-called adjacency
matrix which can be written as [16, 17]:

1 if i and j are connected,

i, j=1,2,...,V.
0 otherwise, hI= 5800

Cij:Cji:{

Earlier, the linear Schrodinger equation on graphs was treated in different con-
texts (e.g., see reviews [16—18] and references therein). In this case the eigenvalue
problem is given in terms of the boundary conditions providing continuity and
current conservation [16-22].

Despite the progress made in the study of the linear Schrodinger equation on
graphs, corresponding nonlinear problem, i.e., NLSE on graphs is still remaining
as less-studied topic. This is mainly caused by difficulties that appear in the case
of NLSE on graphs, especially, for the time-dependent problem. In particular, the
problem becomes rather nontrivial and it is not so easy to derive conservation
laws [28]. However, during the last couple of years there were some attempts to
treat time-dependent [28, 29] and the stationary [30, 32] NLSE on graphs. Soliton
solutions and connection formulae are derived for simple graphs in the Ref. [28].
The problem of fast solitons on star graphs is treated in the Ref. [29]. In particular,
the estimates for the transmission and reflection coefficients are obtained in the limit
of very high velocities. The problem of soliton transmission and reflection is studied
in [30] by solving numerically the stationary NLSE on graphs.

In [31] dispersion relations for linear and nonlinear Schrédinger equations on
networks are discussed. More recent treatment of the stationary NLSE in the context
of scattering from nonlinear networks can be found in the Ref. [32]. In particular,
the authors discuss transmission through a complex network of nonlinear one-
dimensional leads and found the existence of the high number of sharp resonances
dominating in the scattering process. The stationary NLSE with power focusing
nonlinearity on star graphs was studied in very recent paper [33], where existence
of the nonlinear stationary states are shown for d—type boundary conditions. In
particular, the authors of [33] considered a star graph with N semi-infinite bonds,
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for which they obtain the exact solutions for the boundary conditions with & # 0.
The properties of the ground state wave function are also studied by considering
separately the cases of odd and even N. In this work we treat NLSE on simplest
graphs with finite-length bonds, aiming at obtaining its exact solutions for some
types of the boundary conditions.

An important applications of NLSE on networks is Bose-Einstein condensation
(BEC) and transport of BEC in networks. This issue has been extensively discussed
recently in the literature [24—27]. We note that networks can be used as the traps for
BEC experiments.

It is important to notice that earlier the problem of soliton transport in discrete
structures and networks was mainly studied within the discrete NLSE [23]. How-
ever, such an approach doesn’t provide comprehensive treatment of the problem
and one needs to use continuous NLSE on graphs. The aim of this work is the
formulation and solution of stationary NLSE on simplest graphs such as star, tree
and loop which can be considered as exactly solvable topologies.

13.2 Time-Independent NLSE on Primary Star Graph

The problem we want to treat is the stationary (time-independent) NLSE with cubic
nonlinearity on the primary star graph. The star graph is a three or more bonds
connected to one vertex (branching point). The primary star graph consisting of
three bonds, by, by, b3, is plotted in Fig. 13.1. The coordinate, x; on the bond b
varies from O to L;, while for the bonds b,k = 2,3 the coordinates, x;, vary from
Ly to Li. At the branching point we have x; = L;. In the following we will use
the notation x instead of x;, (k= 1,2,3). Then the time-independent NLSE can be
written for each bond as

— i £ By v =A%y, B >0, /=123 (13.)

Eq. (13.1) is a multi-component equation in which components are mixed through
the boundary conditions and conservation laws. More detail analysis of the bound-
ary conditions on graphs can be found in the Refs. [19, 22].

In this paper we will consider the following boundary conditions:

Fig. 13.1 Primary star graph
consisting of three bonds
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vi(Li) =Axy(Li) =Aszys(Ly),
[%Wl (x) = AL;%‘I/Z(X) - AL;%%(X)} L=z, = awi(L1), A2A3#0.

The first boundary condition is matching condition and becomes continuity in
special case A, = A3z = 1, while second condition in this special case coincides with
current conservation (o is assumed to be real) considered, for example, in the Refs.
[16, 17]. We note that the eigenvalues of the linear Schrodinger equation on graphs
can be found by solving a linear algebraic system following from the boundary
conditions [16]. However, as we will see in the next section, for the stationary NLSE
on graphs the boundary conditions lead to a system of transcendental equations and
one should show the existence of its roots.
Consider the following time-independent NLSE with repulsive nonlinearity

v/ +BilvilPw; = 2%y, B >0, j=1,2,3. (13.2)

given on the primary star graph presented in Fig. 13.1. The boundary conditions are

given as (A is real; Ay = \/Ba/B1, As = /B3 /1, & =0):
V1 (¥)x=0 = 0, ¥2(x)|x=1, = Y3 (x) =1, = O, (13.3)
VBiwi (L) = VBaa (L) = /Bsys (L), (13.4)
T a W) = T Fve() = TRy e =0, (13.5)

and the wave function is normalized as follows:
3
2/ ly;(x)|Pdx = 1. (13.6)
j=17b;

Dirichlet type boundary conditions are chosen in Eq. (13.3) due to their simplicity
and their direct relevance to physical systems. It is easy to realize such conditions
in physical systems than other ones.

The solution of Eq. (13.2) can be written as

W) = fj(x)el, j=1,2,3, (13.7)
where y; = const, f;(x) is a real function obeying the equation
— ] +Bif] =25 (13.8)

The following relations can be obtained from the boundary conditions given by
Eq.(13.4)

M VBifiL) = e/ Bafa(Ly) = €T /B f3 (L),
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which lead to

Nn=r=r»n=y%
VBifi(L1) = /Bofo(L1) = /B3 f3(L1).

It is clear that the functions f1, f>, f3 should obey Eqgs. (13.3), (13.4), (13.5), and
(13.6).

Exact solutions of Eq. (13.8) for finite interval and periodic boundary conditions
can be found in the Refs. [9, 10]. Here we consider this problem for the graph
boundary conditions given by Eq.(13.3). Solution of Eq.(13.8) satisfying these
boundary conditions can be written as

fl(x) Blsn(a1x|k1),

fz (x) = stn (062 (x — Lz) |k2) R
f3 (x) = B3S}’l (063 (x — L3) |k3) s

where sn(ax|k) are the Jacobian elliptic functions [34].
Inserting the last equation into Eq.(13.8) and comparing the coefficients of
similar terms we have

[2
B;=o; B—]_ajk,, M=o (1+k3), j=1,2,3, (13.9)

where 0; = £1 j=1,2,3.
Using Eqgs. (13.4), (13.5), and (13.6) and the relations [34]

/absnz (o(x— &) [K)dx = k—g/b [1—dn? (o(x — ¢)|)] dx

= 5 (0—a)— —Elam(alb— ) K+~ E lam(ala—)) 4],

we obtain the system of transcendental equations with respect to o; and k;
(j =1,2,3), which gives us the spectrum of the eigenvalues stationary NLSE on
primary star graph:

V/BiBisn (o4 Lylky) =
= \/BaBasn (0o (Ly — L) k2)
= /BsBssn (o5(Ly — L3)|k3), (13.10)

Bl—\/%cn (OC]Ll |k1)dn (061L1 |k1) — BZ—\/%CH (Otz(Ll — Lz) |k2) dn (052 (Ll — Lz) |k2)

—83—\/%0" (e3(Ly — L) ks)dn (o (Ly — Ls)|ks) = 0, (13.1D)
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Bi B B3
k_%Ll + g(LZ—Ll)"‘k_%(lG—Ll) =
Bj B3
=1+—F oqLy|ky)|k —F 00 (Ly — L) k) |k
+k%a1 [am(ou Ly |ky)] 1]+k§a2 lam(0on(Ly — L) |k2) k2] +
B3
+ > E[am(a3(L3—L1)|k3)|k3]. (1312)
k3063

Here E(¢|k) and am(u|k) are the incomplete elliptic integral of the second kind and
the Jacobi amplitude, respectively.

In general case this system can be solved using the different (e.g., Newton’s or
Krylov’s method) iteration schemes. However, below we will show solvability of
this system for two special cases.

Let
4dni+1  4mp+1  4ns3+1
L L-L  Li—-L’

where ny,np,n3 € NU{0}.
Choosing

B 4ny + 1

74n1+1
- T Lh—L,

K(ky), o
Ll (l)a 2

K(k2)7 (04]

o

we have
o) =0 =03 =0, k1:k2:k3:k, 01:1, 62263:—1.

Here K (k) is the complete elliptic integral of the first kind.
It is clear that Egs. (13.10) and (13.11) are valid under these conditions. Using
Eq. (13.12) and the relations

am(u+ 2K (k)|k) = w4+ am(ulk),
E(nw+ olk) =2nE(k) £ E(@|k),

we have

glk)y=2

M l;l L2_Ll L3—L1 3 o
I <ﬁ1+ B B >K(k)(1<(k) E(k)) 121(3),13)

Solvability of Eq.(13.13) is equivalent to that of NLSE on primary star graph.
Therefore we will prove solvability of this equation. Indeed, it follows from the
relations

lim (k) = —1, lim g(k) = +-oo
klg(l)g() ,klg}g() +o0,

and from the fact that g(k) is a continuous function of k on the interval (0;1), that
Eq. (13.13) has a root.
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Now we consider another special case given by the relations

(—1)”1p+2n1K(k1) (—1)"2p+2n2K(k2) (—1)”3p+2n3K(k3)
o] = , Oy = , 03 = )
L L,—L; Ly — L

where —K(kj) < p < K(kj), nj € N, j =1,2,3 and nj,ny,n3 cannot be odd or
even at the same time and show existence of the solution of the system given by
Eqgs. (13.10), (13.11), and (13.12). From Egs. (13.9) and (13.10) we obtain

o) =0 =03 =0, k1:k2:k3:k, 01:1, o, =03 =—1.
From Eq. (13.11) we have

(=pm (=™  (=D»
B B2 Bs

Furthermore, it follows from the last equation and Eq. (13.12) that

_ (D) p+2mK(ky)\ (n ny n3 7
g(k)=4< I, ><E+E+E) (K(k)—E(k))— _(103 .

Therefore we have
limg(k) = —1, lim g(k) = —+eo.
k—0 k—1

Since g(k) is a continuous function of k on the interval (0;1), it follows from
the last relations that Eq. (13.14) has a root. Unlike the first special case, the second
case describes primary star graph, with connected bonds.

13.3 Other Simplest Graphs

To extend the above approach to the case of other topologies, we consider a simplest
topology, tree graph plotted in Fig. 13.2. Such an extension can be done using the
same approach as that in the Ref. [28].

We seek the solution of Eq. (13.8) on the each bonds in the form

f» = Bpsn (Oc;,x—l— O |k}) ) ,
where J, are parameters that can be determined by the given boundary conditions:

61 =0, b1;j = —ou;jLuj.
Let us assume that the following relations are valid:

ang+1 40 —nl))  dng41
Ly Ly — Ly Ly;j—Ly;

i=1,2,j=1,2,3
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Fig. 13.2 Tree graph

where ny,ny;,n1;; € NU {0},n§?) > ”gi) and
(2) (1)
4ny+1 4(”1' _nl')
o Ly k), Lii—L (k)
1) 2
dny;;+1 4(”(‘ Lii—ny; L)
W Ly — Ly S ( Lii—L, " )

Then it is easy to show that these relations lead to equations

Therefore we have

g(k) zzw{ﬂfﬁj

oy = oy = 0hjj = o, ki =kij =kijj =k, o1 =01, =1, 0155 = —1.
Li—Ly & Lij—Ly
1i 1 1ij 1i

Bi & Buj }K(k)
x (K(k) — E(k)) — 1 =0. (13.15)

Solvability of the last equation is obvious.
Consider also the case given by the relations

—(—l)nlpl +2I’l1K(k1)

o =
1 L1 )
® (1 2 1
o= (=1)" pri— (=)0 p1 +2(n{? = ni})K (kry)
l Lii—Ly ’
o — —(=1)"ipy;+2n1;;K (ki)
1 Ly;j — Ly; ’

(1) (2)
(=1)Mi piLy;— (—=1)"Mi piiLy + 2(n$)L1i - ng?)h)K(ku)
Ly — L '
where —K (ki.1;) < p1 < K(ki,1i), —K(kii1ij) < p1i < K(kiiij)-

01 =
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One can obtain from the vertex conditions
o =0y =04 =0, ky =kii=kij =k

and
2 (. ”(11) ( n% 3 nl,j
; 7 Z ﬁlt/ B

Jj=1

”l

It follows from the normalization condition that

o(k) = 4 ((—1)"1p+2n1K(k)) ,

L

@_ 1O 3
1

a OF niij
i + J

Solvability of the last equation follows from the properties of the function g(k).
The same prescription can be repeated for loop graphs and combinations of loop
and star graphs that give us similar treatment for these topologies.

13.4 Conclusions

We have studied time-independent NLSE with cubic nonlinearity for simplest
networks and obtained explicit solutions for primary star and tree graphs are
obtained by considering matching and flux conservation boundary conditions.
Unlike the previous studies [28, 29, 32], the lengths of the bonds are considered
as finite. Therefore our work can be considered as an extension of the earlier results
by L.D. Carr et al. [9, 10, 12] to the case of networks. The method can be extended
to other simplest graph topologies and their combinations.
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Chapter 14

1/(N —1) Expansion for an SU(V) Impurity
Anderson Model: A New Large-N Scheme
Based on a Perturbation Theory in U

Akira Oguri, Rui Sakano, and Tatsuya Fujii

Abstract Low-energy properties of an SU(N) Anderson model are studied, using
the 1/(N — 1) expansion based on a perturbation theory in the Coulomb inter-
action U. This approach is different from conventional large N theories, such as
from the usual 1/N expansion and the non-crossing approximation based on the
expansion in the hybridization matrix element between the impurity orbital and
conduction band. In our approach the scaling factor N — 1 appears as the total
number of interacting orbitals excluding the one prohibited by the Pauli principle,
and it captures the low-energy local Fermi-liquid behavior correctly. We find that
the next-leading-order results of the renormalized parameters agree closely with
the numerical renormalization group results in a wide range of electron fillings at
N = 4, where the degeneracy is still not so large. This ensures the reliability of
the next-leading order results for N > 4. Furthermore, we apply this approach to
nonequilibrium current through a quantum dot in the Kondo regime.

14.1 Introduction

The Anderson impurity has been studied extensively as one of the most important
model for strongly correlated electrons systems [1]. For instance, in quantum dots
the universal Kondo behavior of the steady current [2—7] and shot noise [8—14] at
small bias voltages can be described in terms of the quasi-particles of a local Fermi
liquid.
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The Kondo behavior has also been studied for the quantum dots with the orbital
degeneracy [15-19], where the essential feature of the universality may be deduced
from the low-energy properties of an SU(N) Anderson model. The exact numerical
renormalization group (NRG) approach [20] is applicable to this model for small
degeneracies N <4 [17,21-24], which for N = 2 corresponds to the spin degeneracy.
Conventional large N theories, such as the 1/N expansion and the non-crossing
approximation (NCA), were also successfully applied to various situations [25-28].
These approaches are based on the expansion in the hybridization matrix element
between the impurity and conduction band, and are applicable mainly to the cases
for small electron (or hole) fillings. It is still necessary to develop alternative
approaches in order to explore a wide parameter space of the Anderson impurity.

Recently, we proposed a completely different approach, using a scaling that takes
u= (N—1)U as an independent variable [29,30]. The factor N — 1 appears naturally
as it represents the number of interacting orbitals, excluding the one prohibited by
the Pauli principle. With this scaling the perturbation series in U can be reorganized
as an expansion in powers of 1/(N — 1), using a standard Feynman diagrammatic
technique. To leading orderin 1/(N — 1) it describes the Hartree-Fock random phase
approximation (HF-RPA), and the higher-order corrections systematically generate
the fluctuations beyond the HF-RPA. As the unperturbed Hamiltonian includes the
hybridization between the impurity and conduction bands, this approach naturally
describes the Fermi-liquid state.

In this report, we discuss the low-energy properties equilibrium, carrying out the
calculations to the next-leading order. We also apply the 1/(N — 1) expansion to
nonequilibrium current through a quantum dot in the Kondo regime.

14.2 Model and Formulation

We consider an SU(N) impurity Anderson model with finite interaction U, given by
H = H;+Hy +Hr + H,,

N
Hq= Y, Eqngy, E;= g+ (nam)(N-1)U,  (14.1)
m=1
U
Hy = 2 D) [”dm - <”dm>} {”dm’ - <ndm/>:|7 (14.2)
m#m'
N D
Hr = %, Y v(dpWom+ Wond)  Vom :/ de\/D Copys  (14.3)
v=L.Rm=1 -D
N D
He = z Z/Ddggc;r;‘Vmcevmv (14.4)

v=LRm=1
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Here, d, is the creation operator for an electron with energy &; and orbital
m (= 1,2,---,N) in the impurity site, and n,, = dfndm. The operator clvm
creates a conduction electron in lead v with the normalization {csvm,cz,v,m,} =
Syv/ O 6(€ — €'). The hybridization energy scale is given by A = I + I, with
I, = npv2 and p = 1/(2D). We consider the parameter region where D is much
larger than the other energy scales; max (A, |g;4], U) < D.

The imaginary-frequency Green’s function for the impurity level is given, for
|o| < D, by

1

Glio) = 14.5
(iw) i0—E,+iAsgno — 2 (i)’ (14.5)

where X (iw) is the self-energy due to Hy. The ground-state average of the local
charge, (n4,,), can be deduced from the phase shift,

(Nam) = g , & =cot™! (%) , E; =E;+Z2(0). (14.6)

The renormalized parameters are defined by

_ JdX(iw)

1
diw

, & = zE}, A =zA. (14.7)

1
z w=0

Furthermore, the enhancement factor for spin and charge susceptibilities,
Xs = Xonm — Xy A4 %o = Xy + (N—1) %/, can be expressed in terms of z
and the vertex function I ., (i®y,it;ie3,iwy) for m # m' [31],

- 1 - sin®§
Xmm = Z, X! = — ﬂ,'_A me’;m/m(()’O;O’O)’ (14.8)
and U = 22T w -t (050:0,0) for m # m’ represents the residual interaction between

the quasi-particles.
It is essential for N > 2 to scale the bare and renormalized interactions by
multiplying a factor N — 1 as [29],

(N—-1U . (N=-1)T
A § TA

g (14.9)

For general electron fillings, the change in the local density of states
—%Im G(i0") = sin*§/(wA) should also be included in the scaling parameters,
such that [30]

K* = g sin’$, R = gsin®$. (14.10)
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With these parameters, the Wilson ratio R = zJ; and that for the charge sector can
be expressed in the form,

K 3
R=1+—- 7.=1-K. 14.11
TN X ( )

The rescaled coupling K varies in the range 0 < K < 1, and approaches the upper
bound K — 1 in the case of ¥. — 0 where the charge fluctuation is suppressed.
The renormalized impurity level E); determines the charge distribution near the

impurity, and should be treated carefully. We reorganize the perturbation expansion
such that E} enters the unperturbed Green’s function Gy (i®),

1

i0—E;+iAsgno’ {Gi0)} ™! = {Go(io)} ' —Z(iw).

(14.12)

Go(iw) =

Correspondingly, the unperturbed part of Hamiltonian Hy and the perturbation part
Hy are chosen to be

N N
Hy=Hy+H.+Hr+ Y, £(0)ngm, Hy=Hy— Y Angn, (14.13)
m=1 m=1

where A = X(0) is the counter term. The redefined self-energy ¥ (im) represents
the corrections due to Hy, and is generally a function of Ej and A. These two
parameters are determined by the renormalization condition

>(0) =0, (14.14)

and Eq. (14.1) which can be expressed in the following form, using the Friedel
sum rule

A A

*

E N-1)U
+gtanl<Xd>, where édzed—i—(—).

5 (14.15)

Specifically, at half-filling £, = 0, the two parameters vanish E; =0 and A = 0.

14.3 1/(N—1) Expansion

The perturbation expansion with respect to Hyy can be classified according to the
power of 1/(N — 1), by choosing the scaled interaction g as an independent variable
instead of bare U. The counter term can also be expanded such that
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A=y % (14.16)
2 -7

and the coefficient A; is determined by the requirement of the renormalization
condition Eq. (14.14) is satisfied to each order in the 1/(N — 1) expansion.

14.3.1 Zeroth Order

At zero order with respect to 1/(N — 1), the limit of N — oo is taken at fixed g. Then,
the counter term is zero A = 0, and thus E; which is determined by Eq. (14.15) takes
the HF value,

éd _ E;:HF -1 E;:HF
T 4 + gtan -1 ) (14.17)

Note that the contribution of the tadpole diagrams and that of —U ¥, (') Riam>
which is the bilinear part of Hy defined in Eq. (14.2), cancel each other.

14.3.2 Leading Order

The leading order corrections in the 1/(N — 1) expansion arise form a series of
the bubble diagrams of the RPA type indicated in Fig. 14.1 because each fermion
loop gives a factor of order (N — 1) through a sum over the orbital index m. The
contribution of the double wavy line is given by

T i) =U+U Y Ax [—UXO(ia))]k, (14.18)
=1

Here, the coefficient arises from the summations over the orbital indices for a series
of k fermion loops,

VKL (kD k 1 \7”
A = (N — 1) — (—)kt ~ (N— 1) Z (_1> . (14.19)
Z\N-1

RARAR = W+/\Q/\/+/\Q\/Q\/+u-

Fig. 14.1 The leading order diagrams in the 1/(N — 1) expansion. The wavy and solid lines
indicate U and Gy, respectively. Each fermion loop gives a factor of order (N — 1) through a sum
over the different orbitals
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P -

Fig. 14.2 The diagrams which provide the order 1/(N — 1) contributions. The cross (X ) denotes
—A of the counter term

The contribution of a single particle-hole bubble is given by

) do'
Xo(iow) = —[ %Go(zw—i—zw )Gy (io)
1 A AV +Ex2
- - ol +4) +E (14.20)
T |o|(|o]+24) A2+ E}

Note that Ay, (0) = 1/[1 + (E}/A)?] = sin’§.
The order 1/(N —1) term of I’ (0,0;0,0) arises from the first diagram in

mm' m m -
Fig. 14.2, which gives the leading order corrections to K ,
_ K* 1
K = o——|. 14.21
1+ K* + (N— 1) ( )

From Egs. (14.11) and (14.21), the Wilson ratio R is determined to order 1/(N—1).
The order 1/(N — 1) corrections to the self-energy, X (i), arise from the other
diagrams in Fig. 14.2, as

1
T\ (iw), = Z(iw) — A + o(m) : (14.22)
(gmA)? da’ xo(io') Gylio —ia')

> (i) =
1i0) == | 2z 1+ grAy,(io)

(14.23)

From this self-energy correction, the renormalization factor z can be calculated to
order 1/(N—1).

14.3.3 Next Leading Order

Fluctuations and correlation effects beyond the RPA appear first through the next-
leading-order terms in the 1/(N — 1) expansion. In this section we discuss the
calculations of z, R, and other renormalized parameters to order 1 /(N — 1)2.

Figure 14.3 shows the vertex diagrams which give order 1/(N — 1)? corrections
to the Wilson ratio R, defined in Eq. (14.11). Note that the contributions of the
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e

AR AR
Y y Y
A RAA e AR

Fig. 14.3 The order 1/(N — 1)? diagrams for the vertex correction I’

ot (05050, 0) for m 7 m'.
Specifically, in the partlcle hole symmetric case where &; = 0, only contributions of the first 5
diagrams remain finite

same order also arise from the first diagram of Fig.14.2 through the higher-
order component of %, (i®), which can be extracted using Eq. (14.19). These
corrections determines K to order 1/(N — 1). Summing up all the same order
contributions, we obtain

* * 1
. K 1+N_Iil[1+(2_15K_*>j5_1+_K*'ﬂA} 1
K= o[——),
(N

14+K* 1+ 25 [ + 4] —1e
(14.24)
where
= L[99 6 i) £FAKD)
Is = %000)) 2 {Gy(iw)} T+ enAyo(io) (14.25)
= 1 do 1 GO(iw)+G0(—i(1)) 2
A %0(0) 22 [ 1+ gmAyo(io) (14.26)
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-y
oL

B S TG = T =

Fig. 14.4 The order 1/(N — 1)? diagrams for the self-energy X (i®). Specifically, in the particle-
hole symmetric case where &; = 0, only contributions of the first 5 diagrams remain finite

Note that the prefactor K* /(1 + K*) in the right-hand side of Eq. (14.24) is required
to be calculated to order 1/(N — 1), by including the energy shift due to Eq. (14.23).

Similarly, the order 1/(N — 1)? self-energy corrections to the self-energy X, (i®)
arise from the diagrams shown in Fig. 14.4, and also from the second and third di-
agrams in Fig. 14.2 through the higher-order component of %4, (i®). We have also
calculated the order 1/(N — 1)? self-energy, and have obtained the renormalization
factor z, E}j, A, and the phase shift § to the next leading order [29, 30].

We have also carried out NRG calculations for N = 4, and have compared with
the 1/(N — 1) expansion results which are obtained up to order 1/(N — 1)? for both
the particle-hole symmetric case of &; = 0 and the asymmetric case of &; # 0.

14.4 Results at Half-Filling

We discuss the results obtained in the particle-hole symmetric case &; = 0 in this
section. In this case the phase shift is locked at the value of § = /2, and thus the
renormalized couplings K and g become the same.
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Fig. 14.5 Renormalized parameters g and z in the particle-hole symmetric case g = —(N — 1)U /2
as functions of the scaled Coulomb interaction g for N = 2 (Bethe ansatz [32]), and for N =4,6,8
(next-leading order in the 1/(N — 1) expansion). For N = 4, the NRG results are also shown with
the solid circle (). In the N — oo limit, g and z approach § — g/(1+¢) and z — 1.0, respectively
(color figure online)

14.4.1 Renormalized Parameters

Figure 14.5 shows the results of the renormalized parameters, & and z, as a function
of g. We see the very close agreement between the NRG and the next-leading-
order results in the 1 /(N — 1) expansion for N = 4, especially for the renormalized
coupling g. The two curves of § for N = 4, almost overlap each other over the whole
range of g although the next-leading-order results (green dashed line) are slightly
smaller than those of the NRG (solid circles). As N increases, § varies rapidly
towards the RPA value § — g/(1 + g) that is asymptotically exact in the limit of
N — oo. We also see that the value that g can take is bounded in a very narrow
region between the curve for N = 4 and that for the N — o limit.

The order 1 /(N — 1)? results for the renormalization factor z, shown in Fig. 14.5,
also agree well with the NRG results for N = 4 at g < 3.0, or equivalently in
the region where g < 0.8. This indicates that the next-leading-order results also
reproduce the Kondo energy scale, A = zA, properly from the weak-coupling to
intermediate-coupling regions, where g is still not closed to the value 1.0 of the
strong coupling limit.

14.4.2 Nonequilibrium Properties

The 1/(N — 1) expansion can be applied to nonequilibrium transport at finite bias
voltage V. To be specific, we consider a steady state, choosing the lead-dot couplings
and chemical potentials in the leads to be symmetric: I; = I and u; = —Ug
(= eV /2). In this case, an exact expression can be derived for the retarded Green’s
function at low energies up to order w?, T2, and (eV)? in the particle-hole symmetric
case [5,17],
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Fig. 14.6 The ratio cy/cy and the Fano factor for the current noise F, in the particle-hole
symmetric case €; = —(N — 1)U /2 as functions of the scaled Coulomb interaction g for N =2
(Bethe ansatz [32]), and for N = 4,6,8, 10,20, « (next-leading order in the 1/(N — 1) expansion).
For N = 4, the NRG results are also shown with the solid circle (e). In the N — o limit, ¢y /c7 and
F, approach cy /et — 3/4 and F, — 1, respectively (color figure online)

G'(0) ~ —

P 3.,
co+zA+12(N_ DA {a)2+4( V)2+(7fT)2}

(14.27)

The differential conductance for the current through the impurity can be deduced
from G"(w), using the formula by Meir-Wingreen [33] and Hershfield [34],

dJ  Ne AT\ > v\’
dal e (FEN o () 4 14.28
1 252 1 58
- (1 — (1 . 14.29
r 3<+N—1>’ v 4<+N—1 (14.29)

The low-energy behavior is characterized by the two parameters, & in the coefficients
and A the energy scale, which depend on N. The left panel of Fig. 14.6 shows the
ratio of ¢y, to ¢ as a function of g for several N, using Eq. (14.24) for N > 6. The
ratio takes a value in the range 3/4 < ¢, /c; < (3/4)(N+4)/(N +1). The order
1/(N —1) results for g are numerically almost exact for N > 4 as mentioned, and
thus the results shown in Fig. 14.6 capture orbital effects correctly. Note that in our
definition, the experimental value by Grobis et al. [2] should be rescaled by a factor
n? as ¢y /ey = 0.9940.15, and that of Scott et al. [3] as ¢y /c; = 0.50+0.1.
As another application of Eq. (14.24), we also consider the shot noise

N

s= [ ai(570)870) + 8(0)8710). 530) = ) ), (14.30)

where 8.(t) is the current operator. At T = 0, S has been calculated to order (eV')3
for the symmetric Anderson model for N = 2 [13, 14], and for general N [17],

Ne* 1 982 \ [eV\?
= 1+ ) (= . 14.31
S h6<+N_1)<A>e|v| (14.31)
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The Fano factor Fj, is defined as the ratio of S to the backscattering current
J, = NeV /h— J, and has been obtained in the form [17],

S 1+ 22
F=— = ML (14.32)
26.,1, 1+ 38

The Fano factor takes the value of F, = 1 in the noninteracting case and takes the
maximum value F, — (N +8)/(N +4) in strong coupling limit g — e where the
renormalized coupling converges to § — 1. The right panel of Fig. 14.6 shows
the order 1/(N — 1) results for Fj, as functions of the scaled Coulomb interaction
for several values of N. We see the close agreement between the NRG and the next-
leading-order results for N = 4 again. As N increases, § converges rapidly to the
value, g ~ g/(1 + g), for the large N limit, as mentioned in the above. Thus, for
N 2 8, the N dependence is determined essentially by the factor 1/(N — 1), seen
explicitly in Eq. (14.32). In the limit of N — oo, the Fano factor approaches the
Poisson value F;, = 1 as fluctuations due to electron correlations are suppressed and
the mean-field theory becomes asymptotically exact.

14.5 Results in the Particle-Hole Asymmetric Case

We have also carried out the NRG calculations for N = 4, and have compared with
the results of the 1/(N — 1) expansion. We find generally that the next-leading-order
results agree well with the NRG results, especially for small interactions g < 3.0.

In Fig. 14.7, comparisons are made for (ng,,), sin?8 and €., choosing a rather
large value g = 6.0 for the interaction. We see the very close agreement between
the order 1/(N — 1)2 results (red sold line) and the NRG results (solid circles) over
the whole region of &;. The order 1/(N — 1) results, corresponding to the HF-RPA,
are also plotted in Fig. 14.7 with the green dash-dot line although they are almost
concealed under the red solid line. Nevertheless, a small deviation is visible near
&1/ (mAg) ~ £0.4, showing that the order 1/(N — 1)? corrections improve the re-
sults closer to the exact NRG results. We also see in the figure that the renormalized
impurity level &; stays close to the Fermi level near half-filling, where &; ~ 0.0.
Note that the zeroth-order results for (ng,,), sin?8 and &, can also be regarded as
exact results in the large N limit. Therefore, as N increases from N = 4 to o, these
quantities vary in a narrow region between the red-solid and blue dashed lines.

The renormalized parameters K and z are plotted for N = 4 in the lower two
panels of Fig.14.7. We see that the next-leading-order results (red solid line)
significantly improve the leading-order ones (green dash-dot line), and become
close to the exact NRG values (solid circles). However, as the chosen value of
the interaction g = 6.0 is relatively large, the NRG results show an oscillatory
behavior. This corresponds to the Coulomb oscillation, which in the atomic limit
of A =0 occurs discontinuously at —g;/U = 0,1,2,...,N — 1. Truncation of the
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Fig. 14.7 1/(N — 1) expansion results of (n4,) = 8/7, sin®8 and &, (upper panels), and K and
z (lower panels) are plotted vs &; for N = 4 choosing g = 6.0. The circles (o) represent the NRG
results. The red solid line represent the next-leading-order results. The leading-order HF-RPA
results are plotted with the green dash-dot line, which in the upper two panels is almost concealed
under the red solid line. The blue dashed line denotes the zeroth-order HF results (color figure
online)

1/(N — 1) expansion does not reproduce the oscillatory behavior. Nevertheless, we
see in Fig. 14.7 that the next-leading-order results of K approach closely to the exact
NRG results. Furthermore, the order 1/(N — 1)? results of the renormalization factor
z approach closely the maxima, emerging at &;/(rAg) ~ £0.15 in a mixed-valence
region in between two adjacent integer charge states. Therefore, we expect that the
fluctuations beyond the RPA, taken into account to order 1/(N — 1)?, can describe
reasonably an upper envelop of the waving curve for N > 4.

In Fig. 14.8 the next-leading-order results of K and z for g = 6.0 are plotted vs
&, for several values of N (=4, 6, ... ), together with the NRG results for N = 2
(orange dash-dot line) and the exact values in the N — oo limit (gray dashed line).
As N increases, K converges rapidly to the asymptotic value for the large N limit.
We also see that the value that K can take at N > 4 is bounded in a Very narrow
region between the curve for N = 4 and the one for the N — oo limit given by
K — K*/(1+K*). The renormalization factor z varies in a wider range 0.6 <z < 1.0
at |&4]/(mAg) < 0.3 as the degeneracy increases from N = 4. As N increases, the
order 1/(N — 1)? corrections dominate the fluctuations beyond the RPA, and capture
correctly the correlation effects, especially in the mixed-valence regime.
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Fig. 14.8 Next leading-order results for K and z plotted vs &; for g = 6.0, for several N
(=4,6,...,00). The orange dash-dot line represents the NRG results for N = 2 (color figure online)

14.6 Summary

In summary, we have applied the 1/(N — 1) expansion to the SU(N) Anderson model
both in a wide range of electron fillings, and have described the next-leading-order
results in a wide parameter region. We have also discussed the nonequilibrium cur-
rent and current noise for N > 4 at low energies in the particle-hole symmetric case.
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Chapter 15
OPYV Tandems with CNTS: Why Are Parallel

Connections Better Than Series Connections

Kamil Mielczarek, Alexander Cook, Alexander Kuznetsov,
and Anvar Zakhidov

Abstract The efficiency of organic photovoltaic cells can be increased in tandem
OPV structures with complementary light absorption in top and bottom sub-cells.
We demonstrate that strong transparent CNT sheets can be used as an effective
charge collector interlayer in OPV and hybrid tandem solar cells. Most importantly
we show that CNT sheets can be used in monolithic parallel tandems (P-T) as
common a electrode interconnect between top and bottom sub-cells. For achieving
good performance one of these subcells in P-T should be of inverted type. We
achieved good inversion in OPV, using ZnO nanoparticles, which act as hole barrier
layers and invert a typical anode ITO into a cathode. With this inverted bottom cell
the efficiency of P-T is significantly improved, as compared to our earlier results.
We briefly discuss the modeling analysis of OPV tandems and derive an optimal set
of parameters, for highest efficiency P-T. Our simple model shows that for tandems
with unbalanced photocurrents but similar open circuit voltages the optimized P-T
architecture is always better than conventional series tandem (S-T) geometry. Indeed
the experimental comparison of P-T with S-T for hybrids of OPV and dye sensitized
solar cells demonstrate the imporved efficiency of the former.

15.1 Introduction

Tandems of nanostructured solar cells can provide additional boost to the solar cells
efficiency by absorbing larger portions of the solar spectrum [1,2]. Particularly
promising are tandems of organic PV cells: the highest achieved 8.9 % power

K. Mielczarek * A. Cook * A. Kuznetsov ¢ A. Zakhidov (P<))

Department of Physics and Alan G. MacDiarmid Nanotech Institute,

University of Texas at Dallas 800 West Campbell Road Richardson, Texas 75080

e-mail: Kamil.m@utdallas.edu; abc072000 @utdallas.edu; Avgust.kuznetsov@ gmail.com;
zakhidov @utdallas.edu

R. Egger et al. (eds.), Low-Dimensional Functional Materials, NATO Science for Peace 179
and Security Series B: Physics and Biophysics, DOI 10.1007/978-94-007-6618-1_15,
© Springer Science+Business Media Dordrecht 2013


mailto:Kamil.m@utdallas.edu
mailto:abc072000@utdallas.edu
mailto:Avgust.kuznetsov@gmail.com
mailto:zakhidov@utdallas.edu

180 K. Mielczarek et al.

conversion efficiency has been obtained in small molecule OPV with p-i-n structure
of each subcell [3]. Monolithic tandems need electrically conductive interconnects,
which is not easy to create through usual metals. In this case the conventional
series tandem with increased photovoltage Voc has tunneling type interconnecting
layer, which is possible in p- and n-doped structures. Since usual OPVs with a bulk
heterojunction (BHJ) do not have doped transport layers, the problem of having a
transparent interlayer in such BHJ devices is of special importance. We show in this
paper, that transparent CNT sheets can serve as very good interlayers. Moreover
CNT charge collectors allow to enable a new type of monolithic parallel structure,
which is more efficient for OPVs with undoped organic layers. We will discuss
below the conditions when parallel tandems are better than series tandems. More-
over hybrid tandems made with sub-cells of different nature: small molecule and
polymeric, or inorganic and organic or even dye sensitized photovoltaic cells and
OPVs, may have quite different parameters: largely non-balanced photocurrents,
distinct voltages and filling factors. Therefore, to maximize a tandems efficiency
certain new design requirements become important arising from the electric circuit
analysis of each sub-cell should be fulfilled [2,4, 5]. Using the single-diode model,
it has been shown in our first paper of this series, that parallel connections of
dis-similar solar cells are more beneficial in hybrid tandems, as compared to con-
ventional series connections, mentioned above. We demonstrate in the present paper
several experimental examples of tandems of two polymeric OPVs [1], tandems of
small molecule organic and polymeric OPV/PPV [2, 5], and tandems of OPV and
DSSC with largely differing parameters and compare with predictions of our model
analysis. We prove that indeed the equilibration of the open circuit voltages of the
individual cells is important in parallel hybrid tandems, while both short circuit
current and fill factor should be matched for in-series tandems. We also prove that
parallel connection is preferable when a tandem consists of two solar cells with
unbalanced photocurrents [1,2,5]. We demonstrate an organic photovoltaic (OPV)
cell connected in a parallel electrical tandem configuration utilizing organic mate-
rials with complementary absorption spectra and free-standing transparent single
wall (SWNT) and multiwall carbon nanotubes (MWNT) as an interlayer common
electrode. In first part of the paper we demonstrate an improvement of the previous
work [1] by utilizing proper inversion layers, which allow to adjust energy levels
and obtain an improved efficiency. The inversion is preformed using both charge
selective metal oxide layers (ZnO and MoO3) and n-type doped organic materials
[6,7]. Each cell was characterized independently and the short circuit current of the
tandem device is shown to be larger than that of each sub cell. An overall increase
in efficiency is observed and attributed to enhanced spectral coverage due to active
layers with complementary absorption spectra and the effective use of transparent
SWNTs and MWNTs, prepared by invented in UTD proprietary process of dry
self-assembly.
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15.2 Organic Photovoltaics: Device Operation
and Characterization

In order to understand the device operations of inverted and multijunction OPVs a
basic understanding of OPVs is required. The first OPV with any significant power
conversion efficiency was the organic equivalent to the successful p-n junction
structure of inorganic photovoltaics and was developed by Tang in 1985 [8]. The
similarities between Tang’s OPV and traditional p-n junction photovoltaics as well
as the evolution and improvements of Tang’s structure will be briefly described as a
segway into the operation and necessity for the inverted OPV structure.

15.2.1 Organic Photovoltaics

Organic photovoltaics are based on organic molecular and polymeric semi-
conducting materials which are formed when the molecular structure presents a
backbone in which the carbon, nitrogen, oxygen and sulfur atoms are sp> hybridized
and posses 7-atomic orbitals. These orbitals overlap, or are conjugated, along the
backbone of the material and result in the formation of delocalized = molecular
orbitals. The electronic levels of organic semi-conductors are identified as the
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) which are analogous to the valence and conduction bands within
inorganic semi-conductors respectively [9]. Unlike inorganic semi-conductors,
which have well defined 3-D crystal lattice structures that result in high carrier
mobilities (on the order of 10°~103 cm?/V-s), organic semi-conductors only have
ordering along the molecular backbone through overlapping 7 orbitals and as a
result require a ‘hopping’ type mechanism to facilitate charge propagation from
one molecular unit or polymer chain to another. This hopping mechanism results
in charge carrier mobilities which are strongly dependent on the layer morphology;
largely amorphous films have mobilities from 107® to 103 cm?/V-s while highly
ordered films can have mobilities >1 cm?/V-s [10].

15.2.1.1 Structure and Operation

Organic materials do not have well ordered lattice structures so substitutional
doping, as is the case for inorganic p- and n-type materials, is not possible. Rather,
materials are selected as electron-donating and electron-accepting based on their
HOMO and LUMO levels with respect to one another. An electron-donating
material, or Donor, has a high HOMO level, or low ionization potential. While
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Fig. 15.1 (a) Is an energy diagram depicting a p-n junction where a photon with energy larger
than the band-gap of the p-type material is absorbed (step A-1) followed by thermalization to the
conduction band in step A-2. In step A-3 the electron in the conduction band of the p-type material
moves towards the p-n junction through diffusion and is swept to the n-type material under the
influence of the internal electric field and collected. (b) Shows the organic equivalent of the p-n
junction operating at a voltage near the maximum power point, where a photon is absorbed in the
donor material (step B-1) and the electron-hole pair quickly relaxes to the excitonic levels (step
B-2). In step B-3 the exciton diffuses to the donor-acceptor junction, where if appropriate energy
conditions are satisfied the exciton dissociates (step B-4) into free charge carriers

electron-accepting materials, or acceptors, have a low lying LUMO level, or high
electron affinity. Donor and Acceptor materials are analogous to p-type and n-type
materials respectively for inorganic semi-conductors. In 1985, Tang developed an
organic photovoltaic (OPV) device with a power conversion efficiency of 1 % by
using a two layer system of copper phthalocyanine (CuPc) donor material and a
perylene tetracarboxylic (PTC) derivative as an acceptor which was similar to a
p-n junction sandwiched between a transparent electrode of Indium-Tin-Oxide and
Silver [8].

The structure shown in Fig. 15.2b corresponds to the structure developed by Tang
and draws parallels between p- and n-type materials used within inorganic photo-
voltaics. Unlike inorganic semi-conductors, which are doped, organic materials are
intrinsic semi-conductors. The bilayer device developed by Tang is represented in an
energy level diagram (Fig. 15.1a) much the same way a p-n junction can be. In step
1 of Fig. 15.1b a photon with an average energy greater than the optical band gap
of either organic layer is absorbed, in this case absorption occurs within the donor
material. After absorption, thermalization occurs and the excited electron relaxes
to the excitonic level (step 2). The exciton consists of an excited electron bound
through Coulomb attraction to the remaining hole within the same organic molecule.
The exciton diffuses to the heterojunction between the donor and acceptor materials
in step 3. Exciton dissociation into free charge carriers, an electron on the acceptor
material and hole on donor material occurs, at step 4. However, the requirements for
step 4 to occur are:

* The exciton formed on the donor material must be generated within a certain
distance from the donor/acceptor heterojunction. This distance is the exciton
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Fig. 15.2 (a) Shows the energetic relation of the donor’s HOMO-LUMO levels with respect to
the Acceptor in order for efficient charge separation. Unlike inorganic semiconductors, p-type
and n-type materials are determined with respect to each other not on dopants. (b—d) Show the
cross sectional evolution of organic photovoltaic devices. (b) Is representative of Tang’s bilayer
structure, where light passes through the transparent anode and is incident upon the donor material
where exciton formation occurs. Excitons are dissociated at the interface between donor (blue)
and acceptor (yellow) and electrons are collected at the cathode (black). (¢) Is representative of
the mixed interlayer structure, where the donor and acceptor are mixed through codeposition at
the interface, this creates more interfacial area for exciton dissociation. (d) Represents the most
common device cross section for polymer based devices, the bulk heterojunction (BHJ) where
polymer and fullerene are mixed together in a common solvent and form a blended layer with an
extremely large interfacial area (color figure online)

diffusion length (Lp), and is Lp = v/DT where D is the diffusion coefficient
of the material and 7 is the excitons lifetime. For most organic materials Lp is
typically 10-20 nm [11, 12].

* In order for efficient exciton dissociation the difference between LUMO levels
of donor and acceptor materials at the heterojunction, denoted as A in Fig. 15.1b
must be larger than the excitons binding energy. The excitonic binding energy
in organics is large, typically 400 meV or larger. For inorganic semi-conductors
the binding energy is only a few meV (this is on the order of thermal energy,
kgT(300 K) = 26 meV), which is why excited charge carriers are considered
essentially free [13, 14].

After exciton dissociation occurs (step 4) the free charge carriers are swept to
the collecting electrodes under the influence of an internal electric field which is
due to a built-in potential from the difference in work functions, ®, of the two
electrodes [15].

Tang’s seminal device addressed the problem with exciton dissociation through
the inclusion of a donor organic semi-conductor (CuPc) and an acceptor material
(PTC) which provided a interface where the energy difference between the materials
LUMO levels was sufficient to allow for dissociation and the creation of free
charge carriers. The absorbing layer, the layer in which the exciton is originally
formed, must be limited to a thickness of approximately the exciton diffusion length
(d ~ Lp ~ 10-20 nm), otherwise the photo-generated exciton will not be able to
diffuse to the Donor-Acceptor interface and will recombine. The limited Lp results
in a careful balance between light absorption and exciton dissociation, this is known



184 K. Mielczarek et al.

as the exciton bottleneck [16—18]. The exciton bottleneck problem is addressed
through the use of bulk heterojunction (BHJ) active layers, where the donor and
acceptor materials are co-deposited for molecular organic semi-conductors [19] or
where two materials are mixed together in solution as was originally described by
the Heeger [20] and Friend [21] groups, the structures are shown as cross-section
representations in Fig. 15.2c, d for molecular and polymeric BHJs respectively.
Devices employing the BHJ active layer have a donor-acceptor interface distributed
throughout the photo-active layer and require phase separation between the donor
and acceptor materials which is achieved through precise control of the nanoscale
morphology. Many methods have been used to control the nanoscale morphology
including thermal annealing [22], solvent annealing or slow drying [23], careful
solvent selection [24, 25] and processing additives [26]. More recently the exciton
bottleneck and morphology problems are being simultaneously addressed through
careful nanoscale pattering of the donor-acceptor interface using nano-imprint
lithography [4,27,28].

15.2.1.2 Operation and Role of Charge Collectors

The requirements on charge collectors for organic photovoltaics are more demand-
ing than for inorganic devices, in the basic structure shown in Fig. 15.1b the work
function of each charge collector is important and responsible for the internal
electric field. The electric field is given by the difference in the two work functions
and the separation distance between them:

o Danode — (I)Cathode
e

E=V/d (15.2)

Vv (15.1)

The work function, transparency, and low sheet resistance requirements have
been the main requirements for passive/planar electrodes. However, in order to
increase the exciton dissociation efficiency and the power conversion efficiency an
active charge collector can be designed. The ideal charge collector for all structures,
conventional, inverted, series and parallel, will satisfy the following basic criteria
for undoped organic photovoltaics:

* Optically Transparent. This is required by at least one of the electrodes used in
order to allow photo-excitation of the active layer.

e High (Low) Work Function. This will provide the internal electric field as
described by Eq. (15.2).

* 3-D Geometry and Topology. Having electrodes which are embedded into the
active layer will allow for more charges to be collected by reducing the distance
a charge must travel. Furthermore, the electric field can be enhanced at the tips
of the charge collectors.
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Fig. 15.3 (a) Is the equivalent circuit model of a p-n junction type solar cell which includes
both shunt (Rsy) and series (Rg) parasitic resistances. (b) Is a typical current-voltage curve of a
photovoltaic device operating under illumination (solid black curve) and in dark conditions (dashed
black curve). Also included are the open-circuit voltage (Voc), short-circuit current (Jsc) as well as
the power output curve for the illuminated device with the maximum power point (MPP) marked
on both the power curve and the corresponding location on the current-voltage curve

* Selectivity of Charge Carriers. The charge collectors should be selective to ei-
ther electrons or holes, this will prevent them from functioning as recombinations
sites which is important in the case of devices utilizing the bulk heterojunction
active layer.

* Low Sheet Resistance. High conductivity will lead to a lower series resistance
and ensure high fill factors.

e Low Charge Transfer Resistance (Rct). Electrodes which have no trap states
and form intimate contact with active layer material are critical in allowing all
charges to be transfered to the charge collectors.

* Tunable Geometry. The ideal charge collector should have a tunable geometry
so that it can best match the specific properties of the active layer materials.

15.2.1.3 Electrical Characteristics and Modeling

Organic photovoltaics based on the inorganic p-n junction structure (i.e. most donor-
acceptor systems excluding dye-sensitized solar cells which are based on a different
model [29]) can be modeled using the Shockley diode equation and an equivalent
circuit shown in Fig. 15.3a. The equivalent circuit for an organic photovoltaic device
under illumination (Fig. 15.3a) consists of a diode with a reverse saturation current,
Js and an ideality factor, n, as well as a current source Jpy corresponding to the
photo-generated current. Parasitic resistances are included in the form of : (a) shunt
resistance, Rgy, which needs to be maximized and represents loss of charge carriers
through leakage paths, traps, and other structural defects and; (b) a series resistance,
Rs, which needs to be minimized and represents the limited conductivity of the
material, contact resistance between the material and electrodes as well as the
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resistance between interconnects within the photo-active material. The equivalent
circuit can expressed as a modified Shockley equation :

V—JR V_JR
J_Jg{exp< _— S)—1}+ R S Jrn (15.3)

where V1 = e/kgT is the thermal voltage, currents (Js and Jpy) are in units of
A/cm?, Rg and Rsy are given in units -cm?. Careful analysis and manipulation of
Eq. (15.3) can lead to a functional form for current density (Eq. 15.4),
nVr JsRsRsy Rsy V + (Jpu + Js)Rs
JV)= —Wg{ ————exp| —————
Ry nVr(Rs+ Rsy) nVr Rs+ Rsy
(Jprr +Js)Rsu —V

— 154
Rs + Rsy ( )

where Wy_g is the k=0 branch of the Lambert-W function. This functional form can
allow for all circuit parameters to be extracted and used for cell simulation in circuit
simulators such as SPICE.

Under illumination the power density generated by a photovoltaic cell can be
calculated by multiplying each current-voltage pair in the fourth quadrant, the
maximum power density will correspond to the maximum power point (MPP) with
a current-voltage pair (Vypp,Jmpp). The total power conversion efficiency (PCE),
n, will be given by:

VocJscF F
n= % (15.5)
IN
VupprJurp
FF = —"""""" (15.6)
VocJsc

where Py is the incident power and FF is given by Eq. (15.6) and corresponds to
the ratio between the maximum area in the forth quadrant and the maximum area
within the current-voltage curve of the device. Figure 15.3b graphically illustrates
all parameters used in the calculation of the power conversion efficiency.

15.3 Tandem Organic Photovoltaics and the Role
of the Inverted Geometry

A general advantage of the tandem of multi-junction OPV structure is its multi-
absorption ranges. The wavelength distribution of the solar spectrum has a wide
range, covering the UV to IR. Although there are many kinds of organic materials
(small molecule or polymeric) that are used as photoactive layers for OPV cells,
the individual materials have specific and narrow absorption ranges. Hence, only a
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Fig. 15.4 (a) Conventional series OPV tandem connection, (b) the concept of a parallel tandem
with CNT active interlayer as anode. (d) New concept of inverted parallel tandem with CNT
cathode interlayer. Transparent ITO of a bottom cell on (¢) can be ‘inverted’ into a cathode by
electron selective ZnO layer, also known as hole barrier layer. This concept of a parallel tandem
with CNT active interlayer collecting charges of same sign (shown by filled and empty circles
with arrows) from each of sub-cells, allows to increase the total current. (d) Shows schematics of
electrical connections of top and bottom cells and the conceptual design of layers in P-T with CNT

part of the solar spectrum is effective in generating the photo carriers in a single
junction PV cell. By using materials with a different absorption range for each OPV
cell of the tandem structure, the total absorption range of the tandem OPV cell can
be the superposition of the each material. This has been demonstrated for different
OPVs, but all previous tandems were series tandems (S-Ts) [30,31], in which the
interconnect is a recombination layer, and plays the role of a floating electrode. We
suggested different monolithic geometry: a parallel tandem (P-T), which is enabled
with CNT transparent charge collector. We discuss the advantages of P-T and why
their is a need for an inverted OPVs as one of the sub-cells.

15.3.1 General Concept of Parallel-Tandem Versus
Series-Tandem

In series connected tandem cells, the holes are coming from the bottom cell, while
electrons are arriving from the top cell (Fig. 15.4a) so the transfer of the charge
at the interface in a monolithic tandem requires that the holes recombine with the
electrons. The voltages of top and bottom cells add, while the lowest current can
pass through the series tandem, and current balancing is required. In contrast, for
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a parallel tandem the photocurrents add I = Igor + Itop in a charge collecting
interlayer, while the average voltage is generated (Fig. 15.4b, c).
Advantages of Parallel Tandem Compared to Series Tandem Configuration

1. Does not need the photocurrent balancing: top and bottom OPV cells may have
largely different Igc

2. Can connect PVs with very different photocurrents Igc, but similar or close
enough Voc.

3. The transparent interlayer plays a role of a common electrode, that is a charge
collector and is an active electrode, i.e. should have low serial resistance and
leads attached to it.

4. No other electrodes, but only continuous strong t-CNT can be used as an
active interlayer since it needs to be continuous (contrary to flakes of charge
recombination interlayer in in-series connection)

In P-T type of connection of OPVs, one of sub-cells should be inverted, as
compared to S-T, since in P-T the top and bottom electrodes are either both anodes
(large work function, such as ITO) or both cathodes (low work function, such as Al).
However, one of outer electrodes also needs to be transparent, which means that a
transparent anode, such as ITO should be inverted into a cathode by coating it with
a selective layer.

15.3.2 Interconnection Layers in Parallel and Series Tandems

Moreover the P-T needs a central common electrode to be an active charge collector,
with a low serial resistance as well as high optical transparency, which is not
easy with conventional metallic materials. Only strong transparent sheets of carbon
nanotubes (coated if needed with inversion layers, as described below) allow the
new type of inverted parallel connection, since it permits the attachment of the
outer lead to the interconnect, (while in previous series connections the leads were
not required). The growth of these carbon nanotubes is sufficiently understood and
large scale forests can be grown in CVD reactors as seen in Fig. 15.5. Under proper
growth conditions forests can have dense enough CNT growth that all individual
CNTs are connected. With this interconnection between individual CNTs, when a
segment of forest is pulled from substrate it begins to pull it’s adjacent neighbors,
when this happens the forest is said to be spinable. Spinable forests are desireable
for many applications, of particular interest is the interlayer common electrode for
tandem cells because of their processability, high conductivity, low sheet resistance
and high optical transparency. The spinable forests can be collected into free
standing sheets which are laminated onto any surface, including OPVs, this is shown
in the last segment of Fig. 15.5.

A tandem OPV cell with a transparent titanium oxide layer has been reported and
it was fabricated by all-solution processing. All of the previous reports were focused
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Fig. 15.5 Flow chart demonstrating the growth and application process of CNTs. At first,a CVD
chamber is heated using RF heating, depending on the temperature and duration of the heating the
type and length of CNTs can be controlled. Once a forest is grown, the CNTs can be pulled into a
sheet (top right of figure) for collection or application. The final step shows the pulled CNT sheet
being laminated on a device to be used as an electrode or interlayer electrode

on the tandem OPV cells with series connections (except recently by Guo et. al. [32],
which follows our original work [1]). A property of the S-T series connection is an
increased Voc: the Voc of tandem cell in the series connection is expected to be
the sum of the V¢ of each individual cell. In contrast, as we have demonstrated a
tandem PV cell [1] with parallel connection has an increased short circuit current
density (Jsc). The total Jgc in the parallel configuration (in ideal case of equal V¢
of sub-cells) is the sum of Jgc contributed by each individual cell. We show below
by modeling how this can be optimized for case of different Voc of sub-cells. As
an intermediate layer for the thin film tandem OPYV, it needs to be thin and smooth
enough to prevent shorting. Thus, typical intermediate layers for the S-T tandem
OPV are limited to ultra thin layers of metals or oxides. These intermediate layers
are a kind of ‘floating’ layer in the OPV structure. These layers usually are in form
of flakes and cannot be connected with an external circuit directly. For P-T OPVs,
an intermediate layer is needed, which can be connected directly from the external
circuit. This is a challenge and to the best of our knowledge, there are no report about
the tandem OPV cell with parallel connection with strong mechanical continuous
layers with good transparency.

15.3.3 Parallel Tandem OPV with Inverted Bottom Layer

Originally reported P-T [1] demonstrated increased Jsc, but the efficiency was very
low. The reason for this was clear: although the central CNT interlayer was a
common anode, the bottom cell had ITO as electrode, which was also an anode,
and thus generated a very low Voc between two anode type electrodes, both with
high work functions. In order to increase the Voc of bottom cell, the cell needs to be
inverted with a transparent cathode, i.e. ITO inverted into a cathode, as is described
below.
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Fig. 15.6 Energy band diagrams for the conventional OPV (left) and the inverted OPV (right)
geometries. The inverted geometry uses electron and hole selective layers to modify the work
functions to the effective values

The work presented demonstrate the functionality of various inorganic oxides as
charge selective layers for use within the OPV stack. The incorporation of these
charge selective layers will be extended into semi-transparent devices employing
either MWNTs or SWNTs as electrodes. This is essential in creating either a front
or back sub-cell for use in parallel tandem structures, where one of the electrodes
is common to both sub-cells and is required to be transparent. The charge selective
inorganic oxides can be used as either an electron transport layer, also referred to
as a hole blocking layer (HBL), or as a hole transport layer (HTL) which can be
referred to as an electron blocking layer (EBL) depending on the electronic levels
in relation to polymeric levels. These charge selective layers allow for the polarity
of the devices, which is normally determined by the work function of the electrodes
in relation to the HOMO and LUMO levels of the acceptor and donor materials, to
be inverted.

A general energy band diagram for both conventionally structured OPVs
(c-OPVs) and inverted OPVs (i-OPVs) is shown in Fig. 15.6. The electrodes
are labeled and arrows depict the direction in which holes and electrons flow. In the
c-OPV, left side of Fig. 15.6, structure the direction of charge flow is determined
by the internal electric field generated by the difference in work functions of the
two electrodes, electrons (holes) move under influence of the electric field towards
the low (high) work function cathode (anode). For i-OPVs the internal electric field
is still created by the work functions of the electrodes, however the values of the
electrodes work functions are modified to new “effective” values.

15.3.3.1 ZnO Nanoparticles as an Electron Transport Layer

Inverting the ITO anode into a cathode is best accomplished by metal oxides such
as titanium dioxide or zinc oxide. Titanium dioxide has been demonstrated in dye
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Fig. 15.7 c-OPV devices were fabricated but included a ZnO-NP electron transport layer between
the active layer and the aluminum cathode. The energy band diagram is shown on the left and the
current-voltage characteristics are shown on the right. The performance of the device decreases
with decreasing thickness of the ETL

sensitized solar cells with great success when in the anatase crystalline phase due to
its high photoconductivity and electron mobility [33]. However, these characteristics
require sintering at temperatures in excess of 350 °C [34], which is too high for
organic materials. Zinc Oxide nanoparticles (ZnO-NP) have been demonstrated as
an alternative to fullerenes as an acceptor [35] in bulk heterojunction devices and are
a strong candidate as an n-type charge selective layer for use in inverted solar cells.
ZnO-NPs are simple to synthesize, can be dispersed in alcohols, and do not require
any further treatment such as annealing, sintering, or hydrolysis after deposition
[36]. The ZnO-NPs are a wide band gap inorganic semiconductor, thus can provide
a large optical window for incoming photons to be absorbed within the photo-active
polymeric layers. Additionally, a deep HOMO level prevents holes from reaching
the cathode.

To evaluate the effectiveness of the zinc oxide nanoparticles, conventional device
structures were fabricated in which a layer of ZnO-NP were spin coated on top of
the polymer to form a hole blocking layer. The device schematic and resulting JV
curves are shown in Fig. 15.7 while device characteristics are tabulated in Table 15.1
as devices A-D. The JV curves show a high Jgc this is only possible if the ZnO-NPs
have electron mobilities comparable or larger than the fullerene network within the
bulk heterojunction, otherwise there would be charge build up and the JV curves
would show an S-shape [37].
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Table 15.1 A summary of device performance based on the inclusion of either hole or
electron transport layers, and the effect of transport layer thickness

Voc Jsc PCE
Device HTL Anode ETL Cathode V mA/cm?  FF %
ZnO-NP ETL
A PEDOT:PSS ITO 1500 RPM Al 0.58 129 047 3.53
B 2000 RPM 054 114 047 291
C 2500 RPM 0.50 10.2 043 211
D 3000 RPM 049 120 0.42 2.50
e h+ 107 — Device A
8 4 — Device B
FTO  ZnO-NP P3HT MoO, Al —— Device C
ITo PCBM T 61
-2.3eV g 4]
—32eV T E L]
41V 3 o
— - -4.3eV S
4.4eV 4.4eV — § ]
—4.8eV g 4
athode —5.1eV -5.1eV 3 6
22V anode 8]
—-6.1eV -10 T T T 1
- -0.2 0.0 0.2 0.4 0.6 0.8
-7.6eV Bias (V)

Fig. 15.8 Energy band diagram (/eft) and current-voltage (right) figures for devices with various
electrode pairings (Device A: ITO/Al, Device B: ITO/Au, and Device C: FTO/Al) all showing
comparable performance

15.3.4 Inverted Devices with Transparent Carbon Nanotubes

To demonstrate the effectiveness of ZnO-NPs and MoOj3 as inversion layers for
i-OPVs, several inverted devices were created employing electrodes with different
work functions. The robustness of this configuration was demonstrated by using
two different transparent conducting oxides, FTO and ITO, with work functions ~
—4.4 and ~ —s4.8 eV respectively, were used as cathodes. Similarly, the anodes
were varied using gold and aluminum with work functions of —5.1 and —4.1 eV
respectively. The device schematics and JV characteristics are shown in Fig. 15.8
with performance characteristics shown in Table 15.2 as devices A-C. Remarkably,
all configurations show nearly identical JV characteristics despite having different
anode and cathode materials. The different electrode materials would normally
change the internal electric field and could, in the case of ITO/Al, have an electric
field that is opposite to the preferred direction for charges to travel. The use of charge
selective barrier layers causes the build up of blocked charges at the interfaces and
a change to the work function of the electrode behind the barrier to a new work
function. This change to the work function as well as build of charges generates a
new internal electric field that is oriented in the correct direction.
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Fig. 15.9 Current-Voltage curves for i-OPV devices which are semi-transparent and use either
MWNTs (left) or SWNTs (right) as anodes. The side being illuminated is denoted in parentheses

15.3.4.1 Inverted Devices with a MWNT Anode

The i-OPV structure, with solution processed ZnO-NPs as an effective ETL and
thermally evaporated MoO3 as a HTL, was extended to incorporate MWNTs as an
anode. The MWNTs would be used as a standalone anode while ITO would be
converted to a cathode. The MWNTs used were densified using Hydrofluoroether
(HFE) because of its ‘orthogonal’ nature; it is inert as a solvent for the materials
used within this i-OPV.

For the devices with ITO/MWNT cathode/anode configuration illumination from
either side of the device was preformed because both electrodes are optically
transparent. Device performance was dependent on which side was illuminated.
JV curves are shown in Fig. 15.9 with the side being illuminated being labeled in
parenthesis and device performance is described in Table 15.2 as devices D and E.
When illuminated through ITO higher performance was observed due to a ~ 2x
improvement in Jsc when compared with the performance of the device illuminated
through the MWNT electrode. This significant change in Jg¢ can be explained by the
optical transmission of the MWNTs, which is ~ 48 % transmission when averaged
over perpendicular and parallel (with regards to the orientation of MWNT strands)
orientations.

15.3.4.2 Inverted Devices with a SWNT Anode

In order to improve on the performance of the semi-transparent i-OPV with a
MWNT top anode, SWNTs can be used. Much progress has been made in the
field of SWNT growth, and it is possible to produce films with low defects,
high transparency, and high electrical conductivity [38—40]. SWNTs which were
synthesized in a floating catalyst reactor [41] and deposited onto millipore filters
for use as transferable electrodes were used. The SWNT films are named after the
number of minutes that nanotubes were collected within the reactor; the longer the
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Table 15.2 A summary of inverted devices

Device HTL Anode ETL Cathode VocV  Jgc mA/em?® FF PCE %
Various electrodes

A MoO3; ITO ZnO-NP Al 0.63 9.2 0.67 3.91
B Au 0.63 9.1 0.66 3.82
C FTO Al 0.63 9.3 0.66 3.88
MWNT cathode

D MoO; ITO* ZnO-NP  MWNT 0.57 10.3 042 248
E * 0.55 4.1 0.55 1.25
SWNT cathode

F MoO; ITO* ZnO-NP 16 min 0.56 10.7 0.51 3.12
G * 0.56 6.2 0.37 131
H * 8 min 0.56 8.2 0.27 1.25
1 * 0.54 6.0 0.33  1.09

The asterisk (¥) denotes which side was illuminated for the semi-transparent device

duration the more opaque and conductive the nanotube films. SWNTs exhibit lower
sheet resistances and higher optical transparency than the MWNTSs used for the
previous devices which make them a candidate for a transparent electrode to be
used within our i-OPVs as well as parallel tandem devices.

To form a transparent anode, SWNT sheets were laminated on top of a MoO3 film
on an inverted device similar in structure to those described previously. The devices
were measured with the side being illuminated being noted within the parenthesis of
Fig. 15.9 and device performance characteristics are noted in Table 15.2 as devices
F-I. The “16 min” (devices F and G) sample having a sheet resistance of 200
Q/0 and transmittance of 60 % show the highest performance when illuminated
through the highly transparent ITO layer due to the SWNTs low sheet resistance.
However, when illuminated through the SWNT side, a 40 % reduction in the current
is seen and the fill factor is reduced. This is not the case for the more transparent
sample, “8 min” (devices H and I), which has a sheet resistance of 500 Q/(]
and transmittance of 90 %; the device shows nearly the same performance when
illuminated through either the ITO or SWNT as the electrodes are almost equally
transparent.

This work demonstrates how using wide band-gap inorganic metal oxides, ZnO-
NPs and MoOs3, as electron and hole transport layer respectively can efficiently
invert the polarity of organic photovoltaic devices. Inverted OPVs with various
electrode configurations were demonstrated, including the configuration where the
internal electric field due to the difference in electrode work functions would be
opposite to the direction of current through the device. The work was also extended
to the case where MWNTs were used to create semi-transparent devices and
improved upon through the use of high quality SWNT films. Such semi-transparent
1-OPVs are critical in creating efficient front cells for use in parallel tandems, where
the interlayer electrode must be transparent, conductive, and function as a common
anode or cathode.
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Fig. 15.10 Structure (left), current-voltage characteristics (center) and EQE (right) for a parallel
tandem cell with two polymeric absorbers

15.3.4.3 Polymeric Parallel Tandem OPV with Inverted Sub-Cell

The parallel tandem architecture using two polymer based sub-cells rather than a
polymeric front sub-cell and vacuum processed small molecule sub-cell as was
previously done is demonstrated in this section [1]. For this work, the front sub-
cell was an inverted P3HT:PCBM bulk heterojunction using ZnO nanoparticles
as an electron transport layer and is combined with PEDOT:PSS which is mixed
with a surfactant developed by DuPont, Zonyl-FSO. Zonyl-FSO has the property
of reducing the surface tension of aqueous solutions at low concentrations. This
is critical because PEDOT:PSS is an aqueous dispersion while the polymer film
is hydrophobic. Therefore PEDOT:PSS does not adhere to the surface. With the
Zonyl-FSO additive, the surface tension of PEDOT:PSS is reduced to where films
of PEDOT:PSS are possible on top of PAHT:PCBM. Furthermore, the PEDOT:PSS
film is not soluble in the organic solvent used for the back-cell therefore it provides
a protective barrier for the P3BHT:PCBM based front-cell. The interlayer electrode
is SWNTs which have been laminated between the PEDOT:PSS and MoOj3 hole
transport layers. The back-cell is based on PCPDTBT, a small band-gap donor
material and PCBM acceptor material. The back-cell employs a ZnO-NP electron
transport layer to provide an additional spatial buffer between the SWNT interlayer
electrode and the top aluminum cathode. The layer structure is shown on the
left of Fig. 15.10, the corresponding J-V curve for the parallel tandem cell is
shown in the center Fig. 15.10 and device performance is in Table 15.3. From the
external quantum efficiency, it is clear that the tandem cell has spectral contributions
from both the P3BHT:PCBM front cell, in the range of 400-650 nm, and from the
PCPDTBT:PCBM back cell, in the range of 650-900 nm (right of Fig. 15.10).

This work combines structures and materials from previous sections to build
monolithic tandem devices which have enhanced spectral sensitivity, properly
inverted sub-cell architectures, and utilize SWNTSs as transparent interlayer anodes.
Furthermore, this work utilizes fitting and circuit modeling to analyze each sub-cells
performance and describe some of the processes which can hinder performance
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Table 15.3 Table summarizing the performance of various parallel tandem cells

Voc Jsc PCE
Device HTL ETL Anode Cathode V. mA/cm? FF %
Tandem from Ref. [1]
(Front) PEDOT:PSS None  MWNT ITO 0.51 2.3 0.26 0.30
(Back) BCP Al 0.42 1.8 0.28 0.21
(Tandem) ITO/Al 0.46 2.6 0.26 0.31

P3HT:PCBM/PCPDTBT:PCBM polymeric tandem

A (Front)  PEDOT:PSS:Zonyl-FSO ZnO-NP SWNT, 8§ min ITO 0.56 6.3 0.36 1.30
B (Back) MoO3 Al 0.46 3.3 0.26 0.41
C (Tandem) PEDOT:PSS/MoO3 ITO/Al 0.54 8.1 0.31 1.38

within parallel tandem devices. In this work, past work on parallel tandems has
been improved and extended from polymeric/small molecule tandems to poly-
meric/polymeric tandems.

15.4 Tandem Organic Photovoltaics

15.4.1 Modeling and Comparison of Parallel and Series
Tandems

Below is the short summary, which allows to compare the series (S-T) and parallel
tandems (P-T) for connections of three types of different model OPV cells, which
have different parameters, particularly have different FF, and different Voc. The
question we address is following: if cells have largely different FF and largely
different Voc and Igc, which connection is better: usual S-T, or our monolithic P-T
with a common central electrode.

Parallel and series connections of three different solar cells with the following
parameters were investigated. Cell 1 had Ip, = 7 mA; Ip = 1x107!! mA; Rs =
10 Q; Rsh = 1,000 Q; n = 1. Cell 2 had reverse saturation current Ig = 1x1073
mA, which decreased the open circuit voltage twice as compared to cell 1. Cell 3
had higher series resistance Rs = 200 €2 which decreased the short circuit current
twice as compared to cell 1 (Table 15.4). The I-V curves of solar cells 1, 2, and
3 are shown in Fig. 15.11a. Figure 15.11c, d show the IV curves of the individual
cells (black lines) as well as the series (green) and parallel (red) connections of the
corresponding cells.

If two identical cells are connected in series, the Voc is doubled, while Igc
remains the same as for one cell. When individual solar cells are different, V¢
of a tandem equals to the sum of open circuit voltages for each cell (see Table 15.4).
The losses in efficiency of a series tandem arise from the reduction of the short
circuit current. When the tandem is shorted, the cell with the lower Igc partially
consumes the current from the cell with the higher Isc in order to equilibrate the



15 OPV Tandems with CNTs 197

Table 15.4 Open circuit voltage (Voc), short circuit current (Isc),
fill factor (FF), and efficiency (1) of the individual solar cells and the
series and parallel tandems

Cell type Voc V Isc mA FF n %
Cell 1 0.703 6.93 0.70 342
Cell 2 0.347 6.93 0.57 1.38
Cell 3 0.703 341 0.25 0.60
Series 1-2 1.049 6.93 0.66 4.79
Series 1-3 1.405 6.00 0.26 2.23
Series 2-3 1.049 4.68 0.25 1.25
Parallel 1-2 0.429 13.86 0.51 3.05
Parallel 1-3 0.703 10.34 0.53 3.82
Parallel 2-3 0.369 10.34 0.50 1.92
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Fig. 15.11 (a) Shows the individual cells current-voltage curves which will be used for modeling.
(b—d) Combination of various cells in either series (green) or parallel (red) configurations

system. Also, if the short circuit currents of the individual cells are not equilibrated,
the tandems fill factor is reduced to almost that of the low-performing cell. Thus, in
order to maximize the efficiency of a series tandem it is important to have similar
short circuit currents and fill factors of individual cells.
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Fig. 15.12 The figure shows 1 1
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In the case of a parallel connection of two solar cells, the tandems Igc equals to
the sum of the short circuit currents in each cell (see Table 15.4). The open circuit
voltage of a parallel tandem is greatly reduced if it is not balanced in the individual
cells. This happens because the voltage from the cell with higher Vo partially
drops on the other cell. Thus, in order to maximize the parallel tandems efficiency
it is important to equilibrate open circuit voltages of individual cells.

In addition, rigorous analysis of the parallel tandems characteristic equation
shows that for Rg <Rgy, the reduction in the parallel tandems fill factor is much
smaller than that in a series tandem. That is why the parallel tandem performs
better than the series one, when both the Isc and V¢ of the individual cells are
substantially different (Fig. 15.11d).

15.4.2 Open Circuit Voltage Optimization for Parallel
Tandems: Summary of Model Analysis

We have considered the parallel connection P-T of two solar cells with different
open-circuit voltages (Voc) and also different FF of sub-cells. We have derived
analytical expressions for Voc of the parallel tandem in four different simplified
cases, refering to “good” or “bad” filling factor of sub-cells. Obviously the best
situation is “good-good”, and the worst is “bad-bad”, with intermediated cases
in between, also shown in Fig. 15.12. Examined cases represent the vast majority
of real-life solar cells. The obtained results were verified by comparison with
experimental data. We have also shown how it is possible to minimize the Voc
losses in parallel tandems by adjusting parameters, particularly the FF of individual
sub-cells. The summary of results are shown below in diagram form for simplicity,
while the full analysis can be found in the original paper [42].

The total photocurrent in P-T can be described as a sum of two currents in each
sub-cell:

Voc+1Rs.1 vVl —IRs,
IPh,l +IPh’2 = 10’1 {exp (OC— 144 OCRT

no
VIc+1IRs) VIc—1IRs,
+10’2 exXp }’12—06 —1,+ W (157)
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Fig. 15.13 The figure I-V curves for the cases of devices with “good” and “bad” FF and Voc as
well as the resulting parallel tandem cell

It is convenient to calculate a differential resistance Rgc at V=V,

av Rsu Voca — ng
Roc=—7 =Rs+ o= o (15.8)
dl |y _y,. 1+ RSH(IPh;:’OICO)*VOC Voca —Voc.i

Also we introduce the losses of Voc defined as ¢, expression for which is shown
above.

We consider now each case of connecting low FF sub-cell (“bad” sub-cell) with
high FF (“good” cell) separately below

The four cases show on the diagram above represent the different scale of losses
in total photovoltage V(T)C generated by P-T, depending on the difference of Voc 1
and Voc and their relative position and FF for each of sub-cells. As one scan se
the minimal losses in V¢ correspond to case 2, when cell with lower Voc 1 has low
FF (i.e.is a “bad” one), while cell with higher Voc 2, has high FF (i.e. is a “good”
one). So when making a P-T one should design it in such a way, that the cell with
higher Voc should have best FF. the losses in this case are about 9 % or even less.
On the other hand the highest losses of 91 % are for opposite Case 3 when lower
Voc,1 cell has high FF, while higher Voc > cell has low FF. In Cases 1 and 4 the
losses of Voc are nearly equal 50-60 %.
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Fig. 15.14 Optimization of total photovoltage Vgc of parallel-tandem OPYV, depending of FF of
sub-cells

This results are summarized below in Fig. 15.14. For VgC optimization by losses:

15.4.3 Experimental Comparison of Non-monolithic Series
and Parallel Tandems

Two semitransparent OPV have been created with polymers of different band gaps
P3HT and PCPDBT. The P3HT cell has been inverted using ZnO and MoO3 as hole
and electron blocking layers respectively and SWNT act as a transparent anode.
While the PCPDTBT cell is conventionally structured and has layer of ZnO as a hole
blocking layer between the polymer and SWNT cathode. The device performance
is summarized in Table 15.5 and the JV curves for the cells are shown in Fig. 15.15.

In order to check which connection is beneficial, the two types of non-monolithic
tandems have been created by attaching one cell on the top of the other (as shown
on Fig. 15.15 inset) and electrical connections have been made from outside, corre-
sponding to S-T and P-T structure. The J-V curves have been measured in exactly
the same conditions, and the FF and PCE have been extracted and compared, as pre-
sented at Table 15.5. Surprisingly the S-T connection has developed unexpectedly
low FF ~ 0.39, after connection (as seen on the purple J-V curve). On the other hand
the P-T shows much better performance with FF ~ 0.49, slightly decreased as com-
pared to best sub-cell (FF of 0.61) as seen on green color J-V curve on Fig. 15.15.

In quite good agreement with the results of our simple model, as described in
previous section, the P-T has shown increased total photocurrent, IEC =1144~5.9
+ 8 4 = 14.3 (with reasonable losses of ~ 3.1 mA/cm? due to shading effects). The
total Vgc is indeed between V!=0.57 V and V?=0.69 V and equal to 0.60, nearly
in the middle, since both FF are high. The model predicts, that total Vgc should be
closer to that one, which has higher FF. Indeed the exact expression for Vgc in case
of two sub-cells with good FF is :

Vic =Voc,1 + |Iscz| - Rs,1 (15.9)
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Table 15.5 Tabulated values of single P3HT and PCPDTBT cells as well
as the non-monolithic parallel and series tandems

Cell Type Voc V Jsc mA/cm? FF n %
P3HT top 0.57 5.93 0.61 2.06
PCPDTBT bottom 0.69 8.47 0.39 2.29
Parallel 0.60 11.44 0.49 3.35
Series 1.22 5.27 0.39 2.53
20.00 | o
— P3HT SWCNT Top E
<
15.00 | €
— PCPDTBT Bottom
10.00
Parallel
_ 5.00
— Series
volts
-1.0 . { . ; 1.5 2.0

-10.00

- ﬁ
+ +—O

—20.00 Parallel Series

Fig. 15.15 Current-Voltage curves of single cells tested, semi-transparent P3HT top cell and
opaque PCPDTBT bottom cell, as well as the non-monolithic tandem cells. The inset of the plot
shows a graphical representation of the cells physical configuration as well as electrical connections
for both parallel and series connections

which gives losses of 50 % . Voc is right in the middle of both Vpc. For S-T the
total Voc = 1.22 V, which is close to 0.57 + 0.69 = 1.26 V, with negligible losses
due to shading effect. The losses of Jgc are unfortunately large: J:gc =5.27 mA/cm?,
which is even smaller than the Jsc of weakest sub cell Jsc 1 =5.9 mA/cm?. This is
due to shading effect and probably reflects the loss of FF.

15.5 Conclusions

Series and parallel connections of solar cells were analyzed using the results of
a simple single-diode model. We demonstrated that to maximize the efficiency of
series tandems it is important not only to match the short circuit currents but also the
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FF: fill factors of the individual cells. In parallel tandems, the open circuit voltages
should be equilibrated, i.e. chosen close to each other. In general, if two solar cells
are not balanced, then the parallel connection is preferable due to smaller losses
in the fill factor. We also showed that the direct connection of two unbalanced solar
cells can result in overall lower efficiency when one of the cells is much less efficient
than the other.
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Chapter 16
Optimization of Carrier Harvest in MEG Based
Hybrid Solar Cells

Nigora Turaeva, Boris Oksengendler, Murad Marasulov,
and Sardor Nuraliev

Abstract In this work the statistic theory of multiple exciton generation in quantum
dots based on the Fermi approach to the problem of multiple elementary particles
generation at nucleon-nucleon collisions is generalized taking into account the
generation of phonons along with electrons and holes. Size and shape optimization
of quantum dot has been performed to receive the maximum multiplicity of
MEQG effect. The role of interface electronic states of quantum dot and ligand
has been considered by means of quantum mechanics approaches. Besides the
resonance tunneling of electrons and holes through interface described by two
barriers potential well has been considered in the classical approximation. The
efficiency of photon energy conversion into electrical one at presence of MEG effect
in QDs has been calculated in the frame of Fermi statistical mechanism. The process
of fast decay of exciton in polymer matrix by effective acceptor doping has been
theoretically analyzed by means of Migdal’s approach in weakly ionized plasma.

16.1 Introduction

Now it is well-known established among solar energetic specialists that one of
the most promising approaches in developing of third generation solar cells is the
effect of multiple exciton generation (MEG) in quantum dots [1]. One of possible
structures of such solar cells consists of semiconductor quantum dots covered by
ligands of organic molecule and imbedded into polymer matrix. The function of
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such solar cells is based on the following principles. By absorption of high-energy
photon in a quantum dot several excitons are simultaneously generated. These
excitons present electron hole pairs whose components move in different way:
electrons tunnel between quantum dots by percolation whereas holes tunnel into
polymer matrix and by dispersion transport move along the polymer chains. Special
design of structural components of solar cells allows collecting electrons and holes
on electrode surfaces.

16.2 MEG Effect

The principle effect in quantum dots based solar cells is a simultaneous generation
of several excitons in quantum dot with small electron gap E, at absorption of
high-energy photon hv >> E,. The effect was predicted 10 years ago [16] and
proved experimentally [23] in quantum dots. The physical nature of this effect was
discussed by theorists who proposed four options of the theory [8, 10, 18,24]. But it
seems that most productive approach allowing to study MEG effect on quantitative
and qualitative levels is the statistic theory of MEG developed in Tashkent [18].
According to this approach the deep analogy is observed between MEG and Fermi’s
interpretation of the phenomena of multiple generation of mesons [9]. We suppose
that the micromechanism is based on the effect of electron shaking that takes place
in quantum dot at fast electron transition from the valence band to the conductivity
band at absorption of high-energy photon [18,21].

Generalizing the S calculation algorithm developed by Fermi and taking into
account the generation of three types of particles (1/2 electrons, n/2 holes and p
phonons) with different laws of dispersion (¢, = P2/2m,, €, = P}% /2my, €y = CsPpy
where C; is the sound speed, P, P, Ppy, are the momenta of electron, hole and phonon,
respectfully), we obtain a new expression for the statistical weight as compared
to [18].

(16.1)

. 13P+3n+l
S(n,p) = ]

(m) ¥ (fufy) 83 (@5 (hv—nE))
2¥ it IR 3P+ 32— 1) 73 hC,

Here, the momentum of each electron and hole is three-dimensional and phonon
has two transversal degrees of freedom and one longitudinal degree of freedom,
hv is the energy of primary high-energy phonon; only direct electron transitions are
taken into account here, my is the free electron mass, mg f, and m f; are the effective
masses of electron and hole.

On the basis of Eq. (16.1), it is easy to calculate a mean multiplicity of generated
electrons, holes and phonons

Ne = Ny =< Nex >3 (16.2)



16 Optimization of Carrier Harvest in MEG Based Hybrid Solar Cells 207

fi, =, = Y,nS(n,p)/2Y.S(n,p) (16.3)
n,p n,p
fipn = .pS(n,p)/ Y. S(n,p) (16.4)
n,p n,p

With the data on the quantum dot sizes and phonon energy a curve of the exciton
distributions R(n) can be plotted for quantum dots PbSe where the MEG effect
was observed [23]. It can be easily shown that the basic criterion of the Poisson
distribution of fluctuations {n? = (7)? +7}, as interpreted by MEG according to the
statistical theory (Formula 16.1), is not met. We can do it on the basis of Formulas
(16.1, 16.2 and 16.3) with the phonon approximation for simplicity, i.e. for p = 0.
For example, for a quantum dot of the radius R = 3 nm it turned out that 7 = 4.2;
(n)? = 17.64; n2 = 18.4 for irradiation by photons with energy hv = 3.63E, and
n=>5.7; (n)* = 32.49; n> = 33.46 for hv = 4.9E,, i.e. n? # ()2 + 7. Hence, the
fluctuation distribution of exciton multiplicity is non-Poissonian [26]. A deviation
from the Poisson law increases with the raise in photon energy, i.e.—d‘"zg(glﬁv))z SN

This formula is in agreement with the experimental results for quantum dots based
on PbSe of different sizes and Si.

16.3 The Role of a Boundary Between Quantum
Dot and Ligand

As experiments show, the role of electron states of the boundary between quantum
dot and ligand is extremely important in terms of existing of MEG effect [13, 17].
It is connected to the another fundamental property of nanoparticles asserting
that a ratio of surface and volume electron states are commensurable values. The
role of surface can be understood on the basis of quantum-mechanical theory of
disturbances of closely located levels (&; and & are the energies of ligand and
Tamm’s state of quantum dot accordingly). It should be noted that &, depends on size
of quantum dot [18]. These levels are split at chemical bonding and give electron
states: & and &, [15]:

- & +&+H1+Hy
€12 = 5

jEl\/(81+:Sz+Hn+sz)2
2 4

— (&14+Hip1) (& + Hxn) + |Hiz|> (16.5)

where H;; is the change of energy of £ and & caused by their interaction on a
boundary between them and Hj; is the exchange integral. Obviously under weak
interaction of electron wave functions of ligand and quantum dot surface (Hy, — 0)
unperturbed levels fall into the energetic gap whereas in case of strong overlapping
of wave functions (Hy, # 0) levels can fall into valence band and conductivity band.
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It is clear that in these cases the role of boundary electron states is different and can
influence onto MEG effect by different way. Note that the role of surface electronic
levels are dual: they can participate in the primary transitions under shaking,
effectively reducing E (i.e. increasing the average multiplicity of excitons) and also
they can serve as centers of recombination of electron-hole pairs, decreasing the
average multiplicity of excitons. The probability of each option depends on location
of the & and &,.

16.4 Size and Shape Optimization of Quantum Dot

The fact that the formula for the probability of generation e — & pairs include several
factors depending on radius of quantum dots m(Ry), 2 (Rp),E,(Ro) allows to arise
a problem of finding of optimal value RO maximizing the quantum efficiency of
MEG. For this purpose we can find the extremum of the value InS(n). Taking into
account the following expressions:

myo 4 ,(a® 0 ny* (ad* 4 4 RS
T D2 (VB =B+ X (L) o= (20) (166
"mES {Jrs% (Rgﬂ ¢ =% o \ R 34\ ) 109

we obtain InS(n) (see Eq. 16.1).
dIn(S(n))
dRy

The condition = 0 gives the first approximation:

5 (3 1w\
ROV' 1= (Zpn=1)\n——— . 16.7
0 “"( 2% (2" >”hv 2m0a2) (16.7)

It is clear, that RS” " increases with the energy of photon; the type of materials is
taken into account by size of interatomic distance a; the second approximation gives
us the dependence R} on EY and a.

It can be raised the natural question about the optimal shape of quantum dot. It
is not certainly obvious that spherical shape of quantum dot can give the maximum
probability of the MEG effect. Let us analyse this problem is based on electron
shaking theory. We suppose that spherical quantum dot is deformed at small one-
axis strain in result of which the sphere is converted either into the ellipsoid
or spheroid. The strain of the sphere is characterized by means of perturbation
parameter 6 = 2%, where a and b are the semi-major and semi-minor axes
accordingly. We assume that the deformation of quantum dot does not change its
volume (R? = ab?). Basing on results [15], we suppose that the local energy levels of
electron and their wave functions are perturbated at deformation and the probability
of electron shaking is defined as

| <i+ 1mm7sphere|v|ﬁnon7sphere > |2
—sph —sph
( f’:inl sphere _E;rlzon sp ere)z

Wnonfsphere = (16.8)
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here 7i is the number an electron state on well, modeling quantum dot. We have the
following [15]:

non—sphere __ p~sphere
il - Eﬁ

+ < ﬁsphere|H/|nsphere > (16.9)

~ I~
<n+ 1sphere|H |nsphere >
sphere sphere
i+l E;

|ﬁmm7sphere >= |ﬁsphere >+ |ﬁ + 1sphere > (1610)

The perturbation of quantum dot shape H’ is proportional to the deformation &:

! hz 2
H =-6—(V?-3—|. (16.11)

It is obvious from the expression W, _sphere depends on 6 in a com-plicated
manner. Keeping the terms which are linear to §, we can suppose that Woon—sphere &
Wsphere + 0 X F(m.e.), where F(m.e.) is the complicated function of different
elements, shaking operator V and deformation H' by wave functions of non-
perturbated spherical quantum dot. The function of F(m.e.) depends on the states
of 7 and 7 + 1, which present the high occupied and low unoccupied orbitals
of quantum dot, accordingly. The probability of electron shaking is positive
(F(m.e.) > 0) and it can be increased at elliptical deformation of quantum dot and
decreased at spherical deformation. It is interesting to note that this conclusion
is valid for the initial process of MEG effect that is absorption of photon, the
probability of which is defined by the cross-section of* [18]. Recently it was
reported [6] a significant enhancement of multiple exciton generation in PbSe quasi-
one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures
(nanocrystals), characterized by a 2-fold increase in efficiency (nygc = 0.81) and
reduction of the threshold energy to (2.23 +0.03)E,, while for PbSe nanocrystals
it is about 3.43E,. Moreover the threshold doesn’t depend almost on energy gap
of nanorods, which is a function of rods cross-section. It seems the ratio effective
masses of electron and hole in rods to be decreased compared to the one for QDs.

In the section devoted to the analysis of quasi-particle passage through a
boundary quantum dot polymer we did not consider radiative recombination of
electron and hole (the probability 1/1,) as a relaxation process impeding such
passage. At a usual quantum dot that is absolutely justified. However, there is a
situation when the process of spontaneous photon radiation can play a fundamental
role. Assume (as a dream) that a technology of quantum dot production is so
high that it allows a cavity with uniquely high quality factor Q. Let Q approach
to the values obtained in experiments by [11]. Then at such quantum dots it is
possible to expect manifestation of a nice Purcell effect showing in our case that
while generation of primary exciton by high-energy photon provided that the wave
length of such exciton emission A is more than the double diameter of the cavity
(A /2d > 1) the photon emission will be suppressed (Fig. 16.1). However, according
to the Bothe concept [4] the Auger effect calculated by Mller [14] in the relativistic
approximation takes place as photon conversion. Therefore, usually occurring at
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Fig. 16.1 Probability of spontaneous photon emission on cavity

quantum dots for 10~!! s, the Auger effect takes place after photon emission that
according to the Purcell effect and proved for optical range in experiments of cavity
quantum electrodynamics [11] is suppressed at the quantum dots where the MEG
is realized (A /2d >> 1 for d = 2R). As a result, T4 can be an order of the time of
resonance tunneling and the outer efficiency is B — 1 (see Sect. 16.5). The present
nanotechnologies allow this mechanism of sharp increase of 8 to be considered as
a dream. Another possibility of effective harvest of the electrons and holes from
MEG effect is the disposition of QDs into photonic crystals in which photon energy
gap corresponds to the energy of involved photons so the spontaneous and Auger-

recombination recombination can be suppressed which can increase the charge
transfer processes in QDs.

16.5 Charge Separation at Boundary in Third-Generation
Solar Cells

Right after exciton excitation owing to the MEG effect at quantum dots (stage I)
in solar cells there are two successive stages: — exciton separation into electrons
and holes at boundary and — separate transport of e- and h-carriers from quantum
dot to boundary. The second stage with the results obtained in the previous section
about the electronic structure of boundary is under consideration in this section.
Let us consider an electronic structure of the boundary: these are five successive
regions I, IL, III, IV and V (Fig. 16.2). Here I and V are the regions of quantum
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Fig. 16.2 Resonance tunneling of electron excitation through border

dots, III is the region of a solvent, II and IV are the regions of barriers. It is clear
that electron transport is the resonance tunneling between neighboring quantum dots
through two barriers; a hole moves from a quantum dot through polymer tunneling
through one barrier.

The situation for electron is interesting. The tunneling probability in the classical
approximation (see Bohm [3]) is as follows

2 2 2
T 1.78e
1+2(E-——E) o*
+h2< R )

-1

T = (16.12)

Here, E is the level of exciton energy at the quantum dot, 1.78¢%/€R is the
binding energy at the quantum dot, E; is the level of electron energy in the solvent,

a
Ty is the oscillation period in the region III, ©® = exp [ J P,,dﬁx} , P, is the electron
b

momentum in the region I. It is seen that for £ = E; the tunneling through two
successive barriers takes place with the 100 % probability. The hole tunneling is
usual and its great probability is due to a small size of the ligand molecule.

However, if in the barrier there is an orbital occupied by electron then the
resonance-type tunneling through this level is possible, which increases the prob-
ability of hole tunneling.

It is seen that the kinetics of electron accumulation in the outer chain is defined
by the expression

t T
N, (t) = Noexp [_a+7_0t] (16.13)
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where 74 is the time of Auger recombination of electron and hole at the quantum
dot, Ny is the number of excitons generated at the quantum dot during a single
act of the MEG effect. The exciton lifetime at the quantum dot is defined as
Tor = 2(74)/(F + 14) and the outer quantum yield of carriers as f = NI‘(,—E)I) It
is interesting to compare the result of this analysis with the experiment [2]. As
shown by these experiments, when the quantum dot surface PbSe is treated by
different solvents the outer quantum MEG yield that is defined as a share of
photons absorbed by the quantum dots generating the carriers in the outer chain
can be significantly varied. Different treatments lead to changing several system
parameters: (1) exciton lifetime, (2) biexciton lifetime, (3) distance between the
quantum dots, (4) quantum yield of MEG. For surface treatment a share of removed
oleic molecules is different in different cases. Analysis of experimental data results
in the following conclusion. (1) The lifetime of single exciton decreases for all
the types of treatments except pure solvent ethanol (EtOH). (2) The lifetime of
biexciton increases when the distance between the quantum dots decreases. (3)
The quantum yield of MEG decreases for all the types of treatments except one
with pure solvent ethanol (EtOH). These experimental facts can be interpreted on
the basis of the Formula (16.12). A decrease in the exciton lifetime for treatment
with different substances can be explained by a decrease in the time of Auger-
relaxation owing to recombination at the free surface states when the passivating
agents are removed, as well as by an influence of the treatment substances on the
position of the exciton energy level in the quantum dot and electron in a solvent
and on the barrier parameters width and height. Evidently, only in the case of
ethanol treatment, ethanol makes influence on the barrier parameters: the tunneling
coefficient increases, which leads to variation of the quantum yield.

16.6 Separation of Charge Carriers in Polymer
Matrix of Solar Cells

In all solar cells based on polymer composition structures the exciton excitations
are formed by photon absorption. The most important and completely non-evident
stage of solar cell operation is exciton separation into electrons and holes. For
excitons generated by the quantum dots such separation takes place while resonance
tunneling through a boundary quantum dot polymer owing to difference in the
effective mass of electron and hole and their different rate of energy relaxation
inside the quantum dot (see Sect. 16.5). However, with the great probability the
exciton tunnels as a whole through a boundary and then moves along the polymer
chain as a whole quasi-particle. Besides, some part of photons is absorbed directly
in the polymer chain. As a result, a great number of excitons migrate in the polymer
chain. Therefore, there is an important problem of their separation onto components.
More perspective way is electron capture by special dopants placed in the polymer
matrix, for example by fullerene molecules [1] (Fig. 16.3). That is why there is an
actual problem of developing a theoretical model of exciton breaking and electron
re-capture by a dopant. By using a linear part of polymer along which the exciton
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moves and assuming a great mass of hole (my > m,) it is possible to consider
exciton dissociation owing to electron transition from exciton into a potential well
of the dopant (Fig. 16.3) as a phenomenon of recharging in weakly ionized plasma
between a linearly moving hydrogen-like atom with a hole as its nucleus and a free
potential well formed (for simplicity) by an effective positive charge (Fig. 16.3).
Drawing step by step this analogy, we obtain that the probability of exciton decay
with electron capture by a dopant will be (see Migdal [15])

L7
W:smzE / (U, — Uy)dt (16.14)

For great distances between the polymer chain and dopant (p > 1) in atomic units
we have U, — U, = %Re’R . Here, U, and U, are the bonding and anti-bonding terms
of hole-dopant molecule. With R? = p? + v*? (Fig. 16.3) we have the classical
result (see Migdal [15]):

2m?
W(p)= mp%*zf’ (16.15)

Then the average cross section of exciton decay ex — i+ e will be

=

oL = /W(p)27rpdp (16.16)
0
With the usual units we obtain
2
(R 5 & 52.2-10°

Here,IMb ~ 10~22m?;[v] = 2.

N
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Note that the model complication owing to consideration of the case of small
deviation from resonance [7] instead of resonance recharging makes no changes in
slope opposition of 6 and v. The general estimation is of interest, but the result of
slope opposition of the probability of exciton decay and its mobility in the polymer
chain is also important. This is another criterion to choose a polymer matrix. The
result obtained, to a certain extent, reduces interest to using as a polymer matrix
such ultra perspective polymer rubrene known by its unique great mobility of quasi-
particles.

16.7 Ultimate Efficiency of Conversion of Solar Energy
onto Electrical One

The MEG effect if one of the perspective ways of creation of third generation solar
cells, therefore it arise the principal problem of ultimate efficiency conversion of
solar energy into electrical one. From the law of energy conservation and accounting
the energy losses (hv — nEg) at simultaneous generation of n electrons (n < nyqy =
hv < Eg) for partial efficiency of conversion of photon energy into the n electrons
transition energy we receive

hv — (hv —nE nk
n(n) = —(hv 0 _ h—vg (16.18)

The mean efficiency of conversion is defined as

— E;¥nS(n) %
T ssm) e (16.19)

Here it is taken into account the distribution function (S(n)/X.S(n)) the maximum
of which is observed at n = ny,,,. Introducing the different effective masses for
electrons and holes (m, = m,f, and m;, = m,f;) and expressing all parameters
through world units we can transform the function S(n) into more convenient form.
Going from discrete form of S(n)/3.S(n) to quasi-continuing one on the base of
statistical approach we receive the following

1
Rmax = yIn(Zy) + 3 (16.20)
where y = hv/E,, Z = “’22_71:619: %ﬁfw%), o = *Z(R/ap)?, ay is the Bohr raius.

Note that the mean value of 77 for the function (16.19) can be evaluated using the
microscopic approach [18,21]: 7 = }'nF,, but we will perform the evaluation on
the base of statistical (1) and (2). For example, for a quantum dot of PbSe with the
following parameters ¢ = 0.64 €V, R = 3.9 nm and the photon energy hv = 4.9,
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we receive 11 = 60 %, that is much greater that ultimate efficiency calculated by
Shockley Queisser for bulk materials (31 %) [1]. It is obvious that the real efficiency
of third generation solar cells will be less than the evaluated magnitude of efficiency
if we take into account the losses of charges at passing the interface of quantum dot
and ligand and transporting them through polymer matrix.

16.8 Conclusion

As problems for future researches of MEG effect we can formulate the following:
(1) Regulating level of passivation of surface states; (2) Calculation of the efficiency
taking into account MEG effect and open state of the system; (3) Solution of the
problem of radiation stability and degradation resistance of solar cells based on
quantum dots (recently the first results [20] have been received in this field showing
possibility of regulation of radiation stability by the state of the boundary quantum
dot matrix).
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Chapter 17
Thermoelectric Nanowire Arrays Response
to Illumination

Tito Huber, Reum Scott, Scott Johnson, Tina Brower, Albina Nikolaeva,
and Leonid Konopko

Abstract Bismuth nanowire arrays configured on devices where they are capped
with a transparent indium tin oxide electrode generate electric power when exposed
to light. The arrays feature poor optical reflectivity and, possibly, light trapping.
We show experimental results that indicate that the arrays respond to illumination
owing to the thermoelectric conversion of heat absorbed at the surface. The unique
features of the energy pathway are manifested through a strong temporal and photon
wavelength dependence of the photoresponse. Energy conversion in thermoelectrics
with light trapping surfaces is a path to fast infrared light detection and across-the-
spectrum solar energy harvesting.

17.1 Introduction

Optoelectronics is based on devices that convert optical energy into electrical energy
and vice versa [15]. For semiconductor optoelectronic devices such as silicon
solar cells, photon absorption leads to the transfer of charge between different
electronic bands, resulting in a photocurrent (PC). It recently has been shown
that the two dimensional material graphene exhibits hot carrier thermoelectric
(TE) photoresponse, an effect where electrical power is generated by the heating
associated with the absorption of light at the nanoscale [5, 19]. Here we show that
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nanowire arrays (NWAs) of bismuth feature a TE photoresponse and we study the
nanoscale optical and TE properties that give rise to the effect.

TE effects are caused by the difference in the broadening of the energy
distribution in the electronic bands owing to a temperature gradient. The efficiency
of TE power conversion is gauged by the figure of merit Z = >0 /(T k), where « is
the thermopower, o is the electrical conductivity, k is the thermal conductivity, and
T is the absolute temperature. Some materials—namely, traditional TE materials,
in a short list that includes bismuth—have large thermopower values and a large
o/x, leading to exceptionally large Z values [12] and, therefore, high efficiency.
Bulk TE crystals are not good candidates in the search for TE photoresponse
effects because energy dissipates quickly in these systems. Also, a motivation for
our work was that x is less in nanowires than in the bulk [11]. Also, the high
optical reflectivity of the front surface of bulk thermoelectrics is not conducive
for conversion. Indeed, in a variety of bulk systems including bulk crystalline
semiconductors and Bi this effect appears only under pulsed illumination [10].
In their investigation of PC’s in solar cells, researchers have discovered that the
nanostructuring of bulk materials into nanowires or sharp points aligned along the
optical incident direction results in reduced optical reflection and induced light
trapping [4, 6]. There are many mechanisms that may play a role. NWAs optical
reflection is weak because the electromagnetic field penetrate deeply in the material.
This property has been attributed to dipole effects because the wires are pointing
parallel to the light wave vector and the photon electric field is perpendicular
to the wire length [20]. NWA optical trapping has been discussed also in the
context of optical metamaterials [3, 7]. The aim of this paper is to report on
the fabrication of TE devices composed of Bi NWAs and its photoresponse. We
find that the photoresponse is excited by infrared and visible illumination. Under
visible illumination, the response is complex. However, under infrared illumination
the photoresponse is simply governed by heat diffusion and can be inequivocally
attributed to TE effects.

17.2 Fabrication and Characterization

We fabricated devices composed of bismuth NWAs that were integrated with
electrodes consisting of a bottom bulk bismuth layer and a thin film of indium tin
oxide (ITO) (see Fig. 17.1). The length of the nanowire array L, not considering the
bulk bismuth layer, was 50 mm and the active area S of the array was ~1 mm?.
The thickness of the ITO film, composed of 90 % In,O3 and 10 % Sny0,, was
50 nm. It was deposited with a Cressington sputter coater. The current versus voltage
(I-V) relationship of the detector, was symmetric and Ohmic, without features that
might have indicated the presence of Schottky barriers. The resistance was 6.3 kQ.
Because the contact resistance between the silver epoxy (Epotek 411V) and the bulk
bismuth, as well as the one between the bismuth nanowires and the bulk bismuth,
was low (<1 Q), the I-V value that we measured was mainly related to the front
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Fig. 17.1 Schematic of the bismuth (Bi) nanowire arrayindium tin oxide (/70) device

surface. We have not measured the number of wires that are connected to the ITO
and also we do not know the value of the contact resistance. However the individual
Bi NW resistance is ~500 € and therefore we find that the contact resistance is
comparable to the measured total resistance (6 k€). The temperature of the TE
junction that detects the light energy, which is located at the front surface and is
presumed to be the one that is established at the nanowire array-ITO interface, is
Tr. Because the circuit is closed between the ITO film and the back of the array,
which is thermally ground at ambient temperature Tp, the thermoelectric signal can
be considered proportional to 7Tr — Tp.

The arrays were fabricated using a template method—namely, the high pressure
injection (HPI) method—in which the melt of the alloy of interest is injected in a
porous insulator using high pressure [8]. The fabrication is illustrated in Fig. 17.2.

We used a commercial alumina membrane disk (Anopore, Whatman, MA, USA)
with a thickness of about 55 um. It supports an array of parallel, largely non-
interconnected, cylindrical channels of 200 nm in diameter parallel to the disk axis.
To inject bismuth in the pores, we placed high-purity bismuth pellets (99.999 %,
Sigma-Aldrich) in contact with the Anopore alumina membrane inside a high
pressure reactor. The reactor was heated to a temperature above the melting point of
Bi (270 °C); in the experiments presented here, this temperature was 400 °C. Next
the pressure was gradually increased to 1 kbar, forcing the molten material into the
matrix channels. After a few minutes passed (during which time the injection was
completed) the reactor was cooled and the impregnant allowed to solidify inside the
channels). The sample was then extracted from the reactor, and standard mechanical
polishing techniques were performed to remove the surrounding excess.

The array electronic properties were determined in separate experiments [8, 9].
The crystal sizes were larger than the wire diameter and were oriented with the
c-axis along the wire length. Electron and hole band parameters were determined
via magnetoresistance experiments. As with bulk bismuth, the bismuth in the
nanowires was a semimetal. The diffusion thermopower of the nanowires was
negative (nanowires, as well as bulk, are n-type because electrons have greater
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Fig. 17.2 Fabrication of the Bi nanowire array in our experiments

mobility than holes). This value (about —90 mV/K) did not differ greatly from
that attained for single-crystal bulk bismuth along the trigonal orientation. The
room temperature Z was estimated to be 2 x 103K ~! (60 % of the value for bulk
bismuth). The NWAs were extremely anisotropic because of the insulating effect of
the alumina matrix.

At the NWA-ITO interface, the bismuth was paired with the ITO film. A sample
of the ITO film, of the same thickness, was deposited on a glass substrate, and
the resistance and thermopower were measured. We found that the ITO resistance
square was 1.2 kQ and that the thermopower was 20 mV/K. Our measurements were
in line with those of previous research on the electronic transport properties of ITO
films [18].

We characterized the NWAs under visible light illumination. The optical prop-
erties of the nanowire array were very different from those of bulk single crystal
bismuth which has a shine, it is reflective. Also, the 50-um thick alumina template,
prior to processing, was translucent/transparent in the visible and infrared. By
contrast, we found that the absorption by our NWAs was very strong. The arrays
surface was black, not shiny. This finding is common for NWAs of many diverse
materials (e.g. silicon nanowire arrays) and denotes poor reflectivity and light
trapping [6]. We also observed that light reached deep inside the array. Under
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oblique illumination, that is to say that the incident light beam is not parallel to the
nanowires, the reflected visible light is polarized a finding that can be explained by
considering that wire array works like a polarizing wire grid. For this to occur, light
has to penetrate at least at a distance of the order of a wavelength 1. Based on these
observations, we estimated that the thickness of the interface for normal incidence
exceeded 0.5 mm. By contrast, crystalline bismuth has an absorption length A of a
1 nm or less in the same range and somewhat larger in the infrared.

17.3 Experimental

Because the signal arises in the absence of a bias current, it is interpreted in terms
of thermopower that is proportional to the Tr — To—that is, the temperature of the
front surface with respect to the ambient temperature 7o— or a PC that exists in the
absence of a thermal gradient. The setup employed to measure the photoresponse is
shown in Fig. 17.3.

When we measured the time-dependent photoresponse, we found evidence of the
thermal flow as well as of a major component in the signal that could be interpreted
as a PC. The illumination was that of a chopped beam of frequency f; the beam was
made by focusing the output of a quartz lamp on the front surface of the device.
This beam had visible and near-infrared components. The amplitude of the signal 7,
which is synchronous with the illumination, was measured with a lock-in amplifier.
We had the capability to filter the light with infrared band-pass filters that absorb
the part of the spectrum within a range of wavenumbers.

Figure 17.4 displays I versus f for unfiltered and infrared light, produced with
long wave pass filters with 700- and 1,000-nm cutoff wavelength. The signal
increases with increasing frequency f non-monotonically, and there is great contrast
between the case of unfiltered light and the pure infrared illumination, the latter
clearly showing an inflection point at fy = (400 Hz), where I is constant for
frequencies below the inflection point. This photoresponse is related to the time
dependency of the diffusion of heat through the sample from the front to the heat
sink in the back of the sample and to the conversion of heat deposited by the incident
pulse into electric power via TE effects in the nanowire array.

Sample Chopper Beam Lens

+ -
Fig. 17.3 Setup for

photoresponse measurements Output
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Fig. 17.4 Photoresponse / of the device to a chopped beam as a function of frequency f in three
cases. Unfiltered light from a tungsten lamp and also in the cases where the light is filtered with
long wave pass filters to exclude wavelengths shorter than 700 or 1,000 nm, as indicated. The 1,000
nm-filtered data shows the expected (I ~ f1/2) relation between 500 Hz and 2 KHz

The diffusion of heat through a sample is characterized by the diffusion constant
D, which is given by k/pc (k is the thermal conductivity, p is the density, and
c is the specific heat). Parker et al. [13] presented an analysis of heat diffusion
through a plate of thickness L showing that there is a thermal time constant T =
1.381?/(n*D) for equilibration of the front temperature Tr and back temperature.
For low frequencies f < 1/7 the deviation of the front surface temperature T
from the back temperature decreases with decreasing f because thermal contact
through the plate becomes increasingly better. The optical method introduced by
Parker et al. [13] can be used to measure D; this method involves applying a
pulse of light, or chopped beam illumination, to the front of an insulated slab
and measuring the back temperature with a fast thermometer. This property is the
basis of the optical method that was successfully applied to thermoelectric Bi;Tes
and bismuth nanowire arrays by Borca-Tasciuc et al. [1, 2]. Here, we interpret the
observation of an inflection point at fy as the point of equilibration of the front
temperature 7r and back temperature, that is maintained at 7y in our device, and,
therefore,7 = 1/ fy. The inflection point frequency of 400 Hz in Fig. 17.3 gives
D = (1.14+0.2) x 10"2cm?/s. Our experimental result for D is in remarkably
good agreement with the experimental result of 1.3 x 10~2cm? /s by Borca-Tasciuc
et al. [1]. This interpretation of 7 as the array thermalization time is confirmed by
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the observation that, in our device, the electrical potential between the front and
back surfaces— and, therefore, the signal—can be interpreted as the thermoelectric
signal proportional to 7r that is generated by the heat current. The plateau in the
signal versus f that we observe, arises because, under quasi-equilibrium conditions
(f < fo), Tr — To = QL/kS where Q is the absorbed optical power, which is
independent of f. Further information about the TE processes in the sample can be
obtained by the fevolution of the signal for f > fy. The heat diffuses a distance of
the order of \/D/ f, which is less than Land therefore the thermal contact becomes
increasingly worse with f. Consequently 7r — Ty increases with f as observed.
Therefore, preliminarily the signal can be attributed to a TE response. Also, since the
time dependent thermoelectric response, for pure infrared illumination, corresponds
to the thermal model we gather that the electron phonon thermalization is fast in
the time domain that we have investigated and we therefore rule out hot electron
processes in the case of infrared light. This assignment is fitting in the case of
infrared-only illumination. Under unfiltered light, which includes visible light, the
inflection point is barely noticeable, and the signal strength is almost independent of
frequency. This feature suggests that part of the signal is not thermal, which in turn
indicates the existence of a PC or hot electron component in this case. We verified
that the device has a fast response by measuring the photoresponse induced by a
flash lamp with pulse duration of 100 ms. We observed a response time of ~150
ms, which corresponds to a frequency of ~7 kHz.

The responsivity of our device was 1.8 mV/W. As reported by St-Antoine
et al. [14], the nanotube thermopile has a much higher responsivity of 0.9-1.8 V/W
but with a long time constant (1 ms). By contrast, the photoresponse of Ca,CoO,
thin (~100-nm thick) films with an off-diagonal TE effect were designed to be
very fast (~10 ns), but the conversion is very inefficient [16]. It needs excitation
by a pulsed laser to show a response. In the present study, we have demonstrated
the fast response mechanism and speeds up to 7 kHz were achieved. According
to our thermal model, the TE response is limited in speed only by thermal diffusion
through the optical absorption length A. In the present device, A ~ 500 nm for visible
light; therefore, potentially, the response frequency is as high as 22D /A? = 3 MHz.

Semiconductors used in solar cells cannot convert the infrared part of the solar
spectrum, which represents about half of the total solar energy output, because the
absorption of a photons bearing less than the bandgap energy does not produce
electron-hole pairs. Direct solar thermal energy conversion has been discussed
[17]. Devices based on TE nanomaterials can convert the infrared radiation part
of the spectrum into usable electrical power, which suggests that integration of TE
processes in solar cells may increase solar energy harvesting efficiency.

We report on the fabrication and photoresponse of a device composed of a
nanowire array of TE bismuth, which is capped with a transparent electrode
consisting of a film of ITO. The front surface is absorbent because of the light-
trapping property of the nanowire array. We show that, under infrared illumination,
the photoresponse is thermoelectric At low f, quasi-equilibrium is achieved and the
signal is f-independent. At high frequencies the absorbed heat is not dissipated in
the back electrode during a period, and the signal can rise, as f /2, to high values
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because the energy is delivered to a thin layer on the front of the sample. The TE
effect is only evident under infrared-only illumination and appears in combination
with PC and hot-carrier processes under visible illumination. The photoTE signal
can be fast, with a response time much shorter than the array thermalization time and
the arrays may have future optoelectronic application as fast nanoscale bolometers.

This material is based on work supported by the Materials Science Division of
the U.S. Army Research Office (under Grant No. W911NF-09-1-05-29) and by The
Boeing Company under RA-6. The authors are indebted to John Belk, Jeff Hunt,
and Pablo Jarillo-Herrero for helpful discussions.
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Chapter 18
Special Features of Thermoelectric Phenomena
in Granulated Semiconductors

Khatam Ashurov, Boris Abdurakhmanov, Flyra Djurabekova,
Sherzod Kuchkanov, Sergey Maksimov, and Boris Oksengendler

Abstract A model of the heterogeneous semiconductor medium consisting of
multiphase granules, which are the crystal semiconductor grains covered by the
oxide film has been proposed. The effective medium model (EMM) of the set of
contacting granules has been constructed. Each granule phase is characterised by its
own conductivity o;, heat conductivity J;, Seebeck factor ¢y, characteristic size d;
and, accordingly, efficiency of thermoelectric transformation Z;. Expressions for the
estimation of Ogrf, Xers, Ceyy and Z. sy are constructed, and their values depending
on asymmetry degree of characteristics of the granule components are analysed.
The complicated ternary thermoelectric media is considered. The possibilities
of acquisition of the optimal medium characteristics under various technological
conditions and the action of ionizing radiation have been studied.

18.1 Introduction

Direct transformation of a non-photoactive component of solar radiation and natural
and man-caused heat into electric energy is a very topical and actual problem that
can be solved with thermoelectric generators [1]. Their operation is based on the
Seebeck effect [2] generation of voltage (E) in an electric circuit consisting of
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successively connected heterogeneous materials, in particular a semiconductor with
two identical metallic contacts having different temperatures 77 < 7T5.

E:(X(TQ—Tl) (18.1)

where o is the Seebeck factor characterizing a thermoelectric ability of a pair of
materials and being per se a sum of the specific or differential thermoelectromotive
forces (TEMF) of semiconductor or metal which form a contact. Since, according
to the data presented in the thermoelectric series of Seebeck et al. [1], the specific
TEMF of metals within the temperature range 300-500 K does not exceed some
unities of microvolts, but the specific TEMF of elementary semiconductors is by
an order higher, the contribution of metallic contacts is neglected and only the dif-
ferential TEMF of semiconductor, for example 44 puV/C for silicon, is considered.
As perspective thermoelectric materials one usually considers the semiconductive
compounds like BiTe, various oxides, as well as sulfide and boride of rare-earth
elements, including exotic compounds. Until recently silicon despite its wide use in
production and its content in rocks of the earth’s crust > 25 % has not been used
as such owing to a comparatively small value of o. However, a very interesting
physical effect was described in [3] and explained in [4]: EMF generation in an
equally heated isotype thermal energy converter of (TEC) from micro-grain silicon.
The EMF value exceeds by dozens of times the EMF that can emerge because of the
non-controlled gradients of temperature inside TEC. It was also shown [3] that the
purposeful creation of temperature gradient inside such TEC is accompanied by ap-
pearing of an anomalously high TEMF and a possibility of producing comparatively
high values of the short circuit current density. Advisability of wide practical appli-
cation of TEC and its competitiveness will be indubitable if they have high values
of conductivity (o), in particular within the temperature range 300-1,000 K, and,
vice versa, small values of thermal conductivity (), which together with ¢ defines
a major parameter of a thermoelectric material, namely the quality factor (Z) [2,5]

Z="— (18.2)

According to the results of current-voltage diagram measurements for different
temperature and of TEC resistance ones by a compensation method, it is possible
to state that the sufficiently high values of o [6], as well as a character of its
temperature changes, as compared to monocrystalline silicon, are caused by its
essential different nature and due to special points of construction both as a material
and as TEC itself.

18.2 Effective Medium Model for Granulated
Semiconductors

For the thermoelectric phenomena in granulated semiconductors to be described, a
model of the heterogeneous semiconductor medium consisting of diphasic granules,
which are the crystal semiconductor grains covered by the oxide film, has been
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proposed in [7]. This effective medium model (EMM) consisting of a set of
contacting granules has been constructed. Each granule phase is characterized by its
own conductivity o;, heat conductivity J;, Seebeck factor ¢, characteristic size d;
and, accordingly, thermoelectric transformation efficiency Z; (i = 1,2). On the basis
of the linear Onsager thermodynamics the expressions for the estimation of o, sy,
Xeff> Oeyy and Z, ¢ are constructed; and their values depending on an asymmetry
degree of the characteristics of the granule components are analysed. The obtained
parameters of diphasic medium are the following [7]:

Oopp = — 2 (18.3)
(72 _4a1 +Gl 2
dy+dy dy+dy
di+dp
Xeff: d_1_|_ﬁ (18.4)
X1 X2
X2di xX1d>
Olpff = + o (18.5)
i del fudy | pdatopd
J 2
_ X241
Zefr = | d d Xida
X2 1+X1 2+a2)(ld2+lzd1
1 d d
x o192 [ ( 1+—2>} (18.6)
62d1+d2+61d1+d ditd \ 1 22

The basic feature of our system is that in a reality, in the case of the granulated
silicon [3,4], we do not have a two-component, but ternary system “Si core + core-
core border (CCB) + oxide layer”. For consideration of this real situation we may
use an artificial method. According to this method the basic expressions for effective
values O.ff, Xers and sy, obtained in Formulas (18.3), (18.4), and (18.5) for
components 1 and 2, can become, in turn, the components in combinations of o, sy,
and 03, X.rr and x3, sy and 03, according to classical Landauer algorithm [8]:

6eff — Ocff Geff
oy T 1= 0 18.7
20cff + Geff I 06,6, ff( Peyf) = (18.7)
Xeff = Xeff Xetf =23
verr T - (1 =Fe) =0 (18.8)
et Aerr " 2 )
~ < 00/ Ag > _
Ceff = W%;Ao = (2(7eff + (7[) (2Xeff + X,’) (18.9)

Here 6,7¢, Jerr and @ ry are desired values of parameters in effective ternary
system, < ... > is the short indication of weight averaging; P, is the part of
combined two-component “2-1” phase in total “2-17+“3” system. Resolving the
Eq. (18.7) relative to G,rf, Yorr and @z, it is possible to obtain all thermoelectric
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characteristics of ternary medium as the functions of o;, y; and &;, and, therefore,
to found Z, 7 for the total “1+2+3” system. The expressions (18.7) obtained during
the theoretical investigation of ternary system, indicate on the large opportunities
of management of Z.ss value by the technological changes in electrophysical,
thermophysical and geometrical parametres of all three components (core, CCB and
Si02 shell) of the real semiconductor granules.

18.3 Influence of Irradiation on the Thermophotovoltaic
Effect in Granulated Silicon

The very important question is, how the optimal asymmetry of phases 1 and 2 can
be achieved. We assume that radiation influence is one of such methods. The range
of applicability of this method is a priori limited by the annealing temperature of
radiation defects; however, it does not reduce its importance, because the greatest
interest in practice is connected with the relative low temperatures of TEC heating
for the purpose of utilization of low-grade heat.

Some thermovoltaic features of the monocrystalline silicon (MS) n* — p struc-
tures in which the radiation defects and, accordingly, the high concentrations of deep
energy levels are created by irradiation of the samples with fast electrons have been
presented in [9] (Fig.18.1). The radiation defects were created by irradiation of the
nt — p structures by electrons with energy E ~ 1 MeV and doze D = 10" cm 2.

They are the n* — p planar structures produced by phosphorus diffusion at the
depth ~ 1 um on the targets KDB-1 (111) of 1 cm? with ohmic contacts; the back
contact is solid and the front one is like a grid, a material of these contacts is the

Temperature, T° C
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Fig. 18.1 The temperature changes in the of dark current density for the electron-irradiated

monocrystalline n™ — p structures while heating (—/A—) and cooling (— ¢ —) as compared to the
control sample (— x —) [9]
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composition TiCuNi or TiCu deposited through masks. The dark current and voltage
were measured for the irradiated and control samples in the alternate mode (heating-
cooling) with preset speeds over the temperature range 20-250 °C. The curves
illustrate changes in the dark current for the heated (—A—) and (— ¢ —) cooled
electron-irradiated MC n™ p structures and for the same non-irradiated control one
(— x —).Itis seen that unlike the control sample (— x —) in which there is no current
while both heating and cooling the irradiated structures generate current within the
whole range of temperature, which is particularly seen for heating above 140 °C. To
interpret the radiation influence on the thermovoltaic effect for the material under
study the following statements of radiation physics of heterogeneous materials will
be used.

1. An object is heterogeneous; therefore an effective medium model (EMM) [10] is
applied to it.

2. In the grains and oxidized layers there are processes of elastic and ionization-
radiation defect formation (RD) [11].

3. Radiation-stimulated diffusion (RSD) of Si takes place from the Si grains to the
inter-grain areas of SiO, [11].

As a result of combinations of these processes, for the good quality Z under
irradiation we have (it follows from EMM)

7 — o 0si0si0,  XSi T XSio,

(18.10)
Osi + 0si0,  XSiXSi0,
Here both o; and y; are the functions of irradiation doze (@) [11]
Gsi = 60(1 — const - D), Gsio = 60 [1 + const - (@ — )P (18.11)

The first equation is a result of increasing the recombination A-centers, the second
one is a result of penetrating the Si atoms in the SiO; layers and percolation
conductivity in them, @ is the critical doze, 3 < 1 is the critical index. The influence
of the SiO; film thickness on the critical parameters @ and 3 should be noted [12].

xsi = X (1 — const - @), xsio = xoio(1+ const - @) (18.12)

The latter equation is a consequence of homogenization because of RSD in the
boundaries.

Analysis of Egs. (18.9) and (18.10) shows that because of the specific values of
all the constants (they can be calculated by the methods of radiation physics [11])
a different dependence Z(®) is possible. In particular, the following equation is
characteristic of electron and v irradiation

2 02,02 1 + const - (@ — @¢)P
XSi0, 1+ const - @

Z(®)=«a

Z(0)f(®) (18.13)
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i.e. Z(®) can be a non-monotonous function of doze. For the numerator being
predominant there is an increase of Z(®) with doze, which can be realized in
experiment. However, such a behavior is characteristic of dozes @ > @ only. It
is important to note that for the irradiation doze within the range 0 < @ < @¢ there

should be a decrease in Z(®) (see Eq. 18.11), which is observed in experiment.

0
Ogi

Note that there is no thermovoltaic effect without radiation for 0'02 << 1.
SiO;

However, special interest in systems of the granulated semicoilductors is con-
nected with the fact that two next phases (CCB and oxide layer) are nanophases,
and quasi-particles can transit through them in ballistic regime (phonons), or in
tunneling one (electrons and holes). One of the variants of the description of similar
processes is presented in [8, 12—14], and the result in the case of nanocontact is the

following [14]:

d t t t
T P AL A L 18.14
o dt(nl—t) O T T T (18.14)

Here
t =exp (—%\/Zle>, (18.15)

where ¢ is the tunnel exponent, ;. is the electron heat conductivity (in ordinary case
there is y, = ¢+ x% " where ph means phonons).

Radiation effects are frequently opposite in the cases of nanoscale objects and
macroscopic ones. So, the standard result of irradiation leads to the formation of
the defects creating local levels in the gap. For macroobjects (grains) it leads to
the reduction of number of carriers in the permitted band, i.e. Gyucro falls. For
nanoobjects, on the contrary, the creation of the local energy level under the barrier
increases ¢ (Fig. 18.2), because for the intact barrier ¢ is described by Eq. (18.13),
and for the barrier with defect due to hopping conduction

= 122 lexp<—%\/2mQé> (18.16)

_l‘l—i-l‘zNZ

where t; = ; are the tunnel exponents of the hops with participation of the localized
states placed inside the barriers (Fig. 18.2). So, G,ane increases under irradiation.

Concerning heat conductivity there is other situation: Ymqcro always falls with
the growth of defect number (both for ..., and for x,’;ﬁm,); Xnano = Xpano + xr’f,f'm;
passes through a minimum with dose growth, because y,,,, grows in insulators
from zero, and x,’,’ah,,o falls due to the degradation of ballistic conditions. The
dependence of the Seebeck factor 0y4q, from the dose @ is much weaker, because
the dependence of the carriers number is logarithmic; 0,4, also weakly depends
ont, as

1 1
~ =t — 18.17
anano ¢ + 1—t ( )
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Fig. 18.2 Scheme of a i
Landauer tunneling contact: ‘—I‘—'
(a) non-defect case; (b) defect
case with the localized state
(LS) inside the contact Q A IR
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Thus, the existence of nanocontacts is in many cases a narrow throat of radiation
effects in multiphase system, modulation of their thermoelectric characteristics is
possible by use of the irradiation.

However, the granulated systems with small (up to nanoscale) components have
an additional essentially new property sharply distinguishing their behaviour from
macrosystems under the action of radiation. The matter is that in principle radiation
acts have a stochastic character. It is known that such processes taking place in
big (macro) systems belong to the self-averaging class [15]. However, in the small
systems the big fluctuations comparable with average values take place. Owing to
these circumstances it is possible to apply to the analysis of radiation effects in
granulated nanosystems an approach applied in the study of radiation processes in
biological objects, namely, the hit and target [16] principle. This principle allows to
refuse the method of the kinetic equations [11] operating with av-erage values.

Using the hit and target principle, it is possible to write the following expression
for the probability of obtaining certain proper-ties f; (i = 1,2,3), which are the
parametres of each component in the ternary equivalent media:

n—1
Q; = [exp(—Vi®D)] 2 (Vi‘p)k;Q(q)) = Q1 (18.18)
k=0

Here v; is the cross-section of the single radiation hit of the target (phase i), k is the
number of radiation hits of the target, leading to the change of the parameter f; up
to value f;(k) = fl.o — kA f;; Af;i is the partial change of the parameter f; at a single
hit, fl.o is the initial (before radiation) value of the parameter f;. Thus, the parameter
€; shows the probability of obtaining the value f; = fl.o — (n)Afi under irradiation
up to dose @. Substituting O.rr = Ge?ﬁf —kAGC.tf, Xepr = ngf —kAYerf, Ocrr =
ocgff —kAa,sy, in the expression for Z,yy, it is possible to obtain the dependence
Z,t#(®). This value Z, (@) should be interpreted as stochastic, i.e. quality factor
Z,rr can be obtained not deterministically, but with probability £2.¢. Obviously, the
less the components 1, 2 and 3 are less, the more standard deviation is:

_[<[Avi@)]2 > 1
0= (<vi®>)?  J/<vd> (18.19)
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distribution of fluctuations is wider and so averaging is inefficient. Let’s add that
as €2; is based on the Poisson distribution with average value v;®, the analysis
on the basis of the kinetic equations operating with average values of variables
is absolutely inadequate at small doses (v;® < 1). We will also notice that the
described complication of the analysis of dose dependences is relatively laborious
in comparison with macrosystems, but it is absolutely necessary at transition to
complicate nanosystems.

18.4 Conclusion

Thus, it is possible to make the general conclusion that electron and y-irradiations
are rather fine tools in material technology of the granulated semiconductor media,
which are perspective and promising materials for the solution of the problem of
heat transfor-mation into electricity. An other important conclusion predicted not
only theoretically, but also in our preliminary experiments both on microgranular
silicon and on the samples of polycrystalline silicon with larger grains, is the
dependence of efficiency of the radiation effects on electrophysical characteristics
of CCB with an oxide lay-er, defined by both the technology and the kind of raw
materials go-ing on manufacturing. Radiation effects, for example, the y-irradiation
or ionic implantation, stimulates the occurrence of the thermovoltaic effect [9] and
increases the Seebeck factor. The opti-mum combination of characteristics of the
initial materials (both the grains and CCB) with the radiation doses allows to obtain
the ther-moelectric materials with high efficiency factor of produced TEC.
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Chapter 19
Thermoelectricity in Ternary Rare-Earth
Systems

Vladimir Nikiforov, Valentin Irkhin, and Alexander Morozkin

Abstract The measurements of electrical resistivity, thermal conductivity and
thermoelectric power for a number of newly synthesized metal compounds and
alloys based on transition and rare-earth elements were done. The maximum value
of thermoelectric figure of merit ZT for the proposed system at room temperature is
about 7 %. Special attention is paid to possible manifestations of the Kondo effect.

19.1 Introduction

Thermoelectric materials are of great interest due to their ability to use waste heat
to generate electricity and act as solid state Peltier coolers. Thermoelectric devices
based on thermoelectric materials have numerous advantages, such as being low-
noise, high reliability, without any moving parts and long period of operation. Since
power units of thermoelectric generation produce electric current from temperature
difference, we can convert waste heat energy to electric energy. Therefore, ther-
moelectric power generation is one of the most promising tools for environmental
conservation. However, the conversion efficiency of conventional thermoelectric
generation is insufficient in performance. The reason for this low efficiency is in
poor thermoelectric properties of most conventional thermoelectric materials.

The thermoelectric fitness of a material is estimated by the value of the dimen-
sionless parameter, figure of merit ZT = S26T /x where S is the Seebeck coefficient,
o electrical conductivity, and x thermal conductivity. The material having higher ZT
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value possesses better thermoelectric performance. High-performance thermoelec-
tric materials must have large S, high o, and low x to retain the heat at the junction
and reduce the heat transfer losses.

How to Increase ZT?

The Wiedemann—Franz law limits the ratio of the electronic contribution to the
thermal conductivity and electrical conductivity of a metal. That ratio should
be proportional to the temperature, k/c = LT. Rosenberg [21] notes that the
Wiedemann-Franz law is generally valid for high and low (i.e., a few of Kelvins)
temperatures, but can be violated at intermediate temperatures. In degenerate semi-
conductors, the Lorentz number L has a strong dependence on system parameters:
dimensionality, strength of interatomic interactions and Fermi level position. The
Lorentz number can be reduced by manipulating electronic density of states, varying
doping density and layer thickness in superlattices and composite materials with
correlated carriers [12,20].
We can use the following strategies:

1. To reduce thermal conductivity and increase the efficiency by minimizing the
thermal losses through the device.

2. To increase the Seebeck coefficient and the electrical conductivity. Recent
advances that achieved ZT ~ 2 are mostly due to the reduction of y by nanos-
tructuring, i.e., by using multilayered materials [6] and nanocomposites [12]

3. To introduce resonant states within the Fermi window by doping [11].

19.2 Skutterudite Systems

Skutterudite compounds MX3 with a cubic structure (M = Co, Rh, Ir, Fe, Ru, X =P,
As, Sb) are a class of promising high performance thermoelectric material for power
generation [2, 13, 14, 16] and thus have attracted a great deal of interest in recent
years.

Although binary skutterudite compounds possess good electrical transport prop-
erties, their overall figure of merit ZT is not too high because of relatively high
thermal conductivity. It is found by Sales et al. [23] and Nolas et al. [17, 18]
that rare-earth atoms such as La, Ce, etc. may be inserted into the voids of the
crystal structure where they “rattle” around their equilibrium positions. This rattling
motion can efficiently scatter the phonons and thus greatly reduce the lattice
thermal conductivity without deteriorating the electrical transport properties. The
ZT value of the rare-earth filled skutterudite is more than unity between 773 and
973 K [23].
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Ternary skutterudites RyM4X12; with R being rare earth, M transition metal
and X pnictogen; are a novel class of materials exhibiting extraordinary large
thermoelectric potential, Kondo- and heavy-fermion properties [1, 19].

The interest in skutterudite-related systems is connected with search of new
thermoelectric materials [22]. Unfilled skutterudites of the type M(P,Sb,As); (M is a
transition metal) contain voids into which low-coordination ions, in particular rare
earth elements, can be inserted. This increases phonon scattering and decreases
lattice thermal conductivity without increasing electrical resistivity p [17]. Thus
the figure of merit can become rather large.

The electronic properties of the IrsLaGes;Sbg, Ir4sNdGesSby, and IrsSmGe3Sbg
systems were investigated by Nolas et al. [17]. Another class of skutterudite-related
systems are R3M4X;3 compounds (where R is a rare earth element, X = Ge or
Sn) which attract attention due to the interesting electron properties, interplay of
superconductivity and magnetic order [15]. In particular, the Yb-based systems
demonstrate the intermediate valence nature of the Yb ions and slightly enhanced
value of the linear electronic specific heat coefficient.

19.3 Theoretical Sketch for Thermoelectric Power
in Rare-Earth and Kondo Systems

The Seebeck coefficient can become very large due to the reduction of free carriers.
There is a crossover from positive to negative thermopower as soon as electron
transport dominates over hole transport.

The Kondo skutterudites may exhibit large S due to an appropriate reduction of
free charge carriers caused by rare earth elements like Ce or Yb [1]. Strong electron
correlations, as obvious in Prg73Fe4Sbiy; can enhance significantly thermopower
values above those found in skutterudites containing valence-stable rare earth
elements [19].

Based on the s-d interaction model for dilute magnetic alloys Kondo [8] has
calculated the scattering probability of the conduction electrons to the second Born
approximation. Thus the effect gives rise to a singular term in the resistivity which
involves a factor of c/3InT, where ¢ is the concentration of impurity atoms, J the
s-d exchange integral. When combined with the lattice resistivity, this gives rise to
a resistance minimum, provided J is negative, and large temperature-independent
Seebeck coefficient [7, 8].

Here we discuss briefly the Seebeck coefficient S(7') in Kondo lattices following
to Irkhin and Katsnelson [4], Irkhin and Irkhin [5]. We can distinguish two cases:

1. Perturbation theory regime. The Kondo correction in the electron self-energy
2 (E) (or conduction-electron T-matrix) is proportional to J 3ln(E ). Large Kondo
contributions to S(7) correspond to the anomalous odd contribution to the
relaxation rate 7~'(E) [8]. The latter should arise, by analytical properties of
2(E), from the logarithmic singularity in ReX(E) [4]. Although such a singularity
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is absent in the usual Kondo problem, it occurs in the presence of the potential
scattering V which leads to emergence of complex factors 1 +V X (E —t; +i0) !
which “mix” ImX and ReZX in the incoherent regime.

In the presence of interaction between magnetic moments (Kondo lattices),
spin dynamics leads to the replacements In|E| — (1/2)In(E? + @?), signE —
(2/m)tan"! (E/w) in ImX and ReZX, respectively (@ is a characteristic spin-
fluctuation frequency). Then the anomalous contribution reads S(7) — ep(T') x
T /max{T,®}. Thus the quantity  plays the role of a characteristic fluctuating
magnetic field which is introduced by Kondo [8] to describe thermoelectric
power of diluted Kondo systems.

In real concentrated systems Kondo systems, at moderately high (as compared
to Tx) temperatures S(7) is usually large and has an extremum (a maximum at
S < 0, aminimum at § < 0).

2. The low-temperature regime. Besides the Kondo temperature, one introduces the
second energy scale — the coherence temperature T.,,, which corresponds to
onset of coherent Kondo scattering by different lattice sites. This is usually small
in comparison with Tx. The picture of the coherent state formation enables one
to treat experimental data on low-temperature anomalies of thermoelectric power
in heavy-fermion systems. With decreasing 7 below the above-discussed high-
temperature extremum, S(7) often changes its sign, has an extremum again and
vanishes linearly at 7 — 0. Such a behavior may be attributed to occurrence of a
pseudogap with reversing the sign of the quantity dN(E)/dE (N(E) is the electron
density of states) at the Fermi level, which determines the S(7') sign in the Mott
diffusion mechanism.

Generally, the systems having low characteristic temperature scales exhibit
enhanced S values. In particular, heavy-fermion systems, which exhibit sharp
features in density of states due to the hybridization between conduction
electrons and f or d-electrons, have been considered as candidates for low-
temperature thermoelectric cooling applications [3, 9, 25]. Large thermopower
values have been predicted and observed in Kondo insulators like Ce3Pt3Sby at
low temperatures [10, 24].

In nanowire structures, electron transport is hardly affected by the boundary
scattering due to their small intrinsic mean free paths while phonons are strongly
scattered due to classical size effect. These results suggest that the nanostructures
of Kondo insulators can be designed for high performance thermoelectric cooling
devices at low temperatures.

19.4 Experimental Results

We have synthesized and investigated a number of binary and ternary rare-earth
compounds and alloys, including new ones. Here we pay attention to Ce-based
Kondo compounds (Table 19.1).
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Table 19.1 Electric resistivity p (mOhm-m), Seebeck coefficient S (mV/K),
thermal conductivity k¥ (W/m-K) and ZT pameter at 300 K

Alloys (sample) S r K WF 7T
Ceo.5Y(sNiSb —53.2 1.66 11.0 249  0.0465
Ceo.25Y0.75NiSb —52.6 9.995¢ 57 7.77  0.015
Ce.75Y0.25NiSb 10.0 5.4 6.2 457  9.0-10~*
Ceo.5Y(sNiSb —22.8 4825 245 161 1.3-1073
Ceg.5Lag sNiSb -385 7.1 448 434 14107
C60'5Y0'5Ni0'95CuO'05Sb —18.1 5.17 0.42 0.30 0.045
Ceo.5Y0.5NiSb gBig.» —36.8 242 7.7 254 0.022
Ce,MgNiy -225 0.46 8.6 0.54  0.038
Cep.sMgo sNi, —29.4 0.88 14.0 1.68  0.021
Cep.sMg sNi —33.6 1.00 12.3 1.68  0.028
Cep.sMgo sNi, —35.6 1.07 11.7 171 0.030
CeSiy —55.0 0.98 13.8 1.85  0.067
Ceo.5Y0.5S12 —20.0 25 13.0 443 371073
CeSij 6Geo4 —20.0 2.05¢ 14.0 3.8 431073
Ceo.5Y0.5C0Si3 —37.6 0.45 16.4 1.01  0.057
CeCop.3Cug»Si3 —36.9 0.91 18.8 233 0.024
CeCoSi3 —34.6 2.1 9.1 261 0.018
CeCoSi; 5Ge; 5 2574 1.11 10.9 1.65 0.0164
CeSiGe -34 5.9 8.0 644 74107
CeSi; ¢Geo.4 —20.0 2.0 14.0 38 431073

The Wiedemann-Franz parameter is WF = p - k/ywr - 300, ywr = (72/3) -
(kp/e)? (kg is the Boltzmann constant and e the electronic charge)

Maximum ZT values for the presented systems are about 7 %. One can see that
Kondo-lattice systems like CeSi,, Ce;_, Y,NiSb indeed have largest Seebeck coeffi-
cient values. Moreover, such systems demonstrate strong temperature dependences
of resistivity and Seebeck coefficient (Fig. 19.1).

We report also in more details the results on thermoelectric properties of
the scutterudites Yb3Cos4Sny3 and Yb3CosGe 3 compounds and Ybs_R,CosGe3
(R = Ce, La) solid solutions.

Analysis of the powder X-ray diffractograms shows that the R3T4X3 compounds
(R =rare earth, T = Ru, Rh, Os, X = Ge, Sn) adopt the Pr3Rh4Sn;3 -type cage-like
structure. This favours small lattice thermal conductivity.

The electrical resistance along the long axis of the sample was measured with a
standard four-terminal geometry using a dc current of 0.8 mA The Seebeck coeffi-
cient (the thermoelectric voltage under zero electric current) has been measured with
disconnection of the sample from the current source. The heat flux in the sample
was generated with electric heater. The thermopower E was measured over the same
potential contacts used in the resistance measurements. The Seebeck coefficient was
calculated as the ratio E/dT. The uncertainty of S was estimated to be less than 10 %.
The thermal conductivity was measured by a longitudinal steady state method.
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Fig. 19.1 Resistivity and Seebeck coefficient vs. temperature for CeSi, alloys

All these compounds demonstrate the metallic-type conductivity. Probably, the
Yb3Co4Ge;3 has higher electric resistance due to presence of Ge semiconductor in
the alloy: the resistance of the Yb,CeCo4Ge3 and Yb; 3Lag7Co04Geq3 alloys is less
than of Yb3Co4Ge;3 alloy which demonstrates absence of the Ge admixture phase.

The Seebeck coefficients, electrical resistance and thermal conductivity have
monotonic behavior with increasing temperature from 240 to 380 K (Fig. 19.2).

One can see that the lattice thermal conductivity Kjusic. Of Ge-containing
Pr3Rh4Snj3-type compounds is higher than for Sn-containing compound (thermal
coductivity k is the sum of lattice and electronic conductivity, K = Ky, + K,;) due to
that the mass of Sn is higher than the mass of Ge. Also, due to this, the Wiedemann-
Franz parameter WF = k' /vy r T has higher values for Ge-containing compounds.

The Seebeck coefficient is § = 14 =27 V/K for Yb3Co4Snj3, and § = —21 =+
—12uV/K for Yb3CosGe3. Among the scutterudite systems under consideration,
the parameter ZT is maximal for YbzCo4Sn;3 compounds and acquires the value of
0.017 at 380 K. Although its thermal conductivity is not maximal, this compound
demonstrates lowest resistivity at high temperatures. Thus a good metallic electrical
resistivity and high Seebeck coefficient (rather than small heat conductivity) turn
out to be decisive for large ZT values in this case. Provided that the dependences
of electric resistance, thermal conductivity and Seebeck coefficient vs. temperature
retain for Yb3Co4Sn;3 compound up to 1,000 K, this compound may have the ZT'
value about 0.3 at 1,000 K.

Substitution of Yb for Ce or La, as well as substitution of Ge for Sn shifts the
Seebeck coefficient to positive values observed in the Yb3Co4Ge 3z compound. The
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Fig. 19.2 Seebeck coefficient S, electric resistance p, thermal conductivity x and ZT parameter vs.
temperature for Yb3CosGe3, YbyCeCosGe3, Yby 3Lag7Co4Ge3 and YbzCosSn3 compounds

Seebeck coefficient of Yb; 3Lag7Co04Ge 3 demonstrates non-monotonous tempera-
ture dependence. This sign change may be connected with a non-trivial electronic
structure near the Fermi level, characteristic for Kondo-like and intermediate-
valence systems.

The parameter ZT = TS2 /(px) is maximal for Yb3Co4Sn;3 compounds and
acquires the value of 0.017 at 380 K (Fig. 19.2). Although its x is not maximal,
this compound demonstrates lowest resistivity at high temperatures. Thus a good
metallic electrical resistivity and high Seebeck coefficient (rather than small heat
conductivity) turn out to be decisive for large ZT values.

We can conclude as follows:

1. The Pr3Rh4Sn;3-type Ge-containing compounds have lattice thermal conductiv-
ity higher than Sn-containing compounds due to relatively low Ge atom mass as
compared to Sn, which is important for thermoelectric characteristics.

2. The systems investigated demonstrate a non-trivial behavior vs. alloy compo-
sition. Substitution of Yb for cerium or La shifts the Seebeck coefficient to
positive values. A more systematic treatment is of interest. Probably, some
Ybs;_,RCo4Sn;3 compounds will have the Seebeck coefficient and ZT parame-
ter value higher than Yb3Co4Sn;3 compound.
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Although ZT values obtained in the rare-earth compounds are still not
too large, they are promising materials. There exist some ways to improve
their characteristics. Further experimental investigations in this directions and
comparison with other ternary rare-earth systems would be useful.
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Chapter 20

Simulation of Random Telegraph Noise

in Nanometer nMOSFET Induced by Interface
and Oxide Trapped Charge

Atabek E. Atamuratov, Ralf Granzner, Mario Kittler, Zuhra Atamuratova,
Mahkam Halillaev, and Frank Schwierz

Abstract In this work, the influence of a single positive elementary charge trapped
either in the oxide or at the oxide-semiconductor interface on Random Telegraph
Noise (RTN) has been investigated and the relative RTN amplitude Alp/Ip in
nanometer MOSFET was simulated. Since our investigations were focused on the
RTN amplitude, we considered only the steady-state and did not investigate the
dynamics of charging/discharging the trap.

For considering the impact of a single charge trapped in the oxide or at
the interface, we assumed that this single positive charge was homogeneously
distributed across a certain gate oxide volume or across a certain interface area.
By varying the length of the charged region, containing a homogeneously distributed
single charge, from 54 nm down to 0.8 nm, it is found that the RTN amplitude in-
creases for decreasing length and reaches saturation for lengths below 20 nm.

For identical extensions and positions in the gate length direction, a trapped
interface charge generates a RTN amplitude up to two times larger compared to a
charge trapped in the oxide. For both oxide and interface charges the maximal RTN
amplitude is observed for a trap located right above the center of the channel. Results
show that the main contribution to the RTN amplitude comes from the variation of
the carrier density in the channel due to the trapped charge.
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20.1 Introduction

Over the last decade, subthreshold/near-threshold digital CMOS logic has attracted
increasing attention. In this type of logic, the MOSFETs switch between off (gate-
source voltage Vs = 0) and “a little bit” on (Vgs_on = Vpp < Vg for subthreshold
logic or Vgs—_on = Vpp = Vry for near-threshold logic, where Vrp is the transistor’s
threshold voltage and Vpp is the supply voltage). This is fundamentally different
from conventional superthreshold logic, where the transistors switch from off to
“fully-on” (Vgs—on = Vpp =~ 4 X Vrg). Sub/near-threshold logic is a very effective
way to achieve ultralow power consumption for digital circuits which can be
applied in both power efficient high-performance logic circuits and a wide range of
power-sensitive circuits [1-3]. The enhanced power efficiency of subthreshold/near-
threshold circuits comes, however, at the expense of reduced speed. Furthermore,
since device currents in the sub/near-threshold regime are very small, the impact of
noises to device and circuit operation can become significant [4—8]. As reported in
[4], in highly scaled nMOSFETs extremely large current fluctuations due to Random
Telegraph Noise (RTN) have been observed under subthreshold conditions (relative
RTN amplitudes Alp/Ip is around 75 % where I is the drain current and Alp is the
drain current fluctuation caused by RTN).

The occurrence of RTN in MOSFET is traditionally explained by the cap-
ture/release of charge carriers in/from a single trap within the gate oxide or at
the oxide-semiconductor interface. In some experiments RTN amplitude is very
large [4]. Unfortunately, the origin of such large RTN fluctuations is still unknown.
Early reports linked RTN to both bulk dielectric defects and/or interface state
defects [9, 10]. While the mitigation of both bulk dielectric and interface state
defects is always good practice, it is unclear which type of defect should receive
the most attention [4]. During the last few years, the detailed investigation of
RTN in nanometer MOSFETs led to results which put the existing traditional
models of RTN generation in doubt [4, 5]. Therefore it is interesting and ur-
gently needed to investigate the origin and the effects of RTN in nanometer
MOSFETs.

In this work, the influence of a single positive elementary charge trapped
either in the oxide or at the oxide-semiconductor interface on RTN has been
investigated and the relative RTN amplitude Alp/Ip in nanometer MOSFET was
simulated. In particular, the dependence of the relative RTN amplitude on both the
localization area of the trapped charge, i.e., the area across which the single charge
is “distributed”, and the position of this area relative to the center of the channel was
investigated. For the simulations, the drift-diffusion option of the device simulator
Sentaurus was used.
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20.2 Simulation Results

Generally, the origin of RTN is connected to the capture and subsequent emission of
single charges on/from a trap which causes drain current fluctuations in MOSFETs.
The process of capturing or emitting a single charge, and the resulting fluctuations
of the drain current, has a discrete character. The current jumps between two distinct
levels and it is either high or low. Since our investigations were focused on the RTN
amplitude, we considered only the steady-state and did not investigate the dynamics
of charging/discharging the trap.

For considering the impact of a single charge trapped in the oxide or at
the interface, we assumed that this single positive charge was homogeneously
distributed across a certain gate oxide volume or across a certain interface area. This
defines an appropriate charge density in the chosen gate oxide or interface region.

For the 2D simulations we considered an nMOSFET structure with constant
substrate doping Ny = 5-10'8cm™3, an oxide layer thickness of 1.4nm and a
channel length L of 54 nm. The RTN amplitude was determined for a source voltage
of —50mV and zero drain and substrate voltages. To find the optimum size to
be assumed for the charged oxide/interface region (containing one single charge
homogeneously distributed across the region), we calculated the maximal RTN
amplitude for different extensions of the charged region (in all cases located at the
channel center). Figure 20.1 shows the RTN amplitude versus length of the charged
region for both trapped oxide and interface charges. It is seen that the maximal RTN
amplitude increases for decreasing lengths of the charged region and then saturates
for lengths below 20 nm. Maximal RTN amplitude does almost not depend on the
size of the charged region for both oxide and interface trapped charge in range
from 0.8 to 18 nm. For the following detailed considerations of the RTN amplitude
dependence on the position of the charge we choose a size of 2nm length for the
charged region.

We shall arrange the charged area above the channel center in the oxide or the
interface region because at low drain-source voltage the potential barrier between
source and drain is maximum approximately in the middle of the channel and it is
to be expected that a single charge trapped right above the center of the channel
would have the greatest influence on the drain current and accordingly to cause the
maximal RTN amplitude. A comparison of the RTN amplitude for various position
of the charged area along all channel (channel length 54nm) for both oxide and
interface trapped charges is shown in Fig. 20.2.

It can be seen from Fig.20.2 that a maximal RTN amplitude is reached if the
charged area is arranged above the center of channel. A displacement the charged
area from the center to a distance of L/4 (L is the channel length), the RTN
amplitude is decreased up to 50 % for both oxide and interface trapped charges. The
dependence of the RTN amplitude on the gate overdrive also is shown in Fig. 20.3
for a position of 18 nm from the center.
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Fig. 20.1 Dependence of maximum RTN amplitude (gate overdrive VgVr = —300mV) on the
length of oxide and interface trap charge area at the centre a channel

Relatively high RTN amplitudes are observed only in the subthreshold region
and the RTN amplitude is higher when the charged area is placed above the channel
centre for both the cases of oxide trapped and interface trapped charge. The RTN
amplitude is approximately two times higher for the case of an interface trapped
charge than for the case of an oxide trapped charge. Obviously, RTN and the related
change of the drain current is connected to the variation of carrier concentration
induced by a charge trapped in oxide or interface. In Fig.20.4 the distribution of
the carrier concentration along the channel in a depth 1 nm below the oxide-silicon
interface for charge located above the channel center is presented. The variation of
the charge concentration induced by an interface trapped charge is larger than that
induced by an oxide trapped charge. The current variation induced by changing of
carrier concentration can be evaluated based on the drift model by

L
Alp = ETSV " (n(x) — no(x))dx (20.1)

Here, e is the elementary charge, S is the cross-section of the current path, v is the
carrier drift velocity, / is the length of the region in the channel where a sizeable
variation of the carrier concentration after charge trapping occurs (along the x axis),
and ng(x) is the carrier concentration without charge trapping. An estimation of
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Fig. 20.3 RTN amplitude dependence on gate overdrive for the cases of a charge trapped at the
interface (a) and in the oxide (b)

the relation of drain current variation due to charge trapping Alp(interface trap) /
Alp(oxide trap) by combining Eq. (20.1) and carrier density profile from Fig.20.4
leads to a value of 1.41. For comparison the relation of the drain current variation
induced by trapping of a charge in oxide and on interface at Vg — V7 = 0, carried
out from data in Fig. 20.3 give value 1.43. The obtained very similar values show
that, as could be expected, the carrier concentration variation correlates well with
current variation.
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Fig. 20.4 Electron concentration along the channel 1 nm below the oxide/semiconductor interface
with and without trapped charge. The charged region is 2 nm long and located above the channel
center

20.3 Conclusion

By varying the length of the charged region, containing a homogeneously distributed
single charge, from 54nm down to 0.8nm, we found that the RTN amplitude
increases for decreasing length and reaches saturation for lengths below 20 nm.

For identical extensions and positions in the gate length direction, a trapped
interface charge generates a RTN amplitude up to two times larger compared to
a charge trapped in the oxide.

For both oxide and interface charges the maximal RTN amplitude is observed for
a trap located right above the center of the channel. Our results show that the main
contribution to the RTN amplitude comes from the variation of the carrier density
in the channel due to the trapped fixed charge.
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Chapter 21
Anyon Bosonized 2D Fermions or a Single Boson
Physics of Cuprates: Experimental Evidences

Bakhodir Abdullaev

Abstract Within the single boson and single fermion two liquid picture [1] we
have been succeeded to understand all elements of the doping-temperature phase
diagram [1-3] and the non-Fermi liquid low-temperature heat conductivity and
entropy [4] of cuprates. Single bosons are a result of the anyon bosonization of
2D fermions.

21.1 Introduction

The origin of pseudogap (PG) and high-temperature superconductivity phases
in copper oxides is the most puzzling and challenging problem in condensed
matter physics. Despite on the intensive experimental and theoretical studies we
have no clear understanding of these phases so far. A relationship between two
phases has become a subject of wide range theoretical proposals and their possible
experimental testing.

The fundamental property of the PG is a partial gap in the density of states [5]
which is observed in various experiments. To understand the nature of this gap the
real space atomic scale scanning tunneling microscopy measurements of the copper
oxide BipSrCaCuy0g, 5 have been performed. For the case of high-7; supercon-
ductivity the spatial gap inhomogeneities have been observed in Refs. [6, 7], while
Pan et al. [8] explicitly determine their minimal size. The evolution of the nanoscale
gap formation with temperature decrease in the PG region has been investigated by
Gomes et al. [9].

In the recent paper [1] we have studied the origin of minimal size nanoregions
(NRs), which were visualized in Refs. [8, 9] through the measurement of the
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energy gap. We used the experimental fact that PG and superconductivity phases are
formed from the NRs. Particularly, we have been interested in the electric charge of
NRs. We employed the information about the charge to understand some ingredients
of doping-temperature phase diagram of BirSryCaCu;0Og. s copper oxide. It is
worth to notice that all physical findings in the paper were inferred from the analysis
of data for the NRs in [8,9]. The most important fermionic nature of the second hole
inside NR at the second critical doping x., and dopings below x., was implied from
the meaning of the x,: at this doping the superconductivity and hence, the bosonic
property of the matter disappears. The justification of the appearance of single hole
bosons has been given using the concept of anyons. In such a treatment the anyon
vector potential and the corresponding statistical magnetic field represent Berry
connection and fictitious magnetic field [10], respectively. It was demonstrated in [1]
that 2D fermions can be bosonized. So that the fermion ground state becomes an
excited state with respect to the boson one. The linear density dependence of the
energy gap between these two states describes the well-known Uemura relation for
2D superconductors.

Another puzzling side of the PG normal phase is that in this region some
experimental data clearly demonstrate a failure of a Landau Fermi liquid theory
(LFLT), which is the basis of the theory of normal metals. Hill with collabora-
tors [11] reported that the heat conductivity of the electron doped copper-oxide
Pry_yCeCuO4 measured at low temperature (low-T) is deviated from one predicted
by the LFLT, i.e., as the temperature decreases, the temperature dependence of the
heat conductivity (x) is changed from the normal linear k¥ ~ T behavior into an
anomalous T3¢ one, which was described by the “downturn” behavior of the heat
conductivity. They also reported another important non-Fermi liquid behavior: the
Lorentz ratio of the Wiedemann — Franz law (WFL) in the region of the linear
T-dependence of x was significantly larger (1.7 times) than Sommerfeld’s value.
These violations were also observed in the Biy, Sr,_CuOg s copper-oxide in the
vicinity of the metal-insulator-crossover by Proust et al. [12].

The normal state electronic specific heat ¢ of superconductors Y Ba;CuzOg.yy
and Lay_,Sr.CuOy4 above the high-T, transition temperature 7, was experimentally
investigated in Refs. [13] and [14], respectively. A magnetic field dependence of
¢ has considered in [15] for Yy gCag2BarCuzOg.+, compound. Due to existence of
high-T, superconductivity, it is impossible to extract the information on the low-T
dependence of the normal state c. On the other hand, Loram et al. [13] showed the
T-dependence of the entropy () . ~ T’ with i > 1 for the underdoped (insulating)
material, which was driven from the measured electronic specific heat of high-T;
superconductors Y Bay,Cu3 Oy, ignoring the superconducting effects, while for the
optimal doping compound . ~ T was measured.

In Sect.21.2 we demonstrate the rigorous proof that 2D fermions can bosonize.
Then in Sect. 21.3 the result of the ground-state energy calculation of charged anyon
gas will be given. We apply the difference between the ground state energies of
fermions and bosons to derive the single boson doping-temperature phase diagram
of cuprates in Sect. 21.4. In Sect. 21.5 it will be demonstrated that this difference in
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the ground state energies yields the microscopic origin of the phenomenological
Uemura relation. Section21.6 will be devoted to the charge and percolation
analysis of NRs on the base of experimental data given in Refs. [9] and [8]. The
analysis provides the interpretation of some elements of the phase diagram doping-
temperature in BirSrpCaCuyOg, s compound. Section 21.7 will describe the origin
of the non-Fermi liquid heat conductivity and the entropy of copper-oxides. We
summarize and conclude our paper in Sect.21.8.

21.2 Real Bosonization of 2D Fermions

The fact that a — b planes of CuO; atoms play a dominant role in the determination of
the physics of cuprates provides an opportunity to exploit the fundamental property
of the two-dimensionality. Specifically, the 2D topology allows the fractional
statistics [16] characterized by a continuous parameter v taking values between
0 (for bosons) and 1 (for fermions). The particles with 0 < v < 1 are generically
called anyons [17, 18]. One can apply the last one in the study of properties of the
mentioned above a — b planes.

Following to Ref. [1], in this section we briefly outline the rigorous derivation
of the real bosonization of 2D fermions. It can be achieved by exact cancellation
of terms in the ground state energy arisen from fermion (anyon) statistics and a
Zeeman interaction of spins 71/2 of particles with statistical magnetic field [19,20]
produced by vector potential of anyons.

Let us consider the Hamiltonian

. 1 X
H= 2— 2 {(Pk+Av(rk)) + M |rk| }
li N @2
+= Viry) + (21.1)
25 j#k Irg;i|

of the gas of N anyons with mass M and charge e, confined in 2D parabolic well,
interacting through Coulomb repulsion potential in the presence of uniform positive
background [21] V(ry). Here, r; and p; represent the position and momentum
operators of the kth anyon in 2D space dimension,

— v 2 G X T 21.2)
f7e Il

is the anyon gauge vector potential [22], ry; = ry —r;, and e; is the unit vector
normal to the 2D plane. In the expression for Ay (ry) and hereafter we assume that
0<v<l.
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In the bosonic representation of anyons we take the system wave function in the
form [23]:

=[I~¥®R (21.3)
i#]

Here R = {r;....ry} is the configuration space of the N anyons. The product in
the right hand side of this equation is the Jastrow-type wave function. It describes
the short distance correlations between two particles due to anyonic (fermionic)
statistics interaction.

Let us consider first the term in the Hamiltonian A, Eq.(21.1) containing
the anyon vector potential Ay (ry). Substituting ¥ (R), Eq. (21.3), in Schredinger

equation with this Hamiltonian, we obtain an equation ¥ (R) = E¥r (R) with the
novel Hamiltonian A = H; + H,, where

X N —thk h2V rkj'Vk
H =) < -— > (21.4)

[\%)
S
5|

k=1 j#k I
and
x hd Ay(ry) 1y
B=—i— Y [Au(r)- Vk+sz2k’ . (21.5)
M= Ak I

As shown in Ref. [23], the v interaction Hamiltonian in 191, i.e., the second its
term, is equivalent to a sum of two-body potentials

nhz

25 (ry—r;) (21.6)
JFk

Therefore, the Hamiltonian A | now reads

e
H1_2< 2Mk 26 rk—r,> (21.7)

J#k

Now we demonstrate the real bosonization of 2D fermions on the example of
anyons in parabolic well. To do this we consider the Zeeman interaction term

h
. § by (21.8)

HMZ

of spins with the statistical magnetic field [20] (see also Ref. [19])

by = —2nhve, Y 8@ (re—r;) (21.9)
J#k

which can be derived if one calculates by = V x A, (r) by using Eq. (21.2).
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For s, = /1/2 and using the expression, Eq. (21.9), for by one obtains

ARSI " @)
=Y 8b=—nv— Y §¥(ri—r;)). (21.10)
M= M (70

Being added to the expression, Eq. (21.7~), for the Hamiltonian ﬂl, this Zeeman
term cancels exactly the second one of Hj, which is responsible for the statistics
of fermions (for v = 1) and anyons. Since the energy of bosons is lower than one
for fermions and anyons, there appears a coupling of spin with statistical magnetic
field for every particle or bosonization of 2D fermions and anyons. From this one
can conclude, if anyon concept is correct for the description of any 2D quantum
system, its ground state should be bosonic with v = 0, while its excited state
should be fermionic (v = 1) or anyonic (0 < v < 1) depending of the fixed value
of v. As demonstrated in Ref. [1], the vector potential A, (r) represents the Berry
connection and the statistical magnetic field is the fictitious magnetic field originated
from the Berry phase [10] of anyons (see book of Wilczek [18]).

21.3 The Ground-State Energy of Charged Anyon Gas

In Ref. [24] we have derived an approximate analytic formula for the ground-state
energy of the charged anyon gas. Our approach was based on the harmonically
confined two-dimensional (2D) Coulomb anyon gas and a regularization proce-
dure for vanishing confinement. To take into account the fractional statistics and
Coulomb interaction we introduced a function, which depends on both the statistics
and density parameters (v and ry, respectively). We determined this function by
fitting to the ground state energies of the classical electron crystal at very large r;
(the 2D Wigner crystal), and to the Hartree-Fock (HF) energy of the spin-polarized
2D electron gas, and the dense 2D Coulomb Bose gas at very small r,. The latter
was calculated by use of the Bogoliubov approximation. Applied to the boson
system (v = 0) our results were very close to recent results from Monte Carlo (MC)
calculations. For spin-polarized electron systems (v = 1) our comparison led to a
critical judgment concerning the density range, to which the HF approximation and
MC simulations apply. In dependence on v, our analytic formula yielded ground-
state energies, which monotonously increased from the bosonic to the fermionic side
if rg > 1. For ry < 1 it shows a nonmonotonous behavior indicating a breakdown of
the assumed continuous transformation of bosons into fermions by variation of the
parameter V.

We have found in Ref. [24] the expression for the ground-state energy per particle
(in Ry units) in the form

2f(v,rs) [ v Ki K
(o@()(vars) ~ (,.—ZS) {E+7X_K_X:| . (21.11)

N
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Here
Kx = (Ky+Kp)'/?
+[—(Ka +Kp) +2(K3 — KxKp + K3)'/?]'/2 (21.12)
and
Ky = [K2/128+ ((v/12)3+ (K2/128)2)1/2} " -
Ky = [K2/128— ((v/12)3+(1<2/128)2)1/2} " eL
with K = cwers /12 (v, ry).
For the Bose gas (v = 0) we obtained from Eq. (21.11)
60(0,15) = —M (21.14)

4/3
rs/

and found for small r; f(0,rs) = cz/(? rs/cwe, which fitted the ground-state energy
of Coulomb Bose gas calculated in Ref. [24] in the Bogoliubov approximation with
cpg = 1.29355. For large ry, the ground-state energy does not depend on statistics
and equals the energy of the classical 2D Wigner crystal [25], Ewc = —2.2122/rs.
This matches with Eq. (21.14) if at low densities £(0,r,) ~ ri/* with cpje. = 2.2122.
For large ry; we obtained

2/3 2/3 2/3
cwef (v, Tv V, T,
(v, ry = oe) = WL LT (—1 * %) - e
rs 3eyers
For arbitrary ry, the interpolating functional form
12 -5 cp7s/cwe
f(v,rg) = vi/ico(rg)e ™ + 3212
L+ci(ry)cggrs’™ /ewe
0-2¢1(ry)riLn(rs) (21.16)
1472 '

with ¢o(rs) = 1 4+6.9943r,+22.4717r% and ¢ (ry) = 1 — e~ satisfied all constraints
for f(v,rs) function (see Ref. [24]) and, in addition, yields in the fermion case
(v = 1) for the ground-state energy per particle the HF result [26]

2 16
Enp == — 57— (21.17)
ré 37

In Fig.21.1 we show results for the ground-state energy per particle on the
large scale 1.0 < ry < 15.0. The upper four curves refer in descending order to
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Fig. 21.1 Ground-state energies per particle vs. density parameter ry for range 1.0 < ry < 15.0
from top to bottom: for fermions (v = 1) HF approximation (Eq.21.17) and Ref. [26], open
triangles), MC interpolation data (from Ref. [27] (Ref. [S] in Ref. [24])), (crosses), and present
results from Eq. (21.15) (Eq. (39) in Ref. [24]) (closed circles) and Eq. (21.11) (Eq. (33) in
Ref. [24]) (plus signs), and for bosons (v = 0) present results from Eq. (21.14) (Eq. (36) in
Ref. [24]) (open squares) and MC data from Ref. [28] (Ref. [17] in Ref. [24]) (closed triangles).
MC data of Ref. [29] (Ref. [4] in Ref. [24]) for some particular values of r, are indicated by star
symbols

the fermion case (v = 1): HF energies for spin-polarized electrons from Ref. [26]
(open triangles), interpolated by Pade approximant MC data from Ref. [27] for spin-
polarized electrons (crosses), and our results from Eq.(21.11) (on the given scale
identical with those of Eq. (21.15)) for spin-polarized electrons (closed circles). The
lower two curves are for charged bosons (v = 0) and result from MC calculations of
Ref. [28] (closed triangles) and from our Eq. (21.14) (open squares). By star symbols
we indicated the MC data [29] (without interpolation) obtained for some particular
ry values.

21.4 Single Boson Doping-Temperature Phase Diagram

Following to Refs. [2, 3], one can assume the fluctuations of spins of fermions
coupled to magnetic field. Therefore, bosons with effective spins might look like as
Fermi particles. However, fermions with different spins are independent [30]. Thus,
the spins of bosons interact with each other and do not interact with spins of another
fermions if they exist in the system. We introduce a some correlation length, inside
of which spins of bosons interact with each other. For temperature 7 = 0 we denote
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it by &y. The increase of fluctuations destroys the coupling, and bosons become the
anyons or fermions. This occurs when the gain in the energy due to fluctuations of
spins of bosons is equal to energy difference between the anyon (or Fermi) and Bose
ground states.

The interaction of spins of bosons we bring in the form

N
e~ T0/% z§k+6'§k . (21.18)
k=1

Here it was introduced a factor ¢ 70/% with ry is being the mean distance between
particles. For screened by magnetic field spins &y is to be assumed phenomenologi-
cal and taken from experiment.

We establish the explicit form of Eq.(21.18). The growth of boson spin fluc-
tuations should cancel term, Eq. (21.8), in the Hamiltonian. Therefore, for dense
(ro < &) Bose gas there should be §; s = —7iby /M.

The Hamiltonian of bosonized infinite anyon Coulomb gas with interaction of
spins has a form

N 1 X 2
H= wk; {(Pk-f—Av(l'k)) +MV(rk)}
1Y 2 n(l—e /b)Y
+— —t——————2 % §-by. (21.19)
Zk%“ék [T M 1;1

For anyon Coulomb gas with density parameter r; > 2, where r; is rg in Bohr
radius ap units, the approximate ground state energy per particle is expressed by
Eq.(21.15). In our treatment we consider the bosonized fermions with v = 1. To
become fermions, bosons should overcome the energy difference

7(1—e /%) f*3(0,ry)

2/3 8/3 ’
3ciyers

Af = (21.20)

the gap of superconductivity. Our approach in [24] corresponds to spinless or
fully spin polarized fermions. One needs to have deal with normal, i.e., no spin
polarized electron liquid. However, the accuracy of our calculations is lower than
the difference of Tanatar and Ceperley data [27] for ground state energy for these
both phases of electrons.

The Fig.21.2 displays the PG boundary energy E, (Fig. 11 from paper [31]),
superconductivity gap energy Ag = 4Kp T, which was evaluated using the em-
pirical formula T, = T, juax[1 — 82.6(p — 0.16)?] with T, ,uax = 95 K for Bi-2212
(Bi2SryCaCuy0g, ) compound, and energy gap calculated from Eq.(21.20) as
function of doping p. As seen from this figure, our A(If has the same magnitude
as experimental gap, but is qualitatively different from generally accepted “dome”
like doping-temperature phase diagram. However, it is in accordance with Fig. 10
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Fig. 21.2 The experimental PG E,, superconductivity gap Ay = 4Kp T. (experiment for hole
doped Bi-2212 compound), and calculated from formula Eq. (21.20) one for bosons Ag energies
in Kelvin temperature (K) units as function of concentration of holes p

of paper [31] of Tallon and Loram and their conclusion that PG energy E, up to
pe =~ 0.19 separates Bose-Einstein condensate into regions, where density of Cooper
pairs is small and big (weak and strong superconductivity).

For phase diagram data of electron doped cuprates we use Ref. [32] for NCCO
(Ndp_Ce;Cu0Oy4) and Ref. [33] for PCCO (Pr,_Ce,CuOy). It was shown there
that E,/(kgT*) ~ 10 for NCCO and E,/(kgT*) ~ 11 for PCCO, therefore, we
assume E,/(kgT*) ~ 10 for both materials. For experimental superconductivity
gap we also assume Ag/(kgT.) ~ 10. Figure 21.3 shows the doping p dependence
of experimental E,, Ay = 10kpT;. and Ag calculated from Eq.(21.20) by using
the above spacing constants of a and b for elementary structural cell. Comparing
with Fig.21.2, we see the same qualitative and quantitative result. More obvious is
extension of our Ag to small values of p, while experimental Ay starts with p =0.13.
However, absolute values of both superconductivity gaps of hole and electron doped
materials are nearly equal.

21.5 Origin of Uemura Relation

In this section, following to Ref. [1], we describe the single boson origin of the
phenomenological Uemura relation for 2D superconductors.



260 B. Abdullaev

— T T T T T T T T T T T T T T T T T T
5000 _
.\
L E J
-\ g
4000 l\\ _
- \.\ a4
= n
< 3000 | i
> "
E) r \l E
:
W 2000 LY -
\l
- AN = ]
. Ay 10 KBTC
1000 B N d
L o . ]
e -0-0 _-0—o. . N\
0 N R . 7 ¢ ’ . ? 93¢ ::it?l & a 4

0.00 002 004 006 008 010 012 014 016 018 020
P

Fig. 21.3 The experimental PG E,, superconductivity gap Ao = 10Kp T, (experiments for electron
doped NCCO and PCCO compounds), and calculated from formula Eq. (21.20) one for bosons Ag
energies in Kelvin temperature (K) units as function of concentration of electrons p

Now, it is widely accepted (see Ref. [34]) that the Uemura relation (UR), the
linear dependence of 7. on concentration of charge carriers, originally observed
in Refs. [35] and [36] for underdoped cuprate, bismuthate, organic, Chevrel-phase
and heavy-fermion superconductors, survives also for extended class of other
superconductors and has a fundamental universal character. There is no doubt
that this relation plays an important role for the construction of the mechanism
of superconductivity in these materials and can even be a source for discovering
fundamental properties of the underlying physics. An experiment clearly relates the
UR with 2D geometry of samples. Motivated by this observation, in Ref. [1] we
investigated the possible role of the fermion bosonization, which is a result of the
topology of 2D, to the origin of UR.

The experimental doping dependence of ry, mean distance between two holes,
can be approximated by the relationship ro ~ a /xl/ 2 (see Fig. 34 in Ref. [37]), where
a is a lattice constant in the elementary structural plaquette for the CuO, a — b plane
of a copper oxide. Since in Ref. [1] the doping value denotes by the variable x, we
keep this notation in this and another sections below. This relationship is derived in
Ref. [37] for La_,SryCuO4 compound with a =~ 3.8A. This lattice constant a is the
nearly same for other copper oxide compounds, thus it is also valid for investigated
here compound Bi;Sr,CaCuy0Og 5. It is worth to mention that b ~ a for the lattice
constant b of the same structural plaquette.
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Applying the relationship rg ~ a /xl/ 2, where a ~ 3.84, we do an estimate values

of ry, expressed in Bohr radius ap unit (ry = r9/ap), corresponding the doping
interval x.; < x < x.o, where x.; and x, are the first and second critical dopings
in the doping-temperature phase diagram. One obtains 13.12 < ry < 32.14. For this
interval of r; we have obtained the expression, Eq.(21.15), for the ground state
energy per particle of the Coulomb interacting anyon gas. It is expressed in Ry
Rydberg energy unit and for large ry equals to the energy of the classical 2D Wigner
crystal [25], Ewe = —ciie,/rs with cpje = 2.2122.

Taking into account from the previous section that the excited state of the 2D
system is fermionic and the ground state is bosonic, one can write the explicit
expression for an energy gap between these two states

1E]

A(rg) =&(v=1,r,)—&(v=0,r;) = 32
wcC

(21.21)

The meaning of this expression in that to become the fermion the boson should gain
the energy A(ry). Substituting in Eq. (21.21) the expression for Ey ¢ and introducing
the 2D density n = 1/(rr3) one derives

Trna
A(n) = T%B . (21.22)
3cye

Since the critical temperature T, is proportional to A(n), one can conclude that
the 2D topology driven bosonization of fermions may explain the UR for variety
superconductors, whose physics is quasi-two dimensional.

21.6 Experiment Implied Single Boson Elements
of the Doping-Temperature Phase Diagram

Recently, Gomes et al. [9] have visualized the gap formation in NRs above
the critical temperature 7. in the high-7;. superconductor Bi;SrCaCuzOg, 5. It
has been found that, as the temperature lowers, the NRs expand in the bulk
superconducting state consisted of inhomogeneities. The fact that the size of the
inhomogeneity [8] is close to the minimal size of the NR [9] leads to a conclusion
that the superconducting phase is a result of these overlapped NRs. In the present
section we reproduce the main results of Ref. [1], where it was performed the
charge and percolation regime analysis of NRs and showed that at the first critical
doping x.;, when the superconductivity starts on, each NR carries the positive
electric charge one in units of electron charge, thus we attributed the NR to a
single hole boson, and the percolation lines connecting these bosons emerged. At
the second critical doping x, when the superconductivity disappears, our analysis
demonstrated that the charge of each NR equals two. The origin of x can be
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Table 21.1 The doping x dependencies of NR charges
X (IOA/VO)Z (13/&/&))2 écnh(A) (gcoh/r())z écnh/r() Nop

0.28  1.939 3.277 10 1.939 1.393 ~1
022 1.524 2.575 10 1.524 1.235 ~2
0.16  1.108 1.873 11 1.341 1.158 ~3
0.14  0.969 1.638 12 1.396 1.182 ~3
0.10  0.693 1.170 13 1.170 1.082 ~6
0.05 0.346 0.585 17 1.000 1.000
0.04 0.277 0.468 18 0.897 0.947
0.02  0.139 0.234 20 0.554 0.744

The doping x dependencies for (10A/ry)?, (134 /r0)? at fixed &, = 10A
and &, = 134, respectively, for the coherent length &, the charge
(Econ/r0)?* and the percolation parameter £,y /7 at this &, are presented.
The values for the number N,, of bosons surrounding every fermion are
shown in the last column

understood by introducing additional normal phase hole fermions in NRs, whose
concentration appearing above x.| increases smoothly with the doping and breaks
the percolation lines of bosons at x.». The last one resulted in disappearing the bulk
bosonic property of the PG region, which explained the upper bound for existence
of vortices in Nernst effect [38]. Since Ref. [9] has demonstrated the absence of NRs
at the PG boundary one can conclude that along this boundary, as well as in x,,, all
bosons disappear.

The authors of Ref. [9] have visualized the NRs in the PG region of
BiySryCaCu,0g, s compound at fixed hole dopings x = 0.12,0.14,0.16,0.19,0.22.
It has been determined that for x = 0.16 and x = 0.22 the minimal size of the NRs
is E.op &~ 1 — 3 nm. The estimated minimal size of NRs, &, is about 1.3 nm in
the superconducting phase [8] (7. = 84K). Another notable result obtained in Ref.
[8] is the observation of spatial localization of the doped charges. The charges are
localized in the same area as NRs [8] with the same coherence length &.,y,.

A principal part of our analysis in Ref. [1] has been the doping x dependence
of the NR charge (&./r0)>. We started with a case of zero temperature. The
parameter &.,;,/rp contained an essential information in our consideration. The
factor (E.o4/r0)* reduces to the expression x(&.,;,/a)2 which has a simple physical
meaning: it is a total electric charge of (&.y,/a)?> number of plaquettes each of
them having a charge x. On the other hand, the parameter &.,;,/ry describes the
average spatial overlapping degree of two or more holes by one NR. If &, /ro > 1
then all NRs will be in close contact to each other providing by this the bulk
superconductivity in percolation regime.

In the Table 21.1 we outlined the doping x dependencies for the function
(Econ/10)? for fixed experimental values ., = 10A (the minimal size of the NR) and
Eeon & 134 taken from Refs. [9] and [8], respectively, and for the function &, which
fits (Eqon/70)? to (104 /rg)? at x = 0.28 and for x = 0.05 provides (E.,;/70)> ~ 1.0.
Numerical values of the &, /ro are also shown in the table.
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As seen from Table 21.1, the charges (104 /r)?, (134 /r0)?, and (&.op,/r0)? vary
continuously with the doping x. This is not surprising because they are functions of
ro(x) and &, (x). From the analysis at the first critical doping, x.; = 0.05, it follows
that the charge (&..;/r0)? of the visualized NR in Ref. [9] equals +1. So that, it
corresponds to the charge of a single hole. Notice, at the critical doping x.; = 0.05
the percolation parameter is given by &.,;/ro = 1.0. That means the whole sample

is entirely covered with mini areas £2, = r(z) contacting each other. It is unexpected

coh —
that at the second critical doping, x,» = 0.28, the charge of the visualized NR takes
the value +2. This implies that at 2, = 2r3 one has a pair of holes inside the NR
and, as a result, the superconductivity disappears completely. For x., = 0.28 we
have .., /ro > 1.0, so that the charge conductivity of the fermions still remains.

Notice, that there are no particles in the nature with the fractional charge, except
the quasiparticles which can be produced by many-body correlations like in the
fractional quantum Hall effect [21]. Hence, the problem of the presence of the
extra fractional charge inside the NR has to be solved yet. We remind [8, 9] that
PG visualized NRs constitute the bulk superconductivity phase below the critical
temperature T, and therefore, they are a precursor for that phase. This implies
undoubtedly that the NRs represent bosons at least. At x,; = 0.05 one has the
charge (&./r0)*> = 1, so that one may conjecture that the NR represents just a
boson localized in the square box &2, .

For x > 0.05 the charge (&.;,/r0)* has an additional to +1 fractional part. We
assign the last one to the fractional part of the charge of fermion. Thus the total
charge (E.o1/70)? of the NR includes the charge 41 of the boson and the fractional
charge of the fermion. However, as it was mentioned above, the fractional charge
cannot exist. Therefore, we take the number N,;, of NRs to be equaled to the inverse
value of the fractional part to form a charge +1 of the fermion. As a result, we obtain
one fermion surrounding by N,, bosons. T he values of N,, are outlined in the last
column of the Table 21.1.

The NRs introduced in such a manner allow to understand clearly the evolution
of the fermions in the whole range 0.05 < x < 0.28 of doping and to explain the
origin of the second critical doping x.», = 0.28. It is clear, as x increases, the number
of fermions grows up inside the superconducting phase. By this, at x.,, when the
number of fermions becomes equal to the number of bosons, one has the breaking
of the boson percolation lines, and, thus the superconductivity disappears.

The schematic single hole bosonic phase diagram for Bi;Sr,CaCu;0g., 5 is de-
picted in the Fig. 21.4. The coloured zones indicate the percentage of the sample that
is gapped at given temperature and doping. The solid lines correspond to the follow-
ing observed temperatures: PG boundary 7* and onset temperature T,s.; for Nernst
effect signals taken from Ref. [38], and the critical temperature 7. from Ref. [9].
The extrapolation of the connection of T* with the second critical doping, x.;, is
depicted by the dashed line. The yellow points correspond to fixed Ty, values from
Ref. [38], and the blue points represent the temperature data for 50 % of gapped area
of the sample from Ref. [9] measured at fixed dopings. The thin brown coloured
solid line fits the blue points. The percentage for the gapped doping is calculated by
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Fig. 21.4 Schematic single
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using the equation (1 —1/(N,,+ 1))-100 % under the assumption that the NRs over-
lap each other. It is remarkable that 7, line is substantially located in the brown
coloured zones which means there is no bulk bosonic property above these zones.

The important qualitative issue, which leads from a result of [9] experiment, is
in the following. The random positions in the real space of the observed pairs totally
exclude any mechanism for the pair formation. Since occasionally positioned in
this space coherent excitations (phonons, magnons or other quasi-particles), which
create pairs, are problematic, if the system is homogenous. The last observation
deduced from Gomes et al. paper is the fundamental argument for the justification
of the single hole nature of the cuprate physics.

21.7 Non-Fermi Liquid Heat Conductivity and Entropy

In Ref. [4] we have tried to understand the non-Fermi liquid properties of the low-T
heat conductivity, the specific heat and entropy of copper-oxides, mentioned in the
introduction section, within a two-liquid model consisting from single boson and
fermion holes.

In Fig. 21.5 we have plotted a WFL and a specific heat as function of temperature
for compounds investigated experimentally in Refs. [11,13,14]. The experiment [11]
shows Kk ~ T3 for normal state quasiparticles, while our dependence is k ~ 7% and
connected with the specific heat dependence c¢; ~ T* for the Coulomb Bose gas
(single bosons).
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Fig. 21.5 The specific heat ¢/z and WFL k /(o T) as function of z, where z is linearly proportional
to temperature

For Lorentz ratio of the WFL we have derived in Ref. [4] the formula

3.106 t t
L=Ly|—7|1—— — 21.2
o[ (1-1)+1]. (123

where ¢ and 7, ~ 0.19 (see Ref. [31]) are dopings, Lo = (7 /3)(kp/e)? is the Fermi
liquid Sommerfeld’s value of the Lorentz ratio and the first term in square brackets
originated from the single boson WFL k/(6T) = 3.106- Lo/t'/3. In the Fig. 21.6 we
displayed L/Ly as function of ¢ in comparison with its values measured for different
cuprates. The good agreement for L/Ly with experimental data is obvious.

In Ref. [4] we have also obtained the expression of the normal state entropy .

5”—2<1—1)+CF%. (21.24)

Here, cr is the heat capacity for gas of fermions and 7* is a PG boundary
temperature. The entropy as function of temperature at various dopings ¢ is depicted
in Fig.21.7. Comparing calculated dependencies for . with experimental ones
from Ref. [13], we see again the good agreement. As shown in [4], the nonlinear
T dependence of the entropy .# at small temperatures is related to the insulating
ground state.
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21.8 Conclusion

Summarizing the paper, we have succeeded in understanding the following con-
stituents of the doping-temperature phase diagram of the hole doped copper oxides:
(i) the first and second critical dopings have been a result of emergence and
disappearance of the single hole boson percolation lines, respectively; (ii) the
disappearance of the percolation lines leads to the end of the PG bulk bosonic
property or to the end of Nernst effect signals; (iii) the fact that the PG boundary
was a bound, where the single hole bosons disappear, confirmed by Ref. [9]. Our
findings are consistent with the recent observation [39] of the superconducting
phase consisted of the array of nanoclusters embedded in the insulating matrix
and of percolative transition to this phase from the normal phase in Y BaxCuzOg 5.
Superconducting islands introduced in insulating background have been used for the
interpretation of the superconductor-insulator transition in BirSr;_La,CaCuOg . §
compound [40].

We remind the possible scenario for the origin of PG phase in the copper-oxides.
In Ref. [2] we pointed out that the PG boundary exactly coincides in the experiment
with the structural phase transition line, where the symmetry of the sample structure
changes. However, the structural phase transition induces in a system the mechanical
strain. This mechanical strain changes the magnetic phase transition, existing in a
system, from the second order into the first order one. However, this first order
phase transition is close to the second order one. This effect calls in the literature
as a striction. The phase transition of single bosons into fermions, discussed in
Sect. 21.4, is possibly obeyed by a striction. Therefore, transition peaks in the
specific heat increment are washed out in the underdoping regime of cuprates [13].
On the other hand, the first order phase transition accepts the existence of the meta-
stable phase. We believe that PG phase of cuprates is the meta-stable phase of single
bosons, which effective spins are fluctuating and interacting with each others. At
the PG boundary this interaction entirely destroys bosons, transforming them into
fermions.

At the end, we predict the existence of not percolated single bosons at low-
T before the first critical doping x,; in the doping-temperature phase diagram of
copper-oxides. For these dopings, a scanning tunneling microscopy measurement
may probe the same picture for minimal size NRs as for PG region, close to PG
boundary. The Bose statistics of these particles may be experimentally detected
by some methods described in Ref. [41]. These methods might be also applied to
detect the fermion statistics of particles, which is the main hypotheses of the present
treatment, outside of the PG boundary.
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